UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Variations in coniferous wood moisture estimation by electrical techniques Wang, I-Chen 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1975_A6_7 W35_4.pdf [ 6.87MB ]
Metadata
JSON: 831-1.0093393.json
JSON-LD: 831-1.0093393-ld.json
RDF/XML (Pretty): 831-1.0093393-rdf.xml
RDF/JSON: 831-1.0093393-rdf.json
Turtle: 831-1.0093393-turtle.txt
N-Triples: 831-1.0093393-rdf-ntriples.txt
Original Record: 831-1.0093393-source.json
Full Text
831-1.0093393-fulltext.txt
Citation
831-1.0093393.ris

Full Text

VARIATIONS IN CONIFEROUS WOOD MOISTURE ESTIMATION BY ELECTRICAL TECHNIQUES by I-CHEN WANG B.Sc. Taiwan P r o v i n c i a l Chung H s i n g U n i v e r s i t y , 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n t h e F a c u l t y o f F o r e s t r y We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1975 i In present ing th is thes is in p a r t i a l fu l f i lment of the requirements for an advanced degree at the Un ivers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make it f r ee ly ava i l ab le for reference and study. I fur ther agree that permission for extensive copying of th is thes is for s c h o l a r l y purposes may be granted by the Head of my Department or by h is representa t ives . It is understood that copying or p u b l i c a t i o n of th is thes is fo r f i n a n c i a l gain s h a l l not be allowed without my wr i t ten permiss ion. Department of Forestry / The Un ivers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date April io.\°ins ABSTRACT E l e c t r i c a l m o i s t u r e m e ters have c e r t a i n a d v a n t a g e s o v e r o t h e r t e c h -n i q u e s f o r d e t e r m i n i n g wood m o i s t u r e c o n t e n t . V a r i a b i l i t y a s s o c i a t e d w i t h such meter measurements has not been t h o r o u g h l y i n v e s t i g a t e d . T h i s s t u d y examined some s o u r c e s o f t h i s v a r i a b i l i t y t h a t a r i s e between s p e c i e s , between t r e e s and w i t h i n stem which r e l a t e t o wood e l e c t r i c a l p r o p e r t i e s . Wood samples i n c l u d e d p o r t i o n s o f seven r e c e n t l y f e l l e d f u l l - t r e e c o n i f e r o u s l o g s . T h i s p r o v i d e d c o m p a r i s o n a s : between s p e c i e s ( l o d g e p o l e p i n e ( P i n u s c o n t o r t a v a r . l a t i f o l i a Engelm.), w e s t e r n w h i t e s p r u c e ( P i c e a  g l a u c a (Moench.) V o s s . ) , D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i v a r . g l a u c a -( B e i s s n . ) F r a n c o ) and s u b a l p i n e f i r ( A b i e s l a s i o c a r p a (Hook.) N u t t l . ) ; w i t h i n s p e c i e s ( f o u r l o d g e p o l e p i n e ) ; and w i t h i n i n d i v i d u a l stem ( f o u r t o f i v e i n h e i g h t s e r i e s , two t o f i v e i n r a d i a l s e r i e s ) . In a d d i t i o n , one l o d g e p o l e p i n e stump d i s p l a y i n g r e a c t i o n wood was i n c l u d e d . D i r e c t c u r r e n t r e s i s t a n c e ( D e l m h o r s t RC-1B) and p o w e r - l o s s ( M o i s t u r e R e g i s t e r , Model L) meters were used t o e s t i m a t e m o i s t u r e . R a d i a l specimens (2.5 cm x 2.5 cm x 40 cm) were s u b d i v i d e d i n t o f o u r 10 cm l e n g t h s and p l a c e d s i d e by s i d e t o expose r a d i a l o r t a n g e n t i a l f a c e s t h a t accommodated t h e p o w e r - l o s s meter head. T h i s p r o v i d e d a n o v e l way f o r c o l l e c t i n g and r e p l i c a t i n g d a t a w i t h r e g a r d t o p o s i t i o n w i t h i n stem, as w e l l as m i n i m i z i n g t h e i n f l u e n c e o f d e f e c t . Specimens were t e s t e d a t 21°C f o r nominal m o i s t u r e l e v e l s ("green", 19% and 12% f o r r e s i s t a n c e meter, 19%, 12% and 6% f o r p o w e r - l o s s meter) and meter r e a d i n g s were compared w i t h c a l c u l a t e d m o i s t u r e s . D i r e c t c u r r e n t r e s i s t a n c e m o i s t u r e meter measurements d i d n o t appear t o be r e l a t e d t o wood s p e c i f i c g r a v i t y . Between t r e e measurements w i t h i n l o d g e p o l e p i n e showed l e s s v a r i a t i o n t h a n measurements between t h e f o u r i i s p e c i e s . W i t h i n t r e e h e i g h t c o n t r i b u t e d l i t t l e t o v a r i a t i o n , b u t r a d i a l -d i r e c t i o n d i d p r o v i d e d i s c e r n i b l e v a r i a t i o n , e s p e c i a l l y a t low m o i s t u r e c o n t e n t s . P r e c i s i o n o f the r e s i s t a n c e measurements was good, but a c c u r a c y was poor. Power-loss type m o i s t u r e meter measurements were i n f l u e n c e d by s p e c i f i c g r a v i t y . R e g r e s s i o n l i n e s o f meter r e a d i n g s and m o i s t u r e c o n t e n t a p proached q u a d r a t i c f u n c t i o n s , w i t h the n o t a b l e e x c e p t i o n o f D o u g l a s - f i r . R e g r e s s i o n e q u a t i o n s c o n t a i n i n g m o i s t u r e c o n t e n t , m o i s t u r e c o n t e n t s q u a r e d and s p e c i f i c g r a v i t y as i n d e p e n d e n t v a r i a b l e s a c c o u n t e d f o r 92% o f the t o t a l v a r i a b i l i t y f o r a l l seven t r e e s s t u d i e d , and 96% among the f o u r l o d g e p o l e p i n e t r e e s . Between s p e c i e s v a r i a t i o n s i n p o w e r - l o s s meter measurements were p r o -m inent and h i g h l y s i g n i f i c a n t . T h e r e were a l s o s i g n i f i c a n t d i f f e r e n c e s f o r between t r e e measurements. W i t h i n t r e e h e i g h t c o n t r i b u t e d l i t t l e , b u t r a d i a l d i r e c t i o n d i d c o n t r i b u t e t o v a r i a t i o n . Exposure o f r a d i a l o r t a n -g e n t i a l f a c e s gave s i g n i f i c a n t l y d i f f e r e n t r e a d i n g s . B e t t e r u n d e r s t a n d i n g o f the c o n t r i b u t i o n o f such v a r i a b l e s c o u l d i n -c r e a s e u s e f u l n e s s o f m o i s t u r e e s t i m a t i o n s by e l e c t r i c a l m e t e r s . i i i TABLE OF CONTENTS Page TIT L E PAGE .... , . . i ; ABSTRACT i i TABLE OF CONTENTS i v LIST OF TABLES ..." v i LIST OF FIGURES i x LIST OF APPENDICES x i ACKNOWLEDGMENTS x i i 1.0 INTRODUCTION 1 2.0 LITERATURE REVIEW 4 2.1 M o i s t u r e and i t s I n t e r a c t i o n w i t h Wood 4 2.1.1 Wood m o i s t u r e d e f i n i t i o n s 4 2.1.2 I n t e r a c t i o n between wood m o i s t u r e and e l e c t r i c p r o p e r t i e s '7 2.2 E f f e c t o f Wood V a r i a b i l i t y on E l e c t r i c P r o p e r t i e s 10 2.2.1 Wood p h y s i c a l p r o p e r t i e s i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s H 2.2.2 Wood a n a t o m i c a l p r o p e r t i e s i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s 13 2.2.3 Wood ch e m i c a l c o m p o s i t i o n i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s 16 3.0 MATERIALS AND METHODS 21 3.1 Sample C o l l e c t i o n 21 3.2 Specimen P r e p a r a t i o n s 21 3.3 M o i s t u r e Measurements 22 3.3.1 I n s t r u m e n t s and c a l i b r a t i o n 22 3.3.2 M o i s t u r e c o n d i t i o n i n g and measurement 23 3.3.3 O v e n - d r y i n g and c a l c u l a t i o n s 25 i v Page 4 • 0 RESULTS « * t t t t * « « t » « t » t $ » « ? » « t « » » » « 27 4.1 S p e c i f i c G r a v i t y 27 4.2 R e s i s t a n c e Type M o i s t u r e Meter . . . . . 28 4.3 P o w e r - l o s s Meter , 28 5.0 D i s c u s s i o n , , • 30 5.1 M o i s t u r e C o n t e n t s 30 5.2 S p e c i f i c G r a v i t i e s . . . . . . . . 30 5.3 The Power F a c t o r 32 5.4 M o i s t u r e M e t e r V a r i a b l e s 32 5.4.1 Between s p e c i e s v a r i a b i l i t y 33 5.4.2 Between t r e e v a r i a b i l i t y 39 5.4.3 W i t h i n t r e e h e i g h t v a r i a b i l i t y 40 5.4.4 W i t h i n t r e e r a d i a l v a r i a b i l i t y 41 5.4.5 W i t h i n t r e e a n i s o t r o p y 46 5.4.6 Compression wood 47 5.5 R e g r e s s i o n s and Comparisons , , , , 48 5.6 F u r t h e r Work 50 6.0 CONCLUSIONS 51 7.0 LITERATURE CITED 53 v LIST OF TABLES A n a l y s i s o f v a r i a n c e t a b l e f o r between s p e c i e s p o w e r - l o s s m e t e r measurements. L o d g e p o l e p i n e No. 4, l o d g e p o l e p i n e r e a c t i o n wood, w h i t e s p r u c e , D o u g l a s -f i r and s u b a l p i n e f i r d a t a were used. . A n a l y s i s o f c o v a r i a n c e t a b l e f o r between s p e c i e s p o w e r - l o s s meter measurements. S p e c i f i c g r a v i t y i s the c o v a r i a t e . Lodg p o l e p i n e No. 4, l o d g e p o l e p i n e r e a c t i o n wood, w h i t e s p r u c e , D o u g l a s - f i r and sub-a l p i n e f i r d a t a were used A n a l y s i s o f v a r i a n c e t a b l e f o r w i t h i n l o d g e p o l e p i n e r e g u l a r woods p o w e r - l o s s meter measurements. A n a l y s i s o f c o v a r i a n c e t a b l e f o r w i t h i n l o d g e p o l e p i n e r e g u l a r woods p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . A n a l y s i s o f v a r i a n c e f o r l o d g e p o l e p i n e No. 1 p o w e r - l o s s meter measurements. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 1 p o w e r - l o s s meter measurements C o v a r i a t e i s s p e c i f i c g r a v i t y A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 2 p o w e r - l o s s meter measurements A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 2 p o w e r - l o s s meter measurements C o v a r i a t e i s s p e c i f i c g r a v i t y A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 3 p o w e r - l o s s meter measurements . A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 3 p o w e r - l o s s meter measurements C o v a r i a t e i s s p e c i f i c g r a v i t y . . . . . A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 4 p o w e r - l o s s meter measurements Page T a b l e 12. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 4 po w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y 70 T a b l e 13. A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e r e a c t i o n wood p o w e r - l o s s meter measurements. 71 T a b l e 14. A n a l y s i s o f v a r i a n c e t a b l e f o r w h i t e s p r u c e p o w e r - l o s s meter measurements 72 T a b l e 15. A n a l y s i s o f c o v a r i a n c e f o r w h i t e s p r u c e p o w e r - l o s s meter:, measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y 72 T a b l e 16. A n a l y s i s o f v a r i a n c e t a b l e f o r Douglas-f i r p o w e r - l o s s meter measurements 73 T a b l e 17. A n a l y s i s o f c o v a r i a n c e f o r D o u g l a s - f i r p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y .73 T a b l e 18, A n a l y s i s o f v a r i a n c e t a b l e f o r s u b a l p i n e -f i r p o w e r - l o s s meter measurements. . 74 T a b l e 19. A n a l y s i s o f c o v a r i a n c e f o r s u b a l p i n e - f i r p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y 74 T a b l e 20. Comparison o f p o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i s t e r , Model L) c o r r e c t i o n t a b l e s f o r l o d g e p o l e p i n e p o o l e d d a t a . M a n u f a c t u r e r s u p p l i e d d a t a and the t a b l e p r e p a r e d by Bramhall and Salamon (11) a r e g i v e n f o r c o m p a r i s o n . U n d e r l i n e d d a t a a r e e x t r a p o l a t e d .75 T a b l e 21. Comparison o f p o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i s t e r , Model L) c o r r e c t i o n t a b l e s f o r w h i t e s p r u c e d a t a . Manufac-t u r e r s u p p l i e d t a b l e and the t a b l e p r e -p a r e d by B r a m h a l l and Salamon (11) a r e g i v e n f o r c o m p a r i s o n . U n d e r l i n e d d a t a a r e e x t r a p o l a t e d .76 v i i Page T a b l e 22. Comparison o f p o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i s t e r , Model L) c o r r e c t i o n t a b l e s f o r D o u g l a s - f i r d a t a . Manufac-t u r e r s u p p l i e d t a b l e and the t a b l e p r e -p a r e d by Bramhall and Salamon (11) a r e g i v e n f o r c o m p a r i s o n . U n d e r l i n e d d a t a a r e e x t r a p o l a t e d . . . . . . . . . . . . • 77 T a b l e 23. Comparison o f p o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i s t e r , Model L) c o r r e c t i o n t a b l e s f o r s u b a l p i n e f i r d a t a . Manufac-t u r e r s u p p l i e d t a b l e and the t a b l e p r e -p a r e d by Bramhall and Salamon (11) a r e g i v e n f o r c o m p a r i s o n . U n d e r l i n e d d a t a a r e e x t r a p o l a t e d 78 T a b l e 24. L i s t o f r e g r e s s i o n e q u a t i o n s 79 v i i i LIST OF FIGURES Page F i g 1. S c h e m a t i c diagram o f sample p r e p a r a t i o n and scheme o f measurements ... . . . ... .. ... 82 F i g 2. S p e c i f i c g r a v i t y ( o v e n - d r y w e i g h t and "gr e e n " volume) v a r i a t i o n s among s p e c i e s . L o d g e p o l e p i n e No. 4, White s p r u c e , Douglas-f i r and s u b a l p i n e f i r sample s p e c i f i c g r a v i t i e s a t 5 h e i g h t l e v e l s and r a d i a l s e r i e s a r e p r e s e n t e d . R i g h t - m o s t p o i n t s a t each h e i g h t l e v e l a r e the sapwood samples. Number o f o b s e r v a t i o n s i s e i g h t f o r each p o i n t 83 F i g 3. S p e c i f i c g r a v i t y ( o v e n - d r y w e i g h t and "gr e e n " volume) v a r i a t i o n s among l o d g e -p o l e p i n e t r e e s ( i n c l u d i n g c o m p r e s s i o n wood) a t 5 h e i g h t l e v e l s and r a d i a l s e r i e s a r e p r e s e n t e d . R i g h t - m o s t p o i n t s a t each h e i g h t l e v e l a r e the sapwood samples. Number o f o b s e r v a t i o n i s e i g h t f o r each p o i n t . . . . 8 4 F i g 4. R e s i s t a n c e m o i s t u r e meter measurements v s . m o i s t u r e c o n t e n t s ( o v e n - d r y b a s i s ) f o r between s p e c i e s comparison as l o d g e -p o l e p i n e No. 4, w h i t e s p r u c e , Douglas-f i r and s u b a l p i n e f i r . ( S o l i d l i n e s r e p r e s e n t heartwood samples and dashed l i n e s r e p r e s e n t sapwood samples. Symbols on l i n e s s e r v e t o d i s t r i n g u i s h between l i n e s and a r e n o t d a t a p o i n t s . ) . 8 5 F i g 5. R e s i s t a n c e m o i s t u r e meter measurements on l o d g e p o l e p i n e samples v s . m o i s t u r e c o n t e n t s ( o v e n - d r y b a s i s ) . ( S o l i d l i n e s r e p r e s e n t heartwood samples, and dashed l i n e s r e p r e s e n t sapwood samples 86 F i g 6. Graph showing t he r e l a t i o n s h i p between pow e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t s ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e p o o l e d ( L l - 4 ) , l o d g e p o l e p i n e No. 4 (L 4 ) , w h i t e s p r u c e (W.S.), Douglas-f i r (D.F.) and s u b a l p i n e f i r ( A . F . ) . (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e not d a t a p o i n t s . ) 87 ix Graph showing the r e l a t i o n s h i p between p o w e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t s ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e No. 1 (L 1)., L o d g e p o l e p i n e No. 2 (L 2 ) , l o d e p o l e p i n e No. 3 (L 3 ) , l o d g e -p o l e p i n e No. 4 (L 4) and l o d g e p o l e p i n e c o m p r e s s i o n wood (LRW). (Symbols on l i n e s a r e n o t d a t a p o i n t s . ) Graph showing the r e l a t i o n s h i p between pow e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t s q u a r e d ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e No. 4 (L 4 ) , l o d g e p o l e p i n e p o o l e d ( L l - 4 ) , w h i t e s p r u c e (W.S.), D o u g l a s - f i r (D.F.) and s u b a l p i n e f i r ( A . F . ) . (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e n o t d a t a p o i n t s . ) Graph showing the r e g r e s s i o n o f l o d g e p o l e p i n e t r e e power-lossrnmeter r e a d i n g s on m o i s t u r e c o n t e n t s q u a r e d ( o v e n - d r y b a s i s ) . These two v a r i a b l e s e x h i b i t q u a d r a t i c r e l a t i o n s h i p s . (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e n o t d a t a p o i n t s . ) Graph showing the r e l a t i o n s h i p between pow e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t s q u a r e d ( o v e n - d r y b a s i s ) o f l o d g e -p o l e p i n e c o m p r e s s i o n wood (LRW) and r e g u l a r woods (L 1-4). (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e n o t da t a p o i n t s . ) . LIST OF APPENDICES Page Appendix I, Appendix I I . Appendix I I I , Appendix IV. Appendix V. C h a r a c t e r i s t i c s o f sample t r e e stems s h o w - t o t a l stem l e n g t h , d i a m e t e r and segments a c c o r d i n g t o h e i g h t l e v e l (measured i n meters from stem b a s e ) . 92 Growth zone numbers i n t h e c e n t e r o f each specimen c r o s s s e c t i o n . R a d i a l s e r i e s No. 1 r e p r e s e n t s corewood, No. 2 t o 4 r e p r e s e n t heartwood and No. 5 r e p r e s e n t s sapwood wood' z o n e s . . . . 93 C i r c u i t r y o f the p o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i s t e r ) . Where M i s t h e meter V i s a vacuum tube and X i s t h e s a m p l i n g e l e c t r o d e s . Adopted from Uyemura ( 8 8 ) . . . . R e s i s t a n c e m o i s t u r e meter ( D e l m h o r s t RC-1B) measurements (MT) on wood samples from t r e e s o f t h e s t u d y compared t o oven-d r y (OD) c a l c u l a t i o n s ; i n c l u d i n g nominal m o i s t u r e l e v e l (N MC), a t stem h e i g h t s (Ht.) and f o r two r a d i a l r e p l i c a t i o n s (1-4 heartwood, 5 sapwood). O b s e r v a t i o n a r e 16 f o r each r e a d i n g a t 19 and 12% nominal m o i s t u r e l e v e l s , and 8 f o r each r e a d i n g a t " g r e e n " c o n d i t i o n 95 96 P o w e r - l o s s m o i s t u r e meter ( M o i s t u r e R e g i -s t e r , Model L) measurements ( M T - r a d i a l , M T - t a n g e n t i a l ) on wood samples from t r e e s o f t h e s t u d y compared t o oven-dry (OD) c a l c u l a t i o n s ; i n c l u d i n g nominal m o i s t u r e l e v e l s (N MC) a t stem h e i g h t s (Ht.) and f o r two r a d i a l r e p l i c a t i o n s (1-4 heartwood, 5 sapwood). O b s e r v a t i o n s a r e 2 f o r each r e a d i n g 104 x i ACKNOWLEDGMENTS The a u t h o r w i s h e s t o e x p r e s s h i s g r a t i t u d e t o Dr. J . W. W i l s o n , P r o f e s s o r , F a c u l t y o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h C o lumbia, f o r h i s g u i d a n c e and s u p e r v i s i o n o f t h e t h e s i s . Thanks a r e due a l s o t o Mr. N o e l , M e r r i l l and Wanner Lumber Co., W i l l i a m s Lake, B. C , f o r h e l p i n s e c u r i n g t h e e x p e r i m e n t a l m a t e r i a l s ; t o Mr. M. Salamon, R e s e a r c h S c i e n t i s t , Western F o r e s t P r o d u c t s L a b o r a -t o r y , Vancouver, f o r h i s s u g g e s t i o n s and use o f f a c i l i t i e s f o r m o i s t u r e meter c a l i b r a t i o n s ; and t o M e s s r s . U. Rumma and G. Bohnenkamp, T e c h n i -c i a n s , F a c u l t y o f F o r e s t r y , f o r t h e i r a s s i s t a n c e i n numerous ways. S p e c i a l t h anks are due Dr. A. Kozak, P r o f e s s o r , F a c u l t y o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h C o l u m b i a , f o r h i s a d v i c e and s u g g e s t i o n s on s t a t i s -t i c a l a n a l y s e s ; t o Mrs. K. H e j j a s , T e c h n i c i a n , f o r h e r e f f o r t s i n computer programming andf.data p l o t t i n g ; and t o Mr. R. C. Yang, f e l l o w g r a d u a t e s t u d e n t , f o r h e l p i n s e t t i n g up computer programs. F i n a n c i a l a s s i s t a n c e from t h e S c i e n c e S u b v e n t i o n Program, Canadian F o r e s t r y S e r v i c e and t h e U n i v e r s i t y o f B r i t i s h Columbia a r e g r a t e f u l l y acknowledged;, Dr. R. W. Kennedy, Western F o r e s t P r o d u c t s L a b o r a t o r y , V a n c o u v e r , k i n d l y s e r v e d as L i a i s o n O f f i c i e r w i t h t h e Canadian F o r e s t r y S e r v i c e . x i i 1 1.0 INTRODUCTION M o i s t u r e l e v e l s e r i o u s l y a f f e c t s wood p r o p e r t i e s and u s e s . In a d d i t i o n , t h e r e a r e c o n s t a n t i n t e r a c t i o n s between ambient h u m i d i t y and J wood which.changes i t s m o i s t u r e c o n t e n t . In o p e r a t i o n s o f d r y i n g , m a c h i n i n g and wood t r e a t m e n t s , m o i s t u r e c o n t e n t has l a r g e i m p o r t a n c e . I t a l s o a f f e c t s t r a n s p o r t a t i o n c o s t s t o the lumber and paper i n d u s t r i e s . A f a s t and r e l i a b l e means o f d e t e r m i n i n g m o i s t u r e c o n t e n t , i s t h e r e f o r e v i t a l f o r wood p r o d u c t q u a l i t y c o n t r o l . S e v e r a l c o n v e n t i o n a l means o f wood m o i s t u r e c o n t e n t d e t e r m i n a t i o n a r e used c u r r e n t l y . These i n c l u d e o v e n - d r y i n g , d i s t i l l a t i o n , t i t r a t i o n , hy-gTrome'-trctfcmethods and e l e c t r i c a l m o i s t u r e m e t e r s . Most o f t h e s e methods o p e r a t e o n l y on s m a l l sample q u a n t i t i e s , w h i l e some a r e d e s t r u c t i v e i n n a t u r e and a r e time consuming t o use. Newer means o f m o i s t u r e d e t e r m i n a t i o n have been s u g g e s t e d , such as b e t a r a y a d s o r p t i o n and n e u t r o n s c a t t e r i n g ( 6 6 ) . These a re e i t h e r n o t d e v e l o p e d f o r p r a c t i c a l a p p l i c a t i o n o r r e q u i r e e x p e n s i v e and b u l k y equipment. In 1972, Stamm (80) f i r s t s u g g e s t e d t h a t the r e l a t i o n s h i p between m o i s t u r e c o n t e n t and d i r e c t c u r r e n t r e s i s t a n c e o f wood c o u l d be used t o d e t e r m i n e i t s m o i s t u r e c o n t n e t . S i n c e then numerous s t u d i e s have been made i n t h i s f i e l d , and a v a r i e t y o f i n s t r u m e n t s have been d e v i s e d f o r e s t i m a t i n g m o i s t u r e . E l e c t r i c a l meters o f f e r the advantages o f s p e e d , economy, m o b i l i t y n o n - d e s t r u c t i v e n e s s and r e a s o n a b l e a c c u r a c y , and have l i t t l e r e s t r i c t i o n on sample s i z e . These b e n e f i t s p u t e l e c t r i c a l m o i s t u r e meters i n f a v o u r o v e r o t h e r c o n v e n t i o n a l methods o f d e t e r m i n i n g m o i s t u r e , e s -p e c i a l l y i n r e g a r d t o c o n t i n u o u s m o n i t o r i n g and a u t o m a t i c c o n t r o l . More r e c e n t l y , the t r e n d i s toward the use o f d i e l e c t r i c p r o p e r t i e s 2 t o a s s e s s m o i s t u r e c o n t e n t . Two types o f d i e l e c t r i c m o i s t u r e m e t e r s , c a p a c i t y and r a d i o - f r e q u e n c y p o w e r - l o s s . a r e i n use. These a r e more e f f e c t i v e i n a s s e s s i n g low m o i s t u r e , l e a v e no p i n marks on the specimen, a r e c a p a b l e o f c o n t i n u o u s measurements and do n o t depend on good c o n t a c t between the e l e c t r o d e s and specimen. The meter r e a d i n g s a r e a f f e c t e d , however, by the specimen d e n s i t y which may cause s u b s t a n t i a l d e v i a t i o n s . The use o f h i g h f r e q u e n c y microwaves may a m e l i o r a t e t h i s s i t u a t i o n , as t h e r e i s l e s s i n t e r a c t i o n between specimen d e n s i t y and the d i e l e c t r i c p r o p e r t i e s a t h i g h f r e q u e n c i e s . E x p l o r a t i o n s " i n ' d i e l e c t r i c p r o p e r t i e s o f wood have opened up some o t h e r p o s s i b l e a p p l i c a t i o n s . McLauchlen e_t aj_. (55) have p a t t e r n e d a d e v i c e u s i n g the d i e l e c t r i c a n i s o t r o p y t o measure the g r a i n a n g l e s o f wood. Pande (68) s u g g e s t e d u s i n g the d i e l e c t r i c c o n s t a n t t o a s s e s s c e l l u -l o s e c r y s t a l l i n i t y . Venkateswaran ( 9 2 ) , a f t e r o b s e r v i n g a l i n e a r r e -l a t i o n s h i p between the l i g n i n c o n t e n t o f wood and t h e d i e l e c t r i c c o n s t a n t , has commented on the p o s s i b i l i t y d f a p p l y i n g t h e s e p o l a r i z a t i o n p r o p e r t i e s t o measure l i g n i n c o n t e n t . However, the c o m p l e x i t y o f wood and i t s o v e r -l a p p i n g p o l a r i z a t i o n s p e c t r a demand more s t u d y b e f o r e p r a c t i c a l ap-p l i c a t i o n s o f t h e s e d i s c o v e r i e s can be e s t a b l i s h e d . A l t h o u g h t h e r e a r e t a b l e s a v a i l a b l e f o r a d j u s t i n g e l e c t r i c a l m o i s t u r e meter r e a d i n g s as r e g a r d s s p e c i e s , v e r y l i t t l e a t t e n t i o n has been p a i d t o o t h e r f a c e t s o f wood v a r i a b i l i t y . I t was a purpose o f t h i s s t u d y t o i n v e s t i g a g e the r e l a t i o n s h i p between e l e c t r i c a l m o i s t u r e meter pe r f o r m a n c e and some a s p e c t s o f wood o r i g i n , such as d i f f e r e n c e s between c o n i f e r o u s s p e c i e s , between stems o f the same s p e c i e s , and between h e i g h t l e v e l s , w o o d zones and a n i s o t r o p y w i t h i n the same stem. A n o t h e r p u r p o s e was t o r e c o g n i z e f o r f u r t h e r s t u d y , wood specimens v a r y i n g g r e a t l y from e s t a b l i s h e d norms. 3 C o m e r c i a l l y a v a i l a b l e d i r e c t c u r r e n t r e s i s t a n c e type and r a d i o -f r e q u e n c y p o w e r - l o s s type m o i s t u r e meters were used i n the s t u d y . T h i s f u l f i l l e d the i d e a o f p r a c t i c a l i t y , a l t h o u g h t h e p r e c i s i o n o f t h e s e may be l e s s s a t i s f a c t o r y than s o p h i s t i c a t e d l a b o r a t o r y i n s t r u m e n t s . Through a s p e c i a l s a m p l i n g scheme and specimen arrangement, a l l measurements were c a r r i e d o u t on c o m p a r a t i v e l y s m a l l samples. T h i s a l l o w e d a n a l y s e s and p r e s e n t a t i o n o f d a t a i n ways n o t done p r e v i o u s l y . 2.0 LITERATURE REVIEW 4 r< M o i s t u r e c o n t e n t i s one o f the most i m p o r t a n t wood p r o p e r t y p a r a -meters. I t has g r e a t s i g n i f i c a n c e on economic and t e c h n i c a l a s p e c t s o f the m a t e r i a l u t i l i z a t i o n . T h e r e f o r e , i t i s deemed a p p r o p r i a t e t o ex-amine f i r s t the d e f i n i t i o n and i n t e r a c t i o n o f m o i s t u r e on wood. 2.1 M o i s t u r e and i t s I n t e r a c t i o n w i t h Wood. , 2.1.1 Wood m o i s t u r e d e f i n i t i o n s . The m o i s t u r e c o n t e n t o f a m a t e r i a l may be d e f i n e d i n a v a r i e t y o f ways, dependinggon the p u r p o s e o f d e f i n i t i o n and the f i e l d o f t e c h n o l o g y t o which i t i s a p p l i e d . Most f r e q u e n t l y , m o i s t u r e c o n t e n t i s e x p r e s s e d by c a l c u l a t i o n based on o r i g i n a l w e i g h t ( r e l a t i v e m o i s t u r e c o n t e n t ) , whereas i n t he wood and t e x t i l e i n d u s t r i e s , the c a l c u l a t i o n i s based on oven-dry w e i g h t ( a b s o l u t e m o i s t u r e c o n t e n t ) . I n - e i t h e r c a s e , the s e p a r a t i o n o f dry m a t e r i a l p o r t i o n from w a t e r p o r t i o n and a c c u r a t e measurement o f a t l e a s t one o f them i s e s s e n t i a l i n d e t e r m i n i n g m o i s t u r e c o n t e n t ( 3 1 ) . T h i s i s m o s t l y done by o v e n - d r y i n g t h e m a t e r i a l a c c o r d i n g to c e r t a i n s p e c i f i c a t i o n s t o o b t a i n i t s d r y w e i g h t ( 1 ) . V a r i o u s methods and i n s t r u m e n t s have been d e v i s e d t o measure m o i s t u r e c o n t e n t o f wood based on the r e l a t i o n s h i p between m o i s t u r e c o n t e n t and c e r t a i n p h y s i c a l p r o p e r t i e s o f wood, b u t a l l t h e s e measurements have t o be c a l i b r a t e d a c c o r d i n g t o the d r y w e i g h t . The i m p o r t a n c e o f a p r o p e r and u n i v e r s a l d r y i n g method i s e v i d e n t . A c c o r d i n g l y , i t i s one o f the c e n t r a l i s s u e s o f m o i s t u r e c o n t e n t d e f i n i t i o n ( 4 1 ) . Both o v e n - d r y i n g and h i g h vacuum d r y i n g have the problem o f b e i n g time consuming. A l s o , t h e a c c u r a c y s u f f e r s when the wood c o n t a i n s v o l a t i l e s u b s t a n c e s l i k e f a t s and o i l s ( 4 1 ) . 