Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Soil-plant relationships around an inland, saline slough Parsons, David Cecil 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1974_A6_7 P37_6.pdf [ 9.86MB ]
Metadata
JSON: 831-1.0092995.json
JSON-LD: 831-1.0092995-ld.json
RDF/XML (Pretty): 831-1.0092995-rdf.xml
RDF/JSON: 831-1.0092995-rdf.json
Turtle: 831-1.0092995-turtle.txt
N-Triples: 831-1.0092995-rdf-ntriples.txt
Original Record: 831-1.0092995-source.json
Full Text
831-1.0092995-fulltext.txt
Citation
831-1.0092995.ris

Full Text

SOIL - PLANT RELATIONSHIPS AROUND AN INLAND, SALINE SLOUGH by DAVID CECIL PARSONS B.Sc. (Agr.) University of B r i t i s h Columbia A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE'REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of SOIL SCIENCE We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA September, 1974 In p r e s e n t i n g t h i s t h e s i s in p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Co lumb ia , I a g ree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s tudy . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . It i s u n d e r s t o o d tha t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i thou t my w r i t t e n p e r m i s s i o n . Depa rtment The U n i v e r s i t y o f B r i t i s h Co lumbia Vancouver 8, Canada ABSTRACT So i l - p l a n t relationships around an inland, s a l i n e slough were investigated. I t was found that the release of soluble s a l t s from feldspar minerals i n s o i l and rock materials, and the gradual transfer of s a l t s downslope had led to the s a l i n i z a t i o n of the slough. The s a l i n i t y of the slough was found to be related to annual and seasonal c l i m a t i c cycles. High osmotic pressure and s a l t content of the s o i l s o l u t i o n adjacent to the slough precluded the growth of non-halophytic plant species. Within the area of s o i l s affected by s a l t s around the slough, i t was found that Saltgrass # 1 , which occupied the zone adjacent to the slough was more tolerant of s a l i n e and a l k a l i s o i l conditions and of prolonged inundation than Saltgrass # 2 which grew i n the second zone. Although the d i s t r i b u t i o n of halophytes and non-halophytes was related to s o i l s a l i n i t y and a l k a l i n i t y , the d i s t r i b u t i o n of non-halophytic plant communities within the zone of normal s o i l s was controlled by va r i a t i o n s i n s i t e microclimate due to the configuration of the landscape. Weathering, the nature and formation of the saline slough, and the nature and d i s t r i b u t i o n of the s o i l s and plant communities were found to be mutually dependent and the products of the same fi v e factors: climate, r e l i e f , geologic materials, organisms, and time. - i v -TABLE OF CONTENTS Page INTRODUCTION LITERATURE REVIEW METHODS AND MATERIALS RESULTS AND DISCUSSION PART I : SOIL-PLANT RELATIONSHIPS AROUND SLIPPY SLOUGH A. GENERAL DESCRIPTION OF THE STUDY AREA B. THE NATURE AND CHARACTERISTICS OF SLIPPY SLOUGH C. THE NATURE AND CHARACTERISTICS OF SOILS AROUND THE SLOUGH i D. SOIL-PLANT RELATIONSHIPS E. SUMMARY PART I I : WEATHERING A. INTRODUCTION BEDROCK GEOLOGY B. C. D. WEATHERING EXPERIMENTS USING A PERFUSION APPARATUS WEATHERING EXPERIMENTS USING ION EXCHANGE RESINS 1 5 21 .30 30 30 40 46 62 73 79 79 80 84 92 E, SUMMARY 115 r- V'. -TABLE OF CONTENTS (CONT'D) SUMMARY AND CONCLUSIONS LITERATURE CITED APPENDIX I : SITE DESCRIPTIONS APPENDIX I I : SELECTED CHEMICAL ANALYSES OF SOIL SAMPLES COLLECTED IN MAJOR PLANT COMMUNITIES - v i i LIST OF TABLES Table Page I SALINE AND ALKALI SOIL CHARACTERISTICS . 8 I I LONG-TERM AVERAGE CLIMATIC 3 2 CONDITIONS AT VERNON I I I SOIL DEVELOPMENT AND PLANT COMMUNITIES 3 8 AROUND SLIPPY SLOUGH IV CHANGES IN THE CHEMICAL CHARACTER OF 4 3 THE SLOUGH WATER DURING 1970 V THE INFLUENCE OF CLIMATE ON THE 4 4 PHYSICAL CHARACTER OF THE SLOUGH DURING 1970 VI CALCULATED OSMOTIC PRESSURE OF LAKE 4 5 WATERS DURING 1970 VII SELECTED CHEMICAL ANALYSES OF SOILS: 4 8 SOLUBLE CATIONS V I I I SELECTED CHEMICAL ANALYSES OF SOILS: 5 0 EXCHANGEABLE CATIONS IX SELECTED CHEMICAL ANALYSES OF SOILS: 5 2 pH, CONDUCTIVITY, ESP, AND CEC X SELECTED CHEMICAL ANALYSES OF SOILS: 54 ORGANIC CARBON, NITROGEN, AND C/N RATIO. XI TOTAL SALT CONTENT OF SOILS 6 0 XII SOIL CLASSIFICATION ACCORDING TO 6 3 SALINITY AND ALKALINITY XIII SELECTED CHEMICAL PROPERTIES OF SOILS 6 6 UNDER MAJOR PLANT COMMUNITIES XIV ELEMENTAL COMPOSITION OF SELECTED 7 2 PLANT SPECIES - V l l . LIST OF TABLES (CONT'D) T a b l e Page XV CHEMICAL COMPOSITION OF BEDROCK SAMPLES 8 3 XVI SIMULATED WEATHERING OF TRACHY- 8 5 ANDESITE IN A PERFUSION APPARATUS XVII SIMULATED WEATHERING OF GRANITE IN A' PERFUSION APPARATUS 86 X V I I I SIMULATED WEATHERING OF QUARTZ MONZONITE IN A PERFUSION APPARATUS 87 XIX SIMULATED WEATHERING OF TRACHY-ANDESITE WITH DISTILLED WATER AND H RESIN 93 XX SIMULATED WEATHERING OF TRACHY-ANDESITE WITH DISTILLED WATER AND OH~RESIN 95 XXI SIMULATED WEATHERING OF TRACHY-ANDESITE WITH DISTILLED WATER 97 XXII SIMULATED WEATHERING OF GRANITE WITH DISTILLED WATER AND H + RESIN 98 XXIII SIMULATED WEATHERING OF GRANITE WITH DISTILLED WATER AND OH~ RESIN 100 XXIV SIMULATED WEATHERING OF GRANITE WITH DISTILLED WATER AND OH RESIN 102 XXV SIMULATED WEATHERING OF QUARTZ MONZONITE WITH DISTILLED WATER AND H + RESIN 103 XXVI SIMULATED WEATHERING OF QUARTZ MONZONITE WITH DISTILLED WATER AND OH " RESIN 105 XXVII SIMULATED WEATHERING OF QUARTZ MONZONITE WITH DISTILLED WATER 107 XXVIII SUMMARY OF CATION REMOVAL FROM TRACHY-ANDESITE 108 - v i i i -LIST OF TABLES (CONT'D) Table Page XXIX SUMMARY OF CATION REMOVAL FROM GRANITE 10 9 XXX SUMMARY OF CATION REMOVAL FROM QUARTZ HO MONZONITE - ix -L I S T OF FIGURES F i g u r e Page I GENERAL LOCATION OF THE SLIPPY 3 SLOUGH STUDY AREA I I PERFUSION APPARATUS USED IN 2 7 WEATHERING STUDIES I I I SCHEMATIC DIAGRAM SHOWING THE DISTRIBUTION OF PLANT COMMUNITIES ALONG TWO TRANSECTS 35 - X ' ACKNOWLEDGEMENTS T h i s t h e s i s has grown o ut of a l o n g a s s o c i a t i o n w i t h the S o i l s Department and t h e F a c u l t y o f A g r i c u l t u r e a t U.B.C. To at t e m p t t o s i n g l e o u t i n d i v i d u a l s f o r acknowledgement i s i m p o s s i b l e ; many s t a f f members and s t u d e n t s have made l a s t i n g c o n t r i b u t i o n s t o my growth and u n d e r s t a n d i n g o f s o i l s . I must t h e r e f o r e e x t e n d a c o l l e c t i v e word o f thanks t o a l l o f t h e s e p e o p l e . I w o u l d , however, l i k e t o thank A n n i e , P a t , B e t h , and B e r n i e . W i t h o u t t h e i r a s s i s t a n c e , i t i s d o u b t f u l i f t h e e x t e n s i v e l a b o r a t o r y work i n v o l v e d i n t h i s s t u d y c o u l d have been c o m p l e t e d . Most o f a l l , I w i s h t o e x p r e s s my g r a t i t u d e t o Les and V a l e r i e f o r t h e s u p p o r t and encouragement they have shown me t h r o u g h o u t t h i s s t u d y . And f i n a l l y , I would l i k e t o thank S l i p p y S l o u g h f o r awakening my awareness t o t h e beauty and t h e harmony o f N a t u r e . THE SOIL - OUR TEACHER The s o i l i s the s t a r t i n g p l a c e f o r a l l h o r i -c u l t u r a l knowledge. I t i s not a medium f o r e x p e r i m e n t - N a t u r e c o n d u c t e d a l l t h e n e c e s s a e x p e r i m e n t s l o n g b e f o r e t h e f i r s t g e n e r a t i o n of s c i e n t i s t s was b o r n - b u t the s o i l i s w e l l w o r t h a l l our s t u d y n o t so much f o r t h e purpose o f i m p r o v i n g i t , b u t r a t h e r w i t h t h e o b j e c t o f f i n d i n g o u t what i t can t e a c h . Everyday o f o u r l i v e s N a t u r e r e v e a l s t h e way t o t h o s e who w i l l t a k e t h e t r o u b l e t o l o o k f o r i t , b u t i n f a r t o o many c a s e s s c i e n c e i s c o n v i n c e d t h a t N a t u r e must be wrong and i n t e r f e r s u n n e c e s s a r i l y . N a t u r e w i l l n e v e r w i l l i n g l y s u b m i t t o be measured by t h e y a r d s t i c k o f s c i e n c e , nor w i l l she a l t e r h e r laws t o s u i t man. The r e s e a r c h w o r k e r s o f today a r e a l l f o l l o w i n g i n each o t h e r ' s t r a c k s . We need a f r e s h g e n e r a t i o n of s c i e n t i s t s w i t h no l i m i t a t i o n s on t h e d i r e c t i o n s o f t h e i r e x p e r i m e n t s e x c e p t t h e o b v i o u s p r o v i s o t h a t t h e y must work w i t h i n t h e bounds s e t by Mother E a r t h . The t r u e i n v e s t i g a t o r must have freedom t o f o l l o w , unhampered by a r t i f i c i a l r e s t r i c t i o n s , t h e l i g h t as i t i s r e v e a l e d t o him. But t o t r a n s g r e s s t h e laws o f N a t u r e , t o a s p i r e t o c o n t r o l N a t u r e , o r t o o v e r s t e p h e r b o u n d a r i e s w h i c h are generous enough t o meet e v e r y need o f man, t o i g n o r e them and t r a m p l e them down, i s m e r e l y t o p e r v e r t human n a t u r e and t o r u n amok. I t i s t i m e t o s t o p t h e i s o l a t i o n o f each p a r t i c u l a r p r o b l e m - t o s t o p , as i t were, a n s w e r i n g t h e q u e s t i o n a f t e r i t has been wrenched from i t s c o n t e x t ; by a l l means l e t t h e e x p e r t i n t h e r e l e v a n t f i e l d b r i n g h i s s p e c i a l knowledge t o b e a r upon the p r o b l e m , b u t l e t him v i e w i t a g a i n s t t h e complete background o f N a t u r e ' s l a w s . - F. C. K i n g "Gardening W i t h Compost" 1944. INTRODUCTION As a r e s u l t o f w e a t h e r i n g p r o c e s s e s , s o l u b l e s a l t s a r e r e l e a s e d from r o c k s and m i n e r a l s i n t h e s o i l . These s a l t s are n o r m a l l y l e a c h e d from t h e s o i l by d r a i n a g e w a t e r s and c a r r i e d away by s t r e a m s . I n s e m i -a r i d a r e a s , however> the l e a c h i n g p r o c e s s i s i n h i b i t e d by t h e s h o r t a g e o f w a t e r . W i t h t h e r a t e o f s a l t removal r e t a r d e d , i t i s n o t s u r p r i s i n g t h a t t h e a c c u m u l a t i o n o f s a l t s i s o f t e n o b s e r v e d . L a c k i n g enough w a t e r t o remove t h e s a l t s c o m p l e t e l y from t h e i r p l a c e o f o r i g i n , l o c a l i z e d d e p r e s s i o n s may become t h e s i t e s o f s i g n i f i c a n t c o n c e n t r a t i o n s o f s a l t s . I f t h e b a s i n i s s u f f i c i e n t l y w a t e r - t i g h t , a s a l i n e pond o r l a k e may d e v e l o p , i t s volume and s a l i n i t y c o n t r o l l e d by w i n t e r snow pack, s p r i n g r u n o f f , and summer e v a p o r a t i o n p a t t e r n s . S o i l f o r m a t i o n i n a r e a s o f s a l t a c c u m u l a t i o n i s s t r o n g l y i n f l u e n c e d by t h e p r e s e n c e o f s a l t . Such s o i l s a r e n o r m a l l y r e f e r r e d t o as s a l i n e o r a l k a l i s o i l s . S a l i n e s o i l s c o n t a i n an e x c e s s o f s o l u b l e s a l t s , p r e s e n t i n s u f f i c i e n t amounts t o i m p a i r t h e i r p r o d u c t i v i t y . A l k a l i s o i l s do n o t n e c e s s a r i l y have an e x c e s s o f s o l u b l e s a l t ; t h e i r p r i m a r y c h a r a c t e r i s t i c i s an u n u s u a l l y h i g h l e v e l o f e x c h a n g e a b l e sodium - 2 -p r e s e n t on the exchange complex. T r a n s i t i o n a l s o i l s , w h i c h have b o t h an e x c e s s o f s o l u b l e s a l t s and a h i g h l e v e l o f exchangeable sodium a r e termed s a l i n e - a l k a l i s o i l s . P l a n t s p e c i e s a s s o c i a t e d w i t h s a l i n e w a t e r b o d i e s and w i t h s a l t - a f f e c t e d s o i l s a r e known as h a l o p h y t e s . U n l i k e most p l a n t s o f n o n - s a l i n e a r e a s , h a l o p h y t e s as a group can t o l e r a t e p e r i o d i c immersion i n s a l t w a t e r and can g e r m i n a t e and grow i n s a l i n e s o i l s . I n d i v i d u a l l y , t h e i r t o l e r a n c e s o f t h e s e c o n d i t i o n s v a r y and zones o f d i f f e r e n t s p e c i e s o r communities are o f t e n o b s e r v e d around t h e p e r i m e t e r s o f s a l i n e w a t e r b o d i e s . Numerous i n v e s t i g a t i o n s have been c o n d u c t e d i n t o t h e causes o f t h e o b s e r v e d z o n a l d i s t r i b u t i o n o f h a l o p h y t e s , b u t most o f t h i s work has been done on c o a s t a l s a l t marshes. Much l e s s a t t e n t i o n has been p a i d t o i n l a n d s a l t marshes o r l a k e s and t h e d i s t r i b u t i o n o f p l a n t s p e c i e s on a d j a c e n t s o i l s . The p r e s e n c e o f s m a l l s a l i n e w a t e r b o d i e s i n the I n t e r i o r o f B r i t i s h C o l u m b i a has l o n g been r e c o g n i z e d . T h i s paper r e p r e s e n t s an a t t e m p t t o g a i n an u n d e r s t a n d i n g o f l o c a l , i n l a n d s a l i n e w a t e r b o d i e s and a s s o c i a t e d s o i l s and p l a n t s . The s o i l s and p l a n t communities were i n v e s t i g a t e d around one such l a k e , S l i p p y S l o u g h , s i t u a t e d n e a r Vernon, B r i t i s h C o l u m b i a ( F i g u r e 1). - 3 -FIGURE I: General location of the Slippy Slough study area. - H -A p r i m a r y o b j e c t i v e o f t h i s s t u d y was t o e x p l o r e the i n t e r a c t i o n s between t h e s o i l s , t he p l a n t s , and the s l o u g h i n an e f f o r t t o u n d e r s t a n d the o b s e r v e d d i s t r i b u t i o n o f p l a n t s around t h e s l o u g h . A n o t h e r o b j e c t i v e o f the s t u d y was t o i n v e s t i g a t e t h e s a l i n e n a t u r e o f the Sl o u g h i t s e l f . The c o m p o s i t i o n o f be d r o c k m a t e r i a l s p r e s e n t i n t h e w a t e r s h e d , the r e l e a s e of w e a t h e r i n g p r o d u c t s from them, and the i n f l u e n c e of r o c k w e a t h e r i n g on s o i l and l a k e s a l i n i t y were a l s o examined. Above a l l , t h e r e was a T h o r e a u v i a n d e s i r e t o spend some time w i t h a s m a l l ecosystem, l e a r n i n g t o u n d e r s t a n d and a p p r e c i a t e t h e harmony w i t h w h i c h i t s components f u n c t i o n e d t o g e t h e r . . - 5 -LITERATURE REVIEW The s o l u b l e s a l t s t h a t o c c u r i n s o i l s c o n s i s t mostly of c h l o r i d e s and s u l f a t e s of sodium, c a l c i u m , and magnesium. Potassium s a l t s and carbonates, b i c a r b o n a t e s , and n i t r a t e s normally occur to a much l e s s e r e x t e n t (Richards, 1 9 5 4 ) . The nature o f the s a l t s p r e s e n t and t h e i r r e l a t i v e abundance a f f e c t s the c h e m i c a l , p h y s i c a l , and m o r p h o l o g i c a l c h a r a c t e r i s t i c s of s o i l s . Among o t h e r t h i n g s , an abundance of s a l t s imparts a r a t h e r h i g h pH and c o n d u c t i v i t y to s o i l s and may a f f e c t t h e i r s t r u c t u r e , p e r m e a b i l i t y and water a v a i l a b i l i t y . S a l t - a f f e c t e d s o i l s have a unique e c o l o g i c a l c h a r a c t e r , f a v o r a b l e f o r the growth of o n l y a r e l a t i v e l y s m a l l number of p l a n t s . Richards ( 1 9 5 4 ) o u t l i n e d a system f o r the c l a s s i f i c a t i o n of s o i l s a c c o r d i n g to the presence and i n f l u e n c e o f s a l t s . S a l i n e s o i l s are d e f i n e d as those which c o n t a i n an excess of s o l u b l e s a l t s , p r e s e n t i n s u f f i c i e n t amounts to impair t h e i r p r o d u c t i v i t y . T h i s excess of s o l u b l e s a l t s i s r e f l e c t e d i n the c o n d u c t i v i t y of the s a t u r a t i o n e x t r a c t which i s u s u a l l y g r e a t e r than 4 mmhos/cm. S o i l s a l i n i z a t i o n i n a r i d o r s e m i - a r i d c l i m a t e s - 6 -i s u s u a l l y the r e s u l t o f the g r a d u a l t r a n s f e r o f s a l t s by w a t e r from u p l a n d a r e a s t o a d e p r e s s i o n a l a r e a . R e s t r i c t e d d r a i n a g e , low r a i n f a l l and h i g h e v a p o r a t i o n c o n t r i b u t e t o the degree o f s a l i n i z a t i o n o b t a i n e d . A l k a l i s o i l s do n o t n e c e s s a r i l y have an e x c e s s o f s o l u b l e s a l t s . T h e i r p r i m a r y c h a r a c t e r i s t i c i s t h e u n u s u a l l y h i g h l e v e l o f exchangeable sodium p r e s e n t on t h e exchange complex. The Exc h a n g e a b l e Sodium P e r c e n t a g e (E.S.P. = Exchangeable Sodium  C a t i o n Exchange C a p a c i t y i s u s u a l l y g r e a t e r than 15%. An e q u i l i b r i u m c o n d i t i o n e x i s t s between c a t i o n s on t h e exchange complex and t h o s e i n t h e s o i l s o l u t i o n . As a r u l e , c a l c i u m and magnesium are the p r i n c i p l e c a t i o n s i n t h e s o i l s o l u t i o n and on t h e exchange complex o f normal s o i l s i n a r i d r e g i o n s . When ex c e s s s o l u b l e s a l t s accumulate i n t h e s o i l , sodium f r e q u e n t l y becomes t h e dominant c a t i o n i n t h e s o i l s o l u t i o n . Through e v a p o r a t i o n , the s a l t s i n t h e s o i l s o l u t i o n a r e c o n c e n t r a t e d . As t h i s happens the s o l u b i l i t y l i m i t s o f c a l c i u m and magnesium s a l t s (CaSO^, CaCO^, and MgCO^) a r e exceeded and t h e s e s a l t s a r e p r e c i p i t a t e d . T h i s p r e c i p i t a t i o n o f c a l c i u m and magnesium g i v e s r i s e t o a c o r r e s p o n d i n g i n c r e a s e i n the r e l a t i v e p r o p o r t i o n o f sodium as a s o l u b l e s a l t i n t h e s o i l s o l u t i o n . T h i s change i n p r o p o r t i o n s e n a b l e s t h e - 7 -sodium ions i n s o l u t i o n to r e p l a c e some of the c a l c i u m and magnesium i o n s on the exchange complex. In g e n e r a l , a t l e a s t 50% of the s o l u b l e c a t i o n s must be sodium i o n s b e f o r e a p p r e c i a b l e amounts o f sodium w i l l be absorbed by the exchange complex. As w i t h any attempt t o d e f i n e n a t u r a l systems i n simple terms i t has been found necessary t o i d e n t i f y a l s o those t r a n s i t i o n a l s o i l s which have c h a r a c t e r i s t i c s common to both s a l i n e and a l k a l i s o i l s . Q u i t e p r e d i c t a b l y , such s o i l s are termed s a l i n e - a l k a l i s o i l s and are c h a r a c t e r i z e d by c o n d u c t i v i t y v a l u e s o f g r e a t e r than 4 mmhos/cm and exchangeable sodium percentages o f g r e a t e r than 15%. And, o f course, t h e r e are those s o i l s not a f f e c t e d by s a l t s - the n o n s a l i n e and n o n a l k a l i s o i l s o r the "normal" s o i l s . Such s o i l s have c o n d u c t i v i t y values of l e s s than 4 mmhos/cm and exchangeable sodium accounts f o r l e s s than 15% o f the c a t i o n exchange c a p a c i t y . pH v a l u e s o f n o n s a l i n e - n o n a l k a l i s o i l s , o f s a l i n e - a l k a l i s o i l s , and o f s a l i n e s o i l s are u s u a l l y l e s s than 8.5. Values g r e a t e r than 8.5 are common o n l y i n the n o n s a l i n e - a l k a l i s o i l s , i n which pH values as hig h as 10.0 may be encountered. T h i s system o f s o i l c l a s s i f i c a t i o n i s summarized below i n Table I. - 8 -TABLE I SALINE AND ALKALI SOIL CHARACTERISTICS S o i l C l a s s i f i c a t i o n C o n d u c t i v i t y Exchangeable Sodium pH (mmhos/cm) Percentage S a l i n e >4 <15% < 8.5 S a l i n e - A l k a l i >4 >15% <8.5 N o n s a l i n e - A l k a l i <4 >15% 8.5-10 N o n s a l i n e - N o n a l k a l i <4 <15% <8.5 The f o r m a t i o n of the s a l t - a f f e c t e d s o i l s d i s c u s s e d above i s commonly a t t r i b u t e d t o the p r o c e s s e s of s a l i n i z a t i o n and a l k a l i z a t i o n . I t would be m i s l e a d i n g , however, to imply t h a t e i t h e r process o p e r a t e d s i n g l y i n s o i l f o r m a t i o n . As Simonson (1959) p o i n t e d out, s o i l s are formed as a r e s u l t of the combined e f f e c t s of f o u r processes - a d d i t i o n s , removals, t r a n s f e r s , and t r a n s f o r m a t i o n s ; a l l f o u r p r o c e s s e s are a c t i v e i n the formation of a l l s o i l s . D i f f e r e n c e s between s o i l s are t h e r e f o r e not the r e s u l t of d i f f e r e n t s o i l - f o r m i n g p r ocesses, but r a t h e r are due to d i f f e r e n c e s i n the degree or i n t e n s i t y w i t h which each of the above f o u r processes are a c t i v e . So i t i s with s a l i n i z a t i o n and a l k a l i z a t i o n . As mentioned e a r l i e r , s a l i n i z a t i o n i m p l i e s the - 9 -a c c u m u l a t i o n o f s o l u b l e s a l t s i n s o i l s whereas a l k a l i z a t i o n i m p l i e s t h e c o n c e n t r a t i o n o f t h e s e s a l t s i n t he s o i l s o l u t i o n such t h a t c a l c i u m and magnesium s a l t s a r e p r e c i p i t a t e d and sodium becomes the dominant exchangeable c a t i o n ( R i c h a r d s , 1954). Both p r o c e s s e s i n v o l v e t h e g r a d u a l t r a n s f o r m a t i o n , r e m o v a l , and t r a n s f e r o f s a l t s from s o i l s o f one a r e a and t h e a d d i t i o n and t r a n s f o r m a t i o n o f t h e s e s a l t s t o s o i l s downslope. The a l k a l i z a t i o n p r o c e s s cannot o p e r a t e i n s o i l s w i t h o u t some degree o f s a l i n i z a t i o n h a v i n g f i r s t o c c u r e d . And y e t as soon as t h e f i r s t p r o c e s s has begun, the second can a l s o b e g i n . The two p r o c e s s e s a r e i n t e r d e p e n d e n t , b o t h o c c u r i n g t o some e x t e n t a l l t h e t i m e . Many w r i t e r s have s a i d i n many ways t h a t s o i l s a r e p r o d u c t s o f c l i m a t i c and o r g a n i c f o r c e s , m o d i f i e d by t o p o g r a p h y , and a c t i n g on g e o l o g i c m a t e r i a l s o v e r a p e r i o d o f t i m e . T h i s c o n c e p t was i n i t i a t e d by Dokuchaiev and by H i l g a r d and i m m o r t a l i z e d by Jenny (1941) i n a f u n c t i o n a l e x p r e s s i o n r e l a t i n g t h e v a r i a b l e s i n w e a t h e r i n g and s o i l f o r m a t i o n a s : P l a n t e c o l o g i s t s soon r e a l i z e d t h a t the d i s t r i b u t i o n o f p l a n t s , l i k e s o i l s , r e f l e c t e d t h e same f o r m a t i v e S o i l s - j ( c l i m a t e , t o p o g r a p h y , o r g a n i s m s , p a r e n t m a t e r i a l , and t i m e ) . o r , more commonly as: - 10 -influences, and the equation became: Soils f and = j (c, r, o, p, t) Plants ' Most of the work on the distr ibut ion of halophytes has been done on coastal sal t marshes. As noted by Adams (1963), "the occurrence of sal t marsh and of the various smaller communities within the marsh has been explained primarily on the basis of inundation, s a l i n i t y , or a complex of several factors of which sa l in i ty and inundation are the most important. Various workers disagree on the relat ive importance of different environmental factors, since few studies of salt-marsh communities have been intensive enough to y ie ld s igni f icant s t a t i s t i c a l data." Chapman (1940) studied the vegetation of sa l t marshes on the New England coast and concluded that inundation was the most important factor determining the distr ibut ion of plant communities within the marsh. This tends to support ear l ier work by Johnson and York (1915) who fe l t that the distr ibut ion of sal t marsh communities was related to periods of t ida l inundations according to submergence - to - emergence rat ios . Other workers, (Reed, 1947; Bourdeau and Adams, 1956) found correlations between s o i l sa l in i ty and plant d istr ibut ion. Reed (1947) fe l t that salt marsh communities were limited along their lower periphery - 11 -by i n u n d a t i o n , s a l i n i t y , and poor drainage, and along t h e i r upper p e r i p h e r y by c o m p e t i t i o n w i t h o t h e r angiosperms. Dodd e t a l (1964) and Dodd and Copeland (1966) have i n v e s t i g a t e d s o i l s and p l a n t s i n s a l i n e areas o f the g r a s s l a n d zone of southern Saskatchewan. Although these areas o c c u p i e d d e p r e s s i o n s t h e r e was a p p a r e n t l y s u f f i c i e n t drainage t o prevent the form a t i o n of a lak e o r pond. S o i l s o f these areas were c l a s s i f i e d i n t o f i v e subgroups, u s u a l l y a s s o c i a t e d i n a ca t e n a r y sequence. S a l i n e Gleyed Regosols o c c u p i e d the c e n t e r of the d e p r e s s i o n s , f o l l o w e d s u c c e s s i v e l y by S a l i n e G l e y s o l s and S a l i n e Meadow s o i l s ; S a l i n e C a l c a r e o u s Chernozems were normally found a t the upper p e r i m e t e r s o f d e p r e s s i o n s w i t h S a l i n e Rego Chernozems o c c u p y i n g a t r a n s i t i o n a l p o s i t i o n between s o i l s of the d e p r e s s i o n s and those of the uplands. They a l s o observed t h a t the S a l i n e Gleyed Regosols a t the c e n t e r o f the d e p r e s s i o n d i d not support any p e r e n n i a l s , were o f t e n unvegetated o r e l s e supported samphire, a shallow r o o t e d annual. P r a i r i e b u l r u s h was u s u a l l y the o n l y p l a n t occupying s o i l s of the S a l i n e G l e y s o l subgroup. The S a l i n e Meadow s o i l s supported a g r e a t e r v a r i e t y of s p e c i e s ; a zonal d i s t r i b u t i o n of p l a n t s was ap p a r e n t l y observed i n these s o i l s , however. The major dominants of the S a l i n e Meadow s o i l s i n s u c c e s s i o n - 12 -from the c