UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A study of the spark spectra of selenium George, Simon 1962

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1962_A1 G3 S7.pdf [ 13.08MB ]
Metadata
JSON: 831-1.0085864.json
JSON-LD: 831-1.0085864-ld.json
RDF/XML (Pretty): 831-1.0085864-rdf.xml
RDF/JSON: 831-1.0085864-rdf.json
Turtle: 831-1.0085864-turtle.txt
N-Triples: 831-1.0085864-rdf-ntriples.txt
Original Record: 831-1.0085864-source.json
Full Text
831-1.0085864-fulltext.txt
Citation
831-1.0085864.ris

Full Text

A STUDY OF THE SPARK SPECTRA OF SELENIUM by SIMON GEORGE B.Sc. The University of Travancore, India. 1951 M.Sc. The University of Saugar, India, 1954  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF  DOCTOR OF PHILOSOPHY in the Department of PHYSICS We accept t h i s thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA September, 1962  In presenting  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of  the r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y  of  B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and f o r extensive  study.  I f u r t h e r agree t h a t p e r m i s s i o n  c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may  g r a n t e d by the Head o f my  Department o r by h i s  be  representatives.  I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n  Department The U n i v e r s i t y o f B r i t i s h Vancouver 8, Canada,  Columbia,  permission.  The U n i v e r s i t y o f B r i t i s h Columbia FACULTY OF GRADUATE STUDIES  PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  of  SIMON GEORGE B.Sc. U n i v e r s i t y o f T r a v a n c o r e , I n d i a , 1951 M.Sc. U n i v e r s i t y o f Saugar, I n d i a , 1954  THURSDAY, SEPTEMBER 20th, 1962, AT 1:30 P.M. IN ROOM 303, PHYSICS BUILDING  COMMITTEE IN CHARGE Chairman. A. M. CR00KER F.'W, DALBY K. C. MANN  F. H, Soward R. A. NODWELL C. REID cV A. SWAN'SON JV  E x t e r n a l Examiner: B .' EDLEN, Lunds U n i v e r s i t e t , Sweden  A STUDY OF THE SPARK SPECTRA OF SELENIUM In t h i s spectrum the l e v e l s 4s5p P o , i 2, ^-Pl, 4s4f 3 p , 3, 4, l F 3 and 4s5s lSo have been established. The l e v e l s 4s5d 3 b i , 2, 3, a r e t e n t a t i v e l y suggested. 3  )  ABSTRACT  2  The spark s p e c t r a of selenium have been photographed from the i n f r a - r e d to the vacuum u l t r a - v i o l e t on a v a r i e t y of spectrographs i n c l u d i n g a two metre vacuum s p e c t r o g r a p h , a twenty-one foot concave g r a t i n g , a H i l g e r constant d e v i a t i o n , a H i l g e r medium quartz and a H i l g e r l a r g e automatic g l a s s - q u a r t z prism | spectrograph. Two l i g h t sources have been used: An e l e c t r o d e l e s s spark d i s c h a r g e and a spark i n helium. About 2200 s e l e n i u m l i n e s have been measured i n the r e g i o n 10450 to 345 Angstroms. Approximately 800 of these l i n e s had not been p r e v i o u s l y observed. U s i n g the present o b s e r v a t i o n s , of the term s t r u c t u r e of Se I I , Se and Se VI has been made Most of have been r e v i s e d and the p r e v i o u s Se IV, and Se V have been extented v  a complete r e v i s i o n I I I , Se IV, Se V the term v a l u e s analyses i n Se I I I , considerably.  In Se I I I , the deepest e x c i t e d term 4s4p3 5S£ has been e s t a b l i s h e d . A l s o the l e v e l s 4p5d 3p , 4p7s 3 p , 1, 2, i p i and 4 s 4 p lSo have b een found A new l i m i t i s c a l c u l a t e d from the 4pns s e r i e s (4p2 3 p « 248583 cm-1) I.P. = 30.8 v o l t s .  I n t e r m e d i a t e c o u p l i n g t h e o r y has been compared w i t h observed l e v e l s wherever p o s s i b l e In most cases the agreement i s good. U s i n g an e l e c t r o d e l e s s d i s c h a r g e tube e x c i t e d by a h i g h frequency g e n e r a t o r , wave l e n t h s of 38 l i n e s i n the a r c spectrum of potassium have been determined interferometrically A water c o o l e d Hgl98 e l e c t r o d e l e s s tube (Meggers lampj) was used f o r the s t a n d a r d l i n e X a i r = 5460.7532 A. Most o f these l i n e s have been measured i n t e r f e r o m e t r i c a l l y f o r the f i r s t time. The wave l e n t h s of the f o u r s a t e l l i t e s i n the d i f f u s e s e r i e s agree w e l l w i t h the c a l c u l a t e d values. The o n l y p r e v i o u s measurements, by Masaki and Kobayakawa are p r o b a b l y i n e r r o r due t o an i n c o r r e c t l y assumed i n t e g r a l order m the i n t e r ference pattern.  0  3  0  0  In SelV, been found. 4s 7p P%, 1% The l e v e l 4 2  the deepest e x c i t e d term 4 s 4 p 4p h In a d d i t i o n , the l e v e l s 4 s 6 p 2p^ and 4 p ^ S l % have a l s o been e s t a b l i s h e d . 7s 2 % suggested by Rao has been r e j e c t e d and a new v a l u e has been found f o r t h i s ' The 4 s n g s e r i e s has been extended up to n = 9. For the f i r s t time, the 4 s n h s e r i e s has been e s t a b l i s h e d i n t h i s type of s p e c t r a and extended up to n = 8. A new i o n i z a t i o n p o t e n t i a l , (I.P.) has been c a l c u l a t e d u s i n g t h i s s e r i e s 4p P ^ = 346,375 * 100 cm" , I.P. = 42.94 ± 0.01 v o l t s 2  a s  2  ?  2  S  GRADUATE STUDIES  2  3  F i e l d of Study:' O p t i c a l  Spectroscopy  S  2  Quantum Mechanics Nuclear Physics  W  Opechowski J . B. Warren  2  2  Spectroscopy  A. M.  Crooker  1  In Se V, a comparison of the n* v a l u e s w i t h those of As IV showed a d i s c r e p a n c y r e g a r d i n g the I.P. =73.1 v o l t s , g i v e n by Rao. By an e x t r a p o l a t i o n along the i s o e l e c t r o n i c sequence the I.P. i s e s t i m a t e d to be 68.4 v o l t s which i s i n c l o s e agreement w i t h the value 68 3 ^ O . l v o l t s c a l c u l a t e d from s c r e e n i n g constants g i v e n by F m k e l n b u r g and Humbach (1955)  Related Studies. Modern Geometry I I  M  Benedicty  -vii-  ABSTRACT  The spark s p e c t r a of selenium have been photographed  from  the i n f r a - r e d t o the vacuum u l t r a - v i o l e t on a v a r i e t y of s p e c t r o g r a p h s i n c l u d i n g a two meter vacuum g r a t i n g s p e c t r o g r a p h , a twenty-one f o o t concave g r a t i n g , a H i l g e r Constant  Deviation,  a H i l g e r medium q u a r t z and a H i l g e r l a r g e automatic g l a s s - q u a r t z prism spectrograph.  Two  l i g h t sources have been used:  e l e c t r o d e l e s s spark d i s c h a r g e and a spark i n helium. 2200 selenium l i n e s have been measured i n the r e g i o n 345 Angstroms.  An About  10450 t o  On the b a s i s of these measurements, new  levels  have been found i n Se I I I , Se IV, and Se V. The most important achievement deepest e x c i t e d terms 4 s 4 p  3  5  was  the d i s c o v e r y  S°j i n Se I I I and 4 s 4 p  The c h i e f e x t e n s i o n of the a n a l y s i s has been i n Se  2  4  p  of the i n Se IV.  IV.  A few i n t e r f e r o m e t r i c measurements were made i n Se I I and Se I I I .  Using an e l e c t r o d e l e s s d i s c h a r g e tube e x c i t e d by a  h i g h frequency generator wavelengths  of 38 l i n e s i n the a r c  spectrum of potassium have been determined i n t e r f e r o m e t r i c a l l y .  ACKNOWLEDGMENTS  I wish to express my deepest gratitude to Professor A.M. Crooker for suggesting  t h i s problem and for his  invaluable help and stimulating discussions throughout the course of t h i s investigation. The technical assistance given by Mr. J. Lees, Mr. A. Fraser and Mr. W. Morrison i s also acknowledged. Thanks are also due to Mr. Y. N. Joshi f o r his help i n some c a l c u l a t i o n s .  -ii-  TABLE OF CONTENTS Page Abstract  vii  Acknowledgements INTRODUCTION  viii 1  CHAPTER I.  THEORY 1. General Theory of Atomic Spectra  4  Terms and Energy Levels  4  Relative and Absolute Term Values  5  Odd and Even Terms  5  Rydberg Series  6  Isoelectronic Sequences and Moseley Diagrams  8  Irregular Doublet Law  10  Regular Doublet Law  11  Lande Interval Rule  13  Selection Rules  14  Intensity Sum Rule  16  2. Theory of Complex Spectra  16  L.S. Coupling  21  j - j Coupling  23  (j-s) and ( j - l ) Coupling  23  Intermediate Coupling Formulas of Johnson  25  Pair Coupling of electrons with high quantum numbers  25  ~iii-  II.  EXPERIMENTAL PROCEDURE AND REDUCTION OF SPECTROGRAMS  28  A. Light Sources  28  1. Electrodeless discharge Description and operation  28 29  2. Spark i n Helium  31  B. Spectrographic Equipment  32  Reduction of prism spectrograms  32  Two meter vacuum spectrograph  34  Reduction of grating spectrograms  34  1. C l a s s i c a l i n t e r p o l a t i o n procedure of Paschen and Runge  34  2. The method of Shenstone and Boyce  35  3. Edl^n's method of interpolation  37  4. The method of "setbacks"  39  Interferometric wavelength measurements of some selenium l i n e s  III.  42  Vacuum u l t r a v i o l e t standard l i n e s  43  Probable e x c i t a t i o n  43  RESULTS AND ANALYSIS  50  1. Selenium I and II  50  2. Selenium III  51  (a) S ° Term i n Se III 5  2  52  (b) 4s 4pns configurations i n Se III  53  (c) Ionization p o t e n t i a l  54  2  ~iv-  3. Selenium IV  55  (a) P Term i n Se IV 4  55  (b) 4s ng 4s nh Series i n Se IV  57  (c) Ionization p o t e n t i a l  58  2  2  4. Selenium V  59  5. Selenium VI and VII  60  THE PRECISE DETERMINATION OF SPECTRAL WAVELENGTHS  142  Interference spectroscopy  142  Fundamental r e l a t i o n s  143  Order number of the center of the r i n g system  146  Calculation of the f r a c t i o n a l part €  152  Crossing the interferometer with a spectrograph 147 Adjustment of the interferometer  147  Resolving power of the Fabry-Perot interferometer 148 Intensity d i s t r i b u t i o n i n the interference patterns  149  Correction f o r phase change at r e f l e c t i o n  150  Correction f o r the dispersion of a i r  151  Accurate wavelength measurement  155  Sample c a l c u l a t i o n  156  To check the order number  156  Error c a l c u l a t i o n f o r A  158  Interferometric wavelength measurements i n the arc spectrum of potassium (KI) Light source  159 160  Spectrographs equipment Spectrogram Results SUMMARY APPENDIX BIBLIOGRAPHY  -vi-  TABLES 1.  Dispersion table f o r 2 meter vacuum spectrograph  47  2.  Catalogue and c l a s s i f i c a t i o n of selenium l i n e s  62  3.  Terms i n Se III  133  4.  Terms i n Se IV  137  5.  Terms i n Se V  140  6.  Wavelengths measured i n potassium I  162  7.  Wavelengths of the four s a t e l l i t e s i n the  165  diffuse  series  2a. Supplementary l i s t of Selenium l i n e s  132a Following Page  FIGURES 1.  Electrodeless discharge  28  2.  C i r c u i t diagram f o r electrodeless discharge  29  3.  Oscillograms showing the l i g h t emission and e l e c t r i c o s c i l l a t i o n s  4.  5.  a) Spark i n Helium  31  b) C i r c u i t diagram for 4 a)  31  Rowland ghosts separations on the 2 meter vacuum spectrograph  6.  Fabry-Perot fringes of selenium spark l i n e s  7.  21 foot grating plate holder showing  8.  30  41 42  d i f f e r e n t plates with nA regions  43  Traces of the spark spectra of selenium  166  -1-  A STUDY OF THE  SPARK SPECTRA OF  SELENIUM  INTRODUCTION  With the advent of quantum mechanics i n 1927 s p e c t r a was  g i v e n a very f i r m foundation.  the theory  of  The s e m i - c l a s s i c a l  r u l e s of the o l d quantum and Bohr t h e o r i e s became a n a t u r a l consequence of the new Goudsmit and Bacher  quantum mechanics.  (23), Condon and  developed the theory which was d e t a i l s of s p e c t r a .  Slater  Shortley  (47),  (7), and  others  capable of e x p l a i n i n g the major  Subsequently i n t e r e s t i n the f i e l d  declined  r a p i d l y , p a r t i c u l a r l y from the experimental p o i n t of view. o p i n i o n , t h a t f u r t h e r study would not became common among p h y s i c i s t s .  The  lead t o p r o f i t a b l e r e s u l t s ,  However, a g l a n c e at  "Atomic Energy L e v e l s " compiled by Mrs.  Sitterly  (33)  the reveals  the gaps which occur i n our knowledge of many s p e c t r a . Harrison  (14) estimated that approximately one  must be a s c r i b e d t o t h e i r parent ions i n order needs of astronomers, p h y s i c i s t s , and time o n l y about 280,000 were known. complete analyses  million  lines  to meet the  chemists, whereas at that A l a r g e number of  fairly  must be a v a i l a b l e t o make a comprehensive  t e s t of the theory  of complex s p e c t r a i n terms of  intermediate  c o u p l i n g parameters, S l a t e r c o e f f i c i e n t s , i n t e r c o n f i g u r a t i o n perturbations, The follows.  etc.  problem f a c i n g the modern s p e c t r o s c o p i s t He must c a r r y out  i s as 1  the measurements of the e x i s t i n g  -2-  wavelengths w i t h the maximum accuracy o b t a i n a b l e w i t h modern l a b o r a t o r y equipment.  Then he must examine the e a r l i e r  analyses  i n the l i g h t of t h e new data, c o r r e c t i n g any e r r o r s i n the accuracy o r i n i d e n t i f i c a t i o n of l e v e l s which may a r i s e , and extend the a n a l y s i s t o i n c l u d e other l i n e s which a r e not accounted  for.  F i n a l l y , t h i s experimental d a t a must be used t o  make a q u a n t i t a t i v e t e s t of modern atomic theory, t h e most e l e gant form o f which i s probably t h a t of Racah and h i s coworkers. The t a s k i s not an easy one. "to  In the words of Shenstone (45)  complete an a l r e a d y p a r t i a l l y analysed spectrum  more d i f f i c u l t  i s much  than t o begin a new one because i t i s always t h e  easy p a r t t h a t i s a l r e a d y done." The f o l l o w i n g c h a p t e r s w i l l d e s c r i b e t h e a p p l i c a t i o n of the f o r e g o i n g d i s c u s s i o n t o t h e s p e c t r a of selenium. The v a r i o u s i n v e s t i g a t i o n s of t h e a r c and spark s p e c t r a of  selenium done p r i o r t o 1930 a r e summarized i n Kayser's  Handbuch der S p e c t r o s c o p i e , Volume 6 (19).  None of the workers  made any attempt  The f i r s t  at  i n c l a s s i f y i n g the l i n e s .  attempts  a n a l y s i n g t h e a r c spectrum were made independently by Ruedy  and Gibbs  (42a,b) and Meissner  (29,30) i n 1934; but the two  l i s t s d i s a g r e e i n many i n s t a n c e s .  R e c e n t l y an a n a l y s i s has  been c a r r i e d out by Shenstone i n the a r c spectrum  o f selenium  who s t a t e s t h a t t h e a n a l y s i s of Ruedy and Gibbs, as presented by Mrs.  Sitterly,  i s b a s i c a l l y correct.  The s i n g l y i o n i z e d selenium atom has i t s ground s t a t e a 2 3 4s 4p c o n f i g u r a t i o n and hence g i v e s r i s e t o a complex spectrum.  -3-  In 1935, Martin (24) made an excellent analysis of t h i s spectrum. Other workers i n selenium II spectrum are B a r t e l t  (5a,b),  Krishnamurthy and Rao (21) and Van den Bosch (49). Se III was f i r s t studied by Badami and Rao (4) and Rao and Murthi (39) who c l a s s i f i e d 218 l i n e s between 517 A and 6613 A. Goudet (12) gives a l i s t  of selenium spark l i n e s i n the vacuum  u l t r a v i o l e t region from 1294 A to 360 A.  Se IV has been analysed  by Rao and Badami (37) who have published 35 c l a s s i f i e d l i n e s between 635 A and 3059 A.  In Se V Sawyer and Humphreys (44) have  c l a s s i f i e d 16 l i n e s between 505 and 837 A.  In 1931 Rao and  Badami (38) s l i g h t l y extended the analysis of Se V by adding 6 more l i n e s tb the c l a s s i f i c a t i o n .  In Se VI by extrapolation  along the isoelectronic sequence Sawyer and Humphreys (44) have o  o  c l a s s i f i e d 7 l i n e s between 452 A and 886 A.  -4-  THEORY  1. General Theory of Atomic S p e c t r a The g e n e r a l theory of atomic s p e c t r a and i t s i n t e r p r e t a t i o n i n terms o f the v e c t o r model i s w e l l known.  Here we summarize  b r i e f l y those r e s u l t s which a r e necessary t o understand the s p e c t r o s c o p i c n o t a t i o n and the procedures used unknown l e v e l s .  i n identifying  F o r d e t a i l e d d e r i v a t i o n s and d i s c u s s i o n s the  reader i s r e f e r r e d t o one of the many t e x t s on the s u b j e c t (7,22,35,50).  Terms and Energy L e v e l s The f i r s t  s t e p i n the i n t e r p r e t a t i o n of s p e c t r a c o n s i s t s  i n f i n d i n g a s e t of energy  l e v e l s which g i v e s the observed  s p e c t r a l l i n e s as combinations  by means of e q u a t i o n  (1.1)  h where W  1  and W2 a r e the energy v a l u e s f o r 2 l e v e l s  h i s the Planck's constant and V i s the frequency of the s p e c t r a l T h i s equation g i v e s the frequency, wave  line.  i n sec" . 1  To o b t a i n the  number used c u s t o m a r i l y i n s p e c t r o s c o p y i t i s necessary  t o d i v i d e t h i s by c, the v e l o c i t y of l i g h t d i v i d e d by he have the dimension expressed  cm" . 1  Thus e n e r g i e s  The energy s t a t e s  i n these u n i t s a r e g e n e r a l l y c a l l e d terms and t h e i r  -5-  v a l u e s term v a l u e s .  R e l a t i v e and Absolute Term Values s it  i n many s p e c t r a which have been analyzed q u i t e completely, i s p o s s i b l e t o c a l c u l a t e w i t h g r e a t p r e c i s i o n the  energy  necessary t o remove one e l e c t r o n from the lowest energy t o an i n f i n i t e d i s t a n c e , i . e . the i o n i z a t i o n energy. s p e c t r a i t i s customary t o put the energy i s removed completely, equal t o zero.  level  In these  a t which the e l e c t r o n  The  other term  values  w i l l t h e r e f o r e be n e g a t i v e , the normal s t a t e being the s t a t e with the l a r g e s t n e g a t i v e energy,  but one always omits  the  n e g a t i v e s i g n and denotes the term v a l u e s by p o s i t i v e numbers Term v a l u e s i n which the i o n i z a t i o n l i m i t  i s put equal t o  z e r o are c a l l e d a b s o l u t e term v a l u e s . In other s p e c t r a , f o r which the i o n i z a t i o n energy  i s not  known, i t i s customary to s e t the s t a t e w i t h the lowest equal t o zero.  energy  In t h i s case the term values are r e f e r r e d to  as r e l a t i v e term v a l u e s . When the term v a l u e s decrease, one knows that they are a b s o l u t e , and when they i n c r e a s e t h a t they are r e l a t i v e values.  