5 Wood i s a complex f i b r o u s m a t e r i a l m a i n l y composed o f h o l l o w , e l -ongated c e l l s o r i e n t e d p a r a l l e l t o the l o n i t u d i n a l a x i s o f the t r e e . The c e l l w a l l s i n t u r n a r e formed by l a m i n a t i o n o f numerous t h i n l a y e r s . A l s o , wood has both c o l l o i d a l p r o p e r t i e s and an i n f i n i t e number o f c a p i l l a r y p o r e s . In such an i n t r i c a t e m a t e r i a l , w a t e r i n t e r a c t s w i t h wood s u b s t a n c e i n a c o m p l i c a t e d manner. In a d d i t i o n t o t h e s e c o m p l i c a t i o n s , i t i s commonly assume.dthat m o i s t u r e c o n t e n t r e f e r s t o a d e f i n i t e and imp-l i c i t l y d e f i n e d q u a n t i t y o f m o i s t u r e p r e s e n t i n a m a t e r i a l . However, much c a r e f u l s t u d y may be n e c e s s a r y i n o r d e r t o be a b l e t o d e f i n e m o i s t u r e c o n t e n t u s e f u l l y f o r any g i v e n p u r p o s e , o r t o i n t e r p r e t the r e s u l t s o b t a i n e d from a p a r t i c u l a r method o f measurement. For i n s t a n c e , measure-ments based on d i e l e c t r i c constant-.- have t o t a k e i n t o c o n s i d e r a t i o n the g r e a t v a r i a b i l i t y o f w a t e r , which may a d j u s t c o n s t a n t s f r o m 9 (bonded water) t o 81 ( b u l k , f r e e w a t e r ) ( 3 1 ) . Water may be h e l d i n wood i n d i f f e r e n t s t a t e s as a r e s u l t o f d i f f e r e n t modes o f i n t e r a c t i o n w i t h wood s u b s t a n c e . These i n t e r a c t i o n s o f t e n a l t e r the; p h y s i c a l and c h e m i c a l p r o p e r t i e s o f both w a t e r and wood. Most a p p a r e n t o f a l l , f o r example, a r e the s o r p t i o n i s o t h e r m and d i m e n s i o n a l change o f wood ( 2 2 ) . I t i s d i f f i c u l t t o d i f f e r e n t i a t e between d i f f e r e n t s t a t e s o f w a t e r i n wood, a l t h o u g h i t i s c l a s s i f i e d i n t o t h r e e types a c c -o r d i n g t o one system. Based on the bonding f o r c e between w a t e r m o l e c u l e s and wood s u b s t a n c e , t h e r e are c h e m i c a l , p h y s i c o - c h e m i c a l and p h y s i c a l bondings ( 3 1 ) . C h e m i c a l l y bonded w a t e r s , such as h y d r a t e s and c r y s t a l l i n e compounds, a r e a b s o r b e d on t o the m o l e c u l a r s t r u c t u r e t o form a s o l i d s o l u t i o n , and become a p o r t i o n o f the wood c o n s t i t u t i o n , hence the term "water o f con-s i t u t i o n " . Stamm (82) c o n s i d e r e d t h i s p o r t i o n not w a t e r a t a l l but h y d r o x y l groups t h a t s p l i t o u t under h i g h t e m p e r a t u r e . G e n e r a l l y , t h i s form i s 6 e x c l u d e d from the d e f i n i t i o n o f m o i s t u r e c o n t e n t . P h y s i c o - c h e m i c a l l y bonded w a t e r r e f e r s to a monomolecular s u r f a c e a d s o r p t i o n l a y e r . Macro- and m i c r o s t r u c t u r e s o f the wood s u r f a c e o r the g e o m e t r i c c o n f i g u r a t i o n o f the space w a t e r m o l e c u l e s may occupy have a p r o f o u n d e f f e c t on the s t r e n g t h and q u a n t i t i e s o f bonds. Langmuir ( 4 6 ) , who f i r s t p r o p o s e d t h e o r e t i c a l e x p l a n a t i o n o f t h i s monomolecular ad-s o r p t i o n l a y e r , b e l i e v e d t h a t t h e bo n d i n g energy i s about t he same o r d e r as a c o v a l e n t bond. Oniithe o t h e r hand, Stamm (82) c o n s i d e r e d t h a t t h i s monomolecular a d s o r b e d w a t e r o r " s u r f a c e bound" w a t e r i s h e l d by hydrogen bonds which have about o n e - f o u r t h o f t h e c o v a l e n t bond e n e r g y . T h i s s t r o n g l y h e l d w a t e r i s one o f the reasons t h a t oven-dry w e i g h t o f a p i e c e o f wood i s an a r b i t r a r i l y d e t e r m i n e d w e i g h t . P h y s i c a l l y bonded w a t e r i s c o n s i d e r e d t o be the r e s u l t o f the im-b a l a n c e o f f o r c e e x e r t e d on w a t e r m o l e c u l e s from t he s u r f a c e o f the ad-s o r b e n t . In o t h e r words, t h i s p o r t i o n o f w a t e r i s h e l d by l o n g range weak l i n k s due to p o l a r i z a t i o n o r Van d e r Waals f o r c e s ( 4 1 ) . The w a t e r a d s o r b e d i n t h i s range i s m u l t i - m o l e c u l a r . Three w i d e l y r e c e i v e d t h e o r i e s have been p r o p o s e d f o r the m u l t i - m o l e c u l a r a d s o r p t i o n . Zsigmondy ( 1 0 2 ) , who p r o p o s e d t he c a p i l l a r y c o n d e n s t a t i o n t h e o r y , a t t r i b u t e d a d s o r p t i o n t o c o n d e n s a t i o n o f w a t e r v a p o r i n the c a p i l l a r y p o r e s . The p r e s s u r e o f c o n d e n s a t i o n i s p r o p o r t i o n a l t o the r a d i u s o f l i q u i d meniscus i n a c a p i l l a r y , t h e r e f o r e t he s m a l l e r t he c a p i l l a r y r a d i i , t h e f a s t e r c o n d e n s a t i o n o c c u r s . T h i s t h e o r y can n o t a c c o u n t f o r u n i m o l e c u l a r a d s o r p t i o n , and i s a p p l i c a b l e o n l y t o r e l a t i v e h u m i d i t i e s o f 90% o r more. P o l a r i z a t i o n t h e o r y (10) c o n s i d e r s a d s o r p t i o n as a r e s u l t o f i n d u c e d d i p o l e a t t r a c t i o n s p r o p a g a t e d from the a d s o r b e n t s u r f a c e o v e r s e v e r a l l a y e r s . I t was used t o e x p l a i n t he s o r p t i o n i s o t h e r m q u a n t i t a t i v e l y , b u t i s now 7 o b s o l e t e l a r g e l y because i t f a i l s t o a c c o u n t f o r the b i n d i n g e n e r g y between l a y e r s . B r u n a u e r , Emmett and T e l l e r (13) proposed a t h e o r y t o a c c o u n t f o r m u l t i - m o l e c u l a r a d s o r p t i o n based on t h e as s u m p t i o n t h a t t he same f o r c e s t h a t produce c o n d e n s a t i o n a r e a l s o c h i e f l y r e s p o n s i b l e f o r the b i n d i n g energy o f m u l t i - m o l e c u l a r a d s o r p t i o n and o n l y t h e f i r s t a d s o r b e d l a y e r i s s u r f a c e bound. The subs e q u e n t l a y e r s a r e ads o r b e d n o t by the s u r f a c e b u t by t h e p r e c e e d i n g l a y e r s . T h i s i s known as the BET t h e o r y . Kollmann and Cote (41) c l a s s i f i e d water h e l d w i t h i n wood i n f o u r phases: water o f c o n s t i t u t i o n ; s u r f a c e bound, monomolecular l a y e r ; m u l t i -m o l e c u l a r l a y e r s o f d e c r e a s i n g o r d e r o f d i p o l e ; and c a p i l l a r y condensed w a t e r . T r a n s i t i o n between t h e d i f f e r e n t phases i s not s h a r p . Kollmann (39) f u r t h e r d i v i d e d t he c a p i l l a r y c o n d e n s a t i o n c u r v e i n t o " a p p a r e n t " c a p i l l a r y c o n d e n s a t i o n i n s u b m i c r o s c o p i c s t r u c t u r e and r e a l c a p i l l a r y c o n d e n s a t i o n i n t h e m i c r o s c o p i c p o r e s . A t h r e e component f u r m u l a was proposed t o d e s c r i b e t he t o t a l range o f r e l a t i v e h u m i d i t y s o r p t i o n i s o -therm. 2.1.2 I n t e r a c t i o n between wood m o i s t u r e and e l e c t r i c a l p r o p e r t i e s Dry wood i s an e x c e l l e n t e l e c t r i c a l i n s u l a t o r . The e l e c t r i c a l c o n -d u c t i v i t y i s a l m o s t e n t i r e l y due t o a d s o r b e d m o i s t u r e ( 8 2 ) . R e s i s t i v i t y 17 18 o f o v e n - d r y wood has been o b t a i n e d by e x t r a p o l a t i o n as 3 x 10 t o 3 x 10 ohm-centimeter (16, 8 2 ) . The r e s i s t i v i t y i s i n v e r s e l y p r o p o r t i o n a l t o m o i s t u r e c o n t e n t . From oven-dry t o about 7% m o i s t u r e c o n t e n t , t h e r e i s a l i n e a r r e l a t i o n s h i p between t h e l o g a r i t h m o f r e s i s t i v i t y and m o i s t u r e c o n t e n t (16,38,70). Stamm ( 8 2 ) , e s t i m a t e d t h e change i n r e s i s t i v i t y i n t h i s range as ab o u t 1 0 0 , 0 0 0 - f o l d . From 7% t o f i b e r s a t u r a t i o n ( 2 8 % ) , t h e l o g a r i -thm o f r e s i s t i v i t y r e l a t e s l i n e a r l y t o m o i s t u r e c o n t e n t w i t h a d i f f e r e n t s l o p e (38,82). Above t h e f i b e r s a t u r a t i o n p o i n t , t h e change i n r e s i s t i v i t y ,8 i s r e l a t i v e l y s m a l l (38, 8 0 ) . The b r e a k i n g o f l i n e a r i t y a t 5 t o 8% m o i s t u r e c o n t e n t was t h o u g h t t o c o r r e s p o n d t o the t r a n s i t i o n zone from monomolecular t o m u l t i - m o l e -c u l a r a d s o r p t i o n . M o i s t u r e would be a d i s r u p t e d f i l m a t m o i s t u r e c o n -t e n t s below t h i s r a n g e . T h i s p r o v i d e d some e x p l a n a t i o n as t o t h e d r a s t i c change i n r e s i s t i v i t y below and above t h i s t r a n s i t i o n zone ( 8 2 ) . Lehmann (51) s t u d i e d t h e dependence o f the e l e c t r i c a l c o n d u c t i v i t y o f some h y g r o s c o p i c f i b e r s on t h e i r water c o n t e n t . He found t h a t below f i b e r s a t u r a t i o n p o i n t , t h e m o i s t u r e s o r p t i o n c u r v e s and d.e. conduc-t i v i t y o f d i f f e r e n t n a t u r a l f i b e r s p l o t t e d a g a i n s t m o i s t u r e c o n t e n t a r e v e r y s i m i l a r . In low m o i s t u r e c o n t e n t r a n g e , t h e water m o l e c u l e s were h e l d by c h e m i s o r p t i o n i n amorphous r e g i o n s o f the f i b e r s , hence had no e f f e c t on c o n d u c t i v i t y . F u r t h e r , as water a d s o r p t i o n p e n e t r a t e d by c a p i l l a r y c o n d e n s a t i o n i n t o i n t e r m e c e l l a r c r e v i c e s , w i t h i n c r e a s i n g hydrogen b o n d i n g , t h e d.e. c o n d u c t i v i t y a l s o i n c r e a s e d . The c o m p a r a t i v e e l e c t r i c a l c o n d u c t i v i t y o f pure water h e l d i n a porous body compared w i t h c o n d u c t i v i t y o f the same amount o f water i n b u l k , i . e . , t h e r e l a t i v e c o n d u c t i v i t y may be as h i g h as a f a c t o r o f 10. T h i s i n d i c a t e s t e n t i m e s h i g h e r c o n d u c t i v i t y f o r s u r f a c e bound water t h e n b u l k water (82,100). T h i s i s a t t r i b u t a b l e t o z e t a - p o t e n t i a l a t one hand and l e s s a s s o c i a t i o n between a d s o r b e d water m o l e c u l e s than b u l k w a ter on t h e o t h e r hand. At a g i v e n t e m p e r a t u r e and f r e q u e n c y , t h e d i e l e c t r i c c o n s t a n t i n c r e a s e s w i t h m o i s t u r e c o n t e n t (12,27,78). The i n c r e a s e i s a t t r i b u t e d t o t h e h i g h d i e l e c t r i c c o n s t a n t o f w a ter ( c a . 80) compared w i t h t h e low d i e l e c t r i c c o n s t a n t o f wood s u b s t a n c e . A l s o h i g h m o i s t u r e c o n t e n t c o n t r i b u t e s t o freedom o f r o t a t i o n f o r t h e c e l l w a l l p o l a r g r o u p s . T h i s d i e l e c t r i c c o n -t a n t o f wood i n c r e a s e s e x p o n e n t i a l l y w i t h m o i s t u r e c o n t e n t below t h e f i b e r s a t u r a t i o n p o i n t and i n c r e a s e s l i n e a r l y above t h i s p o i n t (78, 8 8 ) . Venkateswaran and T i w a r i (93) s t u d i e d t he m o i s t u r e c o n t e n t and d i -e l e c t r i c p r o p e r t y r e l a t i o n s h i p by em p l o y i n g a b i n a r y s y s t e m o f w a t e r and wood, and assuming t h a t the m a c r o s c o p i c p o l a r i z a t i o n o f the s y s t e m f o l l o w s c h e m i c a l r a t e t h e o r y . F a i r agreement was o b t a i n e d f o r c a l c u l a t e d v a l u e s and e x p e r i m e n t a l o b s e r v a t i o n s . A d i s r u p t i o n has been o b s e r v e d a t about 6% m o i s t u r e c o n t e n t f o r both d i e l e c t r i c c o n s t a n t and d i e l e c t r i c l o s s t a n g e n t o f wood. The u n d e r l y i n g s i g n i f i c a n c e i s c o r r e l a t i o n between the Langmuir monomolecular a d s o r p t i o n l a y e r and the i n f l e c t i o n p o i n t . Trapp and Pungs(84) and Tsutsumi and Watanabe (86) both have o b s e r v e d t h i s phenomenon/i Kajanne and H o l l m i n g (32) o b s e r v e d a b r u p t change i n d i e l e c t r i c con-s t a n t (£') o f wood when m o i s t u r e c o n t e n t was around 4.5%. They a c c o u n t e d f o r i t as hydrogen b o n d i n g and by assuming a 4 t o 5% hydrogen b o n d i n g rate., The bonding energy was shown t o be 3 t o 4 k c a l p e r mole v t h r o u g h c a l o r i m e t r i c measurement. Tsiiges and Wada (85) e x p l a i n e d t h i s i n f l e c t i o n o f d i e l e c t r i c d i s -p e r s i o n o f p a p e r and c e l l o p h a n e a t 3 and 6% m o i s t u r e c o n t e n t , r e s p e c t i v e l y , as a r e s u l t o f r o t a t i o n a l segmental motions c a u s e d by s o r b e d w a t e r mole-c u l e s b r e a k i n g the i n t e r - a n d i n t r a m o l e c u l a r hydrogen bonds. Norimoto and Yamada (62) s t u d i e d d i e l e c t r i c p r o p e r t i e s o f wood i n r e l a t i o n t o wood m o i s t u r e c o n t e n t i n the microwave range ( c a . 10 GHz, o r 1 x 1 0 ^ H z ) . They found t h a t t he wood d i e l e c t r i c c o n s t a n t and l o s s f a c t o r i n r a d i a l d i r e c t i o n i n c r e a s e d s l i g h t l y up t o 5% m o i s t u r e c o n t e n t , then i n c r e a s e d r a p i d l y w i t h i n c r e a s i n g m o i s t u r e c o n t e n t . They a l s o d i v i d e d m o i s t u r e a c c o r d i n g t o i t s i n t e r a c t i o n w i t h wood as s u r f a c e bound, m u l t i -m o l e c u l a r and c a p i l l a r y condensed w a t e r and a n a l y z e d t h e s e a c c o r d i n g l y . T h e i r r e s u l t s i n d i c a t e d a c l e a r dependence o f e l e c t r i c a l p r o p e r t i e s on o t h e r 10 p h y s i c a l p a r a m e t e r s . The v a l u e s o b t a i n e d f o r s u r f a c e bound, m u l t i -m o T ecular and c a p i l l a r y condensed water as r e g a r d s p e c i f i c g r a v i t y , d i e l e c t r i c c o n s t a n t , l o s s f a c t o r and s p e c i f i c p o l a r i z a t i o n were g i v e n . D i e l e c t r i c c o n s t a n t s were shown t o change from 7.1 t o 63.5, l o s s f a c t o r from 1.6 t o 6.5 and s p e c i f i c p o l a r i z a t i o n from 1.1 t o 14.0 f o r s u r f a c e bound and c a p i l l a r y condensed w a t e r , r e s p e c t i v e l y . 2.2 E f f e c t o f Wood V a r i a b i l i t y on E l e c t r i c a l P r o p e r t i e s . The c o m p l e x i t y o f wood s t r u c t u r e makes t h e s t u d y o f i t s p r o p e r t i e s d i f f i c u l t . N e v e r t h e l e s s , t h e i n t e r d e p e n d e n c e o f c e r t a i n wood p r o p e r t i e s and wood components such as d e n s i t y , f i b e r l e n g t h , g r a i n a n g l e and chemi-ca.l ' c o m p o s i t i o n i s w e l l r e c o g n i z e d . Due t o the c o m p l e x i t y o f each i n d i -v i d u a l p r o p e r t y , i n t e r a c t i o n s between them a r e o f t e n s u b t l e and i l l - d e f i n e d . In many c a s e , only/phenomenal o r q u a l i t a t i v e i n t e r d e p e n d e n c e Can be ob s e r v e d ( 2 3 ) . L i t t l e work has been done r e l a t i n g wood e l e c t r i c a l r p r o p e r t i e s t o o t h e r wood p h y s i c a l , c h e m i c a l o r m o r p h o l o g i c a l p r o p e r t i e s . P r a c t i c a l l y no l i t e r a t u r e i s a v a i l a b l e d e a l i n g w i t h wood e l e c t r i c a l p r o p e r t i e s i n terms o f wood zones and t r e e h e i g h t l e v e l s . O n l y i n d i r e c t i n f e r e n c e s may be drawn on e l e c t r i c a l b e h a v i o u r i n r e g a r d t o t h e p o s i t i o n o f wood sampled from a t r e e . Here, p r o v i s i o n s have t o be made f o r c o n s i d e r a b l e s p e c u l a -t i o n , s i n c e most o f t h e s e s t u d i e s were done on d i s i n t e g r a t e d wood o r wood components, such as p u l p s and e l e c t r i c a l c o n d e n s e r p a p e r s . Some between t r e e and between s p e c i e s d i f f e r e n c e s on e l e c t r i c a l p r o p -e r t i e s o f wood have been s t u d i e d , but t h e s e were not d i r e c t e d t o t h e p r e s e n t s p e c i f i c i n t e r e s t . In f a c t , knowledge a t t h i s l e v e l a r i s e s as b y - p r o d u c t o f s t u d i e s on o t h e r a f f i l a t e d s u b j e c t s . In t h e f o l l o w i n g r e v i e w , wood c h a r a c t e r i s t i c s which a r e r e p o r t e d t o 11 a f f e c t wood e l e c t r i c a l b e h a v i o u r a r e d i s c u s s e d . 2.2.1 Wood p h y s i c a l p r o p e r t i e s i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s A most p r o m i n e n t s u b j e c t i n wood p h y s i c a l p r o p e r t i e s i s s p e c i f i c g r a v i t y , w hich i s the r a t i o o f wood oven-dry w e i g h t and the w e i g h t o f an equa l volume o f d i s p l a c e d w a t e r . Wood d e n s i t y i s d e f i n e d as w e i g h t p e r u n i t volume. There i s no f i n a l agreement on the e f f e c t o f s p e c i f i c g r a v i t y on wood d i r e c t c u r r e n t c o n d u c t i v i t y . Y a v o r s k y (99) and Stamm (82) both c o n s i d e r e d t h a t wood c o n d u c t i v i t y s h o u l d show a p o s i t i v e c o r r e l a t i o n w i t h s p e c i f i c g r a v i t y . H a r t (25) t h e o r i z e d the e f f e c t o f g r o s s anatomy upon c o n d u c t i v i t y o f wood w i t h t h e same u n d e r l y i n g assumption o f a p o s i t i v e s p e c i f i c g r a v i t y - c o n d u c t i v i t y c o r r e l a t i o n . However, l i t t l e e x p e r i m e n t a l e v i d e n c e has been g i v e n i n s u p p o r t o f t h i s view. Data from t he Wood Handbook (2) and a r e c e n t s t u d y by Venkateswaran (91) i n d i c a t e t h a t d i f -f e r e n c e s due t o s p e c i e s e f f e c t s a re much s t r o n g e r than t he s p e c i f i c g r a v i t y e f f e c t . A l s o , because o f the l o g a r i t h m r e l a t i o n s h i p between m o i s t u r e c o n t e n t and d i r e c t c u r r e n t c o n d u c t i v i t y o f wood, d i f f e r e n c e s i n s p e c i f i c g r a v i t y have a minor e f f e c t upon c o n d u c t i v i t y , e.g., a two f o l d d i f f e r e n c e i n s p e c i f i c g r a v i t y may r e s u l t i n a 1 t o 2% meter r e a d i n g d i f f e r e n c e f o r m o i s t u r e c o n t e n t ( 8 2 ) . The e f f e c t o f wood d e n s i t y on i t s d i e l e c t r i c p r o p e r t i e s has been w e l l r e c o g n i z e d . P e t e r s o n (70) s t u d i e d the r e l a t i o n s h i p f o r D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i ) ( M i r b . ) F r a n c o ) wood and found a c u r v e l i n e a r r e -l a t i o n s h i p . When m o i s t u r e c o n t e n t i s above 6%, t h e r e i s a l i n e a r r e -l a t i o n s h i p between d i e l e c t r i c c o n s t a n t (£') and d e n s i t y (P) (f-8 ^63^78). 12 D e l e v a n t i and Hansen (18) found t h a t t h e 5' o f k r a f t paper was r e l a t e d t o d e n s i t y p by t h e C l a u s i u s - M o s o t t i r e l a t i o n : U ' - 1 ) / U ' + 2) « p [1] Skaar (78) d i s c o v e r e d a c o r r e l a t i o n between d e n s i t y and t h e t r a n s -v e r s e l o s s t a n g e n t o f o v e n - d r i e d wood. P e t e r s o n (70) s u p p o r t e d t h e s e f i n d i n g s t h a t a p o s i t i v e c o r r e l a t i o n e x i s t s between t h e d i e l e c t r i c l o s s and d e n s i t y o f wood. However, he n o t e d t h a t t h e e f f e c t i s not so marked as between d i e l e c t r i c c o n s t a n t and d e n s i t y . D e l e v a n t i and Hansen (18) a l s o noted a l i n e a r r e l a t i o n s h i p between t h e l o s s f a c t o r and d e n s i t y . Norimoto and Yamada (63) found a s i m i l a r l i n e a r r e l a t i o n s h i p between l o s s f a c t o r i n l o n g i t u d i n a l d i r e c t i o n ( £ " ) , l o s s f a c t o r o f wood s u b s t a n c e U , " ) and s p e c i f i c g r a v i t y (p ) , and gave t h e e q u a t i o n a s : p However, t h e f u n c t i o n was found t o be a f f e c t e d by t e m p e r a t u r e and f r e q u e n c y . Hearmon and Burcham ( 2 9 ) , on t h e o t h e r hand, have d e c i d e d t h a t t h e r e l a t i o n s h i p between l o s s t a n g e n t and d e n s i t y f o r a i r - d r i e d wood was ambiguous. L i n (54) i n a r e c e n t work, i n which he assumed wood t o be an o r t h o g r o p i c d i e l e c t r i c m a t e r i a l and c a l c u l a t e d t h e r e s u l t s by s t e p w i s e r e g r e s s i o n a n a l y s i s , a l s o f o u n d t h a t m o i s t u r e c o n t e n t c o n t r i b u t e d 94% o f t h e v a r i a b i l i t y i n d i e l e c t r i c c o n s t a n t and 84% f o r a.c. r e s i s t i v i t y and l o s s t a n g e n t . I n c o r p o r a t i o n o f d e n s i t y a s an a d d i t i o n a l i n d e p e n d e n t v a r i -a b l e improved t h e r e g r e s s i o n v e r y l i t t l e . S p e c i f i c g r a v i t y had v i r t u a l l y no e f f e c t on t h e r e g r e s s i o n model. I t i s l i k e l y t h a t t h e e f f e c t o f d e n s i t y o r s p e c i f i c g r a v i t y on d i e l e c t r i c p r o p e r t i e s o f wood i s p o s i t i v e o n l y a t o v e n - d r y c o n d i t i o n . A t o t h e r m o i s t u r e c o n t e n t s , t h e e f f e c t i s l a r g e l y masked by the predominance 13 o f m o i s t u r e and t h e r e b y d i f f i c u l t t o a s s e s s . 2.2.2 Wood a n a t o m i c a l p r o p e r t i e s i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s M o r p h o l o g i c a l p r o p e r t i e s have a t t r a c t e d t h e l e a s t a t t e n t i o n i n t h i s r e g a r d , and f r e q u e n t l y s t u d i e s were done on s e p a r a t e d f i b e r , r a t h e r t h a n on wood i t s e l f . Some s t u d i e s on f i b e r l e n g t h i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s have been done i n c o n n e c t i o n w i t h c o n d e n s e r p a p e r s . C a l l i n a n (14) s t u d i e d the e l e c t r i c a l p r o p e r t i e s o f handsheets made from u n b l e a c h e d k r a f t , s e m i b l e a c h e d k r a f t and m e c h a n i c a l p u l p and found t h a t d i e l e c t r i c c o n s t a n t and l o s s f a c t o r v a r i e d n o t o n l y w i t h c h e m i c a l c o m p o s i t i o n o f t h e p u l p s , but a l s o were c o r r e l a t e d t o f i b e r l e n g t h . The e x p l a n a t i o n was t h a t l o n g e r f i b e r s c o n t a i n e d l e s s e x t r a c t i v e s and ash t h a n s h o r t f i b e r s . In o t h e r s i m i l a r s t u d i e s ( 1 0 1 ) , t h e same c o n c l u s i o n was r e a c h e d but w i t h e x p l a n a t i o n t h a t s h o r t f i b e r s a r e more l i k e l y t o form 1 a c o n t i n u o u s monomolecular a d s o r p t i o n l a y e r under low m o i s t u r e c o n t e n t . Long f i b e r s would have d i s c o n t i n u e d water f i l m , s e p a r a t e d by a i r b u b b l e s , t h u s c o n t r i b u t i n g t o p o o r e r p o l a r i z a t i o n and lower v a l u e s o f £' and £"in l o n g f i b e r s . G a l l a y (23) p o i n t e d o u t t h e imp o r t a n c e o f f i b e r l e n g t h i n c o r r e l a t -i n g v a r i o u s paper p r o p e r t i e s . T h i s a p p e a r s t o be a c r i t i c a l p arameter i n v a r i o u s p h y s i c a l p r o p e r t i e s . Due t o t h e e l o n g a t e d shape o f most wood e l e m e n t s , t h e i r a l i g n m e n t a c c o r d i n g t o t h e t r e e l o n g i t u d i n a l a x i s and t h e near o r t h o t r o p i c a l i g n -ment o f m i c r o f i b r i l a n g l e , t h e r e i s a n i s o t r o p y o f wood p r o p e r t i e s p a r a -l l e l and p e r p e n d i c u l a r t o t h e g r a i n d i r e c t i o n . 