Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Phytogeocoenoses of a coastal lowland ecosystem, Devon island, N.W.T. Revel, Richard David 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1973_A1 R49.pdf [ 29.9MB ]
Metadata
JSON: 831-1.0093084.json
JSON-LD: 831-1.0093084-ld.json
RDF/XML (Pretty): 831-1.0093084-rdf.xml
RDF/JSON: 831-1.0093084-rdf.json
Turtle: 831-1.0093084-turtle.txt
N-Triples: 831-1.0093084-rdf-ntriples.txt
Original Record: 831-1.0093084-source.json
Full Text
831-1.0093084-fulltext.txt
Citation
831-1.0093084.ris

Full Text

PHYTOGEOCOENOSES OF THE SUB-BOREAL SPRUCE BIOGEOCLIMATIC ZONE IN NORTH CENTRAL BRITISH COLUMBIA by R I C H A R D D A V I D R E V E L B.Sc. , Notre Dame U n i v e r s i t y of Nelson, 196l A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L M E N T OF THE R E Q U I R E M E N T S FOR THE DEGREE OF DOCTOR OF P H I L O S O P H Y i n the Department of BOTANY We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE U N I V E R S I T Y OF B R I T I S H C O L U M B I A December, 1972 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of Bri t ish Columbia, I agree that the Library shall make it freely avaiIable for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. (RICHARD REVEL) Department of BOTANY The University of Bri t ish Columbia Vancouver 8, Canada Date DECEMBER 20, 1972 A B S T R A C T Little synecological work has been conducted in the Sub-boreal Spruce Biogeoclimatic Zone o f north-central British Columbia. This thesis is a vegetation and environ-ment study o f the previously mentioned zone based on the concept o f biogeoclimatology developed by Krajina and his students. Methods o f vegetation description follow standard phytosociological techniques. The aims of the study were: 1) to describe quantitatively and qualitatively the vegetation of the Sub-boreal Spruce Biogeoclimatic Zone using the methods followed by the Ziiri ch-Montpel 1 i er school of phytosoci ol ogy as mod-ified by Krajina, 2) to collect similar data on environmental parameters from the individual plots, 3) using the above data, and in addition the environmental data collected by the co-worker Wali, to develop a meaningful and recognizable class-ification scheme of the Sub-boreal Spruce Zone ecosystems, 4) to develop an integrated hierarchal scheme for the pro-posed vegetation units following standard phytosociological procedures, and 5) to collect detailed information on the nature and function of the tree species in the proposed eco-system units. i i A total of 145 sample plots were established in the different phytogeocoenoses and detailed vegetation studies carried out on each. These plots were later grouped into plant associations based on their floristic and environmental similarity. The plant associations were then grouped into the higher units of alliances and orders. A total of forty-six synsystematic units are de-scribed for the study area. The break-down of these is as' follows: seven orders, thirteen alliances, eighteen plant associations, two subassociations , and six variations. In order to obtain detailed information on the growth and structure of the different tree species in the forested plant associations, each tree falling within the study plot was measured for both diameter (DBH) and height and a representative number of trees were bored and increment cores extracted to facilitate the calculation of the growth rate of the trees. Using the above information, diameter/ height graphs were developed for each species in each of the plant associations. Other treatments of this data include calculations of tree volumes, basal areas, minimum, maximum, and average height and diameter of each tree species in each plant association, number of stems per acre, and site i ndex. General information describing the plot is also included. This information is as follows: elevation, i i i locality, data of analysis, land form, relief shape, exposure, slope gradient, erosion, drainage, hygrotope, trophotope and the type of parent material. This information is presented for each of the plant associations. One soil pit was dug in each of the sample plots and soil samples collected from each of the diagnostic horizons in the pit. These samples were subjected to physical and chemical analyses. The analyses included: soil texture, cation exchange capacity, exchangeable cations (Na, K, Ca, and Mg), total nitrogen, carbon content, organic matter content, available phosphorus, sulphur, and pH. In conclusion i t becomes apparent that the methods and findings of this thesis will have strong applications to future land management in the Sub-boreal Spruce Biogeo-climatic Zone. T A B L E OF CONTENTS Page ABSTRACT. i i LIST OF TABLES xi LIST OF FIGURE'S xxii LIST OF PLATES AND MAP xxvi ACKNOWLEDGEMENTS xxix Chapter 1 INTRODUCTION 1 2 DESCRIPTION OF THE AREA 5 The Sub-boreal Spruce Biogeoclimatic Zone 5 Sampling Area 6 Climate 10 Geology 13 Soils 14 Vegetation 16 3 METHODS OF ECOSYSTEM STUDIES 18 The Ecosystem and the Plant Association . . . 18 Vegetation Analysis 20 General Plot Data 23 v Chapter Page Soil Sampling and Analysis 23 Vegetation Synthesis 26 4 THE PLANT ASSOCIATIONS OF THE SUB-BOREAL SPRUCE ZONE 29 Piceetalia glaucae-marianae 31 Cladonio (gracilis) - Pinion contortae . . 33 Cladonio (gracilis) - Arctostaphy1o (uvae-ursi) - Vaccinio (myrti11oidis) -. Pinetum contortae 33 1) cladonio - arctostaphy!o -vaccinio - pinetosum contortae. . 44 2) pleurozio - corno - vac-cinietosum caespitosae 45 Dicrano (polyseti) - Pino (contortae) -Piceion marianae 46 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispi-dulae) - Pino (contortae) -Piceetum marianae 46 Pleurozio (schreberi) - Piceion glaucae 56 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Populo (tremu-loidis) - Pi ceo (glaucae) -Pinetum contortae 56 1) pino - populosum tremuloidis. . . 66 2) populo - piceo - pinosum contortae 67 3) piceo - pinosum contortae . . . . 68 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Pseudotsugo (*glaucae) - Piceetum glaucae 68 vi Chapter Page Carico (aquatilis) - Piceion marianae 80 Hylocomio (splendentis) - Carico (aquatilis) - Betulo (pumilae) -Piceetum marianae 80 Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) -Salico (pedieel 1aris) - Piceo (marianae) - Betuletum pumilae 90 Piceo (glaucae) - Abietetalia lasiocarpae . . 98 Piceo (glaucae) - Abietion lasiocarpae . . 100 Ptilio (cristae-castrensis) -Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae. . . . 100 1) abieto (lasiocarpae) -pi ceosum glaucae I l l 2) betulosum papyriferae I l l 3) populosum tremuloidis 112 Gymnocarpio (dryopteridis) -Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae. . . . 113 Drepanoclado (revolventis - vernicosi) -Caricetalia limosae - chordorrhizae 124 Drepanocl adion revolventis - vernicosi . . 125 Meesio (triquetrae) - Menyantho (trifoliatae) - Scheuchzerio (palustris) - Carico (limosae -chordorrhizae) - Salicetum pedicellaris 125 Drepanoclado (revolventis) - Campylio (stellati) - Manyantho (trifoliatae) -Trichophoretum alpini 133 Populetalia balsamiferae 141 Alnion tenuifoliae 142 vi i Chapter Page Urtico ( l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae 142 Salicetalia sitchensis 153 Salicion sitchensis 154 Salicetum sitchensis 154 Caricetalia rostratae 163 Caricion rostratae 165 Caricetum rostratae "165 Potentillo (palustris) - Equisetetum fluviatilis 172 Potamogetonetalia 180 Eleocharion palustris 182 Potamogetono (richardsonii) -Eleocharetum palustris 182 Scirpionacuti 189 Potamogetono (foliosi) -Scirpetum acuti . 189 Polygonion amphibii 197 Potamogetono (natantis) -Polygonetum amphibii 197 Nupharion variegati 204 Potamogetono (richardsonii -natantis) - Polygono (amphibii) -Nupharetum variegati 204 5 FOREST TREE DYNAMICS IN THE SUB-BOREAL SPRUCE ZONE 212 Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) -Pinetum contortae 219 v i i i Chapter Page Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispidulae) -Pino (contortae) - Piceetum marianae 225 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Populo (tremuloidis) -Piceo (glaucae) - Pinetum contortae 231 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Pseudotsugo (*glaucae) -Piceetum glaucae 231 Hylocomio (splendentis) - Carico (aquatilis) - Betulo (pumilae) -Piceetum marianae 248 Ptilio (cristae-castrensis) - Gymno-carpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae 252 Gymnocarpio (dryopteridis) -Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae 262 6 VEGETATION AND ENVIRONMENT RELATIONSHIPS . . .'.270 Topographic Sequences of the Associations . . 270 The upland forest associations 270 The low moor associations 273 The aquatic and semiterrestrial associations 274 Plant associations and environmental gradients 275 Carbon and organic matter 276 Nitrogen 280 Carbon/nitrogen ratios 282 Phosphorus 285 i x Chapter Page Sulphur 287 Calcium. . 287 Magnesium 291 Sodium 293 Potassium 295 Cation exchange capacity 297 Soil reaction (pH) 297 Sand 300 Silt 302 Clay 305 7 SUMMARY AND CONCLUSIONS 307 BIBLIOGRAPHY 318 APPENDICES A CHECKLIST OF SPECIES 328 B ABBREVIATIONS USED IN THE TABLES 346 C BASAL AREA AND,NUMBER OF TREES ON A PER PLOT BASIS . . . 348 D TREE VOLUMES; AVERAGE, MINIMUM AND MAXIMUM HEIGHT OF TREES AND AVERAGE, MINIMUM AND MAXIMUM DIAMETER OF TREES ON A PER PLOT BASIS 366 E DIAMETER/NEIGHT SCATTER DIAGRAMS FOR EACH TREE SPECIES IN EACH OF THE FOREST PLOTS . . . . 379 F SUMMARY OF CLIMATIC DATA FROM SEVEN DEPARTMENT OF TRANSPORT WEATHER STATIONS 402 G CONDENSED VEGETATION TABLE OF THE SUB. BOREAL PLANT ASSOCIATIONS SHOWING THE CHARACTERISTIC COMBINATION OF SPECIES 408 X L I S T OF T A B L E S Table Page 1. The hierarchy of synsystematic units 30 2. Characteristic combination of species in the Cladonio (gracilis) Arctostaphy1o (uvae-ursi) - Vaccinio (myrti11oidis) -Pinetum contortae 34 3. General environment of the Cladonio (gracilis) - Arctostaphy1o (uvae-ursi) -Vaccinio (myrti11oidis) - Pinetum contortae. . . . 35 4. Association table of the Cladonio (gracilis) - Arctostaphy1o (uvae-ursi) -Vaccinio (myrti11oidis) - Pinetum contortae 36 5. Soil texture in the Cladonio (gracilis) -Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) - Pinetum contortae 40 6. Soil chemical analysis in the Cladonio (gracilis) - Arctostaphy1o (uvae-ursi) -Vaccinio (myrti11oidis) - Pinetum contortae 41 7. Characteristic combination of species in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae 47 8. General environment of the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Dicrano (polyseti) - Gaultherio (hispidulae) -Pino (contortae) - Piceetum marianae 48 9. Association table of the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Dicrano (polyseti) - Gaultherio (hispidulae) -Pino (contortae) - Piceetum marianae 49 xi Table Page 10. Soil texture in the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) - Piceetum marianae 51 11. Soil chemical analysis in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Dicrano (polyseti) - Gaultherio (hispidulae) -Pino (contortae) - Piceetum marianae 52 12. Characteristic combination of species in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Populo (tremuloidis) - Piceo (glaucae) - Pinetum contortae 57 13. General environment of the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Populo (tremuloidis) -Piceo (glaucae) - Pinetum contortae 58 14. Association table of the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Populo (tremuloidis) - Piceo (glaucae) - Pinetum contortae 59 15. Soil texture in the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Populo (tremuloidis) -Piceo (glaucae) - Pinetum contortae 64 16. Soil chemical analysis in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Populo (tremuloidis) - Piceo (glaucae) - Pinetum contortae 65 17. Characteristic combination of species in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Pseudotsugo (*glaucae) - Piceetum glaucae 69 xi i Table Page 18. General environment of the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Pseudotsugo (*glaucae) - Piceetum glaucae 70 19. Association table for the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Pseudotsugo (*glaucae) - Piceetum glaucae 71 20. Soil texture in the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Pseudotsugo (*glaucae) -Piceetum glaucae 78 .21. Soil chemical analysis in the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Pseudotsugo (*glaucae) - Piceetum glaucae . . . 79. 22. Characteristic combination of species in the Hylocomio (splendentis) - Carico (aquatilis) - Betulo (pumilae) - Piceetum marianae 81 23. General environment in the Hylocomio (splendentis) - Carico (aquatilis) -Betulo (pumilae) - Piceetum marianae 82 24. Association table for the Hylocomio (splendentis) - Carico (aquatilis) -Betulo (pumilae) - Piceetum marianae 83 25. Soil texture in the Hylocomio (splendentis) -Carico (aquatilis) - Betulo (pumilae) -Piceetum marianae . . OMIT < 26. Soil chemical analysis in the Hylocomio (splendentis) - Carico (aquatilis) -Betulo (pumilae) - Piceetum marianae 86 x i i i Table Page 27. Characteristic combination of species in the Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) - Piceo (marianae) -Betuletum pumilae 91 28. General environment in the Tomenthypno (nitentis) - Sphagno (subnitentis) -Carico (aquatilis) - Salico (pedieel 1aris) -Piceo (marianae) - Betuletum pumilae 92 29. Association table for the Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) -Piceo (marianae) - Betuletum pumilae 93 30. Soil texture in the Tomenthypno (nitentis) -Sphagno (subnitentis) - Carico (aquatilis) -Salico (pedieel 1aris) - Piceo (marianae) -Betuletum pumilae .OMIT • 31. Soil chemical analysis in the Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedieel 1aris) - Piceo (marianae) - Betuletum pumilae 96 32. Characteristic combination of species in the Ptilio (cristae-castrensis) -Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae 101 33. General environment in the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae 102 34. Association table for the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae 103 35. Soil texture in the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae 109 xi v Table Page 36. Soil chemical analysis in the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) -Piceetum glaucae 110 37. Characteristic combination of species in the Gymnocarpio (dryopteridis) Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum gl aucae 114 38. General environment in the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae 115 39. Association table in the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae 116 40. Soil texture in the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae 121 41. Soil chemical analysis in the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae 122 42. Characteristic combination of species in the Meesio (triquetrae) - Menyantho (trifoliatae) - Scheuchzerio (palustris) -Carico (limosae - chordorrhizae) -Salicetum pedicellaris 126 43. General environment in the Meesio (triquetrae) - Menyantho (trifoliatae) -Scheuchzerio (palustris) - Carico (limosae - chordorrhizae) - Salicetum pedi eel 1 ari s 127 44. Association table for the Meesio ( t r i -quetrae) - Menyantho (trifoliatae) -Scheuchzerio (palustris) - Carico (limosae -chordorrhizae) - Salicetum pedicellaris 128 xv Tab 1e Page 45. Soil chemical analysis in the Meesio (triquetrae) - Menyantho (trifoliatae) -Scheuchzerio (palustris) - Carico (limosae - chordorrhizae) - Salicetum pedi eel 1 ari s 132 46. Characteristic combination of species in the Drepanoclado (re volventis) - Campylio (stellati) - Menyantho (trifoliatae) -Trichophoretum alpini 134 47. General environment in the Drepanoclado (re volventis ) - Campylio (stellati) -Menyantho (trifoliatae) - Trichophoretum alpini 135 48. Association table for the Drepanoclado (revolventis) - Campylio (stellati) -Menyantho (trifoliatae) -Trichophoretum alpini 136 49. Chemical analysis in the Drepanoclado (revolventis) - Campylio (stellati) -Menyantho (trifoliatae) - Trichophoretum alpini 1 39 50. Characteristic combination of species in the Urtico ( l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae 145 51. General environment in the Urtico ( l y a l l i i ) -Matteuccio (struthiopteridis) - Alnetum tenui foli ae 146 52. Association table for the Urtico ( l y a l l i i ) -Matteuccio (struthiopteridis) - Alnetum tenui foli ae 147 53. Soil texture in the Urtico ( l y a l l i i ) -Matteuccio (struthiopteridis) - Alnetum tenui foli ae 150 xv i Table Page 54. Soil chemical analys.is in the Urtico (l y a l l i i ) - Matteuccio (struthiopteridis) -Alnetum tenuifoliae 151 55. Characteristic combination of species in the Salicetum sitchensis 155 56. General environment in the Salicetum sitchensis 156 57. Association table for the Salicetum sitchensis 157 58. Soil texture in the Salicetum sitchensis 160 59. Soil chemical analysis in the Salicetum sitchensis 161 60. Characteristic combination of species in the Caricetum rostratae 166 61. General environment in the Caricetum rostratae 167 62. Association table for the Caricetum rostratae 168 63a Soil physical analysis in the Caricetum rostratae 170 63b Soil chemical analysis in the Caricetum rostratae 171 64. Characteristic combination of species in the Potentillo (palustris) - Equisetetum fluviatilis 173 65. General environment in the Potentillo (palustris) - Equisetetum fluviatilis 174 66. Association table for the Potentillo (palustris) - Equisetetum fluviatilis 175 xvi i Table Page 67. Soil texture in the Potentillo (palustris) -Equisetetum fluviatilis 178 68. Soil chemical analysis in the Potentillo (palustris) - Equisetetum fluviatilis 179 69. Characteristic combination of species in the Potamogetono (richardsonii) -Eleocharetum palustris 182 70. General environment in the Potamogetono (richardsonii) - Eleocharetum palustris 183 71. Association table for the Potamogetono (richardsonii) - Eleocharetum palustris 184 72. Soil texture in the Potamogetono (richard-sonii) - Eleocharetum palustris 187 73. Soil chemical analysis in the Potamogetono (richardsonii) - Eleocharetum palustris 188 74. Characteristic combination of species in the Potamogetono (foliosi) - Scirpetum acuti 190 75. General environment in the Potamogetono (foliosi) - Scirpion acuti 191 76. Association table for the Potamogetono (foliosi) - Scirpion acuti 192 77. Soil texture in the Potamogetono (foliosi) - Scirpion acuti 194 78. Soil chemical analysis in the Potamogetono (foliosi) - Scirpion acuti 195 79. Characteristic combination of species in the Potamogetono (natantis) - Polygonetum amphibi i 197 xvi i i Tabie Page 80. General environment for the Potamogetono (natantis) - Polygonetum amphibii 198 81. Association table for the Potamogetono (natantis) - Polygonetum amphibii 199 82. Soil texture in the Potamogetono (natantis) - Polygonetum amphibii 202 83. Soil chemical analysis in the Potamogetono (natantis) - Polygonetum amphibii 203 84. Characteristic combination of species in the Potamogetono (richardsonii - natantis) -Polygono (amphibii) - Nupharetum variegati 205 85. General environment in the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati 206 86. Association table for the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati 207 87. Soil texture in the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati 209 88. Soil chemical analysis in the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati 210 89. Tree mensuration for the Cladonio (gracilis) -Arctostaphylo (uvae-ursi) - Vaccinio (myrtil loidis) - Pinetum contortae 221 90. Tree mensuration for the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) - Piceetum marianae 226 xix Table Page 91. Tree mensuration for the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Populo (tremu-loidis) - Piceo (glaucae) - Pinetum contortae 233 92. Tree mensuration for the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Pseudotsugo (*glaucae) - Piceetum glaucae 241 93. Tree mensuration for the Hyloconio (splendentis) - Carico (aquatilis) - Betulo (pumilae) - Piceetum marianae 249 94. Tree mensuration for the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae 254 95. Tree mensuration for the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae 264 96. Comparison of soil carbon among the plant association 277 97. Comparison of soil organic matter among the plant associations. 278 98. Comparison of soil nitrogen among the plant associations 281 99. Comparison of soil carbon/nitrogen ratios among the plant associations 283 100. Comparison of soil available phosphorus among the plant associations 286 101. Comparison of soil sulphur among the plant associations 288 xx Table Page 102. Comparison of soil calcium among the pla,nt associations 289 103. Comparison of soil magnesium among the plant associations. 292 104. Comparison of soil sodium among the plant associations 294 105. Comparison of soil potassium among the plant associations 296 106. Comparison of soil cation exchange capacities among the plant associations 298 107. Comparison of soil pH among the associations 299 108. Comparison of soil sand content among the plant associations 301 109. Comparison of soil s i l t content among the plant associations 303 110. Comparison of soil clay content among the plant associations 306 xxi LIST OF FIGURES Fi gure Page 1. Cladonio (gracilis) - Arctostaphy!o (uvae-ursi) - Vaccinio (myrti1!oidis) -Pinetum contortae. Diameter - Height regression for Populus tremuloides 222 2. Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) -Pinetum contortae. Diameter - Height regression for Pinus contorta 223 3. Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) -Pinetum contortae. Composite Diameter -Height regression for two species , 224 4. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae. Diameter - Height regression for Pioea maviana 227 5. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae. Diameter - Height regression for Pinus contorta 228 6. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae. Diameter - Height regression for Abies lasiooavpa 229 xxi i Fi gure Page 7. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae. Composite Diameter -Height regression for three species 230 8. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae. Diameter - Height regression for Picea glauoa 234 9. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae. Diameter - Height regression for Populus tremuloides 235 10. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae. Diameter - Height regression for Pinus contorta 236 11. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae. Diameter - Height regression for Abies lasiocarpa 237 12. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae. Composite Diameter -Height regression for four species 238 13. Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Pseudotsugo (*glaucae) - Piceetum glaucae. Diameter - Height regression for Picea glauca 242 xxi i i F i g u r e P a g e 1 4 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Populus tremuloides 2 4 3 1 5 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Pinus contorta 2 4 4 1 6 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Abies lasiocarpa 2 4 5 1 7 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Abies lasiocarpa OMIT 1 8 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Pseudotsuga menziesii v a r . glauca 2 4 6 1 9 . P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o ( m e m b r a n a c e i ) -P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l a u c a e . C o m p o s i t e D i a m e t e r - H e i g h t r e g r e s s i o n s f o r f i v e s p e c i e s 2 4 7 2 0 . H y l o c o m i o ( s p l e n d e n t i s ) - C a r i c o ( a q u a t i l i s ) - B e t u l o ( p u m i l a e ) - P i c e e t u m m a r i a n a e . D i a m e t e r - H e i g h t r e g r e s s i o n f o r Picea mariana 2 5 0 2 1 . P t i l i o ( c r i s t a e - c a s t r e n s i s ) - G y m n o c a r p i o ( d r y o p t e r i d i s ) - A b i e t o ( l a s i o c a r p a e ) -P i c e e t u m g l a u c a e . D i a m e t e r - H e i g h t r e g r e s -s i o n f o r Picea glauca 2 5 5 x x i v Fi gure Page 22. Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (1asiocarpae) -Piceetum glaucae. Diameter - Height regression for Populus tremuloides 256 23. Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (1 asiocarpae) -Piceetum glaucae. Diameter - Height re-gression for Betula papyrifera 257 24. Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (1asiocarpae) -Piceetum glaucae. Diameter - Height re-gression for Pinus contorta 258 25. Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) -Piceetum glaucae. Diameter - Height re-gression for Abies lasiocarpa 259 26. Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) -Piceetum glaucae. Composite Diameter -Height regressions for five species 260 27. Gymnocarpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae. Diameter - Height regression for Picea glauca 265 28. Gymnocarpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) -Piceetum glaucae. Diameter - Height regression for Betula papyrifera 266 29. Gymnocarpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) -Piceetum glaucae. Diameter - Height regression for Abies lasiocarpa 267 30. Gymnocarpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) -Piceetum glaucae. Composite Diameter -Height regressions for three species 268 xxv LIST OF PLATES AND MAP Page Map Distribution of the Sub-boreal Spruce Zone in British Columbia 7 Plate 1 General view of the Sub-boreal Zone west of Carp Lake 8 2 General view of the Sub-boreal Zone at the Tacheeda Lakes 8 3 View of the Pine - Lichen association 37 4 View of the Pine - Lichen association 37 5 Detail of the ground cover in the Pine -Lichen association 43 6 General view of the Picea mariana - Pine association 53 7 Internal view of the Spruce - Moss association developed on mesic sites 72 8 Detail of the ground cover in the above association 72 9 Douglas-fir veteran in the mesic Spruce -Moss association 76 10 General view of the Picea mariana - Bog association 85 xxvi Plate Page 11 Internal view of the above association. 85 12 View of the Betula pumila association 95 13 Internal view of the Gymnocarpium association 105 14 General view of the Oplopanax association . . . . 118 15 Detail of Oplopanax horridus 118 16 Detail of the Salix pedicellaris association 130 17 The Triehophorum association as it borders on the Betula pumila association 138 18 General view of the Matteuooia - Alnus association 148 19 Detail of the Matteuooia - Alnus association 148 20 General view of the Salix sitchensis association where it borders on the Carex rostrata association 159 21 General view of the topographic sequences of some of the aquatic and semiterrestrial associations 164 22 General view of the topographic sequences of some of the aquatic and semiterrestrial associations 164 23 General view of the Carex rostrata association 169 24 Detail of Carex rostrata and Equisetum fluviatile 169 xxvi i Plate Page 25 Detail of the Equisetum fluviatile associ ati on 176 26 Detail of the Eleocharis association 186 27 Detail of the Scirpus acutus association 193 28 Detail of the Polygonum amphibium association 200 29 Detail of the Nuphar association. 208 xxvi i i ACKNOWLEDGEMENTS I would like to express my gratitude to all my friends who, throughout my sojourn at this university have given me support and understanding; emotionally, physically and academically. Without the immense continual input from these people this work would have been impossible. To the many residents of McLeod Lake (where I made my base camp) who opened up their homes and gave unselfishly of themselves and their time, I express my deepest gratitude. To my family who have given freely of themselves in every aspect of l i f e , thank you. I am also deeply indebted to the members of my research committee; Drs. K.I. Beamish, V.J. Krajina, J.R. Maze, CA. Rowles, R.F. Scagel , W.B. Schofield and G.H.N. Towers who have given me much advice during this study. I would also like to express my appreciation to Drs. D.D. Munro and A. Kozak for their assistance in the section of forest productivity, Mr. B. Given who carried out some of the soil analysis, Dr. L.M. Lavkulich who supplied much advice concerning my soils, Dr. V. Bednar who assisted me in the determination of the genus Cavex and to Mr. G.F. Otto xxix who checked all of my lichen determinations and opened up his home to me on many occasions. To Dr. M.K. Wali who supplied some of the soils data incorporated in this thesis and with whom two pleasant summers were spent in the field, I also express my thanks. Special appreciation is due to Mrs. Dolores Lauriente who, under the pressure of other work, found time to provide much assistance in the computational aspects of this study. My thanks to my colleagues Satoru Kojima, Dick Annas, Paul Barrett, Mohan Wali, Karen Eady, Sarah Madoc-Jones and Chuck Bei1 for many useful discussions throughout the progress of this work. Gratitude is also due to Mr. Jim Sully, my field assistant in 1969. Special appreciation is due to Mrs. Jarmila Svobodova and Shari Haller who spent many tedious days in typing the manuscript of the thesis. This research was supported by the National Research Council of Canada operating grant (No. A-92) awarded to Dr. V.J. Krajina. Financial assistance to the author was supplied by the University of British Columbia Graduate Fellowship and by a National Research Council Post Graduate Scholarship. Foremost, I must express my deepest gratitude to my research supervisor, Professor V.J. Krajina, for many hours of his own time which he gave freely and unselfishly to me xxx throughout the past years in all aspects of this work. To attempt to l i s t his contributions to my study and my life would be an exercise in futility and to call him a scholar would be inadequate. Let i t suffice to say he is a Human Being of the first order. Thank you Dr. Krajina. xxxi Go -placidly amid the noise and haste, and remember what peace there may be in silence. As far as possible with-out surrender be on good terms with all persons. Speak your truth quietly and clearly; and listen to others, even the dull and ignorant; they too have their story. Avoid loud and aggressive persons, they are vexations to the spirit. If you compare yourself with others, you may become vain and bitter; for always there will be greater and lesser persons than yourself. Enjoy your achievements as well as your plans. Keep interested in your own career, however humble; it is a real pos-session in the changing fortunes of time. Exercise caution in your business affairs; for the world is full of trickery. But let this not blind you to what virtue there is; many persons strive for high ideals; and everywhere l i f e is full of heroism. By yourself. Especially3 do not feign affection. Neither be cynical about love; for in the face of all aridity and dis-enchantment it is perennial as the grass. Take kindly the council of years, gracefully surrendering the things of youth. Nurture strength of spirit to shield you in sudden mis fortune. But do not distress y ours elf with imaginings. Many fears are born of fatigue and lonliness. — -Beyond a wholesome discipline, be gentle with yourself. You are a child of the universe, no less than the trees and the stars; you have a right to be here. And whether or not it is clear to you, no doubt the universe is unfolding as it should. Therefore be at peace with God, whatever you conceive Him to be, and whatever your labours and aspirations, in the noisy confusion of l i f e keep peace with your soul. With all its sham, drudgery and broken dreams, it is s t i l l a beautiful world. Be careful. Strive to be happy. author unknown xx XII Chapter 1 INTRODUCTION To date very l i t t l e work has been carried out on the vegetation of northern British Columbia with the excep-tion of some papers which discuss the general vegetation of that region. British Columbia was divided into forest types by Whitford and Craig (1918) while Halliday (1937) proposed seven forest regions for the province. Rowe (1959) later modified the forest region system of Halliday in his paper on forest regions of Canada. Also based on the work of Halliday (1937), twelve biotic regions were proposed for the province (British Columbia Natural Resources Council, 1956). These previous works have all been based on the concept of forest typology. Krajina (1959) proposed twelve bioclimatic zones in British Columbia. This scheme was later modified (Krajina, 1965) into a more comprehensive and ecosystematic classification based on biological, geological and clima-tological factors. In this system the province is divided 1 2 into eleven biogeoclimatic zones which fall into seven bio-geoclimatic regions. Since then a detailed proposal by Krajina (1969) has been developed which discusses the role occupied by the major forest tree species in each of the eleven biogeoclimatic zones. The latter paper applies methods developed by Pogrebniak (1930), Braun-Blanquet (1932) and Sukachev (1944, 1945). The biogeoclimatic concept is original. Within the biogeoclimatic zonal scheme a number of detailed synecological investigations have been in progress to better define the ecosystems within each of these zones. The present study is one of such investigations and is con-cerned with the Sub-boreal Spruce Biogeoclimatic Zone. The Sub-boreal Spruce Biogeoclimatic Zone falls within the Canadian Boreal Forest Region along with the Boreal White and Black Spruce Biogeoclimatic Zone. To date few synecological investigations have been carried out in the Sub-boreal Spruce Zone. Wali (1969), a co-worker with the author, has discussed vegetation - environment relations in selected Sub-boreal Spruce Zone ecosystems based on pre-liminary vegetation data collected by the author. Kujala (1945) conducted some work on forest types in part of the zone while Illingworth and Arlidge (1960) described several Picea glauca - Abies lasiocarpa stands in the Prince George area and several Pinus contorta stands near the study area. 3 The studies by Illingworth and Arlidge do not, however, attempt to correlate the stands they investigated to envir-onmental parameters. Studies on Boreal vegetation, which shows many similarities to the Sub-boreal Spruce vegetation, have been considerably more plentiful. Some boreal workers have been Raup (1941), Moss (1953a, 1953b, 1955). Hare (1955), Sjors (1952), Knapp (1965) and Hamet-Ahti (1965). Of these, the work of Moss (1953a, 1953b, 1955) is particularly rela-tive to the current study. From the previous brief literature review of the Sub-boreal Spruce Biogeoclimatic Zone it is obvious that this zone has been poorly documented synecologically. This study then, is an attempt to supply a more precise syneco-logical documentation of the Sub-boreal Spruce ecosystems. Field investigations were initiated in the summer of 1967 and continued throughout the summer of 1969. More precisely, the aims of this study were: 1. t o d e s c r i b e q u a n t i t a t i v e l y a n d q u a l i t a t i v e l y t h e v e g e t a t i o n o f t h e S u b - b o r e a l S p r u c e Z o n e ; 2. t o c o l l e c t s i m i l a r d a t a on e n v i r o n m e n t a l p a r a m e t e r s f r o m t h e i n d i v i d u a l s t u d y p l o t s ; 3. u s i n g t h e a b o v e d a t a and i n a d d i t i o n t h e e n v i r o n m e n t a l d a t a c o l l e c t e d by t h e c o - w o r k e r 4 Wa I i ( 1 9 6 9 ) , t o d e v e l o p a m e a n i n g f u l and e a s i l y r e c o g n i z a b l e c l a s s i f i c a t i o n f o r t h e S u b - b o r e a l S p r u c e Zone e c o s y s t e m s ; 4. t o d e v e l o p an i n t e g r a t e d h i e r a r c h i c a l scheme f o r t h e p r o p o s e d v e g e t a t i o n u n i t s f o l l o w i n g s t a n d a r d p h y t o s o c i o I o g i c a I p r o c e d u r e s ; 5. t o c o l l e c t d e t a i l e d i n f o r m a t i o n on t h e n a t u r e and f u n c t i o n o f t h e t r e e s p e c i e s i n t h e p r o p o s e d e c o s y s t e m u n i t s . This study is basically synecological in its nature and includes descriptions of the vegetation units of the forests, low moors, and emergent and aquatic vegetations of the Sub-boreal Spruce Biogeoclimatic Zone. Chapter 2 DESCRIPTION OF THE AREA The Sub-boreal Spruce Biogeoclimatic Zone The Sub-boreal Spruce Biogeoclimatic Zone lies in the north central portion of the province of British Columbia. This was originally termed Sub-boreal Spruce Bioclimatic Zone (Krajina, 1959). It's southern limit is 53° 15' at Ahbau Lake, 30 miles east of Quesnel and it's northern limit is at 57° 15' north latitude at Pesika Creek, a tributary of the Finlay River. It extends from Cushing Creek (129° 05' east longitude) in the east to Owl Creek (129° 53' east long-itude in the west). Krajina (1965) considers the Sub-boreal Zone to fall in the Canadian Boreal Forest Region along with the Boreal White and Black Spruce Zone which is farther north and east. The Sub-boreal Zone is bounded in the south by the Cariboo Aspen - Lodgepole Pine - Douglas-fir Zone which is a drier Zone of mixed forest and grassland (Krajina, 1965; Beil, 1969). In the north it is bounded by the Boreal White 5 6 and Black Spruce Zone (Krajina, 1959, 1965, 1969; Annas, in progress). At higher altitudes the Sub-boreal Zone borders on the Engelmann Spruce - Subalpine Fir Zone (Interior Sub-alpine). The elevation at which these two zones merge varies somewhat with the location. In the more mountainous regions (Rocky Mountain Trench) it approximates the 2700 foot contour while on the larger outwash plains (Nechako Plain) it may be slightly higher, ca. 3000 feet. The Sub-boreal Zone incorporates parts of three Forest Regions of Canada sensu Halliday (1937). The greatest part of the Sub-boreal Zone corresponds to the Subalpine (SA2) Region of Halliday. Halliday's Subalpine Region extends farther south and better approximates the Interior Subalpine of Krajina (1959) (Engelman Spruce-Subalpine Fir Zone). The southeastern portion of the Sub-boreal corresponds to the Mountain Forest Region of Halliday. A small fringe area on the northeastern borders of the Sub-boreal Zone represents a part of the Boreal Forest Region of Halliday. Rowe's (1959) classification of Canadian Forest Regions is a modification of that of Halliday (1937). Sampling area. Most of the sampling was done along the Hart Highway, the Finlay Forks forest fire access road, and the Germansens 8 Plate 1 and plate 2: Two general views of the Sub-boreal Spruce zone. View east from Mount McKinnon looking to Carp Lake Pleistocene eskers are common in this part of the zone {upper). View looking south from Tacheeda Lakes. Note the abundance of white spruce {lower). 9 Landing road. Other plots were established in the vicinity of Carp Lake and the Tacheeda Lakes. Physiography. The following section is adapted from "The Physio-graphic Regions of British Columbia" (Holland, 1964). Physiographically , the Sub-boreal Zone lies in the valley bottoms of the north central portion of the Rocky Mountains (Muskwa and Misinchinka Ranges) and the Omineka Mountains (Finlay and Swannell Ranges) where it occurs at an altitude between 1100 and 2800 feet. It also incorporates much of the outwash plains of the central interior of the province; the northern portion of the Fraser Basin and the Nechako Plain as well as the McGreggor Plateau. On the ex-tensive outwash areas, the upper elevation is approximately at the 3000' contour. Structurally the Rocky Mountain Trench is very l i t t l e known. It has existed as a topographic feature since Tertiary times. During the Pleistocene it was occupied by ice and its form modified. The major effect of the ice was to change the drainage pattern of the rivers. The Fraser Basin is an area of low relief lying below the Nechako Plateau with its elevational boundary 10 following the 3000' contour. It is a flat to gently rolling area which is mostly covered with extensive glacial drift and glacial outwash plains which resulted from the bursting of melt water dams formed during the Pleistocene glaciation. The area was covered with ice during the Pleistocene and this has resulted in the formation of large numbers of drum-lins and eskers. The largest esker is the McKinnon Compound Esker northwest of Carp Lake. Indications are that in preglacial times the Fraser River flowed northward and was a tributary of the Peace River via- the Crooked River and Parsnip River. The division of the drainage systems may have developed when the proglacial lake in the vicinity of Prince George was drained. Until a de-tailed study of the Fraser River has been made it will not be possible to date the reversal of the drainage pattern with any degree of certainty. Climate. The climate of the Sub-boreal Zone has been class-ified as being microthermal cold continental humid (Dfc sensu Kb'ppen, 1 936) by both Chapman (1952) and Krajina (1 959). Krajina, however, points out that the zone includes even marginally Dfb climate sensu Kb'ppen (1936). 11 A summary of the climatic data from seven Department of Transport Weather Stations is included as Appendix F. These stations are located at: McLeod Lake, Prince George, Pine Pass, Fort St. James, Germansens Landing, Fort Ware and MacKenzie. For the years 1966 - 1969 the coldest month was January with average monthly temperatures ranging from -24° at Fort Ware to 16°F at the Prince George Airport. The warmest month was July. Highest temperatures were recorded at Prince George (60°F) and the lowest were at Fort Ware (54°F). Annual precipitation recorded at these weather stations for the same four years ranged from 14.27 inches at Fort Ware to 29.94 inches at Prince George. Higher precipi-tation was measured at the Pine Pass weather station but this station is located in a narrow valley in the Subalpine (sensu Krajina) and is thus not considered as representative of the Sub-boreal climate. Annual snowfall varied from 59.8 inches at Fort St. James to 214 inches at McLeod Lake. Both these were in 1967. Snowfall at the Pine Pass weather station was much higher, the record amount being 582.4 inches in 1967. The most pertinent weather station records for the area of intensive phytosociological sampling are the ones at McLeod Lake and MacKenzie as they are in the heart of the study area. 12 During another study (Wali, 1969) five microclimatic stations were established in different phytocoenoses of the present study. The phytocoenoses in which they were estab-1ished were: 1. C l a d o n i o ( g r a c i l i s ) - A r c t o s t a p h y I o (uvae-u r s i ) - V a c c i n i o (myrt! I I o i d i s ) - Pinetum c o n t o r t a e . 2. P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o (membranacei) -Populo ( t r e m u I o i d i s ) - P i c e o ( g l a u c a e ) -Pinetum c o n t o r t a e . 3. P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e -c a s t r e n s i s ) - V a c c i n i o (membranacei) -Pseudotsugo ( * g l a u c a e ) - P iceetum g l a u c a e . 4. Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - A b i e t o ( l a s i o c a r p a e ) -P iceetum g l a u c a e . 5. U r t i c o ( l y a l l i i ) - M a t t e u c c i o ( s t r u t h i o p -t e r i d i s ) - Alnetum t e n u i f o l i a e . Measurements taken at each of these weather stations for one complete year were: air temperature and humidity, 13 snow depth and accumulation, rainfall, and soil temperature and moisture at four different depths. For a synthesis of this data see Wali (1969) . Geo!ogy. The following summary of the geology of the Sub-boreal Zone is after Muller and Tipper (1969). Much of the Sub-boreal Zone is covered with exten-sive glacial drifts that are from 300' to 400' deep. Most of these drifts are less than 25' deep. Bedrock exposures are sparse and less extensive than the geological map indicates. The Wolverine Complex of rocks has it major dis-tribution west of McLeod Lake Fault where sporadic areas pro-trude above the glacial deposits. This Complex is composed basically of metamorphosed and granitized Cariboo Group rocks. These are micaceous quartzite, phyllitic quartzite, phyllite and minor pegmatite. The Misinchinka Mountains north of the Parsnip River are composed of fine to coarse grained clastic sediments, metamorphosed to chlorite schists with black slates being one of the more common obvious forms. The area lying between the south side of the Parsnip River Valley and the major line of the McLeod Lake Fault is 14 composed of several different geological groups. The Cambrian and earlier group is composed of coarse cross-bedded quartzites, calcareous sandstones, black slaty shales as well as some dolomites. The Kechika Group is quite exten-sive and consists of schistose calcareous shales, slates, siltstones and thin-bedded limestones. The Sandpile Group and the McGreggor Plateau Group are also found in this area. The former is composed of limestone, dolomite, quartzite and sandstone while the latter includes dark shales and argillite, chert, and small bodies of basaltic and gabroic rock. West of the McLeod Lake Fault three other geological formations are of importance: the Slide Mountain Group, Takla Group, and the Endako Group. The Slide Mountain Group is composed mostly of basaltic pillow lavas, the Takla Group of lower Jurassic lavas and pyroclastic rocks with some outcrops of sediments. The last of these three is the Endako Group which forms an extensive lava plateau. The former summary has presented the composition of the extrusive rocks. These are of minimal occurrence in the sampled area but their importance is as a source for the action of the Pleistocene glaciation which broke them up and relocated them as transported parent materials. Such trans-ported parent materials are of key importance in controlling the development of the vegetation and soil. 15 Soils. The Sub-boreal Zone has a cold continental climate similar to the boreal zone. Bunting (1965) has said that the zone of Boreal forests is considered coincident with the zone of Podzols. Bunting (1965) goes on to say: Podzolization therefore implies an intense, though usually shallow, alteration of the upper mineral soil by organic acids, and various trees - pine3 f i r , larch, willow, spruce and birch - produce litters of various efficiency in cheluviation. Krajina (pers. com.) points out that Populus tremuloides also plays a significant role. The occurrence of extensive Podzols in the mesic sites would indicate that the Podzol soils are the zonal soils of the Sub-boreal Zone. Podzolization as a process is the major soil forming process in the area. This does not, however, mean that it is the only soil forming process func-tioning. Simonson (1959) has denied the existence of dis-crete soil forming processes as unique processes but prefers to say that all soils are products of additions, removals, transfers and transformations. In addition to well developed Podzols, intrazonal and azonal soil types are also common. At the foot of slopes and on rich seepage sites Gleysols and Luvisols are more frequent. Some Brunisols are also present on temporary 16 seepage sites. On more juvenile locations Regosols are common. Of prime importance in the glacial depressions that have developed into low moors or mires are cumulose deposits with Organic soils. No intrazonal soils were studied. To date no soil survey report has been published for the study area though the report is currently being written (Dawson, in progress). Vegetation. Generally the vegetation of the Sub-boreal Zone can be divided into three large intergrading categories. These are: upland forest vegetation, low moor and mire vegetation, and aquatic and semiterrestrial vegetation. The uplands of the zone are forested primarily by white spruce {Picea glauoa) and to a lesser extent black spruce [Picea mariana). Abies lasiocarpa occurs in the areas more or less unaffected by recent forest fires so common in the zone. In the areas affected by fires, pioneer species such as trembling aspen (Populus tremuloides) and lodgepole pine {Pinus contorta) are the first species to develop. They then provide shade for the later development of the more shade tolerant Picea glauca, P. mariana and especially Abies lasiocarpa. 17 In the nutritionally richer seepage sites of the zone Betula papyrifera may develop as a pioneer species. Pseudotsuga menziesii var. glauca reaches its northernmost distribution on the circum-mesic sites where it develops as a sporadic species with moderate shade tolerance. Douglas-f i r could also be expected on nutritionally rich Lithosols (especially basaltic rocks) (Krajina, pers. comm.) but such ecosystems were not studied. Low moors or mires develop in the glacial depres-sions or river ox-bows and are vegetated predominantly by swamp birch (Betula pumila) , various sedges (Carex spp.) and a variety of mosses. The only tree occurring in these sites is Picea mariana and it exhibits rather poor growth. Four low moor associations are proposed for these sites. The aquatic and semiterrestrial vegetation is developed along the margins of lakes and rivers. The com-munities are very distinct and were found to be species poor. The major species are Nuphar variegatum, Equisetum fluviatile, Eleocharis palustris, Salix sitchensis3 Carex rostrata. Polygonum amphibium and Alnus tenuifolia. Chapter 3 METHODS OF ECOSYSTEM ANALYSIS The present study is considered to be phytogeocoe-notic as it deals with the interrelationship of the plants with their environment. Less emphasis is placed on the zoological aspects necessary for complete ecosystem descrip-tion but the effects of the animals is expressed in terms of the development of the vegetation and soils. The Ecosystem and the Plant Association The concept of the ecosystem is by no means a recent one. The concept dates back to Forbes (1887) when he used the term "microcosm." Friederichs (1930) called it the "holocoen." Finally in 1935 Tansley applied the term "eco-system" and considered it to be one of the fundamental units of ecology. His concept was not restricted and he applied it at different levels of integration. In this concept, the ecosystem was not defined in terms of size or composition. 18 19 Thienemann (1939) used the term "biosystem" and Vernadsky (1944) the "bioenert body" to express similar ideas. The basic ecosystematic unit in this study is the plant association (Braun-Blanquet, 1921, 1928, 1932). Krajina (1972) points out that the "biogeocoenose" (Sukachev, 1944; Sukachev and Dylis, 1964) and the plant association are similar basic synsystematic units. He then goes on to say that the plant association is a slightly higher and wider hierarchial unit than the biogeocoenose because one plant association may incorporate several biogeocoenoses (one plant association may develop under slightly different envir-onmental conditions, the biogeocoenose tends to develop under very similar conditions). The plant association is a synthetic result from the data from several plots or stands which are similar both in terms of their vegetation and environment. These repeti-tions indicate the degree of homogeneity and also the vari-ability of the plant association. A similar approach to ecosystem analysis and class-ification has been used by Krajina (1933), Krajina and Spilsbury (1952), Brayshaw (1955), Muel1er-Dombois (1959), McMinn (1960), Orloci (1961), Peterson (1964), Bell (1964), Wade (1965), Kuramoto (1965), Brooke (1966), Beil (1969), Fraser (1970), Eady (1971), and Kojima (1971). All these have been under the 20 direction of V.J. Krajina. Similar methods have been applied in the arctic by Lambert (1968), and Barrett (1972). Vegetation analysis. A reconnaissance trip was made to the study area (accompanied by Krajina and Wali) in May 1967 at which time a comprehensive collection of the plants was made. A general idea of the diversity of the plant communities was also obtained. Sampling began in early June of the same year and continued throughout the summers of 1967 to 1969. Plot selection was made with a bias toward the homogeneity of the stand in terms of its vegetation structure and composition. Selected stands had to be extensive enough for placement of a plot of predetermined size and shape. A preference was shown for those sites that were very extensive as i t was felt that plots in such sites would also be more homogeneous in terms of environmental parameters as well as having less influence (vegetationally) from neighbouring communities. Transitional or ecotonal areas were not sampled. Each association had at least five replications. Subassociations had also a minimum of five replications while vegetation units at the variant level had a minimum of two. Following the findings of Krajina andSpilsbury ( 1952), Daubenmire (1968), and Oosting (1956) a plot size of 400 square meters 21 was applied to the forest communities and for the shrub and herb communities a quadrat size of 100 square meters was applied. Plot shape in all cases was square. Vegetation analysis was carried out using the standard phytosociological techniques developed by Braun-Blanquet (1932) as modified by Krajina (1933). In this method each sample plot is divided into vegetation strata based on the height and growth form of the various species. A l i s t of the species is made in each of the vegetation strata and species signifi-cance values assigned to each one. In the case of species occurring in several strata, each was treated and assigned values in each stratum. Species significance (Krajina, 1960) (Artmachtigkeit; Braun-Blanquet, 1951) is based on both the cover and abundance of the species. The scale used was the Domin scale (Krajina, 1933) and is as follows: + p r e s e n t cove r neg 1 i g i b 1 e 1 se1dom c o v e r neg1 i g i b 1 e 2 very s c a t t e r e d c o v e r negI i g i b 1 e 3 s c a t t e r e d cove r to 5$ of the pi of 4 common cove r from 5-10$ of p l o t 5 o f t e n cover from 10-20$ of p l o t 6 very o f t e n cove r from 20-30$ of p l o t 7 abundant cover from 30-50$ of p l o t 8 abundant cover from 50-75$ of p l o t 9 abundant cover from 75-95$ of p l o t 10 abundant cover to 100$ of p l o t Vegetation strata limits vary from one biogeoclimatic zone to another depending upon the nature and growth rate of 22 the species present. Throughout this study the definition of strata limits is as follows: A l a y e r Ai t r e e s over 60 f e e t taI I A 2 t r e e s from 40 to 60 f e e t t a l l A 3 t r e e s from 20 to" 40 f e e t t a l l B l a y e r Bi woody p l a n t s from 8 to 20 f e e t t a l l B 2 woody p l a n t s from 2 to 8 f e e t taI I C l a y e r C Woody and herbaceous p l a n t s l e s s than 2 f e e t in h e i g h t D l a y e r mosses and l i c h e n s on humus D,_jw mosses and l i c h e n s on decay ing wood E l a y e r E/\ e p i p h y t e s o c c u r r i n g in the t r e e s s t r a t a Eg e p i p h y t e s o c c u r r i n g in the shrub s t r a t a EQ e p i p h y t e s o c c u r r i n g in the herb s t r a t a In the forest associations additional quantitative data was collected to calculate comparative productivity of the trees under different growing conditions. The diameter at breast height (DBH) was measured for all trees occurring in the plot using a standard forestry diameter tape. The height of the same trees was also measured using a Spiegel Relascope. Several increment cores were extracted from a representative number of trees of different species in each sample plot using a Djos Increment Core Extractor. 