Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The response of axial growth gradients within the skeleton of the black-tailed deer to variations in… Addison, Ralor Blendle 1970

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1970_A1 A33.pdf [ 32.13MB ]
Metadata
JSON: 831-1.0093361.json
JSON-LD: 831-1.0093361-ld.json
RDF/XML (Pretty): 831-1.0093361-rdf.xml
RDF/JSON: 831-1.0093361-rdf.json
Turtle: 831-1.0093361-turtle.txt
N-Triples: 831-1.0093361-rdf-ntriples.txt
Original Record: 831-1.0093361-source.json
Full Text
831-1.0093361-fulltext.txt
Citation
831-1.0093361.ris

Full Text

The Response of A x i a l Growth Gradients Within the Skeleton of the Black-Tailed Deer to Variations i n the Level and Pattern of Energy A v a i l a b i l i t y . by Ralor Blendle Addison B.Sc, U n i v e r s i t y of B r i t i s h Columbia, 1963 M o S c.j University of B r i t i s h Columbia, 1966 A Thesis Submitted i n P a r t i a l Fulfilment of the Requirements f o r the Degree of Doctor of Philosophy i n the Department of Zoology We accept t h i s t h e s i s as conforming to the required standard The University of B r i t i s h Columbia A p r i l , 1970 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Zoology  The University of British Columbia Vancouver 8, Canada Date June 8, 1970 ABSTRACT: A study was designed to examine the i n t e r a c t i o n of a x i a l growth g r a d i e n t s and time s p e c i f i c energy r e s t r i c t i o n s upon, the growth r a t e s o f s k e l e t a l dimensions i n the B l a c k -t a i l e d deer. A t o t a l o f 53 new-born fawns was captured and then r e a r e d i n c a p t i v i t y on c o n t r o l l e d energy regimes. The t e s t p e r i o d o f 322 days was d i v i d e d i n t o f i v e i n t e r v a l s w i t h the energy l e v e l i n each i n t e r v a l b e i n g s e t as high, medium, or low plane. R e p r e s e n t a t i v e animals were k i l l e d a t the end of each i n t e r v a l to examine growth over the p r e v i o u s i n t e r v a l s and to e s t a b l i s h a base f o r e v a l u a t i n g growth i n the next i n t e r v a l . F i v e w i l d fawns were c o l l e c t e d at 112 days and f o u r a t 175 days f o r comparison wi t h the l a b o r a t o r y standards. R e l a t i v e growth p r i o r i t i e s o f 23 s k e l e t a l dimensions were i n v e s t i g a t e d by c h a l l e n g i n g s k e l e t a l growth w i t h a s e r i e s of energy r e s t r i c t i o n s . The amount of growth e x h i b i t e d by each s k e l e t a l element i n response to the l e v e l of a v a i l a b l e energy c o u l d be i n t e g r a t e d i n t o an i n t e r p r e t a t i o n o f r e l a t i v e growth p r i o r i t i e s . S k e l e t a l growth was examined f o r i t s a b i l i t y to p r o v i d e an i n d i c a t i o n of t o t a l amount and p a t t e r n of energy i n t a k e over two i n t e r v a l s at the end of 112 days, over t h r e e i n t e r v a l s a t the end of 175 days, and over f i v e i n t e r v a l s a t the end of 322 days. The degree to which the e f f e c t s of e a r l i e r r e s t r i c t i o n s were removed by compensatory growth was a l s o examined i n the f i f t h i n t e r v a l . A shortage o f animals p r e c l u d e d the s a c r i f i c e of any standards at 259 days. When s k e l e t a l . s i z e was graphed a g a i n s t t o t a l energy intake, expressed i n C a l o r i e s of apparent d i g e s t i b l e energy, a t a f i x e d age, the p a t t e r n of energy i n t a k e c r e a t e d a d i s t r i b u t i o n o f p o i n t s which could by c o n v e n i e n t l y bounded by a t r i a n g l e . On d i f f e r e n t p a t t e r n s of energy i n t a k e but equal t o t a l energy i n t a k e s , the r e l a t i v e s i z e s o f the 23 s k e l e t a l dimensions change t h e i r p o s i t i o n s w i t h i n the boundaries surrounding the d i s t r i b u t i o n of p o i n t s . A comparison of a set of measurements from an animal of unknown n u t r i t i o n a l h i s t o r y w i t h the r e f e r e n c e l i n e s i n each of the standard t r i a n g u l a r d i s t r i b u t i o n s leads t o a s e r i e s of energy i n t e r c e p t s that should u n i q u e l y c h a r a c t e r i z e the amount of energy consumed by t h a t animal, and the p a t t e r n i n which i t was a v a i l a b l e . I l l At 112 days, the t o t a l energy intake and p a t t e r n o f r e s t r i c t i o n s c o u l d be d e r i v e d from s k e l e t a l growth. At 175 days, although estimates o f t o t a l energy i n t a k e s t i l l appeared to be good, the p a t t e r n of energy i n t a k e c o u l d not be e s t a b l i s h e d e x a c t l y , but c o u l d be l i m i t e d to a s m a l l number of p a t t e r n s . By 322 days, compensatory growth had reduced d i f f e r e n c e s i n s k e l e t a l s i z e to the p o i n t where n e i t h e r amount nor p a t t e r n of energy a v a i l a b i l i t y c o u l d be deduced. Four measurements of the f o r e cannons from w i l d fawns at 150 days were used to t r y to d e f i n e the n u t r i t i o n a l regime w i t h a p o r t i o n of the s k e l e t o n which would be r e a d i l y a v a i l a b l e from h u n t e r - k i l l e d animals. T h i s d i d not a l l o w a p r e c i s e e v a l u a t i o n of the n u t r i t i o n a l regime f o r i n d i v i d u a l animals, but i t d i d p o i n t out that there can be tremendous v a r i a b i l i t y i n the energy i n t a k e o f w i l d fawns from a r e l a t i v e l y s m a l l area of h a b i t a t . I t i s suggested t h a t a c o l l e c t i o n of f o r e cannons should be made alo n g w i t h t h a t of body weights to a l l o w an improved e v a l u a t i o n of range c o n d i t i o n s . i i i ex-Table of Contents Page Abstract: i i Table of Contents: i i i L i s t of Tables: V L i s t of Figures: v i i Acknowledgements: x Glossary of Terms: x i i Introduction: 1 Methods: 6 I. Rearing the Experimental Animals. 6 I I . Rations. 10 1. Milk: 10 2. Weaner r a t i o n (U.B.C. 3 6-S - 6 3 ) : 12 3 . Adult r a t i o n (U.B.C. 3 6 - 5 7 ) : 13 I I I . Determination of Ration D i g e s t i b i l i t y , Moisture, and Apparent Dig e s t i b l e Energy. 17 IV. Experimental Treatments. 20 V. C o l l e c t i o n of F i e l d Specimens. 21 VI. Measurement of Growth. 23 1. Body weight: 23 2. S k e l e t a l measurements: 27 VII. Treatment of Data. 30 Results: 31 I. Cumulative Energy Intake. 31 I I . Variations i n N u t r i t i o n a l Plane. 36 i v Page I I I . V a r i a t i o n s of Body Weight w i t h Cumulative Energy Intake. 48 IV. S k e l e t a l Dimensions of Laboratory Reared Deer. 54 D i s c u s s i o n : I . E s t i m a t i o n of Cumulative Energy Intake. 161 I I . Determination of P a t t e r n of Energy Intake (Energy Regime). 169 I I I . Regimes of N u t r i t i o n to 112 Days. 180 Regime *HH* 184 Regime 'MM' 16*5 Regime 'ML' 187 Regime •MH» 188 Regime «LH» 189 Regime «LL» 190 Regime fHM f 191 Regime THL» 191 IV. Energy Intakes of Wild Fawns to 112 Days. 192 V. Regimes of N u t r i t i o n to 175 Days. 194 VI. P a t t e r n s of Energy Intakes of Wild Fawns to 175 Days. 196 V I I . The S k e l e t a l Growth of Fawns to 322 Days. 203 V I I I . The Dimensions of Fore Cannons C o l l e c t e d from H u n t e r - K i l l e d Favms i n 1966 and 1967. 204 Summary and Conclusions: 214 B i b l i o g r a p h y : 219 Appendix: 224 L i s t of Tables Table 1 . The pre-weaning and weaning d a i l y a l l o t m e n t s of m i l k . Table 2. The f o r m u l a t i o n of weaner r a t i o n , U.B.C 3 6 - S - 6 3 . Table 3 - The f o r m u l a t i o n o f adu l t r a t i o n , U.B.C 3 6 - 5 7 . Table 4 . N u t r i e n t composition o f r a t i o n s U.B.C. 3 6-S - 6 3 and 3 6 - 5 7 compared w i t h the requirements f o r growing sheep (N.A.S. 1 9 6 3 ) . Table 5 . Estimated cumulative energy i n t a k e s of w i l d fawns based on body weight. Table 6 . Fore cannons c o l l e c t e d from hunter k i l l e d fawns. Table 7 . Cumulative energy i n t a k e ( C a l o r i e s ) of l a b o r a t o r y males, by i n t e r v a l . Table S. Cumulative energy intake ( C a l o r i e s ) of l a b o r a t o r y females, by i n t e r v a l . Table 9. Re-eva l u a t i o n of energy i n d i c e s and regimes of l a b o r a t o r y - r e a r e d fawns. Tables 1 0 The dimensions and energy i n t e r c e p t s o to 5 6 . the s k e l e t a l components o f l a b o r a t o r y fawns. VI Page Tables 57 t o 6 5 . Table 6 6 . Table 6 7 . Table 68. Table 69. The dimensions and energy i n t e r c e p t s of the s k e l e t a l components of w i l d fawns. 152-160 The estimated t o t a l energy i n t a k e s of w i l d fawns. 165 The d e v i a t i o n s of the energy i n t e r c e p t s o f the s k e l e t a l dimensions from the estimates of a c t u a l energy intake f o r l a b o r a t o r y and w i l d fawns. 197 Fore cannon dimensions o f hunter-k i l l e d fawns. 206 T o t a l energy i n t a k e s of fawns based on measurements of the fo r e cannon. 210 v i i L i s t of Figures Page Figure 1. The proposed energy regimes f o r male fawns (females duplicate «HHH» and fLLL»). 22 Figure 2 0 Variations i n the exponent ,y» required to f i t heat production data of deer when the slope, 3 9 . 6 5 , i s held constant; y i . e . , B.H.P. = 39.65 W 41 l b . Figure 3. Resting heat production of deer described as a multiple of basal heat production; y i . e . , R.H.P. = 2.2645 B.H.P. = 2.2645 (39.65) W 42 l b . Figure 4. The r e l a t i o n s h i p between body weight and t o t a l energy intake of laboratory reared fawns at 49 days of age. 49 Figure 5. The r e l a t i o n s h i p between body weight and t o t a l energy intake of laboratory reared fawns at 112 days of age. 50 Figure 6. The r e l a t i o n s h i p between body weight and t o t a l energy intake of laboratory reared fawns at 175 days of age. 51 Figure 7. The r e l a t i o n s h i p between body weight and t o t a l energy intake of laboratory reared fawns at 322 days of age. 52 Figure 8. 55 Figure 8a. Figure 8b. Figures 9 to 5 0 . Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. v i i i Changes with age i n the l i v e r weights of laboratory fawns. Changes with age i n the head weights of laboratory and wild fawns. The magnitude of selected s k e l e t a l dimensions i n r e l a t i o n to t o t a l energy intake i n Calories of apparent d i g e s t i b l e energy: Figures 9 to 22 — at 112 days; Figures 23 to 36 — at 175 days; Figures 37 to 50 -- at 322 days; The l i m i t s of the range of possible t o t a l energy intakes f o r laboratory fawn V26 (HML regime) as defined by i t s s k e l e t a l dimensions. The l i m i t s of the range of possible t o t a l energy intakes f o r laboratory fawn U33 (LMH regime) as defined by i t s s k e l e t a l dimensions. The l i v e body weights of wild fawns c o l l e c t e d between 49 and 270 days of age. A diagram of the growth of the fore cannon re l a t e d to t o t a l energy intake. A diagram of the growth of the scapula rel a t e d to t o t a l energy intake. Page 55 55 57-99 163 164 168 171 172 The l i m i t s of t o t a l energy i n t a k e s p o s s i b l e w i t h i n each energy regime at 112 days. The l i m i t s of t o t a l energy i n t a k e s p o s s i b l e w i t h i n each energy regime at 175 days. A diagram d e p i c t i n g the p o s s i b l e r e l a t i v e peaks of growth p r i o r i t y through the growth g r a d i e n t s t h a t have been examined. The frequency d i s t r i b u t i o n by i n t e r v a l o f the f o r e cannon measurements from hunter-k i l l e d male fawns i n 1966 and 1967. X Acknowledgements I wish to express my s i n c e r e g r a t i t u d e to a l l of the persons and agencies whose i n t e r e s t and co-operation made p o s s i b l e the conducting of t h i s research p r o j e c t . Dr. H.C, Nordan, As s o c i a t e P r o f e s s o r of Zoology at the U n i v e r s i t y of B r i t i s h Columbia, headed the ad v i s o r y committee and was c l o s e l y i n v o l v e d i n a l l phases of the work. Each of the committee members as w e l l as some other mem-bers of f a c u l t y provided u s e f u l c r i t i c i s m o f experimental procedures and a s s i s t e d i n e d i t i n g the f i n a l t h e s i s p r e p a r a t i o n . Many graduate students were i n v o l v e d i n some way durin g the p r o j e c t , a i d i n g i n hand l i n g the animals or i n d i s c u s s i n g the experimental hypotheses. My s p e c i a l thanks go to the group of graduate students and f a c u l t y based at the C e n t r a l Animal Depot (now the Zoology V i v a r i u m ) , U n i v e r s i t y of B r i t i s h Columbia. The l o o s e l y organized i n t e r d i s c i p l i n a r y co-operative provided an i d e a l atmosphere f o r conducting a p r o j e c t of t h i s nature. The B.C. F i s h and Game Branch gave permission each year f o r the capture of fawns f o r the purposes of the experiments. At times when d i f f i c u l t y was encountered i n c a p t u r i n g a x i s u f f i c i e n t number of animals, conservation o f f i c e r s and b i o l o g i s t s came to my a i d t o help f i l l the quota. Crown Z e l l e r b a c k of Canada L t d . were very generous i n p r o v i d i n g u n l i m i t e d access t o the study area which con-s i s t e d of t h e i r Wolf Lake l o g g i n g o p e r a t i o n at Courtenay, B r i t i s h Columbia. I would e s p e c i a l l y l i k e t o thank Canadian I n d u s t r i e s L t d . and the H.R. MacMillan Family f o r the f i n a n c i a l support they provided d u r i n g the course of the work. x i i Glossary of Terms The following l i s t contains expressions of energy intake which are used i n t h i s presentation. For the sake of br e v i t y , units have been omitted i n most areas of discussion but at a l l times they are implied as shown below. apparent d i g e s t i b l e energy: gross energy i n a unit of ingested feed l e s s the energy l o s t i n the corresponding feces. apparent t o t a l energy intake: not to be confused with apparent d i g e s t i b l e energy; i t i s the t o t a l energy intake (see below) estimated f o r an animal by one or a l l parameters of growth, as contrasted with the measured, or true, t o t a l energy intake of that animal. cumulative energy intake ( t o t a l energy intake): suramated d a i l y energy intakes, determined as apparent d i g e s t i b l e energy i n k i l o c a l o r i e s ( C a l o r i e s ) , over the experimental period f o r each fawn; i . e . , from the day at which a body weight of 10 pounds was reached, to the end of the time i n t e r v a l i n question. t o t a l energy intake: used synonymously and interchangeably with cumulative energy intake. true t o t a l energy intake: as i n t o t a l energy intake, with 'true 1 added to emphasize the contrast with 'apparent* t o t a l energy intake. 1 Introduction: This study was conducted to determine i f the growth and development of B l a c k - t a i l e d deer fawns, Odocoileus hemionus  columbianus (Richardson), could q u a n t i t a t i v e l y r e f l e c t the dietary energy l e v e l s to which the animals had access. The ultimate objective was to make possible the evaluation of the energy regime of wild fawns through an understanding of the modifications induced i n the normal developmental pattern by time s p e c i f i c energy r e s t r i c t i o n s . Provided that the growth and development i s modified i n a predictable manner, and that the modifications are at le a t semi-permanent i n nature, an a n a l y t i c a l procedure can be developed that w i l l allow iden-t i f i c a t i o n of the e f f e c t s of i n s u f f i c i e n t energy supply. For such a technique to be of greatest value, measurements taken at the end of a defined period of time must convey information concerning the extent, duration and time of occurrence of any energy r e s t r i c t i o n s that may have occurred during that i n t e r v a l . Such an idea i s c e r t a i n l y not unique and has been suggested as an avenue of i n v e s t i g a t i o n by Riney, 1952. U n t i l now, however, there has not been a t r u l y quantitative method f o r evaluating the energy regime of a free feeding animal. Q u a l i t a t i v e approaches include the many condition indices that have been proposed to i d e n t i f y animals s u f f e r i n g from some 2 degree o f n u t r i t i o n a l inadequacy (Park and Day, 1942; Cheatum, 1949; Bandy et a l , 1956; Severinghaus and G o t t l i e b , 1959). None of these i s s u f f i c i e n t l y comprehensive t o a l l o w a s o p h i s t i c a t e d a n a l y s i s of seasonal trends i n adequacy of d i e t a r y energy. Two s t u d i e s , Bandy (1955) and K l e i n (1964). bear a c l o s e resemblance to the present work. However, i n the f i r s t case only a l i m i t e d number of parameters of growth were considered, and i n the second, n u t r i t i o n a l d i f f e r e n c e s were not measured but i n f e r r e d . As i n the present study, the hypotheses of Bandy and K l e i n developed out of the extensive n u t r i t i o n a l s t u d i e s of a g r i c u l t u r i s t s i n v o l v e d i n the production o f improved meat carcasses. The e x i s t e n c e of a x i a l growth g r a d i e n t s has long been known to the developmental b i o l o g i s t . The g r a d i e n t s seem to be i m p l i c i t i n the w r i t i n g s o f Thompson (1917, 1942) although they are not define d as such. Huxley (1932) r e f e r s to the work of Scammon and C a l k i n s (1929) when he d i s c u s s e s the 'Law of A n t e r o - P o s t e r i o r Development and i t s E f f e c t Upon Growth'. Most of the e a r l y s t u d i e s assumed a 'normally growing' animal and d i d not consider n u t r i t i o n a l e f f e c t s upon growth, but i t has now been w e l l documented t h a t the form and development of a growing animal i s i n f l u e n c e d g r e a t l y by an i n t e r a c t i o n of a x i a l growth p a t t e r n s and time s p e c i f i c energy r e s t r i c t i o n s . Moulton e t a l (1921) conducted one of the f i r s t s t u d i e s concerned w i t h the i n t e r a c t i o n of energy i n t a k e and body form 3 but i t was not u n t i l a f t e r 1935 th a t much concern was given t o t h i s aspect of growth. Palsson (1955) summarizes the f i n d i n g of many previous workers w i t h the statement: "During l a t e f o e t a l l i f e to m a t u r i t y , any p a r t , organ or t i s s u e o f an animal's body i s p r o p o r t i o n a t e l y 5 most r e t a r d e d i n development by r e s t r i c t e d n u t r i t i o n at the stage when i t has highest n a t u r a l growth i n t e n s i t y . R e s t r i c t e d n u t r i t i o n , during any age i n t e r v a l from the l a t e f o e t a l stage u n t i l growth ceases, has an i n c r e a s i n g r e t a r d i n g e f f e c t on the d i f f e r e n t t i s s u e s and region s of an animal's body i n the d i r e c t order of t h e i r m a t u r i t y ; the e a r l i e s t maturing p a r t s or t i s s u e s being l e a s t and the l a t e s t maturing ones most a f f e c t e d " . Using these p r i n c i p l e s , i t i s now p o s s i b l e f o r the meat producer to manipulate the energy i n t a k e of an animal to e f f e c t a d e s i r e d form of carcass (Hammond, 1932a, 1932b; McMeekan, 1940; Palsson and Verges, 1951; Palsson, 1955; A r c e l a y , 1963; Anderson et a l , 1965; Wardrop, 1966). W i t h i n g e n e t i c l i m i t s , the conformation of a carcass can be modified i n a p r e d i c t a b l e manner by a p p l i c a t i o n of energy r e s t r i c t i o n s at c r i t i c a l times. I f the converse i s t r u e , then an examination of the growth and form of an animal should give a p i c t u r e of the p a t t e r n of energy a v a i l a b l e to the animal during the growing p e r i o d . Emphasis i n t h i s study has been placed on the assessment of s k e l e t a l growth. The s k e l e t o n i s d i s t r i b u t e d along the a x i a l g r a d i e n t s and i s e a s i l y measured. Whereas other t i s s u e s may d i m i n i s h i n s i z e d u r i n g periods of d e p r i v a t i o n , the s k e l e t a l dimensions, once achieved, are s t a b l e and the a n a l y s i s , t h e r e f o r e , i s not complicated by negative growth. Another very important reason f o r the s e l e c t i o n of the s k e l e t o n i s t h a t i t i s an e a r l y maturing t i s s u e (Jackson and Lowrey, 1912) and has a high growth p r i o r i t y i n the e a r l y p o s t n a t a l p e r i o d . A p i l o t study (Addison, 1966) demonstrated t h a t s k e l e t a l growth i s s e n s i t i v e t o energy r e s t r i c t i o n s d u r i n g the f i r s t s i x months of l i f e . This study a l s o provided evidence t h a t there might be s u f f i c i e n t growth i n some s k e l e t a l dimensions during the second s i x months to be of use i n e v a l u a t i n g energy i n t a k e . In order to measure the e f f e c t of apparent d i g e s t i b l e energy i n t a k e on s k e l e t a l growth, w i l d caught fawns were reared i n the l a b o r a t o r y under c o n t r o l l e d feeding regimes. These animals provided the standards to which w i l d fawns could be compared. Fawns were chosen because t h e i r r a p i d growth r a t e makes them h i g h l y s u s c e p t i b l e t o v a r i a t i o n s i n a v a i l a b l e energy, whereas i n o l d e r animals the growth r a t e slows as mature s i z e i s reached. One s l i g h t l i m i t a t i o n to the use of fawns i s t h a t they are not d i r e c t l y range dependent duri n g the f i r s t month of l i f e and do not become e n t i r e l y independent of doe's milk u n t i l four or f i v e months of age. However, since the l a c t a t i o n a l performance of the dam i s i n f l u e n c e d by energy i n t a k e , as was shown by Wallace (194$) f o r sheep, and since fawns are known to r e s o r t to forage to supplement a d i m i n i s h i n g 5 supply of milk e a r l i e r than s i x weeks of age (Cowan, i n T a y l o r et a l , 1956), the growth of the fawn should s t i l l be s e n s i t i v e to range c o n d i t i o n s . The use of an animal index method of range e v a l u a t i o n promises t o have a p p l i c a t i o n i n the e x i s t i n g s i t u a t i o n s on Vancouver I s l a n d deer ranges. B l a c k t a i l deer t h r i v e i n the e a r l y stages of e c o l o g i c a l succession f o l l o w i n g burning or l o g g i n g o f the f o r e s t cover i n the c o n i f e r o u s f o r e s t s of the west coast (Cowan, 1945; Robinson, 1957; Gates, 1968). According to Smith (1968) the peak value o f t h i s range f o r deer i s reached f o u r t o e i g h t years .after l o g g i n g and/or burning. This i s f o l l o w e d by a gradual decrease i n the number of deer u s i n g the area. Patch l o g g i n g p r a c t i c e s create an i n t e r m i x t u r e of seres, each of d i f f e r e n t value to deer. The s p a t i a l i n t e r a c t i o n s together w i t h d i f f e r e n c e s of e l e v a t i o n and exposure must create a vast a r r a y of d i f f e r e n t e n e r g e t i c environments. Because the p o p u l a t i o n i s g e n e r a l l y d i s p e r s e d , not a l l i n d i v i d u a l s can have access to the same p o r t i o n of the range, and i t would be d e s i r a b l e to s e l e c t a scheme that would a l l o w each animal to provide an independent estimate of the energy which i t had d e r i v e d from.that part of the range t o which i t was exposed. ,6 Methods: I . Rearing the Experimental Animals. A l l of the fawns used i n t h i s experiment were captured on the study area at Wolf Lake near Courtenay, B.C. at an age of one to f i f t e e n days. They were reared i n the w i l d l i f e u n i t on the U n i v e r s i t y of B r i t i s h Columbia campus u s i n g management techniques which have become standard procedures i n t h i s l a b o r a t o r y (Wood et a l , 1961). Fawns were housed u n t i l they were weaned i n 2' x 4* plywood pens with sawdust bedding. At t h i s time they were moved to 4* x 10* pens equipped w i t h s l a t t e d wooden f l o o r s . The s l a t s were 2" x 3" stock spaced one-half i n c h apart w i t h the edge g r a i n on the upper s u r f a c e . Urine and f e c a l m a t e r i a l passed between the s l a t s a l l o w i n g the animals to remain clean and dry. E a r l y f eeding was done w i t h a 1000 cc. narrow-necked b o t t l e equipped w i t h a 1 lamb n i p p l e * i n which a l a r g e hole (lmm.) had been burned. The q u a n t i t y of m i l k taken was measured as the d i f f e r e n c e i n weight of the b o t t l e plus r a t i o n before and a f t e r f e e d i n g . I t was found t h a t warm milk at approximately 35 C was taken most r e a d i l y by the fawns so a l l milk was heated before f e e d i n g i n a t h e r m o s t a t i c a l l y c o n t r o l l e d water bath. The fawns were fed according to body weight to a standard t h a t had been d e r i v e d from previous experience. The standard was s l i g h t l y lower than the c a l c u l a t e d maximum feed intake f o r the fawns, but at t h i s l e v e l r e g u l a r clean-ups were common, the deer grew r a p i d l y , and the incidence of severe scouring was low. The feeding standard i s l i s t e d i n Table l a . At each feeding, the fawns were o f f e r e d one-quarter of the d a i l y feed intake p r e s c r i b e d by the standard f o r the body weight that day. Leche ( 1 9 6 4 ) emphasized the need f o r r e g u l a t i n g the amount of feed o f f e r e d at each feeding to achieve maximum i n t a k e s . A young animal l e f t to i t s own devices tends to gorge at one feeding and skimp on the next l e a d i n g to a depression of the t o t a l feed i n t a k e . Furthermore, the uncon-t r o l l e d f e e ding tends t o favor s c o u r i n g . H.C. Nordan ( v i v a voce) maintains that much of the problem of sc o u r i n g i s caused by undigested m a t e r i a l i n the lower d i g e s t i v e t r a c t p r o v i d i n g a s u b s t r a t e f o r i n t e s t i n a l microorganisms. The r e s u l t s of Walker and Faichney ( 1 9 6 4 ) support t h i s view. Even spacing of the feedings over 2 4 hours was found to be l e s s e f f e c t i v e than the pa t t e r n of 6 a.m., 1 1 : 3 0 a.m., 4 p.m., and 9-"30 p.m. The uneven spacing allowed one long p e r i o d of uninterupted r e s t f o r both t e c h n i c i a n s and fawns. Weaning commenced at ten pounds. .A p e l l e t e d concentrate r a t i o n , U.B.C. 3 6-S - 6 3, was made a v a i l a b l e to the fawns so that they might become f a m i l i a r w i t h the presence of the feed. Small amounts, l e s s than ten grams, of l e a f y a l f a l f a hay were s p r i n k l e d over the r a t i o n each day as an a d d i t i o n a l i n c e n t i v e to take the p e l l e t e d r a t i o n . The hay was taken by most 8 Table 1. The pre-weaning and weaning d a i l y a l l o t m e n t s of milk Table 1 a) The pre-weaning feeding standard f o r f u l l f e e ding Weight D a i l y Per Feedin T o t a l (x4) g D a i l y Weight T o t a l Per Feeding (x4) 4 Lb. 850 C a l . 1 213 C a l . 1 9 Lb. 1175 C a l . 1 294 C a l . 1 880 220 9-5 1200 3 0 0 5 920 230 1 0 1 2 3 5 309 5.5 950 238 10.5 1265 316 6 980 245 11 • 1300 325 6.5 1010 253 11.5 1330 333 7 1040 260 12 1360 340 7.5 1075 269 12.5 1400 350 8 1110 278 13 1430 358 8.5 1140 285 13.5 1450 363 Table 1 b) The weaning schedule s t a r t i n g at 13 weight pounds body Day Energy Allotment Per Day D a i l y Regime ( C a l o r i e s / F e e d i n g x Feedings/Day 1- 5 800 C a l o r i e s 200 x 4 or 267 x 3 6- 7 656 I 6 4 x 4 or 211 x 3 8-11 440 220 x 2 12+ 3 0 0 150 x 2 1 C a l o r i e s of Apparent D i g e s t i b l e Energy For weight of condensed milk ( 1 : 1 d i l u t i o n ) , m u l t i p l y by 1 . 4 4 1 -For weight of milk r e p l a c e r ( 1 : 5 - 2 5 d i l u t i o n ) , m u l t i p l y by 1 . 4 7 9 -9 animals from the f i r s t day t h a t i t was presented. At t h i r t e e n pounds, the milk allowance was reduced to encourage the fawns to seek the dry r a t i o n . I t was found best to make the f i r s t r e d u c t i o n o f milk d r a s t i c w i t h s m a l l e r r e d u c t i o n s over the r e s t of the two week weaning p e r i o d . The general weaning regime, based on a f r a c t i o n of f u l l feed at t h i r t e e n pounds, i s shown i n Table l b . I t should be made c l e a r t h a t there i s a great i n d i v i d u a l v a r i a t i o n i n the w i l l i n g n e s s t o wean and care must be taken not to weaken those animals that r e q u i r e an extended p e r i o d of weaning. On occasions, i t has been necessary to r e a l i m e n t a t e t e m p o r a r i l y i n order t o r e s t o r e a fawn to a h e a l t h y c o n d i t i o n before weaning could proceed. G e n e r a l l y , any d e b i l i t a t i o n can be avoided i f time i s taken to encourage the fawns to eat the dry r a t i o n by o f f e r i n g by hand a few p e l l e t s at a time. The hungry fawn w i l l r e a d i l y take any form of food that i s placed i n i t s mouth at t h i s time. Adherence to t h i s procedure markedly shortens the weaning p e r i o d . Body weights were taken each day during the e a r l y feeding p e r i o d and l e s s f r e q u e n t l y during l a t e r phases of the e x p e r i -ments. The fawns were weighed to the nearest one-quarter pound on a p l a t f o r m s c a l e (Fairbanks Morse, Model 5264). I t proved convenient t o weigh the animals before the morning f e e d i n g each day. This allowed the r a t i o n allotment to be determined, and the a c t i v i t y d uring the weighing procedure aroused the fawns making them more eager at the f i r s t f e eding. For n e a r l y every fawn there were occasions when medication of some so r t was r e q u i r e d . Of most frequent occurrence was an i n t e s t i n a l i n f e c t i o n which caused s c o u r i n g . This was seldom of a s e r i o u s nature and could u s u a l l y be c o n t r o l l e d by a s i n g l e o r a l dose of 20 mg. of c h l o r t e t r a c y c l i n e (Aureomycin, Cyanamid). I f necessary, a second dose was given the f o l l o w i n g day. In stubborn cases where p h y s i c a l c o n d i t i o n was beginning to d e t e r i o r a t e , an intr a m u s c u l a r i n j e c t i o n of P r o c a i n P e n i c i l l i n G, P e n i c i l l i n G Potassium, and Streptomycin Sulphate (Pen-Strep, Squibb) was given i n a 2cc. dose on two consecutive days. This drug has proven an e f f e c t i v e p r o p h y l a c t i c against pneumonia t h a t o f t e n f o l l o w s weakness from severe sco u r i n g . Although e x t e r n a l p a r a s i t e s were not a problem, the preca u t i o n was taken to dust each fawn o c c a s i o n a l l y w i t h a p e s t i c i d e (Methoxychlor (10%), L a t e r Chemicals L t d . ) . I I . R a t i o n s . M i l k : Deer 'fawns i n 1963 and 1964 were fed a commercial c a l f r a t i o n , Peebles V - l e r . From 1965 through 1967, P a c i f i c brand evaporated milk (Fraser V a l l e y M i l k Producers A s s o c i a t i o n , Vancouver, B.C.) was used when the former brand of milk r e p l a c e r became u n a v a i l a b l e . Evaporated milk had been the fawn r a t i o n used at- t h i s l a b o r a t o r y u n t i l the summer of 1963. The c a l f r a t i o n was s u b s t i t u t e d at t h i s p o i n t i n an attempt to 11 improve the growth r a t e of the fawns. K i t t s , et a l (1956) had demonstrated t h a t deer milk contained more of i t s energy i n the form of f a t than d i d cow's m i l k . No improvement was noted with the high f a t c a l f r a t i o n and the more convenient evapo-r a t e d milk was used from 1965 on. For the purposes of f e e d i n g , the ' V - l e r ' was mixed w i t h water i n a r a t i o of 1 part dry r a t i o n to 5 . 2 5 p a r t s of water by weight (16$ dry matter). The evaporated milk was d i l u t e d 1:1 by volume wi t h water to the form of r e c o n s t i t u t e d cow's mi l k . A.J. Wood ( v i v a voce) recommended th a t a minimum of 1.1 grams of water per apparent d i g e s t i b l e C a l o r i e of energy be allowed when the only a v a i l a b l e water was i n the mi l k . Both r a t i o n s as mixed o f f e r e d i n excess of 1.2 grams of water per C a l o r i e . The apparent d i g e s t i b l e energies of the r a t i o n s as fed were: Peeble's V - l e r (1:5.25, 16% dry matter) 0.676 Cal./gm. P a c i f i c evaporated milk (1:1 d i l u t i o n ) 0.694 Cal./gm. The evaporated milk was supplemented w i t h minerals to meet the recommendations of 0 TKeefe (1957). One m i l l i l i t r e of the f o l l o w i n g mix was given per day: M i n e r a l Mix magnesium c h l o r i d e 50.0 gm. f e r r i c c i t r a t e 1 3 - 0 gm. c u p r i c sulphate 0 . 6 gm. 6 3 . 6 gm. d i s s o l v e d i n 1 0 0 0 ml. aqueous s o l u t i o n . This l e v e l of supplementation prevented the development of anemia o f t e n a s s o c i a t e d with f e e d i n g high l e v e l s of cow's milk (Underwood, 1 9 6 2 ) . A depression of growth r a t e of some fawns i n 1 9 6 5 (not animals from t h i s experiment) showed a marked response to Vitamin A supplementation. T h e r e a f t e r , 1 ml. of deodorized h a l i b u t o i l c o n t a i n i n g approximately 1 0 0 , 0 0 0 i . u . of Vitamin A was added to the milk each day. There was no evidence of anemia or Vitamin A d e f i c i e n c y when using the milk r e p l a c e r i n 1 9 6 3 and 1 9 6 4 . D.A. Leckenby ( v i v a voce) found adequate l i v e r storage of Vitamin A i n fawns r a i s e d on t h i s r a t i o n . Weaner r a t i o n (U.B.C. 3 6-S - 6 3 ) : This r a t i o n was formulated to provide high l e v e l s of a l l n u t r i e n t s i n an e a s i l y d i g e s t i b l e form. I t i s e s s e n t i a l l y a r a t i o n f o r a monogastric animal c o n t a i n i n g most of i t s energy as r e a d i l y a v a i l a b l e carbohydrates. I t contains a supplemen-t a t i o n of B vitamins which have been demonstrated to be unnecessary i n a d u l t animals with an a c t i v e rumen m i c r o f l o r a , but e s s e n t i a l to the weaning ruminant (Morrison, 1956). The weaner r a t i o n was fed to fawns u n t i l they had reached three months of age. The f o r m u l a t i o n of t h i s r a t i o n i s l i s t e d i n Table 2 and i t s composition i s compared with the requirements f o r a growing sheep (U.S. N a t i o n a l Academy of Sciences, 1963) i n Table 4. The d i g e s t i b i l i t y of t h i s r a t i o n was taken at i t s average value of 75.0% w i t h a d i g e s t i b l e energy of 3.104 C a l o r i e s per gram of feed as fed (8% moisture). Adult r a t i o n (U.B.C. 36-57): From e a r l y September on, fawns were fed the r a t i o n used f o r a l l a d u l t deer i n the u n i t . In t h i s r a t i o n , l e s s of the p r o t e i n was added as f i s h meal, and corn meal provided the major energy source. B vitamins were not added. The formu-l a t i o n of t h i s r a t i o n i s l i s t e d i n Table 3 and i t s n u t r i e n t composition i s compared with the requirements f o r a growing sheep i n Table 4. The d i g e s t i b i l i t y of t h i s r a t i o n was taken at i t s average value of 66.0% with a d i g e s t i b l e energy of 2.746 C a l o r i e s per gram of feed as fed {9% moisture). Regardless of the r a t i o n being f e d , each animal showed a good growth response and i t s h a i r coat, a good c r i t e r i o n of c o n d i t i o n , was e x c e l l e n t . The a n t l e r growth i n a d u l t animals being fed U.B.C. 36-57 was normal, and a t t e s t s to the adequacy of t h a t r a t i o n (French e_t a l , 1956). Table 2. The f o r m u l a t i o n of weaner r a t i o n , U.B.C. 36-S-63 Ingredient Amount Ground barley-Oat groats Wheat bran Herring meal Soya meal Skim milk Dried grass D i c a l c i u m phosphate I o d i z e d s a l t Brewer's yeast Chromic oxide I r r a d i a t e d yeast Vitamin A 200 pounds 390 130 200 100 200 150 10 10 20 1 2 2,000,000 u n i t s 2,000 pounds Table 3 . The f o r m u l a t i o n of a d u l t r a t i o n , U.B.C. 3 6 - 5 7 I n g r e d i e n t Corn meal Ground wheat Bran Molasses Beet pulp V i t a gras Soya bean meal Herring meal Bone meal Io d i z e d s a l t Chromic oxide Amount 6 0 0 2 5 0 2 7 5 1 5 0 2 0 0 2 0 0 1 7 5 1 1 0 2 0 2 0 1 2 , 0 0 0 pounds 16 Table 4 . N u t r i e n t composition of r a t i o n s , U.B.C. 3 6-S - 6 3 and U.B.C. 36-57 compared wi t h the requirements f o r growing sheep (United States N a t i o n a l Academy of Sciences, 1963 ). N u t r i e n t D i g e s t i b l e p r o t e i n ^ Ca P Vitamin A Vitami n D U n i t s mgm/Cal.3 mgm/Cal. mgm/Cal. 1 U/Cal. 1 U/Cal. N.A.S. Requirements' 3 6 . 3 0 . 9 7 0 . 8 7 I . 8 4 0 . 5 U.B.C. 3 6-S - 6 3 4 6 . 2 1 . 3 7 1 . 9 2 +4 U.B.C. 3 6 - 5 7 3 2 . 0 1 . 0 1 1 . 6 3 +4 1 C a l c u l a t e d from t o t a l d a i l y requirements f o r a 60 pound lamb. 2 Crude p r o t e i n x 60%. 3 C a l o r i e s of .apparent d i g e s t i b l e energy. 4 T o t a l c o n t r i b u t i o n s from a l l r a t i o n i n g r e d i e n t s not known, but a p a r t i a l t o t a l exceeds the N.A.S. requirements. 