Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Mainline railway electrification : an economic feasibility model Johnston, William David 1975

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1975_A4_6 J06.pdf [ 11.88MB ]
Metadata
JSON: 831-1.0093166.json
JSON-LD: 831-1.0093166-ld.json
RDF/XML (Pretty): 831-1.0093166-rdf.xml
RDF/JSON: 831-1.0093166-rdf.json
Turtle: 831-1.0093166-turtle.txt
N-Triples: 831-1.0093166-rdf-ntriples.txt
Original Record: 831-1.0093166-source.json
Full Text
831-1.0093166-fulltext.txt
Citation
831-1.0093166.ris

Full Text

MAINLINE RAILWAY ELECTRIFICATION -AN ECONOMIC FEASIBILITY MODEL-by WILLIAM DAVID JOHNSTON B.Eng., M c C i l l University, 1968 M.B.A., University of B r i t i s h Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER 0 ? SCIENCE (Business Administration) i n the Faculty of Commerce and Business Administration We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OP BRITISH COLUMBIA In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d that c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t ten pe rm i ss ion . Department o f COMMERCE AND BUSINESS ADMINISTRATION The U n i v e r s i t y o f B r i t i s h Co lumbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1WS Date SEPT. 7 1 9 7 5 A B S T R A C T - M A I N L I N E R A I L W A Y E L E C T R I F I C A T I O N - A N E C O N O M I C F E A S I B I L I T Y M O D E L - .; The projected grov/th i n demand for i n t e r c i t y f r e i g h t transportation, growth i n r a i l t r a n s i t i n urban . areas, the requirements of i n t e r c i t y r a i l passenger . service, and s e n s i t i v i t y to depletion of natural and environmental resources, p a r t i c u l a r l y fuels and a i r q u a l i t y , i s spurring the evaluation of e l e c t r i c locomotives as an a l t e r n a t i v e to the d i e s e l - e l e c . t r i c . Of a l l the modes of transportation, only r a i l can.be f e a s i b l y converted from petroleum f u e l to hydro, coal, or nuclear-fueled e l e c t r i c energy. The technology of e l e c t r i c motive power has •• . " continued to improve from that r e a l i z e d in. most previous North American large scale e l e c t r i f i c a t i o n projects, both as a r e s u l t of general technological advance, and of s p e c i f i c e f f o r t s by e l e c t r i f i e d r a i l r o a d s i n other:countries. Under optimum operating conditions, an e l e c t r i f i e d , r a i l l i n e would r e q u i r e l e s s m o t i v e power equipment arid c o u l d a c h i e v e a h i g h e r f r e q u e n c y and b e t t e r l e v e l o f s e r v i c e t h a n c o u l d one u t i l i s i n g d i e s e l l o c o m o t i v e s . E l e c t r i c l o c o m o t i v e s c o u l d p e r m i t f a s t e r t r a i n r u n s r e s u l t i n g i n improved s c h e d u l e s , more e f f i c i e n t o p e r a t i o n s , and i n c r e a s e d r e l i a b i l i t y o f s e r v i c e due t o l e s s down and t u r n - a r o u n d t i m e . T h i s s t u d y d e v e l o p s a comprehensive computer-based " R a i l w a y E l e c t r i f i c a t i o n Economic F e a s i b i l i t y M o d e l " t h a t may be p r a c t i c a l l y used t o d e t e r m i n e t h e p o t e n t i a l r e t u r n i f v a r i o u s r a i l l i n e segments a c r o s s t h e c o u n t r y were t o be e l e c t r i f i e d . The Model i s d e v e l o p e d i n a manner t h a t a l l o w s v a r i o u s l i n e and l o c o m o t i v e o p e r a t i n g p a r a -m eters t o be e a s i l y examined t o d e t e r m i n e th e r e l a t i v e s e n s i t i v i t i e s o f t r a f f i c mix ( f r e i g h t , e x p r e s s , and p a s s e n g e r ) and growth p r o j e c t i o n s , o p e r a t i n g and l o c o m o t i v e c h a r a c t e r i s t i c s , c a p i t a l r e q u i r e m e n t and s t a g i n g , f u e l c o s t s , and p r o j e c t e d l a b o r and c a p i t a l i n f l a t i o n r a t e s on t h e p r o j e c t v i a b i l i t y . As t h e f i r s t s t a g e i n an e l e c t r i f i c a t i o n economic f e a s i b i l i t y a n a l y s i s , t h e Model may be employed, u s i n g rough t r a f f i c , c a p i t a l and a n n u a l o p e r a t i n g c o s t p r o j e c t i o n s , t o det e r m i n e which l i n e segments show s u f f i c -i e n t p o t e n t i a l r e t u r n on e l e c t r i f i c a t i o n c a p i t a l t o j u s t i f more d e t a i l e d e n g i n e e r i n g , m a r k e t i n g , and o p e r a t i n g s t u d i e s . The r e s u l t s o f these d e t a i l e d s t u d i e s c a n t h e n be usad i n t h e Model t o f u r t h e r r e f i n e t h e p o t e n t i a l r e t u r n on i n v e s t e d c a p i t a l and, u s i n g t h e o p p o r t u n i t y c o s t o f c a p i t a l , d e t e r m i n e the y e a r e l e c t r i f i c a t i o n w i l l become e c o n o m i c a l l y v i a b l e . As the Model i s computer based, i t i s r e l a t i v e l y easy t o v a r y some, o r a l l , o f the i n p u t p a r a m e t e r s and so e v a l u a t e t h e s e n s i t i v i t y and r i s k o f t h e v a r i o u s p a r a m e t e r s on t h e f i n a n c i a l v i a b i l i t y o f th e p r o j e c t . The r a i l l i n e used t o t e s t t h e model showed an e x t r e m e l y a t t r a c t i v e r e t u r n on i n v e s t e d c a p i t a l . The e l e c t r i f i c a t i o n p a r a m e t e r s found t o have t h e g r e a t e s t e f f e c t on t h e p r o j e c t v i a b i l i t y were the e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e s r e q u i r e d , f i x e d f a c i l i t i e s c o n s t r u c t i o n c o s t s , e l e c t r i c l o c o m o t i v e p u r c h a s e c o s t s , and r e l a t i v e f u e l c o s t e s c a l a t i o n r a t e s . - i v -MAINLINE RAILWAY ELECTRIFICATION -AN ECONOMIC FEASIBILITY MODEL-'-Page CHAPTER I - INTRODUCTION 1 ..• 1 . 1 . M a i n l i n e Railway E l e c t r i f i c a t i o n . 1 1 . 2 . . Object and Scope of the Study 5 1 . 3 . Approach — i ' ^ — .7 1 . 4 . Overview of the Report — • 10 CHAPTER I I - DEVELOPMENT OF THE ELECTRIFICATION FEASIBILITY MODEL 13 2 . 1 . Determination of Annual Operating Levels _______ __; .. 17 . 2 . 1 . 1 . Gross Ton M i l e s 1? 2 . 1 . 2 . T r a i n M i l e s 18 . . . 2 . 1 . 3 . D i e s e l Locomotive M i l e s • . 19 2 . 1 . 4 . Number of D i e s e l Locomotives \ Required • -—- 21 . 2 . 1 . 5 . Number of E l e c t r i c Locomotives - Required - — — _ — — _ . 21 2 . 1 . 6 . Number of Annual E l e c t r i c Locomotive M i l e s - •— 22 2.2. D e t e r m i n a t i o n o f A n n u a l E l e c t r i -f i c a t i o n S a v i n g s — • ---2.2.1. D i e s e l F u e l Consumption and C o s t . — .- — 2.2.2. E l e c t r i c Power Consumption and C o s t — — : ---2.2.3. T o t a l A n n u a l D i e s e l L o c o m o t i v e Maintenance Cost • ____ 2.2.4. T o t a l A n n u a l E l e c t r i c L o c o -m o t i v e Maintenance C o s t 2.2.5. Locomotive Wage Weight D i f f e r e n t i a l . 2.2.6. T o t a l A n n u a l S a v i n g s i n T r a c k Maintenance w i t h E l e c t r i c L o c o m o t i v e s — 2.2.7. C a t e n a r y and S u b s t a t i o n Maintenance : — 2.3. C a p i t a l Investment Requirement 2.3.1. Locomotive C a p i t a l C o s t •—•'. 2.3.2. E l e c t r i f i c a t i o n F i x e d F a c i l i t i e s 2.4. D e t e r m i n a t i o n o f Cash.-Flows and Minimum P r e s e n t V a l u e — ; '--2.4.1. D i e s e l L o c o m o t i v e s —- "— 2.4.2. E l e c t r i c L o c o m o t i v e s '-— 2.4.3. Minimum P r e s e n t V a l u e —• • • •. 2.5. A d d i t i o n a l C o s t s and B e n e f i t s —----- — 2.6. E s c a l a t i o n P e r c e n t a g e s -----—: CHAPTER I I I - MODEL RESULTS — — — _____ — — — -3.1. I n t e r n a l Rate o f R e t u r n on I n v e s t e d C a p i t a l ~- _ — _ — _ . — __•' CHAPTER IV - ANALYSIS OF MODEL RESULTS  4.1. P e r c e n t a g e Breakdown o f G r o s s Annual. : O p e r a t i n g C o s t D i f f e r e n c e s — --4.2. Net Locomotive Maintenance C o s t S a v i n g s : .__-_. . __, _ 4.2.1. E q u a t i o n o f Number o f E l e c t r i c t o D i e s e l L o c o m o t i v e s -—• 4.2.2. E q u a t i o n o f E l e c t r i c t o D i e s e l L o c o motive Maintenance C o s t s : 4.3. F u e l C o s t s _ — — ____— ________ .4.3.1. E l e c t r i c Power C o s t s .4.3.2. R e l a t i v e E s c a l a t i o n i n Energy . C o s t s — — --4.4. Investment Requirements 4.4.1. E l e c t r i c L o c o m o t i v e . I n v e s t m e n t -4.4.2. E l e c t r i f i c a t i o n F i x e d F a c i l i t i e s — . . . 4.5." T r a i n Speed and L i n e C a p a c i t y - - - - - -- v i i -Pae-e 4 . 6 . E s c a l a t i o n and F i n a n c i a l C o n s i d e r a t i o n s — 101 4 . 6 . 1 . T r a f f i c Growth R a t e s — 102 4 . 6.2. D i s c o u n t R a t e s — — _ 102 4 . 7 . D i e s e l L o c o motive S a l v a g e V a l u e 107 4.8. Worst C;ase , — — _„ .109 4 . 9 . Cash Flow D u r a t i o n — • -- • 111 CHAPTER V - CONCLUSION — - — — '• 114 5.1. R e p o r t Summary : • l i * * -BIBLIOGRAPHY — _ — _ _ — — — _ 120 APPENDICES — — — '. . . — 123 A l DERIVATION OF THE GRADE FACTOR — — 124 A2 ENGINE CREW '-WAGES. - — 127, A3 THE COMPUTER MODEL AND OUTPUT DATA ----- 128 A.3.1 OPERATION OF THE COMPUTER MODEL • 128 A.3.2 INPUT DATA ; 129. A.3.3 OUTPUT DATA 135 A4. SAMPLE INPUT DATA CARDS . 152 A5 COMPUTER SOURCE PROGRAM — — — — — _' 156 - v i i i -LIST OF TABLES AND EXHIBITS: TABLE • Page I HYPOTHETICAL STUDY LINE CASH FLOWS 51 II . PRINCIPLE ELECTRIFICATION ASSUMPTIONS — . 59 EXHIBIT 1 GENERAL MODEL FLOW DIAGRAM — — '• 11, 2 CASH FLOW SYMBOLS — 46 3 IDENTIFICATION OF THE INPUT VARIABLES TO . , THE COMPUTER MODEL— — — ., 130 4 SAMPLE OF THE OUTPUT DATA FORM FROM THE . • COMPUTER MODEL. — ' : 136 LIST 0? FIGURES FIGURE : .-. PAGE 1 PRESENT VALUES OF THE COSTS CALCULATED FOR THE CN STUDY LINE '-. — 57 2 PROJECT INTERNAL RATE OF RETURN VERSUS • = COMPLETION DATE . — - — 6l 3 1977 PERCENTAGE BREAKDOWN OF GROSS ANNUAL ' OPERATING COST DIFFERENCES — : — . 66 M SENSITIVITY OF COSTS TO AN EQUATION OF ELECTRIC TO DIESEL LOCOMOTIVES : 69. 5 TRACTIVE EFFORT CURVES FOR A SIX-AXLE 195-TON 3,000 HP DIESEL-ELECTRIC AND A 6,500 HP AC ELECTRIC LOCOMOTIVE . 7 1 6 SENSITIVITY OF COSTS TO THE EQUATION OF . ELECTRIC TO DIESEL LOCOMOTIVE MAINTENANCE' COSTS — 76 7 SENSITIVITY OF COSTS TO ELECTRIC POWER COSTS , 7 9 8 SENSITIVITY OF COSTS TO A 6% INCREASE IN DIESEL FUEL PRICES — 8 l 9 SENSITIVITY OF COSTS TO A 0% INCREASE IN DIESEL FUEL PRICES — — 8 2 10 SENSITIVITY OF COSTS TO AN INCREASED AVAILABILITY OF ELECTRIC LOCOMOTIVES . — 86" 11 SENSITIVITY OF COSTS TO THE ELECTRIC- -• LOCOMOTIVE PURCHASE COST — — — _ — , . 8 9 12 SENSITIVITY OF COSTS TO THE FIXED FACILITIES CONSTRUCTION COST 92 FIGURE . . PAGE . .13 . SENSITIVITY OF COSTS TO THE CONSTRUCTION .. PERIOD AND.ANNUAL CONSTRUCTION PERCENTAGE- 94 14 SENSITIVITY OF COSTS TO A 25% INCREASE IN . DIESEL LOCOMOTIVES PER TRAIN 9? 1 5 SENSITIVITY OF COSTS TO A 25% DECREASE IN . DIESEL LOCOMOTIVES PER TRAIN __ — _ _ . 98 16 SENSITIVITY OF COSTS TO AN INCREASE IN NUMBER OF DIESELS PER TRAIN AND REDUCTION . IN EQUATION OF ELECTRIC TO DIESEL LOCOMOTIVES •—•- __-_____-.——_-._ . 9 9 . 17 SENSITIVITY OF COSTS TO A 25% HIGHER V TRAFFIC GROWTH — — — , 1 0 3 •-• 18 SENSITIVITY OF COSTSTO A 25% LOWER TRAFFIC GROWTH . io4 19 SENSITIVITY OF COSTS TO A 15% DISCOUNT RATE — ~ — — — — ; : 105 20 . SENSITIVITY OF COSTS TO A 2 5 $ DISCOUNT \ RATE • ______ 106 21 DIESEL LOCOMOTIVE SALVAGE VALUE , 108 ; 22 ELECTRIFICATION WORST CASE - - — - — - 110 23 SENSITIVITY OF COSTS TO A 15 YEAR CASH :-FLOW : — ^______. 112 - 1 -CHAPTER I  INTRODUCTION 1.1. M a i n l i n e R a i l w a y E l e c t r i f i c a t i o n The p r e s e n t and f u t u r e r o l e o f r a i l r o a d t r a n s p o r t a t i o n i n m e e t i n g i t s s h are o f t h e n a t i o n ' s demand f o r t r a n s p o r t a t i o n s e r v i c e s has become a s i g n i f i c a n t i s s u e . The p r o j e c t e d growth i n demand f o r i n t e r c i t y f r e i g h t t r a n s p o r t a t i o n , growth i n r a i l t r a n s i t i n u r b a n a r e a s , and t h e r e q u i r e m e n t s o f i n t e r c i t y r a i l p a s s e n g e r s e r v i c e argue s t r o n g l y t h a t s t r a t e g i e s must be d e v e l o p e d t o promote e n e r g y - e f f e c t i v e t r a n s p o r t a t i o n and a c h i e v e f u l l , e f f i c i e n t u t i l i z a t i o n o f t h e n a t i o n ' s r a i l s y stem. T h i s a n t i c i p a t e d growth, a l o n g w i t h new knowledge o f and s e n s i t i v i t y t o d e p l e t i o n o f n a t u r a l and e n v i r o n m e n t a l r e s o u r c e s , p a r t i c u l a r l y f u e l s and a i r q u a l i t y , i s . s p u r r i n g t h e e v a l u a t i o n o f e l e c t r i c l o c o m o t i v e s as an a l t e r n a t i v e t o t h e d i e s e l - e l e c t r i c , a t l e a s t f o r h i g h d e n s i t y r a i l l i n e s . Of a l l t h e modes o f t r a n s p o r t a t i o n , o n l y r a i l can ; be f e a s i b l y c o n v e r t e d from p e t r o l e u m f u e l t o h y d r o , c o a l , o r n u c l e a r - f u e l e d e l e c t r i c e nergy. The t e c h n o l o g y Of e l e c t r i c m o t i v e power has - 2 -c o n t i n u e d t o improve.from t h a t r e a l i z e d i n most p r e v i o u s N o r t h A m e r i c a n l a r g e s c a l e e l e c t r i f i c a t i o n p r o j e c t s , as a r e s u l t b o t h o f g e n e r a l t e c h n o l o g i c a l advance, and o f s p e c i f i c e f f o r t s by e l e c t r i f i e d r a i l r o a d s i n o t h e r c o u n t r i e s . I f p r o p e r l y implemented, e l e c t r i f i c a t i o n w i l l be b e n e f i c i a l t o t h e r a i l r o a d i n d u s t r y . The r a i l r o a d b e n e f i t s a r e r e l a t e d e i t h e r d i r e c t l y o r i n d i r e c t l y t o t h e d i f f e r e n t p e r f ormance c h a r a c t e r i s t i c s o f t h e e l e c t r i c and d i e s e l -e l e c t r i c l o c o m o t i v e . Some o f t h e e l e c t r i c l o c o m o t i v e c h a r a c t e r i s t i c s a r e : - h i g h horsepower; - i n c r e a s e d a v a i l a b i l i t y and r e l i a b i l i t y ; - low m a i n t enance; - f a s t t u r n - a r o u n d t i m e ; - improved t u n n e l o p e r a t i o n ; and - improved a c c e l e r a t i o n . These c h a r a c t e r i s t i c s r e s u l t i n b o t h advantages and d i s a d v a n t a g e s t o r a i l o p e r a t i o n s . One o f t h e a dvantages i s t h a t t h e s t r a i g h t - e l e c t r i c l o c o m o t i v e can a t t a i n two-t o - t h r e e t i m e s t h e horsepower a d i e s e l - e l e c t r i c l o c o m o t i v e can w i t h i n t h e same space c o n f i g u r a t i o n . As w e l l , an e l e c t r i c l o c o m o t i v e n o t n e e d i n g t o c a r r y on-board - 3 -g e n e r a t i n g c a p a b i l i t y c o n s t i t u t e s a more compact d e s i g n r e s u l t i n g i n an i n c r e a s e d power:weight r a t i o compared t o a d i e s e l - e l e c t r i c l o c o m o t i v e . A t h i r d advantage i s t h a t e l e c t r i c l o c o m o t i v e s a re not i n h e r e n t l y l i m i t e d by on-board g e n e r a t i n g c a p a c i t y as i s a d i e s e l , and abundant amounts o f power are a v a i l a b l e from t h e c a t e n a r y , a l l o w i n g e l e c t r i c l o c o m o t i v e s t o d e v e l o p s h o r t - t i m e power r a t i n g s s u b s t a n t i a l l y i n e x c e s s o f a d i e s e l -e l e c t r i c o f t h e same r a t i n g . The h i g h e r horsepower a v a i l a b l e w i t h e l e c t r i c l o c o m o t i v e s would p e r m i t f a s t e r o v e r - t h e - r o a d t r a n s i t t i m e because o f i n c r e a s e d speed c a p a b i l i t y , v/here t r a c k c o n d i t i o n s p e r m i t , and improved t r a i n a c c e l e r a t i o n . The e f f e c t o f t h e s e advantages w i l l v a r y from r a i l r o a d t o r a i l r o a d and t e n d s t o be o f more s i g n i f i c a n c e w i t h h i g h e r usage, d e n s i t y , and c h a r a c t e r o f t h e f r e i g h t c a r r i e d . E l e c t r i c l o c o m o t i v e s r e q u i r e s i g n i f i c a n t l y l e s s t i m e f o r s e r v i c i n g between r u n s , and major o v e r h a u l s a re b o t h l e s s f r e q u e n t and o f s h o r t e r d u r a t i o n . I t s o v e r a l l m aintenance c o s t can be 3° t o 50 p e r c e n t o f c o s t s f o r comparable d i e s e l - e l e c t r i c l o c o m o t i v e s . 1 The e l e c t r i c ( l ) The G o v e r n m e n t - I n d u s t r y Task F o r c e o n R a i l r o a d E l e c t r i f i c a t i o n , A Review o f F a c t o r s I n f l u e n c i n g  R a i l r o a d E l e c t r i f i c a t i o n , Department o f T r a n s p o r t a t i o n , . F e d e r a l R a i l r o a d A d m i n i n i s t r a t i o n , Washington, D.C., .1974. - 4 -c o n t r o l c h a r a c t e r i s t i c s of the s t r a i g h t e l e c t r i c locomotive are such t h a t g r e a t e r u s e f u l l e v e l s of e f f e c t i v e adhesion have "been demonstrated w i t h s t r a i g h t e l e c t r i c than w i t h 2 d i e s e l - e l e c t r i c . Thus, e l e c t r i f i c a t i o n can c o n t r i b u t e o p p o r t u n i t i e s f o r s i g n i f i c a n t s e r v i c e and p r o d u c t i v i t y improvements. E l e c t r i f i c a t i o n can r e s u l t i n disadvantages as w e l l . One i s the l o s s of f l e x i b i l i t y i n motive power use. The d i e s e l - e l e c t r i c locomotive can be s h i f t e d to d i f f e r e n t o p e r a t i n g l o c a t i o n s to meet seasonal t r a f f i c demands. Since t o t a l e l e c t r i f i c a t i o n may not be r e a l i s t i c , i t can be foreseen t h a t the extent of e l e c t r i f i c a t i o n , and the requirements to I n t e r f a c e power w i l l not permit the f l e x i b i l i t y a v a i l a b l e w i t h d i e s e l - e l e c t r i c locomotives. Other disadvantages are t h a t during c o n s t r u c t i o n of the catenary, the i n t e r f e r e n c e w i t h ongoing r a i l . -o p e r a t i o n can be a major cost element. In the e l e c t r i f i c a t i o n of an e x i s t i n g r a i l r o a d , p r o v i s i o n o f overhead catenary has the e f f e c t of reducing v e r t i c a l clearance which could l i m i t maximum height c a r s . These clearances could (2) F i s h e r , G.T., T e s t i n g of High Performance E l e c t r i c Locomotives, . AS ME/IEEE, March, 1972. : '. : ' . - 5 -be d e s i g n e d f o r , but t h e y would a f f e c t p r o j e c t c o s t , t h e r e b y a f f e c t i n g i t s economic f e a s i b i l i t y . A l s o , t h e r e s t o r a t i o n o f s e r v i c e due t o a r a i l mishap w h i c h damaged b o t h t r a c k and c a t e n a r y may t a k e l o n g e r t h a n were the t r a c k a l o n e damaged. When p l a n n i n g e l e c t r i f i c a t i o n c o n s i d e r a t i o n s h o u l d be g i v e n t o t h e f a c t t h a t f u t u r e changes i n r a i l r o a d g rade, a l i g n m e n t , and s t r u c t u r e s , o r the a d d i t i o n s o f s i d i n g s and s p u r s , w o u l d be more e x p e n s i v e i f e l e c t r i f i c a t i o n Were implemented. F i n a l l y , t h e r e i s a g r e a t e r element o f h a z a r d - t o b o t h r a i l and n o n - r a i l p e r s o n n e l - f r o m h i g h - v o l t a g e c a t e n a r y w i r e s . 1.2. O b j e c t and Scope o f t h e Study The o b j e c t o f t h i s s t u d y i s t o d e v e l o p a model t h a t can be u t i l i z e d t o r e v i e w the o p e r a t i n g c h a r a c t e r i s t i c s o f e l e c t r i c l o c o m o t i v e o p e r a t i o n and t o e v a l u a t e t h e c u r r e n t p o s s i b i l i t i e s i n a f u l l and s y s t e m a t i c manner. A comprehensive computer-based " R a i l w a y E l e c t r i f i c a t i o n Economic F e a s i b i l i t y Model" i s d e v e l o p e d t h a t may be p r a c t i c a l l y used t o d e t e r m i n e i f v a r i o u s r a i l l i n e segments a c r o s s the c o u n t r y s h o u l d be e l e c t r i f i e d . The Model i s d e v e l o p e d i n a manner t h a t a l l o w s v a r i o u s - 6 -l i n e and locomotive operating parameters to be e a s i l y examined to determine the r e l a t i v e s e n s i t i v i t i e s of t r a f f i c mix (freigh t , express, and passenger) and growth projections, operating arid locomotive c h a r a c t e r i s t i c s , c a p i t a l requirement and staging, f u e l costs, and projected labour and c a p i t a l i n f l a t i o n rates on the project v i a b i l i t y . As.the f i r s t stage i n an e l e c t r i f i c a t i o n economic f e a s i b i l i t y analysis, the Model may be employed, using rough t r a f f i c , c a p i t a l , and annual saving projections, to determine which l i n e segments across the country show s u f f i c i e n t p o t e n t i a l return to j u s t i f y more detailed engineering, marketing, and operating studies. The r e s u l t s of these detailed studies can then be used i n the Model to further re f i n e the p o t e n t i a l return on invested c a p i t a l and, using the opportunity cost of c a p i t a l , determine the year e l e c t r i f i c a t i o n w i l l become economically v i a b l e . As the Model i s computer based, i t w i l l be r e l a t i v e l y easy, to vary some, or a l l , of the input parameters and so evaluate the s e n s i t i v i t y and r i s k of the various parameters on the f i n a n c i a l v i a b i l i t y of the project. . I n summary, the Model w i l l enable railway or ~ 7 -r government personnel to comprehensively and s y s t e m a t i c a l l y evaluate the economic p o t e n t i a l of r a i l w a y e l e c t r i f i c a t i o n on a c t u a l r a i l systems. The Model i s designed so t h a t i t may "be used to analyze mainline r a i l segments between urban centres or, i n c e r t a i n circumstances, r a i l t r a n s i t w i t h i n urban centres. I t must be noted t h a t t h i s model does not d i r e c t l y consider the a v a i l a b i l i t y of resources, such as e l e c t r i c power, i n a r e g i o n , or the s p e c i f i c ' e ngineering costs r e q u i r e d to construct the e l e c t r i f i c a t i o n f a c i l i t i e s r e q u i r e d f o r each r a i l l i n e . To o b t a i n a model t h a t would be of a s u f f i c i e n t l y g eneral nature t h a t i t could be used to determine the e l e c t r i f i c a t i o n f e a s i b i l i t y of d i f f e r e n t r a i l l i n e s , i t was necessary that these costs be u t i l i z e d on a per mile b a s i s . I f d e t a i l e d engineering costs f o r f i x e d f a c i l i t i e s are a v a i l a b l e , these may be converted to a per mile b a s i s and entered i n t o the model. 1.3. Approach As the purpose of the model i s to determine the economic f e a s i b i l i t y of mainline r a i l w a y e l e c t r i f i c a t i o n , the focus, of the,study i s on the annual r a i l w a y o p e r a t i n g - 8 -c o s t s which v a r y as a r e s u l t o f e l e c t r i c o r d i e s e l -e l e c t r i c m o t i v e power b e i n g u t i l i z e d . Any c o s t elements w h i c h a r e i n s i g n i f i c a n t o r common, and hence do n o t a f f e c t t h e d e c i s i o n between the two m o t i v e power t y p e s , were n o t i n c l u d e d i n the a n a l y s i s . T h e r e f o r e , t h e model i s c o m p r i s e d o f two major c o s t components: 1) the r e s p e c t i v e o p e r a t i n g c o s t s o f t h e two l o c o m o t i v e t y p e s , 2) the c a p i t a l i n v e s t m e n t i n l o c o m o t i v e s and f i x e d f a c i l i t i e s r e q u i r e d f o r each m o t i v e power system. The model c a l c u l a t e s t h e p r e s e n t v a l u e s o f the c a p i t a l and o p e r a t i n g c o s t s p r o j e c t e d f o r each l o c o m o t i v e a t t h e o p p o r t u n i t y c o s t o f c a p i t a l t o t h e f i r m . The minimum p r e s e n t v a l u e a l t e r n a t i v e i n d i c a t e s i f t h e l i n e s h o u l d be e l e c t r i f i e d , and i f s o , i n w h i c h y e a r . The approach t a k e n t o t h e development o f t h e model was t o use as b a s i c i n p u t d a t a , i n f o r m a t i o n t h a t i s r e a d i l y a v a i l a b l e t o r a i l w a y p e r s o n n e l . C o n s e q u e n t l y , such o p e r a t i n g parameters as a n n u a l g r o s s t o n m i l e s p e r m i l e o f t r a c k , average g r o s s t o n s p e r t r a i n , a v erage - 9 -number o f d i e s e l u n i t s p e r t r a i n , e t c . , a r e r e a d i n t o the model as i n p u t d a t a and u t i l i z e d t o determine such c a p i t a l i n v e s t m e n t and a n n u a l c o s t s a v i n g elements as t h e number o f l o c o m o t i v e s r e q u i r e d , m o t i v e power m i l e s t r a v e l l e d , f u e l r e q u i r e m e n t s , e t c . I n t h i s manner most o f the l a b o r i o u s and time consuming c a l c u l a t i o n s a r e c a r r i e d out w i t h i n t h e computer model from r e a d i l y a v a i l a b l e r a i l w a y o p e r a t i n g i n f o r m a t i o n . As t h e r e a r e s u b s t a n t i a l d i f f e r e n c e s i n r a i l w a y o p e r a t i n g c o n s t r a i n t s (number o f l o c o m o t i v e s , speed p e r t r a i n , e t c . ) between t r a i n t y p e s , the economic f e a s i b i l i t y o f e l e c t r i f i c a t i o n i s .examined f o r t h r e e t r a i n t y p e s : 1) F r e i g h t : 2) E x p r e s s 3) P a s s e n g e r -A n n u a l o p e r a t i n g parameters and c o s t s a r e c a l c u l a t e d f o r each t r a i n t y p e and t h e n summed f o r t h e r e s p e c t i v e c ash f l o w a n a l y s i s . I f one o r p o s s i b l y two o f t h e s e t r a i n t y p e s do not o p e r a t e on t h e l i n e b e i n g examined, the r e l e v a n t o p e r a t i n g p a r a m e t e r s may be s e t e q u a l t o z e r o and t h e model used n o r m a l l y . The model i s d e v e l o p e d t o p r o j e c t cash f l o w s o v e r the economic l i f e o f t h e e l e c t r i f i c a t i o n f i x e d - 10 -f a c i l i t i e s f o r each p o s s i b l e s e r v i c e i n i t i a t i o n y e a r . P r o v i s i o n has been made, f o r p e r c e n t a g e e s c a l a t i o n f a c t o r s t o be a p p l i e d t o most o f t h e o p e r a t i n g and c o s t p a r a m e t e r s . C o n s e q u e n t l y i t i s p o s s i b l e t o a s c e r t a i n t h e e f f e c t on t h e p r o j e c t f e a s i b i l i t y i f one o r s e v e r a l o f t h e para m e t e r s were p r o j e c t e d t o e s c a l a t e o r d e c r e a s e a t a r e l a t i v e r a t e d i f f e r e n t from th e c o n s t a n t d o l l a r v a l u e . A l t h o u g h p r o v i s i o n has been b u i l t i n t o t h e model f o r v a r i a n c e o f alm o s t a l l o f t h e l i n e , l o c o m o t i v e , t r a i n , and c o s t p a r a m e t e r s by t h e i n p u t o f d a t a c a r d s , many o f t h e v a r i a b l e s , such as d i e s e l l o c o m o t i v e c h a r a c t e r i s t i c s , may not v a r y s i g n i f i c a n t l y between l i n e s and/or y e a r s . The v a l u e s have been e n t e r e d as i n p u t d a t a t o f a c i l i t a t e a change i n t h e s e p a r a m e t e r s . The main computer program has been w r i t t e n i n F o r t r a n IV. A g e n e r a l f l o w diagram o f t h e computer model may be seen i n E x h i b i t 1. .1.4. Overview o f t h e Repo r t C h a p t e r I I d e v e l o p s the e q u a t i o n s t o d e t e r m i n e t h e p r e s e n t v a l u e s o f c a p i t a l and o p e r a t i n g c o s t s o f - 11 -EXHIBIT 1 GENERAL MODEL FLOW DIAGRAM INPUT DATA i i _±_. ROUTE PARAMETERS DIESEL LOCOMOTIVE PARAMETERS AND OPERATING COSTS DIESEL LOCOMOTIVE CAPITAL COST ~T~ i DIESEL LOCOMOTIVE CASH FLOW AND • PRESENT VALUE h n I i • I | i r ELECTRIC LOCOMOTIVE PARAMETERS AND OPERATING COSTS ELECTRIC LOCOMOTIVE CAPITAL COST I • JSC FIXED FACILITY CONSTRUCTION . AND ANNUAL MAINTENANCE ELECTRIC LOCOMOTIVE CASH FLOW AND PRESENT VALUE I i MINIMUM CASH FLOW AND YEAR OCCURING i t i OUTPUT• - 12 -the d i e s e l and e l e c t r i c locomotive a l t e r n a t i v e s f o r each p o s s i b l e completion date of e l e c t r i f i c a t i o n on the l i n e being s t u d i e d . F i r s t , the annual o p e r a t i n g c o s t s , of each locomotive type at the t r a f f i c and cost parameters f o r each year are determined i n the constant d o l l a r value of the study base year. Second, the r e q u i r e d c a p i t a l investment i n locomotives and f i x e d f a c i l i t i e s i s determined f o r both d i e s e l and e l e c t r i c locomotive systems. The operating costs and c a p i t a l investment, requirements are then combined to o b t a i n p r o j e c t e d cash flows f o r each locomotive type and the l e a s t present value cost a l t e r n a t i v e determined. The r e s u l t s of runs made using data from a Canadian N a t i o n a l Railway mainline segment are analyzed i n Chapter I I I , and the s e n s i t i v i t y of s e v e r a l of the l i n e and cost parameters on the f e a s i b i l i t y of e l e c t r i f i c a t i o n are s t u d i e d i n Chapter IV to determine t h e i r r e l a t i v e e f f e c t . . •" F i n a l l y , Chapter V summarizes the. study and., i t s r e s u l t s . Appendix A3 describes the form and o p e r a t i o n of. the computer model. - 13 -CHAPTER I I ' ' , DEVELOPMENT OF THE ELECTRIFICATION FEASIBILITY MODEL / As the o b j e c t o f t h i s s t u d y i s to. produce a model t h a t w i l l e v a l u a t e t h e economic f e a s i b i l i t y o f e l e c t r i c m o t i v e power compared t o d i . e s e l l o c o m o t i v e s , o n l y t h o s e o p e r a t i n g parameters and c o s t s t h a t would d i f f e r e n t i a t e between the two systems were c o n s i d e r e d . . •' The model assumes t h e d i e s e l l o c o m o t i v e r e q u i r e m e n t s f o r t h e l i n e a r e known and are used as t h e b a s i s o f c o m p a r i s o n . I f t h e model i s t o be used t o e v a l u a t e a new l i n e t h a t \ has n o t used d i e s e l l o c o m o t i v e s , an e s t i m a t e o f t h e i r c h a r a c t e r i s t i c s on t h i s l i n e w i l l have t o be made i f t h e computer model i s t o be used t o e v a l u a t e e l e c t r i f i c a t i o n . U s i n g as b a s i c i n p u t i n f o r m a t i o n some r e a d i l y a v a i l a b l e r o u t e and t r a i n p a r a m e t e r s f o r t h e r a i l l i n e b e i n g s t u d i e d , . t h e f e a s i b i l