2 3 In addition to the above analysis, general cover characteristics of the vegetation were estimated. These were the total per cent cover of the tree, shrub, herb and moss layers. Estimates were made for each of the sub-strata as well as the per cent cover of the three epiphytic layers. General plot data. Quantitative and qualitative data were also collected to supply information about the general physiography and characteristics of the plot. These include: date of analysis, elevation, locality, land form, relief shape, exposure, slope gradient, erosion, drainage, hygrotope, and trophotope. The type of parent material was also recorded. An estimate of the percentage of the plot covered by l i t t e r , decaying wood, exposed mineral soil and rock was also made. Soil sampling and analysis. Soil analysis for plots 1 - 77 was done by Wali (1969). The author analyzed soils of the remaining plots (78 - 186). A single soil pit was dug in each of the sample plots. This pit was located in what was thought to be 24 representative of the general soil conditions found through-out the plot. Each profile was described by horizon and descriptions included the following: thickness and depth of horizons, presence of coarse fragments, evidence of gleying, root distribution in each horizon as well as depth to water table present. The soil samples were all air dried and passed through a 2 mm sieve. Textural analysis was carried out on the sievate using the revised hydrometer method (Bouyoucos, 1951). Based on the hydrometer readings the percentage sand, s i l t and clay was calculated using the United States Department of Agriculture classification system. Limits of the textural classes are as follows: 2.0 to 0.05 mm sand 0 .05 to 0 .002 mm s i l t 0.002 mm and less c l a y Chemical analysis of the soils included the following char-acteristics: total carbon, nitrogen, organic matter, sulphur and cation exchange capacity; available phosphorus sodium, potassium, calcium and magnesium. pH was also measured. In soil pits sampled by the author, carbon, nitrogen, sulphur, phosphorus and cation exchange capacity determinations were done by Mr. B. Given, Department of Soil Science, University of British Columbia. 25 Carbon determinations were done using the Leco Combustion Furnace which oxidizes the carbon in the presence of carbon dioxide. Results are expressed as percentage carbon. Percentage total nitrogen was provided using the Kjeldahl method (Black, 1965). Carbon/nitrogen ratios were calculated from the above data. Per cent organic matter was calculated by multiplying per cent total carbon by a factor of 1 .72. Sulphur determinations followed the Leco Combustion method (Black, 1965) and the results are expressed in per cent total sulphur. Phosphorus determinations followed method 73 - 4.1 of Black (1965). To extract exchangeable cations the method of Peech et al. (1947) as adapted by the Department of Soil Science, University of British Columbia was used. Exchangeable cations were extracted by leaching the soil samples with IN ammonium acetate, pH adjusted to 7 and filtered gravimetrically. Available cations were then determined on a Perkin-Elmer (model 303) atomic absorption spectrophotometer with digital readout. Readout was an average of four determinations and was in me/1. This was converted to me/100 g of soil. The soil reaction (pH) was determined using the soil paste method of Wilde and Voigt (1955). Measurements were made on a Radiometer pH meter (No. 24). 26 Vegetation synthesis. Following vegetation analysis and determination of the plant collections, phytosociological grouping was initiated. This is the final stage in the study of the phytocoenose and is termed vegetation synthesis (synthetic characteristics of the community, Braun-Blanquet, 1932). Sample plots were grouped according to floristic similarity into plant associations following the standard phytosociological methods (Braun-Blanquet, 1932). Individual associations were developed using species significance. Plots were arranged in order of increasing elevation. Average species significance was calculated for each species in the association. Calculation of the average species significance was done using the following conversion table. Species S i g n i f i c a n c e Assumed per cent cover 0 0.0 + 1 0.5 1 .5 2 2.5 3 4.0 4 7.5 5 15.0 6 26 .5 7 4 1.5 8 62.5 9 87.0 10 1 00 27 Assumed per cent cover was then summed for all plots and divided by the number of plots in the association to give an average species significance. Constancy values were calculated for each species in each stratum of the association. Constancy could be termed as percentage occurrence of species in an association in which all sample plots are of equal size. The following constancy class limits were applied. Consta ncy C l a s s Per cent Consta ncy 1 0- 20 1 1 21 -40 1 1 1 4 1 -60 IV 61 -80 V 8 1 -100 Only species with constancy class II or greater were used in the formation of the vegetation tables. Species with Constancy I were included as sporadic species to elimi-nate edge effects from neighbouring communities. For each association the characteristic combination of species was based on the constancy of the species to the various stands of the association. Each characteristic combination of species table included with the community 28 descriptions has three subdivisions: constant dominants, constants (60 per cent or greater) and important non-constants. Constant dominants are those with 100 per cent constancy and high species significance. Constants are those occurring in at least 60 per cent of the plots with a lower species significance than the constant dominants. Important non-constants are subjectively selected species chosen because they reflect specific ecological conditions. Sub-units of the associations (subassociations and variants) are defined not only by the presence but also the absence of certain species. Higher units of vegetation above the association were formed using floristic and environmental data providing an ecosystematic basis for the hierarchial classification. Each of the vegetation units was named using the latinized method of Braun-Blanquet (1932) as modified by Krajina (1969). Latinized endings to designate the level of the classification units are as follows: Order - e t a l i a A l l i a n c e - i o n A s s o c i a t i o n -etum S u b a s s o c i a t i o n -etosum V a r i a n t -osum Chapter 4 THE PLANT ASSOCIATIONS OF THE SUB-BOREAL SPRUCE ZONE The following section deals with a description of the plant associations proposed for the Sub-boreal Biogeo-climatic Zone. Where applicable, subassociations and variants are dealt with in a subsection of the appropriate association. Each association is characterized f1oristically and environ-mentally. Tables are included which present the vegetation composition and structure of the individual plots (associa-tion table) as well as the characteristic combination of species for the association. Soil tables are also included presenting the chemical and physical properties of the soils in the association. Tables of the general environment and vegetation characteristics are also found for each association. Associations and their sub-units are presented within a structural hierarchy of alliances and orders following the system of Braun-Bl anquet (1932) and Krajina (1933 , 1969). This hierarchy is presented in Table 1. 29 30 T H E H I E R A R C H Y O f S Y N S Y S T E M A T I C U N M S SUFASSiXIATIOS ASSOC IAfION ALLIANCE ORPER cla.lonlo - a rc tos tapMo -- .JCC*-:O - ?1"Ct<js.:r, c o - u v b e pleurozio - corno -- vacclnletosuri caespltosae j Cladonio (g rac i l i s ) - • ' r d a s t a r M o ( - u e - . r s l ) -• Vaccinio ( a r t l l l o l d i s ) - f | r e ; ^ c j - tor :»e CLAO0.M0 (GRACILIS) - PINION CONTORT A£ ) Pleurozio ( s c T ^ r t ) - P t i l i o (cr tstae-csstrensls) - > 0 , C R ; f i C ( P C L > s m ) . ? m (co^ TAE) . - Dicrano (p :Kse* .U - '--ajltherio (Mspldulae) - ' _ pir jur^ ft*AR|AHAE - Fi.-o (contortae) - f iceetua nr ianae ^ Pleurozio (sc k re^er l ) - P t i l i o (cr istae-castrensis) • Vaccinio (-e'trar.aceO - Fop.lo (tremuloidis) -- Piceo (gla.cse) - Fi-etun co-.ortae Pleurozio (schreberi) - P t i l i o (cr istae-castrensis) - Vaccinio {f-ecbranacel) - Pse*.dotsuso ('glaucae) -- Plceet-jQ c la jcas Hylocoaio (splendentis) - Carico (aquat i l is ) -- Betulo (pumilae) - Fkeetuo carlanaa Tonenthypno (n i tent is) - Sphagno (subnitentis) . - Carico (aquat i l i s ) - Sal ico (pedicel lar is) -- Piceo (oarlanae) - cetuletua puailae i • . ) r i d i s ) - Abieto (lasiocarpae) - PIceetua glaucae Gynnocarpio (dryopteridis) - Oplopanaco (horr id i) • - Abieto (lasiocarpae) - PIceetua glaucae Meesio (tr iquetrae) - Penyantho ( t r l foUatae) -• Scheuchzerio (palustr is) - Carico ( l icosaa -- chordorrhizae) - Sal icetua pedice l lar is Drepanoclado (revolventis) - C a ^ p y l l o ( s t e l l a t l ) -- Beryantho ( t r l foUatae) - Trichophoretua alp in l ) ) PLEUROZIO (SOSEKRI) - PICEION GLAUCAE ) " ) ) CARICO WUATILIS) . PICEICII MARIANAE ) PICEEIALIA ;LAXAE - MARI-MAE P t i l i o (cr is tae- tast rens is) - Gycnocarpio (dryopte- ) ) ) ) PICEO (GLAUCAE) - ABIETIOS LASIKARFAE ) PICEO (GLAUCAE) -) - ABIETETALIA LASIOCARPAE ) DREPANXLADIOB REVOLVENTIS - VERNICOSAE ) DREPANOCLACO (REVOLVENTIS - VERIIICOStr.) • ) - CARICETALIA (LIMOSAE - CHORDORRHIZAE) Urtlco ( l y a l l l l ) - Katteucclo (struthiopter ld ls) -- Alnetun tenul fo l lae , ALNION TENUIFOLIAE ) POPULETALU BALSAUIFERAE SalfcetuQ si tchensis Carlcetun rostratae Potent i l lo (palustr is) - Egulsetetua f l u v i a t i l i s I SALICIGN SITCHENSIS CARICIOII ROSTRATAE ) SALICETALU SITCHENSIS ) CARICETALIA ROSTRATAE Potamogetono (r ichardsoniI) - Eleocharetua ) pa lust r is ) Potacogetono ( f o l i o : ! ) - Sclrpeiun acutl Potamogetono.(natantis) - Polygcetu? arphibl l Pota-ogetoro (ric^ard'.oril l - ftaUntis) - rclygoro ) anpMbll ) ELECO-SION PALUSTfcIS ) SCIRPIOH ACUTI ) POLYGOMOII AKPHIBII NIWAHON VAklEUI l POTAKOCETCETALIA Nupharetua v a r l t j l t l 31 P i c e e t a l i a gI aucae -ma r i anae The Piceetalia glaucae-marianae covers the greatest area and has the greatest diversity of habitats and communi-ties of all orders in the Sub-boreal Zone. It incorporates four alliances and six associations. Hygrotopically, these range from very xeric sites [Cladonio (gracilis) - Arctosta-phylo (uvae-ursi) - Vaccinio (myrti11 oidis) - Pinetum contortae] to mesic sites [Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Pseudotsugo (* glaucae) - Piceetum glaucae] and finally to subhydric sites [Hylocomio (splendentis) - Carico (aquatilis) - Betulo (pumilae) - Piceetum marianae]. Trophically the habitats of this order range from oligotrophic to mesotrophic, where as on permesotrophic edatopes it occurs only when xeric or subxeri c. The typical soils of the order are in the Podzolic Great Group as the cool boreal climate and the coarse nature of the parent materials results in strong podzolization. Most of the soils are developed over parent materials of transported origins such as glacial outwash which is high in sands and low in s i l t and clay. The Piceetalia glaucae-marianae is not restricted to the Sub-boreal Zone but is also very extensively developed in the Boreal White and Black Spruce Zone to the north. The 32 order is marginally represented in the Cariboo Aspen - Lodge-pole pine - Douglas-fir Zone to the south. Beil (1969) has carried out extensive studies in this order in the former zone. Similar studies in the Boreal Zone are currently in progress by Annas. contorta and especially Picea glauca whereas Abies lasiocarpa in the mesic sites grows rather poorly. Picea mariana develops on the dry (when very acid) and also the low moor hydric locations. Pinus contorta occurs in its own alliance where i t is self-perpetuating on the very xeric sites. Betula papyrifera may occur as a sporadic species as does Pseudotsuga menziesii var. glauca on the mesic sites. The distribution of Douglas-fir is dependent largely on the availability of seed source as the species is near its northern limit in the Sub-boreal Zone and is not very common. Besides Pinus contorta another pioneer species is Populus tremuloides, more frequent on richer sites. These species are promoted by fires which are frequent in the zone. Characteristic trees of this order are Pinus CHARACTERISTIC SPECIES FOR THE ORDER ARE Picea glauca Picea mariana Abies lasiocarpa Pinus contorta Populus tremuloides Lycopodium annotinum Spiraea b e t u l i f o l i a Shepherdia canadensis Ly copodium complanatum Maianthemum canadense Oryzopsis a s p e r i f o l i a Pyrola virens Vaccinium caespitosum Antennaria rosea 33 Vaooinium membranaeeum Listera oordata Arotostaphyloe uva-ursi Moneses uniflora Chimaphila umbellata Dioranum polysetum Geooaulon lividum Peltigera aphthosa Goody era oblongifolia Dioranum fusoesoens Clintonia uniflora ALLIANCE: C l a d o n i o ( g r a c i l i s ) - P i n i o n c o n t o r t a e C l a d o n i o ( g r a c i l i s ) - A r c t o s t a p h y I o ( u v a e - u r s i ) - V a c c i n i o (myrt i I I o i d i s ) - Pinetum c o n t o r t a e (Re fe rence T a b l e s : 2 , 3 , 4 , 5 , 6 ) (P ine - L ichen A s s o c i a t i o n ) The Pine - Lichen Association is developed on the driest sites in the Sub-boreal zone on soils that are very sandy, resulting in excessive drainage. Hygrotopes are considered to be very xeric, xeric, to subxeric. Parent materials are all transported and have been classified as glacial outwash, sandy outwash, glacio fluvial outwash and aeolian sands. The association appears to be restricted to valley bottoms and outwash plains where the relief is minimal and the topo-graphy flat to gently rolling. It has never been observed on the slopes of the larger hills where seepage could poten-tially change the hygrotope. All sample plots were located on dry southern to neutral exposures. On similar sites on C I adon i o (g rac i I i s) Table 2 - Arctostaphy I o (uvae-ursi) Pinetum contortae - V a c c i n i o (myrtiI I o i d r s ) C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T DOMINANTS C O N S T A N T S I M P O R T A N T N O N - C O N S T A N T S T r e e Pinus contorta S h r u b Pinus contorta Vaccinium myrtilloides Shepherdia canadensis Juniperus communis Rosa gymnocarpa H e r b Arctostaphylos uva-ursi Pinus contorta Vaccinium caespitosum Linnaea borealis Ly copodium complanatum Oryzopsis pungens Melampyrum lineare Fragaria virginiana Pyrola virens Solidago spathulata Achillea lanulosa Galium boreale M o s s e s a n d L i c h e n s ( h u m u s ) Cladonia mitis Cladonia gracilis Peltigera malacea Cladonia uncialis Cladonia cornuta Cetraria islandioa Stereooaulon paschale Cladonia coccifera Polytriohum p i l i f erum Peltigera aphthosa Polytriohum juniperinum Pleurozium schreberi Cladonia verticillata Pohlia nutans Cladonia chlorophaea 35 Table 3 Nwaber of P l o t s P l o t No. P l o t S i z e (in 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure S l c p e G r a d i e n t L a y e r Coverage A t o t a l *1 A 2 * 3 B t o t a l »1 B 2 C D t o t a l Oh D d » Ea Eb Ec P l o t Coverage (i) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock S o i l C l a d o n i o ( g r a c i l i s ) - A r c t o s t a p h y l o ( u v a e - u r s i ) - V a c c i n i o ( m y r t i l l o i d i s ) - Pinetum c o n t o r t a e p l e u r o z i o - c o r n o - v a c c i n i e t o s u n c a e s p i t o s a e c l a d o n i o - a r c t o s t a p h y l o - v a c c i n i o -- p i n e t o s u m c o n t o r t a e 7 8 9 10 11 133 29 30 16 17 400 400 400 400 400 11/7/69 10/8/67 11/8/67 12/7/67 15/7/67 2300 2350 2375 2410 2410 8L BL BL MR MR S 0-1 2 3 4 5 6 44 58 61 57 62 400 400 400 400 400 1 43 400 19/6/68 2 2 / 6 / 6 8 26/7/68 28/7/68 25/7/68 29/7/68 2300 2300 2700 2700 2750 2750 PR ' PR ML NR NL NR outnash p l a i n f l a t t o g e n t l y r o l l i n g SE 5 - 7 SE 0 - 3 SE 0 - 4 SE 2 sw 1 SE 1 45 30 45 30 60 60 40 13 35 37 70 - - - - - - - - - _ _ 40 30 45 20 - 5 40 - 35 14 2 7 8 5 10 60 60 13 4 23 70 15 42 30 , 12 50 15 25 10 12 85 75 8 2 2 2 25 13 . 4 6 33 8 8 40 30 10 40 4 25 6 6 70 70 35 30 60 25 55 20 50 70 50 30 30 80 90 65 85 85 85 95 90 90 90 90 80 90 65 85 80 85 90 90 85 80 80 2 1 3 1 8 2 1 1 5 10 10 1 0 . 5 2 - - 1 1 1 1 _ 1 2 2 2 1 1 2 1 2 _ 1 2 2 2 1 2 2 - - 1 1 2 1 95 90 80 85 85 85 95 75 85 90 90 2 8 20 10 10 10 3 21 8 10 10 3 2 - 5 5 5 2 4 7 a b s e n t - • absent • Hygrotope Trophotope E r o s i o n D r a i n a g e Sample H o r i z o n Oepth ( c n ) 1 2 3 4 5 6 P a r e n t M a t e r i a l - s u b x e r i c t o x e r i c • • o l i g o t r o p h i c t o m e s o t r o p h i c » i n d . s l i g h t - x e r i c t o v e r y x e r i c • s t r o n g ( r a p i d ) • 3 - 0 3 - 0 1-0 2 - 0 1-0 2 - 0 3 - 0 1-0 2 - 0 2 - 0 2 - 0 0 - 5 0-1 0-5 0-7 0 - 6 0-4 0 - 2 0-1 0 - 2 . 5 0 - 6 0 - 6 5 - 2 8 1-19 5 - 3 0 7-29 6-23 4 - 2 0 2 - 2 0 1-17 2 . 5 - 2 8 6-18 6-17 28-75 19-100 30-70 29-75 23-70 20-27 > 2 0 17-100 2 8 - 1 0 0 18-31 17-100 - - - - - 27-94 - - - 31-51 -- - - - - - - - - 5 1 - 1 0 0 -GO SO SO GFO SO GFO SO AS AS SO SO Table 4 Cladonio (gracil is) - Arctostaphylo (uvae-urst) - Vaccinio (myrtllloldls) - Plnotun contortae Number of Plots Plot No. Plot Size (a 2) Elevation (ft) Stratui A2 A3 "l Oh it Eb Species No. S • 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Ec Species Pinus contorta Pinus contorta Pinus contorta Vaccinium nyrtilloides Rosa gymnocarpa Pinus contorta Shepherdia canadensis Salix bebblana Alnus sinuata Arctostaphylos uva-ursi Pinus contorta Linnaea boreal is Vaccinium caespltosun Lycopodiura complanatum Corr.us canadensis Oryzopsis pungens Melanpyrum 1i neare Populus tremuloides Oryzopsis asperifolia Fragaria virginiana Pyrola virens Sol idago spatulata Pedkularis labradorlca Achillea millefolium Aster conspicuus Spiraea betulifolia Pyrola secunda Junlperus communis Cladonia mi tis Cladonia gracil is Poltigera malacea Cladonia uncialis . Cladonia cornuta Cetraria islandica Stereooaulon paschate Cladonia coccifera Polytrichun piliferun •Peltigera aphthosa Polytriohum juniperinuu Pleurozium schreberi Cladonia yert lc i l lata Pohlia nutans Cladonia chlorophaea Dlcranum polysetun Cladonio deforcis Brachythecium albicans Lophozia ventricosa Aiectoria amerlcana Alectoria aisericana Cetraria juniperina Parmeli opsi s ambigua Hypogynnia enteromorpha Cetraria islandica Cetraria pinastri Alectoria sarmentosa Cetraria juniperina Cetraria islandica Alectoria americana Hypogynnia enteromorpha pleurozio - corno - vaccinietosun caespitosae 1 2 3 4 5 6 43 44 58 61 57 62 400 400 400 400 400 400 2300 2300 2700 2700 2750 2750 Species significance 7 3 cladonio - arctostaphylo - vaccinio -- pinetosum contortae 7 8 9 10 11 133 29 30 16 17 400 400 400 400 400 2300 2350 2375 2410 2410 Constancy IV IV III II II II V V IV IV III III III 111 III II V V V V V V V V • IV IV IV IV IV IV IV III III II II V IV III II II II III II Aver.Species Significance 18.8 26.0 8.2 16.8 1.4 I. 9 4.1 2.7 ' 2.7 20.4 2.4 6.3 4.7 4.3 2.9 2.1 1.4 0.5 1.4-1.1 0.7 0.6 0.6 0.5 0.5 0.5 0.4 0.1 29.3 22.6 II. 0 8.0 6.2 5.0 3.0 1.8 9.6 9.0 8.0 2.3 1.5 i.3 1.2 2.3 1.2 0.6 0.4 1.6 2.3 0.9 0.8 0.7 0.5 0.5 0.4 1.3 0.6 0.6 0.4 Sporadic Species: 50 Picea glauca 29 (+) 63 Goodyera oblongifolla 17 (+) 43 (2) 80 Stereocaulon tomentosum 61 (3) 17 (2) 64 Hieraclum albiflorum 57 (2) 81 Dicranum fuscescons 133 (2) 62 (1) Alnus sinuata 16 (2) 65 Lonicera involucrata 57 (1) 82 Dicranum scoparium 58 (2) 62 (1) Populus tremul oi des 29 (1) 66 Maianthemum canadense 43 (2) 83 Hylocomlum splendens 58 (1) Salix bebblana 30 (•) 67 Moneses uniflora 17 (2) 133 (1) 84 Ptilidium pulcherrimum 58 (1) 68 Petasites palmatus 57 (3) 85 Tetraplodon mnioides 16 (1) Juniperus communis 25 W Picea glauca 57 (2) 66 Ticmia austrlaca 16 (1) Picea glauca 16 (+) Salix bebblana 16 (2) 30 (1) (1) 51 Picea mariana 43 (-) SalIx scouleriana 17 (2) Ddi Cladonia chlorophaea 57 (1) 58 Populus tremul oi des 16 (+) 29 (3) Shepherdia canadensis 30 (1) 62 (2) Dicranum scoparium 57 (1) 52 Salix scouleriana 16 (2) 17 (2) 69 Vaccinium membranaceum 61 (2) 87 Dicranum tauricum 57 (1) 70 Viburnum cdule 62 (2) 88 Lophozia exclsa 58 (1) 53 Aties lasiocarpa 17 (*) 71 Viola orbiculata 57 (3) Pleurozium schreberi 58 !2) (1) 54 Amelanchier alni fol ia 43 (4) 44 (2) Ptilidium pulcherrimum 57 (1) 58 55 Antennaria neglecta 17 (+) 57 (2) Oh 72 Brachythecium salebrosum 16 (1) 56 Antennarla ro3ea 57 (2) 61 (2) 73 Ceratodon purpureus 29 (1) Ea 89 Lobarla pulmonaria 61 (1) 57 Chimaphl1 a umbel lata 29 (1) 44 (2) 74 Cetraria ericetorum 29 (1) 30 (2) (1) 58 Geocaulon lividum 57 (3) 58 (5) 75 Cladonia arbuscula 17 (3) 30 (2) Eb 90 Parmel1opsis hyperopta 17 59 Epilobium angustifollum 44 (1) 57 (2) 76 Cladonia ranglferlna 62 (4) 91 Usnea ceratina 44 (1) 60 Empetrum nigrum 62 (2) 77 Cladonia squamosa 61 (3) (1) 61 Equisetuia scirpoides 57 (1) 78 Lecidea granulosa 62 (1) Ec Alectoria sarmentosa 16 62 Gal Sun boreale 57 (3) 58 (2) 79 Peltigera canina 133 (2) 61 (5) 92 Barbllophozia hatched 58 (1) 37 Plate 3 and plate 4: Two general views of the Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) - Pinetum contortae. This association developes on the driest sites in the Sub-boreal spruce zone where the soils are very sandy. 38 the cooler northern exposures Picea glauca or Picea mariana replace Pinus contorta. Elevations ranged from 2300' along the Parsnip River to 2750' near the Nation Lakes. Wind is the major erosion factor. The soils are all very sandy and structureless. They are podzolic and highly leached and have been classified as Mini Humo Ferric Podzols, Ortho Humo Ferric Podzols, Sombric Humo Ferric Podzols and Mini Ferro Humic Podzols. Nutrient conditions are considered to be mainly oligotrophic. The ground surface is covered by a poorly developed L-H layer that is less than 3 cm. thick. This is composed predominantly of Pinus contorta litter and covers from 75 to 90 per cent of the plot surface. Very l i t t l e decaying wood occurs (2 to 21 per cent) and much of that present is bleached by sun and charred by frequent fires on these sites. Mineral soil occurs with low percentage in eight of the sample plots. The tree layer is dominated exclusively by Pinus contorta in the A2 and A3. No trees were recorded over 60 feet t a l l . Pinus contorta is also the most constant dominant in both of the shrub layers as well as having a constancy of V in the herb layer. Such presence of lodgepole pine in all strata indicates that the Pine - Lichen Association is 39 an edaphic climax with Pinus contorta being the climax species as i t is shade tolerant in all strata except when acid humus buildup occurs and fires are absent. In the other associa-tions where pine occurs, it will be replaced by spruce. Also occurring in the shrub layer are: Shepherdia canadensis3 Alnus sinuata, Rosa gymnocarpa, Salix bebbiana, Juniperus communis and Amelanchier alnifolia. An individual shrub of Picea glauca and P. mariana were found in one plot each. It is too dry for spruce to develop on these sites. Generally crown closure is poorly developed, ranging from 30 to 70 per cent. Tall shrubs range from absent to a cover of 33 per cent. The lower shrub layer has a cover from 4 to 70 per cent. Higher values are due to Vaccinium myrtilloides. The most constant species in the herb layer is Arctostaphylos uva-ursi, a Chamaephyte which has an average species significance of 6. Pinus contorta, though constant, has a low significance. Linnaea borealis, Vaccinium caespitosum, Lycopodium complanatum, Cornus canadensis3 Oryzopsis pungens, and Melampyrum lineare have a constancy of IV and III. Populus tremuloides occurs sporadically with very low vigor. The occurrence of Antennaria rosea, A. neglecta, Juniperus communis, Oryzopsis pungens and a high cover of Vaccinium myrtilloides and Arctostaphylos uva-ursi indicates Table 5 S o i l Physical A n a l y s i s Cladonio ( g r a c i l i s ) - Arctostaphylo (uvae-ursi) - V a c c i n i o (myrti 11 oi di s) - Pinetum contortae cladonio - arctostaphylo - v a c c i n i o -pleurozio - corno - vaccinietosum caespitosae pinetosum contortae Number of P l o t s 1 2 3 4 5 6 7 8 9 10 11 P l o t No. 43 44 58 61 57 62 133 29 30 16 17 Horizon Ae Ae Bf h B f ( h 1 ) Ah Bfh Ae Ahe Aej Ae Aej Textural Class LS S S SL SL S S S S SL LS Sand (2) 82.2 88.0 96.4 70.8 69.2 95.4 93.2 95.4 90.8 73.4 75.8 S i l t (2) 13.6 6.8 2.8 21.2 24.6 3.2 2.4 2.2 5.4 21.0 18.0 Clay (2) 4.2 3.2 0.8 8.0 6.2 1.4 4.4 2.4 3.8 5.6 6.2 Horizon Bf Bf Bf Bf(h 2 ) Bf Bf Bm Bm Bm Bm Bm Textural Class S LS S LS LS S S S S S LS Sand (2) 88.4 86.0 92.0 82.4 75.2 94.8 91.6 100.0 96.0 89.6 86.0 S i l t (2) 7.2 8.4 6.0 13.6 18.6 4.2 3.2 0.0 2.8 7.4 10.8 Clay (2) 4.2 5.6 2.0 4.0 6.2 1.0 5.2 0.0 1.2 3.0 3.2 Horizon C C C C IIC CB C C BC Bf Textural Class S s s s LS S S s S Sand (2) 84.2 92.0 98.0 99.4 86.4 99.4 96.0 98.0 94.4 _ S i l t (2) 13.4 4.4 1.5 0.6 4.8 0.2 1.2 2.0 3.6 -Clay (2) 0.2 3.6 0.5 0.0 8.8 0.4 2.8 0.0 2.0 -Horizon ' C CB C Textural Class - _ _ S _ S S Sand (2) - - - - - 100.0 - - _ 97.6 98.8 S i l t (2) - _ _ _ 0.0 _ _ _ 1.0 0.6 Clay (2) - - - - - 0.0 - - 1.4 0.6 Horizon Textural Class Sand (2) S i l t (2) Clay (2) C S 97.2 1.0 1.8 -to o T a b l e 6 S o i l C h e m i c a l A n a l y s i s C l a d o n i o ( g r a c i l i s ) - A r c t o s t a p h y l o ( u v a e - u r s i ) - V a c c i n i o ( m y r t i 11 o t d i s ) - P i n e t u m c o n t o r t a e c l a d o n i o - a r c t o s t a p h y l o -p l e u r o z i o - c o r n o - v a c c i n l e t o s u m c a e s p i t o s a e - v a c c i n i o - p i n e t o s u f n c o n t o r t a e Number of P l o t s 1 2 3 4 5 6 7 8 9 10 11 P l o t No. 43 44 57 58 61 62 133 29 30 16 17 H o r i z o n D e s i g n a t i o n L-H L-H L-H L-H L-H L-H L-H L L L-H L-H C2 11 .4 3 9 . 5 3 0 . 4 5 3 . 8 2 2 . 6 4 9 . 5 5 . 1 5 . 2 1 3 . 7 1 2 . 3 1 6 . 3 0 . 2 4 0 . 4 3 0 . 4 7 0 . 6 2 0.31 0 . 3 0 0.21 0 . 2 0 0 . 4 7 0 . 4 3 0 . 2 7 C/N 48 92 65 87 73 165 24 26 29 29 60 m 1 9 . 3 8 6 7 . 1 5 5 1 . 6 8 9 1 . 4 6 3 8 . 4 2 8 4 . 1 5 9 . 8 5 8 . 8 4 2 3 . 2 9 2 0 . 9 1 27.71 P ppm 1 6 . 0 3 1 . 0 2 2 . 0 2 4 . 0 9 . 0 2 0 . 0 6 0 . 4 3 8 . 0 2 2 . 0 8 . 0 1 9 . 0 Na 0 . 3 0 . 3 0 . 2 3 0 . 3 3 0 . 2 8 0 . 3 7 2 . 3 0 0 . 2 9 0 . 3 3 0 . 2 0 0 . 2 8 K 0 . 5 4 0 . 4 5 0 . 4 9 0 . 4 2 0.61 0 . 3 3 '• 0 . 3 7 0 . 1 2 0 . 4 9 0 . 7 3 0 . 4 3 Ca 1.71 3 . 1 8 8 . 0 5 . 9 3 . 2 8 1 . 3 0 3 . 0 2 . 2 2 0 . 4 3 . 6 2 . 6 Mg 0 . 3 8 0 . 5 5 0 . 8 8 2 . 2 0.71 0 . 2 0 0 . 4 5 1 . 9 8 3 . 5 7 0 . 7 0 C 4 3 CEC 3 9 . 1 9 3 . 7 8 1 . 5 1 2 4 . 0 3 7 . 4 9 8 . 6 1 0 . 7 1 7 . 9 7 2 . 9 3 2 . 2 2 6 . 4 pH 3 . 8 3 . 8 4 . 4 5 4 . 1 5 4 . 2 3 . 8 5 4 . 9 4 . 0 5 4 . 3 5 3 . 9 5 3 . 9 H o r i z o n D e s i g n a t i o n Ae Ae Ah Bhf B f ( h i , ) Bfh Ae Ahe A e j Ae A e j C$ 0 . 0 0 . 0 1 2 . 0 1 3 . 4 1 . 9 4 . 8 1 . 6 8 0 . 0 1 . 9 C O 1 . 4 0 NX 0 . 0 3 0 . 0 2 0 . 3 2 0 . 0 6 0 . 0 5 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 5 C/N 0 . 0 0 . 0 38 223 38 120 42 0 . 0 48 C O 28 OM? 0 . 0 0 . 0 2 0 . 4 2 2 . 7 8 3 . 2 3 8 . 1 6 2 . 8 9 0 . 0 3 . 2 3 0 . 0 2 . 3 8 P ppm 5 . 0 7 . 0 1 0 . 0 1 2 . 0 7 . 0 3 . 0 6 5 . 2 2 . 0 3 . 0 5 . 0 1 4 . 0 Na 0 . 1 8 0 . 2 2 0 . 2 8 0 . 2 8 0 . 2 5 0 . 3 4 2 . 2 4 0 . 0 5 0 . 0 9 0.08 0 . 0 9 . K 0 . 0 5 0 . 0 6 0 . 3 5 0 . 2 6 C.14 0 . 1 3 0 . 0 6 0 . 0 3 0.11 0 . 0 7 0 . 1 3 Ca 0 . 2 9 0 . 4 6 8 . 7 1 . 6 . 1 . 4 8 1 . 2 5 1 .51 0 . 1 7 0 . 7 6 0 . 0 4 0 . 5 4 Mg 0 . 0 7 0 . 0 8 1 . 2 0 . 3 8 0 . 2 4 0 . 1 2 0 . 0 9 0 . 0 9 0 . 1 3 0.11 0.10 CEC 8 . 4 9 . 5 3 6 . 2 3 6 . 9 2 3 . 5 1 4 . 0 2 . 5 7 6.1 1 7 . 9 1 9 . 0 2 0 . 5 pH 3 . 9 4 . 5 4 . 6 4 . 6 5 4 . 9 4 . 6 5 . 3 3 5 . 0 5 4 . 8 4 . 2 4 . 4 * . H o r i z o n D e s i g n a t i o n Bf Bf Bf Bf B f ( h 2 ) Bf Bm Bm Bm Bm BIT. C% 0 . 0 0 . 0 0 . 0 0 . 0 2 . 4 0 . 0 0 . 4 3 0 . 0 0 . 0 C O C O N l 0 . 0 3 0 . 0 2 0 . 0 4 0 . 0 2 0 . 0 4 0 . 0 2 0 . 0 3 0 . 0 1 0.01 0 . 0 3 0 . 0 2 C/N 0 . 0 0 . 0 0 . 0 0 . 0 . 60 0 . 0 14 0 . 0 C O C O C O 0 . 0 0 . 0 0 . 0 0 . 0 4 . 0 8 0 . 0 0.74 C O o.o • • C O C O •*m*»Lm- 3 . 0 6 . 0 3 . 0 4 . 3 7 . 0 2 . 0 5 6 . 0 3 . 0 C O 6 . 0 - 4 . 0 • Na " '0.-17*'" " 0 . 2 0 " " " 0 . 2 1 " 0.11 0 . 2 8 0 . 2 7 2 . 3 3 " 0 . 0 3 " 0 . 0 9 0 . 0 8 ' 0 . 0 7 K 0 . 0 3 0 . 0 4 0 . 0 6 0 . 0 8 0 . 0 7 0 . 0 6 0 . 0 5 - 0 . 0 2 0 . 0 5 0 . 0 3 0 . 0 4 Ca 0 . 1 3 0 . 1 5 0 . 7 4 0 . 4 2 0 . 4 6 0 . 4 4 . . . 0 . 9 0 0 . 1 3 . 0.18. 0 . 1 5 _ 0.17_ Kg 0~03 0 . 0 3 o l o ? 0 . 0 8 0 . 0 5 0 . 0 3 0 . 0 8 0 . 1 0 0 . 0 3 " 0 . 0 3 0 . 0 3 CEC 6 . 3 8 . 8 1 0 . 5 17.1 . 2 8 . 5 4 . 8 2 . 2 7 3 . 3 2 . 4 1 6 . 8 . 1 2 , 8 pH 5 . 2 4 . 9 4 . 9 5 5 . 0 4 . 9 5 4 . 9 5 . 7 4 5 . 0 5 . 3 4 . 7 5 H o r i z o n D e s i g n a t i o n C C C C C C3 C C C Be Bf ? C2 0 . 0 0 . 0 0 . 0 C O 0 . 0 0 . 0 0 . 0 6 _ 0 . 0 C O 0 . 0 m 0.01 0.01 0 . 0 2 0.01 0.01 0.01 0 . 0 _ C O 0 . 0 2 0 . 0 6 C/N C O 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 _ C O C O C O OfiS 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1 0 _ C O C O 0 . 0 P ppm 2 . 0 4 . 0 5 . 0 3 . 0 2 . 0 1.0 3 0 . 0 _ 0 . 0 3 . 0 C O Na 0.21 0 . 2 6 0 . 1 7 0.21 0 . 2 7 0 . 2 9 2 . 1 0 0 . 0 8 . 0 . 1 0 0.14 K 0 . 0 2 0 . C 3 0 . 0 4 0 . 0 7 0 . 0 8 0 . 0 6 • 0 . 0 6 0 . 0 3 0 . 0 2 0 . 0 5 Ca 0 . 1 2 0 . 2 6 0 . 9 6 0 . 9 6 0 . 8 8 0 . 5 4 0 . 8 6 _ 0 . 1 4 0 . 2 4 0 . 2 6 Mg 0 . 0 2 0 . 0 7 0 . 2 0 0 . 2 0 0 . 1 4 0 . 0 5 0 . 0 6 _ C O 0.05 0 . 0 4 CEC 4 . 9 4 . 7 12.1 3 . 6 3 . 7 0 . 0 2 . 9 2 _ 1 . 8 8 . 9 4 . 1 pH 5 . 1 4 . 8 5 4 . 5 5.1 5 . 1 5 . 0 6 . 2 5 - 5 . 2 5 4 . 7 5 . 0 H o r i z o n D e s i g n a t i o n C CB C M - - - - 0 . 0 _ C O 0 . 0 m - - - - 0 . 0 1 0 . 0 3 0 . 0 2 C/N - - - - - 0 . 0 - - C O 0 . 0 Oh!? - - - - - 0 . 0 - - - 0 . 0 C O P Dptn - - - - - 3 . 0 - 0 . 0 C O Na - - - - - 0 . 3 - - 0 . 0 8 0 . 0 8 K - - - - - 0 . 0 6 - - - 0 . 0 3 0 . 0 3 Ca - - - - - 0 . 6 1 - - _ 0 . 3 3 0 . 1 7 - - - - - 0 . 0 8 - _ 0 . 8 0 0 . 0 3 CEC - - - - - 0 . 0 - _ 6 . 3 5 . 3 pH - - - - - 5 . 0 - - - 4 . 7 4 . 6 H o r i z o n D e s i g n a t i o n C 1% - - - . . . 0.0 n - - - - - - - 0.03 C/N . . . 0 , 0 m . . . 0 > o P ppm . . . . . . . _ . 0 > 0 Na " . . . o.08 K ~ . . . o.03 Ca " - - . . . o.34 Mg " . . . 0 . 1 2 CEC . . . . . . . . . pH . . . . . . . . . 4 , 7 5 42 that these sites are very dry. Antennaria rosea, A. neglecta, and Oryzopsis pungens are exclusive to this association. Arctostaphylos uva-ursi and Vaccinium myrtilloides have their highest constancy and dominance on these sites. Total cover of the herb layer ranges between 20 and 70 per cent. The moss and lichen layer on humus is the most highly developed layer in the Pine - Lichen association. The greatest diversity of lichens is found in this association while mosses are much less diverse. The only mosses found were Polytriohum piliferum, P. juniperinum, Pleurozium schre-beri, Pohlia nutans, Dicranum polysetum, D. fuscescens, D. scoparium, Hylocomium splendens, Timmia austriaca, Tetraplodon mnioides, Brachythecium salebrosum and Ceratodon purpureus. Only 5 mosses occurred with a constancy greater than 40 per cent. Polytriohum piliferum and P. juniperinum were the most abundant. Lichens were by far the most common. Cladonia mitis and C. gracilis had average species signifi-cance of 7 and 6 respectively. Also highly constant were Peltigera malacea, Cladonia uncialis, C. cornuta, Cetraria islandioa, Stereooaulon paschale, Cladonia coccifera, Peltigera aphthosa, Cladonia vertioillata, C. chlorophaea and c. deformis. Total cover for the Dn layer is very high (65 to 90 per cent). The D layer on decaying wood is very poorly developed, having only sporadic species. Epiphytes Plate 5: Detail of the ground cover in the Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrti11oidis) - Pinetum contortae. Several species of the lichen genera Cladonia and Cetraria are visible Note the abundance of Pinus contorta needles which tend to make the soils more acidic as decomposition sets in. 44 were equally sparce, the only constant species being Alectoria americana and Cetraria juniperina. Alectoria was the most abundant with an average species significance of 2. Characteristics of the soils are shown in Tables 5 and 6. The soil reaction in the L-H is always very strongly acid (pH 3.8 to 4.9). Mineral soil pH's are slightly higher but are s t i l l strongly acid. Carbon/nitrogen ratios range from 10.7 to 124 in the li t t e r . Calcium dominates the ex-changeable cations while sodium and magnesium are the next most abundant. Two sub-associations are recognized: 1) cladonio -arctostaphylo - vaccinio - pinetosum contortae, and 2) pleurozio - corno - vaccinietosum caespitosae. I) c l a d o n i o - a r c t o s t a p h y l o - v a c c i n i o - p inetosum c o n t o r t a e . This is the drier subassociation. Vaccinium myrtilloides3 Oryzopsis pungens 3 and Melampyrum lineare are differential species. The absence or low constancy of Shepherdia canadensis 3 Rosa gymnocarpa3 Cornus canadensis3 Oryzopsis asperifolia, and Pleurozium schreberi is also important in defining this unit. On the contrary, Oryzopsis pungens is typical of the driest sites and was found with 45 highest constancy here. Vaccinium m y r t i l l o i d e s is the most constant dominant next to Arctostaphylos uva-ursi. Vaccinium caespitosum shows a low occurrence in this subassociation as does Rosa gymnocarpa. Lichens dominate the though none of them are differential. Pleurozium schreberi shows a low constancy and Polytriohum p i l i f e r u m and P. juniperinum occur with variable abundance. Pohlia nutans was found in all plots where it had a species significance of 1. This unit occurs on the xeric to most xeric sites. 2) p l e u r o z i o - corno - v a c c i n i e t o s u m c a e s p i t o s a e . The pleurozio - corno - vaccinietosum caespitosae is the wetter of the two subassociations, occurring on xeric to subxeric sites. The differential species are: Shepherdia canadensis3 Rosa gymnocarpa, S a l i x bebbiana, Linnaea b o r e a l i s , Vaccinium caespitosum, Cornus canadensis, Oryzopsis a s p e r i f o l i a , Fragaria v i r g i n i a n a , Pyrola virens, P e d i c u l a r i s labradorica, and Pleurozium schreberi. Linnaea borealis occurs in all plots of this sub-association with a species significance between 2 and 6. Vaccinium caespitosum and Cornus canadensis also show 100 per cent constancy. 46 ALLIANCE: D i c r a n o ( p o l y s e t i ) - P ino ( c o n t o r t a e ) - P i c e i o n ma r i a nae P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) -D i c r a n o ( p o l y s e t i ) - G a u l t h e r i o ( h i s p i d u I a e ) -P ino ( c o n t o r t a e ) - P iceetum marianae (Reference T a b l e s : 7 , 8 , 9 , 1 0 , 1 1 ) (Picea mariana - P ine A s s o c i a t i o n ) This association is developed on the dry to subhygric sites in the zone and is typified by an over story of Pinus contorta with Picea mariana developing beneath i t . These sites are common as frequent fires sustain this serai stage of development. Pinus contorta regeneration is promoted by the serotinous nature of its cones. No upland sites of pure Picea mariana were seen. The Picea mariana - Pine association was developed on flat to gently rolling outwash plains. A preference was shown to the more southern to neutral exposures. Measured slopes were between 0 and 4 degrees and the elevations of all plots were between 2300 and 2350 feet. The hygrotopes were judged to be subxeric to xeric though water tables were usually encountered at depths from 5 to 8 feet. Drainage down to the water table was strong PIeu roz i o (sch rebe r i ) - Pt i Ii o ( h i s p i d u l a e ) -Tab le 7 ( c r i s t a e - c a s t r e n s i s ) - D i c r a n o ( p o l y s e t i ) P ino ( c o n t o r t a e ) - P iceetum marianae - G a u l t h e r i o C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S ( 6 0 - 1 0 0 2 ) I M P O R T A N T N O N - C O N S T A N T S T r e e Pinus contorta Picea mariana S h r u b Picea mariana Abies lasiocarpa Vaccinium membranaceum Ledum groenlandicum H e r b Cornus canadensis Gaultheria hispidula Geocaulon lividum Linnaea borealis Ly copodium complanatum C l i n t o n i a u n i f l o r a Spiraea b e t u l i f o l i a Petasites palmatus Ory zopsis a s p e r i f o l i a Epilobium angustifolium M o s s ( h u m u s ) Pleurozium schreberi P t i l i u m c r i s t a - c a s t r e n s i s Dicranum polysetum T a b l e 8 48 P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - D i c r a n o ( p o l y s e t i ) - G a u l t h e r i o ( h i s p i d u l a e ) P i c e e t u m m a r i a n a e Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage P l o t Coverage ( ? ) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock S o i l 1 2 3 4 5 6 39 51 179 180 181 156 400 400 400 400 400 400 2 9 / 8 / 6 7 17/7/68 5 / 8 / 6 9 6 / 8 / 6 9 7/8/69 18/7/69 2300 2300 2300 2300 2300 2350 PR PR BL PR PR BL outwash p l a i n SE 0 - 4 f l a t ( g e n t l y r o l l i n g ) SW SW 2 0 - 3 0 - 2 20 a b s e n t a b s e n t 80 20 a b s e n t a b s e n t 60 40 a b s e n t a b s e n t 70 30 a b s e n t a b s e n t 20 a b s e n t a b s e n t Hygrotope Trophotope E r o s i on D r a i n a g e Sample H o r i z o n Depth (cm) s u b x e r i c - s u b h y g r i c o l i g o t r o p h y s l i g h t , wind good SW 2 A t o t a l 60 85 80 70 60 70 Al 45 30 55 2 20 50 A2 30 70 40 40 55 20 A3 6 35 20 40 20 40 B t o t a l 35 15 35 15 10 10 Bi 15 12 10 5 4 8 B 2 30 6 10 10 8 4 C 35 15 80 45 20 60 D t o t a l 85 85 90 90 90 90 Dh 80 75 60 70 80 80 Ddw 5 10 30 30 15 10 Ea 1 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 Eb 0 . 5 1 0 . 5 0 . 5 0 . 5 1 Ec 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 80 20 a b s e n t a b s e n t 1 4 - 0 7-0 9 - 0 3 - 0 3 - 0 6 - 0 2 0 - 6 0 - 5 0 0-12 0 - 7 0-4 0 - 1 0 3 6 - 2 7 - 12-39 7-37 4 - 2 3 10-45 4 2 7 - 5 7 - 3 9 - 4 7 > 3 7 > 2 3 4 5 - 5 0 5 5 7 - 1 0 0 _ _ > 5 0 P a r e n t M a t e r i a l sandy outwash Table 9 Pleurozio (schreberi) - Ptilio (crlst.ie-castren:ls) - Dicrano (polyseti) -- Gaulttiarlo (hlspldulae) - Pino (contortae) - Piceetum marlanae llumbor of Plot* 1 2 3 4 5 6 Plot llo. 39 51 179 180 181 156 Plot Size (a2) 400 400 400 400 400 400 Elevation.(ft) 2300 2300 2300 2300 2300 2350 Stratus Species Ho. Species Species significance Constancy Aver.Speclej Significance »l 1 Pinus contorta 7 7 7 4 . 6 V 26.4 A2 2 Picea mariana 6 8 5 4 7 Pinus contorta 3 . . 8 5 5 6 V IV 28.0 16.0 A3 Picea sari ana 4 6 7 7 4 7 V 27.6 B. 3 Picea mariana 4 . 3 4 3 Abies lasiocarpa 5 . . 2 V II 5.0 2.9 B2 4 5 6 7 Abies lasiocarpa 2 . 3 3 2 Vaccinium membranaceue 3 . 1 2 1 ledum groenlandicut . 3 2 . . Picea mariana 4 . . 2 4 Sorbus sitchensts . . + 1 1 Shepherdia canadensis 2 j IV IV III III III II 2.1 1.5 3.5 2.9 0.5 0.5 C 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Cornus canadensis 5 3 8 4 4 Gaultheria Mspldula 4 . 3 3 4 Geocaulon ltvldua 4 2 1 2 4 Linnaea borealis 3 2 2 1 2 Lycopodiun conplanatua 4 . . 2 3 Cllntonia uniflora 3 . 2 3 . Spiraea betullfolla 2 . 1 3 2 Petasites palaatus 2 3 2 * . Oryzopsis asperlfolli 3 . . 1 1 Epiloblum angustifol1UB 2 + 1 , Pyrola secunda 3 2 . . 1 Chiaaphlla umbel lata 2 . . 2 2 Vaccinium caespitosum . . . . 2 Lonicera involucrata , 2 . . . Lycopodiua annotinum . 2 . . Kalanthemum canadenso + 2 Equisetua arvense . . + . . Goodyera oblonglfollm 1 . . • , j V V V V IV IV IV IV IV IV III III II II II II II II 20.5 5.0 3.5 2.5 3.0 2.1 1.7 1.7 1.4 0.8 1.3 1.2 0.8 0.6 0.6 0.S 0.3 0.3 Dh 26 27 28 29 30 31 Pleurozium schreberi 7 7 8 7 8 Ptlllun crista-castrensts 4 7 5 4 3 Dicranum polysetua 4 '3 5 4 5 Hylocomium splendens . 6 . 4 2 Polytriohum junlperlnua . - 4 Peltigera aphthosa 2 3 . . . V V V III II II 52.0 13.2 12.5 6.0 1.9 1.0 Odi 32 Pleurozium schreberi 2 2 5 4 5 Ptilluo crlsta-castrensls 3 3 2 5 3 Dicranum fuscescens . 3 4 2 2 V V V 10.2 5.5 3.4 Eb 33 34 35 Hypogynnia enteromorpha 1 3 . ' . Alectoria sarmentosa 1 2 . • • Alectoria acericana 1 1 . . . • • II II II 0.9 0.6 0.5 Ec 36 37 Parroeliopsis amblgua 1 2 . . . Cetraria juniperina II II 0.6 0.5 Sporadic Species: »2 38 Populus tremuloldes 51 (5) »3 Pinus contorta 181 (3) Populus tremuloldes 51 (3) B1 39 Sat 11 bebblana 51 (2) h 40 Alnus sinuata 51 (4) 41 Amelanchier alnlfolla 179 (1) Lonicera Involucrata 179 (1) Pinus contorta 39 (1) 42 Salix scouleriana 180 (•) 43 Viburnum edule 179 (1) c 44 Equisetua sylvatlcua 51 (2) 45 Listera cordata 179 (1) 46 Lycopodium obscurun 39 (2) 47 Helampyrua Itneare 39 (2) 48 Mi tell a nuda 59 (1) 49 Pyrola vlrens 181 (I) 50 Rubus parvlflorus 180 (•) 51 Rubus pedatus 179 (4) 52 Rubus pubescens 179 (1) Sorbus sltchensls 156 (1) 53 Spiraea douglasll 156 (4) Dh 54 Aulacomnium palustre 156 (2) 55 Cladonia ottls 51 (2) 56 Sphagnum glrgcnsohntl 156 (2) Odi 57 Cladonia cornuta 51 (1) 58 Nephroma arcticua 51 (2) Peltigera aphthosa 51 (1) 59 Ptilidium pulcherrimum 51 (1) Ea Alectoria anerlcana 39 (1) Alectoria saroentosa 39 (1) 60 Parmelfopsls hyperopia 51 (2) Eb . 61 lobaria pulnonarla 51 (1) Parmel1opsis ambtgua 51 (1) 62 Usnea ceratlna 51 (1) Cc Alectoria sarnar.tosa 51 (1) tlypogyonla enteromorpha 51 (2) 50 to imperfect. Erosional influences were slight and due pri-marily to wind. Parent materials were sandy outwashes. The plot surface is covered with a litter layer occupying from 60 to 80 per cent of the area. Decaying wood covers the remaining portion as exposed rock and mineral soil are absent. The tree layer is dominated in all cases by Pinus contorta and Picea mariana. Populus tremuloides occurred in two plots. The Ai is occupied exclusively by Pinus contorta which occurs in stands of even height. Picea mariana is dominant in the A2 of all plots except plot 181. This is a less developed stand and Pinus contorta is s t i l l dominant. Species significances for Picea mariana ranged from 4 to 8 (average 7). Pinus occurs in the A2 in four plots and Populus tremuloides in one. The A3 is almost exclusively composed of Picea mariana. The average species significance is seven in the A 3 . Populus tremuloides and Pinus contorta are present in one plot each. Crown closure estimates were between 60 and 85 per cent. The tall shrub layer was poorly developed, total cover estimates between 4 and 15 per cent. Picea mariana was the only constant species where it occurred in 5 of 6 plots. Also found were Abies lasiocarpa (growing poorly), and S a l i x bebbiana (one plot). The B2 was somewhat better developed, total cover estimates ranging from 4 to 30 per cent. T a b l e 10 S o i l P h y s i c a l A n a l y s i s P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - D i c r a n o ( p o l y s e t i ) G a u l t h e r i o ( h i s p i d u l a e ) - P i n o ( c o n t o r t a e ) - P i c e e t u m marianae Number of P l o t s 1 2 3 4 5 6 P l o t No. 39 51 179 180 181 156 H o r i z o n Ae Cg Ae Ae Ae Ae T e x t u r a l C l a s s SL SCL LS SL SL LS Sand ( ? ) 5 5 . 4 5 1 . 6 7 7 . 2 5 7 . 2 5 8 . 0 7 8 . 8 S i l t ( ? ) 3 4 . 2 2 5 . 2 1 7 . 6 3 4 . 0 3 2 . 0 1 4 . 8 C l a y ( ? ) 1 0 . 4 2 3 . 2 5 . 2 8 . 8 1 0 . 0 6 . 4 H o r i z o n Bf Bf Bf Bf Bf Bf T e x t u r a l C l a s s SL . - S SL SL S Sand ( ? ) 7 5 . 4 - 9 5 . 2 7 1 . 2 5 6 . 0 8 8 . 0 S i l t ( ? ) 1 8 . 8 - 2 . 0 1 8 . 2 3 4 . 0 8 . 0 C l a y ( ? ) 5 . 8 - 2 . 8 1 0 . 6 1 0 . 0 4 . 0 H o r i z o n BC C C C BC BC T e x t u r a l C l a s s L S . . - S SL S SL Sand ( ? ) 8 3 . 4 - 9 8 . 0 7 6 . 0 9 6 . 0 7 6 . 4 S i l t ( ? ) 1 3 . 8 - 0 . 8 1 4 . 0 0 . 0 1 5 . 6 C l a y ( ? ) 2 . 8 - 1 . 2 1 0 . 0 4 . 0 8 . 0 H o r i z o n C C C T e x t u r a l C l a s s S - - - S S Sand ( ? ) 9 3 . 4 - - - 9 4 . 0 9 6 . 0 S i l t ( ? ) 5 . 8 - - - 2 . 0 0 . 0 C l a y ( ? ) 0 . 8 - - - 4 . 0 4 . 0 fabts 1 1 Soil Chemical Analysis Pleurozio (schreberi) - Pt i l io (cristae-castrensis) -- Olcrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) - Piceetum marl anas Number of Plots 1 . 2 3 4 5 6 Plot Mo. 39 51 156 179 180 181 Horizon Designation UH L-H L-H L-H L-H L-H Ci 36.4 49.3 37.56 35.28 43.24 34.18 NJ 1.09 1.4 0.93 0.48 1.0 0.57 C/N 33 35 40 73 43 60 OMJ 62.75 84.99 64.76 60.83 74.55 58.93 Si - - 0.11 0.07 0.11 0.07 P ppm 14.0 16.0 66.7 42.7 67.2 52.5 Na 0.90 0.42 0.47 0.56 0.53 0.33 K 0.96 0.92 1.18 0.85 1.82 0.92 Ca 13.75 7.13 5.67 7.08 5.73 3.08 Mg 4.21 2.82 2.68 2.80 2.44 1.13 CEC 69.5 138.9 71.57 62.7 22.82 40.95 pH 3.15 3.2 3.7 3.8 3.7 3.7 Horizon Designation Ae Cg Ae Ae Ao Ae M 0.08 0.00 0.49 0.52 0.08 1.3 NJ 0.06 0.04 0.03 0.03 0.03 0.06 C/N 1 0.0 18 20 2 22 OB 0.14 0.0 0.85 0.90 1.41 2.26 Si - - 0.01 0.01 0.01 0.00 P ppm 7.0 14.0 13.3 4.67 5.6 8.55 Na 0.09 0.65 0.22 0.25 0.28 0.29 K 0.06 0.08 0.09 0.07 0.13 0.10 Ca 0.75 1.61 0.79 1.26 0.94 0.96 Mg 2.46 0.64 0.26 0.40 0.22 0.16 CEC 19.3 32.6 5.6 4.42 12.82 18.02 pH 3.4 4.25 4.15 4.2 3.7 3.9 Horizon Designation Bf Bf Bf Bf Bf Ci 0.00 _ 0.30 0.78 0.89 0.78 NJ 0.00 - 0.02 0.03 0.05 0.44 C/N 0.00 - 15 28 19 2 OMJ 0.00 - 0.52 1.35 1.53 1.35 si _ _ 0.01 0.01 0.01 0.01 P ppm 3.0 - 0.43 0.97 10.8 6.3 Na 0.09 _ 0.21 0.27 0.25 0.31 K 0.06 - 0.07 0.07 0.15 0.12 Ca 0.09 - 0.49 0.86 1.0 0.6 Mg 0.12 - 0.08 0.14 0.18 0.07 CEC 7.4 - 1.85 3.33 4.72 2.92 pH 4.85 - 5.9 5.7 5.1 5.3 Horizon Designation BC C C BC ei 0.00 0.19 0.17 0.54 0.09 is 0.01 _ 0.01 0.01 0.03 0.02 C/N 0.00 - 14 21 19 5 0M2 0.00 - 0.33 0.03 0.09 0.02 Si - - 0.01 0.00 0.00 0.01 P ppm 0.00 - 4.12 13.7 6.0 19.1 Na 0.04 - 0.18 0.35 0.28 . 0.24 • K 0.02 - 0.07 0.08 0.13 0.07 Ca 0.13 - 0.60 0.52 0.90 0.60 Mg 0.12 - 0.10 0.09 0.21 0.17 CEC 5.1 - 2.2 0.95 3.6 1.2 pH 5.0 - 5.8 6.1 5.4 5.6 Horizon Designation C. C CJ 0.00 _ 0.08 0.11 NJ 0.02 - 0.01 - - 0.02 C/N 0.00 1 _ 5 out* 0.00 - 0.14 _ 0.02 SJ - - 0.00 _ 0.01 P ppm 0.00 - 31.5 - - 8.79 Na 0.04 - 0.29 - - 0.22 K 0.03 - 0.07 - ' - 0.08 Ca 0.20 - 0.68 - 0.51 Mg 0.10 - 0.19 - - 0.11 CEC 2.8 - 2.97 - - 1.32 Plate 6: General view of the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Dicrano (polyseti) -Gaultherio (hispidulae) - Pino (contortae) - Piceetum marianae. This association develops on sandy sites where i t grows with Pinus contorta. 54 Abies lasiocarpa was a relatively constant species (Class 4). Picea mariana in B2 decreased in constancy to Class 3. Sorbus sitchensis occurred with constancy 3 also. Addition-ally, Shepherdia canadensis, Alnus sinuata, Pinus contorta, Viburnum edule, Lonicera involucrata, Amelanchier alnifolia, and Salix scouleriana were present. Vaccinium membranaceum and Ledum groenlandicum (on decaying wood) were present with constancy 4 and 3. Considerable variability was found in the develop-ment of the herb layer. Cover estimated ranged from 15 to 80 per cent. Cornus canadensis was constant and had the highest average cover (S.S. 6). Also occurring with con-stancies greater than 80 per cent were: Gaultheria hispidula, Geocaulon lividum and Linnaea borealis while Lycopodium oomplanatum, Clintonia uniflora, Spiraea betulifolia, Petasites palmatus and Epilobium angustifolium were of Class 4 constancy. Other typical species of the Piceetalia glaucae-marianae were: Goody era oblongifolia, Chimaphila umbellata, Maianthemum canadense, Pyrola virens, Vaccinium caespitosum, Melampyrum lineare and Listera cordata. The humicolous bryophyte layer is not species rich though total cover is high. It ranged from 60 to 80 per cent. Three species account for most of the cover and these are Pleurozium schreberi, Ptilium crista-castrensis and Dicranum 55 polysetum. Pleurozium has an average species significance of 8 while that of Dicranum and Ptilium was 5. Other humicolous species were Hylocomium splendens, Polytriohum juniperinum, Peltigera aphthosa, Cladonia mitis and Aulacomnium palustre. Sphagnum girgensohnii was found in one plot in a locally wet area arising from a small spring. Decaying wood was usually covered by the carpet of Pleurozium. Dicranum fuscescens and Ptilium crista-castrensis were the only other constant species dominant on decaying wood. Nephroma arcticum, an arctic element, may occur here. Epiphytes were poorly developed in this association. The soils were all Ortho Humo Ferric Podzols with the exception of plot 51 which was classified as a gleyed Regosol . Parent materials were sandy outwashes. Carbon content in the L-H ranged from 34 to 49 per cent and nitrogen from 0.5 to 1.1 per cent. Carbon/nitro-gen ratios were high. Phosphorus values ranged from 14 to 67 ppm but the majority were greater than 43 ppm. CEC's were high. In order of descending availability the cations were present as follows: calcium, magnesium, sodium, and potassium. Soil reactions were very acid in the L-H and the trend was to become less acid with depth. Due to the coarse sandy nature of the soils, they were generally poor in nutrients. 5 6 A L L I A N C E : P l e u r o z i o ( s c h r e b e r i ) - P i c e i o n ( g l a u c a e ) P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) -V a c c i n i o ( m e m b r a n a c e i ) - P o p u l o ( t r e m u l o i d i s ) - P i c e o ( g l a u c a e ) - P i n e t u m c o n t o r t a e ( R e f e r e n c e T a b l e s : 1 2 , 1 3 , 1 4 , 1 5 , 1 6 ) ( P i n e - S p r u c e - Moss A s s o c i a t i o n ) The Pine - Spruce - Moss Association • is probably the most widespread forest unit in the Sub-boreal Zone. It is promoted and maintained by fires which are very common, being mostly of lightning origin. The association is most common on mesic (or submesic) soils of glacial outwash plains such as occur on the Fraser and McGreggor Plateaus and the Nechako Plain. The topography is generally flat to gently rolling but the association is also widespread on steeper slopes. Seepage, i f present, is very limited due to both the topography and the highly sandy nature of the soils. Drainage is rapid and the leached characteristics of the soil very strong. Erosion on these sites is minimal though after fires when the litter layer has been destroyed, wind erosion is probably a factor. The soils are all relatively deep and predominantly structureless due to their sandy nature. All soils have a litter layer (L-H) of varying thickness, an Ae or eluviated horizon and a well developed Bf horizon. A transitional PIeu roz i o ( s c h r e b e r i ) - P t i l i o PopuIo (tremuIo i d i s) Tab Ie I 2 ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) -- P i c e o (g laucae) - Pinetum c o n t o r t a e C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S I M P O R T A N T N O N - C O N S T A N T S T r e e Pinus contorta Populus tremuloides Picea glauca S h r u b Picea glauca Alnus sinuata Abies lasiocarpa Rosa gymnocarpa Amelanchier alnifolia Vaccinium membranaceum V. myrtilloides Shepherdia canadensis Rubus parviflorus H e r b Cornus canadensis Linnaea borealis Aralia nudicaulis Clintonia uniflora Goody era oblongifolia Oryzopsis asperifolia Epilobium angustifolium Maianthemum oanadense Melampyrum lineare Lyoopodium aomplanatum Chimaphila umbellata Pyrola virens Pyrola secunda Apooynum androsaemifolium Galium boreale M o s s ( h u m u s ) Pleurozium schreberi Ptilium crista-castrensis Hylocomium splendens Dicranum polysetum Peltigera aphthosa Polytriohum juniperinum Brachythecium albicans 58 T a b l e 13 P l e u r o z i o ( s c h r e b e r i ) P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) P i c e o ( g l a u c a e ) - P i n e t u m c o n t o r t a e P o p u l o ( t r e m u l o i d i s ) Number of P l o t s 1 2 3 4 5 6 7 8 9 10 P l o t No. 18 45 31 46 52 56 5 2 76 80 P l o t S i z e (m 2 ) 400 400 400 400 400 400 400 400 400 400 Date A n a l y s e d 16/7/67 2 6 / 6 / 6 8 13/8/67 1/7/68 17/7/68 19/7/68 16/6/67 10/6/67 2 0 / 8 / 6 8 21/8/68 E l e v a t i o n ( f t ) 2300 2300 2275 2300 2300 2300 2275 2400 2500 2500 L o c a l i t y MR PR CR PR PR PR • ML CR TL TL Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage SE 1 P l o t Coverage {%) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock 75 15 10 S o i l Hygrotope T r o p h o t o p e E r o s i o n D r a i n a g e Sample Hori 1 2 3 4 5 6 outwash p l a i n • f l a t t o g e n t l y r o l l i n g • SW 13 NE 2 SW 0-1 SE 1-5 SW 3 SW 0 - 8 85 15 65 35 80 20 85 15 80 20 a b s e n t 65 35 65 30 a b s e n t mesic ( s u b m e s i c ) s u b m e s o t r o p h i c - m e s o t r o p h i c - p e r m e s o t r o p h i c s l i g h t t o n i l moderate ( - g o o d ) 80 20 1 - 2 A t o t a l 80 75 65 60 65 60 45 50 45 65 A1 75 65 50 40 60 55 30 30 35 60 h 5 30 15 20 20 10 5 15 5 10 h - 15 8 2 5 _ 10 14 5 2 B t o t a l 60 70 85 70 65 60 40 25 60 70 B1 10 6 15 55 50 45 10 3 15 20 B 2 60 70 80 25 15 30 35 25 50 70 C 75 70 70 15 30 60 65 30 50 45 D t o t a l 45 20 80 90 90 90 90 65 90 75 Dh 25 15 70 80 70 75 65 50 80 55 Ddu 20 10 10 10 20 15 25 15 20 35 Ea - - 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 2 1 Eb 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 2 0 . 