UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A study of the spark spectra of selenium George, Simon 1962

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1962_A1 G3 S7.pdf [ 13.08MB ]
Metadata
JSON: 831-1.0085864.json
JSON-LD: 831-1.0085864-ld.json
RDF/XML (Pretty): 831-1.0085864-rdf.xml
RDF/JSON: 831-1.0085864-rdf.json
Turtle: 831-1.0085864-turtle.txt
N-Triples: 831-1.0085864-rdf-ntriples.txt
Original Record: 831-1.0085864-source.json
Full Text
831-1.0085864-fulltext.txt
Citation
831-1.0085864.ris

Full Text

A STUDY OF THE SPARK SPECTRA OF SELENIUM by SIMON GEORGE B.Sc. The University of Travancore, India. 1951 M.Sc. The University of Saugar, India, 1954 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of PHYSICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1962 In presenting t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that permission f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n permission. Department The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada, The U n i v e r s i t y of B r i t i s h Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of SIMON GEORGE B.Sc. U n i v e r s i t y of Travancore, India, 1951 M.Sc. U n i v e r s i t y of Saugar, India, 1954 THURSDAY, SEPTEMBER 20th, 1962, AT 1:30 P.M. IN ROOM 303, PHYSICS BUILDING COMMITTEE IN CHARGE Chairman. F. H, Soward External Examiner: B .' EDLEN, Lunds U n i v e r s i t e t , Sweden A. M. CR00KER F.'W, DALBY K. C. MANN R. A. NODWELL C. REID cV A.JV SWAN'SON A STUDY OF THE SPARK SPECTRA OF SELENIUM ABSTRACT The spark spectra of selenium have been photo-graphed from the i n f r a - r e d to the vacuum u l t r a - v i o l e t on a v a r i e t y of spectrographs including a two metre vacuum spectrograph, a twenty-one foot concave grating, a H i l g e r constant deviation, a Hil g e r medium quartz and a H i l g e r large automatic glass-quartz prism | spectrograph. Two l i g h t sources have been used: An electrodeless spark discharge and a spark i n helium. About 2200 selenium lines have been measured in the region 10450 to 345 Angstroms. Approximately 800 of these li n e s had not been previously observed. Using the present observations, a complete revision of the term structure of Se I I , Se I I I , Se IV, Se V and Se VI has been made Most of the term values have been revised and the previous analyses i n Se I I I , Se IV, and Se V havev been extented considerably. In Se I I I , the deepest excited term 4s4p3 5S£ has been established. Also the levels 4p5d 3p 0, 4p7s 3p 0, 1, 2, i p i and 4s4p 3 lSo have b een found A new l i m i t i s calculated from the 4pns series (4p2 3p 0« 248583 cm-1) I.P. = 30.8 v o l t s . In SelV, the deepest excited term 4s4p 2 4p h a s been found. In addition, the levels 4s 26p 2p^? 4s 27p 2P%, 1% and 4p 3 ^ S l % have also been established. The l e v e l 4 S2 7s 2 S% suggested by Rao has been rejected and a new value has been found for this' The 4s 2ng series has been extended up to n = 9. For the f i r s t time, the 4s 2nh series has been established i n this type of spectra and extended up to n = 8. A new i o n i z a t i o n p o t e n t i a l , (I.P.) has been calculated using this series 4p 2P^ = 346,375 * 100 cm"1, I.P. = 42.94 ± 0.01 v o l t s In Se V, a comparison of the n* values with those of As IV showed a discrepancy regarding the I.P. =73.1 v o l t s , given by Rao. By an extrapolation along the i s o e l e c t r o n i c sequence the I.P. i s estimated to be 68.4 v o l t s which i s in close agreement with the value 68 3 ^ O . l v o l t s calculated from screening constants given by Fmkelnburg and Humbach (1955) In this spectrum the levels 4s5p 3Po, i ) 2, ^-Pl, 4s4f 3p 2, 3, 4, lF3 and 4s5s lSo have been established. The lev e l s 4s5d 3bi, 2, 3, are ten-t a t i v e l y suggested. Intermediate coupling theory has been compared with observed le v e l s wherever possible In most cases the agreement i s good. Using an electrodeless discharge tube excited by a high frequency generator, wave lenths of 38 l i n e s i n the arc spectrum of potassium have been determined i n t e r f e r o m e t r i c a l l y A water cooled Hgl98 electrodeless tube (Meggers lampj) was used for the standard l i n e X a i r = 5460.7532 A. Most of these l i n e s have been measured i n t e r f e r o m e t r i c a l l y for the f i r s t time. The wave lenths of the four s a t e l l i t e s i n the d i f f u s e series agree well with the calculated values. The only previous measurements, by Masaki and Kobayakawa are probably i n error due to an i n c o r r e c t l y assumed i n t e g r a l order m the i n t e r -ference pattern. GRADUATE STUDIES F i e l d of Study:' O p t i c a l Spectroscopy Quantum Mechanics W Opechowski Nuclear Physics J. B. Warren Spectroscopy A. M. Crooker Related Studies. Modern Geometry II M Benedicty - v i i -ABSTRACT The spark spectra of selenium have been photographed from the i n f r a - r e d to the vacuum u l t r a - v i o l e t on a v a r i e t y of spectrographs including a two meter vacuum grating spectrograph, a twenty-one foot concave grating, a Hilger Constant Deviation, a Hilger medium quartz and a Hilger large automatic glass-quartz prism spectrograph. Two l i g h t sources have been used: An electrodeless spark discharge and a spark i n helium. About 2200 selenium l i n e s have been measured i n the region 10450 to 345 Angstroms. On the basis of these measurements, new l e v e l s have been found i n Se I I I , Se IV, and Se V. The most important achievement was the discovery of the deepest excited terms 4s4p 3 5S°j i n Se III and 4s4p 2 4 p i n Se IV. The chief extension of the analysis has been i n Se IV. A few interferometric measurements were made i n Se II and Se I I I . Using an electrodeless discharge tube excited by a high frequency generator wavelengths of 38 l i n e s i n the arc spectrum of potassium have been determined i n t e r f e r o m e t r i c a l l y . ACKNOWLEDGMENTS I wish to express my deepest gratitude to Professor A.M. Crooker for suggesting this problem and for his invaluable help and stimulating discussions throughout the course of this investigation. The technical assistance given by Mr. J. Lees, Mr. A. Fraser and Mr. W. Morrison i s also acknowledged. Thanks are also due to Mr. Y. N. Joshi for his help in some calculations. - i i -TABLE OF CONTENTS Page Abstract v i i Acknowledgements v i i i INTRODUCTION 1 CHAPTER I. THEORY 1. General Theory of Atomic Spectra 4 Terms and Energy Levels 4 Relative and Absolute Term Values 5 Odd and Even Terms 5 Rydberg Series 6 Isoelectronic Sequences and Moseley Diagrams 8 Irregular Doublet Law 10 Regular Doublet Law 11 Lande Interval Rule 13 Selection Rules 14 Intensity Sum Rule 16 2. Theory of Complex Spectra 16 L.S. Coupling 21 j - j Coupling 23 (j-s) and ( j - l ) Coupling 23 Intermediate Coupling Formulas of Johnson 25 Pair Coupling of electrons with high quantum numbers 25 ~ i i i -II. EXPERIMENTAL PROCEDURE AND REDUCTION OF SPECTROGRAMS 28 A. Light Sources 28 1. Electrodeless discharge 28 Description and operation 29 2. Spark in Helium 31 B. Spectrographic Equipment 32 Reduction of prism spectrograms 32 Two meter vacuum spectrograph 34 Reduction of grating spectrograms 34 1. Classical interpolation procedure of Paschen and Runge 34 2. The method of Shenstone and Boyce 35 3. Edl^n's method of interpolation 37 4. The method of "setbacks" 39 Interferometric wavelength measurements of some selenium lines 42 Vacuum ultraviolet standard lines 43 Probable excitation 43 III. RESULTS AND ANALYSIS 50 1. Selenium I and II 50 2. Selenium III 51 (a) 5S 2° Term in Se III 52 (b) 4s24pns configurations in Se III 53 (c) Ionization potential 54 ~ i v -3. Selenium IV 55 (a) 4P Term in Se IV 55 (b) 4s 2ng 4s 2nh Series in Se IV 57 (c) Ionization potential 58 4. Selenium V 59 5. Selenium VI and VII 60 THE PRECISE DETERMINATION OF SPECTRAL WAVELENGTHS 142 Interference spectroscopy 142 Fundamental relations 143 Order number of the center of the ring system 146 Calculation of the fractional part € 152 Crossing the interferometer with a spectrograph 147 Adjustment of the interferometer 147 Resolving power of the Fabry-Perot interferometer 148 Intensity distribution in the interference patterns 149 Correction for phase change at reflection 150 Correction for the dispersion of air 151 Accurate wavelength measurement 155 Sample calculation 156 To check the order number 156 Error calculation for A 158 Interferometric wavelength measurements in the arc spectrum of potassium (KI) 159 Light source 160 Spectrographs equipment Spectrogram Results SUMMARY APPENDIX BIBLIOGRAPHY - v i -TABLES 1. Dispersion table for 2 meter vacuum spectrograph 47 2. Catalogue and classification of selenium lines 62 3. Terms in Se III 133 4. Terms in Se IV 137 5. Terms in Se V 140 6. Wavelengths measured in potassium I 162 7. Wavelengths of the four sa t e l l i t e s in the 165 diffuse series 2a. Supplementary l i s t of Selenium lines 132a Following Page FIGURES 1. Electrodeless discharge 28 2. Circuit diagram for electrodeless discharge 29 3. Oscillograms showing the light emission and electric oscillations 30 4. a) Spark in Helium 31 b) Circuit diagram for 4 a) 31 5. Rowland ghosts separations on the 2 meter vacuum spectrograph 41 6. Fabry-Perot fringes of selenium spark lines 42 7. 21 foot grating plate holder showing different plates with nA regions 43 8. Traces of the spark spectra of selenium 166 -1-A STUDY OF THE SPARK SPECTRA OF SELENIUM INTRODUCTION With the advent of quantum mechanics i n 1927 the theory of spectra was given a very firm foundation. The semi-classical rules of the old quantum and Bohr theories became a natural consequence of the new quantum mechanics. Slater (47), Goudsmit and Bacher (23), Condon and Shortley (7), and others developed the theory which was capable of explaining the major d e t a i l s of spectra. Subsequently interest i n the f i e l d declined r a p i d l y , p a r t i c u l a r l y from the experimental point of view. The opinion, that further study would not lead to p r o f i t a b l e r e s u l t s , became common among p h y s i c i s t s . However, a glance at the "Atomic Energy Levels" compiled by Mrs. S i t t e r l y (33) reveals the gaps which occur i n our knowledge of many spectra. Harrison (14) estimated that approximately one m i l l i o n l i n e s must be ascribed to t h e i r parent ions i n order to meet the needs of astronomers, p h y s i c i s t s , and chemists, whereas at that time only about 280,000 were known. A large number of f a i r l y complete analyses must be available to make a comprehensive test of the theory of complex spectra i n terms of intermediate coupling parameters, Slater c o e f f i c i e n t s , interconfiguration perturbations, etc. The problem facing the modern spectroscopist i s 1 as follows. He must carry out the measurements of the e x i s t i n g -2-wavelengths with the maximum accuracy obtainable with modern laboratory equipment. Then he must examine the e a r l i e r analyses i n the l i g h t of the new data, correcting any errors i n the accuracy or i n i d e n t i f i c a t i o n of l e v e l s which may ari s e , and extend the analysis to include other l i n e s which are not accounted f o r . F i n a l l y , t h i s experimental data must be used to make a quantitative test of modern atomic theory, the most e l e -gant form of which i s probably that of Racah and his coworkers. The task i s not an easy one. In the words of Shenstone (45) "to complete an already p a r t i a l l y analysed spectrum i s much more d i f f i c u l t than to begin a new one because i t i s always the easy part that i s already done." The following chapters w i l l describe the application of the foregoing discussion to the spectra of selenium. The various investigations of the arc and spark spectra of selenium done pr i o r to 1930 are summarized i n Kayser's Handbuch der Spectroscopie, Volume 6 (19). None of the workers made any attempt i n c l a s s i f y i n g the l i n e s . The f i r s t attempts at analysing the arc spectrum were made independently by Ruedy and Gibbs (42a,b) and Meissner (29,30) i n 1934; but the two l i s t s disagree i n many instances. Recently an analysis has been car r i e d out by Shenstone i n the arc spectrum of selenium who states that the analysis of Ruedy and Gibbs, as presented by Mrs. S i t t e r l y , i s b a s i c a l l y correct. The s i n g l y ionized selenium atom has i t s ground state a 2 3 4s 4p configuration and hence gives r i s e to a complex spectrum. -3-In 1935, Martin (24) made an excellent analysis of this spectrum. Other workers in selenium II spectrum are Bartelt (5a,b), Krishnamurthy and Rao (21) and Van den Bosch (49). Se III was f i r s t studied by Badami and Rao (4) and Rao and Murthi (39) who classified 218 lines between 517 A and 6613 A. Goudet (12) gives a l i s t of selenium spark lines in the vacuum ultraviolet region from 1294 A to 360 A. Se IV has been analysed by Rao and Badami (37) who have published 35 classified lines between 635 A and 3059 A. In Se V Sawyer and Humphreys (44) have classified 16 lines between 505 and 837 A. In 1931 Rao and Badami (38) slightly extended the analysis of Se V by adding 6 more lines tb the classification. In Se VI by extrapolation along the isoelectronic sequence Sawyer and Humphreys (44) have o o classified 7 lines between 452 A and 886 A. -4-THEORY 1. General Theory of Atomic Spectra The general theory of atomic spectra and i t s interpretation in terms of the vector model i s well known. Here we summarize b r i e f l y those r e s u l t s which are necessary to understand the spectroscopic notation and the procedures used i n i d e n t i f y i n g unknown le v e l s . For detailed derivations and discussions the reader i s referred to one of the many texts on the subject (7,22,35,50). Terms and Energy Levels The f i r s t step i n the interpretation of spectra consists i n f i n d i n g a set of energy l e v e l s which gives the observed sp e c t r a l l i n e s as combinations by means of equation where W1 and W2 are the energy values for 2 l e v e l s h i s the Planck's constant and V i s the frequency of the spe c t r a l l i n e . This equation gives the frequency, i n sec" 1. To obtain the wave number used customarily i n spectroscopy i t i s necessary to divide t h i s by c, the v e l o c i t y of l i g h t Thus energies divided by he have the dimension cm"1. The energy states expressed i n these units are generally c a l l e d terms and the i r (1.1) h - 5 -values term values. Relative and Absolute Term Values s i n many spectra which have been analyzed quite completely, i t i s possible to calculate with great precision the energy necessary to remove one electron from the lowest energy l e v e l to an i n f i n i t e distance, i . e . the i o n i z a t i o n energy. In these spectra i t i s customary to put the energy at which the electron i s removed completely, equal to zero. The other term values w i l l therefore be negative, the normal state being the state with the largest negative energy, but one always omits the negative sign and denotes the term values by p o s i t i v e numbers Term values i n which the i o n i z a t i o n l i m i t i s put equal to zero are c a l l e d absolute term values. In other spectra,for which the i o n i z a t i o n energy i s not known, i t i s customary to set the state with the lowest energy equal to zero. In t h i s case the term values are referred to as r e l a t i v e term values. When the term values decrease, one knows that they are absolute, and when they increase that they are r e l a t i v e term values. 3n th€ former ease n increases and in the l a t t e r TJ d e c r e a s e s . Odd and Even Terms The analysis of spectra shows that the l e v e l s of each spectrum can be divided into two groups c a l l e d odd and even terms. When the arithmetical sum of a l l l ' s of the electrons -6-i s even, one obtains even energy l e v e l s ; and, i n the other case odd ones. Usually the symbols for odd l e v e l s are d i s t i n -guished by the sign ° at the upper r i g h t side and the term value printed i n i t a l i c s . Transitions occur only between odd and even states and not between states belonging to the same group. However, t r a n s i t i o n s between two odd or two even terms may occur under the influence of disturbing e l e c t r i c f i e l d s Even i n the absence of such disturbing f i e l d s , such 'forbidden' t r a n s i t i o n s may occur, due to quadrupole radi a t i o n ; but they are then very much weaker than allowed t r a n s i t i o n s involving the same terms. Rydberg Series The absolute value of a term may be written as R Z Q 2 RZ 0 2 T n - n (1.2) n*2 (n - S n ) 2 where R i s the Rydberg Constant Z = e f f e c t i v e nuclear charge ( 1 , 2 , — f o r arc, 1st spark, spectra) n = p r i n c i p a l quantum number n* =? e f f e c t i v e quantum number £n = quantum defect A seri e s of terms with the same L , J and n increasing by integers constitute a Rydberg s e r i e s or an n* sequence. The usual method of s e t t i n g up absolute term values i s to assume -7-that &n approaches a constant as n increases, and hence that n increases by i n t e g r a l steps for high n. Hence from the observed difference (Tn - Tn+1), and using the Rydberg con-version tables one may calculate Tn+1 and Tn. Having thus established absolute term values using two terms; one may predict unknown members of the same or other ser i e s by an inverse process. The absolute term value i s then computed from the above equation, the simplest method of doing t h i s computation i s to look i t up i n the tables mentioned above. For large n, and e s p e c i a l l y when I— i s also large, the pro-cedure i s quite accurate. For smaller n the accuracy i s reduced because <£n has not approached a constant and also because intercombination perturbations are l i k e l y to perturb the s e r i e s . Shenstone and Russell (46) have studied the case when a ser i e s i s perturbed by a.level from another electron configura-tion. The formula 1.2 may be written i n the form RZ_ 2 RZ<-. T 9_ = ^ £ (1.3) n*2 (n + p. + <*Tnr where (i, a are negative constants and [ o c | T h e behavior of a serie s may then be examined by p l o t t i n g (n* - n) Vs T n. A Rydberg seri e s (a = o) gives a straight l i n e p a r a l l e l to the Tn axis, while a R i t z s e r i e s gives a straight l i n e of slope a and intercept \i on the ordinate axis. For a perturbed s e r i e s Shenstone and Russell write (1.3) i n the -8-f orm D17 2 (n + \i + aTn + Tn-To where T Q i s the value of the perturbing term. The plot of (1.4) as before gives a hyperbola with vertical asymptote T n - T o a n d horizontal asymptote n* - n = \i + aT n. They found that many series which did not f i t (1.3) could be made to f i t (1.4) quite well, once the perturbing term had been identified. In some cases they found that the perturbing term had been included as a member of the series, and hence a l l the higher quantum numbers were wrong and ionization potential incorrect. A more accurate method for the determination of term values is given by Edlen and Risberg (11). Isoelectronic Sequences and Moseley Diagrams The term isoelectronic sequence refers to a sequence of atoms having the same number of extranuclear electrons. In general such a sequence starts with any element in the periodic table and is followed by other elements in the order of their atomic number. Since each neutral element contains one more electron than the one just preceding i t in the periodic table, each atom must be stripped, i.e. ionized, of just the right number of electrons to leave i t isoelec-tronic with the f i r s t element in the sequence. Suppose, - 9 -for example, that a sequence starts with germanium Z = 32. The following elements, arsenic, Z = 33, selenium, Z = 34, bromine, Z = 35, etc. are a l l made isoelectronic with neutral germanium (Ge I) by removing one electron from arsenic, yielding As IIj two electrons from selenium; yielding Se III; three electrons from bromine yielding Br IV, etc. Because each atom in such a sequence contains the same number of extranuclear electrons the energy levels and the spectrum lines arising from each atom w i l l show remarkable similarities from element to element. Term values are given by the formula R(Z - Q 2 T n i (1.5) n where Z = atomic number <f~ - screening constant. From the theory of penetrating orbits they may be represented by 2 T n - (1.6) ( n - i n ) 2 Equation (1.5) can be written as I". - 1 (Z -cr-) (1.7) R n from which we see that in an isoelectronic sequence i s 4 R -10-a linear function of Z with slope — and intercept — on the ordinate axis. Plots of (1.7) are called Moseley diagrams. They are extremely useful for predicting terms in an unknown spectrum by extrapolation from terms already established in the isoelectronic sequence. Irregular Doublet Law The irregular doublet law, extended from X-ray to isoelectronic sequences in optical spectra by Millikan and Bowen, may be stated in terms of the energy levels as follows: the difference between the square roots of the term values of the levels having the same principal quantum number n is independent of the atomic number Z. In other words such levels on a Moseley diagram run parallel to each other. The irregular doublet law i s a mathematical expression of the fact that the difference between the square roots of the term values having the same principal quantum number n is independent of Z. From (1.7) for two terms Tn-^  and Tn 2 with the same n we get - J T ="n" ( Z - -n" <Z -Cg) (1.8) n -11-A more useful form of the law i s found by studying the term values themselves rather than their square roots. We find using (1.5) where c j , 02 are constants. Thus the difference ( T n i - T n 2) i s a linear function of Z in an isoelectronic sequence. For the many electron case we replace the condition that the two terms have the same principal quantum number by the condition that the total quantum numbers of the electrons in the two states be the same. Rigorously the law would be expected to hold between neighboring states of the same J value, i.e. between 2 s + 1L_j 2s+l and (L+l)j. Empirically however i t i s found that the law holds approximately even for different J*s so long only as the individual electron total quantum numbers are the same. t Regular Doublet Law The regular doublet law i s a direct consequence of the = CjZ + c 2 (1.9) -12-f i n e structure s p l i t t i n g caused by the spin-orbit interaction. For a one electron spectrum the energy due to t h i s i n t e r a c t i o n i s given by W - a I.a (1.10) where a i s a constant _ j. 1, s = o r b i t a l and spin angular momenta of the electron. -> _> Using the vector model to evaluate l . s and the value of 'a' from quantum mechanics (1.10) becomes w = Rhcg 2Z 4 . J(J+1) - L(L+1) - S(s+1) n3>l(Jt +i)(Uj) 2 For a one electron spectrum J = £ ± £ and (1.11) becomes W_ _ R a V . h c a 3 i r t + l ) ( l + i ) * = a(l+§) (1.12) R « 2 Z 4 where a n3l(l+l>a+J) For non-hydrogenic systems we write = Ra 2 ( Z - s ) 4 «£+!