i t y model d e t e r m i n e s c o m p a r a t i v e , d i e s e l and e l e c t r i c l o c o m o t i v e o p e r a t i n g c h a r a c t e r i s t i c s and t r a n s l a t e s t h e s e i n t o a n n u a l o p e r a t i n g and c a p i t a l c o s t s . These c o s t p r o j e c t i o n s are t h e n used t o d e t e r m i n e c o s t cash f l o w s f o r b o t h the d i e s e l and e l e c t r i c l o c o m o t i v e a l t e r n a t i v e s . The.minimum p r e s e n t v a l u e o f the. r e s p e c t i v e - 14 c a s h f l o w s a t the f i r m ' s o p p o r t u n i t y c o s t o f c a p i t a l w i l l i n d i c a t e I f t h e l i n e s h o u l d be e l e c t r i f i e d and i n wh i c h y e a r . The f e a s i b i l i t y model c a l c u l a t e s a l l p a r a m e t e r s and cash f l o w s f o r the economic l i v e s o f the e l e c t r i c l o c o m o t i v e s , s t a r t i n g from the s t u d y base y e a r . The v a l u e s a r e s t o r e d and u t i l i z e d t o d e t e r m i n e t h e c o s t s t h a t may be a n t i c i p a t e d f o r each p o s s i b l e c o m p l e t i o n y e a r . '• . The computer model has been c o n s t r u c t e d i n such a manner t h a t growth o r d e c l i n e f e a t u r e s may be a p p l i e d t o most r e l e v a n t p a r a m e t e r s . T h i s p r o v i s i o n makes i t p o s s i b l e t o s t u d y many p o s s i b l e t r a f f i c o r c o s t v a r i a t i o n p o s s i b i l i t i e s and d e t e r m i n e t h e i r e f f e c t , i f any, on the p r o j e c t f e a s i b i l i t y . A l s o , t h r o u g h o u t t h e model p r o v i s i o n has been made f o r t h e d i f f e r e n c e i n o p e r a t i n g c h a r a c t e r i s t i c s and c o s t s between f r e i g h t , e x p r e s s , and p a s s e n g e r , t r a i n s . C o n s e q u e n t l y , many o f t h e e q u a t i o n s a r e b a s i c a l l y r e p l i c a t e d f o r each t r a i n t y p e . I t was f e l t t h a t t h e a d d i t i o n a l model c o m p l e x i t y was w a r r a n t e d because o f the s i g n i f i c a n t l y d i f f e r e n t o p e r a t i n g c h a r a c t e r i s t i c s o f - 15 -the three t r a i n types. The r e l a t i v e t r a i n mix on the r a i l l i n e "being s t u d i e d may have a s i g n i f i c a n t e f f e c t on the e l e c t r i f i c a t i o n f e a s i b i l i t y . The f o l l o w i n g s e c t i o n s w i l l describe the c o n s t r u c t i o n of the f e a s i b i l i t y model w i t h respect t o ; 2.1) determination of annual o p e r a t i n g l e v e l s 2.2) determination of annual o p e r a t i n g c o s t s 2.3) c a p i t a l investment requirement 2.4) determination of the cash flows and minimum present value. The symbols u t i l i z e d i n the f o l l o w i n g s e c t i o n s correspond to those u t i l i z e d i n the computer model (see Appendix A5)» but to reduce complexity the developed equations are presented without reference to t r a i n type. For example, i n s e c t i o n 2.1.2 the t r a i n mile c a l c u l a t i o n i s g i ven by: TM = TGTM .' GTPTN where: TM = t r a i n m i l e s TGTM =. annual gross ton mil e s GTPTN = average gross .tons per t r a i n . In the computer model, the t r a i n mile c a l c u l a t i o n would be: TM '" ' = TGTM (F.E.P) (F,E,P) GTPTN (F,E,P) . - 16 -and t o t a l t r a i n m i l e s : TOTTM = TM + TM + TM (F) (E) (P) where: F = f r e i g h t . E• = ..express P = p a s s e n g e r . S i m i l a r l y , most o f t h e o p e r a t i n g and c o s t p a r a m e t e r s ar e c a l c u l a t e d f o r each t r a i n t y pe and t h e n summed t o o b t a i n t h e t o t a l s . E x c e p t where n o t e d ( s u c h as f u e l and power c a l c u l a t i o n s ) , t h e f e a s i b i l i t y model o p e r a t i n g and c o s t e q u a t i o n s were d e v e l o p e d by the a u t h o r t o u t i l i z e r e a d i l y a v a i l a b l e r a i l w a y t r a f f i c and c o s t i n f o r m a t i o n t o d e t e r m i n e t h e a n t i c i p a t e d a n n u a l c o s t s a s s o c i a t e d w i t h b o t h d i e s e l and e l e c t r i c o p e r a t i o n . P r o f i t a b i l i t y The c h o i c e o f t h e l e a s t c o s t c r i t e r i a f o r p r o j e c t e v a l u a t i o n i m p l i e s an i n c r e a s e i n p r o f i t a b i l i t y i f t h e e l e c t r i c a l t e r n a t i v e has a l o w e r c o s t t h a n t h e c o n t i n u a t i o n o f the d i e s e l o p e r a t i o n . F o r t h e p u r p o s e s o f t h i s model, i t has been assumed t h a t t h i s p o t e n t i a l i n c r e a s e d p r o f i t a b i l i t y w i l l n o t l e a d t o reduced r a t e s and i n c r e a s e d t r a f f i c l e v e l s . I t i s assumed t h a t t h e r a t e and t r a f f i c l e v e l s w i l l be e q u i v a l e n t under t h e d i e s e l and e l e c t r i c l o c o m o t i v e a l t e r n a t i v e s . - . - 17 .-2 . 1 . D e t e r m i n a t i o n o f A n n u a l Operating; L e v e l s The "basis f o r t h e d i f f e r e n t i a l i n a n n u a l o p e r a t i n g c o s t s "between th e two m o t i v e power t y p e s i s t h e r e s p e c t i v e c u r r e n t and p r o j e c t e d a c t i v i t y l e v e l s on t h e l i n e b e i n g examined. .These o p e r a t i n g p a r a m e t e r s a r e c a l c u l a t e d f o r each l o c o m o t i v e t y p e f o r 35 y e a r s from t h e s t u d y base y e a r . The f o l l o w i n g base y e a r r o u t e p a r a m e t e r s are i n i t i a l l y e n t e r e d i n t o the model: . .- g r o s s t o n m i l e s p e r m i l e o f t r a c k - f r e i g h t - e x p r e s s - p a s s e n g e r . . - m i l e s o f t r a c k t o be e l e c t r i f i e d - s i n g l e - d o u b l e - s i d i n g .- . y a r d . These r o u t e parameters are t h e n used as a b a s i s f o r the f o l l o w i n g c a l c u l a t i o n s : 2 . 1 . 1 . G r o s s Ton M i l e s The t o t a l a n n u a l g r o s s t o n m i l e s (TGTM) - 18 over the study route is.determined by multiplying the gross ton miles per mile of track by the track miles and summing over the subdivisions. Market or t r a f f i c l e v e l growth or decline projections by t r a i n c l a s s i f i c a t i o n ( f r e i g h t , express, passenger) are also read into the model so that anticipated future t r a f f i c l e v e l s may be calculated. These leve l s are then used to calculate future motive power requirements. As the capacity of a r a i l l i n e has s p e c i f i c capacity l i m i t a t i o n s , any further increase i n t r a f f i c l e v e l s i s halted when t h i s capacity l i m i t a t i o n i s attained. As the capacity l i m i t a t i o n i s usually determined by the l i n e ' s physical constraints, t h i s value i s entered into the model by the user, 2.1.2. Train Miles . The t r a i n miles t r a v e l l e d over the l i n e i n each year i s calculated by d i v i d i n g the t o t a l annual gross ton miles (TGTM) over the l i n e by the average gross tons per t r a i n (GTPTN): TM = TGTM GTPTN The.average gross tons per t r a i n i s determined - 19 -"by m u l t i p l y i n g t h e average number o f c a r s p e r t r a i n by t h e average .weight p e r c a r . : I n i t i a l base y e a r v a l u e s o f t h e s e p a r a m e t e r s a r e r e a d i n t o t h e model and e s c a l a t i o n f a c t o r s a r e a v a i l a b l e t o •allow' f o r an i n c r e a s e o r d e c r e a s e i n t r a i n l e n g t h and w e i g h t p e r c a r o v e r t h e s t u d y p e r i o d . A g a i n , c o n s t r a i n t s have been p r o v i d e d t o r e s t r i c t t h e maximum w e i g h t p e r c a r t o the l i n e ' s a x l e w e i g h t l i m i t a t i o n (MAXWCT). The t r a i n , l e n g t h i s l i m i t e d t o the r e s t r i c t i n g s i d i n g c a p a c i t y on t h e l i n e : E = CAR x (CARL + SLAFAC) + DUPTN x DULEN + CABOSL where: E - t r a i n s i z e ( f e e t ) CAR = number o f c a r s p e r t r a i n .CARL = average l e n g t h . p e r c a r SLAFAC = s l a c k a c t i o n s i d i n g f a c t o r ( f e e t ) DUPTN = number o f d i e s e l u n i t s p e r t r a i n DULEN. = average l e n g t h p e r d i e s e l l o c o m o t i v e CABOSL = average l e n g t h p e r caboose 2.1.3. D i e s e l L ocomotive M i l e s The d i e s e l u n i t m i l e s a r e c a l c u l a t e d by m u l t i p l y i n g - 20 -t h e number o f a n n u a l t r a i n m i l e s by t h e number o f d i e s e l u n i t s p e r t r a i n : '.' DUMI = TM x DUPTN " The number o f d i e s e l u n i t s p e r t r a i n i s d e t e r m i n e d by c a l c u l a t i n g t h e average t r a i n weight:power, r a t i o i n th e base y e a r , and a p p l y i n g t h i s v a l u e t o t h e a n t i c i p a t e d average g r o s s t o n s p e r t r a i n i n each s t u d y y e a r : WTPWR = (GTPTN(1) + DUPTN(1) x WL + WCABOS) DUPTN(l) x HP where: WTPWR = we i g h t t o power r a t i o GTPTN(l) = average g r o s s t o n s p e r t r a i n . i n - t h e base y e a r DUPTN(l) =. average number o f d i e s e l l o c o m o t i v e s p e r t r a i n i n t h e base y e a r WL = average w e i g h t p e r d i e s e l l o c o m o t i v e WCABOS = wei g h t o f caboose ( o n l y f o r f r e i g h t and ex p r e s s t r a i n s ) , HP = average horsepower p e r d i e s e l l o c o m o t i v e Then f o r the r e m a i n i n g p r o j e c t y e a r s : DUPTN •= (GTPTN + WCABOS) '. (WTPWR x HP - WL) - 21 -2.1.4. Number o f D i e s e l L o c o m o t i v e s R e q u i r e d The number o f d i e s e l u n i t s r e q u i r e d t o s e r v e t h e t r a f f i c on t h e s t u d y l i n e i s d e t e r m i n e d by d i v i d i n g t he t o t a l number o f d i e s e l u n i t m i l e s by t h e average number o f m i l e s a d i e s e l l o c o m o t i v e t r a v e l s i n a y e a r : DU = DUMI ZMIDU . The average number o f m i l e s p e r d i e s e l l o c o m o t i v e i n t h e base y e a r may be i n c r e a s e d by an e s c a l a t i o n f a c t o r (GDUM) t o a l l o w f o r i n c r e a s e d u t i l i z a t i o n . 2.1.5. Number o f E l e c t r i c L o c o m o t i v e s R e q u i r e d The number o f e l e c t r i c l o c o m o t i v e s r e q u i r e d ' t o h a n d l e the t r a f f i c p r o j e c t e d f o r t h e l i n e i n each y e a r i s d e t e r m i n e d by t h e f o l l o w i n g f o r m u l a : EL = DU x (REELU,x ( l . - XINAV)) wnere EL = a n n u a l number o f e l e c t r i c l o c o m o t i v e s r e q u i r e d REELU = e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e s {%) XINAV = i n c r e a s e i n a v a i l a b i l i t y o f e l e c t r i c compared t o d i e s e l l o c o m o t i v e s (y l ) , - 2 2 -2 . 1 . 6 . N u m b e r o f A n n u a l E l e c t r i c L o c o m o t i v e M i l e s T h e n u m b e r o f e l e c t r i c l o c o m o t i v e m i l e s t h a t w o u l d b e r e q u i r e d t o h a n d l e t h e a n n u a l p r o j e c t e d t r a f f i c l e v e l s i s c a l c u l a t e d b y : E L M I = DUMI x R E E L U w h e r e : D U M I = a n n u a l n u m b e r o f d i e s e l l o c o m o t i v e m i l e s R E E L U = e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e s '••(*) T h e a b o v e r o u t e , a c t i v i t y l e v e l , a n d t r a i n • ' . . c h a r a c t e r i s t i c s a r e u s e d t o d e t e r m i n e t h e a n n u a l o p e r a t i n g c o s t s a n d c a p i t a l i n v e s t m e n t r e q u i r e m e n t s a s s o c i a t e d w i t h e l e c t r i f i c a t i o n . 2 . 2 . D e t e r m i n a t i o n o f A n n u a l O p e r a t i n g C o s t s T h e a n n u a l o p e r a t i n g c o s t s o f t h e d i e s e l a n d e l e c t r i c l o c o m o t i v e s f o r e a c h y e a r o v e r t h e s t u d y r o u t e a r e c a l c u l a t e d b y : . . . D L C A S H •'"= D F U E L T + T T D L M T + D I F D L + S A G D L E L C A S H = EKV/HCT + T T E L M T + D I F E L .+ S A G E L •+• C A M T '. •" . - 2 3 r where: .' DLCASH = a n n u a l d i e s e l l o c o m o t i v e o p e r a t i n g c o s t s .. ELCASH = a n n u a l e l e c t r i c l o c o m o t i v e o p e r a t i n g c o s t s DFUELT•= t o t a l a n n u a l d i e s e l f u e l c o s t EKWHCT = t o t a l a n n u a l e l e c t r i c a l power c o s t TTDLMT = t o t a l a n n u a l d i e s e l l o c o m o t i v e . maintenance c o s t TTELMT = t o t a l a n n u a l e l e c t r i c l o c o m o t i v e maintenance c o s t DIFDL = t o t a l d i e s e l l o c o m o t i v e w e i g h t wage DIFEL = t o t a l e l e c t r i c l o c o m o t i v e w e i g h t wage SAGDL•= t o t a l d i e s e l l o c o m o t i v e t r a c k maintenance SAGEL = t o t a l e l e c t r i c l o c o m o t i v e t r a c k maintenance -.CAMT = a n n u a l c a t e n a r y m a i n t e n a n c e ^ A d e s c r i p t i o n o f each o f t h e s e o p e r a t i n g c o s t components I s as f o l l o w s J - 2 4 -2.2.1. D i e s e l F u e l Consumption and. Cost A t r a i n moving o v e r a t r a c k e n c o u n t e r s two forms o f r e s i s t a n c e : a) r e s i s t a n c e due t o m e c h a n i c a l and f r i c t i o n a l e f f e c t s such as f r i c t i o n i n the a x l e s and between t h e wheels and t h e t r a c k , and wind r e s i s t a n c e , and b) the r e s i s t a n c e o f g r a v i t y towards any v e r t i c a l m o t i o n o f t h e t r a i n - i . e . work.must be done t o l i f t t h e t r a i n up a g r a d e . E n g i n e e r i n g c o n s i d e r a t i o n s have d e m o n s t r a t e d t h a t t h e r e s i s t i v e f o r c e s mentioned above b e a r a r e l a t i o n ( n o t n e c e s s a r i l y l i n e a r ) t o the speed o f the t r a i n , t o i t s w e i g h t , , and to. the. g e o g r a p h i c a l f e a t u r e s o f t h e t r a i n . :run.. I n g e n e r a l / the two components may be c a l l e d (a) the t r a c t i v e o r r o l l i n g r e s i s t a n c e and (b) t h e grade r e s i s t a n c e . . A l o c o m o t i v e p e r f o r m s work i n overcoming t h e s e .. r e s i s t i v e f o r c e s i n moving a t r a i n from A t o B: Work = R e s i s t a n c e x D i s t a n c e . The u n i t s o f work used i n t h i s case a r e l b . m i l e s . - 2 5 , -• .-in p e r f o r m i n g t h i s work a l o c o m o t i v e uses f u e l ; s i n c e e a c h . c a r , caboose, and d i e s e l u n i t i n t h e t r a i n c o n t r i b u t e s a c e r t a i n amount o f r o l l i n g and grade r e s i s t a n c e t o t h e t o t a l t r a i n r e s i s t a n c e , i t i s p o s s i b l e t o compute t h e p o r t i o n o f the t o t a l f u e l used by the en g i n e f o r each c a r and caboose and f o r i t s e l f . . The b a s i c problem i n r e l a t i n g t h e work performed^ by an engine t o the f u e l i t consumes i s t h a t o f d e t e r m i n i n g t h e v a l u e s o f t h e v a r i a b l e s v/hich a f f e c t r e s i s t a n c e . The W.J. D a v i s f o r m u l a e ^ used t o r e l a t e work and f u e l consumption are l i n e a r w i t h w e i g ht but n o n - l i n e a r w i t h speed; t h e f o r m u l a e g i v e t h e t r a c t i v e o r r o l l i n g r e s i s t a n c e o f t h e c a r o r d i e s e l . A. f o r a F r e i g h t Car • T o t a l R e s i s t a n c e = R-^  + Rg where s R^- = t o t a l t r a c t i v e r e s i s t a n c e , l b s . R„ - t o t a l grade r e s i s t a n c e , l b s . From, the W.J. D a v i s f o r m u l a e : (1) R t = 2 9 XNC + 0.005-AC x V2 3 . Most good r a i l w a y e n g i n e e r i n g t e x t s g i v e t h e W.J. . D a v i s f o r m u l a e . See, f o r example, Hay,, W i l l i a m W,, R a i l w a y E n g i n e e r i n g , Volume I , John W i l e y and Sons, I n c . , New Y o r k , 1 9 5 3 , p?. ? 2 and' ? 9 . -26 -where XNC = number o f a x l e s . V = speed o f c a r i n MPH AC = c r o s s s e c t i o n a r e a o f c a r = 90 square f e e t f o r average c a r . The t o t a l grade r e s i s t a n c e , Rg, i s g i v e n by (2) R g = (G + 1.3 +0.045 V) WC where G = grade f a c t o r (see Appendix A l ) WC = w e i g h t o f c a r i n t o n s . A d d i n g e q u a t i o n s ( l ) and ( 2 ) : (3) R g + R t = (1.3 +0.045 V + G) WC + 29 x XNC + 0.0005 x AC x V2 (4) Work = (R t '+ R g) XMIL where XMIL = l e n g t h o f r u n I n m i l e s . E q u a t i o n (4) i s th e n t q be m u l t i p l i e d by t h e f u e l consumption p e r pound-mile t o g i v e t h e t o t a l f u e l ( i n g a l l o n s ) used by the c a r o v e r t h a t r u n . F o r C a n a d i a n N a t i o n a l R a i l w a y s , the f u e l c onsumption p e r pound m i l e has been e m p i r i c a l l y d e t e r m i n e d u s i n g CN e x p e r i e n c e . An average w i n t e r and an average summer f i g u r e was computed from c e r t a i n t r a i n r u n s Of v a r y i n g speeds, geography, and t r a i n c o n t e n t s . I t was o r i g i n a l l y - 2? -computed f o r t h e Western Canada g r a i n s t u d y S u b m i t t e d t o the MacPherson R o y a l Commission on T r a n s p o r t a t i o n . T h e r e f o r e , f u e l consumption p e r c a r e q u a l s : FUCAR =-  ( R t + R g ) x.XMIL x Fu'CON where FUCON = f u e l consumption f a c t o r 3., F o r a D i e s e l U n i t S i m i l a r l y , the f u e l used.by the d i e s e l u n i t t o move i t s e l f i s comprised o f a c o n s t a n t p o r t i o n and a v a r i a b l e p o r t i o n w i t h t h e l o c o m o t i v e w e i g h t . I f t h e s e components are combined, t h e t o t a l r e s i s t a n c e f o r t h e d i e s e l l o c o m o t i v e on any r u n i s g i v e n by: (5) : Rd = (1.3 + .03 V + G)WL + 29 x XML + .0024 x AL x V 2 -where: V = speed i n mph G = grade f a c t o r f o r t h e r u n (Appendix A l ) V/L = l o c o m o t i v e w e i g h t i n t o n s XNL = number o f l o c o m o t i v e a x l e s AL = c r o s s s e c t i o n a r e a o f l o c o m o t i v e i n sq u a r e f e e t ( a p p r o x i m a t e l y 90 square f e e t ) '. - 2 8 Equation (5) i s then mult i p l i e d by the length of the run i n miles (XMIL) to. obtain, the work performed and then by the f u e l consumption factor to get the f u e l consumed per run» FULOC> R d x XMIL x FUGON C. For a C aboose To fi n d the f u e l per caboose over a given run i t i s necessary only to take the f u e l per gross ton fi g u r e f o r a car, multiply t h i s by the weight of the caboose, and add t h i s figure to the f u e l per car figure D. For A l l Trains Therefore, the t o t a l Annual f u e l consumed i n moving the t r a i n s over the study route i s : FUEL = TGTM x (FUCAR x CAR + FULOC x DUPTN) GTPTN x XMIL where: FUEL = annual d i e s e l f u e l consumed i n moving .. tr a i n s . . TGTM = t o t a l annual gross ton miles over the route - 29 -FUCAR = f u e l consumption per car CAR = average number of cars per t r a i n FULOC = f u e l consumption per locomotive DUPTN = average number of d i e s e l locomotives per t r a i n GTPTN = average gross tons per t r a i n • XMIL = length of one run i n miles E. For I d l i n g Time The f u e l consumed, during the time a locomotive i s i d l i n g i n a yard or shop i s calculated by: . FIDLE = DAYID x HRIDL x DLCON x DU where: DAYID = number of days per year a d i e s e l locomotive i s i d l i n g HRIDL = number of hours per day a d i e s e l locomotive i s i d l i n g DLCON = f u e l consumption p e r h o u r when a d i e s e l i s i d l i n g DU = number of d i e s e l locomotives - 30 F. F o r T o t a l D i e s e l F u e l A n n u a l C o s t s ... T h e r e f o r e , the. t o t a l d i e s e l f u e l a n n u a l c o s t s .(•DFUELT) i s : . DFUELT •= (DFUELC + OVFUEL) x (FIDLE + FUEL) where: . . DFUELC = d i e s e l f u e l o i l c o s t p e r g a l l o n OVFUEL •= o v e r f u e l f u e l c o s t - f a c i l i t i e s , e t c . P r o v i s i o n was i n c l u d e d i n t h e computer model f o r a p e r c e n t a g e a n n u a l e s c a l a t i o n i n d i e s e l f u e l and o verhead c o s t (DFUESC). 2.2.2. E l e c t r i c Power Consumption and C o s t The model does n o t d i r e c t l y c o n s i d e r t h e a v a i l a b i l i t y o f e l e c t r i c power a l o n g t h e s t u d y r o u t e . The c a p i t a l c o n s t r u c t i o n c o s t o f any r e q u i r e d h i g h v o l t a g e d i s t r i b u t i o n network s h o u l d be i n c l u d e d i n t h e c a t e n a r y o r s u b s t a t i o n c o n s t r u c t i o n c o s t . The e l e c t r i c a l energy r e q u i r e m e n t f o r t h e e l e c t r i c l o c o m o t i v e system was c a l c u l a t e d u s i n g t h e AREA B u l l e t i n 583 d a t e d J a n u a r y , 1 9 6 4 , w h i c h s t a t e s t h a t f o r a r a i l horsepower hour t o be a v a i l a b l e from f u e l o i l o r e l e c t r i c i t y , O .O67 g a l l o n s o f f u e l o i l a r e e q u i v a l e n t - 3 1 -t o 0.95 KWH a t t h e s u b - s t a t i o n on t h e h i g h s i d e o f t h e . , .•.transformer.; T h e r e f o r e , t h e e l e c t r i c a l p o w e r c o s t (EKWHCT) i s c a l c u l a t e d b y : •EKWHCT = EKWHCO x 0.95 x FUEL . 0.057 ~ w h e r e : : ' EKWHCO' = c o s t o f e l e c t r i c i t y p e r KWH . FUEL = a n n u a l d i e s e l f u e l consumed i n m o v i n g t r a i n s . A n e l e c t r i c l o c o m o t i v e w i l l n o t u s e a s i g n i f i c a n t a mount o f p o w e r when s t o p p e d ( o n l y f o r m i n o r i n t e r n a l f u n c t i o n s ) , s o t h i s c o s t e l e m e n t was n o t i n c l u d e d i n t h e a n a l y s i s . P r o v i s i o n was i n c l u d e d i n t h e m o d e l f o r a n e s c a l a t i o n i n e l e c t r i c p ower c o s t s o f EKWHES p e r c e n t a y e a r 2 . 2 . 3 . T o t a l A n n u a l E l e c t r i c L o c o m o t i v e M a i n t e n a n c e _ C o s t s i m p l e r , e a c h u n i A s t h e e l e c t r i c l o c o m o t i v e i s m e c h a n i c a l l y t h e a n n u a l m a i n t e n a n c e a n d i n s p e c t i o n c o s t t i s l e s s t h a n w i t h a d i e s e l - e l e c t r i c u n i t . f o r - 3 2 -A l s o , t h e s t o c k i n g and h a n d l i n g o f f u e l , c r a n k c a s e o i l , and e ngine p a r t s w i l l be s u b s t a n t i a l l y reduced w i t h e l e c t r i c l o c o m o t i v e s . The model c a l c u l a t e s the a n n u a l e l e c t r i c l o c o m o t i v e maintenance c o s t by a p p l y i n g a p e r c e n t a g e e q u a t i o n t o the base y e a r d i e s e l l o c o m o t i v e p e r u n i t m i l e maintenance c o s t . The p e r m i l e e l e c t r i c l o c o m o t i v e maintenance c o s t i s t h e n m u l t i p l i e d by the p r o j e c t e d a n n u a l e l e c t r i c l o c o m o t i v e u n i t m i l e s t o o b t a i n t h e a n n u a l maintenance c o s t . TELMT = ELMI x DLMTC(l) x EMT where: TELMT = t o t a l a n n u a l e l e c t r i c l o c o m o t i v e maintenance c o s t ELMI = t o t a l a n n u a l e l e c t r i c l o c o m o t i v e m i l e s DLMTC(l) = st u d y base y e a r d i e s e l l o c o m o t i v e maintenance and s e r v i c i n g p e r u n i t m i l e c o s t EMT = e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e maintenance c o s t s . The e l e c t r i c l o c o m o t i v e maintenance c o s t s may be e s c a l a t e d a t ESEMC p e r c e n t a n n u a l l y . - 33 -2.2,5. L p c p n i o t i v e Wage W e i g h t . . . D i f f e r e n t i a l The e n g i n e c r e w o f a t r a i n i s . p a i d a wage t h a t i s i n p a r t d e p e n d e n t on t h e t o t a l w e i g h t o f t h e l o c o m o t i v e s o f t h e i r t r a i n ( s e e A p p e n d i x A2 f o r r a t e s e f f e c t i v e May, 1974). I t i s assumed f o r . t h e p u r p o s e s o f t h i s m o d e l t h a t t h i s p r a c t i c e w i l l c o n t i n u e i n t h e f u t u r e a n d t h a t t h e s m a l l e r number o f e l e c t r i c l o c o m o t i v e s a n d h e n c e l o c o m o t i v e w e i g h t p e r t r a i n , w i l l r e s u l t i n a n a n n u a l r e d u c t i o n i n c r e w w a g e s . I t i s assumed t h a t t h i s w i l l be t h e o n l y s i g n i f i c a n t v a r i a t i o n i n e m p l o y e e c o m p e n s a t i o n w i t h e l e c t r i f i c a t i o n a s t h e t r a i n makeup a n d o p e r a t i o n w i l l r e m a i n t h e same, o n l y t h e m o t i v e p o w e r w i l l be c h a n g e d . The e n g i n e c r e w wage i n c r e a s e p e r 50 , 0 0 0 p o u n d s o f l o c o m o t i v e w e i g h t (RATE - / / l 0 0 m i l e s ) may be c a l c u l a t e d f r o m A p p e n d i x A2. T h i s d i f f e r e n t i a l m u s t a l s o be i n c r e a s e d b y t h e wage o v e r h e a d r a t i o , a n d v a c a t i o n a n d u n p r o d u c t i v e f a c t o r s . T h e r e f o r e , t h e l o c o m o t i v e w e i g h t wage i s c a l c u l a t e d b y : DIF D L = (Q x DUPTN x TM x WL) 2500 • D I F E L '= (Q x DUPTN x TM x REELU) : 2500 a n d : Q = RATE x (1. + VACUN) x ( l . + 0 V R A T) x XMEN w h e r e : - 34 -DIFDL'= t o t a l d i e s e l l o c o m o t i v e w e i g h t wage D I F E L = t o t a l e l e c t r i c l o c o m o t i v e w e i g h t wage '"'.' DUPTN = a v e r a g e number o f d i e s e l l o c o m o t i v e s p e r t r a i n TM = number o f t r a i n m i l e s p e r y e a r WL = a v e r a g e w e i g h t p e r d i e s e l l o c o m o t i v e . REELU = e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e s •: ' (%) • .'WE = a v e r a g e w e i g h t p e r e l e c t r i c l o c o m o t i v e RATE = e n g i n e c r e w wage i n c r e a s e p e r l o c o m o t i v e • w e i g h t VACUN - v a c a t i o n a n d u n p r o d u c t i v e f a c t o r (%) OVRAT = o v e r h e a d wage r a t i o {%) XMEN = number o f e n g i n e c r e w e l i g i b l e f o r wage d i f f e r e n t i a l A n e s c a l a t i o n f a c t o r f o r e n g i n e c r e w wage i n c r e a s e was i n c l u d e d i n t h e a n a l y s i s ( E S R T E ) . .2.2.6. T o t a l A n n u a l S a v i n g s i n T r a c k M a i n t e n a n c e w i t h  E l e c t r i c L o c o m o t i v e s The o p e r a t i o n o f l o c o m o t i v e s c o n t r i b u t e s t o t r a c k w e a r a n d so t o t h e i r r e q u i r e d m a i n t e n a n c e a n d r e n e w a l . I n e v a l u a t i n g t h e p o t e n t i a l o f e l e c t r i c l o c o m o t i v e s i n t h i s a n a l y s i s , i t h a s b e e n a s s u m e d t h a t , f o r r e a s o n a b l y e q u i v a l e n t d i e s e l a n d e l e c t r i c l o c o m o t i v e a x l e w e i g h t s , t h e r e d u c t i o n i n t h e number o f l o c o m o t i v e s r e q u i r e d f o r e l e c t r i f i c a t i o n w i l l h a v e a n e f f e c t o n a n n u a l t r a c k m a i n t e n a n c e . T h e r e f o r e , i f t h e t r a c k m a i n t e n a n c e (TRMTC) i s e x p r e s s e d i n ^ /lOOO g r o s s t o n m i l e s : .SAGDL = TM x TRMTC x DUPTN x WL ; . SAGEL = TM x TRMTC x DUPTN x WE x REELU w h e r e t , SAGDL = t o t a l d i e s e l l o c o m o t i v e t r a c k m a i n t e n a n c e SAGEL = t o t a l e l e c t r i c l o c o m o t i v e t r a c k m a i n t e n a n c . TM = number o f t r a i n m i l e s p e r y e a r DUPTN = a v e r a g e number o f d i e s e l l o c o m o t i v e s ' p e r t r a i n .•••WL = a v e r a g e w e i g h t p e r d i e s e l l o c o m o t i v e WE = a v e r a g e w e i g h t p e r e l e c t r i c l o c o m o t i v e REELU = e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o m o t i v e s " ( # ) P r o v i s i o n was made f o r a n a n n u a l p e r c e n t a g e i n c r e a s e i n t r a c k , m a i n t e n a n c e ' cost's. (ESTRMT). - 36 -2.2.7» C a t e n a r y a nd S u b s t a t i o n M a i n t e n a n c e The e f f i c i e n t o p e r a t i o n o f a h i g h v o l t a g e e l e c t r i c s y s t e m w i l l r e q u i r e a n n u a l m a i n t e n a n c e (CAMT) on b o t h t h e c a t e n a r y a n d s u b s t a t i o n s : . CAMT = CAMT ST x XMLEST + CAMTDT x XMEDT + . . CAMTSD x XMLESD + CAMTYD x XMLEYD w h e r e : CAMTST = c a t e n a r y m a i n t e n a n c e p e r m i l e o f s i n g l e .•' t r a c k ' •..•'. CAMTDT = c a t e n a r y m a i n t e n a n c e p e r m i l e o f d o u b l e t r a c k CAMTSD = c a t e n a r y m a i n t e n a n c e p e r m i l e o f s i d i n g • t r a c k ' • CAMTYD = c a t e n a r y m a i n t e n a n c e p e r m i l e o f y a r d t r a c k XMLEST = t o t a l number o f s i n g l e t r a c k m i l e s XMLEDT = t o t a l number o f d o u b l e t r a c k m i l e s XMLESD = t o t a l number o f s i d i n g t r a c k m i l e s XMLEYD = t o t a l number o f y a r d t r a c k m i l e s P r o v i s i o n was made i n t h e m o d e l f o r a p e r c e n t a g e annual i n c r e a s e i n c a t e n a r y m a i n t e n a n c e c o s t s ( CAMTES). - 37 2 . 3 « C a p i t a l Investment Requirement The c a p i t a l i n v e s t m e n t r e q u i r e m e n t f o r e l e c t r i f i c a t i o n i s comprised o f tv/o major components: 1) the i n v e s t m e n t r e q u i r e d i n l o c o m o t i v e s 2) t h e i n v e s t m e n t r e q u i r e d f o r e l e c t r i f i c a t i o n f i x e d f a c i l i t i e s . 2 . 3 » 1 « Locomotive C a p i t a l C o s t Both t h e d i e s e l and t h e e l e c t r i c l o c o m o t i v e c a p i t a l c o s t s o f t h e l o c o m o t i v e s r e q u i r e d each y e a r t o han d l e t h e i n c r e a s i n g t r a f f i c l o a d s and/or i n i t i a t e s e r v i c e were d e t e r m i n e d by m u l t i p l y i n g t h e c o s t p e r l o c o m o t i v e by t h e number o f each t y p e r e q u i r e d . . T h e r e f o r e : TDLCO= DLCOS x DU and: TELCO = ELCOS x EL where: TDLCO - c a p i t a l c o s t f o r d i e s e l l o c o m o t i v e s DLCOS = p e r u n i t d i e s e l l o c o m o t i v e c o s t DU = number o f d i e s e l l o c o m o t i v e s r e q u i r e d TELCO = c a p i t a l c o s t f o r e l e c t r i c l o c o m o t i v e s ELCOS = p e r u n i t e l e c t r i c l o c o m o t i v e c o s t E L = number o f e l e c t r i c l o c o m o t i v e s r e q u i r e d The a n n u a l e s c a l a t i o n p e r c e n t a g e i n t h e p e r u n i t c o s t f o r d i e s e l l o c o m o t i v e s i s E3CDL, a n d f o r e l e c t r i c l o c o m o t i v e s i s E S C E L . . -As t h e e l e c t r i c l o c o m o t i v e h a s a s i g n i f i c a n t l y l o n g e r e c o n o m i c l i f e t h a n a d i e s e l l o c o m o t i v e , p r o v i s i o n was made i n t h e c a s h f l o w a n a l y s i s f o r r e p l a c e m e n t o f t h e d i e s e l l o c o m o t i v e s a t t h e end o f t h e i r e c o n o m i c l i v e s * A l s o , a s t h e e l e c t r i c l o c o m o t i v e o p t i o n i s c o m p a r e d w i t h t h a t o f p e r p e t u a t i n g t h e d i e s e l a l t e r n a t i v e , i t was a s s u m e d t h a t ( l / L I F E D L ) p e r c e n t o f t h e d i e s e l l o c o m o t i v e s r e q u i r e d w o u l d be r e t i r e d a n d r e p l a c e d e a c h y e a r . A s a l v a g e v a l u e f o r t h e d i e s e l l o c o m o t i v e s o p e r a t i n g o n t h e l i n e was d e d u c t e d f r o m t h e e l e c t r i f i c a t i o n c a s h f l o w i n t h e e l e c t r i f i c a t i o n s e r v i c e i n i t i a t i o n y e a r . 