UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Sedimentology, diagenesis and reservoir development of the lower triassic montney formation, northeastern… Nassichuk, Brent Ronald 2000

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2000-0500.pdf [ 21.02MB ]
Metadata
JSON: 831-1.0089588.json
JSON-LD: 831-1.0089588-ld.json
RDF/XML (Pretty): 831-1.0089588-rdf.xml
RDF/JSON: 831-1.0089588-rdf.json
Turtle: 831-1.0089588-turtle.txt
N-Triples: 831-1.0089588-rdf-ntriples.txt
Original Record: 831-1.0089588-source.json
Full Text
831-1.0089588-fulltext.txt
Citation
831-1.0089588.ris

Full Text

SED1MENTOLOGY, DIAGENESIS AND RESERVOIR DEVELOPMENT OF THE LOWER TRIASSIC MONTNEY FORMATION, NORTHEASTERN BRITISH COLUMBIA by BRENT RONALD NASSICHUK B.Sc. (Hons), The University of British Columbia, 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Earth and Ocean Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June 2000 © Brent Ronald Nassichuk, 2000 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of £.ft(£?v<. ft^oo C 'O t . fY iO 6 c i £ ^ c . g S The University of British Columbia Vancouver, Canada Date A DE-6 (2/88) ABSTRACT The Lower Triassic Montney Formation in northeastern British Columbia (NEBC) includes a thick succession (up to 260 m) of turbidite and deltaic strata that are important reservoir rocks. The succession was deposited from the distal shelf to foreshore. Discovery of gas reservoir rocks from turbidite and deltaic intervals has led to production in the Kahntah, Ring-Border and Chinchaga Fields. The Montney Formation in N E B C comprises seven lithofacies consisting of aeolian-sourced very fine-grained sandstones, siltstones and rare mudstone intervals. The lithofacies are represented by three facies associations that record deposition within the distal shelf, proximal shelf and foreshore. The distal shelf consists of parallel laminated siltstone and sandstone, derived from low-density turbidity currents. Coarser grained turbidite lobe deposits, locally incised turbidite channels and tempestites dominate the proximal shelf. The foreshore is host to bioturbated, tidally influenced delta front sand sheets. Reservoir lithofacies occur within the proximal shelf turbidites and the foreshore deltaic intervals. Producing intervals consist primarily of very fine-grained sandstone and siltstone. Throughout the Montney Formation, sediments record evidence for seismic activity. Seismites include highly sheared and fractured very fine-grained sandstone and siltstone. Tectonically influenced sediments are interpreted to represent uplift on the northwest side of the Hay River Fault Zone (HRFZ). Fault motion during the Early Triassic is interpreted as. The fault motion promoted the deposition of foreshore deltaic sediments onto proximal shelf turbidites. n Production rates within the reservoir intervals is controlled by lithology and diagenesis. The very fine-grained nature of the Montney Formation has low to moderate permeability, suitable for gas storage. Turbidite reservoirs average about 13% porosity and 6 mD permeability while deltaic reservoirs average 12.5% porosity and 4 mD permeability. Porosity within the Montney Formation of N E B C consists of remnant intergranular primary porosity and enhanced secondary porosity due to dissolution of ferroan dolomite cement. Mercury porosimetry was used to determine capillary pressure curves for each of the lithofacies. Breakthrough pressures show how much force must be exerted to create a connected pathway of mercury through the sample. Lithofacies requiring high breakthrough pressures possess low reservoir potential. Very fine-grained turbidite and deltaic intervals have the lowest breakthrough pressures. Further exploration in the Montney Formation of N E B C may be enhanced by considering the depositional model and diagenetic trends. The thickest turbidite accumulations occur within paleo-lows of the underlying Paleozoic surface. Unexplored turbidite pathways exist in the southern portion of the study area. An increase in secondary porosity occurs from north to south in the study area, indicating high reservoir potential in the south. m T A B L E OF CONTENTS Abstract ii Table of contents iv List of figures vii List of tables ix Acknowledgments x CHAPTER 1 - INTRODUCTION 1 1.1 Introduction 1 1.2 Thesis Structure 2 1.3 References 3 CHAPTER 2 - SEDEVIENTOLOGY OF THE LOWER TRIASSIC MONTNEY FORMATION, NORTHEASTERN BRITISH C O L U M B I A 4 2.1 Abstract 4 2.2 Introduction 6 2.3 Study Area and Core Control 7 2.4 Triassic Stratigraphy 7 2.5 Geologic Setting 10 2.6 Sedimentary Facies and Facies Associations 14 2.6.1 Sedimentary Lithofacies 15 2.6.2 Facies Associations 23 2.6.2.1 Proximal to distal shelf facies association 23 iv 2.6.2.2 Turbidite fades association 28 2.6.2.3 foreshore to offshore transition fades association 31 2.7 Ichnology 35 2.7.1 Skolithos ichnofacies assemblage 35 2.8 Depositional Model 39 2.8.1 Sequence stratigraphic framework 39 2.8.2 Depositional interpretation of the Montney Formation in NEBC 42 2.8.3 Controls on deposition 47 2.9 Conclusions 53 2.10 References 57 CHAPTER 3 - DIAGENESIS A N D RESERVOIR DEVELOPMENT OF THE LOWER TRIASSIC M O N T N E Y FORMATION, NORTHEASTERN BRITISH C O L U M B I A 62 3.1 Abstract 62 3.2 Introduction 64 3.3 Depositional Setting 67 3.4 Methods 68 3.5 Petrology 68 3.6 Diagenetic Phases 69 3.6.1 Calcite Cement 69 3.6.2 Apatite 69 3.6.3 Quartz Overgrowths 69 3.6.4 Authigenic Clays VI 3.6.5 Dolomite Cement 71 v 3.6.6 Sulphides 71 3.7 Paragenesis 74 3.7.1 Primary Porosity 74 3.7.2 Pore Destruction 74 3.7.3 Secondary Porosity 76 3.7.4 Formation of Diagenetic Phases 78 3.8 Mercury Porosimetry 79 3.9 Production History 88 3.9.1 Production Trends 88 3.9.2 Porosity and Permeability Development 90 3.9.3 Potential Exploration Trends 93 3.10 Conclusions 93 3.11 References 96 CHAPTER 4 - CONCLUSIONS 99 APPENDIX A - W E L L LOCATIONS 101 APPENDIX B - M E R C U R Y POROSIMETRY D A T A 103 APPENDIX C - POROSITY A N D PERMEABILITY D A T A 120 VI LIST OF FIGURES Figure 2.1 Location of the study fields in northeastern British Columbia 8 Figure 2.2 Triassic stratigraphy for the subsurface of N E B C 9 Figure 2.3 Erosional boundaries marking the eastern and western extent of the study area 12 Figure 2.4 Net isopach of the Montney Formation in NEBC 13 Figure 2.5 Foreshore facies (1 A) 17 Figure 2.6 Turbidite lithofacies (2A and 2B) 20 Figure 2.7 Turbidite lithofacies (2C and 2D) 22 Figure 2.8 Lithofacies 3 - seismites 24 Figure 2.9 Stratigraphy, log characterisitics and facies association within the Montney Formation 25 Figure 2.10 Geophysical log signature of the Montney Formation 27 Figure 2.11 Stratigraphic and geophysical log signature of a turbidite channel and turbidite lobe/distal shelf deposit 29 Figure 2.12 Sedimentary structures found within the turbidite lithofacies 32 Figure 2.13 Stratigraphic and geophysical log signature of the lower/middle shoreface to offshore transition facies association 34 Figure 2.14 Trace fossils of the Skolithos ichnofacies 37 Figure 2.15 Stratigraphic section from north to south through the Montney Formation of N E B C 41 Figure 2.16 Depositional model for the Montney Formation in N E B C 44 Figure 2.17 Location of the Hay River Fault Zone through the study area 45 Figure 2.18 Shell lag marking a possible sequence boundary at the top of the Lower Montney 48 vii Figure 2.19 Strati graphic cross section through the Kahntah Field 49 Figure 2.20 Stratigraphic cross section through the Ring-Border Field 50 Figure 2.21 Traces of the Glossifungites ichnofacies, found on the uppermost surface of the Montney Formation 51 Figure 2.22 Third-order residual map taken on the top of the underlying Paleozoic surface 52 Figure 2.23 Isopach maps of shoreface sandstones and turbidite sandstones 54 Figure 3.1 Location of the study fields in northeastern British Columbia 65 Figure 3.2 Destruction of porosity by quartz overgrowths 70 Figure 3.3 Zoned ferroan dolomite cement 72 Figure 3.4 Framboidal pyrite 73 Figure 3.5 Primary intergranular porosity in very fine-grained sandstone 75 Figure 3.6 Pressure solution in detrital quartz grains 77 Figure 3.7 Mercury porosimetry curve for facies 3 show microporosity and macroporosity distribution 82 Figure 3.8 Mercury saturation plot for facies 3 showing the threshold pressure 84 Figure 3.9 Comparison of breakthrough diameters for high and low porosity samples of facies 1A 85 Figure 3.10 Pore size distributions for facies 2A 86 Figure 3.11 Comparison of threshold pressures for high and low porosity samples of facies 2A 87 Figure 3.12 Cumulative gas production from the Kahntah, Ring-Border and Chinchaga Fields 89 Figure 3.13 Porosity and permeability cross-plots for very fine-grained sandstones of facies 1A and 2A 92 Figure 3.14 Third-order residual map of the underlying Paleozoic surface 94 Vlll LIST OF TABLES Table 2.1 Summary of Montney Formation lithofacies 16 Table 2.2 Morphology and environment of traces within the foreshore to offshore transition facies association 36 Table 3.1 Lithofacies, facies associations and reservoir potential of Montney Formation sediments in N E B C 66 Table 3.2 Samples used for mercury porosimetry 81 Table 3.3 Decline factors for the first six months and second six months of production for the Kahntah, Ring-Border and Chinchaga Fields 91 IX Acknowledgements This thesis could not have been completed without the support, input and patience of a number of people. I would like to extend my sincerest thanks to my advisor Dr. Marc Bustin, who provided advice, patience, a sense of humour and countless edits of this thesis. I would also like to thank my advisory committee, Dr. Kurt Grimm and Dr. Paul Smith. Access to core and core analysis was generously provided by the Oil and Gas Commission of British Columbia. Special thanks to Steven Glover who let me run amuck in the file rooms and everyone at the core shed in Fort St. John. IDC provided access to their vast database of well logs and well data. Thanks also to A E C for providing funding and enthusiasm, in particular Mark Edmonds and the Peace River Exploration Group. M y time at U B C has been made much more enjoyable by the people around me. Thanks to the "Those Damn Bastards" ultimate team who addicted me to ultimate when I should have been writing my thesis. Special thanks to the basement dwellers, Vanessa, Nathan and Peir - procrastination at it's best. M y tour of duty at U B C would not have been complete without Laurel, my friend and my advice columnist - without you I would have been done six months sooner (just kidding). Thanks to the "nurses", without the fear of being stuck with needles at home I wouldn't have spent so much time at school. Finally, and most importantly, I'd like to thank my family, Mom, Dad, Victoria and Shelley. You guys have always made me feel proud of what I'm doing. Thank you. x Chapter 1 Introduction 1.1 INTRODUCTION Since the late 1980's, gas production from the Lower Triassic Montney Formation of northeastern British Columbia (NEBC) has steadily increased. To date however, little work has been done in the Montney Formation of NEBC. The aim of this study is to develop a depositional model for the Montney Formation and to determine the affects of diagenesis on reservoir quality and production. The three gas producing fields of specific interest to this study are the Kahntah, Ring-Border and Chinchaga Fields. The first completed well was drilled in 1978 in the Ring-Border Field (Sturrock and Dawson, 1991). However, extensive exploration and production did not start until 1989. Since then, approximately 2 3 5 0 1 0 6 m 3 of gas has been produced from the three fields. Production is from very fine-grained sandstones of submarine fan turbidites and tidally influenced delta front sheet sands. Reservoir rocks are primarily quartz arenite and are derived from an aeolian source (Davies, 1997a). Reservoir properties are defined by diagenetic influence. Areas of high production are a result of enhanced secondary porosity due to dolomite dissolution. The regional stratigraphy and depositional framework for the Montney Formation in western Canada has been previously established (Gibson, 1974, 1975; Gibson and Barclay, 1989; Gibson and Edwards, 1990; Edwards et al, 1994; Embry and Gibson, 1995; Davies, 1997b; and Dixon, 2000). This study extends previous work and develops new data for the Montney Formation in NEBC. 1 1.2 THESIS STRUCTURE This thesis is presented as two stand-alone papers which may be read without reference to proceeding chapters. Chapter two investigates the depositional controls on the Montney Formation in northeastern British Columbia, in particular the Ring-Border, Chinchaga and Kahntah Fields. The objectives of this chapter are to: a) define the lithofacies within the Montney Formation of N E B C and to document the lateral and vertical variation; b) interpret the facies associations and the related depositional settings; and c) create a depositional model to account for the variability in lithofacies and facies associations. Chapter three investigates the diagenetic properties of Montney Formation lithofacies and the relationship to reservoir quality and production potential. The objectives of this chapter are to: a) define the petrology of the lithofacies; b) interpret the diagenetic phases, the relative timing of diagenesis and the affects on hydrocarbon production; c) examine the relationship between porosity and permeability and the effect on reservoir potential and production; and d) investigate the pore size distribution and reservoir potential of the lithofacies using mercury porosimetry. 2 1.3 REFERENCES Davies, G.R. 1997a. Aeolian sedimentation and bypass, Triassic of western Canada. Bulletin of Canadian Petroleum Geology, v. 45, p. 624-642. Davies, G.R. 1997b. The Triassic of the Western Canada Sedimentary Basin: tectonic and stratigraphic framework, peleogeography, paleoclimate and biota. Bulletin of Canadian Petroleum Geology, v. 45, p. 434-460. Dixon, J. 2000. Regional lithostratigraphic units in the Triassic Montney Formation of western Canada. Bulletin of Canadian Petroleum Geology, v. 48, p. 80-83. Edwards, D.E., Barclay, J.E., Gibson, D.W., Kv i l l , G.E. and Halton, E. 1994. The Triassic strata of the Western Canada Sedimentary Basin. In: Geological Atlas of the Western Canada Sedimentary Basin. G.D. Mossop and I. Shetsen (eds.). Canadian Society of Petroleum Geologists and Alberta Research Council, p. 257-275. Embry, A.F. and Gibson, D.W. 1995. T-R sequence analysis of the Triassic sucession of the Western Canada Sedimentary Basin. In: Proceedings of the Oil and Gas Forum '95 - Energy from Sediments. J.S. Bell, T.D. Bird, T.L. Hillier and P.L. Greener (eds.). Geological Survey of Canada, Open File 3058, p. 25-28. Gibson, D.W. 1974. Triassic rocks of the southern Canadian Rocky Mountains. Geological Survey of Canada, Bulletin 230, 65 p. Gibson, D.W. 1975. Triassic rocks of the Rocky Mountain Foothills and Front Ranges of northeastern British Columbia and west-central Alberta. Geological Survey of Canada, Bulletin 247, 61 p. Gibson, D.W. and Barclay, J.E. 1989. Middle Absaroka Sequence - the Triassic stable craton. In: Western Canada Sedimentary Basin - a Case History. B.D. Ricketts (ed.). Canadian Society of Petroleum Geologists, Special Publication, no. 30, p. 219-232. Gibson, D.W. and Edwards, D.E. 1990. An overview of Triassic stratigraphy and depositional environments in the Rocky Mountain Foothills and Western Interior Plains, Peace River Arch area, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, v. 38A, p. 146-158. Sturrock, D.L. and Dawson, S.W. 1991. The Ring/Border Field: A significant gas discovery in the Triassic Montney Formation. Reservoir, Canadian Society of Petroleum Geologists, v. 18, p. 1-2. 3 Chapter 2 Sedimentology of the Lower Triassic Montney Formation, northeastern British Columbia 2.1 ABSTRACT The Lower Triassic Montney Formation comprises up to 200 m of deltaic marine shelf and submarine fan (turbidite) deposits in the Peace River Arch area of northeastern British Columbia. Extensive exploration since the late 1980's has led to the discovery of significant gas fields, which include important and complex reservoir facies with excellent lateral continuity. Reservoir facies in the Montney are hosted in turbidite and tidally influenced deltaic sandstones. The Montney Formation was deposited on the passive western margin of North America as a westward-thickening package. Within the study area, the Montney Formation thickens towards the southwest and is truncated in the east by the combined Coplin, Boundary and Siphon unconformities (Davies, 1997). Regionally, the Montney Formation dips to the southwest and is cut by northeast to southwest trending grabens formed by reactivation of underlying basement structures. The grabens served as locii for deposition that include thick reservoir rocks. Within the study area, uplift on the northwest side of the Hay River Fault Zone provided structural control on deposition of the major lithofacies. The Montney Formation in the Ring-Border, Kahntah, and Chinchaga fields includes seven distinct lithofacies interpreted as deltaic marine shelf and turbidite deposits. Inner to outer shelf lithofacies include: (1) highly bioturbated and flaser bedded 4 very fine-grained sandstone and shale; (2) interbedded, planar to hummocky cross-stratified very fine-grained sandstone and siltstone; and (3) highly disturbed sandstone and siltstone (seismite). The turbidite lithofacies are: (1) massive very fine-grained sandstone, assigned to the A subdivision of the Bouma sequence; (2) planar to ripple bedded very fine-grained sandstone, assigned to the B and C subdivisions of the Bouma sequence; (3) convolute-bedded sandstone associated with slumping and dewatering; and (4) interbedded shale and siltstone; The major reservoir facies common to the producing fields are the bioturbated very fine-grained sandstone and siltstone lithofacies and the massive to planar-bedded very fine-grained sandstone to siltstone. The strata show an overall coarsening upward, indicative of deposition during regression. The bioturbated sandstone and siltstone were deposited in a tidally influenced deltaic environment. Movement along the Hay River Fault Zone controlled the locus of deposition. This facies extends laterally from 3 to 10 km throughout the study area and ranges in thickness from 30 cm to 8 m. The massive to planar-bedded sandstones to siltstones are interpreted as proximal turbidite lobes and localized channels within a lowstand distal shelf to slope deposit. The turbidite reservoirs grade to non-reservoir distal lobe deposits down dip. Turbidite reservoirs extend laterally from 1 to 3 km with a range in thickness of 1 to 12 m. The lateral continuity and juxtaposition of deltaic and submarine fan sandstones resulted in the formation of extensive reservoirs. The depositional model proposed for the Montney Formation in northeastern British Columbia, combines the effects of regression due to a drop in relative sea level and local tectonic motion along the Hay River Fault Zone. 5 2.2 INTRODUCTION The Montney Formation in northeastern British Columbia is a Lower Triassic siliciclastic sequence deposited on the western passive margin of North America. The complexity of reservoir and non-reservoir sedimentary facies within the Montney Formation has made it an interesting and challenging target for petroleum exploration. Production from the Montney Formation in the study area began in 1978 following completion of the first well in the Ring-Border Field (Sturrock and Dawson, 1991). Further exploration in the early 1980's was limited because the Ring-Border Field was distant from known gas producing fields and gathering facilities (Bird et al, 1994). Renewed interest and exploration in the late 1980's led to an extensive drilling program and the discovery of thick turbidite and tidal sandstone intervals in the Kahntah and Chinchaga Fields (Bird et al, 1994). Since 1978, tidal and turbidite reservoirs have 9 3 produced approximately 5.2x10 m of gas from about 200 producing wells. Previous studies have demonstrated the complex sedimentology controlling reservoir distribution in the Montney Formation (Davies et al, 1997). This study extends previous work and provides new data for the Montney Formation in northeastern British Columbia. The purpose of this study is to interpret the depositional controls on the distribution of reservoir facies in the Montney Formation. Previous studies have established that the Montney Formation consists of multiple coarsening upward sequences and contains reservoir facies hosted in turbidite sands and coquinal dolostones (Edwards, et al, 1994; Davies et al, 1997; Dixon, 2000). 6 2.3 STUDY AREA AND CORE CONTROL The study area covers an area of approximately 4200 km 2 about 150 km north of Fort St. John in northeastern British Columbia (NEBC) and includes the producing gas fields of Chinchaga, Ring-Border, and Kahntah (Fig. 1). Within the three fields, approximately 300 wells intersect the top of the Montney Formation but only 56 penetrate the entire formation. Data for this study are based on 40 cores and 300 geophysical logs. The primary source of core data is from 36 wells in the Kahntah and Ring-Border fields on which this study focuses. Due to limited availability of core in the Chinchaga field, only four cores were logged in this area. Cores, along with wireline logs, are used to constrain the depositional trend towards the southern portion of the study area. 2.4 TRIASSIC STRATIGRAPHY Triassic strata in N E B C comprises a 1200 m thick succession of siliciclastic, carbonate and evaporite rocks (Gibson, 1974, 1975; Gibson and Edwards, 1990). The Lower and lower Middle Triassic are characterized by fine-grained siliciclastics, whereas the upper Middle and Upper Triassic are comprised primarily of siliciclastics with associated carbonates and evaporites. Sediments throughout the Triassic section have been affected by major erosional events that correspond to second- and third-order global sequence boundaries (Embry, 1997). Triassic stratigraphic nomenclatures of the subsurface in the Peace River area include those of Gibson (1974, 1975), Gibson and Barclay (1989), Edwards et al. (1994) and Embry and Gibson (1995) (Fig. 2). The most recent work by Davies (1997a) and Dixon (2000) is incorporated in this study. Davies (1997a) reconstruction of the 7 8 Period Epoch Age Pine River-Williston Lake Outcrop Subsurface NEBC Jurassic Norian Carnian Ladinian Anisian Spathian Smithian Dienerain Fernie Fm Pardonet Fm Baldonnel Fm Charlie Lake Fm Liard Fm Toad Fm Griesbachian Permian Grayling Fm Fantasque Fm Fernie Fm Pardonet Fm Baldonnel Fm Charlie Lake Fm Halfway Fm Doig Fm Montney Fm Belloy Fm B Middle Triassic Doig Fm Cretaceous Bluesky Fm ^ Unconformity Lower Triassic Montney Fm Permian Belloy Fm Fig. 2. A. General Triassic stratigraphy for the subsurface of N E B C and the outcrop equivalents in the Williston Lake area. Modified after Gibson (1974, 1975), Edwards et al. (1995) andDavies(1997a). B. Stratigraphy of the study area. Typically, the Lower Cretaceous Bluesky Formation unconformably overlies the Montney Formation. In the southwest region of the study area, the Doig Formation overlies the Montney Formation. Triassic stratigraphy in NEBC, particularly the timing and location of unconformities, incorporates subsurface and surface stratigraphy, palynology based biostratigraphy (Davies, 1997a) and global sequence boundaries (Embry, 1988; 1997). The Triassic subsurface strata has a correlative surface expression (Fig. 2) which crops out in the Williston Lake-Pine River area of northeastern British Columbia. 2.5 GEOLOGIC SETTING Although the western margin of North America during the Early Triassic is considered to be passive, evidence suggests that deposition of the Montney Formation was partly affected by tectonic controls. The study area lies to the north of the Peace River Basin, a northeast to southwest subsidence structure. The basin began forming in the Early Mississippian after the collapse of the Peace River Arch (PRA). The PRA was initiated in the Preeambrian and continued to develop through the Cambrian and Devonian (O'Connell et al, 1990). Through the Carboniferous, Permian and Triassic, a broad embayment developed and, from the Jurassic onward, a deep basin was formed. The PRA accounts for many of the structurally controlled petroleum prospects in the Montney Formation within the township and range area of northeastern British Columbia and west-central Alberta. Deposition in the study area was partly controlled by motion along the Hay River Fault Zone (also referred to as the Great Slave Lake shear zone; Hoffman, 1987), which bisects the study area. The fault zone originated in the Preeambrian and accommodated both significant dextral motion and down dropping on the northwest side of the fault zone (Davies, 1997a). The Hay River Fault Zone is interpreted as a continental transform fault caused by oblique collision and indentation of the Slave Province with the Churchill 10 Province at approximately 1.8 Ga (Hoffman, 1987). Periodic reactivation in Montney time along the HRFZ is evidenced by localized fracturing and presence of seismites. The Montney Formation unconformably overlies the Permian Belloy Formation and is either overlain by phosphatic shales of the lower Doig Formation or truncated by the combined Coplin, Boundary and Siphon unconformities. Erosion in most of the study area resulted in the removal of the upper portion of the Montney Formation, the Middle to Upper Triassic, as well as a portion of the Lower Cretaceous. Consequently, in most parts of the study area, strata of the Lower Cretaceous Bluesky Formation unconformably overlie the Montney Formation. The Montney Formation is best preserved in the western part of the study area, particularly the southwest. In these areas, the Montney Formation is overlain by the Upper Triassic Charlie Lake Formation. The areal extent of the study area is marked in the east by the subcrop edge and in the west by the Doig Formation subcrop edge (Fig. 3). Reservoir quality rocks of the Montney Formation trend northwest to southeast, parallel to the Montney subcrop edge. The producing Montney interval extends from N E B C into west-central Alberta. Paleoclimatic reconstructions indicate that the Montney Formation was deposited in seasonally hot and arid, mid latitudinal, Early Triassic climatic conditions (Davies, 1997a; 1997b). Climatic modeling by Golonka et al. (1994) show trade winds prevailing from the north to northeast. During the Early Triassic, these winds resulted in a net offshore wind creating or influencing: 1) a coastal upwelling system; and 2) aeolian sediment transport. The transported sediment was deposited as a westward thickening wedge along the western margin of North America (Fig. 4). In the study area, evidence for an aeolian source includes: 1) fine grain size (shale to very fine-grained sandstone); 11 A B Fig. 3. Erosional boundaries marking the eastern and western extent of the study area. N Kahntah J20 160 6** ******* ,oo°° Ring-Border "iZ Chinchaga well location contour interval = 20 m Fig. 4. Net isopach map of the Montney Formation. Thickest preserved sections of the Montney Formation in the study area are in the southwest portion in the Chinchaga Field. From the break in slope, the Montney Formation has an abrupt thickening towards the southwest. 13 2) moderate to high sorting and rounding of grains; and 3) the high proportion of physically resistant detrital grains, predominantly quartz and feldspar. 