14 H a r t (25) t h e o r i z e d on e f f e c t s o f g r o s s wood anatomy on c o n d u c t i v i t y and showed t h a t by assuming an a n i s o t r o p i c c e l l w a l l s u b s t a n c e , t h e t r a n s -v e r s e c o n d u c t i v i t y o f wood specimens would be o n l y o n e - h a l f o f t h e l o n g -i t u d i n a l c o n d u c t i v i t y . T h i s a r i s e s s i m p l y as a r e s u l t o f the g r o s s c e l l -u l a r s t r u c t u r e o f wood. I t has been w e l l e s t a b l i s h e d t h a t the d i r e c t c u r r e n t r e s i s t i v i t y o f wood a c r o s s the g r a i n i s about 2.3 t o 4.5 times h i g h e r than a l o n g the g r a i n . F o r some p o r e d wood s p e c i e s , the r a t i o may r e a c h 8 times (38, 72, 8 2 ) . These d i f f e r e n c e s a r e r e f l e c t i o n s o f s t r u c t u r a l v a r i a t i o n s , and a r e i n d e p e n d e n t o f m o i s t u r e c o n t e n t ( 5 3 , 8 2 ) . In p e r p e n d i c u l a r t o g r a i n d i r e c t i o n , t h e r e i s a 10 t o 12% c o n d u c t -i v i t y r e d u c t i o n i n t a n g e n t i a l d i r e c t i o n as compared w i t h r a d i a l d i r e c t i o n . T h i s i s a t t r i b u t e d t o c e l l u l a r m i s a l i g n m e n t i n t a n g e n t i a l d i r e c t i o n o f c o n i f e r s , and the p r e s e n c e o f r a y s ( 2 5 ) . The same phenomena a l s o p r e v a i l i n d i e l e c t r i c p r o p e r t i e s . D i e l e c t r i c c o n s t a n t o f wood a l o n g the g r a i n d i r e c t i o n i s always h i g h e r than i n the t r a n s v e r s e d i r e c t i o n . S k a a r (78) c o n s i d e r e d the d i f f e r e n c e a t t r i b u t a b l e t o m o l e c u l a r s t r u c t u r e o f the c e l l w a l l . O r i e n t a t i o n o f t h e c e l l u l o s e c h a i n s i s l a r g e l y o r t h o t r o p i c , w i t h t h e h y d r o x y l groups o f c e l l u l o s e h a v i n g more freedom a l o n g t h e g r a i n than a c r o s s t h e g r a i n . L i n (54) f o u n d t h a t wood behaved as an o r t h o t r o p i c d i e l e c t r i c m a t e r i a l w i t h o u t s e r i o u s d e v i a t i o n when the m o i s t u r e c o n t e n t was below 15%. Above 15% m o i s t u r e c o n t e n t , t h e d e v i a t i o n o f t h e o r e t i c a l l y c a l c u l a t e d v a l u e s f r o m experimental, v a l u e s became s i g n i f i c a n t i n the l o n g i t u d i n a l - r a d i a l p l a n e , t h e maximum then c o i n c i d e d t o m i c r o f i b r i l a n g l e . An a n i s o t r o p y o f d i e l e c t r i c p r o p e r t i e s i s a l s o p r e s e n t between r a d i a l and t a n g e n t i a l d i r e c t i o n s . The o r i g i n o f t h e s e v a r i a t i o n s were c o n s i d e r e d 15 by Uyemura (88) and Krciner and Pungs (35) as r e s u l t i n g f r o m c e l l w a l l o r i e n t a t i o n , r a t h e r than from m i c r o s t r u c t u r a l d i f f e r e n c e s . Nanassy (60) made s i m i l a r o b s e r v a t i o n s . R a f a l s k i (74) d e m o n s t r a t e d t h a t by c o m p r e s s i n g beech wood specimens a l o n g both r a d i a l and t a n g e n t i a l d i r e c t i o n s , t h e d i e l e c t n " c i , p r o p e r t y d i f f e r n c e s between t h e two d i r e c t i o n s g r a d u a l l y r e d u c e d , f i n a l l y r e a c h i n g t h e same v a l u e as t h e s p e c i f i c g r a v i t y o f t h e specimens became 1.45. McLauchlen et_ a]_. (55) r e c e n t l y p a t e n t e d a g r a i n s l o p e i n d i c a t o r based on t h i s a n i s o t r o p i c d i e l e c t r i c p r o p e r t y . However, as p o i n t e d out by L i n ( 5 4 ) , a t h i g h m o i s t u r e c o n t e n t m i c r o f i b r i l o r i e n t a t i o n has a s i g -n i f i c a n t e f f e c t on wood d i e l e c t r i c b e h a v i o u r . ^ F u r t h e r s t u d i e s were u r g e d . F a i n b e r g et_ a l _ . (21) d i s c u s s e d e l e c t r i c a l a n i s o t r o p y o f c e l l u l o s e m a t e r i a l s , e s p e c i a l l y r e g e n e r a t e d c e l l u l o s e s . D i f f i c u l t i e s i n d e t e r m i n i n g d i e l e c t r i c v . a n i s o t r o p y were t h o u g h t due t o t h e p r e s e n c e o f w a ter and t h e porous n a t u r e o f t h e h y d r o p h i l i c f i b e r s . C a l c u l a t e d a n i s o t r o p y v a l u e s f o r non-drawn v i s c o s e rayon c o r d f i b e r and h i g h - t e n a c i t y rayon c o r d f i b e r v a r i e d f r o m 5.23 t o 6.15, as compared w i t h o p t i c a l b i r e f r i n g e n c e v a l u e s o f 0.0202 t o 0.0395. C o r r e l a t i o n s between t h e o r i e n t a t i o n , d i e l e c t r i c p e r m i t -t i v i t y and o p t i c a l b i r e f r i n g e n c e were s u g g e s t e d Norimoto and Yamada (64) found a f r e q u e n c y dependency i n d i e l e c t r i c a n i s o t r o p y . At h i g h f r e q u e n c y no d i f f e r e n c e was o b s e r v e d between p a r a l l e l and p e r p e n d i c u l a r t o g r a i n d i r e c t i o n s . T h i s was i n t e r p r e t e d as i n d i c a t i n g t h a t d i e l e c t r i c a n i s o t r p y i s c a used m a i n l y by m a c r o s c o p i c s t r u c t u r a l d i f -f e r e n c e s . A t low f r e q u e n c y , a l a r g e a n i s o t r o p y d i f f e r e n c e was o b s e r v e d , which c o r r e s p o n d e d t o p o l a r i z a t i o n o f h y d r o x y l groups i n t h e d i s o r i e n t e d r e g i o n s o f c e l l u l o s e c h a i n s . T h i s i n d i c a t e d a dependence o f d i e l e c t r i c ~ 16 a n i s o t r o p y on m i c r o s t n u c t u r e and movement o f m o l e c u l e s i n wood. 2.2.3. Wood c h e m i c a l c o m p o s i t i o n i n r e l a t i o n t o e l e c t r i c a l p r o p e r t i e s A b r i e f r e v i e w o f t h e wood d i r e c t c u r r e n t c o n d u c t i o n mechanism i s w a r r a n t e d here i n o r d e r t o comprehend s i g n i f i c a n c e o f c h e m i c a l composi-t i o n on wood e l e c t r i c a l c o n d u c t i o n . The mechanism o f d.e. c o n d u c t i o n i n wood i s t h o u g h t t o be i o n i c r a t h e r than e l e c t r o n i c ( 3 , 12, 27, 5 2 ) . The m i g r a t i o n o f i o n s i n wood, under an e l e c t r i c a l f i e l d has been de m o n s t r a t e d by v a r i o u s e x p e r i m e n t a l e v i d e n c e , such as t h e use o f . r a d i o a c t i v e i s o t o p e s ( 5 2 ) , c o l o r r e a c t i o n s o f m e t a l l i c i o n s ( 5 8 ) , pH v a l u e change near t h e e l e c t r o d e s (30) and neu-t r o n a c t i v a t i o n a n a l y s i s ( 4 7 ) . I t o (30) b e l i e v e d t h a t i n a d d i t o i n t o the u s u a l i o n i c c o n d u c t i o n , t h e e l e c t r o k i n e t i c phenomenon ( z e t a - p o t e n t i a l ) p l a y e d an i m p o r t a n t r o l e , s i n c e the wood specimen i s e q u i v a l e n t t o a b i n a r y system composed o f membrane and wa t e r . Yurev and P o z i n (100) dem o n s t r a t e d t h e im p o r t a n c e o f s u r f a c e conduc-t i v i t y a s s o c i a t e d w i t h z e t a - p o t e n t i a l , which i s s u b s t a n t i a l l y h i g h e r than water c o n d u c t i v i t y o f t h e same volume. Murphy (59) a p p l i e d t h e t h e o r y o f e l e c t r i c a l c o n d u c t i o n i n i o n i c c r y s t a l s t o c e l l u l o s e and p r o p o s e d t h a t c e l l u l o s e c o n d u c t i v i t y i s t h e sum o f i n t r i s i c and e x t r i n s i c c o n d u c t i o n . The f o r m e r a^e t h e i o n i z e d p a r t o f c e l l u l o s e . These i o n s a r e e i t h e r bounded on t h e s u r f a c e o f c e l l u l o s e m i c e l l e s o r e x i s t ascifree i o n s . L i n (52) proposed a model f o r i o n i c c o n d u c t i o n i n wood and p o i n t e d out t h a t t h e number o f ch a r g e c a r r i e r s i n wood i s t h e major f a c t o r i n d e t e r m i n i n g c o n d u c t i o n mechanism a c r o s s t h e m o i s t u r e range from oven-dry c o n d i t i o n t o 20% m o i s t u r e . At h i g h e r m o i s t u r e contents,'.the degree o f d i s s o c i a t i o n o f ads o r b e d i o n s and t h e m o b i l i t y o f t h e s e i o n s become d e t e r m i n i n g f a c t o r s . 17 The p r e s e n c e o f water s o l u b l e e l e c t r o l y t e s i n w o o c L i s , t h e r e f o r e , v e r y i m p o r t a n t t o d.e. c o n d u c t i v i t y . One l i k e l y s o u r c e o f t h e s e i o n s i s the ash c o n t e n t o f wood. Ash i s u s u a l l y low i n most woods, and a good p o r t i o n o f i t i s i n water i n s o l u b l e forms (38, 8 1 ) . C o n s e q u e n t l y , i t may have o n l y m i n o r e f f e c t on t h e e l e c t r i c a l p r o p e r t i e s . C e l l u l o s e c h a i n s a r e t h o u g h t t o c o n t a i n some h i g h l y p o l a r groups which a r e a v a i l a b l e as i o n exchange s i t e s . M e t a l l i c i o n s a d s o r b e d on t h e s e s i t e s a r e h e l d by s t r o n g bonds w i t h b o n d i n g e n e r g y a p p r o x i m a t e l y t h e same as c o v a l e n t bondsx(12, 1 7 ) . Under t h e i n f l u e n c e o f m o i s t u r e , a c t i v a t i o n energy i s r e d u c e d s u b s t a n t i a l l y and water i t s e l f i s added t o m e t a l l i c i o n s t o form c h a r g e c a r r i e r s (28, 5 2 ) . Weatherwax and Stamm (98) found t h a t d e p o s i t i o n o f n o n h y g r o s c o p i c , low c o n d u c t i v i t y m a t e r i a l s , such as p h e n o l i c r e s i n s , i n wood r e d u c e d d.e. c o n d u c t i v i t y because t h e s e s u b s t a n c e s r e d u c e d wood h y g r o s c o p i c i t y . As a l o n g c h a i n p o l y e r composed o f numerous h y d r o x y l g r o u p s , a l s o o f v a r i a b l e p a c k i n g d e n s i t y , c e l l u l o s e has been t h e s u b j e c t o f d i e l e c t r i c s t u d i e s f o r some t i m e , e s p e c i a l l y due t o i t s i m p o r t a n c e as i n s u l a t i o n paper i n e l e c t r i c c a p a c i t o r . B o l o t o v a and Sharkov (8) and V e r s e p u t (95) both found t h a t t h e d i -e l e c t r i c c o n s t a n t ( £ ' ) o f c e l l u l o s i c m a t e r i a l s d e c r e a s e d w i t h i n c r e a s i n g c r y s t a l 1 i n i t y . Kane (33) employed a b i n a r y system and f o u n d a good r e g r e s s i o n between vapor a c c e s s i b i l i t y o f c e l l u l o s e and £' , w i t h s m a l l d e v i a t i o n f r o m t h e l e a s t s q u a r e r e g r e s s i o n l i n e . The £' o f a c c e s s i b l e c e l l u l o s e was about 9, t h a t o f i n a c c e s s i b l e c e l l u l o s e 4. The r e a s o n f o r a h i g h d i e l e c t r i c c o n s t a n t and l o s s f a c t o r o f amorphous c e l l u l o s e i s t h o u g h t t o r e s u l t from g r e a t e r m o b i l i t y o r p o l a r i z a b i l i t y o f h y d r o x y l groups i n t h e s e r e g i o n s , whereas h y d r o x y l groups i n c r y s t a l l i n e r e g i o n s a r e hydrogen bonded and r e q u i r e e x | r a e n e r g y f o r p o l a r i z a t i o n . 18 Pande (68) d e s c r i b e d a t h e o r e t i c a l approach f o r e v a l u a t i n g c e l l u l o s e c r y s t a l l i n i t y through d i e l e c t r i c c o n s t a n t measurement. G l a d s t o n e and Dale ' s law f o r r e f r a c t i v e i n d e x and d e n s i t y o f a s u b s t a n c e was used t o d e r i v e an e q u a t i o n r e l a t i n g average d i e l e c t r i c c o n s t a n t w i t h volume f r a c t i o n o f c e l l u l o s e c r y s t a l l i n i t y . However, Venkateswaran (89) l a t e r poi>nte'dout t h a t the G l a d s t o n e - D a l e law i s i n d e p e n d e n t o f c e l l u l o s e c r y -s t a l l i n e c o n t e n t , thus i t i s i n v a l i d ; ! t o c a l c u l a t e c e l l u l o s e c r y s t a l l i n i t y v i a d i e l e c t r i c measurement. Norimoto and Yamada (65) compared the d i e l e c t r i c c o n s t a n t and l o s s t a n g e n t o f n i n e d r y c e l l u l o s e p r e p a r a t i o n s and t h e i r c o r r e s p o n d i n g c r y -s t a l l i n i t y degrees as d e t e r m i n e d from m o i s t u r e r e g a i n and x - r a y d i f f r a c t i o n . They were a b l e t o d e r i v e and e x p e r i m e n t a l l y v e r i f y a r e l a t i o n s h i p between d i e l e c t r i c p r o p e r t i e s and c e l l u l o s e amorphous c o n t e n t . The e f f e c t o f l i g n i n c o n t e n t on d i e l e c t r i c l o s s f a c t o r has been a s u b j e c t o f i n t e r e s t i n i n s u l a t i n g paper r e s e a r c h . B o r o d u l i n a e t al_. (9) and D e l e v a n t i and Hansen (18) p o i n t e d p u t t h e d e t r i m e n t a l e f f e c t o f l i g n i n i n c o n t r i b u t i n g t o l o s s f a c t o r . NeJbVasov -e t al_. (61) s t u d i e d d i e l e c t r i c c o n s t a n t o f l i g n i n s o l u t i o n s i n d i o x a n e by assuming a 1 i g n i n - d i o x a n e - w a t e r t e r n a r y s y s t e m . The r e s u l t s f o l l o w e d the C l a u s i u s - M o s o t t i r e l a t i o n ( E q . l ) . The p o l a r i z a b i l i t y o f l i g n i n mole-c u l e s , as c a l c u l a t e d from t he e x p e r i m e n t a l d a t a , was h i g h e r by a f a c t o r o f 1000 than t h a t o f wa t e r . More r e c e n t l y , Venkateswaran (92) found a l i n e a r r e l a t i o n s h i p between p e r c e n t a g e l i g n i n and d i e l e c t r i c p e r m i t t i v i t y ( d i e l e c t r i c c o n s t a n t £ ' ) . Woods w i t h l i g n i n c o n t e n t s r a n g i n g from 15 t o 35% were s t u d i e d . The h i g h e r the k l a s o n l i g n i n c o n t e n t , the l o w e r the s p e c i f i c p e r m i t t i v i t y as measured p e r p e n d i c u l a r t o the g r a i n . No e x p l a n a t i o n was g i v e n f o r t h i s phenomenom, 19 b u t a s u g g e s t i o n was made t o d e v e l o p t h i s r e l a t i o n s h i p i n t o a non-d e s t r u c t i v e means f o r l i g n i n measurement. Venkateswaran (90) has found l i t t l e a s s o c i a t i o n between the hem-i c e l l u l o s e f r a c t i o n and wood p e r m i t t i v i t y . B o r o d u l i n a e t al_. (9) f o u n d t h a t the pentosan c o n t e n t o f k r a f t p u l p had an i n h i b i t o r y e f f e c t on sodium i o n s as t o r e d u c e d i e l e c t r i c l o s s e s . I f pentosan c o n t e n t was l o wer than 5 t o 6% the p r e s e n c e o f sodium i o n s i n c r e a s e d d i e l e c t r i c l o s s s u b s t a n t i a l l y , e s p e c i a l l y a t h i g h t e m p e r a t u r e . H e m i c e l 1 u l o s e has been t r e a t e d as a r e l a t i v e l y s h o r t c h a i n e d amorphous compound, w i t h some b r a n c h i n g and c o n t a i n i n g p o l a r g r o u p s , l i k e h y r o x y l , a c e t y l and c a r b o x y l . T hese f e a t u r e s may c o n t r i b u t e t o the d i e l e c t r i c r e -l a x a t i o n b e h a v i o u r as s u c h . L a z a r e v (49) i n a s t u d y o f r o s i n used f o r i n s u l a t i n g p u r p o s e s , fou n d t h a t a b e i t i c a c i d c o n t r i b u t e d s i g n i f i c a n t l y t o l o wer d i e l e c t r i c l o s s e s , whereas the r o s i n v o l a t i l . e s were d e t r i m e n t a l t o i n s u l a t i n g q u a l i t i e s . Vermaas(94) s t u d i e d the d i e l e c t r i c p r o p e r t i e s o f c l u s t e r p i n e ( P i n u s  p i n a s t e r ; F r a n . ) as a f u n c t i o n o f i t s a l c o h o l - b e n z e n e s o l u b l e c o n t e n t . No s i g n i f i c a n t i n f l u e n c e on d i e l e c t r i c c o n s t a n t was f o u n d f o r wood e x t r a c t i v e s . The i n f l u e n c e o f e x t r a c t i v e s on the l o s s t a n g e n t depended upon the g r a i n d i r e c t i o n , where l o s s t a n g e n t a l o n g the g r a i n was n o t i n f l u e n c e d , w h i l e i n the r a d i a l d i r e c t i o n i t i n c r e a s e d and i n the t a n g e n t i a l d i r e c t i o n i t de-c r e a s e d w i t h i n c r e a s i n g e x t r a c t i v e c o n t e n t . Norimoto and Yamada (63) f o u n d l i t t l e d i f f e r e n c e between d i e l e c t r i c l o s s f a c t o r ( £")of u n t r e a t e d and i . • r e x t r a c t e d wood samples. Kusunoki (Cinnamomum camphora S i e b . ) was the o n l y e x c e p t i o n . T h i s was t h o u g h t t o be due t o the p r e s e n c e o f c o n d u c t i v e im-p u r i t i e s l i k e camphor, which were removed by e x t r a c t i o n . Uyemura (88) a l s o found l i t t l e i n f l u e n c e o f o r g a n i c e x t r a c t i v e s on d i e l e c t r i c p r o p e r t i e s . 20 M i n e r a l c o n t e n t i n wood, a c c o r d i n g t o Skaar (78) does not a f f e c t t o any s i g n i f i c a n t e x t e n t t h e d i e l e c t r i c c o n s t a n t a t r a d i o f r e q u e n c y , but has i n f l u e n c e on t h e power l o s s and l o s s t a n g e n t which a r e a f u n c -t i o n o f a.c. c o n d u c t i v i t y , Venkateswaran (92) s u g g e s t e d t h a t i n d r y wood, ash c o n t e n t does not seem t o have any e f f e c t on d i e l e c t r i c p e r -m i t t i v i t y and d.e. c o n d u c t i v i t y , due t o t h e random d i s t r i b u t i o n o f m e t a l l i c e l e m e n t s i n wood. On t h e o t h e r hand, r e s e a r c h e r s on i n s u l a t i n g p a p e r s always s t r e s s i m p o r tance o f t h e s e i m p u r i t i e s t o d i e l e c t r i c l o s s e s . D e l e v a n t i and Hansen (18) showed t h a t a c i d e x t r a c t i o n , s a l t c o n t e n t and e s p e c i a l l y m e t a l l i c i o n s c o n t r i b u t e d a l a r g e p o r t i o n o f t h e l o s s f a c t o r . Among th e m e t a l l i c i o n s , b i v a l e n t i o n s l i k e c a l c i u m and magnesium have l e s s i n f l u e n c e on paper d i e l e c t r i c p r o p e r t i e s t h a n monovalent i o n s l i k e sodium and p o t a s s i u m ( 6 ) . The above r e v i e w , h o p e f u l l y , p r o v i d e s a background f o r u n d e r-s t a n d i n g r e s u l t s o f t h e p r e s e n t s t u d y . 21 3,0 MATERIALS AND METHODS 3.1 Sample C o l l e c t i o n Through arrangements made by CLMA and t h e e f f o r t s o f Mr, M, Noel o f t h e M e r r i l l and Wagner Lumber Co., W i l l i a m s Lake, B. C , t h e samples were c o l l e c t e d from t h e company woodyard on June 4 t h , 1974. F r e s h f e l l -ed w h o l e - t r e e l e n g t h s were s e l e c t e d . For w i t h i n s p e c i e s c o m p a r i s o n s , f o u r stems and one c o m p r e s s i o n wood stump o f l o d g e p o l e p i n e ; ( P i n u s  c o n t o r t a v a r . l a t i f o l i a Engelm.) were c h o s e n . One stem each o f w h i t e s p r u c e ( P i c e a g l a u c a (Moench.) V o s s . ) , D o u g l a s - f i r ( P s e u d o t s u g a m e n z i e s i i var. g l a u c a ( B e i s s n . ) F r a n c o ) and s u b a l p i n e f i r ( A b i e s l a s i o c a r p a (Hook.) N u t t l . ) were a l s o c h o s e n f o r between s p e c i e s c o m p a r i s o n s . A l l t h e s e s p e c i e s a r e i m p o r t a n t t o t h e B r i t i s h Columbia I n t e r i o r lumber i n d u s t r y . A s y s t e m a t i c s a m p l i n g scheme was used. Each t r e e stem was sampled a t f i v e h e i g h t l e v e l s . I n t e r n o d a l segments o f c a . 45 cm were c u t from each h e i g h t l e v e l - . Two segments were c u t from t h e l i v i n g crown p a r t o f the stem. D i s t a n c e s between t h e segments were a d j u s t e d s l i g h t l y t o a v o i d s e r i o u s d e f e c t s and b r a n c h w h o r l s . Data on samples a r e g i v e n i n Appendix I. Each segment was marked and wrapped i n s a r a n f i l m and s t o r e d i n a p o l y e t h y l e n e bag t o p r e v e n t m o i s t u r e l o s s . A f t e r t r a n s p o r t -i n g samples t o t h e F a c u l t y o f F o r e s t r y , U n i v e r s i t y o f B r i t i s h C o l u m b i a , t h e y were s t o r e d i n a c o l d r o o m a t 2°C. 3.2 Specimen P r e p a r a t i o n s The wood segments were sawn l o n g i t u d i n a l l y i n t o h a l v e s a c r o s s t h e c e n t e r s . Then a l o n g one o f t h e two h a l v e s from e a c h segment a 3 cm t h i c k s l a b was c u t . Each s l a b was f u r t h e r sawn l o n g i t u d i n a l l y and p a r a l l e l t o 22 th e t a n g e n t i a l f a c e s i n t o h a l v e s t h r o u g h t h e p i t h t o g i v e two r a d i a l s e r i e s c o u n t e r p a r t s . The sample s l a b s were j o i n t e d on t h e edges and i p l a n e d t o g i v e p a r a l l e l s u r f a c e s . The s l a b s were marked i n t o two t o f i v e 2.5 cm wide s t r i p s as r a d i a l s e r i e s . Sapwood and heartwood zones were s e p a r a t e d . The c e n t r a l growth i n c r e m e n t o f each marked s t r i p was co u n t e d from t h e p i t h and r e c o r d e d (see Appendix I I ) . Each s t r i p was f u r t h e r marked and coded i n t o f o u r 10 cm l o n g specimens. D e f e c t s such as k n o t s , p i t c h p o c k e t s and bark p o c k e t s were e x c l u d e d from specimens as much as p o s s i b l e . The specimen p i e c e s were t h e n p r e p a r e d by sawing t h e s l a b s i n t o s t r i p s a l o n g t h e marked l i n e s and d i v i d i n g them l o n g i t u -d i n a l l y i n t o f o u r 2.5 x 2.5 x 10 cm p i e c e s . These f o u r specimen p i e c e s were c o n s i d e r e d as one group. Specimens from t h e same r a d i a l s e r i e s were put i n one p o l y e t h y l e n e bag and kept i n the c o l d r o o m . A s c h e m a t i c d i a g r a m f o r specimen p r e p a r a t i o n i s p r e s e n t e d as F i g 1. 3.3 M o i s t u r e Measurements 3.3.1 I n s t r u m e n t s and c a l i b r a t i o n Commercial r e s i s t a n c e and p o w e r - l o s s t y p e m o i s t u r e m e t e r s were used t o a s s e s s specimen m o i s t u r e c o n t e n t s . The r e s i s t a n c e t y p e m o i s t u r e meter used was a Delmhorst RC-1B model, e q u i p p e d w i t h 26E e l e c t r o d e s o f 1 - i n c h p i n s . The p o w e r - l o s s meter used was a M o i s t u r e R e g i s t e r , Model L (see Appendix I I I f o r t h e meter c i r c u i t r y ) . The r e s i s t a n c e t y p e m o i s t u r e meter was c o r r e c t e d b e f o r e t h e e x p e r i -ment w i t h s t a n d a r d r e s i s t a n c e s . Readings on some t e s t p i e c e s were com-pared w i t h meter r e a d i n g s o f a s i m i l a r model from t h e Western F o r e s t P r o d u c t s L a b o r a t o r y . T e s t s showed good agreement. The powers-loss t y p e m o i s t u r e meter ( M o i s t u r e R e g i s t e r , Model L) has a b u i l t - i n s t a n d a r d . B e f o r e each s e r i e s o f measurements t h e meter was 23 s t a n d a r d i z e d and z e r o e d a c c o r d i n g t o i n s t r u c t i o n s . N e c e s s a r y a d j u s t -ments were made by t u n i n g t h e t r i m . 3.3.2 M o i s t u r e c o n d i t i o n i n g and measurement At f i r s t , " g r e e n " specimens were weighed i n d i v i d u a l l y and dimen-s i o n s were measured t o the n e a r e s t 0.1 mm by m i c r o m e t e r . These were used l a t e r t o c a l c u l a t e a c t u a l i n i t i a l m o i s t u r e c o n t e n t s and s p e c i f i c g r a v i t i e s . A l l " g r e e n " specimens had m o i s t u r e c o n t e n t s above 25% and were t h e r e b y beyond t h e rang e o f t h e p o w e r - l o s s meter s c a l e . Only t h e r e s i s t -ance t y p e m o i s t u r e meter was used i n t h i s i n s t a n c e . Measurements were t a k e n w i t h t h e e l e c t r o d e a l i g n e d p a r a l l e l t o t h e g r a i n d i r e c t i o n and p e r p e n d i c u l a r t o t h e r a d i a l f a c e s . The de p t h s o f p e n e t r a t i o n were 0.5 and 1.2 cm. The f o r m e r measurements a t 1/5 o f t h e specimen t h i c k n e s s c o r r e s p o n d e d t o t h e o v e r - a l l m o i s t u r e c o n t e n t ( 1 1 ) . The l a t t e r was a measure o f t h e c o r e m o i s t u r e c o n t e n t . D i f f e r e n c e s between t h e two measure-ments were g e n e r a l l y s m a l l , i n d i c a t i n g a f a i r l y even m o i s t u r e g r a d i e n t . S u b s e q u e n t l y , t h e specimens were c o n d i t i o n e d s t e p w i s e t o nominal 19%, 12% abd 6% m o i s t u r e c o n t e n t s . The specimen p i e c e s were p l a c e d on wooden t r a y s w i t h v i n y l s c r e e n bottom, which p r o v i d e d good v e n t i l a t i o n . T r a y s were s t a c k e d i n s i d e an Aminco c o n s t a n t t e m p e r a t u r e and h u m i d i t y (CTH) chamber. Each c o n d i t i o n i n g t o o k two t o t h r e e weeks. The r e q u i r e -ment o f m o i s t u r e c o n t e n t u n i f o r m i t y was compromised a l i t t l e i n o r d e r t o c o n s e r v e t i m e . S t a b l e m o i s t u r e c o n t e n t l e v e l s were e s t a b l i s h e d as shown': by f a i r l y c o n s t a n t specimen w e i g h t a t c o n s e c u t i v e w e i g h i n g s . F o l l o w i n g each c o n d i t i o n i n g , t h e specimens were weighed i n gr o u p s o f f o u r as r e p r e s e n t i n g t h e same r a d i a l s e r i e s s t r i p s . Use o f t h e r e s i s t -ance t y p e m o i s t u r e meter f o l l o w e d t h e same p r a c t i c e as d e s c r i b e d f o r the 24 " g r e e n " c o n d i t i o n , e x c e p t i n a d d i t i o n t o measurements made on t h e r a d i a l f a c e s , t a n g e n t i a l f a c e s were i n v e s t i g a t e d as w e l l . The nominal 6% m o i s t u r e l e v e l was beyond t h e c a p a c i t y o f t h e r e s i s t a n c e m o i s t u r e m eter. A l l measurements were made a t 21 °C. The p o w e r - l o s s t y p e m o i s t u r e meter had an 8.6 cm d i a m e t e r c i r c u l a r e l e c t r o d e , and demanded an even l a r g e r specimen s u r f a c e t o accommodate t h e e l e c t r o d e . T h i s posed a problem on matched r a d i a l s e r i e s measurements, s i n c e t h e l a r g e s t d i a m e t e r o f t h o s e stems sampled was l e s s t h a n 40 cm. One p i t h t o p e r i p h e r y r a d i a l s e r i e s c o u l d a t most accommodate two measure-ments which were f a r from adequate f o r e s t a b l i s h i n g w i t h i n stem d a t a o f a n a l y t i c a l v a l u e . To overcome t h e problem , a no v e l method o f specimen arrangement was d e v i s e d . The group o f f o u r specimens were a l i g n e d s i d e by s i d e , e x p o s i n g e i t h e r r a d i a l o r t a n g e n t i a l s u r f a c e s t o p r o v i d e a 10 x 10 cm s u r f a c e . P r e s s u r e was e x e r t e d l a t e r a l l y t o m i n i m i z e gaps between s p e c i m e n s . The measurements c o u l d then be made on t h i s i m p r o v i s e d s u r f a c e . A f t e r measure-ments were t a k e n on both r a d i a l f a c e s , t h e specimens were t u r n e d 90° and a g a i n measurements were made on t h e two t a n g e n t i a l s u r f a c e s . The method not o n l y p r o v i d e d a f e a s i b l e way t o a s s e s s a r a d i a l s e r i e s and p r o v i d e matched a n i s o t r o p y measurements, but by s h i f t i n g specimen a l i g n m e n t s minor d e f e c t s c o u l d be e x c l u d e d from d i r e c t l y c o n t a c t i n g t h e e l e c t r o d e , t h e r e b y m i n i m i z i n g i n f l u e n c e o f t h e wood d e f e c t s . P r e l i m i n a r y t e s t s were r u n t o d e t e r m i n e the e f f e c t s o f " r e c o n s t i t u -t i n g " a board by p u t t i n g specimens back t o g e t h e r . Two-and-half c e n t i m e t e r t h i c k l o d g e p o l e p i n e boards were a l t e r n a t e l y c u t i n t o 10 x 10 cm b l o c k s and s p e c i m e n - s i z e p i e c e s . The comparable s e t s o f b l o c k s and s p e c i m e n - s i z e p i e c e s were c o n d i t i o n e d a t t h r e e d i s t i n c t h u m i d i t y l e v e l s ( a p p r o x i m a t e l y 25 0%, 50% and 100%). A f t e r one month t h e p o w e r - l o s s meter r e a d i n g s on each s e t showed v e r y s m a l l d e v i a t i o n s between i n t a c t b l o c k s and r e c o n -s t i t u t e d b l o c k s . The p o w e r - l o s s m o i s t u r e meter was d e s i g n e d t o work on a 5 cm t h i c k b o a r d . S i n c e 2.5 cm t h i c k specimens were u s e d , a s t y r o f o a m i n s u l a t i n g p i e c e was p l a c e d beneath t h e specimens t o p r e v e n t any e x t e r n a l i n f l u e n c e from c a u s i n g e r r a t i c r e s u l t s . 3.3.3 O v e n - d r y i n g and c a l c u l a t i o n s E v e n t u a l o v e n - d r y i n g was used t o o b t a i n specimen w e i g h t s . F o l l o w -i n g t h e l a s t b a t c h o f m o i s t u r e measurements, specimens were s t a c k e d i n ovens w i t h w i r e mesh s e p a r a t i n g e a c h l a y e r f o r b e t t e r v e n t i l a t i o n . The ovens were a d j u s t e d and m a i n t a i n e d a t 102°C f o r t h r e e d a y s . A g l o v e box w i t h a i r l o c k was s e t up, and a w e l l a d j u s t e d e l e c t r i c a l b a l a n c e was p l a c e d i n s i d e t h e g l o v e box. G l a s s t r a y s c o n t a i n i n g s i l i c o n g e l and P^Og were put under t h e f a l s e bottom o f t h e g l o v e box and a i r l o c k t o g i v e a d r y atmosphere i n s i d e . A f t e r removal from ovens, s p e c i -mens were p u t i n a d e s c c i c a t o r and c a r r i e d t o t h e g l o v e box, where t h e y were s t o r e d i n t h e a i r - l o c k and a l l o w e d t o c o o l . Then t h e i n d i v i d u a l specimen p i e c e s were weighed. The b a l a n c e r e a d i n g s were r e c o r d e d v o c a l l y on a t a p e - r e c o r d e r . At t h e end o f each b a t c h o f measurements, t h e d a t a were t r a n s c r i b e d o n t o d a t a s h e e t s . F o r c o n t r o l , t h e a c t u a l m o i s t u r e c o n t e n t (U) was computed as f o l l o w s : U% = Wu - Wo x 100 [3] Wo where: Wu w e i g h t w i t h m o i s t u r e c o n t e n t U ( o r i g i n a l w e i g h t ) ; and Wo w e i g h t f o l l o w i n g o v e n - d r y i n g ( 4 1 ) , 26 Data on wood s p e c i f i c g r a v i t y (6) were c a l c u l a t e d a s f o l l o w s : •W o G = — M V9 where: WQ = o v e n - d r y w e i g h t ; and Vg = " g r e e n " d i m e n s i o n o f t h e specimen. 27 4,0 RESULTS Data o f the e x p e r i m e n t were t r e a t e d a c c o r d i n g t o t h e f o l l o w i n g t h r e e h e a d i n g s . Raw d a t a n o t d i s c u s s e d here appear i n A p p e n d i c e s IV and V. 4.1 S p e c i f i c G r a v i t y S p e c i f i c g r a v i t i e s o f specimens based on o v e n - d r y weight and gre e n volume were o b t a i n e d t h r o u g h use o f E q u a t i o n [ 4 ] . T h e r e were f o u r measurements f o r each s e t o f specimens. S i n c e t h e p o w e r - l o s s meter head c o v e r e d a l l f o u r p i e c e s , t h e mean o f the f o u r measurements was used t o r e p r e s e n t t h e s p e c i f i c g r a v i t y o f a p a r t i c u l a r specimen s e t . V a r i a -t i o n s i n s p e c i f i c g r a v i t i e s w i t h i n t h e specimen s e t c o u l d be s u b s t a n t i a l . In some c a s e s up t o 0.04 i n v a l u e , even though t h e y came from t h e same l o n g i t u d i n a l s t r i p and were no more t h a n 30 cm a p a r t . The c a u s e s o f t h i s v a r i a t i o n were m a i n l y m i n o r d e f e c t s and uneven wood t e x t u r e . The s p e c i f i c g r a v i t i e s o f t h e samples a r e p r e s e n t e d i n Appendix V. accompanying t h e p b w e r ^ l o s s meter r e s u l t s . The s p e c i f i c g r a v i t y v a r i a t i o n s f o r between s p e c i e s and w i t h i n l o d g e -p o l e p i n e comparisons a r e p r e s e n t e d i n F i g 2 and 3. The p l o t t e d p o i n t s a r e t h e means o f two r e p l i c a t e s . In some c a s e s t h e r e were s u b s t a n t i a l d i f f e r e n c e s between t h e two r e p l i c a t e s , due t o uneven growth p a t t e r n s and t h e sample s e l e c t i o n imposed. P l o t s a r e i n t e n d e d t o show the t r e n d o f s p e c i f i c g r a v i t y v a r i a t i o n s w i t h i n t he stem a t d i f f e r e n t h e i g h t l e v e l s and wood z o n e s . In l o d g e p o l e p i n e r e a c t i o n wood samples, o n l y t he com-p r e s s i o n wood r e s u l t s a r e p l o t t e d , i n s t e a d o f a v e r a g i n g o p p o s i t e wood v a l u e s w i t h t h o s e o f c o m p r e s s i o n wood. 28 4.2 R e s i s t a n c e Type M o i s t u r e Meter R e s i s t a n c e meter d a t a a r e p r e s e n t e d i n Appendix IV. T h r e e sample m o i s t u r e c o n t e n t l e v e l s were examined, i . e . , " g r e e n " , nominal 19% and 12%. I t i s beyond t h e l i m i t o f the r e s i s t a n c e meter t o measure m o i s t u r e c o n t e n t a t 6%, hence no d a t a were c o l l e c t e d a t t h a t l e v e l . The r e l a t i o n s h i p between e l e c t r i c c o n d u c t i v i t y and'wood m o i s t u r e c o n t e n t i s known t o be c u r v e l i n e a r w i t h t h e i n f l e c t i o n p o i n t around the f i b e r s a t u r a t i o n p o i n t o f t h e wood. S i n c e i n t h i s e x p e r i m e n t o n l y two l e v e l s o f m o i s t u r e c o n t e n t were below the f i b e r s a t u r a t i o n p o i n t , i t i s not f e a s i b l e t o f i t a l i n e r e g r e s s i n g meter r e a d i n g s on m o i s t u r e c o n t e n t . F r e e h a n ' d j r r e g r e s s i o n l i n e s i n t e n d e d f o r q u a l i t a t i v e d i s c u s s i o n o f t h e d a t a a r e p r e s e n t e d i n F i g 4 and 5. In t h e s e , the l i n e s were f i t t e d t h r o u g h d a t a p o i n t s o f t h e two m o i s t u r e c o n t e n t l e v e l s below the f i b e r s a t u r a t i o n p o i n t and a p o i n t i n t h e v a c i n i t y o f t h e f i b e r s a t u r a t i o n . 