17 I I I . Determination of Ration D i g e s t i b i l i t y , M o i s t u r e , and Apparent D i g e s t i b l e Energy. Apparent d i g e s t i b l e energy contents of three of the r a t i o n s : V - l e r , U.B.C. 3 6 - S - 6 3 , and U.B.C. 36-57 were de t e r -mined by d i g e s t i b i l i t y t r i a l s . For the f o u r t h r a t i o n , P a c i f i c evaporated m i l k , the d i g e s t i b i l i t y and apparent d i g e s t i b l e energy were taken from previous d i g e s t i b i l i t y t r i a l s w i t h deer fawns (O'Keefe, 1957). Moisture content was measured f o r the two p e l l e t e d r a t i o n s according t o the recommendations of Horwitz (1955). They were d r i e d f o r three hours at 125 C and then f o r one hour periods to constant weight. I t was necessary to use a modified method f o r the V - l e r s i n c e temperatures over 90 C caused s c o r c h i n g o f the r a t i o n . I t was d r i e d at 85 C f o r 16 hours and then f o r f o u r hour p e r i o d s to constant weight. The evaporated milk could not be d r i e d adequately because a vacuum d r y i n g oven was not a v a i l a b l e . D i g e s t i b i l i t y was estimated f o r each r a t i o n by the recovery of a n o n - d i g e s t i b l e chromagen (Schurch et a l , 1950). Chromic oxide (C^O^) was added to the r a t i o n at the f o l l o w i n g l e v e l s : V - l e r 0.5% of a i r dry weight, U.B.C. 36-S-63 0.05/o of a i r dry weight, U.B.C. 36-57 0.05% of a i r dry weight. The chromic oxide c o n c e n t r a t i o n s i n feeds and feces were 18 determined by the method of Czarrock et a l (1961). Chromic oxide was mixed i n t o enough dry V - l e r to l a s t f o r the d u r a t i o n of a ten day t r i a l u s ing f o u r fawns r e c e i v i n g a r e s t r i c t e d amount of feed. Only these four were a v a i l a b l e f o r t h i s aspect of the study. The f u l l y fed fawns were already beginning the weaning process before preparations could be made to conduct the d i g e s t i b i l i t y study. I t i s p o s s i b l e that the r e s u l t s so obtained may have overestimated the d i g e s t i b i l i t y of the milk when fed ad l i b i t u m . Increased d i g e s t i b i l i t y of roughages when fed i n l i m i t e d q u a n t i t i e s has been demonstrated by B l a x t e r et a l (1955, 1956) and by Reid (1961). Most of t h i s d i f f e r e n c e can be accounted f o r by a change i n the time of passage. I t seems reasonable to suspect t h a t f o r a h i g h l y d i g e s t i b l e r a t i o n such as m i l k , the time of passage would not be a l i m i t i n g f a c t o r i n d i g e s t i b i l i t y . Leche (1964) found no i n d i c a t i o n of d i f f e r e n c e s i n the d i g e s t i b i l i t y of milk fed at d i f f e r e n t l e v e l s to c a l v e s . The d i g e s t i b i l i t y f a c t o r determined i n the present study has been a p p l i e d t o both r e s t r i c t e d and u n r e s t r i c t e d fawns on the assumption t h a t any d i f f e r e n c e s i^ould be s m a l l . The chromic oxide marked r a t i o n was fed i n the same manner as the normal r a t i o n . F e c a l samples were c o l l e c t e d f o r the second f i v e days of a ten day t r i a l and those from a l l four animals were lumped together f o r a n a l y s i s . Representative samples of r a t i o n were c o l l e c t e d from the feed each day to give an average f i g u r e f o r the c o n c e n t r a t i o n of chromic oxide 19 i n the feed. The marker was added to the commercial p e l l e t e d r a t i o n s d u r i n g t h e i r p r e p a r a t i o n . E a r l i e r t r i a l s w i t h these r a t i o n s had demonstrated that the marker was po o r l y mixed and the co n c e n t r a t i o n v a r i e d from bag to bag and even i n two samples from the same c o n t a i n e r . In order t o minimize t h i s e r r o r , ten grams o f feed were c o l l e c t e d from the feed pan of each animal a f t e r the d a i l y a l l o c a t i o n s had been made. These d a i l y feed samples were accumulated to give an average chromagen l e v e l f o r the determination of the d i g e s t i b i l i t y of the r a t i o n by each animal. In order t h a t apparent d i g e s t i b l e energy content of each r a t i o n could be c a l c u l a t e d , gross energies were determined f o r a l l feed and f e c a l samples. These gross energy values were combined w i t h d i g e s t i b i l i t y data t o y i e l d apparent d i g e s t i b l e energy: A.D.E. = G.E. '- G.E. (1 - c o e f f . of d i g e s t i b i l i t y ) , feed feces To f a c i l i t a t e the conversion to apparent d i g e s t i b l e energy i n t a k e from weight of feed consumed, the d i g e s t i b l e energy content of each r a t i o n was c o r r e c t e d to the average moisture l e v e l of the feed as i t was f e d . These values have already been mentioned i n the d e s c r i p t i o n of the r a t i o n s . t 2 0 IV. Experimental Treatments. The experimental p e r i o d ran from the time t h a t the fawns reached 10 pounds u n t i l 322 days l a t e r . T h i s time p e r i o d was d i v i d e d i n t o 5 i n t e r v a l s of 4 9 , 63, 63, £4 and 63 days d u r a t i o n r e s p e c t i v e l y . The f i r s t i n t e r v a l of 4 9 days, s t a r t i n g at 10 pounds body weight, can be considered t o be a 63 day i n t e r v a l from b i r t h , assuming a r a t e o f weight g a i n s l i g h t l y i n excess of 1/3 pound per day. This estimate was based on the growth r a t e s of three s e t s of twins (Nos. 101, 102; 3 5 0 , 351; 352, 353) born t h c a p t i v e does i n the w i l d l i f e u n i t . F o r t y male fawns and s i x t e e n female fawns were r a i s e d f o r the purposes of t h i s study. These animals were arranged i n t o groups so that the n u t r i t i o n a l treatment i n each o f the f i r s t three i n t e r v a l s could be one of three d i f f e r e n t l e v e l s of energy i n t a k e : 1. high plane (H) -- ad l i b i t u m i n t a k e of a high energy r a t i o n ; 2. medium plane (M) -- a r e s t r i c t i o n to 8 5 % o f high plane at any body weight; 3. low plane (L) -- a r e s t r i c t i o n to 70% of high plane at any body weight. A l l animals c a r r i e d to an age g r e a t e r than 175 days were subjected to a r e s t r i c t i o n to low plane d u r i n g the next 84 day i n t e r v a l . T h i s p e r i o d served as a standardized moderate winter regime. Only two n u t r i t i o n a l treatments were considered d u r i n g the l a s t ( f i f t h ) i n t e r v a l : fH f and 'L 1. The o b j e c t i v e s d u r i n g t h i s p e r i o d were f i r s t l y , to determine i f growth d i f f e r e n c e s i n the s k e l e t o n could be induced by energy r e s t r i c t i o n s at t h i s age, and secondly, to determine i f s k e l e t a l d i f f e r e n c e s induced by e a r l i e r r e s t r i c t i o n s could be removed by compensatory growth. The males were arranged i n s i x t e e n regimes comprising e i g h t n u t r i t i o n a l sequences (see Figure 1 ) . A minimum of two fawns were k i l l e d at the time o f each n u t r i t i o n a l change and at the end of each sequence. The female fawns were d i v i d e d i n t o f i v e treatments and two n u t r i t i o n a l sequences. These two sequences were i d e n t i c a l to two of the male sequences, and were i n c l u d e d to measure sex d i f f e r e n c e s i n the response of the s k e l e t o n to d i e t a r y r e s t r i c t i o n s . Although the animals were fed according to the proposed treatments as c l o s e l y as p o s s i b l e , i n d i v i d u a l v a r i a t i o n s made i t necessary to r e c l a s s i f y some animals at the end o f the experiment. This w i l l be discussed l a t e r i n the R e s u l t s s e c t i o n . V. C o l l e c t i o n of F i e l d Specimens. Wi l d fawns were c o l l e c t e d from the V/olf Lake area on Vancouver I s l a n d at dates corresponding to the sla u g h t e r dates f o r the l a b o r a t o r y reared fawns. Fawns of e i t h e r sex were 22 Figure 1 The Proposed Energy Regimes For Male Fawns (Females D u p l i c a t e 1HHH' and «LLL»). 1 1 : : : i : , : : ; E E | E . : ! : : : ; '".'.V~'.V.'.'.'\ t':'E" f l f t i l F E i E I E E i :~i'r.: - f i l l •: •: i.:. • -:. E':.;: lEE iEE 'EE iEE E . . E E ; E E E : E : •EEEE !; E j E •'. : ' . . I E : I ! . ,T EEjEE E E : . : : ! . : : : EEI.EE: : . - : : 1 : . • ... i • : • \ • .-E E I L E : •EEEE T T T - . f ; - : - : E . E E E .j.i-li-J li:.: isiOil :: E E E ::.._i.Ei.: • : . : :E':i EE : : • : I:.: : T" '"TT": EE iEE j ! E E J : E EE'E'EE .—, ; T - T T ! 1 1 ^ • i i i ::-JEEE : " - ; • . - / : -: ; : : ) . : . : ' "•"1" : : : : i : - : : :.: i E : : • • : ' ! ; • • : : E - E : E r E E E i ... D I M i n 6 ( l ( 3 Ibj •rE-jrEr E-EE'-E-: E | : : : : i : : : -T E E < • E p E E . : : L : : : J :::.[.•:•.:.: < i E .•EE;;;-E;E E; E E E E H i E E H - ; E-E E E E E E E E l E E ^ E EEjEE- . E T : J T E ~ E T -% . . . . . : : : : T I T T : : ~.:rr:\::.:.: : : . : : j : . ; : : E E : - k 1 S 1 . . . . :: j: :EE ; ^ E ' E E r E ^ E f Q -.:•:•:[:::; . . . : _ L _ -7 : . - : ; I E E T J E E E E E : T E E - E E ;EE ::!» 1 EEEEE E E L .-EE E - E E T E • ; . E ; - : . : TEEJ::E :: 1 b : : • • I T - . T : : . - : : T | T : T T : T : r • • T T T ; E E E E E : r r r i 7 E E J E ; E : . : E I : : : : : T T T E F ::.:.: h:.":-: - :~:T. \ E E E E J E E E E l E E E; E E ETE E E E E ; E E i E E - E E j E T . : T . , " T : E : J ! T E ' EEEpE- E T : i.n.-.T E E B E E E E E EEJEE E E E E : : : E ! T : E ; E . : : | E E T T E I E E E E E E EE-t \~-:~. hi . : : ~ - | T T : — EE E N T T : . : . ; . : : - : : - E E E E i -EEEEEE — 7 — f - H — T T E j T T E E . : E E - : -. . . . . . j . E E E r ::.:~|.:.v: :::::::. E E 1- : • • T T T T I T : — TEEEES ~ E : L E E ± E E : • : . : ~ . : 'EEJEE . . . . E E T E E E E »'.:' : :': l" -I E T I E T T irpr" • E";; EET E T I E T T : E E T T ; . " :EE : -—•—1—: 1 E E j E E xpr ;."ET EEE. EEE : . | E : E O : : (...._ E : k E E E E E E : E : T E E J E E ~ : I E T c • •• :.:: rl •. : T E E T r E •.]:•••• • E E - J E T T . . E E I E E r - . E E l E E r •• I E I E E E E - E E ; | E E . :r..i: E E E E i E E ^ E E : T T T : E E E . i'E .r-tj-_j. E E "EESSE E E E E E E & E E :EE[EE; E E - ~ T T EE- - E E E E _ ST-; jay s» .:.:.:.-d.fr.rr . : " * : : j r i r . : E E T ' T T T E ? i f :E i : l l Hi-EEEE T T T ^ ( : : T T : : . T T : T : . | T - ; : f~ | E E L E - E E : : i tE | l EE:JEE E E IS E E E E EEE-E. jay s» EEr § I J E § E T : . ; L S T I E E - T T I V • T : E 1 S T B E E.'OEE E E E ; E ; E E E T T T T f T T r T I T T H : T T l T p T T T : : . : . : q : T T - . —"'j E E . T T T T ' T T T T . T n T ( T : ; . n . -k 3x:z|iia£- E E E E E I T E E T E E E E E r r U J . -E < - E E E I E E E r r j E E . : i E E E E | ' - : EEITEE; i ~ .....!.:... j " T - T T : - E E - E E E E E ; E E ::':: T T ' T i r : T : T T y . -: . T I : . J : : : T : ± ^ t~ T _ T : T E E E E E ' E . E E E . . . <4 Et.T:. E E J E E T w ' T E : ! : : ; E T ' T E '•.-IT"; E E E E - T T E .; T E : : E E •• Ir- -r-EJ-c:;.:: i:;~::ljzr: T . : ; ~ ; - . J T . ; : J : T T : : | T . E T : E E ; T E T E T T -. . . . : J . T . . . T ; T . : J T T T : : EEE; E E - -i ••• E T J E I E E E E : : ' ; - : : : . : • E T ; E E E T T T T J T : : T T . T T T T . j : T : : n : E E J E E ; . . . ...... E.EEE T T T t e T T T T T t ~ : : : E | E E : : E I : _ ~ E E ; : E E . E T T | E : : ••--,) T T T - J T T T T ; T £ 5 E E : E E l E E T : T T : J ~ T T ; : : T ^ T ; X L T T T T J T - : . : T - T : E : . : T T T T T j T T . T T E E ) 5 E E E E E ^ E E E E I E E EEjEE 1 1 H i EEirEE ----j-:-!— ; L TTTT.JTTTr . E L EEEEE E E J E E t : . : . : T . :• E E i E E E E t E E • : ' . : . - . . T ] T T T T : — . " E E E E E E J E E T : E I E . : T E E ! . : : r; :rEr:::::: E E I E E . . . . . . i : T ± ; X T : T T . E E EE; T T - T I : : . : : : : : j::.Hl,::dz EEIEE;. .7 l E T J ' E E r T - , E T . . . f :'-r± T T ~ ' : : E | T : : . : _ EEIEE i: :r: EE-1.EE EEE^EE EH 'Er i E E : : : : : T I : : T E f r o u m p ies - iu „ J . , . _ _ r iven- i ut - ~ J T T T T : : — : : • E Ei'EE' :7:T"h.;:F . . . . . .). . . . . . . . : T T : : I - T - ; : : : T . r : . n : : . : . T E E l E E U I I uiybi 1 .' •t —1 — T E T I E E . . : | : E T — 9 ^ Q T T U : 1 : : _ : : : : T : T . ; : I T : E - ; E E J E J T E I I I l - i : -- - t - H i -E - E E E E E E E E T T : . : E T T EEjEE . : : : : : : . . E E J E E ; - -:; :E E E E E E E N ut rt tin r ml T — — T T : I - - . T : . rpntn D-fi. EEE . . T T T E T E E E . :::: r.::: E E E E ::::;:: :r - E E — ~ 1 : : ; . : ; : : . : : T : : : : . : EE;E H j Hig|h_ _M — M e d i u m 1 : T E ! ; E ; E E E E l E E •: •: i • . • EEJ . E E E-.-.EE E E E T E : i EE: : L . t n :-.;•:.;: ::E. : T : , : * W • -——— • • ' — - \>4 -1 ..^£-1 J -4 1 -1 ovlr E E E E EE- E E J E E : . : . : . : . ! . : . : : ; -E'E-JEE EEjEE:: E E ! E E :::: I::.. - : r r ~ : • : : 1 : : . : » :E :::.: i Err : : : : E « EE1E:: E;-| I — ' E E EE EEl EEqEE: !"„•.'. i:.:.::" - I - - - - :rr.:.j T T T : E E EEE EE; : . : . : . : J E E -• EE : EE-jEE :• EEEEE. Mi;--~ Me .:Ert7E7 ::::.{::;: V:~U r o m EEjEE J u n e r : : : - - ' • : : : ( ::::•:::•:] 24~a EEEEEE ::-.-::::: EEI ' IE EE E E v e r a : : T : I E E ! : : : : ! :::rj:.::: ; E ; J E E ge IC E E I E E E E r E E EEJEE EE-: : : T T i : : : : : ; : EE'iE:: ' EE-EE- E E - r r E i i i a s u r e d f S I E ' E I E ^ E ) lb s t a r t i n g w e E"; E E E J E E E E T J E H J E E J ight E : : j EE Err E E T T E : . : . ! : : : : : ; : : ! . ; : ! E E I E E EEEr; -..:. j : : : : EE lEE :::: i:::: EE lEE -i-i-r-Kifrr ::;': j : : : : :.:::!::;.} ::::!:::: : T : : . ; : : : : : : " : ; , : : • : : : : : ! : : : : :.:::!::•: E E l E E E E j E E E E EEE :;•:.: | - E -: : T : J : : : : E E E E T : : E 1 T . : E , : : : ! : : : ; .... j ... : : . : : | E : : . : _ . : J . : . : : J . E E J E : -:::;!;•::: ::::!-.::: :::: i:;:: :::: i:::: E n - E E EEjEE : : • : . : . : : . : EEJEE i E E E | E E l ! ; ; -T J E I T T E E ' :::: i E E E E E E - I E E T . ' T . p T E ::.: i:::: taken when a v a i l a b l e . I t was hoped that enough fawns could be c o l l e c t e d each year to a l l o w comparison of the growth r a t e s i n 1965, 1966 and 1967- However, the u n a v a i l a b i l i t y of fawns at some c r i t i c a l p e r i o d s has made t h i s d i f f i c u l t . A compari-son o f f i e l d and l a b o r a t o r y reared fawns had to be made wit h a pool of three years data. A l i s t of the animals c o l l e c t e d i s given i n Table 5« A l a r g e number of fo r e cannons were c o l l e c t e d from hunter k i l l e d deer i n November of each year to a l l o w a more extensive a n a l y s i s of the v a r i a b i l i t y i n the dimensions of a s k e l e t a l component i n the p o p u l a t i o n . Where p o s s i b l e , these were used to augment the i n f o r m a t i o n c o l l e c t e d from t o t a l s k e l e t o n s . A l i s t o f the cannon bones c o l l e c t e d i s given i n Table 6. VI. Measurement of Growth. 1. Body weight: Body weight change i s the most commonly encountered measure of growth and has been given f i r s t c o n s i d e r a t i o n i n t h i s study. Although body weight g i v e s no i n d i c a t i o n o f the s p a t i a l d i s t r i b u t i o n of the growth, i t i s n e c e s s a r i l y a s s o c i a t e d w i t h a change i n s i z e . Because i t can be measured f r e q u e n t l y from each animal, weight data are more abundant than s k e l e t a l data. Each animal continues t o c o n t r i b u t e weight data u n t i l the time of i t s death, while measurements of s k e l e t a l dimensions are t e r m i n a l only. Weights of l a b o r a t o r y animals were taken d a i l y at younger Table 5 . Estimated cumulative energy i n t a k e s of w i l d fawns based on body weight No. Sex Age 1 Body Weight (eviscerated) Body Weight 2 (estimated l i v e ) T o t a l Energy Intake YF17 M 116 Days 3 9 . 8 l b . no l i v e r 5 7 . 5 l b . . 207,900 C a l o r i e s YF19 M 118 - - -YF16 F 116 38 . 9 l b . no l i v e r 56.2 l b . 203,200 C a l o r i e s YF18 F 117 30 . 6 l b . no l i v e r 44.2 l b . 159,500 YF20 F 118 3 6 . 7 l b . no l i v e r 53.0 l b . 191,500 WF 1 M 180 41 . 5 l b . l i v e r i n 5 4 . 5 l b . 289,400 C a l o r i e s WF 2 M 180 41 . 5 l b . l i v e r i n 5 6 . 6 l b . 298,700 YF38 M 177 36.0 l b . no l i v e r 4 9 - 3 l b . 259,900 YF37 F 176 - - -1 Age i s counted from June 24 — i . e . , the mean day at which 10 pounds i s reached when the mean b i r t h date i s June 10. 2 See pp. 20; 4 8 - 5 3 -3 Estimated from body weight according to Fi g u r e s 5 and 6 . Table 6. Fore cannons c o l l e c t e d from hunter k i l l e d fawn s No. Sex Age 1 No. Sex Age 1 XF 6* M 142 YF43 M 162 XF 7* M 142 YF44 M 162 XF 8* M 143 YF45 M 162 XF 9 M 150 YF46 M 162 XF10 M 150 YF47 M 162 XF11 M 150 YF48 M 162 XF12 M 150 YF49 M 162 XF13 M 150 YF50 M 162 XF14* M 156 YF51 M 162 XF15* M 156 XF 5 F 140 XF16* M 156 YF25 F 142 XF17* M 157 YF26 F 142 YF21 M 142 YF67 F 162 YF22 M 142 YF68 F 162 YF23 M 142 YF69 F 162 YF24 M 142 YF70 F 162 YF36 M 142 YF71 F 162 YF40 M 162 YF72 F 162 YF41 M 162 YF42 M 162 *From animals of known body weight. Body Weight Body Weight ? No- ( e v i s c e r a t e d ) (estimated l i v e ) XF 6 39-0 l b . l i v e r i n 52.7 l b . XF 7 29-0 l b . l i v e r i n 38 . 6 l b . XF14 34-0 l b . l i v e r i n , no head 48.7 l b . XF15 44-0 l b . l i v e r i n 59.7 l b . XF16 42-5 l b . l i v e r i n 57 - 6 l b . XF17 38.0 l b . l i v e r i n , no head 54-3 l b . XF 8 41.0 l b . l i v e r i n 55-5 l b . 1 Age i s counted from June 24 -- i . e . , the mean day at which 10 pounds i s reached when the mean b i r t h date i s June 10. 2 See pp. 20; 48-53-26 ages, becoming more in f r e q u e n t l a t e r on. For fawns over s i x months of age, weighing at seven to ten day i n t e r v a l s was adequate t o enable changes i n body weight t o be f o l l o w e d . In a l l of the data reported here, body weight on a given day has been estimated from a smooth l i n e drawn through a graph of the a c t u a l weights to help to minimize d a i l y f l u c t u a t i o n s due to ' f i l l 1 . I d e a l l y , e v i s c e r a t e d weight would probably be a b e t t e r measure than l i v e body weight because of the problem of v a r i a t i o n s i n gut content. However, t h i s i n v o l v e s the same problem as the c o l l e c t i o n of s k e l e t a l data; the measurements are t e r m i n a l only and the sample s i z e i s t h e r e f o r e reduced. Although l i v e body weight i s a convenient l a b o r a t o r y measurement, i t i s extremely d i f f i c u l t t o o b t a i n i n the f i e l d . Deer weighed at 'check s t a t i o n s ' are always e v i s c e r a t e d , and even animals f r e s h l y k i l l e d and before they are e v i s c e r a t e d s u f f e r from a v a r i a b l e degree of blood l o s s . Laboratory fawns were weighed p r i o r t o s l a u g h t e r and then a f t e r e v i s c e r a t i o n to provide a method f o r c o n v e r t i n g the f i e l d data back to l i v e weight. Although weight data from hunter k i l l e d deer were not obtained d u r i n g t h i s study, the s i t u a t i o n was foreseen where t h i s might be done. Weight data were accumulated f o r l i v e r s so t h a t compensation could be made f o r t h i s organ whether l e f t i n or removed. Shrinkage of carcasses taken i n the f i e l d was not considered a problem because weights were taken u s u a l l y w i t h i n one day of k i l l from carcasses which had been l e f t w i t h the hide on and the v i s c e r a l i n c i s i o n p u l l e d shut. Laboratory animals t r e a t e d i n the same manner and reweighed 24 hours a f t e r s l a u g h t e r showed not more than one-half pound of weight l o s s . When, on occasion, i t was necessary t o take weights of animals i n the f i e l d , a household bathroom s c a l e was used. The fawns were weighed by the d i f f e r e n c e i n weight between a person and t h a t person h o l d i n g the fawn. The o v e r a l l accuracy was w i t h i n - 1 pound. Li v e body weights of l a b o r a t o r y fawns were regressed against cumulative energy i n t a k e i n C a l o r i e s at 49, 112, 175, and 322 days of age. These ages are the p o i n t s at which n u t r i t i o n a l changes were made. S u f f i c i e n t weights were not a v a i l a b l e at 259 days to e s t a b l i s h a weight to energy int a k e r e l a t i o n s h i p . The r e g r e s s i o n l i n e s were used t o estimate the t o t a l energy i n t a k e of w i l d fawns. 2. S k e l e t a l measurements: The components of growth t h a t are o f g r e a t e s t importance i n t h i s study are the changes i n s k e l e t a l dimensions. The choice of the p a r t i c u l a r bones and the s e v e r a l dimensions used r e q u i r e s some e l a b o r a t i o n . The working hypothesis i s t h a t energy i n t a k e w i l l i n f l u e n c e bone growth along a x i a l growth g r a d i e n t s . I t i s g e n e r a l l y conceded t h a t growth i n l e n g t h precedes growth i n width i n the long bones (Hammond, 1932; Palsson, 1955; P r a t t et a l , 1964a; 1964b). This may be an o v e r - s i m p l i f i c a t i o n . Walnut (1967) suggests that growth o f a long bone can best be described as a number of vectors 28 proceeding at d i f f e r e n t v e l o c i t i e s from a s i n g l e s t a t i o n a r y p o i n t . I f a l l vectors were o f the same r e l a t i v e v e l o c i t y , then growth would be by m a g n i f i c a t i o n w i t h no change i n shape. This i s not the case and shape does change. The a x i a l gradient t h a t i s observed w i l l depend upon the p a r t i c u l a r v e ctor being measured and the equivalence of t h i s measurement from one bone to the next. Bones were s e l e c t e d t h a t would best demonstrate the i n t e r a c t i o n s of a x i a l growth and n u t r i t i o n a l l e v e l . The long bones o f the f o r e and hind limbs were an immediate choice. These bones a l l have a major a x i s t h a t i s f u n c t i o n a l l y equiva-l e n t from one bone to the next. Length was measured on each of the f o r e cannon, r a d i u s , humerus, scapula, hind cannon, t i b i a , femur and p e l v i s . The scapula and p e l v i s were i n c l u d e d because of t h e i r anatomical p o s i t i o n s r e l a t i v e t o the long bones on the limbs. There are i n d i c a t i o n s i n the data t h a t the le n g t h of the scapula and t h a t of the p e l v i s increase at r a t e s commensurate wi t h t h e i r p o s i t i o n s i n the limb g r a d i e n t s . I t had o r i g i n a l l y been planned t h a t width of a l l limb bones should be measured, but s a t i s f a c t o r y equivalence p o i n t s could not be found. An exception was the width of the f o r e cannon which could be reproduced s a t i s f a c t o r i l y because shape remained o r i e n t e d toward a f l a t p o s t e r i o r s u r f a c e . Minimum width of the d i a p h y s i s and maximum widths at the bases of the proximal and d i s t a l epiphyses were measured across a plane l y i n g p a r a l l e l to the f l a t s u r f a c e . These measurements were i n c l u d e d mainly to a l l o w a more extensive a n a l y s i s of the cannon bones c o l l e c t e d from the hunter k i l l e d samples. The a n t e r i o r - p o s t e r i o r a x i s of the body e x h i b i t s a marked gra d i e n t during embryological development and p o s t n a t a l growth appears t o f o l l o w a s i m i l a r p a t t e r n (Scammon and C a l k i n s , 1929; Huxley, 1932). The vertebrae l i e d i r e c t l y along t h i s gradient and were used to demonstrate growth i n t h i s dimension. Both l e n g t h and width were measured at w e l l d e f i n e d equivalence p o i n t s . C e r v i c a l s 3, 5, 7; t h o r a c i c s 1, 5, 10; and lumbars 1, 3, and 5 were s e l e c t e d as r e p r e s e n t a t i v e of the vertebrae. Length was measured from the e x t r e m i t i e s of the zygopophyses. Width was measured across the tr a n s v e r s e processes o f the c e r v i c a l and t h o r a c i c vertebrae and across the a n t e r i o r (pre) zygopophyses of the lumbars. These measurements are shown i n the sketches i n Appendix 1. A l l of the measurements were taken from c l e a n , dry s k e l e -tons. S e v e r a l methods were used to clean the s k e l e t o n s , a l l o f which began w i t h d e f l e s h i n g w i t h a k n i f e . In e a r l i e r stages of the study, some skele t o n s were d r i e d and then cleaned by dermestid b e e t l e s . Upon removal from the b e e t l e colony, the bones were bleached and d r i e d . Others were simmered i n 88-93 C water f o r 20 - 24 hours. By f a r the m a j o r i t y o f the skel e t o n s were prepared by pressure cooking i n an au t o c l a v e . The defleshed s k e l e t o n was d i s j o i n t e d and covered w i t h water i n deep metal pans. These were placed i n the autoclave at 15 pounds pressure f o r 30 - 60 minutes, the o l d e s t animals t a k i n g the longest time. In both of the l a s t two methods, the cooked 3 0 f l e s h was removed e a s i l y by hand. Drying at 7 0 C f o r 2 4 hours f o l l o w e d . One problem which arose f r e q u e n t l y was the l o o s e n i n g of epiphyses during cooking. S e v e r a l skeletons which had s u r v i v e d p r o cessing i n t a c t were measured and then re-cooked u n t i l the epiphyses f e l l o f f . These were glued back on and the bones were remeasured. No d i f f e r e n c e s could be detected between the two sets of measurements. A l l other epiphyses were glued on and these bones were i n c l u d e d i n the data without f u r t h e r mention. V I I . Treatment of the Data. The u l t i m a t e o b j e c t i v e was to o b t a i n an estimate of the t o t a l energy i n t a k e of any w i l d fawn and an i n d i c a t i o n of the p a t t e r n of energy r e s t r i c t i o n which may have been imposed. These estimates were made by i n f e r e n c e from the growth behavior of l a b o r a t o r y c o n t r o l s . Both body weight and s k e l e t a l growth were used. Body weight and s k e l e t a l dimensions were graphed against cumulative energy i n t a k e , expressed as apparent d i g e s t i b l e energy i n C a l o r i e s (A.D.E.) f o r each of the l a b o r a t o r y fawns. These provide the b a s i s f o r a n a l y s i s of w i l d unknowns. The techniques which were used t o i n t e r p r e t these graphs w i l l be e x p l a i n e d as they are encountered i n R e s u l t s and D i s c u s s i o n . R e s u l t s : I . Cumulative Energy Intake. The d a i l y energy i n t a k e o f each fawn i n the l a b o r a t o r y study was c a l c u l a t e d from the amount o f feed consumed. The measured feed i n t a k e , i n grams, was m u l t i p l i e d by the app r o p r i a t e conversion f a c t o r (see pp. 10-13) f o r the r a t i o n being fed at tha t time i n order t o express the i n t a k e as k i l o c a l o r i e s ( C a l o r i e s ) o f apparent d i g e s t i b l e energy. The d a i l y energy i n t a k e s were summed over each o f the e x p e r i -mental i n t e r v a l s ; i . e . , 0-49, 50-112, 113-175, 176-259 and 260-322 days. T h i s allowed the e v a l u a t i o n of energy i n t a k e by i n t e r v a l and i n t o t a l . The t o t a l energy i n t a k e s determined i n t h i s manner provide the u n i t s of the t x l axes i n a l l graphs of body weight and s k e l e t a l dimensions. The cumulative energy i n t a k e s f o r each animal are given i n Tables 7 and 8. Some o f the fawns i n t h i s study were i n c l u d e d i n a p r e s e n t a t i o n o f p r e l i m i n a r y work (Addison, 1966). The cumulative energy i n t a k e s shown i n Tables 7 and 8 are at variance w i t h those presented e a r l i e r , being lower by 12% at fo u r months and 14% at s i x months. Subsequent t o the e a r l i e r work, a c o r r e c t i o n was made i n the values f o r the apparent d i g e s t i b l e energy of the p e l l e t e d r a t i o n s w i t h both being lowered by 14%. The energy values f o r the r a t i o n s had been based o r i g i n a l l y on f i g u r e s from a g r i c u l t u r a l feed t a b l e s w h i l e the c o r r e c t e d f i g u r e s were deri v e d from a c t u a l d i g e s t i -b i l i t y t r i a l s w i t h the deer. The apparent d i g e s t i b l e energy 32 Table 7. Cumulative energy i n t a k e ( C a l o r i e s ) of l a b o r a t o r y males, by i n t e r v a l No. I n t e r v a l (Days)  ~~0^49 50-112 113-175 176-259 260-322 U 7 51,917 51,917 166 2 1 8 , 8 4 8 , 7 6 5 226,647 445,412 u 8 50 , 4 8 5 5 0 , 4 8 5 149 2 0 0 , 5 4 8 , 0 3 3 210,777 410 , 8 1 0 U 1 5 31 , 8 1 3 31 , 8 1 3 58 8 9 , 0 7 3 , 8 8 6 94,216 184 , 1 0 2 U30 37,471 37,471 7 5 1 1 2 , 1 8 3 6 5 4 1 2 0 , 2 5 1 232 , 9 0 5 U33 4 4 , 2 3 7 4 4 , 2 3 7 1 3 3 177 553 790 222 , 8 3 2 4 0 0 , 6 2 2 V 8 37,050 3 7 , 0 5 0 125 1 6 2 3 6 3 413 1 2 0 , 9 7 2 2 8 3 , 3 8 5 V 1 0 3 8 , 2 6 3 3 8 , 2 6 3 6 7 105 710 973 89,315 195 , 2 8 8 V l l 5 7 , 7 2 3 5 7 , 7 2 3 171 229 939 6 6 2 V 1 2 3 2 , 8 2 1 3 2 , 8 2 1 6 0 9 3 5 7 6 3 9 7 92,392 1 8 5 , 7 8 9 V19 3 1 , 0 3 8 3 1 , 0 3 8 6 3 9 4 322 3 6 0 V 2 0 32 , 5 3 0 3 2 , 5 3 0 65, 97, 1 7 5 7 0 5 V21 3 8 , 1 5 5 3 8 , 1 5 5 1 2 7 , 1 6 5 , 2 2 0 3 7 5 V 2 4 3 5 , 1 7 6 3 5 , 1 7 6 1 3 0 , 165, 0 4 0 216 1 7 2 , 5 8 0 337,796 V 2 5 3 3 , 2 1 2 33 , 2 1 2 6 6 , 99, 5 8 4 796 135 , 8 4 6 2 3 5 , 6 4 2 I 33 Table 7. (Continued) No. I n t e r v a l (Days) 0 - 4 9 50 -112 1 1 3 - - 1 7 ? 1 7 6 - 2 5 9 2 6 0 - 3 2 2 V 2 6 5 4 , 0 1 5 5 4 , 0 1 5 131 1 8 5 , 909 9 2 4 1 2 2 3 0 8 2 4 8 1 7 2 V 2 7 32,308 32,308 62 9 5 7 3 0 0 3 8 1 2 1 216, 699 7 3 7 V28 3 2 , 6 7 1 3 2 , 6 7 1 69 1 0 2 9 4 2 6 1 3 1 3 0 2 3 3 8 0 1 4 1 4 X 4 4 0 , 7 7 0 4 0 , 7 7 0 1 4 2 1 8 3 898 6 6 8 209 392 1 4 8 8 1 6 2 3 1 , 4 4 8 6 2 4 , 2 6 4 1 9 5 , 6 7 4 8 1 9 , 9 3 8 X 5 6 9 , 0 1 7 6 9 , 0 1 7 1 3 8 2 0 7 690 707 1 8 8 3 9 6 7 5 3 4 6 0 2 4 7 , 1 1 5 6 4 3 , 5 7 5 2 2 1 , 8 7 6 8 6 5 , 4 5 1 X 6 3 8 , 3 5 9 3 8 , 3 5 9 1 5 8 1 9 6 2 0 1 5 6 0 1 3 8 3 3 5 7 1 4 2 7 4 . 2 0 3 , 8 1 9 539,093 2 7 9 , 0 1 1 818,104 X 7 3 3 , 7 6 2 3 3 , 7 6 2 1 1 5 1 4 9 5 1 7 ,279 1 6 3 3 1 3 8 5 2 , 1 3 1 2 0 9 , 4 0 5 5 2 2 , 5 3 6 194 , 8 1 1 7 1 7 , 3 4 7 X 8 3 8 , 1 0 6 3 8 , 1 0 6 1 4 0 1 7 8 8 8 3 ,989 1 3 6 3 1 5 8 4 6 , 8 3 5 2 0 0 , 0 7 1 5 1 5 , 9 0 6 1 6 1 , 2 3 5 6 7 7 , 1 4 1 X 9 39,612 3 9 , 6 1 2 1 3 5 1 7 5 , 9 8 2 5 9 4 1 4 6 3 2 2 , 6 5 8 , 2 5 2 216 , 4 2 2 5 3 8 , 6 7 4 1 7 1 , 6 6 5 7 1 0 , 3 3 9 X10 33 , 6 8 3 33 , 6 8 3 1 3 7 1 7 1 , 4 4 2 ,125 190 3 6 1 , 8 1 3 , 9 3 8 222 , 1 1 0 584 , 0 4 8 1 7 4 , 8 4 8 7 5 8 , 8 9 6 X l l 41,954 41,954 154 196 , 5 0 7 ,461 1 7 2 3 6 9 , 7 7 1 , 2 3 2 2 3 2 , 4 8 0 6 0 1 , 7 1 2 2 4 9 , 2 0 2 850,914 X14 42,595 4 2 , 5 9 5 1 5 1 1 9 4 , 8 9 1 , 4 8 6 2 0 8 4 0 2 , 3 0 5 , 7 9 1 227,345 6 3 0 , 1 3 6 1 7 7 , 3 8 2 807 , 5 1 8 X16 42 , 7 7 3 4 2 , 7 7 3 1 2 5 168 , 7 9 2 , 5 6 5 1 3 3 302 , 4 6 3 , 0 2 8 1 9 6 , 6 0 3 4 9 8 , 6 3 1 2 0 2 , 2 3 2 7 0 0 , 8 6 3 Table 7. (Continued) No. 0-49 50-112 113-175 Y 1 53 , 3 2 2 53,322 120,079 173,401 145,935 319 ,336 Y 2 3 9 , 2 2 3 39,223 111 ,596 150,819 Y 3 36,608 36,608 83,101 119,709 Y 4 34,921 34,921 129,432 164,353 Y 5 46,666 46,666 109,290 155,956 135,771 291,727 Y 6 37,190 37,190 102,316 139,506 Y 8 39,443 39,443 109,737 149,180 Y10 45,490 45,490 Y l l 53,561 53,561 Y13 47,323 47,323 151,899 199,222 177,633 376,855 Y21 45,901 45,901 147,770 193,671 195,230 388,901 Y 2 4 48,129 48,129 150,662 198,791 208,693 407 ,484 2 6 7 , 2 8 5 6 5 6 , 1 8 6 2 8 0 , 0 0 0 6 8 7 , 4 8 4 Table 8. Cumulative energy intake ( C a l o r i e s ) of l a b o r a t o r y females, by i n t e r v a l I n t e r v a l (Days) N o - 0-49 50-112 113-175 176-259 260-322 U10 41 41 , 6 7 1 , 6 7 1 1 1 5 1 5 7 , 9 4 3 ,614 1 7 9 , 6 8 5 337,299 U l l 4 2 42 7 2 5 , 7 2 5 128 1 7 1 ,410 , 1 3 5 181 , 7 9 4 352,929 U14 5 0 5 0 , 2 2 2 2 2 2 1 3 5 186 9 1 3 , 1 3 5 194,289 3 8 0 , 4 2 4 U 3 2 2 7 2 7 613 6 1 3 6 5 9 3 9 3 2 5 4 5 104,982 198 , 5 2 7 U 3 8 31 31 119 119 6 7 98 1 4 6 265 1 0 4 , 4 8 6 2 0 2 , 7 5 1 V 7 4 8 4 8 1 4 7 1 4 7 1 4 7 195 8 1 3 960 V 9 3 5 3 5 4 6 1 4 6 1 6 7 1 0 2 0 6 7 5 2 8 9 1 , 0 1 7 193 , 5 4 5 V 1 3 5 2 , 52 4 4 5 4 4 5 1 3 3 186 6 2 7 072 1 7 1 , 9 1 5 3 5 7 , 9 8 7 V 1 4 3 5 3 5 7 5 6 7 5 6 63 98 1 3 0 8 8 6 V I 5 3 5 3 5 030 0 3 0 6 2 9 7 900 9 3 0 V16 3 6 36 2 5 3 2 5 3 65 1 0 2 929 182 9 5 , 5 3 7 197,719 V17 23 23 4 0 6 4 0 6 58 82 919 3 2 5 8 4 , 4 1 8 166 , 7 4 3 Y 7 4 6 4 6 3 7 7 3 7 7 169 216 7 3 9 116 of milk remained the same i n both s t u d i e s . Since at four months a considerable f r a c t i o n of the t o t a l energy int a k e had been c o n t r i b u t e d by m i l k , the c o r r e c t e d cumulative energy i n t a k e s are only 12% lower. At s i x months, where the milk had been a much sma l l e r component of the t o t a l feed i n t a k e , the cumulative energy i n t a k e s were \K% lower. I I . V a r i a t i o n s i n N u t r i t i o n a l Plane. As mentioned e a r l i e r , the d i f f e r e n c e s i n the l e v e l of energy i n t a k e over each i n t e r v a l are of major importance i n t h i s study. Since the s i g n i f i c a n c e of a c e r t a i n energy i n t a k e depends upon the weight of the animal at tha t time, cumulative energy i n t a k e alone i s of l i t t l e value. I t i s necessary then t o f i n d a method of expressing energy i n t a k e i n r e l a t i o n to body weight. The energy requirements of an animal can be expressed i n a v a r i e t y of ways. The most f r e q u e n t l y encountered reference i s t h a t of 'basal heat p r o d u c t i o n ' (B.H.P.). Conditions f o r measuring t h i s have been discussed i n d e t a i l elsewhere (Brody, 1945; K l e i b e r , 1961) and w i l l be mentioned only b r i e f l y here. The two c r u c i a l p o i n t s are tha t the animals must be i n the post - a b s o r p t i v e s t a t e and must be p h y s i o l o g i c a l l y quiescent. Another reference i n frequent use i s 'maintenance heat produc t i o n ' (M.H.P.). This i s the energy expenditure of an animal that i s being fed at a l e v e l to j u s t maintain body weight. The magnitude of M.H.P. i s estimated to be 2 x B.H.P. 37 ( G a r r e t t §_t a l , 1959). A t h i r d reference p o i n t t h a t may be encountered i s the l e v e l of feed i n t a k e of a growing animal on u n r e s t r i c t e d feed supply. This i s approximately 5 x B.H.P. ( K l e i b e r , 1961). I t i s evident t h a t i f the l e v e l of fee d i n g o f a growing animal i s expressed as a m u l t i p l e of b a s a l heat p r o d u c t i o n , the r e s u l t i n g f i g u r e w i l l f a l l i n the range o f 2 - 5 x B.H.P. The m u l t i p l e o f B.H.P. was used as the b a s i s f o r d e s c r i b i n g energy i n t a k e s i n t h i s study. The method was used w i t h s a t i s f a c t o r y r e s u l t s by Leche (1964) t o document the energy i n t a k e s o f young growing c a t t l e . B l a x t e r and Graham (1955) have pointed out t h a t the use of m u l t i p l e s o f B.H.P. i s not a v a l i d e xpression o f energy requirements because the amount of energy going t o a p a r t i c u l a r need i s not a constant p r o p o r t i o n of the t o t a l energy i n t a k e . However, as long as t h i s i s used s t r i c t l y as an index of energy i n t a k e and not as a measure of any one energy compartment, i t provides a convenient r e f e r e n c e . B.H.P. i s most commonly expressed i n terms of body weight. Brody (1945) d e r i v e d the f o l l o w i n g equation from a c o n s i d e r a t i o n o f the metabolic r a t e s of mature animals r e p r e s e n t i n g a d i v e r s i t y of species and body weights: B.H.P. = 70.5 W°/73Z<- C a l o r i e s per 24 hours; kg. or r e w r i t i n g in.pounds, B.H.P. - 39.65 W°* 734 C a l o r i e s per 24 hours. l b . 38 These equations g e n e r a l l y a l l o w a r e l i a b l e e s t i m a t i o n of B.H.P. f o r mature animals of any body weight. This constant r e l a t i o n s h i p of b a s a l metabolism to weight r a i s e d to the 0.734 power i n mature animals cannot be expected to apply, and does not apply to r a p i d l y growing animals. Brody (1945) described the weight r e l a t i o n s h i p of B.H.P. i n young animals of s e v e r a l species and i t i s evident t h a t there i s no simple expression of t h i s r e l a t i o n s h i p i n the young as there i s i n the ad u l t animal. Each species e x h i b i t s a d i f f e r e n t p a t t e r n w i t h the B.H.P. of some being higher than that p r e d i c t e d by the adult equation and others being lower. Much of t h i s v a r i a b i l i t y can l i k e l y be accounted f o r by the d i f f e r e n t degrees of maturity at b i r t h . Although B.H.P. f o r young growing deer has not been d e s c r i b e d , Nordan et a l (1970) have measured the r e s t i n g heat production of these animals. They argue t h a t s i n c e , by d e f i n i t i o n , a growing animal cannot conform to the requirements f o r measuring b a s a l heat pro d u c t i o n , another term must be used. Re s t i n g heat production (R.H.P.) as defined by Nordan et a l i s measured on a quiescent animal e i g h t hours a f t e r i t s l a s t f eeding. Under these c o n d i t i o n s , the heat production w i l l be above B.H.P. and, because of the r a p i d growth r a t e , should a l s o be greater than M.H.P. Since B.H.P. i s being used here as the b a s i s f o r the expression on energy l e v e l , an attempt has been made to use the R.H.P. data to estimate B.H.P. of the younger animals. Nordan et a l described the R.H.P. of growing male deer by the f o l l o w i n g equations: 1 . 3 - 1 0 kg. ( 6 . 6 - 2 2 l b . ) R.H.P. = 1 1 2 . 7 W ° - 7 6 = 61.9 W ° - 7 6 C a l o r i e s per kg. l b . ^ 2 4 hours 2 . 1 0 - 1 0 0 kg. ( 2 2 - 2 2 0 l b . ) R.H.P. = 1 6 4 - 0 W°- 7 3 = 9 2 . 3 W ° - 7 3 C a l o r i e s per kg. l b . 2 4 hours. I f the assumption can be made that R.H.P. i s a constant m u l t i p l e of B.H.P. as i s M.H.P. and maximum feed i n t a k e , then the comparison of R.H.P. and B.H.P. over a weight range where both can be measured w i l l produce the necessary f a c t o r to i n t e r c o n v e r t the two. Equation 2 expresses R.H.P. as a f u n c t i o n of body weight to the 0 . 7 3 power. That i s , over the weight range of 2 2 to 2 2 0 pounds R.H.P. i s a constant m u l t i p l e ( 2 . 2 6 4 5 ) of B.H.P. Assuming th a t the R.H.P. described by equation 1 i s a l s o 2 . 2 6 4 5 times B.H.P., an estimate of the B.H.P. of the fawns i n t h i s weight range can be made. This a l l o w s a comparison between B.H.P. of the young growing fawn w i t h t h a t p r e d i c t e d by the adul t B.H.P. equation. I t i s now po s s i b l e to begin to derive an index of plane of n u t r i t i o n that w i l l apply over a l l ages and body weights encountered during the experiment. One equation f o r the expression of B.H.P. can be derived so that the i n t e r c e p t remains constant and the weight exponent v a r i e s to account f o r the change i n the p r o p o r t i o n of m e t a b o l i c a l l y a c t i v e mass w i t h change i n body weight. From t h i s equation the energy index can be determined simply by d i v i d i n g the energy i n t a k e per metabolic pound per day by the i n t e r c e p t 39*65. A problem a r i s e s i n t h a t the two equations of Nordan et a l are discontinuous at 22 pounds and t h e r e f o r e cannot be f i t t e d by a s i n g l e e x p r e s s i o n . In the o r i g i n a l data, the re g i o n between 15 and 30 pounds showed considerable v a r i a -b i l i t y and i t was obvious t h a t the .slopes of the two l i n e s were being governed by the data over the remainder of the weight range. Because of the v a r i a b i l i t y , i t was decided t o use equation 2 above 30 pounds, and to make an approximation t o the data below t h i s weight. B.H.P. (R.H.P./2.2645) f o r the fawns was described by the equation B.H.P. = 39.65 W3f, C a l o r i e s per 24 hours. l b . Using t h i s equation t o approximate the metabolic data o f the deer (Nordan e_t a l ) gave a value of y = 0.734 - 0.00012 (30 - V/) 2- 2 from 6.6 to 30 pounds, and y.= 0.734 over 30 pounds. The range of 'y 1 i s from 0.60 to 0.734 (Figure 2 ) . The meta-b o l i c r a t e described by t h i s e xpression i s compared with that d e s c r i b e d by Nordan*s equations 1 and 2 i n Figure 3- The R.H.P. was d i v i d e d by 2.2645 to compare to the B.H.P. equation. Figure 2 Variations i n the Exponent »y* Required to F i t Heat Production Data of Deer When the Slope, 3 9 . 6 5 , i s Held Constant; y i . e . , B.H.P. » 3 9 . 6 5 W l b . 42 Figure 3 Resting Heat Production of Deer Described As a Multiple of Basal Heat Production; y i . e . , R.H.P. = 2.2645 B.H.P. = 2.2645 (39.65)W l b . Although the new equation does not c o i n c i d e very w e l l over the range of equation 1, i t does f a l l w i t h i n the v a r i a b i l i t y of the data at these body weights. In order to d e l i n e a t e the three energy regimes i n t h i s experiment, t o t a l apparent d i g e s t i b l e energies f o r each i n t e r v a l were expressed as C a l o r i e s per u n i t m e t a b o l i c a l l y a c t i v e t i s s u e per day; i . e . , B.H.P. = 39.65 C a l o r i e s per pound^ per day. The f i g u r e r e s u l t i n g from t h i s c a l c u l a t i o n should range from 2 t o 5 times 39-65 or from 79.30 to 198.24 C a l o r i e s per pound^ per day. The t o t a l energy i n t a k e over an i n t e r v a l can be d i v i d e d by the number of days i n the i n t e r v a l and, by the average metabolic body weight over the i n t e r v a l . D i v i d i n g t h i s q u o t ient by 39.65 leads to the 'energy index', a dimensionless number which should f a l l between the l i m i t s of 2 and 5. In the c a l c u l a t i o n of the energy i n d i c e s f o r the animals i n t h i s study, growth over each i n t e r v a l was assumed to be l i n e a r and a mean of the logarithms o f mean weekly body weights over that i n t e r v a l was used i n the c a l c u l a t i o n of m e t a b o l i c a l l y a c t i v e mass. In the experimental p l a n , i t had been proposed that i n each time i n t e r v a l the l e v e l of f e e d i n g could be high (H), medium (M), or low (L) according t o the f l o w sheet i n Figure 1. For s e v e r a l reasons, r e - e v a l u a t i o n o f the regimes was necessary. O r i g i n a l l y , 'M' and 'L' were based on 85% and 70% r e s p e c t i v e l y of the average ad l i b i t u m , or 'H', feed intake at a given weight. The v a r i a t i o n w i t h i n the *H1 treatment was great and i n many cases t h i s treatment approached l e v e l s which had been o r i g i n a l l y d efined as 'M'. The average 'energy index' f o r the 'H' treatment i n i n t e r v a l s 2 and 3 was 4 . 1 7 -'M' plane de f i n e d on t h i s b a s i s would be 3 • 5 4 and 'L' plane would be 2 . 9 2 . F u l l f e e d i n g should have r e s u l t e d i n a maximum 'energy index' of 5.00, and some of the 'H' fawns d i d reach t h i s l e v e l . Since i t was not p o s s i b l e to consider the plane of n u t r i t i o n as a continuum, three d i s t i n c t ranges o f the energy index had to be de f i n e d which would i n c l u d e the v a r i a b i l i t y i n the l e v e l s o f treatment f o r a l l animals. The range of the energy i n d i c e s c a l c u l a t e d f o r a l l i n t e r v a l s and a l l animals was from 2 . 4 2 to 4 . 9 5 • T h i s range was a r b i t r a r i l y d i v i d e d i n t o three i n t e r v a l s by t a k i n g 5 as a maximum and l e t t i n g any values of 80% of t h i s or over ( 4 or above) be defined as 'H', 60% or over ( 3 or above) as 'M' and l e s s than 60% as ' L'. The n u t r i t i o n a l treatments of the experimental animals, re - e v a l u a t e d i n t h i s manner, are shown i n Table 9 . I t w i l l be seen t h a t the o r i g i n a l plan has been d i s r u p t e d , and e v a l u a t i o n of the treatments made more d i f f i c u l t because of mis s i n g treatments or s i n g l e animals per treatment. The f i r s t time i n t e r v a l has provided a considerable problem i n a n a l y s i s . During the processes of adaptation to c a p t i v i t y and of weaning, v a r y i n g degrees of unpreventable Table 9 . Re-evaluation of energy i n d i c e s and regimes of l a b o r a t o r y - r e a r e d fawns No. Energy Index by I n t e r v a l (Days) Regime 0^49 50-112 113-175 176-259 260-122 Males U 7 3.61 4.21 3.83 MHM U 6* 3-69 4-31 4.03 MHH U15 2.77 2.43 2.84 LLL U 3 0 2.87 2.42 2.81 U33 2.21 3-72 4-05 LMH V 8 3.10 4.15 2.83 MHL V10 3.08 2.53 2.68 MLL V l l 4.29 4.90 HH V12 2.96 2.76 2 .99 LLL V19 2.74 2.65 LL V20 2.87 2.92 LL V21 3.26 4-32 MH V24 2.97 4.19 3.59 LHM V25 2.92 2.79 3.83 LLM V26 4-05 3-98 2.82 HML V27 2.87 2.62 3-54 LLM V28 2.87 2 .94 3.80 LLM X 4 3.26 4.24 3.95 MHM 1 See page 43-Table 9. (Continued) No. Energy Index by I n t e r v a l (Days) Regime 0-49 50-112 113-175 176-259 260-322 Males X 5 4.76 3-60 3.53 2.98 3 .21 HMMLM X 6 3.15 4.95 2.98 2.91 4-71 MHLLH X 7 2.88 3.93 3.73 3.07 3-45 LMMMM X 8 3.13 4-42 3.01 3.05 3 .10 MHMMM X 9 3-34 4 . 