Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Revision of the cottid genus Gymnocanthus, with a description of their osteology Wilson, Donald Edward 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A6_7 W54.pdf [ 11.24MB ]
Metadata
JSON: 831-1.0093237.json
JSON-LD: 831-1.0093237-ld.json
RDF/XML (Pretty): 831-1.0093237-rdf.xml
RDF/JSON: 831-1.0093237-rdf.json
Turtle: 831-1.0093237-turtle.txt
N-Triples: 831-1.0093237-rdf-ntriples.txt
Original Record: 831-1.0093237-source.json
Full Text
831-1.0093237-fulltext.txt
Citation
831-1.0093237.ris

Full Text

c- / Revision of the Cottid Genus Gymnocarithus, with a Description of their Osteology. *y Donald Edward Wilson B.Sc. University of British Columbia, 1970 A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Department of Zoology We accept this thesis as conforming to the required standard The University of British Columbia November, 1973 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Co lumb ia , I a g ree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s tudy . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d tha t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i thout my w r i t t e n p e r m i s s i o n . Department o f The U n i v e r s i t y o f B r i t i s h Co lumbia Vancouver 8, Canada Date ABSTRACT Gymnocanthus is a cottid genus containing six species which inhabit the North Pacific, Arctic, and North Atlantic Oceans. The genus is charact-erized by edentulous palatines and prevomer, granulations on the nape, scales restricted to axillary prickles, and an elongate, multicusped pre-opercular spine. S i x species (Gymnocanthus detrisus, galeatus, herzen- steini, intermedius , pistilliger , and tricuspis) are recognized. These are identified by their different meristic characters, interorbital width, or cleithral spine development, presenceAabsence of subpectoral dermal pis-tillae in males, and other features. No subspecies are recognized. Synonymies, descriptions, colour, maximum size, etymology, and range are given for each species. The key, used in conjunction with diagrams showing several diagnostic characters is useful for identifying specimens to at least 60 mm. Though some morphometric characters (head length, inter-orbital width and others) are significantly different between some species because of their great variability they are seldom taxonomically useful. ' Superimposed on this variability is strongly developed sexual dimorphism, males possessing significantly longer dorsal and pelvic fins than females. Other sexually dimorphic characters include the roughening of the inner edge of the pectoral rays, the brighter colours, and the penis in males of a l l species, and the axillary pistils in males of Gymnocanthus pistilliger and G_. intermedius. Though its systematic position is obscure, Gymnocanthus probably arose in the Aleutian Islands , dispersing westward by planktonic i i larvae, and eastward "by migration along the shallow Aleutian shelf. Gymnocanthus evolved in two directions, one forming a group of three smaller species (G. tricuspis, p i s t i l l i g e r , and intermedius) showing great sexual dimorphism and low meristic characters, the other, a group of larger species (G_. galeatus, detrisus, and herzensteini) with lesser developed dimorphism and high meristic characters. Possible origins for the two lines are discussed. For lack of comparative information, the systematic position of Gymnocanthus within the family Cottidae is not examined in the present paper. To f a c i l i t a t e future intergeneric comparative studies, the ost-eology and cephalic lateral line system is described for the genus. No profound osteological differences between species exist; superficial differences between species reflect those diagnostic specific d i f -ferences ( i.e. interorbital width, head length) previously noted. Pore number and distribution in the cephalic late r a l line system tend to differ between species, but are too variable to be of taxonomic use. Breeding seasons are inferred from presence of young and from gonad maturity. G_. herzensteini is a winter breeder, G_. galeatus and G. p i s t i l l i g e r breed in spring, while G. tricuspis breeds in late summer. Data are not available for G_. detrisus and G_. intermedius. In three species examined (G_. tricuspis, galeatus, and p i s t i l l i g e r ) fish l i v e to four years or more. Females grow more quickly than males, especially after two years. G. tricuspis has a wider salin i t y range and lower temperature tolerance than have the other species, permitting i t to survive in i i i A r c t ic waters. Ecological separation of the remaining species i s not so c l e a r , though G. p i s t i l l i g e r and G. intermedius seem to inhabit shallower water as adults than do G_. galeatus and G_. herzenstein. iv TABLE OF CONTENTS Page Abstract i Table of Contents iv List of Figures vl List of Tables x Acknowledgments xi Introduction 1 Methods and Materials 5 Graphs 11 Descriptions of Gymnocanthus Species 11 Synonymy of the genus Gymnocanthus 13 Diagnosis of the genus Gymnocanthus lh Generic description lU Range 15 Etymology 16 Osteology 16 Neurocranium 16 Branchiocranium ,V.,i, 22 Orbital series 25 Pectoral and pelvic girdle 26 Suspensorium 28 Axial skeleton 32 Internal Anatomy 3k Cephalic Lateral Line System 35 Specific Descriptions Gymnocanthus herzensteini Jordan and Starks 39 Gymnocanthus detrisus Gilbert and Burke 1*9 Gymnocanthus intermedius (.Temminck and Schlegel) 59 Gymnocanthus pistilliger (Pallas) 69 Gymnocanthus galeatus (Bean) 8U Gymnocanthus tricuspis (Reinhardt) , 96 V Page Key to the Species of Gymnocanthus 12k Diagnostic Characters 129 Meristic Variation 132 Morphometric Variation lk8 Breeding 192 Sexual Dimorphism 19^ Distribution 195 Phylogeny 197 Summary 205 Conclusions 208 References Cited 210 vi LIST OF FIGURES Figure Page 1. Hubbs and Hubbs (1953) method of graphical analysis 11 2". Cephalic lateral line system 38 3. Distribution of Gymnocanthus herzensteini U8 U. Distribution of Gymnocanthus detrisus 58 5. Distribution of Gymnocanthus intermedius 68 6. Distribution of Gymnocanthus pistilliger 83 ,7. Distribution of Gymnocanthus galeatus 95 8. Distribution of Gymnocanthus tricuspis 123 9. G. pistilliger lateral view 127 10. G. intermedius lateral view 127 11. G. tricuspis lateral view 127 12. G. galeatus lateral view 127 13. G. herzensteini lateral view 128 lU. G. pistilliger pistillae 128 15. G. intermedius pistillae 128 16. G. herzensteini cross section 128 17. G. galeatus cross section 128 18. Range and variability of vertebral counts 135 19. Range and variability of combined fin counts 135 20. Spinous dorsal spine counts 136 21. Soft dorsal ray counts 136 22. Anal ray counts 137 23. Pectoral ray counts 137 v i i 2k. Distribution of total fin counts 138 25. Distribution of vertebral counts 139 26. Distribution of spinous dorsal fin counts lUo 27. Distribution of soft dorsal fin counts lU l 28. Distribution of anal ray counts lk2 29. Distribution of pectoral fin ray counts lk3 30. Gymnocanthus pistilliger fin counts ikk 31. Gymnocanthus tricuspis fin counts 1^5 32. Gymnocanthus tricuspis total fin counts for different collection regions • lU6 33. Distribution of cusp counts ikj 3k. G. intermedius. Interorbital versus head length 151 35. G. herzensteini. Interorbital versus head length 151 36. G. pistilliger. Interorbital versus head length 152 37. G. detrisus. Interorbital versus head length 152 38. G. galeatus. Interorbital versus head length 152 39. G. tricuspis. Interorbital versus head length 152 kO. G. herzensteini. Head length versus standard length 15k kl. G. detrisus. Head length versus standard length 155 k2. G. intermedius• Head length versus standard length 156 k3. (J. pistilliger. Head length versus standard length 157 kk. G_. galeatus. Head length versus standard length 158 1*5. G_. tricuspis. Head length versus standard length 159 k6. G. herzensteini. Predorsal length versus standard length .... 160 1+7. G. detrisus • Predorsal length versus standard length l 6 l kQ. G. intermedius. Predorsal length versus standard length 162 v i i i 1+9. G. pistilliger. Predorsal length versus standard length ...... 163 50. G. galeatus. Predorsal length versus standard length l6k 51. G. tricuspis. Predorsal length versus standard length 165 52. G. intermedius. Snout length versus head length 166 53. G. herzensteini. Snout length versus head length 166 54. G. Pistilliger. Snout length versus head length 167 55. G. detrisus. Snout length versus head length 167 56. G. galeatus. Snout length versus head length 167 57. G. tricuspis. Snout length versus head length 167 58. Spinous dorsal length versus SL. Males only 170 59. Soft dorsal length versus SL. Males only 170 60. Pelvic fin length versus SL. Males only 170 61. G. herzensteini. Spinous dorsal height versus standard length, males and females 171 62. G. detrisus. Spinous dorsal height versus standard length, males and females 172 63. G. intermedius. Spinous dorsal height versus standard length, males and females 173 6k. G. pistilliger. Spinous dorsal height versus standard length, males and females 17 ^ 65. G. galeatus. Spinous dorsal height versus standard length, males and females 175 66. G_. tricuspis. Spinous dorsal height versus standard length, males and females I76 67. G. herzensteini. Soft dorsal height versus standard length, males and females 177 68. G. detrisus. Soft dorsal height versus standard length, males and females 178 69. G. intermedius. Soft dorsal height versus standard length, males and females 179 ix 70. G_. pistilliger. Soft dorsal height versus standard length, -males and females IdO 71. G. galeatus. Soft dorsal height versus standard length, males and females 181 72. G. tricuspis. Soft dorsal height versus standard length, males and females 182 73. G. herzensteini. Pelvic fin length versus standard length. Males and females 183 jh. G. detrisus. Pelvic fin length versus standard length. Males and females 18U 75. G_. intermedius. Pelvic fin length versus standard length. Males and females 185 76. G. pistilliger. Pelvic fin length versus standard length. Males and females 186 77* G. galeatus. Pelvic fin length versus standard length. Males and females 187 78. G. tricuspis. Pelvic fin length versus standard length. Males and: females 188 79- G_. intermedius. Pectoral fin length versus standard length. Males and females 188 80. Histogram of length-frequency data for Gymnocanthus galeatus• 190 81. Length-frequency histogram for Gymnocanthus pistilliger 191 82. North Pacific Oceanic Surface circulation pattern 199 83. Hypothetical evolution of the species of Gymnocanthus 203 X LIST OF TABLES Table Page 1. Covariance matrix for interorbital width versus head length .... 151 2. Covariance matrix for head versus standard length 153 3. Covariance matrix for first predorsal versus standard length ... 153 k. Covariance matrix for snout versus head length 166 5. Pectoral fin length versus standard length (Males only; double log transformed) • 168 6. Pelvic fin length versus standard length (Males only; double log transformed) 168 7. Spinous dorsal height versus standard length (Males only; double log transformed) 168 8. Soft dorsal height versus standard length. (Males only; double log transformed) 169 9. Covariance matrix between males and females for five log transformed morphometric characters 169 xi ACKNOWLEDGMENTS During the course of this study, several people and institutions have given much assistance, without which the project could not have been undertaken. I gratefully acknowledge the help given by the following: Doctors D. W. Hagen of the University of Washington, D. E. McAllister of the National Museum of Canada, W. N. Eschmeyer of the California Academy of Sciences, and Shun Okada of the Laboratory of Marine Zoology, Hokkaido University who made specimens under their care available to me for study. Mr. H. A. KLuge, W. R. Sjolund, and Miss A. Y. Fedorenko who assisted in translating pertinent literature. Doctors H. D. Fisher, A. G. Lewis, N. R. Liley, and J. D. McPhai'l who provided many useful suggestions during the writing of the manuscript. Special thanks are due Dr. Norman J. Wilimovsky who originally proposed the problem, gave freely of his time, recommendations, and criticisms, and who made his personal library f u l l y available to me. This research was supported by the National Research Council through Dr. Wilimovsky's grant (NRC 6 7 - 6 0 8 0 ) and a National Research Council Postgraduate Scholarship ( 1 5 6 0 ) . Introduction In terms of numbers of species and individuals the scorpaeniform fishes are one tiff the dominant groups in the North Pacific Ocean. One family, the Cottidae, as defined by Bolin (19^7) , contains many genera indigenous to the North Pacific. Among these genera is the genus Gymnocanthus, in which this author recognizes at least six valid species Gymnocanthus detrisus, G. tricuspis, G. galeatus, G. herzensteini, G. pistilliger, and G. intermedius. These species share the following characteristics: edentulous palatines and prevomer; bony granulations on the nape; four strong, straight preopercular spines, the first long and cusped; scales reduced to a patch of subpectoral prickles; pelvics with one spine and three rays; g i l l membranes free from isthmus; and lateral line of bony cylindrical ossicles. Species definitions range from the typological species concept of early taxonomists (such as those from Linnaeus to Darwin) in which the species is defined morphologically to the "biological species" concept (Mayr, 19^3) in which species are considered reproductively isolated and ecologically distinct. In practice, the two examples cited are usually synonymous in that morphological modifications distinguishing species reflect ecological adaptations. As for many other experimental-ly inaccessible animals, a typological species approach has been adopted in this revision. Where sympatry and morphological distinctness are observed for species pairs within Gymnocanthus reproductive isolation is implied. The taxonomy of Gymnocanthus has long been confused due to the wide geographic range and morphological variability of species in the genus. 2 The taxonomic history of Gymnocanthus began in 1811 when Pallas described Cottus p i s t i l l i g e r ( - Gymnocanthus p i s t i l l i g e r ) from Kamchatka. In 1838 Reinhardt described Cottus tricuspis ( = G_. tricuspis). These two species have been identified with each other since that time, and with various of the other four species as they were subsequently described. Gymnocanthus tricuspis has probably contributed more to the uncertainty than any other species i n the genus. This species is circumpolar, extending into the north Bering Sea and northwest Atlantic. While several characters such as relative head length and meristic formula for this species remain constant, other features like the granulation distribution and interorbital width vary tremendously (though c l i n a l l y ) over this range. Other species originally character-ized by wide interorbitals and a peculiar distribution of granulations (G_. detrisus and G_. galeatus respectively) may resemble G. tricuspis in these features in some parts of i t s range and have, as a consequence frequently been identified with i t , as well as with each other. Contributing to this confusion were the limited f a c i l i t i e s in the l800's for exchange and comparative study of ichthyological collections. For example, G. tricuspis was identified with G. p i s t i l l i g e r as early as 1865 (Malmgren, I865), a mistake which was perpetuated by later authors who evidently never saw true G^ p i s t i l l i g e r and depended too heavily on erroneous earlier literature. G_. p i s t i l l i g e r closely resembles G_. intermedius': and has been continually confused with that species as well. Consequently, even very recent literature (McAllister, i960) sometimes l i s t s the Pacific species as coming from the Arctic Ocean. 3 The f i r s t serious attempt to revise the genus was made by Schmidt (1929) who worked with inadequate numbers of specimens and was unable to describe the extent of v a r i a t i o n which may be encountered. G. galeatus was keyed but not described at a l l . Since then no further revisions have been attempted, old errors of i d e n t i f i c a t i o n remain uncorrected, and new errors are made. Most keys to the genus (Schmidt, 1950; Soldatov and Lindberg, 1930) have likewise suffered from a lack of appreciation of va r i a t i o n within species and diagnostic characters between species. Gymnocanthus p i s t i l l i g e r and G^ intermedius have t y p i c a l l y been distinguished from other species by the presence of subpectoral p i s t i l l a e i n males only. Secondly, morphometric d i f -ferences used i n keys have allowed neither for allometric growth nor the var i a t i o n i n adults. These two factors have severely l i m i t e d the usefulness of existing keys. Lately, with the increasing accumulation and a v a i l a b i l i t y of specimens from various research collections taken over the range of the genus (e.g., the Japanese collections of the Albatross expeditions, the 1961-1962 International P a c i f i c Halibut Commission collections i n the Alaskan Gulf, and a host of A r c t i c c o l lections) a comparative study of Gymnocanthus over i t s entire range has become possible. The purpose of t h i s paper i s to demonstrate the v a l i d i t y of the si x species recognized and to assign proper l a t i n names to them. In addition, an attempt i s made to describe the morphology, v a r i a t i o n and geographic d i s t r i b u t i o n of the s i x species, and to discuss the phylogeny and o r i g i n of the genus. This i s accomplished by examining large u numbers of specimens over the en t i r e range of Gymnocanthus, f i n d i n g n atural morphological groupings within these c o l l e c t i o n s , then r e f e r r i n g to type m a t e r i a l , o r i g i n a l d e s c r i p t i o n s , and c o l l e c t i o n records f<Sr i d e n t i f i c a t i o n and d i s t r i b u t i o n . Phylogeny i s postulated by grouping species according to the presence of characters u n l i k e l y to have ar i s e n independently i n the d i f f e r e n t species. To a i d future comparative research within the family Cottidae, the osteology and cephalic l a t e r a l l i n e system of the genus are described. 5 MATERIALS AND METHODS Measurements were made using either a 17 cm. or 33 cm. dia l caliper to .1 mm. precision. Fin counts of specimens were made while teasing the fins with a dissecting needle. Small specimens were bent dorsoventrally to splay the dorsal and anal fins to aid counting rays and spines. Specimens were examined either with the unaided eye or a binocular dissecting microscope. Counts and measurements are according to Hubbs and Lagler (19^7) with the following additions and exceptions: Suborbital stay length: refers to the distance from the posteriormost part of the orbit to the posterior end of the 3rd suborbital (=suborbital stay) Interpostorbital: refers to the distance between the bony orbit rims behind the postorbital tubercles. Snout-postorbital length: refers to the distance between the anteriormost t i p of the premaxillary to the posterior margin of the postorbital tubercle. Orbit depth: refers to the greatest vertical distance between the frontals and the suborbitals. Preopercular spine length: refers to the distance from the t i p of the second preopercular spine (after Sandercock and Wilimovsky, 1968). No broken spines were measured. Head width: refers to the width taken just anterior to the point of emergence of the f i r s t preopercular spine, which corresponds, to the maximum head width. 6 Head depth: refers to the vertical distance between the nape and the pelvic f i n base, which corresponds also to the maximum body depth. Preopercular spine cusps: a cusp is defined as a pointed prominence on the uppermost preopercular spine. Cusps are counted only on unbroken spines. Cusp height: refers to the distance from the t i p of the highest cusp to the ventral side of the spine below that cusp. Pectoral base: refers to the distance between the dorsal side of f i r s t pectoral ray origin to the ventral side of the last ray origin. Penis: refers to the distance from the penis base to i t s t i p . First predorsal distance: refers to the distance between the anterior-most premaxillary margin to the origin of the f i r s t dorsal spine. Second predorsal distance: refers to the distance between the anteriormost premaxillary margin to the origin of the f i r s t dorsal ray. Prepelvic distance: refers to the distance from the anteriormost margin of the premaxillary to the origin of the pelvic fins. PreanaJ. distance: refers to the distance from the anteriormost margin of the premaxillary to the origin of the f i r s t anal ray. SL: abbreviation for standard length. The cephalic sensory canal system was prepared by washing a preserved, fixed specimen in running water, then bleaching b r i e f l y 7 in 3-5% hydrogen peroxide under strong incandescent li g h t . A small (5 ml) hypodermic needle f i l l e d with India ink was slipped through one of the pores anteriorly into the thoracic late r a l l i n e . The ink was then injected into the lateral line system. Dermal staining from ink escaping through the pores may be avoided by running water over the specimen while injecting. The ink w i l l begin to penetrate various canals in the head. Head canals resistant to ink penetration may more easily be demonstrated by reinserting the needle through pores into i n k - f i l l e d canals close to the empty canals. Care must be taken not to press the needle through the canal wall subdermally, since the effect i s to broadly, permanently stain beneath the skin. Diagrams of the basic sensory canal system were drawn from injected specimens. When injecting, small pores and canals appear only tr a n s i t o r i l y , and were drawn as ink was being injected. Clearing and staining followed Taylor (1967) with the following modifications. In most specimens, flesh from the l e f t side was removed by making vertical s l i t s along the neural and haemal spines from the hypural plate to the neurocranium. Epipleural and pleural r i b integrity are maintained by sagittally cutting below and above them (anteriorly stopping short of the postcleithra). Cutting along the ventral midline of the abdomen. Viscera were removed before bleaching, clearing, and staining to permit greater penetration of the stain in the oc c i p i t a l -vertebral region. Bleaching was performed with about 3% hydrogen peroxide i n water, sometimes under a strong incandescent light. Glycerine solutions used were 35%, 50%, and 100%. The specimen was 8 l e f t in each, solution u n t i l i t sunk, or while in 35 % glycerine, u n t i l the aliz a r i n stopped leaching out of the specimen. While most of the skeleton was clearly defined in the undissected cleared and stained specimen, the branchial apparatus was obscured by other bones..This structure was dissected out of a Gymnocanthus galeatus and stained separately. Disarticulated skeletons were prepared from both frozen and preserved f i s h . In the latter case, only specimens that are well preserved (i.e., the skeleton i s not softened by acidic preservative) may be successfully used. Specimens to be reduced were eviscerated. To hasten reduction, large specimens were sometimes defleshed like those being cleared and stained. Fresh specimens were placed in 10 to hO times their volume of weak (about .1 %or less) KOH solution to which 1-2 cc. trypsin (BDH, trypsin from beef pancreas, 7.5 Anson units/ g.) was added. Preserved specimens were f i r s t washed in running water to remove a l l alcohol or formalin, then placed in the solution which was incubated at 35-^0°C. When the solution became cloudy (two days for fresh material, around 1 days for preserved) the supernatant was drained, and the remaining sludge was mixed with hot (50°C.) water. The cloudy solution and digestant-laden froth are discarded and the remaining sludge washed again. This last process is repeated u n t i l the hot water does not become cloudy. If any sludge remains or i f tissue is s t i l l attached to the bones, the entire process may be repeated with fresh enzyme and KOH solution. Otoliths were taken from fresh specimens caught east of Kodiak 9 Island, Alaska. A large blade was placed on the postorbital tubercles and drawn through the skull towards the f i r s t preopercular spine, opening the recessus sacculi and revealing the sacculiths, both of which were removed with forceps and placed in individually labelled glass v i a l s . The otoliths were i n i t i a l l y stored dry, but later had a small amount of water and trypsin added to them. After U8 hours, this solution was replaced by a 50 % solution of glycerine in water. After soaking in the glycerine-water for at least 7 days, the otoliths were placed in a bowl of 50 % glycerine and were obliquely illuminated from below by a high intensity lamp. Following Jessop (1972), hyaline zones were taken to be equivalent to annuli (for further discussion, see Van Oosten, 1929, and Hile, 191+1), and the age the number of hyaline zones. The otoliths were read through a Bausch and Lomb binocular dissection microscope at .7x power. A l l radiographs were made with a GE Model D-l X-ray machine, using 11 " X lU" Kodak type M-5^ Industrial X-ray film. X-ray operation, exposure times, developing and fixing follow Wilson ( MS')- Vertebrae were counted from and including the atlas to but excluding the hypural plate. Two fused central are counted as two rather than one vertebra. Most of the Gymnocanthus collections examined were borrowed from the Institute of Fisheries Ichthyology Museum (BC). Additional material was borrowed from the University of Washington (UW), California Academy of Sciences (CAS, IU, SU), and the National Museum of Canada (BMC). The Institute of Fisheries collection i s rich in Aleutian and 10 western American Arctic material. The majority of deepwater Aleutian specimens were collected during the International Pacific Halibut Commission cruises of I96I-63 (international Pacific Halibut Commission, 1961+) while the shallow water collections were made in I96I-63 by Garry I. McT. Cowan, A. Laurie, Alex Peden, F. Keith Sandercock, Norman J. Wilimovsky, and others. Arctic collections housed in the Institute were caught largely by Norman J. Wilimovsky on the MV William E. Ripley and Norman J. Wilimovsky and Dayton L. Alverson on the MV John 'N. 'Cobb in the cruises of 195^ and 1959 respectively. The University of Washington material is comprised mainly of Gymnocanthus tricuspis from the St. Lawrence Island - Norton Sound region which were collected in 19^9 by J. G. Ellson, Donald E. Powell, and Henry H. Hildebrand on the MV Deep Sea (Ellson et al., 1950). The California Academy of Sciences museum is the repository of much Albatross material, and consequently is rich in Asian material from the 1889-1891 and 1906 expeditions (Tanner, 1893; U. S. Bureau of Fisheries, 1907). The National Museum of Canada specimens borrowed were almost entirely from Canadian Arctic Archipelago, Hudson Bay, Labrador, and Gulf of St. Laurence waters. These were collected by the MV Salvelinus, MV Calanus, and others. In a l l , the author was able to examine 515 Gymnocarithus galeatus, 198U G. tricuspis, 196 G. p i s t i l l i g e r , lt3 G. detrisus, 28 G. ventral i s , and 11 G. herzensteini. 11 Graphs M e r i s t i c d a t a a r e g i v e n b o t h i n h i s t o g r a m s f o r v i s u a l c o m p a r i s o n o f s p e c i f i c m e r i s t i c d i f f e r e n c e s , and i n a d i a g r a m m a t i c f a s h i o n ( a f t e r Hubbs and Hubbs, 1953) t o p r e s e n t a s t a t i s t i c a l c o m p a r i s o n o f t h e d a t a . The c e n t e r v e r t i c a l l i n e i n t h e b a r g r a p h i n d i c a t e s t h e mean; t h e w i d t h o f t h e b l a c k b a r i s f o u r s t a n d a r d e r r o r u n i t s ; t h e w i d t h o f t h e open b a r ..I F 1 «g»WMTn . t iwMrWHirA^ " n nil ulaiiil ,IHI • • -F i g u r e 1 Hubbs and Hubbs (1953) method o f g r a p h i c a l a n a l y s i s . i s f o u r s t a n d a r d d e v i a t i o n u n i t s , and t h e h o r i z o n t a l l i n e shows t h e r ange o f t h e v a l u e s . The b a r s encompass 95*^6 %of t h e specimens and samples r e s p e c t i v e l y ( F i g u r e l ) . S e v e r a l m o r p h o m e t r i c c h a r a c t e r s v a r y i n g between s p e c i e s o r between sexes w i t h i n s p e c i e s have been p l o t t e d . N o n - s e x u a l l y d i m o r p h i c c h a r -a c t e r s , a r e p l o t t e d on l i n e a r a x e s , w h i l e s e x u a l l y d i m o r p h i c c h a r a c t e r s are p l o t t e d as l o g a r i t h m s t o e l i m i n a t e t h e e f f e c t o f a l l o m e t r y . D e s c r i p t i o n s o f Gymnocanthus s p e c i e s T h i s r e v i s i o n r e c o g n i z e s s i x s p e c i e s i n t h e genus Gymnocathus. N e i t h e r s u b g e n e r a n o r s u b s p e c i e s a r e r e c o g n i z e d . Reasons f o r r e j e c t i n g s u b s p e c i e s and s y n o n y m i z i n g some s p e c i e s a r e g i v e n i n t h e t e x t f o r each s p e c i e s . A g e n e r i c d e s c r i p t i o n i n c l u d i n g synonymy, m o r p h o l o g y , o s t e o l o g y , arid c e p h a l i c l a t e r a l l i n e p a t t e r n i s p r e s e n t e d f i r s t , f o l l o w e d by 12 descriptions of the individual species. A l l specific descriptions include a synonymy, morphometric, meristic, and colour (preserved, and where possible, live) descriptions, maximum size, etymology, range, and systematic notes. For each species, the specimens actually described, their size, collection data, and reference number are listed. Large collections (G. galeatus, up to lU9 specimens; G_. tricuspis, to 131; G_. pistilliger, to 99; G. detrisus, to 43; G_. intermedius, to 27; G_. herzensteini, to 11) were measured to provide morphometric data. The figure given first is the mean of these values, followed by the range in parentheses. Where sexual dimorphism occurs, the data are presented separately for males and females. The mode, range, and mean are given for meristic data. A l i s t of specimens examined, literature records and a map with representative collection localities indicating the range for each species follow the systematic notes. Numbers at the collection points refer to the literature records or l i s t of specimens examined for that species. The taxonomic section begins with a synonymy for the genus Gymnocanthus. 13 Genus Gymnocanthus Swainson Cottus: - Reinhardt, 1838: 117 (type species Cottus gobio of Fabricius in Fabricius, 1780:159; Cottus tricuspis by subsequent designation, Reinhardt, l838i) Gymnocanthus: - Swainson, 1839:271 (type-species Cottus ventralis Cuvier and Valenciennes in Cuvier and Valenciennes, 1829: 19k.). Phobetor: - Kroyer, l8kk:263 (type-species Cottus gobio of Fabricius in Fabricius, 1780:159; Cottus tricuspis by subsequent designation of Reinhardt, 1838; Phobetor tricuspis by subsequent designation of Kroyer, 178O.) Acanthocbttus: - Girard, 1851:186 (type-species Acanthocottus p i s t i l l i g e r Girard (lapsus calami) iby monotypy. ) Elaphocottus: - Sauvage, 1878:1^2 (type-species Cottus p i s t i l l i g e r Pallas in Pallas, l8ll:lU3.) Sclerocottus: - Fischer, 1885:58 (type-species Sclerocottus schraderi Fischer.) Gymnacanthus: - G i l l , l 8 6 l : (emendation of Gymnocanthus) Gymnocenthus: - Andriashev, 1937:311 (lapsus calami) Gymacanthus: - Huntsman, Bailey and Hachey, 1953:21+8 (lapsus calami) Comnocanthus: - Chyung and Kim, 1959:10 (lapsus calami) lU Diagnosis No palatine or prevomerine teeth; nape with f l a t , bony granulations; f i r s t preopercular spine long, with 1 -6 cusps; 6 infraorbitals (counting lachrymal); g i l l membrane attached to isthmus, with broad fold; body naked except for a patch of subpectoral scales; lateral line complete, with bony ossicles; pelvics 1,3; males with penis. Generic Description Body robust anteriorly, oval to subcircular in cross-section; peduncle weakly laterally compressed. Head moderate, moderately compressed. Mouth terminal, moderate. Small viliform teeth randomly placed on premaxillary and dentary tooth pads; prevomer and palatines edentulous. Orbits longer than deep, dorsolateral; in fresh specimens, dorsal eye margin elevated above interorbital. Nasal spines moderate to strong, usually emergent. Six infraorbital bones. Frontals usually forming tubercle at orbit posterodorsal margin; frontal-parietal ridges extending from this postorbital tubercle to supratemporal sensory canal, arching laterally to become confluent with lateral l i n e ; these ridges with tubercle development on frontal immediately behind postorbital tubercle and on either side of supratemporal canal. Nape with f l a t , platelike bony granulations, these granulations in some species extending onto opercle, infraorbitals, interorbital. Preopercle with four spines, the uppermost long, with several (2 -6 ) sharp cusps dorsally, smooth ventrally; a l l other preopercular spines smooth. G i l l membranes joined to isthmus, forming broad fold across i t ; pore behind last g i l l arch small or wanting; g i l l arches with spinous bony plates in place of 15 rakers. Lateral line above middle of body, dropping abruptly to body midline above last anal ray; lateral line composed of a series of small, tubular, bony (not cartilaginous) ossicles with slightly flared margins anteriorly and constricted margins posteriorly; ossicles subcylindrical, compressed towards trunk; broad U shaped notch anteriorly on la t e r a l side, narrower V shaped notch posteriorly on medial side; pore to exterior forming at posterior end. Skin mostly naked; patch of modified scales present, restricted to pectoral a x i l ; scales T shaped, with several cusps on crossbar directed away from shaft; shaft imbedded in skin, cusps emergent. Dorsal fins separate; base of spinous dorsal shorter than soft dorsal base; spinous dorsal from semicircular to elongate, convex; soft dorsal convex; anal margin weakly convex to f l a t ; caudal weakly rounded or truncate; pectorals convex. Sexual dimorphism in f i n length; in males, pelvics, spinous dorsal especially long. A l l fins connected for the most part by membrane, except for ends of elongate pelvics of males. Pelvic formula always 1,3. 6 branchiostegals. Anal papilla present; anus immediately in advance of anal f i n . Male with moderate conical penis. Range Gymnocanthus presently contains six species ranging in the North Pacific from southwest Alaska to Korea, north through the Bering Straits, on a l l Arctic polar coasts to Northern Norway, Spitzbergen, south to Maine on the American coast. 