UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The magneto-optic rotation of cis decahydronaphthalene McLeod, Raymond R. 1944

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1945_A8 M2 M2.pdf [ 5.41MB ]
Metadata
JSON: 831-1.0085874.json
JSON-LD: 831-1.0085874-ld.json
RDF/XML (Pretty): 831-1.0085874-rdf.xml
RDF/JSON: 831-1.0085874-rdf.json
Turtle: 831-1.0085874-turtle.txt
N-Triples: 831-1.0085874-rdf-ntriples.txt
Original Record: 831-1.0085874-source.json
Full Text
831-1.0085874-fulltext.txt
Citation
831-1.0085874.ris

Full Text

liH if ft & M > h -v THE MAGIOO TO- OPTIC ROTATI01 OF CIS DEC&HYI)R03M.P'HTHALElCB Raymond R* Iffeleod A Thesis submitted i n p a i r t i ^ l fu l f i l r aen t the requirements f o r the degree MASTER OF ARTS i n the ' BEMRTMEIT. OP PHYSICS UNIVERSITY OF BRITISH COLUMBIA A p r i l j . 1944. A C K Iff- 0 W L E J) G S E I T The author wishes to thank D r . H. D. Smith, whose supe rv i s ion of t h i s work has teen of great ass is tance and encouragement. I S D E X Page I . In t roduc t ion 1 I I . Experimental (a) Electromagnet, 6 . (ID) Pola r imete r '"' "7 (e) Tube - . 9 (d) Sources 10 (e) Heating System 10 (f) Method 11 I I I . Resu l t s (a) C e l l Co r r ec t i on 13 (b) C a l i b r a t i o n of the F i e l d 13 .. (c) The Verdet Constant o f Cis D e c a l i n 14 (d) Molecu la r Rota t ion 15 (e) D i s p e r s i o n 15 (f) Tempei'ature-Rotation Ef fec t 18 (g) Summary 19 IV . B ib l iog raphy 21 THE MGEETQ-OPTIC ROTATION OF •CIS DECAHYDROJfAPHTHALEEB IlTTRO DUC TI Oli O p t i c a l l y ac t i ve substances are defined as substances vrtiieh are capable of . rotat ing the plane of p o l a r i z a t i o n o f l i g h t . Compounds of t h i s type are d iv ided in to two main c l a s s e s . . The f i r s t c lass invo lves c r y s t a l compounds, and the o p t i c a l a c t i v i t y i s due to the arrangement of the atoms i n the c r y s t a l . The second c l a s s inc ludes s o l i d s , gases and l i q u i d s . The l i q u i d s may be i n the pure s tate or i n s o l u t i o n . In t h i s l a t t e r c l ass o p t i c a l a c t i v i t y i s produced by the assymmetry of the molecule i t s e l f , and the a c t i v i t y Is r e ta ined i n a l l p h y s i c a l s t a t e s . (1) i n 1846 Faraday discovered, tha t when a transparent substance was placed i n a magnetic f i e l d and monochromatic l i g h t was passed through the substance i n a d i r e c t i o n p a r a l l e l to the d i r e c t i o n o f the f i e l d , then the substance became o p t i c a l l y , a c t i v e and the plane o f p o l a r i z a t i o n was ro t a t ed . Moreover, when the f i e l d was reversed the d i r e c t i o n of r o t a t i o n was a l so reversed . The phenomenon he observed i s ' c a l l e d magne to -op t i ca l r o t a t i o n , or the Faraday E f f e c t . : 2he fundamental d i f f e rence between magnetic and n a t u r a l o p t i c a l r o t a t i ons Is evident from r e s u l t s which show that i f the l i g h t i s passed through a n a t u r a l l y o p t i c a l l y a c t i v e substance and then r e f l e c t e d back through i t aga in , the r e su l t an t r o t a t i o n i s ze ro . I f the same experiment i s performed i n the case of a magne t ica l ly o p t i c a l l y ac t i ve substance the r o t a t i o n i s doubled, since the d i r e c t i o n of the f i e l d determines the r o t a t i o n . . The Faraday Ef fec t i s explained by the theory o f F r e s n e l , which postulated that a substance having d i f f e r -ent r e f r a c t i v e i n d i c e s for the. r i g h t - and l a f t - c i r c u l a r l y po la r i zed rays o f a beam o f l i g h t would a d d i t i v e l y produce a l i n e a r l y p o l a r i z e d ray i n c l i n e d at an angle to the o r i g i n a l l i n e a r l y po la r i zed ray . I t thus appears that the magnetic, f i e l d . a l t e r s the v e l o c i t i e s o f the r i g h t -and l e f t - c i r c u l a r l y po l a r i zed rays because there i s a d i f fe rence i n "the • cha rac te r i s t io absorpt ion frequency of the t w o : r a y s . - , Faraday's d i scovery l e d to a tremendous amount of experimental work by "Verdet, (&) who showed that the angle of r o t a t i o n G depends upon t h e ' m a t e r i a l and i s p ropor t iona l to the s t rength H of the magnetic f i e l d and the length t of the column through which t h e , l i g h t passes. That i s 9 = V - t H The constant of p r o p o r t i o n a l i t y V i s c a l l e d the Terdet constant of the substance and i s u s u a l l y expressed i n minutes per gauss-cm.. The e f fec t of temperature upon the r o t a t i o n i s very smal l and i s g iven by Of = 0 O (1 - 0 . 