2 8 3-04 3.01 2 . 9 9 MHMML X10 2.85 4.43 3.97 3.06 3.11 LHMMM X l l 3.54 4-72 3.30 2.94 3-85 MHMLM X H 3.32 4.44 4-04 2.96 3.09 MHHLM X16 3-46 3.95 2.99 3 . 0 9 3-84 MMLMM Y 1 3.92 3.46 3-16 MMM Y 2 3.15 3-55 MM Y 3 3-13 3 .26 MM Y 4 2.84 4.06 LH Y 5 3-54 3-32 3.16 MMM Y 6 3.09 3.61 MM Y 8 3-19 3-54 MM Y10 3 - 5 1 M Y l l 3.97 M Y13 3-60 4 - 2 3 3.54 MHM Y21 3.66 4 . 5 0 3.97 3-36 MHMM Y24 3.60 4 . 2 1 4.01 3-49 MHHM Table 9- (Continued) No. Energy Index by I n t e r v a l (Days) Regime 0 -49 50-112 113-175 176-259 260-322 Females U 7 3.16 4-59 3-52 MHM U l l 3-48 3 .99 3.75 MMM U14 3 .69 3 .81 3.80 MMM U32 2.82 3 .20 3.18 LMM U38 2.91 3.08 3.14 LMM V 7 3.70 4.38 MH V 9 3 .08 2.89 3.07 • MLM V13 3.95 3-94 3-65 MMM V14 3.05 2.62 ML VI5 2.99 2.67 LL V16 3.06 2 .66 2.98 MLL V17 2.07 2.58 2 .84 LLL Y 7 3.55 4.96 MH r e s t r i c t i o n s of feed intake have occurred. In f a c t , the most common treatment must be c l a s s i f i e d as 'L f. It i s possible i n most instances to regroup animals f o r analysis of.the experimental treatments, but differences between f i e l d and laboratory fawns caused by t h i s early r e s t r i c t i o n remain an unknown e n t i t y . This problem w i l l be encountered l a t e r i n attempts to evaluate the n u t r i t i o n a l planes of wild fawns. I I I . Variations of Body Weight with Cumulative Energy Intake. The v a r i a t i o n s i n body weight with cumulative energy intake were considered at the end of each i n t e r v a l . A l l data were included regardless of the pattern of treatment. Since each animal contributed weight data at every i n t e r v a l up u n t i l the time of slaughter, more data points are a v a i l a b l e at the younger ages. Figures 4 to 7 show the r e s u l t i n g graphs of weight versus energy intake. I t was possible to f i t the data at each age with a l i n e a r regression l i n e . The derived equations f o r the l i n e s of best f i t are as follows: 49 days Y 112 days Y 175 days Y 322 days Y where Y •= body weight i n pounds X = cumulative energy intake i n C a l o r i e s x 10"5(A.D.E.) = 6.723 + 37.012 X = 4.145 + 25.082 X = 4.627 + 17.286 X = -26.463 + 13.62 X s y x = 3.05 l b . s yx 3.05 l b . V = 3.53 l b . s yx 6.22 l b . Figure 4 The Relationship Between Body Weight and T o t a l Energy Intake of Laboratory Reared Fawns at 49 Days of Age. • i l l its Figure 5 The Relationship Between Body Weight and Tot a l Energy Intake of Laboratory Reared Fawns at 112 Days of Age. Figure 6 The Relationship Between Body Weight and Total Energy Intake of Laboratory Reared Fawns at 175 Days of Age. Figure 7 The Relationship Between Body Weight and To t a l Energy Intake of Laboratory Reared Fawns at 322 Days of Age. 53 In terms of the animal producer, t h i s i m p l i e s a constant feed e f f i c i e n c y . The r e s u l t s are i n agreement w i t h those of Winchester and Howe (1955) who found t h a t c a t t l e , which realimented a f t e r 6 months o f r e s t r i c t i o n , took the same amount of energy to reach 1000 pounds as d i d u n r e s t r i c t e d c o n t r o l s . Although i n the present work a f i x e d i n t e r v a l o f time was considered r a t h e r than a f i x e d body weight, the constant feed e f f i c i e n c y p r e v a i l e d . The s t r a i g h t l i n e r e l a t i o n -s h i p w i t h a high c o r r e l a t i o n c o e f f i c i e n t provides a reasonable e s t i m a t i o n of cumulative energy i n t a k e i r r e s p e c t i v e o f p a t t e r n o f r e s t r i c t i o n . A l l o f the data considered so f a r have d e a l t w i t h l i v e body weight. Since much o f the f i e l d data are a v a i l a b l e o n l y as e v i s c e r a t e d weights, a conversion t a b l e has been developed u s i n g l i v e and e v i s c e r a t e d weights of l a b o r a t o r y animals. The f o l l o w i n g percentages r e l a t e l i v e body weight t o 'hog dressed' weight; i . e . , a w e l l b l e d carcass w i t h a l l v i s c e r a i n c l u d i n g l i v e r and kidneys removed. Age No. of Animals E v i s c e r a t e d / L i v e Weight 49 days 3 69 percent 322 175 112 13 24 10 69.2*1.59* percent-73.0^1.56* 76.5 +1.33* *P = 0.95 The a p p l i c a t i o n of these conversion f a c t o r s i s extremely-u s e f u l , because c a l c u l a t e d l i v e body weights are then expressed i n terms of l a b o r a t o r y weights. This avoids c o m p l i c a t i o n s due to d i f f e r i n g c o n t r i b u t i o n s of rumen weight when the animals are being fed concentrate r a t i o n s as opposed to when they are being fed forages. The i n c r e a s e i n d r e s s i n g percentage w i t h age agrees w i t h the f i n d i n g s r e p o r t e d f o r many animals (Jackson and Lowrey, 1912; Hammond, 1932; Palsson, 1955). This i s u s u a l l y e x p l a i n e d on the b a s i s t h a t v i s c e r a have reached a r e l a t i v e l y high p r o p o r t i o n of mature weight at b i r t h and as growth proceeds, the r e s t of the body assumes a l a r g e r f r a c t i o n o f the t o t a l mass. One would expect a s i m i l a r increase i n d r e s s i n g per-centage i n l a r g e r animals at any one age, but sample s i z e s i n t h i s study were too s m a l l to demonstrate such an i n c r e a s e . Live body weights c a l c u l a t e d f o r f i e l d k i l l e d deer i n t h i s study are shown i n Table 5 and t h e i r cumulative energy i n t a k e s are estimated. In a n t i c i p a t i o n of the f u t u r e use o f i n f o r m a t i o n from hunter k i l l e d deer, l i v e r weights have been recorded so t h a t c o r r e c t i o n s can be made upon the weights o f animals t h a t are brought to the checking s t a t i o n w i t h the l i v e r s t i l l a ttached. Head weights were a l s o recorded, i n the event t h a t these would be removed a l s o (see Figure 8 ) . IV. S k e l e t a l Dimensions of Laboratory Reared Deer. For each of the s k e l e t a l dimensions d e s c r i b e d on page 28, Figure 8 Figure 8a. Changes With Age i n the Liver Weights of Laboratory Fawns. Figure 8b. Changes With Age i n the Head Weights of Laboratory and Wild Fawns. a graph was constructed r e l a t i n g the magnitude of t h a t dimension to cumulative energy i n t a k e at 112, 175 and 322 days. F i g u r e s 9 t o 50 show these graphs. A l l s k e l e t a l measurements have been t a b u l a t e d and are i n c l u d e d i n Tables 10-56 (pp. 100-146). The treatment of the data at 112 and 175 days w i l l be considered f i r s t . Only a r e s t r i c t e d number of treatments are i n c l u d e d at 322 days and these are best considered l a t e r . ( t e x t continues on p.147) Figures 9 to 50 The Magnitude of Selected S k e l e t a l Dimensions i n Relation to T o t a l Energy Intake i n C a l o r i e s of Apparent D i g e s t i b l e Energy: Figures 9 to 22 Figures 23 to 36 Figures 37 to 50 =- at 112 Days; -- at 175 Days; — at 322 Days. 57 58 59 60 61 62 63 64 66 68 69 70 71 M i l i i ; ;:: :§ I S I S WW III- S i S- E S m I S E r -•:.:::j.::.i. E i i J E i - S E -:Sx iii ; E E E l i i i " - ;EHTE-i i i i i E i ' X'T E i i P . : . : E i ixi i s .JXj; J EXE - : :4 iii: : S i " -::xx .. .1 - S I i l l M 44- i.tS- i.E: E i ' - S l l i S i E S i j l - ST - E E r-j E E ' i i ; ; • • i i i i t i:E x:±i : i i h s : x.:4. i E . E E E r : : - l : E " S i - i i i - S i ijXXX - I — - : . . . . . . E i i T.t;: :: I: S tS! i SSI • :::;p x-p E E 1ii i i;ii_ E E . r x : 31 ... ' 1 E i i i i : : ix: iS i i i : :: 4: :ni . :i E ' E E — ..t . EEi I p.:: it:: Si i i i -E i i i i . T E - :::::.- ::: - EE l : p :;:::: EE P E 4:44 •H-ft i E - 4x51 •ii4 - 'rri-:::r E E " T P T x£*: J E i ; . i i i i E E 7.1 j't E ; i E i ; . i i i Xtji E E :'-4: E S X.I.'T :.:p 4xir xr,::. i E i Six.x 3.; T E t S|i ; ' S E 'E .3E J X ' P E S i i i i iii; E.E .liXJE; i S ii-E lE.i E i . i i i : E E i f t i - " - T E E EE: •444: TET S E • i S 44x; : E 13s • i r a i l £ ?Si "•••E-t I S FC MN E;E .:x4x -ti l l .x;-'4 rx4: E i - i i S :4.i "iilx S - j::P. :;;E EE rrf' EIS i i i . . S i --E X : x t r i - x p ; . E;.; E i ; -4^-1 I m xr:::: B E "i :S :l " x E n x : TXTT -t-tp | S i .:x:'i. EE; E X — T " i:« :S if - -— E E 1ST x44: :L_I.LJ S i — S i I S i ; i s i -.SIX i S .-( • « :.':E; ' r EE E E :irp - H ; - ±pri i~z 6 E C ti'„ !ir i ; ; TTT> EEE ;  r x i : S i TTTT i p x iixid X J X E 4xix -JXi; E-r": E E S i ; ; ; 4 'S - {-ft:: i -IS J EEl EE: S E EE S : l ;gg S i 4T T T J X J E © i . . . . . . . . 3 X S i E i ::xp : S : E : P " E i E S :4ix E i x t t t i E E E S i S :rl4x 4Ex x i x l m :Lx." E i i T S i / C :rxrx ->•- S ^ Tikis' S i E.E S j i s E S +PX - _ i f S j i S E TXP. i i f i xxS 4x:x - ^;-;S r iE E:4x St 4xx: — 4xp xxt: E E E E x x r EE; i i i i 444.X E 3 i S i r 4a.rr £"1 E E E E -i-E E E T4T T 3 4 g i .144:: I X J : .xrlx-S i - - '53 t ; t i I S S T . . . . . . r S S T i a p S3 :.Tr4i S i ; •X: E ! r i i i i i l l ! i E S t I i i 44 ; i i i f i :rrxr 4xpr : r t i i -H+i 4 4 E : -S E E -g a t n i i i i f S i SB ~EtF I1ES_ frrx E i . . i4-:4-"jSX S E X - T X E E x:4": 4 S pxx: s^ H ia> s;;j TTXX S 3 -H-i : 4 4 i - • ["T ' r t i " E i x t t x l T T T X S S X J E _ E -x p x i j E -. u + L 44±f E S S T :p±t x i z r S i -V-U-x_ -r-^XT •r-r-r-r E i i x t a 4444 4 'E i s r H i ix+i ii.tr V i c 4-i-iS I I S T 44±4 • i o . 3 3 t t x r F S 444? X J J T E E T+i-i -.-p.. -H-f-H - 3 :-T r-t -;<K: t i l l m SIB : ;ES 4±tt xixt TS - H E i S s £ TTtr t -1--J- TE S i 4 i S : 4E-i E E S i -x!4:: E H : -TS -r ;-Tr i S F S* i * e i ills B<3 le" 3 3 -i-H-r J E i : xi;;-ixxx :xxx E E +H+ i i i i E E i n - " 3 3 - i x p : :p4p -jxfi \ : f e : 4Q*. xpxi . . . . T X J X ? t E 4-{E i i s — - 7J-E E E xrtp IS 4:4XL -H-rr-i S S i i j T j -j-f'E- 4 E X x 4 i t Trf- j-u: xrtx -r-i-R- E 3 r S i 3 3 E g S - 3 3 S : E r -r-t-H-4-Ji ft* i i S T -: vf-f 'T3X. -jf—f- H 4 + #s "-t-i-r-* J--x ±44x S i 44r-p S f i S ; -i- i :— S i f i S EE x n r "Bxi 4i4i i i i -;EEE E E : :4i ~ T I : IS E S SE : . : E - ::xxr XIXt P '--f-H-j-±te -- *-ICE-:o>: -Q4 S i -t-'-H - H - T - E Sf-r;-.ii+pJ •H+H . ~ V -'i-'-p-444+ 4-i.P: •}B+ E S ! : t r j t i ±i-1± S S E — -t PS E T : --prft-S . X -i-iix 4-!-j-T-- o U i i Ett .LliU. 1 ' - I TT1T -H-H-IXtTj E i + ?s 11* 4 i S E-J-H-s S 1-Si S;x r E S EE-XJTX r x p i -•-Er E f i -T-fPf I I S S ; : i S -<—rl * P t -H-H-S i •H-J+-tttt i i i i S i S t pj-x!-S 4 I S i i i r ±m; 4±g- i S -pxp 3 E l i t ? -EiX -i-;Xi-• i 44.44. xxp: t s Ei-rj & S i -rl-i-t-E X p xrp 3E: E E -4xix - ~ 3 3 i S i E r r I S s_ E i 4 i E S H-'-i-t-_xr. -* l i& m m i j i f c S ^ S X •j-t- • 3 — E l ; xxa: S g ; s$ 1+u.l. i i S 4ixi: Xii a s a : . c iJE:' j j.! l-- ; E - + -=r -m + E x r SiTt" S i : X 4 T ± T X 4 X TTXI TtS-m iiii: * t i i • i~ ;T. i S i s* XTTX E E StJ ±t3± XXIX 4 x i i S s i f P S s e i i -•-t-H i S XtX;-Xpp. # 4±r-;-E+i-i i i i riiS —r E E ; 4-m-H-jx m l i s i S * # L|x;i 4 S H # t S f f +(11S t i S s f f E E l+B S i f n p r i i E E : E-i-l-^ S S EH m 3S 1 - T S t -rf-j+ 443X s ± tm- •Ui l|Es =" xrH-xnx. --T-H- E E i 4444: TITX •-~- r ' ' +tit iSr -H4--T T H - SS I S i S 3 ' S I S T nXit: xi.rx E i i i •-i-1-r pfcsr CO: :p-if-T# S f .tfjr ftl4: E E : -mi ±t±t w S J Set --Xi. 4 - - M -i T i t xrcs Xi4";: r,"4 S P 4 x 5 ±nx x i i p E — -ts X I X I : S 3 T j s ~ I .;4ii. .p j... - t i p E t e X G X - I I ; H - S-f---.i±J4: x4xE :ixxt ± 2 i x : E —;^4. H - M -i S i j t x S i rxrr] / t-"-T — r — T", J T O <f+rr 4/tt > E S i SjffX : I L ± " E i i : S i S i i E E E E : E ^ i i i i '^ 4xT: 3iS:. x4xx — L X I : i i 44jS 4 4 E 3? TOX 44-iT 4 3 4444 • i3T; Err-:: T.uX x i i i ; S "AT-P'P" - !EJ-:SiTi ixp4 E E x i r j . +!--- G TXP-S i ^ S S x t r i T 4 3 4 i f i i i i J r S Wf S 3 S i 4ptt S i ; rph: -•'•= X ! E -; S E X : 4-4E: -h L i - i -S E 144T. • S i S i •X4x : I E XTtit'r i i s ffif 414-p i i i TTpj: iH.i: iri; ? "C a v x4pr s--; 444± .4114: -i+J: xi44: i f S xi:4: izii: - E E X E p ; E E-S p p x T • T • S | 444:4 i i . E EE: S i < r E E : : xr-xixiTp rrrrjpiXL S s XJ-p: E + E i f i i ' i - i 3 3 SEp & s vie xxr: E E xHi 4x4x E E EjEt i E i :4xr a l I S S E S i x44x xtix T:p:i ::x:- i S E i i ? iiii' 4xi:T xper •frj-t-!.pr: i i i i S x ±?4T ie;i i - E i : 0 .TftlJ -Jx:: ::E- S i r E i !x:x i S E E E i x S i EE; S i EE: S i ; 4.!:ix xxii: FEE S i S i no ieEr i i i 4T44: E E rpp: a s E E : i i i i HE 4 E X -rph" :xh EE: E x 4.444: i E ; J E i EE E i i I S a-UX i i i i 4xip S T E E rpp: S I - P":X : : . : : i E i H'-i-i- xxxr iiS EE:]: 1:1x9 Sx S ; i ; f ! 3 I S x!44: S r ip4: I S iiii. i l s I X I E H i i S i ; S i ; EE : : S : •E EE; xxrr i i i i i S x;x;: ilpi: :4~: :E i I S ) ••• B i t E i E i i S i E i::.E S I i E i I S ' i EEE: i: ! : : : : ; K J.PX J E S S :|3 :.r;.r E x r hip-. i x i n 4:P::!::::'X :x.:::. :r::r i S i i i i; i:E- :: •». EE i ' ; E : 'xxjxtx^ E i S i S t | | I P I Siii ni 111 J f If P i tia l O C K :4xx x j 0 I :4::x If - 3 ;i ::a| S i S j ; S i . S i i S mm E i i S § •p.TJ: • i i i : • i rr :i:1. ^xxr :.pjp::: ;:!.;.: I.;! !.: E i j i i E pjfe S ; E i i i -.p: SS i x i r i E i txH ; s S j ; ' i i i l i | i s -m. !i;;:i; 1 1 ; i r i " •ii-pix S i :: i p E i i i i i ' i i i ' : i i i i :::; 1 S •;| i n : | l S -i i i X i i x E : E x i - S S i i E E E E i E i S S Hi ;-|4- ! p. x;xix; ::: ETJ::-'; . E E E i i E E . ! : : '.i:i i i i r . lxi _ E i s i S Y n l i • • • 1: i * • 72 73 75 76 77 78 79 80 81 82 84 85 86 Lpijlip:! I p . ! l 3 . f i i 3 ;ix J t i . ; •; % 3 ; . : : 1 m | i l ! in. i !i! 3 313 : i : | f H-j 1 ::: ] i i i i ! ! • ' [if] 131 I iiV \ 3:3 3 1333 : P | P P . - : 3 1 3 . : 3 l 3 : 333*i i p -••]:;-: p : i 1 •33- 3 : . i . : ; i in i i.i'E 3 t p 1 i i : : l i -; 23:3 - i i 333'. : . ! ( ! . .1 11.. . i \t\ -\ HT •  i f - 1 ' - ;i: 3 •li: 3 3 ! 3 : ~ III : i l l 3 333: 333 3 33: 3 3 3 3 3 3 p$- 333: T f l " r 3;| 3 I l l 3 3.3^;* pif 333:3 a r ~.r: :3;ii j H i .1 333-3 llf1- F 3 E T;.r 33:: ! 33313333 3 ' P : P ' 333' 3 i ~ t i - 21'-0 ? ;33 ; I'll : 133. : 3 3 3 J 3 3 3 3 . : rii:r 333:3 3 3 3 - ^ 3 3 3 3 3 t : : 3 333.P 33]i: 3f; i . P : 3 33.3 3333.53 r : : i r x : 3 i | . •-i t i : : x i . 2 3 : iii •33:3 33333 131 ; "•' : : : - - ; " t •' .333 3 333; p - x::t. ^ j i . : t i i 3 3i;3:. 3 3 : ; . . - E : x : iii; i *'..[ sii- fix" -17. C> L ! 3 ' j * i t : t i t : 3333: 3333 3 j t ; : - t | -3133:3 33333 3 "i.pi. i l l ' : i t ! . : ;-U*l I it; ^ ' t i n : : • 33+31  3 ? r j x t n . i . L. 1... E 3333 i - t r ; : ; : l!l: i + r ' ::x:. : i i i : . 3 1 t 3 3 3 ; " 3 3 3 : : Sir iU! RU 333 • jp: . T P Jirji: 3 t i t If.1: . p . i : ' 3" - : — i x : i : Si; ill 3.3:jl i±; t!3i: 2i : * P : : 33133 3 : ; : E t •".III3 r:- • • t i t . r x i x 3 - i * H • r*^- : :::.: 3 3 3 : : " r " : : 3:33333 P P : : 3313': "333 3 333:3 •3333" 61; 3 p ; 3 ^ t *• 113 : x t t : _P_|T; •: : p p : 33333 13|3: :133b1-i j r t : p i : X J i " -X 2313 33; =g X P : : : x p ; : • ~ . p i t -T ? r -T l i i l •t-K- • --3 3 t 3 33333 : t : t t r* M- -X'3l3i. 3 3 3 ' : si 3 333" t p • p - . ril: is; :yri . t i r 3 t t t : .T-T-j - IX"* 1 1SE: 22.3 33x3 E E t E „ -331. "3ff: - £ . 1 . " t . ' tT . . 3 3 3 : :ltz : 333: 3 . : — . — J33 t 3 3 : 33333 t n : : ife: 1 3 3 " pm 333'; : ;E : H*: : 30: 33 p j * 3 i j i " 3 3 1 S i ; 35; •SS 3 3 1 ; : 3 2 1 . • 3 3 ? - 4 4 ± r :rjn: a t : : ' 3323" -t-r-l-"3E33 • : : : ritt: P p r t t • j ± t : 3^ 4^53 15- '333. x3i:3 Hi: "TO. r - xSi" 3§i i S i i i : p x - p - - :Ej;- r::i ' i t ! : dp: 3333: 3 3 3 3 333i 6: i h r . t-i r-p p -O 3^.ri: . t j x •33333H3: S t ixtx i p : i - ...... X ' E I . i i : x l x -I . . I . . P i E If •±r4-" B3:3 3 t i _ . 1333 : i - : i 3333i >— " t : p x x I—Li • " F H " 33i : ± F d ' i x t : t i i : i t xj33|3F33 1'i ,43!T- _ X XtpE 3313] 33333 x E J i ;;:: r i ^ " 1_C SS j— ;ri:tT L t t T . si p t : . t333|i 33:33* ::0;P3' s? 33333 t i p : !--• - ^ 3 l : i : SI H333 l i x x t •iii 22: : r i -p i : i : E33EE 3 H 2 i i i i - 33333 §313 2 3 3 3 4 3 3 3 -S3 p p 33333 m ni ip"- isl; 3333-33333 t p i i " * . p x P i t I j l i i r . ; ; • t r f l dt t p x x i t t i x t t H-?3E 2 3 3 3 + ~ 2 : T T - r r tpT. iX4j: 1 333EE .t.i-i-i. i p i • -; - r p -:333x -*-t-r fef 3 3 3 3 ; "\i _ IS? : n : : : 433-1: f 3 4 t ± Pt B E 2 3 3 | 333333 17 3333-ifej t a ± p p x i P t P p : i 3 S -t-H-t; I T ' SI iii p p . H i t 32 ? : ; i f p 3 3 x i ^ t • i P i XjX i-H r " i r f e " Si x n x z -33 31 x x q : 44-fj. - ! S2 ftp1 - r :•+#- • H S v> 4> 3 3 3 B : tS Ei33 t J E T X33 ;€>3 § - r f e ~ H P P : l & - r + h -jp^ : i i t t T - i l T i J - i - H -- T f p - ' t p t T T T i " , TT-p^ i.TP: t p t -333+ X i t l -s i * i - p , p tiStj r i i ' E r t f f i t i i i i : f t 3353 XUL 2S fet fei: P P : . . . i i i ; j j X t SS ti-iT ± j : | ± 1 41 -3 : 3 1 - 3 j S ? -3s. p-E* 2i p p p . 1 -QX O IP 333333 i x t i : I - " m T - t F t t t p ,":i:rt 333r3 t n t r ' - t t t u t -i-rt-;-H t ; ; x n r -}-H-J-S? 3333333 - ? 3 t x d . 1 •~T- ' t-w p t i - r r - r : j i x i -"33333 a . O x X l t : : 33-4i33p JiS 33333 H - f - t --f TP -~3LJ T. m XrP TTP 3333F 333} i l l X+.tu! -14 P I -tx.it :;±JT-P i t 4±JX 33Si ^ S t|3£3B l i i l f ti" i x i i : I q x p x -t-i-i-v f ~ -j-i- P - ! + • j x t p ;2S - H - i P XIXX P - 3 3 -P P " +,-H-_ 333333 XuP: . - p i i x - i i x t 33333 -nl 2f S2 Sit 0 . J . P i p x ~ ! p i t S i ? <J> i i - i i 3i3i itii # t t 3 # f ± t ± i s'c 44-;-3h A;F W ,1 : it ^% p r p -H-^T-± P ± fej-3 3 3 3 i p x 3 3 j E t J i t P i • i i " U . -f+ ;-r 3fe • H S 3tt± t i t -t-j-rl 33333 x i j i t t x j . t H t itT-3 t H * - ' • : - H t P * x P 4 ± j p - - i -3*3'if| H f e t , SS333 %m - r r - H - j ; -+ 2 | -j i " 3 2 + ••-|-t-r ±Ii£ -XXX n — _ i2* - r r H -- p n i<Bfc i t r i 3 3 1 : S3 Pi+3 p - i 333J3 p p P P Si J3±ji -P34 " • i r t 3 3 3 1 t r ^ r • x r p - 3H±E33 - H - H - -r-s i t i ^iii • P ' H . U H -" T : r 3^ 1_' • ' ' 33333 x i x . r . tfi as Pit"" ds-3 * 3*353 3E? -" 1 I -•t -+ i 4 - : m f c t . t f i •ft*+ - U 4 4 . •-i-i-i-i - r r i - r 3333 • i P T h t t t 33333!' : ; X ! : ] P t - 4 P . : . i S t j 33331 # S 333333 r F - T - i |±3+4 P P I t i f p - i t r t i *PX3: •rl - . t r ± 3 1 P 3 * p x x p - j + i ± j -a - P -"4-|-1_ 1 X 1 ± | ± I -4-J-4-4 2 3 3 33331 J -i . . . - ' i i x f p t H ---i r. O : r 1 6" - 7 1 . . . i . i . i 4 -H-f - i :F333 3±i:( t it , fen j . i . : . p ; -" P : P 3 3 3 3 - P F P P P : " i n x x i : 3133 " ~3P133 3333 t t p JI -6 x p -t t p 2 f ETEpiT . JJ+L * 3 p ... (.. i S i - EE1:LX • ~>:-- X ; . ; -q 3 . t : a ~ •3-Efc 333333 3 3 3 3 OO 1t^  W 3333 3333 X P X f c x E 33x3 i x :xp 2* i i i - t i - th "_ 3p: 3 333333:3 j ; l i d x - 3333 : - n f r : i i t . 3-:P . S :E5| O" 33:33 3-C ^3333 33x3 3)3*3333. l 3 t F • J V : " 333H -Xi-J-jl -: E i E 3 S : 3EEJ3 3 3 t i 3 ElEtEir "iii: 3-23! P P ' i : t : ±j±. - : . - : : : . f . : i : a? -333. - -t- :• 3333 33333- : ^ 3 3 3 3 3|33fe - :Eii - ± p : . XIX i f f 33333 3 3 3 3 i " -fj4"^3 1- - a i i -~ l . ; x - P P - x : i S;:x; _ : 4JE 1 1: ;3333 3 3 3 - 3333  - ± t r • :33r3 . *::::;:"|::T;: : r r i 3 33±b : ::3: 3-33333 . : § 5 : 3 @ 3 - -rt-]-' x t i r _ 3 3333: - r x t - x ; f f e i r i x " x ; : i . 3 3332 . I ; p . - i : : x -3 322 ? 3 3 S . | 3 i . . . . : 3:133 :3:: - - t r n I I +: riy" $ 3 3 " •<":•" 3 ; p *3 T I T 333 : .P.T ' : p x 3i3333: : x i n 2 2 3 j r t r — . f33* E J X T ^ : 3 32*33 433333 . . , i : : r : : 'f.tr : : : : : ; : ' • " 3H:lc :(3:£ ! r ^4- n p ^ r r ; 1") : S " ;3333 3 333333 • z x : . 333 t x ' . :E ; 3 333: E r n r : x t i . - : i 2 f 3 S i , - 2 t - -Ji r *3:3 - 3 3 t - 3 J 3 : : y r«.r:: :r^ --333 33333 z ; t : : : 3 3 33; 3333 -33i 33x3 . X ! h . : x : t : : 3 t t 3133 r 3333 3 x p 31333:3 3333 E.'^ : - * ^ * - Eji.t . ist ; x p 3 3 3 t - 3 3 3 3 3 3 3 JS t P33"i 3 33t3. 3 333^  T(:r.*.i. 3 3333 • r 3 T1X*3 333 .1*33333 ; ;: - : : p x i : 3 3 3 3 x 2 " :3? j EHF:: " i - i : i t i - -. : t i i -3 L H -. : . : : : : i : i ! " (t::-;i:: • 3 5 3 "3 ::'.*:• : 3333(333 - 3333333|3333 : :3x333i3l33 •iinii:; p33j3| 3 i S } 3 3 t l i J : iiiiiii 1 x p 2 3 3 3 9 i : - •* Iii iiii! : UT 3 3 3 : 333:x!333 : S 3 J 3 3 T ^ 333  .333 -3333t333 . i t t f i : : : : : : P ' x j i P 3 SxiixxS 3 filjii 3 Sliiixi •r • : " 3 333 ; H 3 3 " : . t i ; ; £ Terc :. n . : i i : .v; iy J r 3.33333333 i 333 i^iiiijH 63S43X "I;3H:x; i6b_ ..CA. :: p : p i . : . : : ) i i ! E Sip*! - .XX : :'x: ':i;.x.E . ( - - • • P i i " t a | p . : : t ; t ! : r : 3:333 J ; \ i • ni • * — j 1 : : i 3j  ; 33::| 1 ii3 ;: :H:i : H 3 : . . : . . : : 3.3333 i:|333 Uiilll 3 333 L:;33 : : t : : ; j . : : : 3333 i: it; 3 3 33 33331 3; 333;il;33i 333 l i i 2.kf.i E 333 i : 333 : : : . ; . : , p • j i: i ; 1 j ; ::: 3 i j ] : i.M ! ' -I-P • ••: 3 33I3 ;• : : . 3 i i f l :. 3:3:3 3- 333 • .|S 3 ; 3 H t i 3 3 3 i : ? n 3 33E - 3 3 3 i 2 3 : : E 1 2; .life: i l! : !• ,i:.' -F ••• 1 « t l : • ; : 1 3 3:1 1^  1 33 i p . : ;• 333 i ' TJ ' - i 3 33 fefi • *-~'. -v- ; P ;• :.:.::q:p t - . : ii;p 3 "si • "ti"\ : . t i : : i ;i : • 333 13EH 33EJ;;;3 i 3 fll 3 3.33 : : i i vm i. ;::r;p-;: :: -. 1: 3 33' ! ' 3 3 3 : • i • • • . . ; • . : ! : : : 3 ili ....... 87 88 89 90 91 until:! i iti J i i i iii I i i i i i i i i iiili i l l 1 i l l ! Pi j ill: 1 H i 1 i l l : ! i l l i ; . ; : 1: i i i i i i n : i i i : ; j ! 11 i l l ;li~ l i t xii i i ; iiii 3 ;•;•• * • '• ; : : 1 : iiii •itii i l i : : ; M i i iiitl l i : i iiii i i i l p t i : i i 5 . ; . 2 i ; iiiiiii i i i i - i i i i i i i i i iii i i • i | | : 3 3 II I i : L i : : ! ! : i i i i i i -T . . : i i * ! i 1-' • H i ' iii i iii. : iiii i i i 1 ill i iii - H i 1 • i t ! . i i i i " i i i i l i i p p i i r 1 i l j ' .! :'ti 1 I x : : p . i . i i i 1 i l l : : i i i i i H-p-; 322.2 I I I tit i i - 3 3 : - l i : 3 3 1 T i " : : :il : i i i i i Hi: : : i : ti;: i i i i 1 i n . ; 3 3 ! 3 i l l * 1 i l l ! : ! ! * ! 1 l i i i l - 113 3 i i r i h j i l n x : :p:!i : i : 1; t'i '.I.'' H - H - •• -.- • : t\^ . it:.: iii:- : at '• 111. : " i : : i i " '• i i ill 22 . 2J!';. 1 p i i i -3 3 1 : in, _ i j - : 3 3 3 ) 3 5 - t i t •- i i i 3 1 5 i t i -i i i l i ;• i l l ' i.r.' T . | : i : - | i i : iii f iii' i t : ' . 3 3 : 1 3 : p . ; 1 1 : i : . i i i i i I p l .72: i 1 • H - 1 5 : ix: r . 3 1 -i p -i t i : ' I t i : : x r r ' 5 1 : i x i i . i i t. p.' 51: 1 X 2 " 3-3 i Jr. " i i i : l i t i i i i ' : m x:i ft'1 ..^  i Ill ; € f x p p W i : i i t i i :iir • : 1 3 i i i r - i l l " ' iii 3 3 3 ! : i i 1 l i t 3 i l l :; i k 4+1r - i i r i ! 3 t 3 1 ' r " :: p r:P iijiiiX 2 3 3|3 i t : i i i 3 1 ' i i x : P X : i i : ) : ! " 1 5 1 . 5 1 - T i i - : . i i i : . . i i i i " -iiii H i p TJX i i i i U l : : r Y = i l l ^ -j i f tji " >m > x p : xix: a . H - -2 2 i i ' i x 1 3 5 i : r H ' , x i x ~ 3 3 3 " : iiiX: i i i i i i i : H - : H - ; Pp:: xti: ji; l i f t • i l l : i i i " IHfci 1 :ip: . T S : : > V ) rv' ]? x x r p 5 1 : " -teiif 1 3 3 | : 3 3 1 ! t::;:: i i l : . : : : : IB! i iii p E : . 1 3 . x X::' 3 1 : 221 2 3 ' i i i i Trt2 S" iii TiT. I n i i " H " 2 : " 3 x : PX: 111-7 .' iii -P—- Psi ; 3 | i - 2 1 3 5 : i i i X X - * j xT : 2i.Xlil 1 Pp: : • Pi+- i i i : -i i i i i i P I T . XP i i i : ir: -Iiii" p p -, T I : ; : i i x i : . | X 2x1 S g i xp:: :i . x H".;.1." i l l iiji i i i iiiii 5 5 - -"t iiii JO P P 1 3 : 3 3 3 3 3 2 1 1 3 2 * x p p 3 3 : i i ' iiji pit xri 5 3 1 " i • • p x x : i . p :iiii iiii r t j j H i - ' i Si liii 4---P p i 3 3 - 5 1 ! 2 3 ! : - i-ii f p ;jp^  x:: 1 3 3 + PP i X ^ ' X : T gO- • H p - pi - i - i - . iri' , X 1 X •HH-2 5 - i i iH r - 4 + --1^ — m r . : r i m A— : : r h r - T i : i i - , P •44"!- i p i t 3 5 1 : 2 i S nil ; * j i Tij: p : x i 2 3 > rpt i f i i j i :4xx i i i - H - — t i i i 1 3 1 : i i 1+44- 5 H * t i l 2 : 3-ii B i t r33 m : ; : H- r - -i r ; — f p ? i r i i i r i i iii S^ 1 ill t i p PP "O i i i i i 01! n + n i p i X Xpt 3 5 : L X t X l J . x i " --•?-r; ;4-j.i. i r r x 2X-111 2i1i PP H - r H -3iT PpH- - -—-. -r H - i - i+Pi * H - H -T-fff pit 2 | i i i ? : fei r i i i t i i i p x itiil rnx -jit i r j x I I S . i xrx! 5 x 3 ; p t 3 3 ? iipi'-ix 3 3 2 3 3 t a t " I S 1129 ~t l-rt"f :H t-r p l T 2 1 1 iiii sit P H " -p p : n i x i+t-f i i i 6 i i i X i i : 2 5 ! i-t+i F t t l . H - H J P|P: 2 3 * H-P •HP T t p : — : 14--I-^-J 1 \ i4.. .4^-:-i S 2 l | 44 *4-r t i i x i i i i ; i i i 2 3 1 </>:: i 4 2-t -t .U- i -TPi itti: 5411 xrp: PP tpi iiii ~ 1 " T 2i pit'it i3ip: W lis *P:!: iiii .-pp" 32 f p t i t + t sit 5 p ! 3 3 3 1 ipix 4 + 1 + 4+P i2i 3 i 5 ! t i n t x t i x _ .i.i-i.i. X _ -5jt PP o£ x r x r u 1 . 3 t r . S i t 44 ; :• ttt* • H i t 2 t t p t p Pit Pixx H - J j ; 3 3 i 5 i Pif: ix P5 - H r x " x t ^ ^ . 4444-3 3 x t r i 4p3 i i i tiii'. j i i B i xrtr. 3 - H - r x n . x 4 - H T 4 r H -Iiii m -x i x x 4 4 - i j --j-JT-V i i — H -5 i i : tiii: m Iii i l l 5 3 -~4- t - P + + i f -J " i i i £1 *i-ir-f--t-t 2 4 t -S i il? i n i f f l i 153 -r-T-H-y t i ; 1^ i i iia 4-i-t-L —;-*-r p trii 44-1---iri±! i i i i -in: : ! x i i : i i i i t -}+ X t " " 2i x r i i xx • XPX i i i r -22 i1 " 4-H-1-iii-3-t-H-m . ; - ; - H - H -ip:i: ri H - H * J -3 3 i i i 3 ; ! 3 i i i i t t t 4 5 - | x t i i r 3 - H 4 4 -H: ±i±i-PP-: 3 3 lilt .att P ! X^P. 5 3 iiiiif iil : i i i 4 ; ^4-i i p r i i P i i t i t r i i X P X -H++ : H P i t l x E i i 333331 3 1 3 3 :i6 i i i i 444-" X T ' " T i I T T-pr-p _ i4P-x F i i i i i - r - H - H ipi-ilt 4444 . nixr!' -tr. i f 3 3 3 3 2 -- - 1 + I i 2 : W ii? X l p . i i . 3 xi-ti: tii* 4 4 4 + 3 3 2 ; H ; j_ I t 5 3 3 7 3 f i t l i iiir X T i X P T < i f i l F ;•;-!-;• tlx: i p i 5 3 1 iiii P P p p d 244-1" -H44-i l X i+ l .pp t-i-iiix: irit 2 2 * +43+ iiiifcr: m 1 4 i t t l j : ss -f-r-j-f-4 - H f - r t t t w T J J T lijP --3 7 i B r E - H - H 5 3 gH - ^ • V r W f - h i m p i l v j + • f i 3 -St o-t x l i -,4-14 -e-5 1 : , i --11C1. ± i ± r " ' r i r i T-j-ri m it5 p i f c;r ipx m -4-* xixi rftiii i f * I to; | i p i iiiii II t-X : r x r i II 22111: 4-1 i i -H-PP 3 2 U i •H-T-! H - p i xiii x: i i i i : 3 iPiit H a j H -i j i t l f c x h x p • H - r r - ! -t 3 t + l i t 2 3 : 3 B : 3 S 2 p > x p i + 3 " 3 7 1 3 3 i 2 i G 1 3 1 tin p i iix: alii i i x t 1 2 - i P P i2i 3 I E 3 i * ! i -i i l i i i i PP: xrti " P . : TPi WO -ptF XXI4 H+j t'tf: i i 1 2 2 H - r H -t n i 1 2 1 H - T - H - r ; - H H H P 444-1-3 1 3 . - H 4 - 3 0 " M 2i 2 2 - r * i i i i m il? 5 | i i i i +55 3+P :':p+ t t p xfit -m i p ' x i -4 1 4 4 4-14'i P r H - x i i i i o TI X x L l 4Pi H i l l iti 3 3 _ iti* 4-U-t-PP i-ni i r i t i p l "41 ti*1 - H - H x t x ; :tpx -~ -• i - r t :->H4 X H - i x i t : iiitx ± r x i 3 3 3 7 3 tip 4 1 r f 3 3 3 Q: x t i i i 2x11 -itti X t 3 t t + t fill • I I H •H-r-t iiii t i i 1 3 7 3 3733I i i i i i i 3 x i 3 3 - H + t x J i T P U..14 xi-.trt itfx i i x x§ ei; -i i i : iiii — i - in : i r E i i i -r-H-i •j-r-i" " " J T U :PP iiS: v~ ilnPt 2 2 t t 7LT 4 4 ~ hti3 i t i " ' i i i i "irlX! H E I j i i 3 3 1 3 3 * 3 2 X i i i I p x + i p 3 3 x r F i p {• 51 x : X X X iii-• s i 7 3 X 2 ! iiT 1 3 1 : Tir i r i : - i i i i i i :fe X T 2 i p ' . ' - i - i - i - - i l i i i : i i i : tlx irP 1 3 7 i i i ' up 3 5 X X i :pf i i i ; lifj3 : | l 3 - H H -. :p:p 3 5 3 3 5 • t: i " i i:j. i. - -i-j'T- j — , - i|x i i B l : X . : . : 22:2^ 4 3 3 * -H'*- . i i i : . jrp . tr. x i-ai Jj -H-r 3 3 3333 "2X2 . 2X iT i r t : 2 2 - 3x3 2i& iiiii 5 1 ? 55 - i ' r i 233131 i-t •• - x:x • : J T T •A--: T T : - Pir : i i i x;i. . i x p 2 : 5 ! " I E 3 2 2 - 3 3 3 -" 111-' ;iii i i a t i i rii-^ i t i i f :xPJ i i i i S x x i r . 3'2 la; , itii p H i i t+ | : i i i I - i i " i i i " - i i i ! - j i i l 5 3 3 - : trC-i i i i o i S l - : x;x I l r l x : : : : • : 3 5 1 117221 i i i iiix? 3 1 i i i i 1 3 3 3 jifcr - H — i i i i i • .ix : iil- 1 3 - t rrxrtr • -pp: i i ;.iii : . i x-- 1553 Mr' - : : : • : -1P-^ i i p •iii . . " T T r p ' T - I x i i r i x : 1 5 : 3 5 3 Pt P-T i i i i r : :rx!: - i i i i i i i ixii _ 'i - 3 i i . l-PT-. i i i ' —fr- • 3 i i iiii i : . i i i i 5 3 5 ' : . : « i i i i I itii : TP* !::i. iiiii : i i - 1 122; .1-1222". ; X X X 1 5 1 i iii i 111 • • •{*•' 1 it! B r IH-'- - r ; - r i i i i : i-i::: : : : 3 ; iiii i i i : - 3 3 : i i i : : TP1 : n:t;:: - -i :H- ilii 3 i i i i : - p i : • p i _ .™ir - ' r — . : irr " i i i it* i"' i i i u T i l •l;iiliii ' X X 1 2 | i i x . ! . ! i : i : : 3 + 1 3 1 : t i t • - H i - . i;x . .pi-i-i i i i : 3 t - 35: : x ] X - 4 ,4- i i i i 1 i i r i - J : iiii - i:p: iii "yr-r fei : T V . L ' l l x t i i i l . X . j _ . | . . . . . i i i i i i i i i i : : : . ; : : 1 = : . : P : : j i iii iii-- 3 5 x r r i i i i l l ! : • i r h : ; 3 5 : 335! 1 3 1 • 4 - K - : ill"*' ~5f : 5 3 1 : x t i I- pp •i 2i -. x;i i i i i i i i i i :x:: i r i x : : : 5 1 i • i l l ! j i 441' i T i . 2 3 : 3 * : x: r ~5 i f ijii i x t ' j : ;.5r - t i p : p . - 1 i . j i i - '{* i- 3.1 — i i i _ „— i i i i l l . : 1 ; T i t e j i llii arc lt-( 3k 4i> •G< 3lor 'ies . X c )• [ A.[ ? i ) . 1 3 ! i i i "• -i5: 3 Sir ', i r • i x : - ; 1 ; : : Hli'liii I li! i i i i i i i i i 1 5 1 1153 \ r i i :: i p x t a i i i i t ! i i l x i i i : i j t i i i i i 2 "'. 3 2 2 ^ i i i . i i i i iiilli 5 j i . | L i i . p i . i i p r i i i I iii r. : i:i i- . ; : ; i i. it; ! . 1 1 1 1 3 Iii! ;. !]•;:: i: . : • ! ! | : i : L L : Iiii • 1 ' i iiii ! 3 3 1 t. i n i i i i i i i j. j . rx • i~r;i : trr r i t ; ; i i i •xti • -1 2 X T i i i ! i 2 i r|! 1 i i i i i i i :. t i l i: i ; i i : i :li ii iiii ; 3 — ; t. i 2"! 1 '• t i ! ! ; 2 11 . n x tip-.! ;• .iii i-ii ! i i i iiii i#! ! . T i : ! ;• h i i . t r iii-I i i 1 3 1 ! iiii i I i i i i i ' : : : : : : i iii 121 i iii Hi: m _ : : : r i x j i-ii i iii iiii !. L n I ; t ; i i j i i i i : : i i ! i P i 1 ii' i" i i j 1 i i. i n . ! | ! ! : ! l i i i i i 1 1 ! li; ; H-] : : : i i iiiiiii pi'liii 92 93 94 TiiW" iH iii i! i ;i:i ;; i" iii : III. iliiSI li: iji. iii; !:!!:" Ei:: S- : : i ii:! • • I Iii ; p H i ! p.r . !"ji iii. : .] I : * 1 -i IiS P - l Ei-JiS ii-i -pl--p- S i S ' l : I ; rii': ill. i': i S-iiii tS ' j:u:. li.i " •I! I Ei - iii.. iii" tr-Hii. [ill ' ! : . : " I X i ii' 4 4 . -;:i ! > • {P ii: Iii iii-t s .1: i . : •A '• i!.! i'i \ I.; i . iii iil:: ixi xii s iii i E' • Jxi.. iii: :iii Hi s : Hi i jt S- tit : iii: K 3 - px lixh: Is" i.p; : tilt Hi Hi 111 i;: f .1 ; i xn : t: 1 Hii Iii. iii iii iii • Ei. ixi. • M ; -111: -ttli :::.n:p iiSi.Hi Iiii S i iiX -SI l l Ij i"; ill : ilitliii •EE •Hi : iii Iii iii * 1H': ill iEi Itti ppi: -34'.: E •if.;: - ::x-.:: - : : . : 33 Eii - ill! iii: iii: 3f iii ' lxi . PX111 .....j.L iii : ixi: • 3Ji: 444 ". H r -TIT ' TO-:ipn - iii: ESiiiiE: iiS J — i t iii. <4r • :p Iii -1E: w iii? •: - l | HE | N G"" JS iiii. itl -lit: pE Ei- ::i i . EEi : iii " iii -si .rii:: Ei.: iri: p : r 414 •-T i x . T i - • - HE:; -EE '.ITT. 1|i' S 31 h i Ei: : P X . 'i IT :iii:: xii • iii. G 'di: 3 • PS iii:: P i : p:l EE- SI .r™: ii u . -x-iii' ;lii: X 4 r -S :'E * iii. r j r : *••» •• •i:Hi fS iii. 8$ ;S IT* i i i -15: 11 ; •*4-j- -- :p:. w Si :pp Itii-His: -j J-i' Ex. ifp: S3 iii : s i : s - "Pp -rj4i: E3:S EEi .14,3 1*S. iiii ,iS< (i- ;;Q SI Si 'iii -;-'+ ~ K :i:S S list SE -S3 ip" -t-4x EE: ip. ijS. 3j± Eii PPIX 1 i i i v rip.: EE 3; :^ r:.: prix xp. iirj iiix xpp. .irrf. Eii -iJJ. 4^- HS Sit. 43 EE •33 Iiii 'Si 3t4 3 rpL-. xpr. .44— #"^E •-fii' Hp Si 14. , . I . P-* r :i::i P'PT ::::rs Xxxx H3" iiii iiii S t iiii: It!"3 Inii i s i t spp SS rrrx rdx !JS iS ntix: -EEEJ ~>s pi T-E n.i ^-H-t- - - Pt ^4 1 X ! 3 xfxi. ... , .. -'-P . 'XIX X p - i P P : p iS IS pxi: Si: 5ii 4 : t E i . iii± i -t-H- iSi •T'T .4-1.:. Ei Si S 3 " pi p i f t p i - EE xpi. •irx ISP 3E 33 35 - z:S-' HE S t ii:ix Trr— St 1-7i- xiix xx:i iiii i'JIX 33 pi.-r T l i T l • • H - ; -iiii Pi: IS iiS jxH, ISP. ;3i 0 JS3i: iiii xrix 3i iEii rr:x iiii Pi •H'S' - r: -iis Pp — - ii:;i p:p: X t t P \W •0r iiii: i:±x xrix Hiii i s !"FtT EH; x9::: iEi- S t pil Iiii <E}E: xri-r EEr PS Si rlS iSi o ; ES Si W. E S iiSiT. ip -1 ::xi: :3x EE s 4 J . U -P r X r : j i4:i:r P P . tiix riii: _ i - —I-^ I- + + ; P X X iiii Hit p::.T & ^;ji3: Si- xtxx rrii. Si.:" S t si i t-t-f- IS 331 iSi Six 3H"i EEi ESx H44: S i: 44-ij isip ni:S: T:T*-' n ... 3 iiii IP X i X T Pit r a t rH-r-4nxj: A p.: St Sx ixrx i p x l : iiii Spfi" Jin: - : - r ~ r - ; - : -xxxx HS: EE" V/x -rBt iiS ffitl EE; a St. P|PT H-Sr 14-H-S i ii+i-S|t E-'p -L-tSX ^ | >P ny fx 3;Ei-E l f iSjx IslP 3+4 Uv.: idlp ,+4-ilix .iiii U) CP Qji 4 i ."X -*|-tPjX 33 xpxi xp:: 37!-tli ixri: -*^:x i S iiii: tixi ppx sr+i-itiji ii±i: tri::: pi i Pit S3 Sx "St T t rr i—rS ES SP: r*-t-' qrx ixpi: pi: •upp i+i-f xxT :rxpr i S 45+F ipii X X T HS 1-T-TT IHi 3.-J-;-ps± 4S->+•+ -Hip: ifii| T _ +«+ xxix -d>-El iiii iie s | ; S i i4+j: iS • T I T SiS 33 Eii Sii ::+p:: Sri: .xr+x t~i+ m S i .•xxt :E:X Sjt -If Iiii: iixi: xxii SS xxrx xixi: • 1 H -E3 S 1 3H; S"'i .p-4 X 1 E i i S i *:hr. :iS ii±i xtx;: • ! j 1 [' TJsi' i±:i Eii +x. i-iti xgp 33 :it3 Si t s H - i -:l3E' i-E" EE SE; iiii xpp: iSi S t IIS 4444: -T+r 44E" ES Is - xxfct •pit tp: iiii prrr y i x i X Sff - St 3fi- •~ri iEi: pssn ."•i-is - st Bpr PS i+r+ 1p:p': ifir- " 3 r p 3ii 54±r: M+H- 33 EEE S i EES T t # 1 ^ X 4 Sii 33 :riii irir : : x p C Q ; : i j. xjj-j. 5p5T - r - r p -itnii BS; " 4 - H --H-t-i-.p lis • M f j -154+ x3x -iS Ei+ S t •4~! E * S t 33 44-li: I S :iiii: •-f444i S3 —T1 ±±t± 3-*33-iJaSi J4 . ; . t ••+r 15iT ptp: ±i4± 4-f-|.;-i t K f M -- : + ; pxji P-i iiii lisp: - ! - H - f -•••Tt Sit-i 33 + H i Si 444i 35 :4.x ES Sii .A., . i - -x-L 33 i s S i - .Si cw 33: is? Si itS 2li -i-i-P s t -|-; u.. xxpr —}Si; R \ n xipr -ii-i-i-Si--i S _nij.T -j-t-ir xt_iti i f i | p±r 3H4-H ; x-xx t s Sx SS BS ip rdxi 33*3 JpP 1xi± E S 33 xiix ir!-T s s :EE Pit -r+E+ 3iS stt iis xiri -^ tt P:P: p" liti - T r -4+1 r 3E iS :rr.'4" )^ ±'T± ;iii O i l SB 363 "Eii ixx: : - r n : sis* SSi +tt: S : S i - B f i :nxx U>x n 1 _ s= xrix 4 + 4 -3XU 5|y 32 jxx: SO s r P 1= "6 i l fe w iic 4-L, -ip .i.(_14-EETT ; j+H :lrii S3 -f-t-f-r S E xi-ij E.C -Ei S3 S t EE p # :pxi S E 1tr± JPtj ES iiii 3-14T E:?-i Si EE l-j-rt-4itr itt4 1st TOr-x:x: 3JH z-. i, : : : I _ p X-TP-- P + -.i-;T* e i Ox T1 Sit 5+3 itS i -I.J -H+i-"Ti +U± -Hii -T+:X nil 3P pTp) lPl± itriJ - i | H 3 E . r i 1XT:-E E J5i4 Sii s3 . 0 ' Si JiiS 'pxt S ; p i j l EEi istii :EE EE i p rrrx::: 3-1 T T (TiT: pirrt HPP jpn: Stt 444± E E ip EE s t lis -xi: :]xp:i xxi Tvi: X - X iS SK xxp i S -33 r>r s s S i Tin i fci ixix ixu iiii 4 + ^ 3j4 xpi ii ri iEi :tS i±r.rt xtrr Eii spB 33 3.Ei IpE 33 1 ' i l l . " ; x%. iiit xxi.: iSi: 3i 5555 pxx i?S: xp: : ± X g xxiri 4iS --3 •ip4 HiS X P " : SS ssti rijl EE 4-Tp :prir EES i|3 EE S3 ::ix -iSP - fj'E |xxp _ iS xiix iiii S S xix: 3i~i" iS px-.; xxp jE- 3E 3|g tf-r iix1 "Pfp Ei rix 33 lii S3 PSP S3 xxir Sr: .xipc +i+ -pi" :p:p - rrxr Sit xrp Sr E X ixr. iiS x:x: 3ii -ts Ei EEi EE • iii Txit: -M-|- V ~ - PPP xpr irxir EE IP 33 t s rix* :g03 |S 4-41-:™x ::xx iixi-S B S E xxt - - 7 4±rS :ii: ijxiiP iS :Hi "3EtjSi iS S3 4441 -M-B-; . xrx SS • j g l " xS xEjir Si *>? '< y Si: 33 :E— xii - :-::. j TX ..px ': X - ::px. "3? -1.Jx x:x: • ~im:: x.:x: 33 33 : E E Et[S iii 3PI 3E iEE -'§? • Ixix Jiin" iii: . iS x^jp. - S -:iSI ~xp~ r44: HEX;: p-:x ,-(.. - px :;i . xx: xp: : :rrr - XXX "iiii xi EE' - •1 '''ISE . i : i X .- 4±r XxiE lS- Epr: - pi"-*" . . : . ] : : ' •tp - i|i 33 EE; is ill: PLPE " iii EE 3S " :4x :XIXT:. ->: 4:x . xip iEii : X X i -:xd:r_ :.3i ? i £ • " "plT x:x' -IEi : rpx E S xS SSE EiE iSx :iS s t Epl Iii - - ; J T - 33 ::pi: . iEE - iiE 33 - S i i jS i : i p : : x r x - ::P: liSJtS : XX HiEE tiEiSi " Ei: Erii EEE ;;;• ES: IS: : :rpp - - , 3 r itiS : :~L |Si : "Si" : n:ip St : xix. : iri- : xpxxxrx: - --ii . :xi: • .px : iiii : iii w s i ::.::: :.r.x:. :--.:~-|:r; l i p mer xxx),::. iii SS Sinn; 3333 . EE EE ' EE R S IIS . . E E I . " ' " iliTirr : S : IS E^S Sx II i : x * x x : :xx : xtx iiii-. —;—Ui-i—S : iiiiiiiii Edx ita\ :xx;:ix:x :..;.xrj..^  i EEj:! ;x, : Ei:ixrr iS s 'A _ .IrSr - Of. -TlP iPli : 444: :i::rl;:: Si -31-xi'" iiiiiiiii: :ii xp:v ?y, I s 1-eS:: ); 1 u ii-' i l l A 0 < E ;:F| : SSL. • -jS II; ri: " X SI IsliS - Hi : i p . • p : : i SSliS : ,..Ej3~ -3-::i:r. ::x.xi:xr - - - r - i T r ; - ; J X . . | - : - . -P X r l :4-f-rxrri"::.:. ' iii : xrr : is r Ei s t . : S ; is :SI ' ."ilT : iii • i:x : r r x x .r. -.iii • ill iiiiiiiii - \ ' . p : • ' i - : - - ' : i : -r..;.r : iS iii •Si : Ei E:. •iE : S - iii : 3:1: • :q:r xpr E E : p.:: ix: 7 ] ip .. X p : •iii : ::xi ixlii" ::Siix;r ..pxi-.::.:-' Hi Hi:ii :iti : iii . :.!.: • :rx:!:.:; TX: : pp 1 .:x: EEx ' Iiii .:p : 'p:;: - ::i • ii: HI HPS nmin ;: tii . j ... . X ::x; : iiii:)iiii iii i ,:3 • ' - T - T - - - • .• p::::::::. .: . :::x TITS: TtTt: FjEi • Ei i iii ': Ei iiit iS X p : EH Hi r xi": •SI . 4JE: 13 - Hi .• : :.: P'E: : \\::|: 1 :T : n.i : ::P :iiiS;;: ...: rs:i.:;.r . .... .. . . . . . :x : Hi i iii • : P l 31! :': iii : 'rn ixp i II: : .:::" :" ix: S P P I 95 mm : : r : j : aiti • H i ; . . i'i'l'l' a;2-|i-'i-' .. ii til 96 97 ': • • i :; : :::j ::: . i i j i i i i . i i i i i : ': : j .:' . . : . : ' • • ' ! . ' : : . . : f:: : i.pLl.LiL . . . . . . . I l i i : ! : ! ;::: i : • : . x i i j - H r i i - i - i i l i l i i l . : . . ! : : • : . • i • :. . . . . . . . . . - i i i - . . . J i l i l , :: l i i J i I::!-:;! i i i - i i .:: i . ' ' : " i i i": !" i i i i i i • : : : ! . : : : i i i i i i J ! i ' i' :::.).:: : i i - i : - : ; ' ! : ! ! : : : ! i i i i .Li i i . 1 x i l l j l x i x : .:i:.:X_:.:.li:.::.L:...:. i . i i i i J J J l i j i i : - i f i i - - i i i i i -:::: i : : : • : : : : | : : : : ;•.:[:::: lii-.j.!!;! iHi i - l l . -- i i - ~ -20-- \ 8 c i .ii].ii;;.i:.: i i i i i . ' : ; : : : - : , ' : : : : ' : !:•:!•.:!• l E j I l l J i j J iii.!.;.:!.!. L i l L i i i . l l i l ! ! ;i • -i i : . i i i i i J : i l i i i - i i i • ••i • -. -" ' ! : ! ! ' r0RE A N N O N ! L E N G T H • r i ' l - i - r i - i i i i i x - j i -:.::).:::. - i i i i i i •::: i'.::.: .. | . .. i i i i i i - i i i i i . : : . i i : •: -JX.i x_. • 1 : r ! i l : Y = 13 S_yx=. 5 9 + p 4 i 4 X 0i52< • •• i i ::::!: i: „„_!_.„ - i - i i -':.:: i . : : : :". • j . : -. : ; : i i - i - i i i i i i : x: i::x . . . . i . . . ::•:[.:.:": i l l l j 111 i i l i : i : i . T • .: i : . : : .. , | . . . i i i i i i ; i i i i i i i i i i- i-i i l i l i-::.:.. i : : : : . . . . I. .. < . . . ( — b ' i i i : ! ! ! i i - i • : i : ; i : i i ; — <? H i i i i i i i i i i i .ITI'i i i i i i l i i •: -: I::: -" T i l T i • • • • o " o ~ O i i - i i i i i i i 7 - O i .11 i j j "i i i :T .::. i...:. . i j . i i i"i l i i i i i i i i l l i j i ! 11 . ... : j . . • • : I 1 6 lir: li i i : i i j i i i i l i i i i i i i i l % f i i j i i 111:! i i i i i i i i i i i :::: | : : : : ; i : i! J LI i.:..-.t::i: ... 1 I - i l l i l ' i i - l i i j i i i ! ii.xjixx: XXX'ii-TX i i i i i i H i i i i • • i . •:: : i i i Ix;:: i i i i xxxi.: • :.• ::.;.:: i ix.: i--r- -: :.:..i:T:.. •••• ! • •" | ; : • 1 :.:::jii.:.: I l l ! i5i i i ; j : :.:i:; 1! 1 i i i i i J. xixi: :.:.:: t- -:.:::: 1::.:: ; i i i i i i i ! 3£2xt ) A Y S i l l «u E 1 4 -— i i :::. i x::. 111! J ii I: I :'i .::.:.: j.;:x: ' i i i i i i U L j i i E i l l: .j: i 11 ::.: z. ii::.::. :.: zzyrizz i i i i i i i : xxxjx.x: XTXXXXX I i i "•..iiirrlii'.'n. i i i i i i i • • • • f • i i i i i i i . i i i i i i II l l i l 11 I---' :::::ii.:::: .':. I H iiiiitLiiii i i i i i i : U i i l l l l l t i i l i ~~~\~~ - • c - > ; ' ' i i j i ' 1 : i; ::.: : i : : i : . t i — ; -. . : . . . | . - , . . H H H i x i i i L i i i I l i l t l i i i - I i i i i i i .!!"!!.:• I i i i i ; J i . ; i :xix i i i i i i i i - i i : i i -I i t u IL--!v n n ; ; : - i i i ' i •:.;:: ::::!" :: 111! 1 -":":':"• Ixxiixx. xxiixx: xxx:::: i i i i i i o :. — • i i i ! ': 1U i i 1: :xx ix ix i i .::: : : ... .:::...:!::.:.!:::.: 8 xxiilxx: iill i l 1:1:1c i i i ; i i i x::i:ji: :x i : : : |xxi : n x p x i lllilllliiiil 1 .;::." :; i i ' J " . 1 ::.._. — i i i i i i ; 11 l i l ! ! ! i i i i i ! : iiii I _:.:_ i i i i i i ; i i i :TX j.:.::: . . _1 ..: :.. :.:: v\z i i : - CO z - 3 3 I ' i i t i iE! - i ~ - • i i k i ' J i t - 1 -_ l i i i l i i i i i i i i i i ~--—: i i ! E ! l : l l i i i i i i i i i i i i i i i i i i i i ::il:!.-":.:: ; i i - i l i L l i i x i i i i i •: :Ilit::::: . : : i > x.xxix: .: i i i i i i i H i i l l . ! . i i i i i - i i ! m ; J . i l l i i i i i . .^ | - . . . . . . x:x:j:.ix l i x F l i i I iii iiii )IME F O R E .:::.. i::::: C A f v xxxi :.::::: J N O N W I D i i i i i i i • T H , D xxxi:::x I S T A WM i l l | i i i :::.::.L: :::;. IJliiii i ." o ; ; .r.-Xi::::. l i i j i i i i i i - i i i i i i i IxliiljiiilrT i - i H i I Iii: 1 LI! i i i i i 111-: L U _ 2 L O CD "2. 1 Y = J : ' S y x _ = ::::{.::: 13 + 0 ( i i i i i i i ti i i i i i i i- • ™ i i i i i i i f i i m i E H i i i i i i i i i i i i ...:.. J . _ x . - -: [Ji-:. x: :ix: :. _0. I B i i i i i i i i i i i i i i 1-' i i i l i l i l 1 • i i i j i i - i i — Ilx l i l l i ' : . • : i i i i ' 1151x11 1 I i i i i i i i i p i l i i i i i i i O . I xxxj:::: .... .111:1:! i l l ! x x i x x . . i i i i i i i 1! i i i i i i i ::::' i: . : zv'n : 1 : i i i i i i O j i i i i j i y ^ i i i ' I :. ' • • ( •-• i Iiiiiii tlx 1111! 