2.6 SEDIMENTARY FACIES AND FACIES ASSOCIATIONS Several informal lithostratigraphic units have been proposed for the Montney Formation. In the Peace River area of west-central Alberta, the Montney Formation is divisible into lower, middle and upper members (Davies et al, 1997), each of which consists of multiple coarsening upward sequences. On a more regional scale, Dixon (2000) has proposed five informal divisions which are more applicable to the Montney Formation as a whole. In west-central Alberta, the sandstone member of the Montney Formation (lower member of Davies op cit.) contains coarsening upward cycles of siltstone and very fine-grained sandstone. An unconformity marking the base of the sandstone member is a second-order sequence boundary (Embry, 1997). The coquinal dolostone of the Montney Formation (middle member of Davies op cit.), preserved primarily in west-central Alberta, consists of a dolomitized coquina unit, which can be traced for up to 400 km in a 30 km wide belt (Davies et al, 1997). The contact between the sandstone member and the coquinal dolostone member is an abrupt erosional surface (Davies et al, 1997). The siltstone member of the Montney Formation (upper member of Davies op cit.) is comprised of coarsening upwards cycles of siltstone and very fine-grained sandstone. The top of the upper member is an unconformity, possibly representing a second-order global sequence boundary as defined by Embry (1997). In NEBC, where the coquinal dolostone is not present, Dixon (2000) proposes two informal members: the siltstone-sandstone member and the shale member. Due to lithologic 14 similarity, the sandstone member and siltstone member of west-central Alberta become the combined siltstone-sandstone member of NEBC (Dixon, 2000). The shale member directly overlies the siltstone-sandstone member. Much of the shale member and the upper portion of the siltstone member have been eroded, particularly in NEBC. In areas least affected by erosion, where the thickest sections of the Montney Formation are preserved, the Middle Triassic Doig Formation overlies the shale member of the Montney Formation. In the study area, preserved sediments are contained within the siltstone-sandstone member defined by Dixon (2000). Within the Kahntah, Ring-Border and Chinchaga fields, seven distinct lithofacies are recognized (Table 1). The mode of deposition for the various facies include tidal controlled sedimentation in the foreshore, wave and storm influenced sedimentation on the shoreface/offshore transition, event deposition from turbidites, and pelagic settling of suspended sediment. The lithofacies of the Montney Formation occur as repeating coarsening upward units throughout the interval. Each lithofacies is defined based on sediment texture and sedimentary structures and are combined into lithofacies associations defined by depositional environment. 2.6.1 SEDIMENTARY LITHOFACIES Facies 1A - bioturbated very fine-grained /laser bedded sandstone to siltstone Facies 1A is characterized by flaser bedded, moderate to pervasively bioturbated very fine-grained sandstone to siltstone (Fig. 5). Trace fossils include Planolites, Palaeophycus, Diplocraterion, Teichichnus, Arenicolites, Skolithos, Chondrites and Helminthopsis. In portions of facies 1A, the sedimentary structures are completely obliterated because of the extensive bioturbation. Where bioturbation is less intense, 15 Facies Lithology Physical Sedimentary Structures Depositional Processes Depositional Environment ^ very fine-grained highly bioturbated, fiaser sandstone to siltstone bedding storm influenced, middle to lower heavily bioturbated shoreface -. J - , siltstone to very fine- . , T T ^ „ IB . , , / laminated to HCS grained sandstone tempestite offshore transition 1C siltstone/very fine-grained sandstone mottled texture tempestite? middle shoreface to offshore 2A very fine-grained sandstone massive turbidite (Bouma subdivision A) offshore 2B siltstone to very fine-grained sandstone highly convoluted and disrupted turbidite/slumping offshore 2C very fine-grained planar bedded to ripple sandstone to siltstone cross laminated turbidite (Bouma subdivisions B-C) offshore 2E mud, common with siltstone interbeds interlaminated distal turbidite (subdivsions D-E), proximal to distal pelagic settling from suspension shelf Table 1. Summary of Montney Formation facies from Kahntah, Ring-Border and Chinchaga fields. HCS = hummocky cross stratification. 16 Fig. 5. Foreshore lithofacies 1A. A . Facies 1A, bioturbated very fine-grained sandstone to siltstone . Flaser bedding is partially destroyed by bioturbation. Trace fossils represent a mixed Skolithos ichnofacies (d-001-D-94-I-02, 716.4 m). B. Facies 1A, with well preserved flaser bedding(d-86-A-94-I-03, 672.1 m). Thicker sand beds (white arrow) indicate periodic storm deposition. flaser bedding is preserved. The presence of flaser bedding and tidal couplets indicates that facies 1A was deposited under tidal influence. Facies 1A is identified on gamma-ray logs as a cleaning and coarsening upward sequence, generally from 1 to 10 metres thick. The pattern of deposition suggests facies 1A was deposited during regression. The lowermost portion of the sequence contains about 30% silt which grades to approximately 15% silt in the upper portion. Facies 1A is commonly punctuated with thin (10-50 cm) massive, very fine-grained, sandstone beds which have a sharp base and top. These beds represent rapid deposition, or event beds, from periodic storms. Based on the predominance of flaser bedding, facies 1A is interpreted to represent tidal deposition. Facies 1A is prominent throughout the study area and is one of the major gas reservoir facies of the Montney Formation. Facies IB - massive to laminated siltstone to very fine-grained sandstone Facies IB consists of very fine-grained sandstone and siltstone laminated/interbedded with sandstone. Average thickness of the unit is approximately 30 cm but locally, it is up to 1.5 m thick. Facies IB is abundant throughout the study area and is associated with sediments of facies 1A and turbidite facies. The rocks are characterized by massive and parallel laminated very fine-grained sandstone and siltstone. HCS and wave rippled sedimentary rocks are present in the upper portion of the turbidite sequence. These rocks are interpreted as lower shoreface to offshore transition deposits and represent rapidly emplaced sediments due to frequent storm events. 18 Facies 2A - massive very fine-grained sandstone Facies 2A is a massive very fine-grained sandstone interpreted to represent subdivision A of the Bouma turbidite sequence (Fig. 6). Massive sandstone beds range in thickness from 10 cm to 75 cm and are generally overlain by parallel-bedded sandstone (facies 2B). Facies 2A is composed predominantly (75-95%) of subangular to subrounded quartz grains, significant proportions of detrital potassium feldspar and dolomite and minor to trace amounts of zircon, apatite, rutile, glauconite and a chromium-rich spinel. Potassium feldspar in facies 2A yields a relatively high gamma-ray response, which partially masks the presence of clean sandstone intervals. Facies 2A is the most prominent facies within the study area and has excellent reservoir quality, with an average of 14% porosity and 10 mD permeability. Amalgamated massive sandstone beds of facies 2 A are laterally continuous for up to 10 km. Facies 2B - planar to ripple cross-bedded very fine-grained sandstone to siltstone Facies 2B is a planar bedded to ripple cross-bedded, very fine-grained sandstone to siltstone interpreted as turbidite deposits of subdivisions B and C of the Bouma sequence (Fig. 6). The base of facies 2B is marked by massive sandstone of facies 2A. Above the massive sandstone, facies 2B grades into laminated siltstone, typical of sedimentation from a waning turbidity current (Walker, 1992). The base of the facies grades up into siltstone interbeds with very fine-grained sandstone. Facies 2B generally overlies facies 2A. Facies 2B commonly preserves micro-flame structures (Fig. 6), indicating a unidirectional current flow direction. Facies 2B is a major reservoir facies with porosity averaging 13% and permeability averaging 3 mD. 19 Fig. 6. Lithofacies deposited as event beds. A . Facies 2A, massive very fine-grained sandstone, subdivision A of the Bouma sequence (a-39-H-94-I-03,661.5m). B. Photomicrograph of facies 1A. Grains are subangular to subrounded, well sorted and are 90% quartz (c-16-F-94-H-16, 810 m). Field of view = 2.5 mm. C. S E M backscatter image showing typical mineralogy. Quartz (Q), K-feldspar (K), dolomite (D) and chert (C (c-92-H-94-H-09,959 m)). Minor components include pyrite (Py) and rutile (R). D. Facies 2C, laminated to rippled (white arrow) very fine-grained sandstone to siltstone, subdivisions B and C of the Bouma sequence. Black arrow indicates micro-flame structures. 20 Facies 2C - convoluted siltstone to very fine-grained sandstone Facies 2C is convoluted/disrupted siltstone to very fine-grained sandstone (Fig. 7). This facies represents slumping, rapid loading and dewatering due to sediment instability. Features, including fluid escape structures, load balls, recumbent folds and highly convolute laminae are indicative of rapid deposition. Facies 2C is common throughout the study area but has poor reservoir quality. Deformation within facies 2C may be attributed to tectonic motion along the HRFZ. Facies2D siltstone interbedded with shale and sandstone Facies 2D consists of siltstone interbedded with a dark grey to green shale and very fine-grained sandstone (Fig. 7). Parallel and wavy laminations are the dominant sedimentary structures. Disseminated pyrite is common throughout. The high proportion of laminated siltstone and shale in facies 2D is indicative of deposition in the proximal to distal regions of the shelf during highstand conditions. Proximal shelf deposits of facies 2D typically have a higher proportion of interlaminated sandstone than that of the distal shelf. In the distal shelf regions, the proportion of shale increases, reaching thicknesses up to 2 m. Shale intervals of facies 2D generally underlie reservoir quality sandstones of facies 1 A, 2A and 2B and may be a source for Montney Formation gas (Riediger et al., 1990; Bird et al., 1994). Facies 3 - intermixed very fine-grained sandstone and siltstone Facies 3 consists of mixed sandstone and siltstone. This facies contains siltstone percentages ranging from 20 to 75%. Facies 3 is always marked by a sharp top and base and ranges in thickness from 5 cm to 50 cm but most commonly is between 10 21 Fig. 7. Turbidite lithofacies. A. Facies 2C, slump/soft sediment deformation in mixed very fine-grained sandstone to siltstone (a-83-E-94-I-03, 681 m). White arrow denotes a shear plane. B. Facies 2D, distal turbidite facies of interbedded shale/siltstone/sandstone, Bouma subdivisions D-E (b-6-F-94-H-16,822.7 m). cm to 15 cm thick. Facies 3 is a problematic facies with a difficult texture to interpret. The texture of facies 3 is not consistent with that of bioturbation. The probable origin for facies 3 is rapid compaction, shearing and fracturing, possibly as a result of movement along the Hay River Fault Zone. The prominent features of this facies are horizontal shearing and vertical fracturing. Shear planes are evident in hand sample and in thin section (Fig. 8). Facies 3 occurs as a discontinuous unit and is typically concentrated around the Hay River Fault Zone. Rocks with similar textures have been classified as seismites (Seilacher 1969, 1984) and intrastratal micro fractured zones (Grimm and Orange, 1997). 2.6.2 FACIES ASSOCIATIONS The seven defined lithofacies (Table 1) can be grouped into three facies associations: 1) proximal to distal offshore shelf facies association; 2) foreshore to offshore transition facies association; and 3) turbidite facies association. The facies associations are readily distinguished on geophysical logs (Fig. 9). In the following section, each facies association is discussed with reference to lithofacies and depositional environment. 2.6.2.1 Proximal to distal shelf facies association Fine-grained rocks consisting of interlaminated shale, siltstone and sandstone (facies 2D) characterize the offshore shelf facies association. The fine grain size of these rocks, the predominance of planar laminations with minor ripples, abundant pyrite and the absence of burrows suggests moderate to low energy of deposition, below storm wave base under dysarobic or anoxic conditions. The presence of finely laminated sandstone 23 Fig. 8. Facies 3 deposited as seismites. Photos are from well d-86-A-94-I-03 at 688.7 m depth. A . Facies 3, mixed very fine-grained sandstone to siltstone. This sample has a high proportion of siltstone. B. Photomicrograph of facies 3. The sample is poorly sorted with angular to subrounded grains. Dark grey to black material is silt sized. White line indicates a shear plane. • CO m c l LUJ A>(sania LUJ Aeu)U0|A| •a <D I 8 d) o II •o o 11 4; c o ro CO CO CO "D CZ CD CD c o O) "O T3 13 CD tone one inds udst E o to jo a> c o CD CO "O a> ro J2 ) c E ro o ID m CO d) > ro > O) c "O X ! CD § c o o *o 5 CD o •a £ ro ^ •o CD I ro § 2 CD T3 Z CD CD -Q £ I I 9 CD 5 25 and siltstone indicates deposition by suspension currents, which are required to transport the coarser fractions into distal regions. Under storm conditions, significant amounts of sand and silt sized particles can be retained in suspension by high wave energy. In deeper water, as the energy decreases, laminated sand and silt sized particles are deposited as low energy suspension clouds (Reineck and Singh, 1972). The coarser fractions within the proximal to distal offshore facies association were deposited by waning storm-generated flows. Sedimentary rocks of the proximal to distal shelf facies association occur at the base of the Montney Formation succession. There are no cored sections through the Permian/Triassic boundary in the study area and interpretations of this interval are based on well logs. A thin transgressive sequence of fining upward sediment, visible on gamma-ray logs, overlies the unconformity surface on top of the Permian Belloy Formation (Fig. 10). This transgressive phase occurred extremely rapidly and plays a role in the Permian/Triassic mass extinction event (Wignall 1992, 1993), which is discussed later. Sedimentary rocks deposited during the ensuing regression are characterized by coarsening upward packages of siltstone and sandstone with minor shale. The regression is marked by a shift in deposition from a distal to more proximal environment as reflected by an increase in siltstone and sandstone content and bed thickness. The sedimentary rocks of the distal shelf show a slight coarsening upward trend but consist primarily of siltstone and shale. The intervals deposited on the proximal shelf show an increase in sandstone and coarse siltstone content and bed thickness. Proximal shelf sediments were most likely transported from the foreshore and shoreface by storm-generated, low-density 26 spjeMdn Binussjeoo o in T ~ 05 ma API E CO 0 o c o "55 T3 C CO d) u5 2 c £ co 0) c o "55 T3 c n] tn TJ <D c (0 0) c o i -o c CO (U <1) c •- 2 T3 o? 11 3 CO (0 CD !fe > «•*-(]) •C ° c | | l E — in 1 °>? v. .c co Q. i c o in in a- co » .E W O l i a i o ( (0 g E ai O F 5" u. c ', >, c o o "55 5 m E o CD 27 turbidity currents. The proximal to distal shelf facies association is characterized on gamma ray logs as an overall coarsening upward in the range of 75 to 120 API units. The top of the proximal to distal facies association is defined by the onset of turbidite deposition. Of importance to the proximal to distal facies association is the marked paucity of biogenic structures. This may reflect the ongoing effects of the well documented mass extinction event associated with Late Permian to Early Triassic time. At this time, an estimated 90% of marine species were decimated (Raup, 1979; Erwin, 1993). The most widely accepted cause of the mass extinction is due to widespread anoxia or dysaerobic conditions (Wignall, 1992, 1993; Schubert and Bottjer, 1995; and Retallack et al., 1996). Evidence for anoxic conditions is supported by the abundance of pyrite, particularly within the proximal to distal shelf facies association of the Montney Formation. 2.6.2.2 Turbidite facies association Turbidites are important Montney Formation gas reservoirs, particularly in the Ring-Border and Kahntah fields. Turbidites have typically been described with reference to the classic turbidite sequence defined by Bouma (1962). The full Bouma sequence, however, is rarely preserved in turbidites of the Montney Formation. The sedimentary structures preserved in a turbidite deposit depend on: 1) the proximity to the axis of flow; 2) the transport distance of the flow; and 3) successive events which may erode portions of the sequence (Walker and Plint, 1992; Moslow and Davies, 1997). In a high-energy setting, the coarsest sediments are deposited as proximal lobes or locally within turbidite channels (Fig. 11). As the energy of a flow dissipates, only the finer 28 K 8 * | « ' _ £ « S >.(_ j , g _ 8™ 55=5 S < 2a S B J) 3 oo c 5 to .2 _ TJ C 3 (D "O T3 "D <D CO c ro a. _" o w to 11 to 2 _ ~ C > a CD 0 1 0 • _ •— ro > « O C » o < I— T J 00 E _ | § 1 . -i (D Q <? XI -3 (0 o £ t CD -*—* ^ W CD X ! Q . _ o. ro 3 10 _____ I 8 <b 3- — to CT - j o « 1 | ~ CD — _ - — B O 3 a T . . 2 S CD (O -P Q - > _ o — +-| 3 ° CD O • i f i .5 & 11 •S ° If .a sa i I a O CO I 1 8 3 G » 1) C 3 3 5T r~* CD n ** l a 3 °> 3 B s I a — a q It '« S o -ir —i -g Sa § I > -_3 w 11 -I i | i j o a 11 .1 § •» '55 -2 *i cct 00 .a c 0) s I oo 3 § & O C l b lauueip aqoi |BLUixojd o CO CO IT) CO CO o oo CD I o in ^— CO a: ma API : np' • E -J V (0 O o o CO OO o co o oo o CO oo l i CD o "O CD CO CO o CD CD ro c c sto mudstoi CO pu mudstoi sa mudstoi CD i l 3 O — O CD c O CD 3 CD c o to o to CD O T3 c= ro ro CD "D CD =S c q IS — 6 S CD _ S = 2 & O ro 5 £ _ o op ^ 1 s i l _ . o —: O "j I _ 8 | c 1 ,1 29 grained sediments are transported. As a result, the distal lobe or fan deposits are dominated by silt and clay size fractions with sand deposited as event beds. Facies 2A, 2B, 2C, include turbidite channels, prograding turbidite lobes and fluidized/soft-sediment deformed deposits. Similar facies associations in west-central Alberta have been described by Moslow and Davies (1997). The highest quality reservoirs in the study area (porosity = 14% and permeability =10 mD) are sandstones of the proximal fan and localized turbidite channels. Turbidite lobe or fan deposits comprise a vertical succession that coarsens upward due to the progradation of successive turbidites (Fig. 11). Sandstone bed thickness also increases towards the top of the section. Within the study area, sediments deposited in the upper to mid fan contain a unique set of features that are readily recognizable in core including: 1) climbing ripples; and 2) rip-up clasts. Climbing ripples imply high rates of deposition (Walker, 1985) and rip-up clasts indicate that the turbidity current had enough erosive energy to scour the underlying surface. In the proximal regions of the lobe (upper and mid fan), full Bouma sequences are sometimes preserved. Parallel and rippled laminated sandstone as well as overlying silt to clay beds (Bouma subdivisions B, C, D and E) are most commonly preserved. The upper beds of the turbidite sequences are typically reworked, showing HCS and wave ripples, indicating wave/storm influence in the offshore transition. In the distal regions of the fan, individual beds are thin due to a decrease in depositional energy and sediment load. Beds typically range from 5 to 20 cm in thickness and contain very fine-grained sandstone, siltstone and shale which are finely laminated to slightly rippled (Bouma subdivisions C, D, and E). Fan deposits range from 1 to 12 m in thickness. 30 Turbidite channels are localized features, incised within the top of the fan deposit. The channels are comprised of massive (facies 2A) and parallel laminated sandstones (facies 2B). The base of massive beds is marked by an erosional scour, sole marks and sediment load features (Fig. 12). Deposition within the turbidite channels was under upper flow regime conditions, resulting in massive or parallel-bedded sandstones. Thickness of the channel deposits ranges from 50 cm to 5 m. A minor component of the turbidite facies association are seismites (facies 3). The presence of facies 3 suggests a tectonic influence (movement on the Hay River Fault Zone?) on deposition of turbidite facies. Seismites are found primarily in the coarser, more proximal portions of the turbidite fan deposits and range in thickness from 10 to 60 cm. Soft sediment deformation along the outer margin of the fan is associated with seismic activity. Sediment instability is common, resulting in slumping, convolution and soft sediment deformation (facies 2C). 2.6.2.3 Foreshore to offshore facies association Sediment deposited within the foreshore to offshore transition is a dominant component of the Montney Formation. Facies 1A, IB and 3 are the primary facies comprising this association. Bioturbated sandstones and siltstones of facies 1A comprise the major component of the facies association. The bioturbated intervals contain a diverse but poorly developed (stressed) suite of traces characteristic of a tidal environment. The full suite of traces (outlined later) reflects stressed marine conditions. Flaser bedding and tidal couplets provides further evidence for deposition of facies 1A in a tidal to subtidal environment. 31 Fig. 12. Sedimentary structures found within the turbidite facies. A . Load structure formed in siltstone layer, due to rapid deposition of overlying sandstone (c-16-F-94-H-16, 813 m). B. Plan view of load structures in siltstone (b-2-K-94-H-16,686.4 m). C . Tool marks in very fine-grained sandstone on the base of a turbidite bed (c-74-F-94-H-l 6,810.8 m). D. Sand balls caused by liquefaction (c-58-F-94-H-16,801.9m). 32 In a lower shoreface to offshore setting, sediments are near fairweather wave base and are affected by oscillatory wave motion and storm generated currents (Harms et al., 1975; Walker and Plint, 1992). In the Kahntah and Ring-Border Fields, the combined effect of wave and storm energy results in the formation of HCS (facies IB) and the emplacement of massive sandstone beds (up to 50 cm) within facies 1A. These units are interpreted as storm driven tempestites. Only rare Planolites and Palaeophycus are associated with rocks of the offshore transition, which suggests there was little time for colonization between successive depositional events. The forshore to offshore facies association is interpreted as a regressive deposit. The coarsening upward nature is indicative of tidally influenced deltaic sedimentation during a drop in relative sea level (Dalrymple, 1992). Evidence for a deltaic environment is not conclusive but provides the best fit based on all available data. The facies in this association commonly overly thick amalgamated turbidite deposits. In areas where turbidites are not preserved or deposited, this facies association overlies shales and laminated siltstones, characteristic of the proximal to distal shelf facies. The foreshore to offshore facies association is readily distinguished on gamma-ray logs by an overall coarsening upward, with a characteristic funnel shape (Fig. 13). As in the turbidite facies association, seismites of facies 3 make up a minor component of the foreshore to offshore facies association. Associated with the seismites is localized slumping and soft sediment deformation features. Local tectonic movement along the Hay River Fault Zone appears have partly controlled the deposition of this facies association. 33 i — 1\1 25 o •c c CO o s - as CD c o -t—' co CD CO •o CD CD . Q . o < in 55 -~ o CD O >- co O CO £ CO CO U) CD CD O CO c CD O x: s * - CO e 4— CO o £ o O CD •a c d) CO 5> w co E CD CD ~ i> Q . - « 3 ^ += co O - ro e g . Is® I CD 7 3 CO O fD <D O * ; £ ^ 3 — f= +J W (/) . -I [Be CD 0 O 3 3 • 2 CD CD -t; C CO o o 11 CO CO m "a T _ J! u «; CO <D E c o o c ra x: • CD q= O —i o o "2 y C M o o u > o « s <u o .in i 5 1 •5 C u5 c/i « "2 -9 1 O 9 1> xi H | . -3 f l o a •Sic < m o 9 J 0 L | S 8 J 0 J aqo| leaiixojd Q < < < O CO o < CO LU CM T -- L ' . ' / l -CM T -A . 1 - V : 1 7 J / . . - J S V CM T - CM CM CM CM • 1 ' i • 1 ' i • 1 CM O 4 Oi Q C\l CD i CO CC CD E E co O o CD CD ID co o cn CD 12 0 O 1^ •o o 10 CI) to _ <e c o ro (0 (0 CO T3 C ro c o to •o rj E ro -e g co c o to X) c ro to "D CP ro 0) c a a S ^ .2 T 3 .3 § ' 3 u tA g i 1 J "2 A * s u o a | 2 1 | o c o K cS O 1 O > C o o 2 a. (8 C*H O u a a... 'to e§ .2 S •S 2P | | 5 u 1.8 M S 34 2.7 ICHNOLOGY Trace fossils within the Montney Formation have moderate diversity and abundance. The traces observed in the study area comprise a Skolithos Ichnofacies. The flaser bedded facies (facies 1A) is host to the majority of the traces. Only rare Planolites and Palaeophycus traces occur within the turbidite and proximal to distal shelf facies associations. 2.7.1 SKOLITHOS ICHNOFACIES A S S E M B L A G E The traces within the Skolithos Ichnofacies are characteristic of a tidal to subtidal environment (Narbonne, 1984; Pemberton et al, 1992) and are commonly associated with storm-influenced sediments within the offshore transition. The assemblage consists of Planolites, Palaeophycus, Chondrites, Helminthopsis, Teichichnus, Diplocraterion, Skolithos and Arenicolites along with rare Cylindrichnus and escape traces (Table 2, Fig. 14). The assemblage of traces found within the study area serve as a proxy for bathymetry and provides information on the depositional energy and depositional setting (Fig. 16; Seilacher, 1967; Bromley, 1990). The Skolithos Ichnofacies is characteristic of a moderate to high-energy environment, encompassing from the foreshore to middle shoreface (Frey and Pemberton, 1985). Trace makers in this setting are subject to constant wave and periodic storm action (above minimum wave base). Abundant vertical and escape traces are present within the study area. Vertical structures indicate an adaptation mechanism in which organisms build a robust burrow that can withstand the constant water agitation and bottom reworking of the tidal to subtidal environment (Frey 35 Trace Morphology Trace Type Environment Ichnofacies Planolites unlined, cylindrical, parallel grazing (deposit to bedding feeder) middle shoreface to offshore transition mixed Skolithos-Cruziana Palaeophycus Chondrites lined, cylindrical, parallel to bedding small (~lmm diameter) cylindrical burrows, occur in clusters Helminthopsis small convoluted tracks dwelling (filter feeder) grazing (deposit feeder) grazing (deposit feeder) middle shoreface to offshore transition middle to lower shoreface, preferentially colonized in silt or mud middle to lower shoreface to offshore transition mixed Skolithos-Cruziana mixed Skolithos-Cruziana mixed Skolithos-Cruziana Skolithos lined, vertical burrows dwelling (suspension feeder) middle to lower shoreface; omission surface mixed Skolithos-Cruziana; omission facies Teichichnus perpendicular/oblique to bedding, concave spreiten feeding (deposit feeder) middle to lower shoreface mixed Skolithos-Cruziana Diplocraterion Cylindrich unus u-shaped, spreiten between limbs of the burrow, perpendicular to bedding cylindrical to subcylindrical, layered wall linings, vertical to subvertical dwelling (suspension feeder) dwelling (suspension feeder) middle to lower shoreface; omission surface middle to lower shoreface mixed Skolithos-Cruziana; omission facies mixed Skolithos-Cruziana Arenicolites u-shaped, perpendicular to bedding, lacks spreiten dwelling middle to lower mixed Skolithos-(suspension feeder) shoreface Cruziana Table 2. Morphology and environment of traces found within the shoreface to offshore facies association of the Montney Formation (modified in part from Frey and Pemberton, 1985; Bromley, 1990; Pemberton et al, 1992). 