Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The major soils of the Tofino area of Vancouver Island and implications for land use planning and management Baker, Ted Edgar 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 B33_9.pdf [ 17.44MB ]
Metadata
JSON: 831-1.0093141.json
JSON-LD: 831-1.0093141-ld.json
RDF/XML (Pretty): 831-1.0093141-rdf.xml
RDF/JSON: 831-1.0093141-rdf.json
Turtle: 831-1.0093141-turtle.txt
N-Triples: 831-1.0093141-rdf-ntriples.txt
Original Record: 831-1.0093141-source.json
Full Text
831-1.0093141-fulltext.txt
Citation
831-1.0093141.ris

Full Text

THE MAJOR SOILS OF THE TOFINO AREA OF VANCOUVER ISLAND AND IMPLICATIONS FOR LAND USE PLANNING AND MANAGEMENT by TED EDGAR BAKER B.Sc. U n i v e r s i t y of A l b e r t a , 1 9 6 9 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of S o i l S c i e n c e We ac c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA Octo b e r , 197-4 In presenting th i s thesis in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary shal l make i t f ree l y ava i lab le for reference and study. I fur ther agree that permission for extensive copying of th i s thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th i s thesis fo r f inanc ia l gain sha l l not be allowed without my written permission. Department of The Univers i ty of B r i t i s h Columbia Vancouver 8, Canada i i ABSTRACT 'The s o i l s r e s o u r c e i n the T o f i n o a r e a of Vancouver I s l a n d i s c o n s i d e r e d f o r land-use p l a n n i n g and management pur p o s e s . T h i s was done by c o m p l e t i n g a s e r i e s o f f o u r s t u d i e s . The f i r s t study d e s c r i b e s the study a r e a by l o o k i n g at those components which were c o n s i d e r e d t o have a major impact on the f u n c t i o n o f the s o i l s i n the l a n d s c a p e . T h i s i n c l u d e d geology (bedrock and s u r f i c i a l ) , s o i l morphology, depth t o water t a b l e , v e g e t a t i o n , c l i m a t e and water q u a l i t y . The s o i l s e x h i b i t a range o f s o i l development from v e r y l i t t l e t o s t r o n g l y e x p r e s -sed g e n e t i c c h a r a c t e r i s t i c s i n c l u d i n g cemented h o r i z o n s . The presence of many l i t h o l o g i c d i s c o n t i n u i t i e s c o n f i r m s a complex mode o f m a t e r i a l d e p o s i t i o n i n the a r e a . The second study i s concerned w i t h t h e p h y s i c a l , c h e m i c a l and m i n e r a l o g i c a l p r o p e r t i e s of the s o i l s . S o i l g e n e s i s i s a l s o d i s c u s s e d . The a n a l y s e s show a wide range of t e x t u r e s i n the s o i l s and v a r i f i e s the presence of l i t h o l o g i c d i s c o n t i n u i t i e s . Pedo-g e n i c p r o c e s s e s have changed the s t r u c t u r e i n some s o i l s by a g g r e g a t i n g the Fe and A l o x i d e s i n t o l a r g e r s i z e d p a r t i c l e s . The s o i l s are low i n n a t u r a l f e r t i l i t y w i t h n u t r i e n t c y c l i n g o c c u r r i n g p r i m a r i l y i n the o r g a n i c h o r i z o n s o r above r e s t r i c t i n g l a y e r s i n the m i n e r a l h o r i z o n s i f t h e s e a r e near the s u r f a c e . i i i V e r m i c u l i t e i s the dominant c l a y m i n e r a l i n the s u r f a c e m i n e r a l h o r i z o n s i n d i c a t i n g a w e a t h e r i n g environment o f moderate i n t e n s i t y . The t h i r d study d i s c u s s e s the c h a r a c t e r i s t i c s and g e n e s i s of some p l a c i c h o r i z o n s ( t h i n pans) which have de v e l o p e d i n some s o i l s i n sand d e p o s i t s . These h o r i z o n s e x h i b i t c o n s i d e r a b l e v a r i a t i o n i n morphology and c h e m i c a l c o m p o s i t i o n . The p r i m a r y cementing m a t e r i a l s are o r g a n i c m a t t e r ( m a i n l y f u l v i c a c i d ) , and Pe which i s p r e s e n t as e i t h e r i n o r g a n i c amorphous or organ-i c a l l y complexed Fe. The m o r p h o l o g i c a l c h a r a c t e r i s t i c s and s t a b i l i t y of the p l a c i c h o r i z o n s are dependent upon the amount of OM p r e s e n t and the form i n which the Fe o c c u r s . The g e n e s i s of t h e s e pans i s i n i t i a t e d a t l i t h o l o g i c d i s -c o n t i n u i t i e s under d i f f e r e n t i a l redox c o n d i t i o n s . D i f f u s i o n i s a c t i v e i n m a t e r i a l t r a n s p o r t w i t h the pan a c t i n g as a te m p l a t e upon which the m a t e r i a l i s p r e c i p i t a t e d . The f o u r t h study i s an assessment o f - t h e s o i l s f o r l a n d -use p l a n n i n g and management purposes. Emphasis i s g i v e n t o the i d e n t i f i c a t i o n of p r o c e s s e s which c o n t r o l the f u n c t i o n o f the s o i l s b o t h i n t e r n a l l y and e x t e r n a l l y . The s o i l s are grouped i n t o t h r e e c a t e g o r i e s c h a r a c t e r i s t i c o f the dominant c o n t r o l . The c a t e g o r i e s a r e ; l a n d s c a p e components, i n h e r e n t c h a r a c t e r i s t i c s and g e n e t i c f e a t u r e s . i v TABLE OF CONTENTS PAGE ABSTRACT i i TABLE OF CONTENTS i v L I S T OF TABLES. v i L I S T OF FIGURES v i i ACKNOWLEDGMENTS x i INTRODUCTION 1 CHAPTER I C h a r a c t e r i z a t i o n o f some c o m p o n e n t s o f t h e l a n d r e s o u r c e i n t h e s t u d y a r e a 2 I n t r o d u c t i o n 3 C h a r a c t e r i s t i c s o f t h e s t u d y a r e a 4 G e o l o g y 4 S o i l s a n d a s s o c i a t e d v e g e t a t i o n 6 C l i m a t e 50 W a t e r q u a l i t y 53 E x p e r i m e n t a l m e t h o d s 53 R e s u l t s a n d d i s c u s s i o n 54 C o n c l u s i o n s 59 L i t e r a t u r e c i t e d 60 CHAPTER I I The p h y s i c a l , c h e m i c a l a n d m i n e r a l o g i c a l p r o p e r t i e s and p r o p o s e d g e n e s i s o f some s o i l s on t h e West C o a s t o f V a n c o u v e r I s l a n d 62 I n t r o d u c t i o n 63 E x p e r i m e n t a l m e t h o d s 63 P h y s i c a l a n a l y s i s 64 C h e m i c a l a n a l y s i s 64 M i n e r a l o g i c a l a n a l y s i s 65 R e s u l t s a n d D i s c u s s i o n 66 P h y s i c a l p r o p e r t i e s 66 C h e m i c a l p r o p e r t i e s 76 M i n e r a l o g i c a l p r o p e r t i e s 105 S o i l g e n e s i s 113 C o n c l u s i o n s 126 L i t e r a t u r e c i t e d 128 V CHAPTER I I I The v a r i a b i l i t y and g e n e s i s o f some p l a c i c h o r i z o n s i n s o i l s on the West Coast o f Vancouver I s l a n d . . 1 3 1 I n t r o d u c t i o n 1 3 2 E x p e r i m e n t a l methods .• . 1 3 2 M a t e r i a l s . .. 1 3 5 A n a l y t i c a l methods 143 R e s u l t s and d i s c u s s i o n 144 Gene s i s of p l a c i c h o r i z o n s 1 5 4 C o n c l u s i o n s 1 5 9 L i t e r a t u r e c i t e d . 161 CHAPTER IV I m p l i c a t i o n s f o r land-use p l a n n i n g and management i n t h e T o f i n o a r e a o f Vancouver I s l a n d d e r i v e d from the s o i l and o t h e r l a n d s c a p e f e a t u r e s 1 6 3 I n t r o d u c t i o n 1 6 4 M a t e r i a l s . 1 6 6 D i s c u s s i o n 1 6 6 Landscape components .. 1 6 7 I n h e r e n t s o i l c h a r a c t e r i s t i c s 1 7 0 G e n e t i c c h a r a c t e r i s t i c s 1 7 5 C o n c l u s i o n s . 1 8 5 L i t e r a t u r e c i t e d 1 8 7 SUMMARY 1 8 9 v i LIST OF TABLES PAGE Ta b l e 1-1. . C l i m a t i c d a t a '(Tofino A i r p o r t : 49°05'N . and 125°46'w, 8 0 f t . ASL) . 5 1 T a b l e 1 - 2 . Ground water and stream water a n a l y s i s (1971) 57 Ta b l e I I - l . S e l e c t e d p h y s i c a l p r o p e r t i e s o f the s o i l s 67 Tab l e I I - 2 . S e l e c t e d c h e m i c a l p r o p e r t i e s of t h e s o i l s 77 T a b l e I I - 3 . Some s e l e c t e d exchange p r o p e r t i e s of the s o i l s 85 Ta b l e I I - 4 . E x t r a c t a b l e Fe and A l p r e s e n t i n the s o i l s 97 Ta b l e I I I - 5 . C l a y f r a c t i o n c o m p o s i t i o n and amorphous m i n e r a l A l and S i of the s o i l s 1 0 6 T a b l e I I I - l . S e l e c t e d c h e m i c a l p r o p e r t i e s of p l a c i c and a d j a c e n t h o r i z o n s . . . i . . . 145 v i i LIST OF .'FIGURES FIGURE PAGE 1 - 1 . The l o c a t i o n of the study a r e a on the west coast- of Vancouver. I s l a n d . . 5 Ir-2. an.d 1 - 3 . A e r i a l photographs i l l u s t r a t i n g the a c c u m u l a t i o n of sand at. t h e mouth of S a n d h i l l Creek from 1 9 3 7 t o 1 9 7 0 . Much of t h e sand has been s t a b a l i z e d by v e g e t a t i o n d u r i n g t h i s p e r i o d 7 1-4. The l o c a t i o n o f s o i l s sampled i n the study a r e a -9 1 - 5 . Schematic diagram showing r e l a t i o n s h i p s among s o i l s and s u r f i c i a l d e p o s i t s . . . . 10. 1 - 6 . Schematic diagram of a l a n d s c a p e segment i n the a r e a of g l a c i o f l u v i a l outwash d e p o s i t s 1 1 1 - 7 . The s o i l p i t at S i t e 1 1 3 1 - 8 . The l a n d s c a p e a t S i t e 1 showing a t e n y y e a r o l d Douglas f i r p l a n t a t i o n ' 14 1 - 9 . The s o i l p i t a t S i t e 2 . i l l u s t r a t i n g t h e cemented n a t u r e of the d e p o s i t s 1 7 1 - 1 0 . The landscape at S i t e 2 showing a Douglas f i r p l a n t a t i o n s i m i l a r t o t h a t found at S i t e 1 . .' 18 . 1 - 1 1 . The s o i l p i t a t S i t e 3 showing the h i g h water t a b l e .... 2 0 1 - 1 2 . The l a n d s c a p e at S i t e 3 showing the b o n s a i form of the t r e e s p r e s e n t and the a s s o c i a t e d bog v e g e t a t i o n 2 1 ' 1 - 1 3 . Schematic diagram o f a l a n d s c a p e segment o f g l a c i o m a r i n e s t o n y c l a y d e p o s i t s showing the r i d g e a t the main t e r r a c e f a c e and the v a r i a b i l i t y o f the marine o v e r l a y i n r e l a t i o n t o the s u r f a c e d r a i n a g e p a t t e r n . . . 24 . v i i i 1-14. A dense s t a n d of w e s t e r n r e d cedar and w e s t e r n hemlock a t S i t e 4 2 6 1 - 1 5 . A s o i l p i t r e p r e s e n t a t i v e of t h a t found at S i t e 5 showing t h e f i n e t e x t u r e d g l a c i o m a r i n e m a t e r i a l s 2 9 1 - 1 6 . The l a n d s c a p e a t S i t e 5 showing.the poor s t a n d of w e s t e r n hemlock and w e s t e r n r e d cedar w i t h some sh o r e p i n e . . . . . 3 0 1 - 1 7 . Schematic diagram of a l a n d s c a p e segment of sand d e p o s i t s showing the p r e s e n c e of bogs and beach r i d g e s 3 3 1 - 1 8 . The s o i l p i t a t S i t e 6 showing the p l a c i c h o r i z o n . .' 3 5 1 - 1 9 . The l a n d s c a p e at S i t e 6 showing .the n a t u r a l l y r e g e n e r a t e d s t a n d dominated by w e s t e r n hemlock . . . 3 6 1 - 2 0 . The l a n d s c a p e at S i t e 7 showing t h e l e v e l - t o d e p r e s s i o n a l t e r r a i n , open stands o f p i n e ' and a s s o c i a t e d bog v e g e t a t i o n 3 9 1 - 2 1 . The s o i l p i t a t S i t e 8 showing l e s s development than S i t e 6 on s i m i l a r p a r e n t m a t e r i a l s . . . - . 42 1 - 2 2 . The l a n d s c a p e a t S i t e 8 showing dense stands of S i t k a spruce and w e s t e r n r e d cedar 4 3 1 - 2 3 . Schematic diagram of a l a n d s c a p e segment of t h e . a r e a where g l a c i a l t i l l m a t e r i a l s have been d e p o s i t e d over bedrock which c o n s i s t s p r e d o m i n a t e l y o f t h e T o f i n o Graywacke u n i t . : 4 5 1-24. The s o i l p i t at S i t e 1 0 showing g l a c i a l -t i l l s over bedrock 4 9 1 - 2 5 . The c o n c e n t r a t i o n o f Na, Ca, Mg and K i n the p r e c i p i t a t i o n measured at f o u r s t a t i o n s on Vancouver I s l a n d 5 5 1 - 2 6 . T o t a l c o n c e n t r a t i o n of Na, Ca, Mg and K i n the p r e c i p i t a t i o n measured at f o u r s t a t i o n s on Vancouver I s l a n d 56 / i x I I I - l . Schematic diagram showing the p o s i t i o n o f the p l a c i c h o r i z o n s i n the l a n d s c a p e i n ' r e l a t i o n t o o t h e r l a n d s c a p e f e a t u r e s 134 I I I - 2 . P l a c i c h o r i z o n (a) showing the v a r i a b l e form-and v i t r e o u s a p p e a r a n c e . ' ( s c a l e e q u a l s 1 cm) ', . . 136 I I I - 3 . P l a c i c h o r i z o n (b) showing the band of dark r e d m a t e r i a l i m m e d i a t e l y below t h e pan ( s c a l e e q u a l s 1 cm) .............. 137 I I I - 4 . The i n c o r p o r a t i o n o f s u r f a c e m i n e r a l m a t e r i a l i n t o s u b s u r f a c e m a t e r i a l around which P l a c i c h o r i z o n (b) has formed 139 I I I - 5 . P l a c i c h o r i z o n (c) showing t h e abrupt b o u n d a r i e s of t h i s pan ( s c a l e e q u a l s 1 cm) • 14.0 I I I - 6 . P l a c i c h o r i z o n (d) showing s t r a t i f i c a t i o n of m a t e r i a l i n the pan and the f r a c t u r e s formed when i t i s a i r d r i e d ( s c a l e .equals 1 cm) . 141 I I I - 7 . P l a c i c h o r i z o n .(e) showing the v i t r e o u s appearance of the pan m a t e r i a l and l a c k of c o n f o r m i t y w i t h any change i n t e x t u r e ( s c a l e e q u a l s 1 cm) 142 I I I - 8 . Absorbed e l e c t r o n images of P l a c i c h o r i z o n (b) (X 5 0 0 ) showing t h e h i g h l y f r a c t u r e d , dense plasma w i t h i n the pan which surrounds the q u a r t z g r a i n :(i) and the porous m a t e r i a l below ( i i ) . 149 I I I - 9 . Absorbed e l e c t r o n images of P l a c i c h o r i z o n (c) (X 650) showing the h i g h l y f r a c t u r e d , dense plasma w i t h i n the pan ( i ) and"the . porous m a t e r i a l below ( i i ) 150 1 1 1 - 1 0 . An e l e c t r o n probe scan of a v e r t i c a l t r a n s e c t a c r o s s P l a c i c h o r i z o n (b) showing the d i s t r i b u t i o n o f S i , A l and Pe.. 1 5 2 I I I - l l . An e l e c t r o n probe scan o f a v e r t i c a l t r a n s e c t a c r o s s P l a c i c h o r i z o n (c) showing t h e d i s t r i b u t i o n of S i , A l and Fe 153 X 1 1 1 - 1 2 , X-ray e m i s s i o n image of P l a c i c h o r i z o n Cb) showing th e r e l a t i v e d i s t r i b u t i o n of Fe, A l and S i between the plasma and s k e l e t a l 1 1 1 - 1 3 . X-ray e m i s s i o n image o f P l a c i c . h o r i z o n Cc) showing the r e l a t i v e d i s t r i b u t i o n o f Fe, A l and S i between th e plasma and s k e l e t a l m a t e r i a l . . . . 1 5 6 I V - 1 . These s l i d e s are t y p i c a l o f t h o s e o c c u r r i n g where the outwash m a t e r i a l s a r e s h a l l o w over marine c l a y d e p o s i t s 1 7 3 I V - 2 . Bog s p e c i e s i n v a d e a r e a s where f i r e has removed the f o r e s t v e g e t a t i o n w i t h the d e c r e a s e . i n e v a p o t r a n s p i r a t i o n r a i s i n g the perched water t a b l e above the pan l 8 l IV - .3 . S u r f a c e o r g a n i c and m i n e r a l h o r i z o n s were removed from t h i s s i t e i n the e a r l y 1 9 4 0 ' s and i l l u s t r a t e s - t h e slow r e v e g e t a t i o n which can be expected under n a t u r a l c o n d i t i o n s 1 8 2 I V - 4 . Sever e r o s i o n o c c u r s on s i t e s where enough r e l i e f i s p r e s e n t t o cause s u r f a c e r u n o f f a f t e r the p r o t e c t i v e o r g a n i c m a t e r i a l i s removed 1 8 3 x i ACKNOWLEDGMENTS I would l i k e t o thank Dr.'L.M. L a v k u l i c h f o r s u p e r v i s i n g the program u n d e r t a k e n t o complete t h i s - t h e s i s , and Dr. C.A. Rowles, Dr. D.S. L a c a t e and Mr. L. F a r s t a d as committee members. I would a l s o l i k e t o thank Dr. L.E. Lowe f o r r e v i e w -i n g t he m a n u s c r i p t . My a p p r e c i a t i o n i s a l s o extended t o a l l t h o s e i n t h e Department of S o i l S c i e n c e and v a r i o u s government a g e n c i e s who gave a d v i c e and a s s i s t a n c e d u r i n g t h e s t u d y . Very s p e c i a l thanks i s extended t o my w i f e Sonja f o r making the study a j o i n t e f f o r t by h e l p i n g t h r o u g h o u t i t s e n t i r e d u r a t i o n . The t h e s i s i s d e d i c a t e d i n memory of t h e l a t e G e o f f I s s a c of T o f i n o . INTRODUCTION The ever i n c r e a s i n g demand on the l a n d r e s o u r c e t o s u p p l y a v a r i e t y of. b e n e f i t s t o a growing p o p u l a t i o n d i c t a t e s t h a t a b e t t e r u n d e r s t a n d i n g of the components o f l a n d has t o be a c h i e v e d t o meet t h i s demand. I n d i v i d u a l s w o r k i n g i n the n a t u r a l s c i e n c e s a re i m p r o v i n g the u n d e r s t a n d i n g o f the l a n d r e s o u r c e by p r o v i d i n g i n f o r m a t i o n s p e c i f i c t o t h e i r r e s p e c t -i v e d i s c i p l i n e s and a l s o by i d e n t i f y i n g i n t e r a c t i o n s among th e s e d i s c i p l i n e s . P e d o l o g i s t s are c o n t r i b u t i n g by i d e n t i f y i n g s o i l c h a r a c t e r i s t i c s and p r o c e s s e s and d e f i n i n g i n t e r r e l a t i o n -s h i p s w h i c h can be t r a n s l a t e d i n t o i n t e r p r e t a t i o n s f o r l a n d use p l a n n i n g and management p u r p o s e s . T h i s study i d e n t i f i e s t h o s e p r o c e s s e s , b o t h e x t e r n a l and i n t e r n a l , f o r t e n s o i l s w hich s h o u l d be c o n s i d e r e d when p l a n n i n g and managing the l a n d r e s o u r c e i n the study a r e a . T h i s was done by: (1) c h a r a c t e r i z i n g the l a n d components and i d e n t i f y i n g the s o i l s r o l e ' i n the l a n d s c a p e . (2) c h a r a c t e r i z i n g t h e s o i l s by t h e i r p h y s i c a l , c h e m i c a l and m i n e r a l o g i c a l p r o p e r t i e s . (3) i d e n t i f y i n g the pedogenic p r o c e s s e s r e s p o n s i b l e f o r s o i l development. CHAPTER I CHARACTERIZATION OF SOME COMPONENTS OF THE LAND RESOURCE IN THE STUDY AREA 3 CHARACTERIZATION OF SOME COMPONENTS OF THE LAND RESOURCE•IN THE STUDY AREA INTRODUCTION I t i s becomming i n c r e a s i n g l y e v i d e n t t o those i n v o l v e d w i t h t h e p l a n n i n g and management o f l a n d t h a t an i n t e g r a t e d approach has t o be t a k e n i f a l l r e s o u r c e b e n e f i t s a v a i l a b l e are t o be r e a l i z e d ( J e f f r e y et_-.:al, 1970). T h i s means t h a t as many of the components o f l a n d as p o s s i b l e s h o u l d be con-s i d e r e d b e f o r e land-use d e c i s i o n s a re made. To do t h i s a d e q u a t e l y a wide range o f e x p e r t i s e from a v a r i e t y of d i s c i p l i n e s i s r e q u i r e d t o dete r m i n e the i n t e r a c t i o n s among the b i o p h y s i c a l components of any a r e a of l a n d . There-f o r e , i t i s i m p o s s i b l e f o r any one d i s c i p l i n e ' t o d e t e r m i n e i n d e p e n d e n t l y the b e s t use of l a n d . A l s o , the s o c i a l and economic a s p e c t s c o m p l i c a t e f u r t h e r t h e a l l o c a t i o n o f l a n d t o one or more us e s . N e v e r t h e l e s s , a b e t t e r u n d e r s t a n d i n g of any component of the l a n d can be a c h i e v e d by knowing something about r e l a t e d . e n v i r o n m e n t a l components. The purpose of t h i s s tudy was t o c h a r a c t e r i z e some s e l e c t e d e n v i r o n m e n t a l components which were i m p o r t a n t t o t h e d e v e l o p -ment of s o i l s i n the study a r e a . The morphology of the s o i l s s t u d i e d i s a l s o p r e s e n t e d . r 4 CHARACTERISTICS OF THE STUDY AREA GEOLOGY The study a r e a i s l o c a t e d on the west c o a s t o f Vancouver I s l a n d ( F i g . 1 - 1 ) and i s i n c l u d e d i n the E s t e v a n C o a s t a l P l a i n d e s c r i b e d by H o l l a n d ( 1 9 6 4 ) . I n a d e t a i l e d account of the g e o l o g y , M u l l e r , ( 1 9 7 2 ) summarized the a r e a as b e i n g a h i g h l y t e c t o n i z e d , but unmetamorphosed b e l t of T r i a s s i c t o Lower C r e t a c e o u s v o l c a n i c and v o l c a n i c l a s t i c r o c k . T h i s u n i t was e a r l i e r p r o v i s i o n a l l y c a l l e d t h e " T o f i n o greywacke". At the p r e s e n t time t h i s u n i t i s the major component of the monadnocks which r i s e above the p l a i n . Most of the bedrock i n t h e a r e a i s c o v e r e d by a deep m a n t e l of P l e i s t o c e n e and p o s t - P l e i s t o c e n e m a t e r i a l . D u r i n g g l a c i a t i o n o n l y the h i l l s remained above sea l e v e l and were p l a s t e r e d w i t h b a s a l t i l l as the g l a c i e r s advanced. As the g l a c i e r s r e t r e a t e d , a b l a t i o n t i l l was d e p o s i t e d upon t h e b a s a l t i l l and subsequent mass movement and t r e e wind throw has caused c o n s i d e r a b l e r e - w o r k i n g o f the s u r f a c e mat-e r i a l s . M u l l e r ( 1 9 7 2 ) e s t i m a t e s the a r e a was c o v e r e d by approx-i m a t e l y 245 m ( 8 0 0 f t . ) of i c e d u r i n g maximum g l a c i a t i o n . I s o s t a t i c d e p r e s s i o n r e s u l t e d i n much of the lower a r e a s b e i n g c o v e r e d by sea water w i t h subsequent d e p o s i t i o n o f g l a c i o m a r i n e m a t e r i a l s , p r e d o m i n a t e l y s i l t s and c l a y s . S c a t t e r e d b o u l d e r s are found t h r o u g h o u t the f i n e m a t e r i a l which were d e p o s i t e d by f l o a t i n g i c e ( V a l e n t i n e , 1 9 7 1 ) . gure 1 -1 . The location of the study area on the west coast of Vancouver Island. / 6 Coarse g l a c i o f l u v i a l outwash m a t e r i a l s were d e p o s i t e d i n a marine environment on some of the t i l l s o v e r r t h e s o u t h e r n p o r t i o n of the study a r e a . T h i s m a t e r i a l moved from i t s source near Kennedy Lake and i n t o Wreck Bay. I t appears t h a t much of the f i n e r sandy m a t e r i a l from t h e s e d e p o s i t s was c a r r i e d i n a n o r t h w e s t e r l y d i r e c t i o n a l o n g the c o a s t and r e d e p o s i t e d at t h e n o r t h end of Long Beach and i n the i n l e t s toward T o f i n o . At the p r e s e n t time sand i s s t i l l b e i n g s h i f t e d i n t h i s d i r e c t i o n as shown i n . .Figures 1 - 2 and 1 - 3 where the o f f s h o r e bar i s b e i n g formed at the mouth of S a n d h i l l Creek. The a c c u m u l a t i o n o f t h i s m a t e r i a l and subsequent rebound has r e s u l t e d i n the form-a t i o n of E s o w i s t a P e n i n s u l a where o n l y i s l a n d s had p r e v i o u s l y e x i s t e d . D u r i n g the p e r i o d o f rebound, f i n e r m a t e r i a l s r a n g i n g from c l a y t o f i n e sand were d e p o s i t e d as a veneer or b l a n k e t over most of the a r e a . Where t h i s m a t e r i a l i s found i t ranges i n depth from a.few c e n t i m e t e r s on eroded s u r f a c e s t o more than t h r e e . m e t e r s where i t f i l l e d c h a n n e l s which were cut by ocean c u r r e n t s i n t o p r e v i o u s d e p o s i t s . The g e n e r a l i z e d s t r a t i g r a p h y of the g e o l o g i c m a t e r i a l s i s d i s c u s s e d by Bremner ( 1 9 7 0 ) . SOILS AND ASSOCIATED VEGETATION The s o i l s i n the a r e a r e p r e s e n t a wide range of morphology which r e f l e c t s the v a r i a b i l i t y of the s u r f i c i a l d e p o s i t s and. 7 F i g . 1-3, 1937 F i g u r e s 1-2 and 1-3. A e r i a l photographs i l l u s t r a t i n g the ac-c u m u l a t i o n of sand at the mouth o f S a n d h i l l Creek from 1937 t o 1970. Much of the sand has been s t a b a l i z e d by v e g e t a t i o n d u r i n g t h i s p e r i o d . t h e i r complex mode of d e p o s i t i o n . The s o i l pedons which a re d e s c r i b e d were s e l e c t e d as modal r e p r e s e n t a t i v e s o f t h e dominant s o i l s i n the study a r e a . F i g u r e 1 - 4 g i v e s t h e l o c a t i o n of the s o i l s sampled and F i g u r e 1 - 5 i s a schematic diagram showing the r e l a t i o n s h i p s among t h e s o i l s and s u r f i c i a l d e p o s i t s A p r e v i o u s study on the g e n e s i s o f a p o d z o l sequence was completed by Bhoojedhur ( 1 9 6 8 ) . A r e c o n n a i s a n c e s o i l s u r v e y o f the s o u t h e r n p o r t i o n of the study a r e a was completed by V a l e n t i n e ( 1 9 7 1 ) and a more d e t a i l e d survey o f s o i l s and landf o r m s o f the a r e a i n c l u d e d i n P a c i f i c Rim N a t i o n a l Park was completed by P i e r c e ( 1 9 7 3 ) • The v e g e t a t i o n a s s o c i a t e d w i t h each s i t e i s a l s o g i v e n . D e t a i l e d v e g e t a t i o n s t u d i e s were conducted i n t h e bogs o f the a r e a by Wade ( 1 9 6 5 ) , and sand dunes by Kuramoto ( 1 9 6 5 ) , and the S i t k a spruce zone by Cordes ( 1 9 7 3 ) . The v e g e t a t i o n o f P a c i f i c Rim P a r k , Phase I has been d e s c r i b e d by B e l l et_ a l ( 1 9 7 2 ) . The area, i s i n c l u d e d i n the P a c i f i c s i l v e r f i r -w e s t e r n hemlock subzone by K r a j i n a ( 1 9 6 5 ) which i s the wet subzone of the C o a s t a l Western Hemlock b i o g e o c l i m a t i c zone. When b o t a n i c a l names are used the a u t h o r i t y f o l l o w s K r a j i n a ( ( 1 9 6 5 ) . UNIT I A sche m a t i c r e p r e s e n t a t i o n of a l a n d s c a p e segment of the g l a c i o f l u v i a l outwash sands and g r a v e l s i s g i v e n i n F i g u r e 1 - 6 w i t h the s o i l s o f S i t e s 1 , 2 and 3 b e i n g r e p r e s e n t a t i v e of those found on the l a n d s c a p e . The c o a r s e r d e p o s i t s o v e r l i e 9 F i g u r e 1-4. The l o c a t i o n o f s o i l s sampled i n t h e study a r e a . 10 I BEDROCK" TILL AND COLLUVIUM BEACH SAND MM MARINE OVERLAY MARINE CLAY OUTWASH SAND AND GRAVEL F i g u r e 1-5- Schematic diagram showing r e l a t i o n s h i p s among s o i l s and s u r f i c i a l d e p o s i t s . 11 •MARINE OVERLAY OUTWASH SANDS AND GRAVELS MARINE CLAYS F i g u r e 1-6. Schematic diagram of a landscape segment i n the a r e a of g l a c i o f l u v i a l outwash d e p o s i t s . marine c l a y sediments which a r e exposed on the n o r t h end of Wreck Beach. C o n t i n u e d e r o s i o n of the base of the c l i f f by w i n t e r storms has r e s u l t e d i n the slum p i n g of some outwash m a t e r i a l down the c l i f f f a c e . Where the marine sediments are c l o s e t o the s u r f a c e , l a n d s l i d e s have o c c u r r e d d u r i n g the months of h i g h p r e c i p i t a t i o n as the m a t e r i a l s become u n s t a b l e when s a t u r a t e d . A marine o v e r l a y of v a r y i n g depth up t o two meters o c c u r s over a l a r g e p o r t i o n of t h e outwash. I t i s h i g h l y v a r i a b l e i n depth l o c a l l y , e s p e c i a l l y I n a r e a s which have been l o g g e d , where m i x i n g and some e r o s i o n has o c c u r r e d . T rees of commercial v a l u e grew where the o v e r l a y o c c u r s , however, most o f the stands of o l d growth have been h a r v e s t e d . S i t e 1 The s o i l pit..and l a n d s c a p e a re shown i n F i g u r e s 1 - 7 and 1 - 8 r e s p e c t i v e l y . The s i t e i s l o c a t e d a t 4 9 ° 0 0 . 5'N and 125°38'W i n an a r e a where the marine o v e r l a y was 1 . 5 m t h i c k , on a 1% s l o p e w i t h a N.E. a s p e c t . The pedon i s m o d e r a t e l y w e l l t o i m p e r f e c t l y d r a i n e d . A s s o c i a t e d v e g e t a t i o n c o n s i s t s o f Douglas f i r (Pseudotsuga m e n z i e s i i v a r . m e n z i e s i i ) , Western hemlock (Tsuga h e t e r o p h y l l a ) w i t h some r e d a l d e r ( A l n u s r u b a ) . Shrubs and herbs i n c l u d e salmonberry (Rubus s p e c t a b i l i s ) , r e d h u c k l e -b e r r y ( V a c c i n i u m p a r v i f o l i u m ) , s a l a l ( G a u l t h e r i a s h a l l o n ) , deer f e r n . (Blechnum s p i c a n t ) , wild!,, l i l y o f t h e v a l l e y (Maianthemum  d i l a t a t u m ) , Carex spp. A v a r i e t y o f mosses a r e a l s o p r e s e n t . C l a s s i f i c a t i o n : M i n i Humo-Ferric P o d z o l 13 F i g u r e 1-7. The s o i l p i t at S i t e 1. 14 F i g u r e 1-8. The l a n d s c a p e at S i t e 1 showing a t e n year o l d Douglas f i r p l a n t a t i o n . 1 5 Pedon D e s c r i p t i o n : H o r i z o n Depth cm. L-H 3 8 - 0 • Very dark r e d ( 2 . 5 YR 2/2 m) p a r t i a l l y decom-posed o r g a n i c m a t t e r ; abundant f i n e , medium and l a r g e r o o t s ; c l e a r wavy boundary; 15 t o 46 cm t h i c k ; pH 3 - 9 . Ahe 0 - 5 Brown (10 YR 5 / 3 m) sandy loam; m a s s i v e , spongy; abundant medium and f i n e r o o t s ; c l e a r wavy boundary; 0 t o 8 cm t h i c k ; pH 4 . 9 -Bf 5-25 S t r o n g brown (10 YR 6/4 m) sandy loam; weak f i n e s u b a n g u l a r b l o c k y ; f r i a b l e ; p l e n t i f u l medium and f i n e r o o t s ; some s t o n e s ; 1 5 t o 3 0 cm t h i c k ; c l e a r wavy boundary; pH 5 - 0 . Bf2 2 5 - 5 8 S t r o n g brown (7.5 YR 5 / 6 m) loamy sand; amorphous; f r i a b l e . ; few s m a l l ' r o o t s ; f r e q u e n t s t o n e s ; 20 t o 3 6 cm t h i c k ; c l e a r wavy bound-a r y ; pH 5 • 0 . I I B f 5 8 - 9 9 Y e l l o w i s h brown (10 YR 5 / 8 m) sand; amorphous; . f r i a b l e ; abundant s t o n e s ; 3 6 t o 50 cm t h i c k ; c l e a r wavy boundary; pH 5.2. I I B f 2 99-122 Y e l l o w i s h brown (10 YR 5 / 6 m) c o a r s e sand; amorphous; f r i a b l e ; abundant s t o n e s ; 1 5 t o 3 2 cm t h i c k ; c l e a r wavy boundary;. pH 5.1. 1 6 H o r i z o n Depth cm. I I I B f 122-142 Dark y e l l o w i s h brown ( 1 0 YR 4/4 m) v e r y g r a v e l l y sand; m a s s i v e ; f i r m ; 59% g r a v e l ; c l e a r wavy boundary; 1 5 t o 2 5 cm t h i c k ; pH 5 . 2 . C 142+ Dark g r a y i s h brown ( 1 0 YR 4/2 m) g r a v e l l y c o a r s e sand;•massive; f i r m ; pH 5 - 5 -S i t e 2 The s o i l p i t and l a n d s c a p e a r e shown i n F i g u r e s 1 - 9 and 1 - 1 0 r e s p e c t i v e l y . The s i t e i s l o c a t e d a t 48 °59 .5'N and 125°36'W i n an a r e a where some marine o v e r l a y had been mixed w i t h the outwash d e p o s i t s on l e v e l t e r r a i n . The pedon i s m o d e r a t e l y w e l l d r a i n e d and s u p p o r t s s i m i l a r v e g e t a t i o n t o S i t e 1 . C l a s s i f i c a t i o n : M i n i Humo-Ferric P o d z o l Pedon D e s c r i p t i o n : H o r i z o n Depth w.cm. L-H 3 1 - 0 Very dusky r e d ( 2 . 5 YR 2 / 2 m) m o d e r a t e l y w e l l decomposed o r g a n i c m a t t e r ; abundant r o o t s ; c l e a r wavy boundary; 1 5 t o 46 cm t h i c k ; pH 3-6. Ae T r a c e 1 7 F i g u r e 1-9. The s o i l p i t at S i t e 2 i l l u s t r a t i n g the cemented n a t u r e of the outwash m a t e r i a l s . 18 F i g u r e 1 - 1 0 . The landscape at S i t e 2 showing a Douglas f i r p l a n t a t i o n s i m i l a r t o t h a t found at S i t e 1 . 1 9 H o r i z o n Depth cm. Bf 0 - 5 6 S t r o n g brown ( 7 - 5 YR 5 / 8 m) g r a v e l l y loamy sand; weak s u b a n g u l a r b l o c k y ; f r i a b l e ; few f i n e and medium r o o t s ; c l e a r wavy boundary; 3 6 t o 6 0 cm t h i c k ; pH 4.9. IIBC 5 6 - 1 1 2 Dark g r a y i s h brown ( 1 0 YR 4 / 2 m) v e r y g r a v e l l y . sand; amorphous; f i r m ; 40 t o 6 5 cm t h i c k ; pH 5 . 1 . I I C 1 1 2 - 1 7 3 Dark grayish,-.brown ( 1 0 . YR 4 / 2 m) v e r y g r a v e l -l y loamy sand; amorphous; f i r m ; 5 0 t o 7 0 cm t h i c k ; pH 5 - 2 . I I I C 1 7 3 - 1 8 0 Very dark g r a y i s h brown ( 2 . 5 Y 3 /2'm) g r a v e l l y sand; amorphous; f i r m ; 4 t o 1 5 cm t h i c k ; pH 5.4. IVC 1 8 0 + Dark g r a y i s h brown ( 1 0 YR 4 / 2 m) v e r y g r a v e l l y sand; amorphous; f i r m ; pH 5.4. L a y e r e d sands and g r a v e l s below. S i t e 3 The s o i l pitv.and l a n d s c a p e are shown i n F i g u r e s 1 - 1 1 and 1 - 1 2 r e s p e c t i v e l y . The s i t e i s l o c a t e d a t 4 9 ° 0 1 . 0'N and 125°39'W i n a d e p r e s s i o n a l a r e a . No marine o v e r l a y i s p r e s e n t 20 F i g u r e 1-11. The s o i l p i t at S i t e 3 showing the h i g h water t a b l e . 21 F i g u r e 1-12. The landscape at S i t e 3 showing the b o n s a i form of the t r e e s p r e s e n t and the a s s o c i a t e d bog v e g e t a t i o n . The pedon i s p o o r l y d r a i n e d . The dominant v e g e t a t i o n i s shore p i n e ( P i n u s c o n t o r t a ) w i t h some w e s t e r n hemlock, w e s t e r n r e d i, cedar (Thuja p l i c a t a ) and s c a t t e r e d y e l l o w cedar (Chamaecyparis  n o o t k a t e n s i s ) . A l l t r e e s p e c i e s a r e s t u n t e d and of b o n s a i form growing i n open s t a n d s . The shrub l a y e r i s dominated by l a b r a d o r t e a (Ledum g r o e n l a n d i c u m ) , swamp l a u r e l ( K a l m i a  p o l i f o l i a ) ; s m a l l c r a n b e r r y (Oxycoccus q u a d r i p e t a l u s ) , crow-b e r r y (Empetrum n i g r u m ) . Sphagnum spp. and r e i n d e e r moss ( C l a d o n i a p a c i f i c u s ) dominated the moss l a y e r . C l a s s i f i c a t i o n : F e r a Humic G l e y s o l Pedon D e s c r i p t i o n : H o r i z o n Depth cm. LF 2 0 - 8 Dark r e d d i s h brown ( 5 YR 2 / 2 m) f r e s h and p a r t l y decomposed o r g a n i c m a t t e r ; 8 t o 3 0 cm t h i c k ; pH 4 . 5 • H 8 - 0 Very dark gray ( 5 YR 3 / 1 rn) decomposed o r g a n i c m a t t e r ; s p o n g y ; a b u n d a n t medium and f i n e r o o t s ; 5 t o 1 5 cm t h i c k ; c l e a r wavy boundary; pH 4 . 1 . Ah 0 - 1 0 Very dark gray ( 1 0 YR 3 / 1 m) s i l t loam; weak b l o c k y ; f r i a b l e ; abundant medium and f i n e , r o o t s ; a b r u p t smooth boundary; 3 t o 8 cm t h i c k ; pH 4 . 3 . 2 3 H o r i z o n Depth cm. Bfc . 1 0 - 2 0 I I B f ( g ) 2 0 - 3 3 I U B f g 33-48 IVBCg 48-66 Water t a b l e Cg 66+ UNIT I I Dark g r a y i s h brown ( 2 . 5 YR 4 / 2 m) loamy sand; amorphous; v e r y f i r m ; a brupt smooth boundary; 8 t o 1 5 cm t h i c k ; pH 4 . 8 . O l i v e brown ( 2 . 5 YR 4 / 4 -m) sand; common, f i n e , f a i n t l i g h t o l i v e y e l l o w ( 2 . 5 6 / 6 m) m o t t l e s ; amorphous; f i r m ; a b r u p t , smooth boundary; 8 t o 2 5 cm t h i c k ; pH 5 - 0 . Gray (5Y 5 / 1 m) g r a v e l l y loam; common medium, prominent s t r o n g brown ( 7 - 5 YR 5 / 8 m) m o t t l e s ; amorphous; f r i a b l e ; a b rupt smooth boundary; 8 t o 2 2 cm t h i c k ; pH 5 . 3 . Very dark g r a y i s h brown ( 1 0 YR 3 / 2 m) co a r s e sandy g r a v e l ; amorphous; f r i a b l e ; . 56% g r a v e l ; 1 5 t o 2 5 cm t h i c k ; pH 5 - 3 . Very dark g r a y i s h brown ( 2 . 5 YR 3 / 2 m) co a r s e sandy g r a v e l ; amorphous f r i a b l e ; 60% g r a v e l ; pH 5 . 5 . F i g u r e 1-13 i s a schematic r e p r e s e n t a t i o n o f a l a n d s c a p e segment of the g l a c i o m a r i n e s t o n y c l a y d e p o s i t s . The t e r r a c e 24 MARINE OVERLAY STONY MARINE CLAYS F i g u r e 1-13. Schematic diagram of a lan d s c a p e segment of g l a c i o -marine stony c l a y d e p o s i t s showing the r i d g e at the main, t e r r a c e f a c e and the v a r i a b i l i t y i n depth o f the marine o v e r l a y i n r e l a t i o n t o the s u r f a c e d r a i n a g e p a t t e r n . 