><£+*) n3 (1.13a) -13-for non-penetrating orbits, and R*2 z i 2 z o 2 n i q M *a+i>a+i> n*3 ( } for penetrating orbits, where s •= screening constant Z A = effective nuclear charge on inner part of the orbit Z 0 = effective nuclear charge on outer part of the orbit. Thus the doublet separation varies as Z 4 or (Z - S ) 4 or 9 2 Z A Z Q . This i s called the regular doublet law. We get a Z divergence on the Moseley diagram. Note that as opposed to the irregular doublet law, we are dealing here with the term , A J 3. 2s+l, 2s+l, difference L j - L j + i * Lande' Interval Rule We note from (1.12) that the fine structure s p l i t t i n g in a r e l a t i v i s t i c doublet i s given by AT = a( •£+£) and hence is proportional to the higher of the two J values. For Russell-Saunders coupling this Lande interval rule i s also found to hold for multiplets in many electron spectra. In this case we can easily show that the spl i t t i n g between two levels of a multiplet i s given by -14-AT = W(J n) - W<J«) W(J) = A J ( J + D - L(L+1) - S(S+1) 2 -= J + 1 J' • J (1.14) AT = ACJ + 1) Hence A T i s proportional to the higher of the two J values. Humphreys and Goudsmit (35,pp.164) evaluate A by considering the addition of an electron to a configuration of known A'. They obtain A m A, I ( ^ l ) + t l ( 4 + l ) - f 2 < f 2 + 1 ) S ( s + l ) 4 - S 1 ( s 1 - f l ) - S 2 ( s 2 H - l ) 2<L( l+l) 2s(s+l) + ao E<£*1>+&<fa+1>-ll<ll+1> s ( s ^ l ) + s 2 ( s 2 + l ) - S l ( s 1 + l ) w ~ 2L(t+l) ' 2s(s+l) where A* and a 2 are the i n t e r a c t i o n constants of atom core and added electron respectively, ll,s^ the o r b i t a l and spin quantum numbers of atom core ^2>s2 * h o s e f ° r added electron. Equation (1.15) i s useful i n estimating A from a known A' i n the next higher ion. With departures from L-S coupling (1.14) ceases to be true. Selection Rules The number of a l l possible differences between the terms of an atom i s f a r greater than the number of t r a n s i t i o n s -15-observed because of the operation of the selection rules. Considering only electric dipole radiation there are two chief rules which hold independently of the state of coupling. We may characterize a l l levels as either odd or even depending upon whether the sum of the individual electron quantum numbers in the configuration giving rise to levels i s odd or even. "Laporte's rule" then states that transitions between two odd or two even terms are forbidden. The second rule of wide generality places restrictions on the change in J between two levels. We find J - 0, i 1 ( 0 — » 0 not allowed) Many other rules may be formulated for special coupling cases as the following for L - S coupling AS = 0 (i.e. intercombination lines are forbidden) Ah = 0, i 1 The appearance of forbidden lines in a spectrum usually indicates one of four p o s s i b i l i t i e s , namely: (i) departure from an assumed coupling case ( i i ) occurrence of multipole radiation (other than electric dipole) ( i i i ) presence of external electric or magnetic field s (possibly produced by neighbouring atoms - in this case giving "enforced dipole radiation") -16-(iv) perturbations - causing a sharing of properties between two more states. Intensity Sum Rule The most widely applied and probably the most useful rule regarding intensities of observed lines i s the Burger-Dorgelo-Ornstein sum rule. It states that the sum of the intensities of a l l the lines of a multiplet which belong to the same i n i t i a l or f i n a l state i s proportional to the s t a t i s t i c a l weight (2J + 1) of the i n i t i a l or f i n a l state respectively. This rule by i t s e l f i s insufficient to determine the relative intensities within a multiplet. Correct intensity formulas for L-S coupling have been derived both classically and quantum mechanically. Tables based on these formulas giving the expected relative intensities in most multiplets are available in White (50, pp.439) or Condon and Shortley(7, pp.241). 2. Theory of Complex Spectra The quantum theory of many electron spectra assumes as a f i r s t approximation that the atomic electrons move in a central f i e l d and do not interact with one another. The Hamiltonian of a many electron atom may be written as ^ . 2 £ + a L i • S l ) ^ A. i 2 ^ r i i ^ j r i J -17-the Coulomb e l e c t r o s t a t i c energy between the nucleus and the i * h electron the momentum of the i x n electron The magnetic in t e r a c t i o n energy between the o r b i t a l and spin angular momenta of the 1 electron e 2 = the Coulomb e l e c t r o s t a t i c energy between the x * i t h and the j t h electron. In t h i s Hamiltonian, the terms are not separable due to the presence of the mutual repulsion of the electrons. In order to be able to treat the Hamiltonian mathematically we make the assumption that the outer electrons move i n a cent r a l f i e l d p otential due to the nucleus plus the electron core. We then take as our approximate Hamiltonian Schrodinger's equation for the unperturbed case then becomes i while the perturbation potential w i l l be i - 1 8 -We now have the equation separable into coordinates for each electron, so that obviously (u may be written as where i s the wave function for the i electron and designated by the four quantum numbers n,l,ms,m^ . Because the electrons are indistinguishable, i t matters not i f the quantum numbers of the electrons are interchanged. There are N! ways of exchanging these parameters and any l i n e a r combination of these products w i l l be an equally good solution. Thus we may write N and i u A ( i ) u B ( D U A ( 2 ) U B ( 2 ) U A ( N ) U B ( N ) U N ( N ) where N.' i s a normalizing factor, and the number i n brackets after each U represents the set of four quantum numbers. -19-This function satisfies the Pauli exclusion principle because interchange of any two electrons (i.e. interchange of any two rows) changes the sign of (j) and therefore i s antisymmetric as required. Even though we have taken care of the degeneracy due to the N.' possible distributions of electrons, there s t i l l remains another type cf degeneracy because there may be other sets of U's differing from the f i r s t in that one or more of the quantum numbers ms and m^  have been changed. These quantum numbers do not affect the unperturbed energy, which, of course depend only on n and 1. We must therefore set up a secular equation for a l l these possible functions in order to find the correct combinations and f i r s t approximation to the energy levels. Since there i s only one possible set of quantum numbers for a completed shell, i t is only necessary to consider electrons outside the completed shell. Now f i r s t order perturbation theory shows that the secular equation is of the form H l l ~ W H21 I I I I I " k l ~ " n12 " n l k H21 ~ W ' H2k Hkk " W -20-where H. mn ' j<f>m " fa< - < < ( > „ | H I fa) and W i s the perturbed energy level H i s the perturbed Hamiltonian K is the number of allowed sets of functions. This equation is of K*n degree; but may be simplified very considerably by means of a theorem which states that = 0 unless Mg = Xmg and ML = ^ j n ^ each have the same value for both <j)m and <j)u. (The proof of this theorem i s given in Condon and Shortley p.169). Thus the secular equation i s reduced to a number of lower order equations, each equation corresponding to fixed values of Mg and M^ For example, an np 2 configuration has 15 possible combinations of quantum numbers, but only one combination 1 gives M L = 2 Mg = 0, so the equation for this D term is a simple linear equation. It i s clear then that the energy of various levels can be calculated i f the matrix elements can be evaluated. Unfortunately, the evaluation of these matrix elements is by no means simple. However, i f one simplifies the perturb-ing Hamiltonian by assuming that only one of the factors is large, i t i s possible to reduce the integral to the product - 2 1 -of a constant which depends on 1 and m£ and an integral which involves only radial factors of the wave function. One method of proceeding would be to assume some form for the radial potential and use this to evaluate the integral. However a simpler method would be to evaluate the radial integral empirically by using determined energy levels, and then check on the theory from the fact that there are more known levels than integrals to be evaluated. In some cases of an incompletely known spectrum, unknown levels may be predicted from the integrals as an aid in finding these levels. We proceed now to consider b r i e f l y the commonly used approximat ions. L-S coupling We consider f i r s t the case where the Coulomb interaction i s very much greater than the magnetic spin orbit interaction. Our Hamiltonian then takes the form The f i r s t sum w i l l contribute the same energy to a l l levels of a given configuration since i t i s purely radial. We are then l e f t with the matrix element -22-It can be shown (Condon and Shortley (7) p.174) that matrix elements of this type reduce to where a and b are constants defined in terms of 1 and ntf, for two of the electrons. These values have been computed for many configurations and may be obtained from tables (47). F k and G k are integrals of radial functions and are usually treated as adjustable parameters. They are known as Slater integrals and are fundamental to a qualitative know-ledge of atomic spectra. Having obtained the a 's and b 's for a given configuration, the secular equation mentioned above is used to determine the relative energies in terms of v k F 's and G 's as outlined above. Finally the spin orbit interaction i s imposed as a second order perturbation. This gives rise to the sp l i t t i n g of each of the previously found levels into fine structure which follows the Lande interval rules described earlier in this chapter. A serious objection to this method is that i f a con-figuration gives rise to more than one term of a particular Q 9 2 4 kind (e.g. 4d y 5s6s D D D ) the method yields only the sum of their energies. Racah (36b) has developed a powerful tensor method to overcome this d i f f i c u l t y . For the particular case of 11*s he has written e x p l i c i t l y a general form for the energies and applied i t to the pds configuration. -23-j - j coupling In this approximation we solve the secular determinant subject to the condition that the spin-orbit interaction is large and the Coulomb one small. The matrix elements then depend on H of the form After solving the equations as before, the addition of a weak electrostatic energy is considered. The results of such calculations may be found in Condon and Shortley (7, p.259). (j-s) and (j-1) coupling In cases where one electron i s firmly bound, the inter-action with the second electron may appear as only a perturbation on the usual doublet sp l i t t i n g of the f i r s t electron. i ) Houston (16) has treated the case of intermediate coupling when one of the electrons i s an s electron. The Houston formulas may be written in many ways. We usually calculate the Lande interval factor A, by dividing the difference 3 3 A ( - independent of coupling) by (2 £ + 1). Then 1 3 i f the position of the Li level and that of the l>i level relative to the usual t r i p l e t (eg) (namely £. A deeper than L£ + 1) are called C\ and £ 3 respectively then Houston's -24-formulas give In s t r i c t (js) coupling this formula gives the levels as A>>= (2 I +1)A ( £+§)a n l ( 1+1)6 US) 7* <1 sc. S-L j= £+1 jrl j= X - i (2l +1) i i ) Racah (36) has carried through a suggestion of Shortley and Fried, for the case where the second electron i s a weakly bound electron, so that the spin-spin interaction is responsible only for a fine doubling of each ( j l ) state. Racah gives the formulas for ( j l ) coupling (f2 i s the coef-ficient of F2 in energy level formula) fo(J £k) - - /gh2 + 3h - 2j(j+l)/(< i+lj? 4j(j+l)(2£-l)(2/fL+3) where h - (}.£> - k(k+l) - j ( j + l ) - M+l) 2 and k = (j +/L ) -25-Pair coupling of electrons with high Jb quantum numbers The theory of intermediate coupling has been studied in the pair coupling approximation by Eriksson (lib) and applied o to the 2s 2pnf configuration in N i l . In this case there is a considerable electrostatic interaction between levels of different parentage, compared to the special case studied by Racah (36) where this interaction is small compared to the spin orbit interaction. The Intermediate coupling formulas of Johnson (17a,b) The matrices of the spin-orbit interaction may be used by adding the electrostatic energies to the diagonal terms and setting the determinant of the energy matrix =0. In this operation a minor practical point i s to properly include the change of datum from a multiplet (eg) to a stated reference level. In order to make clear the procedure, we work through a simple example. o Example: the p configuration in intermediate coupling 1) for J = 2 the magnetic energy matrix is (7 p.268) -26-We next add the electrostatic energies to the diagonal terms, For AD 2 this i s (7 p.198) 3P (e.g.) F o ' F2 F Q - 5F 2 " S (although unnecessary) + 10Fo o o z 3 If we transform now to energies relative to P^ = 0, which relative to the centre of gravity of the 3P l i e s at - a/2, by adding - F Q + 5F 2 + a/2 to these energies we obtain for 6F 2 + a/2 S Q 15F 2 + a/2 Our complete secular determinant for the determination of 3 the energies relative to P^, which is independent of coupling since this J only occurs once in our configuration we have for J °» 2 W (6F 2 + a/2) 4l/2 a 11/2 a W - a i.e. W2 - W(6F2 + 3/2a) + 6aF 2 - 0 -27 Similarly for J » 0 we get (-a/2) J2a J2a (15F 2 + a/2) i . e . o 15 9 2 IT - W(15F2) + Y" aF2 ™" 4 a 1 -28-CHAPTER II A. Light Sources. 1. The Electrodeless Discharge. Electrodeless discharges are of two types depending largely on the nature of the radio frequency circuit used to excite the discharge. One may use continuous wave excitation or one may use highly damped radio frequency currents. In this work both these types of excitation were used, but in the major part of the work the discharge tube was excited by a highly disruptive radio frequency discharge. This type of electrodeless discharge has been used in this laboratory for many years since i t i s known to produce intense, sharp spectral lines even of highly excited ions. Several exposures were made using a Fabry Perot inter-ferometer in order to establish excellent wavelength standards and also to check line profiles. It i s possible that the line profiles could be useful in assessing to what ion a given line belongs. The higher excitation lines presumably are excited earliest in the discharge cycle, when electron and ion concentrations are high and produce high local f i e l d s . Certainly the more highly excited ions have greater width approaching V • 0.2 cm""1. This electrodeless discharge probably produces narrower lines in the spectra excited by 200 volt electrons than are available in any other type of high excitation source. To follow page 28 TO it •UMP QUARTZ A A A A A A A A A A A A A A A A A A HEATER HEATER A A A A A A A A A A A A A A A A A A / COPPER COIL ( INDUCTANCE) QUARTZWINDOW ELECTRODELESS DISCHARGE Fig. 1 . -29 Description of Operation. Approximately ten grams of pure selenium (99.998%), in the form of spherical pellets or "shot", manufactured by the Canadian Copper Refiners Ltd. of Toronto, were introduced into a translucent quartz tube about 20" long and lj/4" in diameter. This tube was wrapped with a thin mica sheet to improve the insulation, since the plasma inside the discharge tube is highly conducting, and this "screwed" inside a heavy copper c o i l consisting of 8 turns of number 6 gauge wire, diameter 0.162". This inductive c o i l , with interturn spacing of approximately 3 mm, was connected in series with a three centimeter spark gap and a Solar mica condenser bank to form the radio frequency tank c i r c u i t . The condenser bank consisted of 6 mica Solar condensers each of .0025 p,f capacity, rated at 22 amperes and 25 kV at 3 Mc/sec, connected in 3 pairs, one on either side of earth as indicated in Figure 2. The c o i l had an inductance of about 2.6 p,H and the condenser a capacitance of 0.0038 p,f, thus making the cir c u i t resonant at about 2 Mc/sec. The frequency and hence the inductance were calculated from the oscillogram showing the electric oscillations (Fig. 3). The oscillating circuit i s shown in Figure 2 and is energized by a 5 kw, 50 kV x-ray transformer. The tube was placed inside a transite furnace of dimensions 10^" x 9" x 9" which was heated by four electric heaters, each dissipating 500 watts at 12 amperes, supported To follow page 29 50 KV ELECTRODELESS DISCHARGE CIRCUIT DIAGRAM i Fig. 2. -30-inside the four long edges of the furnace. With this arrangement the 110 volt 60 cycle heating cir c u i t was every-where more than 3 M from the high voltage exciting c o i l . The heating current was controlled by a Variac and measured by ammeter in order to control the selenium pressure within the tube. The tube ends were sealed with clear fused quartz windows and connected by a quartz side tube and a 4" length of rubber pressure tubing through the liquid nitrogen trap to a fore pump with ultimate vacuum 0.2 p,Hg. A pinch clamp on the rubber tubing served to control the operating pressure — in general one operates at the lowest pressures consistent with good intensity for high excitation. One allows the pressure to build up and reduces the spark gap length to reduce the excitation. In order to avoid arcing across the spark gap, an electric.fan was used to blow air across the spark gap and so to quench the discharge. After evacuating the tube the temperature was raised to about 600°K to produce the necessary vapour pressure. After running the discharge for several minutes, and depending on the furnace, temperature, i t was found that selenium diffused out of the furnace into the cool part of the discharge tube, causing the windows to become coated with a thin film of selenium. This cut down the intensity of the emitted light. In order to overcome this undesirable situation the windows were cleaned as required by heating with a Bunsen flame. During every exposure, the changes in excitation, in other words * The vapour pressure is given closely by the semi-empirical Clausius-Clapeyron relation log p » -AT-l+B where for Se A = 5182°K and B => 8.30 in the operative range, when p is measured in mm of Hg. To follow page 30 The Light Emission The Electr i c Oscillations Oscillograms showing the Light Emission and the Electric Oscillations of the Electrodeless Spark Discharge. The total Length of each Oscillogram corresponds to 10 Microseconds. -31-the changes in intensity of known high excitation lines, were watched through a direct vision spectroscope. The excitation could be controlled by varying the operating temperature or the vapour pressure, or the spark gap. Exposure times varied from two to four hours on the 21 f t . grating and from 30 min. to one hour on the vacuum grating spectrograph. 