3n th€ former  ease n i n c r e a s e s and  term  i n the l a t t e r TJ  decreases.  Odd  and Even Terms The a n a l y s i s of s p e c t r a shows t h a t the l e v e l s of each  spectrum terms.  can be d i v i d e d i n t o two groups c a l l e d odd and even When the a r i t h m e t i c a l sum  of a l l l ' s of the e l e c t r o n s  -6-  i s even, one o b t a i n s even energy l e v e l s ; and, i n the other case odd ones.  U s u a l l y the symbols f o r odd l e v e l s are d i s t i n -  guished by the s i g n ° at the upper r i g h t s i d e and the term value printed i n i t a l i c s .  T r a n s i t i o n s occur o n l y between odd  and even s t a t e s and not between s t a t e s b e l o n g i n g t o the same group. However, t r a n s i t i o n s between two odd or two even terms may  occur under the i n f l u e n c e of d i s t u r b i n g e l e c t r i c  fields  Even i n the absence of such d i s t u r b i n g f i e l d s , such ' f o r b i d d e n ' t r a n s i t i o n s may occur, due t o quadrupole r a d i a t i o n ; but they are then v e r y much weaker than allowed t r a n s i t i o n s  involving  the same terms.  Rydberg  Series  The a b s o l u t e value of a term may be w r i t t e n as RZ T  n  2 Q  RZ  -  2 0  (1.2)  n  n  *2  (n -  Sn)  2  where R i s the Rydberg Constant Z  = e f f e c t i v e n u c l e a r charge ( 1 , 2 , — f o r a r c , 1 s t spark, spectra) n = p r i n c i p a l quantum number  n* =? e f f e c t i v e quantum number £n = quantum d e f e c t A s e r i e s of terms w i t h the same L , J and n i n c r e a s i n g by i n t e g e r s c o n s t i t u t e a Rydberg s e r i e s or an n* sequence.  The  u s u a l method of s e t t i n g up a b s o l u t e term v a l u e s i s t o assume  -7-  that n  &n approaches a constant as n i n c r e a s e s , and hence t h a t  i n c r e a s e s by i n t e g r a l s t e p s f o r h i g h n.  observed  Hence from the  d i f f e r e n c e (Tn - Tn+1), and u s i n g the Rydberg con-  v e r s i o n t a b l e s one may c a l c u l a t e Tn+1 and Tn.  Having  thus  e s t a b l i s h e d a b s o l u t e term v a l u e s u s i n g two terms; one may p r e d i c t unknown members of the same or other s e r i e s by an i n v e r s e process.  The a b s o l u t e term value i s then computed  from the above equation, the s i m p l e s t method of doing  this  computation i s t o look i t up i n the t a b l e s mentioned above. For l a r g e n, and e s p e c i a l l y when — I i s a l s o l a r g e , the procedure i s q u i t e accurate. reduced because  F o r s m a l l e r n the accuracy i s  <£n has not approached a constant and a l s o  because i n t e r c o m b i n a t i o n p e r t u r b a t i o n s a r e l i k e l y t o p e r t u r b the s e r i e s . Shenstone and R u s s e l l (46) have s t u d i e d the case when a s e r i e s i s perturbed by a . l e v e l from another tion.  electron configura-  The formula 1.2 may be w r i t t e n i n the form RZ_ 9_ = 2  T  n  *2  RZ<-. ^  £  (1.3)  (n + p. + <*T r  where (i, a a r e n e g a t i v e constants and  n  [ o c | T h e  behavior o f a s e r i e s may then be examined by p l o t t i n g Vs T . n  parallel  A Rydberg s e r i e s  (a = o) g i v e s a s t r a i g h t  ( n * - n)  line  t o the Tn a x i s , w h i l e a R i t z s e r i e s g i v e s a s t r a i g h t  l i n e of s l o p e a and i n t e r c e p t \i on the o r d i n a t e a x i s .  For a  perturbed s e r i e s Shenstone and R u s s e l l w r i t e (1.3) i n the  -8-  f orm  2  D17  (n +  where T  Q  \i + aT  n  +  Tn-To  i s the value of the perturbing term.  The plot of  (1.4) as before gives a hyperbola with v e r t i c a l asymptote T  n - o T  a n d  horizontal asymptote n* - n = \i + aT . n  They found  that many series which did not f i t (1.3) could be made to f i t (1.4) quite well, once the perturbing term had been i d e n t i f i e d . In some cases they found that the perturbing term had been included as a member of the s e r i e s , and hence a l l the higher quantum numbers were wrong and ionization potential incorrect. A more accurate method f o r the determination of term values i s given by Edlen and Risberg (11).  Isoelectronic Sequences and Moseley Diagrams The term i s o e l e c t r o n i c sequence refers to a sequence of atoms having the same number of extranuclear electrons. In general such a sequence s t a r t s with any element i n the periodic table and i s followed by other elements i n the order of t h e i r atomic number.  Since each neutral element  contains one more electron than the one just preceding i t i n the periodic table, each atom must be stripped, i . e . ionized, of just the r i g h t number of electrons to leave i t isoelectronic with the f i r s t element i n the sequence.  Suppose,  -9-  for example, that a sequence s t a r t s with germanium Z = 32. The following elements, arsenic, Z = 33, selenium, Z = 34, bromine, Z = 35, etc. are a l l made i s o e l e c t r o n i c with neutral germanium (Ge I) by removing one electron from arsenic, yielding As IIj two electrons from selenium; y i e l d i n g Se I I I ; three electrons from bromine y i e l d i n g Br IV, etc.  Because  each atom i n such a sequence contains the same number of extranuclear electrons the energy levels and the spectrum l i n e s a r i s i n g from each atom w i l l show remarkable s i m i l a r i t i e s from element to element. Term values are given by the formula  T  R(Z n  -Q  2  (1.5)  i  n  where Z = atomic number <f~ - screening constant. From the theory of penetrating o r b i t s they may be represented by 2 T  n  -  (1.6) (n  - i n )  2  Equation (1.5) can be written as  I". R  from which we see that  1  n  (Z -cr-)  (1.7)  i n an i s o e l e c t r o n i c sequence i s 4 R  -10-  — on the  a linear function of Z with slope — and intercept ordinate axis. Plots of (1.7) are c a l l e d Moseley diagrams.  They are  extremely useful f o r predicting terms i n an unknown spectrum by extrapolation from terms already established i n the i s o e l e c t r o n i c sequence.  Irregular Doublet Law The irregular doublet law, extended from X-ray  to  i s o e l e c t r o n i c sequences i n o p t i c a l spectra by M i l l i k a n and Bowen, may be stated i n terms of the energy levels as follows: the difference between the square roots of the term values of the l e v e l s having the same p r i n c i p a l quantum number n i s independent of the atomic number Z.  In other words such  l e v e l s on a Moseley diagram run p a r a l l e l to each other. The i r r e g u l a r doublet law i s a mathematical expression of the fact that the difference between the square roots of the term values having the same p r i n c i p a l quantum number n i s independent of Z.  From (1.7) f o r two terms Tn-^ and T n  2  with the same n we get  - J T "n" =  - -n" <Z  ( Z  n  -Cg)  (1.8)  -11-  A more useful form of the law i s found by studying the term values themselves rather than their square roots. using  We  find  (1.5)  = CjZ + c  where c j , 02 are  (1.9)  2  constants.  Thus the difference ( T  n i  - T )  Z i n an i s o e l e c t r o n i c sequence.  n 2  i s a linear function of  For the many electron case we  replace the condition that the two terms have the same p r i n c i p a l quantum number by the condition that the t o t a l quantum numbers of the electrons i n the two states be same.  the  Rigorously the law would be expected to hold between 2s+1  L_j  neighboring states of the same J value, i . e . between 2s+l and (L+l)j. Empirically however i t i s found that the  law holds approximately even for d i f f e r e n t J*s so long only as the i n d i v i d u a l electron t o t a l quantum numbers are the same. t  Regular Doublet  Law  The regular doublet  law i s a d i r e c t consequence of the  -12-  fine structure For is  s p l i t t i n g caused by the s p i n - o r b i t  a one e l e c t r o n  spectrum the energy due to t h i s  interaction. interaction  g i v e n by  W - a I.a  (1.10)  where a i s a constant _ j.  1, s  = o r b i t a l and s p i n angular momenta of the e l e c t r o n . ->  _>  Using the v e c t o r model t o e v a l u a t e l . s and the v a l u e of 'a' from quantum mechanics (1.10) becomes Rhcg Z 2  w  =  . J(J+1) - L(L+1) - S(s+1)  4  n3>l(Jt i)(Uj)  2  +  For  a one e l e c t r o n  spectrum J = £ ±  RaV  W_ _ h  a3  c  = R« Z 2  where  a  £ and (1.11) becomes  i r t +  .  l)(l i)  *  +  a(l+§)  (1.12)  4  n l(l+l>a+J) 3  For  non-hydrogenic systems we w r i t e  =  Ra  2  «£+!><£+*)  (Z-s) n3  4  (1.13a)  -13-  for non-penetrating  orbits,  and R*  2  z  i  2  z  o  2  *a+i>a+i> n*3  n  i  (  q  M  }  for penetrating o r b i t s , where s •= screening  constant  Z  A  = e f f e c t i v e nuclear charge on inner part of the o r b i t  Z  0  = e f f e c t i v e nuclear charge on outer part of the o r b i t .  Thus the doublet separation varies as Z Z  A  Z  or (Z - S )  4  or  2  9  Z  4  Q  .  This i s c a l l e d the regular doublet  divergence  on the Moseley diagram.  law.  We get a  Note that as opposed to  the i r r e g u l a r doublet law, we are dealing here with the term , . 2s+l, 2s+l, difference Lj j+i * AJ3  L  Lande' Interval Rule We note from (1.12) that the f i n e structure s p l i t t i n g in a r e l a t i v i s t i c doublet  i s given by  AT  = a( •£+£)  and hence i s proportional to the higher of the two J values. For Russell-Saunders coupling t h i s Lande i n t e r v a l rule i s also found to hold f o r multiplets i n many electron spectra. In t h i s case we can e a s i l y show that the s p l i t t i n g between two levels of a multiplet i s given by  -14AT  = W(J ) n  - W<J«)  W(J) = A J ( J + D - L(L+1) - S(S+1) 2 -= J  +  1  J' • J  AT Hence A T i s p r o p o r t i o n a l Humphreys and Goudsmit  =  (1.14) 1)  ACJ +  t o the h i g h e r of the two J v a l u e s .  (35,pp.164) e v a l u a t e A by  considering  the a d d i t i o n of an e l e c t r o n t o a c o n f i g u r a t i o n of known A'. They  obtain  , I(^l)  AmA  +t l ( 4 + l ) - f 2 < f 2  + 1  )  S(s+l)4-S (s -fl)-S (s H-l) 1  2<L( l+l) 1  1 +  ~  2L(t+l)  where A* and a  2  2  2s(s+l)  E<£*>+&<fa>-ll<ll> s ( s ^ l )  + ao  1  1 +  '  +  s (s l)2s(s+l) 2  2 +  S l  (s  1 +  l)  are the i n t e r a c t i o n c o n s t a n t s of atom core  2  and added e l e c t r o n r e s p e c t i v e l y ,  ll,s^  the o r b i t a l  ^2> 2 * s  h  o  s  e  Equation  f°  r  and s p i n quantum numbers of atom core  added e l e c t r o n .  (1.15) i s u s e f u l i n e s t i m a t i n g  A' i n the next h i g h e r i o n .  A from a known  With d e p a r t u r e s from L-S  coupling  (1.14) ceases t o be t r u e .  S e l e c t i o n Rules The number of a l l p o s s i b l e d i f f e r e n c e s between the terms of an atom i s f a r g r e a t e r  than the number of t r a n s i t i o n s  w  -15-  observed because of the operation of the s e l e c t i o n rules. Considering  only e l e c t r i c dipole r a d i a t i o n there are two chief  rules which hold independently of the state of coupling. may  We  characterize a l l l e v e l s as either odd or even depending  upon whether the sum  of the i n d i v i d u a l electron quantum  numbers i n the configuration giving r i s e to l e v e l s i s odd even.  or  "Laporte's r u l e " then states that t r a n s i t i o n s between  two odd or two even terms are forbidden.  The second r u l e of  wide generality places r e s t r i c t i o n s on the change i n J between two l e v e l s .  We  find  J - 0, i 1  Many other rules may  be formulated f o r s p e c i a l coupling cases  as the following f o r L AS = 0 Ah  ( 0 — » 0 not allowed)  S coupling  ( i . e . intercombination  l i n e s are forbidden)  = 0, i 1  The appearance of forbidden  l i n e s i n a spectrum usually  indicates one of four p o s s i b i l i t i e s , namely: ( i ) departure from an assumed coupling case ( i i ) occurrence of multipole r a d i a t i o n (other than e l e c t r i c dipole) ( i i i ) presence of external e l e c t r i c or magnetic f i e l d s (possibly produced by neighbouring atoms - in t h i s case giving "enforced  dipole radiation")  -16-  (iv) perturbations - causing a sharing of properties between two more states.  Intensity Sum Rule The most widely applied and probably the most useful r u l e regarding i n t e n s i t i e s of observed l i n e s i s the BurgerDorgelo-Ornstein  sum rule.  I t states that the sum of the  i n t e n s i t i e s of a l l the l i n e s of a multiplet which belong to the same i n i t i a l or f i n a l state i s proportional to the s t a t i s t i c a l weight (2J + 1) of the i n i t i a l or f i n a l state respectively.  This r u l e by i t s e l f i s i n s u f f i c i e n t t o  determine the r e l a t i v e i n t e n s i t i e s within a multiplet. Correct i n t e n s i t y formulas f o r L-S coupling have been derived both c l a s s i c a l l y and quantum mechanically.  Tables  based on these formulas giving the expected r e l a t i v e i n t e n s i t i e s i n most multiplets are available i n White (50, pp.439) or Condon and Shortley(7, pp.241).  2. Theory of Complex Spectra The quantum theory of many electron spectra assumes as a f i r s t approximation that the atomic electrons move i n a central f i e l d and do not interact with one another. Hamiltonian  The  of a many electron atom may be written as ^ i  2  ^  . 2 £ i r  +  a  L  i  •  S  l  )  ^  A. i^j i J r  -17-  the momentum of the i  x  n  electron  the Coulomb e l e c t r o s t a t i c energy between the nucleus and the i *  h  electron  The magnetic i n t e r a c t i o n energy between t h e o r b i t a l and s p i n angular momenta o f t h e 1 electron e  x  2  = the Coulomb e l e c t r o s t a t i c energy between t h e * i and t h e j electron. t  h  t  h  In t h i s H a m i l t o n i a n , t h e terms a r e not s e p a r a b l e due t o the presence of the mutual r e p u l s i o n of the e l e c t r o n s .  In  order t o be a b l e t o t r e a t the H a m i l t o n i a n mathematically we make t h e assumption  t h a t the outer e l e c t r o n s move i n a  c e n t r a l f i e l d p o t e n t i a l due t o the nucleus p l u s the e l e c t r o n core. We then take as our approximate Hamiltonian  i w h i l e t h e p e r t u r b a t i o n p o t e n t i a l w i l l be  S c h r o d i n g e r ' s e q u a t i o n f o r the unperturbed  i  case then  becomes  -18-  We  now  have the equation s e p a r a b l e i n t o c o o r d i n a t e s f o r each  e l e c t r o n , so t h a t o b v i o u s l y (u may  be w r i t t e n as  N  and  i where  i s the wave f u n c t i o n f o r the i  e l e c t r o n and  d e s i g n a t e d by the f o u r quantum numbers n,l,m ,m^ s  the e l e c t r o n s are i n d i s t i n g u i s h a b l e , i t matters  .  not i f the  quantum numbers of the e l e c t r o n s are interchanged. N! ways of exchanging these parameters and any  Because  There are  linear  combination  of these products w i l l be an e q u a l l y good s o l u t i o n .  Thus we may  write  u (i)  u (D  U (2)  U (2)  U (N)  U (N)  A  A  A  B  B  B  where N.' i s a n o r m a l i z i n g f a c t o r , and  U (N) N  the number i n b r a c k e t s  a f t e r each U r e p r e s e n t s the s e t of f o u r quantum numbers.  -19-  This function s a t i s f i e s the Pauli exclusion p r i n c i p l e because interchange  of any two electrons ( i . e . interchange  of any  two  rows) changes the sign of (j) and therefore i s antisymmetric as required. Even though we have taken care of the degeneracy due the N.' possible d i s t r i b u t i o n s of electrons, there  to  still  remains another type cf degeneracy because there may  be  other  sets of U's d i f f e r i n g from the f i r s t i n that one or more of the quantum numbers m  and m^  s  have been changed.  These quantum numbers do not affect the unperturbed energy, which, of course depend only on n and 1.  We must  therefore set up a secular equation f o r a l l these possible functions i n order to f i n d the correct combinations and approximation to the energy l e v e l s .  Since there i s only  first one  possible set of quantum numbers f o r a completed s h e l l , i t i s only necessary to consider electrons outside the completed shell. Now  f i r s t order perturbation theory shows that the  secular equation i s of the form  H  ll  H  21  ~  W  n  12  H  21  " lk n  ~  W  ' 2k H  I I I  I I "kl ~ "  H  kk "  W  -20-  where H. mn and  fa< -  ' j<f>m "  W i s the perturbed energy  <<(>„| I H  level  H i s the perturbed Hamiltonian K i s the number of allowed sets of functions. This equation i s of K*  n  degree; but may be s i m p l i f i e d very  considerably by means of a theorem which states that = 0 unless  M  g  =  Xmg  and M  L  = ^jn^  each have the same value f o r both <j) and <j)u. (The proof of m  t h i s theorem i s given i n Condon and  Shortley p.169).  Thus  the secular equation i s reduced to a number of lower order equations, each equation corresponding to fixed values of Mg and M^  For example, an np  2  configuration has 15 possible  combinations of quantum numbers, but only one gives M L = 2  Mg = 0, so the equation for t h i s  combination 1 D  term i s  a simple linear equation. It i s clear then that the energy of various l e v e l s can be calculated i f the matrix elements can be evaluated. Unfortunately, the evaluation of these matrix elements i s by no means simple.  However, i f one s i m p l i f i e s the perturb-  ing Hamiltonian by assuming that only one of the factors i s large, i t i s possible to reduce the i n t e g r a l to the product  fa)  - 2 1 -  of a constant which depends on 1 and m£ and an i n t e g r a l which involves only r a d i a l factors of the wave function.  