e n t e r of the d e p r e s s i o n were arrow-grass, N u t t a l l a l k a l i g r a s s , d e s e r t s a l t g r a s s , wheatgrass, and f o x t a i l b a r l e y . The dominant p l a n t s of the S a l i n e Calcareous Chernozems were greasewood, wheatgrass, and mat muhly, w h i l e the l a t t e r two shared dominance i n the S a l i n e Rego Chernozem s o i l s . The authors f e l t t h a t the observed d i s t r i b u t i o n of p l a n t s p e c i e s c o u l d be e x p l a i n e d i n p a r t by v a r i a t i o n s i n t o l e r a n c e t o f l o o d i n g and t o s o i l s a l i n i t y . In a study of s o i l - p l a n t r e l a t i o n s h i p s on s a l i n e s o i l s i n Kansas, Ungar (1967) found t h a t the d i s t r i b u t i o n of p l a n t s p e c i e s around s a l i n e marshes was l a r g e l y dependent upon s p e c i e s t o l e r a n c e t o s o i l s a l i n i t y . He a l s o concluded t h a t although halophytes were able to w i t h s t a n d h i g h s a l i n i t i e s they d i d not need a h i g h l y s a l i n e environment. I t was found t h a t the most s a l t - t o l e r a n t s p e c i e s made b e t t e r growth i n areas of lower s a l i n i t y than i n the h i g h l y s a l i n e areas where they were the p i o n e e r s p e c i e s . T h i s lends support to the h y p o t h e s i s suggested e a r l i e r (Reed, 1947) t h a t s a l t marsh communities were l i m i t e d along t h e i r upper p e r i p h e r y by c o m p e t i t i o n w i t h o t h e r angiosperms. Ungar (1967) a l s o p o i n t s out t h a t i n s a l i n e areas, the p r a i r i e s p e c i e s are e l i m i n a t e d due t o t h e i r i n a b i l i t y to a d j u s t t o the high osmotic p r e s s u r e i n the s o i l s o l u t i o n of most of the marsh communities. - 13 -The z o n a t i o n of p l a n t communities around s a l i n e water bodies i s abundantly c l e a r ; the causes of z o n a t i o n are not. Warming (1909), an e a r l y p l a n t geographer, suggested t h a t the f a c t o r s which determine the d i s t r i b u t i o n of p l a n t communities never work s i n g l y but work i n complex combination and i t i s by no means c l e a r i n a l l cases what must be a s c r i b e d t o one f a c t o r and what to another. Clements (1907) s t u d i e d p l a n t d i s t r i b u t i o n and f e l t t h a t z o n a t i o n of p l a n t communities was caused by both b i o l o g i c a l and p h y s i c a l f a c t o r s . B i o l o g i c a l f a c t o r s i n v o l v e d such t h i n g s as the growth h a b i t s of p l a n t s (e.g. mushroom f a i r y r i n g s ) whereas p h y s i c a l f a c t o r s i n c l u d e d d i f f e r e n c e s i n water, temperature, and l i g h t . He f e l t t h a t the change i n a d e c i s i v e f a c t o r took p l a c e i n a l l d i r e c t i o n s from the a r e a of g r e a t e s t i n t e n s i t y , making the h a b i t a t more or l e s s symmetrical w i t h r e s p e c t to the f a c t o r concerned. Symmetry may be b i l a t e r a l (as i n the case of v e g e t a t i o n along streambanks) or r a d i a l (as the v e g e t a t i o n d i s t r i b u t i o n around l a k e s ) . Clements d e f i n e d the l i n e which connected the p o i n t s of change i n a symmetrical area as a s t r e s s l i n e , or "ecotone". Walter (1961) suggested t h a t halophytes growing on s a l i n e s o i l s can develop h i g h osmotic p r e s s u r e s i n t h e i r t i s s u e s . A p p a r e n t l y , these p l a n t s can - 14 -t o l e r a t e h i g h c o n c e n t r a t i o n s o f i o n s , i n c l u d i n g sodium and c h l o r i d e , i n t h e i r t i s s u e s . S i m i l a r c o n c e n t r a t i o n s of sodium i n n o n - h a l o p h y t i c p l a n t s are normally t o x i c . Ungar (1967) s t u d i e d the g e r m i n a t i o n of seeds of s e v e r a l s a l t - t o l e r a n t s p e c i e s under v a r i e d l e v e l s of s a l i n i t y . He found a d i r e c t r e l a t i o n s h i p between a s p e c i e s ' a b i l i t y t o germinate under s a l i n e c o n d i t i o n s and i t s d i s t r i b u t i o n i n s a l i n e s o i l s . Furthermore, he found t h a t seeds which would not germinate i n s a l i n e s o l u t i o n s (0.5 to 5.0% NaCl) would germinate i f t r a n s f e r r e d to d i s t i l l e d water. From t h i s he concluded t h a t the c h i e f e f f e c t of s a l i n i t y was an osmotic one and not an i o n t o x i c i t y . In o r d e r to m a i n t a i n t u r g o r , the c o n c e n t r a t i o n of o s m o t i c a l l y a c t i v e substances of any p r o t o p l a s t must exceed t h a t of i t s water supply (Daubenmire, 1967). Should the c o n c e n t r a t i o n of s a l t s i n the s o i l s o l u t i o n be g r e a t e r than t h a t i n the c e l l sap, water w i l l not be absorbed by the p l a n t s , but w i l l i n s t e a d flow outwards toward the e x t e r n a l s o l u t i o n . T h i s w i l l cause w i l t i n g , l o s s of t u r g o r , and u l t i m a t e l y death of the p l a n t . I t i s because s a l t s so o b v i o u s l y i n t e r f e r e w i t h the a b s o r p t i o n of water by non-halophytes t h a t s a l i n e s o i l s have long been c o n s i d e r e d " p h y s i o l o g i c a l l y dry", even though p h y s i c a l l y wet, f o r these p l a n t s (Daubenmire, 1967). - IS -Daubenmire (1967) went on to point out that the concept of p h y s i o l o g i c a l drought does not apply however to halophytes. "Halophytes experience no d i f f i c u l t y i n absorbing water from highly concentrated s o l u t i o n s , as i s demonstrated by t h e i r high t r a n s p i r a t i o n rates and by g u t t a t i o n , which may be evidenced i n many spec ies . The importance of t h i s osmotic aspect of t h e i r n a t u r a l environment and t h e i r c lose adjustment to i t i s i n d i c a t e d by the f a c t that the osmotic pressure of halophytes var ies d i r e c t l y with the s a l i n i t y of t h e i r water supply over a wide range of concentra t ions . " Halophytes can therefore be d i s t i n g u i s h e d from,other plants not only by t h e i r a b i l i t y to endure high concentrations of c e r t a i n ions i n t h e i r water supply , but a lso to absorb water with ease under these condit ions (Daubenmire, 1967). In the Introduct ion i t was mentioned b r i e f l y that as a r e s u l t of weathering processes , so luble s a l t s are released from rocks and minerals i n the s o i l and that i n s e m i - a r i d areas these s a l t s may accumulate i n l o c a l i z e d depressions . An awareness of weathering and an understanding of the fac tors a f f e c t i n g the release of soluble s a l t s from s o i l s and rocks i s important to an understanding of the formation of s a l i n e water bodies and s a l t - a f f e c t e d s o i l s . - 16 -Reiche (1950) d e s c r i b e d weathering as "the . response of m a t e r i a l s which were i n e q u i l i b r i u m w i t h i n the l i t h o s p h e r e t o c o n d i t i o n s at or near i t s c o n t a c t with the atmosphere; the hydrosphere, and perhaps s t i l l more i m p o r t a n t l y , the b i o s p h e r e . I t s g e n e r a l nature i s w e l l i n d i c a t e d by Polynov as "the change of ro c k s from the massive t o the. c l a s t i c s t a t e . " Buckman and Brady (19 66) r e g a r d weathering as "a combination of d e s t r u c t i o n and s y n t h e s i s . Rocks . . . are f i r s t broken down i n t o s m a l l e r rocks and e v e n t u a l l y i n t o the i n d i v i d u a l m i n e r a l s of which they are composed. Sim u l a n t e o u s l y , rock fragments and the m i n e r a l s t h e r e i n are a t t a c k e d by weathering f o r c e s and are changed t o new m i n e r a l s by minor m o d i f i c a t i o n s ( a l t e r a t i o n s ) o r by complete chemical changes. These changes are accompanied by a co n t i n u e d decrease i n p a r t i c l e s i z e and by the r e l e a s e o f s o l u b l e c o n s t i t u t e n t s , most of which are s u b j e c t to l o s s i n drainage waters." The many d i f f e r e n t weathering processes which may a c t upon rocks and m i n e r a l s are commonly grouped a c c o r d i n g to whether the proc e s s e s cause p h y s i c a l or chemical changes. Under most c i r c u m s t a n c e s , the magnitude of change caused by chemical weathering processes i s f a r g r e a t e r than t h a t r e s u l t i n g from the p h y s i c a l f o r c e s mentioned e a r l i e r . P h y s i c a l f o r c e s , - 17 -w h i c h cause d i s i n t e g r a t i o n and a d e c r e a s e i n p a r t i c l e s i z e w i t h o u t change i n c h e m i c a l c o m p o s i t i o n , i n c l u d e ( R e i c h e ; Buckman and B r a d y ) : e x p a n s i o n , consequent on u n l o a d i n g ; d i f f e r e n t i a l t h e r m a l e x p a n s i o n and c o n t r a c t i o n ; c r y s t a l g r o w t h , i n c l u d i n g t h e growth o f s a l t and i c e c r y s t a l s and f r o s t h e a v i n g ; c o l l o i d p l u c k i n g , accompanying a l t e r n a t e - w e t t i n g and d r y i n g ; growth and movement o f p l a n t s and a n i m a l s ; and e r o s i o n and d e p o s i t i o n by agents such as w a t e r , i c e , w i n d , and g r a v i t y . C h e m i c a l w e a t h e r i n g i s a s u r f a c e phenomenum, o c c u r r i n g o n l y a t t h e i n t e r f a c e s between d i f f e r e n t m a t e r i a l s . As r o c k m a t e r i a l s a r e br o k e n down i n t o s m a l l e r and s m a l l e r fragments under t h e combined i n f l u e n c e s o f p h y s i c a l and c h e m i c a l f o r c e s , t h e s u r f a c e a r e a exposed i n c r e a s e s . The i n t e n s i t y o f w e a t h e r i n g , t h e r e l e a s e o f s o l u b l e s a l t s and the a l t e r a t i o n o f m i n e r a l s a l l i n c r e a s e w i t h the s u r f a c e a r e a . The r a t e o f w e a t h e r i n g w i l l c o n t i n u e t o i n c r e a s e u n t i l t h e r o c k o r m i n e r a l has d i s a p p e a r e d e n t i r e l y o r u n t i l o n l y r e s i s t a n t m i n e r a l s remain. I f the environment around the r o c k s t a g n a t e s i n some way and the r e l e a s e d w e a t h e r i n g p r o d u c t s a r e removed o n l y s l o w l y o r n o t a t a l l , t hen c h e m i c a l w e a t h e r i n g may s l o w down o r s t o p a l t o g e t h e r . I n c l u d e d as t h e major c h e m i c a l w e a t h e r i n g p r o c e s s e s a r e : s o l u t i o n , and c o l l o i d f o r m a t i o n ; h y d r o l y s i s ; h y d r a t i o n ; o x i d a t i o n ; - 18 -r e d u c t i o n ; and i o n exchange. P r e s c o t t (1949) r e c o g n i z e d a l e a c h i n g f a c t o r to r e l a t e weathering to the c l i m a t i c c o n d i t i o n s and v e g e t a t i o n of any area. The amount of water a v a i l a b l e f o r weathering, i . e . , the amount of water a v a i l a b l e f o r l e a c h i n g or the removal of the end-products of weathering, i s determined by the amount of p r e c i p i t a t i o n r e c e i v e d and the amount of water l o s t through e v a p o r a t i o n and t r a n s p i r a t i o n . P r e s c o t t d e r i v e d a s i n g l e - v a l u e c l i m a t i c index w i t h which t o determine and compare the amount of water a v a i l a b l e f o r l e a c h i n g under d i f f e r e n t c l i m a t i c regimes. T h i s index was expressed as P/E m, where P i s p r e c i p i t a t i o n , E i s e v a p o r a t i o n , and "m" i s a c o n s t a n t w i t h a mean v a l u e of 0.73. A va l u e f o r the c l i m a t i c index of from 1.1 to 1.5 corresponded t o a p o i n t where p r e c i p i t a t i o n was balanced by e v a p o t r a n s p i r a t i o n . A h i g h e r index would i n d i c a t e an excess of p r e c i p i t a t i o n and the a v a i l a b i l i t y o f water f o r c o n t i n u e d chemical l e a c h i n g . Jenny (19 41) gave the v a r i a b l e s i n weathering (and s o i l formation) as c l i m a t e , parent rock, b i o l o g i c a l a c t i v i t y , topography, and time. A t any p a r t i c u l a r p o i n t i n time at a g i v e n l o c a l e , weathering processes and products and r e s u l t a n t s o i l p r o p e r t i e s are r e l a t e d to c l i m a t i c v a r i a b l e s by the co n s t a n t s "o, r , p, and t " ( C a r r o l , 1970). T h i s constancy i s known as the "steady s t a t e . " Jenny (1941) - 19 -suggested that two of the major c l i m a t i c factors influencing the nature of s o i l properties were temperature and moisture. S o i l property - moisture functions were given as: S = f ( m ) T , o, r, p, t and s o i l property - Temperature functions were given as: m, o, r, P/ t. Carroll(1970) indicated that a decrease i n calcium with an increase i n r a i n f a l l , an increase i n s o i l nitrogen and organic matter with r a i n f a l l , and an increase of clay content i n s o i l with increased mean annual temperatures, were common manifestations of these s o i l - c l i m a t e functions. Car r o l l (1970) indicated that once a steady-state or equilibrium condition of s o i l - c l i m a t e had been obtained, the various cations and anions i n the system would be d i s t r i b u t e d i n an orderly manner between the s o i l s o l u t i o n (the r e s u l t of r a i n f a l l ) and the mineral p a r t i c l e s (the weathering rock). The r e s u l t s of remaining i n thi s environment are expressed as s o i l v a r i a t i o n s on a large scale i n climates, and on a small scale as topographic and drainage variations due to microclimates. A microclimate i s the climate near the ground, a v a r i a t i o n of the major climate of a region, - 20 -and the n a t u r a l environment o f p l a n t s and a n i m a l s . Determined by the c o n f i g u r a t i o n o f the l a n d s c a p e , m i c r o c l i m a t e s are c h a r a c t e r i z e d by d i s t i n c t i v e communities o f p l a n t s w h i c h f i n d t h a t e n v ironment f a v o u r a b l e t o them. A l t h o u g h the m a c r o c l i m a t e d e t e r m i n e s the main c h a r a c t e r o f w e a t h e r i n g i n a r e g i o n , i t i s the m i c r o c l i m a t e w h i c h i n f l u e n c e s the p a t t e r n o f s o i l s and p l a n t s and w h i c h e x p r e s s e s t h e w e a t h e r i n g t a k i n g p l a c e i n a s m a l l a r e a ( C a r r o l l , 1 9 7 0 ) . - 21 -METHODS AND MATERIALS Climate An understanding of c l i m a t i c f a c t o r s should form an i n t e g r a l p a r t of a l l i n t e r p r e t a t i o n s of ecosystems. I t must always be borne i n mind however, t h a t any ecosystem r e p r e s e n t s the i n t e g r a t e d e x p r e s s i o n o f the combined e f f e c t s of many years and c y c l e s of c l i m a t i c i n f l u e n c e s . In t h i s study, i t was f e l t t h a t the c o l l e c t i o n of m i s c e l l a n e o u s weather d a t a over as s h o r t an i n t e r v a l as a few months would be more m i s l e a d i n g than b e n e f i c i a l . L i m i t a t i o n o f time, m a t e r i a l s , and manpower strengthened t h i s d e c i s i o n . C l i m a t i c r e c o r d s f o r the nearby c i t y of Vernon (Canada Department of T r a n s p o r t , 1967) were u t i l i z e d as the main d a t a source f o r t h i s aspect of the study. Some measure of c o r r e l a t i o n was o b t a i n e d through three r a i n gauges s e t out i n the v a l l e y on March 24, 1970, one a d j a c e n t to the l a k e and one on each o f the upper e a s t e r n and western s l o p e s . Accumulated r a i n f a l l was measured on each subsequent t r i p t o the slough, on June 29, August 15, and September 19. A more p e r s o n a l concept of the l o c a l c l i m a t e - 22 -was o b t a i n e d while h i k i n g i n knee-deep snow i n March and d i g g i n g o b s e r v a t i o n p i t s i n 90 - 100° weather d u r i n g J u l y . The r a p i d l y s h r i n k i n g l a k e t e s t i f i e d to the e v a p o r a t i v e powers of the mid-summer atmosphere. Lake Grab samples of lake water were c o l l e c t e d on each t r i p t o the study area d u r i n g the 1970 study p e r i o d (March 21, May 7, June 6, June 29, August 15, and September 19). These samples were r e t u r n e d to the l a b o r a t o r y f o r a n a l y s i s . C o n d u c t i v i t y and pH o f each sample were determined, u s u a l l y w i t h i n one day + + 4-2. of sampling. The c o n c e n t r a t i o n s o f Na , K , Ca , *Z +3 + 3 Mg , Fe , and A l , i n the l a k e water were determined by atomic a b s o r p t i o n spectrophotometry. The m i n e r a l o g i c a l composition of some samples o f s a l t s c o l l e c t e d from the la k e s h o r e were determined by X-ray d i f f r a c t i o n a n a l y s i s . On one t r i p i n the e a r l y s p r i n g , on March 28, 1970, the deepest p o r t i o n o f the l a k e was t r a v e r s e d by r a f t t o o b t a i n an es t i m a t e of maximum depth. Lake l e v e l s were reco r d e d on subsequent v i s i t s t h e r e a f t e r , i . e . on June 29, August 15, and September 19. S h o r e l i n e p o s i t i o n s were marked at the same time, p r o v i d i n g a crude method f o r e s t i m a t i n g water l o s t through e v a p o r a t i o n . - 23 -Vegetation Major plant species and communities were observed and t h e i r d i s t r i b u t i o n with respect to the lake recorded. Two transects were established, one traversing the basin from south to north and the other from west to east. Each major change i n species composition of communities encountered along the transects was recorded. Modal s i t e s were selected at each plant community i n order that s o i l and topographic conditions could be investigated. Samples of the above-ground portion of grasses and tree leaves or needles from the lower branches were co l l e c t e d i n July, 1970, dried, and ground i n a Wiley M i l l . Ground samples were ashed, taken up i n concentrated acid, and cation content determined by atomic absorption spectrophotometry. S o i l s Sites were selected which appeared to represent the modal s o i l conditions of each plant community. S o i l p i t s were dug at each s i t e and to varying depth, the depth being determined by shallowness to bedrock, high water table, or to the depth of the control section (100 cm). As each horizon was i d e n t i f i e d , i t s average thickness was recorded and gross morphological « - 24 -f e a t u r e s were observed. Each s o i l was c l a s s i f i e d a c c o r d i n g t o the System of S o i l C l a s s i f i c a t i o n f o r Canada (Canada Department of A g r i c u l t u r e , 1970). Samples o f each h o r i z o n were c o l l e c t e d f o r a n a l y s i s of chemical and p h y s i c a l p r o p e r t i e s i n the l a b o r a t o r y . P r i o r t o a n a l y s i s , the samples were a i r - d r i e d and crushed t o pass a 2 mm s i e v e . G r a v e l and stone contents o f the samples were recorded; these f r a c t i o n s were removed p r i o r t o c r u s h i n g . D r i e d and crushed samples were s u b j e c t e d t o a mu l t i t u d e o f chemical and p h y s i c a l a n a l y s e s . For the most p a r t a n a l y s e s were conducted f o l l o w i n g methods i n common use i n the Pedology L a b o r a t o r y o f the S o i l S c i ence Department a t the U n i v e r s i t y of B r i t i s h Columbia ( L a v k u l i c h , 1974). However, because o f the un u s u a l l y h i g h s a l t c ontent of a number of the samples, i t was o f t e n necessary t o modify the standard methods. Any such m o d i f i c a t i o n s were u s u a l l y based on i n f o r m a t i o n p r e s e n t e d i n the U.S.D.A. Handbook No. 60: Di a g n o s i s and Improvement of S a l i n e and A l k a l i S o i l s (Richards, 1954). A l i s t of the analyses conducted i n c l u d e s the f o l l o w i n g : pH Calcium carbonate e q u i v a l e n t C o n d u c t i v i t y % Carbonate Carbon C a t i o n exchange c a p a c i t y % Organic Carbon - 25 -Exchangable c a t i o n s % N i t r o g e n Exchange a c i d i t y S a t u r a t i o n percentage S o l u b l e c a t i o n s P a r t i c l e s i z e d i s t r i b u t i o n Geology F i e l d i n v e s t i g a t i o n s i n v o l v e d v i s u a l o b s e r v a t i o n of s u r f i c i a l d e p o s i t s and of rock o u t c r o p s . F r e s h bedrock samples were c o l l e c t e d from s e v e r a l of the outcrops encountered. T h i n s e c t i o n s o f each sample were prepared w i t h the a s s i s t a n c e of s e v e r a l students and s t a f f o f the Geology Department a t the U n i v e r s i t y of B r i t i s h Columbia. These t h i n s e c t i o n s were used to determine the m i n e r o l o g i c a l c omposition of the samples and to c l a s s i f y the r o c k s . Other samples o f each rock were crushed to pass a 100-mesh s i e v e . T o t a l e lemental analyses of these samples were conducted a c c o r d i n g t o the method i n standar d use i n the Pedology L a b o r a t o r y a t the U n i v e r s i t y of B r i t i s h Columbia. Because chemical weathering i s a s u r f a c e phenomenum, i t was necessary t o attempt to s t a n d a r d i z e the s u r f a c e areas of a l l samples d u r i n g s i m u l a t e d weathering experiments. A c c o r d i n g l y , rock samples were ground t o uniform s i z e and the p a r t i c l e d e n s i t y of each sample determined i n kerosene. A weight of each sample was then measured out which corresponded to a standar d volume of sample f o r experiment. - 26 -Bedrock samples which had been crushed to pass a 100-mesh s i e v e , but not a 140-mesh s i e v e , were used i n a s e r i e s of p e r f u s i o n experiments. A weight of sample e q u i v a l e n t to a volume of 20 cc was taken. T h i s was combined with an equal volume of a c i d - washed f i l t e r p u lp; and a number of g l a s s beads, 1/8 i n c h i n diameter were added to ensure c o n t i n u e d p e r m e a b i l i t y . The r e s u l t i n g mixtures were p l a c e d i n the p e r f u s i o n columns shown i n F i g u r e I I . These u n i t s were p a t t e r n e d a f t e r a p e r f u s i o n system developed by Kaufman (1966). Four hundred and f i f t y ml of d i s t i l l e d water were added to each f l a s k and the a i r i n l e t of each f l a s k was connected to an a i r supply. A f o u r t h apparatus c o n t a i n i n g o n l y 20 cc of f i l t e r pulp was s e t up as a c o n t r o l . A i r was admitted to the f l a s k s c o n t i n u o u s l y f o r a f i v e - week p e r i o d . At weekly i n t e r v a l s , a 50 ml a l i q u o t was withdrawn from each sample and r e p l a c e d w i t h 50 ml of d i s t i l l e d water. C o n d u c t i v i t y , pH, and the c o n c e n t r a t i o n of Na, K, Ca, Mg, Fe, A l , and S i were determined f o r each o f the 50 ml a l i q u o t s withdrawn. Other bedrock samples were crushed to pass a 140-mesh s i e v e . T h i s m a t e r i a l was w e t - s i e v e d and t h a t p o r t i o n which remained on a 200-mesh s i e v e was used f o r experiment. A f t e r d e t e r m i n i n g p a r t i c l e d e n s i t y , a weight of each sample e q u i v a l e n t t o 25 cc I I : Perfusion apparatus used i n weathering studies. - 28 r was weighed i n t o acid-washed, 250 ml p l a s t i c b o t t l e s , each c o n t a i n i n g 100 ml d i s t i l l e d w a t e r . E q u a l volumes o f each r o c k sample were weighed i n t o 3 s e p a r a t e b o t t l e s ; 7.52 gm o f a b a s i c r e s i n (Rexyn 201) was added t o one b o t t l e , 4.35 gm o f a c i d i c r e s i n (Rexyn 101) was added t o the second. No r e s i n was added t o t h e t h i r d sample. The b o t t l e s were s t o p p e r e d t i g h t l y , p l a c e d on a r e c i p r o c a l s h a k e r , and a g i t a t e d a t moderate speed f o r 7-day i n t e r v a l s . A t t h e end o f each w e e k l y p e r i o d , t h e sample b o t t l e s were removed from t h e s h a k e r and t h e pH and c o n d u c t i v i t y o f each s o l u t i o n d e t e r m i n e d . Each m i x t u r e was the n t r a n s f e r r e d t o porous g l a s s f i l t e r f u n n e l s . S u c t i o n was a p p l i e d t o e x t r a c t t h e s o l u t i o n . The r e s i d u e on t h e f i l t e r ( i . e . t h e r e s i n / r o c k m i x t u r e o r r e s i n a l o n e ) was t h e n r i n s e d w i t h t h r e e s u c c e s s i v e 10 ml volumes o f d i s t i l l e d w a t e r . The r e s u l t i n g s o l u t i o n was t r a n s f e r r e d t o a 150 ml v o l u m e t r i c f l a s k , made t o volume w i t h d i s t i l l e d w a t e r , and s e t a s i d e f o r a n a l y s i s . The r e s i n / r o c k m i x t u r e s were s e p a r a t e d by wet s i e v i n g and the r o c k r e t u r n e d t o the o r i g i n a l sample b o t t l e s . The r e s i n f r a c t i o n was r e t u r n e d t o the g l a s s f i l t e r and r e c h a r g e d t h r o u g h the a d d i t i o n , and subsequent removal by s u c t i o n o f 75 ml o f 0.1 N HCl o r 0.1 N NaOH. The r e s i n was the n r i n s e d w i t h t h r e e s u c c e s s i v e - 29 -50 ml volumes of d i s t i l l e d water. The leachate was transferred to a 250 ml volumetric f l a s k , made to volume with d i s t i l l e d water, and set aside f o r analysis. The concentrations of Na, K, Ca, Mg, Fe, A l , and S i i n each solution was determined. The recharged resins were returned to the o r i g i n a l sample bottles and s u f f i c i e n t d i s t i l l e d water added to make the volume to 100 ml of d i s t i l l e d water. The bottle s were stoppered and returned to the shaker for another 7-day period. - 30 -RESULTS AND DISCUSSION P a r t I - S o i l - P l a n t R e l a t i o n s h i p s Around S l i p p y Slough A. General D e s c r i p t i o n Of The Study Area 1. Physiography and H i s t o r y S l i p p y Slough i s l o c a t e d i n the Commonage, approximately ten m i l e s southwest of Vernon i n the I n t e r i o r of B r i t i s h Columbia ( F i g u r e I ) . The Slough o c c u p i e s a t r o u g h - l i k e d e p r e s s i o n at about 830 metres e l e v a t i o n above sea l e v e l i n the r i d g e s e p a r a t i n g Okanagan and Kalamalka l a k e s . To the west, f o r e s t e d h i l l s r i s e about 170 metres above the l a k e . Grasslands r o l l away to the e a s t , y i e l d i n g to f o r e s t on the h i l l s t o the s o u t h e a s t . In the 1800's and b e f o r e , S l i p p y Slough was a base camp f o r I n d i a n h u n t i n g p a r t i e s . W i l d l i f e was then more p l e n t i f u l , the g r a s s was t a l l , and the l a k e , being deeper, was probably more p o t a b l e . A d i t c h dug through the n o r t h "berm" o f the lake r e p r e s e n t s an attempt made d u r i n g the e a r l y 1900's to lower the lak e l e v e l . High waters made the wagon road a t the end of the l a k e impossable. Although the lake l e v e l s t i l l f l u c t u a t e s - 31 -markedly, the normal depth i s some 6 to 8 f e e t l e s s than i t was i n those e a r l y times (Thompson, 1970) . 