2. Spark in Helium. In order to obtain low excitation lines, a condensed spark in helium was used (Fig. 4a). This simple source consists of a glass bulb, with provisions for the windows, electrodes and the flow of helium. Copper rods with carbon cups at the ends served as electrodes. Small pieces of selenium were kept inside the carbon cups. The electrodes were held in position with the help of rubber stoppers. Helium, admitted into the bulb directly from the cylinder was allowed to flow continuously throughout the exposure, at a pressure of about one atmosphere. The helium gas on it s way out was allowed to bubble through water in a beaker. When used with the vacuum spectrograph a brass taper with a lithium fluoride window was necessary. The power supply ci r c u i t for this source consisted of a 15,000 volt "Neon" transformer and a 0.0025 p,f R.F. Solar mica transmitting condenser rated at 22 amperes at 3 Mc/sec. (Fig.4b). The standard Hilger de Gramont arc and spark stand was ideal for the source. If used with a stigmatic spectrograph this source can be very helpful in sorting out the high To follow page 31 Fig. 4(a) G L A S S W I N D O W H E L I U M H E L I U M LiF W I N D O W I } ? N C A R B O B R A S S T A P E R R U B B E R S T O P P E R C O P P E R E L E C T R O D E SPARK IN HELIUM Fig. 4(b) IIOA.C. T O E L E C T R O D E S 1 5 K V S P A R K G A P C I R C U I T D I A G R A M F O R S P A R K I N H E L I U M -32-excitation lines. The lines of different excitations then appear different due to pole effects. Another advantage of this source was the presence of accurately known carbon lines which served as standards. B. Spectrographic Equipment. Four different spectrographs were used in this work. The Lubzinski (22b) 2 meter vacuum spectrograph, a 21 foot grating, a Hilger medium quartz spectrograph, E 498, and a Hilger automatic Littrow spectrograph with interchangeable glass quartz prisms, E 478. Reduction of Prism Spectrograms. Computations of wavelengths on the prism plates were made using the well known Hartmann formula. Lines from copper arc, iron arc and in some cases neon lines from a geissler tube served as standard lines. The infrared spectrum was obtained with the large double prism spectro-graph using Kodak N plates. For the region above 8500 A hypersensitized Kodak M and Z plates were used. The plates were dipped in a bath of ammonium hydroxide (4 c c . ) and d i s t i l l e d water (100 c#c.) for about 3 minutes, and then in ethanol for the same length of time. Then i t was dried by means of an electric fan. We succeeded in obtaining a few lines of both selenium and standard neon lines above o 10000 A. The wavelengths calculated were f i n a l l y corrected using a correction curve plotted with the help of known 33 neon lines superposed on the plate. Measurements on the 21 foot grating were made using iron standard lines. The dispersion was determined by the relation with b - 16,933 Aj R = 6400 mm; i - 25°. The range and dispersion of this grating were Rowland ghosts displayed by a grating can be an aid in identifying the order of lines since the ghost spacing at various nA i s a function of the order (Appendix ). The grating is ruled with 15,000 lines per inch over an area 2 by 5^ inches. To distinguish the iron lines from the selenium lines, the iron arc was placed near Sirks focus. This gave shorter iron lines. To f a c i l i t a t e the i d e n t i f i -cation of different orders the following method was used. A series of thin glass plates were arranged in front of the plateholder so as to cover the lower half of the plate. This acted as a f i l t e r for the lines below 3000 A. Even though there was a small systematic shift of lines coming through the glass onto the plate, i t was extremely useful in deciding the order of many lines. Ilford Q, Ilford H.P.3, Kodak II F and Kodak U N plates were used for this large grating. o Max. nA - 18,000 A Min. nX - 9,500 A Dispersion = 2.0236 A/mm. Dispersion = 2.6111 A/mm. -34-Two Meter Vacuum Spectrograph. The grating has a ruled surface of 2 by 3^ inches with 576 lines per mm. To increase the sharpness of the lines a portion of the ruled area i s masked off. The masking i s done with a "fore-mask" situated about 1/4" in front of the grating. In this way the masking i s more pronounced at smaller wavelengths as should occur (23). Using a s l i t at grazing incidence ( 80°) the vacuum ultra violet spectrum was photographed. Maximum nA was found to be about 6000 A. In order to photograph different exposures on the same plate a movable metal diaphragm was con-structed and mounted in front of the plateholder. This was operated manually from outside the vacuum tank through a Wilson seal. In the ultra violet region carbon lines were used as standards. The f i n a l wavelengths were calculated using internal selenium standards either of known wavelength, or known frequency from the Ritz combination principle, or with wavelengths determined in a higher grating order. The presence of Lyman lines ha and Lp on the plates was useful in the identification of some lines. Reduction of Grating Spectrograms. 1. Classical Interpolation Procedure of Paschen and Runge. The easiest method i s the linear interpolation given by the formula: X - A l + * 2 ~ A l (d - d x) , d 2 - d x 35-where A^, A2 a n d <*i> d 2 are the wavelengths and comparator readings for the two reference lines, and A and d the same values for the unknown. For small angles of diffraction, the correction curve w i l l look smooth, since the correction is only due to non-linearity in the dispersion. However, in glaneing-angle vacuum spectrographs, i t may take quite an irregular shape due to non-systematic errors. 2. The Method of Shenstone and Boyce. This method is of importance whenever one works with angles of diffraction nearly zero, as in the case ©f so called normal incidence vacuum spectrographs, with i^ssO say 10°, or in Rowland or Wadsworth mountings. Here at the center of the plate 0 = o and the dispersion $ = —. As we proceed from R this position the dispersion f a l l s off to/$ = — cos ©, i.e. b d@ by an amount <0 •= — (1 - cos 8). In a distance ds - -g- the error in wavelength is A X and d(AA) = — K © d© which relates the increment of © to the ©jA 9=0 -36-AX tabulated increments in AX. nX = b(sin i + sin 9) 9 i s positive when on same side of normal as i s i . 9 is negative for X<X Q. 9 i s positive for X> X Q. For X > XQ, when one calculates X - X Q with 43= ~ > one gets too R large a X from which AX should be subtracted. If X<X Q this correction should be added. This change of the correction AX at X Q i s already formally included by the 9° dependence. The correction AX «—« T must be R^  31 uniformly subtracted when due regard is taken of i t s sign, i.e. AX positive for positive 9, negative for negative 9. In actual practice, in interpolating between Xj and X 2 o n e f i r s t adds the approximate &K to X^ and X 2 with due regard to sign, before calculating the practical dispersion. One then uses this value instead of the theoretical dispersion 4$ =* — in interpolating wavelengths between Xi and X 2 . The f i n a l correction curve w i l l then be similar to that discussed under the method of set backs. * This method i s used by Shenstone and attributed by him to Boyce and the M.I.T. group. -37--r A2~ A1 Edlen's method consists in calculating /fy(&i,S2) ra - r x , s 2 ~ s l and ^(S2,S3> = 3 A2 with well spaced standards S 3-S 2 A l > A2, A3* Then these dispersions w i l l be nearly "point" (Si+So) S 9+ ST dispersions at — = — — and — f — - respectively. Next one 2 2 constructs a line "point" dispersion formula as indicated by the "dotted" line passing through the points/^(Sj,S 2), ( S1 + S2> and >0(S2,S3), <S2+S3> . 2 2 Obviously then as we calculate V s from 7\\, we i n i t i a l l y have too large a dispersion, then too small a dispersion and fi n a l l y , again too large a dispersion. The correction curve -38-) should then appear as in the accompanying diagram. AX Now the question is — can we specify the parameters of this correction curve in terms of grating parameters? Let us f i r s t return to the dispersion curve (|3Ag237) which we shall assume to be the section of a circular arc, specified by the two parameters a and r. In due course these can be related to Ag a n d t n e grating radius r is obviously related to A . d 2 ( S 3 - S 2 ) 2 1 2 (sag) cos 2 a 2 A cos a ( S 3 - S 2 ) 2 2Acos 3 a Thus 2r cos" OL I— —' -39-4„ The Method of "Setbacks" In this method one calculates for A^ = b (sin i •=> sin ©,) and A 2 - b(sin i - sin Q,) The average dispersion J3 _ A2 - Ax where (S 2 - Si) = R(© 2 - ©,) . This can then be compared with calculated at — -from the point dispersion formula J cos © = * K R 1 - (sin i - h2 a -40-If the two dispersions do not correspond then one sets back the standard dispersion curve by the amount necessary to make the adjusted theoretical dispersion curve at ^ l + ^ 2 agree with 2 the observed average dispersion. Suppose for instance that the theoretical dispersion curve calculated from - ~ cos 9 actually i s smaller than the "observed" dispersion curve. Then two situations may arise. (obs) ' / (calc) (b) In (a) the observed difference between the observed and the calculated differences is monotonically increasing and in (b) i t is decreasing. After setting the dispersions back the situations are as in (a*) and (b') -41-Obviously then we start with too large a dispersion from A in (a') and too small a dispersion in (b'). Consequently our correction curve in the two cases w i l l have the respective forms shown below. In this case, by definition, the correction vanishes at A2 H 2 and has i t s maximum value near.fo + A 2 , so that the observed correction at ^1 + A2 w i l l serve to give a good estimate of 2 the actual correction curve. The case where the observed dispersion i s less than theoretical can be handled similarly. Fig. 5. To follow page 41 500 1000 1500 2000 250d 3000 3500 4000 nX —*> ROWLAND GHOSTS ON 2 METER VACUUM GRATING R=20m; b = 16,667A, B.aL. -42-Now, in general the theoretical curve is actually established from two or more standard lines in a region of the spectrum in superb focus. Then, i f the s l i t and the plateholder were exactly located on the Rowland c i r c l e , there should be no departure from the theoretical dispersion . Since actual departures arise from cause, we can analyze these practical departures from the theoretical dispersion in order to improve the focus. The method does not require the calculation of the dispersions at each point along the plate, since these are furnished by the theoretical dispersion curve. Interferometric Wavelength Measurements of Some  Selenium Spark Lines. A complete description of the Fabry Perot interferometer and i t s applications i s given in Chapter IV. The spacer used for this purpose has a thickness 2t «• 19.96953 mm. About thirty lines have been measured using neon standard o lines and we estimate an accuracy of +0*005 A. The large grating measurements agree with the interferometric measure-ments within the limits of error. The purpose of the inter-ferometric measurements was not to obtain precision values but to support the a b i l i t y of the electrodeless discharge source in producing sharp and intense lines. In this connection Chapter IV was included which describes a l l the details regarding reduction of interferograms using a Fabry Perot interferometer, in the case of the arc spectrum in potassium. Selenium ( Electrodeless discharge ) CO £ Neon ( Geissler tube ) CM <fr cJ cvj o lO \|- 00 -43-Vacuum Ultra Violet Standard Lines. In order to obtain some useful standard lines in the vacuum ultra violet region, a few drops of benzene were introduced into the trap which was between the electrodeless tube and the fore pump. This enabled us to get some pure carbon and hydrogen lines which served as standards in some regions. In addition to this internal standards (known selenium lines) were also used, their values being determined from higher orders. It i s well known that the vacuum region standard lines are very rare and consequently the accuracy in wavelength measurements depends largely on the avai l a b i l i t y of reasonable standard lines in the desired region. Probable Excitation. Three sets of plates were taken on the 21 foot grating at different excitation conditions. The f i r s t set of plates was found to be of low excitation, while the second set of medium excitation and the third of high excitation. By comparing these plates using a Jarrell^Ash console comparator we could assign probable excitation for most of the lines. Figure 7 gives the different types of plates used, with the corresponding n?\ regions. To follow page 43 \54A0A 5 105HP3 U7N.H6I4 127 HP3 I4I80A '04 HP3 "5N.JI4N f26Q '3//0^  Q and H.P.3 plates 2"xl8" N plates 2"xl0" Total length of plate holder /~ 103 Q 13 f t . • J J Fig. 6. 21 * Grating plate holder showing the different plates with nX regions. -44-Two Metre Vacuum Spectrograph Dispersion A2 =• b(sin i - sin ©^) Measure s from R.I. (real image) ?\2 ^ b(sin i - sin 0 2) j^g A2-7vi b(sin ©i - sin © 2) b(sin ©^ - sin ©JJ) S2-S! " R(©! - © 2) ~ S 2 - Si jQ ^h. b cos ©  /£y = ds R To obtain b and sin i . Identify A^ and A 2 and measure (S 2-S 1). Calculate A$ - "(sin Qj - sin 8 2) _ -45-Use for b and R their normal values, then find by t r i a l and error ©^ and © 2. We know A©(rad) - S 2 " S l - 57.2958 ( S 2" S l) degrees. R R Find ©j and © 2 from tables Then Aj and A 2 can be separately solved for i . If these agree, the whole procedure has some justification. Further the distance of vertex from s l i t = R COS C i s measurable. 7^ (vac) « 2040.506 A. A 2(vac) - 2838.062 A s2 ~ s l " 1 7 1 » 9 1 7 »«• 797.556 A ^ ' l 7 I ^ i 7 = 4 « 6 3 9 1 9 2 m " m b(sin 91 - sin © 2) " 171.917 where 797 556 A (sin ex - sin 6 2) = 1 6 ; 6 g 7 A - 0.0478534 e l - © 9 - 1 ! h 9 1 ? 57.2958 x z 2000 - 4.92506°. sin © x - sin 58.622270 - 0.8537572 sin © 2 - sin 53.69764 - 0.8059039 -46-sin i - + sin © n b x 0.1224303 0.8537572 0.9761875 . . A2 . _ 0.1702837 sin i - — + sin © 2 - 0 < 8 0 5 9 0 3 9 0.9761876 i - 77.47135° TABLE I o  Dispersion Table from nX 300 — 4500 A Dispersion in A/mm 2-Metre Vacuum Spectrograph n A (A) 0 10 20 30 40 50 60 70 80 90 300 2. 3845 2. 4010 2. 4175 2. 4339 2.4502 2. 4664 2.4825 2. 4985 2. 5144 2.5302 400 2. 5459 2. 5615 2. 5769 2. 5922 2.6074 2. 6225 2.6375 2. 6524 2. 6673 2.6821 500 2. 6968 2. 7114 2. 7259 2. 7403 2.7546 2. 7688 2.7830 2. 7971 2. 8111 2.8250 600 2. 8388 2. 8528 2. 8665 2. 8801 2.8936 2. 9070 2.9204 2. 9337 2. 9469 2.9601 700 2. 9732 2. 9863 2. 9993 3. 0122 3.0250 3. 0378 3.0505 3. 0632 3. 0758 3.0884 800 3. 1009 3. 1134 3. 1258 3. 1382 3.1505 3. 1627 3.1749 3. 1870 3. 1990 3.2110 900 3. 2229 3. 2348 3. 2467 3. 2586 3.2704 3. 2821 3.2937 3. 3053 3. 3168 3.3282 1000 3. 3396 3. 3510 3. 3623 3. 3736 3.3849 3. 3961 3.4073 3. 4185 3. 4296 3.4406 1100 3. 4516 3. 4625 3. 4734 3. 4843 3.4951 3. 5059 3.5167 3. 5274 3. 5381 3.5488 1200 3. 5595 3. 5701 3. 5807 3. 5912 3.6016 3. 6120 3.6224 3. 6327 3. 6430 3.6532 1300 3. 6634 3. 6736 3. 6837 3. 6938 3.7039 3. 7140 3.7240 3. 7340 3. 7440 3.7540 1400 3. 7639 3. 7738 3. 7836 3. 7934 3.8032 3. 8129 3.8226 3. 8323 3. 8419 3.8515 1500 3. 8611 3. 8707 3. 8802 3. 8897 3.8991 3. 9085 3.9179 3. 9273 3. 9366 3.9459 1600 3. 9552 3. 9645 3. 9737 3. 9829 3.9921 4. 0013 4.0104 4.0195 4. 0286 4.0376 1700 4. 0466 4. 0556 4. 0646 4. 0736 4.0825 4. 0914 4.1002 4. 1090 4. 1178 4.1266 1800 4. 1353 4. 1440 4. 1527 4. 1614 4.1701 4. 1787 4.1873 4. 1959 4. 2045 4.2131 Table I (continued) nUA) 0 10 20 30 40 50 60 70 80 90 1900 4. 2216 4.2301 4.2386 4.2471 4.2555 4.2639 4.2723 4. 2806 4.2889 4.2972 2000 4. 3055 4.3138 4.3221 4.3303 4.3385 4.3467 4.3549 4. 3630 4.3711 4.3792 2100 4. 3873 4.3954 4.4035 4.4115 4.4195 4.4275 4.4355 4. 4434 4.4513 4.4592 2200 4. 4671 4.4750 4.4828 4.4906 4.4984 4.5062 4.5140 4.5217 4.5294 4.5371 2300 4. 5448 4.5525 4.5601 4.5677 4.5753 4.5829 4.5905 4. 5981 4.6057 4.6133 2400 4. 6208 4.6283 4.6358 4.6432 4.6506 4.6580 4.6654 4. 6728 4.6802 4.6876 2500 4. 6950 4.7024 4.7097 4.7170 4.7243 4.7315 4.7387 4. 7459 4.7531 4.7603 2600 4. 7675 4.7746 4.7817 4.7888 4.7959 4.8030 4.8101 4. 8172 4.8243 4.8313 2700 4. 8383 4.8453 4.8523 4.8593 4.8663 4.8732 4.8801 4. 8870 4.8939 4.9008 2800 4. 9077 4.9145 4.9213 4.9281 4.9349 4.9417 4.9485 4. 9553 4.9621 4.9689 2900 4. 9756 4.9823 4.9890 4.9957 5.0024 5.0091 5.0156 5. 0222 5.0288 5.0354 3000 5. 0421 5.0487 5.0553 5.0618 5.0683 5.0748 5.0813 5. 0878 5.0943 5.1008 3100 5. 1072 5.1136 5.1200 5.1264 5.1328 5.1392 5.1456 5. 1520 5.1584 5.1647 3200 5. 1710 5.1773 5.1836 5.1899 5.1962 5.2025 5.2088 5. 2150 5.2212 5.2274 3300 5. 2336 5.2398 5.2460 5.2522 5.2584 5.2645 5.2706 5. 2767 5.2828 5.2889 3400 5. 2950 5.3011 5.3071 5.3131 5.3191 5.3250 5.3311 5. 3371 5.3431 5.3491 3500 5. 3551 5.3611 5.3670 5.3729 5.3788 5.3847 5.3906 5. 3965 5.4024 5.4083 3600 5. 4142 5.4201 5.4259 5.4317 5.4375 5.4433 5.4491 5. 4549 5.4607 5.4665 3700 5. 4722 5.4779 5.4836 5.4893 5.4950 5.5007 5.5064 5. 5121 5.5178 5.5235 Table I (continued) nA (A) 0 10 20 30 40 50 60 70 80 90 3800 5. 5291 5. 5347 5. 5403 5.5459 5.5515 5. 5571 5. 5627 5. 5683 5. 5739 5. 5794 3900 5. 5849 5. 5904 5. 5959 5.6014 5.6069 5. 6124 5. 6179 5. 6234 5. 6289 5. 6344 4000 5. 6398 5. 6453 5. 6507 5.6561 5.6615 5. 6669 5. 6723 5. 6777 5. 6831 5. 6884 4100 5. 6937 5. 6990 5. 7043 5.7096 5.7149 5. 7203 5. 7255 5. 7308 5. 7361 5. 7414 4200 5. 7467 5. 7519 5. 7571 5.7623 5.7675 5. 7727 5. 7779 5. 7831 5. 7883 5. 7935 4300 5. 7987 5. 8039 5. 8091 5.8142 5.8193 5. 8244 5. 8295 5. 8346 5. 8397 5. 8448 4400 5. 8499 5. 8550 5. 8601 5.8652 5.8702 5. 8752 5. 8802 5. 8852 5. 8902 5. 8952 4500 5. 9002 5. 9052 5. 9102 5.9152 5.9202 5. 9252 5. 9302 5. 9351 5. 9400 5. 9448 -50 CHAPTER III RESULTS AND ANALYSIS Most of the lines have appeared on several plates and, in the case of exposures on the grating, in several different orders. For the 21 foot grating the weighted means give wave-lengths which are accurate to 0.01 Angstrom. The prism o wavelengths in the visible region are accurate to about 0.1 A and in the infra red to better than 1 A. In the vacuum region, i t i s estimated that the wavelengths are accurate to only o about 0.03 A, the reason being the scarcity of good standard lines. As described earlier the accuracy in the case of large grating measurements is supported by the Fabry Perot interferograms. Selenium I and II The neutral atom contains six electrons outside the closed shell, and has a 4s 24p 4 3P« ground state. Ruedy and Gibbs (42a,b) in the analysis of Se I have observed 510 lines o o and classified 391 lines between 300 A and 11000 A. Meissner et a l (29,30) have published a l i s t of selenium I lines between 3588 A and 9665 A. As mentioned in the'Atomic Energy Levels' Vol. II compiled by Mrs. Sitterly (33), these two l i s t s are discordant with regard to wavelengths of a number of lines common to both. Ruedy and Gibbs quote the ionization -51 potential for Se I as 78658.22 em which corresponds to 9.75 ev. As mentioned earlier (page 2) Shenstone*s recent analysis of Se I supports that of Ruedy and Gibbs. We made no attempt to analyse this spectrum. In Se II the ground O *3 A ° state i s 4s^4p"* ^^/2 * a t t e m P * n a s D e e n made to extend the analysis of Se II presented by Martin (24), and most of his measurements are in good agreement with our values. For f u l l details of the assignment of the lines and the structure of the spectrum reference should be made to his paper. He has classified 192 lines in the range between 694 and 9816 A. The ionization potential for Se II quoted by him is 173557 cm - 1 which corresponds to 21.5 ev. Some 40 lines on our plates, apparently not observed by him, could be classified as transitions between levels established by him. These lines are marked I I * * in our wavelength tables 2. Selenium I I I The ground state of Se I I i s 4s 24p 2 3 P q and the chief series are due to the successive excitation of one of the 4p electrons. The only attempts made in analysing this spectrum are by Badami and Rao (4) and by Rao and Murti (39) o and they have classified 218 lines in the region TvA 517 A -6613 A . Since some of their wavelenths were of doubtful accuracy, we have found i t necessary to revise the values of most of the levels reported by them although the names assigned to these levels are correct. Many lines due to the -52-transitions 4s 4p4d - 4s^4p5p are situated above A 6700 and some of these calculated values are identified in our investigation which support their classification* In addition to this many lines apparently not observed by Rao have been classed as transitions between levels established by him. 5 0 S 2 Term in Se III The terms associated with the configuration 4s4p 3 are °S , ^S , **P , 3D , •LP , D , the 5 S 2 member of which l i e s quite low. The discovery of two new germanium lines by c a Andrew and Meissner (1) led to the recognition of the S 2 term in Ge I. The recognition of the 5S 2° term in As II was established in this laboratory a few years ago (6). Using these values and the irregular doublet law the position of the 5 S 2 ° term in Se III was calculated. By sweeping the wavelength l i s t in the expected region for a difference of 2196 cm"1 (4s 24p 2 3 P 2 - 4s 24p 2 3P 1) we arrived at 2 pos-s i b i l i t i e s and a l l the four lines were unobserved by earlier workers. However, an examination of the plate together with a comparison of intensities for the same transitions in Ge I and As II led us to choose 65200 cm"1 and 67400 cm"1 instead of 64566 and 66760. Irregular doublet law applied to Ge I, As II, Se III Ge I As II 4s 24p 2 3P 2-4s4p 3 5 S 2 ° 40512 52275 11763 12000 Se III 64275 observed = , 65,200 cm -53-The establishment of the 4s4p<5 °S 2 term has been gratifying since this i s one of the basic terms in Se III. As can be seen from the table above i t s position i s reasonably close to that predicted by the irregular doublet law. 4s24pns configurations The theory for the intervals between the levels belonging to this configuration i s known for any type of coupling and is helpful in identifying the levels of higher members of this configuration. We applied Houston's theory for intermediate coupling to 4p5s and 4p6s and found i t quite good (see page 54). We have established the 4p7s in this series. 