One  method of proceeding would be to assume some form f o r the r a d i a l potential and use t h i s to evaluate the i n t e g r a l . However a simpler method would be to evaluate the r a d i a l i n t e g r a l empirically by using determined energy l e v e l s , and then check on the theory from the fact that there are more known l e v e l s than integrals to be evaluated. of  In some cases  an incompletely known spectrum, unknown levels may be  predicted from the integrals as an aid i n f i n d i n g these levels. We proceed now to consider b r i e f l y the commonly used approximat ions.  L-S coupling We consider f i r s t the case where the Coulomb interaction i s very much greater than the magnetic spin o r b i t interaction. Our Hamiltonian then takes the form  The f i r s t sum w i l l contribute the same energy to a l l levels of a given configuration since i t i s purely r a d i a l . then l e f t with the matrix element  We are  -22-  It can be shown (Condon and Shortley (7) p.174) that matrix elements of t h i s type reduce to  where a  and b  are constants defined i n terms of 1 and ntf,  for two of the electrons.  These values have been computed  for many configurations and may be obtained from tables (47). F  k  and G  k  are integrals of r a d i a l functions and are  usually treated as adjustable parameters.  They are known as  Slater integrals and are fundamental to a q u a l i t a t i v e knowledge of atomic spectra.  Having obtained  the a 's and b 's  for a given configuration, the secular equation mentioned above i s used to determine the r e l a t i v e energies i n terms of v k F 's and G 's as outlined above.  F i n a l l y the spin orbit  interaction i s imposed as a second order perturbation.  This  gives r i s e to the s p l i t t i n g of each of the previously found l e v e l s into f i n e structure which follows the Lande i n t e r v a l rules described e a r l i e r i n t h i s  chapter.  A serious objection to t h i s method i s that i f a conf i g u r a t i o n gives r i s e to more than one term of a p a r t i c u l a r 9  Q  kind (e.g. 4 d  y  5s6s  D  sum of their energies.  2  4 D  D ) the method y i e l d s only the  Racah (36b) has developed a powerful  tensor method to overcome t h i s d i f f i c u l t y .  For the p a r t i c u l a r  case of 11*s he has written e x p l i c i t l y a general form f o r the energies and applied i t to the pds configuration.  -23-  j - j coupling In t h i s approximation we solve the secular determinant subject to the condition that the spin-orbit interaction i s large and the Coulomb one small.  The matrix elements then  depend on H of the form  After solving the equations as before, the addition of a weak e l e c t r o s t a t i c energy i s considered.  The r e s u l t s of such  calculations may be found i n Condon and Shortley  (j-s) and (j-1)  (7, p.259).  coupling  In cases where one electron i s f i r m l y bound, the i n t e r action with the second electron may appear as only a perturbation  on the usual doublet s p l i t t i n g of the f i r s t  electron. i ) Houston (16) has treated the case of intermediate coupling when one of the electrons i s an s electron. formulas may be written i n many ways.  The Houston  We usually calculate  the Lande i n t e r v a l factor A, by d i v i d i n g the difference 3 3 A ( independent of coupling) by (2 £ + 1). Then 1 3 i f the p o s i t i o n of the Li l e v e l and that of the l>i l e v e l r e l a t i v e to the usual t r i p l e t ( e g ) (namely £. A deeper than L£ ) + 1  are c a l l e d C\ and £ 3 respectively then Houston's  -24-  formulas give  In s t r i c t (js) coupling t h i s formula gives the levels as  S-L ( 1+1)6 A>>=  (2 I +1)A ( £+§)a  j= £+1  7* <1  nl  US)  sc.  (2l  jrl j=  +1)  X-i  i i ) Racah (36) has carried through a suggestion of Shortley and Fried, f o r the case where the second electron i s a weakly bound  electron, so that the spin-spin interaction i s  responsible only for a f i n e doubling of each ( j l ) state. Racah gives the formulas f o r ( j l ) coupling (f2 i s the coeff i c i e n t of F2 i n energy l e v e l formula) /gh + 3h - 2j(j+l)/(< i + l j ? 4j(j+l)(2£-l)(2/fL+3) 2  fo(J £k) - -  where  and  h - (}.£>  - k(k+l) - j ( j l ) 2 +  k = ( j +/L )  M l) +  -25-  Pair coupling of electrons with high Jb quantum numbers The theory of intermediate coupling has been studied in the pair coupling approximation by Eriksson ( l i b ) and applied o  to the 2s  2pnf configuration i n N i l .  In t h i s case there i s  a considerable e l e c t r o s t a t i c i n t e r a c t i o n between levels of different  parentage, compared to the s p e c i a l case studied by  Racah ( 3 6 ) where t h i s i n t e r a c t i o n i s small compared to the spin o r b i t i n t e r a c t i o n . The Intermediate coupling formulas of Johnson (17a,b) The matrices of the spin-orbit i n t e r a c t i o n may  be used  by adding the e l e c t r o s t a t i c energies to the diagonal terms and s e t t i n g the determinant of the energy matrix =0.  In  t h i s operation a minor p r a c t i c a l point i s to properly include the change of datum from a multiplet ( e g ) to a stated reference l e v e l .  In order to make clear the procedure, we  work through a simple example. o  Example:  the p  configuration i n intermediate  coupling  1) for J = 2 the magnetic energy matrix i s (7 p.268)  -26-  We next add the e l e c t r o s t a t i c energies to the diagonal terms, For  A  D 3  "  2  P  t h i s i s (7 p.198)  F  (e.g.)  F  S (although unnecessary) o  o ' 2 F  - 5F  Q  +  o  2  10F z o  3 If we transform now to energies r e l a t i v e to  P^ = 0, which  r e l a t i v e to the centre of gravity of the P l i e s at - a/2, by 3  adding - F  Q  + 5F  + a/2  2  S  to these energies we obtain f o r  Q  6F  2  + a/2  15F  2  + a/2  Our complete secular determinant f o r the determination of 3  the energies r e l a t i v e to  P^, which i s independent  of  coupling since t h i s J only occurs once i n our configuration we have f o r J °» 2  (6F  W  2  +  a/2)  11/2 a  i.e.  W  2  - W(6F + 3/2a) 2  4l/2 a W - a  + 6aF - 0 2  -27  S i m i l a r l y f o r J » 0 we get  J2a  (-a/2)  (15F  J2a  i . e .  2  + a/2)  o 15 9 IT - W(15F ) + Y" aF2 ™" 4 2  a  2  1  -28-  CHAPTER II A. Light Sources. 1. The Electrodeless Discharge. Electrodeless discharges are of two types depending l a r g e l y on the nature of the radio frequency c i r c u i t used to excite the discharge.  One may use continuous wave  e x c i t a t i o n or one may use highly damped radio frequency currents.  In t h i s work both these types of e x c i t a t i o n were  used, but i n the major part of the work the discharge tube was excited by a highly disruptive radio frequency  discharge.  This type of electrodeless discharge has been used i n t h i s laboratory f o r many years since i t i s known to produce intense, sharp s p e c t r a l l i n e s even of highly excited ions. Several exposures were made using a Fabry Perot i n t e r ferometer i n order to e s t a b l i s h excellent wavelength standards and also to check l i n e p r o f i l e s .  I t i s possible  that the l i n e p r o f i l e s could be useful i n assessing to what ion a given l i n e belongs.  The higher e x c i t a t i o n l i n e s  presumably are excited e a r l i e s t i n the discharge cycle, when electron and ion concentrations high l o c a l f i e l d s .  are high and produce  Certainly the more highly excited ions  have greater width approaching  V • 0.2 cm"". 1  This  electrodeless discharge probably produces narrower l i n e s in the spectra excited by 200 v o l t electrons than are available i n any other type of high e x c i t a t i o n source.  To follow page 28  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  A  HEATER TO  •UMP  it  COPPER  COIL  ( INDUCTANCE)  QUARTZWINDOW QUARTZ HEATER A A A A A A A A A A A A A A A A A A /  ELECTRODELESS  Fig.  DISCHARGE  1.  -29  Description of Operation. Approximately ten grams of pure selenium (99.998%), i n the form of spherical p e l l e t s or "shot", manufactured by the Canadian Copper Refiners Ltd. of Toronto, were introduced into a translucent quartz tube about 20" long and lj/4" i n diameter.  This tube was wrapped with a thin mica sheet to  improve the insulation, since the plasma inside the discharge tube i s highly conducting, and t h i s "screwed" inside a heavy copper c o i l consisting of 8 turns of number 6 gauge wire, diameter 0.162".  This inductive c o i l , with interturn  spacing of approximately 3 mm,  was connected i n s e r i e s with  a three centimeter spark gap and a Solar mica condenser bank to form the radio frequency tank c i r c u i t .  The  condenser  bank consisted of 6 mica Solar condensers each of .0025 p,f capacity, rated at 22 amperes and 25 kV at 3 Mc/sec, connected i n 3 pairs, one on either side of earth as indicated i n Figure 2.  The c o i l had an inductance of about  2.6 p,H and the condenser a capacitance of 0.0038 p,f, thus making the c i r c u i t resonant at about 2 Mc/sec.  The frequency  and hence the inductance were calculated from the oscillogram showing the e l e c t r i c o s c i l l a t i o n s (Fig. 3).  The o s c i l l a t i n g  c i r c u i t i s shown i n Figure 2 and i s energized by a 5 kw, 50 kV x-ray transformer. The tube was placed inside a t r a n s i t e furnace of dimensions 10^" x 9" x 9" which was heated by four e l e c t r i c heaters, each d i s s i p a t i n g 500 watts at 12 amperes, supported  To follow page 29  50 KV ELECTRODELESS  DISCHARGE  CIRCUIT DIAGRAM  i  F i g . 2.  -30-  inside the four long edges of the furnace.  With t h i s  arrangement the 110 volt 60 cycle heating c i r c u i t was where more than 3  M  every-  from the high voltage e x c i t i n g c o i l .  The  heating current was controlled by a Variac and measured by ammeter i n order to control the selenium pressure within the tube.  The tube ends were sealed with clear fused quartz  windows and connected by a quartz side tube and a 4" length of rubber pressure tubing through the l i q u i d nitrogen trap to a fore pump with ultimate vacuum 0.2 p,Hg.  A pinch clamp  on the rubber tubing served to control the operating pressure —  i n general one operates at the lowest pressures consistent  with good i n t e n s i t y for high e x c i t a t i o n .  One allows the  pressure to b u i l d up and reduces the spark gap length to reduce the e x c i t a t i o n .  In order to avoid arcing across the  spark gap, an e l e c t r i c . f a n was used to blow a i r across the spark gap and so to quench the discharge.  After evacuating  the tube the temperature was raised to about 600°K to produce the necessary vapour pressure.  After running the  discharge f o r several minutes, and depending on the furnace, temperature,  i t was found that selenium diffused out of the  furnace into the cool part of the discharge tube, causing the windows to become coated with a thin f i l m of selenium. This cut down the i n t e n s i t y of the emitted l i g h t .  In order  to overcome t h i s undesirable s i t u a t i o n the windows were cleaned as required by heating with a Bunsen flame.  During  every exposure, the changes i n e x c i t a t i o n , i n other words * The vapour pressure i s given c l o s e l y by the semi-empirical Clausius-Clapeyron r e l a t i o n log p » -AT-l+B where f o r Se A = 5182°K and B => 8.30 i n the operative range, when p i s measured i n mm of Hg.  To follow page 30  The Light Emission  The E l e c t r i c Oscillations  Oscillograms showing the Light Emission and the E l e c t r i c O s c i l l a t i o n s of the Electrodeless Spark Discharge. The t o t a l Length of each Oscillogram corresponds to 10 Microseconds.  -31-  the changes i n i n t e n s i t y of known high excitation l i n e s , were watched through a d i r e c t v i s i o n spectroscope.  The excitation  could be controlled by varying the operating temperature or the vapour pressure, or the spark gap.  Exposure times varied  from two to four hours on the 21 f t . grating and from 30 min. to one hour on the vacuum grating spectrograph. 2. Spark i n Helium. In order to obtain low excitation l i n e s , a condensed spark i n helium was used (Fig. 4a). This simple source consists of a glass bulb, with provisions f o r the windows, electrodes and the flow of helium.  Copper rods with carbon  cups at the ends served as electrodes.  Small pieces of  selenium were kept inside the carbon cups.  The electrodes  were held i n position with the help of rubber stoppers. Helium, admitted into the bulb d i r e c t l y from the cylinder was allowed to flow continuously throughout the exposure, at a pressure of about one atmosphere.  The helium gas on  i t s way out was allowed to bubble through water i n a beaker. When used with the vacuum spectrograph a brass taper with a lithium f l u o r i d e window was necessary.  The power supply  c i r c u i t f o r t h i s source consisted of a 15,000 v o l t "Neon" transformer and a 0.0025 p,f R.F. Solar mica transmitting condenser rated at 22 amperes at 3 Mc/sec. (Fig.4b). The standard Hilger de Gramont arc and spark stand was ideal for the source.  If used with a stigmatic spectrograph t h i s  source can be very helpful i n sorting out the high  To follow page 31 F i g . 4(a)  HELIUM  LiF  I  G L A S S  } ?  N  C A R B O  WINDOW  BRASS  R U B B E R HELIUM  WINDOW  C O P P E R  TAPER  S T O P P E R  E L E C T R O D E  SPARK IN HELIUM F i g . 4(b)  TO  IIOA.C.  15  C I R C U I T  KV  D I A G R A M  SPARK  FOR  S P A R K  ELECTRODES  G A P  IN  H E L I U M  -32-  excitation lines.  The l i n e s of d i f f e r e n t excitations then  appear d i f f e r e n t due to pole e f f e c t s .  Another advantage of  t h i s source was the presence of accurately known carbon l i n e s which served as standards. B. Spectrographic Equipment. Four d i f f e r e n t spectrographs were used i n t h i s work. The Lubzinski (22b) 2 meter vacuum spectrograph, a 21 foot grating, a Hilger medium quartz spectrograph, E 498, and a Hilger automatic Littrow spectrograph with interchangeable glass quartz prisms, E 478. Reduction of Prism Spectrograms. Computations of wavelengths on the prism plates were made using the well known Hartmann formula.  Lines from  copper arc, iron arc and i n some cases neon l i n e s from a g e i s s l e r tube served as standard l i n e s .  The infrared  spectrum was obtained with the large double prism spectrograph using Kodak N plates.  For the region above 8500 A  hypersensitized Kodak M and Z plates were used.  The plates  were dipped i n a bath of ammonium hydroxide (4 c c . ) and d i s t i l l e d water (100 c#c.) f o r about 3 minutes, and then i n ethanol f o r the same length of time. by means of an e l e c t r i c fan.  Then i t was  We succeeded  dried  i n obtaining a  few l i n e s of both selenium and standard neon l i n e s above o  10000 A.  The wavelengths calculated were f i n a l l y corrected  using a correction curve plotted with the help of known  33  neon l i n e s superposed on the plate.  Measurements on the  21 foot grating were made using iron standard l i n e s .  The  dispersion was determined by the r e l a t i o n  o  with b - 16,933 Aj  R = 6400 mm;  i - 25°. The range and  dispersion of t h i s grating were Max. nA - 18,000 A  Dispersion = 2.0236  A/mm.  Min. nX -  Dispersion = 2.6111  A/mm.  9,500 A  Rowland ghosts displayed by a grating can be an a i d i n i d e n t i f y i n g the order of l i n e s since the ghost spacing at various nA i s a function of the order (Appendix  ). The  grating i s ruled with 15,000 l i n e s per inch over an area 2 by 5^ inches.  To d i s t i n g u i s h the iron l i n e s from the  selenium l i n e s , the iron arc was placed near Sirks focus. This gave shorter iron l i n e s .  To f a c i l i t a t e the i d e n t i f i -  cation of d i f f e r e n t orders the following method was used. A s e r i e s of t h i n glass plates were arranged i n front of the plateholder so as to cover the lower half of the plate. This acted as a f i l t e r f o r the l i n e s below 3000 A. though there was a small systematic  Even  s h i f t of l i n e s coming  through the glass onto the plate, i t was extremely useful in deciding the order of many l i n e s . Kodak II F and Kodak U N grating.  I l f o r d Q, I l f o r d H.P.3,  plates were used f o r t h i s large  -34-  Two Meter Vacuum Spectrograph. The grating has a ruled surface of 2 by 3^ inches with 576 l i n e s per mm.  To increase the sharpness of the l i n e s a  portion of the ruled area i s masked o f f .  The masking i s done  with a "fore-mask" situated about 1/4" i n front of the grating. In t h i s way the masking i s more pronounced at smaller wavelengths as should occur (23).  Using a s l i t at grazing incidence ( 80°)  the vacuum u l t r a v i o l e t spectrum was photographed. was found to be about 6000 A.  Maximum nA  In order to photograph d i f f e r e n t  exposures on the same plate a movable metal diaphragm was constructed and mounted i n front of the plateholder.  This was  operated manually from outside the vacuum tank through a Wilson s e a l .  In the u l t r a v i o l e t region carbon l i n e s were  used as standards.  The f i n a l wavelengths were calculated  using i n t e r n a l selenium standards either of known wavelength, or known frequency from the R i t z combination p r i n c i p l e , or with wavelengths determined i n a higher grating order. presence of Lyman l i n e s ha  The  and Lp on the plates was useful  in the i d e n t i f i c a t i o n of some l i n e s . Reduction of Grating Spectrograms. 1. C l a s s i c a l Interpolation Procedure of Paschen and Runge. The easiest method i s the l i n e a r interpolation given by the formula: X -  + * ~ (d - d ) , d - d 2  A  l  A  l  x  2  x  35-  where A^, A2  a n  d <*i> d  2  are the wavelengths and comparator  readings f o r the two reference l i n e s , and A and d the same values f o r the unknown.  