Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The major soils of the Tofino area of Vancouver Island and implications for land use planning and management Baker, Ted Edgar 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A1 B33_9.pdf [ 17.44MB ]
Metadata
JSON: 831-1.0093141.json
JSON-LD: 831-1.0093141-ld.json
RDF/XML (Pretty): 831-1.0093141-rdf.xml
RDF/JSON: 831-1.0093141-rdf.json
Turtle: 831-1.0093141-turtle.txt
N-Triples: 831-1.0093141-rdf-ntriples.txt
Original Record: 831-1.0093141-source.json
Full Text
831-1.0093141-fulltext.txt
Citation
831-1.0093141.ris

Full Text

THE MAJOR SOILS OF THE TOFINO AREA OF VANCOUVER ISLAND AND IMPLICATIONS FOR LAND USE PLANNING AND MANAGEMENT by TED EDGAR BAKER B.Sc.  University  of Alberta, 1969  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  i n t h e Department of S o i l Science  We a c c e p t t h i s to the r e q u i r e d  t h e s i s as  conforming  standard  THE UNIVERSITY OF B R I T I S H COLUMBIA O c t o b e r , 197-4  In p r e s e n t i n g t h i s  thesis  in p a r t i a l  fulfilment of  the requirements f o r  an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, the L i b r a r y s h a l l I  make i t f r e e l y a v a i l a b l e  f u r t h e r agree t h a t p e r m i s s i o n  for  I agree  reference and  f o r e x t e n s i v e copying o f t h i s  that  study. thesis  f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s of  this  representatives. thesis  It  i s understood that copying or p u b l i c a t i o n  f o r f i n a n c i a l gain s h a l l  written permission.  Department of The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada  Columbia  not be allowed without my  ii ABSTRACT  'The is  soils  resource  i n the Tofino area of Vancouver I s l a n d  considered f o r land-use  p l a n n i n g and management  T h i s was done by c o m p l e t i n g The those  first  purposes.  a series of four studies.  study d e s c r i b e s the study  a r e a by l o o k i n g a t  components w h i c h were c o n s i d e r e d t o have a m a j o r  on t h e f u n c t i o n o f t h e s o i l s geology  (bedrock  i n the landscape.  and s u r f i c i a l ) ,  This included  s o i l morphology, depth  t a b l e , v e g e t a t i o n , c l i m a t e and w a t e r q u a l i t y . a range o f s o i l development from v e r y l i t t l e sed g e n e t i c c h a r a c t e r i s t i c s  including  presence  discontinuities  o f many l i t h o l o g i c  impact  t o water  The s o i l s  exhibit  t o s t r o n g l y expres-  cemented h o r i z o n s .  The  c o n f i r m s a complex  mode o f m a t e r i a l d e p o s i t i o n i n t h e a r e a . The  second study  i s concerned  with the physical,  and m i n e r a l o g i c a l p r o p e r t i e s o f t h e s o i l s . also  analyses  varifies  aggregating soils  show a w i d e r a n g e o f t e x t u r e s i n t h e s o i l s  the presence  genic processes  The  S o i l genesis i s  discussed. The  and  chemical  of l i t h o l o g i c  discontinuities.  Pedo-  have c h a n g e d t h e s t r u c t u r e i n some s o i l s by  t h e Fe and A l o x i d e s i n t o  a r e low i n n a t u r a l f e r t i l i t y  occurring primarily  larger sized  particles.  with nutrient cycling  i n t h e o r g a n i c h o r i z o n s o r above  restricting  l a y e r s i n the m i n e r a l horizons i f these a r e near the s u r f a c e .  iii V e r m i c u l i t e i s t h e dominant c l a y m i n e r a l i n t h e s u r f a c e mineral horizons  i n d i c a t i n g a weathering  environment o f moderate  intensity. The  third  o f some p l a c i c soils  study  d i s c u s s e s t h e c h a r a c t e r i s t i c s and g e n e s i s  horizons  ( t h i n pans) w h i c h have d e v e l o p e d  i n sand d e p o s i t s .  These h o r i z o n s  v a r i a t i o n i n morphology and c h e m i c a l  Pe w h i c h i s p r e s e n t  ically  complexed Fe.  stability  The  The  (mainly f u l v i c  primary acid),  a s e i t h e r i n o r g a n i c amorphous o r o r g a n -  The m o r p h o l o g i c a l  of the p l a c i c horizons  o f OM p r e s e n t  considerable  composition.  cementing m a t e r i a l s are organic matter and  exhibit  i n some  c h a r a c t e r i s t i c s and  a r e d e p e n d e n t u p o n t h e amount  and t h e f o r m i n w h i c h t h e F e o c c u r s .  genesis  of these  pans i s i n i t i a t e d  c o n t i n u i t i e s under d i f f e r e n t i a l  at l i t h o l o g i c  redox c o n d i t i o n s .  dis-  Diffusion  i s a c t i v e i n m a t e r i a l t r a n s p o r t w i t h t h e pan a c t i n g as a template The use  upon w h i c h t h e m a t e r i a l i s p r e c i p i t a t e d . f o u r t h study  i s an assessment o f - t h e s o i l s  p l a n n i n g a n d management p u r p o s e s .  i d e n t i f i c a t i o n of processes s o i l s both  three categories c h a r a c t e r i s t i c  and  genetic features.  Emphasis i s g i v e n t o the  which c o n t r o l the f u n c t i o n of the  i n t e r n a l l y and e x t e r n a l l y .  c a t e g o r i e s are; landscape  f o r land-  The s o i l s  are grouped  o f t h e dominant c o n t r o l .  components, i n h e r e n t  into  The  characteristics  iv T A B L E OF  CONTENTS PAGE  ABSTRACT  i i  T A B L E OF CONTENTS  i v  L I S T OF T A B L E S .  v i  L I S T OF F I G U R E S  v i i  ACKNOWLEDGMENTS  x i 1  INTRODUCTION CHAPTER  I  C h a r a c t e r i z a t i o n o f some c o m p o n e n t s o f t h e l a n d resource i n t h e study area  2  Introduction  3  C h a r a c t e r i s t i c s of t h e study area Geology S o i l s and a s s o c i a t e d v e g e t a t i o n Climate Water q u a l i t y E x p e r i m e n t a l methods R e s u l t s and d i s c u s s i o n  4 4 6 50 53 53 54  Conclusions  59  Literature  cited  60  CHAPTER I I The p h y s i c a l , c h e m i c a l a n d m i n e r a l o g i c a l properties a n d p r o p o s e d g e n e s i s o f some s o i l s o n t h e W e s t Coast of Vancouver I s l a n d  62  Introduction  63  E x p e r i m e n t a l methods Physical analysis Chemical analysis Mineralogical analysis  63 64 64 65  Results and D i s c u s s i o n Physical properties Chemical properties Mineralogical properties S o i l genesis  66 66 76 105 113  Conclusions  126  Literature  cited  128  V  CHAPTER I I I The v a r i a b i l i t y and g e n e s i s o f some p l a c i c h o r i z o n s i n s o i l s on t h e West C o a s t o f Vancouver I s l a n d . .  131  Introduction  132  E x p e r i m e n t a l methods Materials . .. A n a l y t i c a l methods R e s u l t s and d i s c u s s i o n Genesis  of p l a c i c  .•  . 132 135 143 144 154  horizons  159  Conclusions Literature  cited  . 161  CHAPTER I V I m p l i c a t i o n s f o r l a n d - u s e p l a n n i n g and management i n t h e Tofino area o f Vancouver I s l a n d d e r i v e d from t h e s o i l and o t h e r landscape f e a t u r e s  163  Introduction  164  Materials  166  .  Discussion Landscape components Inherent s o i l c h a r a c t e r i s t i c s Genetic c h a r a c t e r i s t i c s  ..  166 167 170 175  Conclusions.  185  Literature cited  187  SUMMARY  189  vi L I S T OF TABLES PAGE Table  1-1. .  C l i m a t i c d a t a ' ( T o f i n o A i r p o r t : 49°05'N . a n d 125°46'w, 8 0 f t . A S L )  Table  1-2.  Ground w a t e r and s t r e a m a n a l y s i s (1971)  Table Table Table Table  I I - l . I I - 2 . II-3. II-4.  Table I I I - 5 .  Table I I I - l .  . 51  water 57  Selected physical of the s o i l s  properties  Selected chemical of t h e s o i l s  properties  67  Some s e l e c t e d e x c h a n g e of t h e s o i l s  77 properties  E x t r a c t a b l e Fe and A l p r e s e n t i n the s o i l s Clay f r a c t i o n c o m p o s i t i o n and amorphous m i n e r a l A l a n d S i of t h e s o i l s Selected chemical properties of p l a c i c and a d j a c e n t h o r i z o n s . . . i . . .  85 97  106 145  vii L I S T OF .'FIGURES FIGURE 1-1. Ir-2.  PAGE The  l o c a t i o n o f t h e s t u d y a r e a on t h e w e s t coast- o f V a n c o u v e r . I s l a n d . .  5  an.d 1 - 3 . A e r i a l photographs i l l u s t r a t i n g t h e a c c u m u l a t i o n o f s a n d at. t h e m o u t h o f S a n d h i l l C r e e k f r o m 1 9 3 7 t o 1 9 7 0 . Much o f t h e s a n d h a s b e e n s t a b a l i z e d by vegetation during this period  7  1-4.  The  1-5.  Schematic diagram showing r e l a t i o n s h i p s among s o i l s and s u r f i c i a l d e p o s i t s . . . .  1-6.  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment i n the a r e a of g l a c i o f l u v i a l outwash deposit s  11  1  13  l o c a t i o n of s o i l s study area  sampled i n the  -9  1-7.  The  s o i l p i t at S i t e  1-8.  The  l a n d s c a p e at S i t e 1 showing a t e n y y e a r o l d Douglas f i r p l a n t a t i o n '  1-9.  The  s o i l p i t at S i t e 2 . i l l u s t r a t i n g cemented n a t u r e o f t h e d e p o s i t s  1-10.  The  landscape at S i t e 2 showing a Douglas f i r p l a n t a t i o n s i m i l a r t o that found at Site 1 . .'  1-11. 1-12.  1-13.  The  s o i l p i t at Site water t a b l e  10.  14  the  17  18 .  3 showing the h i g h ....  20  landscape at S i t e 3 showing the b o n s a i f o r m o f t h e t r e e s p r e s e n t and t h e a s s o c i a t e d bog v e g e t a t i o n  21'  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment o f g l a c i o m a r i n e stony c l a y d e p o s i t s showing t h e r i d g e a t t h e m a i n t e r r a c e f a c e and the v a r i a b i l i t y o f t h e marine o v e r l a y i n r e l a t i o n to the surface drainage p a t t e r n . . .  24  The  . viii 1-14.  A dense s t a n d of w e s t e r n r e d cedar w e s t e r n hemlock at S i t e 4  1-15.  A s o i l p i t r e p r e s e n t a t i v e of t h a t found at S i t e 5 showing the f i n e t e x t u r e d glaciomarine materials  1-16.  1-17.  The  and  landscape at S i t e 5 showing.the poor s t a n d o f w e s t e r n h e m l o c k and w e s t e r n r e d c e d a r w i t h some s h o r e p i n e . . . . .  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment o f sand d e p o s i t s showing the p r e s e n c e o f bogs and b e a c h r i d g e s  1-18.  The  s o i l p i t at S i t e 6 showing h o r i z o n . .'  1-19.  The  l a n d s c a p e a t S i t e 6 s h o w i n g .the n a t u r a l l y r e g e n e r a t e d s t a n d d o m i n a t e d by w e s t e r n hemlock ...  1-20.  1-21.  The  The  the  placic  landscape at S i t e 7 showing the l e v e l - t o d e p r e s s i o n a l t e r r a i n , open s t a n d s o f p i n e ' and a s s o c i a t e d bog v e g e t a t i o n s o i l p i t at S i t e 8 showing l e s s development t h a n S i t e 6 on s i m i l a r p a r e n t m a t e r i a l s . . . - .  26  29  30  33 35  36  39 42  1-22.  The  l a n d s c a p e a t S i t e 8 showing dense s t a n d s o f S i t k a s p r u c e and w e s t e r n r e d c e d a r  43  1-23.  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment o f t h e . a r e a where g l a c i a l t i l l m a t e r i a l s have been d e p o s i t e d o v e r b e d r o c k w h i c h c o n s i s t s predominately of the Tofino Graywacke u n i t .  : 45  1-24.  The  s o i l p i t at S i t e 1 0 showing t i l l s over bedrock  1-25.  The  c o n c e n t r a t i o n o f Na, C a , Mg and K i n the p r e c i p i t a t i o n measured a t f o u r s t a t i o n s on V a n c o u v e r I s l a n d  1-26.  glacial-  T o t a l c o n c e n t r a t i o n o f Na, C a , Mg and K i n the p r e c i p i t a t i o n measured at f o u r s t a t i o n s on V a n c o u v e r I s l a n d  49  55  56  /  ix III-l.  III-2.  Schematic diagram showing t h e p o s i t i o n o f t h e p l a c i c horizons i n the landscape i n ' r e l a t i o n t o other landscape features  134  P l a c i c h o r i z o n ( a ) s h o w i n g t h e v a r i a b l e formand v i t r e o u s a p p e a r a n c e . ' ( s c a l e e q u a l s 1 cm) ', . .  136  III-3.  P l a c i c h o r i z o n (b) showing t h e band o f dark r e d m a t e r i a l i m m e d i a t e l y below t h e pan ( s c a l e e q u a l s 1 cm) .............. 137  III-4.  The i n c o r p o r a t i o n o f s u r f a c e m i n e r a l material i n t o s u b s u r f a c e m a t e r i a l around which P l a c i c h o r i z o n (b) has formed  139  P l a c i c h o r i z o n ( c ) showing t h e abrupt b o u n d a r i e s o f t h i s pan ( s c a l e e q u a l s 1 cm) •  14.0  P l a c i c h o r i z o n (d) showing s t r a t i f i c a t i o n o f m a t e r i a l i n t h e p a n and t h e f r a c t u r e s f o r m e d when i t i s a i r d r i e d ( s c a l e . e q u a l s 1 cm) .  141  P l a c i c h o r i z o n .(e) s h o w i n g t h e v i t r e o u s a p p e a r a n c e o f t h e p a n m a t e r i a l and l a c k o f c o n f o r m i t y w i t h any c h a n g e i n t e x t u r e ( s c a l e e q u a l s 1 cm)  142  III-5.  III-6.  III-7.  III-8.  Absorbed e l e c t r o n images o f P l a c i c h o r i z o n (b) (X 5 0 0 ) s h o w i n g t h e h i g h l y f r a c t u r e d , dense plasma w i t h i n t h e pan w h i c h s u r r o u n d s t h e q u a r t z g r a i n :(i) a n d t h e p o r o u s m a t e r i a l below ( i i ) . 149  III-9.  Absorbed e l e c t r o n images o f P l a c i c h o r i z o n ( c ) (X 650) s h o w i n g t h e h i g h l y f r a c t u r e d , dense plasma w i t h i n t h e pan ( i ) and"the . porous m a t e r i a l below ( i i )  150  111-10.  An e l e c t r o n p r o b e s c a n o f a v e r t i c a l t r a n s e c t a c r o s s P l a c i c h o r i z o n (b) showing t h e d i s t r i b u t i o n o f S i , A l and Pe.. 1 5 2  III-ll.  An e l e c t r o n p r o b e s c a n o f a v e r t i c a l t r a n s e c t a c r o s s P l a c i c h o r i z o n ( c ) showing t h e d i s t r i b u t i o n o f S i , A l and Fe  153  X 111-12,  X - r a y e m i s s i o n image o f P l a c i c h o r i z o n Cb) showing the r e l a t i v e d i s t r i b u t i o n of Fe, A l and S i b e t w e e n t h e p l a s m a and skeletal  111-13.  X - r a y e m i s s i o n image o f P l a c i c . h o r i z o n Cc) showing the r e l a t i v e d i s t r i b u t i o n of Fe, A l and S i b e t w e e n t h e p l a s m a and skeletal material....  156  These s l i d e s are t y p i c a l o f t h o s e o c c u r r i n g where t h e o u t w a s h m a t e r i a l s are shallow over marine c l a y d e p o s i t s  173  IV-1.  IV-2.  IV-.3 .  Bog  s p e c i e s i n v a d e a r e a s where f i r e has removed t h e f o r e s t v e g e t a t i o n w i t h t h e d e c r e a s e . i n e v a p o t r a n s p i r a t i o n r a i s i n g the p e r c h e d w a t e r t a b l e a b o v e t h e pan  l 8 l  S u r f a c e o r g a n i c and m i n e r a l h o r i z o n s were removed f r o m t h i s s i t e i n t h e e a r l y 1 9 4 0 ' s and i l l u s t r a t e s t h e s l o w r e v e g e t a t i o n w h i c h can be e x p e c t e d u n d e r n a t u r a l conditions  182  S e v e r e r o s i o n o c c u r s on s i t e s where enough r e l i e f i s present t o cause s u r f a c e r u n o f f a f t e r the p r o t e c t i v e o r g a n i c m a t e r i a l i s removed  183  -  IV-4.  xi ACKNOWLEDGMENTS  I would  l i k e t o t h a n k Dr.'L.M. L a v k u l i c h f o r s u p e r v i s i n g  the program undertaken Rowles,  t h i s - t h e s i s , a n d D r . C.A.  D r . D.S. L a c a t e a n d M r . L. F a r s t a d a s c o m m i t t e e  members. ing  t o complete  I would  a l s o l i k e t o t h a n k D r . L . E . Lowe f o r r e v i e w -  the manuscript. My a p p r e c i a t i o n i s a l s o e x t e n d e d  Department o f S o i l who  t o a l l those i n the  S c i e n c e and v a r i o u s government  agencies  gave a d v i c e and a s s i s t a n c e d u r i n g t h e s t u d y . Very  s p e c i a l thanks i s extended  making t h e study a j o i n t entire  t o my w i f e S o n j a f o r  e f f o r t by h e l p i n g t h r o u g h o u t i t s  duration.  The  t h e s i s i s d e d i c a t e d i n memory o f t h e l a t e G e o f f I s s a c  of T o f i n o .  INTRODUCTION  The e v e r i n c r e a s i n g demand on t h e l a n d r e s o u r c e a v a r i e t y of. b e n e f i t s t o a g r o w i n g p o p u l a t i o n better understanding achieved  resource ive  are improving  the understanding specific  of the land  to their  respect-  a n d a l s o by i d e n t i f y i n g i n t e r a c t i o n s among  these d i s c i p l i n e s . soil  I n d i v i d u a l s working i n the  by p r o v i d i n g i n f o r m a t i o n  disciplines  dictates that a  o f t h e components o f l a n d h a s t o be  t o meet t h i s demand.  natural sciences  t o supply  Pedologists  a r e c o n t r i b u t i n g by  c h a r a c t e r i s t i c s and p r o c e s s e s and d e f i n i n g  identifying  interrelation-  s h i p s w h i c h c a n be t r a n s l a t e d i n t o i n t e r p r e t a t i o n s f o r l a n d use  planning This  internal, and  a n d management p u r p o s e s .  study  identifies  those processes,both  f o r t e n s o i l s which should  managing t h e l a n d r e s o u r c e  e x t e r n a l and  be c o n s i d e r e d  i n the study  area.  when  planning  This  was  done b y : (1) the  s o i l s r o l e ' i n the landscape. (2)  and  c h a r a c t e r i z i n g t h e s o i l s by t h e i r p h y s i c a l ,  chemical  mineralogical properties. (3)  for  c h a r a c t e r i z i n g t h e l a n d components and i d e n t i f y i n g  soil  i d e n t i f y i n g the pedogenic processes development.  responsible  CHAPTER I  CHARACTERIZATION OF SOME COMPONENTS  OF  THE LAND RESOURCE I N THE STUDY AREA  3 CHARACTERIZATION OF SOME COMPONENTS OF THE  LAND RESOURCE•IN THE STUDY AREA  INTRODUCTION It  i s becomming i n c r e a s i n g l y e v i d e n t t o t h o s e  w i t h t h e p l a n n i n g and management o f l a n d t h a t approach  ( J e f f r e y et_-.:al, 1 9 7 0 ) .  T h i s means  as many o f t h e c o m p o n e n t s o f l a n d a s p o s s i b l e sidered before  variety  an i n t e g r a t e d  h a s t o be t a k e n i f a l l r e s o u r c e b e n e f i t s a v a i l a b l e  a r e t o be r e a l i z e d  To  involved  land-use  decisions  do t h i s a d e q u a t e l y of d i s c i p l i n e s  that  s h o u l d be  a r e made.  a wide range o f e x p e r t i s e  i s required  t o determine  from  f o r e , i t i s i m p o s s i b l e f o r any one d i s c i p l i n e ' t o the best use of land.  economic a s p e c t s one  a  the i n t e r a c t i o n s  among t h e b i o p h y s i c a l c o m p o n e n t s o f any a r e a o f l a n d .  independently  con-  There-  determine  A l s o , t h e s o c i a l and  complicate f u r t h e r the a l l o c a t i o n of land t o  o r more u s e s .  Nevertheless, a better understanding  component o f t h e l a n d  c a n be a c h i e v e d by k n o w i n g  o f any  something  about r e l a t e d . e n v i r o n m e n t a l components. The  purpose of t h i s  s t u d y was t o c h a r a c t e r i z e  environmental  components w h i c h  ment o f s o i l s  i n the study area.  studied  i s also  presented.  were i m p o r t a n t  some  selected  t o the develop-  The m o r p h o l o g y o f t h e s o i l s  r 4  CHARACTERISTICS OF  THE  STUDY AREA  GEOLOGY The  s t u d y a r e a i s l o c a t e d on t h e w e s t c o a s t o f V a n c o u v e r  ( F i g . 1 - 1 ) and  Island  i s i n c l u d e d i n the Estevan C o a s t a l (1964).  d e s c r i b e d by H o l l a n d  In a detailed  account  of  g e o l o g y , M u l l e r , ( 1 9 7 2 ) s u m m a r i z e d t h e a r e a as b e i n g a t e c t o n i z e d , but unmetamorphosed b e l t Cretaceous earlier  volcanic  provisionally  present time which is  and  volcaniclastic  c a l l e d the  this unit  by a deep m a n t e l  material. sea l e v e l  and  This unit  Most of the bedrock  At  i n the  remained as t h e  As t h e g l a c i e r s r e t r e a t e d , a b l a t i o n t i l l  caused  was the  and  area  o f P l e i s t o c e n e and p o s t - P l e i s t o c e n e  were p l a s t e r e d w i t h b a s a l t i l l  upon t h e b a s a l t i l l  highly  t o Lower  " T o f i n o greywacke".  During g l a c i a t i o n only the h i l l s  advanced.  t h r o w has  rock.  the  i s t h e m a j o r component o f t h e m o n a d n o c k s  r i s e above t h e p l a i n .  covered  of T r i a s s i c  Plain  s u b s e q u e n t mass movement and  c o n s i d e r a b l e re-working of the  above glaciers was  deposited  tree  wind  s u r f a c e mat-  erials. Muller imately  245  Isostatic covered  (1972)  m  e s t i m a t e s t h e a r e a was  ( 8 0 0 f t . ) o f i c e d u r i n g maximum  depression resulted  by  sea water  throughout  by f l o a t i n g  by  approx-  glaciation.  i n much o f t h e l o w e r a r e a s  being  w i t h subsequent d e p o s i t i o n of g l a c i o m a r i n e  materials, predominately are found  covered  silts  and  clays.  Scattered boulders  the f i n e m a t e r i a l which  ice (Valentine,  1971).  were d e p o s i t e d  gure 1 - 1 .  The l o c a t i o n of the study of Vancouver I s l a n d .  area on the west  coast  / 6 Coarse g l a c i o f l u v i a l a m a r i n e e n v i r o n m e n t on p o r t i o n of the  study  some o f t h e t i l l s  area.  n e a r Kennedy L a k e and of the f i n e r  o u t w a s h m a t e r i a l s were d e p o s i t e d  i n t o Wreck Bay.  I t a p p e a r s t h a t much d e p o s i t s was  in  a n o r t h w e s t e r l y d i r e c t i o n along the  at  t h e n o r t h end  as  o f L o n g B e a c h and  time  sand i s s t i l l  shown i n . . F i g u r e s 1 - 2 and  southern  T h i s m a t e r i a l moved f r o m i t s s o u r c e  sandy m a t e r i a l f r o m t h e s e  At the p r e s e n t  overrthe  in  coast  and  i n the i n l e t s being  shifted  1 - 3 where t h e  f o r m e d a t t h e mouth o f S a n d h i l l C r e e k .  carried redeposited  toward in this  o f f s h o r e bar  The  Tofino. direction i s being  accumulation  t h i s m a t e r i a l and  s u b s e q u e n t r e b o u n d has  r e s u l t e d i n the  a t i o n of E s o w i s t a  P e n i n s u l a where o n l y i s l a n d s had  of form-  previously  existed. During  the p e r i o d of rebound, f i n e r m a t e r i a l s  from c l a y to f i n e  s a n d were d e p o s i t e d  o v e r most o f t h e a r e a . in  three.meters  The  channels  w h i c h were c u t  by  deposits.  g e n e r a l i z e d s t r a t i g r a p h y of the g e o l o g i c m a t e r i a l s i s  d i s c u s s e d by B r e m n e r SOILS AND  blanket  on e r o d e d s u r f a c e s t o more  where i t f i l l e d  ocean c u r r e n t s i n t o p r e v i o u s The  as a v e n e e r o r  Where t h i s m a t e r i a l i s f o u n d i t r a n g e s  d e p t h f r o m a.few c e n t i m e t e r s  than  ranging  (1970).  ASSOCIATED VEGETATION soils  i n the area r e p r e s e n t  which r e f l e c t s the v a r i a b i l i t y  of the  a wide range of morphology surficial  deposits  and.  7  Fig.  1-3,  Figures  1937  1-2 and 1-3.  A e r i a l photographs i l l u s t r a t i n g  the ac-  c u m u l a t i o n o f s a n d a t t h e mouth o f S a n d h i l l C r e e k 1937 t o 1 9 7 0 .  from  Much o f t h e sand has b e e n s t a b a l i z e d by  vegetation during t h i s  period.  their  c o m p l e x mode o f d e p o s i t i o n .  The s o i l p e d o n s w h i c h a r e  d e s c r i b e d were s e l e c t e d a s m o d a l r e p r e s e n t a t i v e s o f t h e dominant s o i l s of t h e s o i l s  i n t h e study  area.  sampled and F i g u r e  Figure  1 - 5 i s a schematic  s h o w i n g t h e r e l a t i o n s h i p s among t h e s o i l s A previous  study  on t h e g e n e s i s  c o m p l e t e d by B h o o j e d h u r of the southern Valentine  (1971)  included i n Pacific  soil  survey  o f s o i l s and  Rim N a t i o n a l  Park  (1973)• i s also  given.  a n d s a n d d u n e s by K u r a m o t o ( 1 9 6 5 ) , a n d  t h e S i t k a s p r u c e zone by C o r d e s  (1972).  s e q u e n c e was  s t u d i e s were c o n d u c t e d i n t h e b o g s o f t h e  a r e a by Wade ( 1 9 6 5 ) ,  Rim P a r k ,  deposits  a r e a was c o m p l e t e d by  v e g e t a t i o n a s s o c i a t e d w i t h each s i t e  Detailed vegetation  Pacific  of a podzol  a n d a more d e t a i l e d s u r v e y  was c o m p l e t e d by P i e r c e  diagram  and s u r f i c i a l  A reconnaisance  p o r t i o n of t h e study  landforms o f the area  The  (1968).  1 - 4gives the location  (1973).  The v e g e t a t i o n o f  Phase I has been d e s c r i b e d  The a r e a , i s i n c l u d e d i n t h e P a c i f i c  w e s t e r n h e m l o c k s u b z o n e by K r a j i n a ( 1 9 6 5 )  by B e l l  et_ a l  silver f i r -  w h i c h i s t h e wet  subzone o f t h e C o a s t a l W e s t e r n Hemlock b i o g e o c l i m a t i c  zone.  When b o t a n i c a l names a r e u s e d t h e a u t h o r i t y f o l l o w s K r a j i n a ( (1965).  UNIT I  A s c h e m a t i c r e p r e s e n t a t i o n o f a l a n d s c a p e segment o f t h e glaciofluvial 1-6  outwash sands and g r a v e l s i s g i v e n  with the s o i l s  of those  o f S i t e s 1 , 2 and 3 b e i n g  f o u n d on t h e l a n d s c a p e .  The c o a r s e r  i n Figure  representative deposits  overlie  9  Figure  1-4.  The  l o c a t i o n of s o i l s  sampled i n t h e study  area.  10  I  BEDROCK" TILL BEACH  AND  COLLUVIUM  SAND  F i g u r e 1-5-  MM  MARINE  OVERLAY  MARINE  CLAY  OUTWASH  SAND AND  Schematic diagram showing r e l a t i o n s h i p s s o i l s and s u r f i c i a l  deposits.  GRAVEL  among  11  •MARINE OUTWASH MARINE  OVERLAY SANDS  AND  GRAVELS  CLAYS  F i g u r e 1-6. S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment i n t h e area of g l a c i o f l u v i a l  outwash  deposits.  m a r i n e c l a y s e d i m e n t s w h i c h a r e e x p o s e d on t h e n o r t h end o f Wreck B e a c h . winter  Continued e r o s i o n o f t h e base o f t h e c l i f f  s t o r m s h a s r e s u l t e d i n t h e s l u m p i n g o f some o u t w a s h  m a t e r i a l down t h e c l i f f  face.  Where t h e m a r i n e s e d i m e n t s a r e  c l o s e t o t h e s u r f a c e , l a n d s l i d e s have o c c u r r e d  during the  months o f h i g h p r e c i p i t a t i o n a s t h e m a t e r i a l s become when  by  unstable  saturated. A m a r i n e o v e r l a y o f v a r y i n g d e p t h up t o two m e t e r s  over a l a r g e p o r t i o n of t h e outwash. depth l o c a l l y , mixing  occurs  I t i s highly variable i n  e s p e c i a l l y I n a r e a s w h i c h have been l o g g e d ,  where  and some e r o s i o n h a s o c c u r r e d .  Trees of commercial value h o w e v e r , most o f t h e s t a n d s  g r e w where t h e o v e r l a y  o f o l d g r o w t h have b e e n  occurs, harvested.  Site 1 The 1-8 in  s o i l p i t . . a n d l a n d s c a p e a r e shown i n F i g u r e s  respectively.  The s i t e  i s l o c a t e d a t 4 9 ° 0 0 . 5 ' N and 125°38'W  an a r e a where t h e m a r i n e o v e r l a y was 1 . 5 m t h i c k , on a 1%  s l o p e w i t h a N.E. a s p e c t . imperfectly drained. fir  The p e d o n i s m o d e r a t e l y w e l l t o  Associated vegetation  c o n s i s t s o f Douglas  (Pseudotsuga m e n z i e s i i v a r . m e n z i e s i i ) , Western hemlock  ( T s u g a h e t e r o p h y l l a ) w i t h some r e d a l d e r and  1 - 7 and  herbs i n c l u d e salmonberry  berry  (Vaccinium  f e r n . ( B l e c h n u m s p i c a n t ) , wild!,, l i l y  Classification:  Shrubs  (Rubus s p e c t a b i l i s ) , r e d h u c k l e -  parvifolium), salal  d i l a t a t u m ) , Carex spp.  (Alnus ruba).  ( G a u l t h e r i a s h a l l o n ) , deer  of the valley  (Maianthemum  A v a r i e t y o f mosses a r e a l s o  M i n i Humo-Ferric  Podzol  present.  13  F i g u r e 1-7.  The s o i l p i t  at S i t e  1.  14  F i g u r e 1-8.  The  landscape at S i t e 1 showing a t e n year o l d  Douglas f i r p l a n t a t i o n .  15  Pedon  Description:  Horizon L-H  Depth cm. 38-0  • V e r y d a r k r e d ( 2 . 5 YR  2/2  m) p a r t i a l l y  posed o r g a n i c m a t t e r ; abundant and l a r g e r o o t s ;  fine,  decom-  medium  c l e a r wavy b o u n d a r y ; 15 t o  46 cm t h i c k ; pH 3 - 9 . Ahe  0-5  Brown (10 YR  5 / 3 m)  sandy loam; m a s s i v e ,  s p o n g y ; a b u n d a n t medium and f i n e r o o t s ; wavy b o u n d a r y ; 0 t o 8 cm t h i c k ; pH Bf  5-25  S t r o n g b r o w n (10 YR fine  6/4 m)  4.9-  s a n d y l o a m ; weak  subangular blocky; f r i a b l e ;  medium and f i n e r o o t s ;  clear  plentiful  some s t o n e s ; 1 5 t o  3 0 cm t h i c k ; c l e a r wavy b o u n d a r y ; pH 5 - 0 . Bf2  25-58  S t r o n g b r o w n ( 7 . 5 YR  5/6  m)  loamy  sand;  a m o r p h o u s ; f r i a b l e . ; few s m a l l ' r o o t s ; s t o n e s ; 20 t o 3 6 cm t h i c k ; c l e a r wavy ary; IIBf  58-99  Yellowish  b r o w n (10 YR abundant  Yellowish  5/8  m)  s a n d ; amorphous;  s t o n e s ; 3 6 t o 50 cm  c l e a r wavy b o u n d a r y ; pH 99-122  bound-  pH 5 • 0 .  . friable;  IIBf2  frequent  b r o w n (10 YR  amorphous; f r i a b l e ;  thick;  5.2. 5 / 6 m)  abundant  c o a r s e sand; stones; 15 to  3 2 cm t h i c k ; c l e a r wavy boundary;. pH  5.1.  16  Horizon IIIBf  Depth cm. D a r k y e l l o w i s h brown ( 1 0 YR  122-142  gravelly  4/4  sand; massive; f i r m ;  m)  59%  very gravel;  c l e a r wavy b o u n d a r y ; 1 5 t o 2 5 cm t h i c k ; pH 5 . 2 . D a r k g r a y i s h b r o w n ( 1 0 YR  142+  C  4/2 m)  gravelly  c o a r s e s a n d ; • m a s s i v e ; f i r m ; pH 5 - 5 Site 2 The  s o i l p i t and l a n d s c a p e a r e shown i n F i g u r e s 1 - 9 and  1-10 respectively.  The  site  i s l o c a t e d at 48°59.5'N  and  125°36'W i n an a r e a where some m a r i n e o v e r l a y had b e e n w i t h t h e o u t w a s h d e p o s i t s on l e v e l t e r r a i n .  mixed  The pedon i s  m o d e r a t e l y w e l l d r a i n e d and s u p p o r t s s i m i l a r v e g e t a t i o n t o Site 1. Classification:  M i n i Humo-Ferric P o d z o l  Pedon D e s c r i p t i o n : Horizon L-H  Depth  w.cm.  31-0  V e r y d u s k y r e d ( 2 . 5 YR  2 / 2 m) m o d e r a t e l y w e l l  decomposed o r g a n i c m a t t e r ; a b u n d a n t  roots;  c l e a r wavy b o u n d a r y ; 1 5 t o 46 cm t h i c k ; pH Ae  Trace  3-6.  17  F i g u r e 1-9.  The  soil  p i t at S i t e  2 illustrating  n a t u r e of t h e outwash m a t e r i a l s .  t h e cemented  18  Figure 1 - 1 0 .  The  landscape at S i t e  2 showing  a Douglas f i r  p l a n t a t i o n s i m i l a r t o that found at S i t e  1.  19  Horizon  Depth cm. 0-56  Bf  S t r o n g brown ( 7 - 5 YR  5 / 8 m)  gravelly  loamy  s a n d ; weak s u b a n g u l a r b l o c k y ; f r i a b l e ; f i n e and medium r o o t s ; c l e a r wavy 3 6 t o 6 0 cm IIBC  56-112  t h i c k ; pH  pH 112-173  IIC  4/2  m)  very  40 t o 6 5 cm  gravelly  thick;  5.1.  D a r k grayish,-.brown ly  boundary;  4.9.  D a r k g r a y i s h b r o w n ( 1 0 YR . sand; amorphous; f i r m ;  few  ( 1 0 . YR  4 / 2 m)  loamy s a n d ; a m o r p h o u s ; f i r m ;  very  gravel-  5 0 t o 7 0 cm  t h i c k ; pH 5 - 2 . IIIC  173-180  Very  d a r k g r a y i s h brown ( 2 . 5  gravelly  sand; amorphous; f i r m ;  t h i c k ; pH 180+  IVC  gravelly  4 t o 1 5 cm  5.4.  D a r k g r a y i s h brown ( 1 0 YR  Layered  Y 3/2'm)  4 / 2 m)  very  s a n d ; a m o r p h o u s ; f i r m ; pH  5.4.  s a n d s and g r a v e l s b e l o w .  Site 3 The 1-12  s o i l p i t v . a n d l a n d s c a p e a r e shown i n F i g u r e s 1 - 1 1 and  respectively.  The  site  i s l o c a t e d at 49°01.0'N  125°39'W i n a d e p r e s s i o n a l a r e a .  No m a r i n e  and  overlay i s present  20  Figure  1-11.  The  s o i l p i t at S i t e  table.  3 showing  the high  water  21  F i g u r e 1-12.  The  landscape  at S i t e  3 showing the  f o r m o f t h e t r e e s p r e s e n t and vegetation.  bonsai  the a s s o c i a t e d  bog  The  pedon i s p o o r l y d r a i n e d .  pine cedar  The d o m i n a n t v e g e t a t i o n  ( P i n u s c o n t o r t a ) w i t h some w e s t e r n h e m l o c k , w e s t e r n r e d i, (Thuja  p l i c a t a ) and s c a t t e r e d y e l l o w c e d a r  nootkatensis).  A l l tree species are stunted  g r o w i n g i n open s t a n d s .  polifolia);  (Chamaecyparis  and o f b o n s a i  form  The s h r u b l a y e r i s d o m i n a t e d by  l a b r a d o r t e a (Ledum g r o e n l a n d i c u m ) ,  berry  i s shore  small cranberry  (Empetrum n i g r u m ) .  swamp l a u r e l  (Kalmia  (Oxycoccus q u a d r i p e t a l u s ) , crow-  Sphagnum s p p . a n d r e i n d e e r moss  ( C l a d o n i a p a c i f i c u s ) d o m i n a t e d t h e moss l a y e r . Classification:  Fera  Humic G l e y s o l  Pedon D e s c r i p t i o n : Horizon  Depth cm.  LF  20-8  D a r k r e d d i s h brown ( 5 YR 2 / 2 m) f r e s h and partly  decomposed o r g a n i c m a t t e r ;  8 to 30  cm t h i c k ; pH 4 . 5 • H  8-0  Very dark gray matter; roots;  ( 5 YR 3 / 1 rn) decomposed  organic  s p o n g y ; a b u n d a n t medium a n d f i n e 5 t o 1 5 cm t h i c k ;  c l e a r wavy b o u n d a r y ;  pH 4 . 1 . Ah  0-10  Very dark gray blocky;  ( 1 0 YR 3 / 1 m) s i l t  friable;  l o a m ; weak  a b u n d a n t medium a n d f i n e ,  r o o t s ; a b r u p t s m o o t h b o u n d a r y ; 3 t o 8 cm t h i c k ; pH 4 . 3 .  23  Horizon  Depth cm. 10-20  Bfc.  ( 2 . 5 YR 4 / 2 m) loamy  D a r k g r a y i s h brown  amorphous; v e r y f i r m ; a b r u p t  sand;  smooth b o u n d a r y ;  8 t o 1 5 cm t h i c k ; pH 4 . 8 . IIBf(g)  20-33  O l i v e brown ( 2 . 5 YR 4 / 4 - m ) s a n d ; common, fine,  faint  light  olive yellow  ( 2 . 5 6 / 6 m)  m o t t l e s ; amorphous; f i r m ; a b r u p t ,  smooth  b o u n d a r y ; 8 t o 2 5 cm t h i c k ; pH 5 - 0 . IUBfg  33-48  Gray  (5Y 5 / 1 m) g r a v e l l y  l o a m ; common medium,  p r o m i n e n t s t r o n g b r o w n ( 7 - 5 YR 5 / 8 m) m o t t l e s ; amorphous; f r i a b l e ;  a b r u p t smooth b o u n d a r y ;  8 t o 2 2 cm t h i c k ; pH 5 . 3 . IVBCg  48-66  V e r y d a r k g r a y i s h brown  ( 1 0 YR 3 / 2 m)  sandy g r a v e l ; a m o r p h o u s ; f r i a b l e ; . 56%  coarse gravel;  1 5 t o 2 5 cm t h i c k ; pH 5 - 3 . Water  table 66+  Cg  V e r y d a r k g r a y i s h brown  ( 2 . 5 YR 3 / 2 m)  c o a r s e s a n d y g r a v e l ; amorphous  friable;  60% g r a v e l ; pH 5 . 5 .  UNIT I I F i g u r e 1-13 i s a s c h e m a t i c r e p r e s e n t a t i o n o f a l a n d s c a p e segment o f t h e g l a c i o m a r i n e s t o n y c l a y d e p o s i t s .  The t e r r a c e  24  MARINE  STONY  Figure  1-13.  