2 5 i s composed of s t o n y marine c l a y s s i m i l a r i n morphology t o t h e c l a y s u n d e r l y i n g the outwash d e p o s i t s o f S i t e s 1 , 2 and 3 . A beach t e r r a c e o c c u r s a l o n g the bottom of the main t e r r a c e and a r i d g e a p p r o x i m a t e l y 1 0 0 m wide and 5 m h i g h i s p r e s e n t a l o n g t h e top of the main t e r r a c e which s l o p e s g e n t l y i n an e a s t e r l y d i r e c t i o n . Stream c h a n n e l s d i s s e c t the t e r r a c e s u r f a c e w i t h s t r e a m s . f l o w i n g t o the t i d a l f l a t s and Kennedy Lake d u r i n g the w i n t e r months. An o v e r l a y of f i n e r marine c l a y s i s found a l o n g the stream c h a n n e l s i n d i c a t i n g • the o r i g i n a l c h a n n e l s c o u l d have.been formed from ocean c u r r e n t s w h i l e t h e t e r r a c e was s t i l l p a r i t a l l y submerged. C o n t i n u e d emergence t h e n r e s u l t e d i n the d e p o s i t i o n of f i n e r m a t e r i a l s i n t h e s e c h a n n e l s which were s u b s e q u e n t l y i n c i s e d by s u r f a c e r u n o f f w h i l e emergence c o n t i n u e d t o i t s p r e s e n t s t a g e . The o v e r l a y i s absent over much of t h e a r e a , and i f p r e s e n t i t v a r i e s from a few c e n t i m e t e r s t o over 3 m i n t h i c k n e s s . S i t e 4 S i t e 4 i s l o c a t e d a t 49°04*N and 125°4l'W i n an a r e a where the f i n e r o v e r l a y m a t e r i a l i s over 1 . 5 m i n depth. The pedon i s i m p e r f e c t l y d r a i n e d and l o c a t e d i n a dense, mature f o r e s t ( F i g u r e 1-14). The a s s o c i a t e d v e g e t a t i o n , i n c l u d e s w e s t e r n r e d cedar and w e s t e r n hemlock. S a l a l dominates th e shrub l a y e r w i t h r e d and e v e r g r e e n h u c k l e b e r r y ( V a c e i n i u m ovatum) p r e s e n t . Hylocomuim splendens dominates the moss l a y e r . F i g u r e 1-14. A dense stand of w e s t e r n r e d cedar and w e s t e r n hemlock at S i t e 4. 2 7 C l a s s i f i c a t i o n : Gleyed Ferro-Humic P o d z o l Pedon D e s c r i p t i o n : H o r i z o n LH Bhg Bhgj Bf Depth cm. 1 5 - 0 0 - 5 5 - 1 8 1 8 - 3 6 B l a c k ( 5 YR 2 / 1 m) f r e s h and p a r t i a l l y . . . o -decomposed o r g a n i c m a t t e r ; abundant l a r g e , medium and f i n e r o o t s ; c l e a r wavy boundary; 1 0 t o 2 5 cm t h i c k ; pH 4 . 1 . Dark brown ( 7 - 5 YR 4 / 2 m) s i l t y c l a y ; common, medium d i s t i n c t r e d d i s h brown ( 7 - 5 YR 6 / 8 m) m o t t l e s ; weak s u b a n g u l a r b l o c k y ; s l i g h t l y f r i a b l e (m), s t i c k y (w); abundant f i n e r o o t s ; c l e a r smooth boundary; 3 t o 7 cm t h i c k ; pH 4 . 1 . Gray ( 7 - 5 YR 5/N m) c l a y ; many medium, d i s t i n c t s t r o n g brown ( 7 - 5 YR 5 / 8 m) m o t t l e s ; weak su b a n g u l a r b l o c k y ; s t i c k y (w), f r i a b l e (m); p l e n t i f u l f i n e r o o t s ; c l e a r wavy boundary; 8 t o 2 2 cm t h i c k ; pH 4 . 4 . S t r o n g brown ( 7 - 5 YR 5 / 6 m) c l a y ; f i n e sub-a n g u l a r b l o c k y ; s l i g h t l y s t i c k y (w), f r i a b l e (m); few f i n e r o o t s ; c l e a r wavy boundary; 1 2 t o 2 2 cm t h i c k ; pH 4 . 6 . 2 8 H o r i z o n Depth ccra. Bf2 3 6 - 4 3 Y e l l o w i s h brown (10 YR 5 / 8 m) c l a y ; f i n e s u b a n g u l a r b l o c k y ; s l i g h t l y s t i c k y (w), f r i a b l e (m); few f i n e r o o t s ; c l e a r wavy boundary; 5 t o 1 3 cm t h i c k ; pH 4 . 8 . B f g 4 3 - 7 4 P a l e o l i v e (5Y 6 / 3 m) c l a y ; f i n e subangular-b l o c k y ; s t i c k y (w), f r i a b l e (m); c l e a r wavy boundary; 20 t o 3 0 cm t h i c k ; pH 4 . 9 > Bfg2 74-117 O l i v e (5Y 5 / 3 m) c l a y ; medium s u b a n g u l a r b l o c k y ; s l i g h t l y s t i c k y (w), f i r m (m); c l e a r wavy boundary; 3 8 t o 5 0 cm t h i c k ; pH 5.. 2 . BCg 1 1 7 - 1 3 5 L i g h t o l i v e brown ( 2 . 5 YR 5 / 4 m) c l a y ; medium su b a n g u l a r b l o c k y ; s l i g h t l y s t i c k y (w), f i r m , (m); c l e a r wavy boundary; 1 3 t o 2 5 cm t h i c k , pH 5 . 7 . Cg . 1 3 5 + O l i v e g ray ( 5 YR 4 / 2 m) c l a y ; weak medium sub a n g u l a r b l o c k y ; s l i g h t l y s t i c k y (w), f r i a b l e (m); pH 6 . 7 . S i t e 5 The s o i l p i t and l a n d s c a p e r e p r e s e n t a t i v e of S i t e 5 are shown i n F i g u r e s 1 - 1 5 and 1 - 1 6 . The s i t e i s l o c a t e d a t 49°04'N and 125°43'W on l e v e l t e r r a i n . The pedon i s p o o r l y d r a i n e d . 2 9 F i g u r e 1 - 1 5 . A s o i l p i t r e p r e s e n t a t i v e o f t h a t found at S i t e 5 showing the f i n e t e x t u r e d g l a c i o m a r i n e m a t e r i a l s . 3 0 F i g u r e I - l 6 . The landscape at S i t e 5 showing the poor s t a n d of w e s t e r n hemlock and w e s t e r n r e d cedar w i t h some shore p i n e . A s s o c i a t e d v e g e t a t i o n c o n s i s t s of w e s t e r n r e d c e d a r , w e s t e r n hemlock, s a l a l , r e d h u c k l e b e r r y , o v a l - l e a v e d b l u e b e r r y (V. o v a l i f o l i u m ) , f a l s e a z a l e a ( M e n z i e s i a f e r r u g i n e a ) , skunk cabbage ( L y s i t c h i t o n americanum), showy f a l s e - h e l l e b o r e (Veratrum v i r i d e ) , h o r s e t a i l (Equisetum spp. ) , deer f e r n (Blechnum s p i c a n t ) , Carex spp., Hylocomium splendens and o t h e r mosses. S u r f a c e water was p r e s e n t i n many d e p r e s s i o n a l a r e a s a f t e r r a i n s . C l a s s i f i c a t i o n : F e r a Humic G l e y s o l . Pedon D e s c r i p t i o n : H o r i z o n Depth cm. LF 1 5 - 1 3 F r e s h and p a r t i a l l y decomposed l i t t e r . H 1 3 - 0 B l a c k ( 5 YR 2 / 1 m) decomposed o r g a n i c m a t t e r ; abundant l a r g e , medium and s m a l l r o o t s ; c l e a r , smooth boundary; 8 t o 1 8 cm t h i c k ; pH 4 . 2 . Ahe 0 - 1 0 Dark y e l l o w i s h brown ( 1 0 YR 3 / 4 m ) - s i l t y c l a y ; amorphous; s t i c k y ; p l e n t i f u l medium and f i n e r o o t s ; c l e a r wavy boundary; 8 t o 1 5 cm t h i c k ; pH 4 . 8 . B f g 1 0 - 2 0 Very dark g r e y i s h brown ( 2 . 5 YR 3 / 2 m) loam-many, medium, prominent r e d d i s h y e l l o w 3 2 H o r i z o n Depth cm. ( 7.5 YR 7/8 m) m o t t l e s ; moderate medium 1... g r a n u l a r ; n o n s t i c k y ; f r i a b l e ; few f i n e r o o t s ; c l e a r wavy boundary; 8 t o 1 3 cm thick;..pH 4 . 7 . B f g 2 2 0 - 3 1 O l i v e grey (54 5 / 2 m) c l a y loam; common, medium, prominent r e d d i s h y e l l o w ( 7-5 YR 7 / 6 m) m o t t l e s ; weak c o a r s e s u b - a n g u l a r b l o c k y ; s t i c k y ; few s t o n e s ; c l e a r wavy boundary; 8 t o 1 3 cm t h i c k pH 5.2. BCg 31-48 Grey ( . 2 . 5 YR 6 / m) c l a y loam; common, medium prominent r e d d i s h y e l l o w ( 7 . 5 YR 6/8 m) m o t t l e s ; amorphous b r e a k i n g i n t o weak c o a r s e s u b a n g u l a r b l o c k y ; v e r y s t i c k y ; c l e a r wavy boundary; 1 3 t o 2 5 cm t h i c k ; pH 6 . 0 . . Cg 48+ Dark g r e y (2.5 YR 4/ m) c l a y loam; weak medium s u b a n g u l a r b l o c k y ; v e r y s t i c k y ; pH 6 . 0 UNIT I I I F i g u r e 1 - 1 7 . i s a schematic diagram o f a l a n d s c a p e segment of the a r e a where beach sands were d e p o s i t e d and s u b s e q u e n t l y u p l i f t e d t o form a rebound t e r r a c e . The upper s u r f a c e of the t e r r a c e i s l e v e l . t o g e n t l y u n d u l a t i n g w i t h a few beach r i d g e s . A d i s c o n t i n u o u s major r i d g e i s l o c a t e d 1 km from the p r e s e n t 33 F i g u r e 1 - 1 7 . Schematic diagram of a l a n d s c a p e segment o f sand d e p o s i t s showing the presence o f bogs and beach r i d g e s . beach and l i e s p a r a l l e l t o the beach. T h i s r i d g e : i s over 3 m h i g h i n some p l a c e s w i t h rounded b o u l d e r s from 10 t o 20 cm i n d i a m e t e r p r e s e n t on t h e ocean s i d e . Bogs c o n t a i n i n g open water f o r the e n t i r e year occupy d e p r e s s i o n a l a r e a s . A s i m i l a r c o n d i t i o n o c c u r s on the lower t e r r a c e where seepage w a t e r s from the h i g h e r t e r r a c e move downslope. S i t e 6. The s o i l p i t and l a n d s c a p e are shown i n F i g u r e s 1 - 1 8 and 1 - 1 9 . T h i s s i t e i s l o c a t e d a t 49°045'N and 125°47'W and i s c h a r a c t e r i s t i c of s o i l s o c c u r r i n g where the r e g i o n a l ground water t a b l e i s more th a n 1.5 m below the s u r f a c e of the m i n e r a l h o r i z o n s o f the pedon d u r i n g the summer months of most y e a r s . The ground' water t a b l e may r i s e t o the s u r f a c e d u r i n g t h e wet season. A p l a c i c h o r i z o n , e i t h e r s i n g l e or b ranched, v a r y i n g i n o bserved t h i c k n e s s from 0.5 mm t o 4 mm has d e v e l o p e d from 20 t o 30 cm below the m i n e r a l s u r f a c e . The h o r i z o n r e s t r i c t s the downward movement of water and r o o t s r e s u l t i n g i n a perched water t a b l e b e i n g formed as the m a t e r i a l above the pan becomes s a t u r a t e d d u r i n g and a f t e r storms. The s i t e i s l o c a t e d i n a c l e a r c u t a r e a w i t h the dominant t r e e s p e c i e s b e i n g n a t u r a l l y r e g e n e r a t e d w e s t e r n hemlock. These t r e e s a r e 10 t o 1 5 y e a r s o l d and are growing i n open s t a n d s . The shrub l a y e r c o n s i s t s p r e d o m i n a n t l y of s a l m o n b e r r y , s a l a l and r e d h u c k l e b e r r y . Deer f e r n and bunch b e r r y (Cornus. c a n a d e n s i s ) are a l s o p r e s e n t . 35 F i g u r e 1-18. The s o i l p i t a t S i t e 6 showing the p l a c i c h o r i z o n . 36 F i g u r e 1 - 1 9 . The landscape at S i t e 6 showing the n a t u r a l l y r e g e n e r a t e d stand dominated by w e s t e r n hemlock. 3 7 The pedon i s i m p e r f e c t l y t o p o o r l y d r a i n e d above t h e p l a c i c h o r i z o n and i m p e r f e c t l y d r a i n e d below due t o the h i g h , f l u c t u a t i n g water t a b l e . C l a s s i f i c a t i o n : P l a c i c Humic P o d z o l . Pedon D e s c r i p t i o n : H o r i z o n Depth cm. L-H 1 8 - 0 Dark r e d d i s h brown ( 2 . 5 YR 2/4 m) m o d e r a t e l y decomposed l i t t e r ; abundant r o o t s ; c l e a r wavy boundary; 1 2 t o 46 c m . t h i c k . Ae. 0 - 5 R e d d i s h gray ( 5 YR 5 / 2 m) sandy loam; s i n g l e g r a i n ; l o o s e , f r i a b l e ; few medium and f i n e r o o t s ; c l e a r wavy boundary; t r a c e t o 8 cm t h i c k ; pH 4 . 5 . Bh 5 - 2 0 Dark r e d d i s h brown-(5.,YR 3 / 3 m) sandy loam; v e r y c o a r s e s u b a n g u l a r b l o c k y ; f i r m t o v e r y f i r m ; medium and f i n e r o o t s between peds; o r g a n i c s t a i n i n g and a c c u m u l a t i o n between peds; abrupt wavy boundary; 1 5 t o 3 0 cm t h i c k ; • pH 4 . 7 . Bhfc 2 0 - 2 0 . 4 R e d d i s h b l a c k ( 1 0 YR 2 / 1 m) c o n t i n u o u s band of v i t r e o u s m a t e r i a l ; h a r d , i m p e r v i o u s ; i r r e g u l a r ; 1 t o 4 mm t h i c k . 3 8 H o r i z o n Depth cm. IIBC 20-79 S t r a t i f i e d sands. I I I C 79+ S t r a t i f i e d sands. S i t e 7 The l a n d s c a p e a t S i t e 7 i s shown i n F i g u r e 1-20. T h i s s i t e i s l o c a t e d a t 49°04.5'N and 125°47'W i n a l e v e l t o dep-r e s s i o n a l a r e a where the r e g i o n a l ground water t a b l e - i s at or near the s u r f a c e f o r the major p o r t i o n o f t h e y e a r . There are no r e s t r i c t i n g h o r i z o n s p r e s e n t , however, l i t o l o g i c d i s c o n t i n -u i t i e s do o c c u r c a u s i n g r o o t s e g r e g a t i o n and d i f f e r e n t i a l water p e r c o l a t i o n . The a s s o c i a t e d v e g e t a t i o n i n c l u d e s shore p i n e , w e s t e r n r e d cedar and y e l l o w cedar which grow i n open s t a n d s : p a r t i a l l y caused by h i g h f i r e f r e q u e n c y . The shrub- l a y e r i s dominated by l a b r a d o r t e a and swamp l a u r e l , bog c r a n b e r r y w i t h some s a l a l , p i n k mountain h e a t h e r ( P h y l l o d o c e e m p e t r i f o r m i s ) and c r o w b e r r y . A l s o p r e s e n t are Lycopodium c l a v a t u m , and a v a r i e t y of sedges and Sphagnum mosses. C l a s s i f i c a t i o n : G l e y e d Humo-Ferric P o d z o l . Pedon D e s c r i p t i o n : H o r i z o n Depth cm. LF 2 5 - 1 3 Dark r e d d i s h brown ( 5 YR 2/2 m) f r e s h t o 39 F i g u r e 1-20. The landscape at S i t e 7 showing the l e v e l t o d e p r e s s i o n a l t e r r a i n , open stands of p i n e and a s s o c i a t e d bog v e g e t a t i o n . 40 H o r i z o n Depth cm. decomposed o r g a n i c m a t t e r ; abundant medium and f i n e r o o t s ; 8 t o 30 cm t h i c k ; pH 3.8. H 13-0 Dark r e d d i s h brown (5 YR 3/2 m) decomposed o r g a n i c m a t t e r ; amorphous; f r i a b l e ; abundant medium and f i n e r o o t s ; g r a d u a l wavy boundary; 8 t o 1 5 cm t h i c k ; pH 4.3. Ah 0-5 Dark brown (7-5 YR 3/2 m) sandy loam. B f l 5-23 Dark brown (7-5 YR 3/2 m) sandy • loam.; amorphous b r e a k i n g t o weak f i n e g r a n u l a r ; f r i a b l e ; p l e n t i f u l f i n e r o o t s ; c l e a r wavy boundary; 8 t o 15 cm t h i c k ; pH 4.8. B f g 23-33 Y e l l o w i s h brown (10 YR 5/4 m) sandy loam; many f i n e prominent y e l l o w i s h r e d (5 YR 4/6) m o t t l e s ; amorphous b r e a k i n g t o medium f i n e g r a n u l a r ; f r i a b l e ; few f i n e r o o t s ; c l e a r smooth boundary; 8 t o 1 5 cm t h i c k ; pH 5-2. IIBCg 33-79 Dark brown (10 YR 3/3) loamy sand; amorphous; f r i a b l e ; many medium and f i n e dead r o o t s ; 40 t o 5 0 cm t h i c k ; pH 4.7-Cg 7.9+ Grey (5 YR 5/1 m) sand; s i n g l e g r a i n ; f r i a b l e ; (Water t a b l e ) pH 5 . 3 . 41 S i t e 8 The s o i l p i t and l a n d s c a p e are shown i n F i g u r e s 1 - 2 1 and 1 - 2 2 . The s i t e i s l o c a t e d at 49°07'N and 125°52'W on a c -cumulated beach sands (tombolo) which forms p a r t o f the E s o w i s t a P e n i n s u l a . The s i t e i s l o c a t e d at 3 m e l e v a t i o n on a r i d g e which l i e s p a r a l l e l t o the beach a l o n g the w e s t e r n edge of the p e n i n s u l a . The l a n d s u r f a c e i s v e r y g e n t l y s l o p i n g (0-1%) away from the r i d g e towards T o f i n o I n l e t . Bogs a r e f r e q u e n t . i n t h i s a r e a . The pedon i s m o d e r a t e l y w e l l d r a i n e d , and has l i t t l e or no r e s t r i c t i o n s t o r o o t and water p e n e t r a t i o n . T h i s s o i l i s not as h i g h l y developed as the s o i l a t S i t e 6. The dominant t r e e s growing at the s i t e are S i t k a spruce ( P i c e a s i t c h e n s i s ) , w e s t e r n hemlock and w e s t e r n r e d cedar w h i c h grows i n dense s t a n d s . The shrub l a y e r i s dominated by s a l a l and s a l m o n b e r r y . C l a s s i f i c a t i o n : M i n i Humo-Ferric P o d z o l Pedon D e s c r i p t i o n : H o r i z o n Depth cm. LH 3 1 - 0 Very dusky r e d ( 2 . 5 YR 2 / 2 m) f r e s h and semi decomposed•organic m a t t e r ; abundant r o o t s ; c l e a r wavy boundary; pH 3 - 9 . 42 F i g u r e 1-21. The s o i l p i t a t S i t e 8 showing l e s s development than S i t e 6 on s i m i l a r p a r e n t m a t e r i a l s . 43 F i g u r e 1-22. The l a n d s c a p e at S i t e 8 showing dense stands of S i t k a spruce and w e s t e r n r e d c e d a r . 44 H o r i z o n Depth cm. Bf 0 - 2 3 Brown t o dark brown ( 5 YR 4 / 8 m) sandy loam; amorphous f i r m (m) , hard, ( d ) ; few f i n e r o o t s ; c l e a r wavy boundary; 1 5 t o 3 0 cm t h i c k ; . p H 5 - 0 Bf2 2 3 - 3 6 Y e l l o w i s h r e d ( 5 YR 4 / 8 m), sandy loam, s i n g l e g r a i n ; few f i n e r o o t s ; c l e a r wavy boundary; • 8 t o 1 8 cm t h i c k ; pH 5-2. IIBC 3 6 - 5 6 Y e l l o w i s h r e d ( 5 YR 5 / 6 m) loamy sand; s i n g l e g r a i n ; c l e a r wavy boundary; 1 5 t o 2 5 cm t h i c k ; pH 5 . 3 . I I I C 56+ • Y e l l o w i s h brown ( 1 0 YR 5 / 6 m) sandy loam; s i n g l e g r a i n ; pH 5 - 5 . S t r a t i f i e d sands below. UNIT IV F i g u r e 1 - 2 3 i s a schematic r e p r e s e n t a t i o n of the l a n d -scape where bed r o c k , p r e d o m i n a t e l y of t h e T o f i n o Graywacke u n i t , forms h i l l s and headlands i n the a r e a . G l a c i a t i o n has r e s u l t e d i n reworked d e p o s i t s o f marine m a t e r i a l s and g l a c i a l _ t i l l s m a n t l i n g the bedrock. Compacted b a s a l t i l l has been p l a s t e r e d over the bedrock t o more t h a n 2 m t h i c k n e s s on the lower s l o p e s and i s absent on much of the r o c k o u t c r o p s at 1 45 TILL LL F i g u r e 1-23. Schematic diagram of a l a n d s c a p e segment o f the a r e a where g l a c i a l t i l l m a t e r i a l s have been d e p o s i t e d over bedrock which c o n s i s t s p r e d o m i n a t e l y of the T o f i n o Graywacke u n i t . 46 h i g h e r e l e v a t i o n s . There i s a mantle of m a t e r i a l c o n s i s t i n g of reworked a b l a t i o n t i l l mixed w i t h marine m a t e r i a l s over the b a s a l t i l l . O r g a n i c d e p o s i t s have accumulated i n d e p r e s -s i o n a l a r e a s . S i t e 9 T h i s s i t e i s l o c a t e d at 49°05'N and 125°51'W a t a p p r o x i m a t e l y 1 0 5 m e l e v a t i o n on a 2 5 p e r c e n t n o r t h e a s t f a c i n g s l o p e . A s a t u r a t e d zone i s p r e s e n t i m m e d i a t e l y above the bedrock at 1 2 7 cm from t h e m i n e r a l s u r f a c e . There i s e v i d e n c e of c o n s i d e r a b l e wind throw which had caused m i x i n g and some move-ment of m a t e r i a l downslope. The dominant t r e e s p r e s e n t c o n s i s t o f P a c i f i c s i l v e r f i r ( A b i e s a m a b i l i s ) and w e s t e r n r e d cedar growing i n medium dense stands w i t h some w e s t e r n hemlock. S a l a l and salmonberry a re dominant i n the shrub l a y e r w i t h deer f e r n the dominant'herb p r e s e n t . Hylocominum splendens and o t h e r f e a t h e r mosses are a l s o p r e s e n t . C l a s s i f i c a t i o n : M i n i Humo-Perric P o d z o l Pedon D e s c r i p t i o n : H o r i z o n Depth cm. . L-H 1 5 - 0 Very dark brown ( 1 0 YR 2 / 2 m) p a r t i a l l y decomposed o r g a n i c m a t t e r ; abundant f i n e . 4 7 H o r i z o n Depth cm. medium and l a r g e r o o t s ; a b r u p t , i r r e g u l a r boundary; 8 t o 3 0 cm t h i c k ; _pH 3 . 7 -Ae Tra c e D i s c o n t i n u o u s Bf 0 - 2 3 S t r o n g brown ( 7 - 5 YR 5 / 6 m) sandy loam; f i n e s u b a n g u l a r b l o c k y ; v e r y f r i a b l e ; p l e n t i f u l f i n e and medium r o o t s ; some s t o n e s ; g r a d u a l wavy boundary; 1 5 t o 3 0 cm t h i c k ; pH 4 . 7 . Bf2 2 3 - 6 9 R e d d i s h y e l l o w ( 7 - 5 YR 6 / 8 m) loam; weak f i n e s u b a n g u l a r b l o c k y ; v e r y f r i a b l e ; p l e n t i f u l f i n e r o o t s ; some s t o n e s ; c l e a r wavy boundary; 3 0 t o 6 0 cm t h i c k ; pH 5 - 0 . I I I B f 6 9 - 1 0 9 Y e l l o w i s h brown ( 1 0 YR 5 / 6 m) sandy loam; weak su b a n g u l a r b l o c k y ; - f i r m t o f r i a b l e ; few f i n e r o o t s ; some l a r g e s t o n e s ; g r a d u a l wavy boundary; 2 5 t o 5 0 cm t h i c k ; pH 5 . 3 -I I B f 2 1 0 9 - 1 2 7 Dark brown ( 1 0 YR 4 / 3 m) g r a v e l l y sandy loam; weak s u b a n g u l a r b l o c k y ; f i r m t o f r i a b l e ; no r o o t s ; abrupt boundary; 1 5 t o 3 0 cm t h i c k ; pH 5 - 4 . 1 2 7 + Bedrock 48 S i t e 1 0 The s o i l p i t i s shown i n F i g u r e 1-24. T h i s s i t e i s l o c a t e d at 49°09'N and 125°54'W at 4 5 m e l e v a t i o n on a 2 0 p e r c e n t n o r t h f a c i n g s l o p e i n an a r e a o f moderate t o s t r o n g l y r o l l i n g t o p o -graphy. A s a t u r a t e d zone i s p r e s e n t i m m e d i a t e l y above the bedrock ( 1 1 9 cm) w i t h dark s t a i n i n g i n d i c a t i n g an a c c u m u l a t i o n of o r g a n i c m a t t e r . The dominant t r e e s p e c i e s p r e s e n t are w e s t e r n r e d cedar and w e s t e r n hemlock. S a l a l , salmonberry and e v e r g r e e n h u c k l e -b e r r y a r e dominant i n t h e shrub l a y e r . Deer f e r n i s dominant i n the herb l a y e r w i t h bunch b e r r y and w i l d l l i l l y of the v a l l e y p r e s e n t . C l a s s i f i c a t i o n : M i n i Humo-Ferric P o d z o l . Pedon D e s c r i p t i o n : H o r i z o n Depth cm. L-H 3 1 - 0 . Very d a r k brown ( 1 0 YR 2 / 2 m) p a r t i a l l y decomposed o r g a n i c m a t t e r ; abundant f i n e medium and l a r g e r o o t s ; a b r u p t , i r r e g u l a r boundary; 1 5 t o 4 5 cm t h i c k ; pH 4 . 1 . Ae T r a c e Bf 0 - 1 5 Y e l l o w i s h brown ( 1 0 YR 5 / 6 m) s i l t loam; weak f i n e s u b a n g u l a r b l o c k y ; v e r y f r i a b l e ; 1. p F i g u r e 1-24. The s o i l p i t a t S i t e 10 showing g l a c i a l t i l l s over bedrock. 5 0 H o r i z o n Depth -cm. p l e n t i f u l f i n e and medium r o o t s ; some s t o n e s ; g r a d u a l wavy boundary; 1 0 t o 2 0 cm t h i c k ; pH 5.2. Bf2 1 5 - 4 3 Y e l l o w i s h brown ( 1 0 YR 5 / 8 m) loam; weak, f i n e s u b a n g u l a r b l o c k y ; v e r y f r i a b l e ; p l e n t i f u l f i n e and medium r o o t s ; some s t o n e s ; c l e a r wavy boundary; 1 8 t o 3 8 cm t h i c k ; . pH 5 - 3 . I I B f 4 3 - 8 6 S t r o n g brown ( 7 - 5 YR 5 / 8 m) g r a v e l l y loam; moderate s u b a n g u l a r b l o c k y ; v e r y f i r m ; few r o o t s ; c l e a r , wavy boundary; 3 0 t o 54 cm • t h i c k ; pH 5 - 5 . I I B f 2 8 6 - 1 1 9 Y e l l o w i s h brown ( 1 0 YR 5 / 6 m) g r a v e l l y sandy loam; weak s u b a n g u l a r b l o c k y ; f r i a b l e t o f i r m ; v e r y few r o o t s ; abrupt boundary; 1 5 t o 4 5 cm t h i c k ; charged w i t h seepage water ; pH 5 - 3 -1 1 9 + Bedrock CLIMATE The a r e a i s c h a r a c t e r i z e d by a perhumid o r r a i n y c l i m a t e w i t h heavy w i n t e r p r e c i p i t a t i o n and f r e q u e n t f o g s d u r i n g the summer months. C l i m a t i c d a t a I s g i v e n i n T a b l e 1 - 1 . T a b l e 1 - 1 C l i m a t i c d a t a ( T o f i n o A i r p o r t ; 49°05'N and 125°46'W, 8 0 f t . ASL)* Temperature (Peg. F) P r e c i p i t a t i o n ( Inches) M o i s t u r e Net R a d i a t i o n Mean D a i l y ( 5 yr.. ave. ) Max Mean ( 5 y r . ave. ) Max D e f i c i e n c y . L a n g l e y s 2 Month Temp Max Min Min R a i n Snow T o t a l (24 hrs ..)•'. Inches \ .(one. C.AL/.Cm ) JAN 40 .8 4 5 . 9 3 5 . 8 5 8 - 2 0 1 7 . 7 2 . 6 1 7 . 9 6 . 8 6 0 . 0 7 2 . 8 FEB 40 .0 4 5 . 8 3 4 . 3 66-24 14. 7 1 . 3 14.9 5 . 0 6 0 . 0 1 2 9 . 9 MAR 41 .7 4 7 . 6 3 5 - 8 6 0 - 2 6 1 3 . 6 2 . 1 1 3 . 8 4 . 3 9 0 . 0 2 2 0 . 1 APRIL 4 5 . 4 5 1 . 5 ' . . 3 9 . 3 6 9 - 3 0 1 1 . 1 T 1 1 . 1 4 . 1 8 0 . 0 2 9 0 . 4 MAY 5 0 . 8 5 7 . 8 4 3 - 7 7 7 - 3 4 4 . 1 T 4 . 1 2 . 0 1 0 . 0 4 0 5 - 7 JUNE 5 4 . 7 6 1 . 4 48 .0 9 0 - 3 8 3 . 7 0 . 0 3 . 7 1 • 5 5 0 . 0 4 0 9 . 5 JULY 5 7 . 9 6 5 . 3 5 0 . 5 91-41 3 . 7 0 . 0 3 . 7 2 . 5 5 0 . 0 8 411 .1 AUG 5 8 . 4 6 5 . 1 5 1 . 7 86^42 • ; 3 . <5 0 . 0 3 - 5 2 . 47 0.48 3 3 3 . 1 SEPT 5 5 . 8 6 2 . 9 48 .7 8 5 - 3 7 5 - 8 0 . 0 5 . 8 2 . 9 1 . 0 . 0 2 7 0 . 4 OCT 5 1 . 1 5 7 . 1 4 5 . 0 7 5 - 3 2 14. 0 0 . 0 14. 0 4.46 0 . 0 1 5 5 . 2 NOV 4 4 . 0 4 9 . 4 3 8 . 7 64 - 2 7 1 6 . 6 : T • 1 6 . 6 5 . 4 4 0 . 0 9 1 . 4 DEC 41 .6 46 .8 3 6 . 5 5 8 - 1 7 1 6 . 41 • 2 . 5 1 6 . 6 6 . 5 5 0 . 0 5 9 - 6 TOTAL Growing r degree ; days 2 6 6 2 124. 9 8 . 8 1 2 5 . 8 F r o s t f r e e p e r i o d 2 0 0 (approx.) * Compiled by Canada Land I n v e n t o r y , C l i m a t o l o g y S e c t o r , B r i t i s h Columbia Department of A g r i c u l t u r e , from Atmospheric Environment S e r v i c e . d a t a . Table 1 - 1 Climatic data continued Longest number of days during the la s t ten years without the amount of r a i n indicated. Longest Longest yearly yearly Year May June Ju l y Aug. Sept. Oct. period May June July Aug. Sept. Oct. period 1971 18 21 10 21 18 21 9 12 6 21 1970 18 35 26 25 35 11 15 21 14 16 15 21 1969 24 40 51 51 21 23 31 9 9 31 1968 24 3 2 . 32 11 13 9 13 10 13. 1967 48 20 48 8 25 10 32 9 2 32 1966 35 24 32 35 7 8 19 10 7 19 1965 62 . 62 24 26 15 17 5 26 19.64 13 17 17 17 6 6 8 7 8 6 8 1963 33 61 61 15 16 22 10 • 2 22 1962 21 28 37 ' 37 9 20 28 20 10 4 28 D i s t r i b u -t i o n of ' longest periods 24 62 48 61 51 25 . 62 25 25 26 28 32 17 13 15 32 53 Three c l i m a t i c s t a t i o n s * were e s t a b l i s h e d t o d e t e r m i n e c l i m a t i c v a r i a b i l i t y i n the study a r e a . C ontinuous t e m p e r a t u r e and t o t a l monthly p r e c i p i t a t i o n were measured. Data were c o l l e c t e d f o r a t w e l v e month p e r i o d and compared w i t h t h a t o b t a i n e d from the Atmospheric Environment S e r v i c e weather s t a t i o n a t the T o f i n o a i r p o r t . No s i g n i f i c a n t v a r i a b i l i t y was found t o o c c u r ( M a r s h a l l , p e r s o n a l communication) so d a t a r e p o r t e d and used i s from the T o f i n o A i r p o r t S t a t i o n . WATER QUALITY Two s t u d i e s were completed t o g i v e some i n d i c a t i o n o f the water q u a l i t y c h a r a c t e r i s t i c s o f the p r e c i p i t a t i o n , streams and groundwater i n t h e a r e a . E x p e r i m e n t a l Methods Four s i t e s were e s t a b l i s h e d t o c o l l e c t p r e c i p i t a t i o n a t d i s t a n c e s o f 0 , 1 . 1 , 7-2 and 10.5 km from the beach. The 0 km s i t e was l o c a t e d at t h e s o u t h end of Long Beach and the r e m a i n i n g f o u r s i t e s formed a t r a n s e c t i n l a n d from Wreck Beach t o Kennedy Lake. The c o l l e c t i n g a p p a r a t u s c o n s i s t e d o f l i t e r p l a s t i c c o n t a i n e r s w i t h f i x e d f u n n e l s t o reduce e v a p o r a t i o n and c o v e r e d w i t h n y l o n mesh. D u p l i c a t e s were p l a c e d a t each s i t e . . * C l i m a t i c s t a t i o n s were e s t a b l i s h e d c o o p e r a t i v e l y w i t h Canada Land I n v e n t o r y , C l i m a t o l o g y S e c t o r , B r i t i s h Columbia Department of A g r i c u l t u r e . 54 Samples were c o l l e c t e d from one storm the second week o f J u l y and a n o t h e r the t h i r d week of September 1 9 7 1 f o r a p e r i o d of t h r e e days a f t e r t h e storm commenced. A n a l y s i s f o r Na, Ca, Mg and K were completed u s i n g atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . Ground water i n t h r e e s o i l p i t s w i t h h i g h water t a b l e s ( S i t e s 3 , 5 and 7 ; F i g u r e 1 - 4 ) and two streams ( L o s t Shoe and S a n d h i l l ) were sampled i n June and O c t o b e r , 1 9 7 1 . The s o i l p i t s were f i l l e d w i t h seepage and r a i n water and a l l o w e d to e q u i l i b r a t e f o r s e v e r a l months. I n s i t u measurements of pH, d i s s o l v e d 0^ c o n t e n t and redox p o t e n t i a l were made. Samples were c o l l e c t e d and a n a l y z e d i n t h e l a b o r a t o r y t o d e t e r m i n e NO^-, Ca, Mg, K and Na c o n c e n t r a t i o n s . The O r i o n Model 4 0 7 I o n a l y z e r ( O r i o n R e s e a r c h I n c . ) was used t o measure pH, NO^-and redox p o t e n t i a l . D i s s o l v e d 0^ was measured w i t h the Y.S.I..model 54 Oxygen Meter ( Y e l l o w S p r i n g s Instrument Co. I n c . , O h i o ) . The p r o c e d u r e s f o l l o w e d a r e r e p o r t e d by Walmsley et a l ( 1 9 7 2 ) . Ca, Mg, K and Na were measured by atomic a b s o r -p t i o n s p e c t r o p h o t o m e t r y . RESULTS AND DISCUSSION Data f o r r a i n w a t e r a n a l y s i s i s g i v e n i n F i g u r e s 1 - 2 5 and 1 - 2 6 . The g e n e r a l l y h i g h e r c o n c e n t r a t i o n o f measured c a t i o n s from the September storm i s expected because of the landward d i r e c t i o n of the storm from the P a c i f i c Ocean. The J u l y 5 5 fit •' E Q. a. < o u z o Mg SEPT. JULY SEPT. _JIJLY SEPT. fr- • • , , , ft • • . f t . 'M I Y 0 2 4 6 8 10 12 DISTANCE FROM PACIFIC OCEAN (KILOMETERS) F i g u r e 1 - 2 5 . The c o n c e n t r a t i o n of Na, Ca, Mg, and K i n the p r e c i p i t a t i o n measured at f o u r s t a t i o n s on Vancouver I s l a n d . 5 6 8 r J — i — i — i — i — i — i i • i • • 2 4 6 8 10 12 D I S T A N C E F R O M PACIF IC O C E A N ( K I L O M E T E R S ) F i g u r e 1 - 2 6 . T o t a l c o n c e n t r a t i o n of Na, Ca, M g a n d K i n the p r e c i p i t a t i o n measured at f o u r s t a t i o n s on Vancouver I s l a n d . T a b l e 1 - 2 . G r o u n d w a t e r and Stream Water A n a l y s i s ( 1 9 7 1 ) . Sampling month Redox p o t e n t i a l ppm S i t e pH °2 N0 3- Ca Mg " K Na #3 June 5 - 0 4 . 8 7 . 3 0 . 8 0 . 2 0 . 7 0 . 2 5. -7 .October . 4 . 3 1 . 6 . 6 . 3 1 . 8 0 . 4 0 . 7 0 . 3 4 . 4 #5 J une 5 . 3 2 . 5 . 2 - 5 1 . 3 0 . 6 1 . 3 . 0 . 4 7 . 8 October . 4 . 9 1 . 5 3 - 3 3 . 2 0 . 6 1 . 3 0 . 9 7 . 1 #1 June 4 . 7 . • 2 . 4 5 . 2 1 . 1 0 . 8 • 1 . 0 0 . 7 7 . 0 October 4 . 6 1 . 3 3 . 7 1 1 1 0 . 2 0 . 8 0 . 1 5 . 3 S a n d h i l l June 6 . 8 2 . 5 1 0 . 1 1 . 9 2 . 1 2 . 7 0 . 7 -Creek October 5 . 5 1 . 4 1 1 . 3 2 . 9 0 . 4 1 . 0 0 . 4 7 . 6 L o s t June 5 . 3 3 . 4 1 0 . 0 0 . 9 3 . 2 1 . 2 0 . 3 5 . 4 Shoe Creek October 6 . 6 1 . 6 1 1 . 0 2 . 1 ' 3 . 2 0 . 9 0 . 2 3 . 5 V J l — J 58 storm was from the s o u t h e a s t and c r o s s e d some of the l a n d mass of Vancouver I s l a n d . T h i s c o u l d a l s o account f o r t h e l a c k o f any t r e n d s d u r i n g the J u l y s torm, w i t h t h e v a r i a b i l i t y due t o t h e rough t e r r a i n s o u t h o f the s a m p l i n g a r e a . C o n c e n t r a t i o n of c a t i o n s dropped r a p i d l y away from the ocean w i t h l i t t l e v a r i a b i l i t y a t i n l a n d s t a t i o n s . The c o a s t s t a t i o n had a c o n c e n t r a t i o n sequence f o r the September storm o f Na > Mg > Ca > K which was a l s o r e p o r t e d by C l a y t o n ( 1 9 7 2 ) f o r s i m i l a r c o n d i t i o n s I n C a l i f o r n i a . The r a t i o of Na t o Ca and Mg d e c r e a s e s w i t h I n c r e a s e d d i s t a n c e from the ocean which i s c o n s i s t e n t w i t h d a t a r e p o r t e d by C a r r o l l ( 1 9 6 2 ) . A l l v a l u e s are w i t h i n the range f o r t h e s e c a t i o n s found by v a r i o u s workers and r e p o r t e d by C a r r o l l ( 1 9 6 2 ) . Data f o r ground water and stream water a n a l y s i s i s g i v e n i n T a b l e 1 - 2 . A l l ground water samples were more a c i d i c I n O c t o b e r . t h a n June as was S a n d h i l l Creek, however, L o s t Shde Creek had a h i g h e r pH i n October. A l l redox p o t e n t i a l s (measured Eh) were o x i d i z i n g w hich i s expected f o r n a t u r a l environments ( C l a y t o n , 1 9 7 2 ) w i t h a d e c r e a s e i n a l l s i t e s from June t o October. Magnesium remained c o n s t a n t i n the ground w a t e r s , w i t h Na d e c r e a s i n g s l i g h t l y i n October. N i t r a t e i n c r e a s e d i n October from June w i t h K and Ca b e i n g more v a r i a b l e . -The c o n c e n t r a t i o n sequence f o r c a t i o n s i n a l l ground waters and S a n d h i l l Creek was Na > Mg > Ca>K. L o s t Shoe Creek had a sequence of Na > Ca > Mg > K. 59 CONCLUSIONS The major f a c t o r s . c o n t r i b u t i n g to. the wide range of m o r p h o l o g i c a l e x p r e s s i o n i n the s o i l s s t u d i e d i n c l u d e : 1. the h i g h l y c o n t r a s t i n g p a r e n t m a t e r i a l s from which the s o i l s have d e v e l o p e d . 2. the complex mode of m a t e r i a l d e p o s i t i o n r e s u l t i n g i n many l i t h o l o g i c d i s c o n t i n u i t i e s which a f f e c t s water movement i n the s o i l pedon. 3. the h i g h p r e c i p i t a t i o n i n the study a r e a . 4. the l o c a t i o n of the pedon i n the l a n d s c a p e which a c t s t o change the f u n c t i o n of the f a c t o r s ' o f s o i l f o r m a t i o n r e s u l t i n g i n the development o f d i f f e r e n t g e n e t i c c h a r a c t e r i s t i c s . These same f a c t o r s have a l s o ' r e s u l t e d i n ' v e g e t a t i o n com-m u n i t i e s which v a r y . c o n s i d e r a b l y i n c o m p o s i t i o n and s t r u c t u r e . The h i g h c o n c e n t r a t i o n of b a s i c c a t i o n s i n the p r e c i p i t a t i o n would a l s o i n f l u e n c e the n u t r i e n t s t a t u s o f the s o i l s near the ocean. The i n p u t of bases would a l s o a c t t o r e t a r d s o i l dev-elopment . 6 0 LITERATURE CITED BELL, M.A.M. and HARCOMBE, A.P. 1 9 7 2 . F l o r a and v e g e t a t i o n o f P a c i f i c Rim N a t i o n a l Park: Phase I , Long Beach. N a t i o n a l Parks B r a n c h , Dept. I n d i a n and N o r t h e r n A f f a i r s , Ottawa, O n t a r i o . BOOJEDHUR, S. 1 9 6 8 . G e n e s i s of a p o d z o l sequence on t h e west c o a s t o f Vancouver I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , Dept. of S o i l S c i . , U.B.C. BREMNER, J.M. 1970. The geology of Wreck Bay,- Vancouver I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , Dept. of Geology, U.B.C. CLAYTON, J. L . 1 9 7 2 . S a l t s p r a y and m i n e r a l c y c l i n g i n two C a l i f o r n i a c o a s t a l ecosystems. E c o l o g y 53:74-81. CORDES, L.D. 1973. E c o l o g y of the S i t k a s p ruce f o r e s t s on the west c o a s t of Vancouver I s l a n d . U n p u b l i s h e d Ph.D. t h e s i s , Dept. o f Botany, U.B.C. HOLLAND, S.S. 1964. Landforms of B r i t i s h C o lumbia, a p h y s i o -g r a p h i c o u t l i n e . B r i t i s h Columbia Department o f Mines and P e t r o l e u m R e s o u r c e s . B u l l e t i n number 48. V i c t o r i a , B.C. JEFFERY, W.W., BROWN,. C.S., JURDANT, M., NOVAKOWSKI, N.S. and SPILSBURY, R.H. 1970. Towards I n t e g r a t e d Resource Management. Report of t h e Sub-committee on M u l t i p l e Use, N a t i o n a l Committee on F o r e s t Land. Queen's P r i n t e r f o r Canada.. KRAJINA, V . J . 1 9 6 5 . B i o g e o c l i m a t i c zones and biogeocoenoses of B r i t i s h Columbia. I n "Ecology of Western N o r t h Amer i c a " . ( V . J . K r a j i n a , e d . ) , V o l . .1, p. 1-17. Dept. of Botany,.U.B.C. PIERCE,^T.W. 1 9 7 3 . P a c i f i c Rim N a t i o n a l Park: A su r v e y o f s o i l s and landforms - Phases I and I I . P a c i f i c F o r e s t R e s e a r c h C e n t r e , V i c t o r i a , B.C. KURAMOTO, R.T. 1 9 6 5 . P l a n t a s s o c i a t i o n s and s u c c e s s i o n i n t h e v e g e t a t i o n of the sand dunes of Long Beach, Vancouver I s l a n d . U n p u b l i s h e d M;..Sc. t h e s i s , Dept. of Botany, U.B.C. MULLER, J.E. 1972- Geology of P a c i f i c Rim N a t i o n a l P ark, Report of A c t i v i t i e s , G e o l o g i c a l Survey o f Canada, Dept. of Energy, Mines and R e s o u r c e s , P a r t A, p. 30-37-6 1 VALENTINE, K.W.G. 1 9 7 1 - S o i l s of the T o f i n o . - U c l u e l e t Low-l a n d o f . B r i t i s h Columbia.. Canada Department o f A g r i c u l t u r e , Research Branch. Report No. 1 1 . Ottawa, O n t a r i o . WADE, L.K. 1 9 6 5 . Sphagnum bogs o f the T o f i n o - a r e a , Vancouver I s l a n d , . B . C . U n p u b l i s h e d M.Sc. T h e s i s , Dept. o f Botany, U.B.C. WALMSLEY, M.E. and LAVKULICH, L.M. 1 9 7 3 - I n s i t u measurement of d i s s o l v e d m a t e r i a l s as an' i n d i c a t o r -of o r g a n i c t e r r a i n t y p e . Can. J . S o i l S c i . 