For small angles of d i f f r a c t i o n ,  the correction curve w i l l look smooth, since the correction i s only due to non-linearity i n the dispersion. in glaneing-angle vacuum spectrographs, i t may irregular shape due to non-systematic  However, take quite an  errors.  2. The Method of Shenstone and Boyce. This method i s of importance whenever one works with angles of d i f f r a c t i o n nearly zero, as i n the case ©f so c a l l e d normal incidence vacuum spectrographs, with i^ssO say 10°, or in Rowland or Wadsworth mountings.  Here at the center of  the plate 0 = o and the dispersion $ = —. As we proceed from R t h i s p o s i t i o n the dispersion f a l l s o f f to/$ = — cos ©, i . e . b d@ by an amount <0 •= — (1 - cos 8). In a distance ds - -g- the error i n wavelength i s A X  ©jA  9=0 and d(AA) = —  K © d© which r e l a t e s the increment of © to the  -36-  AX  tabulated increments i n A X . nX = b(sin i + s i n 9) 9 i s p o s i t i v e when on same side of normal as i s i . 9 i s negative f o r X<X . Q  9 i s p o s i t i v e for X> X . Q  For X > X , when one calculates Q  X - X  with 43 ~ > one gets too R =  Q  large a X from which AX should be subtracted.  If X < X  Q  t h i s correction should be added.  change of the correction AX at X by the 9° dependence.  Q  i s already formally  The correction  This  included  AX «—« T must be R^ 31  uniformly subtracted when due regard i s taken of i t s sign, i.e.  AX p o s i t i v e for p o s i t i v e 9, negative for negative 9. In  actual practice, i n interpolating between X j and X adds the approximate &K to X^ and X  2  o 2  n  e  first  with due regard to sign,  before c a l c u l a t i n g the p r a c t i c a l dispersion.  One then uses  t h i s value instead of the t h e o r e t i c a l dispersion 4$ =* — i n interpolating wavelengths between X i and X  2  . The f i n a l  correction curve w i l l then be s i m i l a r to that discussed under the method of set backs.  * This method i s used by Shenstone and attributed by him to Boyce and the M.I.T. group.  -37-  -r  A  2~ 1 A  Edlen's method consists i n c a l c u l a t i n g /fy(&i,S )  ra  2  -r  and  ,  x  ^(S2,S3> =  3 2 S -S 3  A,  Al>  s  with well spaced standards  A  2~sl  2  Then these dispersions w i l l be nearly "point" (Si+So) S9+ST dispersions at — = — — and — f — - respectively. Next one 2 2 constructs a l i n e "point" dispersion formula as indicated by the "dotted" l i n e passing through the p o i n t s / ^ ( S j , S ) , 1 2> and >0(S ,S ), < 2+ 3> . 2 2 2  A3*  2  (S  +S  S  2  S  3  Obviously then as we calculate V s from 7\\, we i n i t i a l l y have too large a dispersion, then too small a dispersion and f i n a l l y , again too large a dispersion.  The correction curve  -38) should then appear as i n the accompanying diagram.  AX  Now the question i s —  can we specify the parameters of t h i s  correction curve i n terms of grating parameters?  Let us  f i r s t return to the dispersion curve (|3Ag237) which we s h a l l assume to be the section of a c i r c u l a r arc, s p e c i f i e d by the two parameters a and r . to Ag  a  n  d  t n e  In due course these can be related  grating radius r i s obviously related to A . d  2  2 (sag)  (S -S ) 3  cos  2  a  2 A cos a  (S -S ) 3  1  2  2  2  2  2Acos a 3  Thus 2r cos" OL  I—  —'  -39-  4„  The Method of "Setbacks" In t h i s method one calculates f o r  A^ = b (sin i • => s i n ©,)  and  A  2  - b ( s i n i - s i n Q,)  The average dispersion  J3 _ 2 A  -  Ax  where  (S  2  -  Si)  = R(©  This can then be compared with  2  - ©,) .  calculated at  — -  from the point dispersion formula  J K  cos © = * R  1 - (sin i -  a  h  2  -40-  If the two dispersions do not correspond then one sets back the standard dispersion curve by the amount necessary to make the adjusted t h e o r e t i c a l dispersion curve at ^ l ^ 2 agree with 2 +  the observed average dispersion.  Suppose f o r instance that  the t h e o r e t i c a l dispersion curve calculated from - ~ cos 9  a c t u a l l y i s smaller  than the "observed" dispersion curve.  Then two s i t u a t i o n s  may a r i s e .  (obs)  /  '  (calc)  (b)  In (a) the observed difference between the observed and the calculated differences i s monotonically increasing and i n (b) i t i s decreasing.  After s e t t i n g the dispersions back  the s i t u a t i o n s are as i n (a*) and (b')  -41-  Obviously then we s t a r t with too large a dispersion from A in (a') and too small a dispersion i n (b').  Consequently  our correction curve i n the two cases w i l l have the respective forms shown below.  In t h i s case, by d e f i n i t i o n , the correction vanishes at A and has i t s maximum value n e a r . f o , so that the observed + A 2  2  H  correction at ^1 2 2 +A  w i l l serve to2give a good estimate of  the actual correction curve.  The case where the observed  dispersion i s less than t h e o r e t i c a l can be handled s i m i l a r l y .  F i g . 5.  500 ROWLAND  1000 GHOSTS  1500  2000  ON 2 METER  To follow page 41  3000 3500 4000 nX —*> VACUUM GRATING R=20m; b = 16,667A, B.aL.  250d  -42-  Now,  i n general the t h e o r e t i c a l curve i s actually established  from two or more standard l i n e s i n a region of the spectrum i n superb focus.  Then, i f the s l i t and the plateholder were  exactly located on the Rowland c i r c l e , there should be no departure from the t h e o r e t i c a l dispersion  .  Since actual  departures a r i s e from cause, we can analyze these p r a c t i c a l departures from the t h e o r e t i c a l dispersion i n order to improve the focus.  The method does not require the c a l c u l a t i o n of  the dispersions at each point along the plate, since these are furnished by the t h e o r e t i c a l dispersion curve. Interferometric Wavelength Measurements of Some Selenium Spark Lines. A complete description of the Fabry Perot interferometer and i t s applications i s given i n Chapter IV.  The spacer  used f o r t h i s purpose has a thickness 2t «• 19.96953  mm.  About t h i r t y l i n e s have been measured using neon standard o  l i n e s and we estimate an accuracy of +0*005 A.  The large  grating measurements agree with the interferometric measurements within the l i m i t s of error.  The purpose of the i n t e r -  ferometric measurements was not to obtain precision values but to support the a b i l i t y of the electrodeless discharge source in producing sharp and intense l i n e s . Chapter IV was  In t h i s connection  included which describes a l l the d e t a i l s  regarding reduction of interferograms using a Fabry Perot interferometer, i n the case of the arc spectrum i n potassium.  Selenium  (  Electrodeless  discharge )  CO  CM cJ  o  \|-  £  <fr  cvj  lO 00  Neon  ( Geissler  tube )  -43-  Vacuum U l t r a V i o l e t Standard Lines. In order to obtain some useful standard  l i n e s i n the  vacuum u l t r a v i o l e t region, a few drops of benzene were introduced into the trap which was between the electrodeless tube and the fore pump.  This enabled us to get some pure  carbon and hydrogen l i n e s which served as standards i n some regions.  In addition to t h i s i n t e r n a l standards (known  selenium l i n e s ) were also used, t h e i r values being determined from higher  orders.  It i s well known that the vacuum region standard  lines  are very rare and consequently the accuracy i n wavelength measurements depends largely on the a v a i l a b i l i t y of reasonable standard  l i n e s i n the desired region.  Probable E x c i t a t i o n . Three sets of plates were taken on the 21 foot grating at d i f f e r e n t e x c i t a t i o n conditions.  The f i r s t set of plates  was found to be of low e x c i t a t i o n , while the second set of medium e x c i t a t i o n and the t h i r d of high e x c i t a t i o n . By comparing these plates using a J a r r e l l ^ A s h console comparator we could assign probable e x c i t a t i o n f o r most of the l i n e s . Figure 7 gives the d i f f e r e n t types of plates used, with the corresponding n?\ regions.  To follow page 43  \54A0A  5  105HP3 U7N.H6I4 127 HP3  I4I80A '04 HP3 "5N.JI4N f26Q  '3//0^  103 Q  Q and H.P.3 plates 2"xl8" N plates 2"xl0" Total length of plate holder /~ 13 f t . •  J J  F i g . 6.  21 * Grating plate holder showing the d i f f e r e n t plates with nX regions.  -44Two Metre Vacuum Spectrograph Dispersion  A2 =• b(sin i - s i n ©^) Measure  s  from R.I. (real image)  ?\ ^ b(sin i - s i n 0 ) 2  2  j^g  A -7vi  b(sin ©i - s i n © )  2  S -S! " 2  jQ ^h.  /  £y  =  ds  b  b(sin ©^ - s i n ©JJ)  2  R(©! - © ) 2  ~  S  2  - Si  cos © R  To obtain b and s i n i . Identify A^ and A Calculate  2  and measure ( S - S ) . 2  A$ - " ( s i n Qj - s i n 8 ) _ 2  1  -45-  Use f o r b and R their normal values, then f i n d by t r i a l and error ©^ and © . 2  We know  A©(rad) -  S 2  " R  - 57.2958 (  S l  S 2  " R  S l  ) degrees.  Find ©j and ©  2  from tables  Then Aj and A  2  can be separately solved f o r i . If these agree,  the whole procedure has some j u s t i f i c a t i o n . Further the distance of vertex from s l i t = R COS C i s measurable. 7^ (vac) « 2040.506 A. A (vac) - 2838.062 A 2  s  2 ~  l"  s  1 7 1  »  »«•  9 1 7  797.556 ^ '  A  l7I^i7 = « 4  b(sin 9  m"m  - sin © )  1  "  6 3 9 1 9 2  2  171.917  where 797 556 A (sin e  x  - sin 6 ) = 2  e  l  x  1  6  ;  - ©9- !h 2000 1  z  9  6  1  g  ?  7  A  - 0.0478534  57.2958  - 4.92506°. sin ©  x  - s i n 58.622270 - 0.8537572  sin ©  2  - s i n 53.69764  - 0.8059039  -46-  sin i -  b  + sin©  x  0.1224303 0.8537572 0.9761875  n  . . 2 . _ sin i - — + s i n © A  2  0.1702837 0  <  8  0  5  9  0  3  9  0.9761876 i - 77.47135°  TABLE I Dispersion Table from nX 300 — 4500 A o  Dispersion i n A/mm 2-Metre Vacuum Spectrograph n (A)  0  10  20  30  40  50  60  70  80  90  300  2.3845  2.4010  2.4175  2.4339  2.4502  2.4664  2.4825  2.4985  2.5144  2.5302  400  2.5459  2.5615  2.5769  2.5922  2.6074  2. 6225  2.6375  2. 6524  2.6673  2.6821  500  2.6968  2.7114  2.7259  2.7403  2.7546  2.7688  2.7830  2.7971  2.8111  2.8250  600  2.8388  2.8528  2.8665  2.8801  2.8936  2.9070  2.9204  2.9337  2.9469  2.9601  700  2.9732  2.9863  2.9993  3.0122  3.0250  3.0378  3.0505  3.0632  3.0758  3.0884  800  3. 1009  3. 1134  3. 1258  3. 1382  3.1505  3. 1627  3.1749  3. 1870  3.1990  3.2110  900  3.2229  3.2348  3.2467  3.2586  3.2704  3.2821  3.2937  3.3053  3.3168  3.3282  1000  3.3396  3.3510  3.3623  3.3736  3.3849  3.3961  3.4073  3.4185  3.4296  3.4406  1100  3.4516  3.4625  3.4734  3.4843  3.4951  3.5059  3.5167  3. 5274  3.5381  3.5488  1200  3.5595  3.5701  3. 5807  3.5912  3.6016  3.6120  3.6224  3. 6327  3. 6430  3.6532  1300  3.6634  3.6736  3. 6837  3.6938  3.7039  3.7140  3.7240  3. 7340  3.7440  3.7540  1400  3.7639  3.7738  3. 7836  3. 7934  3.8032  3.8129  3.8226  3.8323  3.8419  3.8515  1500  3.8611  3.8707  3.8802  3.8897  3.8991  3.9085  3.9179  3.9273  3.9366  3.9459  1600  3.9552  3.9645  3.9737  3.9829  3.9921  4. 0013  4.0104  4.0195  4. 0286  4.0376  1700  4. 0466  4.0556  4. 0646  4. 0736  4.0825  4.0914  4.1002  4. 1090  4. 1178  4.1266  1800  4. 1353  4. 1440  4. 1527  4. 1614  4.1701  4. 1787  4.1873  4. 1959  4. 2045  4.2131  A  Table I (continued) nUA)  0  10  20  30  40  50  60  70  80  90  1900  4.2216  4.2301  4.2386  4.2471  4.2555  4.2639  4.2723  4. 2806  4.2889  4.2972  2000  4.3055  4.3138  4.3221  4.3303  4.3385  4.3467  4.3549  4.3630  4.3711  4.3792  2100  4.3873  4.3954  4.4035  4.4115  4.4195  4.4275  4.4355  4.4434  4.4513  4.4592  2200  4.4671  4.4750  4.4828  4.4906  4.4984  4.5062  4.5140  4.5217  4.5294  4.5371  2300  4.5448  4.5525  4.5601  4.5677  4.5753  4.5829  4.5905  4.5981  4.6057  4.6133  2400  4. 6208  4.6283  4.6358  4.6432  4.6506  4.6580  4.6654  4. 6728  4.6802  4.6876  2500  4.6950  4.7024  4.7097  4.7170  4.7243  4.7315  4.7387  4.7459  4.7531  4.7603  2600  4.7675  4.7746  4.7817  4.7888  4.7959  4.8030  4.8101  4. 8172  4.8243  4.8313  2700  4.8383  4.8453  4.8523  4.8593  4.8663  4.8732  4.8801  4. 8870  4.8939  4.9008  2800  4.9077  4.9145  4.9213  4.9281  4.9349  4.9417  4.9485  4.9553  4.9621  4.9689  2900  4.9756  4.9823  4.9890  4.9957  5.0024  5.0091  5.0156  5.0222  5.0288  5.0354  3000  5.0421  5.0487  5.0553  5.0618  5.0683  5.0748  5.0813  5.0878  5.0943  5.1008  3100  5.1072  5.1136  5.1200  5.1264  5.1328  5.1392  5.1456  5.1520  5.1584  5.1647  3200  5.1710  5.1773  5.1836  5.1899  5.1962  5.2025  5.2088  5.2150  5.2212  5.2274  3300  5.2336  5.2398  5.2460  5.2522  5.2584  5.2645  5.2706  5.2767  5.2828  5.2889  3400  5.2950  5.3011  5.3071  5.3131  5.3191  5.3250  5.3311  5.3371  5.3431  5.3491  3500  5.3551  5.3611  5.3670  5.3729  5.3788  5.3847  5.3906  5.3965  5.4024  5.4083  3600  5.4142  5.4201  5.4259  5.4317  5.4375  5.4433  5.4491  5.4549  5.4607  5.4665  3700  5.4722  5.4779  5.4836  5.4893  5.4950  5.5007  5.5064  5.5121  5.5178  5.5235  Table I (continued) nA (A)  0  10  20  30  40  50  60  70  80  90  3800  5.5291  5.5347  5.5403  5.5459  5.5515  5.5571  5.5627  5.5683  5.5739  5.5794  3900  5.5849  5.5904  5.5959  5.6014  5.6069  5.6124  5.6179  5.6234  5.6289  5.6344  4000  5.6398  5.6453  5.6507  5.6561  5.6615  5.6669  5.6723  5.6777  5.6831  5.6884  4100  5.6937  5.6990  5.7043  5.7096  5.7149  5. 7203  5.7255  5. 7308  5.7361  5.7414  4200  5.7467  5.7519  5.7571  5.7623  5.7675  5.7727  5. 7779  5. 7831  5.7883  5.7935  4300  5.7987  5.8039  5.8091  5.8142  5.8193  5.8244  5.8295  5.8346  5.8397  5.8448  4400  5.8499  5.8550  5.8601  5.8652  5.8702  5.8752  5.8802  5.8852  5.8902  5.8952  4500  5.9002  5.9052  5.9102  5.9152  5.9202  5.9252  5.9302  5.9351  5.9400  5.9448  -50  CHAPTER III  RESULTS AND ANALYSIS  Most of the l i n e s have appeared on several plates and, i n the case of exposures on the grating, i n several d i f f e r e n t orders.  For the 21 foot grating the weighted means give wave-  lengths which are accurate to 0.01 Angstrom.  The prism o  wavelengths  i n the v i s i b l e region are accurate to about 0.1 A  and i n the i n f r a red to better than 1 A.  In the vacuum region,  i t i s estimated that the wavelengths are accurate to only o  about 0.03 A, the reason being the s c a r c i t y of good standard lines.  As described e a r l i e r the accuracy i n the case of  large grating measurements i s supported by the Fabry Perot interferograms. Selenium I and II The neutral atom contains s i x electrons outside the closed s h e l l , and has a 4 s 4 p 2  4  3  P « ground state.  Ruedy and  Gibbs (42a,b) i n the analysis of Se I have observed 510 l i n e s o  o  and c l a s s i f i e d 391 l i n e s between 300 A and 11000 A.  Meissner  et a l (29,30) have published a l i s t of selenium I l i n e s between 3588 A and 9665 A.  As mentioned  i n the'Atomic Energy Levels'  Vol. II compiled by Mrs. S i t t e r l y (33), these two l i s t s are discordant with regard to wavelengths of a number of l i n e s common to both.  Ruedy and Gibbs quote the ionization  -51  potential f o r Se I as 78658.22 em 9.75 ev.  which corresponds to  As mentioned e a r l i e r (page 2) Shenstone*s recent  analysis of Se I supports that of Ruedy and Gibbs. no attempt to analyse t h i s spectrum. O  *3  We made  In Se II the ground  A °  state i s 4s^4p"*  ^^/2 *  a t t e m  P*  n  a  s  D  e  e  n  made to extend  the analysis of Se II presented by Martin (24), and most of h i s measurements are i n good agreement with our values. For f u l l d e t a i l s of the assignment of the l i n e s and the structure of the spectrum reference should be made to his paper.  He has c l a s s i f i e d 192 l i n e s i n the range between 694  and 9816 A.  The ionization potential for Se II quoted by  him i s 173557 c m  -1  which corresponds to 21.5 ev.  Some 40  l i n e s on our plates, apparently not observed by him, could be c l a s s i f i e d as t r a n s i t i o n s between levels established by him.  These l i n e s are marked I I * * i n our wavelength tables 2.  Selenium I I I The ground state of Se I I i s 4 s 4 p 2  2  3  P  q  and the chief  series are due to the successive e x c i t a t i o n of one of the 4p electrons.  The only attempts made i n analysing t h i s  spectrum are by Badami and Rao (4) and by Rao and Murti (39) o  and they have c l a s s i f i e d 218 l i n e s 6613 A .  i n the region TvA 517 A -  Since some of their wavelenths were of doubtful  accuracy, we have found i t necessary to revise the values of most of the l e v e l s reported by them although the names assigned to these levels are correct.  Many l i n e s due to the  -52-  transitions 4s 4p4d - 4s^4p5p are situated above A 6700 and some of these calculated values are i d e n t i f i e d i n our investigation which support t h e i r c l a s s i f i c a t i o n *  In addition  to t h i s many l i n e s apparently not observed by Rao have been classed as t r a n s i t i o n s between l e v e l s established by him. 5  0  S  Term i n Se III  2  The terms associated with the configuration 4s4p are 3  °S , ^S , **P , D , • P , 3  quite low.  L  D , the S  member of which l i e s  5  2  The discovery of two new germanium l i n e s by a  c  Andrew and Meissner (1) led to the recognition of the term i n Ge I.  S  2  The recognition of the S ° term i n As II was 5  2  established i n t h i s laboratory  a few years ago (6). Using  these values and the i r r e g u l a r doublet law the p o s i t i o n of the S ° term i n Se III was calculated. 5  2  By sweeping the  wavelength l i s t i n the expected region f o r a difference of 2196 cm"  1  (4s 4p P 2  2 3  - 4s 4p 2  2  2  3  P ) we arrived at 2 pos1  s i b i l i t i e s and a l l the four l i n e s were unobserved by e a r l i e r workers.  However, an examination of the plate together with  a comparison of i n t e n s i t i e s f o r the same t r a n s i t i o n s i n Ge I and As II led us to choose 65200 cm"  1  and 67400 cm"  1  instead  of 64566 and 66760. Irregular doublet law applied to Ge I, As I I , Se III Ge I 4s 4p 2  2  3  P -4s4p 2  3  5  S ° 2  Se III  As II  40512  52275 11763  12000  64275 observed = , 65,200 cm  -53-  The establishment  of the 4s4p  °S  <5  2  term has been g r a t i f y i n g  since t h i s i s one of the basic terms i n Se I I I .  