OVERLAY  MARINE  CLAYS  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment o f g l a c i o marine  stony c l a y deposits  showing  theridge at  t h e main, t e r r a c e f a c e and t h e v a r i a b i l i t y i n depth o f t h e marine overlay surface drainage pattern.  i nrelation t o the  25  is  composed o f s t o n y  clays underlying  marine c l a y s s i m i l a r  the  t e r r a c e and present i n an  the  top  Lake d u r i n g  the bottom of the 1 0 0 m w i d e and  the  to the  w i n t e r months.  c l a y s i s found along  the  An  tidal  flats  overlay  3.  5 m high  and  of f i n e r  is  gently  Stream channels d i s s e c t the  streams.flowing  terrace  Kennedy marine  stream channels i n d i c a t i n g • the  original  channels c o u l d have.been formed from ocean c u r r e n t s w h i l e t e r r a c e was  still  paritally  t h e n r e s u l t e d i n the  submerged.  is  emergence c o n t i n u e d  a b s e n t o v e r much o f t h e  a few Site  centimeters  is  to i t s present a r e a , and  by  surface  stage.  i f present  these  runoff  The  overlay  i t v a r i e s from  to over 3 m i n t h i c k n e s s .  4 Site  the  incised  the  emergence  d e p o s i t i o n of f i n e r m a t e r i a l s i n  c h a n n e l s w h i c h were s u b s e q u e n t l y while  Continued  the  main  of the main t e r r a c e which slopes  easterly direction.  surface with  along  a ridge approximately  along  o f S i t e s 1 , 2 and  outwash d e p o s i t s  A beach t e r r a c e occurs  i n morphology to  finer  4 i s l o c a t e d at  125°4l'W i n an a r e a  o v e r l a y m a t e r i a l i s over 1 . 5 m i n depth.  imperfectly drained  ( F i g u r e 1-14). c e d a r and  49°04*N and  The  and  pedon  l o c a t e d i n a dense, mature f o r e s t  associated vegetation, includes western  w e s t e r n hemlock.  w i t h r e d and  The  where  S a l a l dominates the  evergreen huckleberry  (Vaceinium  H y l o c o m u i m s p l e n d e n s d o m i n a t e s t h e moss  layer.  shrub  ovatum)  red  layer present.  F i g u r e 1-14.  A dense s t a n d o f w e s t e r n r e d c e d a r and hemlock a t S i t e  4.  western  27  Classification:  Gleyed  Ferro-Humic  Podzol  Pedon D e s c r i p t i o n : Horizon LH  Depth cm. 15-0  ( 5 YR  Black  2 / 1 m)  and p a r t i a l l y . . . o -  fresh  decomposed o r g a n i c m a t t e r ;  abundant  medium and f i n e r o o t s ; c l e a r  Bhg  0-5  1 0 t o 2 5 cm t h i c k ;  pH 4 . 1 .  D a r k brown ( 7 - 5 YR  4 / 2 m)  wavy  silty  large,  boundary;  clay;  common,  medium d i s t i n c t r e d d i s h b r o w n ( 7 - 5 YR 6 / 8 m) m o t t l e s ; weak s u b a n g u l a r friable clear pH Bhgj  5-18  (m), s t i c k y  smooth  blocky; s l i g h t l y  (w); abundant  fine  b o u n d a r y ; 3 t o 7 cm  thick;  4.1.  Gray  ( 7 - 5 YR  5/N m)  c l a y ; many medium,  s t r o n g b r o w n ( 7 - 5 YR  distinct  weak s u b a n g u l a r  blocky;  5 / 8 m)  sticky  boundary; 18-36  Strong angular  8 t o 2 2 cm t h i c k ;  brown ( 7 - 5 YR  5 / 6 m)  1 2 t o 2 2 cm t h i c k ; pH 4 . 6 .  wavy  pH 4 . 4 . clay;  blocky; s l i g h t l y sticky  (m); few f i n e r o o t s ; c l e a r  mottles;  (w), f r i a b l e  (m); p l e n t i f u l f i n e r o o t s ; c l e a r  Bf  roots;  wavy  fine  sub-  (w), f r i a b l e boundary;  28  Horizon  Depth ccra.  Bf2  36-43  Y e l l o w i s h b r o w n (10 subangular blocky; friable  43-74  Bfg  (m);  few  Pale o l i v e  6/3  sticky  b o u n d a r y ; 20 Bfg2  74-117  fine roots;  1 3 cm  blocky;  Olive  thick;  m)  (w),  to  o l i v e brown ( 2 . 5  Light  subangular blocky; (m); pH .135+  Cg  clear  subangular firm  (m);  thick; 5/4  m)  clear 5.. 2 .  pH  clay;  slightly sticky  medium  (w),  2 5 cm  firm, thick,  gray  ( 5 YR  4 / 2 m)  pH  clay;  weak medium  slightly sticky  (w),  friable  6.7.  5 The  s o i l p i t and  landscape r e p r e s e n t a t i v e of  shown i n F i g u r e s 1 - 1 5 and and  wavy  4.9>  wavy b o u n d a r y ; 1 3 t o  subangular blocky;  Site  YR  clear  5.7.  Olive  (m);  (w),  wavy  subangular-  pH  medium  5 0 cm  (w),  4.8.  fine  thick;  clay;  wavy b o u n d a r y ; 3 8 t o 117-135  fine  clear  f r i a b l e (m);  blocky; s l i g h t l y sticky  BCg  clay;  pH  clay;  3 0 cm  5 / 3 m)  (5Y  m)  slightly sticky  boundary; 5 to (5Y  5/8  YR  125°43'W on  1-16.  level terrain.  The The  Site  s i t e i s l o c a t e d at pedon i s p o o r l y  5  are 49°04'N  drained.  29  Figure 1 - 1 5 .  A s o i l p i t representative Site  of that found  5 showing the f i n e t e x t u r e d  materials.  at  glaciomarine  30  Figure  I - l 6 . The  landscape at S i t e  5 showing the poor  o f w e s t e r n h e m l o c k and w e s t e r n r e d c e d a r some s h o r e  pine.  stand with  Associated vegetation  c o n s i s t s of western red cedar,  hemlock, s a l a l , red h u c k l e b e r r y , (V. o v a l i f o l i u m ) , f a l s e a z a l e a  oval-leaved  western  blueberry  ( M e n z i e s i a f e r r u g i n e a ) , skunk  c a b b a g e ( L y s i t c h i t o n a m e r i c a n u m ) , showy f a l s e - h e l l e b o r e (Veratrum v i r i d e ) , h o r s e t a i l  ( E q u i s e t u m spp. ) , d e e r f e r n  (Blechnum s p i c a n t ) , Carex spp.,  H y l o c o m i u m s p l e n d e n s and  other  mosses. Surface after  w a t e r was  present  i n many d e p r e s s i o n a l  areas  rains.  Classification:  F e r a Humic G l e y s o l .  Pedon D e s c r i p t i o n : Horizon  Depth cm.  LF  15-13  Fresh  and  H  13-0  Black  ( 5 YR  partially 2 / 1 m)  decomposed  decomposed o r g a n i c  a b u n d a n t l a r g e , medium and  Ahe  0-10  litter. matter;  small roots;  clear,  smooth b o u n d a r y ; 8 t o 1 8 cm  t h i c k ; pH  4.2.  D a r k y e l l o w i s h b r o w n ( 1 0 YR  3/4 m)-silty  c l a y ; a m o r p h o u s ; s t i c k y ; p l e n t i f u l medium f i n e r o o t s ; c l e a r wavy b o u n d a r y ; 8 t o 1 5 t h i c k ; pH Bfg  10-20  and cm  4.8.  V e r y d a r k g r e y i s h brown ( 2 . 5 YR  3 / 2 m)  many, medium, p r o m i n e n t r e d d i s h  yellow  loam-  32  Horizon  Depth cm. (7.5  YR 7/8 m) m o t t l e s ; m o d e r a t e medium  granular; nonsticky; f r i a b l e ;  1...  few f i n e  roots;  c l e a r wavy b o u n d a r y ; 8 t o 1 3 cm t h i c k ; . . p H 4 . 7 . Bfg2  20-31  O l i v e grey  (54  5/2  m) c l a y l o a m ; common,  medium, p r o m i n e n t r e d d i s h y e l l o w  ( 7 - 5 YR  7 / 6 m) m o t t l e s ; weak c o a r s e  sub-angular  blocky;  c l e a r wavy  s t i c k y ; few s t o n e s ;  b o u n d a r y ; 8 t o 1 3 cm t h i c k pH 5.2. 31-48  BCg  Grey  ( . 2 . 5 YR 6 / m) c l a y l o a m ; common, medium ( 7 . 5 YR 6/8 m)  prominent r e d d i s h y e l l o w  m o t t l e s ; amorphous b r e a k i n g subangular blocky; very  i n t o weak  sticky;  coarse  c l e a r wavy  b o u n d a r y ; 1 3 t o 2 5 cm t h i c k ; pH 6 . 0 . . Cg  48+  Dark grey  (2.5 YR 4/ m) c l a y l o a m ; weak  medium s u b a n g u l a r b l o c k y ; v e r y  s t i c k y ; pH 6 . 0  UNIT I I I Figure  1 - 1 7 . i s a s c h e m a t i c d i a g r a m o f a l a n d s c a p e segment  o f t h e a r e a w h e r e b e a c h s a n d s were d e p o s i t e d u p l i f t e d t o form a rebound t e r r a c e .  and  subsequently  The u p p e r s u r f a c e  of the  t e r r a c e i s l e v e l . t o g e n t l y u n d u l a t i n g w i t h a few beach r i d g e s . A discontinuous  m a j o r r i d g e i s l o c a t e d 1 km f r o m t h e p r e s e n t  33  Figure  1-17.  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment o f sand d e p o s i t s beach  ridges.  showing  t h e p r e s e n c e o f b o g s and  b e a c h and high  lies  p a r a l l e l t o the beach.  i n some p l a c e s w i t h r o u n d e d b o u l d e r s  diameter  present  water f o r the  on t h e  from the Site  ocean s i d e .  e n t i r e year  c o n d i t i o n occurs higher  on  the  over 3 m  f r o m 10 t o 20  in  Bogs c o n t a i n i n g open  occupy d e p r e s s i o n a l a r e a s .  lower  cm  A  t e r r a c e where s e e p a g e  similar  waters  t e r r a c e move d o w n s l o p e .  6. The  1-19.  s o i l p i t and  This  site  characteristic  horizons  landscape  of s o i l s 1.5  m below the  of the pedon d u r i n g the  A placic  rise  o b s e r v e d t h i c k n e s s f r o m 0.5  20  t o 30  below the m i n e r a l  tree  site  to the  These t r e e s are stands. salal  and  The  after  mm  t o 4 mm  surface.  has  The  developed  horizon  roots resulting  wet  10 t o 1 5 y e a r s  restricts i n a perched becomes  o l d and  are  D e e r f e r n and  present.  dominant  western hemlock. g r o w i n g i n open  shrub l a y e r c o n s i s t s predominantly  are a l s o  from  storms.  n a t u r a l l y regenerated  red huckleberry.  canadensis)  water  years.  surface d u r i n g the  i s l o c a t e d i n a c l e a r c u t area w i t h the  species being  is  mineral  f o r m e d as t h e m a t e r i a l a b o v e t h e pan  s a t u r a t e d d u r i n g and The  s u r f a c e of the  summer m o n t h s o f most  t h e downward movement o f w a t e r and water t a b l e being  1 2 5 ° 4 7 ' W and  and  h o r i z o n , e i t h e r s i n g l e or branched, v a r y i n g  in  cm  1-18  shown i n F i g u r e s  o c c u r r i n g where t h e r e g i o n a l g r o u n d  ground' w a t e r t a b l e may  season.  are  i s l o c a t e d a t 49°045'N and  t a b l e i s more t h a n  The  This ridge:is  of  salmonberry,  bunch b e r r y  (Cornus.  35  F i g u r e 1-18.  The  s o i l p i t at S i t e  6 showing the p l a c i c  horizon.  36  Figure 1 - 1 9 .  The  landscape  regenerated  at S i t e  6 showing the  naturally  s t a n d d o m i n a t e d by w e s t e r n  hemlock.  37  The p e d o n  i s imperfectly  h o r i z o n and i m p e r f e c t l y water  t o p o o r l y d r a i n e d above t h e p l a c i c  d r a i n e d b e l o w due t o t h e h i g h ,  table.  Classification: Pedon  Placic  Humic  Podzol.  Description:  Horizon  Depth cm.  L-H  18-0  D a r k r e d d i s h brown  ( 2 . 5 YR  decomposed  abundant r o o t s ;  litter;  wavy b o u n d a r y ; 1 2 t o 46 Ae.  Bh  fluctuating  0-5  5-20  ( 5 YR  Reddish gray  loose, f r i a b l e ;  roots;  clear  thick;  pH  sandy loam;  f e w medium and  fine  4.5. 3 / 3 m)  sandy  coarse subangular blocky; f i r m  f i r m ; medium and f i n e r o o t s b e t w e e n organic  single  wavy b o u n d a r y ; t r a c e t o 8 cm  D a r k r e d d i s h brown-(5.,YR very  clear  cm.thick.  5 / 2 m)  grain;  2/4 m) m o d e r a t e l y  staining  and a c c u m u l a t i o n  loam;  to very peds;  between  p e d s ; a b r u p t wavy b o u n d a r y ; 1 5 t o 3 0 cm • pH Bhfc  20-20.4  thick;  4.7.  Reddish black of v i t r e o u s irregular;  ( 1 0 YR  material; 1 t o 4 mm  2 / 1 m) hard, thick.  continuous impervious;  band  38  Depth cm.  Horizon IIBC  20-79  IIIC Site  79+  Stratified  sands.  Stratified  sands.  7 The  site  landscape  a t S i t e 7 i s shown i n F i g u r e 1-20.  i s l o c a t e d a t 49°04.5'N and  This  125°47'W i n a l e v e l t o  dep-  r e s s i o n a l a r e a where t h e r e g i o n a l g r o u n d w a t e r t a b l e - i s a t near the  s u r f a c e f o r the major p o r t i o n of the year.  no r e s t r i c t i n g uities  do  horizons present,  occur  however, l i t o l o g i c  c a u s i n g r o o t s e g r e g a t i o n and  or  There  are  discontin-  differential  water p e r c o l a t i o n . The cedar  associated  and  c a u s e d by by  v e g e t a t i o n i n c l u d e s shore  y e l l o w cedar high f i r e  l a b r a d o r t e a and  w h i c h grow i n open  frequency.  The  swamp l a u r e l ,  pine, western red  stands:partially  shrub- l a y e r i s d o m i n a t e d  bog  c r a n b e r r y w i t h some  s a l a l , pink mountain heather  (Phyllodoce  and  are Lycopodium clavatum,  crowberry.  variety  Also present  o f s e d g e s and  Classification:  empetriformis) and  a  Sphagnum m o s s e s .  Gleyed  Humo-Ferric  Podzol.  Pedon D e s c r i p t i o n : Horizon LF  Depth cm. 25-13  D a r k r e d d i s h brown ( 5 YR  2/2  m)  f r e s h to  39  Figure  1-20.  The  landscape at S i t e  depressional  terrain,  a s s o c i a t e d bog  7 showing the l e v e l  to  open s t a n d s o f p i n e  and  vegetation.  40 Horizon  Depth cm. decomposed  o r g a n i c m a t t e r ; abundant  and f i n e r o o t s ; H  13-0  8 t o 30 cm t h i c k ;  D a r k r e d d i s h brown  (5 YR 3/2  o r g a n i c m a t t e r ; amorphous; medium and f i n e r o o t s ; 8 t o 1 5 cm t h i c k ;  pH  m)  medium  pH  3.8.  decomposed  friable;  abundant  g r a d u a l wavy b o u n d a r y ; 4.3.  Ah  0-5  D a r k brown  (7-5 YR  3/2  m)  sandy  Bfl  5-23  D a r k brown  (7-5 YR 3/2  m)  s a n d y • loam.;  amorphous b r e a k i n g t o weak f i n e friable;  plentiful  fine roots;  b o u n d a r y ; 8 t o 15 cm t h i c k ; Bfg  23-33  Y e l l o w i s h brown  (10 YR  5/4  pH m)  loam.  granular; clear 4.8.  sandy  many f i n e p r o m i n e n t y e l l o w i s h  wavy  loam;  r e d (5 YR  m o t t l e s ; amorphous b r e a k i n g t o medium granular; f r i a b l e ;  few f i n e r o o t s ;  smooth b o u n d a r y ; 8 t o 1 5 cm t h i c k ; IIBCg  33-79  D a r k brown  (10 YR 3/3)  loamy  sand;  f r i a b l e ; many medium and f i n e 40 t o 5 0 cm t h i c k ; Cg  7.9+  (Water t a b l e )  Grey  (5 YR  pH 5 . 3 .  5/1  m)  pH  dead  4/6)  fine  clear pH  5-2.  amorphous; roots;  4.7-  sand; s i n g l e  grain;  friable;  41 Site 8 The 1-22.  soil  The  p i t and  sands  Peninsula.  a r i d g e which l i e s  (tombolo) which forms p a r t of the The  (0-1%)  site  parallel  edge o f t h e p e n i n s u l a . sloping  The  i s l o c a t e d a t 3 m e l e v a t i o n on  t o the beach along land  surface  to root  dominant  at S i t e  t r e e s growing at the s i t e  stands.  Inlet.  and has  and w a t e r p e n e t r a t i o n .  ( P i c e a s i t c h e n s i s ) , w e s t e r n hemlock grows i n dense  gently  area.  n o t as h i g h l y d e v e l o p e d as t h e s o i l  and  i s very  pedon i s m o d e r a t e l y w e l l d r a i n e d ,  no r e s t r i c t i o n s  The  the western  away f r o m t h e r i d g e t o w a r d s T o f i n o  Bogs a r e f r e q u e n t . i n t h i s The  1 - 2 1 and  i s l o c a t e d a t 4 9 ° 0 7 ' N and 125°52'W on a c -  site  cumulated beach Esowista  l a n d s c a p e a r e shown i n F i g u r e s  The  little  This  or  soil is  6. are S i t k a spruce  and w e s t e r n r e d c e d a r  shrub l a y e r i s dominated  by  which  salal  salmonberry.  Classification:  M i n i Humo-Ferric  Podzol  Pedon D e s c r i p t i o n : Horizon LH  Depth cm. 31-0  V e r y d u s k y r e d ( 2 . 5 YR semi decomposed•organic  2 / 2 m)  fresh  matter;  r o o t s ; c l e a r wavy b o u n d a r y ;  and  abundant  pH 3 - 9 .  42  F i g u r e 1-21.  The  s o i l p i t at Site  than S i t e  8 showing l e s s  6 on s i m i l a r p a r e n t  development  materials.  43  Figure  1-22.  The  landscape at S i t e  8 showing dense s t a n d s  S i t k a s p r u c e and w e s t e r n r e d  cedar.  of  44  Horizon  Depth cm. 0-23  Bf  Brown t o d a r k b r o w n ( 5 YR amorphous f i r m  4 / 8 m)  sandy  loam;  (m) , h a r d , ( d ) ; few f i n e  roots;  c l e a r wavy b o u n d a r y ; 1 5 t o 3 0 cm t h i c k ; . p H 5 - 0 23-36  Bf2  Y e l l o w i s h r e d ( 5 YR  4/8  m), s a n d y l o a m ,  single  g r a i n ; few f i n e r o o t s ; c l e a r wavy b o u n d a r y ; • 8 t o 1 8 cm t h i c k ; pH 5 - 2 . 36-56  IIBC  Y e l l o w i s h r e d ( 5 YR single grain;  5/6  m)  loamy  sand;  c l e a r wavy b o u n d a r y ; 1 5 t o 2 5  cm t h i c k ; pH 5 . 3 . 56+  IIIC  • Y e l l o w i s h b r o w n ( 1 0 YR  5 / 6 m)  sandy  loam;  s i n g l e g r a i n ; pH 5 - 5 . Stratified  s a n d s below.  UNIT I V Figure 1 - 2 3 i s a schematic r e p r e s e n t a t i o n of the s c a p e where b e d r o c k , p r e d o m i n a t e l y o f t h e T o f i n o u n i t , forms h i l l s resulted tills  and h e a d l a n d s i n t h e a r e a .  Graywacke  Glaciation  i n r e w o r k e d d e p o s i t s o f m a r i n e m a t e r i a l s and  mantling the bedrock.  Compacted  land-  basal t i l l  has  has  glacial_ been  p l a s t e r e d o v e r t h e b e d r o c k t o more t h a n 2 m t h i c k n e s s on t h e l o w e r s l o p e s and i s a b s e n t on much o f t h e r o c k o u t c r o p s a t  1  45  TILL LL  F i g u r e 1-23.  S c h e m a t i c d i a g r a m o f a l a n d s c a p e segment a r e a where g l a c i a l  till  of the  m a t e r i a l s have been  d e p o s i t e d over bedrock which c o n s i s t s predominately of the T o f i n o Graywacke  unit.  46 higher elevations. of  There  reworked a b l a t i o n t i l l  the  basal t i l l .  i s a mantle of m a t e r i a l  consisting  mixed w i t h marine m a t e r i a l s  over  O r g a n i c d e p o s i t s have a c c u m u l a t e d i n d e p r e s -  sional areas. Site 9 T h i s s i t e i s l o c a t e d a t 4 9 ° 0 5 ' N and 125°51'W a t a p p r o x i m a t e l y 1 0 5 m e l e v a t i o n on a 2 5 p e r c e n t n o r t h e a s t f a c i n g  slope.  A s a t u r a t e d zone i s p r e s e n t i m m e d i a t e l y a b o v e t h e b e d r o c k 1 2 7 cm f r o m t h e m i n e r a l s u r f a c e .  at  There  i s evidence of  c o n s i d e r a b l e w i n d t h r o w w h i c h had c a u s e d m i x i n g a n d some movement o f m a t e r i a l The  downslope.  dominant  trees present consist of P a c i f i c  silverf i r  ( A b i e s a m a b i l i s ) and w e s t e r n r e d c e d a r g r o w i n g i n medium s t a n d s w i t h some w e s t e r n h e m l o c k . dominant present. are  dense  S a l a l and s a l m o n b e r r y a r e  i n t h e shrub l a y e r w i t h deer f e r n t h e dominant'herb Hylocominum s p l e n d e n s and o t h e r f e a t h e r mosses  also present.  Classification:  M i n i Humo-Perric  Podzol  Pedon D e s c r i p t i o n : Horizon  Depth cm. .  L-H  15-0  V e r y d a r k b r o w n ( 1 0 YR 2 / 2 m) p a r t i a l l y decomposed o r g a n i c m a t t e r ; a b u n d a n t  fine.  47  Horizon  Depth cm. medium and l a r g e r o o t s ; a b r u p t ,  irregular  b o u n d a r y ; 8 t o 3 0 cm t h i c k ; _pH 3 . 7 Ae Bf  Trace 0-23  Discontinuous S t r o n g brown ( 7 - 5 YR 5 / 6 m) s a n d y fine  subangular  blocky; very f r i a b l e ;  fine  and medium r o o t s ; some s t o n e s ;  wavy b o u n d a r y ; 1 5 t o 3 0 cm t h i c k ; Bf2  23-69  Reddish fine  subangular  gradual  pH 4 . 7 .  blocky; very f r i a b l e ;  3 0 t o 6 0 cm t h i c k ; 69-109  plentiful  y e l l o w ( 7 - 5 YR 6 / 8 m) l o a m ; weak  f i n e r o o t s ; some s t o n e s ; c l e a r  IIIBf  loam;  wavy b o u n d a r y ;  pH 5 - 0 .  Y e l l o w i s h b r o w n ( 1 0 YR 5 / 6 m) sandy weak s u b a n g u l a r  plentiful  blocky;- f i r m  loam;  t o f r i a b l e ; few  f i n e r o o t s ; some l a r g e s t o n e s ; g r a d u a l wavy b o u n d a r y ; 2 5 t o 5 0 cm t h i c k ; IIBf2  109-127  D a r k b r o w n ( 1 0 YR 4 / 3 m) g r a v e l l y l o a m ; weak s u b a n g u l a r no r o o t s ; a b r u p t thick;  127+  pH 5 . 3 -  Bedrock  pH 5 - 4 .  blocky; firm  sandy to friable;  b o u n d a r y ; 1 5 t o 3 0 cm  48 S i t e 10 The at  s o i l p i t i s shown i n F i g u r e 1-24.  49°09'N  and  This site i s located  125°54'W a t 4 5 m e l e v a t i o n on a 2 0 p e r c e n t n o r t h  f a c i n g s l o p e i n an a r e a o f m o d e r a t e t o s t r o n g l y r o l l i n g t o p o graphy. bedrock of  A s a t u r a t e d zone i s p r e s e n t i m m e d i a t e l y a b o v e t h e ( 1 1 9 cm)  w i t h dark s t a i n i n g  i n d i c a t i n g an a c c u m u l a t i o n  organic matter. The  dominant t r e e s p e c i e s p r e s e n t are western r e d  and w e s t e r n h e m l o c k .  Salal,  s a l m o n b e r r y and  b e r r y are dominant i n the shrub l a y e r . i n the herb  cedar  evergreen huckle-  Deer f e r n i s dominant  l a y e r w i t h b u n c h b e r r y and w i l d l l i l l y  of the  valley  present. Classification:  M i n i Humo-Ferric  Podzol.  Pedon D e s c r i p t i o n : Horizon L-H  Depth cm. 31-0 .  V e r y d a r k brown ( 1 0 YR  2 / 2 m)  partially  decomposed o r g a n i c m a t t e r ; a b u n d a n t medium and boundary; Ae  Trace  Bf  0-15  large roots; abrupt,  irregular  1 5 t o 4 5 cm t h i c k ; pH 4 . 1 .  Y e l l o w i s h b r o w n ( 1 0 YR weak f i n e  fine  5 / 6 m)  silt  subangular blocky; very  loam; friable;  1.  F i g u r e 1-24.  The over  p  s o i l p i t a t S i t e 10 s h o w i n g g l a c i a l bedrock.  tills  50  Horizon  Depth -cm. plentiful  f i n e and medium r o o t s ; some  g r a d u a l wavy b o u n d a r y ; 1 0 t o 2 0 cm  stones;  thick;  pH 5 . 2 . 15-43  Bf2  Y e l l o w i s h b r o w n ( 1 0 YR 5 / 8 m) l o a m ; weak, f i n e subangular plentiful clear  blocky; very  friable;  f i n e and medium r o o t s ; some  wavy b o u n d a r y ; 1 8 t o 3 8 cm  stones;  thick;  . pH 5 - 3 . IIBf  43-86  S t r o n g b r o w n ( 7 - 5 YR 5 / 8 m) g r a v e l l y moderate  subangular  loam;  blocky; very f i r m ;  few  r o o t s ; c l e a r , wavy b o u n d a r y ; 3 0 t o 5 4 cm pH 5 - 5 .  • thick; IIBf2  86-119  Y e l l o w i s h b r o w n ( 1 0 YR 5 / 6 m) g r a v e l l y l o a m ; weak s u b a n g u l a r  blocky; f r i a b l e  f i r m ; v e r y few r o o t s ; a b r u p t 1 5 t o 4 5 cm t h i c k ;  to  boundary;  with  seepage  pH 5 - 3 -  water; 119+  charged  sandy  Bedrock  CLIMATE The a r e a i s c h a r a c t e r i z e d by a p e r h u m i d o r r a i n y c l i m a t e w i t h heavy w i n t e r p r e c i p i t a t i o n summer m o n t h s .  Climatic  and f r e q u e n t f o g s d u r i n g t h e  data I s given i n Table 1 - 1 .  Table  Month  1-1  Climatic  data  (Tofino Airport;  Temperature (Peg. F) Mean D a i l y ( 5 y r . . a v e . ) Max Temp Max Min Min  49°05'N and 125°46'W, 8 0 f t . A S L ) *  P r e c i p i t a t i o n (Inches) Moisture Net R a d i a t i o n Mean ( 5 y r . a v e . ) Max Deficiency . Langleys Rain Snow Total (24 h r s ..)•'. I n c h e s \ .(one. C.AL/.Cm ) 2  JAN  40.8  45.9  35.8  58-20  17. 7  2.6  17.9  6.86  0.0  72.8  FEB  40.0  45.8  34.3  66-24  14. 7  1.3  14.9  5. 06  0.0  129.9  MAR  41.7  47.6  35-8  60-26  13. 6  2.1  13.8  4.39  0.0  220.1  APRIL  45.4  51.5'..  39.3  69-30  11. 1  T  11.1  4.18  0.0  290.4  MAY  50.8  57.8  43-7  77-34  4. 1  T  4.1  2 . 01  0.0  405-7  JUNE  54.7  61.4  48.0  90-38  3. 7  0.0  3.7  1 • 55  0.0  409. 5  JULY  57.9  65.3  50.5  91-41  3. 7  0.0  3.7  2.55  0.08  411.1  AUG  58.4  65.1  51.7  86^42  0.0  3-5  2 . 47  0.48  333.1  SEPT  55.8  62. 9  48.7  85-37  0.0  5.8  2.91  .0.0  270. 4  OCT  51.1  57.1  45.0  75-32  14.  0.0  14. 0  4.46  0.0  155.2  NOV  44.0  49.4  38.7  64-27  16. 6  :T •  16.6  5.44  0.0  91. 4  DEC  41.6  46.8  36.5  58-17  16.  16.6  6.55  0.0  59-6  TOTAL  Growing r d e g r e e; d a y s 2 6 6 2 Frost  * Compiled  •;3.  <5  5- 8  124.  0  41 9  • 2.5 8.8  125.8  f r e e p e r i o d 2 0 0 (approx.)  by C a n a d a L a n d I n v e n t o r y , C l i m a t o l o g y S e c t o r , B r i t i s h  Agriculture,  from  Atmospheric  Environment S e r v i c e . d a t a .  Columbia Department o f  Table 1 - 1  C l i m a t i c data continued Longest number of days during the l a s t t e n years without the amount of r a i n i n d i c a t e d .  Year  May  June  1971  18  21  1970  18  35  1969  24  40  1968  24  32.  Aug.  1966  35  1965  62  19.64  13  1963  33 21  28  Distribut i o n of ' longest 24 periods  62  Sept.  26  48  1967  1962  July  Longest yearly period  Oct.  21  18  25  35  11  20 32  17 61 '  37  48  61  51  25  .  15  51  21  23  32  11  13  48  8  25  35  7  8  24  . 62  17  June  10  51  24  May  Longest yearly period  July  Aug.  Sept.  Oct.  21  9  12  6  21  21  14  16  15  21  31  9  9  31  10  9  13  10  13.  32  9  2  32  10  7  19  5  26  6  8  2  22  4  28  19 26  17  15 8  8  17  6  6  61  15  16  37  9  20  28  20  10  62  25  25 26  28  32 17  13  7  22  10  •  15  32  53 Three  climatic  s t a t i o n s * were e s t a b l i s h e d t o d e t e r m i n e  climatic variability  i n the study  area.  Continuous  and t o t a l m o n t h l y p r e c i p i t a t i o n w e r e m e a s u r e d . collected obtained  f o r a twelve  airport.  No  found t o occur ( M a r s h a l l , p e r s o n a l reported  Data  were  m o n t h p e r i o d and c o m p a r e d w i t h  from the Atmospheric Environment  s t a t i o n at the Tofino  temperature  Service  that  weather  significant variability communication)  so  was  data  and u s e d i s f r o m t h e T o f i n o A i r p o r t S t a t i o n .  WATER QUALITY Two  s t u d i e s were c o m p l e t e d t o g i v e  some i n d i c a t i o n  of  the water q u a l i t y c h a r a c t e r i s t i c s of the p r e c i p i t a t i o n , and g r o u n d w a t e r Experimental  i n the  streams  area.  Methods  F o u r s i t e s were e s t a b l i s h e d t o c o l l e c t p r e c i p i t a t i o n a t d i s t a n c e s o f 0 , 1 . 1 , 7-2 km  s i t e was  remaining  l o c a t e d at the south  f o u r s i t e s formed  t o Kennedy L a k e . plastic  and 10.5  The  km  from the beach.  end o f L o n g B e a c h  The  and  containers with f i x e d funnels t o reduce  and c o v e r e d w i t h n y l o n mesh.  the  a t r a n s e c t i n l a n d f r o m Wreck  c o l l e c t i n g apparatus consisted of  0  Beach liter  evaporation  D u p l i c a t e s were p l a c e d  at  each  site. .  *  C l i m a t i c s t a t i o n s were e s t a b l i s h e d c o o p e r a t i v e l y w i t h Canada Land I n v e n t o r y , C l i m a t o l o g y S e c t o r , B r i t i s h C o l u m b i a Department of A g r i c u l t u r e .  54  Samples were c o l l e c t e d  f r o m one  s t o r m t h e s e c o n d week o f  J u l y and a n o t h e r t h e t h i r d week o f S e p t e m b e r 1 9 7 1 f o r a p e r i o d of  t h r e e days  a f t e r t h e s t o r m commenced.  Mg  and K w e r e c o m p l e t e d u s i n g a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y . Ground water  ( S i t e s 3 , 5 and  i n three s o i l p i t s w i t h high water  7 ; F i g u r e 1 - 4 ) and two  and S a n d h i l l ) were s a m p l e d s o i l p i t s were f i l l e d to  dissolved  streams  (Lost  C a , Mg,  Ionalyzer  I n s i t u measurements o f  K and Na c o n c e n t r a t i o n s .  ( O r i o n R e s e a r c h I n c . ) was Dissolved  Y . S . I . . m o d e l 5 4 Oxygen M e t e r  et  Ohio).  The  a l (1972).  ption  The  0^ c o n t e n t and r e d o x p o t e n t i a l were made.  and r e d o x p o t e n t i a l .  Inc.,  Shoe  w i t h s e e p a g e and r a i n w a t e r and a l l o w e d  were c o l l e c t e d and a n a l y z e d i n t h e l a b o r a t o r y t o NO^-,  Ca,  tables  i n J u n e and O c t o b e r , 1 9 7 1 .  e q u i l i b r a t e f o r s e v e r a l months.  pH,  A n a l y s i s f o r Na,  The  determine  O r i o n Model 407  u s e d t o m e a s u r e pH,  0^ was  measured w i t h  NO^-  the  (Yellow Springs Instrument  p r o c e d u r e s f o l l o w e d a r e r e p o r t e d by  Ca, Mg,  Samples  Co.  Walmsley  K and Na were m e a s u r e d by a t o m i c  absor-  spectrophotometry.  RESULTS AND  DISCUSSION  D a t a f o r r a i n w a t e r a n a l y s i s i s g i v e n i n F i g u r e s 1 - 2 5 and 1-26.  The  g e n e r a l l y h i g h e r c o n c e n t r a t i o n o f measured  from the September storm i s e x p e c t e d because direction  of the storm from the P a c i f i c  of the  Ocean.  The  cations  landward July  55  fit •'  E Q. a. SEPT. JULY  <  o u z  o  Mg  SEPT. _JIJLY  SEPT.  0  fr- • • , , , ft • • . f t . 'M  DISTANCE  Figure  1-25.  2  4  FROM  6  PACIFIC  8  OCEAN  10  IY  12  (KILOMETERS)  The c o n c e n t r a t i o n o f N a , C a , Mg, a n d K i n t h e p r e c i p i t a t i o n measured a t f o u r s t a t i o n s on Vancouver I s l a n d .  56  8 r  J  —  i  —  i  —  2 DISTANCE  Figure 1 - 2 6 .  i  —  4 FROM  i  —  i  —  i  i  6  8  PACIFIC  OCEAN  •  i  •  10  •  12  (KILOMETERS)  T o t a l c o n c e n t r a t i o n o f Na, C a , M g a n d K i n t h e p r e c i p i t a t i o n measured at f o u r s t a t i o n s Vancouver  Island.  on  Table 1 - 2 .  Groundwater  Site  Sampling month  pH  #3  June  5-0  4.8  4.3  1.6  5.3  2.5  . 4.9  1.5  .October . #5  J une October  #1  and S t r e a m W a t e r A n a l y s i s  ppm  Redox potential  •  (1971).  K  Na  0.7  0.2  5.-7  0.4  0.7  0.3  4.4  1.3  0.6  1.3  3-3  3.2  0.6  1.3  0.9  7.1  2.4  5.2  1.1  0.8  •1.0  0.7  7.0  . .  °2  N0 -  Ca  Mg  7.3  0.8  0.2  6.3  1.8  - 5  2  3  "  .0.4  7.8  June  4.7 .  October  4.6  1.3  3.7  111  0.2  0.8  0.1  5.3  Sandhill Creek  June  6.8  2.5  10.1  1.9  2.1  2.7  0.7  -  October  5.5  1.4  11.3  2.9  0.4  1.0  0.4  7.6  Lost Shoe Creek  June  5.3  3.4  10.0  0.9  3.2  1.2  0.3  5.4  October  6.6  1.6  11. 0  2.1'  3.2  0.9  0.2  3.5  VJl —J  58  s t o r m was  f r o m t h e s o u t h e a s t and c r o s s e d some o f t h e  mass o f V a n c o u v e r  Island.  T h i s could a l s o account f o r the  o f any t r e n d s d u r i n g t h e J u l y due t o t h e r o u g h t e r r a i n  land  storm, with the  lack  variability  south of the sampling area.  C o n c e n t r a t i o n o f c a t i o n s d r o p p e d r a p i d l y away f r o m t h e ocean w i t h l i t t l e The  variability  stations.  c o a s t s t a t i o n had a c o n c e n t r a t i o n s e q u e n c e  S e p t e m b e r s t o r m o f Na by C l a y t o n ( 1 9 7 2 ) ratio  at i n l a n d  >  Mg  >  Ca  >  K w h i c h was  f o r the  also  f o r similar conditions In California.  o f Na t o Ca and Mg  A l l v a l u e s are w i t h i n the range f o r these  f o u n d by v a r i o u s w o r k e r s and r e p o r t e d by C a r r o l l D a t a f o r g r o u n d w a t e r and i n Table 1 - 2 .  from  Carroll cations  (1962).  stream water a n a l y s i s i s g i v e n  A l l g r o u n d w a t e r s a m p l e s were more  I n O c t o b e r . t h a n J u n e as was  acidic  S a n d h i l l Creek, however, L o s t  Shde C r e e k had a h i g h e r pH i n O c t o b e r . (measured  The  decreases with Increased distance  t h e o c e a n w h i c h i s c o n s i s t e n t w i t h d a t a r e p o r t e d by (1962).  reported  A l l redox  potentials  Eh) w e r e o x i d i z i n g w h i c h i s e x p e c t e d f o r n a t u r a l  environments  (Clayton, 1 9 7 2 ) with a decrease i n a l l  sites  from June t o October. Magnesium remained decreasing s l i g h t l y  c o n s t a n t i n the ground w a t e r s , w i t h  i n October.  N i t r a t e increased i n October  f r o m J u n e w i t h K and Ca b e i n g more v a r i a b l e . The  c o n c e n t r a t i o n sequence  for cations i n a l l  w a t e r s and S a n d h i l l C r e e k was  Na  >  Mg  >  Ca>K.  C r e e k had a s e q u e n c e  Ca >  Mg  >  K.  o f Na  >  Na  ground L o s t Shoe  59 CONCLUSIONS  The m a j o r f a c t o r s . c o n t r i b u t i n g t o . t h e w i d e r a n g e o f morphological 1. the  expression  i n the s o i l s  studied  include:  the highly contrasting parent materials  soils 2.  from which  have d e v e l o p e d . t h e c o m p l e x mode o f m a t e r i a l d e p o s i t i o n r e s u l t i n g i n  many l i t h o l o g i c in the s o i l  d i s c o n t i n u i t i e s w h i c h a f f e c t s w a t e r movement  pedon.  3.  the high  p r e c i p i t a t i o n i n the study  4.  t h e l o c a t i o n o f t h e pedon i n t h e l a n d s c a p e w h i c h  t o change t h e f u n c t i o n o f t h e f a c t o r s ' o f s o i l resulting  i n t h e development  These  The  concentration  of basic  The i n p u t  com-  i n c o m p o s i t i o n and s t r u c t u r e . cations  would a l s o i n f l u e n c e the n u t r i e n t s t a t u s  elopment .  formation  same f a c t o r s h a v e a l s o ' r e s u l t e d i n ' v e g e t a t i o n  which vary.considerably  ocean.  acts  of d i f f e r e n t genetic c h a r a c t e r i s t i c s .  munities high  area.  i n the p r e c i p i t a t i o n of the s o i l s  near the  of bases would a l s o a c t t o r e t a r d s o i l  dev-  60  LITERATURE CITED  B E L L , M.A.M. a n d HARCOMBE, A.P. 1 9 7 2 . F l o r a a n d v e g e t a t i o n o f P a c i f i c Rim N a t i o n a l P a r k : Phase I , Long Beach. N a t i o n a l P a r k s B r a n c h , Dept. I n d i a n and N o r t h e r n A f f a i r s , Ottawa, Ontario. BOOJEDHUR, S. 1 9 6 8 . G e n e s i s o f a p o d z o l s e q u e n c e on t h e w e s t c o a s t o f V a n c o u v e r I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , D e p t . o f S o i l S c i . , U.B.C. BREMNER, J.M. 1970. The g e o l o g y o f Wreck Bay,- V a n c o u v e r I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , D e p t . o f G e o l o g y , U.B.C. CLAYTON, J . L . 1 9 7 2 . S a l t s p r a y a n d m i n e r a l c y c l i n g i n two C a l i f o r n i a c o a s t a l e c o s y s t e m s . E c o l o g y 53:74-81. CORDES, L.D. 1973. E c o l o g y o f t h e S i t k a s p r u c e f o r e s t s o n t h e w e s t c o a s t o f V a n c o u v e r I s l a n d . U n p u b l i s h e d Ph.D. t h e s i s , D e p t . o f B o t a n y , U.B.C. HOLLAND, S.S. 1964. L a n d f o r m s o f B r i t i s h C o l u m b i a , a p h y s i o graphic outline. B r i t i s h Columbia Department o f Mines and P e t r o l e u m R e s o u r c e s . B u l l e t i n number 48. V i c t o r i a , B.C. J E F F E R Y , W.W., BROWN,. C.S., JURDANT, M., NOVAKOWSKI, N.S. and SPILSBURY, R.H. 1970. T o w a r d s I n t e g r a t e d R e s o u r c e Management. R e p o r t o f t h e S u b - c o m m i t t e e o n M u l t i p l e U s e , N a t i o n a l C o m m i t t e e on F o r e s t L a n d . Queen's P r i n t e r f o r Canada.. KRAJINA, V . J . 1 9 6 5 . B i o g e o c l i m a t i c z o n e s a n d b i o g e o c o e n o s e s of B r i t i s h Columbia. I n "Ecology o f Western N o r t h America". ( V . J . K r a j i n a , e d . ) , V o l . .1, p. 1-17. D e p t . of Botany,.U.B.C. PIERCE,^T.W. 1 9 7 3 . P a c i f i c R i m N a t i o n a l P a r k : A s u r v e y o f s o i l s and l a n d f o r m s - Phases I and I I . P a c i f i c F o r e s t R e s e a r c h C e n t r e , V i c t o r i a , B.C. KURAMOTO, R.T. 1 9 6 5 . P l a n t a s s o c i a t i o n s a n d s u c c e s s i o n i n t h e v e g e t a t i o n o f t h e s a n d dunes o f L o n g B e a c h , V a n c o u v e r I s l a n d . U n p u b l i s h e d M;..Sc. t h e s i s , D e p t . o f B o t a n y , U.B.C. MULLER, J . E . 