5 3 : 2 3 1 - 2 3 6 . CHAPTER I I THE PHYSICAL, CHEMICAL AND MINERALOGICAL PROPERTIES AND PROPOSED GENESIS OF SOME SOILS ON THE WEST COAST OF VANCOUVER ISLAND 63 THE PHYSICALj CHEMICAL AND MINERALOGICAL PROPERTIES AND PROPOSED GENESIS OF SOME SOILS ON THE WEST COAST OF VANCOUVER ISLAND INTRODUCTION In Chapter I., the d e s c r i p t i o n of the s o i l s of the study a r e a and o t h e r e n v i r o n m e n t a l components c o n s i d e r e d t o be r e -l e v a n t t o s o i l g e n e s i s and the f u n c t i o n of t h e s o i l i n the land s c a p e were d i s c u s s e d . P r e v i o u s s t u d i e s by V a l e n t i n e ( 1 9 6 9 , 1 9 7 D , Bhoojedhur ( 1 9 6 8 ) and L a v k u l i c h et a l . ( 1 9 7 1 ) p r e s e n t e d p r e l i m i n a r y r e s u l t s f o r some c h e m i c a l and p h y s i c a l p r o p e r t i e s on s e l e c t e d s o i l s o f the r e g i o n and a l s o r e p o r t e d on the o c c u r r e n c e o f t h i n pans ( p l a c i c h o r i z o n s ) i n t h e s o i l s . The purpose of t h i s s e c t i o n i s t o p r e s e n t d e t a i l e d p h y s i c a l , c h e m i c a l and m i n e r a l o g i c a l c h a r a c t e r i s t i c s of the s o i l s des-c r i b e d i n Chapter I and t o d i s c u s s t h e i r g e n e s i s . EXPERIMENTAL METHODS The s o i l s were sampled by h o r i z o n as de t e r m i n e d by f i e l d o b s e r v a t i o n s . B u l k samples were a i r d r i e d i n t h e l a b o r a t o r y , t h e n ground and s i e v e d t o determine the p e r c e n t s i z e f r a c t i o n > 2 mm, and s u b s e q u e n t l y use t h e < 2 mm f o r f u r t h e r a n a l y s i s . Samples were a l s o t a k e n f o r b u l k d e n s i t y d e t e r m i n a t i o n . 64 PHYSICAL ANALYSIS P a r t i c l e s i z e d i s t r i b u t i o n was det e r m i n e d t w i c e by the hydrometer method (Day, 1 9 6 5 ) , f i r s t a f t e r d e s t r u c t i o n o f o r g a n i c m a t t e r w i t h E^O^, and th e n by removal of d i t h i o n i t e -c i t r a t e - b i c a r b o n a t e e x t r a c t a b l e . m a t e r i a l s subsequent t o des-t r u c t i o n of o r g a n i c m a t t e r by H^O^. B u l k d e n s i t y was det e r m i n e d by the method most s u i t a b l e f o r the h o r i z o n b e i n g measured. The core method was used on most h o r i z o n s w i t h the s a r a n - c o a t e d c l o d s , and volumeasure method used on s o i l s which e x h i b i t e d e i t h e r too much s t r u c t u r e t o be sampled u s i n g a core or which were t o o c o a r s e . A l l methods are o u t l i n e d by B l a k e ( 1 9 6 5 ) . S o i l water c o n t e n t was measured at 15.O and 0 . 3 3 bar t e n -s i o n f o r s o i l s w i t h h i g h c l a y c o n t e n t , and s o i l s w i t h h i g h sand c o n t e n t were measured at 15.O and 0 . 1 bar t e n s i o n u s i n g a p r e s s u r e p l a t e a p p a r a t u s o u t l i n e d by R i c h a r d s ( 1 9 6 5 ) . A v a i l -a b l e water s t o r a g e c a p a c i t y was c a l c u l a t e d as t h e d i f f e r e n c e i n water c o n t e n t at two measured t e n s i o n s . CHEMICAL ANALYSIS pH was measured i n 1 : 1 water and 0 . 1 M C a C l ^ . Exchangeable c a t i o n s (Ca, Mg, Na, K) were d i s p l a c e d w i t h n e u t r a l NH^OAc as o u t l i n e d by Chapman ( 1 9 6 5 ) . T o t a l CEC was d e t e r m i n e d by the K j e l d a h l method a f t e r d i s p l a c e m e n t of NH,+ w i t h KC1. Cation-exchange c a p a c i t y was a l s o d etermined by the NH^OAc d i s p l a c e m e n t of'NaOAc (pH 8 . 2 ) a l s o o u t l i n e d by Chapman ( 1 9 6 5 ) , and d e t e r m i n a t i o n o f Na. by atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . pH dependent Ca,.Mg and A l were de t e r m i n e d by the method o u t -l i n e d by C l a r k ( 1 9 6 5 ) . P e r c e n t base s a t u r a t i o n was c a l c u a l t e d from pH dependent CEC. Exchange a c i d i t y was de t e r m i n e d by the BaCI,-,- t r i e t h a n o l a m i n e method (pH 8 . 0 ) o u t l i n e d by Peech ( 1 9 6 5 ) . T o t a l carbon and s u l p h u r were measured u s i n g a h i g h temp-e r a t u r e i n d u c t i o n f u r n a c e as o u t l i n e d by A l l i s o n ( 1 9 6 5 ) . N i t r o g e n was de t e r m i n e d by m a c r o - k j e l d a h l as o u t l i n e d . b y Bremner ( 1 9 6 5 ) . The ammonium f l u o r i d e method was used t o measure a v a i l -a b l e phosphorus as d e s c r i b e d by J a c k s o n ( 1 9 5 8 ) . Pyrophosphate Fe and A l (0.1N shaken over n i g h t a t 2 5 ° C ) , o x a l a t e Fe and A l (shaken 4 h r s . ) , c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e F e , A l and S i O ^ ( t h r e e 5-min. e x t r a c t i o n s ) , and py r o p h o s p h a t e -d i t h i o n i t e Fe, A l and C (pH . 8 . 2 ) e x t r a c t i o n s were used f o l l o w -i n g p r o c e d u r e s o u t l i n e d by McKeague ( 1 9 6 7 ) , Mc.Keague and Day ( 1 9 6 6 ) , Mehra and J a c k s o n ( i 9 6 0 ) , and Franzmeier..et_ al.. ( 1 9 6 3 ) . r e s p e c t i v e l y . I r o n , aluminum and s i l i c o n were determined by atomic, a b s o r p t i o n s p e c t r o p h o t o m e t r y • a n d C„was det e r m i n e d as o u t l i n e d by L a v k u l i e h et_ a l . ( 1 9 7 0 ) . MINERALOGICAL ANALYSIS Sodium h y d r o x i d e (0.5N) e x t r a c t a b l e A l , S i and Mn were e x t r a c t e d as o u t l i n e d by J a c k s o n ( 1 9 6 5 ) and det e r m i n e d by atomic a b s o r p t i o n s p e c t r o p h o t o m e t r y . 66 The < 0 . 0 0 2 mm s i z e f r a c t i o n was s e p a r a t e d . u s i n g a constant' f l o w s u p e r - c e n t r i f u g e . X-ray d i f f r a c t i o n a n a l y s i s was completed on the whole c l a y f r a c t i o n u s i n g CuK a l p h a r a d i a t i o n w i t h N i f i l t r a t i o n . C r i t e r i a o u t l i n e d i n J a c k s o n ( 1 9 6 4 ) was used t o determine c l a y m i n e r a l s p r e s e n t . RESULTS AND DISCUSSION PHYSICAL. PROPERTIES The r e s u l t s f o r some s e l e c t e d p h y s i c a l p r o p e r t i e s o f the s o i l s are g i v e n i n T a b l e I I - l . The s o i l s s t u d i e d had a wide range of t e x t u r e s and a l s o e x h i b i t e d a marked i n c r e a s e i n c l a y s i z e d p a r t i c l e s when t r e a t e d w i t h c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e . I n most of the h o r i z o n s t h i s c o rresponded t o a marked d e c r e a s e i n b o t h t h e sand and s i l t s i z e f r a c t i o n s . T h i s marked i n c r e a s e o c c u r r e d i n the outwash, marine c l a y s and g l a c i a l t i l l s o i l s , and was l e s s . pronounced on t h o s e s o i l s developed i n sandy p a r e n t m a t e r i a l . I n most' h o r i z o n s the t e x t u r a l c l a s s was changed upon t r e a t m e n t . The s o i l at S i t e 1 had loam t e x t u r e d s u r f a c e h o r i z o n s w i t h i n c r e a s i n g sand c o n t e n t • t o a d e pth of 1 2 0 cm. where a marked i n c r e a s e i n g r a v e l c o n t e n t o c c u r r e d . T h i s i n c r e a s e i n g r a v e l c o n t e n t t o 6 0 p e r c e n t ' o f the m a t e r i a l by weight was marked by a sharp i n c r e a s e i n b u l k d e n s i t y (BD) from approx-i m a t e l y 1 . 0 g/cc t o 2 . 2 5 g/cc at 1 2 0 cm. The a v a i l a b l e u w a t e r Table I I - l . Selected physical properties of the s o i l s P a r t i c l e Size Water Retention Site and Sample H 2 °2 • Textural Class H 2 ° 2 +Dithionite Textural Class Gravel % by weight ,-BD g/cc % by wt. on 2mm Bars s o i l A.W.S.C, S S i c S S i C 0.1 0 . 3 3 1 5 . 0 g / 1 0 0 g 3 1 . 1 2 4 4 . 7 2 6 . 0 2 6 . 6 1 40.3 ' 2 1 . 3 3 8 . 4 c l 1 . 0 0 3 7 . 5 1 2 . 0 2 5 . 3 3 6 2 . 8 2 9 - 9 7 . 3 s i 3 7 . 8 . 29 .5 3 2 . 7 c l 0 . 8 2 3 4 . 4 2 6 . 5 14.1 2 0 . 2 4 8 5 . 8 1 0 . 6 3 . 6 Is 5 6 . 4 9 - 9 ' 3 3 . 8 s c l 0 . 9 0 1 5 . 4 . 6 . 9 8 . 6 5 8 5 . 4 1 2 . 8 1 . 8 Is 7 2 . 5 4 . 5 2 2 . 9 s c l 0 . 9 5 1 2 . 2 6 . 4 5 . 8 6 9 1 . 1 7 . 3 1 . 6 s 7 8 . 3 5 . 8 1 5 . 9 s i 1 . 1 9 9 - 6 4 . 6 5 . 0 7 84.4 1 2 . 3 3 . 3 g l s 48.2 8 . 0 4 3 . 8 gsc 5 9 . 2 2 . 2 5 1 2 . 8 5 . 8 7 .0 ' 66 84.5 1 3 . 7 1 1 . 8 g l s 7 6 . 2 8 . 7 1 5 . 1 g s l 1 1 . 3 . 3 . 9 7 . 4 2 . 8 9 6 8 . 4 2 3 . 1 . 8 . 5 vgsl 5 6 . 5 1 6 . 1 2 7 . 4 vgscl 6 1 . 1 1.17 3 0 . 9 •27 .5 14.3 .16.6 10. 9 1 . 5 6 . 2 2 . 3 vgs 6 9 . 2 4 . 6 2 6 . 2 vgscl 6 5 - 5 . 1 . 9 5 1 1 . 0 4 . 8 6 . 2 11 8 2 . 7 6 . 9 1 0 . 2 vgls.. 7 7 . 7 4 . 3 1 8 . 0 vgsl 7 3 - 9 1 0 . 3 3 . 9 6 . 4 12 8 9 . 6 6 . 4 4 . 0 gs 7 9 . 8 • 2 . 5 1 7 . 7 g s l 3 8 . 1 5 . 6 3 . 0 2 . 7 13 9 4 . 2 5 . 8 < 1 . 0 vgs 7 2 . 6 5 . 9 21.5 vgsl . 7 8 . 0 7 . 0 3 . 4 3 . 6 , 67 8 5 . 3 14.7 < 1 . 0 vgs 8 0 . 9 4 . 5 14.6 vgsl 1 . 7 8 7 . 8 2 . 5 5-;3 68 8 7 . 3 1 1 . 1 1 . 6 vgs 8 1 . 2 .3 .5 1 5 . 3 vgsl . 6 . 1 2 - 5 5 . 8 * A.W.S.C. (loam and coarser 0 . 1 - 1 5 . 0 bars, clay loam and f i n e r 0 . 3 3 - 1 5 - 0 bars) OA Table I I - l , continued P a r t i c l e Size Water Retention Site and Sample H 2 ° 2 H 0 2 + Dithionite Textural •Class Gravel $ by weight BD g/cc % by wt. . on 2 mm Bars s o i l A.W.S.C. S S i C iLAl/UL <J,X Class S S i C 0 . 1 0 . 3 3 1 5 . 0 g/lOOg* 3 . 14 -- - - - - - -16 3 2 . 8 2 0 . 8 46.4 c 0 . 7 4 3 7 . 5 1 0 . 3 2 7 . 3 17 7 8 . 6 1 0 . 7 1 0 . 7 s i 5 8 . 8 1 3 . 5 2 7 . 8 s c l 1.24 1 8 . 0 6 . 3 1 1 . 6 18 8 5 . 8 5 . 8 8 . 4 Is 7 3 . 7 6 . 8 1 9 . 5 s i 1 . 6 0 - 9 - 9 3 . 9 6 . 0 !9 42.9 40.6 1 6 . 5 g l 3 5 . 2 3 5 . 9 2 8 . 9 gel 3 1 . 5 1.84 3 1 . 5 8 . 2 2 3 - 3 20 8 6 . 3 8 . 1 5 . 6 vgls • 7 1 . 6 5 . 9 2 2 . 4 vgscl 5 6 . 2 2 . 0 2 1 3 . 1 4 . 1 9 . 0 •-. 21 8 9 . 7 . 4 . 9 5 . 4 vgs 64.5 4 . 1 3 1 . 4 vgscl 6 1 . 0 - • 1 0 . 9 2 . 6 8 . 3 4 . 22 23 < 1 . 0 1 7 . 7 8 2 . 3 c < 1 . 0 < l . 0 > 9 9 . 0 c 0 . 8 6 5 0 . 6 4 4 . 6 2 6 . 2 1 8 . 4 24 < 1 . 0 1 7 . 4 8 2 . 6 c < 1 . 0 . < 1 . 0 > 9 9 . 0 c 0 . 5 9 4 9 . 9 4 3 . 1 2 9 . 9 1 3 . 7 25 < 1 . 0 2 0 . 2 7 9 . 8 c < 1 . 0 <1 . 0 > 9 9 . 0 c 0 . 7 4 5 3 . 6 4 5 . 4 2 9 . 9 1 5 . 5 26 <i.o 3 2 . 3 6 7 . 7 c < 1 . 0 1 3 . 5 8 6 . 5 c 1 . 0 9 5 1 . 7 4 3 . 8 2 6 . 2 1 7 . 5 27 6 . 9 2 6 . 9 6 6 . 2 c < 1 . 0 1 9 . 6 •80.4 c 0 . 8 6 46.8 41.8 2 6 . 3 1 5 - 5 28 < 1 . 0 2 6 . 3 7 3 . 7 c < 1 . 0 < 1 . 0 > 9 9 . 0 c 1 . 1 1 5 2 . 1 4 4 . 1 2 7 . 7 1 6 . 4 29 1 1 . 5 2 5 . 4 6 3 . 1 c < 1 . 0 1 1 . 0 8 8 . 1 c 1 . 4 5 4 7 - 9 40.1 2 2 . 7 1 7 . 4 30 8 . 8 2 7 . 8 6 3 . 4 c < 1 . 0 1 7 . 6 8 2 . 4 c 1 . 2 5 4 9 . 8 41.1 2 3 . 1 1 8 . 0 oo Table I I - l , continued P a r t i c l e Size Water Retention Site and Sample H 20 2 - Textural Class H2°2 + Di t h i o n i t e Textural Class Gravel . % by weight ED g/cc % by wt. on 2 mm s o i l A.W.S S S i C S S i C O.i:. 0 .33 15.0 g/10( 5 . 31a 31 - - - - - - 0.74 85.1 6 6 . 3 39.9 26.3 32 - - - - - - 0.74 53.5 40.5 14.0 26.5 33 26.3 37.4 35.9 c l 7 . 8 41.8 50.9 sic 1.31 41.0 32.0 15.0 1 6 . 6 34 17.3 3 9 . 6 . .43.1 c 5 .6 42.0 52.4 s i c 1 .23 39.0 31.8 15.1 16.7 35 18.9 35.5 - 4 5 . 6 c 6 . 8 33.7 59-5 ' c 1 .38 36.2 29.6 14.6 14.9 36 21.5 30.9 47.6 c 4.0 29.5 70.5 c 1 .69 35.1 27.9 13.5 14.4 6. 37 38 ' 46,0 37.4 16.6 1 4 5 . 6 • 30.0 24.4 1 - 27.5 • - 6 . 8 20.7 39 55.-1 23.5 21.4 s c l - - - - 15.6 - 7-5 8.1 40a - • - - - - - - - — • — — 40 85.0 12 .3 2.7 Is 80.5 • 4 . 3 .15.2 s i - 7.1 - 2.9 4.2 41 87.5 5 .9 6 . 6 Is 74.1 6.0 19.9 s i - 7.0 - 3 . 6 . 3.4 42 74.3 9.7 16.0 s i 53.3 10.1 36.5 sc 1 .45 21.2 - 11.7 9.5 43 - 91.'3 2 .9 s 79.5 6 . 9 . ' 13 .6 ' s i 1.46 5.4 - 2 .5 3.0 44 90 .9 ' •5,4 3 .7 s 76.4 3 .3 20 .3 s i . 1.55 5 .9 - 2 .8 3.1 45 90.6 4.5 4 .9 s. 8 1 . 9 6.7 ' 11.4 Is - 4 .8 - 1.7 3.1 46 92.2 • 3.1 4 .7 s 7 8 . 6 5.1 1 6 . 3 s i . 1 .36 4..4 — 1 .3 3.1 OA Table I I - l , continued Site and Sample H 20 2 S i P a r t i c l e Size Textural Class H~202+ Dithi o n i t e S • .Si C Textural Class Gravel % by weight BD g/cc Water Retention % by wt. on 2 mm s o i l ' Bars 0.1 0.33 15.0 A.W.S.C. ' g/lOOg* 47 48 58.4 14.2 27.4 s c l 52.4 17.4 30.2 s c l 0 .32 64.2 24.8 39-4 49 60.3 28.7 10.8 s i 63.8 7.4 28.8 s c l - • 27.3 9.8 17.5 50. 59-4 30.1 10.5 s i 63.5 10.0 26.5 s c l 1.36 12.7 6.3 6.4 51 70.7 21.5 7.8 s i 70.3 8.0 12.7 s c l 1.21 "12.9 4.6 8.3 52 72.1 17.3 10.6 s i 74.0 3.1 22.9 s c l 1.49 7.6 2.2 5.4 53 89.3 8.5 2.2 s 85.3 5-3 9.5 Is — 4.8 1.2 3.6 54 55 66.0 32.5 11.5 s i 70.7 8.4 21.0 s c l 1 .16 18.4 6.0 •12.4 56 75.6 3.1 21.3 s c l 74.6 5-9 19.5 s i 1.46 16.5 5-7 10.8 57 84.5 7.5 8.0 Is 84.2 1.0 14.7 Is 1.47 9-5 3.4 6.1 58 - - - - 84.2 2.5 13.2 Is 1.57 6.4 2.2 4.2 59 91.4 1.0 7.6 s 83.0 4.0 17.0 Is 1 .52 5.7 1.6 4:1 60 83.2 9.8 7.0 Is 79.4 1.5 19.1 s i 1.50 3.3 1.2 2.1 61 8 9 . 6 2.6 7.8 s 71.3 2.1 26.6 s c l 1.42 5.6 1.8 3.9 62 85.7 9.5 4.8 Is 86.7 1.5 11.8 Is 1.50 2.5 0.7 1.8 1^ o Table I I - l , continued P a r t i c l e Size S i t e and Sample H 20 2 S i Textural Class D i t h i o n i t e S " S i C Textural Class Gravel % by weight BD. g/cc Water Retention % by wt. on 2 mm s o i l Bars A.W.S.C. 0 . 1 0 . 3 3 1 5 . 0 g/lOOg* 0 . 7 3 .•56.5 4 3 . 9 2 0 . 1 2 3 . 8 1 . 0 0 5 4 . 0 3 9 . 2 1 9 - 3 1 9 . 9 1 . 2 9 3 0 . 4 2 1 . 0 9 . 7 1 1 . 3 1 . 2 5 3 1 . 0 1 8 . 9 9 - 0 9 - 9 1 . 0 9 4 7 . 6 3 6 . 1 14.7 2 1 . 4 1 . 1 5 3 9 . 5 3 4 . 2 ::.9.3 24.9 1 . 2 2 3 6 . 3 3 1 . 1 1 0 . 0 2 1 . 1 1 . 3 5 3 9 - 7 2 9 . 3 1 2 . 6 1 6 . 7 69 10, 70 6 0 . 4 2 7 . 0 1 2 . 6 s i 2 5 . 9 3 3 . 6 40.4 c l 71 4 9 . 7 3 2 . 9 1 7 . 4 1 3 3 . 2 2 9 . 7 3 7 . 1 c l 72 7 0 . 7 2 9 . 3 <L1.0 s i 41.5 3 2 . 2 2 6 . 3 c l 73 6 6 . 3 3 3 . 7 < 1 . 0 s i 3 7 . 8 3 0 . 7 3 1 . 4 c l 74 75 5 4 . 9 3 1 . 4 1 3 . 7 s i 3 5 . 8 2 9 . 3 3 4 . 9 c l 76 42.9 3 7 . 2 1 9 . 9 1 3 5 . 2 3 5 . 2 2 9 . 5 c l 77 5 6 . 7 41.4 1 . 9 s i • 2 9 . 7 3 1 . 9 3 8 . 4 c l 78 5 8 . 0 3 8 . 6 3 . 4 s i 2 9 . 4 3 1 . 3 3 9 . 3 c l 7 2 s t o r a g e c a p a c i t y (AWSC.) was h i g h e s t i n t h e s u r f a c e h o r i z o n s at 2 5 g/100g and de c r e a s e d w i t h depth t o a p p r o x i m a t e l y 7 g/lOOg. The h i g h p e r c e n t a g e of g r a v e l s ' i n t he l o w e r . h o r i z o n s would reduce the effective".. AWSC t o a p p r o x i m a t e l y 3"-g/100g. S i t e 2 was a v e r y g r a v e l l y s o i l w i t h s m a l l amounts o f c l a y s i z e d p a r t i c l e s i n the < 2 mm f r a c t i o n u n t i l t r e a t e d w i t h d i t h i o n i t e . Even a f t e r t r e a t m e n t w i t h d i t h i o n i t e t h e co n t e n t of sand remained r e l a t i v e l y h i g h r a n g i n g from 5 6 p e r c e n t . i n t he s u r f a c e h o r i z o n t o over 8 0 p e r c e n t at g r e a t e r t h a n 200 cm. The s i l t s i z e d f r a c t i o n was low b e f o r e and a f t e r t r e a t m e n t . The BD of t h i s s o i l was 1.17 g/cc i n the s u r f a c e h o r i z o n s and i n c r e a s e d t o n e a r l y 2.. g/cc w i t h depth. The AWSC was s l i g h t l y l ower t h a n . S i t e 1 f o r the < 2 mm f r a c t i o n , however, the h i g h g r a v e l c o n t e n t would make r e a l AWSC much l o w e r . The p h y s i c a l c h a r a c t e r i s t i c s of S i t e 3 have g r e a t e r v a r i a -b i l i t y t h a n a t e i t h e r S i t e 1 or 2. T h i s i s e v i d e n t i n the t e x t u r e which ranges from sandy loam i n the s u r f a c e t o v e r y g r a v e l l y sand i n the C h o r i z o n . T h i s c o r r e s p o n d s t o sandy c l a y loam and v e r y g r a v e l l y sandy c l a y loam r e s p e c t i v e l y a f t e r t r e a t m e n t w i t h d i t h i o n i t e . The I I I B f g h o r i z o n was h i g h i n c l a y c o n t e n t and had a c o r r e s p o n d i n g l y h i g h AWSC. The AWSC t h r o u g h -out the pedon i s v a r i a b l e and ranges from 2 7 . 3 g/lOOg t o 6.0 g/100g.- The BD i n c r e a s e s w i t h depth from 0 . 7 4 g/cc t o 2.02 g/cc a t 50 cm. 73 S i t e . 4 had v e r y low amounts o f sand throughout t h e pedon a n d - a l l h o r i z o n s c o n t a i n e d < 1 , 0 p e r c e n t sand s i z e d p a r t i c l e s a f t e r t r e a t m e n t w i t h d l t h i o n i t e . The p e r c e n t a g e o f s i l t s i z e p a r t i c l e s was a l s o reduced w i t h c o r r e s p o n d i n g i n c r e a s e s i n c l a y . C l a y ranged from over 8 0 p e r c e n t i n the s u r f a c e h o r i z o n s t o l e s s t h a n 6 5 p e r c e n t i n the s u b s u r f a c e L h o r i z o n s i n the u n t r e a t e d samples and from >99 p e r c e n t i n - t h e s u r f a c e t o < 8 5 p e r c e n t i n the s u b s u r f a c e of the t r e a t e d samples. The BD v a r i e d from 0.59 g/cc i n the Bhgj t o 1.45 g/cc i n the BC. The AWSC e x h i b i t e d v e r y l i t t l e v a r i a t i o n and ranged from 13-7 t o 1 8 . 4. g/lOOg. S i t e 5 i s s i m i l a r t o S i t e 4 i n p h y s i c a l c h a r a c t e r i s t i c s but has a low e r c l a y c o n t e n t and does not. e x h i b i t t h e complete s h i f t t o c l a y s i z e p a r t i c l e s a f t e r t r e a t m e n t w i t h d l t h i o n i t e . The BD ranges from 0.74 g/cc i n the s u r f a c e h o r i z o n s t o I . 6 9 g/cc i n t h e C h o r i z o n . The AWSC a r e s i m i l a r t o S i t e 4 but h i g h e r i n the s u r f a c e h o r i z o n s which a re h i g h i n o r g a n i c m a t t e r . The AWSC ranges from 26.5 t o 14.4 g/lOOg. S i t e s 6, 7 and 8 are s i m i l a r i n the p h y s i c a l p r o p e r t i e s measured,.with a h i g h sand c o n t e n t b o t h b e f o r e and a f t e r t r e a t m e n t w i t h d i t h i o n i t e . However, t h e r e i s an i n c r e a s e i n c l a y c o n t e n t which c o r r e s p o n d s t o a decrease i n bo t h sand and s i l t a f t e r t r e a t m e n t . The t e x t u r e s range from sand t o sandy c l a y loam. An abrupt, i n c r e a s e i n sand c o n t e n t - o c c u r s i n S i t e 6 below t h e p l a c i c h o r i z o n . The BD i n the t h r e e s o i l s ranges from 1.21 g/cc t o lv57 g/cc i n m i n e r a l h o r i z o n s which are not h i g h i n o r g a n i c m a t t e r w i t h the m a j o r i t y near 1.5 g/cc. 74 The AWSC i s low i n a l l m i n e r a l h o r i z o n s and v a r i a b l e t h r o u g h o u t the pedons. I n S i t e 6 i t , r a n g e s from 2 0 , 7 t o 3 . 1 g/lOOg and i n S i t e 7 from 3 9 . 4 t o 3 . 6 g/lOOg w i t h an abrupt drop from the A t o t h e B h o r i z o n s . The AWSC of S i t e 8 ranged from 1 2 . 4 t o 1 . 8 g/lOOg i n the C h o r i z o n which was the lo w e s t of any o f the h o r i z o n s measured. S i t e 9 and 1 0 were s i m i l a r i n p h y s i c a l c h a r a c t e r i s t i c s w i t h h o r i z o n s h a v i n g t e x t u r e s o f loam t o sandy loam b e f o r e d i t h i o n i t e t r e a t m e n t and c l a y loam a f t e r t r e a t m e n t . The s i l t s i z e f r a c t i o n was r e l a t i v e l y t he same a f t e r t r e a t m e n t as; b e f o r e , except f o r the lower h o r i z o n s of S i t e 1 0 . The l a r g e i n c r e a s e s i n c l a y s i z e d p a r t i c l e s c o rresponded t o d e c r e a s e s i n the sand s i z e f r a c t i o n . The BD ranged from 0 . 7 3 t o 1 . 2 9 g/cc i n S i t e 9 and . from 1 . 0 9 t o 1 . 3 5 g/cc i n S i t e 1 0 . The AWSC of S i t e 9 d e c r e a s e d from 2 3 . 8 to- 9-9 g / 1 0 0 g w i t h depth and v a r i e d from 2 4 . 9 t o 1 6 . 7 g/lOOg i n S i t e 1 0 . • The dominant p h y s i c a l f e a t u r e s o f the s o i l s s t u d i e d were the wide range o f t e x t u r e s which v a r i e d from v e r y g r a v e l l y t o c l a y m a t e r i a l s , and the h i g h v a r i a t i o n i n t e x t u r e s t h r o u g h -out the pedons which i n d i c a t e t he pre s e n c e o f l i t h o l o g i c d i s c o n t i n u i t i e s . T h i s s u p p o r t s the complex mode o f m a t e r i a l d i s p o s i t i o n i n which the s o i l s have formed, and which was d i s -c ussed I n Chapter I . These changes o f t e x t u r e , which are. o f t e n a b r u p t , would have c o n s i d e r a b l e i n f l u e n c e on water move-ment thro u g h o u t the pedon p r i o r t o s a t u r a t i o n . T h i s appears 75 t o be c r i t i c a l i n the i n i t i a t i o n of t h e p l a c i c h o r i z o n s found i n S i t e 6 a t . 2 0 cm below the m i n e r a l s u r f a c e . The p r e s e n c e of t h e s e p l a c i c h o r i z o n s and o t h e r t y p e s o f ce m e n t a t i o n i n the s o i l s a l s o have a major e f f e c t on water movement thro u g h o u t the pedon. The s u r f a c e h o r i z o n above the p l a c i c h o r i z o n s would r a p i d l y become s a t u r a t e d d u r i n g a storm. T h i s r e s u l t s i n l a t e r a l movement of water as observed when f r e e water f l o w s over the cemented l a y e r . Cementation a l s o o c c u r r e d i n S i t e s 2 and 3 i n c o a r s e t e x t u r e d h o r i z o n s and gave support t o t h e s e s o i l s which o t h e r w i s e would not o c c u r . I t c o u l d not be det e r m i n e d whether or not b u l k d e n s i t y i s a f f e c t e d by t h e c e m e n t a t i o n p r o c e s s as changes i n BD from one h o r i z o n t o an o t h e r c o u l d be a r e s u l t of changes i n g r a i n s i z e or mode • of d e p o s i t i o n - . . However, the e l e c t r o n images o f the p l a c i c h o r i z o n s d i s c u s s e d i n Chapter I I I show a marked i n -c r e a s e i n d e n s i t y due t o the a c c u m u l a t i o n of plasma i n the m a t r i x - m a t e r i a l . The s h i f t t o s m a l l e r s i z e d p a r t i c l e s d u r i n g t r e a t m e n t w i t h c i t r a t e - b i c a r b o n a t e - d i t h i o n i t e i n d i c a t e s t h a t a g g r e g a t i o n of p a r t i c l e s by Fe and A l o x i d e s o c c u r s i n a l l of the s o i l s s t u d i e d . Lack of d i s p e r s i o n c o u l d account f o r some o f the v a r -i a t i o n i n p a r t i c l e s i z e d i s t r i b u t i o n f o r the same s o i l and d i f f e r e n t treatments,. However, the removal of amorphous and c r y s t a l l i n e Fe o x i d e s by c i t r a t e - d i t h i o n i t e can r e l e a s e much of the aggr e g a t e d m a t e r i a l i n t o i t s subcomponents ( K i t t r i c k et a l 1 9 6 3 ) . The presence of t r i o c t a h e d r a l m i n e r a l s which 7 6 a r e a t t a c h e d by c i t r a t e - d i t h i o n i t e c o u l d a l s o g i v e an apparent I n c r e a s e i n the f i n e r s i z e f r a c t i o n s (Arshad et a l , 1 9 7 2 ) . Due t o the c o m p l e x i t y of' f a c t o r s i n f l u e n c i n g the apparent i n c r e a s e i n aggregate d i s p e r s i o n , any attempt t o q u a n t i f y a g g r e g a t i o n i s i m p o s s i b l e . However, the v a l u e s o b t a i n e d are i n d i c a t i v e of t h e degree of a g g r e g a t i o n as r e f l e c t e d by mor-p h o l o g i c a l c h a r a c t e r i s t i c s and'the pedogenic f a c t o r s r e s p o n s i b l e f o r a g g r e g a t i o n . A l s o , by the methods used, the apparent degree of a g g r e g a t i o n can o n l y be d e t e r m i n e d r e l a t i v e t o the sand and c l a y f r a c t i o n s , as v a l u e s o b t a i n e d , f o r s i l t s i z e d p a r t i c l e s c o u l d r e s u l t from complete d i s a g g r e g a t i o n o f s i l t p a r t i c l e s p r e s e n t i n t o , c l a y s i z e d p a r t i c l e s , and a s i m u l t a n e o u s a d d i t i o n from sand s i z e d i s a g g r e g a t i o n . T h i s c o u l d r e p r e s e n t a complete change of s i l t m a t e r i a l w i t h no change of t o t a l p e r -cent of t h a t s i z e f r a c t i o n . T h i s a g g r e g a t i o n has p a r t i a l l y c o n t r i b u t e d t o the low AWSC of t h e s e s o i l s . Another f a c t o r c o u l d be the low amounts of OM p r e s e n t , w i t h t h e e x c e p t i o n o f the s u r f a c e h o r i z o n s . CHEMICAL PROPERTIES ' The r e s u l t s f o r pH ( H 2 0 and C a C l 2 ) , t o t a l carbon and n i t -r o g e n , o r g a n i c m a t t e r (C x l . 7 2 4 ) , a v a i l a b l e phosphorus and t o t a l s u l p h u r are g i v e n i n T a b l e I I - 2 . T a b l e I I - 2 . S e l e c t e d c h e m i c a l p r o p e r t i e s of the s o i l s . Sample Number H o r i z o n Depth (cm) pH 1:1 H 20 C a C l 2 T o t a l C % T o t a l N-. % C/N Organic .matter % ( C x l . 7 2 4 ) A v a i l a b l e P (ppm) T o t a l S % S i t e 1 LH 38-0 3.9 3.4 42v64; 1 . 2 3 3 5 73.5 0.17 2 Ahe 0-5 '4.9 3.9 4.63 0. 22 21 8.0 10.8 0.05 3 Bf - 5 - 2 5 5.0 4.4 4.00 0.20 20 6.9 8.7 0 . 0 5 4 Bf 2 2 5 - 5 8 5.0 4.9 0 . 9 1 0.05 18 1.6 12.7 0.07 .5 I I Bf 58-99. . • 5.2 5.2 0 . 5 2 0. 04 1 3 0.8 14.1 0 . 0 3 6 I I B f 2 99-122 5.1 5.2 -.0.78 0.05 1 6 1.3 2 5 . 3 0.03 7 I I I Bf- 122-142 5..'2' 5.3 0.59 0.02 2 9 1.0 2 5 . 0 0 . 0 3 66 C 142+ .5.5 5.3:- 0.24 0.01 24 0.4 2 8 . 5 0 . 0 3 S i t e 2 8 L-H 31-0 3.6 3-3 . 3 4 . 5 1 0.99 35 59-5 3 2 . 5 0 . 0 8 9 Bf 0 - 5 6 4.9 4.8 3.07 0.14 22 5-3 7.0 0 . 0 8 10 I I BC 56-112 5.1 5.1 0.49 0.03 16 0.8 20.8 0.03 11 I I . C 112-173 5.1 5.2, 0. 26 0. 01 26 0.5 3 4 . 9 0. 02 12 I I I C 1 7 3 - 1 8 0 5.0 5.4 0 . 2 3 0. 01 2 3 0.4 2 7 . 3 0.02 13 IV C 1 8 0 + 4.9 ' 5.4 0 . 1 5 0. 01 1 5 0.3 . 3 5 . 9 0.02 67 379 5.3 5.4 0 . 1 6 <0.01 - 0.3 3 1 . 0 0. 02 68 4 9 8 5.3 5.2 0.11 ND - 0.2 2 5 . 5 0. 01 S i t e 3 14 LF 20-8 4.5 3.5 3 8 . 8 5 2 . 00 1 9 67.0 - 0.12 15 H 8-0 4.1 3.5 39.44 1. 49 26 68.0 1 9 . 7 0.12 1 6 Ah 0-10 4.3 3.6 • 7 . 8 9 0.14 5 6 13.6 9 . 4 0.03 1 7 Bf c 10-20 4.8 4.3. 1. 27 0.03 ' 42 2.2 10.1 0.02 18 I I B f g j 20-33 5.0 4.7 0. 6 1 0. 04 15 1.1 17.8 0.01 1 9 I I I B f g 33-48 5.3 4.3 0.64 0. 02 3 2 • 1.1 1 9 . 9 0.01 20 IV BCg 48-66 5.3 4.6 0 . 5 6 0.02 28 1.0 70.5 0.02 21 Cg (water t a b l e ) 66+ 5.5 4.7 0 . 2 7 0. 02 13 0.5 53.7 0.02 ND- Not d e t e c t a b l e by method used. — J T a b l e I I - 2 , c o n t i n u e d Sample Numtcer H o r i z o n Depth (cm) PH 1:1 H 20 Ca'Cl 2 T o t a l C % T o t a l . N % C/N Organic m a t t e r $(Cxl.724) A v a i l a b l e P (ppm) T o t a l S % S i t e 4 22 LH 1 5-0 4.1 4 . 3 3 6 . 05 0 . 8 2 . 44 62.1 • - 0.09 23 Bhg 0 - 5 4.2 3 . 5 5.48 0 . 2 5 22 9-5 3 . 3 0.03 24 Bhgj 5 - 1 8 . 4 . 4 3 . 6 4 . 5 7 0.22 21 7 . 9 3.0 0. 03 2 5 Bf 1 8 - 3 6 4 . 6 3 . 8 1. 50 0.13 12 2 . 6 4 . 8 0. 02 26 B f 2 3 6 - 4 3 4 . 8 4.0 0.14 0.03 5 0.2 3 . 9 0. 03 2 7 B f g 4 3 - 7 4 4 . 9 3 . 8 0 . 2 5 0.04 6 0.4 2 . 7 0. 01 2 8 B f g 2 74-117 5.2 3 . 9 2.64 0.09 • 29 4 . 5 2 . 8 0. 02 2 9 BCg 117-135 . 5 - 7 4 . 5 . 0.10 a. 02 5 0.2 2 8 . 1 0.. 01 30 Cg 135+ 6 . 7 5 . 3 0.22 0.03 7 0 . 4 9.0 0. 01 S i t e 5 31a LF 15-13 - - - - - - - -31 H 13-0 4.2 3 . 8 29. 94 0 . 8 8 34 5 1 . 6 2 4 . 8 0.04 3'2 Ahe 0-10 4 . 6 3.2 5 - 9 7 0 . 2 5 - 24 10. 3 1 3 . 3 0.03 3 3 B f g 10-20 4 . 7 4.1 2 . 3 8 0.11 22 4.1 9 . 4 0.03 34 Bfg2 20-31 5..'2 4 . 3 0 . 8 2 0.05 1 6 1.4 9 - 7 0. 01 3 5 BCg 31-48 6.0 4 . 7 0 . 3 9 0. 02 19 0 . 7 8 . 9 0. 01 3 6 Cg 48+ 6.0 4 . 4 0 . 2 5 0. 01 . . 2 5 0 . 4 1 0 . 6 0.01 S i t e 6 3 7 L-H 1 8 - 0 3 . 9 3 . 4 4 2 . 7 5 0 . 8 0 5 3 7 3 . 7 2 6 . 8 0.03 3& Ae 0 - 5 4 . 5 3 . 8 2 . 6 9 0. 08 34 4 . 6 3.1 0. 02 3 9 Bh 5-20 4 . 7 3 . 8 2. 24 0 . 0 6 37 3 . 9 1 5 . 6 0.03 . 40a Bhf c — - - - - - - - -40 I I BC 2 0 - 7 9 5.2 4 . 6 0 . 3 9 0. 01 3 9 0 .7 . 1 7 . 3 0. 01 41 I I I C 79-114 5.0 4 . 9 0.30 0. 01 30 0.5 25.4 0. 02 42 114-132 5.2 4 . 7 0 . 4 5 0. 02 2 3 0 . 7 3 - 3 0. 02 4 3 1 3 2-145 5 - 3 4 . 9 0 . 2 3 0. 01 2 3 0.4 3 7 . 4 0.01 oo Table I I - 2 , c o n t i n u e d Sample Number H o r i z o n Depth (cm) PH 1:1 H 20 C a C l 2 T o t a l C % . T o t a l N % C/N Organic m a t t e r % ( C x l . 7 2 4 ) A v a i l a b l e P (ppm) Tota: S-. % 44 1 4 5 - 1 5 2 5.1 4 . 8 0.21 0. 01 21 0 . 4 20.2 0.01 45 1 5 2-163 . 5 - 1 4 . 9 0.14 . <0.01 — 0.2 21 . 8 0. 01 46 163+ 5.1 5.0 0 1 1 2 <0.01 - 0.2 . 24.2 0. 01 S i t e 7 • 47 LP . 25-13 3 . 8 3.2 4 4 . 8 0 1.10 41 ' 7 7.2 _ 0 . 1 3 48 H : , l 3 - o 4 . 3 . 3.2 2 3 • 13 0 . 6 5 3 6 3 9 - 9 3 . 4 0. 01 49 Ah ^ 0 - 5 4 . 3 3 . 5 4 . 7 8 0.24 20 8.2 7.0 0 . 0 5 50 B f l • 5-23 4 . 8 4.1 1 . 6 6 0 . 0 9 1 8 2 . 9 1 3 . 3 0.06 51 B f g 2 3 - 3 3 5.2 4 . 4 0 . 9 2 0 . 0 5 1 8 1 . 6 5 3 - 0 0 . 0 3 52 I I BCg 3 3 - 7 9 4 . 7 4 . 3 0. 54 0.02 27 0 . 9 45.2 0 . 0 5 5 3 Cg 7 9 + 5 . 3 4 . 3 0.06 0.01 6 . 0.1 1 0 . 9 0 . 0 7 S i t e 8 54 LH 3 1 - 0 . 3 . 9 3.2 44-.-02 0 . 9 5 46 7 5 - 9 3 2 . 0 0 . 0 6 :• > 5 5 Bf '. 0 - 2 3 5.0 4.0 2 . 3 4 0.09 26 4.0 8 . 4 0. 01 5 6 Bf 2 . 2 3 - 3 6 5.2. 4 . 4 1.50 0 . 0 7 21 2 . 6 2 . 7 0. 01 57 I I BC 3 6 - 5 6 5 . 3 4 . 5 0 . 9 5 0.03 3 2 1 . 6 3 . 4 0.01 58 I I I C L . 56^81 5 . 5 4 . 5 0.46 0.03 1 5 0 . 8 8.4 0. 01 59 8 1 - 1 0 9 5 . 6 4 . 8 0 . 3 3 0.02 17 0 . 6 1 0 . 3 0.01 60 1 0 9 - 1 1 7 5 . 6 4 . 9 0.21 0.01 21 , 0 . 4 . 12. 0 0.01 6 1 1 1 7 - 1 5 5 5 . 7 4 . 9 0 . 3 1 0.02 1 5 0 . 5 9 . 8 0. 01 62 155+ • 5 . 8 4 . 8 - 0.11 0. 01 11 1 0.2 1 7 . 8 0.01 S i t e 9 69 LH 15-0 3 . 7 4 3 . 9 6 0 . 4 3 102 7 5 . 8 _ 0 . 0 7 70 Bf 0 - 2 3 4 . 7 4 . 3 5 . 0 0 0 v l 4 3 6 8 . 6 3 . 5 0 . 0 3 7 1 Bf 2 2 3 - 6 9 5.0 4 . 7 3.22 0.11 2 9 5 . 5 ND 0. 04 7 2 I I Bf 6 9 - 1 0 9 5 . 3 5.2 1.70 0. 08 21 2 . 9 0 . 5 0. 04 7 3 I I Bf2 1 0 9 - 1 2 7 5 . 4 5.1 . 1. 69 0.09 1 9 2 . 9 2 . 5 0 . 0 3 — J T a b l e I I - 2 , ' c o n t i n u e d H ' T o t a l T o t a l Organic A v a i l a b l e T o t a l Sample. Depth ' p C N m a t t e r P. S Number H o r i z o n (cm) 1 : 1 H 2 0 C a C l 2 % % C/N % ( C x . l 7 2 4 ) (ppm) % S i t e 1 0 •• ' 7 T LH 3 1 - 0 4 . 1 . 2 8 . 6 7 0 . 5 7 50 4 9 . 4 - 0 . 0 7 7 5 Bf 0 - 1 5 - 5.2 5 . 1 1 - 5 2 0 . 0 5 3 0 2 . 6 1 . 5 0 . 0 5 7 6 Bf2 - 1 5 - 4 3 5 . 3 5 . 1 ' 0 . 6 6 0 . 0 1 6 6 1 . 1 " 1 . 0 0 . 0 7 77 I I Bf 4 3 - 8 6 5 . 5 5 . 1 0 . 7 2 0.04 1 8 1.2 2 . 5 0 . 0 7 7 8 : . I I Bf2 8 6 - 1 1 9 5 - 3 5-2 1 . 8 0 0 . 0 6 3 0 3 . 1 2 . 5 0 . 1 0 co 81 pH A l l of the s o i l s s t u d i e d w e r e . e x t r e m e l y a c i d i n t h e o r g a n i c s u r f a c e h o r i z o n s w i t h pH v a l u e s l e s s than 4 . 5 i n 1:1 w a t e r . There was an i n c r e a s e i n pH w i t h depth i n the pedons. However, a l l . s o i l s were s t r o n g l y a c i d below the solum except S i t e s 4 and 5 where the pH i n c r e a s e d t o 6 . 7 and 6.0 r e s p e c t i v e l y . The v a l u e s o b t a i n e d u s i n g C a C l ^ were lower t h a n t h o s e o b t a i n e d by water by a p p r o x i m a t e l y one pH u n i t , however, i n the lower B and C h o r i z o n s o f S i t e 1 and 2 the C a C l 2 v a l u e s were s i m i l a r or s l i g h t l y h i g h e r . T o t a l O r g a n i c Carbon T o t a l o r g a n i c carbon i n . the o r g a n i c s u r f a c e h o r i z o n s ranged from 3 5 . t o 43 p e r c e n t i n t h e s o i l s d e v e l o p e d on outwash mater-i a l s , 30.to 3 6 p e r c e n t i n the marine c l a y s o i l s , 4 3 t o 4 5 p e r c e n t i n the s o i l s on sandy p a r e n t m a t e r i a l s and 44 t o 2 9 p e r c e n t i n S i t e s 9 and 10, the s o i l s d e v e l o p e d on t i l l s . G e n e r a l l y t h e r e was a r a p i d d e c r e a s e below the upper B h o r i z o n w i t h d e p t h , however, the decrease was not c o n s i s t e n t and v a r i a b i l i t y d i d o c c u r . F o r example, t h e r e was an i n c r e a s e i n t o t a l o r g a n i c C from 0 . 2 5 t o 2.64 p e r c e n t a t a p p r o x i m a t e l y 120 cm. i n S i t e 4 . The upper solum of S i t e 1 had 4 . 6 . 3 p e r c e n t o r g a n i c C i n the Ahe, 4.00 p e r c e n t i n the Bf and dropped t o 0 . 9 1 i n the Bf2 and f i n a l l y d e c r e a s e d t o 0.24 p e r c e n t i n the C. S i t e 2 8 2 was..,similar w i t h 3 . 0 7 . p e r c e n t i n t h e Bf and r a n g i n g from 0 . 4 9 t o 0 . 1 1 p e r c e n t . i n the I I BC and C« S i t e 3 m a i n t a i n e d h i g h e r . amounts throughout the pedon and d e c r e a s e d from 7 . 8 9 i n the Ah t o 1 . 2 7 p e r c e n t i n the I I B f c t o 0 . 2 7 p e r c e n t i n the Cg. S i t e 4 had a p p r o x i m a t e l y 5 p e r c e n t o r g a n i c carbon i n the upper B and d e c r e a s e d w i t h some v a r i a b i l i t y t o 0 . 2 2 p e r c e n t i n the Cg. G e n e r a l l y h i g h e r amounts of organic' C were p r e s e n t i n the lower solum i n S i t e 5 t h a n S i t e 4 and ranged from 0 . 8 2 to. 0 . 2 5 p e r c e n t I n the Cg. S i t e 6 e x h i b i t e d a sharp d e c r e a s e i n o r g a n i c C from 2.24 percent, above the p l a c i c h o r i z o n t o 0 . 3 9 i m m e d i a t e l y below w i t h a f u r t h e r d e c r e a s e t o 0 . 1 2 p e r c e n t at 1 6 0 cm. S i t e 7 had a s i m i l a r d i s t r i b u t i o n i n o r g a n i c • C as the o t h e r G l e y s o l i c s o i l s r a n g i n g from 1 . 6 6 p e r c e n t on the upper B and d e c r e a s i n g t o 0.54 i n the BC w i t h a f u r t h e r d e c r e a s e t o 0 . 0 6 p e r c e n t i n the Cg. The amount of o r g a n i c C i n the pedon at S i t e 8 was s i m i l a r t o t h a t found i n S i t e 6 , however, no aburpt d e c r e a s e o c c u r r e d as i t d i d i n . t h e S i t e 6 at the p l a c i c h o r i z o n . Moderate amounts o f o r g a n i c C were m a i n t a i n e d t h r o u g h o u t S i t e s 9 and 1 0 w i t h amounts d e c r e a s i n g from 5 . 0 0 p e r c e n t i n the upper B of S i t e 9 t o I . 6 9 i n the lower B. The amounts p r e s e n t i n S i t e 1 0 were lower w i t h 1.52 p e r c e n t i n the upper B, d e c r e a s -i n g t o 0 . 6 6 and i n c r e a s i n g t o 1 . 8 0 p e r c e n t above the l i t h i c c o n t a c t . 8 3 N i t r o g e n N i t r o g e n f o l l o w e d the same d i s t r i b u t i o n , i n the pedons as o r g a n i c C. The amounts p r e s e n t i n the upper m i n e r a l h o r i z o n were low t o v e r y low and ranged from a h i g h of 0 . 2 5 p e r c e n t i n S i t e 4 t o a low of 0 . 0 5 i n S i t e 1 0 . Very low amounts were p r e s e n t i n the lower solum of a l l s o i l s s t u d i e d . A v a i l a b l e Phosphorus A v a i l a b l e phosphorus i s p r e s e n t i n moderate t o h i g h amounts above the B h o r i z o n s i n S i t e 1 , 2 and 3 w i t h the l o w e s t v a l u e s of 7 t o 9 ppm o c c u r r i n g i n t h e upper B . h o r i z o n . The v a l u e s i n c r e a s e w i t h depth t o a p p r o x i m a t e l y 3 0 ppm i n S i t e s 1 and 2 and as h i g h as 7 0 ppm i n S i t e -.3• . S i t e 4 had v e r y low amounts of a v a i l a b l e P r a n g i n g from 3 t o 9 ppm w i t h t h e e x c e p t i o n of one h o r i z o n deep i n the. pedon which c o n t a i n e d 2 8 ppm. S i t e 5 had 2 5 ppm i n t h e H h o r i z o n and de c r e a s e d i n the solum t o 9 ppm. A v a i l a b l e P was h i g h l y v a r i a b l e at S i t e 6 and ranged from 1 5 t o 4 0 ppm w i t h the e x c e p t i o n o f t h e Ae which c o n t a i n e d 3 ppm and a . h o r i z o n deep i n the pedon which c o n t a i n e d s i m i l a r -amounts. S i t e 7 e x h i b i t e d a ' d i f f e r e n t d i s t r i b u t i o n p a t t e r n w i t h a v a l u e o f 3 . 4 ppm i n the H h o r i z o n and i n c r e a s i n g t o 5 3 ppm i n the B f g and d e c r e a s i n g t o 1 0 . 9 ppm i n the Cg. S i t e 8 c o n t a i n e d 3 2 . 0 ppm a v a i l a b l e P i n the o r g a n i c s u r f a c e h o r i z o n and dropped r a p i d l y t o 2 . 7 i n the B f 2 . Amounts t h e n g r a d u a l l y i n c r e a s e d t o 1 7 . 8 ppm at 1 6 0 cm. 84 S i t e s 9 and 1 0 c o n t a i n e d the lo w e s t amounts.of a v a i l a b l e P of;-any of the s o i l s . s t u d i e d , The h i g h e s t y a l u e o b t a i n e d i n any h o r i z o n was 3 . 5 ppm. T o t a l s u l p h u r T o t a l s u l p h u r had a d i s t r i b u t i o n i n a l l the pedons s i m i l a r t o t h a t of t o t a l C. The amounts p r e s e n t were g e n e r a l l y v e r y low w i t h the h i g h e s t b e i n g 0 . 