36 Fig. 14. Skolithos ichnofacies characteristic of Montney Formation foreshore deposits. ?a=Palaeophycus, P\=Planolites, Sk=Skolithos, Ar=Arenicolites, He=Helminthopsis, Ch=Chondrites, Te=Teichichnus, Cy=Cylindrichnus, T>'\=Diplocraterion. Photos are from wells: A . a-81-A-94-I-03, 675.3 m; B. C-92-H-94-H-09,963.4 m; C. a-23-G-94-I-03,688.1 m; D. a-23-G-94-I-03,686.2 m. and Seilacher, 1980; Frey and Pemberton, 1984). Escape traces in the study area are indicative of organism response to rapid sedimentation by storms. Within the tidal to subtidal succession of the Montney Formation, a gradation of traces occur. At the base of the tidal succession, the traces are predominantly horizontal, but include some vertical traces. Major horizontal traces include Planolites, Palaeophycus, Chondrites and Helminthopsis. The number of vertical traces, including Skolithos, Arenicolites, Diplocraterion, Teichichnus and escape traces increases towards the top of the succession, where the sandstone content increases. The shift in morphology from horizontal to vertical traces indicates an increase in energy. Despite the shift in trace morphology throughout the section, the trace fossil assemblage is best characterized as a Skolithos Ichnofacies. The morphology of the traces present provides key evidence for the environmental conditions during the Early Triassic. Although there is moderate trace diversity, the structures themselves are indicative of a stressed environment. This is to be expected in view of the wide-spread decimation of organisms due to the Permian/Triassic mass extinction event. Most authors suggest wide spread anoxia or dysaerobic conditions caused the mass extinction event (Wignall, 1992, 1993; Schubert and Bottjer, 1995; and Retallack et al, 1996). The morphology of the traces is consistent with low oxygen conditions, which would result in a decrease in diversity and trace size (Savrda and Bottjer, 1989). Another factor to consider is the salinity conditions of a tidal environment. In a nearshore environment, salinity parameters can vary dramatically and organisms tend to show a reduction in size and diversity with a decrease in salinity (Milne, 1940; Pemberton and Wightman, 1992). 38 In the Montney Formation of west-central Alberta, trace fossil diversity is dramatically diminished (Davies et al. 1997) compared to that of the Kahntah and Ring-Border fields. In Alberta, Davies et al. (1997) have noted the predominance of Lingulichnus traces which is formed by opportunistic lingulid brachiopods which survive well in stressed environments. However, very few Lingulichnus traces are recognized in core from the Kahntah and Ring-Border Fields. Clear conclusions for the diversity contrast between Lower Triassic sequences in N E B C and west-central Alberta are uncertain at this time. 2.8 DEPOSITIONAL MODEL The Montney Formation in N E B C was deposited as a series of transgressive-regressive cycles on an open marine shelf. The sedimentology of the Montney Formation in N E B C was controlled by global sea level fluctuations, underlying Paleozoic surface topography and local tectonic controls. The combination of these factors resulted in the deposition of reservoir quality accumulations of storm influenced/bioturbated tidal sandstones and turbidite sandstones. 2.8.1 SEQUENCE STRATIGRAPHIC F R A M E W O R K Based on worldwide correlations by Embry (1997), the Early Triassic is divisible into three third-order sequences: the Griesbachian-Dienerian, Smithian and Spathian. Haq et al. (1987), have interpreted a fourth third-order sequence which extends from the upper Early Triassic to the lower Middle Triassic. From a regional perspective, the base of the Montney Formation may be tentatively correlated with the Griesbachian Stage boundary and the top correlated with the Anisian-Spathian Stage boundary (Embry, 39 1997). In the study area, the strata is interpreted to encompass a transgressive-regressive cycle deposited within the Griesbachian-Dienerian Stage. However, due to erosion of much of the Montney Formation and a lack of published age determination and biostratigraphy, further application of these stage boundaries to stratigraphic intervals in the study area would be speculative and are therefore not applied beyond the Griesbachian-Dienerian. In NEBC, sequences within the Montney Formation can be divided based on second- and third-order sequence boundaries. The upper and lower erosional surfaces bounding the Montney Formation are second-order sequence boundaries (Embry, 1997). In areas adjacent to the subcrop edge, Montney Formation deposits were deeply eroded by events associated with the sub-Cretaceous unconformity. In these areas, a single transgressive-regressive cycle is preserved, recording the upper and lower second-order sequence boundaries (Fig. 15). Sedimentary rocks in the west and southwest region of the study area are least affected by erosion and contain the best preservation, typically showing portions of two and occasionally three transgressive-regressive cycles. Each of the cycles records a period of coastal onlap, marked by a maximum flooding surface, followed by a period of coastal offlap. The separation between successive transgressive-regressive cycles marks a third-order sequence boundary. These sequences are represented on gamma-ray logs as coarsening upward cycles. Smaller fluctuations within each sequence are also present and represent minor sea-level fluctuations during overall sea level rise or fall. 40 41 2.8.2 DEPOSITIONAL INTERPRETATION OF THE M O N T N E Y FORMATION IN N E B C Transgressive-regressive cycles are responsible for the overall pattern of deposition within the Montney Formation. The Griesbachian-Dienerian stage, which consists of the lower Montney Formation, is the best preserved in the study area and is host to the majority of gas producing intervals. Because all of the rocks examined for this study were cored through the Griesbachian-Dienerian stage, they are the primary focus for developing the depositional model of reservoir quality deposits in the Montney Formation in the Kahntah, Ring-Border and Chinchaga Fields. A conglomerate unit, composed of chert and phosphatic pebbles, commonly marks the base of the Montney Formation deposit (Bird et al., 1994; Davies et al., 1997). The conglomerate unconformably overlies calcareous sandstones, siltstones and shallow water limestones of the Permian Belloy Formation (Edwards et al., 1994). This surface, however, was not cored in rocks of the study area. Based on previous studies and correlative log signatures, the base of the Montney Formation in the study area is interpreted to consist of a similar conglomerate unit deposited during earliest transgression. The onset of Triassic sedimentation and transgression is marked by the deposition of interbedded shales, siltstones and very fine-grained sandstones. These sediments were deposited on the distal shelf and represent sedimentation from suspension and low-energy distal turbidites. The deposition of the fine-grained intervals is coincident with a period of coastal onlap. The transgressive interval, which is floored by an unconformity and capped by a maximum flooding surface, is a transgressive systems tract. Subsequent regression resulted in deposition of the majority of the Montney 42 Formation. In some wells of the Ring-Border and Kahntah fields, where erosion is not as deep, the base of a second transgressive-regressive cycle is visible in core. During highest sea level, low-density turbidites were deposited on the distal shelf. These are characterized by parallel laminated siltstones of facies 2D (Fig 16). Occasional sand beds record infrequent high-energy input to the distal shelf. With falling sea level, sandstone bed thickness and occurrence increases, marking the transition from a distal to proximal shelf setting. Within the proximal setting, several small coarsening upward cycles are superimposed on the overall coarsening upward cycle. The small cycles are due to turbidite lobe shifting and local changes in relative sea level. During the late stages of regression, coarser grained turbidites are deposited within the turbidite fan system. The upper portion of the turbidite fan is commonly incised by turbidite channels consisting of amalgamated beds of facies 2A and 2C (massive to parallel laminated very fine-grained sandstone and siltstone). The juxtaposition of tidal deposits with lowstand shelf turbidites is initially perplexing. The transition from turbidite to tidal deposit is abrupt, generally occurring over a 10-20 cm interval. This suggests a rapid shift in depositional setting, which cannot be accounted for by changes in relative sea level. Movement along the Hay River Fault Zone may account for the unusual nature of the transition (Figs. 15 and 17). The actual sense of movement along the HRFZ is difficult to determine (Edwards et al., 1994) and therefore the ensuing discussion is based on speculative potential movement. It is proposed here that motion along the HRFZ resulted in uplift along the northwest side of the fault. The high proportion of tidal deposits on the northwest side of the HRFZ and the lack thereof on the southeast side provide one line of evidence for the sense of fault 43 prevailing N-N E winds HI Siltstone with minor shale I 1 Beach sediments | Shelf emplaced turbidites Flaser bedded bioturbated sandstone/siltstone | Storm induced tempestites prevailing N-NE winds Fig. 16. Depositional model for the Montney Formation in northeastern British Columbia. Distal turbidites are deposited during highstand conditions as laminated shale, siltstone and very fine-grained sandstone. With falling sea level proximal turbidites begin to prograde onto the shelf, depositing coarser grained sediments. Motion along the Hay River Fault Zone uplifted the northwest region of the study area. In the northwest, flaser-bedded delta front sand sheets are deposited. With rising sea level, a second transgressive-regressive cycle begins. 45 motion. Typically, sediments on the northwest side of the HRFZ have a slightly coarser grain size, possibly related to shallower water depth, higher energy and availability of coarser clastic input. Evidence for seismic motion is preserved within the sediments. Shear planes are clearly visible within the seismites and deformed sediments (facies 2C) associated with seismic activity. Seismites (facies 3) are commonly preserved along with soft sediment deformation and vertical fracturing. Most of these features are coincident with the transition from turbidite to tidal deposition. The overall succession of tidal sedimentary rocks is characterized by a coarsening upwards. This unit is interpreted as a deltaic front sand sheet associated with a prograding delta during regression. Both modern and ancient analogs for tidally influenced prograding deltas are commonly referred to in the literature. Abundant bioturbation in tidally derived rocks suggests slow sediment accumulation rates possibly due to high aridity and low fluvial input. Slow accumulation rates would also account for the small thickness of the deposit (2 to 14 m). Tidal deposits represent the post uplift continuation of the regressive event responsible for the deposition of turbidite lithofacies. A strong point supporting the deltaic model is the ichnofacies assemblage. Elsewhere in the Montney Formation, bioturbation is highly stressed with limited diversity (Davies et al, 1997). In contrast, the Kahntah and Ring-Border fields show higher diversity. This may be accounted for by input of oxygen rich fluvial waters, limiting the effects of widespread anoxia/dysaerobic conditions during the Early Triassic. The turbidite and tidal deposits record a single regressive event. The upper surface of the tidal deposits is either erosionally truncated and subsequently overlain by 46 Lower Cretaceous rocks or locally eroded and overlain by a second Montney regressive unit. The regressive strata are included within a highstand systems tract. In areas where a second transgressive/regressive cycle is recorded, the base is marked by a transgressive surface of erosion. A thin coquina bed is commonly found at the base of the transgressive sequence (Fig. 18). Much like the base of the Montney Formation, the upper transgressive sequence comprises a thin unit of laminated siltstone and shale with minor very fine-grained sandstone. Regressive sediments overlie the transgressive package and are characterized by increasing sandstone content and bed thickness. The upper surface of the regressive sequence is eroded by the sub-Cretaceous unconformity and overlain by the Bluesky Formation. The trends in thickness and lateral continuity of the strata is shown in cross sections of the Kahntah and Ring-Border fields (Figs. 19, 20). The preserved upper surface of the Montney Formation in the study area is a lowstand erosional surface, colonized in part by a Glossifungites Ichnofacies of Cretaceous age (Fig. 21). The traces are associated with the overlying Lower Cretaceous Bluesky Formation. The erosional surface on the top of the Montney Formation is a sub-Cretaceous unconformity marking a second-order sequence boundary. 2.8.3 CONTROLS O N DEPOSITION At the time of accumulation, Montney Formation sediments were deposited as a northeast to southwest trending wedge parallel to the northwest-southeast trending Triassic shelf edge. The underlying topography exerted control on initial deposition of reservoir quality sandstones. Figure 22 is a third-order residual structure map on the top of the pre-Montney Paleozoic surface, based on data from 126 wells. Undulations in the paleo surface occur throughout the study area, with a maximum of 12 m and averaging 47 Fig. 18. Bivalve shell lag located near the boundary between transgressive-regressive cycles. Note the sharp upper (right photo) and lower (left photo) contacts of the shell layer. Thickness of the layer ranges from 10 cm to 25 cm (a-25-F-94-H-16,793.8 m). Fig. 21. Typical traces found on the uppermost surface of the Montney Formation. Traces are part of the Cretaceous Bluesky Formation trace fossil assemblage and are part of the Glossifungites ichnofacies. Traces are large, smooth walled and robust, indicative of burrowing within a firm substrate. Ar=Arenicolites, Sk = Skolithos, Ga=Gastrochaenolites. 51 52 approximately 6 m. Elsewhere in the study area there is little topographic relief on the sub-Montney surface. In these areas, mass wasting deposits were relatively uninhibited and free to spread laterally. The thickest accumulations of turbidite sandstones occur within topographic lows of the paleosurface (Figs. 22 and 23). Tidal deposits thicken in the northern portion of the study area and are absent in the south. The thickest tidal deposits occur in the Kahntah and Ring-Border fields, northwest of the Hay River Fault Zone. These accumulations are interpreted to be structurally controlled by movement along the HRFZ. To the west of the study area, well control is limited and the extent of reservoir distribution is difficult to resolve. In the limited wells available, there is a westerly change in facies to much finer grained slope to basinal sediments. Mass wasting sediments are more localized and limited in extent to the west of the study area. Initiation of mass wasting events was likely caused by instability due to minor movement along the Hay River Fault Zone, which cuts through the southern half of the Ring-Border Field. In wells cored near the fault zone, many of the sediments display horizontal fracture sets, which may result from fault motion when sediments were partially lithified. Areas with the largest vertical relief on the underlying paleosurface are located on either side of the fault zone, suggesting the topography is also a result of fault motion (Fig. 22). 2.9 CONCLUSIONS The Lower Triassic Montney Formation in northeastern British Columbia is comprised of multiple coarsening upward siliciclastic sequences. Seven distinct 53 o X I CO \0 1 _ 1 x i CD O i T" 1 __ i _l_ i •t CO 00 o I X i 9 H [ j i [ I £ \ \ \ \ x -I co 3 CO X t co o CO o CO o I X I a: CO 03 _ 03 -t—» _fZ L_ o H— 1 c o o 54 lithofacies are recognized that are associated with mass wasting (turbidites, tempestites and seismites) and tidal deposition. Montney Formation deposits are characteristically very fine-grained, ranging from shale/siltstone to very fine-grained sandstone. The mineralogy consists dominantly of detrital quartz with significant proportions of detrital potassium feldspar, plagioclase and dolomite. Both the grain size range and mineralogy are indicative of an aeolian source, consistent with previous paleoclimatic and paleogeographic reconstructions which place the Montney Formation in a hot, seasonally arid, mid-latitudinal setting. The Montney Formation was deposited as a westward thickening wedge along the western margin of ancestral North America. Over most of the study area, the sediments are truncated below a sub-Cretaceous unconformity (combined Coplin, Boundary and Siphon unconformities). Erosion resulted in the removal of the Middle and Upper Triassic and all of the Jurassic rocks. In the northeastern portion of the study area, Cretaceous deposits of the Bluesky Formation unconformably overlie Montney Formation deposits. In the west and south, the Montney Formation is better preserved. In these areas, the Montney Formation is overlain by the Upper Triassic Charlie Lake Formation. Further to the west, the Middle Triassic Doig Formation overlies the Montney Formation. The Montney Formation was deposited during three transgressive/regressive cycles; the lowermost of which is best preserved in the study area. The majority of the strata were deposited during a highstand systems tract. Turbidite and deltaic sandstones represent deposition during falling sea level. Turbidite intervals are best characterized as prograding lobe deposits, locally incised by turbidite feeder channels. Tidal deposits are 55 highly bioturbated, show tidal couplets, reactivation surfaces and some cross bedding. Based on the coarsening upward nature, ichnofacies (characteristic of the upper shoreface to foreshore) and sedimentary structures, the tidal units are interpreted as prograding delta front sand sheets. The distribution of reservoir quality sediments is a function of both the extent of sea level fluctuations, underlying topography and tectonic controls. The thickest turbidite accumulations occur in topographic lows, where mass wasting events were funneled. Thick tidal accumulations overlie the turbidite sequences and are restricted to the north/northwest portion of the study area. Tidal accumulations are structurally controlled by uplift on the northwest side of the Hay River Fault Zone. Seismic activity most likely served as the trigger mechanism for much of the event deposits. Montney Formation strata in the southern part of the study area comprise sedimentary rocks that are representative of turbidite deposition on the proximal to distal shelf with no tidal influence. These rocks were most likely derived from sediment shed from the uplifted side of the HRFZ. 56 2.10 References Armitage, J.H. 1962. Triassic oil and gas occurrences in northeastern British Columbia, Canada. Journal of the Alberta Society of Petroleum Geologists, v. 10, p. 35-56. Barss, D.L., Best, E.W. and Meyers, N . 1966. Triassic, Chapter 9. In: Geological History of Wetern Canada. M . G . McCrossan and R.P. Glaister (eds.). Alberta Society of Petroleum Geologists, p. 113-136. Bird, T.D., Barclay, J.E., Campbell, R.I., Lee, P.J., Waghmare, R.R., Dallaire, S.M. and Conn, R.F. 1994. Triassic gas resources of the Western Canada Sedimentary Basin, Interior Plains. Geological Survey of Canada Bulletin 483, 96 p. Bouma, A . H . 1962. Sedimentology of some flysch deposits. Elsevier Publishing Co., Amsterdam, 168 p. Bromley, R.G. 1990. Trace Fossils: biology and taphonomy. Unwin Hyman, London, 280 p. Davies, G.R. 1997a. The Triassic of the Western Canada Sedimentary Basin: tectonic and stratigraphic framework, peleogeography, paleoclimate and biota. Bulletin of Canadian Petroleum Geology, v. 45, p. 434-460. Davies, G.R. 1997b. Aeolian sedimentation and bypass, Triassic of western Canada. Bulletin of Canadian Petroleum Geology, v. 45, p. 624-642. Davies, G.R., Moslow, T.F. and Sherwin, M.D. 1997. The Lower Triassic Montney Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, v. 45, p. 474-505. Dalrymple, R.W. 1992. Tidal depositional systems. In: Facies Models: Response to Sea Level Change. R.G. Walker and N.P. James (eds.). Geological Association of Canada, p. 195-218. Dixon, J. 2000. Regional lithostratigraphic units in the Triassic Montney Formation of western Canada. Bulletin of Canadian Petroleum Geology, v. 48, p. 80-83. Edwards, D.E., Barclay, J.E., Gibson, D.W., Kv i l l , G.E. and Halton, E. 1994. The Triassic strata of the Western Canada Sedimentary Basin. In: Geological Atlas of the Western Canada Sedimentary Basin. G.D. Mossop and I. Shetsen (eds.). Canadian Society of Petroleum Geologists and Alberta Research Council, p. 257-275. Embry, A.F. 1988. Triassic sea-level changes: evidence from the Canadian Arctic Archipelago. In: C.K. Wilgus, B.S. Hastings, H . Posamentier, C.A. Ross, J.C. 57 Van Wagoner, and C.G.St.C. Kendall (eds.). Society of Economic Paleontologists and Mineralogists, Special Publication No. 42, p. 249-259. Embry, A.F. 1997. Global sequence boundaries of the Triassic and their identification in the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, v. 45, p. 415-433. Embry, A.F. and Gibson, D.W. 1995. T-R sequence analysis of the Triassic sucession of the Western Canada Sedimentary Basin. In: Proceedings of the Oil and Gas Forum '95 - Energy from Sediments. J.S. Bell, T.D. Bird, T.L. Hillier and P.L. Greener (eds.). Geological Survey of Canada, Open File 3058, p. 25-28. Erwin, D.H. 1993. The great Paleozoic crisis. New York, Columbia University Press, 327 p. Frey, R.W. and Pemberton, S.G. 1984. Trace fossil facies models. In: Walker, R.G. (ed), Facies Models, Second Edition, Geoscience Canada, p. 189-207. Frey, R.W. and Pemberton, S.G. 1985. Biogenic structures in outcrops and cores. Bulletin of Canadian Petroleum Geology, v. 33, p. 72-115. Frey, R.W. and Seilacher, A . 1980. Uniformity in marine invertebrate ichnology. Lethaia, v. 13, p. 183-207. Gibson, D.W. 1974. Triassic rocks of the southern Canadian Rocky Mountains. Geological Survey of Canada, Bulletin 230, 65 p. Gibson, D.W. 1975. Triassic rocks of the Rocky Mountain Foothills and Front Ranges of northeastern British Columbia and west-central Alberta. Geological Survey of Canada, Bulletin 247, 61 p. Gibson, D.W. and Barclay, J.E. 1989. Middle Absaroka Sequence - the Triassic stable craton. In: Western Canada Sedimentary Basin - a Case History. B.D. Ricketts (ed.). Canadian Society of Petroleum Geologists, Special Publication, no. 30, p. 219-232. Gibson, D.W. and Edwards, D.E. 1990. An overview of Triassic stratigraphy and depositional environments in the Rocky Mountain Foothills and Western Interior Plains, Peace River Arch area, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, v. 38A, p. 146-158. Golonka, J., Ross, M.I. and Scotese, C.R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps. In: Pangea: Global Environments and Resources. A.F. , Embry, B. Beauchamp and D. Glass (eds), Canadian Society of Petroleum Geologists, Memoir 17, p. 1-47. 58 Grimm, K . A . and Orange, D.L. 1997. Synsedimentary fracturing, fluid migration, and subaqueous mass wasting: intrastratal microfractured zones in laminated diatomaceous sediments, Miocene Monterey Formation, California, U.S.A. Journal of Sedimentary Research, v. 67, p. 601-613. Harms, J.C., Southard, J.B., Spearing, D.R. and Walker, R.G. 1975. Depostional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Society of Economic Paleontologists and Mineralogists. Short Course No. 2, 161 p. Haq, B.V. , Hardenbol, J., Vail , R.R., Colin, J.P. Ioannides, N . , Stover, L.E. , Jan Du Chene, R., Wright, R.C., Sarq, J.F. and Morgan, B.E. 1987. Mesozoic-Cenozoic Cycle Chart, Version 3.IB. American Association of Petroleum Geologists. Hoffman, P.F. 1987. Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9 Ga), northwest Canada. Geology, v. 15, p. 785-788. Milne, A . 1940. The ecology of the Tamar Estuary, iv. The distribution of the fauna and flora on buoys. Journal of the Marine Biological Association of the United Kingdom, v. 24, p. 69-87. Moslow, T.F. and Davies, G.R. 1997. Turbidite reservoir facies in the Lower Triassic Montney Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, v. 45, p. 507-536. Narbonne, G . M . 1984. Trace fossils in Upper Silurian tidal flat to basin slope carbonates of Arctic Canada. Journal of Paleontolgy, v. 58, p. 398-415. O'Connell, S.C., Dix, G.R. and Barclay, J.E. 1990. The origin, history and regional development of the Peace River Arch, Western Cananda. Bulletin of Canadian Petroleum Geology, v. 38A, p. 4-24. Pemberton, S.G., MacEachern, J.A. and Frey, R.W. 1992. Trace fossil facies models: environmental and allostratigraphic significances. In: Facies Models: Response to Sea Level Change. R.G. Walker and N.P. James (eds.). Geological Association of Canada, p. 47-72. Pemberton, S.G. and Wightman, D . M . 1992. Ichnological characteristics of brackish water deposits. In: Applications of ichnology to petroleum exploration, a core workshop. S.G. Pemberton (ed). SEPM Core Workshop 17, p. 141-167. Prodruski, J.A., Barclay, J.E., Hamblin, A.P., Lee, P.J., Osadetz, K .G . , Procter, R . M . and Taylor, G.C. 1988. Conventional oil resources of Western Canada (light and medium), Part I: Resource Endowment. Geological Survey of Canada, Paper 87-26, p. 1-125. 59 Reineck, H.E. and Singh, LB. 1972. Genesis of laminated snad and graded rhythmites in storm-sand layers of shelf mud. Sedimentology, v. 18, p. 123-128. Retallack, G.J., Veevers, J.J. and Morante, R. 1996. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin, v. 108, p. 195-207. Riediger, C.L., Brooks, P.W., Fowler, M.G. and Snowdon, L.R. 1990. Lower and Middle Triassic source rocks, thermal maturation, and oil-source rock correlations in the Peace River Embayment area, Alberta and British Columbia. Bulletin of Canadian Petroluem Geology, v. 38A, p. 239-249. Raup, D . M . 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, v. 206, p. 217-218. Savrda, C.E. and Bottjer, D.J. 1989. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado. Schubert, J.K. and Bottjer, D.J. 1995. Aftermath of the Permian-Triassic extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 116, p. 1-39. Seilacher, A. 1967. Bathymetry of trace fossils. Marine Geology, v. 5, p. 413-428. Seilacher, A . 1969. Fault graded beds interpreted as seismites. Sedimentology, v. 13, p. 155-159. Seilacher, A . 1984. Sedimentary structures tentatively attributed to seimic events. Marine Geology, v. 55, p. 1-12. Sturrock, D.L. and Dawson, S.W. 1991. The Ring/Border Field: A significant gas discovery in the Triassic Montney Formation. Reservoir, Canadian Society of Petroleum Geologists, v. 18, p. 1-2. Walker, R.G. 1985. Mudstones and thin-bedded turbidites associated with the Upper Cretaceous Wheeler Gorge Conglomerates, California: a possible channel-levee complex. Journal of Sedimentary Petrology, v. 55, p. 279-290. Walker, R.G. and Plint, A .G . 1992. Wave and storm dominated shallow marine systems. In: Facies Models: Response to Sea Level Change. R.G. Walker and N.P. James (eds.). Geological Association of Canada, p. 219-238. Wignall, P.B. 1992. Anoxia and mass extinctions. Palaios, v. 7, p. 1-2. 60 Wignall, P.B. 1993. Anoxia as the cause of the end-Permian mass extinction. Geological Society of America - Abstracts with Programs, v. 25, p. 155. 61 Chapter 3 Diagenesis and production analysis of the Lower Triassic Montney Formation, northeastern British Columbia 3.1 ABSTRACT Turbidite and foreshore sandstones form significant gas reservoirs in the Montney Formation of northeastern British Columbia. Three actively producing gas reservoirs are incorporated in the study: 1) Kahntah Field; 2) Ring-Border Field; and 3) Chingchaga Field. Preserved strata of the Montney Formation in the three fields records a regressive package of aeolian sourced siliciclastics. In the reservoir facies porosity averages 13% and permeability averages 5.4 mD. The distribution of hydrocarbons is controlled by remnant primary porosity and enhanced secondary porosity. Throughout much of the study, primary intergranular porosity is preserved. Secondary porosity, primarily in the form of quartz and calcite cement dissolution, is pervasive throughout the study area. Secondary porosity is enhanced along a north to south trend. Pore destruction also occurs due to pressure solution, annealing of quartz grain boundaries and reprecipitation as secondary quartz overgrowths. There is a linear relationship between porosity and permeability within all lithofacies. Production with the three fields studied follows the trend of increasing secondary porosity. The highest production occurs in the southern Ring-Border and the Chinchaga fields. Wells in the southern portion of the study area have the highest average daily gas production as well as low decline factors. Production quality of the various reservoir 62 facies is quantified by applying mercury porosimetry techniques. High quality reservoir facies show pore size distributions with significant macroporosity. Mercury intrusion graphs show the pressures required to saturate a sample. These pressures are used to interpret the producibility of specific intervals in the Montney Formation. 