1972- G e o l o g y o f P a c i f i c R i m N a t i o n a l P a r k , R e p o r t o f A c t i v i t i e s , G e o l o g i c a l Survey o f Canada, Dept. o f E n e r g y , M i n e s a n d R e s o u r c e s , P a r t A, p. 30-37-  61  VALENTINE, K.W.G. 1 9 7 1 - S o i l s o f t h e T o f i n o . - U c l u e l e t Lowl a n d o f . B r i t i s h C o l u m b i a . . Canada D e p a r t m e n t o f A g r i c u l t u r e , Research Branch. R e p o r t No. 1 1 . O t t a w a , Ontario. WADE, L.K. 1 9 6 5 . Sphagnum bogs o f t h e T o f i n o - a r e a , V a n c o u v e r Island,.B.C. U n p u b l i s h e d M.Sc. T h e s i s , D e p t . o f B o t a n y , U.B.C. WALMSLEY, M.E. a n d LAVKULICH, L.M. 1 9 7 3 - I n s i t u measurement o f d i s s o l v e d m a t e r i a l s as an' i n d i c a t o r -of o r g a n i c t e r r a i n type. Can. J . S o i l S c i . 5 3 : 2 3 1 - 2 3 6 .  CHAPTER I I  THE PHYSICAL, CHEMICAL AND MINERALOGICAL PROPERTIES AND PROPOSED GENESIS OF SOME SOILS ON THE WEST COAST OF VANCOUVER ISLAND  63  THE  P H Y S I C A L j CHEMICAL AND MINERALOGICAL  PROPERTIES  AND PROPOSED GENESIS OF SOME SOILS ON THE WEST COAST OF VANCOUVER  ISLAND  INTRODUCTION  In  Chapter  I., t h e d e s c r i p t i o n o f t h e s o i l s  a r e a and o t h e r e n v i r o n m e n t a l levant t o s o i l landscape (1969,  genesis  c o m p o n e n t s c o n s i d e r e d t o be r e -  and t h e f u n c t i o n o f t h e s o i l  were d i s c u s s e d .  1 9 7 D , Bhoojedhur  presented  Previous (1968)  p r o p e r t i e s on s e l e c t e d s o i l s  and L a v k u l i c h  et a l .(1971)  and p h y s i c a l  o f t h e r e g i o n and a l s o r e p o r t e d  o f t h i n pans ( p l a c i c h o r i z o n s ) i n t h e s o i l s .  The p u r p o s e o f t h i s  s e c t i o n i s t o present  chemical and m i n e r a l o g i c a l c h a r a c t e r i s t i c s c r i b e d i n Chapter  i n the  s t u d i e s by V a l e n t i n e  p r e l i m i n a r y r e s u l t s f o r some c h e m i c a l  on t h e o c c u r r e n c e  of the study  I and t o d i s c u s s t h e i r  detailed  of the s o i l s  physical, des-  genesis.  EXPERIMENTAL METHODS  The s o i l s w e r e s a m p l e d by h o r i z o n a s d e t e r m i n e d observations.  Bulk  by f i e l d  samples were a i r d r i e d i n t h e l a b o r a t o r y ,  t h e n ground and s i e v e d t o determine > 2 mm, a n d s u b s e q u e n t l y  the percent  size  fraction  u s e t h e < 2 mm f o r f u r t h e r a n a l y s i s .  Samples were a l s o t a k e n f o r b u l k d e n s i t y d e t e r m i n a t i o n .  64 PHYSICAL  ANALYSIS  Particle  s i z e d i s t r i b u t i o n was d e t e r m i n e d t w i c e by t h e  h y d r o m e t e r method  (Day, 1 9 6 5 ) ,  o r g a n i c m a t t e r w i t h E^O^,  first  after destruction of  and t h e n by r e m o v a l o f d i t h i o n i t e -  c i t r a t e - b i c a r b o n a t e e x t r a c t a b l e . m a t e r i a l s subsequent t r u c t i o n o f o r g a n i c m a t t e r by  t o des-  H^O^.  B u l k d e n s i t y was d e t e r m i n e d by t h e method most f o r t h e h o r i z o n b e i n g measured.  suitable  The c o r e method was u s e d on  most h o r i z o n s w i t h t h e s a r a n - c o a t e d c l o d s , and v o l u m e a s u r e method u s e d on s o i l s w h i c h e x h i b i t e d e i t h e r t o o much  structure  t o be s a m p l e d u s i n g a c o r e o r w h i c h were t o o c o a r s e . A l l m e t h o d s a r e o u t l i n e d by B l a k e  (1965).  S o i l w a t e r c o n t e n t was m e a s u r e d a t 1 5 . O and 0 . 3 3 b a r t e n s i o n f o r s o i l s w i t h h i g h c l a y c o n t e n t , and s o i l s w i t h  high  s a n d c o n t e n t were m e a s u r e d a t 1 5 . O and 0 . 1 b a r t e n s i o n  using  a p r e s s u r e p l a t e a p p a r a t u s o u t l i n e d by R i c h a r d s ( 1 9 6 5 ) . a b l e w a t e r s t o r a g e c a p a c i t y was c a l c u l a t e d  Avail-  as t h e d i f f e r e n c e  i n w a t e r c o n t e n t a t two m e a s u r e d t e n s i o n s . CHEMICAL ANALYSIS pH was m e a s u r e d i n 1 : 1 w a t e r and 0 . 1 M C a C l ^ . cations  Exchangeable  ( C a , Mg, Na, K) w e r e d i s p l a c e d w i t h n e u t r a l NH^OAc  as o u t l i n e d by Chapman ( 1 9 6 5 ) .  T o t a l CEC was d e t e r m i n e d by  t h e K j e l d a h l method a f t e r d i s p l a c e m e n t o f NH,+  w i t h KC1.  Cation-exchange displacement and  c a p a c i t y was a l s o d e t e r m i n e d  of'NaOAc  by t h e NH^OAc  (pH 8 . 2 ) a l s o o u t l i n e d by Chapman  (1965),  d e t e r m i n a t i o n o f Na. by a t o m i c a b s o r p t i o n s p e c t r o p h o t o m e t r y .  pH d e p e n d e n t Ca,.Mg a n d A l were d e t e r m i n e d b y t h e m e t h o d l i n e d by C l a r k  (1965).  f r o m pH d e p e n d e n t CEC.  P e r c e n t b a s e s a t u r a t i o n was Exchange a c i d i t y  BaCI,-,- t r i e t h a n o l a m i n e method  out-  calcualted  was d e t e r m i n e d  by t h e  (pH 8 . 0 ) o u t l i n e d by P e e c h  (1965).  T o t a l c a r b o n and s u l p h u r w e r e m e a s u r e d u s i n g a h i g h tempe r a t u r e i n d u c t i o n f u r n a c e a s o u t l i n e d by A l l i s o n  (1965).  N i t r o g e n was d e t e r m i n e d by m a c r o - k j e l d a h l a s o u t l i n e d . b y B r e m n e r (1965) .  The ammonium f l u o r i d e method was u s e d t o m e a s u r e  a b l e p h o s p h o r u s a s d e s c r i b e d by J a c k s o n  (1958).  P y r o p h o s p h a t e F e a n d A l (0.1N s h a k e n o v e r n i g h t o x a l a t e Fe and A l ( s h a k e n 4 h r s . ) , Fe,Al  and S i O ^ ( t h r e e  at 25°C),  citrate-bicarbonate-dithionite  5-min. e x t r a c t i o n s ) , and p y r o p h o s p h a t e -  d i t h i o n i t e F e , A l a n d C (pH . 8 . 2 ) e x t r a c t i o n s were u s e d i n g p r o c e d u r e s o u t l i n e d by McKeague ( 1 9 6 7 ) , ( 1 9 6 6 ) , Mehra  and J a c k s o n  (1963).respectively.  (i960),  determined  C„was d e t e r m i n e d as  (1970).  ANALYSIS  Sodium h y d r o x i d e extracted  Mc.Keague a n d Day  I r o n , a l u m i n u m and s i l i c o n were  o u t l i n e d by L a v k u l i e h et_ a l .  follow-  a n d Franzmeier..et_ a l . .  by a t o m i c , a b s o r p t i o n s p e c t r o p h o t o m e t r y • a n d  MINERALOGICAL  avail-  (0.5N) e x t r a c t a b l e A l , S i a n d Mn were  a s o u t l i n e d by J a c k s o n  (1965)  atomic a b s o r p t i o n spectrophotometry.  a n d d e t e r m i n e d by  66  The  < 0 . 0 0 2 mm  constant' f l o w  s i z e f r a c t i o n was  separated.using  a  super-centrifuge. X-ray d i f f r a c t i o n a n a l y s i s  c o m p l e t e d on t h e w h o l e c l a y f r a c t i o n u s i n g CuK with Ni f i l t r a t i o n .  Criteria  RESULTS AND  alpha r a d i a t i o n  o u t l i n e d i n Jackson  used t o determine c l a y m i n e r a l s  was  (1964)  was  present.  DISCUSSION  PHYSICAL. PROPERTIES The soils  r e s u l t s f o r some s e l e c t e d p h y s i c a l p r o p e r t i e s o f  are g i v e n The  soils  i n Table I I - l . s t u d i e d had  a w i d e r a n g e o f t e x t u r e s and  e x h i b i t e d a marked i n c r e a s e i n c l a y s i z e d p a r t i c l e s treated with citrate-bicarbonate-dithionite.  I n most o f  this  c o r r e s p o n d e d t o a marked d e c r e a s e i n b o t h  s a n d and  silt  size fractions.  o u t w a s h , m a r i n e c l a y s and  p r o n o u n c e d on t h o s e I n most' h o r i z o n s The  soil  the  soils  glacial  to 60 percent'of  t o 2 . 2 5 g/cc  surface  a d e p t h o f 1 2 0 cm. occurred.  and  the  was  a t 1 2 0 cm.  The  less .  treatment.  horizons where a  This increase  (BD)  in  material.  t h e m a t e r i a l by w e i g h t  a sharp i n c r e a s e i n bulk d e n s i t y  i m a t e l y 1 . 0 g/cc  soils,  c h a n g e d upon  loam t e x t u r e d  marked i n c r e a s e i n g r a v e l c o n t e n t  m a r k e d by  till  t e x t u r a l c l a s s was  w i t h i n c r e a s i n g sand c o n t e n t • t o  g r a v e l content  the  T h i s marked i n c r e a s e o c c u r r e d  d e v e l o p e d i n sandy p a r e n t  a t S i t e 1 had  also  when  horizons  the  the  from  in  was  approx-  availableuwater  Table I I - l .  Selected p h y s i c a l p r o p e r t i e s o f the s o i l s P a r t i c l e Size  Site and Sample 1.  H  S  2°2  Si  c  • Textural Class  H  2°2  S  +Dithionite Si  C  Textural Class  Gravel % by weight  ,-BD g/cc  Water Retention % by wt.on 2mm s o i l Bars 15.0 0.1 0.33  A.W.S.C, g/100g  1 12.0  25.3  14.1  20.2  . 6.9  8.6  1  40.3  '21.3  38.4  cl  1.00  37.5  7.3  si  37.8  .29.5  32.7  cl  0.82  34.4  10.6  3.6  Is  56.4  9-9 ' 33.8  scl  0.90  15.4  85.4  12.8  1.8  Is  72.5  4.5  22.9  scl  0.95  12.2  6.4  5.8  6  91.1  7.3  1.6  s  78.3  5.8  15.9  si  1.19  9-6  4.6  5.0  7  84.4  12.3  3.3  gls  48.2  8.0  43.8  gsc  2.25  12.8  5.8  7.0'  66  84.5  13.7  11.8  gls  76.2  8.7  15.1  gsl  11.3  .3.9  7.4  9  68.4  23.1  8.5  vgsl  56.5  16.1  27.4  vgscl  61.1  14.3  .16.6  10.  91.5  6.2  2.3  vgs  69.2  4.6  26.2  vgscl  65-5  11  82.7  6.9  10.2  vgls..  77.7  4.3  18.0  vgsl  12  89.6  6.4  4.0  gs  79.8  17.7  gsl  13  94.2  5.8  <1.0  vgs  72.6  5.9  21.5  vgsl  , 67  85.3  14.7  <1.0  vgs  80.9  4.5  14.6  vgsl  68  87.3  11.1  1.6  vgs  81.2  .3.5  15.3  vgsl  2.  2  44.7  26.0  26.6  3  62.8  29-9  4  85.8  5  59.2  26.5  8  *  A.W.S.C.  .  • 2.5  1.17  30.9  1.95  11.0  4.8  6.2  73-9  10.3  3.9  6.4  38.1  5.6  3.0  2.7  . 78.0  7.0  3.4  3.6  7.8  2.5  5-;3  . 6.1  2-5  5.8  .  1.78  (loam and coarser 0 . 1 - 1 5 . 0 bars, c l a y loam and f i n e r 0 . 3 3 - 1 5 - 0 bars)  •27.5  OA  3  Table I I - l ,  continued P a r t i c l e Size  Site and Sample 3.  14  H  H 0 + Dithionite  2°2  2  S  Si  C  -  -  -  iLAl/UL <J,X Class  -  16  •-.  S  -  Si  C  -  -  Textural •Class  Gravel $ by weight  BD g/cc  Water Retention % by wt.. on 2 mm s o i l Bars 0.1  0.33  15.0  A.W.S.C. g/lOOg*  32.8  20.8  46.4  c  0.74  37.5  10.3  27.3  17  78.6  10.7  10.7  si  58.8  13.5  27.8  scl  1.24  18.0  6.3  11.6  18  85.8  5.8  8.4  Is  73.7  6.8  19.5  si  1.60-  9-9  3.9  6.0  !9  42.9  40.6  16.5  gl  35.2  35.9  28.9  gel  31.5  1.84  31.5  8.2  23-3  20  86.3  8.1  5.6  vgls  • 71.6  5.9  22.4  vgscl  56.2  2.02  13.1  4.1  9.0  21  89.7  . 4.9  5.4  vgs  64.5  4.1  31.4  vgscl  61.0  10.9  2.6  8.3  23  <1.0  17.7  82.3  c  < 1.0  24  <1.0  17.4  82.6  c  25  <1.0  20.2  79.8  26  <i.o  32.3  - •  4 . 22  < l.0>99.0  c  0.86  50.6  44.6  26.2  18.4  <1.0  . <1.0>99.0  c  0.59  49.9  43.1  29.9  13.7  c  < 1.0  <1.0>99.0  c  0.74  53.6  45.4  29.9  15.5  67.7  c  < 1.0  13.5  86.5  c  1.09  51.7  43.8  26.2  17.5  c  <1.0  19.6  •80.4  c  0.86  46.8  41.8  26.3  15-5  c  1.11  52.1  44.1  27.7  16.4  27  6.9  26.9  66.2  28  <1.0  26.3  73.7  c  < 1.0  29  11.5  25.4  63.1  c  <1.0  11.0  88.1  c  1.45  47-9  40.1  22.7  17.4  30  8.8  27.8  63.4  c  < 1.0  17.6  82.4  c  1.25  49.8  41.1  23.1  18.0  < 1.0 >99.0  oo  Table I I - l ,  continued P a r t i c l e Size  Site and Sample  H 0 2  2  S  Si  C  31  -  -  32  -  -  - Textural Class  H  + Dithionite 2°2  Textural Class  Water Retention % by wt. on 2 mm s o i l  Gravel . % by weight  ED g/cc  A.W.S  15.0  g/10(  66.3  39.9  26.3  53.5  40.5  14.0  26.5  S  Si  C  -  -  -  -  0.74  85.1  -  -  -  -  0.74  O.i:.  0.33  5.  31a  6.  33  26.3  37.4  35.9  cl  7.8  41.8  50.9  sic  1.31  41.0  32.0  15.0  16.6  34  17.3  39.6 .  .43.1  c  5.6  42.0  52.4  sic  1.23  39.0  31.8  15.1  16.7  35  18.9  35.5 -  45.6  c  6.8  33.7  59-5  'c  1.38  36.2  29.6  14.6  14.9  36  21.5  30.9  47.6  c  4.0  29.5  70.5  c  1.69  35.1  27.9  13.5  14.4  38  ' 46,0  37.4  16.6  1  45.6  • 30.0  24.4  1  -  27.5  • -  6.8  20.7  39  55.-1  23.5  21.4  scl  -  7-5  8.1  -  • -  -  37  40a  -  -  -  -  15.6  -  -  -  -  -  40  85.0  12.3  2.7  Is  80.5  41  87.5  5.9  6.6  Is  74.1  42  74.3  9.7  16.0  si  43  - 91.'3  2.9  44  90.9'  •5,4  45  90.6  46  92.2  —  •  —  —  .15.2  si  -  7.1  -  2.9  4.2  6.0  19.9  si  -  7.0  -  3.6  . 3.4  53.3  10.1  36.5  sc  1.45  21.2  11.7  9.5  s  79.5  6.9  .'13.6 '  si  1.46  5.4  -  2.5  3.0  3.7  s  76.4  3.3  20.3  si .  1.55  5.9  -  2.8  3.1  4.5  4.9  s.  81.9  6.7 ' 11.4  Is  -  4.8  -  1.7  3.1  • 3.1  4.7  s  78.6  5.1  si  1.36  4..4  —  1.3  3.1  •4.3  16.3  .  OA  Table I I - l ,  continued P a r t i c l e Size  Site and Sample  47 48  H 0 2  H~ 0 + D i t h i o n i t e 2  2  Textural Class  Si  S  2  • .Si  C  Textural Class  Gravel % by weight  BD g/cc  Water Retention % by wt. on 2 mm s o i l ' Bars  0.1  0.33  15.0  A.W.S.C. ' g/lOOg*  58.4  14.2  27.4  scl  52.4  17.4  30.2  scl  0.32  64.2  24.8  39-4  49 50.  60.3  28.7  10.8  si  63.8  7.4  28.8  scl  - •  27.3  9.8  59-4  30.1  si  63.5  21.5  si  scl  1.36 1.21  6.3 4.6  52  72.1  17.3  si  70.3 74.0  26.5 12.7  12.7  70.7  10.0 8.0  scl  51  3.1  22.9  scl  1.49  53  89.3  8.5  10.5 7.8 10.6 2.2  17.5 6.4  s  85.3  5-3  9.5  Is  55 56  66.0 75.6  32.5  si  84.5  7.5  Is  70.7 74.6 84.2  8.4 21.0  57  11.5 21.3 8.0  5-9 1.0  -  -  -  84.2  —  "12.9 7.6 4.8  2.2  8.3 5.4  1.2  3.6  •12.4 10.8  54  58  -  59 60  91.4  3.1  scl  7.6  s  83.0  83.2  1.0 9.8  7.0  Is  79.4  61  89.6  2.6  s  62  85.7  9.5  7.8 4.8  71.3 86.7  Is  scl  1.16  18.4  6.0  19.5  si  1.46  16.5  14.7  Is  1.47  2.5 4.0  13.2  Is  1.57  9-5 6.4  5-7 3.4  17.0  Is  1.52  1.5 2.1  19.1  si  1.50  26.6 11.8  scl  1.42 1.50  1.5  Is  6.1  2.2  4.2  5.7  1.6  4:1  3.3 5.6  1.2  2.1  1.8  2.5  0.7  3.9 1.8  ^1 o  Table I I - l ,  continued P a r t i c l e Size  Site and Sample  H 0 2  Dithionite  2  Textural Class  Si  S "  Si  C  Textural Class  Gravel % by weight  BD. g/cc  Water Retention % by wt. on 2 mm s o i l Bars 0.1  0.33  A.W.S.C.  15.0  g/lOOg*  69 70  60.4  27.0  12.6  si  25.9  33.6  40.4  cl  0.73  .•56.5  43.9  20.1  23.8  71  49.7  32.9  17.4  1  33.2  29.7  37.1  cl  1.00  54.0  39.2  19-3  19.9  72  70.7  29.3  <L1.0  si  41.5  32.2  26.3  cl  1.29  30.4  21.0  9.7  11.3  73  66.3  33.7  < 1.0  si  37.8  30.7  31.4  cl  1.25  31.0  18.9  9-0  9-9  75  54.9  31.4  13.7  si  35.8  29.3  34.9  cl  1.09  47.6  36.1  14.7  21.4  76  42.9  37.2  19.9  1  35.2  35.2  29.5  cl  1.15  39.5  34.2  ::.9.3  24.9  77  56.7  41.4  1.9  si  31.9  38.4  cl  1.22  36.3  31.1  10.0  21.1  78  58.0  38.6  3.4  si  31.3  39.3  cl  1.35  39-7  29.3  12.6  16.7  10, 74  • 29.7 29.4  72  storage  capacity  (AWSC.) was h i g h e s t  i nthe surface  horizons  a t 2 5 g/100g a n d d e c r e a s e d w i t h d e p t h t o a p p r o x i m a t e l y The  high percentage of g r a v e l s ' i n the lower.horizons  r e d u c e t h e e f f e c t i v e " . . AWSC t o a p p r o x i m a t e l y Site  2 was a v e r y  sized particles  7 g/lOOg. would  3"-g/100g.  g r a v e l l y s o i l w i t h s m a l l amounts o f c l a y  i n t h e < 2 mm f r a c t i o n u n t i l  treated  with  dithionite. Even a f t e r t r e a t m e n t remained r e l a t i v e l y  with d i t h i o n i t e t h e content  high ranging  h o r i z o n t o over 8 0 percent  this to  from 5 6 p e r c e n t . i n t h e s u r f a c e  at greater than  s i z e d f r a c t i o n was l o w b e f o r e  200 cm.  and a f t e r t r e a t m e n t .  s o i l was 1.17 g / c c i n t h e s u r f a c e h o r i z o n s  n e a r l y 2.. g/cc  w i t h depth.  o f sand  The s i l t The BD o f  and i n c r e a s e d  The AWSC was s l i g h t l y  lower  t h a n . S i t e 1 f o r t h e < 2 mm f r a c t i o n , h o w e v e r , t h e h i g h content  w o u l d make r e a l AWSC much  lower.  physical characteristics  of Site  The bility  than  at either Site  1 o r 2.  This  3 have g r e a t e r i sevident  gravel  varia-  i n the  t e x t u r e w h i c h r a n g e s f r o m s a n d y loam i n t h e s u r f a c e t o v e r y gravelly clay  sand i n t h e C h o r i z o n .  loam a n d v e r y  treatment content out  c o r r e s p o n d s t o sandy  g r a v e l l y sandy c l a y loam r e s p e c t i v e l y a f t e r  with dithionite.  The I I I B f g h o r i z o n was h i g h i n c l a y  and had a c o r r e s p o n d i n g l y  h i g h AWSC.  The AWSC  through-  t h e p e d o n i s v a r i a b l e a n d r a n g e s f r o m 2 7 . 3 g/lOOg t o 6 . 0  g/100g.g/cc  This  The BD i n c r e a s e s w i t h d e p t h f r o m 0 . 7 4 g / c c t o 2.02  a t 50 cm.  73 Site. 4 had v e r y  l o w amounts o f s a n d t h r o u g h o u t < 1 , 0 percent  and-all horizons contained after  treatment  with dlthionite.  p a r t i c l e s was a l s o r e d u c e d clay.  sand s i z e d  The p e r c e n t a g e  with corresponding 8 0percent  Clay ranged from over  6 5percent  t h e pedon particles  of s i l t  size  increases i n  i nthe surface  horizons to less  than  in  theuntreated  samples and f r o m  >99 p e r c e n t  to  < 8 5percent  i n the subsurface  o f t h e t r e a t e d samples.  BD  in-the surface  v a r i e d f r o m 0.59 g / c c i n t h e B h g j t o 1.45 g / c c  The to  i nthe subsurfaceLhorizons  AWSC e x h i b i t e d v e r y  little  variation  The  i n t h e BC.  a n d r a n g e d f r o m 13-7  1 8 . 4. g / l O O g . Site  5 i ssimilar to Site  but has a lower shift The g/cc  t o clay  clay  content  4 i nphysical characteristics  a n d d o e s not. e x h i b i t  size particles after  treatment  t h e complete  with dlthionite.  BD r a n g e s f r o m 0.74 g / c c i n t h e s u r f a c e h o r i z o n s t o I . 6 9 i ntheC horizon.  The AWSC a r e s i m i l a r t o S i t e  4 but  higher i n t h e surface horizons which a r e high i n organic matter.  The AWSC r a n g e s f r o m 26.5 t o 14.4 g/lOOg.  Sites  6, 7 a n d 8 a r e s i m i l a r i n t h e p h y s i c a l p r o p e r t i e s  m e a s u r e d , . w i t h a h i g h sand c o n t e n t treatment  with dithionite.  clay  content  silt  after  clay  loam.  Site  6 below the p l a c i c  and a f t e r  However, t h e r e i s an i n c r e a s e i n  which corresponds  treatment.  both before  t o a decrease  i n both  sand and  The t e x t u r e s r a n g e f r o m s a n d t o s a n d y  An a b r u p t , i n c r e a s e i n s a n d c o n t e n t - o c c u r s i n  r a n g e s f r o m 1.21 g/cc  horizon.  The BD i n t h e t h r e e  t o lv57 g/cc i n m i n e r a l h o r i z o n s  are not h i g h i n organic matter  soils which  w i t h t h e m a j o r i t y n e a r 1.5 g / c c .  74  The  AWSC i s l o w i n a l l m i n e r a l h o r i z o n s a n d v a r i a b l e  the pedons. in Site  In Site  throughout  6 i t , r a n g e s f r o m 2 0 , 7 t o 3 . 1 g/lOOg a n d  7 f r o m 3 9 . 4 t o 3 . 6 g/lOOg w i t h an a b r u p t d r o p f r o m t h e  A t o the B horizons.  The AWSC o f S i t e  8 ranged from 1 2 . 4 t o  1 . 8 g/lOOg i n t h e C h o r i z o n w h i c h was t h e l o w e s t o f any o f t h e h o r i z o n s measured. Site  9 and 1 0 were s i m i l a r i n p h y s i c a l c h a r a c t e r i s t i c s  with  h o r i z o n s h a v i n g t e x t u r e s o f loam t o sandy  loam b e f o r e d i t h i o n i t e  t r e a t m e n t a n d c l a y loam a f t e r t r e a t m e n t .  The s i l t  was r e l a t i v e l y  size  fraction  t h e same a f t e r t r e a t m e n t as; b e f o r e , e x c e p t f o r  the lower h o r i z o n s of S i t e sized particles  1 0 . The l a r g e i n c r e a s e s i n c l a y  c o r r e s p o n d e d t o d e c r e a s e s i n t h e sand  size  f r a c t i o n . The BD r a n g e d f r o m 0 . 7 3 t o 1 . 2 9 g / c c i n S i t e from 1 . 0 9 t o 1 . 3 5 g/cc i n S i t e  1 0 . The AWSC o f S i t e  9 and .  9 decreased  f r o m 2 3 . 8 to- 9 - 9 g / 1 0 0 g w i t h d e p t h a n d v a r i e d f r o m 2 4 . 9 t o 1 6 . 7 g/lOOg i n S i t e The  10. •  dominant  physical features of the soils  the wide range o f t e x t u r e s which v a r i e d  studied  were  from v e r y g r a v e l l y  t o c l a y m a t e r i a l s , and t h e h i g h v a r i a t i o n i n t e x t u r e s t h r o u g h out t h e pedons w h i c h i n d i c a t e t h e p r e s e n c e o f l i t h o l o g i c discontinuities.  T h i s s u p p o r t s t h e complex  mode o f m a t e r i a l  d i s p o s i t i o n i n w h i c h t h e s o i l s have f o r m e d , a n d w h i c h was d i s cussed I n Chapter I .  These changes  o f t e x t u r e , w h i c h are.  o f t e n a b r u p t , w o u l d h a v e c o n s i d e r a b l e i n f l u e n c e o n w a t e r movement t h r o u g h o u t t h e p e d o n p r i o r t o s a t u r a t i o n .  T h i s appears  75 t o be c r i t i c a l  i n the i n i t i a t i o n of the p l a c i c horizons  found  6 a t . 2 0 cm b e l o w t h e m i n e r a l s u r f a c e .  in Site The  presence  cementation  of these p l a c i c  h o r i z o n s and o t h e r t y p e s o f  i n t h e s o i l s a l s o have a major e f f e c t  movement t h r o u g h o u t  t h e pedon.  on w a t e r  The s u r f a c e h o r i z o n a b o v e t h e  p l a c i c h o r i z o n s w o u l d r a p i d l y become s a t u r a t e d d u r i n g a storm.  T h i s r e s u l t s i n l a t e r a l movement o f w a t e r a s  when f r e e w a t e r f l o w s o v e r also occurred i n Sites gave s u p p o r t It  t o these  2 and 3 i n c o a r s e  c o u l d n o t be d e t e r m i n e d  h o r i z o n t o another  Cementation  t e x t u r e d h o r i z o n s and  s o i l s which o t h e r w i s e would not occur.  a f f e c t e d by t h e c e m e n t a t i o n one  t h e cemented l a y e r .  observed  whether or not b u l k d e n s i t y i s  process  a s c h a n g e s i n BD f r o m  c o u l d be a r e s u l t  o f changes i n g r a i n  s i z e o r mode • o f d e p o s i t i o n - . . H o w e v e r , t h e e l e c t r o n i m a g e s o f the p l a c i c crease  h o r i z o n s d i s c u s s e d i n Chapter  I I I show a m a r k e d i n -  i n d e n s i t y due t o t h e a c c u m u l a t i o n  of plasma i n the  matrix-material. The  shift  t o smaller sized p a r t i c l e s during treatment  citrate-bicarbonate-dithionite  i n d i c a t e s that aggregation of  p a r t i c l e s by Fe and A l o x i d e s o c c u r s studied. iation  different  i n a l l of the s o i l s  Lack of d i s p e r s i o n c o u l d account  i n particle  H o w e v e r , t h e r e m o v a l o f amorphous and  c r y s t a l l i n e Fe o x i d e s by c i t r a t e - d i t h i o n i t e  et a l 1 9 6 3 ) .  f o r some o f t h e v a r -  s i z e d i s t r i b u t i o n f o r t h e same s o i l and  treatments,.  of t h e aggregated  with  c a n r e l e a s e much  m a t e r i a l i n t o i t s subcomponents  The p r e s e n c e  (Kittrick  of t r i o c t a h e d r a l minerals  which  76  a r e a t t a c h e d by c i t r a t e - d i t h i o n i t e Increase  i n the f i n e r  size fractions  Due t o t h e c o m p l e x i t y i n c r e a s e i n aggregate aggregation indicative  c o u l d a l s o g i v e an (Arshad  apparent  et a l , 1 9 7 2 ) .  of' f a c t o r s i n f l u e n c i n g t h e  d i s p e r s i o n , any a t t e m p t  i s impossible.  to quantify  However, t h e v a l u e s  of t h e degree of a g g r e g a t i o n  apparent  obtained are  as r e f l e c t e d by mor-  p h o l o g i c a l c h a r a c t e r i s t i c s and'the pedogenic f a c t o r s r e s p o n s i b l e for  aggregation.  A l s o , by t h e m e t h o d s u s e d , t h e  degree of a g g r e g a t i o n  c a n o n l y be d e t e r m i n e d  apparent  relative  sand and c l a y f r a c t i o n s , as v a l u e s o b t a i n e d , f o r s i l t particles  could r e s u l t  p a r t i c l e s present  to the sized  from complete d i s a g g r e g a t i o n o f  into, clay  s i z e d p a r t i c l e s , and a  a d d i t i o n from sand s i z e d i s a g g r e g a t i o n .  silt  simultaneous  This could  represent  a c o m p l e t e c h a n g e o f s i l t m a t e r i a l w i t h no c h a n g e o f t o t a l cent  of that s i z e f r a c t i o n .  T h i s a g g r e g a t i o n has  c o n t r i b u t e d t o t h e l o w AWSC o f t h e s e  soils.  per-  partially  Another  factor  c o u l d be t h e l o w amounts o f OM p r e s e n t , w i t h t h e e x c e p t i o n o f the  surface horizons.  CHEMICAL PROPERTIES ' The r e s u l t s rogen,  f o r pH  organic matter  ( H 0 and C a C l ) , t o t a l 2  (C x l . 7 2 4 ) ,  sulphur are given i n Table I I - 2 .  2  carbon  and  a v a i l a b l e p h o s p h o r u s and  nittotal  Table I I - 2 .  Selected chemical p r o p e r t i e s of the s o i l s .  Sample Number  Horizon  1 2 3 4 .5 6 7 66  LH Ahe Bf Bf I I Bf II B f I I I BfC  Site  Site  Site  2 8 9 10 11 12 13 67 68 3 14 15  16 17  18  19  20 21 ND-  2  2  L-H Bf I I BC II. C III C IV C  Depth (cm)  1:1  H 0  CaCl  2  38-0 0-5  31-0  2  3.4 3.9 4.4 4.9 5.2 5.2 5.3 5.3:-  3.9 '4.9 5.0 5-25 25-58 5.0 • 5.2 58-99. . 99-122 5.1 122-142 5..'2' 142+ .5.5  498  3.6 4.9 5.1 5.1 5.0 4.9 5.3 5.3  20-8 8-0 0-10 10-20 20-33 33-48 48-66  4.5 4.1 4.3 4.8 5.0 5.3 5.3  3.5 3.5 3.6 4.3. 4.7 4.3 4.6  66+  5.5  4.7  0-56  56-112 112-173 173-180 180+  379  LF H Ah Bf c II Bfgj I I I Bfg IV BCg Cg ( w a t e r table)  pH  Not d e t e c t a b l e by m e t h o d  '  Total C  Total N-.  %  %  42v64; 4.63 4.00 0.91 0.52  -.0.78  0.59 0.24  3-3 4.8 5.1 5.2, 5.4 5.4 5.4 5.2  .34.51  38.85  3.07 0.49 0. 26 0.23  0.15 0.16  0.11  1.23  0. 22 0.20 0.05 0. 04 0.05 0.02 0.01 0.99 0.14 0.03 0. 01 0. 01 0. 01 <0.01 ND  C/N 35  73.5 8.0 6.9 1.6 0.8 1.3 1.0 0.4  21 20  18 13 16 29  24 35  59-5 5-3 0.8 0.5 0.4 0.3 0.3 0.2  22 16 26 23 15  -  0.56  2 . 00 1. 49 0.14 0.03 ' 0. 04 0. 02 0.02  28  0.27  0. 02  13  39.44 • 7.89 1. 2 7 0. 6 1 0.64  Organic .matter %(Cxl.724)  19  26 56  42 15 32  •  Available P (ppm)  10.8 8.7 12.7 14.1 25.3  Total S %  0.17 0.05 0.05  0.07 0.03  0.03  25.0 28.5  0.03 0.03  32.5  0.08 0.08  7.0 20.8 34.9 27.3 .35.9 31.0 25.5  -  0.03 0. 02 0.02 0.02 0. 02 0. 01  67.0 68.0 13.6 2.2 1.1 1.1 1.0  70.5  0.12 0.12 0.03 0.02 0.01 0.01 0.02  0.5  53.7  0.02  19.7 9.4  10.1 17.8 19.9  used. —J  Table  I I - 2 , continued  Sample Numtcer Site 4 22 23 24 25  26  27 28 29  30  Site 5 31a 31 3'2 33 34 35 36  Site 6 37 3& 39  . 40a 40 41 42 43  Horizon  LH Bhg Bhgj Bf Bf Bfg Bfg BCg Cg 2  2  Depth (cm)  15-0 0-5  5-18 18-36  PH 1:1  2  4.1 4.2 . 4.4 4.6 4.8 4.9  36-43 43-74  74-117 117-135 135+  H 0  .  5.2  4.0  3.8  3.9 4.5. 5.3  4.2  3.8  15-13 13-0 0-10 10-20 20-31  31-48 48+  4.7 5..'2 6.0 6.0  L-H Ae Bh Bhf c I I BC III C  18-0 0-5 5-20  3.9 4.5 4.7  20-79 79-114 114-132 132-145  4.3 3.5 3.6 3.8  5-7 6.7  LF H Ahe Bfg Bfg2 BCg Cg  —  Ca'Cl  4.6  -  5.2 5.0 5.2 5-3  -  3.2 4.1 4.3  4.7 4.4  3.4 3.8 3.8  4.6 4.9  4.7 4.9  2  Total C  Total .N  %  %  36.  05 5.48 4.57  1. 5 0 0.14 0.25  2.64 0.10 0.22  29. 9 4 5-97  2.38 0.82 0.39 0.25  0.82 0.25  0.22 0.13 0.03 0.04 0.09 a. 02 0.03 -  0.88 0.25 -  0.11 0.05 0. 02 0. 01  42.75  0.80  2. 24 -  0.06  2.69  0.39  0.30  0.45 0.23  0. 0 8 0. 01 0. 01 0. 02 0. 01  C/N  .  •  44  22 21 12  5 6 29 5 7  -  34  24 22  Organic matter $(Cxl.724)  62.1 9-5 7.9  2.6 0.2 0.4 4.5  0.2 0.4 -  51. 6 10. 3  . .25  4.1 1.4 0.7 0.4  53 34 37  73.7 4.6 3.9  16  19  -  -  39  0.7.  23 23  0.5 0.7 0.4  30  Available P (ppm)  • 3.3  3.0 4.8 3.9  2.7 2.8 28.1 9.0 24.8 13.3 9.4 9-7 8.9  10.6 26.8 3.1 15.6  -  17.3 25.4 3-3 37.4  Total S %  0.09 0.03 0. 03 0. 02 0. 03 0. 01 0. 02 0.. 01 0. 01 0.04 0.03 0.03 0. 01 0. 01 0.01 0.03 0. 02 0.03 0. 01 0. 02 0. 02 0.01  oo  Table I I - 2 , continued  Sample Number  Horizon  145-152 152-163 163+  44 45  46 Site 7 • 47  48 49  50 51 52 53  Site 8 54 :• >  55 56 57 58 59  LP . H Ah Bfl Bfg I I BCg Cg LH Bf Bf 2 I I BC III C  61  69  71 72 73  33-79 79+  31-0 '. 0 - 2 3  . 23-36 36-56 L.56^81 81-109 117-155  62  70  25-13 :,l3-o ^ 0-5 • 5-23 23-33  109-117  60  Site 9  Depth (cm)  155+  LH Bf Bf 2 I I Bf I I Bf2  15-0  0-23 23-69 69-109 109-127  PH 1:1  H 0 2  5.1 .5-1 5.1  4.3  4.8 5.2 4.7  5.3  .3.9  5.0 5.2.  5.3 5.5 5.6 5.6 5.7 •5.8  3.7 4.7  5.0  5.3 5.4  2  4.8 4.9  0.21 0.14  3.2 3.2  44.80 2 3 • 13  5.0  3.8  4.3  CaCl  .  Total C %  3.5  4.1 4.4 4.3 4.3  3.2 4.0  4.4 4.5 4.5 4.8 4.9 4.9 4.8 -  4.3 4.7  5.2 5.1 .  0112  .  .  Total N %  0. 01 <0.01 <0.01 1.10  1.50  0.95  0.46  0.33  0.21 0.31  0.11  43.96 5.00  3.22 1.70 1. 6 9  -  0.95  0.09  0.07  0.03 0.03 0.02 0.01 0.02 0. 01 0.43  0vl4 0.11 0. 0 8 0.09  39-9  20 27  6  46  26 21  32 15  17 21 15  11 102  36 29  21 19  .  77.2  41 '  18 18  0.02 0.01  2.34  —  0.09 0.05  0. 54 0.06  0.4 0.2 0.2  21  36  0.24  44-.-02  C/N  0.65  4.78 1.66 0.92  Organic matter %(Cxl.724)  .  8.2 2.9 1.6 0.9 0.1  75-9  4.0 2.6 1.6 0.8 0.6 ,0.4 . 0.5 1 0.2 75.8 8.6 5.5  2.9 2.9  Available P (ppm)  Tota: S-. %  20.2 21.8 24.2  0.01 0. 01 0. 01  _  0.13  3.4  0. 01  7.0 13.3 53-0 45.2 10.9  0.03 0.05 0.07  32.0  0.06  8.4  2.7  3.4  8.4 10.3 12. 0 9.8 17.8  _ 3.5  ND 0.5 2.5  0.05  0.06  0. 01 0. 01 0.01 0. 01 0.01 0.01 0. 01 0.01 0.07 0.03  0. 04 0. 04 0.03 —J  Table II-2,' continued  H  Sample. Number  Horizon  S i t e 1 0 •• 7T 75 76 77 78:.  LH  Bf Bf2 I I Bf I I Bf2  Depth (cm)  '  31-0 0-15-15-43 43-86 86-119  '  p  1:1 H 0  CaCl  2  4.1. 5.2 5.3 5.5 5-3  ' 5.1 5.1 5.1 5-2  2  Total C %  Total N %  28.67 1-52 ' 0.66 0.72 1.80  0.57 0.05 0.01 0.04 0.06  C/N  50 30 66 18 30  Organic matter %(Cx.l724)  49.4 2.6 1.1 1.2 3.1  "  Available P. (ppm)  1.5 1.0 2.5 2.5  Total S %  0.07 0.05 0.07 0.07 0.10  co  81 pH All  of the  soils  s t u d i e d were.extremely  s u r f a c e h o r i z o n s w i t h pH v a l u e s  l e s s than  acid  i n the  4 . 5 i n 1:1  water.  T h e r e was  an i n c r e a s e i n pH w i t h d e p t h  i n the pedons.  all. soils  were s t r o n g l y a c i d b e l o w t h e  solum except  i n c r e a s e d t o 6 . 7 and  where t h e pH  o b t a i n e d u s i n g C a C l ^ were l o w e r by a p p r o x i m a t e l y  one  horizons of S i t e  1 and  slightly  than those  from 3 5 . t o 30.to  43 p e r c e n t  i n the  percent  i n Sites  soils  10, t h e  soils  d i d occur.  B and  C  or  on  44 t o 29 tills.  below the upper B h o r i z o n  was  not  consistent  percent  at  and  an i n c r e a s e i n approximately  4.  upper solum of S i t e 4.00  ranged  s o i l s , 43 to 45  F o r e x a m p l e , t h e r e was  o r g a n i c C f r o m 0 . 2 5 t o 2.64  B f 2 and  water  on o u t w a s h m a t e r -  developed  a r a p i d decrease  variability  i n Site  developed  i n the marine c l a y  however, the decrease  t h e Ahe,  values  i n . the organic s u r f a c e h o r i z o n s  w i t h depth,  The  lower  on s a n d y p a r e n t m a t e r i a l s and  9 and  G e n e r a l l y t h e r e was  cm.  The  v a l u e s were s i m i l a r  2  i n the s o i l s  36 percent  percent  120  4 and  Carbon  T o t a l organic carbon  total  Sites  o b t a i n e d by  pH u n i t , h o w e v e r , i n t h e 2 the C a C l  However,  higher.  T o t a l Organic  ials,  6.0 r e s p e c t i v e l y .  organic  percent  4.6.3 percent  1 had  i n t h e B f and  f i n a l l y decreased  t o 0.24  organic C i n  dropped t o 0 . 9 1 i n the  percent  i n t h e C.  Site  2  5  82  was..,similar w i t h 3 . 0 7 . p e r c e n t i n t h e B f a n d r a n g i n g f r o m 0 . 4 9 to  0 . 1 1 p e r c e n t . i n t h e I I BC and C«  Site 3 maintained higher . from  7 . 8 9 i n the  amounts t h r o u g h o u t  t h e p e d o n and d e c r e a s e d  Ah t o 1 . 2 7 p e r c e n t  i n t h e I I B f c t o 0 . 2 7 p e r c e n t i n t h e Cg.  4 had a p p r o x i m a t e l y 5 p e r c e n t o r g a n i c c a r b o n  Site  u p p e r B and d e c r e a s e d i n t h e Cg.  w i t h some v a r i a b i l i t y  i n the  to 0 . 2 2 percent  G e n e r a l l y h i g h e r amounts o f o r g a n i c ' C were p r e s e n t  i n the lower  solum i n S i t e  5 than S i t e  4 and r a n g e d  from 0 . 8 2  to. 0 . 2 5 p e r c e n t I n t h e Cg. Site  6 e x h i b i t e d a sharp decrease  percent, above t h e p l a c i c with a f u r t h e r decrease  i n o r g a n i c C from  h o r i z o n t o 0 . 3 9 immediately below t o 0 . 1 2 p e r c e n t a t 1 6 0 cm.  Site 7  had a s i m i l a r d i s t r i b u t i o n i n o r g a n i c • C a s t h e o t h e r s o i l s r a n g i n g from to  to 0 . 0 6 percent i n  The amount o f o r g a n i c C i n t h e p e d o n a t S i t e  s i m i l a r t o t h a t found  i n Site  o c c u r r e d as i t d i d i n . t h e S i t e  6 , h o w e v e r , no a b u r p t  9 and 1 0 w i t h amounts d e c r e a s i n g f r o m  upper B of S i t e in Site ing  8 was  decrease  6 at the p l a c i c h o r i z o n .  M o d e r a t e amounts o f o r g a n i c C w e r e m a i n t a i n e d Sites  Gleysolic  1 . 6 6 p e r c e n t on t h e u p p e r B and d e c r e a s i n g  0.54 i n t h e BC w i t h a f u r t h e r d e c r e a s e  t h e Cg.  2.24  9 t o I . 6 9 i n t h e l o w e r B.  1 0 w e r e l o w e r w i t h 1.52 p e r c e n t  throughout  5 . 0 0 percent i n the The amounts  i n t h e u p p e r B,  present decreas-  t o 0 . 6 6 and i n c r e a s i n g t o 1 . 8 0 p e r c e n t a b o v e t h e l i t h i c  contact.  83  Nitrogen N i t r o g e n f o l l o w e d t h e same d i s t r i b u t i o n , i n t h e p e d o n s as o r g a n i c C.  The amounts p r e s e n t  i n the upper m i n e r a l  horizon  were l o w t o v e r y l o w and r a n g e d f r o m a h i g h o f 0 . 2 5 p e r c e n t i n Site  4 t o a low of 0 . 0 5 i n S i t e  present  i n the lower  Available  10.  Very  solum o f a l l s o i l s  above t h e B h o r i z o n s i n S i t e v a l u e s o f 7 t o 9 ppm  amounts  1 , 2 and 3 w i t h t h e l o w e s t  to approximately  1 and 2 and a s h i g h a s 7 0 ppm 4 had v e r y  i n moderate t o h i g h  o c c u r r i n g i n the upper B . h o r i z o n .  i n c r e a s e w i t h depth  Site  studied.  Phosphorus  A v a i l a b l e phosphorus i s present  values  l o w amounts were  3 0 ppm  The  i n Sites  i n S i t e -.3• .  l o w amounts o f a v a i l a b l e P r a n g i n g  from  3 t o 9 ppm w i t h t h e e x c e p t i o n o f one h o r i z o n deep i n t h e . pedon w h i c h c o n t a i n e d 2 8 ppm. h o r i z o n and d e c r e a s e d  Site  5 had 2 5 ppm i n t h e H  i n t h e s o l u m t o 9 ppm.  A v a i l a b l e P was h i g h l y v a r i a b l e a t S i t e  6 and r a n g e d  from  1 5 t o 4 0 ppm w i t h t h e e x c e p t i o n o f t h e Ae w h i c h c o n t a i n e d 3 ppm and  a . h o r i z o n deep i n t h e p e d o n w h i c h c o n t a i n e d  amounts.  Site  7 exhibited a'different  a v a l u e o f 3 . 4 ppm  and  3 2 . 0 ppm  distribution pattern with  i n t h e H h o r i z o n and i n c r e a s i n g t o 5 3 ppm  i n t h e B f g and d e c r e a s i n g t o 1 0 . 9 ppm contained  similar-  i n t h e Cg.  a v a i l a b l e P i n the organic  dropped r a p i d l y t o 2 . 7 i n the B f 2 .  i n c r e a s e d t o 1 7 . 8 ppm a t 1 6 0 cm.  Site 8  surface horizon  Amounts t h e n g r a d u a l l y  84 Sites P of;-any  9 and 1 0 c o n t a i n e d t h e l o w e s t  of the soils.studied,  amounts.of  The h i g h e s t y a l u e  available  obtained  i n any h o r i z o n was 3 . 