2. C l i m a t e K r a j i n a (1969) has d e s c r i b e d the study area as b e l o n g i n g to the Ponderosa P i n e -Bunch grass Zone of the Semiarid C o l d Steppe B i o g e o c l i m a t i c Formation. C l i m a t e of t h i s zone i s d e f i n e d ( a f t e r Koppen) as s e m i a r i d , c o o l , dry steppe (BSk). Long-term average c l i m a t i c c o n d i t i o n s f o r the nearby c i t y o f Vernon (Canada Department of T r a n s p o r t , 1967) are p r e s e n t e d i n T a b l e I I . 3. Geology Jones (1959), d e s c r i b e d the a r e a as having been completely covered by the C o r d i l l e r a n i c e - s h e e t of P l e i s t o c e n e times. The v a l l e y now occupied by the slough was p r o b a b l y the s i t e of a s m a l l , stagnant v a l l e y g l a c i e r , as were the l a r g e r Okanagan and Kalamalka v a l l e y s . V a r y i n g depths of g l a c i a l t i l l c over the J u r a s s i c o r Cretaceous g r a n i t e s , grano-d i o r i t e s , and a l l i e d r o c k s . In most p l a c e s the t i l l i s o v e r l a i n w i t h a veneer of a e o l i a n d e p o s i t s . TABLE I I Long-Term Average C l i m a t i c C o n d i t i o n s A t Vernon J a n Feb Mar Apr May Jun J u l Aug Sept Oct Nov Dec Y e a r Mean D a i l y (Deg. F) 23 .2 27 .2 36.8 4 8 . 1 56.9 62.8 68.4 66.0 58.0 46.1 34.8 28.7 46.4 Temperature Mean D a i l y Maximum 28.4 33.7 45 .3 60.0 69.7 75.0 82.4 79 .5 69.9 54.6 40 .2 33.4 56.0 Temperature Mean D a i l y Minimum 17 .9 20.7 28 .2 36.2 44.0 50 .5 54.4 52.4 4 6 . 1 37.6 29 .3 23.9 36.8 Temperature Maximum Temperature 56 70 67 84 92 98 104 97 92 80 65 65 104 Minimum Temperature - 3 1 - 2 5 - 1 5 15 22 33 38 39 23 12 - 8 - 2 0 - 3 1 (Inches) Mean R a i n f a l l 0 .25 0.27 0.62 0.69 1.22 1.65 1.14 1.06 1.18 1.35 0 .85 0 . 4 1 10.69 Mean S n o w f a l l 14 .2 9 . 8 3.0 0 .2 0.0 0.0 0.0 0.0 0.0 0.6 5 . 5 15.4 48 .7 Mean T o t a l P r e c i p i t a t i o n 1.67 1.25 0.92 0 .71 1.22 1.65 1.14 1.06 1.18 1.41 1.40 1.95 15.56 •N3 I - 3 3 -4. Soils and Plants Owing to t h e i r l i m i t e d s u i t a b i l i t y f o r a g r i c u l t u r a l or forestry purposes, the s o i l s of the study area have not as yet been mapped or c l a s s i f i e d . Kelley and Spilsbury (1949) surveyed the arable s o i l s of the Okanagan and Similkameen v a l l e y s . In t h e i r survey, most of the area between Okanagan and Kalamalka lakes was regarded as rough mountainous land, generally unsuited to a g r i c u l t u r a l use, with the exception of the Black Chernozemic S o i l s which occupied south slopes up to an elevation of about 1,365 metres. These s o i l s were regarded as having great value for grazing purposes, providing spring and f a l l range for c a t t l e and sheep. In addition, the rough mountainous lands were important areas for watershed, f o r e s t r y , and rec r e a t i o n a l purposes. The ancestral- parent material of a l l mineral s o i l s i n the Okanagan d i s t r i c t i s g l a c i a l t i l l derived from many sources. In some cases, the t i l l has been weathered i n place to form s o i l , but i n most instances s o i l have developed from t i l l that has been eroded, re-worked, and re-deposited. Kelley and Spilsbury (1949) f e l t that moisture and t e m p e r a t u r e r e l a t i o n s h i p s gave r i s e t o a v e r t i c a l z o n a t i o n o f s o i l s i n t h e Okanagan. Zo n a l s o i l s , i n o r d e r from t h o s e formed a t l o w e r e l e v a t i o n s t o those o c c u r r i n g a t h i g h e r e l e v a t i o n s were d e s c r i b e d as Brown S o i l s , Dark Brown S o i l s , B l a c k S o i l s and P o d z o l S o i l s . On a v e r y g e n e r a l o r macro s c a l e , t h e v a l l e y appeared t o be one w i t h a narrow l a k e i n i t s c e n t r e , g r a s s l a n d s i n t e r s p e r s e d w i t h d e c i d u o u s t r e e s o c c u p y i n g the r e m a i n d e r o f t h e t r o u g h , and c o n i f e r o u s f o r e s t s on t h e upper s l o p e s . I n one s e n s e , t h e s o i l and p l a n t communities o f t h e v a l l e y c o u l d be s e p a r a t e d i n t o two zones. One zone was c h a r a c t e r i z e d by the p r e s e n c e o f s a l t - a f f e c t e d s o i l s and s a l t - t o l e r a n t p l a n t s p e c i e s ( h a l o p h y t e s ) , t h e o t h e r by normal s o i l s ( i . e . n o t a f f e c t e d by s a l t s ) and by p l a n t s n o t t o l e r a n t o f s a l t b u t c h a r a c t e r i s t i c o f a r i d o r s e m i - a r i d r e g i o n s ( x e r o p h y t e s ) . The f i r s t zone was c o m p r i s e d o f the l a k e and t h e exposed l a k e b e d , and two v e r y d i s t i n c t communities o f s a l t -t o l e r a n t g r a s s e s . Each o f t h e s e g r a s s communities was made up o f o n l y one h a l o p h y t i c g r a s s s p e c i e s . The community n e a r e s t t h e l a k e , h e r e a f t e r r e f e r r e d t o as S a l t g r a s s #1, c tT! I—I I—I 1—1 CO 1—1 O b ^ fD CQ 3 P r+ rt s H -o O r+ a H fi) D cn cn o jg r t cn Cn • o I-1-r t fD a cn r+ H -C c r+ H -O 0 H i 1 ' 1 DJ nt o o g B C H* rt H-fD CO m w Douglas fir/ Ponderosa pine Ponderosa pine . A 8 pen Rush Saltgrass 2 SLIPPY SLOUGH Saltgrass I Saltgrass 2 Rush Aspe n G r ass la nd Woxberry Grassland . Aspen ro 0> Non-vegetated Lokebed ->i CD s ro ro % w ro - SC - 36 -i s t h o u g h t t o have been N u t t a l l A l k a l i - g r a s s ( P u c c i n e l l i a a i r o i d e s ) , a l t h o u g h t h i s was n e v e r c o n f i r m e d . The second s a l t g r a s s community, wh i c h w i l l h e r e a f t e r be r e f e r r e d t o as S a l t g r a s s #2, was i d e n t i f i e d as D e s e r t S a l t -g r a s s ( D i s t i c h l i s s t r i c t a ) . A l l t h e o t h e r p l a n t communities o b s e r v e d and s t u d i e d , t h e r u s h (Juncus s p p . ) , aspen (Populus t r e m u b o i d e s ) , waxberry (Symphoricarpus a l b u s ) , g r a s s l a n d , and f o r e s t communities b e l o n g e d t o t h e s e c o n d zone o f n o n - h a l o p h y t e s . On c l o s e r e x a m i n a t i o n t h i s f i r s t s i m p l e p i c t u r e gave way t o a much more complex one. Ponderosa ( P i n u s ponderosa) was seen t o e x t e n d a l m o s t t o the l a k e on t h e n o r t h and e s p e c i a l l y on t h e west s h o r e s . And a l t h o u g h Douglas f i r ( Pseudotsuga m e n z j e s i i ) was p r i m a r i l y r e s t r i c t e d t o g r o w i n g on t h e upper s l o p e s on t h e w e s t , e a s t , and s o u t h e a s t , i t t o o was found growing near t h e l a k e , b u t o n l y i n r e l a t i v e l y deep g u l l i e s . Waxberry seemed t o be a d i v e r s e p l a n t , g r o w i n g sometimes i n t h e company o f the f i r s , sometimes w i t h aspen. O c c a s i o n a l l y waxberry was found i n a l m o s t pure s t a n d s g r o w i n g by i t s e l f . Rushes were found i n l o w - l y i n g a r e a s near t h e s l o u g h , sometimes - 3 7 -by t h e m s e l v e s , b u t a t o t h e r t i m e s w i t h S a l t -g r a s s # 2 , aspen, o r the n o n - h a l o p h y t i c g r a s s e s . Only the s a l t - t o l e r a n t g r a s s communities ( S a l t g r a s s # 1 and # 2 ) o c c u p i e d r i g o r o u s l y d e f i n e d p o s i t i o n s i n the l a n d s c a p e . The boundary between th e two g r a s s s p e c i e s was v e r y a b r u p t , such t h a t i t o c c u p i e d o n l y a few i n c h e s on t h e ground s u r f a c e . As mentioned e a r l i e r , two t r a n s e c t s were e s t a b l i s h e d , one t r a v e r s i n g t h e v a l l e y f r om west t o e a s t and t h e o t h e r from s o u t h t o n o r t h . S o i l s were examined under each d i s t i n c t i v e p l a n t community e n c o u n t e r e d a l o n g t h e s e t r a n s e c t s . The d i s t r i b u t i o n o f p l a n t communities around t h e s l o u g h i s shown i n F i g u r e I I I . A complete d e s c r i p t i o n o f t h e s o i l s and p l a n t s a t each o f t h e s e s i t e s can be found i n Appendix I . To f u l l y a p p r e c i a t e t h e e n v i r o n m e n t a l f o r c e s o p e r a t i n g i n t h i s v a l l e y would r e q u i r e s e v e r a l v i s i t s , each o f a few days d u r a t i o n , and s p r e a d o u t o v e r t h e c o u r s e o f a t l e a s t one a n n u a l c y c l e . R e c o g n i z i n g t h e i m p o s s i b i l i t y o f t h i s f o r most r e a d e r s , i t i s hoped t h a t t h e s i t e d e s c r i p t i o n s and photographs i n Appendix I w i l l h e l p p u t t h e s l o u g h and i t s s u r r o u n d i n g l a n d s c a p e s - 38 -TABLE I I I S o i l Development And P l a n t Communities Around S l i p p y Slough S i t e T r a n s e c t Number 1 2 xi -P 3 O CO 4 5 6 Dominant V e g e t a t i o n Douglas f i r Mixed pasture g r a s s e s Mixed gra s s e s and rushes S a l t g r a s s #2 S a l t g r a s s #1 Non-vegetated lakebed S o i l Development O r t h i c E u t r i c B r u n i s o l Rego Black Chernozem S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l xi •P u o 2 +> a) 8 9 10 11 12 13 14 15 16 Non-vegetated lakebed S a l t g r a s s #1 S a l t g r a s s #2 Rush Ponderosa p i n e Douglas f i r / Ponderosa p i n e Ponderosa p i n e Aspen Rush S a l t g r a s s #2 S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l O r t h i c Dark Brown Chernozem O r t h i c B l ack Chernozem O r t h i c E u t r i c B r u n i s o l O r t h i c E u t r i c B r u n i s o l O r t h i c B l a c k Chernozem O r t h i c Humic G l e y s o l S a l i n e Humic G l e y s o l -P W w 17 18 19 20 21 Non-vegetated lakebed S a l t g r a s s #1 S a l t g r a s s #2/ Rush Rush Aspen S a l i n e G l e y s o l S a l i n e Humic G l e y s o l S a l i n e Humic G l e y s o l Carbonated Humic G l e y s o l O r t h i c Black Chernozem - 39 -TABLE I I I (Continued) Soil.Development And P l a n t Communities Around S l i p p y Slough T r a n s e c t S i t e Number Dominant V e g e t a t i o n S o i l Development w 22 23 24 25 Mixed g r a s s e s Waxberry G r a s s l a n d Aspen O r t h i c Black Chernozem O r t h i c B l ack Chernozem O r t h i c B l ack Chernozem O r t h i c B l a c k Chernozem - 4 0 -i n t h e i r proper p e r s p e c t i v e . Table I I I r e p r e s e n t s a p a r t i a l summary of t h i s appendix and shows the s o i l development and dominant p l a n t s c h a r a c t e r i s t i c of each s i t e . B. The Nature And C h a r a c t e r i s t i c s Of S l i p p y Slough Since the i n c e p t i o n of t h i s study, the author has been c o n t i n u a l l y amazed at the ever-changing, dynamic nature of the l a k e environment. The slough's c h a r a c t e r was many-faceted. From above, on the e a s t e r n s l o p e s and e s p e c i a l l y i n s p r i n g , i t looked p a s t o r a l and p a r k - l i k e . In l a t e summer, surrounded by an expanse of s a l t c r y s t a l s , s e v e r a l c e n t i m e t r e s deep, the warm, shallow and weed-choked waters d i s p l a y e d a l l the greens and browns o f r o t and decay. The l a k e appeared to be s u b j e c t e d t o two kinds of c l i m a t i c c y c l e s . The f i r s t c y c l e i n v o l v e d summer e v a p o r a t i o n f o l l o w e d by autumn through s p r i n g recharge. T h i s c y c l e i s a product of the hot summers so c h a r a c t e r i s t i c of the Okanagan c l i m a t e and can be observed every year. The second k i n d of c y c l e was not so r e a d i l y observed however. In the s p r i n g o f 1972, the lake l e v e l was about 0.3 metres h i g h e r than i t had been i n 1970. In 1974, i t was a t l e a s t 0.3 to 0.5 metres - 4 1 -higher again than i t had been i n 1972. The amount of p r e c i p i t a t e d s a l t around the lake shore i n 1972 was observed to be much less i n 1972 than i t had been i n 1970. I t i s doubtful i f any s a l t s w i l l be p r e c i p i t a t e d i n 1974. These changes are obviously r e l a t e d to annual v a r i a t i o n s i n c l i m a t i c condit ions — c o o l e r , shorter summers and/or longer , wetter recharge p e r i o d s . Observation of lake l e v e l s over an extended per iod of time would probably reveal the c y c l i c a l nature and frequency of occurrence of such high water p e r i o d s . In the present study, however, most a t t e n t i o n was paid to an understanding of the nature of the seasonal c y c l e s , and not the annual ones. In l a t e s p r i n g , f o l l o w i n g r u n - o f f and snow-melt , the lake i s u s u a l l y both i t s deepest and i t s f r e s h e s t . Under the i n f l u e n c e of extremely warm temperatures, winds, and low r e l a t i v e humidity , however, s i g n i f i c a n t q u a n t i t i e s of water are released to the atmosphere each summer through the process of evaporat ion. As a r e s u l t , the s a l t content of the lake i s concentrated i n t o an ever d i m i n i s h i n g volume of water. Very q u i c k l y the waters reach s a t u r a t i o n , leaving severa l centimeters of p r e c i p i t a t e d s a l t s on the shores f r e s h l y exposed by the r e t r e a t i n g l a k e . The nature - 42 -of t h i s change i s demonstrated i n Table IV. The t r e n d towards i n c r e a s i n g s a l i n i t y d u r i n g the summer was r e a d i l y apparent. E s p e c i a l l y dramatic were the i n c r e a s e s i n c o n c e n t r a t i o n o f Na, K, and Ca i n the water observed between June 29 and August 15. The i n f l u e n c e o f c l i m a t e on the p h y s i c a l c h a r a c t e r i s t i c s o f the slough i s shown i n Tab l e V. U t i l i z i n g a p l a n i m e t e r and an a e r i a l photograph the area o f the slough was determined t o be about 6.5 h e c t a r e s when a t i t s maximum depth i n s p r i n g . In l a t e summer i t was found t h a t t h i s area had decreased t o approximately 2.4 h e c t a r e s , a r e d u c t i o n o f 4.1 h e c t a r e s or approximately 63% of the s u r f a c e area. These f i g u r e s are o n l y rough e s t i m a t e s , but they do p r o v i d e a u s e f u l i n d i c a t i o n of the a r e a l s hrinkage e x p e r i e n c e d by the l a k e . By c o n s i d e r i n g t h i s change i n lake area, depth, and volume t o g e t h e r with the i n c r e a s i n g s a l t c o n c e n t r a t i o n s shown i n Table I v , the reader w i l l g et an i d e a o f the magnitude of the f o r c e s a c t i n g upon the sl o u g h . Although the s a l t c o ntents of s o i l water were not measured, the l a k e waters p r o v i d e an i n t e r e s t i n g and u s e f u l approximation of s o i l -water c o n d i t i o n s . In Tab l e VI the osmotic p r e s s u r e of the lake waters a t v a r i o u s times d u r i n g 1970 have been c a l c u l a t e d from the data g i v e n i n TABLE IV Changes In The Chemical Character Of The Slough Water During 1970 S A M P L I N G D A T E Parameter March 28 May 7 June 6 June 29 August 15 September PH 8.6 8.6 8.9 9.3 9.5 8.7 Conductivity (mmho/cm) 5.3 18.6 24.2 30.4 35.0 41.0 Na (meq/1) 47.0 183.0 218.0 270.0 700.0 520.0 Na (ppm) 1,081 4,209 5,014 6,210 16,100 11,900 K (meq/1) 0.04 0.12 0.16 0.20 30.8 33.2 K (ppm) 1.6 4.7 6.3 7.8 1,204.3 1,298 Ca (meq/1) 2.2 4.0 3.7 3.8 12.0 14.0 Ca (ppm) 44 80 74 76 240 280 Mg (meq/1) 2,200 75.0 98.0 122.0 180.0 200.0 Mg (ppm) 268.4 915 1,195.6 1,488.4 2,196 2,440 Total Dissolved Solids (ppm) 1,395 5,208.7 6,289.9 7,782.2 19,740.3 15,978 CO I - 44 -TABLE V The I n f l u e n c e Of C l i m a t e On The P h y s i c a l C h a r a c t e r Of The Slough During 1970  Parameter Observed P r e c i p i t a t i o n Received (cm) Mean Monthly Temp. (°F> S h o r e l i n e R e t r e a t (m) - South End S h o r e l i n e R e t r e a t (m) - North End S h o r e l i n e R e t r e a t (m) - West S i d e S h o r e l i n e R e t r e a t (m) - E a s t S i d e Apparent Drop In Lake L e v e l (cm) - West Side - E a s t Side - Average March 28 t o June 29 6.65 56 June 29 August 15 3.35 5.20 0.12 8.55 t o 70 7.95 41.50 0.14 6.72 t o 61 2. 68 T o t a l August 15 September 5.97 4.72 17.34 1.95 13.25 2.45 49.15 0.10 0.36 17.95 31.8 29.2 30. 5 - 45 -TABLE VI Calculated Osmotic Pressure Of Lake Waters During 1970 S A M P L I N G D A T E Osmotic Pressure March 2 8 May 7 June 6 June 29 August 15 Sept. 19 TT Na 1.2 4.5 5. 4 6.6 17.2 12. 8 1T K 0.0 0.0 0.0 0.0 0.8 0.8 V Ca 0.0 0.1 0.1 0.1 0.2 0.2 TT Mg 0.3 0.9 1.2 1.5 2.2 2.5 I i r 1.5 5.5 6.7 8.2 20.4 16.3 - 4 6 -T a b l e IV u s i n g the r e l a t i o n s h i p between s a l t c o n t e n t and o s m o t i c p r e s s u r e TT = RTc Where = o s m o t i c p r e s s u r e (atmosphere), R U n i v e r s a l Gas C o n s t a n t (0.0825 1. atm. d e g - 1 m o l e - 1 ) , T = Temperature (°K), and C = C o n c e n t r a t i o n o f s a l t ( m o l e s / 1 ) . The o s m o t i c p r e s s u r e s c a l c u l a t e d i n T a b l e VI g i v e some i n d i c a t i o n o f t h e s e v e r e c o n d i t i o n s endured by p l a n t s g r o w i n g c l o s e t o t h e s l o u g h . Because o f t h e c o n t i n u i t y o b s e r v e d between s l o u g h w a t e r and ground w a t e r and because e v a p o t r a n s p i r a t i o n a c t s t o f u r t h e r c o n c e n t r a t e groundwater s a l t s , i t i s r e a s o n a b l e t o e x p e c t t h e c o n c e n t r a t i o n o f s a l t s i n groundwater under t h e p l a n t zones t o be o f a s i m i l a r magnitude t o t h a t i n t h e s l o u g h w a t e r . As the s h o r e l i n e r e c e d e s , the s o i l s d r y o u t and s a l t s a r e p r e c i p i t a t e d on the s u r f a c e . D u r i n g t h i s s t a g e , the o s m o t i c p r e s s u r e o f t h e s o i l s o l u t i o n i s p r o b a b l y much h i g h e r t h a n 20 b a r s . C. The N a t u r e And C h a r a c t e r i s t i c s Of S o i l s Around  The S l o u g h To f u l l y c h a r a c t e r i z e t h e s o i l s o f t h e S l i p p y S lough d r a i n a g e would r e q u i r e s a m p l i n g - 47 -and a n a l y s i s o f s o i l s many t i m e s d u r i n g t h e y e a r . Only i n t h i s way would i t be p o s s i b l e t o i d e n t i f y the changes i n s o i l p r o p e r t i e s t h a t r e f l e c t t h e i n f l u e n c e s o f t h e e v e r - c h a n g i n g groundwater regime and c l i m a t e . The l i m i t a t i o n s o f a moderate t r a v e l a l l o w a n c e and t h e time consumptive n a t u r e o f f i e l d t r i p s and l a b o r a t o r y p r o c e d u r e s made t h i s i m p r a c t i c a l however. I t was t h e r e f o r e n e c e s s a r y t o l i m i t a n a l y s e s t o t h o s e conducted on one com p l e t e s e t o f samples c o l l e c t e d i n J u l y , 1970. F o r t h i s r e a s o n , i t i s i m p e r a t i v e t o keep i n mind t h a t t h e r e s u l t s o f t h e s e a n a l y s e s a r e r e l a t e d o n l y t o t h e c o n d i t i o n s t h a t o b t a i n e d a t t h e time o f sample c o l l e c t i o n . The r e s u l t s p r e s e n t e d i n T a b l e s V I I , V I I I , IX and X a r e i n d i c a t i v e o f t h e c h a r a c t e r o f t h e s o i l s i n each zone o r community, and t h e r e b y p r o v i d e a u s e f u l b a s i s f o r co m p a r i s o n . I t i s a n t i c i p a t e d t h a t a l t h o u g h d i f f e r e n t r e s u l t s m i g h t be o b t a i n e d a t a n o t h e r t i m e , t h e t r e n d s i n d i c a t e d by t h i s s e t o f d a t a p o i n t s would s t i l l be e v i d e n t . The f i r s t and most o b v i o u s t r e n d i n d i c a t e d by t h e s e d a t a was t h e i n c r e a s e i n pH, c o n d u c t i v i t y , and c o n t e n t of s o l u b l e and exc h a n g e a b l e c a t i o n s i n s o i l s s u p p o r t i n g h a l o p h y t i c g r a s s e s and i n the TABLE VII SELECTED CHEMICAL ANALYSES OF SOILS: SOLUBLE CATIONS Soluble Ca Soluble Mg Soluble Na Soluble K SAR (meq/lOOgm) Site Master Number Community Horizon Range Avg. Range Avg. Range Avg. Range Avg. Range Avg. 1 Douglas F i r A - 0.2 — 0.2 _ 0.1 _ 0.0 0.2 AB 0.2 - 0.1 - 0.1 - 0.0 — 0.3 C — 0.8 — 0.3 - 0.4 - 0.0 - 0.5 12 Douglas F i r / A — 0.4 _ 0.1 0.0 0.1 0.0 Ponderosa B - 0.3 - 0.1 - 0.1 — 0.8 — 0.2 Pine BC - 1.4 - 0.8 - 0.2 - 0.0 — 0.2 C — 0.4 — 0.2 - 0.1 - 0.6 - 0.2 11,13 Ponderosa A 0.1-6.1 2.1 0.1-0.4 0.2 0.0-1.6 0.6 0.1-0.4 0.3 0.0-1.8 0.6 Pine B - 0.1 - 0.2 - 0.0 — 0.0 — 0.0 C 0.1-0.2 0.2 0.1-0.2 0.2 0.0-0.1 0.1 0.0-0.1 0.1 0.0-0.2 0.1 25 Upper Aspen A 0.9-2.4 1.2 0.2-0.6 0.4 - 0.1 0.2-1.1 0.6 - 0.1 24 Upper A 0.6-1.9 1.3 0.2-0.6 0.4 _ 0.1 0.1-0.6 0.4 0.1-0.2 0.2 Grassland C — 0.4 — 0.1 - 0.0 - 0.1 - 0.2 23 Waxberry A 0.4-1.9 1.0 0.3-1.5 0.8 - 0.2 0.1-1.1 0.6 0.1-0.3 0.2 2,22 Lower A 0.1-4.8 1.7 0.1-0.6 0.3 0.0-0.3 0.1 0.0-0.1 0.0 0.0-0.2 0.1 Grassland BC - 0.1 - 0.0 - 0.0 — 0.0 — 0.0 C - 0.2 - 0.9 - 0.2 - 0.0 - 0.3 TABLE VII (CONT'D) SELECTED CHEMICAL ANALYSES OF SOILS: SOLUBLE CATIONS Soluble Ca Soluble Mg Soluble Na Soluble K SAR (meq/lOOgm) S i t e 14, 21 Lower Aspen 3, 10 Rush 4, 9 Sal tgrass #2 16,19 5, 8 Sal tgrass #1 18 6, 7 Non-vegetated lakebed Master j r i z o n Range Avg. Range Avg. Range Avg. Range Avg. Range Avg. LF 1.5-5.1 3.3 0.8-2.0 1.4 0.0-0.1 0.1 0.7-1.6 1.2 0.0 0.0 A 0.3-2.0 1.9 0.2-1.0 1.0 0.1-0.7 0.2 0.1-0.7 0.9 0.0-0.9 0.3 B 0.8 0.8 0.3-0.5 0.4 0.0-0.4 0.2 0.1-0.2 0.2 0.0-0.5 0.3 C 0.6 0.6 0.5 0.5 0.8 0.8 0.0 0.0 1.1 1.1 A 0.1-15.4 3.5 0.4-6.4 2.4 0.1-0.4 0.3 0.2-0.3 0.2 0.0-0.4 0.2 B 0.0-7.0 1.8 0.1-2.7 1.0 0.2-0.9 0.5 0.0-0.3 0.1 0.0-1.3 0.5 C 0.0-1.5 0.5 0.0-0.5 0.2 0.2-0.5 0.4 0.0-0.1 0.0 0.0-2.2 0.6 A 0.5-16.3 6.9 0.1-6.9 3.6 0.1-5.6 3.0 0.1-0.8 0.5 0.1-5.3 1.7 B 0.0-20.8 6.2 0.1-5.3 2.1 0.3-5.7 2.5 0.2-0.9 0.5 0.5-1.9 1.3 C 0.1-16.4 5.8 0.3-6.8 2.8 0.9-5.6 2.4 0.2-0.7 0.5 0.6-4.0 2.1 A 14.7-24.1 20.8 6.8-10.2 8.9 4.1-6.9 5.9 0.4-0.8 0.6 1.3-1.7 1.5 B 11.6-32.8 18.9 3.7-3.1 5.9 5.6-8.8 7.5 0.4-1.0 0.6 1.9-2.7 2.2 C 19.7-33.5 24.4 4.3-8.2 5.7 6.9-13.7 9.2 0.5-1.0 0.7 2.0-3.0 2.3 A 18.5-48.0 36.0 4.8-9.7 7.8 9.0-19.8 15.6 0.7-1.6 1.2 2.6-3.7 3.3 B 13.7-26.0 19.2 3.2-5.3 4.4 4.9-19.4 7.4 0.4-0.9 0.6 1.6-2.6 2.1 C 14.6-23.9 19.4 3.8-5.8 5.1 3.0-12.8 8.1 0.5-0.9 0.7 0.9-3.6 2.3 TABLE VI I I SELECTED CHEMICAL ANALYSES OF SOILS: EXCHANGEABLE CATIONS EXCHANGEABLE EXCHANGEABLE EXCHANGEABLE EXCHANGEABLE EXCHANGE Ca Mg_ Na K ACIDITY (meq/lOOgm) S i t e Master lumber Community Hor i z o n Range Avg. Range Avg. Range Avg. Range Avg. Range Avg. 1 Douglas F i r A — 24.8 — 2.6 — 0.0 — 0.4 12.4 AB - 18.6 - 1.8 - 0.1 - 0.3 - 10.4 C — 3.0 — 0.3 — 0.0 - 0.2 - 1.6 12 Douglas F i r / A — 11. 5 — 0.7 _ 0.1 _ 0.4 _ 4.7 Ponderosa B - 4.8 - 0.8 - 0.0 - 0.0 - 6.5 Pine BC - 2.5 - 0.2 - 0.5 - 0.2 - 3.4 C — 3.4 — 0.6 — 0.0 - 0.0 - 4.7 11,13 Ponderosa A — 18.5 — 3.4 — 0.1 — 0.9 3.6-6.2 5.1 Pine B - - - - - - - - - 0.5 C — 4.2 — 1.0 - 0.1 - 0.4 2.6-4.1 3.3 25 Upper Aspen A - -' - - - - - - 10.4-20.7 14.5 24 Upper A 11 .5-14.6 13.1 1.1-1.6 1.4 0.1-0.2 0.2 0.0-0.2 0.1 6.2-7.8 7.0 Gr a s s l a n d C — 9.9 — 1.2 — 0.0 - 0.1 - 6.9 23 Waxberry A - - - - - - - - 16.6-33.1 29.6 2,22 Lower A _ _ _ _ _ 10.4-26.1 16.0 Gr a s s l a n d BC - - - - - - - - - 2.4 C - - - - - - - - - 2.1 TABLE V I I I (CONT'D) SELECTED CHEMICAL ANALYSES OF SOILS: EXCHANGEABLE CATIONS EXCHANGEABLE Ca EXCHANGEABLE Mo; EXCHANGEABLE EXCHANGEABLE EXCHANGE Na K ACIDITY (meq/lOOgm) M a s t e r Lower Aspen Rush S a l t g r a s s #2 S a l t g r a s s #1 Non-V e g e t a t e d Lakebed H o r i z o n Range Avg. Range Avg. Range Avg. Range Avg. Range Avg. LF 39.1-48.0 43. 6 3.9-4.5 4.2 0.2 0.2 0.0-0.4 0.2 0.4-6.2 3.3 A 18.3-25.5 21.3 1.7-3.0 2.3 0.0-0.3 0.1 0.4-0.7 0.6 0.0-1.0 0.5 B 2.8 2.8 0.6 0.6 0.0 0.0 0.2 0.0 6.2 6.2 A 5.1-24.2 23.8 0.7-2.6 1.7 0.0-0.6 0.2 0.2-1.6 0.6 4.7-8.3 5.7 B 2.1-23.0 9.4 0.0-2.5 1.4 0.0-0.7 0.3 0.2-0.9 0.4 1.0-8.8 3.9 C 0.8-17.3 5.8 0.4-1.9 0.9 0.1-1.1 0.4 0.1-0.8 0.4 0.5-1.6 1.2 2 A 10.5-48.0 25.7 0.5-16.3 5.3 0.0-27.9 7.0 0.2-4.7 1.8 0.0-10.4 3.3 2 B 1.1-20.2 13.3 1.1-5.0 3.3 0.0-11.2 6.7 0.5-3.4 1.7 0.5-2.1 1.2 C 0.5-24.8 13.7 0.9-2.1 1.2 0.9-9.5 3.7 0.1-2.2 0.7 2.1 2.1 L A 34.4-85.3 55.6 4.3-15.1 11.4 13.7-29.8 20.2 2.0-3.9 3.0 1 B 12.8-29.7 21. 9 3.4-13.8 6.7 14.3-22.3 17.6 1.9-2.1 2.0 C 5.3-14.1 8.6 2.8-6.6 4.9 10.0-24.7 18. 5 1.3-2.3 1.9 A 10.8-35.3 26.1 6.0-25.6 16.0 15.3-41.8 34. 8 1.3-3.7 2.8 B 8.3-32.1 20.6 5.6-3.7 7.0 13.9-19.2 16.2 1.0-1.7 1.4 C 4.2-110.8 46.6 3.0-6.7 4.8 15.5-21.5 19.4 1.5-1.6 1.5 TABLE IX SELECTED CHEMICAL ANALYSES OF SOILS; pH, CONDUCTIVITY, ESP, AND CEC pH CONDUCTIVITY EXCHANGEABLE CATION EXCHANGE S i t e (mmho/cm) SODIUM CAPACITY Community Master PERCENTAGE (meq/lOOgm) Number Horizon Range Avg. Range Avg. Range Avg. Range Avg. 1 Douglas F i r A — 6.1 — 0.2 _ _ _ 46.6 AB - 6.0 - 0.3 - 0.3 - 31.6 C — 6.5 - 1.0 - 0.0 - 10.0 12 Douglas F i r / A — 6.8 _ 0.5 _ 0.9 21.9 Ponderosa B - 6.3 - 0.5 - 0.0 — 16.6 Pine BC - 5.9 - 0.1 - 4.6 - 10.9 C - 6.1 - 0.7 - 0.0 - 10 .6 11,13 Ponderosa A 6.1-6.6 6.3 0.2-0.3 0.3 _ 0.2 40.9 Pine B - 6.5 - 0.2 - - — — C - 6.7 - 0.2 - 0.8 - 11.9 25 Upper Aspen A 7.2-7.4 7.3 0.2-0.5 0.4 - - - -24 Upper A 6.1-6.2 6.2 0.4-0.6 0.5 0 .3-0.6 0.5 30 .4-32.5 31.5 Grassland C - 6.3 - 0.2 - 0.0 - 22. 