63 3.2 INTRODUCTION Significant gas has been produced since the late 1980's from turbidite and foreshore sandstones within the Montney Formation of northeastern British Columbia (NEBC). Production in the Montney Formation, up to October 1999, was for 2.4 10 9m 3 of gas with insignificant amounts of oil. Reservoir quality within the Kahntah, Ring-Border and Chinchaga fields (Fig. 1) is a factor of the distribution of primary intergranular and secondary porosity within very fine-grained sandtones. Lithology and diagenesis are the major controls in the distribution of effective porosity. The Montney Formation is comprised of seven distinct lithofacies which have been described in Chapter 2. The lithofacies (table 1) include foreshore sandstones and siltstones and turbidite sandstone, siltstones and shales. The suite of lithofacies contains both reservoir and non-reservoir quality rocks (table 1). Reservoir rocks contain high porosity and moderate permeability, due to the very fine-grained texture. The low permeability allows for the development of gas reservoirs with virtually no oil potential. The sedimentology and depositional setting of the Montney Formation in west-central Alberta has been described by previous workers (Davies, 1997; Davies et al, 1997). To date, very little work focusing on interrelationships between lithofacies, diagenesis and production has been completed in the study area. This study extends previous work and provides a model for establishing future exploration trends. The model is based on a number of factors including: 1) current production values; 2) production decline; 3) capillary pressures based on mercury porosimetry; and 4) reservoir characteristics of the lithofacies including porosity/permeability and distribution of diagenetic phases. 64 65 o o 00 00 \< 00 CO 'o o c 'S t 00 o I o oo CD IQ 2 * O CD o 43 o o o '.•£ co cd S3 .8 * O cd a o a o o o -t—» cd o .M CD 2 e 43 O co . £ H n • « <D co I s .2 CD a d o +-» u o co IS) -4—> •J-. to 1) ne, CU turb; dsto ed dsto o a a c3 CO CO CQ 2 J3 o & < CN cd 2 •a o cd a o - t - » co a CO •a <L> •a •a 03 CN 1 8 O co cd u 3 C 43 O O to o a o 3 O to U CN CD 43 -a a a! a CN T3 i O 43 • a • a 3 o o & t & CD CD CO CO CO 1) CD CD t-i a a a o o o c a c o 43 —I O O O 43 CD CD 43 CO ton ton CD dsl CO c 'sai e/s one/ T3 on one/ CD -*-» •j-. CO "5 2 o a .3 CO S sa , o 1-3 o CD a o a a 03 • a o & tu CO CD I* IH 66 3.3 DEPOSITIONAL SETTNG The Montney Formation was deposited during the Early Triassic as a westward thickening wedge of siliciclastic sediment (Armitage, 1962; Gibson and Edwards, 1990; Chapter 2 of this study). Regionally, the Triassic Montney Formation was deposited during three third-order transgressive/regressive cycles and one complete second-order cycle (Embry, 1997). In the study area, only one of the transgressive/regressive cycles is preserved. The Montney Formation, in NEBC, is divisible into two informal units, the siltstone-sandstone member and the shale member (Dixon, 2000). Due to erosion in the study area, typically only the lowermost portion of the siltstone-sandstone member is preserved. Montney Formation sediments were deposited within a foreshore to distal shelf environment. The proximal to distal shelf facies association represents deposition from suspension current of distal turbidites. This association contains sediments with low porosity and permeability and is highly cemented. The foreshore to offshore transition facies association includes facies deposited within the foreshore and as tempestites below fair-weather wavebase. Foreshore sediments were deposited as a blanket on underlying turbidite sediments. The thickness of the foreshore sandstones and siltstones increases from south to north (thickest in the Kahntah Field). The turbidite facies association consists of turbidite channel and margin deposits. The distribution of turbidite channels is controlled by the underlying Paleozoic surface. Turbidite sediments thicken towards the south. 67 3.4 METHODS Interpretation of the diagenetic history of the Montney Formation is facilitated by petrography, scanning electron microscope (SEM) backscatter analysis and mercury porosimetry. Samples for analysis were taken from 40 cores, which were logged within the Kahntah, Ring-Border and Chinchaga fields. One hundred and forty five samples were collected from both reservoir and non-reservoir quality rocks, with variable porosity and permeability parameters. Petrography and paragenesis were determined from analysis of thin sections along with S E M analysis of chip samples and polished sections. Thin sections were stained with potassium ferricyanide and alizarin red in order to distinguish calcite, dolomite and ferroan dolomite. Ferroan dolomite is the dominant cement phase and develops a bright blue colour with staining. Pore structures were determined using mercury porosimetry on 16 representative samples. Porosity and permeability data were obtained from standard core analysis submitted to the British Columbia Oil and Gas Commission archives. Production history of the Montney Formation was provided through a geological database and includes production up to October 31, 1999. 3.5 PETROLOGY Montney Formation sediments have been interpreted to be sourced from aeolian dune deposits (Davies 1997; Moslow and Davies, 1997) and have a restricted mineralogy. The sediments consist predominantly of quartz, accounting for 75-95% of the bulk composition of detrital grains. Chert and potassium feldspar are secondary in abundance, reaching as high as 15% of detrital grains. The proportion of potassium feldspar is high enough to partially mask the presence of clean sandstones on a gamma ray log. Minor 68 amounts of apatite, plagioclase, glauconite, zircon and spinel are present as detrital grains. Diagenetic phases include dolomite (predominantly ferroan), authigenic clays, pyrite and minor calcite. 3.6 DIAGENETIC PHASES 3.5.1 CALCITE C E M E N T Calcite cement is preserved in trace amounts within all Montney Formation lithofacies. Where not replaced or dissolved, calcite occurs as a microcrystalline cement lining intergranular pores. Calcite cement is an early diagenetic phase. The red colouring that develops when stained with alizarin red and potassium ferricyanide indicates the cement phase is pure calcite and not ferroan. 3.5.2 APATITE Apatite occurs as thin linings on detrital quartz grains and also represents an early diagenetic phase. Distribution of apatite is sparse and patchy and the relationship to other cements cannot be determined. 3.5.3 QUARTZ OVERGROWTHS Quartz cement is a major component affecting reservoir quality within Montney Formation sediments. Quartz cement occurs as monocrystalline euhedral overgrowths nucleated on detrital quartz grains (Fig. 2.). Quartz cement is pervasive throughout all three study fields. The abundance of quartz is due to significant pressure solution of detrital quartz grains. 69 70 3.5.4 AUTHIGENIC C L A Y S Clay growth occurs throughout the Montney Formation as pore linings and grain coatings. The clay linings are rich in mica, which is a typical alteration product. Authigenic clays consist of gluaconite and more commonly chlorite. 3.5.5 DOLOMITE C E M E N T Dolomite cement is the predominant diagenetic phase within the Montney Formation. Dolomite occurs as pore filling microcrystalline cement as well as individual rhombic crystals. Dolomite cement, which is commonly nucleated on euhedral dolomite crystals, regularly shows zoning (Fig. 3.). Compositional zoning in dolomite is also readily visible with SEM; iron-rich dolomite displays bright zones and iron-poor dolomite appears as a dull gray. Zonation is also visible in thin section as changes in staining due to variations in iron content. 3.5.6 SULPHIDES Pyrite precipitation is common throughout all lithofacies of the Montney Formation. Disseminated pyrite cubes and pyritohedrons are the most common form within the sediments. Framboidal pyrite occurs in shale rich intervals, particularly within facies IB and 1C. The presence of framboidal pyrite has been attributed to both pyritization of sulphur bacteria as well as inorganic precipitation (Kortenski and Kostova, 1995; Wilkin and Barnes, 1997) under reducing conditions. Framboids found within the Montney Formation contain euhedral crystals of equal size, which are densely overgrown to form coalescing pyrite globules (Fig. 4.). These characteristics are typical of pyrite derived through inorganic precipitation (Kortenski and Kostova, 1995). 71 Fig. 3. S E M backscatter images of zoned ferroan dolomite cement. A. Zoned dolomite cement, where dark regions indicate low iron content and light regions indicate high iron content(c-92-H-94-H-09,943.5 m). B. Zoned dolomite nucleated on a detrital dolomite grain (b-04-F-94-H-16, 838.3 m). Scale bar=50 um. 73 3.6 PARAGENESIS Diagenesis of the Montney Formation consists of phases of pore destruction and enhancement through dissolution, precipitation and mineral growth. Montney Formation rocks contain both remnant primary intergranular porosity and well-developed secondary porosity. 3.6.1 P R I M A R Y POROSITY The well-sorted and moderate to well-rounded grains that comprise the Montney Formation rocks are derived from an aeolian source (Davies, 1997). Packing of rounded grains provides high initial primary intergranular porosity. Deposition of sandstones typically results in initial porosity ranging from 35 to 40% (Blatt, 1979; Hayes, 1979). In the Montney Formation, much of the initial primary porosity is preserved. The porosity however, has the capacity for gas storage with virtually no oil potential. This is a result of the very fine-grained nature of the sandstones. Figure 5 shows well-sorted sandstones with preserved primary intergranular porosity from facies 1A and 2 A. 3.6.2 PORE DESTRUCTION The first phase of pore destruction occurred near the sediment water interface with the precipitation of calcite and apatite cement. Although calcite is not commonly preserved in the Montney Formation, remnants are found lining primary pore structures. Apatite is present as thin coatings on detrital grains. The apatite coatings separate the faces of compacted grains and therefore indicate growth prior to major sediment compaction. Due to uneven distribution and low preservation of both apatite and calcite, 74 Fig. 5. Well sorted very fine-grained sandstones displaying significant primary intergranular porosity. A. Facies 1A from well C-92-H-94-H-08 (960.73 m). B. Facies 2 A from well d-84-C-94-H-16 (844.6 m). Scale bar=500um. 75 the relative timing of calcite to apatite cement is uncertain. However, calcite and apatite precipitation are early diagenetic processes. Shallow burial of Montney Formation sediments resulted in mechanical compaction and pressure solution which lead to a decrease in primary porosity. Facies containing a significant proportion of ductile grains show the highest degree of compaction, in particular facies 3. Early compaction in these facies limits the degree of later cementation by decreasing the permeability and therefore the ability for fluid to migrate. Pressure solution of detrital quartz grains further limits primary porosity throughout the Montney Formation. Annealed and embayed detrital quartz grain boundaries (Fig. 6) provide evidence for pressure solution. The dissolution of quartz along grain boundaries results in an increase in silica content within pore fluids (Hutcheon, 1990). Pores, which remained open during compaction, were subject to precipitation of authigenic quartz in the form of euhedral overgrowths. 3.6.3 S E C O N D A R Y POROSITY Secondary porosity is well developed in lithofacies comprised of well-sorted, very fine-grained sandstone. Facies that were occluded during early diagenesis show limited secondary porosity due to an inability of fluids to migrate. Enhanced porosity is a result of dissolution of carbonate cement and detrital quartz grains. Secondary porosity is evidenced by the presence of corroded quartz boundaries, oversized pores and floating detrital grains (Schmidt and McDonald, 1979a, 1979b). A reduction in secondary porosity occurred with the subsequent growth of quartz, dolomite and clays. The first pore reduction phase was the growth of authigenic clays which formed rims around detrital grains and pores. The clays are not affected by 76 Fig. 6. Pressure solution features in very fine-grained sandstone. A . S E M backscatter image of annealed quartz grains from well b-4-F-94-H-16 (838.29 m). Scale bar =100 urn. B. Thin section showing embayed quartz boundaries (E) and annealed quartz boundaries (A).. compaction or grain corrosion and therefore formed after the formation of the secondary porosity. A phase of quartz replacement and dolomite precipitation followed the growth of authigenic clays. Partial and complete replacement of quartz grains by ferroan dolomite is common in clean quartz rich sandstone intervals. The same ferroan dolomite also infills secondary pore space as microcrystalline cement and euhedral dolomite rhombs. The dolomite rhombs were not affected by compaction or corrosion and therefore post-date all previous diagenetic events. Although difficult to determine exact timing, the generation or migration of hydrocarbons appears to be contemporaneous with precipitation of dolomite cement. In some cases hydrocarbons line pore walls and then dolomite precipitates. In other areas, dolomite cement is stained by hydrocarbons, suggesting migration after dolomitization. Hydrocarbons, where preserved, line both primary intergranular and secondary pores. 3.6.4 FORMATION OF DIAGENETIC PHASES To account for the presence of the various diagenetic phases, the chemical conditions during diagenesis must be considered. Carbonate for the initial phase of calcite precipitation was most likely derived from dissolution of carbonates in the underlying Permian strata. The stability of calcite at shallow depths is highly dependent on pH and alkalinity conditions. With increasing burial, the solubility of calcite decreases (Blatt, 1979; Surdam et al, 1989). Subsurface pore water is typically supersaturated with respect to calcium carbonate and therefore precipitation of calcite cement is common (Choquette and James, 1990). Because only minor amounts of calcite cement are preserved, the actually timing, other than "early", is difficult to determine. The dissolution of calcite (and other carbonates) cement is driven by alkalinity changes 78 which are a result of increased C 0 2 . The liberation of C 0 2 is due to: 1) oxidation; 2) sulfate reduction; and/or 3) bacterially mediated methanogenesis (Burner, 1981; Surdam et al, 1989). Carbon dioxide forms carbonic acid which lowers the pH resulting in carbonate dissolution (Schmidt and McDonald, 1979). Whereas calcite is highly dependent on pH conditions, quartz stability is much higher over a wider range of pH values (Bucke and Mankin, 1971). However, quartz solubility increases with depth, suggesting quartz is precipitated during early diagenesis. Early quartz cementation is well described in the literature (e.g. Siever, 1962). Pyrite precipitation in the Montney Formation directly affects the distribution of dolomite cement. Pyrite growth is most prevalent in areas with high clay content and therefore higher organic carbon. The oxidation of organic matter results in the formation of H 2 S which can react with reduced iron to form pyrite (Berner, 1970, 1984; Compton, 1998). The formation of pyrite allows for the removal of sulfate ion, which typically inhibits dolomite precipitation leading to an increase in carbonate alkalinity and supersaturation of pore fluids with carbonate (Compton, 1988; Burns et al, 1988). The most extensive development of dolomite cement is within or near intervals with high clay/silt content. This correlates well with the occurrence of authigenic pyrite. The magnesium required to precipitate dolomite is derived from subsurface fluids which are inherently rich in dissolved M g + 2 . 3.7 MERCURY POROSIMETRY Mercury porosimetry provides a measure of pore size ranges and total pore volume as well as the capillary pressure required to saturate a sample. To determine 79 these pore characteristics, representative samples with varying porosity and permeability values were analyzed from each lithofacies (table 2). The method of mercury porosimetry has some inherent errors. The calculation of porosity, is based on the Washburn (1921) equation: Pc = -2ycos6/r Where Pc = capillary pressure, y = surface tension of mercury, 9 = contact angle of mercury in air and r = radius of pore aperture. A potential source of error is that the formula relies on the assumption that all pores are cylindrical (Pittman, 1992). Based on thin sections and S E M analysis, the assumption of cylindrical pores provides a good estimation of the pore shape in the analyzed samples. The second source for error is in how the mercury is intruded into the sample. At low pressures, only the largest pores may be intruded by mercury. With increasing pressure, smaller apertures can be penetrated by the mercury. However, i f pore throats are small, they may block the infilling of larger pores behind them, giving a false indication of pore volume at a specific capillary pressure (Wardlaw and Taylor, 1976; Wardlaw and McKellar, 1981; Chatzis and Dullien, 1981). Using a sample with high surface area, allowing maximum mercury penetration from all sides, negates this problem. In this study, porosity values obtained by porosimetry were compared to those resolved from standard core analysis and show good correlation. The porosimetry data provides a pore size range for each of the lithofacies. By plotting incremental intrusion volume of mercury against pore diameter, a clear representation of microporous and macroporous fractions are obtained (Fig. 7). Microporosity is defined by pores with diameters less than 0.5 |j.m and macroporosity 80 Sample Well ID Facies Description Core Analysis Porosity (%) Permeability (mD) 1 a-27-C-94-1-02 3 mottled siltstone/very fine-grained sandstone 9.2 0.38 2 a-39-H-94-1-03 3 mottled siltstone/very fine-grained sandstone 11.8 0.1 3 c-74-F-94-H-16 3 mottled siltstone/very fine-grained sandstone no data no data 4 d-26-H-94-1-03 3 mottled siltstone/very fine-grained sandstone 13.1 0.78 «: b-62-D- 1A bioturbated very fine-grained 11.1 3.84 94-1-02 sandstone with low silt content 6 c-40-C-94-1-02 1A bioturbated very fine-grained sandstone with high silt content 16.9 7.9 7 d-52-G- 2B planar bedded very fine-grained 19.0 11.9 94-H-08 sandstone and siltstone 8 b-90-H-941-03 2B planar bedded very fine-grained sandstone and siltstone 10.8 0.01 9 a-25-F-94-H-16 2A massive very fine-grained sandstone with moldic porosity 10.8 1.98 10 c-72-J-94-H-08 2A massive very fine-grained sandstone 16.4 4.87 11 b-4-F-94-H-16 2A massive very fine-grained sandstone 9.1 0.05 12 c-16-F- 2A massive very fine-grained sandstone 11.8 3.0 94-H-16 with moldic porosity 13 b-4-K- 2C convoluted very fine-grained 13.4 0.15 94-H-16 sandstone and siltstone 14 c-74-F-94-H-16 2C convoluted very fine-grained sandstone and siltstone no data no data 15 c-36-F- IB planar laminated to HCS very fine- 15.9 22.9 94-H-16 grained sandstone and siltstone 16 a-81-A-IB planar laminated to HCS very fine- 8.1 0.06 941-03 grained sandstone and siltstone Table 2. Samples analyzed using mercury porosimetry. 81 Incremental Intrusion Volume vs Pore Diameter Pore Diameter (urn) < — • microporosity macroporosity Fig. 7. Atypical example of a porosimetry curve for facies 3 (from well a-39-H-94-I-03,666.4 m). Microporosity is defined by pore diameters < 0.5microns and macroprosity is defined by diamters > 0.5 microns. The pore size distribution shows the majority of pores are in the range from 0.02 to 0.12 microns. A secondary peak occurs approximately centred at 80 microns. The two peaks show a bimodal distribution of pore sizes. S E M backscatter image shows a high silt/clay content which plugs the larger pores. 82 represents pores with diameters greater than 0.5 um. Samples from the Montney Formation typically have bimodal pore distributions, falling within the micro and macroporous range. Samples that plot predominantly within the microporous sections have correspondingly low porosity and permeability values (obtained from core analysis). Grain size, sorting and diagenesis control the pore size ranges for each sample. The ability of mercury to intrude a sample reflects the potential for hydrocarbons to migrate into and be produced from a particular facies. Capillary pressure curves show the required pressure to acquire a specific level of saturation. Samples which require a high capillary pressure to achieve even minimal saturation levels reflect low porosity and more importantly low permeability. When dealing with mercury injection, one of the crucial points is the pressure at which mercury forms a connected pathway across the sample (Katz and Thompson, 1986; 1987). This point, termed the threshold pressure, corresponds to the first inflection point on a graph of mercury saturation (Fig. 8). The threshold point serves as an indicator of the pressure required for hydrocarbons to saturate a particular rock. Figure 9 shows the breakthrough pressures for high and low porosity samples of facies 1A. Rocks with high threshold pressures may never be saturated by hydrocarbons, as natural burial pressures may not reach the required pressure. Rocks with higher porosity and permeability possess much lower threshold pressures and form key reservoir facies. Figures 10 and 11 compare a sample with low porosity and permeability from facies 2A and a sample with high porosity and permeability. The capillary pressure curves can be further used to interpret the production history. 83 Percent of Total Intrusion Volume vs Pore Diameter 1 0.1 0.01 0.001 0.0001 0.00001 Pore Diameter (um) Fig. 9. Mercury porosimetry curves showing breakthrough diameters for two samples of facies 1 A . A . Sample 5, showing well developed intergranular porosity. This sample has a low silt/shale content. Breakthrough occurs at a pore diameter of 0.007um. Scale bar = 200um. B . Sample 6, showing significant occlusion of porosity by silt/shale matrix. Breakthrough occurs at a pore diameter of0.0006um. Scale bar=200um. 85 0.01 0.1 1 10 100 1000 Pore Diameter (urn) 0.01 0.1 1 • 10 100 1000 Pore Diameter (urn) Fig. 10. Pore size distributions for samples 10 and 11 from facies 2A. A . Sample 10, very fine-grained sandstone with porosity = 16.4 % andpermeability = 4.87mD. B . Sample 11, very fine-grained sandstone with porosity = 9.1 % and permeability = 0.05 mD. 86 1 -I 1 1 1 1 1 1 1 1 i 1 0 10 20 30 40 50 60 70 80 90 100 Mercury Intrusion (%) 1 -I 1 1 1 1 1 1 1 1 1 1 0 10 20 30 40 50 60 70 80 90 100 Mercury Intrusion (%) Fig. 11. A comparison of the threshold pressures for two samples offacies 2 A (massive very fine-grained sandstone). A . Sample 10, high quality reservoir rock with porosity = 16.4 % and permeability = 4.87 mD. B. Sample 11, non-reserervoir rock with porosity = 9.1% and permeability = 0.05 mD. To reach the threshold pressure, the capillary pressure in figure B is fourfold greater than that of A and to reach 50 % saturation the capillary pressure is tenfold greater.. Sample 11 has much lower porosity and permeability due to diagenesis and is reflected by an increase in capillary pressure. 87 3.8 PRODUCTION HISTORY The first gas production from the Montney Formation in northeastern British Columbia was in 1978 from the Ring-Border Field. During early production, the Ring-Border Field was remote from any gathering facilities, limiting further exploration in the area (Bird et al., 1994). Large-scale exploration was not initiated until the late 1980's. Drilling at this time proved the vast gas resources of the Montney Formation in NEBC. Subsequent to the discovery of the Ring-Border Field, the Kahntah and Chinchaga fields were brought online, significantly increasing the potential gas reserves of the Montney Formation. To date, the Montney Formation in the study area has produced 2.6 109m3 of gas. Cumulative production for the three study fields is displayed in figure 12. 3.8.1 PRODUCTION TRENDS Production rates are controlled by permeability/porosity and the presence of diagenetic mineral growth. Facies with well developed porosity and permeability provide the best quality reservoirs and the least decline in production. Gas production is primarily from facies 1A (foreshore sandstone and siltstone) and facies 2A/2B (massive to parallel bedded turbidite sandstones and siltstones). Mercury porosimetry shows that facies 1A and 2A/2B have low threshold pressures and contain pore size distributions which allow for optimum production from the Montney Formation. Montney Formation facies that have poor production typically contain significant microporosity, creating high irreducible water (Pittman, 1979) and lower production capacity. Intervals that contain significant growth of authigenic minerals also have high decline rates and low production due to decreased permeability. 88 c 0 '. o • 94- -02 94- -01 o 0 cfo etc 0 • c 0 ° • o o I Kar 1 First F •Total intah Fie 'reduction 1 3roduction C d 989 I38 88910Jm3 0 ° 94-r 4-15 \ 1 ° o i-H-16 o 0 O ° n 0 0 c 0 o C ° | Ring-Border Field •First Production 1978 [Total Production 2 125 1 r 14 10'm3 ; 0 o c o o • o CO n 0 c c C o o b ° 0 ^ — 94-r H-10 c 94-i; H-09 • 94-I H-07 o 4-08 °o o p ''< <-V 9. ° | Ch First Tota nchaga Field Production 1994 Production 677 122 10W 94-1 ' - 0 Fig . 12. Cumulative gas production in the Kahntah, Ring-Border and Chinchaga Fields. The production capacity within the Kahntah, Ring-Border and Chinchaga fields has been analyzed by comparing decline rates and average daily production rates. In order to compare production within the three study fields, decline factors have been calculated for the first six months and the second six months of production (table 3). Decline is calculated by comparing production after six months to that after one month. In this way, wells with a longer production history can be compared to wells which have recently began production. Secondly, average daily production for each field has been calculated, in order to determine which fields have the highest production capacity. The analysis of production shows that both average daily production and decline factor increase towards the south. Lowest production occurs in the Kahntah Field and increases in the Ring-Border and Chinchaga fields. The change in production capacity is due primarily to diagenetic factors. The highest production occurs in the Ring-Border and Chinchaga fields, which contain the highest proportion of secondary porosity. 3.8.2 POROSITY A N D PERMEABILITY DEVELOPMENT In general for all three fields, porosity and permeability have a linear relationship whereby an increase in porosity is reflected by an increase in permeability. Between the three fields there is a slight increase in porosity and permeability from north to south. This is consistent with an increase in secondary porosity towards the south as observed by petrographic studies. Comparison of porosity and permeability development between lithofacies is important in determining reservoir quality and potential. Foreshore sandstones and turbidite sandstones are the two reservoir facies from which the majority of production occurs within the Montney Formation. Figure 13 displays a porosity/permeability cross plot for both foreshore and turbidite sandstones and shows 90 Field Decline Factor 1st 6 Months (%) Decline Factor 2nd 6 Months (%) Average Daily Gas Production (103 m3) Number of Wells Kahntah 83.1 90.9 55.13 33 Ring-Border 134.1 84.8 110.39 110 Chinchaga 128.8 81.2 115.12 56 Table 3. Decline data for the first six months and second six months of gas production. Average daily gas production is based on total cumulative production since production began. 