5 ppm. Total  sulphur T o t a l s u l p h u r had a d i s t r i b u t i o n i n a l l t h e pedons  t o t h a t o f t o t a l C.  The amounts p r e s e n t 0 . 1 7 percent  low w i t h t h e h i g h e s t b e i n g Site  1.  similar  were g e n e r a l l y v e r y i n t h e LH h o r i z o n o f  g e n e r a l l y ranged from 1 . 1 0 t o 0 . 0 1 percent  Values  i n the mineral horizons. Exchange p r o p e r t i e s The  results  given i n Table  f o r t h e exchange p r o p e r t i e s o f t h e s o i l s a r e  II-3.  generally present  E x c h a n g e a b l e c a t i o n s ( I N , NH^OAc) were  i n very  low.amounts i n a l l s i t e s w i t h t h e  e x c e p t i o n o f t h e o r g a n i c s u r f a c e h o r i z o n s and t h e lower and  C horizons of Site  Calcium  solum  4 and 5 where Mg a n d Ca i n c r e a s e d .  was h i g h e s t i n t h e o r g a n i c s u r f a c e h o r i z o n s a t s i x o f  t h e S i t e s , a n d Mg was d o m i n a n t i n four'. sistently  H o w e v e r , Mg was  con-  a s h i g h o r h i g h e r t h a n Ca i n t h e u p p e r m i n e r a l  horizons. T o t a l cation-exchange method d e c r e a s e d  w i t h depth  c a p a c i t y (CEC) by t h e I N NH^OAc i n a l l s i t e s except  an i n c r e a s e o c c u r r e d a b o v e t h e l i t h i c Values  Site  1 0 where  c o n t a c t a t 1 1 9 cm.  f o r t o t a l CEC o b t a i n e d by NaOAc were g e n e r a l l y s i m i l a r  Some s e l e c t e d exchange p r o p e r t i e s o f t h e s o i l s  Table I I - 3 -  Site and Sanole-  .. NHNOAC exchangeable c a t i o n s . (me/iCOg) Ca Mg Ha K~. t  1  18. • 33 0..02  2  ?  _*  4  . 0. .03 ' • 0.• 07 0..03  5  0  .33  ^ •  • 0. .19 0..06  • 57  Exchange Acidity  0..57  0.  29-30  96.1  0.• 09  0..13  • 0.43  33-3  .07  pH Dependent . T o t a l CEC (me/lOOg) . - • CEC NaOAc rre/lOOg -Sunrnation NH^OAc pH 8.2 ' Ca -Kg A l I  125.4  -  157-9  33-7  45.0  33-0  33.2  39-1  .  -  -  .04  -  3-53  5.7  28.7  0.16  0,.01  0.65  0.82  20.5  0.  0..07  0.23  0.,01,  0..03  0.  .07  0.18  27.2  27.4  17.3  16.3  0.15  0..01  0.08  0.24 •  64.4  0..01  0.  0.,08  0.15  13-8  13-9 •  14.2  12.5  0.12  0..01  0.04  0.18  76.0  0.• 05  .07  0.19  .03  0..03  0..01  0.  0.16  12.8  13-0  11.3  0.13  0.• 03  0.03  • u, .02  n .03  12.9  .07  0.,02  0.14  13-2  • 12.3 '  10.0  0.12  0..02  ND  0..03  0..01  0..03  0.,02  0.08  12.3 -  5.6  0.35  0.• 03  0,08  3-91.  6..08  0..32  0.37  10. ,68  114.8  ND  0..03  0.  .04  0.09  -  8.0  lite 2 9  .16 0.  '  0..01  0..02  0.03  0,.09  0..03  0.03  0..06  7.7  0.05  0..01  0.,02  0.03 '  0.,11  3.1  13  0.03  0..01  0..03  0.03  0..10  3-4  57  ND  0..01  0.,03  0.02  0..06  68  0.15  0.  .03  0.03  . o. .25 17-58  ND '  12  Site 3 14  .04  0.  125-5  26.7  0..01.  0.03  ii  •  26.9  3-6  3-7 '  •  —  3.5  -  '  71.8  -  33-7  8.• 9  9.4  3-7  0.25  0.09  4..0  3-1  0.87  0.12  89.4  131.9.  -  51.1.  120.7  —  -'  34.8  50.3.  -  19.6. -  19.7'  21.3  0.  11.3-  16.  •• 0..05  0..09  0.04  0.03  0.21  34.6  0..02 .  0.C4  0.01  0.07  19-5  0.,10-  0..01  0.05  0.01  ]_,  0.• 51'  0.13  0.04  1-91 '  17.4  19-3  0.  .03  0.03  0.02  0.55  11.8  12.3  8.8  5-6  0..23  0.09  0.03  1.20  3-6  '4.8  8.0  8.1  19  '  ,23  20  0..37  21  0.  • 35.  ND - Not d e t e c t a b l e by method' used.  .  '  9-8 •  69.0  3.• 3  47.0  9-3  7.2  10.1  0.12  4.03  • • 17-8  •  16.  •  '<  -  -  34.9  1.43  0.14  .  59-0  ND ND •  82.6  .0.89  0.05  Q.50  •  0.8 0.05  0.25  9-6  1.33  0.02  0.03  0.83  0.17  0.01  0.02  0.75  '  0.09 0.07  84.0 >99  -' 0.49  0.07  8.• 50  •  0.32  0.04  .1. .58  •D  -  0.01  3.7  8.,00'  17 . • 18.  -  0.16  0.14 ' 0.46  4.• 7  1..25  •.  -  '  14.,4 8.1 4..1 . •5.6-  7.8 3-2  -  157. .7  • 32.• 5  15  :  • . -  3-33-  0.  10  -  ;  0.  6  a  i n n  M  0.16  7 66  Ease S a t u r a t i o n • *, Ca+Mg . y Ca+Mg+Ai  >99 >99  -  64.,4  •9. .86  0..19  5-55  0..06  0..02  7-97  ,07  0;.01  1.C8  . 1.16  0.,06 <0..01  0.37  0.43  14.,6  0.,54  0.• 09  2.03  2.66  23. .8.  0.,18  0..03  0.35  0.54  37.  0.-45  0.• 05  0.33  0.38  60. • 5  15'-60  ' •  8.05 :  1.,01 6.• 5  .1  CO  U1  Table I I - 3 , continued  Site and •  site  NKhOAc exchangeable c a t i o n s (me/100g) K Ca r-ig  22 23 2k 25  9-33  0.83  0.25  42.07  47.0  2.50  3-33  0.42  0.29  6.54  39.5  0.35.  0.25  3.18  73.4  0.17  1.11  45-3 •  0.31  6.33  35.2 •  2.92  39-8  •0.80  ^6.2  ' 0.55.' 2.03  I© ••'  26  27 23 30  0.70  0.24  2.75  2.90  0,37  0.65  1.73  0.27  .  ND'  0.47  0.20  . 0.13  9.00  8.00  0.41  13.00  10.75  0.47  0.41 0.40  Site 5  0.27  31  2.S3  4.50 .  C.98  32 33 34 35 36  0.33  1.30  0.22  0.83 0.11  0.25.  0.39  0.14  0.06  1.37  0.26  38-  '  39 • 40 . 41 42 43 44 45 •• 46 ' ;  '  5.03  0.43  5-00  5-30  0.37  0.25  20.00  8.58  0..75 0..09 n .04 0..02 0..03 0..06 0..030..03 0..03 0..04  5-50  11  17-82  0.03. 0.15  2.00  Site 6  Exchange Acidity  31.66  0.30  0.27'  0.07 • 0.08 0.01 ND 0.03 0.01 0.03 0.09 0.02 0.03. 0.01 KD ND ' 0.01 0.05 0.01  .  19'.3  •  1  89. . J-  .  .1 . 17..8 26..7 10..3 10..3 19.• 5 • 11..3. 7..7 7..7 . • 1. .0  -  '  9-2 2-3  61.3  0..09  ND  20.33  20.^2  0.1  65.8  .'43.1  0.• 97  1.72  15-92  18.61  14.5  53-7  50.6  0..21  0.22  21.42  21.85  '1.9  55.0  58.7  .07  0.11  17.69  17.87  1.0  .1 37.  57.0  30.0  0. r .87  0.  6.11  0.81  13.79  94.1  42.7  33-1  8..50  8.26  0.47  17-23  .97.3  .3-36  0.04  2.17  3-36  0.29  0.24  0.05  76..8 33..0 33..1 O'.7 . 16. .2 ' . 21. .5  95.  19-55  63-9  30.6  29-41 .08. • 0. 0..03 0.69 0.20 •0..01 0.04 0..01 0.10 0..03 0,.05 0.23 0..02 . 0.10 0..03 0.07 0.06 0..02 0.12 0..02  17.75  - .  23.45  67.7  5.1 10.6  1.16  22.89  2.43 0.84 11.11  -  .64  -  0,  0.38  9-09  10.92  C a + :  0..18  35. .1  22.0  * x 100) Ca+Mg+Al  46.3  10.5  32.3  -  -  56.0  Base S a t u r a t i o n  64.8  24.62  3-71  117.5  46..0 46..6 .4 ' ' '46. 41.• 5 42.• 7 37..0 .  pK Dependent CEC me/lOOg Al Ca  Potal CEC (me/lOOg) ivaOAc Summation NH^CAc pH 8.2  •  .  78.2 34.7 37.0 26.0  20.5 18.8  124..5 18. •5 26.•9 10..4 10..4 . 10 .7 11..4 7..8- 7..8 .1 :  140.,0 13..4 ' .25. 9 8.,0' 9.,0 24.,0 7..1 r .1 • 0. •' 5-• 3 4..1 -  .2 27..5 26. .9 24..7  .  32.  —  30.0 11.6 15.9  21.9 6.9 .7.8  5-6 •6.9'  •  1.25  O.58  4.19  0.42  12.12  8.34  '  5.• 57 7-03 10..68 ; 2.85 3..14 2.50 4..33 4..69 0.08 0.05 20.• 51  0.11 23-00 ND • 5.81 7.64 1.06 0.04 • 4.47 5-57 0.08 0.24 • 0.16 ND 0.01 0.56 0.50 0.05 0.22 1.34 1.06' 0.06 0.05 0.39 0.33 0.01 0.01 ND 0.25 ND 0.01 0.56 0.06 0.01 ND 19.33 I.83  3-56  . .61.3  34.1 9.2 42.2 98.3  67.2  95-1 23.3 19-7  66.6 91.0  83.4 87.1 >99 >99 >99  co  Table I I - 3 , continued  NKuOAc exchangeable c a t i o n s • (ne/lOOg) Na Ca l-Lg  Site  (me/lOOg) NaOAc DH 8.2 Tir^tion- NK^OAc "orai  k  Site 7  _ 6.42 • Q.57 0.• 75 1.22 0..40 0..07 0.13 0.• 09 0.• 05 0..05 0.03. 0..10 0.04 0..05 0..11 0..03 0.08 0..11 0.• 75 0.38  "47  16. .92  43  .n  9  50 51 52-  16.42  54  11.25  0.03  55  57'  ND 0.07  58  0.05  59  0.05  60  0.07 0.10  56  61 62  •.0.13  o9 ' 70  0-3  ND ND  0.06  0.03 0.01 0.C1 0.01 0.01 0.01 0.01  0.,64 . 24.,55 102.5 • 2.• 59 75', 9 0.,22 0.• 33 37.6 0.,04 12.2 0..14 0..01 13.00.,01 . 0..20 8.6 0..240..02 3.6 1..27 0..03  127.0 '• . 78.5 37.9 . 21.3 13.2 8.8 . 4.9  155..1 119'.,2 33-.7 25.,4 10..7 6.• 7 2,.9  29.24  146.4 20.4 15.6 10.5 5-6 3-5 ' 1.1 0.1 0.2"  157-5 20.2 14..8 10.6 6 4  0.82  0.75 0.06  .0.03  0.04  0.01  0:08  0.03  0.01  0.12  0.02  0.01  0.09  5-5  0.02  0.01  0.C9  2.6  0.03  0.01  0.12  1.0  0.03  0.01  0.15  0.03  0.01  O.I8  ND ND  1.08  1.  0.05  0. ,11  1.67  ,15  •0.14  0.09  72  0.07  0.03  0. ,06  0.14 0.03  73  0.35  0.05  0. .06  0.03  r 0.  ;  10. 74 75 76 77 78.  ,66  •  ,66  108.2  96.0  144.,2  3-50  8.23  O.56  0.03  0.50  0.25 0.31  0.03 0.01 0.01 0.02 0.01 0.01  0.69.  0.03  .2 .1 20..6: 10,.3  .0.50  50. .1  31. 23.  0.19  36.0  36.2  ' 24..6  0.49  37.5  38.0  22. .7  0.  0. .05  0.46  0.13  0. .23  0.08  0. ,10  0.54  21.28  72. .0 '  32.• 5 25. .0  93-3 '  33-0  1^4.  • 3  • 24.,1  25.5  19. • 9  0. .06-  0.07  0. .15  0.31'  25. • 5  25-3  21. .1  0.  0.07  0. .07  0.13  28. .5  23.7  32. ,1  7.,48 • 1.36 18.50 1.,06 14.33 18.02 . 0..06 .12.50 13.12 0.56 0..01 2.36 2.93 0.56 0..01 0.44 0.95 0.50 1.18 0..01. 0.92 0.25 1.70 0.19 1.38 .0..13  21. 6 20..6 12..2 10..0 8. i 5.,6 7.,2 4.,1  37. • 9  0.09  .04  21..9 13. .4 14..4 4..4  33.9  .  « c i i n *  2.63  33-5  0.38  • 5  Ease S a t u r a t i o n  9.66  53-8  53  0.63  ND  15-5  0.30  0. .17  0.03  20.2  10.4  12.23  0.15  13.33  117.2  0.18  0. .15  71  Acidity  pH Dependent CEC m.e/lOQg • Al Ca  15,.6 21,.3 29. .4 •30. • 3  1.06 0.31 0.25  0.57 0.57 0.70  0.03 0.03 0.03 0.04  0.74  0.05  0.60  0.06  0.72 0.94  0.06 0.05  0.69 12.42 3.64 4.23 1.72 1.19 0.22 1.29 ND .0.32 id 0.27 0.26 ND 0.32. • ND 0.72 ND  2.30 0.70 ND ND  2.83  1.30 0.60  0.74  • 0.14 O.92 0.76 0.10 ND 0.78 ND • 0.99 .  1 0 0 )  92.7  20.7 4.7 1.9 53-8  22.3 88.5 93-7 13-8 30.8  83-0 >99 >99 >99 >99 • >99  18.7  46.1 >99 : >99  84.9  86 .'8 >99 >99 CO  -J  t o NH^OAc v a l u e s , h o w e v e r , some v a r i a b i l i t y e x a m p l e , some h o r i z o n s Site  by t h e NaOAc m e t h o d  T o t a l CEC by t h e s u m m a t i o n m e t h o d  c a t i o n s p l u s t i t r a t a b l e H) was l o w e r u p p e r Bi.,of S i t e Site  1 0 than Values  3 and h i g h e r  i n Site  by t h e p r e v i o u s - t w o  w i t h depth.  (exchangeable  i n S i t e s 2 , 4 and t h e 9 a n d the' u p p e r B o f  methods.  found i n t h e upper B h o r i z o n s  T h i s c a n be e x p e c t e d  i s made up o f two c o m p o n e n t s .  on c l a y m i n e r a l  a s t h e pH d e p e n d e n t  These a r e t h e weakly  surfaces or p a r t i a l l y  Site  A l v a l u e s were m a i n t a i n e d  4  soils  silicates high  from t h e s u r f a c e i n t o t h e lower  B  The p o o r l y  t h a n t h e s o i l s w h i c h were . b e t t e r "  :  d r a i n e d on s i m i l a r m a t e r i a l s .  T h i s was t h e r e s u l t  h i g h e r amounts o f A l e x t r a c t e d by t h i s m e t h o d . a pH d e p e n d e n t CEC o f the b e t t e r d r a i n e d  soils.  of B r u n i s o l i c criteria  A high percent  of the  Only S i t e  4 had  > 8 me/lOOg i n t h e B h o r i z o n o f any o f T h i s v a l u e f o r pH d e p e n d e n t CEC was  p r o p o s e d by C l a r k et_ a l ( 1 9 6 6 )  a suitable  coatings  ( S i t e s 3 , 5 and 7 ) h a d c o n s i s t e n t l y h i g h e r  pH d e p e n d e n t CEC v a l u e s  horizons  dis-  was t h e e x c e p t i o n where  a n i n c r e a s e i n Ca and Mg o c c u r r e d - i n t h e C.  drained  charge  n e u t r a l i z e d complexes  o f A l and F e i o n s i n t h e i n t e r l a y e r s o f 2 : 1 l a y e r (Sawhney e_fc a l _ , 1 9 7 0 ) .  low w i t h  and d e c r e a s i n g  s o c i a t e d a c i d g r o u p s o f s o i l OM a n d t h e s e s q u i o x i d e  and  than  f o r pH d e p e n d e n t CEC w e r e g e n e r a l l y v e r y  the h i g h e s t being  For  4 and 9 and t h e u p p e r B o f  i n Site  1 0 were c o n s i d e r a b l y l o w e r  NH^OAc.  d i d occur.  t o d i f f e r e n t i a t e between t h e B  and P o d z o l i c s o i l s .  f o r the s o i l s  However, i t i s n o t  studied.  base s a t u r a t i o n (BS) g e n e r a l l y  corresponded  t o a l o w pH d e p e n d e n t CEC a s t h e b a s e s a t u r a t i o n was c a l c u l a t e d  89  as Ca+Mg/Ca+Mg+AlxlOO... c a l c u l a t i n g BS i n a c i d occurred  T h i s method i s c o n s i d e r e d b e s t (Clark, 1965).  soils  The l o w e s t  i n t h e u p p e r s o l u m and i n c r e a s e d : w i t h  At S i t e  values  depth.  1 t h e amounts o f a l l c a t i o n s d e c r e a s e d  b e l o w t h e LH h o r i z o n s . •  for •  abruptly  M a g n e s i u m was h i g h e s t i n t h e Ahe h o r i z o n  w i t h 0 . 1 9 me/lOOg f o l l o w e d by K, Na and Ca w i t h 0 . 1 3 , 0 . 0 9 , and  0 . 0 2 me/lOOg r e s p e c t i v e l y .  present  R a t i o s and amounts o f e a c h c a t i o n  deeper i n t h e pedon v a r i e d b u t a l l h o r i z o n s  < 0 . 1 0 me/lOOg f o r any o f t h e c a t i o n s m e a s u r e d .  contained T o t a l CEC  r a n g e d f r o m 1 5 7 . 9 me/lOOg i n t h e LH t o 3 9 . 1 me/lOOg i n t h e B f t o 8 . 0 i n t h e C.  Slightly  l o w e r v a l u e s were o b t a i n e d by  NaOAc d e t e r m i n a t i o n w i t h l o w e r v a l u e s B by s u m m a t i o n and s i m i l a r i l y dependent. CEC d e c r e a s e d • f r o m of S i t e  lower  i n t h e o r g a n i c and u p p e r  I n t h e pedon.  The pH  3 - 5 3 me/lOOg i n t h e A h o r i z o n  1 t o 0 . 1 4 i n t h e l o w e r B h o r i z o n and i n c r e a s e d t o 0 . 4 6  i n the C.  The p e r c e n t  base s a t u r a t i o n e x h i b i t e d an . i n c r e a s e  from 5 . 7 i n t h e A h o r i z o n t o  > 99 percent  the exchange a c i d i t y  from 9 6 . 1 t o 1 2 . 8 . m e / 1 0 0 g .  decreased  The v a l u e s f o r • e x c h a n g e a b l e to those  i n the lower B w h i l e  Mg a n d Na a t S i t e  2 were  a t S i t e 1 , h o w e v e r b o t h Ca and K were l o w e r  similar  a s was t h e  t o t a l CEC by t h e NH^OAc m e t h o d i n the m i n e r a l h o r i z o n s . '  This  was a l s o t r u e o f t h e v a l u e s o b t a i n e d by t h e o t h e r m e t h o d s u s e d . The pH d e p e n d e n t CEC i n c r e a s e d f r o m 0 . 4 9 i n t h e B f t o 1 . 4 3 me/lOOg i n . t h e I I BC, and d e c r e a s e d The BS d e c r e a s e d  rapidly  i n t o the C h o r i z o n .  from 3 4 . 9 i n the Bf t o 7 - 2 percent  i n the  90  I I BC.and i n c r e a s e d t o  >  9 9 p e r c e n t deep i n t h e C.  The e x c h a n g e  a c i d i t y was h i g h e r t h a n . S i t e 1 i n t h e o r g a n i c h o r i z o n s b u t d e c r e a s e d t o l e s s t h a n 4 me/lOOg i n t h e l o w e r B and C h o r i z o n s . The the  soil  at S i t e 3 generally  exhibited higher values i n  m i n e r a l h o r i z o n s f o r exchangeable  values f o r K than S i t e s  1 and.2.  C a , Mg and Na a n d l o w e r  M a g n e s i u m was p r e s e n t i n  h i g h e s t amounts o f any o f t h e c a t i o n s m e a s u r e d i n t h e o r g a n i c h o r i z o n s w i t h 8 . - 5 0 me/lOOg i n t h e L P , d e c r e a s i n g , t o 0 . 0 9 me/lOOg i n t h e Ah. for  t o 8 . 0 0 and 0 . 0 5 me/lOOg  This corresponded  Ca i n t h e r e s p e c t i v e h o r i z o n s .  C a l c i u m was  h i g h e r t h a n Mg i n t h e m i n e r a l h o r i z o n s . 0.83  the s o i l  0.25 to 0 . 0 1  at Site  l e s s than S i t e 2.  1 b u t h i g h e r t h a n t h e CEC  The pH d e p e n d e n t CEC d e c r e a s e d f r o m 1 5 . 6 0  me/lOOg i n t h e H h o r i z o n t o O . 3 8 i n t h e C h o r i z o n . higher than that found i n the other s o i l s materials.  from  As was e x p e c t e d , t h e CEC was l o w i n t h e m i n e r a l h o r i z o n s  w h i c h were g e n e r a l l y of  Sodium ranged  t o 0.04 me/lOOg i n t h e p e d o n , a n d K f r o m  me/lOOg.  generally  This corresponded  formed  T h i s was  on. o u t w a s h  t o l o w e r v a l u e s f o r p e r c e n t BS  w h i c h d e c r e a s e d f r o m 64.4 p e r c e n t i n t h e H h o r i z o n t o 1 . 0 i n the  Ah and t h e n i n c r e a s e d t o 6 - 0 . 5 p e r c e n t i n t h e Cg.  e x c h a n g e a c i d i t y was v a r i a b l e t h r o u g h o u t to  d e c r e a s e w i t h d e p t h and r a n g e d Both of the s o i l s  developed  an. i n c r e a s e i n e x c h a n g e a b l e horizons.  from  t h e pedon b u t tended  7 1 . 8 t o 3 . 6 me/lOOg.  on m a r i n e  deposits exhibited  c a t i o n s i n t h e lower solum  T h e s e were t h e o n l y s o i l s  The  and C  where an i n c r e a s e was  91  obs.erveu.  o f S i t e . 4 was e r r a t i c  The Ca c o n t e n t  throughout  t h e p e d o n w i t h amounts, r a n g i n g f r o m 3 . 1 . ' 6 6 me/l.OOg i n . t h e LH t o 2.50 i n the. Bhg t o <  0,01 me/lOOg i n t h e B f .  The r e m a i n d e r  o f t h e p e d o n c o n t a i n e d v a r i a b l e amounts w i t h a n a b r u p t to  Increase  9 - 0 0 me/lOOg i n t h e ECg h o r i z o n a n d 13.00 I n t h e C.  e x h i b i t e d a>similar d i s t r i b u t i o n  a s Ca w i t h v a l u e s  f r o m 9 - 3 3 me/lOOg i n t h e LH i n 0.70 i n t h e B f .  Magnesium  decreasing Values  ranged  f r o m 2.90 t o 0.47 me/lOOg i n t h e r e m a i n d e r o f t h e s o l u m i n c r e a s ing  t o 8 . 0 0 i n t h e BCg and t o 1 0 . 7 5 me/lOOg i n t h e C h o r i z o n .  The  r a n g e o f v a l u e s were m u c h l e s s f o r - N a  the t r e n d s were s i m i l a r  f o r Na.  a n d K, h o w e v e r ,  Sodium d e c r e a s e d  from O.83  me/lOOg i n t h e LH t o 0.20 i n t h e B f g 2 and i n c r e a s e d t o 0.47 i n the C horizon. t w e e n 0.20 and  then  Potassium  r e m a i n e d r e l a t i v e l y c o n s t a n t be-^  t o . 0 . 3 0 me/lOOg a n d d e c r e a s e d  t o 0.13 i n t h e B f g 2  i n c r e a s e d t o 0 . 4 l me/lOOg i n t h e BC h o r i z o n .  s o i l h a d a h i g h CEC r e l a t i v e  to the other  This  soils studied with a  v a l u e o f 1 1 7 . 5 me/lOOg i n t h e LH and a r a n g e o f v a l u e s 65.8  t o 4 2 . 7 me/lOOg i n t h e m i n e r a l h o r i z o n s by t h e NH^OAc  method.  Slightly  summation methods. the  from  l o w e r v a l u e s w e r e o b t a i n e d by t h e NaOAc and The pH d e p e n d e n t CEC was h i g h e s t  o f any o f  s o i l s s t u d i e d a n d r a n g e d f r o m a h i g h o f 2 3 . 4 5 me/lOOg i n  t h e B h g j t o a l o w o f 1 3 - 7 9 i n t h e BCg.  The BS was g e n e r a l l y "  very  l o w i n t h e p e d o n down t o t h e B C g , r a n g i n g f r o m 0.1 t o  14.5  percent.  97-3  percent  percent  H o w e v e r , t h e BC and C h a d v a l u e s respectively.  o f 9 4 . 1 and  Since the~method used t o c a l c u l a t e  BS i s c o n s i d e r e d b e s t ' j f o r a c i d  soils,  the values  obtained  may n o t be r e p r e s e n t a t i v e o f t h e t r u e b a s e . s t a t u s o f t h e BC and  C h o r i z o n s a s t h e pH was h i g h e r t h a n i n t h e o t h e r h o r i z o n s .  C a l c u l a t i n g t h e BS as t h e sum- o f t h e e x c h a n g e a b l e  c a t i o n s as  CEC (NH^OAc) g i v e s v a l u e s o f 3 1 - 3 a n d  a p e r c e n t o f the. t o t a l  57-7 p e r c e n t f o r t h e BC and C r e s p e c t i v e l y . The  exchange a c i d i t y ranged  from••47.0 me/lOOg i n t h e LH  to 35.1 i n the C h o r i z o n . Site 4.  5 exhibited  similar  exchange c h a r a c t e r i s t i c s  However, t h e h i g h r e g i o n a l ground  water  table  c o m p r e s s e d t h e e f f e c t s o v e r much l e s s d e p t h . decreased Bfg.and  as S i t e  effectively  The Ca v a l u e s  f r o m 2.83 me/lOOg i n the,. H h o r i z o n t o 0 . 2 5 i n t h e  t h e n i n c r e a s e d t o 5-50 i n t h e BCg.  M a g n e s i u m was  h i g h e r t h a n Ca i n t h e o r g a n i c a n d u p p e r m i n e r a l h o r i z o n s , and slightly  lower i n t h e lower solum,  me/lOOg i n t h e Cg.  and t h e n i n c r e a s e d t o 5-30  S o d i u m and K e x h i b i t e d a s i m i l a r  distribution  p a t t e r n as t h e p r e v i o u s c a t i o n s w i t h v a l u e s r a n g i n g from t o 0.14 and 0.83 t o 0 . 0 6 me/lOOg r e s p e c t i v e l y . CEC g e n e r a l l y d e c r e a s e d  The  0.93  total  s t e a d i l y w i t h d e p t h by a l l m e t h o d s  used  e x c e p t by s u m m a t i o n where a n i n c r e a s e i n t h e Cg o v e r t h e BCg r e f l e c t e d an i n c r e a s e i n exchange a c i d i t y . had  a slightly  A l s o , t h e Ahe  l o w e r v a l u e t h a n t h e B f g by t h e NH^.OAc m e t h o d .  V a l u e s u s i n g t h i s method r a n g e d  f r o m 7 8 . 2 me/lOOg i n t h e H  h o r i z o n t o 34.7 i n t h e Ahe t o 1 8 . 8 me/lOOg i n t h e C.  Values  o b t a i n e d by t h e NaOAc method were s i m i l a r b u t d i d n o t d e c r e a s e as r a p i d l y w i t h d e p t h .  pH d e p e n d e n t CEC e x h i b i t e d a d e c r e a s e  93  f r o m 10..68 me/l.OOg i n . t h e Ahe t o .3.14 i n c r e a s e was p r e s e n t  i n the Bfg.  A  sharp  i n t h e C h o r i z o n t o 2.0,51 me/l.OOg w h i c h  r e f l e c t e d h i g h amounts o f Ca and Mg o b t a i n e d u s i n g t h i s The  percent  BS c a l c u l a t e d  exchangeable  f r o m 6 1 . 3 me/lOOg i n t h e H h o r i z o n t o 9 . 2 i n  c a t i o n s decreased t h e B f g and t h e n  f r o m t h e pH d e p e n d e n t  i n c r e a s e d t o 9 8 . 3 i n t h e BCg.  Using the values  o b t a i n e d by t h e NH^OAc m e t h o d , t h e c a l c u l a t e d BS v a l u e s 54.2  and 5 8 . 1 p e r c e n t  Exchange a c i d i t y  method.  respectively  decreased  were  f o r t h e BC a n d C h o r i z o n s .  f r o m 6 7 - 7 me/lOOg i n t h e H h o r i z o n  t o 5.1 i n t h e BCg. As  c o u l d be e x p e c t e d ,  materials exhibited measured.  the s o i l s developed  E x c h a n g e a b l e c a t i o n s were p r e s e n t  horizon.  A sharp  decrease  i n very low  6 e s p e c i a l l y below the  o c c u r r e d from t h e o r g a n i c  h o r i z o n s t o t h e Ae h o r i z o n s where v a l u e s d e c r e a s e d 8 , y 8 , , 0.75  f o r C a , Mg, Na a n d K.  a l s o low w i t h the lowest  method d e c r e a s e d and t h e n  The t o t a l CEC  Amounts o b t a i n e d by t h i s  f r o m 140.00 me/lOOg i n t h e LH t o 13.4 i n t h e  i n c r e a s e d t o 2 5 - 9 i n t h e Bh w h i c h r e f l e c t e d a n  i n c r e a s e d OM c o n t e n t . l e s s than  20.00,  r e s u l t s o b t a i n e d by t h e NH^OAc  method i n . . t h e . - m i n e r a l h o r i z o n s .  Ae  from  and 0 . 0 8 me/100g t o 0.30,- 0 . 2 7 , 0.0.9 a n d 0.03  me/lOOg r e s p e c t i v e l y was  parent  low v a l u e s f o r a l l exchange p r o p e r t i e s  amounts i n t h e m i n e r a l h o r i z o n s o f S i t e placic  on s a n d y  Below.,the p l a c i c  10 me/lOOg e x c e p t  t h e amount o f f i n e s  horizons, values  were  i n one h o r i z o n where a n i n c r e a s e i n  occurred.  The v a l u e s f o r pH d e p e n d e n t CEC  94  f r o m 2 3 . 0 0 me/lOOg i n t h e LH t o 5 - 5 7 i n t h e Bh and t o  decreased  < 2 . 0 0 me/l.OO.g i n a l l h o r i z o n s be:low t h e p l a c i c The in  from 9 5 . 1 percent  BS d e c r e a s e d  t h e Bh w h i c h r e f l e c t e d  horizon.  i n t h e LH t o 1 9 - 7 p e r c e n t  h i g h amounts o f e x t r a c t a b l e A l .  Below t h e p l a c i c h o r i z o n v a l u e s ranged from 6 6 . 6 p e r c e n t t o > 99 percent  deep i n t h e C h o r i z o n .  Exchange a c i d i t y  decreased  f r o m 9 5 . 1 me/lOOg i n t h e LH h o r i z o n t o 1 7 . 8 i n t h e Ae and t h e n i n c r e a s e d t o 2 6 . 7 me/lOOg i n t h e Bh. v a l u e s were v a r i a b l e  Below t h e p l a c i c  horizon  a n d were g e n e r a l l y l o w e r .  v a l u e s o b t a i n e d f o r t h e exchange p r o p e r t i e s i n S i t e 7  The  were g e n e r a l l y s i m i l a r i n amounts and d i s t r i b u t i o n i n t h e p e d o n as S i t e  6.  H o w e v e r , t h e r e Was an i n c r e a s e n o t e d  e x c h a n g e a b l e c a t i o n s (NH^OAc) i n t h e C h o r i z o n .  A l s o , t h e pH  d e p e n d e n t CEC and t h e e x c h a n g e a c i d i t y v a l u e s r e m a i n e d w i t h depth  i n t h e solum.  This r e f l e c t e d  the p l a c i c ' h o r i z o n .in t h e s o i l . cent  from 9 2 . 7 per-  increased to 8 8 . 5  i n t h e Cg..  The istics  higher  t h e absence of  The BS d e c r e a s e d  i n t h e LF t o 1 . 9 i n t h e B f and t h e n  percent  partly  in a l l  soil  as S i t e  at Site 6.  change i n v a l u e s  8 a l s o e x h i b i t e d s i m i l a r exchange c h a r a c t e r -  However, as i n S i t e i n r e l a t i o n t o depth  the absense o f r e s t r i c t i n g The  s o i l s developed  generally Ca c o n t e n t  7 t h e r e was a g r a d u a l i n t h e pedon w h i c h r e f l e c t s  layers.  on g l a c i a l  till  d e p o s i t s were a l s o  l o w i n amounts o f e x c h a n g e a b l e c a t i o n s p r e s e n t . of Site  9 decreased  The  f r o m 8 . 3 3 ' m e / 1 0 0 g i n t h e LH t o  95  < to  0 . 0 1 me/lOOg i n t h e B f and t h e n a s l i g h t 0 . 3 5 above, t h e l i t h i c  contact,  increase  Magnesium v a l u e s  occurred  were 1 . 0 8  me/lOOg i n t h e LH and r a n g e d f r o m . 0 . 0 3 t o 0 . 0 9 . me/lOOg i n t h e mineral higher  horizons.  B o t h Na..and K were p r e s e n t  amounts t h a n Mg.  obtained  The h i g h e s t  values  by s u m m a t i o n i n most m i n e r a l  i n slightly  f o r CEC were  horizons  and r a n g e d  f r o m 5 3 . 8 'to 3 3 . 9 me/lOOg w i t h 1 0 8 . 2 me/lOOg f o r t h e o r g a n i c surface horizons.  Using  t h e NH^OAc m e t h o d t h e CEC d e c r e a s e d  f r o m 1 4 4 . 2 me/lOOg i n t h e LH h o r i z o n t o 5 0 . 1 i n t h e B f t o 22.7  above t h e l i t h i c  lowest  contact.  The NaOAc m e t h o d g a v e t h e  r e s u l t s which ranged from 3 1 . 2 5 t o 1 0 . 3 1 i n t h e m i n e r a l  horizons.  The pH d e p e n d e n t CEC t e n d e d t o d e c r e a s e w i t h  and r a n g e d f r o m 2 . 8 3 t o 0 . 6 0 me/lOOg. 18.7  to  > 99 percent  exchange a c i d i t y  The BS i n c r e a s e d  w i t h depth i n the m i n e r a l  was s i m i l a r t o t h a t a t S i t e  depth from  horizons.  The  4 and d e c r e a s e d  f r o m 9 6 . 0 me/lOOg i n t h e LH t o 3 3 . 5 i n t h e B f 2 w i t h an i n c r e a s e to  3 7 . 5 me/lOOg i n t h e I I B f 2 h o r i z o n . Site  Site  1 0 e x h i b i t e d s i m i l a r exchange c h a r a c t e r i s t i c s as  9 j h o w e v e r t h e r e w e r e some d i f f e r e n c e s .  Ca and Mg i n t h e LH h o r i z o n was much h i g h e r me/lOOg r e s p e c t i v e l y and t h e v a l u e s t e n d e d t o be h i g h e r .  Exchangeable  The  exchangeable  a t 1 3 - 3 3 and 6 . 6 6  i n the mineral  horizons  also  Na and K were l o w e r a s was  t h e CEC by a l l m e t h o d s u s e d , h o w e v e r t h e h i g h e s t  CEC was a l s o  obtained  The pH".  by s u m m a t i o n a n d t h e l o w e s t  by NH^OAc.  d e p e n d e n t CEC d e c r e a s e d f r o m 0 . 9 3 me/lOOg i n t h e B f t o 0 . 7 6  96  i n t h e Bf  a n d t h e n i n c r e a s e d t o . 0 . 9 9 me/lOOg i n t h e I . I B f .  2  2  The BS i n c r e a s e d . w i t h depth, f r o m 8 4 , 9 to.  > 9 9 percent  i n the  mineral horizons," E x t r a c t a b l e Fe a n d A l The r e s u l t s f o r e x t r a c t a b l e F e a n d A l a r e g i v e n i n T a b l e II-4.  In a l l of the s o i l s  s t u d i e d N a - p y r o p h o s p h a t e Fe a n d A l  v a l u e s were l o w e r t h a n t h o s e extraction. decreased  o b t a i n e d by o t h e r m e t h o d s o f  The v a l u e s were h i g h e s t i n t h e B h o r i z o n s a n d  w i t h depth  i n a l l sites  i n c r e a s e o c c u r r e d above t h e l i t h i c  S i t e 1 0 where a n  except  contact.  In the horizons of greatest accumulation, e x t r a c t a b l e F e was g e n e r a l l y l o w e r e x t r a c t a b l e F e i n most s i t e s .  than  acid  oxalate  citrate-dithionite  However, t h i s was n o t c o n s i s t e n t  f o r h o r i z o n s a b o v e a n d b e l o w t h e h o r i z o n o f maximum A c i d o x a l a t e A l was g e n e r a l l y h i g h e r t h a n  accumulation.  citrate-dithionite  Al.R e l a t i v e l y h i g h o x a l a t e F e v a l u e s ' were m a i n t a i n e d c o n s i d e r a b l e depth  i n Sites  o f maximum a c c u m u l a t i o n  to a  1 , 2 a n d 3 compared t o t h e h o r i z o n s  near t h e s u r f a c e .  Values.in Site 1  r a n g e d f r o m a maximum o f 1 . 7 8 t o - 0 . 5 7 p e r c e n t , a n d i n S i t e 2 from 1.64 t o 0 . 5 0 p e r c e n t .  O x a l a t e F e was much l o w e r  w i t h t h e h i g h e s t amount o f 1 , 0 6 p e r c e n t gravelly  loam h o r i z o n .  a t 3 5 cm d e p t h  i n Site 3 ina  Other values ranged from 0 . 3 0 percent  i n t h e o r g a n i c h o r i z o n s t o a l o w of- 0 . 1 6 p e r c e n t  with  depth.  Table I I - 4 .  • E x t r a c t a b l e Fe and A l present i r i the s o i l s  Sample  Pyrophosphate extractable' % • • Al Fe . Z Fe,Al  Site 1 1 2 3 4 5 6 7 66 Site 2 •8 9 10 11 12 13 •  .  £ 7  -  .  -  -  -  -  -  . 0.68. 2.00 ' .0.14 - 0.62 • 0.04 • 0.44 0.04 0.38 0.04 - 0.42 0.01 .0.20 -  -  i 68 . Site 3 14 • • 15 16 17 ' • 18 10 ' —J 20 21  0.42 0.03 0.03 0.02 0.02 0.01 0.01  -  -. -  0.06 0.04 0.21 0.03 0.05  -  -  -  -  -  0.60 0.39 0.36 0.35 0.17  •  -  -  -  ..  '  -  1.00 2.66 1.92 1.-60 1.50 2.18 1.91 -  3.44 1.64 1.09 0.59 0.51 0.75 0.50 0.65 0.51 -.0.67 0.74 . 0.57 0.81 : 0.79  1.67 4.4i 2.84 . 2.17 2.00 3-40 2.81  -  5.03 . 1.68 1.26 1.15 1.13 1.31 1.60  •  •  0:. 67 ' 1.78 0.92 0.57 0.30 1.22 0.90 -  -  1.66 0.59 0.31 0.18 0.20  •'  -  -  2.68 0.90 0.48 . 0.42 0.46  1.24 0.29 . • 0.28 0.16 0.18 0.06 0.06  Fe  Oxalate extractable '% Al • • Fe,Al  -  0.66 0.43 0-57 O.38 0.22  0.30 0.10 0.19 0.19 1.06 0'. 16 0,32  0.60 . 0.94 0.90 0.53 0.59 0.64 0.43 •  0.90 1.04 1.09 0.72 • 1.65 0.80 0.75  Pyrophosphate dithionite extractable DH 8.2 Fe' . A l C  Dithionite extractable Fe  . 0.14 0.16 2.10 0.97 0.67 0.18 1.15 1.15 1.25 2.13 0.48 0.55 0.40 0.550.60 0.67'.  Al  %•  Si0  2  .  £Fe,Al  0.33 0.93 2.22 0.74 0.61 0.48 0.49. 0.45  0.05 0.16 0.43 0.08 0.11 0.10 0.16 0.20  0.47 1.09 4.32 1.71 1.23 .0.66 1.64  1.21 1.54 0.41 0.29 0.16 0.21 . ••0.18 • 0.15.  0.17 0.16 0.10 0.09 0.06 0.14 0.11 0.09  2.46 3-67 0.39 0.84 O.56 0.67  0.11 0.07 0.13 0.20 0.09 0.15' 0.08 0.05  0.32 0.31 0.680.07 0.59 1.78. 0.30 0.36  0.15 0.17 0.11 0.20 0.10 0.53 0.25 0.63. 0.34 0.25 1.43 • 0.35 0.'21 0.09 .0.24 0.12 .  —  .  _  —  _  _  _  0.17 . 1.48 2.47 0.27 0.71 1.52 . 0.18. 0.58 0.19 _ . 0.12 0.47 _ 0.42 0.27  - —  0.24 0.10 0.10 0.15 0.15  _  —  -  -  -  . .  •  _ 0.93 0.43 0.42 0.33 0.21  •  _  1.33 0.19 — _  _  _  _  -  -  —  —  -  —  _  —  —  —  0.72 0.08 0.21 0.03 0.09  0.95 0.50 0.35 0.33 0.15  0.48 0.19 O.38 -  VO  Table 11-4,  continued  Pyrophosphate extractable /o AT lFe,Al  Sanple  22" 23 24" 25 •  27 28 29 30  Site 5 31 32 33 34 35-. .36 Site 6 57 33 39 39a 39b. 40 . 41 • 42 43 44 45 46  0.780.78 1.20 0.01 0.11 1.15 .0.09 0.05  0.36  0.40 0.10 0.13  0.90 1.58 1.62 0.46 0.48 1-52 0.18 0.23  O.98 0.38  0.14 0.10  -  • - '  0,.06 0.98 2.• 77 1.05 0,.40 • 0.64 0.• 03 O.3O . 0.•03 0.33 0..04 0.54' 0..03 0.26 0..04 0.22 0. 02 - 0.1-7' 0. 02 0.12  1.68 2.36. 2.82 0.47 0.59 2.67 0.27  Oxalate . extractable fe  Al  ;,A1  0.39 3-40  .0.28  0.46 0.74 1.28 0.67 Q--75 1.54 0.88 0.32  1.88 2.85 5-95 1.60 1.97 4.34 1.10 0.94  5-25 1.65 1.93 3.53 1.40 1.40  1.34 0.78 1.38 0.23  0.16 0.05 1.34 1.15 0.67 1.32  0.35 0.42 1.55 0.70 0.27 0.35  0.51 0.47 2.89 1.80 0.94 1.67  0.19 0.03 2.13 1.97 O.85 0.84  -  1..04 3,.82 1..04 0.• 33 0..36 0.• 53 0..29 0..26 0. 19 0. 14 •  0.120.14 6.16 2.40 0.37 0.41 0.77 0.35 0.74 0.26 0.21  _ 0.16 . 0.28 1.05 1.19 2.16 .-• ' 9-32 . 2.40 4.80 • 0.80. 1.17 ' 1.36' . 0.95 2.10 '2.87 • 0.68 1.03 0.68 1.42 0.56 0.82 0.47 0.68  sio  Al-  1.42 2.11 4.67 0.93 1.22 2.80. O.72 0.62  -  Pyrophosphate . dithionite extractable  Dithionite extractable  4.80  0.07 0.13 0.14 .7,25 3.25 0,28 0.26 0.77 0.30 0.37 0.16 0.15  0.20 0.38 0.65 1.12 0.37 0.53 1.20 0.17 0.13  - 0.13 ' 0.05 0.06 • 0.08 '•0.18 0.18 0.10 0.18 0.23  0.31 . 0.35 1.04 0.42 0.10 0.88 . 0.07 0.11 0.93 1.67 1.25 0.29 0.27 0.74 0.23 0.19 0.13 0.09'  2  0.13 0.07 0.27 0.09. 0.08 0.10 0.07 0.05 0.25 0.35 0.15 0.08 0.09 0.29 0.09 0.08 0.06 0.05  I Fe,Al  Fe  0.59 3.78 5.45 6.37 2.02 2.46 4.73 1.57 1.53  0.14 0.16 0.16 0.24 0.38 0.17 0.18  0.50 0.43 3-17 2.39 0.95 1.72  0.24 1.07 -  -  0..53 0.53 1.51 0.53 0.76 0.29 0.24  —  • 0.15 0.16 0.20 0.19 •  Al  _  0.27 0.25 0.34 0.42 0.41 0.18 0.16  C  _ 0.14 0.57 _ _  0.76 _  -  _  _  O.98 .0.44 0.10 0.09  1.71 0.95 1.90  _ — 0.04 . 0.87  -  _  _  0.09 0.09 • 0.18 0.09 0.20 O.5O • 0.50  _  — 0.37 0.40 — 0.64 0.28 0.22 •• _ — 0.20 0.19  -  \D CO  Table ±1-4,  continued  Pyrophosphate extractable r-'e  47 43 49 50 51 52 .53 Site 6 54 55 ..56 57 53 -.59 60 61 62 63 " 6^ ; 65  •~* y  Site'10 74 75 76 77 73  0.04 0.13 0.02 0.02  0.70 0.42 0.26 0.04  0.44 0.44 0.10. 0.04 0.03 0.03 0.04 '0.01. 0.02 0.02 0.03  0.62 0.74 0.50 0.34 0.22 0.13 0.24 0.10 0.10 0.02 0.02  I?e,Al  Al.  0.05 0.05 0.12 0.99 0.06 0.06  0.74 0-55 0.28 0.06  .  I.52 •0,34 0.14 0.14 '•  -  C-.17 0.07 0.02 0.12  1.70 '1.35 0.77 0.68  0.• 53 0,.24 0.• 34 0.• 70  1.06 1.18 0.70 0.38 0.25 0.21 0.28 0.11 0.12. 0.04 0.05  0.76 1.01 0.56 0.40 0.40 0.21 0.47 0.28 0.16 0.15 0.12  Fe,Al  0.40 ' •' 0.45 0.70 0.75 1.47 1-35 2.04 1.05 0-.45 ' 0.51 0.70 - 0.76  -  .22 j•  ' 2.• 19 0.• 91 ' 0.,82  -  O.Hl  0.36 ' 0.82  .  1.36 1.72 1.52 1.2s O.98 • 0.58 1.07 . 0.53 • 0.25 0.26 0.20  —  —  •~  2.25 1.87 1.35 1.27  2.73 2.75 2.95 3-13  5-03 4.62 • 4.30 4.40  -  .0.70  0.60 0.71 0.96 0.-83 0.58 0.37 0.50 0.25 0.09 0.11 0.08  2.02 2.12 1.93 2-15  -  2.20 1.28 2.94 4.71  Pyrophosphate dithionite extractable  Dithionite .extractable  _  Site 9 70 •71 72 73  H  Oxalate extractable  -  4.22 • • 4.40 4.92 ' "6.86  Fe  0.06 0.06 0.08 0.19 0.85 0.03 • 0.02 0.07 .1.05 0.97 0.32 0.21 0.16 0.15 0.25 0.11 0.17 0.04 0.07  Al'  Si0  0 .08 0 .41 0.-70 0.62 0 .40 0..14 • 0..01  0.22 0.06 0.16 0.10 0.10 • 0.05 0.02  0..07 0,.57 0..63 0..46 . 0..25 0.• 170.,11 0'. 19 ' 0. 07 '0. 01 0. 01 • 0. 02  0.10 0.12 0.15 0.10 0.06 0.07 0.05 0.06 0.05 0.05 0.05 0.07  2  IFe,Al •  0.14 0.47 0.73 0.81 1.25 0.17 0.03  ND . 2.12 • 1.94 1.43- ' 1.25'  0.40 0.31 0.23 0.16 0.16  0.07 5.62 4-77 3.08 2.52.  0.69 3-13 2.-75 2.23 2.35  0.19 1.37 0.35 0.93 1.42  0.33 0.21 0.16 0.13 0.18  0..88 11.• 50 3.;6o 3.,16 -3,77 i  • Al . C  _ _  0.64 0.23 0.01 0.02  0.14 ' 1.62 0.27 1.60 0.26 0.78 0.12 0.46 ' 0.07 . . 0.33 0.05 0.26 0.03 ' 0.44 '••0.09 0.18 0.09 0.18 0.03 . o.oi0.05 0.09 0.03  0.07 3-50 2.83 1.65 1.27'  -  re  .  _ _  0.88 0.61 0.30 0.02  0.50 0.64 0.75 0.47 0.320.23 0.32 0.330.01 0.01 0.02"  _ 0.57  1.52 1.44 0.66 0.10 _ 0.02 —  _  -  .  -  —  _ —  _  -  _ —  _ _  100 Both Fe and A l e x h i b i t e d f l u c t u a t i o n s w i t h d e p t h ,  however,  the d i s t r i b u t i o n of A l i n S i t e  i n the B u  h o r i z o n and d e c r e a s e d present  i n Sites  2 was 3-44 p e r c e n t  w i t h depth.  No c o n s i s t e n t t r e n d s w e r e  1 and 3.  D i t h i o n i t e F e h a d v a l u e s r a n g i n g f r o m 2.10 t o 0.1-8 p e r c e n t i n the mineral horizons of Site 0.48 p e r c e n t .  In Site  1 w i t h A l r a n g i n g f r o m 2.22 t o  2 t h e r a n g e was 2.13 t o 0.40 f o rA l .  