0 0 0 l 0 4 t - O.Q00014t 2) for most substances where.' Q'-^ and, 9 0 are the ro ta t ions at temperatures t°G and 0°G. .The value of V va r i e s great ly , with-changes i n the wave l eng th . Yerdet and Becquerel (3) g ive -where the substance has refrac-t ive index ^ Z ^ , . at ' wave length \ , , \ x r e s p e c t i v e l y . She magnetic f i e l d may be produced by.a." so lenoid or by an electromagnet. When the f i e l d s t rength H i s not uniform over the whole length o f the column, the value Of tH i s then g iven by the i n t e g r a l o f the v a r i a t i o n o f the magnetic p o t e n t i a l between the two ends of the medium. The value Is usual'Iy found exper imenta l ly by observing the ro ta t ions produced by some substance such as water fo r which the V e r d e t c o n s t a n t has been determined a c c u r a t e l y . The molecular magnetic r o t a t i o n i s defined by where IvI - molecular weight o f the substance f weight f r a c t i o n of the substance i n a s o l u t i o n of dens i ty d . P e r k i n (4) has s tudied the molecular magnetic r o t a t i o n of many organic compounds and der ived an emp i r i ca l r u l e whereby the atomic equivalents are de ter -mined and then summed i n order to g ive an approximation to the molecular magnetic r o t a t i o n . This ru le does not 4 . hold very w e l l "because the molar magnetic r o t a t i o n may not be s t r i c t l y a d d i t i v e f o r elements possessing s i n g l e pa i r s of e lec t rons i n the combined s t a t e . 'The ru l e i s appl ied a lso to c losed r i n g s t ruc tures of the hydrocarbons as an approximation to t h e i r molecular r o t a t i o n s . The atomic equivalents of carbon and hydrogen are 0 . 5 1 5 and 0 . 2 5 4 r e s p e c t i v e l y . The mathematical treatment of the Faraday e f fec t i s s i m i l a r to the theory of the Zma&n E f f e c t . However, as yet the mechanisms producing magnetic r o t a t i ons are not completely understood and a great deal o f work remains to be done, p a r t i c u l a r l y on the more complex organic com-pounds. Never the less , magnetic r o t a t i o n r e s u l t s of ten fu rn i sh va luable informat ion regarding molecular s t r u c t u r e . For that ' reason the present work was concerned wi th a study of the magneto-opt ical r o t a t i o n of c i s decahydro-naphthalene. f ' Decahydronaphthalene (or deca l in ) i s a naphthane of' chemical formula C^QH-^ Q and molecular weight 1 3 8 . 2 4 6 . D e c a l i n i s be l i eved to e x i s t i n f i v e i someric forms, the c i s and t rans forms being o f g rea te r s t a b i l i t y than the other three isomers . H i t h e r t o , i t was impossible to separate the c i s and trans forms, but i n 193 6 - 3 7 the separat ion was accomplished s u c c e s s f u l l y at The U n i v e r s i t y 3£ of B r i t i s h Columbia by Seyer and Walker ( 5 ) . A process of repeated r e c t i f i c a t i o n and f r a c t i o n a l c r y s t a l l i s a t i o n s Seyer, W . F . , Assoc ia te Professor o f Chemieal Engineer-i n g , The U n i v e r s i t y o f B r i t i s h Columbia. | i I y i e l d e d e i s and trans as separate products of constant f r eez ing point and thus of great p u r i t y . The sample of c i s used i n t h i s work had a f r eez ing point of -43,2°G and a r e f r a c t i v e index of 1.48068 w i t h flaD at 20°C, L a t e r work on r e f r a c t i v e index ( 6 ) , s p e c i f i c heat 17) and surface t ens ion 18) i nd ica t ed the p o s s i b i l i t y of a change i n molecular s t ruc ture of the c i s d e c a l i n i n the o neighbourhood of 51 0. A study o f the Raman ef fec t by Smith (s) Zatoir (10) and Barton (11) also i nd i ca t ed the p o s s i b i l i t y of such a s t r u c t u r a l change. The object of t h i s research was then twofo ld : f i r s t l y , to determine the Verdet constant of e i s deeahydronaph-thalene; secondly, to observe whether a study o f the temperature effect- on the magneto-opt ical r o t a t i o n would i n d i c a t e a change i n molecular s t ruc tu re near 51°G. A great dea l of p re l imina ry work us ing so lenoids to produce the magnetic f i e l d was done. The r e s u l t s were not s u f f i c i e n t l y accura te , and the apparatus described he r e in was f i n a l l y employed. PLATE 27. £l.£CT#OM#6M£T C/eCC/lT. A, A J c 6 . IT . EXPERIMENTAL (a); E l ectrornagnet. The magnetic f i e l d was produced by a la rge electromagnet of the type used i n Zsaman ef fec t work. This electromagnet consis ted o f two la rge c o i l s of i n su la t ed copper wire 'mounted on a heavy i r o n frame. By means of a screw adjustment the dis tance between the faces of the c o i l s could be regu la ted . One c o i l had 1297 turns and 3.37 ohms r e s i s t a n c e , the other 1337 turns and 3.57 ohms r e s i s t a n c e . Each e o i l was provided wi th three water j a cke t s , and a steady flow of tap water e l iminated a l l heat ing e f fec t s even when h igh currents were used over long periods of t ime. Hollow c y l i n d r i c a l soft i r o n pole pieces wi th f l a t faces were employed. The i n s i d e and outside diameters were 2 cm. and g»5 cm. r e s p e c t i v e l y . A s u f f i c i e n t l y steady current fo r the magnet c o i l s (A) was suppl ied by the 110 v o l t B . C . motor generator (B) The c o i l s were connected i n p a r a l l e l across t h i s supply, and i n se r i e s w i th them were a v a r i a b l e r e s i s t o r (C) capable of c a r r y i n g 35 amps,, along wi th a carbon r e s i s t o r ^D) w i t h f ine screw adjustment,and a standard shunt (E), w i t h a Weston m i r r o r - s c a l e m i l l i v o l t m e t e r (F) i n p a r a l l e l . The m i l l i v o l t m e t e r and shunt had p r e v i o u s l y been c a l i b r a t e d to read the current wi th an e r ro r of l e s s x L e t t e r s r e f e r to P la t e I I . 