1 7 p e r c e n t i n the LH h o r i z o n o f S i t e 1 . V a l u e s g e n e r a l l y ranged from 1 . 1 0 t o 0 . 0 1 p e r c e n t i n the m i n e r a l h o r i z o n s . Exchange p r o p e r t i e s The r e s u l t s f o r the exchange p r o p e r t i e s of the s o i l s are g i v e n i n T a b l e I I - 3 . Exchangeable c a t i o n s ( I N , NH^OAc) were g e n e r a l l y p r e s e n t i n v e r y low.amounts i n a l l s i t e s w i t h the e x c e p t i o n of the o r g a n i c s u r f a c e h o r i z o n s and t h e lower solum and C h o r i z o n s of S i t e 4 and 5 where Mg and Ca i n c r e a s e d . C a l c i u m was h i g h e s t i n the o r g a n i c s u r f a c e h o r i z o n s a t s i x o f the S i t e s , and Mg was dominant i n four'. However, Mg was con-s i s t e n t l y as h i g h or h i g h e r than Ca i n the upper m i n e r a l h o r i z o n s . T o t a l c a t i o n - e x c h a n g e c a p a c i t y (CEC) by the IN NH^OAc method d e c r e a s e d w i t h depth i n a l l s i t e s except S i t e 1 0 where an i n c r e a s e o c c u r r e d above the l i t h i c c o n t a c t a t 1 1 9 cm. Va l u e s f o r t o t a l CEC o b t a i n e d by NaOAc were g e n e r a l l y s i m i l a r Table II-3- Some selected exchange properties of the s o i l s pH Dependent S i t e .  NHNOAC exchangeable cations . Total CEC (me/lOOg) . - • CEC Ease Saturation • and . (me/iCOg) Exchange NaOAc rre/lOOg *, Ca+Mg . i n n y Sanole- Ca Mg Ha K~. t A c i d i t y -Sunrnation NH^OAc pH 8.2 ' Ca -Kg A l I MCa+Mg+Ai ; 1 18. • 33 0 ^ • .33 0. .57 0. • 57 29-30 96.1 125.4 157-9 - - - - • . -2 0. .02 • 0. .19 0. • 09 0. .13 • 0.43 33-3 . 33-7 45.0 - 0.16 0. .04 3-33- 3-53 5.7 ? _* . 0. .03 ' 0. .06 0. .07 0. .07 0.23 33-0 33.2 39-1 28.7 0.16 0, .01 0.65 0.82 20.5 4 • 0. • 07 0. ,01, 0. .03 0. .07 0.18 27.2 27.4 17.3 16.3 0.15 0. .01 0.08 0.24 • 64.4 5 0. .03 0. .01 0. .03 0. ,08 0.15 13-8 13-9 • 14.2 12.5 0.12 0. .01 0.04 0.18 76.0 6 0. .03 0. .01 0. • 05 0. .07 0.16 12.8 13-0 12.9 11.3 0.13 0. • 03 0.03 0.19 84.0 7 0. .07 • u, .02 n .03 0. ,02 0.14 12.3 13-2 • 12.3 ' 10.0 0.12 0. .02 ND 0.14 ' >99 82.6 66 0. .03 0. .01 0. .03 0. ,02 0.08 - - 8.0 5.6 0.35 0. • 03 0,08 0.46 lite 2 a 3-91. 6. .08 0. .32 0.37 10. ,68 114.8 125-5 157. .7 - ' - - - -' -9 ND 0. .03 0. .04 0.09 ' 0. .16 26.7 26.9 • 32. • 5 33-7 0.16 0.01 0.32 0.49 34.9 10 0.03 0. .01 0. .02 0.03 0, .09 • 3-6 3-7 8. • 9 9.4 0.09 0.01 1.33 1.43 7.2 i i ND ' 0. .01. 0. .03 0.03 0. .06 7.7 ' 7.8 14. ,4 8.1 0.07 0.02 0.8 .0.89 10.1 12 0.05 0. .01 0. ,02 0.03 ' 0. ,11 3.1 3-2 4. .1 . •5.6- . 0.07 0.02 0.05 0.14 69.0 13 0.03 0. .01 0. .03 0.03 0. .10 3-4 3.5 4. • 7 3.7 0.04 0.03 0.05 0.12 59-0 57 ND 0. .01 0. ,03 0.02 0. .06 - - 3. • 3 3-7 0.25 0.09 ND >99 68 0.15 0. .04 0. .03 0.03 . o. 25 • — ' - 4. .0 3-1 0.87 0.12 ND >99 S i t e 3 14 : 8. ,00' 8. • 50 0.83 0.25 17-58 71.8 89.4 131.9. - - ' - • -15 1. .25 .1. .58 0.75 Q.50 4.03 47.0 •. 51.1. 120.7 — •9. .86 0. .19 5-55 15'-60 '• 64. ,4 16. •• 0. .05 0. .09 0.04 0.03 0.21 34.6 34.8 50.3. - • 0. .06 0. .02 7-97 8.05 : 1. ,01 17 . • •D 0. .02 . 0.C4 0.01 • 0.07 19-5 ' 19.6. - 19.7' 21.3 0. ,07 0; .01 1.C8 . 1.16 6. • 5 18. 0. ,10- 0. .01 0.05 0.01 0.17 9-6 • 9-3 9-8 11.3- 0. ,06 <0. .01 0.37 0.43 14. ,6 19 ' ]_, ,23 0. • 51' 0.13 0.04 . 1-91 ' 17.4 19-3 • • • 17-8 • 16. '< 0. ,54 0. • 09 2.03 2.66 23. .8. 20 0. .37 0. .03 0.03 0.02 0.55 11.8 12.3 8.8 5-6 0. ,18 0. .03 0.35 0.54 37. . 1 21 0. • 35. 0. .23 0.09 0.03 1.20 3-6 ' '4.8 8.0 8.1 0. -45 0. • 05 0.33 0.38 60. • 5 ND - Not detectable by method' used. C O U1 Table I I - 3 , continued S i t e and • s i t e 22 23 2k 25 26 27 23 30 NKhOAc exchangeable cations (me/100g) Potal CEC (me/lOOg) Ca r-ig 31.66 2.50 ' 0.55.' I© ••' 2.75 0.65 ND' 9.00 9-33 3-33 2.03 0.70 2.90 1.73 0.47 8.00 13.00 10.75 K Exchange A c i d i t y Summation NH^CAc ivaOAc pH 8.2 pK Dependent CEC me/lOOg Ca A l Base Saturation C a + : * x 100) Ca+Mg+Al 0.83 0.25 42.07 47.0 • 89. 1 . J- 117.5 - - . - -0.42 0.29 6.54 39.5 46. .0 56.0 - 0, .64 1.16 17.75 19-55 9-2 0.35. 0.25 3.18 73.4 46. .6 64.8 46.3 0. .18 0.38 22.89 23.45 2-3 0.24 0.17 1.11 45-3 • ' '46. .4 ' 63-9 61.3 0. .09 ND 20.33 20.^2 0.1 0,37 0.31 6.33 35.2 • 41. • 5 65.8 .'43.1 0. • 97 1.72 15-92 18.61 14.5 0.27 . 0.27 2.92 39-8 42. • 7 53-7 50.6 0. .21 0.22 21.42 21.85 '1.9 0.20 . 0.13 •0.80 ^6.2 37. .0 55.0 58.7 . 0. .07 0.11 17.69 17.87 1.0 0.41 0.41 17-82 . 19'.3 . . 37. .1 57.0 30.0 r 0. .87 6.11 0.81 13.79 94.1 0.47 0.40 24.62 10.5 35. .1 42.7 33-1 8. .50 8.26 0.47 17-23 .97.3 S i t e 5 31 32 33 34 35 36 2.S3 4.50 . C.98 0.83 ' 9-09 67.7 76. .8 78.2 .3-36 0.04 2.17 5. • 57 . .61.3 0.33 1.30 0.22 0.11 2.43 30.6 33. .0 • 34.7 3-36 0.29 7-03 10. .68 ; 34.1 0.25. 0.39 0.14 0.06 0.84 32.3 33. .1 . 37.0 32. .2 0.24 0.05 2.85 3. .14 9.2 2.00 1.37 0.26 0.03. 3-71 22.0 O' .7 26.0 27. .5 • 1.25 O.58 ' 2.50 4. .33 42.2 5-50 5.03 0.43 0.15 11.11 5.1 . 16. .2 20.5 26. .9 4.19 0.42 0.08 4. .69 98.3 5-00 5-30 0.37 0.25 10.92 10.6 ' . 21. .5 18.8 24. .7 12.12 8.34 0.05 20. • 51 67.2 S i t e 6 11 20.00 8.58 0. .75 • 0. .08. 29-41 95. .1 . 124. .5 : 140. ,0 — 19.33 3-56 0.11 23-00 95-1 38- ' 0.30 0.27' 0. .09 0. .03 0.69 17. .8 18. •5 13. .4 I.83 ND • 5.81 7.64 23.3 39; • 0.07 • 0.08 n .04 •0. .01 0.20 26. .7 26. •9 ' .25. 9 30.0 1.06 0.04 • 4.47 5-57 19-7 40 . ND 0.01 0. .02 0. .01 0.04 10. .3 10. .4 8. ,0' 11.6 • 0.16 ND 0.08 0.24 66.6 41 0.03 0.01 0. .03 0. .03 0.10 10. .3 10. .4 . 9. ,0 15.9 0.50 0.01 0.05 0.56 91.0 42 0.03 0.09 0. .06 0, .05 0.23 - 19. • 5 • 10 .7 24. ,0 21.9 1.06' 0.06 0.22 1.34 83.4 43 0.03. KD 0.02 0. .03- 0. .02 . 0.10 11. .3. 11. .4 7. .1 6.9 0.33 0.01 0.05 0.39 87.1 44 0.01 0. .03 0. .03 0.07 7. .7 7. .8- - r • 0. .1 .7.8 0.25 0.01 ND >99 45 •• ND ' 0.01 0. .03 0. .02 0.06 ' 7. .7 . 7. .8 •' 5-• 3 5-6 0.56 0.01 ND >99 46 ' 0.05 0.01 0. .04 0. .02 0.12 • 1. 0 .1 4. .1 - •6.9' 0.06 0.01 ND >99 co Table I I - 3 , continued S i t e S i t e 7 "47 43 . n9 50 51 52-NKuOAc exchangeable cations k • (ne/lOOg)  "orai (me/lOOg) Ca l-Lg Na A c i d i t y Tir^tion- NK^OAc NaOAc DH 8.2 pH Dependent CEC m.e/lOQg • Ca A l Ease S a t u r a t i o n « c i i n * 1 0 0 ) 16. .92 6.42 • Q _ .57 0. ,64 . 24. ,55 102.5 • 127.0 '• 155. .1 9.66 7. ,48 • 1.36 18.50 92.7 0. • 75 1.22 0. .40 0. ,22 2. • 59 75', 9 . 78.5 119'. ,2 2.63 1. ,06 14.33 18.02 . 20.7 0. .07 0.13 0. • 09 0. ,04 0. • 33 37.6 37.9 33-.7 0.56 0. .06 .12.50 13.12 4.7 0. .05 0.03. 0. • 05 0. .01 0. .14 12.2 . 21.3 25. ,4 21. .9 0.56 0. .01 2.36 2.93 1.9 0. .10 0.04 0. .05 0. ,01 . 0. 20 13.0- 13.2 10. .7 13. .4 0.50 0. .01 0.44 0.95 53-8 0. .03 0.08 0. .11 0. .02 0. .24- 8.6 8.8 6. • 7 14. .4 0.25 0. .01. 0.92 1.18 22.3 0. • 75 0.38 0. .11 0. .03 1. .27 3.6 . 4.9 2, .9 4. .4 1.38 .0. .13 0.19 1.70 88.5 54 55 56 57' 58 59 60 61 62 o9 ' 70 71 72 73 ; 10. 74 75 76 77 78. 16.42 11.25 0.03 0.06 ND 0.07 0.05 0.05 0.07 0.10 •.0.13 0.03 0.01 0.C1 0.01 0.01 0.01 0.01 0.75 0.06 0.04 0.03 0.02 0.02 0.03 0.03 0.03 0.82 .0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 29.24 0.18 0:08 0.12 0.09 0.C9 0.12 0.15 O.I8 117.2 20.2 15-5 10.4 5-5 2.6 1.0 ND ND 146.4 20.4 15.6 10.5 5-6 3-5 ' 1.1 0.1 0.2" 157-5 20.2 14..8 10.6 6 4 0-3 1.08 1. ,15 1.67 12.23 96.0 108.2 144. ,2 ND 0.05 0. ,11 •0.14 0.30 53 • 5 53-8 50. .1 ND 0.09 0. .15 • 0.14 0.38 33-5 33.9 37. • 9 0.07 0.03 0. ,06 0.03 0.19 36.0 36.2 ' 24. .6 0.35 0.05 0. .06 0.03 0.49 37.5 . 38.0 22. .7 13.33 r 0. ,66 0.63 0. ,66 21.28 72. .0 93-3 1^4. • 3 0.15 0. .17 0.09 0. .05 0.46 ' 32. • 5 ' 33-0 • 24. ,1 0.13 0. .23 0.08 0. ,10 0.54 25. .0 25.5 19. • 9 0.03 0. .06- 0.07 0. .15 0.31' 25. • 5 25-3 21. .1 ND 0. .04 0.07 0. .07 0.13 28. .5 23.7 32. ,1 3-50 8.23 0.69 12.42 93-7 21. 6 O.56 0.03 3.64 4.23 13-8 20. .6 0.50 0.03 1.19 1.72 30.8 12. .2 1.06 0.01 0.22 1.29 83-0 10. .0 0.31 0.01 ND .0.32 >99 8. i 0.25 0.02 i d 0.27 >99 5. ,6 0.25 0.01 ND 0.26 >99 7. ,2 0.31 0.01 • ND 0.32. >99 4. ,1 0.69. 0.03 ND 0.72 • >99 31. .2 .0.50 0.03 2.30 2.83 18.7 23. .1 0.57 0.03 0.70 1.30 46.1 20. .6: 0.57 0.03 ND 0.60 >99 10, .3 0.70 0.04 ND 0.74 : >99 15, .6 0.74 0.05 • 0.14 O.92 84.9 21, .3 0.60 0.06 0.10 0.76 86 .'8 29. .4 0.72 0.06 ND 0.78 >99 •30. • 3 0.94 0.05 ND • 0.99 . >99 C O -J t o NH^OAc v a l u e s , however, some v a r i a b i l i t y d i d o c c u r . F o r example, some h o r i z o n s i n S i t e 4 and 9 and t h e upper B o f S i t e 1 0 were c o n s i d e r a b l y lower by the NaOAc method t h a n NH^OAc. T o t a l CEC by the summation method (exchangeable c a t i o n s p l u s t i t r a t a b l e H) was lower i n S i t e s 2 , 4 and the upper Bi.,of S i t e 3 and h i g h e r i n S i t e 9 and the' upper B o f S i t e 1 0 t h a n by the p r e v i o u s - t w o methods. V a l u e s f o r pH dependent CEC were g e n e r a l l y v e r y low w i t h the h i g h e s t b e i n g found i n the upper B h o r i z o n s and d e c r e a s i n g w i t h depth. T h i s can be exp e c t e d as the pH dependent charge i s made up of two components. These are the weakly d i s -s o c i a t e d a c i d groups of s o i l OM and the s e s q u i o x i d e c o a t i n g s on c l a y m i n e r a l s u r f a c e s or p a r t i a l l y n e u t r a l i z e d complexes of A l and Fe i o n s i n the i n t e r l a y e r s of 2 : 1 l a y e r s i l i c a t e s (Sawhney e_fc a l _ , 1 9 7 0 ) . S i t e 4 was t h e e x c e p t i o n where h i g h A l v a l u e s were m a i n t a i n e d from t h e s u r f a c e i n t o the lower B and an i n c r e a s e i n Ca and Mg o c c u r r e d - i n the C. The p o o r l y d r a i n e d s o i l s ( S i t e s 3 , 5 and 7 ) had c o n s i s t e n t l y h i g h e r pH dependent CEC v a l u e s t h a n the s o i l s which were . b e t t e r ": d r a i n e d on s i m i l a r m a t e r i a l s . T h i s was the r e s u l t o f the h i g h e r amounts of A l e x t r a c t e d by t h i s method. Only S i t e 4 had a pH dependent CEC of > 8 me/lOOg i n t h e B h o r i z o n of any of the b e t t e r d r a i n e d s o i l s . T h i s v a l u e f o r pH dependent CEC was proposed by C l a r k et_ a l ( 1 9 6 6 ) t o d i f f e r e n t i a t e between t h e B h o r i z o n s of B r u n i s o l i c and P o d z o l i c s o i l s . However, i t i s not a s u i t a b l e c r i t e r i a f o r the s o i l s s t u d i e d . A h i g h p e r c e n t base s a t u r a t i o n (BS) g e n e r a l l y c o r r e s p o n d e d t o a low pH dependent CEC as the base s a t u r a t i o n was c a l c u l a t e d 8 9 as Ca+Mg/Ca+Mg+AlxlOO... T h i s method i s c o n s i d e r e d b e s t f o r • c a l c u l a t i n g BS i n a c i d s o i l s ( C l a r k , 1 9 6 5 ) . The l o w e s t v a l u e s o c c u r r e d i n the upper solum and i n c r e a s e d : w i t h d e p t h . At S i t e 1 the amounts of a l l c a t i o n s d e c r e a s e d a b r u p t l y below the LH h o r i z o n s . • Magnesium was h i g h e s t i n the Ahe h o r i z o n w i t h 0 . 1 9 me/lOOg f o l l o w e d by K, Na and Ca w i t h 0 . 1 3 , 0 . 0 9 , and 0 . 0 2 me/lOOg r e s p e c t i v e l y . R a t i o s and amounts of each c a t i o n p r e s e n t deeper i n the pedon v a r i e d but a l l h o r i z o n s c o n t a i n e d < 0 . 1 0 me/lOOg f o r any of the c a t i o n s measured. T o t a l CEC ranged from 1 5 7 . 9 me/lOOg i n the LH t o 3 9 . 1 me/lOOg i n the Bf t o 8 . 0 i n the C. S l i g h t l y l ower v a l u e s were o b t a i n e d by NaOAc d e t e r m i n a t i o n w i t h lower v a l u e s i n t h e o r g a n i c and upper B by summation and s i m i l a r i l y lower I n the pedon. The pH dependent. CEC dec r e a s e d • f r o m 3 - 5 3 me/lOOg i n t h e A h o r i z o n of S i t e 1 t o 0.14 i n the lower B h o r i z o n and i n c r e a s e d t o 0.46 i n the C . The p e r c e n t base s a t u r a t i o n e x h i b i t e d an .i n c r e a s e from 5 . 7 i n the A h o r i z o n t o > 9 9 p e r c e n t i n the lower B w h i l e the exchange a c i d i t y d e c r e a s e d from 9 6 . 1 t o 1 2 . 8 . m e / 1 0 0 g . The v a l u e s f o r • e x c h a n g e a b l e Mg and Na at S i t e 2 were s i m i l a r t o those at S i t e 1 , however b o t h Ca and K were lower as was the t o t a l CEC by the NH^OAc method i n the m i n e r a l h o r i z o n s . ' T h i s was a l s o t r u e of the v a l u e s o b t a i n e d by the o t h e r methods used. The pH dependent CEC i n c r e a s e d from 0 . 4 9 i n the Bf t o 1 . 4 3 me/lOOg i n . t h e I I BC, and d e c r e a s e d r a p i d l y i n t o the C h o r i z o n . The BS d e c r e a s e d from 3 4 . 9 i n the Bf t o 7 - 2 p e r c e n t i n the 9 0 I I BC.and i n c r e a s e d t o > 9 9 p e r c e n t deep i n the C. The exchange a c i d i t y was h i g h e r t h a n . S i t e 1 i n the o r g a n i c h o r i z o n s but de-c r e a s e d t o l e s s than 4 me/lOOg i n the lower B and C h o r i z o n s . The s o i l at S i t e 3 g e n e r a l l y e x h i b i t e d h i g h e r v a l u e s i n the m i n e r a l h o r i z o n s f o r exchangeable Ca, Mg and Na and lower v a l u e s f o r K t h a n S i t e s 1 and.2. Magnesium was p r e s e n t i n h i g h e s t amounts of any of the c a t i o n s measured i n t h e o r g a n i c h o r i z o n s w i t h 8 . - 5 0 me/lOOg i n the LP, d e c r e a s i n g , t o 0 . 0 9 me/lOOg i n the Ah. T h i s corresponded t o 8 . 0 0 and 0 . 0 5 me/lOOg f o r Ca i n the r e s p e c t i v e h o r i z o n s . C a l c i u m was g e n e r a l l y h i g h e r t h a n Mg i n the m i n e r a l h o r i z o n s . Sodium ranged from 0 . 8 3 t o 0.04 me/lOOg i n t h e pedon, and K from 0 . 2 5 t o 0 . 0 1 me/lOOg. As was e x p e c t e d , the CEC was low i n the m i n e r a l h o r i z o n s which were g e n e r a l l y l e s s than S i t e 1 but h i g h e r t h a n the CEC of the s o i l a t S i t e 2 . The pH dependent CEC d e c r e a s e d from 1 5 . 6 0 me/lOOg i n the H h o r i z o n t o O . 38 i n the C h o r i z o n . T h i s was h i g h e r t h a n t h a t found i n the o t h e r s o i l s formed on. outwash m a t e r i a l s . T h i s corresponded t o lower v a l u e s f o r p e r c e n t BS which d e c r e a s e d from 64.4 p e r c e n t i n the H h o r i z o n t o 1 . 0 i n the Ah and t h e n i n c r e a s e d t o 6 -0.5 p e r c e n t i n the Cg. The exchange a c i d i t y was v a r i a b l e t hroughout the pedon but tended t o d e c r e a s e w i t h depth and ranged from 7 1 . 8 t o 3 . 6 me/lOOg. Both of the s o i l s d e veloped on marine d e p o s i t s e x h i b i t e d an. i n c r e a s e i n exchangeable c a t i o n s i n the lower solum and C h o r i z o n s . These were t h e o n l y s o i l s where an i n c r e a s e was 9 1 obs.erveu. The Ca c o n t e n t of S i t e . 4 was e r r a t i c t hroughout the pedon w i t h amounts, r a n g i n g from 3 .1 . '66 me/l.OOg i n . t h e LH t o 2.50 i n the. Bhg t o < 0,01 me/lOOg i n the B f . The remainder o f the pedon c o n t a i n e d v a r i a b l e amounts w i t h an abr u p t I n c r e a s e t o 9-00 me/lOOg i n the ECg h o r i z o n and 13.00 I n the C. Magnesium e x h i b i t e d a>similar d i s t r i b u t i o n as Ca w i t h v a l u e s d e c r e a s i n g from 9 - 3 3 me/lOOg i n the LH i n 0.70 i n t h e B f . V a l u e s ranged from 2.90 t o 0.47 me/lOOg i n the remainder of t h e solum i n c r e a s -i n g t o 8.00 i n the BCg and t o 1 0 . 7 5 me/lOOg i n the C h o r i z o n . The range o f v a l u e s were m u c h l e s s f o r - N a and K, however, the t r e n d s were s i m i l a r f o r Na. Sodium d e c r e a s e d from O . 8 3 me/lOOg i n the LH t o 0.20 i n the Bfg2 and i n c r e a s e d t o 0.47 i n the C h o r i z o n . P o t a s s i u m remained r e l a t i v e l y c o n s t a n t be-^ tween 0.20 to. 0 . 3 0 me/lOOg and d e c r e a s e d t o 0.13 i n the Bfg2 and t h e n i n c r e a s e d t o 0 . 4 l me/lOOg i n the BC h o r i z o n . T h i s s o i l had a h i g h CEC r e l a t i v e t o the o t h e r s o i l s s t u d i e d w i t h a v a l u e o f 1 1 7 . 5 me/lOOg i n the LH and a range of v a l u e s from 6 5 . 8 t o 4 2 . 7 me/lOOg i n the m i n e r a l h o r i z o n s by t h e NH^OAc method. S l i g h t l y lower v a l u e s were o b t a i n e d by the NaOAc and summation methods. The pH dependent CEC was h i g h e s t o f any of the s o i l s s t u d i e d and ranged from a h i g h o f 2 3.45 me/lOOg i n the Bhgj t o a low of 1 3 - 7 9 i n the BCg. The BS was g e n e r a l l y " v e r y low i n the pedon down t o the BCg, r a n g i n g from 0.1 t o 1 4 . 5 p e r c e n t . However, the BC and C had v a l u e s o f 9 4 . 1 and 9 7 - 3 p e r c e n t r e s p e c t i v e l y . S i n c e the~method used t o c a l c u l a t e p e r c e n t BS i s c o n s i d e r e d b e s t ' j f o r a c i d s o i l s , t h e v a l u e s o b t a i n e d may not be r e p r e s e n t a t i v e of the t r u e base .status o f the BC and C h o r i z o n s as the pH was h i g h e r than i n t h e o t h e r h o r i z o n s . C a l c u l a t i n g t h e BS as the sum- o f the exchangeable c a t i o n s as a p e r c e n t o f the. t o t a l CEC (NH^OAc) g i v e s v a l u e s o f 3 1-3 and 57-7 p e r c e n t f o r the BC and C r e s p e c t i v e l y . The exchange a c i d i t y ranged from••47.0 me/lOOg i n the LH to 35 . 1 i n t h e C h o r i z o n . S i t e 5 e x h i b i t e d s i m i l a r exchange c h a r a c t e r i s t i c s as S i t e 4. However, the h i g h r e g i o n a l ground water t a b l e e f f e c t i v e l y compressed the e f f e c t s over much l e s s d e p t h . The Ca v a l u e s d e c r e a s e d from 2.83 me/lOOg i n the,. H h o r i z o n t o 0 . 2 5 i n the Bfg.and t h e n i n c r e a s e d t o 5-50 i n the BCg. Magnesium was h i g h e r t h a n Ca i n the o r g a n i c and upper m i n e r a l h o r i z o n s , and s l i g h t l y lower i n the lower solum, and t h e n i n c r e a s e d t o 5-30 me/lOOg i n the Cg. Sodium and K e x h i b i t e d a s i m i l a r d i s t r i b u t i o n p a t t e r n as the p r e v i o u s c a t i o n s w i t h v a l u e s r a n g i n g from 0.93 t o 0.14 and 0.83 t o 0 . 0 6 me/lOOg r e s p e c t i v e l y . The t o t a l CEC g e n e r a l l y d e c r e a s e d s t e a d i l y w i t h depth by a l l methods used except by summation where an i n c r e a s e i n t h e Cg over t h e BCg r e f l e c t e d an i n c r e a s e i n exchange a c i d i t y . A l s o , the Ahe had a s l i g h t l y l o wer v a l u e t h a n the B f g by the NH^.OAc method. V a l u e s u s i n g t h i s method ranged from 78 . 2 me/lOOg i n the H h o r i z o n t o 34.7 i n t h e Ahe t o 18.8 me/lOOg i n the C. V a l u e s o b t a i n e d by the NaOAc method were s i m i l a r but d i d not de c r e a s e as r a p i d l y w i t h depth. pH dependent CEC e x h i b i t e d a d e c r e a s e 9 3 from 10..68 me/l.OOg i n . the Ahe t o .3.14 i n the B f g . A sharp i n c r e a s e was p r e s e n t i n the C h o r i z o n t o 2.0,51 me/l.OOg which r e f l e c t e d h i g h amounts of Ca and Mg o b t a i n e d u s i n g t h i s method. The p e r c e n t BS c a l c u l a t e d from the pH dependent exchangeable c a t i o n s d e c r e a s e d from 6 1 . 3 me/lOOg i n the H h o r i z o n t o 9.2 i n the B f g and t h e n i n c r e a s e d t o 9 8 . 3 i n the BCg. U s i n g the v a l u e s o b t a i n e d by the NH^OAc method, the c a l c u l a t e d BS v a l u e s were 54.2 and 5 8 . 1 p e r c e n t r e s p e c t i v e l y f o r the BC and C h o r i z o n s . Exchange a c i d i t y d e c r e a s e d from 6 7 - 7 me/lOOg i n t h e H h o r i z o n t o 5.1 i n the BCg. As c o u l d be e x p e c t e d , the s o i l s d eveloped on sandy p a r e n t m a t e r i a l s e x h i b i t e d low v a l u e s f o r a l l exchange p r o p e r t i e s measured. Exchangeable c a t i o n s were p r e s e n t i n v e r y low amounts i n the m i n e r a l h o r i z o n s o f S i t e 6 e s p e c i a l l y below the p l a c i c h o r i z o n . A sharp d e c r e a s e o c c u r r e d from t h e o r g a n i c h o r i z o n s t o the Ae h o r i z o n s where v a l u e s d e c r e a s e d from 20.00, 8 , y 8 , , 0 . 7 5 and 0 . 0 8 me/100g t o 0.30,- 0 . 2 7 , 0.0.9 and 0.03 me/lOOg r e s p e c t i v e l y f o r Ca, Mg, Na and K. The t o t a l CEC was a l s o low w i t h the lo w e s t r e s u l t s o b t a i n e d by the NH^OAc method in..the.-mineral h o r i z o n s . Amounts o b t a i n e d by t h i s method d e c r e a s e d from 140.00 me/lOOg i n the LH t o 13.4 i n the Ae and t h e n i n c r e a s e d t o 2 5 - 9 i n the Bh which r e f l e c t e d an i n c r e a s e d OM c o n t e n t . Below.,the p l a c i c h o r i z o n s , v a l u e s were l e s s than 10 me/lOOg except i n one h o r i z o n where an i n c r e a s e i n the amount of f i n e s o c c u r r e d . The v a l u e s f o r pH dependent CEC 94 d e c r e a s e d from 2 3 . 0 0 me/lOOg i n the LH t o 5 - 5 7 i n the Bh and t o < 2 . 0 0 me/l.OO.g i n a l l h o r i z o n s be:low t h e p l a c i c h o r i z o n . The BS d e c r e a s e d from 9 5 . 1 p e r c e n t i n the LH t o 1 9 - 7 p e r c e n t i n t he Bh which r e f l e c t e d h i g h amounts of e x t r a c t a b l e A l . Below the p l a c i c h o r i z o n v a l u e s ranged from 6 6 . 6 p e r c e n t t o > 9 9 p e r c e n t deep i n the C h o r i z o n . Exchange a c i d i t y d e c r e a s e d from 9 5 . 1 me/lOOg i n the LH h o r i z o n t o 1 7 . 8 i n t h e Ae and the n i n c r e a s e d t o 2 6 . 7 me/lOOg i n the Bh. Below the p l a c i c h o r i z o n v a l u e s were v a r i a b l e and were g e n e r a l l y l o w e r . The v a l u e s o b t a i n e d f o r the exchange p r o p e r t i e s i n S i t e 7 were g e n e r a l l y s i m i l a r i n amounts and d i s t r i b u t i o n i n the pedon as S i t e 6 . However, t h e r e Was an i n c r e a s e noted i n a l l exchangeable c a t i o n s (NH^OAc) i n the C h o r i z o n . A l s o , the pH dependent CEC and the exchange a c i d i t y v a l u e s remained h i g h e r w i t h depth i n t h e solum. T h i s r e f l e c t e d p a r t l y the absence of the p l a c i c ' h o r i z o n .in t h e s o i l . The BS d e c r e a s e d from 9 2 . 7 p e r -cent i n the LF t o 1 . 9 i n the Bf and the n i n c r e a s e d t o 8 8 . 5 p e r c e n t i n the Cg.. The s o i l a t S i t e 8 a l s o e x h i b i t e d s i m i l a r exchange c h a r a c t e r -i s t i c s as S i t e 6 . However, as i n S i t e 7 t h e r e was a g r a d u a l change i n v a l u e s i n r e l a t i o n t o depth i n the pedon which r e f l e c t s the absense o f r e s t r i c t i n g l a y e r s . The s o i l s d e v e l o p e d on g l a c i a l t i l l d e p o s i t s were a l s o g e n e r a l l y low i n amounts of exchangeable c a t i o n s p r e s e n t . The Ca c o n t e n t o f S i t e 9 d e c r e a s e d from 8 . 3 3 ' m e / 1 0 0 g i n t h e LH t o 9 5 < 0 . 0 1 me/lOOg i n the B f and th e n a s l i g h t i n c r e a s e o c c u r r e d t o 0 . 3 5 above, t h e l i t h i c c o n t a c t , Magnesium v a l u e s were 1 . 0 8 me/lOOg i n the LH and ranged from. 0 . 0 3 t o 0 . 0 9 . me/lOOg i n t h e m i n e r a l h o r i z o n s . Both Na..and K were p r e s e n t i n s l i g h t l y h i g h e r amounts t h a n Mg. The h i g h e s t v a l u e s f o r CEC were o b t a i n e d by summation i n most m i n e r a l h o r i z o n s and ranged from 5 3 . 8 'to 3 3 . 9 me/lOOg w i t h 1 0 8 . 2 me/lOOg f o r the o r g a n i c s u r f a c e h o r i z o n s . U s i n g the NH^OAc method the CEC d e c r e a s e d from 144 . 2 me/lOOg i n the LH h o r i z o n t o 5 0 . 1 i n the Bf t o 2 2 . 7 above the l i t h i c c o n t a c t . The NaOAc method gave the lowes t r e s u l t s which ranged from 3 1 . 2 5 t o 1 0 . 3 1 i n the m i n e r a l h o r i z o n s . The pH dependent CEC tended t o de c r e a s e w i t h depth and ranged from 2 . 8 3 t o 0 . 6 0 me/lOOg. The BS i n c r e a s e d from 1 8 . 7 t o > 9 9 p e r c e n t w i t h depth i n the m i n e r a l h o r i z o n s . The exchange a c i d i t y was s i m i l a r t o t h a t a t S i t e 4 and d e c r e a s e d from 9 6 . 0 me/lOOg i n the LH t o 3 3 . 5 i n the Bf2 w i t h an i n c r e a s e t o 3 7 . 5 me/lOOg i n the I I B f 2 h o r i z o n . S i t e 1 0 e x h i b i t e d s i m i l a r exchange c h a r a c t e r i s t i c s as S i t e 9 j however t h e r e were some d i f f e r e n c e s . The exchangeable Ca and Mg i n the LH h o r i z o n was much h i g h e r at 1 3 - 3 3 and 6 . 6 6 me/lOOg r e s p e c t i v e l y and the v a l u e s i n the m i n e r a l h o r i z o n s a l s o tended t o be h i g h e r . Exchangeable Na and K were lower as was the CEC by a l l methods used, however the h i g h e s t CEC was a l s o o b t a i n e d by summation and the l o w e s t by NH^OAc. The pH". dependent CEC de c r e a s e d from 0 . 9 3 me/lOOg i n the Bf t o 0 . 7 6 9 6 i n t h e Bf2 and t h e n i n c r e a s e d t o . 0 . 9 9 me/lOOg i n t h e I . I B f 2 . The BS i n c r e a s e d . w i t h depth, from 84 , 9 to. > 9 9 p e r c e n t i n the m i n e r a l h o r i z o n s , " E x t r a c t a b l e Fe and A l The r e s u l t s f o r e x t r a c t a b l e Fe and A l are g i v e n i n Table I I - 4 . I n a l l o f the s o i l s s t u d i e d Na-pyrophosphate Fe and A l v a l u e s were lower t h a n t h o s e o b t a i n e d by o t h e r methods of e x t r a c t i o n . The v a l u e s were h i g h e s t i n the B h o r i z o n s and dec r e a s e d w i t h depth i n a l l s i t e s except S i t e 1 0 where an i n c r e a s e o c c u r r e d above the l i t h i c c o n t a c t . I n the h o r i z o n s of g r e a t e s t a c c u m u l a t i o n , a c i d o x a l a t e e x t r a c t a b l e Fe was g e n e r a l l y lower t h a n c i t r a t e - d i t h i o n i t e e x t r a c t a b l e Fe i n most s i t e s . However, t h i s was not c o n s i s t e n t f o r h o r i z o n s above and below the h o r i z o n of maximum a c c u m u l a t i o n . A c i d o x a l a t e A l was g e n e r a l l y h i g h e r t h a n c i t r a t e - d i t h i o n i t e A l . -R e l a t i v e l y h i g h o x a l a t e Fe values' were m a i n t a i n e d t o a c o n s i d e r a b l e depth i n S i t e s 1 , 2 and 3 compared t o the h o r i z o n s of maximum a c c u m u l a t i o n near t h e s u r f a c e . V a l u e s . i n S i t e 1 ranged from a maximum o f 1 . 7 8 to- 0 . 5 7 p e r c e n t , and i n S i t e 2 from 1.64 t o 0 . 5 0 p e r c e n t . O x a l a t e Fe was much lower i n S i t e 3 w i t h the h i g h e s t amount o f 1 , 0 6 p e r c e n t a t 3 5 cm depth i n a g r a v e l l y loam h o r i z o n . Other v a l u e s ranged from 0 . 3 0 p e r c e n t i n the o r g a n i c h o r i z o n s t o a low of- 0 . 1 6 p e r c e n t w i t h depth. Table II-4. • Extractable Fe and A l present i r i the s o i l s Pyrophosphate extractable-' % • Oxalate extractable ' % D i t h i o n i t e extractable %• Pyrophosphate d i t h i o n i t e extractable DH 8.2 Sample Fe . • A l Z Fe,Al Fe A l • • Fe,Al Fe A l S i 0 2 . £Fe,Al Fe' . A l C S i t e 1 1 - . - - - ' - . 0.14 0.33 0.05 0.47 — . _ _ 2 - - - 0:. 67 1.00 1.67 0.16 0.93 0.16 1.09 — _ _ 3 . 0.68. 2.00 2.68 ' 1.78 2.66 4.4i 2.10 2.22 0.43 4.32 0.17 . 1.48 2.47 4 ' .0.14 - 0.62 0.90 0.92 1.92 2.84 . 0.97 0.74 0.08 1.71 0.27 0.71 1.52 5 • 0.04 • 0.44 0.48 . 0.57 1.-60 2.17 0.67 0.61 0.11 1.23 . 0.18. 0.58 0.19 6 0.04 0.38 0.42 0.30 1.50 2.00 0.18 0.48 0.10 .0.66 . 0.12 0.47 _ 7 0.04 - 0.42 0.46 1.22 2.18 3-40 1.15 0.49. 0.16 1.64 0.27 0.42 _ 66 0.01 .0.20 - 0.90 1.91 2.81 1.15 0.45 0.20 S i t e 2 • 8 - - - - - - - 1.25 1.21 0.17 2.46 - — _ _ 9 0.42 1.24 1.66 1.64 3.44 5.03 . 2.13 1.54 0.16 3-67 0.24 0.93 1.33 10 0.03 0.29 . • 0.59 0.59 1.09 1.68 0.48 0.41 0.10 0.39 0.10 0.43 0.19 11 0.03 0.28 0.31 0.51 0.75 1.26 0.55 0.29 0.09 0.84 0.10 0.42 — 12 0.02 0.16 0.18 0.50 0.65 1.15 0.40 0.16 0.06 O.56 0.15 0.33 _ 13 0.02 0.18 0.20 0.51 -.0.67 1.13 0.55- 0.21 . 0.14 0.67 0.15 0.21 _ • . £ 7 -i 0.01 0.06 - • . 0.57 0.74 1.31 0.60 ••0.18 0.11 _ — . . _ _ 68 . 0.01 0.06 - 0.79 0.81 : 1.60 0.67'. • 0.15. 0.09 - - - -S i t e 3 14 - •' - • 0.15 0.17 0.11 0.32 - • • — — • • 15 - - - 0.30 0.60 . 0.90 0.11 0.20 0.07 0.31 - — _ 16 -. - - • .. - 0.10 0.94 1.04 0.10 0.53 0.13 0.68- — — — 17 ' • 0.06 0.60 0.66 0.19 0.90 1.09 0.25 0.63. 0.20 0.07 0.72 0.95 18 0.04 0.39 0.43 0.19 0.53 0.72 • 0.25 0.34 0.09 0.59 0.08 0.50 0.48 10 ' —J 0.21 0.36 0-57 1.06 0.59 1.65 1.43 • 0.35 0.15' 1.78. 0.21 0.35 0.19 20 0.03 0.35 O.38 0'. 16 0.64 0.80 0.09 0.'21 0.08 0.30 0.03 0.33 O.38 21 0.05 0.17 0.22 0,32 0.43 • 0.75 .0.24 0.12 . 0.05 0.36 0.09 0.15 -VO Table 11-4, continued Sanple 22" 23 24" 25 • 27 28 29 30 S i t e 5 31 32 -33 34 35-. .36 S i t e 6 Pyrophosphate extractable /o AT l F e , A l Oxalate . extractable f e A l ;,A1 0.78-0.78 1.20 0.01 0.11 1.15 .0.09 0.05 0.36 0.40 0.10 0.13 0.90 1.58 1.62 0.46 0.48 1-52 0.18 0.23 O.98 0.38 0.14 0.10 1.68 2.36. 2.82 0.47 0.59 2.67 0.27 .0.28 1.34 0.78 1.38 0.23 1.42 2.11 4.67 0.93 1.22 2.80. O.72 0.62 0.16 0.05 1.34 1.15 0.67 1.32 0.46 0.74 1.28 0.67 Q--75 1.54 0.88 0.32 0.35 0.42 1.55 0.70 0.27 0.35 1.88 2.85 5-95 1.60 1.97 4.34 1.10 0.94 0.51 0.47 2.89 1.80 0.94 1.67 0.39 3-40 4.80 5-25 1.65 1.93 3.53 1.40 1.40 0.19 0.03 2.13 1.97 O.85 0.84 57 - - _ 0.07 33 • - ' - 0.12- 0.16 . 0.28 0.13 39 0, .06 0.98 - 1. .04 0.14 1.05 1.19 0.14 39a 2. • 77 1.05 3, .82 6.16 2.16 .-• ' 9-32 . .7,25 39b. 0, .40 • 0.64 1. .04 2.40 2.40 4.80 • 3.25 40 . 0. • 03 O.3O . 0. • 33 0.37 0.80. 1.17 ' 0,28 41 • 0. •03 0.33 0. .36 0.41 . 0.95 1.36' - 0.26 42 0. .04 0.54' 0. • 53 0.77 2.10 '2.87 • 0.77 43 0. .03 0.26 0. .29 0.35 0.68 1.03 0.30 44 0. .04 0.22 0. .26 0.74 0.68 1.42 0.37 45 0. 02 - 0.1-7' 0. 19 0.26 0.56 0.82 0.16 46 0. 02 0.12 0. 14 • 0.21 0.47 0.68 0.15 D i t h i o n i t e extractable Pyrophosphate . d i t h i o n i t e extractable A l - s i o 2 I Fe,Al Fe A l C 0.20 - 0.13 ' 0.59 0.38 0.05 3.78 — _ _ 0.65 0.06 - 5.45 0.14 0.27 0.14 1.12 • 0.08 6.37 0.16 0.25 0.57 0.37 '•0.18 2.02 0.16 0.34 _ 0.53 0.18 2.46 0.24 0.42 _ 1.20 0.10 4.73 0.38 0.41 0.76 0.17 0.18 1.57 0.17 0.18 _ 0.13 0.23 1.53 0.18 0.16 -0.31 0.13 0.50 . 0.35 0.07 0.43 • - _ _ 1.04 0.27 3-17 0.15 O.98 -0.42 0.09. 2.39 0.16 .0.44 1.71 0.10 0.08 0.95 0.20 0.10 0.95 0.88 . 0.10 1.72 0.19 • 0.09 1.90 0.07 0.07 0.11 0.05 0.24 _ — 0.93 0.25 1.07 0.04 . 0.87 _ 1.67 0.35 - _ 1.25 0.15 - - _ 0.29 0.08 0..53 0.09 0.37 — 0.27 0.09 0.53 0.09 0.40 0.74 0.29 1.51 • 0.18 0.64 — 0.23 0.09 0.53 0.09 0.28 0.19 0.08 0.76 0.20 0.22 •• _ 0.13 0.06 0.29 O.5O • 0.20 — 0.09' 0.05 0.24 0.50 0.19 -\D C O Table ±1-4, continued Pyrophosphate extractable Oxalate extractable D i t h i o n i t e .extractable Pyrophosphate d i t h i o n i t e extractable 47 43 49 50 51 52 .53 S i t e 6 54 55 ..56 57 53 -.- 59 60 61 62 63 " 6^  ; 65 S i t e 9 Site'10 74 75 76 77 73 r-'e H I ? e , A l 0.04 0.13 0.02 0.02 0.44 0.44 0.10. 0.04 0.03 0.03 0.04 '0.01. 0.02 0.02 0.03 0.70 0.42 0.26 0.04 0.62 0.74 0.50 0.34 0.22 0.13 0.24 0.10 0.10 0.02 0.02 0.74 0-55 0.28 0.06 1.06 1.18 0.70 0.38 0.25 0.21 0.28 0.11 0.12. 0.04 0.05 0.05 0.05 0.12 0.99 0.06 0.06 0.76 1.01 0.56 0.40 0.40 0.21 0.47 0.28 0.16 0.15 0.12 A l . Fe,Al Fe A l ' Si0 2 I F e , A l • re • A l . C 0.06 0 .08 0.22 0.14 0.40 ' •' 0.45 0.06 0 .41 0.06 0.47 _ _ 0.70 0.75 0.08 0.-70 0.16 0.73 _ . _ 1-35 1.47 0.19 0.62 0.10 0.81 0.64 0.88 _ 1.05 2.04 0.85 0 .40 0.10 1.25 0.23 0.61 0.57 0-.45 ' 0.51 0.03 • 0. .14 • • 0.05 0.17 0.01 0.30 0.70 - 0.76 0.02 0. .01 0.02 0.03 0.02 0.02 _ 0.07 0. .07 0.10 0.14 ' 0.60 1.36 .1.05 0, .57 0.12 1.62 0.27 0.50 1.52 0.71 1.72 0.97 0. .63 0.15 1.60 0.26 0.64 1.44 0.96 1.52 0.32 0. .46 . 0.10 0.78 0.12 0.75 0.66 0.-83 1.2s 0.21 0. .25 0.06 0.46 ' 0.07 0.47 0.10 0.58 O.98 0.16 0. • 17- 0.07 . . 0.33 0.05 0.32- _ 0.37 • 0.58 0.15 0. ,11 0.05 0.26 0.03 0.23 0.50 1.07 0.25 0'. 19 0.06 ' 0.44 '••0.09 0.32 0.02 0.25 . 0.53 - 0.11 ' 0. 07 0.05 0.18 0.09 0.33- — 0.09 • 0.25 0.17 '0. 01 0.05 0.18 0.03 0.01 0.11 0.26 0.04 0. 01 0.05 0.05 . o.oi- 0.01 _ 0.08 0.20 0.07 • 0. 02 0.07 0.09 0.03 0.02" -•~* y - - - — — •~ 0.07 ND . 0.40 0.07 70 . I.52 1.70 j • .22 2.25 2.73 5-03 3-50 2.12 • 0.31 5.62 •71 •0,34 '1.35 ' 2. • 19 1.87 2.75 4.62 2.83 1.94 0.23 4-77 . 72 0.14 0.77 0. • 91 1.35 2.95 • 4.30 1.65 1.43- ' 0.16 3.08 73 0.14 '• 0.68 ' 0. ,82 1.27 3-13 4.40 1.27' 1.25' 0.16 2.52. - — - - - - - 0.69 0.19 0.33 0. .88 _ C-.17 0. • 53 .0.70 2.02 2.20 4.22 3-13 1.37 - 0.21 11. • 50 — 0.07 0, .24 O.Hl . 2.12 1.28 • • 4.40 2.-75 0.35 0.16 3. ;6o _ _ 0.02 0. • 34 0.36 1.93 2.94 4.92 2.23 0.93 0.13 3. ,16 _ 0.12 0. • 70 ' 0.82 2-15 4.71 ' "6.86 2.35 1.42 0.18 -3 i ,77 - - — _ 100 B o t h Fe and A l e x h i b i t e d f l u c t u a t i o n s w i t h d e p t h , however, the d i s t r i b u t i o n of A l i n S i t e 2 was 3-44 p e r c e n t i n t h e B u h o r i z o n and de c r e a s e d w i t h depth. No c o n s i s t e n t t r e n d s were p r e s e n t i n S i t e s 1 and 3. D i t h i o n i t e Fe had v a l u e s r a n g i n g from 2.10 t o 0.1-8 p e r c e n t i n t he m i n e r a l h o r i z o n s of S i t e 1 w i t h A l r a n g i n g from 2.22 t o 0.48 p e r c e n t . I n S i t e 2 the range was 2.13 t o 0.40 p e r c e n t f o r Fe and 1.54 t o 0.15 p e r c e n t f o r A l . S i t e 3 e x h i b i t e d the same Fe d i s t r i b u t i o n as the o t h e r e x t r a c t i o n s w i t h an . i n c r e a s e a t 35 cm. w i t h a maximum of 1.43 p e r c e n t . The remainder of the pedon ranged from 0 . 2 5 t o 0.09 p e r c e n t . No c o r r e s p o n d i n g i n c r e a s e was p r e s e n t f o r ' A l which v a r i e d from 0.63 t o 0.12 p e r -c e n t . D i t h i o n i t e e x t r a c t a b l e SiG>2 had. ;accumulated i n the upper B o f S i t e 1 w i t h 0.43 p e r c e n t b e i n g 'present and d e c r e a s i n g t o 0 . 0 8 p e r c e n t lower i n the pedon. No ob v i o u s accumulaton o c c u r r e d i n S i t e s 2 or 3. Pyrophosphate Fe and A l had a s i m i l a r d i s t r i b u t i o n t o t o t a l C w i t h A l v a l u e s b e i n g much h i g h e r t h a n Fe. I n S i t e 1, Fe and A l ranged from 0.68 t o 0.01 percent' and 2.00 t o 0.20 p e r c e n t r e s p e c t i v e l y . S i t e 2 e x h i b i t e d s l i g h t l y l o w e r amounts which r e f l e c t e d the lower OM c o n t e n t w i t h Fe r a n g i n g from 0.42 t o <0.01 p e r c e n t and A l r a n g i n g from 1.24 t o 0 . 0 6 p e r c e n t . Pyrophosphate d i t h i o n i t e e x t r a c t a b l e A l was s i m i l a r t o d i t h i o n i t e A l i n S i t e s 1, 2 and 3. However, i n S i t e s 1 and 2 Fe d i d not e x h i b i t the pronounced a c c u m u l a t i o n I n the. upper B t h a t i t d i d by the o t h e r methods used. 1 0 1 The. s o i l s . d e v e l o p e d on the g l a c i a l marine d e p o s i t s had h i g h e r amounts of e x t r a c t a b l e . Fe. t h a n the s o i l s . d e v e l o p e d on outwash m a t e r i a l s . However, o x a l a t e A l was lower on s o i l s o f s i m i l a r d r a i n a g e c h a r a c t e r i s t i c s w i t h pyrophosphate and d i t h i o n i t e A l b e i n g g e n e r a l l y the same. The h i g h e s t a c c u m u l a t i o n of pyrophosphate Fe i n S i t e 4 o c c u r r e d i n the Bf w i t h 1 . 2 0 p e r c e n t and d e c r e a s e d t o 0 . 0 1 p e r -cent i m m e d i a t e l y below. The d i s t r i b u t i o n was e r r a t i c as was A l . However, the A l had accumulated i n the Bh and the Bf w i t h v a l u e s o f I . 5 8 and 1 . 6 2 p e r c e n t r e s p e c t i v e l y and d e c r e a s i n g w i t h depth t o 0 . 1 8 p e r c e n t . No a c c u m u l a t i o n o f pyrophosphate Fe o c c u r r e d i n S i t e 5 w i t h v a l u e s o f 0.40 t o 0 . 1 0 p e r c e n t , however, A l was h i g h e r i n the Bf at O . 