percent  for  F e and 1.54 t o 0.15 p e r c e n t  Site 3 exhibited  the  same F e d i s t r i b u t i o n a s t h e o t h e r e x t r a c t i o n s w i t h a n  . i n c r e a s e a t 35 cm. w i t h a maximum o f 1.43 p e r c e n t . o f t h e p e d o n r a n g e d f r o m 0 . 2 5 t o 0.09 p e r c e n t . i n c r e a s e was p r e s e n t cent.  Dithionite  B of Site to  occurred  e x t r a c t a b l e SiG>  lower  i n Sites  corresponding  f o r ' A l w h i c h v a r i e d f r o m 0.63 t o 0.12 p e r -  1 w i t h 0.43 p e r c e n t  0 . 0 8 percent  No  The r e m a i n d e r  2  had. accumulated i n t h e upper ;  b e i n g 'present  i n t h e pedon.  and d e c r e a s i n g  No o b v i o u s  accumulaton  2 o r 3.  P y r o p h o s p h a t e Fe a n d A l h a d a s i m i l a r d i s t r i b u t i o n t o t o t a l C w i t h A l v a l u e s b e i n g much h i g h e r t h a n F e . Fe  In Site  1,  and A l r a n g e d f r o m 0.68 t o 0.01 p e r c e n t ' a n d 2.00 t o 0.20  percent  respectively.  which r e f l e c t e d 0.42 t o  Site  2 exhibited slightly  t h e l o w e r OM c o n t e n t  <0.01 percent  Fe d i d n o t e x h i b i t  w i t h Fe r a n g i n g  amounts  from  and A l r a n g i n g f r o m 1.24 t o 0 . 0 6 p e r c e n t .  Pyrophosphate d i t h i o n i t e dithionite A l i n Sites  lower  e x t r a c t a b l e A l was s i m i l a r t o  1, 2 and 3.  However, i n S i t e s  the pronounced accumulation  B t h a t i t d i d by t h e o t h e r m e t h o d s u s e d .  1 and 2  I n the. u p p e r  101  The. s o i l s . d e v e l o p e d on t h e g l a c i a l m a r i n e d e p o s i t s  had  h i g h e r amounts o f e x t r a c t a b l e . Fe. t h a n t h e s o i l s . d e v e l o p e d outwash m a t e r i a l s .  H o w e v e r , o x a l a t e A l was  of s i m i l a r drainage  c h a r a c t e r i s t i c s w i t h pyrophosphate  d i t h i o n i t e A l being g e n e r a l l y the The occurred cent was  highest accumulation  Al.  below.  The  H o w e v e r , t h e A l had  B f w i t h v a l u e s o f I . 5 8 and  accumulation  w i t h v a l u e s o f 0.40 the Bf at O.98  decreased  d i s t r i b u t i o n was  to 0 . 0 1 per-  erratic  as  a c c u m u l a t e d i n t h e Bh and  1 . 6 2 percent  The  respectively  the and  i n Site 5  occurred  higher i n  v a l u e s i n the remainder of  i n Site  4 Increased  was  Site  5 had  i n t h e B f but  D i t h i o n i t e Fe was  the  percent  i n the  Oxalate  Al  i n t h e Bh and  1.28  a h i g h e r amount o f A l w i t h 1 . 5 5 p e r c e n t .  Values  in Site  4 with a  ranged from 5 . 2 5 percent A l values varied  1.04  percent  respectively.  i n the  from 1 . 1 2 to  h i g h e s t v a l u e s f o r d i t h i o n i t e Fe and  5 w e r e 2 . 1 3 and  Bh  lower values f o r o x a l a t e Ferof 1 . 3 4  i n the C h o r i z o n . The  percent  h i g h e r t h a n o x a l a t e Fe  similar distribution.  0.13 percent.  f r o m 1.42  v a r i a b l e w i t h depth.  h a d . a s i m i l a r d i s t r i b u t i o n w i t h 0.46  Site  and  t o 0 . 1 0 p e r c e n t , h o w e v e r , A l was  t o 4 . 6 7 i n t h e B f and  B f t o 1.40  i n Site 4  o f p y r o p h o s p h a t e Fe  o f p y r o p h o s p h a t e Fe  percent.  O x a l a t e Fe  percent  and  from 0 . 3 8 t o 0 . 1 0 p e r c e n t .  pedon v a r i e d  i n the Bf.  soils  to 0 . 1 8 percent.  d e c r e a s i n g w i t h depth No  on  same.  i n the Bf w i t h 1 . 2 0 percent  immediately  lower  on  A  A l In  decrease  102 i n t h e amount o f d l t h i o n i t e Site  4,  However  ?  SiQ  2  was p r e s e n t i n t h e u p p e r B o f  an i n c r e a s e o c c u r r e d , i n . t h e Bf. o f S i t e 5-  No a c c u m u l a t i o n o f p y r o p h o s p h a t e present i n the upper B of S i t e  dithionite  Fe, o r A l was  4, h o w e v e r , a n a c c u m u l a t i o n o f  A l o c c u r r e d i n S i t e 5The had  s o i l s developed  amounts o f e x t r a c t a b l e Fe and A l s i m i l a r  developed  on o u t w a s h m a t e r i a l s , and l e s s  the marine  clay or t i l l  horizon i n Site of  on sandy p a r e n t . m a t e r i a l s g e n e r a l l y  soils.  6 which  t o the s o i l s  than that present i n  The e x c e p t i o n was t h e p l a c i c  h a d t h e h i g h e s t c o n c e n t r a t i o n o f Fe  any h o r i z o n s t u d i e d .  Amounts p r e s e n t i n t h i s h o r i z o n were  6 . 1 6 and 7 . 2 5 p e r c e n t f o r p y r o p h o s p h a t e ,  2.77,  dithionite  respectively.  o x a l a t e , and  D e t a i l s ', o f t h i s h o r i z o n a r e p r e s e n t e d  i n Chapter I I I . The .placic to  pyrophosphate  Fe v a l u e s r a n g e d  h o r i z o n t o 0,'4.0 p e r c e n t i m m e d i a t e l y  0.02 p e r c e n t w i t h d e p t h .  0 . 0 6 above t h e  below and d e c r e a s e d  The amounts o f p y r o p h o s p h a t e  p r e s e n t were much h i g h e r t h a n F e e x c e p t which  from  In the placic  horizon  c o n t a i n e d 1.05 p e r c e n t , w h i c h was n o t s i g n i f i c a n t l y h i g h e r  than t h e O . 9 8 p e r c e n t i n t h e h o r i z o n . i m m e d i a t e l y above. was 0.64 p e r c e n t i m m e d i a t e l y b e l o w t h e p l a c i c to  Al  0.12 p e r c e n t w i t h  which  There  decreased  depth.  O x a l a t e Fe had a s i m i l a r  d i s t r i b u t i o n with a value of  0.12 p e r c e n t above t h e p l a c i c  h o r i z o n and 2.40 p e r c e n t  immediately  below w i t h a f u r t h e r decrease  t o 0.21 p e r c e n t deep i n t h e C  103 horizon.  The amount o f o x a l a t e e x t r a c t a b l e A l , w a s ^ h i g h e r  immediately to  below the p l a c i c  2 . 1 6 percent  i n the p l a c i c  deeper i n t h e pedon ranged Dithionite  h o r i z o n a t .2,.40 p e r c e n t and 1 , 0 5 i m m e d i a t e l y  from  compared  above.  Values  2.10 t o 0 . 4 7 p e r c e n t .  e x t r a c t a b l e Fe was h i g h e s t i n t h e p l a c i c  h o r i z o n and i m m e d i a t e l y  b e l o w by any method u s e d .  However,  v a l u e s ' a b o v e t h e p l a c i c h o r i z o n were s i m i l a r t o o x a l a t e v a l u e s and to  tended  t o be l o w e r t h a n o x a l a t e b e l o w , r a n g i n g f r o m 0 . 7 7  0 . 1 5 percent. Pyrophosphate  d i t h i o n i t e Fe and A l v a l u e s were n o t o b t a i n e d  f o r the p l a c i c h o r i z o n . depth  However, Fe g e n e r a l l y i n c r e a s e d w i t h  i n t h e p e d o n and r a n g e d  the p l a c i c  horizon.  amounts r a n g e d  from  0 . 0 9 t o 0.50 p e r c e n t  from  Aluminum tended  t o decrease  below  w i t h depth  and  0.37 to 0.19 percent.  S i m i l a r v a l u e s and t r e n d s f o r e x t r a c t a b l e F e and A l were exhibited In Site  7 w i t h a maximum p r e s e n t  H o w e v e r , l o w e r amounts were e x t r a c t e d f r o m h o r i z o n t h a n was p r e s e n t Site  i n the Bf horizon. the saturated C  i n the C of S i t e 6 .  8 a l s o had s i m i l a r amounts o f Fe and A l a s S i t e 6  throughout, t h e pedon.  Pyrophosphate  c e n t i n t h e u p p e r B and d e c r e a s e d  Fe r a n g e d  0.44 per-  from  t o a l o w o f 0.01  percent.  Aluminum-was h i g h e s t i n t h e B f 2 w i t h 0 . 7 4 and 0.62 p e r c e n t i n the Bf which horizon.  decreased  f u r t h e r t o 0.02 p e r c e n t - deep i n t h e C  O x a l a t e F e and A l v a l u e s were b o t h - h i g h e s t  Bf-2 b e i n g 1.01 and 0 . 7 1 r e s p e c t i v e l y  i n the  and d e c r e a s i n g t o 0.12  and  104 0.08 in  percent.  Highest, v a l u e s o f d i t h i o n i t e  the Bf with 1 , 0 5 percent  ilar  to dithionite  present  and d e c r e a s i n g t o .0. 0 4 . p e r c e n t  Aluminum v a l u e s r a n g e d f r o m 0 , 6 3 i n t h e  deep i n t h e C h o r i z o n . Bf2 t o 0.01 percent.  Fe were  ..Pyrophosphate d i t h i o n i t e  A l was v e r y  sim-  i n amounts a n d d i s t r i b u t i o n . ' T h e amount  o f F e e x t r a c t e d was l o w e r  i n t h e u p p e r B t h a n any o f t h e o t h e r  m e t h o d s u s e d and r a n g e d f r o m 0 . 2 7 t o 0 . 0 3 p e r c e n t  deep i n t h e  C horizon. The e x t r a c t a b l e amounts o f F e and A l p r e s e n t developed soils in  on g l a c i a l  developed  tills  were g e n e r a l l y s i m i l a r  on m a r i n e c l a y s .  t o those  The v a l u e s were a l s o  higher  9 t h a n i n S i t e 10.  Site  In the s o i l a t S i t e  9 , p y r o p h o s p h a t e Fe had t h e h i g h e s t  v a l u e s i n t h e upper B of 1 . 5 2 percent above t h e l i t h i c but  i n the s o i l s  contact.  and d e c r e a s e d  t o 0.14  The d i s t r i b u t i o n o f A l was  similar  amounts p r e s e n t w e r e h i g h e r and r a n g e d f r o m 1 . 7 0 t o 0 . 6 8  percent.  Highest  amounts o f o x a l a t e F e were p r e s e n t  i n the  upper B w i t h v a l u e s r a n g i n g from 2 . 2 5 t o 1.27 above t h e l i t h i c contact.  Values  o b t a i n e d f o r A l were much h i g h e r a n d r a n g e d  from 2 . 7 8 i n t h e upper B and i n c r e a s e d t o 3 . 1 3 w i t h The h i g h e s t v a l u e s f o r F e were o b t a i n e d by d i t h i o n i t e w i t h a maximum p r e s e n t Values  extraction  i n t h e upper B and d e c r e a s i n g w i t h  ranged from 3.50 t o 1 . 2 7 p e r c e n t .  distribution  depth.  A l u m i n u m had a  i n the mineral horizons with values ranging  0:. 3,1 t o 0 . 1 6 percent..  The d i s t r i b u t i o n  depth. similar from  of e x t r a c t a b l e S i 0  2  a l s o s i m i l a r , w i t h v a l u e s r a n g i n g from 5.62 t o 2 . 5 2 p e r c e n t .  was  105 In the 0.17  soil  at S i t e  t o 0.02. p e r c e n t  lithic  contact.  and  was  to'0.31 percent  the  lithic  i n the pedon.  and  contact.  finally  Oxalate  Fe was  w i t h 2.15  contact.  4.71  accumulation  percent  to  percent  Values obtained  i n the m i n e r a l  of  and  decreas-  percent  a similar  above  distribution  above t h e  and  lithic  exhibited  above t h e higher  lithic  amounts a t  t h a n i n t h e u p p e r B w i t h amounts o f 1.37  respectively.  the  respectively. Dithionite  i n c r e a s e f r o m 2 . 2 3 t o 2.35  percent 0.16  A l had  However, A l d i d have s l i g h t l y  contact  above  percent  i n the upper B w i t h 3 - 1 3 percent  highest  only a s l i g h t  and  and  from  A s i m i l a r d i s t r i b u t i o n for.  i n c r e a s i n g t o 0.70  Fe  the pedon, w i t h the h i g h e s t  contact  the  percent  noted w i t h the upper B containing•0.70  ing  in  i n c r e a s e d t o 0.12  decreased  This corresponds to.the d i s t r i b u t i o n  organic matter present Al  10,. p y r o p h o s p h a t e Fe  and  1.42  f o r Si02 ranged from  0.21  horizons.  MINERALOGICAL PROPERTIES Values obtained given  i n T a b l e I I - 5 and  fraction of the  (  < 2 y  )..  are  were d e r i v e d u s i n g t h e whole c l a y As  s u c h , some m i n e r a l s  present  as  part  f i n e c l a y f r a c t i o n c o u l d h a v e b e e n masked i f q u a n t i t i e s  were n o t  large  In the the  from X-ray d i f f r a c t i o n techniques  (Jackson,  1964).  outwash d e p o s i t s at S i t e  c l a y s of the upper.portion  minerals, being  dominant i n S i t e  1, v e r m i c u l i t e d o m i n a t e d  of the 2.  solum w i t h mixed l a y e r  K a o l i n i t e and  chlorite  Table 1 1 - 5 .  Clay f r a c t i o n composition and amorphous mineral A l and S i of the s o i l s  Sample and Site  Chlorite*  10 8 Micas*  122-142 142+  1 1 2 1 1 3 2  0 0 0 0 0 1 1  31-0 0-56 56-112 112-173 173-180 180+  1 2 2 2 2  379 498  3 2  0 1 1 1 2 2 2  1 0 2 2 2 2 2  1 0 1 1 1 1 1  Depth ()cm)  Site 1 1 2 3  4 5 6 7 66  Site 2 8 9 10 11 12 13 67 68  Site 3 14 15 16 17 18 19 20 21  38-0 0-5 5-25 25-58 58-99 99-122  20-8 8-0 0-10 10-20 20-33  33-48 48-66 66+  Kaolinite*  3 2 2  3 3  0 3 2 2 2 2  1 0 2 3  1 3 3 3 2  0  Montmorillonite*  Vermiculite*  0 0 0 0 1 3 3  4 3 2 1 1 0 2  0 1 0 0 1 1 0  1 0 0 0 0 0 2  0 0 0 0 0 0 0  4 4 0 0 1 0 0  Mixed layer*  0 0 0  3  0  1  2  0  0 0 0 0  0  0 0  Quartz*  1  1 1 1 1  1 0 0 0 . 0 0  Expressed as r e l a t i v e q u a n t i t i e s i n the f o l l o w i n g s e r i e s progression1. present, 0-10*; 2 . t r a c e , 1 0 - 2 5 * ; 3 . minor, 25-40*; 4. major,'40-65*;  2 1 2 1 1 1  1  2 1  2 2 1 1 1 2 2  5.  Feldspars*  Amohibols*  extractable ™ <g a c t a D  1 1 2 1 1 1 1  1 1 2 1 1 1 1  2.0 4.0 2.5 2.5 2.3 2.1 2.7  1.0 1.9 2.2 2.4 2.3 2.3 2.2  1 1 1 1 1 1 1  0 1 0 0 1 1 0  4.5 1.8 1.3 0.8 0.9 1.2 1.2  2.9 1.7 1.5 1.2 1.3 1.2 1.2  1  0 0 1 0 1 0 0  8.9 1.2 1.4 1.6 1.8 0.4 1.0  5.3 1.5 1.6 1.9 3.0 1.6 2.4  1 1 1 1 1 1  dominant, 65-100*  1— o  OA  1  Table I I - 5 , continued Sample and Site  Site 4 22 23  24 25  26 27  28 29  30 Site 5 31a 31 32 33 34 35 36  Site 6 37 38 39  40 41 42 43 44 45  46  Depth (cm)  15-0 0-5  10 8-  C h l o r i t e * Micas*  Kaolinite*  MontmorVermicuillionite* lite*  0 0 0 0 0 1 1 1  0 0 0 1 1 0 1 1  1 1 1 1 1 1 1 1  3  13-0 0-10 10-20 20-31 31-48 48+  0 1 2 2 2 1  1 1 1 1 1 1  1 0 2 2 2 1  0 0 2 0 0 0  18-0 0-5 5-20 20-79 79-114 114-132 132-145 145-152 152-163 163+  0 1 1 2 2 2 1 1 1  1 1 1 1 1 1 1 1 1  1 1 2 1 2 1 1 1 0  0 1 1 4 0  4 2  3  2  5-18 18-36 36-43 43-74 74-117  117-135 135+ 15-13  4  3  3 3  2  0 0  3 4  0 0  1 2 2  4  0 0 1  4 4  0 0 1 3  3  0  3  4 4 4  Mixed layer*  NaOH extractable Al Si %  Quartz*  Feldspars*  Amphibols*  0 0 1 1 2 2 2 1  2 1 1 1 1 1 1 1  0 0 0 1 1 1 1 1  0 0 0 0 0 0 0 1  1.0 1.6 2.6 2.6 2.4 1.7 0.8  3.9 4.4  1 1 1 1 1 1  1 2 1 1 1 0  0 0 1 1 1 1  0 0 1 1 0 1  0.4 0.8 1.7  3.0 1.4 3.0 4.0  1 0 0 0 0 0 0 0 0  2 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  0 1 0 0 0 0 0 0 0  0.3 1.6 1.1 1.2 2.3 0.8 0.7 0.7 0.6  1.9  1.8 2.0 0.8  2.5 2.8 3.5 3.8  4.6 3.4  5.5  3.2  1.2 1.6 1.6 1.8 3.6  1.8  1.4 1 9 1.4 I— o  1  Table 1 1 - 5 , continued Sample and Site  Depth (cm)  10 A C h l o r i t e * Micas*  Kaolinite*  Montmor- Vermicuillionite* lite*  Mixed layer*  '"LV.••'c/, Quartz*  F e l d - Amphispars* b o l s *  NaOH extractable Al Si %  Site 7 47  48 49 50 51 . 52 53  Site 8  54 55 56. 57 58 59 60 61 62  Site 9 69 70 71 72 73  S i t e 10 74 75 76 77 78  25-13 ' 13-0 •0-5 5-23 23-33 33-79 79+  0 1 2 2 2 3  1 0 0 0. 1 2  2 1 0 0 1 0  0 0 3 0 3 0  4 4 2 3 1 0  0 0 1 1 0  .0  2 2 1 1 1 1  0 1 1 1 1 1  0 0 1 0 0 1  0.7 1.1 1.8 1.6 0.7 0.4  2.3 1.4 2.2 1.9 1.2 1.1  31-0 .. 0 - 2 3 23-36 36-56 56-81 81-109 109-117 117-155 155+  1 1 0 2 2 2 2 1  0 0 0 0 0 1 1 1  2 2 2 2 1 1 2 2  0 0 0 0 0 0 0 0  4 3 2 2 2 3 3 3  0 0 1 0 0 0 0 0  1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1  1 1 1 ' 1 1 1 1 1  0.71.1 1.2 0.9 0.8 0.5 0.7 0.2  0.7 0.8 1.3 1.2 1.2 0.9 1.2 0.7  15-0 0-23 23-69 69-109 109-127  1 1 3 3  0 0 1 0  1 1 3 3  0 0 0 0  4 4 1 . 0  0 1 0 0  1 1 2 2  1 1 1 1  0 1 0 0  5-3 5-0 3.8 3.9  1.1 1.5 2.3 2.3  31-0 0-15 15-43 43-86 86-119  1 1 3 2  0 0 0 0  2 1 2 2  0 0 0 1  3 2 1 0  0 0 3 0  1 2 1 1  1 1 1 1  0 0 0 0  4.7 4.2 4.4 4.7  1.2 0.8 2.3 3.7 I—  1  o co  109  i n c r e a s e d and r e m a i n e d r e l a t i v e l y c o n s t a n t w i t h d e p t h . increase i n mica.occurred.at Sodium h y d r o x i d e  c o n s i d e r a b l e depth  at approximately. 2 . 5 p e r c e n t  at Site 2 .  1 was.highest  extractable A l of Site  u p p e r B h o r i z o n a t 4". 0 p e r c e n t  value of 1 . 0 percent  and i n c r e a s e d t o 1 . 9 p e r c e n t  B and r e m a i n e d r e l a t i v e l y c o n s t a n t  from t h e s o i l  Similar  at Site  i n t h e Ahe w i t h a  throughout-the  soil  at Site  2 exhibited present  In the B horizon.  1.  The maximum o c c u r r e d  of the s o i l  dominating  at Site  suite  of t h e upper B hor-  3 w i t h k a o l i n i t e and c h l o r i t e  and. 2 .  There  o f A l o r S i i n t h e upper B as o c c u r r e d a t .  Some v a r i a b i l i t y o c c u r r e d • i n t h e l o w e r  C horizons which corresponded percent  i n the B of 2 . 9 per-  t h e r e m a i n d e r o f t h e B and C h o r i z o n s .  no a c c u m u l a t i o n 1  to the S i  i n t h e BC a n d C h o r i z o n s f r o m 1 . 7 t o 1 . 2  V e r m i c u l i t e dominated t h e c l a y  Sites  Lower  The r a t i o o f A l t o S i was s i m i l a r t o S i t e 1 .  percent.  was  extract-  o c c u r r e d i n t h e BC a n d  S i l i c o n gave a r e v e r s e d r e l a t i o n s h i p  cent and d e c r e a s e d  izon  of 2 .  s i m i l a r trends f o r  v a l u e s r a n g i n g from 0 . 8 t o 1 . 8 percent  values f o r Site  pedon a t 2 . 2  1 w i t h t h e e x c e p t i o n o f t h e A and upper  able A l with 4 . 5 percent  C horizons.  i n t h e upper  amounts o f A l and S i were e x t r a c t e d  B h o r i z o n where A l was h i g h e r by a f a c t o r The  constant  i n t h e r e m a i n d e r o f t h e s o l u m and  S i l i c o n was l o w e s t  2 . 4percent.  i n the  and r e m a i n e d r e l a t i v e l y  into the C horizon.  to  Some  to- a d e c r e a s e  B and  from 1 . 6 t o 0 . 4  i n A l a n d an i n c r e a s e i n S i f r o m 1 . 5 t o 3 - 0 p e r c e n t .  I1C Similar values Si  f o r A l and  in.. t h e u p p e r B  g r e a t e r by more t h a n a f a c t o r of. 2 l o w e r  was  M o r i t m o r i l l o n i t e and present  i n the  becomes a b s e n t .  horizons  C h l o r i t e , mica'and mixed l a y e r kaolinite  NaOH e x t r a c t a b l e A l and  depth from 1.0  to 2 . 6 percent  S i both tend  i n the  C and  minerals ver-  montmorillonite minerals  throughout  the  to increase  with  2 . 5 to 4 . 6 percent r e s p e c t i v e l y  and  the middle of the B h o r i z o n .  percent  i s present  while  pedon.  4 with  of S i t e  r e l a t i v e l y h i g h w i t h d e p t h as  i n c r e a s e w i t h d e p t h and pedon.  i n the  v e r m i c u l i t e are the.dominant  surface mineral  m i c u l i t e remaining  to  S i were o b t a i n e d  0.8  Aluminum d e c r e a s e s t o  i n S i to 3.4  a s l i g h t • decrease occurs  percent. V e r m i c u l i t e i s dominant i n the the s o i l  5 and  at S i t e  i s present  i n . the  i s absent i n the  lower  in  kaolinite.  are present  in 0.8  the  lower  percent  l o S m i c a s and  B horizons  soil  decreases to 3 - 2 percent  from the  Al exhibit  Aluminum i n c r e a s e s  i n the  C.  surface to the  lower  Silicon lower  B  from  increases  and  i n the G h o r i z o n .  V e r m i c u l i t e , which i s the dominant m i n e r a l S i t e 6 , decreases i n the  minerals  h o r i z o n t o 2 . 0 i n the  decreases to 0 . 8 percent  to 5 . 5 percent  mixed l a y e r  increase  4 , w i t h a maxima r e a c h e d  at S i t e  surface mineral  but  decrease i n ver-  E x t r a c t a b l e S i and  p o r t i o n of the B h o r i z o n .  B h o r i z o n and from 1.4  as i n t h e  i n the  The  of  B o f t h e p e d o n c o r r e s p o n d s t o an  t h r o u g h o u t the pedon.  s i m i l a r trends  lower  saturated C horizons.  m i c u l i t e i n the c h l o r i t e and  surface horizons  lower  B and  i n the  then'increases  soil  with  at  depth  Ill i n the C horizon.  This decrease  i n v e r m i c u l i t e corresponds  t o an i n c r e a s e i n c h l o r i t e and. . k a o l i n i t e , ..which t h e n i n t h e l o w e r -C,  The same ...trend i s g e n e r a l l y f o l l o w e d w i t h  montmorlllonitehowever, i s more e r r a t i c t h r o u g h o u t throughout  t h e pedon.  the d i s t r i b u t i o n of montmorillonite t h e pedon.  -108 m i c a s a r e p r e s e n t  NaOH e x t r a c t a b l e A l I s h i g h e s t a b o v e •  the p l a c i c h o r i z o n a t 1 . 6 percent below.' Aluminum d e c r e a s e s 0.6  decreases  and d e c r e a s e s  s t e a d i l y w i t h depth  t o 1.1  percent  1.2 to  from  percent with the exception o f . aclay enriched layer  r i n g a t 114'. cm f r o m t h e m i n e r a l s u r f a c e . relatively  constant  a t 1 . 6 t o 1.9 p e r c e n t  with the exception of.the clay  Silicon  occur-  remains  i n t h e B and C h o r i z o n  e n r i c h e d l a y e r where a v a l u e  o f 3 . 6 p e r c e n t was o b t a i n e d . V e r m i c u l i t e w i t h k a o l i n i t e a n d some l o S m i c a s d o m i n a t e d the surface m i n e r a l horizons of S i t e 7 . and  was a b s e n t . i n t h e C.  T h i s decreases-corresponded  i n c r e a s e i n c h l o r i t e w h i c h was u n i f o r m horizons.  10$ m i c a s were p r e s e n t  were absent  Vermiculite  throughout  t o an the mineral  i n t h e l o w e r B and C b u t  i n t h e upper B h o r i z o n .  Montmorillonite occurred  s p o r a d i c a l l y i n t h e B as w e l l a s m i x e d l a y e r m i n e r a l s . hydroxide  e x t r a c t a b l e A l was c o n c e n t r a t e d  1.8 p e r c e n t exhibited  and d e c r e a s e d  t o 0.4 p e r c e n t  Sodium  i n the upper B a t w i t h depth.  Silicon  s i m i l a r t r e n d s , h o w e v e r , t h e v a l u e s were h i g h e r a n d  t h e r e was an a c c u m u l a t i o n Another accumulation a steady  decreased  decrease  i n the H horizon of 2 . 3 percent.  of 2 . 2 percent  t o 1,1 p e r c e n t  occurred i n the upper B w i t h  i n the C horizon.  112  8 exhibited very s i m i l a r m i n e r a l o g i c a l  Site to  S i t e .6.  V e r m i c u l i t e was  d e c r e a s e d w i t h - d e p t h and  characteristics  a g a i n the dominant m i n e r a l which  then i n c r e a s e d i n t o the.C.horizon.  A s i m i l a r trend occurred with k a o l i n i t e only with amounts.  Chlorite  i n c r e a s e d i n t h e l o w e r B and u p p e r  h o r i z o n s and m o n t m o r i l l o n i t e was  absent.  NaOH e x t r a c t a b l e A l and S i were a l s o throughout 6. in  However, A l I n c r e a s e d from  Values obtained f o r  s i m i l a r in. magnitude  0 . 7 i n the upper  t h e l o w e r B h o r i z o n and t h e n d e c r e a s e d Silicon  p e r c e n t from the upper  slightly  Site  steadily to 0 . 2  e x h i b i t e d an i n c r e a s e f r o m t o l o w e r B and d e c r e a s e d  0 . 7 to  only  i n t o the C h o r i z o n .  of the s o i l  at S i t e  9 w i t h c h l o r i t e and  d o m i n a t i n g t h e l o w e r solum.'  the lower B to 3 . 8 percent.  The  reverse i s true of S i w i t h  i n c r e a s i n g to 2 . 3 percent i n the lower The m i n e r a l o g y o f t h e s o i l to Site  kaolinite  B h o r i z o n and d e c r e a s e s i n  the lowest v a l u e s of 1 . 1 p e r c e n t i n the upper  and m a g n i t u d e ,  upper  Sodium h y d r o x i d e e x t r a c t a b l e A l i s  h i g h e s t a t 5 . 3 p e r c e n t i n the upper  solum.  at  B to 1 . 2 percent  V e r m i c u l i t e i s the dominant c l a y m i n e r a l i n the solum  C  t h e p e d o n t o t h e amounts p r e s e n t i n t h e s o i l  p e r c e n t a t 1 5 5 cm. 1.3  lesser  at S i t e  B h o r i z o n and  B. 10 i s s i m i l a r ,  9 w i t h v e r m i c u l i t e dominating the  C h l o r i t e and k a o l i n i t e were p r e s e n t t h r o u g h o u t  p e d o n w i t h an...increase i n c h l o r i t e and w i t h depth.  i n trends  a decrease  upper  the  in. k a o l i n i t e  Sodium h y d r o x i d e e x t r a c t a b l e A l i s c o n s t a n t  113  throughout  t h e p e d o n a n d r a n g e s , f r o m 4., 2 t o 4 . 7 p e r c e n t .  v a l u e s o f 1 . 2 and 0 . 8 percent  has  to.3-7  percent  above t h e l i t h i c  Silicon  i n t h e B h o r i z o n and i n c r e a s e s  contact.  SOIL GENESIS W a t e r c a n be c o n s i d e r e d of t h e s o i l s soil  studied."  t h e dominant f o r c e i n t h e g e n e s i s  Even thought-there  textures, the high p r e c i p i t a t i o n  reduced  the effect  a r e a had v e r y  i n the area  of this variation.  little  relief  r a i n f a l l , " has' r e s u l t e d  and t h i s ,  was a w i d e r a n g e o f  A l s o , much o f t h e s t u d y combined w i t h t h e h i g h  i n ground water l e v e l s being near the  surface f o r a l a r g e percentage  of the t o t a l area.  the p o s i t i o n of t h e m a t e r i a l i n t h e landscape drainage  channels  (Table 1 - 1 )  has p l a y e d  a significant  Therefore,  i n relation to  role  i n determining  t h e k i n d s and r a t e s o f p e d o g e n i c p r o c e s s e s ' t a k i n g p l a c e . was t h e r e s u l t  o f p r o n o u n c e d d i f f e r e n c e s i n t h e movement o f w a t e r  w i t h i n t h e p e d o n s and c o n s e q u e n t l y during - pedogenesis.  In different  degrees o f s o i l  predominance of v e r m i c u l i t e i n t h e s u r f a c e  horizons of the s o i l s is  the transport of m a t e r i a l s  T h i s , p l u s t h e r a n g e i n age o f p a r e n t  materials'has resulted The  studied indicates that t h i s  i n e q u i l i b r i u m w i t h the environment.  i n t e r m e d i a t e stage index  of weathering  development. mineral  mineral  T h i s r e p r e s e n t s an  (stage•8.in•Jacksons'  of c l a y - s i z e mineral p a r t i c l e s ; Jackson,'1952).  s t a t e d p r e v i o u s l y , some o f t h e c l a y m i n e r a l s p r e s e n t amounts i n t h e  This  < 0..2J4-  size  as t h e a n a l y s i s t o d e t e r m i n e  weathering As was  i n minor  f r a c t i o n may h a v e b e e n  missed,  the kinds of clays present  was  114  c o m p l e t e d , on t h e t o t a l presence depth  would g i v e the best  in  i n d i c a t i o n o f the stage  presence  where d i s c o n t i n u i t i e s  Some o f t h e m i n e r a l s w i t h a h i g h e r  are present  117  i n t h e pedons" but-'.we're This i s supported  o r absence o f these m i n e r a l s i n h o r i z o n s occur.  studied.are also indicative  The i n c r e a s e i n t h e amounts o f t h e s e  s o l u m o f some o f t h e s o i l s  at Site  i n d i c a t e s t h e depth  components.  of effect-  particular  F o r example, i n t h e  4 the i n c r e a s e i n exchangeable c a t i o n s occurred at  cm. b e l o w t h e m i n e r a l s u r f a c e w h i c h r e f l e c t s  of the p e r c o l a t i n g waters specific  of extensive  cations, i n the  leaching i n the respective materials f o rt h i s  arrangement o f e n v i r o n m e n t a l soil  rather  l o w amounts o f e x c h a n g e a b l e c a t i o n s i n t h e m i n e r a l  horizons of the s o i l s  ive  only  i t was p e d o g e n i c ,  inherent i n the parent m a t e r i a l .  by t h e a b r u p t  lower  present  of weathering.  However, t h e predominance o f t h i s m i n e r a l  resistance t o weathering  leaching.  sequence, r e l a t e d t o  ( J a c k s o n , 1 9 5 2 ) and c o u l d be r e s p o n s i b l e f o r i t s  than d i a g e n e t i c i n o r i g i n .  The  due t o t h e  ?  and t h e dominant m i n e r a l s  t h e . s u r f a c e h o r i z o n s would suggest  probably  However  marine environment i s conducive' t o t h e f o r m a t i o n o f  vermiculite presence.  ,  o f - d i s c o n t i n u i t i e s , any w e a t h e r i n g  w o u l d n o t be m e a n i n g f u l ,  The  <..2jj  fraction  t o move t h r o u g h  the a b i l i t y  a s o i l with  these  characteristics.  T h i s d i s t r i b u t i o n i n t h e pedon i s r e f l e c t e d b a s e s a t u r a t i o n a n d pH w i t h d e p t h .  i n Increased  These a r e c h a r a c t e r i s t i c s  115  o f young s o i l s b u t i n t h i s p a r t i c u l a r e n v i r o n m e n t t h e h i g h • c o n c e n t r a t i o n o f the p r e c i p i t a t i o n would a c t t o . m a i n t a i n situation contact  (Fig. I~26) .  ionic  this  Also.,', an. i n c r e a s e above t h e l i t h i c  o f S i t e s 9 and 1 0 i l l u s t r a t e s  the e f f e c t s of r e s t r i c t i n g  layers. The p r e s e n c e o f l i t h o l o g i c influential  i n the genesis  d i s c o n t i n u i t i e s w h i c h have been  of s o i l s  S c h u y l e n b o r g h and Bruggenwert, 1 9 6 5 ) . d i s r u p t water"movement thus  through  creating variability  in turn, especially  i s not' uncommon ( V a n Discontinuities  the porous s u r f i c i a l  i n s o i l moisture  content.  Fe,  The s o l u b i l i t y  m a t e r i a l s s t u d i e d showed e v i d e n c e  that  f u n c t i o n o f ' t h e pedon i n t h e e n v i r o n m e n t .  developed  and p r e s e n t  i n sites  w e r e wet b e c a u s e o f t h e • a r r a n g e m e n t o f ' e x t e r n a l genesis'.  s a t u r a t i o n t h r o u g h p u t t h e pedon r e s u l t i n g of mobile  constituents into specific  visibly  h o r i z o n had  Discontinuities  f e a t u r e s h a d l e s s i n f l u e n c e on s o i l  on a l l  T h i s was most  6 where a p l a c i c  at a discontinuity.  soils  discontinuities  were o f c o n s i d e r a b l e i m p o r t a n c e i n s o i l g e n e s i s  i n the s o i l at Site  (McKenzie -  i n mobilization.  The m o d e r a t e l y w e l l a n d i m p e r f e c t l y d r a i n e d  evident  This  o f many e l e m e n t s , i n c l u d i n g Mn a n d  i s increased i n the reduced s t a t e r e s u l t i n g  parent  deposit,  i n the presence of organic matter, can  cause c o n s i d e r a b l e d i f f e r e n c e s i n redox p o t e n t i a l et a l i 9 6 0 ) .  initially  which  landscape  T h i s was due t o  i n less  segregation  horizons.  A h i g h energy environment f o r e r o s i o n i n which these have d e v e l o p e d  soils  h a s r e s u l t e d i n a s e l e c t i o n o f m e c h a n i s m s and  116 s o i l p r o p e r t i e s which preserves continuum.in the i n much t h e p l a n t s and inherent the  landscape.  same way animals.  i n the  e x i s t e n c e of the  This process.of  as t h e p r o c e s s o f n a t u r a l s e l e c t i o n i n If.some.protective  soils  m e c h a n i s m had  of developed subsequent t o  of'cemented horizons  the  coarser  to  erosion. The  textured  o c e a n waves d u r i n g w i n t e r d e v e l o p e d on  placic horizons.  This  cliffs storms.  the  soil  i s maintained.  from s u r f a c e The  This  increased  d i s s i p a t e s the . The age  was  the  increased  developed  a  micro-  adequate^support present  and  accumulation. there-  the  deposits  r e s u l t e d i n improved The  aggregation  e f f e c t i v e pore  p e r c o l a t i o n c a p a c i t y of these s o i l s  properties of.the  stated  e r o s i o n and  e n e r g y a v a i l a b l e f o r e r o s i o n by  chemical  was  matter  through improved i n t e r n a l drainage.  o f c l a y s i z e d p a r t i c l e s has  As  f i n e r textured marine  r e s p o n d e d i n a d i f f e r e n t manner w h i c h has stability  where t h e y  layer i t s e l f  environment s u i t a b l e f o r organic  soil  in  resistance  layer maintains  environment above i t w h i c h p e r p e t u a t e s  f o r e , the  feature  sandy beach m a t e r i a l s  restricting  T h i s . i n ' t u r n p r o t e c t s the  The  i s a dominant g e n e t i c  near v e r t i c a l  previously, soils  an  been  were c e m e n t e d t o d e p t h s o f a t l e a s t  10 m w h i c h i s e x p r e s s e d as  provides  not  deposition,  s o i l s which increases, t h e i r  outwash d e p o s i t s  e r o d e d by  soil  selection functions  s o i l s w o u l d have been removed t h r o u g h erosion.;.-.  formation  are  the  space.  which  water.  s o i l s where i n t e r n a l  t h e o r i e s of Podzol  drain-  genesis.  117 The  a n a l y s i s of the p l a c i c  horizons  w i t h t h e f i n d i n g s of Duchaufour m a t e r i a l s move t h r o u g h  (Table I I I - l )  i s consistent  C l 9 6 5 ) t h a t .some o f t h e o r g a n i c  t h e p e d o n as f u l v i c . a c i d ,  These  organic  acids are a l s o considered responsible f o r d i s s o l v i n g the primary p h o s p h a t i c m i n e r a l s and t r a n s p o r t i n g t h e s o l u b l e p r o d u c t s B where t h e y a r e p r e c i p i t a t e d was  evidence  ( F r a n z m i e r 'et-Jal, 1963).  There  f o r t h e movement o f a v a i l a b l e P o u t o f t h e u p p e r  B and i n t o t h e l o w e r  solum.  that p r e c i p i t a t i o n occurs  This a l s o supports  the suggestion  as aluminum p h o s p h a t e s w i t h t h e  maximum f o r e x t r a c t a b l e A l b e i n g g e n e r a l l y i n t h e l o w e r t h e maximum zone o f a c c u m u l a t i o n . The v a r i a t i o n o f t h e s o i l s outwash d e p o s i t s a t S i t e s i n the depth  and  of the capping  f o r F e by t h e m e t h o d s u s e d . developed  on t h e g l a c i o m a r i n e  of f i n e r .  t e x t u r e d m a t e r i a l over  Initially,  the high  l e a c h any s o l u b l e s a l t s p r e s e n t  the establishment  B, b e l o w  1 a n d 2 i s due t o t h e d i f f e r e n c e s  with high, gravel content. would r a p i d l y  i n the  o f v e g e t a t i o n w o u l d make  that  precipitation  i n the material available  o r g a n i c a c i d s w h i c h w o u l d f u r t h e r l e a c h most o f t h e c a t i o n s present.  The p r o c e s s e s  of weathering  influence of cations present  w o u l d be r e t a r d e d by t h e  i n the rainwater  ( F i g . 1-26).  However, t h e h i g h p r e c i p i t a t i o n c o u n t e r a c t s t h i s some d e g r e e , e s p e c i a l l y where c o a r s e  ionic  Input t o  t e x t u r e d m a t e r i a l s dominated  t h e pedon and a l l o w e d r a p i d  l e a c h i n g o f these bases w i t h a  subsequent decrease  The w e a t h e r i n g  was  i n pH.  of primary  i n i t i a t e d by t h e o r g a n i c a c i d s a n d h a s r e s u l t e d  minerals  i n l o w amounts  o f P i n t h e upper B as i n d i c a t e d i n t h e l o w • a v a i l a b l e P c o n t e n t .  118  The  i n c r e a s e i n a c i d i t y has  organic matter-with r e l a t i v e l y i n the  h i g h C/N  s u r f a c e h o r i z o n s as w o u l d be Consequentlyorganic  low:,below t h e  A l o x i d e s has  ilization  i n c r e a s e d the a v a i l a b l e water  of these  soils  soil  storage  and  o f Fe and. A l t o l o w e r d e p t h  parent-materials.  The  the C h o r i z o n of S i t e  storage  This^.has. i n c r e a s e d  capacity through•litter  accumulation.  A l i n ' t h e p e d o n s shows, t h a t mob-  subsequent'transfer  t o n e g a t i v e enrichment  of these - elements from taken place.  a p p e a r s l i m i t e d w i t h any or t o t h e i r presence  ( B a r i l and  Although of these  no  to the presence  Bitton,  i n the  low  chromas s u g g e s t  s i n g l y , . o r t o g e t h e r a c t as t h e these  soils  their  stability.  in  of magnetite  in  this  1969).  