2.3.2. E l e c t r i f i c a t i o n Fixed. F a c i l i t i e s The major investment cost element i n any proposed - 39 e l e c t r i f i c a t i o n p r o j e c t i s the p r o v i s i o n o f t h e f i x e d f a c i l i t i e s . F o r t h e p u r p o s e s o f t h i s model, t h e s e c o s t s wei-e s e g r e g a t e d i n t o f o u r broad c a t e g o r i e s : 1) c a t e n a r y c o n s t r u c t i o n 2) s u b s t a t i o n c o n s t r u c t i o n 3) communication i n t e r f e r e n c e c o n s t r u c t i o n 4) s i g n a l c o n s t r u c t i o n 1. C a t e n a r y C a t e n a r i e s a r e the major f i x e d component o f the e l e c t r i c a l system. There are numerous d e s i g n s i n use - s i n g l e o r do u b l e t r a c k , c a n t i l e v e r e d s u p p o r t s , p o r t a l s t r u c t u r e s , s t e e l , c o n c r e t e , o r wood s u p p o r t s - depending on the t e r r a i n , number o f t r a c k s , s e r v i c e , and speeds. Because t h i s s t u d y i s n o t an e n g i n e e r i n g p r o j e c t , t e c h n i c a l s p e c i f i c a t i o n s were no t d e v e l o p e d . An e v a l u a t i o n would have t o be made o f the l i n e i n q u e s t i o n t o d e t e r m i n e the optimum c a t e n a r y d e s i g n and v o l t a g e . 2. S u b s t a t i o n s E l e c t r i c s u b s t a t i o n s and s w i t c h i n g s t a t i o n s f o r d i s t r i b u t i n g and c o n t r o l l i n g the power t o the - 40 -c a t e n a r i e s are r e q u i r e d . The l o w e r t h e c a t e n a r y v o l t a g e , t h e l a r g e r t h e number o f s u b s t a t i o n s t h a t would be r e q u i r e d . 3» Communications The e n e r g i z e d c a t e n a r y and the p a s s i n g p a n t o g r a p h and e l e c t r i c l o c o m o t i v e i n t e r f e r e i n d u c t i v e l y w i t h a d j a c e n t r a i l r o a d and o t h e r communication l i n e s . T h i s n e c e s s i t a t e s an e f f e c t i v e s h i e l d i n g o f t h e communication l i n e s , such as s h e a t h i n g and g r o u n d i n g . 4. S i g n a l s Most e x i s t i n g s i g n a l systems a r e i n c o m p a t i b l e • w i t h the use o f h i g h v o l t a g e AC e l e c t r i c power. F o r t h i s r e a s o n , m o d i f i c a t i o n s o f v a r i o u s k i n d s a r e r e q u i r e d t o make the s i g n a l system c o m p a t i b l e w i t h e l e c t r i f i e d o p e r a t i o n . Care must be t a k e n t h a t t h e s i g n a l c o s t s u t i l i z e d i n t h e model o n l y a c h i e v e c o m p a t i b i l i t y and do not i n c l u d e a component t o upgrade th e s i g n a l . s y s t e m t o h a n d l e a d d i t i o n a l t r a f f i c . Depending on the l o c a t i o n o f t h e r a i l i n e b e i n g s t u d i e d t h e r e may be some a d d i t i o n a l f i x e d c o s t e lements such as the p r o v i s i o n o f e l e c t r i c a l d i s t r i b u t i o n l i n e s - 4 1 -t o t h e s u b s t a t i o n from h i g h t e n s i o n o v e r l a n d t r a n s m i s s i o n l i n e s , and c l e a r a n c e m o d i f i c a t i o n t o tu n n e l s , , subways, and b r i d g e s . The p o t e n t i a l v a r i a t i o n i n t h e s e c o s t s between a r e a s made t h e i r i n c l u s i o n d i f f i c u l t . I f t h e i r magnitude w a r r a n t s , t h e i r c o s t s h o u l d be i n c l u d e d i n the s u b s t a t i o n o r catenary, c o n s t r u c t i o n c o s t s . . A l l t h e c o n s t r u c t i o n c o s t s are e n t e r e d i n the model on a c o s t p e r m i l e b a s i s . The t o t a l f i x e d i n v e s t m e n t c o s t i s d e t e r m i n e d by m u l t i p l y i n g t h e c a p i t a l c o s t p e r m i l e v a l u e by t h e number o f m i l e s o f r e s p e c t i v e t r a c k a g e i n t h e s t u d y r o u t e , the r e s p e c t i v e t r a c k c a t e g o r i e s a r e : - s i n g l e t r a c k - d o u b l e t r a c k . - s i d i n g t r a c k y a r d t r a c k . As an example, c a t e n a r y c o n s t r u c t i o n c o s t (CATTOT) i s c a l c u l a t e d by t h e f o r m u l a : . CATTOT =.CASTCO x XPflLEST •+ CADTCO x XMLEDT + .. XKLESD + CAYDCO x SMLEYD •. - 42 -where: GASTCO = base y e a r p e r m i l e c o s t o f s i n g l e t r a c k c a t e n a r y c o n s t r u c t i o n CADTCO = base y e a r p e r m i l e c o s t o f doub l e t r a c k c a t e n a r y c o n s t r u c t i o n CASDGO = base y e a r p e r m i l e c o s t o f s i d i n g t r a c k c a t e n a r y c o n s t r u c t i o n CAYDCO - base y e a r p e r m i l e c o s t o f y a r d t r a c k c a t e n a r y c o n s t r u c t i o n XMLEST = number o f s i n g l e t r a c k m i l e s XMLEDT = number o f double t r a c k m i l e s XMLESD = number o f s i d i n g t r a c k m i l e s XMLEYD = number o f y a r d t r a c k m i l e s A p r o j e c t e d a n n u a l e s c a l a t i o n i n c a t e n a r y c o n s t r u c t i o n c o s t s o f ESCATC was p r o v i d e d f o r i n t h e computer model. The t o t a l e l e c t r i f i c a t i o n f i x e d f a c i l i t i e s i n v e s t m e n t c o s t (TOTCAP) I s g i v e n by: TOTCAP = CATTOT + SUBTOT + COMTOT + SIGTOT . where: CATTOT = t o t a l c a t e n a r y c o n s t r u c t i o n c o s t - 43 -SUBTOT = t o t a l s u b s t a t i o n : c o n s t r u c t i o n c o s t . COMTOT = t o t a l communication i n t e r f e r e n c e c o n s t r u c t i o n c o s t SIGTQT = t o t a l s i g n a l c o n s t r u c t i o n c o s t The c o n s t r u c t i o n p e r i o d (ICONPR) f o r t h e f i x e d f a c i l i t i e s , a l o n g w i t h t h e p e r c e n t a g e o f c o n s t r u c t i o n i n each y e a r o f the c o n s t r u c t i o n p e r i o d (AMTCON), a r e r e a d i n t o the model. The e f f e c t o f the d u r a t i o n o f t h e c o n s t r u c t i o n p e r i o d on the economic f e a s i b i l i t y o f t h e p r o j e c t can t h u s e a s i l y be a n a l y z e d , and t h e optimum c o n s t r u c t i o n s t a g i n g d e t e r m i n e d . 2.4 . D e t e r m i n a t i o n o f t h e Cash Flows and Minimum  P r e s e n t V a l u e The d e c i s i o n as t o whether a r a i l l i n e s h o u l d be e l e c t r i f i e d s h o u l d be based on whether t h e e l e c t r i f i c a t i o n w i l l r e s u l t I n l e s s t o t a l c o s t s t h a n the d i e s e l l o c o m o t i v e a l t e r n a t i v e . A l s o , i f the l i n e were t o be e l e c t r i f i e d , t h e optimum y e a r f o r the i n i t i a t i o n o f s e r v i c e s h o u l d a g a i n be when th e p r e s e n t v a l u e o f t h e t o t a l c o s t s a r e m i n i m i z e d . C o n s e q u e n t l y , t h i s a n a l y s i s w i l l d e v e l o p . o p e r a t i n g and c a p i t a l cash f l o w s based on:. 1) t h e c o n t i n u e d use o f d i e s e l l o c o m o t i v e s 2) the i n i t i a t i o n o f e l e c t r i f i e d s e r v i c e The minimum p r e s e n t v a l u e o f the r e s p e c t i v e c a s h f l o w s a t t h e f i r m ' s o p p o r t u n i t y c o s t o f c a p i t a l w i l l i n d i c a t e t h e optimum o r l e a s t c o s t a l t e r n a t i v e . 2.4.1. D i e s e l L o c o m o t i v e s The p r e s e n t v a l u e o f the o p e r a t i n g and c a p i t a l c o s t s t h a t may be a n t i c i p a t e d i f d i e s e l l o c o m o t i v e s were c o n t i n u e d t o be o p e r a t e d on t h e l i n e i s g i v e n by the f o r m u l a : L I F E EL L I F E E L .\ (DLCASHn + AB + AC) + AD DLNPV = n=l n=LIFEDL+l 'K'.;';-;> • (1 + D I S R A T ) n where DLCASH n -- TTDLMT n + DFUELT n + DIFDL n + SAGDL n AB = T D L C O n + 1 - TDLCO n AC .= TDLCOi/LIFEDL - 45 -AD =. TDLCO. n + 1;_ L l F E D L T D L C O n . L I . F E D L •. An e x p l a n a t i o n o f the symbols may be found i n E x h i b i t 2. A b r i e f e x p l a n a t i o n o f t h e r e s p e c t i v e f o r m u l a terms i s g i v e n below: DLCASH n - the a n n u a l d i e s e l l o c o m o t i v e o p e r a t i n g c o s t s a t t h e t r a f f i c and c o s t l e v e l s p r o j e c t e d f o r t h a t y e a r . AB — t h e a d d i t i o n a l i n v e s t m e n t i n d i e s e l l o c o m o t i v e s r e q u i r e d t o handle t h e p r o j e c t e d t r a f f i c l e v e l i n c r e a s e . I t i s assumed t h a t the c a p i t a l o u t l a y w i l l o c c u r i n t h e y e a r p r e v i o u s t o t h e i r e n t e r i n g s e r v i c e . AC - a n n u a l r e p l a c e m e n t o f d i e s e l l o c o m o t i v e s i n s e r v i c e d u r i n g t h e s t u d y base y e a r . AD - a n n u a l r e p l a c e m e n t o f d i e s e l l o c o m o t i v e s p u r c h a s e s t o handle t r a f f i c i n c r e a s e s ( A 3 ) . As p r e s e n t v a l u e o f the d i e s e l c o s t s i s based on the c o n t i n u a t i o n o f t h e d i e s e l o p e r a t i o n , t h e d i e s e l a l t e r n a t i v e c ash f l o w s and hence DLNPV w i l l n o t change f o r each s e t o f a s s u m p t i o n s . - 46 -E X H I B I T 2 C A S H FLOW S Y M B O L S n - y e a r ( l i s s t u d y b a s e y e a r ) D L N P V - p r e s e n t v a l u e o f d i e s e l l o c o m o t i v e o p e r a t i n g a n d c a p i t a l c o s t s E L N P V - p r e s e n t v a l u e o f d i e s e l a nd e l e c t r i c l o c o m o t i v e o p e r a t i n g a n d c a p i t a l c o s t s f o r s e r v i c e i n i t i a t i o n y e a r q L I F E E L - e c o n o m i c l i f e o f e l e c t r i c l o c o m o t i v e s L I F E D L e c o n o m i c l i f e o f d i e s e l l o c o m o t i v e s D I S R A T - o p p o r t u n i t y c o s t o f c a p i t a l T D L C O - t o t a l d i e s e l l o c o m o t i v e c a p i t a l c o s t t o h a n d l e p r o j e c t e d t r a f f i c l e v e l s T E L C O - t o t a l e l e c t r i c l o c o m o t i v e c a p i t a l c o s t t o h a n d l e p r o j e c t e d t r a f f i c l e v e l s T O T C A P - f i x e d f a c i l i t i e s c o n s t r u c t i o n c o s t I C O N P R - c o n s t r u c t i o n p e r i o d A M TCON - p e r c e n t a g e o f c o n s t r u c t i o n i n e a c h y e a r B O O K V L - b o o k o r s a l v a g e v a l u e o f d i e s e l l o c o m o t i v e s o p e r a t i n g on t h e l i n e - 4? -DLCASH - annual d i e s e l locomotive operating costs ELCASH - annual e l e c t r i c locomotive operating costs DFUELT - t o t a l annual f u e l cost EKWHCT - t o t a l annual e l e c t r i c a l power cost TTDLMT - t o t a l annual d i e s e l locomotive maintenance cost TTELKT - t o t a l annual e l e c t r i c locomotive maintenance • cost DIFDL - t o t a l annual d i e s e l locomotive weight wage DIFEL - t o t a l annual e l e c t r i c locomotive weight wage SAGDL - t o t a l annual d i e s e l locomotive track maintenance SAGEL - t o t a l annual e l e c t r i c locomotive track maintenance CAMT . , - annual.catenary maintenance - 48 -2.4.2. E l e c t r i c L o c o m o t i v e s •.Whereas t h e d i e s e l a l t e r n a t i v e i s ' b a s e d on the c o n t i n u a t i o n o f d i e s e l o p e r a t i o n on t h e s t u d y l i n e , t h e e l e c t r i c l o c o m o t i v e a l t e r n a t i v e s a r e based upon the p o s s i b l e i n i t i a t i o n o f s e r v i c e i n s u c c e s s i v e y e a r s . The p r e s e n t v a l u e o f the c o s t s a s s o c i a t e d w i t h each e l e c t r i c a l t e r n a t i v e i s g i v e n by the f o l l o w i n g f o r m u l a : ELNPV q = TBLCO q_^ - BOQKVL q_ 1 + | . . • /,. DIESEL i - l ( .1 + DISRAT) LIFEEL CAPITAL. q - i n n=l n (ELC.ASH n + A.E) n=q-IC0NPR n=q / ( I + D I S R A T ) n where: q = e l e c t r i f i e d s e r v i c e i n i t i a t i o n y e a r ( s t a r t s from the s t u d y base y e a r p l u s t h e c o n s t r u c t i o n p e r i o d ) D I E S E L n = DLCASH n + AB + AC CA.PITAL n '= TOTCAP n x AMTCON ELCASH n = EKWHCTn + TTELMT n.+ DIFEL n ;+ SAGEI^ + -. CAMTV •n AE.= T E L C O n + 1 - TELCO n A b r i e f d e s c r i p t i o n o f t h e r e s p e c t i v e f o r m u l a terms i s g i v e n below: D I E S E L n - t h e a n n u a l d i e s e l l o c o m o t i v e o p e r a t i n g and c a p i t a l c o s t s t h a t w i l l be i n c u r r e d u n t i l t he e l e c t r i f i e d o p e r a t i o n i s i n i t i a t e d ( y e a r q ) . CAPITAL^ - e l e c t r i f i c a t i o n f i x e d f a c i l i t y c o n s t r u c t i o n . . c o s t . ELCASH n - the a n n u a l e l e c t r i c l o c o m o t i v e o p e r a t i n g c o s t s a t t h e t r a f f i c and c o s t - l e v e l s p r o j e c t e d f o r t h a t y e a r . AE - t h e a d d i t i o n a l Investment i n e l e c t r i c l o c o m o t i v e s r e q u i r e d t o handle t h e p r o j e c t e d t r a f f i c l e v e l i n c r e a s e . I t i s assumed t h a t t h e c a p i t a l e x p e n d i t u r e w i l l o c c u r i n t h e y e a r p r e v i o u s t o t h e i r e n t e r i n g s e r v i c e . TELCOq-l - i n v e s t m e n t . i n e l e c t r i c l o c o m o t i v e s r e q u i r e d t o handle t h e t r a f f i c i n y e a r q. E x p e n d i t u r e w i l l o c c u r i n y e a r q-1. - 50 -B00KVLq_i - s a l v a g e o r book v a l u e o f d i e s e l l o c o m o t i v e f l e e t o p e r a t i n g on the l i n e i n y e a r q - 1 . As t h e cash f l o w s a r e o n l y c a l c u l a t e d t o t h e economic l i f e o f the e l e c t r i c l o c o m o t i v e , no e l e c t r i c , l o c o m o t i v e o r f i x e d f a c i l i t y r e p l a c e m e n t c o s t has been i n c l u d e d . 2.4.3. v-Minimum P r e s e n t V a l u e The minimum p r e s e n t v a l u e a t the o p p o r t u n i t y c o s t o f c a p i t a l t o the f i r m o f t h e e l e c t r i f i c a t i o n a l t e r n a t i v e s w i l l g i v e the optimum y e a r t o i n i t i a t e e l e c t r i c o p e r a t i o n . T h i s minimum e l e c t r i f i c a t i o n c o s t s h o u l d t h e n be compared w i t h t h e p r e s e n t v a l u e o f t h e d i e s e l c o s t s and t h e l e a s t c o s t a l t e r n a t i v e chosen. T a b l e I i l l u s t r a t e s the a c t u a l c a s h f l o w s c a l c u l a t e d f o r t h e h y p o t h e t i c a l s t u d y l i n e o u t l i n e d i n A p p e n d i x A 3 . The D i e s e l column i n d i c a t e s the d i e s e l l o c o m o t i v e c o s t s p r o j e c t e d f o r t h e s t u d y base y e a r u n t i l the y e a r 2008. The r e m a i n i n g 10 columns i n d i c a t e t h e c o s t s t h a t may be a n t i c i p a t e d i f e l e c t r i f i e d o p e r a t i o n were t o be i n i t i a t e d on t h e l i n e i n 1977 t h r o u g h 1986 i n c l u s i v e l y . Assuming a t h r e e y e a r e l e c t r i f i c a t i o n f i x e d f a c i l i t y c o n s t r u c t i o n p e r i o d , the f i r s t p o s s i b l e y e a r f o r e l e c t r i f i e d TABLE I - 51 -HYPOTHETICAL STUDY LINE CASH FLOWS ( $ MILLIONS ) YEAR DIESEL ELECTRIC LOCOMOTIVE SERVICE I N I T I A T I O N YEAR 1977 1974 22.60 37. 80 1975 24.70 62.71 1976 25.67 47.12 1977 27.75 11.31 1978 30.25 11.04 1979 32.11 13.06 1980 35.04 13.62 1981 36.8.4 14.23 1982 40.27 15.64 1983 43,34 16.36 1984 47.21 17.89 1985 50.49 18.74 1986 55.36 19.67 1987 60.31 22.92 1988 64.72 23.27 1989 70,91 25.96 1990 77.10 28.02 1991 70.84 16.70 1992 72.82 17.41 1993 72.70 16.62 1994 74.45 17.33 1995 76.05 17.30 1996 76.88 17.26 1997 78.17 16.47 1998 79.04 17.18 1999 81*78 17.90 2000 82.18 17.11 2001 84. 00 17.08 2002 85.41 17.04 2003 87.65 17.01 2004 89. 64 16.97 2005 91.13 17.69 2006 92.65 16.90 2007 95.45 17.62 2008 87.91 16.84 PRESENT VALUES 170.26 145.39 1978 1979 1980 22.60 22.60 22.60 39. 90 24. 70 24.70 63.69 40.88 25.67 48. 29 65. 76 42.95 11.04 48.61 68.26 13.06 13.06 50.10 13. 62 13.62 13.62 14.23 14.23 14.23 15.64 15.64 15.64 16.36 16. 36 16.36 17.89 17.89 17.89 18. 74 18.74 18.74 19.67 19.67 19.67 22.92 22.92 22.92 23. 27 23.27 23.27 25.96 25.96 25.96 28. 02 28.02 28.02 16.70 16.70 16.70 17.41 17.41 17.41 16. 62 16.62 16.62 17.33 17.33 17.33 17.30 17.30 17.30 17.26 17.26 17.26 16.47 16.47 16.47 17.18 17.18 17.18 17.90 17.90 17.90 17.11 17.11 17.11 17. 08 17.08 17.08 17.04 17.04 17.04 17.01 17.01 17.01 16.97 16. 97 1.6. 97 17.69 17,69 17.69 16.90 16.90 16.90 17.62 17.62 17.62 16.84 16.84 16.84 144.30 144.06 144.57 1981 1982 1983 22.60. . 22.60 22.60 24.70 24.70 24.70 25.67 ' 25.67 25.67 27.75 . 27.75 27.75 45.45 30.25 30 .25 70.12 47.32 32 . 11 52.05 73.05 50.24 14.23 53.65 74.85 15.64 15.64 56.93 16.36 16.36 16.36 17.89 17.89 17.89 18.74 18. 74 18.74 19.67 19.67 19.67 22.92 22.92 22.92 23.27 23.27 23 0 27 25.96 25.96 25.96 28.02 - ' 28.02 28.02 16.70 : 16.70 16.70 17.41 17.41 17.41 16.62 16.62 16.62 17.33 17.33 17.33 17.30 17.30 17.30 17.26 17.26 17.26 16.47 16.47 16.47 17.1.8 17.18 17.18 17.90 . 17.90 17.90 17.11 17.11 17. 11 17.08 17.08 17.08 17.04 17.04 17.04 17.01 ' 17.01 17.01 16.97 16.9.7 16.97 17.69 17.69 17. 69 16.90 I6b90 16.90 17.62 17.62 17.62 16.84 16.84 16.84 145.50 146.78 148.25 198.4 1985 1986 22.60 22.60 22.60 24.70 24.70 24.70 25,67 25.67 25.67 27.75 27.75 27.75 30 .25 30.25 30 .25 32. 11 32.11 32.11 35.04 35.04 35.04 52.05 36,84 36.84 78.28 55.48 40.27 59.81 81.35 58.55 17.89 63.67 85.22 18.74 18.74 67.31 19.67 19.67 19.67 22.92 22.92 22.92 23.27 23.27 23.27 25.96 25.96 25.96 28.02 28.02 28.02 16.70 16.70 16.70 17.41 17.41 17.41 16.62 16.62 16,62 17.33 17.33 17.33 17,30 17.30 17.30 17.26 17.26 17.26 16.47 16.47 16.47 17.18 17.18 17.18 17.90 17,90 17.90 17. 11 17. 11 17.11 17.08 17.08 17.08 17.04 17.04 17.04 17.01 17,01 17.01 16.97 16.97 16.97 17. 69 17.69 17.69 16.90 16.90 16.90 17.62 17.62 17.62 16.84 16.84 16.84 149.86 151.55 153.26 - 5 2 -s e r v i c e i n i t i a t i o n would be'•.1-977. C o n s e q u e n t l y , t h e 1 9 7 4 t o 1 9 7 6 c a s h f l o w s f o r the 1 9 7 7 e l e c t r i f i e d s e r v i c e i n i t i a t i o n y e a r a r e c o m p r i s e d o f t h e 1 9 ? 4 t o 1 9 7 6 d i e s e l c o s t s p l u s the r e s p e c t i v e e l e c t r i c l o c o m o t i v e c a p i t a l and f i x e d f a c i l i t y c o n s t r u c t i o n c o s t s . The 1 9 7 ? t o 2008 c o s t s a r e t h e e l e c t r i c l o c o m o t i v e o p e r a t i n g and c a p i t a l c o s t s . S i m i l a r l y , f o r e l e c t r i f i e d s e r v i c e i n i t i a t i o n i n 1 9 8 6 and a t h r e e y e a r c o n s t r u c t i o n p e r i o d , the 1 9 7 4 t o 1 9 8 2 cash f l o w s , a r e the d i e s e l l o c o m o t i v e c o s t s , t h e 1 9 8 2 t o 1 9 8 5 c o s t s a r e the , d i e s e l l o c o m o t i v e c o s t s p l u s the e l e c t r i c l o c o m o t i v e c a p i t a l and f i x e d f a c i l i t i e s c o n s t r u c t i o n c o s t s , and t h e 1 9 3 6 t o .'• " • -I' • 2 0 0 8 c o s t s a r e t h e e l e c t r i c l o c o m o t i v e c o s t s . The minimum p r e s e n t v a l u e o f t h e s e r e s p e c t i v e c a s h f l o w s a t t h e f i r m ' s o p p o r t u n i t y c o s t o f c a p i t a l i n d i c a t e s t h e optimum a l t e r n a t i v e . I n t h i s example, the minimum p r e s e n t v a l u e c o s t i s t h a t o f the e l e c t r i f i e d s e r v i c e i n i t i a t e d i n t h e y e a r 1 9 7 9 . 2 . 5 . A d d i t i o n a l C o s t s and B e n e f i t s Because o f t h e d i f f i c u l t y i n a t t a c h i n g d o l l a r v a l u e s t o them, no economic c o n s i d e r a t i o n ' w a s g i v e n i n the model t o the f o l l o w i n g • e l e c t r i f i c a t i o n problem a r e a s . - 53 -These elements s h o u l d be examined i n dep t h , and t h e i r e f f e c t on t h e economic f e a s i b i l i t y o f e l e c t r i f i c a t i o n f u l l y examined: - What w i l l be the e f f e c t on t r a f f i c h a n d l i n g i f a power f a i l u r e s h o u l d o c c u r i n one o f t h e h i g h v o l t a g e f e e d e r s o r c a t e n a r y ? W i l l standby d i e s e l l o c o m o t i v e s be r e q u i r e s ? - W i l l t r a c k maintenance c o s t s be i n c r e a s e d because o f t h e h i g h v o l t a g e overhead l i n e s ? W i l l p r e s e n t -day maintenance p r o c e d u r e s have t o be a l t e r e d ? - How many low d e n s i t y b r a n c h l i n e s w i l l have t o be e l e c t r i f i e d t o reduce the r e q u i r e m e n t f o r d i e s e l l o c o m o t i v e s ? • As w i t n e s s e d by t h e l a r g e number o f e l e c t r i c r a i l r o a d s i n d i f f e r e n t p a r t s o f the w o r l d t h e s e problems a r e n o t i n s u r m o u n t a b l e , but th e y s h o u l d be g i v e n d e t a i l e d s t u d y when c o n s i d e r i n g e l e c t r i f i c a t i o n f e a s i b i l i t y . A l s o , t h e Model does n o t d i r e c t l y c o n s i d e r t h e a v a i l a b i l i t y o f r e s o u r c e s , such as e l e c t r i c power, i n t h e r e g i o n o r t h e s p e c i f i c e n g i n e e r i n g c o s t s r e q u i r e d t o c o n s t r u c t t h e e l e c t r i f i c a t i o n f a c i l i t i e s r e q u i r e d f o r - 5 4 -each r a i l l i n e . The c o s t s r e q u i r e d t o p r o v i d e t h e s e f a c i l i t i e s a r e r e q u i r e d t o be e n t e r e d i n t o t h e model by t h e u s e r . -No d i r e c t c o n s i d e r a t i o n was g i v e n i n t h e model t o t h e b e n e f i t t o t h e c o u n t r y o f the use o f e l e c t r i f i e d r a i l r o a d s . The e l e c t r i f i c a t i o n o f t h e CN m a i n l i n e segment s t u d i e d would reduce d i e s e l f u e l consumption by a p p r o x i m a t e l y 2 5 m i l l i o n g a l l o n s i n i t s f i r s t p o t e n t i a l y e a r o f o p e r a t i o n . As r a i l r o a d s a r e the o n l y t r a n s p o r t a t i o n mode t h a t can c u r r e n t l y be e c o n o m i c a l l y c o n v e r t e d from dependence on l i q u i d f o s s i l f u e l s , e l e c t r i f i c a t i o n may have s i g n i f i c a n t n a t i o n a l b e n e f i t s . E l e c t r i f i c a t i o n a l l o w s c o m p l e t e f l e x i b i l i t y as t o t h e c h o i c e o f p r i m a r y energy s o u r c e , from c o a l t o n u c l e a r , g e o t h e r m a l , o r s o l a r g e n e r a t i o n . E l e c t r i f i c a t i o n o f r a i l w a y s would h e l p t o c o n s e r v e o i l f o r u ses f o r w h i c h i t s u n i q ue c h a r a c t e r i s t i c s o f p o r t a b i l i t y and h i g h energy d e n s i t y a r e e s s e n t i a l . 2 . 6 . E s c a l a t i o n P e r c e n t a g e s To make a r e l e v a n t comparison o f t h e r e t u r n s o y e r t h e y e a r s , t h e p r e s e n t v a l u e s c a l c u l a t e d . b y t h e computer model a r e i n c o n s t a n t d o l l a r s o f the s t u d y base y e a r . P r o v i s i o n has been made i n the model f o r a r e l a t i v e e s c a l a t i o n i n most o f t h e parameters u t i l i z e d i n t h e model. - 55 -CHAPTER I I I MODEL RESULTS ' . The r a i l w a y e l e c t r i f i c a t i o n economic f e a s i b i l i t y model was v a l i d a t e d by c a r e f u l l y c h e c k i n g the r e s u l t s by d u p l i c a t e manual c a l c u l a t i o n s and by u t i l i z i n g i n p u t d a t a t h a t would produce known r e s u l t s . The f e a s i b i l i t y Model was t h e n t e s t e d and r u n u s i n g d a t a from an a c t u a l C a n a d i a n N a t i o n a l R a i l w a y s M a i n l i n e r o u t e , but i t was f e l t t h a t t h e a v a i l a b i l i t y o f t h i s d e t a i l e d I n f o r m a t i o n s h o u l d be r e s t r i c t e d t o t h e r a i l w a y c o n c e r n e d . C o n s e q u e n t l y , t h e a n a l y s i s i n t h i s and t h e n e x t c h a p t e r w i l l be r e s t r i c t e d t o t h e p r e s e n t a t i o n o f t h e broad e f f e c t s o f v a r i o u s p a r a m e t e r s and c o s t s on t h e t o t a l p r e s e n t v a l u e s o f t h e c o s t s o f the d i e s e l and e l e c t r i c l o c o m o t i v e a l t e r n a t i v e s f o r t h a t l i n e . Most o f t h e d i e s e l l o c o m o t i v e c o s t and o p e r a t i n g p a r a m e t e r s a r e r e a d i l y a v a i l a b l e t o t h e model u s e r t h r o u g h a c t u a l e x p e r i e n c e o r d e t a i l e d m a n u f a c t u r e r ' s s p e c i f i c a t i o n s , but most o f t h e e l e c t r i c l o c o m o t i v e c o s t s and o p e r a t i n g c h a r a c t e r i s t i c s a v a i l a b l e are p r o j e c t i o n s based on European e x p e r i e n c e and d e s i g n as t h e r e h a s n ' t been a l a r g e s c a l e N o r t h A m e r i c a n e l e c t r i f i c a t i o n p r o j e c t i n r e c e n t y e a r s . The e l e c t r i c l o c o m o t i v e ' s c o s t s and o p e r a t i n g c h a r a c t e r --•• 56 -i s t i c s u t i l i z e d i n the t e s t i n g of t h i s model were best estimates from various a r t i c l e s concerning mainline r a i l w a y e l e c t r i f i c a t i o n . Figure 1 presents the d i e s e l and e l e c t r i f i c a t i o n costs p r o j e c t e d f o r /the CN l i n e s t u d i e d . The d i e s e l cost present values i l l u s t r a t e d i n Figure 1 are a s i n g l e v a l u e , the present value of the annual d i e s e l locomotive costs, discounted back to the study base year. This i s e q u i v a l e n t to the present value of the d i e s e l column i l l u s t r a t e d i n . Table I but w i t h CN c o s t s . The d i e s e l costs are i l l u s t r a t e d as a s t r a i g h t l i n e to b e t t e r i l l u s t r a t e t h e i r comparison w i t h the e l e c t r i c locomotive a l t e r n a t i v e c o s t s . The e l e c t r i c locomotive costs are equivalent to the present value of the e l e c t r i c locomotive, s e r v i c e i n i t i a t i o n year costs of Table I (again u s i n g the CN study l i n e parameters). The p r i n c i p a l e l e c t r i f i c a t i o n assumptions u t i l i z e d f o r the p r o j e c t i o n s may be found i n Table II.. The optimum year f o r the i n i t i a t i o n of the e l e c t r i f i e d s e r v i c e should be when the l e a s t t o t a l cost i s a t t a i n e d . Therefore, at the discount r a t e of 20%,' the e l e c t r i c locomotive should begin s e r v i c e on the CN l i n e i n Present Value 1 7 5 ' - . 1 7 0 165 1 6 0 1 5 5 1 5 0 1 4 5 •140 1 3 5 1 3 0 FIGURE 1 P R E S E N T V A L U E S O F T H E C O S T S C A L C U L A T E D F O R T H E C N S T U D Y L I N E - 57 -* . * • * .• DIESEL ELECTRIC 12 5 I — I — I — \— I -19 7 7 1979 19HI 1.9 8 3 . 198 5 . .1937 1 98 •) 1991 ... Year - 58 -1 9 7 9 . t o minimize costs. This assumes that construction of the fixed f a c i l i t i e s w i l l begin i n 1 9 7 6 . I f the t o t a l cost of the continuation of the use of d i e s e l locomotives were less than that of the minimum e l e c t r i f i c a t i o n cost at the firm's opportunity cost of c a p i t a l , the l i n e should not be e l e c t r i f i e d . The.diesel locomotive should be.continued to be u t i l i z e d as the least cost a l t e r n a t i v e . TABLE II PRINCIPLE ELECTRIFICATION ASSUMPTIONS LOCOMOTIVE PARAMETERS FREIGHT EXFRESS PASSEWGER EQUATION OF ELECTRIC. TO DIESEL LOCOMOTIVES ( fo ) 50.0 50.0 50.0 EQUATION OF INITIAL ELECTRIC TO DIESEL MAINTENANCE' COSTS ( # ) 40.0 40.0 40.0 ELECTRIC LOCOMOTIVE PURCHASE COST ( $ MILLIONS') 0.75 0.75 0.75 ELECTRIC.LOCOMOTIVE HORSEPOWER 6,500 6,500 6,500 DIESEL LOCOMOTIVE PURCHASE COST ( $ MILLIONS ) 0.44 0.44 0.44 DIESEL LOCOMOTIVE HORSEPOWER 3,000 3,000 3,000 INCREASE AVAILABILITY OF ELECTRIC LOCOMOTIVES ( $ ) . 11.0 11.0 11.0 ECONOMIC LIFE OF ELECTRIC LOCOMOTIVES 34 34 34 ECONOMIC LIFE OF DIESEL LOCOMOTIVES 17 17 17 COST OF ELECTRICITY PER KWH ( CENTS ) 1.25 COST OF DIESEL FUEL PER GALLON ( CENTS ) 26.0 ANNUAL CONSTANT DOLLAR PROJECTED ESCALATION IN DIESEL FUEL PRICES ( > ) • •' •. 3 .0 ANNUAL CONSTANT DOLLAR ESCALATION IN ELECTRIC POWER COSTS ( $ ) 0 .0 - 6 o -3>1. Internal Rate of Return on Invested C a p i t a l The computer model calculates a projected i n t e r n a l rate of return on invested c a p i t a l for each e l e c t r i f i c a t i o n i n i t i a t i o n year by u t i l i z i n g the cash flow differences between the d i e s e l and e l e c t r i c locomotive a l t e r n a t i v e s . The discount rate, or i n t e r n a l rate of return, i s calculated that sets the net cash flows equal to zero. Figure 2 i l l u s t r a t e s the projected i n t e r n a l rates of return f o r each e l e c t r i f i c a t i o n i n i t i a t i o n year. The l e v e l i n g o f f i n the projected i n t e r n a l rates of return i n Figure 2 about 1992 i s due to the attainment '-' of maximum capacity for the single track l i n e . When l i n e capacity has been reached, the computer model sets the t r a f f i c growth rates equal to zero. The s l i g h t r i s e a f t e r t h i s date i s caused by the assumption of escalating constant d o l l a r d i e s e l f u e l prices (3% per year). • The i n t e r n a l rate of return projections'^ indicate the p o t e n t i a l return on invested c a p i t a l i f e l e c t r i f i e d service i s i n i t i a t e d on the l i n e , but not the most optimum time to i n i t i a t e the service.. For example,,Figure 2 indicates that a project i n t e r n a l rate 45 % 40 % 3 5 % 30 % ******** FIGURE 2 MAINLINE RAILWAY E L E C T R I F I C A T I O N • AN ECONOMIC F E A S I B I L I T Y MODEL -** * ***** - 61 -65 as -60 % 55 X PROJECT INTERNAL RATE OF RETURN VERUS COMPLETION DATE ************************ * ********** 50 % * * * * 25 % _-| , | , | , , , , , , , ,_ , , , j j j 1977 L979 1981 1983 1985 1987 1989 1991 1993 1995 1997 - 62 of return of approximately 25% may :be anticipated i f e l e c t r i c locomotives commence operation on the l i n e i n 1 9 7 ? . The anticipated return w i l l increase to about 52% i f service i s i n i t i a t e d i n 1 9 9 2 . Therefore, i t would appear that the maximum i n t e r n a l rate of return w i l l be achieved when l i n e capacity i s attained. Figure I, on the other hand, presents the d i e s e l and e l e c t r i c locomotive costs discounted back to the study base year ( 1 9 ? 