5 Ec 0 . 5 2 1 2 2 3 0 . 2 2 1 2 50 50 zon Depth (cm) 4 - 0 5 - 0 8 - 0 3 - 0 2 - 0 5 - 0 5 - 0 1 0 - 0 3 - 0 4 - 0 0 - 7 0-7 0 - 5 0-4 0 - 2 0 0 - 6 0-10 0-15 0-13 0 - 9 7-19 7-22 5 - 2 7 4-24 2 0 - 7 5 6 - 3 9 10-42 15-75 13-35 9 - 3 6 19-31 2 2 - 4 6 27-82 24-100 - 39-75 4 2 - 4 6 75-100 3 5 - 5 0 36-71 31-61 46-75 82-110 - - - 4 6 - 7 0 - 50-75 -61-100 - _ 7 0 - 9 0 -P a r e n t M a t e r i a l GO GF0 GF0 SO SO SO G0+L GFO GO GO Table 14 Pleurozio (schreberi) - Pt i l io (cristae-castrensis) - Vaccinio (membranacei) -- Populo (tremuloidis) - Piceo (glaucae) - Pinetun contortae 59 pi no - populosun tremuloidis populo - piceo - pinosum contortae piceo r pinosum contortae Nur.ber of Plots 1 2 3 4 5 6 7 8 9 10 Plot No. 18 45 31 46 52 58 5 2 76 80 Plot Size (r,2) 400 400 . 400 400 400 400 400 400 400 400 Elevation (ft) 2300 2300 2300 2300 2300 2300 2275 2400 2500 2500 Stratum A , Species No. 1 2 Species Pinus contorta Populus tremuloides Species significance 4 . 7 9 8 2 7 + 7 7 3 7 1 7 7 8 Constancy V III Aver.Species Significance 40.2 15.8 A2 3 Pinus contorta Populus tremuloides Picea glauca 2 6 I 6 5 2 4 2 3 4 5 4 ; ; IV III III 8.0 4.8 0.4 <3 4 Abies lasiocarpa Populus tremuloides • 4 5 • + 2 • 1- 1 5 ; ; III II 1.5 3.3 Eb Ec Picea glauca Pinus contorta 5 Alnus sinuata Abies lasiocarpa Picea glauca 6 Vaccinium myrtilloides 7 Spiraea betulifolia 8 Vaccinium membranaceuij 9 Shepherdia canadensis 10 Viburnum edule Abies lasiocarpa Picea glauca 11 Rosa gymnocarpa Alnus sinuata 12 Rubus parviflorus 13 Sal 1x bebblana 14 Amelanchier alnifol ia 15 Sal 1x scoulerlana 16 Sorbus sitchensis 17 Cornus canadensis 16 Linnaea boreal is 19 Aralia nudicaulls 20 Clintonia uniflora 21 Goodyera oblongifolia 22 Oryzopsis asperifolia 23 Epilobium angustifolium 24 Geocaulon 1 i vidura 25 Mai anthem canadense 26 Melanpyrum lineare 27 Lycopodium complanatum 28 Chinaphila umbel lata 29 Pyrola virens 30 Pyrola secunda Amelanchier alni fol ia Alnus sinuata 31 Arctostaphylos uva-ursl 32 Vaccinium caespitosura 33 Lycopodium annotlnum 34 Rubus pubescens 35 Sailacina racetiosa Pinus contorta 36 Aster conspfcuus Viburnum edule Picea glauca 37 Pleurozturi schreberi 38 Ptll luo crlsta-castrensis 39 Hylocoslum splendcns 40 Dicranum polysetum Peltigera aphthosa PolyirlchuT Juniperlnum ^ Cladonia nit is Cladonia graci l is . . - °!eurcz!um achrobcrl Ptllium crista-castrensls 45 Oicranum fuscescens Kylocoaium splendens 46 Alectoria amerlcana 47 Alectoria sarnentosa 48 Usnea ceratina 49 Hypogytinia enteromorpha Alectoria amerlcana Alectoria sarmentosa 50 Cetraria juniperlna 51 Parmeliopsis aablgua 52 Cetraria pinastrl Cetraria juniperina Paroeliopsls ambtgua Hypogymnia enteronorpha 53 Cetraria glauca V V IV V V IV IV IV IV IV III III III III III t i l III III II II II II II II II II II V V IV IV IV III III III V V V II III IV III II 1.2 0.6 15.9 4.6 2.8 9.9 8.5 17.8 6.0 2.7 2.0 1.8 1.5 4.9 1.4 ,1.0 0.9 0.9 0.5 13.2 7.4 4.5 2.7 1.7 1.6 1.3 3.4 3.3 2.9 2.7 2.6 1.7 1.6 0.9 2.0 2.0 1.4 0.9 0.9 0.5 0.5 0.4 0.2 0. 2 36.7 15.0 10.1 7.5 1.6 2.3 1.5 1. « 10>2 5.9. 4.3 1.9 0.9 0.7 1.2 1.0 0.9 0.7 0.6 0.4 0.4 1.0 0.9 0.7 0.7 Sporadic Species: Aj 54 Betula papyrifera 31 (3) A3 Betula papyrifera 45 (5) 31 (2) Sallx scouleriana 31 (2) B, Plnus contorta 18 (1) 31 (2) Salix bebbiana 31 (2) Sallx scouleriana 18 (2) Pinus contorta 52 (3) Rosa gymnocarpa 31 (3) C Abies lasiocarpa 76 (2) 55 Actaea rubra 45 (1) 56 Apocynum androsaemifoil urn 18 (5) 57 Arnica longifolia 31 (+) 58 Calypso bulbosa 45 (+) 59 Calamagrostis canadensis 18 (2) 60 Castil leja oiniata 45 (2) 61 Disporum hooker! 31 (+) 62 Equisetum scirpoldes 46 (2) 56 (2) 63 Galium boreale 45 (2) 64 Galium triflorum 56 (1) . 65 Gaultheria hispidula 76 (5) 80 (3) 66 Habenaria orbiculata 45 (2) 67 Habenaria unalaskensis 18 (2) 45 (1) 68 Hleraclua albiflorum 18 (2) 69 Juniperus communis 2 (3) 70 Lathyrus ochroleucus 31 (+) j?1 Ledum groenlandicun 52 (2) j?2 Listera cordata 31 (+) 5 (+) |73 Lycopodium obscurum 2 (+) 74 Koneses uniflora 18 (3) 75 Petasites palmatus 45 (+) 76 Pyrola asarifolia 46 (1) 2 (2) 77 Ribes hudsonlanum 46 (+) 78 Rosa aclcularis 45 (3) 79 Rubus pedatus 80 (4) Sallx'scouleriana 2 (+) 80 Sorbus scopulina 31 (1) Sorbus sitchensis 18 (+) 5 (1) 81 Streptopus roseus 45 (+) Dh 82 Barbilophozia lycopodioides 80 (4) 83 Brachythecium albicans 5 (3) 84 Brachythecium starkel 18 (2) 85 Cladonia chlorophaea 5 (1) 86 Cladonia cornuta 52 (1) 87 Cladonia coniocraea 5 (1) 88 Cladonia uncialis 76 (1) 89 Oicranum flagellare 45 (3) Dicranum fuscescens 31 (2) 90 Oicranum scoparium 52 (1) 91 Drepanocladus uncinatus 52 (2) 92 Lophozia excisa 52 (2) 93 Orthocaulis floerkli 76 (3) 94 Peltigera malacea 52 (2) 95 Pohlia nutans 76 (2) 90 Ptilldium pulcherrimum 46(1) 52(1) 0d» Brachythecium albicans 18(1) 97 Brachythcclua erythrorrhlzon 45 (2) 98 Bryum pallescens 45 (2) 99 Cephaloziella divaricata 31(1) 76(2) Cladonia chlorophaea 52 (1) 5 (1) Dicranum polysetum 46 (1) 100 Dicranum tauricum 76 (3) Drepanocladus uncinatus 18 (1) Lophozta excisa 18 (1) 31 (1) 101 Lophozia ventricosa 18 (1) Peltigera aphthosa 5 (1) 102 Plagiotheclum denticulatum 18 (1) Pohlia nutans 18 (2) Polytrichum juniperlnum 18 (3) 76 (2) Ptilldium pulcherrimum 76 (2) Ea 103 Alectoria simplicior 31 (2) Usnea ceratina 52 (1) 104 Usnea trkhodea 5 (1) Eb Alectoria simplicior 31 (2) Cetraria glauca 80 (1) 105 Cetraria islandica 80 (1) 106 Parmellopsis hyperopta 31 (1) Ec Alectoria americana 45 (1) Alectoria sarmentosa 5 (1) 107 Amblystegiuo serpens 56 (1) Brachythecium albicans 45 (1) 108 Brachythecium salebrosun 18 (1) Cetraria islandica 2 (1) 109 Cladonia fimbriata 31 (1) Cladonia mitls 2 (1) Drepanocladus uncinatus . 56 (1) Oicranum fuscescens 56 (1) 110 Eurhynchium pulchellum 45 (3) 111 Homalotheclun nevadensis 56(1) Ptilldium pulcherrimum 56(1) 80(1) 112 Pylaisia polyantha 46 (1) 60 horizon (BC) may or may not be present followed by a C or parent material. All soils are well developed Ortho Humo-Ferric Podzols except plot 52 which is a Mini Humo-Ferric Podzol. The differentiating criteria is the depth of the litter layer. Parent materials were all of glacial origin being: glacial outwash, glacio-f1uvial outwash, sandy out-wash or glacial outwash plus lacustrine deposits. Slope gradients are generally gentle though plot 45 had a slope of 16 degrees. From the sample plots, no one exposure appears to dominate though on the most sandy sites where water availability is a problem, preference is shown to the cooler northern exposures. Hygrotopes are rated from mesic to submesic. The soil surface is covered with a litter layer of varying thickness (2-10 cm.) that occupies from 50 to 85 per cent of the plot surface. The remaining amount is covered by decaying wood. Most of the decaying wood accumulates after fires and is frequently charred. Evidence of charcoal is always found in the upper layers of the soil. Exposed mineral soil is generally not present though minimal occurrence is shown in two sample plots. The upper strata of the vegetation are variable being comprised of Pinus contorta on the drier sites and Populus tremuloides on the moister side of the range. Shared 61 dominance of both these species is also common. Both species are promoted by fires and are shade intolerant on such sites. Death occurs when they are shaded out by the developing Picea glauca which is present in either the lower tree strata or the shrub layer. Based on the dominant species in the tree strata, three variants have been distinguished in the association: pino - populosum; populo - piceo - pinosum contortae and piceo - pinosum contortae. The piceo - pinosum contortae is the most widespread of the three in the Sub-boreal Zone. This latter may have an extent of type exceed-ing several thousand acres on large outwash plains. Crown closure in this association was found to be lowest in plot 5 and 76 with an estimated 45 per cent. Highest closure was 80 per cent in plot 18. Pinus contorta is the most constant species in the upper tree strata having an average species significance of 7. Populus tremuloides occurs with class III constancy and an average significance of 6. These species were also important in the A2 although Picea glauca had a lower constancy of III. Betula papyrifera was registered in one sample plot. Abies lasiocarpa is the most constant species in the A3 while Picea occurred in three plots. There is a notable difference in both the con-stancy and species significance of Pinus and Populus from the upper to the lower tree strata. They are most important in the A!. 62 The shrub layer is usually well developed. Total cover ranges from 25 to 85 per cent. Poorest development occurred in the piceo - pinosum contortae, the driest variant. The most important species in the shrub layer were Alnus sinuata, Abies lasiocarpa and Picea glauca. These all were constancy class III. Pinus contorta occurred in one plot and Populus tremuloides was absent. The B2 was usually dominated by either Vaccinium myrtilloides or V. membranaoeum. Rosa gymnooarpa, Amelanchier alnifolia, Shepherdia canadensis, Viburnum edule, Abies lasiocarpa and Pioea glauca occur with constancy III. Spiraea betulifolia is the most constant species in the B strata occurring in all plots with species significance from + to 8. Average significance was 5. Development in the herb layer was variable. Plot 46 was the most poorly developed (15 per cent). In this plot Alnus sinuata had an exceptionally high cover possibly hinder-ing herb layer development. Linnaea borealis occurred in all plots with an average species significance of 4 (range 2-5). Other important species occurring in greater than 40 per cent of the plots were: Cornus canadensis, Aralia nudicaulis, Clintonia uniflora, Goody era oblongifolia, Oryzopsis asperifolia, Epilobium angustifolium, Maianthemum oanadense, Melampyrum lineare, -Lyoopodium aomplanatum, Chimaphila umbellata, Pyrola virens and P. secunda. 6 3 The layer is variable in its development, being poorest in the pino-populosum and considerably more highly developed in the other two variants. Pleurozium schreberi is the most constant dominant. Ptilium crista-castrensis, Eylocomium splendens and Dicranum polysetum are also highly constant. Peltigera aphthosa was the most constant lichen. Cladonia mitis, C. gracilis, C. unoialis3 C. cornuta, C. coniocraea and Peltigera malacea were also present. The presence of these lichen species indicates the affinities of this serai association with the drier units as do the mosses Brachythecium albicans3 Pohlia nutans and Polytriohum guniperinum. The frequent fires prevent a thick litter-humus layer from developing, thus allowing the lichens to become established. The D d w layer is not highly developed. Species frequently on decaying wood are Pleurozium schreberi, Dicranum fuscescens and Ptilium crista-castrensis. Epiphytes were common though none showed a high species significance. The most common species were: Alectoria sarmentosa, A. americana, Usnea ceratina, Hypogymnia entero-morpha, Cetraria juniperina and Parmeliopsis ambigua. Homalothecium nevadense, Eurhynchium pulchellum, Pylaisia polyantha, Ptilidium pulcherrimum, Brachythecium albicans and Drepanooladus uncinatus were found on the bark of Populus tremuloides. T a b l e 15 S o i l P h y s i c a l A n a l y s i s P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - P o p u l o ( t r e m u l o i d i s ) - P i c e o ( g l a u c a e ) - P i n e t u m c o n t o r t a e p i n o - populosum tremul oi d i s p o p u l o - p i c e o - pinosum c o n t o r t a e p i c e o - pinosum c o n t o r t a e Number o f P l o t s 1 2 3 4 5 6 7 8 9 10 P l o t No. 18 45 31 46 52 56 5 2 76 80 H o r i z o n Ae Ae Ae Ae Ae Ae Ae Ae Ae Ae T e x t u r a l C l a s s LS SL . LS LS LS LS SL LS LS SL Sand ( ? ) 8 2 . 8 6 9 . 6 8 0 . 6 7 8 . 8 8 1 . 2 8 0 . 8 7 2 . 0 7 4 . 8 7 3 . 0 7 5 . 6 S i l t ( ? ) 1 6 . 6 2 2 . 2 1 2 . 6 1 6 . 2 1 5 . 2 1 4 . 2 2 2 . 6 2 3 . 6 2 2 . 4 1 9 . 4 C l a y ( ? ) 0 . 6 8 . 2 6 . 8 5 . 0 3 . 6 5 . 0 5 . 4 1 . 6 4 . 6 5 . 0 H o r i z o n Bf Bf Bf Bf 1 Bf Bf Bf Bf B f t Bf T e x t u r a l C l a s s S LS LS LS S S LS S SL LS Sand ( ? ) 9 1 . 2 77 .6 8 4 . 6 8 6 . 8 8 9 . 6 8 8 . 8 8 2 . 2 8 8 . 8 7 2 . 2 8 7 . 6 S i l t ( ? ) 7 . 0 1 4 . 8 1 0 . 6 9 . 2 1 0 . 4 8 . 4 1 0 . 2 9 . 6 1 8 . 3 5 . 0 C l a y ( ? ) 1 . 8 7 . 6 4 . 8 4 . 0 0 . 0 2 . 8 7 . 6 1 . 6 9 . 5 7 . 4 H o r i z o n BC BC „ C C C BC C(BC) IICB C T e x t u r a l C l a s s LS S LS S S S LS S S Sand ( ? ) 7 7 . 6 8 8 . 0 8 5 . 2 9 2 . 8 - 9 1 . 0 9 5 . 0 8 0 . 6 9 4 . 0 8 7 . 6 S i l t ( ? ) 2 1 . 0 7 . 8 5 . 6 7 . 2 7 . 2 4 . 6 1 4 . 6 2 . 4 6 . 4 C l a y ( ? ) 1 . 4 4 . 2 9 . 2 0 . 0 - 1 . 8 0 . 4 4 . 8 3 . 6 6 . 0 H o r i z o n C C — D C IIC T e x t u r a l C l a s s S . S S _ _ _ LS S Sand ( ? ) 9 1 . 4 9 5 . 8 9 4 . 2 - 8 2 . 0 9 4 . 0 _ S i l t ( ? ) , 7 . 8 2 . 2 2 . 6 _ _ _ 1 4 . 2 2 . 4 _ C l a y ( ? ) 0 . 8 2 . 0 3 . 2 - - - 3 . 8 - 3 . 6 -H o r i z o n l ! C — M I C T e x t u r a l C l a s s S _ _ _ SCL _ Sand ( ? ) 9 7 . 4 - - - 5 7 . 0 _ _ S i l t ( ? ) 1 . 6 - _ 2 2 . 0 _ C l a y ( ? ) 1 . 0 - - _ - - 2 1 . 0 - -[.Oil ChfeolC .) Anftlyslt Meuro i lo ('.chreUrl) - f ' t lHo (crl*.tjo-*..r.tnirr.H) - V icc ln lo (.-.W.nriactj.) - ^ p u l o (trerJoMl ' . ) - f'Ufto (glauca*) -- f l f i f t t u n c o n t o r t a B pi no - populoeva , , , , i . I ... populo - piceo - plnosui contorta* plcto - p lnovn ccntort t t Hunter of P l o t l 1 2 3 4 5 6 7 8 9 10 Plot No. 18 45 31 46 52 56 5 2 76 80 Horizon Designation l-H L-H LJI L - « l - H L-H l - H L-H l - H l - H a 28.7 36.9 32.4 46.6 39.9 51.3 32.6 17.3 47.6 31.5 a 0.75 0.57 0.64 1.54 0.48 1.09 1.03 0.65 0.83 1.15 C/N • 38 65 51 32 83 47 32 27 57 27 OM 49.48 63.62 55.86 83.79 68.79 83.44 56.20 29.63 82.06 54.31 p ppa 12.0 22.0 19.0 17.0 20.0 16.0 31.0 ' 12.0 16.0 13.0 Ha 0.28 0.53 0.32 0.55 0.26 0.45 0.35 0.39 0.01 0.71 K 0.45 1.67 0.51 2.24 0.27 2.35 1.64 1.64 1.67 2.16 Ca 18.9 18.9 16.59 19.6 6.5 10.9 14.8 12.0 5.2 5.9 «g 3.27 4.1 3.23 3.6 1.21 3.6 4.7 2.5 1.22 2.10 etc 68.4 103.5 63.7 148.3 136.5 136.4 68.1 83.4 86.4 98.0 pH 4.15 5.8 3.75 4.35 4 . 0 4 . 0 3.8 3.95 3.45 3.35 Horizon Designation Ae Ae A* Ae Ae Ae At A l A l A i CI 0 . 0 0 . 0 0.09 0.0 0.0 2.8 0.0 0.0 0 . 0 0 . 0 w 0.02 0.05 0.06 0.04 0.04 0.05 0.03 0.03 0.02 0.04 C/» 0.0 0.0 2 0 . 0 0 . 0 55 0.0 0.0 0.0 0 . 0 O i l 0 . 0 0.0 0.15 0 . 0 0 . 0 4.83 0.0 0.0 0.0 0 . 0 P ppa 3.0 11.0 4 . 0 4 . 0 4 . 0 5 . 0 7.0 2.0 8.0 6.0 Na 0.14 0.19 0.10 0.30 0.17 0.20 0.17 1.39 0.23 0.24 K 0.03 0.20 0.10 0.12 0.06 0.05 0.05 0.04 0.07 0.1O Ca 0.72 1.56 1.13 1.47 0.98 0.89 0.22 0.46 0.23 0.30 Bg 0.13 0.45 0.29 0.51 0.12 0.27 0.35 0.11 0.09 0.15 CEC 4 . 9 1E.4 9.1 6.8 7.4 16.4 3.0 4.4 3.9 4.3 P« 3.6 4.2 3.95 4.25 4.7 3.6 3.55 3.75 3.35 3.2 Horizon Designation Bf Bf Bf Bf Bf Bf Bf Bf Bf(t) Bf C l 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.0 0 . 0 0.0 0 . 0 0 . 0 NS 0.04 0.04 0.D6 0.04 0.01 0.03 0.04 0.05 0.03 0.07 C/H 0.0 0.0 0.0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0 . 0 OSJ 0.0 0.0 0.0 0 . 0 0 . 0 0.0 0.0 0.0 0.0 0 . 0 P ppa 0.0 8.0 6.0 2 . 0 7.0 3.0 2.0 3.0 7.0 4 . 0 «a 0.08 0.21 0.10 0.22 0.16 0.19 0.23. 0.12 0.25 0.21 K 0.06 0.17 0.05 0.19 0.03 0.10 0.05 0.09 0.07 0.11 Ca 0.42 0.63 0.44 0.59 0.63 0.54 1.4 0.69 0.08 0.21 Kg 0.04 0.15 0.11 0.16 0.07 0.08 0.37 0.11 0.03 0.07 CEC 6.4 12.0 8.2 4 . 3 4.1 3.7 8.9 7.1 8.6 11.7 pH 4.8 4.4 4 . 9 4.6 5.4 4.7 4.65 4.8 5 . 0 4.4 Horizon Designation BC BC BC C C C BC C(BC) IIC8 C CI 0.0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 0 . 0 0 . 0 0 . 0 HI 0.02 0.03 0.04 0.01 0.01 0.01 0.04 0.01 0.02 C/H 0 . 0 0.0 0 . 0 0.0 0 . 0 0.0 0.0 0.0 0.0 0 . 0 081 0 . 0 0 . 0 0.0 0.0 0 . 0 0 . 0 0 . 0 0.0 0 . 0 0 . 0 P ppa 0.0 3.0 3.0 6 . 0 2.0 4 . 0 5.0 4 . 0 3.0 N» 0.08 0.22 0.10 0.17 0.16 0.12 0.15 0.24 0.26 K 0.03 0.09 0.07 0.07 0.04 0.03 0.08 0.04 0.08 Ca 0.11 0.17 0.66 0.37 - 0.40 0.74 1.50 0.10 0.11 »g 0.01 0.C5 0.22 0.03 0.08 1.2 0.20 0.03 0.04 CEC 5.9 6.1 4 . 9 4.5 2.6 2.7 6.2 2.7 6 . 9 pH 5 . 3 4.8 4.85 4.8 - 5.2 5.1 4.8 5.45 5.01 Horizon Designation C C C IIC IIC CI 0.0 o.c 0 . 0 _ 0 . 0 _ 0 . 0 _ W 0.01 0.0! 0.01 - - - 0.01 0.01 -C/H 0 . 0 0 . 0 . 0.0 - - 0.0 0.0 Oct 0.0 0.0 0 . 0 0.0 - 0.0 -P ppa 0.0 4.0 0 . 0 - 4.0 - 2.0 -Ha 0.08 0.17 0.10 _ 0.2 - 0.25 -K 0.04 0.07 0.0 - 0.04 - 0.06 -Ca 0.13 0.34 0.64 - - 1.8 - 0.15 -ag 0.03 O.P7 0.22 _ - 0.43 - 0.35 -CEC 8.3 2.f 1.8 - 4.6 - 1.? -pH 5.15 4.S 4.75 - - - 5.1 - 5.0 -Horizon Designation IIC 11 IC CI 0.0 _ _ _ 0.0 a 0.01 - - - 0.03 C/H 0.0 - 0.0 - - -001 0.0 - - - - 0 . 0 - ' - -P ppa 0.0 - • - - 11.0 - - - • Ha D.08 - - 0.C6 - - -K 0.03 - - - - 0 . . ' - - - • Ca 0..'1 - - • • - - - -«l) 0.05 - - - - - - -CfC 2 . 0 23.8 - - • pH <."5 - . - - - - 4 . « - - -66 The soil reaction in the litter layer was always strongly acid, all plots being under pH 4.35 with the excep-tion of plot 45 (pH 5.8). Spiraea betulifolia showed a species significance of 8 in this plot. pH in the mineral horizons was also strongly acid frequently being less than 4.0. Carbon/nitrogen ratios were all high in the litter ranging from 27:1 to 83:1. The average CEC of litter was 99 me/100 g. The exchangeable cations were dominated by calcium which ranged from 5.2 to 19.6 me/100 g. Magnesium was the next most abundant cation followed by potassium, then sodium. The same sequence of abundance was found in the mineral horizons though the quantity of sodium frequently exceeded that of potassium. Characteristics of the soils are shown in Tables 15 and 16. A brief discussion of the three variants will follow. They are: i) pino - populosum tremuloidis, i i ) populo -piceo - pinosum contortae, i i i ) piceo - pinosum contortae. i ) p ino - populosum t r e m u l o i d i s This variant is represented by two sample plots developed over glacial outwash and glacio fluv-ial outwash. Differential characteristics are the comparatively higher significance of Populus. tremuloides and Goodyera oblongifolia. 67 Apooynum androsaemifolium and Habenaria unalaskensis were found only in this variant. Other striking features are the absence of Amelanchier alnifolia, Rosa gymnocarpa, Geocaulon lividum, Pyrola virens and Shepherdia canadensis. Crown closure is highest in the pino - populosum as is the cover of the herb layer. Mosses on humus are weakly developed. The soils are generally richer and the trend in pH is to be less acid. This is probably due to the nature of Populus tremuloides litter which is less acid than that of Pinus contorta. Gymnocarpium dryopteris is absent. The pino - populosum tremuloidis is rated as the "wettest" variant. i i ) populo - p i c e o - pinosum c o n t o r t a e This variant is distinguished by a high cover of both Populus tremuloides and Pinus contorta. It is an inter-mediate variant between the pino - populosum and the piceo -pinosum contortae in terms of both vegetation and soils. Soils are generally poorer here and the acidity greater than in the pino - populosum but lower than in the piceo - pinosum contortae. Intermediate pH's arise from the mixture of Populus and Pinus l i t t e r . Four sample plots were established of which three were on sandy outwash and one was a glacio-f1uvial outwash. This variant is very common in the Sub-boreal Zone. 68 i i i ) p i c e o - pinosum c o n t o r t a e This is the drier of the three variants. Pinus contorta is the dominant tree and Populus tremuloides is seldom present. More typical of this variant are: Amelanchier alnifolia, Geocaulon lividum, Ly copodium complanatum, Shepherdia canadensis, Gaultheria hispidula and Cladonia gracilis. Crown closure is low, ranging from 45 to 60 per cent. Pinus contorta is frequently overstocked with as much as 230 stems being recorded for a 1/10 acre plot. The soils are generally poorer and the litter layer more acid. This is by far the most widespread variant in the zone. ALLIANCE: P l e u r o z i o ( s c h r e b e r i ) - P i c e i o n g l a u c a e P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - Pseudotsugo ( * g l a u c a e ) - P iceetum g laucae (Re fe rence T a b l e s : 17 ,18 ,19 ,20 ,21 ) (Spruce - Moss A s s o c i a t i o n ) The concept of the mesic climax association in the Sub-boreal Zone is very difficult to substantiate by plot Table 17 P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) -Pseudotsugo ( *g laucae ) - P iceetum g l a u c a e C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S (60-1002) I M P O R T A N T N O N - C O N S T A N T S T r e e Picea glauca Pinus contorta Pseudotsuga menziesii v a r . glauca Populus tremuloides Abies lasiocarpa S h r u b Abies lasiocarpa Viburnum edule Alnus sinuata Vaccinium membranaceum Rubus parviflorus Amelanchier alnifolia Shepherdia canadensis H e r b Cornus canadensis Aralia nudicaulis Clintonia uniflora Pyrola secunda Spiraea betulifolia Linnaea borealis Chimaphila umbellata Smilacina racemosa Disporum hookeri Ly copodium annotinum Geocaulon lividum Goody era oblongifolia Oryzopsis asperifolia Pyrola virens M o s s e s ( h u m u s ) Pleurozium schreberi Ptilium crista-castrensis Dicranum polysetum cn T a b l e 18 70 P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - P s e u d o t s u g e t o * ( g l a u c a e ) -P i c e e t u m g l a u c a e Number of P l o t s 1 2 3 4 5 6 7 P l o t No. 3 131 8 19 132 74 36 P l o t S i z e (m 2 ) 400 400 400 400 400 400 400 Date A n a l y s e d 12/6/67 9/7/69 2 3 / 6 / 6 7 24/7/67 10/7/69 1 9 / 8 / 6 8 2 3 / 8 / 6 7 E l e v a t i o n ( f t ) 2300 2300 2350 2350 2350 2400 2400 L o c a l i t y CR ML ML ML ML TL ML Land Form R e l i e f Shape flat iu yeny.iy i ui i i iiy E x p o s u r e SE NE w S SW W VI S l o p e G r a d i e n t 1 2 - 5 3 13 2 - 5 0 - 6 0-4 L a y e r Coverage A t o t a l 30 65 85 70 75 75 70 A1 20 57 65 65 60 60 50 A 2 7 6 16 15 5 10 15 A 3 3 5 5 10 10 10 8 B t o t a l 35 90 80 60 65 90 40 Bi 9 30 35 25 40 55 -B2 30 85 45 45 35 45 40 C 60 50 60 65 60 60 65 D t o t a l 55 70 60 40 50 70 85 Dh 25 40 25 15 30 40 45 Ddw 35 30 35 25 20 30 40 Ea 1 0 . 5 0 . 5 1 0 . 5 2 0, Eb 0 . 5 0 . 5 1 1 0 . 5 1 0, Ec 0 . 5 0 . 5 1 0 . 5 1 1 0, P l o t Coverage ( ? ) L i t t e r 45 60 40 70 55 70 45 D e c a y i n g Wood 45 40 60 30 45 30 55 M i n e r a l S o i l a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t Rock a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t a b s e n t S o i l Hygrotope Trophotope E r o s i o n D r a i n a g e Sample H o r i z o n Depth (cm) mesic ( s u b m e s i c ) -( p e r m e s o t r o p h i c ) n i l -m e s o t r o p h i c •moderate ( g o o d ) -1 5 - 0 6 - 0 8 - 0 1 0 - 0 4 - 0 2 0 - 1 0 0 - 4 0 - 9 0 - 8 0 - 8 3 1 0 - 5 0 4 - 2 7 9 - 2 3 8 - 3 3 8-17 4 5 0 - 7 0 27-74 2 3 - 3 6 33-70 17-47 5 70-100 74-100 3 6 - 5 4 - 47-100 P a r e n t M a t e r i a l SO GO GF0 GO GO AO GO Table 19 Pleurozio (schreber i ) - P t i l i o ( c r i s tae -cas t rens i s ) - Vacc in io (membranacei) - Pseudotsugo ( 'g laucae) - Piceetum glaucae Hurber of P lo ts 1 2 3 4 5 6 7 Plot No. • 3 131 8 19 132 • 74 36 Plot Size lo2) 400 400 400 400 400 400 400 Elevat ion ( f t ) 2300 2300 2300 2350 2350 2400 2400 Stratum A1 *2 Oh Odi Ei Eb Ec Species No. Species Species s ign i f i cance Constancy Aver.Species S ign i f i cance 1 Pinus contorta 6 0 4 3 2 > 8 V 15.0 2 Populus tremuloides 1 5 3 7 , 1 2 V 10.2 3 Picea glauca # 7 3 6 1 . IV 28.1 4 Pseudotsuga 'g lauca 4 4 2 6 5 IV 8.4 5 Abies las iocarpa 4 4 . . 1 . III 2.5 6 Betula papyr i fera • c . 3 • II 0.9 Picea glauca 5 4 3 j 1 . 3 V 10.8 Abies las iocarpa 1 4 . 3 ) 3 IV 3.0 8etu1a papyr i fera . 4 3 2 • - III 2.0 Pseudotsuga 'g lauca 3 5 • • • II 1.1 Abies las iocarpa 4 4 2 5 S 4 V 7.8 Picea glauca 2 3 * 1 * IV 4.1 Abies las iocarpa 4 6 6 5 6 7 4 V 21.5 7 Alnus s inuata • 2 2 w tt II 0.7 Picea glauca 1 • * • • 1 * II 0.5 Abies las iocarpa 8 6 4 4 ? 3 V 21.3 8 Vaccinium nembranaceua 5 6 4 5 5 1 7 V 18.2 9 Rubus pa rvH lo rus 2 4 3 4 6 4 V 7.9 10 Viburnum edule * 2 3 5 3 J 3 V 4.7 Alnus s inuata 1 • 4 4 3 4 IV 4.0 11 Cornus s to lon l f e ra 7 3 4 4 III 3.0 12 l on l ce ra Involucrata 2 c • . 3 3 III 1.8 13 Amelanchier a l n i f o l i a 2 , 2 2 • III 1.4 14 Ribes lacust re . 1 2 1 3 III 1.3 15 Shepherdia canadensis 2 1 1 • • III 0.7 16 Sorbus s i t chens is + + • 2 III 0.5 17 Sorbus scopul lna 1 2 II 0.5 18 Acer glabruo • • 1 « 2 II 0.5 19 Cornus canadensis 2 5 4 3 6 5 5 V 13.8 20 Aral l a nud icau l ls • 4 1 5 5 4 4 V 7.7 21 C l i n ton ia un i f l o ra 2 3 3 5 4 4 4 V 6.8 22 Pyrola secunda + 2 4 3 2 5 5 V 6.7 23 Spiraea betul i fo l l a 1 3 3 3 3 3 3 V 3.6 24 l innaea borea l is 2 3 2 1 1 3 4 V 3.3 25 CMmaphlla umbellata 1 2 3 3 2 2 3 V 3.0 26 Smilacina racemosa 1 2 3 2 1 1 2 V 2.2 27 Disporum hookeri • 4 3 6 . 1 .4 IV 6.7 28 lycopodium annotinum • 2 3 6 3 IV 5.3 29 Geocaulon l iv idum 2 3 . . • 1 2 6 IV 5.2 30 Goodyera obiongifol 1 a 1 + 3 IV 1.2 Viburnum edule , 3 4 2 • « III 2.0 31 Vaccinium myr t i l l o ides 2 . 1 1 III 1.8 32 Pyro la v i rens 1 3 1 2 III 1.3 33 Oryzopsis a s p e r l f o l l a + 1 2 c • III 1.0 Sorbus s i t chens is + . . • 1 3 III 0.8 34 Osmorhiza c h l l e n s l s 1 2 1 III 0.7 35 Rosa gymnocarpa 1 2 1 III III 0.7 36 Streptopus roseus t • 2 . • 0.6 Alnus sinuata • 4 « « « II 1.1 Abies las iocarpa • 3 2 0 - ' * II 0.9 37 Rosa a c i c u l a r l s • 3 C 0 II 0.9 Amelanchier alnifolia 2 • 2 0 0 II 0.7 36 Stroptopus anp lex l fo l lus • ' 3 0 0 II 0.6 39 Galium trifloruD • ' 1 • • 1 II 0.4 40 Galium boreale • • • C 0 II 0.4 41 Arnica c o r d l f o l l a 1 * 0 * ' II 0.2 42 Habenaria orb lcu la ta 1 t « II 0.2 43 Lathyrus ochroleucus • . • • • II 0.1 44 [p l l ob lua angust l fo l lua . • • • . • II 0.1 45 Pleurozium schreberi 6 4 4 5 7 7 V 21.0 4 6 " P t i l i um c r i s t a - c a s t ' e n s l s - 5 " - y 5 6 7 y - 15.6 47 Clcranut p o l / s e f j * 3 5 3 . 3 3 IV 4.4 48 Brachythecium hylet jpetua 4 . . . 2 6 . III 5.2 49 Rhytldladelphus t r lquetrus • . 3 3 • 3 III 1.7 50 Hylocomlun splendens • c . 3 • - 0 II 0.9 51 Drepanocladus uncinatus • • . . • 1 2 II 0.5 P t i l i um c r l s ta -cas t rens l s 6 3 5 5 5 7 V 17.7 Pleurozium schreberi 4 4 4 5 5 5 7 V 15.5 52 Oicranum fuscescens 2 2 2 2 3 2 V 2.3 53 Brachytheclun salebrosum 1 I • •. s * III 2.5 54 Brachythecium albicans 3 , 1 * • III 1.1 55 Oicranum scoparlua 2 2 , . £ ~ 0 III 1.0 56 Lophozia ventr lcosa • • 1 1 i III 0.6 Hylocomlum splendens 1 5 • -, II 2.3 57 Eurhynchlum pulchel lua 3 1 . . . II 0.7 58 Unlum spinulosus 1 2 II 0.5 59 Pe l t i ge ra membranacea • • 1 II 0.4 60 A lec to r i a sarmentosa 1 1 1 i i V 1.2 61 A lec to r i a amerlcana • 2 1 • 2 2 III 1.2 A l ec to r i a sarmentosa 2 1 1 1 2 3 V 1.9 A lec to r i a aaerlcana 1 1 1 2 III 1.0 62 Ce t ra r i a glauca # 1 1 3 III 1.0 63 l oba r ia pulmonarla 1 1 1 2 . III 1.0 64 Hypogymnla enteromorpha * 1 1 . 1 1 III 0.8 65 Ce t ra r ia juniper lna 0 i . 1 1 III 0.6 66 Parne l iops ls amblgua • 1 1 • • • II 0.4 Parne l iops ls amblgua 1 . - • 1 1 III 0.6 Ce t ra r ia jun iper lna 1 1 1 III 0.6 Hypogymnla enteromorpha 1 2 . II 0.5 l oba r i a pulnonaria * 1 * 0 II 0.4 Sporadic Species *2 *2 Populus tremuloides 3 (2) 79 80 Petas i tes palmatus Pyro la a s a r l f o l l a 132 3 M (D 96 Cephalozla eedla Orepanocladus uncinatus 74 19 (1) (2) Betula papyr i fera 36 (2) 81 Rubus pedatus 74 (7) 97 Lophozia exc isa 36 (1) 67 P icea ca r l ana 3 (2) 82 Rubus pubescens 36 (2) 98 P t i l l d i u m pu lche r r l au i 36 (1) Pinus contorta 36 (1) 83 S a l l x bebblana 132 (1) 68 S a l l x scouler iana 3 (1) 84 Shepherdia canadensis Smilacina s t e l l a t a 3 74 (3) (2) Ea 99 Usnea cera t ina 8 (1) Picea mariana 3 (3) Sorbus scopul lna 19 (1) Eb 100 Cet ra r ia Is land ica 36 (1) Pseudotsuga ' g lauca 3 (1) 85 T l a r e l l a t r i f o l l a t a 8 1+) 101 Ce t ra r ia p inas t r l 35 (1) S a l l x scouler iana 3 (2) 86 Vaccinium caespltosus 74 (3) 102 Hypogymnla physodes 36 (1) 87 V io la langsdor f l l 74 (2) 103 Orthotrlchum ob tus l f o l l ua 74 V\ Picea mariana 3 (1) Usnea cera t ina 8 (1) Populus tremuloides 36 (1) Dh 88 Barbl lophozia barbate 132 (1) Ec A lec to r i a sarmentosa 3 (1) Rosa gyenocarpa 131 (2) 89 Barbl lophozia lycopodioldes 8 (4) 104 Aulacomnlum palust re 3 (2) Brachythecium albicans 8 (1) Brachythecium alb icans 3 (1) 69 Aster consplcuus 36 (2) 90 Brachythecium starkel 8 (2) Brachythecium salebrosum 74 (1) 70 Calypso bulbosa 3 (1) Eurhynchlum pulchellum 19 (2) 8rachytheciun s ta rke l 74 (1) 71 C o r a l l o r r h l z a certensiana 8 (•) lophozia ventr lcosa 131 (2) Ce t ra r i a glauca 36 (1) Cornus s to l on l f e ra 8 (3) Mnlum splnulosum 19 (1) Ce t ra r i a i s l and i ca 35 (1) 72 Equlsetum arvense 74 (2) 91 Pe l t i ge ra aphthosa 3 (2) 105 Cladonia f imbr ia ta 8 (1) 73 Goodyera repens 74 (4) 92 Plaglomnlum c i l l a r e 74 (1) 106 Cladonia mi t i s 36 (1) 74 Hlerac iun a lb i f lo rum 132 (1) 93 Plagiomnlun drurisondli 19 (2) Orepanocladus uncinatus 19 (1) lon lcera Involucrata 8 (2) 94 Poly t r ichua junlperinuo 36 (2) Oicranum fuscescens 8 (2) 75 lycopodium complanatum 3 (3) Oicranum scopariua 74 (1) 76 lycopodium obscurum 19 (2) Ddi Barbl lophozia barbata 131 (1) Eurhynchlum pu lche l lua 19 (2) 77 Helaopyrum ( ineare 3 (1) Barbl lophozia lycopodioldes 8 (1) lophozia exc isa 8 (1) 78 Honeses un i f l o ra 74 (2) 95 Blepharostoca t r ichophy l lua 74 (1) 72 Plate 7: Internal view of the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Pseudotsugo (*glaucae) - Piceetum glaucae. Plate 8: Detail of the ground cover in the above association. Note the abundance of the mosses Ptilium crista-castrensis and Pleurozium schreberi. 73 sampling. This is due to the frequency of fires in the mesic sites which arrest the succession to the mesic and bring about a regression to one of the serai mesic stages. The Advanced Moss Association is the most advanced stage of development toward the climax that was sampled. The Advanced Moss Association is one of the major ecosystems in the Sub-boreal Zone where it develops on mesic to submesic hygrotopes. All the sample plots were underlain by parent materials of transported outwash origin. These were glacial outwash, glacio fluvial outwash, sandy outwash and alluvial outwash. The soils are well developed being Ortho Humo Ferric Podzols and Bisequa Gray Wooded (Luvisolic) types. Roots are abundant throughout the A and B horizons but decrease apprec-iably in the C horizons. The Advanced Moss Association is developed on flat to gently sloping terrain. Slopes range from 0 to 6 degrees. It is found on all exposures. Elevations of all sample plots were between 2300 and 2400 feet. The ground is covered with a litter layer which occupies from 40 to 70 per cent of the surface. Decaying wood covers from 30 to 60 per cent. Exposed mineral soil is absent. 74 T h e u p p e r m o s t l a y e r o f t h e f o r e s t c a n o p y i s d o m i -n a t e d b y Picea glauca w h i c h h a s a n a v e r a g e s p e c i e s s i g n i f i c a n c e o f 6. T h e d o m i n a n c e i n t h e A i i s s h a r e d w i t h Pseudotsuga menziesii v a r . glauca, Pinus contorta a n d Populus tremuloides w h i c h s h o w a v e r y h i g h c o n s t a n c y t o t h i s a s s o c i a t i o n . H i g h c o n s t a n c y a n d o c c a s i o n a l h i g h d o m i n a n c e o f b o t h Pinus a n d Populus i n t h e A i i n d i c a t e t h a t t h i s a s s o c i a t i o n h a s n o t y e t r e a c h e d t h e c l i m a x s t a g e o f d e v e l o p m e n t . T h e s e t w o s p e c i e s a r e a b s e n t i n t h e l o w e r l a y e r s . Picea glauca i s t h e d o m i n a n t i n t h e A 2 s t r a t a f o l l o w e d b y Abies lasiocarpa. I n t h e A 3 t h e m o r e s h a d e t o l e r a n t Abies lasiocarpa a t t a i n s a h i g h e r s p e c i e s s i g n i f i c a n c e t h a n Picea glauca t h o u g h Picea i s s t i l l h i g h l y c o n s t a n t . C r o w n c l o s u r e o f t h e t r e e s t r a t a w as b e t w e e n 30 a n d 8 5 p e r c e n t . T o t a l c o v e r o f t h e s h r u b l a y e r r a n g e d f r o m 3 5 t o 90 p e r c e n t , t h e l o w e s t v a l u e s b e i n g f o u n d i n t h e l e s s s u c c e s s i o n a l l y a d v a n c e d s i t e s . T h e B i i s a l w a y s d o m i -n a t e d b y Abies lasiocarpa w h e r e i t i s t h e o n l y h i g h l y c o n -s t a n t s p e c i e s . Abies i s a l s o c o n s t a n t i n t h e B 2 a l o n g w i t h Viburnum edule, Rubus parviflorus a n d Alnus sinuata. Cornus stolonifera, Lonicera involucrata, Amelanchier alnifolia, Shepherdia canadensis a n d Sorbus sitchensis a r e a l s o p r e s e n t . Vaccinium membranaceum i s t h e m o s t i m p o r t a n t s p e c i e s i n t h e B 2 w h e r e i t i s c o n s t a n t a n d h a s a n a v e r a g e s p e c i e s s i g n i f i c a n c e o f 6. I t i s i n d i c a t i v e o f t h e m o r e m e s i c c o n d i t i o n s . 75 The herb layer has a total cover estimate from 50 to 65 per cent. No one species shows a strong dominance but the most abundant species are: Cornus canadensis, Aralia nudicaulis, Clintonia uniflora, Pyrola secunda, Spiraea betulifolia, Linnaea borealis, Chimaphila umbellata and Smilacina racemosa. These species show 100 per cent constancy. Disporum hookeri, Lyoopodium annotinum, Geocaulon lividum and Goodyera oblongifolia also show a strong affiliation to this association. The more mesic conditions of the association are shown by the presence of: Oryzopsis asperifolia, Goodyera oblongifolia, Geocaulon lividum, Clintonia uniflora, Vaccinium membranaceum, Lyoopodium annotinum and Spiraea betulifolia. The relatively young age of most of the parent materials explains why the typical mesotrophic conditions are s t i l l rich. These parent materials have not had sufficient time to become highly weathered. Such relative richness of plant nutrients in the mesic sites is shown by Cornus stolonifera, Disporum hookeri and Rubus parviflorus . There is a marked decrease in the number of nitrophilous plants in comparison with the associations of the much richer Abietetalia. Tiarella trifoliata and Galium triflorum are the only two such species and both show weak presence and constancy. The development of the moss layer is variable in its total cover which ranged from 40 to 85 per cent. In the mesic Plate 9: Douglas-fir veteran {Pseudotsuga menziesii var. glauca) near the Tacheeda Lake area. This species reaches its northern distribution in British Columbia in the Sub-boreal Spruce zone. I 77 sites many of the moss species occurring on decaying wood also occur on humus. The low pH of the litter promotes this development. Estimates of the humus moss cover range from 15 to 45 per cent. Pleurozium schreberi and Ptilium crista-castrensis are the most constant dominant species. Both have an average species significance of 6 (range 3 to 7). Dicranum polysetum is also highly constant while Hylocomium splendens is less important. Richness of the site is shown by Brachythecium hylotapetum and Rhytidiadelphus triquetrus. Estimates for the cover of mosses on decaying wood were from 20 to 40 per cent. Ptilium crista-castrensis and Pleurozium schreberi were again the most constant dominants while Dicranum fuscescens, though not dominant was highly constant. Other important species were Brachythecium albicans, B. salebrosum, Dicranum scoparium, Hylocomium splendens and Eurhynchium pulchellum. Hepatics found on decaying wood were: Ptilidium pulcherrimum, Lophozia excisa, Barbilophozia lycopodioides, B. hatcheri, Cephalozia media and Blepharostoma trichophyllum. Alectoria sarmentosa is the most constant epiphyte in the tree and shrub layers followed by Alectoria americana. Cetraria glauca, Hypogymnia enteromorpha3 Cetraria juniperina and Lobaria pulmonaria have constancy III in the shrub layer. The EQ is poorly developed, the most constant species being Parmeliopsis ambigua and Cetraria juniperina. T a b l e 20 S o i l P h y s i c a l A n a l y s i s P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - P s e u d o t s u g o ( * g l a u c a e ) - P i c e e t u m g l Number of P l o t s 1 2 P l o t No. 3 131 H o r i z o n Ae Ae T e x t u r a l C l a s s SL SL Sand ( ? ) 7 3 . 0 7 4 . 0 S i l t ( ? ) 1 7 . 2 1 8 . 8 C l a y ( ? ) 9 . 8 7 . 2 H o r i z o n Bf Bf T e x t u r a l C l a s s SL LS Sand ( ? ) 7 3 . 0 7 9 . 6 S i l t ( ? ) 1 4 . 2 1 1 . 6 C l a y ( ? ) 1 2 . 8 8 . 8 H o r i z o n BC C T e x t u r a l C l a s s LS SL Sand ( ? ) 8 6 . 4 7 3 . 6 S i l t ( ? ) 4 . 0 1 7 . 2 C l a y ( ? ) 9 . 6 9 . 2 H o r i z o n C IIC T e x t u r a l C l a s s S LS Sand ( ? ) 9 7 . 6 8 3 . 2 S i l t ( ? ) 1 . 4 1 1 . 6 C l a y ( ? ) 1 . 0 5 . 2 H o r i z o n — T e x t u r a l C l a s s Sand ( ? ) S i l t ( ? ) C l a y ( ? ) 3 4 5 6 7 8 19 132 74 36 Ae Ae Ae Ae Ae SL SL SL SL SL 5 8 . 8 5 4 . 8 6 3 . 2 6 5 . 2 5 1 . 6 3 6 . 6 3 7 . 4 2 7 . 6 2 2 . 8 4 0 . 6 4 . 6 7 . 8 9 . 2 1 2 . 0 7 . 8 Bf Bf Bf Bf Bf SL S i L SL LS SL 6 4 . 8 4 4 . 6 7 3 . 6 8 4 . 6 6 5 . 0 2 3 . 6 5 0 . 2 1 1 . 2 6 . 4 2 5 . 2 1 1 . 6 5 . 2 1 5 . 2 9 . 0 9 . 8 Bt Bt C C Bt SL SL CL S SL 6 0 . 8 5 7 . 2 4 0 . 0 9 6 . 4 5 2 . 6 2 4 . 6 3 4 . 6 2 8 . 8 1 . 6 3 3 . 6 1 4 . 6 8 . 2 3 1 . 2 2 . 0 1 3 . 8 C BC C SL SL - SL 6 0 . 8 7 2 . 8 - - 5 6 . 0 2 2 . 6 2 1 . 0 - - 2 4 . 2 1 6 . 6 6 . 2 - - 1 9 . 8 Cca S 9 2 . 4 4 . 0 3 . 6 Tabli 2 1 Soil Chealcal Analyst! Pleurozio (schrcborl) - Ptilio (cristae-castrensis) - Vaccinio (wctbranacel) -- Pseudotsugo (' glaucae) - Plceetua gl, aucai Nunber of Plots 1 2 3 4 5 6 7 Plot llo. 3 131 8 19 132 74 36 Horizon Designation L-H L-H L-H L-H L-H L-H l-H Cl 36.8 36.89 17.4 26.8 31.45 46.8 19.2 Hi 0.78 1.35 1.01 1.05 0.82 1.05 0.82 C/N 47 27 17 26 38 45 23 01* 63.44 63.6 29.58 46.20 54.22 79.56 33.1 P PP» 28.0 0.0 18.0 23.0 42.7 21.0 14.0 Ha 0.57 4.58 0.35 0.12 5.04 0.99 1.11 K 0.45 3.52 1.64 0.95 1.14 1.16 0.21 Ca 33.4 27.52 19.5 19.2 21.10 9.6 7.45 B, 6.03 3.78 3.23 2.60 4.70 1.44 2.32 CEC 69.0 104.82 36.4 83.7 54.07 131.4 25.6 pH 5.4 4.84 4.45 5.2 4.90 3.4 4.5 Horizon Designation Ae Al Ae Ae Ae Ai Ai Ci 0.77 0.00 _ 1.31 0.00 0.00 0.05 0.03 0.06 0.04 0.06 0.06 0.04 C/H 26 - 22 - -an - 1.4) - 2.26 - 0.00 P ppa 0.0 11.49 6.0 14.0 22.98 7.0 11.0 da 0.16 2.05 0.08 0.10 2.17 0.26 0.22 K 0.09 0.12 0.06 0.05 0.09 0.12 0.03 Ca 3.0 1.68 1.6 4.15 3.49 1.56 1.05 «9 0.83 0.23 0.50 0.60 0.82 0.23 0.66 CEC 5.9 4.72 12.8 12.0 7.66 24.8 17.4 pH 4.31 4.39 3.8 4.15 4.62 3.3 3.8 f Horizon Designation Bf Bf Bf Bf Bf Bf Bf Cf 0.0 0.28 0.0 0.0 0.90 0.0 0.0 W 0.06 0.02 0.04 0.05 0.04 0.05 0.04 C/D 13 - - 23 - -m _ 0.48 - - 1.55 - -f ppa 5.0 42.3 9.0 12.0 50.8 8.0 8.0 Na 1.77 2.14 0.08 0.10 2.27 0.27 0.07 K 0.09 0.08 0.07 0.08 0.06 0.06 0.03 Ca 1.4 1.48 1.8 3.05 3.98 1.2 . 1.1 Kg 0.32 0.20 0.42 0.30 0.72 0.21 0.09 CEC 9.3 4.2 21.0 16.8 8.6 18.4 30.2 pH 4.65 4.95 4.85 4.9 6.07 4.45 4.65 Horizon Designation BC C Bt Bt C C Bt Ci 0.0 0.0 _ 0.0 0.0 0.0 Vi 0.02 0.16 0.03 0.02 0.04 0.02 0.03 C/H - - - - - -Uilur P ppa 0.0 12.60 14.0 8.0 2.33 5.0 6.0 Ha 0.16 2.22 0.08 0.17 2.66 0.23 0.03 K 0.06 0.10 0.07 0.07 0.12 0.07 0.05 Ca 1.3 1.78 3.0 2.5 5.56 1.09 1.0 Kg 0.42 0.22 0.70 0.83 1.70 0.17 0.34 CEC 6.1 3.08 26.4 17.9 8.45 3.9 26.7 pH 4.65 5.65 4.9 4.8 6.28 4.9 4.9 Horizon Designation C C BC BC CJ _ - 0.0 _ - 0.0 tf 0.01 0.02 0.01 - - 0.03 C/N - - - - - - -OHI - - - - - - -P ppa 0.0 - 11.0 4.0 - - 6.0 Ha 0.15 _ 0.10 0.19 - - 0.08 K 0.06 - 0.07 0.05 - - 0.05 Ca 1.2 10.5 2.65 - - 2.65 fig 0.37 1.03 1.0 - - 0.52 CEC 4.0 22.7 2.9 - - 21.4 pH 4.8 - 6.3 4.9 - - • 5.15 Horizon Designation Cca Cl • - - -• m - 0.01 - -C/N - - - - - -Wt - - - - - -P ppa - - 0.0 - - -Na _ - 0.30 • - -K _ _ - 0.05 - - -Ca _ 1.45 - -kg - • - 0.73 - - -CEC - - - 1.1 - - -pH - - - 6.9 - - -79 80 The soil reaction of the litter ranges from very acid (pH 3.4) in plot 74 to pH 5.4 in plot 3. The reaction in the lower mineral horizons is also strongly acid (Ae and Bf are pH 4.05 and 4.92 respectively). Carbon/nitrogen ratio in the L-H ranges from 17 to 47 (average 32). CEC in the L-H is variable, from 25.6 to 131.4. These are much lower in the mineral horizons. Exchangeable cations are dominated by calcium which is high as is magnesium. Soil characteristics are shown in Tables 20 and 21. Though the soils appear to be rich, the availability is somewhat restricted by rapid drainage. ALLIANCE: C a r i c o ( a q u a t i l i s ) - P i c e i o n marianae Hylocomio ( s p I e n d e n t i s ) - C a r i c o ( a q u a t i l i s ) - B e t u l o (pumi lae) - P iceetum marianae (Re fe rence T a b l e s : 2 2 , 2 3 , 2 4 , 2 5 , 2 6 ) (.Pioea mariana Bog A s s o c i a t i o n ) The Hylocomio (splendentis) - Carico (aquatilis) -Betulo (pumilae) - Piceetum marianae is developed on the margins of the low moors in the Sub-boreal Zone. This is the only black spruce bog forest association described in the Hylocomio ( s p l e n d e n t i s ) Tab le 22 - C a r i co (aquat i l i s ) • B e t u l o (pumi lae) - P iceetum marianae C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S ( 6 0 - 1 0 0 % ) I M P O R T A N T N O N - C O N S T A N T S T r e e Picea mariana S h r u b Picea mariana Betula pumila Ledum groenlandicum Spiraea douglasii Salix pedicellaris Lonicera involucrata H e r b Carex aquatilis Potentilla palustris Rubus pubescens Cornus canadensis Carex canescens Calamagrostis canadensis. Galium trifidum Pyrola asarifolia Carex limosa Mitella nuda Habenaria dilatata Gaultheria hispidula Equisetum arvense Geocaulon lividum Linnaea borealis Equisetum scirpoides M o s s Eylocomium splendens Pleurozium schreberi Sphagnum subnitens Ptilium crista-castrensis Sphagnum fallax Tomenthypnum nitens Aulacomnium palustre Pohlia nutans T a b l e 23 H y l o c o m i o ( s p l e n d e n t i s ) - C a r i c o ( a q u a t i l i s ) - B e t u l o ( p u m i l a e ) - P i c e e t u m marianae Number of P l o t s P l o t No. P l o t S i z e ( m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage A t o t a l A1 A 2 A 3 B t o t a l B1 B2 C D t o t a l Dh Odin Ea Eb Ec P l o t Coverage (%) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock 1 2 3 4 5 178 177 136 135 35 400 400 400 400 400 4 / 8 / 6 9 3 / 8 / 6 9 12/7/69 10/7/69 17/8/67 2340 2340 2330 2330 2330 • Summit L . , Crooked R.-bog - f l a t t o hummocky n e u t r a l • 0 d e g r e e s -40 50 55 45 50 20 25 40 25 15 20 35 25 20 40 40 55 45 45 25 4 8 8 10 8 40 50 40 40 20 65 60 80 70 65 90 85 100 95 90 90 85 100 95 90 2 1 3 2 3 2 2 3 3 4 0 . 5 0 . 5 - 0 . 5 -80 85 100 100 100 20 15 - -. ahspnt • a b s e n t S o i l Hygrotope T r o p h o t o p e E r o s i o n D r a i nage Sample H o r i z o n Depth (cm) 1 2 3 4 5 P a r e n t M a t e r i a l 0 - 8 8 - 3 0 >30 s u b h y d r i c ( h y d r i c ) s u b m e s o t r o p h i c - m e s o t r o p h i c . n i l -13 13-15 1 5 - 2 8 > 2 8 p o o r — - 1 0 10-20 2 0 - 3 0 > 3 0 8 - 3 5 3 5 - 4 5 >45 o r g a n i c - c u m u l o s e • TSble 24 Hylxoelo (-.ptendiritls) - Carico (iquitllls) - fetulo <PW>IIM) . riootiin ejrlsnae Nutber of Plat, 1 2 J 4 5 Plot No. 178 177 116 135 35 Clot SI,. lo?) 400 400 400 400 400 Election (ft) 2340 2340 2330 2330 2330 5 tr« t uo Spiel •> No. Ei Eb 2 3 4 5 6 7 g 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 58 59 60 61 Special Picea uriani Picas oarlana Plcoa uriani Betula pjalla Le-uo groenlandlcia Picea earl ana Spiraea douglasll Sal Ix pedicellaris Lonlcera Involucrata Sallx bebblana Cornus stolonlfera Vlburnw edule Rosa gy:nocarpa Carex asuatllls Patent)I)a palustris Rubus p^ tescens Cornus canadensis Carex canescens Calatagrcstls canadensis Gal Iun trlflorun Pyrola asarifol 1a Carex lloosa Mitella nuda Habenaria dilatata Gaultheria hlspldJa Equlsetua arvense Geocaulon llvldua Linnaea borealis Equlsehs scirpoides Carex rostrate Vaectnluo caespltosua Oxycoccus Qlcrocarpus Betula puoila Irlentalls arctlca Carex chordorrhiaa Carex pauclflora Agrostls scabra Vacclnlun myrtilloides Ledua groenlandlcua Geua rlvale Carex dlandra Equlsetua pretense Aster rodestus Vtbumus edule . Pices carl ana Epllobi'jn alplnua Carex disperse Petasites paliatvs Castllleja alnlata Carex veslcarla Eplloblun angustlfollua Llstera cordata Hylocoiiun splendens " Pleurozlun schreierl Sphagna subnlteM Ptilium crlsta-castrensls Sphagn-i fall ax Toaenthypnun nltens Aulacotnlun palustre Pohlia nutans Olcranua scopirUa Peltlgtra aphtho-.a Br/uo pseudotrlQ t^ruo Alectoria arerlcana Alectoria a«erlcana Cetraria Juniperlna Hypog/r.nls enteroaorpha Alectoria carnenxosa Cetraria glauca Cetraria Juniperlna Species Ignlflcance Constancy V V V V V V IV IV III III II II II V V V V V V V V V y v IV IV IV IV iv in in HI in in in in in n II n II II II II II II n II II n II II V v v V V V V IV II II It V V V III III III A«ef.Species Significance 24.9 30.2 6.1 20.4 9.0 3.2 3.3 2.4 2.8 1.6 0.6 0.8 0.6 30.2 11.1 9.8 7.3 6.1 3.9 3.2 2.6 2.4 2.3 2.1 2.8 1.9 1.9 1.7 .1.6 1.6 1.6 1.3 1.1 1.1 1.1 0.7 0.S 1.3 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.2 32.5 12.0 10.7 9.2 7.3 6.1 5.8 1.2 0.8 0.4 0.2 2.9 2.7 0.5 0.5 0.7 0.3 0.1 Sporadic Species: B, 62 Alnus tlmjati 35 (3) 68 Kenyanthe*. trifoliate 1 Bfltula puilti 135 (1) 69 PedlcularU parvlflora 70 Peta'.ltc. -.ailttatus B2 63 ftltet MionUriua 35 (O 71 Spiranthe*. ronjnrofflans 64 Rosa »ck JarU 35 (1) 72 Viola palustris c 65 Dryoplerlt «u*,»r1au 13C, (•) Oh 71 Chlloscyphu*. oillo'.cons 15 HjUnari* oblv.it* 178 (.) 74 Drepinoclidm revolt* ft? IV. <<l 75 Keo'.la trlnuo^ra 136 (7) 177 (•) 136 (2) 136 (.1 116 (1) 135 (.) 35 (!) 178 (1) 8 4 s t u d y a r e a . I t i s p r o b a b l e t h a t s e v e r a l o t h e r s o c c u r b u t t h e y w e r e n o t s a m p l e d . T h i s a s s o c i a t i o n i s o f p a r t i c u l a r i n t e r e s t a s i t i s t h e w e t t e s t o f a l l t h e f o r e s t a s s o c i a t i o n s s a m p l e d . H y g r o t o p e s w e r e j u d g e d s u b h y d r i c t o h y d r i c . F l o o d i n g i s f r e q u e n t , u s u a l l y o c c u r r i n g a n n u a l l y d u r i n g h i g h w a t e r . D u r a t i o n o f s u b m e r g e n c e o f t h e s o i l s v a r i e s c o n s i d e r a b l y w i t h t h e r a t e o f r e l e a s e o f s n o w w i t h i n a y e a r . T h e w a t e r t a b l e was r e a c h e d i n a l l p l o t s . D r a i n a g e i s p o o r a n d e r o s i o n was e s t i m a t e d t o be n i l . E r o s i o n c o u l d b e a f a c t o r o n t h e e d g e o f t h o s e s t a n d s a d j a c e n t t o t h e r i v e r s . T h e l a n d f o r m i n a l l c a s e s was a l o w m o o r s i t u a t e d a t t h e b a s e o f a s l o p e w h i c h s u p p l i e s i t w i t h w a t e r . E x p o s u r e w a s n e u t r a l a n d s l o p e s z e r o d e g r e e s . T h e r e l i e f s h a p e o f t h e Pioea mariana B o g a s s o c i a t i o n i s h u m m o c k y t o f l a t . Hummocks a r e f o r m e d a r o u n d t h e b a s e s o f t r e e s b y t h e g r o w t h o f m o s s e s w h i c h b e c o m e e s t a b l i s h e d o v e r r o o t s a n d l a y e r i n g b r a n c h e s . T h e c l o s e n e s s o f some o f t h e h u m m o c k s m a k e s t h e m a p p e a r c o n t i g u o u s a n d a t y p e o f f a l s e f o r e s t f l o o r i s f o r m e d . T h i s c a n be b r o k e n d u r i n g w a l k i n g t h r o u g h t h e s e s i t e s . T h e v e g e -t a t i o n i s n o t a b l y d i f f e r e n t o n t h e h u m m o c k s a n d i n t h e d e p r e s -s i o n s a s t h e y r e p r e s e n t t w o d i f f e r e n t m i c r o h a b i t a t s . T h e d e p r e s s i o n s h a v e v e g e t a t i o n m o r e c l o s e l y r e s e m b l i n g t h e w e t t e r o f t h e l o w m o o r c o m m u n i t i e s w h i l e t h a t o f t h e h u m m o c k s 85 P l a t e 1 0 : G e n e r a l v i e w o f t h e H y l o c o m i o ( s p l e n d e n t i s ) -C a r i c o ( a q u a t i l i s ) - B e t u l o ( p u m i l a e ) - P i c e e t u m m a r i a n a e . P l a t e 1 1 : I n t e r n a l v i e w o f t h e a b o v e a s s o c i a t i o n s h o w -i n g t h e s p a c i n g o f t h e t r e e s a n d some d e t a i l o f t h e l o w e r v e g e t a t i o n s t r a t a . Table 26 S o i l Chemical A n a l y s i s Hylocomio ( s p l e n d e n t i s ) - C a r i c o ( a q u a t i l i s ) - B e t u l o ( p u m i l a e ) - P i c e e t u m marianae Number of P l o t s 1 P l o t No. 178 H o r i z o n D e s i g n a t i o n a 4 3 . 2 II? 1 .01 C/N 43 Olfl 7 4 . 4 8 P ppm 4 3 . 8 Na 0 . 7 8 K 1 . 1 9 Ca 2 8 . 4 2 Mg 4 . 8 6 CEC 8 8 . 2 pH 6 . 2 4 H o r i z o n D e s i g n a t i o n C$ 3 9 . 3 9 (8 1 . 6 8 C/N 23 M 67.91 P ppm 1 . 6 3 Na 1 . 0 8 K 0 . 1 8 Ca 3 4 . 2 3 Mg 4 . 5 1 CEC 7 0 . 0 7 pH 5 . 9 7 H o r i z o n D e s i g n a t i o n C2 4 1 . 4 3 N? 2 . 5 7 C/N 16 OAS 7 1 . 4 3 P ppm 1 . 6 3 Na 1 . 7 3 K 0 . 0 5 Ca 3 0 , 8 9 Mg 3 . 9 CEC 9 6 . 0 7 pH • 5 . 2 3 H o r i z o n D e s i g n a t i o n « C/N P ppm Na K Ca Kg CEC pH 2 3 4 5 177 136 135 35 4 2 . 3 6 4 1 . 4 6 4 0 . 9 5 2 . 8 0 . 8 5 1 . 0 2 0.91 1 .61 49 40 45 33 7 3 . 0 4 7 1 . 4 8 7 0 . 5 8 9 . 7 6 2 0 . 3 6 3 . 4 6 3 8 . 3 1 8 . 0 0 . 6 8 0 . 8 4 1 . 4 8 0 . 2 7 0 . 5 7 1 . 3 4 1 . 0 6 0 . 2 3 3 1 . 7 3 8 . 5 2 9 . 9 4 3 5 . 7 5 . 2 8 7 .74 7 . 6 8 4 . 4 7 1 1 2 . 8 7 1 0 4 . 0 1 0 1 . 3 1 2 8 . 9 6 . 2 6 6 . 0 9 5 . 0 8 5 . 3 3 8 . 8 3 4 1 . 2 7 4 3 . 0 4 9 . 8 1 . 1 5 2 . 2 3 1 . 7 3 1 . 5 9 34 19 25 31 6 6 . 9 5 71 .16 74.14 8 4 . 6 6 1 . 0 4 3 . 9 7 1 7 . 7 1 . 4 0.71 0 . 6 4 0 . 6 0 0 . 2 8 0.11 0.11 0 . 1 2 0 . 3 3 3 6 . 2 8 3 1 . 5 2 2 6 . 0 9 3 4 . 1 4 . 6 3 5 . 0 8 3 . 5 9 6 . 7 3 1 1 8 . 4 7 1 4 6 . 8 1 2 6 . 7 1 4 0 . 0 5 . 8 6 5 . 9 6 4 . 7 4 5 . 3 3 5 . 6 7 4 0 . 8 9 1 2 . 2 6 3 . 7 1 . 7 5 1 . 8 0 . 7 5 0 . 0 2 2 0 22 16 185 6 1 . 5 7 0 . 5 21.31 6 . 2 9 0 . 7 0 . 7 0 . 2 3 0 . 7 0 . 9 5 0 . 6 0 0 . 3 3 0 . 0 9 0 . 0 3 0 . 0 9 0.11 0 . 0 9 3 3 . 1 8 3 5 . 5 1 1 4 . 6 6 1 6 . 6 5 3 . 8 4 5 . 1 3 1 . 8 8 2 . 7 9 7 . 8 2 1 2 6 . 7 2 0 . 2 2 8 . 4 5 . 1 5 . 6 2 5 . 0 3 5 . 2 42.41 4 2 . 8 19.1 - 2 . 0 6 1 . 8 1 . 0 3 - 21 24 19 73.12 7 3 . 7 3 2 . 4 7 1 . 9 8 1 . 4 1 2 . 0 _ 1 . 5 2 0 . 5 4 0 . 3 4 - 0 . 0 9 0 . 0 7 0 . 1 2 - 3 1 . 6 9 2 3 . 0 2 8 . 5 4 . 8 8 2 . 7 8 6 . 5 7 - 1 0 0 . 9 141.5 6 9 . 8 - 5 . 4 9 5 . 0 5 5 . 6 5 87 has much more in common with the more upland communities formed over mineral soils. The plot surface is covered predominantly by an L-H layer which covers from 80 to 100 per cent of the area. Decaying wood is usually minimal though it is frequently encountered deeper in the cumulose deposits where it becomes established as a result of fire or wind throw. Four distinct vegetation strata are recognized. The tree layer is dominated entirely by Picea mariana which has an average species significance of 6 in the A2 and 7 in the A3-. All trees were between 10 and 60 feet t a l l . This spans the tall shrub strata to the upper limit of the A2. Most, however, formed the greatest cluster between 20 and 35 feet t a l l . Picea mariana was the most constant species in the B i layer where it had species significances of either 3 or 4. Alnus sinuata and Betula -pumila also occurred as sporadics. The B 2 layer showed a much better development, having total cover estimates ranging from 20 to 50 per cent (3 of the plots had 40 per cent). Betula pumila is the most constant dominant species covering as much as 30 per cent of the plot. Ledum groenlandicum and Picea mariana are also constant species. Other members of the B 2 are Spiraea douglasii3 Salix pedicellaris3 S. bebbiana3 Cornus stolonifera and Viburnum edule. 88 The herb layer is well developed with total cover estimates ranging from 60 to 80 per cent. The most important species in terms of total cover are Carex aquatilis, Potentilla palustris, Rubus pubescens and Cornus canadensis. Two groups of species can be recognized within the herb layer; those on the hummocks and those in the depressions. Typical of the hummock species are Rubus pubescens, Cornus canadensis, Mitella nuda, Gaultheria hispidula, Geocaulon lividum, Linnaea borealis, Vaccinium caespitosum, Oxycoccus microcarpus and Trientalis arctica. Typical of the depressions are: Carex aquatilis, Potentilla palustris, Carex limosa, C. rostrata, C. chordorrhiza, and Menyanthes trifoliata. The layer is highly developed in the Picea mariana Bog association. Total cover estimates ranged from 85 to 100 per cent. Bryophytes showed a similar trend as the herbs to fall into the hummock and depression species. Hylocomium splendens is pronouncedly the most dominant moss in the association having an average species significance of 7. Hylocomium is a typical hummock species. The two other typical abundant hummock species are Pleurozium schreberi and Ptilium crista-castrensis. Both of these have an average species significance of 5. Dicranum scoparium and Peltigera aphthosa are also found on the hummocks. Tomenthypnum nitens develops on both hummocks and depressions. Typical depression species 89 are Sphagnum subnitens, and S. fallax. Drepanooladus revolvens occurred in one plot where there was a locally very wet area. Epiphytes were generally poorly developed with the exception of Alectoria americana. Alectoria frequently festoons the upper part of the crown of Picea mariana. Other species recorded were Cetraria juniperina, Hypogymnia enteromorpha, Alectoria sarmentosa and Cetraria glauca. The soils in the Hylocomio (splendentis) - Carico (aquatilis) - Betulo (pumilae) - Piceetum marianae are all organic. Horizon three of plot 35 is interesting however as it was the only inorganic component found. Organic matter was found to be 6.7 per cent. It is likely that river flood-ing has occurred and a small mineral horizon deposited. General trends are to a decrease in C/N ratios between the upper and lower horizons. Nitrogen usually is highest in the lower horizons. Cation exchange capacity was consistently high due to the abundance of organic matter. Soil reactions tended to be highest in the surface horizons though the difference was not great. Soil characteristics are presented in Table 26. 