11! i - x l l x : .:::T: ::: :: . . : i:-:::-: : : : r : : : . i i i i i i i b :::::! :ii:: , . i ' i i i i i i i ! i I Iiji Li: l i l i ' t i l xxxixxx L x l j l x l ::.: :.::::!:.::::. l.Ili:l.i:~ J.l zzz:\" :\z ::::!::.:.: •1 l l t i l l l : i i i i i : r:.l J O , T i i i i i i — ~ i : : : L l J . l ii::::!::::: i i i i i ixxj .xi i i i l i l i l l :::.:!::::: XX.:.iil.X. 2.9 :rrz:. -IT: .1:,! ' i - l l j l i 1 .: ::: i:::.:" :::'t:::: i o i i -xxj:xx. .. ..." .: i i i i i ::.:::) x:: .::.::.jxix. i i i i :.::: j : : :x ::::]::::: :::: f:::: i--.x.| x i ; X X i X X . :: : . : • • ; : - •... t J l i l i i l ' i i i I i i i ~i IHi i i i i i i i i i i i ! - • • I i x 1: 11 I j i j l i i l : : . : : i : : : : o • • I I i i i i i i 1 i i i i i i ' .::!:]•:.:!... i i i j i i •::::i::ii.: 1 : O \22 .: x i::::: • i i — D A Y S :: i j i : : : 11 - ! - : i . \ i . : l : :!: • I J '"! i li I LI i I i i J 'J D :.:: i.:::: • i - i - i - i i i l l ' - i i i i :.JI: i-l x _i :::rx:: . i i i i i i IHjl'l 11 —: - • . . 1 - ; ^ - ; — . i l i i i l J T ^ f r l f 1 - i i i i i i i i i j i : : : : j : : : : ' - i i i i i l •_.:f : : .-:r.:x x:.:.i:::: x . ! . : ; : x : l — . ; • [ : . . • ! . ;. 3 ..! .:.:.! . : . i ! i • •.. ; . j 1 : . . i .:: .. ..:I.J.:7 i i i . i . x : | i : . : i i : _ L : . . : „ i . 8 J i L i ; : i i . . L i i . i i L i i i . i - i i i ! i . i . i i r i i - | i -J : : i i i : C 3 : x ' j ' -: 2. t n e r g y I n t a k e , 1 C a l o r i e s ! * l O i l A . D . E J J i i i j - i " ' I ' l l L — i - i -• • 1.': i i i i i - i i l l i • j • I : - • i i i i • • i: ' • : Ji l i . : . ! ! i i i i -:3 . • ! . : : . 1 " i i i i - i i ; l i x i J i i j i i i i i i i . . : : 1:: . : ..] • -.: | i i j i i i i ' ! I: ' • .i 98 . ::: i . . : • iii A ::.::!;::' X p E . i E j i E ' :•: P P .1 . : : : . -I.::: ::. i' : .;.:: |.':. : xiFix :.: '1 .: P i - i P " - - - - -• : • i ' . : P ; p . • i : : : '•'•][;• • • ~ -— i j . . : - . ! : . : E• E :'• " •'' i : - E ! i E i i i i l E i ! E:j •: •: -: •;:::: . - •: | :.: . . . . i — . :•]:•:: .. j . EEIEH Eiii.;.:.;: : : . : i .: E r l - E r E::]EE ::: • 1:::: iiii-i. E : : j : i i i P E E E E i E E E X E P I P E EEEE. •::; i : . : : EEE H i X " " " • •-•'•in-! l_- • . : . . ' ! O J . "rrri't-;-." :.::a>-• m ~ T ; ' c : X..0>.: -.<_>; i P ' z ;3,;2 :::.!.::. '::::| ::: i::.:J...u: E3;0 2-8 EEEE EE • . : j : :: P P . P ': \lii: X E : : E .-;::: " ; --N NO h ; E:|E : : 1 i i i . ; p IITTET E E i E E . 'ETT ali. .... i.:E 'iii-EE. P p - P F O R E C A J....WI. D T H , P R 0 > . . i . . : I M A ::::j:::. . : : . :EE. E i i i EE :•:.!:.:. EEE •:: j : : • : P E E E P E r E i E E :::'. J:i:i E E E E TTTflTTTT EEEJEE* :.:::.};.:T: Y = 1 S y x = re + c 0 . 1 4 ::::)::•:: D 133 X E : :::: j : : : : '.".'I'-i' TE{;--EE: E E . O E E J E ! E E J E E IEEIPL .:: • i : : •. :EE E E E x . _ — — r f T ~ x E : : iE: i EEijEE! EE EE< •> EEEE> E : p p E E E ; ^ :::: i: •. : - • i • • • - O i . E E l E E : : . i : • . . . . . i . . . -.:;. i:".... E : E ! E ~ i E i i i i l L E E E . . . . r ^ •.•nTEE: E E j E E E : : : J :::-.. ; ; : E E p E ' . . . 4 " . :r :]r:i: — • ! • • • • • E EEiEE E p p E E r E X E ! - - • - S p H -::-::|-:.:.:.. - i o • • • \ t i l ...... |.... E E E E E J :: .•:.[:::: E O EE:: EEi: P i r E P P P i E E i E E X p E T : i ' ::i:E: .a 'iji'a E E l E E •E. ::.:: i ii.: Kj • '• • • ': '• EEE : E v | P I E E S p - E E • E E E ^22 C lA^i 'S W M :::::.;:: :. EEE i EE E i EEEJEE EEE. jEE:: -EE- EEE: E E p E i E X:::.T.I :4:._J. • - i ;EE!:E"E' "i ::.E:::r • • • • 1 ;x::.u.-:::. i E E J E l ::::-::|::= .:::::.: (~:.r: EiEEEEEE Hi. E :H i >EEEE p i p EE :"X.p'::-EE-IEE -EE -::.::!::.:-EEE [: ii: :.::"j j : . . iiiiiiiii EEE) E.E. EEE-EE .:::::::(-::;-:: i::.x:j,:-::: .:..-£j...:n.. E E - : E E p E: _A ; iEiEEpE-: EEEjEip \~ V :iW\iiii E - | E - '. :E|::E:. EE] EE: E - (EEE EEEJ.EE-E : : . : . : : : 4 : : :~.i :.::::! .:.:.:>.:...: '••"••' R "-:•: . . : : - : . j . . . : : : . . ~~~~\ EEE C L E E E EEE iEi.EE —.xj-'-~ -::-:.::|::::r - 4 EE : . ! : . x T H • EEEEE- .7!"' - EEE :~_: E E E J E p ; : : ; .0~ E E C O . E v: !Z" .:: U J : r ; | T _::: Q : E'EJEE :r.:.i\i:-i ^ i i • •- — , , ... .. . - : r.xj-:=-: E S t H i E -::•).: :.:•• ••••;••: :s.::i:r:iZ.: ~ - • - r - ; -EEE. E E j E E E E E p E EEEjEEE E E :J::: 1::.:.: •-• I a Ef:j-:-E •'• HEv EEEE ::EE:' EEErEEE P 1 E X I .O . EE E iEEE F O R E _ C A h JNOIM W I D T H , ^ 11.N.I IV I U M • -;!::.:;-. :: :.~ _ •'••"• . . . . : : : - - • -iivirtii,. H ::-_T:r.T.: . . P i p P ' EE; . P p E E E :i :H iii EE Ei EEE ']•:'•'•'[:•:• :E±JEEE - 1 6 EEiEjEEEi I •• •-Y = 0 8 3 4 - 0 0 7 S X - - E E S E :'--::i E:::: -.-.:.: i :.::-;-"Z VZIZZZZZ f H I ... . . . | — :::: —jsn: - r i : . : . T . f c j -4 . : : : : E E E E EE p E - i E E E : : : : 4 : : : : S y x_= 0 0 ^ .::r~'i":-r:r 4 ; EEIEE. i'~i\'i."~ E.iEEEE :::.~i-i~ :. EEE t • -:-E EEEEIEEEE E E i i E E • • "i • 1 - E E i E E - iiiiiSi . . . :_j EEE] E.E i T r p l : : ] ; - : EE -P-E E E E iir.rjiii. i - :: EE! LEE- i : — :r::: :.i.:.-r . . i — „~T: :-: ::.:.:!:: --EEJPE E:.:EE::E .:.: :: I::-' 1 A iiiiii' EE \~i EETEE EO E E E O O.:... i . .::.:..: E .E:|pE PT EEE .. E:.. PE! / * E L.EiEE: o E E p E E : ::::{:::: E: IT: iE : :!: ::.:. 1 t EEi.EE: :::.:!.::: r: ' E:E' i • • • • EEE.E :: E E;:. E E i E i E ESEPS E :"-P - EE:IEE< O ::::•{ . : : : ( : : . . : : : - :H-..|::-E- I--:-: :::::.-|.:::.-: i ; : EEEEEi: -:.: • : P p E :.':!.::• : : : 4 4 : " •_ " •;. ii • : • . " • • _ " : 4 ; : : . : EEEEE :ELEE.E. - j : •;.: L::|- : .. T E | ~ : ::;::i:r.r: - : 1 . - . - -i E E p - E .EEit-E.EE - P E p E E P P E ii 0-.:::':!:.::. EEEIEEE 322 r ) A Y S £E_EEEx :.-:-| -:; E : P E; • ••l.C. EEEi.EE f E S EE7 EE r : - . E - - -LE:-= : i :i:.: •:.:::::::::•:] . x . E . : : :. j . , : v r r < > E . E X E : ---E!-E; j : : v : : . . : . .. . • • I • • •• E — : . r : - - 7 J - : - - ; - . - : . . . . j . V : ; : - : L Wi E p p E E i : -.:.:': '•"•'• " EEE - i E ' V 6 P x s l x x l -..L:J.-::_ i::,4^iiA:i^^ E E p r - : c • • • .. . L . . — Wi. . . . . EPLEE . : . :.j . . : i P r x . . . 2 3 - r i ~ - | r - . - i - - r E n e r g y ; I n t a k e , C a l o r i e s x I 0 J 1 A . D . E . ) : : . • ' • • ]• ; : : : ' : • • . • : - | - . - I v - j r : . : : : sr-— r —:—.—;—-ii-l:---'.-; T -.......... E-.i ' i E i i E E E - E i - E E - E E - - : .: . 1 •:. .EE :': E E X E X X : -:E> ; •-1 TE: i E E E . i PEE-: 1 . i p E -E : P : -. : P : " . " . E l E Leaf 99 omitted in page numbering. Table 1 0 1 0 0 Animal No. Sex M VII T o t a l E . I . 1 229,662 C a l o r i e s Age 1 1 2 Days P a t t e r n E.I, HH Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l Bone S i z e 2 Intercept"^" D e v i a t i o n 1 f o r e cannon 1 4 . 6 5 1 . 7 6 x 1 0 5 - 0 . 5 4 x 1 0 5 r a d i u s 1 5 . 3 1 . 7 8 - 0 . 5 2 humerus 1 5 . 3 1 . 8 2 -O . 4 8 scapula 1 2 . 5 1 . 8 5 - 0 . 4 5 hind cannon 1 7 . 6 5 1 . 7 8 - 0.52 t i b i a 2 2 . 0 1 . 8 6 - 0 . 4 4 femur 1 7 . 9 1 . 8 7 - 0 . 4 3 p e l v i s 1 7 . 9 2 . 2 7 - 0 . 3 0 c e r v i c a l 3 4 . 3 2 1 . 7 5 - 0 . 5 5 5 4.06 1.96 - 0 . 3 4 7 3 - 5 5 I . 8 3 - 0 . 4 7 t h o r a c i c 1 3.19 1 . 7 8 - 0 . 5 2 5 2 . 8 7 2 . 2 8 - 0 . 0 2 1 0 3.06 2 . 3 0 0 . 0 0 lumbar 1 3 . 9 5 2 . 2 8 - 0 . 0 2 3 4 . 1 8 2.30 0 . 0 0 5 3-96 2 . 2 5 - 0 . 0 5 c e r v i c a l 5 3 . 6 1 1 . 7 8 - 0 . 5 2 t h o r a c i c 5 3 . 8 8 2 . 2 8 - 0 . 0 2 lumbar 3 2 . 7 4 2.30 0 . 0 0 f o r e cannon 1 4 . 6 5 1 . 7 6 - 0 . 5 4 f o r e cannon 2 . 7 0 1 . 7 3 - 0 . 5 7 f o r e cannon 2 . 5 1 1 . 3 7 - 0 . 9 3 f o r e cannon 1.19 1 . 5 4 - 0 . 7 6 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 11 Animal No. V19 T o t a l E . I . 1 94,360 C a l o r i e s Sex M Age 112 Days P a t t e r n E . I . LL 2 1 1 Dimension Bone Si z e I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 le n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 12.35 1.00 x 105 +0.06 12.9 0.91 -0.03 12.6 0.91 -0.03 10.1 0.92 -0.02 15.25 0.90 -0.04 18.9 0.91 -0.03 1 5.0 0.92 -0.02 1 4.6 0.93 -0.01 3.68 1 . 1 5 +0.21 3.29 0.95 +0.01 2.96 1.07 +0.13 2.56 1.07 +0.13 2.36 1.19 +0.25 2.54 1.20 +0.26 3.01 0.93 -0.01 3.28 0.94 0.00 3-29 1.03 +0.09 3.20 0.92 -0.02 3.04 0.91 -0.03 2.07 1 . 1 5 +0.21 12.35 1.00 +0.06 2.33 0.96 +0.02 2.36 0.92 -0.02 1.12 .123 +0.29 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 1 2 Animal No. V 2 0 T o t a l E.I. 1 9 7 , 7 0 5 i C a l o r i e s Sex M Age 1 1 2 Days P a t t e r n E . I . LL Dimension Bone S i z e 2 I n t e r c e p t 1 Deviat l e n g t h f o r e cannon 1 3 . 2 5 1 . 2 3 x 1 0 5 + 0 . 2 5 l e n g t h r a d i u s 1 3 . 4 1 . 2 2 + 0 . 2 4 l e n g t h humerus 1 3 . 1 1.08 + 0 . 1 0 l e n g t h scapula 1 0 . 6 3 1 . 1 2 + 0 . 1 4 l e n g t h hind cannon 1 5 . 9 1 . 1 3 + 0 . 1 5 l e n g t h t i b i a 19.4 1 . 0 7 +0.09 l e n g t h femur 1 5 . 3 5 1 . 0 3 + 0 . 0 5 l e n g t h p e l v i s 1 5 - 3 1 . 1 2 + 0 . 1 4 l e n g t h c e r v i c a l 3 3 - 4 3 0.92 - 0.06 l e n g t h 5 3.29 0 . 9 5 - 0 . 0 3 l e n g t h 7 2 . 8 7 0 . 9 4 - 0 . 0 4 l e n g t h t h o r a c i c 1 2.69 1.08 + 0 . 1 0 l e n g t h 5 2.06 0.92 - 0 . 0 5 l e n g t h 1 0 2 . 2 7 0.92 - 0 . 0 5 l e n g t h lumbar 1 3 . 0 5 0 . 9 8 0 . 0 0 l e n g t h 3 3 - 3 2 0 . 9 8 0 . 0 0 l e n g t h 5 3 . 2 2 0 . 9 5 - 0 . 0 3 width c e r v i c a l 5 3 . 2 2 0 . 9 7 - 0 . 0 1 width t h o r a c i c 5 3 . 1 7 1.06 + 0 . 0 8 width lumbar 3 2.19 1 . 2 6 + 0 . 2 8 l e n g t h f o r e cannon 1 3 . 2 5 1 . 2 3 + 0 . 2 5 width, d i s t a l f o r e cannon 2 . 3 2 0 . 9 4 - 0 . 0 4 width, proximal f o r e cannon 2 . 3 6 0 . 9 8 0 . 0 0 width, minimum fo r e cannon 1 . 1 1 1 . 1 8 + 0 . 2 0 x 1 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 1 3 Animal No. V21 T o t a l E.I. 165,375 C a l o r i e s Sex M Age 112 Days P a t t e r n E . I . MH Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 f o r e cannon 1 4.3 1.63 x 105 -0.02 x 10 5 r a d i u s 1 5.0 1.69 -0.04 humerus 1 4 . 9 5 1.70 +0.05 scapula 12.45 1 . 8 2 +0.27 hind cannon 17.2 1 . 6 2 - 0 . 0 3 t i b i a 21.6 1.73 +0 . 0 8 femur 17.75 1 . 8 2 +0.17 p e l v i s 17.5 I . 8 3 +0.18 c e r v i c a l 3 4 . 1 5 1 . 5 9 -0.06 5 3.87 1.71 +0.06 7 3.50 1.77 +0.12 t h o r a c i c 1 3.18 1.77 +0.12 5 2.77 1 . 8 0 +0 . 1 5 10 2.88 1.81 +0.16 lumbar 1 3.69 1.75 +0.10 3 3.86 1.68 +0 . 0 3 5 3.87 1 . 8 0 +0 . 1 5 c e r v i c a l 5 3.46 1.46 -0.19 t h o r a c i c 5 3-53 1.57 -0.13 lumbar 3 2.43 1.70 +0.05 fo r e cannon 1 4.3 1.63 -0.02 fo r e cannon 2.64 1.61 -0.04 fo r e cannon 2.66 1.77 +0.12 fo r e cannon 1.18 1.50 - 0 . 1 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 1 4 1 0 4 Animal No. Y2 T o t a l E.I. 1 1 5 0 , 8 1 9 1 C a l o r i e s Sex M Age 1 1 2 Days P a t t e r n E . I. MM Dimension Bone S i z e 2 1 I n t e r c e p t D e v i a t i o n1 l e n g t h l e n g t h l e n g t h l e n g t h < f o r e cannon r a d i u s humerus scapula 1 5 . 0 1 5 . 3 1 5 . 6 1 2 . 2 5 1 . 8 8 x 1 0 5 1 . 7 8 1 . 9 3 1 . 7 5 + 0 . 3 7 x 1 0 5 + 0 . 2 7 + 0 . 4 2 + 0 . 2 4 l e n g t h l e n g t h l e n g t h l e n g t h hind cannon t i b i a femur p e l v i s 1 8 . 1 5 2 2 . 5 1 8 . 5 1.96 2 . 0 1 2 . 0 8 + 0 . 4 5 + 0 . 5 0 + 0 . 5 7 l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h c e r v i c a l t h o r a c i c lumbar 3 5 7 1 5 1 0 1 3 5 4 . O 8 3.91 1 . 5 7 1 . 7 7 + 0 . 0 1 + 0 . 2 6 width width width c e r v i c a l t h o r a c i c lumbar 5 5 3 l e n g t h width, width, width, d i s t a l p roximal minimum fo r e cannon f o r e cannon f o r e cannon f o r e cannon 1 5 . 0 2 . 6 7 1 . 2 6 1 . 8 8 1 . 8 0 1 . 8 6 + 0 . 3 7 + 0 . 2 9 + 0 . 3 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 1 5 1 0 5 Animal No. Y3 Sex M" T o t a l E . I . 119,709 C a l o r i e s Age 1 1 2 Days Pa t t e r n E . I . MM Dimension Bone ? 1 1 Siz e I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l 3 5 7 t h o r a c i c 1 5 1 0 lumbar 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 14.15 1 4.25 14.5 11.6 17.35 20.8 17-0 3.92 3.59 1 4 . 1 5 2 . 4 9 2 . 5 7 1 . 2 3 1 . 5 7 x 1 . 4 7 1 . 5 5 1 . 5 0 1 . 6 7 1 . 4 8 1 . 5 8 1 . 3 7 1 . 3 5 105 3 . 5 9 1 . 7 3 1 . 5 7 1 . 3 0 1 . 5 3 1 . 7 2 + 0 . 3 7 x 1 0 -+ 0 . 2 7 + 0 . 3 5 + 0 . 3 0 + 0 . 4 7 + 0 . 2 8 + 0 . 3 8 + 0 . 1 7 + 0 . 1 5 + 0 . 5 3 + 0 . 3 7 + 0 . 1 0 + 0 . 3 3 + 0 . 5 2 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 16 106 Animal No. Y4 T o t a l E.I . 1 164,353 C a l o r i e s Sex M Age 112 Days P a t t e r n '. E.I. LH Dimension Bone S i z e 2 I n t e r c e p t 1 Devia l e n g t h f o r e cannon 1 4.7 1.77 x 10 5 +0 . 1 3 l e n g t h r a d i u s l e n g t h humerus 15.4 1.85 +0.21 l e n g t h scapula 12.2 1.72 +0.08 le n g t h hind cannon 17.3 1.66 +0.02 le n g t h t i b i a 21.8 1.80 +0.16 l e n g t h femur 1 8 . 4 2.03 +0.39 l e n g t h p e l v i s l e n g t h c e r v i c a l 3 4.37 1.80 +0.16 l e n g t h 5 4.08 1.99 +0.35 l e n g t h 7 3.71 2.05 +0.41 le n g t h t h o r a c i c 1 le n g t h 5 le n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 3.95 2.49 +0.85 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon 14.7 1.77 +0.13 width, d i s t a l f o r e cannon 2.79 1.92 +0.28 width, proximal f o r e cannon 2.91 2.43 +0.79 width, minimum f o r e cannon 1.29 1.99 +0.35 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 1 7 Animal No. Y6 T o t a l E.I ^  1 3 9 , 5 0 6 C a l o r i e s Sex M Age 1 1 2 Days P a t t e r n E.I. MM Dimension Bone S i z e 2 I n t e r c e p t 1 Deviat l e n g t h f o r e cannon 1 3 . 7 1 . 4 0 x 1 0 5 0 . 0 0 l e n g t h r a d i u s 1 4 - 3 5 1.49 + 0.09 l e n g t h humerus 1 4 - 5 5 1 . 5 7 + 0 . 1 7 l e n g t h scapula 1 1 . 5 5 1 . 4 7 + 0 . 0 7 l e n g t h hind cannon 1 6 . 5 5 1 . 3 8 - 0 . 0 2 l e n g t h t i b i a 2 0 . 9 1 . 5 2 + 0 . 1 2 l e n g t h femur 1 7 . 4 1 . 7 1 + 0 . 3 1 l e n g t h p e l v i s 1 6 . 4 1 . 4 3 + 0 . 0 3 l e n g t h c e r v i c a l 3 4 . 1 0 1 . 5 6 +0.16 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 3 . 4 1 2.09 + 0.69 l e n g t h 5 2 . 3 5 1 . 2 2 - 0 . 1 8 l e n g t h 1 0 2 . 7 0 1 . 3 7 - 0 . 0 3 l e n g t h lumbar 1 3 - 4 2 1 . 4 3 + 0 . 0 3 l e n g t h 3 3 . 8 4 1 . 6 1 + 0 . 2 1 l e n g t h 5 3 . 8 1 1.69 +0.29 width c e r v i c a l 5 width t h o r a c i c 5 3 . 5 3 1 . 5 3 +0.13 width lumbar 3 2 . 1 0 1 . 1 7 - 0 . 2 3 l e n g t h f o r e cannon 1 3 . 7 1 . 4 0 0 . 0 0 width, d i s t a l f o r e cannon 2.79 1.92 + 0 . 5 2 width, proximal f o r e cannon 2 . 4 6 1 . 2 7 - 0 . 1 3 width, minimum f o r e cannon 1 . 1 1 1.19 - 0 . 2 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 18 108 Animal No. Y8 T o t a l E.I. 149,180 C a l o r i e s Sex M Age 112 Days P a t t e r n E . I . MM Dimension Bone p i i Siz e I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon 14.1 1.55 x 105 +0.16 l e n g t h r a d i u s 14-35 1.49 0.00 l e n g t h humerus 14.65 1.60 +0.11 l e n g t h scapula 11.75" 1.55 +0.06 l e n g t h hind cannon 16.85 1.49 0.00 l e n g t h t i b i a 20.5 1.40 -0.09 l e n g t h femur 17.3 1.67 +0.18 l e n g t h p e l v i s l e n g t h c e r v i c a l 3 4.18 1.62 +0.13 l e n g t h 5 3.83 1.66 +0.17 l e n g t h 7 3.35 1.57 +0.08 le n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 3.71 1.98 +0.49 width t h o r a c i c 5 width lumbar 3 le n g t h f o r e cannon 14.1 1.55 +0.16 width, d i s t a l f o r e cannon width, proximal f o r e cannon 2.52 1.40 -0.09 width, minimum f o r e cannon 1.12 1.23 -0.26 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 19 109 Animal No. U 7 T o t a l E . I . Sex M Age 1 7 5 Days Dimension Bone l e n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 1 0 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h fore.cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 4 4 5 , 4 1 2 C a l o r i e s P a t t e r n E . I. MHM p 1 Size I n t e r c e p t D e v i a t i o n 16 . 3 4 . 4 5 x 1 0 5 0 . 0 0 1 7 . 2 4 . 4 0 - 0 . 0 5 1 7 . 4 4 . 1 5 - 0 . 3 0 1 5 . 3 4 - 5 2 + 0 . 0 7 19 . 8 4 • 4 8 + 0 . 0 3 2 5.7 4 . 5 0 + 0 . 0 5 2 1 . 3 4 . 2 4 - 0 . 2 1 2 1.9 4 . 8 O + 0 . 3 5 5 . 2 5 4 . 8 7 + 0 . 4 2 4 . 8 1 4 . 7 2 + 0 . 2 7 4.19 4 . 4 6 + 0 . 0 1 3 . 6 8 4.61 + 0 . 1 6 3 . 1 7 4 . 7 3 + 0 . 2 8 3 . 7 7 4.90 + 0 . 4 5 4 . 7 0 . 4 . 7 3 + 0 . 2 8 4.92 4 . 5 2 + 0 . 0 7 4 . 7 8 4 . 5 9 + 0 . 1 4 4 . 6 2 4 . 3 0 - 0 . 1 5 4 . 4 9 4 . 7 3 + 0 . 2 8 2 . 8 9 3 . 2 5 - 1 . 2 0 1 6 . 3 4 . 4 5 0 . 0 0 3 - 0 4 4 . 6 2 +0.17 2 . 7 7 3 . 6 8 - 0 . 7 7 1 . 4 5 4 . 4 7 + 0 . 0 2 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 110 Table 20 Animal No. U8 T o t a l E.I - 1 4 1 0,810 C a l o r i e s Sex M Age 175 Days P a t t e r n E .1. MHH Dimension Bone S i z e 2 I n t e r c e p t ^ D e v i a t i o n 1 l e n g t h f o r e cannon 15.9 3 . 5 2 x 10 5 -0.59 x 10 5 l e n g t h r a d i u s 16.9 3.80 -0.31 l e n g t h humerus 17.1 3.60 -0.51 l e n g t h scapula 1 4.8 4.05 -0.06 l e n g t h hind cannon 19.4 3.75 -0.36 l e n g t h t i b i a 2 5-2 4.10 -0.01 l e n g t h femur 21.3 4 . 2 5 +0 . 1 4 l e n g t h p e l v i s 21.0 4.21 +0.10 le n g t h c e r v i c a l 3 4.91 4.00 -0.11 l e n g t h 5 4.68 4.30 +0.19 l e n g t h 7 4.15 4.26 +0 . 1 5 l e n g t h t h o r a c i c 1 3.37 3-47 -0.64 l e n g t h 5 3-37 4.75 +0.64 le n g t h 10 3.64 4 - 5 2 +0 . 4 1 l e n g t h lumbar 1 4.39 3.98 -0.13 l e n g t h 3 4.74 4.08 -0.03 l e n g t h 5 4.82 4.00 -0.11 width c e r v i c a l 5 4.64 4.35 +0.24 width t h o r a c i c 5 4.14 3.48 -0.63 width lumbar 3 2.78 3.H -1.00 le n g t h f o r e cannon 1 5.9 3 . 5 2 -0.59 width, d i s t a l f o r e cannon 2.86 2.98 -1.13 width, proximal f o r e cannon 2.68 3.17 -0.94 width, minimum f o r e cannon 1 . 4 0 4.07 - 0 . 0 4 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. I l l Table 21 Animal No. U 1 5 T o t a l E.I. 1 184,102 C a l o r i e s Sex M Age 175 Days P a t t e r n E . I . LLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 13-45 1.85 x 105 +0.01 x 1 0 5 l e n g t h r a d i u s 14.2 1.94 +0.10 l e n g t h humerus 14.0 1 . 8 0 -0.04 l e n g t h scapula 11.55 1 . 8 2 -0.02 l e n g t h hind cannon 16.65 1.99 +0.15 l e n g t h t i b i a 20.3 1.75 -0.09 l e n g t h femur 16.8 1.93 +0.09 l e n g t h p e l v i s 17.1 1.94 +0.10 l e n g t h c e r v i c a l 3 4.15 2.17 +0.33 l e n g t h 5 3.74 2.13 +0.29 l e n g t h 7 3-35 2.01 +0.17 l e n g t h t h o r a c i c 1 2.82 2.17 +0.33 l e n g t h 5 2.66 2.41 +0.57 l e n g t h 10 2.84 2.29 +0.45 le n g t h lumbar 1 3.65 2.21 +0.37 l e n g t h 3 3.81 2.06 +0.22 l e n g t h 5 3.88 2.33 +0.49 width c e r v i c a l 5 3.51 2.27 +0.43 width t h o r a c i c 5 3.54 2.19 +0.35 width lumbar 3 2.43 2 . 8 0 +0.96 l e n g t h f o r e cannon 13.45 1.85 +0.01 width, d i s t a l f o r e cannon 2.44 2.12 +0 . 2 8 width, proximal f o r e cannon 2 . 3 8 2.22 +O . 3 8 width, minimum f o r e cannon 1 . 0 8 1.85 +0.01 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 22 1 1 2 Animal No. U33 Sex M T o t a l E.I. 400,622 C a l o r i e s Age 175 Days P a t t e r n E . I . LMH Dimension Bone p 1 1 S i z e I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l f o r e cannon 1 5.5 3.25 x 10 5 -0.76 r a d i u s 16.6 3.44 -0.57 humerus 16.8 3.42 -0.59 scapula 14.9 4.15 +0 . 1 4 hind cannon 19.0 3.28 -0.63 t i b i a 2 4.5 3 . 5 0 -0.51 femur 20.9 3.90 -0.11 p e l v i s 20.7 4.01 0.00 c e r v i c a l 3 4.96 4.11 + 0 . 1 0 5 4.57 3.96 - 0 . 0 5 7 4.00 3.85 -0.16 t h o r a c i c 1 3.63 4-42 +0.41 5 3.15 3.90 -0.11 10 3.37 3.74 -0.27 lumbar 1 4 . 2 8 3.70 -0.31 3 4-87 4.39 +0.38 5 4.69 4.32 +0.31 c e r v i c a l 5 4 . 2 8 3 . 5 2 -0.49 t h o r a c i c 5 4.15 3.51 - 0 . 5 0 lumbar 3 2.80 3.13 -0.88 fo r e cannon 15.5 3 . 2 5 -0.76 f o r e cannon 2.97 4-30 +0.29 fo r e cannon 2.74 3.38 -0.63 f o r e cannon 1.40 4.08 +0.07 x 10-1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 2 3 113 Animal No. V 8 T o t a l E.I. 2 8 3 , 3 8 5 C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E . I. MHL Dimension Bone Size I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon 1 4 . 8 2 . 7 6 x 1 0 5 - 0 . 0 7 x 1 0 5 l e n g t h r a d i u s 1 5 . 9 2 . 9 9 +0.16 l e n g t h humerus 1 6 . 1 3 . 0 1 + 0 . 1 8 l e n g t h scapula 1 3 . 9 5 3.26 + 0 . 4 3 l e n g t h hind cannon 18:0 2 . 7 4 - 0.09 l e n g t h t i b i a 2 2 . 5 2 . 5 6 - 0 . 1 7 l e n g t h femur 1 9 . 2 2.92 +0.09 l e n g t h p e l v i s 1 9 . 4 3 . 1 3 + 0 . 3 0 l e n g t h c e r v i c a l 3 4 . 5 5 3 . 0 5 + 0 . 2 2 l e n g t h 5 4 . 1 6 2 . 7 7 - 0 . 0 6 l e n g t h .7 3 - 7 5 3 - 0 5 + 0 . 2 2 l e n g t h t h o r a c i c 1 3 . 3 6 3 - 4 4 + 0.61 l e n g t h 5 2.90 3.16 + 0 . 3 3 l e n g t h 10 3 . 1 7 3 . 1 2 + 0.29 l e n g t h lumbar 1 3.91 2 . 8 1 - 0 . 0 2 l e n g t h 3 4.09 2 . 5 5 - 0 . 2 8 l e n g t h 5 3.96 2 . 4 5 - 0 . 3 8 width c e r v i c a l 5 3 . 5 5 2 . 3 1 - 0 . 5 2 width t h o r a c i c 5 4 . 0 8 3 . 2 5 + 0 . 4 2 width lumbar 3 2 . 2 2 2 . 6 1 - 0 . 1 8 l e n g t h f o r e cannon 1 4 . 8 2 . 7 6 - 0 . 0 7 width, d i s t a l f o r e cannon 2 . 6 4 2 . 7 8 - 0 . 0 5 width, proximal f o r e cannon 2 . 4 8 2 . 5 5 - 0 . 2 8 width, minimum fo r e cannon 1.26 2 . 9 4 + 0 . 1 1 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 24 114 Animal No. V10 T o t a l E.I. 1 195,288 C a l o r i e s Sex M Age 175 Days P a t t e r n '. E.I. MLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 3 . 9 2.16 x 1 0 5 +0.21 x 10 l e n g t h r a d i u s 1 4 . 5 2.11 +0.16 l e n g t h humerus 1 4 - 5 5 2.13 +0.18 l e n g t h scapula 12.1 2.10 +0 . 1 5 l e n g t h hind cannon 17.1 2.24 +0.29 le n g t h t i b i a 2 1 . 5 2.23 +0.28 le n g t h femur 1 6 . 9 1 . 9 5 0.00 l e n g t h p e l v i s 17.2 1.98 +0.03 l e n g t h c e r v i c a l 3 4 . 0 5 2.00 +0.05 l e n g t h 5 3 . 5 5 1.84 -0.11 l e n g t h 7 3.37 2.05 +0.10 l e n g t h t h o r a c i c 1 2 . 6 4 1.84 -0.11 l e n g t h 5 2.38 I . 8 4 -0.11 l e n g t h 10 2.70 2.06 +0.11 le n g t h lumbar 1 3.42 1 . 8 9 -0.06 l e n g t h 3 3.67 1 . 8 4 -0.11 l e n g t h 5 3.62 1 . 9 3 -0.02 width c e r v i c a l 5 3.52 2 . 2 8 +0.33 width t h o r a c i c 5 3 . 5 3 2.17 +0.22 width lumbar 3 2.19 2 . 5 9 +0 . 6 4 l e n g t h f o r e cannon 1 3 . 9 2.16 +0.21 width, d i s t a l f o r e cannon 2.56 2.41 +0 . 4 6 width, proximal f o r e cannon 2.40 2.31 +0 . 3 6 width, minimum f o r e cannon 1.19 2.42 +0.47 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 2 5 Animal No. V12 Sex M Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l T o t a l E.I. 185,789 C a l o r i e s Age 175 Days P a t t e r n E . I . LLL Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n f o r e cannon 1 3.8 2.09 x 10 5 +0 . 2 3 x 10 r a d i u s 1 4.1 1.86 0.00 humerus 1 4.2 1.91 +0.05 scapula 11.95 2 . 0 3 +0.17 hind cannon 16.7 2.02 +0.16 t i b i a 20.5 1 . 8 4 -0.02 femur 16.6 1 . 8 5 -0.01 p e l v i s 16.9 I . 8 4 -0.02 c e r v i c a l 3 3.92 2.02 +0.16 5 3.67 1.79 -0.07 7 3.26 1.83 - 0 . 0 3 t h o r a c i c 1 2.79 2.11 +0 . 2 5 5 2 . 4 8 2.05 +0.19 10 2.69 2.04 +0.18 lumbar 1 3 . 4 8 1.97 +0.10 3 3.68 1.86 0.00 5 3.61 1.91 +0.05 c e r v i c a l 5 3.65 2.40 +0.54 t h o r a c i c 5 3 . 2 9 1.77 -0.09 lumbar 3 2.19 2.59 +0.73 fo r e cannon . 13.8 2 . 0 9 +0 . 2 3 f o r e cannon 2.44 2.12 +0.26 fo r e cannon 2 . 2 3 1.79 -0.07 fo r e cannon 1.10 1.96 +0.10 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 2 6 116 Animal No. V 2 4 T o t a l E.I. 337,796 C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E . I. LHM ? 1 Dimension Bone Size I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon 1 5 . 9 3 . 5 3 x 1 0 5 +0.15 l e n g t h r a d i u s 1 6.8 3 . 6 0 + 0 . 2 2 l e n g t h humerus 16 . 8 3 . 4 2 + 0 . 0 4 l e n g t h scapula 1 4 . 4 3 . 6 5 + 0 . 2 7 l e n g t h hind cannon 19.1 3 • 3 4 - 0 . 0 4 l e n g t h t i b i a 2 3 . 9 3 . 0 6 - 0 . 3 2 l e n g t h femur 2 0 . 3 3 . 3 8 0 . 0 0 l e n g t h p e l v i s 2 0 . 2 3 . 6 7 + 0 . 2 9 l e n g t h c e r v i c a l 3 4 . 8 4 . 8 1 l e n g t h 5 4 . 3 4 3 + 0 . 4 3 l e n g t h 7 3 . 8 6 3 . 3 9 + 0 . 0 1 l e n g t h t h o r a c i c 1 3 . 5 3 3 . 5 0 + 0 . 1 2 l e n g t h 5 3 . 0 3 3 • 5 6 + 0 . 1 8 l e n g t h 1 0 3 . 3 3 3 . 6 2 + 0 . 2 2 l e n g t h lumbar 1 4 . 1 0 3 . 2 7 - 0 . 1 1 l e n g t h 3 4 . 4 0 3 . 2 9 - 0.09 l e n g t h 5 4 . 2 1 3 . 0 0 - 0 . 3 8 width c e r v i c a l 5 3 . 9 4 2 . 7 5 - 0 . 6 3 width t h o r a c i c 5 4 . 2 5 3 . 8 9 + 0 . 5 1 width lumbar 3 2 . 2 3 2 . 6 2 - 0 . 7 6 l e n g t h f o r e cannon 1 5 . 9 3 • 5 3 + 0 . 1 5 width, d i s t a l f o r e cannon 2 . 7 9 3 . 4 8 + 0 . 1 0 width, proximal f o r e cannon 2 . 6 7 3 . 1 3 - 0 . 2 5 width, minimum f o r e cannon 1 . 2 7 3 . 0 2 -O . 3 6 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 2 7 Animal No. V25 T o t a l E.I. 1 2 3 5 , 6 4 2 C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E . 1 . LLM Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 4 . 4 5 2 . 5 4 x 1 0 5 + 0 . 1 8 x 1 0 l e n g t h r a d i u s 1 4 . 9 5 2 . 4 0 + 0 . 1 4 l e n g t h humerus 1 5 . 4 2.60 + 0 . 2 4 l e n g t h scapula 1 2 . 9 2 . 5 3 + 0 . 1 7 l e n g t h hind cannon 1 7 . 3 5 2 . 3 7 + 0 . 0 1 l e n g t h t i b i a 2 1 . 8 2 . 3 1 - 0 . 0 5 l e n g t h femur 1 8 . 1 2 . 4 6 + 0 . 1 0 l e n g t h p e l v i s 1 7 . 9 2 . 3 2 - 0 . 0 4 l e n g t h c e r v i c a l 3 4 . 1 2 2 . 1 2 - 0 . 2 4 l e n g t h 5 3 . 8 2 2 . 2 5 - 0 . 1 1 l e n g t h 7 3 . 6 3 2 . 6 6 + 0 . 3 0 l e n g t h t h o r a c i c 1 3 . 0 8 2 . 6 6 + 0 . 3 0 l e n g t h 5 2 . 7 3 2 . 5 5 + 0.19 l e n g t h 1 0 2 . 9 4 2 . 5 0 + 0 . 1 4 l e n g t h lumbar 1 3 . 6 0 2 . 1 4 - 0 . 2 2 l e n g t h 3 3 . 8 7 2.16 - 0 . 2 0 l e n g t h 5 3 - 8 9 2 . 3 4 - 0 . 0 2 width c e r v i c a l 5 3 . 8 3 2 . 5 8 + 0 . 2 2 width t h o r a c i c 5 3 . 7 4 2 . 5 2 + 0 . 1 6 width lumbar 3 2 . 4 1 2 . 7 8 + 0 . 4 2 l e n g t h f o r e cannon 1 4 . 4 5 2 . 5 4 + 0 . 1 8 width, d i s t a l f o r e cannon 2 . 5 9 2 . 5 6 + 0 . 2 0 width, proximal f o r e cannon 2 . 4 5 2 . 4 6 + 0 . 1 0 width, minimum f o r e cannon 1 . 2 1 2 . 5 3 +0.17 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 28 Animal No. V26 T o t a l E.I Sex M Age 1 7 5 Days Dimension Bone l e n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 le n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon C a l o r i e s P a t t e r n E . I. HML ? 1 Size I n t e r c e p t D e v i a t i o n 1 5 . 2 5 3.08 x 1 0 5 0.00 1 5 . 9 0 3.00 -0.08 16.3 3.12 +0.04 1 4.05 3.32 +0.24 18.25 2.88 -0.20 23-5 2.92 -0.16 19.4 3.00 -0.08 19.1 2.92 -0.16 4.42 2.73 -0.35 4.07 2.64 -0.44 3.79 3.18 +0.10 3.22 2.92 -0.16 2.87 3.02 -0.06 2.98 2.61 -0.47 3.88 2.74 -0.34 4.16 2.72 -0.36 3.97 2.50 -0.58 4.08 3.08 0.00 3.84 2.68 -0.40 2.32 2.70 -0.38 15.25 3.08 0.00 2.60 2.61 -0.47 2.63 3.01 -0.07 1.23 2.70 -0.38 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 29 Animal No. V 2 7 T o t a l E.I. 1 2 1 6 , 7 3 7 ' C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E . 1 . LLM Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 4.7 2 . 7 1 x 1 0 5 + 0 . 5 4 x 1 0 l e n g t h r a d i u s 1 5 . 0 2 . 4 4 +0.27 l e n g t h humerus 1 4.9 2 . 3 1 + 0 . 1 4 l e n g t h scapula 1 2 . 3 2 . 2 2 +0.05 l e n g t h hind cannon 1 7 . 8 2 . 6 2 + 0 . 4 5 l e n g t h t i b i a 2 1.7 2.27 + 0 . 1 0 l e n g t h femur 1 7 . 8 2 . 3 4 + 0 . 1 7 l e n g t h p e l v i s 1 7 . 8 2 . 2 7 + 0 . 1 0 l e n g t h c e r v i c a l 3 4 . 2 7 2 . 3 5 + 0 . 1 8 l e n g t h 5 3 . 8 4 2 . 2 8 + 0 . 1 1 l e n g t h 7 3 . 4 7 2 . 2 5 + 0 . 0 8 l e n g t h t h o r a c i c 1 2 . 9 9 2 . 5 0 + 0 . 3 3 l e n g t h 5 2 . 5 8 2 . 2 5 + 0 . 0 8 l e n g t h 1 0 2 . 7 7 2 . 1 7 0 . 0 0 l e n g t h lumbar 1 3 . 6 3 2 . 1 8 + 0 . 0 1 l e n g t h 3 3.90 2 . 3 6 l e n g t h 5 3.90 +0.19 width c e r v i c a l 5 3 . 8 2 2 . 5 7 + 0 . 4 0 width t h o r a c i c 5 3 . 5 9 2 . 2 7 + 0 . 1 0 width lumbar 3 2 . 6 1 2 . 9 7 + 0 . 8 0 l e n g t h f o r e cannon 1 4 . 7 2 . 7 1 + 0 . 5 4 width, d i s t a l f o r e cannon 2 . 5 3 2 . 3 4 + 0 . 1 7 width, proximal f o r e cannon 2 . 4 8 2 . 5 5 +O . 3 8 width, minimum f o r e cannon 1 . 2 1 2 . 5 3 +O .36 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 120 Animal No. V28 T o t a l E . I . Sex M Age 1 7 5 Days Dimension Bone l e n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus le n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon Table 30 233,414 C a l o r i e s P a t t e r n E.I. LLM S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 1 3 . 8 5 2.13 x 10 5 -0.20 x 10 14.6 2.19 -0.14 1 5.0 2.36 +0.03 12.2 2.16 -0.17 16.9 2.13 -0.20 21.8 2.30 -0.03 17.4 2.17 -0.16 17.7 2.22 - 0 . 1 1 4.26 2.33 0 . 0 0 3.96 2.46 +0.13 3 . 4 8 2.27 - 0.06 3.06 2 . 6 2 + 0.29 2 . 8 4 2.92 + 0.59 2.98 2.60 +0.27 3.83 2.60 +0.27 4 . 1 3 4.20 2.96 +0.63 4.02 2.93 +0.60 3.63 3 . 2 5 +0.92 2.72 3 . 0 5 +0.72 1 3 . 8 5 2.13 - 0.20 2.63 3 . 2 5 + 0.41 2.56 2 . 8 0 +0.47 1.22 2.61 +0.28 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 31 Animal No. Y l T o t a l E.I. 1 3 1 9 , 3 3 6 C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E, . 1 . MMM Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 6 . 0 3.60 x 1 0 5 + 0 . 4 1 x 1 0 l e n g t h r a d i u s 1 6 . 7 5 3 . 5 0 + 0 . 3 1 l e n g t h humerus 1 7 . 2 3 . 6 5 + 0 . 4 6 l e n g t h scapula 1 3 . 6 2.90 - 0.29 l e n g t h hind cannon 1 9 . 3 3 . 5 7 + 0 . 3 8 l e n g t h t i b i a 2 . 4 6 3 . 5 6 + 0 . 3 7 l e n g t h femur 2 0 . 5 3 . 5 5 +O . 3 6 l e n g t h p e l v i s 2 0 . 0 5 3 . 5 5 +O .36 l e n g t h c e r v i c a l 3 4 . 6 6 3 . 3 5 + 0 . 1 6 l e n g t h 5 4 . 4 7 3 . 6 5 +O .46 l e n g t h 7 3 . 7 2 2.96 - 0.23 l e n g t h t h o r a c i c 1 3 . 2 3 2 . 9 3 - 0 . 2 6 l e n g t h 5 3 - 0 4 3.60 + 0 . 4 1 l e n g t h 1 0 3.32 3 . 5 9 + 0 . 4 0 l e n g t h lumbar 1 4 . 1 0 3.19 0 . 0 0 l e n g t h 3 4 - 3 7 l e n g t h 5 4 . 3 0 3 . 2 4 + 0 . 0 5 width c e r v i c a l 5 4.18 3 . 3 0 + 0 . 2 1 width t h o r a c i c 5 3 . 9 9 2 . 9 3 - 0 . 2 6 width lumbar 3 2 . 6 5 3 . 2 4 + 0 . 0 5 l e n g t h f o r e cannon 1 6 . 0 3.60 + 0 . 4 1 width, d i s t a l f o r e cannon 2 . 7 5 3.28 + 0.09 width, proximal f o r e cannon 2 . 7 0 3 . 2 2 + 0 . 0 3 width, minimum f o r e cannon 1.29 3 . 1 9 0 . 0 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 32 Animal No. Y5 Sex M Dimension T o t a l E.I. 291,727 C a l o r i e s Age 175 Days P a t t e r n E . I . MMM Bone 7 1 1 Size I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width' width l e n g t h width, d i s t a l f o r e cannon 1 5.6 3 . 3 2 x lO^ +0.40 r a d i u s 16.2 3 .17 +0.25 humerus 16.28 3 .12 +0.20 scapula 13.2 2 .70 -0.22 hind cannon 18.98 3 .28 +0.36 t i b i a 23.4 2 .89 - 0 . 0 3 femur 19.48 3 .04 +0.12 p e l v i s 19.10 2 .92 0.00 c e r v i c a l 3 4.45 2 .81 -0.11 5 4 . 1 4 2 .74 -0.18 7 3.69 2 .86 -0.06 t h o r a c i c 1 3.22 2 .92 0.00 5 2.89 3 .09 +0.17 lumbar 10 3.24 3 .36 +0.44 1 4.09 3 . 2 4 +0 . 3 2 3 4.21 2 .83 -0.09 5 4.09 2 .65 -0.27 c e r v i c a l 5 3-93 2 .74 -0.18 t h o r a c i c 5 3.91 2 .80 -0.12 lumbar 3 2.84 3 .17 +0.25 fo r e cannon 15.6 3 .32 +0.40 fo r e cannon 2.61 2 .66 -0.26 fo r e cannon 2.77 3 . 5 8 +0.66 fo r e cannon 1.21 2 .52 -0.40 x 10 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 3 3 Animal No. Y13 T o t a l E . I . 1 3 7 6 , 8 5 5 C a l o r i e s Sex M Age 1 7 5 Days P a t t e r n E . I . MHM Dimension Bone o 1 1 Size I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width ividth l e n g t h width, d i s t a l f o r e cannon 1 5 . 5 3 . 2 5 x 1 0 5 - 0 . 5 2 r a d i u s 1 6 . 4 5 3 . 3 4 - 0 . 4 3 humerus 1 7 . 0 3 . 5 3 - 0.24 scapula 1 4 . 1 5 3.40 - 0 . 3 7 hind cannon 1 9 . 1 8 3 . 3 6 - 0 . 4 1 t i b i a 2 4 . 3 3 3 . 3 5 - 0.42 femur 2 0 . 4 8 3 . 5 4 - 0 . 2 3 p e l v i s 1 9 . 8 3 3 . 4 1 -O . 3 6 c e r v i c a l 3 4 . 6 6 3 . 3 5 - 0.42 5 4.32 3-19 -O . 5 8 7 3 . 9 3 3 . 6 4 - 0 . 1 3 t h o r a c i c 1 3 . 5 8 4 . 2 5 +O .48 5 2.91 3 . 1 7 - 0.60 1 0 3 . 2 3 3 - 3 4 - 0 . 4 3 lumbar 1 4.29 3 . 7 2 - 0 . 0 5 3 4 • 4 4 3 - 4 8 - 0.29 5 4 . 2 6 3 . 1 4 - 0 . 6 3 c e r v i c a l 5 4 - 3 2 3 . 6 2 - 0 . 1 5 t h o r a c i c 5 4 . 2 0 3 . 6 8 - 0.09 lumbar 3 2 . 6 7 3 . 0 2 - 0 . 7 5 f o r e cannon 1 5 . 5 3 . 2 5 - 0 . 5 2 f o r e cannon 2 . 8 5 3 . 7 5 - 0 . 0 2 f o r e cannon 2 . 8 3 4 . 2 8 + 0 . 5 1 f o r e cannon 1 . 4 1 4 . 1 5 +O .38 x 1 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 3 4 Animal No. X 4 T o t a l E.I Sex M Age 3 2 2 Day, Dimension Bone l e n g t h l e n g t h l e n g t h l e n g t h f o r e cannon r a d i u s humerus scapula l e n g t h l e n g t h l e n g t h l e n g t h hind cannon t i b i a femur p e l v i s l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h c e r v i c a l 3 5 7 t h o r a c i c 1 5 1 0 lumbar 1 3 5 width width width c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h width, d i s t a l f o r e cannon f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 8 1 9 , 9 3 8 C a l o r i e s P a t t e r n E.I. MHMLL S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 1 7 . 3 8 9 . 1 5 x 1 0 5 + 0 . 9 5 x 1 0 1 9 . 1 8 . 5 8 +O . 3 8 1 9 . 6 9 . 0 0 + 0 . 8 0 1 6 . 1 5 8 . 1 7 - 0 . 0 3 2 1 . 4 8 9.70 + 1 . 5 0 2 7 - 3 8 . 3 9 +0.19 2 4 . 2 9.06 + 0 . 8 6 2 3 . 3 8 . 6 2 +0.42 5 - 7 1 8.70 + 0 . 5 0 5 . 3 3 9 . 7 4 + 1 . 5 4 4.42 8 . 0 7 - 0 . 1 3 4 .18 8 . 3 3 + 0 . 1 3 3 . 4 8 7.91 - 0 . 2 9 4 . 0 0 9.19 + 0 . 9 9 4 . 8 5 8 . 5 3 + 0 . 3 3 5.17 8 . 3 4 + 0 . 1 4 5-19 8.21 + 0 . 0 1 4-91 8.05 - 0 . 1 5 4 . 6 6 1 0 . 0 0 + 1 . 8 0 3 . 0 1 7 . 8 6 - 0 . 3 4 1 7 . 3 8 9 . 1 5 + 0 . 9 5 2 . 9 4 8.07 - 0 . 1 3 3 . 0 0 9 . 3 2 + 1 . 1 2 I . 6 4 1 0 . 2 5 + 2 . 2 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 125 Table 3 5 Animal No. X5 T o t a l E.I - 1 865,481 C a l o r i e s Sex M Age 3 22 Days P a t t e r n E . I . HMMLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 16.6 7.27 x 10 5 -1.38 x 1 0 5 l e n g t h r a d i u s 1 8 . 9 8 . 3 2 -0.33 l e n g t h humerus 19.03 9.60 +0.95 l e n g t h scapula 16.98 9.30 +0.65 l e n g t h hind cannon 20.4 7 . 5 2 -1.13 l e n g t h t i b i a 27.05 8.12 -0.53 l e n g t h femur 2 3.6 8.49 -0.16 l e n g t h p e l v i s 2 3.75 9.02 +0.37 l e n g t h c e r v i c a l 3 5.79 9 . 0 8 +0.43 l e n g t h 5 5 . 0 8 8.09 -0.56 l e n g t h 7 4.76 9.33 +0.68 le n g t h t h o r a c i c 1 4.35 9.10 +0.45 l e n g t h 5 3.75 9 . 2 5 +0.60 le n g t h 10 3.91 8.67 +0.02 le n g t h lumbar 1 4.72 7.85 - 0 . 8 0 l e n g t h 3 5.14 8.22 -0.43 l e n g t h 5 5.30 8.50 -0.15 width c e r v i c a l 5 5.11 8.61 -0.04 width t h o r a c i c 5 4.62 9.49 +O . 8 4 width lumbar 3 3.10 8.50 -0.15 l e n g t h f o r e cannon 16.6 7 . 2 7 -1.38 width, d i s t a l f o r e cannon 2.78 7.22 -1.43 width, proximal f o r e cannon 2.74 7.37 - 1 . 2 8 width, minimum f o r e cannon 1.43 7.59 -1.06 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 3 6 1 2 6 Animal No. X 6 T o t a l E . I . Sex M Age 3 2 2 Days Dimension Bone le n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 1 0 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 818,104 C a l o r i e s P a t t e r n E . I. LHLLH ? 1 Size I n t e r c e p t D e v i a t i o n 17.3 8 . 9 7 x 1 0 5 +0 . 7 9 1 8 . 5 5 7 . 8 7 -0.31 1 8 . 5 7 . 2 5 - 0 . 9 3 1 5 . 5 7 . 3 0 - 0 . 8 8 2 0 . 6 7 . 9 2 -0.26 26.98 8 . 0 4 - 0 . 1 4 2 2 . 6 3 7 . 4 5 - 0 . 7 3 22.3 7 . 7 1 - 0 . 4 7 5.62 8.26 +0 . 0 8 4.96 7 . 3 0 - 0 . 8 8 4 . 4 6 8.22 +0 . 0 4 4 . 0 1 7 . 5 7 -0.61 3 . 3 1 7.06 - 1 . 1 2 3.69 7 . 4 0 - 0 . 7 8 4 . 7 6 . 8.06 - 0 . 1 2 5.26 8.70 +0 . 5 2 5 . 1 2 8 . 0 3 - 0 . 1 5 4 . 8 0 7 . 7 3 - 0 . 4 5 4 . 4 0 6 . 7 1 - 1 . 4 7 2 . 8 0 6 . 3 6 - 1 . 8 2 17.3 8 . 9 7 +0 . 7 9 2.98 8 . 2 9 +0.11 2 . 8 2 7 . 9 7 - 0 . 2 1 1 . 4 6 7 . 9 7 - 0 . 2 1 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Animal No. X 7 T o t a l E.I Sex M Age 3 2 2 Days Dimension Bone le n g t h l e n g t h l e n g t h l e n g t h f o r e cannon r a d i u s humerus scapula l e n g t h l e n g t h l e n g t h l e n g t h hind cannon t i b i a femur p e l v i s l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h c e r v i c a l 3 5 7 t h o r a c i c 1 5 1 0 lumbar 1 3 5 width width width c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h width, d i s t a l f o r e cannon f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon Table 3 7 1 717,347 C a l o r i e s P a t t e r n E . I. LMMLM S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 1 6 . 4 6 . 7 9 x 1 0 5 - 0 . 3 8 x 1 0 1 7 . 6 5 6 . 6 9 - 0 . 4 8 1 8 . 6 7.60 + 0 . 4 3 1 5 . 6 8 7 . 5 5 + 0 . 3 8 2 0.13 6 . 9 8 - 0.19 2 6 . 4 5 7 . 4 4 + 0 . 2 7 2 3 . 2 3 8 . 0 7 + 0.90 2 3 . 3 5 8 . 6 6 + 1 . 4 9 5 . 2 2 6 . 3 3 - 0 . 8 4 4.90 6.91 - 0.26 4 . 0 7 6 . 7 8 - 0 . 3 9 3 . 9 7 7 . 3 9 + 0 . 2 2 3 . 3 7 7 . 3 6 + 0.19 3 . 7 9 7.98 + 0 . 8 1 4.62 7 . 3 3 + 0.16 4 . 9 4 7.41 + 0 . 2 4 5.06 7 . 8 7 + 0 . 7 0 4 . 5 7 7 . 0 8 - 0.09 4.60 9 . 2 4 + 2 . 0 7 3 . 0 5 8 . 1 4 + 0 . 9 7 1 6 . 4 6 . 7 9 - 0 . 3 8 2 . 7 7 7 . 1 7 0 . 0 0 2 . 6 8 6.92 - 0 . 2 5 1 . 3 3 6 . 3 3 -O . 8 4 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 3 8 128 Animal No. X8 T o t a l E.I. 1 677,141 C a l o r i e s Sex M Age 322 Days P a t t e r n E. ,1. LHLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 16.35 6.67 x 105 -0.10 x 10 5 l e n g t h r a d i u s 17.93 7.06 +0.29 l e n g t h humerus 18.05 6 . 8 3 +0.06 l e n g t h scapula 1 5 . 0 8 6.73 -0.04 l e n g t h hind cannon 19.93 6.57 -0.20 l e n g t h t i b i a 2 5 . 8 3 6.75 -0.02 l e n g t h femur 21.7 6.50 +0.27 le n g t h p e l v i s 20.68 6.26 -0.51 l e n g t h c e r v i c a l 3 5.50 7.68 +0.91 l e n g t h 5 5 . 0 8 8.09 +1.32 l e n g t h 7 4.20 7.26 +0.49 l e n g t h t h o r a c i c 1 3.77 6.49 -0.28 l e n g t h 5 3.32 7.11 +0.34 l e n g t h 10 3.51 6.36 -0.41 l e n g t h lumbar 1 4.42 6.28 -0.49 l e n g t h 3 4.66 6.28 -0.49 l e n g t h 5 4.57 6 . 5 8 -0.19 width c e r v i c a l 5 4.24 6.15 -0.62 width t h o r a c i c 5 4.58 8.99 +2.22 width lumbar 3 2.79 6.29 -O . 4 8 l e n g t h f o r e cannon 16.35 6.67 -0.10 width, d i s t a l f o r e cannon 2.64 6.47 +0.30 width, proximal f o r e cannon 2.67 6 . 8 4 +0.07 width, minimum f o r e cannon 1.33 6.33 -0.44 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 3 9 Animal No. X9 Sex M Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h T o t a l E . I . 1 7 1 0 , 3 3 9 C a l o r i e s Age 3 2 2 Days P a t t e r n E . I. MHLLL Bone S i z e 2 1 I n t e r c e p t D e v i a t i o n1 f o r e cannon 16.88 7.95 x 10 5 +0.85 x 10 r a d i u s 18.03 7.19 +0.09 humerus 17.85 6.55 -0.55 scapula 15.63 7.47 +0.37 hind cannon 20.63 7.98 +0.88 t i b i a 2 5.9 6 . 8 3 -0.27 femur 22.08 6.89 -0.21 p e l v i s 21.8 7 . 2 7 +0.17 c e r v i c a l 3 5.42 7.29 +0.19 5 4.78 6.12 -0.98 t h o r a c i c 7 4.12 6.96 -0.14 1 3.93 7.21 +0.11 5 3.37 7.36 +0.26 lumbar 10 3.55 6.59 - 0 . 5 1 1 4.70 7.75 +0.65 3 4.91 7.29 +0.19 5 4.69 6.89 -0.21 c e r v i c a l 5 4 . 8 2 7.79 +0.69 t h o r a c i c 5 4.19 4.05 -3.05 lumbar 3 2.89 7.00 -0.10 f o r e cannon 16.88 7.95 +O .85 f o r e cannon 2.71 6 . 8 4 -0.26 f o r e cannon 2.71 7 . 1 4 +0.04 fo r e cannon 1.44 7.72 +0.62 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 4 0 Animal No. X 1 0 T o t a l E . I . 1 7 5 8 , 8 9 6 C a l o r i e s Sex M Dimension Age 3 2 2 Days Bone Size' P a t t e r n E . I . LHMLL Intercept" 1" D e v i a t i o n 1 l e n g t h f o r e cannon 1 6 . 4 5 6 . 9 2 x 1 0 5 - 0 . 6 7 l e n g t h r a d i u s 18.3 7 . 5 5 - 0.04 l e n g t h humerus I 8 . 7 7 . 7 4 + 0 . 1 5 l e n g t h scapula 1 5 . 2 6 . 8 9 - 0 . 7 0 l e n g t h hind cannon 19.9 6 . 5 1 - 1 . 0 8 l e n g t h t i b i a 2 6 . 5 7 . 5 0 - 0.09 l e n g t h femur 2 2 . 4 7 . 2 2 - 0 . 3 7 l e n g t h p e l v i s 2 0 . 9 5 6 . 5 0 -1.09 l e n g t h c e r v i c a l 3 5 . 3 3 6 . 8 6 - 0 . 7 3 l e n g t h 5 4 . 8 8 6 . 7 8 - 0 . 8 1 l e n g t h 7 4 . 2 9 7 . 5 9 0 . 0 0 l e n g t h t h o r a c i c 1 4 . 1 3 8 . 1 1 + 0 . 5 2 l e n g t h 5 3.28 6 . 9 2 - 0 . 6 7 l e n g t h 1 0 3 . 7 7 7 . 8 6 +0.27 l e n g t h lumbar 1 4 . 5 3 6 . 8 6 - 0 . 7 3 l e n g t h 3 4 . 9 9 7.61 + 0 . 0 2 l e n g t h 5 4 . 8 6 7 . 3 4 - 0 . 2 5 width c e r v i c a l 5 4 . 8 9 7 . 9 9 + 0.40 width t h o r a c i c 5 4 . 2 7 5 . 0 6 - 2 . 5 3 width lumbar 3 2 . 8 8 6 . 9 3 - 0 . 6 6 l e n g t h f o r e cannon 1 6 . 4 5 6 . 9 2 - 0 . 6 7 width, d i s t a l f o r e cannon 2 . 8 5 7 . 5 9 0 . 0 0 width, proximal f o r e cannon 2.70 7 . 0 7 - 0 . 5 2 width, minimum f o r e cannon 1 . 4 1 7 . 3 4 . - 0 . 2 5 x 1 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 41 Animal No. X l l T o t a l E.I, . ! 8 5 0 , 9 1 4 C a l o r i e s Sex M Age 3 2 2 Days P a t t e r n E. , 1 . MHMLM Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 7 . 6 5 9.81 x 1 0 5 + 1 . 3 0 x 1 0 l e n g t h r a d i u s 1 9 . 4 8.98 + 0 . 4 7 l e n g t h humerus 1 9 . 6 8 9 . 1 0 + 0 . 5 9 l e n g t h scapula 1 6 . 4 8 8 . 6 2 + 0 . 1 1 l e n g t h hind cannon 2 1 . 4 9 . 5 3 + 1 . 0 2 l e n g t h t i b i a 2 7 . 8 8 9 . 0 4 + 0 . 5 3 l e n g t h femur 2 4 . 0 8 8 . 9 3 + 0 . 4 2 l e n g t h p e l v i s 2 3 . 5 3 8 . 8 3 + 0 . 3 2 l e n g t h c e r v i c a l 3 5 . 6 6 8 . 4 5 - 0.06 l e n g t h 5 5 . 3 0 9 . 5 4 + 1 . 0 3 l e n g t h 7 4 . 4 8 8 . 3 0 - 0 . 2 1 l e n g t h t h o r a c i c 1 4 . 2 3 8 . 5 6 + 0 . 0 5 l e n g t h 5 3 . 7 3 9.15 +O .64 l e n g t h 1 0 3 . 8 3 8 . 2 1 - 0 . 3 0 l e n g t h lumbar 1 4 . 9 4 9 . 0 1 + 0 . 5 0 l e n g t h 3 5 . 1 8 8 . 3 8 - 0 . 1 3 l e n g t h 5 5 . 4 4 8 . 8 7 + 0 . 3 6 width c e r v i c a l 5 5 . 1 3 8 . 6 7 + 0 . 1 6 width t h o r a c i c 5 4 . 5 7 8 . 8 6 + 0 . 3 5 width lumbar 3 3 . 