16 Etymology The generic name Gymnocanthus i s from the GreekT^i/Sls (naked) and « ->\CL-rec< (spine) i n reference to the naked preopercular spine and cusps. Osteology The d e s c r i p t i o n of the osteology of Gymnocanthus i s divided i n t o s i x subheadings, neurocranium, branchiocranium, o r b i t a l s e r i e s , p e c t o r a l and p e l v i c g i r d l e , suspensorium, and a x i a l skeleton. Terminology follows Harrington (1955) and A l l i s (1909) f o r the cranium, and Weitzman (1962) and Liem (1963) f o r the non-cranial skeleton. Neurocranium Nasal bone co n s i s t i n g of v e r t i c a l s h a f t , the upper end sharp and emergent, the lower end blun t ; o f f middle of t h i s shaft extend two prongs perpendicular with dorsoventral shaft and each other; l a t e r a l prong twice the length of medial prong; l a t e r a l prong abuts onto anteroventral edge of l a t e r a l ethmoid, medial prong abutting to the medial border of ethmoid l a t e r a l wings. Ethmoid broad, sloping down a n t e r i o r l y , s p i k e - l i k e p o s t e r i o r l y ; a n t e r i o r plate with paired, anterior-extending processes ( a r t i c u l a t i n g with nasals) separated from l a t e r a l ethmoid wing by shallow fossa; a n t e r i o r of ethmoid with l o n g i t u d i n a l ridge d o r s a l l y , groove v e n t r a l l y . Ethmoid c a r t i l a g e extending v e n t r a l l y from ethmoid, attaching to parasphenoid dorsal r i d g e . Prevomer edentulous, tapering to point p o s t e r i o r l y , broad a n t e r i o r l y ; v e n t r a l l y with narrow, low ridge running length of prevomer; anterior 17 margin thickened weakly dorsally, moderately ventrally; dorsal and ventral ridges divided laterally by a deep V-shaped notch; dorsal ridge divided medially by broad V-shaped notch; prevomer articulationg by long, tapered point to base of parasphenoid, abutting medially onto lateral ethmoid. Prefrontal-lateral ethmoids (= prefrontals) paired, each side widely separated from the other by forward extensions of frontals, ethmoid; prefrontal-lateral ethmoid of two distinct regions, one region a broad, thick bone (= prefrontal) forming anterior margin of orbit, abutting ventrally in a ligamentous joint with the lachrymal, anteriorly articulating via a bony prominence with the nasal spine l a t e r a l process, and medially with frontals; second region a complex medial bone (= lateral ethmoid) with several faces, the basal face abutting against prevomer later a l margin, the dorsal face abutting against ethmoid wings, and the posterior face resting on the anterior parasphenoid; olfactory foramen passing through junction of prefrontal and lateral ethmoid components. Frontals paired, narrow anteriorly, broadened posteriorly; in most species, forming tubercle followed by notch (= postorbital tubercle, postorbital notch) at posterodorsal orbit margin; postorbital notch may be followed by second tubercle; posteriorly, where frontals broaden to cover anterior half of braincase the two bones suturally unite in superficially crenate fashion, but actually by broadly overlapping lobes; sometimes a narrow fontanel present posteriorly, usually covered by granulations; ridge (=nape ridge) running longitudinally along middle of each frontal, confluent with that on parietal bone; l a t e r a l l y , 18 frontal forming narrow blade over sphenoid. Posteriorly, the frontals overlap the paired parietals; parietals sutured along midline, each side carrying longitudinal ridge from frontal, this ridge leading onto epiotic; parietals bound by frontals, pterotics, epiotics, supraoccipital, plus a series of small cephalic lateral line enclosing tubular bones. Pterosphenoid a small bone forming anterodorsal border of myodome, overlaid dorsally by a triangular ventral process of frontals, antero-ventrally by an ascending central wing of parasphenoid; posteriorly, forming triradiate suture with prootic, sphenotic; ventrally, jugular canal passing from 5th cranial nerve foramen which opens exteriorly to the internal jugular recess in the pterosphenoid, into and through the trigemino-facialis recess in the prootic. Prootic large, platelike, approximately pentangular, bounded by basioccipital, exoccipital, pterotic in triradiate suture, pterosphenoid, sphenotic in triradiate sutare and parasphenoid; apparently only one foramen for profundus, f a c i a l i s , trigeminus nerves in trigeminofacialis recess of prootic; recess protected la t e r a l l y by bony strut passing from ventral margin of recess to anterior surface of dilatator fossa for reception of hyomandibular; this fossa deep, of two bones, the ventral half of prootic, the dorsal half of sphenotic; internally, prootic with shelf meeting fellow along midline, separated from cranium base by a gap. Sphenotic small, overlaid by frontals; ventrally f l a t , in triradiate suture with pterosphenoid and prootic; dorsally forming part of dilatator fossa. 19 Parasphenoid long, overlapping prevomer anteriorly, pterosphenoid, prootic, basioccipital (respectively) posteriorly; anteriorly slender, with single thin dorsal blade and equally thin lateral blades; dorsal "blade greatest development anteriorly, diminishing posteriorly, becoming obsolete by myodome; anteriorly, ventrally developed groove where para-sphenoid overlies prevomer, this groove becoming more shallow posteriorly; centrally, parasphenoid with dorsolateral wings, these forming ventral margins of myodome, covering anterior margin of prootic ventrally, anteroventral corner of pterosphenoid dorsally; posteriorly, parasphenoid tapering from broad U-shaped bone (narrowly separate from wings) to a point or narrow fork under basioccipital. Basioccipital fan-shaped anteriorly, forming floor of rear half of basicranium; meeting prootic above parasphenoid; suturally joined to exoccipital dorsally. Basioccipital narrow-waisted just before expanding posteriorly to form oval condylar surface; this surface narrower dorsally, slightly posteriorly produced ventrally. Opisthotic small, flattened limpet-like bone closely applied to posterior exoccipital-pterotic suture, possibly just touching epiotic strut. Exocciptial large, bounded by basioccipital, prootic, pterotic, epiotic, supraoccipital, in triradiate suture with latter two; exoccipital meeting fellow below supraoccipital; exoccipitals forming floor of supratemporal fossae; posteriorly, developing conic condylar surfaces which originate above basiocciptial condyle but point down towards i t ; these three cones forming walls and base of foramen 20 length separating them anteriorly, becoming adjacent posteriorly; ossicles extending onto caudal rays. P i s t i l l a e usually in the pectoral a x i l of males only (may f a l l off in preservative); p i s t i l l a e long, slender, length equalling width of pupil, end often b i f i d . Scales large, sparse, at least as long as ossicles below the spinous-soft dorsal interspace; dorsally, scales separated from each other by a distance often exceeding their own length; scale patch extending 4/5 of the distance to the end of the pectoral fins. Snout narrow, length h.17 (3.88-U.80) times in head length, 11.82 (10.72-12.53) times in SL; later a l ethmoid-nasal spine distance short, making snout abrupt, blunt in lateral profile. Teeth v i l l i f o r m , small, posteriorly recurved, randomly placed on jaws; tooth band up' to four teeth wide on dentary near symphysis, up to six teeth wide on premaxillary near symphysis; in both, tooth band narrowing posteriorly; tissue i n mouth may be papillose directly ahead of or behind tooth pads; single row of papilla ahead of dentary and premaxillary teeth, several (2-3) rows of papillae posterior to these teeth; mouth moderate, upper jaw 2.1*9 (2.38-2.58) times in head; maxillary extending to or past vertical through center of pupil. Single pair moderate, often emergent, weakly posteriorly recurved nasal spines; two pair of nostrils, f i r s t pair on vertical plane through nasal spines, length of nasal tube subequal to nasal spine length, constricted terminally such that terminal pore opens anteriorly; posterior nares post-erolateral to nasal spines, distance from nasal spine t i p 1/2-2/3 distance from orbit rim; posterior nostril tube always much lower than nasal spine or anterior nasal tube; posterior tube produced such that terminal pore opens upward or posterolateral^; distance of posterior nares base 1/2 to 21 magnum; cones fused to basioccipital medially for almost entire length; each exoccipital with thin, lateral, posteriorly extended blade separated from condylar cone by gap, roofing foramen magnum; supratemporal fossa face with broad V-shaped groove running from the dondyle base medial to medial to epiotic-supraoccitital-exoccipital suture; lateral exoccipital groove extending from condylar base to just ventral to prootic-pterotic-exoccipital suture; small posterolateral spine in groove at condyle base; single or double foramen (for passage of fagus and occipital nerves?) at apex of lateral groove close to condylar base; glossopharyngeal foramen on anteroventral exoccipital corner; large foramen at prootic-basioccipital-exoccipital junction, possibly f i l l e d with investing cartilage in l i f e . Pterotic forming dorsoposterolateral border of cranium; bordered by exoccipital, prootic, epiotic, sphenoid, parietal; acute, postero-lateral spine well separated from epiotic spine; pterotic relatively broad ventrally, much less so dorsally; long, shallow fossa for reception of posterodorsal arm of hyomandibular composed of pterotic posteriorly, sphenotic anteriorly, with a corner of the prootic ventrally. Pterotic overlaid anterodorsally by long, tubular lateral extrascapular (Allis, 1909) enclosing the posterior part of the lateral cephalic sensory canal; from here, this canal passes anteriorly through another tubular bone closely fused to frontal at postorbital notch ( =postfrontal of Al l i s , 1909 ?); posteriorly, canal passes into posterior extrascapular bone where the canal bifurcates into the 22 posttemporal and supratemporal sections; a third tubular bone, the parietoextrascapular ( A l l i s , 1909) receiving the supratemporal sensory canal medial fork, conducting i t to supraoccipital. Parietoextra-scapular restricted to parietals; posterior, lateral extrascapulars overlay pterotic, part of sphenotic; postfrontal (?) overlaying sphenotic, frontal bone. Epiotic pyramidal, apex with posteriorly directed dorsoventral plate roofed by sagittal plate^; this plate sloping abruptly ventromedially into posttemporal fossa, forming third plate. Supraoccipital with long, broad horizontal blade anteriorly, with two lat e r a l wings extending out from centre; anterior blade overlaid by posterior margin of frontal and anterior margin of parietal, vings over-l a i d by posterior margin of parietals; posterolateral area of exoccipital forming anterior extremity of supratemporal fossa; v e r t i c a l , posteriorly directed blade roofed by narrow horizontal plate medial in supratemporal fossa. Branchiocranium Basibranchial single, with posterior fan-shaped lobe; lohe longest dorsally; anterior margin thickened to form slenderly triangular, ventrally pointed cap; cap constricted slightly in the middle; in lat e r a l 1. A l l i s (1909) calls this plate "suprascapular spine". It is not possible to t e l l whether this bone is part of the epiotic or just fused to i t . 23 p r o f i l e , cap posteriorly recurved both dorsally and ventrally.' Hypohyal paired, double; anterior bone medially flattened pyramid anteriorly, with small condylar-like process at apex articulating with fellow; cap dorsomedially synchondrally sutured with fellow; posteriorly directed spine off medial side; pyramidal cap f i t t i n g over anterior t i p of ceratohyal, spine running along medial border; posterior bone tubular, inserting into posterodorsal fossa of anterior bone, antero-dorsal border of ceratohyal. It is uncertain which of the hypohyals represents the dorsal and which the ventral one (Weitzman, 1962; Liem, 1963). Although they are on about the same vertical l e v e l , the anterior pyramidal bone articulates with the ceratohyal more ventrally, and therefore probably represents the ventral hypohyal. Ceratohyal large, broad and triangular posteriorly, narrow and shaft-like anteriorly; oblique, slender strut given off anteriorly from central dorsal margin, this strut connected to anterior shaft by thin web of bone for i t s entire length; small anteroposterior foramen through this web; anterior hypohyal f i t t i n g onto end of shaft; posterior hypohyal f i t t i n g into medial groove between ceratohyal strut and shaft. Epihyal triangular, articulating across i t s broad anterior border with equally broad ceratohyal; posteriorly, with small, dorsally directed articular surface for reception of interhyal. Interhyal small, cyl i n d r i c a l , articulating dorsally with posterior border of anteroventral hyomandibular leg. Six branchiostegals, rarely seven; i f six, two articulating with epihyal, two with triangular portion of ceratohyal, two with shaftlike 2k portion of ceratohyal; i f seventh present, i t is short, slender, anterior to branchiostegals on ceratohyal shaft. Material for the branchial arch osteological description i s not entirely adequate. Consequently, the description may be incomplete. Four unmodified g i l l arches, f i r s t three with ossif ied basibranchials, fourth apparently with unossified basibranchial; f i r s t three arches with broad hypobrachials, fourth apparently lacking that bone; f i r s t four g i l l arches with long, slender ceratobranchials, l ined on either side with dome-like tooth bearing placodes, teeth perpendicular to placode or weakly recurved into buccal cavity; a l l four arches with shorter epibranchials (half ceratobranchial length); at least f i r s t epibranchial may have tooth placode ventrallyjothers lacking placodes; f i r s t epibranchial forked. F i f t h arch consisting of tooth bearing ceratohyal, pharygobranchial; no apparent ossif ied hypobranchial, basibranchial ; ceratobranchial elongate, somewhat arrowhead shaped, broad medial end art iculating with fellow, cartilaginous basibranchial; shaftlike la tera l end ligamentously attached to middle of fourth ceratobranchial; dorsally forming tear-shaped tooth pad. Pharygobranchial structure uncertain; f i r s t epibranchial appears to lack pharyngobranchial; second with small lobate tooth-bearing pharyngobranchial closely applied to large tooth bearing pharyngobranchial abutting against third and fourth arches; this pharyngobranchial an oval tooth pad with small wing from i t s dorsal side extending anteriorly beneath the smaller pharyngobranchial tooth pad. 25 Orbital Series Lachrymal broadly triangular, with double condylar surface at apex; anteromedial surface fitting against anterior wall of palatine cup; dorsal surface fitting against condyle on ventrolateral margin of pre-frontal; medially, lachrymal extending down as a deep, thin blade; laterally, extending down parallel to the medial blade, forming an open space between the blades; this space divided into two chambers by an oblique dorsoventral septem; these chambers continuous dorsally, emerging anteriorly as small foramen; chambers carry anterior infra-orbital cephalic sensory canal; posteriorly, lateral wall developing small spike, this spike fitting in complementary groove in second infra-orbital. Lachrymal and second infraorbital fitting closely together. Second infraorbital broadly triangular; pointed anterior end resting on lachrymal, entering very small fossa below condyle of that bone; medial blade of second infraorbital deep, closely applied medially to lachrymal, lateral blade shallow, these blades again enclosing infraorbital sensory system in a bony chamber; chamber opens anteriorly, posteriorly, small foramen in midventral wall of chamber. Third infraorbital (suborbital stay) strong, laterally considerably flattened, pointed at either end; posterior blade with concave uppen margin, convex lower margin; anterior spike straight edged; anterior spike resting on posterior end of second infraorbital; infraorbital canal passing into suborbital stay below this spike, emerging as foramen middorsally; stay thickened along its midline posteriorly; infraorbital 26 canal passing into posterior blade, giving off pores above and below thickening posteriorly beyond dorsal foramen; stay extending back, ligamentously attached to preopercular just above first spine. Fourth, f i f t h , sixth infraorbitals"^ laterally compressed, extending from middorsal stay to anterior end of sphenoid. Pectoral, pelvic girdle Posttemporal with long, wide anteromedial blade overlapping epiotic and slender, cylindrical anteroventral strut resting at opisthotic-epiotic-exoccipital junction; psttemporal canal enters-through foramen in horizontal shelf-like bone above strut, emerging above strut origin. Supracleithrum with thickened dorsal edge, long bladelike process extending down and back; thickened dorsal edge receiving posttemporal canal on its anterolateral surface; canal reemerging 2/3 of the way along the flat dorsal margin; posteroventral blade thicker on leading than trailing edge; blade extending across, ligamentously (?) uniting with dorsal end of cleithrum; supracleithrum anterior end condylar, articulating with small surface below posterior end of posttemporal blade. Cleithrum spatulate, ligamentously meeting its fellow under myodome ventrally; arching laterally dorsally, terminating anterodorsally in long, thin spine reaching first or second lateral line ossicles; leading edge of cleithrum develops a strong ridge running perpendicular to basal spatulate plate; ridge facing laterally at its basal origin, 1. Sixth infraorbital equivalent to Harrington's (1955) dermosphenotic. 27 twisting 1*5° posteriorly, terminating in lobe across which supracleithrum l i e s ; this lobe separated from dorsal spine by deep c l e f t ; lobe considerably thickened on t r a i l i n g edge; thickening may terminate in long, strong spine emerging through the skin (eg. G. intermedius) or may terminate i n dull point barely discernible on bone (eg. G_. galeatus); second smaller ridge originating posteriorly on the cleithrum just above spatulate plate; ridge extends along this edge of the cleithrum, subtending a grouve eventually -meeting dorsal spine. Postcleithra double, long, r i b - l i k e ; f i r s t postcleithrum applied to medial side of dorsal c l e i t h r a l lobe, extending down and back, terminating i n pectoral a x i l ; beneath Uth-6th pectoral ray, f i r s t postcleithrum synchondrally sutures to second postcleithrum which curves anteriorly, s t i l l restricted to pectoral a x i l . Scapula U-shaped, with superior branch wide, closely applied for over half i t s length to upper cl e i t h r a l lobe; inferior branch just short of reaching cleithrum, but connected by cartilage; between branches, scapula widely separated from cleithrum; inferior branch synchondrally sutures to the f i r s t of a series of four large platelike radials. First and last radial tending towards triangularity, smaller, about half the size of second and third; second, third radials rectangular; small foramina between scapula, f i r s t r a d i a l , f i r s t and second, second and third; radials separated from cleithrum by strip of cartilage, this strip most narrow under third radial; radials closely synchondrally sutured to each other. 28 Ventrally, fourth radial broadly synchondrally sutured to coracoid; coracoid synchondrally sutured to cleithrum medial to fourth r a d i a l ; anteriorly, coracoid forming tubular strut abutting against c l e i t h r a l palte ; between clei thral-coracoid contacts, coracoid subtends large foramen. Pelvic girdle composed of r ight , l e f t basipterygia (idem, 1963); basipterygia diamond shaped with large convex sided anterior t r iangle , small , concave sided posterior t r iangle ; larger triangle has along i t s la tera l perimeter a strongly produced dorsolateral ridge and weakly produced ventromedial ridge; ventral , small keel along central midline; at la tera l junction df two pelvic girdle triangles are strong condyles with two articular surfaces, la tera l surface for art iculation with pelvic spine, posterior surface for art iculation with pelvic rays; on midline between condyles originates anterior extending finde forklike processus medialis (idem, 1963); between condyles and basipterygial keel , bone very t h i n . Basipterygia f i t closely between c l e i t h r a l basal plates. Suspensorium Hyomandibular d is t inc t ly cross-shaped, four pronged, the dorsal two arms short, ar t iculat ing with the deep anterior dilatator fossa and shallower posterior sphenoid-prootic-pterotic fossa; posteroventral arm longer, art iculating with condylar surface of opercular; anteroventral arm very long, broad d i s t a l l y , terminally art iculat ing through broad synchondral joint to symplectic; broad, thin blade connecting anterior arms; narrow, thin blade connecting posterior arms; strong blade originating at arm junction, extending down posterolateral border of 29 longest arm, this blade terminating ventrally in a short spine separated from anteroventral arm by small foramen. Matapterygoid composed of papery thin blade, dorsally synchondrally butured broadly to anterior hyomandibular blade; ventrally, matapterygoid narrow waisted, then widening into equilateral triangular bone whose entire base synchondrally sutures to equally wide triangular anterodorsal wing of quadrate. Quadrate anteroventral margin modified into condyle for articulation with articular; long spike with shallow-grooved ventral side extending posteriorly from condyle, widely sutured to ventral border of quadrate "triangle", this spike resting on end of preopercular descending arm. Symplectic elongate, very slender ventrally where i t passes medial to quadrate, (articulating with that bone near condyle), broadening somewhat dorsally where i t synchondrally articulates with base of hyomandibular anteroventral arm; symplectic weakly arced dorsally. Endopterygoid composed of long, slender anterior spine, short, ventrally oblique posterior spine; posterior spine slanting down, broadly synchondrally sutured to leading edge of quadrate triangle; anterior spine with blade superiorly, this blade high, serrated post-eriorly, low anteriorly; anterior spine sutured over its entire length to ectopterygoid dorsally, over much of its length to posterior spine of palantine ventrally; ectopterygoid long, somewhat broader than endo-pterygoid, anteriorly sutured to palatine fan at its point of contact with palatine spine. Palatine complex, formed of a posterior spine, anteriorly with 30 downwardly oblique cyl indr ica l shaft half the length of spine; with high, l a te ra l ly concave fan above junction of shaft and cylinder, the rim of this fan reaching toward but not meeting parasphenoid; anterior end of cylinder d i s t a l l y meeting anterior t i p of lachrymal, articulating with • notch on maxillary anterior end; medial condylar surface of lachrymal resting on base of palatine fan concavity; narrow, horizontal medial ridge below fan; posterior spine with sharp ventrolateral ridge narrowing toward spine terminus; palatine edentulous. Preoperculum an inverted T, the descending process and f i r s t spine forming the crossbar, the perpendicular ascending process forming the shaft; ascending and descending processes connected medially by a broad, thin web of bone; this web narrowly separated from ascending process by a small gap, forming a small spine dorsally on the web; small foramen at base of gap; f i r s t spine long, cusped, located at base of ascending process; terminus of descending process forked, lower branch forming fourth preopercular spine; spines two and three approximately evenly spaced between f i r s t and fourth spine; spine length decreasing from f i r s t to fourth; large foramen on midlateral aspect of ascending arm, spines with foramina immediately anterior to them; preopercular ascending process closely applied to groove posterior to strong la tera l hyoman-dibular ridge; small hyomandibular spine f i t s into preopercular web notch. Operculum V-shaped, with condylar process on medial side of apex; outer edges of "V" strong, thick, thinner towards inner edges; l a t e r a l l y , "V" reinforced with ridges of bone radiating from condyle; dorsal arm twice width of ventral arm, with twice as many ridges; arms of operculum 31 connected centrally "by carti lage, never o s s i f i e d . Subopercular anteriorly with long, anteriorly arched, dorsoventral spine, more attenuated dorsally than ventral ly ; lower posterior margin giving off broad, thin triangular blade which in turn gives off thin process from t i s posterodorsal margin; small, thick triangular knob on spine opposite blade; ascending spine and posterior blade closely medially applied to anterior and ventral margins respectively of oper-cular ventral arm. Interopercular long, tr iangular , with thickened dorsal border, thin ventral blade; posteriorly, with thickened ridge running obliquely to lower posterior corner, forming small point ; interopercular broadly separated from but ligamentously connected to subopercular below triangular knob; anteriorly, interopercular running between preopercular descending limb, epihyal. Art icular with posterior dorsomedial condylar surface, long, strong anterior spike, short spike projecting upward and forward from anterior border of art icular surface and connected by a broad web of bone to the anterior spike, this web attenuating anteriorly ; wide, flat-based blade originating broadly below condylar surface, separated from shaft by U-shaped gap; foramen penetrating gap emerging below small upturned knoh which forms posterormost border of condyle. Angular small knob-like bone at art icular posteroventral border. Dentary Y-shaped, bearing ventral knob at symphysis followed by three increasingly long foramina; lower branch terminates with foramen; upper branch bearing tooth pad dorsally ; base of tooth pad t h i n , sockets 32 almost penetrating through; ventral side of dorsal branch concave; long shaft of angular resting on, broadly synchondrally attached to dorsal surface of lower dentary branch, reaching almost to dentary fork. Maxillary long, spatulate posteriorly , narrowing anteriorly; anteriorly, with several art icular surfaces; dorsally , an oval condylar surface art iculating with prevomer; ventral ly , a condylar surface a r t i -culating with secondary premaxillary ascending process; these two condylar surfaces connected by bony wall continuing ventrolaterally, enclosing and anteriorly directed fossa; condylar surfaces separated from maxillary shaft by a deep, broad groove which receives the palatine and lachrymal. Premaxillary with two high ascending processes arranged such that they enclose an anteriorly facing groove, leaving small V-shaped notch at symphysis between tooth pads; l a t e r a l , secondary ascending processes broad, thick , short, about half as high as primary ascending processes, situated at right angles to primary ascending processes; posteriorly , premaxillary narrows, anteriorly produced dorsally into .a high ridge, tapering to pointed or weakly rounded end; tooth pad at k5° to primary ascending process. Axial Skeleton Two obliquely upward directed la te ra l processes from atlas a r t i c u l -ating with skul l exoccipital condyles, apparently permitting limited dorsoventral movement, no la te ra l movement. Haemal spines absent from atlas . Atlas neural spines short, not meeting as arch. Neural spines with deep midlateral fossa. Neural postzygapophyses especially strong 33 on atlas, weakening (but never disappearing) posteriorly, concomitantly shif t ing dorsally; neural prezygapophyses not appreciably developed on atlas , knoblike on abdominal vertebrae, slender on caudal vertebrae, obsolete on peduncle (except ural and preural) vertebrae. Caudal vertebrae with long, oblique haemal spines with small prezygapophyses, these becoming obsolete towards atlas and peduncle, strengthening on last 4-5 vertebrae. Atlas and f i r s t 4-5 vertebrae total ly lacking haemal post-zygapophyses; haemal postzygapopheses strongest on f i r s t few caudal vertebrae, weaking anteriorly and posteriorly , becoming obsolete on last 6-7 vertebrae. A l l vertebrae with neural arches; caudal vertebrae with haemal arches; some precaudal vertebrae"1" with p a r t i a l l y developed haemal arches. Neural and haemal arches becoming blade-like towards end of caudal vertebrae. A l l vertebrae opisthocoelous, decreasing i n size from atlas to ural-preural vertebrae. A l l centra except those of f i r s t 5-7 abdominal vertebrae, last 6-7 caudal vertebrae strongly la te ra l ly compressed. Two types of ribs present, epaxial and hypaxial. In Gymnocanthus, epipleural ribs by far the more numerous. On atlas , ribs originating on midmesial aspect of neural spine in fossa; posteriorly , origin descends, moving away from neural spine to haemal spine prezygapophyses; epaxial ribs occurring as far back as f i r s t few caudal vertebrae. Pleural ribs not numerous, developing f i r s t on vertebrae towards posterior end of 1. Definition following Schultz, 1958. 3U coelomic cavity where vertebrae are becoming buried in hypaxial musculature. Pleural ribs originate on haemal prezygapophyses immediately below e p i -pleural o r i g i n , terminating short of epipleural termination. Two vertebrae involved i n support of caudal f i n . Penultimate vertebrae with strong haemal spine almost reaching hypural posterior margin. Two hypural plates, anteriorly fused for 1/2 - 2/3 of their lengths, ventral plate of hypurals 1-3, dorsal plate of hypurals k-6; hypural plates fused to urostyle (Quast, 1965); lower plate not as firmly ankylosed, penetrated by small foramen at base. 12 primary caudal rays, 6 per hypural; up to 12 secondary rays both above, below hypurals. One pterygiophore per neural, haemal spine. Spinous dorsal f i r s t pteryiophore with broad, t h i n , medially thickened blade descending between neural spines; dorsally , pterygiophore thickened, angled back where i t forms dorsoventrally compressed fan-l ike process. F i rs t ptery-giophore largest, these bones becoming smaller posteriorly . Anal , soft dorsal pteryophores similar to spinous dorsal pterygiophores except post-erior fan becomes conelike, and blade medial thickening broadens la te ra l ly towards the f i n s . Unlike the characid pterygiophore (Weitzman, 1962), the d i s t a l , proximal, and medial radials are fused into a single pterygiophore. Internal Anatomy Thick walled esophagus leading into anterior of thick-walled (when empty) stomach; right anterior margin of stomach giving off small intest ine ; intestine giving off h-10 pyloric caeca ventral ly , then run-ning down right side of body cavity to anal region, usually doubling 35 back to stomach; in some specimens, a short extra anteriorly directed loop may be given off from small intestine posterior extremity; at stomach, small intestine giving off large intestine which ventrally over-laps caeca-with medial loop, then posteriorly extends along ventral body wall to anus. Pancreas di f fuse , in intest inal mesentery. Liver unilobate, f i l l i n g anterior l e f t of coelom; processes off l i v e r f i l l i n g space dorsal , ventral , and anterior to stomach. Spleen large, unilobate situated above and to the right of the stomach. Gall bladder large, above and to the right of spleen. Gonads bilobed, joining posteriorly , lying against coelom roof anteriorly; i n males, whitish testes long, tubular; in females, yellowish ovaries short, lobate. Large urinary bladder applied to right of cloaca, bladder between ovaries and body cavity roof. Cephalic Lateral Line System The cephalic sensory system in Gymnocanthus shows a basic structure common to a l l six species. Specific variation was examined i n bleached and injected specimens of a l l six species. The passage of the la te ra l l ine system through head bones was described in the osteology section. Nomenclature for the most part follows Cowan (l°68) and Reno (1969). The supraorbital canal begins far forward on the snout as medio-nasal (MN) canal, this canal originating as pore anteromedian to nasal spine, extending posteriorly ; postnasal (PN) canal originating as pore posterolateral to nasal spine, canal running medially to meet MN, forming supraorbital (SO) canal posteromedially to nasal spine; MN, PN, anterior end of SO imbedded i n dermis, a l l following canals imbedded in bone; SO running along i n t e r o r b i t a l , entering frontal bone medial to prefrontal ; 36 SO fo rming pore s l i g h t l y a n t e r i o r t o i n t e r o r b i t a l narrowest w i d t h , SO j o i n i n g f e l l o w j u s t beh ind p o s t o r b i t a l t u b e r c l e by the i n t e r o r b i t a l (.10); 10 u s u a l l y deve lop ing s h o r t , m e d i a l , p o s t e r i o r l y d i r e c t e d i n t e r o r b i t a l p rocess ( I 0P ) ; 10 ex tend ing l a t e r a l l y beh ind eye forming p o s t e r i o r s u p r a -o r b i t a l (PSO) c a n a l ; PSO g i v i n g o f f c ross c a n a l , the p o s t e r i o r s u p r a -o r b i t a l p rocess (PSOP), one branch emerging i n p o s t o r b i t a l notc lL , the o ther m e d i a l t o f r o n t a l s p i n e ; i n f r a o r b i t a l c a n a l (IFO) b e g i n n i n g as pore below and j u s t a n t e r i o r t o o r b i t , runn ing beneath the o r b i t t o s u b o r b i t a l s t a y , g i v i n g at l e a s t f o u r shor t i n f r a o r b i t a l p rocesses (IFOP), the f i r s t and second from the l a c h r y m a l , the t h i r d and f o u r t h from the second i n f r a -o r b i t a l ; shor t c a n a l , i n f r a s u b o r b i t a l s t a y (ISS) g i ven o f f a long v e n t r a l s i d e o f s u b o r b i t a l s t a y ; l o n g e r s u p r a s u b o r b i t a l s t a y (SSS) c a n a l ex tend ing from IFO a long d o r s a l s i d e of s u b o r b i t a l s t a y ; PSO and IFO connected beh ind the eye .by p o s t o r b i t a l (P0) c a n a l ; P0 c a n a l g i v i n g o f f two shor t c r o s s - c a n a l s , the p o s t o r b i t a l processes (POP), these c a n a l s emerging between each o f the kth, 5th and 6th ( dermosphenot ic) i n f r a o r b i t a l bones ; l a t e r a l c a n a l (L) runn ing back from PSO and P0 cana ls at f r o n t a l -dermosphenotic j u n c t i o n a long l a t e r a l f r o n t a l bone m a r g i n , through a s e r i e s o f e x t a s c a p u l a r s ; u s u a l l y at l e a s t two c ross b r a n c h e s , the l a t e r a l e x t r a s c a p u l a r capping p t e r o t i c g i v i n g o f f supratemporal (ST) c a n a l m e d i a l l y , t h i s c a n a l j o i n i n g i t s c o u n t e r p a r t ; ST g i v i n g o f f m e d i a l c ross b r a n c h , the s u p r a o c c i p i t a l (SOC) c a n a l ; SOC s h o r t e r a n t e r i o r t o ST than p o s t e r i o r t o ST; second p o s t e r i o r l y d i r e c t e d supratemporal p rocess (STP) l a t e r a l t o p a r i e t a l t u b e r c l e ; ST l a r g e l y w i t h i n supratemporal (LSTP) f rom ST and L j u n c t i o n ; from t h i s j u n c t i o n , pos t tempora l (PT) c a n a l p a s s i n g 37 Figure 2. Cephalic lateral line system The canal and pore pattern shown is the basic system common to a l l species of Gymnocanthus. The extra pores and accessory canals found in most G_. galeatus have been deleted. Abbreviations: IFO, infraorbital; IFOP, infraorbital process; 10, interorbital; i0p, interorbital process; ISS, infrasuborbital stay; L, late r a l canal; LL, lateral l i n e ; LP, lateral canal process; LSTP, latera l supratemporal process; MN, medionasal; PM, preoperculomandibular; PN, postnasal; p0, postorbital; PSO, posterior supraorbital; PSOP, posterior supraorbital process; PT, posttemporal; PTP, posttemporal process; SO, supraorbital; SOC, supraoccipital; SSS, suprasuborbital stay; ST, supratemporal; STP, supratemporal process. 38 P S O P I I O P ! s o c Figure 2 Cephalic L a t e r a l Line System. 39 back through posttemporal bone, supracleithrum, thence into lateral line ossicles; PT giving off two small posttemporal processes (PTP), one from between lateral extrascapular and posttemporal bone and one from between posttemporal bone and supracleithrum; a l l processes, dead-ending canals terminating in pores. Preoperculomandibular (PM) canal evidently not connected with rest of cephalic sensory system; mandibular portion beginning as pore lateral to dentary symphyseal knob; canal runs within dentary, giving off two more pores through foramina; fourth pore at articular-dentary junction; PM passing through articular, entering preopercular descending limb, giving off single pore immediately beneath each of the preopercular spines. The basic system described i s that possessed by most G_. tricuspis. Other species, especially G_. galeatus may have many extra pores and small accessory canals along the major canals, especially IFO, SSS, PO, PO, and SO. Porosity tends to be variable within a species and becomes better developed in larger fish. It i s therefore impractical to quantify pore counts for comparative purposes. Gymnocanthus herzensteini Jordan and Starks Synonymy Gymnocanthus galeatus (non Bean): - ?Schmidt, 1904:97 (description, counts, measurements, colour, cf. with G. p i s t i l l i g e r , G. tricuspis); ?Popov, 1933b:139-155; ?Dogel; 1948:17-66 (parasites on "G_. galeatus"). 