91 that porosity and permeability development is equal in both facies. Because of the similar pore characteristics and production quality of the foreshore and turbidite facies, many of the gas wells in the study area produce simultaneously from both foreshore and turbidite intervals. 3.8.3 POTENTIAL EXPLORATION TRENDS Exploration with the Montney Formation of N E B C has been growing considerably over the last five years. Important factors to consider for future exploration are sedimentological and diagenetic trends. Key production facies are foreshore sandstones and siltstones and turbidite sandstones and siltstones. In the study area, foreshore sediments increase in thickness towards the north (thickest in the Kahntah Field). Turbidite sediments are found throughout the study area but are best preserved in corridors, which are reflected in a residual map of the underlying Paleozoic surface (Fig. 14). Of equal importance is the trend of diagenetically enhanced porosity that occurs in the southern portion of the study area. Several of the turbidite corridors fall with the zone of maximum secondary porosity and serve as the best potential target for future exploration. 3.9 CONCLUSIONS The Montney Formation comprises sediments deposited as shallow water shelf deposits and derived from an aeolian source. The fine-grained texture lends to the formation of gas reservoirs with virtually no oil production. Production quality is related to diagenetic phases of pore destruction and secondary pore enhancement. Diagenetic cements consist of early calcite, apatite and quartz overgrowths. Later diagenetic phases 93 axis of turbidite channel contour interval = 1 m Fig. 14. Third-order residual map taken on the top of the underlying Paleozoic surface. 94 include extensive dolomite cementation and pyrite precipitation. Montney Formation sediments contain both primary intergranular and secondary porosity. Porosity and permeability trends are best developed within foreshore and channel turbidite sandstones and siltstones. These facies form the highest quality reservoirs and contain the highest porosity and permeability values. The values have a linear relationship in which an increase in porosity is reflected by an increase in permeability. Standard core analysis show that porosity and permeability increase towards the south in the study area. This trend is also evident with petrographic analysis which reveals an increase in secondary porosity in the southern portion of the study area. The use of mercury porosimetry on Montney Formation samples provides evidence for pore structure and potential production capabilities. Samples with high silt content have decreased pore size and contain higher proportions of irreducible water, decreasing the production potential. Low porosity facies also display high breakthrough pressures which equate to lower production capability. Gas production within the Montney Formation is controlled by subsurface topography and distribution of foreshore and turbidite facies. Both facies have good lateral distribution and equivalent production potential and therefore increases the potential for developing new gas reserves. Thick turbidite channels are found primarily within the Ring-Border and Chinchaga fields and are delineated by topographic lows in the underlying Paleozoic surface. Foreshore sediments are extensive throughout the Kahntah Field and the northern portion of the Ring-Border Field, and significant potential exists for further production within these areas. 95 3.11 REFERENCES Armitage, J.H. 1962. Triassic oil and gas occurrences in northeastern British Columbia, Canada. Journal of the Alberta Society of Petroleum Geologists, v. 10, p. 35-56. Bird, T.D., Barclay, J.E., Campbell, R.I., Lee, P.J., Waghmare, R.R., Dallaire, S.M. and Conn, R.F. 1994. Triassic gas resources of the Western Canada Sedimentary Basin, Interior Plains. Geological Survey of Canada Bulletin 483, 96 p. Blatt, H . 1979. Diagenetic processes in sandstones. In: Scholle, P.A. and Schluger, P.R. (eds.), Aspects of Diagenesis. S E P M Special Publication 26, p. 141-157. Berner, R.A. 1970. Sedimentary pyrite formation, American Journal of Science, v. 268, p. 1-23. Berner, R.A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, v. 51, p. 359-365. Berner, R.A. 1984. Sedimentary pyrite formation: an update, Geochimica et Cosmochimica Acta, v. 48, p. 605-615. Bucke, D.P. and Mankin, C.J. Clay-mineral diagenesis within inerlaminated shales and sandstones. Jouranl of Sedimentary Petrology, v. 41, p. 971-981. Burns, S.J., Baker, P.A. and Showers, W.J. 1988. The factors controlling the formation and chemistry of dolomite in organic-rich sediments: Miocene Drakes Bay Formation, California. In: Shukla, V . and Baker, P.A. (eds.), Sedimentology and Geochemistry of Dolostones, SEPM Special Publication n. 43, p. 41-52. Chatzis, I. and Dullien, F.A.L. 1981. Mercury porosimetry curves of sandstones: mechanisms of mercury penetration and withdrawal. Powder Technology, v. 29, p. 117-125. Choquette, P.W. and James, N.P. 1990. Limestones - the burial diagenetic environment. In: Mcllreath, L A . and Morrow, D.W. (eds.), Diagenesis, Geoscience Canada, reprint series 4, p. 75-112. Compton, J.S. 1988. Sediment composition and precipitation of dolomite and pyrite in the Neogene Monterey and Sisquoc Formations, Santa Maria Basin area, California. In: Shukla, V . and Baker, P.A. (eds.), Sedimentology and Geochemistry of Dolostones, SEPM Special Publication n. 43, p. 53-64. Davies, G.R. 1997. The Triassic of the Western Canada Sedimentary Basin: tectonic and stratigraphic framework, peleogeography, paleoclimate and biota. Bulletin of Canadian Petroleum Geology, v. 45, p. 434-460. 96 Davies, G.R., Moslow, T.F. and Sherwin, M.D. 1997. The Lower Triassic Montney Formation, west-central Alberta. Bulletin of Canadian Petroleum Geology, v. 45, p. 474-505. Dickson, J.A.D. 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology, v. 36, p. 491-505. Embry, A.F. 1997. Global sequence boundaries of the Triassic and their identification in the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, v. 45, p. 415-433. Gibson, D.W. and Edwards, D.E. 1990. An overview of Triassic stratigraphy and depositional environments in the Rocky Mountain Foothills and Western Interior Plains, Peace River Arch area, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, v. 38A, p. 146-158. Hayes, J.B. 1979. Sandstone diagenesis-the hole truth. In: Scholle, P.A. and Schluger, P.R. (eds.), Aspects of Diagenesis. SEPM Special Publication 26, p. 127-139. Hutcheon, I. 1990. Aspects of the Diagenesis of coarse-grained siliciclastic rocks. In: Mcllreath, L A . and Morrow, D.W. (eds.), Diagenesis, Geoscience Canada, reprint series 4, p. 165-176. Katz, A.J . and Thompson, A . H . 1987. Prediction of rock electrical conductivity from mercury injection measurements. Journal of Geophysical Research, v. 92, p. 599-607. Kortenski, J and Kostova, I. 1995. Occurrence and morphology of pyrite in Bulgarian coals. International Journal of Coal Geology, v. 29, p. 273-290. Pittman, E.D. 1992. Relationship of porosity and permeability to various parameters dervived from mercury injection-capillary pressure curves for sandstone. American Association of Petroleum Geologists Bulletin, v. 76, p. 191-198. Schmidt, V. and McDonald, D.A. 1979a. Texture and recognition of secondary porosity in sandstones. In: Scholle, P.A. and Schluger, P.R. (eds.), Aspects of Diagenesis. SEPM Special Publication 26, p. 209-225. Schmidt, V . and McDonald, D.A. 1979b. The role of secondary porosity in the course of sandstone diagenesis. In: Scholle, P.A. and Schluger, P.R. (eds.), Aspects of Diagenesis. SEPM Special Publication 26, p. 175-207. Seiver, R. 1962. Silica solubility, 0o-200oC, and the diagenesis of siliceous sediments. Journal of Geology, v. 70, p. 127-150. 97 Surdam, R.C., Dunn, T.L., Heasler, H.P. and MacGowan, D.B. 1989. Porosity evolution in sandstone/shale systems. In: Hutcheon, I.E. (ed.), Short Course in Burial Diagenesis. Mineralogical Association of Canada, v. 15, p. 61-134. Wardlaw, N.C. and McKeller, M . 1981. Mercury porosimetry and the interpretation of pore geometry in sedimentary rocks and artificial models. Powder Technology, v. 29, p. 127-143. Wardlaw, N.C. and Taylor, R.P. 1976. Mercury capillary pressure curves and the interpretation of pore structure and capillary behaviour in reservoir rocks. Bulletin of Canadian Petroleum Geology, v. 24, p. 225-262. Washburn, E.W. 1921. Note on a method of determining the distribution of pore sizes in a porous material: Proceedings of the National Academy of Science, v. 7, p. 115-116. Wilkin, R.T. and Barnes, H.L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, v. 61, p. 323-339. 98 Chapter 4 Conclusions Lithofacies of the Montney Formation in northeastern British Columbia (NEBC) were deposited as turbidite and deltaic very fine-grained sandstone and siltstone. Underlying Paleozoic topography controls deposition of thick turbidites. Deltaic sandstones overlie the turbidite intervals as a result of uplift on the northwest side of the Hay River Fault Zone. Much of the Montney Formation is truncated by a sub-Cretaceous unconformity. Preserved portions of the Montney Formation in N E B C were deposited as a single transgressive-regressive cycle. The basal transgression occurred rapidly and may be a factor causing anoxia resulting in the widespread Permian/Triassic extinction event. The majority of the preserved strata records a regressive event, characterized by an overall coarsening upward. Sediments of the Montney Formation in N E B C are aeolian sourced and are 95% composed of detrital quartz, chert, potassium feldspar and plagioclase. In secondary abundance is detrital dolomite, apatite, gluaconite, zircon and spinel. The dominant cement phase consists of late diagenetic ferroan dolomite. Remnant early diagenetic calcite and apatite cements are sparsely preserved. Pyrite forms a late diagenetic replacement and pore-filling phase and is pervasive throughout the study area, particularly in distal shelf intervals. Quartz overgrowths and annealed quartz grain boundaries are common pore destruction phases resulting from pressure solution and 99 reprecipitation of detrital quartz. Secondary porosity enhancement, forming oversized pores, occurs due to dissolution of ferroan dolomite cement. This study provides a depositional model and diagenetic history for the Montney Formation in NEBC. However, continued work would benefit the current interpretations. Extending the current model into Alberta would help to further constrain the depositional model. Limited data is available to the west of the study area, in the deeper basinal setting. Expanding the depositional model to the west would again further the potential for exploration and production within the Montney Formation. The presence of increased dissolution and dolomitization in the southern portion of the study area has been documented but a viable explanation does not exist. Further delineating the sedimentology and the extent of diagenesis will help in establishing directions for further exploration within the Montney Formation in NEBC. 100 Appendix A Well Locations Well locations Well ID License Depth Interval (m) Field # a-078-A-94-H-08 8454 984-1001.2 Chinchaga 1 b-026-E-94-H-08 8174 1140-1152.8 Chinchaga 2 d-052-G-94-H-08 8542 993-1005.5 Chinchaga 3 C-072-J-94-H-08 8639 1052-1062.5 Chinchaga 4 a-086-K-94-H-15 9220 710-728.3 Kahntah 5 a-081-A-94-I-03 8979 663-681 Kahntah 6 d-086-A-94-I-03 8972 671-689 Kahntah 7 a-083-E-94-I-03 8950 673-682.8 Kahntah 8 a-023-G-94-I-03 7612 661.4-695.2 Kahntah 9 d-026-H-94-I-03 8975 654-672 Kahntah 10 a-039-H-94-I-03 8982 652-670.6 Kahntah 11 b-090-H-94-I-03 7297 656-674 Kahntah 12 d-031-L-94-I-03 7615 673.5-691.9 Kahntah 13 a-027-C-94-I-02 8433 700-715 Kahntah 14 C-028-C-94-I-02 8967 686-704 Kahntah 15 C-040-C-94-I-02 8963 680-698.6 Kahntah 16 d-001-D-94-I-02 8964 703-721 Kahntah 17 b-022-D-94-I-02 7555 678.5-696.8 Kahntah 18 b-062-D-94-I-02 7378 663-701.2 Kahntah 19 C-098-D-94-I-02 7561 653-689.6 Kahntah 20 b-099-D-94-I-02 9291 654-672 Kahntah 21 b-044-E-94-I-02 7290 630-648.4 Kahntah 22 b-082-F-94-I-02 7002 600-618.2 Kahntah 23 d-039-G-94-I-02 7539 620-638 Kahntah 24 d-036-D-94-H-14 7221 921-940.6 Ring-Border 25 d-045-G-94-H-09 10189 904-918.9 Ring-Border 26 C-092-H-94-H-09 7270 945-970.6 Ring-Border 27 d-073-A-94-H-16 7006 871.2-889.4 Ring-Border 28 d-084-C-94-H-16 8533 835-848 Ring-Border 29 b-004-F-94-H-16 7241 821-857.5 Ring-Border 30 b-006-F-94-H-16 7213 817.6-835.3 Ring-Border 31 C-016-F-94-H-16 7242 796.3-831.7 Ring-Border 32 a-025-F-94-H-16 7276 791.5-824.5 Ring-Border 33 C-036-F-94-H-16 7031 784-802 Ring-Border 34 C-058-F-94-H-16 7253 787.5-823 Ring-Border 35 C-020-H-94-H-16 7007 827-845.2 Ring-Border 36 a-017-I-94-H-16 9642 793.7-803.2 Ring-Border 37 b-002-K-94-H-16 6985 779-797.2 Ring-Border 38 b-004-K-94-H-16 7260 776.2-810.4 Ring-Border 39 C-074-F-94-H-16 7037 793-811.2 Ring-Border 40 102 Appendix B Mercury Porosimetry Data a-27-C-94-l-02 Facies 3 Sample Depth: 705.5m Core Plug #: 30 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia urn urn mUg mUg VOLUME sq-m/g sq-m/g 0.5100 356.6149 356.6149 0.0000 0.0000 0.0000 0.0000 0.0000 1.2100 150.0732 253.3440 0.0003 0.0003 0.7076 0.0000 0.0000 2.5600 70.7372 110.4052 0.0006 0.0004 1.6624 0.0000 0.0000 3.8000 47.5393 59.1382 0.0008 0.0002 2.1453 0.0000 0.0000 5.0600 35.7779 41.6586 0.0009 0.0001 2.3925 0.0000 0.0000 7.1700 25.2397 30.5088 0.0010 0.0001 2.6845 0.0000 0.0000 9.6300 18.7728 22.0062 0.0011 0.0001 2.9316 0.0000 0.0000 11.6300 15.5501 17.1614 0.0011 0.0000 3.0664 0.0000 0.0000 13.6800 13.2168 14.3835 0.0012 0.0000 3.1899 0.0000 0.0000 15.4600 11.7000 12.4584 0.0012 0.0000 3.3135 0.0000 0.0000 17.4900 10.3437 11.0219 0.0013 0.0000 3.4146 0.0000 0.0000 19.5700 9.2413 9.7925 0.0013 0.0000 3.5269 0.0000 0.0000 21.4600 8.4285 8.8349 0.0013 0.0000 3.6168 0.0000 0.0000 23.0800 7.8359 8.1322 0.0014 0.0000 3.6842 0.0000 0.0000 24.9700 7.2429 7.5394 0.0014 0.0000 3.8077 0.0000 0.0000 50.1300 3.6077 5.4253 0.0014 0.0000 3.8863 0.0000 0.0000 100.3000 1,8033 2.7055 0.0015 0.0001 4.0885 0.0000 0.0000 199.6200 0.9060 1.3546 0.0017 0.0002 4.5715 0.0010 0.0010 398.1100 0.4543 0.6802 0.0022 0.0005 5.9530 0.0030 0.0040 796.1800 0.2272 0.3407 0.0052 0.0030 14.1076 0.0350 0.0390 996.0700 0.1816 0.2044 0.0087 0.0034 23.3966 0.0670 0.1070 1993.3100 0.0907 0.1362 0.0216 0.0129 58.2613 0.3790 0.4860 2991.9800 0.0604 0.0756 0.0266 0.0050 71.8410 0.2660 0.7520 3984.0600 0.0454 0.0529 0.0294 0.0028 79.4564 0.2130 0.9650 4980.6600 0.0363 0.0409 0.0313 0.0019 84.6119 0.1870 1.1520 5986.6200 0.0302 0.0333 0.0328 0.0015 88.5432 0.1750 1.3270 6970.0900 0.0259 0.0281 0.0338 0.0010 91.3288 0.1470 1,4740 7969.3900 0.0227 0.0243 0.0347 0.0009 93.6875 0.1440 1.6180 8990.5400 0.0201 0.0214 0.0355 0.0008 95.7430 0.1420 1.7600 9993.8500 0.0181 0.0191 0.0361 0.0007 97.5289 0.1380 1.8980 11969.1600 0.0151 0.0166 0.0370 0.0009 100.0000 0.2200 2.1190 10040.9900 0.0180 0.0166 0.0369 -0.0001 99.7529 -0.0220 2.0970 9033.1600 0.0200 0.0190 0.0368 -0.0001 99.3485 -0.0310 2.0650 7995.0000 0.0226 0.0213 0.0365 -0.0003 98.5286 -0.0570 2.0080 6997.1800 0.0258 0.0242 0.0361 -0.0004 97.5626 -0.0590 1.9490 5997.0200 0.0302 0.0280 0.0358 -0.0004 96.5630 -0.0530 1.8960 4998.5300 0.0362 0.0332 0.0353 -0.0004 95.4285 -0.0510 1.8460 4006.8800 0.0451 0.0407 0.0348 -0.0005 93.9683 -0.0530 1.7930 2995.4100 0.0604 0.0528 0.0340 -0.0008 91.8230 -0.0600 1.7320 2002.7700 0.0903 0.0753 0.0329 -0.0011 88.9138 -0.0570 1.6750 999.6700 0.1809 0.1356 0.0309 -0.0021 83.3090 -0.0610 1.6140 500.2400 0.3616 0.2712 0.0288 -0.0020 77.8951 -0.0300 1.5840 250.8000 0.7212 0.5414 0.0270 -0.0019 72.7957 -0.0140 1.5700 99.5200 1.8174 1.2693 0.0253 -0.0016 68.3477 -0.0050 1.5650 49.8700 3.6266 2.7220 0.0247 -0.0006 66.6742 -0.0010 1.5640 104 a-39-H-94-l-03 Facies 3 Sample Depth: 666.4m PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia Htn mL/g mL/g VOLUME sq-m/g sq-m/g 0.6200 290.2324 290.2324 0.0000 0.0000 0 0 0 0.6300 288.3047 289.2686 0.0000 0.0000 0 0 0 1.8900 95.6105 191.9576 0.0007 0.0007 1.7652 0 0 3.7200 48.5843 72.0974 0.0012 0.0005 3.0147 0 0 5.7400 31.5331 40.0587 0.0014 0.0002 3.57 0 0 7.8800 22.9405 27.2368 0.0016 0.0001 3.9072 0 0 9.7400 18.5637 20.7521 0.0017 0.0001 4.1253 0 0 11.8600 15.2526 16.9082 0.0017 0.0001 4.2642 0 0 13.8300 13.0737 14.1631 0.0018 0.0001 4.4228 0 0 15.9200 11.3612 12.2174 0.0018 0.0000 4.5418 0 0 18.2300 9.9194 10.6403 0.0019 0.0001 4.7005 0 0 20.0700 9.0102 9.4648 0.0020 0.0001 4.8393 0 0 22.2100 8.1451 8.5776 0.0020 0.0000 4.9385 0 0 24.0300 7.5267 7.8359 0.0021 0.0001 5.0972 0 0 25.5400 7.0814 7.3041 0.0021 0.0000 5.1964 0 0 50.4200 3.5874 5.3344 0.0021 0.0000 5.1964 0 0 101.7500 1.7776 2.6825 0.0021 0.0000 5.2162 0 0 201.0700 0.8995 1.3385 0.0025 0.0004 6.1285 0.001 0.001 399.5600 0.4527 0.6761 0.0035 0.0011 8.7465 0.006 0.008 800.0000 0.2261 0.3394 0.0069 0.0033 16.9972 0.039 0.047 997.1300 0.1814 0.2037 0.0092 0.0023 22.7489 0.046 0.092 1996.2800 0.0906 0.1360 0.0202 0.0111 50.1388 0.325 0.417 2996.8600 0.0604 0.0755 0.0253 0.0050 62.5942 0.266 0.684 3988.6400 0.0453 0.0528 0.0283 0.0030 70.1309 0.23 0.914 4983.9400 0.0363 0.0408 0.0304 0.0021 75.3669 0.207 1.121 5985.7500 0.0302 0.0333 0.0321 0.0017 79.6311 0.207 1.328 6970.0600 0.0259 0.0281 0.0333 0.0012 82.6061 0.171 1.499 7966.2100 0.0227 0.0243 0.0344 0.0011 85.2241 0.174 1.673 8991.2000 0.0201 0.0214 0.0354 0.0010 87.7628 0.191 1.864 9950.5200 0.0182 0.0191 0.0361 0.0007 89.5478 0.15 2.015 11959.0100 0.0151 0.0166 0.0373 0.0012 92.5228 0.288 2.303 13958.8200 0.0130 0.0140 0.0385 0.0011 95.3193 0.321 2.624 15955.8100 0.0113 0.0121 0.0394 0.0010 97.739 0.322 2.946 17962.1300 0.0101 0.0107 0.0403 0.0009 100 0.341 3.287 7010.3200 0.0258 0.0179 0.0377 -0.0027 93.3558 -0.598 2.689 5016.0100 0.0361 0.0309 0.0362 -0.0014 89.7858 -0.186 2.503 1004.2700 0.1801 0.1081 0.0302 -0.0061 74.7521 -0.225 2.278 14.4200 12.5429 6.3615 0.0214 -0.0088 53.0147 -0.006 2.273 105 C-74-F-94-H-16 Facies 3 Sample Depth: 800.46m PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia urn nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.6500 279.1817 279.1817 0.0000 0.0000 0.0000 0.0000 0.0000 0.6500 279.3254 279.2535 0.0000 0.0000 -0.0123 0.0000 0.0000 1.8500 97.9492 188.6373 0.0007 0.0007 1.7895 0.0000 0.0000 2.6500 68.2288 83.0890 0.0009 0.0002 2.4312 0.0000 0.0000 4.5300 39.9066 54.0677 0.0012 0.0003 3.1593 0.0000 0.0000 6.3600 28.4406 34.1736 0.0013 0.0001 3.5049 0.0000 0.0000 8.5500 21.1449 24.7928 0.0014 0.0001 3.7887 0.0000 0.0000 10.4000 17.3840 19.2645 0.0015 0.0001 3.9245 0.0000 0.0000 12.5800 14.3769 15.8804 0.0015 0.0001 4.0849 0.0000 0.0000 14.8100 12.2093 13.2931 0.0016 0.0001 4.2330 0.0000 0.0000 17.2300 10.4999 11.3546 0.0016 0.0000 4.3317 0.0000 0.0000 19.1900 9.4227 9.9613 0.0017 0.0000 4.4428 0.0000 0.0000 21.2200 8.5221 8.9724 0.0017 0.0001 4.5909 0.0000 0.0000 23.0900 7.8319 8.1770 0.0017 0.0000 4.6526 0.0000 0.0000 25.1800 7.1829 7.5074 0.0018 0.0000 4.7513 0.0000 0.0000 50.2300 3.6006 5.3918 0.0018 0.0000 4.7513 0.0000 0.0000 100.2300 1.8045 2.7026 0.0019 0.0001 5.1339 0.0000 0.0000 198.8400 0.9096 1.3571 0.0036 0.0017 9:6137 0.0050 0.0050 398.7300 0.4536 0.6816 0.0075 0.0039 19.9926 0.0230 0.0280 799.8500 0.2261 0.3399 0.0147 0.0072 39.1583 0.0850 0.1130 999.6200 0.1809 0.2035 0.0171 0.0024 45.6374 0.0480 0.1610 1991.9500 0.0908 0.1359 0.0227 0.0056 60.4714 0.1640 0.3240 2996.5200 0.0604 0.0756 0.0261 0.0035 69.7149 0.1830 0.5080 3985.6200 0.0454 0.0529 0.0285 0.0024 76.0953 0.1810 0.6890 4987.9000 0.0363 0.0408 0.0303 0.0018 80.7972 0.1730 0.8620 5970.5400 0.0303 0.0333 0.0315 0.0012 84.0306 0.1460 1.0070 6965.0100 0.0260 0.0281 0.0325 0.0009 86.5605 0.1350 1.1420 7968.1500 0.0227 0.0243 0.0333 0.0008 88.6955 0.1320 1.2740 8987.6300 0.0201 0.0214 0.0340 0.0008 90.7442 0.1440 1.4180 9948.4600 0.0182 0.0192 0.0345 0.0004 91.9289 0.0930 1.5100 11961.6000 0.0151 0.0167 0.0354 0.0009 94.4465 0.2270 1.7370 13962.5800 0.0130 0.0140 0.0362 0.0008 96.5198 0.2220 1.9590 15969.0600 0.0113 0.0121 0.0369 0.0007 98.3833 0.2300 2.1890 17975.5500 0.0101 0.0.107 0.0375 0.0006 100.0000 0.2270 2.4160 15063.0400 0.0120 0.0110 0.0375 0.0000 100.0000 0.0000 2.4160 10020.8900 0.0180 0.0150 0.0368 -0.0007 98.0131 -0.1980 2.2170 5009.7600 0.0361 0.0271 0.0351 -0.0016 93.6567 -0.2410 1.9760 1000.7200 0.1807 0.1084 0.0304 -0.0047 81.0934 -0.1740 1.8020 498.9500 0.3625 0.2716 0.0283 -0.0021 75.4288 -0.0310 1.7710 100.0900 1.8071 1.0848 0.0237 -0.0046 63.1001 -0.0170 1.7540 49.7800 3.6333 2.7202 0.0228 -0.0009 60.7676 -0.0010 1.7530 23.7900 7.6020 5.6176 0.0224 -0.0004 59.7063 0.0000 1.7520 106 d-26-H-94-94-l-03 Facies 3 Sample Depth: 670.6 m Core Plug #: 9 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia ixm mL/g mL/g VOLUME sq-m/g sq-m/g 0.6700 270.8884 270.8884 0.0000 0.0000 0.0000 0.0000 0.0000 0.6700 270.6857 270.7871 0.0000 0.0000 0.0248 0.0000 0.0000 2.4500 73.6964 172.1911 0.0010 0.0010 2.9864 0.0000 0.0000 4.5700 39.5979 56.6471 0.0014 0.0003 3.9405 0.0000 0.0000 6.7300 26.8575 33.2277 0.0015 0.0001 4.3371 0.0000 0.0000 8.7100 20.7563 23.8069 0.0016 0.0001 4.5725 0.0000 0.0000 10.7400 16.8425 18.7994 0.0016 0.0001 4.7336 0.0000 0.0000 13.1200 13.7851 15.3138 0.0017 0.0001 4.8823 0.0000 0.0000 15.4400 11.7125 12.7488 0.0017 0.0000 4.9938 0.0000 0.0000 17.3600 10.4195 11.0660 0.0018 0.0000 5.0929 0.0000 0.0000 19.4200 9.3130 9.8662 0.0018 0.0000 5.1673 0.0000 0.0000 21.2700 8.5023 8.9077 0.0018 0.0000 5.2292 0.0000 0.0000 23.2700 7.7714 8.1369 0.0018 0.0000 5.3160 0.0000 0.0000 25.2300 7.1694 7.4704 0.0019 0.0000 5.4151 0.0000 0.0000 50.3900 3.5892 5.3793 0.0019 0.0000 5.4151 0.0000 0.0000 99.7200 1.8137 2.7014 0.0019 0.0000 5.4647 0.0000 0.0000 199.2200 0.9079 1.3608 0.0021 0.0002 5.9480 0.0000 0.0010 400.3700 0.4517 0.6798 0.0024 0.0004 7.0012 0.0020 0.0030 796.8400 0.2270 0.3394 0.0035 0.0011 10.0372 0.0120 0.0150 999.9800 0.1809 0.2039 0.0044 0.0009 12.6022 0.0170 0.0330 1995.0300 0.0907 0.1358 0.0136 0.0092 39.0087 0.2700 0.3030 2991.8500 0.0605 0.0756 0.0191 0.0056 55.0558 0.2950 0.5980 3984.4100 0.0454 0.0529 0.0226 0.0035 65.1425 0.2650 0.8630 4985.1700 0.0363 0.0408 0.0251 0.0025 72.2057 0.2400 1.1030 5987.1100 0.0302 0.0332 0.0269 0.0018 77.4721 0.2200 1.3230 6970.0700 0.0259 0.0281 0.0282 0.0013 81.1772 0.1830 1.5070 7968.5400 0.0227 0.0243 0.0293 0.0011 84.2751 0.1770 1.6840 8989.8500 0.0201 0.0214 0.0302 0.0010 87.0260 0.1790 1.8620 9990.8200 0.0181 0.0191 0.0310 0.0008 89.3185 0.1670 2.0290 11969.6200 0.0151 0.0166 0.0321 0.0011 92.5155 0.2670 2.2960 13967.7600 0.0129 0.0140 0.0331 0.0010 95.4151 0.2870 2.5840 15962.9100 0.0113 0.0121 0.0340 0.0008 97.8315 0.2770 2.8600 17976.3900 0.0101 0.0107 0.0347 0.0008 100.0000 0.2820 3.1420 15070.3900 0.0120 0.0110 0.0345 -0.0002 99.4052 -0.0750 3.0670 10025.7500 0.0180 0.0150 0.0334 -0.0012 96.0595 -0.3090 2.7570 5010.4800 0.0361 0.0271 0.0311 -0.0023 89.4919 -0.3370 2.4200 1000.9800 0.1807 0.1084 0.0255 -0.0056 73.3829 -0.2060 2.2140 499.8800 0.3618 0.2712 0.0232 -0.0023 66.8773 -0.0330 2.1810 98.9800 1.8274 1.0946 0.0203 -0.0029 58.4387 -0.0110 2.1700 49.3200 3.6671 2.7472 0.0199 -0.0004 57.3358 -0.0010 2.1690 23.6600 7.6440 5.6555 0.0197 -0.0002 56.6791 0.0000 2.1690 107 D-62-D-94-I-02 Facies 1A Sample Depth: 677.75 m Core Plug #: 127 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL CUMULATIVE CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia |im mL/g mL/g VOLUME sq-m/g sq-m/g 0.7500 0.2405 240.5095 0.0000 0.0000 0.0000 0.0000 0.0000 0.7500 0.2406 240.5362 0.0000 0.0000 -0.0474 0.0000 0.0000 2.3300 0.0775 159.0295 0.0006 0.0007 1.8823 0.0000 0.0000 4.3800 0.0413 59.3969 0.0010 0.0003 2.8768 0.0000 0.0000 6.3700 0.0284 34.8461 0.0012 0.0002 3.4213 0.0000 0.0000 8.5600 0.0211 24.7643 0.0014 0.0003 4.1908 0.0000 0.0000 10.5900 0.0171 19.1097 0.0016 0.0001 4.5578 0.0000 0.0000 12.7500 0.0142 15.6336 0.0017 0.0001 4.8775 0.0000 0.0000 14.9600 0.0121 13.1376 0.0018 0.0001 5.2208 0.0000 0.0000 17.0300 0.0106 11.3561 0.0018 0.0001 5.3984 0.0000 0.0000 19.0200 0.0095 10.0629 0.0019 0.0001 5.5878 0.0000 0.0000 21.0700 0.0086 9.0456 0.0020 0.0001 5.7772 0.0000 0.0000 23.1000 0.0078 8.2072 0.0020 0.0001 5.9429 0.0000 0.0000 25.2800 0.0072 7.4918 0.0021 0.0001 6.1324 0.0000 0.0000 50.2100 0.0036 5.3779 0.0022 0.0001 6.5112 0.0000 0.0000 100.2000 0.0018 2.7037 0.0025 0.0003 7.4228 0.0010 0.0010 200.8300 0.0009 1.3528 0.0035 0.0010 10.3469 0.0040 0.0040 400.4000 0.0005 0.6761 0.0064 0.0029 18.8232 0.0210 0.0210 796.4100 0.0002 0.3394 0.0111 0.0046 32.3784 0.0760 0.0760 998.3500 0.0002 0.2041 0.0130 0.0019 37.8596 0.1120 0.1120 1992.0000 0.0001 0.1360 0.0184 0.0055 53.7824 0.2730 0.2730 2995.5700 0.0001 0.0756 0.0213 0.0029 62.1996 0.4250 0.4250 3992.8400 0.0000 0.0528 0.0233 0.0020 67.9650 0.5750 0.5750 4986.2900 0.0000 0.0408 0.0248 0.0016 72.5820 0.7300 0.7300 5971.5900 0.0000 0.0333 0.0261 0.0013 76.2401 0.8800 0.8800 6966.7200 0.0000 0.0281 0.0272 0.0011 79.4602 1.0370 1.0370 7969.6900 0.0000 0.0243 0.0282 0.0010 82.3961 1.2020 1.2020 8991.4900 0.0000 0.0214 0.0292 0.0010 85.2019 1.3820 1.3820 9998.6300 0.0000 0.0191 0.0300 0.0008 87.6761 1.5590 1.5590 11971.2600 0.0000 0.0166 0.0313 0.0013 91.3697 1.8640 1.8640 13962.3900 0.0000 0.0140 0.0324 0.0011 94.6845 2.1870 2.1870 15970.1900 0.0000 0.0121 0.0334 0.0010 97.5021 2.5050 2.5050 17975.6700 0.0000 0.0107 0.0342 0.0009 100.0000 2.8250 2.8250 15069.6700 0.0120 0.0110 0.0340 -0.0002 99.3726 2.7470 2.7470 10026.3600 0.0180 0.0150 0.0330 -0.0011 96.2590 2.4630 2.4630 5002.4200 0.0362 0.0271 0.0309 -0.0021 90.1504 2.1550 2.1550 1003.5600 0.1802 0.1082 0.0266 -0.0043 77.5778 1.9950 1.9950 499.6100 0.3620 0.2711 0.0251 -0.0015 73.1976 1.9730 1.9730 99.7000 1.8140 1.0880 0.0222 -0.0028 64.9935 1.9630 1.9630 49.7300 3.6370 2.7255 0.0215 -0.0008 62.7915 1.9620 1.9620 23.9200 7.5624 5.5997 0.0209 -0.0006 60.9447 1.9610 1.9610 108 C-40-C-94-I-02 Facies 1A Sample Depth: 684.9 m Core Plug #: 3 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.6500 0.2775 277.4684 0.0000 0.0000 0.0000 0.0000 0.0000 0.6500 0.2778 277.6105 0.0000 0.0000 -0.0124 0.0000 0.0000 2.5000 0.0724 175.0851 0.0012 0.0012 1.7312 0.0000 0.0000 5.0200 0.0360 54.2219 0.0018 0.0006 2.5473 0.0000 0.0000 7.0200 0.0258 30.8957 0.0020 0.0002 2.8564 0.0000 0.0000 9.0900 0.0199 22.8300 0.0022 0.0002 3.1408 0.0000 0.0000 11.0500 0.0164 18.1301 0.0024 0.0001 3.3511 0.0000 0.0000 13.0200 0.0139 15.1289 0.0025 0.0001 3.5365 0.0000 0.0000 15.2200 0.0119 12.8863 0.0027 0.0002 3.7715 0.0000 0.0000 17.1900 0.0105 11.2020 0.0028 0.0001 3.9817 0.0000 0.0000 19.1700 0.0094 9.9787 0.0030 0.0002 4.2043 0.0000 0.0000 21.2100 0.0085 8.9804 0.0031 0.0001 4.4145 0.0000 0.0000 23.1100 0.0078 8.1758 0.0033 0.0002 4.6371 0.0000 0.0010 25.2400 0.0072 7.4952 0.0035 0.0002 4.9091 0.0000 0.0010 50.3900 0.0036 5.3777 0.0147 0.0112 20.7864 0.0080 0.0090 100.2400 0.0018 2.6969 0.0351 0.0204 49.6476 0.0300 0.0390 200.6100 0.0009 1.3530 0.0436 0.0085 61.5927 0.0250 0.0640 398.6900 0.0005 0.6776 0.0492 0.0056 69.4943 0.0330 0.0970 801.9500 0.0002 0.3396 0.0534 0.0042 75.4297 0.0490 0.1470 999.9400 0.0002 0.2032 0.0545 0.0011 77.0125 0.0220 0.1690 1995.8900 0.0001 0.1357 0.0578 0.0033 81.7238 0.0980 0.2670 2993.1900 0.0001 0.0755 0.0599 0.0021 84.6297 0.1090 0.3760 3990.6700 0.0000 0.0529 0.0615 0.0016 86.9544 0.1240 0.5000 4990.3100 0.0000 0.0408 0.0629 0.0014 88.9576 0.1390 0.6390 5975.3000 0.0000 0.0333 0.0639 0.0009 90.2931 0.1140 0.7530 6973.9600 0.0000 0.0281 0.0649 0.0010 91.6533 0.1370 0.8900 7973.2800 0.0000 0.0243 0.0657 0.0008 92.8033 0.1340 1.0240 8994.6000 0.0000 0.0214 0.0665 0.0008 93.9904 0.1570 1.1810 9952.0900 0.0000 0.0191 0.0670 0.0004 94.6210 0.0930 1.2740 11968.2500 0.0000 0.0166 0.0680 0.0011 96.1049 0.2520 1.5270 13964.4100 0.0000 0.0140 0.0690 0.0010 97.4898 0.2790 1.8060 15967.5600 0.0000 0.0121 0.0699 0.0009 98.8129 0.3090 2.1150 17976.7200 0.0000 0.0107 0.0708 0.0008 100.0000 0.3140 2.4290 15066.5400 0.0120 0.0110 0.0708 0.0000 100.0000 0.0000 2.4290 10026.2200 0.0180 0.0150 0.0696 -0.0011 98.4172 -0.2980 2.1300 5016.4200 0.0361 0.0270 0.0672 -0.0025 94.9054 -0.3680 1.7630 1004.1500 0.1801 0.1081 0.0622 -0.0050 87.8323 -0.1850 1.5780 500.5100 0.3614 0.2707 0.0603 -0.0019 85.1614 -0.0280 1.5500 99.4100 1.8194 1.0904 0.0561 -0.0041 79.3125 -0.0150 1.5350 48.1000 3.7598 2.7896 0.0544 -0.0018 76.8394 -0.0030 1.5320 24.2900 7.4457 5.6027 0.0531 -0.0013 75.0216 -0.0010 1.5310 109 d-52-G-94-H-08 Facies 2B Sample Depth: 993.2 Core Plug #: SP1P PORE MEAN CUMULATIVE INCREMENTAL DIFFEREN. INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME VOL dV/dD PORE AREA PORE AREA psia nm |j.m mUg mUg mL/g-urn sq-m/g sq-m/g 0.8500 212.3638 212.3638 0.0000 0.0000 0.0000 0.0000 0.0000 0.8500 213.3240 212.8439 0.0000 0.0000 0.0000 0.0000 0.0000 2.7000 67.0402 140.1821 0.0006 0.0006 0.0000 0.0000 0.0000 4.8400 37.3671 52.2037 0.0009 0.0003 0.0000 0.0000 0.0000 6.8400 26.4562 31.9117 0.0011 0.0002 0.0000 0.0000 0.0000 8.5400 21.1870 23.8216 0.0012 0.0001 0.0000 0.0000 0.0000 10.4300 17.3379 19.2625 0.0013 0.0001 0.0000 0.0000 0.0000 12.6900 14.2556 15.7967 0.0015 0.0002 0.0001 0.0000 0.0000 14.6000 12.3849 13.3203 0.0017 0.0001 0.0001 0.0000 0.0000 16.6900 10.8353 11.6101 0.0019 0.0002 0.0002 0.0000 0.0000 18.5700 9.7370 10.2862 0.0021 0.0002 0.0003 0.0000 0.0000 20.6600 8.7531 9.2451 0.0026 0.0004 0.0007 0.0000 0.0010 22.8100 7.9300 8.3416 0.0032 0.0006 0.0014 0.0000 0.0010 24.3400 7.4317 7.6809 0.0042 0.0010 0.0020 0.0000 0.0010 25.8600 6.9947 7.2132 0.0053 0.0011 0.0025 0.0010 0.0020 50.1600 3.6059 5.3003 0.0186 0.0133 0.0049 0.0100 0.0120 100.6200 1.7974 2.7017 0.0295 0.0109 0.0079 0.0160 0.0280 199.1400 0.9082 1.3528 0.0390 0.0095 0.0163 0.0280 0.0560 398.4000 0.4540 0.6811 0.0508 0.0119 0.0301 0.0700 0.1260 801.3400 0.2257 0.3398 0.0577 0.0069 0.0302 0.0810 0.2070 998.1200 0.1812 0.2035 0.0592 0.0014 0.0343 0.0280 0.2350 1994.6500 0.0907 0.1359 0.0634 0.0042 0.0601 0.1240 0.3590 2986.4200 0.0606 0.0756 0.0654 0.0021 0.0782 0.1100 0.4690 3987.0400 0.0454 0.0530 0.0668 0.0014 0.1029 0.1040 0.5730 4989.0000 0.0363 0.0408 0.0679 0.0011 0.1249 0.1040 0.6770 5971.3100 0.0303 0.0333 0.0687 0.0008 0.1528 0.0980 0.7750 6967.1200 0.0260 0.0281 0.0695 0.0008 0.1892 0.1080 0.8830 7966.9300 0.0227 0.0243 0.0701 0.0007 0.2243 0.1110 0.9950 8989.0800 0.0201 0.0214 0.0708 0.0006 0.2492 0.1210 1.1160 9993.5600 0.0181 0.0191 0.0713 0.0005 0.2539 0.1120 1.2270 11974.3800 0.0151 0.0166 0.0721 0.0008 0.2800 0.1870 1.4140 13964.3600 0.0130 0.0140 0.0728 0.0007 0.3257 0.1910 1.6050 15965.0100 0.0113 0.0121 0.0733 0.0006 0.3610 0.1880 1.7920 17968.8300 0.0101 0.0107 0.0738 0.0005 0.3999 0.1810 1.9730 15065.3200 0.0120 0.0110 0.0738 0.0000 0.0488 0.0000 1.9730 10017.6700 0.0181 0.0150 0.0732 -0.0006 0.1119 -0.1670 1.8070 4997.0400 0.0362 0.0271 0.0717 -0.0015 0.0694 -0.2270 1.5800 1004.3500 0.1801 0.1081 0.0673 -0.0043 0.0158 -0.1590 1.4210 501.5900 0.3606 0.2703 0.0652 -0.0022 0.0096 -0.0320 1.3890 100.1700 1.8055 1.0830 0.0576 -0.0076 0.0036 -0.0280 1.3610 47.6800 3.7930 2.7992 0.0524 -0.0052 0.0017 -0.0070 1.3530 24.4900 7.3843 5.5887 0.0482 -0.0042 0.0009 -0.0030 . 