3 0 The missing level 4p5d P Q i s also established and i t i s interesting to note that the three transitions 4p5d , „ to the ground level 4p 2 3 P j l i e as a strong group on our plates. We have also established 4p 2 1 S C in Se III by i t s 3 1 combination with 4p5s P^ and AP^ levels. A thorough but unsuccessful attempt has been made in locating the terms arising from the 4p4f configuration, using the theory of intermediate coupling in the pair coupling approximation. We had expected to add several new terms to this spectrum, but have been disappointed. Ionization Potential for Se III Badami and Rao (4) give the limit 274924 cm-1. Mrs. Sitterly (33) has recalculated the limit and the value Houston's Theory (16) applied to np'n's configuration in Se III Config. 3P 3»i 3 P l - 3 P 0 3*2 3 V 3 p 0 Calc. Obs. 4p. 5s 126275 126779 504 130388.6 4113.6 133855.7 131653.6 4p.6s 187168.7 187426.5 275.8 191523.0 4354.3 193519.8 192161.8 4p.7s 209235 209391 156 213628 4393 215402.9 214017 -55-given i s 258000 c m . Calculations of n* for the members of the np.n*s series showed that even Mrs. Sitterly's limit was high. Hence we calculated the limit from the 3I>2 levels of np6s and np7s series and the value i s 253027 cm""1. Using the 3 P Q levels the lower limit was calculated to be 248583 cm""1. For n* values (Table 3) we have used the value 250,000 cm"1. We have added another 55 classified lines to this spectrum. Selenium IV The ground state of Se IV i s 4s 24p 2 P ^ . This spectrum is isoelectronic with Ga I, Ge II, As III. Rao and Badami (37) have analysed this spectrum and classified 35 lines between 635 A and 3059 A. a) Location of the term 4 P in Se IV The terms arising from the configuration 4s4p 2 are 4 2 2 2 4 * P , P , D, S of which the P member li e s quite low. In As III this term was established by Bedford (6). Hence we could use the irregular doublet law to predict the location of this term in Se IV. The following tables show the use of this law and give the calculations for the interaction constant for 4p electron in 4 P . Irregular doublet law applied to P in Se IV Gal Gell AsIII SelV .g. p 38565 52709 67228 14144 14719 15400 2 4 P| 37146 49809 62469 12663 12660 12655 82628 82015 (pred) (obs) 75124 75022 (pred) (obs) Interaction constant for 4p electron in 4P in Se IV Gal A 4P 941 A 4P 235 To 705 Gell 1791 448 1344 AsIII 2868 717 2151 SelV 4200 4187 (obs) 1050 1047 (obs) 3100 3141 (obs) A = Lande* interval factor for 4P Yp = Interaction constant of 4p electron -57-o b) 4s ng and nh series A search was made to locate the members of the ng and nh series and we were successful in extending the ng series up to 2 n - 9 and the nh series up to n = 8. The level 6g G is fixed 2 9 by i t s combination with 7h H and 8h*H. But we do not find 9 2 proper combinations for 6g^G with 4s 5^«/,^ levels. However, 2 2 2 the levels 4s 5f F_ , F-, depend only on their combinations %. % 9 9 2 with 4s^5d *Da , Dc. and hence should be taken as tentative. In the nh series, using Rydberg series extension, we have established the members 6h, 7h and 8h by their strong combinations with 5g. A l l the three lines are new and very intense and were already suspected to be of high excitation from excitation data. Further, since these lines do not exhibit any structure, i t i s concluded that 5g i s not s p l i t , o 2 The level 4s 7s Sj suggested by Rao (37) i s rejected on the basis of n* values and now we have established this level by 2 2 2 i t s combinations with the 4s 24p ,3 and 4s 5p p £ , 3 . . Level n* 4s 25s 2 S | 157241 3.047 4s 26s 2S^ 240751 4.077 4s 27s 2Sx 288146 (Rao) 5.491 280145 (Present 5.149 work) 9 2 2 2 2 2 In addition the levels 4s^6p P^, P. , 4s 7p Pj, Vy A 9 k^ /k a l S ° e s t a b l i s h e d * i s s e e n t n a t t h e n s s | levels and -58-o 2 combine strongly with the np , P^ levels. Out of 2 2 9 9 the two levels 4s 6d , , i s well supported by i t s combinations with 5p and 6p but 2D^ i s tentative o because of large separation from . Ionization Potential o Using the 4s nh series a new ionization potential was calculated I.P. = 346360 cm""1 Using the formula given by Edle*n and Risberg (11a) the correction AT to be added was also calculated AT - 15.5 cm"1 Ionization potential = 346,375 ± 100 cm"1 which corresponds to 42.94 t 0.01 ev. We have added another 52 classified lines to this spectrum. -59-Selenium V 2 1 The ground state of Se V i s 4s S Q. This spectrum consists of a singlet and t r i p l e t system, similar to Zn I. Sawyer and Humphreys (44) have classified 16 lines between 70\ 839 - 506 A, mainly by the application of the irregular and regular doublet laws to the isoelectronic spectra Zn I, Ga II, Ge III, As IV and Se V. These chief t r i p l e t terms found by them due to the configurations 4s4p, 4s4d, 4s5s and o 4p are further confirmed by Rao and Badami (38) by identifying a few singlets and intercombinations arising from the above configurations. A l l these lines appear very strongly on our plates and we support their classifications. However, a comparison of the n* values with those of As IV immediately showed a discrepancy regarding the ionization potential. By an extrapolation along the isoelectronic sequence we estimate the ionization potential to be 551600 cm"1. We have established the 4s5p 3 P Q j 2 o 3 and the 4s4f °Fn n . F 0 levels by their combinations 2,3,4 J with the 4s4d 3Dj_ 2}3- T n e term 4s5s 1 S Q i s also found. One of the lines supporting this i s doubly classified in 3 the same spectrum. The levels 4s5d D i 2 3 s n o u l d D e taken as tentative, even though the interval ratios for -60-4s5d g 3 compared to 4s4d look good (Table 5). A peculiarity of this spectrum i s the appearance of the singlets deeper than the tr i p l e t s in the nd series. A l l members of the isoelectronic sequence exhibit the same effect. We have added another 32 lines to this spectrum. In our calculations for n* (Table 5) we have taken the value of the ionization potential for Se V as 550976 cm"1, quoted by Finkelnburg and Humbach (52). Selenium VI and Selenium VII The ground state of Se VI i s 3 d 1 0 4s 2S^ . By extrapolation along the isoelectronic sequence Sawyer and o Humphreys (44) have classified seven lines between 452 A o i and 886 A and the limit i s given as 658994 cm . A l l these lines appeared on our plates too. However, we did not try to extend the analysis of this spectrum, mainly because we did not expect our source to excite more Se VI lines strongly. -61 Se VII The ground state of Se VII i s 3 d 1 0 1S Q. Rao and Murti (39) attribute some 42 lines in the region AA 860 -e 560 A to Se VII. They have also given tentative c l a s s i -fications for four of them. Out of these, 28 lines have appeared on our plates including two of their classified lines. Even though we agree with them that these lines are highly enhanced, we s t i l l feel that these lines should belong to Se V or at the most to Se VI. We feel our source was not capable of exciting lines in Se VII. With the exception of the resonance lines, even the Se VI lines were not strong on our plates. -62-TABLE 2 Catalogue and Classification of Selenium Lines M. I.T. : Intensity given in M.I.T. wavelength tables (51) EpP : Intensity on prism spectrograph (electrodeless discharge) R : Intensity observed by Rao (4,37,38,39) SHE ' Intensity on prism spectrograph (Spark in Helium) Ej)G : Intensity on 21 foot grating (electrodeless discharge) K : Intensity given by Kayser (19) Ky : Intensity given by Kelly (20) V Q : Intensity on vacuum grating (electrodeless discharge) * : Interferometric measurement d : Diffuse line $ : Double line c: Carbon line Lines marked I are classified in Se I by Ruedy and Gibbs (42a) Lines marked II are classified in Se II by Martin (24) Lines marked I I * * are now classified in Se II using the levels in (24) Lines marked III are classified in Se III by Rao (4,39) Note: A l l intensities are on a visual scale of 0 - 300 on E Q P 0 - 2000 on E D G 0 - 100 on V Q 0 - 10 on Sjj E The intensity estimates are consistent only within restricted wavelength ranges since the lines were recorded on emulsions of different sensitization and no attempt was made to correct for this difference. Intensity Wave- Wave-length number M I T E Q P R Sg e E D G K A(A) (cm"l) lOd 10457 9560.2 8d 10320 9687.3 lOd 10106 9892.4 2 9968.2 10029.2 2 9941.0 10056.6 Classification -63-Intensity Wave-length Wave-number Classification E D P R Sjj e E DG K A (A) (cm"1) 1 9904.6 10093.6 1 9850.3 10149.2 6 9799.9 10201.4 4 9780.6 10221.5 10 9769.6 10233.0 6 9755.1 10248.2 I 3 9726.0 10278.9 10 9674.8 10335.4 30 9654.2 10355.4 10 9618.6 10393.7 20 9598.5 10415.5 8 9549.8 10468.5 I 25 9536.1 10483.6 I lOd 9471.4 10555.2 8 9417.9 10615.1 II 30 9392.8 10643.5 10 9387.9 10649.1 10 9350.9 10691.2 lOd 9276.2 10777.4 lOd 9246.9 10811.5 II 2 9220.2 10842.8 100 9219.5 10843.6 40 9189.7 10878.8 8 9179.9 10890.6 200 9119.9 10962.0 20d 9104.0 10981.2 8d 9094.3 10992.9 lOd 9079.1 11011.3 20d 9065.6 11027.7 30d 9033.8 11066.5 lOd 9014.7 11089.9 II 40d 8998.6 11109.8 5d 8993.0 11116.7 25d 8984.0 11127.8 lOd 8968.2 11147.4 I 200 8916.1 11212.6 I 20 8903.5 11228.5 6d 8826.7 11326.2 lOd 8801.1 11359.1 1 8782.0 11383.8 4p4d 3 P 2~4p5p 3 D 2 ** -64-Intensity Wave- Wave-length number ¥ R ^ ED G K A (A) (cm"1) 40d 8770.5 11398.7 20d 8760.3 11412.0 1 8742.1 11435.8 1 8708.9 11479.3 1 8700.4 11490.6 8 8685.9 11509.7 15 8678.8 11519.1 20d 8665.6 11536.7 1 8647.5 11560.8 5 8636.5 11575.5 5d 8630.4 11583.7 3 8627.1 11588.2 Id 8591.7 11635.9 20d 8570.9 11664.1 Id 8567.1 11669.3 3 8548.2 11695.1 0 8536.7 11710.8 1 8527.7 11723.2 80d 8519.5 11734.6 5 8477.3 11793.0 1 8451.4 11829.1 5 8444.4 11838.9 200 8422.5 11869.7 100 8405.5 11893.7 4 8393.2 11911.1 2 8383.8 11924.5 1 8371.8 11941.6 1 8346.5 11977.8 1 8336.8 11991.7 6 8307.2 12034.4 1 8291.0 12057.9 1 8283.4 12069.0 0 8272.0 12085.6 100 8261.5 12101.0 10 8260.2 12102.9 4 8254.2 12111.7 1 8240.9 12131.2 0 8221.1 12160.4 lOd 8214.0 12170.9 1 8198.2 12194.4 Classification III 4p4d3D,-4p5p3D9 II 6 * IV 6d2D^-7p2P^ II -65-Intensity Wave- Wave- Classification length number EQP R S H E EJJG K A ( A ) (cm-1) 6d 8186.6 12211.7 80 5 8169.3 12237.7 8 3 8149.4 12267.5 I 30 8113.5 12321.8 100 8112.2 12323.8 8d 8102.9 12337.9 80 8101.1 12340.7 100 8098.8 12344.2 I 40 8091.6 12355.1 20 8075.2 12380.2 2 8053.0 12414.3 0 8036.0 12440.6 I 10 8013.7 12475.2 1 0 0 ISO 8012.2 12477.5 100 8005.3 12488.3 60 ; ' 8003.1 12491.7 III 50 7989.1 12513.6 o 7963.2 12554.3 I 4 7947.5 12579.1 1 0 0 100 7944.7 12583.5 0 7933.0 12602.1 II** 1 7885.9 12677.3 0 7868.8 12704.9 60 7838.6 12753.8 II 15d 7798.1 12820.2 60d 7772.9 12861.7 II 3 7735.3 12924.2 I 10 7724.3 12942.6 II I O O 100 7721.7 12947.0 IV 4 7705.1 12974.9 3 7675.1 13025.6 II 1 7669.1 13035.8 50 7662.6 13046.8 IV 0 7642.7 13080.8 II** 20 7635.4 13093.3 1 5 0 1:;^ 7632.1 13098.9 4 7618.0 13123.2 3 7597.8 13158.1 5 7589.9 13171.8 I O O 100 7587.1 13176.6 I « 2 U _ ' 7 r » 2 / .2r1_,fc21 -66-Intensity Wave- Wave- Classification length number ED* r sHe ED G K *<A> (cm"1) 1 7560.7 13222.6 4 7515.4 13302.3 30 ll 7512.8 13306.9 15 7504.8 13321.1 ,3 7501.6 13326.8 8 7492.4 13343.1 4 7469.0 13384.9 20 7460.8 13399.6 2 7443.2 13431.3 0 7424.4 13465.5 I 10 7392.9 13522.8 II lOd 7384.4 13538.4 7382.7 13541.5 3d 40 7378.8 13548.7 3 -0 7350.6 13600.6 III 4p4d P1-4p5pJP. 2 3 7346.8 13607.7 , q 1 7322.3 13653.0 III 4p4dJP2-4p5p,5P 3 7271.7 13748.2 3 7270.3 13750.8 4 7265.7 13759.3 1 7258.5 13773.2 25 7244.5 13779.8 5 -1 7232.2 13823.2 0 7216.4 13853.5 2 7172.9 13937.5 4 7160.5 13961.6 „ 6 7148.0 13986.0 III 4p4d<*P2-4p5p3D. 2 7139.5 14002.7 II 8 7112.3 14056.2 „ o 8 7085.5 14109.3 III 4p4dJD2-4p5p,3D, 5 7068.5 14143.3 III 4p4d3D,-4p5p3P( 20 7064.2 14151.9 II** lOd 7061.1 14158.1 0 7048.4 14183.8 1 7021.2 14238.7 1 6965.4 14352.8 Si w l 6964.2 14355.2 2 6955.4 14373.4 3 6947.8 14389.1 II** 0 6925.6 14435.2 II -67-Intensity M L T EDP R S H E EJJG K Wave-length 7\ (A) Wave-number (cm"1) Classification 30 15 15 30 8 4 300 500 200 100 0 0 6A. 6d 0 4d 2 15 1 1 2 1 Z 1 3 6 5 0 1 20 8 10 20 1 2 50 0 1 50 25 60 8 15 4d 6d 100 40 15 40 2 4 4d 8 0 2 10 40 75 6914.7 6895.9 6885.3 6884.4 6862.5 6861.9 6830.6 6810.5 6799.3 6792.6 6782.8 6777.6 6755.3 6751.6 6697.1 6684.0 6683.0 6659.2 6642.2 6637.5 6629.69 6614.29 6603.44 6598.91 6591.58 6582.3 6578.4 6563.41 6545.48 6534.94 6524.34 6517.19 6512.69 6505.51 6490.54 6483.11 6448.99 6444.29 6432.67 6429.03 14458.0 14497.4 14519.7 14521.6 14567.9 14571.3 14635.9 14679.1 14703.3 14717.8 14739.0 14750.4 14799.3 14807.4 14927.6 14957.1 14959.3 15012.7 15051.1 15061.8 15079.5 15114.6 15139.5 15149.84 15166.68 15188.1 15197.1 15231.78 15273.49 15298.12 15322.99 15339.80 15350.40 15367.33 15402.79 15420.44 15502.03 15513.33 15541.34 15550.14 3 3 III 4p4d D3-4p5p D3 II** II ** III III II o 2 IV 6s Si-6p P. I II II II 68-Intensity Wave- Wave- Classif ici length number «I T E DG K •K (A) (cm - 1) 125 35 40 6422.93 15564.90 6 40 3 8d 6416.99 15579.33 II 2d 6411.61 15592.40 4d 6397.05 15627.88 lOd 6382.72 15662.98 30 6 6370.91 15692.01 II 5 20 1 6359.24 15720.80 III 15d 6349.45 15745.03 15d 6343.80 15759.08 15 4d 6338.12 15773.19 II 4d 6332.61 15786.91 lOd 6326.04 15803.31 II 5d 6322.46 15812.25 I 8d 6308.86 15846.35 5d 6305.09 15855.83 1000 100 8 40 6303.40 15860.08 III 3 5 6296.71 15876.92 6 0 6290.75 15891.96 300 2 6284.59 15907.53 I 30 8 6281.74 15914.75 2 6272.42 15938.39 2 6265.91 15954.97 5 8d 6261.06 15967.32 30 lOd 6244.65 16009.27 o 120 2 6238.79 16024.33 IV 6s^S|-5 8 6220.81 16070.63 I 10 2 6206.36 16108.04 II 2 6200.95 16122.09 8 6197.83 16130.20 4 6191.16 16147.60 15 3 6183.74 16166.97 II 6 6177.37 16183.64 6d 6171.48 16199.08 30 8 6164.51 16217.39 8d 6149.88 16255.99 -15 lOd 6144.35 16270.61 2d 6142.31 16276.02 3d 6138.00 16287.44 II** 70 8 6135.04 16295.30 II 1 6131.51 16304.68 II -69-Intensity Wave- Wave- Classification length number M L T EJJP R S H E E DG K 7\ (A) (cm"1) 4 8d 2 6125.58 16320.48 60 15 6123.38 16326.34 II 4 15 1 6115.89 16346.33 1 6110.16 16361.66 10 1 6105.80 16373.34 40 6101.27 16385.49 II 50 10 6096.18 16399.17 II lOd 6084.53 16430.59 80 15 6065.73 16481.50 II 3 8d 6060.56 16495.55 1000 80 2 70 6055.84 16508.41 II 6d 6054.12 16513.09 60 5 5 6042.56 16544.70 III 8d 0 6038.48 16555.88 30 lOd 0 6029.94 16579.32 II 60 6 10 6023.61 16596.74 III 6d 6020.27 16605.94 2d 6009.09 16636.86 II 35 15 5990.73 16687.83 II 8 20 5984.82 16704.31 5 8d 5962.78 16766.06 II 5 12 0 5959.53 16775.20 6d 5948.10 16807.43 5d 5936.95 16838.99 V 30 4d 5925.04 16872.85 I 4d 5910.23 16915.12 60 5 50 5 5898.09 16949.96 III 80 2 0 3 5885.21 16987.04 III 2d 5879.24 17004.29 75 60 40 6 5866.19 17042.10 II 1 5860.21 17059.52 5d 5849.55 17090.60 II 60 30 5 6 5842.57 17111.01 II 6d 5831.40 17143.78 II 20 1 5 5826.97 17156.81 III 8d 1 3 5824.47 17164.20 4d 5812.73 17198.86 1 5808.72 17210.73 40d 2 5800.34 17235.58 III 20 5794.61 17252.62 70-Intensity Wave- Wave- Classification length number M I T EDP R ED G K A ( A ) (cm"1) 15 20 5 5789.93 17266.56 II 15 20 2 5 5784.73 17282.11 III,II 2d 5775.39 17310.05 15 20 5 5768.93 17329.43 II 5d 5762.45 17348.91 25 1 5753.38 17376.26 I 50 40 0 7 5747.51 17394.03 II 5d 5739.65 17417.84 20 20 5 5732.99 17438.07 II 15 20 5 5730.75 17444.88 II 10 20 5 5725.60 17460.57 2d 5716.36 17488.79 II 6d 5705.50 17522.10 45 601 0 0 8 5697.84 17545.64 II 4d 0 5679.01 17603.81 5d 3 5672.37 17624.44 II 0 5666.95 17641.29 I 0 5662.12 17656.33 8 5d 2 5655.41 17677.28 II 0 5652.62 17686.00 I 4p4d1D2-4p5p3D3 8 8d 5 5652.36 17686.81 II 2d 1 5649.98 17694.26 2d 5646.66 17704.66 3d 5644.43 17711.65 300 60 2 25 9 5623.12 17778.79 II 15 75d 5618.05 17794.83 2d 5616.38 17800.43 II 15 20 5 5611.55 17815.12 500 60 0 25 8 5591.15 17880.45 II 8 30 4 5586.34 17895.84 II 4 5577.31 17924.81 500 60 2 1000 9 5567.03 17957.90 II 8 20 4 5560.51 17978.98 II 2d 1 5535.74 18059.41 2d 0 5528.64 18082.59 750 80 0 5 8 5522.44 18102.92 II 6d 4 5511.51 18138.81 2d 5507.46 18152.15 6d 5 5505.54 18158.48 2d 5502.13 18169.73 -71-Intensity Wave- Wave- Classification length number M I T EJJP R S H E E DG K A (A) (cm"1) 0 1 5497.06 18186.48 8d 5489.98 18209.93 20 25 6 5484.12 18229.41 II 6d 5481.56 18237.92 10 20 6 5474.05 18262.94 15 50 100 7 5455.82 18323.95 II 50 80 5 6 5444.99 18360.41 II 12 5437.84 18384.55 2d 5434.13 18397.10 V 4d 2 5429.79 18411.80 III 3d 5427.41 18419.87 15 8 5 5417.14 18454.78 5 2 5414.56 18463.57 III 75 40d 4 5401.51 18508.20 II 35 40 6 5382.87 18572.27 20 30 0 6 5380.17 18581.59 II 4d 3 5375.87 18596.49 150 4d 1 5374.27 18602.02 I 8d 2 5370.02 18616.74 4 5358.79 18655.7 6 2 5354.65 18670.2 III 8 3 5328.54 18761.6 II** 5 5 2 5322.85 18781.7 II** 15 30 5 5315.57 18807.4 20 3 5310.67 18824.8 500 20 6 300 9 5305.347* 18843.75 II 18 40 5 5 5300.97 18859.24 II 2d 2 5297.77 18870.6 8d 2 5287.77 18906.3 6d 2 5280.36 18932.8 V 150 80 6 500 8 5271.179* 18965.72 II 100 6 300 7 5253.67 19029.02 II 50 250 6 5253.10 19031.09 II 35 50 0 50 6 5245.19 19059.78 II 15d 5241.91 19071.7 5 20 4 5237.60 19087.4 II 5 30 4 5235.23 19096.03 40 5 100 5 5232.78 19104.97 III 30 50 3 5231.69 19108.99 600 150 9 800 9 5227.533* 19124.23 II 4s4f 3F Q-4s5d 3D, 4p4d 1D 2-4p5p 3P 2 4s4f 3F 2-4s5d 3D 1 -72-Intensity Wave- Wave- Classification length number Ml T V R SHe K A (A) (cm-1) 8 25 10 5 5223.85 19137.66 10 3 5218.05 19158.92 2 5202.40 19216.54 II** 18 50 20 5 5187.66 19271.16 II 15 25 5 5183.05 19288.30 II 600 150 9 750 9 5175.925* 19314.83 II 18 40 0 5 5171.49 19331.40 II 20 0 Od 4 5150.02 19412.01 II 500 100 8 300 8 5142.124* 19441.79 II 35 50 2 0 7 5134.30 19471.43 II 25 40 0 20 6 5117.64 19534.38 II** 15 10 7 5109.62 19565.49 II 15 0 100 7 5109.16 19567.25 II 50 5109.10 19567.48 350 120 8 750 8 5096.532* 19615.73 II** 25 5095.94 19618.00 50 100 3 250 7 5093.225* 19628.43 II 12d 100 3 5084.04 19663.94 8d 0 2 5081.75 19672.76 3d 5078.74 19684.42 250 120 10 500 8 5068.630* 19723.71 II 15d 3 5063.39 19744.1 II 100 3 5062.05 19749.34 40d 50d 5061.61 19751.06 II 750d 3 5060.47 19755.51 20d 5039.78 19836.59 40 80 0 150 8 5031.15 19870.64 II 50 50 5 5025.63 19892.46 25 60 100 6 5019.36 19917.34 IV i 5d 50 5017.15 19926.07 8d 100 5009.32 19957.21 2d 0 5006.63 19967.93 II** 3d 0 5001.45 19988.61 5d 4997.04 20006.3 300 10 500 8 4992.831* 20023.11 II 12 300 5 4992.10 20026.1 II 0 4989.05 20038.31 300 80 8 400 8 4975.735* 20091.90 II lOd 2 2 4974.04 20098.77 III 15d 4972.41 20105.35 Ti -73-Intensity Wave- Wave- Classification length number "IT R SHe K •K (A) (cm""1) 3d 4966.88 20127.73 Id 100 4965.05 20135.17 25 60 4 4962.49 20145.57 25 4953.74 20181.15 5d 4950.69 20193.58 8d 2 4938.17 20244.76 2d 4935.23 20256.82 2d 100 4933.19 20265.23 15 80 0 50 6 4920.96 20315.58 15d 150 2 4919.03 20323.55 III 8 30 0 4 4917.32 20330.62 12d 4911.99 20352.67 2d 0 4907.90 20369.63 III 75 4904.79 20382.54 8 20 3 4897.55 20412.66 II 50 4889.05 20448.14 £00 50 4888.89 20448.81 20 2000 4879.844* 20486.72 Id 4870.74 I 20525.03 II*' 20 2 10 3 4860.35 20530.85 III Id 4864.91 20549.62 20d 4859.74 20571.48 2d 4856.86 20583.67 0 2 4853.49 20598.00 20d 2000 4847.84 20622.00 IV 100 4847.05 20625.57 30 2 4847.01 20625.57 II 800 100 10 1500 10 4844.941* 20634.30 II 800 80 8 1000 8 4840.609* 20652.79 II 1 4837.88 20664.44 2 4835.17 20676.02 12 15 4 4830.79 20694.79 5 4829.40 20700.72 25 40 0 75 6 4819.80 20741.94 0 4819.36 20743.85 3 4818.28 20748.48 6d 4813.56 20768.82 4 lOd 4809.65 20785.74 II 2000 4806.002* 20801.48 4 4801.11 20822.71 II -74-Intensity M I T EDP R S H E E DG K Wave-length A (A) Wave-number (cm~l) Classification 12 30 0 4 4797.66 20837.67 15 4791.89 20862.76 6d 2 4783.51 