40 Gymnocanthus- herzensteini: - Jordan and Starks, 1904:29k (type description, figure, counts, measurements, colour); ?Popta, 1911:333-353 (locality); Tanaka, and Snyder, 1913 (figure, l i s t e d ) ; Rendahl, 1931a:T3 (counts, cf. with G. intermedius, tricuspis, p i s t i l l i g e r ) ; Taranetz, 1937:118 (distribution, key); Okada, 1938:230 (listed); Lindberg, 1947:188 (distribution); Khlupova, 1950:135:154 (vitamin A in l i v e r ) ; Gusev, 1951:394-463 (copepod parasites).; ?Kizevetter and LagovskLaya, 1951:128-138 (vitamin A in l i v e r ) ; Mori, 1952:163 (listed , l o c a l i t y data); Kizevetter, 154:273-293 (vitamin A in l i v e r s ) ; Okada, 1955:336 (counts, description, fishery); Legeza, 1956:122-131 ( d i s t r i -bution); Mori, 1956:28 (listed); ?Sato and Kobayashi, 1956:7 (locality; possibly G_. intermedius; specimens small); Abe, 1958: 57 (description, range, counts, figure); Abe, 1971:217 (counts, description, range, figure); Watanabe, 1960:5 (counts, descri-ption, measurements, colour, figure plate). Gymnocanthus merzensteini: - Jordan and Starks, 1904:290 (lapsus calami). Gymnacanthus herzensteini: - Schmidt, 1927:30 (key, counts, measurements, distribution, cf. with G. detrisus). Gymnocanthus galeatus herzensteini: - Soldatov and Lindberg, 1930:248 (synonymy, counts, distribution, key). ?. Comnocanthus p i s t i l l i g e r : - Chyung and Kim, 1959:10 (figure; lapsus calami),. ? Gymnocanthus p i s t i l l i g e r : - Chyung and Kim, 1959:6 (description, l o c a l i t y ) . kl Description Specimens described are SU 18652, 1 male, l6.52cm. (Kamoi Mizaki, Japan); SU 22291, 1 male, l6.86cm., 1 female, 12.75cm. (Kamoi Mizaki, Japan); SU 7572, 1 female, 19.83cm. (Hakodate); BC63-153, 1 male, 2l4.81+cm. (Oshyuro Bay, Otary, Japan); BC72-112, 1 female, 2U.90cm. (Shikabe, Hakodate, Japan). Body moderate, robust anteriorly, tapering posteriorly to a narrow peduncle, depth 23.39 (21.32-25.50) times i n SL; peduncle weakly l a t e r a l -ly compressed, oval in cross section; trunk egg-shaped in cross section, dorsum slightly elevated, moderately to strongly convex such that dorsum pointed; greatest depth usually on vertical through pelvic girdle, depth at this vertical k.92 (>.51-5.^6) times in SL. Head long, length 2.77 (2.57-2.87) times in SL; head equally wide as deep, lat e r a l l y compressed anteriorly, depth 1.02 (.93-1.12) times in width; in frontal p r o f i l e , nape broadlyj weakly concave or f l a t , ventrum f l a t , Lateral line ossicles small, anteriorly with ossicle-length separating them, remaining slightly separated caudally; ossicles extend onto caudal rays. Never any pectoral p i s t i l l a e . Axillary scales small, half the length of lateral line os-sicle at spinous-soft dorsal interspace; scale patch very dense. Snout late r a l l y flattened, moderately pointed, long, 3.lk (3.^8-3.98) times in head, 10.36 (8.83-11.32) times in SL; lateral ethmoid-nasal spine distance short such that dorsal profile of snout does not jut out appreciably. Teeth small, v i l l i f o r m randomly arranged, weakly posteriorly recurved; on dentary, tooth pad up to 3-k teeth wide at symphysis; on premaxillary, tooth band up to 6 teeth wide at symphysis; tooth pads narrow posteriroly. 1*2 Mouth tissue papillose behind, ahead of tooth pads, up to 3 rows wide behind premaxillary, dentary, up to 3 rows wide ahead of premaxillary, 2 rows wide ahead of dentary. Upper jaw long, length 2.26 (2.17-2.38) times in head; maxillary long, extending past ve r t i c a l through pupil center, often past vertical through posterior edge of pupil. Single pair small, strongly posteriorly recurved nasal spines, spines often emergent. Two pairs of nostrils, f i r s t pair on vertical through nasal spines; nasal tubule equally as high as nasal spine; nasal tubule produced such that terminal pore opening anterolaterally. Posterior nares posterolateral to nasal spines, distance from nasal spine t i p 1/5 the distance to edge of lateral ethmoid; posterior nasal tubules lower than anterior tubules; distance from posterior nare base from nasal spine t i p 1/4-1/5 distance of t i p from anterior nare base from nasal spine t i p . Orbits moderate, longer than deep, length k.Oh (3.27-4.55) times in head, length, .82 (.79-.89). times in depth. Interorbital broad, from f l a t to weakly concave, width 12.6l (10.53-18.92)1 times in head. Posterodorsal margin of orbit forming a postorbital tubercle which i s strongly produced la t e r a l l y , weak-ly vertically produced, setting off distinct postorbital notch, width 5.48 (4.96-5.93) times in head. No postorbital c i r r i . Nape with weak ridge extending back from postorbital notch, spreading laterally at supratemporal cephalic sensory canal, becoming confluent with lateral l i n e ; very weak tubercle on ridge directly behind notch; no other distinct 1. Watanabe (i960) reports a range in 45 specimens from 8.6 to l4.3, mean 11.1. 43 tubercles. Granulations heavily investing nape; may extend posteriorly , l a t e r a l l y and medially to a l ine 2-3 dorsal spine widths anterior to spinous dorsal ; may extend anteriorly across interorbital (but not on interorbi tal rims) to a l ine joining posterior nares; l a t e r a l l y , largely contained by la tera l canals; several granulations may occur on upper branch of opercular, 4th, 5th inf raorbi ta ls , upper border of suborbital stay; la tera l cephalic sensory canal often protected by investing granulations. Suborbital stay strong, length 4.29 (3.67-4.99) times in head; preopercular with four spines; uppermost spine moderately strong, extending back beyond ver t i ca l throgh. opercular notch anterior border, but not opercular edge; spine bearing 2-5 cusps, modally 3-4 (mean 3.26); dorsal margin of opercle straight to gently rounded; ventrally directed subopercular spine small, seldom emergent. Clei thral spine weak, never emergent. Dorsal spines separate, interdorsal distance up to 3 times dorsal spines width; f i r s t predorsal length 3.02 (2.84T-3.11).; f i r s t dorsal sexually dimorphic; i n females, spinous dorsal convex throughout, increas-ingly convex posteriorly , longest spine 3rd-5th, height 6.29 (.5-59-6.73) times i n SL; i n males, spinous dorsal margin convex posteriorly , almost straight anteriorly, reaching and surpassing soft dorsal when folded, 4th-6th spines longest, length 4.8l (4.34-5.29) times i n SL; spinous dorsal longer than soft dorsal , spinous dorsal height .89 (.»80-1.03) times in soft dorsal height; base of spinous dorsal shorter than soft dorsal base, spinous dorsal base 1.28 (1.16-1.43) times in soft dorsal base, 4.19 (3.99-4.79) times i n SL; second predorsal 1.77 (1.73-1.82) i n SL; height of soft dorsal sexually dimorphic; longest ray 4th-6th; margin f l a t anteriorly, convex 1*1* posteriorly; in males, longest ray 5.75 (5.21-6.1*1*) times in SL, in females, 6.8U (6.5^-7.26) times in SL; spinous dorsal originates on vertical through pelvic fin base, soft dorsal originating on vertical between 1st and 3rd anal ray, terminating on vertical between penultimate and antepenultimate anal rays. Preanal 1.86 (1.76-1.98) in SL; anal base long, 2.98 (2.77-3.22) times in SL; margin convex, shortest rays at either end. Pelvics originating halfway between anal origin, snout; pelvic fin length sexually dimorphic, in females, middle ray longest, length k.93 (k.39-5.37) times in SL, not reaching anus; in males, inner or middle ray longest, length k.ko (3.91-1*. 88) times in SL, reaching as far as anal origin; pectorals broad based, base 6.67 (6.32-7.01*) times in SL; base about 1*5° off vertical; longest rays 3rd-5th, length 2.91 (2.52-3.08) times in SL; pectoral strongly convex; no specimen with serrations on pectoral rays. Caudal truncate. Anus on small, rugose papilla slight-ly in advance of anus; male with small, conical penis, length 33.11 (26.31-1*9.Ok) times in SL. Meristic formulae Spinous dorsal 11 (10-11) (10.82); soft dorsal 17 (16-17) 0-6.61*); pectoral 20 (19-21) (19-95); anal 19 (18-19) (18.73); pelvics I, 3; lateral line pores1 1*6 (i*3-JU8); vertebrae 38 (37-39) (37-73); branchiostegals 6. Colour in alcohol Ground colour on dorsum to hypaxial-epaxial body division light 1. after Watanabe, i960. U5 brown to gray, dipping ahead of anal f i n , intensifying on nape, snout, cheek, opercle; body punctulations usually not present; i f present, vague; four large blotches on dorsum, one under spinous dorsal, two under soft dorsal, one on peduncle, these blotches, when present, very vague, belly, branchio-stegals, dentary, posterior 2/3 of premaxillary, posterior t i p of maxillary, broad region between preopercular spines, maxillary wedge on peduncle, ground colour of fins white to yellow; spinous, soft dorsals with 3—^+ oblique bands; pectorals with 3-k transverse bands; caudal with 3 transverse bands, width about that of interband width. Buccal cavity, peritoneum pale. Maximum size Male, 25.5 cm. SL, female 28.1 cm. SL. Colour i n Life "...the body i s largely cherry-red, pectorals golden, with whitish tips and black bands bordered with bright orange; maxillary orange; chin and belly white; orange bars on back; a brick-red band across top of head." (Jordan and Starks, 190^ 5-295) Etymology The specific name herzensteini is patrinymic, and i s named for Dr. Solomon Herzenstein, in recognition of his excellent work on the fishes of Hokkaido (Jordan and Starks, 190*+). Range Gymnocanthus herzensteini ranges around Hokkaido, mainland side of Japan Sea south to Korea. 46 Specimens Examined Reference Locality 1. BC63-153 Oshyoro Bay near Otaru. Hokkaido 2. BC72-118 Off Shikabe, east of Hakodate 3. SU 7572 Hakodate It. SU 18652 Hakodate? 5. SU 22291 Albatross Stn. 4988 No. 1 1 3 IT Coordinates Depth in meters l40°59'E, 43°l4'N l40°49*E, 42°03'N 50 l4o°44'E, 4l°46'N H+7017'E, 43°l4'N l40°21'E, 43°23*N 117 Literature Records No. Location Coordinates 6. Hakodate, Hokkaido la°36'N, lU0°UU'E 7. Tyosen ( Korea) 8. Gulf of Aniva ( Zaliv Aniva) 1+9°00'N, ll+3°l+0'E 9. Hakodate, Hokkaido la°36»N, ll+0°M+'E 10. Gensan ( Wonsan), Korea 39°07'N, 127°26'E 11. Peter the Great Bay ( Zaliv Petra Velikogo) 1+3°00'N, 132°00'E 12. Chongjin, Korea l+lO50'N, 129°50»E 13. Tohoku ( North Honshu) Hi. Toyama Bay 36°1*2*N, 137°ll+'E 15. Wonsan, Korea 39°07'N, 127°261E 16. Wakkanai, Hokkaido U5°26»N, 141°1+3'E 17. Yoichi, Hokkaido l+3°lVN, ll+0°l+T»E 18. Abashiri, Hokkaido 1+1+°02'N, ll+U017'E 19- Nemuro, Hokkaido lt3°22*N, ll+5°36'E 20. Akkeshi Bay, Hokkaido 1+3°02*N, llt4°52'E U7 Depth Reference  in meters Jordan and Starks, 1901+ Okada, 1938 Taranetz, 1937 Schmidt, 1950 ! ! It Mori, 152 Okada, 1955 it Abe, 1958 153 Watanabe, i960 66 77 66 77 49 Gymriocarithus 'detrisus Gilbert and Burke Synonymy Gymnocanthus detrisus: - Gilbert and Burke, 1912:6l (description, counts, measurements, colour, figure, distribution); Popov, 1933a:6l (description, ecology); ?Taranetz, 1933:67-68; Taranetz, 1937: 118 (key, measurements, distribution); Okada, 1938:230 (listed); Andriashev, 1939b:l-l87 (ecology, zoogeography); Kuronuma, 1943: 110 (counts, locality, data); Lindberg, 1947:188 (distribution); Vinogradov, 1949:575 (habitat); Schmidt, 1950:163 (synonymy, description, distribution); Kizevetter, 1954:273-293 (vitamin A in livers); Legeza, 1956:122-131 (distribution); Watanabe, I960: 6l (description, counts, measurements, colour, figure, plate). ?Gymnacanthus galeatus (non Bean): - Schmidt, 1903:97 (description, counts, measurements, colour, cf. with G. pistilliger, G. tricuspis). Gymnacanthus detrisus: - Schmidt, 1927:30 (measurements, cf. with G_. Herzensteini, distribution); Andriashev, 1937:28 (cf. with G_. galeatus , counts, measurements, figure). Gymnocanthus galeatus detrisus: - Lindberg and Soldatov, 1930:249 (synonymy, counts, description, distribution, key). Description Gymnocanthus detrisus Gilbert and Burke is a large northwestern Pacific form. Variation is slight, and descriptions of a small number of specimens is adequate to express this variation. Specimens described were BC56-344A, 2 females, 16.90, l6.93cm., l;-male, 19.60cm. ("Japan"); 50 BG63-675, 2 females, 23.95, 2*+.00cm. (Sea of Okhotsk); SU 22283, 1 female, 8.18cm., 1 male, 13.61+cm. (Sakhalin Is-.).; F-810, F-811, 1 female, 22.55cm., 1 male, 27.6lcm. (Japan). Body elongate, robust anteriorly, tapering posteriorly to a narrow peduncle, depth 23.21 (20.72-26.78) times in SL; peduncle rectangular, weakly laterally compressed. Greatest depth on vertical through pelvic girdle, depth at pelvic girdle 5.66 (1+.92-6.1+8); trunk generally ovate, weakly flattened ventrally, gently rounded dorsally. Head moderate, length 2.8*+ (2.76-3.10) times in SL; head tending to broader than deep, depth 1.23 (.1.09-1.1+0) times in width; in frontal p r o f i l e , head almost f l a t ventrally, f l a t or broadly weakly concave dorsally. Lateral line ossicles large, half an ossicle length or less separating ossicles anteriorly, becoming adjacent posteriorly; ossicles extend onto caudal rays. Never any p i s t i l l a e in pectoral a x i l . Scales about 1/3 the length of the ossicles below the spinous-soft dorsal interspace; dorsally, scales separated by distance equal to or exceeding their own length; scale patch extending practically to the end of the pectoral fins: scales sparse. Snout broad, blunt, length 1+.21 (3.75-^.63) times i n head, 11.95 (10.89-13.01) times in SL; orbit-nasal spine distance moderate, making snout Jut out slightly. Teeth v i l l i f o r m , small, posteriorly recurved, randomly situated on jaws; tooth band up to 5 teeth wide on premaxillary near symphysis; tooth band narrowing posteriorly; tissue in mouth may be papillose directly ahead of or behind tooth pads; 1-2 rows of papillae on lips anterior to dentary and premaxillary; 2-3 rows posterior to these teeth; mouth moderate, upper jaw length 2.51 (2.19-2.68) times in head; maxillary extending to or past 51 v e r t i c a l through p u p i l center i n f i s h larger than 10cm. not reaching t h i s l i n e i n smaller f i s h . Single pair strong, frequently-emergent, moderately post e r i o r l y recurved nasal spines; two pairs of n o s t r i l s , f i r s t pair on v e r t i c a l plane through nasal spines, length of nasal tube subequal to nasal spine length; tube constricted terminally such that oval terminal pore opens a n t e r i o r l y ; posterior nares posterolateral to nasal spines, 2/3 distance from orbit rim; tube always much lower than nasal spine, anterior n o s t r i l s ; nasal tube produced such that pore opens upward or posterolaterally. Orbits moderate, longer than deep, length 3.53 (3.23-3.91) i n head, depth 1.35 (1.25-1.1+1+) into length; never any o r b i t a l c i r r i ; i n t e r o r b i t a l very broad, f l a t or weakly concave; i f concave, broadly U-shaped i n large specimens (over 10cm.) and broadly V-shaped i n smaller specimens (under 10cm.); width of i n t e r o r b i t a l 6.1+2 (5.25-10.0) times i n head, larger specimens with disproportionately wider i n t e r o r b i t a l s , smal-l e r specimens (under 8cm.) with the narrower i n t e r o r b i t a l s . Tubercle development on head not p a r t i c u l a r l y variable; posterodorsal orbit margin forming strong tubercle which i s produced more l a t e r a l l y than v e r t i c a l l y , setting o f f a d i s t i n c t p o s t o r b i t a l notch; pos t o r b i t a l notch width 3.86 (3.1+7-4.33) times i n head; strong nape ridges extending back from post-o r b i t a l , curving outward at supratemporal cephalic sensory canal becoming confluent with l a t e r a l l i n e ; moderate tubercle development just behind pos t o r b i t a l tubercle; small r i d g e - l i k e tubercle behind supratemporal cephalic sensory canal; tubercle development i n f i s h 6cm. or greater size independent. Nape heavily invested i n granulations especially i n speci-mens over 8cm. long; granulations often extending posteromedially to a 52 point 1-2 dorsal spines distance i n front of spinous dorsal , posterolateral-l y to the v e r t i c a l through 2nd-i+th dorsal spines :; granulations extending anteriorly across interorbital often past l ine between posterior n o s t r i l s ; granulations may be found on leading face of prefrontals, along inter -orbi ta l margin, ascending preopercular shaft, upper branch of opercular, kth and 5th inf raorbi ta ls , upper side of suborbital stay, although are largely contained by la teral cephalic sensory canals; la tera l canals protected by dist inct ridge of granulations. Suborbital stay strong, k.f6 (k.10-5.18) times i n head. Four preopercular spines, the uppermost strong with 2-6 cusps, modally k (mean 3.70); f i r s t preopercular spine occasion-a l l y reaching posterior opercular margin, invariably reaching well past ver t i ca l through opercular notch anterior margin; ventrally directed sub-opercular spine often sharp, exposed; dorsal border of opercle straight or weakly concave. Clei thral spine very weak, almost never emergent. Dorsal f ins separate, interdorsal distance variable , width of up to 3 dorsal spines; f i r s t predorsal length 2.95 (2.7^-3.17) times i n SL; spinous dorsal moderately convex; longest spine 3rd-l+th, height 5.77 (^.66-7-35) times in SL; base of spinous dorsal shorter than soft dorsal base, spinous dorsal base 1+.68 (k.2Q-5.lk) times i n SL, l . U l (1.28-1.59) times i n soft dorsal base; soft dorsal base 3.33 (2.95-3.56) times in SL; second pre-dorsal 1.80 (1.71-1.93) times i n SL; margin convex anteriorly and post-e r i o r l y , f l a t between; longest dorsal ray 3rd-*tth, height 5.83 (k.70-7.15) times i n SL; spinous and soft dorsals about equally long, spinous dorsal height 1.03 (.87-1.15) times i n soft dorsal height; f i r s t dorsal or igin on ver t i ca l through f i r s t pectoral ray o r i g i n ; origin of soft dorsal on 53 vertical through 2nd-3rd anal ray, terminating on vertical between last and antepenultimate anal rays. Preanal I.85 (1.69-2.00) times in SL; anal base long, 3.12 (2.88-3.46) times in SL; margin f l a t , a l l rays except f i r s t and last about equally long. Pelvics originating halfway between snout and anus, length moderately sexually dimorphic; middle or inner ray longest; in males, extending past anus, often as far as anal f i n origin, length 3.42 (2.80-4.05) times in SL; in females, pelvics not reaching anus, length 5.14 (4.70-5.98) times in SL. Pectoral broad based, base 6.74 (5-97-7.52) times in SL; base about 45° off v e r t i c a l ; pectoral margin strongly convex, most posteriorly extending ray 5th-7th; inner face of pectoral rays entirely lacking serrated edge in both sexes. Caudal truncate. Anus on small rugose papilla slightly in advance of anal f i n ; male with small, conical penis immediately behind anus, penis length 28.96 (20.37-52.46) times in SL. Meristic Formulae Spinous dorsal 10 (9-11) (10.02); soft dorsal 16 (15-18) (l6.28).; pectoral 20 (19-20) (19.80); anal 18 (15-19) (17-91); pelvis I, 3, vertebrae 38 (37-39) (38.05); branchiostegals 6. Colour in Alcohol Body ground colour brown to tan on dorsum to epaxial-hypaxial body division; ahead of anal f i n , dark colouration dropping below that l i n e ; ground colour intensifying on snout, cheek, occiput, upper branch of opercular; upper half of body with many punctulations; in addition, four large blotches on dorsum, f i r s t under spinous dorsal center, second and 5h third under soft dorsal, last on peduncle; series of small, vague blotches along midlateral aspect tending to coalesce with dorsal blotches; spinous dorsal slightly dusky i n males, clear in females; spinous dorsal with about 3 oblique bands; soft dorsal with 4-6 vertical or oblique bands; pectoral with 3-4 transverse moderate (often as wide as pupil) bands; caudal with 3-4 tranverse bands, interband width exceeding band width; ventrum, posterior t i p of maxillary, posterior half of dentary and premaxillary, branchiostegals, ground colour of fins (except spinous dorsal), wedge on peduncle extending to upper margin of caudal f i n , margin around lower three preopercular spines yellowish to white; males without distinct pectoral axillary white spots or white-striped pelvics; buccal cavity pale; peritoneum pale. Juvenile colour essentially that of adult except spinous dorsal not dusky in males. Maximum size Males and females 27cm. Etymology The origin of the specific name, detrisus i s unknown; Gilbert and Burke (1912) do not offer any derivation. Range Gymnocanthus detrisus ranges along both the southwestern and south-eastern Kamchatkan coasts, the northern Kurile Islands, northern Hokkaido, Tatar Strait, along the western coast of the Sea of Japan to Vladivostok. 55 Systematic notes As observed previously, this species has sometimes been regarded as a subspecies of G. galeatus. However, G. detrisus has been found to be distinguishable from that form at a l l times on the basis of its very wide interorbital, its slightly but consistently different tubercle pattern, its different colour pattern, long preopercular spine, and different range. In Gilbert and Burke's (1912) original description they stated that G. detrisus was most closely related to G. herzensteini, with which I disagree. G_. detrisus shares with that species a wide interorbital, but differs in its much broader head and entirely different granulation tubercle and axillary scale development. Instead, I suggest i t is very close to G. galeatus which i t more closely resembles in these latter chara-cters . 56 Material Examined Collection Number Locality data or  original collector No. Coordinates Depth in metres BC56-3MA Japan 2. BC60 -153 Oshyoro Bay, Otaro, Hokkaido, Japan 1 ll+0°59'E, l+3°ll+'N 3. BC63 -671 11 155°2l+'E, 52°1+9'N 81+ 1+. BC63-675 Okhotsk Sea 19 155°1+2'E, 52°1+3'N 51+ 5. SU 1861+8 Albatross Stn. 5006 1 ll+2°29'E, l+6°0l+'N 78.7 6. SU 22283 Albatross Stn. 5008, Sakhalin Is. 2 ll+2°37'E, 1+6°07'N 73.2 7. su 22361 Albatross Stn. U798 2 156°21'E, 51°37'N 54.9 8. F 810, F 811 2 150°l6'E, 1+5°56'N? 61+.0 1+3 57 Literature Records No. Location Coordinates 10 11 12 13 Ik 15 16 17 18 19 Depth in meters 9 Albatross Stn. 1+798 51 37*N, 156°21'E 55 Tatar Strait ( Tatar- 50°00'N, lUl°00'E skiy Proliv) Avacha, U.S'.S.R. Western Kamchatka Akhemten? 53°07'N, 158°33'E 52°38'N, 155°40'E Peter the Great Bay 1+3°00'N, 132°00'E ( Zaliv Petra Valikogo) Paramushir Is. (Kurile 50°30*N, 156°00»E Islands) Wakkanai, Hokkaido Nemuro, Hokkaido Mombetsu, Hokkaido M+O20'N, ll+3°20'E 153 Akkeshi Bay, Hokkaido 1+3°02*N, ll+l+°52'E 77 U5°26'N, ll+l0l43'E 1+3°22'N, lU5°36'E 77 61 Reference Gilbert and Burke, 1912 Schmidt, 1927 Tatanetz, 1937 Kuronuma, 19^3 Watanabe, i960 58 o o o o i Distribution santhus detrisus H O r-i \ l\ ° > \ II bO » • XP VOr H O O e % H O O \° *\ r % H —v O ^—^- o >, - r 59 Gymnocanthus intermedius (Temminck and Schlegel) Cottus intermedius: - Temminck and Schlegel, 181+3:88 (type description, colour, counts). ?Cottus filamentosus: - Sauvage, 1875:279 (description, locality data Hawaii, l i k e l y erroneous, probably Japanese). Gymnacanthus intermedius: - Gilbert, 1893:k2k (counts, description, measurements, granulation pattern, distribution, cf. with G_. tricuspis). Gymnocanthus intermedius: - Jordan and Starks, 190U:282 (synonymy, description, counts, measurements, colour, distribution, cf. with G. p i s t i l l i g e r , Cottus filamentosus); Gratsianov, 1907:303 (key, synonymy, distribution); Jordan, Tanaka, and Snyder, 1913: 272 (listed); Soldatov and Lindberg, 1930:21+7 (synonymy, counts, description, distribution, key); Rendahl, 1931a:73 (counts, cf. with G. p i s t i l l i g e r , herzensteini, tricuspis); Mori and Uchida, 193l+:l8 (listed); Taranetz, 1937:118 (distribution, key); Taranetz, 191+1:8 (figure of neurocranium); Lindberg, 19l+7:l88 (distribution); Katayama, 1956 (locality, measurements, figure); Legeza, 1956:122-131 (distribution); Sato and Kobayashi, 1956:7 (locality, ecology); Watanabe, 1960:51+ (descriptions, counts, measurements, colour, figure, plate). Gymnocanthus ventralis (non Cuvier and Valenciennes): - Gratsianov, 1907: 303 (key, synonymy, distribution); Okada, 1938:230 (listed); Mori, 1952:162 (listed, l o c a l i t y ) ; Mori, 1956:28 (listed). Gymnacanthus p i s t i l l i g e r ventralis (non Cuvier and Valenciennes): - Schmidt, 6o 1927:27 (synonymy, description, cf. with G. p i s t i l l i g e r , distribution). Gymnocanthus p i s t i l l i g e r ventralis (non Cuvier and Valenciennes): - Schmidt, 1950:162 (key, distribution, cf. with G. p i s t i l l i g e r ) . ?Gymnocanthus galeatus (non Bean): - Watanabe, 1960:59 (description, counts, measurements, colour; apparently not that species, probably G. intermedius). Description Gymnocanthus intermedius (Temminck and Schlegel) is a small, distinctive northwest Pacific form showing only slight variation within the species. Specimens described were UW 2817, 1 male, 10.6k cm., 1 female, 10.62 cm. (Mitsu Bay, Japan); IU 10686, 2 females, 8.1+3, 6.71 cm. (Aonori, Kikuoku, Japan); IU 7571, 2 males, 17.33, 13.33 cm., 2 females, 17.99, 16.78 cm. (Hakodate, Japan); BC56-31+0, 1 male, ik.lk cm. ("Japan"); SU 17172, 1 female, 13-58 cm. (Korea). Body moderate, robust anteriorly, tapering to a narrow peduncle, depth 19.57 (17.17-20.63) times in SL; in cross section, peduncle rect-angular, weakly laterally compressed. Greatest depth on ver t i c a l through pelvic girdle, depth at pelvic girdle 5-05 (^.00-5.90) times in SL; trunk generally ovate in cross section, weakly rounded ventrally, moderately rounded dorsally. Head moderate, length 2.8k (1.68-2.9*0 times in SL; head tending to be as broad as deep, depth 1.01+ (.92-1.25) times in width; in frontal p r o f i l e , nape broadly, weakly concave, ventrum f l a t to broadly rounded. Lateral line ossicles large, less than half an ossicle 61 2/3 the distance of the anterior nares base from the nasal spine tip. Orbits moderate, longer than deep, length 3.52 (3-24-3.90) times in head, depth 1.20 (1.10-1.35) times in length; single, strong, unifid cirrus originating immediately below postorbital tubercle in both juveniles and adults; interorbital moderate, flat to weakly, broadly concave, width 13.56 (ll.20-l6.05) in head. Tubercle development on head not particular-ly variable; posterodorsal orbit margin forming strong postorbital tubercle which is more strongly produced laterally than vertically, setting off a distinct postorbital notch, width 5.1+5 (5.01-6.12) times in head; weak nape ridges extending back from postorbital tubercle, curving laterally at supratemporal cephalic sensory canal, becoming confluent with lateral line; in larger specimens (over 10cm.) long ridgelike tubercle on ridge at supra-temporal canal, but no appreciable tubecle development immediately behind notch. Nape heavily invested in granulations, especially in specimens over 8cm. long; granulations often extending posteromedially to a point 2-3 dorsal spines distance in front of spinous dorsal, posterolateral^ to the same line; granulations extending anteriorly at least to postorbital tubercles and in larger specimens, across the interorbital, short of post-erior nares; granulations largely contained by lateral cephalic sensory canals; 5th infraorbital occasionally with a granulation; no granulations on operculum, preoperculum, or suborbital stay; lateral canal usually, supratemporal, supraoccipital canals occasionally protected by distinct ridge of granulations. Suborbital stay strong, length 4.33 (3.93-4.80) times in SL. Four preopercular spines, the uppermost strong with 1-5 cusps, modally 3 (mean 2.91); first preopercular spine usually reaching 62 past opercle border; ventrally directed subopercular spine sharp, exposed; superior border of opercular flap straight to weakly convex. Clei thral spine broad, very strong, usually exposed; spine forms dist inct lump under skin where not exposed. Dorsal f ins separate, interdorsal distance variable, width up to 3 dorsal spines; f i r s t predorsal lenth 2.97 (2.81-3.13) times i n SL; spinous dorsal margin convex, longest spine 2nd-3rd; spinous dorsal length sexually dimorphic, in males 5.19 (4.27-5-72) times in SL, i n females 5.60 (4.83-6.27) times i n SL; base of spinous dorsal shorter than soft dorsal base, spinous dorsal base 1.33 (1.16-1.47) times i n soft dorsal base, 4.49 (4.00-4.79) times i n SL; soft dorsal base 3.36 (3.10-3.87) times i n SL, second predorsal 3.56 (3.10-3.87) times i n SL; soft dorsal margin f l a t anteriorly, convex posteriorly ; longest dorsal ray 3rd-5th- height 6.22 (5.13-7.30) times i n SL; spinous dorsal longer than soft dorsal , spinous dorsal length .85 (.74-.99) times i n soft dorsal length; f i r s t dorsal origin on ver t i ca l through origin of f i r s t pectoral ray; or igin of second dorsal over f i r s t or second anal ray, ending on v e r t i c a l between last and antepenultimate anal ray. Preanal 1.82 (1.73-1.88) times i n SL; anal base long, 3.l4 (2.30-3.32) times i n SL; anal margin f l a t , a l l rays (except for shorts f i r s t and last rays) approximately equally long. Pelvics originating halfway between cloaca and snout; inner ray usually longest; i n males, extending past 4th anal ray, length 2.84 (2.52-3.35) times in SL; in females, pelvics shorter, rarely reaching anus, length 4.73 (4.40-4.90) times i n SL. Pectoral broad-based, base 6.75 (5.87-7.58) times i n SL; base 4 0 - 4 5 ° off v e r t i c a l ; pectoral margin strongly convex, posterormost extending ray 5th-7th, often reaching past 2nd dorsal 63 ray; some males with well-developed serrations on inner face of pectoral rays, a l l females lacking these serrations. Caudal truncate. Anus on moderate, rugose papilla slightly in advance of anus; male with small, conical penis immediately behind anus, length 30.82 (19.93-56.56) times in SL. Meristic formulae Spinous dorsal 9 (9-10) (9.48); soft dorsal 15 (14-15) (14.67); pectoral 19 (16-20) (19.22); anal 15 (14-16) (15.07); pelvics I, 3; vertebrae 34 (33-35) (34.0); branchiostegals 6. Colour in Alcohol Body ground colour brown to tan on dorsum to epaxial-hypaxial body division; ahead of anal f i n , dark colouration dipping below that line; ground colour intensifying on entire cheek, much of nape; body with many tightly arranged punctulations, these punctulations sometimes tending to coalesce into four dorsal blotches, one under the spinous dorsal, two under the soft dorsal, and on the peduncle; also, tending to coalesce into small blotches along midlateral aspect; spinous dorsal with dark spots sometimes arranged in broad bands; rayed dorsal with 3-4 oblique dark bands; pectoral with 3-4 dark, narrow (narrow than pupil) trans-verse bands; caudal with 3-4 transverse bands, interband width much greater than band width; belly, branchiostegals, dentary, posterior tip of maxil-lary, posterior half of premaxillary, ground colour of fins, wedge on peduncle extending to upper margin of caudal fin, lower margin of opercle yellowish to white; males with white pistillae, white spots in pectoral 64 a x i l , white band across interorbital, wide spots on nape, upper opercular; postorbital cirrus dark; buccal cavity pale; peritonium pale. Colour in Life "Olive, finely mottled with brown, salmon red shades on sides; fins barred; the dorsal, anal, caudal, pectoral washed with salmon red, bright-est on pectoral and caudal; ventral white, faintly barred with salmon; lower side of head more or less yellow" (Jordan and Starks, 1904:293) Maximum size Females If.7 cm., males l4 .7 cm. SL. Etymology The species name, intermedius i s from the l a t i n "intermedius", and i s a reference to i t s supposed intermediate position between Enophrys  diceraus and Gymnocanthus p i s t i l l i g e r (Temminck and Schlegel, 1842). Range The species is found on both the north and south ends of Hokkaido, in the Strait of Tatar, along the west side of the Japan Sea to Korea. Systematic Notes This small Japan Sea species is very similar to G_. p i s t i l l i g e r in several features such as the size range, form of sexual dimorphism, development of cleithra l spine, and f i n counts. It i s apparently a distinct species and not a subspecies of G. p i s t i l l i g e r (Schmidt, 1950) since i t geographically overlaps with that form. Secondly, the cleithra l 65 spine development and sexual dimorphism which show this species to be closely related to G_. pistilliger are subtly, but consistantly different enough to distinguish the forms at a l l times. Gymnocanthus intermedius has been called G_. ventralis on occasion (Gratsianov, 1907; Schmidt, 1927). According to Cuvier and Valenciennes, (1829:194) Gymnocanthus ventralis possesses a preopercular spine which "n'atteint pas le bord de l'opercule....11 y a une petite epine en avant de l ' o e i l , une pointe mousse, ou plutot une tuberosite, de chaque cote de l 1 occiput." In most G_. pistilliger examined, the preopercular spine almost reaches, but does not quite reach the edge of the operculum. Secondly, that species possesses distinct occipital tubercles. In G_. intermedius, the first preopercular spine does frequently pass the opercular margin, while its occipital "tubercles" are l i t t l e more than very poorly developed ridges. In a l l likelihood, G_. ventralis is identifiable with G_. pistilliger. 66 Material Examined Reference Locality No. 1. BC56-340 "Japan" 2 2. IU 10686 Aonori (Aomori?), Kikuoku 3 3 . SU 7570 "Japan" 2 k. SU 7571 Hakodate, Japan 12 5. SU 7907 "Japan" 1 6. SU 17172 "Korea" 1 7. UW 2817 Mitsu Bay, Japan 6 27 Coordinates Depth in meters ? 1 4 0 ° 1 + 3 ' E , lrO°50*N 1 l l+0° l iO'E , itl°40»N ? 