4.3 P o w e r - l o s s Meter Data on p o w e r - l o s s m o i s t u r e meter measurements a t nominal m o i s t u r e c o n t e n t o f 19%, 12% arid 6% a r e p r e s e n t e d i n Appendix V. R e s u l t s o f a n a l y s i s o f v a r i a n c e and c o v a r i a n c e t a b l e s f o r between s p e c i e s , between t r e e s and w i t h i n stem f a c t o r s a r e p r e s e n t e d i n T a b l e 1 t o 19. These t a b l e s a r e n o t i n c l u s i v e , and a l l t h e n o n - s i g n i f i c a n t i n t e r -a c t i o n s have been e n t e r e d i n t o t h e e r r o r terms. The power o f t h e a n a l y s i s o f v a r i a n c e was n o t i d e a l , due t o empty c e l l s , unequal r e p l i c a t i o n s , m i s s i n g l e v e l s and u n c e r t a i n t y i n e x p e c t e d mean s q u a r e s used f o r t e s t i n g each f a c t o r . Many o f t h e s e problems were i n t r i n s i c and u n a v o i d a b l e , l i k e t a p e r i n g o f t r e e s , unequal growth p a t t e r n s t o t h e l e f t and r i g h t o f the p i t h and l a r g e d e f e c t s . S i m p l e and m u l t i p l e r e g r e s s i o n s o f i m p o r t a n t i n d e p e n d e n t v a r i a b l e s a r e p r e s e n t e d as F i g 6 t o 10. C a l i b r a t i o n c h a r t s g e n e r a t e d by t h e s e r e g r e s s i o n e q u a t i o n s a r e p r e s e n t e d as T a b l e . 2 0 t o 23. Comparison w i t h d a t a p r o v i d e d by t h e manufac t u r e r and t h a t e s t a b l i s h e d by B r a m h a l l and Salamon ( T l ) are g i v e n . 3.Q 5.0 D i s c u s s i o n 5.1 M o i s t u r e C o n t e n t s ; The c h o i c e o f m o i s t u r e c o n t e n t l e v e l s i n the e x p e r i m e n t , i . e . , nominal 19%, 12% and 6% r e p r e s e n t e d a range i n which lumber m a n u f a c t u r i n g , s e a s o n i n g and t r a n s p o r t a t i o n a r e most l i k e l y t o be i n t e r e s t e d . The 12% l e v e l may r e p r e s e n t the a i r - d r i e d m o i s t u r e c o n t e n t . The o v e n - d r y i n g method used i n o b t a i n i n g m o i s t u r e c o n t e n t v a l u e s i s c o n v e n t i o n a l and e a s i l y a p p l i c a b l e . Most woods i n v e s t i g a t e d i n t h i s s t u d y have e x t r a n e o u s m a t e r i a l s , some f r a c t i o n o f which must have been l o s t d u r i n g d r y i n g t o g i v e s l i g h t l y h i g h e r a p p a r e n t m o i s t u r e v a l u e s ( 4 1 ) . S i n c e t h e r e i s no easy way o f e s t a b l i s h i n g t h i s d e v i a t i o n , no attempt was made t o c o r r e c t t he oven-dry m o i s t u r e v a l u e s . C o n d i t i o n e d v a l u e s were 1 t o 2% h i g h e r than the i n t e n d e d o r the nominal m o i s t u r e c o n t e n t l e v e l s . More time might have been taken t o a l l o w specimens t o r e a c h eq-u i l i b r i u m c o n d i t i o n s i n the CTH chamber. T h i s was e v i d e n c e d by the mois-t u r e g r a d i e n t o f 0.1 t o 0.5% i n the r e s i s t a n c e meter measurements taken a t 1/5 o f specimen t h i c k n e s s and a t the c o r e . The sample " g r e e n " c o n d i t i o n t u r n e d o u t t o be lower than from f r e s h l y f e l l e d t r e e s , a consequence o f s a m p l i n g l o g d e c k s . W h i l e some r e s u l t s were b a r e l y above the f i b e r s a t u r a t i o n p o i n t , o t h e r s ranged up t o 150% o r so f o r some sapwood specimens. N e v e r t h e l e s s , the purpose o f the s t u d y was s e r v e d by p r o v i d i n g a m o i s t u r e c o n t e n t l e v e l above t he f i b e r s a t u r a t i o n p o i n t i n a l l cases and a b a s i s f o r "g r e e n " volume used i n s p e c i f i c g r a v i t y c a l c u l a t i o n s . 5.2 S p e c i f i c G r a v i t i e s * From r e v i e w o f l i t e r a t u r e , the s u b j e c t o f d e n s i t y o r s p e c i f i c g r a v i t y 31 effects on power factor of wood is observed to be controversial. Some investigators considered that the correlation between power factor and wood density is weak or ambiguous (29, '41/, 54). On the other hand, ev-idence exists in support of a positive correlation between the two (63, 70,'78). In any event, inclusion of specific gravity as an independent variable may help to account for part of the variability experienced with power-loss meter readings. As showed in Fig 2 and 3, there are substantial specific gravity variations among species, within lodgepole pine species, and with height levels and wood zones within individual stems. Such variations in conifers have been studied extensively by various authors. A general pattern for coniferous wood has evolved as: in radial direction, specific gravity either increases all the way from pith to periphery or decreases from pith in the corewood zone then increases to a maximum at the periphery; while in axial direction, specific gravity de-creases from the base to top of these stems (69). Some of the factors affecting specific gravity of wood have been established. For instance, diameter, volume to age ratio and age of Douglas-Fir contribute significantly to its specific gravity (57). However, lack of agreement in certain cases is confusing. Radial direction specific gravity variations of Douglas-fir have been reported as increasing from pith to periphery, as decreasing from pith in the corewood zone then increasing to a maximum at the peri-phery, and as increasing in the corewood zone then remaining constant or decreasing slightly at the periphery (71, 72, 76). Due to these uncertainties, references made for specific gravity var-iations should be treated with some reservation. The variability of wood power factor at various stem levels as related to specific gravity varia-tions will be discussed. 32 5.3 The Power F a c t o r When an a l t e r n a t e c u r r e n t i s a p p l i e d t o two p a r a l l e l p l a t e s , w i t h a d i e l e c t r i c sandwiched between, t h e e l e c t r i c c u r r e n t can be imaged as a c o n t i n u o u s s i n e wave. In an i d e a l c o n d e n s e r , t h e c h a r g i n g c u r r e n t on t h e p l a t e s u r f a c e s l e a d s t h e a p p l i e d a l t e r n a t i n g p o t e n t i a l by 9 0 ° . When t h e f r e q u e n c y o f t h e c u r r e n t i n c r e a s e s , t h e c h a r g i n g c u r r e n t w i l l be s l i g h t l y o u t o f phase, and a d s o r p t i v e p o l a r i z a t i o n o c c u r s . The c u r r e n t t h e n l e a d s t h e v o l t a g e by ( - S ) ; S i s c a l l e d t he l o s s a n g l e . The t a n g e n t o f t h i s a n g l e i s termed d i s s i p a t i o n f a c t o r o r l o s s t a n g e n t . The complementary a n g l e o f 0 i s the phase a n g l e . The c o s i n e o f 0 i s c a l l e d t h e "power f a c t o r " , s i n c e i t e x p r e s s e s t h e r a t i o o f power d i s s i p a t e d t o t h e t o t a l power l e d i n t o the system. When & i s s m a l l , t a n $ i s e q u i v a l e n t t o c o s 0. T h e power f a c t o r o f wood i n c r e a s e s w i t h i t s m o i s t u r e c o n t e n t a t a g i v e n f r e q u e n c y , and the m o i s t u r e meter was d e s i g n e d a c c o r d i n g t o t h i s p r i n c i p l e . Power f a c t o r o f wood i s a l s o dependent on o t h e r f a c t o r s l i k e temp-e r a t u r e and f r e q u e n c y . P r o p e r c h o i c e o f f r e q u e n c y t o e n s u r e maximum r e s p o n s e between t h e power f a c t o r and m o i s t u r e c o n t e n t o f wood and c o n -v e r t i n g c h a r t s accommodated w i t h t e m p e r a t u r e changes a r e i m p o r t a n t c o n -s i d e r a t i o n s i n t h e d e s i g n and use o f t h e p o w e r - l o s s t y p e m o i s t u r e m e t e r . 5.4 M o i s t u r e Meter V a r i a b l e s A main o b j e c t i v e o f t h i s s t u d y was t o i n v e s t i g a t e some o f t h e v a r i -a b l e s a s s o c i a t e d w i t h e l e c t r i c a l means o f m o i s t u r e measurements. E x t e r -na l f a c t o r s l i k e t e m p e r a t u r e , f r e q u e n c y , wood t r e a t m e n t and w e a t h e r i n g may have s i g n i f i c a n t i n t e r a c t i o n s w i t h meter r e a d i n g s , but were beyond t h e scope o f t h e p r e s e n t s t u d y . 33 De Zeeuw (19) p o i n t e d o u t the u n i q u e n e s s o f i n d i v i d u a l p i e c e s o f wood. C e l l w a l l s a r e v a r i a b l e i n c h e m i c a l c o m p o s i t i o n and i n o r g a n i z a t i o n on t h e m o l e c u l a r l e v e l , compounded w i t h v a r i a t i o n s between s e v e r a l p a r t s o f i n d i v i d u a l t r e e s i n c e l l s i z e s , w a l l t h i c k n e s s and t i s s u e o r g a n i z a t i o n . A l l t h e s e f e a t u r e s d i r e c t l y i n f l u e n c e i t s p h y s i c a l b e h a v i o u r and cause v a r i a b i l i t y i n t h e s e l a t t e r c h a r a c t e r i s t i c s . Many o f t h e c o n t r o v e r s i a l q u e s t i o n s o f wood v a r i a b i l i t y may s i m p l y be i n t e r - s p e c i f i c d i f f e r e n c e s o r o t h e r v a r i a t i o n s w hich cause d i s c r e p a n c i e s as r e p o r t e d i n the l i t e r a t u r e . 5.4.1 Between s p e c i e s v a r a i b i l i t y The r e s i s t a n c e m o i s t u r e meter i s i n f a c t a microampere meter which r e g i s t e r s t h e s t r e n g t h o f e l e c t r i c c u r r e n t p a s s i n g between t h e two e l e c -t r o d e p i n s . The meter i s l o g a r i t h m i c a l l y s c a l e d t o accommodate t h e l o g -a r i t h m r e l a t i o n s h i p between d.e. r e s i s t a n c e o f wood and i t s m o i s t u r e c o n t e n t . For measurements below t h e f i b e r s a t u r a t i o n p o i n t and above c a . 1% m o i s t u r e c o n t e n t , a good l i n e a r r e l a t i o n s h i p can be o b t a i n e d between meter r e a d i n g s and m o i s t u r e c o n t e n t s . However, the d a t a here tended t o u n d e r e s t i m a t e t h e a c t u a l m o i s t u r e c o n t e n t by 2 t o 6% (Appendix IV and F i g 4 and 5 ) . ; S i n c e t h e meter had been c a l i b r a t e d w i t h s t a n d a r d r e s i s t a n c e s b e f o r e t h e e x p e r i m e n t , t h e cause o f t h e s e d i s c r e p a n c i e s may come from c o n f i g u r a t i o n o f the e l e c t r o d e p i n s . Through p r o l o n g e d usage, t h e t i p s o f the p i n s may wear o f f and become b l u n t , c r e a t i n g s m a l l c r e v i c e s between t h e e l e c t r o d e and wood s u b s t a n c e . A l s o , t h i s r e d u c e d a r e a o f p i n s exposed d e c r e a s e s c o n t a c t a r e a . These would i n c r e a s e r e s i s t a n c e and lower t h e r e a d i n g s . K o z l i k (42) used b o t h r e s i s t a n c e and p o w e r - l o s s type m o i s t u r e meters t o measure m o i s t u r e c o n t e n t o f w e s t e r n hemlock (Tsuga h e t e r o p h y l l a ( R a f . ) Sarg.) d i m e n s i o n lumber. The f o r m e r tended t o u n d e r e s t i m a t e a c t u a l 34 m o i s t u r e c o n t e n t s l i g h t l y . In g e n e r a l , r e s i s t a n c e m o i s t u r e meter r e a d i n g s showed l e s s v a r i a t i o n compared w i t h t h e p o w e r - l o s s meter. N e v e r t h e l e s s , between s p e c i e s d i f f e r -e nces d i d e x i s t , as showed i n F i g 4. These d i f f e r e n c e s a r e s t r o n g enough t o overshadow t h e s p e c i f i c g r a v i t y e f f e c t (53, 91) and have w a r r a n t e d t h e use o f a d j u s t i n g t a b l e s f o r d i f f e r e n t s p e c i e s . I n t e r s p e c i f i c v a r i a t i o n s d i d n o t q u i t e f o l l o w t h e s p e c i f i c g r a v i t y r a n k s shown i n F i g 2. B e s i d e s m o i s t u r e c o n t e n t , t h e most s i g n i f i c a n t v a r i a b l e a f f e c t i n g e l e c t r i c a l r e s i s t a n c e o f wood i s t h o u g h t t o be t h e amount o f w a t e r - s o l u b l e e l e t r o l y t e s ( 8 2 ) . T h e r e b y , v a r i a t i o n may be a t t r i b u t e d l a r g e l y t o e x t r a n e o u s m a t e r i a l c o n t e n t . O r g a n i c p o l a r sub-s t a n c e s would have some e f f e c t on e l e c t r i c a l r e s i s t a n c e o f t h e wood. The r a n k i n g i n F i g 4 seems t o match s u s p e c t e d e x t r a c t i v e c o n t e n t s (15, 69, 7 5 ) , a t l e a s t t o some e x t e n t . Venkateswaran (92) pr o p o s e d t h a t wood l i g n i n c o n t e n t has a s i g n i f i -c a n t e f f e c t on wood e l e c t r i c a l r e s i s t i v i t y . The c o r r e l a t i o n between l i g n i n c o n t e n t and e l e c t r i c a l c o n d u c t i v i t y (d.e.) o f wood was a p o s i t i v e l i n e a r one. The l i g n i n c o n t e n t s o f the s p e c i e s i n v e s t i g a t e d here a r e q u i t e s i m i l a r . A c c o r d i n g t o l i t e r a t u r e v a l u e s t h e y a r e i n t h e range o f 26 t o 30% (69,79). T h e r e f o r e , t h e l i g n i n c o n t e n t may n o t have c o n t r i b u t e d much t o t h e s p e c i e s v a r i a t i o n s . Kollmann (39) c o n s i d e r e d t h a t numerous wood p r o p e r t i e s , such as d e n s i t y , f i b e r l e n g t h , v e s s e l w i d t h v a r i a t i o n , s o r p t i o n and r h e o l o g y o f wood f o l l o w G a u s s i a n d i s t r i b u t i o n s . E l e c t r i c a l p r o p e r t i e s o f wood a r e p r o f o u n d l y i n t e r r e l a t e d w i t h s u c h p r o p e r t i e s , t h e r e f o r e , s h o u l d e x h i b i t normal d i s t r i b u t i o n . 35 The a n a l y s i s o f v a r i a n c e o f p o w e r - l o s s meter r e s u l t s ( T a b l e 1) showed h i g h l y s i g n f i c a n t d i f f e r e n c e between s p e c i e s . In o r d e r t o e l i -m i n a t e t h e p o s s i b l e s p e c i f i c g r a v i t y e f f e c t as t h e cause o f t h i s d i f f e r e n c e , c o v a r i a n c e a n a l y s e s were c a r r i e d o u t , u s i n g s p e c i f i c g r a v i t y v a l u e s o f e ach specimen as c o v a r i a t e ( T a b l e 2 ) . The c o r r e l a t i o n c o e f f i c i e n t between p o w e r - l o s s meter r e a d i n g s and s p e c i f i c g r a v i t i e s was .3494 and t h e F v a l u e was s t i l l h i g h l y s i g n i f i c a n t . A draw-back o f t h e c o v a r i a n c e a n a l y s i s , as used h e r e , was t h e r e q u i r e m e n t o f homogeneous s l o p e s f o r r e g r e s s i o n e q u a t i o n s o f i n d i v i d u a l c e l l s . T h e r e were not enough r e p l i c a -t i o n s per c e l l f o r an F - t e s t . S i n c e many f a c t o r s were p r e s e n t e d i n t h e a n a l y s i s o f v a r i a n c e t a b l e , t h e r e l i a b i l i t y o f t h e c o v a r i a n c e a n a l y s i s became d o u b t f u l . N e v e r t h e l e s s , the r e s u l t s may l e n d some s u p p o r t t o t h e s i g n i f i c a n c e o f d i f f e r e n c e s between s p e c i e s . The S t u d e n t i z e d Newman-Keul-m u l t i p l e range t e s t i n u n a d j u s t e d ( s p e c i f i c g r a v i t y ) d a t a showed t h a t t h e r e were no two s p e c i e s h a v i n g s i m i l a r r e s p o n s e t o p o w e r - l o s s m o i s t u r e meter r e a d i n g s a t comparable m o i s t u r e r a n g e s . P a r a l l e l i s m o f p o w e r - l o s s m o i s t u r e meter r e a d i n g s and s p e c i f i c g r a v i t y graphs ( F i g 6 and 8 vs.- F i g 2 ) , s u g g e s t e d t h a t s p e c i f i c g r a v i t y may have some i n f l u e n c e on t h e power f a c t o r o f wood. U n l i k e t h e r e s u l t s o b t a i n e d by L i n ( 5 4 ) , which i n d i c a t e p r a c t i c a l l y no e f f e c t o f d e n s i t y on power f a c t o r o f wood, t h e m u l t i p l e r e g r e s s i o n s f o r a l l t r e e s c a r r i e d out here i n d i c a t e d t h a t s p e c i f i c g r a v i t y was an i n d e p e n d e n t v a r i a b l e making s i g -n i f i c a n t c o n t r i b u t i o n t o t h e r e g r e s s i o n e q u a t i o n . Q u a n t i t i e s o b t a i n e d by m u l t i p l y i n g a p p a r e n t m o i s t u r e p e r c e n t a g e o f t h e specimen and i t s s p e c i f i c g r a v i t y , which i s an e x p r e s s i o n o f a b s o l u t e amount o f water p e r u n i t volume, was t h e s i n g l e most i m p o r t a n t i n d e p e n d e n t v a r i a b l e i n t h e r e g r e s s i o n , a c c o u n t i n g f o r 88.1% o f t h e t o t a l v a r i a b i l i t y . I n c l u s i o n o f o t h e r p o t e n t i a l 36 i n d e p e n d e n t v a r i a b l e s , as m o i s t u r e c o n t e n t and i t s t r a n s f o r m e d f o r m , m o i s t u r e c o n t e n t s q u a r e d , a c c o u n t e d f o r 91.7% o f t h e t o t a l v a r i a b i l i t y . In m u l t i p l e r e g r e s s i o n e q u a t i o n s w i t h a l l p o t e n t i a l i n d e p e n d e n t v a r i -a b l e s f o r c e d i n , t h e l e a s t s i g n i f i c a n t v a r i a b l e s may be dropped out s t e p w i s e . Here, t h e p r o d u c t o f m o i s t u r e c o n t e n t and s p e c i f i c g r a v i t y was t h e f i r s t i n d e p e n d e n t v a r i a b l e t o drop o u t . T h i s q u a n t i t y was a l i n e a r c o m b i n a t i o n o f m o i s t u r e c o n t e n t and s p e c i f i c g r a v i t y and was h i g h l y c o r r e l a t e d w i t h e i t h e r m o i s t u r e c o n t e n t o r s p e c i f i c g r a v i t y . The r e m a i n i n g p o r t i o n o f v a r i a b i l i t y u n a c c o u n t e d f o r by the r e g r e s -s i o n e q u a t i o n seems t o have a r i s e n i n p a r t from e x p e r i m e n t a l e r r o r s and some o t h e r v a r i a b l e s n o t i n v e s t i g a t e d i n t h i s s t u d y . The p r e c i s i o n o f t h e i n s t r u m e n t was not i d e a l and may have c o n t r i b u t e d t o e x p e r i m e n t a l e r r o r s . The p r e s e n c e o f specimen, d e f e c t s c o u l d c a u s e some d e v i a t i o n , a s well.. C o n t r i b u t i o n o f o t h e r v a r i a b l e s was n o t i n v e s t i g a t e d i n t h i s s t u d y and t h e r e must be complex i n t e r a c t i o n s among t h e s e . Only s p e c u l a t i o n s based on l i t e r a t u r e i n f o r m a t i o n w i l l be o f f e r e d f o r t h e e n s u i n g d i s c u s s i o n t o e x p l a i n some d i f f e r e n c e s o b s e r v e d . A p a r t i c u l a r t e n d e n c y o f v a r i a t i o n u s u a l l y r e s u l t e d from o v e r a l l e f f e c t s o f t h e s e v a r i a b l e components. The power f a c t o r o f wood was s u s p e c t e d t o be a f f e c t e d by a n a t o m i c a l and c h e m i c a l f e a t u r e s o f the wood. . Among t h e s e wood c h a r a c t e r i s t i c s , f i b e r l e n g t h , c e l l u l o s e c r y s t a l ! i n i t y , l i g n i n c o n t e n t , amount and t y p e o f i n o r g a n i c i n c l u s i o n s and e x t r a c t i v e c o n t e n t have been r e p o r t e d as major v a r i a b l e s (14,78,92,94,95). T h e i r i n v o l v e m e n t i n wood power f a c t o r v a r i -a b i l i t y has been d i s c u s s e d e a r l i e r . A b r i e f d i s c u s s i o n o f t h e s e v a r i a b l e s as r e l a t e d t o s p e c i e s o f t h e p r e s e n t s t u d y i s now i n c l u d e d . T r a c h e i d l e n g t h s f o r a l l f o u r s p e c i e s s t u d i e d were more o r l e s s com-p a r a b l e , as t h e y appear i n l i t e r a t u r e d a t a (69, 8 3 ) . In c a s e no d i r e c t 37 r e f e r e n c e was a v a i l a b l e f o r a p a r t i c u l a r s p e c i e s , d a t a f o r o t h e r s p e c i e s o f t h e same genus a r e a v a i l a b l e . Even v a r a i t i o n s w i t h i n s p e c i e s c o u l d be c o n s i d e r a b l e . Growth f a c t o r s and g e n e t i c f a c t o r s c o n t r i b u t e most t o t h i s v a r i a t i o n ( 1 9 ) . T r a c h e i d l e n g t h v a r a i t i o n may r e f l e c t o t h e r f a c e t s o f v a r a i t i o n l i k e ash c o n t e n t and e x t r a c t i v e c o n t e n t ( 1 4 ) , but p r o b a b l y has l i t t l e s i g n i f i c a n c e o f i t s own. D i f f e r e n c e s i n c h e m i c a l c o m p o s i t i o n c o u l d be the most i m p o r t a n t v a r i a b l e . s t i 1 1 t o be a c c o u n t e d f o r . C e l l u l o s e c r y s t a l l i n i t y o f wood has been shown t o r e l a t e p o s i t i v e l y w i t h wood d e n s i t y ( 5 0 , 6 7 ) . Power f a c t o r o f wood, i n t u r n , was r e l a t e d n e g a t i v e l y w i t h c e l l u l o s e c r y s t a l l i n i t y ( 9 5 ) . T h e r e f o r e , t h e r e i s c o n -f l i c t h e r e and t h e s p e c i f i c g r a v i t y e f f e c t would be p a r t l y c a n c e l l e d . Data o f c e l l u l o s e c r y s t a l l i n i t y f o r t h e s p e c i e s s t u d i e d was not a v a i l a b l e . As mentioned above, l i g n i n c o n t e n t s o f t h e s p e c i e s examined would be e x p e c t e d t o be s i m i l a r . A c c o r d i n g t o Venkateswaran ( 9 2 ) , t h e r e i s n e g a t i v e c o r r e l a t i o n between l i g n i n c o n t e n t and d i e l e c t r i c p e r m i t t i v i t y ( d i e l e c t r i c c o n s t a n t ) o f t h e wood. The e v i d e n c e from c o n d e n s e r paper r e s e a r c h i n d i c a t e s t h a t l i g n i n has a d e t r i m e n t a l e f f e c t on power f a c t o r . Thus, t h e h i g h e r t h e l i g n i n c o n t e n t , t h e h i g h e r t h e power f a c t o r o f wood ( 9 6 ) . Ash c o n t e n t s o f c o n i f e r o u s woods a r e u s u a l l y q u i t e m i n u t e , n o r m a l l y 0.1 t o 0.5% o f t h e o v e n - d r y w e i g h t o f d o m e s t i c c o n i f e r o u s woods ( 2 0 ) . Even so t h i s c o u l d c o n t r i b u t e s i g n i f i c a n t l y t o d i e l e c t r i c l o s s o f c e l l u -l o s e m a t e r i a l s ( 9 6 ) . Monovalent i o n s o f t h e ash had t h e most d e t r i m e n t a l e f f e c t on power l o s s , w h i l e b i v a l e n t i o n s were f a r l e s s h a r m f u l . The l a t t e r p r e s e n t e d i n low c o n c e n t r a t i o n s , however, c o u l d r e d u c e power f a c t o r s l i g h t l y under c e r t a i n t e m p e r a t u r e and f r e q u e n c y c o n d i t i o n s ( 6 ) . -38 Noble f i r ( A b i e s p r o c e r a Rend.), grand f i r ( A b i e s g r a n d i s D o u g l . ) , D o u g l a s - f i r , s l a s h p i n e ( P i n u s e l l i o t t i Engelm) and Engelmann s p r u c e ( P i c e a e n g a l m a i i P a r r y ) have ash c o n t e n t s r e p o r t e d a t 0.4, 0.4, 0.2 0.2 and 0.2%, r e s p e c t i v e l y (20,69). Of t h e s e , c a l c i u m , p o t a s s i u m and magnesium g e n e r a l l y c o m p r i s e d 70% o f the t o t a l ash c o n t e n t . The c o m p o s i t i o n c o u l d depend much on growth f a c t o r s and g e o g r a p h i c d i s t r i b u t i o n and c o u l d be q u i t e v a r i a b l e ( 1 7 ) . The h i g h l y s i g n i f i c a n t r e l a t i o n s h i p o f ash c o n t e n t t o power f a c t o r w i t h c o n d e n s e r papers does not n e c e s s a r i l y mean t h a t i t w i l l d i c t a t e power f a c t o r o f wood s i g n i f i c a n t l y , e s p e c i a l l y a t h i g h m o i s t u r e c o n t e n t . M o i s t u r e c o n t e n t s o f c o n d e n s e r p a p e r r e s e a r c h were u s u a l l y s e t a t oven-dry c o n d i t i o n t o e l i m i n a t e e x t e r n a l v a r i a b l e s . The amount o f ash and i t s com-p o s i t i o n i n wood may s t i l l a f f e c t d i e l e c t r i c l o s s o f wood a t low m o i s t u r e c o n t e n t . The h i g h e r ash c o n t e n t o f f i r wood, however, seemed n o t t o a f f e c t i t s v a r i a b i l i t y i n t h i s way. Vermaas (94) p r o v i d e d some e v i d e n c e t h a t a l c o h o l - b e n z e n e s o l u b l e c o n t e n t a f f e c t e d ^ d i e l e c t r i c l o s s o f the wood. He p o i n t e d o u t t h a t d i -e l e c t r i c l o s s i s i n the form o f h e a t a b s o r b e d by wood, and t h a t h e a t i n g r e s u l t s from d i p o l e movements. P o l a r e x t r a c t i v e s c o u l d be the s o u r c e o f such d i p o l e s and c o n t r i b u t e t o the l o s s t a n g e n t . The v a l u e o f l o s s t a n -g e n t i n c r e a s e d l i n e a r l y w i t h e x t r a c t i v e c o n t e n t i n r a d i a l d i r e c t i o n a t m o i s t u r e range between 0 and 25%, w h i l e i n t a n g e n t i a l d i r e c t i o n , t h e r e was l i t t l e c o r r e l a t i o n a t low m o i s t u r e c o n t e n t s and s l i g h t d e c r e a s e i n l o s s t a n g e n t w i t h I n c r e a s i n g e x t r a c t i v e c o n t e n t l e v e l s . The e x t r a c t i v e c o n t e n t s f o r the s p e c i e s examined were g i v e n a s : l o d g e p o l e p i n e ( P i n u s c o n t o r t a D o u g l . ) , 4.7% ( a c e t o n e f r a c t i o n ) ; w h i t e s p r u c e ( P i c e a g l a u c a (Moench.) V o s s . ) , 1.98% ( a c e t o n e f r a c t i o n ) ( 7 5 ) ; D o u g l a s - f i r , 4.45% ( e t h a n o l - b e n z e n e ) ; and f o r n o b l e f i r , 2.7% 39 ( e t h a n o l - b e n z e n e ) ( 6 9 ) , A l t h o u g h t h e d a t a came from d i f f e r e n t s o u r c e s and r e p r e s e n t d i f f e r e n t e x t r a c t i o n s , t h e e x t r a c t i v e c o n t e n t s showed s i m i l a r rank t o between s p e c i e s p o w e r - l o s s m o i s t u r e meter r e a d i n g s . The r e g r e s s i o n l i n e f o r D o u g l a s - f i r has a u n ique s l o p e , which was q u i t e d i f f e r e n t from t h e r e s t o f t h e samples examined ( F i g 6 and 8 ) . C o n s i d e r t h a t D o u g l a s - f i r samples had t h e h i g h e s t a v e r a g e s p e c i f i c g r a v i t y , a b r u p t e a r l y w o o d - l a t e w o o d t r a n s i t i o n s and some p o l y p h e n o l i c e x t r a c t i v e s w hich a r e a b s e n t i n t h e o t h e r woods examined. A l l t h e s e may have c o n t r i b u t e d t o t h e d i f f e r e n c e s o b s e r v e d . S p e c i f i c g r a v i t y has c o m p a r a t i v e l y l e s s i n f l u e n c e on power f a c t o r t h a n m o i s t u r e c o n t e n t . At low m o i s t u r e c o n t e n t , however, i t c o n t r i b u t e d v e r y s i g n i f i c a n t l y t o h i g h e r r e a d i n g s ( l a r g e r i n t e r c e p t , F i g 6 and 8 ) , but a t h i g h m o i s t u r e c o n t e n t i t s e f f e c t d i m i n i s h e d and c a used t h e r e g r e s s i o n l i n e t o be more f l a t t h a n f o r o t h e r s p e c i e s . 