2 23 Waxberry A 6.5-6.8 6.6 0.6-0.9 0.8 - - - -2, 22 Lower A 6.4-7.9 7.0 0.3-2.6 1.1 Grassland BC - 6.8 - 0.1 - — — — C — 8.4 - 2.5 - - - -14,21 Lower LF 6.8-6.9 6.9 0.3-0.5 0.4 0 .3-0.4 0.4 56 .6-66.3 61.5 A 7.0-7.3 7.1 0.1-0.4 0.2 0 .0-0.8 0.3 23 .1-42.2 34. 0 B 6.8-6.9 6.9 0.5-0.7 0.6 0 .0-0.3 0.2 25 .3-33.4 29.9 C 6.8 6.8 1.2 1.2 0 . 0 0.0 9 .7 9.7 TABLE IX (CONT'D) S i t e Number SELECTED CHEMICAL ANALYSES OF SOILS; pH, CONDUCTIVITY, ESP, AND CEC Community Master Horizon PH Range CONDUCTIVITY (mmho/cm) Avg. Range Avg, EXCHANGEABLE CATION EXCHANGE SODIUM CAPACITY PERCENTAGE (meq/lOOgm) Range Avg. Range Avg. 3, 10 15, 20 4, 9 16, 19 5, 8 18 6, 7 17 Rush Sal tgrass #2 Sal tgrass #1 Non-vegetated lakebed A 6. 8-7. 8 7. 1 0. 4-2.6 0. 9 0. 0-1.0 0.3 17.8-61.3 35. 7 B 7. 3-8. 3 7. 5 0. 2-4.4 1. 4 0. 0-5.7 2.8 10.6-16.3 13. 0 C 6. 7-8. 1 7. 6 0. 2-3.3 1. 2 1. 1-9.2 3.8 7.5-11.9 9. 2 A 7. 7-8. 3 8. 2 0. 0-22.6 8. 0 0. 0-54.6 IS.9 16.3-50.6 29. 7 B 7. 3-8. 5 8. 3 1. 7-12.8 6. 8 0. 0-38.5 H.O 8.1-29.1 20. 0 C 7. 0-8. 6 8. 1 1. 4-19.8 8. 4 0. 0-42.8 22.4 8.1-22.2 13. 2 A 8. 2-8. 6 8. 4 10. 4-17.8 12. 4 28. 5-60.7 39.7 45.9-60.4 51. 8 B 8. 2-8. 7 8. 5 11. 6-19.0 15. 8 28. 7-92.5 6L6 21.3-52.2 32. 5 C 8. 4-9. 3 8. 8 19. 6-23.7 21. 6 45. 9-19 .9 93 9 18.1-21.3 20. 0 A 8. 7-9. 1 8. 9 20. 1-44.9 29. 6 56. 3-113.1 80.4 27.2-58.1 42. 4 B 8. 5-9. 0 8. 7 19. 4-24.6 21. 3 54. 3-90.7 76.8 17.2-25.6 21. 8 C 8. 6-9. 2 8. 8 24. 0-25.0 24. 5 70. 8-U9.1 94 3 17.8-23.1 20. 9 OJ TABLE X SELECTED CHEMICAL ANALYSES OF SOILS: ORGANIC CARBON, NITROGEN, AND C/N RATIO % % C/N Organic Carbon Nitrogen Ratio S i t e Master Number Community Horizon Range Avg. Range Avg. Range Avg. 1 Douglas F i r A — 4.2 — 0.4 — 10.5 AB - - - 0.3 - -C — 0.3 - 0.1 - 3.0 12 Douglas F i r / A _ 2.1 _ 0.1 _ 21.0 Ponderosa B - 0.7 - 0.1 - 7.0 Pine BC - - - 0.05 - -C — 0.1 - 0.05 - 2.0 11, 13 Ponderosa A 3.6-4.6 4.1 0.1-0.3 0.2 15.3-18.0 16. 7 Pine B - 0.5 - 0.1 - 5.0 C 0.5-0.7 0.6 0.05-0.1 0.1 7.0-10.0 8.5 25 Upper A 4.8-6.6 5.7 0.4-0.6 0.5 11.0-12.0 11.5 Aspen 24 Upper A 2.9-4.4 3.7 — 0.3 9.7-14.7 12 .2 Grassland C — 1.4 - 0.1 - 14.0 23 Waxberry A 7.9-12.9 10.4 0.6-0.9 0.8 13.2-14.3 13.8 2,22 Lower A 0.6-4.2 2.4 0.2-0.3 0.3 2.0-14.0 8.0 Grassland BC - 0.2 - 0.1 - 2.0 C - 0.2 - 0.05 - 4.0 TABLE X (CONT'D) SELECTED CHEMICAL ANALYSES OF SOILS; ORGANIC CARBON, NITROGEN, AND C/N RATIO S i t e Master Number Community Horizon 14, 21 Lower LF Aspen A B C 3, 10 Rush A 15, 20 B C 4 ' 9 Sal tgrass #2 A 16,19 - B C 5 , 8 A IQ Sal tgrass #1 B C 6, 7 Non- A 17 vegetated B lakebed C % % Organic Carbon Nitrogen Range Avg. Range Avg. 0.6-0.8 0.7 1.8-4.9 3.3 0.1-0.4 0.2 2.0 2.0 0.2 0.2 0.2 0.2 0.05 0.05 2.6-7.9 4.7 0.2-0.6 0.35 0.2-7.5 2.5 0.05-0.1 0.08 0.01-0.2 0.13 0.03-0.05 0.05 1.7-5.7 3.4 0.1-0.5 0.25 0.1-1.5 0.6 0.95-0.1 0.07 0.1-4.0 1.3 0.05-0.3 0.14 5.3-8.8 6.7 0.5-0.7 0.6 1.0-5.8 3.2 0.1-0.5 0.25 0.8-1.5 1.2 0.1 0.1 2.9-7.7 5.8 0.3-0.8 0.6 1.0-1.6 1.4 0.1-0.2 0.13 1.1-1.5 1.3 0.1 0.1 C/N Ratio Range Avg. 12.3-18.0 15.3 10.0 10.0 4.0 4.0 12.0-16.5 13.7 4.0-75.0 25.0 0.3-4.0 2.6 11.0-17.0 14.1 2.0-15.0 7.2 2.0-13.3 6.8 7.6-17.6 11.8 10.0-13.5 11.7 8.0-15.0 12.3 9.6-9.7 9.63 8.0-15.0 11.0 11.-15.0 12.7 - 56 -lakebed. S o i l s s u p p o r t i n g rushes appeared to have chemical c h a r a c t e r i s t i c s more s i m i l a r to s o i l s o f the g r a s s l a n d and f o r e s t communities than to those s u p p o r t i n g h a l o p h y t e s . Because of t h e i r s l i g h t l y h i g h e r pH, c o n d u c t i v i t y , and Exchangeable Sodium Percentage, however, i t would seem t h a t the s o i l s under the rush community o c c u p i e d a p o s i t i o n t r a n s i t i o n a l between the normal s o i l s and the s a l t -a f f e c t e d s o i l s . Calcium was the dominant s o l u b l e and exchangeable c a t i o n p r e s e n t i n the normal s o i l s , i . e . , those s u p p o r t i n g Douglas f i r , Ponderosa p i n e , aspen, waxberry, n o n - h a l o p h y t i c g r a s s e s , and r u s h . Magnesium was the second most abundant c a t i o n i n these s o i l s , f o l l o w e d by potassium and then by sodium. T h i s p a t t e r n began to change i n the lower h o r i z o n s of the lower aspen and rush communities, but was most markedly d i f f e r e n t i n the s o i l s of the S a l t g r a s s #1 and #2 communities and i n the lakebed s o i l s . Although c a l c i u m c o n t i n u e d to be the dominant c a t i o n p r e s e n t , the s o l u b l e and exchangeable sodium content i n c r e a s e d tremendously, such t h a t sodium r e p l a c e d magnesium as the second most abundant c a t i o n . T h i s i n c r e a s e i n sodium content was r e f l e c t e d i n the Sodium A d s o r p t i o n R a t i o (SAR) and the Exchangeable Sodium Percentage - 57 -(ESP). The SAR of the normal s o i l s ranged from 0.0 to a high value of 1.1 i n the C h o r i z o n of the lower aspen community. T h i s i n c r e a s e d to a range of from 1.3 to 3.3 i n the s a l t - a f f e c t e d s o i l s . The ESP v a l u e s o b t a i n e d f o r normal s o i l s (with the s i n g l e e x c e p t i o n o f 4.8% observed i n the BC h o r i z o n of the Douglas f i r / P o n d e r o s a p i n e community at S i t e 12). The ESP i n c r e a s e d s l i g h t l y t o 3.8% i n the rush community. These v a l u e s are very low however, i n comparison wi t h the ESP v a l u e s of the s a l t -a f f e c t e d s o i l s which ranged from 17.0% t o 94.3%. The observed i n c r e a s e i n s o l u b l e and exchangeable c a t i o n s was not accompanied by an i n c r e a s e i n c a t i o n exchange c a p a c i t y (CEC). I n s t e a d , i t was found t h a t CEC, and a l s o the percentage of n i t r o g e n and o r g a n i c carbon p r e s e n t v a r i e d from s i t e t o s i t e , but tended to decrease w i t h depth a t any one s i t e . In the s o i l s a f f e c t e d by s a l t s i t was found t h a t the sum of the exchangeable c a t i o n s p r e s e n t i n each s o i l h o r i z o n , exceeded the c a t i o n exchange c a p a c i t y of the h o r i z o n s . S i n c e t h i s phenomenon o c c u r r e d o n l y i n the s a l t - a f f e c t e d s o i l s immediately ad j a c e n t to the l a k e , i t would appear t h a t by u s i n g the a n a l y t i c a l methods d e s c r i b e d , some p o r t i o n of the s o l u b l e s a l t s p r e s e n t were b e i n g d e t e r m i n e d as e xchangeable s a l t s . Because i t i s d i f f i c u l t , o r r a t h e r i m p o s s i b l e t o c o m p l e t e l y s e p a r a t e a l l s a l t c r y s t a l s , o r s o i l - w a t e r and l a k e -w a t e r c o n t a i n i n g s o l u b l e s a l t s from the s o i l sample p r i o r t o d e t e r m i n a t i o n o f t h e e x c h a n g e a b l e s a l t c o n t e n t , i t i s d o u b t f u l i f t h i s p r o b lem can be overcome. F u r t h e r m o r e , s i n c e an e q u i l i b r i u m c o n d i t i o n e x i s t s i n t h e s o i l between s o l u b l e and e x c h a n g e a b l e s a l t s , n e i t h e r o f t h e s e s a l t c o n t e n t s can be r e g a r d e d as a f i x e d v a l u e . As s o l u b l e s a l t s a r e removed from the s o i l system, e x c h a n g e a b l e s a l t s move i n t o s o l u t i o n . S i m i l a r l y , as l o n g as s o l u b l e c a t i o n s e x i s t i n t h e s o l u t i o n phase, t h e r e w i l l be a d s o rbed c a t i o n s on t h e exchange complex ( R i c h a r d s , 19 54) . The i n h e r e n t d i f f i c u l t i e s i n v o l v e d i n d e t e r m i n i n g t h e c o n t e n t o f s o l u b l e and e x c h a n g e a b l e c a t i o n s i n s o i l s o f a r i d r e g i o n s has been r e c o g n i z e d i n t h e p a s t ( R i c h a r d s , 19 54). One method t h a t has been s u g g e s t e d t o d e a l w i t h t h i s p r o b l e m i s b ased on a l i n e a r r e l a t i o n s h i p t h a t has been found t o e x i s t ( R i c h a r d s , 19 54) between ESP and SAR: 100 (-0.0126 0.01475 SAR)  = 1 (-0.0126 0.01475 SAR) U s i n g t h i s r e l a t i o n s h i p , i t i s p o s s i b l e t o e s t i m a t e t h e ESP w i t h a f a i r l y h i g h degree o f a c c u r a c y , - 59 -p r o v i d e d the ESP i s n o t g r e a t e r than 50%. I n v i e w o f t h e d i f f i c u l t i e s i n v o l v e d i n d e t e r -m i n i n g s o l u b l e and exchangeable c a t i o n s and s i n c e an e q u i l i b r i u m c o n d i t i o n e x i s t s between b o t h forms o f c a t i o n s i n s o i l s , i t was f e l t t h a t an a n a l y s i s o f t o t a l s a l t c o n t e n t s o f s o i l s c o n s t i t u t e d a more l o g i c a l and d e f e n s i b l e b a s i s f o r co m p a r i s o n o f s o i l c o n d i t i o n s under d i f f e r e n t p l a n t communities t h a n d i d a comparison o f i n d i v i d u a l s o l u b l e and exc h a n g e a b l e c a t i o n c o n c e n t r a t i o n s . The d a t a e x p r e s s e d i n d i v i d u a l l y i n T a b l e s V I I , V I I I , and IX have been summarized and are p r e s e n t e d c o l l e c t i v e l y i n T a b l e XI f o r t h i s p u r p o s e . I t can be seen t h a t the tendency f o r t h e sum o f exchangeable c a t i o n s t o exceed t h e c a t i o n exchange c a p a c i t y was r e s t r i c t e d t o s o i l s w i t h a h i g h t o t a l s a l t c o n t e n t . I t can a l s o be seen t h a t t o t a l s a l t c o n t e n t was h i g h e s t i n t h e l a k e b e d , j u s t s l i g h t l y l e s s i n s o i l s under S a l t g r a s s #1, and even l o w e r under S a l t g r a s s #2. A l t h o u g h t h e t o t a l s a l t c o n t e n t o f t h e s o i l s under S a l t g r a s s #2 was h i g h e r t h a n t h a t found i n t h e normal s o i l s , i t was not g r e a t l y so. I t was t h e h i g h c o n t e n t o f s o l u b l e s a l t s t h a t d i s t i n g u i s h e d t h i s s o i l from the s o i l s n o t a f f e c t e d by s a l t s . The c l a s s i f i c a t i o n scheme o u t l i n e d i n t h e TABLE XI TOTAL SALT CONTENT OF SOILS S i t e Master C a t i o n Exchange Sum of Exchangeable Sum of T o t a l Number' Community Hor i z o n C a p a c i t y C a t i o n s S o l u b l e Cations Cation: (meq/lOOgm) 1 Douglas F i r A 46.6 40.2 0.5 40.7 AB 31. 6 31.2 0.4 31. 6 C 10.0 5.1 1.5 6.6 12 Douglas F i r / A 21.9 17.4 0.6 18.0 Ponderosa B 16.6 12.1 1.3 13.4 Pine BC 10.9 6.8 2.4 9.2 C 10.6 8.7 1.3 10.0 11 Ponderosa A 40.9 28.0 1.1 29.1 Pine C 11.9 8.0 0.3 8.3 25 Upper A 31.5 21.8 2.2 24.0 G r a s s l a n d C 22.2 18.1 0.6 18.7 14,21 Lower LF 61.5 51.5 6.0 57.5 Aspen A 34.0 24. 8 4.0 28.8 B 29.9 26.5 1.6 28.1 C 9.7 9.6 1.9 11.5 3,10 Rush A 35.7 32.0 6.4 38.4 15,20 B 13.0 15.4 3.4 18.8 C 9.2 8.7 1.1 9.8 4, 9 A 29.7 43.1 14.0 57.1 6,19 S a l t g r a s s #2 B 20.0 26.2 11. 3 37.5 C 13.2 21.4 11.5 32.9 S i t e Number Community Master Horizon TABLE XI (CONT'D) TOTAL SALT CONTENT OF SOILS Cation Exchange Capacity Sum of Exchangeable Cations Sum of Soluble Cations (meq/lOOgm) T o t a l Cations 5/ 8 sa l tgrass #1 6, 7 17 Non-vegetated lakebed A 51. 8 90.2 36.2 126.4 B 32.5 48.2 32.9 81.1 C 20.0 43.9 40.0 83.9 A 42.4 79.7 60.6 140.3 B 21.8 45.2 31.6 76. 8 C 20.9 72.3 33.3 105.6 I I - 62 -I n t r o d u c t i o n ( R i c h a r d s , 1954), has been a p p l i e d t o the s o i l s o f each p l a n t community sampled around th e s l o u g h , as shown i n T a b l e X I I . Once a g a i n i t i s a p p a r e n t t h a t s a l t - a f f e c t e d s o i l s a r e found o n l y i n t h o s e s o i l s n e a r th e l a k e and w i t h i n a few f e e t o f e l e v a t i o n above the p r e s e n t l a k e l e v e l . Even the s o i l s i n the r u s h zone, w h i c h occupy a p o s i t i o n on the s l o p e s e q u a l t o the h i g h e s t s h o r e l i n e t h e l a k e e v e r had i n t h e p a s t , have r e t u r n e d t o a non-s a l i n e - n o n a l k a l i c o n d i t i o n . L ess t h a n h a l f o f t h e s o i l s examined i n t h e t h r e e zones i m m e d i a t e l y s u r r o u n d i n g t h e s l o u g h can be n e a t l y c l a s s i f i e d i n t o one o f t h e f o u r s o i l t y p e s d e f i n e d by R i c h a r d s (1954). The m a j o r i t y o f t h e s o i l s i n t h i s a r e a have c h a r a c t e r i s t i c s i n common w i t h a t l e a s t two o f t h e t h r e e s a l t - a f f e c t e d s o i l t y p e s . D. S o i l - P l a n t R e l a t i o n s h i p s The most s t r i k i n g r e l a t i o n s h i p between s o i l s and p l a n t s o b s e r v e d i n the v a l l e y was t h a t o n l y h a l o p h y t i c g r a s s s p e c i e s grew on t h e s a l t - a f f e c t e d s o i l s and t h a t o n l y n o n - h a l o p h y t i c p l a n t s were found on t h e normal s o i l s . The r u s h communities appeared t o have a s l i g h t l y h i g h e r t o l e r a n c e o f s a l i n e o r a l k a l i c o n d i t i o n s t h a n o t h e r n o n - h a l o p h y t e s and were o b s e r v e d t o occupy somewhat o f a TABLE XII SOIL CLASSIFICATION ACCORDING TO SALINITY AND ALKALINITY S i t e Community lumber or Zone P H C o n d u c t i v i t y ESP S o i l C l a s s i f i c a t i o n 1 Douglas F i r <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 12 Douglas F i r / <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i Ponderosa Pine 11 Ponderosa Pine <8. 5 <4.0 4.15 N o n s a l i n e - N o n a l k a l i 13 <8. 5 <4.0 — N o n s a l i n e - N o n a l k a l i 25 Upper Aspen <8. 5 <4.0 — N o n s a l i n e - N o n a l k a l i 24 Upper G r a s s l a n d <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 23 Waxberry <8. 5 <4.0 — N o n s a l i n e - N o n a l k a l i 2 Lower G r a s s l a n d <8. 5 <4.0 — N o n s a l i n e - N o n a l k a l i 22 <8. 5 <4.0 — N o n s a l i n e - N o n a l k a l i 14 Lower Aspen <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 21 <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 3 Rush <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 10 <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 15 <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 20 <8. 5 <4.0 <15 N o n s a l i n e - N o n a l k a l i 4 S a l t g r a s s #2 <8. 5 >4.0 CIS S a l i n e 9 5 >4.0 >15 S a l i n e - A l k a l i 16 <8. 5 >4.0 >15 S a l i n e - A l k a l i 19 6.8. 5 24.0 2.15 N o n s a l i n e - N o n a l k a l i / S a l i n e A l k a l i TABLE XII (CONT'D) SOIL CLASSIFICATION ACCORDING TO SALINITY AND ALKALINITY S i t e Community Number or Zone pH Conduct ivi ty ESP S o i l C l a s s i f i c a t i o n Sal tgrass #1 8 18 6 7 17 Non-vegetated lakebed £ 8 . 5 <8.5 >8.5 > 8.5 >8.5 > 8.5 > 4 .0 >4.0 >4.0 >4.0 > 4 . 0 74.0 >15 715 715 >15 >15 >15 N o n s a l i n e - A l k a l i / Sal ine A l k a l i N o n s a l i n e - A l k a l i S a l i n e - A l k a l i / N o n s a l i n e - A l k a l i S a l i n e - A l k a l i / N o n s a l i n e - A l k a l i S a l i n e - A l k a l i / N o n s a l i n e - A l k a l i S a l i n e - A l k a l i / N o n s a l i n e - A l k a l i t r a n s i t i o n a l p o s i t i o n . The data presented i n Tables VII through XI showed that s o i l s having pH above 8.0, conductivity of 8.0 mmhos/cm or more, and/or an Exchangeable Sodium Percentage of greater than 15% would only support the growth of halophytic plants. The t o t a l s a l t content of these s o i l s ranged from 32.9 to 140.3 meq/100 gm. Total soluble s a l t s were found to be greater than 10 meq/100 gm; i n d i v i d u a l soluble and exchangeable cations were usually higher i n the s o i l s supporting halophytes than i n other s o i l s . Increased s o i l s a l i n i t y appeared to be an important factor separating the Saltgrass #2 community from the rushes and separating Saltgrass #1 from Saltgrass #2. The duration of the inundated period probably played an equally important r o l e i n determining the d i s t r i b u t i o n of halophytes; the sig n i f i c a n c e of t h i s factor was not determined i n this study however. The magnitude of changes i n s o i l s a l i n i t y factors downslope through non-halophytes, rushes, Saltgrass #2, and Saltgrass #1 to the lakebed are summarized i n Table XIII. I t i s thought that the values shown i n Table XIII, which are r e a l l y average values for - 66 -TABLE X I I I S e l e c t e d C h e m i c a l P r o p e r t i e s Of S o i l s Under Major P l a n t Communities  P l a n t Community M a s t e r H o r i z o n S o i l C h e m i c a l P r o p e r t i e s pH C o n d u c t i v i t y (mmhos/cm) Exchangeable Sodium P e r c e n t a g e T o t a l S o l u b l e S a l t s (meq/100 gm) Non- A H a l o p h y t e s B 6.6 6.4 0.5 0.2 0.3 0.3 1.4 1.4 Rushes A B 7.1 7.5 0.9 1.4 0.3 2.8 38.4 18.8 S a l t g r a s s #2 A B 8.2 8.3 8.0 6.8 18.9 17.0 57.1 37.5 S a l t g r a s s #1 A B 8.4 8.5 12.4 15.8 39.7 61.6 126.4 81.1 Non-V e g e t a t e d l a k e b e d B 8.9 8.7 29.6 21.3 80.4 76.8 140.3 76.8 - 67 -s e v e r a l s i t e s i n each community, probably r e p r e s e n t a range i n s o i l c o n d i t i o n s which each p l a n t was b e s t adapted t o t o l e r a t e . I t i s understood t h a t these s o i l c h a r a c t e r i s t i c s account i n l a r g e measure f o r the observed s e p a r a t i o n of h a lophytes from non-halophytes. Minor v a r i a t i o n s i n s a l t content of the normal s o i l s s u p p o r t i n g non-halophytes, may account i n p a r t f o r the d i s -t r i b u t i o n of these p l a n t s . However, i t i s thought t h a t other f a c t o r s , i n a d d i t i o n t o s a l t - r e l a t e d s o i l c o n d i t i o n s , p l a y e d important r o l e s i n d e t e r m i n i n g the d i s t r i b u t i o n o f these p l a n t s . However, i t i s thought t h a t ^ o t h e r f a c t o r s , i n a d d i t i o n t o s a l t -r e l a t e d s o i l c o n d i t i o n s , p l a y important r o l e s i n d e t e r m i n i n g the d i s t r i b u t i o n of p l a n t communities. I t has been mentioned e a r l i e r t h a t Douglas f i r was normally c o n f i n e d t o s i t e s on the h i g h e r s l o p e s o f the v a l l e y and on n o r t h o r west f a c i n g s l o p e s . Ponderosa p i n e was more common a t somewhat lower e l e v a t i o n s and a t s i t e s w i t h a more e a s t e r l y a s p e c t . I t i s easy to see here, as elsewhere i n the I n t e r i o r where both s p e c i e s o c c u r , the s i g n i f i c a n c e of s i t e m i c r o c l i m a t e . The Douglas f i r s i t e s probably r e c e i v e a l i t t l e more p r e c i p i t a t i o n , the snow l a s t s a l i t t l e l o n g e r i n the s p r i n g , and the s i t e s are probably a few degrees - 68 -c o o l e r i n summer t h a n Ponderosa s i t e s . N e i t h e r s p e c i e s can s u c c e s s f u l l y compete w i t h g r a s s e s f o r the l i t t l e b i t o f m o i s t u r e a v a i l a b l e i n t h e main v a l l e y . And o n l y the P o n d e r o s a , b e i n g more x e r o p h y t i c t h a n the Douglas f i r , can become e s t a b l i s h e d on t h e e a s t f a c i n g and l o w e r s l o p e s . So t o Douglas f i r , o n l y t h e h i g h e s t and w e t t e s t s l o p e s a re u s u a l l y l e f t . How can we a c c o u n t f o r t h e p r e s e n c e o f Douglas f i r i n a g u l l y a l m o s t a t l a k e l e v e l , then? Once a g a i n i t i s t h e l a n d s c a p e w h i c h h o l d s t h e key t o a p r o p e r u n d e r s t a n d i n g o f t h i s phenomenum. I t i s the n a t u r e o f g u l l i e s t o a c t as s u r f a c e and s u b s u r f a c e pathways c o l l e c t i n g t h e d r a i n a g e w a t e r s from the s u r r o u n d i n g s l o p e s . As a r e s u l t , much more w a t e r e n t e r s t h e s o i l s o f t h e l o w e r s l o p e s and bottoms o f g u l l i e s t h a n f a l l s on t h e upper s l o p e s . I n o t h e r words, t h e s o i l l a n d s c a p e i s a b l e t o a l t e r s o i l m i c r o c l i m a t e . A p p a r e n t l y t h e added m o i s t u r e r e c e i v e d i n t h e s e g u l l y - b o t t o m s i t e s was s u f f i c i e n t t o s u p p o r t t h e normal growth o f such a water-demanding s p e c i e s as t h e Douglas f i r . Waxberry was o f t e n o b s e r v e d g r o w i n g i n a s s o c i a t i o n w i t h Douglas f i r , sometimes w i t h aspen, and, o c c a s i o n a l l y , by i t s e l f . I t i s b e l i e v e d t h a t t h e d i s t r i b u t i o n o f w a x b e r r y and aspen, - 69 -l i k e Douglas f i r i n the g u l l y , can be a t t r i b u t e d t o t h e i n f l u e n c e of l a n d s c a p e on s o i l m o i s t u r e . S i t e s 14, 21, and 25 (aspen) and S i t e 23 (waxberry) a l l o c c u p i e d p o s i t i o n s i n the l a n d s c a p e a t t h e base o f l o n g , concave s l o p e s . By t h e i r v e r y p o s i t i o n , such s i t e s must have c o l l e c t e d much o f the m o i s t u r e e s c a p i n g from t h e s l o p e s above them, and r e t a i n e d i t t o remain m o i s t e r f o r a l o n g e r t i m e t h a n a d j a c e n t s o i l s . The r u s h communities were r e s t r i c t e d t o t h e l o w - l y i n g and n o n - s a l i n e o r o n l y v e r y s l i g h t l y s a l i n e s o i l s o f the v a l l e y near t h e l a k e . Such s i t e s were p r o b a b l y t o o wet f o r t h e o t h e r p l a n t c ommunities. The r u s h e s , b e i n g more h y d r o p h y t i c i n n a t u r e , w e r e a b l e t o do w e l l t h e r e , were a b l e t o t o l e r a t e the sometimes w a t e r l o g g e d s o i l s . I n one a r e a , rushes were o b s e r v e d g r o w i n g i n a d r i e r s i t e a few f e e t h i g h e r up t h e s l o p e t h a n t h e y were n o r m a l l y found. The p l a n t s had a s l i g h t l y brown and w i t h e r e d appearance; t h e y were r a t h e r w i d e l y spaced and c o u l d n o t be d e s c r i b e d as l u x u r i a n t o r t h r i v i n g . I t was a t f i r s t b e l i e v e d t h a t t h i s s i t e was a r e l i c o f a community w h i c h some y e a r s ago had marked the l i k e l y l o c a t i o n o f t h e r u s h community i n r e l a t i o n t o a much deeper l a k e . However, i t was l a t e r r e a l i z e d t h a t t h i s community o c c u p i e d a - 70 -l a r g e swale and r e c e i v e d c o n s i d e r a b l e amounts of drainage and r u n o f f waters from above. Increased s o i l m oisture due to p o s i t i o n i n the landscape i s thought to account f o r the observed d i s t r i b u t i o n of the p l a n t communities d i s c u s s e d above. The r e s t of the v a l l e y was o c c u p i e d p r i m a r i l y by the more x e r o x p h y t i c g r a s s e s . The r e s u l t s of analyses conducted t o determine the e l e m e n t a l composition of v e g e t a t i o n samples are p r e s e n t e d i n T a b l e XIV. The p l a n t s p e c i e s examined i n c l u d e d S a l t g r a s s #1 (from S i t e 18), S a l t g r a s s #2 (from S i t e 19), rush (from S i t e 10), Douglas f i r (one from s i t e 21 and one from near S i t e 25), aspen (one from S i t e 21 and one from j u s t above S i t e 25), and Ponderosa p i n e (one from S i t e 13 and one from j u s t above S i t e 25). Samples of the n o n - h a l o p h y t i c g r a s s e s were c o l l e c t e d , but were l a t e r m i s l a i d ; a n a l y ses of these p l a n t s c o u l d t h e r e f o r e not be p r e s e n t e d . I t can be seen t h a t the c o n c e n t r a t i o n s of sodium i n the t i s s u e s of S a l t g r a s s #1 and S a l t g r a s s #2 were t h r e e to f o u r times as h i g h as were found i n the t i s s u e s of o t h e r p l a n t s . In c o n t r a s t , the n o n - h a l o p h y t i c p l a n t s had much h i g h e r contents of potassium, c a l c i u m , and magnesium. The c o n c e n t r a t i o n s of i r o n , aluminum, and s i l i c a - 71 -were s i m i l a r i n t h e t i s s u e s o f a l l p l a n t s , w i t h t h e a p p a r e n t e x c e p t i o n o f h i g h l e v e l s o f i r o n and aluminum i n the n e e d l e s of Ponderosa p i n e , and h i g h s i l i c a l e v e l s i n Douglas f i r . No c o n s i s t e n t d i f f e r e n c e s were o b s e r v e d between the c o m p o s i t i o n of p l a n t s g r owing c l o s e t o t h e l a k e and t h e c o m p o s i t i o n of s i m i l a r p l a n t s g r o w i n g u p s l o p e . Of a l l t h e p l a n t s a n a l y z e d , t h e aspen t i s s u e s had t h e h i g h e s t t o t a l base c o n t e n t . Aspen i s o f t e n r e f e r r e d t o as a " c a l c i u m pumper" o r a p l a n t t h a t e x t r a c t s an u n u s u a l l y h i g h amount o f c a l c i u m from t h e s o i l . From the d a t a i n T a b l e XIV, i t appears t h a t t h i s p l a n t a l s o a c c u m u l a t e s h i g h q u a n t i t i e s o f p o t a s s i u m and magnesium as w e l l as c a l c i u m i n i t s t i s s u e s . The h i g h base c o n t e n t o f s o i l s under aspen communities i s p r o b a b l y due t o t h e decay and i n c o r p o r a t i o n i n t o t h e s o i l o f b a s i c aspen l i t t e r . The h i g h c o n c e n t r a t i o n o f sodium p r e s e n t i n t h e t i s s u e s o f S a l t g r a s s #1 and S a l t g r a s s #2 can be a t t r i b u t e d t o t h e i r a b i l i t y as h a l o p h y t e s t o t o l e r a t e s a l i n e c o n d i t i o n s . H a l o p h y t e s were d e f i n e d by Daubenmire (1967) as an " e c o l o g i c group o f p l a n t s c h a r a c t e r i z e d by an a b i l i t y n o t o n l y t o endure h i g h c o n c e n t r a t i o n s o f c e r t a i n i o n s i n t h e i r w a t e r s u p p l y , b u t a l s o t o a b s o r b w a t e r TABLE XIV Elemental Composition Of Selected Plant Species Plant % Species Ash 5 • Ca Mg Fe A l S i _ (ppm) Sal tgrass #1 5.8 49,546 153,363 15,548 38,785 2,672 862 6,204 Saltgrass #2 9.9 60,378 41,470 18,825 23,030 1,242 404 23,483 Rush 10.2 17,604 480,362 21,757 46,034 1,429 1,429 62,854 ^ S i t e ^ l f ^ • 2.7 9,196 173,778 352,555 52,919 3,889 7,036 115,163 ^msar^Si te^S) 2 , 5 12/139 199,410 360,720 63,232 4,000 4,400 105,000 ^ S i t e 21) 4 , 7 13,305 343,171 330,453 51,099 2,234 6,810 34,686 tnear S i t e 25) 4 , 2 16,422 269,982 262,434 110,021 2,333 2,143 23,096 ^ S i t e * ? ! * P i n G 1 , 5 1 9 ' 3 1 2 391,000 29,392 87,147 13,667 12,000 60,000 m2a? rsiteP25? 