98 p e r c e n t . The v a l u e s i n t h e remainder of the pedon v a r i e d from 0 . 3 8 t o 0 . 1 0 p e r c e n t . O x a l a t e Fe i n S i t e 4 I n c r e a s e d from 1.42 p e r c e n t i n the Bh t o 4 . 6 7 i n t h e Bf and was v a r i a b l e w i t h depth. O x a l a t e A l had.a s i m i l a r d i s t r i b u t i o n w i t h 0.46 p e r c e n t i n t h e Bh and 1 . 2 8 i n the B f . S i t e 5 had lower v a l u e s f o r o x a l a t e F e r o f 1 . 3 4 p e r c e n t i n t h e B f but a h i g h e r amount of A l w i t h 1 . 5 5 p e r c e n t . D i t h i o n i t e Fe was h i g h e r t h a n o x a l a t e Fe i n S i t e 4 w i t h a s i m i l a r d i s t r i b u t i o n . V a l u e s ranged from 5 . 2 5 p e r c e n t i n t h e Bf t o 1.40 i n the C h o r i z o n . A l v a l u e s v a r i e d from 1 . 1 2 t o 0 . 1 3 p e r c e n t . The h i g h e s t v a l u e s f o r d i t h i o n i t e Fe and A l I n S i t e 5 were 2 . 1 3 and 1.04 p e r c e n t r e s p e c t i v e l y . A d e c r e a s e 102 i n t he amount of d l t h i o n i t e S i Q 2 was p r e s e n t i n the upper B of S i t e 4, However ? an i n c r e a s e o c c u r r e d , i n . t h e Bf. of S i t e 5-No a c c u m u l a t i o n o f pyrophosphate d i t h i o n i t e Fe, o r A l was p r e s e n t i n the upper B of S i t e 4, however, an a c c u m u l a t i o n o f A l o c c u r r e d i n S i t e 5-The s o i l s d e v e l o p e d on sandy p a r e n t . m a t e r i a l s g e n e r a l l y had amounts o f e x t r a c t a b l e Fe and A l s i m i l a r t o the s o i l s d e veloped on outwash m a t e r i a l s , and l e s s t h a n t h a t p r e s e n t i n the marine c l a y o r t i l l s o i l s . The e x c e p t i o n was t h e p l a c i c h o r i z o n i n S i t e 6 which had the h i g h e s t c o n c e n t r a t i o n of Fe of any h o r i z o n s t u d i e d . Amounts p r e s e n t i n t h i s h o r i z o n were 2.77, 6 . 1 6 and 7 . 2 5 p e r c e n t f o r py r o p h o s p h a t e , o x a l a t e , and d i t h i o n i t e r e s p e c t i v e l y . D e t a i l s ', o f t h i s h o r i z o n a re p r e s e n t e d i n Chapter I I I . The pyrophosphate Fe v a l u e s ranged from 0 . 0 6 above the . p l a c i c h o r i z o n t o 0,'4.0 p e r c e n t i m m e d i a t e l y below and d e c r e a s e d t o 0.02 p e r c e n t w i t h depth. The amounts o f pyrophosphate A l p r e s e n t were much h i g h e r t h a n Fe except I n t h e p l a c i c h o r i z o n which c o n t a i n e d 1.05 p e r c e n t , which was not s i g n i f i c a n t l y h i g h e r t h a n the O . 98 p e r c e n t i n the h o r i z o n . i m m e d i a t e l y above. There was 0.64 p e r c e n t i m m e d i a t e l y below the p l a c i c w hich d e c r e a s e d t o 0.12 p e r c e n t w i t h depth. O x a l a t e Fe had a s i m i l a r d i s t r i b u t i o n w i t h a v a l u e o f 0.12 p e r c e n t above the p l a c i c h o r i z o n and 2.40 p e r c e n t i m m e d i a t e l y below w i t h a f u r t h e r d e c r e a s e t o 0.21 p e r c e n t deep i n the C 103 h o r i z o n . The amount of o x a l a t e e x t r a c t a b l e A l , w a s ^ h i g h e r i m m e d i a t e l y below the p l a c i c h o r i z o n a t .2,.40 p e r c e n t compared t o 2 . 1 6 p e r c e n t i n the p l a c i c and 1 , 0 5 i m m e d i a t e l y above. V a l u e s deeper i n the pedon ranged from 2.10 t o 0 . 4 7 p e r c e n t . D i t h i o n i t e e x t r a c t a b l e Fe was h i g h e s t i n t h e p l a c i c h o r i z o n and i m m e d i a t e l y below by any method used. However, value s ' above the p l a c i c h o r i z o n were s i m i l a r t o o x a l a t e v a l u e s and tended t o be lower t h a n o x a l a t e below, r a n g i n g from 0 . 7 7 t o 0 . 1 5 p e r c e n t . Pyrophosphate d i t h i o n i t e Fe and A l v a l u e s were not o b t a i n e d f o r the p l a c i c h o r i z o n . However, Fe g e n e r a l l y i n c r e a s e d w i t h depth i n t h e pedon and ranged from 0 . 0 9 t o 0.50 p e r c e n t below the p l a c i c h o r i z o n . Aluminum tended t o d e c r e a s e w i t h depth and amounts ranged from 0 . 3 7 t o 0 . 1 9 p e r c e n t . S i m i l a r v a l u e s and t r e n d s f o r e x t r a c t a b l e Fe and A l were e x h i b i t e d I n S i t e 7 w i t h a maximum p r e s e n t i n t h e Bf h o r i z o n . However, lower amounts were e x t r a c t e d from the s a t u r a t e d C h o r i z o n t h a n was p r e s e n t i n the C o f S i t e 6 . S i t e 8 a l s o had s i m i l a r amounts of Fe and A l as S i t e 6 throughout, t h e pedon. Pyrophosphate Fe ranged from 0 . 4 4 p e r -cent i n the upper B and d e c r e a s e d t o a low o f 0.01 p e r c e n t . Aluminum-was h i g h e s t i n the Bf2 w i t h 0 . 7 4 and 0.62 p e r c e n t i n the Bf which d e c r e a s e d f u r t h e r t o 0.02 percent- deep i n t h e C h o r i z o n . O x a l a t e Fe and A l v a l u e s were b o t h - h i g h e s t i n t h e Bf-2 b e i n g 1.01 and 0 . 7 1 r e s p e c t i v e l y and d e c r e a s i n g t o 0.12 and 104 0.08 p e r c e n t . Highest, v a l u e s o f d i t h i o n i t e Fe were p r e s e n t i n t he Bf w i t h 1 , 0 5 p e r c e n t and d e c r e a s i n g t o .0. 04.percent deep i n the C h o r i z o n . Aluminum v a l u e s ranged from 0 , 6 3 i n the Bf2 t o 0.01 p e r c e n t . ..Pyrophosphate d i t h i o n i t e A l was v e r y sim-i l a r t o d i t h i o n i t e i n amounts and d i s t r i b u t i o n . ' The amount o f Fe e x t r a c t e d was lower i n t h e upper B t h a n any o f the o t h e r methods used and ranged from 0.27 t o 0.03 p e r c e n t deep i n t h e C h o r i z o n . The e x t r a c t a b l e amounts of Fe and A l p r e s e n t i n the s o i l s d e veloped on g l a c i a l t i l l s were g e n e r a l l y s i m i l a r t o t h o s e s o i l s d e v e l o p e d on marine c l a y s . The v a l u e s were a l s o h i g h e r i n S i t e 9 t h a n i n S i t e 10. I n the s o i l a t S i t e 9 , pyrophosphate Fe had t h e h i g h e s t v a l u e s i n the upper B of 1 . 5 2 p e r c e n t and d e c r e a s e d t o 0.14 above t h e l i t h i c c o n t a c t . The d i s t r i b u t i o n of A l was s i m i l a r but amounts p r e s e n t were h i g h e r and ranged from 1.70 t o 0 . 6 8 p e r c e n t . H i g h e s t amounts of o x a l a t e Fe were p r e s e n t i n the upper B w i t h v a l u e s r a n g i n g from 2 . 2 5 t o 1.27 above the l i t h i c c o n t a c t . V a l u e s o b t a i n e d f o r A l were much h i g h e r and ranged from 2 . 7 8 i n the upper B and i n c r e a s e d t o 3 . 1 3 w i t h d e p t h . The h i g h e s t v a l u e s f o r Fe were o b t a i n e d by d i t h i o n i t e e x t r a c t i o n w i t h a maximum p r e s e n t i n the upper B and d e c r e a s i n g w i t h depth. V a l u e s ranged from 3.50 t o 1 . 2 7 p e r c e n t . Aluminum had a s i m i l a r d i s t r i b u t i o n i n the m i n e r a l h o r i z o n s w i t h v a l u e s r a n g i n g from 0:. 3,1 t o 0.16 percent.. The d i s t r i b u t i o n of e x t r a c t a b l e S i 0 2 was a l s o s i m i l a r , w i t h v a l u e s r a n g i n g from 5.62 t o 2 . 5 2 p e r c e n t . 105 I n t h e s o i l at S i t e 10,. pyrophosphate Fe d e c r e a s e d from 0 . 1 7 t o 0.02. p e r c e n t and i n c r e a s e d t o 0.12 p e r c e n t above the l i t h i c c o n t a c t . T h i s c o r r e s p o n d s t o . t h e d i s t r i b u t i o n of o r g a n i c m a t t e r p r e s e n t i n the pedon. A s i m i l a r d i s t r i b u t i o n f o r . A l was noted w i t h the upper B c o n t a i n i n g • 0 . 7 0 p e r c e n t and d e c r e a s -i n g t o'0.31 p e r c e n t and f i n a l l y i n c r e a s i n g t o 0.70 p e r c e n t above the l i t h i c c o n t a c t . O x a l a t e Fe and A l had a s i m i l a r d i s t r i b u t i o n i n the pedon, w i t h t h e h i g h e s t a c c u m u l a t i o n above the l i t h i c c o n t a c t w i t h 2.15 and 4.71 p e r c e n t r e s p e c t i v e l y . D i t h i o n i t e Fe was h i g h e s t i n the upper B w i t h 3 - 1 3 p e r c e n t and e x h i b i t e d o n l y a s l i g h t i n c r e a s e from 2 . 2 3 t o 2.35 above the l i t h i c c o n t a c t . However, A l d i d have s l i g h t l y h i g h e r amounts at the c o n t a c t t h a n i n the upper B w i t h amounts of 1.37 and 1.42 p e r c e n t r e s p e c t i v e l y . V a l u e s o b t a i n e d f o r S i 0 2 ranged from 0.21 t o 0.16 p e r c e n t i n the m i n e r a l h o r i z o n s . MINERALOGICAL PROPERTIES V a l u e s o b t a i n e d from X-ray d i f f r a c t i o n t e c h n i q u e s are g i v e n i n T a b l e I I - 5 and were d e r i v e d u s i n g t h e whole c l a y f r a c t i o n ( < 2 y ).. As such, some m i n e r a l s p r e s e n t as p a r t of the f i n e c l a y f r a c t i o n c o u l d have been masked i f q u a n t i t i e s were not l a r g e ( J a c k s o n , 1964). I n the outwash d e p o s i t s at S i t e 1, v e r m i c u l i t e dominated the c l a y s o f t h e u p p e r . p o r t i o n o f the solum w i t h mixed l a y e r m i n e r a l s , b e i n g dominant i n S i t e 2. K a o l i n i t e and c h l o r i t e Table 1 1 - 5 . Clay f r a c t i o n composition and amorphous mineral A l and S i of the s o i l s Sample and Depth 10 8 Montmor- Vermicu- Mixed Feld- Amohi- extractable Site ()cm) C h l o r i t e * Micas* K a o l i n i t e * i l l o n i t e * l i t e * layer* Quartz* spars* bols* ™ a c t a D < g Site 1 1 3 8 - 0 2 0 - 5 1 3 5 - 2 5 1 4 2 5 - 5 8 2 5 5 8 - 9 9 1 6 9 9 - 1 2 2 1 7 122-142 3 66 142+ 2 Site 2 8 3 1 - 0 9 0 - 5 6 1 10 5 6 - 1 1 2 2 11 1 1 2 - 1 7 3 2 12 1 7 3 - 1 8 0 2 13 180+ 2 67 379 3 68 498 2 Site 3 14 2 0 - 8 15 8 - 0 1 16 0 - 1 0 0 17 1 0 - 2 0 2 18 2 0 - 3 3 2 19 33-48 2 20 48-66 2 21 66+ 2 0 1 0 0 0 0 0 2 0 0 3 0 0 3 1 1 2 3 1 2 3 0 1 0 1 3 1 1 3 0 1 3 0 2 3 1 2 3 1 2 2 0 1 0 0 0 0 0 1 3 0 1 2 0 1 2 0 1 2 0 1 2 0 4 0 2 3 1 1 2 2 2 1 0 1 1 0 1 0 0 1 2 0 1 1 3 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 2 0 1 4 1 2 4 0 2 0 0 1 0 0 . 1 1 0 1 0 0 2 0 0 2 1 1 2 . 0 1 . 0 1 1 4 . 0 1 . 9 2 2 2 . 5 2 . 2 1 1 2 . 5 2 . 4 1 1 2 . 3 2 . 3 1 1 2 . 1 2 . 3 1 1 2 . 7 2 . 2 1 0 4 . 5 2 . 9 1 1 1 . 8 1 . 7 1 0 1 . 3 1 . 5 1 0 0 . 8 1 . 2 1 1 0 . 9 1 . 3 1 1 1 . 2 1 . 2 1 0 1 . 2 1 . 2 1 0 8 . 9 5 . 3 1 0 1 . 2 1 . 5 1 1 1 . 4 1 . 6 1 0 1 . 6 1 . 9 1 1 1 . 8 3 . 0 1 0 0 . 4 1 . 6 1 0 1 . 0 2 . 4 Expressed as r e l a t i v e quantities i n the following series progression-1. present, 0-10*; 2 . trace, 10 - 25* ; 3 . minor, 25-40*; 4. major,'40 -65*; 5 . dominant, 65-100* 1 —1 o OA Table I I - 5 , continued Sample and Site Depth (cm) 10 8-Chlo r i t e * Micas* K a o l i n i t e * Montmor-i l l i o n i t e * Vermicu-l i t e * Mixed layer* Quartz* Feld-spars* Amphi-bols* NaOH extractable A l S i % Site 4 22 15-0 23 0 -5 0 0 1 3 3 0 2 0 0 1.0 2 .5 24 5 - 1 8 0 0 1 4 3 0 1 0 0 1 .6 2 .8 25 1 8 - 3 6 0 0 1 3 2 1 1 0 0 2 .6 3 . 5 26 3 6 - 4 3 0 1 1 0 3 1 1 1 0 1.9 3 . 8 27 4 3 - 7 4 0 1 1 0 4 2 1 1 0 2 .6 4 .6 28 7 4 - 1 1 7 1 0 1 4 1 2 1 1 0 2.4 3 . 9 29 117-135 1 1 1 0 2 2 1 1 0 1 .7 4 . 4 30 135+ 1 1 1 0 2 1 1 1 1 0 .8 3.4 Site 5 31a 1 5 - 1 3 31 13-0 0 1 1 0 4 1 1 0 0 0.4 3.0 32 0-10 1 1 0 0 4 1 2 0 0 0 .8 1 .4 33 10-20 2 1 2 2 0 1 1 1 1 1 .7 3.0 34 20 -31 2 1 2 0 0 1 1 1 1 1.8 4.0 35 31-48 2 1 2 0 1 1 1 1 0 2.0 5 . 5 36 48+ 1 1 1 0 3 1 0 1 1 0 .8 3.2 Site 6 37 18-0 38 0 -5 0 1 1 0 4 1 2 1 0 0 .3 1.2 39 5-20 1 1 1 1 2 0 1 1 1 1 .6 1 .6 40 20 -79 1 1 2 1 3 0 1 1 0 1.1 1 .6 41 79-114 2 1 1 4 0 0 1 1 0 1.2 1 .8 42 114-132 2 1 2 0 3 0 1 1 0 2 .3 3 . 6 43 132-145 2 1 1 3 2 0 1 1 0 0 .8 1.8 44 145-152 1 1 1 0 4 0 1 1 0 0 .7 1 .4 45 152-163 1 1 1 0 4 0 1 1 0 0.7 1 9 46 163+ 1 1 0 1 4 0 1 1 0 0 .6 1.4 I—1 o Table 1 1 - 5 , continued Sample NaOH and Depth 10 A Montmor- Vermicu- Mixed '"LV.••'c/, Feld- Amphi- extractable Site (cm) C h l o r i t e * Micas* K a o l i n i t e * i l l i o n i t e * l i t e * layer* Quartz* spars* bols* A l S i % Site 7 47 2 5 - 1 3 ' 48 1 3 - 0 0 1 2 0 49 • 0 - 5 1 0 1 0 50 5 - 2 3 2 0 0 3 51 . 2 3 - 3 3 2 0. 0 0 52 3 3 - 7 9 2 1 1 3 53 79+ 3 2 0 0 Site 8 54 3 1 - 0 55 .. 0 - 2 3 1 0 2 0 56. 2 3 - 3 6 1 0 2 0 57 3 6 - 5 6 0 0 2 0 58 5 6 - 8 1 2 0 2 0 59 8 1 - 1 0 9 2 0 1 0 60 1 0 9 - 1 1 7 2 1 1 0 61 1 1 7 - 1 5 5 2 1 2 0 62 155+ 1 1 2 0 Site 9 69 1 5 - 0 70 0 - 2 3 1 0 1 0 71 2 3 - 6 9 1 0 1 0 72 6 9 - 1 0 9 3 1 3 0 73 1 0 9 - 1 2 7 3 0 3 0 Site 10 74 3 1 - 0 75 0 - 1 5 1 0 2 0 76 1 5 - 4 3 1 0 1 0 77 4 3 - 8 6 3 0 2 0 78 8 6 - 1 1 9 2 0 2 1 4 0 2 0 0 0 . 7 2 . 3 4 0 2 1 0 1 . 1 1 . 4 2 1 1 1 1 1 .8 2 . 2 3 1 1 1 0 1 . 6 1 . 9 1 0 1 1 0 0 . 7 1 . 2 0 .0 1 1 1 0 . 4 1 . 1 4 0 1 1 1 0 .7 - 0 . 7 3 0 1 1 1 1 . 1 0 . 8 2 1 1 1 1 ' 1 . 2 1 . 3 2 0 1 1 1 0 . 9 1 . 2 2 0 1 1 1 0 . 8 1 . 2 3 0 1 1 1 0 . 5 0 . 9 3 0 1 1 1 0 . 7 1 . 2 3 0 1 1 1 0 . 2 0 . 7 4 0 1 1 0 5 - 3 1 . 1 4 1 1 1 1 5 - 0 1 . 5 1 . 0 2 1 0 3 . 8 2 . 3 0 0 2 1 0 3 . 9 2 . 3 3 0 1 1 0 4 . 7 1 . 2 2 0 2 1 0 4 . 2 0 . 8 1 3 1 1 0 4 . 4 2 . 3 0 0 1 1 0 4 . 7 3 . 7 I—1 o co 1 0 9 i n c r e a s e d and remained r e l a t i v e l y c o n s t a n t w i t h depth. Some i n c r e a s e i n m i c a . o c c u r r e d . a t c o n s i d e r a b l e depth at S i t e 2 . Sodium h y d r o x i d e e x t r a c t a b l e A l o f S i t e 1 w a s . h i g h e s t i n the upper B h o r i z o n a t 4". 0 p e r c e n t and remained r e l a t i v e l y c o n s t a n t at a p p r o x i m a t e l y . 2 . 5 p e r c e n t i n the remainder o f the solum and i n t o t h e C h o r i z o n . S i l i c o n was lo w e s t i n the Ahe w i t h a v a l u e of 1 . 0 p e r c e n t and i n c r e a s e d t o 1 . 9 p e r c e n t i n t h e upper B and remained r e l a t i v e l y c o n s t a n t t h r o u g h o u t - t h e pedon a t 2 . 2 t o 2 . 4 p e r c e n t . S i m i l a r amounts of A l and S i were e x t r a c t e d from the s o i l a t S i t e 1 w i t h the e x c e p t i o n of the A and upper B h o r i z o n where A l was h i g h e r by a f a c t o r of 2 . The s o i l a t S i t e 2 e x h i b i t e d s i m i l a r t r e n d s f o r e x t r a c t -a b l e A l w i t h 4 . 5 p e r c e n t p r e s e n t I n the B h o r i z o n . Lower v a l u e s r a n g i n g from 0 . 8 t o 1 . 8 p e r c e n t o c c u r r e d i n the BC and C h o r i z o n s . S i l i c o n gave a r e v e r s e d r e l a t i o n s h i p t o the S i v a l u e s f o r S i t e 1 . The maximum o c c u r r e d i n the B of 2 . 9 p e r -cent and d e c r e a s e d i n the BC and C h o r i z o n s from 1 . 7 t o 1 . 2 p e r c e n t . The r a t i o of A l t o S i was s i m i l a r t o S i t e 1 . V e r m i c u l i t e dominated the c l a y s u i t e of the upper B h o r -i z o n of the s o i l at S i t e 3 w i t h k a o l i n i t e and c h l o r i t e d o m i n a t i n g the remainder of the B and C h o r i z o n s . There was no a c c u m u l a t i o n of A l or S i i n the upper B as o c c u r r e d at. S i t e s 1 and. 2 . Some v a r i a b i l i t y o c c u r r e d • i n t h e lower B and C h o r i z o n s which cor r e s p o n d e d to- a de c r e a s e from 1 . 6 t o 0 . 4 p e r c e n t i n A l and an i n c r e a s e i n S i from 1 . 5 t o 3 - 0 p e r c e n t . I1C S i m i l a r v a l u e s f o r A l and S i were o b t a i n e d in.. t h e upper B w h i l e S i was g r e a t e r by more t h a n a f a c t o r of. 2 lower i n the pedon. M o r i t m o r i l l o n i t e and v e r m i c u l i t e a r e the.dominant m i n e r a l s p r e s e n t i n the s u r f a c e m i n e r a l h o r i z o n s of S i t e 4 w i t h v e r -m i c u l i t e r e m a i n i n g r e l a t i v e l y h i g h w i t h depth as m o n t m o r i l l o n i t e becomes a b s e n t . C h l o r i t e , mica'and mixed l a y e r m i n e r a l s i n c r e a s e w i t h depth and k a o l i n i t e i s p r e s e n t t hroughout th e pedon. NaOH e x t r a c t a b l e A l and S i b oth t e n d t o i n c r e a s e w i t h depth from 1 . 0 t o 2 . 6 p e r c e n t and 2 . 5 t o 4 . 6 p e r c e n t r e s p e c t i v e l y t o the m i d d l e of the B h o r i z o n . Aluminum d e c r e a s e s t o 0 . 8 p e r c e n t i n the C and a s l i g h t • d e c r e a s e o c c u r s i n S i t o 3 . 4 p e r c e n t . V e r m i c u l i t e i s dominant i n the s u r f a c e h o r i z o n s o f the s o i l a t S i t e 5 and i s absent i n t h e l o w e r B h o r i z o n s but i s p r e s e n t i n . the s a t u r a t e d C h o r i z o n s . The d e c r e a s e i n v e r -m i c u l i t e i n the lower B o f the pedon c o r r e s p o n d s t o an i n c r e a s e i n c h l o r i t e and k a o l i n i t e . loS micas and mixed l a y e r m i n e r a l s are p r e s e n t t hroughout th e pedon. E x t r a c t a b l e S i and A l e x h i b i t s i m i l a r t r e n d s as i n the s o i l at S i t e 4 , w i t h a maxima re a c h e d i n the lower p o r t i o n of the B h o r i z o n . Aluminum i n c r e a s e s from 0 . 8 p e r c e n t i n the s u r f a c e m i n e r a l h o r i z o n t o 2 . 0 i n the lower B h o r i z o n and d e c r e a s e s t o 0 . 8 p e r c e n t i n the C. S i l i c o n i n c r e a s e s from 1 . 4 t o 5 . 5 p e r c e n t from the s u r f a c e t o t h e l o w e r B and d e c r e a s e s t o 3 - 2 p e r c e n t i n the G h o r i z o n . V e r m i c u l i t e , which i s the dominant m i n e r a l i n t h e s o i l a t S i t e 6 , d e c r e a s e s i n the lower B and t h e n ' i n c r e a s e s w i t h depth I l l i n the C h o r i z o n . T h i s d e c r e a s e i n v e r m i c u l i t e c o r r e s p o n d s t o an i n c r e a s e i n c h l o r i t e and. . k a o l i n i t e , ..which t h e n d e c r e a s e s i n the lower -C, The same ...trend i s g e n e r a l l y f o l l o w e d w i t h m o n t m o r l l l o n i t e h o w e v e r , the d i s t r i b u t i o n of m o n t m o r i l l o n i t e i s more e r r a t i c t hroughout the pedon. -108 micas a r e p r e s e n t t h r o u g h o u t t h e pedon. NaOH e x t r a c t a b l e A l I s h i g h e s t above • the p l a c i c h o r i z o n a t 1 . 6 p e r c e n t and d e c r e a s e s t o 1.1 p e r c e n t below.' Aluminum d e c r e a s e s s t e a d i l y w i t h depth from 1 . 2 t o 0 . 6 p e r c e n t w i t h the e x c e p t i o n o f . a c l a y e n r i c h e d l a y e r o c c u r -r i n g a t 114'. cm from the m i n e r a l s u r f a c e . S i l i c o n remains r e l a t i v e l y c o n s t a n t a t 1 . 6 t o 1.9 p e r c e n t i n t h e B and C h o r i z o n w i t h the e x c e p t i o n o f . t h e c l a y e n r i c h e d l a y e r where a v a l u e of 3 . 6 p e r c e n t was o b t a i n e d . V e r m i c u l i t e w i t h k a o l i n i t e and some loS micas dominated the s u r f a c e m i n e r a l h o r i z o n s o f S i t e 7 . V e r m i c u l i t e d e c r e a s e d and was a b s e n t . i n the C. T h i s decreases-corresponded t o an i n c r e a s e i n c h l o r i t e w h i c h was u n i f o r m t h r o u g h o u t t h e m i n e r a l h o r i z o n s . 10$ micas were p r e s e n t i n the lower B and C but were absent i n t h e upper B h o r i z o n . M o n t m o r i l l o n i t e o c c u r r e d s p o r a d i c a l l y i n the B as w e l l as mixed l a y e r m i n e r a l s . Sodium h y d r o x i d e e x t r a c t a b l e A l was c o n c e n t r a t e d i n the upper B a t 1.8 p e r c e n t and de c r e a s e d t o 0.4 p e r c e n t w i t h d e p t h . S i l i c o n e x h i b i t e d s i m i l a r t r e n d s , however, the v a l u e s were h i g h e r and t h e r e was an a c c u m u l a t i o n i n the H h o r i z o n of 2 . 3 p e r c e n t . Another a c c u m u l a t i o n of 2 . 2 p e r c e n t o c c u r r e d i n the upper B w i t h a s t e a d y d e c r e a s e t o 1,1 p e r c e n t i n the C h o r i z o n . 1 1 2 S i t e 8 e x h i b i t e d v e r y s i m i l a r m i n e r a l o g i c a l c h a r a c t e r i s t i c s t o S i t e . 6 . V e r m i c u l i t e was a g a i n the dominant m i n e r a l which d e c r e a s e d w i t h - d e p t h and then i n c r e a s e d i n t o t h e . C . h o r i z o n . A s i m i l a r t r e n d o c c u r r e d w i t h k a o l i n i t e o n l y w i t h l e s s e r amounts. C h l o r i t e i n c r e a s e d i n the lower B and upper C h o r i z o n s and m o n t m o r i l l o n i t e was a b s e n t . V a l u e s o b t a i n e d f o r NaOH e x t r a c t a b l e A l and S i were a l s o s i m i l a r i n . magnitude throughout the pedon t o the amounts p r e s e n t i n t h e s o i l at S i t e 6 . However, A l I n c r e a s e d from 0 . 7 i n the upper B t o 1 . 2 p e r c e n t i n the l o w e r B h o r i z o n and t h e n d e c r e a s e d s t e a d i l y t o 0 . 2 p e r c e n t a t 1 5 5 cm. S i l i c o n e x h i b i t e d an i n c r e a s e from 0 . 7 t o 1 . 3 p e r c e n t from the upper t o lower B and d e c r e a s e d o n l y s l i g h t l y i n t o the C h o r i z o n . V e r m i c u l i t e i s the dominant c l a y m i n e r a l i n the upper solum of the s o i l a t S i t e 9 w i t h c h l o r i t e and k a o l i n i t e d o m i n a t i n g the lower solum.' Sodium h y d r o x i d e e x t r a c t a b l e A l i s h i g h e s t a t 5 . 3 p e r c e n t i n the upper B h o r i z o n and d e c r e a s e s i n the lower B t o 3 . 8 p e r c e n t . The r e v e r s e i s t r u e o f S i w i t h the l o w e s t v a l u e s of 1 . 1 p e r c e n t i n the upper B h o r i z o n and i n c r e a s i n g t o 2 . 3 p e r c e n t i n the lower B. The m i n e r a l o g y of the s o i l a t S i t e 1 0 i s s i m i l a r , i n t r e n d s and magnitude, t o S i t e 9 w i t h v e r m i c u l i t e d o m i n a t i n g the upper solum. C h l o r i t e and k a o l i n i t e were p r e s e n t t h r o u g h o u t the pedon w i t h an...increase i n c h l o r i t e and a d e c r e a s e i n . k a o l i n i t e w i t h d e p t h . Sodium h y d r o x i d e e x t r a c t a b l e A l i s c o n s t a n t 1 1 3 t h r o u g h o u t the pedon and ranges, from 4., 2 t o 4 . 7 p e r c e n t . S i l i c o n has v a l u e s o f 1 . 2 and 0 . 8 p e r c e n t i n t h e B h o r i z o n and i n c r e a s e s t o . 3 - 7 p e r c e n t above the l i t h i c c o n t a c t . SOIL GENESIS Water can be c o n s i d e r e d the dominant f o r c e i n the g e n e s i s of the s o i l s s t u d i e d . " Even thought-there was a wide range of s o i l t e x t u r e s , the h i g h p r e c i p i t a t i o n i n the a r e a ( T a b l e 1 - 1 ) reduced the e f f e c t o f t h i s v a r i a t i o n . A l s o , much of the study a r e a had v e r y l i t t l e r e l i e f and t h i s , combined w i t h the h i g h r a i n f a l l , " has' r e s u l t e d i n ground water l e v e l s b e i n g near the s u r f a c e f o r a l a r g e p e r c e n t a g e o f the t o t a l a r e a . T h e r e f o r e , the p o s i t i o n of the m a t e r i a l i n the la n d s c a p e i n r e l a t i o n t o d r a i n a g e c h a n n e l s has p l a y e d a s i g n i f i c a n t r o l e i n d e t e r m i n i n g the k i n d s and r a t e s o f pedogenic processes' t a k i n g p l a c e . T h i s was the r e s u l t of pronounced d i f f e r e n c e s i n the movement o f water w i t h i n the pedons and c o n s e q u e n t l y the t r a n s p o r t o f m a t e r i a l s d u r i n g - p e d o g e n e s i s . T h i s , p l u s the range i n age of p a r e n t m a t e r i a l s ' h a s r e s u l t e d I n d i f f e r e n t degrees o f s o i l development. The predominance of v e r m i c u l i t e i n the s u r f a c e m i n e r a l h o r i z o n s of the s o i l s s t u d i e d i n d i c a t e s t h a t t h i s m i n e r a l i s i n e q u i l i b r i u m w i t h the environment. T h i s r e p r e s e n t s an i n t e r m e d i a t e stage of w e a t h e r i n g ( s t a g e • 8 . i n • J a c k s o n s ' w e a t h e r i n g i n d e x of c l a y - s i z e m i n e r a l p a r t i c l e s ; J a c k s o n , ' 1 9 5 2 ) . As was s t a t e d p r e v i o u s l y , some of the c l a y m i n e r a l s p r e s e n t i n minor amounts i n the < 0..2J4- s i z e f r a c t i o n may have been m i s s e d , as the a n a l y s i s t o determine the k i n d s of c l a y s p r e s e n t was 1 1 4 completed, on the t o t a l f r a c t i o n < . . 2 j j , However ? due t o t h e presence of - d i s c o n t i n u i t i e s , any w e a t h e r i n g sequence, r e l a t e d t o depth would not be m e a n i n g f u l , and the dominant m i n e r a l s p r e s e n t would g i v e the b e s t i n d i c a t i o n o f the stage of w e a t h e r i n g . The marine environment i s conducive' t o t h e f o r m a t i o n o f v e r m i c u l i t e ( J a c k s o n , 1 9 5 2 ) and c o u l d be r e s p o n s i b l e f o r i t s p r e s e n c e . However, the predominance of t h i s m i n e r a l o n l y i n t h e . s u r f a c e h o r i z o n s would suggest i t was p e d o g e n i c , r a t h e r t h a n d i a g e n e t i c i n o r i g i n . Some of the m i n e r a l s w i t h a h i g h e r r e s i s t a n c e t o w e a t h e r i n g a re p r e s e n t i n the pedons" but-'.we're p r o b a b l y i n h e r e n t i n the p a r e n t m a t e r i a l . T h i s i s s u p p o r t e d by t h e abr u p t presence or absence of t h e s e m i n e r a l s i n h o r i z o n s where d i s c o n t i n u i t i e s o c c u r . The low amounts of exchangeable c a t i o n s i n t h e m i n e r a l h o r i z o n s of the s o i l s s t u d i e d . a r e a l s o i n d i c a t i v e of e x t e n s i v e l e a c h i n g . The i n c r e a s e i n the amounts o f t h e s e c a t i o n s , i n the lower solum of some of the s o i l s i n d i c a t e s the depth o f e f f e c t -i v e l e a c h i n g i n the r e s p e c t i v e m a t e r i a l s f o r t h i s p a r t i c u l a r arrangement o f e n v i r o n m e n t a l components. F o r example, i n t h e s o i l a t S i t e 4 the i n c r e a s e i n exchangeable c a t i o n s o c c u r r e d at 1 1 7 cm. below the m i n e r a l s u r f a c e which r e f l e c t s the a b i l i t y of the p e r c o l a t i n g waters t o move t h r o u g h a s o i l w i t h t h e s e s p e c i f i c c h a r a c t e r i s t i c s . T h i s d i s t r i b u t i o n i n the pedon i s r e f l e c t e d i n I n c r e a s e d base s a t u r a t i o n and pH w i t h depth. These are c h a r a c t e r i s t i c s 1 1 5 o f young s o i l s but i n t h i s p a r t i c u l a r environment the h i g h i o n i c • c o n c e n t r a t i o n o f the p r e c i p i t a t i o n would a c t t o . m a i n t a i n t h i s s i t u a t i o n ( F i g . I ~ 2 6 ) . Also.,', an. i n c r e a s e above the l i t h i c c o n t a c t of S i t e s 9 and 1 0 i l l u s t r a t e s t he e f f e c t s of r e s t r i c t i n g l a y e r s . The presence o f l i t h o l o g i c d i s c o n t i n u i t i e s w hich have been i n f l u e n t i a l i n the g e n e s i s of s o i l s i s not' uncommon (Van Schuyl e n b o r g h and Bruggenwert, 1 9 6 5 ) . D i s c o n t i n u i t i e s i n i t i a l l y d i s r u p t water"movement t h r o u g h the porous s u r f i c i a l d e p o s i t , thus c r e a t i n g v a r i a b i l i t y i n s o i l m o i s t u r e c o n t e n t . T h i s i n t u r n , e s p e c i a l l y i n the presence of o r g a n i c m a t t e r , can cause c o n s i d e r a b l e d i f f e r e n c e s i n redox p o t e n t i a l (McKenzie -e t a l i 9 6 0 ) . The s o l u b i l i t y of many el e m e n t s , i n c l u d i n g Mn and Fe, i s i n c r e a s e d i n the reduced s t a t e r e s u l t i n g i n m o b i l i z a t i o n . The m o d e r a t e l y w e l l and i m p e r f e c t l y d r a i n e d s o i l s on a l l p a r e n t m a t e r i a l s s t u d i e d showed e v i d e n c e t h a t d i s c o n t i n u i t i e s were of c o n s i d e r a b l e importance i n s o i l g e n e s i s and p r e s e n t f u n c t i o n o f ' t h e pedon i n the environment. T h i s was most v i s i b l y e v i d e n t i n the s o i l a t S i t e 6 where a p l a c i c h o r i z o n had developed a t a d i s c o n t i n u i t y . D i s c o n t i n u i t i e s i n s i t e s which were wet because of the•arrangement o f ' e x t e r n a l l a n d s c a p e f e a t u r e s had l e s s i n f l u e n c e on s o i l genesis'. T h i s was due t o s a t u r a t i o n throughput t h e pedon r e s u l t i n g i n l e s s s e g r e g a t i o n of m o b i l e c o n s t i t u e n t s i n t o s p e c i f i c h o r i z o n s . A h i g h energy environment f o r e r o s i o n i n which t h e s e s o i l s have d e v e l o p e d has r e s u l t e d i n a s e l e c t i o n of mechanisms and 116 s o i l p r o p e r t i e s w h i c h p r e s e r v e s t h e e x i s t e n c e o f t h e s o i l c o n t i n u u m . i n the l a n d s c a p e . T h i s p r o c e s s . o f s e l e c t i o n f u n c t i o n s i n much the same way as the p r o c e s s of n a t u r a l s e l e c t i o n i n p l a n t s and a n i m a l s . I f . s o m e . p r o t e c t i v e mechanism had not been i n h e r e n t i n t h e s o i l s o f d eveloped subsequent t o d e p o s i t i o n , t h e s o i l s would have been removed t h r o u g h erosion.;.-. The f o r m a t i o n of'cemented h o r i z o n s i s a dominant g e n e t i c f e a t u r e i n the c o a r s e r t e x t u r e d s o i l s w hich i n c r e a s e s , t h e i r r e s i s t a n c e t o e r o s i o n . The outwash d e p o s i t s were cemented t o depths of at l e a s t 10 m which i s e x p r e s s e d as near v e r t i c a l c l i f f s where they are eroded by ocean waves d u r i n g w i n t e r storms. As was s t a t e d p r e v i o u s l y , s o i l s d e v e l o p e d on sandy beach m a t e r i a l s d e v e l o p e d p l a c i c h o r i z o n s . T h i s r e s t r i c t i n g l a y e r m a i n t a i n s a m i c r o -environment above i t which p e r p e t u a t e s the l a y e r i t s e l f and p r o v i d e s an environment s u i t a b l e f o r o r g a n i c m a t t e r a c c u m u l a t i o n . T h i s . i n ' t u r n p r o t e c t s the s o i l from s u r f a c e e r o s i o n and t h e r e -f o r e , the s o i l i s m a i n t a i n e d . The f i n e r t e x t u r e d marine d e p o s i t s responded i n a d i f f e r e n t manner which has r e s u l t e d i n improved s t a b i l i t y t h r o u g h improved i n t e r n a l d r a i n a g e . The a g g r e g a t i o n o f c l a y s i z e d p a r t i c l e s has i n c r e a s e d t h e e f f e c t i v e pore space. T h i s i n c r e a s e d the p e r c o l a t i o n c a p a c i t y of t h e s e s o i l s which d i s s i p a t e s the energy a v a i l a b l e f o r e r o s i o n by water. . The c h e m i c a l p r o p e r t i e s o f . t h e s o i l s where i n t e r n a l d r a i n -age was a dequate^support p r e s e n t t h e o r i e s o f P o d z o l g e n e s i s . 117 The a n a l y s i s of the p l a c i c h o r i z o n s (Table I I I - l ) i s c o n s i s t e n t w i t h t h e f i n d i n g s of Duchaufour C l 9 6 5 ) t h a t .some o f the o r g a n i c m a t e r i a l s move t h r o u g h the pedon as f u l v i c . a c i d , These o r g a n i c a c i d s a re a l s o c o n s i d e r e d r e s p o n s i b l e f o r d i s s o l v i n g the p r i m a r y p h o s p h a t i c m i n e r a l s and t r a n s p o r t i n g t h e s o l u b l e p r o d u c t s i n the B where they a re p r e c i p i t a t e d ( F r a n z m i e r 'et-Jal, 1963). There was e v i d e n c e f o r t h e movement o f a v a i l a b l e P out o f the upper B and i n t o the lower solum. T h i s a l s o s u p p o r t s t h e s u g g e s t i o n t h a t p r e c i p i t a t i o n o c c u r s as aluminum phosphates w i t h t h e maximum f o r e x t r a c t a b l e A l b e i n g g e n e r a l l y i n t h e lower B, below the maximum zone of a c c u m u l a t i o n f o r Fe by the methods used. . The v a r i a t i o n o f the s o i l s d eveloped on the g l a c i o m a r i n e outwash d e p o s i t s a t S i t e s 1 and 2 i s due t o the d i f f e r e n c e s i n the depth o f the c a p p i n g of f i n e r . t e x t u r e d m a t e r i a l over t h a t w i t h h i g h , g r a v e l c o n t e n t . I n i t i a l l y , t he h i g h p r e c i p i t a t i o n would r a p i d l y l e a c h any s o l u b l e s a l t s p r e s e n t i n t h e m a t e r i a l and the e s t a b l i s h m e n t of v e g e t a t i o n would make a v a i l a b l e o r g a n i c a c i d s which would f u r t h e r l e a c h most of the c a t i o n s p r e s e n t . The p r o c e s s e s o f w e a t h e r i n g would be r e t a r d e d by the i n f l u e n c e o f c a t i o n s p r e s e n t i n the r a i n w a t e r ( F i g . 1-26). However, the h i g h p r e c i p i t a t i o n c o u n t e r a c t s t h i s i o n i c Input t o some degree, e s p e c i a l l y where c o a r s e t e x t u r e d m a t e r i a l s dominated the pedon and a l l o w e d r a p i d l e a c h i n g o f t h e s e bases w i t h a subsequent d e c r e a s e i n pH. The w e a t h e r i n g of p r i m a r y m i n e r a l s was i n i t i a t e d by the o r g a n i c a c i d s and has r e s u l t e d i n low amounts of P i n the upper B as i n d i c a t e d i n t h e l o w • a v a i l a b l e P c o n t e n t . 