As can be  seen from the table above i t s p o s i t i o n i s reasonably close to that predicted by the i r r e g u l a r doublet law.  4s 4pns configurations 2  The theory f o r the i n t e r v a l s between the l e v e l s belonging to t h i s configuration i s known f o r any type of coupling and i s h e l p f u l i n i d e n t i f y i n g the l e v e l s of higher members of t h i s configuration. intermediate  We applied Houston's theory f o r  coupling to 4p5s and 4p6s and found i t quite good  (see page 54).  We have established the 4p7s i n t h i s s e r i e s . 3 0  The missing l e v e l 4p5d  P  Q  i s also established and i t i s  interesting to note that the three t r a n s i t i o n s 4p5d  ,„  to the ground l e v e l 4 p P j l i e as a strong group on our 2 3  plates.  We have also established 4 p 3 1  combination with 4p5s  2 1  S  C  P^ and P^ l e v e l s . A  i n Se III by i t s A thorough but  unsuccessful attempt has been made i n locating the terms a r i s i n g from the 4p4f configuration, using the theory of intermediate  coupling i n the pair coupling approximation.  We had expected to add several new terms to t h i s spectrum, but have been disappointed. Ionization Potential for Se III Badami and Rao (4) give the l i m i t 274924 cm . -1  Mrs.  S i t t e r l y (33) has recalculated the l i m i t and the value  Houston's Theory (16) applied to np'n's configuration i n Se III  Config.  3  P  3  »i  3  Pl- P 3  0  3  *2  3  V  3  p  0 Calc.  4p. 5s  126275  126779  504  4p.6s  187168.7  187426.5  275.8  4p.7s  209235  209391  156  130388.6 191523.0 213628  Obs.  4113.6  133855.7  131653.6  4354.3  193519.8  192161.8  4393  215402.9  214017  -55-  given i s 258000 c m .  Calculations of n* for the members of  the np.n*s s e r i e s showed that even Mrs. high.  Sitterly's limit  Hence we calculated the l i m i t from the I> l e v e l s of 3  2  np6s and np7s s e r i e s and the value i s 253027 cm"".  Using the  1  3  was  P Q l e v e l s the lower l i m i t was  calculated to be 248583 cm"". 1  For n* values (Table 3) we have used the value 250,000  cm" . 1  We have added another 55 c l a s s i f i e d l i n e s to t h i s spectrum.  Selenium IV The ground state of Se IV i s 4s 4p 2  2  P^.  i s i s o e l e c t r o n i c with Ga I, Ge II, As III.  This spectrum Rao  and Badami  (37) have analysed t h i s spectrum and c l a s s i f i e d 35 l i n e s between 635 A and 3059 A.  a) Location 4  *P,  of the term  4  P i n Se  IV  The terms a r i s i n g from the configuration 4s4p 2 2 2 4 P,  D,  P member l i e s quite low.  S of which the  As III t h i s term was  are  2  established by Bedford (6).  In  Hence we  could use the i r r e g u l a r doublet law to predict the location of t h i s term i n Se IV.  The following tables show  the  use  of t h i s law and give the calculations for the interaction constant for 4p electron i n  4  P.  Irregular doublet law applied to  .g. p  Gal  Gell  AsIII  38565  52709  67228 14719  14144 2 4 P|  P i n Se IV  37146  49809 12663  SelV  15400 62469  12660  12655  82628 (pred)  82015 (obs)  75124 (pred)  75022 (obs)  Interaction constant f o r 4p electron i n P i n Se IV 4  A  4  P  Gal  Gell  AsIII  SelV  941  1791  2868  4200  A P  235  448  717  To  705  1344  2151  4  A = Lande* interval factor f o r P Yp = Interaction constant of 4p electron 4  4187 (obs) 1050 1047 (obs) 3100 3141 (obs)  -57o  b) 4s ng and nh s e r i e s A search was made to locate the members of the ng and nh series and we were successful i n extending the ng s e r i e s up to 2  n - 9 and the nh s e r i e s up to n = 8. 2  The l e v e l 6g G i s f i x e d  9  by i t s combination with 7h H and 8h*H. But we do not f i n d 9 2 proper combinations f o r 6g^G with 4s ^ « / , ^ l e v e l s . However, 2 2 2 the l e v e l s 4s 5f F_ , F-, depend only on t h e i r combinations 5  %.  9  %  2  9  with 4s^5d *D , a  D.  and hence should be taken as tentative.  c  In the nh s e r i e s , using Rydberg s e r i e s extension, we have established the members 6h, 7h and 8h by t h e i r strong combinations with 5g.  A l l the three l i n e s are new and very  intense and were already suspected to be  of high e x c i t a t i o n  from e x c i t a t i o n data. Further, since these l i n e s do not exhibit any structure, i t i s concluded that 5g i s not s p l i t , o 2 The l e v e l 4s 7s S j suggested by Rao (37) i s rejected on the basis of n* values and now we have established t h i s l e v e l by 2 2 2 i t s combinations with the 4s 4p ,3 and 4s 5p £ , 3 . . Level n* 2  p  4s 5s S |  157241  3.047  4s 6s S ^  240751  4.077  4s 7s Sx  288146 (Rao) 280145 (Present work)  2  2  2  2  2  2  2 2 2 P^, P. , 4s 7p  9  In addition the l e v e l s 4s^6p  2  2 P j , Vy and 9  A  ^  k  5.491 5.149  /k  a l S  °  e s t a b l i s h e d  *  i  s  s  e  e  n  t  n  a  t  t  h  e  n  s  s  | levels  -582 , P^  o  combine strongly with the np 2 2 9 the two l e v e l s 4s 6d ,  levels.  Out of  9  ,  i s well supported  by i t s combinations with 5p and 6p but D^  i s tentative  2  o  because of large separation  Ionization  from  .  Potential o  Using the 4s nh series a new i o n i z a t i o n potential was calculated I.P.  Using the formula given by correction  =  346360 cm""  1  Edle*n and Risberg (11a) the  A T to be added was also calculated  AT  -  15.5 cm"  1  Ionization potential = 346,375 ± 100 cm"  1  which  corresponds to 42.94 t 0.01 ev.  We have added another 52 c l a s s i f i e d l i n e s to t h i s spectrum.  -59-  Selenium V 2 1 The ground state of Se V i s 4s  S.  This spectrum  Q  consists of a s i n g l e t and t r i p l e t system, similar to Zn I. Sawyer and Humphreys (44) have c l a s s i f i e d 16 l i n e s between  70\ 839 - 506 A, mainly by the application  of the irregular  and regular doublet laws to the i s o e l e c t r o n i c spectra Zn I, Ga I I , Ge I I I , As IV and Se V. These chief t r i p l e t terms found by them due to the configurations 4s4p, 4s4d, 4s5s and o  4p  are further confirmed by Rao and Badami (38) by  i d e n t i f y i n g a few s i n g l e t s and intercombinations a r i s i n g from the above configurations.  A l l these l i n e s appear very  strongly on our plates and we support their c l a s s i f i c a t i o n s . However, a comparison of the n* values with those of As IV immediately showed a discrepancy regarding the ionization potential.  By an extrapolation along the  i s o e l e c t r o n i c sequence we estimate the ionization  potential  to be 551600 cm" .  Q  We have established the 4s5p P  1  j  3  o  2  3  and the 4s4f °F  n  . 2,3,4 n  F  levels by their combinations  0  J  with the 4s4d Dj_ 2 3term 4s5s S i s also found. One of the l i n e s supporting t h i s i s doubly c l a s s i f i e d i n 3  }  T  n  e  1  Q  3  the same spectrum.  The l e v e l s 4s5d  taken as tentative,  even though the i n t e r v a l r a t i o s f o r  D  i2 3  s  n  o  u  l  d  D e  -60-  4s5d  g 3  compared to 4s4d look good (Table 5).  A  p e c u l i a r i t y of t h i s spectrum i s the appearance of the s i n g l e t s deeper than  the t r i p l e t s i n the nd s e r i e s .  A l l members of the isoelectronic sequence exhibit the same e f f e c t .  We have added another 32 l i n e s to  this  spectrum. In our calculations  f o r n* (Table 5) we have taken  the value of the ionization potential for Se V as 550976  cm" ,  quoted by Finkelnburg and Humbach (52).  Selenium VI and Selenium VII The  ground state of Se VI i s 3 d  1 0  4s S ^ . 2  By  extrapolation along the i s o e l e c t r o n i c sequence Sawyer and o  Humphreys (44) have c l a s s i f i e d seven l i n e s between 452 A o  and 886 A and the l i m i t i s given as 658994 cm l i n e s appeared on our plates too.  i  .  A l l these  However, we d i d not t r y  to extend the analysis of t h i s spectrum, mainly because we did not expect our source to excite more Se VI l i n e s strongly.  1  -61  Se VII The ground state of Se VII i s 3 d  1 0  1  S . Q  Rao and  Murti (39) a t t r i b u t e some 42 l i n e s i n the region AA 860 e  560 A to Se VII.  They have also given tentative c l a s s i -  f i c a t i o n s f o r four of them.  Out of these, 28 l i n e s have  appeared on our plates including two of t h e i r c l a s s i f i e d lines.  Even though we agree with them that these l i n e s  are highly enhanced, we s t i l l f e e l that these l i n e s should belong to Se V or at the most to Se VI. We f e e l our source was not capable of e x c i t i n g l i n e s i n Se VII. With the exception of the resonance l i n e s , even the Se VI l i n e s were not strong on our plates.  -62TABLE 2 Catalogue and C l a s s i f i c a t i o n of Selenium Lines M. I.T. : EpP  :  R : S  HE '  Ej)G : K : Ky  :  Intensity given i n M.I.T. wavelength tables (51) Intensity on prism spectrograph (electrodeless discharge) Intensity observed by Rao (4,37,38,39) Intensity on prism spectrograph (Spark i n Helium) Intensity on 21 foot grating (electrodeless discharge) Intensity given by Kayser (19) Intensity given by K e l l y (20)  VQ :  Intensity on vacuum grating  * :  Interferometric measurement  (electrodeless discharge)  d : Diffuse l i n e $ : Double l i n e  c: Carbon l i n e  Lines marked I are c l a s s i f i e d i n Se I by Ruedy and Gibbs (42a) Lines marked II are c l a s s i f i e d i n Se II by Martin (24) Lines marked I I * * are now c l a s s i f i e d i n Se II using the l e v e l s i n (24) Lines marked III are c l a s s i f i e d i n Se III by Rao (4,39) Note:  A l l i n t e n s i t i e s are on a v i s u a l scale of  The  0 0 0 0  -  300 on E Q P 2000 on E D G 100 on V Q 10 on Sjj E  i n t e n s i t y estimates are consistent only within  r e s t r i c t e d wavelength ranges since the l i n e s were recorded on emulsions of d i f f e r e n t s e n s i t i z a t i o n and no attempt was made t o correct f o r t h i s difference. Intensity M  I T  EQP R lOd 8d lOd 2 2  Sg E G K e  D  Wavelength A(A) 10457 10320 10106 9968.2 9941.0  Wavenumber (cm"l) 9560.2 9687.3 9892.4 10029.2 10056.6  Classification  -63-  Classification  Wavelength A (A)  Wavenumber (cm" )  1 1 6 4 10  9904.6 9850.3 9799.9 9780.6 9769.6  10093.6 10149.2 10201.4 10221.5 10233.0  6 3 10 30 10  9755.1 9726.0 9674.8 9654.2 9618.6  10248.2 10278.9 10335.4 10355.4 10393.7  20 8 25 lOd 8  9598.5 9549.8 9536.1 9471.4 9417.9  10415.5 10468.5 10483.6 10555.2 10615.1  30 10 10 lOd lOd  9392.8 9387.9 9350.9 9276.2 9246.9  10643.5 10649.1 10691.2 10777.4 10811.5  2 100 40 8 200  9220.2 9219.5 9189.7 9179.9 9119.9  10842.8 10843.6 10878.8 10890.6 10962.0  20d 8d lOd 20d 30d  9104.0 9094.3 9079.1 9065.6 9033.8  10981.2 10992.9 11011.3 11027.7 11066.5  lOd 40d 5d 25d lOd  9014.7 8998.6 8993.0 8984.0 8968.2  11089.9 11109.8 11116.7 11127.8 11147.4  II **  200 20 6d lOd 1  8916.1 8903.5 8826.7 8801.1 8782.0  11212.6 11228.5 11326.2 11359.1 11383.8  I  Intensity EDP  R  Sjj E G K e  D  1  I  I I II  II  I  4p4d P ~4p5p D 3  3  2  2  -64-  Intensity  Classification  Wavelength A (A)  Wavenumber (cm" )  40d 20d 1 1 1  8770.5 8760.3 8742.1 8708.9 8700.4  11398.7 11412.0 11435.8 11479.3 11490.6  8 15 20d 1 5  8685.9 8678.8 8665.6 8647.5 8636.5  11509.7 11519.1 11536.7 11560.8 11575.5  III 4p4d D,-4p5p D II *  5d 3 Id 20d Id  8630.4 8627.1 8591.7 8570.9 8567.1  11583.7 11588.2 11635.9 11664.1 11669.3  IV  3 0 1 80d 5  8548.2 8536.7 8527.7 8519.5 8477.3  11695.1 11710.8 11723.2 11734.6 11793.0  1 5 200 100 4  8451.4 8444.4 8422.5 8405.5 8393.2  11829.1 11838.9 11869.7 11893.7 11911.1  2 1 1 1 6  8383.8 8371.8 8346.5 8336.8 8307.2  11924.5 11941.6 11977.8 11991.7 12034.4  1 1 0 100 10  8291.0 8283.4 8272.0 8261.5 8260.2  12057.9 12069.0 12085.6 12101.0 12102.9  4 1 0 lOd 1  8254.2 8240.9 8221.1 8214.0 8198.2  12111.7 12131.2 12160.4 12170.9 12194.4  ¥  R  ^  E  D  G  K  1  3  3  6  II  6d D^-7p P^ 2  2  9  -65-  Intensity  Classification  A(A)  Wavenumber (cm- )  8186.6 8169.3 8149.4 8113.5 8112.2  12211.7 12237.7 12267.5 12321.8 12323.8  I  8d 80 100 40 20  8102.9 8101.1 8098.8 8091.6 8075.2  12337.9 12340.7 12344.2 12355.1 12380.2  I  2 0 10  8053.0 8036.0 8013.7 8012.2 8005.3  12414.3 12440.6 12475.2 12477.5 12488.3  8003.1 7989.1 7963.2 7947.5 7944.7  12491.7 12513.6 12554.3 12579.1 12583.5  III  0 1 0 60 15d  7933.0 7885.9 7868.8 7838.6 7798.1  12602.1 12677.3 12704.9 12753.8 12820.2  II**  60d 3 10  7772.9 7735.3 7724.3 7721.7 7705.1  12861.7 12924.2 12942.6 12947.0 12974.9  II I II IV  7675.1 7669.1 7662.6 7642.7 7635.4  13025.6 13035.8 13046.8 13080.8 13093.3  II  7632.1 7618.0 7597.8 7589.9 7587.1  13098.9 13123.2 13158.1 13171.8 13176.6  EQP  6d 80 8 30 100  100  100 60  50 o 4  100  IOO  4  R  S  H E  Wavelength EJJG K  5 3  ISO ; '  100  100  3 1 50 0 20 150  4 3 5  IOO  1:;^  100  1  I  I  II  IV II**  I  « U_'7r»2/ 2  .2 1_,fc21 r  -66Intensity ED* 1 4 30 15  r  s  He D E  G  Wavelength *< >  K  A  Wavenumber (cm" )  Classification  1  7560.7 7515.4 7512.8 7504.8 7501.6  13222.6 13302.3 13306.9 13321.1 13326.8  8 4 20 2 0  7492.4 7469.0 7460.8 7443.2 7424.4  13343.1 13384.9 13399.6 13431.3 13465.5  10 lOd  7392.9 7384.4 7382.7 7378.8 7350.6  13522.8 13538.4 13541.5 13548.7 13600.6  7346.8 7322.3 7271.7 7270.3 7265.7  13607.7 13653.0 13748.2 13750.8 13759.3  7258.5 7244.5 7232.2 7216.4 7172.9  13773.2 13779.8 13823.2 13853.5 13937.5  4 6 2 8 8  7160.5 7148.0 7139.5 7112.3 7085.5  13961.6 13986.0 14002.7 14056.2 14109.3  „ III 4p4d *P -4p5p D. II „ o I I I 4p4d D -4p5p D,  5 20 lOd 0 1  7068.5 7064.2 7061.1 7048.4 7021.2  14143.3 14151.9 14158.1 14183.8 14238.7  III 4p4d D,-4p5p P II**  6965.4 6964.2 6955.4 6947.8 6925.6  14352.8 14355.2 14373.4 14389.1 14435.2  ll ,3  3d 0  40  2 1 3 3 4  3  1 25 5 0 2  1 Si 2 3 0  -1  wl  I II III 4p4d P -4p5p P. 3  J  1  , q III 4p4d P -4p5p P J  ,5  2  <  3  2  J  ,3  2  3  II** II  3  (  -67Intensity M  EDP  L T  30  R  S  H  E  EJJG K  0 0  6A. 6d 0  15  15  4d 2 15 1 1  4d  2 1 Z  30  1 3 6  50  1 20 8  8  10 20 1 2 50  4 300  0 1 50 25 60  500  8 15 4d 6d 100  200 100  40 15 40 2 4  8  0 2 10  40  75  Wavelength 7\ (A)  Wavenumber (cm" )  6914.7 6895.9 6885.3 6884.4 6862.5  14458.0 14497.4 14519.7 14521.6 14567.9  6861.9 6830.6 6810.5 6799.3 6792.6  14571.3 14635.9 14679.1 14703.3 14717.8  6782.8 6777.6 6755.3 6751.6 6697.1  14739.0 14750.4 14799.3 14807.4 14927.6  6684.0 6683.0 6659.2 6642.2 6637.5  14957.1 14959.3 15012.7 15051.1 15061.8  6629.69 6614.29 6603.44 6598.91 6591.58  15079.5 15114.6 15139.5 15149.84 15166.68  6582.3 6578.4 6563.41 6545.48 6534.94  15188.1 15197.1 15231.78 15273.49 15298.12  6524.34 6517.19 6512.69 6505.51 6490.54  15322.99 15339.80 15350.40 15367.33 15402.79  IV  6483.11 6448.99 6444.29 6432.67 6429.03  15420.44 15502.03 15513.33 15541.34 15550.14  II  Classification  1  3 3 III 4p4d D -4p5p D 3  II** II **  III III  II  I II  II  o 2 6s Si-6p P.  3  68Intensity «I  EG K D  T  125 6  35 40 2d 4d lOd  30 5  6 20 15d 15d 4d  15  3  1  4d lOd 5d 8d 1000 100 3 5 6 300 2 30 8  5 30  2 2 8d lOd 120  40 8d  5d 8 0  2  40  Wavelength •K (A)  Wavenumber (cm )  6422.93 6416.99 6411.61 6397.05 6382.72  15564.90 15579.33 15592.40 15627.88 15662.98  6370.91 6359.24 6349.45 6343.80 6338.12  15692.01 15720.80 15745.03 15759.08 15773.19  6332.61 6326.04 6322.46 6308.86 6305.09  15786.91 15803.31 15812.25 15846.35 15855.83  6303.40 6296.71 6290.75 6284.59 6281.74  15860.08 15876.92 15891.96 15907.53 15914.75  6272.42 6265.91 6261.06 6244.65 6238.79  15938.39 15954.97 15967.32 16009.27 16024.33  C l a s s i f ici  -1  II  II III II II I  III I  IV  5 10  8 2 2 8 4  6220.81 6206.36 6200.95 6197.83 6191.16  16070.63 16108.04 16122.09 16130.20 16147.60  15  3 6 6d 8 8d  6183.74 6177.37 6171.48 6164.51 6149.88  16166.97 II 16183.64 16199.08 16217.39 16255.99 -  lOd 2d 3d 8 1  6144.35 6142.31 6138.00 6135.04 6131.51  16270.61 16276.02 16287.44 16295.30 16304.68  30 15 70  I II  II** II II  o  6s^S|-  -69Intensity M  LT  4 60 4  50 80 3  EJJP  R  8d 15 15 1 10  2  60 6d 2d 15 20  30  8d 12 6d 5d 4d  75  4d 60 80 2d 60  5 5  60  H E  E G D  K  1 1  40 10 lOd 15 8d  1000 80 6d 60 8d 30 lOd  35 8  S  1 5d 30 6d 20 8d 4d 1 40d 20  2 5  6  70 5 0 0 10  0  5 2  50 5 0 3 40 6  5 6 1  5  1  3 2  Wavelength 7\ (A)  Wavenumber (cm" )  Classification  6125.58 6123.38 6115.89 6110.16 6105.80  16320.48 16326.34 16346.33 16361.66 16373.34  6101.27 6096.18 6084.53 6065.73 6060.56  16385.49 16399.17 16430.59 16481.50 16495.55  II II  6055.84 6054.12 6042.56 6038.48 6029.94  16508.41 16513.09 16544.70 16555.88 16579.32  II  6023.61 6020.27 6009.09 5990.73 5984.82  16596.74 16605.94 16636.86 16687.83 16704.31  III  5962.78 5959.53 5948.10 5936.95 5925.04  16766.06 16775.20 16807.43 16838.99 16872.85  II  5910.23 5898.09 5885.21 5879.24 5866.19  16915.12 16949.96 16987.04 17004.29 17042.10  5860.21 5849.55 5842.57 5831.40 5826.97  17059.52 17090.60 17111.01 17143.78 17156.81  5824.47 5812.73 5808.72 5800.34 5794.61  17164.20 17198.86 17210.73 17235.58 17252.62  1  II  II  III II  II II  V I III III II II II II III  III  70Intensity M  EDP  IT  15 15 15 25 50 20 15 10 45  20 20 2d 20 5d 1 40 5d 20 20 20 2d 6d 601 4d  R  E  5d  8  8d 2d 2d 3d 60  300 15 15 500 8 500 8  750  D  G  K  A  5 5  2  17376.26 17394.03 17417.84 17438.07 17444.88  I II  5725.60 5716.36 5705.50 5697.84 5679.01  17460.57 17488.79 17522.10 17545.64 17603.81  5672.37 5666.95 5662.12 5655.41 5652.62  17624.44 17641.29 17656.33 17677.28 17686.00  II I  17686.81 17694.26 17704.66 17711.65 17778.79  II  9  5652.36 5649.98 5646.66 5644.43 5623.12  17794.83 17800.43 17815.12 17880.45 17895.84  8 3  0 0  2 5 1  2  25  1  5753.38 5747.51 5739.65 5732.99 5730.75  5 0  )  II III,II  5 5  0 0  A  2d 20 60 30  0  5 8 4  5618.05 5616.38 5611.55 5591.15 5586.34  4 60 20 2d 2d  2 1000 9 4 1 0  5577.31 5567.03 5560.51 5535.74 5528.64  17924.81 17957.90 17978.98 18059.41 18082.59  5522.44 5511.51 5507.46 5505.54 5502.13  18102.92 18138.81 18152.15 18158.48 