90 ALLIANCE: C a r i c o ( a q u a t i l i s ) - P i c e i o n .marianae Tomenthypno ( n i t e n t i s ) - Sphagno ( s u b n i t e n t i s ) - C a r i c o ( a q u a t i l i s ) - S a l i c o ( p e d i c e l l a r i s ) - P i c e o (marianae) -Betu le tum pumilae (Re fe rence T a b l e s : 2 7 , 2 8 , 2 9 , 3 1 ) ( B e t u l a pumila A s s o c i a t i o n ) T h e Betula -pumila a s s o c i a t i o n i s d e v e l o p e d a r o u n d t h e p e r i p h e r y o f l o w m o o r s i n t h e S u b - b o r e a l Z o n e w h e r e i t f o r m s a p r e d o m i n a n t l y l o w s h r u b c o m m u n i t y b e t w e e n t h e Trichophovum a n d B l a c k S p r u c e l o w m o o r a s s o c i a t i o n s . I t i s t r a n s i t i o n a l t o t h e o p e n l o w m o o r c o m m u n i t i e s a n d t h a t o f t h e b o g f o r e s t . T h e s h r u b l a y e r i s t h e d o m i n a n t e a s i l y r e c o g n i z e d f e a t u r e o f t h e a s s o c i a t i o n a s Betula pumila h a s a h i g h c o v e r a n d i s g e n e r a l l y f r o m f i v e t o e i g h t f e e t t a l l . T h e r e l i e f s h a p e i s f r o m f l a t t o h u m m o c k y . T h e hummocks a r e u s u a l l y d e v e l o p e d b y b r y o p h y t e s w h i c h g r o w a t t h e b a s e a n d o v e r t h e l o w e r b r a n c h e s o f t h e s h r u b s . M e a s u r e d s l o p e s w e r e a l w a y s z e r o a n d t h e a s p e c t w as n e u t r a l . H y g r o -t o p i c a l l y , t h e B e t u l e t u m p u m i l a e o c c u r s o n s u b h y d r i c s i t e s . E r o s i o n i s n i l a n d d r a i n a g e i s p o o r . T h i s c o m m u n i t y i s f r e -q u e n t l y c o v e r e d w i t h w a t e r d u r i n g M a y , J u n e a n d e a r l y J u l y ; d e p e n d i n g o n t h e r a i n f a l l a n d t h e s p r i n g w a t e r r e l e a s e f o r Tomenthypno Table 27 ( n i t e n t i s ) - Sphagno ( s u b n i t e n t i s ) ( p e d i c e l l a r i s ) - P i c e o (marianae) -- C a r i c o ( a q u a t i l i s ) BetuIeturn pumilae - Sal i co C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S D O M I N A N T S (60-100%) I M P O R T A N T N O N - C O N S T A N T S S h r u b Betula pumila Salix pedicellaris Ledum groenlandicum Picea mariana H e r b Potentilla palustris Carex aquatilis C. ahordorrhiza C. limosa Rubus pubescens Galium trifidum Oxy coccus microcarpus Agrostis scabra Equisetum scirpoides Andromeda polifolia Habenaria dilatata Menyanthes trifoliata Epilobium alpinum Triglochin maritima Mitella nuda Eriophorum viridicarinatum Aster junciformis Spiranthes romanzoffiana Geum rivale M o s s Tomenthypnum nitens Sphagnum subnitens S. fallax Aulacomnium palustre Drepanocladus revolvens Meesia triquetra U3 T a b l e 28 92 Tomenthypno ( n i t e n t i s ) - Sphagno ( s u b n i t e n t i s ) - C a r i c o ( a q u a t i l i s ) - S a l i c o ( p e d i c e l l a r i s ) P i c e o ( m a r i a n a e ) - B e t u l e t u m p u m i l a e Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage A t o t a l *1 A 2 * 3 Ddt Ea Eb Ec P l o t Coverage ( ? ) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock S o i l 3 4 5 184 185 186 100 100 100 1 e a r l y A u g u s t , 1 9 6 9 2250 2250 2250 2250 2250 Crooked R i v e r • bog • f l a t t o hummocky• n e u t r a l • 0 d e g r e e s • B t o t a l 90 85 80 80 75 B1 B 2 - 2 - 3 _ 90 85 80 80 75 C 80 85 90 90 80 D t o t a l 100 100 100 100 100 Dh _ _ _ _ _ 100 a b s e n t a b s e n t a b s e n t 100 a b s e n t a b s e n t a b s e n t 100 a b s e n t a b s e n t a b s e n t 100 a b s e n t a b s e n t a b s e n t Hygrotope Trophotope E r o s i on D r a i nage Sample H o r i z o n Depth (cm) 1 2 Water T a b l e s u b h y d r i c • m e s o t r o p h i c - p e r m e s o t r o p h i c -n i l 0 - 3 0 > 3 0 60 0 - 3 5 > 3 5 65 — p o o r -0 - 2 5 > 2 5 55 0 - 3 0 > 3 0 65 100 a b s e n t a b s e n t a b s e n t 0 - 4 0 > 4 0 70 P a r e n t M a t e r i a l c u m u l o s e , o r g a n i c Table 29 Tonenthypno (nltentis) - Sphagno (subnitentis) - Carico (aquatilis) -- Sailed (pcdiceilarls) - Piceo (marianae) - Betuletuni pumilae Number of Plots 1 2 3 4 5 Plot No. 182 183 18.4 185 186 Plot Size (in2) 100 100 100 100 100 Elevation (ft) 2250 2250 2250 2250 2250 Stratum Oh Species . , „ Species No. 1 Betula pumila Betula pumila 2 Salix pedicel]arts 3 Ledum groenlandicum 4 Picea mariana 5 Spiraea dougiasll 6 Potent!11 a palustris 7 Carex aquatilis 8 Carex chordorrhlza 9 Carex llmosa 10 Rubus pubescens 11 Galium trlf lorun 12 Oxycoccus nicrocarpus 13 Agrostls scabra 14 Equlsetum sclrpoides 15 Andromeda pollfol la 16 Habenaria dllatata 17 Menyanthes t r l fo l iata 18 Eplloblum alpinum 19 Trlglochin marl tl mum 20 Ml tel l a nuda 21 Erlophorum vir idi-carinatui 22 Aster juncifornis 23 Equisetum arvense 24 Trichophorum alpinum 25 Parnassia palustris 26 Spiranthes romanzoffiana 27 Drosera rotundlfolla 28 Pyrola asarifolia 29 Habenaria hyperborea .30 Trtentalis arctica Picea mariana 31 Carex rostrata 32 Geun rivale 33 Calamagrostis canadensis 34 Tofieldia glutlnosa 35 Pedicuiaris labradortca 36 Carex pauciflora 37' Tomenthypnum nltens 38 Sphagnum subnitens 39 Sphagnum fallax 40 Aulaconnium palustre 41 Drepanocladus revolvens 42 Meesia triquetra 43 Pohlia nutans 44 Calllergon stramlneum 45 Bryua pseudotrlquetrun Species significance Constancy V V V V II V V V V V V V V V V V V V IV IV IV IV IV III III III III III III V V V V V IV Aver.Specles Significance 1.0 67.4 19.6 5.1 1.9 1.3 21.9 15.8 13.6 10.8 7.3 5.4 4.7 2.9 2.9 2.9 2.5 1.9 1.3 1.8 1.6 1.4 1.2 0.6 3.1 0.9 0.9 0.9 0.9 0.7 0.5 2.3 0.8 0.8 0.6 0.4 0.4 0.2 46.9 15.8 10.5 6.8 5.1 1.4 1.1 0.7 0.2 Sporadic Species: C 46 Carex Inops 183 (1) 47 Erlophorum chamalssonis 186 (+) 48 Habenaria obtusata 183 (+) 49 Mimulus guttatus 182 (1) 50 Orchis rotundifolia 182 (+) Oh 51 Campyllum stellatum 184 (3) 94 any given year. Free water is present in the lower cumulose deposi ts. The parent material is of organic cumulose deposits and the plot surface has 100 per cent cover of plant litter and decaying mosses. Three very distinct vegetation layers are recognized. The shrub layer is dominated in all cases by Betula pumila which has a species significance of 8 in four plots and 9 in one (five plots were studied). In two plots Betula was recorded in the tall shrub strata but its species significance was low. Salix pedicellaris is also a very important compo-nent of the B2 where its significance was either 5 or 6. Also occurring in the same layer were Ledum groenlandicum, Picea mariana and Spiraea douglasii. Total cover estimates for the B strata were from 75 to 95 per cent. Potentilla palustris was dominant in the herb layer where its species significance ranged from 5 to 6. Also participating highly in this plant association were Carex aquatilis, C. ahordorrhiza, C. limosa, Rubus pubescens, Galium trifidum and Oxycoccus microcarpus. The species significance of all these is four or greater in at least one plot. Other constant species with lower species significances were Agrostis scabra, Equisetum scirpoides, Andromeda polifolia, Habenaria dilatata, Epilobium alpinum and Menyanthes trifoliata. Five orchidaceous Plate 12: The Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) - Piceo (marianae) - Betuletum pumilae common in the low moors of the Sub-boreal Spruce zone. Trees in the background are black spruce (Picea maviana). T a b l e 31 S o i l Chemical A n a l y s i s Tomenthypno ( n i t e n t i s ) - Sphagno ( s u b n i t e n t i s ) - C a r i c o ( a q u a t i l i s ) - S a l i c o ( p e d k e l l a r i s ) - P i c e o ( m a r i a n a e ) Number of P l o t s P l o t No. 1 182 B e t u l e t u m p u m i l a e 2 183 3 184 185 5 186 S u r f a c e H o r i z o n C$ N2 C/N Onl? S? P ppm Na K Ca Mg CEC pH 4 1 . 2 4 2 . 7 8 15 71 .10 0 . 2 4 1 . 0 5 2 . 4 6 0 . 4 2 3 4 . 5 0 11 .16 6 8 . 2 5 5 . 4 8 4 4 . 8 7 2 . 6 3 17 7 7 . 3 6 0 . 1 8 6 . 3 0 1 . 3 6 0 . 7 8 38 16 1 2 0 . 4 8 1 . 2 5 5 . 8 6 4 3 . 0 1 2 . 5 7 17 7 4 . 1 6 0 . 2 2 1 4 . 0 0 6 . 1 8 1 . 0 4 3 9 . 5 2 1 2 . 8 0 8 9 . 9 5 6.21 4 2 . 4 5 2 . 2 7 19 7 3 . 1 9 0 . 4 0 7 . 9 3 1 . 9 0 0 . 4 2 4 2 . 9 8 1 3 . 7 6 1 2 6 . 2 5 6 . 2 6 4 2 . 3 6 2 . 1 3 20 7 3 . 0 3 0 . 2 3 8 . 7 5 3 . 7 8 0 . 7 4 4 0 . 3 0 1 2 . 6 8 1 0 8 . 0 7 6 . 2 5 S u b - S u r f a c e H o r i z o n C% 4 2 . 8 3 4 5 . 1 5 H% 2 . 9 6 2 . 1 6 C/N 14 21 0U 7 3 . 8 4 77.84 S% 0 . 2 2 0 . 2 4 P ppm 0 . 5 8 1 . 6 3 Na 2 . 6 8 3 . 6 2 K 0 . 5 8 0 . 6 0 Ca 3 8 . 6 0 4 2 . 4 0 Mg 1 2 . 0 0 12.24 CEC 8 6 . 7 0 8 0 . 8 2 pH 5 . 8 5 5 . 8 8 4 4 . 5 9 4 3 . 9 4 4 4 . 6 9 2 . 3 5 1 . 2 0 2 . 2 0 19 37 20 7 6 . 8 8 7 5 . 7 6 7 7 . 0 5 0 . 2 6 0 . 8 4 0 . 2 9 2 . 4 5 1 . 2 3 0 . 7 0 1 . 5 2 1 . 5 4 1 . 2 2 0 . 2 6 0 . 1 6 0 . 1 6 4 1 . 3 4 4 4 . 1 6 4 4 . 4 0 1 3 . 0 0 1 4 . 0 6 1 3 . 5 6 7 5 . 0 7 1 2 0 . 5 7 1 2 4 . 0 7 6 . 2 2 6 . 2 9 6.31 97 s p e c i e s w e r e r e c o r d e d w i t h s p e c i e s s i g n i f i c a n c e s a s h i g h a s 2. T h e s e w e r e : H. dilatata, H. hyperborea, H. obtusata, Spiranthes romanzoffiana a n d Orchis rotundifolia. Habenaria obtusata a n d Orchis rotundifolia a r e r a r e i n t h e S u b - b o r e a l Z o n e . Picea mariana was f o u n d i n b o t h t h e s h r u b a n d h e r b l a y e r s w h e r e i t g r e w a s a h i g h l y d e f o r m e d s p e c i e s . T h o u g h no m e a s u r e m e n t s w e r e t a k e n , Picea i s p r o b a b l y v e r y s l o w g r o w i n g d u e t o t h e s h o r t g r o w i n g s e a s o n i n t h e s e s i t e s . P o s s i b l y n u t r i e n t u p t a k e i s a l s o i n h i b i t e d b y w a t e r s a t u r a t i o n a n d p o o r a e r a t i o n . T h e b r y o p h y t e l a y e r h a s a n e s t i m a t e d c o v e r a g e o f 100 p e r c e n t . T y p i c a l s p e c i e s g r o w i n g a r o u n d t h e hum m o c k s a t t h e b a s e o f Betula pumila a r e Tomenthypnum nitens, Calliergon stramineum a n d Sphagnum fallax. Sphagnum subnitens i s a l s o f o u n d h e r e . On t h e l o w e r a n d w e t t e r p l a c e s Drepanocladus revolvens i s m o r e d o m i n a n t . Bryum pseudo-triquetrum i s f o u n d i n t e r m i x e d w i t h t h e Drepanocladus. T h e s o i l s a r e a l l r i c h , c a l c i u m a n d m a g n e s i u m b e i n g n o t a b l y h i g h . I n d e c r e a s i n g o r d e r o f m a g n i t u d e , t h e c a t i o n a b u n d a n c e was c a l c i u m , m a g n e s i u m , s o d i u m a n d p o t a s s i u m . C a t i o n e x c h a n g e c a p a c i t i e s r a n g e d f r o m 6 8 t o 1 2 6 i n t h e u p p e r s a m p l e . T h e s o i l r e a c t i o n i s s l i g h t l y a c i d i c . T h e r e a r e no a p p a r e n t t r e n d s i n c h e m i c a l c o m p o s i t i o n o f t h e s a m p l e s a n d 9 8 t h e r e i s v e r y l i t t l e d i f f e r e n c e i n t h e t w o s a m p l e s . H o w e v e r s u b s t a g n a n t w a t e r , e v i d e n t l y l o w i n f r e e o x y g e n , m a k e s a v a i l -a b i l i t y o f n u t r i e n t s f o r p l a n t s h i g h l y p r o b l e m a t i c ( K r a j i n a , p e r s . c o m . ) . S o i l c h e m i c a l d a t a i s p r e s e n t e d i n T a b l e 3 1 . P i c e o (g laucae ) - A b i e t e t a l i a l a s i o c a r p a e T h e P i c e o ( g l a u c a e ) - A b i e t e t a l i a l a s i o c a r p a e o c c u r o n w e t a n d r i c h s i t e s i n t h e S u b - b o r e a l Z o n e o n s u b h y g r i c t o h y g r i c ( s u b h y d r i c ) h y g r o t o p e s . T h e t r o p h o t o p e s a r e c o n s i d e r e d t o b e f r o m p e r m e s o t r o p h i c t o e u t r o p h i c . A s h y g r o t o p i c c o n -d i t i o n s a p p r o a c h t h e m o r e x e r i c o r s u b x e r i c t y p e s , t h e t r e n d i s f o r t h e m e m b e r s o f t h e A b i e t e t a l i a l a s i o c a r p a e t o d e v e l o p on p r o g r e s s i v e l y r i c h e r 1 o c a t i o n s , . t h u s c o m p e n s a t i n g f o r t h e l o w e r w a t e r a v a i l a b i l i t y . O f k e y i m p o r t a n c e i n t h e S u b - b o r e a l c o m m u n i t i e s o f t h i s o r d e r i s t h e r o l e p l a y e d b y s e e p a g e w a t e r . S o i l c h e m i c a l a n a l y s i s d o e s n o t a l w a y s i n d i c a t e t h a t t h e s o i l s a r e r i c h b u t t h e c o n t i n u o u s i n f l u x o f n u t r i e n t s v i a s e e p a g e w a t e r i s b e l i e v e d t o c o m p e n s a t e f o r t h e l o w b a s a l n u t r i e n t s t a t u s . 99 Krajina (1972) has pointed out that the Abietetalia lasiocarpae is not restricted to the Sub-boreal Zone but is common also in the Boreal White and Black Spruce Zone. , It is also marginally represented in the Cariboo Aspen -Lodgepole Pine - Douglas-fir Zone (particularily in the northern area on the Fraser Plateau where this zone is tran-sitional to the Sub-boreal Zone). Two communities are described for this order. These both fall in one alliance, the Piceo (glaucae) - Abietion lasiocarpae. On temporary seepage sites the representative of this order and the only alliance is the Ptilio (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae while on the permanent seepage sites it is the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae. Both of these are Picea glauca dominated associations because Picea becomes established in the openings in the forest canopy and is thus able to reproduce itself. Abies is highly shade tolerant in these sites. Other trees common in this order are Betula papyrifera and Populus tremuloides. CHARACTERISTIC SPECIES FOR THE ORDER ARE Abies lasiocarpa Picea glauca Cornus stolonifera Sambucus pubens Mertensia paniculata Dryopteris austriaca Oplopanax horridus Ribes hudsonianum 100 Acer glabrum Ribes lacustre Lonicera involucrata Galium triflorum Gymnocarpium dryopteris (Mitella nuda) Petasites palmatus Streptopus amplexifolius S. roseus Tiarella trifoliata T. unifoliata Delphinium glaucum Aconitum columbianum Athyrium filix-femina Rubus idaeus Thalictrum oocidentale Urtica l y a l l i i Vaccinium ovalifolium Veratrum viride Brachythecium hylotapetum B. starkei Campy Hum hispidulum Plagiomnium ciliare P. medium P. drummondii Plagiothecium denticulatum ALLIANCE: P i c e o ( g l a u c a e ) - A b i e t i o n l a s i o c a r p a e P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio ( d r y o p t e r i d i s ) -A b i e t o ( l a s i o c a r p a e ) - P iceetum g l a u c a e (Re fe rence T a b l e s : 3 2 , 3 3 , 3 4 , 3 5 , 3 6 ) (= Gymnocarpium A s s o c i a t i o n ) The Gymnocarpium Association is very common and highly developed in the Sub-boreal Zone where it is best developed on subhygric sites on a variety of parent materials. These were found to be alluvial outwash, flood plains, lacu-strine deposits, glacio fluvial outwash, sandy outwash and glacial outwash. Topographically, the Gymnocarpium Association develops just above the Oplopanax association and the seepage is temporary, being most effective in the spring. The P t i l i o ( c r i s t a e - c a s t r e n s i s ) Tab le 32 - Gymnocarpio ( d r y o p t e r i d i s ) Piceetum glaucae - A b i e t o ( l a s t oca rpae) -C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S ( 6 0 - 1 0 0 % ) I M P O R T A N T N O N ^ C O N S T A N T S T r e e Picea glauca Betula papyrifera Abies lasiocarpa S h r u b Abies lasiocarpa Viburnum edule Lonicera involucrata Vaccinium membranaceum Ribes lacustre H e r b Gymnocarpium dryopteris Cornus canadensis Lycopodium annotinum Linnaea borealis Pyrola secunda Aralia nudioaulis Rubus pubescens Clintonia uniflora Tiarella trifoliata Galium triflorum Epilobium angustifolium Smilacina racemosa Pyrola asarifolia Disporum hookeri Mitella nuda Tiarella unifoliata Lycopodium obscurum Athyrium filix-femina Habenaria orbioulata Spiraea douglasii Hypopitys monotropa M o s s e s ( h u m u s ) Pleurozium schreberi Ptilium crista-castrensis Hylocomium splendens Brachythecium hylotapetum Dicranum polysetum Rhytidiadelphus triquetrus Plagiomnium ciliare P. medium Table 3 3 Number of Plots Plot No. Plot Size (a 2) Oate Analysed Elevation (ft) Locality Land Form Relief Shape Exposure Slope Gradient Layer Coverage Mineral Soil Rock Soil P t i l i o (cristae-castrensis) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae abieto (lasiocarpae) - plceosum glaucae betulosum papyri ferae populosun tremuloldis 1 6 400 2 38 400 3 53 400 4 54 400 17/6/67 24/8/67 18/7/68 19/7/68 2300 2300 2300 2300 ML ML PR PR outwash plain 5 37 400 23/8/67 2400 ML creek bed 6 75 400 19/8/68 2400 TL 7 1 400 8/6/67 2425 64 400 2/8/68 2425 9 15 400 10 130 400 11 60 400 11/7/67 28/6/69 26/7/68 2450 2500 2650 MR MR ML NR outwash plain (glacial or alluvial) 12 59 400 25/7/68 2800 NL • f lat to gently roll ing • E 10-17 SW 3-4 SW 2 m 0-7 It 13 14 49 50 400 400 15/7/68 16/7/68 2300 2300 PR PR river terrace f la t Nil 0 . 1-2 • absent-• absent -- absent --absent-Kygrotope Trophotope Erosion Drainage Sample Horizon Depth (cm) subhygric (- hygrlc) permesotrophic to subeutrophic • nil to slight water fa i r to inpeded . 15 16 55 20 400 400 19/7/68 28/7/67 2300 2325 PR BL outwash plain f la t ' E 0 0-8 17 63 400 1/8/68 2450 MR A total 55 60 80 60 45 70 70 70 50 75 55 85 80 80 80 80- 70 Al 50 45 70 55 45 65 60 . 65 35 70 50 80 70 75 40 70 10 . A, 4 20 25 20 2 7 8 • 15 15 5 • 5 30 15 6 35 10 65 A3 B total 4 5 8 3 8 10 25 1 4 10 7 15 10 8 15 15 30 75 40 25 65 45 65 12 - . 75 50 60 20 45 45 55 55 45 B1 25 4 2 40 4 35 15 1 25 10 35 5 8 30 35 5 30 82 . 50 45 20 40 45 45 11 1 45 45 30 15 40 15 20 50 15 C 80 80 85 80 90 80 80 90 90 70 90 80 75 95 65 80 £0 0 total 70 70 65 75 60 80 25 60 35 80 80 . 55 10 15 25 30 30 Dh 45 60 45 60 45 45 15 40 10 50 50 20 4 8 15 10 20 Ddw 25 10 20. . 15 15 35 10 20 25 30 30 35 8 6 10 20 10 Ea 3 1 0.5 0.5 1 2 2 0.5 2 0.5 1' 0.5 - - - 0.5 -Eb 4 3 1 1 1 2 3 1 2 0.5 1 0.5 0.5 0.5 1 . 1 1 Ec 2 1 1 1 1 1 2 1 2 0.5 1 0.5 0.5 0.5 - 1 0.5 Plot Coverage (2) Li t ter 50 75 70 70 75 60 75 65 85 65 50 55 85 95 85 65 60 Decaying Hood 50 25 30 30 25 40 25 35 15 35 50 45 15 5 15 35 -- absent--absent-1 6-0 3-0 10-0 9-0 28-0 6-0 8-0 8-0 10-0 5-0 5-0 38-0 5-0 10-0 9-0 8-0 5-0 2 0-7 0-1 0-3 0-8 0-20 0-5 0-4 0-9 0-10 0-5 0-15 0-46 0-7 0-8 0-7 0-6 0-7 3 7-41 1-16 3-23 8-27 20-67 5-20 4-44 9-32 10-33 5-30 15-33 >46 7-47 8-70 7-29 6-26 7-75 4 41-111 16-102 23-75 27-75 >67 20-40 44-100 32-70 33-84 >30 33-53 _ 47-70 >70 29-70 26-43 >75 5 - - - - 40-89. - - 84-105 - 53-100 - - - - 43-117 • -Parent Material G0L GFO L SO A GFO ' AO GFO AO GFO GFO AO • GFO GO FPO GO GO Table 34 •lumber of Plots Plot No. Plot Slz« (o2) Elevation (ft) S t r a t K Dh Oda Species lio. Species 1 Picea glauca 2 Betula papyr i fe ra 3 Abies las iocarpa 4 Pinus contor ta 5 Populus tremuloides Picea glauca Be t i l a papyr i fera Abies las iocarpa Populus tremuloides Picea glauca Abies las iocarpa e Alnus s inuata Abies las iocarpa Picea glauca 7 Viburnum edule 8 Lonlcera Involucrata 9 Ri tes lacust re Abies las iocarpa Alnus sinuata 10 RuboS pa rv l f l o rus 11 Cornus s tc lo r . l fe ra 12 Ajelar.chler a l n i f o l i a 13 Sorbus s i t chens is 14 Acer glabrum '. 15 Rubus idaeus 16 Gynnocarplura d ryop te rU 17 Cornus canadensis ia Lycopodium annotlnun 15 Linnaea borea l is 20 Pyro la secunda 21 A r a l i a nudicaul ls 22 Vaccinium merabranaceua 23 Rubus pubescens 24 C l i n t on ia un i f l o ra 25 T i a r e l l a t r l f o l l o t a 26 Gallur. t r i f l o rum 27 Epilobium angus t l f o l l ua 23 Smi lac ina race-osa 29 Rubus pedatus 30 Pyrola asa r i f o l I a 31 Oisporun hookeri 32 V B l i e l l a nuda 33 ' Petas i tes palmatus 14 T l a r a l l a u n i f o l i a t a 35 Lycopodium ccrplar.atuo 36 Spiraea b e t u l i f o l l a 37 Kaianthenur: canadense 38 Lycopodium obscur.a 39 C a l a ^ i j r o s t l r canadensis . To W ' W n r a ut<.V)-.lfulla Lonlcera Involucrata 41 Athyr lua f i l l x - f o n f n a 42 Vacclnlua. myr t i l l o i des 43 Var.clnium cacspitosum 44 Ifertensia panlcu la ta 45 Soft gyrnocarpa 46 Actaea rubra Viburnum edule 47 Osnorhiza c h i l e n s l s 48 StreptopuS a.-.plexlfol lus Scrbus s i i cher .s is 49 Chimaphila u rbe l la ta Are lanchier a l r . l f o l l a 50 Streptopus roseus 51 Habenaria o rb lcu la ta 52 Pleurozium schreberi 53 P t i l i um c r i s t a - c a s t r e n s l s 54 Hylocomium splerdens 55 Brachythecium hylotapetuia 56 Dicranum polysetus 57 Shyt ldiadelphus t r lguet rus 58 Kniun spi ru losun 59 Po ly t r i chun juniper inun 60 Drepanocladus uncinatus 61 Oicranum scoparium P t i l i um c r i s t a - c a s t r e n s l s Pleurozium schreberi 62 Oicranun fuscescens 63 Brachythecium salebrosum Hylocor.iun splendens 64 P t i l i d i u n p j c r - e r r l a i a 65 Lophozia exc isa 66 A lec to r ia amerlcana 67 A lec to r i a sarmentosa 63 Usnea cera t ina A lec to r i a amerlcana 69 H/po^yrnia entcronorpha 70 Parne l iops ls amblgua 71 Ce t ra r i a glauca A lec to r i a sarmentosa 72 Ce t ra r i a jun iper lna Parmeliopsis ambigua Ce t ra r i a juniper lna Oicranun fuscescens P t i l l d i u m pulcherrimum Hypogymnla enteromorpha Drepanocladus uncinatus Pt i l io (cristae-castrensis) - Gymnocarpio (dryopteridis) . Abieto (lasiocarpae) . Piceetum glauc.o abieto (lasiocarpae) - plceosua glaucae botulosuo papyri ferae papulosuo t reau lo ld ie 1 6 400 2300 2 38 400 2300 3 53 400 2300 4 5 6 7 8 9 10 11 12 13 14 25 16 17 54 . 37 75 1 64 15 130 60 59 49 50 55 20 63 400 400 400 400 400 400 400 400 400 400 400 400 400 400 2300 2400 2400 2425 2425 2450 2500 2650 2800 2300 2300 2300 2325 2450 Species significance 5 5 2 3 2 3 3 3 2 3 1 2 5 4 5 2 2 7 5 3 3 2 3 4 3 2 2 1 4 2 Constancy J ™ ' - * " ' Significance IV IV III III II IV III i l l II IV III III III II IV IV IV III III III III II II 32.4 15.0 7.4 4.9 7.8 7.2 2.3 1.8 7.1 4.3 3.4 10.2 6.9 0.7 6.3 5.4 2.5 10.7 5.9 3.5 2.7 2.1 1.6 1.1 0.4 3 6 7 ' 4 V 31.5 2 4 4 5 V 23.4 . 4 6 V 7.5 2 5 2 5 V 5.0 3 2 4 3 V 4.7 9 8 5 . IV 20. j 3 . e 5 . IV 5.7 5 . 2 IV 5.2 • 5 5 IV 4.3 2 IV 4.0 3 3 . 2 IV 2.2 1 2 2 2 IV 1.5 • 3 . IV 1.4 5 . 4 III 8.3 5 2 III 4.7 4 1 4 III 3.3 . III 2.4 2 3 2 III 2.3 • . • III 1.5 2 3 • 6 II 2.0 5 , II 1.9 4 4 11 • — — - - ' t ' - - " * * " " " " 1 1 ° — ~ — ~ I . V 3 II 1.5 3 II 1.5 4 II 1.4 II 1.4 . • 2 II 1.3 3 II • 1.2 • 3 II 1.0 3 4 II 0.9 . II 0.9 2 2 II 0.3 3 II 0.6 . II 0.6 1 II 0.6 2 II 0.6 2 II 3.5 + 2 II 0.3 • + • II 0.3 3 4 3 3 V 6 . ! 2 1 1 IV 7.2 2 . 1 IV 4.3 , III 3.6 2 2 III 3.5 II 1.7 2 . II 1.4 2 2 2 II 0.8 1 1 1 II 0.5 • • 2 • II 0.4 2 2 4 2 V 10.1 2 2 2 2 V 8.5 2 3 2 3 V 2.7 3 . 3 III 2.6 , II 1.0 1 II 0.4 • • • • II 0.3 III .1.0 II 0.6 • • • • II 0.5 1 1 IV 1.3 2 1 1 IV 1.0 1 1 III 0.6 . 1 II 0.7 . . II 0.7 1 1 • 1 II 0.5 1. 1 III 0.5 1 1 1 III 0.7 . 1 II 0.5 1 . II 0.5 , II 0.4 2 II 0.4 o co Sporadic Species Pinus contorta 53 (2) 63 (4) Betula papyr i fera 6 (3) 49 (4) 50 (3) Pinus contorta 63 (2) Pcpulus tremuloides 55 (5) 63 (6) 73 Pseudotsuga oer .z les l l 20 (2) 74 S a l l x bebblana 63 (3) 75 S a l l x r l g l d a 49 (4) 55 (3) 76 S a l l x scouler iana 54 (3) 77 Oplopar.ax horr ldus 6 (4) 37 (1) 38 (2) 78 Rhododendron a l b l f l o r u m , 38 (2) Rasa gyrnocarpa 37 (2) 54 (2) Sa l l x bebblana 63 (3) Sal 1x r i g l d a 49 (1) 79 Shepherdia canadensis 20 (+) 60 Scrbus scopul lna 33 (2) Abies las iocarpa 6 (2) 75 (3) 20 ( 3 ) . 81 A c h i l l e a lanulosa 59 W 49 (•) 62 Aconltura colum.Manua 59 (3) Alnus sinuata 20 (3) 83 Ar.aprtalls rargar t tacea 63 (2) 84 Arnica c o r d i f o l l a 130 (2) 65 Aster cor.splcuus 37 (2) 66 C a s t l l l e j a miniata 63 (5) 50 (2) 67 Co ra l l o rh l za nertenslana 130 (1) Cornus s t o l o n l f e r a 20 (3) 88 Eo/Jsetum arvense 1 (2) 59 (+) 49 (•) 89 Lqulsetu". sc i rpo ides 53 (4) 54 (4) 59 (1) 90 EnulsetuT v / lvat lcum 37 (1) 53 (1) 91 Gallur, boreale 49 (3) S2 Galium t r i f idum 20 (1) 93 Gaulther ia h isp idu la 55 (1) 75 (1) 54 GecoaJon 11 vidua 6 (2) 75 (2) 63 (2) 35 Gcod/era repens 75 W 96 Hypopitys monotropa 20 (1) 55 (2) 97 Ledum groenlandicum 49 (2) 96 L i s t e r a ccrdata 130 (2) 99 foneses un i f l o ra 59 (2) 100 Oryzopsis a s p e r i f o l l a 75 (2) 20 (2) 101 Pyrola vlrer.s 59 (2) 130 (3) 102 Rlbes hudsoniar.ur. 1 (2) 6 (•) 20 (2) 103 Rosa a c l c u l a r l s 59 (2) 49 (2) 20 (3) 104 Saabucus pubens 1 W 38 (•) 105 Seneclo t r i a n g u l a r i s 37 (•) 106 107 103 109 110 111 S a i l a d n a s t o l l a t a Spiraea douglas i i l h a l l c t r u a occldentale Vaccinium o v a l l f o l l u a Veratrun v l r l d e V i o l a nephrophylla 112 iu laconnlue palust re 113 8rachytheciusi a lbicans 114 Brachythecium erythrorht jon Brachythecium. salebrosum Bracliytheciunt s tarkel Ceraiodon purpureus Chllcscyphus Dal 1 escefns C lnc l ld lum stygtua lophozia exc isa Meesla t r i que t ra . - Pe l t i ge ra aphthosa 121 • P l a g l o c h l l a asplenlo ldes PIag!omnium c l 11 are Plaglomnlun medium Plag lo thec lua dent lcu la tua Po ly t r i chua coanune P t t l l d l u a pulcherrlmua 115 116 117 118 119 120 122 123 124 125 Dd> 126 Aoblysteglua juratzkanua Aulacoirniua palust re Barbl lophozia barbata Barbl lophozia hatcher! l lepharostoaa t r l chophy l lua Brachytheciuffl a lb icans . Brachythecium hylotapetua Brachytheclun starkel Cepha loz le l l a d i va r i ca te Dicranum polysetua Dlcranun scoparluo Drepanocladus uncinatus Lophozia cuspldata Lophozia ventr lcosa Bniuo splnulosua Nephroma resuplnatum Pe l t i ge ra aphthosa Pe l t i ge ra canina Plagloaniua ruglcua P lag lo thec lua s t r l a t e l l u o Poh l ia nutans Po ly t r i chua cot iune 127 128 129 130 131 132 133 134 135 136 137 38 (1) 1 U ) 15 (2) 37 (4) 130 (3) 15 (3) 1 (1) 63 (3) 130 (3) 59 (4) 60 (1) 63 (1) 60 (4) 63 (5) 50 (1) 60 (1) 130 (5) 37 (1) 60 (1) 75 (1) 55 (1) 37 (1) 59 (1) 60 (1) 64 (1) 38 (1) 59 (2) 75 (1) 64 (3) 75 (3) 15 (2) 38 (5) 38 (2) 37 (1) 63 (3) 75 (4) 37 (2) 54 (1) 63 (1) 130 (1) 75 (1) 59 (1) 64 (1) 15 (1) 54 (1) 64 (3) 75 (1) 15 (1) 53 (1) 75 (1) 75 (2) 54 (1) 20 (3) 63 (1) 15 (2) 54 ' (1) 60 (4) 15 (1) 20 (1) 130 (1) 54 (1) 20 (2) 15 (1) 53 (1) 59 (1) 6 (1) 20 (1) 55 (2) 63 (2) 15 (2) 33 (2) 64 (1) 75 (3) 63 (1) 15 (2) Po ly t r i chua junlper l nun 49 (2) 138 Usnea tr ichodea 1 (1) 139 Brachythecium rutabulum 15 (1) 140 Cacpyl lua h lsp idu lua 15 (2) 141 Cet ra r ia Is land ica 38 (1) 142 Cet ra r ia p lnas t r l 20 (1) D lc ranu ; fuscescens 53 (1) Drepanocladus uncinatus 15 (2) 143 Eurhynchiun ser ru la tua 20 (1) 144 Evernia prunastr l 20 (1) 145 Hypogynnla pnysodes 15 (3) 146 Icaadophlla ericetorum 15 (1) 147 Lobar ia pu lwwsr l a 15 (2) 146 Mnlua marginatum 15 (1) 149 IJephroma expal l Idua 15 (1) nephroma resuplnatum 15 11) 150 Orthotr lchun ob tus l f o l l ua 15 (1) 151 Parcel 1 a su lcata 53 (1) Pe l t i ge ra canina 15 (1) P l a g l o c h l l a asplenloldes 15 (1) P lag lo thec lus dent lcu latua 15 (1) P t l l l d l u n pulcherr loua 15 (1) Usnea cera t ina 1 (1) Usnea tr ichodea 54 (1) 152 153 154 155 53 (2) 55 (1) 75 (2) 20 (2) 54 (1) 6 (2) 15 (1) 54 (1) 75 (1) 156 A lec to r i a a w l c a n a 6 (2) A lec to r i a sarnentosa 15 (1) Barb I lophozia lycopodioldes 54 (1) Brachythecium a l t i cans 15 (1) Brach>theclun rutabuluo 1 5 ( 1 ) Canpylluo s te l l a tuo 15 ( l ) Cephalozi el l a d i va r l ca ta 15 (1) Ce t ra r ia glauca 64 (2) 55 (1) Ce t ra r i a Is land ica 33 ( i ) Dicranum tauricum 64 (1) lemadophila er ice torua 15 (1) Lepid02'i reptans 60 d ) Lophozia excisa 64 (1) 20 (1) Lophczia ventr lcosa 64 (1) tflnlum marginatum 15 (1) Nephroma resuplnatum 15 (1) 64 (10 20 (1) Orthotr lchua ob tus l fo l l ua 15 (2) 54 (2) 55 (2) P l a g l o c h l l a asplenloldes 15 <2) Pleurozium schreberi £ 0 ( 1 ) 7 5 ( 1 ) P y l a l s t a polyantha 63 (3) 1 0 4 association is commonly developed on steep slopes though most of the sample plots were established on the more gentle ones (up to 8 degrees) with the exception of plot 6 whose slope ranged from 10 to 17 degrees. Drainage is moderate to impeded. The soils are all deep with well developed litter layers, eluvial Ae and illuvial Bf horizons are not uncommon and are due to the fluctuation of the water table. The soils have been classified as Ortho Humo Ferric Podzols, Bisequa Gray Wooded, Brunisolic Gray Wooded, Mini Humo Ferric Podzols, Degraded Eutric Brunisols and Rego Humic Gleysols. Roots are abundant throughout the solum. The Gymnooarpium association was sampled at eleva-tions ranging from 2300 feet along the Crooked River to 2800 feet near the Nation Lakes. No preference was shown for any one exposure. Erosion is most influential on steep sites where intense run-off may cause gullys to be formed. As most of these sites are well vegetated, erosion is not serious but it could be after fires or logging. The ground surface is covered in all cases with a well developed litter layer which occupies from 50 to 95 per cent of the plot surface (average 71 per cent). The remaining portion is occupied by decaying wood. No exposed mineral soil was encountered in any of the sample plots. 105 Plate 13: The Ptilio (cristae-castrensis) -Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) -Piceetum glaucae. Note the abundance of the highly shade tolerant Abies lasiocarpa in the shrub layer. Picea glauca becomes established in the openings of the forest canopy. Effects of seepage water in these sites are temporary. 106 The uppermost layer of the forest canopy is occupied by Picea glauca and to a lesser extent by Abies lasiocarpa. Betula papyrifera also shows a high constancy while Pinus contorta and Populus tremuloides may be present. In the A2 Picea glauca is again the most constant and Abies lasiocarpa is very frequent. Betula papyrifera, Pinus contorta and Populus tremuloides are much less significant in the A2 and subsequent layers. The A3 (lowest trees) is also dominanted by Picea glauca. Abies lasiocarpa is highly constant. A single tree of Pseudotsuga menziesii was found in plot 20. Total cover of the tree strata was estimated to range from 45 to 80 per cent. The Ax being the highest. The Bx shrub layer was occupied mainly by Alnus sinuata and Abies lasiocarpa. Constancy and cover of Picea glauca diminished rapidly in the shrub layer where it occurs mainly in the openings in the crown cover where it is not strongly shaded. Viburnum edule, Lonicera involucrata and Abies lasiocarpa are the most constant and important species in the B2 stratum while Alnus sinuata, Ribes lacustre, Cornus stolonifera, Amelanchier alnifolia and Sorbus sitchensis are also signifi-cant. Rhododendron albiflorum, a typical sub-alpine species, occurred in one plot and Acer glabrum in five. Total vege-tation in the B layer ranged from 4 to 85 per cent. 107 T h e h e r b l a y e r i s w e l l d e v e l o p e d i n t h e Gymnocarpium a s s o c i a t i o n . T o t a l c o v e r e s t i m a t e s r a n g e d f r o m 6 5 t o 9 5 p e r c e n t . D o m i n a n t s p e c i e s a r e Gymnocarpium dryopteris a n d Cornus canadensis. Lyoopodium annotinum, Linnaea borealis, Pyrola secunda, Aralia nudicaulis, Vaccinium membranaceum, Rubus pubescens, Clintonia uniflora, Tiarella trifoliata, Galium triflorum, Epilobium angustifolium a n d Smilacina racemosa a r e a l s o h i g h l y c o n s t a n t s p e c i e s i n t h i s a s s o c i a t i o n . T h e Gymnocarpium a s s o c i a t i o n i s t h e " d r i e s t " o f t h e t w o m e m b e r s o f t h e A b i e t e t a l i a a n d t h i s t r e n d t o w a r d t h e m o r e m e s i c c o n d i t i o n s i s s h o w n b y t h e i n c r e a s i n g r o l e o f Geocaulon lividum, Vaccinium caespitosum, Vaccinium membrana-ceum, Pyrola virens, Spiraea betulifolia a n d Lyoopodium annotinum. T h a t i t i s s t i l l i n t h e A b i e t e t a l i a l a s i o c a r p a e i s s h o w n b y t h e i m p o r t a n c e o f Gymnocarpium dryopteris, Galium triflorum, Rubus parviflorus, Petasites palmatus, Actaea rubra, Tiarella trifoliata a n d T. unifoliata, a s w e l l a s t h e o c c a s i o n a l s p o r a d i c o c c u r r e n c e o f Aconitum columbianum a n d Oplopanax horridus. T h e o c c u r r e n c e o f Athyrium filix-femina, Spiraea douglasii a n d t o a l e s s e r e x t e n t Oplopanax horridus i n d i c a t e s a t l e a s t t e m p o r a r y s e e p a g e . N i t r o p h i l o u s p l a n t s a r e : Athyrium filix-femina, Galium triflorum, Tiarella trifoliata a n d 108 T. unifoliata. These preceding species and additionally Disporum hookeri and Mertensia paniculata show the Gymnocarpium association is s t i l l rich. The richness of the association is also substantiated by tree growth data. The moss layer is best developed on humus where total estimates ranged from 2 to 65 per cent, the lower estimates being found in the two variants of the association. Pleurozium schreberi is the dominant moss on humus indicating a trend toward the Moss type, mesic conditions. Ptilium crista-castrensis3 Hylocomium splendens 3 Rhytidiadelphus triquetrus and Brachythecium hylotapetum also show a high affinity to the layer. Other important members of this stratum are Plagiomnium ciliare, Dicranum polysetum and Brachythecium starkei. The most important mosses in the are Ptilium crista-castrensis 3 Pleurozium schreberi3 Dicranum fuscescens and Brachythecium salebrosum. Hepatics on decaying wood were Ptilidium pulcherrimum3 Lophozia excisa3 Blepharo-stoma trichophyllum3 Lophozia cuspidata3 L. ventricosa3 Barbilophozia barbata and B. hatcheri. The epiphytic layers show a considerable species diversity. Four species are found in the E^. The Eg has a total of 28 species and the E^ 26 species. Characteristics of the soils are shown in Tables 35 and 36. Table 35 S o i l Physical Analysis P t l H o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae abieto (lasiocarpae) - piceosum glaucae betulosum papyri ferae populosua tremul o i d l s Number of P l o t s 1 2 3 4 5 . 6 7 8 9 10 11 12 13 . 14 15 16 17 P l o t No. 6 38 53 54 37 75 1 64 15 130 60 59 49 50 55 20 63 Horizon Ae Ae Ae Ae H Ae Ae Ae Ae Ae Ahe H Ae Ae Ae Ae Ae Textural Class S SL LS SL SCL LS CL LS L L SL SL LS LS LS SL Sand (2) 88.0 57.8 82.6 72.6 67.8 82.0 32.0 75.6 51.2 49.6 65.8 66.8 82.0 83.6 81.6 . 54.8 S i l t (2) 7.2 30.8 11.8 21.8 6.8 12.0 37.2 19.4 37.2 36.8 28.6 - 23.8 10.8 12.8 11.6 34.2 Clay (2) 4.8 11.4 5.6 5.6 25.4 6.0 30.8 5.0 11.6 13.6 5.6 - 9.4 7.2 3.6 6.8 11.0 Horizon Bf Bf Bf Bf Ahg Bf Bf Bf Bf Bf Bf Cg Bf Bfh Bf Bf Ef Textural Class S SL S LS SC S CL SL SIL L SL L LS LS SiL LS L Sand (?) 98.2 69.6 88.6 7 6 . 0 . • 47.4 89.8 28.6 69.2 38.0 38.0 69.6 52.4 86.8 80.0 23.2 87.2 49.6 S i l t (2) 1.0 21.2 7.8 20.4 16.2 6.0 42.6 21.8 49.4 36.8 24.4 35.8 8.8 14.8 66.6 5.0 34.8 Clay (2) 0.8 9.2 3.6 3.6 36.4 4.2 28.8 9.0 12.6 25.2 6.0 11.8 4.4 5.2 10.2 7.8 15.6 Horizon IIC C Bt C Cg CB Bt BcgJ C Bt C C C BC C Textural Class S LS LS S SCL S S Si L SL CL SL - S - L LS -Sand (2) 97.0 78.6 83.6 91.6 51.2 98.4 91.8 33.2 56.8 38.0 70.8 - 90.8 - 49.2 82.6 -S i l t (2) 2.8 16.3 8.8 6.8 22.8 1.6 6.6 49.8 29.6 32.4 20.2 . - 6.8 - 43.6 11.6 -Clay (2) 0.2 5.1 7.6 1.6 26.0 0.0 1.6 17.0 13.6 29.6 9.0 - 2.4 - 7.2 5.8 -Horizon IIC c • Cg C(BC) C Textural Class - - - - SL S - - - . - SL - - - - SL -Sand (2) - - - 72.8 99.7 - - - - 70.8 - - - - 72.8 -S i l t (2) - 21.6 0.3 - - - 22.2 - - - - 16.4 -Clay ($) - - - - 5.6 0.0 - - - - 7.0 - • - - - 10.8 -o no T a b i . 36 S o i l Cbealcal A n a l y s t s P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio ( d r y o p t e r i d i s ) - Abieto ( l a s i o c a r p a e ) - P l c e e t u o glaucae a b i e t o ( l a s i o c a r p a e ) - plceosun glaucae b e t u l o s u a papyri f e r a e populosun t r e r a u l o i d l i Nuaber of P l o t s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 P l o t No. 6 38 53 54 37 75 1 64 15 130 60 59 49 50 55 20 63 Horizon D e s i g n a t i o n L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H' L-H L-H L-H L-H Cf 38.4 41.3 3 6 . 5 44.0 46.3 41.0 15.6 42.5 17.6 32.97 21.2 46.9 5 1 . 0 53.4 46.8 17.9 2 4 . 7 NJ 0.73 1.11 1.22 1.41 1.44 1.06 1.14 1.64 0.94 1.26 0.78 1.68 1 .03 1.75 0 . 9 9 0.77 0 . 5 5 C/N 53 37 30 31 32 39 14 26 19 26 27 28 50 31 47 23 45 OMf 65.28 70.21 62.05 74.80 76.71 69.70 26.52 72.25 29.92 56.85 36.04 79.73 66.70 9 0 . 7 8 79.56 3043 41.99 P ppa 2 2 . 0 1 3 . 0 1 9 . 0 1 8 . 0 12.0 15.0 17.0 2 0 . 0 19.0 121.0 1 6 . 0 17.0 2 6 . 0 2 2 . 0 1 9 . 0 2 6 . 0 16.0 Na 0.28 0 . 9 9 0 . 3 9 0.42 1.89 0.41 0.56 0 . 9 0 0.21 4.80 0 . 4 9 0.54 0.24 0 . 3 9 0.54 0 . 2 8 0 . 4 2 K 2 .10 0 . 5 2 1.38 1.37 1.72 1.49 0.70 0.12 0.55 2.48 0.94 . 1.21 1 .30 2.94 1.91 1.79 0.94 Ca 1B.9 8 . 7 2 4 . 7 19.3 2 8 . 6 5.4 18.0 12.5 9 . 6 37.78 12.1 31.2 2 1 . 3 42.4 19 .6 32.8 8 . 3 Mg 3.17 2.12 3 . 9 4 . 7 7.7 1.4 3.33 3 . 9 2.27 4.32 4 . 0 10.9 4 . 6 11.6 0 . 3 6 4 . 3 3 1 . 4 9 CEC 112.5 86.5 88.3 110.5 89.3 8 9 . 0 67.4 101.9 4 4 . 0 57.57 6 9 . 0 143.3 104.3 126.7 103.0 128.7 47.5 pH 5 . 6 5.1 5 . 9 5.35 6.15 5 . 0 5.85 4.85 5 . 4 5.65 4 . 8 4 . 8 5.15 5 . 8 4 . 5 5 5 . 2 4 . 2 Horizon D e s i g n a t i o n Ae Ae Ae Ae H Ae Ae Ae Ae Ae Abe H Ae A l Aa Ae Ae CJ 1 . 3 0 . 0 3.8 32.1 _ 0.0 3 . 5 0.0 1.01 12.8 3 2 . 0 0 . 0 2 . 8 _ 0 . 0 2 . J NJ 0.04 0 . 0 6 0 . 0 8 0 . 0 6 0.64 0.07 0.15 0.16 0.12 0 . 0 6 0.25 0.83 0 . 0 6 0 . 0 7 0 . 0 7 0 . 0 5 0 . 0 9 C/N 32 0 . 0 0 48 0 . 0 0 50 0 . 0 0 0 . 0 0 22 0 . 0 0 17 51 39 . 40 0.00 0 . 0 0 26 OUJ 2.21 0 . 0 6 . 4 6 - 54.57 - - 5.95 - 1.74 21.76 54.4 0 . 0 4.76 0 . 0 0 . 0 3.91 P ppa 7 . 0 4 . 0 6 . 0 7 . 0 11.0 3 . 0 8 . 0 4 . 0 5 . 0 17.9 1 6 . 0 13.0 11.0 4 . 0 4.0 1 2 . 0 9 . 0 Na o.oa 0 . 0 9 0 . 2 0 0.18 0.09 0.25 0.23 3.71 0.09 2.28 0.35 0.44 0.18 0.13 0.21 0.18 0 . 2 8 K 0 . 0 5 0 . 0 9 0.13 0 . 0 7 0.10 0.12 0.18 0.13 0 . 0 8 0.10 0.11 0.21 0.12 0.16 o.oa 0 . 0 8 0.11 Ca 1.1 0 . 8 0 4.17 1 .6 17.05 0 . 9 2 4 . 8 1.09 1.50 3.94 4.96 35.0 3 . 0 8 4.37 1.96 2 . 6 5 1.81 Ng 0.33 0.11 0 . 9 2 0.35 3.22 0.12 1.13 0.33 0.45 0.44 1 . 0 13.8 0 . 6 9 0.84 0 . 3 6 0 . 5 3 0.41 CEC 3 . 6 12.7 16.1 14.7 76.3 8 . 8 17.5 14.7 18.1 11.02 32.4 88.3 12.0 13.7 14.0 1 9 . 8 2 1 . 3 pH 4 . 3 4 . 6 5 . 3 4 .45 6.1 4 . 2 5.1 4.4 4 . 9 5 . 0 5 . 3 5 . 8 4.1 5.1 4.05 4 .15 4.1 Horizon D e s i g n a t i o n Bf Bf Bf Bf Any Bf Bf Bf Bf Bf Bf Cg Bf B f ( h ) Bf Bf Bt a 0 . 0 0 . 0 0 . 0 0 , 0 4 . 6 0 . 0 0 . 0 0 . 0 0 . 0 0.65 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 86.8 NJ 0 . 0 2 0.05 0.05 0.03 0.28 0.04 0.05 0 . 0 9 0 . 0 6 0.05 0.07 0.03 0.07 0.04 0.04 0.04 0 . 0 3 C/N 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 16 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 13 0 . 0 0 0.00 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 289 as 0 . 0 0 . 0 0 . 0 0 . 0 7.82 0 . 0 0 . 0 0 . 0 0 . 0 1.12 0 . 0 0 . 0 ' 0 . 0 0 . 0 0 . 0 0 . 0 14.75 P ppa 3 . 0 7 . 0 6 . 0 4 . 0 5 . 0 4 . 0 6 . 0 7 .0 5 . 0 14.3 5 . 0 12.0 8 . 6 6 . 0 5 . 0 12.0 . 6.0 Na 0 . 0 8 0 . 0 8 0 . 2 3 0.22 0.13 0.25 0.14 0.35 0.09 2.28 0.35 0.30 0 . 2 3 0.17 0.22 0 . 1 9 0 . 3 4 K 0.05 0.03 0.11 0 . 0 9 0.09 0 . 0 8 0.07 0 . 0 9 0.08 0.13 0.04 0.06 0 . 0 9 0.15 0 . 2 0 0 . 0 8 0.11 Ca 0.31 1.25 1 . 6 9 1 .09 13.6 0 . 6 6 2.4 0.47 0 . 0 6 1.54 3.71 5.48 1.34 2 . 9 6 1.11 2 . 2 0 . 5 0 Ng 0 . 0 7 0.10 0.45 0 . 3 8 1.07 0.10 0.63 0.11 0.16 0.24 0 . 6 0 2.04 0.10 0 . 8 6 0 . 3 2 0 . 4 0 0 . 0 7 CEC 4.1 16.5 8.0 11.3 41.7 7.4 16.1 12.0 16 .6 7 .33 1 9 . 9 16.9 4.9 8.8 8.8 1 2 . 3 26.4 pH 5 . 5 6 . 0 6 . 4 5 . 2 6.1 5 . 2 5.15 5 . 4 5.1 4.72 5 . 6 5.9 5.0 6.05 4.75 4 . 5 5 4 . 7 Horizon D e s i g n a t i o n IIC C Bt C Cg CB C Bt Beg) C Bt C C C BC C a 0 . 0 - 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.35 0.0 _ 0.84 - 0 . 0 0.0 . « 0.01 - 0 . 0 3 0.01 0.03 0.02 0.01 0.05 0.02 0.04 0.04 - 0.04 0 . 0 2 0 . 0 2 C/N 0 . 0 0 - 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0.00 9 0 . 0 0 - 21 - 0 . 0 0 0 . 0 0 -otu 0 . 0 - 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 6 0 0 . 0 - 1.43 - 0 . 0 0 . 0 -P ppa 4.0 - 3 . 0 6 . 0 6 . 0 2 . 0 2 . 0 5 . 0 3.0 0.65 8.0 - 10.0 - 4.0 4.0 -Na 0.11 - 0.19 0.18 0.14 0.22 0.21 0.44 0 . 0 8 2.27 0.24 - 0 . 1 9 - . 0.17 0 . 0 6 -K 0.03 - 0 . 0 9 0.05 0 . 0 9 0.05 0.03 0.11 0.04 0.15 0 . 0 7 - 0.01 - 0.15 0 . 0 7 -Ca 5.95 - 1.92 1 .03 3.45 0.26 0.28 0 . 4 9 0.22 2 . 8 2 2 . 3 8 - 1.14 - 1.29 1 . 9 0 -kg 0.43 - 0 . 9 8 0.44 1,92 0.04 0 . 0 6 0.11 0.07 0.73 0 . 3 6 0 . 0 7 - 0.41 0 . 4 0 -CEC 6 . 3 - 7.6 6 . 9 19.8 0 . 0 7 .3 23.1 9 . 3 4.72 1 6 . 8 - 11.3 - 13.5 6 . S -pH 7.1 - 6.55 5.95 6.55 5 . 7 5 . 2 0 5 . 7 5.25 5 . 1 0 6 . 2 - 5.65 - 5.0 5 . 3 Horizon D e s i g n a t i o n C IIC Cg C ( B C ) C CJ _ • _ _ 35.7 0 . 0 0 . 0 _ 0 . 0 _ _ - - 0 . 0 -18 _ - - - 1.31 0.01 _ 0.01 - 0 . 0 2 - _ _ 0.01 -C/N - - 27 0 . 0 0 - - 0 . 0 0 - 0 . 0 0 - - - 0 . 0 0 -m - - 60.69 0 . 0 - - 0 . 0 0 . 0 - - 0.0 P ppa - - - - 18.0 2 . 0 - 6 . 0 6 . 0 - - _ 5 . 0 -Na - - 0.33 0.22 - 0 . 0 8 - 0.28 - - - 0 . 0 7 -K - - _ - 0.22 0.05 - - 0.02 - 0.05 - - - . 0 . 0 6 -Ca - - - - 8.8 0.34 - 0 . 5 0 - 2.47 _ - - 2 . 0 5 -«4 - - 4.55 0 . 0 6 ' - 0.16 - 0 . 3 9 - - - - 0 . 5 0 -CEC _ - 79.3 0 . 0 - - 8 . 0 - 16.1 - - - - 4 . 4 -pH - - - - 3 . 0 5.75 - - 6 . 2 - 6 . 2 - - - - 5 . 5 5 -I l l The soil reaction of the litter layer is always acid, ranging from 4.2 to 6.15. The first mineral horizon is always the most acid and lower mineral horizons less so. CEC is highest in the L-H where it ranges from 44.0 to 143.3. CEC's of mineral horizons are considerably lower. Calcium dominates the exchange complex in all horizons. In the L-H horizon it ranges from 5.4 to 42.4 me/100 g. Magnesium is next most abundant followed by potassium and sodium. Three variants of this association are recognized, 1) abieto (lasiocarpae) - piceosum glaucae, 2) betulosum papyriferae, 3) populosum tremuloidis. 1) a b i e t o ( l a s i o c a r p a e ) - p iceosum g l a u c a e This is the most frequent subassociation of the association. It is the most advanced successional stage of the association. 2) betulosum p a p y r i f e r a e This variant of the Gymnocarpium association which is promoted by fires or logging is a serai stage to the re-development of the main association. The betulosum papyriferae is developed on the richer sites on which the association is formed. 112 The variant is differentiated primarily by a high preponderance of Betula papyrifera throughout the tree strata. The herb layer is dominated by a very high cover of A r a l i a nudioaulis but the high presence of Gymnocarpium dryopteris shows the affinity of the variant to the main association. The moss layers are significantly less developed. Total estimates for the are 2 and 4 per cent while those on decaying wood are slightly higher (2 to 6 per cent). 3) populosum t r e m u l o i d i s The populosum tremuloidis serai variant is promoted on the slightly drier sites of the Gymnocarpium association by either fire or logging. Sample plots studied were all promoted by fire. The three strata are dominated by Populus tremuloides throughout though in the lower sub-strata indications of the development of Picea glauca are strong. Plots 55 and 63 are young serai stages with Picea glauca only reaching the A3 while plot 20 is an older stage and Picea glauca and Abies lasiocarpa have both reached the A i . The shrub layer is dominated by Alnus sinuata. The most common herbs are Gymnocarpium dryopteris, Linnaea borealis and A r a l i a nudioaulis. As in the betulosum 113 papyriferae, the moss layers are poorly developed. Total estimates for the ranged from 8 to 15 per cent while those for the D£jw were slightly higher from 10 to 27 per cent. The higher estimate was found in the more mature sample plot. Soils in the populosum tremuloidis are not as rich in nutrients as those of the betulosum papyriferae. ALLIANCE: P i c e o (g laucae ) - A b i e t i o n l a s i o c a r p a e Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - A b i e t o ( l a s i o c a r p a e ) - P iceetum g l a u c a e (Re fe rence T a b l e s : 3 7 , 3 8 , 3 9 , 4 0 , 4 1 ) {Oplopanax A s s o c i a t i o n ) This association is one of the major forest ecosystems on hygric to subhydric sites in the Sub-boreal Zone. It is best developed on parent materials of alluvial nature along the edges of streams, lakes and rivers where the finer tex-tured silts and clays promote better availability of nutrients. It is also found along ravines on coarser textured glacial outwashes where the steeper slopes promote better influx of nutrients by seepage water. In all sites studied the lower-most soil horizons were wet and frequently a water table was Gymnocarpio ( d r y o p t e r i d i s ) Tab le 37 - Oplopanaco ( h o r r i d i ) Piceetum g laucae - A b i e t o ( l a s i o c a r p a e ) -C H A R A C T E R I S T I C C O M B I N A T I O N O F S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S I M P O R T A N T N O N - C O N S T A N T S T r e e Picea glauca Abies lasiocarpa S h r u b Abies lasiocarpa Oplopanax horridus Alnus sinuata Picea glauca Viburnum edule Cornus stolonifera Lonicera involucrata Ribes lacustre Rubus parviflorus R. idaeus Sambucus pubens H e r b Gymnocarpium dryopteris Cornus canadensis Rubus pubescens Tiarella unifoliata Streptopus amplexifolius Tiarella trifoliata Athyrium filix-femina Equisetum arvense Clintonia uniflora Galium triflorum Mitella nuda Linnaea borealis Streptopus roseus Maianthemum canadense Urtica l y a l l i i Actaea rubra Mertensia paniculata Aconitum columbianum Delphinium glaucum M o s s ( h u m u s ) Pleurozium schreberi Hylacomium splendens Ptilium crista-castrensis Plagiomnium medium Rhytidiadelphus triquetrus Brachythecium hylotapetum T a b l e 38 Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - A b i e t o ( l a s i o c a r p a e ) - P i c e e t u m g l a u c a e 115 Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage M i n e r a l S o i l Rock S o i l Hygrotope Trophotope E r o s i o n D r a i n a g e 1 2 3 4 5 6 7 8 9 13 14 134 41 47 48 65 78 77 400 400 400 400 400 400 400 400 400 3 / 8 / 6 8 2 2 / 8 / 6 8 2 1 / 8 / 6 8 2425 2425 2500 MR TL TL h i l l s i d e 8/7/67 10/7/67 11/7/69 13/6/68 13/7/68 14/7/68 2250 2250 2275 2300 2300 2300 ML ML CR ML PR PR a l l u v i a l t e r r a c e ( c r e e k o r l a k e ) — f l a t ( s l i g h t l y c o n c a v e ) -E 0-15 SW 2 - 3 1 1-2 SE 2 - 3 a b s e n t 5 a b s e n t a b s e n t h y g r i c ( s u b h y d r i c ) • e u t r o p h i c n i l ( s l i g h t w a t e r ) impeded 26 A t o t a l 40 55 65 40 65 45 45 55 75 A 1 25 35 60 35 45 40 40 50 65 A 3 5 3 10 12 20 5 40 20 12 7 18 8 12 6 - 5 5 10 B t o t a l 88 90 95 65 70 90 90 95 85 B1 8 8 35 13 5 7 6 20 10 h 80 85 70 60 65 90 85 85 80 C 55 75 75 • 60 45 75 60 60 65 D t o t a l 25 30 50 25 50 50 60 65 65 Dh 8 10 30 10 30 30 20 35 45 0dm 18 20 20 15 20 20 40 30 20 Ea 1 1 0 . 5 0 . 5 1 2 0 . 5 2 3 Eb 2 1 1 2 2 2 2 2 2 Ec 3 - 1 1 1 1 1 1 1 P l o t Coverage ( ? ) L i t t e r 80 60 55 60 75 70 50 45 60 D e c a y i n g Wood 20 40 45 40 25 30 50 55 40 1 6 - 0 1 0 - 0 - 5 - 0 3 - 0 8 - 0 7-0 7 - 0 7-0 2 0 - 7 0 - 3 8 _ 0-15 0 - 2 3 0-19 0 - 5 0 - 4 0 - 2 0 3 7-22 3 8 - 4 0 _ 15-65 2 3 - 2 6 19-42 5 - 2 2 4 - 2 6 2 0 - 4 5 4 22-24 4 0 - 4 4 - > 6 5 2 6 - 8 5 42-75 2 2 - 3 4 26-51 45-75 5 2 4 - 3 9 44-73 - - > 8 5 > 7 5 34-75 51-53 > 7 5 6 > 3 9 72-80 - - - - > 7 5 5 3 - 8 0 -P a r e n t M a t e r i a l AO AO AO AO AO AO AO AO GO Table 39 Gyonotarpto ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - Abieto ( l a s i o c a r p a a ) . - Ptceetuo g l a u c a * 116 Number of P l o t s t 2 3 4 5 6 7 8 9 P l o t d o . 13 14 134 41 47 48 65 78 77 P l o t S l H ( 0 ? ) 400 400 400 400 400 400 400 400 400 E l e v a t i o n ( f t ) 2250 2250 2275 2300 2300 2300 2425 2425 2500 Stratum Ddi Eb Species No. 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 •60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 82 83 Species P i c e a g l a u c a Abies l a s i o c a r p a B e t u l a p a p y r i f e r a Abies l a s i o c a r p a P i c e a g l a u c a B e t u l a p a p y r i f e r a Abies l a s i o c a r p a P i c e a g l a u c a B e t u l a p a p y r i f e r a Abies l a s i o c a r p a Alnus s i n u a t a P i c e a g l a u c a Oplopanax h o r r l d u s Viburnum edule Cornus s t o l o n l f e r a Rlbes l a c u s t r e Rubus p a r v l f l o r u s L o n l c e r a I n v o l u c r a t a Rubus Idaeus Abies l a s i o c a r p a Alnus s i n u a t a Sambucus pubens Amelanchier a l n i f o l i a Sorbus s i t c h e n s i s Gyanocarplua d r y o p t e r i s Cornus canadensis Rubus pubescens T i a r e l l a u n i f o l i a t a Streptopus a m p f e x l f o l l u s T i a r e l l a t r i f o l i a t a A t h y r l u a f i l l x - f e m i n a Equlsetua arvense Eguisetua s y l v a t l c u n C l i n t o n i a u n i f l o r a G a l l u a t r i f l o r u a II t e l l a nuda Linnaea b o r e a l i s Streptopus roseus Rubus pedatus A r a l i a n u d l c a u l l s Lycopodlua annotinua ( M i c a l y a l l l l Ribes hudsonianua S m i l a c i n a racemosa Actaea r u b r a E p i l o b i u m a n g u s t l f o l l u a D r y o p t e r i s a u s t r l a c a P y r o l a a s a r l f o l l a A r n i c a l a t l f o l l a Calamagrostis canadensis l o n l c e r a I n v o l u c r a t a Halantheraum canadense Alnus s i n u a t a P y r o l a secunda Disporum hookeri fertensla p a n l c u l a t a Sambucus pubens Aconltum columblanua S p i r a e a b e t u l l f o l l a Abies l a s i o c a r p a P e t a s l tes palmatus Vaccinium menbranaceua P i c e a g l a u c a Amelanchier a l n i f o l i a P l e u r o z l u a s c h r e b e r i Hylocomium splendens P t i l i u m c r i s t a - c a s t r e n s l s PIaglomnium ctedluo Rhytldladelphus t r l q u e t r u s PIaglomnium drumnondll f l o n l a a u s t r l a c a Plaglomnlua c l l e a r e Orepanocladus uncinatus " " Brachythecium hylotapetua Eurhynchlum s e r r u l a t u n P l a g l o t h e c l u a d e n t l c u l a t u a Hypnuo l i n d b e r g i l Brachythecium s t a r k e l Campyliun h i s p i d u l u a . P t i l i u m c r i s t a - c a s t r e n s l s Pleurozium s c h r e b e r i :Q Dicranum fuscescens P t i l l d i u m pulcherrimum Pholomnium medium Drepanoclajus uncinatus Hylocomium splendens Brachythecium hylotapetuo Oicranum t a u r l c u o Brachytheclua salebrosum R h y t l d l a d e l p h u s t r l q u e t r u s l o p h o z i a e x c i s a P e l t i g e r a aphthosa B a r b l l o p h o z l a l y c o p o d i o l d e s PIaglomnium rug I cum Jameson!el l a autumnal I s Brachythecium s t a r k e l C e p h a l o z l e l l a d l v a r l c a t a Brachythecium a l b i c a n s A l e c t o r i a amerlcana A l e c t o r i a sarmentosa Usnea c e r a t i n a A l e c t o r i a americana A l e c t o r i a sarmentosa Hypogymnla enteromorpha P a r m e l l o p s l s ambigua L o b a r i a p u l a o n a r l a Usnea c e r a t i n a C e t r a r i a g l a u c a Parcel l o p s l s aablgua Olcranua fuscescens Orepanocladus uncinatus Hypogymnla enterosorpha P t i l l d i u m pulcherrlmua Lophozia e x c i s a Brachythecium s t a r k e l Lophozia v e n t r l c o s a B a r b l l o p h o z i a hatcher! c l e s s i g n i f i c a n c e Constancy A v e r . S p e c l e s S i g n i f i c a n c e Sporadic S p e c i e s : «1 84 Populus tremuloides 77 (2) 100 S t e l l a r l a c r l s p a T 101 I h a l i c t r u m o c c l d e n t a l e * 3 85 Alnus t e n u l f o l l a 13 (1) 102 Vaccinium o v a l i f o l t u r n 103 V e r a t r u a v l r i d e »1 86 Sorbus s c o p u l l n a 13 (2) Viburnum edule h 87 Acer glabruo 77 (5) Oh 104 81eph3rostoma t r l c h o p h y l l u a 88 Rosa gymnocarpa 48 (4) Brachythecium a l b i c a n s Brachythecium salebrosum c 89 A q g i l e g l a f o r a o s a • 48 (2) 105 C l n c l l d i u n styglum 90 C l r c a c a aTplna 14 (1) 106 llylocomlua umbratua Cornus s t o l o n l f e r a 14 (4) 107 Knluia marginatum 91 C y s t o p t c r i s f r a g l l i s 13 (•) 108 Kniua spinulosum 92 Delphinium glaucum 14 (•) 109 P e l t i g e r a canina 93 F.qulsetun s c i r p o i d e s 47 (2) Plaglomnium r u q l c u n 94 Goodyera o b l o n g i f o l l a 65 (1) 110 P o l y t r l c h u s Junlperlnuo 95 Goodyera repens 77 (3) 111 Sphagnum squarrosum 96 Osnorhlza c h t l e n s l s 14 (1) 112 Rhlzomnlum nudum 97 P y r o l a v l r e n s 77 (1) 98 Rlbes l a x l f l o r u a 14 (J) Od. B a r b l l o p h u z l a hatchor! 99 Rosa a c l c u l a r i s 14 (1) 113 Cladonia chlorophaea Rosa gymnocarpa 41 (1) 114 Dicranum scoparlun Sorbus s i t c h e n s i s 65 (•) 115 Eurhynchlum praolongum 7 7 7 7 8 V 42.8 4 5 IV 7.1 • • * II 1.6 5 5 3 V 6 . 8 5 4 5 IV 6 . 2 • 3 • II 1 . 0 3 2 2 4 V 7.7 1 III 1 . 5 • • II 0 . 5 . ' 2 3 5 5 V 8 . 6 2 3 3 IV 3 . 0 2 2 III 1.1 8 6 4 9 9 V 5 2 . 5 5 5 4 5 4 V 10.2 2 2 3 3 V 5 . 5 2 5 2 3 3 V 5.1 6 7 5 2 IV 13.2 4 7 5 4 . IV 9 . 5 3 3 3 IV 3 . 0 4 3 5 III 3 . 2 2 II 2 . 7 3 4 II 1 .7 . II 1 . 0 2 • 2 II 0 . 7 4 7 6 8 6 V 3 5 . 7 2 4 5 4 6 V 11.0 5 5 4 2 + V 7 . 0 3 3 5 1 V 5 . 2 2 3 2 2 2 V 2 . 