1 1 8 The i n c r e a s e i n a c i d i t y has reduced the decomposition of o r g a n i c m a t t e r - w i t h r e l a t i v e l y h i g h C/N r a t i o s b e i n g m a i n t a i n e d i n the s u r f a c e 1 h o r i z o n s as would be expected w i t h t h i s degree of a c i d i t y . C o n s e q u e n t l y o r g a n i c m a t t e r c o n t e n t i s v e r y -low:,below the s u r f a c e h o r i z o n s and n u t r i e n t c y c l i n g i s r e s t -r i c t e d p r i m a r i l y t o the o r g a n i c h o r i z o n s . As w e a t h e r i n g proceeded, the n e g a t i v e a c c u m u l a t i o n o f Fe and A l o x i d e s has i n c r e a s e d the a v a i l a b l e water s t o r a g e c a p a c i t y o f the s u r f a c e m i n e r a l h o r i z o n s . This^.has. i n c r e a s e d the a b i l i t y o f t h e s e s o i l s t o s u p p l y adequate water t o p l a n t s d u r i n g p e r i o d s of summer d e f i c i t s ( T a b l e 1 - 1 ) which i n t u r n i n c r e a s e s the s o i l s t o r a g e c a p a c i t y t h r o u g h • l i t t e r a c c u m u l a t i o n . The d i s t r i b u t i o n of Fe and A l i n ' t h e pedons shows, t h a t mob-i l i z a t i o n and s u b s e q u e n t ' t r a n s f e r o f t h e s e - elements from the o r g a n i c l a y e r s i n t o the upper B has t a k e n p l a c e . T r a n s l o c a t i o n of Fe and. A l t o l o w e r depth appears l i m i t e d w i t h any i n c r e a s e due t o n e g a t i v e enrichment or t o t h e i r p r e s ence i n the p a r e n t - m a t e r i a l s . The i n c r e a s e i n o x a l a t e - e x t r a c t a b l e Fe i n the C h o r i z o n of S i t e 2 i s due t o t h e p r e s e n c e o f m a g n e t i t e i n t h e s e d e p o s i t s (Bremner, 1 9 7 0 ) which i s e x t r a c t e d by t h i s p r o c e d u r e ( B a r i l and B i t t o n , 1 9 6 9 ) . A l t h o u g h no i n c r e a s e i n A l or S i was noted i n C h o r i z o n s of t h e s e s o i l s , , the low chromas suggest t h a t t h e s e elements s i n g l y , . o r t o g e t h e r a c t as the cementing agents which g i v e t h e s e s o i l s t h e i r s t a b i l i t y . I t i s p o s s i b l e t h a t p r e s s u r e 1 1 9 from i c e , and/or water might haye been i n s t u m e n t a l i n r e a r r a n g i n g t h e p a r t i c l e s t h r o u g h compaction, but the h i g h l y s o r t e d n a t u r e of t h e s e m a t e r i a l s would suggest the cementing agent i s . c h e m i c a l r a t h e r t h a n due t o p h y s i c a l f o r c e s . As was s t a t e d p r e v i o u s l y , the dominance of v e r m i c u l i t e i n the s u r f a c e h o r i z o n s i n d i c a t e s the stage of w e a t h e r i n g of t h e s e s o i l s . However, the s o i l a t S i t e 2 had mixed l a y e r m i n e r a l s d o m i n a t i n g the c l a y s u i t e . V e r m i c u l i t e was p r e s e n t but not i n amounts comparable t o o t h e r s o i l s which s u g g e s t s i t s absense i s due t o o t h e r than g e n e t i c r e a s o n s . I t c o u l d be due t o m i x i n g of the s u r f a c e h o r i z o n s d u r i n g l o g g i n g , however, morphology and . c h e m i c a l c h a r a c t e r i s t i c s do not support t h i s . The s o i l a t S i t e 3 has proceeded t h r o u g h the same i n i t i a l sequence of g e n e s i s as the s o i l s at S i t e s 1 and 2 but t h e p o s i t i o n o f t h i s s o i l i n d e p r e s s i o n a l . a r e a s has changed the p r o c e s s e s d u r i n g l a t e r s t a g e s of development. The arrangement' of l a y e r s o f c o a r s e and f i n d t e x t u r e d m a t e r i a l s i n the pedon i l l u s t r a t e s t h e complex mode of d e p o s i t i o n o f t h i s m a t e r i a l i n the upper 50 cm.. I n i t i a l l y water would have been a b l e t o p e r c o l a t e r a p i d l y t h r o u g h the c o a r s e d t e x t u r e d d e p o s i t s but water has washed the f i n e s from s u r r o u n d i n g s l o p e s and sub-s e q u e n t l y sands have been d e p o s i t e d over the f i n e s . The presence of t h e s e d i s c o n t i n u i t i e s and the g r a d u a l c e m e n t a t i o n of the c o a r s e r l a y e r s reduced the removel of water t h r o u g h the pedon. T h i s has r e s u l t e d i n the f o r m a t i o n of r e c e n t 1 2 0 bogs w i t h an i n c r e a s e i n the a c c u m u l a t i o n of o r g a n i c m a t e r i a l and the i n v a s i o n of bog s p e c i e s . A ; . r e p r e s e n t a t i y e bog has been dated a t 3 6 O + 9 0 y e a r s (Wade, 1 9 6 5 ) . T h i s sequence of p r o c e s s e s has r e s u l t e d i n a s o i l which has a ^ h i g h e r degree of g e n e t i c e x p r e s s i o n t h a n would be expected i f the s o i l had been permanently s a t u r a t e d . The most pronounced f e a t u r e o f the s o i l at S i t e ' 4 , d e v e l o p e d on s t o n y marine c l a y m a t e r i a l s , was the a b i l i t y of t h i s s o i l w i t h a. c l a y c o n t e n t as h i g h as t h i s t o d r a i n i n t e r n a l l y . The p r e s e nce of m o t t l e s i n the upper B h o r i z o n s i s . i n d i c a t i v e t h a t . f o r • p a r t of the year the s o i l i s s a t u r a t e d i n t h e s e h o r i z o n s but f o r much of the year t h e s o i l has the c a p a c i t y t o cope w i t h the. l e v e l s o f p r e c i p i t a t i o n . i n the..area. The i n c r e a s e i n Ca and Mg at 1 1 7 cm. below the m i n e r a l s u r f a c e h o r i z o n s shows t h i s i s the e f f e c t i v e l e a c h i n g depth i n t h i s m a t e r i a l f o r t h i s e nvironment. I n i t i a l l y the m a t e r i a l from which t h i s s o i l ^ d e v e l o p e d was p r o b a b l y s i m i l a r t o t h a t a t S i t e 5, however the m a t e r i a l s which were p o s i t i o n e d near d r a i n a g e c h a n n e l s were s u b j e c t t o p e r i o d i c d r y i n g . The i n c r e a s e d m o b i l i z a t i o n of c o n s t i t u e n t s d u r i n g p e r i o d s of h i g h water c o n t e n t i n the presence of o r g a n i c m a t t e r r e s u l t e d i n the removal of t h e s e w e a t h e r i n g , p r o d u c t s which a l l o w e d pedogenic p r o c e s s e s t o c o n t i n u e . The d e c r e a s e i n pH d u r i n g dry p e r i o d s • w o u l d r e s u l t - i n i n c r e a s e d d e s t r u c t i o n o f the p r i m a r y m i n e r a l s h i g h i n bases. A l s o , the 1 2 1 a l t e r n a t i n g c y c l e s o f w e t t i n g a n d . d r y i n g have r e s u l t e d , i n t h e • a g g r e g a t i o n of t h e Fe and A l o x i d e s which a re t h e r e s i s t a n t w e a t h e r i n g r e s i d u e s o f t h e p r o c e s s e s mentioned p r e v i o u s l y . I t i s the a g g r e g a t i o n of t h e s e o x i d e s which has i n c r e a s e d t h e i n -t e r n a l c a p a c i t y of t h e s e s o i l s t o t r a n s p o r t water. The v e r y low amounts of a v a i l a b l e P r e f l e c t p a r t l y the h i g h amounts of Fe and A l a v a i l a b l e i n the pedon t o reduce i t s a v a i l a b i l i t y . Because the t o t a l s o i l volume i s i n t h e < .2 mm i n s i z e f r a c t i o n , the amount of Fe and A l which i s ' p r e s e n t t o p r e c i p i t a t e P i s much h i g h e r i n t h i s s o i l t h a n i n t h e outwash d e p o s i t s where t h e < 2 mm s i z e component was much s m a l l e r . The h i g h pH dependent CEC r e s u l t i n g from t h e presence of l a r g e amounts o f A l a l s o s u p p o r t s the i m m o b i l i z a t i o n o f P. as Fe and A l p hosphates. I n the C h o r i z o n , t h e t h r e e f o l d i n c r e a s e s i n a v a i l a b l e P r e p r e s e n t the response t o a de c r e a s e i n the amount of Fe and A l o x i d e s , and a l s o a much h i g h e r c o n t e n t o f Ca and Mg which would a l s o b e g i n t o i m m o b i l i z e some o f the P. The BCg h o r i z o n i s i n t e r m e d i a t e between t h e s e two cases and has r e s u l t e d i n t h e h i g h e r v a l u e f o r a v a i l a b l e P. U s i n g the c r i t e r i a o u t l i n e d by McKeague e t al_ ( 1 9 7 1 ) most of the Fe i s p r e s e n t as i n o r g a n i c amorphous m a t e r i a l and i t i s an i n c r e a s e i n t h i s form t h a t c o r r e s p o n d s t o a d e c r e a s e i n a v a i l a b l e P. A l t h o u g h t h i s approach t o de t e r m i n g t h e form of Fe i n s o i i s does, not g i v e a b s o l u t e amounts (Arshad e_t al, 1 9 7 2 ' ; Pawluk, 1 9 7 2 ) i t does g i v e the r e l a t i v e p r o p o r t i o n s o f each form p r e s e n t . 122 As can be seen from t h e p r e v i o u s d i s c u s s i o n , t h e pedogenic p r o c e s s e s t a k i n g p l a c e i n . the f o r m a t i o n , of t h i s s o i l a re s i m i l a r t o t h o s e t a k i n g p l a c e i n s o i l s d e v e l o p e d on c o a r s e r m a t e r i a l s . The r a t e of development has been r e t a r d e d by the f i n e t e x t u r e ^ a n d the presence of b a s i c c a t i o n s i n the p a r e n t m a t e r i a l and from p r e c i p i t a t i o n . The d i f f e r e n c e s i n p a r t i c l e s i z e d i s t r i b u t i o n and c h e m i c a l c h a r a c t e r i s t i c s between the solum and C s u g g e s t s • t h a t the o r i g i n a l sand s i z e d p a r t i c l e s i n m a t e r i a l were weathered w i t h subsequent removal o f - t h e r e a d i l y m o b i l e p r o d u c t s and the f o r m a t i o n of o x i d e s of Fe and A l . These the n formed a g g r e g a t e s as shown by the change i n p a r t i c l e s i z e d i s t r i b u t i o n upon t r e a t m e n t w i t h c i t r a t e d i t h i o n i t e . The s o i l at S i t e 5 has s i m i l a r c h a r a c t e r i s t i c s t o t h a t at S i t e 4 but pedon development i s l i m i t e d i n depth and t h e r e i s e v i d e n c e of wetness throughout the pedon. T h i s i s due t o the h i g h water t a b l e which p r e v e n t s removal of w e a t h e r i n g p r o d u c t s and e l i m i n a t e s c y c l e s o f w e t t i n g and d r y i n g . T h i s e f f e c t i v e l y p r e v e n t s deep s o i l development. A p l a c i c h o r i z o n . i s the dominant g e n e t i c f e a t u r e i n some of the s o i l s • d e v e l o p e d on marine beach sand d e p o s i t s . The c h a r a c t e r i s t i c s , c o m p o s i t i o n and g e n e s i s of t h i s h o r i z o n a r e d i s c u s s e d i n d e t a i l i n Chapter I I I . S o i l g e n e s i s i n t h i s m a t e r i a l was i n i t i a l l y d i r e c t e d by the depth of the water t a b l e from t h e m i n e r a l s u r f a c e and t h e presence o f l i t h o l o g i c d i s c o n t i n u i t i e s i n t h e p a r e n t m a t e r i a l . 1 2 3 With the a d d i t i o n of water i n s i t e s where the water t a b l e was not near the s u r f a c e a s . i n S i t e - 6, d i s t i n c t m l c r o e n v i r o n m e n t s were e s t a b l i s h e d i n s u c c e s s i v e l a y e r s from d i f f e r e n t i a l m o i s t u r e c o n t e n t s . The d i s c o n t i n u i t y of g r e a t e s t i n f l u e n c e was approx-i m a t e l y 2 0 cm below t h e m i n e r a l s u r f a c e where the p l a c i c h o r i z o n o r i g i n a t e d . The p l a c i c h o r i z o n i s n e a r l y i m p e r v i o u s t o water and r o o t p e n e t r a t i o n , and subsequent t o i t s f o r m a t i o n OM has accumulated above i t and a perched water t a b l e has d e v e l o p e d . P r e v i o u s l y , when the m a t e r i a l above the pan became s a t u r a t e d the l o s s of t e n s i o n i n t h e f i n e r m a t e r i a l s upon s a t u r a t i o n e n a b l e d water t o move i n t o the c o a r s e r m a t e r i a l . W i t h the development of the pan the perched water t a b l e remains f o r l o n g e r p e r i o d s . Both the c o n t i n u e d presence o f water and the a c c u m u l a t i o n OM i n c r e a s e s the redox d i f f e r e n t i a l , thus p e r p e t u a t i n g c o n d i t i o n s which a r e . n e c e s s a r y f o r pan f o r m a t i o n . As t h e s e c o n d i t i o n s p e r s i s t the t e n d e n c y ^ i s f o r s i t e s w i t h s o i l s which have p l a c i c h o r i z o n s t c d e v e l o p bog c o n d i t i o n s . T h i s . p r o c e s s i s a c c e l e r a t e d by the removal of t r e e s which d e c r e a s e s t h e l o s s o f water t h r o u g h e v a p o t r a n s p i r a t i o n . The s o i l a t S i t e 7. i s developed on s i m i l a r m a t e r i a l s as S i t e 4 . The pronounced d i f f e r e n c e s i n p r o f i l e development r e -s u l t from the h i g h water t a b l e at t h i s s i t e . The s a t u r a t i o n of a l l h o r i z o n s most of the time has e l i m i n a t e d the d i f f e r e n t i a l redox p o t e n t i a l which would r e s u l t i n the s e g r e g a t i o n o f 124 m a t e r i a l s i n t o , s p e c i f i c h o r i z o n s by pedogenic p r o c e s s e s . A l s o , the e f f e c t i v e l e a c h i n g depth i s l i m i t e d by the water t a b l e a s - i n d i c a t e d by an i n c r e a s e i n c a t i o n s i n the C. h o r i z o n . Thejabsence of r e s t r i c t i n g l a y e r s has r e s u l t e d i n r o o t p e n e t r a t i o n i n t o lower s u b s u r f a c e h o r i z o n s and c o n s e q u e n t l y o r g a n i c C i s ' p r e s e n t i n r e l a t i v e l y h i g h amounts i n t o t h e lower solum. T h i s , p l u s the s a t u r a t e d c o n d i t i o n s , has r e s u l t e d i n the m o b i l i z a t i o n of Fe r e s u l t i n g i n maximum a c c u m u l a t i o n i n the B f g h o r i z o n . The s o i l a t S i t e 8, a l s o on beach sand d e p o s i t s e x h i b i t s much l e s s development t h a n . t h e s o i l at S i t e 6. The r e c e n t emergence o f t h e s e m a t e r i a l s r e l a t i v e t o those where p l a c i c h o r i z o n s have dev e l o p e d i s p a r t l y the cause f o r ' t h i s d i f f e r e n c e i n degree o f development. The r e l a t i v e r e l a t i o n s h i p of the age the two m a t e r i a l s , c a n be e s t i m a t e d from the d i f f e r e n c e i n e l e v a t i o n , assuming emergence has t a k e n p l a c e . a t a s i m i l a r r a t e a t b o t h s i t e s . T h i s s o i l . h a s some p o t e n t i a l t o d e v e l o p p l a c i c h o r i z o n s , however, t h e r e i s no e v i d e n c e t h a t t h i s i s happening at the p r e s e n t t i m e . There are d i s c o n t i n u i t i e s i n t h e m a t e r i a l but the c o n t r a s t i n p a r t i c l e s i z e d i s t r i b u t i o n i s not as pronounced as t h a t i n S i t e 6. However, the abrupt d e c r e a s e i n Fe. below the Bf2 c o u l d indicate.J.the p l a c i c h o r i z o n , i f formed, w i l l d e v e l o p a t t h i s i n t e r f a c e . The development of s o i l s on t h e g l a c i a l t i l l d e p o s i t s has been d i s r u p t e d by movement of m a t e r i a l downslope by s o i l 1 2 5 creep arid t r e e wind-throw. T h i s has r e s u l t e d i n c h u r n i n g of the s u r f a c e m i n e r a l h o r i z o n s , howeyer, t h e m a t e r i a l i n the pedons a t S i t e s 9 and 1 0 was. weathered throughout so d e v e l o p -ment was not g r e a t l y r e t a r d e d by the i n c o r p o r a t i o n of un-weathered m a t e r i a l s , but the morphology has changed. I n i t i a l l y development was l i m i t e d ' t o the a b l a t i o n m a t e r i a l above the b a s a l t i l l w hich was impermeable. T h i s s i t u a t i o n s t i l l e x i s t s i n deep d e p o s i t s a t t h e base o f t h e s l o p e s where a b l a t i o n m a t e r i a l s have accumulated and w e a t h e r i n g has not p e n e t r a t e d the b a s a l m a t e r i a l . At the s i t e s where ' the samples were t a k e n the b a s a l m a t e r i a l has been weathered because of t h e l i m i t e d depth o f m a t e r i a l above the l i t h i c c o n t a c t . As development proceeded, OM has moved t h r o u g h the pedon and e x h i b i t s an i n c r e a s e above t h e bedrock i n t h e s o i l a t S i t e • 1 0 . The i n c r e a s e i n pyrophosphate Fe i n the I I B f 2 h o r i z o n s u g g e s t s t h a t the OM has moved as Fe o r g a n i c m a t t e r complexes ( S c h n i t z e r and S k i n n e r , 1 9 6 6 ) . There a r e some r o o t s p r e s e n t i n t h i s ' h o r i z o n which would c o n t r i b u t e t o the OM c o n t e n t but does not' account f o r the i n c r e a s e . Of the s o i l s s t u d i e d , t h e s e s o i l s had the h i g h e s t t o t a l amounts of e x t r a c t a b l e Fe and Al,. c o n s i s t e n t l y t hroughout the s o i l volume. T h i s i n d i c a t e s h i g h amounts o f the s e elements were p r e s e n t i n the m a t e r i a l s o r i g i n a l l y , e i t h e r i n p r i m a r y m i n e r a l s o r as some secondary form.' • C o r r e sponding, t o t h i s ,.. 126 are v e r y low amounts of a v a i l a b l e P which c o u l d have been l i b e r a t e d and removed from the pedon. Howeyer ? the p i s p r o b a b l y t i e d up as Fe and A l phosphates. The pronounced change i n p a r t -i c l e s i z e d i s t r i b u t i o n t o a h i g h e r p e r c e n t a g e o f f i n e s when the s o i l i s t r e a t e d w i t h c i t r a t e d i t h i o n i t e a l s o s u g g e s t s t h a t a g g r e g a t i o n of the Fe and A l o x i d e s has t a k e n p l a c e . A pronounced d i f f e r e n c e i n the r a t i o of exchangeable Mg to Ca was p r e s e n t i n the o r g a n i c s u r f a c e h o r i z o n of S i t e 9 com-pared t o a l l o t h e r s i t e s . T h i s can be e x p l a i n e d by the p o s i t o n o f t h i s s o i l on th.e s i d e of a h i l l o p p o s i t e the ocean. C l a y t o n (1972) has been shown t h a t the s h i e l d i n g e f f e c t of o b j e c t s r a p i d l y change the c o m p o s i t i o n of ocean i n f l u e n c e d r a i n w a t e r . CONCLUSIONS P a r t i c l e s i z e d i s t r i b u t i o n and the d i s t r i b u t i o n o f c l a y m i n e r a l s and c h e m i c a l c o n s t i t u e n t s i n the s o i l s s t u d i e d c o n f i r m s the presence of l i t h o l o g i c d i s c o n t i n u i t i e s and the complex mode of m a t e r i a l d e p o s i t i o n . The s o i l s a l s o e x h i b i t a wide range o f s o i l t e x t u r e s which i s a f f e c t e d by the h i g h degree of a g g r e g a t i o n of c l a y s i z e d Fe and A l o x i d e s i n t o l a r g e r p a r t i c l e s . The s o i l c h e m i s t r y i s a f f e c t e d by the h i g h c a t i o n con-c e n t r a t i o n i n the p r e c i p i t a t i o n as shown by the narrow r a t i o s of'Ca t o Mg i n the s u r f a c e m i n e r a l h o r i z o n s . S o i l f e r t i l i t y 1 2 7 i s low w i t h n u t r i e n t c y c l i n g o c c u r r i n g p r e d o m i n a n t l y i n the o r g a n i c s u r f a c e h o r i z o n s . Cementation of s o i l h o r i z o n s i s the dominant g e n e t i c f e a t u r e which c o n t r o l s the f u n c t i o n o f t h e s o i l i n the l a n d -scape. I r o n - o r g a n i c m a t t e r complexes i s the cementing agent i n some of the p l a c i c h o r i z o n s and A l and S i are a c t i v e i n the outwash m a t e r i a l s . A n a l y s i s o f s o i l p r o p e r t i e s show t h a t the sequence of g e n e s i s i n the P o d z o l s o i l s was an a c c u m u l a t i o n of OM and subsequent l e a c h i n g of the m i n e r a l m a t e r i a l w i t h o r g a n i c a c i d s . These a c i d s a t t a c k e d the m i n e r a l s h i g h i n P which was m o b i l i z e d and p r e c i p i t a t e d lower i n the pedons as Fe and A l phosphates. There i s e v i d e n c e f o r movement of Fe as organo-m e t a l l i c compounds, however, most of the s o i l s e x h i b i t n e g a t i v e enrichment of Fe and A l . LITERATURE CITED 1 2 8 ALLISON, L.E. 1 9 6 5 - O r g a n i c c a r b o n . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k e d . ) . P a r t - 2 , p. 1 3 6 7 - 1 3 7 8 . American S o c i e t y of Agronomy. Madison, W i s c o n s i n . ARSHAD, M.A., ST. ARNAUD, R.J. and HUANG, P.M.. 1 9 7 2 . D i s s o l u t i o n o f t r i o c t a h e d r a l l a y e r s i l i c a t e s by ammonium o x a l a t e , sodium d i t h i o n i t e - c i t r a t e - b i c a r b o n a t e , and p o t a s s i u m pyrophosphate. Can. J . ' S o i l S c i . 5 2 : 1 9 - 2 6 . BARIL, R. and BITTON, G. 1 9 6 9 - Teneurs e l e v e e s de. f e r l i b r e et 1 ' i d e n t i f i c a t i o n taxonomique de c e r t a i n s s o l s du Quebec contenant de l a m a g n e t i t e . Can. J . S o i l S c i . 4 9 : 1 - 9 -BHOOJEDHUR, S. 1 9 6 8 . G e n e s i s o f a P o d z o l sequence on the west c o a s t of Vancouver I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , Dept. o f S o i l S c i . U.B.C. BLAKE, G.R. 1 9 6 5 - B u l k d e n s i t y . I n "Methods of S o i l A n a l y s i s " . (C.A. B l a c k , ed.) P a r t 1 , p. 3 7 4 - 3 9 0 . American S o c i e t y of Agronomy. Madison, W i s c o n s i n . BREMNER, J.M. 1 9 6 5 . T o t a l n i t r o g e n . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 2 , p. 1 1 4 9 - 1 1 7 8 . . American S o c i e t y of Agronomy. Madison, W i s c o n s i n . BREMNER, J.M. 1 9 7 0 . The Geology of Wreck Bay, Vancouver I s l a n d , U n p u b l i s h e d M.Sc. t h e s i s , Dept. of Geology, U.B.C. CHAPMAN,.H.D. 1 9 6 5 . C a t i o n exchange c a p a c i t y . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , ed. ) . P a r t 2 , p. 8 9 1 - 9 0 1 . American S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . CLARK, J.S. 1 9 6 5 . The e x t r a c t i o n o f exchangeable c a t i o n s from s o i l s . Can. J . S o i l S c i . 4 5 : 3 1 1 - 3 2 2 . CLARK, J.S. McKEAGUE, J.A. and NICHOL, W.E. 1 9 6 6 . ..The use of pH dependent c a t i o n - e x c h a n g e c a p a c i t y f o r c h a r a c t e r i z i n g the B h o r i z o n s o f B r u n i s o l i c and P o d z o l i c s o i l s . Can. J . S o i l S c i . 46:161-166. CLAYTON, J . L . 1 9 7 2 . S a l t spray and m i n e r a l c y c l i n g i n two C a l i f o r n i a c o a s t a l ecosystems. E c o l o g y 5 3 : . 7 4 - 8 1 . DAY, P.R. 1 9 6 5 . P a r t i c l e f r a c t i o n a t i o n and p a r t i c l e s i z e • a n a l y s i s . I n "Methods of S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 1 , p. 5 4 5 - 5 6 7 . American S o c i e t y o f Agronomy. Ma d i s o n , Wisconsin". DUCHAUFOUR, P. 1 9 6 5 . " P r e c i s de P e d o l o g i e . 2 e m e e d i t i o n . Masson et C i e . P a r i s ( V I e ) . 1 2 9 FRANZMEIER, D.P., , HAJEK, B.F, and SIMQNSQN, C.H, 1 9 6 . 5 , Use of amorphous m a t e r i a l to. I d e n t i f y s p o d i c h o r i z o n s . . S o i l S c l . Soc, Amer,. P r o c , 29..; 7 3 7 - 7 4 3 , FRANZMEIER, D.P., WHITESIDE, E,P. and MORTLAND, M ,M, 1 9 6 3 . A chronosequence...of P o d z o l s i n N o r t h e r n ' M i c h i g a n , I I I . M i n e r a l o g y , micromorphology and net changes o c c u r r i n g . . d u r i n g s o i l f o r m a t i o n , M i c h i g a n S t a t e U n i v e r s i t y . Q u a r t e r l y B u l l e t i n 4 6 ; 3 7 - 5 7 . JACKSON, M.L, 1 9 5 8 . S o i l c h e m i c a l a n a l y s i s . P r e n t i c e H a l l I n c . , Englewood C l i f f , N.J. JACKSON, M.L, 1 9 6 4 . S o i l c l a y m i n e r a l o g i c a l a n a l y s i s . I n " S o i l " c l a y m i n e r a l o g y , a symposium". ( C . I . R i c h and G.W. Kunze ed.) The U n i v e r s i t y of N o r t h e r n C a r o l i n a P r e s s , Chapel H i l l , N.C. JACKSON, M.L. 1 9 6 5 . F r e e o x i d e s , . h y d r o x i d e s , and amorphous aluminum s i l i c a t e s . I n "Methods of S o i l A n a l y s i s " . ('CA. B l a c k , e d . ) . P a r t 1 , p. 5 7 8 - 6 0 3 . American S o c i e t y of Agronomy. Madi s o n , W i s c o n s i n . JACKSON, M.L., HSEUNG, Y., COREY, R.B., EVANS, E . J . and VANDEN HEUVEL/R.C 1 9 , 5 2 . Weathering sequence of c l a y -., s i z e m i n e r a l s I n s o i l s and sediments: I I . C h e m i c a l w e a t h e r i n g o f l a y e r s i l i c a t e s . S o i l S c i . Soc. Amer. Pr o c . 1 6 : 3 - 6 . KITTRICK, J.A. and HOPE, E.W. 1 9 6 3 . A p r o c e d u r e f o r p a r t i c l e s i z e s e p a r a t i o n of s o i l s f o r X-ray d i f f r a c t i o n a n a l y s i s . S o i l S c i . 9 3 : 3 1 9 - 3 2 5 . LAVKULICH, L.M., BHOOJEDHUR, S., and ROWLES, C A . 1 9 7 1 . S o i l s w i t h p l a c i c h o r i z o n s on the west c o a s t o f Vancouver I s l a n d , B r i t i s h Columbia. Can. J . S o i l S c i . 5 1 : 4 3 9 - 4 4 8 . LAVKULICH, L.M., DAIRON, P.A. and VON SPINDLER, B. 1 9 7 0 . D e t e r m i n a t i o n o f carbon and s u l f u r i n s o i l e x t r a c t s by dry combusion using, a h i g h t e m p e r a t u r e i n d u c t i o n f u r n a c e . Can. J . - S o i l S c i . 5 0 : 9 5 - 9 6 . McKEAGUE, J.A. 1 9 6 7 . An e v a l u a t i o n of 0.1M pyrophosphate and p y r o p h o s p h a t e - d i t h i o n i t e i n comparison w i t h o x a l a t e as e x t r a c t a n t s • o f the a c c u m u l a t i o n p r o d u c t s i n P o d z o l s and some o t h e r s o i l s . Can. J . S o i l S c i . 4 7 : 9 5 - 9 9 -McKEAGUE, J.A., BRYDON,: J.E. and MILES, N.M. 1 9 7 1 . D i f f e r e n t i a -t i o n of forms of e x t r a c t a b l e i r o n and aluminum i n s o i l s . S o i l S c i . Soc. Amer. P r o c . 3 5 : 3 3 . - 3 8 . 130 McKEAGUE., J.A. and-.DAY,, J,H, 1966. D i t h i o n i t e and o x a l a t e e x t r a c t a b l e i r o n and aluminum as a i d s i n . d i f f e r e n t i a t i n g v a r i o u s : c l a s s e s , o f s o i l s , Can, J , S o i l . S c i , 46;.13-22. . M C K E N Z I E , L . J . , W H I T E S I D E , ,E.,.P.. and E R I C K S O N , A . E . i 9 6 0 , . O x i d a t i o n - r e d u c t i o n s t u d i e s on t h e mechanism of B h o r i z o n f o r m a t i o n i n P o d z o l s . S o i l S c i . Soc. Amer. P r o c . 2 4 : 3 0 0 - 3 0 5 -MEHRA, O.P, and JACKSON, M.L. I 9 6 0 . I r o n o x i d e removal from s o i l s and c l a y s by a d i t h i o . n i t e - c i t r a t e system b u f f e r e d w i t h sodium b i c a r b o n a t e . C l a y s and c l a y m i n e r a l s . Proceedings' of the 7 t h N a t i o n a l Conference ( 1 9 5 8 ) , 3 1 7 - 3 2 7 . PAWLUK, S. 1 9 7 2 . Measurement of c r y s t a l l i n e and amorphous i r o n r emoval i n s o i l s . Can. J . S o i l S c i . 5 2 : 1 1 9 - 1 2 3 . PEECH, M. 1 9 6 5 . Exchange a c i d i t y . I n "Methods of S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 2 , p. 9 0 5 - 9 1 3 -American S o c i e t y of Agronomy. Madison, W i s c o n s i n . RICHARDS, L.A. I 9 6 5 . P h y s i c a l c o n d i t i o n of water i n s o i l . I n "Methods, of S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 1 , p. 1 2 8 - 1 5 2 . American Society..of Agronomy, Madi s o n , W i s c o n s i n . SAWHNEY, B.L., FRINK, C.R. and HILL, D.E. 1 9 7 0 . Components of pH dependent c a t i o n exchange c a p a c i t y . S o i l S c i . 1 0 9 : 2 7 2 - 2 7 8 . SCHNITZER, M. and SKINNER, S.I.M. 1 9 6 6 . O r a g n o - m e t a l l i c i n t e r a c t i o n s i n s o i l ; 5 - S t a b i l i t y c o n s t a n t s of Cu++-, Fe++-,.and Zn++- F u l v i c a c i d complexes. S o i l S c i . 1 0 2 : 3 6 1 - 3 6 5 . VALENTINE,.K.W.G. I 9 6 9 . '-A P l a c i c Humic P o d z o l on Vancouver I s l a n d , B r i t i s h C olumbia, Can. J . S o i l S c i . 4 9 : 4 1 1 - 4 1 3 . VALENTINE,.K.W.G. 1 9 7 1 . S o i l s of the T o f i n o - U c l u e l e t Lowland of B r i t i s h Columbia. Canada Department of A g r i c u l t u r e , R e s e a r c h Branch. Report No. 1 1 . Ottawa, O n t a r i o . VAN SCHUYLENBORGH, J . and BRUGGENWERT, M.G.M. 1 9 6 5 . On s o i l g e n e s i s i n temperate humid c l i m a t e . V. The f o r m a t i o n of the " a l b i c " and " s p o d i c " h o r i z o n . Neth. J:. A g r i c . S c i . • 1 3 : 2 6 7 - 2 7 9 -WADE, L.K. 1 9 6 5 . V e g e t a t i o n and h i s t o r y of the Sphagnum bogs of the T o f i n o a r e a , Vancouver I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , Dept. o f Botany, U.B.C. CHAPTER I I I THE VARIABILITY AND GENESIS OF SOME PLACIC HORIZONS IN SOILS ON THE WEST COAST OF VANCOUVER ISLAND 132 THE VARIABILITY AND1 GENESIS.OF SOME PLACIC HORIZONS IN SOILS ON THE WEST COAST OF VANCOUVER ISLAND INTRODUCTION The o c c u r r e n c e of p l a c i c h o r i z o n s ( t h i n pans) i n Canadian s o i l s , and the need f o r a d d i t i o n a l r e s e a r c h t o f u r t h e r e l u c i d a t e t h e i r c h a r a c t e r i s t i c s and g e n e s i s has been r e p o r t e d by s e v e r a l workers (Damman., 1 9 6 5 ; McKeague e_t aJL. , 1 9 6 7 , 1 9 6 8 ; Bhoojedhur, 1 9 6 8 ; V a l e n t i n e , 1 9 6 9 and L a v k u l i c h et a l . , ' 1 9 7 1 ) , V a l e n t i n e ( 1 9 6 9 ) f i r s t r e p o r t e d p l a c i c h o r i z o n s i n s o i l s d e v e l o p e d on g r a v e l -l y d e p o s i t s on t h e west c o a s t o f Vancouver I s l a n d w i t h subsequent s t u d i e s o f th e s e pans by Bhoojedhur ( 1 9 6 8 ) and L a v k u l i c h et aJL ( 1 9 7 1 ) . More r e c e n t l y , p l a c i c h o r i z o n s of v a r y i n g morphology and c h e m i c a l p r o p e r t i e s have been found i n sandy m a t e r i a l s i n the same a r e a . The purpose, of t h i s study was t o d e s c r i b e the p l a c i c h o r i z o n s i n t h e sandy m a t e r i a l s and a s s e s s the v a r i a b i l i t y o c c u r r i n g i n the pans found i n the study a r e a . EXPERIMENTAL METHODS The environment i n which the p l a c i c h o r i z o n s a r e formed was- d e s c r i b e d e a r l i e r I n Chapter I , and the s o i l a t S i t e 6 i s a 1 3 3 r e p r e s e n t a t i v e pedon I n which t h e y d e v e l o p . The s o i l i s c l a s s -i f i e d as a P l a c i c Humic P o d z o l i n the Canadian System of C l a s s i f i c a t i o n ( N a t i o n a l S o i l Survey Committee, 1 9 6 8 ) and a P l a c o r t h o d i n the U.S.D.A. System ( S o i l . Survey S t a f f , i 9 6 0 ' , ; 1 9 6 4 , 1 9 6 7 ) . P l a c i c h o r i z o n s i n the sand p a r e n t m a t e r i a l s have de v e l o p e d o n l y i n s p e c i f i c p o s i t i o n s i n the l a n d s c a p e ( F i g u r e I I I - l ) where the groundwater t a b l e i s a t l e a s t 1 . 5 t o 2 m below the s u r f a c e f o r a s i g n i f i c a n t p e r i o d of the y e a r . The pans commonly occ u r beneath a Bh h o r i z o n at 2 0 t o 3 0 cm below the m i n e r a l s u r -f a c e . They u n d u l a t e and a r e g e n e r a l l y h o r i z o n t a l t o t h e e a r t h ' s s u r f a c e but.some were found a s s o c i a t e d w i t h v a c a n t , v e r t i c a l or almost v e r t i c a l r o o t c h a n n e l s t o a depth of more t h a n a metre. The p l a c i c h o r i z o n s are e f f e c t i v e i n r e s t r i c t i n g water movement. The r e s u l t i n g - perched water t a b l e s a t u r a t e s the s u r f a c e h o r i z o n s f o r l o n g p e r i o d s w i t h s p e c i e s of bog v e g e t -a t i o n b e i n g e s t a b l i s h e d i n many ar e a s where p r e v i o u s f i r e s have removed the l a r g e r t r e e s p e c i e s . P l a c i c h o r i z o n s were found i n s o i l s under a v a r i e t y of v e g e t a t i o n . T h i s i n c l u d e d s t a n d s . o f n a t u r a l l y r e g e n e r a t e d w e s t e r n hemlock (Tsuga • h e t e r o p h y l l a ) and w e s t e r n r e d cedar (Thuja p l l c a t a ) w i t h an u n d e r s t o r y o f s a l a l ( G a u l t h e r i a s h a l l o n ) , salmon, b e r r y (Rubus s p e c t a b i l l s ) and r e d h u c k e l b e r r y ( V a c c i n i u m g a r v i f o l i a ) . Other p l a c i c h o r i z o n s o c c u r r e d i n a r e a s of shore p i n e ( P i n u s c o n t o r t a ) w i t h an u n d e r s t o r y o f bog v e g e t a t i o n . 134 F i g u r e I I I - l . Schematic diagram showing the p o s i t i o n of the p l a c i c h o r i z o n s i n the l a n d s c a p e i n r e l a t i o n t o o t h e r l a n d s c a p e f e a t u r e s . 1 3 5 MATERIALS Samples of m a t e r i a l from p l a c i c h o r i z o n s , . w e r e - c o l l e c t e d from f o u r s i t e s i n the sand m a t e r i a l and a f i f t h was c o l l e c t e d from a g r a v e l l y outwash d e p o s i t p r e v i o u s l y d e s c r i b e d by h -Bhoojedhur ( 1 9 6 8 ) and used i n t h i s study f o r c o m p a r a t i v e p u r p o s e s . P l a c i c H o r i z o n (a) T h i s p l a c i c h o r i z o n i s shown i n F i g u r e I I I - 2 and v a r i e s from 0 . 1 t o 3 mm I n t h i c k n e s s . I t o c c u r s as a network w i t h i n a band of m a t r i x m a t e r i a l 4 cm. t h i c k . The pan may be s i n g l e e l o n g a t e or b ranched, and i s d i s c o n t i n u o u s , b l a c k i n c o l o u r and v i t r e o u s . P l a c i c h o r i z o n s w i t h t h i s type of morphology are dominant i n the a r e a where the pans o c c u r r e d . T h i s pan was t y p i c a l l y h o r i z o n t a l t o the s o i l s u r f a c e and u n d u l a t e d s l i g h t l y . The m a t e r i a l above the p l a c i c h o r i z o n was f i n e r t e x t u r e d t h a n t h e m a t e r i a l below. P l a c i c H o r i z o n (b) T h i s p l a c i c h o r i z o n i s shown i n F i g u r e I I I - 3 and v a r i e s from. 2 t o 3 mm i n t h i c k n e s s . I t was s i n g l e - , c o n t i n u o u s , b l a c k and v i t r e o u s w i t h a dark r e d ( 2 YR 3 / 6 ) band o f m a t e r i a l a p p r o x i m a t e l y 1 cm t h i c k i m m e d i a t e l y below. 136 F i g u r e I I I - 2 . P l a c i c H o r i z o n (a) showing the v a r i a b l e form and v i t r e o u s appearance ( s c a l e e q u a l s 1 cm.)-P l a c i c H o r i z o n (b) showing the band of dark r e d m a t e r i a l i m m e d i a t e l y below the pan ( s c a l e e q u a l s 1 cm.) . 1 3 8 T h i s p l a c i c h o r i z o n was a , t y p i c a l i n t h a t i t had formed around a l a r g e volume of s u r f a c e m i n e r a l m a t e r i a l which had been i n c o r p o r a t e d i n t o t h e c o a r s e r t e x t u r e d . m a t e r i a l b e l o w i :(Figure I I I - 4 _ ) , P l a c i c H o r i z o n (c) T h i s p l a c i c h o r i z o n , shown i n F i g u r e I I I - 5 , was 4 mm t h i c k , s i n g l e or branched, c o n t i n u o u s , dark brown t o b l a c k i n c o l o u r and has a mixed d u l l and v i t r e o u s appearance. T h i s pan was t y p i c a l of t h o s e which were found i n c l o s e p r o x i m i t y t o . t h e ocean i n the S i t k a s pruce ( P i c e a s i t c h e n s i s ) f o r e s t which o c c u p i e s a narrow band a l o n g the c o a s t from a few.to over 1 0 0 m i n w i d t h ( C o r d e s , 1 9 7 3 ) . The p o s i t i o n I n the pedon was v e r y s i m i l a r t o P l a c i c H o r i z o n (a) w i t h f i n e r t e x t u r e d m a t e r i a l o c c u r r i n g above th e pan. P l a c i c H o r i z o n (d) P l a c i c H o r i z o n (d) i s shown i n F i g u r e I I I - 6 and was a s s o c i a t e d w i t h P l a c i c H o r i z o n (G) i n s i m i l a r l a n d s c a p e u n i t s . However, t h e pan v a r i e d froirU :2 t o 3 mm i n t h i c k n e s s and was s i n g l e , c o n t i n u o u s ' a n d had a brown t o b l a c k c o l o u r . The m a t e r i a l i n the pan was p r e s e n t as d u l l and v i t r e o u s l a y e r s . S h r i n k a g e o c c u r r e d i f the pan was a i r d r i e d c a u s i n g f r a c t u r i n g . P l a c i c H o r i z o n (e) T h i s pan i s shown i n F i g u r e 1 1 1 - 7 and v a r i e d from 1 t o 2 mm i n t h i c k n e s s , was s i n g l e , c o n t i n u o u s , b l a c k and v i t r e o u s . 139 F i g u r e I I I - 4 . The i n c o r p o r a t i o n of s u r f a c e m i n e r a l m a t e r i a l i n t o s u b s u r f a c e m a t e r i a l around which P l a c i c H o r i z o n (b) has formed. 140 % \ P l a c i c H o r i z o n (c) showing the abrupt b o u n d a r i e s of t h i s pan ( s c a l e e q u a l s 1 cm.). 141 F i g u r e I I I - 6 . P l a c i c H o r i z o n (d) showing s t r a t i f i c a t i o n of m a t e r i a l i n the pan and the f r a c t u r e s formed when i t i s a i r d r i e d ( s c a l e e q u a l s 1 cm.). I F i g u r e I I I - 7 . P l a c i c H o r i z o n (e) showing the v i t r e o u s appearance of the pan m a t e r i a l and l a c k of c o n f o r m i t y w i t h any change i n t e x t u r e ( s c a l e e q u a l s 1 cm.). 