1.3500 110 b-90-H-94-l-03 Facies 2B Sample Depth: 672.62 m PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia pm nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.7000 258.8073 258.8073 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 259.0544 258.9309 -0.0001 -0.0001 -0.1903 0.0000 0.0000 2.5900 69.9258 164.4901 0.0004 0.0004 0.8086 0.0000 0.0000 4.6900 38.5595 54.2427 0.0006 0.0003 1.4270 0.0000 0.0000 6.5700 27.5112 33.0353 0.0008 0.0002 1.7917 0.0000 0.0000 8.7400 20.6839 24.0975 0.0009 0.0001 2.0771 0.0000 0.0000 10.9900 16.4646 18.5742 0.0010 0.0001 2.2198 0.0000 0.0000 13.1400 13.7598 15.1122 0.0010 0.0001 2.3466 0.0000 0.0000 15.0700 12.0022 12.8810 0.0011 0.0000 2.4259 0.0000 0.0000 17.1800 10.5251 11.2636 0.0011 0.0001 2.6161 0.0000 0.0000 19.2700 9.3866 9.9559 0.0012 0.0001 2.7588 0.0000 0.0000 21.2000 8.5328 8.9597 0.0013 0.0001 2.8857 0.0000 0.0000 23.2400 7.7830 8.1579 0.0013 0.0000 2.9967 0.0000 0.0000 25.1900 7.1791 7.4810 0.0014 0.0001 3.1552 0.0000 0.0000 49.9200 3.6231 5.4011 0.0015 0.0002 3.5358 0.0000 0.0000 100.7500 1.7952 2.7091 0.0017 0.0001 3.8370 0.0000 0.0010 200.4100 0.9025 1.3488 0.0019 0.0002 4.3127 0.0010 0.0010 399.9000 0.4523 0.6774 0.0025 0.0006 5.7714 0.0040 0.0050 799.6200 0.2262 0.3392 0.0167 0.0141 38.1005 0.1670 0.1720 997.7000 0.1813 0.2037 0.0216 0.0049 49.3261 0.0960 0.2680 1993.5500 0.0907 0.1360 0.0292 0.0076 66.8147 0.2250 0.4930 2995.3200 0.0604 0.0756 0.0322 0.0030 73.7276 0.1600 0.6530 3989.9500 0.0453 0.0529 0.0341 0.0019 78.0878 0.1440 0.7970 4987.4300 0.0363 0.0408 0.0357 0.0015 81.5443 0.1480 0.9450 5971.9100 0.0303 0.0333 0.0368 0.0011 84.0970 0.1340 1.0800 6967.7200 0.0260 0.0281 0.0378 0.0010 86.3485 0.1400 1.2200 7967.8700 0.0227 0.0243 0.0386 0.0009 88.3304 0.1420 1.3620 8994.0300 0.0201 0.0214 0.0395 0.0008 90.2648 0.1580 1.5200 9951.5200 0.0182 0.0191 0.0400 0.0005 91.5174 0.1140 1.6350 11970.3300 0.0151 0.0166 0.0411 0.0010 93.8957 0.2500 1.8850 13967.8200 0.0129 0.0140 0.0420 0.0010 96.1313 0.2790 2.1630 15970.4700 0.0113 0.0121 0.0429 0.0009 98.1766 0.2950 2.4580 17970.4600 0.0101 0.0107 0.0437 0.0008 100.0000 0.2980 2.7560 15068.9600 0.0120 0.0110 0.0437 -0.0001 99.8414 -0.0250 2.7310 10020.1300 0.0181 0.0150 0.0426 -0.0011 97.3521 -0.2900 2.4420 5012.6700 0.0361 0.0271 0.0401 -0.0024 91.8028 -0.3590 2.0830 1004.6000 0.1800 0.1081 0.0351 -0.0050 80.2600 -0.1870 1.8960 501.6300 0.3605 0.2703 0.0331 -0.0020 75.7888 -0.0290 1.8670 97.5500 1.8540 1.1073 0.0288 -0.0043 65.9109 -0.0160 1.8520 49.7400 3.6361 2.7451 0.0277 -0.0012 63.2630 -0.0020 1.8500 24.7600 7.3057 5.4709 0.0268 -0.0008 61.3762 -0.0010 1.8490 111 a-25-F-94-H-16 Facies Bioclastic 2A Sample Depth: 794.18 m Core Plug #: 12 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia urn nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.7400 244.6301 244.6301 0.0000 0.0000 0.0000 0.0000 0.0000 0.7400 244.9061 244.7681 0.0000 0.0000 -0.0431 0.0000 0.0000 2.4100 74.9330 159.9195 0.0015 0.0016 2.1402 0.0000 0.0000 4.6200 39.1818 57.0574 0.0024 0.0008 3.3036 0.0000 0.0000 6.8100 26.5773 32.8796 0.0029 0.0005 3.9500 0.0000 0.0000 8.9400 20.2300 23.4037 0.0032 0.0004 4.4384 0.0000 0.0000 11.0800 16.3177 18.2739 0.0035 0.0003 4.8980 0.0000 0.0000 14.0000 12.9210 14.6193 0.0040 0.0004 5.4726 0.0000 0.0000 15.2000 11.8994 12.4102 0.0041 0.0002 5.7311 0.0000 0.0000 17.3100 10.4470 11.1732 0.0045 0.0003 6.2051 0.0000 0.0010 19.2900 9.3759 9.9114 0.0049 0.0004 6.8084 0.0000 0.0010 21.1200 8.5634 8.9697 0.0054 0.0005 7.4691 0.0000 0.0010 23.0700 7.8407 8.2021 0.0060 0.0007 8.3740 0.0000 0.0010 25.1700 7.1856 7.5131 0.0069 0.0009 9.5949 0.0000 0.0020 50.2700 3.5975 5.3916 0.0261 0.0192 36.1678 0.0140 0.0160 100.3800 1.8018 2.6997 0.0434 0.0173 60.0977 0.0260 0.0420 201.1300 0.8992 1.3505 0.0497 0.0063 68.7733 0.0190 0.0600 399.7500 0.4524 0.6758 0.0534 0.0038 74.0017 0.0220 0.0820 801.2100 0.2257 0.3391 0.0563 0.0028 77.9230 0.0330 0.1160 997.7000 0.1813 0.2035 0.0571 0.0008 79.0577 0.0160 0.1320 1993.8400 0.0907 0.1360 0.0598 0.0027 82.7636 0.0790 0.2110 2989.9800 0.0605 0.0756 0.0615 0.0018 85.2198 0.0940 0.3040 3986.6300 0.0454 0.0529 0.0631 0.0016 87.4174 0.1200 0.4240 4985.4500 0.0363 0.0408 0.0644 0.0012 89.1411 0.1220 0.5460 5974.2700 0.0303 0.0333 0.0653 0.0009 90.4481 0.1130 0.6600 6968.6000 0.0260 0.0281 0.0662 0.0009 91.6260 0.1210 0.7810 7971.2500 0.0227 0.0243 0.0669 0.0008 92.6889 0.1260 0.9070 8994.2500 0.0201 0.0214 0.0677 0.0008 93.8236 0.1530 1.0600 9994.5700 0.0181 0.0191 0.0685 0.0007 94.8291 0.1520 1.2120 11971.0600 0.0151 0.0166 0.0693 0.0009 96.0500 0.2120 1.4240 13966.5600 0.0129 0.0140 0.0703 0.0010 97.4002 0.2780 1.7020 15966.3800 0.0113 0.0121 0.0713 0.0010 98.7504 0.3210 2.0240 17972.0400 0.0101 0.0107 0.0722 0.0009 100.0000 0.3370 2.3610 15067.7000 0.0120 0.0110 0.0722 0.0000 100.0000 0.0000 2.3610 10024.5400 0.0180 0.0150 0.0710 -0.0012 98.2764 -0.3310 2.0300 5005.0700 0.0361 0.0271 0.0681 -0.0029 94.2689 -0.4270 1.6020 1002.3000 0.1804 0.1083 0.0623 -0.0058 86.2396 -0.2140 1.3880 496.0000 0.3646 0.2725 0.0601 -0.0022 83.2232 -0.0320 1.3560 98.4000 1.8381 1.1014 0.0549 -0.0051 76.0988 -0.0190 1.3380 48.1100 3.7592 2.7987 0.0511 -0.0038 70.8417 -0.0050 1.3320 22.6900 7.9695 5.8643 0.0449 -0.0063 62.1517 -0.0040 1.3280 112 C-72-J-94-H-08 Facies 2A Sample Depth: 1059.45 m PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA PRESSURE nm mL/g mL/g VOLUME sq-m/g sq-m/g psia 243.2592 243.2592 0.0000 0.0000 0.0000 0.0000 0.0000 0.7400 243.4229 243.3410 0.0000 0.0000 -0.0259 0.0000 0.0000 0.7400 75.6644 159.5436 0.0007 0.0007 0.9841 0.0000 0.0000 2.3900 41.6464 58.6554 0.0011 0.0004 1.6056 0.0000 0.0000 4.3400 23.9771 32.8117 0.0014 0.0003 2.1106 0.0000 0.0000 7.5400 19.9871 21.9821 0.0015 0.0001 2.2530 0.0000 0.0000 9.0500 16.3872 18.1872 0.0016 0.0001 2.4084 0.0000 0.0000 11.0400 13.8676 15.1274 0.0017 0.0001 2.5508 0.0000 0.0000 13.0400 11.5750 12.7213 0.0019 0.0001 2.7450 0.0000 0.0000 15.6300 10.3857 10.9803 0.0020 0.0001 2.8616 0.0000 0.0000 17.4100 9.2689 9.8273 0.0020 0.0001 2.9781 0.0000 0.0000 19.5100 8.3757 8.8223 0.0021 0.0001 3.1335 0.0000 0.0000 21.5900 7.6907 8.0332 0.0022 0.0001 3.2241 0.0000 0.0000 23.5200 7.0882 7.3895 0.0023 0.0001 3.3666 0.0000 0.0000 25.5200 3.6248 5.3565 0.0035 0.0012 5.1664 0.0010 0.0010 49.9000 1.8103 2.7175 0.0351 0.0316 51.3919 0.0470 0.0480 99.9100 0.9062 1.3583 0.0461 0.0110 67.4220 0.0320 0.0800 199.5800 0.4531 0.6797 0.0522 0.0061 76.4081 0.0360 0.1160 399.1500 0.2272 0.3402 0.0560 0.0037 81.8853 0.0440 0.1600 796.0900 0.1811 0.2041 0.0570 0.0010 83.3743 0.0200 0.1800 998.7400 0.0908 0.1359 0.0598 0.0028 87.5178 0.0830 0.2640 1992.5300 0.0605 0.0756 0.0614 0.0015 89.7838 0.0820 0.3460 2989.1800 0.0454 0.0529 0.0625 0.0011 91.3635 0.0820 0.4270 3984.5000 0.0363 0.0408 0.0632 0.0008 92.4900 0.0750 0.5030 4986.4900 0.0302 0.0332 0.0639 0.0007 93.4740 0.0810 0.5840 5988.8100 0.0260 0.0281 0.0643 0.0004 94.0438 0.0560 0.6390 6969.4800 0.0227 0.0243 0.0647 0.0004 94.6782 0.0710 0.7100 7971.1400 0.0201 0.0214 0.0653 0.0005 95.4551 0.0990 0.8100 8993.6300 0.0181 0.0191 0.0657 0.0005 96.1414 0.0980 0.9080 9993.7900 0.0151 0.0166 0.0663 0.0005 96.9442 0.1320 1.0400 11963.7900 0.0129 0.0140 0.0670 0.0007 97.9283 0.1920 1.2320 13967.6200 0.0113 0.0121 0.0676 0.0007 98.9253 0.2250 1.4570 15968.6100 0.0101 0.0107 0.0684 0.0007 100.0000 0.2750 1.7310 17969.1000 0.0120 0.0110 0.0684 0.0000 100.0000 0.0000 1.7310 15072.2600 0.0180 0.0150 0.0673 -0.0011 98.3944 -0.2920 1.4390 10023.9400 0.0361 0.0271 0.0651 -0.0021 95.2609 -0.3170 1.1230 5009.6300 0.1801 0.1081 0.0623 -0.0028 91.1822 -0.1030 1.0190 1004.1600 0.3644 0.2723 0.0612 -0.0012 89.4601 -0.0170 1.0020 496.3400 1.8012 1.0828 0.0566 -0.0045 82.8176 -0.0170 0.9850 100.4100 3.6897 2.7455 0.0498 -0.0068 72.8085 -0.0100 0.9750 49.0200 7.2448 5.4672 0.0424 -0.0074 62.0355 -0.0050 0.9700 24.9600 113 D-4-F-94-H-16 Facies 2A Sample Depth: 829.38 m Core Plug #: 93 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.6900 260.6724 260.6724 0.0000 0.0000 0.0000 0.0000 0.0000 0.6900 260.5472 260.6098 0.0000 0.0000 0.4019 0.0000 0.0000 2.4300 74.5469 167.5471 0.0008 0.0008 3.4164 0.0000 0.0000 4.7400 38.1581 56.3525 0.0011 0.0003 4.4011 0.0000 0.0000 7.1000 25.4665 31.8123 0.0013 0.0002 4.9035 0.0000 0.0000 9.2600 19.5352 22.5008 0.0014 0.0001 5.1648 0.0000 0.0000 11.3100 15.9947 17.7650 0.0015 0.0001 5.4260 0.0000 0.0000 13.2800 13.6163 14.8055 0.0015 0.0001 5.6471 0.0000 0.0000 15.7400 11.4893 12.5528 0.0016 0.0001 5.7878 0.0000 0.0000 17.3100 10.4482 10.9688 0.0017 0.0001 5.9486 0.0000 0.0000 19.7700 9.1467 9.7975 0.0017 0.0001 6.0892 0.0000 0.0000 21.8100 8.2930 8.7199 0.0018 0.0001 6.2098 0.0000 0.0000 23.6400 7.6500 7.9715 0.0019 0.0000 6.3706 0.0000 0.0000 25.9300 6.9750 7.3125 0.0019 0.0001 6.4912 0.0000 0.0000 50.5900 3.5752 5.2751 0.0020 0.0000 6.7323 0.0000 0.0000 101.0900 1.7892 2.6822 0.0021 0.0001 7.3955 0.0000 0.0010 200.4200 0.9024 1.3458 0.0021 0.0000 8.7018 0.0020 0.0020 398.7500 0.4536 0.6780 0.0023 0.0002 15.7757 0.0170 0.0200 801.7400 0.2256 0.3396 0.0028 0.0005 35.3497 0.0950 0.1150 997.9100 0.1812 0.2034 0.0030 0.0002 39.6302 0.0350 0.1490 1993.5600 0.0907 0.1360 0.0043 0.0013 51.7886 0.1480 0.2970 2994.3500 0.0604 0.0756 0.0073 0.0030 60.9928 0.2000 0.4970 3983.6300 0.0454 0.0529 0.0111 0.0038 68.0265 0.2190 0.7160 4982.0800 0.0363 0.0409 0.0146 0.0034 73.3722 0.2160 0.9320 5986.3900 0.0302 0.0333 0.0165 0.0019 77.7331 0.2160 1.1480 6969.8700 0.0259 0.0281 0.0178 0.0013 80.6672 0.1720 1.3210 7968.1900 0.0227 0.0243 0.0190 0.0012 83.3601 0.1830 1.5040 8996.1700 0.0201 0.0214 0.0201 0.0011 86.0330 0.2060 1.7100 9951.8300 0.0182 0.0191 0.0209 0.0008 87.7010 0.1440 1.8530 11969.6500 0.0151 0.0166 0.0224 0.0016 91.2580 0.3520 2.2060 13964.3000 0.0130 0.0140 0.0238 0.0014 94.4132 0.3710 2.5770 15962.9500 0.0113 0.0121 0.0251 0.0013 97.3272 0.3960 2.9730 17967.4400 0.0101 0.0107 0.0263 0.0012 100.0000 0.4120 3.3850 15063.1000 0.0120 0.0110 0.0263 0.0000 99.7387 -0.0390 3.3460 10027.6100 0.0180 0.0150 0.0249 -0.0013 96.1817 -0.3910 2.9550 5008.4700 0.0361 0.0271 0.0219 -0.0031 88.6455 -0.4590 2.4960 1004.7200 0.1800 0.1081 0.0162 -0.0057 73.5932 -0.2290 2.2670 496.4000 0.3643 0.2722 0.0147 -0.0015 68.2074 -0.0330 2.2340 99.0800 1.8254 1.0949 0.0139 -0.0009 56.2299 -0.0180 2.2160 48.9200 3.6972 2.7613 0.0136 -0.0003 54.4614 -0.0010 2.2150 23.7500 7.6140 5.6556 0.0134 -0.0001 53.7982 0.0000 2.2150 114 C-16-F-94-H-16 Facies bioclastic 2A Sample Depth: 798.58 m PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia pm nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.7000 257.0905 257.0905 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 257.3344 257.2125 0.0000 0.0000 0.0000 0.0000 0.0000 2.3300 77.6848 167.5096 0.0015 0.0015 2.5953 0.0000 0.0000 4.5800 39.5128 58.5988 0.0023 0.0009 4.1414 0.0000 0.0000 6.6200 27.3138 33.4133 0.0028 0.0005 4.9512 0.0000 0.0000 8.8800 20.3744 23.8441 0.0032 0.0004 5.6322 0.0000 0.0000 10.7800 16.7774 18.5759 0.0035 0.0003 6.1292 0.0000 0.0000 13.0700 13.8433 15.3104 0.0038 0.0003 6.7182 0.0000 0.0000 15.2400 11.8645 12.8539 0.0041 0.0003 7,2520 0.0000 0.0000 17.3400 10.4321 11.1483 0.0044 0.0003 7.7673 0.0000 0.0010 19.5200 9.2677 9.8499 0.0049 0.0005 8.6324 0.0000 0.0010 21.4400 8.4342 8.8510 0.0053 0.0004 9.3503 0.0000 0.0010 23.2800 7.7693 8.1017 0.0058 0.0006 10.3626 0.0000 0.0010 25.4300 7.1114 7.4403 0.0071 0.0012 12.5529 0.0010 0.0020 50.3400 3.5931 5.3522 0.0214 0.0143 37.9717 0.0110 0.0130 100.3600 1.8021 2.6976 0.0322 0.0108 57.1323 0.0160 0.0290 201.3000 0.8985 1.3503 0.0370 0.0048 65.6727 0.0140 0.0430 400.6000 0.4515 0.6750 0.0395 0.0025 70.1454 0.0150 0.0580 796.0700 0.2272 0.3393 0.0419 0.0024 74.3604 0.0280 0.0860 999.2300 0.1810 0.2041 0.0426 0.0007 75.6856 0.0150 0.1000 1992.3600 0.0908 0.1359 0.0449 0.0023 79.7534 0.0670 0.1680 2996.5100 0.0604 0.0756 0.0466 0.0017 82.7167 0.0880 0.2560 3989.6600 0.0453 0.0528 0.0479 0.0013 85.0359 0.0990 0.3550 4989.3200 0.0363 0.0408 0.0489 0.0011 86.9501 0.1060 0.4600 5973.4800 0.0303 0.0333 0.0497 0.0008 88.3674 0.0960 0.5560 6969.1300 0.0260 ,0:0281 0.0505 0.0008 89.7846 0.1140 0.6700 7966.2900 0.0227 0.0243 0.0513 0.0007 91.0731 0.1190 0.7890 8993.7800 0.0201 0.0214 0.0520 0.0008 92.4351 0.1430 0.9320 9950.2800 0.0182 0.0191 0.0525 0.0005 93.3370 0.1060 1.0390 11962.4400 0.0151 0.0166 0.0534 0.0009 94.9015 0.2120 1.2500 13964.7600 0.0130 0.0140 0.0543 0.0009 96.5397 0.2630 1,5130 15966.5900 0.0113 0.0121 0.0554 0.0010 98.3435 0.3350 1.8480 17970.5800 0.0101 0.0107 0.0563 0.0009 100.0000 0.3490 2.1960 14993.5800 0.0121 0.0111 0.0562 -0.0001 99.7607 -0.0490 2.1480 10023.5800 0.0180 0.0151 0.0549 -0.0013 97.4784 -0.3410 1.8060 5013.2800 0.0361 0.0271 0.0521 -0.0028 92.4719 -0.4170 1,3900 1002.3400 0.1804 0.1083 0.0466 -0.0054 82.8088 -0.2010 1.1890 500.2000 0.3616 0.2710 0.0448 -0.0018 79.6429 -0.0260 1.1620 100.4100 1.8012 1.0814 0.0408 -0.0041 72.4462 -0.0150 1.1470 49.6100 3.6459 2.7235 0.0387 -0.0020 68.8202 -0.0030 1.1440 24.5000 7.3828 5.5143 0.0344 -0.0043 61.1633 -0.0030 1.1410 115 D-4-K-94-H-16 Facies 2C Sample Depth: 774.9 m Core Plug #: 2 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia urn mL/g mL/g VOLUME sq-m/g sq-m/g 0.7200 251.3152 251.3152 0.0000 0.0000 0.0000 0.0000 0.0000 0.7200 251.6649 251.4901 0.0000 0.0000 -0.0901 0.0000 0.0000 2.8100 64.4482 158.0565 0.0006 0.0006 3.0194 0.0000 0.0000 5.1200 35.3525 49.9003 0.0008 0.0002 4.1009 0.0000 0.0000 7.1300 25.3713 30.3619 0.0009 0.0001 4.6868 0.0000 0.0000 9.1500 19.7639 22.5676 0.0010 0.0001 5.0473 0.0000 0.0000 11.3000 16.0042 17.8841 0.0011 0.0001 5.3628 0.0000 0.0000 13.4100 13.4872 14.7457 0.0011 0.0001 5.6782 0.0000 0.0000 15.2500 11.8598 12.6735 0.0012 0.0000 5.9036 0.0000 0.0000 17.4900 10.3382 11.0990 0.0012 0.0001 6.2190 0.0000 0.0000 19.5400 9.2578 9.7980 0.0013 0.0000 6.4443 0.0000 0.0000 21.6100 8.3691 8.8134 0.0013 0.0001 6.7147 0.0000 0.0000 23.8600 7.5810 7.9750 0.0014 0.0001 7.0753 0.0000 0.0000 25.6000 7.0652 7.3231 0.0015 0.0000 7.3006 0.0000 0.0000 50.0900 3.6104 5.3378 0.0015 0.0000 7.3006 0.0000 0.0000 100.7600 1.7950 2.7027 0.0015 0.0001 7.5710 0.0000 0.0000 200.5900 0.9017 1.3483 0.0018 0.0002 8.7877 0.0010 0.0010 398.9100 0.4534 0.6775 0.0028 0.0010 13.9703 0.0060 0.0070 798.7300 0.2264 0.3399 0.0037 0.0009 18.4768 0.0110 0.0180 1000.5600 0.1808 0.2036 0.0042 0.0005 20.7751 0.0090 0.0270 1994.1800 0.0907 0.1357 0.0069 0.0027 34.2947 0.0800 0.1070 2996.8100 0.0604 0.0755 0.0100 0.0031 49.9324 0.1660 0.2730 3986.1100 0.0454 0.0529 0.0118 0.0018 58.6751 0.1330 0.4060 4987.4300 0.0363 0.0408 0.0130 0.0012 64.8490 0.1210 0.5270 5989.4200 0.0302 0.0332 0.0141 0.0010 70.0315 0.1250 0.6530 6973.4100 0.0259 0.0281 0.0148 0.0007 73.6818 0.1040 0.7570 7969.4000 0.0227 0.0243 0.0155 0.0007 77.0167 0.1100 0.8670 8996.3900 0.0201 0.0214 0.0162 0.0007 80.6219 0.1350 1.0030 9994.8800 0.0181 0.0191 0.0168 0.0006 83.7314 0.1310 1.1330 11968.5400 0.0151 0.0166 0.0176 0.0008 87.7422 0.1940 1.3270 13966.7000 0.0129 0.0140 0.0184 0.0008 91.6629 0.2240 1.5520 15967.8600 0.0113 0.0121 0.0193 0.0009 96.1694 0.2980 1.8500 17970.1800 0.0101 0.0107 0.0201 0.0008 100.0000 0.2880 2.1370 15068.8400 0.0120 0.0110 0.0201 0.0000 100.0000 0.0000 2.1370 10027.8500 0.0180 0.0150 0.0193 -0.0008 95.9892 -0.2140 1.9230 5016.0400 0.0361 0.0270 0.0171 -0.0022 85.1735 -0.3210 1.6020 1001.9200 0.1805 0.1083 0.0129 -0.0042 64.3984 -0.1540 1.4480 497.4400 0.3636 0.2721 0.0116 -0.0013 57.8639 -0.0190 1.4280 99.7900 1.8124 1.0880 0.0104 -0.0012 51.6899 -0.0050 1.4240 47.1300 3.8374 2.8249 0.0101 -0.0003 50.2929 0.0000 1.4240 24.4700 7.3920 5.6147 0.0099 -0.0002 49.3916 0.0000 1.4230 116 C-36-F-94-H-16 Facies 1B Sample Depth: 785.4 m Core Plug #: 9 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia jim nm mL/g mL/g VOLUME sq-m/g sq-m/g 0.7100 256.4223 256.4223 0.0000 0.0000 0.0000 0.0000 0.0000 0.7100 256.3617 256.3920 0.0000 0.0000 0.0000 0.0000 0.0000 2.8600 63.2794 159.8206 0.0008 0.0008 1.5692 0.0000 0.0000 2.8600 63.3459 63.3127 0.0008 0.0000 1.5692 0.0000 0.0000 2.8600 63.3348 63.3404 0.0008 0.0000 1.5783 0.0000 0.0000 2.8600 63.3348 63.3348 0.0008 0.0000 1.5783 0.0000 0.0000 4.8000 37.6471 50.4910 0.0011 0.0003 2.2078 0.0000 0.0000 7.1500 25.3121 31.4796 0.0013 0.0002 2.7187 0.0000 0.0000 9.3500 19.3388 22.3255 0.0015 0.0002 3.1475 0.0000 0.0000 11.2200 16.1142 17.7265 0.0017 0.0002 3.4851 0.0000 0.0000 13.4700 13.4235 14.7688 0.0019 0.0002 3.9595 0.0000 0.0000 15.6800 11.5323 12.4779 0.0022 0.0003 4.5799 0.0000 0.0000 17.6900 10.2240 10.8782 0.0025 0.0003 5.1911 0.0000 0.0000 19.4600 9.2950 9.7595 0.0028 0.0003 5.8845 0.0000 0.0010 21.5200 8.4044 8.8497 0.0034 0.0006 7.1618 0.0000 0.0010 23.4600 7.7102 8.0573 0.0046 0.0011 9.4608 0.0010 0.0010 25.2700 7.1569 7.4336 0.0058 0.0012 11.9971 0.0010 0.0020 49.8700 3.6270 5.3919 0.0188 0.0131 39.1205 0.0100 0.0120 99.7100 1.8138 2.7204 0.0238 0.0050 49.4389 0.0070 0.0190 199.7900 0.9053 1.3596 0.0268 0.0030 55.6792 0.0090 0.0280 398.3500 0.4540 0.6797 0.0302 0.0034 62.6768 0.0200 0.0480 800.2500 0.2260 0.3400 0.0335 0.0033 69.4736 0.0380 0.0860 997.5600 0.1813 0.2037 0.0343 0.0009 71.2982 0.0170 0.1030 1997.1400 0.0906 0.1359 0.0371 0.0028 77.1097 0.0820 0.1860 2999.7500 0.0603 0.0754 0.0390 0.0019 81.0419 0.1000 0.2860 3987.5400 0.0454 0.0528 0.0404 0.0013 83.8062 0.1010 0.3870 4989.8400 0.0362 0.0408 0.0415 0.0012 86.2604 0.1160 0.5030 5990.1500 0.0302 0.0332 0.0425 0.0010 88.2401 0.1150 0.6180 6969.9600 0.0259 0.0281 0.0433 0.0008 89.9279 0.1160 0.7330 7970.6000 0.0227 0.0243 0.0440 0.0007 91.3512 0.1130 0.8460 8994.9200 0.0201 0.0214 0.0447 0.0007 92.7744 0.1280 0.9740 9993.5700 0.0181 0.0191 0.0453 0.0006 94.0243 0.1260 1.1000 11965.8800 0.0151 0.0166 0.0461 0.0008 95.6938 0.1940 1.2940 13964.8600 0.0130 0.0140 0.0469 0.0008 97.3360 0.2250 1.5190 15965.0100 0.0113 0.0121 0.0475 0.0007 98.7227 0.2200 1.7390 17971.6600 0.0101 0.0107 0.0481 0.0006 100.0000 0.2300 1.9690 15071.3200 0.0120 0.0110 0.0481 0.0000 100.0000 0.0000 1.9690 10033.8300 0.0180 0.0150 0.0476 -0.0005 98.9235 -0.1380 1.8310 5014.3600 0.0361 0.0270 0.0462 -0.0015 95.8580 -0.2180 1.6130 1004.4700 0.1801 0.1081 0.0425 -0.0036 88.2857 -0.1350 1.4780 500.8500 0.3611 0.2706 0.0411 -0.0015 85.2659 -0.0210 1.4560 99.8000 1.8123 1.0867 0.0371 -0.0039 77.1189 -0.0140 1.4420 48.8600 3.7018 2.7570 0.0352 -0.0019 73.1959 -0.0030 1.4390 24.4000 7.4109 5.5564 0.0337 -0.0015 70.0666 -0.0010 1.4380 117 a-81-A-94-l-03 Facies 1B Sample Depth: 664.92 m Core Plug #: 1 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia Jim mL/g mUg VOLUME sq-m/g sq-m/g 0.6900 260.6724 260.6724 0.0000 0.0000 0.0000 0.0000 0.0000 0.6900 260.5472 260.6098 0.0000 0.0000 0.0000 0.0000 0.0000 2.4300 74.5469 167.5471 0.0008 0.0008 2.9464 0.0000 0.0000 4.7400 38.1581 56.3525 0.0011 0.0003 4.2244 0.0000 0.0000 7.1000 25.4665 31.8123 0.0013 0.0002 4.8988 0.0000 0.0000 9.2600 19.5352 22.5008 0.0014 0.0001 5.2893 0.0000 0.0000 11.3100 15.9947 17.7650 0.0015 0.0001 5.5378 0.0000 0.0000 13.2800 13.6163 14.8055 0.0015 0.0001 5.8218 0.0000 0.0000 15.7400 11.4893 12.5528 0.0016 0.0001 6.0703 0.0000 0.0000 17.3100 10.4482 10.9688 0.0017 0.0001 6.3188 0.0000 0.0000 19.7700 9.1467 9.7975 0.0017 0.0001 6.5673 0.0000 0.0000 21.8100 8.2930 8.7199 0.0018 0.0001 6.8868 0.0000 0.0000 23.6400 7.6500 7.9715 0.0019 0.0000 7.0643 0.0000 0.0000 25.9300 6.9750 7.3125 0.0019 0.0001 7.3837 0.0000 0.0000 50.5900 3.5752 5.2751 0.0020 0.0000 7.4547 0.0000 0.0000 101.0900 1.7892 2.6822 0.0021 0.0001 7.8452 0.0000 0.0000 200.4200 0.9024 1.3458 0.0021 0.0000 7.8807 0.0000 0.0000 398.7500 0.4536 0.6780 0.0023 0.0002 8.7682 0.0010 0.0020 801.7400 0.2256 0.3396 0.0028 0.0005 10.7916 0.0060 0.0080 997.9100 0.1812 0.2034 0.0030 0.0002 11.5016 0.0040 0.0120 1993.5600 0.0907 0.1360 0.0043 0.0013 16.4359 0.0380 0.0500 2994.3500 0.0604 0.0756 0.0073 0.0030 27.9375 0.1600 0.2100 3983.6300 0.0454 0.0529 0.0111 0.0038 42.4210 0.2880 0.4970 4982.0800 0.0363 0.0409 0.0146 0.0034 55.5201 0.3370 0.8340 5986.3900 0.0302 0.0333 0.0165 0.0019 62.9393 0.2340 1.0680 6969.8700 0.0259 0.0281 0.0178 0.0013 67.9091 0.1860 1.2540 7968.1900 0.0227 0.0243 0.0190 0.0012 72.3465 0.1920 1.4460 8996.1700 0.0201 0.0214 0.0201 0.0011 76.5708 0.2070 1.6530 9951.8300 0.0182 0.0191 0.0209 0.0008 79.5527 0.1640 1.8170 11969.6500 0.0151 0.0166 0.0224 0.0016 85.4810 0.3740 2.1910 13964.3000 0.0130 0.0140 0.0238 0.0014 90.6283 0.3850 2.5760 15962.9500 0.0113 0.0121 0.0251 0.0013 95.4207 0.4150 2.9910 17967.4400 0.0101 0.0107 0.0263 0.0012 100.0000 0.4500 3.4410 15063.1000 0.0120 0.0110 0.0263 0.0000 100.0000 0.0000 3.4410 10027.6100 0.0180 0.0150 0.0249 -0.0013 94.9592 -0.3520 3.0880 5008.4700 0.0361 0.0271 0.0219 -0.0031 83.2801 -0.4530 2.6350 1004.7200 0.1800 0.1081 0.0162 -0.0057 61.7323 -0.2090 2.4260 496.4000 0.3643 0.2722 0.0147 -0.0015 56.1590 -0.0220 2.4040 99.0800 1.8254 1.0949 0.0139 -0.0009 52.7867 -0.0030 2.4010 48.9200 3.6972 2.7613 0.0136 -0.0003 51.7217 0.0000 2.4010 23.7500 7.6140 5.6556 0.0134 -0.0001 51.1537 0.0000 2.4000 118 C-74-F-94-H-16 Facies 2C Sample Depth: 798.8 m Core Plug #: 88 PORE MEAN CUMULATIVE INCREMENTAL % OF TOTAL INCREMENTAL CUMULATIVE PRESSURE DIAMETER DIAMETER VOLUME VOLUME INTRUSION PORE AREA PORE AREA psia urn (j.m mUg mL/g VOLUME sq-m/g sq-m/g 0.6900 260.9858 260.9858 0.0000 0.0000 0.0000 0.0000 0.0000 0.6900 260.9231 260.9545 0.0000 0.0000 0.0000 0.0000 0.0000 2.6700 67.8534 164.3882 0.0013 0.0013 2.0138 0.0000 0.0000 4.8600 37.1802 52.5168 0.0020 0.0006 2.9869 0.0000 0.0000 7.0900 25.5204 31.3503 0.0023 0.0004 3.5816 0.0000 0.0000 9.3300 19.3948 22.4576 0.0027 0.0003 4.0681 0.0000 0.0000 11.2800 16.0297 17.7123 0.0030 0.0003 4.5141 0.0000 0.0000 13.5500 13.3469 14.6883 0.0034 0.0004 5.1358 0.0000 0.0000 15.5600 11.6262 12.4865 0.0038 0.0004 5.7846 0.0000 0.0010 17.6700 10.2339 10.9300 0.0043 0.0005 6.5414 0.0000 0.0010 19.6700 9.1940 9.7139 0.0051 0.0008 7.7713 0.0000 0.0010 21.9800 8.2292 8.7116 0.0066 0.0015 10.0014 0.0010 0.0020 23.8100 7.5966 7.9129 0.0090 0.0025 13.7856 0.0010 0.0030 25.6000 7.0646 7.3306 0.0169 0.0079 25.8143 0.0040 0.0070 51.0800 3.5407 5.3027 0.0241 0.0071 36.6941 0.0050 0.0130 101.9000 1.7749 2.6578 0.0360 0.0119 54.8182 0.0180 0.0310 200.2900 0.9030 1.3390 0.0432 0.0073 65.9008 0.0220 0.0520 398.7200 0.4536 0.6783 0.0473 0.0041 72.1719 0.0240 0.0770 800.3400 0.2260 0.3398 0.0506 0.0033 77.1861 0.0390 0.1150 996.3300 0.1815 0.2038 0.0516 0.0010 78.6728 0.0190 0.1340 1994.1100 0.0907 0.1361 0.0548 0.0031 83.4572 0.0920 0.2270 2988.4200 0.0605 0.0756 0.0566 0.0018 86.2414 0.0970 0.3230 3985.5700 0.0454 0.0530 0.0579 0.0013 88.2957 0.1020 0.4250 4987.3900 0.0363 0.0408 0.0591 0.0012 90.0797 0.1150 0.5400 5971.0400 0.0303 0.0333 0.0598 0.0007 91.1610 0.0850 0.6250 6968.2000 0.0260 0.0281 0.0605 0.0007 92.2017 0.0970 0.7220 7968.0300 0.0227 0.0243 0.0611 0.0007 93.2018 0.1080 0.8300 8988.8500 0.0201 0.0214 0.0619 0.0007 94.3236 0.1370 0.9670 9993.1800 0.0181 0.0191 0.0624 0.0005 95.1480 0.1130 1.0810 11973.8400 0.0151 0.0166 0.0632 0.0008 96.3103 0.1840 1.2640 13964.6600 0.0130 0.0140 0.0639 0.0007 97.4456 0.2120 1.4770 15966.9900 0.0113 0.0121 0.0648 0.0009 98.7836 0.2890 1.7660 17972.9800 0.0101 0.0107 0.0656 0.0008 100.0000 0.2980 2.0640 15071.4700 0.0120 0.0110 0.0656 0.0000 99.9595 -0.0100 2.0550 10025.4800 0.0180 0.0150 0.0646 -0.0010 98.4593 -0.2620 1.7930 5010.3400 0.0361 0.0271 0.0623 -0.0023 94.9182 -0.3430 1.4490 1003.7400 0.1802 0.1081 0.0575 -0.0048 87.6605 -0.1760 1.2730 501.6000 0.3606 0.2704 0.0555 -0.0020 84.6195 -0.0300 1.2440 98.3600 1.8389 1.0997 0.0496 -0.0059 75.6318 -0.0210 1.2220 49.4100 3.6602 2.7495 0.0458 -0.0038 69.7797 -0.0060 1.2170 24.3400 7.4317 5.5459 0.0400 -0.0058 60.9001 -0.0040 1.2130 119 Appendix C Porosity and Permeability Data a-23-G-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 3 661.790 0.040 0.01 2B 4 662.110 0.065 0.86 2B 5 662.760 0.058 0.01 2B 6 662.930 0.091 0.01 2B 8 663.870 0.062 0.01 2B 9 664.190 0.065 0.01 2B 10 664.510 0.079 1.30 2B 11 664.650 0.083 0.03 2B 12 664.810 0.077 0.01 2B 13 665.500 0.080 0.01 2B 14 666.450 0.079 0.01 2B 15 666.850 0.121 0.16 2B 16 666.960 0.107 1.91 2B 17 667.350 0.124 0.21 2B 18 667.430 0.109 0.01 2B 19 668.090 0.102 0.01 2B 20 668.590 0.100 0.01 2B 21 668.830 0.137 0.49 2B 22 668.960 0.077 1.61 2B 23 669.160 0.048 0.09 2A 24 669.600 0.100 0.05 • 2B 25 669.710 0.100 0.01 2B 26 669.970 0.105 0.01 2B 27 670.270 0.003 0.01 2B 28 670.410 0.062 0.04 2 29 671.100 0.082 0.02 3 30 671.370 0.097 0.01 3 31 671.500 0.091 0.01 2B 32 671.960 0.076 1.10 2B 34 672.460 0.085 0.08 2A 35 672.560 0.099 0.05 3 36 672.900 0.105 0.02 3 37 673.200 0.108 0.04 3 38 673.600 0.085 0.01 3 39 673.900 0.084 0.06 3 40 674.050 0.127 0.08 2C 41 674.300 0.121 0.17 2C 42 674.690 0.148 1.64 2C 43 674.950 0.138 1.03 2C 44 675.300 0.139 1.17 2C 46 676.020 0.101 1.20 2C 47 677.000 0.096 0.53 1A 48 677.170 0.140 1.19 1A 49 677.390 0.144 3.55 1A 50 677.730 0.149 3.43 1A 51 678.100 0.146 1.59 1A 52 678.430 0.149 1.86 1A 53 678.670 0.139 0.96 1A 54 . 