1 132°50'E, 3 14 o20 ,N? 67 L i t e r a t u r e R e c o r d s No. L o c a t i o n C o o r d i n a t e s D e p t h i n m e t r e s 8 J e z o ( - H o k k a i d o ) 9 9 H a k o d a t e , H o k k a i d o kl 1+6'N, ll+0 1+1+»E 10 Same ( - S a m e m i n a t o ? ) , H o k k a i d o 4 0 3 2 ' N , l l + l 32*E 11 O t a r u , H o k k a i d o 1+3 l U ' N , ll+O 59'E 12 I s h i k a r a , H o k k a i d o 1+3 3 0 ' N , ll+0 1+0*E 1 3 P e t e r t h e G r e a t B a y ( - Z a l i v P e t r a V e l i k o y o ) 1+3 00'N, 1 3 2 00'E Ik V l a d i m i r B a y ( - Z a l i v V l a d -i m i r a ) 1+3 54'N, 1 3 5 30'E 1 5 T y o s e n ( - K o r e a ) 16 P o s ' e t B a y , U.S.S.R. 1+2 38'N, 130 1+7'E 17 S a k h a l i n , w e s t c o a s t 19 F u s a n ( - P u s a n ) , K o r e a 35 05'N, 128 02'E 20 C h o n g j i n , K o r e a 1+1 50'N, 129 55'E 21 V o l c a n B a y ( - I c h i u r a W a n ) , H o k k a i d o 1+2 21'N, ll+O 59'E 22 W a k k a n a i , H o k k a i d o 1+5 26'N, l l + l 36'E 66 23 A b a s h i r i , H o k k a i d o 1+1+ 02'N, 11+1+ 17'E 59 2k A b a s h i r i , H o k k a i d o 1+1+ 02'N, 11+1+ 17'E 153 25 N e m u r o , H o k k a i d o 1+3 22'N, 1^5 36'E 59 26 A k k e s h i B a y , H o k k a i d o 1+3 02'N, 11+1+ 52'E 55 27. M a s h i k e , H o k k a i d o 1+3 52*N, l l + l 3 2 ' E 66 28 U s u , H o k k a i d o 1+2 3l+'N, ll+O 27'E 77 R e f e r e n c e S c h l e g e l , 181+3 G i l b e r t , 1893 T a r a n e t z , 1937 it O k a d a , 1938 S c h m i d t , 1950 tt J o r d a n a n d M e t z , 1913 M o r i a n d U c h i d a , 1931+ S a t o a n d K o b a y a s h i , 1956 W a t a n a b e , i960 69 Gymnocanthus pistilliger (Pallas) Cottus pistilliger: - Pallas, 1811:14.3 (type-description, counts, colour); Cuvier and Valenciennes, 1829:193 (description, counts, colour); Lay and Bennett, 1829:58 (description after Cuvier and Valencien-nes); Gunther, 1860:167 (description). Cottus cephaloides: - Grey, in Cuvier and Valenciennes, 1829:194 (description colabeled tinder Cottus ventralis, Cottus cephaloides; type of Cottus ventralis). Cottus ventralis: - Cuvier and Valenciennes, 1829:194 (description, counts, colour); Gunther, 1860:168 (partly non Cuvier and Valenciennes; description, counts). Gymnocanthus ventralis: - Swainson, 1839:271 (description; type Cottus  ventralis Cuvier and Valenciennes by monotypy). Acanthocottus psittiliger: - Girard, 1851:186 (listed; lapsus calami) Elaphocottus pistilliger: - Sauvage, 1878:109-158 (description, cf. with other subgenera of the archaic "Cottus"). Gymnacanthus pistilliger: - Collett, 1880:26 (partly non-Pallas; description, counts, colour, distribution); Bean, 1882:249 (partly non Pallas; distribution); Smitt, 1893:l6l (description, figure of male, female, dimorphism, measurements, cf. with G. tricuspis); Bean and Bean, 1896:42 (locality) Gilbert, I896: 424 (description, counts, measurements, colour, cf. with G. tricuspis); Knipovich; 1903:9 (counts, measurements, description, cf. with G. tricuspis); Schmidt, 1904:94 (synonymy); ?Andriashev, 1939h:l-l87 (ecology); Andriashev, 1954:400 (description, counts, 70 figure, distribution). Gymnocanthus p i s t i l l i g e r : - Jordan and Evermann, l8Q6:2006 (description, counts, measurements, plate, cf. with G. tricuspis); Jordan and Gilbert, 1899:460 (description, l o c a l i t y data); Scofield, 1899:503 (counts); Ehrenbaum, 1901:85 (synonymy, cf. with G. tricuspis); Jordan and Starks, 1904:290 (synonymy, description, colour, counts, figure); Gratsianov, 1907:303 (key, synonymy, d i s t r i -bution); Evermann and Goldsborough, 1909:319 (figure, d i s t r i -bution); Gilbert and Burke, 1912:6l (description, counts); Le Danois, 1913:425 (cf. with G. tricuspis); Jordan, Tanaka, and Snyder, 1913:271 (listed, figure); Jordan, Evermann, and Clark, 1930:389 (synonymy, distribution); Soldatov and Lindberg, 1930: 245 (synonymy, counts, description, distribution, key); Krivofcok 1931:107-115 ( l o c a l i t y ) ; Popov, 1933a:6la (locality, ecology, description); Popov, 1933b:139-155: Popov, 1935:353-355; Andriashev, 1937:27 (cf. with G. tricuspis; counts); ?Taranetz, 1937:118 (figure, distribution); Okada, 1938:230 (listed); Andriashev, 1939b (zoogeography); Lindberg, 1947:188 (distribution); Vinogradov, 1949:575 (locality); Kobayashi and Ueno, 1956:252 (locality, measurements, counts, colour); Legeza, 1956:121-131 (distribution); Abe, 1958:57 (description, counts, distribution, figure); McAllister, 1960:16 (key); Watanabe, 1960:56 (descri-ption, counts, measurements, colour, figure, plate); Quast and Hall, 1972:21 (references). Gymnocanthus p i s t i l l i g e r p i s t i l l i g e r : - Schmidt, 1927:26 (key, distribution 71 cf. with G. intermedius); Rendahl, 1931b:55 (counts, description, measurements, cf. with G. galeatus, intermedius, herzensteini); Schmidt, 1950:l6l (description, d i s t r i b u t i o n , cf. with G. v e n t r a l i s , G. intermedius). Gymnocanthus p i s t i l l i g e r meridionalis: - Rendahl, 1931b:68 (cf. with G. p i s t i l l i g e r ) . Description Gymnocanthus p i s t i l l i g e r has a very broad distribution,- reaching from Southeast Alaska to Vladivostok and north almost to the Bering S t r a i t s . The va r i a t i o n encountered over t h i s range i s not great, and a description of the following species was adequate to express t h i s v a r i a t i o n . Speci-mens described were UW 7325, 1 male, 1109cm., 1 female, 10.20cm. (Norton Sound, Alaska); SU 3003, 1 male, 10.07cm., 1 female, 11.18cm. ( B r i s t o l Bay, Alaska); BC63-1026, 1 male, 13.4lcm., 1 female, 14.34cm. (Region Island, Alaska); BC56 -340, 1 male, 15.35cm., 1 female, 18.34cm. ("Japan"). Body moderate, robust a n t e r i o r l y , tapering posteriorly to a narrow peduncle, depth 23.82 (19.56-29.95) times i n SL; peduncle generally r e c t -angular, weakly l a t e r a l l y compressed; greatest depth of body on v e r t i c a l through pe l v i c g i r d l e , depth at pelvic g i r d l e 5.11 (4.54-5.87) times i n SL; trunk oval, weakly l a t e r a l l y compressed from peduncle to v e r t i c a l through anal o r i g i n . Head moderate, length 2.96 (2.74-3.15) into SL; head broad, flattened, depth 1.12 (.73-1.29) i n width; i n f r o n t a l p r o f i l e , head weakly, broadly concave v e n t r a l l y , moderately, narrowly concave dorsally. Lateral l i n e ossicles moderate, h a l f an ossicle-length separating them ant e r i o r l y , becoming v i r t u a l l y adjacent caudally; ossicles extend to peduncle, 72 onto caudal rays; males with p i s t i l l a e i n pectoral a x i l ; p i s t i l s 1-2 ossicles long, spatulate at t i p , 3-5 times as broad at t i p as at base; 1-3 p i s t i l l a e arising from common origin. Axillary scales moderate, about half the size of lateral line ossicles at spinous soft dorsal interspace; dorsally, scales density moderate. Snout blunt, length moderate, 4.18 (3.63-4.94) times in head, 12.44 (10.70-14.56) times in SL. Lateral ethmoidnasal spine distance short to moderate, making later a l orbit-snout profile moderately to weakly abrupt. Teeth randomly placed, small, v i l l i f o r m , weakly posteriorly recurv-ed; dentary tooth pad up to 3 teeth wide at symphysis, premaxillary pad up to 4 teeth wide at symphysis; tooth band width narrows posteriorly. Tissue in mouth papillose directly ahead of or behind tooth pads; up to 2 rows posterior to premaxillary teeth, about 1 row behind dentary ahead of dentary, premaxillary teeth. Mouth moderate, upper jaw 2.64 (2.48-2.91) times in head; maxillary may reach vertical through pupil center, usually only to anterior pupil margin. Single pair moderate, moderately recurved nasal spines. Two pairs of nostrils, f i r s t pair just anterior to vertical plane through nasal spines; f i r s t pair tubular, tubes about 1/2 as high as nasal spines; anterior nostrils constricted distally such that terminal pore i s directed anterolaterally; posterior nasal tubule, posterolateral to nasal spine base; this tubule almost as high as anterior tubule; posterior tubule equidistant from prefrontal base of nasal spine; posterior tubule produced such that i t is directed straight up or posterolaterally; posterior and anterior nasal tube bases equidistant from nasal spine base. Orbits moderate, longer than deep, length 3.53 (3.13-4.16) times in head, .76 (.68-1.04) times in depth. Interorbital narrow, 19.11 (13.71-28.08) times 73 in head V-shaped. Tubercle development consistant; posterodorsal margin of orbit forming postorbital tubercle; this tubercle developed strongly l a t e r a l l y and v e r t i c a l l y , setting of dist inct postorbital notch, width 3.53 (3.13-4.16) times i n SL; young f i s h (under 6cm.) may have small, u n i f i d cirrus originating immediately under postorbital tubercle. Nape ridges extending back from notch, angling la te ra l ly at supratemporal, cephalic sensory canals becoming confluent with la tera l l i n e ; moderate to strong tubercle on ridge direct ly behind postorbital notch; second moderate tubercle just ahead of supratemporal canal; thi rd strong tubercle direct ly over or just behind that canal. Nape usually, but not always, covered by bony granulations; these, when present, may extend posteromedially to a point 2-3 dorsal spines width ahead of spinous dorsal ; l a t e r a l l y , extend-ing back to origin of spinous dorsal ; anteriorly, reaching interorbital but not completely crossing i t ; l a t e r a l l y , reaching la tera l canals, and are largely confined to within these canals; occasionally, granulations on upper branch of operculum, on preopercular ascending limb; granulations not found on either infraorbitals or suborbital stay; when granulations present, tending to thinly invest sensory canals. Suborbital stay strong, 4.24 (3.74-4.88) i n head. Preopercular with four spines, the upper strong, bearing 1-4 cusps, modally 2 (mean 2.24); this spine usually reaching past ver t i ca l through opercular notch anterior margin, but not reaching posterior margin of opercular; suboperculum with sharp, ventrally directed, generally exposed point; opercle with f l a t to gently convex dorsal margin. Clei thral spine moderate to strong, point usually emergent, imbedded shaft forming v i s i b l e lump. Dorsal fins separate, interdorsal 74 distance variable, up to 3 times width, dorsal spine; f i r s t predorsal length 3.06 (2.90-3. =7) times in SL; f i r s t dorsal margin strongly convex; height strongly sexually dimorphic; in males, longest spine 3rd-4th, length 4.67 (3.87-5.97) times in SL, i n females, longest spine 2nd or 3rd, length 6.05 (5.10-7.97) times in SL; spinous and soft dorsals almost equally high, spinous dorsal height .98 (.75-1.25) times in soft dorsal ; spinous dorsal base shorter than soft dorsal base, length of spinous dorsal base 4.56 (4.06-5.28) times in SL, 1.30 (1.15-1.54) times i n soft dorsal base; soft dorsal base 3.49 (3.10-3.76) times in SL, second predorsal 1.80 (.1.56-1.92) times in SL; soft dorsal f l a t anteriorly, convex posteriorly ; height sexually dimorphic; in males, longest ray 6th-8th, height 5-04 (4.00-7.02) times in SL, in females, longest ray 4th-6th, height 5.93 (5.13-7.37) times in SL; spinous dorsal originates on ver t i ca l through f i r s t pectoral ray, soft dorsal originates on ver t i ca l between lst-2nd anal rays, terminates on v e r t i c a l between last and antepenultimate anal ray. Anal f i n long, base 3.11 (2.86-3.34) times in SL; anal low, margin straight, a l l rays (except for short last ray) approximately similar lengths; pre-anal 1.89 (1.78-1.99) times in SL. Pelvics originating halfway between snout, anal o r i g i n ; length very sexually dimorphic; in males, middle ray usually longest, inner ray sometimes longest, sometimes reaching past anal f i n center, length 2.71 (1.94-3.22) times i n SL; in females, inner ray longest, reaches only to anus; length 4.63 (4.23-5.11) times i n SL. Pect-orals broad based, base 6.50 (5-97-7.45) times in SL, length 2.55 (2.16-2.98) times in SL; longest ray 4th-6th; pectoral margins strongly convex; i n males, inner face of pectoral rays raised as serrated edge. Caudal 75 truncate. Anus on moderate anal papilla slightly in advance of anal f i n ; male with large penis, length 21.01 (.12.28-38.44) times in SL. Meristic formulae Spinous dorsal 10 (.9-11) (9-74); soft dorsal l4 (13-16) (ik.kl); pectoral 19 (.15-20) (l8.53); anal 16 (14-18) (l6.08); pelvic I, 3; lat e r a l line pores 34-42, usually 37-401, vertebrae 36 (34-37) (35-62); branchi-ostegals 6. Colour in Alcohol Ground colour of dorsum to epaxial-hypaxial body division light grey to brown, dipping ahead of anal f i n ; ground colour intensifying on cheek forward to anterior nostrils, on occiput; dorsum with many dark punctulat-ions, these coalescing to form four large blotches on dorsum, one under spinous dorsal, two under soft dorsal, and one on peduncle; also coalesc-ing to form smaller, vague blotches along midlateral aspect of body; belly, branchiostegals, rear half of premaxillary and dentary, posterior t i p of maxillary, preoperculum below f i r s t spine, ground colour of fin s , wedge on peduncle white to pale yellow; males with large, bright white spots as well as white p i s t i l l a e in pectoral axillae; males with small melanophores around axillary spots; females with 3-4 very irregular narrow bands on spinous dorsal, ground colour clear-yellowish; males with 3-4 broader, equally irregular bands on spinous dorsal, ground colour dusky, spinous dorsal with white spots; 3-4 narrow oblique bands on soft dorsal; pectoral 1. Soldatov and Lindberg, 1930. 76 with. 3-5 narrow transverse bands, caudal with 3-4 narrow transverse bands, interband width much greater than band width males with white bands on the yellowish pelvics, females lacking these bands. Buccal cavity, peritoneum pale. Colour of juveniles dissimilar in that the dorsal four blotches are much intensified; sexual dimorphism not present. Maximum size Females l8.7cm., males, 15.5cm. SL. Etymology The specific name pistilliger is from the latin "pistillum" (pestle), and the latin "gero" (to bear), in reference to the subpectoral dermal appendages born by the male. Range Known from Southeast Alaska, south Alaska, Aleutians to Amchitka;, Bristol Bay, Pribilof Islands, north to Port Clarence, northern Hokkaido, both east and west coast of Kamchatka, Gulf of Sakhalin, mainland coast of Sea of Japan south at least to Vladivostok. Systematic Notes Although Gymnocanthus pistilliger was the first species of the genus Gymnocanthus described, the characteristic pistillae of the males, restricted variation, and more restricted distribution have saved i t from the nomenclatorial fate endured by G_. tricuspis. G_. pistilliger has often been confused with that species (see synonymy for G. tricuspis) but may 77 always be distinguished by certain features (see synopsis)'. As pointed out previously (see G. intermedius) the controversial synonym G.'ventralis may be identified with G. p i s t i l l i g e r . Several authors (Schmidt, 1927, 1950; Rendahl, 1931) have seen f i t to make G. tricuspis, G. intermedius, and G. p i s t i l l i g e r subspecies of G. p i s t i l l i g e r , a decision with which I cannot agree. They are clearly closely related, but have practically separate distributions with some overlap, and so far as this author can ascertain, show no hybridization or intergradation of characters. 78 Material Examined Reference Locality No. Coordinates Depth in metres 1 . BC56-340 "Japan" 2 — 2 . B C 6 0 - 1 5 3 Oshyoro Bay, Otaru, Hokkaido 1 140 /, k3 13 •N — 3 . B C 6 1 - 515 Kenai Peninsula, Alaska 1 151 52'W, 59 35 'N — 4. BC61-520 tt 3 151 5 2 'W-, 59 3 5 ' N — 5 . BC62-441 Shumagin I s . , Alaska 1* 160 59'W, 55 25*N 32.9 6. BC62-1+55 tt 1 159 45*W, 55 0 3 ' N 69 . 5 7 . BC62-484 Kodiak I s . , Alaska 2 151 40'W, 5 6 31-'N • 1 0 0 . 7 8. BC62-488 Shumagin I s . , Alaska k 160 33 'W, 55 2U-'N 9 3 . 3 9 . B C 6 2 -H89 Alaska Peninsula, Alaska k 161 28*W, 5 5 3 6 ' N 2 7 - 5 1 0 . B C 6 2 - 4 9 0 tt 2 161 45*W, 55 19 'N 1*2.1 1 1 . B C 6 2 - 7 1 9 tt 1 161 v r w , 55 1 9 ' N 1 0 9 . 8 1 2 . BC62 -756 Afognak I s . , Alaska 1 152 04'W, 58 2 0 ' N — 13. BC62-792 Lynn Channel, Alaska 2 134 2 0 ' ¥ , 58 08 'N 9 . 2 11*. BC63-1026 Region I s . , Alaska 76 152 20*W, 57 1+7'N — 15. BC63 -1438 Shumagin Islands, Alaska 8 162 32'W, 55 06 'N 1 . 2 - 1 . 5 16. BC65 -40 Izembak Bay, Alaska 2 162 48'W, 55 2 0 ' N 0 - 3 . 1 17. B C 6 5 - 8 3 Shumagin I s . , Alaska 1 160 58«W, 55 18 'N 55.8 18. B C 6 5 - 708 B r i s t o l Bay, Alaska 3 161 30 'W, 57 3 0 ' N 1*9.4 19. B C 6 5 - 7 H tt 2 2 162 15'W, 58 15 'N 43.9 20. B C 6 5 - 712 tt 5 162 15'W, 58 15 'N 32 .0 2 1 . B C 6 5 - 729 Shumagin I s . , Alaska 2 162 45'W, 55 1+5'N 54.9 2 2 . IU 6866 Albatross Stn. 324k 2 161 05'W, 58 37 'N 8 . 2 79 Reference L o c a l i t y No. Coordinates ,- >Depth i n metres 23. IU 6884 Albatross Stn. 3230 1 157 13'W, 58 31*N 5-9 24. IU 6886 3296 1 158 46'W, 57 26'N 43.9 25. IU 6896 " 3289 1 159 i6'w, 56 44«N 29.3 26. IU 6902 " 3246 2 161 36'W, 58 26'N 32.0 27. SU 3001 11 3240 5 159 36'W, 58 30'N 26.5 28. SU 3002 11 3232 2 157 34'W, 58 32'N 19.2 29. SU 3003 3239 8 159 23'W, 58 22'N 21.6 30. SU 5613 Port Clarence 3 166 30'W, 65 15'N --31. SU 5755 Petropaulski Harbour (Petropavlovsk), Kam-chatka 4 158 30'E, 53 N 32. SU 22398 Petropavlovsk, Kamchatka 3 158 30»E, 53 N — 33. SU 60226 Dry Spruce Bay, Alaska 1 153 02'W, 57 56'N — 34. SU 60246 Kodiak I s . , Alaska 1 153 52'W, 58 22'N — 35. UW 5046 Chiniak Bay, Alaska 4 152 20'W, 57 42'N — 36. uw 7345 Deep Sea, 19 6 163 25'W, 63 55'N 18.3 37. UW 10175 Albatross Stn. 4 160 28'W, 58 45'N 20.1 38. UW 15576 Kachemak Bay, Alaska 1 151 30'W, 59 30'N 196 80 Literature records No. Location Coordinates Depth i n Reference metres 39 "Sea of Kamchatka" (?-Kamchatskiy Zaliv) ... U.S.S.R. 56 00'N, 162 30'E 1+0 Unalaska, Alaska 1+1 Avachinskaya Guba, U.S.S.R. 53 1+0'N, 166 1+0'W 57 03*n, 158 50'E Cuvier and Valenciennes, 1829 P a l l a s , 1831 1+2 Kyska (-Kiska Harbour) Alaska 51 58'N, 177 3VE 1+1+ ? Cape Tchaplin (-Chaplino) U.S.S.R. 61+ 25'N, 172 l6'E 1+5 Bering Island (-Ostrova Beringa) U.S.S.R. 55 00'N, 166 00'E 1+6 Petropaulski (-Petro-pavlovsk) U.S.S.R. 53 03'N, 158 1+3'E 1+7 Najtschkaj (-Nakhtakhe) Lagoon, U.S.S.R. 1+6 50'N, 138 22'E 1+8 B r i s t o l Bay, Alaska Albatross Stations 3231, 3233, 3237-38, 321+1-1+5, Bean, 1882b Smitt, 1893 3291, 3300 1+9 Avachinskaya 50 Amyrsh (-Amurskiy Zaliv) 51 Vladivostok 52 Port Szestakov (-Shes-takova Bukhta) 53 Tareinski Harbour, Kamchatka (-Tar'ya -Bukhta) 58 30'N, 159 00»W 8-1+8 Gil b e r t , I896 53 07'N, 158 33*E 1+3 10'N, 131 50'E 1+3 0('N, 131 53'E 59 15'N, ll+8 50'E 52 55'N, Schmidt, 1901+ Gratsianov, 1907 Evermann and Golds-borough, 1909 81 No. Location Coordinates Depth i n Reference metres 54 Petropavlovsk 53 03' N, 148 1+3* E 55 Avatscha (-Avachinska) Bay 53 07*N, 158 33'E 10 56 ? Solevarka Bay ? ? 57 Tarynsky Bay (-Tar'ya Bukhta) 52 55'N, 158 28'E 6-10 58 Avatcha (-Avachinska) 53 07'N, 158 33'E 59 Rakovaja Bay (-Rakovaya Bay) 52 58'N, 158 40'E 60 Near Mishennaya Mt.. (-Mishennyy) 53 02'N, 158 39'E 61 Kasak Cape (-Myskazak) 52 58'N, 158 28*E 4 -6 62 Peter the Great Bay (-Zaliv Petra V e l i - } kogo) 53 00'N, 132 00'E 63 Avanchinskii Bay (-Avachinska) 53 07'N, 158 33'E 64 Terpenie Bay (-Terpeniya Z a l i v ) 1»9 00'N, 143 30'E 65 Amur Liman (-Amurskiy Liman) 52 50'N, l U l 30'E 66 Gulf of Sakhalin (-Sakhalinskiy Z a l i v ) 53 45'N, l U l 30*E 67 Udskaya Bay 68 Yavinskaya Bank 54 50'N, 136 00'E t 9 69 Karaginskii Island (-Ostrov Karaginskiy) 58 50'N, 164 00'E 70 T y u l e n i i Island [• (-Ostrov Tyuleniy) If8 30*N, 144 38?E Rendahl, 1931b Popov, 1933 Popov, 1933 Taranetz, 1937 Vinogradov, 1949 Schmidt, 1950 82 No. Location 71 Aniva Bay (-Zaliv Aniva) Coordinates 46 l6'N, 142 48'E 73? Chukot Peninsula (-Chukotskiy Poluostrov) 67 04'N, 173 50'E 74 Wakkanai, Hokkaido 75 Mashike, Hokkaido 76 Monbetsu (-Mombetsu) Hokkaido 77 Nemuro, Hokkaido 54 26'N, l 4 l 23'E 43,52'N, 141 32'E 44 20'N, 143 20'E 43 22'N, 145 36'E Depth i n metres Reference 78 Akkeshi Bay, Hokkaido 43 02'N, 144 52'E 77 66 153 66 77 Schmidt, 1950 Andriashev, 1954 Watanabe, i960 8»* G y m n o c a n t h u s g a l e a t u s ( B e a n ) G y m n a c a n t h u s g a l e a t u s : - B e a n , 1 8 8 2 a : 1 5 3 ( d e s c r i p t i o n , c o u n t s , c f . w i t h (5. p i s t i l l i g e r , G. t r i c u s p i s , d i s t r i b u t i o n ) ; J o r d a n a n d G i l b e r t , 1 8 8 2 : 7 0 9 ( d e s c r i p t i o n ) ; G i l b e r t , 1 8 9 6 - 4 2 5 ( c f . w i t h G. t r i c u s p i s , G. p i s t i l l i g e r , d e s c r i p t i o n , c o u n t s ) ; A n d r i a s h e v , 1 9 5 4 : 4 0 1 ( d e s c r i p t i o n s , c o u n t s , d i s t r i b u t i o n , c f . w i t h G. t r i c u s p i s , f i g u r e ) . G y m n o c a n t h u s g a l e a t u s : - J o r d a n a n d E v e r m a n n , 1 8 9 6 : 2 0 1 0 ( p a r t l y n o n B e a n ; d e s c r i p t i o n , c o u n t s , m e a s u r e m e n t s , c f . w i t h G. p i s t i l l i g e r , G. t r i c u s p i s , p l a t e ) ; E v e r m a n n a n d G o l d s b o r o u g h , 1 9 0 7 : 3 1 9 ( p a r t l y n o n B e a n ; m e a s u r e m e n t s , c o u n t s , d i s t r i b u t i o n ) ; E h r e n b a u m , 1 9 0 1 : 86 ( r a n g e , s y n o n y m y ) ; G r a t s i a n o v , 1 9 0 7 : 3 0 4 ( k e y , s y n o n y m y , d i s -t r i b u t i o n ) ; J o r d a n , T a n a k a , a n d S n y d e r , 1 9 1 3 : 2 7 3 ( l i s t e d ) ; J o r d a n , E v e r m a n n , a n d C l a r k , 1 9 3 0 : 3 8 9 ( s y n o n y m y , d i s t r i b u t i o n ) ; ? D e r y u g i n , 1 9 3 3 : 5 - 3 5 ( l o c a l i t y ) ; T a r a n e t z , 1 9 3 7 : 1 1 8 ( k e y , d i s t r i b u t i o n ) ; A n d r i a s h e v , 1 9 3 7 : 2 8 ( s y n o n y m y , c f . w i t h G. d e t r i s u s , f i g u r e ) ; A n d r i a s h e v , 1 9 3 9 b : l - 1 8 7 ( e c o l o g y , z o o g e o g r a p h y ) ; K o b a y a s h i a n d U e n o , 1 9 5 6 : 2 5 3 ( c o u n t s , m e a s u r e m e n t s , d e s c r i p t i o n , c o l o u r , l o c -a l i t y ) ; M c A l l i s t e r , 1 9 6 0 : 1 6 ( k e y ) ; H u b b a r d a n d R e e d e r , 1 9 6 5 : 5 0 7 ( l o c a l i t y ) ; I s a k s o n , S i m e n s t a d , a n d B u r g n e r , 1 9 7 1 : 2 1 ( e c o l o g y ) ; Q u a s t a n d H a l l , 1 9 7 2 : 2 1 ( l o c a l i t y r e f e r e n c e s ) . G y m n o c a n t h u s g a l e a t u s h e r z e n s t e i n i : - S o l d a t o v a n d L i n d b e r g , 1 9 3 0 : 2 4 8 ( k e y , s y n o n y m y , c o u n t s , d i s t r i b u t i o n ) . G y m n o c a n t h u s d e t r i s u s ( n o n G i l b e r t a n d B u r k e ) : - V l a d y k o v , 1 9 3 3 : 1 6 ( c f . 85 with (2. galeatus) . Gymnocathus herzensteini (non Jordan and Starks): - Vladykov, 1933:16 (cf. with G_. galeatus). Gymnocenthus galeatus: - Andriashev, 1937:28 (descr i p t i o n , synonymy, c f . with G. d e t r i s u s ) . Description Gymnocanthus galeatus (Bean) i s a large subarctic P a c i f i c species, d i s t r i b u t e d from southeastern Alaska to the end of the Aleutians but appar-ently excluded from the A r c t i c and Japanese waters. V a r i a t i o n across t h e i r range i s s l i g h t , and descriptions of a small number of specimens i s adequate to express t h i s v a r i a t i o n . Specimens described were BC62-651, 1 male, 20.78 cm., 1 female, 22.24cm. (Kodiak); BC62-444, 2 females, 22.28cm., 23.30cm. (Unalaska); BC63-170, 1 male, 18.15cm. (Southeast Alaska); UW 1644, 1 female, 20.34 cm. (Southeast Alaska); BC63-282, 1 male, 11.60cm. (Southeast Alaska); SU 3004 and 5938, 2 males, 15.91, 10.11 cm.,.l female, 10.51cm. (Anette Island); BC63-917, 2 females, 6.28, 6.63cm. (Semisopochnoi Island). Body elongate, robust a n t e r i o r l y , tapering p o s t e r i o r l y to a narrow peduncle, dpeth 22.23 (17.98-27.84) times i n SL; peduncle rectangular, weakly l a t e r a l l y compressed. Greatest depth on v e r t i c a l through p e l v i c g i r d l e , dpeth at p e l v i c g i r d l e 5.81 (4.88-6.63) times i n SL; trunk generally ovate, weakly fla t t e n e d v e n t r a l l y , either gently rounded or weakly f l a t t e n e d d o r s a l l y . Head moderate, length 3.01 (2.76-3.30) times i n SL; head tending to be broader than deep, depth 1.18 (.98-1.46) times i n width; i n f r o n t a l p r o f i l e , head broadly, weakly concave v e n t a r a l l y , narrowly weakly concave d o r s a l l y . L a t e r a l l i n e o s s i c l e s large, about h a l f an o s s i c l e length 86 s e p a r a t i n g t h e m a n t e r i o r l y , b e c o m i n g v i r t u a l l y a d j a c e n t t o w a r d s t h e p e d u n c l e ; o s s i c l e s e x t e n d t o p e d u n c l e , f r e q u e n t l y o n t o c a u d a l r a y s . N e v e r a n y p i s t i l l a e i n p e c t o r a l a x i l . A x i l l a r y s c a l e s m o d e r a t e , i n t r i a n g u l a r p a t c h , b a s e f o r w a r d u n d e r p e c t o r a l ; s c a l e s a b o u t 1/3 t h e l e n g t h o f t h e o s s i c l e s b e l o w t h e s p i n o u s s o f t d o r s a l f i n i n t e r s p a c e ; s c a l e s s e p a r a t e d b y d i s t a n c e u s u a l l y e q u a l t o o r g r e a t e r t h a n t h e i r o w n l e n g t h ; s c a l e p a t c h e x t e n d i n g p r a c t i c a l l y t o t h e p e c t o r a l f i n e n d . S n o u t s o m e w h a t e l o n g a t e , w e a k l y p o i n t e d , l e n g t h 4 . 1 1 ( 3 . 4 3 - 4 . 8 2 ) t i m e s i n h e a d , 1 2 . 3 0 ( 9 . 7 5 - 1 4 . 9 8 ) t i m e s i n S L ; o r b i t - n a s a l s p i n e d i s t a n c e m o d e r a t e , m a k i n g s n o u t l a t e r a l p r o f i l e f r o m p r e m a x i l l a r y t o n a s a l s p i n e s j u t o u t s l i g h t l y . T e e t h v i l l i f o r m , s m a l l , p o s t e r i o r l y r e c u r v e d ; t e e t h r a n d o m l y p l a c e d o n t o o t h p a d s , u p t o t w o t e e t h w i d e o n d e n t a r y a t s y m -p h y s i s , u p t o f o u r t e e t h w i d e a t s y m p h y s i s o n p r e m a x i l l a r y , t o o t h b a n d n a r r o w i n g p o s t e r i o r l y ; t i s s u e i n m o u t h may b e p a p i l l o s e d i r e c t l y a h e a d o f o r b e h i n d t o o t h p a d s , u p t o t w o r o w s o f p a p i l l a p o s t e r i o r t o d e n t a r y a n d p r e -m a x i l l a r y t e e t h , o n e r o w o f p a p i l l a a n t e r i o r t o p r e m a x i l l a r y t e e t h ; m o t h m o d e r a t e , u p p e r j a w l e n g t h 2.48 ( 2 . 2 0 - 3 . 0 1 ) t i m e s i n h e a d ; m a x i l l a r y e x t e n d i n g p a s t l e a d i n g e d g e o f p u p i l , f r e q u e n t l y p a s t c e n t e r o f p u p i l . S i n g l e p a i r s t r o n g , f r e q u e n t l y e m e r g e n t , m o d e r a t e l y p o s t e r i o r l y r e c u r v e d n a s a l s p i n e s . Two p a i r s o f n o s t r i l s , f i r s t p a i r o n v e r t i c a l p l a n e t h r o u g h b a s e o f n a s a l s p i n e s , l e n g t h o f t u b e s u b e q u a l t o n a s a l s p i n e h e i g h t ; n o s t r i l c o n s t r i c t e d d i s t a l l y s u c h t h a t t h e o v a l t e r m i n a l p o r e p o i n t s a n t e r o l a t e r a l l y ; p o s t e r i o r n o s t r i l s d i r e c t l y b e h i n d n a s a l s p i n e s , a b o u t e q u i d i s t a n t f r o m n a s a l s p i n e a n d o r b i t r i m ; t u b e a l w a y s m u c h l o w e r t h a n n a s a l s p i n e , p r o d u c e d s u c h t h a t p o r e t e n d t o p o i n t p o s t e r o l a t e r a l l y ; p o s t e r i o r n a s a l t u b e a b o u t h a l f t h e h e i g h t o f a n t e r i o r t u b e . O r b i t s m o d e r a t e , l e n g t h 3.68 ( 3 . 2 4 - 4 . 0 7 ) i n h e a d , 87 produced equally vertically and laterally, forming a distinct postorbital notch, postorbital notch width 5.33 (4.65-6.18) times in head; strong nape ridges extending back from postorbital, curving outward at the supratemporal cephalic sensory canal, becoming confluent with the lateral line; ridge developing small tubercle behind postorbital notch, but no particular tubercle development around supratemporal canal; tubercle development only weakly size dependent. Nape heavily invested in granulations, especially in specimens over 8cm. long; granulations extending posteromedially to a point about two dorsal spines distance ahead of spinous dorsal; wings of granulation extending back on either side of dorsal sometimes to a vertical through the third dorsal spine; anteriorly, usually extending across the interorbital to the posterior nares, usually some granulations lining inter-orbital margin; prefrontals frequently invested in granulations; laterally, granulations primarily contained by lateral cephalic sensory canals; a few granulations on ascending preopercular shaft, dorsal branch of opercular, 2nd, 4th, 5th infraorbitals, along upper and lower margins (but not middle) of suborbital stay; lateral, supratemporal, supraoccipital, suprapostorbital cephalic sensory canals often protected by a ridge of granulations. Sub-orbital stay strong, 4.66 (4.07-6.31) times in head. Four preopercular spines, the uppermost strong with 1-3 cusps, modally 2 (mean 1.90), this spine rarely reaching posterior opercle margin, but reaching well past vertical through opercular notch anterior margin; ventrally directed subopercular spine obsolete, not emergent; dorsal border of opercle straight, rarely gently rounded. Cleithral spine very weak, almost never emergent. Dorsal fins separate, interdorsal distance up to 2 dorsal spines; f i r s t predorsal 88 length 3.11 (2.71-3.33) times i n SL; spinous dorsal more or les s f l a t along anterodorsal margin, becoming inc r e a s i n g l y convex p o s t e r i o r l y ; spinous dorsal more strongly convex i n males than females; spinous dorsal length weakly dimorphic, longest spine 2nd or 3rd, length i n males 6.37 (5.27-7.92), ' females 7.65 (6.65-8.78) times i n SL; base of spinous dorsal shorter than s o f t d orsal base, spinous dorsal base 1.37 (1.19-1.57) i n SL, s o f t dorsal base 3.27 (2.98-3.60) times i n SL; second predorsal 1.83 (1.74-1.93) times i n SL; margin gently convex, more so a n t e r i o r l y and p o s t e r i o r l y than i n the middle; longest ray 3rd to 5th, height 7.01 (5.21-8.51) i n SL; spinous and s o f t dorsals about equally long, length of spinous dorsal .99 (.84-1.22) times i n s o f t dorsal length; spinous dorsal o r i g i n a t i n g on v e r t i c a l through f i r s t p e ctoral ray o r i g i n ; o r i g i n of s o f t dorsal on v e r t i c a l through 2nd-3rd anal ray, terminating on v e r t i c a l through penultimate-antepenultimate anal ray. Preanal 1.92 (1.78-2.06) times i n SL, anal base long, 2.90 (2.69-3.20) times i n SL; anal margin s t r a i g h t i n the center, weakly convex at e i t h e r end. P e l v i c s o r i g i n a t i n g halfway between snout and anus, length strongly sexually dimorphic; i n females, inner ray longest, not reaching anus, length 5.26 (4.75-6.38) times i n SL; i n males, middle or inner ray longest, usually reaching past anus, often past anal o r i g i n , i n some, as f a r as 5th anal ray, length 3.47 (2.48-5.01) times i n SL. Pectoral broad-based, base 6.89 (6.28-7.37) times i n SL; base about 45° o f f v e r t i c a l ; pectoral margin strongly convex, most p o s t e r i o r l y extending ray 5th-7th, length 2.81 (2.41-3.16) times i n SL; inner face of pectoral rays e n t i r e l y lacking serrated edge i n both sexes. Caudal truncate, anus on small, generally rugose p a p i l l a s l i g h t l y i n advance of anal f i n ; male with c o n i c a l penis immediately behind 89 a n u s , l e n g t h 1 7 . 9 - 6 1 . 4 t i m e s i n S L . M e r i s t i c F o r m u l a e S p i n o u s d o r s a l 1 1 ( 1 0 - 1 2 ) ( 1 1 . 0 ) ; s o f t d o r s a l 16 ( 1 4 - 1 7 ) ( 1 6 . 1 ) ; p e c t o r a l 2 0 ( 1 8 . 2 1 ) ( 2 0 . 0 ) ; a n a l 19 ( 1 7 - 2 0 ) ( 1 8 . 7 3 ) ; p e l v i c s 1 , 3; v e r t e b r a e 39 ( 3 6 - 4 0 ) ( 3 8 . 6 ) ; b r a n c h i o s t e g a l s 6. C o l o u r i n A l c o h o l B o d y g r o u n d c o l o u r t a n o n d o r s u m t o j u s t b e l o w e p a x i a l - h y p a x i a l b o d y d i v i s i o n ( i n d i c a t e d b y m i d l a t e r a l g r o o v e ) ; a h e a d o f a n a l f i n , d a r k c o l o u r a t i o n t e n d i n g t o d r o p w e l l b e l o w t h a t l i n e ; g r o u n d c o l o u r i n t e n s i f y i n g o n c h e e k , s n o u t , s u b o r b i t a l , i n t e r o r b i t a l , n a p e i n r e g i o n b o u n d e d b y l a t e r a l a n d s u p r a -t e m p o r a l c e p h a l i c s e n s o r y c a n a l s ; w e a k d e v e l o p m e n t o f s m a l l p u n c t u l a t i o n s o f b o d y ; f o u r l a r g e , c l e a r s p o t s o f d o r s u m , t h e f i r s t u n d e r t h e s p i n o u s d o r s a l c e n t e r , t h e s e c o n d a n d t h i r d u n d e r t h e s o f t d o r s a l , a n d t h e f o u r t h o n t h e p e d u n c l e ; s e r i e s o f s m a l l , v a g u e d a r k b l o t c h e s a l o n g m i d l a t e r a l a s p e c t , l a r g e l y s e p a r a t e f r o m d o r s a l b l o t c h e s ; s p i n o u s d o r s a l s l i g h t l y d u s k y i n m a l e s , c l e a r i n f e m a l e s , b o t h w i t h 3-4 o b l i q u e b a n d s ; s o f t d o r s a l c l e a r , w i t h 6-8 o b l i q u e b a n d s ; p e c t o r a l w i t h 4-6 t r a n v e r s e n a r r o w ( n a r r o w e r t h a n p u p i l ) b a n d s ; p e c t o r a l b a s e o f t e n w i t h b r o a d , d i f f u s e b a n d ; c a u d a l w i t h 4-5 t r a n s v e r s e b a n d s , t h e i n t e r b a n d w i d t h e q u a l l i n g o r e x c e e d i n g t h e b a n d w i d t h ; v e n t r u m , p o s t e r i o r t i p o f m a x i l l a r y , p o s t e r i o r h a l f o f d e n t a r y , p r e m a x i l l a r y , b r a n c h i o s t e g a l s , g r o u n d c o l o u r o f , f i n s ( e x c e p t s p i n o u s d o r s a l ) , w e d g e o n p e d u n c l e e x t e n d i n g t o u p p e r m a r g i n s o f c a u d a l f i n , m a r g i n a r o u n d l o w e r t h r e e p r e o p e r c u l a r s p i n e s y e l l o w i s h t o w h i t e ; m a l e s w i t h o u t d i s t i n c t p e c t o r a l a x i l l a r y w h i t e s p o t s o r w h i t e - s t r i p e d p e l v i c s ; b u c c a l c a v i t y p a l e ; 90 p e r i t o n e u m p a l e . J u v e n i l e c o l o u r e s s e n t i a l l y t h a t o f a d u l t s e x c e p t s p i n o u s d o r s a l n o t d u s k y i n m a l e s . M a x i m u m s i z e M a l e s 2 5 . 9 c m . , o f f e m a l e s 2 9 . 2 c m . S L . E t y m o l o g y T h e s p e c i e s name g a l e a t u s , f r o m t h e l a t i n " g a l e a " ( a h e l m e t ) i s i n r e f e r e n c e t o t h e g r a n u l a t i o n - i n v e s t e d o c c i p u t . R a n g e T h i s s p e c i e s i s d e f i n i t e l y r e c o r d e d a s c o m i n g f r o m S o u t h e a s t A l a s k a , S o u t h A l a s k a , t h e A l e u t i a n s w e s t t o A m c h i t k a , P r i b i l o v I s l a n d s , a n d B r i s t o l B a y . I t h a s b e e n r e c o r d e d b y A n d r i a s h e v ( 1 9 5 4 ) a s h a v i n g come f r o m t h e e a s t K a m c h a t k a n c o a s t . B y i t s f i n f o r m u l a , S c o f i e l d ' s ( 1 8 9 8 ) s p e c i m e n s f r o m P o i n t B a r r o w i s a l m o s t c e r t a i n l y _G. t r i c u s p i s , n o t G. g a l e a t u s . S y s t e m a t i c N o t e s T h i s l a r g e A l a s k a n s p e c i e s , b e i n g t h e f i r s t o f t h e t h r e e l a r g e Gymno- c a n t h u s s p e c i e s t o b e d e s c r i b e d h a s b e e n r e c o r d e d a s c o m i n g f r o m S o u t h e a s t A l a s k a t o t h e S e a o f J a p a n , s o u t h t o K o r e a ( S c h m i d t , 1 9 0 4 ) . A l t h o u g h t h e r e c o r d s f r o m t h e e a s t K a m c h a t k a c o a s t a p p e a r r e l i a b l e , t h o s e f r o m t h e S e a o f J a p a n d o n o t , a n d b y t h e d e s c r i p t i o n s g i v e n a r e a l m o s t c e r t a i n l y r e c o r d s o f JG. h e r z e n s t e i n i . V a r i o u s a u t h o r s ( S c h m i d t , 1 9 2 7 ; L i n d b e r g a n d S o l d a t o v , 1 9 3 0 ; V l a d y k o v , 1 9 3 3 ) h a v e s y n o n y m i z e d (3. h e r z e n s t e i n i , G. d e t r i s u s , a n d G. g a l e a t u s . H o w e v e r , t h e s e s p e c i e s a r e d i s t i n c t i n many c h a r a c t e r s , a n d i n my e x p e r i e n c e a r e e n t i r e l y s e p a r a b l e . 91 M a t e r i a l E x a m i n e d R e f e r e n c e L o c a l i t y No. C o o r d i n a t e s D e p t h i n , m e t r e s 1. B C 6 1 - 5 2 0 K a c h e m a k B a y , A l a s k a 1 151° 30'W, 59°30'N 2. B C 6 2 - 4 3 1 U n i m a k I s . , A l a s k a 3 164°44'W, 54°08'N 8 0 . 5 3. B C 6 2 - 4 3 8 — 1 154°55'W, 5 7 ° 5 4 ' N 6 2 . 3 4. B C 6 2 - 4 3 9 S h u m a g i n I s . , A l a s k a 1 1 59°48'W, 5 5 ° 4 4 ' N 1 2 8 . 0 5. B C 6 2 - 4 4 4 U n i m a k I s . , A l a s k a 6 164° 30'W, 5 4 ^ 1 3 ^ 1 0 1 . 7 6. B C 6 2 - 4 5 1 S h u m a g i n I s . , A l a s k a 1 1 6 0 ° 18'W, 52°02*N 1 0 4 . 0 7. B C 6 2 - 4 5 5 II 2 159°45'W, 55°03'N 6 9 . 5 8. B C 6 2 - 4 8 4 — 1 1 5 7 °40'W, 56°31'N 1 0 1 . 7 9. B C 6 2 - 4 8 8 S h u m a g i n I s . , A l a s k a 1 160°33'W, 55°24'N 9 3 . 3 1 0 . B C 6 2 - 4 9 8 U n i m a k I s . , A l a s k a 1 163°00'W, 54°54*N 1 0 0 . 0 1 1 . B C 6 2 - 4 9 9 — 2 159°43'W, 55°34'N 9 3 . 0 1 2 . B C 6 2 - 5 0 3 K o d i a k I s . , A l a s k a 2 154°31'W, 5 7 " 3 6 ' N 1 2 9 ? 9 1 3 . B C 6 2 - 5 0 4 U n i m a k I s . , A l a s k a 3 1 6 3 °30'W, 54°12'N 9 1 . 5 1 4 . B C 6 2 - 5 2 6 K o d i a k I s . , A l a s k a 1 1 5 5 ° 00'W, 5 6 " 4 2 ' N 3 2 . 9 1 5 . B C 6 2 - 5 3 0 II 3 154° 30'W, 56°42'N 3 2 . 9 1 6 . B C 6 2 - 5 3 7 II 1 155° 10'W, 55°46'N 1 3 1 . 8 1 7 . B C 6 2 - 5 5 7 P o r t A r m s t r o n g , A l a s k a 1 134°23'W, 56°43'N — 1 8 . B C 6 2 - 5 7 9 II 1 134°40'W, 56°18'N — 1 9 . B C 6 2 - 5 9 1 II 3 134°40 'W, 56°18'N — 2 0 . B C 6 2 - 6 4 3 S h u m a g i n I s . , A l a s k a 1 2 159°33'W, 54°53'N 4 3 . 9 2 1 . B C 6 2 - 6 4 5 K o d i a k I s . , A l a s k a 5 152°30'W, 57°06'N 1 2 9 . 1 2 2 . B C 6 2 - 6 5 1 II 6 155°00'W, 56°48'N 9 8 . 8 2 3 . B C 6 2 - 6 5 5 Unimak' I s . , A l a s k a 1 1 63°00'W, 5 4 ° 5 4 ' N 9 8 . 8 9 2 R e f e r e n c e L o c a l i t y N o . C o o r d i n a t e s D e p t h i n m e t r e s 2 4 . BC62--657 S h u m a g i n I s . , A l a s k a 5 160°00'W, 5 4 ° 4 8 ' N 1 0 6 . 1 2 5 . B C62--659 — 1 157°36'W, 55°51'N 1 0 9 . 8 2 6 . B C62--663 — 2 154°33'W, 54°11*N 1 0 0 . 7 2 7 . B C62--665 U n i m a k I s . , A l a s k a 3 1 6 4 ° 3 3 ' W 5 54°14'N 1 0 9 . 8 2 8 . B C62--668 K e n a i P e n i n s u l a , A l a s k a 1 151° 0 0 ' W, 5 7 ° 4 2 ' N 8 0 . 5 2 9 . B C 6 2 --673 A f o g n a k I s . , A l a s k a 2 151°44'W, 58°04*N 1 6 6 . 5 3 0 . B C 6 2 --676 K o d i a k I s . , A l a s k a 5 154° 30'W, 5 7 * 3 6 ' N 1 2 9 . 9 3 1 . B C 6 2 --680 II 1 8 154° 30'W, 56°48'N 5 8 . 6 3 2 . B C 6 2 --709 II 7 154°30'W, 56°42'N 3 2 . 9 3 3 . B C 6 2 --709 S h u m a g i n I s . , A l a s k a 1 8 1 59°29'W, 5 4 " 4 8 ' N 4 3 . 9 3 4 . B C 6 2 --772 A f o g n a k I s . , A l a s k a 2 151° 25'W, 5 8 ° N ( ? ) — 3 5 . B C 6 3 -•120 K e n a i P e n i n s u l a , A l a s k a 2 151° 34'W, 59°29'N 7 3 - 1 1 0 3 6 . B C 6 3 --170 L y n n C a n a l , A l a s k a 1 1 3 4 ° 47'W, 5 8 * 2 7 ' N 1 2 8 . 1 3 7 . B C 6 3 -•282 C h a t h a m S t r a i t , A l a s k a 1 1 34°38'W, 56°22'N 9.2 3 8 . B C 6 3 -•297 A m c h i t k a I s . , A l a s k a 1 1 7 9 ° 1 9 * E , 5 1 ° 2 4 ' N 5 . 5 - 1 8 3 3 9 . B C 6 3 -•309 ii 1 1 7 9 ° 1 9 ' E , 51° 2 4 ' N — 4 0 . B C 6 3 -•349 — 1 165°00*W, 5 4 " 4 5 ' N — 4 1 . B C 6 3 -•917 — 7 1 7 9 ° 4 8 ' E , 5 2 ° 0 8 ' N 3 6 . 