5.4.2 Between t r e e v a r i a b i l i t y As shown i n F i g 5, r e s i s t a n c e meter r e a d i n g v a r i a t i o n s between f o u r l o d g e p o l e p i n e samples were q u i t e s m a l l . No r e l a t i o n between s p e c i f i c g r a v i t y r a n k i n g ( F i g 3) and t h e meter r e a d i n g v a r i a t i o n s was d i s c e r n i b l e . Poor r e l a t i o n s h i p o f wood e l e c t r i c a l r e s i s t a n c e t o s p e c i f i c g r a v i t y changes r e n d e r s t h e r e s i s t a n c e meter more p r e c i s e than t h e p o w e r - l o s s m o i s t u r e meter ( 4 1 ) . S i n c e wood p r o p e r t i e s e x h i b i t G a u s s i a n d i s t r i b u t i o n , v a r i a t i o n s among samples a r e i n e v i t a b l e . To e s t a b l i s h a r e l i a b l e c o n v e r s i o n f o r p o w e r - l o s s meter r e a d i n g s , l a r g e sample s i z e s a r e c a l l e d f o r . Means and s t a n d a r d d e v i a t i o n s o b t a i n e d t h r o u g h t h e s e s a m p l i n g s would be u s e f u l t o e s t a b l i s h c o n f i d e n c e i n t e r v a l s f o r t h e e s t i m a t i o n s . The a n a l y s i s o f v a r i a n c e p r e s e n t e d i n T a b l e 3 showed t h a t h i g h l y 40 s i g n i f i c a n t d i f f e r e n c e s e x i s t e d among l o d g e p o l e p i n e t r e e p o w e r - l o s s measurements s t u d i e d . C o v a r i a n c e a n a l y s i s ( T a b l e 4 ) , u s i n g s p e c i f i c g r a v i t y as t h e c o v a r i a t e showed poor c o r r e l a t i o n between meter r e a d i n g s and s p e c i f i c g r a v i t i e s , w i t h c o e f f i c i e n t o f c o r r e l a t i o n , r = 0.1286. In a d d i t i o n , no F t e s t f o r comparing t h e r e g r e s s i o n e q u a t i o n o f each c e l l was a v a i l a b l e , so t h e u s e f u l n e s s o f c o v a r i a n c e a n a l y s i s was d o u b t f u l . The S t u d e n t i z e d Newman-Keul m u l t i p l e range t e s t i n d i c a t e d t h a t l o d g e p o l e p i n e No. 1 and No. 2, a l s o l o d g e p o l e p i n e No. 3 and No. 4 be l o n g e d t o t h e same homogeneous s u b s e t s , and were not s i g n i f i c a n t l y d i f f e r e n t , but l o d g e -p o l e p i n e No. 1 and No. 2 were s i g n i f i c a n t l y d i f f e r e n t f r o m l o d g e p o l e p i n e No. 3 and No. 4. D i f f e r e n c e s between l o d g e p o l e p i n e t r e e s were p a r t l y a t t r i b u t a b l e t o s p e c i f i c g r a v i t y v a r i a t i o n s among them. Data needed t o t e s t homo-g e n e i t y among s l o p e s were l a c k i n g , t h e r e f o r e s l o p e s were not compared. The v a r i a t i o n s among s l o p e s o f F i g 9 seemed t o be l e s s d i v e r g e n t as compared w i t h t h e between s p e c i e s v a r i a t i o n s . The p o o l e d d a t a f o r l o d g e p o l e p i n e t r e e s i s a l s o p l o t t e d as F i g 8. 2 The R v a l u e s f o r p o o l e d d a t a were f a i r l y good, i n d i c a t i n g good f i t o f t h e r e g r e s s i o n e q u a t i o n . 5.4.3 W i t h i n t r e e h e i g h t v a r i a b i l i t y The " g r e e n " sample m o i s t u r e v a r i e d , and meter r e a d i n g s a t t h i s l e v e l were not comparable. A t nominal 19% and 12% m o i s t u r e l e v e l s t h e r e was a ten d e n c y f o r measurements t a k e n a t t h e l o w e s t t r e e segment o f a l l s p e c i e s t o be s l i g h t l y h i g h e r t h a n measurements from h i g h e r segments, The d i f f e r -e n c e s , n e v e r t h e l e s s , were s m a l l and d i d not a f f e c t p r e c i s i o n . C o n i f e r o u s woods w i t h r e g u l a r r e s i n d u c t s have h i g h e r r e s i n c o n t e n t s a t t h e stem b a s e . Presumably t o t a l ash c o n t e n t has a s i m i l a r d i s t r i b u t i o n ( 3 5 ) , which c o n t r i b u t e s to h i g h e r r e a d i n g s f o r measurements made low i n the t r u n k . From a n a l y s i s o f v a r i a n c e ( T a b l e 5 t o 19) f o r a l l the s p e c i e s s t u d i e d , the between h e i g h t l e v e l p o w e r - l o s s meter v a r i a t i o n s were m o s t l y n o t s i g n i f i c a n t , w i t h o r w i t h o u t s p e c i f i c g r a v i t y a d j u s t m e n t ( a g a i n , the a n a l y s i s o f c o v a r i a n c e may n o t be v a l i d ) . The t r e n d o f v a r i a t i o n s i n meter r e a d i n g s taken a t d i f f e r e n t h e i g h t l e v e l s had the q u a l i t a t i v e c h a r a c t e r i s t i c o f b e i n g h i g h e r a t the two e x t r e m i t i e s , i . e . , t h e f i r s t and f i f t h segments, w h i l e minima o c c u r r e d a t i n t e r m e d i a t e s e g -ments, u s u a l l y below l i v e crown samples. T h i s s l i g h t v a r i a t i o n may be a c c o u n t e d f o r i n p a r t by c o n s i d e r i n g s p e c i f i c g r a v i t y v a r i a t i o n . F u r -t h e r m o r e , t r a c h e i d l e n g t h s i n c r e a s e d i r e c t l y w i t h i n c r e a s i n g h e i g h t i n t h e stem t o a maxima p a r t way up the t r u n k (below the l i v e c r o w n ) , then f u r t h e r d e c r e a s e w i t h i n c r e a s i n g h e i g h t t o the top o f the t r e e (19,69). Longer f i b e r s have g i v e n lower d i e l e c t r i c l o s s i n papers ( 1 4 ) , which i s i n k e e p i n g w i t h the p a t t e r n s o f v a r i a t i o n h e r e . F o r p r a c t i c a l p u r p o s e s , i t i s j u s t i f i a b l e t o c l a i m t h a t h e i g h t l e v e l s c o n t r i b u t e d l i t t l e t o p o w e r - l o s s meter v a r i a t i o n s . 5.4.4 W i t h i n t r e e r a d i a l v a r i a b i l i t y L i t t l e has been done on wood zone v a r i a t i o n i n r e l a t i o n t o i t s e l e c t r i c a l p r o p e r t i e s . B e l d i e t aj_. (4) found t h a t d i f f e r e n c e s i n d i -e l e c t r i c - V p r o p e r t i e s r e s u l t i n g from s t r u c t u r a l v a r i a t i o n w i t h i n a g i v e n oak stem was n e g l i g i b l e . No p r e v i o u s work on c o n i f e r o u s wood w i t h i n t r e e v a r i a t i o n has been found. R e f e r r i n g t o F i g 4 and 5, the dashed l i n e s i n d i c a t e sapwood r e a d i n g s which were s l i g h t l y h i g h e r than the c o r r e s p o n d i n g s o l i d l i n e heartwood 42 r e a d i n g s . D i f f e r e n c e s were more p r o m i n e n t a t low m o i s t u r e c o n t e n t s , i . e . , nominal 12% m o i s t u r e c o n t e n t . The wood zone d i f f e r e n c e s were e s p e c i a l l y w e l l d e f i n e d i n the cases o f w h i t e s p r u c e , D o u g l a s - f i r and l o d g e p o l e p i n e . S i n c e no sapwood r e a d i n g s a t green c o n d i t i o n were n e a r f i b e r s a t u r a t i o n p o i n t , a h i g h e r l e v e l f o r sapwood was n o t a v a i l a b l e , c a u s i n g l i n e s t o be t r u n c a t e d . The q u a l i t a t i v e d i f f e r e n c e i n r e s i s t a n c e m o i s t u r e meter r e a d i n g s i n r a d i a l d i r e c t i o n may r e s u l t from some c h e m i c a l v a r i a t i o n , which w i l l be d i s c u s s e d more f u l l y . The v a r i a t i o n i n t h i s case was g e n e r a l l y l e s s than 1% i n m o i s t u r e , as t r a n s l a t e d from the meter r e a d i n g . I f the r e -q u i r e m e n t f o r a c c u r a c y i s n o t so c r i t i c a l , t h i s wood zone v a r i a t i o n may be n e g l e c t e d . Compared w i t h between t r e e v a r i a t i o n , the amount from t h i s s o u r c e was minor. Corewood samples showed no d i s t i n c t d i f f e r e n c e from o t h e r heartwood samples a t low m o i s t u r e l e v e l , b u t r e a d i n g s tended t o d e c r e a s e s l i g h t l y from t h e p i t h t o the end o f heartwood zon e s . A n a l y s i s o f v a r i a n c e ( T a b l e 1 t o 19) i n d i c a t e d t h a t t h e r e were s i g n i f i c a n t d i f f e r e n c e s f o r wood zone samples p o w e r - l o s s measurements. Sapwood samples had the h i g h e s t p o w e r - l o s s meter r e a d i n g s , f o l l o w e d by corewood samples, then by d e c r e a s i n g o r d e r f r o m i n n e r t o o u t e r h e a r t -wood. The t r e n d i s p r a c t i c a l l y t he same as t h a t f o r r e s i s t a n c e m e t e r r e a d i n g s . Examining the s p e c i f i c g r a v i t y graphs i n F i g 2 and 3, the h i g h e r r e a d i n g s i n sapwood can be a t t r i b u t e d i n p a r t t o h i g h e r s p e c i f i c g r a v i t i e s f o r w h i t e s p r u c e and D o u g l a s - f i r . F o r l o d g e p o l e p i n e t r e e s , t h e sapwood tended t o have lower s p e c i f i c g r a v i t y than the heartwood. R e a d i n g s , however, 43 showed t h e same t r e n d s as when sapwood zones had h i g h e r s p e c i f i c g r a v i t y . The u n d e r l y i n g c a u s a l f a c t o r s must come from a n a t o m i c a l and c h e m i c a l v a r i a t i o n s , p o s s i b l y as d i s c u s s e d i n t h e L i t e r a t u r e Review. T h i s p a r t i -c u l a r e f f e c t c o n t r i b u t e d t o lower c o r r e l a t i o n c o e f f i c i e n t s between s p e c i f i c g r a v i t y and meter r e a d i n g s f o r l o d g e p o l e p i n e . S u b a l p i n e f i r , on t h e o t h e r hand, showed corewood w i t h t h e h i g h e s t r e a d i n g s among r a d i a l s e r i e s . C o n i f e r o u s wood t r a c h e i d l e n g t h v a r a i t i o n s i n r a d i a l d i r e c t i o n have been s t u d i e d e x t e n s i v e l y . At any g i v e n h e i g h t , t r a c h e i d l e n g t h i n c r e a s e s r a p i d l y a c r o s s t h e corewood zone t h e n i n c r e a s e s more s l o w l y u n t i l a maxi-mum i s reached„ a f t e r which t h e r e w i l l be f l u c t u a t i o n about a mean ma x i -mum l e n g t h . E v e n t u a l l y i n v e r y o l d t r e e s , t h e t r a c h e i d l e n g t h may d e c r e a s e s l i g h t l y ( 6 9 ) . L i t e r a t u r e i n f o r m a t i o n on the s p e c i e s s t u d i e d was: f o r l o d g e p o l e p i n e , D o u g l a s - f i r and w h i t e s p r u c e t r a c h e i d l e n g t h s ' i n c r e a s e d from p i t h t o p e r i p h e r y (19,83,87); w h i l e f o r s u b a l p i n e f i r , t r a c h e i d I; l e n g t h s i n c r e a s e d from p i t h t o about 10 cm d i a m e t e r , t h e n d e c r e a s e d s l i g h t l y outward ( 3 6 ) . T h i s t r e n d would e x p l a i n t h e h i g h e r p o w e r - l o s s meter r e a d i n g s f o r corewood i n p a r t , but would c o n t r a d i c t t h e h i g h e r meter r e a d i n g s f o r sapwood. E v i d e n t l y , o t h e r f a c t o r s must a l s o be c o n s i d e r e d . P r e s t o n et_ al _ . (73) compared C r o s s and Bevan c e l l u l o s e c r y s t a l l i n i t y t a k e n from d i f f e r e n t r i n g s o f monterey p i n e ( P i n u s r a d i a t a D. Don). They found c r y s t a l l i n t i y d e c r e a s e d f r o m p i t h t o p e r i p h e r y . Lee ( 5 0 ) , on t h e o t h e r hand, s t u d i e d t h e s a m e ' r e l a t i o n s h i p , u s i n g h o l o c e l l u l o s e s and p u l p s from w e s t e r n hemlock and found t h a t c r y s t a l l i n i t y i n c r e a s e d from p i t h t o p e r i p h e r y . These c o n f l i c t i n g r e s u l t s may be s i m p l y due t o s p e c i e s d i f f e r -e n c e s o r c e l l u l o s e p r e p a r a t i o n d i f f e r e n c e s . The c e l l u l o s e c o n t e n t i n r a d i a l d i r e c t i o n t e n d e d t o i n c r e a s e from t h e p i t h o u t w a r d , t h e n l e v e l o f f 44 g r a d u a l l y ( 3 4 , 8 7 ) . I f t h e f r a c t i o n s f o r c r y s t a l l i n e and amorphous c e l l u l o s e were r e l a t i v e l y c o n s t a n t , t h e n t h e amount o f c r y s t a l l i n e c e l l u l o s e would be e x p e c t e d t o be h i g h e r a t t h e p e r i p h e r y . T h i s would mean a t r e n d f o r d e c r e a s i n g power f a c t o r from t h e p i t h outward. Red p i n e ( P i n u s r e s i n o s a L . ) , Norway s p r u c e ( P i c e a a b i e s L. ( K a r s t . ) ) and J a p a n e s e r e d p i n e ( P i n u s d e n s i f l o r a L.) have been shown t o have de-c r e a s i n g l i g n i n c o n t e n t f r o m the p i t h t o p e r i p h e r y (26,27,48). A g a i n , t h i s i m p l i e s a d e c r e a s i n g t r e n d f o r d.e. c o n d u c t i v i t y and power f a c t o r o f wood from t h e p i t h t o p e r i p h e r y . A l l t h e s e c o n s i d e r a t i o n s seem t o i n d i c a t e t h a t sapwood s h o u l d have lower r e s i s t a n c e and p o w e r - l o s s meter r e a d i n g s t h a n t h a t o f sapwood. On t h e g r o u n d s t h a t s p e c i f i c g r a v i t i e s were h i g h e r i n t h e sapwood, t h e argument would h o l d f o r D o u g l a s - f i r and w h i t e s p r u c e , but l e a v e l o d g e p o l e p i n e samples a paradox. E x t r a n e o u s s u b s t a n c e s may be t h e r e m a i n i n g key t o t h e v a r i a t i o n . Ash d i s t r i b u t i o n i n r a d i a l d i r e c t i o n has been shown t o be u n i f o r m i n p i n e wood ( 4 4 ) , whereas i n a n o t h e r s t u d y ( 4 3 ) , K a r e l i a n p i n e ( P i n u s spp.) was shown t o have h i g h e s t ash c o n t e n t a t t h e e x t e r n a l l a y e r o f sapwood, w i t h t h e e x c e p t i o n o f c a l c i u m and manganese which were h i g h e s t i n heartwood. S i n c e c a l c i u m has been shown t o have l i t t l e e f f e c t on d i e l e c t r i c l o s s (6) and manganese i s t h o u g h t t o be c h e l a t e d by wood s u b s t a n c e s and t h e r e b y does not p a r t i c i p a t e i n charge c a r r y i n g m i g r a t i o n under an e l e c t r i c f i e l d ( 4 7 ) , t h e s e s h o u l d not much i n f l u e n c e wood e l e c t r i c a l p r o p e r t i e s . Bergstrom (5) s t u d i e d t h e d i s t r i b u t i o n o f ash and phosphorus i n Swedish p i n e and s p r u c e ( s c i e n t i f i c names no t g i v e n ) . He f o u n d c o n s i d e r a b l e v a r i a t i o n i n ash c o n t e n t among t r e e s , as a f f e c t e d by l o c a l i t y and o t h e r f a c t o r s . Phorphorus c o n t e n t was f i v e t i m e s h i g h e r i n t h e sapwood th a n heartwood. Heartwood had h i g h e r a l k a l i e a r t h m e t a l s , w h i l e t h e sapwood had h i g h e r a l k a l i m e t a l s . 45 M c M i l l i n ( 5 6 ) , on t h e o t h e r hand, found t h a t the ash c o n t e n t o f l o b l o l l y p i n e ( P i n u s t a e d a L.) tended t o d e c r e a s e f r o m t h e p i t h outward. However, he d i d note t h a t sodium c o n t e n t o f t h e wood showed n e g a t i v e c o r r e l a t i o n w i t h s p e c i f i c g r a v i t y . I f h i s f i n d i n g i s a p p l i c a b l e t o l o d g e p o l e p i n e , t h e lower s p e c i f i c g r a v i t y would s t i l l mean h i g h e r m onovalent i o n c o n t e n t . S i n c e ash c o n t e n t has a s t r o n g i n f l u e n c e on both d.e. c o n d u c t i v i t y and d i e l e c t r i c power l o s s ( 7 7 , 9 6 ) , i t i s l i k e l y t h a t h i g h e r ash c o n c e n t r a t i o n s i n t h e sapwood zone c o n t r i b u t e s i g n i f i c a n t l y t o t h e h i g h e r r e a d i n g s o f r e s i s t a n c e and p o w e r - l o s s m o i s t u r e m e t e r s . O r g a n i c e x t r a c t i v e c o n t e n t s have been l o n g r e c o g n i z e d as c o n c e n t r a t e d i n t h e heartwood zone. Campbell e t al_. (15) compared wood zone r e s i n o u s e x t r a c t s i n D o u g l a s - f i r . The e x t r a c t i v e c o n t e n t ( e t h a n o l - b e n z e n e ) was f o u n d t o d e c r e a s e from t h e p i t h outward, b e i n g 6%, 5% and 2% f o r corewood, heartwood and sapwood, r e s p e c t i v e l y . The same p a t t e r n h o l d s f o r p i n e (75,87) and s p r u c e ( 9 7 ) . P o l y p h e n o l s , such as d i h y d r o q u e r c e t i n i n D o u g l a s - f i r , had a d i f f e r n t p a t t e r n . T h i s i n c r e a s e d from p i t h t o t h e t r a n s i t i o n zone o f heartwood and sapwood t h e n d e c r e a s e d r a p i d l y and d i s -a p p e a r e d i n t h e sapwood ( 2 4 ) . I f a l l o t h e r v a r i a b l e s were c o n s t a n t , t h e g e n e r a l t r e n d o f v a r i a t i o n due t o e x t r a c t i v e c o n t e n t would be t o d e c r e a s e power f a c t o r and d.e. c o n d u c t i v i t y from t h e p i t h outward. C o m p o s i t i o n and amount o f e x t r a c t i v e s a r e q u i t e v a r i a b l e ( 7 5 ) . As an example, r o s i n from c o n i f e r o u s wood i s a good i n s u l a t o r and d i e l e c t r i c , and can h e l p t o r e d u c e d i e l e c t r i c l o s s e s . L i t e r a t u r e e v i d e n c e (49) showed t h a t a b i e t i c a c i d has a b e n e f i c i a l e f f e c t on r e d u c i n g d i e l e c t r i c l o s s . T h i s c o n t r a d i c t i o n may r e l a t e t o s t a t e i n wood, which i s d i s p e r s e d as a l i q u i d and i s e a s i l y p o l a r i z a b l e . In s o l i d r o s i n , r e s i n a c i d m o l e c u l e s a r e r i g i d l y h e l d i n a c r y s t a l l i n e l a t t i c e and can not c o n t r i b u t e t o p o l a r i z a t i o n 46 s o r i o n i z a t i o n phenomenon. In summary, the i n o r g a n i c ash c o n t e n t in- wood may be the s i n g l e , most i m p o r t a n t , v a r i a b l e c o n t r o l l i n g u n e x p l a i n e d v a r i a b i l i t y o f p o w e r - l o s s and d.e. r e s i s t a n c e r e a d i n g s i n the r a d i a l d i r e c t i o n . O t h e r v a r i a b l e s may f u r t h e r e f f e c t p a t t e r n s from the p i t h t o o u t e r heartwood. 5.4.5 W i t h i n t r e e a n i s o t r o p y . A l t h o u g h measurements were taken on both r a d i a l and t a n g e n t i a l s p e c i -men f a c e s w i t h the d i r e c t c u r r e n t r e s i s t a n c e m eter, they were i n f a c t both measured a l o n g the g r a i n . V a r i a t i o n s among t h e s e two s e t s o f r e a d i n g s s i m p l y mean l o c a l i z e d m o i s t u r e c o n t e n t d i f f e r e n c e s and does n o t s i g n i f y a n i s o t r o p y between r a d i a l and t a n g e n t i a l d i r e c t i o n . A n a l y s i s o f v a r i a n c e r e s u l t s ( T a b l e s 1 t o 19) i n d i c a t e t h a t t h e r e were s i g n i f i c a n t d i f f e r e n c e s f o r p o w e r - l o s s meter r e a d i n g s taken on r a d i a l and t a n g e n t i a l f a c e s . T h i s c l e a r l y shows an a n i s o t r o p y e f f e c t . The d i r -e c t i o n o f e l e c t r i c a l f i e l d i n both cases was p e r p e n d i c u l a r t o the g r a i n d i r e c t i o n . Measurements \taken on r a d i a l f a c e s meant the f i e l d d i r e c t i o n as t a n g e n t i a l , and v i c e .versa.- Measurements fro m r a d i a l d i r e c t i o n were d i s t i n c t l y h i g h e r than c o r r e s p o n d i n g measurements made i n t a n g e n t i a l d i r e c t i o n . T h i s c o n f i r m s r e s u l t s o f s e v e r a l o t h e r s t u d i e s (45,65,74). The i n t e r a c t i o n s between- d i r e c t i o n s and m o i s t u r e c o n t e n t s a r e a l s o s i g n i f i c a n t . T h i s means t h a t the d i f f e r e n c e between d i r e c t i o n s changes w i t h c h a n g i n g m o i s t u r e con-t e n t . R e asoning b e h i n d the p o w e r - l o s s a n i s o t r o p i c phenomenon has n o t h i n g t o do w i t h the above mentioned v a r i a b l e s . E v i d e n c e i n d i c a t e s dependency o f a n i s o t r o p y w i t h g r o s s wood anatomy ( 8 8 ) . C e l l w a l l o r i e n t a t i o n r a t h e r than m i c r o s c o p i c s t r u c t u r a l d i f f e r e n c e s i n wood, a r e t h o u g h t t o be the 47 cause o f a n i s o t r o p y (45, 8 8 ) . In t a n g e n t i a l d i r e c t i o n , t h e r a y c e l l s r u n p a r a l l e l t o t h e e l e c -t r i c a l f i e l d , whereas i n the r a d i a l d i r e c t i o n , t h e r a y c e l l s r u n p e r -p e n d i c u l a r t o t h e f i e l d d i r e c t i o n . Ray c e l l s a r e r i c h i n c e l l c o n t e n t s which may be e a s i l y p o l a r i z a b l e under an a l t e r n a t i n g e l e c t r i c f i e l d . In t h e f o r m e r c a s e t h e p o l a r i z a t i o n would e x h i b i t s t r a t a a l o n g t he p l a n e o f r a y c e l l s . In the l a t t e r c a s e , p o l a r i z a t i o n would be i n t h e same d i r e c t i o n as t h e e l e c t r i c f i e l d , i n d u c e d r e s o n a n c e would i n c r e a s e power l o s s and r e n d e r r a d i a l d i r e c t i o n measurement h i g h e r t h a n t h o s e o f t a n g e n t i a l d i r e c t i o n . 5.4.6 Compression wood A r e a c t i o n wood sample was i n c l u d e d t o i n v e s t i g a t e t h e e f f e c t o f h i g h l i g n i n c o n t e n t as f o u n d i n a s p e c i f i c wood zone on e l e c t r i c m o i s t u r e meter measurements. A c c o r d i n g t o Venkateswaran ( 9 2 ) , h i g h e r l i g n i n c o n t e n t i n c r e a s e d wood d.e. c o n d u c t i v i t y , t h u s a t t h e same m o i s t u r e c o n t e n t , c o m p r e s s i o n wood s h o u l d g i v e h i g h e r meter r e a d i n g s t h a n t h e c o r r e s p o n d i n g r e g u l a r wood. Examining d a t a o f Appendix IV does not show any pronounced d i f f e r e n c e on r e a c t i o n wood r e s i s t a n c e meter r e a d -i n g s . The c o r r e l a t i o n between l i g n i n c o n t e n t and s p e c i f i c c o n d u c t i v i t y o f wood must be weak, i n d e e d . Under ov e n - d r y c o n d i t i o n s wood l i g n i n c o n t e n t may c o n t r i b u t e t o i t s d.e. c o n d u c t i v i t y . At h i g h m o i s t u r e c o n t e n t s , however, t h e overwhelming i n f l u e n c e o f m o i s t u r e c o u l d c o m p l e t e -l y mask t h e l i g n i n e f f e c t . T h i s argument i s s u p p o r t e d by t h e e v i d e n c e t h a t o n l y a t nominal 12% m o i s t u r e c o n t e n t , d i d t h e measurements show a s l i g h t i n c r e a s e as compared w i t h a v e r a g e r e g u l a r wood r e a d i n g s . 48 The p o w e r ^ l o s s meter r e a d i n g s on l o d g e p o l e p i n e c o m p r e s s i o n wood were n o t i c e a b l y h i g h e r t h a n t h e c o r r e s p o n d i n g l o d g e p o l e p i n e r e g u l a r wood samples. As shown i n F i g 7 and 10, t h e i n t e r c e p t o f r e a c t i o n wood p o w e r - l o s s meter r e a d i n g r e g r e s s e d a g a i n s t m o i s t u r e c o n t e n t and m o i s t u r e c o n t e n t s q u a r e d , was h i g h e r t h a n o t h e r l o d g e p o l e p i n e samples. A l s o , i n Appendix V, t h e matched o p p o s i t e wood p r o v i d e d a f u r t h e r c o n t r a s t between t h e two. One r e a s o n f o r the d i f f e r e n c e s c o u l d be t h e much h i g h e r s p e c i f i c g r a v i t y o f compres'sion wood;. T h i c k w a l l , s m a l l l l u m e n c o m p r e s s i o n wood c e l l s g i v e h i g h e r wood s u b s t a n c e p er u n i t volume, hence h i g h e r s p e c i f i c g r a v i t y . L i g n i n c o n t e n t may be the c a u s a l f a c t o r i n h i g h e r meter r e a d -i n g s , but i t s e f f e c t i s confounded w i t h s p e c i f i c g r a v i t y . I t has been shown i n i n s u l a t i o n paper r e s e a r c h t h a t 3 t o 4% r e s i d u a l l i g n i n c o n t e n t i n k r a f t p a p e r s d i d not show a p p r e c i a b l e d e t e r i o r a t i o n i n d i e l e c t r i c l o s s . F u r t h e r i n c r e a s e i n l i g n i n c o n t e n t s t a r t e d t o a f f e c t paper d i e l e c t r i c l o s s e s ( 4 5 ) . J u d g i n g from t h i s q u a n t i t a t i v e d i f f e r e n c e , wood l i g n i n c o n t e n t p r o b a b l y o n l y has a c o m p a r a t i v e l y s m a l l e f f e c t on p o w e r - l o s s meter r e a d i n g s . When o n l y m o i s t u r e c o n t e n t s q u a r e d was p r e s e n t e d as an i n d e p e n d e n t v a r i a b l e i n t h e r e g r e s s i o n e q u a t i o n , c o e f f i c i e n t o f d e t e r m i n a t i o n (R ) was .9181. When s p e c i f i c g r a v i t y was a l s o e n t e r e d a s a n o t h e r i n d e p e n d e n t v a r i a b l e , t h e c o e f f i c i e n t o f d e t e r m i n a t i o n t h e n i n c r e a s e d t o .9838. From t h e s e r e s u l t s , t h e r o l e o f s p e c i f i c g r a v i t y was q u i t e a p p a r e n t i n c o n t r i b u t i n g t o h i g h c o m p r e s s i o n wood p o w e r - l o s s meter r e a d i n g s . 5.5 R e g r e s s i o n s and Comparisons On t h e b a s i s o f i n d i v i d u a l t r e e s , r e g r e s s i o n e q u a t i o n s i n c l u d i n g 49 m o i s t u r e x o n t e n t , m o i s t u r e c o n t e n t s q u a r e d and s p e c i f i c g r a v i t y as i n -dependent v a r i a b l e s can d e s c r i b e p o w e r - l o s s m o i s t u r e meter v a r i a b i l i t y w i t h o u t l a r g e e r r o r . The r e s i d u a l s ( d i f f e r e n c e s between d a t a p o i n t s and r e g r e s s i o n l i n e s ) o f t h e s e r e g r e s s i o n e q u a t i o n s f o r l o d g e p o l e p i n e No. 3 and No. 4, w h i t e s p r u c e and D o u g l a s - f i r were p l o t t e d w i t h m o i s t u r e c o n t e n t s . These showed e s s e n t i a l l y h o r i z o n t a l l y d i s t r i b u t e d d a t a . No r e m a i n i n g t r e n d s among t h e d a t a were d i s c e r n i b l e , i n d i c a t i n g t h a t no a d d i t i o n a l v a r i a b l e was needed t o improve the p r e d i c t i o n . W i t h i n t r e e v a r i a b i l i t y c o n t r i b u t e d t o d i s p e r s i o n o f t h e d a t a , and a d d i t i o n o f o t h e r v a r i a b l e s , i . e . , a n a t o m i c a l and c h e m i c a l v a r i a b i l i t y , would p r o b a b l y narrow t h e magnitude o f d i s p e r s i o n , but may not c o n t r i b u t e f u r t h e r t o i m p r o v i n g t h e p r e d i c t i o n . The e r r o r o f e s t i m a t e changed w i t h c h a n g i n g m o i s t u r e c o n t e n t l e v e l s . The h i g h e r t h e m o i s t u r e c o n t e n t , t h e more d i s p e r s e d t h e p o w e r - l o s s meter measurements. In t h e e x p e r i m e n t a l m o i s t u r e c o n t e n t r a n g e , q u a d r a t i c e q u a t i o n s o f m o i s t u r e c o n t e n t on meter r e a d i n g s gave t h e b e s t f i t , i f s p e c i f i c g r a v i t y was n o t c o n s i d e r e d . B l o d g e t t (7) r e p o r t e d t h a t t h e r e l a t i o n s h i p between l o s s t a n g e n t ( t a n S) and m o i s t u r e c o n t e n t (M) o f o i l impregnated p a p e r can be e x p r e s s e d a s : t a n 6= a + bM 2 [5] 2 T h i s i s s i m i l a r t o the p r e s e n t s t u d y . Here, R v a l u e s w i t h m o i s t u r e c o n t e n t s q u a r e d as i n d e p e n d e n t v a r i a b l e were .94 f o r l o d g e p o l e p i n e p o o l e d d a t a , up t o .97 f o r i n d i v i d u a l l o d g e p o l e p i n e t r e e s , .95 f o r s u b a l p i n e f i r and ,90 f o r w h i t e s p r u c e . The o n l y low v a l u e , was f o r D o u g l a s - f i r a t .73, P e c u l i a r i t y o f t h e D o u g l a s - f i r r e g r e s s i o n e q u a t i o n has been e x p l a i n e d on t h e b a s i s o f s p e c i f i c g r a v i t y i n a p r e v i o u s s e c t i o n . U s i n g t h e m u l t i p l e r e g r e s s i o n e q u a t i o n s , i n v e r s e p r e d i c t i o n s were 50 p r o d u c e d , as summarized i n T a b l e 20 t o 23, Powers-loss meter r e a d i n g s from 15 t o 34 and s p e c i f i c g r a v i t y r a n g e from 0.25 t o 0,49 f o r l o d g e p o l e p i n e p o o l e d d a t a , w h i t e s p r u c e , D o u g l a s - f i r and s u b a l p i n e f i r were o b t a i n e d . S p e c i f i c g r a v i t y r a n g e s for each s p e c i e s were c h o s e n and r e u s l t s a r e l i s t e d t o g e t h e r w i t h t h o s e o f Bramhall and Salamon (11) and as s u p p l i e d by t h e m a n u f a c t u r e r a t 21°C. These t a b l e s a r e not aimed a t r e p l a c i n g e x i s t i n g ones, s i n c e t h e sample s i z e was far from adequate f o r such p u r p o s e . The i d e a i s t o show t h e v a r i a b i l i t y o f measurements. B r a m h a l l and Salamon (11) gave 2 p e r c e n t v a r i a b i l i t y e i t h e r way f o r t h e i r t a b l e s . T h i s i s g e n e r a l l y c o r r e c t f o r most o f t h e r e a d i n g s , but s u b s t a n t i a l d i f f e r e n c e s were a l s o p r e s e n t h e r e , e s p e c i a l l y a t m o i s t u r e e x t r e m i t i e s . The l a r g e sample s i z e f o r l o d g e p o l e p i n e p r o v i d e d r e s u l t s comparable t o t h o s e from o t h e r s o u r c e s , w h i l e w h i t e s p r u c e , D o u g l a s - f i r and s u b a l p i n e f i r showed more d e v i a t i o n , p r o b a b l y p a r t l y a t t r i b u t a b l e t o s m a l l e r sample s i z e s . Examining Appendix V shows t h a t D o u g l a s - f i r sapwood r e a d i n g s were o f t e n immensely h i g h e r t h a n t h e c o r r e s p o n d i n g heartwood r e a d i n g s . When t a k i n g measurements s t r a d l i n g d i f f e r e n t wood z o n e s , awareness o f t h i s k i n d o f v a r i a b i l i t y would h e l p i n making p r o p e r a d j u s t m e n t t o t h e r e a d i n g s and more a c c u r a t e r e s u l t s c o u l d a r i s e . 