20899.30 40 40 5 4765.62 20977.77 II 4 4765.00 20980.50 800 10 8 4763.646* 20986.23 II 20 30 5 4761.93 20994.03 II 6 1 4742.59 21079.61 600 60 6 4741.04 21086.50 II 800 20 1 4739.10 21095.13 I 2 4737.21 21103.55 20 4735.89 21109.47 8 12 3 4733.69 21119.28 II 1000 40 2 3 4730.86 21131.91 I 10 4726.81 21150.01 30 4 4718.26 21188.33 II 8 2 4714.37 21205.80 5d 4700.01 21270.58 6d 4695.94 21289.05 Id 4692.41 21305.66 8d 4689.79 21316.96 12 20 5 4685.46 21336.66 II 50 4682.24 21351.33 XV 2 4680.99 21357.03 0 4678.36 21369.04 12d 4669.95 21467.50 1 4 4665.41 21428.33 3 4664.67 21431.72 0 4662.00 21444.00 5 4659.47 21455.68 II' 8 500 4657.884* 21462.96 40 0 0 2 4651.48 21492.53 800 120 10 100 8 4648.421* 21506.67 II 120 2 4644.37 21525.42 150 7 6 80 7 4637.869* 21555.49 ii: 150 100 25 6 4636.74 21560.83 1 4633.91 21589.79 12 lOd 8 1500 3 4630.54 21589.60 ii 25 12 4 4628.12 21600.98 ii 8 12d 5 2 4625.09 21615.13 III 4p5s1P,-4p5p3D1 -75-Intensity Wave- Wave- Classification length number «i T EJJP R sHe EJ)G K "i\ (A) (cm""1) 2d 4622.76 21626.06 8 8d 60 2 4621.75 21630.79 6d 2 lOOd 4621.36 21632.57 100 18 8 300 8 4618.763* 21644.74 II 1 4616.75 21654.21 25 1000 4609.543* 21687.98 IV 5g2G-6h2H 10 2 1 4607.70 21696.73 300 10 300 9 4604.311* 21712.56 II 20d 4602.65 21720.53 70 300 2 40 5 4599.94 21733.32 II 25 50 10 3 4597.93 21742.82 II 8 5d 4596.60 21749.11 II 8 10 100 3 4592.38 21769.09 12 4589.874* 21781.04 Id 4587.08 21796.23 2d 4583.89 21809.44 lOd 4581.63 21820.20 20d 4579.62 21829.77 Id 4578.27 21836.21 50 3 50 6 4572.25 21865.00 III 10 20d 3 4567.18 21889.21 II 200 100 8 9 4563.93 21904.85 II 20 25d 2 4561.65 21915.74 II 40 60 7 4559.30 21926.99 1 4557.74 21934.54 80 3 80 5 4553.96 21952.74 50 3 5 4551.05 21966.77 III 20 2 4548.25 21980.34 8d 4547.06 21986.09 II** lOd 750 4545.03 21995.88 25 40 30d 4541.31 22013.92 II 8 15d 4534.00 22049.40 6d 4531.31 22062.40 3 4527.88 22079.20 6d 8 75d 5 4523.53 22100.42 70 40 8 2000 8 4516.30 22135.79 II 6 1 4512.14 22156.20 II** 20 25 3 4507.61 22178.51 10 4504.75 22192.58 25 40 2 4503.03 22201.06 -76-Intensity M I T EDP R s H e EDG K Wave-length A (A) Wave-number (cm"1) Classif ication 10 4501.76 22207.32 10 10 2 4500.67 22212.70 11 25d 4494.48 22243.3 12 2 4488.50 22272.9 4 30 2 4485.55 22287.55 4 2 4483.67 22296.9 II 6 4481.93 22305.5 10 12 50 3 4476.86 22330.8 II 12 15 4 4475.17 22339.2 300 50 8 200 9 4467.58 22377.22 II lOd 4460.67 22411.9 50 30 0 10 6 4454.87 22441.05 300 50 2 75 8 4449.14 22469.94 II 200 80 200 8 4445.97 22485.96 II lOd 4443.97 22493.5 1500 4442.50 22503.5 lOd 4437.19 22530.4 II 40 20 4435.20 22540.6 II 25 20 150 3 4433.85 22547.46 II 60 40 75 6 4432.28 22555.44 II 30 4430.39 22565.1 20 30 100 4 4425.98 22587.5 II 20 20 0 5 4421.62 22609.8 8d 0 4421.00 22613.0 10 15d 40 2 4415.71 22640.1 II 20 10 3 4413.46 22651.6 II 6d 0 3 4409.13 22673.8 70 50 60 7 4406.56 22687.1 100 80 1000 9 4401.00 22715.7 II 12 500 1 4400.10 22720.35 II 15 20 4 4399.04 22725.8 II 30 50 4383.60 22805.9 800 30 400 10 4382.85 22809.8 II 15 4379.91 22825.1 40 40 10 5 4374.22 22854.8 40 25 4373.59 22858.1 5 4371.76 22867.6 II 8 4371.35 22869.8 3 750 3 4370.74 22873.0 82 1 4368.24 22886.1 77 Intensity Wave- Wave- Classification - length number «i T EDP R sHe ED G K A (A) (cm"1) 6d 4362.81 22914.5 100 5 2 4357.31 22943.5 40 120 25 6 4355.11 22955.10 II 8 750 4352.18 22970.6 III 8 50 2000 4348.06 22992.3 II 25 30 4 4345.66 23005.0 II 15d 4344.50 23011.1 2d 4342.40 23022.3 4d 5 4339.95 23035.3 40 25 75 1 4337.67 23047.37 II 25 30 0 4335.54 23058.69 4d 4332.32 23075,8 15 1000 4331.22 23081.68 200 4d 4330.50 23085.5 I 15d 4 4329.29 23092.0 40 3 75 5 4322.75 23126.89 III 60 4 100 5 4322.21 23129.78 III 100 60 400 9 4320.40 23139.52 II 8 30d 4319.00 23047.0 II 40 30 75 6 4316.24 23161.8 6d 4314.36 23171.9 25 30 30 5 4309.11 23200.1 II 10 15 4308.19 23205.1 II 25 4 2 4304.98 23222.4 10 lOd lOd 3 4304.19 23226.65 II 8d 4298.78 23255.9 40 30 60 6 4297.31 23263.82 II 5 4291.75 23293.9 25 lOOd 5 4290.50 23300.74 15 4290.13 23302.7 300 4282.90 23348.6 100 30 300 7 4282.10 23353.0 150 50 400 8 4280.35 23356.0 II lOd 1000 4277.52 23371.5 IV 4d 4275.24 23383.94 0 4267.28 23427.54 10 500 4266,53 23431.66 4d 5 4259.21 23471.9 20d 2 4257.72 23480.1 4d 4255.38 23493.0 6p2P 1* -7s 2S -78-Intensity Wave- Wave- Clas length number M l T E u P R K A (A) (cm - 1) 40 2 20d 2 4251.69 23513.4 50 0 4248:10 23533.3 100 300 7 4247.96 23534.1 II 8 15 lOd 1 4243.97 23556.24 4 4237.42 23592.6 6 4236.44 23598.1 30 1 5d 3 4234.38 23609.57 20d 4231.97 23623.0 40 30 40 6 4230.04 23633.79 II lOd 400 4228.13 23644.46 4227.36 23648.77 20 30 25 5 4226.34 23654.47 II 20 30 25 4 4221.59 23681.08 15d 4218.56 23698.1 150 80 400 6 4215.04 23717.87 200 100 500 7 4212.55 23731.89 II 200 100 500 6 4211.85 23735.83 IV 50 50 2 4210.37 23744.17 20 4210.30 23744.57 0 4206.69 23710.99 10 100 3 4206.57 23765.67 8 4201.00 23797.2 40 30 200 5 4198.01 23814.11 II 20 100 40 3 4196.24 23824.15 II 100 200 5 4195.57 23807.96 50 100 150 6 4194.54 23833.81 II 20 20 10 2 4193.33 23840.68 8 4191.28 23852.3 10 4188.90 23865.9 20 5 4 4186.53 23879.4 30 6 4 4184.89 23888.8 200 4182.95 23899.8 20 4181.45 23908.4 800 30 1000 9 4180.90 23911.54 II 10 4178.96 23922.6 30 4176.23 22938.3 800 20 1000 9 4175.28 23943.7 II 40 1000 10 4169.06 23979.46 III 12 15d 20 1 4167.21 23990.11 II** 40d 4166.54 23994.0 -79-Intensity Wave- Wave- Cis length number M l T R Sjj e E DG K A (A) (cm"1) 12d 0 4166.02 23997.0 40 1 100 5 4165.62 23999.29 II 10 4165.44 24000.33 10 4160.83 24026.9 70 120 5 4159.70 24033.44 II 40 4 100 5 4153.90 24066.98 II 80 500 7 4152.32 24076.14 IV 10 4150.51 24086.6 4 50 3 4148.98 24095.5 20 4147.49 24110.97 30 4146.97 24113.99 100 5 4145.25 24117.20 8 4139.22 24152.3 10 25 5d 1 4138.95 24153.91 II 25 4138.25 24158.0 50 150 4 4137.27 24163.71 II 100 1000 6 4136.23 24169.78 II 15d 4135.70 24172.86 30 4134.77 24178.3 8d 20 4134.04 24182.62 200 500 7 4132.69 24190.51 25 4 500 4131.71 24196.23 200 50 1000 7 4129.11 24211.49 12 4128.85 24213.0 9 200 4127.00 24223.87 III 150 15 250 7 4126.52 24226.68 II 8d 4122.19 24252.1 20 4115.72 24290.2 40 10 5 4114.31 24298.56 II 4 4113.19 24305.2 III 20 3 100 4 4112.48 24309.37 800 500 8 4108.77 24331.31 12 4107.60 24338.2 50 4107.10 24341.2 25 2 4104.15 24358.70 500 4103.89 24360.26 30 4101.92 24371.9 100 0 3 4101.17 24376.39 30 4099.51 24386.26 60 6 300 7 4097.91 24395.83 II lassification 6p 2P£-7s 2S£ -80-Intensity * I T ED1* R sHe ED G K Wave-length 7\ (A) Wave-number (cm - 1) Classification 70 500 70 20 8 40 50 4097.77 24396.67 10 4096.24 24405.72 500 7 4095.33 24411.15 4d 4093.53 24421.9 2d 300 7 4091.86 24431.85 II Id 4089.95 24443.3 50 4088.08 24454.5 lOd 4087.27 24459.3 7 500 8 4083.16 24483.9 III 4d 4082.07 24490.47 12d 4081.23 24495.5 100 4079.54 24505.66 6d 4078.68 24510.82 20 4077.74 24516.47 6d 200 4076.60 24523.33 20 4075.87 24527.72 100 4072.36 24548.85 400 4 4071.99 24551.08 1 500 7 4070.08 24562.64 II 1 4069.58 24565.62 10 4068.38 24572.9 20 4066.41 24584.8 4d 4064.91 24593.8 4d 4063.73 24601.0 150 6 4061.97 24611.64 II 5 100 5 4059.79 24624.88 50 5 4058.17 24634.69 II 80 4054.28 24658.29 2 4052.46 24675.67 75 4052.90 24666.7 8d 4051.43 24675.64 6 4050.86 24679.2 50 4049.34 24688.4 9 1000 10 4046.72 24764.4 III 20d 4043.60 24723.47 0 3 4041.77 24734.63 25d 4041.29 24737.60 15 4039.00 24751.61 65 5 4038.24 24755.05 II 10 4035.44 24773.5 III -81-Intensity Wave- Wave- Classification length number «I T R SHe K MA) (cm- 1) 75 4033.79 24783.58 10 0 4 4032.84 24789.54 150 300 7 4029.99 24806.94 6 2 4028.37 24816.91 60 4024.60 24840. 15 10 50 40 2 4019.45 24871.97 II 5 4019.22 24873.4 70 200 6 4018.47 24878.08 II 70 4 4014.89 24900.21 I 5 8 100 4013.95 24906.1 - 500 4013.83 24889.92 iao 10 300 4008.21 24941.71 150 20 250 4007.84 24944.06 II 1 30 4007.63 24944.13 20 4007.26 24947.86 60 100 5 4003.02 24974.65 II 60 100 7 4001.99 24980.50 1000 3994.99 25024.26 5d 3994.56 25026.97 8 400 5 3993.66 25032.60 1 25 2 3981.26 25110.57 200 3968.35 25192.29 II** 1 5 4 3963.90 25220.55 40 0 500 4 3957.24 25263.02 5 3 2 3952.60 25292.70 25 20 50 5 3951.76 25298.01 20 10 100 7 3948.77 25317.21 II 20 6d 1 5 3941.38 25364.64 6 80 10 40 6 3935.73 25401.08 60 25 3935.31 25403.79 5 10 250 6 3931.57 25427.95 10 1000 3928.62 25447.04 2 10 0 2 3924.01 25476.91 II 8 25 5 3923.36 25481.12 1 5 3920.61 25499.02 60 5 3917.04 25522.25 II 8 5 5 3916.46 25526.06 II 8 30 5 3913.78 25543.53 II 25 8 300 7 3904.85 25601.90 II** 5 100 3 3903.95 25607.80 - 8 2 -Intensity Wave- Wave-length number «I T EDP R Sge E DG K A (A) (cm - 1) 500 3901.59 25623.22 5 10 750 3901.52 25623.81 0 6 3897.25 25651.87 1 100 5 3883.33 25743.80 30 3883.28 25744,15 50 6 3880.51 25762.53 50 4 120 8 3877.23 25784.3 4 3875.37 25796.6 0 2 3870.81 25827.1 10 3868.52 25842.3 Classification II II 5 80 3 3858.08 25912.3 80 9 150 6 3857.25 25917.8 8 5 3 3855.21 25931.5 4 30 8 75 6 3853.26 25944.7 1000 3850.59 25962.7 100 5 75 8 3849.60 25969.3 III 20 6d 5 6 3841.95 26021.1 12 3838.25 26046.1 20 8d 100 7 3836.23 26059.72 II 6 3829.73 26104.1 II** 2 1 7 3827.67 26118.2 4 3826.68 26124.9 5 5d 75 6 3818.68 26179.6 II 2 2 2 3813.03 26218.4 III 4 20 7 1000 6 3812.12 26224.7 4 5 3811.54 26228.6 II 2 6 400 3809.42 26243.1 1 0 3 3807.49 26256.6 III 200 10 0 1000 10 3800.94 26301.8 III 7d 0 3 3795.90 26336.8 25 8d 4 500 7 3793.61 26352.7 5 4 50 5 3789.66 26380.1 12 8 500 7 3786.57 26401.6 10 2 3783.25 26424.8 4 2 200 5 3782.49 26430.1 5 8 12 4 4 15 1 1 0 750 50 4 75 100 2 3780.82 3779.12 3776.81 3770.51 3765.18 26441.8 26453.7 26469.9 26514.07 26551.6 II** -83-Intensity Wave- /( Wave- Classification length number i I T EDP R sHe , E DG K 7\ (A) (cm"1) 20 6 30 7 3763.22 26565.46 II 20 8d 400 7 3754.32 26628.40 II lOd 2 150 5 3749.59 26662.02 5 3 30 3 3743.99 26701.86 30 8 100 8 3742.95 26709.32 III 200 10 4 2000 10 3738.73 26739.4 III 100 3737.88 26745.5 20 1 2 3733.22 26778.92 I 40 1000 3 3729.31 26806.99 20 0 100 6 3728.23 26814.75 3 4 3727.41 26820.65 15 3727.32 26821.30 2 5 3726.91 26824.25 0 5 3724.51 26841.57 3 4 20 1 3720.42 26871.04 6 0 2 3718.75 26883.08 50 3718.19 26887.13 2 1 2 3716.44 26899.80 100 9 1 2000 10 3711.68 26934.29 III 3693.5 27068 3688.23 27105 O 9 100 7 3686.18 27120.64 IV 6h^H-9g^G 25 2 3683.45 27140.7 1 0 2 3667.58 27258.2 III 3 8 3 150 6 3654.88 27352.90 25 2 10 6 3653.03 27368.7 12 12 3639.40 27469.24 II 15 3 3639.15 27468.37 2 1000 3637.88 27480.68 200 10 750 10 3637.53 27483.33 III 10 3635.92 27495.04 II** 0 3634.31 27507.67 25 15 500 7 3631.35 27530.08 3 40 3 3622.03 27600.90 35 6 5 150 6 3618.72 27626.14 II 15 3 500 6 3615.99 27646.99 III 35 5 4 200 6 3610.49 27689.25 II 3 100 3605.88 27724.48 4 3593.64 27818.89 50 2000 3 3588.44 27859.30 -84= Intensity Wave- Wave- Classification 20 length number EDP R SHe K A (A) (cm""1) 5 3588.15 27861.57 10 2 3583.39 27898.57 50 1000 3582.35 27906.71 500 3581.60 27912.51 500 6 3578.87 27933.82 20 200 3576.60 27951.54 20 8 800 9 3570.19 28001.71 lOd 3563.66 28053.01 10 100 5 3561.02 28073.82 12 150 3559.49 28085.89 1 5 0 2 3554.67 28123.98 15d 0 3548.69 28171.32 5 3546.68 28187.98 15 3545.68 28195.07 80 9 500 10 3543.44 28211.51 2d 3538.23 28254.49 6d 0 2 3535.74 28274.57 2d 3532.60 28299.51 2 10 5 3516.93 28425.76 50 7 3515.64 28436.19 3 1000 3514.39 28446.3 40 2000 3514.20 28447.9 30 2000 3511.15 28472.6 100 3509.79 28483.6 6 75 3509.35 28487.2 12 1000 3503.71 28532.3 2 75d 3502.69 28542.64 6 750 3499.66 28566.0 2 3498.26 28577.55 0 4 5 3 3493.85 28613.61 40 2000 3491.53 28632.55 1000 3491.24 28634.92 5 6 3489.03 28653.05 8 2 1 50 5 3485.89 28678.87 15 2000 3480.45 28723.75 10 0 5 3476.73 28754.44 5 2 3471.58 28797.07 5 3 3468.42 28823.35 1 10 4 3465.16 28850.44 75 3458.38 28906.95 II III III III II III -85-8 25 Intensity Wave- Wave- ClJ length number EDP R SHe E DG K A (A) (cm"1) 100 10 5 2000 9 3457.79 28911.96 III 8 200 3 3454.07 28943.06 6 3452.24 28958.40 10 2 100 7 3444.27 29025.39 II 60 1 25 3437.13 29085.72 80 8 2 1000 9 3428.39 29159.84 III 6 5d 3 3425.57 29183.86 2 3419.61 29234.81 40 3414.38 29279.48 5 75 3414.19 29281.1 200 10 2000 10 3413.92 29883.43 III 5 3407.85 29335.75 0 3393.88 29456.43 0 3393.69 29458.12 2 3393.25 29461.17 6 75d 3392.64 29467.06 20 300 8 3392.39 29469.32 III 5 3390.24 29488.0 100 10 4 2000 10 3387.24 29514.11 III 2 5 2 3385.90 29525.8 4 200 3 3384.95 29534.10 II 5 3384.21 29540.6 2 1 15 3 3382.84 29552.5 III 1 3380.50 29572.9 40 8 1000 8 3379.82 29578.89 III 20 4 300 7 3376.24 29610.3 4 3374.79 29622.9 5 3371.31 29653.5 25d 100 3370.69 29659.16 0 40 5 3369.28 29671.4 III 6 3367.16 29688.9 60 5 3364.36 29714.9 1 40 3 3362.74 29729.2 40 2 3360.32 29750.5 15 100 3358.22 29769.2 15d 100 3 3353.64 29809.78 II 4 3350.59 29837.03 200 5 3346.59 29872.62 50 1 2000 3344.74 29889.11 4d 1 3 3342.41 29909.91 assification -86-Intensity M I T EDP R S H E E DG K Wave-length A (A) Wave-number (cm"1) Classification 25d 2 3339.46 29936.36 3000 3336.17 29965.84 8 50 3335.84 29968.8 6 3331.03 30012.1 4 3329.81 30023.1 8 3328.57 30034.33 4 1 75 3 3325.76 30059.53 4 25 5 3324.86 30067.81 20 5 150 8 3323.16 30083.16 III 1500 3319.50 30116.35 5 1 50 3 3317.98 30130.12 50 2000 3311.24 30191.50 60 2000 3301.84 30277.41 3 2 60d 5 3293.60 30353.21 III 3 0 200 5 3292.56 30362.78 50 2000 3285.82 30425.04 10 300 7 3282.86 30452.43 1000 3278.49 30493.10 6d 3267.45 30596.1 4 10 2 3265.32 30616.02 4 3263.74 30630.9 8 2 10 2 3260.69 30659.89 2 5 2 3258.75 30677.81 2 3257.59 30688.7 20 5 lOd 3 3251.67 30744.6 5 3249.81 30762.1 10 4 200 7 3248.01 30779.18 III 50 3243.70 30820.1 10 5 120 3242.75 30829.1 25 8 65 4 3242.15 30834.83 II 15 50 4 3238.40 30870.51 II 1 25 3 3236.48 30888.85 8 lOd 3 3228.14 30968.70 II 30 5 1 200 8 3225.77 30991.51 III 4 2 lOd 5 3218.00 31066.23 III 40 5 0 500 8 3215.24 31092.88 III 10 40 3 3210.69 31136.99 6 0 50 5 3204.50 31197.06 II 25 5 150 9 3185.47 31383.47 III - 3 7 -Intensity Wave- Wave- Classification 8 15 8 20 length number R S H e E DG K A (A) (cm - 1) 3 3180.97 31427.86 15 6 20 7 3178.16 31455.68 2 3174.89 31488.03 10 3169.19 31544.65 50d 3158.31 31653.28 0 2 3150.19 31734.95 III 0 7 3141.11 31826.66 II 8 3138.64 31851.70 50d 40 5 3134.46 31894.18 II 0 3125.50 31985.57 lOd 3115.81 32085.12 8 4 100 6 3110.98 32134.89 III 5d 3109.98 32145.25 2 5d 3109.90 32146.05 III 2 50 4 3108.51 32160.42 II 0 3 3106.27 32183.63 50 4 3105.14 32195.34 II 6 5 1 140 7 3102.71 32220.60 III 12 4 0 75 8 3094.23 32308.81 III 6 50 3093.39 32317.59 6 10 2 3088.21 32371.78 6 10 3 3085.73 32397.79 100 3 3084.37 32412.17 4 100 3077.86 32480.76 10 4 400 8 3073.99 32521.56 III 30 500 6 3072.67 32535.53 0 2 3070.71 32557.38 25 5 400 8 3069.89 32565.06 III 3 3064.63 32620.89 2 4 50 4 3063.75 32630.31 4 3 50d 5 3062.48 32643.84 III 200 5 2000 10 3059.85 32671.92 IV 20 200d 3 3054.76 32726.30 III 4 1 40 4 3051.07 32765.92 I I I 1 3048.51 32793.55 5s 2SA-5p 2P 1 35 60 20 4 2 80 5 5 2 5 200 8 60 2 3046.16 3042.44 3041.27 3039.50 32818.72 II 32858.80 III 32871.43 II 32890.6 —88— Intensity Wave- Wave- Classification length number M I t EpP R S H e E DG K A(A) (cm~l) 10 10 12 15 20 500 8 3038.63 32900.0 II 4 1 5 50 3 3033.50 32955.63 III 2 3031.87 32973.37 2 0 0 3 3031.44 32978.08 2 3028.92 33005.48 4 2 50 4 3027.05 33025.82 III 20 500 3023.96 33059.60 6 1 6 3020.29 33099.78 3 40d 3 3009.95 33213.47 2 3008.14 33233.41 6 3006.87 33247.44 30 1000 3002.63 33294.41 2 50 4 2999.63 33327.78 III 15 2 55 6 2987.48 33461.07 0 2 2983.98 33502.52 6 2 100 4 2979.04 33558.06 III 5 500 6 2972.53 33631.49 5 100 7 2971.42 33644.05 10 6 6 550 7 2970.97 33649.20 III 4 4 50 5 2970.00 33660.17 III 100 2 2967.17 33692.27 10 4 75 7 2963.91 33729.36 II 2 3 2955.72 33822.81 III 0 3 2952.40 33860.83 II 150 6 2000 10 2951.68 33869.11 IV 8 6 0 75 7 2948.46 33906.05 III 6 2 3 2947.83 33913.35 2 2947.06 33922.2 II 9 4 2944.02 33957.24 III 10 2942.83 33971.0 6 2 20 7 2941.50 33986.32 2d 0 2 2940.29 34000.3 III 25 200 5 2933.31 34081.27 IV 10 100 2 2931.47 34102.59 IV 0 2 2929.79 34122.1 1 2928.73 34134.5 2 2 2927.67 34146.8 6 2926.14 34164.7 0 2 2924.65 34182.1 0 2923.73 34192.8 -89-Intensity Wave- Wave- Classification length number Mi T EDP R S H e E DG K A(A) (cm"1) 1 2 3 2921.80 34215.4 III 10 5 4 2919.22 34245.7 200 2918.97 34248.7 75 2918.54 34253.7 IV 10 2 100 2 2917.82 34262.2 10 4 40 3 2916.09 34282.4 10 2915.54 34287.0 III 20 6 300 9 2914.88 34296.7 10 100 2912.92 34319.7 5 2 3 2911.11 34341.1 1 100 3 2908.24 34375.05 8 3 0 10 6 2907.06 34388.91 III 5 1 2905.87 34403.0 7 2 10 4 2905.10 34412.12 II 3d 1 0 4 2899.29 34481.09 III 8 4 100 6 2895.89 34521.64 II 3 3 2894.41 34539.3 10 4 1 1 5 2892.73 34559.29 3 2891.61 34572.6 60 500 2884.21 34661.37 IV 1 4 2881.45 34694.57 25 12 6 100 8 2880.33 34708.01 12 40 2878.76 34727.05 1 2 2874.20 34782.1 5 1 0 3 2873.30 34793.0 1 2 2872.12 34807.3 II 30 6 150 8 2870.20 34830.58 III 10 10 4 1000 6 2865.87 34883.19 20 6 4 100 6 2864.44 34900.55 III 10 6 100 6 2863.86 34907.63 III 3 2856.20 35001.3 5 20 200 2855.30 35012.3 8 2853.28 35037.1 6 2849.57 35082.7 4 2846.70 35118.0 lOd 1 100 4 2842.96 35164.30 III 30 2839.79 35203.57 15 5 5 6 2838.71 35216.97 III 35 15 6 100d8 2837.23 35235.35 2d lOOd 2836.69 35241.97 IV 5d\ -S-f V 5g2G-7h2H -90-Intensity Wave- Wave- Classification 20 15 length number EJJP R sHe ED 0 K A (A) (cm - 1) 2 2830.14 35323.6 1 2 2827.12 35361.3 4 2824.56 35393.3 2 2823.60 35405.4 15 5 100 6 2822.08 35424.44 III 4 25 2821.60 35430.46 III 8 30 4 2821.48 35431.94 II 8 2 50 6 2820.07 35449.68 2 2817.65 35480.1 8 6 lOOd 9 2816.98 35488.55 8 25 2809.44 35583.77 2 0 2806.95 35615.3 IV 20 3 40 7 2804.38 35648.01 III 30 8 2 75 9 2802.25 35675.04 III 5 2798.41 35724.11 3 40 2796.63 35746.8 8 3 40 6 2793.15 35791.31 III 10 3 50 6 2792.36 35801.41 III 8 75 2788.89 35846.02 5 1 5 3 2787.75 35860.60 III 8 10 3 2785.59 35888.47 2 50 2785.20 35893.52 5 100 2784.40 35904.6 2 2783.55 35914.8 1 2782.17 35932.6 100 8 2 1000 9 2777.52 35992.75 1 5 2777.03 35999.1 2 10 2776.20 36009.82 4 2775.01 36025.26 30 7 0 150 7 2773.81 36040.93 III 15 5 50 6 2772.46 36058.48 III 80 8 1 400 10 2767.20 36126.95 III 2 2765.00 36155.64 4 lOOd 3 2764.60 36160.87 20 3 75d 5 2762.16 36192.81 6d 3 2760.45 36215.22 lOd 5 3 2759.26 36230.85 8 20 2757.89 36248.92 4 20 3 2756.89 36262.08 30 1000 2753.92 36301.17 -4n34 5d"D^-4p 91-Intensity Wave- Wave- Classification length number Ml T EpP R SHe E DG K 7\ (A) (cm - 1) 15 12 6 25 8 2749.85 36354.85 6 2 0 10 5 2745.88 36407.50 III 4 2 10 5 2738.95 36499.49 III 10 4 2 50 5 2738.15 36510.25 II 2d 10 4 2733.58 36571.24 5 5 2738.37 36574.04 5 2738.22 36576.06 0 2731.21 36602.95 0 5 2729.18 36630.20 5 2 3 2729.13 36630.87 20 2 100 7 2726.52 36665.99 III 5d 60 a 8 2724.78 36689.40 400 8 1000 2724.22 36696.94 IV 2 5 2 2722.58 36719.00 5 2719.95 36754.49 35 10 8 100 6 2719.52 36760.30 40 5 200 8 2715.92 36809.03 III 2 5 2714.48 36828.6 3 2713.47 36842.26 20 4 100 6 2712.69 36852.92 III 3 2709.88 36891.1 5 5 2 15 4 2706.98 36930.62 20 4 200 6 2705.96 36944.54 III 5 8d 25 2 2705.41 36952.05 15 2705.21 36954.79 10 10 3 75 5 2702.68 36989.39 12 3 30 5 2696.32 37076.59 III 1 2695.37 37089.6 1 2694.60 37100.2 2 2693.89 37110.0 2 0 30 2693.27 37118.63 III 10 10 4 60 6 2692.03 37135.63 4 2 1000 3 2689.08 37176.38 10 4 60 7 2688.33 37186.73 100 2686.00 37218.97 120 6 4 75 8 2685.74 37222.61 III 2 2682.56 37266.71 0 5 2 2681.37 37283.16 10 3 3 2679.99 37302.44 10 2 10 4 2678.68 37320.69 III - 9 2 -Intensity Wave- Wave- Cis length number M l T ED? R sHe E DG K X(i) (cm"1) 10 2678.41 37324.4 1 2677.82 37332.7 1 4 2675.89 37359.6 1 1 2674.51 37378.89 III 4 2 2673.95 37386.8 150 9 1500 8 2665.48 37505.48 IV 10 4 75 6 2662.05 37553.83 6 0 3 2659.41 37591.16 6d 1 1 2 2656.66 37630.07 III 1 10 2 2654.91 37654.91 60 6 1 500 7 2654.02 37667.51 III 10 6 2 10 4 2651.41 37703.20 4d 2650.16 37722.3 50 25 4 300 2649.41 37733.02 4d 5 2649.35 37733.87 6 2644.51 37802.9 10 8 2 100 5 2643.44 37818.24 6 2640.19 37864.7 5 3 1 40 4 2639.20 37878.99 50 3 500 6 2638.15 37894.06 IV 5 6 2 30 5 2633.22 37965.06 0 2632.27 37978.8 2 2631.79 37985.69 35 40 5 500 8 2630.87 37998.93 II 5 2 4 2628.41 38034.47 III 5 1 0 3 2626.77 38058.22 6 2624.76 38087.4 1 2624.37 38093.1 4 0 3 2623.31 38108.45 5 2621.19 38139.3 1 2619.73 38160.51 100 6 600 9 2617.32 38195.61 III 2 2615.54 38221.63 4 2615.00 38229.52 5 2 2612.69 38263.26 5 2 2610.38 38297.17 10 4 10 4 2609.35 38312.22 III 2 2607.96 38332.68 15 2 100 7 2602.59 38411.81 lassification 4d2D^-5p2P, - 9 3 -Intensity Wave- Wave- Classif icat ion length number [IT EDP R sHe EDG K A (A) (cm- 1) 5 60d 10 3 2600.46 38443.31 80d 250 2599.23 38461.4 IV 30 3 2596.00 38509.23 60 2592.34 38563.73 30 80 6 400 10 2591.42 38577.42 0 0 2587.16 38640.92 III 15 25 50 4 2586.40 38652.27 15 100 80 6 2585.23 38669.76 50 0 2584.87 38675.16 10 2 30 5 2582.73 38707.18 15 1 4 2580.94 38734.02 III 100 0 2579.01 38762.99 100 5 0 100 8 2571.31 38879.04 305 2567.96 38929.7 15d 2567.08 38943.1 V 40d 2 5 2566.60 38950.38 III 6d 0 2 2565.24 38971.02 III 6d 2564.4 38983.8 40 2563.2 39002.0 25 100 5 200 8 2561.72 39024.60 15 40 25 5 2560.87 39037.49 6d 2560.12 39048.9 15d 2559.07 39064.9 20d 5 2 2558.23 39077.81 10 30 5 100 7 2554.60 39133.40 6 2553.44 39151.00 8 2 2552.81 39160.75 5 2552.61 39163.87 2549.83 39206.62 2549.79 39207.23 50 100 250 2549.16 39216.84 60 6 2 2547.97 39235.17 I 30 2 50 6 2546.39 39259.46 III 400 0 2 2 2544.58 39287.41 300 15 2541.91 39328.73 12 2536.14 39418.2 2 2535.39 39429.8 30 2534.83 39438.6 15 2534.02 39451.2 6 2531.11 39496.5 V 4p 3jS^-6s 2S A 4s5s 3S 1-4s5p 3P Q 4s5s 3S 1-4s5p 3P 1 -94-Intensity Wave- Wave- Classification length number Mi T EJJP R S H e E DG K A (A) (cm"1) 25 15 15 8 20d 15d 60 40 25 100 30 60 30 15 200 30 90 50 30 80 100 200 40 80 50 30d 30d 80 2d 3d 100 20 25 60 10 15 20 2 20 6 35 60 80 8d 15d 0 100 4 0 4 5 lOOd 100 4 lOOd 5 100 7 6 100 4 50 2 0 50 5 8 80 30 2530.28 2528.64 2527.91 2525.74 2522.36 2520.88 2518.68 2517.32 2516.53 2516.21 2515.72 2512.82 2512.05 2509.11 2506.76 2504.45 2496.56 2496.05 2494.90 2494.23 2^93.43 2492.97 2492.57 2490.84 2490.29 2489.75 2488.87 2485.60 2484.84 2484.12 2482.17 2481.50 2480.87 2480.45 2479.71 2478.56 2476.53 2476.06 2475.19 2473.96 39509.5 39535.1 39546.48 39580.4 39633.5 39656.7 39691.36 39712.8 39725.26 39730.3 39738.0 39783.99 III 39796.08 39842.7 39880.0 39917.0 40043.12 40051.27 40069.7 40080.40 III 40093.31 III 40100.7 40107.10 40135.01 40143.9 40152.6 40166.8 40219.6 40231.9 40243.6 40275.2 40286.0 40296.3 40303.1 40315.1 40333.90 40366.85 f 40374.5 ( 40388.72 40408.78 V III 4p5poD3-4p5d1Fq III 4p5p3P0-4p5ddPj 3 •? 