6 - 5 4 4 2 . B C 6 3 - 9 8 3 " O c e a n o g r a p h i c S t a t i o n 2 4 " 1 1 7 3 . 2 4 3 . B C 6 3 - 1 0 1 5 A m c h i t k a I s . , A l a s k a 12 1 7 9 ° 1 9 ' E , 5 r°24'N 1 0 9 . 8 4 4 . B C 6 3 - 1 0 2 6 R e g i o n I s . , A l a s k a 1 2 152° 20'W, 5 7 ^ 4 7 ^ 4 5 . B C 6 3 - 1 4 2 3 A t k a I s . , A l a s k a 2 0 1 7 4 * 1 2 ' W, 5 2 ° 1 2 ' N 1 . 2 - 3 . 1 4 6 . B C 6 3 - 1 4 4 3 P r i b i l o f I s . , A l a s k a 6 170°10'W, 5 7 ^ 1 0 ^ 0-1.0 4 7 . B C 6 3 - 1 4 5 6 1 1 7 0 °15'W, 5 7 ° 1 0 ' N .5-1.4 93 R e f e r e n c e L o c a l i t y N o. C o o r d i n a t e s D e p t h i n m e t r e s 4 8 . B C 6 5 - 1 — 2 3 1 7 3 ° 1 5 ' E , 5 2 ° 5 6 ' N 6.1 4 9 . B C 6 5 - 1 7 A g a t u I s . , A l a s k a 9 1 7 3 ° 4 2 * E , 52°25'N 0-2.7 5 0 . B C 6 5 - 2 1 ti 1 1 7 3 D 3 0 ' E , 5 2 ° 2 7 ' N 0-2.7 5 1 . B C 6 5 - 2 4 ti 2 0 0 1 7 3 ° 1 5 * E , 51°56'N 0-5.4 5 2 . B C 6 5 - 3 0 A d a k I s . , A l a s k a 3 176°26'W, 51°47'N 1 . 2 - 3 . 1 5 3 . B C 6 5 - 4 0 — 2 162^48'W, 55° 2 0 * N 0-2.7 5 4 . B C 6 5 - 1 1 0 U n i m a k I s . , A l a s k a 1 164*04'W, 5 4 " 3 5 ' N 6 0 . 4 5 5 . B C 6 5 - 1 1 2 U n i m a k I s . , A l a s k a 1 163"20'W, 5 4 " 2 2 ' N 6 5 . 9 5 6 . B C 6 5 - 1 5 4 K a c h e m a k B a y , A l a s k a 6 1 5 1 °58'W, 5 9 " 3 0 ' N 7 1 . 4 - 7 8 . 7 5 7 . B C 6 5 - 3 9 0 A d a k I s . , A l a s k a 3 176°25'W, 5 1 " 4 5 * N 5 8 . B C 6 5 - 7 1 7 P r i b i l o f I s . , A l a s k a 1 167°45'W, 5 6 " 4 5 ' N 7 8 . 7 5 9 . B C 6 5 - 7 1 8 P r i b i l o f I s . , A l a s k a 3 167°45'W, 56°45'N 9 5 . 2 6 0 . B C 6 5 - 7 1 9 T r i n i t y I s . , A l a s k a 1 155"30'W, 5 6 " 3 0 ' N 1 3 7 . 2 6 1 . B C 6 5 - 7 2 9 — 5 162°45'W, 5 5 ° 4 5 ' N 5 4 . 9 6 2 . B C 6 5 - 7 3 3 P r i b i l o f I s . , A l a s k a 10 1 6 8 °45'W, 5 6 ^ 4 5 ' N 6 3 . B C 6 5 - 8 0 0 A m c h i t k a I s . , A l a s k a 46 1 7 9 t 7 1 3 ' E , 51 C'25'N 6 4 . SU 3 0 0 4 C h e r n o f s k i H a r b o u r , A l a s k a 3 1 6 7 " 3 3 ' E , 5 4 " 2 4 ' N 6 5 . SU 5 9 3 8 A n e t t e I s . , A l a s k a 1 131"30'W, 55°00'N 6 6 . SU 5 7 2 0 S t . P a u l ' s I s . , A l a s k a 3 170"15'W, 57°10'N 6 7 . UW 1 6 4 4 W r a n g e l l , A l a s k a 1 . 1 3 2 * 2 3 % 5 6 " 2 8 ' N 6 8 . UW 5 4 5 7 Amak I s . , A l a s k a 2 163"10*W, 5 5 ^ 2 5 ' N 6 9 . UW 1 4 3 2 2 W a s h i n g t o n B a y , K u i u I s . , A l a s k a 1 134"23'W, 56°43'N 5 1 5 94 Literature Records No. Location Coordinates Depth Reference i n meters 70. Unalaska, Alaska 71. Captains Harbour, Alaska 72. Atka Island, Alaska 74-75. 76. 77. 78. 79. 80. 81. Akutan Bay, Alaska Bering Sea, Albatross #3598 Stephens Passage, Albatross #4253 53^ 40'N, 166°40'W 55°10'N, 162°05'W 51°50'N, 176°40*W 54°10'N, 166°00'W 56°28'N, 172°39'W 57"30'N, 56°08'N, 60°30*N, Shakan Bay, U.S.S.R. O l y u t o r s k i i Bay, U.S.S.R. Koryakskaya Zemlya, U.S.S.R. 60°30'N, Natal'ya Bay, U.S.S.R. 61°10'N, 134°00'W 133°30'W 168°00'E 169°00'E 172°25*E Burling Bay, Kodiak Island, Alaska 57°12*N, 153°21'W Bean, 1882 G i l b e r t , 1896 Evermann & Golds-borough, 1907 Andriashev, 1954 Hubbard and Reeder 1965 96 G y m n o c a n t h u s t r i c u s p i s ( R e i n h a r d t ) C o t t u s g o b i o ( n o n L i n n a e u s ) : - F a b r i c i u s 1 7 8 0 : 1 5 9 ( d e s c r i p t i o n , c o l o u r , e c o l o g y ) . C o t t u s t r i c u s p i s : - R e i n h a r d t , 1 8 3 8 : 1 1 7 ( r e d e s c r i p t i o n o f F a b r i c i u s ' " C o t t u s  g o b i o " , c f . w i t h G. g o b i o ) ; ? G a i m a r d , 1 8 4 2 ; L i l l j e b o r g , 1 8 5 0 : 2 3 3 - 2 4 2 ; G u n t h e r , 1 8 6 0 : 1 6 8 ( c o u n t s , d e s c r i p t i o n , m e a s u r e m e n t s ) ; G i l l , 1 8 6 1 : 4 2 ( l i s t ) ; E a t o n , 1 8 7 4 : 3 8 2 1 ( l o c a l i t y ) ; L i l l j e b o r g , 1 8 9 1 : 1 1 8 ; H e u g l i n , 1 8 7 4 : 2 0 9 ( d i s t r i b u t i o n ) . P h o b e t o r t r i c u s p i s : - K r o y e r , 1 8 4 4 : 2 6 3 ( r e d e s c r i p t i o n o f F a b r i c i u s ' " C o t t u s  g o b i o " ) ; G a i m a r d , 1 8 4 5 ( P l a t e 4, f i g u r e 1 ) ; R i c h a r d s o n , 1 8 5 5 : 6 ( s y n o n y m y , c f . w i t h C o t t u s g o b i o , f i g u r e , d e s c r i p t i o n , m e a s u r e -m e n t s ) ; M a l m g r e n , 1 8 6 3 : 1 1 ( l o c a l i t y ) ; M a l m g r e n , 1 8 6 5 : 5 0 4 ( c f . w i t h C o t t u s v e n t r a l i s A c a n t h o c o t t u s p a t r i s , e c o l o g y ) ; L u t k e n , 1 8 7 6 : 3 6 4 ( s i n g l e u n c o n f i r m e d r e p o r t f r o m I c e l a n d ; r e f e r e n c e t o a x i l l a r y s c a l e s a s " p i s t i l l a e " ) . C o t t u s f a b r i c i i : - G i r a r d , 1 8 5 1 a : 5 9 ( r e d e s c r i p t i o n , i d e n t i f i c a t i o n o f F a b r i -c i u s ' C o t t u s g o b i o ) . A c a n t h o c o t t u s p s i t t i l i g e r : - G i r a r d , 1 8 5 1 b : 1 8 6 ( l a p s u s c a l a m i ) . A c a n t h o c o t t u s p a t r i s : - S t o r e r , 1 8 5 7 : 2 5 0 ( t y p e d e s c r i p t i o n , c o u n t s , c o l o u r , p l a t e ) . G y m n a c a n t h u s p a t r i s : - G i l l , 1 8 6 1 : 4 2 ( l i s t ) ; G i l l , 1 8 6 5 : 2 5 1 ( c o u n t s , l i s t e d ) ; W e i z a n d P a c k a r d , 1 8 6 6 : 2 7 3 ( l o c a l i t y ) . C o t t u s v e n t r a l i s , ( n o n C u v i e r a n d V a l e n c i e n n e s ) : - M a l m g r e n , 1 8 6 5 : 5 0 4 ( c f . w i t h A c a n t h o c o t t u s p a t r i s ) ; S t e i n d a c h n e r , 1 8 7 5 : 6 1 3 . 97 Phobetor ventralis (non Cuvier and Valenciennes): - Frisch, 1865:35 (locality); Malmgren, 1867:259 (range, synonymy); Collett, 1879:15 (distribution, counts, measurements); Holmqyist, 1899: 217 (synonymy, distribution); Johansen, 1912:649 (habitat, dimorphism, colour, figure). Gymnacanthus tricuspis: - G i l l , 1873:800; Dresel, 1884:251 (synonymy, loc a l i t y data, cf. with Gymnacanthus p i s t i l l i g e r , description, colour, counts); Knipovich, 1903:14 (description, measure-ments, counts, distribution, cf. with Gymnacanthus p i s t i l l i g e r ) ; Jensen^ 1904:227 (distribution, figure, synonymy); Collett, 1905:84 (locality); Knipovich, 1907:l4 (counts, measurements, distribution); Jensen, 1910:4 (counts, measurements); Thiele-mann, 1921:128 (description, counts); Soldatov, 1928:20 (dis-tribution, ecology, description); Soldatov, 1928:1-320; Briskina, 1939:340-354 (food); Pertseva, 1939:417-470 (fry); Gordon and Backus, 1957:19 (lo c a l i t y ) ; Scholander et a l . , 1957:5 (freezing resistance); Barsukov, 1958:143 (synonymy, depth); E l l i s , I960:41 (locality). Gymnacanthus p i s t i l l i g e r (non Pallas): - Bean, 1879:127 (locality data, nomenclature); Collett, 1880:26 (description, counts, measure-ments, distribution); Bean, l882a:153 (cf. with Gymnacanthus  galeatus); Bean, l882b:249 (loc a l i t y ) ; Jordan and Gilbert, 1883:708 (description, counts, range); Stearns, 1884:125 ( l o c a l i t y ) ; Van Hoffen, 1897:89 (synonymy with Cottus tricuspis); Walters, 1853:13 (locality, counts). 98 S c l e r o c o t t u s s c h r a d e r i : - F i s c h e r , 1 8 8 5 : 5 8 ( t y p e d e s c r i p t i o n , e r r o n -e o u s l y r e p o r t e d f r o m A n t a r c t i c a ) . P h o b e t o r p i s t i l l i g e r ( n o n P a l l a s ) : - K l i n k o w s t r o m , 1 8 9 2 . G y m n o c a n t h u s v e n t r a l i s ( n o n C u v i e r a n d V a l e n c i e n n e s ) : - S m i t t , 1 8 9 3 : 1 6 0 ( d e s c r i p t i o n , m e a s u r e m e n t s , c o u n t s , s y n o n y m y , f i g u r e , c f . w i t h _G. p i s t i l l i g e r ) ; L o n n b e r g , 1 8 9 9 : 4 ( d i s t r i b u t i o n , d e s c r i p t i o n , m e a s u r e m e n t s , c f . w i t h (5. p i s t i l l i g e r ) ; E h r e n b a u m , 1 9 0 1 : 8 4 ( s y n o n y m y , d i s t r i b u t i o n , c o u n t s ) ; L e D a n o i s , 1 9 1 3 : 4 2 5 ( c f . w i t h G. p i s t i l l i g e r ) ; L e D a n o i s , 1 9 1 4 : 3 1 ( s y n o n y m y , c o u n t s , c o l o u r , s e x u a l d i f f e r e n c e s , d i s t r i b u t i o n ) ; J o h a n s e n , 1 9 2 5 : 2 0 4 ( l o c a l i t y ) . G y m n o c a n t h u s g a l e a t u s ( p a r t l y n o n B e a n ) : - J o r d a n a n d E v e r m a n n , 1 8 9 6 : 2 0 1 0 ( d i s t r i b u t i o n ) ; S c o f i e l d , 1 8 9 8 : 5 0 4 ( d e s c r i p t i o n , c o u n t s ) ; J o r d a n a n d G i l b e r t , 1 8 9 9 : 4 6 0 ( d i s t r i b u t i o n ) ; V l a d y k o v , 1 9 3 3 : 16 ( c o u n t s , m e a s u r e m e n t s , d e s c r i p t i o n , r a n g e , c o l o u r ) . G y m n o c a n t h u s t r i c u s p i s : - J o r d a n a n d E v e r m a n n , 1 8 9 6 : 2 0 0 8 ( c o u n t s , d e s -c r i p t i o n , c o l o u r , k e y , s y n o n y m y ) ; H j o r t , 1 9 0 2 : 1 - 2 5 1 ( l o c a l i t y ) ; E h r e n b a u m , 1 9 0 5 : 5 1 ( l o c a l i t y ) ; K o e f o e d , 1 9 0 7 ( l o c a l i t y ) ; K e n d a l l , 1 9 1 0 : 5 0 9 ( l o c a l i t y ) ; F o w l e r , 1 9 1 4 : 3 6 0 ( l o c a l i t y ) ; H o f -s t e n , 1 9 1 9 : 4 ( r a n g e , h a b i t a t ) ; B i g e l o w a n d W e l s h , 1 9 2 5 : 3 2 8 ( d e s c r i p t i o n , c o u n t s , c o l o u r , d i s t r i b u t i o n ) ; B r e d e r , 1 9 2 9 : 2 4 4 ( r a n g e ) ; J o r d a n , E v e r m a n n , a n d C l a r k , 1 9 3 0 : 2 8 9 ( s y n o n y m y , d i s t r i b u t i o n ) ; J e f f e r s , 1 9 3 2 : 6 ( l o c a l i t y , c o u n t s ) ; P o p o v , 1 9 3 3 c : 1 5 7 - 1 6 7 ; P r e f o n t a i n e , 1 9 3 3 : 2 5 8 ( l o c a l i t y ) ; N o r m a n , 1 9 3 5 : 1 4 1 ( s y n o n y m y w i t h S c l e r o c o t t u s s c h r a d e r i ) ; V l a d y k o v a n d T r e m b l a y , 1 9 3 5 : 7 8 ( l o c a l i t y ) ; P f a f f , 1 9 3 7 : 1 6 ( l o c a l i t y ) ; T a r a n e t z , 1 9 3 7 : 99 1 1 8 ( d i s t r i b u t i o n , k e y ) ; N o r m a n , 1 9 3 8 : 3 2 ( s y n o n y m y w i t h S c l e r o c o t t u s s c h r a d e r i ) ; A n d r i a s h e v , 1 9 3 9 a : 7 3 1 ( h a b i t a t ) ; H i l d e b r a n d , 1 9 3 9 : 9 ( r a n g e , s e x u a l d i m o r p h i s m ) ; V l a d y k o v , 1 9 4 6 : 5 7 ( G . t r i c u s p i s a s f o o d o f w h i t e w h a l e s ) ; D u n b a r , 1 9 4 7 : 3 ( f r y c o u n t s , d e s c r i p t i o n ) ; D u n b a r a n d H i l d e b r a n d , 1 9 5 2 : 1 1 7 ( d e s c r i p t i o n , c o u n t s , g r a n u l a t i o n p a t t e r n s o f v a r i o u s " s u b -s p e c i e s " ) ; J e n s e n , 1 9 5 2 : 1 7 ( s y n o n y m y , d i s t r i b u t i o n , e c o l o g y , c f . w i t h Ci. p i s t i l l i g e r , d e s c r i p t i o n ) ; B i g e l o w a n d S c h r o e d e r , 1 9 5 3 : 4 5 2 ( d e s c r i p t i o n , c o l o u r , r a n g e ) ; W a l t e r s , 1 9 5 3 : 1 3 ( l o c a l i t y , c o u n t s ) ; W a l t e r s , 1 9 5 5 : 3 1 3 ( r a n g e , c f . w i t h G^ . g a l e a t u s , e x t e n t o f n a p e g r a n u l a t i o n s ) ; M c K e n z i e , 1 9 5 9 : 8 2 6 ( l o c a l i t y ) ; M c A l l i s t e r , 1 9 6 0 : 1 6 ( k e y ) ; H o g n e s t a d , 1 9 6 1 : 2 6 ( m e a s u r e m e n t s , d i s t r i b u t i o n , d e p t h ) ; E l l i s , 1 9 6 2 : 1 8 7 ( d i s t r i -b u t i o n , d e p t h ) ; M c A l l i s t e r , 1 9 6 2 : 2 9 ( l o c a l i t y , m e a s u r e m e n t s , d e s c r i p t i o n , c o u n t s , v a r i a t i o n , c o l o u r ) ; A n d e r s s o n , 1 9 6 4 : 7 1 ( d e s c r i p t i o n , d i s t r i b u t i o n ) ; M c A l l i s t e r , 1 9 6 4 : 1 7 4 ( l i v e c o l o u r , h a b i t a t ) ; M u u s , 1 9 6 4 : 1 6 4 ( k e y ) ; L e i m a n d S c o t t , 1 9 6 6 : 3 4 8 ( c o u n t s , d e s c r i p t i o n , c o l o u r , d i s t r i b u t i o n , b i o l o g y , f i g u r e ) ; E l l i s , 1 9 6 8 : 2 7 2 9 ( r e c o r d s , d e p t h ) ; B e r g e r o n a n d L e g e n d r e , 1 9 7 0 : 4 5 ( l o c a l i t y d a t a o f M u s e e d e l a S t a t i o n B i o l o g i q u e m a r i n e d e G r a n d e - R i v i e r e s p e c i m e n s i n S t . L a w r e n c e R i v e r ) ; D r a i n v i l l e , 1 9 7 0 : 6 4 0 ( e c o l o g y , h a b i t a t i n S a g u e n a y R i v e r ) . G y m n o c a n t h u s p i s t i l l i g e r ( n o n P a l l a s ) : - J o r d a n a n d G i l b e r t , 1 8 9 9 : 4 6 0 ( p a r t l y n o n P a l l a s , d i s t r i b u t i o n ) ; H o f s t e n , 1 9 1 9 : 8 ( c f . w i t h (}. t r i c u s p i s , d i s t r i b u t i o n ) ; P i e t s c h m a n n , 1 9 3 2 : 1 3 ( c o u n t s , 100 measurements, figure of granulations, sexual dimorphism, pre-opercular cusps, scales, pectoral serrations, figure erron-eously labelled Myoxocephalus scorpius). Gymnacanthus ventralis (non Cuvier and Valenciennes): - Knipovich, 1898: 1-11 (locality); Knipovich, 1901:58 (description, counts, measurements, distribution, cf. with (3. p i s t i l l i g e r ) ; Knipovich, 1903:146 (locality); Stappers, 1909:39 (food). Gymnacanthus tricuspis groenlandicus: - Schmidt, 1927:28 (description, distribution, measurements). Gymnacanthus tricuspis occidentalis: - Schmidt, 1927:29 (description, distribution, measurements). Gymnacanthus tricuspis orientalis: - Schmidt, 1927:29 (description, distribution, measurements). Gymnocanthus p i s t i l l i g e r tricuspis: - Rendahl, 1931a:76 (counts, cf. with G. p i s t i l l i g e r p i s t i l l i g e r ) ; Rendahl, 1931b:50 (cf. with G. _p_. p i s t i l l i g e r ) ; Popov, 1933:158. Gymnocanthus tricuspis hudsonius: - Vladykov, 1933:17 (counts, description, range, measurements, colour). Gymnocanthus tricuspis tricuspis: - Vladykov, 1933:17 (counts, description, distribution); Bachus, 1957:31 (locality data, cf. with (J. _t. hudsonius). Gymnocanthus tricuspis orientalis: - Andriashev, 1937:26 (ecology, cf. with other subspecies); Andriashev, 1939b:lr-187 (zoogeography, ecology); Alverson and Wilimovsky, 1966:854-856 (locality data). 101 Gymnocanthus vandesandei: - P o l l , 1949:234 (fi g u r e , d e s c r i p t i o n , counts, measurements, colour, l o c a l i t y mistakenly l i s t e d as A f r i c a ) . Gym acanthus t r i c u s p i s : - Huntsman, Bailey, and Hachey, 1953:248 ( l o -c a l i t y data; lapsus calami:). Description Gymnocanthus t r i c u s p i s (Reinhardt) i s a widely d i s t r i b u t e d form with many l o c a l v a r i a t i o n s i n such features as head tubercle development and granulation frequency and d i s t r i b u t i o n . I t has therefore been necessary to examine a large number of specimens encompassing as much range and v a r i a t i o n as possible. Specimens described were UW 7297, 4 females, 10.05, 10,48, 10.77, 10.37cm. (St. Lawrence Island, Alaska); UW 7300, 1 male, 8.61 cm. (St. Lawrence Island, Alaska); BC/61-102, 3 females, 11.07, 11.29, 12.70cm., 1 male, 10.12cm. (Chukchi Sea, Alaska); BC/63-106 2 males, 9.65, 9.65, 9.30cm. (Chukchi Sea, Alska); NMC 60-466, 3 females, 7.22, 7.34, 7.21cm., 3 males, 6.35, 5.48, 6.03cm. (Herschel Island, Yukon t e r r . ) ; NMC 62-336, 2 females, 15.79, 16.09cm. (Liverpool Bay, NWT); NMC 62- 428, 4 females, 10.58, 8.33, 7.22, 6.55cm. (Franklin Bay, NWT); NMC 63- 385, 1 female, 6.50cm., 1 male, 7.40cm. (Cornwallis Island, NWT); NMC 62-402, 1 male, 7.13cm. (Ellesmere Island, NWT); NMC 65-358, 1 male, 7.17cm. (Cornwallis Island, NWT); NMC 62-555, 1 female, 19.4 cm. (Belcher Islands, Que.); NMC 62-342, 1 male, 18.40cm. (C h e s t e r f i e l d I n l e t , NWT); NMC 62-296, 1 male, 12-79cm. (Foxe Channel); NMC 63-233, 1 male, 10.18cm. (Gulf Hazzard); NMC 62-248, 1 female, 16.20cm. (Ungava Bay); NMC 59-444, 2 females, 7.57, 7.47cm. (Ungava Bay); NMC 67-757, 1 male, 10.35cm. 102 (Saguenay Fjord); NMC 70-47, 1 female, 13.35cm. (Saguenay F j o r d ) ; SU 8090, 1 male, 6.86cm., (E. Greenland); SU 7921, 1 female, 6.04cm. (Spitzbergen). Reference to"#estern'-/collections include those specimens taken from the Bering Sea to Mackenzie Bay; '-eastern" c o l l e c t i o n s include spe-cimens taken from Ungava Bay to the Gulf of St. Lawrence while "archipelago" c o l l e c t i o n s r e f e r to those f i s h taken i n the Canadian Archipelago. Body moderate, robust a n t e r i o r l y ; i n some females, bulbous between p e l v i c s and cloaca; tapering p o s t e r i o r l y to a narrow peduncle, depth 22.26 (15.87-26.22) times i n standard length; peduncle roughly rectangular, generally weakly l a t e r a l l y compressed. Greatest depth i n both males and females generally behind v e r t i c a l through p e l v i c g i r d l e , as f a r back as v e r t i c a l through 3rd-5th dorsal spine. Trunk rectangular to oval , weakly elevated d o r s a l l y , weakly f l a t t e r e d v e n t r a l l y , depth at p e l v i c g i r d l e 4.68 (3.77-5.42) times i n SL. Head length moderate, 3.10 (2.88-3.40) times i n SL.; head about as broad as deep, maximum depth 1.03 (.88-1.29) times i n width. Frontal p r o f i l e reveals head to be weakly concave v e n t r a l l y ; dorsal of head v a r i a b l e , i n western specimens weakly convex to weakly concave; i n eastern specimens, weakly to moderately concave. L a t e r a l l i n e o s s i c l e s small, almost an o s s i c l e - l e n g t h separ-ating them a n t e r i o r l y , becoming v i r t u a l l y adjacent towards the peduncle; o s s i c l e s extend to peduncle, but r a r e l y onto caudal ray. Never any p i s t i l l a e i n pectoral a x i l . A x i l l a r y scales large, usually almost as large as l a t e r a l l i n e o s s i c l e s below spinous-soft dorsal f i n interspace; scales usually separated by a distance equal to t h e i r own length; scale patch extending almost to the pectoral f i n end. Snout moderate, tending 103 to be rounded, length 4.39 (3.73-5.41) times i n head, 13.62 (10.87-17.47) times i n SL; o r b i t - nasal spine distance short, making snout l a t e r a l p r o f i l e appear rounded. Snout from dorsal view moderately to broadly rounded. Teeth v i l l i f o r m , small, weakly p o s t e r i o r l y recurved; teeth randomly placed, up to four teeth wide at symphysis on premaxillary, fewer p o s t e r i o r l y ; tooth pad up to two teeth wide at dentary symphysis, fewer p o s t e r i o r l y . Tissue i n mouth may be p a p i l l o s e d i r e c t l y ahead of or behind tooth pads, up to 2 rows of p a p i l l a p osterior to dentary and premaxillary teeth, one row of p a p i l l a a n t e r i r o r to premaxillary teeth i n large specimens. Mouth moderated, upper jaw 2.44 (2.14-2.84) times i n head; maxillary usually extending to or past v e r t i c a l through p u p i l center. Single p a i r moderately p o s t e r i o r l y recurved nasal spines, moderate i n eastern c o l l e c t i o n s weakening i n western and i n European specimens; spines seldom emergent. Two p a i r s of n o s t r i l s , f i r s t p a i r j u s t anterior to v e r t i c a l plane through nasal spines, usually as high as or higher than nasal spines except i n some eastern c o l l e c t i o n s i n which they may be equal to or shorter than nasal spines; a n t e r i o r n o s t r i l c o n s t r i c t e d d i s t a l l y e x p e c i a l l y i n archipelago and western c o l l e c t i o n s ; oval to round terminal pore opens a n t e r i o r l y ; posterior n o s t r i l s d i r e c t l y behind nasal spines; always lower than nasal spines, though tending to elongate s l i g h t l y i n western c o l l e c t i o n s ; produced such that they open weakly p o s t e r o l a t e r a l l y or d i r e c t l y upwards. Posterior nasal tubule h a l f the height of anterior tubule; distance from posterior n o s t r i l base to nasal spine t i p about 2/3 that from the t i p to the anterior n o s t r i l base. Orbits moderate, length 3.62 (3.26-4.05) i n head, o r b i t longer than deep, 104 depth 1.3. (1.14-1.47) i n length. I n t e r o r b i t a l v a r i a b l e , generally concave, r a r e l y f l a t ; i f concave, V-shaped e s p e c i a l l y at narrowest part; width 17.90 (10.74-26.50) i n head, western c o l l e c t i o n s tending to have much more narrow i n t e r o r b i t a l s than eastern c o l l e c t i o n s . Tubercle pattern development on head v a r i a b l e ; posteordorsal edge of o r b i t forming tubercle; i n Bering-Chukchi Sea specimens ("G. t r i c u s p i s o r i e n t a l i s t h i s tubercle very weak, not developed enough l a t e r a l l y to set o f f a d i s t i n c t p o s t o r b i t a l notch; Franklin-Liverpool Bay c o l l e c t i o n s s t i l l without l a t e r a l components to p o s t o r b i t a l tubercles; almost a l l northern Canadian archipelago c o l l e c t i o n s with d i s t i n c t p o s t o r b i t a l tubercle, some l a t e r a l tubercle development, but p o s t o r b i t a l notch s t i l l not present; Hudson Bay and Foxe Channel specimens with l a t e r a l tubercle development such that p o s t o r b i t a l notch usually present; Ungava Bay to Gulf of St. Lawrence specimens with p o s t o r b i t a l tubercle w e l l developed i n dorsal and l a t e r a l plane; Gulf of St. Lawrence specimens with post-o r b i t a l tubercles produced w e l l above eyes; p o s t o r b i t a l notch width 5.49 (4.53-6.98) times i n head. Nape ridges extending back from p o s t o r b i t a l notches, angling l a t e r a l l y at the supratemporal cephalic sensory canal, becoming confluent with l a t e r a l l i n e . In some specimens, a tubercle may develop on ridge immediately behind p o s t o r b i t a l notch; t h i s tubercle v i r t u a l l y or t o t a l l y obsolete i n western c o l l e c t i o n s ; tubercle moderate i n eastern c o l l e c t i o n s ; development pattern follows that of p o s t o r b i t a l tubercle. Some specimens with ridge tubercle development on eit h e r side of supratemporal canal, the anteriormost tubercle, i f present, being about ha l f the s i z e of the posterior tubercle. Tubercle development from 105 west to east follows the pattern of the postorbital tubercle; European collections similar to western American collections; tubercle development size dependent, tubercles disproportionately larger in larger specimens. Granulation development variable, from no granulations to complete granulation of nape; when present, situated primarily between lateral cephalic sensory canals extending in some specimens across the inter-orbital to posterior nares; granulations seldom, i f ever, coating pre-frontals or margin of interorbital; in others, not reaching past post-orbital tubercles; may extend posteromedially to a point about two dorsal spines distance ahead of spinous dorsal; wings of granulation tending to follow lateral line, may extend past this point, may reach vertical through third dorsal spine origin; past supratemporal canal, granulations tend to be larger than those ahead of canal. Specimens occasionally with 1-2 granulations on postorbitals, usually confined to upper border; sometimes 1-2 (rarely more) granulations on upper lobe of opercular; no granulations on suborbital stay or preoperculum. Supratemporal and supraoccipital cephalic sensory canals not protected by any orderly pattern of granu-lations. Suborbital stay strong, length 4.67 (3.51-6.03) times in head. Preopercular with four spines, the uppermost strong with 1-4 cusps, modally 2-3 (mean 2.51); this spine not reaching posterior opercular margin, but just passing vertical through anterior margin of opercular notch. Opercle with ventrally directed occasionally weakly emergent spine at base of subopercular; dorsal border of opercle gently rounded, rarely straight. Cleithral spine weak to moderate, weak in western collec-tions, moderate in eastern collections. Dorsal fins separate, inter-106 dorsal distance variable, width up to 3 dorsal spines; f i r s t predorsal length 3.11 (2.90-3.88) times in SL. Spinous dorsal outer margin convex, moderately in females, strongly in males; spinous dorsal length simorphic; in males, longest spine 3rd-4th, length 5.86 (4.60-7.74) in SL.; in females, longest spine 3rd-4th, length 7.51 (5.47-9.15) in SL; in females,spiaousdorsal never reaches soft dorsal origin when folded back; in males, folded spinous dorsal often extends past soft dorsal origin; base of spinous dorsal shorter than soft dorsal base, spinous dorsal base, 1.19 (.96-1.56) times into soft dorsal base; spinous dorsal base 4.23 (3.66-5.20) times into SL, soft dorsal base 3.55 (3.11-4.74) times into SL. Second predorsal length 1.77 (1.47-1.93) into SL; soft dorsal moderately convex anteriorly and posteriorly, weakly convex between; longest ray 4th to 6th, length moderately sexually dimorphic, i n males, length 5.94 (4.19-7.46) times into SL, in females, length 7.18 (5.52-9.27) times in SL; spinous and soft dorsal almost equally long, length of spinous dorsal 1.02 (.76-1.28) in soft dorsal length; spinous dorsal origin on vertical through origin of f i r s t pectoral ray, origin of soft dorsal on vertical through 2nd-3rd anal ray ending on vertical between last and antepenultimate anal ray. Preanal 1.87 (1.73-2.00) i n SL; anal base long, 3.01 (2.70-3.79) times i n SL; margin weakly convex, middle rays the longest, f i r s t ray about half as long, last ray about 3/4 as long, grading from either end to the middle. Pelvics originating halfway between snout and anus, length strongly sexually dimorphic; in females, middle ray the longest, rarely reaching anus, length 4.91 (3.61-7.21) in SL; in males, middle or outer ray longest, usually reaching anus 107 i n small (under 6cm.) males, i n larger males may extend past anal o r i g i n , length 3.67 (2.75-4.72) times i n SL. Pectoral broad based, base ° o 5.86 (4.58-6.68) i n SL; base about 30-40 o f f v e r t i c a l ; pectoral outer margin strongly convex, most e x t e r i o r l y extending pectoral ray 4th to 6th, u s u a l l y 5th, length 2.55 (1.98-3.36) times i n SL; i n males, inner face of pectoral rays with serrated edge from a quarter of the pectoral length from i t s base to a quarter of the pectoral length from i t s t i p ; i n very large females, a few tubercles may be present. Caudal truncate. Anus on moderate, generally rugose p a p i l l a s l i g h t l y i n advance of anal f i n ; male with c o n i c a l , moderate penis, length 18.45 (5.72-29.29) times i n SL. M e r i s t i c formulae Spinous dorsal 11 (10-12) (10.89); s o f t dorsal 15 (14-17) (15.34); pectoral 18 (16-20) (18.31); anal 17 (15-18) (17.08); p e l v i c s I, 3; vertebrae 38 (36-40) (38.3); l a t e r a l l i n e pores 38-45^; branchiostegals 6. Colour i n alcohol Body ground colour l i g h t brown to tan on dorsum to j u s t below hypaxial-epaxial body d i v i s i o n ; ahead of anal f i n , dark colouration dips below that l i n e ; ground colour i n t e n s i f i e s over s u b o r b i t a l stay, second s u b o r b i t a l , lachrymal, also on nape between p o s t o r b i t a l tubercles, and supratemporal and l a t e r a l canals (except for l i g h t e r pineal region) bones i n opercle often o v e r l a i d by dark streaks; usually no vermiculations, punculations on body; i n western c o l l e c t i o n s , very f a i n t large blotches 1. A f t e r Knipowitsch, 1907; Andriashev, 1954. 108 on dorsum, the f i r s t under the spinous dorsal center, the second under the anterior t h i r d of soft dorsal, the thi r d under the posterior t h i r d of soft dorsal, but very f a i n t , the l a s t on the peduncle; i n eastern co l l e c t i o n s , these blotches, including t h i r d much darker, larger; usually many dark blotches along midlateral body aspect, these blotches coalescing with the larger dorsal blotches, with each other, and extending i n fingers down below dark ground colour l i m i t ; these blotches darker, larger anter-i o r l y , especially under pectoral; again, blotches darker i n eastern than western c o l l e c t i o n s ; i n males, colour of spinous dorsal dominated by grey of black, with 2-3 l i g h t e r bands, scattered l i g h t spots; i n females, spinous dorsal primarily clear to l g i h t yellow, with 2-3 oblique bands; soft dorsal with 3-5 oblique (rarely v e r t i c a l ) bands; pectoral with 4-6 transverse, narrow (narrow than pupil) bands; pectoral base with broad diffuse band; caudal with 4-5 transverse r e l a t i v e l y wide bands, the band width often exceeding the interband width; pelvics i n male with white spots; ventrum, lower border of premaxillary, maxillary, a l l of dentary, branchiostegals, ground colour of fi n s (except spinous dorsal), wedge on peduncle extending to upper margin of caudal, margin around lower three preopercular spines yellowish to white; male with white spots i n pectoral a x i l ; buccal cavity i s pale; peritoneum pale; colour i n juveniles es s e n t i a l l y that of adults, except sexual dimorphism not evident. Colour i n L i f e M c A l l i s t e r (1964) describes a male specimen, IMC 63-211 from Hudson Bay as follows: "...bright white spots on the abdomen, on the inside of the pectoral f i n s and on both sides of the pelvic f i n s ; these spots turn 109 yellowish on the posterior of the body. The v e r t i c a l f i n s are s t r i p e d black and yellowish; the chin i s yellowish; the head and most of the body are dark brown; the pineal region i s white; the eyes are bronze coloured; the buccal c a v i t y i s white." Examination of a specimen from Frobisher Bay (NMC 70-285) reveals s i m i l a r colouration; i n addition, pectoral with orange spots, v e n t r a l l y with orange bands extending v e n t r a l l y from dorsal pectoral bands. Preserved material tends to bleach somewhat, and e n t i r e l y loses the orange colouration. Maximum s i z e Increases towards the eastern Canadian, Greenland waters; l a r g e s t western specimen seen by me was 14 cm. SL, Canadian Archipelago 19 cm. SL, Hudson Bay 20 cm. SL, Gulf of St. Lawrence 17 cm. SL. Backus (1957) records a pecimen of 23 cm. SL o f f the Labrador Coast. Andriashev (1954) records females to 21 cm.''' i n Soviet northern seas. Vladykov (1933) 2 records a 23 cm. female from Hudson Bay. Jensen (1952) reports females 3 4 to 26 cm. o f f western Greenland, 22 cm. o f f eastern Greenland. Ehren-baum (1901) found females to 14 cm.^ i n Spitzbergen. Etymology The species name, t r i c u s p i s from the Greek ™7/><' ',' (three), and the 1,2,5. I t i s not c e r t a i n whether these are t o t a l or standard lengths. If t o t a l length, they convert to about 18, 19 and 12cm. SL respec-t i v e l y . 3,4. T o t a l length given. Standard length about 23 and 19 cm. respec-t i v e l y . 110 L a t i n "cuspis", (cusp), i n reference to the usually three cusps on the upper preopercular spine. Range Gymnocanthus t r i c u s p i s ranges from the northern Bering Sea into the A r c t i c , i n the Canadian Archipelago, Hudson Bay, Labrador, Gulf of St. Lawrence, Newfoundland, straying south to Newport, Maine; on both sides of Greenland, northern face of Spitzbergen, northern Norway, Murmansk, Novaya Zemlya, Barents, Kara, Laptev Sea, East Siberian Sea. Lutken (1876) reported two specimens from Iceland, but t h i s species has not been recorded there since; i f the record was genuine, Gymnocanthus t r i - cuspis probably occurs o f f the cooler north coast. Systematic notes The synonymy records 27 names which have been applied to t h i s species, doubtless a consequence of i t s very wide d i s t r i b u t i o n i n the water of many nations, i t s long taxonomic h i s t o r y , and i t s great v a r i a b i l i t y . Various authors (Schmidt, 1927; Vladykov, 1933; Rendahl, 1931) have desiganted subspecies to allow f o r t h i s v a r i a t i o n . Mayr (1969:348) states that "the better the geographic v a r i a t i o n of a species i s known, the more d i f f i c u l t i t becomes to delimit subspecies and the more obvious i t becomes that many such delimitations are quite a r b i t r a r y . " The v a r i a t i o n of Gymnocanthus  t r i c u s p i s from St. Lawrence Island to the Gulf of St. Lawrence was c l o s e l y examined. There proved to be a very gradual increase i n tubercle develop-ment and s i z e , and i n t e n s i f i c a t i o n of colour pattern from west to east, the region of change being p r a c t i c a l l y the e n t i r e distance. Schmidt's I l l "subspecies"apparently represent trends i n c e r t a i n regions i n the range of Gymnocanthus t r i c u s p i s , rather than d i s c r e t e populations. Backus (1957) finds that i n Labrador specimens there i s a complete range of specimens from f u l l y granulated to ungranulated. Secondly, r e l a t i v e anal p a p i l l a lengths are found to be v a r i a b l e . On these bases, he synonymizes Vladykov's G. _t. hudsonius with the nominal species. In agreement with Backus and Mayr, i n the absence of demonstrably d i s c r e t e populations, I am i n c l i n e d to synonymize a l l subspecies with the nominal species. G. t r i c u s p i s has also been i d e n t i f i e d with at le a s t four other d i s t i n c t species (G. galeatus, G. de t r i s u s , G. p i s t i l l i g e r , and G. v e n t r a l i s (G_. intermedius)) through a misture of nomenclatorial confusion and the i n a b i l i t y to d i s t i n g u i s h these species from the A r c t i c form. Indeed, i n parts of i t s range, some specimens of £. t r i c u s p i s look remarkably s i m i l a r to G. galeatus or G. p i s t i l l i g e r . I f enough characters are examined, however, these unusual specimens may s t i l l be i d e n t i f i e d with G. t r i c u s p i s . For example, Vladykov (1933) l i s t s G. galeatus from Hudson Bay. Its t o t a l f i n count f a l l s into the overlapping region between G_. t r i c u s p i s and (J. galeatus, as does i t s body depth. However, G_. t r i - cuspis shows greater sexual dimorphism than does G. galeatus, and i n f a c t the spinous dorsal height of Vladykov's "G. galeatus" i s outside the range encountered by th i s author f o r that species. Secondly, i t s tubercle development i s unlike that of G-. galeatus. S i m i l a r l y , many eastern G. t r i c u s p i s resemble G. p i s t i l l i g e r i n t h e i r tubercle development, and may overlap that species m e r i s t i c a l l y . However, i n no males of the former species have the c h a r a c t e r i s t i c p i s t i l l a e of 112 the true G. p i s t i l l i g e r been found. Kumlien's (1879:128) contention ( a f t e r Lutken, 1876) that Pallas'(1829) P i s t i l s " were a c t u a l l y "only the h a l f cruciform, spiny scales which d i s t i n g u i s h a c e r t a i n part of the side of the body i n G. t r i c u s p i s " added to the confusion. He obviously never saw any true G^_ p i s t i l l i g e r , nor r e a l i z e d that the p i s t i l s on that form do indeed e x i s t ! v e n t r a l i s " i s almost c e r t a i n l y not i d e n t i f i a b l e with G. t r i c u s p i s since the l a t t e r ' s southernmost extent i s s t i l l considerably north of the t y p e - l o c a l i t y of the former. With a l l the v a r i a b i l i t y of (J. t r i c u s p i s , s i g n i f i c a n t l y , i n the north Bering Sea where G. t r i c u s p i s i s sympatric with G. p i s t i l l i g e r , G. t r i c u s p i s i s most unlike G_. p i s t i l l i g e r , possibly through competition and i t s resultant character displacement. 113 M a t e r i a l E x a m i n e d R e f e r e n c e L o c a l i t y N o . C o o r d i n a t e s D e p t h i n metres 1. B C 6 1 - 6 4 C h u k c h i S e a , A l a s k a 1 1 6 6 3 5 ' § , 67 3 1 ' N 2. B C 6 1 - 6 5 I I 1 1 6 5 23'W, 67 4 4 ' N 3. B C 6 1 - 7 9 n 2 1 6 7 30'W, 67 1 3 ' N 4. B C 6 1 - 8 2 I I 2 1 6 5 34'W, 67 5 2 ' N 5. B C 6 1 - 8 3 n 2 1 6 6 55'W, 67 5 0 ' N 6. B C 6 1 - 8 6 I I 3 1 6 8 12'W, 6 7 5 2 ' N 7. B C 6 1 - 8 8 I I 4 1 6 7 12'W, 68 2 5 ' N 8. B C 6 1 - 9 9 I I 20 1 6 6 54'W, 68 4 7 ' N 9. B C 6 1 - 1 0 Q M 74 1 6 7 33'W, 6 8 3 4 ' N 1 0 . B C 6 1 - 1 0 2 I I 17 1 6 8 52'W, 68 0 3 ' N 1 1 . B C 6 1 - 1 0 3 I I 7 1 6 8 52'W, 68 3 2 ' N 1 2 . B C 6 1 - 1 0 5 I I 30 1 6 4 22'W, 69 1 6 ' N 1 3 . B C 6 1 - 1 0 6 I I 30 1 6 7 5 5 ' E , 6 8 2 5 ' N 1 4 . B C 6 1 - 1 0 7 M 25 1 6 7 55'W, 6 8 1 0 ' N 1 5 . B C 6 1 - 2 0 8 B a f f i n I s . , NWT. 2 68 28'W, 6 3 4 4 ' N 5 1 6 . B C 6 1 - 2 1 0 it 1 6 8 28'W, 6 3 4 4 ' N 5 1 7 . B C 6 1 - 2 1 9 D a v i s S t r a i t , C a n a d a 1 6 2 45'W, 67 0 3 ' N 5 1 8 . B C 6 1 - 2 2 0 C u m b e r l a n d S o u n d , NWT 1 66 00'W, 62 3 0 ' N 5 1 9 . B C 6 1 - 2 2 1 A d m i r a l t y I n l e t , NWT 1 86 00'W, 73 0 0 ' N 7 2 0 . B C 6 1 - 4 0 5 C h u k c h i S e a , A l a s k a 9 1 6 6 35'W, 67 4 4 ' N 2 1 . B C 6 1 - 4 0 7 I I 4 1 6 7 12'W, 67 4 3 ' N 2 2 . B C 6 1 - 4 0 9 I I 1 1 6 7 55'W, 67 4 3 ' N 114 2 3 . 2 4 . 2 5 . 2 6 . 2 7 . 2 8 . 2 9 . 3 0 . 3 1 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4 1 . 