1 4 8 . 7 9 + 0 . 2 8 l e n g t h f o r e cannon 1 7 . 6 5 9 . 8 1 + 1 . 3 0 width, d i s t a l f o r e cannon 3 . 0 8 8 . 8 2 + 0 . 3 1 width, proximal f o r e cannon 2 . 9 5 8 . 9 5 + 0 . 4 4 width, minimum f o r e cannon 1 . 4 6 7 . 9 7 +O .46 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 42 Animal No. X14 T o t a l E.I. 1 807,518 C a l o r i e s Sex M Age 322 Days P a t t e r n E .1. MHHLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 16.4 6.79 x 1 0 5 -1.29 x 10 le n g t h r a d i u s 18.63 7.97 -0.11 l e n g t h humerus 18.7 7.74 -0.34 l e n g t h scapula 16.18 8.22 +0.14 le n g t h hind cannon 2 0 . 3 8 7.48 -0.60 l e n g t h t i b i a 27.0'8 8.15 +0.07 le n g t h femur 2 2 . 8 3 7.66 - 0 . 4 2 l e n g t h p e l v i s 21.85 7.32 -0.76 l e n g t h c e r v i c a l 3 5 . 4 9 7.63 -0.45 l e n g t h 5 5.02 7.70 - 0 . 3 8 l e n g t h 7 4.30 7.63 -0.45 le n g t h t h o r a c i c 1 3.98 7.43 -0.65 le n g t h 5 3.52 8.11 +0.03 l e n g t h 10 3.80 8.03 -0.05 le n g t h lumbar 1 4.88 8.69 +0.61 l e n g t h 3 5.11 8.10 +0.02 l e n g t h 5 5.10 7.97 -0.11 width c e r v i c a l 5 4.99 8.27 +0.19 width t h o r a c i c 5 4.49 7.85 -0.23 width lumbar 3 3.35 10.29 +2.21 le n g t h f o r e cannon 16.4 6.79 -1.29 width, d i s t a l f o r e cannon 3.27 9 . 8 4 +1.76 width, proximal f o r e cannon 2.94 8.87 +0.79 width, minimum f o r e cannon' 1.50 8 . 4 8 +0.40 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 4 3 Animal No. X16 T o t a l E . I . Sex M Age 3 2 2 Day Dimension Bone l e n g t h l e n g t h l e n g t h l e n g t h f o r e cannon r a d i u s humerus scapula l e n g t h l e n g t h l e n g t h l e n g t h hind cannon t i b i a femur p e l v i s l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h c e r v i c a l 3 5 7 t h o r a c i c 1 5 10 lumbar 1 3 5 width width width c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h width, d i s t a l f o r e cannon fo r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 700,863 C a l o r i e s P a t t e r n E . I . MMLLM S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 16.5 * 5 7.03 x 10 +0.02 x 10 18.28 7 . 5 2 +0 . 5 1 18.33 7.22 +0.21 15.05 6.69 -0.32 20.0 6.71 -0.30 26.85 7.89 +0.88 21.98 6.81 -0.20 20.7 6.28 -0.73 5.18 6.14 -0.87 4.78 6.12 -0.89 4.13 7.00 -0.01 3.65 5.95 -1.06 3 . 1 3 6.17 -O . 8 4 3.62 6.99 -0.02 4 . 4 1 6.23 -0.78 4.61 6.07 -0.94 4.56 6.55 -O . 4 6 4.42 6.66 -0.35 4.35 6.08 -0.93 2.78 6.21 -0.80 16.5 7.03 +0.02 2.77 7.17 +0.16 2 . 6 8 6.92 -0.09 1.35 6 . 5 8 -0.43 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 4 4 Animal No. V7 T o t a l E.I Sex F Age 112 Days Dimension Bone l e n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 195,960 C a l o r i e s P a t t e r n E . I . MH S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 1 4-45 1.68 x 10 5 -0.28 x 10 15.3 1.78 -0.18 15.18 1.78 -0.18 12.65 1.90 -0.06 17.13 1.59 -0.37 21.78 1.80 -0.16 18.48 2.00 +0.04 18.2 2.53 +0.57 4 . 2 7 1.70 -0.26 3.96 1.82 - 0 . 1 4 3.42 1.66 -0.30 3.24 1.85 -0.11 2.68 1.54 -0.42 3.00 2.13 +0.17 3.86 2.10 +0 . 1 4 3.97 1.87 -0.09 4.00 2.42 +0.46 3.57 1.70 -0.26 3.76 2 . 0 3 +0.07 2 . 3 2 1.48 -0.48 14-45 1.68 -0.28 2.62 1.57 -0.39 2.50 1.35 -0.61 1 . 2 3 1 . 7 2 -0.24 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 45 Animal No. V14 T o t a l E.I - 1 98,886 C a l o r i e s Sex -F Age 112 Days P a t t e r n E . I . ML Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 3.0 1.14 x 10 5 +0.15 x 10 l e n g t h r a d i u s 1 3 . 4 3 1.22 +0.23 l e n g t h humerus 13.2 1.12 +0.13 l e n g t h scapula 10 . 6 1.11 +0.12 l e n g t h hind cannon 1 5 . 6 5 1.05 +0.06 l e n g t h t i b i a 1 9 . 5 3 1.10 +0.11 l e n g t h femur 15.B 1.17 +0.18 l e n g t h p e l v i s 1 5 . 0 3 1.04 +0.05 l e n g t h c e r v i c a l 3 3 - 7 6 1.22 +0.23 l e n g t h 5 3.40 1 . 0 9 +0.10 l e n g t h 7 3.00 1.11 +0.12 l e n g t h t h o r a c i c 1 2 . 5 5 0.88 -0.11 l e n g t h 5 2.18 1.04 +0.05 l e n g t h 10 2 . 5 3 1.19 +0.20 le n g t h lumbar 1 3-19 1.15 +0.16 l e n g t h 3 3 . 3 9 1.07 +0.08 l e n g t h 5 3.29 1 . 0 3 +0.04 width c e r v i c a l 5 2 . 9 9 0.50 - 0 . 4 9 width t h o r a c i c 5 3.19 1.08 +0.09 width lumbar 3 2.06 1.13 +0.14 l e n g t h f o r e cannon 13.O +0.15 width, d i s t a l f o r e cannon 2 . 2 9 0.88 - O . l l width, proximal f o r e cannon 2.17 ^.48 -0.51 width, minimum f o r e cannon 1.04 0.88 -0.11 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 136 Table 4 6 Animal No. V15 T o t a l E . I . 1 97,930 C a l o r i e s Sex F Age 112 Days P a t t e r n E . I . LL Dimension Bone ? 1 1 Size I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l t h o r a c i c lumbar 3 5 7 1 5 10 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 2 . 7 1.03 x 1 0 5 +0.05 x 1 0 5 1 2 . 8 3 1.04 +0.06 1 2 . 9 5 1.03 +0.05 1 0 . 3 5 1 . 0 1 +0.03 1 5 . 4 0.96 -0.02 18.75 0.86 - 0 . 1 2 1 4.9 0.88 - 0 . 1 0 14.28 O . 8 3 - 0 . 1 5 3.52 1.00 +0.02 3.19 0.82 -0.16 2.93 1.02 +0.04 2.47 0.78 -0.20 2.29 1 . 1 5 +0.17 2.36 1.02 +0.04 3.02 0 . 9 5 -0.03 3.19 O . 8 3 - 0 . 1 5 3.19 0.91 -0.07 3.16 O . 8 3 - 0 . 1 5 3.05 0.92 -0.06 2.08 1 . 1 5 +0.17 1 2.7 1.03 +0.05 2.24 0.77 - 0 . 2 1 2.18 0.49 -0.49 1.09 1 . 1 0 - 0 . 1 2 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 4 7 Animal No. Y7 Sex F Dimension T o t a l E . I . 216,116 C a l o r i e s Age 112 Days P a t t e r n E . I. MH Bone o 1 1 Size I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon 1 4 . 5 1 . 7 0 x 1 0 5 -O . 4 6 l e n g t h r a d i u s 1 5 . 4 1 . 8 1 - 0 . 3 5 l e n g t h humerus 1 6 . 0 5 2 . 0 7 - 0.09 l e n g t h scapula 1 3 . 4 2 . 1 9 + 0.03 l e n g t h hind cannon 1 7 . 3 . 1 . 6 4 - 0 . 5 2 l e n g t h t i b i a 2 2 . 5 5 2.03 - 0 . 1 3 l e n g t h femur 19 . 3 2.30 + 0 . 1 4 l e n g t h p e l v i s l e n g t h c e r v i c a l 3 4 • 4 8 1.90 - 0 . 2 6 l e n g t h 5 4 . 4 9 2 . 5 0 + 0 . 3 4 l e n g t h 7 3-92 2.32 + 0.16 l e n g t h t h o r a c i c 1 3.06 1.60 - 0 . 5 6 l e n g t h 5 l e n g t h 1 0 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 3 . 5 5 1 . 6 5 - 0 . 5 1 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon 1 4 . 5 1 . 7 0 -O . 4 6 width, d i s t a l f o r e cannon 2 . 8 6 2 . 0 7 - 0.09 width, proximal f o r e cannon 2 . 5 8 1 . 5 6 - 0.60 width, minimum f o r e cannon 1 . 3 1 2 . 0 5 - 0 . 1 1 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 4 8 Animal No. U 1 0 T o t a l E.I. 1 3 3 7,299 C a l o r i e s Sex F Age 1 7 5 Days P a t t e r n E . I . MHM Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 5 . 8 5 3 . 5 0 x 1 0 5 + 0 . 1 3 x 1 0 l e n g t h - r a d i u s 1 6 . 6 8 3 . 4 8 + 0 . 1 1 l e n g t h humerus 1 7 . 0 3 - 5 4 + 0 . 1 7 l e n g t h scapula 1 4 . 6 5 3.90 + 0 . 5 3 l e n g t h hind cannon 19 .2- 3.40 + 0 . 0 3 l e n g t h t i b i a 2 4 . 8 3 . 7 4 + 0 . 3 7 l e n g t h femur 2 0 . 9 8 3 . 9 6 + 0 . 5 9 l e n g t h p e l v i s 2 0 . 8 4 . 0 7 + 0 . 7 0 l e n g t h c e r v i c a l 3 4 . 6 6 3 . 3 6 - 0 . 0 1 l e n g t h 5 4.40 3 . 3 8 + 0 . 0 1 l e n g t h 7 3 . 7 4 3 . 0 1 -O . 3 6 l e n g t h t h o r a c i c 1 3.40 3 . 5 8 + 0 . 2 1 l e n g t h 5 3 . 0 6 3 . 6 7 + 0 . 3 0 l e n g t h 1 0 3 . 5 4 4 . 2 2 + 0 . 8 5 l e n g t h lumbar 1 4 . 5 1 4.27 + 0.90 l e n g t h 3 4 . 7 4 4 . 1 0 + 0 . 7 3 l e n g t h 5 4 . 5 3 3 . 8 8 + 0 . 5 1 width c e r v i c a l 5 4.40 3 . 8 0 + 0 . 4 3 width t h o r a c i c 5 3 . 9 8 2.90 - 0 . 4 7 width lumbar 3 2 . 7 3 3 . 0 7 - 0 . 3 0 l e n g t h d i s t a l f o r e cannon 1 5 . 8 5 3 . 5 0 + 0 . 1 3 width, f o r e cannon 2 . 6 5 2 . 8 3 - 0 . 5 4 width, proximal f o r e cannon 2 . 6 6 3 . 1 0 - 0.27 width, minimum f o r e cannon 1 . 3 6 3 . 7 5 - O . 3 8 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 49 139 Animal No. U l l T o t a l E.I. 1 352,929 C a l o r i e s Sex F Age 175 Days P a t t e r n E .1. m Dimension Bone S i z e 2 I n t e r c e p t 1 Devia 1 l e n g t h f o r e cannon 15.68 3.39 x 10 5 -0.14 l e n g t h r a d i u s 16.7 3.49 -0.04 l e n g t h humerus 17.05 3-57 +0.04 le n g t h scapula 14.6 3.85 +0.32 l e n g t h hind cannon 18.95 3.25 -0.28 l e n g t h t i b i a 24-23 3.25 -0.28 l e n g t h femur 20.93 3.92 +0.39 l e n g t h p e l v i s 20.88 4.12 +0.59 l e n g t h c e r v i c a l 3 5.06 4.38 +O.85 le n g t h 5 4.52 3.77 +0.24 le n g t h 7 3.80 3.22 -0.31 l e n g t h t h o r a c i c 1 3-42 3.65 +0.12 l e n g t h 5 3.13 3.91 +0.3-8 l e n g t h 10 3-35 3.68 +0.15 le n g t h lumbar 1 4-14 3.36 -0.17 l e n g t h 3 4.48 3.47 -0.06 l e n g t h 5 4.12 2.73 -0.80 width c e r v i c a l 5 4.15 3.23 -0.30 width t h o r a c i c 5 4.12 3.38 -0.15 width lumbar 3 2.71 3.06 -0.47 l e n g t h f o r e cannon 15.68 3.39 -0.14 width, d i s t a l f o r e cannon 2.76 3.34 -0.19 width, proximal f o r e cannon 2.63 3.01 -0.52 width, minimum f o r e cannon 1.25 2.86 -0.67 x 10' 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 5 0 Animal No. U 1 4 T o t a l E.I. 3 8 0 , 4 2 4 C a l o r i e s Sex F Age 1 7 5 Days P a t t e r n E . I. MMM Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 f o r e cannon 1 5 . 4 8 3 . 2 5 x 1 0 5 - 0 . 5 5 x 1 0 r a d i u s 1 6 . 1 5 3 . 1 5 - 0 . 6 5 humerus 1 7 . 3 3 . 7 5 - 0 . 0 5 scapula 14 . 7 3 . 9 5 + 0 . 1 5 hind cannon 1 8 . 6 8 3 . H - 0.69 t i b i a 2 4 . 1 0 3.14 - 0 . 6 6 femur 2 0 . 9 3 3.92 + 0 . 1 2 p e l v i s 2 0 . 4 3 . 8 0 0 . 0 0 c e r v i c a l 3 5 . 0 6 4 . 3 8 + 0 . 5 8 5 4 . 6 3 4 . 1 2 + 0 . 3 2 t h o r a c i c 7 4 . 1 8 4 . 4 4 +O .64 1 3 . 7 0 4 . 6 8 + 0 . 8 8 5 3 . 2 2 4 . 2 1 + 0.41 1 0 3 . 5 4 4 . 2 2 + 0 . 4 2 lumbar 1 4 . 2 4 3.61 - 0 . 1 9 3 4 . 5 5 3 . 6 5 - 0 . 1 5 5 4 . 4 4 3 . 6 3 - 0 . 1 7 c e r v i c a l 5 4 . 4 6 3 . 9 3 + 0 . 1 3 t h o r a c i c 5 4 . 2 4 3 . 8 3 + 0 . 0 3 lumbar 3 2 . 5 8 2 . 9 4 - 0 . 8 6 f o r e cannon 1 5 . 4 8 3 . 2 5 - 0 . 5 5 f o r e cannon 2 . 7 8 3 . 4 2 - 0 . 3 8 f o r e cannon 2 . 6 3 3 . 0 1 - 0 . 7 9 f o r e cannon 1 . 3 2 3 . 3 5 - 0 . 4 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 5 1 Animal No. U32 T o t a l E . I. 1 9 8 , $ 2 7 C a l o r i e s Sex F Age 1 7 5 Days P a t t e r n E . I. LMM Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l Bone S i z e 2 Intercept" 1' D e v i a t i o n 1 f o r e cannon 13.98 2.21 x 1 0 5 +0.22 x 10 r a d i u s 14.78 2.29 + 0 . 3 0 humerus 1 5 . 0 3 2 . 3 8 +0.39 scapula 1 2 . 2 5 2.18 +0.19 hind cannon 1 6 . 8 3 2.10 +0.11 t i b i a 21.75 2.28 +0.29 femur 17.9 2 . 3 8 +0.39 p e l v i s 17.33 2 . 0 5 +0.06 c e r v i c a l 3 4.07 2.04 +0.05 $ 4.00 2.46 +0.47 t h o r a c i c 7 3.42 2.15 +0.16 1 2.96 2.44 +0.45 $ 2.78 2.72 +0.73 lumbar 10 3.13 3.05 +1.06 1 3.73 2.37 +O . 3 8 3 4.00 2.37 +0 . 3 8 $ 4.02 2.55 + O . 5 6 c e r v i c a l $ 3.59 2.35 +0.36 t h o r a c i c 5 3.48 2.08 +0.09 lumbar 3 2.45 2 . 8 2 +0 . 8 3 f o r e cannon 13.98 2.21 +0.22 fo r e cannon 2.39 2.00 +0.01 fo r e cannon 2.33 2.10 +0.11 fo r e cannon 2.14 2.16 +0.17 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 5 2 Animal No. U38 T o t a l E.I Sex F Age 1 7 5 Days Dimension Bone le n g t h f o r e cannon l e n g t h r a d i u s l e n g t h humerus l e n g t h scapula l e n g t h hind cannon l e n g t h t i b i a l e n g t h femur l e n g t h p e l v i s l e n g t h c e r v i c a l 3 l e n g t h 5 l e n g t h 7 l e n g t h t h o r a c i c 1 le n g t h 5 l e n g t h 10 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 2 0 2 , 7 5 1 C a l o r i e s P a t t e r n E, . 1 . LMM S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 13.8 5 2.10 x 10 +0.07 x 10 14.45 2 . 0 8 +0.05 14.73 2.20 +0.17 12.1 2.11 +0 . 0 8 16.98 2.17 +0.14 21.35 2 . 1 5 +0.12 17.78 2.33 +0.30 17.9 2 . 3 1 +0.28 4 . 2 5 2 . 3 2 +0.29 4 . 0 8 2 . 5 8 +0.55 3-38 2.07 +0.04 3 . 1 5 2 . 8 0 +0.77 2.73 2.55 +0 . 5 2 2.79 2.21 +0.18 3 . 8 3 2.61 +O . 5 8 3.97 2 . 3 2 +0.29 3.97 2.47 +0.44 3.53 2.29 +0.26 3-73 2.50 +0.47 2.55 2.91 +0.88 13.8 2.10 +0.07 2.34 1.87 -0.16 2.43 2 . 2 5 +0.22 1 . 2 3 2.70 +0.67 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 5 3 Animal No. V9 Sex F Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l T o t a l E . I . 193,545 C a l o r i e s Age 175 Days P a t t e r n E . I . MLM Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 f o r e cannon 13.68 2.00 x 10 5 +0.06 x 10 r a d i u s 14.13 1.90 -0.04 humerus 1 4.1 I . 8 5 -0.09 scapula 11.53 1.80 -0.14 hind cannon 16.8 2.08 +0.14 t i b i a 20.8 1.93 -0.01 femur 16.73 1.90 -0.04 p e l v i s 1 5.55 1.20 -0.74 c e r v i c a l 3 3.76 1 . 5 2 - 0 . 4 2 5 3.54 1.81 -0.13 7 3.03 1.36 -0.58 t h o r a c i c 1 2 . 8 7 2.27 +0.33 5 2.47 2.03 +0.09 10 lumbar 1 3.26 1.66 -0.28 3 3 . 5 2 1.61 -0.33 5 3.58 I . 8 7 -0.07 c e r v i c a l 5 3.07 1.83 -0.11 t h o r a c i c 5 3 . 3 2 1.82 -0.12 lumbar 3 1.78 2.21 +0.27 fo r e cannon 13.68 2.00 +0.06 fo r e cannon 2.20 1.10 -O . 8 4 f o r e cannon 2.20 1.70 -0.24 f o r e cannon 1.06 1.75 -0.19 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 54 Animal No. V 1 3 T o t a l E . I . 1 3 5 7 , 9 8 7 C a l o r i e s Sex F Age 1 7 5 Days P a t t e r n E.I. MMM Dimension Bone 2 1 1 Size I n t e r c e p t D e v i a t i o n l e n g t h f o r e cannon 1 5 . 3 3 3 . 1 4 x lO^ - 0 . 4 4 l e n g t h r a d i u s 16 . 7 3 . 4 9 - 0 . 0 9 l e n g t h humerus 1 6 . 9 8 3 . 3 5 - 0 . 2 3 l e n g t h scapula 1 4 . 0 3.26 - 0 . 3 2 l e n g t h hind cannon I 8 . 5 8 3 . 0 5 - 0 . 5 3 l e n g t h t i b i a 2 4 . 1 5 3 . 1 8 - 0 . 4 0 l e n g t h femur 2 0 . 7 5 3 . 7 6 + 0 . 1 8 l e n g t h p e l v i s 1 9 . 3 3 3 . 0 9 - 0 . 4 9 l e n g t h c e r v i c a l 3 4 . 6 7 3 . 3 8 - 0 . 2 0 l e n g t h 5 4 . 3 5 3 . 2 3 - 0 . 3 5 l e n g t h 7 3 . 7 9 3 . 1 8 - 0.40 l e n g t h t h o r a c i c 1 3 . 3 3 3 . 3 2 - 0.26 l e n g t h 5 2.96 3 . 3 3 - 0 . 2 5 l e n g t h 1 0 3 . 1 7 3.16 - 0 . 4 2 l e n g t h lumbar 1 4 . 0 6 3 . 1 7 - 0 . 4 1 l e n g t h 3 4 . 4 3 3 . 3 5 - 0 . 2 3 l e n g t h 5 4 . 3 7 3 . 4 4 - 0.14 width c e r v i c a l 5 3 . 9 9 2 . 8 7 - 0 . 7 1 width t h o r a c i c 5 3 . 9 4 2 . 8 4 - 0 . 7 4 vri. dth lumbar 3 2 . 6 4 2 . 9 9 - 0 . 5 9 l e n g t h f o r e cannon 1 5 . 3 3 3 . 1 4 -O . 4 4 width, d i s t a l f o r e cannon 2 . 6 4 2 . 7 4 - 0 . 8 4 width, proximal f o r e cannon 2 . 4 3 2 . 4 0 - 1 . 1 8 width, minimum f o r e cannon 1.28 3 . 1 0 -O . 4 8 x 1 0 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 1 4 5 Table 5 5 Animal No. V16 T o t a l E.I • 1 9 7 , 7 1 9 C a l o r i e s Sex F Age 1 7 5 Days P a t t e r n E . 1 - MLL Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 3 . 8 8 2 . 1 5 x 1 0 5 + 0 . 1 7 x 1 0 5 l e n g t h r a d i u s 1 4 . 2 5 1.96 - 0 . 0 2 l e n g t h humerus 1 4 . 4 5 2 . 0 5 + 0 . 0 7 l e n g t h scapula 1 1 . 8 5 1.96 - 0 . 0 2 l e n g t h hind cannon 1 7 . 3 5 2 . 3 8 + 0 . 4 0 l e n g t h t i b i a 2 1 . 1 2 . 0 4 + 0 . 0 6 l e n g t h femur 1 6 . 9 8 1 . 8 7 - 0 . 1 1 l e n g t h p e l v i s 16 . 3 1 . 5 6 - 0 . 4 2 l e n g t h c e r v i c a l 3 3 . 7 8 1 . 5 6 - 0 . 4 2 l e n g t h 5 3.61 1.91 - 0 . 0 7 l e n g t h 7 3 . 1 8 1 . 6 7 - 0 . 3 1 l e n g t h t h o r a c i c 1 2 . 7 9 2 . 1 2 + 0 . 1 4 l e n g t h 5 2 . 3 1 1 . 7 0 - 0 . 2 8 l e n g t h 1 0 2 . 6 6 2 . 0 0 + 0 . 0 2 l e n g t h lumbar 1 3 . 3 7 1 . 8 1 - 0 . 1 7 l e n g t h 3 3 . 7 4 1.96 - 0 . 0 2 l e n g t h 5 3 . 5 5 1 . 8 2 - 0.16 width c e r v i c a l 5 3 . 3 0 2 . 0 7 + 0 . 0 9 width t h o r a c i c 5 3 . 4 6 2 . 0 5 + 0 . 0 7 width lumbar 3 2 . 1 5 2 . 5 4 +O . 5 6 l e n g t h f o r e cannon 1 3 . 8 8 2 . 1 5 + 0 . 1 7 width, d i s t a l f o r e cannon 2 . 3 0 1 . 7 8 - 0 . 2 0 width, proximal f o r e cannon 2 . 3 3 2 . 1 0 + 0 . 1 2 width, minimum f o r e cannon 1 . 0 9 1 . 9 0 - 0 . 0 8 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 56 Animal No. V17 T o t a l E . I . Sex F Age 175 Day; Dimension Bone l e n g t h l e n g t h l e n g t h l e n g t h f o r e cannon r a d i u s humerus scapula l e n g t h l e n g t h l e n g t h l e n g t h hind cannon t i b i a femur p e l v i s l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h c e r v i c a l 3 5 7 t h o r a c i c 1 5 10 lumbar 1 3 5 width width width c e r v i c a l 5 t h o r a c i c 5 lumbar 3 le n g t h width, d i s t a l f o r e cannon fo r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 166,743 C a l o r i e s P a t t e r n E .1. LLL S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 13.75 2.06 x 10 5 +0.39 x 10 14.33 2.01 +0.34 1 4 . 0 5 1.82 +0.15 11.63 1.86 +0.19 16.75 2 . 0 5 +O . 3 8 20.8 1.94 +0.27 16.5 1.80 +0.13 16.33 1.56 -0.11 3.79 1.57 -0.10 3.42 1.63 -0.04 3.10 1 . 5 0 -0.17 2.60 1.77 +0.10 2.33 1.74 +0.07 2.56 1 . 8 3 +0.16 3.26 1.67 0.00 3.57 1.69 +0.02 3 . 5 0 1.74 +0.07 3.49 2.25 +O .58 3.36 1.88 +0.21 2.18 2.57 +0.90 13.75 2.06 +0.39 2.39 2.00 +0.33 2.42 2.37 +0.70 1 . 1 3 2.11 +0.44 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 147 ( t e x t continued from p. 56) For each s k e l e t a l dimension at 112 and 175 days, the data have been bounded by a t r i a n g l e . The r e s u l t i n g f i g u r e bounds the d i s t r i b u t i o n of data i n a unique manner and has a t t r i b u t e s t h a t have proven u s e f u l f o r d e s c r i b i n g t h a t d i s t r i b u t i o n . The t r i a n g l e s were drawn accordi n g t o a s t r i c t procedure and the consequent shapes are of c o n s i d e r a b l e importance. For the purpose o f i d e n t i f i c a t i o n i n the f o l l o w i n g d e s c r i p t i o n , the lower-most apex w i l l be c a l l e d A, the upper l e f t B, and the upper r i g h t C. The s i d e s are i d e n t i f i e d by t h e i r adjacent apices as AB, BC and AC. Apex A was chosen t o correspond t o an energy l e v e l below any achieved by the l a b o r a t o r y animals and probably approaching the c r i t i c a l energy i n t a k e f o r s u r v i v a l of a w i l d fawn. The h e i g h t , width, and shape of each bounding t r i a n g l e i s a product o f the i n t e r a c t i o n o f energy i n t a k e and the p r i o r i t y of a p a r t i c u l a r bone t o grow. The energy values chosen f o r A were 75,000 C a l o r i e s (A.D.E.) at 112. days and 150,000 C a l o r i e s (A.D.E.) at 175 days. A l i n e AC was drawn to the r i g h t of the d i s t r i b u t i o n of data i n a manner t h a t j u s t i n c l u d e d a l l data p o i n t s . From the poi n t of i n t e r s e c t i o n of t h i s l i n e , AC, w i t h the chosen minimum energy value, A, a l i n e AB was drawn to the l e f t o f , and j u s t i n c l u d i n g , the • d i s t r i b u t i o n of data. The l i n e BC, w i t h zero or p o s i t i v e slope, was drawn to bound the data from above and to complete the t r i a n g u l a r shape. For the purpose of l o c a t i n g s p e c i f i c data p o i n t s w i t h i n the boundary, a reference l i n e has been i n c l u d e d . This l i n e d e s c r i b e s the mean cumulative energy i n t a k e at each value f o r a s k e l e t a l measurement according to the boundary of the data and not to the i n d i v i d u a l data p o i n t s . T h i s method was chosen because the d i s t r i b u t i o n of treatments used i n the experiment was not considered r e p r e s e n t a t i v e of a l l p o s s i b l e treatments. The a d d i t i o n of a new treatment may change a l i n e f i t t e d to the data p o i n t s but i t w i l l be demonstrated l a t e r t h a t the a d d i t i o n of t h i s treatment should not a l t e r the boundaries. I d e a l l y the reference l i n e should be an asymptotic curve d e s c r i b i n g growth on i n v a r i e n t p a t t e r n s , but d i f f e r e n t magnitudes of energy i n t a k e s . However, s u f f i c i e n t data were not a v a i l a b l e to e s t a b l i s h such l i n e s . A s t r a i g h t l i n e i s no l e s s u s e f u l f o r e s t i m a t i n g p a t t e r n o f energy i n t a k e than i s the i d e a l curve, f o r i t i s the p a t t e r n of displacement which i s of i n t e r e s t ; but i n t e r p r e t a t i o n of the data i s made more d i f f i c u l t . On each graph are shown both male and female data. Only the male data were used i n f i t t i n g the bounding l i n e s , w i t h the female data being added afterwards. This was done i n order to accentuate any p o s s i b l e sex d i f f e r e n c e s i n the response to a treatment. Both male and female data are d i s -cussed according to displacement from the same reference l i n e . At 322 days, a d i f f e r e n t approach was necessary. Treat-ments at e a r l i e r dates i n c l u d e d an a r r a y of energy i n t a k e s ranging from the lowest to the highest extremes, along w i t h many intermediate p o s s i b i l i t i e s . A l l of these c o n t r i b u t e d to e s t a b l i s h i n g the t r i a n g u l a r boundaries. With the l i m i t e d number of treatments considered at 3 2 2 days, the t r i a n g l e s could not be drawn. For example, a c o n t i n u a t i o n of constant 'L' to 3 2 2 days would have r e s u l t e d i n a cumulative energy i n t a k e of around 4 2 0 , 0 0 0 C a l o r i e s , whereas the lowest a c t u a l treatment considered r e s u l t e d i n a cumulative energy i n t a k e o f 6 7 5 , 0 0 0 C a l o r i e s . A l i n e was f i t t e d to the data p o i n t s u s i n g a ' l e a s t squares r e g r e s s i o n ' . As mentioned e a r l i e r , t h i s treatment i s not v a l i d s t a t i s t i c a l l y because the v a r i a t i o n s are known not to be random. However, since the same treatments are i n v o l v e d i n each graph, the l i n e provides a convenient r e f e r e n c e . For each animal c a r r i e d to 3 2 2 days, the magnitude of each s k e l e t a l dimension at 1 7 5 days of age could be estimated from the energy regime e f f e c t i v e p r i o r to t h i s date. This allows the growth between 1 7 5 and 3 2 2 days to be equated t o the p r e v a i l i n g energy treatment. Once the graphs f o r the experimental data were drawn, i t was necessary to develop a method that would a l l o w s k e l e t a l measurements from animals of unknown n u t r i t i o n a l h i s t o r y to be used to evaluate the energy regime of these animals. For each of the animals reared at the l a b o r a t o r y , t o t a l energy i n t a k e , p a t t e r n of i n t a k e , and a l l of the s k e l e t a l measurements are known. For the w i l d animals, only the s k e l e t a l measurements and, i n some cases, an estimate of t o t a l energy i n t a k e based on a body weight r e g r e s s i o n are known. Nothing i s known of 150 the p a t t e r n of energy i n t a k e . In the f o l l o w i n g s e c t i o n , u n l e s s otherwise i n d i c a t e d , the procedure w i l l r e f e r to the a n a l y s i s of animals at 175 days o f age or younger.. I t has al r e a d y been suggested that a time s p e c i f i c energy r e s t r i c t i o n would a f f e c t each s k e l e t a l dimension d i f f e r e n t l y . These d i f f e r e n c e s are manifested i n displacement from the r e -ference l i n e s . The displacement i s the r e s u l t o f p l o t t i n g a s k e l e t a l dimension a g a i n s t a known cumulative energy i n t a k e . I f o n l y the s k e l e t a l dimension i s known, the reference l i n e w i l l provide an estimate of the cumulative energy i n t a k e . Each dimension would provide an independent estimate of energy i n t a k e , and the d i f f e r e n c e s among these estimates would depend upon the p a t t e r n o f energy r e s t r i c t i o n s which had occurred. For the l a b o r a t o r y animals, the d e v i a t i o n s between the tru e and the estimated cumulative energy i n t a k e s have been measured f o r each dimension of every animal. The d e v i a t i o n s have been arranged i n s e r i e s as f o l l o w s : 1. Length of f o r e limb elements, d i s t a l t o proximal; 2. Length of hind limb elements, d i s t a l to proximal; 3. Length of vertebrae, a n t e r i o r to p o s t e r i o r ; 4. Width of vertebrae, a n t e r i o r to p o s t e r i o r ; 5. Dimensions of the for e cannon, arranged i n the order of l e n g t h , d i s t a l width, proximal width, minimum width. T h i s i n f o r m a t i o n i s shown i n Tables 10 to 56, along w i t h the 151 app r o p r i a t e energy regime, to provide the standards f o r the e v a l u a t i o n of the energy regimes of the fr e e ranging w i l d fawns. Two s i t u a t i o n s may e x i s t i n the e v a l u a t i o n of unknown data. In one case, both body weight and s k e l e t a l dimensions are a v a i l a b l e , and i n the other, only s k e l e t a l dimensions. When body weight i s a v a i l a b l e to provide an estimate of t o t a l energy i n t a k e , then the treatment i s e s s e n t i a l l y the same as j u s t o u t l i n e d f o r the l a b o r a t o r y animals. When only s k e l e t a l dimensions are a v a i l a b l e , a l l that can be obtained i s a s e r i e s of i n t e r c e p t s w i t h the reference l i n e s . In the l a t t e r s i t u a t i o n , a n a l y s i s becomes much more d i f f i c u l t because no base l i n e i s a v a i l a b l e . The r e s u l t s of the e v a l u a t i o n of the energy regimes of the w i l d fawns are shown i n Tables 57 to 65. The i n t e r c e p t s w i t h the reference l i n e s are t a b u l a t e d and, where a body weight estimate of t o t a l energy i n t a k e was a v a i l a b l e , the d e v i a t i o n s between the energy i n t e r c e p t s f o r each s k e l e t a l dimension and the energy in t a k e estimated by body weight have been shown. ( t e x t continues on p. 161) Table 5 7 152 Animal No. YF17 T o t a l E . I . 197,000 C a l o r i e s Estimated Sex M Dimension Age 116 Days Bone Size' P a t t e r n E . I. W i l d I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l 3 5 7 t h o r a c i c 1 5 1 0 lumbar 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 4 . 6 3 1 5 . 3 15.9 12.95 17.7 22.7 19.0 4.35 3.98 1 4 . 6 3 2 . 8 3 2 . 5 4 1 . 3 0 1.74 x 10 1.78 2.02 2.00 1.80 2.08 2.18 1 . 7 7 1 . 8 5 5 4.10 2.80 1 . 7 4 2 . 0 0 1 . 4 5 2 . 0 3 - 0 . 2 3 x 1 0 ' - 0 . 1 9 + 0 . 0 5 + 0 . 0 3 - 0 . 1 7 + 0 . 1 1 + 0 . 2 1 - 0 . 2 0 - 0 . 1 2 +O.83 - 0 . 2 3 + 0 . 0 3 - 0 . 5 2 + 0 . 0 6 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 5 8 153 Animal No. YF19 T o t a l E.I. 205,000 C a l o r i e s Estimated Sex M Dimension Age 118 Days Bone Size' P a t t e r n E.I. W i l d I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l t h o r a c i c lumbar 3 5 7 1 5 10 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 15-38 16.0 16.15 12.75 18.23 23.1 19.55 4.32 4.08 2.03 x 10-1.98 15.38 3.07 2.84 1.33 ,10 .93 1.98 2.20 2.37 1.74 1.98 4.13 2.02 2.03 2.50 2.25 2.16 -0.02 x 10--0.07 +0.05 -0.12 -0.07 +0.15 +0.32 -0.31 -0.07 +0.87 -0.02 +0.45 +0.20 +0.11 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 1 5 4 Table 5 9 Animal No. YF16 T o t a l E . I . 1 193,000 C a l o r i e s Estimated Sex F Age 116 Days P a t t e r n E . I . W i l d Dimension Bone o 1 1 S i z e I n t e r c e p t D e v i a t i o n l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l 3 5 7 t h o r a c i c 1 5 1 0 lumbar 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 4 - 9 5 1 5 - 3 1 5 . 7 1 3 . 0 1 7 . 3 5 2 2 . 7 1 8 . 9 5 4.32 4.12 3.60 14.95 2.81 2.49 1.27 1.87 x 10-1.78 1.95 2.02 1.85 2.08 2.17 1.74 2 . 0 3 1.90 3.86 2.30 1 . 8 7 1.96 1 . 3 2 1 . 9 0 -0.11 x 10 -0.20 -0.03 +0.04 -0.13 +0.10 +0.19 - 0 . 2 4 + 0 . 0 5 - 0 . 0 8 5 + 0 . 3 2 - 0 . 1 1 - 0 . 0 2 - 0 . 6 6 - 0 . 0 8 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 60 Animal No. YF20 T o t a l E . I . 1 16*0,000 C a l o r i e s Estimated Sex F Dimension Age 118 Days Bone Size' P a t t e r n E . I. W i l d I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width f o r e cannon r a d i u s humerus scapula hind cannon t i b i a femur p e l v i s c e r v i c a l t h o r a c i c lumbar 3 5 7 1 5 1 0 1 3 5 c e r v i c a l 5 t h o r a c i c 5 lumbar 3 l e n g t h f o r e cannon width, d i s t a l f o r e cannon width, proximal f o r e cannon width, minimum f o r e cannon 1 4 . 9 5 1 5 - 1 1 2 . 6 1 8 . 0 3 2 2 . 8 1 8 . 5 5 4 . 2 2 3 . 7 8 1 . 8 7 x 1 0 5 + 0 . 0 7 x 1 0 14.95 2.69 2.61 1.22 1.72 1.87 1.92 2.11 2 . 0 5 1.65 1.59 3.75 2.07 1.87 1.72 1.63 1.93 - 0 . 0 8 + 0 . 0 7 + 0 . 1 2 + 0 . 3 1 + 0 . 2 5 - 0 . 1 5 - 0 . 2 1 + 0 . 2 7 + 0 . 0 7 - 0 . 0 8 - 0 . 1 7 + 0 . 1 3 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 61 Animal No. Y F 1 8 T o t a l E.I. 1 1 7 0 , 0 0 0 C a l o r i e s Estimated Sex F Age 1 1 7 Days P a t t e r n ; E.I. Wild Dimension Bone S i z e 2 I n t e r c e p t 1 Deviation' l e n g t h f o r e cannon 1 5 . 2 1.96 x 1 0 5 + 0 . 2 6 x 1 0 l e n g t h r a d i u s 1 5 . 8 3 1 . 9 3 + 0 . 2 3 l e n g t h humerus 1 5 . 8 1 . 9 8 + 0 . 2 8 l e n g t h scapula 1 2 . 5 I . 8 4 + 0 . 1 4 l e n g t h hind cannon 1 8 . 3 8 2 . 0 4 + 0 . 3 4 l e n g t h t i b i a 2 2 . 7 3 2 . 0 8 + 0 . 3 8 l e n g t h femur 1 8 . 9 3 2 . 1 6 + 0 . 4 6 l e n g t h p e l v i s 1 7 . 7 5 2 . 0 7 + 0 . 3 7 l e n g t h c e r v i c a l 3 4 . 1 8 r . 6 2 - 0 . 0 8 l e n g t h 5 3 - 8 3 1 . 7 8 + 0 . 0 8 l e n g t h 7 3 . 4 9 1 . 7 5 + 0 . 0 3 l e n g t h t h o r a c i c 1 2 . 9 8 I . 4 8 - 0 . 2 2 l e n g t h 5 l e n g t h 1 0 2.92 1.92 + 0 . 2 2 l e n g t h lumbar 1 3.90 2 . 1 8 +O .48 l e n g t h 3 3 . 9 3 1 . 7 8 + 0 . 0 8 l e n g t h 5 3 - 5 1 1.31 - 0 . 3 9 width c e r v i c a l 5 3-69 1 . 9 4 + 0 . 2 4 width t h o r a c i c 5 width lumbar 3 2 . 5 1 1 . 8 6 + 0 . 1 6 l e n g t h f o r e cannon 1 5 . 2 1.96 + 0 . 2 6 width, d i s t a l f o r e cannon 2 . 7 1 1 . 7 6 + 0 . 0 6 width, proximal f o r e cannon 2 . 5 2 1 . 4 0 - 0 . 3 0 width, minimum f o r e cannon 1 . 1 7 1 . 4 6 - 0 . 2 4 1 2 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . A c t u a l bone dimension i n centimeters. Table 62 Animal No. WF1 Sex M Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l T o t a l E . I . 310,000 C a l o r i e s Estimated Age 180 Days P a t t e r n E . I . W i l d Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 f o r e cannon 1 5 . 2 8 3.10 x 10 5 0.00 x 10 r a d i u s 15.9 3.00 -0.10 humerus 16.65 3.33 +0 . 2 3 scapula 12.9 2 . 2 8 - 0 . 8 2 hind cannon 1 8.6 3.06 -0.04 t i b i a 23.4 2.88 -0.22 femur 20.1 3.29 +0.19 p e l v i s 19.1 2.92 -0.18 c e r v i c a l 3 4.51 2.97 -0.13 5 4.17 2 . 7 1 -0.39 7 3-74 3.02 -0.08 t h o r a c i c 1 3 . 2 9 3.17 +0.07 5 2.93 3.23 +0.13 10 3.17 . 3.16 +0.06 lumbar 1 3 4.46 3.43 +0.33 5 4.23 3 - 0 5 - 0 . 0 5 c e r v i c a l 5 4.13 3.18 +0.08 t h o r a c i c 5 3.73 2 . 5 0 -0.60 lumbar 3 2 . 4 6 2.83 -0.27 f o r e cannon 1 5 . 2 8 3.10 0.00 fo r e cannon 2.75 3.29 +0.19 fo r e cannon 2.64 3.04 -0.06 f o r e cannon 1.34 3.59 -0.49 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 6 3 Animal No. WF2 T o t a l E . I . 1 320,000 C a l o r i e s Estimated Sex M Dimension l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h l e n g t h width width width l e n g t h width, d i s t a l Age 180 Days P a t t e r n E . I . W i l d Bone S i z e 2 I n t e r c e p t 1 Devial f o r e cannon 15.20 3 . 0 4 x 1 0 5 -0.16 r a d i u s 16.1 3.12 -0.08 humerus 16.2 3.07 -0.13 scapula 13.65 2.93 -0.27 hind cannon 18.3 2.90 -0.30 t i b i a 2 3.6 2.96 -0.24 femur 19.7 3.13 -0.07 p e l v i s c e r v i c a l 3 4.54 3.04 -0.16 5 4.43 3.49 +0.29 7 3.76 3.08 -0.12 t h o r a c i c 1 3.39 3.54 +0.34 5 2.78 2.71 -0.49 10 3.22 3.30 +0.10 lumbar 1 3-84 2.73 -0.47 3 4.36 3.18 -0.02 5 4.28 3.18 -0.02 c e r v i c a l 5 4.23 3.42 +0.22 t h o r a c i c 5 4.05 3.13 -0.07 lumbar 3 2.65 3.00 -0.20 f o r e cannon 15.20 3.04 -0.16 fo r e cannon 2.85 3.75 +0.55 fo r e cannon 2.74 3.38 +0.18 fo r e cannon 1.42 4.23 +1.03 x 10 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. Table 64 Animal No. Y F 3 8 T o t a l E . I. 3 2 0 , 0 0 0 C a l o r i e s Estimated Sex M Age 1 7 7 Days P a t t e r n E . 1 . W i l d Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 5 . 9 3 . 5 3 x 1 0 5 + 0 . 3 3 x 1 0 : l e n g t h r a d i u s 1 6 . 5 3 . 3 7 + 0 . 1 7 l e n g t h humerus 1 6 . 2 3 . 0 7 - 0 . 1 3 l e n g t h scapula 1 2 . 8 5 2 . 5 1 - 0 . 6 9 l e n g t h hind cannon 1 9 . 2 5 3 . 5 0 + 0 . 3 0 l e n g t h t i b i a 2 3 . 7 2 . 9 9 - 0 . 2 1 l e n g t h femur 1 9 . 3 2 . 9 6 - 0 . 2 4 l e n g t h p e l v i s l e n g t h c e r v i c a l 3 4 . 1 3 2 . 1 3 - 1 . 0 7 l e n g t h 5 4 . 5 4 3 . 8 3 + 0 . 6 3 l e n g t h 7 l e n g t h t h o r a c i c 1 l e n g t h 5 l e n g t h 1 0 l e n g t h lumbar 1 l e n g t h 3 l e n g t h 5 width c e r v i c a l 5 3 . 6 6 2.42 - 0 . 7 8 width t h o r a c i c 5 width lumbar 3 l e n g t h f o r e cannon 1 5 . 9 3 . 5 3 + 0 . 3 3 width, d i s t a l f o r e cannon 2 . 8 8 3 . 8 8 + 0 . 6 8 width, proximal f o r e cannon 2 . 7 4 3 . 3 8 + 0 . 1 8 width, minimum f o r e cannon 1 . 2 9 3 . 1 9 - 0 . 0 1 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. 160 Table 6 5 Animal No. YF37 T o t a l E.I • 1 2 6 5,000 C a l o r i e s Estimated Sex F Age 176 Days P a t t e r n E .1. Wild Dimension Bone S i z e 2 I n t e r c e p t 1 D e v i a t i o n 1 l e n g t h f o r e cannon 1 4 . 5 8 2 . 6 4 x 10 5 -0.01 x 10 l e n g t h r a d i u s 1 5 . 3 5 2 . 6 4 -0.01 l e n g t h humerus 15.23 2.51 -0.14 l e n g t h scapula 1 2 . 8 5 2.51 - 0 . 1 4 l e n g t h hind cannon 1 8 . 0 3 2.75 +0.10 l e n g t h t i b i a 23.08 2 . 7 7 +0.12 l e n g t h femur 1 8 . 9 2 . 7 9 +0 . 1 4 l e n g t h p e l v i s I 8 . 4 8 2.60 -0.05 l e n g t h c e r v i c a l 3 4.12 2.12 - 0 . 5 3 l e n g t h 5 3 . 9 9 2.45 -0.20 l e n g t h 7 3 . 3 9 2.09 - 0 . 5 4 l e n g t h t h o r a c i c 1 3.00 2.51 -0.14 l e n g t h 5 2 . 6 4 2 . 3 7 - 0 . 2 8 l e n g t h 10 2 . 9 5 2.52 -0.13 l e n g t h lumbar 1 l e n g t h 3 3 . 7 9 2 . 0 3 - 0 . 6 2 l e n g t h 5 3.90 2.34 -0.21 width c e r v i c a l 5 3.69 2.45 -0.20 width t h o r a c i c 5 3 . 7 3 2.50 - 0 . 1 5 width lumbar 3 2.20 2 . 5 9 -0.06 l e n g t h f o r e cannon 1 4 . 5 8 2.64 -0.01 width, d i s t a l f o r e cannon 2 . 5 4 2 . 3 7 - 0 . 2 8 width, proximal f o r e cannon 2.40 2.32 -0.33 width, minimum f o r e cannon 1.23 2.70 +0.05 5 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . 2 A c t u a l bone dimension i n centimeters. ( t e x t continued from p. 151) D i s c u s s i o n : The e v a l u a t i o n o f the n u t r i t i o n a l regime to which an animal has been exposed can be approached from two r e l a t e d , but d i s t i n c t aspects: an e s t i m a t i o n o f the t o t a l amount of energy consumed, and the determination o f the p a t t e r n of energy i n t a k e . In the f o l l o w i n g pages the a n a l y s i s o f n u t r i t i o n a l regime w i l l proceed from the use of s k e l e t a l growth and body weight t o estimate t o t a l energy i n t a k e , t o the use of the dimensional d i f f e r e n c e s i n s e l e c t e d s k e l e t a l elements t o demonstrate the p a t t e r n o f energy i n t a k e — i . e . the time, d u r a t i o n and extent of energy r e s t r i c t i o n s . 1. E s t i m a t i o n of Cumulative Energy Intake. The e s t i m a t i o n of t o t a l energy i n t a k e by s k e l e t a l measurements i s based on the premise t h a t the boundaries drawn on F i g u r e s 9 to 50 i n c l u d e a l l p o s s i b l e v a r i a t i o n s i n s k e l e t a l s i z e at each l e v e l o f energy i n t a k e . This i s q u i t e u n l i k e l y since the boundaries simply define the d i s t r i b u t i o n o f a small sample of animals drawn from a p o p u l a t i o n of unknown v a r i a b i l i t y and i n v o l v e a r e s t r i c t e d number of t r e a t ments. An e r r o r term w i l l be a s s o c i a t e d w i t h each measurer ment, but t h i s w i l l not be considered u n t i l l a t e r . An examination o f F i g u r e s 9 to 50 w i l l show that f o r each measurement of a s k e l e t a l dimension there i s a c e n t r a l value of t o t a l energy i n t a k e d e f i n e d by the reference l i n e a 162 a range define d by the outer boundary. In t h i s s e c t i o n i t i s the range t h a t i s under c o n s i d e r a t i o n . I f the dimensions of a s e r i e s of s k e l e t a l components are used t o estimate t o t a l energy i n t a k e f o r an animal, the ranges of the independent estimates w i l l d i f f e r because of the unique response of each dimension t o a p a r t i c u l a r n u t r i t i o n a l regime. Since each range, by the o r i g i n a l premise, must c o n t a i n the true measure of t o t a l energy i n t a k e , a l l must overlap f o r at l e a s t a sm a l l amount. Combining a l l of the i n d i v i d u a l ranges y i e l d s a much narrower estimate of t o t a l energy int a k e by the e x c l u s i o n of the end p o r t i o n s of the energy regimes t h a t are not common to a l l . A diagrammatic example i s shown i n Fi g u r e s 51 and 52 u t i l i z i n g l e n g t h measurements of the fore limb and lumbar vertebrae f o r two 175 day o l d l a b o r a t o r y reared fawns. The c a l c u l a t e d t o t a l energy i n t a k e f o r each w i l d fawn, based on the a v a i l a b l e s k e l e t a l measurements f o r that animal,. (Tables 57-65), are given i n Table 6 6(p . l 6 5 ) . When examining the s k e l e t a l measurements of the w i l d fawns, i n s t a n c e s occurred where two d i f f e r e n t dimensions from the same animal i n d i c a t e d ranges of t o t a l energy i n t a k e that had no common p o i n t . As mentioned e a r l i e r , the use of the boundaries d e r i v e d from the d i s t r i b u t i o n of the l a b o r a t o r y data i n v o l v e s an unknown e r r o r term. Since a l l of the l a b o r a t o r y data have been i n c l u d e d i n the establishment of these boundaries, a re g i o n of overlap must n e c e s s a r i l y e x i s t f o r a l l measurements from these animals - s p e c i f i c a l l y , the Figure 51 The Limits of the Range of Possible T o t a l Energy Intakes f o r Laboratory Fawn V26 (HML Regime) as Defined by I t s S k e l e t a l Dimensions. .. 1 ..... •; ; ' -• X E--........ : i :•• : . i i E ... . EEi- :• : -r ..xE .. i . i - X i -. . : : E : E : •. :..': . ::,•: •::f.:. : ! ! ! - . • :.::;•• Ei 1. •; X • . ..... x : i " " i i ' i ; : ; i ; x : . • • ! : . : . 1 . . : : : E E : E ..:..;_. .. • ;. • • 1 Xi-X.E • ' : : : : . . . : . \ r r r . • x: • .. :;. x x . • ..... . - x ; . x ri-ri .: •!..:• : : i i . ... r r r r... xx: x i " j ' E E • : : : r : - : x : •:.l . r r r . • ..'.iii;. _: ..: ..::._:.... .... _.'. .'.:.:„::. : ... E _.. i . . . . r r r . ~ :_ EEi : :.: ' . " . E E E E i X i i - : .. •• •:..••••: : : : ; : ; - • :-Ei : : E i i . : i ; -: •: . ... E x x i i i E X F X : .;.•:• r r . . : ::' ...: 1 ::• i : •'! ]... X X . i i ;' : • i i " E X : E ;• -i ::: :~r r r ,-i -:: . i : : : T : . ..: - • • r r E X X 1 x X X : i . : : " X . . . :.. :::.. . .: :.:; :;:-: • ' : i . :i ... ... : ! •:-• : ' ' iiii" :: :::::: i X i : . E ::::::::: .:::::.:: .Eii E E i i i i x._, : •• i i i i i i : !- : i i , r . -::•: r r r : E X i i • • E : - . E E E E : ::::,::.: X i : E : i . Eii i i i i i EEi i i i i : i x i x E i i i : i : S X. . X X " i iE - -E E E E -ii.lix r r ; • : : ) ' : . : .ii Hi Ei . X X . ::::•:.: Xr-f-Xr : E : . : X :.:: 1 r r i i l E E . : ; " Ei :i ii. E : r r : : • r r : . . — : FC ) R E " C A N f1 ION ' x i i : .; x .:::-! r . r .... ! -:.: 1:-: iiii:- •: i i .-:: :•:-:::: E E i i i i i i i x r r : . xx: Eii ':Ei: .; . i i fxE • E X E : ! \DtU - r r - . . : . . : EiiH ... .,.. i i in Eii '. H X X X l X X i i -E i lE -: -: : :.:. x i i i iiiii ::": ..:: •• . XX E X . . EE . i.xi' x Ei Ei k J :: 5 : r.: i-r r . i r r . . . EEEE iiii . X ii-2 X E E 1 E r r . : . : . :X : : 1..! i E . : | E E . E . E E E EEE ::::.:....:. E E E .:.: xx :: .:::-::: .;.::: i i iE xx :::• E E E E E ? x x x EEEEE i i i i i i E E i 1 iii. E | - i r ~ : : E E i E E X X E •xx-:. -:•-•:: ..-:: .... E E : : .HI J M E F < u b i'EEX.E Ex L i : : E E E E _:'.".;..:::. : -•:: .~ iii::ii:ii" r r r : .. ::: E E X E - | E r— .:..:.. ' - ..... .. .ii iExiiii i: . :::-. xx: :..!::. J - - -E E E :: i i i i A-D 1 1 A . x;i-iii Ei i t i iE E E i i i i iSfi i i i ::.:•:,.-.:.: :": .:.. n i i i i i i i i r i i i: -EEx H : : . E EH ....... I E X i - • > L ' _ : i i . ; : : t xEE;; x x x:. E E E E . iXE i i i i i ~. .".:r. .:_ X - i i i E .:::..i •_...::' . 1:: :.::.:.--|: .::::•: : 1.-:::::.: E i i ' - EEE E .... - : - ' E E E E . EE: . s X ' ••ii! . L ; ! J M B / " " r- - -1 "... xx: .::::•! Ei EEi Eii. i i i i i i i i i T : : : : -i E E .::•-::_. , E — ::xx .-.:: :. , : : Ex: E E E W E X E xx" ::: : x: :. :x E L .... , J M B xxixx: E E i E E > . : -— , — r r E E n ::•: .::: .:•: ... ... •-rrj.~r.:. i i i X - ---,-.| . 1 -.:.: • E - r r r : : -i E i i S E E :r...... — " • " r i .. .... xxix. x:x E X " X X ...... . E i i i i i Z r - \ : S r . EEE :::::x r r ' L I J M B / X E E i ; i ::..„:: . E X E — . . . . E X E E i ..... r r . . -:n: . l i E - ( - . . . - I X • 1 :-' 1 . 1:::: :.i E _:xx. x: . X . E -E X i i i i X i ix r r r r r r E. ' E E r r . :L':i E E • •':••.-. .. ...... E — . r r . 3 E : i m i: .... _•';•:-.: : _::-.-.:. —r\ • i i i E i i •\:.~ __v-i -1 r .. 0 ~.:.: • .-... -•x 5! ! X"" ... . ::::: ----- i i - ' ExEE xx :::.: E X E i " - S X S i " : xx E i i -.. : 2 U : 3 i i iiirii'E r O E:::i:i E E i i i X EEiEE" : r r r . : . 4 V x: , r r r . ; -r r : m :.: x - : :x: x E ' . xx 2. E r g y i l in.ta ke:,T..C :.a t o r .... . . l es .x -: )65.