4s5s S1-4s5p,5P2 -95-Intensity M L T EDP R S H E E DG K Wave-length A (A) Wave-number (cm"1) Classif ication 200 35 40 3d 5 6d 10 100 40d 100 80d 3d 2 50 10 6 10 15 5 5 2d 100 0 2 25 20 100 6 30d 20 15d 100 10 15 0 10 2 30 5 60 10 15 20 10 40 3 2 100 50 200d 20 80 6 4 10 10 0 10 2 50 3 100 1 500 7 0 5 5 0 50 0 50 5 200d 50 0 2 2472.95 2472.88 2471.89 2471.00 2469.69 2468.68 2468.30 2467.61 2467.12 2466.09 2465.23 2464.45 2463.95 2463.03 2461.27 2459.52 2458.70 2457.99 2455.08 2454.57 2453.05 2452.50 2450.49 2449.47 2448.60 2447.46 2447.02 2445.55 2444.41 2443.66 2442.88 2441.82 2440.93 2439.96 2438.74 2437.84 2436.78 2435.60 2435.21 2434.04 40426.47 40426.75 40442.77 40457.2 40478.6 40495.3 40501.6 40512.8 40520.8 40537.7 40551.8 40564.7 40572.9 40588.2 40617.2 40646.11 40659.7 40671.4 40719.6 40728.09 40753.3 40762.42 40795.8 40812.8 40827.37 40846.39 40853.7 40878.2 40897.3 40909.8 40922.9 40940.7 40955.51 40971.9 40992.3 41007.5 41025.3 41045.2 41051.7 41071.46 III III V 4s5s 3Si-4s5p 1P 1 III -96-Mi T Intensity EpjP R S H e EDG K Wave-length A (A) Wave-number (cm"1) Classification 15 200 50 10 lOOd lOOd lOOd 100 2433.72 2432.73 2431.60 2430.06 2437.42 41076.9 41093.6 41112.7 41138.7 41183.4 III 15 5 25 30 50 300 0 50 3 100 lOOd 1000 2426.76 2426,01 2425.52 2424.28 2423.97 41194.6 41207.4 41215.7 41236.8 41242.22 III 4p5p3D2-4p5d3P2 5 100 50d 80d 500 70 60 2423.51 2423.27 2423.16 2422.73 2421.78 41249.87 41253.95 41255.83 41263.15 41281.03 5 200 20 75 6 10 600d 25d 2420.27 2419.91 2418.84 2416.52 2416.00 41305.16 41311.29 41329.56 41369.32 41378.23 125 400 30 2 200 300d 400d 10 8 300 5 200 2415.86 2415.65 2414.15 2413.50 2413.01 41380.62 41384.39 41409.91 41421.02 41429.47 III I III 4p5p3D2-4p5d3P1 10 60 20 5 2412.50 2411.74 41438.23 41451.29 300 lOOd lOOd 2411.00 2410.86 41464.01 41466.42 10 60 20 2d 2d 20 25 0 2 2410.38 2409.35 2408.08 2407.93 2407.22 41474.64 41492.33 41514.3 41516.9 41529.10 III 4p5p3D1-4p5d3P2 15 25 300 200 3d 5d 0 20 3 10 12 2406.59 2405.46 2404.98 2403.62 2403.25 41539.97 41559.48 41567.77 41591.3 41597.7 -97-Intensity Wave-length EDP R SHe ED G K 20 1 75 4 2402.25 1 0 2401.96 3d 2401.56 30 3 2400.12 100 200 2399.19 8 2398.40 1 2397.59 100 2395.64 2 2394.73 1 2393.53 4 2393.39 1 2393.19 10 0 2392.03 3 2391.00 80 4 1 50 6 2390.07 15 2389.37 1 2388.24 2 2387.93 1 2386.86 12 2385.63 8 2384.97 1 2384.01 8 2383.48 50 2382.40 4 2381.43 5 2380.56 6 2380.24 1 2379.85 2 2379.30 lOd 2378.69 80 2377.76 3 2373.76 50 4 1 5 2372.75 2d 2371.72 100 6 0 6 2371.07 2 4 4 6 4 150 2370.46 2369.34 2369.03 2367.82 2367.65 Wave-number (cm""1) 41615.06 41620.0 41626.9 41651.22 41668.06 41681.8 41695.9 41729.8 41745.6 41766.6 41769.0 41772.5 41792.7 41810.7 41827.04 41839.3 41859.0 41864.5 41883.2 41904.8 41916.4 41933.3 41944.4 41961.6 41978.7 41994.0 41999.7 42006.6 42016.3 42027.0 42043.5 42114.5 42132.30 42150.7 42162.11 42173.1 42193.0 42198.5 42220.1 42223.1 Classification III 4p5p JD 1-4p5d 3P 0 -98 Intensity M I T EDP R S H E E DG K Wave-length A (A) Wave-number (cm--1-) Classificat 25 10 15 12 10 25 4 4 10 20 5 100 10 2 25 12 20d 30 3 10 30 100 50 500 50 lOd 6d 6 6 10 20 4 4 20 25 50 20 30 10 100 2 100 15 6 3 5 8 8 2 200 5 0 3 100 0 1 0 3 10 2366.57 2364.98 2364.31 2363.53 2360.26 2360.05 2359.61 2357.60 2357.20 2356.17 2354.32 2353.78 2352.37 2351.72 2350.47 2349.79 2349.24 2347.62 2345.20 2344.25 t 2343.65 2342.93 2342.10 2340.83 2340.13 2339.87 2339.29 2338.23 2337.86 2335.36 2334.49 2332.43 2331.47 2330.93 2329.95 2327.59 2327.17 2326.41 2325.37 2324.76 42242.4 42270.4 42282.8 42297.2 42354.5 42358.1 42367.1 42403.0 42410.2 42428.8 42462.14 42471.86 42497.31 42509.1 42531.7 42543.92 42553.9 42583.3 42627.2 42644.5 42655.4 42668.5 42683.6 42706.8 42719.67 42724.3 42734.9 42754.2 42761.0 42806.8 42822.7 42860.7 42878.2 42888.1 42906.3 42949.8 42957.5 42971.6 42990.8 43002.1 II III 99-length number j E DP R S H e E DG K A (A) (cm'1) 1 2324.48 43007.2 2 2324.08 43014.6 3 2323.27 43029.6 9 100 500d 2321.54 43061.7 IV Sg'X-SIi H 6d 2320.70 43077.3 15 2320,36 43083.6 6 2319.93 43091.6 500 2319.14 43106.2 20 2318.82 43112.2 100 2318.62 43116.0 5 300 1000 2317.84 43130.41 300 2317.47 43137.29 200 2316.93 43147.34 100 2316.41 43157,02 10 2315.33 43177.15 30 2315.04 43182,55 50 2313.77 43206.25 20 2312.16 43236.33 2 2311.12 43255.77 10 4 2310.25 43272.06 30 2309.19 43291.62 2 2308.16 43311.23 3 2307.79 43318.17 3 5 0 2307.46 43324.37 III 4p5p D9-4p5d1F 1 lOOd 2306.92 43334.50 * 12 2305.61 43359.22 20 2302.85 43411.07 80 2302.07 43425.77 2301.39 43438.60 40 400d 2300.79 43449.92 15 2300.16 43464.8 5 2299.68 43470.5 25 2299.04 43483.8 5 25 2297.57 43510.8 300 8 500d 2296.90 43523.49 4 2296.13 43538.07 II** 5 2295.78 43544.4 6 2295.29 43553.8 15 2294.84 43563.3 8 2293.97 43580.4 -100-Intensity M l T EpP R S H e E DG K Wave-length A (A) Wave-number (cm"1) Classification 200 2292.90 43599.4 10 150 20d 2292.01 43616.3 80 2 1000 2291.43 43627.3 60 2290.65 43642.2 40 1000 2289.68 43660.8 3 2289.24 43669.9 15 2288.70 43679.4 3 2288.36 43685.2 6d 50 2286.94 43713.8 10 2286.61 43819.3 8 2285.73 43736.1 50 2283.93 43770.8 40 2283.15 43786.02 100 4 1 5d 2282.61 43796.07 40 40 2282.20 43803.7 40 50 2281.08 43825.3 30 2280.77 43831.4 20 2280.29 43840.6 2279.57 43854.5 10 0 2279.24 43860.8 2279.01 43865.2 2278.88 43867.7 20 2278.36 43877.7 20 2276.94 43905.1 2 2275.26 43937.5 6 2274.81 43946.2 8 2273.63 43969.0 10 12 2272.27 43995.3 1 2270.71 44025.5 200 100 2269.85 44042.2 3 2268.54 44067.6 5d 2267.06 ' 44096.4 5 15 0 1 2265.61 44124.6 60 0 2265.13 44133.9 3d 2264.51 44146.0 2d 2263.40 44167.7 5 15 0 100 2263.11 44173.3 10 2261.00 44214.5 100 2 0 lOOd 2259.79 44238.2 4d 2256.56 44301.5 III III 4p5p 1P 1-4p5d 3P 2 III III -101 Intensity Wave- Wave- Classification length number Ml T EDP R S H E E DG K A (A) (cm"1) 8d 2255.37 44324.9 q 10 60 0 2254.89 44334.3 III 4p5pXP -4p5d'5P( 15 2254.23 44347.3 1 ' 10 2253.81 44355.5 60 2252.76 44376.2 10 2252.22 44386.8 2 2251.33 44404.4 2 2251.01 44410.7 2 2249.32 44444.0 100 2248.81 44454.1 100 2247.88 44472.5 30 2246.42 44501.4 4 2245.97 44510.3 40 2245.52 44519.2 2d 2244.38 44541.8 15 2243.65 44556.3 20 2242.29 44583.3 60 2241.71 44594.9 5 30 2 2241.06 44607.8 5 2239.66 44635.7 2000 2239.02 44648.4 100 2238.54 44658.0 2d 2238.01 44668.8 2d 2237.75 44674.0 2 2236.51 44698.7 lOd 10 2235.92 44710.5 8d 2235.25 44723.9 100 500 2234.71 44728.8 II** 4 2233.48 44759.4 10 2233.03 44768.4 40 0 2231.43 44800.5 4 0 2230.29 44823.4 60 2229.63 44836.6 15 2229.21 44845.1 2 2228.66 44856.1 25 2227.29 44883.7 40 2225.67 44916.4 30 2225.21 44925.6 4 2224.45 44941.0 2 2223.88 44952.5 -102-Intensity Wave- Wave- Classification length number EDP R S H e E DG K A(A) (cm"1) 8 2223.43 44961.6 4d 2222.63 44977.8 6d 2222.11 44988.3 2d 2221.32 45004.3 6d 2220.50 45020.9 80 0 25 2220.06 45029.83 2 1A 2 2219.13 45048.7 IV 5s Si-4p ° 4 S L 6 2218.82 45055.0 f r x 6 2216.62 45099.7 6 2216.18 45108.6 10 2215.57 45121.06 6d 2213.78 45157.5 3d 0 2213.34 45166.5 50 2212.47 45184.3 4d 2210.91 45216.1 6d 400 2210.45 45225.9 6 2209.27 45249.7 20 0 40 2207.86 45278.70 8 10 2206.04 45315.92 III 4s4p3lD9-4p5p3P, 5 10 2205.42 45328.70 * 8 1 100 2204.83 45340.82 25 1 0 10 2201.69 45405.45 2 2199.24 45456.0 2 0 2198.81 45464.9 2d lOd 2197.79 45486.0 4d 0 2196.85 45505.4 2 2196.26 45517.6 10 300 2195.76 45528.0 1 2195.17 45540.2 lOd 2193.33 45578.4 100 2192.53 45595.23 15 5 2192.00 45606.1 1 2191.60 45614.4 10 2191.23 45622.3 10 2190.43 45639.0 10 2189.82 45651.7 10 300 2187.98 45690.1 10 lOOd 2187.39 45702.38 10 25 2186.63 45718.18 5 2185.37 45744.57 -103-Intensity Wave- Wave- Classification length number E DP R SHe E DG K •X (A) (cm"1) 10 100 2183.91 45775.06 30 2181.23 45831.41 75 2177.23 45915.79 100 5 2175.62 45949.45 5 5 2174.58 45971.58 75 1 50 2174.12 45982.51 30d 2171.39 46039.0 Id 2170.57 46054.3 40d 2170.24 46063.4 20d 1 2169.97 46069.2 2d 2168.30 46104.6 100 6 30 2166.63 46140.15 IV 15 2166.17 46149.9 15 2165J83 46157.2 150 6 30 2165.25 46169.76 IV 150 8 50 2164.20 46192.15 I 10 1 2161.88 46241.5 2 0 2159.50 46307.0 2 2157.88 46327.2 7\ vac 5 Od 2154.88 46406.30 25 1 15 2154.26 46419.65 10 2151.74 46474.0 1 1 10 2145.02 46619.61 III 30 3 20 2144.29 46635.48 IV 40 4 1 20 2141.59 46694.28 III 20 2 1 15 2139.60 46737.71 III 200 8 1 50 2137.32 46787.57 IV 2 15 2136.46 46806.4 5 2134.55 46848.3 5 2141.13 46923.5 III 5 2 10 2127.52 47003.08 III 2 10 2126.11 47034.26 IV 1 2124.18 47076.99 200 7 1 50 2111.80 47352.92 1 2108.05 47437.21 5 4 20 2106.30 47476.62 IV 2 10 2104.40 47519.48 2 1 20 2101.15 47592.98 1 10 2095.39 47723.81 4f2R,-5g2G 7k 4f 2F- -5g2G 5pVd2°* 3 3 l -3 04-Intensity Wave-length Wave-number Classif icat ion « I T EJJP R H^e E DG K A vac (cm"1) 25 7 50 2090.61 47832.91 IV 10 2084.70 47968.53 100 50 3 60 2075.45 48182.28 I 800 5 8 40 2063.45 48462.60 I 5 1 40 2062.02 48496.25 10 8 1 50 2057.39 48605.32 III 2 2048.26 48821.93 15 2045.39 48890.43 1000 10 40 2040.51 49007.5 I 10 2031.92 49214.7 5 20 2014.52 49639.62 IV 6 15 2006.35 49841.75 III 5p 2P 5p P^-6s S i R Ky v G SHe 15 8 1995.12 2 2 3 1993.03 10 1977.04 4 8 67.04 100 65.05 50 100 60.91 15 56.96 5 5 15 50.15 5 5 25 47.20 3 42.29 2 41.12 2 40.28 2 39.80 2 39.54 2 37.94 3 35.99 5 32.05 4 28.92 1 28.32 1 22.72 10 22.47 1 21.75 4 21.50 6 6 60 20.36 100 19.30 50122.3 50174.7 50580.7 I III 50837.8 IV 4s 25p 2Pi-4s 26s 2Si 50889.3 Z * 50996.7 51099.7 51278.1 51355.8 51485.6 III III 51516.7 III 4p5p 3p„-4p7s 3P n 51538.9 * 1 51551.7 51558.6 IV 4s4p22R _ 4 s 2 5 p 2 P i 51601.2 %. 2 51653.2 51758.5 51842.5 51858.6 52009.7 52016.4 52035.9 52042.7 52073.6 52102.3 V4s5p 1Pi-4s5d 3D 1 V4s5p 1P 1-4s5d 3D 2 -105-Intensity Wave- Wave-length number R K y v G SHe A vac (cm"1) 30 100 10 19.22 52104.5 I 35 5 13.84 52251.0 I 3 03.90 52523.8 8 03.59 52532.3 V 4 35 1901.42 52592.3 40 3 1898.56 52671.5 I 4 8 12 97.30 52706.5 III 4 12 94.56 52782.7 III 5 25 93.18 52821.2 III 6 92.24 52847.4 III 6 6 6 91.22 52875.9 III 2 2 2 87.66 52975.6 2 2 85.30 53042.0 III 8 76.62 53287.3 2 74.20 53356.1 V 10 70.84 53451.9 V 3 69.50 53490.2 6 64.85 53623.6 25 8 1858.88 53795.8 I 30 50 10 55.29 53899.9 I 6 54.35 53927.3 10 52.87 53970.3 6 51.12 54021.4 4 12 49.51 54068.4 I 8 49.12 54079.8 8 43.32 54249.9 3 42.61 54270.8 12 41.30 54309.5 30 39.24 54370.3 4 8 38.38 54395.7 4 38.08 54404.6 2 36.20 54460.3 3 32.65 54565.8 6 31.03 54614.1 III 21.70 54893.8 20 19.90 54948.1 4 15.90 55069.1 4 13.68 55136.5 10 1809.35 55268.5 Classification 4s5p 3P 2-4s5d 3D 2 -106-30 6 isity Wave- Wave-length number VG SHe A vac (cm-1) 30 08.70 55288.3 16 08.41 55297.2 10 07.76 55317.1 4 05.69 55380.5 8 03.36 55452.0 4 01.97 55494.8 3 00.02 55554.9 8 1799.09 55583.7 3 96.95 55649.9 3 95.75 55687.0 10 2 95.28 55701.6 30 94.14 55737.0 15 93.59 55754.1 4 90.16 55860.9 16 89.43 55883.7 20 89.22 55890.3 3 85.40 56009.9 2 84.66 56033.1 83.06 56083.4 15 82.89 56088.7 10 81.84 56121.8 5 81.45 56134.1 2 77.24 56267.0 2 75.93 56308.5 3 1775.00 56338.6 6 72.00 56433.4 0 71.36 56453.8 1 70.00 56497.2 3d 65.70 56634.8 5 60.93 56788.2 10 60.58 56799.5 5 52.89 57048.7 2 51.70 57087.4 0 48.78 57182.7 2 46.20 57267.2 0 43.77 57347.0 2 40.18 57465.3 0 39.85 57476.2 6 36.98 57571.2 3 36.04 57602.4 Classification III 4p5p 3P 2-4p7s 3P 9 III 4p5p 3D 2-4p7s 3Pi III 4p5p 3D 1-4p7s 3P 0 III 4p5p 3P 2-4p7s 1P 1 III 4p5p 3P 1-4p7s 3P 2 -107-Intensity Wave- Wave-length number VG SHe A vac (cm"1) 2 34.30 57660.2 III 4 32.00 57736.7 3 30.09 57800.5 4 21.85 58077.1 8 19.75 58148;0 2 16.25 58266.6 0 14.30 58332.9 5 10.73 5845416 2 06.52 58598.8 3 05.30 58640.7 III 2d 1699.74 58832.5 25 4 90.70 59147.1 I 2 82.78 59425.5 1 75.88 59670.1 III 25 6 75.30 59690.8 I 3 73.74 59746.4 3 72.84 59778.6 25 6 71.17 59838.3 I 2 6 67.24 59979.4 II 6 65.62 60037.7 6 64.70 60070.9 16 56.23 60378.1 20 53.32 60484.4 III 5d 52.04 60531.2 1 10 44.90 60794.0 III 15 41.63 60915.1 5 32.10 61270.8 III 12 2 26.25 61491.2 I 10 1 22.70 61625.7 I 15 5 21.16 61684.2 II 3 1620.68 61702.5 2 20.40 61713.2 0 15.40 61904.2 6 14.80 61927.2 5 14.05 61956.0 5 13.30 61984.8 10 0 10.73 62083.7 I 30 08.43 62172.4 30 07.50 62208.4 25 15 06.46 62248.7 I Classification -108-Intensity Wave- Wave- Classification length number Ky VG sHe ^ v a c (cm - 1) 8 05.95 62268.4 2 02.90 62386.9 8 00.40 62484.4 8 1599.42 62522.7 2 98.80 62546.9 II 16 96.15 62650.8 12 93.20 62766.8 I 4 87.87 6297715 8 87.42 62995.3 I 3d 82.48 63192.0 4 80.34 63277.5 20 8 80.04 63289.5 I 15 4 79.49 63311.6 I 30 77.16 63405.1 15 6 75.26 63481.6 I 3 50 71.50 63633.5 III 12 68.69 63747.5 2 64.23 63929.2 2 3 63.35 63965.2 III 5 58.56 64161.8 75 48.80 64566.1 III 12 4 47.10 64637.1 I 5 46.00 64683.0 3 36.60 65078.8 2 6 34.90 65150.8 III 60 1533.75 65199.7 III 4s 2p 23p 2-4s4p 3 5 6 32.08 65270.7 III 8 30.60 65333.9 2 29.25 65391.5 3 25.15 65567.3 4 1524.40 65599.6 4 23.00 65659.9 30 1516.50 65941.3 25 09.50 66247.1 50 08.06 66310.4 4 1505.30 66431.9 15 3 1500.90 66626.7 I 16 1499.68 66680.9 60 97.90 66760.1 III 60 92.74 66990.9 -109-10 snsity Wave- Wave-length number VG he X vac (cm""1) 100 83.68 67400.0 III 4 76.60 67723.1 12 75.58 67770.0 16 74.60 67815.0 2 73.40 67870.2 2 54.20 68766.3 10 53.95 68778.2 6 52.90 68827.9 V 6 51.72 68883.8 4 49.27 69000.3 20 48.60 69032.2 2 47.00 69108;5 25 45.46 69182;1 V 2 41.97 6934916 8 41.38 69378.0 V 6 1440.08 69440.6 6 37.72 69554.6 20 37.13 69583.1 20 33.40 69764.2 V 25 31.63 69850.5 6 26.90 70082.0 V 8 13.70 70736.4 V 6 10.30 70906.9 8 07.80 71032.8 05.72 71137.9 3 1404.07 71189.6 30 02.80 71286.0 2 00.60 71398.0 2 1399.13 71473.0 2 95.70 71648.6 45 93.80 71746.3 3 90.07 71938.8 4 84.60 72223.0 I 4 78.81 72526.3 4 70.15 72984.7 2 69.10 73040.7 61.05 73472.7 57.68 73655.1 2 39.39 74660.9 2 37.57 74762.4 Classification ,2A 2 3 l ,35, 4s4d 3D 2-4s5p 3P 1 3 3 4s4d D3-4s5p P g 4s4d3D2-4s5p3P_ 4s4d 3Di-4s5p 1Pl -110-Intensity Wave- Wave- Classif ication R length number VG ^ \ vac (cm"1) 60 1332.92 75022. IV 4 31.12 75124.7 2 30.20 75176.7 12 29.88 75194.8 8 29.35 75224.7 3 29.10 75238.9 30 24.00 75528.7 2 20.07 75753.6 60 18.40 75849.5 8 50 14.40 76080.3 IV 5 14.14 76095.3 IV 2 10.68 76296.3 3 10.40 76312.6 8 09.04 76391.9 8 08.70 76411.7 20 07.53 76480.1 IV 6 06.20 76558.0 25 05.49 76612. IV 12 05.06 76624.8 2 03.43 76720.7 45 02.62 76768.4 III 30 02.22 76791.9 2 1301.20 76852.1 8 1299.08 76977.6 8 96.95 77104.0 2 12 91.62 77422.2 8 20 90.95 77462.3 II 4 88.52 77608.4 6 86.60 77724.2 4 86.04 77758.1 16 85.53 77788.9 5 84.85 77830.1 4 77.64 78269.3 2 8 76.86 78317.1 II 5 30 62.45 79210. IV 4 61.54 79268.2 4 30 59.55 79393.4 IV 2 6 56.65 79576.7 6 47.40 80166.7 4 25 46.00 80256.8 \ 7k 4s 24d 2IL -4s 24f 2F .2^2 V .24 .2^2, 24, V ,2^2, ,24i - I l l -I, Intensity Wave- Wave- Classif ication length number Ky VG he A vac (cm~4) 0 3 37.60 80801.6 II 7 10 34.85 80981. IV 4s z4p 2 34.25 81020.9 5 32.59 81130J0 1 3 31.00 81234.8 4 1228.74 81384 16 27.56 81462 V 4S4P1: 3 8 24.60 81659 II 6 22.02 81832 II 3 18.49 82069 2 4 18.04 82099 II 0 2 08.72 82732 1 10 06.54 82882 7 5 05.70 82939 II 2 5 05.25 82970 II 10 02.56 83156 2 1200.23 83317 6 1199.36 83378 2 98.46 83440 3 98.17 83460 1 3 96.50 83577 0 93.68 83775 10 30 92.24 83872 1 II 0 88.21 84160 2 6 83.98 84461 II 2 8 82.69 84553 , II 2 8 77.99 84890 II 1 5 77.31 84940 II 1 5 70.78 85414 II 8 16 68.50 85578 II 2 12 66.83 85705 IV 4s4p21 5 20 66.51 85724 II 2 16 57.34 86406 IV 4s4p^' 8 12 56.93 86437 II 7 12 55.95 86509 II 6 1152.4 86775 IV *P -7 8 1150.96 86884 V 4s4p J 1 1150.76 86900 IV 9 8 41.97 87570 II 0 2 34.02 88180 ,24, V V s2C„2T '5pzP, -112-Intensity Wave- Wave-length number R K y VG Sfle "K vac (cm"1) 0 2 32.46 88303 1 1 30.49 88457 II 0 2 29.96 88499 0 28.45 88617 2 27.70 88676 5 10 26.28 88788 III 0 2 23.76 88987 0 1 22.93 89053 IV 0 22.54 89084 0 1121.62 89157 0 19.98 89287 10 8 16 19.20 89350 III 0 17.73 89467 3 16.49 89566 0 2 14.52 89725 0 13.33 89821 0 6 10.08 90084 4 09.42 90137 0 2 08.51 90211 1 08.00 90252 IV 0 2 06.20 90400 0 02.14 90733 7 5 50 1100.50 90868 , 6 50 00.36 90879 III 1 6 1100.10 90901 9 6 40 1099.10 90984 III 2 98.98 90993 6 8 12 97.85 91087 III 9 3 50 94.685 91350.5 V 1 5 90.48 91703 II 3 89.97 91746 1 12 87.96 91915 1 20 85.97 92084 II 12 84.64 92196 1 6 84.04 92248 10 83.38 92304 2 12 81.76 92442 0 81.23 92487 o c 80.54 92546 8 5 45d 79.74 92615 III Classification .2C_2, .2„_2 4s 25p 2P£-4s 27s 2S£ ,21, 113-Intensity R Ky V G Sg e 3 0 6 3 1 8 3 5 2 1 1 3 8 1 1 2 4 2 6 9 40 1 0 0 2 0 10 3 30 4 5 5 5 20 0 5 5 5 60 0 10 6 0 4 4 5 20 1 2 0 12 0 6 0 2 8 4 60 2 50 Wave- Wave-length number A vac (cm"1) 79.10 92670 78.75 92700 78.17 92750 77.51 92807 II 76.91 92858 76.53 92891 75.72 92961 69.72 93482 III 69.05 93541 68.83 93560 III 67.11 93711 66.18 93793 63.41 94037 1062.47 94120 57.41 94571 II 57.05 94603 56.25 94675 53.90 94886 53.42 94929 52.87 94978 52.13 95045 II 51.60 95093 50.55 95188 II 50.40 95202 50.22 95218 49.65 95270 II 49.51 95283 II* 48.04 95416 47.64 95453 II 47.11 95501 45.35 95662 II 44.64 95727 44.46 95743 44.10 95776 43.12 95866 41.82 95986 39.00 96246 38.35 96307 II 36.97 96435 36.18 96508 II Classification -114-Intensity Wave-length Wave-number Classification K y VG S H e A vac (cm" 6 35.06 96613 0 3 34.34 96680 10 45 33.56 96753 3 20 29.52 97133 3 10 28.58 97221 0 26.96 97375 4 26.28 97439 10 25.70 97494 3 10 24.86 97574 2 23.80 97675 2 23.01 97751 3 12 22.10 97838 2 12 21.80 97867 4 21.28 97916 ' 1 1020.02 98037 0 6 19.66 98072 3 19.35 98102 0 4 17.98 98234 6 16.30 98396 0 15.88 98437 4 15.31 98492 6 14.72 98549 9 45 13.99 98620 9 50 13.40 98678 0 13.26 98691 3 25 11.87 98827 1 4 11.15 98897 0 10.72 98939 16 10.25 98985 16 09.94 99016 20 08.14 99193 2 7 07.97 99209 0 07.57 99249 0 06.23 99381 1 4 05.89 99414 5 100c? 04.72 99530 2 60 03.02 99699 4 100 1001.63" 99837 1 1000.75 99925 3 60 1000.40 99960 II II II II II II II 7z IV 4s 24p 2P a -4s4p2D-21 * 3 * III 4p Z iS 0-4p5s , 5P 1 -115-Intensity Wave- Wave- ClassifIcatIon R 10 length number A vac (cm"1) 0 2 999.50 100050 0 998.73 100127 4 998.04 100196 0 997.94 100206 0 997.54 100247 6 70 996.69 100332 IV 0 996.60 100341 0 8 995.44 100458 3 992.84 100721 16 91.83 100824 1 2 91.56 100851 10 91.40 100867 2 90.67 100942 5 90.07 101003 2 89.76 101035 1 0 89.29 101083 1 12 988.72 101141 2 86.86 101332 0 86.68 101350 II 1 0 86.58 101360 0 4 85.70 101451 6 20 83.94 101632 II 6 83.44 101684 4 82.83 101747 1 4 80.28 102012 3 78.80 102166, 4 76.92 102363 7 100 74.85 102580 III 5 60 74.11 102658 III 4 72.27 102852 IV 25 71.21 102964 2 70.37 103053 4 70.22 103069 4 68.29 103275 V 3 66.03 103516 2 3 65.31 103594 V 2 64.93 103634 2 63.31 103809 V 2 63.06 103836 1 50 61.78 103974 II ,2„_2, 22. V 4s4d 3D 3-4s4f 3F 2 4s4d 3D 2-4s4f 3F 2 4s4d 3D 1-4s4f 3F 2 -116-Intensity Wave- Wave-length number h VG ^ e 7v vac (cm"1) 0 3 61.27 104029 V 50 60.03 104163 6 2 59.59 104211 IV 40 59.04 104271 0 2 58.28 104354 V 10 57.91 104394 5 75 54.78 104736 III 5 60 54.43 104775 III 4 50 53.92 104831 III 40 53.74 104850 III 1 10 51.25 105125 II 0 4 50.07 105255 II 4 47.07 105589 V 0 8 43.56 105981 II 12 41.01 106269 II* 0 40.64 106311 0 30 38.46 106558 5 100 38.18 106589 III 3 37.42 106676 2 36.42 106790 0 6 33.98 107069 3 932.31 107260 6 30.95 107417 2 29.20 107619 10 27.46 107821 1 6 26.32 107954 1 24.69 108144 4 23.97 108229 1 8 22.92 108352 II 2 21.93 108468 1 12 21.04 108573 1 25 20.51 108635 III 0 4 19.68 108733 V 1 30 18.81 108836 II 1 25 17.89 108946 II 6 16.49 109112 4 15.75 109200 V 25 14.63 109334 1 1 13.17 109509 1 13.00 109529 Classification .2„_2, ,22, 4s4d 3D3-4s4f 3F 4 >23P«-4n3ll 4p 2 3P 2-4s5p 3P 2 I -117-Intensity Wave- Wave- Classification length number R K y V G S H e A vac (cm"1) 40 12.69 109566 II 0 11.96 109654 V 2 09.22 109984 1 07.72 110166 8 07.54 110188 1 1 06.56 110307 20 06.36 110331 0 06.09 110364! 