8 4 6 5 IV 10.5 2 5 5 2 IV 9 . 3 6 4 4 IV 6 . 8 4 6 IV 5 . 3 2 2 3 4 IV 3.1 3 3 3 3 IV 2 . 9 3 4 . 3 3 IV 2 . 8 3 4 . 3 3 IV 2 . 8 2 2 2 4 2 IV 2 . 2 7 6 6 III 12.1 3 6 III 4.1 3 5 III 2 . 5 2 2 M l 2 . 5 1 3 4 III 1 . 8 2 2 , 2 3 III 1.4 2 1 III 0.6 1 2 III 0 . 6 II 2 . 9 3 II 2.1 . 5 II 1 . 9 ! 2 5 II 1 .9 4 . , II 1 . 5 2 2 4 II 1 .3 . . II 1 . 0 . 3 II 0 . 8 2 2 II 0 . 8 3 2 II 0 . 7 . II 0.6 2 1 1 II 0 . 6 2 II 0 . 5 2 11 0 . 5 2 1 II 0 .4 2 1 II 0 .4 II 0 . 3 • • • II 0 . 2 4 3 4 2 5 V 5 . 0 2 2 3 2 3 V 3 . 2 5 S 3 2 5 IV 6 . 8 3 S 3 6 3 III 7.1 7 . . 7 II 9 . 2 2 • * II 2.1 3 1 II 0 . 6 1 3 II 0 . 6 J - , I I 0 . 5 1 II 0 . 5 1 II 0 . J . . . 1 . 11 0 . J 1 1 , . II 0 . 3 II 0 . 3 i i • II 0 . 3 4 S 5 5 f V 12.8 2 4 5 2 5 V 7.1 1 1 4 V 2 . 6 1 I 1 1 1 V 1 . 3 2 4 . 4 . IV 3 . 5 1 1 z 1 1 IV 1 .2 3 2 III 1 .7 t 4 1 III 1 . 3 2 . 1 • • III 0 . 7 5 4 II 2 . 5 4 , . 4 II 1 . 6 3 1 II 0 . 7 1 2 II O.S 1 t „ 11 0 . 5 II 0 . 5 1 1 II 0 . 3 II 0 . 3 1 1 • • II . 0 . 3 • • II 0 . 3 2 2 1 2 V 1 . 8 3 4 1 1 2 IV 2 . 2 • • II 0 . 3 2 1 , 1 1 V 1 . 6 3 2 1 1 3 IV 1 . 9 1 1 2 1 - • . IV 1 . 2 1 1 1 IV 1 . 0 2 3 1 . . III 1 . 2 II 0 .4 • • • II 0 . 4 1 1 1 2 IV 1 . 3 1 t 1 IV 1.1 1 1 III 0 . 7 1 1 1 1 III 0.6 II 0 . 5 II 0 . 3 1 II 0 . 3 ) 1 II 0 . 3 • 1 1 II 0 . 3 13 (3) 116 Lophocolea minor 78 (4) 14 (1) Lophozia v e n t r l c o s a 14 (1) 65 (2) Mnlum s p i n u l o s u a 13 (1) 78 (7) 117 O r t h o c a u l l s attenuatus 13 (1) 14 (4) 118 P e l t i g e r a membranacea 78 (1) 119 P o h l i a nutans 13 (1) 78 (1) 41 (1) 14 (1) Ea L o b a r i a p u l a o n a r l a 134 (1) 13 (1) 78 (1) Eb Olcranua fuscescens 78 (4) 47 (1) 78 (1) Ec A l e c t o r i a amerlcana 13 (4) A l e c t o r i a sarmentosa 47 (1) 77 (1) 120 B a r b i l o p h o z i a l y c o p o d i o l d e s . 65 (1) 41 (4) 121 Brachythecium r e f l e x u a 13 (2) 13 (2) Brachythecium salebrosum 13 (1) 13 (1) 122 Campyllum chrysophyllum 41 (1) 78 (4) C e p h a l o z l e l l a d i v a r i c a t e 14 (1) C e t r a r i a g l a u c a 14 (2) 134 (2) C e t r a r i a J u n i p e r l n a 78 (1) 14 (1) Oicranum t a u r l c u a 14 (1) 13 (2) L o b a r i a p u l a o n a r l a 65 (1) 14 (4) Plaglomnluffl r u g l c u a 77 (1) 117 reached. Seepage appears to be permanent in this association and drainage is impeded. Soils are all deep and buried soil horizons are often encountered. These result from overlaying by alluvial material brought in during the spring runoff period. Wali (1969) found the soils in this association to be of several types: Ortho Humo Ferric Podzols, Gleyed Mini Humo Ferric Podzols, Degraded Eutric Brunisols or Humic Eluviated Gleysols. Roots are abundant throughout the entire solum, being most common in the upper horizons due to the shallower rooting nature of many of the herbs. Slope gradients are generally shallow, ranging from 0 to 3 degrees but on sites where seepage is efficient the slopes may be considerably higher (plot 77 has a slope of 26 degrees). The Oplopanax association seems to show no preference to a specific exposure. The ground is covered with litter as deep as 10 cm. which occupies from 45 to 80 per cent of the plot surface, the remaining portion being covered with decaying wood. Exposed mineral soil may occur but its percentage cover of the plot is always small. The uppermost layer of the forest canopy is always dominated by Picea glauca although Abies lasiocarpa may play a significant role. In the A2 layer, the more shade tolerant 118 Plate 14: General view of the Gymnocarpio (dryopteridis) -Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae. Note the abundance of Abies lasiooarpa in the shrub layer. The fern Gymnocarpium dryopteris is common beneath Oplopanax horridus. Plate 15: Detail of the stem and leaves of Oplopanax horridus. I 119 Abies becomes more common than Pioea and in the lowermost tree layer Abies lasiocarpa dominates and Picea shows a low constancy. Picea glauca is shade intolerant in the Oplopanax community. Betula papyrifera may occur sporadically in all tree layers. The Bx (tall shrub) stratum is again dominated by Abies lasiocarpa. Alnus sinuata is also an important member. The B2 (lower shrub) stratum is always dominated by Oplopanax horridus which has an average species significance of 8 and is an exclusive species to the association. Also of significance in this association are: Viburnum edule, Cornus stolonifera, Ribes lacustre and Lonicera involucrata. Total cover of the B stratum was estimated to between 65 and 95 per cent. The herb layer is also well developed with total herb estimates ranging from 45 to 75 per cent. Gymnocarpium dryopteris is the most abundant species in this stratum having an average species significance of 7 and cover of 35 per cent. The next most abundant herb is Cornus canadensis which is ubiquitous in the Sub-boreal forest eco-systems though i t exhibits very vigorous growth in this association. Rubus pubescens, Tiarella unifoliata, Tiarella trifoliata and Streptopus amplexifolius are the most constant species while Athyrium filix-femina, Equisetum arvense, E. sylvaticum, Clintonia uniflora, Galium triflorum, Mitella nuda, Linnaea borealis and Streptopus roseus occur in greater than 60 per cent of the sample plots. 120 The richness of the site is indicated by the fre-quent occurrence of Tiarella trifoliata, Athyrium filix-femina and Galium triflorum. Occasional occurrence of Streptopus roseus, Disporum hookeri, Mertensia panioulata, Aoonitum oolumbianum and Delphinium glauoum also indicate the high nutrient status of the Oplopanax sites. The presence of Athyrium filix-femina and Oplopanax horridus indicate seepage conditions. Indicators of surplus nitrates in the soil are such species as Tiarella trifoliata, Galium triflorum, Urtica l y a l l i i and Sambucus pubens. The m o s s layer occurring on humus is moderately developed with total cover estimated to be between 8 and 40 per cent. Hylocomium splendens and Pleurozium schreberi are the most abundant constant species. Ptilium crista-castrensis though showing a high C o n s t a n c e is also better developed on decaying wood. Of particular importance in this layer are: Plagiomnium medium, P. ciliare, P. rugicum, Brachythecium hylotapetum and Rhytidiadelphus triquetrus. Hylocomium umbratum was found only once throughout the study where it occurred in this association. The mosses on humus had among them one new species to British Columbia: Eurhynchium serrulatum which was found in two sample plots with a species significance of 1. Determination of this species was made by V.J. Krajina. This species was also found on bark of Populus tremuloides. T a b l e 40 S o i l P h y s i c a l A n a l y s i s Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - A b i e t o ( l a s i o c a r p a e ) - P i c e e t u m g l a u c a e Number of P l o t s 1 2 3 4 5 6 7 8 9 P l o t No. 13 14 134 41 47 48 65 78 • 77 H o r i z o n Ae H Ae Ahe Ck Ae Aei, Ahe Ae T e x t u r a l C l a s s SL - SL SL SL SL SL L SL Sand ( ? ) 6 9 . 2 - 7 0 . 0 6 1 . 2 6 6 . 8 77 .2 4 9 . 2 3 4 . 6 5 6 . 0 S i l t ( ? ) 2 7 . 6 - 2 1 . 2 1 2 . 6 3 1 . 2 7 . 8 4 3 . 8 3 8 . 4 3 6 . 0 C l a y ( ? ) ' 3 . 2 - 8 . 8 2 6 . 2 2 . 0 1 5 . 0 7 . 0 2 7 . 0 8 . 0 H o r i z o n Bf C Bf Btg H Bm B f 1 Bf Bf T e x t u r a l C l a s s SL L SL C - SL S i L L LS Sand ( ? ) 7 2 . 8 4 4 . 0 6 6 . 0 2 8 . 4 - 7 9 . 8 3 1 . 6 3 9 . 6 8 9 . 0 S i l t ( ? ) 2 5 . 0 3 9 . 4 2 5 . 6 2 2 . 6 - 1 0 . 4 6 1 . 4 3 4 . 4 1 . 0 C l a y ( ? ) 2 . 2 1 6 . 6 8 . 4 4 9 . 0 - 9 . 8 7 . 0 2 6 . 0 1 0 . 0 H o r i z o n Aegj IIAhe C _ Ck BCgj Ae£ Cg C T e x t u r a l C l a s s SL L S L . - LS SL LS SL S Sand ( ? ) 7 0 . 4 5 0 . 8 5 4 . 8 - 7 5 . 2 8 2 . 4 7 7 . 2 5 9 . 6 9 2 . 6 S i l t ( ? ) 2 5 . 4 3 3 . 6 3 4 . 8 ' - 2 2 . 8 4 . 2 1 7 . 8 2 4 . 0 3 . 4 C l a y ( ? ) 4 . 2 1 5 . 6 1 0 . 4 - 2 . 0 1 3 . 4 5 . 0 1 6 . 4 4 . 0 H o r i z o n Bmg Ae _ _ Cg B f 2 I l C g -T e x t u r a l C l a s s LS SL . - - - - LS CL -Sand ( ? ) 7 8 . 4 5 4 . 0 - - - - 7 4 . 6 4 1 . 6 -S i l t ( ? ) 1 8 . 0 3 2 . 4 - - - - 2 4 . 4 2 7 . 6 -C l a y ( ? ) 3 . 6 1 3 . 6 - - - - 1 . 0 3 0 . 8 -H o r i z o n MCg B f t _ _ _ I l C g _ T e x t u r a l C l a s s S . SL - - - - - L -Sand ( ? ) 9 6 . 0 7 3 . 6 - - - - - 4 9 . 2 -S i l t ( ? ) 2 . 8 1 8 . 8 - - - - - 2 6 . 8 -C l a y ( ? ) 1 . 2 7 . 6 - - - - - 2 4 . 0 -Table 4 1 S o l i C h e a l c a l A n a l y s t ! Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) • A b i e t o ( l a s i o c a r p a e ) - Piceetum glaucae 122 Number of P l o t s 1 2 3 4 5 6 7 8 9 P l o t No. 13 H 134 41 47 48 65 78 77 Horizon D e s i g n a t i o n L-H L-H L-H Ct 1 U 37.4 16.65 NJ 0 . 8 8 1.54 1.04 C/N 13 24 16 m 19.48 64.48 29.05 f ppa 19.0 18.0 68.12 Na 0.17 4 . 0 4.22 K 0.76 1.09 1.92 Ca 21.6 25.5 15.22 Hg 7 . 6 4.53 2.70 CEC 38.1 6 2 . 2 36.4 pH 4.95 5.85 4.73 Horizon D e s i g n a t i o n Ae H Ae CJ 0 . 0 21.5 2.21 HI 0 . 0 8 1.10 0.14 C/N - 20 16 oat - 37.07 3.81 P ppa 7 . 0 2 2 . 0 7 .58 Na 0.10 0.41 1.80 K 0 . 0 6 0 . 5 6 0 . 2 0 Ca 2 . 4 0 2 3 . 6 2 . 9 9 Mg 1.10 4 . 3 3 0.55 CEC 15.4 38.5 9.41 pH 4 . 2 5 . 2 " 4 . 6 5 Horizon D e s i g n a t i o n Bf C 8 f Ct 0 . 0 0 . 0 0 . 4 9 N l 0 . 0 6 0.12 0.04 C/N - _ 12 out - - 0.85 P ppa 9 . 0 17.0 13.3 Na 0 . 0 9 0.72 1.67 K 0.07 . 0 . 0 6 0 . 0 9 Ca 1.5 4 . 9 0 2.51 • g 0.73 0 . 5 7 0 . 5 3 CEC 16.3 2 3 . 9 9 . 9 0 pH 4 . 3 4 . 6 5 . 1 0 Horizon D e s i g n a t i o n AegJ II Ahe C Ct 0 . 0 0 . 0 0 . 3 2 Nt 0 . 0 3 0.19 0.02 C/N - -out • - 0 . 5 5 P ppa 8 . 0 16.0 3 . 3 8 Na 0 . 0 9 0 . 0 8 2.17 K 0 . 0 3 0.07 0.14 Ca 1.1 5 . 8 2.24 M, 0 . 4 8 1.45 0 . 9 0 CEC 16.3 17.7 4 . 9 0 pH 4 . 3 4 . 8 5 . 3 9 Horizon D e s i g n a t i o n Bag Ae Ct 0 . 0 0 . 0 -NJ 0.04 0 . 0 3 -C/N - - -OMJ - • -P ppa 2 . 0 14.0 -Na 0 . 0 9 0.05 -K 0.04 0 . 0 9 -Ca 0 . 9 2.4 -» g 0.43 0 . 6 0 -CEC 4 . 8 12.3 -pH 4.45 4.65 -Horizon D e s i g n a t i o n I l C g B f t Ct 0 . 0 0 . 0 _ hi 0.01 0.04 -C/N - - -ow - - -P ppa 0 . 0 7 . 0 -Na 0.10 0 . 0 6 -K 0 . 0 3 0.09 -C i 1.7 2 . 0 -»g 0 . 8 2 1.43 -CEC 2 . 2 10.1 -pH 4.85 4 . 9 -L-H L-H L-H L-H L-H L-H 43.5 15.3 17.1 3 I . 5 52.S 3 8 . 9 1.86 0 . 6 0 0.83 0.94 1.46 1 .20 23 26 21 34 36 32 75.0 26.38 29.48 54.31 91.03 67. 0 6 17.0 19.0 9 . 0 19.0 19.0 1 3 . 0 0.44 0 . 3 9 0.22 0 . 5 8 0.44 0 . 4 6 0.95 1.05 0.81 1.35 1.34 2 . 4 6 42.2 2 9 . 6 15.5 13.7 10.5 12.7 15.6 3.2 3 . 8 4.4 3.4 3 . 2 16.5 3 5 . 7 21.4 71.4 136.7 81 .6 5.45 6 . 2 4 . 2 4 . 5 4 . 3 4 . 9 Ahe Ck Ae Ao| Ahe Ae 4 . 6 1 .8 0 . 0 3 . 7 2 . 6 0 . 0 0 . 3 2 0 . 0 8 0.05 0.26 0.21 0 . 0 5 14 23 - 14 12 -7.93 3.10 - 6 . 3 8 4.48 -8 . 7 7 . 0 8 . 0 3 . 0 4 . 0 1 . 0 0.25 0.16 0.22 0.34 0.26 0 . 1 9 0.21 0 . 0 8 0.10 0.17 0.23 0.11 2 0 . 2 14.5 2.12 2.44 5 . 9 2 . 5 6 . 8 0.62 0.44 0.73 0.64 0 . 5 0 28.4 12.5 23.4 17.0 40.1 4 . 9 5 . 8 7.4 4 . 7 4 . 0 3 . 6 * . 2 5 etg H Ba B f , Bf 8 f 0 . 0 29.4 0 . 0 0 . 0 0 . 0 0 . 0 0.04 1.02 0 . 0 6 0.12 0 . 0 8 0 . 0 5 29 - - - -- 5 0 . 6 9 - _ -7.0 2 1 . 0 4 . 0 6 . 0 6 . 0 2 . 0 0.32 0 . 3 0 0 . 2 0 0 . 3 6 0 . 2 9 0 . 2 3 0.14 0.14 0 . 0 6 0.14 0.10 0.10 13.0 4 5 . 0 2.16 1.33 3.86 2.11 5 . 5 7.4 0.42 0.25 0 . 3 6 0 . 3 2 37.1 5 4 . 0 13.7 18.3 2 3 . 5 2 . 8 6 . 6 6 . 8 5.25 4.35 4 . 5 4 . 6 Ck • BCgJ A e j Cg C _ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 - 0.07 0.03 0.03 0.04 0 . 0 2 -4 . 0 6 . 0 4 . 0 6 . 0 2 . 0 - 0 . 2 0 0.19 0 . 5 0 0 . 3 3 0 . 2 5 - 0.04 0.06 0.04 0.10 0.11 - 13.7 1.64 1 .53 2.94 1 .67 - 0.63 0 . 4 0 0 . 0 8 0.44 0 . 2 8 - 9 . 6 1 8 . 5 11.1 21.4 1 . 8 - 7 . 3 5.05 4.35 5.05 5 . 1 5 Cg 8 f 2 I l C g _ _ 0 . 0 0 . 0 _ - - - 0.04 0.07 -- - -2 . 0 3 . 0 -- - - 0.23 0.24 -- - - 0.04 0.17 - • - 2.70 4 . 4 3 -- - - 0.27 1.07 - - 14.8 13.8 -- - - 4.65 5.25 -I l l C g _ _ _ _ 0 . 0 -- - - - - 0.04 -- - - -4 . 0 -_ 0.26 _ _ 0.13 -- - - - 3.75 -13.8 _ - 5 . 3 -123 The moss layer on decaying wood is generally better developed than that on humus, the total moss cover estimates ranging from 15 to 50 per cent. Ptilium crista-castrensis and Pleurozium schreberi are the dominant mosses though Dicranum fuscescens is also highly constant. Other typical decaying wood species are Drepanocladus uncinatus, Dicranum tauricum and Brachythecium salebrosum. Considerable diversity is found among the hepatics on decaying wood and they show a high affinity with those found as epiphytes on the base of trees. Ptilidium pulcherrimum is the most constant of these. This species is also common in the layer where it grows on dead mosses. Sporadically occurring in the D£jw are Lophozia excisa, L. ventricosa, Barbilophozia lycopodioides, B. hatcheri, Cephaloziella divaricata, Lophocolea minor and Jamsoniella autumnalis. Epiphytes exhibit a reasonable diversity, the most species being found in the E^. Alectoria americana and A. sarmentosa are highly constant in the and Eg while Hypogymnia enteromorpha and Parmeliopsis ambigua show a high constancy in the Eg and E^. Characteristics of the soil are shown in Tables 40 and 41. The soil reaction of the litter-humus layer is always acid. The average pH was 5.0 and the range from 4.2 to 6.2. Carbon/nitrogen ratios are highest in the litter-humus 124 layer and tend to decrease with depth. Cation exchange capacity is also highest in the L-H horizon where the higher quantities of organic matter promote a high exchange complex. CEC's of the mineral horizons are appreciably lower. The exchangeable cation complex is dominated in all cases by calcium in all horizons with magnesium being available in the next highest quantities. Sodium and potassium are present in considerably lower amounts. D r e p a n o c l a d o ( r e v o l v e n t i s - v e r n i c o s i ) - C a r i c e t a l i a l i m o s a e - c h o r d o r r h i z a e Drepanoclado (revolventis - vernicosi) - Caricetalia limosae - chordorrhizae is composed of one alliance, the Drepanocladion revolventis - vernicosi and two associations. It is the most common order in the low moors of the zone and is also extensively developed on mires that are formed as off shoots of rivers such as the Crooked River. The order is similar to the Drepanocladetalia exannulati (Krajina, 1933) and the Caricetalia fuscae (Koch, 1928) of Europe. The alliance counterpart in Europe has been described as the Caricion fuscae (Koch, 1926). 125 Typical characterizing species for this order and alliance are Drepanocladus revolvens, Drepanocladus vernicosus, Carex ahordorrhiza, and C. limosa, Drosera rotundifolia and D. anglica are also important floristic components. The sites on which this order occurs are all hydric, free water being present in the soil at all times of the year. Flooding is extensive and in some years the sites are not released from total water coverage. ALLIANCE: DrepanocI ad ion r e v o l v e n t i s - v e r n i c o s i Meesio ( t r i q u e t r a e ) - Menyantho ( t r i f o I i a t a e ) - S c h e u c h z e r i o ( p a l u s t r i s ) - C a r i c o ( l imosae - c h o r d o r r h i z a e ) - S a l i c e t u m p e d i c e l l a r i s (Re ference T a b l e s : 42 ,43 ,44 ,45 ) {Salix pedicellaris A s s o c i a t i o n ) This association develops in the wettest, lowest parts of the low moors where water often covers the surface until late July or early August. During very wet years the water table does not drop below the surface. The hygrotope is judged to be hydric. Free water is present in the soil at all times. It is the most extensive of all muskeg Mees i o Tab le 42 ( t r i q u e t r a e ) - Menyantho ( t r i f o I i a t a e ) -C a r i c o ( l imosae - c h o r d o r r h i z a e ) - Sal S c h e u c h z e r i o ( p a l u s t r i s ) -i ceturn ped i ce I l a r i s C H A R A C T E R I S T I C C O M B I N A T I O N OF S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S (60-100%) I M P O R T A N T N O N - C O N S T A N T S S h r u b Salix pedicellaris H e r b Menyanthes trifoliata Carex ahordorrhiza C. limosa Potentilla palustris Scheuahzeria palustris Equisetum variegatum Andromeda polifolia Eriophorum viridi-carinatum Triglochin maritima Utricularia intermedia Drosera anglica Tofieldia glutinosa Carex lasiocarpa Carex aquatilis M o s s ( h u m u s ) Drepanocladus s p p . Meesia triquetra Sphagnum teres Sphagnum subnitens Riccardia multifida In s o m e s i t e s Drepanocladus vernicosus i s d o m i n a n t w h i l e i n o t h e r s D. revolvens p l a y s a m o r e i m p o r t a n t r o l e . ro cn T a b l e 43 M e e s i o ( t r i q u e t r a e ) - Menyantho ( t r i f o l i a t a e ) - S c h e u c h z e r i o ( p a l u s t r i s ) - C a r i c o ( l i m o s a e - c h o r d o r r h i z a e ) S a l i c e t u m p e d i c e l l a r i s 127 Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure S l o p e G r a d i e n t L a y e r Coverage A t o t a l A1 A 2 A 3 B t o t a l B1 B 2 C 0 t o t a l Dh Drltl UOII Ea iEb Ec 1 122 100 / 6 / 6 9 2250 2 3 4 5 6 7 8 120 121 123 124 125 126 127 100 100 100 100 100 100 100 '6/69 17/6/69 1 8 / 6 / 6 9 8 / 6 / 6 9 8 / 6 / 6 9 18/6/69 18/6/69 2250 2250 2330 2330 2330 2330 2330 C r o o k e d R.- Bear Lake bog • f l a t ( s l i g h t l y c o n c a v e ) -n e u t r a l 0 d e g r e e s 30 30 40 3 8 8 4 8 30 30 40 3 8 8 4 8 60 75 60 50 40 35 30 35 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 P l o t C o v e r a g e {%) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock S o i l 100 100 100 Hygrotope T r o p h o t o p e E r o s i o n D r a i n a g e Sample H o r i z o n Depth (cm) 100 100 a b s e n t a b s e n t a b s e n t h y d r i c p e r m e s o t r o p h i c n i l 100 100 100 p o o r a s i n g l e s u r f a c e sample was t a k e n i n t h e t o p 12 i n c h e s P a r e n t M a t e r i a l c u m u l o s e , o r g a n i c Beesio ( t r i q u e t r a e ) - Menyantho ( t r l f o U a t a e ) - Scheuchzerio ( p a l u s t r i s ) -Table 44 • C a r i c o (limosae, chordorrhizae) - Salicetum p e d i c e l l a r i s Nunher'of P l o t s 1 2 3 4 5 6 7 8 Plot No. 122 120 121 123 124 125 126 127 P l o t S i z e ( o 2 ) 100 100 100 100 100 100 100 100 E l e v a t i o n ( f t ) 2250 2250 2250 2330 2330 2330 2330 2330 Stratuo S p e „ c i e s No. Species Species s i g n i f i c a n c e Constancy Aver.Specles S i g n i f i c a n c e ! S a l l x p e d i c e l l a r i s Betula pumila 6 6 \ 3 2 3 2 3 \ V II 14.5 0 . 9 Dh 3 Menyanthes t r i f o l i a t a 6 4 Carex c h o r d o r r h i z a 6 5 Carex limosa 4 6 P o t e n t i l l a p a l u s t r i s 4 7 Scheuchzerla p a l u s t r i s 3 8 Equisetum varlegatua 2 . 9 Androceda p o l l f o l l a 2 10 Eriophorum v i r i d i - c a r l n a t u m 2 11 T r i g l o c h i n marittmuu 12 U t r i c u l a r l a Intermedia 2 13 Orosera a n g l l c a 2 14 T o f l e l d i a g l u t l n o s a 1 15 Carex l a s i o c a r p a 1 16 Carex a q u a t i l i s 3 17 Oxycoccus microcarpus . 18 Carex lanuginosa 1 19 Trlchophorum alpinum 1 20 Gaultheria h i s p i d u l a 1 21 Drosera r o t u n d i f o l i a 2 22 Weesla t r l q u e t r a 4 23 Sphagnum teres 2 24 Drepanocladus vernicosus 25 Sphagnum subnitens 4 26 P o h l i a nutans 27 Orepanocladus revolvens 8 28 Tonenthypnum nttens 29 Aulacomnium p a l u s t r e 30 Cal11 ergon stramlneun 2 31 Bryum pseudotriquetrum V V V V V V V V IV IV IV IV IV III III III III II V V IV IV 18.2 12.7 12.6 6.1 4 . 3 3 . 8 3 . 0 1 . 9 7 . 0 4.5 2.8 2 . 3 1 .9 1.6 1.3 1.1 0.6 1.6 0 . 5 12.6 2 . 7 45.1 3 . 8 0 . 7 26.5 0 . 8 0 . 8 0 . 6 0.1 Sporadic S p e c i e s : C 32 Carex r o s t r a t a 121 (1) 33 Equlsetua p a l u s t r e 122 ( l ) 34 Habenaria hyperborea 125 (+) Oh 35 Cratoneuron i t l l l a m s l l 124 (+) 36 P l a g i o c h i l a a s p l e n l o l d e s 121 (+) 37 R l c c a r d l a m u l t i f l d a 122 (+) 129 associations found in the zone. It also develops in stagnant back waters of the major rivers. The relief shape is usually flat though in bogs formed on glacial depressions it may be slightly concave. Exposure is always neutral and measured slopes were zero. Sample plots were located in two different areas, along the Crooked River and near Bear Lake. The plot surface has a total cover of litter pre-dominantly composed of cumulose deposits of Drepanocladus species. The soils are organic (cumulose organic deposits). Three vegetation layers are recognized, low shrub, herb and moss. The B2 strata was the most poorly developed and was highly variable in total cover. The only constant species was Salix pedicellaris which had an average species significance of 5. Betula pumila was marginally represented in three plots. The herb layer was usually well developed with total cover values ranging 30 to 75 per cent. Menyanthes trifoliata was the most abundant herb, having an average species significance of 6. Menyanthes is typical of very wet sites and has been seen to form a pure community in freshets in some of the bogs. Also highly typical of this association are Carex ahordorrhiza and C. limosa^ both of which are important members in the characteristic combina-tion of species. Both had an average species significance of 5. Also occurring as constant species were Potentilla Plate 16: The Meesio (triquetrae) - Menyantho (trifoliatae) - Scheuchzerio (palustris) -Carico (limosae - chordorrhizae) - Salicetum pedi eel 1ari s . 1 3 1 palustris, Seheuchzeria palustris, Equisetum variegatum3 Andromeda polifolia and Eriophorum viridi-carinatum. All of these species were found to be highly affiliated to the stagnant water habitats where soil reactions are moderately acid to circumneutral. Three insectivorous species were found in the Salix pedicellaris association: Drosera anglica3 D. rotundifolia and Utricularia intermedia. Of these the most constant species were Utricularia and D. anglica (Class 4). D. rotundifolia was more common on the slightly less wet sites. Utricularia was found only in this association. The layer was very well developed, the most con-stant species being Meesia triquetra and Sphagnum teres. Average species significances for these were 5 and 4 respec-tively. Interestingly, the dominant moss in all plots was of the genus Drepanocladus3 being either D. revolvens or D. vernicosus. In plots 120 and 122 Drepanocladus revolvens had a species significance of 8 or 9 while in plots 123 through 127 D. vernicosus was the dominant species. Soil data indicates that Drepanocladus revolvens occurs where both the phosphorus and potassium content is highest while D. vernicosus occurs where they are the lowest. Other bryophytes recorded were Sphagnum subnitens3 Pohlia nutans, Tomenthypnum nitens, Aulacomnium palustre, Calliergon stramineum, Bryum pseudotriquetrum, Cratoneuron williamsii, Riccardia multifida and Plagiochila asplenioides. T a b l e 45 S o i l Chemical A n a l y s i s M e e s i o ( t r i q u e t r a e ) - Menyantho ( t r i f o i l a t a e ) - S c h e u c h z e r i o ( p a l Number of P l o t s 1 2 3 P l o t No. 122 120 121 S u r f a c e Sample C2 3 8 . 1 5 4 2 . 0 2 4 3 . 5 7 N? 2 . 1 4 1.91 2 . 1 5 C/N 18 22 20 0M? 6 5 . 7 8 7 2 . 4 7 75.12 S2 0.11 0 . 1 6 0 . 1 3 P ppm 2 6 . 0 0 4 9 . 7 0 3 1 . 1 0 Na 5 . 2 2 6 . 4 2 7 . 6 4 K 8 . 9 8 8 . 8 4 7.72 Ca 2 9 . 8 8 2 5 . 6 0 2 6 . 1 6 Mg 0 . 8 6 0 . 9 2 1 . 0 4 CEC 6 9 . 8 2 9 1 . 7 0 8 3 . 8 2 pH 5 . 7 8 5 . 6 5 5.71 ) - C a r i c o ( l i m o s a e - c h o r d o r r h i z a e ) - S a l i c e t u m p e d i c e l l a r i s 4 5 6 7 8 123 124 125 126 127 4 4 . 3 2 4 2 . 8 2 4 8 . 8 1 4 7 . 5 5 4 2 . 6 8 2 . 4 3 2 . 5 3 3.01 1 . 6 4 2 . 0 3 18 17 16 31 21 76.41 7 3 . 8 3 . 8 4 . 1 6 8 1 . 8 9 7 3 . 5 9 0 . 1 5 0 . 0 7 0 . 1 5 0 . 0 5 0 . 0 8 1 0 . 9 0 1 4 . 2 8 4 . 2 0 4 . 2 0 3 . 3 7 6 . 4 2 5 . 3 4 5 . 4 8 5 . 2 6 8 . 5 6 3 . 2 0 4 . 6 4 4 . 2 6 2 . 9 8 3 . 3 6 1 9 . 2 8 3 1 . 1 6 3 3 . 3 0 2 3 . 0 8 2 5 . 6 8 0 . 4 4 0 . 4 0 0 . 2 8 0 . 3 8 0 . 9 8 8 2 . 0 7 9 8 . 7 0 1 0 0 . 4 5 6 5 . 7 5 5 2 . 3 2 5 . 4 3 5 . 6 1 5 . 9 4 5 . 7 2 5 . 7 4 1 3 3 The soils are all rich in chemical composition with the exception of magnesium which was present in the lowest quantities of all the cations. The sparse woody vegetation would indicate that nutrient availability is a problem. Possibly this is due to the permanent water saturation which may cause an oxygen deficiency and thus affecting the plants' uptake ability. The soil reaction in all cases was slightly acid. pH ranged from 5 . 4 to 4 . 9 . The soil chemical analyses are presented in Table 4 5 . ALLIANCE: DrepanocI ad ion r e v o l v e n t i s - v e r n i c o s a e Drepanoc lado ( r e v o l v e n t i s ) - Campyl io ( s t e l l a t i ) - Menyantho ( t r i f o I i a t a e ) - T r i c h o p h o r e t u m a l p i n i (Re fe rence T a b l e s : 46 ,47 ,48 ,49 ) (Triohophorum A s s o c i a t i o n ) The Trichophorum association, like the Salix pediaellavis association, also shows a high affinity to the wetter sites in the low moors and mires. The plot surface is covered by water for extensive periods due to the slow drainage of these sites. Free water can be released by Tab l e D r e p a n o c l a d o ( r e v o l v e n t i s ) M e n y a n t h o ( t r i f o I i a t a e ) -46 - C a m p y l i o ( s t e l l a t i ) -T r i c h o p h o r e t u m a l p i n i C H A R A C T E R I S T I C C O M B I N A T I O N O F S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S (60-100%) I M P O R T A N T N O N - C O N S T A N T S H e r b Trichophorum alpinum Menyanthes trifoliata Tofieldia glutinosa Carex lasiocarpa Drosera anglica Andromeda polifolia Carex limosa Triglochin maritima Carex chordorrhiza Oxycoccus microcarpus Carex aquatilis Scheuchzeria palustris Eriophorum chamissonis Pedicularis labradorica M o s s ( h u m u s ) Drepanocladus revolvens Campylium stellatum Tomenthypnum nitens Calliergon stramineum Scorpidium scorpidioides Sphagnum subnitens T a b l e 47 1 3 5 D r e p a n o c l a d o ( r e v o l v e n t i s ) - Campy!!o ( s t e l l a t i ) - Menyantho ( t r i f o l i a t a e ) - T r i c h o p h o r e t u m a l p i n i Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r C o v e r a g e A t o t a l *1 A 2 A 3 B t o t a l B 1 B 2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage ( ? ) L i t t e r D e c a y i n g Wood M i n e r a l S o i l Rock 1 2 3 4 5 6 7 8 9 115 116 117 118 119 101 102 103 104 100 100 100 100 100 100 100 100 100 17/6/69 17/6/69 17/6/69 17/6/69 17/6/69 12/6/19 12/6/69 12/6/69 12/6/69 2225 2225 2225 2225 2225 2400 2400 2400 2400 C r o o k e d R i v e r P a r s n i p R i v e r bog • f l a t ( s l i g h t l y c o n c a v e ) n e u t r a l 0 d e g r e e s -4 - 2 2 3 - _ 1 -95 90 90 90 90 95 90 95 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 — a b s e n t — 100 100 100 100 100 100 100 100 100 a b s e n t a b s e n t a b s e n t 100 100 100 100 S o i l Hygrotope T r o p h o t o p e E r o s i o n D r a i n a g e Sample H o r i z o n Depth (cm) h y d r i c ( w a t e r s u b s t a g n a n t ) ( p e r ) m e s o t r o p h i c n i l ( s l i g h t w a t e r ) p o o r a s i n g l e s u r f a c e sample was t a k e n i n t h e top 12 i n c h e s P a r e n t M a t e r i a l c u m u l o s e , o r g a n i c 136 Table 48 Drepanoclado ( r e v o l v e n t i s ) - Campy 11o ( s t e l l a t l ) - Menyantho ( t r i f o l 1 atae) - Trlchophoretun a l p i n l Number of P l o t s 1 2 3 4 5 6 7 8 9 P l o t No. 115 116 117 118 119 101 102 103 104 P l o t S i z e ( n 2 ) 100 100 100 100 100 100 100 100 100 E l e v a t i o n ( f t ) 2225 2225 2225 2225 2225 2400 2400 2400 2400 Stratum Dh S p e C , e S Soocies ,i opal* I ca No. 1 Betula pumila 2 Trichophorum alpinum 3 . Menyanthes t r i f o l i a t a 4 T o f i e l d i a g l u t i n o s a 5 Carex l a s i o c a r p a 6 Drosera a n g l i c a 7 Andromeda p o l l f o i l a 8 Carex limosa 9 T r i g l o c h i n marltimum 10 Carex chordorrhiza 11 Oxycoccus olcrocarpus 12 Carex a q u a t i l i s 13 Scheuchzeria p a l u s t r i s 14 Carex lanuginosa 15 Equisetum variegatum 16 P o t e n t i l l a p a l u s t r i s 17 Carex r o s t r a t a 18 Eriophorum v l r l d i - c a r l n a t u m 19 Drosera r o t u n d i f o l l a 20 Orepanocladus revolvens 21 Campyllum s t e l l a t u m 22 Tomenthypnum nltens 23 CalIIergon stramlneum 24 Scorpldiuo s c o r p i d i o l d e s 25 Sphagnum subnitens 26 Chiloscyphus p a l l e s c e n s 27 Hypnum l i n b e r g i l 28 C a l l i e r g o n t r i f a r i u r n 29 Campy 1 lira h i s p i d u l u a Species S l g n t f cance Constancy I I I V V V V V V V V V V IV IV I I I I I I II II V V V V I I I I I I II II Aver.Specles S i g n i f i c a n c e 1.6 65.6 8.3 5 . 2 4.5 4 . 5 4 . 2 3 . 8 3.7 3 .6 2 . 8 5.7 1.0 0 . 6 0.6 0.6 0 . 3 0 . 3 0.2 33.0 16.1 3 . 8 3.4 19.1 2 . 9 0 . 7 0.1 0.1 0.1 Sporadic S p e c i e s : 30 S a l l x p e d i c e l l a r i s 118 (1) 2 31 Equisetum p a l u s t r e 118 (+) 32 Eriophorum chammlssonis 104 (+) 33 P e d l c u l a r i s l a b r a d o r i c a 118 (1) Dh 34 Bryua pseudotrlquetrum 118 (+) 35 R l c c a r d f a sinuata 104 (+) 137 squeezing the soil at all seasons. The hygrotope is judged to be hydric. Relief shape is flat to slightly concave, exposures neutral and measured slope in all cases was zero. The plot surface was always covered with humus re-sulting from the decomposition of cumulose deposits. Drepanocladus revolvens was the major moss contributing to the humus while the very dense tufted root network of Trichophorum alpinum also made a significant contribution. The vegetation cover is total, the herb and moss layers being dominant. A very poorly developed low shrub layer is present in five of the nine plots where i t had a total cover ranging from 1 to 4 per cent. The only two species in the shrub layer were Betula pumila and Salix pedicellaris. Herb cover is very high (80 to 95 per cent). Trichophorum alpinum in all cases was the dominant species where i t had an average species significance of 9. This species forms strong clumps of intertangled roots giving the community a tufted appearance. Also typical of this hydric community are Menyanthes trifoliata, Tofieldia glutinosa, Carex lasiocarpa, Drosera anglica, Andromeda polifolia, Carex limosa, Triglochin maritima, Carex chordorrhiza and Oxycoccus microcarpus. These species are also most constant. Carex aquatilis and Scheuchzeria palustris also show a high affinity to the Trichophorum association. Plate 17: Two associations of the low moors. The Drepanoclado (revolventis) - Campylio (stellati) -Menyantho (trifoliatae) - Trichophoretum alpini is seen in the foreground while the Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) - Piceo (marianae) - Betuletum pumilae is the shrub association next to i t . The major moss in the former association is Drepanocladus revolvens. T a b l e 49 S o i l Chemical A n a l y s i s D r e p a n o c l a d o ( r e v o l v e n t i s ) - C a m p y l i o ( s t e l l a t i ) - Menyantho ( t r i f o l i a t a e ) - T r i c h o p h o r e t u m a l p i n i Number of P l o t s 1 2 3 4 5 6 7 8 9 P l o t No. 115 116 117 118 119 101 102 103 104 S u r f a c e Sample a 4 5 . 5 8 4 1 . 8 4 4 2 . 9 6 4 2 . 5 9 4 0 . 7 2 4 2 . 4 5 4 7 . 4 8 4 2 . 0 8 Itf 1.71 1 . 6 3 2 . 0 7 1 . 5 4 1 .81 1 . 1 3 - 1 . 2 5 1 . 2 2 C/N 27 26 21 28 22 38 _ 38 35 OM? 7 8 . 5 9 72.14 7 4 . 0 7 7 3 . 4 3 70.21 7 3 . 1 9 _ 8 1 . 8 6 7 2 . 5 5 s ? 0 . 1 7 0 . 4 6 0 . 3 8 0 . 3 9 0 . 3 4 0 . 1 4 - 0 . 1 2 0 . 1 6 P ppm 6 . 5 3 5 . 1 3 3 . 5 0 4 . 2 0 4 . 6 7 5 . 6 0 _ - 1 4 . 5 6 Na 5 . 3 4 5 . 3 8 5 . 6 6 8 . 3 4 6 . 5 4 2 . 0 6 _ 1 . 8 8 2 . 2 0 K 0 . 4 4 0 . 5 0 0 . 4 2 0 . 5 4 0 . 3 0 0 . 8 0 - 0 . 9 4 1 . 5 0 Ca 3 4 . 6 8 4 9 . 8 4 3 7 . 9 0 3 5 . 3 2 3 7 . 0 4 3 7 . 1 2 - 3 3 . 5 0 3 6 . 1 2 Mg 1 4 . 0 6 2 0 . 3 8 1 5 . 8 6 1 7 . 0 0 1 6 . 0 4 9 . 1 4 - 7 . 8 2 8 . 5 4 CEC 1 1 0 . 9 5 114.45 9 5 . 2 0 1 0 5 . 7 0 1 3 6 . 3 2 6 5 . 0 0 - 1 3 2 . 8 2 8 1 . 2 0 pH 6 . 6 0 7 . 0 5 6 . 7 2 7.01 6 . 6 2 6 . 0 6 - 6 . 1 5 6 . 1 2 GO CO 140 The moss layer is very well developed. Four constant species are present: Drepanocladus revolvens, Campylium stellatum, Tomenthypnum nitens and Calliergon stramineum. The species significance of Drepanocladus revolvens fell in two distinct groups; those plots where it was very high (S.S. 6-8) and those where it was lower (S.S. 3-5). In the former group it was the dominant moss while in the latter Scorpidium scorpidioides was usually much higher. All plots in which Scorpidium was found were located in a low moor of different origin than the others. This low moor was formed in a glacial depression at an altitude of 2400 feet. Its source of water, unlike the river source of the others, was from rainfall, run-off and a small spring located at its northern end. pH in this bog was slightly higher than those of river origin. Other bryophytes recorded were Sphagnum subnitens, Chiloscyphus pallescens, Hypnum lindbergii, Calliergon trifarium, Campylium hispidulum, Riccardia sinuata and Bryum pseudotriquetrum. The soils were moderately rich. Organic matter content was from 70 to 82 per cent. Nitrogen ranged from 1.1 to 2.4 per cent. Carbon/nitrogen ratios were moderately high (21-38). Sulphur, sodium, magnesium and pH fell into two distinct categories. They were notably higher in the glacial depression low moor where water source was from the spring and slope run-off. Phosphorus was lowest in this location. 141 Cation exchange capacities in all soils were high due to the quantities of organic matter and the circumneutral pH. CEC ranged from 65 to 136 with most being greater than 95. Due to the stagnant nature of the water, nutrient availability in situ may be a problem. Soil chemical data is presented in Table 49. P o p u l e t a l i a b a l s a m i f e r a e A single alliance and a single association of this order were sampled in the Sub-boreal Spruce Zone. These were the Alnion tenuifoliae and the Urtico (l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae. This order is developed along the margins of lakes and rivers on alluvial terraces and flood plains where flooding is frequent, i f not annual. It is also found along stream terraces. Flooding brings in large quantities of alluvial silts and clays with the result that the soils are all relatively fine in texture. Soils are generally Regosolic and cases of buried organic horizons frequent. Hygrotopically, these sites are considered to be from subhygric to hygric. Seepage water often plays a large role in bringing in nutrients during the periods of lowest water. 142 The Populetalia balsamiferae is a widely distributed order in British Columbia. Krajina (1969) points out that i t is found in the Coastal Douglas-fir, Coastal Western Hemlock, Interior Western Hemlock, Pinus ponderosa - Bunch Grass, Cariboo Aspen - Lodgepole Pine - Douglas-fir, Sub-boreal, and Boreal White and Black Spruce Zones. The Alnion tenuifoliae is similar to the European Alnion glutinosae ((Malcuit) Meyer Drees, 1936). The European alliance is in the order Alnetalia glutinosae (Vlieger, 1937) and the class Alnetea glutinosae (Braun-Blanquet and Tuxen, 1943). ALLIANCE: A l n i o n t e n u i f o l i a e U r t i c o ( l y a l l i i ) - M a t t e u c c i o ( s t r u t h i o p t e r i d i s ) - Alnetum tenu i foI i ae (Re fe rence T a b l e s : 5 0 , 5 1 , 5 2 , 5 3 , 5 4 ) (= Alnus - Matteuooia A s s o c i a t i o n ) This association is a well developed community in the Sub-boreal Spruce Zone though it was not found to be common. Its distribution appeared to be restricted to the Crooked and Misinchinka River valleys where it is developed 143 on wet alluvial sites on the margins of McLeod Lake, the Misinchinka and Crooked Rivers and on flooded terraces along streams. The habitat is always cool and moist, being fre-quently flooded with the resultant deposition of quantities of alluvial s i l t s . Overlaying of soils is a common phenomenon in these sites. The soils usually have buried profiles in the form of alternating bands of alluvium and organic matter. Indications of gleying were always present. Relief shape is flat and exposure neutral to slightly southwest. Measured slope gradients were gradual ranging from 0 to 3 degrees. Hygrotopes were judged to be from subhydric to hygric, seepage playing an important role. Water tables were reached in most soil pits. The parent materials in all cases were alluvial. The plot surface had a very high coverage of litter (75 - 95 per cent) while decaying wood was much less common. Exposed mineral soil was found in only one plot where it had a cover of 10 per cent. Rocks were absent throughout the sol urn. The tall shrub layer ( B i ) has a total estimated cover between 75 and 85 per cent. This is composed almost entirely of Alnus tenuifolia which has an average species significance of 9 (these estimates also include this species in the B 2 as differentiation is not distinct). Salix lasiandra 144 also occurs in two plots. Total coverage estimates for the B2 range from 20 to 45 per cent. Cornus stolonifera, Lonicera involuorata, Sambucus pubens and Ribes hudsonianum are the more abundant species in the B2. Rubus idaeus and Salix sitchensis also occur. Herbs are very abundant in the Alnetum with total estimates in all cases being 95 per cent. Matteuooia struthiopteris is the dominant herb having an average species significance of 9. Also dominant in this layer are: Urtioa l y a l l i i , Aotaea rubra, Calamagrostis canadensis, Senecio triangularis and Athyrium filix-femina. Of the smaller herbs Galium triflorum3 Gymnocarpium dryopteris3 Mentha arvensis3 Thalictrum occidentale3 Mitella nuda3 Smilacina stellata and Geum macrophyllum show a high affinity to this site. The nutritional richness of the Alnetum is shown by the presence of Athyrium filix-femina, Galium triflorum3 Urtioa l y a l l i i , Geum macrophyllum, Mitella nuda, Tellima grandiflora, Mentha arvensis and Aconitum columbianum. Some of these species are also typical of alluvial habitats. F r i t i l l a r i a lanceolata was found only in this association. Recorded outside the plot boundary but also highly typical for rich alluvial sites was Botrychium virginianum. The moss layer on both decaying wood and humus was generally poorly developed, total moss cover estimates ranging Urt i co ( I yaI Ii i ) Tab le 50 - M a t t e u c c i o ( s t r u t h i o p t e r i d i s ) - Alnetum t e n u i f o l i a e C H A R A C T E R I S T I C C O M B I N A T I O N O F S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S (60-100%) I M P O R T A N T N O N - C O N S T A N T S S h r u b Alnus tenuifolia Cornus stolonifera Lonicera involucrata Sambucus pubens Ribes hudsonianum Salix lasiandra Salix sitchensis H e r b Matteuccia struthiopteris Urtica l y a l l i i Actaea rubra Viola glabella Calamagrostis canadensis Mitella nuda Galium triflorum Smilacina stellata Gymnocarpium dryopteris Mentha arvensis Athyrium filix-femina Thalictrum occidentale Equisetum arvense Geum macrophyllum Streptopus amplexifolius Tellima grandiflora Aconitum columbianum F r i t i l l a r i a lanceolata Senecio triangularis M o s s ( h u m u s ) Plagiomnium medium Brachythecium rivulare Plagiomnium rugicum Marchantia polymorpha Fissidens bryoides T a b l e 51 U r t i c o ( l y a l l i i ) - M a t t e u c c i o ( s t r u t h i o p t e r i d i s ) - Alnetum t e n u i f o l i a e 146 Number of P l o t s P l o t No. P l o t S i z e (m 2 ) Date A n a l y s e d E l e v a t i o n ( f t ) L o c a l i t y Land Form R e l i e f Shape E x p o s u r e S l o p e G r a d i e n t L a y e r Coverage A t o t a l h A 3 B t o t a l Bi B 2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage (I) L i t t e r D e c a y i n g Wood M i n e r a l . S o i l Rock 1 2 3 4 5 6 7 8 9 98 94 95 96 97 93 99 100 24 400 400 400 400 400 400 400 400 400 10/6/69 6 / 6 / 6 9 9 / 6 / 6 9 9 / 6 / 6 9 9 / 6 / 6 9 6 / 6 / 6 9 1 0 / 6 / 6 9 10/6/69 28/7/67 2250 2250 2250 2250 2250 2250 2250 2250 2250 ML LC RRC LC LC RRC ML ML ML 90 75 45 95 10 6 95 5 90 85 20 95 4 2 2 85 15 c r e e k o r l a k e a l l u v i a l t e r r a c e -f1 a t 90 85 45 95 12 75 15 10 n e u t r a l t o s l i g h t l y 3 2 90 85 40 95 7 3 4 0 . 5 5 90 10 90 85 35 95 3 2 1 a b s e n t • 3 4 90 10 90 85 40 95 11 4 7 85 15 90 75 35 95 9 4 5 95 5 90 75 50 95 5 2 3' 95 5 90 85 20 95 6 3 3 90 10 S o i l Hygrotope — T r o p h o t o p e — E r o s i o n — D r a i n a g e — Sample H o r i z o n Depth (cm) 1 2 3 4 5 6 7 s u b h y d r i c t o h y g r i c • s u b e u t r o p h i c t o e u t r o p h i c w a t e r , s l i g h t f a i r t o impeded 0-15 0 - 2 7 0-13 0 - 3 0 0-18 0 - 5 0 0 - 9 0-7 0 - 1 8 15-30 27-52 1 3 - 3 8 3 0 - 6 8 18-61 5 0 - 1 0 0 9-14 7-8 18-19 > 3 0 5 2 - 6 9 > 3 8 > 6 8 > 6 1 > 100 14-27 8 - 2 3 19-35 - 6 9 - 7 9 - - - - 2 7 - 3 2 2 3 - 2 7 35-100 _ > 7 9 _ - - 3 2 - 4 2 27-37 > 1 0 0 - - - - - > 4 2 3 7 - 4 0 -- - - - - - - 4 0 - 4 6 -_ - _ - - - - > 4 6 -P a r e n t M a t e r i a l a l l u v i a l Table 52 Urtlco ( l y a l l l l ) - Hatteucclo ( s t r u t h l o p U r l d l s ) - Alnetua t e n u t f o l l duster of P l o t * t 2 3 • 5 6 7 8 9 Plot No. 98 94 95 96 97 93 99 100 24 Plot S i t e t i 2 ) 400 400 400 400 400 400 400 400 400 Elevation ( f t ) 2250 2250 2250 2250 2250 2250 2250 2250 2250 Stratus Species No. Oh Odi Eb Ec Species Species s l g n l f t c . Aver.Specles Constancy S i g n i f i c a n c e 1 Alnus t e n u l f o l l a 8 9 9 9 9 9 i 8 9 V 78.8 2 S a l l x laslandra 1 2 • • . II 0 .4 } Cornus s t o l o n l f e r a 5 4 6 6 5 6 5 4 V 18.4 4 Lonlcera Involucrata 5 5 5 4 3 5 1 4 2 V 9.8 5 Sanbucus pubens 4 4 5 3 3 3 . 3 IV 5.1 5 Rlbes hudsonlanui 3 . 3 4 2 5 2 IV 4.7 7 Rubus Idaeus « • • 2 3 . 4 III 2.1 8 S a l l x s i t c h e n s i s 2 3 . 2 . 2 • • III 1.2 9 Matteuccia s t r u t h l o p t e r l s 9 9 9 9 9 8 9 9 9 V 84.2 10 Urtlca l y a l l l l 6 5 5 4 6 5 { 6 5 V 19.2 11 Actaea rubra 6 5 6 4 5 3 5 6 . V 15.1 12 V i o l a g l a b e l l a 5 4 5 5 5 5 4 4 2 V 11.1 13 Calanagrostts canadensis 3 4 4 4 . 3 2 3 3 V 4.5 14 111 t e l l a <wda 3 3 _ 3 4 2 4 4 1 V 4 . 2 15 Gallua t r l f l o r u a 3 2 3 " 3 . 1 3 3 2 V 2.9 16 S i l l a c l n a s t e l l a t a 2 3 2 3 2 2 ! 2 . V 2.5 17 Gyanpcarplus dryopteris 5 5 6 5 . 5 7 . IV 14.2 18 Mentha arvensis 4 . 4 4 . 4 4 3 IV 5.4 19 Athyrium f l l l x - f e a l n a 4 4 2 5 4 4 . ' . IV 5 . 2 20 Thallctruo occidentals 4 4 5 4 3 . 3 1 IV 5.2 21 Equlsetua arvense 2 4 4 3 . ! 3 1 IV 3.2 22 Geua oacrophylluQ 3 3 3 3 2 3 . . 1 IV 2.6 23 Streptopus a c p l e x t f o l l u s 2 3 2 3 . 2 ! 2 . IV 2.2 24 Seneclo t r i a n g u l a r i s 3 3 4 1 3 III 2 .3 25 Cardaaine o c c i d e n t a l ! * . 3 3 2 3 3 . III 2 . 0 26 Hleractua canadense 3 3 3 III 1.7 27 Heracleua lanatuo 2 2 2 3 III 1.2 28 Rubuc pubescens 2 4 . . i . • II 1.3 29 S n l l a c l n a racenosa • 2 1 . 1 II 0.6 30 F r l t l l l a r l a lanceolata 1 3 II 0 . 6 31 Equlsetua s y l v a t l c u o 3 1 II 0 . 6 32 Ranunculus abortlvus 2 2 II 0.5 33 Aconltua colunfcianua 1 2 II 0.4 34 E p l l o b l u * angustifol lua 1 1 - . II 0 . 3 35 T e l l l c a grandlflora 1 1 • • II 0 .3 36 Pleglowilua sedlUB 3 2 4 1 2 2 ! 1 V 2 . 8 37 Brachythectun r l v u l a r e 2 3 . 1 . i 1 • III 1 .3 38 Harthantla palynorpha 1 . 1 1 1 . III 0 . 6 39 Aablysteglua tenax • + III 0 . 2 40 Plegloaniuo ruglcua 1 1 II 0 . 6 41 Flssldens bryoldes . - . 1 II 0 . 3 42 Bryun pseudotrlquetrua . . . • . • • II 0.1 43 Pohlia eahlenbergll • . • II 0.1 44 Canpylluo chrysophyllun * + • • II 0.1 45 Orepanocladus uncinatus 2 . 3 1 2 t IV 1.8 46 Brachytheciua salebrosua 2 2 3. 1 III 1.1 Pleglonnius ruglcufl 2 1 2 . II 0.7 47 Brachytheciua r t f l e x u a 1 3 • II 0 . 6 48 Parnella ollvacea • 1 • 2 1 1 V 1.1 49 Hypogynnla enteronorpha 2 1 2 2 2 2 • IV 1.7 Orepanocladus uncinatus 3 1 3 2 1 2 3 V 2 . 6 Brachytheciua reflexua 2 3 3 II 1.1 Sporadic Species: C 50 51 52 53 Carex a q ' j a t l l l e C l r - . i l a t l f o l l a Equitetua pratente Ostorhl/a c r . l l e n s l e 97 (1) « (I) 24 (1) 98 (2) 54 55 56 Ode 11 ergon c o r d l l o l l u i cpyllua h s l l c r l opteryglua s e l l e r ) Brachytheciua r l v u l a r e 93 ( . ) 93 <•) 98 (1) 98 ( . ) 148 Plate 18: General view of the Urtico ( l y a l l i i ) -Matteuccio (struthiopteridis) - Alnetum tenuifoliae as i t occurs along Red Rocky Creek. Flooding is annual in such sites during spring runoff. Plate 19: Detail of the above association. Matteuooia struthiopteris reaches a height of about four feet at the height of the growing season. 149 from 3 to 12 per cent. The most highly constant species on humus was Plagiomnium medium which is indicative of both rich sites and moder humus conditions. Also found commonly were Brachythecium rivulare3 Amblystegium tenax and Marchantia polymorpha. Marchantia was found on locally wet spots. The moistness of this site is shown by the presence of Bryum pseudotriquetrum3 Fissidens bryoides and Pohlia wahlenbergii. The most common species on decaying wood was Drepanocladus uncinatus though Brachythecium salebrosum3 B. reflexum and B. rivulare were also present.. Epiphytes were uncommon though Parmelia olivacea was unique to this association where i t was found on the bark of Alnus tenuifolia. Drepanocladus unoinatus was the most common species in the The soils in the Alnetum tenuifoliae are generally quite fine textured. All samples of the upper horizon were sandy loams with the percentage s i l t being 31 on the average. Silt was highest in the second horizon where it was 37 per cent on the average. Clay content was also highest in the second horizon where it ranged from 7 to 18 per cent. An exception to this was found in plot 100 where the trend in s i l t and clay content was to increase considerably with depth. In this plot the bottom two horizons were clay loams and s i l t loams. These were the finest textured soils of all plots. 1 T a b l e 53 S o i l P h y s i c a l A n a l y s i s U r t i c o ( l y a l l i i ) - M a t t e u c c i o ( s t r u t h i o p t e r i d i s ) - A l n e t u m t e n u i f o l i a e Number of P l o t s 1 2 3 4 5 6 7 8 9 P l o t No. 98 94 95 96 97 93 99 100 24 T e x t u r a l C l a s s SL SL . SL SL SL SL SL SL Sand ( ? ) - 6 9 . 2 5 2 . 0 6 0 . 0 6 2 . 0 6 0 . 0 7 0 . 0 6 6 . 0 S i l t ( ? ) - 2 5 . 6 3 9 . 2 3 3 . 2 3 4 . 0 3 5 . 6 2 2 . 0 2 7 . 6 _ C l a y ( ? ) - 5 . 2 8 . 8 6 . 8 4 . 0 4 . 4 8 . 0 6 . 4 -T e x t u r a l C l a s s SL SL L L L S i L SL L Sand ( ? ) 6 0 . 0 7 2 . 0 4 2 . 0 4 0 . 8 3 8 . 0 1 4 . 8 - 7 0 . 0 5 0 . 8 S i l t ( ? ) 2 4 . 0 2 0 . 8 4 5 . 2 4 9 . 0 4 4 . 0 6 2 . 0 - 1 5 . 6 3 3 . 8 C l a y ( ? ) 1 6 . 0 7 . 2 1 2 . 8 1 0 . 2 1 8 . 0 2 3 . 2 - 14.4 1 5 . 4 T e x t u r a l C l a s s S S i L LS LS L SL L Sand ( ? ) - 9 4 . 0 1 4 . 0 8 4 . 0 - 8 7 . 6 5 0 . 0 6 3 . 6 3 1 . 8 S i l t ( ? ) _ 0 . 8 6 1 . 2 1 0 . 0 _ 5 . 2 3 8 . 0 2 1 . 6 4 9 . 2 C l a y ( ? ) - 5 . 2 2 4 . 8 6 . 0 - 7 . 2 1 2 . 0 1 4 . 8 1 9 . 0 T e x t u r a l C l a s s S CL SL Sand ( ? ) - 9 0 . 0 - - - - _ 2 6 . 8 6 4 . 8 S i l t ( ? ) - 3 . 2 - - _ - - 3 8 . 4 2 5 . 0 C l a y ( ? ) - 6 . 8 - - - - - 3 4 . 8 1 0 . 2 T e x t u r a l C l a s s LS SL S i C Sand ( ? ) - ' 8 8 . 0 _ _ _ 6 6 . 0 1 6 . 8 _ S i l t ( ? ) - 5 . 2 - - - - 2 4 . 0 3 9 . 2 _ C l a y ( ? ) - 6 . 8 - - - 1 0 . 0 4 4 . 0 -tn O i . b i . 54 S o i l Chea,ca) A n a l y s t s U r t l c o ( l y a l l l l ) - H a t t e u c c l o ( s t r u t h l o p t e r l d f s ) - Alnetua t e n u l f o l l a e Number of P l o t s 1 2 3 4 5 6 7 8 9 r i o t No. 98 94 95 96 97 93 99 100 24 Horizon D e s i g n a t i o n C l 22.76 6.76 9.85 13.75 12.54 4 . 6 8 38.45 36.40 41.0 HI 1.43 0 . 5 0 0.64 0.61 0.85 0 . 3 6 2 . 3 6 2 . 2 9 1.81 C/N 16 14 15 23 15 13 16 16 23 out 39.29 11.66 16.98 23.71 21.62 8.07 66.29 67.76 6 9 . 7 S I 0.13 0.04 0.07 0.07 0 . 0 6 0.04 0.17 0.16 -t PPa 6.53 3.85 7.93 5.13 4 . 0 0 . 8 7 17.5 25.66 14.0 Na 0.98 0.47 0 . 5 9 1 . « 0 . 4 9 0.55 0 . 9 6 1.04 1.26 K 0 . 6 0 0.12 0.14 0 . 2 0 0.25 0.11 0.48 0.70 0.15 Ca 40.16 19.50 18.91 22.20 23.70 • 14.66 46.76 49.00 4 5 . 9 Ng 9.12 5 . 6 0 3.97 7.50 9.70 3.21 14.44 9.78 6.83 CEC 67.20 32.47 38.32 36.12 46.20 27.82 99.57 79.45 128.0 pH 6 . 3 2 6 . 9 2 6.03 6 . 6 0 6.05 5.85 5.75 5 . 6 6 6.85 Horizon D e s i g n a t i o n C l 5.31 2.02 3.53 3 . 2 0 5.24 1 .97 26.44 16.29 3 . 2 Nl 0.34 0.16 0.27 0.25 0.72 0.17 1 . 5 9 1 .00 0.27 C/N 16 13 13 13 7 12 16 16 12 OIK 9.16 3 . 4 8 6.09 5.52 9.03 3.40 45.59 28.09 5.44 Sf 0.05 0.02 0.04 0.03 0.05 0 . 0 3 0.12 0 . 0 8 -P ppa 0.23 0.54 0.23 0.47 0.42 0.16 6.77 1 .63 4 . 0 Na 1.77 0.54 0.45 0.55 0.54 0 . 5 3 3 . 5 8 1 .00 0 . 9 9 K 0.12 0 . 0 8 0.05 0.04 0.28 0 . 0 6 0 . 2 8 0 . 3 2 0.72 Ca 17.24 10.54 14.92 9.63 18.41 12.10 43.30 38.32 15.1 N , 4 .28 2.72 2.61 2.11 5.73 3 . 0 8 14.50 9.54 2.22 CEC 26.42 15.40 28.82 21.45 34.82 17.67 113.57 81.02 2 8 . 9 pH 6.81 7.18 6.61 5.78 6 . 5 8 6 . 5 7 6 . 5 0 6.15 6 . 5 151 Horizon D e s i g n a t i o n C i - 0.41 0 . 9 7 1.23 1.82 0.51 8.16 5 . 2 5 0 . 0 Nt - 0.03 0 . 0 9 0 . 0 9 0.14 0.04 0 . 4 9 0 . 4 0 0.14 C / « - 14 11 14 13 14 17 13 0 . 0 OtU - 0.71 1.67 2.12 3.14 0 . 8 8 14.07 9.05 0 . 0 SJ - 0.01 0.01 0.01 0 . 0 2 0 . 0 2 0 . 0 7 0 . 0 3 -P ppa - 0.62 0.16 0.70 0.16 1.60 0 . 5 3 0.04 6 . 0 Na - 0.47 0.44 0.54 0 . 5 7 0 . 4 9 0.61 0 . 5 0 0 . 6 0 K - 0.03 0.08 0 . 0 2 0.08 0 . 0 6 0.11 0.25 0.04 Ca - 3.65 10.55 6.11 10.65 4 . 2 6 10.30 19.40 7 .07 • g 0 . 6 8 1.87 1.30 3.44 0 . 9 2 7 . 4 0 5 . 2 0 1.11 CEC 3.42 24.32 8.62 14.00 5.42 41.82 3 5 . 5 7 19.7 pH - 7.35 6.81 6 . 3 7 7.25 6 . 5 0 6.57 6.25 6 . 3 0 Horizon D e s i g n a t i o n c i - 0.76 2 6 . 0 7 3.13 0 . 0 W 0.01 1 .63 0 . 3 0 0.06 C/N 108 16 11 0 . 0 OSS - 1.31 44.95 5 . 4 0 0 . 0 S t - 0.01 0.21 0 . 0 2 -P ppa _ 0 . 2 9 1.87 0 . 1 9 0 . 0 Na - 0 . 3 6 - 0.94 0 . 5 3 0.21 K 0 . 0 2 0.14 0.33 0 . 0 9 Ca 6.24 48.72 17.55 2.83 Ig - 1.16 16.92 5 . 0 9 0 . 5 0 CEC - 7 .00 69.82 34.82 6 . 4 pH - 7.45 6 . 6 0 6 . 6 5 7.1 Horizon D e s i g n a t i o n CI W C/N OMJ St P ppa Na K Ca kg CEC . PH 0.67 11.39 1 .60 0.01 0.24 0.11 67 15 14 1.16 19.64 2.76 0.01 0 . 0 7 0 . 0 0 0 . 3 8 0.35 1.17 0 . 5 0 0.47 0.54 0.04 0.12 0.18 6.03 22.53 12.44 1.38 9.61 3 . 3 8 6.65 43.22 39.07 7 .40 6.73 6 . 6 8 Horizon D e s i g n a t i o n C i . . . . . . 0 . 8 0 Nt 0 . 0 6 C/N H 0 « 1 . . . . . . 1 .38 St . . . . . . 0.01 P ppa . . . . . . 0 . 1 9 Na 0.42 K 0.04 Ca 5 . 9 8 t , . . . . . . 2.21 CEC . . . . . . 7 .56 152 Generally the richness of the Alnetum tenuifoliae is born out by soil chemical and physical properties which are shown in Table 53 and 54. Organic matter was highest in the upper horizon where it was found to have an average of 36 per cent. The range of values was great and was a function of the time since last flooding. The trend was to decrease in organic matter with depth. Narrow bands of compressed organic matter in deeper horizons but the amount was so scant collections could not be made. Nitrogen showed a distinct trend to decrease with depth. Carbon/nitrogen ratios were highest in the upper horizon where they ranged from 13 to 23. Ratios in the lower horizons were highly dependent upon the organic matter content which varied considerably. Sulphur was present in low quan-tities throughout. Phosphorus was distinctly highest in the upper horizon where it had an average of 9.5 ppm. The trend was to decrease with depth. Cation exchange capacity was highest in the upper horizon but was extremely variable throughout and dependent primarily upon the amount of organic matter. The exchange complex was dominated by calcium in all cases and its quantity decreased with depth. Amounts were variable. Magnesium was the next most abundant and in some cases it was very high. Trends for magnesium were also to decrease with depth. Sodium 153 and potassium quantities were much lower than the other ex-changeable cations. The soil acidity was generally "highest" in the upper horizon (plot 24 was an exception) where i t was slightly acid to circumneutral. The general trend was to become circumneutral to slightly alkaline in the deeper horizons. S a l i c e t a l i a s i t c h e n s i s In the Sub-boreal Zone this order is represented by one alliance and one association. These are the Salicion sitchensis and the Salicetum sitchensis. It is developed along the edges of lakes and rivers where annual flooding occurs. The soils are relatively finely textured due to the deposition of alluvial silts and clays during the period of high water. Parent materials are all alluvial. Large eco-tonal areas are formed between this order and the order Populetalia balsamiferae (Urtico ( l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae). A narrower eco-tonal band is formed with the Caricetalia rostratae. Characteristic species for this order and alliance are the same as for the association. This order is also related to the Drepanoclado -Caricetalia limosae - chordorrhizae. 154 ALLIANCE: S a l i c i o n s i t c h e n s i s S a l i c e t u m s i t c h e n s i s (Re fe rence T a b l e s : 5 5 , 5 6 , 5 7 , 5 8 , 5 9 ) (Salix A s s o c i a t i o n ) The Salix association is widely distributed in the Sub-boreal Zone where it is formed along lakes and rivers on alluvial terraces. The soils are all loams and s i l t loams; s i l t quantities ranging from 30 to 44 per cent. Stones were absent. Exposures were neutral and relief shape flat. Slopes were 0 degrees. The ground surface is covered by plant litter and undecayed twigs over top of mineral soil. Hygrotopes were judged to be subhydric. Parent materials on which the association is formed were alluvial deposits over top of glacial material. All sample plots were established along the shores of McLeod Lake. The Salicetum sitchensis frequently forms an eco-tonal area with the Urtico ( l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae. Such areas are large in extent and the variety of species much greater. Four vegetation layers are recognized in the Salix association: tall shrub, low shrub, herb and moss. The Bi Table 55 Salicetum s i t c h e n s i s C H A R A C T E R I S T I C C O M B I N A T I O N O F S P E C I E S L A Y E R C O N S T A N T D O M I N A N T S C O N S T A N T S (60-100%) S h r u b Salix sitchensis Cornus stolonif'era H e r b Galium triflorum Mentha arvensis Scutellaria galericulata Hippuris vulgaris Veronica scutellata M o s s ( h u m u s ) Drepanocladus aduncus Brachytheoium rivulare Climacium dendroides Plagiomnium rugicum tn tn Table 56 Number of P l o t s P l o t No. P l o t Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient Layer Coverage A t o t a l A2 A3 B t o t a l B1 B2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage {%) L i t t e r Decaying Wood Mineral S o i l Rock Hygrotope Trophotope Erosion Drai nage Sample Horizon Depth (cm) 1 2 Salicetum s i t c h e n s i s 1 2 3 4 5 172 173 174 175 176 100 100 100 100 100 l a t e J u l y , 1969 2224 2224 2224 2224 2224 McLeods Lake a l l u v i a l terrace f l a t neutral 0 degrees 95 95 95 95 95 15 20 8 8 15 4 7 6 8 4 4 7 6 8 4 absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent absent 100 100 100 100 100 Twigs and d r i f t e d i n material form undecomposed l i t t e r over mineral s o i l . absent subhydric mesotrophic water good to impeded 0-9 0-4 0-5 0-5 0-12 >9 >4 >5 >5 >12 Parent Material a l l u v i a l 157 Table 57 S a l i c e t u m s i t c h e n s i s Number o f P l o t s 1 2 3 4 5 P l o t N o . 