5.6 F u r t h e r Work T h i s s t u d y r e p o r t s c e r t a i n e f f e c t s on e l e c t r i c a l m o i s t u r e meter measurements a t t r i b u t a b l e t o wood v a r i a b i l i t y . . C a u sal f a c t o r s f o r t h e s e have been s p e c u l a t e d t h r o u g h i n t e r p r e t a t i o n iof t h e l i t e r a t u r e . Such c a u s a l f a c t o r s need t o be f u r t h e r e x p l o r e d . For example, some c h e m i c a l a n a l y s e s o f wood showing wide v a r i a t i o n may c o n t r i b u t e t o b e t t e r u n d e r -s t a n d i n g , e s p e c i a l l y i f r e l a t e d t o more p r e c i s e e l e c t r i c a l measurements. 51 6.0 CONCLUSIONS The s t u d y showed t h a t t h e r e a r e c e r t a i n t r e n d s o f v a r i a b i l i t y i n r e s i s t a n c e and p o w e r - l o s s type m o i s t u r e meter measurements on c o n i f e r o u s woods^which can be summarized as f o l l o w s : 1. The d i r e c t c u r r e n t r e s i s t a n c e t y p e m o i s t u r e meter showed l e s s u n e x p l a i n e d v a r i a b i l i t y i n measurement, and was n o t a f f e c t e d by s p e c i f i c g r a v i t y d i f f e r e n c e s t o any d i s c e r n i b l e e x t e n t . Readings tended t o under-e s t i m a t e the a c t u a l m o i s t u r e c o n t e n t s . The r a d i o f r e q u e n c y p o w e r - l o s s m o i s t u r e meter, on the o t h e r hand, gave more v a r i a b l e r e s u l t s , and was much a f f e c t e d by sample s p e c i f i c g r a v i t y v a r i a t i o n s and o t h e r wood v a r i a b l e s . 2. By i n t r o d u c i n g m o i s t u r e c o n t e n t , s p e c i f i c g r a v i t y and m o i s t u r e c o n t e n t s q u a r e d i n r e g r e s s i o n e q u a t i o n s , 96.48% o f the t o t a l v a r i a t i o n between samples from f o u r l o d g e p o l e p i n e t r e e s was a c c o u n t e d f o r . The same t e s t f o r woods from f o u r s p e c i e s gave 91.67% o f the v a r i a t i o n a c c o u n t e d f o r . 3. T h e r e were s i g n i f i c a n t d i f f e r e n c e s between s p e c i e s f o r both types o f m o i s t u r e meter. V a r i a t i o n i n the r e s i s t a n c e type meter may have been due t o d i f f e r i n g amounts o f e l e c t r o l y t e s i n the woods. 4. T h e r e were minor d i f f e r e n c e s between l o d g e p o l e p i n e t r e e r e s i s -t a n c e meter measurements, compared t o between s p e c i e s a d j u s t m e n t s . Power-l o s s meter v a r i a t i o n s were more pronounced, p a r t l y due t o s p e c i f i c g r a v i t y d i f f e r e n c e s among the l o d g e p o l e p i n e samples. 5. H e i g h t w i t h i n t r e e c o n t r i b u t e d very l i t t l e v a r i a t i o n t o e i t h e r m o i s t u r e meter measurement. 6. R a d i a l d i r e c t i o n w i t h i n t r e e d i d p r o v i d e d i s c e r n i b l e v a r i a t i o n 52 f o r both t y p e s o f m o i s t u r e meter. Measurements tended t o be h i g h e r i n corewood, d e c r e a s e outward t o the heatwood-sapwood boundary, then i n c r e a s e d to a maximum i n sapwood. H i g h e r monovalent m e t a l l i c i o n c o n c e n t r a t i o n s i n the sapwood may e x p l a i n the h i g h e r sapwood r e a d i n g s . 7. T h e r e was a d i s t i n c t a n i s o t r o p i c phenomenon f o r p o w e r - l o s s meter measurements a t a l l m o i s t u r e l e v e l s . R a d i a l d i r e c t i o n measurements tended t o be h i g h e r than t h o s e made i n t a n g e n t i a l d i r e c t i o n . 8. Only a t low m o i s t u r e c o n t e n t d i d r e s i s t a n c e meter measurements on compression wood show s l i g h t l y h i g h e r r e a d i n g s . Any c o r r e l a t i o n be-tween l i g n i n c o n t e n t and wood d.e. c o n d u c t i v i t y would seem t o be o v e r -shadowed by mosture. H i g h e r p o w e r - l o s s m o i s t u r e meter r e a d i n g s on com-p r e s s i o n wood c o u l d have been due t o h i g h e r s p e c i f i c g r a v i t y o f the samples. 7.0 LITERATURE CITED 53 1. A m e r i c a n S o c i e t y f o r T e s t i n g M a t e r i a l s . 1972. Methods o f t e s t f o r m o i s t u r e c o n t e n t o f wood. ASTM D e s i g . D2016-72T. 2. Anon. 1955. Wood Handbook. U.S. Dept. Agr., F o r e s t P r o d . Lab. No. 72. pp. 48-52. 3. B a r k a s , W. W., Hearmon, R. F. S. and 6. H. P r a t t . 1943. E l e c t r i c a l r e s i s t a n c e o f wood. N a t u r e 151:83-84. 4. B e l d i , F., B a l i n t , J . , Szabo, 0. and B. Ruzsa. 1968. D i e l e c t r i c p r o p e r t i e s o f v a r i o u s oak s p e c i e s . H o l z R o h - W e r k s t o f f . 2 6 ( 3 ) : 8 9 - 9 5 . 5. B e r g s t r o m , H. 1959. The ash and phosphorus c o n t e n t o f c o n i f e r o u s woods. Svensk P a p p e r s t i d n . 62:160-161. 6. Bobrov, A . I . , B a l a s h o v a , V. F., K u l a k o v a , R. V. and K. I. V o i d e n o v a . 1963. The e f f e c t o f m i n e r a l s a l t s on t h e d i e l e c t r i c p r o p e r t i e s o f c a b l e p a p e r . Bumazhn. Prom. 38(3):11-14. 7. B l o d g e t t , R. B. 1961. I n f l u e n c e o f a b s o r b e d w a t e r and t e m p e r a t u r e on d i e l e c t r i c l o s s o f o i l i m p r e g n a t e d p a p e r i n s u l a t i o n . Annual Rept., Conf. on E l e c t r i c I n s u l a t i o n , NAS-NRC P u b l i c a t i o n 973:35-36. 8. B o l o t o v a , A. K. and V. I. S h a r k o v . 1964. Study o f s u p e r m o l e c u l a r s t r u c t u r e o f c e l l u l o s e by t h e method o f d i e l e c t r i c c o n s t a n t measurement. Sb. T r . Gos. N a u c h - I s s l e d . I n s t . G i d r o l i z . i S u l 1 f i t n o - S p i r t . Prom. 12:49-59. ( O r i g . n o t s e e n , c f . ABIPC 36:6992). 9. B o r o d u l i n a , L. K., K i t a e v a , S. Kh., M i l o v , B. G., M o r o z a v a , M. N., Renne, V. T. and E. I. U k r a i n s k a y a . 1967. E f f e c t o f t h e c o m p o s i t i o n o f wood p u l p on i t s d i e l e c t r i c p r o p e r t i e s . T r . L e n i n g r . P o l i t e k h . I n s t . no. 276:3-9. ( O r i g . n o t s e e n , c f . AB1PC38:5300). 10. B r a d l e y , R. S. 1936. P o l y m o l e c u l a r a d s o r b e d f i l m s . J . Chem. Soc. 139:1467-1474. 11. B r a m h a l l , G. and M. Salamon. 1972. Combined s p e c i e s - t e m p e r a t u r e c o r r e c t i o n t a b l e s f o r m o i s t u r e m e t e r s . I n f o r m . Rept. West. F o r . P r o d . Lab. VP-X-103. 12 pp. + 2 1 . t a b l e s . 12. Brown, J . H., D a v i d s o n R. W. and C. S k a a r . 1963. Mechanism o f e l e c t r i c a l c o n d u c t i o n o f wood. F o r e s t P r o d . J . 13(10)-.455-459. 13. B r u n a u e r , S., Emmet, P. H. and W. E. T e l l e r . 1938. A d s o r p t i o n o f . gases i n m u l t i - m o l e c u l a r l a y e r s . J . Am. Chem. Soc. 60i309-319. 54 C a l l i n a n , T. D. 1959. The e l e c t r i c a l p r o p e r t i e s o f s e l e c t f r a c t i o n s o f c e l l u l o s e p u l p s . Annual Rept. Conf. on E l e c t r i c I n s u l a t i o n , NAS-NRC P u b l i c a t i o n 756:51-55. C a m p b e l l , J . R., Swan, E. P. and J . W. W i l s o n . 1965. Comparison o f wood and growth zone r e s i n o u s e x t r a c t s i n D o u g l a s - f i r . P u l p Paper Mag. Can. 66(4):T248-T252. C l a r k , J . D. and J . W. W i l l i a m s . 1933. The e l e c t r i c a l c o n d u c t i v i t y o f commercial d i e l e c t r i c s and i t s v a r i a t i o n w i t h t e m p e r a t u r e . J . Phys. Chem. 37:119-131. D a v i d s o n , R. W. 1958. The e f f e c t o f t e m p e r a t u r e on the e l e c t r i c a l r e s i s t a n c e o f wood. F o r e s t Prod. J . 8(5):160-164. D e l e v a n t i , C . , J r . and Pia:-B;erH,ans.enl. 1945. S t u d i e s o f d i e l e c t r i c p r o p e r t i e s o f c h e m i c a l pulps". I. Methods and e f f e c t s o f p u l p p u r i t y . Paper T r a d e J . 121(26): 364-369. de Zeeuw, C. 1965. V a r i a b i l i t y i n wood. Jjn C e l l u l a r U l t r a - s t r u c t u r e o f Woody P l a n t s . W. A. Cote", J r . Ed. S y r a c u s e U n i v e r s i t y P r e s s , S y r a c u s e , N. Y. pp. 457-471. E l l i s , E. L. 1965. I n o r g a n i c elements i n wood. I n C e l l u l a r U l t r a -s t r u c t u r e o f Woody P l a n t s . W. A. C 6 t 6 , J r . EclT S y r a c u s e U n i v e r s i t y P r e s s , S y r a c u s e , N. Y. pp. 181-189. F a i n b e r g , E. Z., E i f e r , I. Z. and N. V. M i k h a i l o v . 1966. E l e c t r i c a n i s o t r o p y o f r e g e n e r a t e d c e l l u l o s e f i b e r s . Khim. V o l o k n a no. 4:38-41. ( O r i g . n o t s e e n , c f . ABIPC 37:6421). Feldman, R. F. and P. J . S e r a d a . 1965. M o i s t u r e c o n t e n t - i t s s i g n i f i c a n c e and i n t e r a c t i o n i n a porous body. I_n H u m i d i t y and M o i s t u r e . A. Wexler Ed. R e i n h o l d P u b l i . C o r p . , New York, pp. 233-243. G a l l ay, W. 1961. The i n t e r d e p e n d e n c e o f p a p e r p r o p e r t i e s . I_n F o r m a t i o n and S t r u c t u r e o f paper. F. Bolam Ed. Tech. S e c t . B r i t . Paper B o a r d Maker's A s s . , London, pp. 491-513. G a r d n e r , J . A. F. and G. W. B a r t o n . 1960. The d i s t r i b u t i o n o f d i h y d r o q u e r c e t i n i n D o u g l a s - f i r and w e s t e r n l a r c h . F o r e s t P r o d . J . 10:171-173. H a r t , C. A. 1964. T h e o r e t i c a l e f f e c t o f g r o s s anatomy upon con-d u c t i v i t y o f wood. F o r e s t P r o d . J . 14 ( l ) : 2 5 - 2 8 . H a t a , K. 1950. P u l p o f P i n u s d e n s i f l o r a wood, c h e m i c a l c o m p o s i t i o n o f wood. J . Japan F o r . Soc. 32:8-12. T r a n s l . No. 33 F a c . F o r . , Univ. B r i t i s h C olumbia, V a n c o u v e r , B. C. 55' 27. H e a r l e , J . W. S. 1957, The r e l a t i o n between s t r u c t u r e , d i e l e c t r i c c o n s t a n t and e l e c t r i c a l r e s i s t a n c e o f f i b e r s . T e x t i l e I n s t . J o u r . T r a n s . 44(4):117-198. 28. and R. H. P e t e r s . 1960. M o i s t u r e i n T e x t i l e s . T e x t i l e Book P u b l . , Inc. New York, pp.: 59-82, 123-139. 29. Hearmon, R. F. S. and J . N. Burcham. 1954. The d i e l e c t r i c p r o p e r -t i e s o f wood. F o r e s t Prod.. Res., S p e c i a l Rept. No. 8, Dept. o f S c i . and I n d u s t r . Res., London. 30. I t o , S. 1960. V o l t a g e - c u r r e n t c h a r a c t e r i s t i c s o f wood s a t u r a t e d w i t h water. J . Japan Wood Res. Soc. 6(3):109-121. 31. J u h a s z , E. and A. Tomek. 1971. D e f i n i t i o n problems o f water c o n t e n t and t h e i r i n f l u e n c e on m e a s u r i n g methods. J_n P r o c . I n t e r -n a t i o n a l Measurement C o n f e d e r a t i o n , IMEKO Symposium. Estergom, Hungary, pp. 1-14. 32. Kajanne, P. and A. H o l l m i n g . 1957. Hydrogen b o n d i n g as an u n c e r t a i n -t y f a c t o r i n c o n t i n u o u s m o i s t u r e d e t e r m i n a t i o n o f p a p e r . P a p e r i j a Puu. 39 (10):465-470. 33. Kane, D. E. 1955. The r e l a t i o n s h i p between t h e d i e l e c t r i c c o n s t a n t and water v a p o r a c c e s s i b i l i t y o f c e l l u l o s e . J . Polymer S c i . 18(89):405-410. 34. Kennedy, R. W. and J . M. Jaworsky. 1960. V a r i a t i o n i n c e l l u l o s e o f D o u g l a s - f i r heartwood. F o r e s t Prod. J . 6:80-84. 35. S a s t r y , C. B. R., B a r t o n , G. M. and E. L. E l l i s , 1968. C r y s t a l s i n t h e wood o f t h e genus A b i e s i n d i g e n o u s t o Canada and the U n i t e d S t a t e s . Can. J . Bot. 46(10):1221-1228. 35. and J . W. W i l s o n . 1954. S t u d i e s on smooth and c o r k -bark A b i e s l a s i o c a r p a . I . F i b e r l e n g t h c o m p a r i s o n . P u l p Paper Mag. Can. 55(7):130-132. 37. Klem, G. G. 1945. I n v e s t i g a t i o n s o f s p r u c e wood i n c o n n e c t i o n w i t h m e c h a n i c a l wood p u l p and s u l f i t e p u l p e x p e r i m e n t s . Medd. Norsk. S k o g f o r s o k s v . 9:1-127. 38. Ko l l m a n n , F. 1951. T e c h n o l o g i e des H o l z e s und d e r H o l z w e r k s t o f f e . E r s t e r Band. S p r i n g e r - V e r l a g , B e r l i n , pp. 527-546. 3 9 » 1963, Zur T h e o r i e d e r S o r p t i o n , F o r s c h , G e b i e t e I n g -enieurw, 29:33-41, ( O r i g , n o t s e e n , c f . P r i n c i p l e s o f Wood S c i e n c e and T e c h n o l o g y . Kollmann F, and W. A. Cote J r . Ed. S p r i n g e r - V e r l a g , I n c . , N. Y. p. 194.) 40. '. 1965. Die Bedeutung der Gauj3schen N o r m a l v e r t s i l u n g f u r S t r u k t u r , S o r p t i o n und R h e o l o g i e von H o l z . Holz Roh-W e r k s t o f f 2 3 ( 5 ) : 165-173. 56 41. K o l l m a n n , F . / a n d W. A. Cote', J r . 1968. P r i n c i p l e s o f Wood S c i e n c e and T e c h n o l o g y . S p r i n g e r - V e r l a g , I n c . , New York. pp. 181-221, 257-271. 42. K o z l i k , C. J . 1971. E l e c t r i c a l m o i s t u r e meter r e a d i n g s on we s t e r n hemlock d i m e n s i o n lumber. F o r e s t P r o d . J . 21(6):34-35. 43. K o z l o v , V. A., K o r o t k i k h , N..A. and A. P. M a t y s u h k i n a . 1971. L e v e l s o f i n o r g a n i c elements i n pinewood from s o u t h e r n K a r e l i a , i z u . Vyssh. Ucheb. Zaved. L e s . Zh. 1 4 ( 2 ) : 150-151. ( O r i g . not s e e n , c f . CA 75:13091Ig). 44. K o z l o v , V. N., Bagrova, R. Kh., B r o n z o v , 0. V., K r u s h e v n i k o v a , A . l . and E. A. U t k i n a . 1966. Chemical c o m p o s i t i o n o f c h a r c o a l a sh. I z u . V y s s h . Ucheb. Zaved. L e s . Zh. 1 9 ( 6 ) : 123-126. ( O r i g . not s e e n , c f . CA 68:9 6 9 3 3 j ) . 45. K r o n e r , V. K. and L. Pungs. 1952. Uber das V e r h a l t e n des d i l e c -t r i c i s h c e h n V e r l u s t f a k t o r s von N a t u r h o l z i n g r o s s e n F r e q u e n s -b e r e i c h . H o l z f o r s c h . 6(1):12-18. 46. Langmuir, I . 1918. The a d s o r p t i o n o f gases on p l a n e s u r f a c e s o f g l a s s , m i c a , and p l a t i n u m . J . Am. Chem. Soc. 40: 1361. 47. Langwig, J . E. and J . A. Meyer. 1973. Ion m i g r a t i o n i n wood v e r i f i e d by n e u t r o n a c t i v a t i o n a n a l y s i s . Wood S c i . 6(1):39-50. 48. L a r s o n , P. R. 1966. Checmial composition and p h y s i c a l p r o p e r t i e s o f wood f i b e r s . I . P r e p a r a t i o n o f h o l o c e l l u l o s e f i b e r s from l o b -l o l l y p i n e . T a p p i 44:230-232. 49. L a z a r e v , M. Ya. 1964. The IKH-IZ r o s i n f o r e l e c t r i c c a b l e s . S i n t e t . Prod, i z K a n i f o l i i S k i p i d a r a : 82-90 ( O r i g . n o t s e e n , o f . ABIPC 38:7701). 50. L e e , C. L., 1961. C r y s t a l l i n i t y o f wood c e l l u l o s e f i b e r s s t u d i e d by X - r a y methods. F o r e s t Prod. J . 1 1 ( 2 ) : 108-112. 51. Lehmann, J . 1958. The dependence o f the e l e c t r i c a l c o n d u c t i v i t y o f h y g r o s c o p i c f i b e r s on t h e i r w a t e r c o n t e n t . N a t u r w i s s . 4 5 ( 2 ) : 35-45. 52. L i n , R. T. 1965. A s t u d y on the e l e c t r i c a l c o n d u c t i o n i n wood. F o r e s t Prod. J . 15(11):506-514. 53. . 1967. Review o f the e l e c t r i c a l p r o p e r t i e s o f wood and c e l l u l o s e . F o r e s t Prod. J . 17(7):54-61. 54. . 1973. Wood as an o r t h o t r o p i c d i e l e c t r i c m a t e r i a l . Wood and F i b e r 5(3):226-236. 5 7 ; 55. McLauchlen,T. A., N o r t o n , J . A. and D. J . Kusec. 1973. S l o p e - o f -g r a i n i n d i c a t o r . F o r e s t P r o d. J . 23(5):50-55. 56. M c M i l l i n , C. M. 1970. M i n e r a l c o n t e n t o f l o b l o l l y p i n e wood as r e l a t e d t o s p e c i f i c g r a v i t y , growth r a t e and d i s t a n c e from p i t h . H o l z f o r s c h . 23(5):152-257. 57. M i t c h e l l , H. L. 1965. P a t t e r n s o f v a r i a t i o n i n s p e c i f i c g r a v i t y o f s o u t h e r n p i n e s and o t h e r c o n i f e r o u s s p e c i e s . T a p p i 47(5):276-283. 58. Murphy, E. J . 1929. Anomalous p r o p e r t i e s o f c o n d u c t i o n i n t e x t i l e s . J . P h y s i c . Chem. 33:509-532. 59. . 1960. The dependence o f c o n d u c t i v i t y o f c e l l u l o s e , s i l k , and wood on t h e i r w a ter c o n t e n t . J . Phys. Chem. S o l i d s . 16: 115-121. 60. Nanassy, A. J . 1970. O v e r l a p p i n g o f d i e l e c t r i c r e l a x a t i o n s p e c t r a i n o v e n - d r y y e l l o w b i r c h a t t e m p e r a t u r e s from 20 t o 100 C. Wood S c i . T e c h . 4:104-121. 61. Nebrasov, V. V., L o g i n o v , Yu. V. and I. M. B o k h o v k i n . 1970. D i e l e c t r i c c o n s t a n t o f l i g n i n s o l u t i o n s i n d i o x a n e . I z v . VUZ, L e s n o i Zh. 13(5):98-102. ( O r i g . n o t s e e n , c f . ABIPC 41:9392). 62. Norimoto, M. and T. Yamada. 1969. The d i e l e c t r i c p r o p e r t i e s o f wood. I. E f f e c t o f m o i s t u r e c o n t e n t on d i e l e c t r i c p r o p e r t i e s a t wave l e n g t h 3.2 cm. J . Japan Wood Res. Soc. 15(2):56-61. 63. . 1970. The d i e l e c t r i c p r o p e r t i e s o f wood. I I I . The r e l a t i o n s h i p between d i e l e c t r i c l o s s and s p e c i f i c g r a v i t y o f wood. J . Japan Wood Res. Soc. 16(8):364-369. 64. . 1971. The d i e l e c t r i c p r o p e r t i e s o f wood. V. D i e l e c t r i c a n i s o t r o p y o f wood. Wood R e s . ( K y o t o ) 54:12-32. 65. .".1973. R e l a t i o n s h i p between d i e l e c t r i c p r o p e r t i e s and c r y s t a l l i n i t y o f c e l l u l o s e . Wood Res. (Kyoto) 54:19-30. 66. Onodera, S., Sakamota, S. and S. Sawada. 1966. D e t e r m i n a t i o n o f wood m o i s t u r e c o n t e n t by n e u t r o n s c a t t e r i n g . J . Japan Wood Res. Soc. 1 2 ( l ) : l - 5 . 67. O t t , E., S p u r l i n , H. M. and M. W. G r a f f l i n . 1954. C e l l u l o s e and C e l l u l o s e D e r i v a t i v e s . P a r t I . 2nd ed. I n t e r s c i e n c e P u b l . , I n c . , New York. 509 pp. 68. Pande, A. 1969. C o r r e l a t i o n between the d i e l e c t r i c c o n s t a n t and the c r y s t a l l i n i t y o f c e l l u l o s e and s i m i l a r f i b r o u s m a t e r i a l s . Lab. P r a c t i c e 18(10):1052-1053, 1078. 69. P a s h i n , A. J . and C. de Zeeuw. 1970. Textbook o f Wood T e c h n o l o g y . V o l , 1, 3 r d . ed. McGraw-Hill Co., New York. pp. 237-275. 58 70. P e t e r s o n , R. W. 1960. The d i e l e c t r i c p r o p e r t i e s o f wood. Fore'st Prod. Lab. Canada, FPL Tech. Note 16. 22 pp. 71. Phi 1 1ipe, E. W. J . , Adams, E. H. and R. F. S. Hearmon. 1962. The measurement o f d e n s i t y v a r i a t i o n w i t h i n the growth r i n g s i n t h i n s e c t i o n s o f wood, u s i n g b e t a p a r t i c l e s . J . I n s t . Wood S c i . 10:11-28. 72. P o l g e , H. 1964. The j u v e n i l e wood o f c o n i f e r s . Rev. F o r e s t F r a n c . ;16(6):474-505. ( O r i g . not s e e n , c f . FA 26-1241). 73. P r e s t o n , R. D., Hermans, P. H. and A. W i d i n g e r . 1950. The c r y s t a l l i n e -n o n - c r y s t a l l i n e r a t i o r . i n c e l l u l o s e s o f b i o l o g i c a l i n t e r e s t . J . Exp. Botany 1(3):344-352. 74. R a f a l s k i , J . 1967. D i e l e c t r i c p r o p e r t i e s o f compressed beech wood. F o r e s t Prod. J . 17(8):64-65. 75. R o g e r s , I . H., H a r r i s , A. G. and L. R. Rozon. 1971. The e f f e c t o f o u t s i d e s t o r a g e on the e x t r a c t i v e s o f w h i t e s p r u c e and l o d g e -p o l e p i n e . Pulp Paper Mag. Can. 7 2 ( 6 ) : 84-90. 76. S a s t r y , C. B. R. 1968. Some e f f e c t s o f f e r t i l i z e r a p p l i c a t i o n on wood p r o p e r t i e s o f D o u g l a s - f i r . MJ.oSsebi. T h e s i s , Univ. B r i t i s h C olumbia. 99 pp. ' ' 77. S k a a r , C. 1964. Some f a c t o r s i n v o l v e d i n the e l e c t r i c a l d e t e r m i n -a t i o n o f m o i s t u r e g r a d i e n t i n wood. F o r e s t Prod. J . 1 4 ( 6 ) : 239-243. 78- . il-9.48; The d i e l e c t r i c p r o p e r t i e s o f wood a t s e v e r a l r a d i o f r e q u e n c i e s . N. Y. S t a t e C o l l . F o r . , T e c h. P u b l . No. 69. 79. S q u i r e , G. B. 1968. E x a m i n a t i o n o f c e l l u l o s e - 1 i g n i n r e l a t i o n s h i p s w i t h i n c o n i f e r o u s growth zones. Ph. D. T h e s i s , U n i v . B r i t i s h C olumbia. 140 pp. 80. Stamm, A. J . 1927. The e l e c t r i c a l r e s i s t a n c e o f wood as a measure o f m o i s t u r e c o n t e n t . Ind. Eng. Chem. 19:1021-1025. 81. . 1929. The f i b e r s a t u r a t i o n p o i n t as o b t a i n e d f r o m e l e c t r i c a l c o n d u c t i v i t y measurement. Ind. Eng. Chem. ( A n a l . Ed.) 1:94-97. 82. . 1964. Wood and C e l l u l o s e S c i e n c e . Ronald P r e s s Co., New York. pp. 142-165, 359-385. 83. Sugden, E. A. N. 1967. Wood c h a r a c t e r i s t i c s and wood-pulp q u a l i t y . P u l p and Paper Mag. Can. 68(6):T273-T279. • 59 . 84. T r a p p , W. and L. Pungs. 1956. E i n f l u s s von Temperatur und F e u c h t e auf das d i e l e c t r i s c h e V e r h a l t e n von N a t u r h o l z im g r o s s e n fre-q u e n z b e r e i c h . H o l z f o r s c h . 10(5):144-150. 85. T s u g e , K. and Y. Wada. 1962. E f f e c t o f s o r b e d w a t e r on d i e l e c t r i c d i s p e r s i o n o f c e l l u l o s e a t low f r e q u e n c i e s . J . Japan Wood Res. Soc. 17(1) :156-164. 86. T s u t s u m i , J . and H. Watanabe. 1965. S t u d i e s on d i e l e c t r i c b e h a v i o u r o f wood. I . E f f e c t o f f r e q u e n c i e s and t e m p e r a t u r e on d i e l e c t r i c c o n s t a n t and l o s s t a n g e n t . J . Japan Wood Res. Soc. 1 1 ( 6 ) : 232-236. 87. U p r i c h a r d , J . M. 1971. P u l p s from .New Z e a l a n d grown P i n u s c o n t o r t a . A p p i t a 25(2):116-119. 88. Uyemura, T. 1960. D i e l e c t r i c p r o p e r t i e s o f wood as t h e i n d i c a t o r o f t h e m o i s t u r e . B u l l . Gov. F o r . Exp. S t a . No. 119. pp. 95-172. 89. Venkateswaran, A. 1972. Comment on t h e c o r r e l a t i o n between t h e d i e l e -c t r i c c o n s t a n t and the c r y s t a l l i n i t y o f c e l l u l o s e and s i m i l a r f i b r o u s m a t e r i a l s . Lab. P r a c t i c e 21(6):429. 90. . 1972. Comparison o f t h e e l e c t r i c a l , p r o p e r t i e s o f m i l l e d wood, m i l l e d wood c e l l u l o s e and m i l l ed w o o d . 1 i g n i n . Hood S c i . 4(4):248-253. 91. . 1972. D e n s i t i e s and c o n d u c t i v i t y o f wood. Wood S c i . 5 ( 1 ) : 60-62. 92. . 1974. The i n t e r d e p e n d e n c e o f t h e l i g n i n c o n t e n t and e l e c t r i c a l p r o p e r t i e s o f wood. Wood and F i b e r 6 ( 1 ) : 46-52. 93. - a n d S. Y. T i w a r i . 1964. D i e l e c t r i c p r o p e r t i e s o f m o i s t wood.' T a p p i 4 7 ( l f : 25-28 94. Vermaas, H. F. 1974. D i e l e c t r i c p r o p e r t i e s o f P i n u s p i n a s t e r as a f u n c t i o n o f i t s a l c o h o l - b e n z e n e - s o l u b l e c o n t e n t . Wood S c i . 6(4):363-367. 95. V e r s e p u t , H. W. 1951. S t u d i e s o f d i e l e c t r i c p r o p e r t i e s o f c h e m i c a l p u l p . IV. The r e l a t i o n s h i p between d i e l e c t r i c c o n s t a n t and c r y s t a l l i n i t y o f c e l l u l o s e . T a p p i , 3 4 ( 1 2 ) : 5 7 2 - 5 7 6 . 96. V y a t k i n a , 0. V. 1971. M a n u f a c t u r e o f p u l p f o r e l e c t r i c i n s u l a t i o n Dapers. No voe v T e k h n o l . T s e l l y u l . Bumaz. Prom. pp. 69-78. (On'g. not seen, c f . ABIPE 42:10227). 97. Wahlgren, H. E,, H a r t , A. C. and R. R. M a e g l i n . 1966. Some q u a l i t a -t i v e d i f f e r e n c e s between sapwood and heartwood o f w h i t e s p r u c e . U.S. F o r . S e r v . , U.S. F o r . P r o d u c t s Lab., Madison FPL 61. 21>pp. 60 98. Weatherwax, R. C. and Ai, J. Stamm. 1945. The e l e c t r i c a l r e s i s -t i v i t y o f r e s i n t r e a t e d wood and Daper base p l a s t i c s . E l e c t . Eng. 64(12:)': 833-838. 99. Y a v o r s k y , J. M. 1952. A re v i e w of e l e c t r i c a l p r o p e r t i e s of wood. S t a t e U n i v . Mew York, C o l l . F o r . S y r a c u s e , T e c h . P u b l . 73. 100. •_'Yurev, V. I . and S, - S. Pozin- 1958. C a p i l l a r y s u p e r c o n d u c t i v i t y o f c e l l u l o s i c m a t e r i a l ' s . Mauch. Doklady V y s s h . S h k o l y , L e s o i n z h . Delo no 4:215-218. ( O r i g . n o t s e e n , cf. ABIPC 31:704). 101. Z a v a k s i i , G. V. 1963. Study of s t r u c t u r a l c h a r a c t e r i s t i c s o f h a r d -boards by e l e c t r o m e t r i c methods. I z v . V y s s h . Ucheb. Zabed.-s t r . i A r k h i t e k no 4: 60-64. ( O r i q . not s e e n , c f . ABIPG-35: 234) 102. Zsigmondy, R. 1911. S t r u c t u r e o f g e l a t i n o u s s i l i c i c a c i d . T h e o r y o f d e h y d r a t i o n . Z. Anorg. Chem. 71:356. T a b l e 1. A n a l y s i s o f v a r i a n c e t a b l e f o r between s p e c i e s p o w e r - l o s s meter measurements. L o d g e p o l e p i n e No. 4, l o d g e p o l e p i n e r e a c t i o n wood, w h i t e s p r u c e , D o u g l a s - f i r and s u b a l p i n e f i r d a t a were u s e d . Source o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between s p e c i e s 4 850 H e i g h t w i t h i n t r e e (H/T) 16 24 Sample / h e i g h t (S/H/T) 59 16 M o i s t u r e c o n t e n t (MC) 2 12077 Tree x MC 8 140 H/T x MC 32 3 S/H/T x MC 118 4 R a d i a l vs_. t a n g e n t i a l 1 54 D i r e c t i o n x MC 2 8 E r r o r 657 0 T o t a l 899 .09 H e i g h t / t r e e 35.37 ** .03 Sample/H/T 1.49 N.S. .10 25.59 ** .00 19203.98 ** .90 244.05 ** .47 5.52 ** .67 7.43 ** .61 86.84 ** .93 14.20 ** .63 S t u d e n t i z e d Newman-Keul's t e s t , l e v e l o f s i g n i f i c a n c e = 0.05 S p e c i e s l o d . p i n e Rw. l o d . p i n e No. 4 D - f i r a - f i r w. s p r u c e F r e q u e n c i e s 48 210 216 180 246 Means 29.33 26.27 25.92 24.27 22.22 Any two means d i f f e r s i g n i f i c a n t l y . * i n d i c a t e s i g n i f i c a n c e a t 0.0 5 l e v e l ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l N.S. i s not s i g n i f i c a n t . + D e s i g n a t e term f o r F - t e s t . Blank i n d i c a t e s t he t e s t term i s " E r r o r " . T a b l e 2. A n a l y s i s o f c o v a r i a n c e t a b l e f o r between s p e c i e s p o w e r - l o s s meter measurements. S p e c i f i c g r a v i t y i s t h e c o v a r i a t e . L o d g e p o l e p i n e No. 4, l o d g e p o l e p i n e r e a c t i o n wood, w h i t e s p r u c e , D o u g l a s - f i r and s u b a l p i n e f i r d a t a were used. S o u r c e o f v a r i a t i o n Df Mean s q u a r e s T e s t t e r m * F S i g n i f i c a n c e Between s p e c i e s 4 61.64 H e i g h t / t r e e 11.06 ** H e i g h t w i t h i n t r e e (H/T) 16 5.57 Sample/H/T 0.48 N.S. Sa m p l e / h e i g h t (S/H/T) 59 11.78 26.12 ** M o i s t u r e c o n t e n t (MC) 2 12068.00 26771.97 ** T r e e x MC 8 141.73 313.42 ** H/T x MC 32 3.80 8.43 ** S/H/T x MC 118 4.76 10.56 ** R a d i a l vs_. t a n g e n t i a l 1 54.61 121.15 ** D i r e c t i o n x MC 2 8.93 19.81 ** E r r o r 656 0.45 Common s l o p e o f a d j u s t m e n t = 33 .53 S t u d e n t i z e d Newman-Keul's t e s t , l e v e l o f s i g n i f i c a n c e = 0.05 S p e c i e s 1. p i n e 4 1. p i n e Rw. a - f i r w. s p r u c e D - f i r F r e q u e n c i e s 210 48 180 246 216 A d j u s t e d means 25.71 25 .42 24.65 24.59 24.31 Means u n d e r l i n e d by the same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t . """Designate term f o r F - t e s t . Blank i n d i c a t e s t he t e s t term i s " E r r o r " , Table 3. Analysis of variance table for within lodgepole pine regular wood power-loss meter measure-ments. Source of variation Df Mean squares Test term+ F Significance Between tree 3 328.40 Height/tree 30.58 ** Height within tree (H/T) 15 10.74 Sample/H/T 2.39 * Sample/height (S/H/T) 55 4.49 . 