1 05.50 110436 60 04.10 110607 50 03.74 110651 0 03.51 110680 100 03.37 110697 3 50 02.28 110830 III 2 20 00.74 111020 III 1 3 900.25 111080 1 899.17 111214 2 898.13 111342 3 896.94 111490 0 2 894.90 111744 II 0 894.07 111848 0 93.27 111948 12 91.61 112157 4 2 91.44 112178 20 91.22 112205 5 30 90.68 112274 III 1 89.52 112420 1 3 88.87 112502 2 88.06 112605 0 10 87.41 112687 II 0 30 86.85 112759 VI 2 84.90 113007 6 83.17 113228 3 3 82.64 113296 II 5 82.13 113362 0 81.34 113464 4 15 79.15 113746 III 1 78.19 113871 1 77.77 113925 1 75.36 114239 , 2 3 p 1 - 4 p 3 l D 2 -118-Intensity Wave-length R Ky V G ^ A vac 1 73.77 0 2 72.93 5 72.37 0 6 71.60 0 0 70.95 3 69.40 0 0 68.51 0 4 67.80 0 4 66.98 1 3 65.87 1 3 64.49 3 60.62 4 60.44 0 59.95 5 58.58 15 56.50 0 2 55.76 6 8 54.37 0 4 852.51 3 16 52.10 3 51.31 5 50.58 0 50.25 4 4 49.62 2 49.54 8 46.20 25 45.91 0 40 45.75 0 3 45.04 30 44.15 0 43.41 5 30 43.02 0 42.06 8 41.25 0 2 40.32 8 40.15 4 30 39.48 0 38.30 0 37.47 2 6 36.01 Wave-number (cm'1) 114447 114557 114630 II 114732 114817 115022 115140 V 115234 II 115343 115491 II 115675 II 116195 116220 116286 116471 V 116754 116855 117045 II 117301 117357 III 117466 117567 117612 117700 II 117711 IV 118175 118216 118238 V 118338 118462 VI 118566 118621 III 118756 118871 119005 119026 119121 V 119289 119407 119616 Classification 4p 2 3P 0-4s5p 3P 1 4p 2 3P -4s5p1P 4p 2 2P^-6p 2P£ 3 1 4s4p P2-4s4d D 2 4s 2S^4p 2P^ 4s4p 3P 2-4p 2 3P -119-i Intensity Wave- Wave- Classification 6 7 4 1 length number h VG ^ A vac (cm"*1) 20 35.27 119722 0 34.86 119781 25 34.45 119839 12 33.78 119936 20 33.28 120008 20 32.62 120103 III 3 31.70 120236 0 30.99 120338 6 30.60 120395 6 2 30.33 120434 V 25 30.15 120460 0 29.29 120585 8 8 28.44 120709 II 6 27.30 120875 II* 0 8 27.03 120915 0 6 25.90 121080 0 25.30 121168 6 30 23.89 121375 III 0 3 20.70 121847 V 20 20.54 121871 3 20.05 121944 0 4 819.52 122023 1 18.95 122108 2 4 18.63 122155 1 18.60 122159 30 18.45 122182 1 18.10 122234 0 17.91 122263 2 30 17.55 122317 III 1 4 16.94 122408 0 16.33 122499 0 15.79 122581 0 15.07 122689 25 14.75 122737 V 4 14.04 122844 III 0 4 11.90 123168 5 11.20 123274 4 09.52 123530 40 08.68 123658 V 3 20 07.06 123907 III .23, 4s4p P 1-4p 2 3P 0 3 1 4s4p P1-4s4d D 2 4s4p 3P 1-4p 2 sP 1 4s4p 3P 2-4p 2 3P 2 -120-Intensity Wave- Wave-length number R VG Sne ?\ vac (cm - 1) 4 06.56 123983 5 20 04.23 124343 V 30 03.78 124412 IV 6 4 03.02 124530 III 30 02.82 124561 0 801.60 124751 II 10 801.41 124780 0 01.22 124810 1 00.49 124923 5 5 2 00.11 124983 IV 20 799.95 125008 IV 4 1 4 799.76 125038 III 20 99.64 125056 2 99.41 125092 2 98.95 125164 0 2 98.79 125189 6 98.69 125205 0 98.46 125241, 6 98.30 125266 20 98.09 125299 1 797.94 125323 3 797.60 • 125376 0 97.31 125422 20 96.80 125502 IV 4 95.15 125762 0 94.90 125802 V 2 94.58 125853 5 4 40 92.56 126173 III 8 92.08 126250 0 0 16 91.26 126381 III 7 4 30 90.77 126459 III 0 4 90.05 126574 0 89.34 126688 0 88.93 126754 6 20 88.79 126776 III 2 86.40 127162 II * 0 86.21 127192 50 85.76 127265 V 0 85.63 127286 0 85.42 127320 Classification 4s4p 3P Q-4p 2 3Pi 22, ,2 A #2t V .2^2, -121-Intensity Wave- Wave-length number R K y VG he A vac (cm"1) 0 2 84.52 127466 3 3 25 83.67 127605 III 2 2 4 82.92 127727 III 25 82.70 127763 0 81.81 127908 0 80.75 128082 0 79.88 128225 0 78.52 128449 4 8 78.17 128507 0 77.99 128536 8 4 30 77.32 128647 III 5 255 76.46 128790 IV 0 75.77 128904 0 2 8 75.26 128989 III 2 74.40 129132 II 8 74.19 129167 0 773.16 129339 3 30 772.24 129493 2 4 771.52 129614, 3 40 70.88 129722 III 2 16 69.76 129911 III 2 69.01 130037 2 67.16 130351 0 66.03 130543 IV 3 65.67 130605 2 65.14 130695 0 0 0 64.56 130794 4 64.40 130822 6 63.47 130981 IV 0 61.98 131237 0 0 60.62 131471 0 60.20 131544 1 59.80 131613 2 2 35 59.54 131658 III 40 59.14 131728 V 8 6 40 58.90 131769 IV 0 58.15 131900 0 57.86 131950 6 57.06 132090 4 56.32 132219 Classification 2„ 2, 22, 4s 24p 2p^-4s4p 22p| -122-Intensity Wave- Wave-length number VG he A. vac (cm - 1) 0 0 55.83 132304 4 55.63 132340 0 55.16 132422 0 2 54.80 132485 3 53.78 132665 3 35 51.81 133012 III 0 10 51.05 133147 10 50.55 133236 3 49.87 133356 0 3 48.65 133574 0 47.71 133742 16 47.56 133769 0 47.35 133806 0 46.83 133899 5 30 46.38 133980 IV 30 46.16 134019 1 45.70 134102 0 4 44.62 134297 0 43.58 134484 3 43.40 134517 0 2 742.78 134629 IV 125 742.21 134733 4 30 41.87 134795 III 4 40.66 135015 IV 2 30 39.62 135204 III 5 39.40 135245 2 30 39.24 135274 III 0 38.52 135406 3 40 38.12 135479 III 0 30 37.22 135645 III 30 37.02 135682 0 36.24 135825 4 45 34.57 136134 IV 40 34.36 136173 0 6 33.33 136364 0 2 32.48 136523 0 32.07 136598 2 5 31.52 136702 III 35 31.37 136730 0 4 30.86 136825 Classification 4s 24p 2R.-4s4p 2 2] A 4dVp% 4s 24d 2D -7p2P 7k A .2„_2, 22, -123-Intensity Wave-length K y VG SHe A vac 2 5 30.25 30 30.08 0 29.46 1 16 28.87 0 3 28.08 2 27.48 2 10 27.41 0 40 26.40 2 25.16 32 24.40 4 32 24.28 5 30 22.79 0 21.78 3 21.41 16 20.94 2 25 20.68 2 50 20.36 50 20.22 2 25 19.95 4 719.35 30 718.63 5 18.30 0 8 16.69 1 14.10 10 13.87 4 13.27 1 12.40 2 11.85 2 30 11.39 2 30 11.04 0 4 10.14 7 40 09.41 4 40 09.17 1 20 06.75 3 06.54 3 05.70 2 05.28 25 04.87 16 03.84 2 03.53 Wave-number (cm"1) 136939 III 136971 137087 137199 137348 137461 III 137474 137665 III 137901 138045 138068 III 138352 IV 138546 138617 138708 138758 III 138819 III 138846 138899 III 1390141 139154 139218 139530 140036 140082 140199 140371 140479 140570 III 140639 III 140817 140962 III 141010 III 141493 141535 141703 141788 141870 142078 142140 Classification 24p 2Pi-4s4p 22p, -124-i Intensity 2 30 4 0 10 2 2 00 4 00 20 0 8 0 4 2 30 0 0 2 20 2 35 2 10 2 15 3 35 30 12 1 10 1 8 2 2 30 2 12 0 3 2 2 2 1 3 16 2 10 2 4 6 10 5 50 2 Wave-length A vac 02.74 02.28 01.39 700.31 698.62 97.65 97.49 97.28 694.93 94.29 93.14 92.21 91.23 90.89 90.66 90.48 89.96 88.95 87.67 87.40 87.10 86.49 85.87 685.15 684.60 84.32 84.07 83.51 83.06 82.34 81.49 80.50 79.40 78.86 77.78 77.08 76.63 76.12 74.49 73.82 Wave- Classification number, (cm - 1) 142300 I I * 142393 142574 142794 143139 143338 143371 143414 143899 144032 144271 144465 144670 144741 144789 144827 144936 145148 145419 145476 145539 145669 145800 145953 146071 III 146130 146184 146304 146400 146555 146737' 146951 147189 147306 147541 147693 147791 147903 148260 148408 -125-Intensity Wave- Wave- Classification length number K y V G S H e A vac (cm"1) 3 72.92 148606 8 71.85 148843 IV 40 71.60 148898 V 10 100 670.10 149232 IV 0 65.71 150216 1 2 65.43 150279 0 61.63 151142 0 57.95 151987 4 57.68 152050 IV 1 6 55.16 152634 8 9 25 54.16 152868 IV 9 10 20 52.65 153221 IV 20 52.43 153273 V 0 3 52.12 153346 6 51.23 153556 2 50.14 153813 1 48.44 154216 1 46.12 154770 4 8 30 44.88 155068 III 6 44.16 155241 3 43.19 155475 25 42.90 155545 8 30 42.68 155598 2 2 42.28 155695 V 2 41.68 155841 5 41.12 155977 4 30 40.87 156038 5 20 640.56 156113 1 38.22 156686 8 10 30 35.94 157248 IV 4 30 35.80 157282 4 20 34.58 157585 4 40 31.17 158436 III 3 4 20 30.74 158544 4 • 30.67 158562 0 27.63 159330 2 26.43 159635 2 25.82 159790 3 3 4 22.56 160627 4s24p 2P 3-4s 24d 2D^ 4s4d1Do-4s4f3Fo # 4s24p2p -4s 24d2n, % ft 4 p 2V p\ 4s24D 2Pl-4s 24d 2D| 4s4d-LD2-4s4f ^ 3 * 4s4p 1P 1-4s5s 3S 1 ; 24p 2P|-4s 25s 2S^ -126-Intensity Wave- Wave- Classification R length number v G s H e A vac (cm-1) 4 19.06 161535 4 18.76 161614 10 16.94 162090 20 16.28 162264 3 15.08 162580 V 4 50 14.32 162782 V 3 13.64 162962 55 13.12 163100 V 8 70 612.98 163137 3 35 11.10 163639 1 10.11 163905 4 09.59 164045 1 16 08.36 164376 VI 4 12 07.19 164693 4 3 05.92 165038 VI 1 05.20 165235 1 04.75 165358 1 02.91 165862 6 601.97 166121 4 30 01.75 166182 V 5 60 00.95 166403 V 5 00.52 166522 2 30 599.93 166686 25 99.75 166736 2 97.90 167252 0 97.39 167395 50 96.12 167751 V 7 94.93 168087 1 93.97 168359 1 93.50 168492 0 20 91.35 169105 2 20 88.75 169851 2 88.10 170039 VI 1 585.45 170809 1 82.15 171777 10 81.20 172058 5 80.50 172265 1 75.90 173641 1 74.86 173955 8 74.44 174083 4s4p 3P 2-4s4d 3D 1 3 3 4s4p P2-4s4d D 2 4s4p 3P 2-4s4d 3D 3 4s4p 3P 1 -4s4d 3D 1 4s4p 3P 1-4s4d 3D 2 -127 Intensity Wave- Wave- Classification length number K y VG SHe A v a c (cm"1) 0 10 73.56 174350 III 0 12 70.20 175377 3 68.11 176022 0 12 66.30 176585 III 16 65.10 176960 III 4 64.73 177076 0 12 63.74 177387 6 62.45 177794 0 8 61.25 178174 0 60.35 178459 12 60.15 178524 1 30 58.30 179115 III 1 57.49 179375 00 55.70 179953 16 54.97 180190 00 54.77 180255 III 25 54.59 180313 2 53.91 180535 2 53.03 180822 3 52.40 181028 2 51.91 181189 2 51.03 181478 0 10 50.46 181666 III 3 49.49 181987 1 45.76 183231 1 45.04 183473 III 20 44.81 183550 3 44.07 183800 III 100 43.82 183884 00 42.17 184444 6 41.90 18453b 2 40.37 185058 12 39.80 185254 25 39.47 185367 50 39.13 185484 150 38.47 185711 III 150 C 38.15 185822 25 37.65 185995 12 537.18 186157 00 35.89 186605 -128-Intensity Wave- Wave- Classification length number K y VG sHe X vac (cm"1) 4 35.48 186748 0 20 33.60 187406 1 2 60 33.16 187561 III 2 32.45 187811 3 2 60 31.21 188249 III 0 3 30.42 188530 0 2 29.98 188686 1 2 29.26 188943 00 29.14 188986 8 28.92 189064 00 28.33 189276 8 28.20 189322 3 27.52 189566 00 ,27.21 189678 6 27.10 189717 00 26.88 189797 4 2 75 26.39 189973 III 30 25.82 190179 00 25.47 190306 10 25.25 190386 0 25.13 190429 III 00 24.47 190669 3 4 120 24.08 190811 III 2 24.01 190836 III 0 0 20 23.53 191011 III 2 22.81 191274 1 22.56 191366 1 2 22. 05 191553 50 21.89 191611 00 4 21.28 191835 7 20.77 192023 3 20.20 192234 4 3 75 19.60 192456 V 0 18.58 192834 0 20 18.25 192957 H I 2 0 30 17.59 193203 III 0 16 17.20 193349 III 00 16.60 193573 2 15.49 193990 3 14.02 194545 4s4p 3P 2-4s5s 3S 1 -129-Intensity Wave- Wave-length number Ky VG S H e 7\ vac (cm - 1 1 12.14 195259 1 11.44 195526 1 10.95 195714 3 60 509.98 196086 60 08.13 196800 25 07.55 197025 5 07.23 197149 1 15 05.72 197738 3 04.86 198075 2 01.61 199358 1 500.33 199868 4 499.65 C 200140 2 98.07 200775 00 6 96.52 201402 2 93.59 202597 2 93.39 202679 2 92.82 202914 2 89.88 204132 00 89.34 204357 00 6 88.84 204566 00 88.09 204880 4 87.64 205069 3 86.03 205749 12 85.65 205910 12 85.15 206122 00 84.67 206326 2 35 84.04 206595 4 83.67 206753 1 82.66 207185 1 82.05 207447 4 81.57 207654 1 80.48 208125 2 79.05 208746 00 78.64 208925 4 78.10 209161 00 2 76.94 209670 1 76.61 209815 1 76.25 209974 00 75.23 210424 8 75.04 210509 Classification 3 3 4s4p P1-4s5s S 4s5p°P1-4s5s S( 2Q 3 4p dP 1-4p7s P x -130-Intensity Wave- Wave-length number K y VG Sge ~K vac (cm"1 00 74.53 210734 3 73.47 211207 2 73.15 211349 00 71.05 212292 10 70.47 212553 00 69.51 212988 1 69.16 213147 6 68.57 213415 2 466.76 214243 2 66.58 214326 10 66.47 214376 00 66.24 214482 00 12 65.53 214809 00 2 64.80 215146 2 63.76 215629 0 63.25 215866 00 3 62.06 216422 2 60.61 217103 3 60.23 217283 100 C 459.52 217618 2 58.70 218007 00 57.45 218603 2 57.11 218766 3 56.58 219020 2 52.83 220833 0 50.69 221882 0 47.62 223404 2 45.75 224341 4 45.42 224507 2 43.39 225535 2 42.94 225764 3 42.02 226234 3 40.45 227041 00 39.70 227428 2 39.51 227526 0 39.13 227723 0 38.62 227988 2 37.50 228571 2 37.19 228734 2 34.91 229933 Class i f icat ion VI VI 4p2P3 -5s 2S * 4p 2P£-5s 2S£ -131-Intensity Wave- Wave-length number Ky VG SHe A vac (cm_J-2 33.42 230723 00 33.16 230861 10 29.90 232612 4 29.68 232731 6 28.52 233361 3 60 28.22 233524 1 26.82 234291 2 24.96 235316 2 20 22.95 236435 3 21.99 236972 2 35 20.65 237727 1 19.86 238174 0 19.21 238544 1 418.93 238703 2 16.91 239860 2 12 15.38 240743 2 13.48 241850 2 13.23 241996 2 413.09 242078 0 10.15 243813 0 09.24 244355 2 06.07 246263 00 3 05.30 246731 00 4 04.90 246975 2 04.70 247097 3 03.42 247881 2 03.16 248040 2 02.82 248250 3 02.62 248373 2 401.50 249066 3 397.43 251617 4 95.57 252800 4 95.38 252921 6 92.18 254985 4 91.93 255148 3 89.27 256891 8 C 86.13 258980 2 75.93 266007 3 74.48 267037 6 74.11 267301 Classification , 2 . 2 , ,2c J 2 I I V 4s*4p"R -4s*5cTD9y I V 4s 24p 2 P a -4s 25<rD_, I V 4s 24p 2 P|-4s 25d 2 D 3 I V 4s 24p 2P£-4s 26s 2S£ -132-Intensity Wave- Wave-length number Ky VG S H e A vac (cm-1 2 73.81 267516 4 C 71.71 269027 3 69.64 270534 0 6 66.75 272665 0 3 64.35 274461 0 2 62.62 275771 3 61.06 276962 0 60.86 277116 2 60.01 277770 2 59.23 278373 0 2 57.00 280112 2 55.09 281619 1 53.72 282709 1 53.34 283014 2 50.95 284941 1 49.45 286164 1 49.01 286525 1 46.65 288475 2 345.73 289243 2 45.36 289553 00 38.60 295334 00 32.13 301087 Classif ication IV 4s 24p 2P. -4s 27s 2S 7* IV 4s 24p 2P^-4s 27s 2S -132a-Table 2a. Supplementary l i s t of Selenium lines Intensity Wave- Wave- Classification length number EpP R s H E E D G K A vac (cm-1) 100 4980.90 20070 lOd 4721.34 21174.5 lOd 15.15 21202.3 10 12.64 21213.6 50 10.73 21222.2 50 09.30 21228.6 50 08.00 21234.5 5d 05.54 21245.6 100 03.41 21255.2 15d 4699.40 21273.3 lOd 96.72 21285.5 50 94.85 21294.0 100 93.04 21302.2 2d 90.34 21314.5 75 87.60 21326.9 10 81.41 21355.1 5d 80.01 21361.5 lOd 76.38 21378.1 50 75.11 21383.9 lOd 73.16 21392.8 30 67.51 21418.7 50 66.74 21422.2 25 61.64 21445.7 50 54.67 21477.8 50 50.58 21496.7 100 43.26 21530.6 10 i 41.99 21536.5 20 40.92 21541.4 5 32.50 21580.6 10 4126.80 24225.0 5 4115.27 24292.9 10 4097.53 24398.0 100 4063.26 24603.8 150 4042.89 24727.8 5 4035.64 24772.2 15d 4035.24 24774.7 400d 4026.43 24828.6 600d 4026.07 24831.1 3 4001.64 24982.7 2 3965.71 25209.0 IV IV 6d2D^-6p2P^ 9 2 6g^G-8h H -132 b-Intensity Wave- Wave- Classification length number £ DG K 7\ vac (cm"1) 6 3548.56 28172.4 6 3545.85 28193.9 30 3535.33 28277.8 0 3488.45 28657.8 0 3456.24 28924.8 0 3429.52 29150.3 5 3428.06 29162.6 10 3427.80 29164.8 10 3020.00 33102.9 120 2815.98 35501.2 500 2680.74 37292.0 5d 2648.95 37739.6 40 2640.92 27854.3 40 2640.28 37863.4 10 2630.61 38002.6 2617.24 38196.8 5 2598.12 38477.8 0 2582.25 38714.4 5 2566.20 38956.4 0 2563.84 38992.3 80d 2513.28 39776.6 5 2419.17 41323.9 5d 2418.88 41328.8 5 2416.23 41374.3 500 2413.21 41426.1 50 2412.71 41434.6 10 2136.63 46788.0 10 2111.16 47352.3 5d 2089.94 47833.2 0 2074.78 48182.6 5 2062.78 48462.8 -133-TABLE 3 TERMS OF THE SE III SPECTRUM Term Level Interval n* 4s 24p 2 4p5p LS 'D 2 2 0 1 1 3 0 2 1 2 0.0 1739 3933 13031 26821 150760 153210 153519.5 156691.0 154781 156358 157872 159300.5 161168 1739 2194 309.5 3171.5 1577 1514 1.9945 2.003 2.0415 2.104 3.154 3.194 3.199 3.254 3.221 3.247 3.274 3.300 3.334 -134-Term Level Interval n* ODD: 4s4pl 4p4d 4p5s 3 D D 2 1 3 0 2 2 4 0 2 1 69136 91088 92722 96549 106475 i 106590 j! 106516 112565 124050 125308 127408 126275 126779 130388.6 131653.6 1634 3827 115 -74 1258 2100 504 3609.6 2.337 2.493 2.506 2.537 2.536 2.624 2.6235 2.681 2.800 2.814 2.838 2.825 2.831 2.873 2.889 -135-Term Level Interval n* 4p4d 4p4d 4p6s 3 D F 3 P 1 2 1 2 3 136946 139203 140639 139410.5 142013.8 142316 142759 142707 148676.3 187167.4 187425.0 -1228.5 2607.3 443 -52 257.6 4096.5 2.956 2.985 3.005 2.988 3.025 3.0285 3.0345 3.034 3.122 3.965 3.973 191521.5 4.110 -136-Term J Level Interval n* 4p5d 3 F 2 188427.2 4.004 1219.3 3 189646.5 4.045 1945.0 4 191591.5 4.112 3 D 1 190840 4.086 -821 2 190019.2 4.058 3894 3 193915 4.196 4p6s XP 1 192159.7 4.131 4p5d 1D 2 193303.5 4.174 3p Q 0 195094 4.241 -143.3 1 194950.7 4.236 -223 2 194727.7 4.227 XF 3 196844.2 4.311 4p7s 3P 0 209235 XP 1 214017 Se IV ( 2P) limit 250,000 cm - 1 4.922 166 1 209391 4.932 4237 2 213628 5.211 5.239 = 30.99 ev ODD: -137-TABLE 4 TERMS OF THE SE IV SPECTRUM Term J Level Interval n* 4s 24p 2P \ 0.0 4372.4 1§ 4372.4 2.266 .2 o , 4s 5p *V § 189913 3.350 1198 l£ 191111 c 3.363 4s 26p 2P § 256074 4.409 701 i f 256775 4.427 4s 27p 2P | 287785 5.475 442 l£ 288127 5.491 4s 2.4f 2 F 2£ 229714 3.880 -30 3£ 229684 3.879 4s 2.5f 2 F 2£ 272001 4.859 -21 3* 271980 4.859 -138- f Term 4s 2.6h 2H 4s 2 7h 2 H 4s 2 8h 2H 4p 3 4S EVEN: 4s4p 2 4 p 2 D 2S 2p 4s 24d 2D J Level Interval n* 4f, 5f 297542 5.996 4§,5f 310515 6.997 4f,5§ 318915 6.997 If 202290 3.482 £ 79393 i f 80981 2f 83582 If 104211 2f 104705 | 128787 f 136140 If 138354 If 153217 2.5645 1588 2.572 2599 2.585 2.693 494 2.6955 2.8405 2.890 2214 2.905 3.015 389 153606 3.018 -139-Term J Level Interval n* 4s 25s 2S \ 157241 3.047 4s 25d 2D \\ 23114.1 4.020 152 2§ 237899 4.023 4s 26d 2D \\ 276696 5.020 153 2\ 276849 5.026 4s26s S \ 240751 4.077 4s 27s 2S £ 280145 5.149 4s 25g 2G 3$,4£ 275854 4.993 4s 26g 2G 3£,4£ 297468 5.991 4s 27g 2G 3£,4| 310489 6.996 4s 28g 2G 3£,4§ 318893 6.996 4s 29g 2G 3£,4f 324662 8.992 Se V ( XS0) Limit - 346,373 cm" -140-TABLE 5 TERMS OF THE SE V SPECTRUM Term Level Interval n* 4s' 4p' 4s4d 4s5d 4s5s S 3 P JS i s 0 0 2 1 1 0 0.0 211780 214086 218618 213196 257536 257746 258065 380270 380361 380496 287423 297930 2306 4532 210 319 91 135 2.844 2.8535 2.8735 2.850 3.0575 3.0585 3.0605 4.009 4.010 4.0115 3.226 3.28 -141-Term Level Interval n* ODD: 4s4p 4s5p 4s4f 2 1 2 1 4 3 89761 91351 94965 131732 326365 326918 327830 328249 361336 361998 363656 366467 1590 3614 553 912 762 1558 2.439 2.443 2.453 2.558 3.495 3.499 3.506 3.510 3.803 3.811 3.837 3.856 Se VI (2S^) limit - 550,976 cm"1 -142-CHAPTER IV The Precise Determination of Spectral Wavelengths. Interference Spectroscopy. Two specialized types of spectroscopic problems c a l l for instruments of very high resolving power. In the f i r s t , of which hyperfine and isotope structure studies are involved, i t is desired to separate very close and narrow lines and in the second, i t i s desired to measure the spectral wavelengths as precisely as possible. Five principal types of instruments are available to give resolving power larger than 200,000. These are the large diffraction grating, the Michelson echelon, the Lummer-Gehrcke plate, the wedge etalon(40a,b) and the Fabry-Perot etalon. The interferometer of Fabry and Perot i s the most important, since i t can be used for a) wavelength measurements of highest precision relative to one single standard line, b) resolution of narrow line structures and c) determination of true line width and intensity distribution in spectral lines. The inter-ferometer consists of a plane parallel "air plate" formed by two plane surfaces of two glass or quartz plates which are kept at a constant distance by means of a spacer made of quartz or invar (64 per cent iron, 36 per cent nickel) since both have very small thermal expansion coefficients. The resolving power of this instrument can be varied over a wide range by proper choice of the gap between the plates and the reflecting power -143-of the metal films. The two surfaces forming the "air plate" are coated with a thin but highly reflecting metal film, usually aluminum or silver. The metal film reflects 80% to 90% of the incident light and transmits 2% to 5%. An incident wave is multiply reflected between the interferometer plates and s p l i t into many waves which interfere at in f i n i t y , i.e. in the focal plane of a projecting lens. The patterns formed are interference fringes of equal inclination and consist of concentric sharp circles. The sharpness is due to the great number of interfering waves formed by successive s p l i t t i n g (division) of amplitude. Fundamental Relations. The path difference between consecutive waves i s given by the fundamental relation where p i s the order number, A is the wavelength in air, t i s the thickness of the plane parallel "air plate", and 9 is the angle of incidence of the wave normal (ray). Con-structive interference takes place i f p i s an integer. To each of the concentric circles belongs a certain angle Q and a certain order number p . Introducing the radius R of an interference ring and the focal length F of a projecting lens we can replace cosO by a series expansion PA •= 2tcos0 (4.1) cos© = 1 - 9 2 ,2 + + -144-We can neglect higher terms since R « F . Thus we obtain PA - 2t (1 Hi 2F2' -) or using the diameter D of the interference rings equation (4.1) can be written as (4.2) From figure we can see that cos9i ( P 2 + R i 2 ) f (4.3) (1 - l i j ) 8F 2 But (2t)cos© = ( 2*)(1 - ? ~ ) A A 2F 2 (^)(1 D • 8F 2' (4.4) or in terms of wave numbers as p = 2t.Vcos© - 2t> (1 - i ~ ) 8F 2 (4.5) Differentiating equation (4.4) we get dp = -(2£)sin0d© = -(.?1)(* )dR A A F 2 (4.6) -145-It can be seen from (4.6) that the order of the fringes decreases with increasing angle of incidence © or increasing radius R . For dp = -1 we get < 2 R = H _ (4.7) 2tR which means that for larger r a d i i , consecutive circles are closer together. Let R Q be the radius of the innermost ring^R-^ that of the next ring and so on. Then R k w i l l be the radius of the (k+l) t n ring. We can write O A a F2 p - p . 