172 173 174 175 176 P l o t S i z e ( n ) 100 100 100 100 100 E l e v a t i o n ( f t ) 2224 2224 2224 2224 2224 S t r a t u m S p e c i e s No. S p e c i e s S p e c i e s s i g n i f i c a n c e B1 1 S a l i x s i t c h e n s i s 8 9 9 8 8 \ 2 C o r n u s s t o l o n i f e r a 5 7 7 4 5 C 3 G a l i u m t r i f l o r u m 3 3 2 3 4 4 Mentha a r v e n s i s 3 4 3 2 3 5 S c u t e l l a r i a g a l e r i c u l a t a 2 4 1 + 3 6 H i p p u r i s v u l g a r i s 2 1 + 1 1 7 V e r o n i c a s c u t e l l a t a 1 1 + 1 • 8 Sium suave 1 + • 1 9 A c t a e a r u b r a 1 + 1 • • Dh 10 D r e p a n o c l a d u s aduncus 2 3 2 2 1 11 B r a c h y t h e c i u m r i v u l a r e 1 2 2 2 1 12 C l i m a c i u r a d e n d r o i d e s 1 • + 1 2 13 P l a g i c n n i u m r u g f c u m + 1 1 2 * C o n s t a n c y V V V V IV III V V IV IV A v e r . S p e c i e s S i g n i f i c a n c e 7 2 . 3 2 4 . 1 4 . 4 4 . 4 3 . 2 1 . 5 1 . 0 0 . 7 0 . 7 2 . 6 2.1 1 . 2 1 . 2 S p o r a d i c S p e c i e s : C 14 R a n u n c u l u s f l a m n u l a 172 ( 1 ) 18 Campy IT um s t e l l a t u m 173 (+) 19 D r e p a n o c l a d u s u n c i n a t u s 173 (+) Oh 15 B r a c h y t h e c i u m s t a r k e i 175 (+) 20 F i s s i d e n s b r y o i o r . 5 174 (+) 16 Bryum p c e u d o t r i q u e t r u m 174 U) 21 Hypnuni p r a t e n s e 173 ( O 17 C a l 1 i e r g o n s t r a m i n e u m 173 (+) 22 P o h l i a s p . 172 (+) 1 58 layer is exceptionally homogeneous, Salix sitchensis being the only species present. Total estimated cover of this layer is from 75 to 95 per cent. It forms a very dense tangled network of branches which are almost impenetrable. Species significance estimates for Salix sitchensis were either 8 or 9 and were assigned jointly for the Bi and B2. Apart from Salix sitchensis 3 Cornus stolonifera was the only species in the B2 where species significances ranged from 4 to 7. Total estimates for the Bi and B2 were 95 per cent in all plots. The herb layer was generally poorly developed. This was due partially to the recent emergence from the spring flooding. Total cover estimates ranged from 8 to 20 per cent. Galium triflorum and Mentha arvensis were the two most abundant constant species. Both had an average species significance of 4. Also highly constant were Scutellaria galericulata, Hippuris vulgaris and Veronica scutellata. The moss layer was also very poorly developed. Total cover estimates ranged from 4 to 8 per cent. All species were considered in the litter-humus layer though in this associa-tion the abundance of twigs makes i t much more like a decaying wood habitat. Drepanocladus aduncus and Brachythecium rivulare were the most abundant constant species while Climacium dendroides was also highly constant. The occurrence of Plagiomnium rugicum is indicative of the richness of the sites. Also occurring were Campylium stellatum3 Bryum Plate 20: The Salicetum sitchensis bordering the shores of McLeod Lake. Note the distinct boundary between this association and the Caricetum rostratae in the foreground. T a b l e 58 Number of P l o t s 1 P l o t No. 172 Sample 1 T e x t u r a l C l a s s SL Sand ( ? ) 5 4 . 8 S i l t ( ? ) 3 9 . 6 C l a y ( ? ) 5 . 6 Coarse Fragments Sample 2 T e x t u r a l C l a s s SL Sand ( ? ) 5 7 . 2 S i l t (%) 3 9 . 2 C l a y ( ? ) 3 . 6 Coarse Fragments S o i l P h y s i c a l A n a l y s i s S a l i c e t u m s i t c h e n s i s 2 3 4 5 173 174 175 176 SL L L SL 6 6 . 8 4 5 . 2 5 0 . 0 5 9 . 2 2 9 . 6 4 4 . 4 4 2 . 8 2 9 . 6 3 . 6 1 0 . 4 7 . 2 1 1 . 2 a b s e n t SL S i L L SL 5 0 . 4 4 4 . 0 . 4 5 . 2 5 9 . 2 4 6 . 0 . 5 2 . 4 4 7 . 6 2 3 . 6 3 . 6 3 . 6 7 . 2 1 7 . 2 _ a b s e n t • — • — cn o T a b l e 59 S o i l Chemical A n a l y s i s S a l i c e t u m s i t c h e n s i s Number o f P l o t s 1 2 P l o t No. 172 173 S u r f a c e H o r i z o n Ct 1 4 . 9 6 2 4 . 4 0 Hi 1.01 2 . 0 4 C/N 15 12 0M* 2 5 . 7 9 4 2 . 0 7 S% 0 . 1 9 0 . 2 2 P ppm 1 . 6 8 1 . 4 0 Na 0 . 4 0 0 . 5 6 K 0 . 2 0 0 . 2 2 Ca 1 3 . 9 5 1 9 . 5 9 Mg 3 . 3 8 3 . 9 5 CEC 2 7 . 8 2 5 6 . 1 7 pH 5 . 5 2 5 . 3 5 S u b - S u r f a c e H o r i z o n II 3 . 0 5 3 . 5 5 Hi 0 . 1 8 0 . 2 9 C/N 17 12 Ohtf 5 . 2 6 6 . 1 2 S% 0 . 0 4 0 . 0 8 P ppm 0 . 1 6 0 . 1 2 Na 0 . 2 7 0 . 4 6 K 0 . 0 5 0 . 0 5 Ca 5 . 0 3 7 . 0 6 Mg 1 . 2 5 1 . 4 4 CEC 1 0 . 5 0 1 1 . 4 2 pH 5 . 5 3 5 . 5 2 3 174 4 175 5 176 1 8 . 4 8 1 . 2 4 15 3 1 . 8 6 0 . 3 1 1 . 6 3 0 . 4 3 0 . 2 1 1 4 . 4 7 3 . 4 0 4 8 . 4 7 5 . 2 5 2 1 . 2 5 1 . 4 0 15 3 6 . 6 4 0 . 2 6 0 . 6 4 0 . 5 8 0 . 5 3 1 7 . 8 2 3 . 9 0 5 3 . 2 0 5 . 5 2 2 3 . 0 2 1.31 18 3 9 . 6 9 0 . 2 6 1 1 . 9 0 0 . 6 0 0 . 1 8 2 4 . 5 2 6 . 2 2 8 1 . 0 2 6 . 0 6 5 . 4 5 0 . 3 9 14 9 . 4 0 0 . 1 2 0 . 4 7 0 . 3 2 0 . 0 5 7 . 1 9 1 . 8 6 2 0 . 3 0 5 . 1 0 7 . 1 3 0 . 5 0 14 1 2 . 2 9 0 . 1 6 0 . 2 7 0.51 0 . 1 2 8 . 8 0 2 . 0 8 2 5 . 4 2 5 . 3 7 1 3 . 4 8 1 . 0 4 13 2 3 . 2 4 0 . 2 3 0 . 8 2 0 . 7 0 0 . 0 5 1 7 . 7 9 4 . 5 9 3 4 . 8 2 5 . 9 7 162 pseudotriquetrum 3 Hypnum pratense s Callievgon stramineum, Brachythecium starkei, Pohlia sp. and Fissidens bryoides. The soils in the Salicetum sitchensis were all fairly rich due to the high quantities of fine textured alluvium deposited during flooding. The surface horizon had organic matter contents ranging from 26 to 42 per cent. This was com-posed mostly of Salix leaf lit t e r which had been incorporated into the soil. Nitrogen values were from 1 to 2 per cent. Carbon/nitrogen ratios were similar to most of the lake edge associations being between 12 and 18. Phosphorus was gen-erally present in low quantities (0.6 to 1.7 ppm) with the exception of plot 176 in which i t was 11.9 ppm. Due to the high quantities of both s i l t and organic matter, the cation exchange capacities were fairly high with the exception of plot 172. Organic matter was also low in this plot, thus explaining the low CEC. Calcium was the most abundant cation and magnesium was also available in moderate to high quantities. Amount of sodium and potassium were much lower. Soil reactions were acidic in all cases in both the surface and sub-surface horizons. The trend for all plant nutrients measured was to decrease in quantities with depth. 163 C a r i c e t a l i a r o s t r a t a e The Caricetalia rostratae is characterized by two associations in the Sub-boreal Zone, both of which are developed around the edges of larger lakes as well as small ' glacial depression ones. They are also common along river margins, particularly in back waters where water action is a l i t t l e less rigorous. Both associations in this order and alliance are characterized by mucky soils that are fairly high in organic matter. They are also flooded annually during high water periods, the period of flooding frequently being extensive. Both members of this order were sampled during a short interval of time so the description should be considered preliminary until further analysis is carried out. The Caricetum rostratae and the Caricion rostratae are related to the European order Phragmitetalia (Koch, 1926) and the alliance Magnocaricion elatae (Koch, 1926; sited from Szafer , 1966). Plate 21 and plate 22: Two general views showing the topographic sequences of some of the aquatic and semiterrestrial associations. The reddish colour in the foreground of the lower picture is the Potamogetono (natantis) - Polygonetum amphibi 165 ALLIANCE: C a r i c i o n r o s t r a t a e Car ice tum r o s t r a t a e (Reference T a b l e s : 60 ,61 ,62 ,63 ) (= Carex rostrata A s s o c i a t i o n ) The Caricetum rostratae is one of the most common aquatic to semiterrestrial associations in the Sub-boreal Zone. It develops in one of two forms. As an aquatic association along the edges of slow moving streams or in small glacial depression lakes or as a semiterrestrial association on the shores of the larger lakes such as McLeod Lake. In the latter case, the association is flooded during high water in the spring and becomes drier in late August as the water level goes down. All sample plots were established on the shores of McLeod Lake during late July. At this time free water was always present in the soil surface. Relief shape was flat and the exposure neutral with slope gradients ranging from 0 to 2 degrees. The hygrotope is judged to be subhydric. The plot surface has a 100 per cent cover of litter derived predominantly from leaf litter and root decay of Carex rostrata. Mineral soil and rock are absent. The mineral portion of the sample was loamy in texture with the exception of plot 137 which was a s i l t loam. Erosion is negligible. 166 Inputs in the form of alluvial material occur during the period of flooding. This alluvial material becomes trapped in the dense root network of Carex rostrata. Floristically, this association is poorly developed as are the other aquatic and emergent communities studied in the zone. Only a herb layer is recognized and this is domi-nated entirely by Carex rostrata which has an average species T a b l e 60 C a r i c e t u m r o s t r a t a e CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100$) Herb Carex rostrata Sium suave Lysimachia thyrsi flora significance of 9. Sium suave and Lysimachia thyrsiflora were also constant species. Their average species signifi-cances were 4 and 3 respectively. Sium was the tallest species in the association. Hippuris vulgaris was recorded in two plots while Equisetum fluviatile had a 50 per cent occurrence. Cover estimates for the herb layer ranged from 55 to 90 per cent. The average was 88 per cent. The soils were all high in organic matter which ranged from 26 to 36 per cent. Nitrogen content was also high Table 61 Caricetum rostratae 167 Number of P l o t s Plot No. P l o t Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient Layer Coverage A t o t a l A2 h B t o t a l Bi B2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage (?) L i t t e r Decaying Wood Mineral S o i l Rock S o i l 1 2 3 4 5 6 7 8 9 10 137 138 139 140 141 142 143 144 145 146 100 100 100 100 100 100 100 100 100 100 l a t e J u l y , 1969 2224 2224 2224 2224 2224 2224 2224 2224 2224 2224 McLeod Lake 1ake f l a t neutral 0 to 2 degrees 75 90 75 90 75 75 75 90 90 55 100 100 flooded annually during high water 100 100 100 100 100 100 absent absent absent 100 100 Hygrotope Trophotope Erosion Drainage Sample Horizon Depth (cm) subhydric mesotrophic -permesotrophic • water, s l i g h t impeded a s i n g l e surface sample was taken Parent Material a l l u v i a l Tablet 62 Number of Plots Plot No. 2 Plot Size (m ) Elev a t i o n ( f t . ) Sp. Stratum No. Species 1 Carex r o s t r a t a 2 Slum suave 3 Lysimachia t h y r s i f l o r a 4 Equisetum f l u v i a t i l e 5 Hippuris vulgaris Caricetum rostratae 1 2 3 ^ 5 6 ? 8 9 10 137 138 139 1^0 l 4 l 142 l43 144 145 146 100 100 100 100 100 100 100 100 100 100 2224 Ave. Sp. Species Significance Constancy Sig. 8 9 8 9 8 8 8 9 9 7 V 70.2 4 2 3 2 4 3 2 2 V 4.8 2 1 3 1 3 1 3 2 2 ' v 3.1 3 • 2 • 1 * • * + + III 0.9 • • + • • 1 • t • • I 0.2 oo 169 Plate 23: General view of the Caricetum rostratae showing its topographic location next to the Salicetum sitchensis. The Potentillo (palustris) -Equisetetum fluviatilis can be seen in the foreground. Plate 24: Detail of the above association showing Carex rostrata and Equisetum fluviatile. T a b l e 63a Number of P l o t s 1 2 3 4 P l o t No. 137 138 139 140 S u r f a c e Sample T e x t u r a l C l a s s S i L L L L Sand ($) 5 7 . 2 5 0 . 0 5 0 . 0 4 6 . 0 S i l t (%) 3 6 . 0 3 5 . 2 3 5 . 2 3 9 . 2 C l a y (I) 6 . 8 1 4 . 8 1 4 . 8 1 4 . 8 C o a r s e Fragments S o i l P h y s i c a l A n a l y s i s • C a r i c e t u m r o s t r a t a e 5 6 7 8 9 10 141 142 143 144 145 146 L L L L L L 5 0 . 0 3 5 . 2 3 7 . 6 4 9 . 6 5 1 . 6 4 1 . 6 4 1 . 2 4 9 . 2 3 8 . 8 3 2 . 8 3 4 . 4 4 0 . 8 8 . 8 1 5 . 6 2 3 . 6 1 7 . 6 1 4 . 0 1 7 . 6 a b s e n t o Table 63 b Number of Plots 1 2 3 Plot No. 137 138 139 Surface Sample Ct 21.21 20.07 20.26 N? 1.89 1.65 1.76 C/N 11 12 11 OM? . 36.57 34.60 34.93 S2 0.28 0.27 0.25 P ppm 17.70 9.33 0.53 Na 1.37 6.86 2.48 K 0.53 0.63 0.54 Ca 13.22 12.79 13.85 Mg 3.73 3.63 3.84 CEC 38.67 52.32 83.82 pH 5.03 5.86 5.60 Soil Chemical Analysis Caricetum rostratae 4 140 5 141 6 142 7 143 144 9 145 10 146 19.69 1.51 13 33.75 0.23 1.40 0.75 0.22 13.89 3.53 61.98 5.28 19.02 1.41 13 32.79 0.26 0.87 2.90 0.45 12.54 3.15 45.50 5.22 16.74 1.20 14 28.86 0.19 0.76 4.87 0.57 11.91 3.50 46.72 5.56 15.50 1.22 13 26.72 0.19 4.73 3.72 0.48 12.04 3.61 47.07 5.51 18.16 1.21 15 31.31 0.22 19.60 4.32 0.79 15.10 4.40 50.57 5.89 16.26 1.37 12 28.03 0.21 31.27 2.99 0.53 16.22 4.71 60.02 6.02 18.07 1.28 14 31.16 0.22 5.13 1.35 0.37 16.40 4.66 50.92 6.05 172 and carbon/nitrogen ratios were all between 11 and 15. Sulphur values were moderately high, due possibly to the water saturation of the organic soil which would promote anaerobic decomposition. Phosphorus content was extremely variable, having a range from 0.5 to 19.6 ppm. Corresponding to the high amounts of organic matter, cation exchange capacity was high. It ranged from 39 to 83 me/100 g. Calcium dominated the exchange complex, its quan-tities falling between 12 and 17 me/100 g. Magnesium quan-tities were consistently fairly high and those of sodium extremely variable. In three plots the quantities of sodium exceeded those of magnesium. Potassium was present in small amounts. The soil reaction was moderately to slightly acid with pH values between 5.0 and 6.0. Soil properties are shown in Table 63. ALLIANCE: C a r i c i o n r o s t r a t a e P o t e n t i l l o ( p a l u s t r i s ) - Equ ise te tum f l u v i a t i l i s (Re fe rence T a b l e s : 6 4 , 6 5 , 6 6 , 6 7 , 6 8 ) (= Equisetum fluviatile A s s o c i a t i o n ) The Potentillo (palustris) - Equisetetum fluviatilis is a common aquatic to emergent community in the Sub-boreal 1 7 3 Zone where it develops around the edges of lakes and rivers. It begins development at the edge of the lake and through the formation of a dense root mat gradually progresses farther out into the lake. Ten sample plots were established on McLeod Lake during July, 1969. The plot surface is covered with water in the spring and by late summer, the association becomes emergent due to the drop in the water level of the lake. The soil is fully saturated with water at all seasons, free water being released upon squeezing. It is covered with a dense root and rhizome mat of Equisetum f l u v i a t i l e which becomes mucky as the dead roots decompose. The root-rhizome mat functions as an efficient trap, catching alluvial material brough in during high water. Tab le 64 P o t e n t i l l o ( p a l u s t r i s ) - Equ ise te tum f l u v i a t i l e CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100$) Herb Equisetum f l u v i a t i l e P o t e n t i l l a p a l u s t r i s Sium suave The hygrotope is judged to be hydric to subhydric. Erosion is n i l . Parent materials are of two origins: glacial Table 6 5 1 7 4 Number of Plots P l o t No. Plot Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient Layer Coverage A t o t a l Al A2 A 3 B t o t a l D t o t a l Dh Ddu Ea Eb Ec P l o t Coverage (?) L i t t e r Decaying Wood Mineral S o i l Rock S o i l Hygrotope Trophotope Erosion Drai nage Sample Horizon Depth (cm) P o t e n t i l l o ( p a l u s t r i s ) - Equisetetum f l u v i a t i l i s 1 ' 2 3 4 5 6 7 8 9 10 105 106 107 108 109 110 111 112 113 114 100 100 100 100 100 100 100 100 100 100 l a t e J u l y , 1969 2224 2224 2224 2224 2224 2224 2224 2224 2224 2224 McLeod Lake lake edge, a l l u v i a l f l a t neutral 0 90 90 90 90 90 90 90 90 90 90 covered with water i n spring 100 100 100 100 100 100 100 100 100 100 : absent absent absent hydric to subhydric permesotrophic - subeutrophic s l i g h t , water n i l a s i n g l e l itter-humus sample was taken i n the top 12 inches Parent Material organic with a l l u v i a l f r a c t i o n Table: 6 6 Number of Plots Plot No. Plot Size (m2) Elev a t i o n ( f t . ) sp. Stratum no. Species 1 Equisetum f l u v l a t l l e 2 P o t e n t i l l a p a l u s t r i s 3 Sium suave 4 Carex r o s t r a t a P o t e n t i l l o ( p a l u s t r i s ) - Equisetetum f l u v i a t i l i s 1 2 3 4 5 6 7 8 9 10 105 106 107 108 109 110 111 112 113 114 100 100 100 100 100 100 100 100 100 100 Ave. S p . Species Significance Constancy Sig. 9 9 9 9 9 9 9 9 9 9 v 87.0 3 2 1 1 2 1 3 1 2 2 V 2> 1 2 1 . . 1 . + 1 1 IV 1.0 1 . + . 1 1 . + . 1 III 0.7 Plate 25: Detail of the Potentillo (palustris) Equisetetum fluviatilis showing density of the stems. Soils in this association are high in organic matter and free water is present in the soil throughout the growing season. I 177 outwashes mixed with alluvium and a tendency to the formation of cumulose deposits. A single vegetation stratum occurs and this is very homogeneous in composition and f1oristically simple. Esti-mated cover of the C layer for all sample plots was 90 per cent. The herb layer is always dominated by Equisetum fluviatile which had an average species significance of 9. Also typical of this association is Potentilla palustris whose species significances ranged from 1 to 3. Sium suave was present in seven plots where its distribution was sporadic. Carex rostrata was sporadically present, its origin being from the neighbouring Caricetum rostratae. The boundaries of the Equisetum fluviatile associa-tion are very distinct. It develops between the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati and the Caricetum rostratae. A single soil sample was collected from the top 12 inches in each plot. Chemical and physical properties of these samples are shown in Tables 67 and 68. Organic matter content is relatively high in the association and results predominantly from the decomposition of the Equisetum root-rhizome mat. Percentages were found to be between 16 and 48 per cent, the majority being greater than 30 per cent. Per cent nitrogen was usually between 1.13 T a b l e 67 S o i l P h y s i c a l A n a l y s i s P o t e n t i l l o ( p a l u s t r i s ) - E q u i s e t e t u m f l u v i a t i l i s Number of P l o t s 1 2 3 4 5 6 7 8 9 10 P l o t No. 105 106 107 108 109 110 111 112 113 114 S u r f a c e Sample T e x t u r a l C l a s s L SCL SL SL L SL SL SL SL SL Sand (t) 4 8 . 4 5 0 . 0 5 7 . 6 5 3 . 2 4 5 . 2 5 2 . 8 6 0 . 4 6 0 . 4 7 2 . 4 6 5 . 2 S i l t ( ? ) 3 3 . 6 2 2 . 0 2 6 . 8 3 1 . 6 4 3 . 6 3 3 . 6 2 8 . 0 3 0 . 0 1 2 . 0 2 5 . 2 C l a y (2) 1 8 . 0 2 8 . 0 1 5 . 6 1 5 . 2 1 1 . 2 1 3 . 6 1 1 . 6 9 . 6 1 5 . 6 9 . 6 C o a r s e Fragments — a b s e n t -oo Table 68 S o i l Chemical Analysis P o t e n t i l l o ( p a l u s t r i s ) - Equisetetum f l u v i a t i l i s Number of P l o t s 1 2 P l o t No. 105 106 Surface Sample C? 19.55 27.56 N? 1.13 1.55 C/N 17 18 0M2 33.71 47.52 S2 0.22 0.28 P ppm 19.60 10.73 Na 2.48 1.54 K 0.62 0.68 Ca 20.82 25.56 Mg 5.02 6.02 CEC 38.67 58.45 pH 5.36 5.31 3 4 5 6 107 108 109 110 19.71 14.94 9.53 21.11 1.49 1.30 0.69 1.42 13 12 14 15 33.98 25.76 16.43 36.40 0.33 0.25 0.15 0.39 7.70 5.60 6.07 15.40 1.78 2.12 1.44 1.36 0.34 0.24 0.16 0.38 19.68 17.04 17.82 23.66 4.60 3.62 3.48 5.44 56.35 39.55 32.20 69.82 5.25 5.36 5.92 5.30 7 8 9 10 111 112 113 114 22.79 18.59 22.04 19.55 1.59 1.65 1.71 1.59 14 . 11 13 12 39.29 32.05 38.00 33.02 0.30 0.30 0.45 0.39 7..70 18.20 85.70 107.50 6.66 9.10 4.82 5.46 0.44 0.48 2.30 1.28 22.44 22.28 31.04 24.42 4.86 4.36 7.88 5.70 78.57 56.70 39.72 31.60 5.44 5.55 5.52 5.66 180 and 1.72 with the exception of plot 109 where it was 0.69 per cent. Carbon/nitrogen ratios were from 11 to 18. Sulphur content was relatively high due to the more stagnant nature of the water which promotes anaerobic decomposition. Quantities of phosphorus were highly variable. In most plots they ranged from 5.6 to 18.2 ppm but in plots 113 and 114 they were extremely high (85.7 and 107.5 ppm). Due to the high quantities of organic matter, the CEC's were quite high (31.6 to 78.6 me/100 g). Calcium was the most abundant of the exchangeable cations. Both magnesium and sodium were present in high quantities while potassium amounts were much lower. The soil reaction was acid in all cases. pH ranged from 5.3 to 5.9. P o t a m o g e t o n e t a I i a The Potamogetonetalia is represented in the Sub-boreal Spruce Zone by four alliances: i) Eleocharion palustris, i i ) Scirpion acuti, i i i ) Polygonion amphibii, and iv) Nupharion variegati. Each of these alliances is rep-resented by a single association. The associations are all aquatic. They are developed around the edges of major lakes and some along the margins of 181 the slower moving rivers. The Nupharion variegati is also very common in the smaller glacial depression lakes found on the Fraser Plateau. The description of the floristic compo-sition is possibly not complete due to several sampling problems encountered. Specifically, the time available for sampling was restricted by the availability of a boat. Most plots were sampled only in the later part of July. Addi-tionally, as some are located in deeper water, collection of all species was problematic. However, the present descrip-tions will serve as a preliminary characterization and may act as a base for further studies. The Potamogetonetalia is characterized by the occur-rence of several Potamogeton species; P. vichavdsoniis P. natans3 P. robinsii3 P. foliosus. Additionally, Myviophyllum spicatum and Polygonum amphibium are characteristic species. The Potamogetonetalia is similar to the European Potamogetalia (Tuxen, 1937). This is in the class Nymphaetea (Klika, 1944). 182 ALLIANCE: E l e o c h a r i o n p a l u s t r i s Potamogetono ( r i c h a r d s o n i i ) - E leochare tum p a l u s t r i s (Re ference T a b l e s : 69,70,71,72,73) (= Eleocharis A s s o c i a t i o n ) The Potamogetono (richardsonii) - Eleocharetum palustris is developed along the edges of the larger lakes in the Sub-boreal Spruce Zone. It is an aquatic association but during low water in late August it may become emergent. This only occurs on shallow sloping beaches where capillary action keeps the soils saturated with water. Table 69 Potamogetono ( r i c h a r d s o n i i ) - E leochare tum p a l u s t r i s CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100?) Herb Eleocharis palustris Potamogeton richardsonii Myriophyllum spicatum Ranunculus flammula All sample plots were established along the edges of McLeod Lake which is 14 miles long. Soils are all coarse textured with over 90 per cent sand. Coarse gravel and small Table 70 Potamogetono ( r i c h a r d s o n i i ) - Eleocharetum p a l u s t r i s Number of P l o t s P l o t No. P l o t Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient 1 162 100 2224 2 3 4 5 163 164 165 166 100 100 100 100 l a t e J u l y , 1969 2224 2224 2224 McLeod Lake lake f l a t • neutral • 2224 •0 degrees Layer Coverage A t o t a l A1 A2 A3 B t o t a l B1 B 2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage (?) L i t t e r Decaying Wood Mineral S o i l Rock S o i l 70 75 100 100 Hygrotope Trophotope Erosion Drainage Sample Horizon Depth (cm) 70 100 aquatic 70 70 100 100 o l i g o t r o p h y - submesotrophic water n i l a s i n g l e sample was taken i n the upper 12 Inches Parent Material a l l u v i a l - l a c u s t r i n e Table« 71 Potamogetono (rich a r d s o n i l ) -Eleocharetum p a l u s t r i s Number of Plots 1 2 3 > 5 P l o t No. 162 163 164 165 166 2 P l o t Size (m ) 100 100 100 100 100 E l e v a t i o n 2224, Ave. Sp. Sp. Stratum No. Species Species Significance Constancy S ig. C 1 Eleocharis p a l u s t r i s 8 9 8 8 8 V 67.4 2 Potamogeton r i c h a r d s o n i l 4 4 5 2 5 V 9.5 3 Myrlophyllum spicatum 3 2 3 2 2 V 3.1 4 Ranunculus flammula 1 1 + + + V 0.9 5 Potamogeton foliosus . . . + . I 0.1 C O 185 water worked stones were present. The plot surface has 100 per cent cover of both water and mineral soil. Litter is absent and plant debris is removed by water currents. Small quantities of organic matter present in the soil are due to the decomposition of roots. Hygrotopes are aquatic and erosion is slight and due to water. Parent materials are alluvial mixed with glacial outwashes. Floristically the Eleocharis association is very simple, only five species being recorded. Of these, four exhibited 100 per cent constancy and these were: Eleocharis palustris j Potamogeton richardsonii 3 Myriophyllum spicatum and Ranunculus flammula. Potamogeton foliosus was a sporadic species occurring in only one plot. The association is strongly delimited, its boundaries being distinct. It is easily recognized by the high cover of Eleocharis palustris which has a species significance of 8 or 9. Only a herb layer is recognized. Four plots had an estimated cover of 70 per cent and one plot, 75 per cent. Soil description and chemical analysisare based on a single basal sample taken in the upper 12 inches. Carbon is present in low quantities (1.5 to 4.0 per cent) while nitrogen ranges from 0.12 to 0.16 per cent. Carbon/nitrogen ratios are between 11 and 25. Due to the movement of fresh water through the association, stagnant water and reducing conditions are slight. This is shown by the low quantities Plate 26: Detail of the Potamogetono (richardsonii) Eleocharetum palustris. This association is common along the shores of McLeod Lake where the soils are slightly more coarse textured. 1^4 CL-T a b l e 72 S o i l P h y s i c a l A n a l y s i s Potamogetono ( r i c h a r d s o n i i ) - E l e o c h a r e t u m p a l u s t r i s Number of P l o t s 1 2 3 4 5 P l o t No. 162 163 164 165 166 B a s a l Sample T e x t u r a l C l a s s S S S S S Sand ( ? ) 9 4 . 8 9 4 . 0 9 6 . 0 9 7 . 2 9 5 . 6 S i l t ( ? ) 2 . 8 0 . 8 2 . 0 0 . 8 2 . 4 C l a y ( ? ) 2 . 4 . 5 . 2 2 . 0 2 . 0 2 . 0 C o a r s e Fragments c o a r s e g r a v e l oo T a b l e 73 S o i l Chemical A n a l y s i s Potamogetono ( r i c h a r d s o n i i ) - E l e o c h a r e t u m p a l u s t r i s Number of P l o t s 1 2 3 4 5 P l o t No. 162 163 164 165 166 B a s a l Sample 11 4 . 0 7 3 . 2 0 1 . 6 7 1 . 5 2 1 . 7 5 U 0 . 1 6 0 . 1 3 0 . 1 2 0 . 1 2 0 . 1 6 C/N 25 24 14 12 11 0M2 7 . 0 2 5 . 5 2 2 . 8 8 2 . 6 2 3 . 0 2 S% 0 . 0 5 0 . 0 5 0 . 0 6 0 . 0 9 0.11 P ppm 5 . 0 2 1 3 . 1 8 2 . 4 5 3.11 4 . 2 0 Na 0 . 2 2 0 . 2 4 0 . 3 7 0 . 3 0 0 . 3 0 K 0 . 0 6 0 . 1 3 0 . 0 7 0 . 0 7 0 . 0 8 Ca 3 . 8 9 3 . 7 9 4 . 1 0 3 . 0 5 3 . 9 4 Mg 0.74 0 . 7 6 0 . 8 6 0 . 5 6 0 . 7 6 CEC 4 . 3 2 6 . 0 7 5 . 8 2 4 . 0 2 5 . 2 5 pH 5 . 9 4 5 . 8 5 5 . 5 3 4 . 8 0 5 . 3 5 189 of sulphur (0.05 to 0.11 per cent) found in the soil. Phos-phorus was present in highly variable quantities ranging from 2.5 to 13.2 ppm. Due to the coarse textured nature of the soils, cation exchange capacities were low. CEC ranged from 4.0 to 6.0 me/100 g. Calcium dominated the exchange complex (3.1 to 4.1 me/100 g) followed by Magnesium. Sodium and potassium were present in much lower quantities. The soil reaction in all cases was acidic. pH values were between 4.8 and 5.9. Characteristics of the soils are shown in Tables 72 and 73. ALLIANCE: S c i r p i o n a c u t i Potamogetono ( f o l i o s i ) - S c i r p e t u m a c u t i (Re fe rence T a b l e s : 74,75,76,77,78) (= Soirpus aoutus A s s o c i a t i o n ) The Potamogetono (foliosi) - Scirpetum acuti is very rare in the Sub-boreal Zone and poorly developed. The only locality i t was observed was on McLeod Lake where its extent of type was limited. Topographically it develops between the 190 lake shore and the Potamogetono (richardsonil* - natantis) -Nupharetum variegati. Five sample plots were established. The ground surface of all had a covering of round, water worked stones overlaying finer textured material of s i l t loam to loamy sand textures. Plant litter was absent on the lake bottom and organic matter was generally low. Water covers the ground surface throughout the year. Tab le 74 Potamogetono ( f o l i o s i ) - S c i r p e t u m a c u t i CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100$) Herb Soirpus aoutus Potamogeton foliosus MyriophyHum spioatum The hygrotope of the Scirpus aoutus association is aquatic and erosion is slight. Parent materials are alluvial deposits over glacial material. All plant species are considered in the herb layer though Soirpus aoutus may reach several feet in height. Soirpus aoutus is the dominant species, its species significances being 6 and 7. Potamogeton foliosus was the Table 75 Number of P l o t s P l o t No. P l o t Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i f Shape Exposure Slope Gradient Layer Coverage A t o t a l A1 A2 A3 B t o t a l Bi B 2 C D t o t a l Dh Ddw Ea Eb Ec P l o t Coverage (%) L i t t e r Decaying Wood Mineral S o i l Rock S o i l Hygrotope Trophotope Erosion Drai nage Sample Horizon Depth (cm) Parent Material Potamogetono ( f o l i o s i ) - Scirpetum acuti 1 167 100 2 3 4 5 168 169 170 171 100 100 100 100 2224 l a t e J u l y , 1969 — 2224 2224 2224 McLeod Lake lake f l a t • neutral • 0 degrees• 45 30 50 45 • aquatic • 2224 50 100 100 100 100 100 frequent on surface -mesotrophic - permesotrophic• water : — a s i n g l e surface sample i n top 12 inches 1 a c u s t r i ne Table: 76 Potamogetono ( f o l i o s i ) -Scirpetum acuti Number of Plots P l o t No. 2 P l o t Size (m ) Ele v a t i o n ( f t . ) Sp. Stratum No. Species C 1 Scirpus acutus 2 Potamogeton f o l i o s u s 3 Myriophyllum spicatum 4 Potamogeton natans 5 Potamogeton ri c h a r d s o n i l 1 2 3 ^ 5 167 168 169 170 171 100 100 100 100 100 2224 Species Significance Constancy Ave. Sp. Sig. 7 6 6 6 7 V 32.5 1 + 1 1 1 V 1.3 + 1 1 1 IV 1.0 • • + + II 0.2 + I 0./ ro Plate 27: Detail of the Potamogetono (foliosi) -Scirpetum acuti. This association was not found to be common in the study area. T a b l e 77 Number of P l o t s P l o t No. B a s a l Sample T e x t u r a l C l a s s Sand {%) S i l t ( ? ) C l a y ( ? ) C o a r s e Fragments S o i l P h y s i c a l A n a l y s i s Potamogetono ( f o l i o s i ) - S c i r p e t u m a c u t i 2 3 4 5 168 169 170 171 LS S i L LS SL 8 1 . 2 4 1 . 6 7 7 . 2 . 7 5 . 2 1 3 . 2 5 4 . 8 1 9 . 2 1 9 . 2 5 . 6 3 . 6 3 . 6 5 . 6 1 I n c h c i r c u l a r s t o n e s c o v e r t h e l a k e bottom T a b l e 78 S o i l Chemical A n a l y s i s Potamogetono ( f o l i o s i ) - S c i r p e t u m a c u t i Number of P l o t s 1 2 3 P l o t No. 167 168 169 B a s a l Sample Ct 1 . 1 2 0 . 6 5 5 . 7 7 N$ . 0 . 0 5 0 . 0 2 0 . 3 1 C/N 24 32 19 On 1 . 9 3 1 .12 9 . 9 5 S% 0 . 2 7 0 . 1 8 0.11 P ppm 1 . 0 5 0 . 1 9 0 . 1 7 Na 0.31 0 . 3 4 0 . 4 2 K 0 . 0 8 0 . 0 9 0 . 0 4 Ca 1 0 . 6 4 8 . 2 0 1 0 . 7 6 Mg 2 . 4 2 1 . 3 7 4 . 3 0 CEC 1 6 . 8 2 1 3 . 3 9 18.51 pH 7 .15 7 .15 6 . 8 2 4 170 5 171 1 . 9 4 0 . 2 0 10 3 . 3 5 0 . 0 4 1 8 . 2 0 . 4 0 0.11 4 . 4 8 1 . 7 0 9 . 2 7 5 . 8 9 1.01 0 . 0 6 18 1.74 0 . 4 3 0 . 3 5 0.31 0 . 0 7 5 . 7 3 2.51 1 4 . 7 2 5.41 196 only other species having constancy class 5. Its cover was consistently very low. Myriophyllum spicatum occurred in four plots where i t had a species significance of 1. Potamogeton natans and P. riohardsonii occurred with both low constancy and species significance. On the outer margin of the association an ecotonal area is formed with the Nuphar variegatum association where both species occur together. Total plant cover for the Soirpus aoutus association was estimated to be between 30 and 50 per cent. Soil carbon is low and ranged from 0.7 to 1.9 per cent in all plots except plot 169 which had 5.8 per cent. Nitrogen content was also low and carbon/nitrogen ratios were between 10 and 32. Sulphur quantities were highly variable as were those of phosphorus. Cation exchange capacities ranged from 9.3 to 18.5 me/100 g. The exchange complex was dominated by calcium in all cases. Magnesium was the next most abundant followed by sodium and potassium. The soil reaction ranged from slightly acid to slightly basic (pH 5.4 to 7.2). Soil properties are shown in Tables 77 and 78. 197 ALLIANCE: P o l y g o n i o n amphib i i Potamogetono ( n a t a n t i s ) - Polygonetum amph ib i i (Re fe rence T a b l e s : 7 9 , 8 0 , 8 1 , 8 2 , 8 3 ) (= Polygonum amphibium A s s o c i a t i o n ) The Potamogetono (natantis) - Polygonetum amphibii occurs frequently on the larger lakes in the Sub-boreal Spruce Zone. It forms the outer most community next to open water. On its landward side there is a narrow ecotonal area between . it and the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati. Five sample plots were established on McLeod Lake, all of which were developed on coarse textured sandy soils (greater than 96 per cent sand). Due to the water movement finer textured silts and clays are kept suspended and thus do not settle to the bottom. Plant litt e r is also removed from the association by water currents. Tab Ie 79 Potamogetono ( n a t a n t i s ) - Polygonetum amph ib i i CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100$) Herb Polygonum amphibium Potamogeton natans Myriophyllum spioatum Potamogeton foliosus Table 80 198 Number of P l o t s P l o t No. P l o t Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient Layer Coverage A t o t a l Al A2 h B t o t a l B1 B2 C D t o t a l Dh Ddw Fa Eb Ec P l o t Coverage {%) L i t t e r Decaying Wood Mineral S o i l Rock S o i l Hygrotope Trophotope Erosion Drainage Sample Horizon Depth Parent Material Potamogetono (natantis) - Polygonetum amphibii 1 2 3 4 5 157 158 159 160 161 100 100 100 100 100 l a t e J u l y , 1969 :  2224 2224 2224 2224 2224 McLeod Lake lake f l a t neutral 0 degrees 90 90 90 90 90 water 100 100 100 100 100 aquatic suboligotrophic to submesotrophic water (cm) a s i n g l e surface sample was taken i n the top 12 inches 1 a c u s t r i ne Table: 81 Number of Plots Plot No. 2 Plot Size (m ) Elevation (ft.) Sp. Stratum No. Species 1 Polygonum amphibium 2 Potamogeton natans 3 Myriophyllum spicatum 4 Potamogeton foliosus 5 Eleocharis palustris Potamogetono (natantis) -Polygonetum amphibii 1 2 3 ^ 5 157 158 159 160 l 6 l 100 100 100 100 100 ...<>•. 2224.......... Species Significance 9 9 8 9 9 5 3 2 3 2 1 3 2 2 2 1 . 1 + 1 . . 2 . . Ave. Sp. Constancy Sig. V 82.0 V 5.6 V 2.6 IV 1.0 I 0.5 Plate 28: Detail of the Potamogetono (natantis) -Polygonetum amphibii showing the density and cover of this species. This association occurs along the lakes to a depth of several feet where i t develops next to the Potamogetono (richardsonil' -natantis) - Polygono (amphibii) - Nupharetum variegati. 201 The hygrotope is aquatic and erosion is slight and due to water. Parent materials are lacustrine sands over glacial outwash. The floristic composition of the Polygonum amphibium association is very simple. Five species were recorded. It is entirely dominated by a very dense cover of the leaves of Polygonum amphibium which cover an estimated 90 per cent of the water surface. Potamogeton natans also has floating leaves which give i t a cover value of 2 to 3. In one plot it had a species significance of 5. Of the totally submerged, species, Myriophyllum spicatum was the most constant followed by Potamogeton foliosus. On the most shallow locations Eleocharis palustris may occur. A single basal soil sample was taken in each plot and the findings are presented in Tables 82 and 83. Due to the removal of plant debris by water currents, the organic matter in the soil is very low. It ranges from 0.7 to 1.1 per cent. Similarly, nitrogen quantities were very low, being all less than 0.5 per cent. Carbon/nitrogen ratios, however, were similar to those in the other lake shore communities ranging from 12 to 15. Phosphorus was present in low quantities as was sulphur. The cation exchange capacity of the soil was low in all plots. This was possibly due partly to the low amounts T a b l e 82 Number of P l o t s 1 P l o t No. 157 B a s a l Sample T e x t u r a l C l a s s S Sand ( ? ) 96 S i l t ( ? ) 0 C l a y ( ? ) 4 Coarse Fragments S o i l P h y s i c a l A n a l y s i s Potamogetono ( n a t a n t i s ) - P o l y g o n e t u m a m p h i b i i 2 3 4 5 158 159 160 161 S S S S 96 98 98 98 2 0 0 0 2 2 2 2 a b s e n t o ro T a b l e 83 S o i l C h e m i c a l A n a l y s i s Potamogetono ( n a t a n t i s ) - Polygonetum a m p h i b i i Number of P l o t s 1 2 3 4 5 P l o t No. 157 158 159 160 161 B a s a l Sample Zl 0 .61 0 . 3 8 Hi 0 . 0 4 0 . 0 3 C/N 14 12 0M? 1 . 0 5 0 . 6 6 SI 0 . 0 3 0 . 0 2 P ppm 3 . 1 9 1.21 Na 0 . 1 8 0 . 1 9 K 0 . 0 8 0 . 0 7 Ca 2 . 3 5 1 . 9 7 Mg 0 . 4 9 0 . 3 6 CEC 3 . 1 5 2 . 1 0 pH 5 . 9 2 6 . 1 2 0 . 4 8 0 . 4 6 0 . 4 0 0 . 0 3 0 . 0 4 0 . 0 3 15 13 13 0 . 8 3 0 . 7 9 0 . 6 9 0 . 0 5 0 . 0 2 0 . 0 5 1 . 0 5 2 . 4 9 1 . 9 4 0 . 2 2 0 . 2 1 0 . 2 0 0 . 0 6 0 . 0 7 0 . 0 7 2 . 1 2 2 . 0 2 2 . 0 4 0.41 0.41 0 . 4 5 2 . 2 0 2 . 8 0 2.31 6 . 0 0 6 . 1 3 5 . 9 5 r o o CO 204 of organic matter. Calcium was by far the most abundant exchangeable cation and it was present in 1ow quantities. These ranged from 2.0 to 2.4 me/100 g. Magnesium values were approximately twice as high as those of sodium and potassium. The soil reaction was only slightly acid, the pH ranging from 5.9 to 6.1. ALLIANCE: Nuphar ion v a r i e g a t i Potamogetono ( r i c h a r d s o n i i - n a t a n t i s ) - Polygono ( a m p h i b i i ) -Nupharetum v a r i e g a t i (Re fe rence T a b l e s : 8 4 , 8 5 , 8 6 , 8 7 , 8 8 ) (= Nuphar A s s o c i a t i o n ) The Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati is one of the more common aquatic associations in the Sub-boreal Zone. It develops on the larger lakes as well as on the many small glacial depression ones. Nine sample plots were established on McLeod Lake during late July at an elevation of 2224 feet. The plot surface is continuously covered with water and mineral soil covers the lake bottom. Litter is absent in all plots. It 205 may be present in the smaller glacial depression lakes but these sites were not sampled. In McLeod Lake the dead plant material is removed by water currents, thus not getting the chance to settle to the bottom. Hygrotopes are judged to be aquatic and erosion is slight and due to water. Parent materials are alluvial silts deposited over glacial material. T a b l e 84 Potamogetono ( r i c h a r d s o n i i - n a t a n t i s ) - Polygono ( a m p h i b i i ) - Nupharetum v a r i e g a t i CHARACTERISTIC COMBINATION OF SPECIES LAYER CONSTANT DOMINANTS CONSTANTS (60-100$) Herb Nuphar variegatum Potamogeton richardsonii. Polygonum amphibium Potamogeton natans The association is floristically simple and domi-nated by Nuphar variegatum which had a variable species significance ranging from 6 to 9 (average 8). Potamogeton richardsonii and Polygonum amphibium were also present with constancy 5. They had average species significances of 4 and 2 respectively. Potamogeton natans was also typical of this association occurring with class 4 constancy and an Table 85 Potamogetono ( r i c h a r d s o n i l - n a t a n t i s ) - Polygono (amphibii) - Nupharetum v a r i e g a t i 206 Number of P l o t s Plot No. Plot Size (m2) Date Analysed Elevation ( f t ) L o c a l i t y Land Form R e l i e f Shape Exposure Slope Gradient Layer Coverage 1 147 100 2 3 4 5 6 7 8 9 148 149 150 151 152 153 154 155 100 100 100 100 100 100 100 100 2224 2224 2224 l a t e J u l y , 1969 2224 2224 2224 McLeod Lake lake f l a t 2224 2224 2224 neutral •0 degrees-A t o t a l - - - - - - - -Al A2 A3 B t o t a l ---- -----l\ - - - - - - - - -2 C 85 85 70 70 85 50 40 30 30 D t o t a l - - - - - - - - -Dh DAm - - - - - - - - -UQW Ea — _ _ _ Eb - - - - - - - - -Ec - - - - - - _ - _ P l o t Coverage (%) L i t t e r Decaying Wood Mineral S o i l Rock 100 100 100 100 • water -absent • absent • 100 • absent-100 100 100 100 S o i l Hygrotope — Trophotope — Erosion — Drainage — Sample Horizon Depth (cm) aquatic submesotrophic to permesotrophic water n i l a s i n g l e surface sample was taken i n the upper 12 inches Parent Material l a c u s t r i n e Table» 86 Potamogetono (richardsonii-natantis) -Polygono (amphibii) - Nupharetum variegati Number of Plots 1 2 3 4 5 6 7 8 9 Plot No. 147 148 149 150 151 152 153 154 155 Plot Size (m ) 100 100 100 100 100 100 100 100 100 Elevation (ft.) Sp. Stratum No. Species .2224.. Species Significance Constancy Ave. Sp. Sig. C 1 Nuphar variegatum 9 9 8 8 9 7 6 6 6 V 56.3 2 Potamogeton richardsonii 4 4 2 3 4 3 2 3 2 V 4.6 3 Polygonum amphibium 2 1 3 2 • 1 + 1 1 V 1.7 4 Potamogeton natans 1 • 2 1 2 • 2 1 1 IV 1.5 5 Myriophyllum spicatum • 1 • • • 1 1 1 1 III 0.8 ro o Plate 29: Detail of the Potamogetono (richardsonii natantis) - Polygono (amphibii) - Nupharetum variegati as i t occurs on McLeod Lake. T a b l e 87 S o l i P h y s i c a l A n a l y s i s Potamogetono ( r i c h a r d s o n i i - n a t a n t i s ) - P o l y g o n o ( a m p h i b i i ) - Nupharetum v a r i e g a t i Number of P I o t s 1 2 3 4 5 6 7 8 P l o t No. 147 148 149 150 151 152 153 154 B a s a l Sample T e x t u r a l C l a s s LS SL SL S l L S l L SL S LS Sand (%) 8 5 . 6 5 8 . 8 6 7 . 6 4 3 . 6 4 5 . 2 5 2 . 0 9 2 . 0 8 4 . 4 S i l t (%) 1 0 . 8 3 7 . 6 2 9 . 2 5 3 . 2 5 1 . 6 4 3 . 2 4 . 8 1 2 . 4 • C l a y {$) 3 . 6 3 . 6 3 . 2 3 . 2 3 . 2 4 . 8 3 . 2 3 . 2 C o a r s e Fragments a few water worked s t o n e s T a b l e 88 S o i l Chemical A n a l y s i s Potamogetono ( r i c h a r d s o n i i - n a t a n t i s ) - Polygono ( a m p h i b i i ) - Nupharetum v a r i e g a t i Number of P l o t s 1 2 3 4 5 6 7 P l o t No. 147 148 149 150 151 152 153 B a s a l Sample M 1 . 7 7 3 . 6 9 1 . 1 2 1 . 5 6 2 . 8 5 2 . 0 0 0 . 8 2 Nj5 0 . 1 8 0 . 2 9 0 . 1 0 0 . 1 5 0 . 2 2 0 . 2 0 0 . 0 9 C/N 10 13 11 10 13 10 9 OM? 3 . 0 5 6 . 3 6 1 . 9 3 2 . 6 9 4 . 9 1 3 . 4 5 • 1.41 s ? 0 . 0 5 0.11 0 . 0 4 0 . 0 3 0 . 0 7 0 . 0 6 0 . 0 3 P ppm 5 . 0 2 0 . 0 6 0 . 0 8 0 . 0 6 0 . 0 6 2 . 4 5 7 . 4 7 Na 0.31 0 . 3 3 0 . 2 7 0 . 4 0 0 . 2 5 0 . 4 8 1 . 1 0 K 0 . 2 0 0 . 1 3 0 . 1 6 0 . 0 8 0 . 0 8 0.11 0 . 1 4 Ca 3 . 6 3 6 . 3 8 3 . 6 3 4.31 5 . 4 3 5.51 2 . 3 8 Mg 0 . 9 3 1.81 1 . 0 2 1 . 3 3 1 . 6 5 1 . 8 2 0.71 CEC 2 0 . 1 2 1 8 . 0 2 6 . 0 2 8 . 5 7 1 2 . 2 5 1 1 . 2 0 5 . 9 5 pH 4 . 9 6 5 . 0 9 4 . 9 6 5 . 2 8 5 . 2 4 6 . 2 6 6 . 3 5 211 average species significance of 1. Myriophyllum spicatum showed a weak presence in five plots. All species were treated in the herb layer. The Nuphar association has usually very distinct boundaries and is easily recognized by the high cover of Nuphar variegatum. It is bordered on the lakeward side by the Potamogetono (natantis) - Polygonetum amphibii and on the shoreward side by the Potentillo (palustris) - Equisetetum fl u v i a t i l i s . Soil description and analysis is based on a single basal sample extracted from the upper 12 inches of the lake bottom. Some sampling error is introduced due to problems encountered in bringing the sample to the surface of the lake. Consequently s i l t and clay contents are slightly underestimated. Sand content ranged from 44 to 86 per cent, s i l t from 5 to 53 per cent and clay was less variable being from 3 to 5 per cent. Carbon content was low (0.8 to 3.7 per cent) while nitrogen ranged from 0.1 to 0.2 per cent. Carbon/nitrogen ratios were between 9 and 13. Sulphur was low and phosphorus quantities highly variable. Cation exchange capacity ranged from 6.0 to 20.1 me/100 g, the exchange complex being dominated by calcium (2.4 to 6.4 me/100 g). Sodium and potassium were present in lower quantities. Soil reactions were slightly acid, pH ranging from 5.0 to 6.4. Soil characteristics are shown in Tables 87 and 88. Chapter 5 FOREST TREE DYNAMICS IN THE SUB-BOREAL SPRUCE ZONE Tree growth can be expressed in various different ways. Forest productivity has been represented by several types of estimates: current annual increment, annual volume growth and site index to mention only a few. The current annual increment is the growth of a given tree over a period of one year and is not applicable to other years as i t is an expression of the growth under the climatic and edaphic conditions of the year in which the measurements were taken. Periodic annual increment is calculated by taking the dif-ference in diameter over a given period and dividing by the number of years. The mean annual increment (MAI) is the annual increase in diameter up to any given age from the year 1. It is found by dividing the cumulative size at any time by the age. Annual volume growth is the in-crease in volume of a tree or stand over a period of one year. Site index is the growth in height of a tree usually over a period of 100 years (sometimes a period of 50 years i s u s e d). 212 213 Another method of measuring the biomass of a forest stand is termed the standing volume. The standing volume of a given stand is calculated by the use of volume tables which provide the volume of a given tree species stem pro-vided with the height and diameter of that stem. Standing volume can be applied to a stand by adding all the volumes of different trees in that stand. In British Columbia these volumes have been calculated by the British Columbia Forest Service (Browne, 1962). Volume tables in this publication were calculated and 1ogarithmetic equations derived for each of the coastal and interior species using the method of least squares. Certain errors are inherent in such tables due to the individual genetic make-up of the trees and the different climatic and edaphic factors acting on them. Browne (1962) sites the extremes of the standard error to be found for aspen {Populus tremuloides) of ± 8.2 per cent. Such a method of calculating the standing volume does not provide an absolute measure of forest productivity as i t does not take into account that portion of the biomass occurr-ing in the leaves, branches and roots of the tree. Thus it follows that any estimates of standing volume grossly under-estimate the productivity of a given stand (Ovington, 1962). Watts (1968) states that Typically3 man removes a biomass yield that is considerably less than the productivity; the difference, productivity minus yield, is lost to natural mortality3 or competition. 214 If standing volumes are not good measurements of absolute productivity, they are however, reasonable indicators of productivity in comparing different forest stands assuming that the stands on which the measurements are taken are not young stands. It would be unreasonable to compare a stand of Pinus contorta that was 20 years old with one that was 70 years old. However if the standing volume of the trees in a forest association is calculated based on several repe-titions of that association then there is a comparative value in the different standing volumes and this would indicate the relative productivity of the different associations. Such comparisons would apply, assuming that the forest stands being compared were either all a result of natural regenera-tion or all plantation. A comparison of stands of both natural and artificial stocking would be invalid as advanced si 1vicultural techniques greatly increase the productivity of a given forest site. Understanding how a given tree species functions in regard to its growth in different forest sites is of prime value to forest management. Frequently in a country as large as Canada, growth curves and other such tools for estimating forest productivity are so general that they cannot be used as guides for intensive local management. Using the concept of the Biogeoclimatic Zone (Krajina, 1959, 1965) and the Biogeocoenose (Sukachev, 1944) or the plant 215 association (Braun-Blanquet, 1928) and the functional grid matrix (Pogrebniak, 1930; Krajina, 1969), fairly accurate diagrams can be developed to indicate how trees respond to different site conditions. Such a system applying these levels of integration is basically ecosystematic and a powerful method of representing the function of trees which reflect the climatic and edaphic conditions in any given area. Height/diameter curves are one method of in-dicating the growth of trees in a given site. The relation-ship between height and diameter has been studied by several workers (e.g. Kerr and Smith, 1955; Trorey, 1932). In comparing different mathematical functions that may be fitted to height/diameter curves, Kerr and Smith found that the para-bolic expression H - 4.5 + bD - cD2 provided satisfactory results where H is the total height in feet, D equals the diameter at 4.5 feet above the ground and b and c are con-stants. They found that in applying this equation that it was necessary to assume that only the ascending portion of the curve was applicable and that once the maximum was reached, the predicted height remained constant. In consideration of the above, height/diameter curves were developed for each tree species in each of the plant associations described for the Sub-boreal Spruce Zone. The regression lines were drawn only when significant to the 216 95 per cent level. These graphs when used in conjunction with the standard volume tables for British Columbia provide the volume of a given tree in any plant association given either the height or diameter of that tree. Assuming that a representative sample is taken during inventory studies, the standing volume for any tree species can readily indicate which species are dominants, codominants and those that are shade tolerant or intolerant and those species that are self-perpetuating in a given site. In addition to height/diameter curves, the produc-tivity of each coniferous species will be discussed in terms of potential productivity and site index. The site indices have been calculated with the use of age/height curves from the British Columbia Forest Service as shown in the "Forestry Handbook for British Columbia" (1971). These curves are general curves calculated over the whole of the interior of the province and one set of curves is often applied to several species (e.g. all interior species of spruce and balsam have one set of curves). Standing volumes have been calculated for each species in each plot and a minimum, maximum and average standing volume will be discussed. Using all the height/diameter data found in the scatter diagrams, an "average tree" has been calculated for each species in the association. This standard tree is cal-culated by taking the average of all the diameters and heights 217 of that species in all the stands of the association and can serve as a comparative estimate of standing crop in the associations. This standard tree takes into consideration all the various influencing factors on the trees such as stand density, light conditions and soil nutrient status as the samples cover a range of conditions on which the associa-tion occurs. Thus, i t is representative of that species under the various environmental conditions on which the association is developed. Maximum height and diameter are also alluded to as an indication of the variability found in the association. Tables are presented for each association and these show: total basal area/association acre, minimum basal area, maximum basal area, average number of trees/acre, minimum and maximum number of trees/acre and the average basal area of the trees. Total basal area/association acre is defined as the sum of basal areas of all the trees in the association divided by the total number of trees. Minimum basal area is defined as the basal area of the species in the plot in which i t was found to be the lowest. Maximum basal area is the basal area of the species in the plot in which i t was found to be the highest. Average number of trees/acre is the average number of trees/acre worked out on the basis of all plots of the associ ati on. 218 Minimum number of trees/acre is simply the plot in which the species was found in the lowest stocking. Maximum number of trees/acre is the plot in which the species was found in the highest stocking density. Average basal area per tree is defined as the sum of the basal areas of all the trees of that species in all the plots of the association divided by the total number of trees. Data was collected on the basis of 400 sq. m. plots and converted to per acre figures. Basal area measurements are in square feet (per acre or per tree). These figures are presented for each species found in the association as well as for all trees of all species in the association. Three appendices are included for this chapter. These present the forest productivity data on an individual plot basis. Used in conjunction with the generalized data in the chapter a precise definition of the variability within the associations is readily available. Appendix C presents the total basal area, number of trees and average basal area for each species and for all species occurring in each of the sample plots. The units of measure for basal area are in square inches. Appendix D presents tree volumes in cubic feet per 400 sq. m. plot for each species in each plot. Average minimum and maximum heights are shown for each species in each plot. 219 Appendix E presents height/diameter scatter diagrams for each species in each plot. The purpose of these is to give an idea of the variability of heights and diameters for any given species in a sample plot. When compared to the association tables in Chapter 4 it is readily apparent how far the plot varies from the association. Additionally the stage of development of the community in terms of succession is apparent by the relative position in the vege-tation strata of any given species when compared to the other species. C l a d o n i o ( g r a c i l i s ) - A r c t o s t a p h y l o ( u v a e - u r s i ) - V a c c i n i o (myrt i I I o i d i s ) - Pinetum c o n t o r t a e c l a d o n i o - a r c t o s t a p h y l o - v a c c i n i o - p inetosum c o n t o r t a e p l e u r o z i o - corno - vacc i n i etosum c a e s p i t o s a e v-This association is developed on the driest sites of the Sub-boreal Zone where the soils are very sandy and consequently exhibit very poor water retention properties. On such sites Pinus contorta is the dominant tree. No other conifers are found in either the shrub or tree layers. A total of 9 specimens of Populus tremuloides were found in the 12 sample plots and these were all restricted to the wetter subassociation. As the sample number of trees is so 220 small for this species no predictions about the productivity will be discussed. Referring to the scatter diagram for Pinus contorta in this association we see that Pinus is found throughout all strata of the vegetation. This would indicate that it is a self-perpetuating species and as i t is the only conifer it also forms an edaphic climax association on such sites. This is the only community in the zone in which Pinus is a self-perpetuating species. This is due to the fact that the sites on which i t develops are too xeric for other conifers to develop and consequently other species do not overtop i t and shade i t out. Stand density expressed in terms of number of stems/acre varies considerably with as few as 150 being recorded in the drier subassociation and as many as 1060 in the wetter subassociation. The largest specimen of Pinus contorta in the entire association was found in the wetter subassociation with a height of 67 feet and a DBH of 11.5 inches. The average tree for this association was calculated to be 5.5 inches and 38 feet t a l l . This is based on a sample number of 564 trees. Standing volumes ranged from a low of 523 cu. ft. per acre to a high of 2,924 and an average of 1 ,224 cu. ft./acre. The site index for Pinus contorta was found to be 76 feet in 100 years. Table 89 COMMUNITY - 11 PLOTS Cladonio (grac l l t s ) - Arctostaphylo ( u v M i r s ! ) - Vaccinio ( o y r t l l l o i d l s ) - PInetun contorta* -T~0 T AL—tirr. P i CEA P I C E A POP U LL E E T U L ; i-i,;os-GLA S T PA A b I - £ PSEUDG a n r i h PYRI TORT LOIDES FERA T\ ASSOCIAT I ON 0 • 0 9 0 . 