4 ) at 20%. The minimum present value cost i s achieved i f e l e c t r i c locomotives begin operating on the l i n e i n 1 9 7 9 . This assumes fixed f a c i l i t y construction w i l l begin i n 1 9 7 6 . The difference i n the two projects as to the proj e c t i o n of optimum year to begin e l e c t r i c operation i s caused by the reinvestment rate assumption inherent i n the two methods. Assuming that the firm's opportunity cost of c a p i t a l i s 20%, both methods indicate that the project i s f e a s i b l e - the present value of the e l e c t r i -f i c a t i o n costs i s less than that of the d i e s e l locomotive and the i n t e r n a l rate of return i s greater than the 4 . Mao, James C.T.y Quantitative Analysis of F i n a n c i a l Decisions, Macmillan, 19^ 9 . - 63 -opportunity cost of c a p i t a l . The choice of e l e c t r i f i c a t i o n f e a s i b i l i t y year i s e s s e n t i a l l y a ranking of projects (each project s t a r t s i n a d i f f e r e n t year). Ranking-projects by the present values of t h e i r costs implies that funds released by the projects can be reinvested at the opportunity cost of c a p i t a l (the firm's marginal investment return). The . internal.rate of return ranking . . implies that the funds released can be reinvested at the project's, i n t e r n a l rate of return. Consequently, i f . t h e discount rate used to calculate the least cost a l t e r n a t i v e i s f e l t to accurately r e f l e c t the firm's marginal investment return,.the least cost ranking c r i t e r i a should be u t i l i z e d . Therefore, for the CN mainline segment examined, the optimum year to e l e c t r i f y would be 1979. The e f f e c t on the decision of various discount rates w i l l be examined i n the next chapter. •'• CHAPTER IV • ANALYSIS OF MODEL RESULTS The analysis w i l l examine several of the major e l e c t r i f i c a t i o n costs, parameters, and variables to determine t h e i r r e l a t i v e e f f e c t on the e l e c t r i f i c a t i o n economic f e a s i b i l i t y . The user w i l l be able to obtain an appreciation of the r e l a t i v e s i g n i f i c a n c e of each variable on the project f e a s i b i l i t y , and judge the amount of detailed study that should be allocated to the deter-mination of the respective parameter values f o r his i n d i v i d u a l a p p l i c a t i o n . The model re s u l t s w i l l be analyzed using as r e f -erence those assumptions and r e s u l t i n g costs (Figure 1) determined for the CN mainline segment. The analysis w i l l i n i t i a l l y examine the breakdown of projected annual operating costs to determine the s i g n i f i c a n t elements. Next, the s e n s i t i v i t y of the projected d i e s e l and loco-motive costs to variations i n c e r t a i n of t h e i r constituent elements w i l l be examined. . - 6 5 -Also, examination w i l l be made of the e f f e c t on the e l e c t r i f i c a t i o n f e a s i b i l i t y of: - Investment requirements - Tr a i n speed and li n e capacity - E s c a l a t i o n and f i n a n c i a l considerations. • 4 . 1 . - Percentage Breakdown of Gross Annual Operating  Cost Differences Figure 3 i l l u s t r a t e s the r e l a t i v e 1 9 7 ? percentages of the p r i n c i p a l d i e s e l and e l e c t r i c locomotive cost • differences determined by the model for the CN l i n e studied. The two major cost difference,>.elements are: 1) the net locomotive maintenance costs 2) the net f u e l costs. These two elements comprise approximately 5 8 % and 32%> respectively of the gross annual operating cost differences available with e l e c t r i f i c a t i o n . The remaining three.cost elements: . 1) track maintenance 2) locomotive wage weight d i f f e r e n t i a l 3) catenary maintenance each constitute less than 10% of the. gross annual e l e c t r i -f i c a t i o n operating cost savings. . . - 66 -FIGURI 1977 PERCENTAGE BREAKDOWN OF GROSS ANNUAL OPERATING COST DIFFERENCES ( CONSTANT DOLLARS ) 60 T 50 -45 •• 40 35 •• 30 ..• 25 •• 20 •• 15 •• 10. -5 -o — B A - NET LOCOMOTIVE MAINTENANCE COSTS B - NET FUEL COST C - WAGE WEIGHT DIFFERENTIAL D - TRACK MAINTENANCE E -. CATENARY MAINTENANCE D -5 •10 - i E 67 -Consequently, the emphasis of the a n a l y s i s i n t h i s chapter w i l l be on the major elements t h a t c o n s t i t u t e , or have a bea r i n g on, the two p r i n c i p l e o p e r a t i n g cost s a v i n g c a t e g o r i e s . The parameters u t i l i z e d f o r the CN l i n e s t u d i e d (Table I) w i l l be used as reference f o r the a n a l y s i s of the s e n s i t i v i t y of each element on the p r o j e c t e d e l e c t r i f i c a t i o n f e a s i b i l i t y . 4.2. Net Locomotive Maintenance Cost Savings The i n d i v i d u a l locomotive maintenance costs c a l c u l a t e d by the model were based on the annual number of m i l e s r e q u i r e d of each locomotive type to handle the p r o j e c t e d t r a f f i c l e v e l s . The number of d i e s e l locomotive m i l e s were c a l c u l a t e d and t h i s f i g u r e was converted i n t o an e q u i v a l e n t number of annual e l e c t r i c locomotive m i l e s . The net locomotive maintenance cost savings can t h e r e f o r e be a f f e c t e d by two s i g n i f i c a n t e l e c t r i c locomotive o p e r a t i n g c h a r a c t e r i s t i c s J 1) the equation of the number of e l e c t r i c to d i e s e l locomotives 2) the equation of e l e c t r i c to d i e s e l locomotive maintenance c o s t s . 68 ~ I t must be appreciated t h a t the c a l c u l a t i o n w i t h i n the model of the number of d i e s e l locomotive miles r e q u i r e d w i l l a l s o have a s i g n i f i c a n t e f f e c t on the net locomotive maintenance cost savings. I t i s assumed though, t h a t , s i n c e t h i s c a l c u l a t i o n i s based on d i e s e l locomotive o p e r a t i n g parameters, t h i s f i g u r e should be r e l a t i v e l y a c c u r a t e . The c a l c u l a t i o n i s based on the average gross tons, and the average number of d i e s e l locomotives, per t r a i n i n the study base year. These parameters should be a v a i l a b l e to the model user or may be a c c u r a t e l y c a l c u l a t e d u s i n g d i e s e l locomotive s p e c i f i c a t i o n s and t r a f f i c d e n s i t y . The e f f e c t of t r a f f i c d e n s i t y and growth on e l e c t r i f i c a t i o n f e a s i b i l i t y w i l l be examined i n a l a t e r s e c t i o n . 4.2.1. Equation of Number of E l e c t r i c to D i e s e l Locomotives Figure 4 i l l u s t r a t e s the s e n s i t i v i t y of e l e c t r i -f i c a t i o n f e a s i b i l i t y to s e v e r a l assumptions as t o the equation of the number of e l e c t r i c to d i e s e l locomotives. The reference e l e c t r i c locomotive cost present value i s Present Value • . 175 -170 165 -16 0 155 15 0 145 140 13 5 -130 F I G U R E k •'. S E N S I T I V I T Y OF C O S T S TO AN E f f T A T T O i r u r " E L E C T R JX"W D I E S E L L O C O M O T I V E S ~T$ M I L L I O N S ) 69 -%< * « •fi i s :fe it D I E S E L .A ;= E L E C T R I C a C 12 5 — I — I — | — | — i — i — I — i — | — | — | — | — | — | — I 1 9 7 7 1 9 7 9 1 9 3 1 L 9 3 3 . 193 5 . ; 1 9 3 7 . 1 9 8 9 1 9 9 1 • Year • - 70 -calculated assuming the equation i s 50% f o r a l l types of t r a i n , or one e l e c t r i c locomotive can replace two d i e s e l locomotives. A and C assume the equation i s 60% and k0% r e s p e c t i v e l y . The choice of locomotive equation factor has a s i g n i f i c a n t e f f e c t on the e l e c t r i f i c a t i o n f e a s i b i l i t y . For example, i n 1977 i f i t i s assumed that one e l e c t r i c locomotive could, replace 2 . 5 ' d i e s e l locomotives, the t o t a l e l e c t r i c locomotive cost would decrease approximately 8% from that calculated using a 1 : 2 e l e c t r i c to d i e s e l locomotive r a t i o and the minimum cost w i l l occur i f the l i n e i s e l e c t r i f i e d i n 1 9 7 7 . S i m i l a r i l y , i f a 1 : 1 . 6 7 r a t i o i s u t i l i z e d , the cost w i l l increase by approximately 8% and the minimum w i l l occur i n 1 9 8 1 . The parameter has p a r t i c u l a r relevance as i t could s i g n i f i c a n t l y vary between l i n e s being studied. The e l e c t r i c locomotive has a much wider t r a c t i v e e f f o r t curve than does the d i e s e l . Figure 5 shows a comparison between the t r a c t i v e e f f o r t curves of a 3 . 0 0 0 HP d i e s e l -e l e c t r i c i n use on most North American r a i l r o a d s , and a high performance e l e c t r i c locomotive having s i m i l a r TRACTIVE.EFFORT CURVES FOR A SIX-AXLE 195-TON 3000 HP DIESEL-ELECTRIC AND  A 6 500 HP AC ELECTRIC LOCOMOTIVE SOURCE : RAILWAY GAZETTE INTERNATIONAL, 'OCTOBER. 1971, P 380 - '72.-axleloads and geared for the same speed range. While the continuous t r a c t i v e e f f o r t at low speeds for the dieSel i s ? 0 , 0 0 0 l b s . , the e l e c t r i c locomotive i s over 50% more at 1 1 0 , 0 0 0 l b s . Whereas the t r a c t i v e e f f o r t of the d i e s e l f a l l s o f f as soon as the balance of speed of 13 mph i s attained, e l e c t r i c locomotives with t h i s gearing are available that w i l l maintain the 1 1 0 , 0 0 0 l b . t r a c t i v e e f f o r t up to a balancing speed of over 25 mph. At running speeds of 4 5 mph., for example, the one-hour t r a c t i v e e f f o r t of the e l e c t r i c locomotive i s approximately three times that of the d i e s e l . Therefore, the equation of e l e c t r i c to d i e s e l locomotives i n the model i s dependent on the t r a f f i c types and the physical c h a r a c t e r i s t i c s of the l i n e being studied. I f the t r a f f i c to be handled i s of a slow moving var i e t y (below 15 mph), the equation may be 60% or more, while i f the t r a f f i c moves at higher speed, the equation . may be 40% or l e s s . At about 20 mph the equation would be at 50% (Figure 5 ) . Also, the one-hour r a t i n g of the e l e c t r i c locomotive may allow a lower conversion r a t i o . This added short time power c a p a b i l i t y may be enough to overcome grade constraints that would be severe enough to require the i n c l u s i o n of another d i e s e l locomotive. - 7 3 -Although t h i s section deals p r i n c i p a l l y with annual maintenance cost savings, i t may be appreciated that a v a r i a t i o n i n the number of e l e c t r i c to d i e s e l locomotives required would have an e f f e c t on locomotive investment. Consequently, the variations i n the project returns i l l u s t r a t e d i n Figure 4 are due to both e l e c t r i c locomotive investment and net annual maintenance cost c o m p o n e n t s . . . In the study base year: Equation of % change i n net % change i n E l e c t r i c to Locomotive E l e c t r i c Loco-D i e s e l Locomotives Maintenance costs motive investment . ko% +5% -20% - 50%(reference) - -. : 6o% -5% •'. +20% The high cost per e l e c t r i c locomotive, estimated to be about $750,000 per unit i n the study base, year, w i l l cause a substantial v a r i a t i o n i n e l e c t r i c locomotive c a p i t a l requirement i f the r e l a t i v e numbers of each locomotive type i s changed. This Investment component w i l l be the most s i g n i f i c a n t cause of the variance i n ... 74 -project cost evident i n Figure 4. Also, as the. investment requirement decreases the net maintenance savings increase, and vice versa, further accenting the e f f e c t the equation of e l e c t r i c to diesel.locomotives has on the project f e a s i b i l i t y . Consequently, the significance on the e l e c t r i -f i c a t i o n project f e a s i b i l i t y requires that each l i n e and t r a i n type has to be studied i n depth to determine the relevant equation of e l e c t r i c to d i e s e l locomotives. Provision has been made i n the computer model to enter an equation value for each of the f r e i g h t , express, and passenger t r a i n s to allow f o r the d i f f e r e n t average operating speeds of each t r a i n type. 4.2.2. Equation of E l e c t r i c to Diesel Locomotive  Maintenance Costs The replacement of the large i n t e r n a l combination engine found i n a d i e s e l locomotive with a r e l a t i v e l y maintenance-free transformer and e l e c t r i c a l equipment i n an e l e c t r i c t r a i n allows f o r a s i g n i f i c a n t reduction i n the per-mile maintenance cost of an e l e c t r i c when compared - 7 5 -to a d i e s e l locomotive. . Also, the reduced complexity, and hence increased r e l i a b i l i t y of the e l e c t r i c r e s u l t s i n less on-line s e r v i c i n g - crankcase o i l . etc. The computer model u t i l i z e s the t o t a l d i e s e l locomotive per-mile maintenance cost, including applicable overheads, and converts t h i s into an equivalent e l e c t r i c locomotive maintenance cost. Figure 6 i l l u s t r a t e s the e f f e c t on the e l e c t r i c locomotive costs i f three e l e c t r i c to d i e s e l locomotive maintenance cost r a t i o s are utilized t5. A - ' 5 0 % B - 40% (reference) c - 3 0 % . ' It may be seen that the equation of e l e c t r i c to d i e s e l locomotive maintenance cost parameter does not have a s i g n i f i c a n t e f f e c t on the project's f e a s i b i l i t y . A v a r i a t i o n of the equation parameter of 1 0 % about the reference percentage r e s u l t s i n only an increase or decrease of approximately 2% i n the e l e c t r i c locomotive costs. Consequently,.the choice of a value f o r t h i s .5. Pan-Technology Consulting Corporation, Cost-Effect-iveness Review of Railroad E l e c t r i f i c a t i o n , A p r i l , 1 9 7 3 . - . 7 6 -P ^ e f n t FIGURE 6 Value 'SENSITIVITY OF COSTS TO THE 175 - EQUATION OF ELECTRIC TO DiESEL .1 .' '." LOCOMOTIVE MAINTENANCE COSTS I . '• . . ( $ MILLIONS ) . .70 -...i: it K A i: j,: ' i f . J* • '-.k « jjc D I E S E L 165 -I 160 -• A * •• E L E C T R I C C • 151> - . - • :• '. i '. i • * " « • • \ . • • * . 150 - . • * 1 4 5 - v -< I * A * • . • . 4 0 -i 3 J 3 -13 0 125 I — | — I — ! — i — i — I — | — I — |— I — I — I — I --I .1977 1979 19:81 . 1933 .1985 1937 i9b9 1991 Y e a r - 77 variable does not have a s i g n i f i c a n t e f f e c t on the study's r e s u l t s . This would be a d i r e c t r e s u l t of the smaller number of e l e c t r i c - t o - d i e s e l locomotives required to handle the projected t r a f f i c l e v e l s . 4.3. Fuel Costs The d i e s e l f u e l required f o r the study l i n e i s calculated using the W.J. Davis formulae. It i s . based on the d i e s e l operating c h a r a c t e r i s t i c s f o r that l i n e -t r a i n speed, d i e s e l units per t r a i n , car weight, length of run, etc. The e l e c t r i c power required i s c a l c u l a t e d by an AREA formula that equates gallons of f u e l o i l to amount of electric;,power required. Consequently, as the p r i c e of d i e s e l f u e l i s known for the l i n e i n the study year, the p r i n c i p a l variable that has to be determined f o r the e l e c t r i f i c a t i o n study i s the p r i c e of the e l e c t r i c power and the r e l a t i v e future percentage escalation i n the prices of the respective energy sources. - 78 -4.3*1» E l e c t r i c Power Costs Figure 7 i l l u s t r a t e s the v a r i a t i o n i n the e l e c t r i c locomotive projected for the CN study l i n e for three e l e c t r i c power costs: A - 2.00/ /.KWH B - 1.25/ / KWH (reference) C - 1.00// KWH Using 1977 and 1.25/ / KWH as a reference point, i t may be seen that a reduction i n the power cost to 1.00/ / KWH r e s u l t s i n a decrease i n the project cost of approximately 2%,While an increase i n cost to 2.00// KWH would r e s u l t i n a increase i n e l e c t r i f i c a t i o n costs of approximately 6%. The p o t e n t i a l f o r v a r i a t i o n i n e l e c t r i c power costs i n d i f f e r e n t areas of the country makes t h i s parameter s i g n i f i c a n t . I f e l e c t r i c power i s not r e a d i l y ava i l a b l e along the study route, the e l e c t r i c u t i l i t y may be w i l l i n g to provide the required d i s t r i b u t i o n network, but at a surcharge above the normal rate. A l t e r n a t e l y , the railway may have to provide the network. This c a p i t a l cpst should be entered into the computer model as \ - 79 -Present Value 1 7 5 -170 -165 160 15 5 150 145 140 135 13 0. ' FIGURE 7 SENSITIVITY OF COSTS TO  ELECTRIC POWER COSTS • ( $ MILLIONS 5 * . D I E S E L * «Q E L E C T R I C 125 ---|—j — | — j - - | -1977 1979 1981 — I — ! — I 1933 193 Yeax" 9 37 1909 1991 - 8 0 -a component of the catenary or substation construction cost. In either case, e l e c t r i c power should be c a r e f u l l y . examined, both f o r i t s a v a i l a b i l i t y and i t s cost. 4 . 3 . 2 . Relative Escalation i n Energy Costs Provision has been b u i l t into the model fo r an annual percentage escalation i n both d i e s e l and e l e c t r i energy costs from the study base year. For reference purposes, i t was assumed that d i e s e l f u e l prices would escalate at 3 % per year and e l e c t r i c power pri c e s at 0 % per year, i n constant d o l l a r terms. The depletion of non-renewable petroleum resources and the current environmental problems associated with nuclear power could introduce considerable v a r i a t i o n In these annual percentages. . Figures 8 and 9 i l l u s t r a t e the r e l a t i v e e f f e c t on e l e c t r i f i c a t i o n f e a s i b i l i t y i f i t i s assumed that annual energy p r i c e escalation w i l l be: Diesel Fuel E l e c t r i c Power Price Escalation Cost E s c a l a t i o n Figure 8 . 6% Ofo, 3%(reference) 0 % (reference) • . • •' Figure 9 0 / i : Of Present Value 185 -» * • FIGURE 8 SENSITIVITY OF COSTS TO A 6 % INCREASE IN DIESEL FUEL PRICES (' $ MILLIONS ) .- 81 -DIESEL 180 17 5 170 A i,:' ^ A: -,-ic si: * • . a D I E S E L 16 5 ELECTRIC 1.60 155 150 14 5 140 E L E C T R I C 135 1977 1979 1981 1983 1935 1987 1989 1991 Year Present Value 185 -180 1 7 5 170 L65 1 6 0 155 150 145 -140 x:. ^ 'JK $Z . FIGURE 9  SENSITIVITY OF COSTS TO A 0 7* INCREASE IN DIESEL  FUEL PRICES ( $ MILLIONS ) - 82 -a ' • . • • • ,\, ,a. j„ DIESEL ELECTRIC DIESEL ELECTRIC -I — I — ! — I — I — ! — | — | — | — | — | — i 1977 1979 1981 198 3 1935 1987 1989 1991 Year - 83 -It may be seen that the projected r e l a t i v e escalation i n energy prices has a substantial e f f e c t on the e l e c t r i f i c a t i o n project f e a s i b i l i t y . For example, a 6% d i e s e l and a Ofo e l e c t r i c constant d o l l a r annual energy price • increase w i l l produce a 9% higher d i e s e l cost i n 1977 when compared to the reference p r o j e c t i o n . Consequently, the projected annual energy price increases are extremely important to the analysis, and should be examined i n depth during any e l e c t r i f i c a t i o n f e a s i b i l i t y study. 4.4. Investment Requirements^ The p r i n c i p a l investment requirements associated with e l e c t r i f i c a t i o n are i n locomotive and fixed f a c i l i t i e The number required, and t h e i r i n d i v i d u a l costs, of d i e s e l locomotives may be read i l y determined from manufacturer's s p e c i f i c a t i o n s . The p r i n c i p a l variable i n the locomotive investment i s that of the e l e c t r i c . , The provision of fixed e l e c t r i c a l f a c i l i t i e s could have s i g n i f i c a n t v a r i a t i o n between areas of the - 84 country, making the determination of i t s r e l a t i v e e f f e c t on the p r o j e c t f e a s i b i l i t y important. 4.4.1. E l e c t r i c Locomotive Investment The t o t a l investment i n e l e c t r i c locomotives f o r an e l e c t r i f i c a t i o n p r o j e c t i s dependent on both the number of u n i t s r e q u i r e d and t h e i r i n d i v i d u a l c o s t s . The t o t a l cost of e l e c t r i c locomotives r e q u i r e d i s dependent on: a) t h e i r equivalence w i t h d i e s e l locomotives b) t h e i r increased a v a i l a b i l i t y c) e l e c t r i c locomotive purchase cost a) Equivalence w i t h d i e s e l locomotives S e c t i o n 4.2.1. examined the s i g n i f i c a n c e of the equation of the number of e l e c t r i c to d i e s e l locomotives. The variance of t h i s equation produces changes i n both the e l e c t r i c locomotive c a p i t a l requirement and the net annual savings i n locomotive maintenance c o s t s . The .  e l e c t r i c locomotive c a p i t a l investment was found to Incur the g r e a t e s t percentage v a r i a t i o n . - 8 5 -b) I n c r e a s e d A v a i l a b i l i t y The absence o f the on-board i n t e r n a l c o m b u s t i o n e n g i n e i n h e r e n t w i t h a d i e s e l l o c o m o t i v e w i l l i n c r e a s e the a v a i l a b i l i t y o f the e l e c t r i c l o c o m o t i v e when compared t o the d i e s e l . The e l e c t r i c w i l l not r e q u i r e as much r u n n i n g r e p a i r s and s e r v i c i n g - f u e l i n g , o i l changes, e t c . T h i s . i n c r e a s e i n a v a i l a b i l i t y w i l l have the e f f e c t o f r e d u c i n g t h e number o f e l e c t r i c l o c o m o t i v e s r e q u i r e d below t h a t d e t e r m i n e d by t h e s t r a i g h t e l e c t r i c t o d i e s e l l o c o m o t i v e t r a c t i v e e f f o r t c o m p a r i s o n . F i g u r e 1 0 i l l u s t r a t e s t he e f f e c t on t h e , p r o j e c t ' s c o s t s f o r the f o l l o w i n g p e r c e n t a g e i n c r e a s e i n e l e c t r i c l o c o m o t i v e a v a i l a b i l i t y : ^ A - 5 % B - 1 1 % ( r e f e r e n c e ) • c - 1 5 % The v a r i a t i o n i n t h e p r o j e c t e d f e a s i b i l i t y r e t u r n s i s n o t s u b s t a n t i a l , but the a b s o l u t e number and t o t a l c o s t o f the e l e c t r i c l o c o m o t i v e s r e q u i r e d t o h a n d l e 6.. Pan-Technology C o n s u l t i n g C o r p o r a t i o n , . C o s t - E f f e c t i v e n e s s Review o f R a i l r o a d E l e c t r i f i c a t i o n , A p r i l , 1973. . P r e s e n t V a l u e 175 ' -. .' 170 165 -16 0 15 5 -150 145 -140 135 -13 0 -FIGURE 10 SENSITIVITY OF COSTS TO AN  INCREASED AVAILABILITY OF  ELECTRIC LOCOMOTIVES ( . $~MILLIONS ) .  86 -• * » • A C. E L E C T R I C • o 34 » • ± 12 5: — I — I — I — ! — ! — I — I — I — I — i — I — i — I — 1 --I 1977 1979 1931 1983 i 9 8 5 1907 1989. 1991 Y e a r . the projected t r a f f i c l e v e l s depends on t h i s v a r i a b l e . For example, f o r the CN l i n e i n the study base year: Increase Number of Elec- E l e c t r i c Loco-A v a i l a b i l i t y t r i e Locomotives motive C a p i t a l ' . required cost  5 +4 + $ 3 , 0 0 0 , 0 0 0 11(reference) - -15 - 3 - $ 2 , 2 5 0 , 0 0 0 c) E l e c t r i c Locomotive Purchase Cost As an e l e c t r i c locomotive i s not currently i n production by a North American manufacturer, the e l e c t r i c locomotive purchase cost i s only an estimate. The actual cost to a railway w i l l depend on the number of locomotives purchased and whether the manufacturer has i n i t i a t e d a f u l l scale production l i n e with the intention of s e l l i n g to many r a i l r o a d s . The large number of d i e s e l locomotives produced annually give economics of scale that may not be available i n the production of e l e c t r i c locomotives. For the purposes of t h i s analysis, i t was assumed 88 -t h a t an e l e c t r i c locomotive would cost $750,000^ and a d i e s e l would cost $440,000, i n the study base ye a r . Figure 11 i l l u s t r a t e s the e f f e c t on the e l e c t r i f i c a t i o n p r o j e c t ' s cost present values I f the e l e c t r i c locomotive v/ere to cost: % Change i n E l e c t r i f i c a t i o n Locomotive Cost Costs (1977) A - 25% higher($93?,500) +8% B - Reference C - 25% lower ($5^2,500) -8% The e f f e c t on the o v e r a l l p r o j e c t r e t u r n of t h i s investment parameter i s s i g n i f i c a n t and should warrant d e t a i l e d a n a l y s i s i n any e l e c t r i f i c a t i o n study. The e l e c t r i c locomotive purchase cost i n 1977 f o r the CM l i n e s t u d i e d would be approximately $57 m i l l i o n . 4 . 4 . 2 . E l e c t r i f i c a t i o n Fixed F a c i l i t i e s The e l e c t r i f i c a t i o n f i x e d f a c i l i t i e s c o n s t r u c t i o n cost i s the major c a p i t a l investment i n an e l e c t r i f i c a t i o n ?. An i n t e r n a l CN estimate f o r a short production run (i n c l u d e s f e d e r a l s a l e s t a x ) . ... - 89 -'resent FIGURE 11 Value . SENSITIVITY QF COSTS TO THE 'ELECTRIC LOCOMOTIVE  1 7 5 - PURCHASE COST 1 ( $ MILLIONS^" .70 D I E S E L 1 6 5 16 0 -1 5 5 -•A • * / E L E C T R I C * * . «C 150 145 -140 -13 5 -130 -1 2 5 — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | 1.977 1979 .1931 1933 1985 19 3 7 1 989. 1991 Year' - 9 0 -p r o j e c t . Again, since no large scale e l e c t r i f i c a t i o n project has recently been undertaken i n North America, the construction figures must be based on European experience. The e l e c t r i f i c a t i o n fixed, f a c i l i t i e s investment has two main components: a) the construction cost b) the construction period and staging a) Construction Cost The construction costs used i n t h i s analysis are those estimated for mainline railway e l e c t r i f i c a t i o n i n the 8 United States. The study base year construction costs u t i l i z e d were: .' • Cost per mile of catenary construction $55»000 Cost per mile of substation construction $12,000 Cost per mile of communication . interference prevention $ 7,000 Cost per mile of si g n a l construction $12,000 The t o t a l estimated fixed f a c i l i t y cost for the CN l i n e studied was approximately $ 7 5 m i l l i o n 8. Pan-Technology Consulting Corporation, C o s t - E f f e c t i v e -ness of Railroad E l e c t r i f i c a t i o n , A p r i l 1973. - 91 -Figure 12 i l l u s t r a t e s the s e n s i t i v i t y of the projected e l e c t r i f i c a t i o n i n t e r n a l rate of return f o r : A - a 25% increase i n construction costs B - reference C - a 25% decrease i n 'construction costs. The physical t e r r a i n and a c c e s s i b i l i t y of the study l i n e w i l l have a s i g n i f i c a n t e f f e c t on construction costs. Consequently, a f t e r using l i t e r a t u r e figures to assess whether a more detailed study i s warranted, i t i s imperative that a comprehensive engineering study be completed on the actual study l i n e to accurately determine the fixed f a c i l i t y construction costs. These costs make up a major c a p i t a l investment component of the e l e c t r i -f i c a t i o n project and t h e i r determination d i r e c t l y influences the o v e r a l l accuracy and usefulness of the study. b) Construction period and staging In a cash flow analysis, the staging of the c a p i t a l outlays w i l l have an e f f e c t on the o v e r a l l project cost present value. The longer the construction period, and the longer the c a p i t a l outflows i n the i n i t i a l years, the higher the e l e c t r i f i c a t i o n cost. Construction money FIGURE 12 . . . - 92 -'resent SENSITIVITY OF COSTS TO.THE -Valup • FIXED FACILITIES : CONSTRUCTION COST ( $ MILLIONS ) 75 -17 0 16 5 -16 0 .5.5 150 145 , -I I I ! 140 -13 5 -130 -* D I E S E L .A ' • * • * • '. E L E C T R I C • • C 125 I - - I - - I — !— ! — I — I — — I — I — I --1 — I— I 19 77. 1979 .1981 19 83 198.5 198 7 . 1 9 8 9 199 1 'Year; - 93 -i s being spent, but, as e l e c t r i c locomotives are not yet operating on. the l i n e , t h e i r lower operating costs are not being r e a l i z e d . Figure 13 i l l u s t r a t e s the s e n s i t i v i t y of the e l e c t r i f i c a t i o n f e a s i b i l i t y to three construction formats: A B C Construction period 4 3 3 Annual construction 30 50 20 percentage 30 30 50 30 20 30 ': 10 (reference) Although B and C have the same construction period, the requirement f o r increased expenditure i n the f i r s t construction year of B compared to C increases i t s costs. Again, the lengthening of the construction period i n example A increases the e l e c t r i f i c a t i o n cost. The model user may be able to determine his i n d i v i d u a l optimum construction period and staging by possibly trading o f f a s l i g h t project return i n response to c a p i t a l investment p r i o r i t i e s . For example, i t may be to the user's benefit to lengthen the construction period. This v/ould increase the o v e r a l l project cost but i t could enhance the corporate p o s i t i o n by reducing c a p i t a l require-ments i n any one year.. Present Value '. 1 7 5 -FIGURE 13 SENSITIVITY OF COSTS TO THE  CONSTRUCTION PERIOD AND ANNUAL CONSTRUCTION PERCENTAGE . ( $ MILLIONS T _ 94 -170 -165 V D I E S E L 160 .A "* ' B E L E C T R I C . 15 5 -.15 0 1.4.5 -1 4 0 -13 5 -130 1 ? 5 19 77 197 9 1901 19 33 198 5 19 07 1 98 9 1991 Year - 9 5 -4.5. T r a i n Speed and Line Capacity The capacity of a railway l i n e i s dependent to a great extent on the speed of the t r a i n s operating over that l i n e . I f the t r a i n speed i s not presently being r e s t r i c t e d by physical constraints, e l e c t r i c locomotives, with t h e i r s i g n i f i c a n t l y greater high speed c a p a b i l i t y compared to d i e s e l s , may be able to increase average t r a i n speed and hence l i n e capacity. Many North American mainline routes w i l l be reaching capacity r e s t r i c t i o n s within the forseeable future. This w i l l require :the use of increased t r a i n speed or extensive track duplication, . For purposes of t h i s analysis, i f i t i s assumed that t r a i n s are running below the maximum average speed dictated by ph y s i c a l constraints, t r a i n speed may be increased by the addition of more d i e s e l locomotives. This w i l l increase the t r a c t i v e e f f o r t and horsepower available at higher speeds (Figure 5 ) and so allow faster t r a i n s . The increased t r a i n speed, and hence higher l i n e capacity, w i l l have a s i g n i f i c a n t e f f e c t on e l e c t r i -f i c a t i o n f e a s i b i l i t y . Their f a s t e r acceleration and - 96 -greater t r a c t i v e e f f o r t at high speeds increase the attractiveness of e l e c t r i c locomotives. Figures 14 and 15 i l l u s t r a t e the s e n s i t i v i t y of e l e c t r i f i c a t i o n f e a s i b i l i t y to: Figure Ik - a 25% increase i n the number of d i e s e l locomotives per t r a i n Figure 15 - a 25% decrease i n the number of d i e s e l locomotives per t r a i n . In 1977 there i s a $ 3 3 m i l l i o n difference, or a hk% increase from the reference, between the e l e c t r i c and d i e s e l locomotive costs i f there i s a 25% increase i n the number of d i e s e l locomotives per t r a i n . S i m i l a r l y , the d i e s e l and e l e c t r i c cost difference decreases by approximately 40% i f there i s a 25% decrease i n the number of d i e s e l locomotives per t r a i n . I f i t i s also assumed that the required number of e l e c t r i c t o ' d i e s e l locomotives w i l l be lower at the higher t r a i n speeds, the e l e c t r i f i c a t i o n f e a s i b i l i t y w i l l increase to that i l l u s t r a t e d i n Figure 1 6 . The proje c t i o n assumes that the average number of die s e l s per t r a i n w i l l be increased 25% compared to the reference, and that one e l e c t r i c w i l l replace 2 . 