18169.73  80 6d 2d 6d 2d  75d  0  25  5  Classification  17266.56 17282.11 17310.05 17329.43 17348.91  7  0  (  Wavenumber (cm" )  5789.93 5784.73 5775.39 5768.93 5762.45  5  5d 0 8  Wavelength  8 4 5  II  II II II 4p4d D -4p5p D III 1  3  2  II  II  II II II II II II  II  3  -71Intensity M  EJJP  IT  20 10 15 50  15 75 35 20 150  15 500 18  150 100 50 35 5 5 600  R  S  H E  8d 25 6d 20  Wavelength E G D  K  A (A)  Wavenumber (cm" )  0  1  5497.06 5489.98 5484.12 5481.56 5474.05  18186.48 18209.93 18229.41 18237.92 18262.94  2  5455.82 5444.99 5437.84 5434.13 5429.79  18323.95 18360.41 18384.55 18397.10 18411.80  5 2 4 6  5427.41 5417.14 5414.56 5401.51 5382.87  18419.87 18454.78 18463.57 18508.20 18572.27  6 3 1 2  5380.17 5375.87 5374.27 5370.02 5358.79  18581.59 18596.49 18602.02 18616.74 18655.7  II  2 3 2 5 3  5354.65 5328.54 5322.85 5315.57 5310.67  18670.2 18761.6 18781.7 18807.4 18824.8  III 4p4d D -4p5p P II** II**  300 9 5 5 2 2 2  5305.347* 5300.97 5297.77 5287.77 5280.36  18843.75 18859.24 18870.6 18906.3 18932.8  II II  8 7 6 6  5271.179* 5253.67 5253.10 5245.19 5241.91  18965.72 19029.02 19031.09 19059.78 19071.7  II II II II  5237.60 5235.23 5232.78 5231.69 5227.533*  19087.4 19096.03 19104.97 19108.99 19124.23  II  6 6 100 7 5 6  50 80 12 2d 4d 3d 8 5 40d 40 30 4d 4d 8d 4  0  6 8 5 30 20  5  20 40 2d 8d 6d  6  80  6 6  50 15d  0  500 300 250 50  9  4 4 100 5 50 3 800 9  20 30 40 30 150  5  Classification  1  II  II II 4s4f F -4s5d D, V III 3  3  Q  III II  I  1  3  2  V  III II  4s4f F -4s5d D 3  2  3  2  1  -72Intensity Ml  T  8 18 15 600 18 500 35 25 15 15  R  V  S  25 10 2 50 25 150 40 20 100 50  10 5 3 20 5 5 9 0  40  8 2 0 0  350  120  8  50  100 12d 8d 3d  3  250  120 15d  10  40d  40 25  300 12 300  20d 80 50 60 5d  0  8d 2d 3d 5d  0 80 lOd 15d  K  He  0 0 10  8  Wavenumber (cm- )  Classification  5223.85 5218.05 5202.40 5187.66 5183.05  19137.66 19158.92 19216.54 19271.16 19288.30  II** II II  1  750 0 Od 300 0  9 5 4 8 7  5175.925* 5171.49 5150.02 5142.124* 5134.30  19314.83 19331.40 19412.01 19441.79 19471.43  II II II II II  20 10 100 50 750  6 7 7  5117.64 5109.62 5109.16 5109.10 5096.532*  19534.38 19565.49 19567.25 19567.48 19615.73  II** II II  25 250 7 100 3 0 2  5095.94 5093.225* 5084.04 5081.75 5078.74  19618.00 19628.43 19663.94 19672.76 19684.42  500 8 3 100 3 50d 750d 3  5068.630* 5063.39 5062.05 5061.61 5060.47  19723.71 19744.1 19749.34 19751.06 19755.51  5039.78 5031.15 5025.63 5019.36 5017.15  19836.59 19870.64 19892.46 19917.34 19926.07  5009.32 5006.63 5001.45 4997.04 4992.831*  19957.21 19967.93 19988.61 20006.3 20023.11  4992.10 4989.05 4975.735* 4974.04 4972.41  20026.1 20038.31 20091.90 20098.77 20105.35  8  150 8 50 5 100 6 50 100  500 8 300 5  2  Wavelength A (A)  400 8 2  II** II  II II II  II IV  i  II** II II II III  Ti  -73Intensity R  "IT  S  3d Id 25 25 5d  15 8  8  100 60 4  2  8d 2d 2d 80 15d  0  30 12d 2d  0 75  2  10 3  0 2 2000  20d  100 80 1  25  2 15 5 40  4  3 6d lOd  12  4  3  50 50 2000  Id 20d 2d  800 800  100 50 6 150 2 0 4  20 £00 20 Id 20  K  He  100 30 2 10 1500 10 8 1000 8  4 0  75 6 0  2000  Wavelength •K (A)  Wavenumber (cm"" )  4966.88 4965.05 4962.49 4953.74 4950.69  20127.73 20135.17 20145.57 20181.15 20193.58  4938.17 4935.23 4933.19 4920.96 4919.03  20244.76 20256.82 20265.23 20315.58 20323.55  4917.32 4911.99 4907.90 4904.79 4897.55  20330.62 20352.67 20369.63 20382.54 20412.66  Classification  1  III  III II  20448.14 4889.05 4888.89 20448.81 4879.844* 20486.72 4870.74 I 20525.03 4860.35 20530.85  II*' III  4864.91 4859.74 4856.86 4853.49 4847.84  20549.62 20571.48 20583.67 20598.00 20622.00  IV  4847.05 4847.01 4844.941* 4840.609* 4837.88  20625.57 20625.57 20634.30 20652.79 20664.44  4835.17 4830.79 4829.40 4819.80 4819.36  20676.02 20694.79 20700.72 20741.94 20743.85  4818.28 4813.56 4809.65 4806.002* 4801.11  20748.48 20768.82 20785.74 20801.48 20822.71  II II II  II II  -74Intensity M  IT  12 40 800 20 600 800  EDP  R  S  H E  30 15 6d 40 4  E G D  0 4 2 5 10  30 6 60 20  8 5 1  6  2 20 8 12 1000 40 10  1  3 3  2  30 8 5d 6d Id 12  4 2  8d 20  50  2  800  150 12 25 8  100 1 lOd 12 12d  5  0  12d 1 3 0 5 8 40 120 120 150  K  4  0 7  10 2 6  500 0 2 100 8 80 7 25 6  8 1500 3 4 5 2  Wavelength A (A)  Wavenumber (cm~l)  4797.66 4791.89 4783.51 4765.62 4765.00  20837.67 20862.76 20899.30 20977.77 20980.50  4763.646* 4761.93 4742.59 4741.04 4739.10  20986.23 20994.03 21079.61 21086.50 21095.13  4737.21 4735.89 4733.69 4730.86 4726.81  21103.55 21109.47 21119.28 21131.91 21150.01  4718.26 4714.37 4700.01 4695.94 4692.41  21188.33 21205.80 21270.58 21289.05 21305.66  4689.79 4685.46 4682.24 4680.99 4678.36  21316.96 21336.66 21351.33 21357.03 21369.04  4669.95 4665.41 4664.67 4662.00 4659.47  21467.50 21428.33 21431.72 21444.00 21455.68  4657.884* 4651.48 4648.421* 4644.37 4637.869*  21462.96 21492.53 21506.67 21525.42 21555.49  4636.74 4633.91 4630.54 4628.12 4625.09  21560.83 21589.79 21589.60 21600.98 21615.13  Classification  II II II II I  II I II  II XV  II'  II  ii:  I I I 4p5s P,-4p5p D  ii ii  1  3  1  -75Intensity «i  EJJP  R  T  8 100  300 70 25 8 8  2d 8d 6d 18 1  25 8  70 20 25  E  2  4609.543* 4607.70 4604.311* 4602.65 4599.94  21687.98 21696.73 21712.56 21720.53 21733.32  4597.93 4596.60 4592.38 4589.874* 4587.08  21742.82 21749.11 21769.09 21781.04 21796.23  4583.89 4581.63 4579.62 4578.27 4572.25  21809.44 21820.20 21829.77 21836.21 21865.00  3 9 2 7  4567.18 4563.93 4561.65 4559.30 4557.74  21889.21 21904.85 21915.74 21926.99 21934.54  80 5 5 2  4553.96 4551.05 4548.25 4547.06 4545.03  21952.74 21966.77 21980.34 21986.09 21995.88  4541.31 4534.00 4531.31 4527.88 4523.53  22013.92 22049.40 22062.40 22079.20 22100.42  II  4516.30 4512.14 4507.61 4504.75 4503.03  22135.79 22156.20 22178.51 22192.58 22201.06  II II**  K  1000  1 300 9 40 5  100 3  50 6  3  20d 100 25d 60 1  40 6 25 10 40  21626.06 21630.79 21632.57 21644.74 21654.21  G  10 3  50 5d 10 12 Id  40 15d 6d 3 6d  4622.76 4621.75 4621.36 4618.763* 4616.75  He J)  2 10  20d 300  80 50 20 8d lOd  Wavenumber (cm"" )  60 2 2 lOOd 8 300 8  25 10  2d lOd 20d Id 50 10 200 20 40  s  Wavelength "i\ (A)  8  3 3  750 30d  8  75d  5  8 2000 8 1 3 2  Classification  1  II IV II II II II  III II II II  III II**  5g G-6h H 2  2  -76-  M  IT  10  10 12 300  EDP  Wavenumber (cm" )  40 25 60  lOd 20 20 40  20 70 100 12 15 800 40 40  H e  4501.76 4500.67 4494.48 4488.50 4485.55  22207.32 22212.70 22243.3 22272.9 22287.55  4483.67 4481.93 4476.86 4475.17 4467.58  22296.9 22305.5 22330.8 22339.2 22377.22  4460.67 4454.87 4449.14 4445.97 4443.97  22411.9 22441.05 22469.94 22485.96 22493.5  4442.50 4437.19 4435.20 4433.85 4432.28  22503.5 22530.4 22540.6 22547.46 22555.44  30 30 20 8d 15d  40 2  4430.39 4425.98 4421.62 4421.00 4415.71  22565.1 22587.5 22609.8 22613.0 22640.1  10 6d 50 80  3 3 7 9 1  4413.46 4409.13 4406.56 4401.00 4400.10  22651.6 22673.8 22687.1 22715.7 22720.35  II  30 30 15 40  22725.8 22805.9 22809.8 22825.1 22854.8  II  10 5  4399.04 4383.60 4382.85 4379.91 4374.22  25 5 8 3 82  750 3 1  4373.59 4371.76 4371.35 4370.74 4368.24  22858.1 22867.6 22869.8 22873.0 22886.1  EDG  K  2 2 30 2 2  4 6 12 15 50 lOd 30 50 80 lOd  10  s  10 10 25d 12 4  50 300 200  20 20  R  8 0 2  50 3 4 200 9 10 6 75 8 200 8 1500 150 3 75 6  0  Classif ication  Wavelength A (A)  Intensity  100 4 0 5  0 60 1000 500  20 4 50 400 10  1  11  II II II  II II  II II II II II II  II II  II  II  77 Intensity  Wavelength  -  «i  EDP  R  T  40 8 25  40 25 200 40 60 100 8 40 25 10 10 40  100 150  6d 100 120 8 50  8d 30 5 25 15 30 50 lOd 4d 10 4d 20d 4d  E  D  G  K  4 5 75 1  30 4d 15 4d 15d  6d 30 15 25 lOd  He  5 2 25 6 750 2000  30 15d 2d 4d 25  60 30d 30  s  0 1000 4 3 4  75 5 100 5 400 9 75 6 30 5 4 2 lOd 3 60 6 lOOd 5 300 300 7 400 8 1000 0 500  5 2  A  (A)  Wavenumber (cm" )  Classification  1  4362.81 4357.31 4355.11 4352.18 4348.06  22914.5 22943.5 22955.10 22970.6 22992.3  4345.66 4344.50 4342.40 4339.95 4337.67  23005.0 23011.1 23022.3 23035.3 23047.37  4335.54 4332.32 4331.22 4330.50 4329.29  23058.69 23075,8 23081.68 23085.5 23092.0  4322.75 4322.21 4320.40 4319.00 4316.24  23126.89 23129.78 23139.52 23047.0 23161.8  III III II II  4314.36 4309.11 4308.19 4304.98 4304.19  23171.9 23200.1 23205.1 23222.4 23226.65  II II  4298.78 4297.31 4291.75 4290.50 4290.13  23255.9 23263.82 23293.9 23300.74 23302.7  4282.90 4282.10 4280.35 4277.52 4275.24  23348.6 23353.0 23356.0 23371.5 23383.94  4267.28 4266,53 4259.21 4257.72 4255.38  23427.54 23431.66 23471.9 23480.1 23493.0  II III II II  II  I  II II  II IV  6p P 2  -7s S 1* 2  -78Wavelength A (A)  Wavenumber (cm )  4251.69 4248:10 4247.96 4243.97 4237.42  23513.4 23533.3 23534.1 23556.24 23592.6  4236.44 4234.38 4231.97 4230.04 4228.13  23598.1 23609.57 23623.0 23633.79 23644.46  400 6  4227.36 4226.34 4221.59 4218.56 4215.04  23648.77 23654.47 23681.08 23698.1 23717.87  500 7 500 6 50 2 20 0  4212.55 4211.85 4210.37 4210.30 4206.69  23731.89 23735.83 23744.17 23744.57 23710.99  100 3  4206.57 4201.00 4198.01 4196.24 4195.57  23765.67 23797.2 23814.11 23824.15 23807.96  4194.54 4193.33 4191.28 4188.90 4186.53  23833.81 23840.68 23852.3 23865.9 23879.4  4184.89 4182.95 4181.45 4180.90 4178.96  23888.8 23899.8 23908.4 23911.54 23922.6  4176.23 4175.28 4169.06 4167.21 4166.54  22938.3 23943.7 23979.46 23990.11 23994.0  Intensity M  lT  40 50 100 8  40  20 20 150 200 200  10 40 20 100 50 20  800  800 12  EuP  R  2  20d 2 0 300 7 lOd 1  15 4 6 30 20d 30 lOd  K  1  5d 3 40 6 400  30 30 15d 80  25 5 25 4  100 100 50  8 30 100  200 5 40 3 200 5  100 20 8 10 20  150 6 10 2 5  30  6  4 200  4  20 30 10  1000 9  30 20 40 15d 40d  1000 9 1000 10 20 1  Clas  -1  II  II  II  II IV  II II II  II  II III II**  -79Intensity M  lT 40 70 40 80  12d  R  Sjj E G K  1  0 100 5 10  10  10 20  50 100  200  4  100 5 500 7  4  50 3  200  150 40  800  60  100 5  8 25 25  5d 1 150 4 1000 6  15d 30 8d 25 50 12  20 4 9  200  10 5  4 3  12 50  30 100 30  500 7 500 1000 7  250 7  15 8d 20  20  D  120 5  30 10  e  100 4 500 8 25 2 500 0 3  6  300 7  Wavelength A (A)  Wavenumber (cm" )  4166.02 4165.62 4165.44 4160.83 4159.70  23997.0 23999.29 24000.33 24026.9 24033.44  4153.90 4152.32 4150.51 4148.98 4147.49  24066.98 24076.14 24086.6 24095.5 24110.97  4146.97 4145.25 4139.22 4138.95 4138.25  24113.99 24117.20 24152.3 24153.91 24158.0  4137.27 4136.23 4135.70 4134.77 4134.04  24163.71 24169.78 24172.86 24178.3 24182.62  4132.69 4131.71 4129.11 4128.85 4127.00  24190.51 24196.23 24211.49 24213.0 24223.87  4126.52 4122.19 4115.72 4114.31 4113.19  24226.68 24252.1 24290.2 24298.56 24305.2  4112.48 4108.77 4107.60 4107.10 4104.15  24309.37 24331.31 24338.2 24341.2 24358.70  4103.89 4101.92 4101.17 4099.51 4097.91  24360.26 24371.9 24376.39 24386.26 24395.83  CCis lassification  1  II II II IV  II II II  III II II III  II  6p P£-7s S£ 2  2  -80Intensity *I  ED * 1  T  R  4d  7  10 20 4d 4d  150 6 5  80 2  20d 8 40  100 400 4 500 7  1 1  8d 6 50  15  500 8  200  20  20  K  100  6d 20 6d  70  G  300 7  12d  500  E  500 7  4d 2d Id 50 lOd  He D  50  10 70  s  100 5 50 5 75  9  1000 10 0 3 25d 65 5 10  Wavelength 7\ (A)  Wavenumber (cm )  4097.77 4096.24 4095.33 4093.53 4091.86  24396.67 24405.72 24411.15 24421.9 24431.85  4089.95 4088.08 4087.27 4083.16 4082.07  24443.3 24454.5 24459.3 24483.9 24490.47  4081.23 4079.54 4078.68 4077.74 4076.60  24495.5 24505.66 24510.82 24516.47 24523.33  4075.87 4072.36 4071.99 4070.08 4069.58  24527.72 24548.85 24551.08 24562.64 24565.62  4068.38 4066.41 4064.91 4063.73 4061.97  24572.9 24584.8 24593.8 24601.0 24611.64  4059.79 4058.17 4054.28 4052.46 4052.90  24624.88 24634.69 24658.29 24675.67 24666.7  4051.43 4050.86 4049.34 4046.72 4043.60  24675.64 24679.2 24688.4 24764.4 24723.47  4041.77 4041.29 4039.00 4038.24  24734.63 24737.60 24751.61 24755.05 24773.5  4035.44  Classification  -1  II  III  II  II II  III  II III  -81Intensity «I  R  T  10 150 6  60 10 70 70  50 5 8 -  150  10  60 60 8 1  5 25 20 20 6 60 5 2 8  8 8 25  40 3 20 10 6d 80  10 10  Wavenumber (cm )  75 0 4 300 7 2  4033.79 4032.84 4029.99 4028.37 4024.60  24783.58 24789.54 24806.94 24816.91 24840. 15  40 2  100  4019.45 4019.22 4018.47 4014.89 4013.95  24871.97 24873.4 24878.08 24900.21 24906.1  500 300 250 30 20  4013.83 4008.21 4007.84 4007.63 4007.26  24889.92 24941.71 24944.06 24944.13 24947.86  100 5 100 7 1000 5d 400 5  4003.02 4001.99 3994.99 3994.56 3993.66  24974.65 24980.50 25024.26 25026.97 25032.60  25 2 200 5 4 500 4 2  3981.26 3968.35 3963.90 3957.24 3952.60  25110.57 25192.29 25220.55 25263.02 25292.70  50 100 1 40 25  5 7 5 6  3951.76 3948.77 3941.38 3935.73 3935.31  25298.01 25317.21 25364.64 25401.08 25403.79  250 1000 0 25 1  6 2 5 5  3931.57 3928.62 3924.01 3923.36 3920.61  25427.95 25447.04 25476.91 25481.12 25499.02  II  60 5 30 300 100  5 5 5 7 3  3917.04 3916.46 3913.78 3904.85 3903.95  25522.25 25526.06 25543.53 25601.90 25607.80  II II II II**  K  He  200 6  4 5 iao 20 1  S  Wavelength MA)  1 0  10 10  8 5  Classification  -1  II II I  II  II  II**  II  -82-  Intensity «I  T  Wavelength A (A)  Wavenumber (cm )  500 750 0 6 100 5 30  3901.59 3901.52 3897.25 3883.33 3883.28  25623.22 25623.81 25651.87 25743.80 25744,15  50 6 120 8  3880.51 3877.23 3875.37 3870.81 3868.52  25762.53 25784.3 25796.6 25827.1 25842.3  3 6 3 6  3858.08 3857.25 3855.21 3853.26 3850.59  25912.3 25917.8 25931.5 25944.7 25962.7  75 8 5 6  3849.60 3841.95 3838.25 3836.23 3829.73  25969.3 26021.1 26046.1 26059.72 26104.1  3827.67 3826.68 3818.68 3813.03 3812.12  26118.2 26124.9 26179.6 26218.4 26224.7  5 400 0 3 0 1000 10 0 3  3811.54 3809.42 3807.49 3800.94 3795.90  26228.6 26243.1 26256.6 26301.8 26336.8  4 4  500 50 500 10 200  7 5 7 2 5  3793.61 3789.66 3786.57 3783.25 3782.49  26352.7 26380.1 26401.6 26424.8 26430.1  12  1  4 4 15  1  750 50 4 75 100 2  3780.82 3779.12 3776.81 3770.51 3765.18  26441.8 26453.7 26469.9 26514.07 26551.6  EDP  5  R Sge E G K D  10 1  50  4 4  0 2  10 80  5 9  30  8  100 6d 12 8d 6  5  1  7  4  2 4 5d 2 20  2 7  75 6 2 1000 6  4 2  6  8 4  20 20  5  200 7d 25 5 12  5 8  100 7  1 10  8d 8 4  80 150 5 75 1000  2  0  Classification  -1  II  II  III II II**  II III II III III  II**  -83Intensity iI  T  20 20  20 20  EDP  R  s  He, E G K D  10  26739.4 26745.5 26778.92 26806.99 26814.75  III  2 3 6  3738.73 3737.88 3733.22 3729.31 3728.23  4 15 5 5 20 1  3727.41 3727.32 3726.91 3724.51 3720.42  26820.65 26821.30 26824.25 26841.57 26871.04  9  0 2 50 1 2 1 2000 10  3718.75 3718.19 3716.44 3711.68 3693.5  26883.08 26887.13 26899.80 26934.29 27068  1 3  100 25 0 150  3688.23 3686.18 3683.45 3667.58 3654.88  27105 27120.64 27140.7 27258.2 27352.90  3653.03 3639.40 3639.15 3637.88 3637.53  27368.7 27469.24 27468.37 27480.68 27483.33  10 0 500 7 40 3 150 6  3635.92 3634.31 3631.35 3622.03 3618.72  27495.04 27507.67 27530.08 27600.90 27626.14  II**  500 6 200 6 100  3615.99 3610.49 3605.88 3593.64 3588.44  27646.99 27689.25 27724.48 27818.89 27859.30  III II  40  2  2 0 3  4  6  200  25 35 35  7 2 2 6  10 6  10  15 3 6 15 5 3 4 50  30 400 150 30 100  4 2000 100 1 1000 0 100  3  2 12  1  II II  10  25 12  Classification  26565.46 26628.40 26662.02 26701.86 26709.32  200  8  7\ ( A )  Wavenumber (cm" )  3763.22 3754.32 3749.59 3743.99 3742.95  3 8  3  /(  7 7 5 3 8  6 8d lOd 5 30  2 100  Wavelength  15 3 2 1000 750 10  5 3  4  2000 3  III  I  III  IV III  II III  II  O  9  6h^H-9g^G  -84=  Intensity EDP  R  S  A (A)  Wavenumber (cm"" )  5 10 2 1000 500 500 6  3588.15 3583.39 3582.35 3581.60 3578.87  27861.57 27898.57 27906.71 27912.51 27933.82  200 800 9  3576.60 3570.19 3563.66 3561.02 3559.49  27951.54 28001.71 28053.01 28073.82 28085.89  3554.67 3548.69 3546.68 3545.68 3543.44  28123.98 28171.32 28187.98 28195.07 28211.51  3538.23 3535.74 3532.60 3516.93 3515.64  28254.49 28274.57 28299.51 28425.76 28436.19  3 1000 2000 2000 100 75  3514.39 3514.20 3511.15 3509.79 3509.35  28446.3 28447.9 28472.6 28483.6 28487.2  1000 75d 750 5 3  3503.71 3502.69 3499.66 3498.26 3493.85  28532.3 28542.64 28566.0 28577.55 28613.61  2000 1000 5 6 1 50 5 2000  3491.53 3491.24 3489.03 3485.89 3480.45  28632.55 28634.92 28653.05 28678.87 28723.75  0  3476.73 3471.58 3468.42 3465.16 3458.38  28754.44 28797.07 28823.35 28850.44 28906.95  8  100 5 150  15d  1 0  15 80  9  2d 6d 2d  0  40 8 15  0 2 5 500 10  2  6  20  5  0 2  40 30  12 2 6 2  K  He  50  20 20 lOd 10 12  Wavelength  2  10 1  10 5 50 7  4  5 5 2 5 3 10 4 75  Classification  1  II  III  III  III II  III  -85Wavelength A (A)  Wavenumber (cm" )  3457.79 3454.07 3452.24 3444.27 3437.13  28911.96 28943.06 28958.40 29025.39 29085.72  III  3428.39 3425.57 3419.61 3414.38 3414.19  29159.84 29183.86 29234.81 29279.48 29281.1  III  2000 10 5 0 0 2  3413.92 3407.85 3393.88 3393.69 3393.25  29883.43 29335.75 29456.43 29458.12 29461.17  III  75d 300 8 5 4 2000 10 2 5 2  3392.64 3392.39 3390.24 3387.24 3385.90  29467.06 29469.32 29488.0 29514.11 29525.8  3384.95 3384.21 3382.84 3380.50 3379.82  29534.10 29540.6 29552.5 29572.9 29578.89  100 40 5  3376.24 3374.79 3371.31 3370.69 3369.28  29610.3 29622.9 29653.5 29659.16 29671.4  60 5 40 3 40 2 100  3367.16 3364.36 3362.74 3360.32 3358.22  29688.9 29714.9 29729.2 29750.5 29769.2  3353.64 3350.59 3346.59 3344.74 3342.41  29809.78 29837.03 29872.62 29889.11 29909.91  Intensity  8  EDP  R  100 8 6 10 60  10  80 6 2  8  S  He E G K D  5 2000 9 200 3 2 1  2 1000 9 5d 3 5  200  20 100 25  10  6 10  4 2  1  40  8  20 4  4  1  0  6 1 15  200 3 5 15 3 1000 8  100 3  15d 4 50 4d  40 75  300 7 5  25d  100 7 25  1  200 5 1 2000 3  CClJ lassification  1  II  III III II III III  III  II  -86Wavelength A (A)  Wavenumber (cm" )  3339.46 3336.17 3335.84 3331.03 3329.81  29936.36 29965.84 29968.8 30012.1 30023.1  3328.57  30034.33  75 3 25 5 150 8  3325.76 3324.86 3323.16  30059.53 30067.81 30083.16  III  1500 50 3 2000 2000 60d 5  3319.50 3317.98 3311.24 3301.84 3293.60  30116.35 30130.12 30191.50 30277.41 30353.21  III  200 5 2000 300 7 1000  3292.56 3285.82 3282.86 3278.49 3267.45  30362.78 30425.04 30452.43 30493.10 30596.1  10 2  3265.32 3263.74 3260.69 3258.75 3257.59  30616.02 30630.9 30659.89 30677.81 30688.7  200 7 50 120  