143 T h i s pan was.present i n outwash m a t e r i a l s a n d . o c c u r r e d randomly throughout the pedon up t o ohseryed depths' of 3 m, The pan d i d not conform t o t e x t u r a l b o u n d a r i e s and t h e p l a c i c ' m a t e r i a l p e n e t r a t e d s o f t g r a v e l s and r o c k f r a g m e n t s . U n d i s t u r b e d samples which i n c l u d e d the p l a c i c h o r i z o n and m a t e r i a l above and below were c o l l e c t e d , a i r d r i e d , c a r e f u l l y s e p a r a t e d i n t o m i c r o - h o r i z o n s , and ground t o pass t h r o u g h a 60 mesh s i e v e . ANALYTICAL METHODS Pyrophosphate Fe and A l (0.1N, pH 1 0 , shaken 1 2 h r s . a t 2 5 ° C ) , o x a l a t e Fe, A l , S i 0 2 and Mn (shaken 4 h r s . ) , d i t h i o n i t e - • c i t r a t e - b i c a r b o n a t e Fe, A l , S i 0 2 and Mn ( 2 8 min. t o t a l ) e x t r a c t i o n s were completed f o l l o w i n g p r o c e d u r e s o u t l i n e d by McKeague ( 1 9 6 7 ) , McKeague and Day ( 1 9 6 6 ) and Mehra and J a c k s o n • ( i 9 6 0 ) r e s p e c t i v e l y . A n a l y s i s f o r t h e c a t i o n s were completed by atomic a b s o r p t i o n s p e c t o p h o t o m e t r y . T o t a l carbon was measured u s i n g a h i g h - t e m p e r a t u r e i n d u c t i o n f u r n a c e (Leco, 1 9 5 4 ) . T o t a l o r g a n i c carbon was d e t e r m i n e d by the W a l k l e y - B l a c k method o u t l i n e d by A l l i s o n ( 1 9 6 5 ) . Pyrophosphate e x t r a c t a b l e carbon was measured by a l -l o w i n g an a l i q u o t of sample from the 0.IN' e x t r a c t i o n t o e v a p o r a t e t o near d r y n e s s w i t h subsequent carbon d e t e r m i n a t i o n by the W a l k l e y - B l a c k method. F u l v i c (FA) and humic a c i d (HA) s e p a r a t i o n of the 0.IN pyrophosphate e x t r a c t a b l e o r g a n i c m a t t e r was completed i n P l a c i c H o r i z o n s (b) and (e). by a c i d i f i c a t i o n w i t h H^O^ t o p r e c i p i t a t e the HA, c e n t r i f u g i n g and d e c a n t i n g the FA and r e d i s s o l v i n g and HA w i t h NaOH. The percent:, o r g a n i c C i n those s a m p l e s • h a v i n g o b s e r v a b l e amounts of•HA was d e t e r m i n e d by the same pr o c e d u r e as p y r o p h o s p h a t e " e x t r a c t a b l e carbon. Q u a l i t a t i v e a n a l y s i s t o de t e r m i n e the v e r t i c a l d i s t r i b u t i o n o f Fe, A l , S i , and Mn and P l a c i c H o r i z o n s (b) and (c) was com-p l e t e d u s i n g a JXA-cA model e l e c t r o n probe X-ray m i c r o -a n l a y z e r . The samples were impregnated u s i n g S c o t c h c a s t No. 3 epoxy r e s i n and d r y p o l i s h e d u s i n g No. 30 emery paper. Other methods o f p o l i s h i n g u s i n g a b r a s i v e s l u r r y s or diamond p a s t e p r e f e r e n t i a l l y removed the p l a c i c cementing m a t e r i a l s . A l l measurements were made u s i n g K 1 r a d i a t i o n , a 2 0 ° t a k e - o f f a n g l e , 2 5 K V a c c e l e r a t i n g v o l t a g e with;..a specimen c u r r e n t o f 0.8 x 10-''' amps on pure Cu. M i c a was used as the a n a l y z i n g c r y s t a l f o r A l and. S i , and q u a r t z f o r Mn and Fe a t a s c a n n i n g speed o f 1 0 0 y per m i n u t e . RESULTS AND DISCUSSION Chem i c a l d a t a i s p r e s e n t e d i n T a b l e I I I - l . T o t a l c a r b o n , t o t a l o r g a n i c ' a n d pyrophosphate e x t r a c t a b l e carbon v a l u e s a l l show an a c c u m u l a t i o n i n the p l a c i c h o r i z o n s of' the sand Table I I I - l . Selected Chemical properties of pl a c i c and adjacent horizons Pyro-* phosphate Molar Pyrophosphate Oxalate . Dithionite Org- extract- Ratio Total anic able Fe : ; : ; . Thickness C C C p/ Fe • A l ,Mh , ' Fe A l ...SiO„,Mh- Fe A l SiO^";Mn.; (cm) OM,.- : • feP^ '^Cppm) : 2 ( p p m ) P l a c i c Horizon (a) 1 1 5 . 0 3 . 2 3 3 . 1 2 . 2 . 3 5 1 . 3 0 . 0 6 0 . 9 8 < 1 0.14 1 . 0 5 — - 0.14 0 . 9 3 - -*2 0 . 0 1 - 0 . 3 3 . 8 9 3 . 8 0 2 . 4 9 4 9 . 6 2 . 7 7 1 . 0 5 ND 6 . 1 6 2 . 1 6 1120 - 7 . 2 5 1 .67 0. .35 23 3 1 . 0 1 . 6 7 - 1 . 0 8 1 6 . 7 . 0.40 0.64 3 2.40 2.40 1 . 6 0 - 3 - 2 5 1 . 2 5 0. 15 27 Placic Horizon (b) 1 1 . 5 1 . 2 7 0 . 8 7 0 . 8 1 1 1 . 9 0 . 2 2 0 . 5 2 1 0 . 7 0 1 . 3 2 0 . 9 1 3 0 . 6 3 0 . 6 3 0. 19 5 * 2 0 . 2 - 0 . 3 3.48 2 . 8 1 1 . 8 0 3 7 . 9 1 . 8 8 0 . 6 2 1 1 2 . 1 2 1 . 6 0 0 . 8 6 • 7 1 1 . 4 7 1 . 3 5 0. 44 14 3 1 . 0 1 . 6 3 1 . 3 6 1 . 1 5 2 3 . 5 0 . 5 5 0 . 5 2 ND 7 . 0 8 1 . 6 0 0 . 9 5 34 5 . 9 4 1.44 0. 31 34 4 1 . 5 1 . 1 2 0 . 9 5 0 . 7 3 2 0 . 4 0 . 3 3 0 . 5 4 2 1 . 5 8 ' 1 . 5 6 0 . 9 4 35 1 .37 0 .95 0. 22 32 Placic Horizon (c) 1 1 . 0 1 . 8 3 1 . 7 2 1 . 5 1 2 6 . 7 0 . 7 0 0 .67 ND 1 . 4 7 0 . 8 2 0.24 4 2 . 8 3 0 .99 0. 17 6 * 2 0 . 4 3 . 6 7 . 2 . 6 5 1 . 7 5 5 1 . 7 2 . 7 1 0 . 5 7 1 1 3 . 5 6 1 . 3 2 0 . 6 2 12 1 6 . 0 7 1 .57 0. 46 43 3 2 . 0 0 . 5 3 0 . 3 5 0 . 3 0 5 1 . 0 0 . 3 7 0 . 2 5 12 2 . 1 9 0 . 4 9 0 . 2 7 84 4 . 1 9 0 .49 0. 21 97 4 1 . 5 0 . 3 1 0 . 1 5 - 40.3 0 . 1 8 0 . 1 9 6 0 . 7 2 0 . 3 9 0 . 2 2 36 1.04 0 .27 0. 06 61 P l a c i c Horizon (d) * 2 0 . 2 - 0 . 3 8 . 3 9 7 . 2 3 7 . 0 0 4 7 . 2 5 . 6 9 2 . 8 3 ND 8 . 1 6 3 . 4 4 1 . 2 8 20 8 . 5 0 2 . 3 5 0. 32 • 17 3 1 . 0 1 . 3 3 1 .08 1 . 0 9 3 1 . 6 0 . 6 0 0 . 6 6 ND 1 . 7 6 1 .36 0 . 7 2 4 1 . 7 5 0 .90 0. 13 9 P l a c i c Horizon (e) * 2 0 . 1 - 0 . 2 1 . 3 3 - — 6 . 9 0 . 1 3 0 . 2 1 1520 4 . 0 0 1 . 2 0 1.04 : - I3360 9 . 1 3 1 .07 0. 20 328] * Placic Horizon ND - Not detectable by method used. 146 m a t e r i a l s i n c o m p a r i s o n . w i t h the " i n t e r - p a n " a r e a s , The wet o x i d a t i o n method (assuming 7 6 p e r c e n t r e c o v e r y ) e x t r a c t e d 7 2 t o 9 8 p e r c e n t of the t o t a l carbon" present.. Pyrophosphate e x t r a c t e d a.minimum of 7 5 p e r c e n t " a n d u s u a l l y - f r o m .8 5 t o 1 0 0 p e r c e n t o f the o r g a n i c carbon p r e s e n t i n the m a t r i x m a t e r i a l s which, i s c o n s i s t e n t w i t h f i n d i n g s o f S c h n i t z e r et_ al _ . ( 1 9 5 7 ) , w h i l e o n l y 6 5 p e r c e n t was e x t r a c t e d from P l a c i c H o r i z o n ( a ) , (b) and ( c ) . a n d 9 7 p e r c e n t from P l a c i c H o r i z o n ( d ) . M a t e r i a l s i n P l a c i c H o r i z o n s (b) and (c) ' h a v e s i m i l a r v a l u e s f o r carbon by a l l d e t e r m i n a t i o n s , w h i l e P l a c i c H o r i z o n (a) i s s i m i l a r f o r t o t a l , a n d - g r e a t e r i n t o t a l o r g a n i c and pyrophosphate e x t r a c t a b l e C by a f a c t o r of 1.4. P l a c i c H o r i z o n (d) has h i g h e r v a l u e s t h a n (a) f o r t o t a l . , o r g a n i c and p y r o -phosphate C by f a c t o r s of 2.4, 1 . 9 a n d . 2 . 8 , r e s p e c t i v e l y . A l l e x t r a c t i o n p r o c e d u r e s show an a c c u m u l a t i o n o f i r o n i n the p l a c i c h o r i z o n s . U s i n g c r i t e r i a o u t l i n e d by McKeague et_ ( 1 9 7 1 ) P l a c i c H o r i z o n (a) has a p p r o x i m a t e l y e q u a l amounts of o r g a n i c a l l y bound and amorphous i n o r g a n i c F e . T h e dominant form of F e . i s amorphous i n o r g a n i c i n P l a c i c H o r i z o n s (b) and (c) and o r g a n i c a l l y bound i n ( d ) . The c a l c u l a t e d low amounts o f c r y s t a l l i n e Fe o x i d e s c o u l d be p a r t i a l l y due t o the pr e s e n c e o f some ,.\ m a g n e t i t e r e s u l t i n g i n s l i g h t l y h i g h e r o x a l a t e v a l u e s . ( B a r i l et a l . , 1 9 6 9 ) , however., the absence o f c r y s t a l l i n e i r o n o x i d e s i n most s p o d i c h o r i z o n s and p l a c i c h o r i z o n s high' i n o r g a n i c ...... I m a t t e r i s c o n s i s t e n t w i t h f i n d i n g s of Schwertmann e_t al _ . ( 1 9 6 8 ) and McKeague et a l . ( 1 9 7 1 ) . 147 O b s e r v a b l e amounts of HA were p r e c i p i t a t e d upon a c i d -i f i c a t i o n . i n P l a c i c . H o r i z o n s (b) and (c). w i t h t h e l o w e s t r a t i o o f PA to'HA. of 4 . 9 o c c u r r i n g i n the m a t e r i a l above the pan i n P l a c i c H o r i z o n ( c ) . P l a c i c H o r i z o n s (b) and (c) have r a t i o s of 1 5 - 1 and 1 9 . 8 of FA t o HA r e s p e c t i v e l y . E x t r a c t a b l e A l i s s l i g h t l y accumulated i n some pans but does.not appear t o be a major f a c t o r r e l a t i n g t o g e n e s i s or pan- s t a b i l i t y . C a l c u l a t i o n o f molar r a t i o s ( T a b e l I I I - l ) u s i n g Fe <=> p (pyrophosphate e x t r a c t a b l e Fe) and t o t a l OM ( o r g a n i c m a t t e r ) were found' t o b e s t meet the r e q u i r e m e n t s of S c h n i t z e r et a l . ( 1 9 6 2 ) w i t h r e s p e c t t o s o l u b i l i t y o f complexes u s i n g 6 7 0 as the MW. ( m o l e c u l a r w e i g h t ) f o r OM'extracted from a Bh h o r i z o n . However, B u t l e r and Ladd ( 1 9 7 1 ' ) s t a t e MW • d e t e r m i n a t i o n s by membrane f i l t r a t i o n a r e c o n s i d e r e d more c o r r e c t t h a n o t h e r methods and found. 7 5 p e r c e n t of the FA from a B h o r i z o n o f a Ground Water P o d z o l t o have a MW of 1 0 0 0 - 1 0 , 0 0 0 . Thus, assuming the MW of OM t o be c l o s e r t o a f a c t o r of 1 0 g r e a t e r t h a n t h a t found by S c h n i t z e r g i v i n g a MW of 6 7 0 0 , , the molar r a t i o s of a l l samples s t u d i e d exceed the molar r a t i o s found t o be s o l u b l e I n s y n t h e t i c , p r e p a r a t i o n s except the m a t e r i a l above P l a c i c H o r i z o n ( a ) . T h i s m a t e r i a l had - a r a t i o of 1 . 3 . Pyrophosphate e x t r a c t a b l e A l was not i n c l u d e d i n the calculation,.;as no s i g n -i f i c a n t a c c u m u l a t i o n o c c u r r e d i n ' t h e p l a c i c h o r i z o n s i n d i c a t i n g pyrophosphate e x t r a c t a b l e A l i s not n e c e s s a r i l y a s s o c i a t e d w i t h 148 the O M .extracted. T h i s i s c o n s i s t e n t w i t h . f i n d i n g s o f McKeague et_ a l . ( 1 9 7 1 ) . As o n l y the m a t e r i a l above P l a c i c H o r i z o n (a) has a r a t i o low enough t o p e r m i t the p r e s e n c e ' o f s o l u b l e complexes,• i t can be assumed t h i s i s the o n l y ' p a n s t u d i e d which would p r e s e n t l y have s i g n i f i c a n t a d d i t i o n s o f " p l a c i c m a t e r i a l i f a v a i l a b i l i t y i s a c o n t r o l l i n g f a c t o r . The pyrophosphate e x t r a c t i o n of o n l y 6 5 p e r c e n t of the o r g a n i c carbon i n the p l a c i c h o r i z o n s would i n d i c a t e the p r e s e nce of OM i n a form d i f f i c u l t t o e x t r a c t , and t h i s c o u l d r e p r e s e n t the i n t e r g r a d e m a t e r i a l between t h e ; . o r g a n i c a l l y complexed and the i n o r g a n i c amorphous m a t e r i a l s . S i n c e much of the OM-is I n a c t i v a t e d as p a r t o f i n s o l u b l e complexes w i t h i n the pan, the pyrophosphate e x t r a c t a b l e OM and t h e a s s o c i a t e d Fe are most l i k e l y the a c t i v e f r a c t i o n i n pan f o r m a t i o n and t h e r e f o r e s h o u l d be used i n c a l c u l a t i o n of molar r a t i o s r a t h e r t h a n u s i n g o x a l a t e or d i t h i o n i t e e x t r a c t a b l e Fe and t o t a l OM. I l l u s t r a t i o n s o f absorbed e l e c t r o n images (AEI) of a r e p r e s e n t a t i v e a r e a of P l a c i c H o r i z o n s (b) and (c) and the m a t e r i a l below the pan- are g i v e n i n F i g u r e s I I I - 8 and I I I - 9 r e s p e c t i v e l y . I t can be seen from the AEI t h a t a complete f i l l i n g of the pore spaces has o c c u r r e d , a n d . t h a t i n an a i r d r i e d s t a t e the plasma m a t e r i a l i n both, pans i s h i g h l y f r a c t u r e d . The f r a c t u r i n g i s s i m i l a r t o that-.observed i n - P l a c i c H o r i z o n (d) upon a i r ' d r y i n g but on a s m a l l e r s c a l e . 149 F i g u r e I I I - 8 . Absorbed E l e c t r o n Images of P l a c i c H o r i z o n (b) (x 500) showing the h i g h l y f r a c t u r e d ^ d e n s e plasma w i t h i n the pan which surrounds the q u a r t z g r a i n ( i ) and the porous m a t e r i a l below ( i i ) . 150 F i g u r e I I I - 9 . Absorbed E l e c t r o n Images of P l a c i c H o r i z o n (c) (x 650) showing the h i g h l y f r a c t u r e d , dense plasma w i t h i n the pan ( i ) and the porous m a t e r i a l below. 151 The e l e c t r o n probe scan of a v e r t i c a l t r a n s e c t a c r o s s P l a c i c H o r i z o n , (b). i s . shown i n . F i g u r e III-.10. A low amount of Fe i s p r e s e n t i m m e d i a t e l y above the pan compared t o t h e c o n c e n t r a t i o n w i t h i n the pan. The top boundary of the pan i s abrupt w i t h the c o n c e n t r a t i o n change'of Fe o c c u r r i n g w i t h i n a d i s t a n c e 150 jj . I r o n remains r e l a t i v e l y c o n s t a n t t o a depth of 4.3 mm from the top o f the panvand d e c r e a s e s g r a d u a l l y t o 5.5 mm. An i n c r e a s e d c o n c e n t r a t i o n of A l c o r r e s p o n d s t o a d e c rease i n Fe w i t h t h e i n c r e a s e s i n A l b e i n g m o s t l y a s s o c i a t e d w i t h S i and a l s o o f t e n c o n c e n t r a t e d on'the lower s i d e o f q u a r t z and o t h e r m i n e r a l g r a i n s . Aluminum i s o n l y r a r e l y a s s o c i a t e d w i t h Fe. The amount of A l i s reduced i n the r e g i o n of the pan where Fe i s h i g h e s t . No i r r e g u l a r i t i e s i n S i were d e t e c t e d a c r o s s the pan. The v e r t i c a l e l e c t r o n probe ( c ) , shown I n F i g u r e I I I - l l , gav a h i g h e r c o n c e n t r a t i o n of Fe was t o t h a t w i t h i n the pan i n compar boundary i s l e s s a brupt b e i n g 20 i n c r e a s e i n Fe from, the- top of -1 t h e n remains r e l a t i v e l y c o n s t a n t d e c r e a s e s t o 5.4 mm. Aluminum c o n c e n t r a t i o n i s a w i t h Fe p r e s e n t i n the m a t e r i a l scan a c r o s s P l a c i c H o r i z o n e s i m i l a r r e s u l t s t o ( b ) , however, p r e s e n t above the pan r e l a t i v e i s o n w i t h ( b ) . A l s o , t h e upper 0 yi a c r o s s . There i s an he pan t o 1.5 mm where i t t o a depth of 3.2 mm and t h e n l s o l o w i n P l a c i c H o r i z o n ( c ) , c o a t i n g the m i n e r a l g r a i n s above 152 S i AI F e T O P O F P L A C I C H O R I Z O N D E P T H ( m m ) F i g u r e 111-10. An e l e c t r o n probe scan o f a v e r t i c a l t r a n s e c t a c r o s s P l a c i c H o r i z o n (b) showing the d i s t r i -b u t i o n o f S i , . ' A l and Fe. 153 F i g u r e I I I - l l . An e l e c t r o n probe scan of a v e r t i c a l t r a n s e c t a c r o s s P l a c i c H o r i z o n ( c ) showing the d i s t r i b u t i o n . of S i , A l , and Fe. 1 5 4 the pan and i n t o . t h e top 0.5 mm of the pan, Fe remains h i g h i n the lower p o r t i o n - o f the pan where i t - i s a s s o c i a t e d w i t h S i and then d e c r e a s e s . w i t h d e p t h . Manganese was e s s e n t i a l l y absent i n b o t h pans but i s o l a t e d c o n c e n t r a t i o n s were p r e s e n t . The r e l a t i v e d i s t r i b u t i o n of Fe, A l and S i o c c u r r i n g i n the plasma'and s k e l e t a l m a t e r i a l o f P l a c i c H o r i z o n s (b)f and (c) a r e shown i n the X-ray e m i s s i o n images i n F i g u r e s 1 1 1 - 1 2 and 1 1 1 - 1 3 . GENESIS OF PLACIC HORIZONS The complete absence of por e s i n the p l a c i c h o r i z o n s and the l a m i n a t e d appearance i n P l a c i c H o r i z o n (d) suggest the i n t e r s t i t i a l m a t e r i a l i s d e p o s i t e d p r i m a r i l y a l o n g a p l a n e r a t h e r t h a n as c o a t i n g s on the m i n e r a l g r a i n s which s u b s e q u e n t l y c o a l e s c e . T h i s p l a n e of i n i t i a t i o n c o u l d r e s u l t from the e s t a b l i s h m e n t of an o x i d a t i o n - r e d u c t i o n i n t e r f a c e as proposed by some workers (McKeague et. a l . , 1 9 6 7 ) but t h i s does not account f o r an o b s e r v a b l e pan t h i c k n e s s of o n l y up t o 4 mm. P r e c i p i t a t i o n of s o l u b l e m a t e r i a l s as they move down the p r o f i l e i s u n l i k e l y t o be a major f a c t o r i n pan i n i t i a t i o n as a d i f f u s e p a t t e r n would r e s u l t c h a r a c t e r i s t i c of a B f . The pre s e n c e of pans a t l i t h o l o g i c d i s c o n t i n u i t i e s , a l o n g r o o t c h a n n e l s and a s s o c i a t e d w i t h t r e e o v e r t u r n s s u p p o r t s an i n i t i a t i o n by a d i f f e r e n t i a l redox p o t e n t i a l a c r o s s an i n t e r f a c e . Pe A l S i F i g u r e 111-12. X-ray e m i s s i o n image of P l a c i c H o r i z o n (b) showing the r e l a t i v e d i s t r i b u t i o n of Fe, A l , and S i between the plasma and s k e l e t a l m a t e r i a l . i— 1 Fe A l S 1 F i g u r e 1 1 1 - 1 3 . X-ray e m i s s i o n image of P l a c i c H o r i z o n (c) showing the r e l a t i v e d i s t r i b u t i o n o f Fe, A l , and S i between the plasma and s k e l e t a l m a t e r i a l 157 The presence of a s s o c i a t e d A l and S i , p r o b a b l y as second-ar y aluminum s i l i c a t e s , c o u l d a l s o mean t h a t a s p e c i f i c environment which i s f a v o r a b l e t o t h e i r f o r m a t i o n i s e s t a b l i s h e d , w i t h l a t e r F e - o r g a n l c m a t t e r a c c u m u l a t i o n t a k i n g p l a c e . The p resence of an abrupt upper boundary r e l a t i v e t o t h e lower boundary, and i s o l a t e d a r e a s of f r a c t u r e d m a t e r i a l i n the lower t r a n s i t i o n a l p a r t o f the pans, s u p p o r t s t h i s sequence of development, w i t h a c t i v e f o r m a t i o n t a k i n g p l a c e at the t o p . Once the p l a n e of development i s e s t a b l i s h e d i t c o u l d a c t as a t e m p l a t e or medium upon which s u c c e s s i v e a d d i t i o n s of m a t e r i a l s i n s o l u t i o n a r e f i x e d t o form the amorphous complex which composes the major p o r t i o n of the pan. A l t h o u g h p r e f e r -e n t i a l movement o f the pan m a t e r i a l as s o l u b l e i n d i v i d u a l comp-onents or complexes appears t o be p r e s e n t , i t would not be n e c e s s a r y , as the m a t e r i a l s c o u l d become bound t o the pan by s i m p l e c o n t a c t w i t h subsequent l o s s of s o l u b i l i t y . B i o d e g r a d a t i o n c o u l d be r e s p o n s i b l e f o r l i m i t i n g the t h i c k n e s s of the pan as suggested by A r i s t o v s k a y a ( 1 9 6 5 ) where the OM i s consumed by m i c r o - o r g a n i s m s . A l s o , t h e d e c r ease i n v e r t i c a l water movement above the pan as s a t u r a t i o n i s q u i c k l y r e ached f o l l o w i n g p r e c i p i t a t i o n , r e duces th e e f f e c t i v e l e a c h i n g o f s u b s t a n c e s which would l i m i t pan t h i c k n e s s . An e q u i l i b r i u m c o n d i t i o n i s e s t a b l i s h e d when the perched water t a b l e i s c r e a t e d by the low p e r m e a b i l i t y o f the p l a c i c h o r i z o n . T h i s , p l u s the p r e c i p i t a t i o n f r e q u e n c y i n the a r e a 158 (Table 1-1), I n c r e a s e s the s t a b i l i t y o f the pan by p r e y e n t i n g d e s i c c a t i o n and subsequent f r a c t u r i n g . The degree t o which the s t a b i l i t y of the pan i s l o s t when d r y i n g o c c u r s i s dependent upon the form i n which the Fe Is' p r e s e n t . Those pans h i g h i n organic-bound Fe e x h i b i t macro f r a c t u r e s s i m i l a r t o P l a c i c H o r i z o n s (d) and are v e r y f r a g i l e , w h i l e t h o s e h i g h i n amorphous i n o r g a n i c Fe e x h i b i t m i c r o f r a c t u r i n g and are l e s s f r a g i l e . P l a c i c H o r i z o n (b) developed under u n u s u a l c o n d i t i o n s caused by t r e e wind-throw, however, i t can be used t o und e r s t a n d the g e n e s i s o f some t y p e s o f pans i n an a l t e r e d environment. The s u r f a c e m a t e r i a l which was i n c o r p o r a t e d i n t o the u n d e r l y i n g m a t e r i a l s was o r i g i n a l l y s i m i l a r t o the s u r f a c e m a t e r i a l of P l a c i c H o r i z o n ( a ) . I t appears t h a t low Fe and h i g h OM c o n t e n t m o b i l i z e d the Fe a t the i n t e r f a c e of the two m a t e r i a l s which m i g r a t e d at l e a s t 2 t o 3 cm i n t o the c o a r s e r m a t e r i a l b e f o r e c o n d i t i o n s were s u i t a b l e t o cause Fe t o p r e c i p i t a t e . The w e l l d e f i n e d band of dark r e d m a t e r i a l a d j a c e n t t o the pan can be e x p l a i n e d as t h e p o s s i b l e o u t e r l i m i t o f pan development when the h i g h e s t amounts o f OM were a v a i l a b l e . S i n c e t h e OM was not r e p l e n i s h e d by v e g e t a t i o n from above as i s the case w i t h most pans, the e q u i l i b r i u m s h i f t e d and the zone o f p r e c i p i t a t i o n m i g r a t e d towards the source o f t h e OM. I t would appear t h a t d i f f u s i o n I s t h e mechanism which i s f u n c t i o n a l i n t r a n s l o c a t i n g m a t e r i a l s t o the p l a n e of pan f o r m a t i o n i n t h i s case w i t h a v a i l a b i l i t y o f m a t e r i a l b e i n g the major f a c t o r i n l i m i t i n g the t h i c k n e s s o f the pan. 159 Two f a c t o r s r e l a t i n g t o the p o s i t i o n of P l a c i c H o r i z o n (b) would i n d i c a t e t h a t d i f f u s i o n , and not l e a c h i n g was. f u n c t i o n a l i n the t r a n s l o c a t i o n of pan f o r m i n g c o n s t i t u e n t s . - F i r s t , the p l a c i c h o r i z o n c o m p l e t e l y e n c l o s e d the s u r f a c e m a t e r i a l o f f i n e r t e x t u r e i n c l u d i n g the upper p o r t i o n , i n d i c a t i n g t h a t t h e movement of c o n s t i t u e n t s was r a d i a l i n a l l d i r e c t i o n s . S e c o n d l y , the p o s i t o n o f the pan w i t h i n the c o a r s e r t e x t u r e s u b s u r f a c e m a t e r i a l would i n d i c a t e t h a t p r e c i p i t a t i o n had not o c c u r r e d due t o the d i f f e r e n t i a l r e d u c t i o n o x i d a t i o n p o t e n t i a l s at the i n t e r f a c e of the f i n e and c o a r s e t e x t u r e d m a t e r i a l s but had s h i f t e d away from t h i s i n t e r f a c e . CONCLUSIONS In the s o i l s formed on beach sand d e p o s i t s , p l a c i c h o r i z o n s were o n l y developed where the water t a b l e was a t l e a s t 1.5 m below the m i n e r a l s u r f a c e h o r i z o n s f o r a s i g n i f i c a n t p a r t of the y e a r . The pans v a r y c o n s i d e r a b l y i n morphology. They can be s i n g l e or branched, range i n t h i c k n e s s from <0.1 mm t o 4 mm and can be d u l l or v i t r e o u s . The p l a c i c m a t e r i a l i s some c o m b i n a t i o n of Fe - o r g a n i c m a t t e r complexes ( m a i n l y f u l v i c -a c i d ) and amorphous i n o r g a n i c Fe. The development of the pans s t u d i e d were i n i t i a t e d p r i m a r i l y at l i t h o l o g i c d i s c o n t i n u i t i e s . P r o c e s s e s a c t i v e i n f o r m a t i o n 160 were m o b i l i z a t i o n of Fe i n the presence of OM and subsequent d e p o s i t o n at a p l a n e of d i f f e r e n t i a l redox p o t e n t i a l . D i f f u s i o n was a c t i v e i n the movement of complexes, and p r e v i o u s l y d e p o s i t e d m a t e r i a l a c t s as a t e m p l a t e f o r subsequent d e p o s i t i o n . A l t h o u g h the p l a c i c h o r i z o n s v a r y I n morphology and c h e m i c a l c o m p o s i t i o n t h e i r f u n c t i o n i s s i m i l a r w i t h i n the r e s p e c t i v e pedons. 161 LITERATURE CITED ALLISON, L.E. 1 9 6 5 . O r g a n i c c a r b o n . I n "Methods o f S o i l A n a l y s i s , " ( C A , B l a c k , ed) P a r t 2 . .Agronomy 9 ; 1 3 7 2 -1 3 7 6 . ARISTOVSKAYA, T.V. 1 9 6 5 . The M i c r o b i o l o g y o f P o d z o l i c S o i l s . Akad. Nauk. S.S.S.R., Moscow. ( T r a n s l . by F o r e i g n Lang. D i v . , Bureau f o r T r a n s l . , Dept. S e c r y . of S t a t e , Ottawa). BARIL, R. and BITTON, C 1 9 6 9 . Teneurs e l e v e e s de f e r l i b r e et 1 ' i d e n t i f i c a t i o n taxonomique de c e r t a i n s s o l s du Quebec contenant de l a m a g n e t i t e . Can. J . S o i l S c i . 4 9 : 1 - 9 -BHOOJEDHUR, S. 1 9 6 8 . Genesis of a P o d z o l sequence on the west c o a s t of Vancouver I s l a n d . U n p u b l i s h e d M.Sc. T h e s i s , Dept. of S o i l S c i . , U.B.C. BUTLER, J.H.A. and LADD, J.N. 1 9 7 1 . Importance of the m o l e c u l a r weight of humlc and f u l v i c a c i d s i n d e t e r m i n i n g t h e i r e f f e c t s on p r o t e a s e a c t i v i t y . S o i l B i o l . Biochem. 3:249 - 2 5 7 . CORDES, L.D, 1 9 7 3 . E c o l o g y of the S i t k a spruce f o r e s t s on the west c o a s t of Vancouver I s l a n d . U n p u b l i s h e d Ph.D.. t h e s i s , Dept. of Botany, U.B.C. DAMMAN, A.W.H. 1 9 6 5 . T h i n i r o n pans: t h e i r o c c u r r e n c e and c o n d i t i o n s . l e a d i n g t o t h e i r development. I n f o r m a t i o n Rep. N-X - 2 , Can. Dep. F o r e s t r y , S t . J o h n ' s , N ' f l d . LAVKULICH, L.M., BHOOJEDHUR, S., and ROWLES, C A . 1 9 7 1 . S o i l s w i t h p l a c i c h o r i z o n s on the west c o a s t of Vancouver I s l a n d , B r i t i s h Columbia. Can. J . S o i l S c i . 5 1 : 4 3 9-448. McKEAGUE, J.A. 1 9 6 7 . An e v a l u a t i o n of 0 . 1 M pyrophosphate and p y r o p h o s p h a t e - d i t h i o n i t e i n comparison w i t h o x a l a t e as e x t r a c t a n t s o f the a c c u m u l a t i o n p r o d u c t s i n P o d z o l s and some o t h e r s o i l s . Can. J . S o i l S c i . 4 7 : 9 5 - 9 9 . McKEAGUE, J.A., BRYDON, J.E. and MILES, N.M. 1 9 7 1 . D i f -f e r e n t i a t i o n o f forms of e x t r a c t a b l e i r o n and aluminum i n s o i l s . S o i l S c i . Soc. Amer. Pr o c . 3 5 : 3 3 - 3 8 . 1 6 2 McKEAGUE, J.A-, DAMMAN, W,H. and HERINGA, P , K . . 1 9 6 8 , I r o n -manganese and o t h e r pans i n some s o i l s of Newfoundland. Can. J . S o i l S c i , 48;243 - 253 . McKEAGUE, J,A. and DAY, J,H. 1 9 6 6 . D i t h i o n i t e and o x a l a t e e x t r a c t a b l e i r o n and aluminum as a i d s i n d i f f e r e n t i a t i n g v a r i o u s c l a s s e s o f s o i l s . Can. J . S o i l S c i , 4 6 : 1 3 - 2 2 . McKEAGUE, J.A,, SCHNITZER, M. and HERINGA, P.K. 1967- P r o p e r t i e s o f an I r o n p a n Humic P o d z o l from Newfoundland. Can. J . S o i l S c i . 4 7 : 2 3 - 3 2 . MEHRA, O.P. and JACKSON, M.I. I960. I r o n o x i d e removal from s o i l s and c l a y s by a d i t h i o n i t e - c i t r a t e system b u f f e r e d w i t h sodium b i c a r b o n a t e . 7 t h Nat. Conf. C l a y s and C l a y M i n e r a l s , pp. 3 1 7 - 3 2 7 -NATIONAL SOIL SURVEY COMMITTEE, CANADA. 1 9 7 0 . The System of S o i l C l a s s i f i c a t i o n f o r Canada. Queen's P r i n t e r f o r Canada, Ottawa. SCHNITZER, M. and DESJARDINS, J.G. 1 9 6 2 . M o l e c u l a r and e q u i v a l e n t w e i g h t s o f the o r g a n i c m a t t e r of a P o d z o l . S o i l S c i . Soc. Amer. P r o c . 2 6 : 3 6 2 - 3 6 5 . SCHWERTMANN, V., FISCHER, W.R. and PAPENDORF, H. 1 9 6 8 . The i n f l u e n c e of o r g a n i c compounds on the f o r m a t i o n o f i r o n o x i d e s . I n t . Congr. S o i l S c i . , T r a n s . 9 t h ( A d e l a i d e , A u s t . ) 1 : 6 4 5 - 6 5 5 -SCHNITZER, M., WRIGHT, J.R. and DESJARDINS, J.G. 1 9 5 7 - A comparison o f the e f f e c t i v e n e s s o f v a r i o u s e x t r a c t a n t s f o r o r g a n i c m a t t e r from two h o r i z o n s o f a P o d z o l p r o f i l e . Can. J . S o i l S c i . 3 8 : 4 9 - 5 3 -SOIL SURVEY STAFF. I960, 1 9 6 4 and 1 9 6 7 . S o i l . C l a s s i f i c a t i o n ; A comprehensive System. 7 t h Approx. and S u p p l e . , U.S.D.A. Washington, D.C. VALENTINE-, K.W.G. 1 9 6 9 . A P l a c i c Humic P o d z o l on Vancouver I s l a n d , B r i t i s h Columbia. Can. J . S o i l S c i . 4 9 : 4 1 1 - 4 1 3 . CHAPTER IV IMPLICATIONS FOR LAND-USE PLANNING AND MANAGEMENT IN THE TOFINO AREA OF VANCOUVER ISLAND DERIVED FROM THE SOILS AND OTHER LANDSCAPE FEATURES 164 IMPLICATIONS FOR LAND-USE PLANNING AND MANAGEMENT IN THE TQFINO AREA OF VANCOUVER ISLAND DERIVED FROM THE SOILS AND OTHER LANDSCAPE FEATURES INTRODUCTION At t h e p r e s e n t time t h e r e are many l e v e l s and approaches b e i n g used t o make s o i l i n t e r p r e t a t i o n s f o r p l a n n i n g and manage-ment purposes ( A s p h a l t I n s t i t u t e 1 9 6 9 ; B a r t e l l i et_ a l , 1 9 6 6 ; B r o c k e , 1 9 7 0 ; C a r b o n n i e r , 1 9 7 1 ; Daubenmlre, 1 9 7 3 ; Mulcahy, 1 9 6 7 ; L a c a t e , 1 9 6 9 ; Wertz and A r n o l d , 1 9 7 2 ; The Canada Land I n v e n t o r y , 1 9 6 5 ; H i l l s , 1 9 6 1 ; O l s e n , 1 9 6 4 ; S l y , 1 9 7 0 ) . The approach used i s d e t e r m i n e d p a r t l y by the k i n d o f a c t i v i t y f o r which the i n t e r -p r e t a t i o n i s b e i n g made. The p r e s e n t s t a t e o f knowledge a l s o i n f l u e n c e s the approach t a k e n and de t e r m i n e s the degree of r e l i a b i l i t y t h a t can be p l a c e d on the i n t e r p r e t a t i o n . The i n c -r e a s e d demand f o r s o c i a l and economic b e n e f i t s from the l a n d . . r e s o u r c e d i c t a t e s t h a t approaches be deve l o p e d and c r i t e r i a d e f i n e d which w i l l improve the r e l i a b i l i t y o f i n c r e a s i n g l y d e t a i l e d i n t e r p r e t a t i o n s . The i d e n t i f i c a t i o n o f c r i t e r i a t o be used w i l l come about t h r o u g h : 1 . I n c r e a s i n g the u n d e r s t a n d i n g o f the s o i l s r e s o u r c e and I t s r e l a t i o n s h i p t o o t h e r components o f the l a n d s c a p e . 2 . D e f i n i n g the i n t e r - r e l a t i o n s h i p s between s o i l s and l a n d use a c t i v i t i e s . 1 6 5 S i n c e i t i s o f t e n i m p o s s i b l e t o p r e d i c t the a c t i v i t y of a g i y e n a r e a , the s o i l must be a d e q u a t e l y u n d e r s t o o d f o r the u s e r s o f l a n d t o be a b l e t o make a range o f i n t e r p r e t a t i o n s . T h i s problem has been p a r t l y r e s o l v e d by c o n s i d e r i n g s o i l s as n a t u r a l b o d i e s and i d e n t i f y i n g them as i n d i v i d u a l s ( C l i n e , 1 9 4 9 ) . The p r o p e r t i e s o f thes e i n d i v i d u a l s , o r . s o i l s , w i l l v a r y w i t h i n a d e f i n e d range. However, t o i n c r e a s e t h e u s e f u l n e s s o f h a v i n g t h e s e i n d i v i d u a l s i d e n t i f i e d , i t i s n e c e s s a r y t o q u a n t i f y c e r t a i n p r o p e r t i e s and t o i n c r e a s e the u n d e r s t a n d i n g o f the f u n c t i o n of the s o i l b o t h I n t e r n a l l y and i n r e l a t i o n t o the t o t a l environment. By d o i n g t h i s , c o n t r o l l i n g f a c t o r s o r c r i t e r i a can be i d e n t i f i e d and s y s t e m a t i c approaches developed which w i l l i n c r e a s e the r e l i a b i l i t y o f i n t e r p r e t a t i o n s . T h e r e f o r e , the emphasis i s p l a c e d here on p r o c e s s e s r a t h e r t h a n a c t i v i t i e s . T h i s i s p a r t i c u l a r l y u s e f u l s i n c e i t i s i m p o s s i b l e f o r i n d i v i d -u a l s w i t h c o n s i d e r a b l e e x p e r i e n c e i n s o i l s t o make a l l i n t e r -p r e t a t i o n s on a s i t e s p e c i f i c b a s i s . However, the s e d e c i s i o n s can be made by i n d i v i d u a l s w i t h some knowledge o f s o i l s , i f i n f o r m a t i o n i s p r o v i d e d about t h e p r o c e s s e s r e s p o n s i b l e f o r m a i n t a i n i n g the r e l a t i v e e q u i l i b r i u m of s o i l s i n t h e i r e n v i r -onment. By u s i n g t h i s approach, an assessment o f the impact of., a l t e r n a t i v e m a n i p u l a t i o n s can be made w i t h some degree of a c c u r a c y and the u s e r o f t h e l a n d w i l l have i n f o r m a t i o n which can a s s i s t i n overcoming some of the d i f f i c u l t i e s i n m a x i m i z i n g b e n e f i t s from the s o i l s r e s o u r c e . MATERIALS 1 6 6 The s o i l s and o t h e r l a n d s c a p e f e a t u r e s r e f e r r e d t o i n the f o l l o w i n g d i s c u s s i o n were d e s c r i b e d i n C h apter 1 . C h e m i c a l , p h y s i c a l and' m i n e r a l o g i c a l . p r o p e r t i e s and g e n e s i s of the s o i l s were d i s c u s s e d i n Chapter I I . A d e t a i l e d d e s c r i p t i o n and d i s c u s s i o n o f the c o m p o s i t i o n and g e n e s i s o f the p l a c i c h o r i z o n s was g i v e n i n Chapter I I I . DISCUSSION The purpose of t h i s s e c t i o n i s t o i d e n t i f y p r o c e s s e s from s o i l and l a n d s c a p e parameters which can be used t o make I n t e r p r e t a t i o n s f o r a range of uses and a s s o c i a t e d a c t i v i t i e s . T h i s approach i s t a k e n f o r two r e a s o n s : 1 . Land use d e c i s i o n s are made not o n l y from the b i o -p h y s i c a l c a p a b i l i t y of the l a n d , but a l s o f o r s o c i o - e c o n o m i c and p o l i t i c a l r e a s o n s . T h e r e f o r e , t h e d e s i g n a t e d use i s not always b e s t s u i t e d t o t h e b i o - p h y s i c a l make-up of the l a n d and c o n s e q u e n t l y s p e c i a l c a r e has t o be t a k e n t o ensure the Impact o f t h e s e a c t i v i t i e s i s not e x c e s s i v e . A l s o , a s s o c i a t e d a c t i v i t i e s of the p r i m a r y d e s i g n a t e d use are not always c o m p a t i b l e w i t h t h e b i o p h y s i c a l c h a r a c t e r i s t i c s o f t h e l a n d . For example, l a n d w i t h h i g h c a p a b i l i t y f o r t r e e growth i s not n e c e s s a r i l y h i g h l y d e s i r a b l e f o r r o a d c o n s t r u c t i o n r e q u i r e d t o h a r v e s t the c r o p . 1 6 7 2.. The need, t o improve t h e use o f t h e l a n d r e s o u r c e r e q u i r e s t h a t i n t e r p r e t a t i o n s be made on a s i t e s p e c i f i c b a s i s and as was s t a t e d p r e v i o u s l y , t h i s w i l l be done by i n d i v i d u a l s w i t h a range o f e x p e r i e n c e . T h e r e f o r e , an u n d e r s t a n d i n g o f p r o c e s s e s s h o u l d r e s u l t i n an improvement i n t h e d e c i s i o n s b e i n g made. Fo r the s o i l s s t u d i e d , the dominant p r o c e s s e s c o n t r o l l i n g t h e i r e q u i l i b r i u m i n the environment a r e • i d e n t i f i e d . The p r o c e s s e s i n t u r n were c o n s i d e r e d t o be c o n t r o l l e d by the f o l l o w i n g t h r e e f a c t o r s : 1, Landscape components 2, I n h e r e n t s o i l c h a r a c t e r i s t i c s 3, G e n e t i c s o i l c h a r a c t e r i s t i c s The p r o c e s s e s are not m u t u a l l y e x c l u s i v e and i n some s o i l s i t would be d i f f i c u l t , i f not i m p o s s i b l e , t o s e l e c t any one as b e i n g dominant. However, the s e c a t e g o r i e s were c o n s i d e r e d u s e f u l f o r the., s o i l s s t u d i e d . The s o i l s I n which g e n e t i c c h a r a c t e r i s t i c s were most i m p o r t a n t a r e g i v e n s p e c i a l c o n s i d e r -a t i o n . LANDSCAPE COMPONENTS The s o i l s p l a c e d i n t h i s c a t e g o r y a r e dependent p r i m a r i l y on f a c t o r s e x t e r n a l t o the s o i l pedon f o r m a i n t a i n i n g a s t a t e o f q u a s i e q u i l l b r i u m . T h i s i s i m p o r t a n t t o know when c o n s i d e r i n g an a r e a f o r p l a n n i n g and management because o f i n t e r r e l a t i o n s h i p s between and among l a n d s c a p e segments. 