5 diesels (the reference assumes Present Value . 20 0 -FIGURE Ik  SENSITIVITY OF COSTS TO A  2 5 % INCREASE IN DIESEL  LOCOMOTIVES PER TRAIN . ' ( $ MILLIONS ) 97 -DIESEL 190 -18 5 180 17! 170 -• E L E C T R I C & • ~f jSc rjc' rft /# A ft • $ * jis * DIESEL 165 160 -155 -.150 -14 5 -E L E C T R I C 1977 1979 1981 1983 1905 1987 1989 1991 Year Present Value 170 -FIGURE 15  SENSITIVITY OF COSTS TO A 25 % DECREASE IN.DIESEL  LOCOMOTIVES PER TRAIN . ( $ MILLIONS )' - 98 -if if • if '• if if * •• DIESEL 165 -160 -155 -50 145 -140 -ELECTRIC * * * 9 * # DIESEL 135 -130 - ELECTRIC 125 12 0 • • » 1977 1979 1931 1.933 1935 1987 1989 1991 Year Present Value 200 --FIGURE'-16 SENSITIVITY OF COSTS TO AN . . INCREASE JIM iHii^gZ^EZ^I^^-^ f R A l t T A l ^ R S D U C T I O N IN EQUATION,.OF "ELECTRIC TO DIESEL LOCOMOTIVES _____ ("| MILLIONS ) - 99 DIESEL 190 -185 180 -175 -• • ELECTRIC 170 -. I ,-ie. * * * .* » v t- DIESEL 16 5 160 -I i * ELECTRIC 155 -15 0 -14 5 - « *•. J I __ | __ j I I j - - I I j J j J I I j 1977 1979 1981 1983 1985 1987 1989 1991 Year - 100 a r a t i o of 1:2). The difference i n d i e s e l and e l e c t r i c locomotive t o t a l costs i n 197? w i l l increase approximately 100% from the reference under these assumptions. The above projections don't allow f o r increased car u t i l i z a t i o n with higher t r a i n speed and the d e f e r r a l of track d u p l i c a t i o n costs. Consequently, i t may be seen that e l e c t r i f i c a t i o n f e a s i b i l i t y may be s u b s t a n t i a l l y increased i f the study l i n e i s ne'aring capacity and the p h y s i c a l speed constraints have not been attained. Conversely, i f the study l i n e i s nearing capacity, and the physical constraints do not allow increased t r a i n speed, the necessity for track d u p l i c a t i o n w i l l lower e l e c t r i f i c a t i o n attractiveness. The new track would have to be e l e c t r i f i e d , increasing f i x e d f a c i l i t i e s construction cost, and lowering the project's p o t e n t i a l return on invested c a p i t a l . Hence, the l i n e ' s capacity l i m i t a t i o n , i t s projected attainment, and the possible solutions, must be c a r e f u l l y examined during an e l e c t r i f i c a t i o n f e a s i b i l i t y study. - 101 -The necessity f o r plant changes, such as constructing double track, may be introduced into the model by changes i n ce r t a i n of the input parameters. For example, the e f f e c t on railway e l e c t r i f i c a t i o n feas-i b i l i t y of double tracking a l l or portions of the l i n e may be assessed by changing the route input information to r e f l e c t anticipated double track mileage. Similar changes may be made i n the input t r a i n parameters to asc e r t a i n the e f f e c t on project f e a s i b i l i t y of operating practice v a r i a t i o n s ( t r a i n s i z e , e t c . ) . 4.6. E s c a l a t i o n and F i n a n c i a l Considerations Provision has been made i n the computer model f o r the annual escalation or growth of many of the input parameters. The user may, by varying these percentages, evaluate the s e n s i t i v i t y of the return from the e l e c t r i -f i c a t i o n project to several annual growth projections. This section w i l l examine the s e n s i t i v i t y of an e l e c t r i -f i c a t i o n project to: 1) T r a f f i c growth rates 2) Discount rates - 1 0 2 -4 . 6 . 1 . T r a f f i c Growth Rates Figures 17 and 18 i l l u s t r a t e the s e n s i t i v i t y of an e l e c t r i f i c a t i o n project's f e a s i b i l i t y to: Figure 17 - a 25% increase i n projected t r a f f i c growth rates Figure 18 - a 25% decrease i n projected t r a f f i c growth rates. As may be anticipated, these assumptions do have a s i g n i f i c a n t e f f e c t on the respective locomotive costs. The difference i n the 1977 d i e s e l and e l e c t r i c locomotive costs increase and decrease approximately 50% under each assumption. The optimum e l e c t r i f i c a t i o n year varied by one year from the reference under each assumption. 4 . 6 . 2 . Discount Rates As indicated previously, the discount rate chosen f o r the present value calculations should r e f l e c t the firm's marginal return on invested c a p i t a l . The choice of the rate to be used should be examined i n depth as i t has a s i g n i f i c a n t e f f e c t on which year the minimum cost w i l l be attained. Figures 19.and 20 present the e f f e c t of a 15% and 25% discount rate on the respective locomotive costs. As the rate i s increased, the optimum year f o r Present Value 200 -FIGURE 1 7 SENSITIVITY OF COSTS TO A 2 5 % HIGHER TRAFFIC GROWTH - '(• $ MILLIONS ) - 1 0 3 -190. -# # * DIESEL 135 180 175 .70 ELECTRIC * $ * # * * . * . DIESEL 165 160 -15 5 15 0 * ELECTRIC 14 5 __|__|-_|__|__|__|__|-_|__| __| — | 1977 1979 1981 1983 1935 1937 1939 1991 Year . FIGURE 18 - 104 -Present SENSITIVITY OF COSTS TO A. Value 2 5 % LOWER TRAFFIC GROWTH 170 - • ( $ MILLIONS ) 165 -160 -:LECTRTC 155 -150 -at D I E S E L 140 - ELECTRIC 135 -130 ] 20 1977 1979 .1981 1933 1985 1987. .1989 1991 Year FIGURE 1 9 . P r e s e n t SENSITIVITY OF COSTS TO A "value ••• 1 5 % DISCOUNT RATE . . . ( $ MILLIONS 1 •: 250 - 1 0 5 -O *> O O Q O © 9 6 0 ' « * © © *» 220 -215 I 210 -20 5 -200 -195 -190 135 -180 -DIESEL ELECTRIC 175 — | — I -- I — I — I — I -- I — I — I — I -- I — | — | — ! — | 1977 1979 1901 1933 1985 1987 1989 1991 . Year • Present Value 150 -FIGURE 20 SENSITIVTTT'0F~G05TS TO A  2 5 % DISCOUNT RATE . ( f MILLIONS"! i o 6 -145 -140 -135 130 -125 O 0. O O 0 0 0 O O o o o o o o DIESEL 120 .15 -110 -I 10 5 ELECTRIC o o © ,00 1977 1979 -1981 1933 1935 .1937 1989. ,1991 Year •- 10? -the i n i t i a t i o n of e l e c t r i c locomotives becomes further i n the future. This i s caused by a decrease i n the r e l a t i v e attractiveness of the e l e c t r i f i c a t i o n projects at higher marginal investment returns. l!-.7» Diesel Locomotive Salvage Value One of the requirements of the computer model i s an input of the book or salvage value of the locomotives operating on the l i n e i n the study base year.. This value i s then increased by locomotive purchases and decreased by s t r a i g h t l i n e depreciation each year to r e f l e c t the aging of the locomotives. This adjusted d i e s e l locomotive salvage value i s debited from the e l e c t r i f i c a t i o n costs i n the year previous to service i n i t i a t i o n . Figure 21 i l l u s t r a t e s the e f f e c t on the e l e c t r i f i c a t i o n costs of: A - 33% lower i n i t i a l salvage value B - reference C - 33% higher i n i t i a l salvage value In 197? the difference between the d i e s e l F I G U R E 21 1 n P Present D I E S E L L O C O M O T I V E . . - . I U 0 . ~ vaiue . • • . S A L V A G E V A L U E .. , 7 5 • ' _ '.. ( $ M I L L I O N S 7 170 -••: v: i : 165 16 0 I 140 13 5 -130 -12 5 * DIESEL *Q ELECTRIC. 15 5 - * 15 0 - . . « * * j * • 145" -.. •* • » * > 1977 1979 1931 , 1983 1935 1987 1989 1991 Year ~ 1 0 9 -and locomotive costs i s decreased or increased by approximately 30% from the reference f o r the r e s p e c t i v e assumptions. This assumption should be c a r e f u l l y examined i f the p r o j e c t appears to be marginal. 4.8. Worst Case The previous analyses have v a r i e d one or a t the most two parameters from t h e i r reference v a l u e s . F i g u r e 22 i l l u s t r a t e s the d i e s e l and e l e c t r i f i c a t i o n costs i f e l e c t r i f i c a t i o n i s evaluated with the components as the l e a s t a t t r a c t i v e t o e l e c t r i f i c a t i o n : - 60% equation of e l e c t r i c to d i e s e l locomotives - 50% equation of e l e c t r i c to d i e s e l locomotive maintenance costs - 2.00/i / KWH e l e c t r i c power costs - 0% e s c a l a t i o n i n d i e s e l f u e l p r i c e s - 5% increased a v a i l a b i l i t y of e l e c t r i c locomotives - $ 9 3 7 , 5 0 0 e l e c t r i c locomotive cost - 25% higher f i x e d f a c i l i t i e s c o n s t r u c t i o n cost Present Value 13 5 -130 175 170 -16 5 .16 0 155 15 0 145 140 -, FIGURE 22 . ELECTRIFICATION WORST CASE ( $ MILLIONS ) ~ 110 -* # * ' ' sjc £ * DIESEL ELECTRIC ELECTRIC DIESEL L35 — I — I — | — | — | — | — | — | — I -- |-- I — i -- I — I — I 1-977- 1979 1981 1983 1985 1987 1939 1991 - Year - I l l - 2 5 % lower t r a f f i c growth - 3 3 % decrease i n i n i t i a l d i e s e l salvage value In t h i s case i t i s obvious that the e l e c t r i f i c a t i o n would be less a t t r a c t i v e than the continued use of d i e s e l locomotives. Consequently, the parameters have to be c a r e f u l l y evaluated as t h e i r cumulative e f f e c t on the project f e a s i b i l i t y may be s u b s t a n t i a l . 4.9. Cash Flow Duration The previous analysis has assumed a cash flow period of 3 5 years. To evaluate the s e n s i t i v i t y of the r e s u l t s to the l a t e r year cash flows, Figure 2 3 presents the d i e s e l and locomotive costs i f a 1 5 year time horizon i s u t i l i z e d . The minimum present value s t i l l occurs i n 1 9 7 9 , but the 1977 difference i n d i e s e l and electric, locomotive costs has been reduced approximately 17% from the reference. The e l e c t r i f i c a t i o n i s s t i l l the most a t t r a c t i v e a l t e r n a t i v e , but the r e l a t i v e attractiveness has been reduced. The r i s e of the e l e c t r i c locomotive costs above those of the d i e s e l a f t e r 1 9 8 5 i s caused by the assumed Present Value 175 -170 165 160 155 150 145 A O 135 1.3 0 -FIGURE 2 3  SENSITIVITY OF COSTS TO A 15 YEAR CASH FLOW : ' ( $ MILLIONS ) - 112 DIESEL ELECTRIC > * * A ELECTRIC DIESEL 12 5 I — ] | — I — | --19 77 1979 1981. 1933 1935 1987 1989 1991 Year -. 113 -short time horizon. The model i s including the large, c a p i t a l costs required for : the e l e c t r i f i e d operation, but benefit i s not being included for the "lower operating costs of the e l e c t r i c locomotives. The e l e c t r i c locomotive costs drop a f t e r 1989 to approach those of the d i e s e l as, a f t e r t h i s date, the l i n e would be e l e c t r i f i e d beyond the 1-5 year time horizon. Only the d i e s e l costs are being u t i l i z e d i n the cash flow a n a l y s i s . - 114 CHAPTER : V  CONCLUSION 5.1. Report Summary The study has developed a comprehensive computer-, based "Railway E l e c t r i f i c a t i o n Economic F e a s i b i l i t y Model" t h a t may be p r a c t i c a l l y used to determine the p o t e n t i a l r e t u r n on invested c a p i t a l i f a r a i l l i n e segment were to be e l e c t r i f i e d . The model i s developed i n a manner t h a t a l l o w s v a r i o u s l i n e and locomotive op e r a t i n g parameters to be e a s i l y examined to determine the r e l a t i v e s e n s i t i v i t i e s of t r a f f i c mix ( f r e i g h t , express, and passenger) and growth p r o j e c t i o n s , o p e r a t i n g and locomotive c h a r a c t e r i s t i c s , c a p i t a l requirement and s t a g i n g , f u e l c o s t , and p r o j e c t e d labour and c a p i t a l i n f l a t i o n r a t e s on the p r o j e c t v i a b i l i t y . As the f i r s t stage i n an e l e c t r i f i c a t i o n economic f e a s i b i l i t y a n a l y s i s , the model may be employed, using . rough t r a f f i c , c a p i t a l , and annual saving p r o j e c t i o n s to determine those l i n e s which show s u f f i c i e n t p o t e n t i a l - 115 -return ori invested c a p i t a l to j u s t i f y more det a i l e d engineering, marketing, and operating studies. The r e s u l t s of these detailed studies can then be used i n the Model to further r e f i n e the p o t e n t i a l return on invested c a p i t a l and determine the optimum year e l e c t r i f i c a t i o n w i l l become economically viable. The developed computer model was tested and run using data from a Canadian National Railways Mainline segment. Best estimates were developed f o r the operating ' c h a r a c t e r i s t i c s of e l e c t r i c locomotives on t h i s l i n e to determine i f e l e c t r i f i c a t i o n would be economically f e a s i b l e . I t was found that e l e c t r i f i c a t i o n would be the most f i n a n c i a l l y viable for t h i s test segment i n 1979 i f a 20% discount rate was used i n the present value cost c a l c u l a t i o n s . The calculated e l e c t r i f i c a t i o n i n t e r n a l rates of return on invested c a p i t a l was approximately 25% i n 1 9 7 7 . The operating c h a r a c t e r i s t i c s of e l e c t r i c locomotives on the CN l i n e were used as a reference to determine t h e i r r e l a t i v e e f f e c t on the e l e c t r i f i c a t i o n economic f e a s i b i l i t y . An appreciation was obtained of the r e l a t i v e s i g n i f i c a n c e of the p r i n c i p a l variables on - 116 -t h e p r o j e c t f e a s i b i l i t y i n o r d e r t o judge t h e amount o f d e t a i l e d s t u d y t h a t s h o u l d be a l l o c a t e d t o the d e t e r m i n a t i o n o f t h e r e s p e c t i v e parameter v a l u e s i n a p r a c t i c a l a p p l i c a t i o n . The r e s u l t s o f t h e t e s t s made u s i n g the.CN l i n e d a t a f o r the s t u d y a r e summarized as f o l l o w s : - . ( 1 ) n e t l o c o m o t i v e maintenance s a v i n g s and n e t f u e l s a v i n g s comprise a p p r o x i m a t e l y 58% and 32% r e s p e c t i v e l y o f the g r o s s a n n u a l o p e r a t i n g s a v i n g s w i t h e l e c t r i f i c a t i o n s . . T r a c k m a intenance, l o c o -m o t i v e wage w e i g h t d i f f e r e n t i a l , and c a t e n a r y maintenance each c o n s t i t u t e l e s s t h a t 10% o f t h e g r o s s a n n u a l e l e c t r i f i c a t i o n o p e r a t i n g s a v i n g s . (2) t h e e l e c t r i c t o d i e s e l l o c o m o t i v e e q u a t i o n f a c t o r has a s i g n i f i c a n t e f f e c t on t h e e l e c t r i f i c a t i o n f e a s i b i l i t y . T h i s e q u a t i o n a f f e c t s b o t h t h e a n n u a l e l e c t r i c l o c o m o t i v e maintenance c o s t s and t h e e l e c t r i c l o c o m o t i v e i n v e s t m e n t r e q u i r e m e n t . A r e f e r e n c e e q u a t i o n o f e l e c t r i c t o d i e s e l l o c o -m o t i v e s a t 20 MPH, o f 50% was u t i l i z e d i n the t e s t i n g o f the model,. A l o w e r t r a i n speed W o u l d r e s u l t i n ah. e q u a t i o n o f 60% o r more, w h i l e a t a - 117 -higher speed the equation could reach 40% or l e s s , As i t i s dependent on the t r a f f i c c h a r a c t e r i s t i c s ( t r a i n speed) and the physical c h a r a c t e r i s t i c s of the l i n e being studied, the determination of i t s value should be studied i n considerable depth, (3) A change i n the equation of e l e c t r i c to d i e s e l locomotive maintenance costs from 30% to 50% only r e s u l t s i n a change i n the e l e c t r i f i c a t i o n costs of approximately 4%, (k) a study base year e l e c t r i c power cost of 2.00/ / KWH would r e s u l t i n an increase i n e l e c t r i f i c a t i o n costs of approximately 6% when compared to the reference cost estimate of 1.25,4 / KWH. (5) the projected r e l a t i v e escalation i n energy p r i c e s has a substantial e f f e c t on the e l e c t r i f i c a t i o n project f e a s i b i l i t y . For example, a 6% r e l a t i v e difference i n d i e s e l and e l e c t r i c power cost escalation r e s u l t s i n a 9% higher d i e s e l c o s t , i n 1977 when compared to the reference e s c a l a t i o n difference of 3% (6) i n the study base year, a change i n the e l e c t r i c to d i e s e l locomotive increased a v a i l a b i l i t y from - 118 -5 to 15% r e s u l t s i n a decrease i n e l e c t r i c loco-motive investment of approximately $ 5 * 2 5 0 , 0 0 0 ( 1 1 % ) . ( 7 ) a 25% increase or decrease i n the estimated e l e c t r i c locomotive purchase cost w i l l r e s u l t i n a 8% decrease or increase i n the 1977 e l e c t r i f i c a t i o n costs. ( 8 ) the fixed f a c i l i t i e s construction costs have a very s i g n i f i c a n t e f f e c t on the e l e c t r i f i c a t i o n f e a s i b i l i t y and, as these costs vary with the physical t e r r a i n and a c c e s s i b i l i t y of the study l i n e , a comprehensive engineering study should be completed on the l i n e to accurately determine t h e i r costs and staging. (9) i f a l i n e i s reaching capacity, and t h i s capacity l i m i t a t i o n may be increased by increasing t r a i n speed, e l e c t r i f i c a t i o n attractiveness w i l l be s i g n i f i c a n t l y improved. The e l e c t r i c locomotive's superior operating c h a r a c t e r i s t i c s at high speed make i t s use es p e c i a l l y a t t r a c t i v e with high speed t r a i n s . ( 1 0 ) the choice of a discount rate has a d e f i n i t e - 1 1 9 -e f f e c t on the present value c a l c u l a t i o n s . As"the minimum present value w i l l give the best estimate of the year e l e c t r i f i c a t i o n should be i n i t i a t e d , care should be taken that the discount rate used accurately r e f l e c t s the firm's marginal return on invested c a p i t a l . 11) the study base year d i e s e l salvage value has a s i g n i f i c a n t impact on the e l e c t r i f i c a t i o n and should be c a r e f u l l y evaluated i f the project i s . marginal. - 1 2 0 -BIBLIOGRAPHY 1) A Review of Factors Influencing; Railroad E l e c t r i f i c a t i o n , Department of Transportation, Feb. 1 9 7 4 2 ) "Arizona Electr i c Line Swings Into Full-Scale Operation", International Railway Journal, May 1 9 7 4 3 ) Birch, L.W., Development in the Field of Railway  Ele c t r i f i c a t i o n , AREA Bulletin 5 8 3 .4) Bowick, P.M., The Benefits of Railway E l e c t r i f i c a t i o n , August 1 9 7 3 5) Campbell,. K . , E l e c t r i f i c a t i o n - A Time for Reappraisal, RSMA, 1974 6 ) Canadian National Railways Annual Report, 1 9 7 4 7 ) Canadian Pacific Ltd E l e c t r i f i c a t i o n Study, 1 9 7 2 8 ) Clemow, C.J., Planning for Railway Ele c t r i f i c a t i o n , 1 9 7 2 9) Cost - Effectiveness Review of Railway E l e c t r i f i c a t i o n , Department of Transportation, April 1 9 7 3 10) Cooper, B.K., "Developments in Overhead Equipment", Modern Railways, May 1 9 7 4 1 1 ) Davis W.J., Train Resistance Formulas, General Electric Company, November 1 9 2 6 ' : ~~• . 1 2 ) "Electric Traction on the South African Railways", Modern Railways, September 1 9 7 3 1 3 ) "Electrification", Progressive Railroading, May-June 1 9 7 3 14) "Elec t r i f i c a t i o n - The New Technology", Modern  Railways, May 1 9 7 1 1 5 ) Fisher, G.T., Testing of High Performance Electric  Locomotives, ASME/IEEE, March 1 9 7 2 1 6 ) Foley, E.P., Making An Economic Evaluation of  Railroad E l e c t r i f i c a t i o n , RSMA 1 9 7 4 1 7 ) Hamilton, S .G. , Railroad E l e c t r i f i c a t i o n Today, RSMA 1 9 7 4 . - 121 -18) Kamoton, R.N., Financing; Railroad E l e c t r i f i c a t i o n , RSMA, 1974 19) Kichenside, G.M., "Resignalling Complete", Modern  Railways, May 1974 20) K l e i n , R.t Railroad E l e c t r i f i c a t i o n , ASCE/EIC/RTAC Joi n t Transportation Engineering Meeting, July 1974 21) " 5 0 KV For I l l i n o i s Central Gulf", Modern Railways, May 1974 22) "Locomotives : A S h i f t i n the Balance of Power", Railway Age, January 1973 2 3 ) Lukasiewicz, J., Energy - Based R a t i o n a l i z a t i o n of  Transportation i n North America, ASCE/EIC/RTAC Jo i n t Transportation Engineering Meeting, July 1 9 ? 4 24) Lyon, E.C., Planning For Railway E l e c t r i f i c a t i o n , September 1973 25) Magnusson, A., Adhesion Tests With A T h y r i s t o r . Locomotive, February 1971 26) "Main Line E l e c t r i f i c a t i o n " , Modern Railroads, May 1971 27) Mao, J.C.T., Quantitative Analysis of F i n a n c i a l  Decisions, 19o"9 2 8 ) Perren, 3 . , "Background To The New T r a i n Service", Modern Railways, May 1 9 ? 4 29) Perren, 3 . , "The New Timetable In Close-up", Modern . Railways, May 1974 30) Railroad E l e c t r i f i c a t i o n , Volume 1 , Edison E l e c t r i c I n s t i t u t e , 1970 31) Railroad E l e c t r i f i c a t i o n , Volume 2 , Edison E l e c t r i c I n s t i t u t e , 1970 32) Railroad E l e c t r i f i c a t i o n , Volume 3 , Edison E l e c t r i c I n s t i t u t e , 1970 3 3 ) "Riding Swiss Ra i l s : An E l e c t r i f i n g Saga", IESE  Spectrum, August 1974 - 122 ~ 34) Ross, B.A., E l e c t r i c Energy For Transport In The Immediate Future., RSMA 19?S ~ ~~ ~ . 3 5 ) Ross, B.A., Young, H.J., Mainline Railroads - An  Opportunity For E l e c t r i f i c a t i o n , ASME 1 9 ? 2 3 6 ) Scott, M., "Energy Consumption On E l e c t r i c Railways", Modern Railways, December 1973 3?) Shedd, T., "Hot Line To The Future", Modern'Railways, A p r i l 1 9 7 4 3 8 ) Suddards, A . D " C a t e n a r y For Today's E l e c t r i c Railways", Railway Management Review, 1971 39) Wefers, K.J., E t t l i n g e r , L.E., Modern Railroad E l e c t r i f i c a t i o n At Muskingum, ASME, Feb 1 9 7 1 40) "Why Is There Renewed Interest In U.S. E l e c t r i f i c a t i o n ? " Railway Age, June 1973 - 1 2 3 -APPENDICES 1 r 124 -APPENDIX Al DERIVATION OF THE GRADE FACTOR • The following i s a copy from a CNR i n t e r n a l publication:-' The t o t a l r i s e in;feet over the run i s found. A factor c a l l e d "velocity head" H i s computed from the formula. H = 0.035V2 where V i s 1 of the maximum speed allowed on that run. H i s i n feet. Then t o t a l f a l l s l e s s than H i n value are added to one h a l f the t o t a l f a l l s greater than H. This sum i s subtracted from the t o t a l r i s e to get the "net" r i s e over that run. & 2,000 g" Then grade factor = G = m x 5,280 = m x *379 wheret g = "net" r i s e m - run i n miles A simple example may i l l u s t r a t e t h i s : l e t the run from A to B (say 3 0 miles) have r i s e s of 6 , 2 5 , 12, and 20 feet and f a l l s of 18, 40, 54, and 6 feet. Let the maximum permissible speed of the. t r a i n be. 40 M.P.H. - 125 -Now the t o t a l r i s e = 6 + 2 5 + 12 + 20 = 63 feet The " v e l o c i t y head" i s :-. H = 0 . 0 3 5 V 2 = 0.035 (f x 40)2 = 0 . 0 3 5 x 900 = 3 1 . 5 feet (say 32 feet) Now there are two f a l l s less than H = 3 2 '» namely 18 and 6, and two f a l l s greater than H = 3 2 ' , namely 40 and 5 4 . Hence "net" f a l l i s : -18 + .6 + (£ x 40) + (| x 54) = ?1 f e e t . .•. the net r i s e over the whole run i s g = 63 - 71 = - 8 feet w. G = grade factor'= £ x 0 . 3 7 9 m = z 8 x 0 . 3 7 9 30 X = - 0 . 1 0 1 1 The v e l o c i t y head factor i s introduced because of the fact that downgrades of f a l l s help a t r a i n but on very long or steep grades the t r a i n must brake and; the f u l l e f f e c t i s not f e l t - f a l l s greater than the . v e l o c i t y head are taken as only contributing one half - 1 2 6 -of t h e i r value. G, of course, may "be a p o s i t i v e number, depending on whether the net r i s e g i s p o s i t i v e or negative •• $ Per 100 Miles . NUMBER 1 gr 17 2 " 3 • ." , 4 " 5 " 1 2000 HP 2 " 3 ; " 4 .-II-•5 " 1 SD 40 2 " 3. " 4 ,'• " 5 WT (000) 230 460 690 920 . 1,150 257 514 771 1,028 1,285 388 776 1,164 1,552 1,940 ATP. GR. LAKES, ST. LAW. PASS . THRU WAY PR.-& MTN.- EAST MTN - WEST 29.85 30.39 30.84 31.39 31.83 29.96 30.51 31.05 31.61 32.16 30.17 31.05 31.94 32.82 33.59 35.34 36.49 37.49 38.73 39.73 .35.54 36.74 37.98 39.23 40.48 35.99 37.98 39.98 41.98 43.73 36.75 37.90 38.90 40.14 .41.14 36.95 38.15 39.39 40.64 41.89 37.40 39.39 41.39 43.39 45.14 PASS 30.72 31.26 31.71 32.26 32.70 30.83 31.38-31.92 32.48 33.03 31.04' 31.92 32.81 33.69 34.46 TRU 35.34 36.49 37.49 38.73 39.73 35.54 36.74 37.98 39.23 40.48 35.99 37.98 39.98 41.98 43.73 WAY 36.76 37.91 38.91 40.15 41.15 36.96 38.16 39.40 40.65 41.90 37.41 39.40 41.40 43.40 45.15 PASS 31.04 31.58 32.03 32.58 33.02 31.15 31.70 32.24 32.80 33.35 31.36 32.24 33.13 34.01 34.78 THRU.. 35.72 36.87 37.87 39.11 40.11 35.92 37.12 .38.36 39.61 40.86 36.37 38.36 40.36 42.36 44.11 WAY 37.14 38.29 39.29 40.53 41.53 37.34 38.54 39.78 41.03 42.28 37.79 39.78 41.78 43.78 .45.53 COAL BR. 37.38 38.53 39.53 40.77 41.77 37.58 38.78- . 40.02 41.27 . 42.52 38.03 40.02 42.02 .44.02 45.77 _ Basic daily rate for yard eng. i s $46.06 plus $1.17 for 1 additional unit and 2.34 for 2 or more units. This also applies to transfer service.. - 1974 wage o'head ratio 1.26129 • ' . - Thru wages for wts over 1,000,000 lb will be calculated at $.25 for each category .of 50,000 lbs based on rate for 1,000,000 lbs as follows:.. Atl. Gr. Lakes & St. Law. 38.98 Pr. & Mtn. East 38.98 Mtn. West 39.36 CN: . . .•• .. Costing Services Montreal, 12 February 1974 . . . - 128 ~ APPENDIX A3 THE COMPUTER MODEL AND OUTPUT DATA ' A3»l» O p e r a t i o n o f t h e C o m p u t e r M o d e l The M a i n l i n e R a i l w a y . E l e c t r i f i c a t i o n F e a s i b i l i t y M o d e l i s w r i t t e n i n F o r t r a n IV a n d c a n t h u s be r u n o n m o s t l a r g e c o m p u t e r s w i t h a F o r t r a n I V c o m p i l e r . The m a i n p r o g r a m c o n s i s t s o f 1109 s o u r c e s t a t e m e n t s , 1574 c a r d s a n d r e q u i r e s 145,138 B y t e s o f memory. The p r o g r a m was w r i t t e n a n d t e s t e d o n a n IBM S y s t e m 370 M o d e l 168 c o m p u t e r o p e r a t e d b y t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a . A l i s t i n g o f t h e m a i n p r o g r a m d e c k may be f o u n d i n A p p e n d i x •A5.-The c o m p u t e r m o d e l f u n c t i o n s e s s e n t i a l l y i n t h e o r d e r t h e F e a s i b i l i t y M o d e l was d e s c r i b e d i n C h a p t e r I I * 1) I n p u t o f d a t a 2) D e t e r m i n a t i o n o f a n n u a l o p e r a t i n g l e v e l s 3) D e t e r m i n a t i o n o f a n n u a l o p e r a t i n g c o s t s 4) C a l c u l a t i o n o f c a p i t a l i n v e s t m e n t r e q u i r e m e n t s 5) D e t e r m i n a t i o n o f c a s h f l o w s , a n d minimum p r e s e n t v a l u e s 6) O u t p u t o f r e s u l t s - 1 2 9 -The l i s t i n g of the source program i n Appendix A5 has had topic heading cards inserted to make the computation order more re a d i l y discernable. A 3 . 2 . Input Data An i d e n t i f i c a t i o n of the input variables to the Computer Model may be found i n E x h i b i t 3» and a de t a i l e d l i s t i n g of sample data cards with column numbers i d e n t i f i e d may be found i n Appendix Ah. To reduce the necessity of repeated compiling of the main program deck, most program information i s entered on data cards. The main program deck i s large and the amount of time required for compilation makes t h i s operation r e l a t i v e l y costly i f many runs are to be made. Consequently, the main deck may be compiled, stored, and, by varying the relevant data cards and using the compiled source program, the cost of computer time may be s u b s t a n t i a l l y reduced. As many of the input data parameters, such as d i e s e l locomotive s t a t i s t i c s , may not be changed very often, the magnitude of the input data for each run i s not as onerous as i t f i r s t appears. Most of the sample data cards i n Appendix Ak have 130 EXHIBIT 3 I D E N T I F I C A T I O N OF T H E I N P U T V A R I A B L E S T O T H E COMPUTER MODEL - 131 -MICHIGAN TERMINAL SYSTEM FORTRAN GJ41336) MAIN 08-28-75 11:30:29 C loOOO C IDENTIFICATION OF INPUT VARIABLES 2.000 C 3.000 C 4.000 C ROUTE = STUDY ROUTE 5.000 C NUBSUB = NUMBER OF SUBDIVISIONS COMPRISING THE STUDY ROUTE 6.000 C SUB1 = SUBDIVISION NAME 7.000 C GTMF = ANNUAL GROSS TON MILES PER MILE OF TRACK - FREIGHT 8.000 C GTME = ANNUAL GROSS TON MILES PER MILE OF TRACK - EXPRESS 9.000 C STMLE = SINGLE TRACK MILES PER SUBDIVISION 10.000 C DTMLE = DOUBLE TRACK MILES PER SUBDIVISION 11.000 C SDMLE = SIDING TRACK MILES PER SUBDIVISION 12.000 C YOMLE = YARD TRACK MILES PER SUBDIVISION 13.000 C TGF = ANNUAL TRAFFIC GROWTH - FREIGHT 14.000 C TGE = ANNUAL TRAFFIC GROWTH - EXPRESS 15.000 C TGP = ANNUAL TRAFFIC GROWTH - PASSENGER 16.000 C MAXGTM = MAXIMUM GROSS TON MILES PER MILE OF TRACK - CAPACITY 17.000 C LIMITATION 17.000 C GTPTNF = AVERAGE GROSS TONS PER TRAIN - FREIGHT 18.000 C GTPTNE = AVERAGE GROSS TONS PER TRAIN - EXPRESS 19.000 C GTPTNP = AVERAGE GROSS TONS PER TRAIN - PASSENGER 20.000 C ESCARF = ANNUAL PROJECTED GROWTH IN NUMBER OF CARS PER TRAIN - 21.000 C FREIGHT 21.000 C ESCARE = ANNUAL PROJECTED GROWTH IN NUMBER OF CARS PER TRAIN - 22.000 C EXPRESS 22.000 C ESCARP ~ ANNUAL PROJECTED GROWTH IN NUMBER OF CARS PER TRAIN - 23.000 C PASSENGER 23.000 C ESGTCF = ANNUAL PROJECTED GROWTH IN GROSS TONS PER CAR - FREIGHT 24.000 C ESGTCE = ANNUAL PROJECTED GROWTH IN GROSS TONS PER CAR - EXPRESS 25.000 C ESGTCP = ANNUAL PROJECTED GROWTH IN GROSS TONS PER CAR - PASSENGER 26.000 C MAXWCT = MAXIMUM WEIGHT PER CAR - FREIGHT 2 7.000 C CARLF = AVERAGE LENGTH PER CAR - FREIGHT 28.000 C CARLE = AVERAGE LENGTH PER CAR - EXPRESS 29.000 C CARLP = AVERAGE LENGTH PER CAR - PASSENGER 30.000 C DULENF = AVERAGE LENGTH PER DIESEL LOCOMOTIVE - FREIGHT 31.000 C DULENE = AVERAGE LENGTH PER DIESEL LOCOMOTIVE - EXPRESS 32.000 C DULENP = AVERAGE LENGTH PER DIESEL LOCOMOTIVE - PASSENGER 33.000 C CABOSL = AVERAGE LENGTH PER CABOOSE 34.000 C SLAFAC = SLACK ACTION SIDING FACTOR 35.000 C SIDLEN = RESTRICTING SIDING LENGTH 36.000 C DUPTNF = AVERAGE NUMBER OF DIESEL UNITS PER TRAIN - FREIGHT 37.000 C DUPTNE = AVERAGE NUMBER OF DIESEL UNITS PER TRAIN - EXPRESS 38.000 C DUPTNP = AVERAGE NUMBER OF DIESEL UNITS PER TRAIN - PASSENGER 39.000 C ZMIDUF = ANNUAL NUMBER OF MILES PER DIESEL UNIT - FREIGHT 40.000 C ZMIDUE = ANNUAL NUMBER OF MILES PER DIESEL UNIT - EXPRESS 41.000 C ZMIDUP = ANNUAL NUMBER OF MILES PER DIESEL UNIT - PASSENGER 42.000 C GDUMF = PROJECTED ANNUAL GROWTH IN MILES PER DIESEL UNIT - FREIGHT 43.000 C GDUME = PROJECTED ANNUAL GROWTH IN MILES PER DIESEL UNIT - EXPRESS 44.000 C GDUMP = PROJECTED ANNUAL GROWTH IN MILES PER DIESEL UNIT - PASSENGER 45.000 C XINAV = INCREASE IN AVAILABILITY OF ELECTRIC COMPARED TO DIESEL 46.000 C LOCOMOTIVES 46.000 C REELUF = EQUATION OF ELECTRIC TO DIESEL LOCOMOTIVES - FREIGHT 47.000 C REELUE = EQUATION OF ELECTRIC TO DIESEL LOCOMOTIVES - EXPRESS 48.000 C REELUP = EQUATION OF ELECTRIC TO DIESEL LOCOMOTIVES - PASSENGER 49.000 C DLCOSF = DIESEL LOCOMOTIVE UNIT COST - FREIGHT 50.000 MICHIGAN TERMINAL SYSTEM FORTRAN GC41336) MAIN - 132 -08-2 8-75 11:30:29 C C C C C C OLCOSE = DLCOSP = ELCOSF = ELCOSE = ELCOSP = ESCDLF = C FREIGHT C ESCDLE = C EXPRESS C ESCDLP = C PASSENGER C ESCELF = C FREIGHT C ESCELE = C EXPRESS C ESCELP = C PASSENGER C DLMTCF = C DLMTCE = C DLMTCP = C ESOMCF = C FREIGHT C ESDMCE = C EXPRESS C ESOMCP = C PASSENGER C EMTF C FREIGHT C EMTE C EXPRESS C EMTP C PASSENGER C ESEMCF = C FREIGHT C ESEMCE = C EXPRESS C ESEMCP = C -PASSENGER C FUCONF C FUCONE C FUCONP C Gl C G2 C CARF C CARE C CARP C XNCF C XNCE C XNCP C ACF C ACE C ACP C WLF C WLE C WLP DIESEL LOCOMOTIVE UNIT COST - EXPRESS DIESEL LOCOMOTIVE UNIT COST - PASSENGER ELECTRIC LOCOMOTIVE UNIT COST - FREIGHT ELECTRIC LOCOMOTIVE UNIT COST - EXPRESS ELECTRIC LOCOMOTIVE UNIT COST - PASSENGER PROJECTED ANNUAL ESCALATION IN DIESEL LOCOMOTIVE COST -PROJECTED ANNUAL ESCALATION IN DIESEL LOCOMOTIVE COST -PROJECTED ANNUAL ESCALATION IN DIESEL LOCOMOTIVE COST -PROJECTED ANNUAL ESCALATION IN ELECTRIC LOCOMOTIVE COST -PROJECTED ANNUAL ESCALATION IN ELECTRIC LOCOMOTIVE COST -PROJECTED ANNUAL ESCALATION IN ELECTRIC LOCOMOTIVE COST -DIESEL LOCOMOTIVE MAINTENANCE COSTS - FREIGHT DIESEL LOCOMOTIVE MAINTENANCE COSTS - EXPRESS DIESEL LOCOMOTIVE MAINTENANCE COSTS - PASSENGER ANNUAL PROJECTED ESCALATION IN DIESEL MAINTENANCE COSTS -ANNUAL PROJECTED ESCALATION IN DIESEL MAINTENANCE. COSTS -ANNUAL PROJECTED ESCALATION IN DIESEL MAINTENANCE COSTS -EOUQTION OF ELECTRIC TO DIESEL LOCO. MAINTENANCE COSTS -EQUQTION OF ELECTRIC TO DIESEL LOCO. MAINTENANCE COSTS -EQUQTION OF ELECTRIC TO DIESEL LOCOo MAINTENANCE COSTS -ANNUAL PROJECTED ESCALATION IN ELECTRIC MAINTENANCE COSTS ANNUAL PROJECTED ESCALATION IN ELECTRIC MAINTENANCE COSTS ANNUAL PROJECTED ESCALATION IN ELECTRIC MAINTENANCE COSTS FUEL CONSUMPTION FACTOR - FREIGHT FUEL CONSUMPTION FACTOR - EXPRESS FUEL CONSUMPTION FACTOR - PASSENGER GRADE FACTOR - ONE DIRECTION GRADE FACTOR - REVERSE DIRECTION AVERAGE NUMBER OF CARS PER TRAIN - FREIGHT AVERAGE NUMBER OF CARS PER TRAIN - EXPRESS AVERAGE NUMBER OF CARS PER TRAIN - PASSENGER NUMBER OF AXLES PER CAR - PASSENGER NUMBER OF AXLES PER CAR - EXPRESS NUMBER OF AXLES PER CAR - FREIGHT CROSS SECTIONAL AREA OF CAR - FREIGHT CROSS SECTIONAL AREA OF CAR - EXPRESS CROSS SECTIONAL AREA OF CAR - PASSENGER WEIGHT OF DIESEL LOCOMOTIVE - FREIGHT WEIGHT OF DIESEL LOCOMOTIVE - EXPRESS WEIGHT OF DIESEL LOCOMOTIVE - PASSENGER 51.000 52.000 53.000 54.000 5 5.000 56o000 56o000 57.000 57.000 58.000 58.000 59,000 59. 