678.920 0.153 2.33 1A 55 679.160 0.153 1.16 1A 56 679.410 0.146 1.81 1A 57 679.660 0.159 1.18 1A 58 679.930 0.137 1.23 1A 59 680.400 0.142 1.59 1A 60 680.640 0.113 0.38 1A 61 680.960 0.116 0.48 1A 62 681.200 0.132 0.61 1A 63 681.340 0.122 0.32 1A 66 682.350 0.116 0.17 1A 71 683.710 0.121 0.13 1A 76 684.850 0.137 0.10 3 77 685.050 0.106 0.34 1A 83 686.640 0.100 0.04 3 85 687.400 0.110 0.22 1A 86 687.530 0.091 0.03 3 87 687.780 0.079 0.01 3 88 687.880 0.119 0.10 3 89 688.060 0.125 3.97 1A 90 688.120 0.101 0.41 1A 91 688.500 0.142 0.07 1A 92 688.720 0.104 0.32 1A 93 689.100 0.100 0.28 1A 94 689.420 0.074 0.01 3 95 689.850 0.086 0.65 1A 96 689.900 0.063 0.04 3 97 690.190 0.102 0.08 2B 98 691.050 0.124 0.13 2B 99 691.260 0.127 0.09 1A 100 691.500 0.122 0.15 1A 101 691.920 0.090 0.32 1A 102 692.400 0.143 0.21 1A 103 692.500 0.133 0.33 1A 104 692.680 0.150 0.45 1A 105 692.960 0.098 0.07 1A 106 693.240 0.138 0.07 1A 107 693.340 0.129 0.14 1A 108 693.450 0.115 0.30 1A 109 693.900 0.105 0.10 1A 110 694.000 0.148 0.42 1A 111 694.310 0.132 0.08 1A 112 694.430 0.134 0.32 1A 113 694.590 0.115 0.27 1A 114 695.050 0.146 0.13 1A a-25-F-94-H-16 Plug Depth (m) Porosity | Perm (mD) Facies 3 791.84 0.082 0.07 2B 4 792.27 0.157 2.50 2A 5 792.42 0.151 5.49 2A 6 792.57 0.175 15.37 2A 7 792.67 0.165 13.98 2A 8 792.82 0.152 11.63 2B 9 793.06 0.057 0.01 2B 10 793.44 0.128 2.56 1B 11 793.60 0.142 2.58 1B 12 793.72 0.108 1.98 2C 13 794.18 0.071 1.09 2C 14 794.54 0.115 1.67 2C 15 795.43 0.115 1.49 2C 16 796.05 0.075 0.05 3 17 796.23 0.105 0.35 3 18 796.39 0.100 0.24 3 19 796.52 0.113 1.39 2C 20 796.72 0.167 0.54 2C 21 796.87 0.101 0.40 2C 22 797.02 0.080 5.07 2C 23 797.17 0.076 0.19 2C 24 797.27 0.100 6.01 2C 25 797.33 0.105 0.21 2C 27 797.65 0.117 0.70 2C 28 797.75 0.105 0.54 2C 29 797.83 0.091 2.14 2C 31 798.23 0.090 0.88 2C 32 798.40 0.087 3.47 2C 33 798.65 0.119 1.46 2A 34 799.00 0.097 0.09 2 35 799.12 0.091 0.07 2C 36 799.27 0.109 0.36 2C 37 799.35 0.113 0.74 2C 38 799.44 0.102 0.14 2C 39 799.53 0.112 0.82 2C 41 799.74 0.097 0.06 2C 42 799.85 0.106 0.10 2C 43 800.00 0.106 0.67 2C 44 800.20 0.092 0.16 2C 45 800.35 0.101 0.18 2C 46 800.50 0.105 6.98 1A 47 800.56 0.077 0.01 1A 48 800.66 0.074 0.06 1A 49 800.76 0.130 1.28 1A 50 800.96 0.125 1.71 1A 51 801.09 0.104 1.29 1A 52 801.40 0.154 19.80 1A 53 801.50 0.136 3.33 1A 54 801.83 0.119 2.79 1A 55 801.93 0.129 2.02 1A 56 802.08 0.127 1.40 1A 57 802.28 0.113 1.40 1A 58 802.43 0.123 0.75 1A 60 802.73 0.101 0.36 1A 61 802.85 0.093 0.96 2C 62 803.00 0.072 0.10 2C 64 803.21 0.076 0.01 2C 65 803.32 0.092 0.05 2C 66 803.49 0.113 0.36 2C 68 803.83 0.075 0.46 1A 69 804.00 0.071 0.05 1A 70 804.09 0.139 2.23 1A 71 804.23 0.121 0.85 1A 72 804.35 0.098 0.28 1A 73 804.45 0.084 3.40 1A 74 804.55 0.089 0.13 1A 75 804.67 0.085 0.13 1A 76 804.75 0.089 0.22 1A 78 804.95 0.145 12.77 1A 79 805.05 0.164 86.59 2A 80 805.11 0.173 70.58 2A 81 805.21 0.160 35.01 2A 82 805.30 0.159 25.27 2A 83 805.39 0.183 58.52 2 A 84 805.54 0.189 84.21 2A 85 805.69 0.184 63.62 2A 86 805.79 0.191 86.38 2A 87 805.87 0.188 73.56 2A 88 806.00 0.174 61.67 2A 89 806.13 0.187 57.62 2A 90 806.25 0.185 51.57 2A 91 806.40 0.193 66.46 2A 92 806.55 0.194 78.96 2A 93 806.65 0.188 62.78 2A 94 806.79 0.149 19.07 2A 95 807.08 0.151 11.73 2A 96 807.20 0.176 31.49 2A 97 807.29 0.154 11.84 2A 98 807.34 0.157 10.68 2A 99 807.42 0.132 7.24 2A 100 807.53 0.149 13.57 2A 101 807.58 0.133 44.20 2A 102 807.64 0.145 16.00 2A 103 807.78 0.130 11.67 2A 104 808.36 0.111 0.07 2B 105 809.37 0.113 4.72 2A 106 809.45 0.141 3.81 2A 107 809.63 0.073 0.21 2A 108 810.13 0.089 0.43 2A 109 810.30 0.118 0.23 2A 110 810.55 0.115 0.20 2A 111 810.70 0.099 0.16 2A 112 810.85 0.092 0.16 2A 113 810.98 0.097 1.16 2C 115 811.65 0.128 1.10 2C 116 812.02 0.135 0.58 2C 117 812.34 0.105 0.25 2C 118 812.46 0.089 0.02 2C 119 812.71 0.128 0.94 2C 120 813.36 0.055 0.14 2C 121 813.48 0.139 8.55 2C 122 813.60 0.138 7.60 2B 123 813.68 0.140 9.32 2B 124 813.75 0.138 8.76 2B 125 813.88 0.156 6.60 2B 126 814.17 0.076 0.09 2B 127 814.55 0.161 5.52 2B 128 814.69 0.157 18.77 2B 129 814.79 0.181 11.16 2B 130 814.91 0.150 12.95 2B 131 815.06 0.095 0.04 2B 132 815.16 0.127 0.45 2B 133 815.23 0.123 0.72 2B 134 815.37 0.143 0.78 2B 135 815.47 0.149 1.00 2B 136 815.62 0.098 0.11 2B 137 815.78 0.156 1.80 2B 138 815.88 0.157 1.43 2B 139 816.00 0.154 1.03 2B 140 816.27 0.113 11.04 2B 141 816.42 0.146 1.57 2B 142 816.48 0.163 2.93 2B 143 816.56 0.145 1.42 2B 144 816.74 0.168 9.69 2B 145 816.84 0.161 10.95 2B 146 816.94 0.156 11.11 2B 147 817.30 0.130 2.38 2B 148 817.83 0.124 0.59 2B 151 818.60 0.141 0.79 2B 152 818.68 0.136 0.62 2B 153 819.20 0.131 2.40 2B 154 819.31 0.126 1.65 2B 155 819.46 0.121 1.66 2B 156 819.72 0.070 0.08 2B 157 820.03 0.124 4.08 2B 158 820.12 0.135 15.92 2B 159 820.32 0.081 0.01 2B 160 820.65 0.132 2.51 2B 162 820.93 0.132 1.88 2B 163 821.45 0.096 0.09 2B 165 821.88 0.119 2.76 2B 166 822.15 0.092 0.15 2B 167 822.98 0.118 1.41 2B 168 823.32 0.081 0.01 2B 169 824.30 0.111 0.14 2B 122 a-27-C-94-l-02 Plug Depth (m) Porosity | Perm (mD) Facies 17 699.57 0.158 2.58 1A 18 699.87 0.097 0.70 2B 19 699.97 0.087 0.01 2B 20 700.61 0.140 2.18 1A 21 700.70 0.135 0.64 1A 22 700.95 0.074 0.04 3 23 701.08 0.068 0.01 3 24 701.28 0.137 0.57 2B 25 701.49 0.120 2.68 2B 26 701.64 0.142 1.90 1A 27 701.76 0.150 0.58 1A 28 702.00 0.132 0.39 1A 29 702.21 0.165 0.60 1A 30 702.46 0.139 0.41 1A 31 702.72 0.148 0.80 1A 32 702.95 0.156 4.13 1A 33 703.25 0.138 0.44 1A 34 703.50 0.120 0.76 1A 35 703.88 0.125 6.29 1A 36 704.07 0.090 0.32 3 37 704.18 0.137 0.94 2B 38 704.46 0.112 0.40 2B 39 704.61 0.104 0.42 2A 40 704.80 0.105 0.37 2A 41 704.98 0.113 0.57 3 42 705.12 0.109 0.45 3 43 705.29 0.104 0.32 3 44 705.43 0.092 0.38 3 45 705.71 0.097 0.18 3 47 706.00 0.106 0.16 3 48 706.09 0.137 0.49 3 49 706.19 0.105 0.22 3 50 706.34 0.105 0.37 2A 51 706.51 0.084 0.22 3 52 706.77 0.151 0.23 1A 53 707.22 0.075 0.19 3 54 707.53 0.153 0.41 2A 55 707.77 0.148 0.84 2A 56 707.92 0.082 0.26 3 57 708.21 0.086 0.33 3 58 708.49 0.107 0.42 3 59 708.63 0.095 0.32 3 60 708.83 0.093 0.38 3 61 709.09 0.098 0.45 3 62 709.59 0.093 0.34 3 63 709.81 0.099 0.44 3 64 710.03 0.110 0.41 3 65 710.31 0.099 0.39 3 66 710.53 0.098 0.37 3 67 710.74 0.108 0.47 3 68 710.87 0.100 0.52 3 69 711.05 0.086 0.41 3 70 711.22 0.113 0.35 3 71 711.48 0.098 0.53 3 72 711.79 0.134 0.15 2C 73 712.02 0.113 0.39 2C 74 712.21 0.101 0.44 2C 75 712.50 0.110 0.47 2C 76 712.68 0.169 0.96 2C 77 712.85 0.123 0.11 2C 78 713.00 0.154 1.03 2C 79 713.21 0.086 0.37 2C 80 713.42 0.085 0.24 2C 81 713.52 0.037 0.14 2A 82 713.65 0.043 0.16 2A 83 714.34 0.134 0.26 2B 84 714.71 0.103 0.32 2B a-39-H-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 1 652 0.115 0.12 2C 2 652.5 0.120 0.14 2C 3 655.3 0.132 0.29 2C 4 658.3 0.125 0.17 2C 5 660.3 0.166 1.70 2A 6 661.5 0.168 2.50 2A 7 662.55 0.096 0.16 2C 8 664 0.111 0.63 2C 9 666.4 0.118 0.10 3 10 668.9 0.096 0.13 1A 11 669.95 0.104 0.08 3 a-78-A-94-H-08 Plug Depth (m) Porosity | Perm (mD) Facies 1 984.00 0.106 1.41 2B 2 984.20 0.172 15.00 2A 3 984.42 0.142 9.27 2A 4 984.58 0.175 12.70 2A 5 984.70 0.180 15.10 2A 6 984.95 0.167 6.64 2A 7 985.17 0.189 18.20 2A 8 985.29 0.163 2.28 2A 9 985.60 0.099 0.14 2B 10 985.96 0.132 0.39 2A 11 986.11 0.125 0.96 2A 12 986.44 0.159 4.31 2A 13 986.69 0.129 0.93 2A 14 986.90 0.161 4.31 2A 15 987.12 0.137 2.48 2A 16 987.45 0.153 1.14 2A 17 987.66 0.163 2.64 2A 18 987.78 0.144 1.21 2A 19 988.05 0.151 8.59 2A 20 988.25 0.148 5.44 2A 21 988.39 0.110 0.21 2A 22 988.62 0.142 1.62 2A 23 988.98 0.136 4.57 2A 24 989.21 0.139 1.20 2A 25 989.39 0.150 1.60 2A 26 989.49 0.144 2.10 2A 27 989.68 0.131 1.93 2A 28 989.85 0.134 0.96 2A a-81-A-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 663.10 0.081 0.06 1B 2 666.70 0.157 2.30 1B 3 667.80 0.162 3.50 2C 4 668.75 0.143 30.00 2C 5 669.55 0.115 0.17 2C 6 670.70 0.144 8.40 2A 7 671.00 0.131 0.03 2A 8 672.45 0.154 7.20 1A 9 672.60 0.143 0.67 1A 10 674.35 0.148 1.80 1A 11 675.05 0.162 1.80 1A 12 679.60 0.091 0.53 1A a-83-E-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 674.65 0.062 0.17 1B 2 675.10 0.068 0.08 1B 3 676.55 0.068 0.13 1B 4 677.05 0.063 0.08 1B 5 678.70 0.080 0.18 1B 6 679.55 0.118 0.35 2A 7 680.40 0.115 0.74 1B 8 681.00 0.132 0.48 2C 9 681.60 0.135 0.12 3 a-86-K-94-H-15 Plug Depth (m) Porosity | Perm (mD) Facies 1 712.30 0.116 0.10 2A 2 713.20 0.120 0.12 1B 3 714.95 0.084 0.03 1B 4 715.90 0.083 0.03 2D 5 717.65 0.124 0.16 1B 6 718.90 0.170 4.40 2A 7 719.65 0.142 5.70 2A 8 721.05 0.104 0.11 2B 9 722.95 0.175 3.00 2A 10 723.50 0.146 2.00 2A 11 724.10 0.141 1.30 2A 12 725.90 0.089 0.09 2C 13 727.75 0.156 3.30 1A b-22-D-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 1 678.50 0.060 0.04 1B 2 678.76 0.076 0.01 1B 3 679.09 0.084 0.01 1B 4 679.28 0.095 0.01 1B 5 679.60 0.076 0.01 1B 6 679.77 0.067 0.01 1B 7 679.93 0.094 0.02 2B 8 680.10 0.080 0.01 2B 9 681.83 0.089 0.01 1B 10 682.28 0.066 0.01 1B 11 683.76 0.082 0.01 1B 12 685.68 0.052 0.01 1B 13 685.87 0.079 0.01 1B 14 686.08 0.050 0.03 1B 15 688.08 0.096 0.01 1B 17 688.87 0.090 0.01 1B 18 690.62 0.069 0.01 1B 19 690.73 0.078 0.01 1B 20 691.55 0.070 0.01 3 21 691.73 0.074 0.01 1B 22 692.27 0.061 0.05 3 23 692.49 0.088 0.01 1B 24 693.05 0.148 0.17 2B 25 693.25 0.124 0.12 2B 26 693.50 0.092 0.06 2B 27 694.41 0.150 0.08 1B 28 694.90 0.161 5.43 2A 29 695.15 0.162 10.08 2A 30 695.35 0.147 10.27 2A 31 695.65 0.141 9.82 2A 32 695.95 0.238 17.63 2A 33 696.22 0.122 1.13 1A 34 696.50 0.143 2.35 1A 35 696.79 0.133 4.28 1A 36 697.10 0.144 26.97 2A 37 697.30 0.150 30.47 2A 38 697.67 0.152 6.76 1A 39 697.97 0.154 5.91 1A 40 698.32 0.135 1.51 1A 41 698.65 0.145 1.76 1A 42 698.95 0.136 1.32 1A 43 699.20 0.133 1.62 1A 44 699.50 0.127 1.03 1A 45 699.75 0.135 1.63 1A 46 699.98 0.128 0.9 1A 47 700.27 0.116 0.27 1A 48 700.52 0.120 0.34 1A 49 700.75 0.139 1.17 1A 50 701.00 0.134 3.92 1A 51 701.21 0.127 0.38 1A 52 701.50 0.133 1.22 1A 53 701.83 0.120 0.31 1A 54 702.13 0.140 0.58 1A 55 702.46 0.132 2.36 1A 56 702.66 0.128 1.15 1A 57 702.96 0.135 1.21 1A 58 703.16 0.128 0.27 1A 59 703.34 0.128 0.35 1A 60 703.67 0.113 1.38 1A 61 703.91 0.128 0.57 1A 62 704.26 0.112 0.18 1A 63 704.50 0.119 0.23 1A 64 704.84 0.131 1.86 1A 65 705.08 0.112 0.22 1A 66 705.25 0.128 4.42 1A 67 705.55 0.129 4.14 1A 68 705.70 0.149 4.85 1A 69 706.00 0.115 0.29 1A 70 706.30 0.121 0.29 1A 71 706.60 0.123 0.36 1A 72 706.89 0.107 0.16 1A 73 707.10 0.139 0.35 1A 75 707.41 0.118 0.25 1A 76 707.74 0.113 0.36 1A 77 708.07 0.111 0.45 1A 79 708.77 0.119 0.3 1A 80 709.05 0.146 0.19 1A 81 709.35 0.121 0.13 1A 82 709.47 0.113 0.19 1A 83 709.82 0.147 2.33 1A 85 711.60 0.131 0.07 1A 86 711.84 0.111 13.95 1A 88 712.49 0.127 0.09 1B 124 89 712.66 0.125 0.1 1B 90 712.77 0.126 0.19 1B 91 712.91 0.113 0.13 1B 94 713.77 0.114 0.29 1B 95 713.99 0.099 0.81 1A 96 714.34 0.101 0.17 1A 97 714.60 0.144 0.51 1A 98 714.73 0.156 0.46 1A 99 715.00 0.145 0.64 1A b-26-E-94-H-08 Plug Depth (m) Porosity Perm (mD) Facies 1 1140.00 0.068 0.05 1B 2 1140.72 0.079 0.05 1B 3 1141.74 0.064 0.05 1B 4 1142.02 0.095 0.11 1B 5 1142.46 0.062 0.02 1B 6 1142.89 0.068 0.05 1B 7 1143.35 0.082 0.09 1B 8 1143.74 0.112 0.12 1B 9 1144.05 0.107 0.12 1B 10 1144.25 0.100 0.82 1B 11 1144.56 0.110 0.73 1B 12 1144.98 0.112 0.50 1B 13 1145.31 0.114 0.21 1B 14 1145.52 0.115 1.13 1B 15 1146.32 0.087 0.38 1B 16 1146.88 0.130 2.67 1B b-2-K-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 10 784.55 0.174 0.48 2A 11 785.52 0.146 2.14 2A 12 785.65 0.175 9.44 2A 13 785.8 0.175 5.8 2A 14 786.5 0.159 1.27 2A 15 786.74 0.2 63.88 2A 16 786.9 0.21 82.95 2A 17 787.05 0.201 39.71 2A 18 787.33 0.201 37.58 2A 19 787.53 0.199 48.68 2A 20 787.89 0.094 0.09 2A 21 788 0.106 0.12 2A 22 788.15 0.112 0.2 2A 23 788.3 0.124 0.24 2A 24 788.44 0.168 3.77 2A 25 . 788.59 0.19 18.11 2A 26 788.71 0.187 18.04 2A 27 788.98 0.173 2.74 2A 28 789.1 0.173 3.22 2A 29 789.29 0.157 1.39 2A 30 789.45 0.169 4.43 2A 31 789.76 0.161 0.91 2B 32 790.15 0.15 0.77 2B 33 790.35 0.155 0.72 2B 34 790.58 0.159 2.21 2B 35 790.68 0.183 9.32 2B 36 791.1 0.174 6.71 2B 37 791.35 0.174 1.48 2B 38 791.81 0.17 1.79 2B 39 791.91 0.17 1.32 2B 40 792.03 0.167 0.75 2B 41 792.29 0.177 1.44 2B 42 792.52 0.166 5.22 2B 43 792.71 0.176 15.29 2B 44 793.1 0.188 9.77 2B 45 793.28 0:175 11.47 2B 46 793.38 0.164 10.03 2B 47 793.45 0.171 11.45 2B 48 793.65 0.164 11.19 1B 49 794.23 0.133 0.23 1B 50 795.19 0.147 0.21 1B 51 796.45 0.164 3.28 2A b-44-E-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 632.84 0.136 0.07 3 2 632.98 0.125 0.02 3 3 633.18 0.100 0.01 3 4 633.33 0.096 0.02 3 5 633.48 0.100 0.01 3 6 633.63 0.102 0.01 3 7 633.83 0.097 0.01 3 8 634.03 0.104 0.01 3 9 634.23 0.102 0.01 3 10 634.43 0.099 0.01 3 11 634.60 0.089 0.01 3 12 634.75 0.061 0.01 3 13 634.90 0.079 0.01 3 14 634.98 0.088 0.42 2C 15 635.10 0.106 1.35 2C 16 635.19 0.118 5.68 2C 17 635.40 0.140 11.22 2C 18 635.60 0.112 1.66 2C 19 635.78 0.099 0.15 2C 20 635.91 0.149 15.95 2C 21 636.00 0.123 0.60 2C 22 636.20 0.147 0.87 2C 23 636.30 0.110 0.60 2C 24 636.36 0.083 0.01 3 25 636.58 0.088 0.01 3 26 636.83 0.082 0.01 3 27 637.03 0.049 0.01 3 28 637.23 0.070 0.01 3 29 637.38 0.081 0.01 3 30 637.52 0.153 1.30 2C 31 637.67 0.160 86.94 2A 32 637.85 0.160 11.30 2C 33 637.98 0.129 0.49 2C 34 638.18 0.139 0.46 2C 35 638.28 0.108 0.08 1A 36 638.45 0.105 0.11 1A 37 638.55 0.102 1.73 1A 38 638.75 0.091 3.53 1A 39 638.95 0.123 1.28 1A 40 639.06 0.114 0.82 1A 41 639.20 0.106 0.36 1A 42 639.36 0.060 0.04 1A 43 639.58 0.130 0.03 1B 44 640.11 0.118 0.06 2A 45 640.19 0.117 0.03 2A 46 640.29 0.165 0.54 2A 47 640.41 0.162 0.80 2A 48 640.56 0.138 0.64 2B 49 640.76 0.148 0.59 2B 50 640.97 0.164 0.26 2B 51 641.62 0.128 0.02 2B 125 52 641.78 0.157 0.10 2B 53 642.06 0.148 0.91 2B 54 642.17 0.147 1.07 2B 55 642.27 0.157 0.11 2B 56 642.52 0.146 0.20 2B 57 642.70 0.166 0.58 2B 58 642.85 0.168 1.01 2A 59 643.00 0.166 0.98 2A 60 643.15 0.168 1.21 2A 61 643.47 0.075 0.01 3 62 643.62 0.084 0.01 3 63 643.75 0.114 0.01 3 64 643.86 0.170 0.21 2C 65 644.00 0.150 0.33 2C 66 644.18 0.155 0.12 2C 67 644.39 0.138 0.02 1B 68 644.82 0.168 0.20 1B 69 645.11 0.172 0.14 1B 70 645.44 0.147 0.13 1B 71 645.89 0.162 0.07 1B 72 646.27 0.119 0.01 1B 73 646.43 0.122 0.01 1B 74 646.72 0.112 0.01 1B b-4-F-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 1 821 0.117 0.53 2A 2 821.44 0.071 0.09 2B 3 621.6 0.095 0.23 2B 4 821.83 0.047 0.01 2B 5 822.02 0.075 0.15 2B 6 822.18 0.083 0.89 2B 7 823.11 0.102 0.15 2B 8 823.47 0.124 0.31 2B 9 823.65 0.113 0.96 2B 10 823.78 0.111 0.95 2A 11 824.04 0.121 0.24 2A 12 824.21 0.077 0.24 2A 13 824.37 0.101 0.21 2A 14 824.49 0.075 0.01 2A 15 824.78 0.163 11.20 2A 16 824.96 0.163 23.70 2A 17 825.16 0.159 15.10 2A 18 825.34 0.165 9.41 1A 19 825.52 0.124 3.38 1A 20 825.73 0.138 7.66 1A 21 825.95 0.116 1.23 1A 22 826.1 0.148 10.50 1A 23 826.27 0.146 6.08 1A 24 826.46 0.135 4.24 1A 25 826.65 0.147 6.58 1A 26 826.84 0.116 0.97 1A 27 827 0.120 1.56 1A 28 827.12 0.150 15.70 1A 29 827.2 0.112 1.03 1A 30 827.36 0.116 0.96 1A 31 827.47 0.098 0.33 1A 32 827.61 0.094 0.21 1A 33 827.85 0.125 1.81 1A 34 828.03 0.101 0.45 1A 35 828.22 0.154 4.24 1A 36 828.41 0.134 7.71 2A 37 828.7 0.109 0.31 2A 38 828.8 0.057 0.03 2A 39 828.95 0.132 1.16 2A 40 829.12 0.092 0.01 2A 41 829.3 0.091 0.05 2A 42 829.49 0.094 0.01 2A 43 829.65 0.090 0.05 2A 44 829.79 0.088 0.22 2A 45 829.97 0.089 0.09 2A 46 830.13 0.087 0.19 2A 47 830.28 0.088 0.01 2A 48 830.42 0.084 0.06 2A 49 830.57 0.082 0.06 2A 50 830.72 0.084 0.04 2A 51 830.88 0.082 0.06 2A 52 831.03 0.081 0.06 2C 53 831.19 0.094 0.04 2C 54 831.35 0.098 0.15 2C 55 831.48 0.091 0.05 2C 56 831.61 0.109 0.09 2C 57 831.75 0.112 0.60 2C 58 831.89 0.092 0.31 2B 59 832.01 0.092 0.12 2B 60 832.54 0.156 0.45 2B 61 832.82 0.102 0.22 1A 62 833 0.141 1.29 1A 63 833.08 0.108 0.96 1A 64 833.2 0.108 0.99 1A 65 833.38 0.107 0.50 1A 66 833.53 0.092 0.82 1A 67 833.7 0.112 0.76 1A 68 833.87 0.110 0.42 1A 69 834.04 0.118 1.01 1A 70 834.15 0.106 1.73 1A 71 834.3 0.116 1.22 1A 72 834.49 0.121 1.05 1A 73 834.66 0.118 0.74 1A 74 834.92 0.122 1.01 1A 75 835.04 0.113 0.60 1A 76 835.29 0.099 0.67 1A 77 835.53 0.114 0.71 1A 78 835.64 0.112 0.41 1A 79 835.98 0.120 0.53 1A 80 836.14 0.090 1.52 1A 81 836.29 0.067 0.06 1A 82 836.45 0.096 0.19 1A 83 836.53 0.125 0.53 1A 84 836.74 0.095 0.28 1A 85 837.03 0.159 4.65 1A 86 837.24 0.180 39.70 2A 87 837.38 0.172 20.10 2A 88 837.5 0.178 20.20 2A 89 837.66 0.172 22.80 2A 90 837.8 0.177 26.30 2A 91 837.92 0.162 12.60 2A 92 838.03 0.179 30.40 2A 93 838.2 0.181 34.90 2A 94 838.37 0.174 23.70 2A 95 838.56 0.170 22.90 2A 96 838.76 0.172 24.90 2A 97 838.97 0.180 64.50 2A 98 839.09 0.074 0.27 2A 99 839.23 0.157 16.60 2A 100 839.28 0.167 18.10 2A 101 839.36 0.162 14.40 2A 102 839.5 0.166 26.80 2A 126 103 839.67 0.166 31.00 2A 104 840.28 0.113 0.53 2B 105 840.35 0.109 0.48 2B 106 840.65 0.072 0.01 2B 107 841.22 0.098 1.27 2B 108 841.88 0.105 0.32 2B 109 841.96 0.090 0.11 2B 110 842.21 0.128 1.49 2B 111 842.36 0.155 2.87 2B 112 842.45 0.106 0.11 2B 113 842.58 0.097 0.13 2B 114 842.82 0.089 0.17 2B 115 843.01 0.108 0.54 2B 116 843.2 0.132 0.16 2B 117 843.58 0.105 0.91 2B 118 844.13 0.110 0.25 2B 119 844.42 0.119 0.28 2A 120 844.6 0.116 0.65 2A 121 844.69 0.096 0.34 2B 122 845.25 0.134 0.35 2B 123 845.37 0.140 0.49 2B 124 845.99 0.067 0.01 2B 125 846.09 0.145 1.26 2B 126 846.18 0.149 6.22 2B 127 846.32 0.133 9.40 2B 128 846.5 0.151 12.00 2B 129 847.1 0.082 0.34 2B 130 847.33 0.072 0.09 2B 131 847.48 0.144 0.03 2B 132 847.64 0.156 3.00 2B 133 847.8 0.166 2.26 2B 134 847.95 0.158 9.76 2B 135 848.32 0.172 11.30 2B 136 848.51 0.147 1.92 2B 137 848.75 0.062 0.05 2B 138 848.95 0.141 1.77 2B 139 849.06 0.072 0.01 2B 140 849.19 0.170 3.00 2B 141 849.28 0.160 4.28 2B 142 849.43 0.150 5.01 2B 143 850.01 0.143 1.17 2B 144 850.65 0.122 0.45 2B 145 850.95 0.056 0.01 2B 146 851.08 0.124 0.91 2B 147 851.23 0.129 0.74 2B 148 851.34 0.129 0.94 2B 149 851.71 0.136 1.46 2B 150 852 0.123 1.14 2B 151 852.19 0.153 0.92 2B 152 852.33 0.097 0.12 2B 153 852.77 0.121 0.21 2B 154 853.11 0.101 0.69 2B 155 853.47 0.097 0.08 2B 156 853.95 0.095 0.05 2B 157 854.63 0.096 0.19 2B 158 854.88 0.098 0.08 2B 159 855.84 0.112 0.16 2B 160 856.21 0.081 0.01 2B 161 856.89 0.090 0.01 3 162 857.26 0.101 0.25 3 b-4-K-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 2 774.85 0.134 0.15 2C 3 774.99 0.115 0.04 2C 4 775.31 0.130 0.14 2C 5 775.52 0.210 33.93 2C 6 775.62 0.216 35.12 2C 7 775.77 0.193 18.68 2C 8 775.85 0.191 14.25 2C 9 776.01 0.172 8.25 2C 10 776.14 0.200 18.57 2C 11 776.25 0.196 14.82 2C 12 776.36 0.190 16.81 2C 13 776.48 0.200 18.50 2C 14 776.58 0.197 14.57 2C 15 776.72 0.185 8.26 2C 16 776.86 0.068 0.01 3 17 777.01 0.105 0.53 3 18 777.29 0.143 2.29 2B 19 778.00 0.122 0.25 2B 20 778.40 0.137 0.72 2B 21 778.51 0.109 1.81 2B 22 778.74 0.184 64.58 2B 23 779.80 0.068 0.02 2B 24 779.90 0.082 0.07 2B 25 780.10 0.115 0.06 2B 26 780.20 0.162 1.25 2B 27 780.30 0.155 0.66 2B 28 780.41 0.136 4.86 2B 29 781.03 0.114 1.99 2B 30 781.19 0.126 0.82 2B 31 781.33 0.120 0.29 2B 32 781.49 0.172 1.59 2B 33 781.60 0.131 3.87 2B 34 781.72 0.195 224.10 2A 52 784.93 0.159 10.07 2B 53 785.09 0.159 6.90 2B 54 785.30 0.045 0.01 2B 55 785.44 0.164 0.47 2B 56 785.85 0.142 0.26 2B 58 786.34 0.061 0.01 3 59 786.48 0.189 28.14 2A 60 786.68 0.173 31.41 2A 61 786.90 0.187 36.31 2A 62 787.09 0.109 1.06 2B 63 787.15 0.114 3.75 2B 64 787.25 0.160 1.00 2B 65 787.40 0.128 0.42 2C 66 787.52 0.087 0.10 2C 67 787.64 0.091 0.05 2C 68 787.84 0.183 28.50 2B 69 787.92 0.193 27.49 2B 70 788.07 0.201 46.77 2B 71 788.24 0.132 1.21 2B 72 788.36 0.184 19.41 2B 74 788.54 0.074 0.09 2B 75 788.66 0.142 0.30 2B 76 788.86 0.146 0.60 2B 77 789.01 0.141 0.58 2B 78 789.19 0.151 1.76 2B 79 789.63 0.186 38.82 2B 80 789.75 0.188 32.94 2B 81 789.90 0.182 28.22 2B 82 790.05 0.190 37.91 2B 83 790*20 0.191 43.32 2B 151 806.76 0.128 0.63 2B 84 790.40 0.167 4.44 2B 152 807.14 0.127 0.07 2B 85 790.51 0.061 0.01 2B 153 808.63 0.103 0.01 2B 87 790.80 0.158 0.42 2B 154 809.18 0.124 0.08 2B 88 791.14 0.144 9.09 2B 155 809.54 0.115 0.01 2B 89 791.21 0.056 3.54 2B 90 791.35 0.157 1.25 2B 91 791.50 0.159 5.61 2B b-62-D-94-l-02 92 791.65 0.134 0.68 2B Plug Depth (m) Porosity Perm (mD) Facies 93 791.83 0.097 0.52 2B 1 663.00 0.107 0.01 3 94 791.90 0.144 9.50 2B 2 663.13 0.160 0.10 3 95 791.95 0.153 3.33 2B 3 663.30 0.160 0.13 2B 96 792.86 0.135 1.76 2B 4 663.46 0.159 0.15 2B 97 793.16 0.115 0.30 2B 5 664.10 0.162 3.18 3* 99 793.52 0.129 0.51 2B 6 664.23 0.171 7.28 2A 100 793.71 0.131 1.19 2B 7 664.39 0.161 13.10 2A 103 794.66 0.121 1.63 2B 8 664.54 0.156 18.34 2A 104 794.88 0.120 1.03 2B 9 664.69 0.152 19.30 2A 105 795.09 0.145 0.78 2A 10 664.80 0.148 25.90 2A 106 795.67 0.143 1.07 2A 11 664.95 0.160 25.19 2A 107 795.87 0.143 3.45 2A 12 665.14 0.160 21.55 2A 108 796.05 0.148 2.65 2A 13 665.31 0.116 65.00 2A 109 796.16 0.123 1.49 2A 14 665.46 0.142 7.75 1A 110 796.56 0.109 0.98 2A 15 665.61 0.158 9.43 1A 111 796.67 0.153 54.51 2A 16 665.76 0.170 23.08 1A 112 796.80 0.169 7.77 2A 17 665.88 0.153 8.84 1A 113 797.05 0.174 7.52 2A 18 666.03 0.156 9.42 1A 114 797.29 0.089 0.24 2B 19 666.18 0.164 8.53 1A 115 797.38 0.131 3.54 2B 20 666.33 0.167 10.10 1A 116 797.49 0.143 1.15 2B 21 666.48 0.168 11.02 1A 117 797.70 0.145 1.70 2B 22 666.65 0.144 2.38 1A 118 798.01 0.151 1.42 2B 23 666.82 0.150 2.72 1A 119 798.48 0.121 0.79 2B 24 666.97 0.165 20.53 1A 120 798.92 0.106 3.21 2B 25 667.12 0.168 8.24 1A 121 799.27 0.116 1.05 2B 26 667.27 0.170 5.39 1A 122 799.60 0.112 1.12 2B 27 667.42 0.168 7.86 1A 123 799.70 0.141 5.29 2B 28 667.57 0.151 2.71 1A 124 799.84 0.120 3.83 2B 29 667.71 0.141 1.10 1A 125 800.26 0.132 5.50 2B 30 667.85 0.142 1.32 1A 126 800.45 0.127 6.81 2B 31 668.00 0.155 2.68 1A 127 800.81 0.112 1.36 2B 32 668.15 0.151 2.29 1A 128 801.01 0.104 0.01 3 33 668.30 0.169 2.64 1A 129 801.43 0.065 0.16 3 34 668.45 0.146 1.60 1A 130 801.53 0.048 0.01 3 35 668.60 0.160 4.67 1A 131 801.72 0.125 0.28 3 36 668.79 0.150 2.57 1A 132 801.89 0.126 3.81 2A 37 668.94 0.138 1.91 1A 133 802.04 0.146 11.98 2A 38 669.07 0.139 2.32 1A 134 802.14 0.148 19.64 2A 39 669.20 0.140 1.90 1A 135 802.20 0.150 21.82 2A 40 669.32 0.150 3.52 1A 136 802.32 0.153 14.74 2A 41 669.56 0.179 56.82 1A 137 802.42 0.150 18.03 2A 42 669.67 0.128 0.98 1A 138 803.07 0.128 1.41 2B 43 669.81 0.135 1.12 1A 139 803.47 0.123 0.12 2B 44 669.97 0.170 10.12 1A 140 804.12 0.152 2.00 2B 45 670.03 0.149 10.99 2A 141 804.22 0.142 1.65 2A 46 670.20 0.147 9.56 2A 142 804.35 0.145 1.60 2A 47 670.48 0.147 8.94 2A 143 804.45 0.153 1.86 2A 48 670.65 0.118 0.68 1A 144 804.70 0.115 0.03 2A 49 670.75 0.130 0.95 1A 145 805.51 0.147 0.91 2B 50 670.89 0.135 1.86 1A 146 805.63 0.132 0.50 2B 51 671.04 0.167 2.27 1A 147 806.27 0.148 3.66 2B 52 671.19 0.157 0.99 1A 148 806.47 0.147 1.56 2B 53 671.34 0.164 2.88 1A 149 806.57 0.146 5.67 2B 54 671.50 0.147 0.48 1A 150 806.67 0.146 3.83 2B 55 671.65 0.147 1.49 1A 128 56 671.89 0.162 2.44 1A 57 672.03 0.125 0.18 1A 58 672.20 0.153 5.90 1A 59 672.37 0.146 0.36 1A 60 672.55 0.161 1.74 1A 61 672.70 0.149 0.20 1A 62 672.85 0.153 0.45 1A 63 673.00 0.130 0.37 1A 64 673.14 0.140 0.36 1A 65 673.34 0.127 0.10 1A 66 673.57 0.141 0.66 1A 67 673.82 0.128 0.32 1A 68 674.00 0.142 1.05 1A 69 674.18 0.148 0.87 1A 70 674.35 0.125 0.78 1A 71 674.52 0.136 2.98 1A 72 674.64 0.138 0.64 1A 73 674.80 0.136 0.58 1A 74 674.97 0.134 0.34 1A 75 675.12 0.137 0.61 1A 76 675.32 0.135 0.30 1A 77 675.52 0.127 0.38 1A 78 675.67 0.130 0.73 1A 79 675.87 0.131 1.69 1A 80 676.03 0.119 2.60 1A 81 676.18 0.140 0.29 1A 82 676.32 0.122 0.40 1A 83 676.46 0.136 0.13 1A 84 676.71 0.133 0.52 1A 85 676.91 0.130 0.92 1A 86 677.11 0.134 0.81 1A 87 677.30 0.120 5.71 1A 88 677.41 0.127 1.30 1A 89 677.56 0.121 0.65 1A 90 677.71 0.111 3.84 1A 91 677.85 0.121 0.01 1A 92 678.09 0.122 0.01 1A 93 678.28 0.131 0.38 1A 94 678.45 0.157 0.35 1A 95 678.54 0.102 0.01 3 96 678.69 0.091 0.01 3 97 678.84 0.125 0.02 3 98 678.99 0.120 0.02 3 99 679.13 0.090 0.02 3 100 679.33 0.124 0.14 3 101 679.45 0.113 0.06 3 102 679.58 0.099 0.01 3 103 679.80 0.157 0.19 1B 104 679.93 0.113 0.12 1B 105 680.01 0.107 0.89 1B 106 680.11 0.129 0.42 1B 107 680.30 0.146 0.50 1A 108 680.62 0.128 0.45 1A 109 680.69 0.109 0.22 1A 110 680.81 0.140 0.40 1A 111 680.98 0.098 0.01 1A 112 681.12 0.135 0.11 1A 113 681.25 0.081 0.01 3 114 683.00 0.078 0.01 1A 115 683.08 0.118 0.67 1A 116 683.27 0.126 0.52 2D 117 683.80 0.099 0.01 3 118 683.99 0.095 0.01 3 119 684.15 0.097 0.01 3 120 684.35 0.094 0.01 3 121 684.50 0.095 0.01 3 122 684.65 0.106 0.01 3 123 684.75 0.095 0.01 3 124 684.92 0.095 0.01 3 125 685.12 0.105 0.01 3 126 685.30 0.104 0.01 3 127 685.45 0.103 0.01 3 128 685.65 0.102 0.01 3 129 685.80 0.099 0.01 3 130 685.95 0.103 0.01 3 131 686.10 0.106 0.01 3 132 686.23 0.098 0.01 3 133 686.39 0.103 0.01 3 134 686.54 0.102 0.01 3 135 686.74 0.104 0.01 3 136 686.94 0.102 0.01 3 137 687.14 0.101 0.01 3 138 687.30 0.096 0.01 3 139 687.45 0.098 0.01 3 140 687.57 0.108 0.01 3 141 687.70 0.108 0.01 3 142 687.83 0.111 0.01 3 143 687.98 0.097 0.01 3 144 688.13 0.097 0.01 3 145 688.28 0.096 0.01 3 146 688.40 0.096 0.01 3 147 688.54 0.097 0.01 3 148 688.66 0.095 0.01 3 149 688.78 0.093 0.02 3 150 689.03 0.148 0.13 3 151 689.22 0.128 0.18 2B 152 689.42 0.089 0.03 2B 153 689.60 0.106 0.08 2B 154 690.25 0.095 0.01 1B 155 690.51 0.122 0.01 1B 156 690.65 0.130 0.03 1B 157 690.81 0.121 0.18 1B 158 690.93 0.116 0.06 1B 159 691.08 0.109 0.09 1B 160 691.25 0.131 0.10 1B 161 692.43 0.150 0.01 1B 162 692.60 0.148 15.62 1B 163 692.87 0.132 0.08 1B 164 692.94 0.150 0.16 1B 165 693.10 0.137 0.12 1B 166 693.58 0.118 0.03 1B 167 694.19 0.090 0.01 1B 168 694.42 0.103 0.01 1B 169 694.83 0.113 0.01 1B 170 695.30 0.098 0.01 1B 171 695.57 0.105 0.01 1B 172 696.07 0.091 0.01 1B 173 697.52 0.085 0.04 1B 174 697.64 0.081 0.03 1B 175 697.74 0.130 0.16 1B 176 698.08 0.111 0.04 1B 177 698.54 0.116 0.03 1B 178 698.66 0.109 0.04 1B 179 698.85 0.114 0.01 1B 180 699.21 0.126 0.10 1B 181 699.31 0.133 0.18 1B 182 699.47 0.127 0.07 2A 183 699.60 0.128 0.12 2A 129 184 699.70 0.117 . 