3251.67 3249.81 3248.01 3243.70 3242.75  30744.6 30762.1 30779.18 30820.1 30829.1  65 50 25 lOd 200  4 4 3 3 8  3242.15 3238.40 3236.48 3228.14 3225.77  30834.83 30870.51 30888.85 30968.70 30991.51  II II  lOd 500 40 50 150  5 8 3 5 9  3218.00 3215.24 3210.69 3204.50 3185.47  31066.23 31092.88 31136.99 31197.06 31383.47  III III  Intensity M  EDP  IT  8  R  S  H E  E G D  K  25d 2 3000  50 6 4 8 4 4 20 5 50 60 3 3 50 10  1 5 1 2 0  6d  8  20  4 4 2 2 2 5 5 10  10 25 15 8  10 2 5 2 lOd 3 4 5  8 1 30  5  1  4 40 10 6 25  2 5  0  5  0  Classification  1  III  II III  II III  -37-  Intensity  Wavenumber (cm )  3180.97 3178.16 3174.89 3169.19 3158.31  31427.86 31455.68 31488.03 31544.65 31653.28  3150.19 3141.11 3138.64 3134.46 3125.50  31734.95 31826.66 31851.70 31894.18 31985.57  2  100 6 5d 5d 50 4  3115.81 3110.98 3109.98 3109.90 3108.51  32085.12 32134.89 32145.25 32146.05 32160.42  5 4  3 4 140 7 75 8 50  3106.27 3105.14 3102.71 3094.23 3093.39  32183.63 32195.34 32220.60 32308.81 32317.59  2 3 3  3088.21 3085.73 3084.37 3077.86 3073.99  32371.78 32397.79 32412.17 32480.76 32521.56  3072.67 3070.71 3069.89 3064.63 3063.75  32535.53 32557.38 32565.06 32620.89 32630.31  3062.48 3059.85 3054.76 3051.07 3048.51  32643.84 32671.92 32726.30 32765.92 32793.55  3046.16 3042.44 3041.27 3039.50  32818.72 II 32858.80 I I I 32871.43 II 32890.6  R 3 15 2 10 50d  S  H e  6  2 0 50 6 12 6  8 20  40 5  4  1 0  6 6 4 10  4  10 10 100 100 400  5  500 6 0 2 400 8  4  50 4  30 25 3 2 4 200 20 4 1 35  4  60 20  2  D  0 2 0 7  8 50d 0  15  E G K  20 7  8  lOd 8  Classification  Wavelength A (A)  3 5  50d 2000 200d 40  1  5  8  5 10 3 4  80 5 5 2 200 8 60 2  -1  III II II  III III II II III III  III  III  III IV 5s SA-5p P III 2  III  2  1  —88— Intensity M  It  EpP R 20 4 2 2 2 4 20 6 3 2 6 30 15  10 10  6 5 5 10 4 10  12  15  1  5  3038.63 3033.50 3031.87 3031.44 3028.92  32900.0 32955.63 32973.37 32978.08 33005.48  II III  3027.05 3023.96 3020.29 3009.95 3008.14  33025.82 33059.60 33099.78 33213.47 33233.41  III  3006.87 3002.63 2999.63 2987.48 2983.98  33247.44 33294.41 33327.78 33461.07 33502.52  2979.04 2972.53 2971.42 2970.97 2970.00  33558.06 33631.49 33644.05 33649.20 33660.17  2967.17 2963.91 2955.72 2952.40 2951.68  33692.27 33729.36 33822.81 33860.83 33869.11  75 7 3  2948.46 2947.83 2947.06 2944.02 2942.83  33906.05 33913.35 33922.2 33957.24 33971.0  20 7 2 200 5 100 2 2  2941.50 2940.29 2933.31 2931.47 2929.79  33986.32 34000.3 34081.27 34102.59 34122.1  2928.73 2927.67 2926.14 2924.65 2923.73  34134.5 34146.8 34164.7 34182.1 34192.8  E G K D  500 8 50 3 0 3  2 1  50 4 500 6 40d 3  2 2  1000 50 4 55 6 0 2  2 6 4  2 6  8 6 2 9 10  6 2  1 2 6 0 0  H e  Wavenumber (cm~l)  0  150  6 2d 25 10 0  S  Wavelength A(A)  6  4  0  100 500 100 550 50  4 6 7 7 5  100 2 75 7 3 0 3 2000 10  4  0  2  2 2  Classification  III  III III III II III II IV III II III  III IV IV  -89Intensity Mi  T  10  EDP R 1  4  5  20 10 2  5 7  10  25 5  10  5  35  1 8 1 2 3d  Wavenumber (cm" )  3 5 4 200 75 100 2  2921.80 2919.22 2918.97 2918.54 2917.82  34215.4 34245.7 34248.7 34253.7 34262.2  6  40 3 10 300 9 100 3  2916.09 2915.54 2914.88 2912.92 2911.11  34282.4 34287.0 34296.7 34319.7 34341.1  0  100 3 10 6  2908.24 2907.06 2905.87 2905.10 2899.29  34375.05 34388.91 34403.0 34412.12 34481.09  500  2895.89 2894.41 2892.73 2891.61 2884.21  34521.64 34539.3 34559.29 34572.6 34661.37  1 4 100 8 40 2 3  2881.45 2880.33 2878.76 2874.20 2873.30  34694.57 34708.01 34727.05 34782.1 34793.0  2 8 6 6 6  2872.12 2870.20 2865.87 2864.44 2863.86  34807.3 34830.58 34883.19 34900.55 34907.63  2856.20 2855.30 2853.28 2849.57 2846.70  35001.3 35012.3 35037.1 35082.7 35118.0  2842.96 2839.79 2838.71 2837.23 2836.69  35164.30 35203.57 35216.97 35235.35 35241.97  S  H e  2  10 10  E G K  Wavelength A(A)  2  3  10 4 0 4  1  8 3 4 3 60  4  12 12 1 1  6  1 30 10 20 10  1  0 6 6 6  D  100 6 3 1 5  150 4 1000 4 100 100  3 20 8 6 4  200  lOd  1  15 15 2d  5  6  100 4 30 5 6 100d8 lOOd  Classification  1  III  IV IV  5d\  -S-f  V  III  III II III II  IV  II III III III  III III  5g G-7h H 2  2  -90Intensity EJJP  2 1 4 2 15 20 15  8 8  R  8 10 8 5  He  ED  0  K  35323.6 35361.3 35393.3 35405.4 35424.44  100 6  4  25 30 4 2 50 6 2 6 lOOd 9  2821.60 2821.48 2820.07 2817.65 2816.98  35430.46 35431.94 35449.68 35480.1 35488.55  25 0 40 7 75 9 5  2809.44 2806.95 2804.38 2802.25 2798.41  35583.77 35615.3 35648.01 35675.04 35724.11  40 40 6 50 6 75 5 3  2796.63 2793.15 2792.36 2788.89 2787.75  35746.8 35791.31 35801.41 35846.02 35860.60  10 3 50 100  2785.59 2785.20 2784.40 2783.55 2782.17  35888.47 35893.52 35904.6 35914.8 35932.6  2777.52 2777.03 2776.20 2775.01 2773.81  35992.75 35999.1 36009.82 36025.26 36040.93  lOOd 3 75d 5  2772.46 2767.20 2765.00 2764.60 2762.16  36058.48 36126.95 36155.64 36160.87 36192.81  3 5 3 20 20 3 1000  2760.45 2759.26 2757.89 2756.89 2753.92  36215.22 36230.85 36248.92 36262.08 36301.17  3 8  3 3  2 3  1  100 1 2 4 30  8  2 1000 9 5 10  7  0  150 7  15 80 2 4 20  5 8  1  50 6 400 10  3  Classification  -1  5  8 2 5 2 1  6d lOd 8 4 30  A (A)  Wavenumber (cm )  2830.14 2827.12 2824.56 2823.60 2822.08  2  8 8 2 20 30  s  Wavelength  III III II  -4n 4 IV 5d"D^-4p III III 3  III III III  III III III  91Intensity Ml  T  15 10  EpP  R  12 6 4 4 2d  2 2  Wavenumber (cm )  8 5 5 5 4  2749.85 2745.88 2738.95 2738.15 2733.58  36354.85 36407.50 36499.49 36510.25 36571.24  3  2738.37 2738.22 2731.21 2729.18 2729.13  36574.04 36576.06 36602.95 36630.20 36630.87  100 7 60 a 8 1000 5 2 5  2726.52 2724.78 2724.22 2722.58 2719.95  36665.99 36689.40 36696.94 36719.00 36754.49  100 6 200 8 5 100 6  2719.52 2715.92 2714.48 2713.47 2712.69  36760.30 36809.03 36828.6 36842.26 36852.92  2  15 4 200 6 25 2 15  2709.88 2706.98 2705.96 2705.41 2705.21  36891.1 36930.62 36944.54 36952.05 36954.79  3  75 5 30 5  2702.68 2696.32 2695.37 2694.60 2693.89  36989.39 37076.59 37089.6 37100.2 37110.0  2693.27 2692.03 2689.08 2688.33 2686.00  37118.63 37135.63 37176.38 37186.73 37218.97  III  2685.74 2682.56 2681.37 2679.99 2678.68  37222.61 37266.71 37283.16 37302.44 37320.69  III  SHe E G K D  6 0 2  5  5  20 5d 400 2 35  5 5 10  10  0  2  10 40 2 3 20 3 5 20 8d 10 12 1 1 2  2 8  5  8  4  4  3  25 10 10 50 10 5 5 0 5  2 10 4 10  0 2  30 60 6 1000 3 4 60 7 100  120 2 0 10 10  6  4  2  Classification  Wavelength 7\ (A)  4  75 8 5 2 3 3 10 4  -1  III III II  III IV  III III  III  III  III  - 9 2 -  Wavelength X(i)  Wavenumber (cm" )  2  2678.41 2677.82 2675.89 2674.51 2673.95  37324.4 37332.7 37359.6 37378.89 37386.8  1500 8 75 6 3 1 2 10 2  2665.48 2662.05 2659.41 2656.66 2654.91  37505.48 37553.83 37591.16 37630.07 37654.91  IV  1 2  500 7 10 4 300 5  37667.51 37703.20 37722.3 37733.02 37733.87  III  4  2654.02 2651.41 2650.16 2649.41 2649.35  2  100 5  1  40 4 500 6  2644.51 2643.44 2640.19 2639.20 2638.15  37802.9 37818.24 37864.7 37878.99 37894.06  IV  2633.22 2632.27 2631.79 2630.87 2628.41  37965.06 37978.8 37985.69 37998.93 38034.47  II III  2626.77 2624.76 2624.37 2623.31 2621.19  38058.22 38087.4 38093.1 38108.45 38139.3  2619.73  38160.51  600 9  2617.32 2615.54 2615.00  38195.61 38221.63 38229.52  5 2 5 2 10 4  2612.69 2610.38 2609.35 2607.96 2602.59  38263.26 38297.17 38312.22 38332.68 38411.81  Intensity M  lT  ED? 10 1 1 1 4  10 50  10 5 5 35 5  R  9  60 6 4d 25 4d  6  6 0 2 40 5  He E G K D  4  1  150 10 6 6d  6 8 6 3 50  s  0 1 1  3  2  1 6 1 4 5  4  2  30 5  5  500 8 4  0  3 0 3  1 100 2 4  10 15  4 2  6  2  100 7  CCis lassification  1  III  III  III  III  4d D^-5p P, 2  2  -93-  Intensity [  IT  EDP  5  60d 80d 30 60 80  30 15 15  25 100 50 10 15 100 100 305 15d  25 15  10  40d 6d 6d 40 100  R  s  He DG E  2587.16 2586.40 2585.23 2584.87 2582.73  38640.92 38652.27 38669.76 38675.16 38707.18  III  2  0 50 4 80 6 0 30 5  2580.94 2579.01 2571.31 2567.96 2567.08  38734.02 38762.99 38879.04 38929.7 38943.1  III  0  4 0 100 8  2566.60 2565.24 2564.4 2563.2 2561.72  38950.38 38971.02 38983.8 39002.0 39024.60  2560.87 2560.12 2559.07 2558.23 2554.60  39037.49 39048.9 39064.9 39077.81 39133.40  2553.44 2552.81 2552.61 2549.83 2549.79  39151.00 39160.75 39163.87 39206.62 39207.23  2549.16 2547.97 2546.39 2544.58 2541.91  39216.84 39235.17 I 39259.46 III 39287.41 39328.73  2536.14 2535.39 2534.83 2534.02 2531.11  39418.2 39429.8 39438.6 39451.2 39496.5  5 2 5  12 2 30 15 6  200 8 25 5  5  5 2 100 7  5  2 0  -1  400 10  2 0  100  (A)  C l a s s i f icat ion  6  1 5  A  Wavenumber (cm )  2600.46 2599.23 2596.00 2592.34 2591.42  0  40 6d 15d 20d 30  30 400 300  K  10 3 250 3  6 8  50 60  Wavelength  6  250  2  2 50 6 2 2 15  38443.31 38461.4 38509.23 38563.73 38577.42  IV  V  4p jS^-6s S 3  2  A  4s5s S -4s5p P 3  3  1  Q  III III  V  4s5s S -4s5p P 3  3  1  1  -94-  Intensity Mi  T  25  15 15  Wavelength A (A)  Wavenumber (cm" )  2530.28 2528.64 2527.91 2525.74 2522.36  39509.5 39535.1 39546.48 39580.4 39633.5  2520.88 2518.68 2517.32 2516.53 2516.21  39656.7 39691.36 39712.8 39725.26 39730.3  5 lOOd 100 4 lOOd  2515.72 2512.82 2512.05 2509.11 2506.76  39738.0 39783.99 I I I 39796.08 39842.7 39880.0  5  2504.45 2496.56 2496.05 2494.90 2494.23  39917.0 40043.12 40051.27 40069.7 40080.40 I I I  2^93.43 2492.97 2492.57 2490.84 2490.29  40093.31 I I I 40100.7 40107.10 40135.01 40143.9  3d 100 20 25 60  2489.75 2488.87 2485.60 2484.84 2484.12  40152.6 40166.8 40219.6 40231.9 40243.6  10 15 20 2 20  2482.17 2481.50 2480.87 2480.45 2479.71  40275.2 40286.0 40296.3 40303.1 40315.1  2478.56 2476.53 2476.06 2475.19 2473.96  40333.90 40366.85 f 40374.5 ( 40388.72 40408.78 V  EJJP  6 35  S  H e  E G D  K  8 20d 15d 60 40 25 100 30 60 30 15 200 30 90 50  100  R  30 80 200 40 80 50 30d 30d 80 2d  60 80 8d 15d  0  100 4  0  4  100 7 6  0  8  100 4 50 2 50 5  80 30  Classification  1  III 4p5p D -4p5d Fq III 4p5p P -4p5d Pj 1  o 3  3  d  0  3 •? 4s5s S -4s5p P2 ,5  1  -95Intensity M  EDP  LT  35 5 10  10  200  100 40d 100 80d 3d 2d 100 2 25 20  10 15 10 2 30  10 15 5 5  10  S  H E  60 10 15 20 40 3 2 100 50 200d 20 80 6 4 10  E G D  K  2472.95 2472.88 2471.89 2471.00 2469.69  40426.47 40426.75 40442.77 40457.2 40478.6  0  10 2  2468.68 2468.30 2467.61 2467.12 2466.09  40495.3 40501.6 40512.8 40520.8 40537.7  2465.23 2464.45 2463.95 2463.03 2461.27  40551.8 40564.7 40572.9 40588.2 40617.2  2459.52 2458.70 2457.99 2455.08 2454.57  40646.11 40659.7 40671.4 40719.6 40728.09  2453.05 2452.50 2450.49 2449.47 2448.60  40753.3 40762.42 40795.8 40812.8 40827.37  2447.46 2447.02 2445.55 2444.41 2443.66  40846.39 40853.7 40878.2 40897.3 40909.8  2442.88 2441.82 2440.93 2439.96 2438.74  40922.9 40940.7 40955.51 40971.9 40992.3  2437.84 2436.78 2435.60 2435.21 2434.04  41007.5 41025.3 41045.2 41051.7 41071.46  0  100  1  500 7  0 0  5 5 0  0  50  50 5 200d 50  0  2  Classif ication  1  50 10 6  50 3  6  Wavenumber (cm" )  2  40 3d 6d  100 30d 20 15d 100  5  R  Wavelength A (A)  III  III V  III  4s5s Si-4s5p P 3  1  1  -96Wavelength A (A)  Wavenumber (cm" )  2433.72 2432.73 2431.60 2430.06 2437.42  41076.9 41093.6 41112.7 41138.7 41183.4  2426.76 2426,01 2425.52 2424.28 2423.97  41194.6 41207.4 41215.7 41236.8 41242.22  500 70 60  2423.51 2423.27 2423.16 2422.73 2421.78  41249.87 41253.95 41255.83 41263.15 41281.03  75 6 10 600d 25d  2420.27 2419.91 2418.84 2416.52 2416.00  41305.16 41311.29 41329.56 41369.32 41378.23  300d 400d 10 8 300 5 200  2415.86 2415.65 2414.15 2413.50 2413.01  41380.62 41384.39 41409.91 41421.02 41429.47  20 5  2412.50 2411.74  41438.23 41451.29  lOOd lOOd  2411.00 2410.86  41464.01 41466.42  2410.38 2409.35 2408.08 2407.93 2407.22  41474.64 41492.33 41514.3 41516.9 41529.10  2406.59 2405.46 2404.98 2403.62 2403.25  41539.97 41559.48 41567.77 41591.3 41597.7  Intensity Mi  T  EpjP  R  S  H e  15 200 50 10 lOOd  15 5  5  lOOd lOOd 100  25 30 50 300  0  100 50d 80d 5 200 20  125  10  400 30 200  2  60 300  10  15  60 20 2d 2d 20 25 300 200 3d 5d  EDG K  50 3 100 lOOd 1000  25 0  0  2  20 3 10 12  Classification  1  III  III 4p5p D -4p5d P  2  III I III 4p5p D -4p5d P  1  III 4p5p D -4p5d P  2  3  3  2  3  3  2  3  3  1  -97Wavelength  Intensity EDP  20 1 3d 30 100  R  S  He  D  G  K  75 4 0  41615.06 41620.0 41626.9 41651.22 41668.06  8 1 100 2 1  2398.40 2397.59 2395.64 2394.73 2393.53  41681.8 41695.9 41729.8 41745.6 41766.6  4 1 10 3 80  2393.39 2393.19 2392.03 2391.00 2390.07  41769.0 41772.5 41792.7 41810.7 41827.04  15 1 2 1 12  2389.37 2388.24 2387.93 2386.86 2385.63  41839.3 41859.0 41864.5 41883.2 41904.8  8 1 8 50 4  2384.97 2384.01 2383.48 2382.40 2381.43  41916.4 41933.3 41944.4 41961.6 41978.7  5 6 1 2 lOd  2380.56 2380.24 2379.85 2379.30 2378.69  41994.0 41999.7 42006.6 42016.3 42027.0  80 3 50 2d 100  2377.76 2373.76 2372.75 2371.72 2371.07  42043.5 42114.5 42132.30 42150.7 42162.11  2370.46 2369.34 2369.03 2367.82 2367.65  42173.1 42193.0 42198.5 42220.1 42223.1  3  200  0 4  1  4 6  50 6  1 5 0 6  150  Classification  1  2402.25 2401.96 2401.56 2400.12 2399.19  2 4 4 6 4  1  E  Wavenumber (cm"" )  III 4p5p D -4p5d P J  3  1  0  -98  Wavelength A (A)  Wavenumber (cm--)  2366.57 2364.98 2364.31 2363.53 2360.26  42242.4 42270.4 42282.8 42297.2 42354.5  2360.05 2359.61 2357.60 2357.20 2356.17  42358.1 42367.1 42403.0 42410.2 42428.8  200 5  2354.32 2353.78 2352.37 2351.72 2350.47  42462.14 42471.86 42497.31 42509.1 42531.7  0 3  2349.79 2349.24 2347.62 2345.20 2344.25  42543.92 42553.9 42583.3 42627.2 42644.5  2343.65 2342.93 2342.10 2340.83 2340.13  42655.4 42668.5 42683.6 42706.8 42719.67  4 4 20 25 50  2339.87 2339.29 2338.23 2337.86 2335.36  42724.3 42734.9 42754.2 42761.0 42806.8  20 10 100 2 100  2334.49 2332.43 2331.47 2330.93 2329.95  42822.7 42860.7 42878.2 42888.1 42906.3  2327.59 2327.17 2326.41 2325.37 2324.76  42949.8 42957.5 42971.6 42990.8 43002.1  Intensity M  EDP  IT  R  S  H E  10 15 12 10 25  E G D  K  500 50  4 4 10 20 5 25  100 10 25 12 20d 30 10 30 100 50  10  30  5  lOd 6d 6 6 20  15 6 3 8 8  2  2  3  100 0  1  03  10  t  -  Classificat  1  II  III  99-  j  length A (A)  number (cm' )  2324.48 2324.08 2323.27 2321.54 2320.70  43007.2 43014.6 43029.6 43061.7 43077.3  2320,36 2319.93 2319.14 2318.82 2318.62  43083.6 43091.6 43106.2 43112.2 43116.0  2317.84 2317.47 2316.93 2316.41 2315.33  43130.41 43137.29 43147.34 43157,02 43177.15  30 50 20 2 4  2315.04 2313.77 2312.16 2311.12 2310.25  43182,55 43206.25 43236.33 43255.77 43272.06  30 2 3 5 1  lOOd  2309.19 2308.16 2307.79 2307.46 2306.92  43291.62 43311.23 43318.17 43324.37 III 4p5p D -4p5d F 43334.50 *  400d  2305.61 2302.85 2302.07 2301.39 2300.79  43359.22 43411.07 43425.77 43438.60 43449.92  25 8 500d  2300.16 2299.68 2299.04 2297.57 2296.90  43464.8 43470.5 43483.8 43510.8 43523.49  2296.13 2295.78 2295.29 2294.84 2293.97  43538.07 I I * * 43544.4 43553.8 43563.3 43580.4  E P D  R  1 2 3 100 6d  10  H e  EG K D  500d  15 6 500  5  S  20 100  300 300 200 100 10  1000  0  12 20 80 40 15 5 25 5 300 4 5 6 15 8  1  IV  9  Sg'X-SIi H  3  1  9  -100Wavelength A (A)  Wavenumber (cm" )  2292.90 2292.01 2291.43 2290.65 2289.68  43599.4 43616.3 43627.3 43642.2 43660.8  2289.24 2288.70 2288.36 2286.94 2286.61  43669.9 43679.4 43685.2 43713.8 43819.3  2285.73 2283.93 2283.15 2282.61 2282.20  43736.1 43770.8 43786.02 43796.07 43803.7  2281.08 2280.77 2280.29 2279.57 2279.24  43825.3 43831.4 43840.6 43854.5 43860.8  20 20 2  2279.01 2278.88 2278.36 2276.94 2275.26  43865.2 43867.7 43877.7 43905.1 43937.5  6 8 12 1 200  2274.81 2273.63 2272.27 2270.71 2269.85  43946.2 43969.0 43995.3 44025.5 44042.2  2268.54 2267.06 2265.61 2265.13 2264.51  44067.6 ' 44096.4 44124.6 44133.9 44146.0  2263.40 2263.11 2261.00 2259.79 2256.56  44167.7 44173.3 44214.5 44238.2 44301.5  Intensity M  lT  10  EpP R 200 150 80 60 40  S  H e  1000  50  4  1  40 30 20  5  5  5d 40 50  10  10  D  20d 2 1000  3 15 3 6d 10 8 50 40 100 40  E G K  0  100  3 5d 15 60 3d 2d 15 10 100 4d  0 0  1  0  100  2  0 lOOd  Classification  1  III  III 4p5p P -4p5d P 1  3  1  III III  2  -101 Intensity Ml  T  10  5  Wavelength A (A)  Wavenumber (cm" )  2255.37 2254.89 2254.23 2253.81 2252.76  44324.9 44334.3 44347.3 44355.5 44376.2  10 2 2 2 100  2252.22 2251.33 2251.01 2249.32 2248.81  44386.8 44404.4 44410.7 44444.0 44454.1  100 30 4 40 2d  2247.88 2246.42 2245.97 2245.52 2244.38  44472.5 44501.4 44510.3 44519.2 44541.8  15 20 60 30 5  2243.65 2242.29 2241.71 2241.06 2239.66  44556.3 44583.3 44594.9 44607.8 44635.7  2000  2239.02 2238.54 2238.01 2237.75 2236.51  44648.4 44658.0 44668.8 44674.0 44698.7  10  2235.92 2235.25 2234.71 2233.48 2233.03  44710.5 44723.9 44728.8 44759.4 44768.4  2231.43 2230.29 2229.63 2229.21 2228.66  44800.5 44823.4 44836.6 44845.1 44856.1  2227.29 2225.67 2225.21 2224.45 2223.88  44883.7 44916.4 44925.6 44941.0 44952.5  EDP R 8d 60 15 10 60  S  H E  2  lOd 8d 100 4 10  25 40 30 4 2  D  0  100 2d 2d 2  40 4 60 15 2  E G K  500  0  0  Classification  1  q  III 4p5p P -4p5d' P ' X  5  (  1  II**  -102Intensity EDP  R  S  H e  E G K D  8 4d 6d 2d 6d 80 2 6 6 6  0  10 6d 3d 50 4d  0  6d 6 20 8 5 8 25 2 2 2d 4d 2 10 1 lOd 15 1 10 10 10 10 10 10 5  25  400 0  1  1 0  40 10 10 100 10 0 lOd  0 300  100 5  300 lOOd 25  Wavelength A(A)  Wavenumber (cm" )  2223.43 2222.63 2222.11 2221.32 2220.50  44961.6 44977.8 44988.3 45004.3 45020.9  2220.06 2219.13 2218.82 2216.62 2216.18  45029.83 45048.7 45055.0 45099.7 45108.6  2215.57 2213.78 2213.34 2212.47 2210.91  45121.06 45157.5 45166.5 45184.3 45216.1  2210.45 2209.27 2207.86 2206.04 2205.42  45225.9 45249.7 45278.70 45315.92 45328.70  2204.83 2201.69 2199.24 2198.81 2197.79  45340.82 45405.45 45456.0 45464.9 45486.0  2196.85 2196.26 2195.76 2195.17 2193.33  45505.4 45517.6 45528.0 45540.2 45578.4  2192.53 2192.00 2191.60 2191.23 2190.43  45595.23 45606.1 45614.4 45622.3 45639.0  2189.82 2187.98 2187.39 2186.63 2185.37  45651.7 45690.1 45702.38 45718.18 45744.57  Classification  1  IV  1A 5s S i - 4 p ° S L 2  4  f  r x  III 4s4p lD -4p5p P, * 3  3  9  -103Intensity E P D  R  SHe E G K D  10 30 75 100 5  100 5 5  75 30d Id 40d 20d 2d 100 15 15 150  1  50  1 6  30  6  30  150 10 2 2  8 1 0  50  Wavelength •X (A)  Wavenumber (cm" )  2183.91 2181.23 2177.23 2175.62 2174.58  45775.06 45831.41 45915.79 45949.45 45971.58  2174.12 