000 60.000 60.000 61.000 61.000 62.000 63. 000 64.000 65.000 65.000 66.000 66.000 67.000 67.000 68.000 68.000 69.000 69. 000 70.000 70.000 71.000 71.000 72.000 72.000 73.000 73.000 74.000 75.000 76.000 77.000 78.000 79.000 80.000 81.000 82.000 83.000 84.000 85.000 86.000 87.000 88.000 89.000 90.000 MICHIGAN TERMINAL SYSTEM FORTRAN Gi41336) MAIN - 133 -08-28-75 11:30:29 C XNLF c XNLE c XNLP c ALF c ALE c ALP c VF c VE c VP c HPF c HPE c HPP c WCABOS = c DAY IDF c FREIGHT c DAY IDE c EXPRESS c DAY I DP c PASSENGER c HRIDLF -c FREIGHT c HRIDLE c EXPRESS c HRIDLP c PASSENGER c DLCONF = c DLCONE = c DLCONP = c DFUELC = c DFUESC = c OVFUEL = c EKWHCO = c EKWHES = c RATEF = c RATEE = c RATEP = c VACUNF = c VACUNE = c VACUNP = c OVRATF = c OVRATE = c OVRATP = c ESRTEF = c ESRTEE = c ESRTEP = c PASSENGER c XMENF = c XMENE = c XMENP = c WEF c WEE c WEP c TRMTCE = c ESTRMT = c CAMTST = NUMBER OF AXLES NUMBER OF AXLES NUMBER OF AXLES CROSS SECTIONAL CROSS SECTIONAL CROSS SECTIONAL PER DIESEL LOCOMOTIVE - FREIGHT PER DIESEL LOCOMOTIVE - EXPRESS PER DIESEL LOCOMOTIVE - EXPRESS AREA OF DIESEL LOCOMOTIVE AREA OF DIESEL LOCOMOTIVE AREA OF DIESEL LOCOMOTIVE AVERAGE SPEED OF TRAIN - FREIGHT AVERAGE SPEED OF TRAIN - EXPRESS AVERAGE SPEED OF TRAIN - PASSENGER DIESEL LOCOMOTIVE HORSEPOWER - FREIGHT DIESEL LOCOMOTIVE HORSEPOWER - EXPRESS DIESEL LOCOMOTIVE HORSEPOWER - PASSENGER WEIGHT OF CABOOSE • NUMBER OF DAYS PER YEAR A DIESEL LOCOMOTIVE IS FREIGHT EXPRESS PASSENGER IDLING -= NUMBER OF DAYS PER YEAR A DIESEL LOCOMOTIVE IS IDLING -= NUMBER OF DAYS PER YEAR A DIESEL LOCOMOTIVE IS IDLING -= NUMBER OF HOURS PED DAY A DIESEL LOCOMOTIVE IS IDLING -= NUMBER OF HOURS PER DAY A DIESEL LOCOMOTIVE IS IDLING -= NUMBER OF HOURS PER DAY A DIESEL LOCOMOTIVE IS IDLING -FUEL CONSUMPTION PER HOUR WHEN DIESEL IS IDLING - FREIGHT FUEL CONSUMPTION PER HOUR WHEN DIESEL IS IDLING - EXPRESS FUEL CONSUMPTION PER HOUR WHEN DIESEL IS IDLING - PASSENGER COST OF DIESEL FUEL OIL PER GALLON ANNUAL PROJECTED ESCALATION IN DIESEL FUEL PRICES OVERHEAD FUEL COST - FACILITIES,ETC. COST OF ELECTRICITY PER KWH ANNUAL PROJECTED ESCALATION IN ELECTRICITY COSTS ENGINE CREW WAGE INCREASE PER LOCOMOTIVE WEIGHT - FREIGHT ENGINE CREW WAGE INCREASE PER LOCOMOTIVE WEIGHT - EXPRESS ENGINE CREW WAGE INCREASE PER LOCOMOTIVE WEIGHT - PASSENGER VACATION AND UNPRODUCTIVE FACTOR - FREIGHT VACATION AND UNPRODUCTIVE FACTOR - EXPRESS VACATION AND UNPRODUCTIVE FACTOR - PASSENGER OVERHEAD WAGE RATIO - FREIGHT OVERHEAD WAGE RATIO - EXPRESS OVERHEAD WAGE RATIO - PASSENGER ESCALATION IN WAGE INCREASE PER LOCOMOTIVE WEIGHT - FREIGHT ESCALATION IN WAGE INCREASE PER LOCOMOTIVE WEIGHT - EXPRESS = ESCALATION IN WAGE INCREASE PER LOCOMOTIVE WEIGHT -NUMBER OF CREW ELIGIBLE FOR WAGE DIFFENENTIAL - FREIGHT NUMBER OF CREW ELIGIBLE FOR WAGE DIFFENENTIAL - EXPRESS NUMBER OF CREW ELIGIBLE FOR WAGE DIFFENENTIAL - PASSENGER WEIGHT OF ELECTRIC LOCOMOTIVE - FREIGHT WEIGHT OF ELECTRIC LOCOMOTIVE - EXPRESS WEIGHT OF ELECTRIC LOCOMOTIVE - PASSENGER TRACK MAINTENANCE PER 1000 GTM PROJECTED ANNUAL GROWTH IN TRACK MAINTENANCE COST CATENARY MAINTENANCE PER MILE OF SINGLE TRACK 91.000 92.000 93.000 94.000 95.000 96.000 97.000 98.000 99.000 100.000 101.000 102.000 103.000 104.000 104.000 105.000 105.000 106.000 106. 000 107.000 10 7.000 108.000 108.000 109.000 109.000 110.000 111.000 112.000 113.000 114.000 115.000 116.000 117.000 118.000 119.000 120.000 121.000 122.000 123.000 124.000 125.000 126.000 127.000 128.000 129.000 129.000 130.000 131.000 132.000 133.000 134.000 135.000 136.000 137.000 138.000 MICHIGAN TERMINAL SYSTEM FORTRAN G<41336) MAIN 08-28-75 - 134 - 11:30:29 C C C C C c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c. c c c c CAMTDT = CATENARY MAINTENANCE PER MILE OF DOUBLE TRACK CAMTSD = CATENARY MAINTENANCE PER MILE OF SIDING TRACK CAMTYD = CATENARY MAINTENANCE PER MILE OF YARD TRACK CAMTES = PROJECTED ANNUAL ESCALATION IN CATENARY MAINTENANCE CASTCO = COST PER MILE OF SINGLE TRACK CATENARY CONSTRUCTION CADTCO = COST PER MILE OF DOUBLE TRACK CATENARY CONSTRUCTION CASDCO = COST PER MILE OF SIDING TRACK CATENARY CONSTRUCTION CAYDCO = COST PER MILE OF YARD TRACK CATENARY CONSTRUCTION LI F E C A = ECONOMIC L I F E OF CATENARY INSTALATION ESCATC = PROJECTED ANNUAL ESCALATION IN CATENARY CONSTRUCTION COSTS ESSUBC = PROJECTED ANNUAL ESCALATION IN SUBSTATION CONSTRUCTION COSTS ESCOMC = PROJECTED ANNUAL ESCALATION IN COMMUNICATION INTERFERENCE CONST.COST ESSIGC = PROJECTED ANNUAL ESCALATION IN SIGNAL CONSTRUCTION COSTS SUSTCO = COST PER MILE OF SINGLETRACK SUBSTATION CONSTRUCTION SUDTCO = COST PER MILE OF DOUBLETRACK SUBSTATION CONSTRUCTION SUSDCO = COST PER MILE OF SIDINGTRACK SUBSTATION CONSTRUCTION SUYDCO = COST PER MILE OF YARD TRACK SUBSTATION CONSTRUCTION L I F E S U = ECONOMIC L I F E OF SUBSTATION INSTALATIONS COSTCO = COST PER MILE OF COMMUNICATION INTERFERENCE CONSTRUCTION -SINGLE TR CODTCO = COST PER MILE OF COMMUNICATION INTERFERENCE CONSTRUCTION -DOUBLE TR COSDCO = COST PER MILE OF COMMUNICATION INTERFERENCE CONSTRUCTION -SIDING TR COYDCO = COST PER MILE OF COMMUNICATION INTERFERENCE CONSTRUCTION -YARD TR. LIFECO = ECONOMIC L I F E OF COMMUNICATION INTERFERENCE SYSTEMS SISTCO = COST PER MILE OF SINGLE TRACK SIGNAL CONSTRUCTION SIDTCO = COST PER MILE OF DOUBLE TRACK SIGNAL CONSTRUCTION SISDCO = COST PER MILE OF SIDING TRACK SIGNAL CONSTRUCTION SIYDCO = COST PER MILE OF YARD TRACK SIGNAL CONSTRUCTION L I F E S I = ECONOMIC L I F E OF SIGNAL SYSTEMS BOOKVL = BOOK VALUE OF DIESEL LOCOMOTIVES IN BASE YEAR DISRAT = DISCOUNT RATE LI F E D L = ECONOMIC L I F E OF DIESEL LOCOMOTIVES L I F E E L = ECONOMIC L I F E OF ELECTRIC LOCOMOTIVES IYRBAS = PROJECT BASE YEAR ICONPR = CONSTRUCTION PERIOD AMTCON = PERCENTAGE OF CONSTRUCTION IN EACH YEAR OF CONSTRUCTION PERIOD = INDICATES THE FORM OF THE DETAILED DATA DISPLAY : 1 = NO DISPLAY 2 = DISPLAY STARTING I N BASE YEAR 3 = DISPLAY AROUND THE F E A S I B I L I T Y YEAR GRAPHICAL DISPLAY AXIS GRAPHICAL DISPLAY A X I S GRAPH COMPONENTS GRAPH COMPONENTS IDATA PRCET1 PRCET2 BLANK ASTERK 139.000 140.000 141.000 142.000 143.000 144.000 145.000 146.000 147.000 148.000 149.000 150.000 15 0.000 151.000 152.000 153.000 154.000 155.000 156.000 157.000 157.000 158.000 158.000 159.000 159.000 160.000 160.000 161.000 162.000 163.000 164.000 165.000 166.000 167.000 168. 000 169.000 170.000 171.000 172.000 173.000 173.000 174.000 175.000 176.000 177.000 178.000 179.000 180.000 181.000 182.000 183.000 184.000 185.000 186.000 187.000 - 135 -been i d e n t i f i e d i n columns 77 - 80 with the format number of input statement to reduce confusion. Also, the percentage escalation, and i n t e r e s t figures are to be entered as whole numbers. The program converts them to percentages by d i v i d i n g by 100: e.g. 13% i s entered as 13. The asterisks found on the alternate l i n e s of the sample input data form were inserted to increase r e a d a b i l i t y and should not appear i n an actual data deck. A3.3. Output Data A sample of the form of the output data from the computer model may be found i n E x h i b i t 4. Pages 13? to 141 l i s t the various input parameters that have been read into the model fo r that p a r t i c u l a r a n a l y s i s : - Route Parameters - Tr a i n Parameters - Diesel Locomotive Operating Parameters - E l e c t r i c Locomotive Operating Parameters - Catenary and Construction Costs. 1 3 6 . -EXHIBIT k SAMPLE OF THE OUTPUT DATA FORM FROM THE COMPUTER MODEL ******** MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC FEASIBILITY MODEL - ******** - 137 -STUDY AREA : SOMEWHERE TO NOWHERE STUDY BASE YEAR : 1974 ROUTE PARAMETERS ******* *****$$,)£ *#**)(£ SUBDIVISION GROSS TON MILES PER MILE OF TRACK MILES OF TRACK TO BE ELECTRIFIED FREIGHT EXPRESS PASSENGER SINGLE DOUBLE SIDING YARD SUBDIVISION 1 9500.00 1000.00 500.00 25.00 0.0 5.00 5.00 SUBDIVISION 2 25000.00 3000.00 1000.00 225.00 0.0 25.00 2.00 SUBDIVISION 3 25000.00 3000.00 1000.00 125.00 0.0 15.00 0.0 SUBDIVISION 4 20000.00 3000.00 1000.00 150.00 0.0 15.00 2.00 SUBDIVISION 5 20000.00 3000.00 1000.00 125.00 0.0 15.00 0.0 SUBDIVISION 6 18000.00 2500.00 1000.00 130.00 0.0 15.00 5,00 TOTAL 780.00 0.0 90.00 14.00 PROJECTED ANNUAL TRAFFIC GROWTH 6,00 % 12.00 % 5.00 % ***********************************************************+**^ / MAXIMUM GROSS TON MILES PER MILE OF : SINGLE TRACK 60000 DOUBLE TRACK 180000 RESTRICTING SIDING LENGTH (FEET) 5500.00 GRADE FACTOR - ONE DIRECTION 0.30 - REVERSE DIRECTION 0.30 MAXIMUM WEIGHT PER CAR (TONS) - TRACK LIMITATION 132 ******** MAINLINE RAILWAY ELECTRIFICATION ******** - AN ECONOMIC FEASIBILITY MODEL -- 1 3 8 -TRAIN PARAMETERS * * * * * * * * * * * * * * * * * * * * % PROJECTED ANNUAL GROWTH PARAMETER FRE IGHT EXPRESS PASSENGER FREIGHT EXPRESS PASSENG! AVERAGE NUMBER OF CARS PER TRAIN 85.00 20.00 15.00 1.00 1.00 1.00 AVERAGE ANNUAL GROSS TONS PER CAR 56 . 12 49. 25 78.33 1.00 1.00 0.0 AVERAGE GROSS TONS PER TRAIN (ONLY CARS) 4770.00 985. 00 1175.00 N/A N/A N/A AVERAGE SPEED PER TRAIN IMPH) 20.00 25.00 35.00 N/A N/A N/A NUMBER OF AXLES PER CAR 4.00 4. 00 4. 00 N/A N/A N/A CROSS SECTIONAL AREA OF A CAR ISQ. F T . ) 90.00 90.00 90.00 N/A N/A N/A AVERAGE LENGTH PER CAR {FEET) 60.00 50.00 80. 00 N/A N/A N/A CREW WAGE INCREASE PER 50000 LB OF LOCO WEIGHT -0/1OOMI 25.00 25. 00 25.00 0.0 0.0 0.0 VACATION AND UNPRODUCTIVE FACTOR 15 15 .00 15.00 15.00 N/A N/A N/A OVERHEAD WAGE RATIO i%) 25.00 25. 00 25.00 N/A N/A N/A NUMBER OF ENGINE CREW ELIGIBLE FOR WAGE DIFFERENTIAL 1.00 1.00 1.00 N/A N/A N/A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * AVERAGE LENGTH PER CABOOSE (FEET) 45 .00 SLACK ACTION FACTOR C FEET ) 3.00 TRACK MAINTENANCE COST - iZ/1000 GTM 60.00 - PROJECTED ANNUAL ESCALATION i%) 0.0 NOTE N/A : NOT APPLICABLE, OR CALCULATED WITHIN THE PROGRAM ******** MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC FEASIBILITY MODEL -******** - 139 -DIESEL LOCOMOTIVE OPERATING PARAMETERS ****************************************** % PROJECTED ANNUAL GROWTH PARAMETER FREIGHT EXPRESS PASSENGER FREIGHT EXPRESS PASSENGER AVERAGE ANNUAL NUMBER OF MILES PER DIESEL UNIT iOOO) 95.00 95.00 160.00 2.00 2.00 0. 0 DIESEL LOCOMOTIVE PURCHASE COST ($10**6) Oo 44 0.44 0.36 0.0 0.0 0.0 DIESEL LOCOMOTIVE MAINTENANCE COST PER MILE (CENTS) 50.00 50.00 - 50.00 0. 0 0.0 0.0 AVERAGE NUMBER OF DIESEL LOCOMOTIVES PER TRAIN 2.25 2.00 3.00 N/A N/A N/A AVERAGE LENGTH PER DIESEL LOCOMOTIVE (FEET) 66. 00 66. 00 66. 00 N/A N/A N/A DIESEL LOCOMOTIVE HORSEPOWER 3000.00 3000.00 2000.00 N/A N/A N/A NUMBER OF AXLES PER DIESEL LOCOMOTIVE 6. 00 6.00 4.00 N/A N/A N/A CROSS SECTIONAL AREA PER DIESEL LOCOMOTIVE (SQ. FT.) 90.00 90.00 90.00 N/A N/A N/A AVERAGE NUMBER OF DAYS PER YEAR A DIESEL LOCO IS IDLING 250.00 250.00 250.00 N/A N/A N/A AVERAGE NUMBER OF HOURS PER DAY A DIESEL LOCO IS IDLING 12.00 12.00 12. 00 N/A N/A N/ A FUEL CONSUMPTION PER HOUR WHEN DIESEL IS IDLING (GAL) 5.00 5.00 5.00 N/A N/A N/A FUEL CONSUMPTION FACTOR 0.000170 0.000170 0. 000170 N/A N/A N/A AVERAGE WEIGHT PER DIESEL LOCOMOTIVE ITONS) 195.00 195.00 190.00 N/A N/A N/A ********************************************************************* COST OF DIESEL FUEL PER GALLON (CENTS) 25.00 OVERHEAD FUEL COSTS - F A C I L I T I E S . ETC. (CENTS/GAL) 4.00 ANNUAL PROJECTED ESCALATION IN DIESEL FUEL PRICES i%\ 3.00 ECONOMIC LIFE OF DIESEL LOCOMOTIVES (YEARS) 17 NOTE N/A : NOT APPLICABLE, OR CALCULATED WITHIN THE PROGRAM MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC FEASIBILITY MODEL -- 140 -ELECTRIC LOCOMOTIVE OPERATING PARAMETERS PARAMETER ELECTRIC LOCOMOTIVE PURCHASE COST ( $ 1 0 * * 6 ) EQUATION OF THE NUMBER OF ELECTRIC TO DIESEL LOCOS (*) EQUATION OF INITIAL ELECTRIC TO DIESEL MTCE. COSTS (%) ANNUAL PROJECTED ESCALATION IN ELECTRIC MTCE. COSTS AVERAGE WEIGHT OF ELECTRIC LOCOMOTIVES (TONS) FREIGHT EXPRESS PASSENGER 0. 75 50.00 40. 00 N/A 195. 00 0.75 50.00 40. 00 N/A 195. 00 0.75 50.00 40 .00 N/A 195.00 % PROJECTED ANNUAL GROWTH FREIGHT EXPRESS PASSENGER 0 .0 N/A N/A 0. 0 N/A 0 .0 N/A N/A 0 .0 N/A 0 .0 N/A N/A 0 .0 N/A **^tjJe5)cA************ £ # # $ £ # * * * * * * * * * * * * * * # j f c * * * ^ * * : * * * * * ^ * , ^ ^ * INCREASE AVAILABILITY OF ELECTRIC LOCOMOTIVES U ) 11.00 COST OF ELECTRICITY PER KWH - (CENTS) 1.10 ANNUAL PROJECTED ESCALATION IN ELECTRIC POWER COSTS {%) 0.0 ECONOMIC LIFE OF ELECTRIC LOCOMOTIVES (YEARS) 34 NOTE N/A : NOT APPLICABLE, OR CALCULATED WITHIN THE PROGRAM ******** MAINLINE RAILWAY E L E C T R I F I C A T I O N - AN ECONOMIC F E A S I B I L I T Y MODEL -CATENARY AND CONSTRUCTION COSTS ^ ^ S ^ * * * * * * * * * * * * * * * * * * * * * ^ * * * ^ ******** PARAMETER COST PER MILE OF CATENARY CONSTRUCTION ( $ ) COST PER MILE OF SUBSTATION CONSTRUCTION {$) COST PER MILE OF COMMUNICATION INTERFERENCE PREVENTION ( $ ) COST PER MILE OF SIGNAL CONSTRUCTION ( $ ) ANNUAL COST PER MILE OF CATENARY MAINTENANCE ( $ ) SINGLE TYPE OF TRACK DOUBLE S I D I N G YARD 55000.00 55000.00 55000.00 55000.00 12000.00 12000.00 12000.00 12000.00 7000.00 7000.00 7000.00 7000.00 12000.00 12000.00 12000.00 12000.00 1000.00 1000.00 1000.00 1000.00 - 141 -% PROJECTED ANNUAL ESCALATION 0.0 0.0 0.0 0.0 0.0 ********************************************$^ ECONOMIC L I F E OF CATENARY INSTALATION (YEARS) 45 ECONOMIC L I F E OF SUBSTATION INSTALATIONS (YEARS) 50 ECONOMIC L I F E OF COMMUNICATION INTERFERENCE SYSTEMS (YEARS) 50 ECONOMIC L I F E OF SIGNAL SYSTEMS (YEARS) 40 CONSTRUCTION PERIOD (YEARS) 3 PERCENTAGE OF CONSTRUCTION IN EACH YEAR YEAR ; : 1 20.00 % YEAR : : 2 50.00 % YEAR : : 3 30.00 % MAINLINE RAILWAY E L E C T R I F I C A T I O N - AN ECONOMIC F E A S I B I L I T Y MODEL -- 142 -65 % -60 % 55 PROJECT INTERNAL RATE OF RETURN VERUS COMPLETION DATE * * * * * * s } c * * * * * * * * - . f c & £ * * * * * * * * * * * * * * # * * 50 % * * * * 45 % -40 % 35 % 30 % 25 3 * 1 1 1 1 1 1 1 1 1 j 1 j 1 1 j j j 1 1 , 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 MAINLINE RAILWAY E L E C T R I F I C A T I O N - AN ECONOMIC F E A S I B I L I T Y MODEL -******** ANNUAL PROJECT PRESENT VALUES ********************************* {$ MILLIONS) PROJECT YEAR 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 DIESEL 170o 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. 170. •170. 170. 170. 170. ELECTRIC 145. 144. 144. 145. 146. 147. 148. 150. 152. 153. 155. 157. 158. 160. 161. 163. 164. 165. 166. 167. 167. 168. sic I$C 3$C 2$C 3§C ;$c MAINLINE RAILWAY E L E C T R I F I C A T I O N - AN ECONOMIC F E A S I B I L I T Y MODEL -******** PROJECT ECONOMIC F E A S I B I L I T Y ******************************** ECONOMIC CR I T E R I A REQUIRED RETURN ON INVESTED CAPITAL FOR E L E C T R I F I C A T I O N TO BECOME ECONOMICALLY ATTRACTIVE BOOK VALUE OF DIESEL LOCOMOTIVES IN STUDY BASE YEAR ( S M I L L I O N S ) : ********************************************************************* L I N E CAPACITY WILL BE ATTAINED IN : 1991 AT THE ABOVE DISCOUNT RATE» MINIMUM PROJECT PRESENT VALUE OCCURS IN THE YEAR : 1979 NOTE : THE ABOVE E L E C T R I F I C A T I O N F E A S I B I L I T Y DATE ASSUMES CONSTRUCTION OF THE FI X E D F A C I L I T I E S WILL COMMENCE IN 1976 MAINLINE RAILWAY ELECTRIFICATION ******** ******** — 145 — - AN ECONOMIC FEASIBILITY MODEL -DETAILED OPERATING PARAMETERS AND COSTS ******************************************* YEAR 1974 1975 1976 1977 1978 1979 1980 GROSS TON MILES PER MILE OF TRACK-10**6 -FREIGHT 168270 50 1783 7. 14 18907. 36 20041.79 21244.29 22518.93 23870.05 -EXPRESS 2225.00 2492. 00 2791. 04 3125.96 3501.08 3921.21 4391.75 -PASSENGER 7 67.50 805.87 846.17 888.47 932.90 979.54 1028.52 -TOTAL 19820.00 21135.01 22544.56 24056.22 25678.26 27419.68 29290.32 AVERAGE GROSS TONS PER TRAIN (CARS ONLY) -FREIGHT 4770.00 4817.70 4865.87 4914. 52 4963.66 5013.29 5063.42 -EXPRESS 985.00 1004.80 1024.99 1045.59 1066.61 1088.04 1109.91 -PASSENGER 1175.00 1186.75 1198.62 1210.60 1222.71 1234.93 1247.28 AVERAGE NUMBER OF CARS PER TRAIN -FREIGHT 85.00 85.00 85.00 85.00 85.00 85.00 85.00 -EXPRESS 20.00 20.20 20. 40 20.61 20.81 21.02 21.23 -PASSENGER 15.00 15.15 15.30 15.45 15. 61 15. 77 15.92 AVERAGE GROSS WEIGHT PER CAR (TONS) -FREIGHT 56. 12 56.68 57.25 57.82 58.40 58.98 59.57 -EXPRESS 49.25 49.74 50.24 50.74 51.25 51.76 52.28 -PASSENGER 78.33 78.33 78.33 78.33 78.33 78.33 78.33 TRAIN MILES PER YEAR (10**6) -FREIGHT 3. 53 3.70 3.89 4.08 4.28 4.49 4.71 -EXPRESS 2.26 2.48 2.72 2.99 3.2 8 3. 60 3.96 -PASSENGER 0.65 0.68 0. 71 0.73 0. 76 0.79 0.82 -TOTAL 6.44 6.86 7.31 7.80 8.33 8.89 9.50 AVERAGE NUMBER OF DIESEL UNITS PER TRAIN -FREIGHT 2.25 2.27 2.29 2.32 2.34 2.36 2.39 -EXPRESS 2.00 2.04 2.08 2.12 2. 16 2.20 2.24 -PASSENGER 3.00 3.03 3.06 3.09 3. 12 3.15 3.18 DIESEL UNIT MILES PER YEAR (10**6) -FREIGHT 7.94 8.41 8.92 9.45 10.02 10.62 11.25 -EXPRESS 4.52 5. 06 5.66 6.33 7. 09 7.93 8.88 -PASSENGER 1.96 2.06 2.16 2.27 2.38 2.50 2.63 -TOTAL 14.41 15.53 16.74 18.05 19.49 21.05 22.76 2§C sj( >|jc 3JC 3$C j}C 3}t MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC FEASIBILITY MODEL -******** - 146 -DETAILED OPERATING PARAMETERS AND COSTS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * YEAR 1974 1975 1976 1977 1978 1979 1980 AVERAGE ANNUAL NOo OF MILES PER DIESEL (OOO)-FREIGHT 95. 00 96.90 98. 84 100.81 102.83 104.89 106.99 -EXPRESS 95.00 96.90 98. 84 100.81 102.83 104.89 106.99 -PASSENGER 160.00 160.00 160.00 160.00 160.00 160.00 160.00 NUMBER OF DIESEL UNITS REQUIRED -FREIGHT 84. 87. 91 . 94. 98. 102. 106. -EXPRESS 48 . 53. 58. 63 . 69. 76. 83 . -PASSENGER 13. 13. 14. 15. 15. 16 . 17. -TOTAL 145. 153. 162. 172. 183. 194. 206. NUMBER OF ELECTRIC LOCOMOTIVES REQUIRED -FREIGHT 3 7. 3 9 . 40. 42 . 44. 4 5 . 47 . -EXPRESS 21 . 23. 26. 28. 31 . 3 4 . 37 . -PASSENGER 6 . 6. 6. 7. 7. 7. 8. -TOTAL 64 . 68. 72. 77. 81 . 86 . 92. ELECTRIC LOCOMOTIVE MILES PER YEAR (10**6) -FREIGHT 3 .97 4.21 4. 46 4. 73 5.01 5 .31 5.63 -EXPRESS 2.26 2.53 2.83 3.17 3.54 3 .97 4 .44 -PASSENGER 0.98 1.03 1.08 1.13 1.19 1.25 1.31 -TOTAL 7.21 7.76 8.37 9.03 9.74 10. 53 11 .38 COST PER DIESEL LOCOMOTIVE ($10**6) -FREIGHT 0.44 0. 44 0.44 0.44 0.44 0.44 0.44 -EXPRESS 0.44 0.44 0.44 0.44 0.44 0.44 0.44 -PASSENGER 0 .36 0.36 0 .36 0.36 0.36 0.36 0.36 TOTAL DIESEL LOCOMOTIVE CAPITAL COST ($10**6) -FREIGHT 37.13 38.45 40. 22 41 . 55 43.32 45 .08 46.85 -EXPRESS 21.22 23 .43 25.64 27.85 30.50 3 3 . 59 36 .69 -PASSENGER 4 .69 4 .69 5.05 5.41 5.41 5.78 6.14 -TOTAL 63.04 66.5 7 70.91 74.81 79.23 84.45 89.67 MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC FEASIBILITY MODEL -******** - 147 -DETAILED OPERATING PARAMETERS AND COSTS ******************************************* COST PER ELECTRIC LOCOMOTIVE ($10**6) TOTAL ELECTRIC LOCO CAPITAL COST ($10**6) DIESEL UNIT MAINTENANCE COST PER MILE (sZ) YEAR 1974 1975 1976 1977 1978 1979 1980 -FREIGHT 0.75 0. 75 0.75 0.75 0. 75 0.75 0.75 -EXPRESS 0. 75 0.75 0.75 0.75 0.75 0.75 0.75 -PASSENGER 0.75 0.75 0. 75 0.75 0.75 0.75 0.75 -FREIGHT 27.75 29.25 30.00 31. 50 33.00 33. 75 35.25 -EXPRESS 15.75 17.25 19.50 21.00 23.25 25.50 27.75 -PASSENGER 4.50 4.50 4. 50 5.25 5.2 5 5.25 6.00 -TOTAL 48.00 51.00 54.00 57.75 61.50 64.50 69.00 -FREIGHT 50. 00 50. 00 50. 00 50.00 50.00 50.00 50.00 -EXPRESS 50.00 50.00 50.00 50.00 50.00 50.00 50.00 -PASSENGER 50.00 50»00 50.00 50.00 50.00 50.00 50.00 '-FREIGHT 3.97 4.21 4.46 4. 73 5. 01 5.31 5.63 -EXPRESS 2.26 2.53 2.83 3. 17 3.54 3.97 4.44 -PASSENGER 0.98 1.03 1. 08 1.13 1.19 1.25 1.31 -TOTAL 7.21 7.76 8.37 9.03 9.74 10. 53 11.38 -FREIGHT 0.20 0.20 0.20 0.20 0.20 0.20 0.20 -EXPRESS 0.20 0.20 0.20 0.20 0.20 0.20 0.20 -PASSENGER 0. 20 0.20 0.20 0.20 0.20 0.20 0.20 -FREIGHT 0.79 0. 84 0.89 0. 95 1.00 1.06 1.13 -EXPRESS 0.45 0.51 0.5 7 0.63 0.71 0.79 0.89 -PASSENGER 0.20 0.21 0.22 0.23 0.24 0.25 0.26 -TOTAL 1.44 1.55 1.67 1.81 1. 95 2.11 2.28 MAINLINE RAILWAY ELECTRIFICATION ******** ******** ~ -- AN ECONOMIC FEASIBILITY MODEL -DETAILED OPERATING PARAMETERS AND COSTS ******************************************# YEAR 1974 1975 1976 1977 1978 1979 1980 DIESEL FUEL CONSUMPTION PER 1000 GTM (GAL > -FREIGHT 0,90 0. 89 0. 89 0.88 0,88 0. 88 0.87 -EXPRESS 1. 27 1.27 1.26 1.26 1.25 1.25 1.24 -PASSENGER 1,36 1.36 1.35 1.35 1.35 1.35 1.3 5 DIESEL FUEL CONSUMPTION 110**6 GAL) -FREIGHT 15.08 15,91 16.79 17.71 18.69 1 9. 73 20.82 -EXPRESS 2. 83 3.16 3. 52 3. 93 4.38 4.88 5.44 -PASSENGER 1.04 1.09 1. 15 1,20 1.26 1.32 1.39 -TOTAL 18.95 20.16 21.46 22.84 24.33 25.93 27.65 DIESEL IDLING FUEL CONSUMPTION (10**6 GAL) -FREIGHT 1.0 5 1.09 1.13 1.18 1.22 1,27 1.32 -EXPRESS 0.72 0.79 0.87 0.95 1.04 1.14 1.2 5 -PASSENGER 0. 19 0.20 0. 21 0.22 0.23 0.24 0.25 -TOTAL 1.96 2.08 2.21 2.35 2.50 2.66 2.83 KWH REQUIREMENT FOR ELECTRIC LOCOMOTIVES (10**6 KWH) 268.71 285.86 304.22 3 23.92 345.04 367.72 392.09 DIESEL FUEL COST PER GALLON (CENTS)-INCLUDING OVERHEAD 29.00 29.87 30,77 31.69 32. 64 33, 62 34.63 TOTAL DIESEL FUEL COST ($10**6) 6.07 6.64 7.28 7.98 8. 76 9.61 10.55 ELECTRIC POWER COST PER KWH (CENTS) I.10 1.10 1. 10 1. 10 1.10 1.10 1.10 TOTAL ELECTRIC POWER COST ($10**6) 2.96 3.14 3.35 3.56 3.80 4,04 4.31 ENGINE CREW WEIGHT WAGE DIFFERENTIAL($10**6) -FREIGHT 0. 11 0.12 0. 12 0.13 0.14 0.15 0.16 -EXPRESS 0.06 0.07 0. 08 0.09 0. 10 0. 11 0.12 -PASSENGER 0.03 0.03 0,03 0.03 0. 03 0,03 0.03 -TOTAL 0.20 0.22 0. 23 0.25 0.27 0.29 0.32 TRACK MAINTENANCE PER 1000 GTM (CENTS) 60.00 60.00 60.00 60,00 60. 00 60.00 60.00 ******** MAINLINE RAILWAY ELECTRIFICATION - AN ECONOMIC F E A S I B I L I T Y MODEL -******** - 149 -DETAILED OPERATING PARAMETERS AND COSTS ******************************************* SAVINGS IN TRACK MAINTENANCE ($10**6) ANNUAL TOTAL CATENARY MAINTENANCE ($10**6) CONSTRUCTION COSTS ($1 0 * * 6)-CATENARY -SUBSTATION -COMMUNICATION -SIGNAL -TOTAL TOTAL ANNUAL ELECTRIFICATION SAVINGS ( 1 0 * * 6 EXECUTION TERMINATED YEAR 1974 1975 1976 1977 1978 1979 1980 -FREIGHT 0.46 0.49 0 .52 0.55 0.59 0 .62 0.66 -EXPRESS 0.26 0.30 0.33 0.37 0.41 0.46 0.52 -PASSENGER 0, 11 0 .11 0.12 0. 13 0. 13 0. 14 0.15 -TOTAL 0.84 0.90 0 .97 1.05 1. 13 1.22 1.32 0« 88 0.88 0. 88 0.88 0. 88 0.38 0.88 48o62 48.62 48.62 48.62 48.62 48 .62 48.62 10.61 10.61 10.61 10.61 10.61 10.61 10.61 :NTERFERENCE 6. 19 6. 19 6.19 6. 19 6. 19 6.19 6 .19 10.61 10.61 10.61 10.61 10.61 10.61 10.61 76.02 76.02 76. 02 76. 02 76. 02 76.02 76.02 CONSTANT $) 9.03 9.94 10.95 12.06 13.28 14.62 16.10 $SIGNOFF - 150 -V/here applicable, the assumed annual growth or esca l a t i o n percentages are also indicated. Page 142 of the output plots the project's i n t e r n a l rate of return against the fixed f a c i l i t i e s construction completion date. As explained i n the model analysis, t h i s p l o t should not be used to determine the optimum e l e c t r i f i c a t i o n . f e a s i b i l i t y year. Page 143 indicates the present values of the d i e s e l and e l e c t r i c locomotive operating and c a p i t a l costs at the assumed discount rate. The d i e s e l or e l e c t r i c a l t e r n a t i v e with the minimum present value indicates the optimum deci s i o n . I f the d i e s e l cost present values are less than that of any of the e l e c t r i c s , the d i e s e l a l t e r n a t i v e should be retained. I f the minimum e l e c t r i c locomotive present value i s less than the d i e s e l value, e l e c t r i c locomotives should begin operation i n that year to obtain the least cost a l t e r n a t i v e . Page 144 indicates the lea s t cost a l t e r n a t i v e at the discount rate assumed by the user. Pages 1^5 to 1^9 are optional print-outs of some of the key parameters calculated within the model. The user has the option of: 1) suppressing t h i s data output 2) having the output s t a r t i n g i n the study base year 3) having the output indicate values around the f e a s i b i l i t y year. The choice of what detailed data display w i l l be produced i s controlled by the input variable IDATA (see E x h i b i t 3). 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3 6 37 38 39 40 41 42 43 44 45 46 47 48 4 9 50 51 52 53 54 5 5 56 57 5 8 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 - 152 -APPENDIX A4 SAMPLE INPUT DATA CARDS COLUMN NUMBER 11111111112222222 222333333333344444444445 55 55 555556666666666 7777 7777778 1234567890123456 78901234567890123456 789012 34567890123456789012 3456789012345678 90 SOMEWHERE TO NOWHERE 6 SUBDIVISION 1 9500. 1000c SUBDIVISION 2 25000. 3000, SUBDIVISION 3 25000. 3000, SUBDIVISION 4 20000. 3000< SUBDIVISION 5 20O00. 3000. SUBDIVISION 6 18000. 2500, 6. 12.0 5.0 60000 180000 4770. 985. 1175.0 1 o 1 o 1 • 1 o 1 o 0 o 132 60. 50. 80. 66o. 66. 66. 45. 3.0 5500. 2.25 2.0 3.0 95000. 95000. 160000. 5 00. 1000. 1000. 1000. 1000. 1000. 2 5.0 Oc 225.0 Oc 125.0 0, 150.0 Oc 125.0 0« 130.0 0« 5.0 5.0 25.0 2.0 15.0 0.0 15.0 2.0 15.0 0.0 15.0 5.0 1000 1300 13 01 1301 * 1301 1301 1301 1301 1002 1103 1003 1104 1204 1304 1305 1306 1307 1308 1309 1005 1006 81 82 « 83 o 84 COLUMN NUMBER 85 86 0 8 7 11111111112222222222333333 333344444444445 5 5 555 5555666666666677777777778 88 1234567890123456 7890123456789012345678901234567890123456789012345678 9012345678 90 (5 Q 0 7 90 91 92 2. 2. Oo 1007 93 94 11. 50. 50. 5G. 1008 95 96 .442 .442 .361 1009 97 * 98 .750 .750 .750 1010 99 * 100 0. 0. 0. 1011 101 * 102 0 . 0 . 0 . 1012 103 * 104 50.0 50o0 50.0 1013 105 * 106 0. 0. 0. 10 14 107 * 108 40 . 40 . 40. 1015 109 110 Oo Oo 0. 1016 111 * 112 .00017 .00017 .00017 1017 113 * 114 .300 .300 1018 115 * 116 85. 4 . 90. 1019 117 * 118 20. 4 . 90. 1020 119 * 120 15. 4. 90. 1021 121 i22 195. 6 . 90 . 1022 123 * 124 195. 6. 90. 1023 125 * 126 190. 4 . 90. 1024 127 * 128 20. 25. 35 . 1025 129 * 130 3000. 3000. 2000. 1225 131 132 40 . 1226 133 * 134 25 0. 10o 5. 1124 135 * 136 250. 12. 5 . 1125 137 * 138 25G. 12. 5. 10 26 139 * 140 141 - -142 143 144 COLUMN NUMBER 145 146 147 1111111111222222 222233333333334444444444555 555 55556666666666777777777 73 148 123456 7890123456 7890123456 7890123456 789012345678901234567890123456 78901234567890 1 4 g  150 151 25o 3o 4« 1027 152 * 153 1.1 0.0 1028 154 * 155 25. 15. 25 . 0 .0 1.0 1029 156 * 157 25 . 15 . 25. 0.0 1.0 1030 15 8 * 159 25 . 15. 25. 0.0 1.0 1031 160 * 161 19 5. 195. 195. 1032 162 * 163 60.0 0.0 1033 164 * 165 1000. 1000. 1000. 1000. 1034 166 * 167 0.0 1035 168 * 169 55000. 55000. 55000. 55000. 45 1036 170 * 171 0. 0. 0. 0. 1037 172 * 173 12000. 12000. 12000. 12000. 50 1038 174 * 175 7000. 7000. 7000. 7000. 50 1039 176 * 177 12000. 12000. 12000. 12000. 40 1040 178 * 179 45 .0 1041 180 * 181 20.0 1042 182 * 183 17 34 1043 184 * 185 1974 1044 186 * 187 3 1045 188 * 189 20. 50. 30. 1046 190 * 191 2 1047 192 * 193 j I I 1 5 ? - 1 I I I 10 * -194 * 195 | \ i I 15 % - I I i I 20 % -196 * 197 I I I I 25 58 - I I I I 30 % -198 * 3.99 | | I I 35 % - I I I i 40 * -200201 202 203 204 . 