7. than i 0.50 per cent . A switch (G) was a l so provided by which the d i r e c t i o n of the magnetic f i e l d could be reversed . (b) Po la r ime te r . The p o l a r i z e r and analyzer of an Adam K i l g e r polar imeter of the H a l f - l i p p i c h type were employed i n the determinat ion of the magneto-optic r o t a t i o n o f the l i q u i d under i n v e s t i g a t i o n . The p o l a r i z e r consis ted of a e o l l i m a t i n g tube provided wi th a c i r c u l a r aper ture . Inside the tube were mounted three prisms, a whole L i p p i c h s u f f i c i e n t l y l a rge to f i l l the f i e l d and two h a l f - L i p p i c h s , each f i l l i n g one t h i r d of the f i e l d . Thus the f i e l d was d iv ided in to three h o r i z o n t a l sec t ions . The prisms were mounted wi th t h e i r p r i n c i p a l planes nea r ly p a r a l l e l . The la rge L i p p i c h was nearest to the l i g h t source and when "crossed" w i t h the prism of the ana lyzer completely ext inguished the l i g h t . A smal l l e v e r was provided to ro ta te the whole L i p p i c h about a h o r i z o n t a l ax i s wi th respect to the H a l f - I i p p i c h s . When the p r i n c i p a l planes of the three prisms were e x a c t l y p a r a l l e l and the ana lyzer was turned to ex t ingu i sh the l i g h t passing through the whole L i p p i c h , the l i g h t passing through the h a l f - L i p p i c h s was also ex t ingu i shed . This was the p o s i t i o n fo r zero h a l f -shadow angle . The half-shadow angle was a l t e red to 3° by tu rn ing the whole L i p p i c h through an angle of 2 ° , 8. r e l a t i v e to the h a l f l i p p i e h s . Thus the outer parts o f the f i e l d remained dark whi l e - the c e n t r a l . p a r t became l i g h t e r because the ana lyzer prism and the whole l i p p i c h were no longer e x a c t l y crossed. A g degree r o t a t i o n of the analyzer i n the same sense then,, completely ext inguished the c e n t r a l p o r t i o n of the f i e l d whi le the outer por t ions became l i g h t e r . When the analyzer was rota ted through 1.5° o n l y , the three parts of the f i e l d were of equal i n t e n -s i t y , This l a t t e r was the p o s i t i o n of matching used i n making a l l s e t t i n g s . For the sodium source the h a l f -shade s e t t i n g of three degrees was used, but t h i s was a l t e r ed to s u i t the i n t e n s i t y o f the other wave l eng ths . The standard bichromate f i l t e r used wi th the sodium l i g h t source was inse r t ed in to the c o l l i m a t i n g tube and held i n p o s i t i o n by the c i r c u l a r aperture r i n g of the tube, Between the f i l t e r and prism were two metal shut ters which could 'be moved inwards to reduce the c i r c u l a r f i e l d to a narrow s l i t , i n many cases more accurate readings were poss ib le wi th the s l i t arrangement than w i t h a c i r c u l a r f i e l d . O p t i c a l l y the ana lyzer cons is ted o f a whole L i p p i c h prism and a te lescope which could be focussed upon the edges of the h a l f - L i p p i c h s i n the p o l a r i z e r , A la rge c i r c l e , graduated i n degrees, when ro ta ted served to more the ana lyz ing prism about a h o r i z o n t a l ax i s wi th respect to the p o l a r i z e r . By means o f two ve rn ie r s and eyepieces the roa t i on o f the analyzer could be read to w i t h i n 0 . 0 1 ° . Below the d i s c a m i l l e d headed clamping screw was f i xed r a d i a l l y w i t h respect to the c i r c l e . Another h o r i z o n t a l screw was used to make f ine adjust-ments i n the p o s i t i o n o f the c i r c l e a f t e r clamping. Mounted immediately i n f ront of the d i s c were two smal l opposing screws fo r tu rn ing the ana lyzer prism r e l a t i v e to the d i s c , thus making the reading of the c i r c l e zero fo r any half-shadow angle when no r o t a t i n g substance was between p o l a r i z e r and ana lyzer . The p o l a r i z e r and ana lyzer were held f i r m l y by a system o f i r o n stands and clamps i n such a p o s i t i o n that the beam of l i g h t passing through the p o l a r i s e t e r was e s s e n t i a l l y p a r a l l e l to the magnetic . f i e l d between the pole pieces o f the e l e c t r o - , magnet. (e) Tube. The l i q u i d under i n v e s t i g a t i o n was contained i n a s p e c i a l double-wal led c y l i n d r i c a l pyrex tube w i t h plane p a r a l l e l pyrex windows sealed to the ends o f the tube. This tube was 21.5 cm. i n length , the diameters of the inner and outer chambers being 2 cm. and 3 , 5 cm., respect -i v e l y . The inner chamber con ta in ing the l i q u i d was provided wi th a s ide tube through which a thermometer reading to 0 .01° C. was i n s e r t e d . Hot a i r was 10. c i r c u l a t e d through the outer chamber during the study of the temperature-ro ta t ion e f f e c t s . Rad ia t ion losses from the d e c a l i n when temperature-rota t ion s tudies were being made weee minimised by wrapping the tube i n severa l l aye r s of asbestos . The tube was held i n p o s i t i o n between the c o i l s o f the electromagnet by wooden clamps f i r m l y fastened to a heavy i r o n s tand. (d) L i g h t Sources. A very s a t i s f a c t o r y source of sodium l i g h t was provided by an Os i ra Laboratory Lamp operat ing at 110, v o l t s A . C . A mercury arc operat ing at 110 v o l t s JJ.C. and c a r r y i n g a current of 2 amps, provided r a d i a t i o n s of X 5780, X 5461 and X 4358. In the case of the green ( X 5461} l i n e the arc was used d i r e c t l y w i