1 , 2 H f 4 9 5 268,812 180,359 96,267 9,167 1,083 54,166 - 73 -w i t h ease under these c o n d i t i o n s . " S a l t g r a s s #1 and S a l t g r a s s #2 o c c u p i e d p o s i t i o n s immediately a d j a c e n t to the l a k e . These s o i l s were inundated w i t h s a l i n e water f o r much of the yea r . As the s u r f a c e s o i l d r i e d out d u r i n g the summer, o n l y the B and C h o r i z o n s remained s a t u r a t e d w i t h ground water, which, being contiguous w i t h the la k e water was probably a l s o very s a l i n e . In Table IV i t was shown t h a t between March 28 and September 19, 1970, the sodium content of the slough water ranged from 1,081 ppm to 16/100 ppm, potassium ranged from 1.6 ppm t o 1,298 ppm, c a l c i u m from 44 ppm to 280 ppm, and magnesium from 268.4 ppm to 2,440 ppm. Given these h i g h contents o f c a t i o n s , e s p e c i a l l y sodium, i n the water s u p p l y , i t i s not s u r p r i s i n g t h a t the h a l o p h y t i c g r a s s e s had much h i g h e r sodium c o n t e n t i n t h e i r t i s s u e s than the n o n - h a l o p h y t i c p l a n t s . In f a c t , the a b i l i t y to t o l e r a t e a sodium-enriched water supply i s pro b a b l y a key f a c t o r d e t e r m i n i n g the d i s t r i b u t i o n of h a l o p h y t e s . E. Summary S l i p p y Slough i s a s m a l l , s a l i n e water body i n the I n t e r i o r of B r i t i s h Columbia. A s e r i e s of i n v e s t i g a t i o n s have been conducted t o c h a r a c t e r i z e - 7 4 -and d e f i n e t h i s s l o u g h , the s u r r o u n d i n g s o i l s , and the d i s t r i b u t i o n of p l a n t s p e c i e s . The i n t e r a c t i o n s between the slough, the s o i l s , and the p l a n t s were a l s o examined. Two kinds of c l i m a t i c c y c l e s appeared t o i n f l u e n c e the slou g h . A long-term c y c l e was caused by annual v a r i a t i o n s i n c l i m a t i c c o n d i t i o n s o f temperature and p r e c i p i t a t i o n . These v a r i a t i o n s determined f l u c t u a t i o n s i n l a k e l e v e l above or below normal over a p e r i o d o f y e a r s . A more r e a d i l y observed c y c l e was of a s e a s o n a l nature and i n v o l v e d e v a p o r a t i o n i n the summer f o l l o w e d by recharge from autumn to s p r i n g . During the summer of 1970, the s u r f a c e area o f S l i p p y Slough was observed t o decrease by more than 50%. As a r e s u l t o f l a r g e water l o s s e s through e v a p o r a t i o n t h e r e was a s i g n i f i c a n t i n c r e a s e i n the s o l u b l e s a l t c o n t e n t of the remaining water; sodium i n c r e a s e d from 1,081 t o 16,100 ppm, potassium from 1.6 to 1,298 ppm, c a l c i u m from 44 to 280 ppm, and magnesium from 268 to 2,440 ppm. A t the same time, the c o n d u c t i v i t y of the slough water i n c r e a s e d from 5.3 to 41.0 mmho/cm and the pH rose t o 9.5 from 8.6. Major changes i n the d i s t r i b u t i o n of p l a n t s i n the v a l l e y were reco r d e d and the s o i l s under each - 7 5 -community were examined. The n o n - v e g e t a t e d s o i l s exposed as the s h o r e l i n e r e c e d e d were c l a s s i f i e d as S a l i n e G l e y s o l s and S a l i n e Humic G l e y s o l s . Two s p e c i e s o f h a l o p h y t i c o r s a l t - t o l e r a n t g r a s s e s grew i n d i s t i n c t zones around t h e p e r i m e t e r o f t h e s l o u g h . S o i l s under b o t h zones were c l a s s i f i e d as S a l i n e Humic G l e y s o l s . A t h i r d zone s u p p o r t e d r u s h e s ; t h i s zone r e p r e s e n t e d a t r a n s i t i o n between s a l t - a f f e c t e d s o i l s s u p p o r t i n g h a l o p h y t e s and normal s o i l s s u p p o r t i n g n o n - h a l o p h y t e s . S o i l s under r u s h e s were c l a s s i f i e d v a r i o u s l y as S a l i n e , O r t h i c , and C a r b o n a t e d Humic G l e y s o l s and as O r t h i c Dark Brown Chernozems. These s o i l s gave way t o B l a c k Chernozems under aspen, g r a s s l a n d , and Ponderosa p i n e communities. A t s l i g h t l y h i g h e r e l e v a t i o n s , aspen, g r a s s l a n d , and w a x b e r r y communities were found on B l a c k Chernozemic s o i l s and Douglas f i r and Ponderosa p i n e communities on O r t h i c E u t r i c B r u n i s o l s . S o i l s s u p p o r t i n g t h e h a l o p h y t i c g r a s s e s had h i g h e r pH and c o n d u c t i v i t y v a l u e s , h i g h e r sodium a d s o r p t i o n r a t i o s and e x c h a n g e a b l e sodium p e r c e n t a g e s , and h i g h e r s o l u b l e , e x c h a n g e a b l e , and t o t a l s a l t c o n t e n t s t h a n the s o i l s o f o t h e r p l a n t communities. I t i s b e l i e v e d t h a t t h e s e s o i l c h a r a c t e r i s t i c s a re d e r i v e d from t h e i n t i m a t e - 76 -a s s o c i a t i o n o f t h e s o i l s w i t h the s a l i n e w a t e r s o f the s l o u g h and t h a t t h e c h a r a c t e r i s t i c s o f th e s l o u g h and the s o i l s i n f l u e n c e d by i t p r e c l u d e the growth o f n o n - h a l o p h y t i c p l a n t s p e c i e s . The s o i l s a d j a c e n t t o t h e s l o u g h were found t o e x h i b i t b o t h s a l i n e and a l k a l i c h a r a c t e r i s t i c s . S a l i n i z a t i o n i m p l i e s the a c c u m u l a t i o n o f s o l u b l e s a l t s i n t h e s o i l s o f a r i d and s e m i - a r i d r e g i o n s . A l k a l i z a t i o n on the o t h e r hand, i m p l i e s t h e c o n c e n t r a t i o n o f s a l t s i n t h e s o i l s o l u t i o n t o t h e p o i n t t h a t c a l c i u m and magnesium s a l t s a r e p r e c i p i t a t e d , l e a v i n g sodium as t h e dominant excha n g e a b l e c a t i o n . S a l i n i z a t i o n and a l k a l i z a t i o n b o t h o c c u r t o some ectent a l l t h e t i m e . S a l i n i z a t i o n , however, i s p r o b a b l y most pronounced d u r i n g the autumn, w i n t e r , and s p r i n g r e c h a r g e p e r i o d . An abundance o f a t m o s p h e r i c and s o i l m o i s t u r e a t t h i s t i m e promotes t h e c h e m i c a l w e a t h e r i n g o f s o i l and r o c k m i n e r a l s and t h e r e l e a s e and t r a n s f e r o f s o l u b l e s a l t s downslope. Few s a l t s a r e t r a n s f e r r e d t o t h e l o w l a n d s d u r i n g the d r y summer p e r i o d however. Summer i s t h e t i m e f o r a l k a l i z a t i o n . Something l i k e 75% o r 80% o f the a n n u a l e v a p o r a t i o n p r o b a b l y o c c u r s d u r i n g t h e summer, c a u s i n g the l a k e t o s h r i n k r a p i d l y i n s i z e , and c o n c e n t r a t i n g t h e s o l u b l e s a l t s i n i t s - 77 -w a t e r s . I t i s d u r i n g t h i s t i m e t h a t a l k a l i z a t i o n becomes a dominant p r o c e s s i n t h e s o i l s n e a r by. So i t s h o u l d not be s u r p r i s i n g a t a l l t o see t h e s e s o i l s r e f l e c t i n g t he combined i n f l u e n c e s o f b o t h p r o c e s s e s . A l t h o u g h b o t h a l k a l i z a t i o n and s a l i n i z a t i o n p r o c e s s e s o p e r a t e d i n t h e s o i l s under t h e h a l o p h y t e zones, i t i s tho u g h t t h e i n t e n s i t y o f t h e s e p r o c e s s e s was much g r e a t e r i n t h e zone o c c u p i e d by S a l t g r a s s #1 th a n i n the S a l t g r a s s #2 zone. Because t h e S a l t g r a s s #2 zone o c c u p i e d a p o s i t i o n h i g h e r on t h e s l o p e t h a n S a l t g r a s s #1, i t was i n u n d a t e d f o r a s h o r t e r p e r i o d o f t i m e each y e a r . D u r i n g t h i s p e r i o d o f i n u n d a t i o n t h e s l o u g h was a t i t s f u l l e s t , and t h e r e f o r e i n i t s l e a s t s a l i n e c o n d i t i o n . A l s o , because o f t h e i r s l i g h t l y h i g h e r p o s i t i o n on the s l o p e , t h e A and B h o r i z o n s under t h e S a l t -g r a s s #2 community were u s u a l l y d r a i n e d and f r e e of l a k e w a t e r d u r i n g the summer p e r i o d . The amount o f s o l u b l e s a l t a v a i l a b l e f o r c o n c e n t r a t i o n was r e s t r i c t e d t o t h a t l e f t by t h e r e c e d i n g w a t e r s . An a l m o s t i n f i n i t e amount o f s a l t was p r e s e n t i n the w a t e r o f the s l o u g h however. S i n c e t h e s o i l s o f the S a l t g r a s s #1 community remained s a t u r a t e d f o r a l o n g e r p e r i o d o f t i m e , the c o n c e n t r a t i o n o f s o l u b l e and exc h a n g e a b l e - 78 -c a t i o n s i n t h e s e s o i l s r e a c h e d much h i g h e r l e v e l s . The t o t a l s a l t c o n t e n t o f the s o i l s under S a l t g r a s s #1 was found t o be about 2.5 ti m e s as h i g h as t h a t o f t h e S a l t g r a s s #2 s o i l s . Both s a l i n i z a t i o n and a l k a l i z a t i o n a r e l i k e l y t o have been more pronounced under t h e s e c o n d i t i o n s t h a n i n the S a l t g r a s s #2 zone. I t i s b e l i e v e d t h a t t h i s d i f f e r e n c e i n t h e i n t e n s i t y o f t h e s e p r o c e s s e s r e s u l t s i n e n v i r o n m e n t a l c o n d i t i o n s o f h i g h e r s a l t c o n t e n t and h i g h e r o s m o t i c p r e s s u r e s t o w h i c h S a l t g r a s s #1 i s b e t t e r adapted t o t o l e r a t e t h a n S a l t g r a s s #2. By d e f i n i n g the upper boundary o f t h e h a l o p h y t i c p l a n t s p e c i e s , t h e p r e s e n c e of t h e s l o u g h and o f t h e e x c e s s s a l t s i n t h e s o i l s a d j a c e n t t o i t a l s o d e f i n e d t h e l o w e r boundary o f t h e non-h a l o p h y t i c p l a n t s . The Douglas f i r , P o n derosa p i n e , aspen, w a x b e r r y , and g r a s s l a n d communities were r e s t r i c t e d t o normal s o i l s n o t a f f e c t e d by s a l t s . I t i s b e l i e v e d t h a t v a r i a t i o n s i n s i t e m i c r o c l i m a t e , e s p e c i a l l y i n c r e a s e d s o i l m o i s t u r e , were r e s p o n s i b l e f o r t h e o b s e r v e d d i s t r i b u t i o n o f t h e s e communities w i t h i n t h e zone o f normal s o i l s . PART I I W e a t h e r i n g I n t r o d u c t i o n As r o c k s and s o i l s are weathered t h e y r e l e a s e q u a n t i t i e s o f s o l u b l e s a l t s . I n humid a r e a s , t h e l i b e r a t e d s a l t s a re t r a n s p o r t e d t h r o u g h t h e s o i l t o s u r f a c e b o d i e s o f f r e s h w a t e r and u l t i m a t e l y t o t h e s e a . I n a r i d and s e m i - a r i d a r e a s , however, where e v a p o r a t i o n exceeds p r e c i p i t a t i o n , t h e r e i s so l i t t l e w a t e r a v a i l a b l e f o r t r a n s p o r t t h a t s o l u b l e s a l t s r e l e a s e d by w e a t h e r i n g t e n d t o r e m a i n n e a r t h e i r s i t e o f o r i g i n . U n d r a i n e d d e p r e s s i o n s may g r a d u a l l y become s i t e s o f s a l t a c c u m u l a t i o n and i f t h e w a t e r s h e d o f the d e p r e s s i o n i s s u f f i c i e n t l y l a r g e , a s a l i n e l a k e may d e v e l o p . I t i s b e l i e v e d t h a t S l i p p y S l o u g h was formed i n t h e manner j u s t d e s c r i b e d . I n o r d e r t o b e t t e r u n d e r s t a n d r o c k w e a t h e r i n g and t h e f o r m a t i o n o f the s l o u g h , (and, t h e r e f o r e , the n a t u r e and d i s t r i b u t i o n of s o i l s and p l a n t s around the s l o u g h ) a s e r i e s o f e x p e r i m e n t s were co n d u c t e d t o s i m u l a t e the w e a t h e r i n g o f bedrock. The r e s u l t s o f t h e s e e x p e r i m e n t s a r e d i s c u s s e d below. - 80 -B. Bedrock Geology Jones (1959) mapped the parent rock i n the v i c i n i t y of the slough as Mesozoic ( J u r a s s i c and/ or Cretaceous) i n t r u s i o n s of g r a n i t e s , g r a n o d i o r i t e s and a l l i e d r o c k s . These r o c k s , i d e n t i f i e d as the Coast I n t r u s i o n s , are d e s c r i b e d as g e n e r a l l y b e i n g of medium g r a i n (5 to 10 m i l l i m e t r e s ) . Rock types may range from g r a n i t e through q u a r t z monzonite and g r a n o d i o r i t e t o q u a r t z - d i o r i t e and may c o n t a i n c r y s t a l s of f e l d s p a r ( p a r t i c u l a r l y o r t h o c l a s e ) , b i o t i t e , muscovite, and/or hornblende. Although the g r a n i t i c rocks o f the Coast I n t r u s i o n s appeared t o predominate around the s l o u g h , s e v e r a l outcrops of i n t r u s i v e rocks t h a t probably belonged t o the Kamloops Group (Jones, 1959) were observed on the e a s t e r n s i d e of the v a l l e y . The rocks of the Kamloops Group are composed l a r g e l y of v o l c a n i c rocks of m i d - T e r t i a r y age i n the Cenozoic E r a . Some of the l a v a s "are a n d e s i t i c , t r a c h y t i c , or even r h y o l i t i c and range from l i g h t gray and white t o l i g h t p i n k , green, and brown. P o r p h y r i t i c t e x t u r e s are common w i t h s m a l l phenocrysts of a u g i t e , hornblende and o l i v i n e i n the darker b a s a l t s , and f e l d s p a r s , q u a r t z , and b i o t i t e i n the l i g h t e r c o l o u r e d r h y o l i t i c l a v a s . " Samples of rocks thought to belong to both - 81 -the Coast Intrusions and the Kamloops Group were co l l e c t e d for analysis. The specimens belonging to the Coast Intrusions were i d e n t i f i e d from thin sections as quartz monzonite and granite. Those i d e n t i f i e d as quartz monzonite were found to contain about 30% each of orthoclase and plagioclase feldspars, less than 40% quartz, 1% to 10% b i o t i t e (altered to c h l o r i t e ) , 1% to 2% c l i n o pyroxene ( l o c a l l y epidotized), and traces of sphene, zircon, apatite, and oxides such as magnetite and ilmenite. The granites were comprised of approximately 40% quartz, 50% K -feldspars (microcline and orthoclase p e r t h i t e , a l l moderately s e r i c i t i z e d ) , 5% plagioclase feldspar, 1% to 2% oxides (magnetite), and traces of c h l o r i t e , sphene, and apatite. A l l samples of the Kamloops group which were examined contained 1-5 mm phenocrysts of plagioclase and orthoclase i n a matrix of feldspar m i c r o l i t e s (0 .1 mm). In one sample, thought to be a r h y o l i t e porphyry, the matrix was made up e n t i r e l y of orthoclase m i c r o l i t e s . This specimen contained about 80% orthoclase, only 15% to20% plagioclase, 2% to 3% each of b i o t i t e and diopside, and minor amounts of apatite and oxides or sulphides. In another sample, thought to represent an altered trachy-- 82 -andesite, both orthoclase and plagioclase m i c r o l i t e s were present i n the matrix. Each mineral accounted for approximately 45% of the rock composition. About 5% to 10% of highly altered pyroxene pheno-crysts and 4% b i o t i t e were also present. In addition to the mineral present as described above, X-ray analysis of rock samples showed the presence of considerable amounts of dolomite. The influence of quartz on the chemical composition of these rocks i s apparent i n Table XV. Granite, containing 40% or more quartz, contained the most s i l i c a and the l e a s t sodium, potassium, calcium, and magnesium of a l l three rocks. The s l i g h t l y higher content of these l a t t e r four elements i n quartz monzonite than i n granite probably r e f l e c t s the higher amount of feldspars present i n the quartz monzonite. The trachy-andesites contained more bases, iron, and aluminum and less s i l i c a than eit h e r of the other rocks. T,he presence of numerous feldspar phenocrysts i n a matrix of feldspar m i c r o l i t e s , and the r e l a t i v e absence of quartz no doubt accounted in large measure for these increases. Furthermore, the i n c l u s i o n of from 5% to 10% of altered pyroxenes ( s i l i c a t e s of i r o n , magnesium, and calcium, sometimes with aluminum and sodium) perhaps contributed to the higher content of some TABLE XV Ch e m i c a l C o m p o s i t i o n o f Bedrock Samples T r a c h y - A n d e s i t e G r a n i t e P arameter % Na 20 K 20 CaO MgO F e 2 ° 3 A1 20 3 S i 0 2 " TOTAL S i l i c a d e t e r m i n e d by d i f f e r e n c e ; i . e . = 100 - (Na 20 + K o0 + CaO + MgO + Fe^O Q u a r t z Monzonite 8.61 3.58 6.79 3.90 3.74 3.91 0.32 0.001 0.01 0. 88 0.05 0.10 3.05 0.97 0. 89 6.23 5.66 3.57 77.01 85.99 83.73 100.00 100.00 100.00 22 3 + A1 20 3) % components, e s p e c i a l l y calcium, magnesium and i r o n . Weathering Experiments Using A Perfusion Apparatus The results of simulation experiments i n which crushed samples of granite, quartz monzonite, and trachy-andesite were weathered i n perfusion units are presented i n Tables XVI, XVII, and XVIII. With the exception of pH, a l l values shown i n these tables have been corrected by subtracting the very small values measured i n the leachate from the control sample ( f i l t e r pulp only). Although not indicated i n the tables, i t should be noted that the pH of the d i s t i l l e d water at the beginning of the experiment was 6.1. I t should also be mentioned that the pH of the water i n the control perfusion unit to which no rock material was added had dropped to 4.7, 4.8, 4.1, 3.9, and 4.1 by the ends of the f i r s t , second, t h i r d , fourth, and f i f t h weeks of operation respectively. Conductivity remained at or near 0.00 3 mmho/cm and soluble s a l t s were v i r t u a l l y non-detectable i n the leachate from the control unit throughout the experiment, however. Since there was no rock material in the control unit and since there was no apparent change i n the chemical composition of the water i n that unit, i t would appear that the increased a c i d i t y of TABLE XVI Siimilatecl Weathering of Trachy-Andesite In a Perfusion Apparatus Weekly Intervals Parameter 1 2 3 4 5 PH 4.2 4.1 4.0 3.8 3.7 Conductivity (mmho/cm) 0.08 0.09 0.04 0.14 0.07 Ha + (ppm) 6.9 2.3 4.6 — 6.9 K* (ppm) 21.0 19.1 19.1 — 15.3 Ca 4* (ppm) 46.1 34.1 32.1 — 30.1 (ppm) 34.0 30.4 29.2 — 24.3 Fe+3 (ppm) 0.0 0.0 0.0 — 0.0 Al + 3 (ppm) 29.3 45.0 31.5 — 29.3 S i + ^ (ppm) 382.0 517.0 562.0 __ TABLE XVII Simulated Weathering of Granite in a Perfusion Apparatus Weekly Intervals Parameter 1 2 3 4 5 pH 4.3 4*5 4.3 4.4 4.3 Conductivity (noaho/cm) 0.04 0.05 0.05 0.04 0.00 Na+ (ppm) 6.9 4.6 4.6 . — 6.9 K + (ppm) 5.7 7.6 3.8 3.8 (ppm) 42.1 36.1 34.1 — 38.1 Mg4* (ppm) 2.4 2.4 1.2 — 2.4 Fe +3 (ppm) 0.7 0.5 0.0 — 1.8 A l + 3 (ppm) 6.8 22.5 22.5 — 22.5 S i + * (ppm) 157.0 247.0 247.0 — — TABLE mil; Simulated Weathering of Quartz Monzonite In a Perfusion Apparatus tyflflfrly Intervals Parameter 1 2 3 4 5 pH 3.9 3.9 3.7 3.5 3.6 Conductivity (mmho/cm) 0.12 0.12 0.14 0.12 0.09 Na + (ppm) 9.2 9.2 9.2 — 11.5 K+ (ppm) 9.6 11.5 5.7 — 5.7 Ca" (ppm) u.i 24.0 20.0 — 4.0 Mg44" (ppm) 12.2 12.2 13.4 — 14.6 Fe + 3 (ppm) 10.1 5.6 5.6 — 6.3 A l + 3 (ppm) 31.5 45.0 45.0 — 45.0 S i * (ppm) 472.0 697.0 697.0 - 88 -the w a t e r must have been due t o the passage o f a i r t h r o u g h i t . The pH o f the l e a c h a t e s i n a l l f o u r u n i t s appeared t o r e a c h an e q u i l i b r i u m v a l u e by t h e t h i r d o r f o u r t h week. The e q u i l i b r i u m pH v a l u e s were between 4.3 and 4.4 f o r g r a n i t e , 3.9 and 4.1 f o r the c o n t r o l u n i t , 3.7 and 3.8 f o r t r a c h y -a n d e s i t e , and 3.5 and 3.6 f o r q u a r t z m o n z o n i t e . The c o n c e n t r a t i o n s o f c a t i o n s i n t h e l e a c h a t e s r e a c h e d a maximum a f t e r the f i r s t o r second week o f p e r f u s i o n . No f u r t h e r i n c r e a s e s were o b s e r v e d . I n f a c t , i n many cases t h e c o n c e n t r a t i o n s o f c e r t a i n c a t i o n s , e s p e c i a l l y sodium, p o t a s s i u m , and c a l c i u m were found t o d e c r e a s e . S i n c e t h e volume o f w a t e r i n each u n i t remained c o n s t a n t t h r o u g h o u t the e x p e r i m e n t , the d e c r e a s e i n c a t i o n c o n c e n t r a t i o n c o u l d o n l y have been t h e r e s u l t o f p r e c i p i t a t i o n o f s a l t s o r d i l u t i o n w i t h f r e s h w a t e r due t o s a m p l i n g . I t i s u n l i k e l y t h a t s a l t p r e c i p i t a t i o n o c c u r r e d - the w e a t h e r i n g environment and t h e c o n c e n t r a t i o n o f o t h e r c a t i o n s remained t o o c o n s t a n t . T h e r e f o r e t h e o b s e r v e d d e c r e a s e must have been caused by the removal o f a 50-ml a l i q u o t o f l e a c h a t e each week and i t s r e p l a c e m e n t w i t h d i s t i l l e d w a t e r . However, s i n c e the l e a c h a t e d i d not resume i t s former c o n c e n t r a t i o n w i t h r e s p e c t t o t h e s e p a r t i c u l a r c a t i o n s , i t must be c o n c l u d e d - 89 -that a l l the re a d i l y weathered cations had been removed from the rock material. For example, v i r t u a l l y a l l the potassium, calcium, and magnesium which could be released from trachy-andesite, under the environmental conditions described, had been released during the f i r s t week. S i m i l a r l y , a l l the readi l y leached calcium i n quartz monzonite was also released i n the f i r s t week. The release of some other cations, p a r t i c u l a r l y aluminum and s i l i c a , from quartz monzonite and. granite, showed a tendency to at t a i n d i s t i n c t i v e , equilibrium concentrations i n the leachate. Whereas the concentrations of cations l i k e calcium and magnesium tended to decrease each week a f t e r sampling and d i l u t i o n , the concentrations of s i l i c a and aluminum tended to reassume the same concentrations at the end of each week. From t h i s i t can be concluded that under the environmental conditions p r e v a i l i n g i n the perfusion apparatus, these concentrations represent an equilibrium condition established between the soluti o n and the rock materials. In comparison with quartz monzonite and trachy-andesite, r e l a t i v e l y l i t t l e s i l i c a was released from the crushed granite. This was probably due to the high quartz content of the granite; quartz i s one of the most r e s i s t a n t minerals. The small - 90 -amount of s i l i c a r e l e a s e d from the g r a n i t e , and the r e l a t i v e l y l a r g e r amounts p r e s e n t i n t h e l e a c h a t e o f the o t h e r two r o c k s , p r o b a b l y a r o s e from t h e breakdown of s i l i c a t e m i n e r a l s o t h e r t h a n q u a r t z . The absence o f i r o n i n the l e a c h a t e from t r a c h y -a n d e s i t e was somewhat p u z z l i n g . I t was e x p e c t e d t h a t t h e pyroxenes p r e s e n t i n t h i s r o c k would a t l e a s t s t a r t t o break down and r e l e a s e some of t h e i r i r o n . I t i s b e l i e v e d t h a t the breakdown of b i o t i t e and c l i n o p y r o x e n e may have acc o u n t e d f o r t h e i r o n l e a c h e d from q u a r t z monzonite. C l i n o p y r o x e n e s form a s e r i e s from c l i n o e n s t a t i t e (Mg S i 2 O g ) t o c l i n o f e r r o s i l i t e (Fe, Mg) S i 2 O g . The r e l a t i v e l y h i g h c o n t e n t s o f i r o n and magnesium i n the l e a c h a t e from q u a r t z monzonite s u g g e s t t h a t t h e c l i n o p y r o x e n e s p r e s e n t a r e p r o b a b l y from t h e c l i n o f e r r o s i l i t e end o f the s e r i e s . I t has l o n g been r e c o g n i z e d t h a t some m i n e r a l s a r e more s t a b l e , are more r e s i s t a n t t o w e a t h e r i n g f o r c e s , t h a n o t h e r s . G o l d i c h (1938) i n a s t u d y o f r o c k w e a t h e r i n g summarized the r e l a t i v e r e s i s t a n c e s o f v a r i o u s m i n e r a l s i n t h e m i n e r a l -s t a b i l i t y s e r i e s o u t l i n e d below i n w h i c h each m i n e r a l l i s t e d i s l e s s r e i s t a n t than t h o s e shown below i t . - 91 -O l i v i n e C a l c i c plagioclase Augite C a l c i - a l k a l i c plagioclase Hornblende A l k a l i - c a l c i c plagioclase A l k a l i c plagioclase B i o t i t e Potash feldspar Muscovite Quartz The r e l a t i v e amounts of calcium and potassium present i n a l l leachates was i n agreement with the positions of Ca - plagioclase and K - feldspar (orthoclase) i n the Goldich S t a b i l i t y Series. The consistently lower values of sodium present i n the leachate can probably be at t r i b u t e d to the increased s t a b i l i t y of Na - plagioclase over Ca plagioclase. As shown i n Table XV, the sodium content of unweathered rocks was very much higher than the calcium content. During f i v e weeks of leaching i n the perfusion apparatus however, there was more calcium released from the rocks than sodium. Calcium-plagioclase minerals must be very rapi d l y leached indeed (and sodium-plagioclase slowly leached) for t h i s to occur. X-ray analysis indicated the presence of dolomite i n the unweathered rock samples. I t i s possible, therefore, that some portion, perhaps a major portion, of the calcium present, i n the leachates was released from dolomite. - 92 -D. Weathering Experiments Using Ion Exchange Resins Using the methods described e a r l i e r , equal volumes of f i n e l y crushed rock samples were placed i n p l a s t i c bottles containing H or OH resi n and/or d i s t i l l e d water and agitated for a period of nine weeks. Each week the pH and conductivity of the d i s t i l l e d water was measured, and the + + +2 resins recharged. The amounts of Na , K , Ca , + 2 -V3 "t 3 -V 4 Mg , Fe , Al , and S i removed from the rock samples and present i n the d i s t i l l e d water or desorbed from the resins were determined. The resu l t s of these experiments are presented i n Tables XIX to XVII. These data provide an in d i c a t i o n of the influence of pH (ranging from highly basic to near n e u t r a l i t y to highly acidic) on the rate of mineral breakdown and cation release from three types of rocks. The data have been summarized i n Tables XXVIII, XXIX and XXX to demonstrate c l e a r l y the magnitude of weathering observed during the experiment. I t i s evident from these tables that the rate and magnitude of weathering and ion exchange forces were much greater under conditions of low 4-pH with an H resi n than under the other conditions studied. I t i s known that the H"^ ion, with i t s single charge and small hydrated radius, Table XIX Simulated Weathering of Trachy - Andesite  with Distilled Water and H T Resin Parameter Weekly Intervals Total 1 2 3 4 5 6 4 7 8 9 Na + (ppm) 211.5 627,4 2110.5 786.3 4811.6 99.6 70.6 482.3 54.3 9254.3 K + (ppm) 214.7 39.5 28.2 31.7 32.5 46.1 23.9 24.6 25.0 466.2 Ca + 2 (ppm) 1362.0 0.0 12.4 0.2 0.0 0.0 0.0 0.0 0.0 137^.6 Mg + 2 (ppm) 3660.2 856.1 1951.7 1129.7 2.8 189.7 111.6 81.8 85.9 8069.5 w +3 Fe (ppm) 2568.1 983.9 2011.8 785.1 497.6 266.6 198.2 138.9 157.6 7607.8 Al +3 (ppm) 3066.0 659.4 1476.5 755.8 315.5 97.5 137.6 106.1 187.8 6802.2 S i * (ppm) 29.0 0.0 0.0 0.0 72.7 29.6 26.7 0.0 0.0 158.0 Table XIX (Continued) Simulated Weathering of Trachy - Andesite with Distilled Water and HT Resin Parameter 1 2 3 Weekly Intervals 4 5 6 7 8 9 Total PH 3.4 3.5 3.8 3.5 — 3.7 3.7 3.9 3.8 Conductivity (mmho/cm) 0.29 0.58 0.41 0.14 0.08 0.07 0.11 0.05 0.05 Na+ (ppm) 40.9 0.7 1.6 2.5 0.7 2.1 3.9 1.2 2.3 55.9 K + (ppm) 72.7 0.0 4.7 2.4 3.1 3.1 0.8 3.1 5.5 95.4 Ca + 2 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mg+2 (ppm) 3.9 1.3 6.0 8.6 4.5 2.8 3.5 2.8 0.6 34.0 Fe 4^ (ppm) 30.1 11.5 83.1 107.5 71.0 55.7 31.0 25.2 11.5 426.6 A l + 3 (ppm) 104.8 0.4 57.6 77.6 65.9 40.1 22.9 17.2 14.3 400.8 S i + ^ (ppm) 5705.6 2223.0 4732.6 19,957.0 1867.1 1407.6 1060.8 831.4 688.1 38,473.2 Table XX Simulated Weathering of Trachy - Andeslte  vrlth Distilled Water and OH" Resin Phase Parameter Weekly Intervals Total 1 2 3 4 5 6 7 8 9 n Na+ (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 •H CO K + (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0 0.0 0.0 0.0 s Ca"*^  (ppm) 0.0 0.0 0.0 0.0 3.4 0.0 1.6 0.0 0.0 5.0 o Mg+2 (ppm) 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 1.3 rbed F e + 3 (ppm) 0.0 0.0 0.0 o0o 0.0 0.0 0.0 0.0 0.0 0.0 Ad so A l + 3 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Si +4 (ppm) 0.0 0.0 0.0 o0o 0.0 0.0 0.0 0.0 0.0 0.0 Table XX (Continued) Simulated Weathering of Trachy - Andesite  with Distilled Water and 0H~ Resin Parameter 1 2 3 4 Weekly Intervals 5 6 7 8 9 Total PH 10.3 10.1 9.9 10.1 — 10.2 10.5 10.3 9.3 Conductivity (mmho/cm) 0.06 0.05 0.06 0.06 0.04 0.06 0.07 0.07 0.07 Na + (ppm) 26.