4 2 . 4 3 . 4 4 . 4 5 . R e f e r e n c e B C 6 1 - 4 1 1 B C 6 1 - 4 1 4 B C 6 1 - 4 1 6 B C 6 1 - 4 1 7 B C 6 1 - 4 1 9 B C 6 1 - 4 2 0 B C 6 1 - 4 2 8 B C 6 1 - 4 3 1 B C 6 1 - 4 3 7 B C 6 1 - 4 4 0 B C 6 1 - 4 4 1 B C 6 1 - 4 4 2 B C 6 1 - 4 4 4 B C 6 3 - 5 5 9 B C 6 3 - 7 1 0 B C 6 3 - 7 1 1 B C 6 3 - 7 1 3 B C 6 3 - 7 1 7 .'BC63-758 B C 6 3 - 7 6 7 B C 6 3 - 7 8 9 B C 6 3 - 7 9 0 B C 6 3 - 7 9 1 L o c a l i t y C h u k c h i S e a , A l a s k a P o i n t B a r r o w , A l a s k a No. 12 20 8 4 1 3 36 3 30 2 4 0 3 2 2 9 1 1 5 2 1 3 3 1 0 1 2 C o o r d i n a t e s D e p t h s i n m e t r e s 1 6 8 34 *W 1 6 8 34'W 1 6 8 02'W 1 6 7 22'W 1 6 7 30'W 1 6 6 12'W 1 6 6 53'W 1 6 5 35'W 1 6 5 52'W 1 6 6 22'W 1 6 8 38'W 1 6 7 12'W 1 6 5 56'W 1 5 6 53'W 1 5 6 29'W 1 5 6 19'W 1 5 6 19'W 1 5 6 47'W 1 5 6 02'W 1 5 6 19'W 1 5 6 19*W 1 5 6 19'W 1 5 6 46'W 68 1 0 ' N 6 7 5 7 ' N 67 5 7 ' N 67 5 5 ' N 69 0 3 ' N 6 9 0 4 ' N 69 1 7 ' N 6 9 1 6 ' N 69 0 3 ' N 66 4 3 ' N 65 4 4 ' N 6 8 l l ' N 67 4 4 ' N 7 1 2 9 ' N 25 71 2 4 ' N 4 6 . 7 71 2 4 ' N 5 0 . 3 7 1 2 2 ' N 5.5 7 1 1 9 ! N 71 2 1 ' N 6.1 71 2 4 ' N 6.1 7 1 2 2 ' N 7 1 2 2 ' N 7.6 7 1 2 0 ' N 5.5 115 R e f e r e n c e L o c a l i t y No. C o o r d i n a t e s D e p t h i n m e t r e s 4 6 . B C 6 3 - 7 9 3 P o i n t B a r r o w , A l a s k a 8 1 5 6 19'W, 7 1 2 2 ' N 6.1 4 7 . B C 6 3 - 7 9 6 4 1 5 6 19'W, 71 2 2 ' N 6.1 4 8 . B C 6 3 - 8 0 5 4 1 5 6 28'W, 7 1 2 3 ' N 4 9 . B C 6 3 - 8 1 8 1 2 1 5 6 19'W, 71 2 2 ' N 7.6 5 0 . B C 6 3 - 8 2 3 1 4 9 1 5 6 19'W, 7 1 2 2 ' N 6.1 5 1 . B C 6 3 - 8 3 6 3 1 5 6 19'W, 7 1 2 2 ' N 9.2 5 2 . B C 6 3 - 8 4 2 Camden B a y , A l a s k a 2 1 4 5 10'W, 7 0 0 1 ' N 7.3 5 3 . B C 6 3 - 8 6 2 P o i n t B a r r o w , A l a s k a 2 1 5 6 21'W, 7 1 2 1 ' N 1 2 . 2 5 4 . B C 6 3 - 1 1 1 5 W a i n w r i g h t , A l a s k a 2 1 6 0 07'W, 70 3 6 ' N 1.8-6 5 5 . B C 6 3 - 1 1 1 8 3 1 6 0 04'W, 70 4 0 ' N 1 9 . 2 5 6 . B C 6 3 - 1 1 2 1 3 1 6 0 06'W, 70 4 0 ' N 1 9 . 2 5 7 . B C 6 3 - 1 1 2 3 6 1 6 0 02'W, 7 0 4 2 ' N 1 9 . 2 5 8 . B C 6 3 - 1 1 2 7 2 0 0 1 6 0 07'W, 70 3 7 ' N 1 2 . 8 -5 9 . B C 6 3 - 1 1 3 0 4 3 9 1 5 9 53'W, 70 4 4 ' N 1 8 . 3 6 0 . B C 6 3 - 1 1 3 1 P o i n t F r a n k l i n , A l a s k a 5 8 1 5 9 33'W, 70 5 0 ' N 2 5 . 9 6 1 . B C 6 3 - 1 1 3 2 NWT 2 2 0 1 4 1 47'W, 70 5 4 ' N 1 2 . 8 6 2 . B C 6 3 - 1 1 3 3 P o i n t F r a n k l i n , A l a s k a 7 1 5 8 48'W, 70 5 3 ' N 6 3 . B C 6 3 - 1 1 3 5 P o i n t B a r r o w , A l a s k a 1 1 5 6 32'W, 7 1 3 8 ' N 1 5 6 . 5 6 4 . B C 6 3 - 1 1 3 7 ii 1 1 5 6 22'W, 7 1 3 4 ' N 1 6 1 . 0 6 5 . B C 6 3 - 1 1 4 1 ti 1 1 5 6 1?'W, 71 2 7 * N 6 6 . B C 6 3 - 1 1 4 7 ti 1 1 5 6 23'W, 71 3 1 ' N 1 5 9 . 2 6 7 . B C 6 3 - 1 1 7 3 it 1 1 5 6 29'W, 7 1 2 4 ' N 2 4 . 4 6 8 . B C 6 3 - 1 2 0 1 S t . L a w r e n c e I s . , A l a s k a 1 7 1 42'W, 6 3 0 6 * N 9.2 6 9 . B C 6 3 - 1 2 2 4 P o i n t B a r r o w , A l a s k a 1 1 5 6 44'W, 7 1 1 9 ' N 116 R e f e r e n c e L o c a l i t y No. 7 0 . B C 6 3 - 1 4 7 0 M a c k e n z i e B a y , NWT 1 7 1 . B C 7 2 - 1 S t . L a w r e n c e I s . , A l a s k a 1 7 2 . B C 7 2 - 1 1 9 P o n d I n l e t , B a f f i n Is.,NWT 1 7 3 . NMC 5 8 - 6 4 B e r n a r d H a r b o u r , NWT 2 7 4 . NMC 5 8 - 2 5 8 A m a d j u a k B a y , F r a n k l i n 1 7 5 . NMC 5 9 - 3 4 0 S t . L a w r e n c e e s t u a r y , R i m o v s k y , P.Q. 1 7 6 . NMC 5 9 - 4 4 4 U n g a v a B a y , Q u e b e c 6 7 7 . NMC 6 0 - 6 2 T e r m P o i n t , NW H u d s o n B a y , NWT 2 7 8 . NMC 6 0 - 1 1 1 F r u s t r a t i o n B a y , R o w l e y I s . , F r a n k l i n , NWT 1 7 9 . NMC 6 0 - 4 6 6 S i m p s o n P t . , H e r s c h e l I s . , Y u k o n 36 8 0 . NMC 6 2 - 2 4 8 S . E . U n g a v a B a y , P.Q. 1 8 1 . NMC 6 2 - 2 9 6 F o x e C h a n n e l , NWT 1 8 2 . NMC 6 2 - 3 3 6 L i v e r p o o l B a y , NWT 2 8 3 . NMC 6 2 - 3 4 2 C h e s t e r f i e l d I n l e t , NWT 8 4 . NMC 6 2 - 3 8 5 C o r n w a l l i s I s . , NWT 2 8 5 . NMC 6 2 - 3 8 5 " 1 8 6 . NMC 6 2 - 4 0 2 E u r e k a , S l i d r e F i o r d , E l l e s m e r e I s . , NWT 1 8 7 . NMC 6 2 - 4 0 4 P r i n c e o f W a l e s S t r a i t , B a n k s I s . , NWT 9 8 8 . NMC 6 2 - 4 1 3 C r e s w e l l B a y , S o m e r s e t I s . , NWT 1 8 9 . NMC 6 2 - 4 2 8 F r a n k l i n B a y , NWT 4 9 0 . NMC 6 2 - 5 3 5 B e l c h e r I s . , K e e w a t i n , N W T 1 C o o r d i n a t e s D e p t h i n  m e t r e s 1 3 4 22'W, 67 4 4 ' N 15 1 6 9 00'W, 6 5 4 7 ' N 77 59'W, 72 4 0 ' N 2 2 . 9 1 1 4 42'W, 68 4 8 ' N 72 45'W, 6 4 0 0 ' N 68 34'W, 4 8 2 7 ' N 67 30'W, 5 8 N 8 3 59'W, 69 1 0 ' N 79 W, 69 N 1 3 9 00'W, 69 3 4 ' N 62 W, 58 N 8 0 W, 6 5 N 1 2 9 W, 70 N 9 1 W, 6 3 N 75 W, 9 5 N 75 W, 9 5 N 8 5 40'W, 8 0 N 1 1 9 W, 72 3 0 ' N 94 W, 72 2 0 ' N 1 2 6 W, 69 N 78 W, 5 6 3 0 ' N 117 R e f e r e n c e 9 1 . NMC 6 2 - 5 5 5 9 2 . NMC 6 3 - 2 3 3 9 3 . NMC 6 4 - 4 7 4 9 4 . NMC 6 5 - 3 5 8 9 5 . NMC 6 5 - 3 6 7 9 6 . NMC 6 5 - 3 6 9 9 7 . NMC 6 7 - 7 5 7 9 8 . NMC 7 0 - 4 1 9 9 . NMC 7 0 - 4 7 1 0 0 . S U 7 9 2 1 L o c a l i t y No. SW B e l c h e r I s . , K e e w a t i n , NWT 1 G u l f H a z z a r d , R i c h m o n d G u l f , e a s t c e n t r a l H u d s o n B a y , PQ 1 W i n t o n B a y L a g o o n , B e c k m a n P e n i n s u l a , S E B a f f i n Is.,NWT 1 C o r n w a l l i s I s . , NWT 1 L a n g t o n B a y i n F r a n k l i n B a y , NWT 2 0 0 D a r n l e y B a y , NWT S a g u e n a y F j o r d , C h i c o u t i m i , PQ 1 S a g u e n a y F j o r d , n e a r S t e . R o s e - d u - N o r d , PQ 1 S a g u e n a y F j o r d , n e a r A n s e S t . J e a n , PQ 1 " C o a l B a y " ( . - K v a l v a g e n ) , C o o r d i n a t e s 78 W, 5 6 3 0 ' N D e p t h i n m e t r e s 16 76 17'W, 56 1 5 ' N 7 64 35'W, 6 3 2 4 ' N 95 W, 75 N 126 W, 69 N 1 2 4 27'W, 70 1 0 ' N 70 06'W, 4 8 1 6 ' N 34 70 35'W, 4 8 2 3 N 70 39'W, 4 8 1 8 ' N S p i t z b e r g e n 1 1 8 E , 77 2 8 ' N 1 0 1 . S U 8 0 9 0 O f f E. G r e e n l a n d 1 17 : 56'W, 72 2 5 ' N 1 0 2 . S U 4 8 8 1 1 E a s t o f P e a r d B a y , A l a s k a 16 1 5 9 W, 7 1 N 103.DW 7 2 9 7 S t . L a w r e n c e I s . , A l a s k a 1 1 1 7 1 35'W, 6 3 0 6 ' N 5 5 . 8 104.UW 7 2 9 8 I I 2 1 6 9 05'W, 6 3 5 8 ' N 3 9 . 3 105.UW 7 2 9 9 I I 1 1 6 2 04*W, 64 0 9 ' N 2 2 . 0 106.UW 7 3 0 0 I I 12 1 7 1 33'W, 6 3 0 6 ' N 5 5 . 8 107.UW 7 3 0 1 I I 2 1 6 6 52'W, 64 0 6 ' N 3 3 . 8 108.UW 7 3 0 2 1! 7 1 6 9 05'W, 6 3 5 8 ' N 3 9 . 3 109.UW 7 3 0 3 II 1 8 1 6 7 23'W, 6 3 2 2 ' N 3 3 . 9 110.UW 7 3 1 4 I I 2 1 6 8 06'W, 62 1 6 ' N 3 2 . 9 118 R e f e r e n c e L o c a l i t y N o . C o o r d i n a t e s D e p t h i n m e t r e s 1 1 1 . UW 7 3 5 5 S t . L a w r e n c e I s . , A l a s k a 10 1 6 7 28'W, 6 3 1 4 ' N 3 2 . 0 1 1 2 . UW 1 4 2 5 8 5 1 6 7 48'W, 6 4 1 8 ' N 3 7 . 5 1 1 3 . UW 1 4 2 9 8 10 1 6 5 56'W, 64 0 0 ' N 3 1 . 7 1 1 4 . UW 1 4 3 3 8 3 1 6 8 l l ' W , 6 2 4 7 ' N 3 3 . 9 1 1 5 . UW 1 4 3 4 5 2 1 7 1 33'W, 63 0 6 * N 5 5 . 8 1 1 6 . UW 1 4 7 4 5 1 1 6 7 20'W, 6 3 3 0 ' N 2 7 . 5 1 1 7 . UW 1 4 7 4 6 3 1 7 1 18'W, 62 5 1 ' N 4 7 . 6 1 1 8 . UW 1 5 7 4 7 7 1 6 7 58'W, 6 3 4 6 ' N 3 4 . 8 1 9 8 4 119 L i t e r a t u r e R e c o r d s No. L o c a t i o n 1 3 3 . 1 4 0 . C o o r d i n a t e s D e p t h i n R e f e r e n c e m e t r e s 119. " S p i t z b e r g e n " 77 0 0 ' N , 2 0 00'W 1 2 0 . H u n d e I s l a n d , G r e e n l a n d 6 8 5 0 ' N , 5 3 10'W 1 2 1 . P o r t L e o p o l d , NWT 122. H e n l e y H a r b o u r 1 2 3 . M a g d a l e n e B a y , S p i t z -b e r g e n 124. ? I c e l a n d 126- G o d t h a a b , G r e e n l a n d 127, N i a t i l i c H a r b o u r , G r e e n -l a n d ( ? N i a n t e H a r b o u r , C a n a d a ) 73 5 0 ' N , 9 0 17'W 5 1 5 9 ' N , 55 51'W 79 3 5 * N , 10 5 8 ' E No p r e c i s e l o c a l i t y 64 ;0'N, 5 1 40'W ? 6 4 5 5 ' N , 66 15'W 132. H o l s t e i n b u r g , G r e e n l a n d 66 5 5 ' N , 5 3 30'W G o d h a v n , G r e e n l a n d 69 2 0 ' N , 5 3 30'W 1 3 4 . M o s s e l B a y , S p i t z b e r g e n 79 5 4 ' N , 16 00'W 1 3 7 . P o i n t B a r r o w , A l a s k a 1 3 8 . I n g l e f i e l d G u l f ( I n g l e -f i e l d B r e d n i n g ) 71 2 3 ' N , 1 5 6 29'W 77 3 0 ' N , 67 30'W 1 3 9 . B e e r e n I s l a n d ( B j o r n o y a ) 74 2 5 ' N , 19 0 0 ' E R e c h e r c h e B a y ( R e c h e r c h e -f j o r d e n ) 77 3 4 ' N , 14 4 0 ' E 1 4 1 . A d v e n t B a y ( A d v e n t f j o r d e n ) 1 4 2 . H a r b o u r o f " V i r g o " ( ? V i r g o h a m n a ) 78 1 6 ' N , 15 3 0 * E 79 5 8 ' N , 9 3 0 ' E 1 4 3 . G o e s b a y ( G a s h a m n a ) , S p i t z -b e r g e n 76 1 5 * N , 15 5 3 ' E K r o g e r , 1 8 4 4 R e i n h a r d t , 1 8 3 8 ii W e i z a n d P a c k a r d E a t o n , 1 8 7 4 L u t k e n , 1 8 7 6 K u m l i e n , 1 8 7 9 D r e s e l , 1 8 8 4 I I S m i t t , 1 8 9 3 S c o f i e l d , 1 8 9 8 H o l m q v i s t , 1 8 9 9 L o n n b e r g , 1 8 9 9 K n i p o v i c h , 1 9 0 1 1 4 4 . S t o r f j o r d e n , S p i t z b e r g e n 77 3 0 ' N , 20 0 0 ' E 120 N o . L o c a t i o n C o o r d i n a t e s D e p t h i n R e f e r e n c e m e t r e s 1 4 5 I s f j o r d e n , S p i t z b e r g e n 78 1 5 ' N , 15 0 0 ' E K n i p o v i c h , 1 9 0 1 1 4 6 . I s f j o r d e n , S p i t z b e r g e n 78 1 5 ' N , 15 0 0 ' E C o l l e t t , 1 9 0 5 1 4 7 . B e l l S o u n d ( B e l l s u n d ) 77 3 9 ' N , 14 1 5 ' E 1 4 8 . M u r m a n s k 6 8 5 9 * N , 33 0 8 ' E G r a t s j i a n o v , 1 9 0 7 E g e d e s m i n d e , S t o r d a l e n , G r e e n l a n d 6 8 4 0 ' N , 52 40'W J e n s e n , 1 9 1 0 149. H a v n e f j o r d , N o r w a y 7 0 3 4 ' N , 2 3 0 3 ' E J e n s e n , 1 9 1 0 N a i n , L a b r a d o r 5 6 3 2 ' N , 6 1 4 1 ' E K e n d a l l , 1 9 1 0 1 5 0 . D a n m a r k s H a v n , G r e e n l a n d 77 0 0 ' N , 1 8 00'W J o h a n s e n , 1 9 1 2 1 5 1 . H v a l r o s o d d e n , G r e e n l a n d 77 0 0 ' N , 1 8 00'W I I 1 5 3 . G o d h a v n , G r e e n l a n d 69 2 0 ' N , 5 3 30'W F o w l e r , 1 9 1 4 154 . U p e r n a v i k , G r e e n l a n d 72 5 0 * N , 56 OO'W I I 1 5 8 R o b e r t s o n B a y , NWT 79 3 5 ' N , 56 0 0 *W I I 1 6 0 E i s f j o r d ( I s f j o r d e n ) , S p i t z b e r g e n 78 1 5 ' N , 15 0 0 ' E H o l s t e n , 1 9 1 9 1 6 1 E a s t p o r t , M a i n e 44 5 5 ' N , 6 7 01'W B i g e l o w a n d W e l s h , 1 9 2 5 1 6 2 • C h u k c h i S e a 68 5 5 ' N , 1 8 0 00'W R e n d a h l , 1 9 3 1 a 1 6 4 . B e r i n g S e a 64 5 2 ' N , 1 7 0 03'W I I 165- R a l e i g h , N f l d . 5 1 3 4 ' N , 5 5 44'W J e f f e r s , 1 9 3 2 1 6 6 . S t . L a w r e n c e E s t u a r y , T r o i s P i s t o l e s , Q u e . 49 2 1 * N , 68 10'W P r e f o n f a i n e , 1 9 3 3 1 6 7 . S t . L a w r e n c e E s t u a r y , C a p e C o l u m b i e r , Q u e. 48 5 2 ' N , 6 8 51'W I I 1 6 8 • N o t t i n g h a m I s l a n d , NWT 6 3 0 6 T N , 78 OO'W V l a d y k o v , 1 9 3 3 1 6 9 P o r t B u r w e l l , NWT 60 2 5 ' N , 64 50'W I I 121 N o . L o c a t i o n C o o r d i n a t e s D e p t h i n R e f e r e n c e m e t r e s 1 7 1 . T e m p l e B a y , L a b r a d o r 5 1 5 9 % 5 5 55'W H u n t s m a n e t > a l , 1 9 3 5 1 7 2 . B o n n e E s p e r a n c e , Que. 5 1 2 4 ' N , 57 40'W If 1 7 3 - R e d B a y 67 5 5 % 9 7 12'W 11 W h a l e s P o i n t , NWT 64 1 2 % 88 00'W P f a f f , 1 9 3 7 1 7 4 . L a p t e v S e a 75 0 0 ' N , 1 2 5 0 0 ' E 9-28 A n d r i a s h e v , 1 9 3 7 1 7 5 - S a u n d e r s I s . , W o l s t e n h o l m F j o r d , G r e e n l a n d 77 0 0 ' N , 69 00'W H i l d e b r a n d , 1 9 3 9 1 7 6 - M a r c h i s o n S d . , G r e e n l a n d 77 3 0 % 70 00'W t! 1 7 8 . S a g l e k B a y , L a b r a d o r 5 8 3 0 % 6 3 00'W [f 1 7 9 . L a k e H a r b o u r , NWT 67 5 1 % 69 53'W D u n b a r , 1 9 4 7 1 8 2 . D a n m a r k s H a v n , G r e e n l a n d 77 0 0 ' N , 18 00'W J e n s e n , 1 9 5 2 1 8 3 N a n o r t a l i k , G r e e n l a n d 60 1 0 ' N , 45 05'W I I 1 8 4 , U p e r n a v i k , G r e e n l a n d 72 5 0 ' N , 56 00'W I I 1 8 6 . W o l s t e n h o l m F j o r d , G r e e n -l a n d 77 0 0 ' N , 69 00'W I I 1 8 7 A n g s m a g s s a l i k , G r e e n l a n d 65 4 0 % 38 00'W II 1 8 9 . K a n g e r d l u g s s i a q , G r e e n -l a n d 6 7 0 0 ' N , 36 00'W n 1 9 0 . S c o r e s b y S o u n d , G r e e n l a n d 70 3 0 % 2 3 00'W II 1 9 2 . K a i s e r F r a n z J o s e f F j o r d , G r e e n l a n d 73 0 0 ' N , 2 3 00'W I I 1 9 5 . B e n t e k o e I s l a n d , G r e e n -l a n d 7 3 1 0 % 2 1 15'W n 1 9 7 - S a b i n e I s . , G r e e n l a n d 74 3 5 % 19 00'W I I 1 9 8 - H a m m e r f e s t , N o r w a y 70 4 0 % 23 44'W S m i t t , 1 8 9 3 1 9 9 . L a b r a d o r C o a s t , s e v e r a l l o c a t i o n s 5 5 3 0 % 6 0 00'W B a c k u s , 1 9 5 7 122 No. L o c a t i o n C o o r d i n a t e s D e p t h i n R e f e r e n c e m e t r e s 2 0 0 H e b r o n F j o r d , L a b . 5 8 0 6 ' N , 62 59'W 1 1 0 - 1 2 5 G o r d o n a n d B a c k u s 2 0 1 . M i r a m i c h i a t B u s h v i l l e , N.B. ?47 ' 0 2 ' N , 65 20'W M c K e n z i e , 1 9 5 9 2 0 2 A r c t i c B a y , NWT 7 3 0 2 ' N , 85 l l ' W 7 E l l i s , 1 9 6 2 2 0 3 I s f j o r d , S p i t z b e r g e n 7 8 1 5 ' N , 15 00'W 25 H o g n e s t a d , 1 9 6 1 2 0 4 . S t . M a r y ' s B a y , N f l d . 4 6 5 0 ' N , 5 3 47'W 1 0 9 E l l i s , 1 9 6 8 2 0 5 . R a n d o m S d . , N f l d . 4 8 0 3 ' N , 5 3 40'W it 2 0 6 • C a p e B r o y l e 4 7 0 5 ' N , 5 2 54'W 10 2 0 8 • M o w a t I s . , NWT 56 5 8 ' N , 76 40'W M c A l l i s t e r , 1 9 6 4 2 0 9 . S t . L a w r e n c e R i v e r , s e v e r a l l o c a t i o n s 4 7 4 3 ' N , 69 50'W B e r g e r o n a n d L e g e n d r e , 1 9 7 0 2 1 0 S a g u e n a y R i v e r 4 8 1 0 ' N , 70 00*W D r a i n v i l l e , 1 9 7 0 2 1 1 . M u r m a n s k S e a 69 3 7 ' N , 56 4 3 ' E K n i p o v i c h , 1 9 0 3 a 2 1 2 . N o r d e n s k j o l d 75 4 2 ' N , 1 2 4 4 1 ' E I I 2 1 3 . L a g u n a N e r p a l a k h 75 2 0 ' N , 1 3 7 2 0 ' E I I S t o r f j o r d , N o r w a y 62 2 8 ' N , 6 3 0 ' E K n i p o v i c h , 1 9 0 3 b 2 1 5 N o v a y a Z e m l y a 70 0 0 ' N , 5 5 0 0 ' E S c h m i d t , 1 9 2 7 2 1 6 W h i t e S e a 66 0 0 ' N , 36 0 0 ' E I I 2 1 7 . K a r a S e a 69 2 5 ' N , 67 1 5 ' E I I 2 1 8 . E a s t S i b e r i a n S e a 76 0 6 ' N , 1 5 3 0 1 ' E ti B a r e n t s S e a 69 3 8 ' N , 57 2 1 ' E B r i s k i n a , 1 9 3 9 69 3 5 ' N , 55 5 3 ' E 6 9 0 7 ' N , 44 4 8 ' E i i 12U Key to the Specimens of Gymnocanthus In Gymnocanthus, there i s overlap (with one exception) in a l l char-acters used to distinguish species. As a consequence, i t i s preferable to employ a mosaic of characters when identifying species. 1 Many char-acters w i l l be ambiguous for any particular specimen, but in no specimen examined have a l l the characters studied proved ambiguous. For qualitative characters, refer to the diagrams supplied. A l l specimens should be forced into a natural pose with the opercles f l a t against the head, mouth closed, and body straight. This key is adequate for specimens 6cm. and larger. For smaller specimens, the morphometric characters are inadequate, and one must rely on meristic and qualitative characters, and distribution. See also "diagnostic characters". l a . 1st, 2nd dorsal spines ahead of vertical through f i r s t pectoral ray origin (figure 13); dorsum pointed rather than rounded (figure 16); cleithr a l spines weak (figure 13); total f i n count^ 82 or over; range Sea of Japan, Hokkaido. . . . G..herzensteini lb. 1st or 2nd dorsal ray on vertical through f i r s t pectoral ray origin (figure 12); dorsum rounded or pointed (figures 16, 17); cleithral spines weak through strong (figures 11, 12, 14, 15); total f i n count may be above or below 82. . . . 2 2a. In fish 6 to 12cm., interorbital in head 12.0 times or fewer times; in fish over 12 cm., interorbital in head 9.0 or fewer times; range northern Hokkaido, to Southern Kamchatka. . . . G. detrisus 1. This i s especially true of G. tricuspis which, over i t s total range may be quite variable. 2. The last anal ray, i f appearing s p l i t , is counted as two rays. The total f i n count includes both dorsals, both pectorals, and the anal f i n . 125 2b. In fish 6 to 12cm., interorbital in head over 12.0 times; in fish over 12.0cm., interorbital in head more than 9.0 times. -r. -i c . ^ oi (see Footnote 2, p.ixf) , . . , Total fin count 81 ' v or fewer; males with serrations on inner surface of pectoral rays; 37 or fewer vertebrae, . . . 4 rn i r- ^ M(see Footnote 2, p./2<f) , , . Total fin count 82 ' v or greater; males lacking serrations on inner surface of pectoral rays; 36 or more vertebrae. 4a. Opercular membrane reaches or passes vertical through leading edge of first dorsal spine, rarely falling short of this line; cleithral spine moderate to strong, often emergent (figures 9, 10, 11); most juveniles (under 5cm.), some adults with supra-orbital c i r r i (figure 9, 10); males with pistillae in pectoral axil; trunk with many subpupil sized punctulations; not enter-ing Arctic or Atlantic waters. 5a. Cleithral spine long, sharp (figure 10); a l l specimens with supraorbital cirrus; ridges on nape low, not developed; tubercle behind suprapostorbital notch small or wanting (figure 10); seldom any development of bony granulations on opercular of upper preopercular shaft; in frontal pro-f i l e , head usually as deep as or deeper than width; males with long, narrow pistillae (figure 15) in pectoral axillae, terminal width of pistillae twice that at base; range Korea, Japan, possibly Kamchatka. 5b • • • JG. intermedius Cleithral spine shorter, blunter (figure 9); usually only juveniles (under 6cm.) with supraorbital c i r r i ; ridges on nape developed; tubercles on nape well developed (figure 9); granulations often present of opercular bone, preoper-cular ascending shafts; in frontal profile, head as wide as or wider than deep; males with wide pistillae in pec-toral axillae, terminal width three or more times that at base; (figure 14) range Japan to Seward, Alaska; Bering Sea to Pribilof Islands, north to St. Lawrence. . . . G. pistilliger 126 4b. Opercular membrane short of vertical through leading edge of spinous dorsal in western^ Arctic specimens, but may reach or pass this line in some eastern specimens; cleithr a l spine weak in western specimens, moderate in eastern forms; no specimens with c i r r i or p i s t i l l a e ; trunk without small punctulations; tricuspis entering Atlantic, Arctic waters. . . 6 6a. Total f i n count 82-89; upper opercular margin straight; nasal spines usually longer than tubular anterior nares; lateral ethmoid-nasal spine distance large (figure 12); body slender, depth at pelvic girdle 4.8-6.4 times in SL; range Aleutian Islands, southeast Alaska, Pribilof Islands, possibly northeastern Kamchatka. . . . G. galeatus 6b. Total f i n count 76-85; upper opercular margin convex; tubular anterior nares usually longer than nasal spines; lateral ethmoid-nasal spine short (figure 11); body plump, depth at pelvic girdle 3.7-5.5 times in SL; range in Bering Sea north of 60 N. latitude; circumpolar, North Atlantic. . . . G. tricuspis 1. "Western" denotes the Bering Sea and from the Kara Sea through the Chukchi Sea to Point Barrow, Alaska; "eastern" denotes the rest of the Arctic and North Atlantic Ocean. 127 Figure 9. G. p i s t i l l i g e r lateral view. Note tubercular nape. Figure 1 0 . G_. intermedius late r a l view. Note smooth nape. moderate cle i t h r a l spine strong cle i t h r a l spine Figure 1 1 . G. tricuspis lateral view. Nape variable; Note opercular shape. moderate to weak cle i t h r a l spine. 128 Note broad p i s t i l l a e , pectoral Note narrow p i s t i l l a e , serrations. pectoral serrations. Figure 16. G. h e r z e n s t e i n i * Figure .17. G. galeatus cross section. Note pointed ... cross section. Note dorsum. rounded dorsum. 129 Diagnostic Characters Considering the enormous variability of the species of Gymnocanthus, the d i f f i c u l t y in identifying specimens, and the consequent profusion of invalid distribution records and range extensions, I choose to discuss a l l species under the same heading to reduce the confusion and repetition resulting from fragmentation of the topic. G. galeatus's distribution, so far as i s known from collection data and specimens available overlaps only with 3^. p i s t i l l i g e r from which i t may be distinguished by the much greater size, the higher meristic counts, the more poorly developed sexual dimorphism (i.e., the fins are l i t t l e longer in the male than the female, males lack p i s t i l l a e , colour pattern differences between the sexes are slight), the greater development gran-ulation, the comparatively tiny cleit h r a l spine, the longer snout, the lesser developed nape tubercles. Although the key is adequate for fish to 6cm., (3. galeatus and G. p i s t i l l i g e r may be distinguished as 2-3cm. fish in that even at this size, the nape tubercle and cleithra l spine development i s similar to that of adults; in addition, (3. p i s t i l l i g e r possesses supraorbital c i r r i at this size. Lastly, meristic characters, though d i f f i c u l t to count are fu l l y developed and may be utilized. Unlike the adults, both G. p i s t i l l i g e r and G.galeatus possess (3. galeatus colour-ation as young. (3. galeatus approaches and may geographically overlap (3. detrisus in the west, and G. tricuspis in the north though no verifiable collection data or specimens are available to prove overlap. (3. galeatus is separable from G. detrisus in the subtle differences in tubercle development and 130 foremost, the interorbital width. The interorbital grows allometrically, the proportional width of small CJ. detrisus approaching that of large G. galeatus. In equivalent sized individuals of 8cm. (smallest available specimen of G. detrisus) and larger, the interorbital difference is strikingly distinct. It is unknown whether larval or juvenile fish may be distinguished on the basis of interorbital width (figures 28-33, Table 1). G. galeatus is certainly distinguishable from the north Bering G. tricuspis where their respective distributions might overlap. G. gal-. eatus tends to have higher meristic characters; i t s snout is longer and less blunt; generally, the suprasuborbital stay canal in G. galeatus is very porous (4-6 pores, plus terminal pore) while in Bering Sea G. t r i - cuspis there are few pores (1-2 pores plus terminal pore). Some eastern Arctic G^  tricuspis may approach G. galeatus in pore number. Bering Sea G. tricuspis almost totally lack nape tubercles, and often have reduced granulation development. It i s unlikely that (J. galeatus ever overlaps G. herzensteini or _G. intermedius. G. galeatus may be easily distinguished from G. herzen- steini by i t s lower scale density, shallower head, more posterior spinous dorsal origin, and colour pattern. The grossly different head shape, cleithral spine development, low meristic characters, and supraorbital cirrus of G. intermedius are always adequate to distinguish i t from (2. galeatus. G. p i s t i l l i g e r i s a very wide-ranging species, at least marginally overlapping the ranges of a l l the other species. It is very close to 131 G. tricuspis and may closely resemble specimens of that species from the Arctic. G. tricuspis appears to undergo character displacement in the northern Bering such that there, that species is quite distinct from those species with which i t may be sympatric. In this region, (J. p i s t i l l i g e r may be distinguished from (J. tricuspis by the greater development of tubercles and granulations, the tendency toward lower meristic characters, the presence of p i s t i l l a e (in the males), the lesser body depth, and the greater cleithr a l spine development in the former. Its lower meristic characters, cleithr a l spine development, sexual dimorphism, and interorbital width are always adequate to distinguish G. p i s t i l l i g e r from either (3. herzensteini or JS. detrisus. G. p i s t i l l i g e r may be distinguished from i t s closest relative, G. intermedius by the former's shallower head, greater tubercle development, smaller cl e i t h r a l spine, different p i s t i l l a e shape and usually, the absence of the supraorbital cirrus in adults. G. tricuspis, being Arctic never overlaps the range of the temperate species, Cl. herzensteini, G. detrisus, and G. intermedius. However, since that species has been identified with G. detrisus once in the literature (Vladykov, 1933) i t is perhaps expedient to distinguish them. G. tricuspis has a shorter, more broad head than either G. herzen- steini or G. intermedius. Interorbital widths are often poor c r i t e r i a to use for identifying (3. tricuspis since eastern Canadian specimens may possess wide interorbitals; these eastern samples also possess grossly developed nape tubercles unlike either G. detrisus or (3. herzensteini, the other forms with wide interorbitals. In the north Bering, G. tricuspis 132 possesses a relatively narrow interorbital; here, i t also lacks post-orbital tubercles, characteristic of G. herzensteini, detrisus, or inter- medius . (5. tricuspis may always be distinguished from G. intermedius in that the former possesses p i s t i l l a e (males) and supraorbital c i r r i . (5. detrisus and G. herzensteini are similar, though the former tends to have a wider interorbital, a more sparse scale patch, and a wider, shallower head. JS. herzensteini's spinous dorsal originates more anter-iorly than in either G. detrisus or (5. intermedius. Finally, C5. intermedius over 8cm. may be distinguished from most other species (the exception, G. p i s t i l l i g e r previously noted) by the presence of supraorbital c i r r i . Meristic Variation Meristically, there is much overlap in the six species of Gymnocanthus (figures 24-29) although the means and modes may differ significantly between species (figures 18-23). Species tend to have either high counts or low counts in a l l fins, rather than exhibiting a range of counts. Within a single fish there is l i t t l e relation between unusually high or low counts in any particular f i n and the counts for other fins. There-fore, adding f i n counts tends to minimize the effect of one high or low count, and increases the separation of counts (Schultz and Welander, 1934). By using total f i n ray and spine counts (see footnote 2, p. ) _G. pis- t i l l i g e r and (5. intermedius can be distinguished from G. galeatus and G. herzensteini however neither G. tricuspis nor G. detrisus can be distin-guished from any of the other four species using this criterion. Also, 133 G. p i s t i l l i g e r and _G. intermedius frequently may be distinguished from the other species by v e r t e b r a l counts. These counts are included i n the key as c r i t e r i a of secondary importance since they can only be e a s i l y counted on x-ray plates. Data are a v a i l a b l e (Soldatov and Lindberg, 1930; Thielemann, 1921; Knipovich, 1907; Backus, 1957) to compare geographically d i f f e r e n t pop-ulations of both G. p i s t i l l i g e r and G. t r i c u s p i s . Figure 30 shows data for specimens of G. p i s t i l l i g e r examined by me and comprised almost wholly of eastern P a c i f i c c o l l e c t i o n s , and for Lindberg and Soldatov's c o l l e c -tions which are probably a l l from the western P a c i f i c . While the ranges of counts remain about the same, western c o l l e c t i o n s tend to have lower spinous dorsal (mean 9.53 versus 9.73) and pectoral ray (mean 17.99 versus 18.53) counts, but higher s o f t dorsal (mean 14.78 versus 14.40) and anal ray (mean 16.51 versus 16.09) counts. Although the l i t e r a t u r e records do not permit compilation of t o t a l counts, i t appears that i n western G\ p i s t i l l i g e r the lower counts of the pectoral and spinous f i n may compensate for the higher counts of the s o f t dorsal and anal f i n . If so, the t o t a l count d i s t r i b u t i o n c l o s e l y resembles that of the eastern c o l l e c t i o n s from which the t o t a l counts i n the key were obtained. Comparative data for G. t r i c u s p i s c o l l e c t i o n s , consisting p r i m a r i l y of A r c t i c American specimens (examined by me), Labrador c o l l e c t i o n s (Backus 1957) and A r c t i c Russian c o l l e c t i o n s (Knipovich, 1907; Thieleman, 1921) show that except for the pectoral f i n (which i n Russian material has counts equivalent to those of American material), the Labrador and Russian c o l l e c t i o n s tend to have higher f i n counts. Total f i n counts for 134 Russian collections also ranged higher than those of American CJ. tricuspis, but their means are very close (80.14 and 79.96 respectively) (Figure 19-23, 33, 34). Cusp numbers show great variation and overlap, consequently they are not useful for species separation (Figure 33). 135 Figure 18. Range and v a r i a b i l i t y of v e r t e b r a l counts, -i 1 1 1 1 1 1 r NUMBER OF VERTEBRAE ' ). herzensteini G. internedi\is G. detrisus G. tr i c u s p i s G. p i s t i l l i g e r G. galeatus I I I 31 32 33 i n 35 i 36 n-15 n-27 n*kl n-117 1 . n-112 l i l t 37 38 39 40 I 4-1 Figure 19. Range and v a r i a b i l i t y of combined f i n counts 1 1 — i 1 1 — — i 1 1 1 1 1 1-C0MB1NED R T F COUNTS (DORSALS, PECTORALS, A N A L ) G. heraer.st^ini G. intermedius G. detrisus G. tr i c u s p i s (Soviet A r c t i c ) _£ G. tr"icusp^s (AdasO. to St. La'-rercs Riv°r) G. p i s t i l l i r r e r _ G. galeatus n=12 n--27 n-.kj n-3? n-128 n=98 n '139 1 I I i I I I I I I I 70 72 ?k ?6 78 80 82 Bk 86 88 90 136 Figure 20 1 1 1 1 1— 1 1 — i — — i — • , SPINOUS DORSAL SPINE .COUNT G. herzensteini 1. A I n • 12 G. interned ins L, ...J k 1 27 G. detrisus k 1 n--43 G. tri c u s p i s (Labrador; Backus, 1 fl I n * 114 1°57) G. tricu s p i s (Alaska to St. rir~ n- l 4 l Lawrence River) G. tricuspj s (Soviet. A r c t i c ; i \h 1 n* 44 Thieleman, 1Q.??; :inipovich, 1.907) A i G. rr i st^ 11 i "-er (Mor+hvestern 1 n * 75 P a c i f i c ) tl L G. oistilli<=-?r (Northeastern j n = 99 P a c i f i c ) G . ealeatus . I.J 1 n = 139. 1 I I I 1 i i i 1 1 1 5 6 7 8 9 10 11 12 13 14 15 r - Figure 21 i i i I i SOFT DORSAL RAY • i COUNT i i n •-J . herzensteini . . . i u U •'•in in J n--12 G. intermedins 1 A i n=27 G. detrisus i fk 1 n = 43 G. tric u s n i s (Labrador; backus, | 1 n - l l P 195?) G. tri c u s p i s (Alaska to St. k i n-QO Lawrence River) G. tric u s p i s (Soviet A r c t i c ; 1 n = 42 Thielovian, 1927, Knipovich, 1907) G. p i s t i l l i p-er (Northwestern L, m i n-P2 Pac i f i c ) G. rn st.i 1 1 -i p-er C Kor f.h<=a st.-rn 1 1 i i n.99 Pac i f i c ) G. galeatus i i 1 n-139 1 1 1 1 1 10 11 12 13 14 i i 15 16 1 17 i 18 1 19 1 20 F i g u r e 22 137 - i 1 1 1 1 ANAL RAY COUNT G. hsrzens teini G . int^r^edi us G. detrisus G. tricuspis (Labrador; [ Backus, 1957) G. tricuspis (Alaska to S t . f Lawrence River) G. tricuspis (Soviet Arctic.;' ?hi=lprnan, 1Q37; Xmpovich, 190?) G. p i s t i l l i r ^ r (Northwestern I Pacific) G. pistillip-er (i^orthea s t e m f~ Pacific) G. galeatus i k ±: 3E 1 1 i i i i i i i 12 13 14 15 16 l? 18 19 20 n--12 n = ?7 n--43 n = 119 n = 91 n = 4? n-?5 n-98 n=139 i I 21 22 F i g u r e 23 -» 1 1 1 i — PECTORAL RAY COUNT G. herzensteini G. i n te rmedius ML 9ll n ^53 G. detrisus G. tricuspis (Labrador; Backus, 1957) G. tricuspis (Alaska to St. Lawrence. River) G. tricuspis (Soviet Arctic; Thielenan, 1991, Knipovich, 1907) G. oi st i 11 i"er (Ford',hwestern Pacific) G. p i s t i l l i f R r , ('Northeastern P a c i f i c ) G. raleatus r ~ ~ ~ i i l I i I I I I 13 14 15 16 1? 18 19 20 i ?1 n-86 n = l l8 m l 82 n-75 n»?l n = 197 Dr.-280 I I ??. 23 138 Figure 2k. Distribution of total fin counts. tn 20 10 0 10 0 10 -f 30 20 i—i 10-Crt co 0 fx. O 30 20 10 4-0 50 40 30 -20 - -10 0 ~i i i i i i — ; — i — i — i — i — i — i — i — i — i — i — i — r G. h e r z e n s t e i n i - i — | — i — i — i — i — i — | - H 1 1 1 1 (-G'. intermedins - I H—H 1 1 1 1 1 1 1 1 1 1 (-G. d e t r i s u s H 1 I 1 1 1 1 1-G. p i s t i l l i g e r -i 1 1 1 1 1 1 1 1 1 1 1 1 (--4 1 t-G. t r i c u s o i s F = l — I — I — | — | — i — i — | — i — h _ i i — i i _ G. galeatus — i i _ ^ 9° Q °-! ^ U' N' ^ <*••' ON o c\> ^ UN IN - IN - O - {N CN- J N . {v- [s C U C U 00 a) CC C O C C CC: CC C O O N O ' . O N O N o\ O N TOTAL Fi l l COUNT 139 ure 25 . D i s t r i b u t i o n o f v e r t e b r a l counts . an 80 70 60 50 40 30 20 10 0 cK 100 ° 90 •XI p 80 70 60 50 40 30 .20 10 0 -1 1 1 1 1 1 r G . d e t r i s u s G . paleatus j L 1 1 r 1 - 1 i 1 r ! . i n t e r m e d i n s H 1 h . G . p i s t i l l i K e r _ j L n — - i — i 1 — i r G . h e r z e n s t e i n i -i—I—I-G.. t r i c u s p i s cn .3- in vo o- cc o- o cn -d- 'Avo N a' o o r > in VO O - co o cn m m cn c~. cn cn -cj cn cn cn cn cn cn cn -3- cn cn cn cn cn cn NUMBER OF VERTEBRAE iko Figure 26. D i s t r i b u t i o n of spinous dorsal counts. M O CO fe o 50 40 30 20 10 0 130 120 110 100 90 80 70, 60 50 40 30 20 10 - I 1 1 1 1 1 r G. detrisus 1 G . i n t e r s G. s a l e a t u s j L -1—1—1—1 1—r -i— r —i—1—1—1— r 1 G. h e r z e n s u e i . n i H h G . p i s t i l l i s e H — t -G . t r i c u s p i s M D ON O H N O- <X; ON O r-i CvJ C N O- CC CT- o ^ tv r > -.-}• SPINOUS DORSAL FIN COUNTS 141 Figure 27. D i s t r i b u t i o n of s o f t dorsal f i n counts. to Pi o fi, o 80 70 60 50 40 30 . 20 10 0 100 90 80 70 60 50 40 30 20 10 T — r 1 — i — i — r -4—f-G. p - a l e a t u E — i — i — I — I — i — I — G. in te rroed ius G. p i s t i l l i g e r _L G. t r i e us o i ~ i i I i i i r. herzensteini H 1 I-J I I l _ (\! n I A \o tN CC' ON N r> 4" l H \0 N CO O N I A vo N CC ON •s—i ^ — i -r-l v—I ^ — i "v—' "<—I •%—> —I t—I t—I — * \ — 1 *;—! T— • v—i vH T — ! —! T*-1 N—I \—I SOFT DORSAL FIN. COUNTS 142 Figure 28. D i s t r i b u t i o n of anal ray counts CO C-3 H O 80 I 70 60 50 40 30 20 10 0 to 100 fx, o 90 80 70 60 50 40 30. 20 10 0 T — T— I— I— i — i — r G. detrisus -F=r-G. avaleatus J I L -1 1 1 1 r G. intermedins d — f -G. p i s t i l l i g e r - i — i — i — i — i — i — r G. herzensteini G. t r i c u s p i s ON UN VO IN K C O UN vo CN- CC. O O ON i f \ vO N C O O N O i - l v l r-t v-l -rH r—i H 1 04 t - l r - i r - i -r-i i—I N—I -r-l CV » H -rH t H T-H TH H v - i C\i AIJAL FIN RAY COUNTS 1 4 3 Figure 29. D i s t r i b u t i o n of p e c t o r a l f i n ray counts, M O fc, O Di 120 100 RO 60 40 20 0 240 220 200 180 160 140 120 100 80 60 40 20 0 -i 1 1 1 1—-l r G. detrisus H I -- i — i — i — i — i — i — r G. intermedins H 1—4-G. p i s t i l l i g e r 1 G. t r i c u s p i s J E L ~I i i i > i i— !. herzensteini -4 h UN vo o- cc o\ o -r-t rvj UN vo o- co o-. o n c\) UN vo o- a; CN O H CV; T - ' T-< r-l T - i - r - l CV CM C\i r - ' r - l r - i r l r l Cvt W W r i r l r i r l r l CV) OJ RIGHT AND LEFT PECTORAL FIN RAY COUNTS Figure 30. Gymnocanthus pistilliger fin counts, 144 CD "tr, ti cS fn r-l r,l r-l O CD cn r-i 1—{ _ fc.:. to I u Ii; 0. CO ,.C 2r. •r-i a' c; CJ -ri a-•ri r-i t-J P-O ct! trj Ci) - r i . Ti P- U to a-, CT: «; -P •H Ui a; E o -p IT, T? rH o CO ~ 1 tn r5") Pi o co o s 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -> 1 1 r :13 km 11 P i mm [>- oc Q \ o ex CM cn ^j- m vo 0 - ^ 3 - >n vo o- co o\ 1—I r - l T - ! r - i t - H T - ! T - 4 T-^ H i - l T - I H T - l VO O- CC ON CV CVi bp1nous dorsal Soft dorsal Anal Pectoral FIN COUNTS F igure 31. Gymnocanthus t r i c u s p i s f i n counts . 145 CM fi E-i CN o ON Si O CL. r,. 7.- i n a g M O co 03 190 180 1?0 160 1.50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 o N O 4-> Sill "1 1 1 1 r few m -I _1 j r — — i r-J=Ei irk ;n-.v ~i 1 1 i r 0 •Mi m L...-3 J 34-0 CC O^v O rH Cv -rr ^ vO N O' _^  m NO Ds CC ON VO GS- CQ O tH *H *<H I "H *H tH T I T I >—I tH tH *s—I v-i t~* tH TH tH CM (S.I Spmo'is Soft dorsal dorsal Anal Pectoral Ih6 Figure 32. Gymnocanthus t r i c u s p i s . Total f i n counts f o r d i f f e r e n t c o l l e c t i o n regions. Wm Thielemann, 1921; asostly Barents Sea specimens. H O Pi p3 f 4 70 60 50 CO 4-U o 30 20 10 F a 'Cnipovich, 1907; mostly Barents, Kara, Laptev Sea specimens. J Measured specimens; mostly northern American m a t e r i a l . " i — i — i — i — r ~i—T r—n—T——i 1 — i i 1 r — ~ i — T - — i r Hymno canthns t r i c u s p i s asm -1 _J I I I I I I L-N u> V3 O- CC ON O w w r\ 4 i/N vO £N- CC CN O TH Cvi C"\ j-> UN cv c^. [N- c- CN- CN. o- O- c  a. a. a cu a cc c- co a. ON O. O CT 0>. ON LUMPED TOTAL FIN COUNTS 'igure 33. Distribution of cusp counts. cn f—i Pi o CO o .70 60 50 40 .. 30 .20 10 0 110-100 1 1 1 r — i 1 r G. detrisus S 90 s eo . 70 60 .50 . 40 . 