t h a f i l t e r between the arc and the p o l a r i z e r . The ye l low ( X 5780) and blue ( X 4358) l i n e s were separated by means of a , H i l g e r monochromatic i l l u m i n a t o r . In t h i s case i t was found necessary to change the half-shade s e t t i n g of the po la r ime te r . This increased the i n t e n s i t y s u f f i c i e n t l y so that readings of the same accuracy as fo r the sodium yel low and mercury green l i n e s could be ob ta ined . I e) Heat ing System* The heat ing c o i l (H) was operated on the 110 v o l t A . C . (I) and connected i n s e r i e s wi th two r e s i s t o r s (tT,K) and a double throw switeh i n order that e i t h e r a high or a low current could be used. The c o i l had a maximum H o power o at pat of 550 watts and was enclosed In an in su la t ed chamber. The temperature was regula ted by an oven thermo-s ta t (L) and a 2 v o l t D .C . magnetic r e l a y [M.) which was connected i l l se r ies w i th the heater c i r c u i t . The hot a i r was c i r c u l a t e d through the jacket around the l i q u i d by means of a 1/2 horse power compressor (1 ) . I t was poss ib le wi th t h i s arrangement to study the r o t a t i o n o o over a range of temperature from 20 0 to 70 C. The maximum f l u c t u a t i o n dur ing the course of observat ions at any p a r t i c u l a r temperature s e t t i n g was i 0.2°C„ (f) Method. The c e l l c o r r e c t i o n was determined by us ing sodium ye l low l i g h t and clamping the empty tube between the pole pieces of the magnet. The r o t a t i o n s due to the c e l l windows alone were observed using f i e l d s p ro-duced by passing currents of from 5 to 30 amps, through the c o i l s . The most c o n s i s t e n t readings were obtained by t ak ing readings i n groups of f i v e . The current was set at a p a r t i c u l a r value and the p o s i t i o n of the ana lyzer c i r c l e recorded when the e n t i r e f i e l d of the polar imeter was of uniform i n t e n s i t y . The c i r c l e was d is turbed and then readjusted four t imes. F ive zero values were then read, the current was reversed , and f i v e more readings were taken. The s t rength o f the magnetic f i e l d was then ca l cu l a t ed by f i l l i n g the tube w i t h water, fo r which Verdet constant i s known a c c u r a t e l y . Resul ts showed the f i e l d to he almost d i r e c t l y p ropor t iona l to the current over a range of from 5 to 30 amps. However, i t was found that for currents of 10, 15 and 20 amps, the r e s u l t s were more cons is ten t "because the current could "be held steady at these values over longer periods o f t ime. These l a t t e r - c u r r e n t values were used i n a l l fu r the r work. The tube was then f i l l e d w i th e i s d e c a l i n at 20°G and ro t a t i ons observed for currents of 10, 15 and 20 amps-, us ing the sodium y e l l o w , mercury y e l l o w , green and blue l i n e s as l i g h t sources . To check the accuracy of t h i s apparatus ro t a t i ons were a l so observed us ing pure benzene, and the value of the Verdet constant ca l cu la t ed from these r e s u l t s agreed to w i t h i n 0.5 per cent o f the accepted va lue . TABLE I CELL CORRECTION 10 amps. 5 amps. 179.95 180.00 180.05 0.05 179.95 180.01 180.05 0.Q5 179.95 180.00 180.06 0.06 179.96 , 180.00 180.06 :•. Q.Q5 Mean: 0.05 15 amps. 20 amps. 179.90 179.99 L 8 0 . l l 0.10 179.89 180.00 180.11 ' 0.11 179.90. 180.00 180.10 0.10 179.90 180.00 . . 180.10 0.10 179 .90 180.00 ; 180 .11 0.10 Mean: 0.10 179 .85 * 179.99 •••lB0i,15- 0.15 179*84 179.99, 180.16 0.16 179.85 179.99 :180.15 : 0.16 179.85 - 180.00 { .-• 180.15 .0.15 179.84 180.00 180.14 0,,15 Mean: : 0.15 179.79 179.99 180.20 0.21 179.78 179.98 .180.18 0.20 179.79 180;00 180.19 0.20 179.79 ; 179.98 180.19 0.20 179*77' 179.98 180.19 0.21 Mean: 0.20 13. I I I , ' . RESULTS. • (a) C e l l C o r r e c t i o n . "'. . The c e l l , c o r r e c t i o n was .determines us ing the sodium l i g h t and magnet currents of from 5 to 20 amperes. The observed ro t a t i ons are shown i n Table I . The r o t a -t i o n of the windows i n the magnetic f i e l d s was found to be p ropor t iona l to the f i e l d s t reng th . degrees per,/ampere. . In: a l l subsequent work t h i s value was subtracted from the observed ro ta t ions , i n order to f i n d the corrected r o t a t i o n s . In cases where observat ions were made us ing the mercury l i g h t source, the above c e l l c o r r e c t i o n was modif ied by apply ing the formula The mean : value of the c e l l -correct ion i s 0.010 .where^ / i s the index of r e f r a c t i o n o f the g lass ?; at wave: l eng th \ , ( i . e . 5893i) whi le t Sz and f\*_ indows are the c e l l c o r r e c t i o n and Index of r e f r a c t i o n of the windows at the new wave l eng th \ ^ . (b) C a l i b r a t i o n of the F i e l d . Table I I shows the observed and correc ted values of the_. r o t a t i o n fo r water at 20°0 using the sodium l i g h t . The f i e l d s t rength was c a l c u l a t e d from, the formula . ft yt 10 amps. 15 amps 20 amps. 25 amps TABLE I I • D i s t i l l e d water Temperature 20 "C. z 3*. e0 if^-o.) a' 5 'amps. •' 182.99 184.72 186.49 1.75 183.00 184.74 186 .51 1.76 183.00 184.73 186.48 1.74 183.00 •184.. 7 2 186 .50 . 1.75 183.00 184.7 4- 186.50 1.75 Mean: 1.75 181.41 . 