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0 3.9 38.2 K+ (ppm) 29.7 6.3 37.2 13.7 22.3 16.0 11.7 10.6 12.9 160.4 Ca + 2 (ppm) 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 2.8 Mg+2 (ppm) 20.6 1.6 6.3 0.0 0.0 0.0 0.0 0.0 0.0 28.5 Fe J (ppm) 104.8 6.8 28.5 0.5 0.0 4.6 0.0 0.0 0.0 145.2 A l + 3 (ppm) 83.9 19.0 27.2 0.0 108.5 86.8 59.7 0.0 0.0 385.1 S i * (ppm) 352.5 81.3 108.7 54.5 613.5 234.0 180.0 13.8 0.0 1638.3 Table XXI Simulated Weathering of Trachy - Andesite  with Distilled Water Parameter 1 2 3 Weekly Intervals U 5 6 7 8 9 Total pH 6.5 6.6 6.7 6.2 6.4 6.8 7.2 6.9 Conductivity (mmho/cm) 0.03 0.06 0.04 0.04 0.06 0.03 0.01 0.02 0.02 — Na+ (ppm) 14.9 3.0 13.3 0.0 6.9 3.7 5.3 3.7 3.2 54.0 K+ (ppm) 65.6 26.2 17.6 25.0 23.5 8.2 15.3 12.1 3.1 196.6 Ca4"2 (ppm) 2.4 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 8.2 Mg + 2 (ppm) 27.6 8.4 21.3 24.7 27.7 9.2 3.2 19.9 5.5 147.5 Fe + 3 (ppm) 49.8 0.5 42.3 58.2 118.4 60.9 100.5 60.3 18.5 509.4 A l + 3 (ppm) 44.6 5.4 26.5 42.4 99.2 47.6 74.1 37.0 26.5 403.3 Si * * (ppm) 264.6 40.4 133.9 1350.6 265.4 106.9 463.0 301.6 105.8 3032.2 Table XXII Simulated Weathering of Granite with Distilled Water and H* Resin Parameter Weekly Intervals Total 1 2 3 4 5 6 7 8 9 Na + (ppm) 73.6 61.8 124.4 99.3 45.8 62.1 50.3 40.5 49.7 607.5 K+ (ppm) 110.0 83.3 205.3 195.1 84.5 56.7 43.8 42.6 51.2 872.5 Ca + 2 (ppm) 64.8 0.0 64*8 2.4 0.0 0.0 0.0 0.0 0.0 132.0 Mg+2 (ppm) 112.2 100.9 100.9 25.5 0,0 1.2 0*6 1.2 1.6 344.1 Fe + 3 (ppm) 1014.1 226.6 318.1 203.1 18.7 12.7 12.7 8.7 11.5 1826.2 Al +3 (ppm) 233.2 218.8 329.3 145.1 38.2 98.5 76.6 54.7 111.6 1306.0 Si +4 (ppm) 13.4 0.0 0.0 0.0 0.0 0.0 24.3 0.0 0.0 37.7 Table XXII (Continued) Simulated Weathering of Granite with Distilled Water and H+ Resin Parameter 1 2 3 Weekly Intervals 4 5 6 7 8 9 Total pH 4.2 4.0 3.8 3.3 — 3.7 3.9 4.0 3.9 Conductivity (mmho/cm) 0.05 0.18 0.12 0.21 0.15 0.08 0.06 0.05 0.05 Na+ (ppm) 4.8 0.0 0.0 3.9 0.2 0.0 2.3 0.5 5.1 16.8 K4" (ppm) 10.2 0.0 0.0 4.3 3.9 3.1 0.8 0.8 0.0 23.1 Ca (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mg+2 (ppm) 0.4 0.4 0.0 0.1 12.2 0.0 0.4 0.0 0.2 13.7 Fe+3 (ppm) 25.6 5.5 23.3 5.5 7.5 1.9 0.3 0.0 0.0 69.6 Al+3 (ppm) 51.8 0.0 5.3 19.0 5.5 1.1 1.4 0.0 0.0 84.1 S i 4 * ( p p m) 1421.7 983.8 2022.2 7765.6 790.2 572.0 629.1 465.0 547.1 15,196.7 Table XXIII Simulated Weathering of Granite  with Distilled Water and OH" Resin Phase Parameter Weekly Intervals Total « •H CQ & o o •8 o co 5 1 2 3 u 5 6 7 8 9 Na+ (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 K+ (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ca + 2 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mg+2 (ppm) 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.2 Fe + 3 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Al+3 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S i * (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o o Table XXIII (Continued) Simulated Weathering of Granite  with Distilled Water and OH" Resin Parameter 1 2 3 Weekly Intervals 4 5 6 7 8 9 Total pH 10.3 10.2 10.1 10.3 10.5 10.7 10.5 10.6 — Conductivity (mmho/cm) 0.06 0.07 0.07 0.10 0.07 0.12 0.13 0.12 O.UL Na+ (ppm) 18.9 2.1 13.3 0.0 0.0 1.4 0.0 0.0 10.4 46.1 K + (ppm) 22.3 5.1 14.5 9.4 11.3 8.2 7.4 4.3 7.0 89.5 Ca 4 2 (ppm) 0.0 0.0 18.6 2.2 64.1 45.3 34.5 21.2 40.5 226.4 Mg+2 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Fe+3 (ppm) 2.6 0.0 0.0 0.3 0.0 4.8 1.1 5.9 0.0 14.7 Al+3 (ppm) 0.0 18.6 0.0 0.0 32.0 37.4 26.6 0.0 0.0 114.6 Si +4 (ppm) 53.5 0.0 0.0 79.7 206.3 139.3 232.3 0.0 0.0 711.1 Table XXIV Simulated Weathering of Granite with Distilled Water Parameter 1 2 3 4 Weekly Intervals 5 6 7 8 9 Total PH 6.4 6.5 6.6 6.8 — 6.5 6.7 6.6 6.7 Conductivity (mmho/cm) 0.01 O.U 0.03 0.06 0.05 0.03 0.03 0.02 0.02 Na+ (ppm) 6.0 0.0 5.3 0.0 3.7 4.1 2.3 1.8 1.8 25.0 K + (ppm) 13.3 1.2 11.3 10.2 11.7 5.9 7.8 9.0 3.1 73.5 Ca + 2 (ppm) 2.4 0.0 23.4 0.0 0.0 0.0 0.0 5.0 0.0 30.8 >fe+2 (ppm) 3.2 0.7 1.6 0.7 0.5 0.2 0.6 23.4 0.2 31.1 Fe + 3 (ppm) 0.0 0.0 0.5 0.0 9.2 10.4 5.2 2.6 0.0 27.9 Al +3 (ppm) 18.1 5.1 0.0 0.0 5.2 5.2 0.0 0.0 0.0 33.6 S i + 4 (ppm) 116.8 25,4 362.1 388.3 51.3 25.1 194.7 129.8 77.9 1371.4 Table XXV Simulated Weathering of Quartz Monzonite with Distilled Water and If Resin Parameter Weekly Intervals Total 1 2 3 4 5 6 7 8 9 Na+ 57.5 29.0 120.9 2.5 1882.9 91.5 53.3 38.4 47.8 2323.8 & 116.1 58.7 152.9 199.7 64.9 52.4 39.9 41.5 48.1 774.2 Ca + 2 48.6 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0 68.6 Mg+2 112.2 100.9 100.9 25.5 0.0 1.2 0.6 lo2 1.6 344ol Fe +3 1336.8 132.3 325.7 232.9 16.5 15.9 11.7 9.6 15.2 2096.6 Al+3 307.7 107.5 336.0 136.3 26.7 91.4 69.9 45.7 105.7 1226.6 S i * 39.8 0.0 0.0 0.0 53.8 0.0 0.0 0.0 0.0 93.6 Table XXV (Continued) Simulated Weathering of Quartz Monzonite  with Distilled Water and E1" Resin Parameter 1 2 3 Weekly Intervals 4 5 6 7 8 9 Total pH 4.3 4.1 4.0 3.4 3.8 3.9 3.9 3.9 Conductivity (mmho/cm) 0.04 0.16 0.13 0.16 0.08 0.06 0.06 0.05 0.05 Na+ (ppm) 15.9 92.2 0.7 4.8 0.5 0.7 1.2 0,5 0.7 117.2 (ppm) 12.9 2.7 3.1 0.8 3.1 2.7 0.8 0.8 0.0 26.9 Ca + 2 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mg+2 (ppm) 0.4 0.4 0.0 0.1 12.2 0.0 0.4 0.0 0.2 13.7 Fe+3 (ppm) 29.0 4.0 22.9 4.0 4.7 1.0 1.6 0.0 13.4 80.6 A l + 3 (ppm) 51.3 0.0 5.1 0.0 5.4 2.7 1.3 0.0 0.0 65.5 Si +4 (ppm) 1665.6 724.2 1488.7 4511.8 532.2 398.9 618.3 457.0 483.9 10,880.6 Table XXVI Simulated Weathering of Quartz Monzonite with Distilled Water and OH" Resin Phase Parameter Weekly Intervals Total CO & o o +> 1 3 CD •B o CO 3 1 2 3 A 5 6 7 8 9 Na+ (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ca + 2 (ppm) 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 1.6 Mg+2 (ppm) 0.0 0.0 0.0 0.0 0o2 0.0 0.0 0.0 0.0 0.2 Fe + 3 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Al +3 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 S i * (ppm) 0.0 o.c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o Table XXVI (Continued) Simulated Weathering of Quarts Monzonite with Distilled Water and Oh*" Resin Parameter Weekly Intervals Total 1 2 3 4 5 6 7 8 9 PH 10.3 10.2 10.1 10.2 10.4 10.8 10.8 10.5 Conductivity (mmho/cm) 0.06 0.16 0.08 0.09 0.05 0.10 0.12 0.19 0.10 Na+ (ppm) 29.2 12.6 14.5 0.0 0.0 13.6 0.0 0.0 8.1 78.0 K + (ppm) 43.4 10.2 13.3 5.1 60.6 6.3 8.6 4.3 5.5 157.3 Ca + 2 (ppm) 51.2 0.0 16.0 2.0 43.7 25.1 26.5 334.7 14.8 514.0 Mg+2 (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 Fe + 3 (ppm) 0.0 0.0 0.5 0.0 0.0 24.9 15.5 15.0 8.0 63.9 A l + 3 (ppm) 0.0 18.6 0.0 0.0 22.4 38.7 26.6 0.0 0.0 106.3 S i 4 * ( p p m) 26.7 0.0 0.0 53.0 139.4 85.8 526.3 0.0 0.0 831.2 In Solution t o CD r= s? d= Vjj *CJ •rJ *c *tJ *t3 w *t3 ro t+ CD »1 vO H O -J • • JO CO OO VjJ jo JO JO o o vO O JO ON Vo JO 00 o o ^3 vo o o o ON e JO JO VJI vn vo o o o o CN K fc JO vn o • o ON ON VO JO vn v* o o VO JO JO o o VO o o ON O vO • • o o • • JO o • VO 00 ON vO o 00 ON o o o o ON ON ON ON CD CD CO r3 H CD 9 s O o JO o ON JO JO vO o ON o o ON 00 o o VO ON vO o VO o o o 00 3^ 3^ • VO o O o o JO VO a o p3 VO M • • H JO Vo r-3 - AO I -Table XXVIII Summary of Cation Removal from Trachy-Andesite Amount in Amount Removed by Amount Removed by Amount Removed by unweathered OH" Resin and Dis t i l l e d H+ Resin and Di s t i l l e d D i s t i l l e d Water Parameter Rock Water Water (ppm) (ppm) (fl (ppm) (f l (ppm) (f l Na + 86,128.1 38.2 0.04 9,310.2 10.81 54.0 0.06 K + 39,045.3 160.4 0.41 561.6 1.44 196.6 0.50 C a + 2 3,168.3 7.8 0.25 1,374.6 43.39 8.2 0.26 % + 2 8,853.7 29.8 0.34 8,103.5 91.53 147.5 1.67 F e + 3 30,535.9 146.5 0.48 8,034.4 26.31 509.4 1.67 A l + 3 62,268.8 385.1 0.62 7,203.0 11.56 403.3 0.65 Si+4 770,010.0 1,638.3 0.21 38,631.2 5.02 3,032.2 0.39 Table XXIX Summary of Cation Removal from Granite Amount In unweathered Amount Removed by OH" Resin and Distilled Amount Removed by H + Resin and Distilled Amount Removed by Distilled Water imeter Rook (ppm) Water (ppm) (30 Water (ppm) ( » (ppm) (*) Na+ 35,760.4 46.1 0.80 624.3 1.75 25.0 0.07 37,379.6 89.5 0.24 895.6 2.40 73.5 0.20 Ca + 2 84.2 226.4 268.88 132.0 156.77 30.8 36.58 Mg+2 510.7 0.2 0.04 357.8 70.06 31.1 6.09 Fe + 3 9,664.7 14.7 0.15 1,895.8 19.62 27.9 0.29 Al +3 56,601.4 114.6 0.20 1,390.1 2.45 33.6 0.06 S I * 860,000.0 711.1 0.08 15,234.4 1.78 1,371.4 0.16 o Table XXX Summary of Cation Removal from Quartz Monzonite Parameter Amount in Unweathered Amount Removed by OH- Resin and Distilled Amount Removed by H + Resin and Distilled Amount Removed by Distilled Water Rock (ppm) Water (ppm) (%) Water (ppm) (%) (ppm) (%) Na+ 67,852.3 78.0 0.11 2,441.0 3.60 44.3 0.07 Z+ 39,135.2 157.3 0.40 801.1 2.05 84.4 0.22 Ca + 2 126.3 515.6 408.23 68„6 54.32 42.2 33.41 Mg+2 960.6 0.2 0.02 357.8 37.25 31.1 3.24 Fe + 3 8,428.9 63.9 0.76 2,177.2 25.83 11.1 0.13 Al +3 35,696.2 106.3 0.29 1,292.1 3.62 19.1 0.05 S i 4 * 847,300.0 831.2 0.10 10,974.2 1.30 971.1 0.11 o I - I l l -w i l l g e n e r a l l y t e n d t o d i s p l a c e most o t h e r c a t i o n s . As R e i c h e (1962) summarized, "the r e a d i n e s s w i t h w h i c h i o n s a t t a c h t h e m s e l v e s t o a c h e m i c a l l y a c t i v e s u r f a c e i s r e l a t e d t o the t h i c k n e s s o f the a d s o r b e d w a t e r f i l m s w i t h w h i c h t h e y a r e s u r r o u n d e d . The g r e a t e r t h e t h i c k n e s s , t h e l e s s s t r o n g l y can t h e charge w i t h w h i c h th e i o n s are e q u i p p e d be a t t r a c t e d by the o p p o s i t e c h a r g e s o f t h e i n n e r i o n i z e d s h e a t h s u r r o u n d i n g t h e p a r t i c l e o r s u r f a c e . The t h i n n e r t h e adsorbed w a t e r f i l m s , the b e t t e r a b l e a r e t h e i o n s t o elbow t h e i r way i n t o t h a t s h e a t h and d i s p l a c e o t h e r i o n s a l r e a d y i n p o s i t i o n . The f o l l o w i n g s e r i e s have been worked o u t : A n i o n s : S 0 4 < F < N0 3 < C l < B r < I < CMS . . . < OH C a t i o n s : L i <Na; K <Mg < Ca < S r < Ba < A l . . . < H I n a g e n e r a l way, t h o s e t o t h e r i g h t t e n d t o d i s p l a c e t h o s e t o t h e l e f t i n e i t h e r s e r i e s . " I t f o l l o w s t h e n t h a t t h e g r e a t e s t d i s p l a c e m e n t o f c a t i o n s from r o c k s s h o u l d o c c u r i n t h o s e s o l u t i o n s h a v i n g t h e most hydrogen i o n s . T h e r e f o r e t h e o b s e r v e d degree o f w e a t h e r i n g caused by t h e H~^  r e s i n was much g r e a t e r t h a n by e i t h e r t h e OH r e s i n o r d i s t i l l e d w a t e r . W e a t h e r i n g i n t h e OH r e s i n s o l u t i o n seemed v e r y comparable t o t h a t caused by d i s t i l l e d w a t e r a l o n e . However, had the r e l e a s e o f a n i o n s d u r i n g t h e s e w e a t h e r i n g s t u d i e s been o b s e r v e d t h i s p i c t u r e might have - 1 1 2 -appeared somewhat d i f f e r e n t . Under a c i d i c conditions the release of cations was greatest from trachy-andesite and least from granite. Once again, therefore, agreement was demonstrated between cation release and the s t a b i l i t i e s of the constituent minerals. Trachy-andesite was comprised mostly of orthoclase and plagioclase feldspars. The r e l a t i v e amounts of sodium and calcium removed from the rock would suggest that the plagioclase feldspars present were primarily a l b i t e , at the sodium end of the s o d i c - c a l c i c plagioclase s e r i e s . Reiche (1950) pointed out that the amphoteric nature of aluminum may lead to i t s solution i n either acid or a l k a l i n e waters. As shown i n the Tables XXVIII to XXX, the H resins removed at l e a s t 10 or 20 times as much aluminum from the rocks as did e i t h e r the OH resins or d i s t i l l e d water. In the granite and quartz monzonite samples at l e a s t , however, the removal of aluminum was much greater i n the presence of OH " r e s i n s than i n d i s t i l l e d water alone. I t was generally observed that during the 5th, 6th, and 7th weeks of the study there was a noticeable increase i n the amount of aluminum removed by the OH r e s i n s . A tendency towards s l i g h t l y higher pH values i n the solution was also noticed at t h i s time. - 1 1 3 -I t was also i n t e r e s t i n g to observe that calcium, i r o n , and s i l i c a displayed a pattern of release somewhat s i m i l a r to that shown by aluminum. That i s , the amount of each element removed under a l k a l i n e conditions tended to increase during the middle and l a t t e r stages of the experiment. This i s i n quite d i r e c t contrast to the pattern displayed under a c i d i c conditions i n which the amounts released tended to decrease with time. These observations demonstrated two things. The f i r s t i s that a c i d i c conditions tend to promote rapid weathering. This i s probably re l a t e d to the replacement power of the H ^ i o n . The release of cations through weathering proceeds much more slowly under neutral or a l k a l i n e conditions. The second thing i s that the rate of weathering of an exposed rock or mineral surface generally decreases with time. If t h i s were not true, then the amount of each element removed each week should have remained constant throughout the experiment. This did not always happen, however. The r e l a t i v e l y high removals at the beginning of the release period probably represented the loss of r e a d i l y leached elements from the outer, freshly exposed rock or mineral surfaces. These are i n very intimate contact with the weathering - 114 -solution and obviously susceptible to attack. Even though somewhat ragged and disrupted, the remaining mineral skeletons on the outer surface tended to provide a p a r t i a l l y e f f e c t i v e b a r r i e r to further losses of inner mineral constitutents. I t i s believed that the weathering of feldspar minerals and the consequent release of sodium, potassium, and calcium (and s i l i c a ) accounted for a major portion of the amounts of these elements removed from the rock samples by both ion exchange and perfusion. F i e l d observations of exposed rock surfaces often showed the loss of feldspar pheno-cryst s . This was p a r t i c u l a r l y true of rocks of the Kamloops Group (rhy o l i t e porphyry and trachy-andesite) and most notably where rock surfaces were i n d i r e c t contact wrth s o i l s or plants. The undersides of rocks l y i n g on the s o i l surface were commonly p i t t e d with holes the exact s i z e and shape of the remaining p o r p h y r i t i c feldspar minerals. Removing mosses growing on rocks revealed a considerable amount of grus and often the absence of feldspar minerals from the rock surface below. These observations indicated that some of the feldspar minerals may be l o s t quite r e a d i l y from the parent rock and that the i n t e n s i t y of weathering was greater at the interface between rocks and - 1 1 5 -the biosphere than at the rock-atmosphere in t e r f a c e . E. Summary Bedrock samples c o l l e c t e d from outcrops near the slough were i d e n t i f i e d as quartz monzonite, granite,and trachy-andesite. Determination of the chemical composition of these rocks revealed that trachy-andesite contained more bases and less s i l i c a than quartz monzonite, which i n turn had more bases and less s i l i c a than granite. The amount of bases (sodium, potassium, calcium, and magnesium) present i n each rock was related to t h e i r feldspar contents. Simulated weathering experiments were conducted to examine the release of cations from crushed, or " p h y s i c a l l y weathered" samples of each of the three kinds of rocks. In one set of experiments, samples of the crushed rock materials were leached with d i s t i l l e d water for f i v e weeks i n perfusion units. In a second experiment, the crushed rock materials were shaken with d i s t i l l e d water and + -with H or OH ion exchange r e s i n s . i n d i s t i l l e d water for nine weeks. It i s believed that the lowered pH observed in the perfusion units was due to the absorption of atmospheric CO2 and the formation of carbonic acid. H^ CO-, dissociates -in water, making H ions - 116 -available for weathering of rock minerals. The observed release of cations from the rock materials in the perfusion units was therefore p a r t l y due to the a c t i v i t y of carbonic acid and par t l y due to solution, hydration, and hydrolysis. Although these processes effected the release of cations from a l l three rock types, and d i f f e r e n t amounts from each rock type, the extent of cation removal was not great. Considerably higher amounts of each cation were released when the rock materials were shaken with d i s t i l l e d water than when they had been subjected to perfusion. This can be attributed to three factors: the constant a g i t a t i o n produced more intimate contact of the rock with the water, the solution was replaced with fresh d i s t i l l e d water each week, and the p a r t i c l e s i z e of the rock material was smaller so that a larger surface area was exposed. Adding OH r e s i n to the d i s t i l l e d water did not s i g n i f i c a n t l y increase the amounts of cations removed from the rocks. The most notable exceptions to thi s general observation were the r e l a t i v e l y high amounts of calcium and aluminum released from granite and quartz monzonite i n the presence of the OH r e s i n . These increases can probably be attributed to the increased - 117 -s o l u b i l i t y of certain calcium compounds at pH 8 and of aluminum at pH 10. Although the removal of anions by the OH r e s i n was not measured, i t was assumed to occur. I t was f e l t that such removal would r e s u l t i n the breakdown of mineral structures, followed by the release of cations, but t h i s was not observed. The pH of the H ^ r e s i n systems varied with time and between samples, but were generally around pH 4.0. This i s the same as the equilibrium pH value established i n the perfusion units. However, a great many more cations were removed from the rock materials by the H * resins than by the perfusion u n i t s . This served to demonstrate the great importance of ion exchange as a weathering force. The experimental r e s u l t s obtained from these studies cannot be applied d i r e c t l y to Nature. The environmental conditions p r e v a i l i n g in the perfusion units or i n the b o t t l e s containing resins do not e x i s t at Slippy Slough. However, rainwater does absorb CO2 from the atmosphere and i s therefore a c i d i c . C a r r o l l (1970) reported that the rainwater of northern Europe had an average pH of 5.47 and that of the United States was between pH 6 and 7. During the passage of rainwater over rocks and through s o i l s , hydration, - 1 1 8 -hydrolysis, solution, and ion exchange a l l occur to varying extents. The mere exposure of minerals to a i r leads to weathering through oxidation-reduction reactions. So i t would appear that the weathering processes observed i n the laboratory are operative in the f i e l d , although i t i s not known i f they operate to the same extent or at the same rate. It i s thought, however that the weathering environment i n the perfusion units might approximate weathering conditions i n the s o i l mantle during periods of abundant s o i l moisture. Weathering of bedrock outcrops due to the influences of moisture alone would be expected to be much slower than weathering of s o i l minerals because of the small surface area exposed. This i s o f f s e t i n the f i e l d to some extent however by the presence of organisms such as mosses and lichens. Such organisms were observed to be responsible for active weathering of rock surfaces. I t was f e l t that the amounts of i n d i v i d u a l cations released from each rock could be related to the mineralogical composition of the rocks. In general, there was reasonably good c o r r e l a t i o n between cation release, mineralogical composition, and the Goldich S t a b i l i t y Series. Based on the observed concentrations of released cations, on - 119 -the known s t a b i l i t i e s of the constituent minerals, and on f i e l d observations of weathered rocks, i t was concluded that the weathering of feldspar minerals (sodium plagioclase and orthoclase), and perhaps dolomite, was responsible for most of the sodium, potassium, calcium, and magnesium released from the rock materials. The feldspar minerals are dominant constituents of most rocks i n the study area and are probably a major constituent mineral of s o i l s developed on parent materials derived from these rocks. I t i s believed that weathering forces, modified by the influences of microclimate, topography,.and organism, have affected s i g n i f i c a n t removal of sodium, potassium, calcium, and magnesium from the f e l d s p a r - r i c h s o i l s and rocks of the study area during the post-g l a c i a t i o n period and that the s a l i n i t y of Slippy Slough can be a t t r i b u t e d to the gradual, downslope transfer of these soluble weathering products. - 120 -SUMMARY AND CONCLUSIONS S l i p p y Slough i s a s m a l l , s a l i n e l a k e i n t h e I n t e r i o r o f B r i t i s h C o l u m b i a near Vernon. Two s p e c i e s o f s a l t - t o l e r a n t g r a s s e s ( S a l t g r a s s #1 and S a l t g r a s s #2) were o b s e r v e d t o occupy v e r y d i s t i n c t zones i n t h e s a l t - a f f e c t e d s o i l s around t h e p e r i m e t e r o f t h e s l o u g h . Rushes o c c u p i e d a t h i r d , somewhat l e s s w e l l -d e f i n e d zone above th e h a l o p h y t i c g r a s s e s . O t h e r p l a n t c o m m u n i t i e s , dominated by aspen, common range o r p a s t u r e g r a s s e s , w a x b e r r y , Douglas f i r , o r P o nderosa p i n e o c c u p i e d p o s i t i o n s i n t h e s u r r o u n d i n g l a n d s c a p e t h a t were s u f f i c i e n t l y w e l l d e f i n e d t o i n d i c a t e t h a t c e r t a i n e n v i r o n m e n t a l f a c t o r s c o n t r o l l e d t h e i r d i s t r i b u t i o n . T h i s t h e s i s r e p r e s e n t s an a t t e m p t t o c h a r a c t e r i z e t h e s l o u g h and t h e s u r r o u n d i n g s o i l s and p l a n t communities; t o examine t h e r e l a t i o n s h i p between the w e a t h e r i n g o f r o c k m i n e r a l s and t h e s a l i n i t y o f t h e s l o u g h ; t o e x p l o r e t h e i n f l u e n c e o f t h e s a l i n e s l o u g h on t h e s u r r o u n d i n g s o i l s ; and t o e x p l a i n t h e o b s e r v e d d i s t r