30 20 10 G. galeatus - T — i — i — i — i — i — r G. intermedials G. p i s t i l l i g e r + G. tricuspis J L T 1 1 1 1 T P G. herzensteini j L O r H CV! CN, l ^ ^ VO CN- O r-l CM -Hr UN. VO O- O r H CM O U~\ O-T0TAL CUSPS PER FIRST FRSOFERCULAR SPINS 148 Morphometric Variation In the genus Gymnocanthus morphometric differences while evident are usually slight. These characters are often variable within a species and may grow allometrically, making their taxonomic utilization unwise with-out allowing for the variation or allometry. Figures for interorbital versus head length, first predorsal versus SL, and head length versus SL are presented (figures 2 8 - 4 l ) . Slopes for the graphs are available from the regression equation given above. A covariance chart (table l ) giving probability of equivalent slopes between each of a l l six species is given. When values f a l l below . 0 5 , the slopes are considered significantly dif-ferent . G. herzensteini and G. detrisus have much more broad interorbitals than the other four species, while the interorbital of the latter is s t i l l significantly wider than that of the former. Reduced reliance should be placed on the slope for G. tricuspis. Eastern Canadian specimens of which I was able to examine relatively few tend to have broader interorbitals than the Arctic or northern Bering Sea specimens which formed the bulk of the points. One feature which is apparent in a l l six regression lines is that a l l cross the x-axis at a positive x value, suggesting that the interorbital characteristically grows allometrically in young fish. The data points suggest linear growth in older fish, but are not adequate to show any inflection point. G. herzensteini, G. detrisus, and G. intermedius a l l tend to have elongate heads (table 2, figures 40-45) which in at least G_. herzensteini is due to the elongate snout (table 4 ) . G. tricuspis possesses a much shortened head. 1U9 The spinous predorsal length i s a function of relative spinous dorsal o r i g i n , snout, and head length. Table 3 shows that the measurement i s often s ignif icant ly different between species. Though i t was shown that the spinous dorsal originates further forward relative to the pectoral base in G_. p i s t i l l i g e r and G_. herzensteini than i n other species, the predorsal distance i s least for G. t r i c u s p i s , probably due to i t s abbreviated head. For neither head nor predorsal length does the regression l ine give any clear, consistant indication of allometric growth. Sexually dimorphic characters examined (spinous dorsal, soft dorsal , pectoral , pelvic f i n length) are plotted against SL. Both axes are logarithmically transformed to reduce the effect of allometry. Regression equations (for log transformed data) are given separately for males and females. X's are used for female data points, O's for male data points. Covariance tables 5 - 8 indicate that few s t a t i s t i c a l l y significant differences exist between males of the various species with respect to their sexually dimorphic characters. Significance is reduced by the large v a r i a b i l i t y in f i n lengths and by the low numbers of males available, especially of G. herzensteini, G. intermedius, and G. detrisus. Pro-portional ranges and means of f i n lengths are presented in figures 58, 59, and 60. These show clearly that the range of values is broad and over-lapping. Figures 61-79 show sexual dimorphism within each species. One trend apparent for the pelvic f i n length i s that for G. intermedius, G. t r i cuspis , and G. p i s t i l l i g e r the regression lines cross at very small SL, suggesting that dimorphism tends to develop at a smaller size i n these species. 1 5 0 Although in no species is the pectoral length significantly sexually dimorphic the data for G_. intermedius (figure 6h) suggest that for this species a slight difference exists which might be significant i f more data were avail-able . One interesting feature is that while G. tricuspis and G. pistilliger may show greater dimorphism between sexes than G. galeatus, these dif-ferences in the later species are more statistically significant because of their lower variability. 151 Table 1. COVARIANCE MATRIX FOR INTERORBITAL WIDTH VERSUS HEAD LENGTH (ftales and Females) G P T D I H G XXX XXX XXX XXX XXX XXX P OB 7478 XXX XXX XXX XXX XXX T Oo 5863 0 9 8952 XXX XXX XXX XXX D O o O O O O 0 • 0 0 0 0 0 «0000 XXX XXX XXX I - OB 1248 O a 1303 0 »0436 O s Q O O O XXX ' XXX H 0 o O O O O 0 • U 0 U 0 0 o u ouo U t U 0 U 0 0 » 0009 XXX A 17 I N D I C A T E S I N S U F F T C T E N T bATAT"" i R I P L T ~ X "REFERS '"To IRRELEVANT VALUES SUCH A S A VALUE TO BE FOUND ELSEWHERE IN THE TABLE OR C0VARIANCE5 OF A SPECIES VERSUS IT S E L F e FRACTIONS OF. LESS THAN i« I N D I C A T E L E V E L S O K C O N F I D E N C E « 605 IS USUALLY TAKEN TO B E SI G N I F I C A N T * ABBREVIATIONS ARE G_ = G O GALEATUS* P = Go P I S T I L L I G E R * T = G o T R I C U S P I S * TJ~S <5V DETRTSO'Si I = G l FN' iE 'kTTED'i U S » H '='' G« Ht'R2"E"N'S"TE"ITOT" Figure 3b. I n t e r o r b i t a l versus head length. , _ G* INTERMEDIUS Y= 0-037X -0-090 z H a! i—i Z I-H 5-0+ 4 » S 4 - a 3-E 3-0. 2-5.. 2-0-1-0. 0-51 0-0. 3&a> HEAD LENGTH IN CM-Figure 35. I n t e r o r b i t a l versus head len g t h * G- HiERZENSTEINI Y= 0-124X -0-301 z I-H z I—1 5-0. 4-5 4-0. 3-5 3*0. 2-5.. E-0. 1-54. 1-0. 0-51 0-0. 3 1 0 -HEAD LENGTH IN CM* 152 Figure 36. Interorbital versus head length. Figure 37. Interorbital versus head length. _J < Z 5-O.j. 4 » 5 l 4-0. 3 -51 3-0. E-51 E-O. 1-5J 1-0. 0 - 5 1 0-0. G- PISTILLIGER Y= 0-070X -0-071 s 5-OU. 4 - 5 . . z M 4-0 . . 3 -5 . . < H 3-0 . . n 5 E - 5 . . E - 0 . . 1 -5 . . z —! 1-0 . . 0 -5 . . 0-0. 0- 1- E» 3- 4- 5- G - 7- B» 34.0-HEAD LENGTH IN CM-G- DETRI9JS . Y= 0-195X -0.SB9 H—!—4-O- 1- E - 3 - 4- 5 - G - 7 HEAD LENGTH — I 1 r • 8- 3<L0-IN CM-z z I—I Figure 38. Interorbital versus head length. G- GALEATUS Y= 0-087X -0-105 5 - 0 + 4-5 . . 4 -0 . . 3-5, „ 3-0 . . E - 5 . . E - 0 . . 1-5 . . 1-0. . 0-5 , . 0-0. Figure 39. Interorbital versus head length. G- TRICUSPIS Y= 0-073X -0-048 g 5-Ox. 4 -5 . . z 4-0 . . 3 -5 . . 1—| 3-0 . . 1 S-5.. - A . S»OL. jJ 1-5 . . Z 1-0 . . n o-s.. 0 - 0 . . 1» E» 3 - 4 - 5- G - 7- B» 3<L0« HEAD LENGTH IN CM- l-EAD LENGTH IN CM-153 Table 2, 3. C O V A R I A N C E M A T R I X F O R H E A D V E R S U S S T A N D A R D L E N G T H (Males and Females) G H f'~ D 1" H G X X X X X X X X X X X X • X X X X X X P 0 e l 9 9 2 X X X X X X X X X X X X X X X ~T 0 o 0 0 0 4 - O o 0 0 0 0 X I X X X X " X X X X X X D 0 . 0 0 0 0 0 . 0 0 0 3 O e O O O O X X X X X X X X X I 0 * 0 0 0 . 3 O o O O O B 0 * 0 0 0 0 0 e 8 0 6 6 X X X X X X T T 0 • UUUU DcUUUU OTUUUU 0~*~oOTJ8 0~TT9W5 X~X~X C O V A R I A N C E M A T R I X F O R F I R S T P R E D O R S A L V E R S U S S T A N D A R D L E N G T H (Meles and Females) _ _ _ _ _ _ : _ _ G X X X X X X X X X X X X X X X X X X P O o O l O O X X X X X X X X X X X X X X X T 0 o 2 5 0 6 • 0 * 0 0 0 7 ~ X X X X X X X X X X X X D O o O O O O 0 * 0 0 0 4 0 * 0 0 0 0 X X X X X X X X X I OoOOoo 0 * 0 0 0 9 OoOooo O06637 x x x x x x H G o 0 0 3 4 0 0 1 2 9 5 0 * 0 0 0 0 DT3366 O o 1 5 1 2 X X X A " 1 * I N D 1 C A T E S I N S U F F I C I E N T ~ D A T A o T R I P L E X R E F E R S ~ T 0 I R R E L E V A N T V A L U E S S U C H A S A V A L U E T O B E F O U N D E L S E W H E R E I N T H E T A B L E O R C O V A R I A N C E S O F A S P E C I E S V E R S U S I T S E L F * F R A C T I O N S O F L E S S T H A N 1 * I N D I C A T E L E V E L S O F C O N F I D E N C E . o 0 5 I S U S U A L L Y T A K E N T O B E S I G N I F I C A N T . ) A B B R E V I A T I O N S A R E __G = G • G A L E A T U S » _ P _= _ G * _ P I _ S T_IJ_ L J _ G j E R j _ T _ = _ G e _ _ T R I C U S P I S » D = G« D E T R T S U S Y - . I = G * I N T E R i M E T T l U S * H = G * HE~R 7 . c N S T " G " I N T V " 154 Figure' ho. Head length versus standard length. G- HERZENSTEINI Y= 0-379X -0-3B3 Qa s» 4« S» B- 10« 12« 14» IG- IB* £0» EE» £4« ffi- SB- 30« STANDARD LENGTH IN CM* 155 Figure kl. Head length versus standard length. G» DETRISUS Y= 0=3SX -0-SB5 14-.. 13».. ±2°.. 0» S " 4« 6 « B « 10= I S - 1 4 « 1B» ±B« £0» S S " S 4 » SB* S B " 30* STANDARD LENGTH IN CM» Figure 1+2. Head length versus standard length. G° INTERMEDIUS Y= 0 3 7 7 X - 0 2 7 G ±4» . . 13-.. IS-.. t—•—1 s ? I i j i 1 i i 1——r 1 1 r 0 » S » 4* B« B« 10° 1S» 14« I G " IB* S 0 » EE* 24° S B " SB» 30» STANDARD LENGTH IN CM* 157 Figure k3. Head length versus standard length. G- PISTILLIGER Y= O S 2 9 X * 0-101 15-4-O 2 „ 4„ B« B - ± 0 - ±£ - 1 4 - I S - I B - EO- E E - E 4 - E S - E 8 -STANDARD LENGTH IN CM-158 Figure kk. Head length versus standard length. G- GALEATUS Y= 0-3E7X + 0-074 1 5 - J . 1 4 - . . 1 3 - . . IE"., 1 1 - . . 1 0 - . . 0 - E - 4 - 6 - S - 1 0 - I E - 1 4 - I B - I S - 2 0 - 2 2 - 2 4 - 3S» 3 B - 3 0 -STANDARD LENGTH IN CM-1 5 9 Figure 1+5. Head length versus standard length. G- TRICUSPIS Y= 0-304X •*- 0-157 0' 2 » A' B* S » 1 0 " IE* 14= 16* I B " E 0 » E E " E 4 " S B - 2 3 » 30« STANDARD LENGTH IN CM-160 Figure hG. Predorsal length versus standard length. G- HERZEISBTEIWI Y= 0-345X -0-278 0 " 2* 4 - G- 8* 10« ±2* ±4- I G " IB" 20* 2 2 " 2 4 " 2 6 " 2 8 " 3 0 -STANDARD LENGTH IN CM-1 6 1 Figure . Predorsal length versus standard length. G- DETRISUS Y= 0°358X -0-430 0 » E» 4 " B- B> 1 0 " 1£» 1 4 " I G " 1B» £0* E E " 24* EG" E 3 « 30° STANDARD LENGTH IN CM-162 Figure 48 Predorsal length versus standard length. G° INTERKCDILJS Y= 0-3G3X -0°:S2 15 "4-O- E- A» S» &o 10- IE-14- IB- IB- EO- EE- E4- ES- SB- 30-STANLTARO LENGTH IN CM-163 Figure U9. P r e d o r s a l l e n g t h versus standard l e n g t h . G- PISTILLIGER Y= 0-328X -0-019 1 4 - . . 13=. . 12=. . •id.-.. 10".. STANDARD LENGTH IN CM-F i g u r e 50. P r e d o r s a l l e n g t h v e r s u s s t a n d a r d l e n g t h . 165 Figure 51• Predorsal length verus standard length. G- TRICUSPIS Y= 0 - 3 0 7 X J-- 0 - 1 2 6 12", 1 4 ° . . . 1 3 ° . . I E - . . 11-.. 1 0 » . . 0 " 2 » 4 » 6 " B* 10» 12° 1 4 " 1£« I B " 20* 2 2 " 2 4 " EG" 2 8 " 3 0 " STANDARD LENGTH IN CM-166 Table k. COVARIANCE MATRIX FOR SNOUT VERSUS HEAD LENGTH G P T D I Fl G XXX XXX XXX XXX XXX XXX P 0 * 4 6 0 3 XXX XXX . XXX XXX XXX T 0 * 4 9 1 2 0 . 8 7 2 5 XXX XXX x x x XXX D 0 « .1 905 0 * 6 1 9 0 0 * 4 4 9 1 XXX x x x XXX I " 0 * 7 8 8 7 0 * 7 5 3 3 0 * 8 0 8 7 Oo 5 2 1 5 x x x X X X H 0 o 0 3 7 7 0« 0 0 5 2 0 o 0 0 0 6 0 e 0 1 4 9 0 * 0 1 9 7 x x x IRR IN • INDICATES I N S U F F I C I E N T DATA * . T R I P L E ELEVANT VALUES SUCH AS A VALUE TO BE F THE TABLE OR COVARIANCES OF A S P E C I E S OUND E L S E W VERSUS ITS Ttr" ~ HERE ELF* FRA e 05 ARE CTIONS OF L E S S THAN IS USUALLY TAKEN TO G = Go GALEATUS* P l a INDICATE L E V E L S BE S I G N I F I C A N T * = G* P I S T I L L I G E R * OF CONFIDENCE* A B B R E V I A T I O N S T = G » - T R I C U S P I S * D = G* DETRISUS* I = Go I NTERM ED I US* H = IT«~"H E R T E 1 T S T E ' I N i T G-. I N T E R F I L E G» HERZENSTEINI Y= 0-251X -0-043 Y= 0-287X -0-143 HEAD LENGTH IN CM- HEAD LENGTH IN CM-Figure 52. Snout length versus Figure 53. Snout length versus head length. , head length. 167 G - P I S T I L L I G E R Y= 0 -231X + 0 - 0 3 2 G - DETRISUS Y= 0 -231X + 0 - 0 4 9 0« ± « E » 3° 4» 5» E° 7° B » 9<d.0» HEAD LENGTH IN CM-Figure 54 . Snout length versus head l e n g t h . Q- 1- E « 3 - 4* S- S « 7 - B « 9-±0» HEAD LENGTH IN C M -Figure 5 5 - Snout l e n g t h versus head l e n g t h . z I—I y r -S - O J . 4 - 5 . . 4 * 0 . . 3 - E L . 3 « 0 -£ • 5 . . 2 * 0 . . 1 * 5 . . L O -O - S . . 0 - Q G - GALEATUS Y= 0 -254X - 0 - 0 5 1 4 — ! — I — t - - j — | — j . y S - O J . 4 »5L . 4 . 0 . . . 3 - 5 . . 3 - 0 -E » 5 . _ E » 0 . . 1 - 5 . . 1 - 0 . . 0 - 5 . . 0 - Q 0* 1» 2 » 3 - 4* 5» E « 7 - B » B-d-O* HEAD LENGTH IN CM-Figure 56 . Snout length versus head l e n g t h . G - T R I C U S P I S Y= 0 -238X - 0 - 0 2 6 \—!—-I {-0* 1 - E* 3 - A> 5» S * 7* B* 3 4 0 * HEAD LENGTH IN CM-Figure 5 7 . Snout le n g t h versus head l e n g t h . 168 T a b l e s 5 , 6, 7 -P E C T O R A L F I N L E N G T H V E R S U S S T A N D A R D L E N G T H (Males o n l y ; d o u b l e l o g t r a n s f o r m e d . ) G , P T D I H G X X X X X X X X X X X X X X X X X X P 0 * 0 3 9 7 X X X X X X X X X X X X X X X T 0 . 0 1 9 0 Q 0 9 2 7 4 X X X X X X X X X X X X D 0 a Q 5 2 3 0 * 7 0 4 8 0 « 5 9 7 3 X X X X X X X X X " I 0 * 0 0 7 1 0 * 2 5 5 2 0 * 1 4 0 2 0 * 3 9 3 4 X X X X X X H 0 * 0 0 1 1 0 * 0 8 3 2 0 * 0 2 5 8 O o 1 2 0 0 0 * 3 2 6 4 X X X P E L V I C F I N 1 - E N G T H V E R S U S S T A N D A R D L E N G T H . (Males o n l y ; d o u b l e l o g t r a n s f o r m e d . ) G P T D I H G X X X X X X X X X X X X X X X X X X P O o 3 0 4 9 X X X X X X X X X X X X X X X T 0 * 1 9 2 8 O o 1 6 4 7 X X X X X X X X X X X X D 0 6 9 2 6 5 0 * 5 6 9 1 0 * 5 7 7 6 X X X X X X X X X I 0 . 7 0 7 2 0 * 8 3 7 6 0 * 4 5 2 7 O c 7 3 9 7 X X X X X X H 0 « 1 3 6 0 0 * 6 3 2 8 0 * 1 6 8 6 O o 2 6 9 5 0 * 2 9 7 7 X X X S P I N O U S D O R S A L H E I G H T V E R S U S S T A N D A R D L E N G T H (Males o n l y ; d o u b l e l o g . _—_______ _ — _ .__ , __tr-ansformed..._) -G P T D I H G X X X X X X X X X X X X X X X X X X P 0 * 8 9 8 4 X X X X X X X X X X X X X X X T O o C 2 9 0 0 * 1 4 5 0 X X X X X X X X X X X X D O o 0 3 9 1 0 * 1 3 6 9 0 « 0 1 2 7 X X X X X X X X X ' I 0 . 4 8 7 8 0 * 6 8 9 0 • 0 • 4 5 2 3 0 * 0 1 3 5 X X X X X X H 0 * 6 7 6 1 0 * 7 4 4 0 0 * 2 1 9 3 0 * 1 7 7 1 0 o 2 8 4 4 X X X 169 Table 8. S O F T D O R S A L H E I G H T V E R S U S S T A N D A R D L E N G T H ( M a l _ _ o _ l y . d o u b l e l o g transformed) G P T D I H G X X X X X X X X X X X X X X X x x x P O e 0 1 9 0 X X X X X X X X X X X X x x x T 0 . 0 0 0 4 0 . 6 2 5 6 X X X X X X x x x x x x D 0 • 5 9 16 0 . 3 5 2 0 O a 1 5 1 9 X X X x x x x x x I" 0 . 0 5 9 6 0 . 9 0 3 6 0 * 6 2 6 0 •Oe 3 5 7 7 x x x x x x H 0 . 4 1 2 2 0 e 5 7 5 6 0 . 3 4 5 2 0 . 8 3 0 0 0 . 3 6 2 1 x x x Table 9. C O V A R I A N C E M A T R I X B E T W E E N M A L E S A N D F E M A L E S F O R F I V E L O G T R A N S F O R M E D M O R P H O M E T R I C C H A R A C T E R S I N S I X S P E C I E S O F G Y M N O C A N T H U S . A B B R E V I A T I O N S A R E A S F O L L O W S ( 1 = D E P T H A T P E C T O R A L G I R D L E * 2 = H E I G H T O F S P I N O U S D O R S A L * 3 = H E I G H T O F S O F T D O R S A L * A = L E N G T H O F P E C T O R A L F I N * 5 = L E N G T H O F P E L V I C F I N . A 1 . I N T H E M A T R I X I N D I C A T E S _ _ L N S U . F _ £ l . C . L E . N X _ _ D - A I . A . a . . _ _ _ _ _ _ _ G P T D I H 1 0 . 1 3 3 8 0 . 6 7 2 4 0 . 4 2 1 1 0 . 7 5 4 0 0 . 6 8 7 7 0 . 2 6 7 5 2 0 . 0 0 0 0 0 . 0 0 0 6 0 . 0 0 2 5 0 . 3 7 6 4 0 . 5 9 4 5 O a 0 6 6 5 3 0 . 0 0 0 0 0 . 0 1 8 0 0 . 0 0 0 2 0 . 1 8 0 1 O o 2 2 7 4 0 . 0 8 1 0 A 0 . 1 4 1 9 0 . 5 1 8 7 0 o 8 7 7 8 ' O o 2 6 9 3 0 . 4 7 4 1 0 . 1 8 4 8 5 0 . 0 0 0 0 0 . 0 0 0 2 0 . 0 0 0 1 0 . 0 0 4 0 0 . 0 1 0 9 0 . 6 1 3 1 F R A C T I O N S O F L E S S T H A N l o I N D I C A T E L E V E L S O F C O N F I D E N C E . . 0 5 I S U S U A L L Y T A K E N T O B E S I G N I F I C A N T . A B B R E V I A T I O N S . A R T G = G a G A L E A T U S * P = G . P I S T I L L I G E R * T = G » T R I C U S P I S * D = G o D E T R I S U S ? I = G « I N T E R M E D I U S * H = G . H E R Z E N S T E I N I . 170 Figure 58. Spinous Dorsal Length / SL. Kales only. i G. p i s t i l l i g e r i i r i I i i 1 i n =34 G. intermedius n--11 G. tr i c u s p i s n= 40 G. herzensteini n = 4 G. fcaleatus Jl - n = 5''4 G. detrisus 1 i i i i t i i n*22 i 3.0 i • i i 4.0 5.0 l l I 6.0 7.0 1 1 8.0 Fifrure Soft Dorsal Length / SL. Kales only. 1 G. p i s t i l l i g e r • i i • A ) , i -•• n =33 i G. intermedius i n-10 G. tr i c u s p i s n-4l G. herzensteini X n=4 G. Galeatus k —- i 3 -- 54 G. detrisus i l l l l l n--22 1 3.0 l l l l l 4.o 5.0 1 1 1 6.0 7.0 1 l 8.0 Figure 60- Pelvic :• Fin Length / SL. Males only. • G. p i s t i l l i p - s r i i • i i " " I — i 1 n -34 T G. intermedins Jl .... n^LO G. t r i c u s p i s n--40 G. herzensteini .. ii n=4 G. r a l e atus "" ' n = 5p G. detrisus i I I I I A i i i n-20 • 1.0 1 i • 1 2.0 3.0 i i I 4.0 5.0 1 1 5.0 Figure 6 l . Spinous dorsal height versus standard length, males and females. G° HERZENSTEINI MALES? Y= 1 - 2 B 3 X -2°3S2 FEMALES? Y= 0 - 9 7 B X -1»7S STANDARD LENGTH IN CM* 172 Figure 62. Spinous d o r s a l height versus standard l e n g t h , males-arid females. G» DETRISUS m* FEMALES? Y= 1°0±9 X - i ^ a u "1 0 - Male X = Female STANDARD LENGTH IN CM« Figure 63. Spinous dorsal height versus standard length, males and females. G- INTERMEDIUS MALES. Y= 1-331X -2-558 __ FEMALES? Y= 1-320 X -2-518 STANDARD LENGTH IN CM-Figure 6h. Spinous d o r s a l height versus standard length, males and females. G- PISTILLIGER MALES9 Y= 1°3_BX -2° FEMALJES? Y= 0-8G7 X -1-443 0 = Males X = Femal STANDARD LENGTH IN CM-Figure 65. Spinous dorsal height versus standard length, males and females. G° GALEATUS MALES? Y= 1-342X -2*837 FEMALES? Y= G°946 X -1 - 8 7 3 0 •- Males X = Fema3.es 10 o 30 STANDARD LENGTH IN CM" 176 Figure 66. Spinous dorsal height versus standard length, males and females. G- TRICUSPIS MALES? Y= ±°433X ~2°ffi8 i 0 » _ FEMALJiS? Y= 1-20S X - 2 -Figure 67. Soft dorsal height versus standard length, males and females. •G- HERZENSTEINI MALES? Y= 1»27GX -2-5S4 FEMALESs Y= l-OSE X -2-217 0 -• Males X - Females Figure 68. Soft d o r s a l height versus standard length, males and females. G- DEXRXSLJS St Y= ±*£45X -S°448 FEMALES? Y- 1°0£B X -2°1 0 = Males X = Females ±0« STANDARD LENGTH IN CM* 179 Figure 6°. Soft dorsal height versus standard length, males and females. G- INTERMEDIUS £S* Y= 1-373X -2-G78 10° FEMALES? Y= 1-223 X -2-415 z CD 85 D 1°. 0 - Males X = Females STANDARD LENGTH IN CM-Figure TO. Soft dorsal height versus standard length, males and females. G- PISTILLIGER MALES? Y= 1-3S7X -2-5B9 FEMALES. Y= 1-155 X -2-1S5 4- 10- , 30 STANDARD LENGTH IN CM-Figure 71. Soft dorsal height versus standard length, males and females. G° GALEATUS MALES? Y= 1°219X -2-501 FEMALES? Y = ' 0 - 9 9 9 ' X - 1 - 9 7 1 0 = Males X = Females STANOAFO LENGTH IN CM-Figure 7 2 . Soft dorsal height versus standard length, males and females. G* TRIOJe^IS MALES? Y - ±°3SSX - 2 - 3 9 9 F E M A L E S ? Y= ±°20± X -2° 4 3 0 A» 10» 3 0 STANDARD LENGTH IN CM* Figure 73. P e l v i c f i n length versus standard length, males and females. G° HERZENSTE IN I MALES? Y= 1-253X -2-234 FEMALES? Y= 1-175 X -2-129 STANDARD LENGTH IN CM-Figure lb. Pelvic fin length versus standard length, males and females. G- DETRISUS MALES? Y= 1-477X -2-714 STANDARD LENGTH IN CM-Figure 75. P e l v i c f i n length versus standard length, males and females. G- liSTTERiVEDILB MALES? Y= 1-415X -2-019 STANDARD LENGTH IN CM-186 Figure 76. Pelvic fin length versus standard length, males and females. Go PISTILLIGER MALES? Y= 1°3G9X -1*875 STANDARD LENGTH IN CM-187 Figure 77-P e l v i c f i n length versus standard length, males and females. 188 Figure 78. Pelvic fin length versus standard length, iaaJ.es and females. G» TRICUSPIS MALES* Y = ±*579X - 2 °5 i 3 189 Figure 7 9 . Pectoral fin length versus standard length, males and females. G- INTERMEDIUS MALES? Y= 1°±94X •-1-352 15 10 5 o 20 15 10 5-Q. 30 25 20 15 10 5 0 F E M A L E S 5 5 . > 2 1 6 4 19 2 3 COMBINED SEXES 10 10 4 18 10 13 28 22 2 4 6 "8 10 12 14 • 16 T8 20 22 24 26 F i g u r e ^0. Histogram of L e n g t h -Frequency Data -"or G y m n o c a n t h u s galeatus. See text for discussion. 99. 30 cm. 191 ON vD Cv) 00 00 CN-o r H cv vO o cc CV rH r H r H O r - l Ov CO X ! - P C, C o c o o cn •"C E o t c «i-. c w X • i - a:-c ci fi co P K -M o co !V") VO - P i—-! tr-o vj-v o cv CM trv O r H rH o o cv rH O r H O 192 Breeding In the absence of direct observational data, breeding times only may-be inferred from gonadal maturity, and the presence of young in various stages of development. Using these techniques, i t is possible to estimate the breeding times for four species. A gravid female G. herzensteini (BC72-118) was releasing eggs when caught in mid-February. Two other females from this collection were recently spent, suggesting a breeding period of midwinter. Gravid female G. tricuspis have been taken from the Chukchi Sea (eg. BC61-102, BC61-106) in mid-August while young (20-35cm.) may be taken in July-August. Andria-shev (195*0 reports gravid females and spawning males in late September in the Kara and White Seas. He also reports young of 18-30 mm. being taken in July-September. Breeding in G. tricuspis probably takes place in the late summer to early autumn, while the young mentioned are the young of the previous year. Recently spent G. galeatus females (BC62-UM) have been taken in May, while females with immature eggs (\N-l6kk) have been col-lected in December. Juveniles (l5-20mm.) are collected in mid to late July (BC65-17, BC65-21). Similarly, spent female G. pistilliger may be taken in mid-April to mid-May (BC61-515, BC62-719) and juveniles (22-26mm.) may be collected in early August (BC63-IU38). Breeding in these latter two species seems to be in mid-spring, while the young noted are young of the year. (.0+) A length-frequency analysis of 110 G. pistilliger caught by the author in July off Kodiak, Alaska show peaks at 9-10, 13-1^ > and 15-16 cm. (figure 8 l ) . Some collections (BC63-1026) show the presence of a fourth, 193 prerecruitment size-class (1+) of U-6cm. G. pistilliger otolith examination reveal only three annuli reliably. It would appear that the 1+ annulus is obscure and has, been consistently missed by the author. 2+ fish average 9.3 cm., and 3+ fish average about 13.5 cm., males being slightly smaller than females. By h+ years, the females reach 15.6 cm., while the males grow only very slightly, averaging 13.5 cm. Andriashev (195M summarizes some of the known growth data for G_. tricuspis. In the Laptev Sea in September, the sizes are about 20 mm. at 0+ , UO-50 mm. at 1+ , and 70-80 mm. at 2+ . Again, males grow more slowly, reaching 90-100 mm. at 3+ and 110-120 mm. at k+ , while females reach 110-120 mm. at 3+ , and lUo mm. at h+ . Similar data were obtained by that author for Chukchi Sea fishes. Both otoliths and bones (ie. cleithra) of the IT specimens of G_. galeatus obtained in Kodiak proved difficult to read and results were inconclusive. A rough length-frequency diagram (figure 80) lumping col-lections primarily from Kodiak to the Aleutian Islands taken between May and July in 196l and 1962 show distinct peaks at k-6 cm. (l+) and 12-lk cm. (2+). For larger fish peaks are obscure. Separating the data for the sexes reveal peaks at 22-2k cm. for males and 2k-26 cm. for females. The scatter about these peaks suggests that they may be concealing at least two (3+ , U+) and perhaps more peaks. Judging from earlier growth,CG. galeatus grows more quickly than either G_. tricuspis or G. pistilliger, reaching a greater final size than either of these species. Furthermore, that the largest fish are always females suggests that again, females grow faster than males. Sexual Dimorphism Sexual dimorphism in the genus Gymnocanthus is pronounced. Foremost is the possession of a penis by males of a l l species. As pointed out in the morphometric discussion, the. fins in males tend to be much longer and larger than in females. The pelvic f i n length, perhaps the most startling sexually dimorphic character varies between species. In the short pelvic f i n species (G_. detrisus, G_. herzensteini) the male's pelvic fins reach or just pass the anus, while in G. intermedius, G_. p i s t i l l i g e r , G. galeatus, and G_. tricuspis the male's pelvics usually reach the anal origin and frequently far surpass i t . In females of a l l species the pelvics seldom, i f ever, reach the anus. Similarly, males tend to have longer dorsal f i n s , expecially the spinous dorsal. The spinous dorsal margin tends to be strongly convex in males, and weakly convex in females. G. p i s t i l l i g e r , G. intermedius, and G_. tricuspis show marked colour dimorphism. The males of these species possess large white blotches in the pectoral axillae, on the pelvics, and on the spinous dorsal f i n . In addition, the spinous dorsal ground colour is dusky in the males of these species, but tends to be clear in the females. Males of these three species possess serrations on the pectoral ray medial surfaces. Only males of G. intermedius and G_. p i s t i l - l i g e r possess pectoral axillary processes or p i s t i l l a e . Males of a l l other species and females of a l l species lack such distinctive colouration, p i s t i l l a e , and serrations. Lastly, males of G_. tricuspis, G. p i s t i l l i g e r , and G. galeatus have been shown to grow more slowly than females, and the male maximum size is smaller. From examination of collections of G. herzensteini, G_. intermedius, and G. detrisus i t appears that in these, 195 also, the largest specimens are always female. Probably females of these l a t t e r species also grow more quickly than males. Distribution Of the s i x species ofGymriocarithus, four species (G. intermedius, herzensteini, d e t r i s u s ? and p i s t i l l i g e r ) occur i n the northwest P a c i f i c , and with the exception of G. p i s t i l l i g e r are endemic to t h i s area. G_. p i s t i l l i g e r also occurs on the Aleutians and as f a r east as Seward, Alaska. Northward, they have been collected i n B r i s t o l Bay, o f f the P r i b i l o f Islands, and possibly as f a r north as the Bering S t r a i t . G. galeatus i s known from the Near Islands i n the Aleutians to southeast Alaska, and north to the P r i b i l o f Islands and B r i s t o l Bay. G. t r i c u s p i s occurs as f a r south as Norton Sound i n the Bering Sea and throughout the American and Soviet A r c t i c (Schmidt, 1927; Andriashev, I 9 6 M . In the A t l a n t i c , i t ranges as f a r south as Maine i n the west (Leim and Scott, 1966) and Spitzbergen (Schmidt, 1927) and northern Norway (Andriashev, 196k) i n the east. Although Gymnocanthus i s a cold-loving group, i t s depth d i s t r i b u t i o n i s not w e l l enough known to correlate species di s t r i b u t i o n s with temperature regimes. In the North P a c i f i c , southern collections of Gymnocanthus ( i e . around Hokkaido, Sea of Japan) invariably occur where there are southern currents of cold a r c t i c or subarctic water such as the Liman, North Korean, or Oyashio Currents. Apparently, nowhere i n the d i s t r i b u t i o n of species other than G. t r i c u s p i s do water temperatures drop below 1°C. In B r i s t o l Bay and along the western Alaska coast to the Bering S t r a i t s , the waters 196 are warmed by a branch o f the A l a s k a n Stream which feeds between the eas t A l e u t i a n s and f lows a long the coast r e s u l t i n g i i i G_. p i s t i l l i g e r ' s range b e i n g extended a long the e a s t e r n B e r i n g Sea s h o r e . The temperature d i s t r i b u t i o n o f G. t r i c U s p i s i s s i g n i f i c a n t l y d i f f e r e n t from t h a t f o r o ther s p e c i e s . Around S t . Lawrence I s l a n d , the bottom temperature may va ry from 2° below 0°C ( E l l s o n e t a l , 1950). In the western Canadian A r c t i c t h e r e e x i s t s a t h i n s u r f a c e l a y e r 0-20m. t h i c k , from -1 .0 t o 2.2°C. In the Canadian A r c t i c A r c h i p e l a g o , t h i s s u r f a c e l a y e r i s m a i n t a i n e d . In B a f f i n Bay , the temperature may reach 5°C, but plunges t o -1.0° w i t h i n 30 meters ( B a i l e y , 195*0. S i m i l a r l y , i n Hudson Bay , Ungava Bay , and by v i r t u e o f the i c y Labrador C u r r e n t , L a b r a d o r , and the G u l f o f S t . Lawrence, temperatures tend t o be below 2°C at depths g r e a t e r than 25-35 m e t e r s . G. t r i c u s p i s i s c l e a r l y c h a r a c t e r i s t i c o f v a r i a b l e , but u s u a l l y ve ry c o l d wate r . Andr iashev (195*0 r e p o r t s t h i s s p e c i e s t o be found a t 3° - ) 4 0 C o f f S p i t z b e r g e n and i n the Barents S e a , and a t l.U° t o 12.5°C i n the White S e a , "but over most of the range i s m o s t l y encountered a t temperatures below or c l o s e t o 0°C." Leim and S c o t t (1966) s t a t e t h a t i t i s c o n f i n e d t o c o l d water between -1.7° t o 5°C. Andr iashev a l s o p o i n t s out t h a t G. t r i c u s p i s i s sub jec ted t o a wide v a r i a t i o n o f s a l i n i t y , u s u a l l y from 32-35°/°°, hut from 16 t o 30°/oo i n the Laptev S e a , and 23.7 t o 27.0°/oo i n the White S e a . S i m i l a r s a l i n i t y c o n d i t i o n s apparent l y occur i n the Canadian A r c t i c ( B a i l e y , 1957). There i s no i n d i c a t i o n t h a t the other s p e c i e s are sub jec ted t o s a l i n i t y v a r i a t i o n o f t h i s n a t u r e . I t i s perhaps s i g n i f i c a n t t h a t the maximum depth o f capture i n the Beaufor t and Chukchi S e a , about 25 m e t r e s , corresponds approx imate ly w i t h the depth o f the s l i g h t l y warmed, l e s s 197 saline surface layer in this region below which the temperature may drop to below -1.0°C. Collections of G. galeatus and G_. pistilliger off South Alaska show that while the former is seldom taken at less than 50 meters (except for juveniles), the latter is seldom taken at over 50 meters. Neither the species distribution nor the oceanographic data are adequate for speculation on the parameters affecting distribution beyond what is presented herein. Phylogeny Several authors (Jordan, 1901; Svetovidov, 19^8, 1952; Ekman, 1967) have argued that, in Jordan's words, "any species... has had its origin in or near that region in which i t is most abundant and characteristic." On this basis i t would appear that the Northwestern Pacific with its four species, three of them endemic, served as the rejion of origin of the genus Gymnocanthus. There exist several arguments against this thesis. For example, '•• Darlington (1957) states that acceptance of Jordan's premise necessitates acceptance of the supposition that the rate of speciation versus extinction is close throughout the species' range. Secondly, since extant current systems and concomitant water character regimes in the Northwest Pacific are complex (Jordan, 1901; Uda, 1958ab) i t is probably unwise to lump species occuring there as species from a single region. Finally, Wilimovsky (1963) and Dodimead et al (1963) note that the Alaskan .Stream, Western Subarctic, and Oyashio currents run westward along the Aleutians, Kamchatka, and the Kurile Islands, while the eastward flowing Kuroshio, Aleutian, and North Pacific currents pass far to the south of the Aleutian Figure 82. North Pacific Oceanic Surface circulation pattern. Currents 1. Liman Cold Current 2. Japanese Sea Central Cold Current 3. North Korean Current k. Tusima Warm Current 5. Tugaru Warm Current 6. Soya Warm Current 7. Oyashio Current 8. Kuroshio 9. North Pacific Current 10, West Wind Drift 11. Subarctic Current 12. Alaskan Cyre 13. Alaskan Stream Ik. Bering Sea Gyre 15. Western Subarctic Gyre 16. East Kamchatka Current 17. Okhotsk Sea Gyre 199 •;20'O chain. This, Wilimovsky maintains, would permit forms evolving in the Aleutians to d r i f t west, hut would prevent Japanese forms from moving east (Figure 82). Presumably, the Aleutian species might migrate as adults throughout the shallow Aleutian shelf but would be prevented from migrat-ing to Asia by the deep, broad passes between the Rat, Hear and Komand-orski Islands. The pelagic larvae (Taranetz, 19^1) could, however, d r i f t across unidirectionally. Indeed, while both G. p i s t i l l i g e r and G_. galeatus occur on both sides of these passes as one might expect i f pelagic larvae were carried west no Japanese forms have conclusively been shown to exist in the Aleutians, again a predictable result i f both adult and larvae are prevented from migrating east. Summarizing, i t is impossible to say just where Gymnocanthus evolved. Assuming oceanographic conditions have remained more or less constant since the evolution of the genus, the author favours i t s origin as being in the Alaskan Aleutian chain. Bolin (19^7) postulated a primitive cottid to be a slightly compressed, heavy-bodied, large-headed form with four preopercular spines, teeth on the vomer ( = prevomer), palatines, premaxillaries, and dentaries; four complete g i l l s with the s l i t behind the fourth extensive; g i l l membranes joined, but free from isthmus; shortbased soft dorsal and anal f i n s ; dorsals joined by membrane; sp l i t f i n rays; ctenoid scales; anus only slightly in advance of anal f i n ; few c i r r i and no special intromittent organ. In several respects, Gymnocanthus is considerably evolved from the primitive cottid precursor in that i t totally lacks palatine and prevomerine teeth; i t s dorsals are entirely separate, even to the extent that inter-mediate pterygiophores do not support rays or spines; a l l fins except 2 0 1 caudal with simple rays; pelvics have been reduced to I, 3; the s l i t behind the last g i l l arch is small or wanting; scales are reduced and restricted in distribution, and a well developed, conical penis is present in males. Gymnocanthus forms a very tightly knit group which i s easily distinguished from a l l other extant cottid genera, and is clearly mono-phyletic in origin. So distinct is Gymnocanthus that i t is impossible at this time to do any more than idly speculate on i t s intergeneric a f f i n i t i e s . The intrageneric variation i s slight enough, however, that most specific differences are probably due to divergent evolution, and that similar-i t i e s are due to conservation of generic characters rather than convergence. Gymnocanthus is thought to have evolved in several directions from the ancestral prototype which is postulated to be similar to G_. herzen- ste i n i . This species possesses a deeper, more compressed head than other species (except G. intermedius), and has the most numerous and widely distributed scales. If G. herzensteini is primitive, then perhaps the low nape lacking ridges and tubercules characteristic of both this species and G. intermedius, and high f i n count characteristic of G. herzensteini are also primitive. G. tricuspis, G. p i s t i l l i g e r , and G. intermedius possess subpectoral p i s t i l l a e , and at least juveniles of both sexes have supraorbital c i r r i . Characters such as persistantly different cephalic ridge development, shape of p i s t i l l a e , shape of head, and foremost, over-laping distributions exclude the possibility of these being subspecies or local morphs. As already noted. G. intermedius shares with G. herzensteini the the narrow head and smooth nape, and may be derived from a G. herzen-202 steini the narrow head and smooth nape, and may be derived from a G_. herzensteini like ancestor. G_. tricuspis i s a variable, widespread species and, in view of i t s very reduced armature, tubercle, and cephalic sensory canal pore develop-ment i s probably a highly modified form. Schmidt (1928) l i s t s his "Gymnocanthus tricuspis orientalis" as ranging from the Bering Sea to the Kara Sea. This form is apparently identical with the Bering and Chuckchi Sea specimens examined by me. Examinations of Arctic specimens reveals that there i s a gradual shift from the smooth naped Chukchi Sea forms to the almost G. p i s t i l l i g e r - l i k e forms in the Gulf of St. Lawrence. In the absence of any absolute break or even short-distance shift in morphometric or meristic characters, I suggest that G. tricuspis is a single, widely ranging species, and that Vladykov's (1933) and Schmidt's (1927) subspecies merely represent extremes of this variation. Pickard (1963) shows the prevailing Arctic currents to be clockwise. Dispersal i s probably a consequence of both adult migration and passive larval transport, and the Arctic current cited may account for the greater range of "G. tricuspis orientalis" in the Asian Arctic than the American Arctic. Although meristically, G. tricuspis is intermediate between G. galeatus and the intermedius-pistilliger l i n e , i t i s probably closer to the latter for reasons outlined previously. G. galeatus, herzensteini, and detrisus a l l share an obsolete cl e i t h r a l spine and high meristic characteristics, suggesting close relationship. G. detrisus has a strongly depressed head and a very broad interorbital and concomitantly narrow lachrymal, while G_. herzen-203 steini has a compressed head and a moderate interorbital. G. galeatus is variable, some specimens with slightly compressed heads reminiscent of the latter, but most specimens with weakly depressed heads like the former. I disagree with Soldatov and Lindberg (1930) and Vladykov (1933) who suggest that they are a l l subspecies. These species distributions are quite distinct, and they are always distinguishable on the basis of any of armature, width and shape of interorbital, head shape, or colour patterns. I suggest that the heavy scale development, unusual head shape, dorsal origin, and tubercle development tend to set G. herzensteini evolutionarily somewhat away from the other two species. Probably, G. detrisus and G. galeatus are very closely related in that only interorbital width and colour separate them. Or. ±>\ f-cmedius . Q-. h e ^ „ s H-\*,\ J d e/visuT Ancestral Prototype Figure 83. Hypothetical evolution of the species of Gymnocanthus. 