13.47 ** Moisture content 2 15244.00 45773.92 ** Tree x MC 6 19.61 58.88 ** H/T x MC 30 2.72 8.18 ** S/H/T x MC n o 2.48 7.44 ** Radial vs_. tangential 1 45.74 137.35 ** Direction x MC 2 9.42 28.30 ** Error 591 0.33 Total 815 Studentized Newman-Keul 's test, level of significance = 0.05 Trees 1. pine 3 1. pine 4 1. pine 2 1. pine 1 Frequencies 204 210 204 198 Means 26.59 26.27 24.43 24.08 Means underlined by the same line are not significantly different from each other. * indicate significance at 0.05 level. ** indicate significance at 0.01 level. N.S. indicate not significant designate term for F-test. Blank indicates the test term is "Error". CTl CO T a b l e 4. A n a l y s i s o f c o v a r i a n c e t a b l e f o r w i t h i n l o d g e p o l e p i n e r e g u l a r woods po w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between t r e e 3 25.71 H e i g h t / t r e e 4.66 * H e i g h t w i t h i n t r e e (H/T) 15 5.52 Sample/H/T 1.13 N.S. S a m p l e / h e i g h t (S/H/T) 55 4.87 17.25 ** M o i s t u r e c o n t e n t (MC) 2 15244.00 53953.42 ** T r e e x MC 6 19.71 69.75 ** H/T x MC 30 2.83 10.03 ** S/H/T x MC no 2.47 8.74 ** R a d i a l y_£. t a n g e n t i a l 1 45.74 118.17 ** D i r e c t i o n x MC 2 9.42 33.35 ** E r r o r 590 0.28 Common s l o p e f o r a d j u s t m e n t = 23.38 S t u d e n t i z e d Newman-Keul's t e s t , l e v e l o f s i g n i f i c a n c e = 0.05 T r e e s 1. p i n e 3 1. p i n e 4 1. p i n e 2 1. p i n e 1 F r e q u e n c i e s 204 210 204 198 A d j u s t e d means 26.05 25.95 24.89 24.51 U n d e r l i n e d means a r e not s i g n i f i c a n t l y d i f f e r e n t from one a n o t h e r . * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t . d e s i g n a t e term f o r F - t e s t . B l a n k i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 5. A n a l y s i s o f v a r i a n c e f o r l o d g e p o l e p i n e No. 1 po w e r - l o s s meter measurements. So u r c e o f v a r i a t i o n Df Mean s q u a r e s T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 3 7.03 Sample/H 1.39 N.S. Sample w i t h i n h e i g h t (S/H) 13 5.04 2.36 ** M o i s t u r e c o n t e n t (MC) 2 3749.10 1755.27 ** H e i g h t x MC 6 1.57 0.74 N.S. S/H x MC 26 5.25 2.46 ** R a d i a l vs.- t a n g e n t i a l 1 5.47 2.56 N.S. D i r e c t i o n x MC 2 3.60 1.68 N.S. E r r o r 144 2.14 T o t a l 197 T a b l e 6. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 1 po w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . Source o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 3 5.52 Sample/H 1.23 N.S. Sample w i t h i n h e i g h t (S/H) 13 4.49 2.10 * M o i s t u r e c o n t e n t (MC) 2 3749.70 1758.79 ** H e i g h t x MC 6 1.56 0.73 N.S. S/H x MC 26 5.22 2.45 ** R a d i a l vs.- t a n g e n t i a l 1 5.47 2.56 N.S. D i r e c t i o n x MC 2 3.60 1.69 N.S. E r r o r 143 2.13 Common s l o p e o f a d j u s t m e n t = 14.79 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S^. i n d i c a t e n o t s i g n i f i c a n t . + D e s i g n i a t e term f o r F - t e s t . Blank i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 7. A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 2 p o w e r - l o s s meter measurements. Source o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 4.59 Sample/H 0.89 N.S. Sample w i t h i n h e i g h t (S/H) 14 5.15 20.20 ** M o i s t u r e c o n t e n t (MC) 2 3562.60 13968.61 ** H e i g h t x MC 8 0.40 • 1.58 N.S. S/H x MC 28 1.65 6.46 ** R a d i a l vs^ t a n g e n t i a l 1 13.05 51.17 ** D i r e c t i o n x MC 2 2.03 7.96 ** E r r o r 144 0.26 T o t a l 203 T a b l e 8. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 2 p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S ource o f v a r i a t i o n Df Mean squares T e s t t e r m + F - S i g n i f i c a n c e Between h e i g h t 4 3.97 Sample/H 0.75 N.S. Sample w i t h i n h e i g h t (S/H) 14 5.32 22.36 ** M o i s t u r e c o n t e n t (MC) 2 3564.00 14991.77 ** H e i g h t x MC 8 0.39 1.62 N.S. S/H x MC 28 1.66 6.98 ** R a d i a l vs.- t a n g e n t i a l 1 13.05 54.90 ** D i r e c t i o n x MC 2 2.03 8.54 ** E r r o r 143 0.24 Common s l o p e f o r a d j u s t m e n t = 17.12 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t . d e s i g n a t e term f o r F - t e s t . B l a n k i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 9. A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 3 p o w e r - l o s s meter measurements. So u r c e o f v a r i a t i o n Df Mean squares T e s t term S i g n i f i c a n c e Between h e i g h t 4 12.41 Sample w i t h i n h e i g h t (S/H) 14 2.66 M o i s t u r e c o n t e n t (MC) 2 3468.50 H e i g h t x MC 8 3.50 S/H x MC 28 2.82 R a d i a l vs^. t a n g e n t i a l 1 9.84 D i r e c t i o n x MC 2 3.35 E r r o r 144 0.44 T o t a l 203 Sample/H 4.67 6.00 7838.53 7.90 6.37 22.23 7.56 * ** ** ** ** ** ** S t u d e n t i z e d Newman-Keul's t e s t , l e v e l o f s i g n i f i c a n c e = 0.05 H e i g h t s 1 5 3 4 2 F r e q u e n c i e s 54 30 42 36 ' 42 Means 27.30 26.81 26.50 26.17 26.00 Means u n d e r l i n e d by the same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e not s i g n i f i c a n t . + D e s i g n i a t e term f o r F - t e s t . Blank i n d i c a t e s the t e s t term i s " E r r o r " . T a b l e 10. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 3 p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r ce o f v a r i a t i o n Df Mean s q u a r e s T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 3.58 Sample/H 1.06 N.S. Sample w i t h i n h e i g h t (S/H) 14 3.39 9.09 ** M o i s t u r e c o n t e n t (MC) 2 3452.90 9251.17 ** H e i g h t x MC 8 3.85 10.31 ** S/H x MC 28 2.85 7.63 ** R a d i a l y_£. t a n g e n t i a l 1 9.84 26.36 ** D i r e c t i o n x MC 2 3.35 8.96 ** E r r o r 143 0.37 Common s l o p e f o r a d j u s t m e n t = 24.33 * i n d i c a t e s i g n i f i c a n c e a t 0,05 l e v e l , ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t , + D e s i g n a t e term f o r F - t e s t . B lank i n d i c a t e s t h e t e s t term i s ''Error' 1, T a b ! e l l . A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e No. 4 power-loss meter measurements. Source o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 21.44 Sample/H 4.51 * Sample w i t h i n h e i g h t (S/H) 14 4.75 9.92 ** M o i s t u r e c o n t e n t (MC) 2 4572.10 9544.09 **. H e i g h t x MC 8 5.71 11.93 ** S/H x MC 28 2.83 5.91 ** R a d i a l v s . t a n g e n t i a l 1 9.18 19.16 ** D i r e c t i o n x MC 2 3.53 7.37 ** E r r o r 150 0.48 T o t a l 209 S t u d e n t i z e d Newman-Keul's t e s t , l e v e l o f s i g n i f i c a n c e = 0.05 H e i g h t 5 T 3 2 4 F r e q u e n c i e s 30 54 42 48 36 Means 27.23 26.90 26.04 25.73 25.52 Means u n d e r l i n e d by t h e same l i n e a r e not s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t . D e s i g n i a t e term f o r F - t e s t . Blank i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 12. A n a l y s i s o f c o v a r i a n c e f o r l o d g e p o l e p i n e No. 4 p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F . S i g n i f i c a n c e Between h e i g h t 4 7.96 Sample/H 1.34 N.S. Sample w i t h i n h e i g h t (S/H) 14 5.93 17.73 ** M o i s t u r e c o n t e n t (MC) 2 4577.10 13684.56 ** H e i g h t x MC 8 5.89 17.61 ** S/H x MC 28 2.76 8.26 ** R a d i a l vs_. t a n g e n t i a l 1 9.18 27.44 ** D i r e c t i o n x MC 2 3.53 10.56 ** E r r o r 149 0.33 Common s l o p e f o r a d j u s t m e n t = 36.96 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e n o t s i g n i f i c a n t + D e s i g n i a t e term f o r F - t e s t . B l a n k i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 13. A n a l y s i s o f v a r i a n c e t a b l e f o r l o d g e p o l e p i n e r e a c t i o n wood power-loss meter measure-ments. S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Sample 4 6.09 1.33 N.S. M o i s t u r e c o n t e n t (MC) 2 755.10 164.84 ** Sample x MC 8 1.49 0.32 N.S. R a d i a l y_s_. t a n g e n t i a l 1 2.48 0.54 N.S. D i r e c t i o n x MC 2 0.41 0.09 N.S. E r r o r 30 4.58 T o t a l 47 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e not s i g n i f i c a n t . + D e s i g n a t e term f o r F - t e s t . B l a n k i n d i c a t e s t h e t e s t term i s ''Error". T a b l e 14. A n a l y s i s o f v a r i a n c e t a b l e f o r w h i t e s p r u c e p o w e r - l o s s meter measurements. Source o f v a r a i t i o n Df Mean s q u a r e s T e s t term F S i g n i f i c a n c e Between h e i g h t 4 30.54 Sample/H 2.87 N.S Sample w i t h i n h e i g h t (S/H) 16 10.64 36.70 ** M o i s t u r e c o n t e n t (MC) 2 3232.70 11146.21 ** H e i g h t x MC 8 3.64 12.56 ** S/H x MC 32 2.25 7.76 ** R a d i a l y_s_. t a n g e n t i a l 1 25.63 88.36 ** D i r e c t i o n x MC 2 4.53 15.60 ** E r r o r 180 0.29 T o t a l 245 T a b l e 15. A n a l y s i s o f c o v a r i a n c e f o r w h i t e s p r u c e p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 16.51 Sample/H 2.49 N.S. Sample w i t h i n h e i g h t (S/H) 16 6.64 22.88 ** M o i s t u r e c o n t e n t (MC) 2 3230.10 11126.53 ** H e i g h t x MC 8 3.61 12.43 ** S/H x MC 32 2.25 7.73 ** R a d i a l v s . t a n g e n t i a l 1 25.63 88.28 ** D i r e c t i o n x MC 2 4.53 15.59 ** E r r o r 179 0.29 Common s l o p e f o r a d j u s t m e n t = -3.29 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e not s i g n i f i c a n t . D e s i g n a t e term f o r F - t e s t . B lank i n d i c a t e s t h e t e s t term i s " E r r o r " . T a b l e 16. A n a l y s i s o f v a r i a n c e t a b l e f o r D o u g l a s - f i r p o w e r - l o s s meter measurements. S o u r c e o f v a r i a t i o n Df Mean squares T e s t term F S i g n i f i c a n c e Between h e i g h t 4 29.97 Sample/H 0.67 N.S. Sample w i t h i n h e i g h t (S/H) 14 45.07 74.75 ** M o i s t u r e c o n t e n t (MC) 2 1310.00 2172.79 ** H e i g h t x MC 8 2.47 4.10 ** S/H x MC 28 9.61 15.94 ** R a d i a l vs_. t a n g e n t i a l 1 10.89 18.06 ** D i r e c t i o n x MC 2 2.93 2.43 N.S. E r r o r 156 0.60 T o t a l 215 T a b l e 17. A n a l y s i s o f c o v a r i a n c e f o r D o u g l a s - f i r p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 1.08 Sample/H 0.06 N.S. Sample w i t h i n h e i g h t (S/H) 14 16.65 29.87 ** M o i s t u r e c o n t e n t (MC) 2 1291.00 > 2316.06 ** . H e i g h t x MC 8 2.79 5.01 ** S/H x MC 28 9.26 16.62 ** R a d i a l v s . t a n g e n t i a l 1 10.89 19.54 ** D i r e c t i o n x MC 2 1.46 2.62 N.S. E r r o r 155 0.56 Common s l o p e f o r a d j u s t m e n t = 51.98 * i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l N.S. i n d i c a t e not s i g n i f i c a n t . + D e s i g n i a t e term f o r F - t e s t . B l a n k i n d i c a t e s the t e s t term i s " E r r o r " , T a b l e 18. A n a l y s i s o f v a r i a n c e t a b l e f o r s u b a l p i n e f i r p o w e r - l o s s meter measurements. S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 14.20 Sample/H 2.71 N.S. Sample w i t h i n h e i g h t (S/H) 11 5.23 12.74 ** M o i s t u r e c o n t e n t (MC) 2 2770.50 6747.96 ** H e i g h t x MC 8 2.06 5.01 ** S/H x MC 22 5.41 13.19 ** R a d i a l v s . t a n g e n t i a l 1 8.45 20.58 ** D i r e c t i o n x MC 2 0.33 0.81 N.S. E r r o r 129 0.41 T o t a l 179 T a b l e 19. A n a l y s i s o f c o v a r i a n c e f o r s u b a l p i n e f i r p o w e r - l o s s meter measurements. C o v a r i a t e i s s p e c i f i c g r a v i t y . S o u r c e o f v a r i a t i o n Df Mean squares T e s t t e r m + F S i g n i f i c a n c e Between h e i g h t 4 1.83 Sample/H 0.44 N.S. Sample w i t h i n h e i g h t (S/H) 11 4.21 13.07 ** M o i s t u r e c o n t e n t (MC) 2 2774.40 8619.85 ** H e i g h t x MC 8 2.15 6.69 ** S/H x MC 22 5.57 17.31 ** R a d i a l v s . t a n g e n t i a l 1 8.45 26.25 ** D i r e c t i o n x MC 2 0.33 1.03 N.S. E r r o r 128 0.32 Common s l o p e f o r a d j u s t m e n t = 43.53 • i n d i c a t e s i g n i f i c a n c e a t 0.05 l e v e l . ** i n d i c a t e s i g n i f i c a n c e a t 0.01 l e v e l . N.S. i n d i c a t e not s i g n i f i c a n t . + D e s i g n a t e term f o r F - t e s t . B l a n k i n d i c a t e s the t e s t term i s " E r r o r " . 75 Table 20. Comparison of power-loa3 moiaturo meter (Moisture Regiostor Model L) correction tables for lodgepole pine pooled data. Manu-facturer supplied data and the table prepared by Bramhall and Salamon ( 11 ) are given for comparison. Underlined data are extra-polated. L p d T e p o l e n i n e r!oi3ture C o n t e n t Met er reading R a d i a l f a c e : Tanrrential faces G 0.36 0.39 0.42 0.45 0.36 0.39 0 . 4 2 0.45 Hanu-f a c t . •B & S* 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 6.6 7.7 8.8 9.9 10.9 11.8 12.7 13.5 14.2 15.0 15.6 16.2 16.8 17.3 17.8 18.4 • • • • 19.2 • • # • 19.9 5.5 6.7 7.8 8.9 9.9 10.9 11.8 12.7 13.7 14.7 15.5 16.3 16.9 17.5 18.1 16.7 19.2 19.7 20.1 20.6 * o Temperature used i s 20 C. 76 Table 21. Comparison of power-loss moisture motor "(Moisture Resioster Model L) correction tables for white spruce data. Manufacturer supplied table and the table prepared by Bramhall and Salamon ( i f ) are given for comparison. Underlined data are extrapolated. Meter White spruce Moisture content reading K a d i a l laces Tangential f n r p o Manu— u i u.iU 0.32 0.34 0.36 0.30 0.32 0.34 0.36 " fact. B & S* 5*6 8.0 5.1 3_.jL .... 5.4 4.4 16 10.2 7.9 4^ 4 2^ 3 9.7 7.4 6Jp_ 4^6 6.5 5.5 17 11.7 9.6 2 s l 5 i l 9.1 7.9 7.5 6.5 18 12.9 11.1 9.0 7.2 12.3 10.6 8.6 "679 8.4 7.5 19 14»1 12.5 10.6 8.3 13.4 11.9 10.1 8.0 9.4 8.5 20 • 15.1 13.6 12.0 10.0 14.5 13.0 11.5 9.6 10.3 9.4 21 16.1 14.7 13.2 11.5 15.4 14.1 12.7 11.0 11.1 10.3 22 17.1 15.8 14.3 12.8 16.3 15.1 13.8 12.3 11.9 11.2 23 17.9 16.7 15.4 13.9 17.2 16.0 14.8 13.4 12.5 12.1 24 18.8 17.6 I6.4 15.0 18.0 I6.9 15.7 14.4 13.2 12.9 25 19.6 18.5 17.3 16.0 18.8 17.7 16.6 15.4 13.9 13.7 26 20.4 19.3 18.2 16.9 19.6 18.5 17.5 16.3 14.4 14.4 27 21.1 20.1 19.0 17.8 20.3 19.3 18.3 17.2 14.9 15.0 28 21.8 20.8 19.8 18.7 21.0 20.0 19.0 18.0 I5.4 15.6 29 22,5 21.6 20.6 19.5 21.7 20.7 19.8 18.8 16.0 16.2 3° .23.2 22.3 21.3 20.3 22.3 21.4 20.5 19-5 16.6- 16.9 31 23.9 23 .0 22.0 21.0 23.0 22.1 21.2 20.3 .... 17.3 32 24.5 23.6 22.7 21.7 23T6" 22.7 21.9 21.0 17.2 17.8 33 25.1 2A . 3 23 .4 22.5 24.2 23.4 .22.5 21.6 .... 18.3 34 25.8 24.9 24.0 23.1 2475* 24.0 23.2 22.3 18.1 18.8 * o Temperature used i s 20 C. 77 Table 22. Comparison of power-loss moisture meter (Moisture Rogi-ster Model L) correction tables f o r Douglas-fir .data. Manufacturer supplied table and the table prepared by Bramhall and Salamon I 11 ; are given f o r comparison. Underlined data are extrapolatod — Dou,crla3-fir "'" ~" Meter Moisture content reading Radial faces Tangential faces Manu—. G: 0.40 0.43 0.4o 0.49 0.40 0.43 0.46 0.49 fa c t . B & 5* 15 16 5.5 4.7 6.3 5.6 - ~ P _/ . / • v> 17 3.8 2.2 4*1 2.5 .... .... 7.0 6.3 18 6.1 J>i2 4-2 2^8 6^2 ^_3 4^2 2^ 2 7.7 7.1 19 0T2 2ti i i i ^ 5 7.9 7^0 6^2 5^4 8.4 7.8 20 t 10.1 8.8 7.9 6^ 3 9.7 8.0 7-3 bTl 9.1 8 . 5 21 11.2 9.2 8.2 7.7 10.8 8.7 8.0 7.5 9.7 9.1 22 13.1 10.8 9.6 8.9 12.6 10.3 8.9 8.6 10.3 9.8 23 14.7 11.8 10.5 9.9 14.1 11.3 10.1 9.7 10.9 10.5 24 16.1 13.6 11.5 10.6 15.5 13.0 10.9 10.1 11.5 11.3 25 17.4 15.1 12.4 10.9 16.8 14-5 11.8 10.4 12.1 12.0 26 18.6 I6.5 14.I 11.6 18.0 15.9 13.4 11.5 12.7 12.8 27 19.8 17.8 15.6 13.0 19.1 17.1 14.9 12.2 13.2 13.3 28 20.9 19.0 16.9 14.6 20.1 18.3 16.2 13.8 13.7 13.9 2 9 21.9 20.1 18.2 16.0 21.1 19.4 17.4 15.2 14.4 14.7 3° 22.9 21.2 19.4 17.3 22,1 20.4 18.6 16.5 15.1 15.5 31 23.8 22.2 20.5 18.6 23.0 21.4 19.7 17.8 16.1 32 24.7 23.2 21.5 19.7 23.9 22.3 20.7 18 .9 16.0 16.8 33 25.6 2 4 . 1 2 2.5 20.8 24 . 7 2 3 . 3 21.7 19.9 3 4 2 ^ 2 5 ^ 2 3 ^ - 2 1 ^ 8 HgMSllS 21»0 17^2 18^2 Temperature used i s 20°C. 78 Table 23. Corapariaon of power-loss moisture meter (Moisture Registor Model L) correction tables for subalpine f i r data. Manufacturer supplied table and the table prepared by Bramhall and Salamon ( 11 ) are given for comparison. Underlined data are extrapolated., Subaloino f i r Meter - Moisture Content ., r P i r t i n x r Radial faces Tangential faces Manu-* _ , 0 ^ • J G i 0.35 0.37 0-39 0.41 0.35 0.37 0.39 0.41 f a c t . 10 1*1 3^ 4 7.2 2.2 1 6 111 3.7 4^ 1 2 5^_ i t l .... 8.1 3.3 17 7.4 13 5_^ 0 3_a 6^8 ^6 ^2 l v 9 9.0 4 . 5 18 9.0 8.1 7.1 6^0 8 . 5 7.6 6.6 9.9 5 . 7 19 10.4 9.6 "BTB" 7.9 -9.9 9.1 0T3 7.4 10 . 7 6 .8 20 11.6 10.9 10.2 9.4 11.1 10.4 9.7 9.0 11 . 4 7.9 21 12.7 12.0 11.4 10.7 12.2 11.6 11.0 10.3 12.1 8.9 22 13,7 13.1 12 . 5 11.9' 13.2 12.7 12.1 11 . 5 12 . 8 9.9 23 14.6 14.1 13.5 13.0 14.2 13.7 13.1 12.6 13.5 11.1 24 1 5 . 5 15.0 14 . 5 13.9 15.0 14.6 14.I 13.6 14.1 12.2 25 16.3 15.8 1 5 . 3 14.8 1 5 . 9 15.4 15.0-14.5 14.7 13.2 26 17.1 16.6 16.2 15.7 16.7 16.2 15.8 15.3 15.2 14.3 27 17.8 17.4 17.0 16 . 5 17.4 17.0 16.6 16.2 1 5 . 7 15.0 28 18.6 18.117.7 17.3 18.2 17.8 17.4 16.9 16.2 1 5 . 7 29 19.3 18.9 18.5 18.0 18.8 18.5 18.1 17.7 16.7 16.5 30 19.9 19.5 19.2 18.8 19.5 19.2 18.8 18.4 17.2 17.4 31 20.6 20.2 19.8 19.4 20.2 19.8 19.5 19.1 .... 18.0 32 21.2 20.8 20 . 5 20.1 20.8 20 . 5 20.1 19.8 17.9 18.7 33 21.8 21 . 5 21.1 20.8 21.4 21.1 2O.7.2O.4 - .... 19.3 34 22.4 22.1 21.7 21.4 22.0 21.7 21.4 21.0 18.6. 19.8 * Data f o r subalpine f i r (Abies lasiocarpa (Hook.) Nutt.) i s not available. Readings f o r "white f i r " are used. ** Temperature used i s 20°C. 79 Table 24. List of regression Pig 6. Radial faces Lodgepole pine 1-4 Y=» 19.12 - O.448 Lodgepole pine No. Y» 20.45 - 0.627 White spruce Y « 15.76 - 0.174 Douglas-fir YB 21.44 - 0.124 Subalpine f i r Y = 14.26 + 0.273 Tangential faces Lodgepole pine 1-4 Y = 19.52 - 0.507 Lodgepole pine No. T- 20.67 - 0.681 White spruce Y = 15.86 - 0.175 Douglas-fir Y = 22.46 - 0.271 Subalpine f i r Y = 14.27 + 0.313 Pig 7. Radial faces Lodgepole pine No. Y = 20.32 - O.848 Lodgepole pine No. Y » 18.68 - 0.502 Lodgepole pine No. Y» 17.63 + 0.063 Lodgepole pine No. YB 20.45 - 0.627 (Continue next page) equations. MC + O.O557 MC 4 MC + 0.0662 MC' MC + 0.0372 MC MC + 0.0270 MC MC + 0.0284 MC' MC + 0.0597 MC 4 MC + 0.0706 MC 2 MC + 0.0396 MC' MC + 0.0337 MC MC + 0.0278 MC' ,SEE [SEE [SEE .SEg [SEE [3EE 'SEE SE E ; SE E 1.52) 1.06) 1.68) 2.13) 1.26) 1.49) 1.02) 1.68) 2.26) 1.16) MC + 0.0691 MC' 2 MC + 0.0571 MC' 3 MC + 0.0350 MC* 4 MC + 0.0662 MC* SE E S E 'E SE E ,SEE 0.66) 0.86) 1.02) 1.06) Table 24. Continued 80 Lodgepole pine reaction wood Y» 19.12 + 0.237 MC + 0.0295 MO2 (SEj.— 1.86) Tangential faces Lodgepole pine No. 1 Y = 20.60 - 0.853 MC + 0.0706 .MC2 (SE E = 0.73) Lodgepole pine No. 2 Y a 19.41 - 0.604 MC + 0.0625 MC2 (SE E= 0.82) Lodgepole pine No. 3 Y = 18.10 - 0.024 MC + 0.0403 MC2 (SEE«= 1.02) Lodgepole pine No. 4 Y = 20.67 - 0.681 MC + 0.0706 MC2 (SEj;^ 1.02) Lodgepole pine reaction wood Y = 18.73 + 0.311 MC + 0.0286 MC2 (SE E = 1.74) Pig 8. Radial faces Lodgepole pine 1-4 Y«16.31 + 0.0401. MC2 (SE E= 1.55) Lodgepole pine No. 4 Y = 16.58 + 0.0442 MC2 (SE E= 1.13) White spruce Y = 14.64 + 0.0313 MC2 (SE E = 1.68) Douglas-fir Y = 20.65 + 0.0228 MC2 (SE E= 2.26) Subalpine f i r Y = 15.94 + 0.0380 MC2 (SE E= 1.27) Tangential faces Lodgepole pine 1-4 Y = 16.34 + 0.0421 MC2 (SE E» 1.52) Lodgepole pine No. 4 Y = 16.46 + O.O467 MC2 (SE E=. 1.11) White spruce Y-14.73 + 0.0337 MC2 (SE E = 1.67) Douglas-fir Y-20.75 + 0.0243 MC2 (SE W» 2.26) Table 24. Continued. Subalpine f i r Y = 16.20 + 0.0388 MC2 (SE E = I.17) Pig 9. • Radial faces Lodgepole pine No. 1 Y = 14.99 + 0.0399 MC2 Lodgepole pine No. 2 Y « 15.54 + 0.0396 MC2 Lodgepole pine No. 3 Y « 18.03 + 0.0371 MC2 Lodgepole pine No. 4 Y « l .58 + 0.0442 MC2 Tangential faces lodgepole pine No. 1 Y = 15.23 + 0.0412 MC2 Lodgepole pine No. 2 Y«= 15.64 + 0.0414 MC2 Lodgepole pine No. 3 Y» 17.95 + 0.0395 MC2 Lodgepole pine No. 4 Y = 16.46 + O.O467 MC2 Pig 10. Radial faces Lodgepole pine 1-4 Y = 16.31 + 0.0401 MC2 ( S E E = 1.55) Lodgepole pine reaction wood Ye 20.63 + 0.0376 MC2 ( S E E » 1.83) Tangential faces Lodgepole pine 1-4 Y = 16.34 + 0.0421 MO2 (SE E»= 1.52) Lodgepole pine reaction wood Y » 20.72 + 0.0393 MC2 ( S E E = 1.71) ( S E E = 0.87) ( S E E » 0.92) ( S E E = 1.02) (SE E = 1.13) ( S E E = 0.93) ( S E E = 0.91) ( S E E = 1.01) ( S E E = 1.11) 82 Fig 1. Schematic diagram of sample preparation and scheme of measurements. S A M P L E HEIGHT L E V E L oAMrLfc. SEGMENT T R E E l 45cnr 1 S A M P L E STRIP SAMPLE S L A B CUTTING 3cm SPECIMEN PIECES • I I I ' i t i i ] , i ' • i 5 LUil PITH 1 HEARTWOOD SAPWOOD .A RADIAL FACE 40 cm TT . ,10cm i-t 2.5 cm am R E S I S T A N C E M E T E R M E A S U R E M E N T S (RADIAL AND TANGENTIAL FACES) TANGENTIAL FACE P O W E R - L O S S M E T E R M E A S U R E M E N T S 83 F i g 2. S p e c i f i c g r a v i t y ( o v e n - d r y w e i g h t and " g r e e n " volume) v a r i a t i o n s among s p e i c e s . L o d g e p o l e p i n e No. 4, w h i t e s p r u c e , D o u g l a s - f i r and s u b a l p i n e f i r sample s p e c i f i c g r a v i t i e s a t 5 h e i g h t l e v e l s and r a d i a l s e r i e s a r e p r e s e n t e d . R i g h t - m o s t p o i n t s a t each h e i g h t l e v e l a r e t h e sapwood sam p l e s . Number o f o b s e r v a t i o n i s e i g h t f o r e a c h p o i n t . G 1 .551 I <L 3 4 b PITH ' PERIPHERY • L E G E N D -X Lodgepole pine • Douglas-fir A • • • • • Wlilto spruco + Subolplno fir •84 Fig 3. S p e c i f i c g r a v i t y ( o v e n - d r y w e i g h t and " g r e e n " volume) v a r i a t i o n s among l o d g e p o l e p i n e t r e e s ( i n c l u d i n g c o m p r e s s i o n wood) a t 5 h e i g h t l e v e l s and r a d i a l s e r i e s a r e p r e s e n t e d . R i g h t - m o s t p o i n t s a t each h e i g h t l e v e l a r e the sapwood s a m p l e s . Number o f o b s e r v a t i o n i s e i g h t f o r e a c h p o i n t . G I -60i .50 .30 * ; I 2 3 4 5 p ™ PERIPHERY • LEGEND• Lodgepole pine no.I * • • Lodgepole pine no.2 Lodgepole pine no. 3 X- Lodgepole pine no.4 Lodgepole pine reactlonwood Fig 4. Resistance moisture meter measurements yj_ moisture contents (oven-dry basis) for between species comparison as lodgepole pine No. 4, white spruce, Douglas-fir and subalpine f i r . (Solid lines represent heartwood samples and dashed lines represent sapwood samples. Symbols on lines serve to distinguish between lines and are not data points.) 32 LEGEND: 28 x Lodgepole pine no.4 * White spruce . • pouglas-ffr + .."... .Subalpine fir 5 l 0 8 12 16 20 24 28 32 36 MOISTURE CONTENT (%) F i g 5. R e s i s t a n c e m o i s t u r e meter measurements on l o d g e p o l e p i n e samples v s . m o i s t u r e c o n t e n t s (oven-dry b a s i s ) . ( S o l i d l i n e s r e p r e s e n t heartwood samples, and dashed l i n e s r e p r e s e n t sapwood samples. Symbols on l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e not d a t a p o i n t s . ) L E G E N D : Lodgepole pine I Lodgepole pine 2 Lodgepole pine 3 . Lodgepole pine 4 OH? |2 ' 16 20 24 ' 2§ 32 36 MOISTURE CONTENT (%) 6 Graph showing t h e r e l a t i o n s h i p between power-loss meter r e a d i n g s and m o i s t u r e c o n t e n t s ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e p o o l e d ( L l - 4 ) , l o d g e p o l e p i n e No. 4 (L 4), w h i t e s p r u c e (W.S.), D o u g l a s - f i r (D.F.) and s u b a l p i n e f i r ( A . F . ) ; (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s am are n o t d a t a p o i n t s . ) , o fi-BETVEEN SPECIES (RADIAL) LI-4RXX2=.9397 L 4 RXX2=.9747 W.S. RXX2=.89«8 D.F. RXX2=.728G A.F. RXX2=.9S17 L . P . 1 - 4 . L .P .#4 . V.S.. D.F.. fl.F. go lu' o u i ' o o " 0.0 I LEGEND: • Lodgepole ptne 1-4 x .). Lodgepole pine 4 0 . . . . . . . -White spruce * Douglas'-fir Subolplhe fir R#*2 = R* 8.0 12.0 MOISTURE CONTENT 16.0 (J) 20.0 24.0 CO CO LUo. Lu' I— LU S o BETWEEN SPECIES ' (TANGENTIAL) L!-4RXX2=.947< : L 4 RXX2=.9788 W.S RXX2=.9085 D.F. RXX2=.7323 A.F. RXX2=.9607 L . P . 1 - 4 . L . P . * 4 . V.S.. D . F . . fl.F. CO 1 I 1 1— 0.0 4 .0 8.0 12.0 _ 16.0 MOISTURE CONTENT (J) 2 0 . 0 24.0 F i g 7. Graph showing t h e r e l a t i o n s h i p between po w e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e No. 1 ( L I ) , l o d g e p o l e p i n e No. 2 (L 2 ) , l o d g e p o l e p i n e No. 3 (L 3 ) , l o d g e -p o l e p i n e No. 4 (L 4) and l o d g e p o l e p i n e c o m p r e s s i o n wood (LRW). (Symbols on l i n e s a r e not d a t a p o i n t s . ) BETWEEN L.P.«1. *2. #3. «4. L.R.V. (RADIAL)' L I RXX2=.988S L 2 RXX2=.9789 L 3 RXX2=.9693 L 4 RXX2=.9747 LRWRXX2=.9106 LEGEND: 6 Lodgepole pine I s...... - Lodgepole pine 2 £ Lodgepole pine 3 *• Lodgepole pi'ne 4-I Lodgepole pine reaction wood. 0.0 A. a — i 8.0 MOISTURE 12.0 CONTENT i — .6.0 20.0 ~1 24.0 tn. co cn tn. CM cn _ i—t s-UJa. C _ O J LY. UJ t— txJ _ a ^ _| o in BETWEEN L.P.#1. #2. #3. #4. L.R.V. (TANGENTIAL) L I RXX2=.9867 L 2 RXX2=.9824 L 3 RXX2=.9730 L 4 RXX2=.9788 LRW RXX2=.9273 0.0 - I — 4.0 8.0 12.0 15.0 MOISTURE CONTENT it) 20.0 24. oo F i g 8. Graph showing t h e r e l a t i o n s h i p between p o w e r - l o s s meter reading;, and m o i s t u r e c o n t e n t s q u a r e d ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e No. 4 (L 4), l o d g e p o l e p i n e p o o l e d ( L l - 4 ) , w h i t e s p r u c e (W.S.)» D o u g l a s - f i r (D.F.) and s u b a l p i n e f i r ( A . F . ) . (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e not d a t a p o i n t s . ) o i n . ra o in in L.P.C1-4). L.P.«4. V.S.. D.F.. fl.F. (RRDIRL) Lf-4 RXX2=.9373 L 4 RXX2=.9705 W.S. RX*2=.8942 D.F. RKX2=.7282 A.F. RX*2=.9507 LEGEND: *> Lodgepole pine 1-4 x Lodgepole pine 4 ° White spruce *S Douglas-fir o Subalpine fir 10 15 20 o t 0.0 -1 1 1 1 £0.0 160.0 240.0 320.0 MOISTURE CONTENT SQUARED ' 400.0 MC(%) 1 430.0 o KH a i n . CO CD g o . L U o . Ol UJ I— UJ o o in a o L.P.U-4) .' L.P. #4. V.S.. D.F.. fl.F. (TflNGENTIf Ll-4 L4 W.S. D.F. A.F. 0.0 10 15 20 ~ i — 1 1 ' - i 1 : I 80.0 1S0.0 240.0 320.0 400.0 MOIJTURE CONTENT SQUARED • MC(% 430.1 co 1 0 F i g 9. Graph showing the r e g r e s s i o n o f l o d g e p o l e p i n e t r e e power-loss meter r e a d i n g s on m o i s t u r e c o n t e n t s q u a r e d (oven^-dry b a s i s ) . These two v a r i a b l e s e x h i b i t q u a d r a t i c r e l a t i o n s h i p s . (Symbols on r e g r e s s i o n l i n e s s e r v e t o d i s t i n g u i s h between l i n e s and a r e n o t d a t a p o i n t s . ) LODGEPOLE PINE #1. #2. #3. #4 (RRDIRL) LI RXX2=.9798 L2 RKX2=.9758 L3 RXX2=.9693 L4 RXX2=.9705 i n . r n a . cn o i n . c v CO CO _ . So U - l o . LEGEND: ^ o Lodgepole pine J _ t— s Lodgepole pine 2 W Q fi Lodgepole pine 3 i n . X Lodgepole pine 4 RXX2 = R2 a a . in 0.0 7 10 f5 20 1 1 " - i ! — 1 — I 1 80.0 160.0 240.0 320.0 400.0 MOISTURE CONTENT SQURRED MC (%) °. | o 480.0 0.0 LODGEPOLE PINE #1. #2. #3. #4 (TRNGENTIRU 7 10 [5 20 _ I | • | I —1 80.0 160.0 240.0 320.0 400.0 MOISTURE CONTENT SQURRED '" MC (%) 430.0 _ o F i g 10. Graph showing the r e l a t i o n s h i p between p o w e r - l o s s meter r e a d i n g s and m o i s t u r e c o n t e n t s q u a r e d ( o v e n - d r y b a s i s ) o f l o d g e p o l e p i n e c o m p r e s s i o n wood {LRW) and r e g u l a r woods (L 1-4). (Symbols on r e g r e s s i o n l i n e s s e r v e to. d i s t i n g u i s h between l i n e s and a r e not da t a p o i n t s . ) L. P. REACTION VOOD. LODGEPOLE P. 1-4 POOLED (RADIAL) Ll -4 LRW C • • • LEGEND: , Lodgepole pine 1-4 mLodgepole pine " reaction wood 1.0 1.5 20 MC(%) 0.0 60.0 150.0 240.0 320.0 MOISTURE CONTENT SQUARED . 400.0 480.0 9-1 in. a - 4 in . CO CD go L U o . C£ L U I— L U tn. a o. a in" L. P. REACTION VOOD. LODGEPOLE P. 1-4 POOLED (TANGENTIAL) L l -4 RXX2=.9262 LRW RXX2=.944S 1.0 15 1 ! , , , 0.0 80.0 160.0 243.0 320.0 .MOISTURE CONTENT SQUARED 20__ 4C0.0 430 92 Appendix I . Characteristics of sample tree stems showing t o t a l stem length, diameter and segments according to height l e v e l (measured i n meters from stem base). Stem Length, Diameter, Height Level, m m cm. tease) 1 2' 3 4 5 Lodgepole pine No. 1 12.45 36.9x 36.3 0.70 4.67 7.42 10.05 — Lodgepole pine No. 2 16.47 35-6x 36.3 0.84 4.05 7.71 9.85 14.69 Lodgepole pine No. 3 14.84 33.1 x 34-4 1.15 5.32 7.56 10.00 13.77 Lodgepole pine No. 4 16.12 35.6x 35-6 1.45 5.16 7.25 10.16 13.34 Lodgepole pine HW 31.8z 36.9 0.95 — — — — White spruce 13.47 38.2z 38.2 0.89 4.84 7.06 9.75 12.03 Douglas-f i r 14.74 38.2x 39.5 1.06 4.9? 