i n c r e a s e i n A l o r S i was  s o i l s , , the  increase  i n c r e a s e i n o x a l a t e - e x t r a c t a b l e Fe 2 i s due  the  Translocation  t h e s e d e p o s i t s ( B r e m n e r , 1 9 7 0 ) w h i c h i s e x t r a c t e d by procedure  Fe  (Table 1 - 1 ) which i n t u r n  o r g a n i c l a y e r s i n t o t h e u p p e r B has  due  of  t o supply adequate water t o p l a n t s  d i s t r i b u t i o n o f Fe and  i s rest-  proceeded, the n e g a t i v e accumulation  d u r i n g p e r i o d s o f summer d e f i c i t s  The  degree  i s very-  nutrient cycling  c a p a c i t y of the s u r f a c e m i n e r a l h o r i z o n s .  i n c r e a s e s the  maintained  with this  content  of  to the organic h o r i z o n s .  As w e a t h e r i n g  the a b i l i t y  decomposition  r a t i o s being  matter  s u r f a c e h o r i z o n s and  ricted primarily  the  expected  1  of a c i d i t y .  and  reduced  noted  in C  that these  elements  cementing agents which I t i s possible that  horizons  give  pressure  119  f r o m i c e , and/or water m i g h t haye been i n s t u m e n t a l i n r e a r r a n g i n g the p a r t i c l e s through  compaction,  of these m a t e r i a l s would suggest r a t h e r t h a n due As was the  but the  cementing agent i s . c h e m i c a l  s t a t e d p r e v i o u s l y , the dominance of v e r m i c u l i t e i n  However, the  dominating  nature  to p h y s i c a l forces.  s u r f a c e h o r i z o n s i n d i c a t e s the  soils.  the h i g h l y s o r t e d  the c l a y  soil  at S i t e  suite.  stage  of weathering  2 had m i x e d l a y e r  V e r m i c u l i t e was  present  amounts c o m p a r a b l e t o o t h e r s o i l s w h i c h s u g g e s t s  of  these  minerals but  not  i t s absense  i s due  to other than g e n e t i c reasons.  of the  s u r f a c e h o r i z o n s d u r i n g l o g g i n g , however, morphology  and.chemical The  c h a r a c t e r i s t i c s do n o t  soil  at S i t e  sequence of g e n e s i s p o s i t i o n of t h i s processes  3 has  as t h e  soil  proceeded through soils  at S i t e s  and  stages  to  mixing  this. t h e same  1 and  i n d e p r e s s i o n a l . a r e a s has  during later  of l a y e r s of coarse  I t c o u l d be due  support  in  of development.  2 but  initial the  changed The  the  arrangement'  f i n d t e x t u r e d m a t e r i a l s i n the  pedon  i l l u s t r a t e s t h e c o m p l e x mode o f d e p o s i t i o n o f t h i s m a t e r i a l i n t h e u p p e r 50 cm..  Initially  p e r c o l a t e r a p i d l y through  w a t e r would have been a b l e  the coarsed  textured deposits  w a t e r has  washed t h e f i n e s f r o m s u r r o u n d i n g  sequently  sands have been d e p o s i t e d over  presence of the  o f t h e s e d i s c o n t i n u i t i e s and  coarser l a y e r s reduced  the pedon.  T h i s has  resulted  to  s l o p e s and  the f i n e s .  the gradual  the removel of water i n the f o r m a t i o n of  but sub-  The cementation through  recent  120  bogs w i t h an i n c r e a s e i n t h e a c c u m u l a t i o n and  the  at 36O+90 years  dated has  i n v a s i o n o f bog  t h a n w o u l d be  permanently The  A;.representatiye  (Wade, 1 9 6 5 ) .  r e s u l t e d i n a s o i l w h i c h has  expression  on  species.  of o r g a n i c  This  bog  has  sequence of  a^higher  expected i f the  material  degree of soil  had  processes  genetic  been  saturated.  most p r o n o u n c e d f e a t u r e o f t h e  s t o n y m a r i n e c l a y m a t e r i a l s , was  the  at Site' 4 ,  soil  ability  of t h i s  w i t h a. c l a y c o n t e n t  as h i g h as t h i s t o d r a i n i n t e r n a l l y .  presence of m o t t l e s  i n the upper B h o r i z o n s  t h a t . f o r • p a r t of the year but  f o r much o f t h e y e a r  the. l e v e l s and  Mg  i s the  been  the  the  soil  soil  the  o f p r e c i p i t a t i o n . i n the..area.  a t 1 1 7 cm. effective  below the m i n e r a l  soil The  is. i n d i c a t i v e  i s saturated  has  developed  i n these  horizons  c a p a c i t y t o cope The  increase i n  surface horizons  l e a c h i n g depth i n t h i s m a t e r i a l f o r  with Ca  shows  this  this  environment. Initially probably  the m a t e r i a l from which t h i s  similar  to that at S i t e  5, h o w e v e r t h e  w h i c h were p o s i t i o n e d n e a r d r a i n a g e periodic drying. during periods  The  soil^developed  of h i g h water content  which allowed  d e c r e a s e i n pH  pedogenic processes  d u r i n g dry periods•would  d e s t r u c t i o n of the primary  minerals  to  constituents  i n the presence  o r g a n i c m a t t e r r e s u l t e d i n the removal of these products  materials  c h a n n e l s were s u b j e c t  i n c r e a s e d m o b i l i z a t i o n of  was  of  weathering,  to continue.  The  result- i n increased  high i n bases.  Also,  the  121  alternating  cycles of wetting and.drying  aggregation  o f t h e Fe a n d A l o x i d e s w h i c h a r e t h e r e s i s t a n t  weathering is  residues of the processes  the aggregation  of these  t e r n a l c a p a c i t y of these The  very  in  soils to transport  water.  l o w amounts o f a v a i l a b l e P r e f l e c t  Because t h e t o t a l  p a r t l y the  i n t h e pedon t o r e d u c e i t s  s o i l volume i s i n t h e  d e p o s i t s where t h e The  < 2 mm  phosphates.  soil  than  i n t h e outwash  s i z e component was much s m a l l e r .  h i g h pH d e p e n d e n t CEC r e s u l t i n g  amounts o f A l a l s o s u p p o r t s  from t h e presence  In the C horizon, the three f o l d t o a decrease  increases i n i n t h e amount  o f F e and A l o x i d e s , and a l s o a much h i g h e r c o n t e n t Mg w h i c h w o u l d a l s o b e g i n t o i m m o b i l i z e BCg  two c a s e s  resulted  i n t h e h i g h e r v a l u e f o r a v a i l a b l e P.  criteria  o u t l i n e d by McKeague e t a l _ ( 1 9 7 1 )  The  and h a s  Using the  most o f t h e F e i s  a s i n o r g a n i c amorphous m a t e r i a l a n d i t i s an i n c r e a s e  t h i s form t h a t corresponds  t o a decrease  Although  t h i s approach t o determing  does, not  g i v e a b s o l u t e amounts ( A r s h a d  1972)  o f Ca and  some o f t h e P.  h o r i z o n i s i n t e r m e d i a t e between these  present  of large  t h e i m m o b i l i z a t i o n o f P. a s Fe and  a v a i l a b l e P represent the response  in  < .2 mm  s i z e f r a c t i o n , t h e amount o f F e and A l w h i c h i s ' p r e s e n t t o  p r e c i p i t a t e P i s much h i g h e r i n t h i s  Al  mentioned p r e v i o u s l y . I t  o x i d e s w h i c h has i n c r e a s e d t h e i n -  h i g h amounts o f F e and A l a v a i l a b l e availability.  have r e s u l t e d , i n t h e •  i n available  P.  t h e f o r m o f Fe i n s o i i s e_t al, 1 9 7 2 ' ;  Pawluk,  i t does g i v e t h e r e l a t i v e p r o p o r t i o n s o f e a c h f o r m  present.  122 As  c a n be  processes similar  t a k i n g p l a c e i n . the formation, of t h i s  to those  materials. fine  seen from t h e p r e v i o u s d i s c u s s i o n , the  The  t a k i n g place i n s o i l s developed r a t e o f d e v e l o p m e n t has  texture^and  m a t e r i a l and  the presence  C suggests•that  on  are coarser  b e e n r e t a r d e d by  of b a s i c c a t i o n s i n the  from p r e c i p i t a t i o n .  s i z e d i s t r i b u t i o n and and  soil  chemical  The  and  characteristics  t h e o r i g i n a l sand s i z e d  t h e f o r m a t i o n o f o x i d e s o f Fe  then formed aggregates size  as  shown by t h e  d i s t r i b u t i o n upon t r e a t m e n t The  soil  at  Site  4 but  is  evidence  at S i t e  5 has  and  A placic  deep s o i l  in material mobile  These  dithionite.  i n depth  to that  and  there  T h i s i s due  removal of  e l i m i n a t e s c y c l e s o f w e t t i n g and  e f f e c t i v e l y prevents  Al.  characteristics  the pedon.  the h i g h water t a b l e which prevents products  and  solum  change i n p a r t i c l e  pedon d e v e l o p m e n t i s l i m i t e d  of wetness throughout  parent  between the  particles  with citrate  similar  the  differences in particle  were w e a t h e r e d w i t h s u b s e q u e n t r e m o v a l o f - t h e r e a d i l y products  pedogenic  to  weathering drying.  This  development.  h o r i z o n . i s t h e d o m i n a n t g e n e t i c f e a t u r e i n some  o f t h e s o i l s • d e v e l o p e d on m a r i n e b e a c h s a n d d e p o s i t s . characteristics,  composition  and  genesis  The  of t h i s h o r i z o n  are  d i s c u s s e d i n d e t a i l i n Chapter I I I . S o i l genesis the depth presence  i n t h i s m a t e r i a l was  initially  d i r e c t e d by  o f t h e w a t e r t a b l e f r o m t h e m i n e r a l s u r f a c e and of l i t h o l o g i c d i s c o n t i n u i t i e s  the  i n the parent m a t e r i a l .  123  W i t h t h e a d d i t i o n o f w a t e r i n s i t e s where t h e w a t e r t a b l e not near the s u r f a c e  a s . i n S i t e - 6, d i s t i n c t  were e s t a b l i s h e d i n s u c c e s s i v e contents.  The  2 0 cm b e l o w t h e m i n e r a l  horizon  originated.  The  placic  horizon  mlcroenvironments  l a y e r s from d i f f e r e n t i a l m o i s t u r e  d i s c o n t i n u i t y of g r e a t e s t  imately  i n f l u e n c e was  s u r f a c e where t h e  approx-  placic  i s n e a r l y i m p e r v i o u s t o w a t e r and  p e n e t r a t i o n , and s u b s e q u e n t  was  to i t s formation  OM  has  a b o v e i t and a p e r c h e d w a t e r t a b l e h a s d e v e l o p e d . when t h e m a t e r i a l a b o v e t h e pan became s a t u r a t e d  root  accumulated Previously,  the l o s s of  t e n s i o n i n t h e f i n e r m a t e r i a l s upon s a t u r a t i o n e n a b l e d w a t e r t o move i n t o t h e c o a r s e r m a t e r i a l .  With the development of  t h e pan t h e p e r c h e d w a t e r t a b l e r e m a i n s f o r l o n g e r Both the continued increases  p r e s e n c e o f w a t e r and t h e a c c u m u l a t i o n OM  the redox d i f f e r e n t i a l ,  which are.necessary  f o r pan  thus perpetuating  s o i l s w h i c h have p l a c i c  horizons  t c d e v e l o p bog  for sites  which  evapotranspiration.  The  s o i l a t S i t e 7. i s d e v e l o p e d on s i m i l a r m a t e r i a l s  4.  The  pronounced  as  d i f f e r e n c e s i n p r o f i l e development r e -  s u l t from the h i g h water t a b l e at t h i s of a l l h o r i z o n s  with  conditions.  i s a c c e l e r a t e d by t h e r e m o v a l o f t r e e s  decreases the l o s s of water through  Site  conditions  formation.  As t h e s e c o n d i t i o n s p e r s i s t t h e t e n d e n c y ^ i s  This.process  periods.  site.  The  saturation  most o f t h e t i m e has e l i m i n a t e d t h e  redox p o t e n t i a l which would r e s u l t i n the s e g r e g a t i o n  differential of  124 materials the  into, s p e c i f i c  horizons  e f f e c t i v e l e a c h i n g d e p t h i s l i m i t e d by t h e w a t e r  a s - i n d i c a t e d by an i n c r e a s e  penetration organic  lower solum.  horizons  i n relatively  This, plus  table  l a y e r s has r e s u l t e d i n r o o t  i n t o lower subsurface  C is' present  Also,  i n c a t i o n s i n t h e C. h o r i z o n .  Thejabsence of r e s t r i c t i n g  in  by p e d o g e n i c p r o c e s s e s .  and c o n s e q u e n t l y  h i g h amounts i n t o t h e  the saturated  c o n d i t i o n s , has r e s u l t e d  t h e m o b i l i z a t i o n o f F e r e s u l t i n g i n maximum a c c u m u l a t i o n i n  the B f g h o r i z o n . The  soil  a t S i t e 8, a l s o on b e a c h s a n d d e p o s i t s  much l e s s d e v e l o p m e n t t h a n . t h e s o i l  a t S i t e 6.  The  exhibits recent  emergence o f t h e s e m a t e r i a l s r e l a t i v e t o t h o s e where  placic  horizons  difference  in the  have d e v e l o p e d i s p a r t l y t h e cause f o r ' t h i s  degree o f development. two m a t e r i a l s , c a n  The r e l a t i v e r e l a t i o n s h i p o f t h e age  be e s t i m a t e d  from the d i f f e r e n c e i n  e l e v a t i o n , a s s u m i n g emergence h a s t a k e n p l a c e . a t at both  a similar  rate  sites.  This  s o i l . h a s some p o t e n t i a l t o d e v e l o p p l a c i c  horizons,  however, t h e r e  i s no e v i d e n c e t h a t t h i s i s h a p p e n i n g a t t h e  present  There a r e d i s c o n t i n u i t i e s i n t h e m a t e r i a l but  the  time.  contrast  i n particle  as t h a t i n S i t e 6. the  size distribution  i s n o t as pronounced  H o w e v e r , t h e a b r u p t d e c r e a s e i n Fe. b e l o w  B f 2 c o u l d indicate.J.the p l a c i c h o r i z o n , i f formed,  will  develop at t h i s i n t e r f a c e . The has  development o f s o i l s  on t h e g l a c i a l  till  deposits  b e e n d i s r u p t e d by movement o f m a t e r i a l d o w n s l o p e by  soil  125  c r e e p arid t r e e w i n d - t h r o w . the  surface mineral  This  horizons,  has r e s u l t e d i n c h u r n i n g  of  howeyer, t h e m a t e r i a l i n t h e  p e d o n s a t S i t e s 9 a n d 1 0 was. w e a t h e r e d t h r o u g h o u t so d e v e l o p ment was n o t g r e a t l y r e t a r d e d  by t h e i n c o r p o r a t i o n o f u n -  weathered m a t e r i a l s , but t h e morphology has changed. Initially  d e v e l o p m e n t was l i m i t e d ' t o t h e a b l a t i o n m a t e r i a l  above t h e b a s a l t i l l still  w h i c h was i m p e r m e a b l e .  e x i s t s i n deep d e p o s i t s  where a b l a t i o n m a t e r i a l s  This  situation  a t t h e base o f t h e s l o p e s  have a c c u m u l a t e d and w e a t h e r i n g  has  not penetrated  the basal m a t e r i a l .  A t t h e s i t e s where '  the  s a m p l e s w e r e t a k e n t h e b a s a l m a t e r i a l has b e e n w e a t h e r e d  because o f t h e l i m i t e d d e p t h o f m a t e r i a l above t h e l i t h i c contact. As and 10.  d e v e l o p m e n t p r o c e e d e d , OM h a s moved t h r o u g h t h e p e d o n  e x h i b i t s an i n c r e a s e The i n c r e a s e  suggests that  i n p y r o p h o s p h a t e Fe i n t h e I I B f 2  t h e OM h a s moved a s F e o r g a n i c  ( S c h n i t z e r and S k i n n e r , in  above t h e b e d r o c k i n t h e s o i l a t S i t e •  1966).  matter  horizon complexes  T h e r e a r e some r o o t s  t h i s ' h o r i z o n which would c o n t r i b u t e  present  t o t h e OM c o n t e n t b u t  d o e s not' a c c o u n t f o r t h e i n c r e a s e . Of  the s o i l s  studied,these  s o i l s had t h e h i g h e s t  total  amounts o f e x t r a c t a b l e Fe a n d A l , . c o n s i s t e n t l y t h r o u g h o u t t h e s o i l volume.  This  i n d i c a t e s high  present i n the materials minerals  amounts o f t h e s e e l e m e n t s were  originally,  e i t h e r i n primary  o r a s some s e c o n d a r y f o r m . ' • C o r r e s p o n d i n g , t o t h i s ,..  126 are very  l o w amounts o f a v a i l a b l e P w h i c h c o u l d h a v e b e e n  liberated  and removed f r o m t h e p e d o n .  t i e d up a s Fe and A l p h o s p h a t e s . icle the  size distribution soil  Howeyer  t o a higher percentage  Ca was p r e s e n t  pared  soil  that  place.  o f e x c h a n g e a b l e Mg 9 com-  T h i s c a n be e x p l a i n e d by t h e p o s i t o n  on th.e s i d e o f a h i l l  o p p o s i t e t h e ocean.  ( 1 9 7 2 ) has b e e n shown t h a t t h e s h i e l d i n g rapidly  when  i n the organic surface horizon of Site  to a l l other s i t e s .  of t h i s  of fines  a l s o suggests  o f t h e Fe a n d A l o x i d e s h a s t a k e n  A pronounced d i f f e r e n c e i n the r a t i o to  the p i s probably  The p r o n o u n c e d change i n p a r t -  i s treated with citrate dithionite  aggregation  ?  change t h e c o m p o s i t i o n  effect  Clayton  of objects  of ocean i n f l u e n c e d r a i n w a t e r .  CONCLUSIONS  Particle  s i z e d i s t r i b u t i o n and t h e d i s t r i b u t i o n o f c l a y  m i n e r a l s and c h e m i c a l the presence  constituents i n the s o i l s  of l i t h o l o g i c  of aggregation  a l s o e x h i b i t a wide  t e x t u r e s w h i c h i s a f f e c t e d by t h e h i g h of clay  confirms  d i s c o n t i n u i t i e s and t h e c o m p l e x  mode o f m a t e r i a l d e p o s i t i o n . The s o i l s range o f s o i l  studied  s i z e d Fe and A l o x i d e s  into  degree  larger  particles. The  soil  chemistry  i s a f f e c t e d by t h e h i g h c a t i o n c o n -  c e n t r a t i o n i n t h e p r e c i p i t a t i o n a s shown by t h e n a r r o w of'Ca  t o Mg i n t h e s u r f a c e m i n e r a l h o r i z o n s .  Soil  ratios  fertility  127  is  low w i t h n u t r i e n t c y c l i n g o c c u r r i n g p r e d o m i n a n t l y  organic  surface  horizons  f e a t u r e which c o n t r o l s the  in  the  horizons.  Cementation of s o i l  scape.  in  Iron-organic  i s the dominant  f u n c t i o n of the  soil  m a t t e r complexes i s the  some o f t h e p l a c i c h o r i z o n s  and  A l and  genetic  i n the  land-  cementing agent  S i are a c t i v e i n the  outwash m a t e r i a l s . A n a l y s i s of s o i l genesis  i n the P o d z o l  p r o p e r t i e s show t h a t t h e s o i l s was  sequence  an a c c u m u l a t i o n  o f OM  subsequent l e a c h i n g of the m i n e r a l m a t e r i a l w i t h acids.  These a c i d s a t t a c k e d  m o b i l i z e d and phosphates. metallic  the m i n e r a l s  p r e c i p i t a t e d lower  high i n P which  T h e r e i s e v i d e n c e f o r movement o f Fe  e n r i c h m e n t o f Fe  and  Al.  and  organic  i n t h e p e d o n s as Fe  compounds, h o w e v e r , most o f t h e  of  soils  as  and  was Al  organo-  exhibit  negative  128  LITERATURE CITED  A L L I S O N , L . E . 1 9 6 5 - O r g a n i c c a r b o n . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k e d . ) . P a r t - 2 , p. 1 3 6 7 - 1 3 7 8 . A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . ARSHAD, M.A., ST. ARNAUD, R . J . a n d HUANG, P.M.. 1 9 7 2 . D i s s o l u t i o n o f t r i o c t a h e d r a l l a y e r s i l i c a t e s by ammonium o x a l a t e , sodium d i t h i o n i t e - c i t r a t e - b i c a r b o n a t e , and potassium pyrophosphate. Can. J . ' S o i l S c i . 5 2 : 1 9 - 2 6 . B A R I L , R. a n d BITTON, G. 1 9 6 9 T e n e u r s e l e v e e s de. f e r et 1 ' i d e n t i f i c a t i o n t a x o n o m i q u e de c e r t a i n s s o l s du Quebec c o n t e n a n t de l a m a g n e t i t e . Can. J . S o i l S c i .  libre  49:1-9-  BHOOJEDHUR, S. 1 9 6 8 . G e n e s i s o f a P o d z o l s e q u e n c e o n t h e west c o a s t o f Vancouver I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , D e p t . o f S o i l S c i . U.B.C. BLAKE, G.R. 1 9 6 5 - B u l k d e n s i t y . I n "Methods o f S o i l A n a l y s i s " . (C.A. B l a c k , e d . ) P a r t 1 , p. 3 7 4 - 3 9 0 . American S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . BREMNER, J.M. 1 9 6 5 . T o t a l n i t r o g e n . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 2 , p. 1 1 4 9 - 1 1 7 8 . . A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . BREMNER, J.M. 1 9 7 0 . The G e o l o g y o f Wreck B a y , V a n c o u v e r I s l a n d , U n p u b l i s h e d M.Sc. t h e s i s , D e p t . o f G e o l o g y , U.B.C. CHAPMAN,.H.D. 1 9 6 5 . C a t i o n e x c h a n g e c a p a c i t y . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , ed. ) . P a r t 2 , p. 8 9 1 - 9 0 1 . A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . CLARK, J . S . 1 9 6 5 . The e x t r a c t i o n o f e x c h a n g e a b l e c a t i o n s f r o m soils. Can. J . S o i l S c i . 4 5 : 3 1 1 - 3 2 2 . CLARK, J . S . McKEAGUE, J . A . a n d NICHOL, W.E. 1 9 6 6 . ..The u s e o f pH d e p e n d e n t c a t i o n - e x c h a n g e c a p a c i t y f o r c h a r a c t e r i z i n g the B h o r i z o n s o f B r u n i s o l i c and P o d z o l i c s o i l s . Can. J . S o i l S c i . 46:161-166. CLAYTON, J . L . 1 9 7 2 . S a l t s p r a y a n d m i n e r a l c y c l i n g i n two C a l i f o r n i a c o a s t a l ecosystems. Ecology 5 3 : . 7 4 - 8 1 . DAY,  P.R. 1 9 6 5 . P a r t i c l e f r a c t i o n a t i o n a n d p a r t i c l e s i z e • analysis. I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 1 , p. 5 4 5 - 5 6 7 . A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , Wisconsin".  DUCHAUFOUR, P. 1 9 6 5 . " P r e c i s de P e d o l o g i e . 2 Masson e t C i e . P a r i s ( V I ) . e  e  m  e  edition.  129  FRANZMEIER, D.P., , HAJEK, B.F, and SIMQNSQN, C.H, 1 9 6 . 5 , Use o f amorphous m a t e r i a l t o . I d e n t i f y s p o d i c h o r i z o n s . . S o i l S c l . S o c , Amer,. P r o c , 29..; 7 3 7 - 7 4 3 , FRANZMEIER, D.P., WHITESIDE, E,P. and MORTLAND, M ,M, 1 9 6 3 . A chronosequence...of P o d z o l s i n N o r t h e r n ' M i c h i g a n , I I I . M i n e r a l o g y , m i c r o m o r p h o l o g y and n e t c h a n g e s o c c u r r i n g . . during s o i l formation, Michigan State University. Quarterly Bulletin 46;37-57. JACKSON, M.L, 1 9 5 8 . S o i l c h e m i c a l I n c . , Englewood C l i f f , N.J.  analysis.  Prentice Hall  JACKSON, M.L, 1 9 6 4 . S o i l c l a y m i n e r a l o g i c a l a n a l y s i s . In " S o i l " c l a y m i n e r a l o g y , a s y m p o s i u m " . ( C . I . R i c h and G.W. K u n z e ed.) The U n i v e r s i t y o f N o r t h e r n C a r o l i n a P r e s s , Chapel H i l l , N.C. JACKSON, M.L. 1 9 6 5 . F r e e o x i d e s , . h y d r o x i d e s , and amorphous aluminum s i l i c a t e s . I n "Methods o f S o i l A n a l y s i s " . ('CA. B l a c k , e d . ) . P a r t 1 , p. 5 7 8 - 6 0 3 . American S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . JACKSON, M.L., HSEUNG, Y., COREY, R.B., EVANS, E . J . and VANDEN H E U V E L / R . C 1 9 , 5 2 . Weathering sequence of c l a y ., s i z e m i n e r a l s I n s o i l s and s e d i m e n t s : I I . C h e m i c a l weathering of l a y e r s i l i c a t e s . S o i l S c i . S o c . Amer. Proc. 1 6 : 3 - 6 . K I T T R I C K , J.A. and HOPE, E.W. s i z e s e p a r a t i o n of s o i l s Soil Sci. 93:319-325.  1 9 6 3 . A procedure f o r p a r t i c l e f o r X-ray d i f f r a c t i o n a n a l y s i s .  L A V K U L I C H , L.M., BHOOJEDHUR, S., and ROWLES, C A . 1 9 7 1 . S o i l s w i t h p l a c i c h o r i z o n s on t h e w e s t c o a s t o f V a n c o u v e r I s l a n d , B r i t i s h Columbia. Can. J . S o i l S c i . 5 1 : 4 3 9 - 4 4 8 . LAVKULICH, L.M., DAIRON, P.A. and VON SPINDLER, B. 1 9 7 0 . D e t e r m i n a t i o n o f c a r b o n and s u l f u r i n s o i l e x t r a c t s by dry combusion using, a h i g h temperature i n d u c t i o n f u r n a c e . Can. J . - S o i l S c i . 5 0 : 9 5 - 9 6 . McKEAGUE, J.A. 1 9 6 7 . An e v a l u a t i o n o f 0.1M p y r o p h o s p h a t e and p y r o p h o s p h a t e - d i t h i o n i t e i n c o m p a r i s o n w i t h o x a l a t e as e x t r a c t a n t s • o f t h e a c c u m u l a t i o n p r o d u c t s i n P o d z o l s and some o t h e r s o i l s . Can. J . S o i l S c i . 4 7 : 9 5 - 9 9 McKEAGUE, J.A., BRYDON,: J . E . and M I L E S , N.M. 1971. Differentiat i o n o f f o r m s o f e x t r a c t a b l e i r o n and a l u m i n u m i n s o i l s . S o i l S c i . S o c . Amer. P r o c . 3 5 : 3 3 . - 3 8 .  130 McKEAGUE., J.A. and-.DAY,, J , H , 1 9 6 6 . D i t h i o n i t e a n d o x a l a t e e x t r a c t a b l e i r o n and a l u m i n u m as a i d s i n . d i f f e r e n t i a t i n g various: classes, of s o i l s , Can, J , S o i l . S c i , 46;.13-22.. MCKENZIE,  L . J . , W H I T E S I D E , ,E.,.P..  and E R I C K S O N ,  A.E. i960,.  O x i d a t i o n - r e d u c t i o n s t u d i e s on t h e m e c h a n i s m o f B h o r i z o n formation i n Podzols. S o i l S c i . S o c . Amer. P r o c . 2 4 : 3 0 0 - 3 0 5 MEHRA, O.P, and JACKSON, M.L. I 9 6 0 . I r o n oxide removal from s o i l s a n d c l a y s by a d i t h i o . n i t e - c i t r a t e s y s t e m b u f f e r e d w i t h sodium b i c a r b o n a t e . C l a y s and c l a y m i n e r a l s . Proceedings' of the 7 t h N a t i o n a l Conference ( 1 9 5 8 ) , 317-327.  PAWLUK, S. 1 9 7 2 . M e a s u r e m e n t o f c r y s t a l l i n e a n d amorphous removal i n s o i l s . Can. J . S o i l S c i . 5 2 : 1 1 9 - 1 2 3 .  iron  PEECH, M. 1 9 6 5 . E x c h a n g e a c i d i t y . I n "Methods o f S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 2 , p. 9 0 5 - 9 1 3 A m e r i c a n S o c i e t y o f Agronomy. M a d i s o n , W i s c o n s i n . RICHARDS, L.A. I 9 6 5 . P h y s i c a l c o n d i t i o n of water i n s o i l . I n "Methods, o f S o i l A n a l y s i s " . ( C A . B l a c k , e d . ) . P a r t 1 , p. 1 2 8 - 1 5 2 . A m e r i c a n S o c i e t y . . o f Agronomy, M a d i s o n , Wisconsin. SAWHNEY, B . L . , F R I N K , C.R. a n d H I L L , D.E. 1 9 7 0 . Components o f pH d e p e n d e n t c a t i o n e x c h a n g e c a p a c i t y . S o i l S c i . 109:272-278.  SCHNITZER, M. a n d SKINNER, S.I.M. 1 9 6 6 . Oragno-metallic i n t e r a c t i o n s i n s o i l ; 5 - S t a b i l i t y c o n s t a n t s o f Cu++-, Fe++-,.and Zn++- F u l v i c a c i d c o m p l e x e s . S o i l S c i . 102:361-365.  VALENTINE,.K.W.G. I 9 6 9 . '-A P l a c i c Humic P o d z o l on V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a , Can. J . S o i l S c i . 4 9 : 4 1 1 - 4 1 3 . VALENTINE,.K.W.G. 1 9 7 1 . S o i l s o f t h e T o f i n o - U c l u e l e t L o w l a n d of B r i t i s h Columbia. Canada Department o f A g r i c u l t u r e , R e s e a r c h B r a n c h . R e p o r t No. 1 1 . O t t a w a , O n t a r i o . VAN •  SCHUYLENBORGH, J . a n d BRUGGENWERT, M.G.M. 1 9 6 5 . On s o i l g e n e s i s i n t e m p e r a t e humid c l i m a t e . V. The f o r m a t i o n o f t h e " a l b i c " a n d " s p o d i c " h o r i z o n . N e t h . J:. A g r i c . S c i . 13:267-279-  WADE, L.K. 1 9 6 5 . V e g e t a t i o n a n d h i s t o r y o f t h e Sphagnum bogs o f t h e T o f i n o a r e a , V a n c o u v e r I s l a n d . U n p u b l i s h e d M.Sc. t h e s i s , D e p t . o f B o t a n y , U.B.C.  CHAPTER I I I  THE V A R I A B I L I T Y AND GENESIS OF SOME PLACIC HORIZONS I N SOILS ON THE WEST COAST OF VANCOUVER  ISLAND  132  THE V A R I A B I L I T Y AND GENESIS.OF SOME 1  PLACIC HORIZONS I N SOILS ON THE WEST COAST OF VANCOUVER ISLAND  INTRODUCTION  The soils, their  occurrence  of placic  horizons  and t h e n e e d f o r a d d i t i o n a l characteristics  and genesis  ( t h i n pans) i n  research to further elucidate h a s b e e n r e p o r t e d by s e v e r a l  (Damman., 1 9 6 5 ; McKeague e_t aJL. , 1 9 6 7 , 1 9 6 8 ; B h o o j e d h u r ,  workers  1 9 6 8 ; V a l e n t i n e , 1 9 6 9 and L a v k u l i c h e t a l . , ' 1 9 7 1 ) , (1969)  Canadian  first  reported placic  horizons  l y d e p o s i t s on t h e w e s t c o a s t studies o f these (1971). and  chemical  the  same a r e a . The  horizons  i n s o i l s developed  o f Vancouver I s l a n d w i t h  p a n s by B h o o j e d h u r  More r e c e n t l y , p l a c i c  Valentine  (1968)  horizons  on g r a v e l subsequent  a n d L a v k u l i c h e t aJL  o f v a r y i n g morphology  p r o p e r t i e s have been found i n sandy m a t e r i a l s i n  purpose, o f t h i s study  was t o d e s c r i b e t h e p l a c i c  i n t h e sandy m a t e r i a l s and a s s e s s  o c c u r r i n g i n t h e pans found i n t h e study  the v a r i a b i l i t y  area.  EXPERIMENTAL METHODS  The  environment i n which t h e p l a c i c  h o r i z o n s a r e formed  was- d e s c r i b e d e a r l i e r I n C h a p t e r I , and t h e s o i l a t S i t e  6 i s a  133  r e p r e s e n t a t i v e pedon I n w h i c h t h e y ified  as a P l a c i c Humic P o d z o l  Classification  (National Soil  develop.  The  soil  is  i n the Canadian System  of  Survey Committee, 1 9 6 8 )  and i960',;  a P l a c o r t h o d i n t h e U.S.D.A. S y s t e m ( S o i l . S u r v e y S t a f f , 1964,  1967).  Placic horizons only i n s p e c i f i c  i n the  sand p a r e n t  m a t e r i a l s have  p o s i t i o n s i n the landscape  where t h e g r o u n d w a t e r t a b l e i s a t l e a s t surface f o r a s i g n i f i c a n t  face.  They u n d u l a t e  and  (Figure  III-l)  p e r i o d of the year.  The  below the m i n e r a l  are g e n e r a l l y h o r i z o n t a l to the  or almost v e r t i c a l  root channels  metre.  h o r i z o n s are e f f e c t i v e  movement.  placic The  a t i o n being  vertical a  in restricting  water  r e s u l t i n g - perched water t a b l e s a t u r a t e s w i t h s p e c i e s o f bog  e s t a b l i s h e d i n many a r e a s  have r e m o v e d t h e  where p r e v i o u s  the veget-  fires  larger tree species.  P l a c i c h o r i z o n s were f o u n d i n s o i l s u n d e r a v a r i e t y vegetation.  This  included stands.of  naturally  w e s t e r n h e m l o c k ( T s u g a • h e t e r o p h y l l a ) and ( T h u j a p l l c a t a ) w i t h an u n d e r s t o r y salmon, b e r r y garvifolia).  sur-  earth's  t o a d e p t h o f more t h a n  surface horizons f o r long periods  the  p a n s commonly  s u r f a c e but.some were f o u n d a s s o c i a t e d w i t h v a c a n t ,  The  developed  1 . 5 t o 2 m below  b e n e a t h a Bh h o r i z o n a t 2 0 t o 3 0 cm  occur  pine  class-  (Rubus s p e c t a b i l l s ) and Other p l a c i c  horizons  regenerated  western red  of s a l a l  ( P i n u s c o n t o r t a ) w i t h an u n d e r s t o r y  cedar  (Gaultheria shallon),  red huckelberry occurred  of  i n areas  o f bog  (Vaccinium of  shore  vegetation.  134  Figure I I I - l .  Schematic diagram showing the p o s i t i o n the to  placic  of  h o r i z o n s i n the landscape i n r e l a t i o n  other landscape  features.  135  MATERIALS Samples of m a t e r i a l from from f o u r  sites  i n the  placic  s a n d m a t e r i a l and  from a g r a v e l l y outwash d e p o s i t (1968)  Bhoojedhur  and  horizons, .were-collected a fifth  was  collected by h -  previously described  used i n t h i s  study  for  comparative  purposes. Placic  Horizon  (a)  This placic f r o m 0 . 1 t o 3 mm  In thickness.  I t occurs  a band o f m a t r i x  m a t e r i a l 4 cm.  thick.  elongate and  o r b r a n c h e d , and  as  The  varies  a network w i t h i n pan  i s discontinuous,  and  may  black  be  single  i n colour  vitreous. Placic  i n the  area  horizontal  horizons  with this  where t h e to the  soil  material  of morphology are  surface  and  This  pan  undulated  h o r i z o n was  finer  was  dominant  typically  slightly.  The  textured than  the  below.  Placic Horizon This  type  pans o c c u r r e d .  m a t e r i a l above the p l a c i c  (b)  placic  f r o m . 2 t o 3 mm and  III-2  h o r i z o n i s shown i n F i g u r e  h o r i z o n i s shown i n F i g u r e  i n thickness.  v i t r e o u s w i t h a dark red  approximately  1 cm  I t was ( 2 YR  t h i c k immediately  III-3  and  varies  single-, continuous,  3 / 6 ) band o f m a t e r i a l below.  black  136  Figure  III-2.  Placic Horizon and v i t r e o u s  (a) showing t h e v a r i a b l e  appearance  form  ( s c a l e e q u a l s 1 cm.)-  Placic Horizon red m a t e r i a l  (b) s h o w i n g t h e band o f d a r k  immediately  e q u a l s 1 cm.) .  b e l o w t h e pan  (scale  138  This p l a c i c  h o r i z o n was a , t y p i c a l i n t h a t i t had  formed  around a l a r g e volume of s u r f a c e m i n e r a l m a t e r i a l which been i n c o r p o r a t e d i n t o t h e :(Figure Placic  and  has  coarser t e x t u r e d . m a t e r i a l belowi  III-4_), Horizon  (c)  This p l a c i c single  h o r i z o n , shown i n F i g u r e I I I - 5 , was  or branched,  was  and  typical  f o r e s t which occupies  p e d o n was  100  o f t h o s e w h i c h were f o u n d  m i n width  very s i m i l a r  Horizon  Placic  (Cordes,  Horizon  H o w e v e r , t h e pan  was  varied  present  o c c u r r e d i f t h e pan Placic  Horizon  T h i s pan mm  (Picea sitchensis)  to Placic Horizon  coast from  The  position  a In  the  (a) w i t h f i n e r t e x t u r e d  pan.  (d) i s shown i n F i g u r e I I I - 6  continuous'and  i n the pan  1973).  i n close  (d)  associated with Placic  single,  spruce  a n a r r o w band a l o n g t h e  m a t e r i a l o c c u r r i n g above t h e Placic  thick,  v i t r e o u s appearance.  p r o x i m i t y t o . t h e ocean i n the S i t k a  over  4 mm  c o n t i n u o u s , dark brown t o b l a c k i n c o l o u r  a mixed d u l l  T h i s pan  few.to  had  was  Horizon  (G) i n s i m i l a r  froirU:2 t o 3 mm had  and  landscape  and  a i r dried  units.  i n t h i c k n e s s and  a brown t o b l a c k c o l o u r .  as d u l l  was  The  vitreous layers. causing  was material  Shrinkage  fracturing.  (e) i s shown i n F i g u r e 1 1 1 - 7 and  i n t h i c k n e s s , was  single,  varied  c o n t i n u o u s , b l a c k and  from  1 to 2  vitreous.  139  Figure  III-4.  The into  i n c o r p o r a t i o n of s u r f a c e  mineral  s u b s u r f a c e m a t e r i a l around which  Horizon  (b) has  formed.  material Placic  140  %  \  P l a c i c H o r i z o n (c) showing the abrupt of  t h i s pan  (scale equals 1  cm.).  boundaries  141  Figure  III-6.  Placic Horizon material  (d) s h o w i n g s t r a t i f i c a t i o n  i n t h e p a n and t h e f r a c t u r e s  when i t i s a i r d r i e d  (scale equals  1  of  formed cm.).  I  Figure  III-7.  Placic  Horizon  (e) showing t h e v i t r e o u s  a p p e a r a n c e o f t h e pan m a t e r i a l conformity equals 1  with cm.).  and l a c k o f  any change i n t e x t u r e  (scale  143 T h i s pan w a s . p r e s e n t throughout not conform penetrated  i n outwash m a t e r i a l s and.occurred  t h e p e d o n up t o o h s e r y e d  d e p t h s ' o f 3 m,  t o t e x t u r a l b o u n d a r i e s and t h e s o f t g r a v e l s and r o c k  Undisturbed  samples  which  randomly  The  pan d i d  placic'material  fragments.  i n c l u d e d the p l a c i c h o r i z o n  and m a t e r i a l a b o v e and b e l o w were c o l l e c t e d , a i r d r i e d , s e p a r a t e d i n t o m i c r o - h o r i z o n s , and g r o u n d 6 0 mesh  t o pass  carefully  through  a  sieve.  ANALYTICAL METHODS Pyrophosphate  Fe and A l ( 0 . 1 N ,  25°C), o x a l a t e Fe, A l , S i 0  2  and Mn  c i t r a t e - b i c a r b o n a t e Fe, A l , S i 0 e x t r a c t i o n s were c o m p l e t e d McKeague (i960)  (1967),  1 0 , shaken  (shaken  and Mn  2  (1966)  12 h r s . at  4 hrs.), dithionite- •  ( 2 8 min.  f o l l o w i n g procedures  McKeague and Day  respectively.  