{ A ; D ) X • — X i i E E r r r ; i i X X X .x 'rx. EXEEE ._::_• r r r r r r - x i i f x - -TXXxJxXTE ::.. r r r -- :.-:-: r x:x: r ... E-x Ex: E ,: : E E i E E . : ' :..::: :-.--: r r r . E E E E E r r A r r : : . .:•::. Ei i E E EEi i E : : - ; : E - E E i E E ; : : : ! : : x x :. :::.-.!.::.- I . : . ' . : . . ' . :.:::.:: .:::": . r r . r - E E E E • . ( • [ r r . - x i i i i i ; E E -ii .:':':'.'- E " xEi i'i i' E : E E EEE - . -• - -• .::.:.::. -•: • • r r - •• ••_:. • • ' - " E i X E - , . . . ME A ISI OF C ON E l RAN G E.:-297.C )_00 _C_a.l.o.r es : : E.-.: • . _E i i". ;•:;.!.; • " . ;:. • • • •... •'..: i i i i i i i i : ::. ..:. . - ; . : • ..: .. .. — •• .. ... . - X . . . . . . . . . : . : : . ... : : : , : : : . : : ; . : : :"• I:.:. : • ;• T R U E . E N E R G Y I N T A K E 30 8,17 2 Ca l o r es > . . . X X . X X . . . - M E A N OF 1 N T E . : : • . 1 . EF T S ; --•'- - 2 9 3 , : : •:.. . . . . . DOO : x Co l o r ies i : 1 E . _ ' . . . .EiX... •:; r. • i i i i i i!EE i 1 • ' ix- . :.:.:: ' i " r i " " E i : :. : j *: • E . x x -' .; ' . : . . . i • * . x . . r r r r r r . ..... . -;. .. ::;..::: ..... ::" r r . . ..... . ...—... _ . l E E X :....:....: :: i: •: : ; X X i -• •;;: ,.i • • : •: • ;:•_!:.:• ... ,. . .;_; : ::: Eii ':..::: E T Figure 52 The Limits of the Range of Possible T o t a l Energy Intakes f o r Laboratory Fawn U33 (LMH Regime) as Defined by I t s S k e l e t a l Dimensions. ; 1 ] : : : i i i i -T7TT : : : : ! : : : - i i i i i ; :::;nx : r : : i ; ; : iiii iiii i i i i l l 1::: .iiiii - i i i i i i i i i . .1.11 iiiiiii' .i iiii '|XV Hi i i i i i i i i 1 !••- i::x ix : X!::. :!:: i' :S : Hi iii i i i i "I .".mil ix: . |H i< • i! i - i i i : i i : i i i i i i Ill j i [ Jill: - i - " III i i i : i i : ill : . : : in - i l ' :xi :: ii : iiji xir • ; : : . ! : xxx: :S : ::Xt : x:.i : :x. Hi-Si-5 —t-".... :v:i i i i i i i i i i ' iii - l i l -' i i : ; : : : - : - t i x 1 i l l llxil uj- . xx: : x: i: • xx: SI: ij.x : ::x.f- : H i i H E i l l H i Z'V.V:' ::i • iii. i i i . lilil . 1 ii i l l ;;::: f.:.: i : i i i l i i i ix : ti:iz iii i i • .11-;. i|i i i i xji. i:L : i l l . : : . : :|:Eil XX : : : : - ^ XX. . .. . —4-H i - .ii: . . . J - i i i i i I'HI IIII ' i i i i i ".:'.Z.'SI^:.Y i i - - x l l * iiirti l i x . • ii--'' irw .:l;i ' i i l i iii fr ; x.i - ix: . :x:: s 1111 • — . ix: . X X i •if ji! — - • i i i t i f • i i - lli- iii i i i i i i i • ::i:x iii-: i i x 111 i i i i i iix . :X-X ; l i t i £ r v ..ip: ' 1+i :+p-H E x i r " Xix - 'Hr i i i - x:x W" ! : ! : [ : : iii: i i " H i : : : : : : I.Fll .:xi - xixnxx: i iii- : it'zHZ : S I i-l-X i i i i i xfc;: -zzt i xxi- i i X;+4 " "AX! rr.! : xx- s - xix: I H . i i i : - H i j x E i -" • .iiii -HE x- i i i i . Hx_ ix i i i i i i XjX .ZV.1 :t:ix: "171" i i i i i 11;- iiii : xx: .'Six xxi- i i i . :iii "4lx : nx*"1 xxrx SH zzzz - - - H 7 .S . XIX -xx xxx: : : : xti- iiiii TXC -:X'X : HI: Ixx Icii" Hill i x : - i i i x;:r. xx: x:jx irnh :Eil xxi. .TiliE. : : : : - ; E- -S 'XX.-p x . XX. - 'ZZZZ ~ T : T : i i i . r ..Xi:i ]- i i i i i :xx. x:f. i i i i i i : : : : Si iiS: iiii si:ii!:: llil Hit IHxl lilil iiix xix i i -531': irh: i i i i x s . i l H ' x x l 1iiH i i ix :rxi :xrx H i SlHll iii; : i i xn:: i i i x :x " itii ::x: l l i l \".tZ'Z m i i i l i - i i :xc:: liiti Si " i i i .TTJE ; i i .i.;.t~ xx: :ixx i i i i _ r x-H XXX 2 i i i i i ii:. : i i i 11:^  itii :x3:: Hill • izz i i xxx iix xEI .:irn ::ix: -i—i 131 i i i xx: f'lfrl lUr iS xix H r xix xix; :ili x- i i ! iiox i.xx X^ -.'.l i x i M—— - i i : : : I x x i j i i ixx xtx lilTT.i xix 'iiiiii H i i l l :|Xxx iiii —ii S i I H ixx x H :xx - x H _ -. _ . S-X I". r-v # 4 i-ry xx.: xix: 'xii \| UA Nxx xrix zzzzz xi- -xx. xlxf — H + iii: ' — r •r+M t H —ZZi _.i.:.; i i i i xixi X'-x: :"XJ XXX 3 5 — xix; i *-I I H-H m S i r qlir (S--H- H i i XiXX Tz= XXX i i XUlT i i i i i x i i i rir " • xni 1 H E Si "iiii j i i i l £HE" i i i itii x'x: H H S I S :xx: 4-T-r, . -:xxi — — i & 7 • -- I -m H E i+T xix i i -Hit -n -Si -}-j*H-l i t pjf Lit Hi itix J 1VI Hflr JIM w 4-j Hr P+J my XXff •m •p. n • v i T r r pi i i EStl £ x | T b -i-X-r IHxl Hix i i i - H +444-- H S Hi i n x H h---: r H : xrti XtiX ixix • i i zr^x . 1 • l pi:.l xxil H t x x i ±h|-III' l-H-l-1 XX| : | J Xi 1 ^-4-- .1 x 1. -J | 7 - ixx: Hlx :: .^i H T ixch S i S E T-T-I-4Xfi iSZZ Xixr i&zt H H r H r 1 IpHX - H T -1±H :Hx -S] :nx:: E g --!+-H i i . . : 1 - +i-• TI'-T-•H—i i i i I S i i - ' . - - _ i i x : I i - i "3+t H-H-" ;T +>•-"Hit XX.;. XX!: ttx H+T-r -H+4--"H±t £Et± -x±r jxjj xnii +xx: IKx "ixti ?iii l l g l XXX Q H r0 m H E l-n i i i i xnx I i :H Tin"-1 3 O x i i XXX: i ixt i i l r 1 xx4_ 1x1. IEf. ~zX Xixl: or rx:i Q H xxx: IE i# lEfr. xxx i_a i s i s : tx'x i f t H : E i S H x oii A HH-T-iH1-H-!-4 - X - ^ T -H E :;6' - ! + - -4 4 - : 4 -O H 4+|+ i-Li-L irir i i ; l i : 3x1 H E riSS zzzz. :xl: xx: xjxt} ixx X— zzzz XXX E H 1 E E i i ix i i i i x i Z'fZZ -xx XXX H E XXX H E r H E :zzzzxi rsnr: - - E E ; - I H E i H f x H l EEx!Hx rn± xx: i i I i i i i j x x x :xx'+ -ix: E E ! :xx: XXX Xxr —1-1-j xix -EE :x.^Hi| rxx| XXX X E E -—-t XX x i x i p i E H S E i i i i i i i i i i i i i i i | i i i i j i xxr: ~ . J X xxxr xxi Ehi^ xax E E l i H l xxx xxr.i: X.X:. ±hi' ::xxx.x: .::xx|: :xx.t: 4X,. XX - _ x.x: H I "ix: i i i i i i Hi i i xx: 1F A N - i ) # i ( i 1 ti1 M :'i'R i6 r - i i i i i : izQZ £ 00 zz¥r -fi:|:AH a:e;xxx: - E E i S J l i i ixix -xx'.' i i i i i i i i ix:: xxi XX xxxlxxx x l l :i| - i f s H i f i i i i xix • Xxx: _ j E " ^ i •x;:: I W — - n — — : x:::4 x:x: H i : i§ | lEEI ; i x ' E E "irii: :xx x!:T;R U E . i l i 1 : N ; E F : Gi^ii 1NTA i — -KEill :i<: alor eisxi - xx:: _ : l t l LTTI:I xiii i i xxx: i i j i i -::x - A-isiii; xxxixxi : Y C-l.l x x - H x x jifEin •--4==. r-'d rz -:~::ix:.:- -T c i i i "xx. S i tii: )00 c l i S i -xx:n.:.:x:. Da 'or H l:|Sl . - : . ] i i .Tii: . I i i i i i i — i x::x .;:::.: ..... \ x:::: i l l xx::: " . : -ix: XX - i i i i i i iiii iii;~ . Zi\:. EIHH11 L r r f H -x:i;jx:x: 'li 1 i i .::;:i,r-v". i i i i i : i i x j l r j i ; -I'tujr :::x. xx i : r.ix i i i . i i -iiiii XX:: :pxl-i l • - ' 1 t:: : xt;:. H i ' . -- i i i i i i i i x:|: x!|ixH- i i i i i i I I I in i i i i i i i l : i I i E : i i i i - rrn:!: i ::xr:. xix! ::x;: • .:.,-!:: ZZIT ' . ^ ..,.1—. -iz.~.' H I : : i i - E : i i - XIX ' .1:. xix. i i - i i : i i i : i i i i i i i : ::: i:::::.. x:xll —i.- "iii iiiiii: • i r - i i ! i f : :r, : ZlZZ. - i i - i f - : i - ii L".;::. i iiiii ! i i i i i :.;: I. ": i :i: f i i x::.',.:: lS:i¥ ?.: , : :x:: •xx . i : : : iiiiii; 1 i f I . . I-xr:!. : H I : i i ! i s . 1H I-—-.. :::.n::;; — j . : : . xxp ™ iiii, i i : :xi-. i l l - i r : : : : i : . : : : • I H I -:.': j:::;: i l l : i - i ' i i - i-i -::.:i ' x l l . i i - i i i x l l ' l l l - rH- i:ll i i i i - I j l l l iH: 1 i l Mil. iiijiii I 165 Table 66. The estimated t o t a l energy i n t a k e s of w i l d fawns No. Sex Age 1 T o t a l Energy I n t a k e 2 T o t a l Energy Intake^ YF17 M 116 Days 197,000 C a l o r i e s 207,000 C a l o r i e s YF19 M 118 205,000 YF16 F 116 198,000 203,200 YF18 F 117 170,000 159,500 YF20 F 118 180,000 191,500 WF 1 M 180 310,000 289,400 WF 2 M 180 320,000 298,700 YF38 M 177 320,000 259,900 YF37 F 176 265,000 1 Age i s counted from June 24 -- i . e . , the mean day at which 10 pounds i s reached when the mean b i r t h date i s June 10. 2 Estimated from . s k e l e t a l dimensions according t o pp. 161-166. 3 Estimated from body weight according to F i g u r e s 5 and 6. t r u e t o t a l energy i n t a k e . T h i s i s not t r u e , however, f o r the w i l d fawns and some measurements must be expected t h a t would f a l l o u t s i d e the boundaries i f they were p l o t t e d a g a i n s t the true t o t a l energy i n t a k e . These d i f f e r e n c e s u s u a l l y appear to be s i n g l e aberrant measurements which can be i d e n t i f i e d as f a i l i n g t o conform t o the p a t t e r n of the other measurements. In the e s t i m a t i o n of t o t a l energy i n t a k e s i n Table 6 6 , these measurements were excluded. This problem w i l l be encountered again when the r e l i a b i l i t y o f the estimates i s d i s c u s s e d . As shown i n an e a r l i e r s e c t i o n (pp. 48 to 54 i n c l u d i n g F i g u r e s 4 t o 7 ) , body weight and t o t a l energy i n t a k e are r e l a t e d and f o r the l a b o r a t o r y animals, r e g r e s s i o n l i n e s were d e r i v e d at a number of ages. Two o f these r e g r e s s i o n l i n e s were used t o estimate the apparent t o t a l energy i n t a k e o f the w i l d fawns at 112 and 175 days. In a comparison between the apparent t o t a l energy i n t a k e estimated by body weight and t h a t by the s k e l e t a l dimensions, a major discrepancy became apparent at 175 days. Both methods gave s i m i l a r r e s u l t s at 112 days as shown i n Table 66 (p. 165), but at 175 days body weight i n d i c a t e d a lower apparent t o t a l energy i n t a k e than d i d the s k e l e t o n . A l i k e l y e x p l a n a t i o n f o r t h i s d i f f e r e n c e i s t h a t between 112 and 175 days of age the plane of n u t r i t i o n of the f i e l d animals was s u f f i c i e n t l y d i f f e r e n t from those of the l a b o r a t o r y animals to upset the body weight energy i n t a k e r e l a t i o n s h i p e s t a b l i s h e d by the 175 day r e g r e s s i o n l i n e . The r e l a t i o n s h i p demonstrated by the l a b o r a t o r y animals i s only v a l i d f o r those n u t r i t i o n a l planes which were used to e s t a b l i s h i t ; but more p a r t i c u l a r l y , i t i s only concerned w i t h zero or p o s i t i v e weight gains. The energy i n t a k e s from t h i s r e g r e s s i o n i n c l u d e a maintenance component th a t i s based on a f i n a l body weight which i s the highest weight achieved by the animal. I f weight l o s s occurs, the f i n a l weight w i l l underestimate the maintenance requirement and w i l l t h e r e f o r e underestimate the t o t a l energy i n t a k e . There i s an i n d i c a t i o n t h a t weight l o s s might be o c c u r r i n g i n the f i e l d animals as shown i n Figure 53 • However, the sample s i z e i s s m a l l and the c r i t i c a l p e r i o d between 112 and 175 days i s not w e l l represented. I t i s not p o s s i b l e to estimate the magnitude of t h i s l o s s or the date at which the l o s s begins. The best i n d i c a t i o n of a weight l o s s remains the discrepancy between the apparent t o t a l energy i n t a k e s . Although body weight i s shown here to be an u n r e l i a b l e i n d i c a t o r of t o t a l energy i n t a k e at 175 days, i t provides u s e f u l i n f o r m a t i o n that w i l l a i d i n the i n t e r p r e t a t i o n of the pa t t e r n o f energy i n t a k e . I t appears t h a t the l a t e f a l l n u t r i t i o n a l regime w i l l not correspond to any of the l a b o r a t o r y treatments, w i t h the l i k e l i h o o d t h a t i t w i l l be even lower than ' L f. When the s k e l e t a l measurements of the 175 day o l d fawns are examined f o r the trends i n d i c a t i n g p a t t e r n of n u t r i t i o n , the p o s s i b i l i t y of a very low l e v e l of energy in t a k e i n the t h i r d i n t e r v a l w i l l be i n c l u d e d . 168 Figur e 5 3 The L i v e Body Weights of W i l d Fawns C o l l e c t e d Between 49 and 270 Days of Age. iii; ' ' 1 • IP .. i.i... . . 1 ! " i t i ]-;i iiiii ii::. i i i i - .. 11 -p i . iiii: l i iiii-Iiii '-Hi- >'-\i iH-' i i i i |pi l i p i i p i p i l t t M I I I I I i i i Hii m "i.li.:.I.U...I.l.... I.; iittippi irii::ti:j-:it-(: rxU.. iti: t}.tt i i . p - ::!it i!:h l;:;f iiiii i iiii: itit i i i i ip ~sii : : : : i:.:r .-:-:.[ HiP ii: iii T P i il i .. , . . ip, iiii iii; i !.i; j ;•; ; ji '• l P i iii i t P i i i i l i i i i i i i i i i P P i i i i P i f i i p l i l l f t l l +!- m mm i P i i i P r P ' - iiii: IP I : : . T T Hir " l i : .-::::1:T:J IP HH • i i; i , . . . ) . . , , HHiiiii Hi-iHn; iiiiiiiii iiii Iiii !; ! i"! rrii ii '•' iii] iii! iiii 1  it ii si i.lj.r :itj. j. CA'-LGUIri-lAfE-C iii; Pi P p i i P i P I q-l i : H j i:ii:|-ttpt ii.it irit ^ H - * i 3 t e f c P-j-!-1 G H T S -Pippiii OFl-.WI iiii iiii ip: ) 1 r A w : : ; : ;:r: Mil- iiiii Pi iir: r i ::;:l;.::: : : T | b i : iiiiiiiii . i n ) Hjt i i ; i 11 i ; i.'. •ii i ! I i-i iiii Pj i i i i ttiiii '"Iii P i HP -IHI , . i : :'.: i - • ••' P i ;r-:iji-;:;'i — C r i J P : 1 : : iiii iiii- -iii! : j iii" iiiii 4 -i- iflil iiii i i i i P i Iiii iiii.iiii iiii • p i i :;:.: iiii: iiH Hi i: .Ei: iiii. iiii • • Hit iiiiiiiii : .. . ; • ; ; ! •iii i i : . iiiiiiiii i i i i . i.i i ! i • !•; iiii ill! i T -i-i !iji iiii Iiii f l l i l l i i -i i-1i ijii ut-i- Itii- ^ i i i iii; pi l l i i - i i M l i 1 t :.l i'iii r T r H " | i .: |:i:l i ii'i: •'•:ii iiii ip Hii iiH iiiii _ t :' !'! i p -iiii i i i ; Pi . . H ;-:i| i i i i FTT1T iiii i i 11 •-i iiiii i i-i-i- .|Jij !•( i-j' iiii ipiipliffil t|i|i nm tip i i i i v J T i - iiii iP nii ::i i: r,xv I.T::I: pi iHi iiiiiiiii FHFi:! iiii iiH W, iiii iiii Til]' TTi-f-Iiii IT iiiii iti-i ! I-i • i i i i i i i l i M ^ l i i i i i lip iiiii iiiiipi m liit iiiii i f iiit i-ili' iliipiil : : : : ! : : I • •':!: ' : : : i l r " 1 - • ; -iiiiiiiii iiiipp H it- ii!' ii-iilpi iii:! iiii iiii tn-i ; i ' i it. ii i i i . i i i i !• -1-1 j- - | T l i i i i l i l i - P f } Si:!'! " I T ' S , H!-i: i l : | - i i i i i i i I i i lift - it! .iiit iiii - til :;:ii| . ; : J T | - iiii: i i i i Hii' iiii-l i i i f i -iiiiiiiii i- a t e i ii1- : ; i : IP • IH jii; i H i iiii iiii iiii iiij i i i i " T I-iii ill iii-i i i i i Mii l i i l ^ P i l i T i i i i i \ i - . l : i\i .till: ill:!-Pi ifii lit iiit iiiii iiii ;.; 1 . i i - l - i - i t j i liti .'i'i.'i i iii ii-l r :p|Pi' -itii iiii iiii : i ; : l ; j i : • ; i • • • • HIPP pi iiii iiii iiii ;iii I;.1 i P iii! iiii iri ; 11 ii'i! iiii H i i l l l i f i i •H-rl w iiii] iphi-i-i i i i i i i i i : i p •i - ri H i i tl.1.'-i i i i -^-i-i-t-t i l l :ip. "il: I'i-H' Pi; i i i i i p i - i iiiiiiiii iiiiin--iiii i i i i r:i ! T-rti iiii ;iii | i H i i i i i i i ! i i 1 iiii Iiii i l l • mi i!-!| / • • ! | i - | - i-ni • X i-iiip iiit ii!-i Hii t!:ji ii: l:p Ii:l1 i).;! .(.jthiji ill-! hi i: ii- "jiiriiiiPP i-i-i; vii • iii IP i i i i •f ••}-: iiiii -ilp!: ip. iHri-ii ' i i i i iiii: pi : : L : : i i i i i i P :::::.•.:: :::-ij-.-:i : J : :i:::: in 1 iE V" ~::r iiii .iii i ] ; i iii iiii 1 ! i 1 i i i i i i i - : i i mmm ill -rp: • iii iiii" iP 136 ip ! : T - l i i ' I' ; (;• i ' p i -i f i f r i i i i i i P i H p i f - i i i ! \ § Pp.; i';-H i i l i : U . i ! : Iiii iiii ;-i:: i:! ii. iiii :i 'iiiii! i iiiiiiiii Hi pii: iiii :iitai; I T r r 111! Up • i ! 1 pii' i i i i iii iii! i j.- .1 H P Iri tim i i i i fillli -il li i - i i i i i i i i i i i ^ l M ! f S ! i i i i H'i-1 j.:.,-.!. ii ii- i i i i i ii-i.'i Hii iii: :i!:i.::l; iiii !! 1 ijji ,;:Zi: -ID -?ii'<b!i iii; iiii iiij Iiii III! j! iiii ||i I f 3 . 1 i i i i i i i -li | :i r : + | | i J i i i I T Iiii iiii .pi nil' i-i ii Hit iii! 1 -iii; 1 i j '• !•! • • M-rt i l l ! ill! i i i i Iiiiiiiii :::: j:::; IP n i!' 'iii 1 j j ; Iiii 1 i i i i i i —ri-Iii i i i i i i j i i f l i p i l l f ill !- - I -iix i i i i i i i l i l i iiif lili iiiii iiii! i i i i iii::. lilt iH; iiii iiii iiiii Hit • p • J :::1 IP iii:!;| i i i i .iiH i.i h i !.j 1. t-i'i ' -iiil !-(•!-;-ii: i-IX iiii: -j-H-l-iSpiipipllippLpi --t-l- Ml-) !-11-!--i r-H-l- -f- -<- iiii i t ttiii-f-H-t-t 4 # i l i i t f i l i t l x : ii i P -j.i , : T'T iiit 1 Hi :.; ! : i ••iii ; izi irri Hii. l'..'.'.',']L'~~.. '••; • {; i 'P P P P r iiiii t~' nil : : ; r Iiii Pi ; i:S j . i i i i i i i 1 f l i i w i i p M l ^ l S p T i P M i - 1-i-r -H--1-1-tltr --I 1--! r-t+F p i i 1 iilKiaxli ii P ' - P i Ti:!" i i i : iiii. I . : T . -l-i-.-r- i r ; - i P i i i|H l-H-i pi ipi-iiii irrpir:;. ! Hi rrrrr • 11J ' i.i! <i?'- iiii m iii! pip i i i i i i '• i i ii iih i i i i iiii t i p i l i i ^ I i l-ii- i i l i - i i i'ti - i • >•}•<- iii)k m ill i f f l M A i i i i m i;ii;-mm pptr-ii t i t "i-i fl i-l I f i i i i : i-iiii P,i',r i i-vi rid - H i - i ri; •-i iii p i ixP H H isi: iii HI Hi. -r—i-'—r— XiJiiif ... , . . j . . . ; . . I tin i l! i w U J ' m T*; i !! jj T i: ji- P .! i. " -ip! k UiiT pppK t|. -j:" .r _tii:S, -i-h-i l r - - | : " i | '!'P|i i#l l.i I-i. Hit lil-: liilPiltiil itfipt Sfli' i i i i iiii -! H-i '• P P i :!.;.: :ll:' tiiii 1:Hl itii iiii iii li: i '•! '• ii-ii ili&if • - i'l iiii 1 1 ! - Li i l-(-H- iii "iii-i m M p i f M J ^ i iilptliPPt1tt':'-int--iP :.[..:-n p i i P i : ; ;"ii + P m 1 T i f f m -• r p •rii r m iiif ii-H •• l-i'-T -;.j.--|: - : ; j; iii:. tip IHi i'SSS iii- :.;.:.! •::;. iii i iii ii iiii iHi :'Tii iii; T - 1 i i ; i ; i P i Hi i i j ! -i i i i - i f iri-r i iii- ii/l -j .!• n •! i-ri !-|-: ti! -Hii l i H-ii •TIP $m • i l i t l | ( i ^ iiii- \ l i i i i t iiiii iii 1 iiji iiii Iill -iii. \ ^ iti: ii :: : : i i'i: I-'- li:: i ^ 1 : i i i i j ill! p i - i i i i jjjj ijij |:i i i i i i i H I ! iiH iiii 11 1 1 in- i i i i li- "'ri I I i i l f f i P i-1 :-h i'l iH-:l!-i! I 1! i ! HfP -T -1 i - T I ! 'iH-l ii li j i-u • J : J - H 1-i i l i-iiiiji i i i i i i P i i ! ! ip •j",'r> i ; li HlP P j ii i t •- ! - I # :—-t iii' iiii Hi;! iiiii p it! :•:•;-. ::i: |:;::i •.::  t.ai: p i ; i ii; ! ' i i i i iiit rrii iii! ip i i i i i i i i m iih i i i if r t i i i.i-J i i i lilif M ^ i i i i piTHlpXS --fi p i m it-j. iii- Hi-IE-J: i!l.H]i. Hj:i i i 1 m i i i i i I i i i i is* ii u iii .iiii iiiii +i.i: iii! i i Hi r Pi Hii !'['-! "•ill Iiiiiiiii Hiii itii Hi; i ; : i iii? -pi i i i i iii; i l l ! H ; - - i i i i i i ii • i . i. j-J 171 !j I I H I • : 1 iiii iiii t" Li: i : j . ! . . i :+ | ".;.! :| m - t i r ! i H i -i-i- -i U - -h H j - - H i i i i ri.ii. | - H ; i flii-Iii iiiii -1 H-i--ip t-iti p i iiit i i i i lili •ifi:|- iiii I.p ! iiiiiiHi : - : : j:: :.:-. :::y :::i TjTt • i;t \\\\-j.l.I j. ! ; : : iiii i-i'i-i '•Ili i i i i i iiii w iiii i •iiit li ii ill [iS! i-.ppi:Piii;n'iPpii tit. fi!..|..H:-!.1)-1 -itl i ' - f l - | i i - ' fciititi: iP. P i -ill:! i.p. P i -1 r-t-r I . U . i IP- t i t I i i hiij.til; i-iii Iiii- "iiii -jiti iir! ill-! ip iti: iiit i i i : i p i . vi-: -'. i i i i :x-i l i i i i i i i : .:4il:::: • : . r : j . : t:.: iiii i - ; f-T P ; ; ; H ;.:.ii pi- I'll S i iill ! i ii:! 1 Iiii i i i i i i i iiii U i l l l i i t i l i i t lilt i i i i i i : ii'c:.i\. j|:i ffiiliHipiiP fepttiX :i i it 1 iii i';H- M + i t S i p p i •iiiiip-iil Iii! ti-ii •it »! iiiii' i i . i t i i i i '•! i : Hii IiH Hi: itii : : : : • ••••; l — h.:.r ;:r: liti iiiii i . | i::. Hi! P i i ; ! • ! Mi i -2 P ; i i i i pi i -i i | i i ii i-i iP ^i i ! i i i f i i i i i i i i •It t -] i I P i i t j i l i iHiii i i i i i i i l i; ii m iiiii H-'-l-i'!H P i i i i ! i i i i H1 I-I .itit iiii ii i-i •: i; :i;:i • i ; : 1: i ;•:; • '• IP' p i - o % it ?*i| i i i i !. •i: |: 1 1 in Ii! ! | P 'i'l: i l l ; l i i i i i i i i i l S l i i i P i l P i - P P ; i i E i J P J I: -j -1 Iiii i i i i •: i +1.1-1 I. ij -j: l| iiii j.i.. i iiii v: ti !(-;:( i i i ' itii iiii Iii! jili Hi' pipp f i : 1 <i P P i i i i i-iii- )i| i P i iiii i'-ir-^ ! i i i i i ' - i i f t f i H . P i p i l ^ i P i P ' P i t H ^ i j i i i i i if l i i l - i i ^ i . ! ! !• 1 !• l i tefi ii- ?f ko i j u - ! i-:-i iii W 0' Iiii •i I I T Hil iiii • nil! . i i i i h ; . ; - ; iiiiiiiii r; li •it:; i \ ' ' • • ri j P P - I ' l l -iiiii iii • -i-n It • [ii • I I I -In i 1 1 i l l ij .1 i i i - i f p l i l i i I i i T iii-i i i . j. :;:|. :. .1" :|. ij: l i l 11:1 :i: T -iP i i i i ri; i i t i : n:; • Hi 1 !.: j: i t ' l l - ii ti Hii i i i ; Iiiiij : i.i 1. itii. iiiii :: ::h i i i i i i P . iiii pin Fl ii. IP P ; + E p - j -ri i: it! j !!! l - r i i .Hi ill T i; p i i jj f "I; :i i i l l i ^ l W r l i 1 1 mii r: tl ISi iN ip • i : i pii i i i i lilt S i .iii: i-;-U-if!!! l:.ii T~i • .... iFEiJir.'-i: f : : n i ' : : 1 ••• 1 • ; • : !---i-t" iiii !-! |J iiii iiH -! 1 - ii Hi!' lip IIII iiii i i I'lP >iii i F x i p t f i p t i p i P P i i P i i P P i P p i i i P -H -i-i i i i i i W f v T p i i ! ; ! ! ; : . = •• i i i i tlii i-HI iiii fit! iiii. iiii fri |: I ! i ix i i i i i iii 1 ii i: :•!•!•! h;-L: i-pi ii.l-i M-ilX; HiiiiHi- ; t'.: ! H i jli i r : ; j 'iii i i i ! : r l : lit; iiii !!!l i ; i-i iiii Iii i i i i i ' i | i . i . ! - | - l g : i i i i iP i ^ l i l l i s - i i i i l i! "\ -i i P l p i i i liiiiiii i i i i l i l i i i i i i i i i IP i i i i . i i i i .1.: : 1 ! J-'l-l iiii !H; iiii itiiitiii i i i i rr~: I i i i i , ; ! | ; !-l i iiii Ip; . ' I I 1 iiii i i i i i ii ii-l !!:;-iill i P l i l u j - i a l l i !l.:i •riT •iter (•}{ i i i - l i l lili i i i i M M f-i-'i i •ii 11 itii Iii iiii ii i ! M i iii Iiii |ii! ; iii iiii ii HI iiii i ; i i i i f i j V '• • i i i i Iiii 1 ill! • : P i i i i . 1 i ii li :i-j 1 P IHI iP I ! 1 ; W l T i l M . I I-1 i i i i --j •IT -| i i i p i i f Pi-i-ii-iiil l i l ! 11 n i ' H . Iiii Iiii .i!ii rj.ii !-i|i i-iii ifu i "i -il ii Hi-! •1-1'; i Hi; !!'! i ..;.. 1 . j . . i ; ; : : : ! : I I I . Determination of P a t t e r n of Energy Intake (Energy Regime) The raw s k e l e t a l measurements are not i n a convenient form to compare growth p a t t e r n s . I t i s necessary to convert them to 'apparent t o t a l energy i n t a k e s ' from the appropriate graphs (Figures 9 to 50). The reference l i n e on each of these f i g u r e s provides a standard r e l a t i o n s h i p between s i z e and t o t a l energy i n t a k e . I f the s k e l e t a l dimensions of an animal w i t h a known t o t a l energy i n t a k e were p l o t t e d on the graphs at the appropriate energy i n t a k e , the dimensions would be l o c a t e d at v a r i o u s d i s t a n c e s from the reference l i n e s . Conversely, i f the t o t a l energy i n t a k e f o r the animal were not known and the s k e l e t a l dimensions were r e l a t e d to the reference l i n e s , a v a r i e t y of apparent t o t a l energy i n t a k e s would r e s u l t . By examining the d i s c r e p a n c i e s among these estimates of t o t a l energy i n t a k e s along the g r a d i e n t s p r e v i o u s l y e s t a b l i s h e d (p. 150), trends can be noted that w i l l l e a d u l t i m a t e l y t o the determination of a p a t t e r n of energy i n t a k e — i . e . , the n u t r i t i o n a l regime w i l l be i d e n t i f i e d . However, before proceeding w i t h the e v a l u a t i o n of n u t r i t i o n a l regimes, the growth mechanism r e s p o n s i b l e f o r the v a r i a t i o n s i n the apparent t o t a l energy i n t a k e s w i l l be reviewed w i t h p a r t i c u l a r reference to the lengths of the fore cannon and scapula. Because these two dimensions are s i m i l a r i n o v e r a l l s i z e , they can be compared without c o r r e c t i o n f o r growing mass or d i f f e r e n c e s i n mature s i z e . The l e n g t h of the cannon i s an e a r l y maturing dimension whereas the growth i n l e n g t h of the scapula occurs at a l a t e r 170 time ( c e n t r i p e t a l g r a d i e n t ) . The response of these dimensions t o the va r i o u s n u t r i t i o n a l regimes demonstrate two very d i f f e r e n t p a t t e r n s of growth as seen i n Fig u r e s 54 and 55' The d i s t r i b u t i o n of the data f o r the cannon growth y i e l d s a much wider and s l i g h t l y s h o r t e r p a t t e r n than f o r the scapula. The l i n e r e p r e s e n t i n g the maximum growth ra t e f o r the cannon suggests an asymptotic approach to a maximum, whil e t h i s t r e n d i s not apparent f o r the scapula. These observations can be combined to e x p l a i n the growth responses of these bones to n u t r i t i o n a l l e v e l . The amount of growth of the for e cannon l e n g t h e l i c i t e d by the d i f f e r e n t n u t r i t i o n a l l e v e l s seems to c h a r a c t e r i z e the development o f a dimension t h a t has passed i t s g r e a t e s t growth p r i o r i t y at b i r t h . The blocky d i s t r i b u t i o n i n Figure 54 i s caused by a t o l e r a n c e to moderate r e s t r i c t i o n and an i n t o l e r a n c e to severe r e d u c t i o n of energy i n t a k e . A moderate energy r e d u c t i o n d u r i n g the i n t e r v a l between 112 and 175 days produces l i t t l e or no r e d u c t i o n i n growth r e l a t i v e to t h a t of a f u l l - f e d animal. At the l e v e l of most severe energy r e s t r i c t i o n very l i t t l e growth i s permitted at any time. These observations are compatible w i t h a growth demand that i s too low to f u l l y u t i l i z e a high l e v e l of energy i n t a k e , and i s a l s o too low to compete under heavier r e s t r i c t i o n w i t h regions of higher growth demands. According to d e s c r i p t i o n s of a x i a l g r a d i e n t s a c t i n g from d i s t a l to proximal r e g i o n s , the scapula should e x h i b i t i t s peak growth response at a l a t e r date than does the fore cannon. F i g u r e 54 A Diagram of the Growth of the Fore Cannon Related to T o t a l Energy Intake I;: i i 1 .1 ; , : . i i _ i . : . i _ ! : : ; . [ . : -:.:.!:::: i'TTiil : :; j • • : ::::!:::. | . . : . ::;:{•::: !!iiii; :! ::::i:.::: : : : : i : . : : . . . | . ;. . i i :i:i i-iiiiii 1 ••Iliiliii i i i ji iii -I i i i i i .iiiiiiii iiiii:::-: Trr!:ri-rr ::;:!::•: i i i i i iiiiiii': .).... :.•::;::;. i i i i i . i l i i i i i i . . i t - i i i i i i . i i i i j i i - i l : : •::•:.iiiiii-i i i l l - ' i i l i i l i -" • i : iiii . . i.. i i i i i i i •il-liii I i i i i • • • i:;: i i i i ......... • ill • i .. i • • • ! . 19 • ' ! • . ' i ' j " : I o GF i :: i :.: R O W '"IT:"' iiiii... i L i l T H i'LLI'l — (..;. •:.:,! ::: O F ;-i-i-i ii-ii ;::i|:i:: T i;: i HE r i Iii .... F C \T{\ i i i i : ) R , E -:;:: | i::. i i i i i i 1 ; A N N ( ! ! ; j ! !:i ) ^ 1 / iiii i i Iiii A R !-; iiji in O U ! i i i i i i i -iiiij::;; 5 E f : i i i i i i iiiii;!!! ^ J E R '!.'}! .: G Y ..•;;• .: . i!.: •: i l i i i i i i I N T A K E S i ^ i ; | i i i - i . - j - i i - i - i •:::;::::|:: :•:;•: •: i : : - i:I • i • .•::• i . i . : i i i -i i i i i i i i i " i m i l l • 1 O .•; • i |. • U " ii L i l i l •::i|:::: :Ji.:.|.i.l . . . r 1 . : . : i i i ! i i i- .llil iiii iiii iiii. i i :;: i' 'ill:' :;;• : i:! i i ' -iiii1:':!; ii:: i i I i-i !1 i: | i: i: • . i 1 , . - -• • i i i -:::: i:; •: ....!.!.. i i i i i i i .1...... j.. . ;::: j:::; l i ^ :: i j::." — t — :; i:;: 1: III'1i:!11 ii . 1 : : ..•:.'•. Iii. : i. •iiiiii |.: •; :. :" i~r.' f -:•::—-:•: ::;•:! •: .: ."•.••!-.1 :•!:•= 1 1 ... i :. 16-: ! [ :• ...,. , : 7 i:' 7 M i l : : . . i l iii l l i l . iiiiiii:; .....xj:.:;.: i i i i i : i i i ; : : i T i i i 1 | . >.. i:: • ZZ~-— ! i i i ~~ •pii-ii •iiiii — iiiiiii I-: " i l i i i i i i i i i 7r7iT7rir i i i i , : i! i l . i i l l ' -ii---!i l-r--iii-!• ::|---.: i i i i . | i i i-i . - ' k l i l l k • : • i . • : i io .; i; j ; : ; : iiiiii.:.:: i i i i : i i i i i i i ; T i T . i r r i T iiiiiii:.: :i;ij;i.: r. .. I irmiiii' »^ i i l ! i! i i i r i i i i i i i i i '•^ "^ - i i i . i i i i i i i . i l i i i i i i : ill i7l]i|"! I i i i i i i i i i i i i;! i i i j i ! iiifjii: i i i i i i Ti l i ' l i -• 1 • • i|ii!: i i i i i i : 1: i :. -! ; ; 1 • 1 : : . i i i 1:7! 1~ i.. i :. 1:111.1. .: :: ; ; :•• i " i i—•— : : : •'; i i i :;.. k- t *J Q> r-- E 14 ..' J j : | :.: : ; j : ° L i — £ ' 2 . i ' ; i i i :.. H i . L i . .1: .I'i-v • • • 1! i!! i! : iii iiiii' : . [ \: 11 • ./::::!:: / • • i. i • • i i i i ^ ' y >? • & m i i i j i j . iiiiii iiii I i • ! • i 1 i : > ; i ; i i : ! : ; : : .L;.i.|i.Ll; . i 11!: i. i HIT :. i: j:: : • .... i... i i i i i i i i I i i i i i ' ME i i i l i i l l AN t ^ T 32 "llil" I'll : .!:::. 2 DA l i : i i ! : ' Y S : : ' - i : . . i i i . . ! : : . . "• ':"••']••' ' ' • . i : : - i | - - : : ; l-i-i|ii ::;:j. ~ i ,"~ .:::: i..: : : : ' i i -..:.!: i ' : ; i1 • i i j i : / / , i f ! I i i i i i i i i i l i i l ! ;i.Iiiii: l i n n U N D A F Y AT 1 .i-ljiLI r 51 D / . . . . i . . . . ,ii.:l:::. i - i - i l i ^YS i i i i i i i , iiiiiiii! ::::!;::: I i i i i i i i i i i i 7 ....[. • ; • • • i i i i i :.: - - - | ..:; --|::::::. ' " i l ' j l ' i l ' i T ' i : : : ' : : 1 : : : : : : i i i - i - i i -:: " i l i l l i i : i i i i • i i ! / / / / y > r . / / A : • yy ••: ::::!:!.•" I i i j 111: ii i; ; i j : : i :!: i. iii : iii; j!!.: :! •: ': i i i i:.:i! ii ;• iiiiiii.::-;.;.;: i i i l l :: 1' i.i i: • 1 ; ; -i-iiiii. :;: i i: :.i: ,-. i: I : i i: ; : ."ji ........ 1' 111111: : i: i i •:: • :ilii- i I •: i i i i i " f : : ? t ' - : ; | T HI ::.:]:.:!' I L'.l.!.l.iii. i i i i i i iii :|ii !i iiiii.';; ::ii |: i i )UND ARY .:x.:.,„i.:j. ili i l i i i AT 1 i :z..L-i-.-iiii! jiil Ii2" AY ;; i; S rTlilTTl:" i i i i i i i : :i::i:::: : xi !_i^ "';::] : I-i. i i i i j i :::;!::•: . t . . . 1"; 11 i:: : .•• I ' i i ' T - i : i i :: -j.' .11:iiii .: i! :.: I i i i •;: j: •; • iiiiiii!: i i l | i i i i i ! ! i i 7 ~ ! ~ ' ' I n L i i i L 1 I i j i il . . ; i : : : ; .:::!:;:: r : v : ! rr ; t :; •, i::,: ::!: i:; •. iilili-ii ijilliii 1 :: .; i;;; i i - i i i i !!,••' , ; i . i i i i1 i: ...... . . . . i . . . . i i i i i l i i i - i i T i t r r r r iii-i-^ii Ill: i i i. in i.i.i i i i . i l i i i : ;;;;!:;;; i i i i - : : -:; 1:.;: i i i i i i i : : : : i • : . . Iiiiiii: • • i i — ii'"! i i " . i - i i i - i l . i ..! . • i i i i i l i i i ; : : . . . . . . . ' I ' — r — .ii; •.. '•" 'Q .... i : . : : 1 1 i l l ::::ii;: ; .iiiii !.;-4 . : I M   ' • ih i l j i i i i i i i i ; :|;i iiii Iii illl i i i i i i i i i i i : i , i | . . . : i i i i :]Ti i ;i; iii; i i i l i i l l i i i i i i i i . i : ; i i | • i : i Iiii' i i - - -1 .- i .- i : i • . I ' l i l .: : : 1 > • : : : iiii::,1: i i i i 7 ! :::.!::•: :._ij-ii:.i. i i l i i : ! : . ;: •: i.::: ":.:!:::; ..!.;.:...:. i i i : i . : 1 i : i . i '• ! : I'lj": -'I II 1. . . . : i i . : _ : . . i _ - : . . . : i : i . : -I I I ; i : : - |ii:-• .. j 7 " . : . 1. .- _ .- r-i-' I i i i • • • i i i . .Vljii: .'. | • ;;; . • • i - • ::::|;::. i:::!;; i • ! ' 1 ! i : ! '• ! ; ; i ; i : i : ':; i j ;: i i i i i i i i i i i i i ; iiiiiilH llilii l i 1 • •: • ; 1 1 ; iilijiiii i i i i i i i i ! llil i i i i i i i i i i M i l i i - i i i i i I I I ;.i i ] i : : : • X- i . i i i-i . i i i i i i i i i i •' ! | : i : •' -': ::..:|:::: i i i i ; i:: J: i:: i i i i i i .::: I.: i: ... i .. : . . : ] . : • ; — 1 .•;.. i i i i i::. I: 1 : i 1 : i :: • i i • : - i i,: i i-i-ii--i i i i ' i : " ." : | ; ' I • -jO . : ( • : . ; : Iiiiii. i i i i i i : iiiiiii;1 i i i i i i : . :! 1:1 i • i • .iii.;. ! ; ; ' ||ij: i.!.:l.liu.i. i i i i i i i ; i : ; iiT" i i l i i i i i iiii. i i i : i i i i i liillilll i i V: I i :!!;!;!:! i i i I i i iiiiiliii : ! i; 1111 •••-I----THP i i i i i i . — i . . . : " i ;I: i i i i i i i I: • i I.! 1 .. :;:::: H i l l : . "1 •ji! iiilliili ' l i l i l . -1 :. • j.': • r r i ' i ; . ir:: c ' ' I ) l i : : : 1 • . . i .. ii :iiiiii • - r r r i ~ i i i i i i W:^ ;::.!!:;• i i i i i i -F:;.! ::: ^ i i .Li Iiii : i::';:: • nii i ' i i l i s .iliiiiii: ' i i : •iiiiii.!; i i p j l i i j i i l : : i:; j.:;.:; i i i jiff : ; • : i : • : . m ::; i | . :-. : ; , • 1.,: i|i|i!-c • i i i •. iiiiiii: C > l - i i i i i i . . ! i i i i i i i i i i . .iii 1 ::•!:-.: . --\ ...... . . . J i i i i l i i j i i i i i | : i i - l r h ! - : : • 1 !::•:: i i i i i ; 2 Ener< T r * i j ;H i in - ! r n t d l ^ e , C i i i j i i j l i i a l o r ii i i i i i , i e s > iiiiiii:! . . . . i — k I 0 5 i7ll|;lil ( A . i i i i i i i ! biiE-i: i i i i i i •iiiii.-:: iiiiiii;-. i * - -1 - • • :: i•!::i. . . . i . — I -: -:::!:-.. .••:•: • : : ) - : : : : • : : • ; : ! l . i . I ± ; I i i i i i i i l i i i - l : :: i :i-ii.|:.iiiiiii :: j:-- i i i i " -. ;:,: ,, -i. .: | --j: -.I.:::!.:.; i i i i i : :.. i.: •. • : : ! ; : : • i i i i i i i i i i 1 i i i : ! : l i i i i i i j i i i i i - | : . . . ' H i 'iliiiiii i i i i : ' !! i | h i i i i i ' l i i i i i i i — i — • H i ' . i l i i l i i i l l i l ! : i ! l l i l iiii : i ;: i i i i i i i i i i i i i;:;|:ii i i i i i i i i i i i i i i i i i ! | i i 11!:! i I i i i i i ::.:!..: : :;jl i i-. •!:": • IfTH"! ~ | : ~ •;" : : J ! - i . : | - -L - i - ; . L : j : : | - : - : 1 ; ; : ; i l i ' L i - I i i i i i i i : i i i . 'iiiiii: , : ' l : •• • • i : : : 1: . . . • • I I i i-lj-i |i . . . . 1 - Tin:-; i i i i i !; i i j i! i I '.:: i j:! i j ! iir;-' :| i ! :;::!:"• :-r:-|||"ll ... l i i i i i ' i i I i i i i i i i i i i ••i-i! HI j iiiji . l -LLuL-L; . , iiiii.:!:! .itujiil: iii: i: iii iiii'iiii'!' i-iiilill : I i: •: I': lliijiii 1 - ' l i l l i . l ; i i -i i i i i i i i i i i H i . : l i i l i l i l l i '. iiiii i i i i i l i i i . . . j . . . . . . 1 172 Figu r e 55 A Diagram of the Growth of the Scapula Related t o T o t a l Energy Intake. This i s borne out by the slender d i s t r i b u t i o n p a t t e r n i n Figure 55. Between 49 and 112 days, l e s s of a r e s t r i c t i o n of energy can be t o l e r a t e d than i n the case of the cannon before growth i s decreased. Between 112 and 175 days any r e s t r i c t i o n of energy r e s u l t s i n a decrease i n growth. On the T L f treatment, growth i n any i n t e r v a l i s l e s s r e s t r i c t e d than t h a t of the fo r e cannon. The suggested mechanism i s th a t the very high growth demands can only be s a t i s f i e d by a high l e v e l of fe e d i n g , and tha t the high demand r e s u l t s i n a r e l a t i v e l y high growth r a t e under severe energy r e s t r i c t i o n . These are only two examples of the wide range of growth responses t h a t could be caused by d i f f e r e n c e s i n the time of peak growth p r i o r i t y . Some dimensions of other s k e l e t a l components have p r i o r i t i e s t h a t c o i n c i d e w i t h those of f o r e cannon or scapular l e n g t h , some are intermediate t o them, and some appear t o be even l a t e r maturing than scapular l e n g t h . The widths of the t h o r a c i c vertebrae f o r example, show a l a g phase i n t h e i r growth responses i n d i c a t i n g that some time elapses a f t e r b i r t h before the demand to grow begins t o reach a s i g n i f i c a n t l e v e l . By arranging the s k e l e t a l dimensions i n a f i x e d order, p a t t e r n s of t o t a l energy estimates r e s u l t that c h a r a c t e r i z e the n u t r i t i o n a l treatments. In Tables 57 to 65, the measurements taken from the fawns i n t h i s study are d i v i d e d i n t o f i v e groups, each arranged i n order of growth g r a d i e n t s . When examining the n u t r i t i o n a l l y induced changes i n s k e l e t a l conformation of the l a b o r a t o r y animals, i t i s convenient to use the d e v i a t i o n s between the tr u e and the apparent t o t a l energy i n t a k e s . In t h i s way the p a t t e r n produced i s not only r e l a t i v e t o the d i s c r e p a n c i e s w i t h i n i t s components, but gives an absolute measurement of s h i f t s of the e n t i r e spectrum of measurements. In the next s e c t i o n of t h i s d i s c u s s i o n the e f f e c t of the n u t r i t i o n a l regimes on the skel e t o n s of the l a b o r a t o r y animals w i l l be d e s c r i b e d and, f o r those regimes not i n c l u d e d i n the l a b o r a t o r y study, an e s t i m a t i o n w i l l be made of the type of p a t t e r n to be expected. Up to t h i s point a l l t h a t has been achieved i s the determination of an apparent t o t a l energy i n t a k e f o r the w i l d fawns at 112 and 175 days. In the f o l l o w i n g s e c t i o n s the s k e l e t a l measurements w i l l again be examined, t h i s time i n order to determine p a t t e r n of energy i n t a k e . The e f f e c t s of the n u t r i t i o n a l treatments upon the l a b o r a t o r y faivns up t o 112 days w i l l be d i s cussed f i r s t , f o l l o w e d by an attempt t o c l a s s i f y the w i l d fawns to one of these treatments. The animals at 175 days w i l l then be t r e a t e d s i m i l a r l y . In each of the three i n t e r v a l s t h a t are being considered during the f i r s t 6 months -- i . e . , 0-49 days, 50-112 days and 113-175 days - the n u t r i t i o n a l plane might have been one o f TH T, tM*, or 1 L ' i f a l l v a r i a t i o n s are considered. With three p o s s i b l e n u t r i t i o n a l planes i n each i n t e r v a l , the com-b i n a t i o n s (regimes) are 3 at 49 days, 9 at 112 days, 27 at 175 days. Out of these combinations some w i l l be more l i k e l y than others as p o s s i b l e approximations to the n u t r i t i o n a l regimes of the w i l d fawns. By e x c l u d i n g t L f i n the f i r s t i n t e r v a l and ,H I i n the t h i r d , the combinations are reduced to 2, 6, and 12 r e s p e c t i v e l y . There seems to be ample j u s t i f i c a t i o n f o r these omissions. The s i m p l e s t evidence i s i n the d i r e c t o b s e r v ation of the f i e l d animals. In the sample k i l l e d i n August (49 days) the smallest weight was 24 pounds (av. 23.2$, max. 31.0, 4 animals) which i s i n excess of the 15.0 to 17.8 pound weight range of ' L f t r e a t e d fawns i n the l a b o r a t o r y . Furthermore, the 24 pound fawn was s e l e c t e d because i t was the s m a l l e s t one seen and was conspicuous because i t had not l o s t the white spots of i t s coat. The s i z e s of the remainder of the fawns were equal to those of the fM f or ,H* animals i n the l a b o r a t o r y . The second type of evidence i s that provided by the s k e l e t a l measurements of the f i e l d c o l l e c t e d fawns. The t o t a l energy i n t a k e s i n d i c a t e d by the measurements from the 112 day o l d fawns preclude an ' L T treatment i n the f i r s t i n t e r v a l (compare i n t a k e s i n Table 66 v/ith energy regimes i n Figure 56 (p. 17$). Although milk production i n sheep decreases under an energy r e s t r i c t i o n , i t i s maintained at moderate l e v e l s even under c o n d i t i o n s severe enough to cause weight l o s s i n the dam (Wallace, 1948). A milk l e v e l should be expected from the doe t h a t w i l l provide more than an T L T plane of n u t r i t i o n . Added to t h i s i s the f a c t t h a t the fawns wean onto browse that has not begun to under-go the lowering of n u t r i t i v e q u a l i t y a s s o c i a t e d w i t h winter dormancy (Lloyd et a l , 1961; B l a x t e r et a l , 1955, 1956; C h r i s t i a n and W i l l i a m s , 1957; Gates, 1968). 176 The argument f o r o m i t t i n g *H* i n the l a s t i n t e r v a l i s not q u i t e so obvious. I f the browse i n the f i r s t i n t e r v a l s had provided only a r e s t r i c t e d amount of energy ( l e s s than * HH1 or ^H*) then the q u a l i t y of v e g e t a t i o n could not be expected to improve as w i n t e r approached. The decreased d i g e s t i b i l i t y and i n c r e a s e d time of passage of the food can o n l y l e a d to a decrease i n energy i n t a k e by the animal. For animals t h a t had r e c e i v e d a high energy in t a k e d u r i n g the f i r s t two i n t e r v a l s , the q u a n t i t y or q u a l i t y o f feed a v a i l a b l e i n the t h i r d i n t e r v a l i s i m m a t e r i a l . The fawns reach a s t a t e of p h y s i o l o g i c a l m a t u r i t y where an o b l i g a t o r y depression o f growth r a t e occurs (Bandy, 1955) and an e f f e c t i v e *L f plane r e s u l t s . The f i e l d evidence supports the e x c l u s i o n of an *HT treatment i n the t h i r d i n t e r v a l . Even at the lower end of the TH* treatment range, a weight g a i n of at l e a s t l / 3 pound per day would be produced. That means a ga i n i n weight of over 20 pounds between 112 and 175 days of age. The f i e l d c o l l e c t e d fawns i n October weighed on the average 52 . 8 pounds ( 4 9 . 5 to 57.5) and i n December averaged 55.0 pounds ( 4 9 . 3 t o 5 8 . 