7.55 10.14 13.11 Subalpine f i r 14.95 33.1x 32.8 1.21 5.04 7.40 10.08 13.24 Appendix II. Growth zone numbora in the center of each apecimcn orosa oection. Radial series No. 1 rcprenenta corewood, No. 2 to 4 represent heartwood and No. 5 represents sapwood wood zones. Radial s c r i e s No. growth zone Sample Tree: Height Level 1 2 3 4 . 5 Lodgooole pine 1 8 27 45 75 90+ No. 1 12 30 51 70 90* 2 7 30 52 — 69 10 25 44 — 72 3 9 28 48 — 65 7 24 44 61 4 13 27 52 7 18 33 — 64 Lodgepole pine l 11 24 48 70 100+ No. 2 9. 30 56 — 95+ 2 13 25 43 _ 7 0 , 15 46 — — 80 + 3 9 23 40 — 65 8 37 — — 74 4 7 18 33 — — 65 8 27 ——. 60 5 12 — - — 48 13 — — — 45 Lodgepole pine 1 8 28 51 73 100+ No. 3 • 11 45 68 — — 100+ 2 7 25 44 74 9 36 — 80 3 5 20 33 — 62 9 31 . __. — 67 4 11 36 — 62 7 24 — 50 5 13 35 — • 43 15 — —,... 37 Lodgepole pine 1 9 23 45 80 No. 4 7 21 34 54 85 2 8 26 47 — 74 10 22 38 — 79 3 8 25 44 — 80 13 35 — — — 76 4 . 9 35 — 67 15 30 — 70 5 7 27 51 5 — — 60 Lodgepole pine 1 5 16 27 40 68 reactionwood 6 25 — — 55 (oontinue next page) 94 Appendix II.(continued.) Radial series Sample trees Height levels White s p r u c e Douglas-fir Subalpine f i r 1 8 21 31 43 55 8 18 28 39 54 2 6 16 26 37 50 10 18 31 . — 53 3 6 14 27 — 46 6 15 29 — 44 4 4 12 24 — 41 6 1 4 25 — 45 5 10 22 — — 41 9 22 — 43 1 10 22 36 55 74 9 24 43 68 2 12 24 45 — 65 10 27 47 — 63 3 10 29 — 54 11 35 — 55 4 8 24 38 — 49 8 33 — 46 5 I'- 23 — — 38 ll 31 — — 44 1 16 38 66 9 0 + 14 32 63 — 1 0 0 + 2 16 48 — - — 80 13 38 64 . 88 3 17 45 — — 72 19 44 — — 74 4 14 39 — • — 55 15 41 — — - 60 5 13 — — — 43 14 — — 45 95 Appendix III. C i r c u i t r y o f the p o w e r - l o s s m o i s t u r e m e t e r , ( M o i s t u r e R e g i s t e r ) . Where M i s t h e m e t e r , V i s a vacuum tube and X is t h e s a m p l i n g e l e c t r o d e s . Adopted f r o m Uyemura (88). \ 9.6. Appendix IV. Resistance moisture meter (Delmhorst RC—IB) measure-ments (MT) on wood samples from trees of the study compared to oven-dry (OD) calculations; including nominal moisture l e v e l (N MC), at stem heights (St.) and for two r a d i a l r e p l i c a t i o n s (1-4 heartwood, 5 sapwood). Observations are 16 f o r each reading at 19 and 12^ nominal moisture l e v e l , and 8 f o r each reading at "green" condition. Lodgepole pine 1 Ht. N'MC Repl. Moisture Content Measurements OD MT OD MT OD MT OD MT OD MT G 19 12 G 19 12 G 19 12 G 19 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 33.0 24.7 31.8 23.6 20.7 16.2 21.1 17.0 13.6 10.7 13.8 l i . i 32^ 8 23.6 31.8 23.3 20.5 16.0 20.6 16.1 13.5 10.6 13.5 10.7 32.3 23.8 32.2 24.4 21.4 17.0 21.2 16.8 13.9 10.8 13.5 10.7 29.3 22.6 27.4 21.1 20.9 16.5 20.8 16.4 13.6 10.7 13.2 10.6 31.6 22.3 30.9 22.7 20.5 16.2 20.8 16.5 13.6 10.6 13.5 10.7 29.7 21.3 30.2 22.0 19.8 15.7 20.4 15.8 13.3 10.4 13.5 10.7 31.2 24.0 30.5 23.1 20.6 16.6 L'19.8. 16.2 13.2 10.4 13.1 10.4 29.0 22.5 27.5 20.9 20.9 16.5 20.8 16.7 13.2 10.4 13.6 10.6 29.4 21.5 30.5 22.1 20.2 15.9 20.3 15.8 13.3 10.2 13.4 10.4 30.2 22.0 28.3 21.0 20.4 15-6 19.7 15.4 13.6 10.3 13.0 10.1 30.8 23.2 29.6 21.8 20.7 16.2 20.3 16.2 13.2 10.4 13.5 10.7 28.6 21.7 30 28 19 19 13 13 20.1 15.8 . • ••• • • • • • '13.1 10.2 . 0 21 20 15 15 10 10 8 102.3 35.2 7 84.5 31.6 1 20.7 16.6 6 20.5 l6.5 1 13.7 10.8 1 13.7 10.7 95-9 34.1 67.6 29.5 20.9 15.9 20.7 15-9 13.8 11.2 13.6 10.9 86.7 32.5 79.1 31.2 21.2 16.8 20.8 16.5 13.8 11.0 13.7 11.1 70.7 29.5 68.0 31.5 20.9 I6.4 20.9 16.7 13.6 10.9 13.5 11.3 (Continue next page) 97 Appendix '.  IV. Continued. Lodgepole pine 2 Ht. N HC Repl, Moisture content measurements OD MT OD MT OD OD OD G 19 12 G 19 12 G 19 12 G 19 12 G 19 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 62.5 32.4 46.7 29.5 20.0 16.1 20.3 16.5 13.8 10.8 13.8 10.9 42.2 30.5 33.3 25.5 20.4 15.8 20.6 16.4 13.2 10.5 14.0 11.0 35.1 24.6 31.6 24.1 20.6 16.5 21.1 17.0 13.5 10.7 13.6 10.8 36.1 26.0 30.3 23.7 21.2 17.3 20.6 16.2 13.7 10.6 13.9 10.8 35.4 24.5 29.4 22.4 20.1 16.0 20.5 16.2 13.5 10.4 13.2 10.3 44.7 29.5 37.7 27.4 19.7 15.8 20.2 16.2 13.5 10.8 13.7 10.7 30.9 24.6 32.8 24.8 19.2 15.0 20.4 16.0 12.8 10.0 13.9 10.8 32.0 23.6 29.3 23.4 20.3 15.9 20.7 I6 . 4 13.1 10.2 13.3 10.3 28.1 22.4 29.5 23.0 20.8 I6.4 20.6 15.8 13.5 10.4 13.9 10.5 34.1 26.0 29 31.8 25.3 19.6 15.4 :i9.6 15.7 13.6 10.6 13.5 10.5. 27.7 21.5 20.3 15.7 14.0 10.7 28.9 22.8 20.0 16.0 13.3 10.2 28.4 22.7 • ••• •••• 19.8 15.6 13.3 10.3 2 24.2 111.8. 36.7 91.3 35.5 20.1 15.4 20.4 16.O 14.0 11.5 13.8 l l . l 79.6 33.6 80.8 30.8 20.1 15.6 20.2 16.0 13.5 11.2 13.8 11.4 114.3 32.4 97.7 30.8 20.1 16.5 20.1 16.6 13.2 11.6 13.4 11.8 64.6 32.1 67.8 31.8 20.6 16.6 20.5 16.2 13.8 11.7 13.5 11.1 125.4.39.5 97.4 33.4 20.3 16.2 20.5 16.3 13.4 11.8 13.3 11.7 (Continue next page) 98 Aouen&ix IV. Continued. Lodgepole pine 3 Ht. N MC Repl. Moisture content measurements OB MT OD MT OD OD T OD G 1 40.6 27.8 36.7 26.7 35.2 26.4 2 45.9 28.1 40.3 27.5 33.4 24.7 19 1 21.5 17.1 21.2 16.8 21.2 16.9 2 20.5 15.8 20.4 15.7 20.0 15.5 12 1 13.9 11.0 13.7 10.9 13.6 10.8 2 13.6 10.9 13.4 10.8 13.2 10.5 G 1 35-4 25.9 32.6 24.4 28.5 21.5 2 45.8 27.9 31.3 22.5 • • • • • » • • 19 1 20.6 16.1 20.0 15.4 20.3 15.8 2 20.4 15.7 20.2 15.1 • • » • • • • • 12 1 13.2 10.5 13.5 10.5 13.6 10.4 2 13.7 10.7 13.6 10.3 • • • • • • • • G 1 31.4 23.3 28.2 21.3 27.4 20.9 2 1 48.3 32.7 35.2 25.7 • • • • • • • • 19 1 21.3 16.8 21.2 16.6 21.2 16.7 2 21.4 16.7 20.7 16.0 • * • • • • • • 12 1 14.1 10.7 13.8 10.5 13.7 10.4 13.9 10.7 13.7 IO.4 • • • • • # • • • G 1 34.7 25.O 32.4 24.0 • # • • • • • » 2 32.9 24.5 32.1 24.1 • • • • • • • • 19 1 21.0 I6.5 20.3 15.5 • • • • • • • • 2 20.9 I6.5 20.4 15.6 • • • • • • • * 12 1 13.9 10.5 13.7 10.4 • • * -* • • • • 2 13.7 10.4 13.5 10.3 • • • • • • • • G 1 30.8 22.0 29.3 21.8 • • • • • • • • 2 30.1 22.1 • • • • • • • • • • • • • • • • 19 1 21.4 16.6 20.0 15.4 • • • • • • • • 2 20.4 16.0 • • • • • • • • r • • « * • •mm 12 1 14.1 10.6 13.2 10.1 • • • • m • m m 2 13.9 10.7 • • • • • * • • • • • • m • • • 34 2 23 104.0 35.8 136.6 39.2 21.0 17.0 20.3 16.2 13.7 11.6 13.7 11.7 102.4 34.5 134.6 37.3 20.3 15.7 20.1 15.6 13.7 10.9 13.7 11.2 72.4 29.1 120.1 39.3 20.8 16.5 20.5 16.2 13.7 11.0 13.9 11.3 136.4 40.2 96.8 34.5 20.5 15.7 20.7 16.0 13.8 l l . l 13.9 10.9 110.1 35.0 "52.8 30.8 20.3 15.9 21.1 16.2 13.5 11.1 13.3 10.7 (Continue next page) 99 Appendix IV.. Continued". Lodgepole pine 4 Ht. N MC Repl. (2) Moisture content measurements OD MT OD MT OD MT OD OD 4 G 19 12 G 19 12 G 19 12 G 19 12 G 19 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 36.3 27.1 65-5 37.2 20.4 17.4 20.7 17.7 13.6 11.2 13.2 10.9 30.4 24.5 32.7 25.3 20.1 16.6 20.8 16.9 13.0 10.6 13.5 10.8 29.4 23.4 31.7 24.3 20.6 17.3 20.3 16.6 13.6 11.0 13.4 10.8 29.0 24.3 28.6 23.0 20.8 17.0 20.9 16.9 13.6 11.1 13.8 11.2 31.7 25.5 31.2 26.1 20.6 17.7 20.3 16.5 13.8 11.1 13.1 10.8 33.1 25.3 66.4 36.1 19.7 17.0 20.3 17.8 12.9 10.9 12.9 10.8 29.3 23.8 31.3 24.5 19.5 16.2 20.1 16.5 12.7 10.4 13.1 10.6 28.1 22.8 29.6 23.2 20.3 16.8 19.6 15.7 13.6 10.7 12.9 10.3 29.3 23.2 27.6 22.7 20.4 16.5 19.6 15.9 13.3 10.7 12.9 10.5 31.1 24.9 19.9 16.1 ll'.l 10.7 31.2 24.5 28.1 23.0 19.3 16.6 19.3 16.4 12.7 10.8 12.6 10.2 28.0 22.9 29.8 23.2 19.1 VJ.9 19.6 16.0 12.6 10.3 12.9 10.4 2.7.9 21.8 19. 27 12. 23.1 114.7 37.4 119.0 36.5 20.9 16.8 20.5 16.7 13.9 11.4 13.5 11.3 119.7 36.2 133.6 39.3 20.9 16.6 20.5 16.3 13.9 11.1 13.6 11.5 111.5 35.1 141.5 37.6 :.20.5 16.9 20.4 16.3 13.7 11.5 13.5 11.5 133.7 36.6 112.8 35.7 20.9 16.8 19.6 16.1 13.9 11.8 13.8 11.8 130.7 40.0 150.2 42.0 20.8 17.2 20.5 16.6 14.0 12.0 13.7 12.0 (Continue next page) 100 Appendix IV. Continued. Lodgepole pine compression wood Ht. Moisture content mea 3ureraents N MO (*)• . 1 2 3 4 5 OD ' ?!T " OD OD f.;T ' • OD MT OD Compression wood 1 G 27.9 21.8 26.5 19.8 26.5 20.8 26.5 19.5 28.0 22.4 19 20.7 I6 ; i 20.1 16.4 20.5 16.1 20.5 I5.9 20.3 16.0 12 13.6 10.5 13.3 10.4 14.0 10.9 Opposite wood 13.9 10.8 14.5 11.7 1 G 28.4 22.4 26.8 20.5 »••• •••• 70.3 29.9 19 20.5 16.2 19-9 15.5 • ••• •••• 14.5 11.7 12 13.9 11.3 13.5 11.2 • ••• • • • • 13.6 10.9 101 Appendix IV. Continued. White snruce Ht. N MC Rcol. Moisture content measurements OD MT OD KT OD MT OD. OD G 19 12 G 19 12 G 19 G 19 12 G 19 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 28.9 20.6 28.0 19.8 21.0 15.3 21.2 15.9 14.0 10.0 14.0 10.0 34.7 24.3 32.5 22.9 20.7 14-9 20.5 14.7 13.8 10.1 14.0 10.2 32.8 23.7 34.0 23.9 20.0 14.9 21.0 15.5 14.1 10.3 14.0 10.1 29.5 21.4 32.7 22.7 21.5 15.5 21.0 15.1 14.1 10.3 14.2 10.4 30.2 21.4 29.2 21.5 20.7 14.8 20.9 15.1 14.0 10.3 14.0 10.1 28.2 19.8 28.6 20.3 20.4 14.8 20.6 15.1 13.8 9.8 13.8 9.8 33.2 23.5 32.2 23.0 20.6 14.5 20.7 14.4 13.8 10.0 13.8 9.9 31.8 23.5 34.1 24.O 20.4 14.7 21.1 15.2 13.9 10.0 13.9 10.0 30.2 22.4 33.2 23.8 21.1 15.O 21.5 15.3 13.9 10.1 13.8 10.0 30.8 21.5 30.9 22.3 20.4 14.7 20.7 14.7 13.8 10.1 13.3 10.0 27.3 19.6 28.7 20.0 20.0 14.6 20.7 14.9 13.8 9.7 13.9 9.8 32.7 22.8 30.9 21.8 20.6 14.5 20.5 14.5 13.7 9.9 13.7 10.0 31.0 22.6 32.4 23.4 20.2 14.6 21.1 15.4 13.8 10.0 13.8 10.0 30.3 22.3 32.3 23.0 20.8 15.0 21.0 15.2 13.8 10.0 13.7 10.0 26.8 19 28.0 19 20.8 14 20.6 15 14.3 9 13.8 9 37.7 24 .5 2 94.2 32.5 7 73.5 30.2 9 20.6 15.5 0 20.3 15.2 9 13.7 10.7 8 14.0 10.9 2 103.7 31.9 57.5 28.4 20.6 15.2 20.7 15.1 13.6 10.8 .13.8 10.7 57.0 27.9 73.1 29.2 20.3 15.3 21.2 15.7 13.9 10.7 13.9 10.9 35-5 25.O 83.9 32.4 20.5 15.6 21.0 16.0 13.8 10.9 13.7 10.9 67.6 28.3 91.4 32.8 20.7 15.6 20.8 15.8 14.1 11.2 13.8 11.1 (Continue next page) 102 Appendix IV. Continued. Douglas-fir •Ht. K MC Repl. M o i s t u r e c o n t e n t measurements (0 OD MT OD MT _> OD MT OD MT j OD MT G 1 27.8 21.0 26.4 19-5 27.5 19.9 26.6 19.7 61.4 33.5 2 32.1 24.0 30 . 8 23.1 29.8 22.4 • • • • • • * • 38.0 28.6 19 1 20.9 17.1 20.7 16.9 20.2 I6.5 19.9 15.9 21.6 17.1 2 21.3 17.0 20.4 1 6 . 5 20.3 16.1 • • • • • • • • 21.2 17.0 12 1 13.4 11.4 13.2 11.5 13.1 11.1 13.0 10.9 13.8 11.8 2 13.6 11.5 13.0 10.9 13.1 10.8 • • • • • • • • 13.9 11.5 G 1 29.9 21.8 30.2 21.8 29.0 20.9 • • • • • * • • 64.I 36.8 2 28.2 20.3 30.0 21..7 29.4 20e 5 • • • • • * • • 60.0 32.8 1? 1 21.1 16 . 4 20 . 9 16.6 20.7 16.2 • » • • • • • • 21.3 17.5 2 21.6 17.0 20.5 15.8 20.1 15.2 • * * • • • • • 20.7 16.6 12 1 13.6 11.5 13.1 10.9 13.2 10.6 • • • • * • • • 13.5 11.4 2 13.4 11.4 13.2 11.0 13.0 10.8 • • • • • • * • 13.4 11.3 G 1 29-7 21.4 23.0 20 .5 • • * • • • • * • • • * . « » • • 42.5 31.7 2 31.4 23.0 30.7 21.9 • • • • • • • • • » • • • • • • 64.8 34.2 19 1 20.5 16 . 5 20.0 15.5 • • • • • • • • • • * • • • • • 20.4 16.6 2 20.4 16.0 20.3 16.3 • • • • • • • • • • • • • • * • 20.6 17.1 12 1 13.5 11.3 13.2 11 .1 • • • • • • • • • • • • • * • • 13.5 11.0 2 13.5 11.0 13.2 10.7 • • • • • • • • • • • • • • • • 13.7 11.2 C- 1 29.3 21.0 30.7 22.2 30.5 21.4 • • • • • • • • 71.4 37.5 2 29.6 20.7 27.1 19.8 • • • • • • • • « • • • • • • • 58.4 34.0 19 1 20.7 16.6 20.4 16 . 4 20.3 I.5.9 • • • • • • • • 20.8 16.7 2 20.6 16.3 20.3 15.8 • * • • • • • • # • • • • • • • 19.9 15.7 12 1 14.0 11.3 13.7 11.1 13.7 10.6 • 0 • • • • • * 14.0 11.4 2 13.6 10.9 13.5 10.6 ... •- • • • • • • • * • • • * 13.8 11.1 G 1 29.9 21.6 29.8 21.7 .... • • • • • • • • 80.5 39.8 2 30.1 22.5 29.0 21.5 .... • • • * • * • • • • • • 81.8 40.5 19 1 20.0 15.9 20.1 15.6 .... • • • • • • • • • • • • 20.4 16.0 2 20.6 16.0 19.7 15.5 .... • * • • • * • • • • • • 21.0 16.6 12 1 13.4 10.9 13.3 10.7 .... • • * • • • • • • • • • 13.7 11.2 2 13.6 11.1 13.1 10.5 .... • • • • • • • • • • • • 13.4 11.1 (Continue nezt page) 103 Appendix IV. Continued. Subalpine f i r Ht. N.MC Re_l. Moisture content measurements 1 2 3 4 5 OD MT OD WT OD MT OD MT OD MT G 19 12 G 19 G 19 12 G 19 12 G 19 12 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 45.3 27.5 55-9 29.6 20.7 16.1 20.8 16.8 13.4 10.8 12.8 10.8 38.2 25.8 35.3 23.6 20.5 15.9 20.3 15.8 13.2 10.2 13.0 9.9 48.2 28.3 48.3 27.8 19.9 16.0 20.0 16.2 13.3 10.9 13.1 10.7 36.2 26.1 39.2 23.5 20.0 16.2 20.4 16.5 13.7 10.6 13.5 10.3 35.7 28.4 37.1 29.1 20.5 I6.4 20.6 I6.5 13.4 11.0 13.5 11.0 28.1 21.3 29.4 20.9 20.0 15.3 20.2 15.3 13.0 10.2 13.3 10.2 37.5 34.4 26.4 24.3 20.2 15.3 20.3 15.3 13.2 10.1 13.3 10.2 27.4 20.2 35.1- 24.7 19.6 15.3 19.5 15.4 13.2 10.2 13.0 10.2 36.4 28.0 19.6 15.6 13.4 10.5 23.1 20 29.5 21 20.0 15 20.2 15 13.1 10 13.4 10 29.7 21 34.3 24.5 65.4 30.8 20.5 15.7 20.3 15.7 13.4 10.6 13.6 10.6 60.4 29.6 48.7 29.1 20.4 16.2 20.2 16.1 13.6 10.4 13.5 10.5 40.1 26.4 43.8 27.1 19.8 15.5 19.6 14.8 13.3 10.7 13.1 10.5 30.6 21.5 34.6 23.3 19-4 15.1 20.0 15.3 13.3 10.3 13.4 10.4 65.8 30.8 49.8 30.5 20.4 16.2 20.6 I6.5 13.3 10.6 13.4 10.9 (End) Appendix V. Power-loss moisture meter (Moisture R e g i s t e r , Model L) measurements (MT-rad1a1, MT-t a n g e n t i a l ) on wood samples from trees of the study compared to oven-dry (OD) c a l c u l a t i o n s ; Including nominal moisture l e v e l s (N MC) at stem heights (Ht.) and f o r two r a d i a l r e p l i c a t i o n s (1-4 heartwood, 5 sapwood). Observations are 2 f o r each reading. ' Lodgepole pine 1 .,- „ , Moisture content measurements Ht. N MC Repl. , 5 , {%) -- : 1 A J :  OD MT-R MT-T OD ' MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T 1 19 1 20.7 33.2 34.2 20.5 30.9 31.5 2 21.1 33.8 34.9 20.8 31.4 31.9 12 1 13.6 21.9 22.2 13.5 20.8 21.3 2 13.8 21.5 22.5 13.6 21.3 21.5 6 1 7.7 17.8 18.0 7.9 17.5 17.8 2 7.8 17.6 18.2 8.0 17.5 17.9 G 1 0.377 0.378 2 0.371 0.386 2 1 9 1 20.5 32.0 32.8 19.8 29.7 30.6 2 20.6 32.4 33.1 20.4 30.5 31.6 1 2 1 13.5 21.6 21.8 13.3 20.9 21.0 2 13,5 21.3 21.4 13.5 21.1 21.1 6 1 7.6 17.6 17.8 7.8 18.0 18.5 2 7.7 18.0 18.3 7.6 17.7 18.2 G 1 0.380 0.373 2 . 0.375 0.403 3 1 9 1 21.4 34.4 3 6 . 0 20.6 30.6 31.3 2 21.2 33.6 3 4 . 0 19.8 31.5 32.6 1 2 1 13.9 22.3 22.5 13.2 20.9 21.4 2 13.5 21.5 22.1 13.1 21.1 22.5 6 1 7.9 17.6 17.8 7.6 17.7 18.2 2 7.8 17.9 18.1 7.5 17.8 18.4 G 1 0.368 0.375 2 0.372 0.412 4 1 9 1 2 0 . 9 32.0 32.6 20.7 30.3 30.7 2 20.8 33.4 34.5 20.5 30.5 31.4 1 2 1 13.6 20.5 20.8 13.2 20.9 21.9 2 13.2 21.3 21.9 13.6 22.1 22,6 6 1 7.9 17.3 17.5 "7,7 18,1 18,5 2 7.7 17.9 1 8 . 0 7.6 18.1 18 . 1 G 1 0.354 0.387 2 0.387 0.395 20.2 30.2 31.2 19.6 29.9 29.6 20.7 33.5 34.0 20.3 30.8 31.6 19.9 30.0 31.0 20.5 33.2 33.8 13.3 20.9 21.2 13.2 20.5 21.0 13.7 22.4 22.6 13.4 20.9 21.2 13.3 20.6 21.7 13.7 22.6 23.0 7.6 17.4 17.5 7.6 17.5 17.9 7.8 18.4 18.5 7.8 17.7 18.1 7.7 17.9 18.4 7.6 18.2 18.5 0.382 0.396 0.363 0.380 0.388 0.369 20.4 31.8 32.9 20.9 34.2 34.7 19.7 31.2 31.9 20.7 33.8 34.3 13.6 22.4 22.7 13.8 23.0 22.8 13.0 21.7 22.1 13.6 22.0 22.5 7.8 17.8 18.0 7.8 17.8 18.3 8.0 18.3 18.5 7.7 18.2 18.5 0.397 .... 0.370 0.423 0.373 20.7 32.4 33.8 21.2 33.6 33.6 20.3 32.0 33.3 20.8 33:4 33.6 13.2 21 .1 22.5 13.8 21.9 22.2 13.5 21.5 22.1 .... 13.7 21.7 22.0 7.7 18.3 18.6 7.8 18.6 18.5 7.7 18.2 18.5 7.9 18.1 18.6 0.397 .... 0.377 0.404 .... 0.374 20.1 30.9 32.1 20.9 32.9 33.9 20.9 33.9 35.5 13.1 21 .0 22.2 13.6 21.3 22.0 13.5 21.9 22.0 7.5 18.1 18.8 7.9 17.7 18.1 7.9 18.3 18.5 0.390 .... • 0.358 0.367 (Continue next page) Appendix V. Continued". Lodgepole pine""? Moisture content measurements Ht. N M C R e p l . j 2 • " 3 • 4 19 12 W OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD HT-R MT-T " 1 20.0 33.6 34.2 19.7 31.6 32.4 19.8 30.2 32.2 19.4 29.6 30.1 20.131.6 32.8 2 20.4 33.4 34.9 20.2 32.5 34.0 19.6 30.7 31.7 20.4 33.7 34.1 1 13.8 22:5 23.1 13.5 21.8 22.6 13.6 21.9 22.3 13.4 21.9 21,7 14.0 22.3 22.3 2 13.8 22.5 22.9 13.7 22.2 22.7 13.5 22.1 22.3 13.8 23.4 23.6 1 7.8 18.118.3 7.5 18.3 18.6 7.5 17.7 18.3 7.7 18.0 18.5 7.7 17.5 17.6 2 7.7 17.6 17.9 7.6 18.4 18.5 7.6 18.0 18.5 7.8 18.4 18.7 1 0.396 0.395 0.384 0.413 0.353 2 0.376 0.389 0.403 .... 0.365 19 1 20.4 32.3 32.4 19.2 29.9 31.0 20.3 29.3 30.1 20.131.9 33.2 2 20.6 32.0 33,1 20.4 31.2 31.4 20.2 32.7 34.2 12 1 13.2 21.4 22.0 12.8 21.5 22.1 14.0 21.121.6 13.5 22.7 23.2 2 14.0 21.8 22.2 13.9 21.9 21.9 13.8 22.7 23.2 6 1 7.6 17.8 18.1 7.7 17.8 18.2 7.7 17.5 17.9 7.5 18.0 18.5 2 7.7 18.1 18.2 7.6 18.1 18.3 7.6 18.5 18.8 1 0.366 0.404 0.376 .... 0.363 2 0.369 0.368 .... ..... 0,372 19 1 20.6 31.6 33.2 20.3 30.2 31.1 20.0 30.7 32.2 20.132.7 33.8 2 21.1 32.0 33.2 20.7 31.8 33.0 20.1 33.7 34.2 12 1 13.5 22.0 22.8 13.121.4 22.0 13.3 21.8 22.2 13.2 22.7 22.3 2 13.6 22.3 23.5 13.3 21.8 22.5 13.4 23.5 23.5 6 1 7.8 18.5 18.5 7.7 18.1 18.6 7.8 18.2 18.5 7.3 18.2 18.2 2 7.8 18.4 19.0 7.8 18.4 19.0 7.7 18.5 18.9 1 0.384 0.369 0.418 .... 0.360 2 0.386 0.396 •••• ° - 3 7 5 19 1 21.2 36.5 37.0 20.8 31.5 32.7 19.8 30.3 31.4 ,. 20.6 32.2 32.4 2 20.6 33.8 33.8 20.6 30.7 32.2 20.5 31.8 32.3 12 1 13.7 23.1 23.5 13.5 21 .8 21.5 13.3 21.9 22.9 .• 13.8 22.4 22.7 2 19.9 23.8 23.8 13.9 22.2 23.0 13.5 23.0 23.0 6 1 7.9 19.3 19.6 7.7 18.0 18.1 7.8 18.1 18.2 7.8 18.0 17.8 2 8.0 18.9 18.9 8.018.2.8.5 8,018.418.4 1 0.418 0.371 0.381 0.358 2 0.407 -0.371 .... 0.367 19 1 20.1 33.5 34.9 .- 20.3 32.5 33.0 2 20.5 32.7 32.6 20-5 33.2 33.5 12 1 13.5 '3.4 22.9 13.4 23.0 23.1 2 13.'2 23^0 2 3 J .'. 13.3 22.8 23.1 7.9 18.5 18.7 1 7.8 18.4 18.7 2 7.9 19.019.2 8.0 18.4 18.9 1 0.386 .... •••• •-• ^ 3 6 4 2 0.405 . •••• •••• ° (Continue next page) Appendix V. Continued. Lodgepole pine 3 Moisture content measurements Ht. N MC Repl. y. ? W OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T 1 19 1 21.5 35.8 36.9 21.2 34.8 36.4 21.2 34,9 35.2 20.7 33.6 33.7 21.0 38.0 38.9 2 20.5 34.9 35.5 20.4 34.4 35.0 20.0 32.8 34.0 20.3 37.5 38.2 12 1 13.9 25.1 25.5 13.7 25.5 25.3 13.6 25.8 26.1 13.4 25.8 26.2 13.7 26.9 27.2 2 "13.6 25.125.0 13.4 24.7 25.1 13.2 24.8 25.1 13.7 25.9 26.0 6 1 7.9 20.120.4 7.7 21.0 20.9 7.6 21.4 21.2 7.6 21.4 21.7 7.8 21.4 21.3 2 7.6 20.0 20.3 7.5 20.0 20.2 7.4 20.3 20.5 7.8 20.0 20.3 G 1 0.441 0.454 0.469 0.479 0.447 2 0.438 0.434 0.442 .... 0.411 2 19 1 ,°0.6 32.2 33.8 20,0 30.4 31.8 20.3 32.5 33.6 20.3 34.0 34.7 . 2 20.4 32.5 34.2 20.2 30.5 32.7 20.133.5 32.8 12 1 13.2 24.7 25.6 13.5 24.4 24.9 13.6 25.4 26.2 13.7 25.7 26.0 2 13.7 25.2 25.6 13.6 25.0 25.1 13.7 25.0 25.3 6 1 7.9 18.7 19.2 7.5 19.8 19.9 7.6 20.5 20.8 7.7 20.5 20.2 2 7.7 19.6 20.0 7.7 20.3 20.3 7.7 19.119.2 G 1 0.426 0.430 0.451 .... 0.436 2 0.399 0.425 .... .... 0.402 3' 19 1 21.3 34.8 36.4 21.2 32.9 34.1 21.2 32.3 32.5 20.8 33.7 34.2 2 21.4 36.3 38.4 20.7 32.9 33.8 20.5 33.2 33.6 12 1 13.9 24.2 24.7 13.8 24.4 24.6 13.7 26.3 26.2 • 13,7 25.0 25.4 2 14.1 25.4 25.3 13.7 25.4 25.9 13.9 24.7 24.8 6 1 7.9 19.2 19.5 7.9 19.6 19.9 7.2 20.6 20.7 7.7 20.7 20.6 2 8.0 20.4 20.6 7.8 20.7 20.7 7.9 19.119.2 G 1 0.404 0.407 0.429 .... 0.412 2 0.417 0.430 .... . .... 0.395 4 19 1 21 .0 34.1 35.0 20.3 32.3 33.3 20.5 35.0 36.0 2 20.9 33.5 34.6 20.4 31.9 33.3 20.7 33.7 34.1 12 1 13.9 24.7 25.4 13.7 25.3 25.7 13.8 25.0 24.9 2 13.7 24.0 23.8 13.5 23 7 24.8 13.9 24.2 24.3 6 1 7.9 19.6 19.7 7.8 20.4 20.4 7.8 19.6 19.6 2 7.7 19.7 19.6 7.7 20.0 20.2 8.0 20.2 20.3 G 1 0.397 0.428 .... .... 0.412 2 0.402 0.417 .... .... 0.384 5 19 1 21.4 36.5 37.2 20.0 32.134.6 20.3 34.4 35.3 2 20.4 32.3 33.1 21.1 36.1 36.4 12 1 14.125.6 25.8 13.2 24.5 24.6 13.5 25.4 25.8 2 13.9 25.0 25.1 13.3 24.5 24.2 6 1 8.1 21.1 20.8 7.6 20.8 21.0 7.8 20.4 20.8 2 8.0 20.4 20.5 7.8 20.0 20.0 G 1 0.426 0.450 .... .... 0.426 2 0.412 0.422 (Continue next page) A p p e n d i x V. Continued. Lodgepole pine 4 Ht. N MC (30 Repl. • Moisture content measurements 1 2 3 4 5 OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T 00 MT-R MT-T OD MT-R MT-T 1 19 1 20.4 38.3 38.5 19.7 34.4 35.7 19.3 33.0 34.0 19.4 33.6 34.0 20.9 36.5 37.0 2 20.7 38.7 39.1 20.3 37.1 38.7 19.3 33.6 34.0 20.5 36.0 36.5 12 1 13.6 25.1 25.6 12.9 24.4 24.5 12.7 24.3 24.2 13.0 24.4 24.7 13.9 25.2 25.9 2 13.2 24.6 24.8 12.9 23.6 23.8 12.6 22.9 23.5 13.5 23.8 24.0 6 1 7.7 19.7 20.3 7.4 19.7 20.2 7.3 20.0 20.0 7.6.20.6 20.6 7.8 20.8 21.2 2 7.5 20.3 20.4 7.2 20.2 20.3 7.1 19.9 20.0 7.7 20.2 20.3 1 0.432 0.428 0.435 0.453 0.405 2 0.428 0.431 0.432 .... 0.378 20 9 36 0 37 1 19 1 20.133.6 35.0 19.5 32.9 34.0 19.132.5 33.5 . 2 20.8 35.3 36.8 20.1 33.7 34.6 19.6 32.7 33.6 20.5 35.3 36.2 12 1 13.0 22.0 22.7 12.7 22.8 23.3 12.6 23.1 23.9 13.9 24.4 24.5 2 13.5 23.1 23.4 13.1 23.0 23.4 12.9 22.6 22.7 13.6 24.0 24.0 6 1 7.5 18.7 19.3 7.3 19.5 19.7 7.2 19.9 20.6 8.0 20.2 20.3 2 7.7 18.7 19.0 7.5 19.0 19.3 7.5 18.4 18.7 7.8 19.0 19.0 1 0.401 0.425 0.443 0.392 2, 0.397 0.419 0.416 .... 0.381 19 1 20.6 36.7 37.2 20.3 34.2 35.3 19.4 32.8 33.2 .... 20.5 35.1 36.2 2 20.3 34.0 36.4 19.6 31.9 33.2 2C.4 35.0 36.1 12 1 13.6 23.5 24.3 13.6 23.6 24,3 12.9 24.3 23.7 13.724.7 24.6 2 13.4 22.6 23.5 12.9 22.8 23.2 . .j. 13.5 23.8 24.1 6 1 7.8 19.5 19.9 8.0 20.5 20.7 7.4 20.3 20.5 7.8 19.7 19.5 2 7.7 18.4 18.8 7.5 18.9 19.2 7.7 18.8 18.9 1 0.426 0.444 0.444 .... 0.399 2 0.396 0.415 .... .... 0.371 19 1 20.8 33.5 34.4 20.4 33.9 34.4 ............ 20.934.634.9 2 20.9 34.0 35.3 19.6 31.5 32.6 \ 19.6 32.133.0 12 1 13.6 24.0 24.4 13.3 24.0 24.3 13.9 25.124.9 2 13.8 23.5 23.4 12.9 22.9 23.5 13.8 24.4 24.4 6 1 8.0 19.4 19.5 7.4 19.2 19.3 7.8 19.2 19.2 2 7.8 18.0 18.2 7.4 17.9 18.3 7.5 18.7 18.7 1 0.420 0.430 0.390 2 0.396 0.410 .... .... 0-385 19 1 20.6 35.8 36.5 19.9'34.4 35.6 ' 20.8 38.8 39.5 2 20.3 38.0 39.6 ?0.5 38.0 37.5 12 1 13.8 24.2 24.6 13.3 24.2 23.9 H.O 25.9 25.8 2 13.1 24.6 25.0 13-7 25.1 25.1 6 1 7.8 19.2 19.2 7.5 19.1 19.0 7.9 9.8 9.3 2 7.7 19.9 20.2 7.8 19.3 19.3 1 0.421 0.422 .... .... 0-398 2 0.457 0.386 .(Continue next page) Appendix Y. Continued. Compress Ionvwood 19 1 12 1 6 1 G Opposite wood 19 1 12 1 6 1 G 20.7 38.6 38.0 13.9 27.8 29.3 8.0 22.6 23.2 0.508 20.5 35.0 35.6 13.6 24.8 25.3 7.7 19.6 19.6 0.444 20.1 38.0 39.3 13.3 25.5 25.9 7.9 25.1 25.0 0.584 19.9 32.7 34.0 13.3 25.5 25.9 7.6 20.8 21.3 0.462 20.5 36.7 37.6 14.0 29.1 29.1 8.2 24.0 24.0 0.540 20.5 36.6 36.9 13.9 29.0 29.7 8.2 24.3 24.3 0.541 21. 14, 20, 13, 4 39.3 39.6 5 29.8 29.7 5 25.1 24.8 0.525 3 33.9 35.0 6 27.5 27.8 ,2 22.5 23.0 0.498 (Contlnuenext page) Appendix V. Continued. White spruce • Moisture content measurements Ht. N MC Repl. - 1 .:. 2 3 4 • 5 {%) OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T OD MT-R MT-T 6 2 G 3 G 4 1 9 1 2 6 1 9 1 2 6 1 9 1 2 6 1 9 1 2 6 1 9 1 2 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 21.0 29.2 29.9 21.2 29.3 30.2 14.0 19.7 20.1 14.0 19.7 19.7 8.0 16.1 16.3 .16.8 16.9 8.1 0.334 0.331 20.7 28.7 29.8 20.5 27.3 28.0 13.8 19.1 19.4 14.0 19.5 19.6 8.0 16.0 16.0 8.0 16.3 16.5 0.309 0.302 20.2 27.4 29.0 21.0 27.5 29.3 14.1 20.0 20.8 14.0 19.4 20.2 8.0 16.4 17.1 8.0 16.2 16.7 0.325 0.311 21.5 32.0 31.9 21.0 31.2 32.0 14.1 20.5 21 .5 14.2 21.2 21.5 8.1 17.3 17.1 8.1 17.0 17.6 0.356 0.355 20.7 29.8 30.5 20.9 29.5 30.6 14.0 21.8 22.8 14.0 20.9 21.4 8.1 17.8 18.0 8.1 17.4 17.5. 0.347 0.341 20.4 25.7 27.7 20.6 26.6 27.9 13.8 19.0 19.6 13.8 18.8 19.6 7.8 16.2 16.2 8.0 15.8 16.0 0.302 0.298 20.6 26.3 28.5 .20.7 26.8 27.5 13.8 19.2 13.8 18.6 8.0 8.1 19.6 18.9 15.8 16.0 16.0 16.4 0.310 0.303 20.4 26.0 26.9 21.1 28.9 28.9 13.9 19.6 20.3 13.9 19.8 20.2 7.9 16.3 16.7 8.0 16.5 16.8 0.317 0.313 21.1 29.2 30.0 21.5 30.9 31 .2 13.9 20.2 21.3 13.8 19.9 20.2 7.9 17.0 17.3 7.9 17.4 17.7 0.333 0.333 20.4 27.8 29.4 20.7 28.1 29.9 13.8 31.0 21.2 13.8 21.0 21.0 8.0 17.0 17.3 8.0 17.3 17.4 0.332 0.333 20.0 24.9 26.7 20.8 27.3 27.3 20.6 31.3 33.2 20.7 25.7 27.4 20.6 25.4 26.9 20.2 29.2 30.5 13.8 19.7 20.8 14.3 "19.8 20.2 13.7 21.0 21.4 13.9 19.2 19.5 13.8 19.7 20.2 14.0 21.6 22.1 7.8 16.0 16.5 8.3 16.5 17.1 7.9 17.5 17.7 8.0 16.1 16.4 7.9 16.3 16.4 8.0 17.2 17.2 0.305 0.329 0.334 0.301 0.310 0.325 20.6 26.5 27.4 20.5 27.6 29.3 20.6 31.5 32.2 20.5 27.0 28.3 .... • • • . • • • • 20.7 30.0 31.2 13.7 18.6 20.0 13.6 19.5 19.9 13.6 21.6 21.2 13.7 20.1 21.1 • • • • .... 13.8 20.9 21.4 7.9 16.2 16.7 7.8 16.6 17.0 7.8 17.4 17.5 7.9 16.6 17.4 .... 8.0 17.1 17.1 0.315 0.327 0.340 0.320 .... 0.328 20.2 25.4 27.1 .. *. .... 20.3 29.1 31.0 21.1 27.3 28.6 • • • • •*« 21.2 31.7 32.0 13.9 20.2 20.7 .... .... • • • • 13.9 21.2 21.6 13.8 20.0 20.0 • • • • 13.9 21.0 21.6 8.0 16.8 17.1 .... •••• .... 8.0 17.4 17.6 7.8 16.7 16.8 • . . • .... .... 8.0 17.4 17.6 0.326 .• * 0.338 0.320 .... 0.335 20.8 28.8 30.0 •••• 20.5 32.2 32.0 21.0 29.4 30.2 • • • • .•«. 21.0 31.3 31.9 13.8 20.2 20.9 • • • • ••• .... 13.8 21.2 22.1 13.7 19.6 20.4 • * • • 13.7 21.2 21.4 8.0 17.5 17.6 . . • • ••• *••• 8.0 18.1 18.0 7.9 16.9 17.0 .... — — 8.0 17.7 18.2 0.;336 0.355 0.334 .... id.341 20.7 31.0 32.4 . . ..... 20.8 32.3 35.0 14.1 22.9 23.0 «••• 13.8 21.8 22.3 ... . • •. 8.2 18.2 18.4 • • • • . • • • . • . . ... .... . • •". 8.1 18.0 18.2 0.364 • • • • .... * 0.350 (Continue next page) Appendix V. Continued. D o u g l a s - f i r Moisture content measurements Ht. N' MC Repl. T —1 3 . 4 5 (*) - p p MT-R Mi-r Ob M.-kMr-T, OD Hl-KHT-T Ob Ml-k MT-T UU m- R M I - l . 19 12 1 20.9 29.0 29.8 20.7 29.129.3 20.2 29.8 30.8 19.9 29.5 29.8 21.6 41.3 43.5 2 21 .3 29.5 30.9 20.4 29.8 30.0 20.3 29.4 29.9 ........ .... 21 .2 35.6 38.3 1 13.4 24.0 23.1 13.2 24.4 25.5 13.1 25.7 25.9 13.0 25.6 26.3 12.8 29.2 29.2 2 13.6 24.0 24.9 13.a 24.5 25.1 13.1 25.9 26.0 13.9 28.7 23.9 1 7.9 21.9 22.2 7.7 22.3 22.5 7.6 23.6 23.6 .7.6 24.7 24.8 8.0 25.8 26.0 2 8.1 21 .1 21 .8. 7.7 22.0 22.3 7.7 23.1 23.4 8.0 24.7 25.7 1 0.442 0.447 0.483 0.507 0.513 2 0.434 0.458 0.478 0.503 1 9 1 21 .1 28.1 28.4 20.9 29.4 30.6 20.7 29.3 30.0 21 .3 35.8 38.4 2 21.6 30.1 31.8 20.5 28.5 28.8 20.1 27.8 28.5 .... 20.7 36.0 35.8 1 2 1 13.6 23.4 23.8 13.1 24.3 24.3 13.2 24.9 25.4 13.5 27.4 26.8 2 13.4 23.1 22.8 13.2 23.0 23.4 13.0 23.7 24.1 13.4 25.3 25.8 1 8.0 20.9 2K2 7.6 21.6 21 .7 7.5 22.4 22.5 7.7 24.0 23.5 •> 7 S ?n.5 20.8 7.8 20.9 21.1 7.7 22.3 22.4 7.9 23.6 23.8 2 .8 20 5 . 21.1 1 0.414 0.430 0.456 2 0.406 0.477 6*425 6.448 .... 0.473 1 9 1 20.5 29.4 20.3 20.0 26.4 27.4 20.4 32.0 33.3 2 20.4 26.4 27.5 20.3 28.8 27.9 , : 20.6 33.9 34.7 12 1 13.5 22.8 23.8 13.2 24.0 23.1 13.5 Z6.2 25.8 2 13.5 23.1 23.5 13.2 24.2 24.2' 13.7 26.7 26.7 6 1 7.8 20.3 20.7 7.7 21 .7 21.7 7.9 22.9 22.9 2 7.a 20.0 20.5 7.7 21 .1 Zl.3 7.7 22.6 22.4 1 0.405 0,432 .... .... 0.455 2 0.403 0.434 °- 4 5 8 1 9 1 20.7 27.5 29.3 20.4 27.9 27.9 20.3 26.6 26.8' 20.8 33.4 24.5 2 20.6 26.8 27.6 20.3 27.2 26.9 19.9 32.4 33.6 1 2 1 14.0 23.7 24.5 13.7 24.2 24.7 13.7 23.7 24.0 14.0 26.7 26.7 2 13.6 23.0 23.4 13.5 23.6 23.8 .... 13.8 25.2 25.1 6 1 7.9 20.9 21 .1 7.8 21.5 22.0 7.8 21 .5 21.7 8.0 22.8 23.1 2 7.8 20.6 21.0 7.7 21.0 21 .5 7.9 22.1 22.8 1 ' 0.425 0.429 0.430 ' 0.448 ' 2 0.423 0.424 .... .... 0.432 1 9 1 20.0 27.7 28.7 20.1 28.6 28.9 20.4 33.5 33.5 2 20.6 28.3 29.7 19.7 27.5 27.0 21.0 33.3 34.1 1 2 1 13.4 24.6 24.9 13.3 25.2 25.2 13.7 25.9 26.4 2 13.6 24.8 25.4 13.1 24.7 25.6 13.4 25.2 25.7 6 1 7.8 21.7 22.1 7.7 21 .9 22.0 7.9 22.3 22.3 2 7.9 21.3 22.2 7.8 21.4 21.9 .• 8.0 21.8 21.8 1 0.442 0.442 0.440 2 0.439 0.437 .... .... 0.425 (Continue next page) Appendix V. Continued. Subalpine f i r Moisture content measurements Ht. N MC Repl; 1 ' 2~—^ 3 4 <*> —OD MT-RMI-I OD Ml-kMI -T OD MT-R MT-T OD Hi-R MT-T QU MT-R MT-I 19 1 20.7 39.0 39.5 20.0 31.8 33.4 20.0 31.2 31.3 2 20.8 35.0 35.5 20 . 2 30.2 30.6 20.2 27.8 29.7 1 2 1 13.4 24.6 24.8 13.0 24.1 24.4 13.1 24.0 24.1 2 12.8 22.0 22.7 13.3 23.7 24.2 13.4 23.0 23.6 6 1 7.6 19.0 19.2 7.3 19.7 20.4 7.3 19.5 19.8 2 7.7 18.9 18.9 7.5 19.4 19.8 7.5 19.9 19.8 1 0.416 0.430 0.428 2 0.414 0.413 0.404 1 9 1 20.5 33.8 34.6 20.2 31.2 31.4 20 .1 30.4 30.8 . 2 20.3 31 .3 32.4 20.3 30.4 34.6 20.2 29.6 1 2 1 13.2 31 .8 23.7 13.2 22.4 22.6 13.3 22.9 23.4 " e " 1 2 13.0 21.7 23.0 13.3 22.2 22.6 6 1 7.5 16.6 17.3 7.5 17.8 18.3 V7.5 18.0 18.3 2 7.3 16.7 17.4 7.7 18.6 18.3 1 " 0.360 0.388 0.377 • 2 0.375 0.380 19 1 19.9 34.5 36.0 .. 19.6 31.4 31.8 2 20.0 34.3 34.7 19.5 29.8 30.6 1 2 1 13.3 23.5 23.8 13.2 23.6 23.7 2 13.1 22.4 22.6 13.0 21 .9 22.4 6 1 7.7 17.5 17.7 7.5 18.5 18.5 •I 7.6 17.1 1/.4 7.4 18.3 17.9 '.. 1 0.385 0.385 2 0.367 0.373 1 9 1 20.0 33.8 33.9 19.6 32.0 32.2 .... 2 20.4 33.2 33.7 1 2 1 13.7 23.7 24.1 13.4 23.5 23.6 2 13.5 22.8 23.6 6 I 7.7 17.2 17.3 7.5 17.1 17 .6 2 7.9 1/.0 17.4 1 0.379 0.383 2 0.364 19 1 20.5 34.5 34.9 2 20.6 34.2 34.8 12 1 13.4 24.0 24 . 2 2 13.5 23.9 24.4  ~'Z 1 7.7 i7.o i8.i 2 7;7 16.8 18.0 '  1 0.368 2 0.363 20.5 21.5 32.8 20.3 28.9 30.4 13.4 23.5 24.2 13.6 24.2 24.6 7.6 19.8 19.7 7.7 19.6 19.9 0.406 0.406 20.4 30.4 30.8 20.2 29.6 30.1 13.6 24.1 24.3 13.5 23.8 24.1 7.8 19.5 19.4 7.6 18.6 18.4 0.403 0.403 19.8 29.7 30.1 19.6 30.5 29.7 13.3 22.9 23.2 13.1 22.5 23.0 7.5 17.8 18.0 7.5 18.5 18.6 0.378 0.383 19.4 27.8 28.6 20.0 28.9 29.3 13.3 22.4 22.4 13.4 22.0 22.2 7.6 17.4 17.0 7;7 17.5 17.7 0.368 0.363 20.4 30.0 30.4 20.6 28.9 29.7 13.3 21 .7 22.3 13.4 20.9 21.6 7.5 16.7 17.4 7.5 16.6 17,0 0.353 0.342 (End) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093393/manifest

Comment

Related Items