i b u t i o n o f p l a n t communities i n the v a l l e y . E x a m i n a t i o n o f l o c a l b edrock m a t e r i a l s r e v e a l e d t h a t o r t h o c l a s e and sodium p l a g i o c l a s e f e l d s p a r s - 121 -were dominant c o n s t i t u e n t m i n e r a l s . As a r e s u l t o f e x p e r i m e n t s conducted t o s i m u l a t e c e r t a i n w e a t h e r i n g f o r c e s , i t was c o n c l u d e d t h a t s i g n i f i c a n t amounts of sodium, p o t a s s i u m , c a l c i u m , and magnesium were r e l e a s e d from b e d r o c k m a t e r i a l s , and e s p e c i a l l y f r om th e f e l d s p a r m i n e r a l s . I t was a l s o c o n c l u d e d t h a t t h e r a t e o f r e l e a s e was g r e a t e s t under a c i d i c c o n d i t i o n s . C a t i o n , r e l e a s e was a l s o r e l a t e d t o t h e p a r t i c l e s i z e o f the r o c k m a t e r i a l s , t o t h e degree of i n t i m a c y between the r o c k m a t e r i a l s and w a t e r , t o t h e l e n g t h o f t ime the r o c k m a t e r i a l s were s u b j e c t e d t o w e a t h e r i n g , and t o t h e r e p l a c e m e n t of s o l u t i o n s c o n t a i n i n g w e a t h e r i n g p r o d u c t s w i t h a f r e s h s u p p l y o f w a t e r . Io n exchange was found t o be a much more p o t e n t w e a t h e r i n g f o r c e t h a n s o l u t i o n , h y d r a t i o n , o r h y d r o l y s i s . The s i g n i f i c a n c e o f t h e r o l e o f organisms i n r o c k w e a t h e r i n g was o b s e r v e d i n t h e f i e l d . I t i s b e l i e v e d t h a t i n t h e p o s t g l a c i a t i o n p e r i o d , t h e b e d r o c k and s o i l m a t e r i a l s o f t h e v a l l e y have been s l o w l y w e athered under t h e i n f l u e n c e o f p r e c i p i t a t i o n and o r g a n i s m s . The s l o w r e l e a s e o f s o l u b l e s a l t s f r om t h e s e e a r t h m a t e r i a l s , and t h e i r g r a d u a l t r a n s f e r downslope d u r i n g p e r i o d s o f temporary m o i s t u r e abundance has l e d t o t h e development o f the s a l i n e w a t e r body i n the d e p r e s s i o n . The volume o f w a t e r i n the s l o u g h was o b s e r v e d - 12 2 -to fluctuate i n response to changes i n annual c l i m a t i c conditions. The s a l i n i t y of the lake varied seasonally, increasing during the summer as water was l o s t through evaporation and decreasing thereafter as the lake l e v e l rose again during the f a l l to spring recharge period. S o i l conductivity, pH, and content of soluble, exchangeable, and t o t a l s a l t s were greatest i n the s o i l s of the exposed lakebed and decreased progressively through each plant community zone outward from the lake. At the upper boundary of the Saltgrass #2 zone a marked decrease i n these s o i l factors was apparent. The rush community therefore marked the boundary between " s a l t - a f f e c t e d " s o i l s and "normal" s o i l s . The s a l t -affected s o i l s were occupied only by halophytic grass species, and perhaps near t h e i r upper boundary by rushes to a l i m i t e d extent. The high osmotic pressure of the s o i l s o l u t i o n and the abundance of soluble s a l t s cannot be tolerated by non-halophytes. Within the area occupied by the halophytic grasses, Saltgrass #1 occupied the zone immediately adjacent to the slough. S o i l s of t h i s zone had higher pH, conductivity, and s a l t content than s o i l s of the second zone which supported Saltgrass #2. Because of t h e i r p o s i t i o n i n the landscape, the s o i l s of the S a l t -grass #1 zone were most strongly, influenced by the saline slough. A l k a l i z a t i o n and s a l i n i z a t i o n of these - 12 3 -s o i l s were t h e r e f o r e more pronounced than i n the s o i l s under S a l t g r a s s #2. I t i s b e l i e v e d t h a t t h i s d i f f e r e n c e i n the degree of i n t e n s i t y o f s a l i n i z a t i o n and a l k a l i z a t i o n p l a y e d a s i g n i f i c a n t r o l e i n de t e r m i n i n g the d i s t r i b u t i o n of the s a l t - t o l e r a n t g r a s s e s . S a l t g r a s s #1 i s thought t o be more t o l e r a n t o f s a l i n e and a l k a l i s o i l c o n d i t i o n s than S a l t g r a s s #2. The d i f f e r e n c e i n the degree of i n t e n s i t y o f these processes was determined l a r g e l y by the l e n g t h o f time s o i l s were inundated by, or s a t u r a t e d w i t h , the s a l i n e waters of the sloug h . I t i s p o s s i b l e t h e r e f o r e , t h a t S a l t g r a s s #1 i s a l s o more t o l e r a n t o f prolonged i n u n d a t i o n than S a l t g r a s s #2. S a l t - r e l a t e d edaphic f a c t o r s d i d not appear t o p l a y a s i g n i f i c a n t r o l e i n d e t e r m i n i n g the d i s t r i b u t i o n of the n o n - h a l o p h y t i c p l a n t communities i n the normal s o i l s o f the v a l l e y . I t i s b e l i e v e d t h a t the d i s t r i b u t i o n of these p l a n t s was c o n t r o l l e d by v a r i a t i o n s i n s i t e m i c r o c l i m a t e a s s o c i a t e d w i t h changes i n the nature of the landscape. V a r i a t i o n s i n s l o p e , a s p e c t , and e l e v a t i o n i n f l u e n c e the amount of p r e c i p i t a t i o n and d r a inage waters r e c e i v e d and r e t a i n e d a t d i f f e r e n t s i t e s . I t i s b e l i e v e d t h a t the observed d i s t r i b u t i o n of p l a n t communities r e f l e c t e d these changes i n s i t e m i c r o c l i m a t e due to the c o n f i g u r a t i o n o f the landscape. In summary, then, t h i s study has shown t h a t the - 12H -n a t u r e and d i s t r i b u t i o n o f s o i l s and p l a n t communities a r e t r u l y a f u n c t i o n o f t h e " f i v e f a c t o r s " : c l i m a t e , r e l i e f , o r g a n i s m s , g e o l o g i c m a t e r i a l s , and t i m e . I t has a l s o been shown, however, t h a t w e a t h e r i n g and t h e f o r m a t i o n o f i n l a n d , s a l i n e w a t e r b o d i e s are a l s o f u n c t i o n s o f t h e same, f i v e f a c t o r s . And t h a t because t h e s l o u g h and t h e s o i l s , and t h e d i s t r i b u t i o n o f p l a n t communities a r e p r o d u c t s o f the same f i v e f o r m a t i v e i n f l u e n c e s , t hey a r e each m u t u a l l y dependent on t h e o t h e r s . I n f a c t , t h e e q u a t i o n can now be a l t e r e d t o r e a d : W e a t h e r i n g , S o i l s , j. , . » = f ( c , r , o, p, t ) P l a n t s , and S a l i n e S l oughs The p e r s o n a l r e v e l a t i o n o f t h e h o n e s t y i n h e r e n t i n t h i s e q u a t i o n was perhaps t h e most i m p o r t a n t , s i n g l e d i s c o v e r y r e s u l t i n g f r om t h e e x a m i n a t i o n o f S l i p p y S l o u g h . I t was s l o w l y r e a l i z e d t h a t t h e c h a r a c t e r o f t h e v a l l e y c o u l d n o t be a t t r i b u t e d t o any s i n g l e f a c t o r . N a t u r e o p e r a t e s as a complete o r g a n i s m ; i f we w i s h t o u n d e r s t a n d Her, we must be p r e p a r e d t o s t u d y the whole or g a n i s m . LITERATURE CITED Adams, D.A. 1963. Factors influencing vascular plant zonation i n North Carolina s a l t marshes. Ecology, Vol. 44, No. 3, 445-456. Bourdeau, P.F. and D.A. Adams. 1956. Factors i n vegetational zonation of s a l t marshes near Southport, North Carolina; as c i t e d by Adams, 1963. Buckman, H.O. and N.C. Brady. 1960, Sixth E d i t i o n . The nature and properties of s o i l s . The Macmillan Company, New York. 544 pp. Canada Department of Transport, Meteorological Branch 1967. Temperature and p r e c i p i t a t i o n tables for B r i t i s h Columbia. C a r r o l l , D. 1970. Rock weathering. Plenum Press, New York. 187 pp. Chapman, V.J. 1940. Studies i n s a l t marsh ecology; as c i t e d by Adams, 1963. Clements, F.E. 1907. Plant physiology and ecology. Henry Holt and Company, New York. pp. 289-303. Daubenmire, R.F. 1967, Second E d i t i o n . Plants and environment. John Wiley and Sons, Inc., New York, 373 pp. Dodd, J.D. and R.T. Coupland. 1966. Vegetation of s a l i n e areas i n Saskatchewan. Ecology, Vol. 47, No. 6, pp. 958-967. Dodd, J.D., D.A. Rennie, and R.T. Coupland. 1964. The nature and d i s t r i b u t i o n of s a l t s i n uncultivated s a l i n e s o i l s i n Saskatchewan. Can. J. S o i l S c i . , Vol. 44, pp. 165-175. Goldich, S.S. 1938. A study of rock weathering. Jour. Geol., Vol. 46. pp. 17-58. Jenny, H. 1941. Factors of s o i l formation. McGraw-Hill Book Company, Inc. New York and London. 2 69 pp. - 12 6 -13. Johnson, D.S. and H.H. York. 1915. The r e l a t i o n of plants to tide l e v e l s . Cited by Adams, 1963. 14. Jones, A.G. 1959. Geological Survey of Canada, Memoir 296: Vernon Map-Area, B r i t i s h Columbia. Canada Department of Mines and Technical Surveys. 163 pp. 15. Kaufman, D.D. 1966. An inexpensive, p o s i t i v e pressure, s o i l perfusion system. Weeds, 14, pp. 90-91. 16. Kelley, C C . and R.H. Spilsbury. 1949. S o i l survey of the Okanagan and Similkameen Valleys, B r i t i s h Columbia. Report No. 3 of B r i t i s h Columbia Survey. The B r i t i s h Columbia Department of Agriculture i n cooperation with Experimental Farms Service, Dominion Department of Agriculture. 17. Krajina, V.J. 1969. Ecology of Western North America. Vol. 2, No. 1. Department of Botany, University of B r i t i s h Columbia, 147 pp. 18. Lavkulich, L.M. 1974. Methods of s o i l analysis, Pedology Laboratory, U.B.C. Department of S o i l Science, University of B r i t i s h Columbia, Vancouver, B.C. 229 pp. 19. Prescott, J.A. 1949. A c l i m a t i c index for the leaching factor i n s o i l formation. Jour. S o i l S c i . , 1, pp. 9-19. 20. Reed, J.F. 1947. The r e l a t i o n of the Spartinetum glabrae near Beaufort, North Carolina, to certai n edaphic factors. Cited by Adams, 1963. 21. Reiche, P. 1950. A survey of weathering processes and products. New Mexico Univ. Publ. i n Geology, No. 3, 95 pp. 22. Richards, L.A., Editor. 1954. Diagnosis and improvement of saline and a l k a l i s o i l s . U.S. Department of Agriculture Handbook No. 60. U.S. Government P r i n t i n g O f f i c e , Washington, D.C. - 12 7 -23. Simonson, R.W. 1959. Outline of a generalized theory of s o i l genesis. S o i l S c i . Soc. Am. Proc., Vol. 23, pp. 152-156. 24. Thompson, A. 1970. Personal communication.. 25. Ungar, I.A. 1967. Vegetation-soil relationships on saline s o i l s i n Northern Kansas. Am. Midi. N a t u r a l i s t , Vol. 78, No. 1, pp. 98-120. 26. Walter, H. 1961. The adaptation of plants to saline s o i l s . A r i d Zone Research, UNESCO, Geneva, Sqitzerland, 14, pp. 129-134. 27. Warming, E. 1909. Ooceology of plants (an introduction to the study of plant communities). Oxford at the Clarendon Press. 373 pp. - 128 -APPENDIX I SITE DESCRIPTIONS - 1 2 9 -A e r i a l view of Slippy Slough showing general location of transects. - 130 -A. South Transect 1. Site 1 a) Dominant Vegetation: Douglas f i r (Pseudotsuga menziesii) Waxberry (Symphoricarpus albus) Kinnickinnick (Arctostaphylos Uva-ursi) Pinegrass (Calamagrostis rubescens) Twinflower (Lmnea borealis) Heart-leaf arnica (Arnica c o r d i f o l i a ) b) Topographic Class: Gently r o l l i n g c) Aspect: North-northwest d) S o i l Subgroup: Orthic E u t r i c Brunisol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description LFH 1.2-0 A thin surface covering of forest l i t t e r i n various stages of decomposition. Weakly calcareous. Abrupt, smooth boundary to: Ah 0-30.5 Black (10 YR 2/1 moist); gravelly sandy loam; granular; f r i a b l e ; abundant roots; few cobbles; 21% gravel. Weakly calcareous. pH 6.1. Gradual boundary to: AhBm 30.5-48.2 Black (10 YR 2/1 moist); gravelly sandy loam; granular; f r i a b l e ; many roots; few cobbles; 2 4% gravel. Weakly calcareous; pH 6.0. Clear boundary to: - 131 -Horizon Depth (cm) Description C 4 8.2-71.2 v+) Yellowish brown (10 YR 5/4 moist); gravelly sandy loam; strong medium angular blocky; firm; few roots; some cobbles; 4 4% gravel. Weakly calcareous. pH 6.5. - 132 -S i t e 2 a) Dominant V e g e t a t i o n : Timothy (phleum p r a t e n s e ) Kentucky B l u e g r a s s (Poa p r a t e n s i s ) Smooth Brame (Bromus i n e r m i s ) b) T o p o g r a p h i c C l a s s : G e n t l y s l o p i n g c) A s p e c t : N o r t h d) S o i l Subgroup: Rego B l a c k Chernozem e) S o i l P r o f i l e C h a r a c t e r i s t i c s : H o r i z o n Depth (cm) D e s c r i p t i o n Ap 0-35 .6 B l a c k (10 YR 2/1 m o i s t ) ; g r a v e l l y loam; m o d e r a t e l y c o a r s e a n g u l a r b l o c k y ; f r i a b l e ; many r o o t s ; s t o n e -f r e e ; 19% g r a v e l . Weakly c a l c a r e o u s . pH 7 . 9 . G r a d u a l boundary t o : C 35.6-76.2(+) L i g h t g r a y (2.5 Y 7/2 m o i s t ) ; g r a v e l l y loamy s a n d ; moderate medium a n g u l a r b l o c k y ; v e r y l o o s e ; some c o b b l e s ; 24% g r a v e l . M o d e r a t e l y c a l c a r e o u s . pH 8 .4 . - 133 -S i t e 3 a) Dominant V e g e t a t i o n : Timothy (Phleum pratense) Kentucky Bluegrass (Poa p r a t e n s i s ) Rush (Juncus spp.) b) Topographic C l a s s : Very g e n t l y s l o p i n g c) Aspect: North S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) D e s c r i p t i o n Ap 0-30.5 Black (10 YR 2/1 m o i s t ) ; s i l t loam; g r a n u l a r ; very f r i a b l e ; abundant r o o t s ; s t o n e - f r e e . Very s t r o n g l y c a l c a r e o u s . pH 7.8. C l e a r , smooth boundary t o : d) S o i l Subgroup: S a l i n e Humic G l e y s o l e) Bgs 30.5-48.2 L i g h t gray (5 Y 7/1 m o i s t ) ; s i l t loam; weak medium angular b l o c k y ; very f r i a b l e ; few to many r o o t s ; stone-f r e e ; 1% g r a v e l . Extremely c a l c a r e o u s . Weakly s a l i n e . pH 8.3. C l e a r , smooth boundary t o : Cg 48.2-71.2 C+) Dark y e l l o w i s h brown (10 YR 4/4 m o i s t ) ; g r a v e l l y loamy sand; weak medium subangular b l o c k y b r e a k i n g to f i n e and medium g r a n u l a r ; l o o s e ; few r o o t s ; s t o n e - f r e e , 34% g r a v e l . Weakly c a l c a r e o u s . pH 8.1. - 134 -Site 4 a) Dominant Vegetation: Saltgrass #2 ( D i s t i c h l i s s t r i c t a ) b) Topographic Class: Level to very gently sloping c) Aspect: North d) S o i l Subgroup: Saline Humic Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ah 0-25.4 Very dark gray (10 YR 3/1 moist); clay loam; medium angular blocky breaking to granular; abundant roots-; stone-free. Extremely calcareous. Weakly s a l i n e . pH 8.2. Clear boundary to: Bgs 25.4-66.0 Light gray to gray (5 Y 6/1-moist); s i l t loam; weak coarse angular blocky breaking to granular; loose; very few gravels. Extremely calcareous. Moderately s a l i n e . pH 8.5. Abrupt boundary to: Cgs 66.0-96.5 Light gray (5 Y 7/2 moist); s i l t loam; weak medium subangular blocky breaking to granular; loose; stone-free. Extremely calcareous. Weakly s a l i n e . pH 8.4. - .13 5 -S i t e 4: S a l t g r a s s 4 2 - 136 -Site 5 S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description a) Dominant Vegetation: Saltgrass #1 b) Topographic Class: Level c) Aspect: Not applicable d) S o i l Subgroup: Saline Humic Gleysol e) Ap 0-15.2 Bgs 15.2-27.9 BCgs 27.9-45.7 Black (10 YR 2/1 moist); s i l t y clay loam; moder-ately coarse angular blocky breaking to granular; abundant roots; stone-free; no gravel. Extremely calcareous. Strongly s a l i n e . pH 8.6. Abrupt, smooth boundary to: Olive gray (5 Y 5/2 moist); s i l t loam; moderately coarse angular blocky breaking to granular; loose; no roots; stone-free. Extremely c a l c a r -eous. Moderately s a l i n e . pH 8.5. Clear boundary to: Gray (5 Y 4/1 moist); s i l t loam; moderate medium subangular blocky; loose; no roots; stone-free. Extremely calcareous. Strongly s a l i n e . pH 8.4. Gradual boundary to: - 137 -Horizon Depth (cm) Cgs 45.7-76.2 Description Dark gray (5 Y 5/1 moist); s i l t loam; medium moderate angular blocky; loose; no roots; stone-free. Extremely calcareous. Strongly s a l i n e . pH 8.8. - 138 -6. S i t e 6 a) Dominant Vegetation: No t e r r e s t r i a l vegetation apparent; some red algae on s o i l surface. b) Topographic Class: Level to depressional c) Aspect: Not applicable d) S o i l Subgroup: Saline Humic Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ahgs 0-20.3 Very dark gray (5 Y 3/1 moist); loam; weak coarse subangular blocky breaking to granular; loose; appear to be some decaying roots or other organic matter; stone-free. Extremely calcareous. Strongly s a l i n e . pH 9.1. Clear smooth boundary to: Bgs 20.3-45.7 Olive (5 Y 5/3 moist); s i l t y clay; moderate medium sub-angular blocky; loose; stone-free. Extremely calcareous. Strongly s a l i n e . pH 8.5. Abrupt boundary to Cgs 4 5. 7-73.7W Grayish brown (2.5 Y 5/2 moist); sandy clay loam; medium angular blocky and coarse granular; loose; stone-free. Extremely calcareous. Strongly s a l i n e . Numerous coarse s a l t c r y s t a l s . pH 8.6. - 139 -B. North Transect S i t e 7 a) Dominant Vegetation: No t e r r e s t r i a l vegetation apparent; some red algae on s o i l surface. Aspect: Not applicable S o i l P r o f i l e C h a r a c t e r i s t i c s : b) Topographic Class: Level to depressional c) d) S o i l Subgroup: Saline Humic Gleysol e) Horizon Depth (cm) Ahgs 0-15.2 Bgs 15.2-30.5 Cgs 30.5-50.8 Description Black (5 Y 5/2 moist); s i l t ; weak coarse subangular blocky breaking to granular; loose; p l e n t i f u l f i n e roots; stone-free. Extremely calcareous. Strongly s a l i n e ; pH 8.7. Abrupt smooth boundary to: Pale o l i v e (5 Y 6/3 moist); s i l t loam; medium and coarse subangular blocky breaking to granular; loose; stone-free; no roots. Extremely calcareous. Strongly s a l i n e . pH 8.5. Clear boundary to: Olive gray (5 Y 5/2 moist); s i l t loam; granular; very loose and soupy; stone-free; no roots. Extremely calcareous. Strongly s a l i n e . pH 8.7. - 140 -Site 10 (Rush), looking south over Site 9, Site 8, and Slippy Slough Exposed lakebed at Site 7. Notice the shoreline retreat of 5.2 m between March 2 8 and June 29, 1970. - 141 -Site 8 S o i l P r o f i l e C h a r a c t e r i s t i c s : a) Dominant Vegetation: Saltgrass #1 b) Topographic Class: Level c) Aspect: Not applicable d) S o i l Subgroup: Saline Humic Gleysol e) Horizon Depth (cm) Ahs 0-7.6 Bgs 7.6-17.8 Cgs 17.8-40.6 Description Very dark gray (10 YR 3/1 moist); f i n e sandy loam; medium granular; loose; abundant roots; stone-free. Extremely calcareous. Moderately s a l i n e . pH 8.2. Clear smooth boundary to: Dark gray (5 Y 4/1 moist); fine sandy loam; moderate medium to coarse angular blocky; loose; many roots; stone-free. Extremely calcareous. Moderately s a l i n e . pH 8.2. Clear smooth boundary to: Olive (5 Y 5/3 moist); loam to s i l t loam; medium to coarse angular blocky; loose; few roots; stone-free. Extremely calcareous. Strongly s a l i n e . pH 8.4. - 142 -Site 9 a) Dominant Vegetation: Saltgrass #2 ( D i s t i c h l i s s t r i c t a ) b) Topographic Class: Level to very gently sloping S o i l P r o f i l e C h a r a c t e r i s t i c s : c) Aspect: South d) S o i l Subgroup: Saline Humic Gleysol e) Horizon Depth (cm) Ahs 0-15.2 Bgs 15.2-27.9 Cgs 27.9-50.8 Description Black (10 YR 2/1 moist); clay loam; medium granular; loose; abundant f i n e and medium roots; very few cobbles; 7% gravel. Extremely calcareous. Strongly s a l i n e . 2 to 3 cm layer of white s a l t c r y s t a l s on s o i l surface. pH 8.4. Clear smooth boundary to: Dark gray (5 Y 4/1 moist); s i l t y clay; moderate medium subangular blocky; many roots; stone-free. Extremely calcareous. Moderately s a l i n e . pH 8.5. Abrupt smooth boundary to: Olive gray (5 Y 5/2 moist); s i l t y clay; moderate coarse angular blocky; few roots; stone-free. Many s n a i l s h e l l s present. Extremely calcareous. Strongly s a l i n e . pH 8.5. - 14 3 -4. S i t e 10 a) Dominant V e g e t a t i o n : Rush (Juncus spp.) b) Topographic C l a s s : G ently s l o p i n g c) Aspect: South d) S o i l Subgroup: O r t h i c Dark Brown Chernozem e) S o i l P r o f i l e C h a r a c t e r i s t i c s : H o r i z o n Depth (cm) D e s c r i p t i o n Ah 0-10.2 Very dark gray (10 YR 3/1 m o i s t ) ; g r a v e l l y loamy sand; g r a n u l a r ; f r i a b l e ; abundant medium and coarse r o o t s ; s t o n e - f r e e ; 19% g r a v e l . Weakly c a l c a r e o u s . pH 6.9. Gradual boundary t o : Bm 10.2-30.5 Very dark gray (10 YR 3/1 m o i s t ) ; g r a v e l l y loamy sand; weak subangular b l o c k y b r e a k i n g t o g r a n u l a r ; l o o s e ; few r o o t s ; few c o b b l e s ; 27% g r a v e l . pH 7.2. C l e a r boundary t o : C 3 0 . 5W O l i v e gray (5 Y 5/2 m o i s t ) ; g r a v e l l y loamy sand; moderate medium angular b l o c k y ; compact but f r i a b l e ; no r o o t s ; few c o b b l e s ; 37% g r a v e l . pH 6.7. - 144 -5. Site 11 a) Dominant Vegetation: Ponderosa pine (Pinus ponderosa) Saskatoon (Amelanchier spp.) Waxberry (Symphoricarpus albus) Yarrow (Achillea millefolium) Douglas aster (Aster douglasii) Lupine (Lupinus spp.) Spring sunflower (Balsamorhiza sagittata) Cinquefoil ( P o t e n t i l l a milligrana) Wheatgrass (Agropyron spp.) Downy Brome (Bromus tectorum) b) Topographic Class: Undulating c) Aspect: South d) S o i l Subgroup: Orthic Black Chernozem e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ap 0-20.3 Ah and Bm mixed i n many places by road-building, grazing, and logging disturbances. Black (10 YR 2/1 moist); gravelly sandy loam to gravelly loamy sand; granular; loose; many stones and cobbles; 41% gravel. Weakly calcareous. pH 6.6. C 20.3-38.1 th) Dark yellowish brown (10 YR 3/4 moist); gravelly sandy loam; moderate to strong medium angular blocky; compact; many fine to medium roots; many stones and cobbles; 51% gravel. pH 6.7. - 14 5 -C. West Transect 1. S i t e 12 a) Dominant Vegetation: Douglas f i r (Pseudotsuga menziesii) Ponderosa pine (Pinus ponderosa) Waxberry (Symphoricarpus albus) Bitterbrush (Purshia tridentata) Saskatoon (Amelanchier spp.) Spring sunflower (Balsamorhiza sagittata) Yarrow (Achillea millefolium) Pinegrass (Calamagrostis rubescens) Bluebunch wheat grass (Agropyron spicatum) b) Topographic Class: Moderately to strongly r o l l i n g c) Aspect: South d) S o i l Subgroup: Orthic E u t r i c Brunisol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ah 0-7.6 Very dark grayish brown (10 YR 3/2 moist); gravelly and cobbly loam to g r a v e l l y and cobbly sandy loam; weak medium subangular blocky breaking to granular; loose; abundant roots; many cobbles; 44% gravel. pH 6.8. Clear smooth boundary to: Bm 7.6-28.0 Dark brown (10 YR 3/3 moist); gravelly loam to gravelly sandy loam; moderate medium subangular blocky breaking to granular; very f r i a b l e to loose; many roots; many cobbles; 58% gravel. pH 6.3. Gradual boundary to: - 14 6 -Horizon Depth (cm) Description BC 28.0-40.6 Brown to dark brown (10 YR 4/3 moist); gravelly loam to gravelly sandy loam; moderate medium coarse angular blocky; f r i a b l e . Very few roots; many cobbles; 55% gravel. pH 5.9. Gradual boundary to: C 40. 6-50. 8 kt) Yellowish brown (10 YR 5/4 moist); gravelly loam to gravelly sandy loam; moderate medium subangular blocky; compact but f r i a b l e ; many cobbles; 45 % gravel. pH 6.1. - 147 -2. Site 13 b) c) d) e) Dominant Vegetation: Ponderosa pine (Pinus ponderosa) Waxberry (Symphoricarpus albus) Wild Rose (Rosa nutkana) Lupine (Lupinus spp.) Spring Sunflower (Balsamorhiza sagittata) Yarrow (Achillea millefolium) Large purple aster (Aster conspicuus) Junegrass (Koeleria c r i s t a t a ) Wheatgrass (Agropyron spp.) Kentucky Bluegrass (Poa pratensis) Topographic Class: Strongly sloping Aspect: East-southeast S o i l Subgroup: Orthic E u t r i c Brunisol S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description LFH 10.2-0 A f a i r l y thick layer of decomposing forest and grass l i t t e r . Abrupt boundary to: Ah 0-10. 2 Black (10 YR 2/1 moist); gravelly sandy loam; moderate medium crumb or granular; loose; abundant f i n e roots; very few cobbles; 25% gravel. pH 6.1. Gradual boundary to: Ah 10.2-30.5 Black (10 YR 2/1 moist); gravelly sandy loam; moderate coarse to medium angular blocky breaking to crumb; f r i a b l e ; many fine roots; 22% gravel. pH 6.3. Clear smooth boundary to: - 14 8 -H o r i z o n Depth (cm) Bm 3 0 . 5 - 4 8 . 3 D e s c r i p t i o n Dark brown (10 YR 3 /3 m o i s t ) ; g r a v e l l y sandy loam; moderate medium s u b a n g u l a r b l o c k y ; f r i a b l e ; few t o many f i n e and medium r o o t s ; few c o b b l e s ; 30% g r a v e l . pH 6 . 5 . A b r u p t boundary t o : Dark y e l l o w i s h brown (10 YR 3/3 m o i s t ) ; g r a v e l l y sandy loam; weak f i n e t o medium a n g u l a r b l o c k y ; f r i a b l e ; v e r y few r o o t s ; v e r y few c o b b l e s ; 47% g r a v e l . pH 6 . 