20k Sandercock and Wilimovsky (1968) suggested that possibly as a result of Pleistocene sea level changes, several cottid forms have evolved in species pairs. G. galeatus and G. p i s t i l l i g e r are species pairs in that they occur sympatrically, look very similar, but are separated by depth. Though the data are weaker, G. herzensteini and G. intermedius also appear to occur sympatrically but are separated by depth. In contra-diction to Sandercock and Wilimovsky, as pointed out earlier, I feel that these species.pairs arose by parallel evolution of two lines rather than ';•<• local divergent evolution. 205 Summary The scorpaeniform fishes are one of the dominant piscine groups in the North Pacific. One cottid genus, Gymnocanthus, contains six species a l l of which possess edentulous prevomer and palatines, bony granulations on the nape, pelvic formula 1,3, g i l l membranes free from isthmus and other characters. Cephalic sensory systems were demonstrated by injecting the canals of bleached specimens with Indian ink. A broad range of pore and dentritic development was evident, but differences between species were not constant enough to be taxonomically useful. Gymnocanthus  galeatus generally had the most dentritic and porous system; G_. tricuspis had the least dentritic and porous system. A long taxonomic history, great variation, and wide range have resulted in the erection of seven genera and eleven nominal species. This paper recognizes one genus (Gymnocanthus) and six species (G. detrisus, tricuspis, galeatus, intermedius, herzensteini, pistilliger). Species differences include meristic characters, form and development of sexual dimorphism, body and head depth, shape of back, interorbital width, preopercular spine length, and colour. These differences are often slight but taken as a group are adequate to distinguish a l l six species. Meristic characters, though often significantly different between species usually overlap greatly. Overlap may be reduced by lumping fin counts. 206 7. Some sexually dimorphic morphometric characters (pelvic f i n , soft dorsal , spinous dorsal f i n lengths) are log transformed and plotted against log transformed SL. The regression l i n e s , though s t a t i s -t i c a l l y s ignif icant ly different between males and females within a species are seldom signif icant ly different between males between species, due partly to the great v a r i a b i l i t y of these characters, and partly to the frequently small samples. In G. intermedius, p i s t i l l i g e r , and tricuspis sexual dimorphism appears at a smaller size than in the other three species. 8. Time of maturity and appearance of young suggest that G_. tr icuspis spawns i n late summer to autumn, while G_. p i s t i l l i g e r , galeatus, and herzensteini breed i n late winter to early spring. 9. In a l l species, the largest specimens are females, suggesting that females grow more quickly than males. 10. Length-frequency histograms and o to l i th annuli counts suggest that i n G. galeatus, t r i c u s p i s , and p i s t i l l i g e r the sexual growth rate difference is greatest after the second year. G_. p i s t i l l i g e r and tr icuspis appear to be four year f i s h , while G. galeatus may l i v e longer. 11. A l l species except G. tr icuspis are from the North P a c i f i c . Four (G. detrisus, herzensteini', intermedius, p i s t i l l i g e r ) are found in the Northwest P a c i f i c . Northeast Pacific representatives are G. galeatus and G_. p i s t i l l i g e r . G_. tr icuspis i s circumpolar, extending south only where there are very cold currents or water bodies. 2 0 7 1 2 . The North Pacific species seem to prefer^ very low temperatures but avoid subzero (°C) temperatures. G_. tr icuspis is restricted to areas where subzero temperatures are sometimes encountered. This species may also be adapted to withstand greater s a l i n i t y variation than the other f ive species can tolerate. 13. G_. galeatus i s a deeper ranging species than G. p i s t i l l i g e r . G. t r i - cuspis tends to stay i n the shallow water, possibly within the range of the warmed, less saline surface layer. ih. Gymnocanthus forms a very d i s t i n c t , closely related group of species that are considerably evolved from the primitive form postulated by Bolin (I9U7). 15. The genus probably evolved in the Aleutian Islands and was carried west as planktonic larvae by currents. Migration as adults was possible throughout the shallow Aleutian shelf and Alaska peninsula, but not across the deep channel between the Near and Komahdorski Islands. 1 6 . Gymnocanthus has s p l i t into two lines of evolution, one containing G. t r i c u s p i s , intermedius, and p i s t i l l i g e r and characterized by the smaller maximum size , greater developed sexual dimorphism, and moderate to heavy c l e i t h r a l spine, the other containing G. galeatus, detrisus, and herzensteini and characterized by the larger s ize , reduced dimorphism, and obsolete c l e i t h r a l spine. 17. Though G. galeatus and G. p i s t i l l i g e r , and G. herzensteini and G. intermedius superf ic ia l ly f u l f i l the c r i t e r i a of s ibl ing species, they are postulated to have arisen by para l le l rather than divergent evolution. 208 Conclusions 1. The genus Gymnocanthus i s a well defined group of sculpins. Six species, Gymnocanthus herzensteini, detrisus, intermedius, p i s t i l l i g e r , galeatus, and tricuspis are recognized herein. No subspecies have been recognized. 2. No profound osteological differences between species exist. 3. A l l six species share a common basic cephalic sensory canal system. Though differences in degree of dendritic development occur between species, these systems are too variable to be of any value in dis-tinguishing species. k. The species are shown to have both distinct and overlapping d i s t r i -butions. Where distributions overlap, no hybridization i s evident. 5. Most species can be distinguished by a combination of meristic characters, head length, interorbital width, predorsal length, cl e i t h r a l spine development, and presence and shape of p i s t i l l a e in males. 6. Meristic variation within a species may be minimized by totalling f i n counts; total counts are often s t a t i s t i c a l l y significantly different ( i f not entirely different) between species. 7. In widely ranging species (e.g. G. p i s t i l l i g e r , G_. tricuspis), total f i n counts of specimens from widely separated parts of the range are not significantly different from each other. 8. The bony interorbital grows allometrically in young f i s h , isometri-cally in older fi s h . Head and predorsal length grow isometrically. 209 9. The spinous dorsal, soft dorsal, and pelvic f i n length are sexually-dimorphic in a l l species. These fins are proportionately longer in males, and these differences appear earlier in (3. iritermedius, G. tricuspis, and G. p i s t i l l i g e r than in G. herzensteini, G. galeatus, and G_. detrisus. 10. Sexual dimorphism, present in a l l species is most pronounced in G_. inter- medius , G_. tricuspis, and G_. p i s t i l l i g e r . 11. Gymnocanthus is a cold loving group, being found only where arctic or subarctic water masses exist. 12. A l l species except G_. tricuspis avoid below 0. L. temperatures. 13. Gymnocanthus probably arose in the Aleutian Islands and was carried as planktonic larvae to Asian, migrating as adults through the rest of the range. l U . The genus is moderately modified from the presumed primitive form, and has divided into two lines of evolution, one containing G. p i s t i l l i g e r , G_. intermedius, and G_. tricuspis, the other containing G_. galeatus, G_. detrisus, and G. herzensteini. 210 References cited References not seen by the author were marked with, an asterisk. Abe, T. 1958. Encyclopedia Zoologica, illustrated in colours. Vol. II. Hokurya-Kan Publishing Co., Tokyo, (in Japanese). Abe, T. 1971. Keys to the Japanese Fishes, 2nd. ed. Hokurya-Kan Pub-lishing Co., Tokyo, (in Japanese). Alli s , Edward P. 1909. The Cranial Anatomy of the Mail-Cheeked Fishes. Zoologica (Stuttgart) 22: 1-219. Alverson, Dayton L. and Norman J. Wilimovsky. 1966. Fishery Investigations of the Southeastern Chukchi Sea, p. 843-860. Cln] Wilimovsky, Norman J., John N. Wolfe, ed. Environment of the Cape Thompson Region, Alaska. United States Atomic Energy Commission. Anderson, K. A. I96U. Fiskar och Fiske: Norden. Band I, Fiskar och Fiske: havet. Bokforlaget Natur Oche Kultur, Stockholm, pp. l-kl6. (in Swedish). Andriashev, A. P. 1937. A contribution to the knowledge of the fishes from the Bering and Chukchi Seas. Liza Lanz and N.J. Wilimovsky, (transl.). U.S. Dept. Interior, Fishes and Wildlife Service. Spec. Sci. Rept. Fisheries No. 1U5, 1955. pp. 1-80. Andriashev, Anatoly P. 1939a. tNew Data on the Ecology and Distribution of Fish in the Laptev Seed. Dokladie Akademii Nauk SSSR, 23 (7): 730-732. (in Russian). Andriashev, A. P. 1939b. Survey of Zoogeography and Origin of Ichthyofauna of the Bering Sea and Adjacent Waters. Dissertatsiya na soiskanie uchenoi stepeni kandidata biologicheskikh hiauk. Leningradskii Gosudarstvennyi Universitet. pp. I-I87. Andriashev, A. P. 1951*. Fishes of the Northern Seas of the USSR. M. Artman, (transl.). Israel Program for Scientific Translations. Jerusalem. 1964. pp. 1-617. Backus, Richard H. 1957. The Fishes of Labrador. Bull. Amer. Mus. Nat. Hist. 113 (h): 273-337-Bailey, W.B. 1957. Oceanographic Features of the Canadian Archipelago. J. Fish. Res. Bd. Canada, ik (.5): 731-769. Barsukov, V. V. 1958. CFishes of Providence Bay and of the adjacent waters of the Chukotsk peninsula.1 Trudy Zoologicheskogo Instituta Academii Nauk SSSR. 25: 130-163. (in Russian). 211 Bean, Tarleton H. 1879. Fishes collected in Cumberland Gulf and Disko Bay. Bull. U.S. Hat. Mus. 15:107-138. Bean, Tarleton H. 1882a. Descriptions of new fishes from Alaska and Siberia. Proc. U.S. Nat. Museum ( l88l ) . U:lUU-159-Bean, Tarleton H. 1882b. A preliminary catalogue of the fishes of Alaska and adjacent waters. Proc. U.S. Nat. Museum ( l88l ) . k:239-272. Bean, Tarleton H. and Barton A. Bean. I896. Contributions to the natural history of the Commander Islands. XII. Fishes collected at Bering and Coppes Islands by Nikolai A. Grebnitski and Leonard Stejneger. Proc. U.S. Nat. Mus. 19:237-251. Bergeron, J. and V. Legendre. 1970. Catalogue des especes de poissons deposes au Musee de l a Station de Biologie marine de Grande-Riviere (Gaspe-Sud), 1932-1969. Quebec Min. Indust. Commerce. Service Biol. Cahiers d'information. 51 :1 -86. Bigelow, Henry B. and William C. Schroeder. 1953. Fishes of the Gulf of Maine. U.S. Fish and Wildlife Serv. Fish. Bull. 7¥(s-3): 1-577. Bigelow, Henry B. and William W. Welsh. 1925. Fishes of the Gulf of Maine. Bull. U.S. Bur. Fish. Lo ( l ) : I -567. Briskina, M. M. 1939. [Feeding of non-commercial fishes of the Barents Sea]. Tr. Vses. Nauchno i s s l . Inst. Rybn. Khoz. Okeanogr. 1+:339-351». (in Russian, English summary). Bolin, Rolf L. 19^7 • The evolution of the Marine Cottidae of C a l i -fornia, with a discussion of the genus as a systematic category. Stanford Ichthyological Bull. 3 (3): 153-168. Branson, Branley A. and George A. Moore. The later a l i s components of the acoustico-lateralis system in the Sunfish family (Centrarchidae). Copeia 1962 (2): 1-108. Breder, Charles M. 1929. Field Book of Marine Fishes of the Atlantic Coast. G.P. Putnam's Sons. The Knickerbocker Press. New York, pp. 1-332. Chyung, Moon Ki and Kyun Hyun Kim. 1959. Thirteen unrecorded species of fish from Korean waters. Korean J. Zool. 2 ( l ) : 2-10. Collett, R. 1880. Meddelelser om Norges fiske i aarene 1875-1878. Forh. Vidensk. Selsk. Christiana. 1:1-107. 212 Collett, R. 1905. Fiske indsamlede under "Michael Sar"s Togter: Nordhavet 1900-1902. Report on Norwegian Fishery and Marine Inves-tigations 2 (3): 1-1U7. Cowan, Garry I. McT. 1968. Comparative analysis of separate data sources in a systemic study of the genus Myoxocephalus (Pisces, Cottidae). Department of Zoology, University of British Columbia. Ph. D. Thesis, pp. 1-226. Cuvier, G. and A. Valenciennes. 1829• Histoire Naturelle des Poissons. Paris, k:193-195. Darlington, Phillip J. 1957. Zoogeography: the geographic distribution of animals. Wiley. New York. pp. 1-675. Deryugin, K. M. 1933. [The 1932 Pacific Expedition of the State Hydro-logical Institute!., Issled. dal'nevost. Mor. SSSR. 2:5-35- (in Russian). Dodimead, A. J., F. Favorite and T. Hirano. 1963. Review of the Ocean-ography of the Subarctic Pacific Region. Int. Nor. Pac. Fish. Comm. Bull. 13:1-195. *Dogel', B. A. 1948. [.Parasitic protozoa of fishes from Peter the Great BayJ. Izvestiya Vsesoyuznyi Nauchnyi Institut Morskogo Rybnogo Khozyaistva i Okeanografii. 27:17-66. (in Russian). Drainville, Gerard. 1970. Le Fjord du Saguenay. II. La Fauna ich-thyologique et les conditions ecologiques. Le Nat. Can. 97 (6): 623-666. Dresel, H. G. 1884. Notes on some Greenland Fishes. Proc. U.S. Nat. Mus. 7:244-258. Dunbar, M. J. 1947. Marine young fish from the Canadian eastern Arctic. Bull. Fish. Res. Bd. Canada 73:1-11. Dunbar, M. J. 1951. Eastern Arctic Waters. Bull. Fish. Res. Bd. Canada 88:1-129. Dunbar, M. J. and Henry H. Hilde.ebrand. 1952. Contribution to the study of fishes of Ungava Bay. J. Fish. Res. Bd. Canada. 9 (2): 83-128. Eaton, A. E. 1874. Notes on the fauna of Spitzbergen. Zoologist. Ser. 2, Vol. 9:3805-3822. Ehrenbaum, E. 1901. Die Fische. Fauna Arctica (Jena). 2:65-168. * Ehrenbaum, E. 1905. Die Fische der Olga-Expedition. Wiss. merrsunters. 7 (1): 45-70. 213 Ekman, Sven. 1967. Zoogeography of the Sea. Sidgwick and Jackson Ltd. London. E l l i s , D.V. 1962. Observation on the distribution and ecology of some Arctic fishes. Arctic 15 (3): 179-189. E l l i s , G. P. 1968. Occurrences of the staghorn sculpin (Gymnocanthus tricuspis) in Newfoundland waters. J. Fish. Res. Bd. Canada 25 (12): 2729-2731. ELlson, J. G., Donald E. Powell and Henry H. Hildebrand. 1950. Explor-atory Fishing Expedition to the Northern Bering Sea in June and July, 19^9. U.S. Dept. Int. Fish and Wildl. Serv. Fishery Leaf-l e t 369:1-56. Evermann, Barton Warren, Edmund Lee Goldsborough. 1907. The Fishes of Alaska. Bull. U.S. Bur. Fish. 26:219-360. Fabricius, 0. 1780. Fauna Groenlandica. Copenhagen, Leipzig, pp. 1-452. * Fischer, J. G. I885. Ichthyologische und herpetologische Bemerkungen. Jahrb. Hamburg. Wiss. Anst. 2 (58): 49-119. Frisch, C. F. 1865. Der Grosse Fischreichthum bei Spitzbergen und der Baren-Insel, nachgewiesen durch die neuesten Schwedischen Untersuchungen. Peterm. Geogr. Mitth. Erg. Heft 4 (5): 34-39. Fowler, Henry W. 19l4. Fishes collected by the Peary r e l i e f expedition of 1899. Proc. Acad. Nat. Sci,. Philadelphia 66:359-366. Gaimard, J. P. 1845. Voyages de l a commission scientifique du Nord. Voyage en Scandinavie, et Laponie, au Spitzber;g, et aux Fer6*e. Paris, 1842-1856. Section 7. Gilbert, Charles H. I896. The ichthyological collections of the U.S. Fish Commission Steamer Albatross during the years I89O-I89I. Rept. U.S. Fish. Comm. 19:393-476. Gilbert, Charles H. and Charles V. Burke. 1912. Fishes from Bering Sea and Kamchatka. Bull. Bur. Fish. 30:31-97. G i l l , Theodore N. l86l. Catalogue of the fishes of the eastern coast of North America, from Greenland to Georgia. Proc. Acad. Nat. Sci;-, Philadelphia,,Suppl. 1861:1-63. G i l l , Theodore N. 1865. Synopsis of the fishes of the Gulf of St. Laurence and Bay of Fundy. Canad. Nat. 2 (ser. 2): 244-266. G i l l , Theodore N. 1873. Catalogue and bibliography of the fishes of the east coast of North America. Rep. Comm. Fish and Fisheries 1871-1872 (1873). 1:778-882. 21k Girard, C. 1851a. Contributions to the natural history of freshwater fishes of North America. Monograph Cottoids. 3 (3): 1-71• Girard, C. F. 1851b. On the genus Cottus Auct. Proc. Boston Soc. Nat. Hist. 3:183-190. Gordon, Malcolm S. and Richard H. Backus. 1957- New Records of Labrador fishes with special reference to those of Hebron Fiord. Copeia 1957 (1): 17-20. Gratsianov, V. I. 1907. tReview of the fishes of the Russian Empire} Trd. Otd. Icht. Imp. R. Obsc. Acclim. Moscow. L :i_567. (in R u s s i a n ) . Gregory, William K. 1933. Fish skulls. A study of evolution of natural mechanisms. Trans. Am. Phil. Soc. 23:75-^81. Gflnther, Albert, i860. Catalogue of fishes in the British Museum. II: 1-5 W. Gusev, A. V. 1951. [Parasitic copepods of several marine fishes! Parazit. Shorn. 13:39^-^63. (in Russian). Harrington, Robert W. 1955. The osteocranium of the American cyprinid fish, Notropis bifrenatus, with an annotated synonymy of teleost skull bores. Copeia, 1955: 267-290. Heuglin, M. Th. l8jk. Reisen nach dem Nordpolarmeer. Pt. 3. Beitrltge zur Fauna, Flora, und Geologic Braunschweig, l8jk: 1-352. Hildebrand, Samuel F. 1935. An annotated l i s t of the fishes collected on the several expeditions to Greenland. Medded. Gr&il. 125 ( l ) : 1-1*2. Hile, Ralph. 19^1. Age and growth of the Rock Bass Amploplites rupestris (Rafinesque) in Nebish Lake, Wisconsin. Trans. Wisconsin Acad. Sci. 33:189-337. *Hjort, J. 1902. Fiskeri og hvalfangst i det nordlige Norge. Aarsberetning vedkmomende Norges fiskerier for 1900-1902. Bergen, pp. 1-251. Hofsten, N. von, 1919. Die fische des Eisfjords. K. svenska Vetens-kakad. Handl. 5k (10): 1-129. Hognestad, Per T. 196l. Contribution to the fish fauna of Spitzbergen. I. The fish fauna of Isfjorden. Acta Borealia, A. Scientia. No. 18:1-36. Holmqvist, Otto. 1899. List of fishes collected during the Peary auxiliary expedition, l&9k. Ann. Mag. Nat. Hist. (7), 3:2lU-233. 215 Hubbard, Joel D. and William G. Reeder, 1965. New locality records for Alaska fishes. Copeia, I965 (.4): 506-509. Hubbs, Carl L. and Clark Hubbs. 1953. An improved graphical analysis and comparison of series of samples. Systematic Zoology 2 (2): 49 -57-Hubbs, Carl L. and Karl F. Laglar. 1947. Fishes of the Great Lakes Region. Cranbrook Press, Michigan, pp. 1-186. Huntsman, A. G., W. B. Bailey, and H. B. Hachey. 1953. The general oceanography of the Strait of Belle Isle. J. Fish. Res. Bd. Canada. 11 (.3): 198-260. International Pacific Halibut Commission. 1964. Catch records of a trawl survey conducted by the International Pacific Halibut Commission between Unimak Pass and Cape Spencer, Alaska from May 196l to April 1963. Rep. int. Pacif. Halib. Comm. 36:1-524. Isakson, J. S., C. A. Simenstad and R. L. Burgner. 1971. Fish communities and food chains in the Amchitka area. Bioscience 21:666-670. Jeffers, G. W. 1932. Fishes observed in the Strait of Belle Isle. Contr. Canad. Biol. Fish. N. S. 7 ( l 6 ) : 203-211. Jensen, Ad. S. 1909. The fishes of east Greenland. Medded. Grfinl. 29:211-276. •Jensen, Ad. S. 1910. Report of the Second Norwegian Arctic Expedition in the "Fram," I8.98-I902. Videnskabs-Selskabet. Kristiania. 25. Jensen, Ad. S. 1952. On the Greenland species of the genera Artediellus, Cottunculus, and Gymnocanthus (Teleostei, Scleroparei, Cottidae). Medded. GrSn. 142 (7): 1-217 Johansen, Frits. 1925. Fishes and marine invertebrates collected during the cruise of the "Arctic" in 1923. Jessop, B. M. 1972. Aging round whitefish (Prosopium cylindraceum) of the Leaf River, Ungava, Quebec, by otoliths. J. Fish. Res. Bd. Canada. 29:452-454. Jordan, David Starr. 1901. The fish fauna of Japan, with observations on the geographical distribution of fishes. Science, N.S. 14 (354): 545-567. 216 Jordan, David Starr and Barton Warren.Evermann. I896. The fishes of North, and Middle America. Vol. 3. Bull. U.S. Nat. Mus. hf (3): 1937-2860. Jordan, David Starr, Barton Warren Evermann and Howard Walton Clark. 1930. Checklist of the fishes and fish-like vertebrates of North, and Middle America north of the northern boundary of Venezuela and Colombia. Rep. U.S. Comm. Fish. 1928 pt. II:: I-67O. Jordan, David Starr and Charles Henry Gilbert. 1883. Synopsis of the fishes of North America. Bull. U.S. Nat. Mus. (.16): 1-1018. Jordan, David Starr and Charles Henry Gilbert. 1899• The fishes of the Bering Sea. The Fur Seals and Fur Seal Islands of the Pacific Ocean. Pt. 3:U33-!*92. Jordan, David Starr and Charles William Metz. 1913. A catalogue of the fishes known from the waters of Korea. Mem. Carn. Mus. 6 ( l ) : I -65 . Jordan, David Starr and Edwin Chapin Starks. 190U. A review of the Cottidae or Sculpins found in the waters of Japan. Proc. U.S. Nat. Mus. 27:231-335. Jordan, David Starr, Shigeho Tanaka and John Otterbein Snyder. 1913. A catalogue of the fishes of Japan. J. Coll. Sci. Imp. Univ. Tokyo. 33 (1): 1-1*97. Katayama, Masao. 1956. Record of the fishes of Northern Japan obtained off Tajima. Bull. Fac. Educ. Yamaguchi Univ. 2 (l) Kendall, W. C. 1908. Fauna of New England. Occ. Pap. Boston Soc. Nat. Hist. 7:1-152. Kendall, W. C. 1909. The fishes of Labrador. Proc. Portland Soc. Nat. Hist. 2 (8): 207-2U3. Kendall, W. C. 1910. Report ori the fishes collected by Mr. Owen Bryant on a trip to Labrador in the summer of 1908. Proc. U.S. Nat. Mus. 38:503-510. Khlupova, A. S. 1950. [Fishes of Sakhalin as sources of medicinal oils and Vitamin Aj. IZV. tikhookean. nauch.-issled. Inst. ryb. Khoz. 32:135-151+. (in Russian). Kizevetter, I. V. 1951*. [.Vitamin A content of the internal organs of marine fishes from the Kuril-Sakhalin Region./. Izv. tikhookean nauch.-issled. Inst. ryb. Khoz. 39:273-293. (in Russian) Kizevetter, I. V. and E. A. Lagovskaya. 1951. ^ Vitamin A content of Far Eastern fishes. Communication IV. Vitamin A content of the liver of Govies and several species of marine fishes^. _In_ Sb. "Vitaminnyz resursy i ikh ispol'zovanie." Moscow. 1:128-138. (in Russian). 217 KLinckowstr8m, A. 1892. flfversigt af de zoolog. arbet. under exped. t. Spetsbergen 1890. Bihang t. K. Sv. Vet.-Akad. Handl. Bd. 17 (Afd. III). Stockholm. Knipovich, N. M. 1898. Nachtrag zum verzeichniss der Fische des Weissen und Murmanschen Meeres. Ann. Mus. Zool. St. Petersbourg 3:1-11. Knipovich, N. M. 1901. Zoologische Ergebnisse der Russischen Exped-itionen nach Spitzbergen. Ann. Mus. Zool. St. Petersbourg 6:56-83. Knipovich, N. M. 1903. Zur Ichthyologie des Eismeeres. Ann. Mus. Zool. St. Petersbourg- 8 (5): 1U.-156. Knipovich, N. M. 1907. Zur Ichthyologie des Eismeeres. Die von der Russischen Polar-Expedition im Eismeer gesammelten Fische. Mem. Acad. Imp. Sc. St. Petersbourg Ser. 8, 18 (.5): lU-15. Kobayashi, Kiyu and Tatsuji Ueno. 1956. Fishes from the Northern Pacific and from Bristol Bay. Bulletin of the Faculty of Fisheries, Hokkaido University 6 (h): 239-265. Koefoed, E. 1907. Les poissons de l a croisiere oceanographique de l a "Belgiea" dans l a mer du Greenland, 1905. Bruxelles, 1909. Krivobok, M. N. 1931. [Some data on tcawling in Peter the Great BayJ. Sotsialisticheskaya rekonstruktsiya Rybnogo khozyaistva Dal'nego Vostoka. 11-12:107-115. (in Russian). Kumlien, L. 1879. Fishes collected in Cumberland Gulf and Disko Bay. CInl Contributions to the natural history of Arctic America, made in connection with the Howgate Polar expedition, 1877-1878. Bull. U.S. Nat. Mus. 15:1-179. Kuronuma, Katsuzo. 19^3. Fishes of Paramushir Island. Northern Kuril Islands. Bull, biogeogr. Sec. Japan. 13 (l6): 101-12U. Krfcfyer, Henrik. iSkk. Ichthyologiske bidrag. Naturhist. Tidssk. 1 (2): 213-282. Lay, G. T. and E. T. Bennett. 1839. Fishes. In: The Zoology of Captain Beechey's Voyage. Henry G. Bohn, London, pp. Ul-75. Le Danois, M. Ed. 1913. Collections rapportees au Museum d'Histoire Naturelle par l a Mission Arctique Francai-se 1908. Bull. Mus. Hist. Nat. Paris. 19:U2U-1.31. Le Danois, M. Ed. 19lk. Etudes sur quelques poissons des oceans Arctique et Atlantique. Ann. Inst, oceanogr. 7 (2): 1-75. 218 Legeza, M. I. 1956. Ecology and distribution of gobies in the waters of southern Sakhalin and the southern Sakhalin Islands. Trud. probl. temat. Soveshch. zool. Inst. 6:122-131. (in Russian 1. Leim, A. H. and W. B. Scott. 1966. Fishes of the Atlantic Coast of Canada. Bull. Fish. Res. Bd. Canada 155=1-485. Liem, Karel F. 1963. The comparative osteology and phylogeny of the /uiabantoidei (Teleostei, Pisces). Illinois Biol. Monogr. 30:1-149. Lilljeborg, W. 1850. Bidrag t i l l norra Rysslands och Norges Fauna... Vet. Akad. Handl. 1848: 233-242. Lilljeborg, W. 1891. Sveriges och Norges Fiskar Fiskarne I: 118. Uppsala. Lindberg, G. U. 194?. Preliminary l i s t of fishes of the Sea of Japan. Izv. tikhookean. nauch. issled. Inst. ryb. Khoz. 25:125-206. (in Russian). L&mberg, Einar. 1899. Notes on the fishes collected during the Swedish Arctic Expedition to Spitzbergen and King Charles Land, I898. Bih. t. K. Sv. Vet. Akad. Handl. Bd. 24, Afd. 4 (9): 1-36. Lutken, C. I876. Korte Bidrag t i l Nordisk Ichthyographi. Vidensk. Meddel. Naturh. Foren. Kj?Jbenh. 1876: 355-388. McAllister, D. E. i960. Keys to the marine fishes of Canada. Nat. Hist. Pap., Nat. Mus. Canada (5): 1-21. McAllister, D. E. 1964. Fish collections of eastern Hudson Bay. Canad. Fid. Nat. 78 (3): 167-178. McAllister, D. E. 1962. Fishes of the 196? "Salvelinus" program from western Arctic Canada. Nat. Mus. Canada, Contrib. Zool. Bull. 185:17-39. McKenzie, R. A. 1959. Marine and freshwater fishes of the Miramichi River and Estuary, New Brunswick. J. Fish. Res. Bd. Canada. 16 (6): 807-833. Malmgren, A. J. 1863. Kritisk Sfversigt af Finlands Fisk-fauna. Helsingfors, 1863-1867: I-67. Malmgren, A. J. I865. 0m Spetzbergens Fiskfauna. Ofvers. af. K. sv. Vet.-Akad. Forh. 1864 (Stockholm). 21:489-539-Mayr, Ernst. 1969- Animal Species and Evolution. The Belknap Press of Harvard University Press, pp. 1-797. 219 Mori, Tamezo. 1952. Checklist of the fishes of Korea. Mem. Hyogo Univ. Agric. (biol.). 1 (3): 1-228. Mori, Tamezo. 1956. Fishes of San-in District including Oki Islands and its adjacent waters (.Southern Japan Sea). Mem. Hyogo Univ. Agric. 2 (3): 1-62. Mori, Tamezo and Keitaro Uchida. 1934. A revised catalogue of the fishes of Korea. J. Chosen. Nat. Hist. Soc. 19:1-23. Muus, Bent. J. 1964. Haufisk og Fiskeri I Nordvesteuropa. G. E. C. Gads Forlag. Kppenhavn. pp. 1-244. Norman, J. R. 1935. Identification of Sclerbcottus schraderi Fischer, 1885. Copeia, 1935 (3): l 4 l . Norman, J. R. 1938. On the affinities of the Chilean fish Normanichthys  crockeri Clark. Copeia, 1938 (l): 29-32. Okada, Y. 1938. A catalogue of the vertebrates of Japan. Maruzen Co. Ltd., Tokyo, pp. 1-412. Okada, Y. 1955. Fishes of Japan. Maruzen Co. Ltd., Tokyo, pp. 1-434. Pallas, P. S. 1811. Zoographia Rosso - Asiatica... Petropoli. I l l , pp. 1-428. Pa lenko, M. N. 1910. Fishes of Peter the Great Bay. Trud. Obshch. Estestvoisp. kazan. Univ. 42 (2): 1-72. (in Russian). Pertseva, T. A. 1939. Spawning, eggs and fry of fish in Motovskij Bay. Tr. Vses. Nauchno-Isll. Inst. Rbyn. Khoz. Okeanogr. 4:4l7-470. (in Russian, English summary). Pfaff, J. R. 1937. Fishes collected on the fifth Thule expedition, 1921-1924. 2 (7): 1-19. Pickard, G. L. 1963. Descriptive Physical Oceanography. Pergamon Press Ltd. Toronto, pp. 1-200. Pietschmann, Viktor. 1932. Ichthyologische ergebnisse einer fischdampf-erreise nach Gronland. 92 (3): 17-60. Poll, Max. 1949. Resultats scientifiques des croisieres du Navire-Ecole Beige "Mercator." IV. Poissons. Mem. Inst. R. Sci. nat. Belg. 1949 (2) No. 33:173-269. Popov, A. M. 1933a. Fishes of Avatcha Bay on the southern coast. Copeia 1933 (2): 59-67. 220 Popov, A. M. 1933b. [Ichthyofauna of the Sea of Japan]. Issled. dal'nevost. Mor. SSSR. 2:139-155. (in Russian). Popov, A. M. 1933c. [The ichthyofauna of the East Siberian Sea"). Arktica 1:157-16T. (in Russian). Popov, A. M. 1935. [Fauna of the Avachinskii Bay and its distribution according to biocenosesl. Dokl. Akad. Nauk SSSR. new series. U (9), no. 8-9 (77): 353-357. (in Russian). Popta, C. 1911. Ueber Fische von Wladiwostok und von Blagowestschensk am Amur. Mitth. Kgl. Natural. Kabinet, Stuttgart, Jahresber. d. Ver. f. vaterl. Naturkunde. Wurtemberg. 75:333-353. Prefontaine, Georges. 1933. Additions a la liste des especes animales de l'estuaire du Saint Laurent. Trans. Roy. Soc. Canada. 27, ser. 3:252-258. Quast, Jay C. I965. Osteological characteristics and affinities of Hexagrammid fishes, with a synopsis. Calif. Acad. Sci. Ser. 1*, 31 (21): 563-600. Quast, Jay C. and Elizabeth L. Hall. 1972. List of fishes of Alaska and adjacent waters with a guide to some of their literature. N.O.A.A. Tech. Rep. Nat. Mar. Fish. Serv. Spec. Sci. Rep. Fish. 658:1-U7. Reinhardt, J. I838. Ichthyologiske Bidrag t i l Den Grflnlandske Fauna. Vidensk. Selsk. Nat. Math. Afhandl. 7:83-196. Rendahl, Hjalmar. 1931a. Fische aus dem 6*stlichen Sibirischen Eismeer und dem Nordpazific. Ark. Zool. 22 (10): 1-81. Rendahl, Hjalmar. 1931b. Ichthyologische Ergebnisse der schwedischen Kamchatka-Expedition 1920-1922. Ark. Zool. 22 (15): 1-76. Reno, Harley W. 1969- Cephalic lateral line systems of the Cyprinid genus Hybopsis. Copeia. 1969 (1*): 736-773. Richardson, John. 1885. Account of the Fish. CInl Vol. 2 Belcher, E. The last of the Arctic voyages; being a narrative of the exped-ition in H.M.S. Assistance..., in search of Sir J. Franklin, during... 1852-51*. London, pp. 31*7-376. Sandercock, F. Keith and Norman J. Wilimovsky. 1968. Revision of the Cottid genus E n o p h r - y s - - , Copeia. 1968 (1*): 832-853. Sato, Shin-ichi and Kiyu Kobayashi. 1956. The bottom fishes of Volcano Bay, Hokkaido. I. A. taxonomic study. Bull. Hokkaido Reg. Fish. Res. Lab. 13:1-19. 221 Sauvage, H. E. 1878. Description de Poissons Nouveaux ou Imparfaitement Connus de la Collection du Museum d'Histoire Naturelle. Paris. 1:109-158. Schmidt, P. Y. 1904. Pisces Marium Orientalium Imperii Rossi.ci. St. Petersbourg. pp. 1-466. Schmidt, P. Y. 1927. A revision of the genus Gymnocanthus Swainson (Pisces: Cottidae). Ann. Mus. Zool. l'Acad. Sci. l'USSR. 28 (l ) : 25-32. Schmidt, P. Y. 1950. Fishes of the Sea of Okhotsk. Trud. tikhookean. Kom. 6:1-370. Israel Program for Scientific Translations, Jerusalem 1965. Scholander, P. F., L. van Dam, J. W. Kanwisher, H. T. Hammel and M. S. Gordon. 1957. Supercooling and osmoregulation in Arctic fish. J. cell. comp. Physiol. 49:5-24. Schultz, Leonard P. 1958. Review of the Parrotfishes, Family Scaridae. U. S. Nat. Mus. Bull. 2l4:l-l43. Schultz, Leonard P. and Arthur W. Welander. 1934. The cottoid genus Hemilepidotus of the North Pacific. J. Pan Pacific Res. Inst. 9 (27): 56. Scofield, Norman Bishop. 1898. List of the fishes obtained in the waters of Arctic Alaska. Rept. Fur Seal Investigations 1896-1897. Pt. 3 (1899): 493-509. Smitt, F. A., ed. 1893. A History of Scandinavian Fishes. 2nd. ed. Norstedt. and Sflnern. 1:1-866. Soldatov, V. K. 1928. [ Fishes and Fisheries (a course in special ichthyology)]. Moscow, Giz., pp. 1-320. (in Russian). Soldatov, V. K. and G. J. Lindberg. 1930. [A review of the fishes of the seas of the far east]. Bull. Pacific Sci. Fish. Inst. 5:1-576. (in Russian). Stappers, Louis. 1909. Notes sur l a Nourriture de Quelques Vertebres Arctiques. Annales sur la Societe Royale Zoologique et Malacologique de Belgique. Tome 44:31-39. Stearns, W. A. 1884. Notes on the natural history of Labrador. Proc. U.S. Nat. Mus. 6:111-137. Steindachner, K. F. 1875. Ichthyologische BeitrHge. Sitz. Ber. Akaa. Wien, IV, 72:613. 222 Storer, H. R. 1857. Observations on the fishes of Nova Scotia and Labrador with descriptions of new species. Boston J. Nat. Hist. 6:247-270. Swainson, William. 1839. The Natural History of Fishes, Amphibians, and Reptiles, or Monocardian Animals. Vol. 2. Longman, Orme, Brown, Green, and Longmans, London. 452 pp. Tanner, Z.C. 1839. Report on the investigations of the U.S. Fish Commission steamer Albatross from July 1, 1889, to June 30, 1891. U.S. Comm. Fish & Fisheries, Comm. Rept. 1889-1891: 207-342. Taranetz, A. Y. 1933. New data on the ichthyofauna of the Bering Sea. Vestnik Dal1nevostochnyi F i l i a l Akademii Nauk SSSR. 1-3:67-68. (in Russian). Taranetz, A. Y. 1937. Handbook for identification of fishes of Soviet Far East and adjacent waters. Izv. tikhookean. nauch.-issled. Inst. ryb. Khoz. 11:1-200. (in Russian). Taranetz, A. Y. 194l. On the classification and origin of the family Cottidae. Isves. Akad. Nauk. SSSR, Otd. Biol. 1943 (3): 427-447. Translated from the Russian, Inst. Fish. Univ. British Columbia Mus. Contrib. No. 5:1-28. Taylor, William Ralph. 1967. An enzyme method for clearing and staining small vertebrates. Proc. U.S. Nat. Mus. 122 (3596): 1-17. Temminck, C. J. and H. Schlegel. 1843. Poissons CInD Fauna Japonica.... Lugdun: Batavorum. pp. 1-323. Thielemann, M. 1921. Utersuchungsfahrt des Reichforschungsdampfers "Poseidon" in das Barentsmeer im Juni und July 1913. Wiss. Meeres-unt. 13 (2): 185-228. Uda, M. 1958a. Seminar 6. Some problems related to Oyashio (Northern water masses). Fish Res. Bd. Canada Pacific Oceanographic Group, Nanaimo. Oceanographic Seminar. First series, October, November, December 1958. Uda, M. 1958b. Seminar 8. Japan Sea and China Sea. Ibid. U.S. Bureau of Fisheries. 1907. Dredging and hydrographic records of the U.S. Fisheries Steamer Albatross for 1906. Rept. U.S. Comm. Fish. & Spec, papers, 1906 (1908). Doc. 621:1-50. Van Hoffen, Ernst. 1879. Gro'nland. Expedition Gesellschaft fur erdkunde zu Berlin, 1891-1893. Die Fauna und Flora Gr&ilands. 2 (1): 84-137. 223 Van Oosten, John. 1929. Life History of the Lake herring (Leucichthys artedii) of Lake Huron, as revealed "by its scales, with a critique of the scale method. Bull. U.S. Bur. Fish, kk:265-kk8. Vinogradov, K. E. 19^9. Seasonal changes in the composition of Ichthyo-fauna of the Avachinskii Bay (Eastern Kamchatka). Zool. Zh. 28 (6): 573-57U. Vladykov, Vadim D. 1933. Biological and oceanographic conditions in Hudson Bay. 9. Fishes from the Hudson Bay region (Except the Coregonidae). Contr. Can. Biol. Fish. New ser. 8 (2): 15 -6 l . Vladykov, Vadim D. 19**6. Etudes sur les mammiteres aquatiques. IV. Nourriture du Marsouin Blanc ou Beluga (Delphinapterus leucas) de fleuve Saint-Laurent. Contribution du Department des Pecheries. No. 17:1-155. Vladykov, Vadim D. and J. L. Tremblay. 1935. Liste de poissons recueillis pendant l'ete 193^ par la station biologique du St. Laurent, dans l a region de Trois-Pistoles, P. Q. Naturaliste Canadien 62 (3): 77-82. Walters, Vladimir. 1953. The fishes collected by the Canadian Arctic expedition, 1913-1918, with additional notes on the ichthyofauna of western Arctic America. Canada Dept. Res. Dev., Ann. Rep. Nat. Mus. (128): 1-18. Walters, Vladimir. 1955. Fishes of the western Arctic America and eastern Arctic Siberia, taxonomy, and zoogeography. Bull. Am. Mus. Nat. Hist. 106:255-368. Watanabe, Masao. I960. Fauna Japonica. Cottidae (Pisces). Biogeo-graphical Society of Japan, Tokyo News Service Ltd. pp. 1-218. Weitzman, Stanley H. 1962. The osteology of Brycon meeki , a generalized characid fish, with an osteological definition of the family. Stanford Ichthyol. Bull. 8 (l): 1-77. Weiz, Samuel ..and A. S. Packard. 1866. List of vertebrates observed at Okak, Labrador, by Rev. Samuel Weiz, with annotations by A. S. Packard, Jr., M.D. Proc. Boston Soc. Nat. Hist. 10:26U:277. Wilimovsky, Norman J. I96U. Inshore fish fauna of the Aleutian Archipelago. Proc. lUth Alaskan Science Conference, Anchorage, Alaska. Wilson, Donald E. MS. Manual for the operation of the General Electric Model D-l X-ray unit and the preparation, exposing, and developing of X-ray film. Manuscript available from N. J. Wilimovsky. I.A.R.E., University of British Columbia. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093237/manifest

Comment

Related Items