0.11 2A 185 699.85 0.122 0.09 2A 186 700.02 0.124 0.07 2A 187 700.58 0.070 0.01 1B D-6-F-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 7 818.42 0.142 0.53 2B 8 818.52 0.118 0.18 2B 9 819.35 0.081 0.13 2B 10 819.43 0.132 0.84 2B 11 824.51 0.118 6.18 2B 12 824.63 0.124 2.56 2B 13 824.75 0.142 21.28 2B 14 824.86 0.127 3.83 2B 15 824.96 0.126 1.97 2B 48 825.20 0.139 15.61 2B 49 825.30 0.115 1.68 2B 50 825.43 0.132 8.01 2B 51 825.53 0.140 7.80 2B 52 825.68 0.133 4.38 2B 53 825.88 0.138 4.73 2B 54 826.00 0.119 1.88 2B 55 826.25 0.132 3.62 2B 56 826.45 0.120 1.06 2B 57 826.78 0.129 4.17 2B 58 826.93 0.132 4.12 2B 59 827.10 0.155 3.00 2B 60 827.35 0.099 0.47 2B 61 828.10 0.143 6.80 2B 62 828.33 0.120 3.03 2B 63 828.48 0.127 4.26 2B 64 832.42 0.103 0.18 2B 65 832.60 0.106 0.13 2B 90 833.43 0.110 3.18 1A 92 835.00 0.118 2.10 1A 93 821.73 0.089 0.03 1B 94 822.57 0.122 0.55 1B 95 818.62 0.085 3.86 2A 96 818.78 0.153 2.79 2A 97 818.87 0.161 3.24 2A 98 819.05 0.151 14.73 2A 99 819.18 0.172 6.94 2A 100 819.25 0.160 3.99 2A 101 819.53 0.167 3.72 2A 102 819.63 0.157 1.59 2A 103 819.73 0.141 0.98 2A 104 819.86 0.106 0.19 2A 105 820.01 0.069 0.08 2A 106 820.09 0.106 0.38 2A 107 820.24 0.084 0.17 2A 108 820.34 0.116 0.57 2A 109 820.43 0.115 0.21 2A 110 820.52 0.128 1.59 2A 111 820.72 0.109 0.35 2A 112 820.88 0.107 0.27 2A 113 822.18 0.119 0.19 2A 114 822.23 0.153 1.85 2A 115 822.40 0.147 2.05 2A 116 823.11 0.095 0.03 2A 117 823.48 0.159 4.91 2A 118 823.55 0.171 3.65 2A 119 823.70 0.157 1.56 2A 120 823.82 0.159 1.95 2A 121 823.95 0.148 13.76 2A 122 824.08 0.158 14.47 2A 123 824.32 0.149 14.34 2A 124 827.53 0.120 3.52 2A 125 827.66 0.146 6.29 2A 126 827.80 0.130 6.48 2A 127 828.58 0.135 4.42 2A 128 828.70 0.150 1.78 2A 129 828.82 0.137 6.06 2A 130 828.95 0.142 6.76 2A 131 829.05 0.134 6.86 2A 132 829.16 0.089 0.02 2A 133 829.61 0.096 0.14 2A 134 829.81 0.098 0.07 2A 135 829.96 0.101 0.06 2A 136 830.16 0.098 0.09 2A 137 830.26 0.102 0.03 2A 138 830.41 0.102 1.77 2A 139 830.56 0.104 0.17 2A 140 830.71 0.092 0.05 2A 141 830.86 0.091 0.05 2A 142 830.99 0.094 0.28 2A 143 831.14 0.091 0.02 2A 144 831.29 0.086 0.68 2A 145 831.44 0.090 0.03 2A 146 831.59 0.090 0.05 2A 147 831.73 0.098 0.03 2A b-82-F-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 7 600.94 0.063 0.01 2A 8 601.2 0.067 0.01 2A 9 601.43 0.148 0.26 2A 10 601.5 0.143 0.46 2B 12 601.83 0.132 0.11 2B 13 602 0.127 0.09 2B 14 602.23 0.123 0.49 2B 15 602.45 0.132 0.97 2B 17 602.97 0.118 0.40 2B 18 603.09 0.130 0.84 2B 19 603.33 0.150 4.63 2B 20 603.54 0.155 6.60 2B 21 603.63 0.142 4.12 2B 22 603.93 0.128 0.76 2B 23 604.01 0.138 3.22 2B 24 604.73 0.096 0.02 2B 26 605.37 0.072 0.01 2B 27 605.63 0.123 0.05 2B 28 605.84 0.130 0.03 2B 29 606.04 0.130 0.26 2B 30 606.16 0.140 0.26 2B 31 606.4 0.149 0.19 2B 33 607.11 0.100 0.04 2B 34 607.28 0.132 0.16 2B 35 607.58 0.141 0.12 2B 36 607.72 0.100 0.04 2B 37 608.32 0.130 0.38 2B 38 608.39 0.135 0.51 2A 39 609.05 0.145 0.94 2A 40 609.21 0.146 0.78 2A 41 609.3 0.138 0.79 2A 42 609.53 0.150 0.64 2A 130 43 609.69 0.132 0.76 2A 44 609.96 0.140 0.33 2A 45 610.42 0.148 0.23 2B 46 610.93 0.128 0.03 2B 47 611.39 0.148 0.25 2B 48 611.56 0.159 0.52 2B 49 611.63 0.159 0.44 2B 50 611.97 0.161 0.60 2B 51 612.1 0.148 0.16 2B 52 612.28 0.160 0.42 2B 53 612.47 0.164 0.74 2B 54 612.65 0.159 0.53 2B 55 613.21 0.162 0.37 2B 56 613.41 0.166 0.67 2B 57 613.84 0.170 0.18 2B 58 614.04 0.158 0.28 2B 59 614.27 0.141 0.03 2B 60 614.62 0.146 0.23 2B 61 615.21 0.073 0.01 2B 62 615.49 0.113 0.26 2A 63 615.62 0.137 0.60 2A 64 615.68 0.155 0.54 2A 65 615.95 0.160 0.26 2A 66 616.26 0.138 0.35 2A 67 616.88 0.064 0.01 2B 68 616.96 0.144 0.17 2B 69 617.63 0.159 0.22 2B 70 617.8 0.145 0.07 2B 71 618.13 0.143 0.10 2B b-90-H-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 656.00 0.065 0.01 3 2 656.17 0.138 0.19 3 3 656.34 0.121 1.34 3 4 656.44 0.122 0.17 3 5 656.50 0.121 0.92 3 6 656.61 0.093 0.01 3 7 656.80 0.090 0.01 3 8 657.00 0.126 0.21 3 9 657.15 0.141 0.04 3 10 657.30 0.116 0.01 1A 11 657.42 0.128 0.01 1A 12 657.66 0.117 0.07 1A 13 657.82 0.120 0.23 1A 14 657.97 0.120 0.03 1A 15 658.21 0.106 0.01 2A 16 658.36 0.102 0.01 2A 18 659.34 0.080 0.01 1B 19 660.30 0.109 0.01 1B 20 661.00 0.065 0.01 1B 21 661.58 0.064 0.01 1B 22 661.74 0.066 0.01 1B 23 662.40 0.093 0.01 1B 24 663.55 0.122 0.01 1B 25 664.14 0.091 0.01 1B 26 664.29 0.080 0.01 3 27 664.52 0.093 0.01 1B 28 664.66 0.113 0.01 1B 29 666.44 0.081 0.01 1B 30 666.70 0.043 0.01 1B 31 668.37 0.085 0.01 3 32 668.61 0.096 0.01 2A 33 668.87 0.072 0.01 1B 34 668.95 0.091 0.02 1A 35 671.26 0.102 0.01 1A 36 671.61 0.098 0.01 1B 37 671.76 0.105 0.01 1B 38 672.51 0.108 0.01 1A 39 673.27 0.121 0.03 1B 40 673.39 0.101 0.03 1B 41 673.64 0.101 0.11 1B b-99-D-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 1 654.30 0.108 0.21 3 2 645.60 0.115 0.31 3 3 655.30 0.145 4.70 1A 4 656.20 0.157 12.00 1A 5 657.65 0.155 18.00 1A 6 658.00 0.135 3.10 1A 7 659.00 0.139 1.40 1A 8 660.35 0.163 8.80 1A 9 661.55 0.139 4.10 1A 10 662.45 0.146 0.88 1A 11 662.60 0.146 1.50 1A 12 663.85 0.136 1.60 1A 13 664.85 0.128 6.10 1A 14 665.45 0.121 1.10 1A 15 666.80 0.093 0.18 2A 16 667.65 0.088 0.17 3 17 669.40 0.117 0.78 1A 18 670.95 0.112 0.19 3 C-40-C-94-I-02 Plug Depth (m) Porosity Perm (mD) Facies 1 680.00 0.166 1.40 2A 2 680.75 0.139 2.70 1A 3 682.25 0.169 7.90 1A 4 684.80 0.134 3.50 1A 5 687.60 0.129 1.80 1A 6 688.45 0.147 2.30 1A 7 690.10 0.150 0.72 1A 8 691.50 0.082 0.09 3 9 695.15 0.087 0.10 3 10 696.45 0.100 0.48 1B 11 698.15 0.094 0.07 3 C-28-C-94-I-02 Plug Depth (m) Porosity Perm (mD) Facies 1 680.00 0.079 0.02 1B 2 680.75 0.100 0.13 3 3 682.25 0.157 0.36 2B 4 684.80 0.159 21.00 2A 5 687.60 0.177 12.00 1A 6 688.45 0.164 8.30 1A 7 690.10 0.173 6.40 1A 8 691.50 0.147 2.30 1A 9 695.15 0.161 3.60 1A 10 696.45 0.157 2.00 2B 11 698.15 0.172 4.20 2A C-16-F-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 2 795.77 0.168 5.23 1A 3 796.08 0.178 6.33 1A 4 796.23 0.134 1.15 1A 5 796.39 0.121 0.61 1A 6 796.61 0.148 1.35 1A 7 796.80 0.147 0.95 1A 8 796.91 0.150 1.04 1A 9 797.05 0.094 0.14 1A 10 797.20 0.051 0.03 1A 11 797.46 0.073 0.01 1B 12 797.65 0.052 0.01 1B 13 797.86 0.066 0.01 1B 14 797.95 0.042 0.06 1B 15 798.11 0.042 0.01 1B 16 798.21 0.111 0.98 1A 17 798.34 0.137 11.84 2D 18 798.51 0.118 3.00 1A 19 798.64 0.097 0.66 1A 20 798.82 0.099 0.67 1A 21 799.07 0.107 1.11 1A 22 799.20 0.105 2.18 1A 23 799.37 0.079 0.49 1A 24 799.55 0.100 2.56 1A 25 799.69 0.104 1.16 1A 26 799.84 0.103 1.00 1A 27 799.98 0.094 1.69 1A 28 800.19 0.155 6.11 2A 29 800.35 0.168 5.86 2A 30 800.53 0.093 1.08 2A 31 800.66 0.063 0.16 2A 32 800.90 0.065 0.06 2A 33 801.09 0.067 0.10 2A 34 801.29 0.119 0.14 2A 35 801.50 0.098 0.73 2A 36 801.70 0.119 11.82 2A 37 801.87 0.044 0.01 2A 38 802.00 0.134 3.65 2A 39 802.21 0.093 1.38 2A 40 802.33 0.133 1.91 1A 41 802.43 0.121 2.41 1A 42 802.60 0.102 0.88 1A 43 802.80 0.116 2.70 1A 44 802.98 0.119 0.65 1A 46 803.37 0.089 14.64 1A 47 803.58 0.094 0.63 1A 48 803.77 0.122 1.68 1A 49 804.00 0.099 1.09 1A 50 804.20 0.096 0.50 1A 51 804.50 0.091 0.56 1A 52 804.82 0.112 0.59 1A 53 805.04 0.107 0.85 1A 54 805.17 0.132 6.45 1A 55 805.29 0.133 4.99 1A 56 805.43 0.075 0.09 1A 57 805.63 0.096 0.12 1A 58 805.74 0.070 0.72 1A 60 805.95 0.111 1.84 1A 61 806.18 0.115 1.17 1A 62 806.39 0.148 3.67 1A 63 806.57 0.152 18.07 1A 64 806.74 0.132 3.16 1A 65 806.89 0.133 2.69 1A 66 807.05 0.140 3.94 1A 67 807.28 0.127 3.09 1A 68 807.49 0.138 5.10 1A 69 807.68 0.117 2.14 1A 70 807.94 0.120 0.76 1A 71 808.09 0.133 1.78 1A 72 808.30 0.114 0.76 1A 73 808.55 0.117 2.11 1A 74 808.78 0.101 1.29 1A 75 809.00 0.103 1.52 1A 76 809.20 0.119 1.27 1A 77 809.33 0.113 0.85 1A 78 809.50 0.091 0.57 1A 80 809.68 0.141 2.15 1A 81 809.88 0.096 0.31 1A 83 810.18 0.101 2.19 1A 84 810.36 0.130 4.19 2A 85 810.56 0.161 18.15 2A 86 810.71 0.176 37.64 2A 87 810.86 0.182 36.19 2A 88 810.99 0.166 25.09 2A 89 811.15 0.156 7.21 2A 90 811.30 0.168 12.59 2A 91 811.47 0.164 21.75 2A 92 811.66 0.180 44.07 • 2A 93 811.86 0.172 61.93 2A 94 812.06 0.145 26.81 2A 95 812.22 0.076 0.11 2A 96 812.40 0.151 17.19 2A 97 812.60 0.158 45.32 2A 98 812.76 0.159 36.60 2A 99 812.92 0.162 39.61 2A 101 814.63 0.086 0.86 1B 102 814.73 0.134 2.92 1B 103 814.99 0.162 0.96 2A 104 815.02 0.073 5.63 2A 105 815.21 0.149 0.85 2A 106 815.33 0.094 0.10 2A 107 815.50 0.092 0.18 2A 108 815.65 0.108 0.38 2A 109 815.88 0.095 0.23 2A 110 816.00 0.089 0.41 2A 111 816.13 0.111 1.73 2A 113 816.82 0.113 1.43 2B 114 816.89 0.093 0.18 2B 115 817.15 0.084 0.16 2B 117 817.44 0.124 0.29 2B 118 817.75 0.102 0.29 2B 119 817.93 0.107 0.40 2B 120 818.05 0.084 0.70 2B 122 818.34 0.134 4.96 2B 123 818.47 0.136 4.97 2B 124 818.51 0.128 2.08 2B 126 819.94 0.127 3.81 2A 127 819.31 0.166 3.08 2A 128 819.53 0.146 1.55 2A 129 819.73 0.091 0.32 2A 130 819.87 0.129 17.60 2B 131 820.20 0.153 2.07 2B 133 820.58 0.116 5.10 2B 134 820.74 0.164 7.31 2A 135 820.88 0.179 9.81 2A 136 821.05 0.175 16.98 2A 137 821.20 0.163 15.07 2A 138 821.50 0.104 0.56 2A 139 821.64 0.147 0.40 2A 140 821.85 0.152 1.20 2A 141 822.01 0.081 0.07 2B 142 822.37 0.149 6.38 2B 143 822.67 0.142 3.17 2B 144 823.00 0.102 19.58 2B 145 824.42 0.131 0.39 2B 146 824.60 0.111 0.26 2B 147 824.75 0.139 1.95 2B 148 824.90 0.119 0.97 2B 149 825.30 0.114 1.21 2B 150 825.41 0.113 1.18 2B 151 826.08 0.114 0.57 2B 153 826.69 0.101 2.74 2B 154 826.83 0.111 1.56 2B 155 826.97 0.114 0.27 2B 156 827.30 0.101 0.24 2B 157 828.37 0.094 0.23 2B 158 828.75 0.083 0.24 2B 159 829.40 0.069 0.01 2B 160 830.33 0.106 0.33 2B 161 830.49 0.098 0.96 2B 162 830.71 0.108 0.82 2B 163 831.17 0.116 0.18 2C C-36-F-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 1 784.11 0.093 0.36 1B 2 784.26 0.102 0.18 1B 3 784.36 0.099 2.75 1B 4 784.58 0.145 21.20 1B 5 784.69 0.143 11.80 1A 6 786.40 0.154 15.70 1B 6 784.83 0.146 13.70 1A 7 786.60 0.101 3.51 1B 7 784.92 0.145 13.10 1A 8 786.77 0.094 1.80 1B 8 785.12 0.147 12.60 1A 9 786.86 0.080 0.86 1B 9 785.36 0.159 22.90 1A 10 787.08 0.083 1.07 1B 10 785.44 0.135 9.04 1A 11 799.41 0.120 0.38 1B 11 785.69 0.119 5.05 1A 12 799.51 0.101 0.15 1B 12 785.77 0.107 4.96 1A 13 799.70 0.100 0.17 1B 13 786.05 0.086 1.11 1A 14 800.04 0.124 1.53 1B 15 786.17 0.137 8.85 1A 16 800.12 0.127 2.64 1B 17 786.28 0.138 6.27 1A 18 800.59 0.122 1.52 1B 19 787.30 0.119 3.06 1A 20 788.15 0.088 0.08 2A 21 787.38 0.145 7.14 1A 22 788.29 0.095 0.14 2A 23 787.59 0.142 11.50 1A 24 788.46 0.096 0.09 2A 25 787.73 0.131 5.57 1A 26 788.55 0.102 0.01 2A 27 787.81 0.141 8.15 1A 28 788.88 0.092 0.18 2A 29 791.38 0.133 4.60 1A 30 788.97 0.101 0.01 2A 31 791.53 0.145 2.87 1A 32 789.22 0.131 0.17 2A 33 791.62 0.143 5.31 1A 34 789.29 0.125 0.19 2A 35 791.83 0.128 2.98 1A 36 789.60 0.123 0.41 2A 37 792.00 0.143 3.29 1A 38 789.66 0.124 0.22 2A 39 792.06 0.135 5.07 1A 40 789.83 0.115 0.24 2A 41 792.22 0.136 3.17 1A 42 789.91 0.124 0.24 2A 43 792.32 0.116 2.87 1A 44 790.08 0.122 0.22 2A 45 792.53 0.130 0.99 1A 46 790.30 0.122 0.46 2A 47 792.74 0.115 0.89 1A 48 790.40 0.134 0.45 2A 49 792.81 0.114 3.50 1A 50 790.73 0.128 0.39 2A 51 793.03 0.127 2.42 1A 52 790.83 0.115 0.62 2A 53 793.29 0.135 1.76 1A 54 791.13 0.113 0.98 2A 55 793.35 0.124 0.65 1A 56 791.23 0.108 1.38 2A 59 793.55 0.128 1.77 1A 60 793.72 0.119 1.05 1A 61 793.79 0.124 0.84 1A 62 793.97 0.114 0.64 1A 63 794.09 0.083 0.15 1A 64 794.34 0.160 8.22 1A 65 794.45 0.109 1.71 1A 66 794.59 0:110 1.31 1A 67 794.67 0.115 1.15 1A 68 794.93 0.114 1.52 1A 69 795.00 0.127 5.94 1A 70 795.21 0.127 1.76 1A 71 795.29 0.168 14.10 2A 72 795.40 0.175 23.10 2A 73 795.48 0.173 28.80 2A 74 795.91 0.155 18.80 2A 75 796.02 0.148 13.50 2A 76 796.18 0.140 3.26 2A 77 796.37 0.106 2.22 2A 79 796.79 0.083 0.32 2A 80 796.91 0.080 0.02 2A 81 798.14 0.082 0.05 2C 81 797.41 0.069 0.02 3 82 798.26 0.085 0.04 2C 83 797.46 0.067 0.04 3 84 798.74 0.138 3.50 2C 85 797.77 0.070 0.04 3 86 798.88 0.128 0.53 2C 87 797.86 0.059 0.06 3 88 800.74 0.085 0.05 2C 89 800.93 0.073 0.05 2C 97 801.03 0.124 1.90 2C 98 801.19 0.130 0.56 2C 99 801.39 0.124 0.24 2C 100 801.47 0.131 0.51 2C 133 I 101 | 801.83 | 0.124 | 0.51 | 2B | C-58-F-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 6 787.72 0.114 1.36 1A 7 787.88 0.117 1.62 1A 8 788.04 0.136 2.01 1A 9 788.19 0.143 1.75 3 10 788.33 0.117 0.93 3 11 788.50 0.089 0.15 3 12 788.70 0.103 0.66 3 13 788.82 0.107 1.27 1A 14 788.95 0.092 2.71 1A 15 789.09 0.108 9.51 1A 16 789.24 0.108 8.32 1A 17 789.40 0.107 8.53 1A 18 789.55 0.106 6.02 1A 19 789.70 0.110 6.70 1A 20 789.84 0.106 5.01 1A 21 789.99 0.096 1.02 1A 22 790.14 0.106 1.93 1A 23 790.29 0.085 0.68 1A 24 790.44 0.101 1.27 1A 25 790.62 0.102 2.31 1A 26 790.75 0.111 2.98 1A 27 790.90 0.100 2.69 1A 28 791.05 0.110 1.71 1A 29 791.19 0.118 1.37 1A 30 791.34 0.114 3.24 1A 31 791.49 0.113 0.92 1A 32 791.63 0.113 2.23 1A 33 791.78 0.120 2.44 1A 34 791.93 0.095 0.34 1A 35 792.09 0.113 1.60 1A 36 792.24 0.116 3.50 1A 37 792.39 0.109 1.75 1A 38 792.55 0.124 3.36 1A 39 792.69 0.123 4.75 1A 40 792.84 0.116 0.96 1A 41 792.99 0.122 1.37 1A 42 793.13 0.116 3.67 1A 43 793.28 0.122 3.89 1A 44 793.44 0.108 1.79 1A 45 793.59 0.120 1.36 1A 46 793.75 0.114 0.82 1A 47 793.90 0.104 0.72 1A 48 794.05 0.133 1.26 1A 49 794.22 0.129 1.42 1A 50 794.38 0.126 1.31 1A 51 764.56 0.151 3.02 1A 52 794.72 0.135 0.90 1A 53 794.87 0.121 2.04 1A 54 795.03 0.136 2.04 1A 55 795.19 0.139 4.35 1A 56 795.34 0.112 0.56 1A 57 795.47 0.157 4.44 1A 58 795.62 0.131 0.51 1A 59 795.77 0.127 0.11 2C 60 795.92 0.147 0.40 2C 61 796.07 0.146 0.20 2C 62 796.19 0.134 0.22 2C 63 796.32 0.114 0.30 1A 64 796.46 0.137 1.02 1A 65 796.61 0.114 0.38 2B 66 796.82 0.189 23.10 2A 67 796.97 0.185 42.30 2A 68 797.11 0.181 30.30 2A 69 797.30 0.145 14.90 2A 70 797.48 0.119 5.17 2A 71 797.63 0.136 10.20 2A 72 797.79 0.126 8.74 2A 73 797.94 0.112 7.22 2A 74 798.12 0.094 0.27 2C 75 798.26 0.065 0.04 2C 76 798.40 0.073 0.04 2C 77 798.55 0.074 0.01 2C 78 798.70 0.073 0.01 2C 79 798.86 0.074 0.08 2C 80 798.99 0.083 0.01 2C 81 799.15 0.107 0.40 1A 82 799.31 0.106 0.07 1A 83 799.46 0.128 1.98 1A 84 799.62 0.125 2.30 1A 85 799.76 0.104 0.05 1A 86 799.87 0.124 1.72 1A 87 800.02 0.111 5.25 1A 88 800.18 0.121 2.84 1A 89 800.33 0.113 0.53 1A 90 800.49 0.153 2.41 1A 91 800.65 0.118 0.58 1A 92 800.81 0.143 11.80 1A 93 800.97 0.119 5.34 1A 94 801.14 0.134 4.78 1A 95 801.29 0.128 3.08 1A 96 801.45 0.129 4.70 1A 97 801.60 0.128 3.42 2C 98 801.73 0.088 0.01 2C 99 801.88 0.143 0.68 2C 100 802.06 0.014 0.29 2C 101 802.21 0.119 0.16 2C 102 802.36 0.118 0.16 2C 103 802.51 0.107 0.36 2C 104 802.65 0.104 0.07 2C 105 802.79 0.105 0.11 2C 106 802.94 0.105 0.08 2C 107 803.11 0.109 0.10 2C 108 803.26 0.105 0.13 2C 109 803.41 0.111 0.10 2C 110 803.56 0.107 0.16 2C 111 803.76 0.144 1.79 2A 112 803.90 0.104 0.14 2C 113 804.04 0.082 0.12 2C 114 804.21 0.164 5.17 2C 115 804.53 0.123 2.32 1A 116 804.69 0.147 6.54 2C 117 804.83 0.128 0.80 2C 118 804.97 0.158 2.54 2C 119 805.10 0.077 0.04 2C 120 805.25 0.137 0.40 2C 121 805.38 0.138 0.82 2C 122 805.58 0.075 0.01 2C 123 805.77 0.055 0.01 1A 124 805.97 0.065 0.01 1A 125 806.18 0.094 0.14 1A 126 806.33 0.101 1.15 1A 127 806.48 0.108 0.48 1A 128 806.64 0.146 1.00 1A 129 806.80 0.126 0.35 1A 130 807.24 0.053 0.02 3 131 807.32 0.192 55.50 2A 132 807.41 0.189 51.50 2A 133 807.63 0.194 31.90 2A 134 807.77 0.185 37.60 2A 135 807.92 0.187 20.30 2A 136 808.06 0.187 22.50 2A 137 808.20 0.189 30.10 2A 138 808.36 0.196 46.80 2A 139 808.60 0.166 9.66 2A 140 808.74 0.155 2.83 2A 141 808.90 0.161 0.79 2A 142 809.20 0.138 0.38 2A 143 809.57 0.143 5.21 2A 144 809.72 0.148 7.00 2A 145 809.86 0.160 9.89 2A 146 810.01 0.158 11.10 2A 147 810.18 0.051 0.01 3 148 810.35 0.051 0.03 3 149 810.49 0.132 0.97 2B 150 810.64 0.146 2.12 2B 151 810.79 0.146 0.13 2B 152 810.93 0.145 0.80 2B 153 811.05 0.155 2.51 2B 154 811.21 0.154 2.70 2B 155 811.36 0.125 1.48 2B 156 811.51 0.142 0.58 2B 157 811.66 0.138 0.40 2B 158 811.81 0.131 0.23 1B 159 812.69 0.152 4.48 2A 160 812.83 0.156 7.28 2A 161 812.97 0.156 3.33 2A 162 813.26 0.065 0.10 2A 163 813.47 0.160 2.83 2A 164 813.63 0.160 1.30 2A 165 813.78 0.137 2.19 2A 166 814.13 0.126 0.53 1B 167 814.33 0.133 0.42 1B 168 814.48 0.137 0.25 1B 169 815.14 0.134 0.75 1B 170 815.47 0.136 2.00 1B 171 815.64 0.146 1.36 1B 172 815.78 0.130 0.58 1B 173 815.95 0.144 2.29 1B 174 816.20 0.134 0.82 1B 175 816.79 0.077 0.01 1B 176 816.95 0.129 0.16 1B 177 817.08 0.140 0.50 1B 178 807.39 0.142 0.54 1B 179 817.67 0.089 0.15 1B 180 817.87 0.117 0.56 1B 181 818.06 0.111 0.65 1B 182 818.18 0.132 0.43 1B 183 818.38 0.130 0.76 1B 184 818.73 0.122 0.80 1B 185 818.97 0.125 0.43 1B 186 819.34 0.132 2.40 1B 187 819.61 0.124 0.87 1B 188 819.99 0.125 0.50 1B 189 820.07 0.124 0.23 1B 190 821.45 0.112 0.50 1B 191 821.59 0.069 0.03 1B 192 821.69 0.106 0.04 1B C-72-J-94-H-08 Plug Depth (m) Porosity Perm (mD) Facies 1 1052.10 0.156 4.68 2B 2 1052.21 0.145 1.56 2B 3 1052.51 0.141 2.44 2B 4 1052.67 0.152 3.12 2B 5 7052.78 0.081 0.05 2B 6 1052.92 0.107 0.74 2B 7 1053.05 0.097 0.07 2B 8 1053.25 0.149 3.21 2B 9 1053.41 0.160 1.44 2B 10 1053.68 0.122 1.51 2B 11 1053.77 0.141 1.51 2B 12 1053.92 0.153 1.86 2B 13 1054.09 0.097 0.70 2B 14 1054.18 0.157 1.20 2B 15 1054.90 0.090 0.29 2B 16 1055.52 0.078 0.13 2B 17 1055.60 0.109 0.36 2B 18 1055.88 0.131 1.84 2B 19 1056.36 0.124 1.44 2B 20 1056.63 0.175 2.48 2B 21 1056.81 0.157 3.16 2A 22 1056.92 0.172 5.43 2A 23 1057.05 0.184 10.00 2A 24 1057.24 0.175 16.60 2B 25 1057.54 0.149 0.96 2A 26 1057.75 0.151 1.69 2A 27 1057.86 0.158 1.61 2A 28 1057.99 0.165 3.65 2A 29 1058.30 0.128 0.65 2A 30 1058.50 0.123 0.36 2A 31 1058.77 0.123 0.46 2A 32 1058.85 0.150 1.32 2A 33 1059.08 0.150 1.50 2A 34 1059.22 0.155 1.91 2A 35 1059.34 0.164 4.87 2A 36 1059.52 0.163 6.06 2B 37 1059.84 0.111 0.48 2B 38 1061.09 0.116 0.89 2B d-01-D-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 1 703.45 0.079 0.10 1B 2 706.6 0.158 13.00 2B 3 707 0.162 25.00 2A 4 708.25 0.171 9.60 1A 5 711.6 0.148 1.40 1A 6 712.3 0.138 2.50 1A 7 712.65 0.152 0.93 1A 8 715.1 0.131 0.42 1A 9 715.9 0.146 0.38 1A 10 717.9 0.125 0.27 3 135 C-92-H-94-H-09 Plug Depth (m) Porosity Perm (mD) Facies 4 942.95 0.131 0.76 2B 5 943.15 0.112 1.02 2B 6 943.22 0.132 2.54 2B 7 943.47 0.050 0.01 3 8 943.54 0.126 0.34 2B 9 944.42 0.089 2.55 2B 10 944.68 0.111 0.66 2B 11 944.88 0.130 1.95 2B 12 945.42 0.105 1.36 2B 13 945.83 0.126 1.20 2B 14 945.96 0.141 1.65 2B 15 946.30 0.091 0.15 2B 16 946.58 0.081 0.02 2B 17 946.92 0.131 1.76 2B 18 946.98 0.102 0.19 2B 19 947.36 0.143 0.95 2B 21 948.83 0.117 0.82 2B 22 949.63 0.114 0.32 2B 23 954.10 0.136 1.24 1B 24 954.37 0.136 2.14 1B 25 954.54 0.123 0.62 1B 26 956.29 0.132 0.58 2B 27 957.12 0.119 1.23 2B 28 958.30 0.127 0.78 2B 29 959.35 0.147 4.69 2B 30 960.00 0.171 39.30 2B 31 960.28 0.173 47.00 2B 32 960.68 0.172 71.00 2B 33 960.84 0.161 61.60 1A 34 961.03 0.162 45.00 1A 35 961.36 0.173 52.80 1A 36 961.62 0.158 71.70 1A 37 961.86 0.167 52.60 1A 38 962.09 0.166 25.90 1A 39 962.38 0.176 57.20 1A 40 962.77 0.172 43.00 1A 41 962.94 0.169 41.30 1A 42 963.25 0.178 53.80 1A 43 963.50 0.164 24.60 1A 44 963.85 0.147 12.50 1A 45 964.21 0.127 3.40 1A 46 964.49 0.155 20.50 1A 47 964.90 0.146 11.00 1A 48 965.15 0.133 6.12 1A 49 965.38 0.160 13.30 1A 50 965.64 0.114 10.40 2A 51 965.85 0.170 62.50 2A 52 966.19 0.177 49.60 1A 53 966.49 0.114 6.70 1A 54 966.79 0.145 12.00 1A 55 967.78 0.150 11.60 1A 56 967.94 0.130 14.50 2A 57 968.25 0.130 5.86 2A 58 968.42 0.068 0.05 2A 59 968.71 0.146 1.91 2A 61 970.60 0.160 7.52 2A 62 970.85 0.158 7.08 2A 63 971.12 0.159 8.83 2A 64 971.22 0.152 10.90 2A 65 971.63 0.080 0.71 2B 66 971.80 0.171 15.00 2A 67 972.33 0.138 1.09 2A 68 972.45 0.121 0.88 2A 69 972.84 0.125 1.12 2A 70 973.51 0.164 7.89 2A 71 973.88 0.158 7.75 2A 72 974.14 0.167 21.10 2A 73 974.33 0.171 26.20 2A 74 974.82 0.152 8.74 2A 75 974.98 0.156 8.96 2A 76 975.32 0.079 0.03 2B 77 976.63 0.112 0.19 2B 78 977.80 0.095 0.10 2B 79 978.01 0.118 0.64 2B 80 978.38 0.143 0.71 2B 81 978.71 0.135 1.03 2B 82 979.91 0.141 1.90 2B 83 979.68 0.111 0.19 2A 84 979.96 0.081 0.03 2B 85 980.29 0.120 0.45 2B 86 981.11 0.171 33.20 2A 87 981.43 0.161 18.90 2A 88 981.62 0.164 10.10 2A 89 981.97 0.161 7.58 2A 90 982.18 0.180 21.10 2A 91 982.31 0.199 18.20 2A 92 982.68 0.114 0.51 2B 93 983.14 0.139 0.75 2B 94 983.67 0.088 0.04 2B 95 983.88 0.111 0.25 2B 96 984.82 0.114 0.20 2B 97 985.49 0.117 0.47 2B 98 985.94 0.131 0.59 2B 99 986.17 0.128 1.34 2B d-31-L-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 16 677.12 0.092 0.49 1A 17 677.34 0.078 14.07 1A 18 677.79 0.090 0.08 1A 19 678.07 0.102 0.02 1A 21 679.41 0.051 0.04 1B 22 679.83 0.086 0.02 1B 23 681.24 0.062 0.01 1B 24 682.26 0.063 0.01 1B 25 682.59 0.067 0.01 1B 26 684.73 0.082 0.01 2A 27 684.82 0.087 0.01 1A 28 684.94 0.061 0.01 1A 29 685.78 0.086 0.01 1B 30 686.12 0.077 0.09 1B 31 686.31 0.097 0.01 1B 32 686.67 0.046 0.01 1B 33 689.78 0.087 0.01 1B 34 687.90 0.097 0.01 1B 35 688.14 0.072 0.01 1B 37 690.05 0.060 0.01 1B 38 691.80 0.039 0.01 1B C-98-D-94-I-02 Plug Depth (m) Porosity Perm (mD) Facies 2 653.16 0.103 0.98 2A 3 653.43 0.136 3.82 2A 4 653.71 0.140 7.06 2A 5 653.96 0.139 4.13 2A 6 654.07 0.135 1.69 2A 7 654.22 0.139 6.62 2A 8 654.52 0.134 6.09 2A 9 654.82 0.126 2.40 2A 10 655.12 0.130 1.41 2A 11 655.32 0.122 2.56 2A 12 655.62 0.103 0.72 2A 13 655.82 0.116 0.79 2A 14 656.10 0.120 1.30 2A 15 656.36 0.117 0.65 2A 17 656.95 0.096 15.37 1A 18 657.20 0.114 0.92 1A 19 657.41 0.123 0.78 1A 20 657.73 0.116 1.04 1A 21 658.02 0.086 0.01 3 22 658.20 0.103 0.04 3 23 658.40 0.109 0.17 2C 24 658.81 0.106 0.01 2C 25 659.27 0.114 0.53 1A 26 659.47 0.122 0.56 1A 27 659.85 0.083 0.01 3 28 660.04 0.056 0.02 3 29 660.38 0.128 7.54 1A 30 660.50 0.119 0.58 1A 31 660.80 0.124 0.47 1A 32 661.10 0.115 0.36 1A 33 661.40 0.127 0.32 1A 34 661.70 0.107 6.18 1A 35 662.00 0.116 0.37 1A 36 662.30 0.114 0.49 1A 37 662.63 0.117 1.07 1A 38 662.80 0.120 0.27 1A 40 663.30 0.118 0.37 1A 41 663.61 0.099 0.46 1A 42 664.02 0.110 1.77 1A 43 664.22 0.108 6.64 1A 44 664.45 0.062 0.01 3 45 664.75 0.063 0.17 3 46 664.85 0.131 0.22 3 47 665.02 0.110 0.07 3 48 665.44 0.108 0.12 3 50 665.82 0.118 0.12 1B 51 666.14 0.129 0.19 1B 52 666.30 0.117 3.14 1B 53 666.57 0.120 0.43 1B 54 666.85 0.125 0.23 1B 56 667.41 0.056 0.06 3 57 667.91 0.104 1.74 1B 58 668.17 0.131 0.59 1B 59 668.42 0.161 8.05 2A 60 668.62 0.164 17.68 2A 61 668.82 0.164 19.81 2A 62 668.93 0.164 15.85 2A 63 669.02 0.148 8.46 2A 64 669.20 0.132 1.66 2A 65 669.41 0.053 0.04 2C 66 669.86 0.129 0.29 2C 67 670.12 0.071 0.02 2C 68 670.55 0.077 0.01 2C 69 670.90 0.107 0.11 2C 70 671.30 0.129 0.64 2C 71 671.50 0.124 0.06 2C 72 671.73 0.113 0.09 2C 73 671.93 0.108 0.19 2C 74 672.13 0.084 0.02 2C 75 672.42 0.130 0.38 2C 76 672.67 0.104 5.19 2C 77 672.92 0.136 0.19 2A 78 673.08 0.093 0.03 2A 79 673.38 0.063 0.05 3 80 673.68 0.138 0.05 3 81 673.88 0.107 0.08 1A 82 674.18 0.108 0.44 2B 83 674.30 . 0.122 0.08 2B 84 674.34 0.134 0.05 2B 85 675.09 0.103 0.05 2B 86 675.34 0.140 0.07 2B 87 675.53 0.145 0.06 2B 88 675.72 0.134 0.04 2B 89 675.93 0.117 0.06 2B 90 676.29 0.120 0.03 2B 91 676.42 0.071 0.03 2B 92 677.14 0.144 0.08 2B 93 677.26 0.134 0.05 2B 94 677.39 0.142 0.05 2B 95 677.50 0.116 0.06 2B 96 677.93 0.124 0.07 2B 97 678.10 0.119 0.03 2B 98 679.06 0.121 0.03 2B 99 679.39 0.100 0.02 2B 100 679.53 0.102 0.05 2B 101 681.98 0.073 0.01 1B 102 682.43 0.085 0.01 1B 103 683.00 0.107 0.01 1B 104 683.29 0.091 0.01 1B 105 683.55 0.100 0.01 1B 106 686.94 0.089 0.01 1B 107 687.32 0.077 0.01 1B 108 687.80 0.108 0.02 1B 109 688.10 0.070 0.01 1B 110 688.72 0.093 0.01 1B 111 689.34 0.093 0.02 1B d-26-H-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 657.50 0.156 4.10 2A 2 658.05 0.131 4.10 2A 3 660.15 0.147 9.70 1A 4 661.65 0.148 0.81 1A 5 663.05 0.142 1.90 1A 6 663.95 0.171 3.10 1A 7 665.30 0.149 1.30 1A 8 666.45 0.134 0.78 1A 9 668.15 0.134 1.30 1A 10 668.80 0.131 0.78 2B d-36-D-94-H-14 Plug Depth (m) Porosity Perm (mD) Facies 5 920.48 0.042 0.01 1B 6 922.30 0.001 0.01 1B 7 925.97 0.057 0.01 1B 8 927.46 0.022 0.01 1B 9 928.87 0.035 0.01 1B 10 930.32 0.049 0.01 1B 11 931.71 0.052 0.01 1B 12 934.50 0.041 0.01 1B 13 935.83 0.056 0.01 1B 14 936.13 0.050 0.01 1B 15 936.51 0.052 0.01 1B 16 937.56 0.030 0.01 1B d-52-G-94-H-08 Plug Depth (m) Porosity Perm (mD) Facies 1 993.07 0.190 11.90 2C 2 993.25 0.162 1.03 2C 3 993.37 0.171 0.81 2B 4 993.46 0.149 0.49 2B 5 993.82 0.167 1.43 2B 6 993.89 0.167 1.43 2B 7 994.03 0.175 2.95 2B 8 994.07 0.167 1.43 2B 9 994.19 0.179 2.38 2B 10 994.26 0.182 2.70 2B 11 994.47 0.150 0.61 2B 12 994.67 0.145 3.14 2B 13 994.77 0.158 1.58 2B 14 994.91 0.167 1.43 2B 15 994.98 0.148 20.30 2B 16 995.15 0.183 3.99 2B 17 995.21 0.165 2.37 2B 18 995.40 0.148 2.03 2B 19 995.50 0.119 0.33 2B 20 995.64 0.089 1.26 2B 21 995.83 0.142 4.45 2B 22 995.97 0.185 5.07 2B 23 996.18 0.184 5.89 2B 24 996.27 0.168 3.11 2B 25 996.40 0.154 8.60 2B 26 996.60 0.145 0.61 2B 27 996.66 0.089 1.26 2B 28 996.85 0.145 0.61 2B 29 996.94 0.152 1.62 2B 30 997.09 0.143 0.47 2B 31 997.18 0.145 0.61 2B 32 997.27 0.152 1.62 2B 33 997.34 0.089 1.26 2B 34 997.49 0.168 1.38 2B 35 997.77 0.156 0.57 2B 36 997.98 0.160 1.54 2B 37 998.22 0.163 0.89 2B 38 998.36 0.140 0.50 2B 39 998.52 0.142 0.54 2B 40 998.68 0.089 1.26 2B 41 999.02 0.130 0.40 2B 42 999.18 0.185 1.98 2B 43 999.40 0.185 3.98 2B 44 999.60 0.194 6.46 2B 45 999.94 0.107 0.68 2A 46 1000.25 0.174 1.48 2B 47 1000.42 0.162 1.35 2B 48 1000.58 0.089 1.26 2B 49 1000.75 0.080 0.01 2B 50 1000.94 0.089 1.26 2B 51 1001.11 0.163 5.75 2B 52 1001.17 0.163 5.75 2B 53 1001.37 0.160 2.03 2B 54 1001.60 0.144 0.42 2B 55 1001.81 0.161 1.76 2B 56 1001.95 0.175 2.32 2B 57 1002.17 0.089 1.26 2B 58 1002.21 0.166 0.14 2B 59 1002.30 0.157 1.11 2B 60 1002.51 0.160 0.78 2A 61 1002.70 0.152 0.79 2A 62 1002.96 0.113 0.09 2A 63 1003.07 0.156 1.08 2A 64 1003.27 0.113 0.09 2A 65 1003.35 0.145 0.43 2A 66 1003.40 0.158 2.09 2A 67 1003.57 0.113 0.11 2A 68 1003.81 0.170 4.29 2B 69 1003.87 0.170 4.29 2B 70 1003.94 0.119 6.97 2B 71 1004.05 0.170 4.29 2B 72 1004.14 0.151 1.25 2B 73 1004.32 0.142 1.05 2B 74 1004.62 0.150 0.61 2B 75 1004.75 0.154 0.58 2B 76 1004.84 0.157 1.29 2B 77 1005.20 0.113 0.11 2B 78 1005.25 0.146 1.47 2B 79 1005.38 0.092 0.03 2B d-45-G-94-H-16 Plug Depth (m) Porosity | Perm (mD) Facies 1P 904.00 0.169 6.84 2B 1A 904.82 0.134 0.36 1B 2P 905.24 0.135 0.16 1B 3P 905.72 0.134 0.36 1B 4P 906.55 0.144 0,33 2B 5P 907.18 0.145 1.24 2B 6P 908.12 0.137 1.65 1B 7P 908.84 0.133 0.70 2C 8P 909.45 0.136 1.08 2C 8A 909.70 0.136 1.08 2C 9P 912.14 0.108 0.20 2B 10P 912.84 0.104 0.19 2B 11P 913.83 0.131 0.68 2B 12P 915.23 0.098 0.15 1B 12A 915.62 0.098 0.15 1B 13P 916.52 0.121 0.60 1B 14P 917.27 0.116 0.32 1B 15P 918.19 0.124 0.53 1B 15A 918.53 0.124 0.53 1B 16P 918.59 0.125 0.41 1B 138 d-39-G-94-l-02 Plug Depth (m) Porosity Perm (mD) Facies 1 620.5 0.078 0.01 1B 2 621.36 0.05 0.01 1B 3 621.75 0.051 0.02 3 4 621.9 0.045 0.06 3 5 622.1 0.073 0.01 3 6 622.45 0.106 0.09 2B 7 623.42 0.099 0.02 2B 8 624.11 0.143 0.11 2B 9 624.59 0.126 0.41 2B 10 624.8 0.129 0.2 2B 11 624.92 0.133 0.08 2B 12 625.8 0.136 0.23 2B 13 626.02 0.137 0.71 2B 14 626.13 0.13 0.42 2B 15 626.27 0.122 0.38 2B 16 626.5 0.128 0.45 2B 17 626.7 0.106 0.03 2B 18 626.9 0.114 0.31 2B 19 627.06 0.13 0.2 2B 20 627.34 0.147 0.12 2A 21 627.56 0.157 0.36 2A 22 628.48 0.137 0.19 2B 23 628.81 0.13 0.17 2B 24 629.41 0.112 0.01 2B 25 629.6 0.114 0.09 2B 26 630.11 0.137 0.16 2B 27 631.26 0.085 0.01 2B 28 632.07 0.12 0.41 2B 29 632.26 0.136 6.27 2B 30 632.46 0.131 1.2 2B 31 632.55 0.132 0.52 2B 32 632.68 0.093 0.98 2B 33 632.92 0.143 1.06 2B 34 632.96 0.131 1.12 2B 35 633.07 0.133 0.84 2B 36 633.13 0.135 0.8 2B 37 633.57 0.145 0.69 2B 38 634 0.15 0.8 2B 39 634.24 0.145 0.93 2B 40 634.46 0.137 0.24 2B 41 634.64 0.148 0.38 2B 42 634.94 0.147 0.37 2B 43 635.15 0.139 0.15 2B 44 635.37 0.112 0.04 2B 45 635.57 0.103 0.01 2B 46 635.86 0.131 0.07 2B 47 636.04 0.131 0.13 2B 48 636.26 0.121 0.28 2B d-86-A-94-l-03 Plug Depth (m) Porosity Perm (mD) Facies 1 671.25 0.130 0.52 2B 2 672.90 0.127 2.10 2A 3 673.80 0.087 0.10 1A 4 674.75 0.131 1.50 1A 5 675.15 0.159 51.00 1A 6 676.60 0.164 7.70 2A 7 677.00 0.152 13.00 2A 8 678.50 0.160 3.60 1A 9 680.35 0.127 0.34 1A d-73-A-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 1 871.20 0.185 51.78 2A 2 871.54 0.167 9.09 2A 3 871.67 0.094 0.32 2B 4 871.83 0.166 9.05 2B 5 872.00 0.167 12.89 2B 6 872.20 0.092 1.26 2B 7 872.54 0.139 7.64 2B 8 872.64 0.173 8.94 2B 9 872.89 0.149 0.51 2B 10 873.79 0.113 2.83 2B 11 874.07 0.108 0.33 2B 12 874.36 0.183 17.03 2B 13 874.65 0.151 16.83 2B 14 874.76 0.101 0.07 2B 15 875.10 0.099 0.21 2B 16 875.40 0.091 0.07 2B 17 875.73 0.186 11.29 2B 18 875.91 0.176 18.79 2B 19 876.32 0.104 0.08 2B 20 876.55 0.162 2.00 2B 21 877.37 0.151 0.28 2B 22 877.81 0.130 0.16 2B 23 878.07 0.111 3.59 2B 24 878.46 0.163 2.37 2B 25 878.64 0.139 2.19 2B 26 878.81 0.165 6.12 2B 27 879.20 0.162 4.04 2B 28 879.35 0.181 12.83 2B 29 880.03 0.141 1.07 2B 30 880.31 0.204 15.40 2B 31 880.48 0.191 24.52 2B 32 880.61 0.165 2.35 2B 33 880.88 0.131 0.19 2B 34 881.15 0.170 1.50 2B 35 881.78 0.131 0.23 2B 36 882.72 0.138 1.36 2B 37 883.00 0.116 0.37 2B 38 883.25 0.114 0.07 2B 39 883.53 0.149 0.56 2B 40 884.44 0.186 27.43 2B 41 884.70 0.203 53.51 2B 42 884.89 0.189 35.75 2B 43 885.09 0.139 1.71 2B 44 885.51 0.159 0.83 2B 45 885.84 0.163 1.93 2B 46 886.10 0.159 3.35 2B 47 886.21 0.115 0.54 2B 48 886.87 0.136 3.88 2B 49 887.24 0.115 0.90 2B 50 887.47 0.105 0.06 2B 51 887.90 0.111 0.65 2B 52 888.52 0.163 11.93 2B 53 888.75 0.149 2.44 2B 54 889.03 0.108 0.26 2B 139 d-84-C-94-H-16 Plug Depth (m) Porosity Perm (mD) Facies 8 833.42 0.124 0.44 2B 9 833.68 0.121 0.16 2B 10 839.54 0.096 0.37 2B 11 839.82 0.109 12.00 2B 12 840.10 0.120 0.19 2B 13 842.10 0.086 0.04 1B AST 13 842.38 0.086 0.04 2B AST 13 842.80 0.086 0.04 2B 14 843.21 0.132 0.73 2B 15 843.83 0.181 7.84 2A 16 844.04 0.165 6.61 2A 17 844.12 0.151 5.22 2A 18 844.28 0.136 13.00 2A 19 844.43 0.157 44.00 1A 20 844.89 0.163 40.00 1A 21 845.00 0.157 18.30 1A 22 845.38 0.157 15.70 1A 23 845.91 0.143 11.00 1A 24 846.07 0.144 8.86 1A 25 846.31 0.143 7.82 1A 26 846.84 0.132 4.05 1A 27 847.10 0.141 0.01 1A 28 847.25 0.125 6.13 2A 29 847.35 0.078 1.40 2A 30 847.71 0.083 1.58 2A 31 848.00 0.096 1.54 2A 32 848.23 0.089 0.04 2A 33 848.33 0.100 1.53 2A 34 848.74 0.108 0.03 2A 35 848.82 0.100 1.82 2A 36 849.14 0.100 1.30 2A 37 849.31 0.101 0.21 2A 38 850.21 0.104 0.76 1A 39 850.28 0.077 1.15 1A 40 850.47 0.136 3.91 1A 41 850.81 0.107 0.37 1A 43 851.23 0.080 0.21 1A 44 853.96 0.096 0.38 2A 45 854.32 0.093 0.82 2A 46 854.51 0.104 0.37 2A 47 854.64 0.125 1.98 1A 48 855.82 0.124 1.03 1A 49 856.16 0.135 0.49 2A 50 856.34 0.121 0.28 2A 51 856.50 0.133 4.47 2A 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0089588/manifest

Comment

Related Items