7 . - 149 -Site 12 Site 13 - 150 -te 14 Dominant Vegetation: Aspen (Populus tremuloides) Wild Rose (Rosa nutkana) Saskatoon (Amelanchier spp.) Oregon Grape (Berberis nervosa) Lupine (Lupinus spp.) Spring Sunflower (Balsamorhiza sagittata) Yarrow (Achillea millefolium) Large purple aster (Aster conspicuus) Golden aster (Chrysopsis hispida) Junegrass (Koeleria c r i s t a t a ) Topograhic Class: Gently sloping Aspect: East-southeast S o i l Subgroup: Orthic Black Chernozem S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description LFH 5.1-0 A continuous layer of l i t t e r covering the mineral s o i l ; mostly aspen leaves and i n a l l stages of decomposition; some fungi v i s i b l e . Weakly calcareous. pH 6.8. Abrupt boundary to: Ah 0-6.3 Black (10 YR 2/1 moist); gravelly loam; l i g h t and f l u f f y f i n e crumb or granular very f r i a b l e ; many f i n e roots stone-free; 25% gravel. pH 7.0. Clear boundary to: AB 6.3-21.6 Black (10 YR 2/1 moist); gravelly sandy loam to gravelly s i l t loam; weak coarse subangular blocky; abundant f i n e and medium roots; stone-free; 23% gravel. Weakly calcareous. pH 6.9. Gradual boundary to: - 151 -Horizon Depth (cm) Description Bmh 21.6-36.9 Very dark gray (10 YR 3/1 moist); gravelly s i l t loam; moderate coarse angular blocky; f r i a b l e ; p l e n t i f u l medium roots; few cobbles; 22% gravel. pH 6.8. Abrupt smooth boundary to: C 36.9-68.6 (+) Dark yellowish brown (10 YR 4/4 moist); gravelly sandy loam to gravelly loam; medium to coarse angular blocky; f r i a b l e ; very few roots; frequent cobbles and stones; 49% gravel. pH 6.8. - 152 -4. S i t e 15 a) Dominant Vegetation: Rush (Juncus spp.) Canada T h i s t l e (Cirsium aryensis) Sedge (Carex spp.) b) Topograhic Class: Very gently sloping to gently sloping c) Aspect: East d) S o i l Subgroup: Orthic Humic Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ah 0-10.2 Black (10 YR 2/1 moist); g r i t t y and gravelly loamy sand; moderate medium granular; loose to very f r i a b l e ; abundant roots; stone-free; 22% gravel. pH 7.1. Ahg 10.2-25.4 Black (10 YR 2/1 moist); gr a v e l l y loamy sand; strong medium granular; loose; many fine roots; very few stones; 25% gravel. pH 7.0. Abrupt smooth boundary to: Bg 25.4-48.3 Olive (5 Y 5/3 moist); gravelly sandy clay loam; moderate coarse angular blocky; f r i a b l e ; moderate mottles; few to many roots; very few cobbles or stones; 45% gravel. pH 7.3. Abrupt smooth boundary to: Cg 48.3 (+) Yellowish brown (10 YR 5/4 moist); gravelly sandy loam; weak medium to coarse angular blocky; loose; prom-inent red mottles; some roots; some stones and cobbles; 49% gravel. pH 7.4. - 153 -5. S i t e 16 a) Dominant V e g e t a t i o n : S a l t g r a s s #2 ( D i s t i c h l i s s t r i c t a ) b) T o p o g r a p h i c C l a s s : V e r y g e n t l y s l o p i n g c) A s p e c t : E a s t d) S o i l Subgroup: S a l i n e Humic G l e y s o l e) S o i l P r o f i l e C h a r a c t e r i s t i c s : H o r i z o n Depth (cm) D e s c r i p t i o n Ah 0-1.3 B l a c k (10 YR 2/1 m o i s t ) ; g r a v e l l y loamy sand; moderate medium s u b a n g u l a r b l o c k y ; l o o s e ; many r o o t s ; s t o n e -f r e e ; 3 2 % g r a v e l . Weakly c a l c a r e o u s . S t r o n g l y s a l i n e . pH 8.2. A b r u p t smooth boundary t o : Ahgs 1 . 3 - 6 . 3 S a l t and peppery d a r k g r a y (5 Y 4/1 m o i s t ) ; g r a v e l l y loamy sand; moderate medium t o c o a r s e s u b a n g u l a r b l o c k y ; l o o s e , e x c e p t f o r adherence t o r o o t s ; s t o n e - f r e e ; 1 8 % g r a v e l . pH 8.3. C l e a r boundary t o : Bgs 6 . 3 - 1 6 . 5 O l i v e g r a y (5 Y 5/2 m o i s t ) ; g r a v e l l y s i l t y c l a y ; w e a k l y p l a t y t o moderate c o a r s e a n g u l a r b l o c k y ; f r i a b l e ; few r o o t s ; f r e q u e n t m o t t l e s ; s t o n e - f r e e ; 1 6 % g r a v e l . pH 7 . 3 . A b r u p t boundary t o : - 154 -H o r i z o n Depth (cm) Cgs 16. 5-50. 8 (+1 D e s c r i p t i o n G r a y i s h brown (2.5 Y 5/2 m o i s t ) ; g r a v e l l y loamy sand t o g r a v e l l y sand; weak a n g u l a r b l o c k y ; v e r y l o o s e ; few f i n e and medium r o o t s ; p r o m i n e n t r u s t y m o t t l e s ; some p o c k e t s o f f i n e c o b b l e s ; w a t e r t a b l e a t 15 i n c h e s a t t i m e o f o b s e r v a t i o n ; some p o c k e t s o f f i n e c o b b l e s ; 20% g r a v e l . pH 7.0. - 155 -D. East Transect S i t e 17 a) Dominant Vegetation: No t e r r e s t r i a l vegetation apparent; " a i r weed" observed growing i n water-covered part of th i s zone during mid-summer. b) Topographic Class: Depressional to l e v e l c) Aspect: Not applicable d) S o i l Subgroup: Saline Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ags 0-15.2 Olive gray (5 Y 5/2 moist); clay loam; coarse angular blocky breaking to granular; loose; few roots; stone-free. Extremely calcareous. Strongly s a l i n e . pH 8.9. Clear smooth boundary to: Bgs 15.2-30.5 Light brownish gray (2.5 Y 6/2 moist); sandy loam; weak medium to coarse angular blocky; loose; very few roots; stone-free; 1% gravel. Extremely calcareous. Strongly saline. pH 9.0. Gradual boundary to: Cgs 30.5-45.7 Light brownish gray (2.5 Y 6/2 moist); sandy loam; medium granular; loose and soupy; no roots; stone-free; 1% gravel. Extremely calcareous. Strongly saline. pH 9.2. - 156 -Site 18 a) Dominant Vegetation: Saltgrass #1 b) Topographic Class: Very gently sloping c) Aspect: West-northwest d) S o i l Subgroup: Saline Humic Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ahgs 0-18.4 Very dark gray (5 Y 3/1 moist); sandy loam; moderate coarse to medium angular blocky; f r i a b l e ; p l e n t i f u l f i n e and medium roots; stone-free; 4% gravel. Extremely calcareous. Moderately s a l i n e . pH 8.3. Clear boundary to: Bgs 18.4-33.0 Light brownish gray (2.5 Y 6/2 moist); sandy loam; moderate coarse angular blocky breaking to granular; loose; many f i n e and medium roots; stone-free; abundant medium s a l t c r y s t a l s . Extremely calcareous. Strongly s a l i n e . pH 8.7. Clear boundary to: Cgs 3 3.0-50.81+) Light brownish gray (2.5 Y 6/2 moist); sandy loam to sandy clay loam; granular; loose and soupy; no roots; abundant s a l t c r y s t a l s ; stone-free. Extremely calcareous. Strongly s a l i n e . pH 9.3. - 157 -3 . Site 1 9 a) Dominant Vegetation: Saltgrass #2 ( D i s t i c h l i s s t r i c t a ) Rush (Juncus effusus) b) Topographic Class: Gently sloping c) Aspect: West-northwest d) S o i l Subgroup: Saline Humic Gleysol e) S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ah 0 - 1 5 . 2 Black ( 1 0 YR 2 / 1 moist); gravelly sandy loam; moderate coarse angular blocky breaking to granular; loose; p l e n t i f u l f i n e and medium roots; stone-free; 17% gravel. Weakly calcareous. Gradual boundary to: Ah 2 1 5 . 2 - 3 0 . 5 Black (5 Y 2 / 2 moist); gravelly sandy loam; moderate coarse angular blocky breaking to granular; loose; many fin e roots; stone-free; 21% gravel. Weakly calcareous. pH 8 . 3 . Gradual boundary to: Bgs 3 0 . 5 - 5 5 . 9 Dark gray ( 5 Y 4 / 1 moist); gravelly sandy loam; weak coarse angular blocky breaking to granular; loose; no roots; few cobbles; 32% gravel. Weakly c a l -careous. pH 8 . 5 . Abrupt boundary to: Horizon Depth (cm) Description Bsg 55.9-66.0 Pale o l i v e (5 Y 6/3 moist); clay; medium granular; loose and soupy; no roots; stone-free; 9% gravel. Moderately calcareous. Moderately s a l i n e . pH 8.5. Abrupt boundary to: Csg 66.0-83.8(+) Olive gray (5 Y 4/2 moist); gravelly loamy sand; medium granular; loose and soupy; no roots; stone-free; g r i t t y ; 43% t r a v e l . Extremely calcareous. Moderately s a l i n e . pH 8.6. - .15 9 -Looking e a s t over: S i t e 18 - S a l t g r a s s #1 S i t e 19 - S a l t g r a s s #2 S i t e 20 - Rush S i t e 21 - Lower Aspen - 1 6 0 -te 20 Dominant Vegetation: Rush (Juncus spp.) Canada Thist le (Cirsium arvensis) Topographic Class: Gently sloping Aspect: West-northwest Soi l Subgroup: Carbonated Humic Gleysol Soi l Prof i le Characterist ics: Horizon Depth (cm) Description Ah 0-7.6 Black (10 YR 2/1 moist); gravelly loamy sand; medium to coarse granular; loose; many fine roots; stone-free; 21% gravel. Strongly calcareous. pH 6.8. Gradual boundary to: Bmg 7.6-30.5 Very dark gray (10 YR 3/1 moist); gravelly loamy sand; moderate medium gran-ular; many medium roots; few to many mottles; stone-free; 23% gravel. pH 7.3. Gradual boundary to: Cg 30.5-48.3 Olive gray (5 Y 5/2 moist); gravelly loamy sand; moderate medium granular; compact but f r iab le ; no roots; prominent mottles; stone-free; 23% gravel. Weakly calcareous. pH 8.0. - 1 6 1 -t e 21 Dominant V e g e t a t i o n : Aspen (Populus t r e m u l o i d e s ) Ponderosa p i n e ( P i n u s ponderosa) Douglas f i r (Pseudotsuga m e n z i e s i i ) W i l d Rose (Rosa nutkana) Waxberry (Symphoricarpus a l b u s ) L u p i n e (Lupinus spp.) N o r t h e r n Bedstraw (Galium b o r e a l e ) Yarrow ( A c h i l l e a m i l l e f o l i u m ) Douglas a s t e r ( A s t e r d o u g l a s i i ) Timothy (Phleum p r a t e n s e ) Smooth Brome (Bromus i n e r m i s ) Wheatgrass (Agropyron spp.) T o p o g r a p h i c C l a s s : S t r o n g l y t o s t e e p l y s l o p i n g A s p e c t : We s t - n o r t h w e s t S o i l Subgroup: O r t h i c B l a c k Chernozem S o i l P r o f i l e C h a r a c t e r i s t i c s : H o r i z o n Depth (cm) D e s c r i p t i o n LFH 2.5-0 A t h i n s u r f a c e c o v e r i n g o f d e c a y i n g o r g a n i c l i t t e r ; o f t e n d i s c o n t i n u o u s Weakly c a l c a r e o u s . pH 6 .9. A b r u p t boundary t o : Ah 0-20.3 B l a c k (10 YR 2/1 m o i s t ) ; g r a v e l l y sandy loam t o loam; m o d e r a t e l y s t r o n g c o a r s e a n g u l a r b l o c k y ; v e r y f r i a b l e ; abundant r o o t s ; few c o b b l e s ; 28% g r a v e l . Weakly c a l c a r e o u s . pH 7.0. D i f f u s e boundary t o : A h 2 20.3-40.6 B l a c k (10 YR 2/1 m o i s t ) ; g r a v e l l y sandy loam; moderate medium s u b a n g u l a r b l o c k y ; l o o s e ; p l e n t i f u l r o o t s ; few c o b b l e s ; 28% g r a v e l . Weakly c a l c a r e o u s . pH 7 .1. - 162 -Depth (cm) Description 4 0 . 6 - 6 0 . 9 Black (10 YR 2 / 1 moist); gravelly sandy loam; weak medium subangular blocky breaking to granular; loose; p l e n t i f u l roots; few cobbles; 32% gravel. Weakly calcareous. pH 7 . 3 . - 1 6 3 -S i t e 22 a) Dominant Vegetation: Spring Sunflower (Balsamorhiza sagittata) Yarrow (Achillea millefolium) Lupine (Lupinus spp.) Blueleaf Strawberry (Fragaria glauca) Yellow Penstemon (Penstemon deustus) Cinquefoil ( P o t e n t i l l a milligrana) Quackgrass (Agropyron repens) Bearded Wheatgrass (Agropyron caninum) Kentucky Bluegrass (Poa pratensis) Red Top (Agrostis alba) Chess (Bromus secalinus) S o i l Subgroup: Orthic Black Chernozem S o i l P r o f i l e C h a r a c t e r i s t i c s : b) Topographic Class: Very gently sloping c) Aspect: Northwest d) e) Horizon Depth (cm) Ap 0-20.3 Ah 20.3-50.8 Description Black (10 YR 2/1 moist); g r a v e l l y sandy loam; moderate medium subangular blocky breaking to crumb; very f r i a b l e ; abundant fin e and medium roots; stone-free; 24% gravel. Weakly calcareous. pH 6.4. Diffuse boundary to: Black (7.5 YR 2/0 moist); gravelly sandy loam; moderate medium subangular blocky; f r i a b l e ; p l e n t i f u l roots; stone-free; 23% gravel. Weakly calcareous. pH 6.6. Gradual boundary to: - 164 -Horizon Depth (cm) Description BmC 50.8-78.7 Brown to dark brown (10 YR 4/3 moist); gravelly sandy loam to gravelly loamy sand; moderate medium subangular blocky; f r i a b l e ; many roots; stone-free; 25% gravel. Weakly calcareous. pH 6.8. - 165 -7. S i t e 23 a) Dominant V e g e t a t i o n : Waxberry (Symphoricarpus albus) Yarrow ( A c h i l l e a m i l l e f o l i u m ) Lupine (Lupinus spp.) Large p u r p l e a s t e r (Aster conspicuus) Junegrass ( K o e l e r i a c r i s t a t a ) Bearded Wheatgrass (Agropyron caninum) b) Topographic C l a s s : S t e e p l y s l o p i n g c) Aspect: West-northwest d) S o i l Subgroup: O r t h i c Black Chernozem e) S o i l P r o f i l e C h a r a c t e r i s t i c s : H o r i z o n Depth (cm) D e s c r i p t i o n Ah 0-20.3 Black (10 YR 2/1 m o i s t ) ; g r a v e l l y loam; moderate medium subangular b l o c k y and crumb; very f r i a b l e ; abundant medium and f i n e r o o t s ; few t o many cobbles; 40% g r a v e l . Weakly c a l c a r e o u s . pH 6, D i f f u s e boundary t o : A h 2 20.3-40.6 Bl a c k (10 YR 2/1 m o i s t ) ; g r a v e l l y sandy loam; moderate medium subangular b l o c k y ; f r i a b l e ; many r o o t s ; few co b b l e s ; 52% g r a v e l . Weakly c a l c a r e o u s . pH 6.6. D i f f u s e boundary to : A h 3 40.6-60.9 Black (10 YR 2/1 m o i s t ) ; g r a v e l l y sandy loam t o g r a v e l l y loam; moderate medium subangular b l o c k y ; f r i a b l e ; many r o o t s ; few cobbl e s ; 49% g r a v e l . Weakly c a l c a r e o u s . pH 6.5, View from Site 24 Looking west over: Site 24 - Upper Grassland Site 23 - Waxberry Site 22 - Lower Grassland Site 24 (Upper Grassland) and Site 25 (Upper Aspen) - 167 -8. Site 24 b) c) d) e) Dominant Vegetation: Bearded Wheatgrass (Agropyron caninum) Bluebunch Wheatgrass (Agropyron spicatum) Quackgrass (Agropyron repens) Kentucky Bluegrass (Poa pratensis) Downy Brome (Bromus tectorum) Spring Sunflower (Balsamerhiza sagittata) Yarrow (Achillea millefolium) Yellow Penstemon (Penstemon deustus) Large Purple Aster (Aster conspicuus) Lupine (Lupinus spp.) Saskatoon (Amelanchier spp.) Waxberry (Symphoricarpus albus) Topographic Class: Undulating to gently r o l l i n g Aspect: We st-northwest S o i l Subgroup: L i t h i c Black Chernozem S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) Description Ah 0-5.1 Black (10 YR 2/1 moist); gr velly sandy loam to grav e l l y loamy sand; weak medium subangular blocky; loose; abundant roots; few cobbles; 47% gravel. Weakly calcareous. pH 6.2. Clear boundary to: 5.1-20.3 Black (10 YR 2/1 moist); weak medium subangular blocky breaking e a s i l y to granular; loose; many roots; many cobbles; 74% gravel. Weakly calcareous. pH 6.1. Clear boundary to: - 168 -H o r i z o n Depth (cm) 2 0 . 3 (+) D e s c r i p t i o n CR V e r y dark g r a y (10 YR 3/1 m o i s t ) ; g r a v e l l y sandy loam; medium g r a n u l a r ; l o o s e ; v e r y few r o o t s ; some a n g u l a r c o b b l e s ; 74% a n g u l a r g r a v e l . Weakly c a l c a r e o u s . pH 6 . 3 . - 169 -S i t e 25 a) Dominant V e g e t a t i o n : Aspen (Populus tremuloides) Saskatoon (Amelanchier spp.) W i l d Rose (Rosa nutkana) Yarrow ( A c h i l l e a m i l l e f o l i u m ) Douglas A s t e r (Aster d o u g l a s i i ) Golden A s t e r (Chrysopsis h i s p i d a ) Northern Bedstraw (Galium b o r e a l e ) Vetch ( V i c i a spp.) Kentucky Bluegrass (Poa p r a t e n s i s ) Wheatgrass (Agropyron spp.) Aspect: West S o i l P r o f i l e C h a r a c t e r i s t i c s : Horizon Depth (cm) D e s c r i p t i o n b) Topographic C l a s s : Very g e n t l y s l o p i n g c) d) S o i l Subgroup: O r t h i c Black Chernozem e) Ah 0-20.3 Ah 0 20.3-40.6 Black (7.5 YR 2/0 m o i s t ) ; g r a v e l l y loam; moderate medium g r a n u l a r ; l o o s e ; abundant f i n e and medium r o o t s ; s t o n e - f r e e ; 20% g r a v e l . Weakly c a l c a r e o u s . pH 7.4. D i f f u s e boundary t o : Black (10 YR 2/1 m o i s t ) ; g r a v e l l y loam; weak medium subangular blocky b r e a k i n g to g r a n u l a r ; l o o s e ; abundant r o o t s ; very few c o b b l e s ; 28% g r a v e l . Weakly c a l c a r e o u s . pH 7.2. D i f f u s e boundary t o : - 17 0 -Horizon Depth (cm) Description Ah 3 40.6-60.9 Black (10 YR 2/1 moist); gravelly loam; moderate medium granular to very weak subangular blocky; many roots; very few cobbles; 23% gravel. Weakly calcareous. pH 7.2. - 171 -Paddling around the Slough, measuring i t s depth. APPENDIX II Selected Chemical Analyses of Soil Samples Collected in Major Plant Communities S i t e Dominant Number Vegetation Horizon 1 Douglas f i r LFH Ah AhBm C 2 Mixed pasture Ap grasses C 3 Mixed grasses Ap and rushes Bgs Cg 4 Saltgrass #2 Ah Bgs Cgs 5 Saltgrass #1 A P Bgs BCgs Cgs 6 Non-vegetated Ahgs lakebed Bgs Cgs Appendix II ; Table I pH 6.1 6.0 6.5 7.9 8.4 7.8 8.3 8.1 8.2 8.5 8.4 8.6 8.5 8.4 8.8 9.1 8.5 8.6 Exch. Ca + + Exch. Me 4 4 Exch. Exch. Na + K+ Exch. A c i d i t y Cation Exch. Capacity Exch. Sodium Percentage m e q / i 24.8 18 .6 3.0 2.6 1.8 0.3 0.0 0.1 0.0 0.4 0.3 0.2 12 .4 10.4 1.6 46.6 31.6 10.0 0.0 0.3 0.0 — 10.4 2.1 62.1 23.0 17 .3 0.7 0.0 0.4 0.6 0.5 0.3 1.6 0.2 0.1 8.3 8.8 61 .3 10.6 8.4 1.0 4.7 3.6 36.2 19.0 24.8 5.4 2.9 0.0 4.0 0.0 2.6 1.8 2.5 0.3 10.4 . 2.1 41 .9 19 .4 9.4 l.C o.o 27 .7 85.3 27 .6 17 .4 14.1 14.8 6.1 3.5 2.8 29.8 18 .9 22.3 10.0 3.9 2.0 2.0 1.3 — -49.1 32.5 24.1 21.3 60 .7 58.2 92.5 46.9 32.2 21.3 • 24.8 16 .3 6.6 4.8 47.4 13.9 21.5 3.3 1.0 1.6 41 .9 25.6 23.1 113.1 54.3 93.1 Appendix II : Table II Selected Chemleal Analyses - North Transect Cation Exch. Site Dominant Exch. Exch. Exch. Exch. Exch. Exch. Sodium Number Vegetation Horizon pH Ca"1"*" Mg Na"1" K Acidity Capacity Percentage 7 Non-vegetated lakebed Ahgs Bgs Cgs 8.7 8.5 8.7 10.8 32.1 110.8 25.6 8.7 3.0 m e 41.8 19.2 15.5 q / i 3.7 1.5 1.5 58.1 22.5 21.9 71.9 85.3 70.8 8 Saltgrass #1 Ahs Bgs Cgs 8.2 8.2 8.4 47.2 29.7 5.3 15.1 13.8 6.6 17.2 15.0 24.7 3.1 1.9 2.3 60.4 52.2 20.6 28.5 28.7 119.9 i 9 Saltgrass #2 Ahs Bgs Cgs 8.4 8.5 8.5 48.0 13.0 14.2 16.3 5.0 2.1 27.9 11.2 9.5 4.7 3.4 2.2 E 50.6 29.1 22.2 55.1 38.5 42.8 i 10 Rush Ah Bm C 6.9 7.2 6.7 24.2 8.5 2.7 1.5 0.6 0.6 0.1 0.1 0.1 0.4 0.2 0.1 4.9 2.6 0.5 40.0 12.8 7.5 0.2 0.8 1.3 11 Ponderosa pine Ap C 6.6 6.7 18.5 4.2 3.4 1.0 0.1 0.1 0.9 0.4 5.4 2.6 40.9 11.9 0.2 0.8 Appendix II : Table III Selected Chemical Analyses - West Transect Cation Exch, Site Dominant Exch. Exch. Exch. Exch. Exch. Exch. Sodium Number Vegetation Horizon PH Ca** Na+ K+ Acidity Capacity Percent* m e q / I 12 Douglas f i r Ah 6.8 11.5 0.7 0.1 0.4 4.7 21.9 0.9 Ponderosa pine Bm 6.3 4.8 0.8 0.0 0.0 6.5 16.6 0.0 BC 5.9 2.5 0.2 0.5 0.2 3.4 10.9 4.6 C 6.1 3.4 0.6 0.0 0.0 4.7 10.6 0.0 13 Ponderosa pine LFH ——— Ah 6.1 • - ... — 6.2 — ... i Ah2 6.3 —_ — 3.6 Bm 6.5 — 0.5 — C 6.7 — 4.1 —— 14 Aspen LF 6.8 43.0 3.9 C.2 0.0 6.2 66.3 0.3 Ah 7.0 25.5 2.3 0.0 0.4 1.0 42.2 0.0 AB 6.9 23.0 1.8 0.1 0.5 3.6 33.4 0.3 Bmh 6.8 16.7 1.4 0.0 0.4 5.2 25.3 0.0 C 6.8 2.8 0.6 0.0 0.2 6.2 9.7 O.C 15 Rush Ah 7.1 18.0 1.6 0.0 0.2 4.7 25.0 0.0 Ahg 7.0 5.1 2.0 0.0 0.3 5.7 17.8 0.0 Bg 7.3 2.1 2.5 0.7 0.9 1.0 12.2 5.7 Cg 7.4- 2.5 1.9 1.1 0.8 1.6 11.9 9.2 16 Saltgrass #2 Ah 8.2 12.1 4.0 8.9 1.7 —— 16.3 54.6 Ahgs 8.3 10 .5 1.0 0.0 0.2 17.2 0.0 Bgs 7.3 l o l 1.1 0.7 0 .5 0 .5 8.1 8.6 Cgs 7oC 0,5 0 .6 0.0 0.3 2.1 8.1 0.0 Appendix II : Table IV Selected Chemical Analyses - East Transect Cation Exch# Site Dominant Exch. Exch. Exch. Exch. Ewsh. Exch. Sodium Number Vegetation Horizon pH Ca** Na+ r Acidity Capacity Peroents m e q / i 17 Non-vegetated Ags 8.9 35.3 6.0 15.3 1.3 — - 27.2 56.3 lakebed Bgs 9.0 8.3 5.6 15.6 1.7 17.2 90.7 Cgs 9.2 4.2 6.7 21.2 1.5 — - 17.8 119.1 18 Saltgrass #1 Ahgs . 8.3 34.4 4.3 13.7 2.0 45.9 29.8 Bgs 8.7 12.8 3.4 14.3 2.1 21.3 67.1 Cgs 9.3 6.4 5.2 20.8 2.0 — - 18.1 114.9 19 Saltgrass #2 Ah 7.7 28.9 0.5 0.3 1.1 1.6 28.8 1.0 Ah2 8.3 19.5 4.4 0.6 1.4 - — 23.1 2.6 Bgs 8.5 13.3 3.6 3.1 1.4 — 24.4 12.7 Bsg 8.5 20.2 3.8 4.7 0.5 — 18.8 25.0 Csg 8.6 16.1 2.1 2.5 0.1 — 13.1 19.1 CD 20 Rush Ah 6.8 9.4 2.6 0.0 0.4 3.6 24.4 0%0 Bjag 7.3 4.0 2.3 0.0 0.3 4.7 16.3 0.0 Cg 8.0 0.8 0.6 0.1 0.5 3.1 8.8 1.1 21 Lower aspen LF 6.9 39.1 4.5 0.2 0.4 10.4 56.6 0.4 Ah 7.0 20.4 1.7 0.3 0.5 2.6 37.5 0o8 Ah2 7.1 21.0 2.2 0.1 0.7 6.7 33.1 0.3 Aho 7.3 18.3 3.0 0.0 0.6 5.5 23.1 0.0 Site Dominant Number Vegetation Horizon 22 Lower Ap Grassland Ah BmC 23 Waxberry Ah Ah2 Ab.3 24. Upper Ah Grassland Ah2 CR 25 Upper Ah Aspen Ah2 Ah3 Appendix II : Table IV Continued Selected Chemical Analyses - East Transect PH Exch. Ca-H" Exch. Exch. Na+ Exch. K+ Exch. Acidity Cation Exch. Capacity Exch. Sodium Percentage 6.4 6.6 6.8 m e q / I 26.1 11.4 2.4 6.8 6.6 6.5 16.6 33.1 31.1 6.2 6.1 6.3 11.5 14.6 9.9 1.6 1.1 1.2 0.1 0.2 0.0 0.0 0.2 0.1 6.2 7.8 6.9 30.4 32.5 22.2 0.3 0.6 0 7.4 7.2 7.2 — 10.4 12.4 20.7 Appendix II: Table V Selected Chemical Analyses; South Transept Site Number Dominant Vegetation Horizon Conducti-vity Soluble (mmhos/cm) Ca + + Soluble Soluble Na Soluble S.A.R. CaCO-Equiv". {%) 1 Douglas f i r LFH Ah AhBm C 0.2 0.3 1.0 0.2 0.2 0.8 0.2 0.1 0.3 0.1 0.1 0.4 0.0 0.0 0„0 0.2 0.3 0.5 3.9 1.6 1.6 2 Mixed pasture grasses Ap C 2.6 2.5 4.8 0.2 0.6 0.9 0.3 0.2 0.0 0.0 0.1 0.3 3.7 10.2 3 Mixed grasses and rushes Ap Bgs Cg 2.6 4.4 3.3 15.4 7.0 1.5 6.4 2.7 0.5 0.4 0.9 0.2 0.2 0.0 0.0 0.1 0.4 0.2 28.3 44.7 4.1 4 Saltgrass #2 Ah BCgs Cgs 5.3 10.0 5.9 16.3 9.1 4.0 6.9 4.0 3.1 3.8 4.8 1.1 0.6 0.3 0.3 1.1 1.9 0.6 77.2 77.0 81.2 5 Saltgrass #1 Ap Bgs Bgs Cgs 17.8 14.3 19.0 19.6 14.7 15.5 15.7 19.7 6.8 6.2 5.4 4.5 4.1 8.8 7.1 6.9 0.4 0.6 0.5 0.5 1.3 2.7 2.2 2.0 63.5 81.2 79.6 76.9 6 Non-vegetated lakebed Ahgs Bgs Cgs 44.9 19.4 25.0 41.6 13.7 14.6 9.7 4.8 5.7 17.9 4.9 3.0 1.6 0.4 0.5 3.5 1.6 0.9 70.3 84.0 86.0 Appendix II: Table VI Selected Chemloal Analysis: North Transect Site Number Dominant Vegetation Horizon Conducti-vity (mmhos/cm Soluble ) Ca-" Soluble M*++ Soluble Na+ Soluble K S.A.R. CaCO-EquiV. (%) 7 Non-vegetated lakebed Ahgs Bgs Cgs 23,9 19.9 24.0 48.0 26.0 19.8 8.9 5.3 5.8 19.8 10.4 12.8 1.3 0.9 0.9 3.7 2.6 3.6 62.6 72.4 64.8 8 Saltgrass #1 Ahs Bgs Cgs 10.6 11.6 23.7 24.1 32.8 33.5 10.2 8.1 8.2 6.7 8.5 13.7 0.7 1.0 1.0 1.6 1.9 3.0 60.6 74.1 78.8 9 Saltgrass #2 Ahs Bgs Cgs 22.6 12.8 19.8 14.5 20.8 16.4 6.5 5.3 6.8 7.7 5.7 5.6 0.8 0.4 0.7 2.4 1.6 1.6 57.8 68.8 67.0 10 Rush Ah Bm C 0.4 0.2 0.2 0.3 0.3 0.4 0.3 0.1 0.2 0.0 0.0 0.0 0.4 0.1 0.1 0.0 0.0 0.0 1.7 0.8 0.2 11 Ponderosa pine Ap C 0.3 0.2 0.3 0.1 0.4 0.1 0.0 0.0 0.4 0.1 0.0 0.0 2.1 0.1 Appendix II: Table VII Selected Chemical Analysis: West Transect Conduct!- CaCOo Site Dominant Horizon vity Soluble Soluble Soluble Soluble S.A.R. Equiy. Number Vegetation (mmhos/cm) Ca + + Hg + i Na K* (%) 12 Douglas f i r / Ah 0,5 0.4- 0.1 0.0 0.1 0.0 0.4 Ponderosa pine Bm 0.5 0.3 0.1 0.1 0.8 0.2 0.0 BC 0.1 1.4 0.8 0.2 0.0 0.2 0.1 C 0.7 0.4 0.2 0.1 0.6 0.2 0.0 13 Ponderosa LFfl — i pine Ah 0.3 6.1 0.2 0.1 0.3 0.1 0.4 Ah2 0.2 0.1 0.1 0.6 0.1 1.8 0.4 Bm 0.2 0.1 0.2 0.0 0.0 0.0 0o0 C 0.2 0.2 0.2 0.1 0.0 0.2 0.4 14 Aspen LF 0.5 5.1 2.0 0.1 1.6 0.0 2.8 Ah 0o4 2.0 1.0 0.1 0.7 0.1 AB 0.5 0.8 0.3 0.0 0.2 0.0 1.2 Bmh 0.7 0.8 0.5 0.4 0.1 0.5 0.0 C 1.2 0.6 0.5 0.8 0.0 1.1 0.2 15 Rush . Ah 0.7 0.8 0.5 0.3 0.3 0.4 0.0 Ahg 0.5 0.1 0.4 0.1 0.2 0.2 0.0 Bg 0.6 0.0 0.1 0.3 0.1 1.3 0.3 Cg - — 0.0 0.1 0.5 0.1 2.2 0.0 16 Saltgrass #2 Ah 16.3 1.7 0.2 0.8 0.4 0.8 1.4 Ahgs 3.8 0.8 1.4 5.6 0.6 5.3 0.4 Bgs 1.7 0.0 0.1 0.4 0.2 1.8 0.1 Cgs 1.4. 0.1 0.3 1.8 0.2 4.0 Ool Appendix II: Table VII Selected Chemical Analysis: East Transect Conducti-m CaCO, Site Dominant Horizon vity Soluble Soluble Soluble Soluble S.A.R. Equit Number Vegetation (mmhos/cm) Ca Na (%) 17 Non-vegetated Ags 20.1 18.5 4.8 9.0 0.7 2.6 73.5 lakebed Egs 24.6 18.0 3.2 6.9 0.5 2.1 80.5 Cgs 24.4 23.9 3.8 8.5 0.6 2.3 78.6 18 S a l t g r a s s #1 Ahgs 10.4 21.9 9.7 6.9 0.8 1.7 63.1 Bgs 18.3 11.6 3.7 5.6 0.4 2.0 67.7 Cgs 21.4 19.9 4.3 7,0 0.5 2.0 74.7 19 S a l t g r a s s #2 Ah 0.1 7.4 6.5 0.2 0.2 0.1 4,1 Ah 2 0.5 0.1 0.1 0.1 0.2 0.0 Bgs 3.0 0.5 0.1 0.3 0.9 0.5 5.1 Bsg 6.7 0.4 1.0 0.2 0.8 0.5 13.2 Csg 6.4 2.7 0.9 0.9 0.6 2.0 53.0 20 Rush Ah 0.5 0.2 0.4 0.1 0.3 0.2 17.4 Bmg 0.2 0.1 0.3 0.2 0.3 0.4 0.8 Cg 0.2 0.0 0.0 0.4 0.0 0.0 1.0 21 Lower LF 0.3 1.5 0.8 0.0 0.7 0.0 3.6 Aspen Ah 0.2 0.9 0.3 0.7 0.5 0.9 2.5 Ah 2 0.2 0.3 0.2 0.0 0.1 0.0 1.9 Ah3 0.1 0.5 0.4 0.1 0.2 0.1 1.1 22 Lower Ap 0.4 0.3 0.7 0.1 0.1 0.2 2.0 grassland Ah 0.3 0.1 0.1 0.0 0.0 0.0 1.3 BmC 0.1 0.1 0.0 0.0 0,0 0.0 1.2 Appendix II: Table VII Contd. Selected Chemical Analysis: East Transect Conducti- CaCO Site Dominant Horizon v i t y Soluble Soluble Soluble Soluble S.A.R. EquiV. Number Vegetation (mmhos/cm) C a + + Na* (%) 23 Waxberry Ah 0.9 3.0 1.5 0.2 0.1 0.1 4.4 Ah 2 0.8 0.9 0.6 0.2 1.1 0.2 2.9 Ah 3 0.6 0.6 0.3 0.2 0.7 0.3 3.5 24 Upper Ah 0.4 1.9 0.6 0.1 0.6 0.1 1.7 i grassland Ab^ 0.6 0.6 0.2 0.1 0.1 0.2 1.8 i—' CR 0.2 0.4 0.1 0.1 0.1 0.2 1.7 IS} 25 Upper Ah 0.5 2.4 0.6 0.1 1.1 0.1 3.7 1 aspen Ah 2 0.4 1.0 0.3 0.1 0.5 0.1 2.4 Ah 3 0.2 0.9 0.2 0.1 0.2 0.1 3o7 Appendix II : Table IX Selected Chemical Analyses - South Transect Site Dominant Number Vegetation Horizon 1 Douglas f i r LFH Ah AhBm C 2 Mixed pasture Ap grasses C 3 Mixed grasses Ap and rushes Bgs Cg 4 Saltgrass #2 Ah Bgs Cgs 5 Saltgrass #1 AP Bgs BCgs Cgs 6 Non-vegetated Ahgs lakebed Bgs Cgs % % C/N Organic Carbon Nitrogen Ratio 4.2 0.4 10.5 — 0.3 — — 0.3 0.1 3.0 4.2 0.3 14.0 0.2 0.05 4.0 7.9 0.6 13.2 7.5 0.1 75.0 0.2 0.05 4.0 4.4- 0.4 11.0 0.7 0.1 7.0 0.4 0.1 4.0 6.1 0.6 10.1 2.7 0.2 13.5 0.1 — 1.4 0.1 14.0 6.7 0.7 9.6 1.6 0.2 8.0 1.5 0.1 15.0 Appendix II t Table X Selected Chemical Analysis - North Transect Site Dominant % % C/N Number Vegetation Horizon Organic Carbon Nitrogen Ratio 7 Non-vegetated Ahgs 7.7 0.8 9.6 lakebed Bgs 1.5 0.1 15.0 Cgs 1.2 0.1 12.0 8 Saltgrass #1 Ah 8.8 0.5 17.6 Bgs 5.8 0.5 11.6 Cgs 1.5 0.1 15.0 9 Saltgrass #2 Ah 5.7 0.5 11.4 Bgs 1.5 0.1 15.0 Cgs 0.8 0.1 8.0 10 Rush Ah 4.8 0.4 12.0 Bm 0.7 0.1 7.0 C 0.1 0.05 2.0 11 Ponderosa pine Ap 4.6 0.3 15.3 C 0.7 0.1 7.0 Appendix II : Table XI Selected Chemical Analyses - West Transect Site Dominant Number Vegetation Horizon 12 Douglas f i r / Ah Ponderosa pine Bm BC C 13 Ponderosa pine LFH Ah Ah2 Bm C 14 Aspen LF Ah AB Bmh C 15 Rush Ah Ahg Bg Cg 16 Saltgrass #2 Ah Ahgs Bgs Cgs % % C/N Organic Carbon Nitrogen Ratio 2.1 0.1 21.0 0.7 0.1 7.0 — . 0.05 — -0.1 0.05 2.0 3^6 0.2 18.0 — 0.1 — 0.5 0.1 5.0 0.5 0.05 10.0 0.8 4.9 0.4 12.3 — 0.2 2.0 0.2 10.0 0.2 0.05 4.0 2.6 0.2 13.0 — 0.0 0.2 0.05 4.0 0.2 0.05 4.0 1 0.2 -1.7 0.1 17.0 0.3 0.05 6.0 0.1 0.05 2.0 Appendix II t Table XII Selected Chemical Analyses - East Transect Site Dominant Number Vegetation Horizon 17 Non-vegetated Ags lakebed Bgs Cgs 18 Saltgrass #1 Ahgs Bgs Cgs 19 Saltgrass #2 Ah Ahg Bgs Bsg Csg 20 Rush Ah Bmg Cg 21 Lower LF Aspen Ah Ah 2 AI13 % % C/N Organic Carbon Nitrogen Ratio 2.9 0.3 9.7 1.0 0.1 10.0 1.1 0.1 11.0 5.3 0.7 7.6 1.0 0.1 10.0 0.8 0.1 8.0 0.2 . 1.7 0.1 17.0 0.3 0.05 6.0 0.1 0.05 2.0 4.0 0.3 13.3 3.3 0.2 16.5 1.4 0.1 14.0 0.01 0.03 0.3 1 0.6 3.1 0.2 15.5 — — 0.2 1.8 0.1 18.0 Appendix II : Table XII Continued Selected Chemical Analyses - East Transect Site Dominant % % C/N Number Vegetation Horizon Organic Carbon Nitrogen Ratio 22 Lower Ap 0.6 0.3 2.0 Grassland Ah 0.2 BmC 0.2 0.1 2.0 23 Waxberry Ah 12.9" 0.9 14.3 Ah 2 — — 0.8 — AI13 7.9 0.6 13.2 24 Upper Ah 4.4 0.3 14.7 Grassland Ah~ 2.9 0.3 9.7 cur 1.4 0.1 14.0 25 Upper aspen Ah 6.6 0.6 11.0 Ah2 — — 0.5 Ah^ 4.8 0.4 12.0 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0092995/manifest

Comment

Related Items