9 ) . This leaves an average d i f f e r e n c e of o n l y 2.2 pounds; a long way from the growth expected on the ,H* l e v e l o f energy i n t a k e . J u s t e x c l u d i n g the * L* treatment i n the f i r s t i n t e r v a l and the ' H' treatment i n the t h i r d has c o n s i d e r a b l y reduced the number of regimes that must be considered. For any w i l d fawn being examined, t h i s number can be r e s t r i c t e d even f u r t h e r because the tru e energy i n t a k e must be contained w i t h i n the ranges estimated by i t s s k e l e t a l dimensions (pp. 161 to 162 and Fi g u r e s 51 and 52). For each of the n u t r i t i o n a l regimes there i s a l i m i t t o the energy intake w i t h which i t can be a s s o c i a t e d . That i s , an animal r a i s e d f o r 175 days on a constant fL* regime cannot equal the energy i n t a k e of one r a i s e d on constant f H f , and s i m i l a r l y f o r each treatment l y i n g between, there are l i m i t s . These l i m i t s are shown i n Fi g u r e s 56 and 57 (112 and 175 days). Allowances were made f o r the range of energy i n t a k e per metabolic pound p e r m i s s i b l e on each n u t r i t i o n a l plane and f o r the v a r i a t i o n s i n growth r a t e s produced by these d i f f e r e n c e s . A l l of the n u t r i t i o n a l regimes s t u d i e s i n the l a b o r a t o r y plus a l l l i k e l y w i l d regimes have been i n c l u d e d i n these t a b l e s and are l i s t e d i n rank order of energy i n t a k e . I f no part o f the energy range c a l c u l a t e d f o r a fawn c o i n c i d e s w i t h the energy range a s s o c i a t e d w i t h a p a r t i c u l a r n u t r i t i o n a l regime, then t h a t regime can be e l i m i n a t e d as a p o s s i b i l i t y f o r t h a t fawn. For example, an animal at 112 days w i t h a t o t a l energy int a k e between 130,000 and 235,000 C a l o r i e s could not have been fed on the regimes THL* or 'ML*. This leaves f o u r choices: »HH», «MH», «HM» or •MM1. S i m i l a r l y , a t o t a l energy int a k e at 175 days between 300,000 and 400,000 C a l o r i e s excludes »MML», »HLL» and »MLL», l e a v i n g 1HHM', »MHM», »HMM», «MHL», *MMM», »HLM», »MLM«, »HHL», and »HML». In order t o f u r t h e r define the n u t r i t i o n a l regime i t i s necessary to make use o f the d i f f e r e n t i a l responses of the 178 Figu r e 56 The L i m i t s o f T o t a l Energy Intakes P o s s i b l e W i t h i n Each Energy Regime at 112 Days. • . ! . . : i i i i L i i i i i i i ! ! ; ! •: . 1:: • i : ! i i Hi . i l l " .. : j : : . . ' : . ! : : ' • i l ' ! ! : L i : . —ii i - i l l -. .- L i ^ - j l l l :: I i i i i II1 i•"•' • • •: i •:: . |- —' 11. i l l ._l..i_l_l. H i l l i n . : : : : •:: i. ;: •. • i • : :: : . . 1 . I ' l l : . • •: i : : : : : . . ! . •: i i ' l ; ' ; i l i l i . 1': :••[:!.: i i i i i i i i i i i i i | i ! | i - - i i i i i i i i i . . : . . ! : : : . . : : : i : : . : :.:::: : : : . i | ' ' ; l i : .i-1-::: i i : : i i i E E :::: t: "1 ..•.):::• ••!• !•• i i i ;: i ::.:.. i_.i. _ " i - i - . : •. •: I: •. .1:. | . I l l . ' l i ; i • • i . i i i i ' i i i j i"": i: • i i i i i I - i i i i i i i i " • : : : i i : • 11 ! i | i | ' . . : i . . : " d i l i i i i i i i • i- i i i i i . ' ~~ " " i i " :::'! .:•: i — i i - - i : • i : : : : . | I : . • j . • : : - : - - H ~ i i i i i i i i i ' . : : : ! : : : ' 1 : i i i 1 . j; i 1 l lrl i '" 11 . . • : : !•: . • :: •: { i : l i 1.. 1 i i i i i -- i i ; : : : ! : : : .: 1 i : : : : i i i . i ' l i i i i i i : ::::)::;. •• • i— •-: : : : ! : : : : lixi-Lii'.. ! - i | J i l . i l j i l l i l l :: -i i i i i i :".: i : : : • • • • • ! : : : : i l i i i i i i . i i i i i i i i l l : . : : :::.:):::: i i i i i l i i i : : : - r - r . i i i i i i i : : : : i : : i i : : ::::}'::: n i l : 1::1 i1:;I i l i l 1 • i i j - ! - - - • i - i l i i - i i i - i i i J i l -11- i - i i i - i - i i L . . . ) . . . . : i r . •:: i i i i i : : : . : ! : : : : ~ | l i i l i i i i i : •:. i : . . : : ; : : | : : : : n i i i -'•' '• '• i '{'•"• \ i l i i L i l l i f l i i i i - i i ::: h::" i i i i i i -i . I I j i . 1 . . . . . . , i i i i i i i : : : : j . - : ; i - i i f | i i : : : . i : : : : i i i i j Hi ! 1 ' i i i i i i i i i i i i i i i i i i -i i - i l i l i ! i | i H H I l i - L i i i i j i i i ; i l l . . . . . , l~ i i i i i i i . 1 . l l i i l : . . : i i i i i I i i i i l i i i . i i i i i i : .:,: :::;:::.: I l i i l i i i ! i i i i i l i ; i | - i i i i i i • i i i i ! ! l i i j i i i . ; •••:> — i . —. :::::j ~ M H ; — II > H — . j . . . . i l l : : : ' j : : : : ::;:.;:!:::•: i i i i i - l i i l - i i i . 1. , i i i i i i i i i . iiii iiiiii i i i i i i ' i i - i"""-T-I:.:! j : i l I i i i i i i i i i i : i:::i.i::: i i i • • i i i i i i i - i i i i i i H i J i i i i i i i i i ' i i i i i 11 . 1:1:::: H M • • i -- l l 1 " '1 i i i i i i i i i l i i i i i i : i i i i i l i i i . . . . ! • — 1 ::.;:]:::: n : n p i -I i i i i i ! : :r : i . : : : : i l i i l l T • • • • t -:-i:i .::-i : . i : | i : : : i i i i i i i i i S l i E i i i i i i i i !1 r.~.i . . . . . • M M ; -i i i i i i . i i i i i i i i i :::;: i::::::: :.::i:j-:::i. .-:::: j . i i! i : .r : : i : ::: i n i -ii-i i i i i i i _:::.j.:.i:i :: r: I ri : : M ) - -t • ; • • -—\ 1 i i - - - i i l l 1 I l i i i i i i — i • ::.: :i:.:.:: 11 i i i i i i i i i i i i i i : _ I i i i i i i i i i i I i i i i i l i i i i l j i l l i : : : i : j i n :iii-ii:::i . . . . . . i i : i i ! : j i l l i L i i I : H i l i • • RE! L H ::::: :!.::::: ..I.i.... i l i i l i i i 1 i i i i i i i ! L i i i i i l i i i . l i i j i i i : : : : : : . ! : : i . i l | i i ! " i i i i i i i i j i i i i i RE! l i l | l l l i ' I i i i i i ' • • i •' i l l j i ' i i i i i i i i i i i i j i i ! i i . . l : . i . : - o or L M -l i i - i i l_l 1 i i i i ! ; .-- r i i i i i i .I-i... — - i — , . 1 i ' ii:_-j:ir:: i i i i i i i i i i i i i i i I i i i i i i i l . i •::.:::ii.-:z : . . . ! : : : - i : j : i i l i i l i i i : i i i -'• . i n : • ;--..... . •:;:!;.:::: i • Hill.:::::: i i i i i ! i — -..::-;!:::-.: :::::l::i:: i i i i i i i i i i i i i i i i i j i i i i i i i i i i ; 1 i i i l i l j i l l : • . : i i i i : i ENE H L - — i i i i " 'l / i I ::; ii;;-.:: l i i i i ' i -ll . i i i i i 1. . i i k l i i l . ; i j i i: :j::::i. .:::: ii.:;:: l l i i l l i i l i i i i i i I i i i i i i i ' i i ' i i 1 -\.\ '"i :zz: ENE i i i i i i i H i l l IIII H i ' ! : : 11 • i i i i i i i : .:::.j::i: :::.;•]:::.- i i i j i i . . . i i i i i i i '•'•">-'• '• • M L :::: :.r:..-. . . . . . ' i L i i i i I i i i i l i i i : - - • f • • : i l l ] H i ;.::.::i.:.:-.: i : : : i - ! ;:-_••:. • i ' i i i i i i l i i j i i i i i i i i i i 1 ! l i i i ; i i i - i l i i i i l i i l i : - : : | : : : -• • | : i : i i i . i * .ii i i i::;:-j : " T i i i f i i i : : : : : . ! : : : : I i i i i i i i i i i i i i i i i ' .-iiiifc-.i. - - - i - - - : — ' l i iHfEF i i r h i i : : i x : i r : i.:.:i..;i:: - i n - n i l : : : i i j i i :.:::].::: 11i i'j i i i : . ! ; : : : . . . i l i l j i l l L L L i i j i i i i l i i i i i i 1 .... 1. .. "1 — ::-: :•:. :.::.:ix.::: : • . . I i i i i i . •::-.::!•-::: • • i i — • -::::::!:::.— . • :! :: i i i j i . 11 " l i l i l : i i i i i i ! 7 . : - . . : J I : : I i i i i i i i - " I i i i i i i i i i i i i i i!' . : : : (.—;•: i n : i i i i - i ^ n i A • ::::.!:::.: : i I ~ • .: ::..:\ :. i l l : : . . : . . : : : ! : : : : - - i i i i -i : : : : J : : . - : : 1 i l l j . i l " : : : : i : i : i — i - H l | i i i i i : l i i j i i i i i i i i i i i i i i i i i i "II H i l l • '•' ' i i i i i • ' • L i V r E i - O -1 1 1 0 - i - l i l i l c:: ': . :: l i i 2 r r: • i : oI*, i i ' • - ; • ' i : "i i - :x o ' '-.i-i i i i i i ° „ ..i._.f l i i i i j i i i III :!• 1 ^ i • i i ' L l i - i i - i :.: i •;":-* t ne r.c y In t a k e , C a l i i j i i i : o r i e s xlC r v.D E : . : : i - ; : : i . i - 11-1!!: -' I i i i i • • 1 • • • :' J . i i - i i .Hi j I lH • i i i i i i i i i i i i i i i i i i i i i i i i i i • i i i - 1 - U T : ! : . : - . - ' - - l i l - l - l i i i i i i :i . .rj:i:: . ::. :i' i : i i i i i i i 1 - -. . 1 i i i ! l l l l i i l l 1 - i i i i i1 ::•:]::.: • : : : : i : : : : i l i i - i — i i i i • i i i i i :::.: j : : • •11: i ; i i : ! • i •: :;-r7-~- - . . i i i i i . . • .; •: . : . • : . .•: :••:.-]:.: : L i i i i i i . i ' i ' - i | i - i i i - i i - i i i i i - i -! l l : - " :. ' : . . i . . . r - i ; ~ | H : j . - r : : . ! : . : : : i ; ; i i T : T | i I 1 i - l - - . - i - i i i l i - i 1 .j 1 '•-. . . . . . l i i i - i i : . i i - i - - - - - -- i i i i " i ~ i i . i i i i i . : : i i .. i..: i : i _ : . . . : : : ._ . | . .u : . i i : | l i i i i ; - i - - i : ! i l i - i i i i i 111 i 1' i i i : : : i i " i i i i i i i . i l l -. : . . i •• • • i : i ! i : . j l i i j i i l i i i i i i i i i i i i i : l i - . i i i i ! . i - l - l i l l i : : I • " 1 i ' 1:: i i L i . i ! i l l . , i : i i i i -1 Figure 57 The L i m i t s o f T o t a l Energy Intakes P o s s i b l e W i t h i n Each Energy Regime at 175 Days. P p F in!:;:; i P j i P -•;;;!';:•'; iii'iiii'i rrr rrii r: :::' j: •:: Hii i i i l i r i i ini H ' - H . - i' ::IHH 1 • ! • • • • Hi-! .. •:::::::. :::: i:::: .:::!::: Hp. :- n;:i:i::. ;. in..:.. . : . ; . ! . : . . . . : : : j : • . : l..:i|..._ iii-P'F... P P P iiiPiill : . . . ; H - F ; I . : •.: j •:: -PI-"-' .:'..•: p i i :• .1- . . IPiiPi ilp-p- Iiiiiiiii. P U P ! . ; : : I-:::: FFl F : P i i P i ; i : I . ; : : i _ U i •.IP IP .:.:!;-:: i i i i - ! : - I F F p i P • H : ii Hi . . . i • . . . .. j.... ' '' : i ' i : : • P i - F - i - FH' -P H:' i H : : ::.:.: i:::: —— j " — : : " •: • : | " : : : . : : : ! : : : : ^ipi i i r\ ;p;ph Fl i l i - r i n n H M -1HM-: M M ""...[ P i P P -ippi-i „:.;.i.nn :...]-..:. : : : ! : : : i-l-P I f l :: • : i.::: .::p"":_. IFIHFH F-i-FiF ip]P7 : : . : . [ : : • : . :: j:.;-. ... ~T:.:.~ 1-iPPI iiii | Hi: P P P ! •pi ~:P ':~~\r~~ FF ': P P P i i-ip-nl -rpi-Hp P F i i F . :•• .i • • • i p i l p . -iii. - i - P P : : : : ! : : : : : : : : ) : : : : : : : : ( : : : : " • : - T i ' ~ : : : • ] : : : : -iiijii-i-Iv •iPriP- ::: ~i::.: ::.: i...: . . . . ! .. HipH i-ptPP ; :-i -i; H I I I F : .::' ! : : : . F : : HHH . . . . i i P — i PIIIP . i.i: illF : : - : | : : . r : : : : : i":::::"i. ".:-: j i ~ . ."."•: : | : : : : : P l P i i : r n p:n ;• • • • • \ .*:: p:t:: H H J ; ; . : l l i i i ^ F Pri- -HF P iP iiiii FFi IP|Pi iiiiiiiii • • • • 1 r M H . •: i; ; n FtiilF. ipjiiii rr.;: I: Hi : : : : : 1 : : . : ;F : : • : : : : : : .i i; !:i iii:; L : :.H ;•:.. P p i P i ; - ' " . P H ; •:.:.: :.i:FF -:r:-: |:::: H p : :•.-.: i ::: : :.::i'..:: .;.:.: pin . . . i . . FF P i P i Iiiiiiiii :;: :;i;::; • • ; ' • ! " : : -...... M M i HF :" :7,i-: :.r : ! i ; P i iHi:;;:; P i p P I V 1 -H; !•!: ; H ; i.; H i - -:.-_:•_• l : . : : : • I -i! il! iiiiiii H : H r:n; .::::.! ..:i: i i . v j : : : : -P i p p - 4 i : P P : : ... . ( — HliiF!- i — -1 FiriFir Hp :.:r.:\: ......... - H ' H — • : ] - : : : . ri,: j . ::: :-:.: :]•:-.:: ::.:: |.: ~: IFFiilH FFillpi F i i -iii-' rPiilP ::r::|-:::: np-rp iiiiiiPP » — H 5>—M Pi i Pi-i f P P HHiJiii: ~l .. 'H-iiiiiii iiiiiiiii ii.;.:.! F I . ; ; P i .:'-z'::iii:::i" _ Piii-Pi P i IFIillii L M ; L M i4 :i ; : : : P : i P iill il 1:.'. P i Hii P i i i i i i _ t: rrr-ii; ;:r Piipiii-.... \ i P i i i i iHitH:: i •iiiiljp i i •• _ • : : - • ! . : . . : . : -F H I F H P i P i Hii -•:-ii.-.:---IFHFF i . : . . : ! : : . :- ' •:-~|--.:-: ::.::L FlilFF' 1 -iii- ±i • Hi! iiiii H H ; ; Hii :\::sJ:::.:.:. r- • • ' . : — . J T : . : : : . ..! . .1 . . . iipiiiiii P I I FliiiFI .:.:::::"ji~T"' : . : : : : : | _ : " - . Fiiini- i i i ipii. III; cr > i "-ri-jiiH. Hiii-rr; 1 - • _ . . : : : : L " : - 1 • • • • . : : : ; ; ! : : : - " • -.:::::!:--::: >> 1 n i_ A t_l 1 Pii ' l i i :ri-:i;i;i i i i i i F H i ~ i~\ :r.;-;: r: :-:.!•:.-.: 1 " : . - . : : ! : . . '-•'—-•-T~: •-- : . - : | T ~ -.--i_i::-r ::-..-.j • : : - : FiHFFi . I : : - L J . : - . " : - ; iiiiiiiii H P H F i-piijiPr — I : ::-p:-.-_ FFlFH • • • • ) - - — • FililFi; • - P - c : "•]-.7\"~.7:.:. -.- : . - " & - : : r : - : j : : i - ; H i i L i u . . . m i ii_ = FII HI IF:'::!:. !:i iiH.: .... 1; .. ... Fiij-n.;: —TT.— iFiiF.;; i i i i i i i i i . i i l IFi Flij " Fi i •i™ -; ; ; : Li L r- :.i-r]--::-: • fiiiliTF i..:. r : : i | . : : -• '• ' ' iiFjiii; P i i P i i : F n : FIllFli :: r. 1 IVI t_ .... ( — i i i F i l IT! . r F : : - j - : H I .:-;:t-v.:. Hi: i . i H L r---"-':!":-: '• ~:::r:::: "TTt : ;n ;j I I H : iP-PpPi l i D/! j . . . : - . . i i i ; F i i iFF:-P i l . U •:-rr:r.::: M 1 ii!i:i:!i!l: HiiF-'H LTA NJOT v'A 1 A R IF i i i i i i i i i ; i i i i i : — i ;.. . I V IVI . t i • i i i ' i i i i p£piipP "I- :.)::•::• T — I . .:: :.::: r..'--'..'..\..:.~" i i : : -1 : : : . ; -\:t:pr— ll::|:::::: iHi ::::.: | : " : . ' r.-:::!:.: . : ::~r' r u:| ' M 1 : !P' i P i l i F r FO FL L IMPT <? ON / E R FF :.: i:::; ! P p F .: : L ::.: HL IVI : : . . ] : . : : 1 ( P p F F r— Hi i i - i : : : : ! : . : . : . : : ' ! : : : : i .::::."!'.: r. HliilF ) 0 :jii'n r;i; i i i i i- — P P P P iiripri:- 5 C 0 , 0 ( C A L O R I E S i i i i i i i i i i l i : : : '- », t_ t_ :~ii:.— 1 I -; nrirrri: F T T T T T ^ T " H;:.: L7."_: P P P P P P i i l F i l l _ : Fiji::; i lplH: :::;ii:i i i i p : : • i i i ' i ; ; iF l i i l i F F : . | " : : ' _ iiiijiiii . • : ) • : • : • : : — i — IV : . : . : . : . I : : . : : J • • •• I I l_ L L-L _ „ 4 . : _ i . : P i p P :::::.:;:::::' :.":;r:r:~ TTr7rrTJ™~r ""'I iipiiiiii : ; ; ; - ) ; ; • ; LL :IL:SA F-Fiin: iHllilli -.::::}-.— ir;ii;;Fi PlHiP i-ipiiiP -Hll iP iii;-;:; . - . : I • : : : — L - A , P P i l F . P _ . P p p —1 : : : ' ] : : : i P iP - 1 iiiiiiiii i • • -iiii i;; ::-_- i ipiiiiii i i i " F: . . : : : i : . : : , iFi.Hi 11-: : : • •: I L ' • : • • - F + F -•' i ' •iPi:Hp : : : \' • : i.::-'ii| 1 - inPP F-PPr ~ •'. i: '• ':Fi:'"" : - . |.-1 ::•-i -• :::-:: : . . . . ; - : • • • -: i t V - 2 • i . . . ' : i : ' L i i i : : ; ; : i i : ; : ; . : J i ; w i : J : j : : : pp e : i I . " : : " . . , .. E n e r g y I n t a k e , C a l o r i e s x 1 0 ° ( A . D . E . ) . IF. P i ! , p. : : . | - : : : : ! : : : . | ; , i ; : . | : | . : | !• • | . . . : I.i:.:..:"i !" " : i_iii:.:.:: !' •• r . . : :: • i . ' : : -pi..p ~ P T V : i. . • • • t - • . : : . ' : : : : : | : . . ' i . . : : • • • r; i;• r | • :• S H H i " . ' . i : ' :"':™: • r : : . ! : ! ; . ' • ...iipi:: . . • 1 i::: • I F ' i ' l ! ' .iiii:'.-' i:ii :.p.:.. . i i p l " • : P P •i;pr -Hiii. •:• p i . iPli":: i . . . . .1 : • . ' i " ' . . : ; : • : • . _ s k e l e t a l dimensions that uniquely i d e n t i f y the var i o u s energy regimes. I f la r g e groups of animals r e p r e s e n t i n g a l l p o s s i b l e n u t r i t i o n a l regimes were a v a i l a b l e as standards, the energy regime of any w i l d fawn could be determined d i r e c t l y . I t s s k e l e t a l measurements would simply be compared w i t h the standards u n t i l the most s i m i l a r one was s e l e c t e d . However, the number of standards r e q u i r e d would be p r o h i b i t i v e . Just enough animals were reared i n the l a b o r a t o r y to t e s t the t h e o r i e s p e r t a i n i n g to s k e l e t a l growth. The animals can act as standards f o r d i r e c t comparison, but only i f the w i l d treatment happens t o correspond. Those f a l l i n g between must be evaluated by an i n t e r p r e t a t i o n of the p a t t e r n of growth e l i c i t e d . I I I . Regimes of N u t r i t i o n t o 112 Days. Of the s i x n u t r i t i o n a l regimes considered at 112 days as p o s s i b l e r e p r e s e n t a t i o n s of w i l d d i e t s , l a b o r a t o r y animals were r a i s e d on only f o u r . One male fawn was reared on tHH l, one male and two females on 'MH', four males on TMMT, and one female on 'ML*. E a r l i e r , a mention was made of an e x p e r i -mental plan i n which every regime i n c l u d e d at l e a s t two male fawns. At tha t time i t was a l s o i n d i c a t e d t h a t d i f f i c u l t i e s had a r i s e n i n making animals conform e x a c t l y to the plan. The r e s u l t of t h i s i s obvious here w i t h no animals at a l l r e p r e s e n t i n g rHMr or THL'. In a d d i t i o n to these s i x regimes, two others are i n c l u d e d t o add f u r t h e r support to the t h e s i s t h a t growth g r a d i e n t s are 131 being manifested i n response to n u t r i t i o n a l s t r e s s e s . An fLL* regime was imposed upon two male and one female fawns and ' LH* upon one male fawn. The e f f e c t of each p a t t e r n of a l i m e n t a t i o n w i l l be des-c r i b e d i n terms of the standard t o t a l energy i n t a k e s t h a t are a s s o c i a t e d with the s k e l e t a l dimensions a t t a i n e d by an animal on t h a t regime. That i s , the s k e l e t a l dimensions w i l l be used to estimate t o t a l energy i n t a k e employing the reference l i n e s (p. 14S) t o r e l a t e the measurements to the energy l e v e l . By t a b u l a t i n g the d i f f e r e n c e s between these apparent values and the t r u e t o t a l energy i n t a k e , a c h a r a c t e r i s t i c p a t t e r n of d e v i a t i o n s can be produced f o r each regime. I t must be pointed out t h a t the pat t e r n s of d e v i a t i o n s d e s c r i b e d can be, and have been, p r e d i c t e d according to a theory of growth t h a t encompasses a l l regimes. For example, the *HHT regime i s represented by one animal onl y , but the type of response to be expected i s determined according t o a theory t h a t i s supported by the twelve animals t h a t were r a i s e d on the other regimes. The animal or animals on a p a r t i c u l a r energy regime a i d i n e s t a b l i s h i n g the magnitude o f the response and a l s o provide a check on the methods o f i n t e r p r e t a t i o n being employed. On page 150 the s k e l e t a l measurements were arranged i n t o s i x groups and an i n d i c a t i o n was made of the d i r e c t i o n of progress of the a x i a l g r a d i e n t s . In the f o l l o w i n g diagram, these same g r a d i e n t s are depicted i n an attempt t o demonstrate the r e l a t i v e times of occurrence of the peak growth r a t e s (see Figure 5$)« This diagram i s intended only as a summary of the observations on s k e l e t a l growth. N e i t h e r the lengths nor the absolute p o s i t i o n s of the arrows r e p r e s e n t i n g the g r a d i e n t s are known to be exact, but they serve to show the d i v i s i o n of the g r a d i e n t s i n t o the e a r l y , moderate and l a t e r e g i o n s . Throughout the f o l l o w i n g d i s c u s s i o n the f o r e limb w i l l o f t e n be r e f e r r e d to as e a r l y maturing, but as can be seen i n t h i s diagram, the d i s t a l end (fore cannon) i s much e a r l i e r than the proximal end ( s c a p u l a ) . S i m i l a r l y , there i s a span i n each gradient t h a t should enable the d e t e c t i o n o f growth responses, i n a d d i t i o n to the use o f comparisons between the groups of measurements. The s i x t h g r adient i s th a t of the increase i n v e r t e b r a l width. Although t h i s aspect i s l a t e maturing, a f a i r l y r a p i d growth r a t e i s e x h i b i t e d d u r i n g the peak response i n the moderate r e g i o n s . During t h i s time the l e n g t h to width r a t i o s of the vertebrae remain n e a r l y constant. I t i s not u n t i l much l a t e r t h a t there i s an increase i n the growth p r i o r i t y f o r width and a change i n p r o p o r t i o n s . Because of t h i s type of response there i s nothing t o be gained by d i s c u s s i n g t h i s g r adient at 112 days and i t w i l l be i n c l u d e d only at the l a t e r dates. As the d i f f e r e n t treatments are dis c u s s e d , i t w i l l be noted t h a t the var i o u s regions of the s k e l e t o n change i n the Figure 5# A Diagram D e p i c t i n g the P o s s i b l e R e l a t i v e Peaks o f Growth P r i o r i t y Through the Growth Gradients That Have Been Examined. o r e C a m n o n , Lli^li4ilLLJji . L _ Di m e n s i o n s V e r t e b r a G o lu m n , -W i d t h -UJ 21 - V e r t e b r a < C o l u m n , 0 0 L e n g t h ° - H i n d L i mb , a: - - - , — i - ' ^ Length r o r e i L i m b , _ e n g t h e ng th w i d t h l i m p d i s t p r o x . mm. . . p o s t a n t. -d i s t p r o x d i s t p r o x R E L A T I V E T i. • • • i IL .:P;:rPiPL A G E M E - O F P E A K . . G R O W T H R E S P O N S E . ... r 184 p r i o r i t y l e v e l to which they are a l l o c a t e d . This i s because of the.use of c h r o n o l o g i c a l time t o describe a p h y s i o l o g i c a l f u n c t i o n . By 4 months of age an animal fed to a 'HFP standard has alr e a d y s a t i s f i e d the major growth of i t s e a r l i e s t p r i o r i t y components and advanced to the next, while on the 'LL' treatment the e a r l y maturing regions are s t i l l s t r i v i n g to grow at the most r a p i d r a t e . On t h i s treatment (•LL*), the lengths of the t h o r a c i c and lumbar vertebrae would be i n c l u d e d along w i t h the widths o f the f o r e cannon as being i n a p r e - p r i o r i t y phase of growth. Since the r e l a t i o n s h i p between n u t r i t i o n a l l e v e l and p h y s i o l o g i c a l aging has not been des c r i b e d f o r the growth o f the s k e l e t a l system, i t i s necessary to i n f e r which l e v e l s o f p r i o r i t y have been reached by examining the l a b o r a t o r y data. Regime *HH* Animal V l l Energy Intake 230,000 C a l o r i e s Because the boundary around the data p o i n t s of an e a r l y maturing dimension has a h o r i z o n t a l upper (BC) side (pp. 147-148 and Figure 9 ) , the reference l i n e f a l l s to the l e f t o f the *HHT treatment data. This means t h a t these dimensions, such as the lengths of the limb bones, would be expected to under-estimate t o t a l energy i n t a k e . Taking V l l as an example, the lengths of the bones o f the f o r e limb and the lengths of the c e r v i c a l vertebrae underestimate t o t a l energy i n t a k e by 34,000 to 55,000 C a l o r i e s . In the intermediate range of p r i o r i t i e s i n c l u d i n g the lengths of the t h o r a c i c and lumbar v e r t e b r a e , the upper boundaries around the data p o i n t s have p o s i t i v e slopes (e.g. F i g u r e s 14 t o 17) tending to move the reference l i n e s toward the ,HH t data. Except f o r T-j_, the t h o r a c i c and lumbar lengths of V l l give a very c l o s e estimate of t o t a l energy i n t a k e . T]_ demonstrates the same h o r i z o n t a l BC side to i t s d i s t r i b u t i o n of data as do the limb bones and c e r v i c a l s . This i s probably a r e f l e c t i o n of the shape of T^ w i t h the p o s i t i o n of the pre-zygopophyses being s i m i l a r to t h a t of the c e r v i c a l s . Very l a t e maturing dimensions such as the proximal and minimum widths of the f o r e cannon again underestimate t o t a l energy i n t a k e because the l a g i n growth response creates a h o r i z o n t a l slope t o the BC boundary, s h i f t i n g the reference l i n e t o the l e f t . This i s demonstrated i n V l l by a 9 3,000 and 7 6,000 C a l o r i e underestimate. Regime tMMl Animal Y2 Energy Intake 151,000 C a l o r i e s » Y3 " " 120,000 " » Y6 » " 140,000 " " Y8 » " 149,000 " There i s an o v e r e s t i m a t i o n of t o t a l energy i n t a k e by the e a r l y maturing dimensions on t h i s treatment that i s s i m i l a r i n c a u s ation to the underestimation on the •HH' treatments. The reference l i n e b i s e c t s the h o r i z o n t a l upper boundary l e a v i n g the •I'M1 data to the l e f t of the l i n e . T h i s means th a t the reference l i n e w i l l a s s o c i a t e that s i z e of measure-ment w i t h a higher energy i n t a k e . Y2 and Y3 both show the 186 limb dimensions o v e r e s t i m a t i n g t o t a l energy i n t a k e by 20,000 to 50,000 C a l o r i e s while Y6 and Y8 show much sma l l e r over-estimates. These two p a i r s of animals are separated here because both Y2 and Y3 adhered to the 'MM' treatment as intended, while Y6 and Y8 d i d not. They faveraged* fMMf because of p e r i o d i c lapses of growth rate due to i n t e s t i n a l i n f e c t i o n s and concurrent l o s s o f a p p e t i t e , i n t e r s p e r s e d w i t h periods of f u l l f e e d i n g . The complexity o f the v a r i a t i o n s i n energy l e v e l f o r these animals i s beyond the scope of t h i s paper and the d i s c u s s i o n of the ?MMT treatment w i l l be con-f i n e d to Y2 and Y3. The t h o r a c i c and lumbar vertebrae were not a v a i l a b l e f o r these animals and, t h e r e f o r e , the e f f e c t upon these dimensions cannot be shown. I t i s l i k e l y , however, t h a t d u r i n g the second p o r t i o n of the *MM' regime these vertebrae would have reached a higher growth p r i o r i t y and would have become more s u s c e p t i b l e t o the r e d u c t i o n . Although there w i l l s t i l l be a tendency t o overestimate t o t a l energy i n t a k e the d e v i a t i o n s w i l l be s m a l l e r than those shown by the limb bone l e n g t h s . The d i s t a l width of the fo r e cannon, which corresponds i n p r i o r i t y to the intermediate dimension, shows a s m a l l overestimate of 10,000 C a l o r i e s f o r Y3 w i t h t h i s measurement f o r Y2 mis s i n g . In the l a t e maturing dimensions -- i . e . , the fore cannon widths, r a p i d growth has not begun at t h i s time and, t h e r e f o r e , only a sm a l l r e d u c t i o n i n growth can be expected. The r e s u l t 187 i s a h o r i z o n t a l BC side to the data boundary and a reference l i n e t h a t f a l l s to the r i g h t of the 'I'M' data. The over-estimate i s demonstrated by Y2 and Y3 to be l a r g e , i n these animals ranging between 29,000 and 52,000 C a l o r i e s . Regime 'ML' Animal V14 Energy Intake 99,000 C a l o r i e s The r a p i d growth permitted i n the e a r l y maturing regions du r i n g the 'M' p o r t i o n of t h i s treatment should l e a d t o an o v e r e s t i m a t i o n of t o t a l energy i n t a k e . In the intermediate r e g i o n , the growth i s more s e v e r e l y r e s t r i c t e d by the 'L' part of the treatment which f a l l s at a time of r e l a t i v e l y high p r i o r i t y . However, the boundaries around the measure-ments f o r these dimensions have sloped BC s i d e s and a r e s u l t a n t l e s s e r slope to the AB s i d e . The reference l i n e s move to the r i g h t s t i l l a l l o w i n g an overestimate of t o t a l energy i n t a k e by these measurements. The l a t e maturing p a r t s do not reach a s t a t e o f h i g h p r i o r i t y by 112 days at t h i s l e v e l of energy i n t a k e and, t h e r e f o r e , cannot u t i l i z e the 'M' p o r t i o n of the treatment f o r r a p i d growth. The increase i n t o t a l energy i n t a k e without a corresponding increase i n growth moves the data p o i n t s to the r i g h t of the reference l i n e s causing an underestimation of t o t a l energy i n t a k e . The measurements of V14 support the above i n t e r p r e t a t i o n . Since i t w i l l be shown l a t e r t h a t sex d i f f e r e n c e s i n growth responses should only be expected on treatments l e a d i n g to a r e l a t i v e l y high energy i n t a k e , the p a t t e r n e x h i b i t e d by V14 188 can be used as a reference f o r male fawns a l s o . Regime 'MH1 Animal V21 Energy Intake 165,000 C a l o r i e s t t V7 t t tt 196,000 t t t t Y7 i t t t 216,000 tt There i s a tendency f o r an i n c r e a s i n g estimate of t o t a l energy i n t a k e p r o x i m a l l y through the limb g r a d i e n t s caused by the a b i l i t y of the r e l a t i v e l y l a t e r maturing p a r t s t o respond to the 'H' treatment i n the second i n t e r v a l . V21 under-estimates t o t a l energy i n t a k e s l i g h t l y by the cannon bones, r i s i n g t o an overestimate by the scapula and femur. V7 and Y7 show the same p a t t e r n but a much lower range o f estimates. The d i f f e r e n c e s between the e f f e c t e x h i b i t e d by V21 and by V7 are caused by the d i f f e r e n c e s i n t o t a l energy i n t a k e . When one r e c a l l s the p o s i t i o n i n g o f the reference l i n e s f o r the e a r l y maturing dimensions, i t i s seen t h a t at higher l e v e l s of energy i n t a k e 'MH' data would tend to f a l l f u r t h e r to the r i g h t accounting f o r the e f f e c t seen here. The regions reaching a high growth p r i o r i t y at an i n t e r -mediate time u t i l i z e t h i s p a t t e r n of energy i n t a k e very w e l l because the 'H' p o r t i o n o f the treatment c o i n c i d e s w i t h the increa s e d a b i l i t y to grow. An overestimate o f t o t a l energy i n t a k e r e s u l t s . For the l a t e maturing r e g i o n s , a high growth p r i o r i t y has not yet been reached. The r e l a t i v e l y high l e v e l of energy i n t a k e cannot be u t i l i z e d f u l l y r e s u l t i n g i n an underestimate 189 of t o t a l energy int a k e by the f o r e cannon widths. There i s no apparent evidence that any sex d i f f e r e n c e s are o c c u r r i n g i n the growth responses of the v a r i o u s s k e l e t a l elements but, because the energy i n t a k e s of the male and females do not c o i n c i d e , a d e f i n i t e statement to t h i s e f f e c t cannot be made. Since any d i f f e r e n c e s t h a t might occur would be expected to be enhanced by the onset of sexual m a t u r i t y , these should be g r e a t e s t i n the p h y s i o l o g i c a l l y o l d e s t animals. The d i f f e r e n c e s are not i n d i c a t e d , at l e a s t n o t i c e a b l y , on the tMHt regime which i s the treatment having the highest l e v e l of energy i n t a k e f o r which both male and female standards are a v a i l a b l e . I t i s probably safe to say t h a t i n a l l treatments f a l l i n g below ,MH I i n t o t a l energy i n t a k e , sex d i f f e r e n c e s should not be expected, wh i l e i n the r e s t the p o s s i b i l i t y s t i l l remains t h a t they might occur. Regime 'LH' Animal Y4 Energy Intake 164,000 C a l o r i e s This treatment i s s i m i l a r i n e f f e c t t o the 'MH1 except t h a t maturation w i l l have been delayed s l i g h t l y . The animal Y4 i s not a strong example of the 'LH' treatment because i t i s j u s t s l i g h t l y over the boundary from 'M' i n the 'L' part of the regime. However, trends are e x h i b i t e d that i d e n t i f y the 'LH' treatment. The best i n d i c a t i o n i s shown i n the lengths of the limb.bones. There i s an i n c r e a s i n g over-estimate p r o x i m a l l y from the fore cannon through the humerus, fo l l o w e d by a decrease i n the scapula. The r a d i u s i s m i s s i n g i n t h i s animal, but the i n c r e a s e i n the overestimate along the 190 hind limb gradient supports the t r e n d . I f the p e l v i s was a v a i l a b l e , i t s l e n g t h l i k e l y would a l s o show a decreased overestimate. Although the only vertebrae t h a t are a v a i l a b l e f o r t h i s animal are the c e r v i c a l s , these showed a marked overestimate t h a t i n c r e a s e s p o s t e r i o r l y . T h i s i s i n accordance with the p r i o r i t i e s f o r these dimensions, being s i m i l a r to those of the limb bone l e n g t h s . The widths of the for e cannon overestimate t o t a l energy i n t a k e , mainly because they are a f f e c t e d very l i t t l e by the t L t treatment during the f i r s t i n t e r v a l and grow t o s i z e s s i m i l a r t o that reached on 'MH'. The intermediate regions would probably give a reasonable estimate o f t o t a l energy i n t a k e , decreasing s l i g h t l y along the g r a d i e n t . The t h o r a c i c and lumbar vertebrae are not a v a i l a b l e f o r Y4 so t h i s cannot be v e r i f i e d . Regime TLL» Animal V19 Energy Intake 94,000 C a l o r i e s " V20 " " 98,000 " " VI$ " " 98,000 " On the 'LL' treatment, a l l measurements must c o i n c i d e f a i r l y c l o s e l y w i t h the reference l i n e since the range becomes more and more narrow at the lowest energy i n t a k e s . Animals r a i s e d on , L L t treatments are c h a r a c t e r i z e d by a v a r i a b i l i t y i n estimates of t o t a l energy i n t a k e t h a t are g r e a t e r or sma l l e r than the true value, but strong trends are not apparent. 191 This completes the coverage o f treatments at 112 days f o r which there are l a b o r a t o r y c o unterparts. There are two more treatments that are of i n t e r e s t because o f the l i k e l i h o o d o f t h e i r occurrence under f i e l d c o n d i t i o n s . An attempt w i l l now be made to a n t i c i p a t e the e f f e c t s of these n u t r i t i o n a l regimes on s k e l e t a l growth. Regime fHM* No l a b o r a t o r y animals The growth of each of the e a r l y maturing dimensions should not be expected to d i f f e r much from t h a t on the tHH t treatment and, t h e r e f o r e , should not underestimate t o t a l energy i n t a k e t o the same extent. A reasonably close value f o r t o t a l energy i n t a k e should r e s u l t d i s t a l l y w i t h a s l i g h t i n c r e a s e p r o x i m a l l y because of the s h i f t o f the reference l i n e t o the r i g h t . The t h o r a c i c and lumbar vertebrae, because of t h e i r higher p r i o r i t i e s f o r growth during the second i n t e r v a l , w i l l be more a f f e c t e d and w i l l tend t o underestimate t o t a l energy i n t a k e . The fore limb widths w i l l be l i t t l e a f f e c t e d by t h i s treatment and w i l l give a small overestimate of t o t a l energy i n t a k e -- i . e . , the s i z e villi be s i m i l a r t o THH T but at a lower t o t a l energy i n t a k e . Regime fHL* No l a b o r a t o r y animals The s k e l e t a l dimensions of animals r a i s e d on t h i s t r e a t -ment should a l l tend to underestimate t o t a l energy i n t a k e . In the limb g r a d i e n t s , the d i s t a l r egions w i l l c l o s e l y approximate the t r u e energy i n t a k e , but decrease i n value p r o x i m a l l y . The most pronounced underestimates w i l l e x i s t i n the t h o r a c i c and lumbar regions because of the l L t r e s t r i c t i o n o c c u r r i n g at a time o f high growth a c t i v i t y . In the very l a t e r e g i o n s , no pronounced e f f e c t should be noted by t h i s treatment and the estimate of t o t a l energy i n t a k e should approach the t r u e value. IV. Energy Intakes of W i l d Fawns to 112 Days. Animal YF17 Age i n Days 116 Energy I n t a k e 1 197,000 C a l o r i e s YF19 " » 118 « » 205,000 " YF16 11 " 116 » " 198,000 " YF18 " " 117 " " 170,000 " YF20 11 " 118 " " 180,000 " Each of the above animals i s represented by the major limb bones except the p e l v i s , and by c e r v i c a l s three and f i v e . Animal YF18 i s complete w i t h p e l v i s and v e r t e b r a l column. Although only a p a r t i a l s e r i e s of measurements i s a v a i l a b l e , f o u r out of f i v e can be placed i n the ,HM t or tMH* regime w i t h confidence. Assuming t h a t sex d i f f e r e n c e s i n growth are not evidenced at t h i s age (see pp. 61-62), each of the f i e l d animals can be compared to the l a b o r a t o r y standards. For animals YF17, YF19,. YF16 and YF20, there are only two regimes 1 Estimated from s k e l e t a l dimensions accor d i n g to pp. 161 to 166. t h a t would be compatible w i t h t h e i r s k e l e t a l dimensions -- *HMt and 'MH1. The t o t a l energy i n t a k e s p r e v i o u s l y estimated f o r the animals (see Table 5) f a l l w i t h i n the energy i n t a k e s c a l -c u l a t e d f o r these regimes. In the l a b o r a t o r y , ' HM' was not represented and the pat t e r n of i n t e r c e p t s f o r t h i s regime could only be described i n g e n e r a l i t i e s . As they were described there i s very l i t t l e d i f f e r e n c e i n the p a t t e r n s of i n t e r c e p t s between the * HM* and the 'MHT regimes. There i s , however, one piece o f evidence t h a t suggests t h a t ' 1 ' i s the regime th a t was f u n c t i o n a l i n producing the growth of these fawns. The weights of the fawns c o l l e c t e d i n August ( 4 9 days) i n d i c a t e a high plane of n u t r i t i o n i n the f i r s t i n t e r v a l (see p 17$). I f i t can be assumed t h a t those fawns c o l l e c t e d at 4 9 days were represen-t a t i v e of the p o p u l a t i o n from which the 112 day o l d fawns were c o l l e c t e d , then THM* i s the most probable regime a c t i n g on the w i l d fawns. The p a t t e r n o f i n t e r c e p t s produced by the s k e l e t a l measurements of animal YFlB d i f f e r s from those of the other f o u r fawns. The s k e l e t a l measurements present a pa t t e r n of i n t e r c e p t s that i s c h a r a c t e r i s t i c of the TMM' regime but at a t o t a l energy int a k e that i s s l i g h t l y above the maximum c a l c u l a t e d f o r t h i s regime. I t must be remembered, however, t h a t the t o t a l energy i n t a k e f o r the w i l d fawns was estimated from a body weight r e g r e s s i o n and from the s k e l e t a l measure-ments, n e i t h e r of which give a p r e c i s e answer. I f i n s t e a d of the estimated 170,000 C a l o r i e s the t o t a l energy intake had been 160,000 C a l o r i e s , the animal would have f a l l e n w i t h i n the 'MM' c l a s s i f i c a t i o n and the p a t t e r n of i n t e r c e p t s r e s u l t i n g from t h i s change would s t i l l be compatible w i t h the 'MM* regime. This animal has, t h e r e f o r e , been c l a s s i f i e d as a representa-t i v e of the •MM* regime. I t w i l l be n o t i c e d t h a t the widths of the f o r e cannon have not been used i n t h i s e v a l u a t i o n . These measurements at t h i s age appear to be very subject to i n d i v i d u a l v a r i a t i o n s which r e s u l t i n l a r g e d i f f e r e n c e s i n estimates of t o t a l energy i n t a k e . This w i l l be discussed at g r e a t e r lengths when the measurements of the cannons c o l l e c t e d from hunter k i l l e d deer are examined. V. Regimes of N u t r i t i o n to 1 7 5 Days. From b i r t h to 112 days of age i t appears th a t the energy regime of a fawn can be evaluated a c c u r a t e l y and conveniently by the use o f body weight and s k e l e t a l measurements. Extending the time to 1 7 5 days in t r o d u c e s f a c t o r s which tend to d i m i n i s h the s e n s i t i v i t y of the a n a l y s i s . For animals reared to 1 1 2 days of age 19 s k e l e t a l measurements were used to d e l i n e a t e the n u t r i t i o n a l planes over two i n t e r v a l s of time w i t h only s i x p o s s i b l e energy regimes being considered ( TH or M; H, M or L ' ) . At 1 7 5 days there are twelve energy regimes r e s u l t i n g from the combinations of the p o s s i b l e treatments i n each of the three i n t e r v a l s ('H or M; H, M or L; M or L»): the 19 s k e l e t a l measurements must now solve the n u t r i t i o n a l regime over three i n t e r v a l s , r e s u l t i n g i n a l o s s of p r e c i s i o n . The a n a l y s i s i s f u r t h e r hampered by the f a c t that there i s a f i n i t e l i m i t to the growth of each s k e l e t a l dimension, and i n the e a r l i e r maturing p o r t i o n s of the sk e l e t o n t h i s l i m i t i s being approached by 175 days. These dimensions are e f f e c t i v e l y removed as i n d i c a t o r s of n u t r i t i o n a l regime, e s p e c i a l l y at higher l e v e l s of energy i n t a k e . Because of the complexity of the i n t e r a c t i o n s of energy l e v e l , growth p r i o r i t y , and compensation, i t has not been p o s s i b l e to take each n u t r i t i o n a l regime and describe the r e s u l t i n g or expected s k e l e t a l p a t t e r n s . Only 6 of the 12 regimes under c o n s i d e r a t i o n are represented by l a b o r a t o r y animals, and only 3 of these by more than one animal (Table 9, pp. 45-47). The remaining 11 animals are d i s t r i b u t e d among 6 a d d i t i o n a l treatments which, although u n l i k e l y as n a t u r a l f e eding regimes, were i n c l u d e d to help to determine growth p r i o r i t i e s . Using an e m p i r i c a l approach, i t must be assumed t h a t the s k e l e t a l p a t t e r n generated by each o f these animals somehow represents the n u t r i t i o n a l regime on which the animal was reared. However, when the s k e l e t a l p a t t e r n s were examined i t was found t h a t no strong g e n e r a l i z a t i o n s could be made. Part of the problem i s i n a l l p r o b a b i l i t y r e l a t e d to the wide range of energy i n t a k e s p e r m i s s i b l e w i t h i n each i n t e r v a l of the regime t h a t , by the end of three i n t e r v a l s , c reates many complex i n t e r a c t i o n s . For example, the * HMLf regime can have 196 a t o t a l energy i n t a k e ranging from 210,000 to 315,000 C a l o r i e s and t h i s d i f f e r e n c e can be p a r t i t i o n e d i n many ways. The pa t t e r n of i n t e r c e p t s produced by the sk e l e t o n from an animal wi t h an energy i n t a k e at one end of the spectrum t h e r e f o r e need not n e c e s s a r i l y be r e p r e s e n t a t i v e of the p a t t e r n at the other end. The pa t t e r n s of energy i n t e r c e p t s generated by the l a b o r a t o r y fawns are shown i n Table 6 7 . Not only are there no d i s t i n c t d i f f e r e n c e s among the treatments, there are not any n o t i c e a b l e s i m i l a r i t i e s among the animals on the same treatments. I t has not been p o s s i b l e to provide any f u r t h e r a n a l y s i s of the growth p a t t e r n s of the l a b o r a t o r y fawns, nor, as i t w i l l be seen, has i t been p o s s i b l e to r e l a t e any of the w i l d fawns to the l a b o r a t o r y treatments. VI. P a t t e r n s o f Energy Intakes of Wild Fawns to 175 Days. There has already been enough evidence accumulated i n e a r l i e r s e c t i o n s t o suggest t h a t the sample of 175 day o l d fawns from the f i e l d w i l l f a l l i n t o one of three regimes: tHML t, tMHLt or tMMLl. B r i e f l y , t h i s evidence i s : 1. the t o t a l energy i n t a k e estimated f o r w i l d fawns at 49 and 112 days (see pp. 192-193) 2. the patterns of s k e l e t a l i n t e r c e p t s at 112 days (see pp. 193-194) 3. the disagreement at 175 days between t o t a l energy i n t a k e estimated by body weight and 1 9 7 Table 6 7 . The d e v i a t i o n s of energy i n t e r c e p t s of the s k e l e t a l dimensions from the estimates o f a c t u a l energy i n t a k e f o r l a b o r a t o r y and w i l d fawns Animal No. U 8 U 7 Y 1 3 UIO U14 V 1 3 Sex M M M F F F T o t a l E . I . 