1 6 8 Topography i s the c o n t r o l l i n g f a c t o r o f s o i l f o r m a t i o n which a c t s t o mod i f y the. f a c t o r s of c l i m a t e , and y e g e t a t i o n . (Jenny, 1 9 4 1 ) . F o r thes e r e a s o n s i t can be c o n s i d e r e d t h e p r i n c i p l e f a c t o r r e s p o n s i b l e f o r the p r o c e s s e s t a k i n g p l a c e a c r o s s l a n d -scapes o r pedons. The dominant p r o c e s s e s a r e the f l o w o f water from pedon t o pedon and the movement o f o t h e r m a t e r i a l s down-s l o p e , b o t h p a r t i a l l y under the f o r c e o f g r a v i t y . To change t h e s u r f a c e and s u b s u r f a c e regime o f water i n an ecosystem where t h e r e i s some r e l i e f i s a common o c c u r r e n c e b o t h by c a u s i n g s o i l d i s t u r b a n c e and by removing m a t e r i a l , f o r example, i n ro a d c o n s t r u c t i o n . S i n c e the pedons p r e s e n t i n any sequence on a s l o p e are h i g h l y dependent on t h e i r n e i g h b o r i n g pedons t o m a i n t a i n t h e i r f u n c t i o n and c h a r a c t e r i s t i c s t h e consequences o f a l t e r i n g the water regime s h o u l d be c o n s i d e r e d (Swanston, 1 9 7 1 ) . A l s o , the removal of m a t e r i a l from a s l o p e i n c r e a s e s the i n s t a b i l i t y of the m a t e r i a l s up s l o p e as they were f o r m e r l y g i v e n support by t h e removed m a t e r i a l . The s o i l s d e v e l o p e d on g l a c i a l t i l l d e p o s i t s ( S i t e s 9 and 1 0 ) and one s o i l d e v e l o p e d on sand d e p o s i t s ( S i t e 7 ) were i n c l u d e d i n t h i s c a t e g o r y . S i t e s 9 and 1 0 The t i l l s o i l s were i n c l u d e d here p r i m a r i l y due t o topography ( F i g u r e 1 - 2 3 ) and the r e s u l t i n g i n t e r a c t i o n of f o r c e and r e s i s t a n c e . The f a c t t h a t t h e s o i l s e x h i b i t much churning, from t r e e wind-throw and d o w n h i l l creep i s i n d i c a t i v e of t h e i n s t a b i l i t y o f 1 6 9 t h e s e m a t e r i a l s under n a t u r a l c o n d i t i o n s . The presence o f a l i t h i c c o n t a c t below the. B h o r i z o n a l s o acts, t o pr.ey.ent water movement t h r o u g h -the pedon and out of the system.. E v i d e n c e f o r t h i s i s the a c c u m u l a t i o n of o r g a n i c m a t t e r i m m e d i a t e l y above t h bedrock. The bedrock c o n f i g u r a t i o n tends t o be i r r e g u l a r i n n a t u r e and p r o v i d e s s t a b i l i t y t o the s o i l s on the s t e e p e r s l o p e However, some of t h e bedrock l i e s p a r a l l e l t o t h e s l o p e and can ac t as an i n t e r f a c e over which the s o i l can move. The. p r o -b a b i l i t y o f mass w a s t i n g i s increased when the s o i l s a r e s a t u r a t e d The removal o f v e g e t a t i o n from t h e s e s o i l s a l s o i n c r e a s e s the chances o f m a t e r i a l movement downslope, as i t has been shown t h a t as the r o o t s decay most o f the s t r e n g t h , which h o l d s the s o i l s t o g e t h e r , i s l o s t ( O ' L o u g h l i n , 1 9 7 2 ; Swanston and D r y n e s s , 1 9 7 3 ) . Changes i n s i t e c h a r a c t e r i s t i c s i n the study a r e a w i l l be l e s s from a l t e r a t i o n s i n water movement th a n i n areas where p r e c i p i t a t i o n i s l o w e r . The movement o f m a t e r i a l s under s a t u r a t e d c o n d i t i o n s i s the e x c e p t i o n . Adequate water i s p r o -v i d e d f o r p l a n t growth throughout most of the y e a r w i t h a s h o r t p e r i o d of d e f i c i t d u r i n g some dry y e a r s ( T a b l e 1 - 1 ) . A l s o , the r e l a t i v e l y h i g h a v a i l a b l e water s t o r a g e c a p a c i t y o f t h e s e s o i l s would make m o i s t u r e a v a i l a b l e throughout the p e r i o d s of d e f i c i t . The s o i l s are of medium t e x t u r e s and d i s c o n t i n u i t i e s are not e x p r e s s e d i n abrupt changes i n p r o p e r t i e s . T h e r e f o r e , 170 p r o c e s s e s o c c u r l n g i n t h e s e s o i l s a r e not dominated by t h e m a t e r i a l s i n which they are formed, Pedogenic p r o c e s s e s have r e s u l t e d i n some changes which s h o u l d be c o n s i d e r e d f o r use. The a g g r e g a t i o n o f f i n e r p a r t i c l e s by Fe and A l o x i d e s has i n c r e a s e d s o i l s t a b i l i t y by i n c r e a s i n g s t r u c t u r e , however, t h i s i s not s i g n i f i c a n t compared t o the s t a b i l i t y p r o v i d e d by the t o t a l l a n d s c a p e . S i t e 7 S i t e 7 was I n c l u d e d i n t h i s c a t e g o r y p r i m a r i l y because of the h i g h r e g i o n a l water t a b l e . The water t a b l e was near the s u r f a c e i n the c e n t r a l a r e a s of the p l a i n i n the beach sand d e p o s i t s where l a t e r a l d r a i n a g e was not adequate ( F i g u r e I I I - l ) . The presence of excess water was r e f l e c t e d i n t h e morphology and c h e m i c a l c h a r a c t e r i s t i c s of the pedon. I n i t s p r e s e n t s t a t e , the v a l u e o f t h i s s o i l i s l i m i t e d f o r a c t i v i t i e s which would r e q u i r e d i r e c t m a n i p u l a t i o n . The a l t e r n a t i v e would be t o d r a i n the a r e a t o r e n d e r t h e s e s i t e s more u s e f u l . The p o t e n t i a l consequences £>.f e l i m i n a t i n g the e x c e s s i v e water from th e s e s o i l s w i l l be d i s c u s s e d under c a t e g o r y ( 3 ) } g e n e t i c c h a r a c t e r i s t i c s . INHERENT SOIL CHARACTERISTICS The s o i l s p l a c e d i n t h i s c a t e g o r y are dependent p r i m a r i l y f o r t h e i r morphology and f u n c t i o n on the n a t u r e o f the d e p o s i t s 171 on which they a re formed. The main c h a r a c t e r i s t i c s observed were ( 1 ) pronounced l i t h o l o g i c d i s c o n t i n u i t i e s and (2) p o o r l y graded m a t e r i a l s . These f a c t o r s are r e s p o n s i b l e , f o r c o n t r o l -l i n g s o i l development t h r o u g h changes i n s o i l atmosphere and water movement i n the pedon. Two s o i l s developed on outwash m a t e r i a l s ( S i t e s 1 and 2 ) , one on marine c l a y d e p o s i t s ( S i t e 5) and one on beach sand d e p o s i t s ( S i t e 8) are p l a c e d i n t h i s c a t e g o r y . S i t e s 1 and 2 The response t o use o f s o i l s d e v e l o p e d on the outwash m a t e r i a l s would be c o n t r o l l e d by the depths o f the loam t e x t u r e d s u r f a c e m a t e r i a l p r e s e n t over the c o a r s e r t e x t u r e d s u b s u r f a c e h o r i z o n s . T h i s v a r i a b i l i t y i s r e f l e c t e d i n the s t r u c t u r e o f mature v e g e t a t i o n . I t i s a l s o pronounced a f t e r f o r e s t h a r v e s t i n g where the l o g g i n g method used has removed the f i n e r t e x t u r e d h o r i z o n s . T h i s has r e s u l t e d i n the presence of areas o f exposed s u b s u r f a c e m i n e r a l s o i l more th a n t e n y e a r s a f t e r l o g g i n g . The e f f e c t i v e r o o t i n g depth was observed t o be l i m i t e d t o the f i n e r s u r f a c e h o r i z o n s . T h i s i s p a r t l y due t o t h e cement-a t i o n o f the c o a r s e r m a t e r i a l s , by A l and/or S i . The c o a r s e m a t e r i a l s a re a l s o i n h e r e n t l y low i n n u t r i e n t s , and because of the v e r y low CEC are not a b l e t o r e t a i n the r e q u i r e d n u t r i e n t s f o r p l a n t growth I n l a r g e amounts. The i n c o r p o r a t i o n o f o r g a n i c 172 m a t t e r and t h e enrichment o f s e s q u i p j c i d e s i n the s u r f a c e m i n e r a l h o r i z o n s has i n c r e a s e d the a v a i l a b l e water s t o r a g e c a p a c i t y . T h i s a i d s i n m a i n t a i n i n g adequate water f o r p l a n t growth d u r i n g the p e r i o d of summer d e f i c i t . Any a c t i v i t y which removes the f i n e o v e r l a y e i t h e r d i r e c t l y by the a c t i v i t y o r t h r o u g h e r o s i o n g r e a t l y reduces the s i t e p r o d u c t i v i t y o f the s e s o i l s . The l a n d s c a p e components become v e r y i m p o r t a n t a t the l a n d -ocean i n t e r f a c e . T h i s a r e a i s s u b j e c t t o mass w a s t i n g o f m a t e r i a l s a l o n g the c l i f f f a c e . The f a c t o r s i n v o l v e d i n c l u d e ; the e r o s i o n o f the base o f the c l i f f d u r i n g w i n t e r s t o r m s , the v a r i a b i l i t y o f the marine c l a y m a t e r i a l i n r e l a t i o n t o the depth o f outwash overburden ( F i g u r e 1-6), and the s a t u r a t i o n o f the marine c l a y s d u r i n g the w i n t e r months. The l a r g e s t s l i d e s ( F i g u r e IV-1) oc c u r where t h e outwash d e p o s i t s a re s h a l l o w and the marine c l a y s are near the s u r f a c e . As the c l a y s r e a c h s a t u r a t i o n they become l i q u i d and f l o w . Where the c o a r s e outwash m a t e r i a l s a r e of c o n s i d e r a b l e t h i c k n e s s , some mass w a s t i n g o c c u r s as the c l i f f f a c e f l a k e s o f f , however, the amount o f m a t e r i a l i n v o l v e d I s much l e s s t h a n t h o s e i n v o l v i n g the c l a y m a t e r i a l . The s t a b i l i t y of the outwash d e p o s i t s r e s u l t s from the c e m e n t a t i o n o f the c o a r s e f r a g m e n t s . Permanent s t r u c t u r e s s h o u l d not be c o n s t r u c t e d i n the a r e a a l o n g the c l i f f , e s p e c i a l l y where the g r a v e l s a re s h a l l o w over c l a y m a t e r i a l s . A c t i v i t y i n t h i s a r e a should' a l s o be l i m i t e d t o dry p e r i o d s of the y e a r . 1 7 3 F i g u r e I V -1. These s l i d e s a r e t y p i c a l o f where the outwash m a t e r i a l s i n e c l a y d e p o s i t s . t h o s e o c c u r r i n g are s h a l l o w over mar-1 7 4 S i t e 5 The s o i l a t S i t e 5 was. a l s o i n c l u d e d i n t h i s c a t e g o r y where the i n h e r e n t c h a r a c t e r i s t i c s of, the p a r e n t m a t e r i a l dominates the f u n c t i o n , of the s o i l s i n t h e l a n d s c a p e . T h i s f i n e t e x t u r e d m a t e r i a l has r e t a r d e d s o i l development. T h i s i s p r i m a r i l y due t o the low p e r m e a b i l i t y o f the m a t e r i a l s r e s u l t i n g i n a s a t u r a t e d c o n d i t i o n o f the pedon f o r much of the y e a r . Even d u r i n g d r y p e r i o d s , the l o c a l water t a b l e remains h i g h . T h i s c o n d i t i o n has p r e v e n t e d the removal of w e a t h e r i n g p r o d u c t s which i s p a r t l y r e s p o n s i b l e f o r l i m i t e d s o i l development. T h i s s o i l i s o f l i m i t e d use f o r many a c t i v i t i e s and r e q u i r i e s m o d i f i c a t i o n i f i t i s t o be used d i r e c t l y . The m a t e r i a l i s poor f o r c o n s t r u c t i o n purposes and any t y p e o f t r a f f i c c o r r i d o r would have t o be s u r f a c e d w i t h c o a r s e r m a t e r i a l . D r a i n a g e would have an e f f e c t on the pH of t h e s e s o i l s . T e s t s i n d i c a t e t h a t a drop i n pH would o c c u r under o x i d i z i n g c o n d i t i o n s and w i l l r e s u l t i n changes i n v e g e t a t i o n c o m p o s i t i o n and s t r u c t u r e . However, t h i s change w i l l not have as much e f f e c t as the de c r e a s e i n s o i l m o i s t u r e c o n t e n t , as the h i g h -e s t pH i s below the zone where r o o t s a re p r e s e n t . The change i n pH w i l l r e s u l t from l e a c h i n g o f the b a s i c c a t i o n s w h i c h show an i n c r e a s e i n t h e lower solum and C h o r i z o n s , p l u s the o x i d a t i o n of s u l p h u r t o form H oS0 ; i i n t h e s o i l s o l u t i o n . 1 7 5 S i t e 8 The s o i l a t S i t e . 8 was I n c l u d e d i n . t h i s c a t e g o r y because of t h i s u n i f o r m n a t u r e of. the sandy p a r e n t m a t e r i a l and the l a c k of s t r o n g l y e x p r e s s e d g e n e t i c f e a t u r e s . The sands a r e low i n i n h e r e n t f e r t i l i t y , and n u t r i e n t c y c l i n g i s p r i m a r i l y c o n f i n e d t o t h e o r g a n i c h o r i z o n s . L e a c h i n g of m o b i l e elements i s not r e t a r d e d by r e s t r i c t i n g l a y e r s i n t h e pedon, t h e r e f o r e , s i t e q u a l i t y i s dependant on t h e maintenance of the o r g a n i c h o r i z o n s . The s o i l at t h i s s i t e does not e x h i b i t s e v e r e e r o s i o n when exposed, p a r t l y because the m a t e r i a l i s h i g h l y permeable and p a r t l y because of the low r e l i e f . The s o i l i s i n the e a r l y s t a g e s - o f development as a r e s u l t of the l i m i t e d a v a i l a b i l i t y of m a t e r i a l f o r w e a t h e r i n g i n the sands, and because o f the r e l a t i v e y o u t h o f the d e p o s i t s . W i th c o n t i n u e d - a c c u m u l a t i o n o f OM and Fe from b i o t i c c y c l i n g t h e r e i s some p o t e n t i a l f o r p l a c i c h o r i z o n development i n t h i s s o i l . There are d i s c o n t i n u i t i e s i n the m a t e r i a l s which c o u l d i n i t i a t e the f o r m a t i o n of pans but the changes i n t e x t u r e a r e not a b r u p t . GENETIC CHARACTERISTICS The s o i l s i n c l u d e d i n t h i s c a t e g o r y a re tho s e i n - w h i c h c h a r -a c t e r i s t i c s formed by pedogenic p r o c e s s e s d i r e c t the f u n c t i o n of the s o i l i n t e r n a l l y , and t o a c o n s i d e r a b l e degree a l s o some o f the o t h e r l a n d s c a p e components. 1 7 6 At some p r e c e d i n g s t a g e of development the s e s o i l s would have been p l a c e d i n one o f the o t h e r c a t e g o r i e s . The i n h e r e n t c h a r a c t e r i s t i c s and o t h e r l a n d s c a p e components w h i c h were i n i t i a l l y r e s p o n s i b l e f o r d i r e c t i n g pedogenic p r o c e s s e s can be d e t e r m i n e d from the s t r a t i g r a p h y and mode of m a t e r i a l d e p o s i t i o n , the p o s i t i o n of the s o i l i n the l a n d s c a p e and the c o m p o s i t i o n , morphology and arrangement o f g e n e t i c c h a r a c t e r i s t i c s . Three s o i l s a r e i n c l u d e d i n t h i s c a t e g o r y . The s o i l a t S i t e 3 developed on g l a c i a l outwash d e p o s i t s , the s o i l a t S i t e 4 developed on marine c l a y m a t e r i a l s and the s o i l at S i t e 6 developed on sandy beach d e p o s i t s . The pedogenic f e a t u r e s o f t h e s e s o i l s have c o n s i d e r a b l e i n f l u e n c e on f u n c t i o n o f the s o i l i n the environment. S i t e 4 The change . i n s t r u c t u r e of the s o i l a t S i t e 4 , from the a g g r e g a t i o n of c l a y s i z e p a r t i c l e s , i s the dominant g e n e t i c p r o c e s s which i s r e s p o n s i b l e f o r t h e change i n f u n c t i o n o f t h i s s o i l i n the environment. T h i s i s a r e s u l t of the t r a n s f o r m a t i o n of Fe and A l as w e a t h e r i n g p r o d u c t s of p r i m a r y m i n e r a l s t o Fe and A l o x i d e s . The i n t e r n a l d r a i n a g e of t h i s s o i l has been i n c r e a s e d c o n s i d e r a b l y by these p r o c e s s e s as i n d i c a t e d by the i n c r e a s e i n exchangeable c a t i o n s at a depth of 1 2 0 cm. compared t o an i n c r e a s e a t 3 0 cm. i n the pedon at S i t e 5 - T h i s i n c r e a s e i s i n d i c a t i v e of the e f f e c t i v e depth of l e a c h i n g i n t h i s s o i l i n t h i s environment. 1 7 7 The g e o g r a p h i c a l d i s t r i b u t i o n of t h e s e s o i l s , a l o n g d r a i n a g e channels i s e v i d e n c e t h a t the development of t h e s e s o i l s was i n i t i a l l y dependent on t h e i r p o s i t i o n i n t h e l a n d s c a p e . T h i s c l o s e p r o x i m i t y t o d r a i n a g e c h a n n e l s r e s u l t e d i n a sequence of a l t e r n a t i n g wet and dry p e r i o d s which appears t o a i d i n a g g r e g a t i o n by Fe and A l o x i d e s . I t a l s o a s s i s t e d i n removing the p r o d u c t s of w e a t h e r i n g which would t e n d t o advance s o i l development t o i t s p r e s e n t s t a t e . Any. m a n i p u l a t i o n o f t h i s s o i l would t e n d t o break down the s t r u c t u r e , e s p e c i a l l y when m o i s t u r e c o n t e n t i s h i g h . The aggregates are not v e r y s t a b l e , w i t h a h i g h p e r c e n t a g e of the m a t e r i a l reduced t o c l a y s i z e d p a r t i c l e s d u r i n g p a r t i c l e s i z e a n a l y s i s . Some r e s i s t a n c e t o d i s a g g r e g a t i o n was shown however, as from 17 t o 3 2 p e r c e n t o f the s o i l remained as s i l t s i z e d p a r t i c l e s d u r i n g t r e a t m e n t . A p p r o x i m a t e l y 1 5 p e r c e n t of t h i s s i l t f r a c t i o n was reduced t o c l a y upon t r e a t m e n t w i t h d i t h i o n i t e which would i n d i c a t e t h a t t h i s set o f a g g r e g a t e s would rema i n s t a b l e under c o n s i d e r a b l e s t r e s s . S i t e 3 The bog l a n d s c a p e a t S i t e 3 i s p r i m a r i l y t h e r e s u l t o f pedogenic c e m e n t a t i o n i n t h e B f c h o r i z o n . T h i s cemented h o r i z o n has p r e v e n t e d the p e n e t r a t i o n o f r o o t s and water t o lower depths. A s i m i l a r c o n d i t i o n e x i s t s on an a d j a c e n t l a n d -scape but t h e r e i s enough r e l i e f t o g i v e adequate d r a i n a g e so bogs a r e not formed. 1 7 8 The r e g i o n a l l a n d s c a p e i s p a r t of the outwash p l a i n and i s r e p r e s e n t a t i v e of those s o i l s w hich have l i t t l e or no. ' f i n e t e x t u r e d c a p p i n g over- the c o a r s e r m a t e r i a l s . Much of the f i n e r m a t e r i a l on the h i g h e r s i t e s has been washed i n t o d e p r e s s i o n a l a r e a s . I n b o t h the d e p r e s s i o n a l and u p l a n d p o s i t i o n s , t r e e s a r e p r e s e n t which have the form of the b o n s a i ( F i g u r e 1-12). T h i s form i s e v i d e n t I n the o l d e r v e g e t a t i o n w i t h young, n a t u r a l r e g e n e r a t i o n h a v i n g normal form. The t r e e s do not grow i n dense stands and become p r o g r e s s i v e l y more open as the depth of o r g a n i c a c c u m u l a t i o n i n c r e a s e s i n the bogs. The b o n s a i form i s p r o b a b l y caused by the v e r y l i m i t e d s o i l d epth above the cemented h o r i z o n s i n t h e u p l a n d a r e a s and the c o m p e t i t i o n f o r n u t r i e n t s by a d j a c e n t t r e e s . T h i s e f f e c t -i v e l y l i m i t s the s o i l volume t o be o c c u p i e d by the r o o t s of each i n d i v i d u a l t r e e . T h i s a l s o e x p l a i n s why new r e g e n e r a t i o n i s of normal form. The s o i l volume i s i n i t i a l l y adequate as the young t r e e s r e p l a c e o l d e r members o f the s t a n d . As they i n c r e a s e i n s i z e t h e i r r o o t s occupy t h e maximum s o i l volume a v a i l a b l e t o them and growth becomes i n c r e a s i n g l y r e t a r d e d . Wind i s not a f a c t o r i n the development of t h i s form as t r e e s of t h i s t y p e a r e p r e s e n t i n s h e l t e r e d a r e a s . The growth form of t r e e s growing i n the bog areas i s not l i m i t e d p h y s i c a l l y by the volume a v a i l a b l e t o r o o t growth but i s p r o b a b l y the r e s u l t o f p h y s i o l o g i c a l n u t r i e n t d e f i c i e n c i e s . 179 The p r e s ence of excess water has been shown t o I n h i b i t n u t r i e n t uptake ( L e e s , 1 9 7 2 ) , The bogs I n t h i s a r e a of which S i t e 3 i s r e p r e s e n t a t i v e a r e r e l a t i v e l y young and have been dated at 3&O+90 y e a r s of age (Wade, 1 9 6 5 ) . The a r e a o c c u p i e d by bogs i s o f l i m i t e d e x t e n t but c o u l d c o n t i n u e t o e n l a r g e as s o i l development c o n t i n u e s and the degree o f c e m e n t a t i o n i n c r e a s e s . The bogs s h o u l d be e l i m i n a t e d from i n t e n s i v e use because of t h e i r l i m i t e d e x t e n t and the f a c t t h a t p a s t a t t e m p t s t o rehab-i l i t a t e them have f a i l e d ( L a v k u l i c h , p e r s o n a l comm.). T h e i r v a l u e f o r a e s t h e t i c and n a t u r a l h i s t o r y p u r p o s e s , and as bear h a b i t a t , s h o u l d not be o v e r l o o k e d . S i t e 6 The p l a c i c h o r i z o n was the g e n e t i c c h a r a c t e r i s t i c which was c o n t r o l l i n g the f u n c t i o n of t h i s s o i l , b o t h i n t e r n a l l y and i n t h e l a n d s c a p e . The p l a c i c h o r i z o n was i n i t i a t e d by an i n h e r e n t p r o p e r t y of the pa r e n t m a t e r i a l , a l i t h o l o g i c d i s -c o n t i n u i t y . A l s o , a p r e r e q u i s i t e f o r development was a d i f f e r e n t i a l redox c o n d i t i o n a c r o s s t h i s i n t e r f a c e , t h e r e f o r e , t h e s e s o i l s occupy a p o s i t i o n i n the l a n d s c a p e where the .ground water t a b l e i s at l e a s t one meter below the d i s c o n t i n u i t y f o r a s i g n i f i c a n t p a r t of the year ( F i g u r e I I I - l ) . The. p l a c i c h o r i z o n e s t a b l i s h e s a p a r t i a l l y c l o s e d e n v i r -onment w i t h m a t e r i a l below the pan e f f e c t i v e l y c u t - o f f from 180 the r e s t of the system. The pan e s t a b l i s h e s a s e l f - p e r p e t u a t i n g environment.by p r e v e n t i n g movement o f water and a s s o c i a t e d c o n s t i t u e n t s t h r o u g h t h e s o i l pedon. T h i s enhances t h e r e -q u i r e d c o n d i t i o n s f o r pan f o r m a t i o n by p r o v i d i n g a s u p p l y of o r g a n i c m a t t e r and Fe i n a r e d u c i n g environment. Any a c t i v i t y w hich changes one ..or more components of t h i s system w i l l have a pronounced e f f e c t on t h i s s e n s i t i v e system. Much of the a r e a where the p l a c i c s o i l s o c c u r has advanced t o bogs ( F i g u r e I V - 2 ) . T h i s i s p a r t l y the r e s u l t o f the removal of the f o r e s t by f i r e . The subsequent- r e d u c t i o n of e v a p o t r a n s -p i r a t i o n which raises the l e v e l of t h e p e r c h e d water t a b l e above the p l a c i c h o r i z o n and c o n s e q u e n t l y the e s t a b l i s h m e n t o f bog s p e c i e s i s f a v o u r e d . The removal of o r g a n i c s u r f a c e h o r i z o n s d e c r e a s e s t h e n u t r i e n t s t a t u s of the s o i l c o n s i d e r a b l y and exposes t h e s o i l t o e r o s i o n . The i n h e r e n t f e r t i l i t y of the m i n e r a l m a t e r i a l i s v e r y low and many y e a r s are r e q u i r e d f o r v e g e t a t i o n t o r e -e s t a b l i s h , even on a r e a s where s u r f a c e e r o s i o n i s n e g l i g i b l e ( F i g u r e I V - 3 ) , Where some r e l i e f i s p r e s e n t and s u r f a c e r u n o f f can o c c u r , c o n t i n u a l e r o s i o n o f o r g a n i c and m i n e r a l m a t e r i a l p r e -v e n t s n a t u r a l s t a b i l i z a t i o n of the s i t e ( F i g u r e I V - 4 ) , The perched water t a b l e , i n i t i a t e d by the presence o f the pan, i n c r e a s e s t h e water a v a i l a b l e f o r e r o s i o n . D e s s i c a t i o n o f the p l a c i c h o r i z o n t h e n t a k e s p l a c e d u r i n g d r y p e r i o d s as the removal of the o r g a n i c m a t t e r and s u r f a c e m i n e r a l h o r i z o n s 1 8 1 F i g u r e IV-2. Bog s p e c i e s i n v a d e areas where f i r e has removed the f o r e s t v e g e t a t i o n w i t h the decrease i n e v a p o t r a n s p i r a t i o n r a i s i n g the perched water t a b l e above the pan. 182 F i g u r e IV-3. S u r f a c e o r g a n i c and m i n e r a l h o r i z o n s were removed from t h i s s i t e i n the e a r l y 1940's and i l l u s t r a t e s the slow r e v e g e t a t i o n which can be expected under n a t u r a l c o n d i t i o n s . 183 F i g u r e IV-4. Severe e r o s i o n o c c u r s on s i t e s where enough r e l i e f i s p r e s e n t t o cause s u r f a c e r u n o f f a f t e r the p r o t e c t i v e o r g a n i c m a t e r i a l i s removed. 1 8 4 g r e a t l y reduce the water s t o r a g e c a p a c i t y above the pan, The pan f r a c t u r e s when d e s s i c a t e d (JPIgure. 111^6) and i s removed by e r o s i o n d u r i n g subsequent storms. The exposed m i n e r a l m a t e r i a l i s then s u b j e c t e d t o i n c r e a s e d f o r c e s of w e a t h e r i n g . Some cem e n t a t i o n of t h i s m a t e r i a l t a k e s p l a c e which c o u n t e r a c t s the e r o s i o n o f the m a t e r i a l t o some e x t e n t . However, t h e e s t a b l i s h m e n t of v e g e t a t i o n and s t a b i l i z a t i o n o f t h e s i t e i s ex t r e m e l y slow under n a t u r a l c o n d i t i o n s . The removal of water by d r a i n a g e d i t c h e s from the s u r f a c e h o r i z o n s o f the s o i l s which have p l a c i c h o r i z o n s has o n l y a l i m i t e d e f f e c t on a d j a c e n t s o i l pedons i f the o r g a n i c and s u r f a c e m i n e r a l h o r i z o n s a re r e t a i n e d . As was s t a t e d p r e v i o u s l y , t h i s i s due t o t h e h i g h water h o l d i n g c a p a c i t y of t h i s p a r t of th e pedon. For., t h i s r e a s o n , a t t e m p t s t o improve s i t e d r a i n a g e are d i f f i c u l t and c o s t l y . S o i l s s i m i l a r t o those found a t S i t e 6 and S i t e 7 a r e g e o g r a p h i c a l l y a s s o c i a t e d and t o g e t h e r a c t t o p e r p e t u a t e t h e i r p r e s e n t morphology and d i s t r i b u t i o n . The excess s u r f a c e water from the s o i l s w i t h p l a c i c h o r i z o n s d r a i n s i n t o a d j a c e n t de-p r e s s i o n a l a r e a s . These a r e a s , of which S i t e 7 i s r e p r e s e n t a t i v e have no r e s t r i c t i n g l a y e r s and a c t as a ground water r e c h a r g e zone. Any change i n the ground water l e v e l i n t h i s zone, e i t h e r d i r e c t l y by d i v e r s i o n of s u r f a c e water o r i n d i r e c t l y from w e l l s i n the a d j a c e n t a r e a , c o u l d cause c o n s i d e r a b l e change i n 1 8 5 the e c o l o g y of the e n t i r e a r e a , T h i s would r e s u l t from t h e f o r m a t i o n o f p l a c i c h o r i z p n s i n the s o i l s s i m i l a r t o those at S i t e 7 . The p h y s i c a l p r o p e r t i e s o f the s o i l a t t h i s s i t e a r e comparable t o those o f the s o i l a t S i t e 6 and t h e r e f o r e , t h i s m a t e r i a l has the p o t e n t i a l t o de v e l o p p l a c i c h o r i z o n s . At the p r e s e n t time the h i g h ground water t a b l e keeps the lower solum s a t u r a t e d f o r t h e . e n t i r e y e a r and e l i m i n a t e s the d i f f e r e n t i a l between h o r i z o n s which i s n e c e s s a r y f o r pan f o r m a t i o n . However, i f the water t a b l e i s lowered and the pans are formed, the r e c h a r g e zone would be e f f e c t i v e l y e l i m i n a t e d and a f u r t h e r l o w e r i n g of the water t a b l e c o u l d r e s u l t . S u r f a c e d r a i n a g e p a t t e r n s would a l s o be e f f e c t e d , p a r t i c u l a r l y d u r i n g p e r i o d s of h i g h r a i n f a l l . CONCLUSIONS The l a n d s c a p e can be a s s e s s e d f o r land - u s e p l a n n i n g and management by i d e n t i f y i n g the dominant f a c t o r s which c o n t r o l i t s f u n c t i o n i n the environment or m a i n t a i n i t i n a s t a b l e s t a t e . From an u n d e r s t a n d i n g of p r o c e s s e s a s s o c i a t e d w i t h t h e s e f a c t o r s the response t o m a n i p u l a t i o n of the l a n d s c a p e can be p r e d i c t e d . Landscape components e x t e r n a l t o the s o i l pedon a r e p r i m -a r i l y r e s p o n s i b l e f o r c o n t r o l l i n g the f u n c t i o n o f S i t e s 7 , 9 and 1 0 . The e x t e r n a l components which a re i m p o r t a n t a re i n s t a b -i l i t y as a r e s u l t of s l o p e , s h a l l o w depth t o bedrock, bedrock c o n f i g u r a t i o n and h i g h water t a b l e . 186 I n h e r e n t s o i l c h a r a c t e r i s t i c s a re c o n s i d e r e d t o be most i m p o r t a n t i n c o n t r o l l i n g the f u n c t i o n o f S i t e s 1? 2, 5 and 8 i n the l a n d s c a p e . F a c t o r s which are r e s p o n s i b l e a r e t h e presence of p o o r l y graded m a t e r i a l s and the o c c u r r e n c e of a b r u p t l y c o n t r a s t i n g t e x t u r e s a c r o s s l i t ; h o l o g i c d i s c o n t i n u i t i e s . The f u n c t i o n of t h r e e s o i l s i n t h e l a n d s c a p e a r e c o n s i d e r e d t o be c o n t r o l l e d by g e n e t i c c h a r a c t e r i s t i c s . I n c l u d e d are the s o i l s a t S i t e s 3, 4 and 6. The g e n e t i c f e a t u r e s a re the change i n s t r u c t u r e d e v e l o p e d by t h e a g g r e g a t i o n o f Fe and A l o x i d e s i n t o l a r g e r s i z e d p a r t i c l e s and the presence o f cemented h o r i z o n s . LITERATURE CITED 187 THE ASPHALT INSTITUTE, 1 9 6 9 . S o i l s Manual, S e r i e s No. 10 CMS-10), The A s p h a l t I n s t i t u t e B u i l d i n g , C o l l e g e P a r k , M a r y l a n d , U.S,A. 269 .p. BARTELLI, L , J . , KEINGEBIEL, A.A'., BAIRD, J.V, and HEDDLESON, M.R 1966. " S o i l Surveys and Land Use P l a n n i n g " , S o i l S c i . of Araer. and Amer. Soc. of A g r o l , Madison, W i s c o n s i n . 195 p. BROCKE, L.K. 1970. S o i l s u r v e y i n t e r p r e t a t i o n f o r r e c r e a t i o n s i t e p l a n n i n g i n two A l b e r t a p r o v i n c i a l p a r k s . U n p u b l i s h e d M.Sc. T h e s i s , Dept. of S o i l S c i . , U n i v e r s i t y of A l b e r t a . CANADA LAND INVENTORY. 1965 . S o i l c a p a b i l i t y f o r a g r i c u l t u r e . Dep. of F o r e s t r y . Report No. 2 . CARBONNIER, C , BERNTSEN, CM., HUSCH, B., and NYYSSONEN, A. 1971. " D e f i n i t i o n o f F o r e s t Land and Methods o f Land and S i t e C l a s s i f i c a t i o n " . Dept. of F r s t . Y i e l d Res., R o y a l C o l l e g e o f F o r e s t r y . S tockholm, Sweden. 56 p.'. CLINE, M.G. 19^9. B a s i c P r i n c i p l e s o f s o i l c l a s s i f i c a t i o n . S o i l S c i . 4 9 : 8 1 - 9 1 . DAUBENMIRE, R. 1973. A comparison of approaches t o the mapping of f o r e s t l a n d f o r I n t e n s i v e management. The F o r e s t r y C h r o n i c l e , 4 9 : 8 7 - 9 1 . JENNY, H. 1941 . F a c t o r s of s o i l f o r m a t i o n . M c G r a w - H i l l Book Co., I n c . , New York. _28l:_p.., HILLS, G.A. i 9 6 i . The e c o l o g i c a l b a s i s f o r l a n d use p l a n n i n g . R e s e a r c h Report No. 46., Ont. Dept. Lands and F o r e s t s , Research Branch. LACATE, D.S. 1969. " G u i d e l i n e s f o r B i o - p h y s i c a l Land C l a s s - , i f i c a t i o n " . Dept. of F i s h e r i e s and F o r e s t r y , Canadian F o r e s t r y S e r v i c e Pub. No. 1264. LESS, J.C. 1972. S o i l a e r a t i o n and S i t k a spruce s e e d l i n g growth i n p e a t . J . E c o l . 6 0 : 3 4 3 - 3 4 9 -MULCAHY, M.J. and HUMPHRIES, A.W. 1967. S o i l c l a s s i f i c a t i o n , s o i l s u r v e y s and l a n d use. S o i l s and F e r t i l i z e r s . 3 0 : 1 - 8 . 188 O'LOUGHLIN, C L , 1972,. An I n v e s t i g a t i o n o f t h e s t a b i l i t y of the s t e e p l a n d f o r e s t s o i l s i n the Coast M o u n t a i n s , southwest B r i t i s h Columiba, Unpubl, Ph.D. T h e s i s , F a c u l t y of F o r e s t r y , U.B.C OLSEN, G.W. 1 9 6 4 , " A p p l i c a t i o n of s o i l s u r v e y t o problems o f h e a l t h , s a n i t a t i o n , and e n g i n e e r i n g . " Agr. Ex p t . S t a . Memoir 3 8 7 , C o r n e l l U n i v . , I t h a c a , N.Y. 77 P •' SLY, W.K. 1 9 7 0 , A c l i m a t i c m o i s t u r e i n d e x f o r l a n d and s o i l c l a s s i f i c a t i o n i n Canada. Can. J . S o i l . S c i . 5 0 : 2 9 1 - 3 0 1 . SWANSTON, D.N. and DRYNESS, C.T. 1 9 7 3 . S t a b i l i t y o f s t e e p l a n d . J . F o r e s t r y 7 1 : 2 6 4 - 2 6 9 -SWANSTON, D.N. 1 9 7 1 . P r i n c i p a l mass movement p r o c e s s e s i n -f l u e n c e d by l o g g i n g , road b u i l d i n g and f i r e . I n "A symposium - F o r e s t Land Uses and Stream Environment". ( K r y g i e r , J.T. and H a l l , J.D., d i r e c t o r s ) . Oregon S t a t e U n i v e r s i t y , C o r v a l l i s , Oregon. WERTZ, W.A, and ARNOLD, J.A. 1 9 7 2 . "Land System I n v e n t o r y " . F o r e s t S e r v i c e U.S. Dept of A g r i . 12 p. . SUMMARY 189 The s o i l s r e s o u r c e i n the T o f i n o a r e a of Vancouver I s l a n d i s c o n s i d e r e d f o r l a n d - u s e p l a n n i n g and management pur p o s e s . An assessment of the s o i l s and o t h e r components of the l a n d s c a p e i s u n d e r t a k e n which i d e n t i f i e s t h o s e p r o c e s s e s which are a c t i v e i n c o n t r o l l i n g the f u n c t i o n of the s o i l s i n the environment. The s o i l s are grouped i n t o t h r e e c a t e g o r i e s and r e f l e c t the n a t u r e o f the p r o c e s s e s t a k i n g p l a c e . The c a t e g o r i e s a r e ; l a n d scape components, i n h e r e n t s o i l c h a r a c t e r -i s t i c s and g e n e t i c s o i l c h a r a c t e r i s t i c s . Landscape components which were c o n s i d e r e d t o be i m p o r t a n t t o the f u n c t i o n and morphology of the s o i l s i n c l u d e s the d e p th t o bedrock and bedrock c o n f i g u r a t i o n , depth t o water t a b l e , the h i g h t o t a l p r e c i p i t a t i o n and t h e h i g h amounts o f i o n s p r e s e n t i n the p r e c i p i t a t i o n . The p r e s ence of many l i t h o l o g i c d i s c o n t i n u i t i e s i n the s o i l s c o n f i r m e d a complex mode of d e p o s i t i o n of the s u r f i c i a l d e p o s i t s . Ten s o i l s were sampled and are r e p r e s e n t a t i v e o f the major s o i l s p r e s e n t i n the a r e a . The s o i l s were d e v e l o p e d on f o u r p a r e n t m a t e r i a l s and i n c l u d e d g l a c i o f l u v i a l outwash, stony marine c l a y s , beach sands and g l a c i a l t i l l s . The s o i l s had a wide range of t e x t u r e s and the <2 mm f r a c t i o n e x h i b i t e d an i n c r e a s e i n the amount o f c l a y s i z e d p a r t i c l e s when t r e a t e d w i t h c i t r a t e d i t h i o n i t e . The s o i l s a r e 190 v e r y a c i d i n t h e s u r f a c e h o r i z o n s and are low i n n a t u r a l f e r t i l i t y w i t h n u t r i e n t c y c l i n g o c c u r r i n g p r i m a r i l y i n the o r g a n i c s u r f a c e h o r i z o n s . V e r m i c u l i t e i s the dominant c l a y m i n e r a l i n the s u r f a c e m i n e r a l h o r i z o n s . The most pronounced g e n e t i c f e a t u r e s i n the s o i l s s t u d i e d a r e the p r e s ence of cemented h o r i z o n s and the change i n s o i l s t r u c t u r e by Fe and A l o x i d e a g g r e g a t i o n . P l a c i c h o r i z o n s ( t h i n pans) had d e v e l o p e d i n t h e beach sand d e p o s i t s . The pans are p r e s e n t i n the pedons at approx-i m a t e l y 20 cm below the m i n e r a l s u r f a c e , u n d u l a t e and are n e a r l y p a r a l l e l t o t h e s o i l s u r f a c e . They form at an i n t e r -f a c e o f d i f f e r e n t i a l redox p o t e n t i a l I n i t i a t e d a t a d i s c o n t i n u i t y . D i f f u s i o n i s a c t i v e i n m a t e r i a l t r a n s p o r t and the pan a c t s as a t e m p l a t e f o r subsequent m a t e r i a l d e p o s i t i o n . The p r i m a r y cementing m a t e r i a l s are o r g a n i c m a t t e r ( m a i n l y f u l v l c a c i d ) and Fe ( i n o r g a n i c amorphous). The pans have a pronounced e f f e c t on the f u n c t i o n of t h e s e s o i l s i n t h e environment. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093141/manifest

Comment

Related Items