205 206 207 208 205 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 END OF FILE - 155 -COLUMN NUMBER 1111111111222222222 233333333334444444444555 55555 55666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890 45 % 55 % 65 % 75 * 85 % 95 % 50 % -60 * -70 % -* 80 % -90 il -100 % -105.1 1052 $SIGNOFF APPENDIX.A5 COMPUTER SOURCE PROGRAM MICHIGAN TERMINAL SYSTEM FORTRAN Gi41336) MAIN - 157 -08-28-75 11:30:29 C 188.000 C DIMENSIONING OF MATRICES 189.000 190.000 0001 C 191.000 DIMENSION SUB 11100),SUB2(100),SUB3(100),SUB4(100),SUB5(100) 192.000 0002 DIMENSION GTMFUOO) ,GTME( 100), GTMP(100) 193.000 0003 DIMENSION STMLE(IQO) , DTML E {100 ) , SDMLE UOO ) ,YDMLE(100) 194.000 0004 DIMENSION TGTMF i 100) ,TGTME( 100),TGTMP(100) ,TOTGTMU00) 195.000 0005 DIMENSION GTPTNF (100) ,GTPTN£M00) ,GTPTNP(100) 196.000 0006 DIMENSION TMF(IOO),TME<100),TMP|100),TOTTMil00) 197.000 0007 DIMENSION DUPTNFUOO) ,DUPTNE( 100),DUPTNP(100) 198.000 0008 DIMENSION DUMIFUOO) , DUMIEI100) ,DUMIP( 100) ,T0TDUM( 100 ) 199.000 0009 DIMENSION ZMIDUF(IOO) , ZMIDUE(100) , ZMIDUPUOO) 200.000 0010 DIMENSION DUFf10Q),OUE(100),DUP(100),DUTOT(100) 201.000 0011 DIMENSION ELF (100) ,ELEU0O) , ELPC100) ,TOTEL(100) 202.000 0012 DIMENSION ELM IF(100) ,ELM IE(100),ELMIP(100) ,TQTELM{100) 203.000 0013 DIMENSION DLCOSF(IOO),DLC0SE(100),DLC0SP(100) 204.000 0014 DIMENSION TDLCOF(IOO),TDLC0E(100),TOLCOP(IOO),TDLC0S(100) 205.000 0015 DIMENSION ELCOSF(IOO),ELCOSE(100),ELCOSP(100) 206.000 0016 DIMENSION TELCOF(100),TELCGE(10Q),TELC0P(100),T£LC0S(100) 207.000 0017 DIMENSION DLMTCF(100)»DLMTCE(100),DLMTCP(100) 208.000 0018 DIMENS ION TDLMTF(100)» TDLMTE(100)» TDLMTP{100) fTTDLMT(100) 209.000 0019 DIMENSION ELMTCFUOO) ,ELMTCE( 100 ) , ELMTCP (100 ) 210.000 0020 DIMENSION TELMTF i100),TELMTE(100),TELMTP(100) ,TTELMT(100) 211.000 0021 DIMENSION WCFdOOJ tWCEtlOO)tWCP(lOO) 212.000 0022 DIMENSION CARF(IOO),CAREC100),CARP(100) 213.000 00 23 DIMENSION FUCARF(IOO),FUCARE(100),FUCARP{100) 214.000 0024 DIMENSION FULOCF(100),FULOCE(100),FULOCP(100) 215.000 0025 DIMENSION FUELGF{100),FUELGE(100)»FUELGP(100) 216.000 0026 DIMENSION FUELF(IOO),FUELE(100),FUELP(100),FUELTT(100) 217.000 0027 DIMENSION FIDLEF (100)/FIDLEE(IOO),FIDLEP(100),FIDLET(100) 218.000 0028 DIMENSION XKWH(IOO) 219.000 0029 DIMENSION DFUELC(100),DFUELT(100) 220.000 0030 DIMENSION EKWHCO(IOO),EKWHCT(100) 221.000 0031 DIMENS ION RATEFC100)»RATEE(100),RATEP(100) 222.000 0032 DIMENSION DIFCWF(IOO) fOIFCWEilOO),DIFCWP(IOO),DIFTOTC100) 223.000 00 33 DIMENSION TRMTCE(IOO) 224.000 0034 DIMENSION SAGTMF(IOO),SAGTME(100),SAGTMP(100),T0TSAG(100) 225.000 0035 DIMENSION CAMT(IOO) 226.000 0036 DIMENSION CATST(100),CATDT(100),CATSD(100) ,CATYD(100)*CATTOT(100) 227.000 0037 DIMENSION SUBSTilOO),SUBDT(100),SUBSD(100),SUBYD{100),SUBTOT(100) 228.000 0038 DIMENSION COMSTC100),COMDT(100),COMSD(100),C0MYD(100),COMTOT(100) 229.000 0039 DIMENSION SIGST(100),SIGDT(100),SIGSDI 100),SIGYD(100),SIGT0T(100) 230.000 0040 DIMENSION TOTCAPilOO) 231.000 0041 DIMENSION ANNSAV(IOO) 232.000 0042 DIMENSION AMTCON(100) 233.000 0043 DIMENSION IYEAR(IOO) 234.000 0044 DIMENS ION CASHFL(100),MATRIX!100,100) 235.000 0045 DIMENSION PRCETK100) ,PRCET2(100) 236.000 0046 DIMENSION BLANK(40),ASTERK(40) 237.000 0047 DIMENSION DIFDL(100),DIFEL(100),SAGDL(100),SAG£L(100) 238.000 0048 DIMENSION DLCASH(IOO),ELCASH(100),DLNPV(IOO),ELNPV(100) 239.000 0049 DIMENSION DFCASH(100),DIFNPV(100) 240.000 0050 DIMENSION DLDF(100),ELEF(100) 241.000 0051 DIMENSION BOOKVL(IOO) 242.000 MICHIGAN TERMINAL SYSTEM FORTRAN GU1336) MAIN 08-28-75 " 1 5 0 "11:30:29 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 00 73 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 10 100 DO 100 J=l,100 GTMFCJ) = 0.0 GTME( J )=0.0 GTMP(J) =0. 0 STMLE(J)=OoO DTMLE(J)=0*0 SDMLE(J)=0.0 YOMLE{J)=OoO AMTCONC J)= 0. 0 CASHFL(J)=OoO DLNPV(J)=0.0 ELNPVCJ)=0.0 DIFNPVU ) = 0.0 DO 10 K=l,100 MATRIX*J.KI=0 CONTINUE CONTINUE C C C C READING OF INPUT DATA ROUTE1»R0UTE2,R0UTE3,R0UTE4» ROUTE5»R0UTE6,R0UTE7 NUBSU8 50 READ(5,1000) READ(5,1300) DO 50 J=1,NUBSU3 READ (5,1301) SUBH J ) ,SUB2( J) ,SUB3i J ) ,SUB4< J) , SUB51J ) , GTMFCJ) ,GTMEC U)tGTMP(J) ,STMLE(J) , DTMLE { J ) , SDMLE { J ) , YDML E ( J ) CONTINUE READ(5,1002) READ(5,1103) R£AD(5,1003) READ(5 ,1104) READ(5,1204) READ(5,1304) READ< 5,1305) READ(5,1306) READ(5,1307) READ(5,1308) REA0(5,1309) READ(5,1005) READ(5,1006) REA0{5,1007) READ(5,1008) READ(5,1009) READ(5,1010) READ(5,1011) READ(5,1012) REA0(5 11013) READ(5,1014) READ(5,1015) READ(5,1016) READ(5,1017) READ I 5,1018) READ(5,1019) READ(5,1020) READ(5,1021) TGF,TGE »TGP MAXST,MAXDT GTPTNFI1),GTPTNE(1)»GTPTNP(1) ESCARFtESCARE,ESCARP ESGTC F,E SGTCE,ESGTCP MAXWCT CARLF,CARLE,CARLP DULENF» DULENE,DULENP CABOSL SLAFAC SIDLEN OUPTNF(l).DUPTNECl),DUPTNP(1) ZMIDUF {1) <» ZMI DUE {1) ,ZMIDUPC 1) GDUMF,GDUME,GDUMP XINAV»REELUF,REELUE,REELUP DLCQSF(l),DLCOSE(1),DLC0SP(1) ELCOSFU ) ,ELCOSE( 1) ,ELCOSP( 1) ESCDLF,ESCDLE,ESCDLP ESCELF,ESCELE,ESCELP DLMTCF(1),DLMTCE(1),DLMTCP(i) ESDMCF,ESDMCE,ESDMCP EMTF,EMTE,EMTP ESEMCF,ESEMCE,ESEMCP FUCONF,FUCONE,FUCONP Gl, G2 CARF(l),XNCF,ACF CAR£U),XNCE,ACE CARP(1),XNCP,ACP 243»000 244.000 245.000 246.000 247.000 248.000 249.000 250.000 251.000 252.000 253.000 254.000 255.000 256.000 257.000 258.000 259.000 260.000 261.000 262.000 263.000 264.000 265.000 266.000 267.000 268.000 269.000 270.000 271.000 272.000 273.000 274.000 275.000 276.000 277.000 278.000 279.000 280.000 281.000 282.000 283.000 284.000 285.000 286.000 287.000 288.000 289.000 290.000 291.000 292.000 293.000 294.000 295.000 296.000 297.000 MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN - 159 -08-28-75 11.30:29 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 READ(5,1022) WLF,XNLF,ALF READ(5,1023) WLE,XNLE »ALE READ(5,1024) WLP,XNLP,ALP REA0(5,1025) VF,VE,VP READ(5,1225) HPF,HPE,HPP REA0(5,1226) WCABOS READ(5,1124) DAYIDF,HRIDLF,DLC0NF READ(5f112 5) DAYIDE,HRIOLE,DLCONE READ*5,1026) DAY I DP,HRIDLP,DLCONP R£AD(5,1027) DFUELC(1),DFUESC,OVFUEL READ(5il028) EKWHCO(1),EKWHES READ(5,1029) RAT EF(1),VACUNF,0VRATF,ESRTEF,XMENF READ< 5,1030) RATEE(l),VACUNE,OVRATE,ESRTSE,XMENE READ(5,1031) RATEP(1),VACUNP,OVRATP »ESRTEP » XMENP READ(5tl032) WEF,WEE,WEP READ!5,1033) TRMTCE(1),ESTRMT READ(5,1034) CAMTST,CAMTDT,CAMTSD,CAMTYD READ(5,1035) CAMTES READ(5,1036) CASTCO,CADTCO,CASDCO,CAYDCO,LIFECA READ(5,1037) ESCATC,ESSUBC,ESCOMC,ESS IGC READ(5,1038) SUSTCO,SUDTCO,SUSDCO,SUYDCO,LIFESU READI5t1039) COSTCO» CODTCO,COSDCO» COYDCO,LIFECO READ(5,1040) SISTCO,SIDTCO,SISDCO,SIYDCO,LIFESI READ{5,1041) BOOKVL(l) READ(5,1042) DISRAT LIFEDLtLIFEEL IYRBAS ICONPR (AMTCON(J),J=ltICONPR) IDATA (PRCET1i J),PRCET 2(J),J = l,100) BLANKU) READ(5,1043) READ(5,1044) READ{5,1045) READ{5,1046) READ(5,1047) READ(5,1050) READ(5,1051) READ(5,1052) ASTERK(l) 1000 FORMAT(7A4) 1300 FORMAT(13) 1301 F0RMAT(5A4,3F10o2,4F6o2) 1002 FORMAT(3F5.2) 1103 FORMAT(217) 1003 F0RMATC3F10.2) 1104 F0RMAT(3F5.2) 1204 FORMAT(3F5.23 1304 FORMAT(13) 1305 F0RMAT(3F10o2) 1306 FORMAT(3F10.2) 1307 FORMAT{F10» 2) 1308 FORMAT(FlOo 2) 1309 FORMAT(F10.2) 1005 FORMAT(3F5c 0) 1006 FORMAT(3F10.0) 1007 FORMAT(3F5.2> 1008 F0RMAT(F5.2,3F5o2) 1009 F0RMAT(3F10o0) 1010 FORMAT13F10.0) 1011 FORMAT < 3F5o 2) 1012 FORMAT <3F5»2) 298.000 299.000 300.000 301.000 302.000 303.000 304.000 305.000 306.000 307.000 308.000 309.000 310.000 311.000 312.000 313.000 314.000 315.000 316.000 317.000 318.000 319.000 32 0.000 321.000 322.000 323.000 324.000 325.000 326.000 327.000 328.000 329.000 330.000 331.000 332.000 333.000 334.000 33 5.000 336.000 337.000 338.000 339.000 340.000 341.000 342.000 343.000 344.000 345.000 346.000 34 7. 000 348.000 349.000 350.000 351.000 352.000 - 160 -MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 08-28-75 11:30:29 0157 1013 FORMAT(3F10o2) 353.000 0158 1014 FORMAT<3F5.2) 354.000 0159 1015 FORMAT (3F5.2) 355.000 0160 1016 FORMAT(3F5.2) 356.000 0161 1017 F 0 R M A T ( 3 F 1 0 „ 2 ) 357.000 0162 1018 F0RMAT(2F10.2) 358.000 0163 1019 FORMAT(3F10.2) 359.000 0164 1020 F0RMAT(3F10.2) 360.000 0165 1021 FORMAT(3F10o 2) 361.000 0166 1022 FORMAT(3F10.2) 362.000 0167 1023 FORMAT(3F10.2) 363.000 0168 1024 FORMAT {3FI0.2) 364.000 0169 1025 FORMATI3F10.2) 365.000 0170 1225 FORMAT(3F10.2) 366.000 0171 1226 F0RMAT(F10.2) 36 7.000 0172 1124 FORMATS 3F10.2) 368.000 0173 1125 FORMAT(3F10.2) 369.000 0174 1026 FORMAT(3F10.2) 370.000 0175 1027 FORMAT13F10.2) 371.000 0176 1028 FORMAT(2F10.2) 372.000 0177 1029 FORMAT*5F10.2) 373.000 0178 1030 FORMAT(5F10.2) 374.000 0179 1031 FORMAT(5F10.2) 375.000 0180 1032 FORMAT i3F10.2) 376.000 0181 1033 FORMAT-{2F10o2 ) 377.000 0182 1034 FQRMAT(4F10.2) 378.000 0183 1035 FORMAT(F10.2) 379.000 0184 1036 F O R M A T « 4 F 1 0 . 2 . 1 2 ) 380.000 0185 1037 FORMAT(4F10.2) 381.000 0186 1038 FORMAT(4F10.2,12) 382.000 0187 1039 FORMAT(4F10,2,12) 383.000 0188 1040 FGRMAT(4F10.2 ,I2) 384.000 0189 1041 FORMAT(F10.2) 385.000 0190 1042 FGRMAT1F10.2) 386.000 0191 1043 FORMAT 112,13) 387.000 0192 1044 FORMAT(14) 388.000 0193 1045 FORMAT(12) 389.000 0194 1046 F0RMAT(8F10.2) 390.000 0195 1047 FORMAT(11) 391.000 0196 1050 FORMAT(20A4) 392 o 000 0197 1051 FORMAT(A5) 393.000 0198 1052 FORMAT(A5) 394.000 C 395.000 C CALCULATION OF GROSS TON MILES 396.000 C 397.000 C 398.000 0199 TAF=0.0 399.000 0200 TAE = 0.0 400.000 0201 TAP=0.0 401.000 0202 MAXGTM=MAXDT 402.000 0203 DO 60 J=1,NUBSU8 403.000 0204 TAF=TA F+GTMF(J)*(STMLE(J)+DTMLE(J)*2o)/10o **3 404.000 0205 TAE=TAE+GTME(J )* (STMLE(J )+DTMLE(J )*2 . ) /10 . **3 405.000 0206 TAP=TAP+GTMP(J)*(STMLE(J)+DTMLE(J)*2 . ) /10o**3 406.000 0207 I F ( S T M L E ( J ) - 0 . ) 60 ,60 , 2860 407.000 - 161 -MICHIGAN TERMINAL SYSTEM FORTRAN G<41336) MAIN 08-28-75 11 .30:29 02 08 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 02 25 0226 0227 0228 0229 0230 0231 0232 0233 02 34 0235 0236 0237 0238 0239 02 40 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 02 57 0258 2860 MAXGTM=MAXST 60 CONTINUE TGTMF{1)=TAF TGTME(15 =TAE TGTMP(1)=TAP TOTGTM(1)=TGTMF{1)+TGTME(1)+TGTMP(1) XMLEST=Q.O XMLEDT=0.0 XMLES0=0.0 XMLEYD=0.0 DO 30 J=1,NUBSUB XMLEST=XMLEST+STMLE(J ) XMLE DT=XMLEDT+DTMLE(J) XML£SD=XMLESD+SDMLE(J) XMLEYD=XMLEYD+YDMLE(J) 30 CONTINUE AA=1.+TGF/100. AB=1.+TGE/100. AC=1.+TGP/100. MAXYR=0 DO 200 J=2,100 TGTMF < J ) = T G T M F ( J - l ) * A A TGTME{J)=TGTME(J-l)#AB TGTMPt J ) = T G T M P ( J - l ) # A C TOTGTM{J)=TGTMF(J J +TGTME(J)+TGTMP(J) IF(TOTGTM{J)-MAXGT M) 200,200,209 209 IXYZ=J IF(MAXYR-O) 214,214,200 214 MAXYR=J-1+IYRBAS AA=lo AB=1. AC=1« 200 CONTINUE C C CALCULATION OF THE NUMBER OF TRAIN MILES c • C EA=l.+ESCARF/100 o £B=lo+ESCARE/100o EC=1.+ESCARP/I00. ED=lo+ESGTCF/100„ EE=l o+ESGTCE/100, EF=1.+ESGTCP/100. WCF(1)=GTPTNF(1)/CARF(1) WCEUI=GTPTNE(1 )/CARE< 1) WCP<1)=GTPTNP(1)/CARP<1) DO 300 J=2,100 C A R F U ) = CARf ( J - 1 ) * E A EG=CARF(J}*(CARLF+SLAFAC)+DUPTNF{1)*DULENF+CABOSL IF{EG-SIDLEN) 320,320,321 321 EA=1.0 C A R F 1 J ) = C A R F < J - l ) 320 C A R E C J ) = C A R E ( J - l ) * E B EH=CARE(J)*(CARLE+SLAFAC)+DUPTNE(1)*DULENE+CAB0SL I F ( E H - S I D L EN) 322,322, 323 408.000 409.000 410.000 411.000 412.000 413.000 414.000 415.000 416.000 417.000 418.000 419.000 420.000 421.000 422.000 423.000 424.000 425.000 426.000 4 2 7 . 0 0 0 428.000 429.000 430. 000 431.000 432.000 433.000 434.000 435.000 436.000 437.000 438.000 439.000 440.000 441.000 442.000 443.000 444.000 445.000 446.000 447.000 448.000 449.000 450.000 451.000 452.000 453.000 454.000 455.000 456.000 457.000 458.000 459.000 460.000 461.000 462.000 MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 08-28-75 - 162 -11:30:29 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 02 84 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 02 96 0297 0298 0299 0300 0301 C C C C C C C C 323 EB=1.Q CARE(J)=CARE(J-l) 322 CARP(J)=CARP(J-l)*EC EI=CARP(J)*(CARLP+SLAFAC)+DUPTNP(1)*DULENP IF(EI-SIDLEN) 324,324,325 325 EC=1.0 CARPIJ)=CARP{J-l) 324 WCF(J}=WCF(J-1)*ED WCE(J)=WCE(J-1)*EE WCP(J)=WCP(J-1)*£F IF(WCFfJJ-MAXWCT) 305,305,306 306 ED=1.0 WCFlJj=MAXWCT 305 IF(WCE(J3-MAXWCT) 307,307,308 308 EE=loO WCE(J)=MAXWCT 307 IF( WCPU )-MAXWCT) 309,309,310 310 EF=1.0 WCP(J)=MAXWCT 309 GTPTNF(J)=CARF(J)*WCF( J) GTPTNE(J)=CARE(J)*WCE<J) GTPTNP(J)=CARP(J)#WCP(J) 300 CONTINUE DO 301 J=l,100 TMF ( J ) = TGTMF{J)/GTPTNF ( J i TME(J)=TGTME C J)/GTPTNE(J) TMP(J)=TGTMP(J)/GTPTNP(J) TOTTM(J)=TMF{J)+TME{J)+TMP{J) 301 CONTINUE CALCULATION OF DIESEL UNIT MILES WTPWRF = (GTPTNF{1)+DUPTNF(1)*WL F+WCABOS)/(DUPTNF{1)*HPF) WTP WRE = {GTPTNE(1)+DUPTNE{1)* WLE+WCABOS)/C DUPTNE{1)*HPE) WTPWRP=IGTPTNPU)+DUPTNP(1)*WLP)/(DUPTNP(13*HPP) DO 399 J=2,100 DUPTN F (J ) = { GTPTNF ( J ) + WCABOS )/( W,T PWRF*HPF-WLF ) DUPTNE(J)=(GTPTNE(J)+WCABOS)/(WTPWRE*HPE-WL£) DUPTNP(J)=GTPTNP(J)/i WTPWRP*HPP-WLP} 399 CONTINUE DO 400 J=l,100 DUMIFC J)=TMF<J1*DUPTNF{J) DUMIElJ)=TME(J)*DUPTNE(J) DUMIPiJ)=TMP(J)*DUPTNP(J) TOTDUM(J)=DUMIF(J)+DUMIE(J)+DUMIP(J3 400 CONTINUE CALCULATION OF NUMBER OF DIESEL UNITS REQUIRED 0302 03 03 0304 03 05 ZMIDUF(1)=ZMIDUF(l)/10o**3 ZMIDUE(1)=ZMIDUE(1)/10.**3 ZMIDUP( 1)=ZMIDUPU)/10«,**3 CA=l.*GDUMF/100o 463o000 464.000 465.000 466.000 467. 000 468.000 469.000 470.000 471.000 472.000 473.000 474.000 475.000 476.000 477.000 478.000 479.000 480.000 481.000 482.000 483.000 484.000 485.000 486.000 487.000 488.000 48 9.000 490.000 491.000 492.000 493.000 494.000 49 5.000 496.000 497.000 498.000 499.000 500.000 5 01.000 502.000 503.000 504.000 505.000 506.000 507.000 508.000 509.000 510.000 511.000 512.000 513.000 514.000 515.000 516.000 517.000 MICHIGAN TERMINAL SYSTEM FORTRAN G(41 3 3 6 ) MAIN - 163 -08-28-75 11:30:29 0306 CB=l„+GDUME/100o 5 1 8 o 0 0 0 0307 C O 1 . + GDUMP/100. 519.000 0308 DO 500 J=2,100 520.000 0309 ZMIDUFCJ ) = Z M I D U F { J - l } * C A 521.000 0310 ZMIDUE(J)=ZMIDUE{J-1)*CB 522.000 0311 ZMIDUP(J)=ZMIDUP{J-1)*CC 523.000 0312 500 CONTINUE 524.000 0313 DO 501 J = l , 1 0 0 525.000 0314 DUF(J)=DUMIF(J)*10»**3/ZMIDUFIJ)+0.5 526.000 0315 D U E ( J ) = D U M I E ( J ) * 1 0 . * * 3 / Z M I DUE(J)+0.5 527.000 0316 D U P ( J ) = D U M I P { J ) * 1 0 . * * 3 / Z M I D U P ( J ) + 0 . 5 528.000 0317 DUTOTtJ)=DUF(J)+DUE<J)+DUP(J) 529.000 0318 501 CONTINUE 530.000 C 531.000 C CALCULATION OF THE NUMBER OF ELECTRIC LOCOMOTIVES REQUIRED 532.000 C 533.000 C 534.000 0319 F A C F = I R E E L U F * ( 1 0 0 . - X I N A V 1 ) / 1 0 0 0 0 . 535.000 0320 F A C E = ( R E E L U E * ! 1 0 0 . - X I N A V ) ) / 1 0 0 0 0 . 536.000 0321 F A C P = ( R E E L U P * ( 1 0 0 . - X I N A V ) ) / 1 0 0 0 0 . 537.000 0322 DO 600 J = l , 1 0 0 538.000 0323 E L F { J ) = D U F ( J ) * F A C F 539.000 0324 ELE<J)=DUE<J)*FACE 540.000 0325 E L P ( J ) = D U P < J ) * F A C P 541.000 0326 T O T E H J ) = E L F { J ) + E L E ( J ) + E L P ( J ) 542.000 0327 600 CONTINUE 543.000 C 544.000 C CALCULATION OF THE NUMBER OF ELECTRIC LOCOMOTIVE UNIT MILES 545.000 C 546.000 C 547.000 0328 DO 700 J = l , 1 0 0 548.000 0329 E L M I F ( J ) = D U M I F { J ) * R E E L U F / 1 0 0 . 549.000 0330 E L M I E l J ) = D U M I E ( J ) * R E E L U E / 1 0 0 . 550.000 0331 E L M I P i J ) = D U M I P ( J ) * R E E L U P / 1 0 0 . 551.000 0332 TOTE L M ( J ) = E L M I F ( J ) + E L M I E ( J ) + E L M I P ( J ) 552.000 0333 700 CONTINUE 553.000 C 554.000 C CALCULATION OF DIESEL LOCOMOTIVE CAPITAL COST 555.000 C 556.000 C 557.000 0334 HA=1.+ESCDLF/100. 558.000 0335 HB=1.+ESCDLE/100. 559.000 0336 HC=1.+ESCDLP/100. 560.000 0337 DO 800 J=2,100 561.000 0338 D L C O S F t J ) = D L C O S F J J - l ) * H A 562.000 0339 D L C O S E ( J ) = D L C O S E { J - l ) * H B 563.000 0340 D L C O S P l J ) = D L C 0 S P 1 J - 1 ) * H C 564.000 0341 800 CONTINUE 565.000 0342 DO 801 J = l , 1 0 0 566.000 0343 T D L C 0 F ( J ) = D L C 0 S F l J ) * I F I X ( D U F U ) + 0 . 5 ) 567.000 0344 T D L C O E f J ) = D L C 0 S E ( J ) * I F I X ( D U E I J ) + 0 . 5 ) 568.000 0345 T D L C 0 P { J ) = D L C 0 S P ( J ) * I F I X ( D U P U ) + 0.5) 569.000 0346 TDLCOS(J)=TDLC0F{J)+TDLC0E t J ) + T D L C O P ( J ) 570.000 0347 801 CONTINUE 571.000 C 572.000 MICHIGAN TERMINAL SYSTEM FORTRAN GC41336) MAIN - 164 -08-28-75 11:30:29 C C C CALCULATION OF ELECTRIC LOCOMOTIVE CAPITAL COST 0348 TA=1,+ESCELF/100« 0349 TB=lo+ESCELE/100. 0350 TC=1,+£SCELP/100. 0351 00 900 J=2,100 0352 ELCOSFiJ)=ELCOSF(J-l)*TA 0353 ELCQSE(J)=£LCOSE(J-l)*TB 0354 ELCOSPU )=ELCQSP(J-1)*TC 03 55 900 CONTINUE 03 56 DO 901 J=l,100 0357 TELCOFC J) = ELCGSF(J)#I FIX ( ELF < J)+0.5) 0358 TELCOE(J)=ELC0SE(J)*IFIX(ELE(J)+0.5) 03 59 TELCOP(J)=ELC0SP(J)*IFIX(ELP(J)+0.5) 0360 TELCOS(J)=TELCOF{J)+TELCOE!J)+TELCOP(J) 0361 901 CONTINUE 0362 0363 0364 0365 0366 03 67 03 68 0369 0370 0371 0372 0373 0374 03 75 0376 0377 0378 03 79 03 80 03 81 0382 0383 0384 0385 03 86 0387 0388 03 89 03 90 0391 C C C C C C C C CALCULATION OF DIESEL LOCOMOTIVE MAINTENANCE COST DA=1.+ESDMCF/100. DB=l.+ESDMCE/100o DC=1.+£SDMCP/100. DO 210 J=2,100 DLMTCFiJ)=DLMTCFtJ-1)*DA DLMTCE(J)=DLMTCE(J-l)*DB DLMTCP(J)=DLMTCP(J-1)*DC 210 CONTINUE DO 211 J=l,100 TDLMTF(J)=DLMTCF(J)#DUMIF{J)/100. TDLMTE{J) = DLMTCE(J)*DUMIE( J)/100. TDLMTPlJ)=DLMTCP(J)*DUMIP(J)/100. TTDLMT(J) = TDLMTF i J)+TDLMTE(J)+TDLMTP iJ) 211 CONTINUE CALCULATION OF ELECTRIC LOCOMOTIVE MAINTENANCE COST ELMTCFil)=DLMTCF11)*EMTF/10000. ELMTCE(1)=DLMTCEU)*EMTE/10000. ELMTCPil)=DLMTCPil)*EMTP/1000 0. GA=1.+ESEMCF/100. GB=1.+ESEMCE/100. GC=1.+ESEMCP/100. DO 212 J=2,100 ELMTCF(J)=ELMTCFIJ-1)*GA £LMTCE(J ) = ELMTCE(J-l)*GB ELMTCP(J)=ELMTCP(J-l)#GC 212 CONTINUE DO 213 J = l t l O O T£LMTF(J)=ELMTCF(J)*ELMIF(J) TELMTE{J)=ELMTCE(J)*ELMIE(J) TELMTP(J)=ELMTCP(J)*ELMIP(J) TTELMTCJ)=TELMTF(J)+TELMTE(J)+TELMTPCJ) 573.000 574.000 575.000 576.000 577.000 578.000 579.000 580.000 581.000 582.000 583. 000 584.000 585.000 586.000 587.000 588.000 589.000 590.000 591.000 592.000 593.000 594.000 595.000 596.000 597.000 598.000 599.000 600.000 601.000 602.000 603.000 604.000 605.000 606.000 607.000 608.000 609.000 610. 000 611.000 612.000 613.000 614.000 615.000 616.000 617.000 618.000 619.000 620.000 621.000 622.000 623.000 624.000 625.000 626.000 627.000 MICHIGAN TERMINAL SYSTEM FORTRAN GC41336) MAIN 08-28-75 ~ ~ 11:30:29 0392 213 CONTINUE 628.000 C 629.000 C CALCULATION OF TOTAL ANNUAL DIESEL FUEL REQUIREMENT 630.000 C 631.000 C 632.000 0393 XMIL=XMLEST+XMLEDT 633.000 0394 G=(61+G2)/2. 634.000 0395 YF=XMIL*FUCONF 635.000 0396 YE = XMI L*FUCONE 636.000 0397 YP=XMIL*FUCONP 637.000 0398 DO 650 J = l , 1 0 0 638.000 03 99 FA=CARF{J)+1. 63 9.000 0400 F B = C A R E ( J ) + l . 640.000 0401 F C = C A R P I J ) + 1 . 641.000 0402 F U C A R F ( J ) = Y f * F A * { ( 1 . 3 + .045*VF+G)*WCF{J)+29,*XNCF+.0OO5*ACF*VF**2) 642.000 0403 FUCARE(J)=YE*FB*( I 1.3+.045*V£+G)*HCE (J)+29.*XNCE+»0005*ACE*VE**2) 643.000 0404 FUCARP U)=YP*FC*(<1.3+.045*VP+G)*WCP{J)+29.*XNCP+.0005*ACP*VP**2) 644.000 0405 FULOCFfJ)=Yf*DUPTNF(J)*({1.3+.Q3*VF+G)*WLF+29.*XNLF+.0024*ALF*VF** 645.000 12) 646.000 0406 F U L O C E f J )=YE*DUPTNE(J)*({1.3+.03*VE+G)*WLE+29.*XNLE+.0024*AL£*VE** 647.000 12) 648.000 G407 FULOCP (J)=YP*DUPTNPU)*(i1.3+.03*VP+G)*MLP+29.*XNLP+.0024*ALP*VP** 649.000 12) 650.000 0408 F U E L G F ( J ) = ( F U C A R F ( J ) + FULOCFC J ) ) * 1 0 0 0 . / ( G T P T N F { J ) * X M I L ) 651.000 0409 F U E L G E ( J ) = ( F U C A R E { J ) + F U L O C E ( J ) ) * 1 0 0 0 . / ( G T P T N E ( J ) * X M I L ) 652.000 0410 F U E L G P 1 J ) = ( F U C A R P ( J ) +FULOCP(J) ) * 1 0 0 0 . / { G T P T N P ( J ) * X M I L ) 653.000 0411 F U E L F ( J ) = F U E L G F ( J ) * T G T M F ( J ) / 1 0 0 0 . 654.000 0412 F U E L E ( J ) = F U E L G E i J ) * T G T M E ( J ) / 1 0 0 0 . 655.000 0413 FUEL P ( J ) = F U E L G P ( J ) * T G T M P ( J ) / 1 0 0 0 . 656.000 0414 F U E L T T ( J ) = F U E L F ( J ) + F U E L E ( J ) + F U E L P ( J ) 657.000 0415 650 CONTINUE 658.000 0416 XA=DAYIDF*HRIDLF*DLCONF 659.000 0417 XB=DAYIDE*HRIDLE*DLCONE 660.000 0418 XC=DAYIDP*HRIDLP*DLCONP 661.000 0419 DO 651 J=l«100 662.000 0420 F I D L E F J J ) = X A * D U F ( J ) / 1 0 . * * 6 663.000 0421 FI0L£E(J)=XB*DUE(J)/10.**6 664.000 0422 F I D L E P I J 3 = X C * D U P ( J ) / 1 0 . * * 6 665.000 0423 F I D L E T ( J ) = F I D L E F ( J ) + F I D L E E ( J ) + F I O L E P ( J ) 666.000 0424 651 CONTINUE 667.000 C 668.000 C CALCULATION OF KWH REQUIRED FOR ELECTRIC LOCOMOTIVES 669.000 c 6 70.000 C 671.000 0425 DO 750 J=l»100 672.000 0426 X K W H ( J ) = • 9 5 * F U E L T T ( J ) / . 0 6 7 673.000 0427 750 CONTINUE 674.000 C 675.000 C CALCULATION OF DIESEL FUEL COST 676.000 c 677.000 C 678.000 0428 XXA=OFU£LC(1) 679.000 0429 RA=1.+DFUESC/100. 680.000 0430 D F U E L C U ) = D F U E L C U ) + G V F U E L 681.000 0431 DO 850 J=2,100 682.000 MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN - 166 -08-28-75 11:30:29 0432 DFUELC U)=DFUELCC J - l ) *RA 683.000 0433 850 CONTINUE 684.000 0434 DO 851 J = l , 1 0 0 685.000 0435 D F U E L T ( J ) = D F U E L C { J ) * ( F I D L E T ( J ) + F U E L T T { J ) ) / 1 0 0 . 686.000 0436 851 CONTINUE 687.000 C 688.000 C CALCULATION OF ELECTRICAL POWER COST 689.000 C • 690.000 C 691.000 0437 RB=1.+EKWHES/100. 692.000 0438 DO 950 J=2,100 693.000 0439 EKWHCO ( J ) = EKWHC0U-1 )*RB 694.000 0440 950 CONTINUE 695.000 0441 DO 951 J = l , 1 0 0 696.000 0442 EKWHCT(J)=EKWHC0{J)*XKWH{J)/100. 697.000 0443 951 CONTINUE 698.000 C 699.000 C CALCULATION OF LOCOMOTIVE WAGE WEIGHT DIFFERENTIAL 700.000 C 701.000 C 702.000 0444 QD=1„+ESRTEF/100. 703.000 0445 QE=1.+ESRTEE/100. 704.000 0446 QF=1.+ESRTEP/100. 705.000 0447 DO 349 J=2,100 706.000 0448 RATEFCJ)=RAT£F(J-l)*QD 707.000 0449 R A T E E ( J ) = R A T E E i J - l ) * Q E 708.000 0450 R A T E P { J ) = R A T E P ( J - l ) * Q F 709.000 0451 349 CONTINUE 710.000 0452 DO 350 J = l , 1 0 0 711.000 0453 QA=(RATEFI J ) / 1 0 0 . ) *U.+VACUN F/100. ) =M 1.+OVRATF/100. )*XMENF 712.000 0454 QB=(RATEEJJ)/100.)*{1.+VACUNE/100.) *{1.+ OVRATE/100,)*XMENE 713.000 0455 QC={RATEP1J)/100.)*(1.+VACUNP/100.)*{I.+QVRATP/IOO.)*XMENP 714.000 0456 DIFCWF(J)=CQA*DUPTNF{J)*TMF{J}*{WLF-REELUF*W£F/100.))/2500. 715.000 0457 DIFCWEJJ)=(QB*DUPTN£iJ)*TME(J)*(WLE-REELUE*WEE/100.))/2500. 716.000 0458 DIFCWP(J) = ( Q C * D U P T N P ( J ) * T M P i J ) * ( W L P — R E E L UP*WEP/100.))/2500. 717.000 0459 DIFTOTIJ)=DIFCWF{J)+DIFCWE(J)+DIFCWP{J) 718.000 0460 D I F D L ( J ) = { Q A * D U P T N F ( J ) * T M F ( J ) * W L F + QB*DUPTNE(J)*TME < J)*WLE + QC*DUPTN 719.000 1 P ( J ) * T P P { J ) * W L P ) / 2 5 0 0 . 720.000 0461 DIFELC J ) = ( ( QA*DUPTNF { J }*TMF ( J ) *WEF*REE LUF/ 100. ) + ( QB*DUPTNE { J ) *TME { 721.000 1J)*WEE*REELUE/100.)+(QC*DUPTNP{J )*TMP{J)#WEP*REELUP/100.))/2500. 722.000 0462 350 CONTINUE 723.000 C 724.000 C SAVINGS IN TRACK MAINTENANCE WITH ELECTRIC LOCOMOTIVES 725.000 C 726.000 C 727.000 0463 PA=1.+ESTRMT/100. 728.000 0464 DO 550 J=2,100 729.000 0465 T R M T C E ( J ) = T R M T C E { J - l ) * P A 730.000 0466 550 CONTINUE 731.000 0467 DO 551 J = l , 1 0 0 732.000 0468 PB=DUPTNF(J)*(WLF-WEF*REELUF/100.)/1000. 733.000 0469 PC=DUPTNElJ)*{WLE-WEE*REELUE/100.)/1000. 734.000 0470 PD=DUPTNP{J)*(WLP-WEP*REELUP/10Q.)/1000. 735.000 0471 S A G T M F l J ) = T M F ( J ) * P B * T R M T C E ( J ) / 1 0 0 , 736.000 0472 S A G T M E ( J ) = T M E ( J ) * P C * T R M T C E ( J ) / 1 0 0 . 737.000 MICHIGAN TERMINAL SYSTEM FORTRAN G141336) MAIN - 167 -08-28-75 11:30:29 0473 SAGTMP{J 3 = TMP{J)*PD*TRMTC E { J } / 1 0 0 o 738.000 0474 TOTS AGIJ)=SAGTMF{J)+SAGTME{J)+SAGTMP(J) 739.000 0475 SAGDL<J)=(TMF{J)*DUPTNF{J)*WLF+TME(J)*DUPTNE(J)*WLE+TMP{J)*DUPTNP{ 740,000 1J)*WLP)*TRMTCE<J3/100000. 741.000 04 76 S A G E L l J ) = ( T M F ( J ) * D U P T N F ( J 3 * W E F * { R E E L U F / 1 0 0 . 3 + T M E { J ) * D U P T N E ( J ) * W E E * 742.000 1 { R E E L U E / 1 O C ) + T M P ( J 3*0UPTNP(J)*WEP*{REELUP/100.))*TRMTCE(J3/10**5 743.000 0477 551 CONTINUE 744.000 C 745.000 C CATENARY MAINTENANCE 746.000 C — 747.000 C 748.000 0478 SA=1.+CAMTES/100. 749.000 0479 CAMT(13 = (CAMT ST*XMLEST+CAMTDT*XML£DT + CAMTSD*XMLESD+CAMTYD*XMLEYD)/ 750.000 110**6 751.000 0480 DO 450 J=2,100 752.000 0481 CAMTCJ3=CAMT(J-1)*SA 753.000 0482 . 450 CONTINUE 754.000 C 755.000 C CAPITAL CONSTRUCTION 756.000 C 757.000 C 758.000 0483 CATST(1)=CASTC0*XMLEST 759.000 0484 CATDT(1>=CADTC0*XML£DT 760.000 0485 C A T S D U )=CASDCO*XMLESD 761.000 0486 CATYDi1)=CAYDCO*XMLEYD 762.000 0487 SUBSTt1)=SUSTCO*XMLEST 763.000 0488 SUBDT(1)=SUDTCO*XMLEDT 764.000 0489 SUBSD(1)=SUSDC0*XMLESD 765.000 0490 SUBYDJ13=SUYDCO*XMLEYD 766.000 0491 COMSTt1)=C0STC0*XMLEST 767.000 0492 C0MDT(13=C0DTCO*XMLEDT 768.000 0493 COMSD(1)=COSDCO*XMLESD 769.000 0494 COMYDJ13=COYDCO*XMLEYD 770.000 0495 SIGST{1)=SISTC0*XMLEST 771.000 0496 SIGDT{1)=SIDTCO*XMLEDT 772.000 0497 SIGSD(1)=SISDC0*XMLESD 773.000 0498 SIGYDt1)=SIYDCO*XMLEYD 774.000 0499 C A T T 0 T U ) = (CATST(1)+CATDT 11)+CATSDU 3+CATYD (13 3/10**6 775.000 0500 S U B T 0 T ( 1 ) = ( S U B S T ( 1 ) + S U B 0 T ( 1 ) + S U B S D ( 1 ) + S U B Y D ( 1 ) ) / 1 0 * * 6 776.000 0501 COMTOT(1)=(C0MST(13+C0MDTU3+COMSDC13+COMYD(1)3/10**6 77 7.000 0502 SIGT0TC13=<SIGST( 1) + SI GDT1 13 + SI G SD I I ) + SI G YD! 1 ) 3/10**6 778.000 0503 TOTCAP (1 ) = CATTOTU 3+SUBTOT (1 3+COMTOT<13+SIGTOT(13 779.000 0504 YA=1.+ESCATC/10Q. 780.000 0505 YB=1.+ESSUBC/100. 781.000 0506 YC=1.+ESCQMC/100. 782.000 0507 YD=1.+ESSIGC/100. 783.000 0508 DO 675 J=2,100 784.000 0509 CATTOT(J)=CATTOT{J-l3 *YA 785.000 0510 SUBTOT(J)=SUBTOT(J-1)*YB 786.000 0511 COMTOTJ J)=C0MT0TU-13*YC 787.000 0512 S I G T O T I J ) = S I G T O T ( J - 1 ) * Y D 788.000 0513 TOTCAP{J) = CATTOT(J 3 +SUBTOT(J 3 +CQMT0T4 J ) + S I G T O T I J ) 789.000 0514 675. CONTINUE 790.000 C 791.000 C CALCULATION OF ANNUAL OPERATING COSTS 792.000 MICHIGAN TERMINAL SYSTEM FORTRAN G{41336) MAIN - 168 -08-28-75 11:30:29 C C 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 05 27 0528 05 29 0530 0531 0532 0533 0534 0535 0536 0537 053 8 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 DO 234 J = l , 1 0 0 I YE AR ( J ) = IY R B A S + J — 1 234 CONTINUE IA=1 DO 135 J = l , 1 0 0 ANNSAVi J)=(TTDLMT{Jl-TTELMT{J)+DFUELT{J)-EKWHCT(J)+DIFTOT{J)+TOTSA 1 G U J-CAMTi J ) ) 135 CONTINUE DISRAT=DISRAT/100. KC=IC0NPR+1 GD=B00KVL{1) DO 4369 K=KC,50 B0 0 K V L ( 1 ) = GD DO 4368 J = l , 1 0 0 DLCASHt J ) = 0 . 0 EL C A S H ( J ) = 0.0 DFCA S H ( J ) = 0 . 0 D L D F ( J ) = 0. 0 E L E F ( J ) = 0 . 0 4368 CONTINUE LE=LIF£DL*3 LF=LIFEDL*2 XQ=1.-1./LIF£DL XC=TDLC0SU J/LIFEDL DO 432 7 J = l , 9 9 D L D F ( J ) =TDLCOS(J + l ) - T D L C O S I J ) I Ft J - L I F E D L ) 4 3 3 0 , 4 3 3 0 , 4 3 3 1 4331 I F { J - L F ) 4 3 3 2 , 4 3 3 2 , 4 3 3 3 4332 D L D F I J ) = DLDF{J)+DLDFCJ-L I FEDL) GO TO 4330 4333 I F ( J - L E ) 4 2 2 5 , 4 2 2 5 , 4 2 2 6 4225 DLDF < J ) = D L D F { J ) + D L D F ( J - L I F E D L ) D L D F ( J ) = D L D F ( J ) + D L D F { J - L F ) GO TO 4330 4226 D L D F ( J ) = D L D F { J ) + D L D F ( J - L I F E D L ) D L D F ( J ) = D L D F { J ) + D L D F i J - L F ) DLDF{J)=DL0F{J)+DLDF{ J - L E ) 4330 I f { J - l ) 4 3 2 6 , 4 3 2 6 , 4 3 2 5 4326 BOOKVL(J)=BO0KVL<J)*XQ+DLDF(J)+XC GO TO 4327 4325 BOOKVLtJ)=BOOKVL(J-l)*XQ+DLDF{J)+XC 4327 CONTINUE DO 4371 J = l , 1 0 0 D L C A S H ( J ) = D L C A S H ( J ) + T T D L M T I J ) + D F U E L T ( J ) + D I F D L ( J ) + S A G D L ( J ) + D L D F ( J ) DLCA SH(J)=DLCASH(J)+XC 4371 CONTINUE KK=K-1 KB=K-ICONPR IY=0 DO 4374 JJ=KB,KK IY=IY+1 E L C A S H ( J J ) = E L C A S H ( J J ) + T O T C A P I J J ) * A M T C O N { I Y J / 1 0 0 . 4374 CONTINUE 793.000 794.000 795.000 796.000 797. 000 798.000 799.000 800.000 801.000 802.000 803.000 804.000 805.000 806.000 807.000 808.000 809.000 810.000 811.000 812.000 813.000 814.000 815.000 816.000 817.000 818.000 819. 000 820.000 821.000 822.000 823.000 824.000 825.000 826.000 827.000 828.000 829.000 830.000 831.000 832.000 833.000 834.000 835.000 836.000 837.000 838.000 839.000 840.000 841.000 842.000 843.000 844.000 845.000 846.000 847.000 MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN - 169 -08-28-75 11:30:29 0567 0568 0569 0570 0571 0572 05 73 0574 0575 0576 0577 0578 0579 0580 0581 0582 05 83 0584 0585 0586 05 87 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 05 98 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 06 09 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 43 76 4375 4378 4377 4229 4228 4380 4390 782 783 347 348 346 291 853 876 852 292 293 294 295 196 DO 4375 JI=1,KK 848o000 ELCASHIJI)=ELCASH(JI)+DLCASH(JI) 849.000 IFUI-KK) 4375,4376,4375 850.000 ELCASH(JI)=ELCASHiJIJ-BOOKVL(JI) 851.000 CONTINUE 852.000 DO 4377 JI=KK,100,LIFEEL 853.000 ELCASH(JI)=ELCASH(JI)+TELCOS ( KK + 1) 854.000 IF(JI-KK) 4377,4377,4378 855.000 ELCASH(JI)=ELCASHtJI)+TOTCAP(JI) 856.000 CONTINUE 857.000 DO 4380 JA=K,99 858.000 ELEF1JA)=TELCOSIJA+1)-TELCOS(JA) 859.000 IF!JA-LIFEEL-K) 4228,4229,4229 860.000 ELEF(JA)=ELEF(JA)+ELEF(JA-LIF£EL) 861.000 ELCASH(JA)=ELCASH(JA)+TTELMTIJAl+EKWHCT(JA)+CAMT(JA)+DIFEL(JA >+SAG 862.000 .EL IJA)+ELEF(J A) 863.000 CONTINUE 864.000 DO 4390 JC-1.35 865.000 DLNPVIK)=DLNPV(K)+DLCASHJ JC ) / U . +DISRAT)**JC 866.000 ELNPVt K)=ELNPV(K)+ELCASH(JC)/11.+DISRAT)**JC 867.000 CASHFL(JC)=DLCASH<JC)-ELCASH(JC) 86 8.000 DIFNPV(K)=DIFNPV(K)+CASHFL(JC)/U.+0 ISRAT ) **JC 869.000 CONTINUE 870.000 IL=K 871.000 XNPW = 0.0 872.000 DO 782 JJJ=1,100 873.000 XNPW=XNPW+CASHFL(JJJ) 874.000 CONTINUE 875.000 IF(XNPW) 4369,4369,783 876.000 DO 346 J=l,100 877.000 XNPW=0.0 878.000 E=J/100. 879.000 DO 347 JJ=1,100 880.000 XNPW=XNPW+CASHFL{JJ)/(l.+E)**JJ 881.000 CONTINUE 882.000 IF(XNPW) 348,346,346 883.000 A=J-1 884.000 GO TO 291 885.000 CONTINUE 886.000 DO 852 J=l,10 887.000 XNPW=0.0 888.000 E=J/10.**2 889.000 DO 853 N=l,100 890.000 XNPW=XNPW+CASHFL(N >/(1.+A/100.+E/10.)**N 891.000 CONTINUE 892.000 IF(XNPW) 876,852,852 893.000 B=(J-1)/10. 894.000 GO TO 292 895.000 CONTINUE 896.000 IFCB-0.5) 293,294,294 897.000 KZ=A 898.000 GO TO 295 899.000 KZ=A+1 900.000 IF(DIFNPV(K)-DIFNPV(K-l)) 341,341,196 901.000 IA=K 902.000 - 170 -MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 08-28-75 11:30:29 0621 341 MATRIXiK»KZ)= 1 903.000 06 22 4369 CONTINUE 904.000 0623 IB=IYEAR<I A) 905.000 0624 I P=I A-3 906.000 0625 IQ=IA+3 907.000 0626 JA=IB-ICONPR 908.000 06 27 BOOKVLQ ) = G0 909. 