184.73 188.05 3.32 181.42 184.74 : 188.06 o »3 2 181.43 184.73 188.04 3.31 181.41 184.74 188.06 '3.33 181.41 184.74 188.05 3 9 33 ; Mean: 3 & 3 3 179.80 184.72 .189.64 ' 4.92 179.80 184.71 189.64 4.91 179.81 184.71 189.65 4.90 179.81 184.72 189.64 4.91 179.81 184.73 "V189.64 4.92 Mean: 4.91 178.22 -:" 184.75 ^191.25 6.50 178.22 .. 184.75 191.26 6.49 178.22 184.76 191.26 6.49 178.20 184.75 191.28 6.51 178.20 184.74 191.26 6.50 Mean: 6 .50 176.87 184.73 192.58 7.85 176.89 184.75 192.60 7.86 176.85 184.74 192.57 7.84 176.88 184.74 192.58 .7.85 176.89 184.74 192.59 7.85 Mean: 7.85 1.70 3.22 4.76 6.50 7.60 TABLE I I (Cont 'd . ) 4e & ^ ^-<aj- ^ SO amps. 175.45 184.71 193.97 9.26 175.46 184 .,7 2 193.98 9.27 175.46 184.71 193,99 9.26 175.45 184.72 193.96 9.26 175.45 184.72 193.97 9.26 Mean: 9.26 8.96 where H <=> f i e l d s t rength i n gauss. '©"' = corrected r o t a t i o n i n degrees, t = l eng th of the c e l l = 21.5 cm. V = Verdet constant of water at 20°0 =0.01306 minutes per gauss-cm. The r e s u l t s are summarized below. The symbol I denote the current i n amperes. I Q . t <T HX/0 5 1.75 1.70 3.63 10 3«3 2 3 a 22 6 .87 15 ' 4.91 " 4.76 10.16 20 6.50 6.30 13.44 25 7.85 7.60 16 a 22 30 .9.26 8.96 19.12 (c) The Verdet Constant .of Cis S e e a l i n . From the above values of the f i e l d s t rength and the r e s u l t s of Tables III, IV and V , the Verdet constant o f c i s d e c a l i n was found to be 0.01347 minute per gauss-cm. at 22" degrees Cent igrade. This i s the mean value taken from the ro t a t ions observed us ing currents o f 10, 15 and 20 amperes. Again the formula V Ht was employed. - -I H - Q 0 I 10 687' 3.44 3.34 0.01357 15 1016 5«02 4.87 0.01358 20 1344 6.69 6.49 0.01347 Mean: 0 .01347 TJLB1E I I I CIS LBCAL.IF Current = 10 amps. • Temp* = 22°G. . Wave Leng th - 5893A. 6. 60. 6 s. i . 2 . 3 . 4 . 5>-6 * 7. . .8-. 9. 10. 11 . 12 6 13« 14. 15 . 16. 17 . 18. 19. 20 . 21 . 22 * 23. 24. 25 e 26* 27 . .28. 29. 30. 3 1 . 32 • 33 . 3'4. 35« 36. 37, 178.83 178.84 178.83 178.82 178.83 178.84 178.84 178.83 178.83 17.8.85 178.85 178*84 178.84 178.84 178.84 178. 84. 178.85 178.85 178.84 178.84 178.84 178.84 178.85 178.84 178.84 178.84 178.85 178.83 178.83 178.84 178.85 178.84 178.84 178.85 178.84 178.84 178.85 182.27 182v26-182»28 1.82.25 182.26 182.26 182.27 182.28 182.25 182.27 18.2.27 182.27^ 182.27 182.27 182.26 182.26 182.27 182.27 182.28 .182.28 182.27 182*27 182.26 182.26 182.26 182.26 182.26 182.27 182.26 182.26 182.27 182,26 182.27 182.27 182.27 182.26 182.27 185.75 185.75 185.74 ,185.74 185.75 185,73 185.74 185.74 185.74 185.74 185.75 185.75 185.74. 185.74 185.75 185.74 185.76 185.75 185.76 185.76 .185.75 185,75 185.75 185.75 185.76 185.75 185,76 185.75 185.74 185.76 185.74 185.76 185.75 185.75 185., 75 185.75 185,75 182.27 182.27 182.26 182.26 182.27 182.26 182,26 182.27 182,25 182.26 182.26 182.29 182.29 182.30 182.29 182.29 182.28 1^2.28 182.30 182.30 182.30 182,29 182.30 .182.30 182.30 182.28 182.29 182.28 182.28 182.30 182.28 182.29 182.28 182.30 182.30 182.30 182.30. 3.44 3 .42 3 .45 3 .43 3.43 3.42 3.43 3.45 3.42 3.42 3.42 3.43 3.43 3.43 3.42 3.42 3.42 3.42 3.44 3.44 3.43 3.43" a .41 3.42 3.42 3.42 3.41 3.44 3 .43 3.42 3.42 '3.42 3.43 3.42 3.43 3.42 3.42 3.48 3.48 3,48 3.48 3.48 3.47 3.48 3.47 3.49 3.48 3.49 3.46 3.45 3.44 3 .46 3*45 3.46 3.47 3.46 3.46 3.45 3.46 3.45 3.45 3.46 3.47 3.47 3.47 3.46 3.46 3.46 3.47 3.47 3.45 3.45 3.45 3.45 3.46 3.45 3.46 3 .45 3 .45 3.44 3 .45 3.46 3.45 3.45 3.45 3.44 3.44 3.43 3,44 3.43 3.45 3.44 3.45 3 .45 3.44 3.44 3.43 3.43 3.44 3.44 3.44 3.45 3.44 3.44 3.44 3 .44 3.45 3.43 3.4.4 3.43 3.43 Mean = 3 . 4 4 ° TABLE, IV CIS DECA1II •Gurrent = 15 amps. Temp. = 22° U, Wave Length =5893A. 4 4 . , So. B . I, . 177.30 182.32 187,41 •' 182.41 5.02 5.00 5.01 * 2 . 177.31 182.32 187.41 18a.41 • 5.01 - 5 .00 5 .00 3 . 177.30 182.33 187.43 182.44 5.03 4,99 5.01 4 . 177.31 182.30 187.44 182.43 4 . §9 5.01 5.00 5 . 177.31 182.32 187.43 182.41 5.01 5.02 5.02 6. 177.30 182 «o2 187.43 182.41 5.02 5.02 5.02 7. 177.29 182.31 187.43 182.41 5.02 •: 5.02 5.02 8. 177.31 182.30 187.42 182.41 4.99 5.01 5.00 9. 177.32 182.32 187.41 182.43, ,5 .00 4.98 4.99 10. 177.31 182.32 187.43 182.41 5.01 5,02 5.02 11. 177.37 182.36 187,42 • 182.42 4.99 5.00 5.00 12» 177.37 182.36 . 187.42 182.42 4.99 5.00 5.00 13. 177.36 182.36 187.43 182.40 5,00 5.03 5*01 14. 177.35- 182.38 187.40 182.39 5.03 5,01 5.02 15. 177.35 18:2 .36 187.42 182.42 5 .,01 5.00 5.00 16*. ^177.-35 182.38 187.42. 182.42 5.03 5.00 • 5.01 I7V 177.35 182.36 187.43 182.41 5.01 5.02 5.01 18. 177.37 182.37 187.39- 182 .36 5»00 5.03 5.01 X Q« 177.35 182,37 187.39 182.36 5.02 5.03 5.02 20. 177.37 182.35 187.38 182.37 4.98 5.01 4.99 21 . 177.37 182.37 187.37 182.37 5.00 5.00 5.00 22 9 177.35 182,35 187,37 182.38 5 . GO!: 4.99 4.99 23 . 177.36 182.38 187.37 182.39 5.02 4.98 5.00 24. 177.38 182.37 187.38 182.38 4.99 5.00 4.99 25. 17 7. '3 6 182.36 187.39 182,36 5.00 5.03 5.01 26. - 177.36 182.37 187.40 182.38 5.01 5.02 5.01 27. 177.38 ; 182.38 187.40 182.39 5.00 5.01 5 * 00 28," 177.38 18 2-» 3 8 187.41 182.37 5.00 5.04 5.02 29. 177.36- 182.36 187.39 182.38 5.00 5.01 5.00 3 0 . 177.36- 182.36 187.39 182.36 5 .00 5 .03 5.01 3 1 . 177.37 182.38 187.39 182.36 5.01 5.03 5.02 32. 177.12 182.13 ; 18 7,.42 182.38 5.01 5.04 5.02 33 . 177.11 182.14 18 7..44 182.37 5.03 5.07 5.05 34. 177.12 182.13 ,187442 182.38 5.01 5.04 5.02 35 . 177.12 182.13 187i44 182.37 5 • 01 5.07 5.04 36. 177.13 182.15 187.43 182.37 5.02 5.06 5.04 37. 