0 0 -0 . 3 0 0» 00 ACRE i IOC ,'GA i RPA E R Z I E S I A L L S P E C I E S 0« 0 0 0 . 0 0 6 2 . 9 7 -rrl-R— li f i i A L— AREA/ACRE 0 . 0 0 • 0 *00 Oo CO O.JO 2-s> o "7-1 0 . 0 0 0 . 0 0 2 6 * 3 0 f4A T"% r-ri A-L— A R E A / A C R E 0 . 5 9 -- .0 .0 0 2 . 5 5 Oo 00 0 . 0 0 o.ou l i b . 2 3 AV G-—h-y i» &rv-T R E E S / A C R E . 2 . 7 2 0 . 0 0 6 . 1 3 0 o ^ 0 &-I-2-r-7-£— 0 oCO 0 . 0 0 3 2 3 . 6 3 -frl W—rt wrr'J-ER-T R E E S / A C R E 0 w 0 0 0 0 150 TRL.ES/ A C R -20 80 0 -1060-0 c 106 0 AREA/ T •; £ 0 . 0 3 3 ? w • J J v- 0 0 . 0 2 6 7 U e w v J 0 8 - 2 w V 0 # 0 'J 0 0 0 i 0 0 0 0 0 . 1 2 0 2 ro ro 222 Cladonio ( g r a c i l i s ) - Arctostaphylo (uvae-ursi) -Vaccinio ( m y r t i l l o i d i s ) - Pinetum contortae Diameter - Height Regression Figure 1 223 FINUS CONTORTA H = 4*5 + 1-BBBSO*** ISO, 0•9860 x 100.. m so. o. ft' I 1 j 1 5 j 1— 8 IE IS 20 24 29 32 O-B-H- (INCHES) 3S 40 Cladonio ( g r a c i l i s ) - Arctostaphylo (uvae-ursi) Vaccinio ( m y r t i l l o i d i s ) - Pinetum contortae Diameter - Height Regression Figure 2 224 D°B*H° (INCHES) Cladonio (gracilis) - Arctostaphylo (uvae-ursi) -Vaccinio (myrtilloidis) - Pinetum contortae Composite Diameter - Height Regression for two species T = Populus tremuloides C = Pinus contorta Figure 3 225 P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - D i c r a n o ( p o l y s e t i ) - G a u l t h e r i o ( h i s p i d u l a e ) - P ino ( c o n t o r t a e ) -P iceetum marianae This association is developed on the moister sites than the Pine - Lichen community. The soils are s t i l l very sandy. Four tree species are present: Picea mariana, Pinus contorta, Abies lasiocarpa and Populus tremuloides. The tallest tree in the association is Pinus contorta which is not a self-perpetuating species but rather a fire-promoted species which gives way to Picea mariana i f the association development is not arrested by fire. No pure stands of upland black spruce were found in the study area as fires are very common on such densely stocked sandy sites. Based on six sample plots and 101 trees of Pinus contorta, a minimum standing volume for this species was found to be 453 cu. ft./acre and a maximum of 3,098 with an average of 1,851 cu. ft./acre. The average tree was 7.4 inches DBH and 58 ft. high while the largest tree was 13.5 inches DBH and 81 ft. t a l l . Pinus contorta showed its poorest growth in this community with a site index of 50 feet in 100 years. It is even poorer than in the Pine - Lichen community, possibly due to the greater competition for moisture supplied by the dense growth of Picea mariana. Table 90 COMRIURITY 4 - 5 PLOTS Pleurozio (schreberi) - P t i l i o (cristae-castrensis) - Dicrano (polyseti) - Gaulthorio (hfspidulae) - Pino (contortse) - Piceatuc a.-risnas P J C E A GLAUCA P I C E A i-iAKiAi\A P O P U L U S TREMULOIDES b E T U L A P A P Y R I F E R A -T0T-AL &At>A-fa—AREA/ ASSOCIATION ACRE 0» 00 - -••69 • 9 2 3.07 0.00 -r"r£ H—BA-S AL— AREA/ACRE 0.00 ---42.75 -0.0 C 0.00 A i i l t S LASIOCARPA P-SEUOOTSO'GA HE<\iZIESII -HAX—fe AS At— AREA/zsCRE -6-3n 0. Oi -*0T5^-,42 i 00 00 00 -ir7-. 7-7-2.11 0.00 -AV-G ri I R—i TU : - rC E-R-14 .00 0.00 0 0 70 0 0 • 0 3 „ 0.000 ALL SPECIES 136.62 lOfc.05 193.74 626'.00 500 500 0.21; ro ro 150+ PICEA MARIANA H = 4»5 + 1-752BO* 1-0567 15 16 50 54 59 ••B«H» (INCHES) 40 Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Dicrano (polyseti) ( - Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae Diameter - Height Regression Figure 4 228 PINUS CONTORTA H = 4-5 + 2-7B79t>*. O6053 j j 1— H j 1 \ ~ 1 j f-0 4 8 IS ±6 SO 54 5S 35 3S 40 •-B-H- (INCHES) Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae Diameter - Height Regression Figure 5 229 ABIES LASIOCARPA H = 4*5 + -O 49220** 2• B5BB 150+ 1.100. m —4 SO. a , _ { 1 1 j 1 1 f 1 \ h 0 4 8 IS 16 SO 54 23 32 3S 40 D«B-H° (INCHES) Pleurozio (schreberi) - P t i l i o (cristae-castrensis) - Dicrano (polyseti) - Gaulth'erio (hispidulae) - Pino (contortae) -Piceetum marianae Diameter - Height Regression Figure 6 230 Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae Composite Diameter - Height Regressions f o r three species L a Abies las3,0carea M ss Picea mar j. ana Figure 7 c = P l n u s c o n t o r t a 231 Picea mariana was the next most dominant tree in the association where it was found to have an average stand-ing volume of 1,430 cu. ft./acre and low and high volumes of 737 and 2,052 cu. ft./acre respectively. The average tree was 5.6 inches DBH and 50 feet tall while the largest was 10.4 inches DBH and 64 feet t a l l . The site index for Picea mariana was found to be 57 feet in 100 years. A total of 6 trees of Abies lasiocarpa were re-corded. This species was always found in the shrub layer because it is shade tolerant. As the number of trees was small, no productivity data will be discussed. Populus tremuloides was also poorly represented with seven trees being present and these always in the upper strata. P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - Populo ( t r e m u l o i d i s ) - P i c e o (g laucae ) -Pinetum c o n t o r t a e ( s u c c e s s i o n a I Iy immature a s s o c i a t i o n ) and P l e u r o z i o ( s c h r e b e r i ) - P t i l i o ( c r a s t a e - c a s t r e n s i s ) - V a c c i n i o (membranacei) - Pseudotsugo ( * g l a u c a e ) - P iceetum g laucae (mature a s s o c i a t i o n ) These two associations will be dealt with together as they are both developed on the mesic sites in the Sub-boreal Zone. The mature association is the closest one 2 32 sampled to the climatic climax of the zone while the succes-sionally immature association is promoted and maintained by fires which are frequent on such sites. In the successionally immature association the tallest trees are always Pinus contorta while Picea glauca is at various stages of development beneath i t . Most of the plots of the mature association have some remaining Pinus contorta which shows indications of being shaded out by Picea glauca, resulting in eventual death of lodgepole pi ne. Referring to the scatter diagrams for Picea glauca we see that it is the dominant tree in the mature associa-tion where i t is shade tolerant and self-perpetuating. In the successionally immature association it is also a shade tolerant species but it is not as large. Pinus contorta is the tallest tree in the successionally immature associa-tion. Based on 240 sample trees, Picea glauca was found to have an average standing volume of 5,881 cu. ft./acre in the mature association and 188 cu. ft./acre in the succes-sionally immature association. The range of values in the mature association were from 2,660 to 8,649 cu. ft./acre while in the successionally immature association they ranged from zero to 919 cu. ft./acre. The average tree in the main association was 10.0 inches DBH and 74 feet tall and 4.8 inches DBH and 31 feet tall in the serai association. Table 91 COMMUNITY 5 - 9 PLOTS Pleurozio (schrebari) - P t i l i o (cr istae-castrensis) - Vaccinio (menbranace'») - Populo ( t resulo ld is ) - Piceo (ghucae) - Pinetus contortae P-i-e-cA-PICEA - G b A y G A -i A is I ARA POPULUS TRLMULGIDES BE TULA' PAPYRIFERA- -PliVJS CORTwRTA AEIES LASIOCARPA TOTAL bASAL AREA/ ASSOCIATION ACRE 0.0 0. 20.04 - 0.39-109.37 2.05 Ri IR bASAL AREA/ACRE 0,-00 PSEUOOTOUCA H'ERZI ES-H-0.00 0.00 0.00 1.30 0.00 —o.-9-e-MAX liASAL AREA/ACRE -2-7-.+0-0 .74 120.29 2.26 260 .32 9.33. 2-»a-9-AVG RUriBER TREES/ACRE i>6»6& 1.11 23 0. 4. 283, 41, 00 44 33 11 MIR RU;-ioER TREES/ACRE 'j -t-,4-1-0 0 • • 0 10 0 — 3 -R.AR RURdER TREcS/ACRE — - £ 0 0 i u 1340 20 640 100 :.y AVO aASAL A;-;E/>/T:-;EE v »-i-3vU-0 • J 7 4 0 0.124s 0 . 0 6 o 4 0.3077 0.062? 0 «-2->9 6— ALL SPECIES _V 149.23 106.17 278.79 617.77 330 13 90 0.2 415 ro C O C O 234 PICEA GLAUCA H = 4-5 + OSiS3L>* i-4111 ° - | 1 1 1 h 1 ! —I ! ! + 0 4 B IS 16 20 24 23 32 36 40 D-B-H- (INCHES) Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranace i ),- Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae Diameter - Height Regression Figure 8 235 POPULUS TREMULOIDES H = 4-5 + 2"4333L>» OB11S S 1 1 1 f 1 1 H 1 1 h O 4 8 12 16 20 24 23 32 36 40 D°B oH° (INCHES) Pleurozio (schreberi ) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranacei ) - Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae Diameter - Height Regression Figure 9 236 PINUS CONTORTA H = 4*5 + 2-66B3D** 0-6969 H 1 1 1 1 1 1 1 H ! 1-O 4 B 12 IS 20 24 £3 32 33 40 D-B-H- (INCHES) Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranacei ) - Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae Diameter - Height Regression Figure 10 237 150. ABIES LASIOCARPA H = 4-5 + 0-4397D**- 1-7635 6 12 16 20 24 23 •-B-H- (INCHES) 3S 40 Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranacei )- Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae Diameter - Height Regression Figure 11 238 •-B-H- (INCHES) Pleurozio (schreberi) - P t i l i o (cristae-castrensis) - Vaccinio (membranacei ) - Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae Composite Diameter - Height Regressions for four species L = Abies lasiocarpa T = Populus tremuloides G - Picea glauca C = Pinus contorta Figure 12 239 The site index for Pioea glauca in these two asso-ciations was calculated to be 86 feet in 100 years. Betula papyrifera is a sporadic species in these two associations with usually one or two trees being present. The largest trees of this species were found in the mature association where they had an average standing volume of 128 cu. ft./acre. Populus tremuloides was found to be most common in the successionally immature association where i t shared the upper stratum with Pinus contorta. This can be seen in the scatter diagram where there is a cluster of data points between 40 and 60 feet and 4 and 8 inches. Those points in the scatter diagram for the mature associa-tion are the remaining trees that have not yet been shaded out by Picea glauca. Populus tremuloides was found to have an average standing volume of 940 cu. ft./acre in the succes-sionally immature association and 396 in the mature associa-tion. The average tree in the former was found to be 6.0 inches DBH and 54 feet tall while in the later it was 12.9 inches and 79 feet. No site index is proposed for either Populus or Betula in these two associations. The scatter diagrams for Pinus contorta indicate that it follows a similar pattern in its distribution in the two associations to that of Populus tremuloides. There is a definite cluster of points between 50 and 80 feet tall and 5 and 12 inches DBH in the successionally immature association where pine is the serai species. Based on 306 240 sample trees, an average tree was found to be 8.5 inches DBH and 67 feet t a l l . The average volume of pine in this association was 3,145 cu. ft./acre. The larger trees in the scatter diagram for the mature association represent the remaining older trees of Pinus contorta not yet over-topped by Picea glauca. The largest tree was 15.0 inches DBH and 108 feet tall while the average tree was 12.1 inches DBH and 93 feet t a l l . The site index for Pinus contorta in these associa-tions was found to be 84 feet in 100 years. Abies lasiocarpa is a very shade tolerant species in these two associations and the scatter diagrams indicate that its major vertical distribution is in the upper shrub and lower tree strata between 10 and 40 feet in height. It is most common in the mature association where i t occa-sionally reaches the upper stratum of the forest canopy. It is always a shrub or small tree in the successionally immature association. An average standing volume of 453 cu. ft./acre was calculated for the mature association where the average tree diameter was 8.2 inches and average height 43 feet. The average tree in the successionally immature association was 3.0 inches and 17 feet. The site index for Abies lasiocarpa in these two associations was 73 feet in 100 years. Pseudotsuga menziesii reaches its northern most distribution in the interior of British Columbia in the Table 92 CO;-;.VJ,\ITY 7 - 7 PLOTS Pleurozio (schreberi) - P t i l i o (cristae-castrensis) - Vaccinio (nenbranace i ) - Pseudotsuoo (•glaucae) PICEA GLAUCA • P I C E A -i-iAfs I Aii. A POPULUS TKwHULCIOiiS OLTULA PAPY.-il Fti-iA i* I • iU-S—CO.tT-rnS-T-n A;j I ,SIOCAWPA TOTAL—oAS AL—AHLA/ -ASSOCIATION ACKi£ 79.5 6 0.99 3 y. 4 i 3.76 . 'r-t*^ iUOOTSUGA K E h Z I t S I I 20.75 26.70 i 11 — a n SAL— AKSA/ACSE 1.66 0.00 0.0 0 0.00 *-rl-3 i'i AX—&ASA-L— 3.36 0.00 AfiEA/rtCRE 1 o 7 . C 9 6.94 • -195 .60 14.37 —1-50.31 39.26 70.03 -AV-i—fvU'.-li>ErH-TKccS/rtCriL" 134.26 • - 11.42 • 6 7.14 14.23 7-l-Vr2 101.42 27.14 H - r t i - t —A Ut-rB-C t TKtES/ACKs 30 0 -10--40 0 ALL SPECIES 212.64 1 2 2 . 1 2 324.67 427.14 300 242 PICEA GLMJCA H = 4*5 + l*46SSi>» 1-1750 j 1 3 J « 1 } 1 1 »-0 4 B 1 2 1 S 5 0 S 4 S B 3 2 3 5 4 0 D«B aH° (INCHES) Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranacei ) - Pseudotsugo (*glaucae) - Piceetum glaucae Diameter - Height Regression Fi gure 13 2 4 3 PDPULUS TREMULOIDES H = 4»5 + 3?3S34!>» 0-3767 150+ 1 \ I ( 1 1 1 1 ! h 0 4 8 1 2 16 50 24 2 3 3 2 3 6 4 0 D»B°H° (INCHES) Pleurozio (schreberi) - P t i l i o (cristae-castrensis) - Vaccinio (membranacei ) - Pseudotsugo (*glaucae) - Piceetum glaucae Diameter - Height Regression Figure 14 244 PINUS CONTORTA H = 4-5 + 3-25300** 0-4673 —j 1 j ! 1 ! •! 1 1 h 0 4 8 IE ±6 20 24 23 32 35 40 D-B-H- (INCHES) Pleurozio (schreberi) - P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Vaccinio (membranace 1 )' - Pseudotsugo (*glaucae) - Piceetum glaucae Diameter - Height Regression Figure 15 245 ABIES LASIOCARPA H = 4-5 + 1-01BOD** 1-3792 1 1 1 1 1 ! 1 v 1 r 0 4 B 12 iB 20 24 23 32 33 40 •-B-H- (INCHES) Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei ) - Pseudotsugo (*glaucae) - Piceetum glaucae Diameter - Height Regression Figure 16 246 PSELDDTSUGA MENZIESII H = 4-5 + 1-B6790* ISO. 0-9594 X icoi m M L7J rn m Qn b— 1 1 !- 1 H 1 1 i r 0 A 8 1 2 1 6 5 0 54 2 3 3 2 3 8 4 0 D-B-H- (INCHES) Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei ) - Pseudotsugo (*glaucae) - Piceetum glaucae Diameter - Height Regression Figure 18 247 150+ X ±ool m M cn x H m m ' so ajl i j >r j 1 f— 8 12 IS 20 24 S3 D°B«H- (INCHES) — 32 3S 40 Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei ) - Pseudotsugo (*glaucae) - Piceetum glaucae Composite Diameter - Height Regressions for five species L = Abies lasiocarpa C = Pinus contorta G - Picea glauca T = Populus tremuloides Z = Pseudotsuga menzlesll • var. glauca Figure 19 248 Sub-boreal spruce zone where i t is found almost exclusively in the mature association. There are usually one or two older veterans in the upper canopy and several smaller trees in the lower strata. A total of 21 trees were measured, the largest being 116 feet tall and 26 inches DBH. The site index for Pseudotsuga menziesii in the mature association was 102 feet in 100 years. Hylocomio ( s p I e n d e n t i s ) - C a r i c o ( a q u a t i l i s ) - B e t u l o (pumi lae) -P iceetum marianae This association develops at the margins of low moors where the soils are organic with considerable cumulose deposits of organic matter. Black spruce {Picea mariana') is the only tree found in the association with the exception of very sporadic Abies lasiocarpa which develops on the hummocks where the depth of organic matter is minimal and the roots of Abies are able to penetrate to the mineral soil. In all plots of the association only 9 trees of Abies lasiocarpa were found. This small sample number was not sufficient to develop a regression equation significant to the 95 per cent level. The tallest Abies was 6.6 inches DBH and 46 feet tall . Referring to the scatter diagrams for Picea mariana, we see that i t is found throughout all strata of the Table 93 COMMUNITY 2 - a PLOTS Hylocomio ( s p l e n i t i s ) - Carico ( a q i l a t i l i s ) - Cetulo (puitilae) - Ptceetun msrlanao -P-^-£-^A—G-LTA^^OA-r\.~i-< PICEA MARIAAA PoPULUS TRi-MULCI JtiS EETULA • PAPYRI FLP.A- -PINUS COi»TO;-;TA AGIES LASIOCARPA PSEUDOTSU-CA MERZIESI-*-TOTAL LIASAL ARliA/ A S S O C I A T I O N ACRE 0-»RA= y 1. 5 3 0 g 00 0.00 0.00 0. 76 0,00 MIR aASAL AREA/ACRE 0. 00 03 00 o.oo 0.00 0.00 Wt-AO MAR BASAL AREA/ACRE 0.00 60 0 156 .94 0.00 -• • 0.00 0.00 4.15 Q - . - O ^ O -AVG NUMBER TREES/ACRE 0-cOO 607, 0 , -• • 0 i O i 12. 50 00 0000 50 MIR i\U.-.B£i< TREES/ACRE MAX RUMEER TREES/ACRE -0-r^ O-3 = 0 0 0 0 0 — 0 -1070 0 . 0 0 70 0-— V O \ / v V 0.15: o.oo:. 0 « 0 0 o 0 o JO . 0 • 0 o ALL SPECIES 92.29 60.53 158.87 620,00 350 n o ; 0. 14 = ro-250 150. X 100.. m CT I H n m — i 50.. PICEA MARIANA H = 4-5 + 1-4475D** 1-1197 .'fti^:7i mm m* • * %* • i { 1 1 — 8 12 IS 20 54 EQ D-B-H- (INCHES) 32 3S 40 Hylocomio (splendentis) - Carico (aquatilis) -Betulo (pumilae) - Piceetum marianae Diameter - Height Regression Figure 20 251 vegetation up to the A2 layer where it reaches a maximum height of 60 feet. This indicates that the species is shade tolerant, and reproducing in its own shade. The number of stems in a 20 m x 20 m plot ranged from a minimum of 35 to a maximum of 110 stems per acre. The average was 49. Based on a total of 486 trees, an average tree for this associa-tion was found to have a DBH of 5.1 inches and a height of 32 feet. The largest tree was 9.8 inches DBH and 57 feet t a l l . Standing volumes for this species ranged from a low of 681 cu. ft./acre to a high of 2 ,394 and an average of 1,488 cu. ft./acre. The site index for Picea mariana in this associa-tion was found to be 40 feet in 100 years. Vincent (1965) in his review of the silvics, ecology and silviculture of black spruce deals extensively with reproduction in this species where he stresses the im-portance of vegetative propagation in stand formation. Ex-tensive studies on vegetative propagation in Picea mariana have been carried out by such authors as: Cooper (1911), Fuller (1913) and Stanek (1961). Bellefeuille (1935), stated that black spruce reproduces entirely by layering in acid swamp soils while Schoenike and Schneider (1954) found that 53 per cent of the best specimens of P. mariana resulted from layering. Gates (1938) in attempting to explain the mechanism of layering in this species suggested 252 that as the parent tree increases in weight it sinks slowly into the bog and this plus the cumulose deposits brings the moss up to the lower branches of the tree. These branches then take root and grow upwards to form a tree. In this study, layering was found to play a sig-nificant role in the formation of all black spruce stands in this association. P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio ( d r y o p t e r i d i s ) -A b i e t o ( l a s i o c a r p a e ) - P iceetum g l a u c a e V a r i a n t s : betulosum p a p y r i f e r a e populosum t r e m u l o i d i s This association is developed on temporary seepage sites and is topographically found just above the Oplopanax association. The association has two variants, both of which are serai stages to the development of the main association. The scatter diagram for Picea glauca indicates that it is found to be more or less evenly distributed in all strata and thus shade tolerant. Standing volumes for this species range from a minimum of 2,224 to a maximum of 6,924 cu. ft. per acre. The average was 4,426 cu. ft./acre. Based on 151 sample trees an average tree was calculated to be 12.0 253 inches DBH and 74 feet t a l l . The maximum sized tree was 23.3 inches DBH and 120 feet t a l l . In the betulosum papyri-ferae, Picea glauca is marginally represented in the shrub stratum but it is more common in the populosum tremuloidis where it was found to have a standing volume of 222 cu. ft./acre. The latter volume figure was based on three sample plots. The site index for Picea glauca in this associa-tion is 91 feet in 100 years. Abies lasiocarpa is found throughout all strata of the vegetation, being particularly well represented in the shrub stratum even if not always common in the upper tree stratum. It is however almost absent in the two variants of the association with the exception of a few small trees in the shrub layer. The scatter diagram for Abies indicates that i t is a very shade tolerant species and f i l l s the role as a sub-dominant species. Standing volumes for Abies lasiocarpa range from a low value of 12 cu. ft./acre to a high of 3080 cu. ft./acre. Based on 88 sample trees an average tree was calculated to be 54 feet tall and 8.3 inches DBH in the main association. The site index for Abies lasiocarpa in this associ-ation was found to be 83 feet in 100 years. Though Betula papyrifera is found in both variants and the main association, it plays its greatest role in the 1 Table 94 COMMUN I TY 3—— t 7 — P-L-QT-S— Willo-itriitawsstrensls) -«.£ycnocarpii-(fl>yopter5dls)_-_AUeto-Uasiocirpa8)---£Jcsetuc-glaucae TOTAL B A S A L AREA/ MIR BASAL MAR BASAL AVG NUMBER MIR NUMBER i-iAX NUMBER AVG a ASA -- - ASSOC I AT I OR - ACRE-- - A R E A / A C R E A R E A / A C R E T R E u S / m C R E •• -TREES/ACrtE T R E l S / A C R E • ARwA/TRc P I C E A . GLAUCA 103.12 0.00 259.31 144.70 0 700 0.7126 P I C E A MAR IAftA 0.19. 0.00 3.32 1.17 0 20 0.1653 -P^-P-U-yOS-^-T-Rfe4UW0IDES 2-3-^-5-9 0-rG-Q 1-30 .-34 84 .-7-0 0 560 0 . 27.-5 B E T U L A P A P Y R I F E R A 25.20 0.00 146.92 58.23 0 370 0.4323 P I R U S CORTORTA 15.20 ' 0.00 57.23 17.64 0 60 O.iOio A B I E S L A S I O C A R P A 19.34--- 0.00 84.82 -56.47 - - - •- 0 190 • 0.3514 PSEUDOTSUGA M E N Z I E S I I 0.22 0.00 3.84 0.58 0 10 0.3o4e A L L SP-ECIES 107.40 104.05 284.45—: 3-6-3-.--S-2 HrG 7-1-0 0r5-1-5-5 ro oi 255 PICEA GLAUCA H = 4«5 + 2-1442D**- 0-B690 JT: loo,. rn f-H LD X H 501 04- I j j 1 1 j — B 12 1G 20 24 23 •-B-H- (INCHES) 32 0 0 40 P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio (dryopteridis) Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 21 256 POPULUS TREMULOIDES H = 4-5 + 2-5724D** 0-7238 K 1 ~i 1 1 J 1 ! ! ! 1-0 4 0 ±2 1G 20 24 23 32 33 40 •-B-H- (INCHES) P t i l i o (cristae-castrensis) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 22 BETULA PAPYRIFERA H = 4*5 + 3-26350** 150. 0-3 B75 s 12 16 20 24 23 •-B-H- (INCHES) 36 40 P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio ( d r y o p t e r i d i s ) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 23 258 PINUS CONTORTA H = 4-5 + £»07S7D**- 0-B967 M 1 - i — ! 1 1 1 ! 1 !— f 0 4 0 12 16 20 24 53 32 36 40 •-B-H- (INCHES) P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Fi gure 24 ABIES LASIOCARPA H = 4°5 + 1-G23BO* 1*3273 1504. X loo. m M Gl x — i 50. + + 8 12 16 20 24 23 •-B-H- (INCHES) 32 35 40 P t i l i o ( c r i s t a e - c a s t r e n s i s ) - Gymnocarpio (dryopteridis) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 25 260 4 S 12 IS 20 24 23 D«B«H° (INCHES) 32 Ck3 P t i l i o (cristae-castrensis) - Gymnocarpio (dryopteridis) -Ahieto (lasiocarpae) - Piceetum glaucae Composite Diameter - Height Regressions for five species L = Abies lasiocarpa C = Pinus contorta G = Picea glauca P = Populus tremuloides P = Betula papyrifera Figure 26 261 betulosum papyriferae. This variant is considered to be a serai stage to the development of the main association. In the main association and in the populosum tremuloidis Betula is only a sporadic species. Standing volumes in the betu-losum papyriferae ranged from 2,586 to 3,875 cu. ft./acre. Based on 97 sample trees, an average tree was calculated to be 7.7 inches DBH and 65 feet tall while the largest tree was 12.5 inches DBH and 74 feet t a l l . Populus tremuloides occurs in 30 per cent of the plots of the main association where it is always a mature tree with no younger trees developing beneath i t . In those plots where it was recorded in the main association it had an average standing volume of 770 cu. ft./acre and a range from 606 to 1,030 cu. ft./acre. Populus tremuloides however plays a major role in the populosum tremuloidis where it is the dominant tree species. The number of stems per acre ranged from 230 to 560. The largest tree had a DBH of 12.3 inches and a height of 83 feet. The average tree for Populus tremuloides in this variant was calculated to be 7.0 inches DBH and 58 feet t a l l . Populus tremuloides had a minimum standing volume of 1,753 and a maximum of 4,195 cu. ft./acre and an average standing volume of 2,889 cu. ft./acre. The above data is based on 143 sample trees. No site index is calcu-lated for this species. 262 A total of 28 trees of Pinus contorta have been found in all plots of the association and most of these were present in the main association where they were usually found in the upper strata. The site index for Pinus contorta was calculated to be 100 feet in 100 years, the highest site index for this species in any of the described synsystematic units. Standing volumes for Pinus contorta ranged from 173 to 2,379 cu. ft./acre with an average of 818 cu. ft./acre. The largest tree found in the association was 19.0 inches DBH and 111 feet tal1. Gymnocarpio ( d r y o p t e r i d i s ) - Oplopanaco ( h o r r i d i ) - A b i e t o ( l a s i o c a r p a e ) - P iceetum g laucae As was discussed in Chapter 4, the Oplopanax association is developed on permanent seepage sites in the Sub-boreal Zone where there is a continual influx of nutrients brought in by the seepage water. By consulting the scatter diagram for Picea glauca in this association we see that this species is shade toler-ant and a self-perpetuating species as it is found through-out the whole range of heights and diameters. This indicates that on these sites Picea glauca is the climax tree with the young trees developing to replace the older ones as they 263 become decadent. It should be noted, however, that most of the developing trees of Picea glauca are in the openings in the forest canopy where they are not as heavily shaded. Standing volumes for Picea glauca range from 3,429 cu. ft./acre to 15,628 cu. ft./acre. The average standing volume is 8,946 cu. ft./acre. Based on 139 sample trees, an average tree was calculated to be 14.5 inches DBH and 81.4 feet tall while the largest tree found in the association was 140 feet tall and 26.0 inches DBH. The site index for Picea glauca in this associa-tion was found to be 105 feet per 100 years. Picea glauca reaches its maximum productivity in this association both in terms of site index and standing crop (expressed in terms of volume). Abies lasiocarpa tends to be a sub-dominant though in some sites it is a co-dominant. The scatter diagrams for this species indicate that it is the most shade tolerant species, being most common in the lower tree and shrub strata. It is also a self-perpetuating species in this association though in those sites where it reaches the upper stratum, the center of the tree is usually rotten. Standing volumes for Abies lasiocarpa ranged from a minimum of 227 and a maximum of 3050 cu. ft./acre with an average of 1,281 cu. ft./acre. Based on 119 sample trees an average tree i n - O n3 -II - J 11.1 I •r. ' . i C A >-) i ) > o :[ j r> ' ) o C I - •-• :> .1 : o O l O O 1 ^ O -.O I - C J CO O ") iJ r-i ..> t > O O > O < < LiJ x. ~j> \ o o <;> o o o o c/> ~t -i ca o |J CM. (M :a f t : • •: x z> •>. o o o :-: in i L l y <J <J" <1- <t~ N . • • LO <J- O -IJ n UJ .-I o o o ;o i n o f M iT\ O I M i-1 lT» 3 CM H CO _l ixl X CM CO C K CO ~0 _l UJ < a: , •-r < i - o O \ o o • < m 3 O M f V H V. : < UJ o r- o o cm O c o co O o <j- <-• • ¥ C M o o O : I C M o o» oco o co o <t- o o o O C O o o 1 < 3 3 -• < -cC 111 I >-: a. i -• < i i 3 _ j < l a . o -'. ••') o q), u _ i i -.< o < -U _i''w0 o ILl |,J .1) O Ji J u U u . I - • - • ; i J CJ> 1:1 -t 111 <•! . ex. a. q. o. -t a 3 * • 264 ca * c^ C ) c> u . 265 PICEA GLAUCA H = 4*5 + 1-B7560* 0-3302 150+ m cn rn m 50. . 04- 4- + 8 12 i f i 20 24 28 •-B-H- (INCHES) 2S 40 Gymnocarpio (dryopteridis) - Oplopanaco (horridi) Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 27 266 BETULA PAPYRIFERA H = 4-5 + E-3S46D** 0-735B 4 1 1 ! ! —I ! H (- —i 0 4 8 12 16 20 24 23 32 3S •-B-H- (INCHES) Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 28 267 ABIES LASIOCARPA H = 4»5 + 1*3G28E>*. 1-1266 1504-iOD.. o 8 12 IB 20 24 28 0"3*H« (INCHES) 32 35 40 Gymnocarpio (dryopteridis) - Oplopanaco (h o r r i d i ) -Abieto (lasiocarpae) - Piceetum glaucae Diameter - Height Regression Figure 29 268 e I S I f i 50 24 23 D«8 ° H ° (INCHES) 32 33 40 Gymnocarpio (dryopteridis) - Oplopanaco (horridi) -Abieto (lasiocarpae) - Piceetum glaucae Composite Diameter - Height Regression for three Species L = Abies lasiocarpa G » Picea glauca Figure 30 P = Betula papyrifera 269 was calculated to be 6.9 inches DBH and 41 ft. tall with a maximum tree size of 25.8 inches DBH and 118 feet. The site index for Abies lasiocarpa in this asso-ciation was found to be 83 feet in 100 years. Also found in this association is Betula papyrifera which occurs sporadically. Generally several mature trees are found in each sample plot. Scatter diagrams indicate that this species is somewhat shade tolerant but as there are no younger trees present in the lower strata, it is likely that when the older trees die Betula will be elimi-nated from the association leaving only Picea glauca and Abies lasiocarpa. Betula appears to be a serai tree develop-ing after forest fires and being eventually replaced by the former two species. In those plots of the association in which it occurs, this species has an average standing volume of 372 cu. ft./acre with a maximum of 2020 cu. ft./acre. Chapter 6 VEGETATION AND ENVIRONMENT RELATIONSHIPS Topographic Sequences of the Plant Associations The topographic sequences of the plant associations described for the Sub-boreal zone can be divided into three general groups. There are: (i) the sequences for the up-land forest associations, (ii) those of the low moor associ-ations, and ( i i i ) those of the aquatic and semi-terrestrial associations. There appears to be a high correlation be-tween the topographic sequence and the hygrotope of the associations. Soil texture also plays a very important role. Topographic sequences of the upland forest associations. On the xeric to very xeric sites at the tops of ridges and on well drained sandy soils the dominant asso-ciation is the Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrtilloidis) - Pinetum contortae. This 270 271 association has been divided into two subassociations: a) the cladonio - arctostaphylo - vaccinio - pinetosum contortae occurring on the driest, most exposed ridge tops, b) the pleurozio - corno - vaccinietosum occurring on slightly more protected though s t i l l xeric sites next to the former subassociation. The second association to develop as one progresses down the slope from the ridge tops is the Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) -Piceetum marianae. This association occurs on subxeric to subhygric sites. Here Pinus contorta is the largest tree and the slow growing Picea mariana is developing in the understory. Both Pinus contorta and Picea mariana are promoted by frequent fires. It is possible that some of the trees classified as Picea mariana are actually hybrids of P. mariana x P. glauca. This problem however was not dealt wi th. The third and fourth associations are found on circummesic locations approximating the middle areas of the topography. Fire rather than topography is the key factor in determining which of these associations occurs in a given mesic location. The two associations are the Pleurozio (schreberi) - Ptilio (cristae-castrensis) -Vaccinio (membranacei) - Populo (tremuloidis) - Piceo 272 (glaucae) - Pinetum contortae and the Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Vaccinio (membranacei) -Pseudotsugo (*glaucae) - Piceetum glaucae. The former is a successionally less advanced association than the latter. Assuming the absence of fire on such locations, Pioea glauoa would be the dominant tree. The fifth of the forest associations progressing down the slope is the Ptilio (cristae-castrensis) -Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae. This association is the "driest" member of the Abietetalia and is considerably influenced by temporary seepage. It occurs on the lower parts of the topographic slope and along the side slopes of ravines. The sixth of the forest associations is the Gymno-carpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae. It occurs at the base of slopes on nearly flat topography. Seepage here is perm-anent and the water table develops almost to the surface in this association. The seventh association in this sequence is the Urtico ( l y a l l i i ) - Matteuccio (struthiopteridis) - Alnetum tenuifoliae. It occurs at the bottom of slopes along the margins of rivers and lakes and is usually flooded in the spring during run-off season. 273 Topographic sequences in the low moor associations. The topographic sequence of the associations of the Sub-boreal low moors appears to be highly correlated with the duration of the water cover over the associations. In the centre of the low moors where water duration is the greatest the association which develops is the Meesio (triquetrae) - Menyantho (trifoliatae) - Scheuchzerio (palustris) - Carico (limosae - chordorrhizae) - Salicetum pedi eel 1ari s. Progressing toward the edge of the low moors, the next association to develop is the Drepanoclado (revolventis) -Campylio (stellati) - Menyantho (trifoliatae) - Trichophoretum a 1 p i n i . These previous two associations are the wettest associations and are frequently not released from surface water throughout the growing season. Adjacent to the previous association, a shrub association dominated by Betula pumila is formed. This is the Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) - Piceo (marianae) -Betuletum pumilae. This association was never seen to be covered with surface water throughout the growing season. The association developed around the edges of the low moors in the Hylocomio (splendentis) - Carico (aquatilis) -274 Betulo (pumilae) - Piceetum marianae. It is the only forest association described for the Sub-boreal low moors. Topographic sequences in the aquatic and semi- terrestrial associations. The following topographic sequences for the aquatic and semiterrestrial associations is based on the associa-tions sampled in the vicinity of McLeod Lake which show a considerable diversity. The association developed in the deepest water is the Patamogetono (natantis) - Polygonetum amphibii. Adjacent to this but s t i l l in deep water is the Potamogetono (richardsonii - natantis) - Polygono (amphibii) - Nupharetum variegati. On soils of slightly finer texture the Potamo-getono (foliosi) - Scirpetum acuti develops while on the sandy bottomed sections of the lake the Potamogetono (richardsonii) - Eleocharetum palustris is developed. On the topographically lower emergent sites the Potentillo (palustris) - Equisetetum fluviatilis is the major association while adjacent to it but farther up the beach the Caricetum rostratae dominates. The association on the highest sites along the lake edge is the Salicetum sitchensis. This is a semiterrestrial association and is covered with water for only a short period in the spring. 275 Plant Associations and Environmental Gradients In Chapter 4, eighteen plant association were estab-lished and discussed in detail in terms of vegetation struc-ture and composition. Complete soil, physical and chemical, properties were presented for each of the sample plots of the associations. However, no attempt was made in that chapter to show the various relationships of the communities to each other in terms of environmental characteristics. The purpose of this section, then, is to show by means of tables and a brief description, the relationships between these communities for fifteen different environmental factors. No attempt is made to carry out a detailed inter-community statistical analysis. Such statistical analysis is omitted because the sample number in many cases is no greater than five. This sample number does not sufficiently document the variation within the soil characteristics to allow statistically justified predictions to be made as to the most influential factors on the development of the plant communities. The mean, maximum, five per cent confidence limits and standard deviation of each of the environmental factors in the top three soil horizons, when present, is presented in a table for each of the previously described plant asso-ciations. The associations were then arranged in order of 276 decreasing values according to their means. A brief look at the standard deviations will then show which associations are distinct from each other in terms of the various envir-onmental parameters. Carbon and organic matter. The per cent total carbon and per cent organic matter are dealt with under one title as there is a direct ratio between the two factors. The amount of organic matter was calculated by multiplying the per cent total carbon by a factor of 1.724. This is based on the assumption made by Lutz and Chandler (1946) that humus incorporated by the mineral soil is composed of 58 per cent carbon. The organic matter in the soils is a result of biological growth activity and is derived from the death and decomposition of plants, plant parts, and animals. The composition of this organic matter is largely dependent upon the type of vegetation developed over the soil and the rate of its decomposition. The rate of decomposition is highly dependent upon the nature of the original material, microbial activity and various environmental factors such as temperature, moisture, and other factors affecting the rate of microbial breakdown. In forest ecosystems the major contribution to the organic matter is made by trees. Table": 96 277 C A R _ . C N (percent t o t a l ) Horizon I CCW.U.NITY : E A r • i-. I i\ I •••iU.M MAX i r-iU.'-l 5 0/0 COi.FIOEl.CE LlI-'.ITS ST. OcV. P . L> . S.P. T . A . -0 »•?•••-P .5. I-I • S • G . M. P . 0. -P-.-L-*--' • I . A • S.S. E .F . O R . £ .P . (" A - O • v - s - » - -i\.V. P . A . C O : - . . - , U i \ I T Y 14 43.73 43 .21 _4.2_.7_a  39.32 36.67 36.35 30.76 29.40 20 .OS 20.42 19.49 . IB .49 2 .44 2.09 1.92 0 .46 40.90 38 .15 40.72 -44.-24— 34.16 17.30 15.60 17.40 11.30 1-0— 4.68 14.96 9.53 15.50 1.52 • 0.-65— 0.62 0.33 52.80 46.61 47.46 _44-»e-7-49.30 51.30 53.40-46.60 52.60 -_S-3-8C-41.00 24.40 27.56-21.21 4.07 5-.-77L. -36.04-40.97 41.36 - 4 W 4 - > -50.24 46 .50 45 .06 44 .4 3-33.22 29. 19 29.96 21.06 16.06 -44--9-5-9.61 15 .74 16.07 17. 14 1.0 3 —a. 51... 3.69 0.61 Horizon II 1.23 0.35 45.43 44 . l c 42 .74 40 .45 40.74 __3-5-.-23-31 .76 25.10 22.91 19.64 3 .85 4.71 2.60 0.57 4.91 — 3.31 2.21 -_l*.3-3— 5.61 10.46 12.42--10.46 14.74 _]_.7._2-9— 14.41 3.77 4.75 1.68 1. 13 —2_«_1 0_ ivi£Ah ' . I N I i s U M f i A X Ii'-iUM 5 0/0 CO.NFI_.EKCE LIMITS 0.89 0.09 STO. UcV. B.P. 44.23 - 42.83 45.15 - 43.12- 45-35 .0.39 P.B. 42.45 36.83 49.80 36.97 47.94 4.42 i-i. A . 7.46 1.9 7 26.44 1.04 13.89 8.36 S-.-S » 6-5-3 —3-. 05 lr3-. 43 1.31 LL-7-5 4____2.0 G. 5.38 0.00 32.10 -0.01 10.79 10.50 0. 4.04 0.00 21.50 -1.14 9.23 6.75 P.L. - 3.37 0 . 0 0 13.40 0.-12 6.61 -.4.83 P.S. 0.41 0.00 1.30 -0.10 0.92 . 0.46 M.P. 0.29 0.00 1.31 -0.19 0.76 0.53 ,4.-S. 0--28 —-2--E0 =v--^ 4 0--9-- Ov_E-3 . Horizon III CO.-'..<',U.\ I TY MtAn >-.l>-i Ii-'iUM i-iAX IKUi'i 5 0/0 C O » K I D E i N C E L l i - . I T S STD. D E V . P . O . 26.80 -3.70 ~ 41.43 5.01... - 46 .60-- - - 17.55 G • 5 .41 O.CO 66.60 -5.33 16.21 21.00 0. 3.32 0.00 29.40 -4. 19 10.63 9.7o M • A • 2.29 0.00 3. 1A -0.11 4.70 2 - r> ^ P.S. 0.54 0.00 C.o9 0.07 1.02 0.36 P.L. 0..25 0.00 2.40 -0.2 2 0.74 0.72 .•..P. . . 0.16- 0.00 - . 0.90. -C. 14 .. 0.46 - - .. . .. 0.33-•A • S . 0.00 0 .00 O.uO 0.00 0.00 0.00 B.P. Betula ouroHa Association M.P. C R . Carex rostrata Association M.S. E.F. Equlsetun f l u v i a t i l e Association N . V . E.P. Eleoch^rls Association 0 . G. Gynnocarlun Association P.A. M.A. Matteuccia - Alnus Association P.B. Advanced Moss Association Pipe - Spruce - Moss Association Nuphar variecatu'w Association Oplopanax Association Polvoonua amphibium Assoclation Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea narlana - Pine Assoclat l i S.A. Scirp'js acutus Association S.P. Sallx pc . i ce ) la r i s Association S.S. Salix ritc'nensls Association T.A. Trichophorum alplnun Assoclatloi Table: 9 7 2 7 8 J K O A M C M A T T E R (percent t o t a l ) Horizon I COMMUNITY MEAN M I N I MUM A XI MUM . p 0/0 CO.\F luEiNCt LIMITS STD. DEV. P.B. 75.85 70.50 8S.76 66.02 85.68 7.92 S.P. 75.40 65.78 64. 16 70.o4 uO.16 5.69 T.A. 74.50 70.21 81.86 71.31 77.69 3.31 B.P . 7-3.-7-6 -7-1 .4 0 7-7—3* 70-.-92 To .-6-1 2—29 P.S. 67.00 53.93 84.99 57.27 78.32 10.03 M.S. 63.23 29.83 88.44 50.32 76.14 lc.04 G. 61.85 26.52 90.78 50.99 72.70 21. 11 ,-I.P. 52.61 29.56 79.56 36.27 69.35 17.36 0. 50.69 19.48 91.03 31.15 70.24 25.42 P-.L-. 4C-.-2-5 0-.84 . 9-1.46 2-C.58 5-9—92 . _2-£.-2-7 M.A. . 36.11 8.07 69.70 16.59 55.64 25.40 S.S. 35.2.0 •25.79 42.07 27. 14 43 .27 6.50 E.F.- 33^61 16.43 47.52 _ . . . 27.71 39.51 8.24 -O R . 31.87 2.6.72 36.57 29.55 34. 16 . 3.23 E.P. 4.2/1 2.62 7.02 1.78 6.64 1.95 S .-A-. 3 .6-1 —4*4-2- 9--i;-5 =0*8-5 —8-^1-2 . J-.-63 N.V. 3.31 1.41 6.36 2.12 4.49 1.54 P.A. 0.80 0.66 1.05 0.61 0.99 0.15 Horizon II • COMMUNITY r'.EAn MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. • B.P-. - -• 76.2-7. - . --'73.84 77.64--. 74.35 73.19--- *-- 1.54 -P.3. 72.96 66.95 64.66 64.12 61.80 7.12 M.A. 12.86 3.40 45.59 1.73 23.95 14.42 S.S. 14—2-© 5-.-2-6 2-3*2-4 2-^ 2-6 2-G-.-26 7-^ 2-5 0. 10.46 3.10 37.07 -3.34 .. .24.26 13. 15 G. 9.16 0.00 54.57 -0.02 18.34 17.86 P.L.- 5.73 0.00 22.73 - • 0 . 2 1 — 11.25 ... -'- - 8.21 -P.S. 0.92 0.00 2.26 0.04 1.60 0.63 * M.P. 0.52 0.00 2.26 -0.33 1.36 0.93 A 0-^ 49 Q-.-00 4.-B-3 .—--0-- 5-9— 1—5-8— 1—5-2 - Horizon _III .... •• .. . ..__. COM.-1UNITY MEAN ' MIR I MUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. P.B. 46.20 6.29- 71.43 -8.59— 83.81-- 30.30 '-0. 25.77 0.65 50.69 -251.31 .. 302.85 35.24 M.A. 3.95 O.CO 14.ol -0.20 S . i l 4.97 i , -1—39 — a .-OO i 4 .-7-5 --O-. 6-2- -3-«-44 — - -—-3 *$2 P.S. 0.94 0.00 1.53 0. 13 1 .76 " 0.66 P.L. 0.43 0.00 4.03 -0.36 1.26 1.22 M.P. - 0.28-—- 0.00 1.55-- -0.24—- 0.62 .->- 0.56 M • S • O.UU J.Ou U.OO 0. Oii 0.00 0.00 B . P . B e t u l a o u m i l a Association M.P. Advanced Moss Association P . L . P i n s - L i c h e n Association C . R . C a r e x r o s t r a t a Association M.S. P i n e - Spruce - Moss Association P . S . P i c e a mariana - P i n e Association E . F . E q u i s e t u m f l u v i a t i l e Association N . V . Huohar v a r i e q a t u m Association S . A . S c i r p u s a c u t u s Association E . P . E l e o c h a r i s Association 0. Oplopanax Association S . P . S a l i x p e d i c e l 1 a r i s Association G. G v n n o c a r l u n Association P.A. Polvqonum arcphibiun Association S . S . S a l i x s i t c h e n s i s Association M.A. M a t t e u c c i a - Alnus Association P . 8 . P i c e a mariana - Bog Association T.A. TrichoDhorum a l p i n u m Association 279 In the present study the per cent total carbon was highest in the top horizon which is the major zone of accum-ulation of plant l i t t e r . The low moor communities had the highest percentages due to the totally organic nature of the soils. In these sites the rate of decomposition is far slower than the rate of deposition. This results in organic matter deposits many feet in thickness. In these associa-tions the mean per cent total carbon ranged from 42 to 44 and per cent organic matter from 74 to 76. High values for both these factors are also found in the upland forest associations where the values are all for the litter -humus horizons. The Matteuccia - Alnus, Salix sitchensis, Equisetum fluviatile and Carex rostrata associations have middle range values as they are highly decomposed and minearl soil is intermixed with the plant debris. Lowest carbon values were found in the four aquatic associations of Eleocharis palustris, Scirpus acutus, Nuphar variegatum and Polygonum amphibium. In these sites the soils are relatively coarse textured and the plant litter is carried away to a great extent by water current, particularly during the run-off season. In the sub-surface horizons (when present) the trend was to decrease appreciably with depth. Exceptions to this were found in the low moor communities where the trend was to have similar values to those found in the upper horizons. 280 Middle range values were found in the Salix sitchensis, Matteuooia - Alnus, Gymnocarpium and Oplopanax associations where the degree of melanization was the highest. Soil textures were also finest in these sites. Lowest sub-surface values for carbon and organic matter were found in the mesic sites where the soils were relatively coarse textured. Ni trogen. Nitrogen is one of the very important elements for plants where i t is essential in the formation of proteins as well as being an important component in the formation of chlorophy11 . Most plants cannot use nitrogen in its elemental form though this is the primary source of i t . It becomes incorporated into the ecosystem via the route of nitrogen fixation by certain nitrogen fixers (such as Clostridium, Azotobacter, Nostoc, Actinomyces and Rhizobium species). This fixed nitrogen is then incorporated into the plant bodies during plant growth and upon their death and decom-position i t is released into the soil for incorporation by other plant species. The most important source of nitrogen is dead protoplasm of organisms (Krajina, Personal Comm.). In the Sub-boreal Zone the per cent total nitrogen was found to be highest in those sites that were also high T a b l e : "98" N i T K O G E N .(percent total) .-iU.\ I TY •iI.-U.-.UM Horizon.I '.AX I i-.Ui'i :/0 CO..FIDi£,>,Ct LI.-;ITS 2 8 1 STD. L'tlV. 3.P. S.P . T.A. C.-s .-£. F. S.S. c i . r\ « G . G • -P-.b • -M. P . P.S. M. S . P.L. N . V . -C: S . A . P.A. 2 .47 2.21 i .54 -1.44 i • 4 1 1.39 1.2G 1 • 14 1.14 -i-.G7-0.96 0.91 0.87 0.35 0.17 -0.-1-5 0.12 0.03 2.13 1.54 1.13 -1.-20-0 .-59 1.01 0 . 36 0.60 0.55 -0-.-6-5-0.76 0 .46 0.48-0.20 0.10 -0 4-2-0.00 0.03 2.76 3.0 1 2.07 -1.-6-9-1.7 2 2. 04 2.36 1.66 1.75 -1-64— 1.35 i .40 1.54 0.62 0.29 -0-.-1-6— 2 . 14 1 .64 1.27 -W-7-1 . 19 0.92 0.60 0.84 0.96 -0-.-7-0--0.79 0.55-0.63-0.26 0.12 0.11 0.31 0.04 -0.03 0.02 2.60 2 .56 1.81 -1-.62-1.63 1.87 1.80 1.45 1.32 -1-. 4-5-1.16 1.26 1.10 0.44 0.21 .-0—16--0.26 0.04 Kl . CO 0.44 -0.32 -0.24-0.30 0.3b 0.76-0.40 0.35 —o .-3.0— 0. 19 0. 34 0.32 0.13 o.06 -OJ-2-0.12 0.00 COMMUNITY i It A.N MINIMUM Horizon I I iAX IMUM 5 0/0 CONFIDENCE LIMITS STD. DcV. 5 . P . P . B . M • A • —S-5.-0. G . P.L.-,-;. P . P . S . s — 2.17 1.67 0.52 -€-•4-7-0.25 0.16 0 . 06 0.04 0.04 -u.-w.3--1.20-1.15 0.16 -O-.-l-S-0.0 5 0.04 - 0.0 2-0.03 0.03 —0-. 02 -2.96-2.23 1.59 — U v V 1.10 0.63 0.32-0.06 0.06 -O-U-b-— 1 . 33— 2 .95 1.19 2.15 0.15 0.90 G--06 tu-8-9-— —0.00 0.50 0.05' 0.26 -. 0.0 0— — 0.12 — 0.03 0.05 0.02 0.0 5 0.02 0 .04 • 0.63 0. 36 0.46 - 0 - i 3 -0. 3.3 0.22 0.06 -0.01 0.01 _v.^0-l— COMMUNITY MEAN ilN IMUM P . B . - - 1.3 7-.-- 0.02 M • A . 0.17 0.03 0. 0.17 0.04 p . 5 , n , \ i 0 . i • 0 G . G.06 0.02 i-i • P . 0> 04 0.02 M.S. • 0.O4-- — 0.01 P . L . 0 . 02 0.01 Horizon ITT .MAXIMUM . - 2.57 0.49 1.02 —.—0-.-44-0.28 0.06 0.^7-0 . J4 5 0/C CONFIDENCE LIMITS -0.14. 0.03 -0.06 =£--12-2.61 0.32 0.42 -0-—3-3-0.03 0.03 .0.02 0 .0 1 0.09 0.05 0.05-0.03 S T : :. DEV. C.99— 0..17 0.31 -0— Lo— 0.05 C.01 0.01-0 .0 1 B. P. Betula pumila Association C. R. Carex rostrata Association -E.F. EC-JIsetuia f l uv ia t i l e Association E.P. Eleocharis Association G. Gvnnocaiiuia Association M.A. Iilatteuccla - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuohar varieqatum Association 0. Oplopanax Association P.A. Polyoomjs amphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirous acutus Association S.P. Salix pedicel lar is Association S .S . Sal ix sitchensis Association T.A. Trichophorum alpinum Association 282 in organic matter. The low moor associations of Betula •pumila, Salix pedicellaris and Trichophorum alpinum were the highest while the aquatic associations of Carex rostrata and Equisetum fluviatile were also very high. Moderately high values were found in the Salix sitchensis, Matteuooia - Alnus, Gymnocarpium and Oplopanax associations where melanization was common. In these sites nitrophilous plants such as Tiarella trifoliata, Urtioa l y a l l i i , Tellima grandiflora, Athyrium filix-femina and Sambuous pubens were common. The mesic and dry forest sites were considerably lower in total nitrogen while the lowest values were found in the aquatic associations which were low in organic matter. These were the Nuphar variegatum, Eleocharis palustris, Soirpus aoutus and Polygonum amphibium associations. In the sub-surface horizons there was a general trend to decrease with depth following a similar trend in organic matter content. Carbon/Nitrogen Ratios. The carbon/nitrogen ratio is simply the ratio of total carbon to nitrogen. This ratio is an important factor in indicating the availability of nitrogen, total organic matter and the rate of organic decay. Buckman and Brady (1960) state that in a given climatic region l i t t l e variation is found in the C/N ratio 283 CAHbOX / NITROGEN RATIO Horizon I COMMUNITY MEA,<| Mi;Ui-'.UM MAX IMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. 5. A. 79.19 10.00 325.00 -91.42 249.S2 137.49 P.L. 61.27 Q.Ou 165.CO 31.39 91.14 44.47 P.S. 47.33 33.00 73.00 30.74 63.91 15.30 ._ ;.,...s..— 4 5—9 O 2-7—0 O 6-3-. 0 0 3 2- . -7 2 5 -9—0-7 1 © .-4 2 — P.B. 42.00 33.00 49.00 34.55 49.44 6.00 G. 3-.U2 14.00 53.00 27.19 35.44 10.93 M.P. 31.85 17.00 47.00" - - 21 .20 - 42 .51- - 11.52 T.A. 29.20 21.00 55.11 23.58 34.82 6.72 0. 25.00 13.00 36.00 18.93 31.06 7.88 S-P-. 2-0-45 1-6—2-3 30—9-6 1-4—5-1— 24-3-9 4.-7-1 _ b.P. 17.45 14.84 19.91 15.04 19.57 1.94 E.P. 17.20 11.00 25.00 8.81 25.56 6.76 i",.A. 16.77 13.00 23.00 13.95 - 19.59 3.66 — _. S.S. 15.CO 12.00 lb.00 12.36 17.63 2.12 E.F. 13.89 11.00 16.00 12.30 15.49 2.23 P--A-. 1-3—3-9 4-2—0-0 15-CO- 14 -93 1-4.-64 —±*3M C R . 12.60 11.00 15.00 11.65 13.74 1.31 IM.V. 11.00 9.00 13.00 9.91 12.06 1.41 ~ Horizon -Tl~" ~ " ~ " COMMUNITY isEAii MIN I MUM MAXI.-.UM 5 0 / 0 CGNF I DENC E LIMITS STu. DEV. P.L. - 46.81 — -0.00 - 223.00 3.42— 94-20 - 67.56 P.B. 26.40 19.00 34.00 16.67 33.92 6.06 6. P. 22.29 14.47 36.77 11.78 32.81 6.47 14 3--O0 54-vO 7—26 26—9-7 24*4-0 S.S. 14.00 12.00 17.00 11.67 16.32 1.87 0. 