pH  total) outlined  by  and M e h r a and J a c k s o n  A n a l y s i s f o r t h e c a t i o n s were  •  completed  by a t o m i c a b s o r p t i o n s p e c t o p h o t o m e t r y . T o t a l c a r b o n was  measured u s i n g a  i n d u c t i o n furnace (Leco, 1 9 5 4 ) . determined (1965).  high-temperature  T o t a l o r g a n i c carbon  by t h e W a l k l e y - B l a c k method o u t l i n e d  Pyrophosphate  l o w i n g an a l i q u o t  extractable  c a r b o n was  by  was  Allison  m e a s u r e d by a l -  o f s a m p l e f r o m t h e 0.IN' e x t r a c t i o n t o  t o near dryness w i t h subsequent W a l k l e y - B l a c k method.  c a r b o n d e t e r m i n a t i o n by  evaporate the  Fulvic  ( F A ) a n d humic a c i d  pyrophosphate  (HA) s e p a r a t i o n o f t h e 0 . I N  e x t r a c t a b l e organic matter  Placic Horizons  was c o m p l e t e d i n  ( b ) a n d (e). by a c i d i f i c a t i o n w i t h H^O^  to  p r e c i p i t a t e t h e HA, c e n t r i f u g i n g a n d d e c a n t i n g t h e FA a n d r e d i s s o l v i n g a n d HA w i t h NaOH. those  samples•having  t h e same p r o c e d u r e  The p e r c e n t : , o r g a n i c C i n  o b s e r v a b l e amounts of•HA was d e t e r m i n e d as p y r o p h o s p h a t e " e x t r a c t a b l e  Q u a l i t a t i v e a n a l y s i s t o determine  carbon.  the v e r t i c a l  o f F e , A l , S i , a n d Mn and P l a c i c H o r i z o n s  The s a m p l e s were i m p r e g n a t e d  distribution  ( b ) a n d ( c ) was com-  p l e t e d u s i n g a JXA-cA model e l e c t r o n probe X-ray anlayzer.  micro-  u s i n g S c o t c h c a s t No. 3  epoxy r e s i n a n d d r y p o l i s h e d u s i n g No. 30 emery p a p e r . methods o f p o l i s h i n g u s i n g a b r a s i v e s l u r r y s o r diamond p r e f e r e n t i a l l y removed t h e p l a c i c  by  cementing  Other paste  materials.A l l  m e a s u r e m e n t s were made u s i n g K 1 r a d i a t i o n , a 2 0 ° t a k e - o f f a n g l e , 25KV  a c c e l e r a t i n g v o l t a g e with;..a s p e c i m e n c u r r e n t o f 0.8 x 10 ''' -  amps on p u r e Cu.  M i c a was u s e d a s t h e a n a l y z i n g c r y s t a l f o r A l  and. S i , a n d q u a r t z f o r Mn and F e a t a s c a n n i n g per  speed o f 1 0 0 y  minute.  RESULTS AND DISCUSSION  Chemical  data i s presented  t o t a l organic'and  pyrophosphate  show a n a c c u m u l a t i o n  i n Table  III-l.  Total  carbon,  e x t r a c t a b l e carbon values a l l  i n t h e p l a c i c h o r i z o n s of' t h e sand  Table I I I - l .  Selected Chemical p r o p e r t i e s of p l a c i c and adjacent horizons  Thickness (cm) P l a c i c Horizon 1 *2 3  15.0 0. 01-0.3 1.0  P l a c i c Horizon 1 *2 3 4  1.5 0. 2 - 0 . 3 1.0 1.5  P l a c i c Horizon 1 *2 3 4  1.0 0.4 2.0 1.5  P l a c i c Horizon *2 3  0.2-0.3 1.0  P l a c i c Horizon *2  0.1-0.2  Total C  Pyro* phosphate Molar Pyrophosphate Oxalate Org- e x t r a c t - R a t i o anic able Fe : C C / Fe • A l ,Mh , ' Fe Al ...SiO„,MhOM,.• feP^ '^Cppm) p  . Fe  Dithionite ; Al  ; . SiO^";Mn.; : :  2 ( p p m )  :  (a) 3.23 3.89 1.67  3.12. 3.80  0.06 2.77  0.98 1.05  <1  0.14  11.9 37.9 23.5 20.4  0.22 1.88 0.55 0.33  0.52 0.62 0.52 0.54  26.7 51.7 51.0  0.67 0.57 0.25 0.19  ND  40.3  0.70 2.71 0.37 0.18  47.2 31.6  5.69 0.60  6.9  0.13  -  2.35 2.49 1.08  1.3 49.6 16.7  0.87 2.81 1.36 0.95  0.81 1.80 1.15 0.73  1.72 2.65 0.35 0.15  1.51 1.75 0.30  -  7.23 1.08  7.00 1.09  .  0.40  0.14  2.40  1120 1.60  -  7.25 3-25  0.70 12.12 7.08 1.58'  1.32 1.60 1.60 1.56  0.91 0.86 0.95 0.94  3 • 7 34 35  0.63 11.47 5.94 1.37  0.63 1.35  1 12 6  1.47 13.56 2.19 0.72  0.82 1.32 0.49 0.39  0.24 0.62 0.27 0.22  4 12 36  2.83 0.66  ND ND  8.16 1.76  3.44 1.36  1.28 0.72  0.21  1520  4.00  1.20  1.04 : - I 3 3 6 0  0.64  6.16  3  2.40  1.05 2.16  1 1  ND  —  0.93 1.67 1.25  -  0..35 0.15  23 27  (b) 1.27  3.48  1.63 1.12  ND 2  0.95  0.19 0.44 0.31 0.22  34 32  84  2.83 16.07 4.19  1.04  0.99 1.57 0.49 0.27  0.17 0.46 0.21 0.06  43 97 61  20 4  8.50 1.75  2.35 0.90  0.32 • 17 0.13 9  9.13  1.07  0.20  1.44  5  14  (c) 1.83 3.67 . 0.53 0.31  6  (d) 8.39 1.33  (e) 1.33  -  —  * P l a c i c Horizon ND - Not detectable by method used.  328]  146 m a t e r i a l s i n comparison.with  the "inter-pan" areas,  The wet  76 percent recovery) e x t r a c t e d  o x i d a t i o n method  (assuming  72 t o 9 8 p e r c e n t  of the t o t a l  carbon" present..  Pyrophosphate  e x t r a c t e d a.minimum o f 7 5 p e r c e n t " a n d  u s u a l l y - from.85 t o 1 0 0  percent  i n the matrix m a t e r i a l s  of the organic carbon  present  which, i s c o n s i s t e n t w i t h f i n d i n g s  w h i l e o n l y 6 5 p e r c e n t was e x t r a c t e d f r o m (b) and ( c ) . a n d 9 7 p e r c e n t f r o m Materials  values f o r carbon (a) i s s i m i l a r  Placic  i n P l a c i c Horizons  Placic  Horizon ( a ) ,  Horizon (d).  ( b ) and ( c ) ' h a v e  and-greater  i n total  (d) h a s h i g h e r v a l u e s t h a n  e x t r a c t i o n procedures  i n the p l a c i c  horizons.  (1971)  Horizon  Placic  Placic  Horizon  ( a ) f o r t o t a l . , o r g a n i c and p y r o -  of 2.4, 1 . 9 a n d . 2 . 8 ,  p h o s p h a t e C by f a c t o r s  Horizon  o r g a n i c and  p y r o p h o s p h a t e e x t r a c t a b l e C by a f a c t o r o f 1 . 4 .  All  similar  by a l l d e t e r m i n a t i o n s , w h i l e P l a c i c  for total,  (1957),  o f S c h n i t z e r et_ a l _ .  Using  respectively.  show a n a c c u m u l a t i o n criteria  outlined  ( a ) has a p p r o x i m a t e l y  of i r o n  by McKeague et_  e q u a l amounts o f  o r g a n i c a l l y b o u n d and amorphous i n o r g a n i c F e . T h e d o m i n a n t o f F e . i s amorphous i n o r g a n i c i n P l a c i c H o r i z o n s organically  bound i n ( d ) . The c a l c u l a t e d  l i n e F e o x i d e s c o u l d be p a r t i a l l y magnetite  resulting  et a l . , 1 9 6 9 ) ,  i n slightly  form  ( b ) and ( c ) and  l o w amounts o f c r y s t a l  due t o t h e p r e s e n c e  o f some ,.\  higher oxalate v a l u e s . ( B a r i l  however., t h e a b s e n c e o f c r y s t a l l i n e  iron  oxides  i n most s p o d i c h o r i z o n s and p l a c i c  h o r i z o n s h i g h ' i n o r g a n i c ...... I  matter  o f S c h w e r t m a n n e_t a l _ .  i s consistent with findings  and McKeague e t a l . ( 1 9 7 1 ) .  (1968)  147 O b s e r v a b l e amounts o f HA i f i c a t i o n . i n Placic.Horizons r a t i o o f PA to'HA. o f 4 . 9 pan  i n P l a c i c Horizon  ratios  of  1 5 - 1 and  were p r e c i p i t a t e d upon a c i d (b) and  occurring  (c).  (c). w i t h t h e  i n the m a t e r i a l above  P l a c i c Horizons  1 9 . 8 o f FA  lowest  t o HA  (b) and  (c)  the have  respectively.  E x t r a c t a b l e A l i s s l i g h t l y a c c u m u l a t e d i n some p a n s d o e s . n o t a p p e a r t o be pan-  a major f a c t o r r e l a t i n g to genesis  or  stability. C a l c u l a t i o n of molar r a t i o s (Tabel  ( p y r o p h o s p h a t e e x t r a c t a b l e Fe) were f o u n d ' t o b e s t meet t h e (1962)  with respect  t h e MW.  (molecular  Ladd  (1971')  o f OM  f o u n d by  considered  t o be  ificant  et a l . 670  FA  of 1 0 0 0 - 1 0 , 0 0 0 .  of  by other  from a B h o r i z o n  6700,,  of  a  Thus, assuming than  that  the m o l a r r a t i o s of soluble  except the m a t e r i a l above P l a c i c  T h i s m a t e r i a l had - a r a t i o not  as  horizon.  e x c e e d t h e m o l a r r a t i o s f o u n d t o be  In synthetic, preparations  e x t r a c t a b l e A l was  matter)  more c o r r e c t t h a n  c l o s e r t o a f a c t o r of 10 g r e a t e r  S c h n i t z e r g i v i n g a MW  (a).  of complexes u s i n g  found. 7 5 p e r c e n t o f t h e  samples s t u d i e d  Horizon  (organic  s t a t e MW • d e t e r m i n a t i o n s  G r o u n d W a t e r P o d z o l t o h a v e a MW t h e MW  t o t a l OM  requirements of S c h n i t z e r  to s o l u b i l i t y  membrane f i l t r a t i o n a r e m e t h o d s and  and  I I I - l ) u s i n g Fe <=> p  w e i g h t ) f o r O M ' e x t r a c t e d f r o m a Bh  H o w e v e r , B u t l e r and  all  but  included  accumulation occurred  i n the  of 1 . 3 .  Pyrophosphate  c a l c u l a t i o n , . ; a s no  in'the p l a c i c horizons  p y r o p h o s p h a t e e x t r a c t a b l e A l i s not  sign-  indicating  necessarily associated  with  148 the  OM.extracted.  et_ a l . ( 1 9 7 1 ) .  As  (a) has  low  a ratio  c o m p l e x e s , • i t can would p r e s e n t l y availability  only  the m a t e r i a l above P l a c i c H o r i z o n  enough t o p e r m i t t h e  be  assumed t h i s i s t h e  the  c o m p l e x e d and  p l a c i c horizons  i n a form d i f f i c u l t intergrade  the  the  inorganic  only'pan studied  be  which  of"placic material i f  the  would i n d i c a t e  t o e x t r a c t , and  amorphous m a t e r i a l s .  the  this  OM  and  a c t i v e f r a c t i o n i n pan  the  representative  and  and  pan- a r e g i v e n  (b) and  i n Figures  Fe  than OM. of  ( c ) and  I I I - 8 and  a the  III-9  respectively. It  can  be  seen from the  AEI  that a complete f i l l i n g  t h e p o r e s p a c e s has  occurred,  the plasma m a t e r i a l  i n both, pans i s h i g h l y f r a c t u r e d .  fracturing  a n d . t h a t i n an a i r d r i e d  of state  i s s i m i l a r to that-.observed i n - P l a c i c H o r i z o n  upon a i r ' d r y i n g  but  on a s m a l l e r  scale.  the are  therefore  total  of absorbed e l e c t r o n images (AEI)  a r e a of P l a c i c H o r i z o n s  m a t e r i a l below the  much of  associated  formation  o r d i t h i o n i t e e x t r a c t a b l e Fe  Illustrations  could  Since  used i n c a l c u l a t i o n of molar r a t i o s r a t h e r  oxalate  the  of i n s o l u b l e complexes w i t h i n  pyrophosphate e x t r a c t a b l e  most l i k e l y  using  soluble  m a t e r i a l between t h e ; . o r g a n i c a l l y  OM-is I n a c t i v a t e d as p a r t  should  presence'of  have s i g n i f i c a n t a d d i t i o n s  carbon i n the  represent  pan,  w i t h . f i n d i n g s o f McKeague  i s a controlling factor.  p r e s e n c e o f OM  the  i s consistent  pyrophosphate e x t r a c t i o n of o n l y 65 p e r c e n t of  The organic  This  The (d)  149  Figure  III-8.  Absorbed E l e c t r o n  Images o f P l a c i c  (x 500) s h o w i n g t h e h i g h l y  Horizon  (b)  fractured^dense  p l a s m a w i t h i n t h e pan w h i c h s u r r o u n d s t h e q u a r t z grain  ( i ) and t h e p o r o u s m a t e r i a l  below ( i i ) .  150  Figure III-9.  Absorbed E l e c t r o n (x 650)  Images o f P l a c i c  showing the h i g h l y  p l a s m a w i t h i n t h e pan below.  Horizon  fractured,  (c)  dense  ( i ) and t h e p o r o u s  material  151 The  e l e c t r o n probe scan of a v e r t i c a l  transect  P l a c i c H o r i z o n , (b). i s . shown i n . F i g u r e I I I - . 1 0 . o f Fe  i s present  immediately  a b o v e t h e pan  c o n c e n t r a t i o n w i t h i n t h e pan. abrupt w i t h the  t o 5.5  and  increased  with the  increases  other mineral g r a i n s .  Fe  is  occurring within constant  to  a  of the panvand d e c r e a s e s g r a d u a l l y  c o n c e n t r a t i o n of A l corresponds t o a i n A l being mostly  also often concentrated  Fe.  the  t o p b o u n d a r y o f t h e pan  I r o n remains r e l a t i v e l y  from the top  amount  mm.  An i n Fe  mm  .  A low  compared t o  c o n c e n t r a t i o n c h a n g e ' o f Fe  a d i s t a n c e 150 jj d e p t h o f 4.3  The  across  The  on'the lower  i s highest.  No  associated with Si  side of quartz  Aluminum i s o n l y r a r e l y  amount o f A l i s r e d u c e d i n t h e irregularities  decrease  and  associated  with  r e g i o n o f t h e pan  i n S i were d e t e c t e d  where  across  the  pan. The  vertical  e l e c t r o n probe scan across  ( c ) , shown I n F i g u r e a higher  III-ll,  concentration  t o t h a t w i t h i n t h e pan  o f Fe  was p r e s e n t  then remains r e l a t i v e l y d e c r e a s e s t o 5.4  (b).  across.  o f -1 he pan  t o 1.5  relative  A l s o , the There i s mm  upper an  where i t  c o n s t a n t t o a d e p t h o f 3.2  mm  and  then  i n Placic Horizon  (c),  mm.  Aluminum c o n c e n t r a t i o n w i t h Fe p r e s e n t  20 0 yi  ( b ) , however,  a b o v e t h e pan  i n compar i s o n w i t h  f r o m , the- t o p  Horizon  gav e s i m i l a r r e s u l t s t o  boundary i s l e s s abrupt being i n c r e a s e i n Fe  Placic  i n the  i s al s o l o w  m a t e r i a l c o a t i n g the m i n e r a l g r a i n s  above  152  Si  AI  Fe  TOP OF P L A C I C HORIZON  Figure  DEPTH  (mm)  1 1 1 - 1 0 . An e l e c t r o n p r o b e s c a n o f a v e r t i c a l across Placic  Horizon  transect  (b) showing t h e d i s t r i -  b u t i o n o f S i , . ' A l and Fe.  153  Figure  III-ll.  An e l e c t r o n p r o b e s c a n o f a v e r t i c a l across Placic  Horizon  (c) showing the  d i s t r i b u t i o n . o f S i , A l , and  Fe.  transect  154  t h e p a n and i n t o . t h e t o p 0.5 mm the  lower  of the pan,  p o r t i o n - o f t h e p a n where i t - i s a s s o c i a t e d w i t h S i and  then decreases.with  depth.  Manganese was e s s e n t i a l l y a b s e n t isolated  c o n c e n t r a t i o n s were  The  Fe r e m a i n s h i g h i n  i n b o t h pans b u t  present.  r e l a t i v e d i s t r i b u t i o n o f F e , A l and S i o c c u r r i n g i n  the plasma'and s k e l e t a l m a t e r i a l o f P l a c i c Horizons ( c ) a r e shown i n t h e X - r a y e m i s s i o n and  images i n F i g u r e s  The  HORIZONS  complete absence o f pores  laminated  i n the p l a c i c  appearance i n P l a c i c H o r i z o n  h o r i z o n s and  (d) suggest t h e  i n t e r s t i t i a l material i s deposited primarily  along a plane  r a t h e r t h a n a s c o a t i n g s on t h e m i n e r a l g r a i n s w h i c h coalesce.  This plane  establishment by  111-12  111-13.  GENESIS OF PLACIC  the  (b)f and  is unlikely  from the as proposed  (McKeague et. a l . , 1 9 6 7 ) b u t t h i s does n o t  f o r an o b s e r v a b l e  Precipitation  could result  o f an o x i d a t i o n - r e d u c t i o n i n t e r f a c e  some w o r k e r s  account  of i n i t i a t i o n  subsequently  p a n t h i c k n e s s o f o n l y up t o 4 mm.  o f s o l u b l e m a t e r i a l s a s t h e y move down t h e p r o f i l e  t o be a m a j o r f a c t o r  p a t t e r n would r e s u l t pans a t l i t h o l o g i c  i n pan i n i t i a t i o n as a  characteristic  of a Bf.  diffuse  The p r e s e n c e  d i s c o n t i n u i t i e s , a l o n g r o o t c h a n n e l s and  associated with tree overturns d i f f e r e n t i a l redox p o t e n t i a l  supports  a c r o s s an  a n i n i t i a t i o n by a interface.  of  Pe  F i g u r e 111-12.  Al  X - r a y e m i s s i o n image o f P l a c i c distribution  Si  Horizon  o f F e , A l , and S i b e t w e e n  (b) showing t h e  relative  t h e plasma and s k e l e t a l  material. i—  1  Fe  Figure 111-13.  Al  X - r a y e m i s s i o n image o f P l a c i c distribution  S 1  Horizon  o f F e , A l , and S i b e t w e e n  (c) showing the  relative  t h e p l a s m a and s k e l e t a l  material  157 The ary  presence of a s s o c i a t e d  aluminum s i l i c a t e s ,  could  S i , p r o b a b l y as  a l s o mean t h a t  environment which i s f a v o r a b l e with  A l and  a  specific  to t h e i r formation  i s established,  l a t e r Fe-organlc matter accumulation taking place.  p r e s e n c e o f an b o u n d a r y , and  abrupt upper boundary r e l a t i v e t o the isolated  lower t r a n s i t i o n a l part  areas of f r a c t u r e d m a t e r i a l of the  Once t h e  taking place  in  i n s o l u t i o n are  e n t i a l movement o f t h e  at the  f i x e d t o form the  pan  m a t e r i a l as  become bound t o t h e  with  Biodegradation  OM  of the  pan  could as  be  responsible  s u g g e s t e d by  v e r t i c a l w a t e r movement a b o v e t h e  i t would not  for limiting  Aristovskaya  pan  A l s o , the as  o f s u b s t a n c e s w h i c h w o u l d l i m i t pan  be  pan  by  water t a b l e i s created the  by  the  low  the  (1965)  where  decrease i n  effective  leaching  thickness.  e q u i l i b r i u m c o n d i t i o n i s e s t a b l i s h e d when t h e  This, plus  comp-  saturation i s quickly  reached f o l l o w i n g p r e c i p i t a t i o n , reduces the  horizon.  prefer-  subsequent l o s s of s o l u b i l i t y .  i s consumed by m i c r o - o r g a n i s m s .  An  act  of  soluble individual  n e c e s s a r y , as t h e m a t e r i a l s  thickness  top.  Although  present,  could  of  amorphous c o m p l e x  o n e n t s o r c o m p l e x e s a p p e a r s t o be  contact  the  additions  w h i c h composes t h e m a j o r p o r t i o n o f t h e pan.  simple  lower  plane of development i s e s t a b l i s h e d i t c o u l d  as a t e m p l a t e o r medium u p o n w h i c h s u c c e s s i v e materials  The  pans, s u p p o r t s t h i s sequence  development, w i t h a c t i v e formation  the  second-  permeability  precipitation  of the  frequency i n the  perched placic area  158 (Table  1-1), Increases  the s t a b i l i t y  o f t h e p a n by  d e s i c c a t i o n and s u b s e q u e n t f r a c t u r i n g . the  stability  preyenting  The d e g r e e t o w h i c h  o f t h e p a n i s l o s t when d r y i n g o c c u r s  upon t h e form i n w h i c h t h e Fe Is' p r e s e n t .  i s dependent  Those pans h i g h i n  o r g a n i c - b o u n d Fe e x h i b i t macro f r a c t u r e s s i m i l a r t o P l a c i c Horizons  ( d ) and a r e v e r y  f r a g i l e , while those  h i g h i n amorphous  i n o r g a n i c Fe e x h i b i t m i c r o f r a c t u r i n g and a r e l e s s P l a c i c Horizon  (b) developed under u n u s u a l  fragile.  conditions  c a u s e d by t r e e w i n d - t h r o w , h o w e v e r , i t c a n be u s e d t o u n d e r s t a n d the genesis The  o f some t y p e s  o f pans i n an a l t e r e d environment.  s u r f a c e m a t e r i a l w h i c h was i n c o r p o r a t e d i n t o t h e u n d e r l y i n g  m a t e r i a l s was o r i g i n a l l y P l a c i c Horizon  (a).  s i m i l a r t o the surface m a t e r i a l of  I t a p p e a r s t h a t l o w Fe and h i g h OM  m o b i l i z e d t h e F e a t t h e i n t e r f a c e o f t h e two m a t e r i a l s migrated  at least  2 t o 3 cm i n t o t h e c o a r s e r m a t e r i a l  c o n d i t i o n s were s u i t a b l e t o c a u s e F e t o p r e c i p i t a t e . d e f i n e d band o f d a r k r e d m a t e r i a l a d j a c e n t explained  as t h e p o s s i b l e o u t e r  the h i g h e s t not  limit  content which  before The w e l l  t o t h e p a n c a n be  o f p a n d e v e l o p m e n t when  amounts o f OM w e r e a v a i l a b l e .  S i n c e t h e OM was  r e p l e n i s h e d by v e g e t a t i o n f r o m a b o v e a s i s t h e c a s e  with  most p a n s , t h e e q u i l i b r i u m s h i f t e d a n d t h e zone o f p r e c i p i t a t i o n migrated  towards the source  o f t h e OM.  I t would appear t h a t d i f f u s i o n I s t h e mechanism w h i c h i s f u n c t i o n a l i n t r a n s l o c a t i n g m a t e r i a l s t o the plane formation  i n this  case w i t h a v a i l a b i l i t y  major f a c t o r i n l i m i t i n g  o f pan  of m a t e r i a l being the  the t h i c k n e s s o f t h e pan.  159 Two f a c t o r s r e l a t i n g t o t h e p o s i t i o n o f P l a c i c H o r i z o n  (b)  w o u l d i n d i c a t e t h a t d i f f u s i o n , and n o t l e a c h i n g was. f u n c t i o n a l i n t h e t r a n s l o c a t i o n o f pan f o r m i n g placic horizon  completely  enclosed  constituents.- F i r s t , the the surface material of f i n e r  t e x t u r e i n c l u d i n g t h e u p p e r p o r t i o n , i n d i c a t i n g t h a t t h e movement o f c o n s t i t u e n t s was r a d i a l  i n a l l directions.  p o s i t o n o f t h e pan w i t h i n t h e c o a r s e r  texture  Secondly, the subsurface  would i n d i c a t e t h a t p r e c i p i t a t i o n had n o t o c c u r r e d  material  due t o t h e  d i f f e r e n t i a l reduction oxidation p o t e n t i a l s at the i n t e r f a c e o f t h e f i n e and c o a r s e  t e x t u r e d m a t e r i a l s b u t h a d s h i f t e d away  from t h i s i n t e r f a c e .  CONCLUSIONS  In the s o i l s  f o r m e d on b e a c h s a n d d e p o s i t s , p l a c i c  horizons  were o n l y d e v e l o p e d where t h e w a t e r t a b l e was a t l e a s t 1.5 m below t h e m i n e r a l  surface  horizons  fora significant  part  of the year. The  pans v a r y  considerably  i n morphology.  s i n g l e or branched, range i n t h i c k n e s s and  c a n be d u l l o r v i t r e o u s .  from  They c a n be  < 0 . 1 mm  t o 4 mm  The p l a c i c m a t e r i a l i s some  c o m b i n a t i o n o f Fe - o r g a n i c m a t t e r c o m p l e x e s ( m a i n l y  fulvic-  a c i d ) and amorphous i n o r g a n i c F e . The  d e v e l o p m e n t o f t h e p a n s s t u d i e d were i n i t i a t e d p r i m a r i l y  at l i t h o l o g i c  discontinuities.  Processes a c t i v e i n formation  160 were m o b i l i z a t i o n o f Fe depositon was  i n the  p r e s e n c e o f OM  subsequent  at a plane of d i f f e r e n t i a l redox p o t e n t i a l .  a c t i v e i n t h e movement o f c o m p l e x e s , and  deposited  and  previously  m a t e r i a l a c t s as a t e m p l a t e f o r s u b s e q u e n t  A l t h o u g h the  p l a c i c horizons  vary  In morphology  chemical composition t h e i r function i s s i m i l a r w i t h i n respective  pedons.  Diffusion  deposition. and the  161  LITERATURE CITED  A L L I S O N , L.E. 1 9 6 5 . O r g a n i c c a r b o n . I n "Methods o f S o i l A n a l y s i s , " ( C A , B l a c k , ed) P a r t 2 . . A g r o n o m y 9 ; 13721376.  ARISTOVSKAYA, T.V. 1 9 6 5 . The M i c r o b i o l o g y o f P o d z o l i c S o i l s . A k a d . Nauk. S.S.S.R., Moscow. ( T r a n s l . by F o r e i g n Lang. D i v . , Bureau f o r T r a n s l . , Dept. S e c r y . of S t a t e , Ottawa). B A R I L , R. and BITTON, C 1969. T e n e u r s e l e v e e s de f e r l i b r e e t 1 ' i d e n t i f i c a t i o n t a x o n o m i q u e de c e r t a i n s s o l s du Quebec c o n t e n a n t de l a m a g n e t i t e . Can. J . S o i l S c i . 49:1-9-  BHOOJEDHUR, S. 1 9 6 8 . G e n e s i s o f a P o d z o l s e q u e n c e on t h e w e s t c o a s t o f V a n c o u v e r I s l a n d . U n p u b l i s h e d M.Sc. T h e s i s , D e p t . o f S o i l S c i . , U.B.C. BUTLER, J.H.A. and LADD, J.N. 1 9 7 1 . Importance of the m o l e c u l a r w e i g h t o f humlc and f u l v i c a c i d s i n d e t e r m i n i n g t h e i r e f f e c t s on p r o t e a s e a c t i v i t y . S o i l B i o l . Biochem. 3:249-257. CORDES, L.D, 1 9 7 3 . E c o l o g y o f t h e S i t k a s p r u c e f o r e s t s on t h e w e s t c o a s t o f V a n c o u v e r I s l a n d . U n p u b l i s h e d Ph.D.. t h e s i s , D e p t . o f B o t a n y , U.B.C. DAMMAN, A.W.H. 1 9 6 5 . T h i n i r o n p a n s : t h e i r o c c u r r e n c e and c o n d i t i o n s . l e a d i n g t o t h e i r development. Information N - X - 2 , Can. Dep. F o r e s t r y , S t . J o h n ' s , N ' f l d .  Rep.  L A V K U L I C H , L.M., BHOOJEDHUR, S., and ROWLES, C A . 1 9 7 1 . Soils w i t h p l a c i c h o r i z o n s on t h e w e s t c o a s t o f V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a . Can. J . S o i l S c i . 5 1 : 4 3 9 - 4 4 8 . McKEAGUE, J.A. 1 9 6 7 . An e v a l u a t i o n o f 0 . 1 M p y r o p h o s p h a t e and pyrophosphate-dithionite i n comparison with oxalate as e x t r a c t a n t s o f t h e a c c u m u l a t i o n p r o d u c t s i n P o d z o l s and some o t h e r s o i l s . Can. J . S o i l S c i . 4 7 : 9 5 - 9 9 . McKEAGUE, J.A., BRYDON, J . E . and M I L E S , N.M. 1 9 7 1 . Diff e r e n t i a t i o n o f f o r m s o f e x t r a c t a b l e i r o n and a l u m i n u m i n soils. S o i l S c i . S o c . Amer. P r o c . 3 5 : 3 3 - 3 8 .  162  McKEAGUE, J . A - , DAMMAN, W,H. and HERINGA, P , K . . 1 9 6 8 , Ironmanganese a n d o t h e r p a n s i n some s o i l s o f N e w f o u n d l a n d . Can. J . S o i l S c i , 4 8 ; 2 4 3 - 2 5 3 . McKEAGUE, J,A. and DAY, J,H. 1 9 6 6 . D i t h i o n i t e and o x a l a t e e x t r a c t a b l e i r o n and a l u m i n u m a s a i d s i n d i f f e r e n t i a t i n g v a r i o u s c l a s s e s o f s o i l s . Can. J . S o i l S c i , 4 6 : 1 3 - 2 2 . McKEAGUE, J . A , , SCHNITZER, M. a n d HERINGA, P.K. 1967Properties o f an I r o n p a n Humic P o d z o l f r o m N e w f o u n d l a n d . Can. J . Soil Sci. 47:23-32. MEHRA, O.P. and JACKSON, M . I . I960. I r o n o x i d e r e m o v a l f r o m s o i l s and c l a y s by a d i t h i o n i t e - c i t r a t e system b u f f e r e d w i t h sodium b i c a r b o n a t e . 7 t h N a t . Conf. C l a y s and C l a y Minerals,  pp.  317-327-  NATIONAL SOIL SURVEY COMMITTEE, CANADA. 1 9 7 0 . The S y s t e m o f S o i l C l a s s i f i c a t i o n f o r C a n a d a . Queen's P r i n t e r f o r Canada, Ottawa. SCHNITZER, M. and DESJARDINS, J.G. 1 9 6 2 . M o l e c u l a r a n d equivalent weights of the organic matter of a Podzol. S c i . S o c . Amer. P r o c . 2 6 : 3 6 2 - 3 6 5 .  Soil  SCHWERTMANN, V., F I S C H E R , W.R. and PAPENDORF, H. 1 9 6 8 . The i n f l u e n c e o f o r g a n i c compounds on t h e f o r m a t i o n o f i r o n o x i d e s . I n t . Congr. S o i l S c i . , T r a n s . 9 t h ( A d e l a i d e , Aust.) 1:645-655SCHNITZER, M., WRIGHT, J.R. and DESJARDINS, J.G. 1 9 5 7 - A comparison of the e f f e c t i v e n e s s of v a r i o u s e x t r a c t a n t s f o r o r g a n i c m a t t e r f r o m two h o r i z o n s o f a P o d z o l p r o f i l e . Can. J . S o i l S c i . 3 8 : 4 9 - 5 3 SOIL SURVEY STAFF. I 9 6 0 , 1 9 6 4 and 1 9 6 7 . S o i l . C l a s s i f i c a t i o n ; A c o m p r e h e n s i v e S y s t e m . 7 t h A p p r o x . and S u p p l e . , U.S.D.A. W a s h i n g t o n , D.C. VALENTINE-, K.W.G. 1 9 6 9 . A P l a c i c Humic P o d z o l on V a n c o u v e r I s l a n d , B r i t i s h C o l u m b i a . Can. J . S o i l S c i . 4 9 : 4 1 1 - 4 1 3 .  CHAPTER I V  IMPLICATIONS FOR LAND-USE PLANNING AND MANAGEMENT IN THE TOFINO AREA OF VANCOUVER ISLAND DERIVED FROM THE SOILS AND OTHER LANDSCAPE FEATURES  164 IMPLICATIONS FOR LAND-USE PLANNING AND MANAGEMENT IN  THE TQFINO AREA OF VANCOUVER ISLAND  DERIVED FROM THE SOILS AND OTHER LANDSCAPE FEATURES  INTRODUCTION  At  t h e p r e s e n t t i m e t h e r e a r e many l e v e l s and a p p r o a c h e s  b e i n g u s e d t o make s o i l ment p u r p o s e s  i n t e r p r e t a t i o n s f o r p l a n n i n g a n d manage-  (Asphalt I n s t i t u t e  1969;Bartelli  B r o c k e , 1 9 7 0 ; C a r b o n n i e r , 1 9 7 1 ; Daubenmlre, L a c a t e , 1 9 6 9 ; Wertz 1965;  Hills,  1961;  et_ a l , 1 9 6 6 ;  1 9 7 3 ; Mulcahy, 1 9 6 7 ;  a n d A r n o l d , 1 9 7 2 ; The Canada L a n d I n v e n t o r y , Olsen, 1 9 6 4 ; S l y , 1 9 7 0 ) .  The a p p r o a c h  i s d e t e r m i n e d p a r t l y by t h e k i n d o f a c t i v i t y p r e t a t i o n i s b e i n g made.  used  f o r which the i n t e r -  The p r e s e n t s t a t e o f k n o w l e d g e  also  i n f l u e n c e s t h e a p p r o a c h t a k e n and d e t e r m i n e s t h e d e g r e e o f reliability  t h a t c a n be p l a c e d on t h e i n t e r p r e t a t i o n .  r e a s e d demand f o r s o c i a l and e c o n o m i c  The i n c -  b e n e f i t s from the land  . .  r e s o u r c e d i c t a t e s t h a t a p p r o a c h e s be d e v e l o p e d and c r i t e r i a defined which w i l l detailed The  improve t h e r e l i a b i l i t y  of increasingly  interpretations. identification of c r i t e r i a  t o be u s e d w i l l  come a b o u t  through: 1.  Increasing the understanding of the s o i l s resource  and I t s r e l a t i o n s h i p t o o t h e r c o m p o n e n t s o f t h e l a n d s c a p e . 2.  D e f i n i n g t h e i n t e r - r e l a t i o n s h i p s between  land use a c t i v i t i e s .  s o i l s and  165  Since giyen users  i ti s often impossible  to predict the a c t i v i t y  a r e a , t h e s o i l m u s t be a d e q u a t e l y  of a  understood f o r the  o f l a n d t o be a b l e t o make a r a n g e o f i n t e r p r e t a t i o n s .  T h i s p r o b l e m h a s b e e n p a r t l y r e s o l v e d by c o n s i d e r i n g s o i l s a s n a t u r a l bodies The  a n d i d e n t i f y i n g them a s i n d i v i d u a l s ( C l i n e ,  p r o p e r t i e s o f these  a d e f i n e d range. these  individuals, or.soils, will  vary  However, t o i n c r e a s e t h e u s e f u l n e s s  individuals identified,  i t i s necessary  1949).  within  of having  to quantify  c e r t a i n p r o p e r t i e s and t o i n c r e a s e t h e u n d e r s t a n d i n g  of the  f u n c t i o n o f t h e s o i l b o t h I n t e r n a l l y and i n r e l a t i o n t o t h e total  environment.  By d o i n g  this,  c a n be i d e n t i f i e d a n d s y s t e m a t i c will the This  increase the r e l i a b i l i t y  controlling factors or c r i t e r i a  approaches developed  of i n t e r p r e t a t i o n s . Therefore,  e m p h a s i s i s p l a c e d h e r e on p r o c e s s e s  r a t h e r than  i s p a r t i c u l a r l y useful since i ti s impossible  uals with considerable p r e t a t i o n s on a s i t e  experience  specific  which  i n soils  basis.  activities.  for individ-  t o make a l l i n t e r -  However, t h e s e  decisions  can be made by i n d i v i d u a l s w i t h some k n o w l e d g e o f s o i l s , i f information i s provided maintaining onment.  about t h e processes  the r e l a t i v e e q u i l i b r i u m of s o i l s  can  i n their  envir-  By u s i n g t h i s a p p r o a c h , a n a s s e s s m e n t o f t h e i m p a c t  of., a l t e r n a t i v e m a n i p u l a t i o n s accuracy  responsible f o r  and t h e user  assist  c a n be made w i t h some d e g r e e o f  of the land w i l l  have i n f o r m a t i o n w h i c h  i n o v e r c o m i n g some o f t h e d i f f i c u l t i e s  b e n e f i t s from t h e s o i l s  resource.  i n maximizing  166  MATERIALS  The  soils  and  other  landscape features  i n Chapter 1 .  f o l l o w i n g d i s c u s s i o n were d e s c r i b e d  p h y s i c a l and' m i n e r a l o g i c a l . p r o p e r t i e s s o i l s were d i s c u s s e d and  i n Chapter I I .  d i s c u s s i o n of the  horizons  was  given  r e f e r r e d to i n  and  the  Chemical,  g e n e s i s of  the  A detailed description  c o m p o s i t i o n and  g e n e s i s of the p l a c i c  i n Chapter I I I .  DISCUSSION  soil  The  purpose of t h i s  section i s to i d e n t i f y processes  and  l a n d s c a p e p a r a m e t e r s w h i c h can  I n t e r p r e t a t i o n s f o r a range of uses This  a p p r o a c h i s t a k e n f o r two 1.  L a n d use  decisions  p h y s i c a l c a p a b i l i t y of the and  p o l i t i c a l reasons.  be  and  u s e d t o make  associated  activities.  reasons:  a r e made n o t l a n d , but  Therefore,  only  also for  the  from the  of these a c t i v i t i e s activities  i s not  t o be  designated  use  Also, use  are  high  not  land  Impact  not  always land.  c a p a b i l i t y f o r tree growth i s  n e c e s s a r i l y h i g h l y d e s i r a b l e f o r road c o n s t r u c t i o n required harvest  the  crop.  and  associated  b i o p h y s i c a l c h a r a c t e r i s t i c s of the  example, land w i t h  is  t a k e n to ensure the  excessive.  of the p r i m a r y designated  compatible with the For  has  bio-  socio-economic  a l w a y s b e s t s u i t e d t o t h e b i o - p h y s i c a l make-up o f t h e consequently s p e c i a l care  from  not to  167  2..  The need, t o i m p r o v e t h e u s e o f t h e l a n d  r e q u i r e s t h a t i n t e r p r e t a t i o n s be made on a s i t e  resource specific  and a s was s t a t e d p r e v i o u s l y , t h i s w i l l be d o n e by w i t h a range o f experience. processes  should r e s u l t  individuals  T h e r e f o r e , an u n d e r s t a n d i n g  i n an improvement  basis  of  i n the decisions  b e i n g made. For  the s o i l s  s t u d i e d , t h e dominant p r o c e s s e s  controlling  t h e i r e q u i l i b r i u m i n the environment a r e • i d e n t i f i e d . processes  i n t u r n were c o n s i d e r e d t o be c o n t r o l l e d by t h e  following three  factors:  1,  Landscape  2,  Inherent  3,  Genetic  components soil  soil  The p r o c e s s e s it  The  characteristics  are not mutually  w o u l d be d i f f i c u l t ,  b e i n g dominant.  characteristics  soils  i f n o t i m p o s s i b l e , t o s e l e c t any one a s  However, t h e s e  u s e f u l f o r the., s o i l s  e x c l u s i v e and i n some  studied.  c a t e g o r i e s were The s o i l s  c h a r a c t e r i s t i c s were most i m p o r t a n t  considered  I n which g e n e t i c  are given special  consider-  ation . LANDSCAPE COMPONENTS The  s o i l s placed i n this  category  a r e dependent  primarily  on f a c t o r s e x t e r n a l t o t h e s o i l p e d o n f o r m a i n t a i n i n g a s t a t e of q u a s i e q u i l l b r i u m .  This i s important  t o know when c o n s i d e r i n g  an a r e a f o r p l a n n i n g and management b e c a u s e o f i n t e r r e l a t i o n s h i p s between  a n d among l a n d s c a p e  segments.  168  Topography i s t h e c o n t r o l l i n g f a c t o r o f s o i l  formation  which  a c t s t o m o d i f y the. f a c t o r s o f c l i m a t e , a n d y e g e t a t i o n . ( J e n n y , 1941).  F o r these  r e a s o n s i t c a n be c o n s i d e r e d  f a c t o r responsible f o r the processes scapes o r pedons.  