177.11 182.14 187,42 182.38 5.03 5.04 5.03 Mean TABLE ¥ SIS LECALIIf 'Cur ren t = 20 amps. Temp. = 22°C. , Wave Length = 5893A. 0*. 3 Iv 175.62 182.30 189.02. 182.34 6.68 6.68 6.68 2 © 175.62 182.30, 189.02 182.34 6.68 6.68 6 .68 3 . 175.62 182.29 189 .02 182.35:: 6.67 6.67 6.67 4 . 175.61 182.30/ 189.02 182.35 6.69 6.67 6.68 5. 175.60 182.30 189.01 • 182.35 6.70 6.66 • 6'. 6 8 6 . 175.60 182.29 189.00 182.35 . 6 . 6 9 6 .65. . 6.67 7 . - 175.61 182.29 189.02 182.36 6.68 6.66 6.67 8. 175.60 182.31 189.04 ,182.34 . 6.71 6.70 6.70 9. 175 .60 "182.30 189.03 182.34 6.70 6.69 6.69 10. 175.60 182.30 189.02 •  182.35 6.70 6,67 6.68 1 1 . 175.60 182.30 189.02 182.35 .6.70 6.67 6.68 12« 175.60 182.28 , 189.02 182.35 6.68 . 6.67 - 6.68 13. 175.60 182.29 189.00 182.32 6.69 6,68 6.69 14. 175.59 '. 182.29 189.01 182.31 6.70 6 .70 6.70 15« 175.59 182.3.0 . 189.00 182.32 6.71 .6 .68 6.69 16. 175.59 182.30 188.99 182 .30 6.71 '•6.69 6.70 17. 175.59 182.30 188.99 182.30 6.71 6.69 - 6.70 18 . 175.60: :182.29 189.00 182.30 6.69 6.70 6.69 19. 175.61 , 182.29 189.00 182.30 6.68 6.70 6.69 20. 175'. 61 182.30 189.00 182.31 6.69 6 .69 "6.69 21 . 175.61 182.30, 189.02 182.31 • 6.69 6.71 6.70 22. 175.60 , 182.31 189.02 182.32 6.713. 6.70 6.70 2t5« 175.61 182.30 ' 189.01 182.34 6.69 6.71 6.70 24. 175.60 182.22 189.00 •• 182.32 6.72 6.68 . 6.70 25 © 175.61 . 182.29: 189.02 182.32 '.6.68 6.68 6.68 26. 175.60 182.30 189.01 182.34 6.70 6.67 6.68 27. 175.60 182.30 189.02 182.32 6.70 6.70 .6.70 28.. 175.60 •18a. 5 i 189.01 182.32 6.71 6.69 : 6 .70 29. 175.60 18 2-.31 189.01 182.31 6.71 6.70 6,70 30 . 175.61 182,30 189.01 182.32 6 .69 6.69 6.69 31 . 175.60 182.29 189.02 182.31 6 .69 6,71' 6.70 32. 175.61 182.30' 189.02 182.31 6.69 6.71 6,70 3o • 175.61 182,30 189.02 182.31 6.69 6.71 " 6.70 34. 175.60 182.31 189.00 182.32 6.71 6.68 6.69 175.60 182.30 189.02 182.30 . 6.70 6.72 6 .71 36. 175.60 182.30 189.02 182.32 - 6.70 6.70 6.70 37. 175.61 182.30 189.02 182.32 ; 6.69 6.70 6.69 Mean = 6 .69° 15. (d} Molecu la r R o t a t i o n . The molecular r o t a t i o n (M) was ca l cu l a t ed from the' formula (M)- = % Q l a 2 where 0. and d. are the molecular weights , corrected r o t a t i o n s and d e n s i t i e s r e s p e c t i v e l y . The subsc r ip t i = 1 refers to d e c a l i n , whi le i = Z re fers to water . A c o r r e c t i o n was appl ied to the previous ro t a t i ons found f o r water i n order to g ive values of Gg for the same -temperature at which the ro t a t ions f o r d e c a l i n were measured (22°C) . Resul t s were:-. I H (M) 10 687 8.70 15 1016 8,57 20 1344 8.63 'Mean (11) : 8.63 (e) D i s p e r s i o n . - ' Tables Y I , Y I I and Y I I I show the ro ta t ions fo r c i s d e e a l i n using the mercury l i n e s o f wave lengths 5780', 5461 and 4358 Angstroms r e s p e c t i v e l y . The d e c a l i n wais held at a constant temperature of 2 6 . 5 ° C , and currents of 10, 15 and-20 amperes were used f o r each wave l e n g t h . The Yerdet constants were ca l cu l a t ed i n the same manner as f o r the sodium l i g h t ( v i z . sect ion 0 ) . The r e s u l t s are g iven below. .16 , T X H 1 57.8.0A 10 15 20 687-1016 1334 3.41 5.12 6.88 0.01389 0.01409 0.01414 Mean: 0.01408 minutes per gauss-ecu 5461A- ' 10 15 20 687 1016 1334 3.8? 3.76 7.62 0.01588 0.01588 0.01589 Lie an: 0.01588 minutes per gauss-cm. 435 8A 10 15 20 6 87 1016 1334 6.28 9.27 12.40 0.02559 0.02554 0.02530 Mean: 0.02548 minutes per gauss-cm. In order to p l o t a d i s p e r s i o n curve which would have at l e a s t four values shown i t was necessary to f i n d the r o t a t i o n o f d e c a l i n using sodium l i g h t at 2 5 . 5 ° 0 o ra the r than at 22 C as p r ev ious ly c a l c u l a t e d . The value of t h i s r o t a t i o n was determined w i t h s u f f i c i e n t accuracy by rev iewing c e r t a i n i n c i d e n t a l readings which are too lengthy to present here. These observat ions showed that the r o t a t i o n increased 0.002 degrees per degree C e n t i -grade over the range 20°C to 28°C when sodium l i g h t was used. Acco rd ing ly the r e s u l t s g iven below are a very c lose approximation to the true va lue , L E £ I 10 687 3.35 0.01361 15, 1016 4.96 0.01362 20 ,1334 6.56 0,01362 Mean: 0.01362 TABLE V I Cis x>eealin A 5780 Temp. = 26 .5°G. 10 amps. 15 amps SO- amps, 4 <9o . & 0 182.39 185.95 .189.43 3.56 3.48 3 .52 182.40 185.96 189.44 3.56 3 .48 .' o G> o2 182.40 185.96 189.43 3.56 3.47 3.51 182.41 185.96 189.42 ,3.46 3,51 182 ..3-9.'. 185.95. ' 189.42 3.56 3.47 o. 5 2 Meant 3,52 180.70 185.97 ' 191.25-: 5.27 5.28 5,28 180.70 185.96 191.25 . 5.26 - 5.29 -• 5,28 180.70. 185.96 191.25 - 5.26 5 e 2 9 5.27 180.78 185.96 191.24 5.28 5,28 5 .28 180.71 185.96 191.26 5 ^  25 5.30 5.27 Mean: 5.28 178.93 185.96 192-&2 7.03 6.96 6.99 178.92 185.95 192.92 7.03 6.97 7.00 178.92 185.97 - 192.90 7.05 6.93 6.99 178.91 185.96 192.93 7.05 6.97 7.10 178.91 185.96 192.93 7.05 - 6.97 7..10 Mean: 7.00 TABLE 711 Cis Deca l in X 54614 Temp. = 26.5°-p. 15 amps. Oo 0 176.07 181.98 187.93 5.91 ; 5.59 15«93 176.07 ' 181.99 . 187.94 5.92 5.95 5 .93 176.08 181."9 tl- 187.93 5.90 5.95' 5.92 176.08 l S 1.9 7 187.95' 5.89 5.98 5.93 17 6.. 06 181.98 187.93 5.92 5.95 5.93 176.07 .•: 181.98 187.94 5.91 5.96 5.93 176.08 181.97 • 187.95 5.89 5.9.8 5.93 176.07 : 181.97 187.94 5.90 5.97 5.93 176.07 181»98 187.95 5 .91 5.97 . 