13.50 2.00 23.00 6.36 20.63 fa.30 i-i.A. 13.11 - 7.00 -- 16.00 10.92 15.30 _ 2.34— P.S. 10.50 0.00 22.00 -0.51 21.51 10.50 M.S. 0.20 0.00 2.00 -0.25 0.65 0.63 Horizon III COMMUNITY i-.EAN .-11NI MUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. P.B. - 51.60 16.00— 155.00- • - --40.65- 144.25 -- - 74.50-— •- --0. 20.50 12.00 29.00 -74.01 115.01 12.02 P.S. 12.80 - 0.00 26.00 -1.61 27.41 11.77 ;V. -A— 1-2-..0-J 0-0-0 i i . OO 7.71 16 .28 . 5-.-L2 P.L. 5.45 0.00 60.00 -6.69 17.60 16.09 G. 3.40 0.00 23.90 -0.73 7.59 b.15 M.S.-- 0 .00 - 0.00 0.00 O.CO . -0.00 0.00 B.P. Betula pumila Association C R . Carex rostrata Association E.F. Equisetum f l u v i a t i l e Association E.P. Eleocharls Association G. Gynnocarlun Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar varieoatum Association 0. Oplopanax Association P.A. Polyaonurr. an-.phlblum Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea carl ana - Pine Association S.A. Sclrpu. acutus Association S.P. Salix pedicel lar is Association S.S . Sal ix sitchensis Association T.A. Trichophoru-! alpinua Association 284 and those variations that do occur are correlated in a gen-eral way with the climatic conditions, especially temperature and the amount and distribution of rainfall. Carbon/nitrogen ratios tend to be lower in soils of arid regions than those in the more humid regions where annual temperatures are about the same. The ratio is always lower in the warmer regions than the cooler ones providing that the rainfall is about the same. Within any one soil, the carbon/nitrogen ratios are usually the highest in the upper horizons where the amount of organic matter is highest and they usually decrease appreciably in the sub-surface horizons. In the present study the carbon/nitrogen ratios of the top horizons were very variable ranging from 79 in the Sairpus aoutus association to 11 in the Nuphar variegatum association. The C/N ratios of the top horizons of the low moor associations ranged from 42 to 17; those of the aquatic associations from 79 to 11 and those of the upland associa-tions from 61 to 25. There was a marked narrowing of the carbon/nitrogen ratios in the lower mineral horizons of the upland forest associations. In the second horizon they ranged from 49 to less than one (means for the community). In the B horizon these were from 21 to zero. 285 Phosphorus. Phosphorus is frequently a critical factor in con-trolling the growth of plants where it influences cell division, flower, fruit and seed development. It is also essential in the formation of proteins. Dean (1949) in reviewing the availability of phosphorus mentions six factors which control the availability of phosphorus and these are: 1 . s o i l pH 2. s o l u b l e i r o n , a luminium and manganese 3. p resence of i r o n , a luminium and manganese c o n t a i n i n g m i n e r a l s 4. a v a i l a b l e c a l c i u m 5. amount and d e c o m p o s i t i o n of o r g a n i c matte r 6. a c t i v i t i e s of m ic roorgan isms Phosphorus occurs in organic or inorganic forms. Organic phosphates are readily reconverted back to the in-organic form which is usable by plants. This usually takes the form of H 2POor HP03. These can readily be absorbed by plants for their growth. In the present study the mean values for available phosphorus for the different associations was highly variable being the highest in the Picea mariana - pine association (mean 43.18 ppm) and lowest in the aquatic Polygonum amphibium association for the upper soil horizons. The general trend Table: 100 2 8 6 PucsPhURus (available in ppm) Horizon I COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. P.S. - 43.18 - 14.00 67.20 18.32 68.04 23.69 P.B. , 36.69 18.00 63.46 13.62 59.76 16.36 £«F. 28.41 5.60 107.50 2.21 54.62 36.63 — — 6 • 2-4-. 58 12 .00 —L21 ..00 11 ..65- 37.-51 -2-5.-1-1 D. 22.34 9.00 6o.l2 6.66 35.60 17.51 P.L. 21.76 8.00 60.43 11.86 31.66 14.73 M.P. 20.93 - - 0.00 42.70 -- . 3.68 33.03 - 13.05 S.P. 17.96 3.37 49.70 4.19 31.74 16.47 M.S. 17.79 12.00 31.00 13.70 21.89 5.73 M.-A-r 9--4-9— 0--3-7 2-5.-66 3---34 1-5 -6-4 e.O.0 C R . 9.13 0.53 31.27 1 .66 16.59 10.43 3.P. 7.60 1.05 14.00 1.81 13.39 4.66 E. P. 5.59 2.45 13.16 - 0.18 - 10.99 - 4.35 -T.A. 5.52 0.00 14.56 2.06 6.98 4.13 S.A. 3.99 0.17 13.20 -5.87 13.85 7.95 -S.S. : -3.44 0-64 1-1--90 -2--4-3 9--3-3 4.24 N.V. 2.57 0.05 7.93 -0.00 5.15 3.35 P«A. 1.97 1.05 3.19 0.66 3.08 0.39 Horizon II COMMUNITY •.EAN MINI MUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV( 65.20 22.98 14.00 -i7-.^-G-22.00 11.00 17.70 6.77 2.45 —a-^2--o.oo-— 3.66 4.71 -6--03 2.98 3 .48 -3.67- --0.15 0.37 -0-.-04--24.21-17.01 12.99 -10.66 12 . 19 7.31 13.97 3 .3b 2.26 -O—7-_-18.02-7.20 3.94 —4--49-5.99 2.67 -7-11. 2.29 0.76 -0.26 Horizon I I I COMMUNITY M . P . 0. P.L< ~G.— P.S. (•;. s. i'l . A -P • 3 • MEAN 19.29 9.47 t. » 57 —fe-,-73-4.29 4.19 1.22 0.79 '.IN I MUM 5.00-2.00 0.0 0 -3-.-00-0.43 0 .00 0.04 0.23 MAXIMUM -50.60 21.00 56.00 14—3-0 10.60 6.00 . 6.00-1.63 5 0/0 CONFIDENCE LIMITS -1.83 4.61 -2.07 _5—l_6 -1.03 2.29 -0.43-0-l_5 36.76 14.34 19.22 —8--3-9-9.63 6.10 2.69 1 .42 STD. DcV. . 18.38-.-6.32 15.55 3~«-i-_>—-4. 30 2.65 1.99-0.51 B.P. Betula o w H a Association CR. Carex rostrata Association E.F . Equisetum f l u v i a t i l e Association E.P. Eleocharis Association 6. Gvnnocarlum Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. Oolopanax Association P.A. Polygonum amphibium Assoc! at i on P.B. Picea Pari ana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Sclrpus acutus Association S.P. Salix pedicel lar is Association S.S. Sal ix sitchensis Association T.A. Trichophorum alpinum Association 287 was for phosphorus content to decrease rapidly with depth of soil. In some of the lower soil horizons available phos-phorus was less then one part per million. Sulphur. Sulphur is also considered as one of the essential elements for plant growth where i t plays a significant role in certain types of bonding in the formation of proteins. In this study the per cent total sulphur was measured and its source was most likely from organic compounds, mineral break-down and as a by-product of respiration of sulphur aquatic. Sulphur measurements were made only in the aquatic, low moor and semiterrestrial associations. In these associa-tions there appeared to be a close relationship between organic matter content of the soil and the rate of movement of water through them. The associations located on sites low in organic matter and having continuously moving water through them were found to have the lowest quantities of total sulphur. These were the Eleocharis palustris3 Nuphar variegatum and Polygonum amphibium associations. Calci urn. Calcium is one tant in controlling both of the elements which is very impor-soil and vegetation properties. In Table: 101 288 S U L P H U R (percent total) Horizon I COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. E.F. 0.30. . . 0.1?-. 0.45 0.24-—- - 0.36 - — 0.03 — T.A. 0.26 0.12 0.46 C.15 0.33 0.13 B.P. 0.25 0. 18 C.40 0.14 C 3 5 0*06 ., s .S-. 0-2-4 G-.-1-9 -—£-3-1 £-1-9 £.-30 £..£4— : OR. 0.23 0. 19 0.23 0.20 0.25 0.03 S.A. 0.20 0.04 0.43 0.01 0.39 0.15 S.P. 0.11 — 0.05 0.16 0.0 7 0.14 0.04— -M.A. 0.09 0.04 0.17 0.04 0.13 0.05 E.P. 0.07 0.05 0.11 0.03 0.10 0.02 — N .-V-. -'- 0 .05 0-0-3 £-1-1 0.03 £.-£7 £.-£2-P.A. 0.03 0.02 0.05 0.01 0.0 5 0.01 Horizon II-COMMUNITY MEAu MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. B.P. - 0.36- - 0.22—- 0.84 -0.04 0.69 - 0.26 -S.S. 0.12 0.04 0.23 0.03 0.21 0.07 M.A. 0.05 0.02 0.12 0.02 0.07 0.03 P--S-. £.-£0—• £•££ . G.-U-1 . 0 . 0 u ' £«-C-L L—0-0 _ B.P. Betula ounila Association M.P. Advanced Moss Association P . L Pine - Lichen Association C R cireTrostrata Association M.S. Pine - Spruce - Ifloss Association P.S. Picea mariana - Pine Association E.F! EortTetua f l u v i a t i l e Association N.V. Nuohar variecatun Association S.A. Scirrus acutus Association E.P. E l e ^ s Association 0. Oplopanax Association S.P. S a i l * pedicellarla Association 6. Gvnnocarlum Association . P.A. Polygonum amphibium Association S .S . Sal ix sitchensis Association M.A. Matteuccla - A l n u s Association P.B. Picea mariana - Bog Association T.A. Trichophorui. al pi nua Association Table: 102 C A L C I U M (me/lOOg) COMMUNITY MEAN UNI MUM Horizon I MAX IMUM 5 O/O CONFIDENCE LIMITS 289 STD. DEV. COMMUNITY MEAN .INIMUM -Horizoj-t-ll-MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEv". B.P.- - • 42.17 36.60 44.40 .. .. -39.-24 - 45.11 - 2 . 36 P.B. 32.44 26.09 36.28 27.56 37.32 3.93 M .A. 19.95 9.63 43.30 10.55 29 .36 12.23 5 . 5 , c . 17 5,03 17.7^ 2.^7 15 • 3 7 4.99 0. 8.51 2.12 23.60 1.92 15.11 8.57 G . 5.34 0.80 35.00 0.95 9.72 6. 52 M . P . 2.41 . -. . .. 1.0? - . 4.13 1.36 3.47 - - 1 • 13 — P.L. 1.52 0.04 8.70 -0.11 3.17 2.44 P.S. 1.05 0.7? 1.61 0.70 1.39 0.32 0.80 0.23 1.56 0 . 4 A 1 . l ^ •ri. 4 « J'+—-^-o Horizon.. III COMMUNITY MEAN i ••'.INIMUM •iAXIMUM 5 0/0 COr.FIOE. NCc LIMITS STD. DcV. P.B. 26.17 - 14.66 - 35.51 14.05-- - - 38.30 — .9.76 - - - -M • A « 10.27 3.6? 20.30 4.87. 15.67 6.45 0. 8 .48 1.33 45.00 -2.39 19.37 14.16 G. 2 • C »1 • 6 1 3 » A 0 0.7? 4 • 0 ? '.. ? 0 M . P . 2.00 1.10 3.9 6 0.99 3.01 1. C9 P.S. 0.60 0.09 1.00 0.16 1.04 0. 35 M.S. 0.56 0.08 . .1.40 0.31 0.81 0. 35...-P.L. C.35 0.13 0.90 0. 17 0.53 0.26 B.P. Betula oumila Association C R . Carex rostrata Association E.F . Equisetum f l u v i a t i l e Association E.F. Eleocharis Association 6. Gvr.r.ocarlu!- Assocl at i on M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. Oolopanax Association P.A. Polygonum amphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea m.riana - Pine Association S.A. Scirrus acutus Association S.P. Salix pedicel lar is Association S.S. Sal ix sitchensis Association T.A. Trichophorum alpinum Association 290 soils it influences the pH, microbial activity, nitrifica-tion, potassium availability and phosphorus availability, to mention only a few. It is also one of the essential elements for plants where i t is utilized in the formation of eel 1 walls. Devlin (1969) points out several symptoms due to a deficiency of calcium in plants: 1. c h l o r o s i s f o l l o w e d by n e c r o s i s of the young l e a v e s ; 2. d e t e r i o r a t i o n of normal m i t o s i s in m e r i s t e m a t i c t i s s u e and subsequent t e r m i n a t i o n of g rowth; 3. ma l fo rmat ion and d i s t o r t i o n of the younger l e a v e s . Krajina (1969) points out that Thuja plioata is particularly sensitive to calcium deficiency and frequently exhibits die-back phenomena. In the Sub-boreal Zone calcium is always the most abundant exchangeable cation in the soils. Highest calcium measurements were recorded in the low moor associations where they ranged from 39.09 to 26.76 me/100 g. The forest associations usually had moderate quantities of calcium with the exception of the dry sandy sites. The lowest values of calcium were found in the dry forest communities and in those aquatic associations which were generally low in organic matter. 291 There was a strong trend for the quantities of calcium to decrease with soil depth in all the associations except those developed on cumulose organic soils. Magnes i urn. Magnesium is the second most abundant of the ex-changeable cations in the Sub-boreal soils, second only to calcium. Wilde (1958) points out that magnesium is the only mineral constituent of the chlorophyll molecule. It pro-motes the utilization of phosphorus and occurs most abun-dantly at the growing tips of the plant. He also points out that magnesium ions appear to be specific activators of a number of enzymatic reactions and deficiency of this element results in premature defoliation preceded by chlorosis. In the present study magnesium was highest in the Tviohophorum alpinum association of the low moors where the mean value was 13.6 me/100 g and lowest in the aquatic association dominated by Polygonum amphibium. In the upland forest associations the two associations of the Abietetalia had the highest quantities of magnesium followed by the mesic associations of the Piceetalia. The driest associa-tions of the Piceetalia had the lowest quantities of this element. Of all the associations, the aquatic ones which were low in organic matter as well as having coarse textured soils had the lowest amounts of magnesium. Table: 103 •AGwts iu i . (me/lOOg) lu.-.MUM TY : A N M I N I M Jt-; Horizon I i A . X I M U M 5 0/0 CONFIDENCE LIMITS 292 STD. LEV. T.A. 13.60 6 .P . 12.46 M • A . 7.81 P . 3 » — 6 .00-0. 5.36 E. F . 5.09 o . 4.35 S.S. 4.06 OR. 3.87 '•' • P. 3 • *t M. s. 2.95 P.S. 2.67 S.A. 2 .45 N.V. 1.32 P.L. 1.10 -E.P-. C-.7-3-S.P. 0.66 P.A. 0.42 7.82 11.16 3.21 _„<•-..4 7-2.70 3.48 0 .'3 6 3.36 3.15 —1-..44-1.21 1.13 1.37 0.71 0.29 —0-.-56-0.26 0.36 20.33 13.76 14 .44 —7—7-4-15.60 7. S3 11.60 6.22 4.71 —-6-0-3-4.70 4.21 4.30 1.82 3.57 -0—8-6-1 .04 0.49 9.76 11 .29 5 . 18 —4 .-0-4 2.23 4. 16 2.77-2.55 3 .49 —2—UG 2.11 1 .64 1 .05---0.99 0 . 40' -0—60— 0.39 0.36 17.44 13.66 10.45 .. 7.96 6.52 6.01 5.94 5.58 4.25 —4^3-7_ 3.79 3.71 3.8 6 1.65 1.80 —0-6-7-0.92 0.48 4.59. 0.96 3.43 —1..-5-6-'4.09 1.27 3.06 1.22 0.52 —1—5-5-1.17 0. 96 1. 13 0.42 1.03 —O-LO-0.31 0.04 Horizon II COMMUNITY - O P . -M . A . . P.B. 5—S-. 0. G. P.S. . p. M . S . _P-.4=— MEAN 12.97 5.19 4.90 —2-24-1.74 1 .47 0.68 0.56 0.24 -G—2-3-MIiUMUM -- 12.00 2.11 3.5 9 1—2-5-0 .44 0.11 0 .16 0.23 0.09 0.07 MAXIMUM 1 4 . 0 6 -14.50 6 . 7 3 4.5 9 5 0/0 CONFIDENCE LIMITS 11.69 1.95 3 .47 —0—56 14.04-6.43 6.33 —3—9-2-STD. 6.60 13.60 2.46-0.66 0.51 —1—2-0-0.00 -0 . 20 -0 . 2 3 0.32 0.13 —0—04-3.46 3.14 . 1.61 — 0.63 0.35 - J O —46— /EV. -0.86.. -4.21 1.15 -4—3-5— 2.25 3.25 - 0.36-0«27 0. 15 -0—3-3-Horlzon- III-COMMU.MTY ;AN MINIMUM i AX IMUM 5 0/0 CONFIDENCE LI Mi ITS STD. DEV. P.8. M . A. G. M . P . M . S . P.S. P.L. 3.48 - -2.73 1.76 -G-.4-5— 0.32 0.11 0.11 0.05 1.38 0.68 0.25 -0—07-0.09 0.03 0.0-7-0.03 5.13-7.40 7.40 -2—0-4-0.72 0.37 0.18-0.10 1 .94 -. 0.70 •0.26 -0—4-9— 3 . u J -4.77 3.65 0.13 0.04 0 . 'J o-. 0.03 0.51 0.18 0.17. 0.06 1.24.-2.42 2.69 -0-5C-0.20 0.0 9 O.04. 0.02 B. P. Betula pumila Association C. R. Carex rostrata Association E.F . Equisetum f l u v i a t i l e Association E.P. Eleocharis Assoc!atlon 6. Gynnocarlurn Assoclatlon M.A. Matteuccla - Alnus Association M.P. Advanced Moss Association M.S. Pine - Sprues - Moss Association N.V. Nuphar varleqatum Association 0. Oplopanax Association P.A. Polygonum arphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scireus acutus Association S.P. Sal ix pedlcel lar ls Association S .S . Sal ix sitchensis Association T.A. Trichophoru.Ti alplnum Association 293 There was a general trend for the quantities of magnesium to decrease with depth. Sodi urn. Though sodium is common in nature and supplied principally by the weathering of feldspar rocks and by rain water, its role in plants is not well known. Stout and Johnston (1957) point out that i t is not a factor in limit-ing plant growth and that i t is not an essential element for most higher plants. In the present study the highest values of sodium were recorded in the open low moors and in the two aquatic associations which were high in organic matter. Sodium values in these associations ranged from 6.29 me/lOOg in the Salix pedioellaris association and 3.13 me/lOOg in the Betula pumila association. The lowest values were found to occur in the aquatic associations which were immersed in water for most of the growing season and which had sandy soils with l i t t l e organic matter. The general trend throughout the soil was to a decrease in the amount of sodium with increased depth. Table: 104 294 SODIUM (me/l00g) C O M M U N I T Y I C M H ,INI -IUM Horizon I I A X I M U M 5 0/0 C O N K I L / C N C E LI.-.ITS S T ; DEV . S.P. T.A. E.F . -C.R.-B.P. (•;. p. o. M. A • P.B. -G-P.S. S.S. P.L. N.V. M . S . -S.A— E.P. P .A. I M M U N I T Y 5.P. M • A . M . p . c . S.S. 0. -P.L. i ' i . S . -P-.-S --6.29 A.67 3.67 -3.-16-3.13 1.75 1.21 0.86 0.50 -O_-8-0_ C.53 0.51 0.47 0.41 0.39 -C--35-0.28 0.19 5.22 1.83 1.36 -0.-7 5 • 1.36 0.12 0.17 0.47 0.27 -0-.-2-1-0.33 0 .40 0.20 0.25 0.01 —0.3.1-0.22 0.18 MLA;. 2.11 1.10 0.71 — 0.52 0.45 0.41 0.37 0.31 -—0-.2-9-:-l I N IMUM —1.22-0.45 0.0 8 0--2-O-0.08 0.27 0.10 0.05 0.1C — — a ^ 0-9--5.56 5.34 9.10 -6 .36-6.18 5.04 4.22 1.45 1 .45 _4.--o0_ 0.90 0.60 2.30 . 1.10 0.71 —0.4-2 0.37 0.22 Horizon II 5.25 -2 .6o 1.75 -JL..fc-3_ 0.74 •0.20 -0.05 -0.59 0.26 -0-.-2-4—. 0.32 0.39 0.06 .-0.20 0.25 -CU.2-3— 0.21 0.13 7.3 2 6.66 5.60 _4-..4-9-5.52 3 .70 2.43 1 . 14 1.35 -1...3-7-0.74 0.62 0.33 0.61 0.54 _a.-4_l-0.35 0.21 , AX IMUM 3.62 3.53 2.17 L.-L-3-3.71 0.70 .. 1.80-2.24 1.39 0-.£-5-5 0 / C CONFIoENCE LIMITS -0.86 0.32 -0. 16 -Q—3-C-3.36 1.68 1 .60 -L.04-0.02 0.24 0.00 -0.04 0.03 1 .02 0.66 -0.32 0.79 0.56 -5--4S-1.24 2.37 2.69 __1.3-5-1.92 2.11 1.64 C 35 C 4 3 ..-L.-i.a-0. i9 0.09 0 • 6 C-C.26 0.20 0.05-05 01 STD. DEV. 1.00 1.01 0.95 C.96 0. 16 0.52 0.62 0.36 -C-.-L6-CCf-.MUN I T Y EAN MINIMUM Horizon I I I MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. M . P . P.B. M . A • P.L. G • P.S. M . S . 0.95 0.73 0.52 -0.46-0.35 0.33 0.22 0.17 0.07 0.09 0 .44 -0-.-0-9-0.03 0.08 0 .09 0.08 2.27 1.73 0.61 -1--67-2.33 2.23 0.31 0.25 -0 . CO --0.05 0 .47 -0.09 0.07 .0.12-0.13 1.92-1.53 0.57 . ^ 5 - 3 -0.79 0.59 0.33 0.21 1.0 4-C 6 3 0.06 _0 .-4©_ 0.66 0. 50 0 • Oo-0.05 B.P. Betula pumtla Association C R . Care/, rostrata Association E .F . Epulsetum f l u v i a t i l e Association E.P. Eleochsrls Association 6. Gvmnocarlum Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. ODIopanax Association P.A. Polyoonum amp'ni bl urn Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirpus acutus Association S.P. Sal ix pedicel lar is Association S .S . Sal lx sitchensis Association T.A. Trichophorum alpinum Association 295 Potass i urn. Potassium is one of the essential nutrients for plant growth where it functions in speeding up the assimila-tion of carbon dioxide and is important in the transformation of carbohydrates, synthesis of proteins and cell division. It is present in the plant usually as a soluble salt where its function is largely regulatory and catalytic. It is concentrated strongly in the younger leaves, buds and root tips (Wilde, 1958). A deficiency of potassium hinders the growth of leaves and the normal development of the foliage. Kopitke (1941) has pointed out that potassium also counteracts the effects of excessive nitrogen, assists in the frost harden-ing of trees and reduces root rot in older seedlings. In the present study most of the associations had quantities ranging from 1.45 me/lOOg (pine - spruce - moss association) to 0.06 me/lOOg {Polygonum amphibium associa-tion) in the top horizon. The one exception to this was found in the Salix pedioellaris association which had a con-siderably larger quantity of this element than any of the other associations (mean 5.49 me/lOOg). Quantities of this element were appreciably lower in the deeper mineral horizons. Tablei 105 P O T A S S I U M (me/100g) COMMUNITY MEAN MIN I MUM Horizon I .AXIMUM 5 0/0 CONFIDENCE LIMITS 296 STD. DEV. 0.02 0.00 Horizon II COMMUNITY B.P . M . A * 0. -P-.3— P.L. P.S. M . S » M . P . -S.-S--MEAN 0.35-0.2i 0.19 -Q..46-0.12 0.11 0.08 0.08 0.07 - 0.06-MINIMUM • 0.16-0.04 0 .06 _0—14-MAXIMUM 5 0/0 CONFIDENCE LIMITS 0.03 0.05 0.06 0.03 0.03 -0-.-G-5-0.60 0.72 0.56 -0—3-3 0 . 0.7-0 . 04 0.07 -0-0-5-0.36 0.21 .0.13 0.20 0.12 _C—1.2 0.C6 0.09 0 .06-0 .04 C .04 0.02 0.62-0.38 0.30 0«28 0.19 0 .13 0 . 11-0.11 0.11 -0.-10-STD. DEV. .... 0.22— 0.21 0.15 .X-^0-9— C 10 0.04 0.0 2.-: 0.0 5 0.0 3 0.0 3 -Horizon TII COMMUNITY K.EArt Ml.'ilMUK MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. 0. 0.09 - -0.06 • 0 . 1 4 0 . 0 7 — 0.12 -0.03 P.S. 0.09 0.06 0.15 0.04 0.14 0.03 M.S. C.09 0.03 0.19 0.C5 0.12 0.05 G .0-9— 0-.-0-3 0—2-0 0—06 0-. 4-1- 0—0-4 M.A. 0.G6 0.02 0.25 0.02 0.14 0.07 P.B. 0.07 0,03 0.11 0.03 0.11 0.03 M.P.- - 0.06 0.03- 0.09 0.05 0.08 0.01 P.L. 0.04 0.02 . 0 . 0 8 0.03 0.06 0.01 B. P. Betula pumila Association C. R. Carex rostrata Association E.F . Eo'jlsetun f l u v i a t i l e Association E .P . Eleoch?ris Association G. Gynnocarlum Association M.A. Matteuccla - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuohar varleqatum Association 0. Oplopanax Association P.A. Polygonum anphibium Association P.B. Picea mariana - Boo Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirpus acutus Association S.P. Sal ix pedicel lar ls Association S .S . Sal ix sitchensis Association T.A. Trichoohorurc alplnum Association 297 Cation exchange capacity. Cation exchange capacity is defined as the capacity of the colloids of the soil to hold cations. It is expressed in milliequivalents per 100 grams. The two major factors affecting the cation exchange capacity are the amount of organic colloids and the amount of clay. When these are both present in high quantities then the CEC is usually also high. Cation exchange capacities of humus are usually higher than those of mineral soils. In the present study those soils with the highest quantities of organic matter also have the highest CEC. These are the low moor communities and the L-H horizons of the forested communities-. In the Nuphar vaviegatum, Soirpus aoutus, Eleocharis palustris and Polygonum amphibium asso-ciations which are low in both organic matter and clay, the CEC's are very low (10.7 to 2.5 me/lOOg). In the lower mineral horizons where the soils are frequently very sandy the CEC's dropped appreciably. Soil reaction (pH). The pH of the soil is of great importance in con-trolling the types and growth rates of plants which develop on a given soil. This is due to the fact that it is one of the major factors controlling the availability of such Table: 106 C A T I O N E X C H A N G E C A P A C I T Y (me/100g) Horizon I MEAi. M I N I M U M M A X I M U M 298 CuMMUNlTY 4.02 2.10 128.90 136.32 143.30 —i.-26. 2-5-143.30 100.43 131.40 13 3.90 136.70 — 1-2 8-. 00-124.00 33.32 81.02 78.57 20.12 1-S---5-1-6.07 3.15 5 0/0 COi.r I DENCE L I M I T S 88 . 34 84 .86 77. 16 -fob—47-77.71 66 . 46 37.34 26. 13 3u .41 -3-5—0-3-32.23 44.77 29.71 35.56 6.67 —1-0-9-125.76 125.54 121.77 -12 3—0-3--1 07 . it> 94.6b 106.93 109.29 9 6.92 —83—3-3— 6 3.11 62.74 76.95 61.75 14.76 5 T N 3.97 1.95 6.21 3.06 DEV ( 13.07 2 4.32 31.17 -2 2—76— 2 6.63 16.67 37.62 3 9.60 3 9.35 -3-4.67— 37.87 i 2 . 5 6 19.03 -16.20 5. 26 —6--0-0— 0.90 C44 CCM.-.UNITY IEAN M I N I M U M Horizon II - . A X I M U M 5 0/0 C O N F I D E N C E L I . - , I T S S T O . DEV. P . S . -S . P . M. A • 0. S . S . P . L . P . S . M . P . 12 0.40 97.44 40. 5 9 —2-3 -2-4-21 .06 20.49 17.14 15.45 12.18 7—65-70 .07 75.07 15.40 —3—8-3-4.90 10.50 2.5 7 4.42 4.72 _3—oo-146.60 124 . 0 7 1 13 — £ 4 J -, 5 7 .-5-0-40. 10 34.62 36.20-32.60 24.60 16.40-32.56-68 .76 15 . 12 -14—3-6-11 .48 7.90 -10.13 24.14. 4.54 5.61 -4.11 157.93 126. 12 66.67 3 5-1-3-30.65 33.08 26.37 18.74 11.2 0 3 0. 2-3-23. 10 33.53 -2-3-4-2-12.47 10. 14 10.42-10 . 40 7.09 4.»-9-5--Horizon III COMMUNITY .-:EAi. MINIMUM MAXIMUM 5 0/0 CONFIDENCE L I M I T S S T D . DEV. P.B. 73.83 - 20.20 126.70 -15.61 132.06--- 46.9-1 * •-0. 21.61 2.50 54.00 9.35 33.66 15.93 M.A. 19.10 3.42 41.82 7.35 -30.66 14.06 -M-. P - — • -45—4-9 4—2-0 . 30- .20 7--3-1 2-3-6-8 . . 6-..S-5 . 0. 14.06 4.10 41.70 9.33 " 18.79 9.19 P . L . 10.33 2.27 . 23.60 4.90 15.76 5.06 . . ,v,,s.. 7.49 3.70 1-2.00 - 5.-37-. -- 9.62 • 2..96 P . S . 4.04 1.S5 7.40 1.58 6.69 2.13 B.P. Betula punlla AssocIat1on C R . C_p°x rostrata Association E.F . Eq'.ilset'jm f l uv i a t i l e Association E.P. E leocb r i s Association G. Gynnocarlum Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. Oplopanax Association P.A. Polygonum amphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirp-S acutus Association S.P. Salix pedicel lar is Association S .S . Sal ix sitchensis Association T.A. Trichophorum alpinum Association Table: "107 SO I L REACTION Cu.-,MUi\ ITY T.A. S.A. . ' i . A. . P-. A B.P. P.5. S.P. Horizon I 299 OR. S.S. -N . V — E.P. E • F • G. G. .M. P . -P-.L-.-M . S . P.S. .EAN 6.54 6 .46 6.22 6 . 0 2—• 6.01 5.79 5 .69 5.60 5 . 53 -5.49-5.49 5 .46 5.25 5.00 4.66 --4-. 12-4.05 3.54 ,-ilN I.-,UK 6.06 5.41 5.66 5.92-5.46 5.06 5 .43 5.03 5.25 4-..y.6-4.6 0 5 .25 4 .20 4.2 0 3.40 -3-.60-3.35 3.15 A x I i-.u.-7. G i> 7.15 6.92 .6.43-6.26 6.26 5.9 4 6.05 6.06 -6—3-5-5.94 5.9 2 6.15 6.20 5.40 -4.-90-5.60 3.60 5 0/0 CONFIDENCE LI,-;ITS 6.21 5.50 5.86 - S. #..9 0~ 5.53 5.09 5.57 5.35 5.15 -5—0-9-4.9 2 5.32 4.96 4.47 4.06 -3-9-0-3.57 3.24 6 . Oo 7 .46 6.56 .6.. 14 6.43 6 .4o 5.8 1 5.85 5.92 _6 .-9.0— 6.05 6.61 5.52 5.54 5.27 -4—3-5— 4.54 3.64 Horizon II COMMUNITY .MEAN MIN I MUM •SAX I MUM 5 0/0 CONrlDcNCE LIMITS iTD. UcV. . 0.39 . 0.79 0.47 G...G9— 0. 34 0.56 0.14 -. C • 35 0.31 ^-52—. 0. 43 0.20 0.52 0.69 0.65 0. 6o 0.26 ST-./. DcV i 0. 39— 0.22 0.53 0—3-1— x • IP 0.62 0. 39 -0.44 0.33 -G-.-45-Horizon III COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS iTD. DEV. M.A. -- 6.67 6.25 - 7.35 6.32 - 7.02- - 0.42 -O 5.37 . 4.55 6.40 5.03 5.66 0.56 P.S. 5.36 4.85 5.90 4.83 . 5.90 0.42 P -5-2-3— 5-.-3-3 5-62 4—9-5 5—52 0.12 °« 5.14 4.30 6.60 4.42 5.66 0.93 P.L. 5.14 4.70 6.00 4.66 5.4i 0.40 M.P.- - 4.93- — 4.45 - -• 6.07- 4.43 5 .42 - 0.53—• M.S. 4.76 4.40 5.40 4.55 4.97 0.29 B. P. Betula pumila Association C. R. Cgrex rostrata Association E.F. Ecuisetuai f l u v i a t i l e Association E.P. E l e o c b r i s Association G. Gvnnocarluni Association M.A. Matteuccla - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar varieoatum Association 0. Oplopanax Association P.A. Polygonum amphlbi urn Association P.B. Picea mariana - Bog Association P.L. Pine - Lichon Association P.S. Picea mariana - Pine Association S.A. Scirpus scutus Association S.P. Sal ix oeji ce l l arts Association S .S . Sal ix sitchensis Association T.A. Trlchooh.orum alplnum Association 300 essential plant nutrients as calcium, magnesium, sodium, potassium, phosphorus and several trace elements (Buckman and Brady , 1960) . In the present study the mean values of pH in all the plant associations was from slightly acid (pH 6.54) to strongly acid (pH 3.54) in the top horizon. In the eighteen communities sampled the least acid soils were found in the low moor and aquatic associations where they were either perman-ently wet all year or at least flooded during high water. In these low moor soils the shortage of oxygen lowers the absorption of exchangeable elements through ineffective level of respiratory function of roots (Krajina, personal comm.). Of the upland forest associations the two members of the Abietetalia were the least acid followed by the upland associations of the Piceetalia which were developed on the more sandy locations. The latter were appreciably more acid with pH ranging from 4.63 to 3.54 in the top horizon. Sand. Sand is one of the three important components of the soil which determines soil texture. It controls not only the water holding capacity and drainage properties but also the soil f e r t i l i t y . There is also a direct correlation between the texture of the soil and the soil structure and T a b l e : 108 t 301 S A N D (percent) Horizon I COMMUNITY MEAN MINIMUM MAXIMUM t> O/O CUNFIDENCE LIMITS STD. DEV. P.A. 97.19 96.00 98.00 • • - • 95.84---- 9o.55 1.09 95.51 94.00 97.20 94.01 97.02 1.21 N.V. 67.11 43.60 92.00 53.12 61.10 16.19 -— £ . A • 6-5-.-19 4-1—60 8-1—20 4-3-.-1-3 6-7-.-2-6 U--77 — M.A. 62.74 52.00 70.00 56.94 66.54 6.27 E.F. 56.5? 45.20 72.40 50.62 62 .49 8.30 S.S. 55.19 45.20 66.50 - 44.85 65 .54 -. - 6. 33 — C.R. 46.S7 35.20 57.20 42.01 51.74 6.60 COMMUNITY KEAu ilwlMUM Horizon II MAX IMUM 5 0/0 CONFIDENCE LIMITS STD, DEV. M. S. G. P.S. -M--P— 0. S.S. M • A . 76.91 66.36 63.03 -6-2--94-60.52 51.19 48 .55 69 .60 32.00 51.60 -5-1-.60-34.60 44.0 0 14.80 62.80 8b . 00 76 . oO -74.-*^ D 77.20 59.20 72.00-73.66-59 .96 50.65 -5-5-. 0 1 49. 11 42.68 32 .-7 5 60 . 15 76.74 75.42 -70.66 71.93 59.71 64•34. 4.32-15.73 11.81 - c . 57 15.64 6.66 16.6 9-Horizon III COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. P.L. 69.27— 75.20-- 100.00 64.66 -93.68 - 6.66 M.S. 64.93 72.20 91.20 60.64 69.23 6.00 P.S. 77.15 56.GO 95.20 55.24 96.07 15.24 ->U-P-. -6-9—3-1 -4-4-6C 84—60- 57—2-4- 5-1—3i L-3-^ 04 G. 64.24 23.20 95.20 52.i3 76.35 23.55 M.A. 60.71 14.00 94.00 32.67 " 86.74 30.31 - 0. - 56.39 - 25.40-- 69.oO 36.90 • 75.89 - 23. 31 B. P. Betula oumila Association C. R. Carex rostrata Association E.F . Egulsetun f l u v i a t i l e Association E.P. Eleoch--rls Association G. Gvmnocarlum Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. Oplopanax Association P.A. Polygonum amphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirp'js acutus Association S.P. Sal ix pedicel lar is Association S .S . Sal ix sitchensis Association T.A. Trichochorun alpinum Association 302 consistency. Soils which are very high in sand are usually structureless. Sand is made up of particles the size of which is between 2.0 mm and 0.05 mm. In the Sub-boreal Zone the soils all tend to be high in sands with the exception of the organic soils developed in the low moors. This trend toward high sand content is because most of the sample plots were estab-lished on outwash material dating back to Pleistocene times. Sand values were as high as 100 per cent in the Pine - lichen association and as low as 28.4 per cent in the Oplopanax association. In the upland forest associations the highest quantities of sand were present in the Piceetalia and the lowest in those of the Abietetalia and the Populetalia. This is the case because these latter associations are either flooded in the spring or affected by permanent or temporary seepage which results in the deposition of quantities of silts and clays. Sand in the aquatic and semiterrestrial associa-tions was found to be highest in those associations which are covered with water all year. These are the Polygonum amphibium, Nuphar vaviegatum and Soirpus aoutus associations. Silt. Silt is the second of the three components making up the texture of a soil. Its particle size is intermediate Table: 109 303 M L T (percent) Horizon I ,-,J,.ITY i.L n, * i -,u.. : A A i.' .U.\ 5 0 / 0 Cw...- I ~:c', . 0 . L I, I TS i T L/ • D — O R . 3c . < : 7 3 2 . O 0 4 9 . 2 0 3 4 . o 7 4 l . O 0 ^ • 7o S.S. 3 7 . 1 9 2 v . u 0 4 4 . 4 0 2s. 3 2 ^ y. o 7 7. 1 4 3 i • JC £- 2 * -J -J 2 5 . 3 7 3 o . i; 7 o . 1 0 ,, . V • ..  y >4o • — - 4 . o 0 5 3 - . 2 0 - _ - 1 3 . 3 V - - - — - . . 3 • 3 j ._ U ; . . „ 4 L_ • r • »6J 1 2 . 0 w 4 3 . 0 V - 2 2 . 7 0 3 4 . 5 7 o . 3 w 2 5.47 i ' 3 .2 0 5 4 . bG 7 . 3 9 4 7 . 5 6 1 6 . 9 ? o p . 1 . 7 5 2 . o 0 0 . 6 1 2 . 9 0 0 . 9 2 P.A. 0 . 4 0 2 • * 0 — 0 . 7 * 1 . 5 * u • 6 » Horizon II CO -.MU;\ I TY s . s . ,-,. A . ,••••;.?. ^ #  P . S . 6 . .'•i. s. P . L . 41.75 36.79 ,:6.71 -27.32-<: 6 . i. V 21.42 16.49 9.46 • i i . < I, ,U.-i 23.60 15.60 17.20 7-. 6-0--14.60 6 . e 0 12.60 2.12 i .AMi-.Ui-. 52 .40 6 2 . v 0 40.60 43-.C-W-34.20 3 7 . 2 o c 3 . 6 0 ci 4 . 6 0 5 0/0 C0.'.rius..\Cc LI.-ilTS 27.36 23.45 19.59 -4r7-.-^ 4-17.33 15.3o 13.62 3.60 55.65 50.14 37.53 -3c-. 60-33.24 27.46 21.37 15.12 -V. i i» i v 13.96 9.53 -1-2 .90-3.52 11.33 4.02 o«42 CG.--i.-iUn I TY .LA,-. i - - I . i l ,G,. —Ho^zun~ri1C~:: • AAI.-.UV. 5 0/0 CGf.r I OCMCL. L I M I T S 6 T 0 ;•;. A . G . -.-i.p.« P.S. M.S. P.L. 27.47 26.57 24.31 .20.34-16 . 19 io.34 7.47 1.00 0 .60 1.00 —6-. 40-2.00 5 . 0 J 0.00 61 .40 61.20 66.60 —3 * - . - ^ - 0 -34 . J0 13 . 30 16.60 12.10-5.00 15.13 —6*63-1.04 7.64 • 3.90 42.64 43.13 3 3.49 34.04 31 . 3 3 13.05 11.04 16.36 2 3. 3 i 17.85 _X4*6-2_ l£'£i 3 .7 o 3.31. B.P. Betula oumila Association M.P. Advanced Moss Association P.L. Pino - Lichen Association C.R. Cp.pex rostrata Association M.S. Pine - Spruce - Moss Association P.S. Picea mariana - Pine Association E.F. Eoul setuai fluviatile Association N.V. Nuphar varieoatum Association S.A. Scirpus acutus Association E.P. Eleocharis Association 0. Oplopanax Association S.P. Salix oedicellaris Association G. Gvnnocarluiii Association P.A. Polygonum amphibium Association S.S. Salix sitchensis Association M.A. Matteuccia - Alnus Association P.B. Picea mariana - Boq Association T.A. Trichophorum alpinum Association 304 between that of sand and clay being greater than that of sand and less than that of clay. Particle size ranges from 0.05 to 0.002 mm. The water holding capacities of s i l t is also intermediate between sand and clay. Because clay is smaller than sand it also shows characteristics which are conducive to better plant growth such as higher cation exchange capa-cities and a greater surface area for nutrient exchange to take place. In the Sub-boreal Zone the highest quantities of silts were found in those communities which were flooded annually by creeks or lakes during spring run-off. At this time silts are deposited on the ground surface of the asso-ciations. Of the aquatic associations the highest values were found in the Carex rostrata, Nuphar variegatum and Equisetum fluviatile associations. In the Carex and Equisetum associations extensive quantities of s i l t were trapped in the dense root mats formed by these species. In the non-aquatic associations s i l t content was usually highest in the Salix sitchensis, Matteuooia - Alnus, Gymnocarpium and Oplopopanax associations; especially in deeper mineral horizons. The lowest s i l t percentages were recorded in the pine - lichen association where sand occupied over 90 per cent in some cases. 305 Clay. Clay particles form the finest fraction of the soil with particle sizes of less than 0.002 mm. Because of their large surface area for the exchange of plant nutrients they are of prime importance to the growth of plants. Clay func-tions in two very important ways: 1. as a s t o r a g e source f o r p l a n t n u t r i e n t s , and 2. as a source of water which adhers to the f i ne cI ay pa r t i c I e s . In the aquatic associations the highest clay quan-tities were found in the mineral fraction of the Carex rostrata and Equisetum fluviatile associations. The mean content in these associations was 14.8 per cent. Of the other aquatics, the lowest value was in the Polygonum amphibium association where i t was 2.4 per cent. Clay content in the top mineral horizon for the upland forest associations ranged from 12.1 per cent in the Oplopanax association to 4.2 per cent in the pine - lichen association. The lowest clay content was found in the three driest associations. 306 Table: 110 C L A Y (percent) Horizon I COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. C.R. 14.83 • 6.60 — 23.60 ----- 11.31 - 16.16 4.64 - '-L.F. i4.79 9.80 25.00 10.92 16.67 3.42 S.S. 7.59 3.60 11.20 3.62 11.57 3.20. S . A . 6 .-34 3-60 1-3-. 20 1-.-35 1-1—2-5—- 3—97 M.A. 6.22 4.00 8.80 4.36 7.69 1.60 N.V. 3.42 2.80 4.60 2.98 3.66 0.56 £.R. 2.71 2.00 5.20 -- - 0.98 4.45 - 1.39 P.A. 2.40 2.0J 4.u0 1.29 3.50 0.69 Horizon II ' — — — COMMUNITY ,,EAK IN I .-,UM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. M.A. 14.64 • - 7 .20 - -23.20- 10.58-- -- -16.-71 - --4.36 0. 12.14 2.00 27.00 4.00 20.29 9.74 P.S. 10.49 5.20 23.20 3.69 17.30 6.48 J5.» i-0-. 2-1 3-« 6 0 3-0-. 2-0 6—lA L-4- -2-7_ X.-62 M.P. 6.34 4.60 12.00 6.20 10.48 2.31 S.S. 7.03 3.60 17.20 -0.26 14.34 5.88 -- M.S. - 4.63--- 0.60 - - --0.2C 3 .44 6.13 2.09 P.L. 4.19 0.30 8.00 2.72 5.67 2.19 Horizon III COMMUNITY MEAN MINIMUM MAXIMUM 5 0/0 CONFIDENCE LIMITS STD. DEV. 0. 16.32-; 3.20- — 49.00- 3.85 28.79 14.-92 M.A. 12.88 5.20 24.80 5.93 19.33 ' 7.51 G. 11.17 0.8C 36.00 6.08 16.26 9.90 1-0—34- 5-.-2-0 1-5--2-0 7~--36 1-3—3-1 -3-2-1 M.S. 4.74 0.00 9.70 2.43 7.06 3.24 P.S. 4.01 0.00 - 11.00 0.91 7.12 4.61 P.L. 3.23-' 0.00- 6.20 -1..87. 4.5 9—- 2.02 -B. P. Betula pumila Association C. R. Carex rostrata Association E.F. Equisetum f l u v i a t i l e Association E.P. E leach r i s Association 6. Gvmnocarlum Association M.A. Matteuccia - Alnus Association M.P. Advanced Moss Association M.S. Pine - Spruce - Moss Association N.V. Nuphar variegatum Association 0. Oplopanax Association P.A. Polygonum amphibium Association P.B. Picea mariana - Bog Association P.L. Pine - Lichen Association P.S. Picea mariana - Pine Association S.A. Scirnus acutus Association S.P. Salix pedicel lar is Association S .S . Salix sitchensis Association T.A. Trichophorum alpinum Association i Chapter 7 SUMMARY AND CONCLUSIONS The aims of this thesis were to collect qualitative and quantitative data on vegetation and environmental factors in the Sub-boreal Spruce Zone and to integrate this data into a useful vegetation classification system. The vege-tational aspects were to include considerations of forest productivity and forest tree dynamics in each of the proposed plant associations. A summary of the findings is as follows. 1) The major study area was located in that section of the Sub-boreal Spruce Zone transected by the John Hart Highway, the Finlay Forks forest access road, the Carp lake area and the Chuchi lake area. 2) The parent materials of the zone are predominantly of Pleistocene glacial origin being glacial outwashes, flacio-fluvial outwashes, sandy outwashes and alluvial outwashes. More recent organo-cumulose deposits are also very common. 3) Previous to the present study and that of Wali, a co-worker, the Sub-boreal Zone was poorly documented 307 308 ecologically. Field analysis was carried out during the summers of 1967 through 1969 following standard phytosocio-logical methods of vegetation study. Edaphic and physio-graphic data were collected in each of the sample plots. 4) The most important factor in controlling the develop-ment of the vegetation is fire (mostly of lightning origin) which is frequent in this zone. Through the action of fires much of the area is forested by Pinus contorta and Populus tremuloides. Both these species are greatly promoted by f i re. 5) This study describes seven orders, thirteen a l l i -ances, eighteen associations, two subassociations and five variations in the vegetation: a total of 40 synsystematic uni ts. 6) The Piceetalia glaucae - marianae is the largest order in the zone in terms of both diversity of associations and habitats. Six associations are included in this order: Cladonio (gracilis) - Arctostaphylo (uvae-ursi) - Vaccinio (myrtilloidis) - Pinetum contortae; Pleurozio (schreberi) -Ptilio (cristae-castrensis) - Dicrano (polyseti) - Gaultherio (hispidulae) - Pino (contortae) - Piceetum marianae; Pleurozio (schreberi) - Ptilio (cristae-castrensis) - Vaccinio (membranacei) - Populo (tremuloidis) - Piceo (glaucae) -Pinetum contortae; Pleurozio (schreberi) - Ptilio 309 (cristae-castrensis) - Vaccinio (membranacei) - Pseudotsugo (*g1aucae) - Piceetum glaucae; Hylocomio (splendentis) -Carico (aquatilis) - Betulo (pumilae) - Piceetum marianae and Tomenthypno (nitentis) - Sphagno (subnitentis) - Carico (aquatilis) - Salico (pedicellaris) - Piceo (marianae) -Betuletum pumilae. Hygrotopically these sites range from hydric in the associations of the low moors to very xeric in the dry upland pine sites. 7) The Piceo (glaucae) - Abietetalia lasiocarpae in-cludes two associations: Ptilio (cristae-castrensis) -Gymnocarpio (dryopteridis) - Abieto (lasiocarpae) - Piceetum glaucae and the Gymnocarpio (dryopteridis) - Oplopanaco (horridi) - Abieto (lasiocarpae) - Piceetum glaucae. These are both very rich productive associations in terms of tree growth. Picea glauca shows its best growth in the Oplopanax associ ati on. The Piceo (glaucae) - Abietetalia lasiocarpae occurs on wet and rich sites on subhygric to hygric hygrotopes Trophotopes are considered to range from permesotrophic to eutrophic. In both associations of this order seepage water is considered to play a major role. In the Gymnocarpium association seepage is considered to be temporary while in the Oplopanax association it is permanent. This seepage 310 water is very important as i t supplies a continual influx of nutrients from the upper slopes. In this order Abies lasiocarpa is not the most dominant tree in the two associations but rather Picea glauca. Many of the young regenerating spruces are found to occur in the openings in the forest canopy while the more shade tolerant Abies lasiocarpa occurs under a more dense canopy. Without these openings in the forest canopy where spruce can become established it is likely that Abies lasiocarpa would be the final tree in the associations of this order. 8) Drepanoclado (revolventis - vernicosi) - Caricetalia limosae - chordorrhizae. This order is comprised of one alliance, the Drepanocladion revolventis - vernicosi and two associations: Meesio (triquetrae) - Menyantho ( t r i f o l -iatae) - Scheuchzerio (palustris) - Carico (limosae -chordorrhizae) - Salicetum pedicellaris and Drepanoclado (revolventis) - Campylio (stellati) - Menyantho (trifoliatae) -Trichophoretum alpini. The order is found in the low moors of the Sub-boreal Zone where it is the most abundant low moor order. Sites on which it is developed are all hydric with free water being present throughout the growing season. Flooding is extensive and in some years the sites on which the associations occur are not released from total water coverage. 311 9) The order Populetalia balsamiferae in the Sub-boreal Zone is represented by a single alliance the Alnion tenuifolii and a single association, the Urtico ( l y a l l i i ) -Matteuccio (struthiopteridis) - Alnetum tenuifolii. It is developed along the margins of lakes and rivers on flood plains where flooding is frequent if not annual. It is also common along stream terraces. The flooding brings in large quantities of finer silts and clays making the soils all relatively fine in texture. Seepage water often plays an important role by bringing in nutrients to these sites during periods of low water. Soils often have alternating bands of organic matter and alluvial silts resulting in overlays and repetitions of horizon sequences. 10) The order Salicetalia sitchensis is represented by a single alliance, the Salicion sitchensis and a single association, the Salicetum sitchensis. This association is semi-terrestrial , being developed along the margins of lakes and rivers where flooding is annual and considerable deposits of alluvium are built up. The parent materials are all alluvium. 11) The order Caricetalia rostratae is composed of a single alliance, the Caricion rostratae and two associations. These are the Caricetum rostratae and the Potentillo (palustris) - Equisetetum fluviatile. Both associations are \j 312 common along the margins of lakes where they form emergent communities. They also develop in backwaters of rivers where water action is less harsh. Both associations are characterized by mucky soils which are high in organic matter. They are flooded annually, the period of flooding being often of long duration. Both associations are relatively species poor, being dominated in both cases by a single speci es. 12) The order Potamogetonetalia is comprised of four alliances; the Eleocharion palustris, Scirpion acuti, Polygonion amphibii, and the Nupharion variegati. These alliances are all monotypic in the Sub-boreal Spruce Zone. The associations of this order are all aquatic and developed around the edges of the larger lakes and slow moving rivers. The Nupharion variegati is also developed on some of the smaller glacial depression lakes common throughout the zone. 13) Ninety-two soil profiles were studied by the author in addition to the seventy-seven analyzed by the co-worker Wali (1969). These profiles were described in the field and extensive chemical and physical analyses conducted in the laboratory on the collected samples. 14) Soils of the Sub-boreal Zone are relatively young (less than 10,000 years) and developed predominantly on glacial transported material. 313 15) The key soil forming process in the Sub-boreal Zone is podzolization. This process is particularly promoted by: 1) the microthermal climate, 2) the relatively high annual precipitation (18-27 inches), and 3) the sandy nature of most of the soils which promotes a greater leeching e f f i c i -ency of the percolating water through the soil. 16) Tables are presented which show the ranking of eighteen plant associations for fifteen different environ-mental parameters. Intra-statistical analyses are provided but due to the low sample number, no inter-statistical analyses are considered. The environmental parameters considered are: carbon, nitrogen, carbon/nitrogen ratio, organic matter, sulphur, phosphorus, sodium, potassium, calcium, magnesium, cation exchange capacity, soil reaction (pH), sand, s i l t and clay. 17) The topographic sequences of the Sub-boreal plant associations are discussed. Topography is considered to be of primary importance in governing the distribution of the plant associations as i t has large influences on the chemical and physical composition of the soil, the water relationships of the communities and the nature of the parent materials. 18) Forest tree dynamics in the Sub-boreal Zone are dealt with in considerable detail. The tree species can be 314 divided into two major groups; those that are pioneer species and those that show a permanence on a given site over a longer period of time. Pinus contorta and Populus tremuloides are the major colonizing species after fires or site disruption after logging. Betula papyrifera may also be a colonizing species on richer sites in the hydrosere. Pinus contorta is extensive in the Sub-boreal Zone because of frequent fires. The serotinous nature of its cones also greatly promotes its establishment after fire. This species has a wide ecological amplitude being developed on hygrotopes from very xeric to subhygric. It is most common on hygrotopes between mesic and very xeric. Populus tremuloides , the other major colonizing species is also greatly promoted by fire. Fires cause damage to the roots with the resultant formation of suckers which develop into new trees. Asexual reproduction is of key importance in the development of stands of Populus tremuloides. It occurs on hygrotopes ranging from submesic to hygric. Betula papyrifera is a pioneer species in the richest sites of the Abietetalia lasiocarpae. It does not occur on sites drier than mesic. The trees which show a greater persistence in Sub-boreal plant association are: Abies lasiocarpa, Picea glauca, Pseudotsuga menziesii and Picea mariana. 315 Abies lasiocarpa finds its major distribution in the associations of the Abietetalia where it frequently occurs as a codominant with Picea glauca. No pure stands of Abies lasiocarpa were recorded in the study area. As hygrotopes more approach the mesic conditions, Abies plays a lesser role in the upper'tree canopy but is s t i l l a common shrub in the lower tree strata. Picea glauca has a wide amplitude, occurring on hygrotopes ranging from hygric to slightly drier than mesic. On hygric sites in the Abietetalia it maintains its dominance by becoming established in the openings of the forest canopy. Pseudotsuga menziesii has a very narrow amplitude, being restricted almost exclusively to mesic and submesic sites. Douglas-fir reaches its northern distribution in the Sub-boreal Zone. Possibly a major factor in controlling its distribution is the availability of seed source. Picea mariana occurs on widely diverse habitats ranging from dry upland sites to low moors. Assuming the absence of fires for very long periods of time i t is possible that Picea mariana might take over some of the sites cur-rently dominated by Picea glauca. 19) Shade tolerance is considered for the different tree species. The most shade tolerant species is Abies lasiocarpa followed by Picea mariana. Picea glauca shows an intermediate shade tolerance. Pseudotsuga menziesii 316 which is very restricted in its distribution also shows a moderate shade tolerance. Betula papyrifera grows best when not heavily shaded while Populus tremuloides and Pinus contorta are shade intolerant and die as a result of shading. 20) Tree height/diameter graphs are presented for each tree species in each association and regression lines are developed when significant to the 95.per cent, level. These regression lines should be considered applicable within the range of the plotted points. Comparison of these graphs show the general role fi l l e d by each tree species in the association and how a single tree species grows in the dif-ferent forest associations. Scatter plots for each tree species in each plot are included as Appendix E to indicate the variability within any one association. 21) The basal area (sq. ft.) and the number of trees per acre is considered in detail. Tables are presented for each of the associations showing the total, minimum and maximum basal area per acre and the average, minimum and maximum number of trees per acre. This data is shown for each individual species and for all species combined. A breakdown of this data is shown as Appendix C. 22) The average standing volume of each tree species in each association is calculated. This is derived from the data in Appendix D. 317 23) Forest productivity as expressed by site index is calculated for the coniferous tree species in each of the forest associations. 24) It is concluded that the approach used for the synecological classification of the plant communities and the environmental parameters acting upon them provides sub-stantial information on the ecosystems of the Sub-boreal Spruce Biogeoclimatic Zone. It is hoped that these findings will be of use to wildlife and forest management in the zone and that they will provide a sound basis on which to make decisions about the development of the Sub-boreal Spruce Zone. It is also hoped that this study will provide a foundation on which to base additional studies in the Sub-boreal Spruce Zone. BIBLIOGRAPHY Arnell, S. 1956. Illustrated moss flora of Fennoscandia, I Hepaticae. C.W.K. Gleerup, Lund, Sweden. •Barrett, P.E. 1972. Phytogeocoenoses of a Coastal low-land system, Devon Island, N.W.T., Ph.D. Thesis, Dept. of Botany, Univ. of British Columbia. 292 p. Beil, C.E. 1969. The plant associations of the Cariboo -Aspen - Lodgepole pine - Douglas-fir Parkland zone. Ph.D. Thesis, Dept. of Botany, Univ. of British Columbia. 342 p. Bell, M.A.M. 1964. Phytocoenoses in the dry subzone of the Interior Western Hemlock zone of British Columbia. Ph.D. Thesis, Dept. of Botony, Univ. of British Columbia. 246 p. Bellefeuille, R. 1935. La reproduction des peuplements d'epinette noir dans les forets dur Nord-Quebec. For. Chron. 11:323-340. Bird. CD. 1969. Unpublished key to the lichens of Alberta. Dept. of Biology, Univ. of Calgary. Black, CA. 1965. Methods of soil chemical analysis. Amer. Soc. Agron., No. 9, Vol. II. Bouyoucos , G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. , 43:434-438. Braun-Blanquet, J. 1921. Prinzipien einer Systematik der Pf1anzengesel1schaften auf f1oristischer Grundlage. Jahreb. der St. Gall, naturwiss, Ges. 318 319 Braun-Blanquet, J. 1928. Pf1anzensoziologie. Grundzuge der Vegetationskunde. Springer, Berlin. 330 p. . 1932. Plant Sociology: (Engl. Transl. of Pflanzensoziologie (1938) by Fuller and Conard). New York: McGraw-Hill. 439 p. Braun-Blanquet, J. and Tuxen. 1943. Ubersicht der hohe-en Vegetationseinheiten Mitteleuropas (unter Aussch-luss der Hochgebirge). Sta. Internatl. de Geobot. Mediterr. et Alpine, Montpellier, Commun. 84: 1-11 . Braun-Blanquet, J. 1951. Pflanzensoziologie. Springer -Verlag, Wien. Brayshaw, T.C. 1955. An ecological classification of the ponderosa pine stands in the southern interior of British Columbia. Ph.D. Thesis, Dept. of Biol, and Botany, Univ. of British Columbia. 240 p. Brooke, R.C. 1966. Vegetation - environment relationships of Subalpine Mountain Hemlock zone ecosystems. Ph.D. Thesis, Dept. of Botany, Univ. of British Columbia. 225 p. Browne, J.E. 1962. Standard cubic - foot volume tables for the commercial tree species of British Columbia. A. Sutton, Queens Printer, Victoria, British Columbia. Buckman, H.O. and N.C. Brady. 1960. The nature and proper-ties of soils. Revised by N.C. Brady. The McMillan Co., New York. 567 p. Bunting, B..T. 1967. The geography of soil. Aldine Pub-lishing Co., Chicago. 213 p. Chapman, J.D. 1952. The climate of British Columbia. Paper presented to the 5th British Columbia Natural Resources conference, Feb. 27, 1952. Cooper, W.S. 1911. Reproduction by layering among conifers. Bot. Gaz. , 52:369-379. 320 Daubenmire, R.F. 1968. Plant Communities. Harper and Row Publishers, New York & London. 300 p. Dean. 1949. Fixation of soil phosphorus. Advances in Agronomy. 1:391-411. Devlin, P.M. 1969. Plant physiology. Van Nostrand Reinhold Co. , New York. 446 p. Eady, K. 1971. Ecology of the alpine and timberline vege-tation of Big White Mountain, British Columbia. Ph.D. Thesis, Dept. of Botany, Univ. of British Columbia. 216 p. Forbes, S.A. 1887. The lake as a microcosm. Bull. Sc. A Peoria. Reprinted in 111. Nat. His. Surv. Bull. 15:537-550. Forestry Handbook for British Columbia. 1971. Publ. by the Forest Club, Univ. of British Columbia, Vancouver, Canada. Fraser, B.E.C. 1970. Vegetation development in recent alpine glacier forlands in Garibaldi Park. British Columbia. Ph.D. Thesis, Dept. Botany, Univ. of British Columbia. 2 59 p. Friederichs, K. 1930. Die Grundfragen und Gesetzmassigkeiten der landung forstwirtschaftlichen Zoologie. Paul Parey, Berlin. 2 vols. Frye, T.C. and L. Clarke. 1937-1947. Hepaticae of North America. Univ. Wash. Publ. Biol. 6 (1—5) rl — 1018. Fuller, G.D. 1913. Reproduction by layering in the black spruce. Bot. Gaz. 55:452-457. Gates, F.C. 1938.