000 0628 DISRAT=DISRAT*100o 910.000 C 911.000 912.000 C 913.000 0629 WRITE(6,2000) 914.000 0630 WRITE(6,2500) IBAS R0UTE1,R0UTE2,R0UTE3,R0UTE4,ROUTE5,R0UTE6,R0UTE7,IYR 915.000 916.000 0631 WRITEI6.2501) 917.000 0632 WRITE!6.2502) 918.000 0633 WRITE!6,2503) 919.000 06 34 WRITE!6,2528) 92 0.000 0635 DO 51 J=1,NUBSUB 921.000 0636 WRITE(6,2435) SUBKJ),SUB2(J),SUB3(J),SUB4!J),SUB5(J),GTMF!J),GTME 922.000 1! J),GTMP!J),STMLE{J),DTMLE(J),SDMLEiJ),YDMLE!J) 923.000 0637 51 CONTINUE 924.000 0638 WRITE<6,2520) XMLEST,XMLEDT,XMLESD,XMLEYD 925.000 0639 WRITE(6,2504) TGF,TGE »TGP 926.000 0640 WRITE(6,2514) 927.000 0641 WRITE(6,2515) MAXST,MAXDT 928.000 0642 WRITE(6,2517) SIDLEN 929.000 0643 WRITEI6,2519) G1,G2 930.000 0644 WRITE(6,2512) MAXWCT 931.000 0645 WRITE!6,2000) 932.000 0646 WRITEI6.2505) 933.000 0647 WRITE!6,2506) 934.000 0648 WRITE!6,2529) 935.000 0649 WRITE(6,2507) CARFJl),CARE(1),CARP(1),ESCARF,ESCARE,ESCARP 936.000 0650 WRITE!6,2508) WCFU) ,WCE(1) , WCPC1) , ESGTC F, ESGTCE , ESGTCP 937.000 0651 WRITE!6,2521) GTPTNF(1),GTPTNE(1),GTPTNP(1) 938.000 0652 WRITE(6,2509) VF,VE,VP 939.000 06 53 WRITE(6,2510) XNCF,XNCE,XNCP 940.000 06 54 WRITE16,2511) ACF,ACE» ACP 941.000 0655 WRITE!6,2513) CARLF,CARLE,CARLP 942.000 0656 WRITE!6,2820) RATEF(1),RATEE(1),RATEP(1),ESRTEF,ESRTEE,ESRTEP 943.000 0657 WRITE(6,2821) VACUNF,VACUNE,VACUNP 944.000 0658 WRITE!6,2522) OVRATF,0VRATE,0VRATP 945.000 0659 WRITE(6,2524) XMENF,XMENE,XMENP 946.000 0660 WRITE(6,2514) 947.000 0661 WRITE!6,2516) CABOSL 948.000 0662 WRITE(6,2518) SLAFAC 949.000 0663 WRITE(6,2523) TRMTCE(1),ESTRMT 950.000 0664 WRITE!6,2597) 951.000 0665 WRITE(6,2000) 952.000 0666 WRITE!6,2525) 953.000 0667 WRITE!6,2506) 954.000 0668 WRITE(6,2529) 955.000 0669 WRITE(6,2526) ZMIDUF(l),ZMIDUE(1),ZMIDUP{I),GDUMF,GDUME,GDUMP 956.000 0670 WRITE(6,2531) DLCOSF(l),DLC0SE(1),DLCOSP{1),ESCDLF.ESCDLE,ESCDLP 957.000 MICHIGAN TERMINAL SYSTEM FORTRAN GC41336) MAIN - 171 -08-28-75 11:30:29 0671 0672 0673 06 74 06 75 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 06 98 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 07 09 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 WRITE(6,2532) WRITE(6,2527) WRITE!6,2530) WRITE(6,2562) WRITE(6,2533) WRIT£(6,2534) WRITE!6,2535) WRITE(6,2536) WRITE(6,2537) MRITE{6,2538) WRITE!6,2539) WRITE<6,2514) WRITE!6,2540) WRITE!6,2541) WRITE!6,2542) WRITE!6,2543) WRITE(6,2597) WRITE!6,2000) WRITE!6,2550) WRITE!6,2506) WRITE!6,2529) WRITE16,2551) WRITE!6,2552) WRITE!6,2553) WRITE!6,2554) WRITE!6,2555) WRITE!6,2514) WRITE(6,2556) WRITE!6,2557) WRITE(6,2558) WRITE(6,2559) WRITE!6,2597) WRITE!6,2000) WRITE(6,2575) WRITE!6,2576) WRITE!6,2577) WRITE!6,2578) WRITE!6,2579) WRITE!6,2580) WRITE!6,2581) WRITE(6, 2582) WRITE(6,2514) WRITE!6,2583) WRITE!6,2584) WRITE(6,2585) WRITEI6,2586) WRITE!6,2587) WRITE!6,2588) IF!ICQNPR-1) DLMTCFU), DLMTCE11), DLMTCP!1),ESDMCF,ESDMCE,ESDMCP DUPT NF!1),0UPTNE!1),DUPTNP!1) DULENF,DULENE,DULENP HPF,HPE,HPP XNLF,XNLEt XNLP ALF,ALE,AL P DAY IDF,DAY IDE,DAY I OP HRIDLE,HRIDLE,HRIDLP DLCONF,DLCONE,DLCONP FUCONF,FUCONE,FUCONP WLF,WLE,WLP XXA OVFUEL DFUESC LIFEDL ELC0SF(1),ELC0SE(1),ELCOSP!1),ESCELF,ESCELE REELUF,REELUE,REELUP EMTF,EMTE,EMTP £SEMCF,ESEMCE,ESEMCP WEF,WEE,WEP XINAV EKWHCO(l) EKWHES LIFEEL ESCELP CASTCO,CADTCO,CASDCO,CAYDCO,ESCATC SUSTCO,SUOTCO,SUSDCO,SUYDCO,ESSUBC COSTCO,COOTCO,COSDCO,COYDCO,ESCOMC SISTCO,SIDTCO,SISDCO,SIYDCO,ESSIGC CAMTST,CAMTDT,CAMTSD,CAMTYD,CAMTES LIFECA LIFESU LIFECO LIFESI ICONPR AMTCON!1) 46,46,47 47 DO 49 J=2 »ICONPR WRITEC6,2589) J,AMTCON(J) 49 CONTINUE 46 WRITE!6,2000) WRITE!6,2235) I=IC0NPR+1 958.000 959.000 960.000 961.000 962.000 963.000 964.000 965.000 966.000 967.000 968.000 969.000 970.000 971.000 972.000 973.000 974.000 975.000 976,000 977.000 978.000 979.000 980.000 981.000 982.000 983. 000 984.000 985.000 986.000 987.000 988.000 989.000 990.000 991.000 992.000 993.000 994.000 995.000 996.000 997.000 998.000 999.000 1000.000 1001.000 1002.000 1003.000 1004.000 1005.000 1006.000 1007.000 1008.000 1009.000 1010.000 1011.000 1012.000 - 172 -MICHIGAN TERMINAL SYSTEM FORTRAN GI 4 1 3 3 6 ) MAIN 08-28-75 11:30:29 0726 NQ=I+20 1013,000 0727 00 220 K = l , 1 0 0 1014„000 0728 J=K 1015,000 0729 DO 220 M=I,NQ 1016.000 0730 I F ( M A T R I X ( M , K ) - 1 ) 220,221 ,220 1017.000 0731 220 CONTINUE 1018.000 0732 221 I F ( J - l l ) 222,222,223 1019.000 0733 222 JL=1 1020.000 0734 GO TO 22 5 1021.000 0735 223 I F 1 J - 2 0 ) 224,224,226 1022.000 0 736 224 JL=11 1023.000 0737 GO TO 225 1024.000 0738 226 I F ( J - 3 0 ) 227,227,228 102 5.000 0739 227 JL=21 1026.000 0740 GO TO 225 1027.000 0741 228 I F J J - 4 0 ) 229,229,230 1028.000 0742 229 JL=31 1029.000 0743 GO TO 225 1030.000 0744 230 I F U - 5 0 ) 231,231,225 1031.000 0745 231 JL=41 1032.000 0746 225 I BOICONPR+22 1033.000 0747 JLL=JL+44 1034.000 0748 LB=0 1035.000 0749 DO 487 J=2,35 1036.000 0750 BLANK!J) =BLANK!1) 1037.000 0751 ASTERK!J)=AST£RK!1) 1038.000 0752 487 CONTINUE 1039.000 07 53 DO 80 J = J L , J L L 1040.000 0754 LB=LB+1 1041.000 0755 JK=JLL-LB+1 1042.000 0756 IAA=1 1043.000 0757 DO 82 K=I,IBC 1044.000 0758 KKK=K—1 1045.000 07 59 I F ! M A T R I X I K , J K ) - 1 ) 8 2 , 8 1 , 82 1046.000 0760 81 I F ( IBC-K-1) 6,6,4610 1047.000 0761 4610 IBCD=IBC-K 1048.000 0762 DO 5 LX=1,IBCD 1049.000 0763 I F { M A T R I X { K + L X , J K ) - 1 ) 6,7 »6 105 0.000 0764 7 I F t L X - I B C D ) 4 8 1 0 , 6 , 4 8 1 0 1051.000 0765 4810 IAA=IAA+1 1052.000 0766 5 CONTINUE 1053.000 0767 6 I F ( K - I ) 2,2,3 1054.000 0768 3 WRITE ( 6, 22011 P R C E T K J K ) , PRCET2{JK) ,(BLANK(NM),NM=I,KKK),{ASTERK(L 1055.000 I X Y ) , L X Y = 1 , I A A ) 1056.000 0769 GO TO 80 1057.000 0770 2 WRITE(6,2201 ) P R C E T H J K ) , P R C E T 2 ( J K ) ,{ASTERK!LXY),LXY=1,IAA) 1058.000 0771 GO TO 80 105 9.000 0772 82 CONTINUE 1060.000 0773 WRITE! 6,2221) P R C E T K J K ) , PRCET2!JK) 1061.000 0774 80 CONTINUE 1062.000 0775 WRITEC 6,2230) 1063.000 0776 WRITE(6,2231) ( I Y E A R ( J ) , J = I , I B C , 2 ) 1064.000 0777 WRITE(6,2000) 1065.000 0778 WRITE(6,2710) 1066.000 0779 WRITE(6,2711) 1067.000 MICHIGAN TERMINAL SYSTEM FORTRAN GI41336) MAIN - 173 -08-28-75 11:30:29 0780 DO 4102 J = I , 2 5 1068.000 0781 WRITE*6,2712) I Y E A R ( J ) , D L N P V ( J ) , E L N P V ( J ) 1069.000 0782 4102 CONTINUE 1070.000 0783 WRITE(6,2Q00) 1071.000 0784 WRITE*6,2590) 1072.000 0785 W R I T E l 6 , 2 5 9 1 ) 1073.000 0786 WRITE(6,2592) DISRAT 1074.000 0787 WRITE(6 f2593) BOOKVK 1) 1075.000 0788 WRITE(6,2514) 1076.000 0789 IF{MAXYR-O) 2842,2842,2843 1077.000 0790 2842 W R I T E l 6 , 2 8 4 4 ) 1078.000 0791 GO TO 2845 1079.000 0792 2843 WRITE(6,2841) MAXYR 1080.000 0793 2845 WRITE(6,2594) IB 1081.000 0794 WRITE(6,2595) 1082.000 0795 WRITE(6,2596) JA 1083.000 0796 GO TO ( 4 2 , 4 3 , 44),IDATA 1084.000 0797 43 IP=1 1085.000 0798 IQ=7 1086.000 0799 44 WRIT£(6,2000) 1087.000 0800 WRITEl6,2600) 1088.000 0801 WRITE(6,2601) ( I Y E A R ( J ) , J = I P , I Q ) 108 9*000 0802 WRITE(6,2602 ) *TGTMF*J)»J=IP»IQ) 1090.000 0803 WRITE(6,2603) ( T G T M E ( J ) , J = I P , I Q ) 1091.000 0804 WRITE*6,2604) ( T G T M P i J ) , J = I P , I Q ) 1092.000 0805 WRITE(6,2605) (TOTGTM*J),J=IP,IQ) 1093.000 0806 WRITE(6,2606) ( G T P T N F * J ) , J = I P , I Q ) 1094.000 0807 WRITE(6,2607) ( G T P T N E * J ) , J = I P , I Q ) 1095.000 0808 WRITE(6,2608) ( G T P T N P ( J ) , J = I P , I Q ) 1096.000 0809 WRITE* 6,2609) ( C A R F ( J ) , J = I P , I Q ) 1097.000 0810 WRITE(6,2610) ( C A R E ( J ) , J = I P , I Q ) 1098.000 0811 WRITE(6,2611) ( C A R P ( J ) , J = I P , I Q ) 1099.000 0812 WRITE(6,2612) ( W C F ( J ) , J = I P , I Q ) 1100.000 0813 WRITE(6,2613) (WCE * J ) , J = I P , I Q ) 1101.000 0814 WRITE(6,2614) ( W C P ( J ) , J = I P , I Q ) 1102.000 0815 WRITE(6,2615) ( T M F ( J ) , J = I P , I Q ) 1103.000 0816 WRITE(6 f2616) ( T M E ( J ) , J = I P , I Q ) 1104.000 0817 WRITE(6,2617) * TMP ( J ) ,J=IP,IQ) 1105.000 0818 WRITE*6,2618) ( T O T T M ( J ) , J = I P , I Q ) 1106.000 0819 WRITE(6,2619) ( D U P T N F ( J ) , J = I P , I Q ) 1107.000 0820 WRITE(6,2620) (DUPTNE* J ) , J = I P , I Q ) 1108.000 0821 WRITE(6,2621) ( D U P T N P ( J ) , J = I P , I Q ) 1109.000 0822 WRITE*6,2622) * DUMIF * J ) , J = I P , I Q ) 1110.000 0823 WRITE(6,2623) ( D U M I E ( J ) , J = I P , IQ) 1111.000 0824 WRITE(6,2624) * D U M I P ( J ) , J = I P , I Q ) 1112.000 0825 WRITE(6,2625) C TOTDUM(J) , J = I P , I Q ) 1113.000 08 26 WRITE(6,2000) 1114.000 0827 WRITE!6,2600) 1115.000 0828 WRITE(6,2601) * I Y E A R ( J ) , J = I P , I Q ) 1116.000 0829 WRITE(6,2626) ( Z M I D U F C J ) , J = I P , I Q ) 1117. 000 0830 WRITE(6,2627) ( Z M I D U E ( J ) , J = I P , I Q ) 1118.000 0831 WRITE(6,2628) ( Z M I D U P * J ) , J = I P , I Q ) 1119.000 0832 WRITE(6,2629) ( DUFt J ) , J = I P , I Q ) 1120.000 08 33 WRITE(6,2630) ( D U E * J ) , J = I P , I Q ) 1121.000 0834 WRITE(6,2631) ( D U P ( J ) , J = I P , I Q ) 1122.000 - 174 -MICHIGAN TERMINAL SYSTEM FORTRAN G!41336) MAIN 08-28-75 0835 WRIT£I6,2632) 1 OUT 0T!J),J=IP,IQ) 1123.000 0836 WRITE(6,2633) (ELF{J),J=IP»IQ) 1124.000 0837 WRITE C6,2634) (ELE(J)» J= I P , IQ ) 1125.000 0838 WRITE(6,2635) (ELP(J)» J=IP»IQ) 1126.000 0839 WRITE(6,2636) iTOTEL!J),J=IP,IQ) 1127.000 0840 WRITE(6,2700) { E L M I F ! J ) , J = 1P,IQ) 1128.000 0841 WRITE(6,2701) ( ELMIE(J)» J=IP»IQ) 1129.000 0842 WRITE(6,2702) ( E L M I P ! J ) , J = I P , I Q > 1130.000 0843 WRITE(6,2703) ( T O T E L M ! J ) , J = I P , 1 0 ) 1131.000 0844 WRITE(6,2637) ( D L C O S F i J ) , J = I P , I Q ) 1132.000 0845 WRITE(6,2638) !DLCOSE!J),J=IPtIQ) 1133.000 0846 WRITE(6,2639) (DLCOSP!J)»J=IP,IQ) 1134.000 0847 WRITE(6,2640) ITDLCOF(J),J=IP»IQ) 1135.000 0848 WRITE(6,2641) (T0LCOE(J),J=IP»IQ) 1136.000 0849 WRITE(6,2642) (TOLCOP(J)»J=IP»IQ) 1137.000 0850 WRITE(6,2643) (TDLCOS!J) fJ=IP f10) 1138.000 0851 WRITE(6,2000) 1139.000 0852 WRITE(6,2600) 1140.000 0853 WRITE(6,2601) ( I Y E A R l J ) , J = IP »IQ) 1141.000 0854 WRITE(6,2644) ( E L C O S F ( J ) , J = I P , I Q ) 1142.000 0855 WRITE(6,2645) ( E L C O S E l J ) , J = I P , I Q ) 1143.000 0856 WRITE(6,2646) (ELCOSPtJ),J=IPtIQ) 1144.000 0857 WRITE(6,2647) I T E L C Q F ( J ) , J = I P , I Q ) 1145.000 0858 WRITE(6,2648) (TELCOEIJ),J=IP»IQ) 1146.000 0859 WRITE(6,2649) I T E L C O P ( J ) , J = I P tIQ) 1147.000 0860 WRITE(6,2650) (TELCOS!J) fJ=IPtIQ) 1148.000 0861 WRITE(6,2651) { D L M T C F ! J ) , J = I P , IQ) 1149.000 0862 WRITE(6,2652) ( D L M T C E ( J ) , J - I P tIQ) 1150.000 0863 WRITE(6,2653) ( D L M T C P ( J ) , J = I P , I Q ) 1151.000 0864 W R I T E ( 6 f 2 6 5 4 ) ( T D L M T F ( J ) , J = I P , I Q ) 1152.000 0865 WRITE(6,2655) (TDLMTE(J),J=IP fIQ) 1153.000 0866 WRITE(6,2656) (TDLMTP iJ),J=IPfIQ) 1154.000 0867 WRITE(6,2657) ( T T O L M T ( J ) , J = I P , I Q ) 1155.000 0868 WRITE(6,2658) ( E L M T C F ( J ) , J = I P , I Q ) 1156.000 0869 WRITE(6,2659) ( E L M T C E l J ) , J = IP »IQ) 1157.000 0870 WRITE(6,2660) (ELMTCPU)f J=IP».IQ) 1158.000 0871 WRITE(6,2661) iTELMTFi J ) , J = I P , I Q ) 1159.000 0872 WRITE(6,2662) ( T E L M T E ( J ) , J = I P »IQ) 1160.000 0873 WRITE(6,2663) ( T E L M T P ! J ) , J = I P , I G ) 1161.000 0874 WRITE(6,2664) ( T T E L M T ! J ) , J - I P , I Q ) 1162.000 0875 WRITE(6,2000) 1163.000 0876 WRITE(6,2600) 1164.000 0877 WRITE(6,2601) (I Y E A R ( J ) , J = I P , I Q ) 1165.000 0878 WRITE(6,2665) (FUELGFIJ)•J=IPtIQ) 1166.000 0879 WRITE(6,2666) ! F U E L G E ! J ) , J = I P , I Q ) 1167.000 0880 WRITE!6,2667) (FUELGP!J)»J=IP11Q) 1168.000 0881 WRITE(6,2668) { F U E L F ! J ) , J = I P , I Q ) 1169.000 0882 WRITE(6,2669) (FUELE!J),J=IP»IQ) 1170.000 0883 WRITE(6,2670) !FUELP!J)» J = IPtIQ) 1171.000 0884 WRITE(6,2671) i FUELTTIJ),J=IP»IQ) 1172.000 0885 WRITE(6,2672) !FIDLEF(J),J=IP,IQ) 1173.000 08 86 WRITE(6,2673) ( F I D L E E ! J ) f J = I P tIQ) 1174.000 0887 WRITE!6f2674) (FI D L E P ! J ) , J = I P t I Q ) 1175.000 0888 WRITE(6,2675) (FIDLET < J ) , J = I P , I Q ) 1176.000 0889 WRITE(6,2676) !XKWH!J),J=IP,IQ) 1177.000 MICHIGAN TERMINAL SYSTEM FORTRAN G*41336) MAIN - 175 -08-28-75 11:30:29 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 WRITE I 6,2677) WRITE(6,2777) WRITE* 6,2678) WRITE(6,2679) WRITE(6,2680) WRITE(6,2681) WRITE(6,2682) WRITE*6,2683) WRITE(6,2684) WRIT£(6,2000) WRITE(6,2600) WRITE(6,2601) WRITE(6,2685) WRITE(6,2686) WRITEt 6,2687) WRITE(6,2688) WRITE(6,2689) WRITEl6,2690) WRITE(6,2691) WRITEl6,2692) WRITE(6,2693) WRITE16,2694) WRITE(6,2695) 2000 FORMAT( ' 1*,49X (DFUELCCJ) > J = IP, IQ) * DFUELT *J) . J= IP, IQ) (EKWHCO*J) r J = IP, IQ) (EKWHCT(J) »J= IP, IQ) (DIFCWF(J) , J = IP, IQ) (0IFCWE(J) r J = IP, IQ) (DIFCWPiJ) rJ= IP, IQ) (DIFTOTt J) r J = IP, IQ) (TRMTCE*J) r J = IP, IQ) (IYEAR(J),J=IP,IQ) ( SAGTMF* J ) , J - I P . I Q ) * SAGTME* J),J=IP,IQ) (SAGTMPlJ),J=IP,IQ) ( TOTSAG(J),J=IP»IQ) (CAMT(J),J=IP,IQ) (CATTOTiJ),J=IP,IQ) ( SUBTOT(J) ,J=IP,IQ) (COMTOTIJ), J = IP,IQ) ( SIGTOT(J),J=IP,IQ) (TOTCAP(J),J=IP,IQ) (ANNSAV(J),J=IP,IQ) ,'MAINLINE RAILWAY ELECTRIFICAT ION»/36X,* *********,4 12X,»********•/49X,•- AN ECONOMIC FEASIBILITY MODEL -*/) 2500 FORMAT(* 0*,5X,'STUDY AREA :•,3X,7A4,58X,•STUDY 8ASE YEAR :',1X,I4/ 1/) 2501 FORMAT(•0*,57X,•ROUTE 2502 FORMAT*'0',13X,• OF TRACK TO PARAMETERS » / 5 6 X , I * * * * * * * * * * * * * * * * * * * * ' ) ',15X,'GROSS TON MILES PER MILE OF BE ELECTRIFIED'/39X, • — TRAC 1K',16X,»MILES 2 . 2503 FORMAT I ' ' ,13X-, 'SUBDIVISION* , 17X, * FREIGHT * ,3X, * EXPRESS' , S12X,*-3X— i , •PASSEN 1GER'»16X,•SINGLE',4X,' DOUBLE',4X,'SIDING*,6X, YARD') * , 12X, ' ' ,16X, «- • • ,4X, • ' ,10X,5A4,8X,3F10.2,14X,4F10.2) •,4X,» ,3X,*^ , 6 X , » • ) ,3X 2528 FORMAT( 1 2435 FORMAT 1*0* 2520 FORMAT* »0«, 86 X, * ',4X, *- '  » * ,4X,' • //78X,* 1T0TAL',4F10.2) 2504 F0RMAT(*0*,40X,« *,2X,' *,2X,» *//5X,'PROJECT 1ED ANNUAL TRAFFIC GROWTH : * , F l l e 2 , ' %',F8.2,« %',F8.2,» %* ) 2514 FORMAT CO',////31X,* ********************************************** I***********************!| 2515 FORMAT*'0*,30X,'MAXIMUM GROSS TON MILES PER MILE OF : SINGLE TRACK 1 *,9X,I10/68X,* DOUBLE TRACK',9X,110) LENGTH (FEET)*,27X,F10.2) DIRECTION',31X,F10.2//44X,•- RE 2517 FORMAT('0',30X,'RESTRICTING SIDING 2519 FORMAT t'0* ,30X,*GRADE FACTOR - ONE 1VERSE DIRECTION',27X,F10.2) 2512 FORMAT{•0*,30X,'MAXIMUM WEIGHT PER CAR (TONS) - TRACK LIMITATION' 111X,I 10) 2 505 FORMAT('0',5 7X,« TRAIN PARAMETERS»/56X,•*********************) 2506 FORMAT * * 0', 99X,'2 PROJECTED ANNUAL GROWTH'/97X,' I » ,/5X, 'PARAMETER' ,45X , • FREI GHT' ,3X, ' EXPRESS', 3X, 2PASSENGER',1IX,»FREIGHT',3X,'EXPRESS*,3X,'PASSENGER ») 2529 FORMAT(' 1 ~ « ,11X, ,3X . 44X. t ,3X, *,3X, ' 1 \ 1178. 000 1179.000 1180.000 1181.000 1182.000 1183.000 1184.000 1185.000 1186.000 1187.000 1188.000 1189.000 1190.000 1191.000 1192.000 1193.000 1194.000 1195.000 1196.000 1197.000 1198.000 1199.000 1200.000 1201.000 1202.000 1203.000 1204.000 1205.000 1206.000 1207.000 1208.000 1209.000 1210.000 1211.000 1212.000 1213.000 1214.000 1215.000 1216.000 1217.000 1218.000 1219.000 1220.000 1221.000 1222.000 1223.000 1224.000 1225.000 1226.000 1227.000 1228.000 1229.000 1230.000 1231.000 1232.000 MICHIGAN TERMINAL SYSTEM FORTRAN G141336) MAIN - 176 -08-28-75 11:30:29 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 09 50 0951 0952 09 53 0954 0955 0956 0957 0958 2507 FORMATi*0','AVERAGE NUMBER OF CARS PER T R A I N • , 2 3 X , 3 F 1 O o 2 , 1 0 X t 3 F 1 0 . 12) 2508 FORMAT C O ' , * AVERAGE ANNUAL GROSS TONS PER CAR •, 22X, 3 F 1 0 . 2, 10X, 3F 10 1 o 2) 2521 F O R M A T { ' O S * A V E R A G E GROSS TONS PER TRAIN (ONLY CARS)»,15X,3F10.2,1 16X,«N/A',7X,»N/A',7X,'N/A'I 2509 FORMATS'OS'AVERAGE SPEED PER TRAIN ! MPH) • ,26X , 3F10« 2,16X, • N/A* , 7X I t ' N / A » ,7X,'N/A') 2510 FORMAT(* 0 * ,'NUMBER OF AXLES PER CAR•,32X,3F10.2,16X,•N/A*,7X,«N/A• 1,7X,'N/A*) 2511 FORMAT!•0'» 1 CROSS SECTIONAL AREA OF A CAR (SQ. FT. ) »,16X,3F10.2,16 l X t 'N/A *» 7X,'N/A* »7X» * N/A*) 2513 FORMAT <'0'»*AVERAGE LENGTH PER CAR I FEET)•,26X,3F10,2,16X,•N/A•, 7 1X,*N/A», 7X,*N/A*) 2820 FORMAT!'OS'CREW WAGE INCREASE PER 50000 LB OF LOCO WEIGHT - ( Z / I O O M I I * , 3 F 1 0 . 2 , 1 0 X , 3 F 1 0 . 2 ) 2821 FORMAT!'0«,'VACATION AND UNPRODUCTIVE FACTOR 1%)',19X»3F10o2»16X,• 1N/A«,7X,*N/A«,7X,'N/A*) 2522 FORMAT!*0','OVERHEAD WAGE RATIO {%) * ,32X,3F10.2,16X,*N/A',7X,«N/A» 1,7X,'N/A') FOR WAGE DIFFERENTIAL' 2524 FORMATCO','NUMBER OF ENGINE CREW ELIGIBLE 13X.3F10,2t16Xt *N/A*,7X,'N/A«,7X,'N/A* ) 2516 FORMAT!«0»,30X,'AVERAGE LENGTH PER CABOOSE (FEET)•,26X,F10.2) 2518 FORMAT!'0',30X,'SLACK ACTION FACTOR !FEET)»,33X,F10.2) 2523 FORMAT!'0•,30X,•TRACK MAINTENANCE COST - 0/1000 GTM»•24X,F10,2,//5 14X,'- PROJECTED ANNUAL ESCALATION !%)•,3X,F10.2) 2597 FORMAT!*0*,IX,'NOTE'/IX,' '/6X,'N/A : NOT APPLICABLE, OR CALC 1ULATED'/12X,'WITHIN THE PROGRAM') 2525 FORMAT !'0»,47X,'DIESEL LOCOMOTIVE OPERATING PARAMETERS'/46X,****** 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * i ) 2526 FORMAT{'0','AVERAGE ANNUAL NUMBER OF MILES PER DIESEL UNIT (000) ' , 13X,3F1G,2,10X,3F10,2) 2531 FORMAT! '0»,'DIESEL LOCOMOTIVE PURCHASE COST {$10**6) • ,15X,3F10o2,1 10X,3F10.2) 2532 FORMAT!'0','DIESEL LOCOMOTIVE MAINTENANCE COST PER MILE (CENTS)',4 lX,3F10.2tlOX,3F10.2J 2527 FORMAT CO' ,'AVERAGE NUMBER OF DIESEL LOCOMOTIVES PER TRAIN', 9X, 3F1 10.2,16X,•N/A'» 7X»•N/A*,7X,»N/A«) 2530 FORMAT(*0*,'AVERAGE LENGTH PER DIESEL LOCOMOTIVE (FEET)*,12X,3F10. 12,16X,»N/A« ,7X,'N/A« ,7X,'N/A« ) 2562 FORMAT!'0','DIESEL LOCOMOTIVE HORSEPOWER', 27X,3F10,2,16X,'N/A',7X, 1'N/A',7X,'N/A') 2533 FORMAT!'0 * ,* NUMBER OF AXLES PER DIESEL LOCOMOTIVE•,18X,3F10,2,16X, 1'N/A*,7X,'N/A',7X,'N/A') 2534 FORMAT(*0*,'CROSS SECTIONAL AREA PER DIESEL 13X,3F10.2,16X,'N/A',7X,'N/A*,7X,»N/A') 2535 FORMAT('0','AVERAGE NUMBER OF DAYS PER YEAR 1G *,3F10.2 »16X,'N/A',7X»'N/A*,7X,'N/A*) FT, ) LOCOMOTIVE (SQ, A DIESEL LOCO IS IDLIN .2536 FORMAT!'0','AVERAGE NUMBER OF HOURS PER DAY A DIESEL LOCO IS IDLIN DIESEL IS IDLING CGAL)• 1G',3F10.2,16X,'N/A',7X,'N/A*,7X,'N/A») 2537 FORMAT(*0','FUEL CONSUMPTION PER HOUR WHEN 1,2X,3F10.2,16X,*N/A«,7X,'N/A*,7X,*N/A') 2538 FORMAT('0','FUEL CONSUMPTION FACTOR•,32X,3F10.6, 16X,'N/A',7X,'N/A* 1,7X,'N/A') 2539 FORMAT 1'0*,'AVERAGE WEIGHT PER DIESEL LOCOMOTIVE (TONS)•,12X,3F10o 1233.000 1234.000 1235.000 1236.000 1237.000 1238.000 1239.000 1240.000 1241,000 1242.000 1243.000 1244.000 1245.00 0 1246.000 1247.000 1248.000 1249.000 1250.000 1251.000 1252.000 1253.000 1254.000 1255.000 1256.000 1257.000 1258.000 1259.000 1260.000 1261,000 1262.000 1263.000 1264,000 1265,000 1266.000 1267.000 1268.000 1269.000 1270.000 1271.000 1272.000 1273,000 1274.000 1275.000 1276.000 1277.000 1278.000 1279.000 1280.000 1281.000 1282.000 1283.000 1284.000 1285.000 1286.000 1287.000 - 177 -MICHIGAN TERMINAL SYSTEM FORTRAN G(41336) MAIN 08-28-75 12,16X,'N/A',7X,'N/A*,7X,'N/A«) 0959 2540 FORMAT('0' ,30X,'COST OF DIESEL FUEL PER GALLON (CENTS ) •,2IX,F10.2} 0960 2541 FORMAT(• 0 *,30X, 'OVERHEAD FUEL COSTS - FACILITIES ,ETC. iCENTS/GAL)* 1.10X.F10.2) 0961 2542 FORMAT(* 0'»30X»» ANNUAL PROJECTED ESCALATION IN DIESEL FUEL PRICES i m • ,6X, F10.2) 0962 2543 FORMAT(•0 *,30X»•ECONOM IC LIFE OF DIESEL LOCOMOTIVES I YEARS)»,22X,I 14) 0963 2550 FORMAT(•0•,46Xi«ELECTRIC LOCOMOTIVE OPERATING PARAMETERS'/45X,•*** _***************************************** • ) 0964 2551 FORMAT ( 'OS 'ELECTRIC LOCOMOTIVE PURCHASE COST *$10**6) • ,13X ,3F10.2 lilOX,3F10.2) 0965 2552 FORMAT(•0','EQUATION OF THE NUMBER OF ELECTRIC TO DIESEL LOCOS [%) 1',IX,3F10»2,16X,'N/A', 7X,'N/A«,7X,'N/A«) 0966 2553 FORMAT I'0'»•EQUATION OF INITIAL ELECTRIC TO DIESEL MTCE. COSTS 1%) 1«,1X,3FI0.2,16X,«N/A',7X,•N/A',7X,'N/A*) 0967 2554 FORMAT(•0','ANNUAL PROJECTED ESCALATION IN'ELECTRIC MTCE. COSTS',1 10X,*N/A*,7X,•N/A•,7X,•N/A',11X,3F10.2) 0968 2555 FORMAT I•0•,'A VERAGE WEIGHT OF ELECTRIC LOCOMOTIVES (TONS)•,10X,3F1 10.2.16X,'N/A•,7X »'N/A *,7X,* N/A') 0969 2556 FORMAT<10•.30X,»INCREASE AVAILABILITY OF ELECTRIC LOCOMOTIVES U)« 1,10X,F10.2) 0970 2557 FORMAT CO', 30X, * COST OF ELECTRICITY PER KWH - (CENTS)•,22X,F10.2) 0971 2558 FORMAT*»0',30X,«ANNUAL PROJECTED ESCALATION IN ELECTRIC POWER COST IS I%i •,4X,F10o2) 0972 2559 FORM AT (• 0' , 30X ,'ECONOM IC LIFE OF ELECTRIC LOCOMOTIVES (YEARS)',20X 1, 14) 0973 2575 FORMAT{•0',50X,'CATENARY AND CONSTRUCTION COSTS'/49X,'************ 1***********************1j 0974 2576 FORMAT(•0',76X,'TYPE OF TRACK *,22X,•% PROJECTED•/64X,• 1 '/5X, 'PARAMETER * , 52X, 'SINGLE « ,4X, 'DOU 2BLE•, 4X,'SIDING',6X,•YARD',7X,•ANNUAL ESCALATION') 0975 2577 FORMAT ( ' ',4X,' »,50X,' ',4X,« ',4X,' ',6 IX, ' - ' , 7X, • ' ) 0976 2578 FORMAT(•0»,'COST PER MILE OF CATENARY CONSTRUCTION {%) ',16X,4F1 10.2, 7X,F10.2) 0977 2579 FORMAT('0','COST PER MILE OF SUBSTATION CONSTRUCTION ($) •,14X,4 1FI0.2, 7X.F10.2) 0978 2580 FORMAT('0*,'COST PER MILE OF COMMUNICATION INTERFERENCE PREVENTION 1 ($) «,4Fi0.2, 7X,F10.2) 0979 2581 FORMAT*'0','COST PER MILE OF SIGNAL CONSTRUCTION ($) »,18X,4F10. 12, 7X.F10.2) 0980 2582 FORM AT*'0','ANNUAL COST PER MILE OF CATENARY MAINTENANCE *$) ',11 1X,4F10.2, 7X,F10.2) 0981 2583 FORMAT(•0' ,30X,'ECONOMIC LIFE OF CATENARY INSTALATION I YEARS)*,20X 1,14) 0982 2584 FORMAT *'0•,30X,* ECONOM IC LIFE OF SUBSTATION INSTALATIONS (YEARS)', 117X,I4) 0983 2585 FORMAT{'0',30X,'ECONOMIC LIFE OF COMMUNICATION INTERFERENCE SYSTEM IS (YEARS)•,6X,14) 0984 2586 FORMAT*•0•,30X,»ECONOMIC LIFE OF SIGNAL SYSTEMS IYEARS)•,26X,14) 0985 2587 FORMATt'0•,30X,'CONSTRUCTION PERIOD <YEARS)•»38X.14) 0986 2588 FORMAT(•0',30X,»PERCENTAGE OF CONSTRUCTION IN EACH YEAR»,11X,'YEAR 1 ' 1» ,1X,F10 .2 ,2X, ) 7 9 AT(• «,8 ,»YEAR :«,I 2,IX,F10.2,2X,•%* ) 11:30:29 1288.000 1289.000 1290.000 1291.000 1292.000 1293.000 1294.000 1295.000 1296.000 1297.000 1298.000 1299.000 1300.000 1301.000 1302.000 1303.000 1304.000 1305.000 1306.000 1307.000 1308.000 1309.000 1310.000 1311.000 1312.000 1313.000 1314.000 1315.000 1316.000 1317.000 1318.000 1319.000 1320.000 1321.000 1322.000 1323.000 1324.000 1325.000 1326.000 1327.000 1328.000 1329.000 1330.000 1331.000 1332.000 1333.000 1334.000 1335.000 1336.000 1337.000 1338.000 1339.000 1340.000 1341.000 1342.000 MICHIGAN TERMINAL SYSTEM FORTRAN G!41336) MAIN - 178 -08-28-75 11:30:29 0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 2235 FORMAT{•0* »52X,•PROJECT INTERNAL RATE OF RETURN*//57X,• VERUS COMPL 1ETI0N DATE'/51X»* ***********************************•//) 2201 FORMAT{• • ,8X , 2A4,IX,23A5) 2221 FORMAT !• • ,8X,2A4) 2230 FORMAT ( * ' , 15X, « | | - | I | | | | | — — | !_| | | | , 1 ] | | j | (. , 2231 FORMAT!*0*,13X,11110} 2710 FORMAT('0*» 50X,'ANNUA L PROJECT PRESENT VALUES»/49X,»************** 1 * * * * * * * * * * * * * * * * * * * 1 / 6 0 X , • ( $ MILLIONS)') 2711 FORMAT(* 0*///21X,•PROJECT YEAR',28X,•DIESEL* »31X,'ELECTRIC 1 '/2IX,« ' ,28X, • ',31X,' •) 2712 FORMAT 1'0' ,24X,14,28X,F10.0,28X,F10.0) 2590 FORMAT(* 0'» 52X,'PROJECT ECONOMIC FEASIBILITY•/51X,•*************** 1 * * * * * * * * * * * * * * * * * 1 ) 2591 FORMAT!'0V//20X, 'ECONOMIC CRITERIA•/20X,• ») 2592 FORMAT I•0', 10X,'REQUI RED RETURN ON INVESTED CAPITAL FOR ELECTRIFIC 1ATI0N TO BECOME ECONOMICALLY ATTRACTIVE :',F10.2,' %') 2593 FORMAT!«0*,10X,»BOOK VALUE OF DIESEL LOCOMOTIVES IN STUDY BASE YEA 1R UMILLIONS) :* ,26X,F10.2) BE ATTAINED IN 17) NOT BE ATTAINED IN THE PROJ RATE, MINIMUM PROJECT PRESE 2841 FORMAT{'0' , ////lOX»' LI NE CAPACITY WILL 2844 FORMAT!*0*,////10X,•LINE CAPACITY WILL 1ECT TIME HORIZON') 2594 FORMAT!*0',/10X,'AT THE ABOVE DISCOUNT INT VALUE OCCURS IN THE YEAR :',I7) 2595 FORMAT I• • ,90X,• • } 2596 FORMAT!'0*,///10X,'NOTE : THE ABOVE ELECTRIFICATION FEASIBILITY DA 1TE ASSUMES CGNSTRUCTI0N»//17X,'OF THE FIXED FACILITIES WILL COMMEN 2CE IN',16) 2600 FORMAT!*0«,45X,'DETAILED OPERATING PARAMETERS AND COSTS•/44X,***** 2601 FORMAT!'0*,90X,•YEAR'/90X,• —•/5 5X,7110/6IX,• *,6X,• ',6 IX, » «,6X 2602 FORMAT CO', 1»,7F10„2> 2603 FORMAT!'0*, 1' .7F.10.2) 2604 FORMAT('0', 1« ,7F10.2) 2605 FORMAT('0', 1' ,7F10.2) 2606 FORMAT CO', 1',7F10.2) 2607 FORMAT CO*, 1't7F10.2) 2608 FORMAT 1'0', 1«,7F10.2) 2609 FORMAT(*0*, l',7F10o2) 2610 FORMAT CO* • 1S7F10.2) 2611 FORMAT{•0*, 1' ,7F10.2) 2612 FORMAT t'0'» 1»,7F10.2) 2613 FORMAT('0', • « ,6X, • • ,6X, • GROSS TON MILES PER MILE • ,6X, • • ) OF TRACK-10**6 AVERAGE GROSS TONS PER TRAIN !CARS ONLY) AVERAGE NUMBER OF CARS PER TRAIN AVERAGE GROSS WEIGHT PER CAR {TONS) -FREIGHT -EXPRESS -PASSENGER -TOTAL -FREIGHT -EXPRESS -PASSENGER -FREIGHT -EXPRESS -PASSENGER -FREIGHT -EXPRESS 1343.000 1344.000 1345.000 1346.000 1347.000 1348.00 0 1349.000 1350.000 1351.000 1352.000 1353.000 1354.000 1355.000 1356.000 1357.000 1358.000 1359.000 1360.000 1361.000 1362.000 1363.000 1364.000 136 5.000 1366.000 1367.000 1368.000 1369.000 1370.000 1371.000 1372.000 1373.000 1374.000 1375.000 1376.000 1377.000 1378.000 1379.000 1380.000 1381.000 1382.000 1383.000 1384.000 1385.000 1386.000 1387.000 1388.000 1389.000 1390.000 1391.000 1392.000 1393.000 1394.000 1395.000 1396.000 139 7.000 - 179 -MICHIGAN TERMINAL SYSTEM FORTRAN G141336) MAIN 08-28-75 11:30:29 1*,7F10.2) 1398.000 1019 2614 FORMAT{ * 0 S -PASSENGER 1399.000 1« , 7F10.2) 1400.000 1020 2615 FORMAT!•0 S •TRAIN MILES PER YEAR ( 1 0 * * 6 ) -FREIGHT 1401.000 1 S 7 F 1 0 . 2 ) 1402.000 1021 2616 FORMAT(* 0* , -EXPRESS 1403.000 1 S 7 F 1 0 . 2 ) 1404.000 1022 2617 FORMAT(*0•, -PASSENGER 1405.000 I S 7F10.2) 1406.000 1023 2618 FORMAT('0», -TOTAL 1407.000 1 S 7 F 1 0 . 2 ) 1408.000 1024 2619 FORMAT I•0«, •AVERAGE NUMBER OF DIESEL UNITS PER TRAIN -FREIGHT 1409.000 1 S 7 F 1 0 . 2 J 1410.000 1025 2620 FORMAT('0», -EXPRESS 1411.000 1 S 7 F 1 0 . 2 ) 1412.000 1026 2621 FORMAT! * 0 S -PASSENGER 1413.000 1 S 7 F I Q . 2 ) 1414.000 1027 2622 FORMAT {'OS •DIESEL UNIT MILES PER YEAR ( 1 0 * * 6 ) -FREIGHT 1415.000 1« ,7F10.2) 1416.000 1028 2623 FORMAT! 'OS -EXPRESS 1417.000 1 S 7 F 1 0 . 2 ) 1418.000 1029 2624 FORMAT(* 0* , -PASSENGER 1419.000 1 S 7 F 1 G . 2 ) 1420.000 1030 2625 FORMAT!'0', -TOTAL 1421.000 1 S 7 F 1 0 . 2 ) 1422.000 1031 2626 FORMAT( * 0 • , 'AVERAGE ANNUAL NO. OF MILES PER DIESEL (000) -FREIGHT 1423.000 1' ,7F10.2) 1424.000 1032 2627 FORMAT! • O S -EXPRESS 1425.000 1 S 7 F 1 0 . 2 ) 1426.000 1033 2628 FORMAT{* 0* , -PASSENGER 1427.000 1 S 7 F 1 0 . 2 ) 1428.000 1034 262 9 FORMAT!'OS 'NUMBER OF DIESEL UNITS REQUIRED -FREIGHT 1429.000 1 S 7 F 1 0 . 0 ) 1430.000 1035 2 63 0 FORMAT(»0S -EXPRESS 1431.000 1» ,7F10.0) 1432.000 1036 2631 FORMAT!«0«, -PASSENGER 1433.000 1 S 7 F 1 0 . 0 ) 1434.000 1037 2632 FORMAT (* 0* -TOTAL 1435.000 1 S 7 F 1 Q . 0 ) 1436.000 1038 2633 FORMAT!'OS' NUMBER OF ELECTRIC LOCOMOTIVES REQUIRED -FREIGHT 1437.000 1 S 7 F 1 0 . 0 ) 1438.000 1039 2634 FORMAT('OS -EXPRESS 1439.000 1 S 7 F 1 0 . 0 ) 1440. 000 1040 2 635 FORMAT!'0',« -PASSENGER 1441.000 1 S 7 F 1 0 . 0 ) 1442.000 1041 2636 FORMAT{•0*,* -TOTAL 1443.000 1 S 7 F 1 0 . 0 ) 1444.000 1042 2 700 FORMAT! ' 0 S « ELECTRIC LOCOMOTIVE MILES PER YEAR ( 1 0 * * 6 ) -FREIGHT 1445.000 I S 7 F 1 0 . 2 ) 1446.000 1043 2701 FORMAT! ' O S ' -EXPRESS 1447.000 1 S 7 F 1 0 . 2 ) 1448.000 1044 2702 FORMAT{ 'Q«,• -PASSENGER 1449.000 1 S 7 F 1 0 . 2 ) 1450.000 1045 2 703 FORMAT ( • 0* ,« -TOTAL 1451.000 I S 7 F10.2) 1452.000 MICHIGAN TERMINAL SYSTEM FORTRAN GC41336) MAIN - 180 -08-28-75 11 :30 :29 1046 263 7 FORMAT ( '0 1 S 7 F 1 0 . 2 ) t •COST PER DIESEL LOCOMOTIVE {$10**6) -FREIGHT 1047 2638 FORMAT!•0 1 S 7 F 1 0 . 2 ) -EXPRESS 1048 2639 FORMAT C O 1 S 7 F 1 0 . 2 ) » -PASSENGER 1049 2 640 FORMAT C O 1 ' ,7F10 .2J 1 » 'TOTAL DIESEL LOCOMOTIVE CAPITAL COST*$10**63 -FREIGHT 1050 2641 FORMAT(* 0 1* , 7F10 .2 ) » -EXPRESS 1051 2642 FORMAT* «0 1 S 7 F 1 0 . 2 ) » -PASSENGER 1052 2643 FORMAT(* 0 1 S 7 F 1 0 . 2 ) » -TOTAL 10 53 2644 FORMAT C O 1» f7F10.2) r •COST PER ELECTRIC LOCOMOTIVE *$10**6) -FREIGHT 1054 2645 FORMAT I'0 1 ' , 7 F 1 0 . 2 ) » -EXPRESS 1055 2646 FORMAT C O 1 I S 7 F 1 0 . 2 ) 1 » -PASSENGER 1056 2647 FORMAT {• 0' 1 S 7 F 1 0 . 2 ) t •TOTAL ELECTRIC LOCO CAPITAL COST *$10**6) -FREIGHT 1057 2648 FORMATCO' 1 ' , 7 F 1 0 . 2 ) i -EXPRESS 1058 2649 FORMAT* '0 1 S 7 F 1 0 . 2 ) i -PASSENGER 1059 2650 FORMATCO' 1 S 7 F 1 0 . 2 ) » 1 -TOTAL 1060 2651 FORMAT C O ' I S 7 F 1 0 . 2 ) 'DIESEL UNIT MAINTENANCE COST PER MILE {iZ) -FRE IGHT 1061 2652 FORMAT C O ' 1 ' , 7 F 1 0 . 2 ) » -EXPRESS 1062 2653 FORMAT C O ' 1 S 7 F 1 0 . 2 ) » -PASSENGER 1063 2654 FORMAT*'0« 1 S 7F10.2) » TOTAL ANNUAL DIESEL MAINTENANCE COST($10**6) -FREIGHT 1064 2655 FORMAT C O ' 1 S 7 F 1 0 . 2 ) f -EXPRESS 1065 2656 FORMAT 1*0" 1 » . 7 F 1 0 . 2 3 t -PASSENGER 1066 2657 FORMAT* « 0 ' 1 ' . 7F10 .2 ) t -TOTAL 1067 2658 F O R M A T * ' 0 ' 1 ' » 7 F 1 0 o 2 ) t ELECTRIC UNIT MAINTENANCE COST PER MILE (iZ) -FREIGHT 1068 2659 FORMAT(•0' I S 7F 10.21 » -EXPRESS 1069 2660 FORMAT C O * 1 ' , 7 F 1 0 . 2 ) » * -PASSENGER 1070 2661 FORMATC'O' 1 S 7 F 1 0 . 2 ) t TOTAL ANNUAL ELECTRIC LOCO MTCE C0ST($10**6) -FREIGHT 1071 2662 FORMAT{'0' 1 S 7 F 1 0 . 2 ) t ' -EXPRESS 1072 2663 FORMAT I •0' 1 S 7 F 1 0 . 2 ) » -PASSENGER 1073 2664 FORMAT *'0 * -TOTAL 1453.000 1454.000 1455.000 1456.000 1457.000 1458.000 1459.000 1460.000 1461.000 1462.000 1463.000 1464.000 1465.000 1466.000 1467.000 1468.000 1469.000 1470.000 1471.000 1472.000 1473.000 1474.000 1475.000 1476.000 1477.000 1478.000 1479.000 1480.000 1481.000 1482.000 1483.000 1484.000 1485.000 1486.000 1487.000 1488.000 1489. 000 1490.000 1491.000 1492.000 1493.000 1494.000 1495.000 1496.000 1497.000 1498.000 1499.000 1500.000 1501.000 1502.000 1503.000 1504.000 1505. 000 1506.000 1507.000 MICHIGAN TERMINAL SYSTEM FORTRAN G<41336) MAIN - 181 -08-28-75 11:30:29 1S7FI0.2) 1074 2665 FORMAT CO*" , 'DIESEL FUEL CONSUMPTION PER 1000 GTM (GAL) -FREIGHT 1S7F10.2) 1075 2666 FORMAT(*0•f' -EXPRESS 1S7F10.2) 1076 2667 FORMAT('OS ' 1S7FI0.2) -PASSENGER 1077 2668 FORMAT !'OS ' DIESEL FUEL CONSUMPTION (10**6 GAL) -FREIGHT IS7F10.2) 1078 2669 FORMAT(» 0',• -EXPRESS l'*7F10o2) 1079 2670 FORMAT('OS' -PASSENGER 1S7F10.2) 1080 2671 FORMAT COS* -TOTAL 1S7F10.2) 1081 2672 FORMAT('0','DIESEL IDLING FUEL CONSUMPTION (10**6 GAL) -FREIGHT 1S7F10.2) 1082 2673 FORMAT CO' , • -EXPRESS 1S7F10.2) 1083 2674 FORMAT ('OS' -PASSENGER 1S7F10.2) 1084 2675 FORMAT{ 'OS * -TOTAL 1S7F10.2) 1085 2676 FORMAT('0'»* KWH REQUIREMENT FOR ELECTRIC LOCOMOTIVES (10**6 KWH) 1S7F10.2) 1086 2677 FORMAT('0* »'DIESEL FUEL COST PER GALLON (CENTSJ-INCLUDING OVERHEAD 1S7F10O2) 1087 2777 FORMAT('OS'TOTAL DIESEL FUEL COST ($10**6) 1S7F10.2) 1088 2678 FORMAT('OS'ELECTRIC POWER COST PER KWH (CENTS) 1S7F10.2) 1089 2679 FORMAT!'0',* TOTAL ELECTRIC POWER COST ($10**6) 1S7F10.2) 1090 2680 FORMAT{'OS'ENGINE CREW WEIGHT WAGE DIFFERENTIAL*$10**6) -FREIGHT 1S7F10.2) 1091 2681 FORMAT! 'OS ' -EXPRESS 1S7F 10.2) 1092 2682 FORMAT! 'OS ' -PASSENGER 1' t7F10.2) 1093 2683 FORMAT ( 'OS * -TOTAL 1S7F10.2) 1094 2684 FORMATCO' ,'TRACK MAINTENANCE PER 1000 GTM (CENTS) I S 7F10.2) 1095 2685 FORMAT!'OS'SAVINGS IN TRACK MAINTENANCE ($10**6) -FREIGHT 1S7F10.2) 1096 2686 FORMAT('0',« -EXPRESS 1S7FI0.2) 1097 2687 FORMAT('0',» -PASSENGER 1S7FI0.2) 1098 2688 FORMAT!» 0*,' -TOTAL 1S7F10.2) 1099 2689 FORMAT!'OS * ANNUAL TOTAL CATENARY MAINTENANCE ($10**6) 1S7F10.2) 1100 2690 FORMAT!'OS'CONSTRUCTION COSTS !$10**6)-CATENARY 1S7F10.2) 1508.000 1509.000 1510.000 1511.000 1512.000 1513.000 1514. 000 1515.000 1516.000 1517.000 1518.000 1519.000 1520.000 1521.000 1522.000 1523.000 1524.000 1525.000 1526.000 1527.000 1528.000 1529.000 1530.000 1531.000 1532.000 1533.000 1534.000 1535.000 1536.000 1537.000 1538,000 153 9.000 1540.000 1541.000 1542.000 1543.000 1544.000 1545.000 1546.000 1547.000 1548.000 1549.000 1550.000 1551.000 1552.000 1553.000 1554.000 1555.000 1556.000 1557.000 1558.000 1559.000 1560.000 1561.000 1562.000 MICHIGAN TERMINAL SYSTEM FORTRAN G*41336) MAIN - 182 -08-28-75 11:30:29 1101 2691 FORMAT CO',' -SUBSTATION 1*.7F10.2) 1102 2692 FORMAT ('OS* -COMMUNICATION INTERFERENCE 1' ,7F10.2) 1103 2693 FORMAT('0», ' -SIGNAL 1' ,7F10.2) 1104 2694 FORMAT*'0',» -TOTAL 1 S 7 F 1 0 . 2 ) 1105 2695 FORMAT{'0 *,* TOTAL ANNUAL ELECTRIFICATION SAVINGS*10**6 CONSTANT $) 1 S 7 F 1 0 . 2 ) 1106 42 STOP 1107 END • OPTIONS IN EFFECT* ID,EBCDIC» SOURCE tNOLI ST,NODECK f LOAD,NOMAP •OPTIONS IN EFFECT* NAME = MAIN , LINECNT = 57 NO * S T A T I S T I C S * * S T A T I S T I C S * ERRORS IN MAIN SOURCE STATEMENTS = NO DIAGNOSTICS GENERATED 1107,PROGRAM S I Z E = 145138 1563.000 1564.000 1565.000 1566.000 1567.000 1568.000 1569.000 1570.000 1571.000 1572.000 1573.000 1574.000 NO STATEMENTS FLAGGED IN THE ABOVE COMPILATIONS, EXECUTION TERMINATED $RUN -LOAD 5=INPUT 6=*SINK* EXECUTION BEGINS 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093166/manifest

Comment

Related Items