5.94. Meant 5.93 20 amps. 174.15 174.14 174.14 174.14 174.13 174.15 174.14 174.14 174.15 174.14 181.96 181.96 181.96 181.98 181.98 181.97 181.98 181.98 181.98 181.98 189.85 189.85 189.84 189.86 189.85 189.85 189.85 189.88 189.88 189*88 7.81 7.82 7 82 7.84 7.85 7.82 7.84 7.84 7.83 7.84 7.89 7.89 7.88 7.88 7.87 7.88 7.87 7.90 7,90 7.90 7.85 7.85 7 .85 7.86 7.86 7 .85 7.85 7.87 7 .87 7.87 10 amps Mean: 7.86 178.02 182.02 • 186.03 4.00 " 4.01 .4.00 178.02 182.01 186.04 . 3.99 • 4.03 4.01 178.01 182.03 186.03 4.02 4.00 4.01 178.00 183.03 186.03 4.03 4.00 4.01 178.02 182.02 186.03. 4.00 4.01 4.00 178.02 182.03 186.03 4.01 '4.00' 4.01 178.02 > ;182.03 186,03 4.01 4.00 4.00 178.02 182.02 186.03 4.00 .4.01 4.01 178.02 182.02 186.04 4.00 4.02 4.01 178.02 182.03 186.03 4.01 4.00 .4.01 Mean: 4.01 TABLE V I I I Cis D e c a l i n - X 4358A, Temp. = 2 6 . 5 y C . SO, amps. 15 amps 10 amps, 4 A (So ($, - 6l) '•'•; 0 173.36 186.04 199.02 12,68 12.98 12,83 173.37 186.02: 199.03 12.65 13.01 12.83 173,34 186.02 199.02 12.68 13.00 12.84 173.36 186.04 199.05 12.68 13.01 12.85 173.37 186,04 199.05 12.67. 13.01 12.84 Mean:,: 12.84 176.62 186,37 195.85. 9.75 : 9.48 9*61 176.65 186.37 195.83 9.72 9.46 .9.58 176.66 186.35 195.84 . 9.69 9.49 9.59 176.63 186.36 195.85 9,73 9.49 •9.61 176.65 186.37 195.86 9*72 9,45 9.5.8 Mean: 9.60 179.62 186,18 19-2V62 6*56 6.44 6.50 179.61 ; 186.16 192;60 6.55 6.44 6.49. 179.62 186.15 192.61 6.53 6.46 6*49 179.62 186.16 192.63 6.54 6.47 6.50 179.62 186.18 192.61 6.56. . 6,43 •6 .49 Mean: 6.50 The d i s p e r s i o n curve, found by p l o t t i n g the mean Terdet constant against the wave l eng th , i s seen to "be qui te smooth (Pla te I I I ) . The d e v i a t i o n of the value fo r wave l eng th 5780 Angstroms i s w e l l w i t h i n e x p e r i -mental e r r o r . The d i s p e r s i o n .constants f o r the magnetic r o t a t i o n of c i s d e c a l i n were ca l cu l a t ed from Richardson 's formula • • where: -e, K = Rota t ion constants o f d e c a l i n X Q = M s p e r s i o n constant of d e c a l i n n^ — R e f r a c t i o n index of d e c a l i n at .wave length X ^. Previous work by Seyer and Mizuhara ( 6 ) gave values f o r the r e f r a c t i v e index n^ of o i l d e c a l i n f o r the sodium yel low and the hydrogen Ji and l i n e s . The f i r s t value was used d i r e c t l y , .and i n a d d i t i o n the r e f r a c t i v e Indices f o r the mercury l i n e s were found by graphing Seyer ' s r e s u l t s i n the form of a d i s p e r s i o n curve . The value = n jXf Y; should increase as the wave length inc reases . The r e s u l t s , i n the accompanying t a b l e , as w e l l as the d i s p e r s i o n curve, i n d i c a t e that the V'erdet constant f o r the mercury, green l i n e should be somewhat h ighe r . For t h i s reason, on ly , the f i r s t and l a s t two values of f) were used i n c a l c u l a t i n g the TABLE I I Cis Deoa l in •X 5893, H = 1016 gauss. 69.0 t)7 «3 53.0 49.5 0K So A - 4 0,-eo 6 177.05 181.95 * ' f 186 .75 4.90 4.80 4.850 177.04 181,9.5 186.7.4 4.91 4.79 , 4.850 177.04 181.96 186.76 4.91 4.80 4.855 177.05 181.95 186.75 4.90 &*m ,4.8.50 177.05 181.97 : 186.78 4.92 4.81 4 . -85 5 177.03 . ' 181.96 186.78 4.93 4.82 4.855 177.04 181.96 186.76 4.92 - .4.80 4,860 Meant 4.854 177.00 181,88 186.78 4.88 4.90: 4.890 176.99 181.88. 186.78 4.89 4,90 : ,4v895 177.00 181.88 • 186.79 .4.88 4.91 4.895 177.00 181,88 186.78 4.88 • 4.90 . 4.890 177.01 181.89 ••. 186.79 4.88/ 4.90 4.890 176,99 181:88 186.77 4.8-9. 4,89 4.890 Mean." 4.892 176.OS 181.86 186.83 4.84 4.97 .4.905 176.01 181.86 •186.82, 4.85 4.96 4.905' 17-6.02 181.87, . 186.83 4.85 .4.96 4.905 176.01 181.86 , 186.82 4.85 4.96 4.905 176.02 181.87 186.83 4.85 4.96 .' 4.905 176.02 181.86 186.83 '4.84 .4.97 4.905 Mean: , 4.905 176,99 181.87 186.82 4.88 4.95 4.915 .176,-19 181.88 186,82 4.89 4.94 4.915 176.99 181.87 186.83 4.88 4.96 4.920 177 W&Q "181.87 186.82 4.87 4.95 4.910 177.01 181.87 186.83 4.86 4,96 4.910 176.9-9 181,87' 186,83 4.88 4.96 4.920 Mean: 4.915 TABLE IZ (Cont 'd . ) Temp.°C Sit •A 0rSo 9 46.0 176.93 181.92 186.79 4.99 4.87 4,930 176.92 181.90 186.78 4.98 4,88 4.930 176.91 181.91 186.78 5.00 4.87 4.935 176.92 181.92 * - 186.78 5.00 4.86 4.93 0 176.93 181.92 186.79 , 4,99 4.87 4,930 •Mean: 4,931 39.3 176.94 '.: 181.92 186.89 4.98 4.97 4.975 176.93 181.92 .186.88 4.99 4.96 4.975 176.93 181.91 186.88 4.98 . 4.97 4.975 176.93 181.92 186.88 4.99 4.96 4,975 Mean: 4.975 31.6 176.93 181.95 186.98 . 5.02 5 .03 * 5.025 176.92 181.95 186.97 5.03 5.030 176.95 181.96 186.99 5.01 5.03 5.020 176.94 ,181.97 186.99 5.03 5.02 5,025 Mean: 5 © 0 S 5 25 .0 ,• 176.89 181.93 :' 187.04 5.04 5 .11 5.075 176.89 181.92 187.05 5.03 . 5.13 5.080 176.89 181.92 187.0% 5.03 5,11 5.070 176.88 181.93: 187.03 5 .05 5.10 5.075 176.88 . 181.93 187.02 5.05 5.09 5.070 Mean: 5.074 18. d i s p e r s i o n constants . n V x l O 3 — #xio~ 5893 1.4783 13.62 6.987 5780 1.4789 14.08 6.970 5461 1.4805 15.88 7.014 4358 1.4888 25.48 7.220 5 By t h i s method:-c = 8 .1 x io^ K = - 0 . 4 9 7 , A o = 6400 A The value fo r A 0 i nd i ca t e s the p o s i t i o n of a strong or p r i n c i p a l absorpt ion hand at A . The ca l cu l a t ed value fo r the Verdet constant i s then 0.