the p r i n c i p l e  taking place across  The d o m i n a n t p r o c e s s e s  land-  a r e the flow o f water  f r o m p e d o n t o pedon and t h e movement o f o t h e r m a t e r i a l s downs l o p e , both p a r t i a l l y under the f o r c e o f g r a v i t y . s u r f a c e and s u b s u r f a c e there  i s some r e l i e f  disturbance  r e g i m e o f w a t e r i n an e c o s y s t e m where  i s a common o c c u r r e n c e  b o t h by c a u s i n g  Since  t h e pedons p r e s e n t  i n any s e q u e n c e on  a s l o p e a r e h i g h l y d e p e n d e n t on t h e i r n e i g h b o r i n g  be c o n s i d e r e d  A l s o , the removal of m a t e r i a l from a slope instability  10)  s o i l s d e v e l o p e d on g l a c i a l t i l l  included i n this  were  formerly  deposits  d e v e l o p e d on s a n d d e p o s i t s  (Sites  9 and  ( S i t e 7 ) were  category.  9 and 1 0 The  till  s o i l s were i n c l u d e d h e r e p r i m a r i l y due t o t o p o g r a p h y  ( F i g u r e 1 - 2 3 ) and t h e r e s u l t i n g The  1971).  by t h e r e m o v e d m a t e r i a l .  and one s o i l  Sites  (Swanston,  increases the  o f t h e m a t e r i a l s up s l o p e a s t h e y  support The  pedons t o  t h e i r f u n c t i o n and c h a r a c t e r i s t i c s t h e consequences o f  a l t e r i n g the water regime should  given  soil  and by r e m o v i n g m a t e r i a l , f o r e x a m p l e , i n r o a d  construction.  maintain  To change t h e  fact that the s o i l s  i n t e r a c t i o n o f f o r c e and r e s i s t a n c e .  e x h i b i t much c h u r n i n g , f r o m t r e e w i n d -  t h r o w and d o w n h i l l c r e e p i s i n d i c a t i v e  of the i n s t a b i l i t y of  169  these m a t e r i a l s under n a t u r a l c o n d i t i o n s . lithic  The p r e s e n c e  c o n t a c t b e l o w t h e . B h o r i z o n a l s o a c t s , t o pr.ey.ent  movement t h r o u g h -the p e d o n and o u t o f t h e s y s t e m . . this  of a  i s the accumulation of organic matter  bedrock.  The b e d r o c k  water  Evidence f o r  immediately  above t h  c o n f i g u r a t i o n t e n d s t o be i r r e g u l a r i n  n a t u r e and p r o v i d e s s t a b i l i t y t o t h e s o i l s  on t h e s t e e p e r s l o p e  However, some o f t h e b e d r o c k  t o t h e s l o p e and c a n  act  lies parallel  as an i n t e r f a c e over which  bability The  the s o i l  c a n move.  o f mass w a s t i n g i s increased when t h e s o i l s removal  o f v e g e t a t i o n from these s o i l s  The. p r o are saturated  also increases  t h e c h a n c e s o f m a t e r i a l movement d o w n s l o p e , a s i t h a s b e e n shown t h a t a s t h e r o o t s d e c a y most o f t h e s t r e n g t h , w h i c h holds the s o i l s and D r y n e s s ,  ( O ' L o u g h l i n , 1 9 7 2 ; Swanston  together, i s lost  1973).  Changes i n s i t e  c h a r a c t e r i s t i c s i n the study area w i l l  l e s s f r o m a l t e r a t i o n s i n w a t e r movement t h a n i n a r e a s p r e c i p i t a t i o n i s lower.  period of d e f i c i t the r e l a t i v e l y  where  The movement o f m a t e r i a l s u n d e r  saturated conditions i s the exception. v i d e d f o r p l a n t growth  be  throughout  Adequate water  i s pro-  most o f t h e y e a r w i t h a s h o r t  d u r i n g some d r y y e a r s  high a v a i l a b l e water  (Table 1 - 1 ) .  Also,  storage c a p a c i t y of these  s o i l s w o u l d make m o i s t u r e a v a i l a b l e t h r o u g h o u t  the periods of  deficit. The  soils  not expressed  a r e o f medium t e x t u r e s a n d d i s c o n t i n u i t i e s a r e i n abrupt  changes i n p r o p e r t i e s .  Therefore,  170 processes  occurlng i n these  s o i l s a r e n o t d o m i n a t e d by t h e  m a t e r i a l s i n which they a r e formed, Pedogenic processes  have r e s u l t e d  s h o u l d be c o n s i d e r e d f o r u s e .  i n some c h a n g e s w h i c h  The a g g r e g a t i o n  of finer  p a r t i c l e s by Fe and A l o x i d e s has i n c r e a s e d s o i l increasing  structure,  however, t h i s i s n o t s i g n i f i c a n t  t o t h e s t a b i l i t y p r o v i d e d by t h e t o t a l Site  s t a b i l i t y by compared  landscape.  7 Site  7 was I n c l u d e d  the h i g h r e g i o n a l  i n t h i s category p r i m a r i l y  water t a b l e .  surface i n the central  areas  The w a t e r t a b l e  presence  of excess  and  chemical  characteristics  In i t s present  was n o t a d e q u a t e  w a t e r was r e f l e c t e d  state,  was n e a r t h e  o f t h e p l a i n i n the beach  d e p o s i t s where l a t e r a l d r a i n a g e The  because o f  sand  (Figure  i n t h e morphology  o f t h e pedon.  the value of t h i s s o i l  i s limited  f o r a c t i v i t i e s which would r e q u i r e d i r e c t m a n i p u l a t i o n . alternative  w o u l d be t o d r a i n  more u s e f u l .  The p o t e n t i a l  e x c e s s i v e water from these (3)  }  genetic  III-l).  the area t o render  these  c o n s e q u e n c e s £>.f e l i m i n a t i n g soils will  The sites the  be d i s c u s s e d u n d e r  category  characteristics.  INHERENT SOIL CHARACTERISTICS The  s o i l s placed i n t h i s category  f o r t h e i r m o r p h o l o g y and f u n c t i o n  a r e dependent  on t h e n a t u r e  primarily  of the deposits  171 on w h i c h t h e y a r e f o r m e d .  The m a i n c h a r a c t e r i s t i c s o b s e r v e d  were ( 1 ) p r o n o u n c e d l i t h o l o g i c graded m a t e r i a l s . ling  soil  d i s c o n t i n u i t i e s and (2) p o o r l y  These f a c t o r s a r e r e s p o n s i b l e , f o r c o n t r o l -  development t h r o u g h changes i n s o i l  w a t e r movement  i n t h e pedon.  Two s o i l s d e v e l o p e d on o u t w a s h m a t e r i a l s one  on m a r i n e c l a y d e p o s i t s  deposits  a t m o s p h e r e and  ( S i t e s 1 and 2 ) ,  ( S i t e 5) and one on b e a c h  ( S i t e 8) a r e p l a c e d  i n this  sand  category.  S i t e s 1 and 2 The  response t o use o f s o i l s  d e v e l o p e d on t h e o u t w a s h  m a t e r i a l s w o u l d be c o n t r o l l e d by t h e d e p t h s o f t h e l o a m textured  surface m a t e r i a l present  subsurface  horizons.  over the coarser  This v a r i a b i l i t y  s t r u c t u r e o f mature v e g e t a t i o n .  textured  i s r e f l e c t e d i n the  I t i s a l s o pronounced a f t e r  f o r e s t h a r v e s t i n g where t h e l o g g i n g m e t h o d u s e d h a s removed the  finer textured horizons.  T h i s has r e s u l t e d i n t h e p r e s e n c e  of areas o f exposed s u b s u r f a c e after  s o i l more t h a n t e n y e a r s  logging. The  the  mineral  finer  e f f e c t i v e r o o t i n g d e p t h was o b s e r v e d t o be l i m i t e d t o surface  horizons.  This  i s p a r t l y due t o t h e c e m e n t -  a t i o n o f t h e c o a r s e r m a t e r i a l s , by A l a n d / o r S i .  The  coarse  m a t e r i a l s a r e a l s o i n h e r e n t l y low i n n u t r i e n t s , and because of the very for  l o w CEC a r e n o t a b l e t o r e t a i n t h e r e q u i r e d  nutrients  p l a n t g r o w t h I n l a r g e a m o u n t s . The i n c o r p o r a t i o n o f o r g a n i c  172 matter  and t h e e n r i c h m e n t o f s e s q u i p j c i d e s i n t h e s u r f a c e  h o r i z o n s has i n c r e a s e d t h e a v a i l a b l e water s t o r a g e  mineral  capacity.  T h i s a i d s i n m a i n t a i n i n g adequate water f o r p l a n t growth d u r i n g t h e p e r i o d o f summer d e f i c i t . the f i n e o v e r l a y e i t h e r d i r e c t l y  Any a c t i v i t y  by t h e a c t i v i t y  w h i c h removes  or  through  e r o s i o n g r e a t l y reduces the s i t e p r o d u c t i v i t y of these The  landscape  ocean i n t e r f a c e . along the c l i f f  c o m p o n e n t s become v e r y This area  face.  important  soils.  at the land-  i s s u b j e c t t o mass w a s t i n g  of materials  The f a c t o r s i n v o l v e d i n c l u d e ; t h e e r o s i o n  of t h e base o f t h e c l i f f  during winter storms,  the v a r i a b i l i t y  of t h e marine c l a y m a t e r i a l i n r e l a t i o n t o t h e depth o f outwash o v e r b u r d e n ( F i g u r e 1 - 6 ) , and t h e s a t u r a t i o n o f t h e m a r i n e c l a y s d u r i n g t h e w i n t e r months.  The l a r g e s t s l i d e s  (Figure IV-1)  o c c u r where t h e o u t w a s h d e p o s i t s a r e s h a l l o w and t h e m a r i n e c l a y s are near the s u r f a c e .  As t h e c l a y s r e a c h  s a t u r a t i o n they  become l i q u i d a n d f l o w . Where t h e c o a r s e  outwash m a t e r i a l s a r e o f c o n s i d e r a b l e  t h i c k n e s s , some mass w a s t i n g  occurs  as t h e c l i f f  face f l a k e s  off,  h o w e v e r , t h e amount o f m a t e r i a l i n v o l v e d I s much  than  those  i n v o l v i n g the c l a y m a t e r i a l .  The s t a b i l i t y  outwash d e p o s i t s r e s u l t s from t h e cementation  less of the  of the coarse  fragments. Permanent s t r u c t u r e s s h o u l d along  the c l i f f ,  clay materials. to  dry periods  n o t be c o n s t r u c t e d i n t h e a r e a  e s p e c i a l l y where t h e g r a v e l s a r e s h a l l o w Activity  i n this  of the year.  area  s h o u l d ' a l s o be  over  limited  173  Figure IV-1.  These  s l i d e s are t y p i c a l  where t h e o u t w a s h ine clay  deposits.  of those  m a t e r i a l s are  occurring  shallow  o v e r mar-  174  Site 5 The  soil  a t S i t e 5 was. a l s o i n c l u d e d i n t h i s  the  inherent  the  function, of the s o i l s  category  c h a r a c t e r i s t i c s of, t h e p a r e n t m a t e r i a l  m a t e r i a l has r e t a r d e d  soil  to t h e low p e r m e a b i l i t y  i n the landscape. development.  dominates  This fine  This  where  textured  i s p r i m a r i l y due  of the materials r e s u l t i n g i n a  saturated  c o n d i t i o n o f t h e p e d o n f o r much o f t h e y e a r .  Even d u r i n g d r y  p e r i o d s , the l o c a l water t a b l e remains high.  This  has  condition  prevented the removal of weathering products which i s p a r t l y  responsible This  f o r limited  soil  soil  development.  i s o f l i m i t e d u s e f o r many a c t i v i t i e s  m o d i f i c a t i o n i f i t i s t o be u s e d d i r e c t l y .  and r e q u i r i e s  The m a t e r i a l i s  p o o r f o r c o n s t r u c t i o n p u r p o s e s and any t y p e o f t r a f f i c  corridor  w o u l d h a v e t o be s u r f a c e d w i t h c o a r s e r m a t e r i a l . D r a i n a g e w o u l d have an e f f e c t on t h e pH o f t h e s e Tests  i n d i c a t e t h a t a d r o p i n pH w o u l d o c c u r u n d e r o x i d i z i n g  c o n d i t i o n s and w i l l and  structure.  r e s u l t i n changes i n v e g e t a t i o n  However, t h i s  change w i l l  composition  n o t h a v e a s much  e f f e c t as t h e d e c r e a s e i n s o i l m o i s t u r e c o n t e n t ,  as t h e h i g h -  e s t pH i s b e l o w t h e zone where r o o t s a r e p r e s e n t .  The change  i n pH w i l l r e s u l t f r o m l e a c h i n g o f t h e b a s i c c a t i o n s show a n i n c r e a s e the  soils.  i n t h e l o w e r solum and C h o r i z o n s ,  o x i d a t i o n of sulphur  t o form H S0 o  ;i  which plus  i n the s o i l solution.  175  Site 8 s o i l a t S i t e . 8 was I n c l u d e d i n . t h i s  The  category  because  o f t h i s u n i f o r m n a t u r e of. t h e s a n d y p a r e n t m a t e r i a l a n d t h e l a c k of s t r o n g l y The  expressed genetic  features.  sands a r e low i n i n h e r e n t f e r t i l i t y ,  is primarily  and n u t r i e n t  confined t o the organic horizons.  m o b i l e e l e m e n t s i s n o t r e t a r d e d by r e s t r i c t i n g pedon, t h e r e f o r e , s i t e q u a l i t y of the organic The  soil  i s dependant  cycling  Leaching of layers i n the  on t h e m a i n t e n a n c e  horizons. at t h i s  s i t e does n o t e x h i b i t  s e v e r e e r o s i o n when  e x p o s e d , p a r t l y b e c a u s e t h e m a t e r i a l i s h i g h l y p e r m e a b l e and p a r t l y because o f t h e low r e l i e f . The s o i l  i s i n the early  of t h e l i m i t e d a v a i l a b i l i t y  s t a g e s - o f development as a r e s u l t  of m a t e r i a l f o r weathering i nthe  s a n d s , and b e c a u s e o f t h e r e l a t i v e y o u t h o f t h e d e p o s i t s . W i t h c o n t i n u e d - a c c u m u l a t i o n o f OM a n d F e f r o m b i o t i c t h e r e i s some p o t e n t i a l f o r p l a c i c this  soil.  h o r i z o n development i n  There a r e d i s c o n t i n u i t i e s  could i n i t i a t e  cycling  i n the m a t e r i a l s which  t h e f o r m a t i o n o f pans b u t t h e changes i n  t e x t u r e a r e not abrupt. GENETIC CHARACTERISTICS The  soils  included i n this  category are those in-which  acteristics  f o r m e d by p e d o g e n i c p r o c e s s e s d i r e c t  of t h e s o i l  internally,  the function  and t o a c o n s i d e r a b l e d e g r e e  some o f t h e o t h e r l a n d s c a p e c o m p o n e n t s .  char-  also  176  At  some p r e c e d i n g  have been p l a c e d characteristics initially be  stage  i n one and  of development these  of the  other  other  m o r p h o l o g y and  Three s o i l s are Site  soil  i n the  arrangement of g e n e t i c  included i n t h i s category.  these  sandy b e a c h d e p o s i t s .  s o i l s have c o n s i d e r a b l e i n the  can  l a n d s c a p e and  the  The  soil  soil  soil  the  characteristics.  The  3 d e v e l o p e d on g l a c i a l o u t w a s h d e p o s i t s , t h e  d e v e l o p e d on  inherent  mode o f m a t e r i a l  4 d e v e l o p e d on m a r i n e c l a y m a t e r i a l s and  soil  The  pedogenic processes  s t r a t i g r a p h y and  d e p o s i t i o n , the p o s i t i o n of the composition,  categories.  l a n d s c a p e c o m p o n e n t s w h i c h were  responsible for directing  determined from the  s o i l s would  at  at  Site 6  at S i t e  pedogenic f e a t u r e s  i n f l u e n c e on f u n c t i o n o f  of  the  environment.  Site 4 The  change . i n s t r u c t u r e o f t h e  aggregation process this  i n the  environment.  transformation  o f Fe  minerals  and  The  t o Fe  Al  and  these  i s a result  indicative this  of the  environment.  genetic  of  products  the of  primary  oxides. of t h i s s o i l  processes  has  i n the pedon at S i t e effective  been  as i n d i c a t e d by  e x c h a n g e a b l e c a t i o n s a t a d e p t h o f 1 2 0 cm. i n c r e a s e a t 3 0 cm.  dominant  the  change i n f u n c t i o n o f  A l as w e a t h e r i n g  i n t e r n a l drainage  c o n s i d e r a b l y by  This  4 , from  at S i t e  of c l a y s i z e p a r t i c l e s , i s the  which i s r e s p o n s i b l e f o r the  soil  soil  5-  increased the  increase  compared t o This  an  increase i s  depth of l e a c h i n g i n t h i s s o i l  in  in  177  The  g e o g r a p h i c a l d i s t r i b u t i o n of these s o i l s , along  channels  i s evidence  initially  drainage  t h a t the development of these s o i l s  was  d e p e n d e n t on t h e i r p o s i t i o n i n t h e l a n d s c a p e .  This  c l o s e p r o x i m i t y t o d r a i n a g e channels r e s u l t e d i n a sequence of  a l t e r n a t i n g wet  and  dry p e r i o d s which appears  a g g r e g a t i o n by Fe and A l o x i d e s .  to aid i n  It also assisted  in  removing  the p r o d u c t s of w e a t h e r i n g which would t e n d t o advance development t o i t s p r e s e n t  state.  Any. m a n i p u l a t i o n o f t h i s  s o i l would tend t o break  s t r u c t u r e , e s p e c i a l l y when m o i s t u r e c o n t e n t i s h i g h . aggregates  are not v e r y s t a b l e , w i t h a h i g h percentage  m a t e r i a l reduced analysis. as f r o m  Some r e s i s t a n c e t o d i s a g g r e g a t i o n was  17 t o 32 percent of the s o i l  f r a c t i o n was  which  down t h e The of  the  to clay sized particles during p a r t i c l e  p a r t i c l e s during treatment. silt  soil  reduced  remained  Approximately  shown h o w e v e r ,  as s i l t  sized  15 percent of  t o c l a y upon t r e a t m e n t w i t h  would i n d i c a t e t h a t t h i s  size  set of aggregates  this  dithionite  would  remain  s t a b l e under c o n s i d e r a b l e s t r e s s . Site  3 The  pedogenic  bog  landscape at S i t e 3 i s p r i m a r i l y the r e s u l t  cementation  h o r i z o n has p r e v e n t e d lower depths. scape  i n the Bfc h o r i z o n .  This  cemented  t h e p e n e t r a t i o n o f r o o t s and w a t e r  A similar  condition exists  of  to  on an a d j a c e n t l a n d -  b u t t h e r e i s enough r e l i e f t o g i v e a d e q u a t e d r a i n a g e  bogs a r e n o t  formed.  so  178  The  r e g i o n a l landscape i s part  is representative textured  o f t h e o u t w a s h p l a i n and  o f t h o s e s o i l s w h i c h have l i t t l e  c a p p i n g over- t h e c o a r s e r m a t e r i a l s .  m a t e r i a l on t h e h i g h e r  o r no. ' f i n e  Much o f t h e f i n e r  s i t e s h a s b e e n washed i n t o  depressional  areas. In both the depressional present  and u p l a n d p o s i t i o n s , t r e e s a r e  w h i c h have t h e f o r m o f t h e b o n s a i  form i s evident regeneration  In the older vegetation  having  normal form.  ( F i g u r e 1-12).  This  w i t h young, n a t u r a l  The t r e e s do n o t grow i n  d e n s e s t a n d s and become p r o g r e s s i v e l y more open a s t h e d e p t h of organic The soil the  accumulation increases  bonsai  form i s probably  competition  l i m i t s the s o i l  of normal form.  This  effect-  by t h e r o o t s o f  a l s o e x p l a i n s why new  The s o i l v o l u m e i s i n i t i a l l y  young t r e e s r e p l a c e  increase  trees.  v o l u m e t o be o c c u p i e d This  limited  i n t h e u p l a n d a r e a s and  f o r n u t r i e n t s by a d j a c e n t  each i n d i v i d u a l t r e e .  the  c a u s e d by t h e v e r y  d e p t h above t h e cemented h o r i z o n s  ively  is  i n the bogs.  regeneration adequate as  o l d e r members o f t h e s t a n d .  As t h e y  i n s i z e t h e i r r o o t s o c c u p y t h e maximum s o i l  volume  a v a i l a b l e t o them a n d g r o w t h becomes i n c r e a s i n g l y r e t a r d e d . Wind i s n o t a f a c t o r i n t h e d e v e l o p m e n t o f t h i s of t h i s The  type are present  i n sheltered  form as t r e e s  areas.  g r o w t h f o r m o f t r e e s g r o w i n g i n t h e bog a r e a s i s n o t  l i m i t e d p h y s i c a l l y by t h e v o l u m e a v a i l a b l e t o r o o t but  i s probably  growth  the r e s u l t of p h y s i o l o g i c a l nutrient d e f i c i e n c i e s .  179  The  p r e s e n c e o f e x c e s s w a t e r has been shown t o I n h i b i t n u t r i e n t  uptake The  (Lees,  bogs I n t h i s a r e a o f w h i c h S i t e 3 i s r e p r e s e n t a t i v e  relatively age  1972),  young a n d have b e e n d a t e d a t 3&O+90 y e a r s o f  (Wade, 1 9 6 5 ) .  extent but could  The a r e a o c c u p i e d by bogs i s o f l i m i t e d c o n t i n u e t o e n l a r g e as s o i l  c o n t i n u e s and t h e d e g r e e o f c e m e n t a t i o n The  b o g s s h o u l d be e l i m i n a t e d  them h a v e f a i l e d  value f o r aesthetic  development  increases.  from i n t e n s i v e use because  o f t h e i r l i m i t e d e x t e n t and t h e f a c t t h a t ilitate  are  past attempts t o rehab-  (Lavkulich, personal  comm.).  Their  a n d n a t u r a l h i s t o r y p u r p o s e s , a n d as b e a r  h a b i t a t , s h o u l d n o t be o v e r l o o k e d . Site 6 The  placic horizon  was t h e g e n e t i c  was c o n t r o l l i n g t h e f u n c t i o n in  the landscape.  inherent  property  continuity.  Also,  of t h i s s o i l ,  The p l a c i c h o r i z o n  a prerequisite  b o t h i n t e r n a l l y and  was i n i t i a t e d  of the parent m a t e r i a l ,  d i f f e r e n t i a l redox c o n d i t i o n these s o i l s  c h a r a c t e r i s t i c which  by a n  a lithologic  dis-  f o r d e v e l o p m e n t was a  across t h i s i n t e r f a c e ,  therefore,  o c c u p y a p o s i t i o n i n t h e l a n d s c a p e where t h e .ground  w a t e r t a b l e i s a t l e a s t one m e t e r b e l o w t h e d i s c o n t i n u i t y f o r a s i g n i f i c a n t part  of the year  The. p l a c i c h o r i z o n onment w i t h m a t e r i a l  (Figure  establishes  III-l).  a partially  closed  below t h e pan e f f e c t i v e l y c u t - o f f  envirfrom  180 the r e s t  of the system.  The p a n e s t a b l i s h e s a s e l f - p e r p e t u a t i n g  e n v i r o n m e n t . b y p r e v e n t i n g movement o f w a t e r and a s s o c i a t e d c o n s t i t u e n t s through  t h e s o i l pedon.  This  enhances t h e r e -  q u i r e d c o n d i t i o n s f o r p a n f o r m a t i o n by p r o v i d i n g a s u p p l y o f organic matter Any  and F e i n a r e d u c i n g  environment.  a c t i v i t y w h i c h c h a n g e s one ..or more c o m p o n e n t s o f t h i s  system w i l l  have a p r o n o u n c e d e f f e c t o n t h i s  Much o f t h e a r e a where t h e p l a c i c to  bogs ( F i g u r e I V - 2 ) .  o f t h e f o r e s t by f i r e .  soils  sensitive  system.  o c c u r has advanced  This i s p a r t l y the r e s u l t  of the removal  The subsequent- r e d u c t i o n o f  evapotrans-  p i r a t i o n which r a i s e s the l e v e l o f t h e p e r c h e d w a t e r t a b l e a b o v e the p l a c i c  h o r i z o n and c o n s e q u e n t l y  the establishment  o f bog  species i s favoured. The  removal of organic  surface horizons decreases  nutrient  status of the s o i l  c o n s i d e r a b l y and exposes t h e s o i l  to  erosion.  very  The i n h e r e n t f e r t i l i t y  l o w and many y e a r s  e s t a b l i s h , e v e n on a r e a s (Figure IV-3), can  occur,  vents  of the mineral m a t e r i a l i s  are required f o r vegetation to r e where s u r f a c e e r o s i o n i s n e g l i g i b l e  Where some r e l i e f  i s present  continual erosion of organic  n a t u r a l s t a b i l i z a t i o n of the s i t e  perched water t a b l e , i n i t i a t e d  h o r i z o n then  and s u r f a c e  runoff  and m i n e r a l m a t e r i a l p r e (Figure IV-4),  The  by t h e p r e s e n c e o f t h e p a n ,  increases the water a v a i l a b l e f o r e r o s i o n . the p l a c i c  the  Dessication of  t a k e s p l a c e d u r i n g d r y p e r i o d s as t h e  removal of the organic matter  and s u r f a c e m i n e r a l  horizons  181  Figure  IV-2.  Bog s p e c i e s the  i n v a d e a r e a s where f i r e  forest vegetation  evapotranspiration  with the decrease i n  raising  t a b l e above t h e p a n .  has removed  the perched  water  182  Figure IV-3.  Surface  organic  and m i n e r a l h o r i z o n s  removed f r o m t h i s illustrates  site  were  i n t h e e a r l y 1940's and  the slow r e v e g e t a t i o n which  expected under n a t u r a l c o n d i t i o n s .  c a n be  183  Figure  IV-4.  Severe e r o s i o n occurs relief  i s present  on s i t e s where  enough  t o cause s u r f a c e r u n o f f  after  the p r o t e c t i v e o r g a n i c m a t e r i a l i s removed.  184  g r e a t l y reduce the water storage pan by  f r a c t u r e s when d e s s i c a t e d  c a p a c i t y above t h e p a n ,  (JPIgure. 111^6) and i s r e m o v e d  e r o s i o n d u r i n g subsequent storms.  The e x p o s e d  mineral  m a t e r i a l i s then  subjected t o increased forces of  Some c e m e n t a t i o n  of t h i s m a t e r i a l takes place which  t h e e r o s i o n o f t h e m a t e r i a l t o some e x t e n t . establishment extremely The  o f v e g e t a t i o n and s t a b i l i z a t i o n  weathering. counteracts  However, t h e of the site i s  slow under n a t u r a l c o n d i t i o n s . r e m o v a l o f w a t e r by d r a i n a g e  d i t c h e s from the s u r f a c e  h o r i z o n s o f t h e s o i l s w h i c h have p l a c i c limited  The  effect  on a d j a c e n t  soil  h o r i z o n s has o n l y a  pedons i f t h e o r g a n i c and  surface mineral horizons are retained.  As was s t a t e d p r e v i o u s l y ,  t h i s i s due t o t h e h i g h w a t e r h o l d i n g c a p a c i t y o f t h i s p a r t o f t h e pedon.  For., t h i s r e a s o n ,  are d i f f i c u l t  attempts  t o improve s i t e  drainage  and c o s t l y .  S o i l s s i m i l a r t o those  found a t S i t e  6 and S i t e  7 are  g e o g r a p h i c a l l y a s s o c i a t e d and t o g e t h e r a c t t o p e r p e t u a t e  their  present  water  m o r p h o l o g y and d i s t r i b u t i o n .  The e x c e s s  surface  from the s o i l s w i t h p l a c i c h o r i z o n s d r a i n s i n t o adjacent dep r e s s i o n a l areas. have no r e s t r i c t i n g  These a r e a s , o f w h i c h S i t e 7 i s r e p r e s e n t a t i v e l a y e r s a n d a c t as a g r o u n d w a t e r  recharge  zone. Any  change i n t h e g r o u n d w a t e r l e v e l  i n this  zone,  d i r e c t l y by d i v e r s i o n o f s u r f a c e w a t e r o r i n d i r e c t l y wells i n the adjacent  either  from  a r e a , c o u l d c a u s e c o n s i d e r a b l e change i n  185  the  ecology of the e n t i r e area,  formation  of p l a c i c horizpns  at S i t e 7 . are  comparable t o those o f t h e s o i l  similar  of the s o i l  lower solum s a t u r a t e d  t o those  at this  site  a t S i t e 6 and t h e r e f o r e ,  has t h e p o t e n t i a l t o d e v e l o p p l a c i c  the present time the high  horizons.  ground water t a b l e keeps t h e  f o r t h e . e n t i r e year and e l i m i n a t e s t h e  d i f f e r e n t i a l between h o r i z o n s formation.  would r e s u l t from t h e  i n the s o i l s  The p h y s i c a l p r o p e r t i e s  this material At  This  which i s n e c e s s a r y f o r pan  However, i f t h e w a t e r t a b l e i s l o w e r e d and t h e  p a n s a r e f o r m e d , t h e r e c h a r g e zone w o u l d be e f f e c t i v e l y e l i m i n a t e d and  a further lowering  drainage patterns periods  of high  of the water t a b l e could  result.  Surface  w o u l d a l s o be e f f e c t e d , p a r t i c u l a r l y d u r i n g rainfall.  CONCLUSIONS  The  l a n d s c a p e c a n be a s s e s s e d f o r l a n d - u s e p l a n n i n g  and  management by i d e n t i f y i n g t h e d o m i n a n t f a c t o r s w h i c h c o n t r o l i t s f u n c t i o n i n the environment or m a i n t a i n i t i n a s t a b l e From a n u n d e r s t a n d i n g o f p r o c e s s e s a s s o c i a t e d the  these  factors  r e s p o n s e t o m a n i p u l a t i o n o f t h e l a n d s c a p e c a n be p r e d i c t e d . Landscape components e x t e r n a l t o t h e s o i l  arily and  with  state.  responsible  f o r c o n t r o l l i n g the function of Sites 7 , 9  1 0 . The e x t e r n a l  ility  components w h i c h a r e i m p o r t a n t a r e i n s t a b -  as a r e s u l t o f s l o p e ,  configuration  pedon a r e p r i m -  and h i g h  water  shallow table.  depth t o bedrock, bedrock  186 Inherent important  soil  c h a r a c t e r i s t i c s are considered  i n controlling  the f u n c t i o n of S i t e s 1  ?  t o be most 2, 5 and 8  i n the landscape.  Factors  presence of poorly  g r a d e d m a t e r i a l s and t h e o c c u r r e n c e o f a b r u p t l y  contrasting textures across The f u n c t i o n o f t h r e e  which are r e s p o n s i b l e are the  lit;hologic soils  discontinuities.  i n the landscape are  t o be c o n t r o l l e d by g e n e t i c  characteristics.  soils  The g e n e t i c  a t S i t e s 3, 4 and 6.  Included  features  c h a n g e i n s t r u c t u r e d e v e l o p e d by t h e a g g r e g a t i o n oxides  considered are the  are the o f F e and A l  i n t o l a r g e r s i z e d p a r t i c l e s and t h e p r e s e n c e o f cemented  horizons.  187 LITERATURE CITED  THE ASPHALT I N S T I T U T E , 1 9 6 9 . S o i l s M a n u a l , S e r i e s No. 10 C M S - 1 0 ) , The A s p h a l t I n s t i t u t e B u i l d i n g , C o l l e g e P a r k , M a r y l a n d , U.S,A. 269 .p. B A R T E L L I , L , J . , K E I N G E B I E L , A.A'., BAIRD, J . V , a n d HEDDLESON, 1966. " S o i l S u r v e y s a n d L a n d Use P l a n n i n g " , S o i l S c i . o f Araer. and Amer. S o c . o f A g r o l , M a d i s o n , W i s c o n s i n . 195 p.  M.R  BROCKE, L.K. 1 9 7 0 . S o i l survey i n t e r p r e t a t i o n f o r r e c r e a t i o n s i t e p l a n n i n g i n two A l b e r t a p r o v i n c i a l p a r k s . U n p u b l i s h e d M.Sc. T h e s i s , Dept. o f S o i l S c i . , U n i v e r s i t y o f A l b e r t a . CANADA LAND INVENTORY. 1 9 6 5 . Soil capability Dep. o f F o r e s t r y . R e p o r t No. 2 .  for agriculture.  CARBONNIER, C , BERNTSEN, C M . , HUSCH, B., a n d NYYSSONEN, A. 1971. " D e f i n i t i o n o f F o r e s t Land and Methods o f Land and S i t e C l a s s i f i c a t i o n " . Dept. of F r s t . Y i e l d Res., R o y a l C o l l e g e o f F o r e s t r y . S t o c k h o l m , Sweden. 56 p.'. C L I N E , M.G. 19^9. Basic P r i n c i p l e s of s o i l S o i l S c i . 49:81-91.  classification.  DAUBENMIRE, R. 1 9 7 3 . A comparison o f approaches t o t h e mapping o f f o r e s t l a n d f o r I n t e n s i v e management. The F o r e s t r y Chronicle, 49:87-91. JENNY, H. 1 9 4 1 . Factors of s o i l formation. Book Co., I n c . , New Y o r k . _28l:_p..,  McGraw-Hill  H I L L S , G.A. i 9 6 i . The e c o l o g i c a l b a s i s f o r l a n d u s e p l a n n i n g . R e s e a r c h R e p o r t No. 4 6 . , O n t . D e p t . L a n d s a n d F o r e s t s , Research Branch. LACATE, D.S. 1 9 6 9 . " G u i d e l i n e s f o r B i o - p h y s i c a l Land C l a s s - , ification". Dept. o f F i s h e r i e s and F o r e s t r y , C a n a d i a n F o r e s t r y S e r v i c e P u b . No. 1 2 6 4 . LESS, J.C. 1972. S o i l a e r a t i o n and S i t k a spruce growth i n peat. J . E c o l . 60:343-349-  seedling  MULCAHY, M.J. a n d HUMPHRIES, A.W. 1 9 6 7 . Soil classification, s o i l s u r v e y s and l a n d u s e . S o i l s and F e r t i l i z e r s . 30:1-8.  188  O'LOUGHLIN, C L , 1 9 7 2 , . An I n v e s t i g a t i o n o f t h e s t a b i l i t y o f t h e steepland f o r e s t s o i l s i n the Coast Mountains, southwest B r i t i s h C o l u m i b a , U n p u b l , Ph.D. T h e s i s , F a c u l t y o f F o r e s t r y , U.B.C OLSEN, G.W. 1 9 6 4 , " A p p l i c a t i o n o f s o i l s u r v e y t o p r o b l e m s o f h e a l t h , s a n i t a t i o n , and e n g i n e e r i n g . " Agr. Expt. S t a . Memoir 3 8 7 , C o r n e l l U n i v . , I t h a c a , N.Y. 77 P •' SLY,  W.K. 1 9 7 0 , A c l i m a t i c m o i s t u r e i n d e x f o r l a n d and s o i l c l a s s i f i c a t i o n i n Canada. Can. J . S o i l . S c i . 5 0 : 2 9 1 - 3 0 1 .  SWANSTON, D.N. and DRYNESS, C.T. 1 9 7 3 . J. Forestry 71:264-269-  Stability  o f steep  land.  SWANSTON, D.N. 1 9 7 1 . P r i n c i p a l mass movement p r o c e s s e s i n f l u e n c e d by l o g g i n g , r o a d b u i l d i n g a n d f i r e . I n "A symposium - F o r e s t L a n d U s e s a n d S t r e a m E n v i r o n m e n t " . ( K r y g i e r , J.T. and H a l l , J.D., d i r e c t o r s ) . Oregon S t a t e U n i v e r s i t y , C o r v a l l i s , Oregon. WERTZ, W.A, Forest  a n d ARNOLD, J . A . 1 9 7 2 . "Land S y s t e m S e r v i c e U.S. D e p t o f A g r i . 12 p. .  Inventory".  189 SUMMARY  The is  s o i l s resource  considered An  i n the T o f i n o  f o r land-use planning  assessment of the  soils  area  and  and  management p u r p o s e s .  other  landscape i s undertaken which i d e n t i f i e s which are a c t i v e i n c o n t r o l l i n g the  environment.  and  reflect  The  soils  the nature  categories  are;  istics  genetic  and  the  of Vancouver I s l a n d  components of those  processes  f u n c t i o n of the  soil  morphology of the  precipitation  p r e s e n c e o f many  d i s c o n t i n u i t i e s i n the  soils  surficial  present  i n the  particles  soils  had  confirmed  deposits.  The  included g l a c i o f l u v i a l glacial  increase  i n the  when t r e a t e d w i t h c i t r a t e  of  the  s o i l s were d e v e l o p e d outwash,  on stony  tills.  a w i d e r a n g e o f t e x t u r e s and  e x h i b i t e d an  of  a complex  are r e p r e s e n t a t i v e  area.  m a r i n e c l a y s , b e a c h s a n d s and  fraction  water  The  f o u r p a r e n t m a t e r i a l s and  The  the  i n the p r e c i p i t a t i o n .  s o i l s were s a m p l e d and  major s o i l s  includes  important  t h e h i g h amounts  mode o f d e p o s i t i o n o f t h e Ten  soils  t o be  and  ions present lithologic  character-  bedrock c o n f i g u r a t i o n , depth to  t a b l e , the h i g h t o t a l  The  characteristics.  L a n d s c a p e components w h i c h were c o n s i d e r e d  d e p t h t o b e d r o c k and  in  categories  of the p r o c e s s e s t a k i n g p l a c e .  soil  t o t h e f u n c t i o n and  soils  are grouped i n t o three  l a n d s c a p e components, i n h e r e n t  the  the  <2  mm  amount o f c l a y s i z e d  dithionite.  The  soils  are  190 v e r y a c i d i n t h e s u r f a c e h o r i z o n s and  are  with nutrient cycling occurring primarily surface horizons. the  i n the  most p r o n o u n c e d g e n e t i c f e a t u r e s i n t h e  s t r u c t u r e by Fe Placic  and  horizons  sand d e p o s i t s . i m a t e l y 20 cm  The  A l oxide  below the m i n e r a l  surface, undulate  surface.  Initiated  cementing m a t e r i a l s are organic matter  on t h e f u n c t i o n o f t h e s e  The  and  They f o r m a t an  f o r subsequent m a t e r i a l d e p o s i t i o n .  ( i n o r g a n i c amorphous).  i n the  i n t h e pedons a t  D i f f u s i o n i s a c t i v e i n m a t e r i a l t r a n s p o r t and  effect  soils  studied  t h e change i n  developed  pans a r e p r e s e n t  face of d i f f e r e n t i a l redox p o t e n t i a l  Fe  organic  soil  aggregation.  ( t h i n p a n s ) had  n e a r l y p a r a l l e l to the s o i l  and  fertility  horizons.  a r e t h e p r e s e n c e o f c e m e n t e d h o r i z o n s and  a template  i n natural  V e r m i c u l i t e i s the dominant c l a y m i n e r a l i n  surface mineral The  low  at a  beach approxare inter-  discontinuity.  t h e pan  acts  The  primary  (mainly f u l v l c  acid)  pans have a p r o n o u n c e d  soils  i n the  environment.  as  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0093141/manifest

Comment

Related Items