1 4 . 1 1 4 - 4 5 3 . 7 7 3 . 3 7 3 . 8 0 3 . 5 8 P a t t e r n E.I. MHH MHM MHM MHM MMM MMM Bone Length D e v i a t i o n Fore cannon - 0 . 5 9 0 . 0 0 - 0 . 5 2 + 0 . 1 3 - 0 . 5 5 - 0 . 4 4 Radius - 0 . 3 1 - 0 . 0 5 - 0 . 4 3 + 0 . 1 1 - 0 . 6 5 - 0.09 Humerus - 0 . 5 1 - 0 . 3 0 - 0 . 2 4 +0.17 - 0 . 0 5 - 0 . 2 3 Scapula - 0.06 + 0 . 0 7 - 0 . 3 7 + 0 . 5 3 + 0 . 1 5 - 0 . 3 2 Hind cannon - 0 . 3 6 + 0 . 0 3 - 0.41 + 0 . 0 3 - 0.69 - 0 . 5 3 T i b i a - 0 . 0 1 + 0 . 0 5 - 0 . 4 2 + 0 . 3 7 - 0 . 6 6 - 0 . 4 0 Femur +0.14 - 0 . 2 1 - 0 . 2 3 + 0 . 5 9 + 0 . 1 2 + 0 . 1 8 P e l v i s + 0 . 1 0 + 0 . 3 5 - 0 . 3 6 + 0.70 0 . 0 0 - 0 . 4 9 C e r v i c a l 3 - 0 . 1 1 + 0 . 4 2 - 0 . 4 2 C e r v i c a l 5 +0.19 + 0 . 2 7 - 0 . 5 8 + 0 . 0 1 + 0 . 3 2 - 0 . 3 5 C e r v i c a l 7 +0.15 + 0 . 0 1 - 0.13 - 0 . 3 6 +O .64 - 0 . 4 0 Thoracic 1 - 0 . 6 4 + 0.16 + 0 . 4 8 + 0 . 2 1 + 0 . 8 8 - 0 . 2 6 Thoracic 5 + 0 . 6 4 + 0 . 2 8 - 0 . 6 0 + 0 . 3 0 + 0.41 - 0 . 2 5 Thoracic 1 0 + 0.41 + 0 . 4 5 - 0 . 4 3 + 0 . 8 5 + 0 . 4 2 - 0 . 4 2 Lumbar 1 - 0 . 1 3 + 0 . 2 8 - 0 . 0 5 + 0.90 - 0.19 - 0.41 Lumbar 3 - 0.03 +0.07 - 0.29 + 0 . 7 3 - 0 . 1 5 - 0 . 2 3 Lumbar 5 - 0 . 1 1 +0.14 - 0 . 6 3 + 0 . 5 1 - 0.17 - 0.14 Bone Width C e r v i c a l 5 + 0 . 2 4 - 0 . 1 5 - 0.15 + 0 . 4 3 + 0 . 1 3 - 0.71 Thoracic 5 - 0 . 6 3 + 0 . 2 8 - 0.09 - 0 . 4 7 + 0 . 0 3 - 0 . 7 4 Lumbar 3 - 1 . 0 0 - 1 . 2 0 - 0 . 7 5 - 0 . 3 0 - 0 . 8 6 - 0 . 5 9 Fore cannon, length) - 0 . 5 9 0 . 0 0 - 0 . 5 2 + 0 . 1 3 - 0 . 5 5 - 0 . 4 4 Fore cannon, d i s t a l - 1 . 1 3 +0.17 - 0 . 0 2 - 0 . 5 4 - 0 . 3 8 -O . 8 4 Fore cannon, proximal - 0 . 9 4 - 0 . 7 7 + 0 . 5 1 - 0 . 2 7 - 0 . 7 9 - 1 . 1 8 Fore cannon, minimum - 0.04 + 0 . 0 2 +O .38 + 0 . 3 8 - 0 . 4 5 -O . 4 8 1 Apparent d i g e s t i b l e energy i n t a k e i n C a l o r i e s . I I I o o o • • • •p- H-"^ > I I l + + + I + o o o o o o o o + + I I o o o o \o oa co + + I I o o o o O O M M-p-.p-.p-+ 1 + + + + + + I + + + o o o o o o o o o o o o o o o o o o o o * • * • • • • • • » • • O M W O O -P" -P~ fO ts) -p- \-> VJOV^JVKJ'OJ K>.p-VO-F-u i O H V-n O O M O N W ON ON ONQN-J CO- v O O H H + 1 1 I I + + + I I I + 1 + I + + + O O O o o o o o o o o o o o o o o o o o • • • • • • • • • * • • • • • • • • WHH J\>OV>J-p-|—'OOr-'H O H O ^ W M M -f" U i M W -<3 MD M - P - - O O O CO-M O M ^ O WOmO + 1 1 I I I + + I I 1 1 1 + 1 1 1 + OOO O O O O O O O O O O O O O O O • • • • • • « • • * • • » W H H O ^ N O^uiH - J O O H t—1 O O O -O f\) HJ •VJVJJOO- SO^> COVAJ -P--P- M-p- -P~ vO-P~ ON l + l I I I + + + + I + + + I I + + + I OOO O O O O O O O O O O O O O o o o o • • • • « • • • • • • • • • • • • • M - p - v i w r o o f o ^ o r o o M W O H O -P-1- 1 H - 1 o co.ro M co.0Q.rovow t—1 ro O N ro ovo-^ivo V * J C O O N - J I I l l l l l l + l l I I I I + + I O O O o o o o o o o o o o o o o o o o o • • • • • • • • • • • • • • v^J-p-O u i W U f - O H H P ^ H O H M M O O O OOOO CO ON -p- <3 O N O N O -P" vn O N CO O N O -P~ -P~ OO O + + + I I I + I + I I I I + + 1 + 1 + O O O O O O O O O O O O O O O o o o o » » • » » • » • • • • • • • • • • • • \_n O O H O H O M H W O -P" M 0-P~ O O O I—' O N < 3 V O ONro-j ro co-p- H - 1 - ^ M H O O ro -oro -o + + + 1 1 1 + 1 1 + 1 + + + + + + + + O O O o o o o o o o o o o o o o o o o • • • • • • • • • • • • • • • ONMV*j O H O H H H H H O O M JO H H P W -p-rOUJ M H O ^ H H H O H U i V J J COMD \_n CO ON t—' 199 Table 67- (Continued) Animal No • WFl WF2 YF38 YF37 U33 V24 Sex M M M F M M T o t a l E.I 1 3 . 1 0 3 . 2 0 3 . 2 0 2 . 6 5 4 . 0 1 3 . 3 8 P a t t e r n E . 1 . Wild W i l d Wild W i l d LMH LHM Bone Length Fore cannon 0 . 0 0 -0.16 +0.33 - 0 . 0 1 - 0 . 7 6 +0.15 Radius - 0 . 1 0 - 0 . 0 8 +0.17 - 0 . 0 1 - 0 . 5 7 + 0 . 2 2 Humerus + 0 . 2 3 -0.13 -0.13 - 0 . 1 4 -0.59 +0.04 Scapula - 0 . 8 2 - 0 . 2 7 -0.69 -0.14 +0.14 +0.27 Hind cannon -0.04 - 0 . 3 0 + 0 . 3 0 + 0 . 1 0 - 0 . 6 3 -0.04 T i b i a - 0 . 2 2 -0.24 - 0 . 2 1 +0.12 - 0 . 5 1 - 0 . 3 2 Femur +0.19 -0.07 -0.24 + 0 . 1 4 - 0 . 1 1 0 . 0 0 P e l v i s - 0 . 1 8 - 0 . 0 5 0 . 0 0 +0.29 C e r v i c a l 3 + 0 . 1 0 C e r v i c a l 5 - 0 . 3 9 +0.29 +0.63 - 0 . 2 0 -0.05 +0.43 C e r v i c a l 7 - 0 . 0 8 - 0 . 1 2 - 0 . 5 4 - 0 . 1 6 + 0 . 0 1 Thoracic 1 + 0 . 0 7 +0.34 -0.14 + 0 . 4 1 +0.12 Thoracic 5 +0.13 - 0 . 4 9 - 0 . 2 8 - 0 . 1 1 + 0 . 1 8 Thoracic 10 + 0 . 0 6 + 0 . 1 0 - 0 . 1 3 - 0 . 2 7 + 0 . 2 2 Lumbar 1 - 0 . 4 7 • - 0 . 3 1 - 0 . 1 1 Lumbar 3 +0.33 - 0 . 0 2 - 0 . 6 2 + 0 . 3 8 -0.09 Lumbar 5 - 0 . 0 5 - 0 . 0 2 - 0 . 2 1 + 0 . 3 1 - 0 . 3 8 Bone Width C e r v i c a l 5 +0.08 +0.22 -0.78 -0.20 -0.49 -0.63 Thoracic 5 -0.60 -0.07 -0.15 -0.50 +0.51 Lumbar 3 -0.27 -0.20 -0.06 -0.88 -0.76 (Fore cannon, • l e n g t h ) 0.00 . -0.16 +0.33 -0.01 -0.76 +0.15 Fore cannon, d i s t a l +0.19 +0.55 +0.68 -0.28 +0.29 +0.10 Fore cannon, proximal -0.06 +0.18 +0.18 -0.33 -0.63 -0.25 Fore cannon, minimum -0.49 +1.03 -0.01 +0.05 +0.07 -0.36 1 Apparent d i g e s t i b l e energy int a k e i n C a l o r i e s . Table 6 7 -V 2 5 V 2 7 M M 2 . 3 5 2 . 1 7 LLM LLM +0.18 +0.54 +0.14 +0.27 +0.24 +0.14 +0 . 1 7 +0.05 +0.01 +0.45 -0.05 +0.10 +0.10 +0.17 - 0 . 0 4 +0.10 -0.24 +0.18 - 0 . 1 1 +0.11 +0.30 +0.08 +0.30 +0.33 +0 . 1 9 +0.08 +0.14 0.00 -0.22 +0.01 -0.20 -0.02 +0.19 + 0 . 2 2 + 0 . 4 0 +0.16 + 0 . 1 0 + 0 . 4 2 + 0 . 8 0 +0.18 +0.54 +0.20 +0.17 +0.10 +0.38 +0.17 +0.36 V28 U32 M F 2.33 1.99 LLM LMM -0.20 +0.22 -0. 14 +0.30 +0.03 +0.39 -0. 17 +0.19 -0. 20 +0.11 -0. 03 +0.29 -0. 16 +0.39 -0. 11 +0.06 0. 00 +0. 13 +0.47 -0. 06 +0.16 +0. 29 +0.45 +0. 59 +0.73 +0. 27 +1.06 +0. 27 +0 . 3 8 +O . 3 8 +0. 63 +0.56 +0. 60 +0.36 +0. 92 +0.09 +0. 72 +O .83 -0. 20 +0.22 +0. 41 +0.01 +0. 47 +0.11 +0.28 +0.17 U38 U15 F M 2.03 1.84 LMM LLL + 0 . 0 7 + 0 . 0 5 + 0 . 1 7 ' + 0 . 0 8 +0.01 +0.10 - -0.04 -0.02 + 0 . 1 4 +0.12 +0.30 +0.28 +0.15 -0.09 +0.09 +0.10 +0.55 +0.04 +0.77 +0.52 +0.18 +0.58 +0.29 +0.44 +0.33 +0 . 2 9 +0.17 +0.33 +0.57 +0.45 +0.37 +0.22 +0.49 +0.26 +0.47 +0.88 +0.43 +0.35 +0.96 +0.07 +0.01 -0.16 +0.28 +0.22 +O .38 +0.67 +0.01 V12 V17 M F 1 . 8 6 1 . 6 7 LLL LLL + 0 . 2 3 +0.39 0.00 +0.34 + 0 . 0 5 +0.15 + 0 . 1 7 +0.19 +0.16 +0.38 -0.02 +0.27 -0.01 +0.13 -0.02 -0.11 +0.16 -0.07 -0.04 -0.03 -0.17 +0.25 +0.10 +0.19 +0.07 +0.18 +0.16 +0.10 0.00 0.00 +0.02 +0.05 +0.07 +0.54 +O .58 -0.09 +0.21 +0.73 +0-.90 +0 . 2 3 +0.39 +0.26 +0.33 -0.07 +0.70 +0.10 +0.44 2 0 1 by s k e l e t a l dimensions (see pp. 166-168) The s k e l e t a l measurements from the four w i l d fawns c o l l e c t e d i n December w i l l be examined to determine i f p a t t e r n s e x i s t that w i l l a l l o w f u r t h e r refinement o f the e v a l u a t i o n o f the energy regime. Three of the fawns, WFl, WF2 and Y F 3 8 , a l l males, were estimated t o have very s i m i l a r energy i n t a k e s of between 3 1 0,000 and 3 2 0,000 C a l o r i e s . I t i s apparent from f i r s t glance t h a t the patterns o f i n t e r c e p t s f o r these three are not at a l l s i m i l a r . More p a r t i c u l a r l y , none i s s i m i l a r to the one l a b o r a t o r y example of tHML t (V26) which, at 3 0 8,000 C a l o r i e s , i s very near i n energy i n t a k e , nor t o the example of TMHL'1 (V8). The l a t t e r , however, only reached an energy i n t a k e of 2 8 3,000 C a l o r i e s and so the comparison may not be v a l i d . No l a b o r a t o r y r e p r e s e n t a t i v e of 'MML'* i s a v a i l a b l e f o r compari-son, but t h i s regime i s excluded by the high energy i n t a k e s of these fawns — i . e . , the upper l i m i t f o r the tMMLt regime i s 290,000 C a l o r i e s . The f o u r t h fawn, YF37, a female, was much sma l l e r than the others and had an energy i n t a k e estimated t o be 26$,000 C a l o r i e s . At t h i s energy i n t a k e , the regime of the fawn could have been any of the three being considered. The s k e l e t a l development d i d not correspond to e i t h e r the fMHL T or ,HML t l a b o r a t o r y examples, and 'MML' was not represented as p r e v i o u s l y mentioned. Because the only female i s so d i f f e r e n t from the three males i t i s tempting to suggest t h a t t h i s may be a s e x - r e l a t e d d i f f e r e n c e . H o i i r e v e r , i t soon becomes apparent t h a t t h i s i s not so. I t has already been demonstrated t h a t at 112 days there i s not an apparent d i f f e r e n c e between males and females, so any d i f f e r e n c e would have to occur i n the t h i r d i n t e r v a l . The male fawns, during the t h i r d i n t e r v a l , r e f l e c t energy i n t a k e s t h a t are below t h e i r maintenance requirements. In order f o r the female to be s m a l l e r than the male, i t s energy in t a k e would have to be depressed w e l l below maintenance. A •voluntary* decrease i n energy i n t a k e , i . e . , one tha t i s c o n t r o l l e d from w i t h i n i t h e animal r a t h e r than by an inadequate supply of food, t o such a low l e v e l i s not borne out by females reared i n the l a b o r a t o r y , nor i s i t reasonable to expect such i n an animal th a t must s u r v i v e the r i g o r s of w i n t e r . I t must be the a v a i l a b i l i t y of feed only t h a t i s c o n t r o l l i n g energy i n t a k e i n the t h i r d i n t e r v a l and the low estimated energy i n t a k e of t h i s female must be accepted as evidence of r e s t r i c t e d f e e d i n g . This leaves the energy regime of each of the f o u r fawns s t i l l without s o l u t i o n . Three have been narrowed down t o * H M L T or t M H L t on the b a s i s of energy i n t a k e , not s k e l e t a l dimensions, while the f o u r t h could have been any one of the three regimes * H M L ' , ' M H L * or T M M L t . No matter how the w i l d fawns were com-pared among themselves and w i t h the l a b o r a t o r y fawns no c o n s i s t e n t s i m i l a r i t i e s could be found. Even when the e s t i -mated t o t a l energy i n t a k e s of the w i l d fawns were allowed to 2 0 3 vary, the adjusted i n t e r c e p t s d i d not f a l l i n t o l i n e i n any combination. V I I . The S k e l e t a l Growth of Fawns to 3 2 2 Days. Nine male fawns were reared to 3 2 2 days of age on regimes designed t o t e s t the recovery from n u t r i t i o n a l inadequacies i n f l i c t e d d uring the f i r s t 1 7 5 days of l i f e . Since i t was not p o s s i b l e to demonstrate a dependence between s k e l e t a l con-formation and energy regime at 1 7 5 days, i t would not be p o s s i b l e t o show d i r e c t l y a recovery at a l a t e r date. The same end was achieved, however, i n a manner not a n t i c i p a t e d i n the design of the t e s t . Regardless of the p a t t e r n of energy i n t a k e w i t h i n the l i m i t e d number covered by t h i s group of animals, the s k e l e t a l dimensions were s i m i l a r i n s i z e and remarkably s i m i l a r i n p r o p o r t i o n or conformation. Thus, although i t was not p o s s i b l e to measure the amount of recovery between 1 7 5 and 3 2 2 days, the s i m i l a r i t y at 3 2 2 days showed th a t recovery had occurred. W i t h i n the confines of the treatments i n c l u d e d i n t h i s part of the study, i t appears that many routes may l e a d to one u l t i m a t e s i z e and conformation of s k e l e t o n . I t would be necessary to i n c l u d e regimes such as constant , L t or constant fH t f o r longer periods of time to t e s t the u n i v e r s a l i t y o f ' t h i s statement, but from the l i m i t e d number of regimes s t u d i e d here, i t appears that the u l t i m a t e growth and development of a deer w i l l not be l i m i t e d by i t s s k e l e t o n . The v a r i a t i o n s i n conformation at e a r l i e r ages which r e s u l t from changes i n r e l a t i v e r a t e s of growth must be erased by a r e l a t i v e pro-l o n g i n g of the growing phase of those dimensions p r e v i o u s l y most r e s t r i c t e d . The ex i s t e n c e of such a mechanism i s supported by the work of McCay et a l (1935; 1939) on r a t s and by many other workers on domestic stock. In t h e i r review paper on compensatory growth, Wilson and Osbourn (i960) do not s i n g l e out the s k e l e t o n , but i n d i c a t e t h a t there i s a tendency f o r compensation t o le a d toward the conformation and s i z e of an u n r e s t r i c t e d animal i n a wide v a r i e t y of sp e c i e s . I f i t can be assumed th a t s i z e and form have sur-v i v a l value, and t h a t s e l e c t i v e pressures favor a s i n g l e conformation i n deer, then the s t r i v i n g toward a normal form w i l l be of advantage t o the deer i n t h a t unusual i r r e g u l a r f l u c t u a t i o n s i n d i e t a r y energy w i l l not leave the animal stunted or deformed to a point t h a t would leave i t at a d i s a d -vantage . V I I I . The Dimensions of Fore Cannons C o l l e c t e d from Hunter-K i l l e d Fawns i n 1966 and 1967-A l i s t of the fore cannons t h a t were c o l l e c t e d was given i n Table 6. The purpose of t h i s c o l l e c t i o n was to demonstrate the amount of v a r i a b i l i t y to be found i n the 4 dimensions measured on t h i s bone; i . e . , l e n g t h , maximum breadth toward the d i s t a l end, maximum breadth toward the proximal end, and minimum breadth of the d i a p h y s i s . In a d d i t i o n , a comparison 205 was made to determine i f a difference could be detected between the years i n any of the measurements. The measure-ments from these bones are shown i n Table 68. Because the samples were c o l l e c t e d over a period of 21 days, the dependence of size on time was tested f o r each dimension i n each of the three categories (1966 males, 1967 males and 1967 females). In each case the slope of the regression l i n e (Steel and T o r r i e , I960, Chp. 9) was not s i g n i f i c a n t l y d i f f e r e n t from zero (p = 0.90) and therefore a l l data i n each category were grouped f o r a n a l y s i s . The lack of growth over these three weeks i s reasonable when one considers that a very low plane of n u t r i t i o n was indicated f o r t h i s period by the measurements taken from entire carcasses at 175 days. The above c a l c u l a t i o n s did not prove that growth had ceased completely i n these dimensions, but simply that changes caused by growth were smaller than could be detected within the v a r i a b i l i t y i n the population. Using the grouped data, no differences were detected using student fs t te s t (Steel and T o r r i e , I960, Chp. 5) for any of the 4 dimensions between males i n 1966 and 1967 or between males i n 1967 and females i n 1967 (p = 0.90). The lack of difference between the males and females lends support to the view taken e a r l i e r that there are not any important s k e l e t a l differences between the sexes, vat moderate n u t r i t i o n a l l e v e l s , by the age of 6 months and that male and female laboratory standards may be grouped. E x 2 N X x 2 E x 2 N S 2 S Sx t S x (p = 0.95) 1966 f c l 1 232.8157 15.258 2800.0031 233.3333 0.517 0.719 0.208 0.457 f e d 2 7.8165 2.796 94.0739 7.8395 0.023 0.152 0.044 0.097 n = 12 f c p 3 7. H67 2.673 86.0637 7.1720 0.025 0.159 0.046 0.101 fem 4 1.6555 1.287 19.9630 1.6636 0.008 0.090 0.026 0.057 1967 f c l 219.8631 14.828 3964.5019 220.2501 0.387 0.622 0.147 0.309 fed 7.3682 2.714 133.0037 7.3891 0.021 0.145 0.034 0.072 n = 18 fcp 6.6078 2.571 119.3630 6.6313 0.024 0.153 0.036 0.076 fcra 1.5653 1.251 28.2939 1.5719 0.007 0.081 0.019 0.040 1967 f c l 216.8256 14.725 1738.6180 217.3272 0 .502 0.708 0.250 0.592 fed 6.9696 2.640 55.9873 6.9984 0.029 0.170 0.060 0.142 n = 8 fcp 6.1939 2.439 49 .6884 6.2111 0.017 0.131 0.046 0.110 fem I . 4 8 8 4 1 .220 12.0058 1.5007 0.012 0.111 0.039 0.093 = 0.975, v = 11 = 2 - 2 0 1 tp = 0.975, v = 17 = 2.110 t P = 0.975, v = 7 = 2 ' 3 6 5 1 Fore.cannon le n g t h 2 Fore cannon breadth near d i s t a l end 3 Fore cannon breadth near proximal end 4 Fore cannon minimum breadth at d i a p h y s i s A c l o s e r examination of the measurements of the cannons from males i n 1966 and 1967 i n d i c a t e s t h a t there may be some r e a l d i f f e r e n c e s between the two years t h a t were masked by an examination of the means of the measurements. The frequency d i s t r i b u t i o n s of measurements i n Figure 59 give an i n d i c a t i o n t h a t there i s not a normal d i s t r i b u t i o n and t h a t there i s a change i n the shape of the d i s t r i b u t i o n of measurements between the two years. There i s o n l y a s l i g h t tendency f o r a s h i f t o f the modes, being one i n t e r v a l or l e s s i n each case, but the d i s t r i b u t i o n of p o i n t s about the mode shows a downward s h i f t i n 1967. T h i s s h i f t i n c r e a s e s i n magnitude along the gradient from l e n g t h to d i s t a l width, t o proximal width, t o minimum width. In s p i t e o f the very l i m i t e d amount of data used t o e s t a b l i s h the d i s t r i b u t i o n o f measurements, and t h e r e f o r e the l a c k of confidence i n the a c t u a l shape, the tendency f o r the s h i f t to f o l l o w a p a t t e r n t h a t would be p r e d i c t e d by a c o n s i d e r a t i o n of the growth g r a d i e n t lends support to the e x i s t e n c e of the s h i f t . Furthermore, t h a t the g r e a t e s t e f f e c t occurs i n the l a t e s t maturing dimension l a b e l s the causative agent as a l a t e o c c u r r i n g energy r e s t r i c t i o n . The suggestion would be t h a t d u r i n g the autumn of 1967, the n u t r i t i v e q u a l i t y of the v e g e t a t i o n began to decrease e a r l i e r or w i t h g r e a t e r s e v e r i t y than i n 1966. I t i s important to emphasize here that the modes d i d not s h i f t markedly between the two years. That i s , the s k e l e t a l 208 Figure 59 The Frequency D i s t r i b u t i o n by I n t e r v a l o f the Fore Cannon Measurements From H u n t e r - K i l l e d Male Fawns i n 1966 . and 1967. 210 dimensions i n d i c a t e that many of the fawns i n 1966 and i n 1967 r e c e i v e d equal n u t r i t i o n . E v i d e n t l y , the f a c t o r which caused the d i f f e r e n c e between the years d i d not a f f e c t a l l parts of the range e q u a l l y , and the deer, because of t h e i r wide d i s t r i b u t i o n over the range, would not have been a f f e c t e d e q u a l l y . The s k e l e t a l dimensions cannot be used to give a d i r e c t estimate o f t o t a l energy i n t a k e because the l a b o r a t o r y standards are developed f o r 112 and 175 days onl y . However, sin c e no measureable growth was i n d i c a t e d between 142 and 175 days, the p r o j e c t e d energy i n t a k e s can be c a l c u l a t e d f o r these animals at 175 days. I f the assumption i s made t h a t the energy i n t a k e at t h i s time i s very near maintenance l e v e l s , at the average body weight of 55 pounds, the t o t a l energy i n t a k e estimated f o r 175 days can be c o r r e c t e d by reducing i t be about 19,760 C a l o r i e s f o r 162 days and by about 50,160 C a l o r i e s f o r 142 days ( a l l o w i n g 2.0 x B.H.P. f o r maintenance). Rather than t r y to estimate these c o r r e c t i o n s f o r the v a r i o u s body weights, the succeeding f i g u r e s w i l l assume that a l l of the fawns were 175 days o l d when k i l l e d . By doing t h i s , an approximation can be made concerning the d i v e r s i t y of energy l e v e l s experienced i n the d i e t s of the w i l d fawns. The energy i n t a k e f i g u r e s i n Table 69 are based on averages of the i n t e r c e p t s of the fo u r measurements per bone f o r each animal. These estimates are based s t r i c t l y on the 211 Table 69. T o t a l energy i n t a k e s of fawns based on measurements of the fore cannon. Table 69 a) The energy i n t a k e s f o r w i l d fawns i n 1966 and 1967. 1966 Males Minimum x - t s . 1967 Males x + t s_ X ^maximum 228,000 282,000 323,000 364,000 443,000 C a l o r i e s xminimum x - t s - x + t s -X maximum 207,000 262,000 290,000 318,000 373,000 C a l o r i e s Where x = mean E.I. based on 4 i n t e r c e p t s from the fore cannon, Table 69 b) A comparison between the energy i n t a k e estimated from the fore cannon w i t h t r u e energy i n t a k e f o r l a b o r a t o r y fawns. No. Regime True Energy Intake Estimated Energy Intake V 8 MHL 283,385 C a l o r i e s 276,000 C a l o r i e s V26 HML 208,172 283,000 U 7 MHM 4 4 5 , 4 1 2 4 3 1,000 V 2 4 " LHM 337,796 3 2 9,000 Y13 MHM 376,855 386,000 212 Table 69 c) A comparison between the energy i n t a k e estimated from the fore cannon w i t h the best energy i n t a k e estimated from a l l a v a i l a b l e measurements f o r w i l d fawns. No. Energy Intake A l l Measurements Energy Intake, Fore Cannons WF 1 3 1 0 , 0 0 0 C a l o r i e s 3 2 6 , 0 0 0 C a l o r i e s WF 2 320,000 3 6 0 , 0 0 0 Y F 3 8 3 2 0 , 0 0 0 350,000 YF37 2 6 5 , 0 0 0 251,000 averages of the energy i n t e r c e p t s taken from F i g u r e s 35 and 36 and are not n e c e s s a r i l y the true energy i n t a k e s . I t must be remembered t h a t f o r each magnitude o f a p a r t i c u l a r dimension there i s a range o f p e r m i s s i b l e energy i n t a k e s and t h a t the v a r i a t i o n s are not randomly d i s t r i b u t e d about the tr u e energy i n t a k e . Rather, they are an expression of the p a t t e r n of energy i n t a k e , and on c e r t a i n regimes may l e a d t o an estimate o f t o t a l energy i n t a k e t h a t i s as much as 50,000 C a l o r i e s above or below the t r u e l e v e l . From only the f o u r measurements o f the cannon i t i s not p o s s i b l e to make a good estimate o f the p a t t e r n o f energy i n t a k e , — even w i t h an e n t i r e s k e l e t o n i t i s d i f f i c u l t , — but as mentioned e a r l i e r , there appears t o have been a l a t e o c c u r r i n g r e s t r i c t i o n of d i e t a r y energy. I n the l a b o r a t o r y standards showing a decreasing n u t r i t i o n a l l e v e l w i t h time, the energy i n t a k e s estimated from the cannon measurements were cl o s e to the t r u e energy i n t a k e s (Table 69 b ) . With w i l d fawns f o r which e n t i r e s k e l e t o n s were a v a i l a b l e , the energy i n t a k e s estimated by the cannons alone d i d not d i f f e r much from those accepted as tr u e energy i n t a k e based on a l l measurements (Table 69 c ) . On energy regimes t h a t are most probably i n the w i l d , the cannon dimensions should give e q u a l l y good estimates of energy i n t a k e , and the estimates should be w i t h i n t 30,000 C a l o r i e s . Although the examination of the s k e l e t a l measurements has already demonstrated that there i s a d i v e r s i t y i n the 214 growth of w i l d fawns, i t i s not u n t i l these measurements are expressed as energy i n t a k e s t h a t the magnitude o f the d i f f e r e n c e s becomes apparent. Some fawns must be r e c e i v i n g at l e a s t 150% of the energy l e v e l experienced by the most r e s t r i c t e d fawns. This again emphasizes the importance o f examining the animal and i t s r e l a t i o n s h i p t o i t s range on an i n d i v i d u a l l e v e l because i t i s the d i f f e r e n c e s among the members of the p o p u l a t i o n t h a t define the b i o l o g i c a l c h a r a c t e r i s t i c s of the p o p u l a t i o n . Summary and Conclusions. The f i n d i n g s of t h i s work, summarized i n the f o l l o w i n g pages, have demonstrated t h a t the l e v e l of energy int a k e and the p a t t e r n i n which i t i s a v a i l a b l e can a l t e r s k e l e t a l development i n young fawns, and that s k e l e t a l development i n t u r n can r e f l e c t the energy regime. Body weight a l s o provides an estimate o f energy i n t a k e , and when used i n co n j u n c t i o n w i t h s k e l e t a l dimensions can l e a d to an improved i s o l a t i o n of the p a t t e r n o f energy i n t a k e . 1. Live body weight c o r r e l a t e d w e l l w i t h t o t a l energy i n t a k e f o r l a b o r a t o r y fawns at 49, 112, 175 and 322 days, but the p r e d i c t i v e value decreased w i t h age. The r e l a t i o n -s h i p was shown t o be d i s r u p t e d i n animals which had 215 undergone weight l o s s . 2. L i n e a r measurements of the s k e l e t o n each provided an estimate of energy i n t a k e , but were demonstrated t o be biased away from the tr u e energy i n t a k e according t o the i n f l u e n c e of the energy regime. 3. S k e l e t a l elements i n v a r i o u s p a r t s o f the body responded d i f f e r e n t l y t o any p a r t i c u l a r energy regime, and t h i s d i f f e r e n c e was shown to be r e l a t e d to a x i a l growth g r a d i e n t s . 4. I f the estimate of t o t a l energy i n t a k e from each s k e l e t a l dimension i s given as a range which encompasses a l l p o s s i b l e energy regimes, then an estimate can be made based on an a r r a y o f measurements which i s l e s s biased from the t r u e energy i n t a k e than would be the average of the i n d i v i d u a l estimates from these same measurements. By the e x c l u s i o n of those p o r t i o n s of the energy range not common to a l l estimates, a b e t t e r approximation to the t r u e energy i n t a k e was shown f o r the l a b o r a t o r y fawns, and the l i m i t s about t h i s mean were reduced. 5. The d i f f e r e n t i a l growth of the s k e l e t o n provided a means of determining the energy regime t o 112 days by two i n t e r v a l s ; 0 - 4 9 days and 50 - 112 days, w i t h an examination of the s k e l e t o n o f the fawn at 112 days. By the nature of the method employed, t o t a l energy i n t a k e i s expressed as a p r e c i s e value, but energy regimes are expressed i n terms of wider c a t e g o r i e s of adequacy defined as h i g h , medium or low planes of n u t r i t i o n . These c a t e g o r i e s i n t u r n have p r e c i s e l i m i t s . 6. Although the t o t a l energy i n t a k e s o f fawns at 175 days could be estimated, the p a t t e r n of a v a i l a b i l i t y could not be s o l v e d . However, the number of p o s s i b l e regimes could be markedly reduced. The cause of the f a i l u r e t o provide a s o l u t i o n appeared to l i e i n the use of broad c a t e g o r i e s of energy l e v e l i n each i n t e r v a l , and not i n the f a i l u r e o f the growth of the s k e l e t o n t o respond to the energy regime. 7. By 322 days, d i f f e r e n c e s induced i n s k e l e t a l conformation at e a r l i e r ages were reduced w i t h a l l s k e l e t o n s tending toward a s i m i l a r conformation. Compensatory processes had so reduced the d i f f e r e n c e s t h a t an e v a l u a t i o n of energy regime was considered u n f e a s i b l e . 8. An examination of f o r e cannons from w i l d fawns at approximately 150 days i n d i c a t e d a wide range i n the l e v e l s of energy i n t a k e s . There was a suggestion of a d i f f e r e n c e i n the energy i n t a k e s between the years 1966 and 1967, although the sample s i z e was not s u f f i c i e n t l y 217 l a r g e to support t h i s o b s e r v a t i o n . The study of the s k e l e t a l growth o f deer fawns has accomplished i t s o b j e c t i v e o f e s t a b l i s h i n g the e x i s t e n c e o f an a x i a l gradient - energy i n t a k e i n t e r a c t i o n . The i n f o r -mation obtained from the l a b o r a t o r y reared fawns provides the b a s i s f o r i n t e r p r e t i n g the type of n u t r i t i o n a l regime which produced an observed s k e l e t a l conformation. Before a p p l y i n g the parameters f o r the e s t i m a t i o n o f energy i n t a k e t h a t were e s t a b l i s h e d w i t h the l a b o r a t o r y fawns to the e s t i m a t i o n of energy i n t a k e s of w i l d fawns, c o r r e c t i o n s must be made f o r d i f f e r e n c e s i n e a r l y p o s t - n a t a l n u t r i t i o n . There i s a l s o the problem of the use of i n t e r v a l s of n u t r i t i o n a l regimes i n the l a b o r a t o r y . Although t h i s method was necessary t o a l l o w adequate c o n t r o l over experimental v a r i a b l e s , i t must be understood t h a t adherence to these i n t e r v a l s cannot be expected from w i l d fawns. I t w i l l be necessary to c o l l e c t a s e r i e s of s k e l e t o n s from w i l d fawns l i v i n g i n areas of d i f f e r i n g n u t r i t i o n a l adequacy, or from one area duri n g years of d i f f e r i n g c o n d i t i o n s , i n order to e s t a b l i s h the magnitude of s k e l e t a l dimensions to be expected. Once t h i s i s done, i n t e r p r e t a t i o n can be by comparison as i n the case of the fo r e cannons from the w i l d fawns examined i n t h i s study. For a system f o r the e v a l u a t i o n of the energy regimes of 218 w i l d fawns t o be of g r e a t e s t value, i t should be conducted at a time when data i s most r e a d i l y a t t a i n e d . The hunting season a l l o w s the c o l l e c t i o n of s k e l e t a l p a r t s such as for e and hind cannons from fawns duri n g mid-November, or at about 150 days o f age. This date a l s o appears t o be a good time f o r i n t e r p r e t a t i o n of s k e l e t a l growth because the d i f f e r e n c e s caused by the n u t r i t i o n a l regimes are s t i l l r e a d i l y apparent. On the b a s i s o f the s k e l e t a l growth observed at the o l d e r ages, i t does not appear t h a t n u t r i t i o n a l regimes can be recognized much beyond 175 days. Even when l i m i t e d t o younger ages, however, the examination of fee d i n g regimes should be very v a l u a b l e , f o r i t i n d i c a t e s d i f f e r e n c e s o c c u r r i n g during the most c r i t i c a l growing p e r i o d o f the year. 219 L i t e r a t u r e C i t e d : Addison, R.B. 1965- S k e l e t a l development i n the B l a c k t a i l deer. M.Sc. Thesis, U n i v e r s i t y of B r i t i s h Columbia. Anderson, T.A., H.D. Fausch and J . Ge s l e r . 1965. The e f f e c t of r e s t r i c t e d access to feed on growth r a t e and body composition of swine. Growth 29: 213-218 A r c e l a y , C.L. 1963. The e f f e c t of v a r i a t i o n s i n the energy and p r o t e i n l e v e l s of the r a t i o n upon performance i n the p i g . Ph.D. Th e s i s , Pennsylvania State U n i v e r s i t y . Bandy, P.J. 1955. Studies of growth and n u t r i t i o n i n the Columbian B l a c k - t a i l e d deer. M.A. Thesis, U n i v e r s i t y of B r i t i s h Columbia. Bandy, P.J., I . McT. Cowan, W.D. K i t t s and A.J. Wood. 1956. A method f o r determining the n u t r i t i o n a l s t a t u s of w i l d ungulates. Can. J . Zo o l . 34'- 48-52. B l a x t e r , K.L. and N. McC. Graham. 1955. Methods of a s s e s s i n g the energy values of foods f o r ruminant animals. Proc. Nutr. Soc. 14: 131-139. B l a x t e r , K.L., N. McC. Graham and F.W. Wainman. 1956. Some observations on the d i g e s t i b i l i t y of food by sheep, and on r e l a t e d problems. B r i t . J . Nutr. 10(2): 69-91. Brody, S. 1945. B i o e n e r g e t i c s and growth. Reinhold, N.Y. Cheaturn, E.L. 1950. Bone marrow as an index of m a l n u t r i t i o n i n deer. N.Y. State Conserv. 3(5): 19-22. C h r i s t i a n , K.R. and V.J. W i l l i a m s . 1957. Rumen s t u d i e s i n sheep. IV. The rumen metabolism of f r e s h and d r i e d grass. New Z e a l . J . S c i . and Technol. 38: 1003-1010. Cowan, I . McT. 1945. The e c o l o g i c a l r e l a t i o n s h i p s of the food of the Columbian B l a c k - t a i l e d deer, Odocoileus hemionus  columbianus (Richardson), i n the coast f o r e s t r e g i o n of southern Vancouver I s l a n d , B r i t i s h Columbia. E c o l . Monogr. 15(2): 109-139. Cowan, I . McT. 1956. L i f e and times of the coast B l a c k - t a i l e d deer. p. 523-617 In W.P. T a y l o r (ed. ) The deer of North America. The Stackpole Company, H a r r i s b u r g , Penna. Czarrock, J . , I.R. S i b b a l d and E.V. Evans. 1961. The determi-n a t i o n of chromic oxide i n samples of feed. Can. J . Anim. S c i . 41: 167-179. 220 French, C.E., L.C. McEwen, M.D. Magruder, R.H. Ingram and R.W. Swift. 1956. Nutrient requirements f o r growth and a n t l e r development i n the White-tailed deer. J . W i l d l . Manage. 20(3): 221-232. Garrett, W.N., J.H. Meyer and G.P. Lofgreen. 1959. The comparative energy requirements of sheep and c a t t l e f o r maintenance and gain. J . Anim. S c i . 18: 5 2 8 - 5 4 7 . Gates, B.R. 1968. Deer food production i n cer t a i n s e r a i stages of the coast f o r e s t . M.Sc. Thesis, University of B r i t i s h Columbia. Hammond, J . 1932a. Growth and development of mutton q u a l i -t i e s i n the sheep. A survey of the problems involved i n meat production. O l i v e r and Boyd, Edinburgh and London. Hammond, J . 1932b. Pigs f o r pork and pigs f o r bacon. J . Royal Agr. Soc. 93: 1-15. Horwitz, W. (ed.) 1955. O f f i c i a l methods of ana l y s i s . 1 0 t h ed. Assoc. O f f i c . Agr. Chem., Washington, D.C. 957 p. Huxley, J . 1932. Problems of r e l a t i v e growth. Methuen, London. Jackson, CM. and L.G. Lowrey. 1912. On the r e l a t i v e growth of the component parts (head, trunk, and extremities) and systems (skin, skeleton, musculature, and viscera) of the albino r a t . Anat. Rec. 6: 449-474. K i t t s , W.D., I. McT. Cowan, J . Bandy, and A.J. Wood. 1956. The immediate post-natal growth i n the Columbian Black-t a i l e d deer i n r e l a t i o n to the composition of the milk of the doe. J. W i l d l . Manage. 20(3): 212-214. Kleiber, M. 1961. The f i r e of l i f e ; an introduction to animal energetics. John Wiley and Sons, Inc., N.Y. and London. 454.p. Klein , D.R. 1964. Range-related differences i n growth of deer r e f l e c t e d i n s k e l e t a l r a t i o s . J . Mammal. 45(2): 226-235-Leche, T.F. 1964. The influence of plane of n u t r i t i o n on the early growth of the Holstein c a l f . M.S.A. Thesis, University of B r i t i s h Columbia. Lloyd, L.E., H.F.M. J e f f e r s , E. Donefer and E.W. Crampton. 1961. E f f e c t of four maturity stages of timothy hay on i t s chemical composition, nutrient d i g e s t i b i l i t y and n u t r i t i v e value. J . Anim. S c i . 20: 468-473. . 221 McCay, CM., M.F. Crowell and L.A. Maynard. 1935. The e f f e c t of r e t a r d e d growth upon the length of l i f e span and upon the u l t i m a t e body s i z e . J . Nutr. 10: 63-79. McCay, CM., L.A. Maynard, G. S p e r l i n g and L.L. Barnes. 1939. Retarded growth, l i f e span, u l t i m a t e body s i z e , and age changes i n the a l b i n o r a t a f t e r f e eding d i e t s r e s t r i c t e d i n c a l o r i e s . J . Nutr. 18: 1-13. McMeekan, C.P. 1940. Growth and development i n the p i g , w i t h s p e c i a l reference to carcass q u a l i t y c h a r a c t e r s . I, I I , " I I I . J . Agr. S c i . 30: 276-344, 387-436, 511-569. M o r r i s o n , F.B. 1956. Feeds and f e e d i n g , a handbook f o r the student and stockman. 22 nd ed. Morrison Publ. Co., I t h a c a , N.Y. 1165 p. Moulton, C.R., R.C Trowbridge and L.D. Haid. 1921. Studies i n animal n u t r i t i o n . I . Changes i n form and weight on d i f f e r e n t planes of n u t r i t i o n . U n i v e r s i t y of M i s s o u r i Exp. St a. Res. B u l l . No. 43- H I p. Nordan, H.C., I . McT. Cowan and A.J. Wood. 1970. The feed i n t a k e and heat production of the young B l a c k - t a i l e d deer (Odocoileus hemionus columbianus). Can. J . Z o o l . 48(2): 275-282. O ^ e e f e , J . J . 1957. Dry matter i n t a k e during e a r l y phases of growth f o r subspecies of deer (Odocoileus hemionus)• M.A. T h e s i s , U n i v e r s i t y of B r i t i s h Columbia. Palsson, H. 1955- Progress i n the physiology of farm animals, I I . Butterworths, London. Palsson, H. and J.B. Verges. 1952. E f f e c t of the plane of n u t r i t i o n on the growth and development of carcass q u a l i t y i n lambs. Part I . The e f f e c t s of high and low planes at d i f f e r e n t ages. Part I I . E f f e c t of lambs of 30 pounds carcass weight. J . Agr. S c i . 42: 1-92, 93-149. Park, B.C. and B.B. Day. 1942. A s i m p l i f i e d method f o r determining the c o n d i t i o n of W h i t e - t a i l e d deer herds i n r e l a t i o n to a v a i l a b l e forage. U.S. Deo. Agr. Tech. B u l l . 840. • 60 p. 222 P r a t t , C.W.M. and R.A. McCance. 1964a. Severe under-n u t r i t i o n i n growing and adul t animals. 12. The e x t r e m i t i e s of the long bones i n p i g s . B r i t i s h J . Nutr. 19: 393-408. P r a t t , C.W.M. and R.A. McCance. 1964b. Severe under-n u t r i t i o n i n growing and ad u l t animals. 14• The sh a f t s of the long bones i n p i g s . B r i t i s h J . Nutr. 19: 613-624. Reid, J.T. 1961. Problems of feed e v a l u a t i o n r e l a t e d t o feed i n g d a i r y cows. J . D a i r y S c i . 44: 2122-2133. Riney, T. 1952. New Zealand w i l d l i f e problems and s t a t u s of w i l d l i f e r e s e a r c h . New Zealand S c i . Rev. 10(3): 26 - 3 2 . Robinson, D. 1957. P r e l i m i n a r y s t u d i e s upon the e f f e c t of logged over areas on q u a l i t y and s i z e of deer popu-l a t i o n s on Vancouver I s l a n d . Ann. meeting N.W. Sec. W i l d l . S o c , mimeo. Scammon, R.E. and L.A. C a l k i n s . 1929. The development and growth of the e x t e r n a l dimensions of the human body i n the f e t a l p e r i o d . U n i v e r s i t y of Minnesota Press, Minneapolis. 367 p. Schurch, A.F., L.E. Lloy d and E.W. Crampton. 1950. Chromic oxide determination of d i g e s t i b i l i t y . J . Nutr. 41(4): 629-636. Severinghaus, C.W. and R. G o t t l i e b . 1959. B i g deer vs. l i t t l e deer: food i s the key f a c t o r . N.Y. State Conserv. 14(2): 30-31. Smith, I . 1968. The e f f e c t of s e r a i succession and hunting upon Vancouver I s l a n d B l a c k - t a i l e d deer. M.Sc. Thesis, U n i v e r s i t y of B r i t i s h Columbia. 140 p. S t e e l , R.G.D. and. J.H. T o r r i e . I960. P r i n c i p l e s and pro-cedures of s t a t i s t i c s . McGraw-Hill Book Co. L t d . , Toronto. 48I p. Thompson, S i r D'Arcy W. 1917 (r e p r . 1942). On growth and form. Cambridge U n i v e r s i t y Press. 1116 p. Underwood, E.J. 1962. Trace elements i n human and animal n u t r i t i o n . Academic Press Inc., N.Y. and London. 429 p. 223 United S t a t e s N a t i o n a l Academy of Sciences. 1963. N u t r i e n t requirements of sheep. Publ. No. 1193. Washington, D.C. Walker, D.M. and G.J. Faichney. 1964. N u t r i t i o n a l d i a r r h o e a i n the milk fed lamb and i t s r e l a t i o n to the i n t a k e of sugar. B r i t i s h J . Nutr. 19: 209-216. Walnut, T.H. 1967. A mathematical a n a l y s i s of the changes i n the s i z e and shape of bones during growth. Growth 31(3): 191-217. Wardrop, I.D. 1966. The e f f e c t s of plane of n u t r i t i o n i n e a r l y p o s t - n a t a l l i f e on the subsequent growth and development of c a t t l e . A u s t r a l i a n J . Agr. Res. 17(3): 375-384. Wilson, P.N. and D.F. Osbourn. I960. Compensatory growth a f t e r u n d e r n u t r i t i o n i n mammals and b i r d s . B i o l . Rev. 35: 324-361. Winchester, C.F. and P.E. Hov/e. 1955. R e l a t i v e e f f e c t s of continuous and i n t e r r u p t e d growth on beef s t e e r s . U.S. Dep. Agr. Tech. B u l l . No. 1108. Wood, A.J., H.C. Nordan and I . McT. Cowan. 1961. The care and management of w i l d ungulates f o r experimental purposes. J . W i l d l . Manage. 25: 295-302. APPENDIX Diagrams of the Skeleton of the Deer, with the Measurements Used i n t h i s Experiment FORE-CANNON: Right Leg post. ULNA-RADIUS: Right Leg HUMERUS: Right Leg HIND-CANNON: Right Leg TIBIA: Right Leg SCAPULA: Right Leg A n t e r i o r View FEMUR: Right Leg PELVIS Dorsal View ATLAS Right Side V e n t r a l View Dorsal View Right Side D o r s a l View < . . THORACIC VERTEBRAE T 10 Dorsal View LUMBAR VERTEBRAE L 5 L 3 L I Right Side anterior V e n t r a l View Dorsal View 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0093361/manifest

Comment

Related Items