(2.428 f o r the mercury f^jf^ /ow l i n e , l e s s than one . percent h igher than the experimental va lue . ( f ) Temperature-Rotation E f f e c t . Resul ts of the study of the temperature-rota t ion e f fec t using c i s d e c a l i n and the sodium l i g h t are shown i n Table IX . P la t e IV i s a graph o f r o t a t i o n p lo t t ed against temperature. I t w i l l be seen from t h i s that . the curve i s not smooth as i n the case o f o rd inary sub-s tances , but-shows a d i s c o n t i n u i t y i n the neighbourhood of 47 C. The d iscont i n u i t y may not be as sharp as i n d i c a t e d , but c e r t a i n l y one i s present . These r e s u l t s could i nd i ca t e a change i n molecular s t ruc tu re i n the reg ion from 45 to 50 degrees C. TABLE X MAG-IE TO-OPTIC CONSTANTS OF CIS DECAHYDRONAPHTHALEIE Verdet Constant at 22°C 26.5 G-. 26.5 U C o, n 26.5 W C *' 26.5°C )*5893 A.5893 A 5780 A 5461 A4358 0,01347 0.01362 0.01408 0,01588 0.02548 D i s p e r s i o n Constant Ro ta t ion " Ro ta t i on " \ 0 = 6400 A c = 8 . 1 x 1 Q 5 K = ' -0.497 19, (g) Summary, Hie magneto-optic constants of c i s decahydro-najfcfehalene are summarized i n Table X . I t i s be l ieved the values of the Verdet constants are cor rec t to w i t h i n one percent. This degree of accuracy compares very favourably wi th that u s u a l l y achieved w i t h t h i s type o f apparatus (genera l ly 1 to 2 per cen t ) . The value of the d i s p e r s i o n constant X 0 = 64-00 A. i n d i c a t e s the presence of a s trong absorp t ion band at that wave l e n g t h . As yet no such band has been found, but i t i s hoped that work may be done us ing long columns of d e c a l i n to v e r i f y t h i s r e s u l t . The molecular magnetic r o t a t i o n i s found to be 8.63. This i s much lower than the va lue o f 9,72 ca l cu la t ed from P e r k i n r s atomic equ iva l en t s , However the d e v i a t i o n i s to. be expected, s ince Per k i n ' s ru le does not seem to apply very w e l l to any of the/heavy hydrocarbons. In some cases d i f ferences o f 25 percent have been found by other workers . • . I t i s hoped that t h i s work w i l l be continued by other workers . The p o s s i b i l i t y of a change i n molecular s t ruc tu re i s j s e r t a l n l y ' not d e f i n i t e l y confirmed by these r e s u l t s . I t i s probable that the temperature-rota t ion r e s u l t s contained here in would not give a sudden change i n the curve were the matter of experimental e r ro r given a f u l l e r cons ide ra t i on . In a d d i t i o n the readings taken are too few i n number to confirm the conclus ion i n f e r r e d . 2 0 . However, i f more readings are taken us ing higher currents and the mercury "blue l i n e , a n d r e s u l t i n g In much l a r g e r r o t a t i o n s , the r e s u l t s w i l l be more conclus ive p r o v i d i n g , of course , the same or even a g rea te r degree of accuracy can be achieved.-21. IT . BIBLIOGRAPHY (a) 1. Glasstone, S. - "Textbook o f P h y s i c a l Chemis t ry . n 2. I n t e r n a t i o n a l C r i t i c a l Tables - V o l . 8, p, 1477. 3 . Ibid.. ' ' 4 . P e r k i n . ifeurnalnofotheaAmerican Chemical S o c i e t y , v o l . 3 2 5. Walker, R . D . , M . A . S o . T h e s i s , U . B . C . (1937). 6. Mizuhara , S . F . , M.A. Thesis , U . B . C . (1940). 7. D a v i s , C-.F. , M . A , S c . Thes is , U . E . C . (1939). 8. Davenport, C . H . , B . A . S e . Thes is , U . E . C . (1938). 9. Smith, K . D . . Associa te Professor of P h y s i c s , U . B . C . 10. Zotov, G . , M.A. Thes is , U . B . C . , (1941). 11. Bar ton , h . M.A. Thes is , U . B . C , (1943). (b) Yalu.es of the Yerdet constant fo r water were taken from the, " In t e rna t i ona l C r i t i c a l Tables" Yolume 8 , p. 1477 and the American Rubber Company "Handbook of Phys ics and Chemis t ry ." (c) The f o l l o w i n g references books have also been found u s e f u l . Jenkins & White - "Fundamental Opt ics" G-lasstone, S. - "Textbook of P h y s i c a l Chemistry (1940)" ,• p. 580. Drude, P . . - " P r i n c i p l e s of O p t i c s . " Sommerfeld, - "Atomic St ruc ture and Spec t r a l L i n e s . " Ruark and Urey - "Atoms, Molecules and Quanta" Yan Yleck , F . S . - " E l e c t r i c and .Magnetic S u s c e p t i b i l i t i e s , " p. 361. Yan Yleck , F . S . - "Quantum P r i n c i p l e s and Line Spec t r a . " R o t o r s , G. - " E l e c t r i c and Magnetic Dev ices . " Gibbs - " O p t i c a l Methods-of Chemical A n a l y s i s . " Wood, R.W. - " P h y s i c a l O p t i c s . " Born & Jordan - "Elementary Quantum Mechanics ." Canadian Journal of Research - Y o l . 21A, p. 69. Comptes Rendus - V o l s . 90, 100, 110, 125, 149. Review of Modern Physics - V o l . 9, p. 432. Journa l De Phys ik - V o l s . 8 (1879) and 9 (1880). Anna1en Chem. Physik - (3) Y . 5 2 , p . 129, . ( 5 ) , Y . 8 , p. 346. P h i l o s o p h i c a l Trans. Royal Soc i e ty - V o l . 232A, - . 117. Zei tung Pur Phys ik - V o l s . 34, 45, 47. Proceedings o f the Royal Soc ie ty - v o l . 114A, p . 181, V o l . 136A, p. 569 Y o l . 152A, p . 342 V o l . 144, p . 655 Y o l . 150, p. 84. 22. Trail s act ions of the Faraday Soc ie ty - v o l . 10, p. 96, "Vol. 26 j pp. 266, 321, 337, V o l . 33. p. 268. Phys. Zeitung - V o l . 31 , pp. 366, 1028, V o l . 16, pp. 251, 437. Journal Ghem. Phys. - v o l . 5, ' pp . 479, 753. v o l . 6, p. 824. Zeitung Phys. Ghem. - V o l . 85, p . 507. Annalen Phys ik - V o l . 55, p . 177. Z e i t i n g Electrochemie - V o l . 36, p. 375. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085874/manifest

Comment

Related Items