1 - - (4.9) 1 0 A AF 2 II P k = P Q - k - - (4.10) A A F 2 Subtracting (4.10) from (4.9) we get (P. - PL) - (k - i) = <Rk2 - R i 2 ) t ( 4 1 1 } 1 K x p 2 or (Rk2 - Rj 2) A F 2 = A R 2 (k-i) " t (4.12) Using D (Dj.2 - D ± 2) 47vF2 _ - 5 AD 2 (4.13) (k-i) t -146-Order Ntuaber of the Center of the Ring System. At the center P - ~ (4ol4) A where P i s the non-integral order. P can be expressed by the integral order of the f i r s t bright fringe P Q and a positive fractional p a r t , ^ , or by the order of the (k+l) t n fringe as P - P k + k +€ . Using equations (4.4) and (4.14) we have - P - P. - k - (-l-)R k 2 - k (4.15) k ^F2 Using equation (4.13) €= _ - k . (R k 2-Rj 2) (k-i) - R i 2 _ i (Rk 2-% 2) (k-i) °* 2 - i (k-i) AR 2 1 A D 2 -147-Since for the Innermost ci r c l e i = o, we have £ = * 2 ? S S * > 2 . . (4.17) Crossing the Interferometer with a Spectrograph. Two different methods are usually used. a) External mounting. The interferometer i s set up in front of the s l i t of the spectrograph in such a way that the interference fringes are projected on the s l i t by means of an achromatic lens. The light source i s focused on the interferometer. This gives a symmetric intensity distribution in the interference fringes. The interferometer is oriented so that the center of the circular fringes coincides with the center of the rather wide s l i t . The different spectral lines seen in the spectrograph are traversed by fringes symmetrically arranged with respect to the center of the s l i t . b) Internal mounting. Here the interferometer i s placed between the collimator lens and the dispersing system. Adjustment of the Interferometer. When one looks normally through the etalon at a mono-chromatic source, say a cool AH-1 mercury lamp, the fringe system w i l l be seen. With the etalon fixed, move the eye across the f i e l d of view along a diameter with a spring c l i p -148-at one end. Theory shows that the fringe of highest order occurs at the center of the pattern. Therefore as the eye is moved so that the line of sight travels along a diameter, widening the fringes (i.e. a new fringe appears in the center of the pattern) means that in this direction the separator spacing must be reduced. , Conversely i f the fringes collapse the eye i s looking through a part of the etalon with a reduced separator thickness. By adjusting the pressure of the spring clips make the separator spacing so equal that the ring diameters stay constant as the eye is moved over the surface of the etalon. Now the etalon i s adjusted to be crossed with the spectrograph. Resolving Power of the Fabry-Perot Interferometer. By definition the resolving power of a spectrograph is given by the expression B -where AA i s the wavelength difference of two spectral lines which can be seen just separated by the instrument. P A = 2t On differentiation we get PM + AAP - o . Resolving power R = — = _JL . -149-This means measuring the shift of one line in terms of the order p number of the other line, we have a shift of at least .6p =• — to obtain the limit of resolution. The resolving power depends on the r e f l e c t i v i t y r of the metallic film and the order of interference p . It is given by the approximate expression (3£) 1-r Intensity Distribution in the Interference Patterns. In the case of the interferometer which can be compared to a grating consisting of a great number of s l i t s , the striking difference is that the intensities of two consecutive beams are not equal but decrease systematically with the number of reflections. The following expressions are derived by Meissner (33) ,2 I - s  Amax U-r)2 s 2 I S m i n ( l + r ) 2 where the intensity coefficients s and r are called trans-mission and reflection powers. The change in wavelength necessary to shift the ring system by the distance of consecutive orders is called "spectral range" ^A7^> -150-pA - 2t 2t The change in ")) corresponding to a change of one integer in p is 2t 2t 2t Correction for Phase Change at Reflection. It can be seen that i f we determine any wavelength A with respect to a standard line, using different etalon gaps A varies systematically with increasing thickness t . This 2t is so because in deriving the fundamental relation P = — , "K we did not take into account the phase change which waves suffer when reflected at the surface of the metal film of the interferometer plates. If this phase shift i s constant for a l l wavelengths there w i l l be no correction, since the standard line w i l l also be shifted by the same amount. Unfortunately i t can be shown that the phase shift i s a function of 7\ . Meissner ( 3 2 ) gives a good account of the derivations and using 2 different spacer gaps t^ and t 2 he gives the wavelength corrections for the same A as -151-A A 2 - ( A 2 - A X ) ± — t 2 - t 1 where A^ and A 2 are the values obtained for the same A using t j and t 2 respectively. The corrections AA^ and AA 2 should be added to the uncorrected wavelengths A^ and A2- It i s possible to explain this phenomenon "dispersion of phase change" by the application of electromagnetic theory of metals as was shown by Juergen Bauer (IS). It can be seen that the correction for phase change i s only necessary i f measurements of wavelengths at a larger distance from the standard line have to be made. Correction for the Dispersion of Air. The standard wavelengths are by definition referred to "standard air " , viz. dry air containing 0.03 per cent by volume of C0 2 at a pressure of 760 mm Hg at 0°C and a temperature of 15°C. Meggers & Peters give the following correction to be added ( £8 ) 4 - * <»o " no ) g Q where A i s the wavelength of the unknown line, n 0 i s the index of refraction for this wavelength, n 0' that of the primary standard, both at normal conditions, P the density of the air for the conditions ( t°C, hem Hg) at which the measurements are made, and ^ Q the density for standard condition (15°C, 76 cm Hg). -152-However, Edle'n (10) points out that the above formula i s no longer sufficiently accurate for precision spectroscopists and he has derived the following dispersion formula, * 2 ° - A 2 - <A*2 - A^ ) (0.0013882P _ ± ) 7s1 l+0.00367t where A 2° i s the unknown wavelength at standard conditions, A2 the same as actually measured, A^ is the reference wave-length, A A 2 and AAi are the vacuum corrections for A2 and A I p and t actual pressure and temperature. Calculation of the Fractional Part £ . From equation (4.17) If only two fringes are available there i s only one method possible. Let the diameter of the f i r s t ring be DQ, that of the second D^ . In this case However, in high precision work a better method i s highly preferable. Roeser gives a convenient method using the method of least squares. -153-From equation (4.13) Dj^2 - D Q 2 + k AD 2 (4.18) Let Djj = Y, D Q 2 - A, k - X and A D 2 = B . Then (4.18) becomes Y - A + BX . (4.19) Referring to Roeser's paper ( 4 - 3 ) i t i s seen (n-l)(y n-y 1)+(n-3)(y n_ 1 - y*)+ • • • B - 6 n(n 2 + 1) E and n(n2-l) 6 A = Y - BX . m m n being the number of observations, in our case n = k - 1 . XJJJ = Average of X (k) Y m = Average of Y (Dj^2) In the present case the method used can be illustrated by an o example for the neon line A *= 5852.4878 A. -154-2 Frxnge No. D 7 95.199 6 83.302 5 71.334 4 59.582 3 47.582 2 35.545 1 23.590 0 11.539 Y m - -="g— B 53.459 (center of gravity) 2 2 ^ D Q » center of gravity - A D X "g - 53.459 - 11.947 x 3.5 = 11.645. o To calculate A D , the difference between the squares D 7 2 - D Q 2 - 7 A D 2 , D 6 2 - D , 2 = 5 A D 2 , D 5 2 - D 2 2 - 3 A D 2 , D 4 2 - D 3 2 = A D 2 are taken. These differences are multiplied by 7, 5, 3 and 1 and the f i n a l average value of A D 2 is calculated as below: D 2 83.660 x 7 - 585.620 (49) 59.712 x 5 = 298.560 (25) 35.789 x 3 - 107.367 ( 9) 12.000 x 1 = 12.000 ( 1) A D 2 -1003.547-?-84 11.947 . -155-2 11.645 11.947 - 0.975 . Accurate Wavelength Measurement. 1) Calculation of 2t using Standard Line (A). Approximate value of 2t = 2t'. PA - 2t' 2t» p - T -Calculate *£ for standard line (A). 2t - (p + £ ) A . 2) To find other Wavelengths when 2t i s known. Step I. Calculate integral order p 2t p • v where A' is the approximate value from literature. -156-Step II. Calculate wavelength from 2t where £ is calculated for the line ( V ) . Sample Calculation. Approximate value of 2t^ 2t' = 1.577887 Standard line 7^ - 5400.5617 A. (Neon) p = 1-577887 = 29217.091 5400.5617 £ for \i = 0.065 where P Q i s the integral order number. 2t = (PQ+C)*! - (29217.065)5400.5617 - 1.577885 A * = 5748.29 £ for 7v» - 0.605 Integral order p - 1 , 5 7 7 8 8 5 5748.29 = 27449.641 1-577885 ^ 5748.297 I . 27449.605 To Check the Order Number. To make sure that the order number we calculated for V (standard line) 5400.5617 i s the correct one we adopt -157-the following method. Choose three lines including 7^ 7s± = 5400.56i7 A 2 = 5748.2985 X 3 = 5764.4180 . According to the fundamental relations (Pl+Cl)*! " (P 2 +^2 ) A2 = ( p3 +*3 ) A3 ' 29217 . 0.065 0.605 0.856 A l - 0.93950613 A2 i i - 0.93687891 *3 Integral order = Calculate £i, £ 2 a n d £ 3 Cl = €2 -C3 = P 2 + C 2 = ( P l + C i > ^ - • A 2 *3 Pi + € i 29215.065 29216.065 29217.065 29218.065 29219.065 P2+ C2 27447.733 27448.672 27449.611 27450.551 27451.490 P3+ £3 27370.978 27371.918 27372.852 27373.788 27374.725 Checking with the calculated values of £ 2 and £3 i t is seen that 29217 i s the correct order number p^. -158-Error Calculation for ?v. Derivation of the Formula used, tf . °° 2 A AD 2 B log£\ =* log A-log B ,d£\ _ dA , dB v c •'max — ™r * A B , (dA , dB~| p x ^ x = ps^s where the subscript x stands for the unknown line and s stands for the standard line. p s A s * x P x d A x d £ s dAs d £ x (P+OS A s (P+O Since is negligibly small we can write d C s d C x . (B) dAx =» A X (P+C)S (P+OX -159-Sample Calculation. A s - 7601.5444 A A - 8.773 B - 3.969 .452 *x A x dA - 0.003 dB - 0.014 n A c n 0.003 0.452 L I— + S.773 O.OI4J 3.969] 0.002 7664.891 8.837 B -.7.963 0.901 dA dB .003 .037 0.901 0.005 0.003 ^  0 8.837 7664.891 0.002 0.005 20757.452 20585.901 ± 0.003 A . Interferometric Wavelength Measurements in the  Arc Spectrum of Potassium (KI). Using the above method wavelengths have been measured for 38 lines in the arc speetrum of potassium. The purpose of this investigation was to measure interferometrically as many lines as possible and to check the interferometric wavelength measurements of the diffuse series s a t e l l i t e s -160-made by Masaki and Kobayakawa ( 2 5 ) . Experimental Details. Light Source. An electrodeless discharge tube containing potassium and argon as a carrier gas at a pressure of 0.8 mm of Hg was used. This source was excited by means of a "Raytheon Microtherm" microwave generator operating at a frequency of 2450 mega-cycles per second. Spectrographic Equipment. A big glass prism spectrograph and a Hilger large glass spectrograph were used in this investigation. 2 different spacers were used (2t « 2 0 mm; «12 mm). The green line of Hg from a water-cooled Meggers tube was used as the o standard line. The wavelength of this line i s 7\&±r ^  5460.7529 A. Spectrogram. A l l spectrograms were taken on Eastman spectroscopic plates. Exposure time varied from two minutes to six hours. The exposure time for the standard line was four minutes. A l l spectrograms were measured on a Zeiss-Abbe comparator. The wavelengths were reduced to standard conditions. Corrections for temperature and pressure are made by means of Edlen's formula. Corrections for phase change were not made since they were estimated to be smaller than the random errors of the measurements. Wavelengths determined are mean values from two or more spectrograms except for the 1 s t nine lines which were -161-based on only one spectrogram. The error limits are estimated to be 0.003 A at 6000 A and 0.002 A at 4000 1. In the region above 9500 A sensitized I - Z(2) plates were used. Results. Wavelength Tables. Table ,6 '. . At present the most accurate and extensive measurements of potassium wavelengths seem to be those of Risberg (41). Most of the wavelengths measured are in excellent agreement with Risberg's values. Table 7 contains a comparison of the present measurements of the diffuse series s a t e l l i t e s , with the values of Masaki and Kobayakawa ( £ 5 ) . The only possible explanation for the disagreement could be that Masaki and Kobayakawa might have made an error in determining the integral order number (see page 156for the method). Table WAVELENGTHS MEASURED IN POTASSIUM References to some previous measurements. D - DattaC*) M(2) = Meggers&Z> E - EdlenC2>) R = RisbergC*!) HBB = Hetzler, Borman and BurnsdS) W = Wagman M(l) = Meggers(?.<£) MK = Masaki and Kobayakawa Intensity o Aair> A Previous Measurements cm - 1 Classification 9 11772.83 2.83R; 3.05M(1); 2.66M(2) 8491.81 4 P3/2 - 3 D5/2 8 11769.64 9.62R; 9.41M(1) 8494.12 4 P3/2 - 3 D3/2 9 11690.21 0.21R; 0.17M(1); 89.76M(2) 8551.82 4 P l / 2 - 3 D3/2 8 9 11022.66 11019.86 2.67R; 9.87R; 2.3M(1) 9069.73 9072.04 3 D3/2 3D5/2 5 F5/2 5 F 7 / 2 7 8 9597.829 9595.703 7.829R; 5.704R; 7.76E 7.1M(1) 5.60E 10416.17 10418.47 3 D3/2 3 D5/2 mm 6 F5/2 6 F7/2 10 6938.764 8.767R; 9.50D; 8.76E; 8.774HBB 14407.81 4p:.3/2 - 6 S l / 2 9 6911.081 1.084R; 1.80D; 1./08E; 1.087HBB 14465.53 4 py/2 - 6 S l / 2 8 5831.886 1.887R; 2.31D; 1..89E 17142.36 4 P3/2 - 5 D5/2 6 5831.718 1.593MK 17142.85 4 P3/2 - 5 D3/2 7 5812.149 2.148R; 2.71D; 2.15E 17200.57 4 P l / 2 - 5 D3/2 8 5801.753 1.752Rj 2.16D; 1.74E 17231.39 4 P3/2 - 7 S l / 2 8 5782.387 2.384R; 2.77D; 9.66E 17289.10 4 PSl/2 - 7 S l / 2 Table <c> (Continued) 7 I 5359.576 j 9.574R; 9.521Dj 9.66E • 18653.01 4 P3/2 - 6 D5/2 5 i 5359.498 9.583MK 18653.28 4 P3/2 - 6 D3/2 6 5342.970 2.970R; 2.974D; 3.07E 18710.98 4*1/2 - 6 D3/2 7 5339.688 9.688Rj 9.670D; 9.79E 18722.48 4 P3/2 - 8 S l / 2 6 5323.278 3.276R; 3.228D; 3.38E 18780.19 4 P4/2 - 8 S l / 2 6 5112.256 2.249R; 2.204D 19555.39 4 P 3 / 2 - 7 D5/2 4 5112.217 2.129HK 19555.54 4*3/2 - 7 D3/2 6 5099.201 9.200R; 9.180D 19605.45 4 P3/2 - 9 S l / 2 5 5097.173 7.171RJ 7.144D 19613.25 4 P l / 2 - 7 D3/2 5 5084.236 4.226R; 4.212D 19663.16 4p:J/2 - 9 S l / 2 5 4965.034 5.031R; 5.038D 20135.23 4 P3/2 - 8 D5/2 3 4965.011 4.919MK 20135.36 4 P3/2 - 8 D3/2 4 4956.148 6.146R; 6.043D 20171.33 4 p3/2 - 10S 1 / 2 4 4950.823 0.815R; 0.816D 20193.03 4 P l / 2 - 8 D3/2 4 4942.011 2.015R; 1.964D 20229.03 4 prl/2 - 1 0 S l / 2 5 4869.766 9.757Rj 9.70D 20529.13 4 P3/2 - 9 D5/2 4 4863.482 3.483R; 3.61D 20555.66 4 P3/2 - HSl/2 4 4856.098 6.090R; 6.03D 20586.92 4 p l / 2 - 9 D3/2 Table S (Continued) 3 4849.868 9.865R; 9.88D 20614.21 4 P ' 1/2 " HSl/2 4 4804.349 4.348R; 5.19D 20808.66 4 P3/2 " 1 0 D5/2 5 4642.370 2.373R| 2.172D 21534.69 4 S 1 / 2 - 3 D5/2 6 4641.872 1.876R; 1,585D 21537.00 4 S l / 2 " 3 D3/2 8 4047.210 7.206Rj 7.201D; 7.214W 24701.40 4 S l / 2 " 5 P l / 2 9 4044.139 4.136R; 4.140D; 4.145W 24720.16 4 S i / 2 - 5P3/2 Table 7 WAVELENGTHS OF THE FOUR SATELLITES MEASURED IN DIFFUSE SERIES o A a i r , A Aair> A ( M K ) A a i r A (C) Classif ication 5831.718 5831.593 5831.715 4 P 3 / 4 - 5D 3 / 2 5359.498 5359.583 5359.499 4 P 3 / 2 - 6D 3 / 2 5112.217 5112.129 5112.208 4 P3/2 " 7 D3/2 4965.011 4964.919 4965.006 4 P 3 / 2 - 8D 3 / 2 Wavelengths in column 2 (MK) are due to Masaki and Kobayakawa. Wavelengths in column 3 (C) are calculated using the splittings observed by Masaki and Kobayakawa. -166-TRACES OF THE SPARK SPECTRA OF  SELENIUM FOR A 1100 A The following figures are photoelectric traces made with a Jarre11-Ash console comparator microphotometer. The source i s an electrodeless spark discharge (see Chapter II). -167--169--171-Summary We may summarize in a few sentences the main results attained and the conclusions reached in the course of this research. We have confirmed, with the aid of Fabry Perot patterns, that the electrodeless spark discharge i s an ideal source for the production of sharp and intense lines at quite high excitation. We have outlined detailed steps for the "method of set-backs", used in the identification of the spectral lines in the vacuum grating region. We have introduced our observations to make a complete revision of the square arrays of Se II, Se III, Se IV, Se V and Se VI and have revised most of the term values and extended the previous analyses in Se III, Se IV and Se V. The main features of the analysis are the establishment of the deepest excited terms 4s4p 3 5 S 2 ° in Se III and 4s4p 2 4P in Se IV. In addition we have also established some of the basic terms in Se III, Se IV and Se V. Intermediate coupling theory has been compared with observed levels wherever possible. In most cases the agreement i s good. We have noticed that the study of the spark spectra of bromine i s far from complete and experi-mental investigations in these are desirable. The number of unclassified lines i s quite large, and we estimate that i t involves about 40% of the total light output. Thirty eight lines in the arc spectrum of potassium have been measured interferometrically. -172-APPENDIX Grating Ghosts. Both the 21 foot concave grating and the 2 meter vacuum grating displayed Rowland ghosts. This has been a valuable help in identifying the order of lines from the grating since the ghost spacing at various nA is a function of the order. Rowland ghosts have an intensity I(n) in the nth order I(n) = I ( l ) n 2 , where the intensity in the f i r s t order 1(1) may be approximately 0.2% of the parent line intensity and are positioned according to the equation &(nA) - ^ where m = ±1, +2, etc. i s the ghost order, and p = number of rulings involved in the periodic errorj in the 2 m (Bausch and Lomb) grating this p = 720 in the 21 foot (Johns Hopkins) grating this p = 750 „ Since AA = 4&&s , this gives for the separation of the f i r s t order ghost A s =^p . We can, therefore, use the dispersion tables to calculate As, For example, using A = 2040 A 49= 4.339 A/mm. 2040 A s = 1 mm. = 0.653 mm. 4.339x720 Paschen (34) has summarized the properties of Rowland ghosts. -173-BIBLIOGRAPHY 1. Andrew, K.L., and Meissner, K.W. J.O.S.A. 47, 850, 1957. 2. Bacher, R.F. Phys. Rev. 43, 264, 1933. 3. Bacher, R.F., and Goudsmit, S. Phys. Rev. 46, 948, 1934. 4. Badami, J.S., and Rao, K.R. Proc. Roy. Soc. London (A) 140, 387, 1933. 5a. Bartelt, 0. Naturwiss 22, 291, 1934. b. " " Zeit. Phys. 91, 444, 1934. 6. Bedford, R.E. Ph.D. Thesis, University of British Columbia, 1955. 7. Condon, E.U., and Shortley, G H. "Theory of Atomic Spectra", Cambridge University Press, 1935. 8. Datta, S. Proc. Roy. Soc. London (A) 99, 69, 1921. 9. Edlen, B. Zeit. Phys. 98, 445, 1936. 10. Edlen, B. J.O.S.A. 43, 339, 1953. 11a. Edlen, B., and Risberg, P. Arkiv fbr Fysik 10, 553, 1956. b. Eriksson, K.B.S., Phys. Rev. 102, 102, 1956. 12. Goudet, G. J. Phys. et Rad. 6, 443, 1935. 13. Goudsmit, S.A., and Humphreys, C. Phys. Rev. 31, 960, 1928. 14. Harrison, G.R. Reports on Progress in Physics 8, 212, 1941. 15. Hetzler, C W., Boreman, R.W., and Burns, K. Phys. Rev. 48, 656, 1935. 16. Houston, W.V. Phys. Rev. 33, 297, 1929. 17a. Johnson, Jr. M.H. Phys. Rev. 38, 1628, 1931. b. " " " " " 39, 197, 1932. -174-18. Jeurgen Bauer, Ann. der Physik (5) 20, 481, 1934. 19. Kayser, H. "Handbuch der Spectroscopic" Vol. 6, p. 456. 20. Kelly, R.L. Vacuum Ultraviolet Emission Lines. Stanford Research Institute, Calif. 21. Krishnamurthi, S.G., and Rao, K.R. Proc. Roy. Soc. London (A) 149, 56, 1935. 22a. Kuhn, H.G. Atomic Spectra, Longmans, 1962. b. Lubzinski, J.F. M.A. Thesis, Dept. of Physics, U.B.C. 1950. 23. Mack, J. E., Stehn, J. and Edlen, B. J.O.S.A. 22, 245, 1932. 24. Martin, D.C. Phys. Rev. 48, 938, 1935. 25. Masaki, O., Kobayakawa, K.J. J. Sci. Hiroshima Univ. (A) 6, 217, 1936. 26. Meggers, W.F. J. Res. Nat. Bur, Stand. 10, 669, 1933. 27. Meggers, W.F. J. " " " " 14, 487, 1935. 28. Meggers, W.F., and Peters, C.G. Bull. Bur. Stand. 14, 697, 1919. 29. Meissner, K.W., Bartelt, 0., and Eckstein, L., Zeit. Phys. 91, 427, 1934. 30. Meissner, K.W. Zeit. Phys. 94, 810, 1935. 31. Meissner, K.W. and Luft, K.F. Ann. der Phys. 5, 29, 698, 1937. 32. Meissner, K.W. J.O.S.A. V. 31, 6, 405, 1941. 33. Moore, C.E. "Atomic Energy Levels". National Bureau of Standards, Vol. 2, 1952. 34. Paschen, F. Ann. der Phys. 34, 130, 1939. 35. Pauling, L., and Goudsmit, S. "The Structure of Line Spectra". McGraw H i l l , New York, 1930. -175-36a. Racah, G. Phys. Rev. 61, 186, 1942. b. it 62, 438, 1942. c. tt tt 62, 523, 1942. d. tt tt 61, 537, 1942. 37. Rao, K.R. and Badami, J.S. Proc. Roy. Soc. London (A) 131, 159, 1931. 38. Rao, K.R. and Badami, J.S. Proc. Roy. Soc. London (A) 131, 166, 1931. 39. Rao, K.R. and Murti, S.G.K. Proc. Roy. Soc. London (A) 145, 681, 1934. 40a. Rasmussen, E. Dan. Mat. Fys. Medd. 23, nr 3, 1945. b. Hermansen, A. Univ. Fysik Lab. Copenhagen, Denmark. 41. Risberg, P. Arkiv for Fysik, Bd. 10, nr 41, 1956. 42a. Ruedy, J.E., and Gibbs, R.C. Phys. Rev. 46, 880, 1934. b. ." " " " " Zeit. Phys. 94, 080, 1935. 43. Roeser, H.M. Sci. Pap. Bur. Stand. 16, 363, 1920. 44. Sawyer, R.A. and Humphreys, C.J. Phys. Rev. 32, 583, 1928. 45. Shenstone, A.G. Reports on Progress in Physics 5, 222, 1938. 46. Shenstone, A.G. and Russell, H.N. Phys. Rev. 39, 415, 1932. 47. Slater, J.C. Phys. Rev. 34, 1293, 1929. 48. Van den Bosch, J.C. Physica 14, No. 4, 249, 1948. 49. Wagman, N.E., Univ. Pittsburgh Bull. 34, 1, 1937. 50. White, H.E. "Introduction to Atomic Spectra". McGraw H i l l , New York, 1934. 51. Harrison, G.R. M.I.T. Wavelength Tables, New York, John Wiley & Sons, Inc., 1939. 52. Finkelnburg, W., and Humbach, W. Naturwiss. 42, 35, 1955. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085864/manifest

Comment

Related Items