2171.39 2170.57 2170.24 2169.97  45982.51 46039.0 46054.3 46063.4 46069.2  2168.30 2166.63 2166.17 2165J83 2165.25  46104.6 46140.15 46149.9 46157.2 46169.76  2164.20 2161.88 2159.50 2157.88  46192.15 46241.5 46307.0 46327.2  Classification  1  IV  4f R,-5g G  IV  4fF- -5g G  2  2  7k  2  2  I  7\ vac  5 25 10 1 30 40 20 200 2 5 5 5 2 1 200 1 5 2 2 1  1 1 3 4 2 8  4 1  46406.30 46419.65 46474.0 46619.61 46635.48  2141.59 2139.60 2137.32 2136.46 2134.55  46694.28 46737.71 46787.57 46806.4 46848.3  III III IV  46923.5 47003.08 47034.26 47076.99 47352.92  III III IV  50  2141.13 2127.52 2126.11 2124.18 2111.80  20 10 20 10  2108.05 2106.30 2104.40 2101.15 2095.39  47437.21 47476.62 47519.48 47592.98 47723.81  10 20 1 1 1  2 7  2154.88 2154.26 2151.74 2145.02 2144.29  Od 15  20 15 50 15  10 10 1  III IV  IV  Vd2°*  5p  3  3l  -3 04Wavelength A vac  Wavenumber (cm" )  50 10 60 40 40  2090.61 2084.70 2075.45 2063.45 2062.02  47832.91 IV 47968.53 48182.28 I 48462.60 I 48496.25  50 2 15 40 10  2057.39 2048.26 2045.39 2040.51 2031.92  48605.32 III 48821.93 48890.43 49007.5 I 49214.7  20 15  2014.52 2006.35  49639.62 IV 5p P^-6s S i 49841.75 III  Intensity «I  T  100 800  EJJP  R  25  7  ^He  50 5 5 10  3 8 1 8  1  1000  10 5 6  E G D  K  1  R  Ky  v  2  15 2  8 3 10 8 100  1995.12 1993.03 1977.04 67.04 65.05  50122.3 50174.7 50580.7 50837.8 50889.3  100 15 15 25 3  60.91 56.96 50.15 47.20 42.29  50996.7 51099.7 51278.1 51355.8 51485.6  2 2 2 2 2  41.12 40.28 39.80 39.54 37.94  51516.7 51538.9 51551.7 51558.6 51601.2  3 5 4 1 1  35.99 32.05 28.92 28.32 22.72  51653.2 51758.5 51842.5 51858.6 52009.7  10 1 4 60 100  22.47 21.75 21.50 20.36 19.30  52016.4 52035.9 52042.7 52073.6 52102.3  4 50 5 5  6  5 5  6  G  C l a s s i f i c a t ion  5p P 2  SHe I III IV  4s 5p Pi-4s 6s Si * 2  2  2  2  Z  III III III 4p5p p„-4p7s P * 3  3  1  IV 4s4p22R _ 4 2 %. s  V4s5p Pi-4s5d D  1  V4s5p P -4s5d D  2  1  3  1  3  1  n  5 p  2  P i 2  -105Intensity R  K  y  30 35 4 4  6 2 2  v  S G  100 5 3 8 35  He 10  Wavelength A vac  Wavenumber (cm" )  19.22 13.84 03.90 03.59 1901.42  52104.5 52251.0 52523.8 52532.3 52592.3  Classification  1  I I V  40 8 4 5  3 12 12 25 6  1898.56 97.30 94.56 93.18 92.24  52671.5 52706.5 52782.7 52821.2 52847.4  I III III III III  6 2 2  6 2  91.22 87.66 85.30  52875.9 52975.6 53042.0  III  8  76.62  53287.3  2 10 3 6 8  74.20 70.84 69.50 64.85 1858.88  53356.1 53451.9 53490.2 53623.6 53795.8  V V  55.29 54.35 52.87 51.12 49.51  53899.9 53927.3 53970.3 54021.4 54068.4  I  8 8 3 12 30  49.12 43.32 42.61 41.30 39.24  54079.8 54249.9 54270.8 54309.5 54370.3  8 4 2 3 6  38.38 38.08 36.20 32.65 31.03  54395.7 54404.6 54460.3 54565.8 54614.1  20 4 4 10  21.70 19.90 15.90 13.68 1809.35  54893.8 54948.1 55069.1 55136.5 55268.5  25 30  4  4  50 6 10 6 12  10  III  I  I  III  4s5p P -4s5d D 3  3  2  2  -106-  isity V  30  G  Wavenumber (cm- )  08.70 08.41 07.76 05.69 03.36  55288.3 55297.2 55317.1 55380.5 55452.0  4 3 8 3 3  01.97 00.02 1799.09 96.95 95.75  55494.8 55554.9 55583.7 55649.9 55687.0  95.28 94.14 93.59 90.16 89.43  55701.6 55737.0 55754.1 55860.9 55883.7  15  89.22 85.40 84.66 83.06 82.89  55890.3 56009.9 56033.1 56083.4 56088.7  10 5 2 2 3  81.84 81.45 77.24 75.93 1775.00  56121.8 56134.1 56267.0 56308.5 56338.6  72.00 71.36 70.00 65.70 60.93  56433.4 56453.8 56497.2 56634.8 56788.2  10 5 2 0 2  60.58 52.89 51.70 48.78 46.20  56799.5 57048.7 57087.4 57182.7 57267.2  0 2 0 6 3  43.77 40.18 39.85 36.98 36.04  57347.0 57465.3 57476.2 57571.2 57602.4  10 30 15 4 16  6 0 1 3d 5  2  Classification  1  30 16 10 4 8  20 3 2  6  SHe  Wavelength A vac  III 4p5p P -4p7s P III 4p5p D -4p7s Pi 3  3  2  3  9  3  2  III 4p5p D -4p7s P 3  3  1  0  III 4p5p P -4p7s P  1  III 4p5p P -4p7s P  2  3  1  2  3  3  1  -107-  Intensity V  G  SHe  Wavelength A vac  1  2 4 3 4 8  34.30 32.00 30.09 21.85 19.75  57660.2 57736.7 57800.5 58077.1 58148;0  2 0 5 2 3  16.25 14.30 10.73 06.52 05.30  58266.6 58332.9 5845416 58598.8 58640.7  2d 4 2 1 6  1699.74 90.70 82.78 75.88 75.30  58832.5 59147.1 59425.5 59670.1 59690.8  3 3 6 6 6  73.74 72.84 71.17 67.24 65.62  59746.4 59778.6 59838.3 59979.4 60037.7  1  6 16 20 5d 10  64.70 56.23 53.32 52.04 44.90  60070.9 60378.1 60484.4 60531.2 60794.0  12 10 15  15 5 2 1 5  41.63 32.10 26.25 22.70 21.16  60915.1 61270.8 61491.2 61625.7 61684.2  3 2 0 6 5  1620.68 20.40 15.40 14.80 14.05  61702.5 61713.2 61904.2 61927.2 61956.0  5 0 30 30 15  13.30 10.73 08.43 07.50 06.46  61984.8 62083.7 62172.4 62208.4 62248.7  25 25  25 2  10 25  Classification  Wavenumber (cm" ) III  III I III I  I II  III III III I I II  I I  -108-  Intensity Ky  20 15 15 3 2  12 2  15  V  G  s  He  Wavelength ^  v  a  c  Wavenumber  Classification  (cm ) -1  8 2 8 8 2  05.95 02.90 00.40 1599.42 98.80  62268.4 62386.9 62484.4 62522.7 62546.9  16 12 4 8 3d  96.15 93.20 87.87 87.42 82.48  62650.8 62766.8 6297715 62995.3 63192.0  4 8 4 30 6  80.34 80.04 79.49 77.16 75.26  63277.5 63289.5 63311.6 63405.1 63481.6  50 12 2 3 5  71.50 68.69 64.23 63.35 58.56  63633.5 63747.5 63929.2 63965.2 64161.8  75 4 5 3 6  48.80 47.10 46.00 36.60 34.90  64566.1 64637.1 64683.0 65078.8 65150.8  III I  60 6 8 2 3  1533.75 32.08 30.60 29.25 25.15  65199.7 65270.7 65333.9 65391.5 65567.3  III 4s p 3p -4s4p III  4 4 30 25 50  1524.40 23.00 1516.50 09.50 08.06  65599.6 65659.9 65941.3 66247.1 66310.4  4 3 16 60 60  1505.30 1500.90 1499.68 97.90 92.74  66431.9 66626.7 66680.9 66760.1 66990.9  II I I  I I I III III  III 2  2  2  I III  35  -109snsity V  10  G  he  Wavelength X vac  Classification  Wavenumber (cm"" ) 1  100 4 12 16 2  83.68 76.60 75.58 74.60 73.40  67400.0 67723.1 67770.0 67815.0 67870.2  2 10 6 6 4  54.20 53.95 52.90 51.72 49.27  68766.3 68778.2 68827.9 68883.8 69000.3  V  20 2 25 2 8  48.60 47.00 45.46 41.97 41.38  69032.2 69108;5 69182;1 6934916 69378.0  V  6 6 20 20 25  1440.08 37.72 37.13 33.40 31.63  69440.6 69554.6 69583.1 69764.2 69850.5  6 8 6 8  26.90 13.70 10.30 07.80 05.72  70082.0 70736.4 70906.9 71032.8 71137.9  3 30 2 2 2  1404.07 02.80 00.60 1399.13 95.70  71189.6 71286.0 71398.0 71473.0 71648.6  45 3 4 4 4  93.80 90.07 84.60 78.81 70.15  71746.3 71938.8 72223.0 72526.3 72984.7  2  69.10 61.05 57.68 39.39 37.57  73040.7 73472.7 73655.1 74660.9 74762.4  2 2  III  ,2  2  A  ,35,  3 l  4s4d D -4s5p P  1  V  3 3 4s4d D -4s5p P  g  V V  4s4d D -4s5p P_ 4s4d Di-4s5p Pl  3  3  2  V  I  3  3  3  2  3  1  -110Intensity R  Wavenumber (cm" )  60 4 2 12 8  1332.92 31.12 30.20 29.88 29.35  75022. 75124.7 75176.7 75194.8 75224.7  3 30 2 60 50  29.10 24.00 20.07 18.40 14.40  75238.9 75528.7 75753.6 75849.5 76080.3  5 2 3 8 8  14.14 10.68 10.40 09.04 08.70  76095.3 76296.3 76312.6 76391.9 76411.7  IV  20 6 25 12 2  07.53 06.20 05.49 05.06 03.43  76480.1 76558.0 76612. 76624.8 76720.7  IV  45 30 2 8 8  02.62 02.22 1301.20 1299.08 96.95  76768.4 76791.9 76852.1 76977.6 77104.0  12 20 4 6 4  91.62 90.95 88.52 86.60 86.04  77422.2 77462.3 77608.4 77724.2 77758.1  16 5 4 8 30  85.53 84.85 77.64 76.86 62.45  77788.9 77830.1 78269.3 78317.1 79210.  30 6 6 25  61.54 59.55 56.65 47.40 46.00  79268.2 79393.4 79576.7 80166.7 80256.8  V  8  2 8  2 5 4 4 2 4  Classif ication  Wavelength \ vac  G  ^  1  IV  IV  IV  7k  \  V  4s 4d IL - 4 s 4 f F 2  2  .2^2  2  2  .24  III  II  II IV  .2^2,  24,  IV  ,2^2,  ,24i  V  -IllI,  Intensity Ky 0 7  V  G  he  Wavelength A vac  Wavenumber (cm~4)  Classif ication  3 10 2 5 3  37.60 34.85 34.25 32.59 31.00  3  4 16 8 6 3  1228.74 27.56 24.60 22.02 18.49  81384 81462 81659 81832 82069  2 0 1 7 2  4 2 10 5 5  18.04 08.72 06.54 05.70 05.25  82099 82732 82882 82939 82970  10 2 6 2 3  02.56 1200.23 1199.36 98.46 98.17  83156 83317 83378 83440 83460  3  83577 83775 83872 1 84160 84461  II  1  80801.6 80981. 81020.9 81130J0 81234.8  II IV  V II II  4S4P : 1  II II  30 6  96.50 93.68 92.24 88.21 83.98  2 2 1 1 8  8 8 5 5 16  82.69 77.99 77.31 70.78 68.50  84553 , 84890 84940 85414 85578  II II II II II  2 5 2 8 7  12 20 16 12 12  66.83 66.51 57.34 56.93 55.95  85705 85724 86406 86437 86509  IV II IV II II  6 8  1152.4 1150.96 1150.76 41.97 34.02  86775 86884 86900 87570 88180  IV V IV II  8 2  z  II  1 0 10 0 2  7 1 9 0  ,24,  4s 4p  II  V 4s4p^' 4s4p  21  2C„2T  s  V  *P 4s4p J  '5p P, z  -112Intensity R  K  y 0 1 0 0 5 0 0 0 0  10  0 8 0 0 0 0 0  7 6 9 6 9  0 0 5 1 6 2 8 3 1 1 1 1 2 0  8  o  5  V  G  Sfle 2 1 2  Wavelength "K vac  Wavenumber (cm" ) 1  32.46 30.49 29.96 28.45 27.70  88303 88457 88499 88617 88676  26.28 23.76 22.93 22.54 1121.62  88788 88987 89053 89084 89157  3 2  19.98 19.20 17.73 16.49 14.52  89287 89350 89467 89566 89725  6 4 2 1  13.33 10.08 09.42 08.51 08.00  89821 90084 90137 90211 90252  2 10 2 1  16  2 50 50 6 40 12 50 5  06.20 02.14 1100.50 00.36 1100.10  90400 90733 90868 , 90879 90901  1099.10 98.98 97.85 94.685 90.48  90984 90993 91087 91350.5 91703  3 12 20 12 6  89.97 87.96 85.97 84.64 84.04  91746 91915 92084 92196 92248  10 12  83.38 81.76 81.23 80.54 79.74  92304 92442 92487 92546 92615  c  45d  Classification  II  III IV  .2 _2, C  .2„_2  III  IV  4s 5p P£-4s 7s S£ 2  III III III V II  II  III  ,21,  2  2  2  113Intensity R  Ky  V  0 1  1 1  1  3 1  9 1 0 0 0 3 5  5 0 5 5 0 0  4  5 1 0 0  2  G  Sg  e  Wavelength A vac  Classification  Wavenumber (cm" ) 1  3 6 3 8 3  79.10 78.75 78.17 77.51 76.91  92670 92700 92750 92807 92858  5 2  76.53 75.72 69.72 69.05 68.83  92891 92961 93482 93541 93560  2 4 2 6 40  67.11 66.18 63.41 1062.47 57.41  93711 93793 94037 94120 94571  2  57.05 56.25 53.90 53.42 52.87  94603 94675 94886 94929 94978  30 4 5 20  52.13 51.60 50.55 50.40 50.22  95045 95093 95188 95202 95218  5 60 10 6 4  49.65 49.51 48.04 47.64 47.11  95270 95283 95416 95453 95501  II II*  20 2 12 6 0  45.35 44.64 44.46 44.10 43.12  95662 95727 95743 95776 95866  II  2 8 4 60 50  41.82 39.00 38.35 36.97 36.18  95986 96246 96307 96435 96508  8  10  II  III III  II  II II  II  II II  -114Intensity K  y  0 10 3 3  3  3 2 '  0 0  9 9 0 3 1 0  2 0 0 1  5 2 4 1 3  V  G  S  H e  Wavelength A vac  Wavenumber (cm"  6 3 45 20 10  35.06 34.34 33.56 29.52 28.58  96613 96680 96753 97133 97221  0 4 10 10 2  26.96 26.28 25.70 24.86 23.80  97375 97439 97494 97574 97675  2 12 12 4 1  23.01 22.10 21.80 21.28 1020.02  97751 97838 97867 97916 98037  6 3 4 6 0  19.66 19.35 17.98 16.30 15.88  98072 98102 98234 98396 98437  4 6 45 50  15.31 14.72 13.99 13.40 13.26  98492 98549 98620 98678 98691  25 4  11.87 11.15 10.72 10.25 09.94  98827 98897 98939 98985 99016  08.14 07.97 07.57 06.23 05.89  99193 99209 99249 99381 99414  16 16 20 7 4 100c? 60 100 60  04.72 03.02 1001.63" 1000.75 1000.40  99530 99699 99837 99925 99960  Classification  II II  II  II II II II  7z  IV  4s 4p P -4s4p D* 3P * III 4p21S -4p5s 2  2  2  a  Zi  ,5  0  1  -115Intensity R 0 0 0 0 10  2 4  Wavelength A vac  Wavenumber (cm" ) 1  999.50 998.73 998.04 997.94 997.54  100050 100127 100196 100206 100247 100332 100341 100458 100721 100824  6 0 0  70 8 3 16  996.69 996.60 995.44 992.84 91.83  1  2 10 2 5 2  91.56 91.40 90.67 90.07 89.76  100851 100867 100942 101003 101035  1 1  0 12 2 0  89.29 988.72 86.86 86.68 86.58  101083 101141 101332 101350 101360  4 20 6 4 4  85.70 83.94 83.44 82.83 80.28  101451 101632 101684 101747 102012  3 4 100 60 4  78.80 76.92 74.85 74.11 72.27  102166, 102363 102580 102658 102852  25 2 4 4 3  71.21 70.37 70.22 68.29 66.03  102964 103053 103069 103275 103516  3 2 2 2 50  65.31 64.93 63.31 63.06 61.78  103594 103634 103809 103836 103974  0 1 0 6 1  7 5  2  1  ClassifIcatIon  IV  ,2„_2,  V  22.  II  II  III III IV  V  4s4d D -4s4f F  2  V  4s4d D -4s4f F  2  V  4s4d D -4s4f F  2  II  3  3  3  3  3  2  3  3  1  -116Intensity V  h  G  ^e  Wavelength 7v vac  Wavenumber (cm" )  Classification  1  3 50 2 40 2  61.27 60.03 59.59 59.04 58.28  104029 104163 104211 104271 104354  V  10 75 60 50 40  57.91 54.78 54.43 53.92 53.74  104394 104736 104775 104831 104850  III III III III  10 4 4 8 12  51.25 50.07 47.07 43.56 41.01  105125 105255 105589 105981 106269  II II V 4s4d D3-4s4f F II II*  30 100 3 2  40.64 38.46 38.18 37.42 36.42  106311 106558 106589 106676 106790  III  0  6 3 6 2 10  33.98 932.31 30.95 29.20 27.46  107069 107260 107417 107619 107821  1  6 1 4 8 2  26.32 24.69 23.97 22.92 21.93  107954 108144 108229 108352 108468  12 25 4 30 25  21.04 20.51 19.68 18.81 17.89  108573 108635 108733 108836 108946  6 4 25 1 1  16.49 15.75 14.63 13.17 13.00  109112 109200 109334 109509 109529  0 6 0 5 5 4 1 0 0 0 0 5  1 1 1 0 1 1  1  V IV  .2„_2,  ,22,  3  3  II  III V II II V  > P«-4n ll 23  3  4p P -4s5p P 23  3  2  2  4  I  -117Intensity R  K  y  0 1 1 0  0 3 2 1  0 0 0 4 5 1 2 0 0 3 5 4 1 1 1  V  G  40  S  H e  Wavelength A vac  Wavenumber (cm" )  Classification  1  12.69 11.96 09.22 07.72 07.54  109566 109654 109984 110166 110188  06.56 06.36 06.09 05.50 04.10  110307 110331 110364! 110436 110607  100 50 20  03.74 03.51 03.37 02.28 00.74  110651 110680 110697 110830 111020  III III  3 1 2 3 2  900.25 899.17 898.13 896.94 894.90  111080 111214 111342 111490 111744  II  12 2 20  894.07 93.27 91.61 91.44 91.22  111848 111948 112157 112178 112205  90.68 89.52 88.87 88.06 87.41  112274 112420 112502 112605 112687  30 2 6 3  86.85 84.90 83.17 82.64 82.13  112759 113007 113228 113296 113362  0 15  81.34 79.15 78.19 77.77 75.36  113464 113746 113871 113925 114239  2 8 1 20 1 60 50  30 1 3 10  II V  III  II VI II  III  , 3p -4p l 2  3  1  D 2  -118Intensity R  Ky 1 0  V  G  ^  Wavelength A vac  Wavenumber (cm' )  Classification  1  0 0  2 5 6 0  73.77 72.93 72.37 71.60 70.95  114447 114557 114630 114732 114817  II  0 0 0 1  3 0 4 4 3  69.40 68.51 67.80 66.98 65.87  115022 115140 115234 115343 115491  V II  1 3  3  5  64.49 60.62 60.44 59.95 58.58  115675 116195 116220 116286 116471  15 2 8 4 16  56.50 55.76 54.37 852.51 52.10  116754 116855 117045 117301 117357  3 5 0 4 2  51.31 50.58 50.25 49.62 49.54  117466 117567 117612 117700 117711  8 25 40 3 30  46.20 45.91 45.75 45.04 44.15  118175 118216 118238 118338 118462  30 0 8 2  43.41 43.02 42.06 41.25 40.32  118566 118621 118756 118871 119005  8 30 0 0 6  40.15 39.48 38.30 37.47 36.01  119026 119121 119289 119407 119616  0  0 6 0 3  4  0 0 0 5 0 4 2  4  4p P -4s5p P 23  3  0  1  II II  V  4 p P -4s5p P 23  1  II III  II IV  4p P^-6p P£  V  3 1 4s4p P -4s4d D  VI  4s S^4p P^  22  2  2  2  2  III  V  4s4p P -4p P 3  23  2  2  -119i  Intensity h  0  6  8 0  6 7  0 0 6 0  0 1 2 1  4 1  1 0 2 1 0 0 0  0  3  V  G  20  ^  Wavelength A vac  Wavenumber (cm"* )  Classification  1  25 12 20  35.27 34.86 34.45 33.78 33.28  119722 119781 119839 119936 120008  20 3 0 6 2  32.62 31.70 30.99 30.60 30.33  120103 120236 120338 120395 120434  25 0 8 6 8  30.15 29.29 28.44 27.30 27.03  120460 120585 120709 120875 120915  6  25.90 25.30 23.89 20.70 20.54  121080 121168 121375 121847 121871  20.05 819.52 18.95 18.63 18.60  121944 122023 122108 122155 122159  30 4  18.45 18.10 17.91 17.55 16.94  122182 122234 122263 122317 122408  25 4  16.33 15.79 15.07 14.75 14.04  122499 122581 122689 122737 122844  4s4p P -4p P V III  4 5 4 40 20  11.90 11.20 09.52 08.68 07.06  123168 123274 123530 123658 123907  4s4p P -4p P V III  30 3 20 3 4 4 30  III  V  .23,  4s4p P - 4 p P 2 3  1  0  II II*  III 3 1 V 4s4p P -4s4d D 1  III  3  2s  1  3  1  23  2  2  2  -120-  Intensity R  V  5 6  5  0 1 5  4  1 2 0 0 6 1 0  0 5  4  0  0  7  4 0 0 0  6  0 0 0  G  Sne  Wavelength ?\ vac  Classification  Wavenumber (cm ) -1  4 20 30 4 30  06.56 04.23 03.78 03.02 02.82  123983 124343 124412 124530 124561  0 10  801.60 801.41 01.22 00.49 00.11  124751 124780 124810 124923 124983  II  799.95 799.76 99.64 99.41 98.95  125008 125038 125056 125092 125164  IV III  98.79 98.69 98.46 98.30 98.09  125189 125205 125241, 125266 125299  20 4  797.94 797.60 97.31 96.80 95.15  125323 • 125376 125422 125502 125762  2 40 8 16  94.90 94.58 92.56 92.08 91.26  125802 125853 126173 126250 126381  V  90.77 90.05 89.34 88.93 88.79  126459 126574 126688 126754 126776  III  86.40 86.21 85.76 85.63 85.42  127162 127192 127265 127286 127320  II*  2 20 4 20 2 2 6 20 3  30 4 20 2 50  4s4p P -4p Pi V IV III 3  23  Q  IV  IV  III III  III  V  22,  ,2 A #2  t  V  .2^2,  -121Intensity R  3 2  K  y 0 3 2 0 0 0 0 4 0  8 0  4 5 0 2 2  3 2 3 2  0  2 0 0  2  0 0 1 2  8  6 0  V  he  G 2 25 4 25  Wavelength A vac  Wavenumber (cm" ) 1  84.52 83.67 82.92 82.70 81.81  127466 127605 127727 127763 127908  80.75 79.88 78.52 78.17 77.99  128082 128225 128449 128507 128536  77.32 76.46 75.77 75.26 74.40  128647 128790 128904 128989 129132  8 0 30 4 40  74.19 773.16 772.24 771.52 70.88  129167 129339 129493 129614, 129722  16 2 2 0 3  69.76 69.01 67.16 66.03 65.67  129911 130037 130351 130543 130605  0 4 6  65.14 64.56 64.40 63.47 61.98  130695 130794 130822 130981 131237  60.62 60.20 59.80 59.54 59.14  131471 131544 131613 131658 131728  58.90 58.15 57.86 57.06 56.32  131769 131900 131950 132090 132219  8 30 255 8  0 35 40 40 0 6 4  Classification  III III  III IV  2„ 2,  22,  III II  III III IV  IV  III V IV  4s 4p p^-4s4p 2p| 2  2  2  -122Intensity V  0 0 0 3 0 0 0 0 0 5 1 0 0 0 4 2 2 0 3 0 0 4 0 0 0 2 0  G 0 4  he  Wavelength A. vac  Wavenumber (cm )  Classification  -1  2 3  55.83 55.63 55.16 54.80 53.78  132304 132340 132422 132485 132665  35 10 10 3 3  51.81 51.05 50.55 49.87 48.65  133012 133147 133236 133356 133574  47.71 47.56 47.35 46.83 46.38  133742 133769 133806 133899 133980  3  46.16 45.70 44.62 43.58 43.40  134019 134102 134297 134484 134517  2 125 30 4 30  742.78 742.21 41.87 40.66 39.62  134629 134733 134795 135015 135204  5 30  39.40 39.24 38.52 38.12 37.22  135245 135274 135406 135479 135645  37.02 36.24 34.57 34.36 33.33  135682 135825 136134 136173 136364  IV  32.48 32.07 31.52 31.37 30.86  136523 136598 136702 136730 136825  III  16 30 30 4  40 30 30 45 40 6 2 5 35 4  III  IV  4s 4p R.-4s4p ]  IV  4d  2  2  22  A  Vp%  III IV 4s 4d D -7p P III 7k A 2  2  2  III III III .2„_2,  22,  -123Intensity K  y  2  V  G  5 30  S  He  Wavelength A vac  Wavenumber (cm" )  Classification  1  136939 136971 137087 137199 137348  III  16 3  30.25 30.08 29.46 28.87 28.08  2 10 40 2 32  27.48 27.41 26.40 25.16 24.40  137461 137474 137665 137901 138045  III  4 5 0  32 30  138068 138352 138546 138617 138708  III IV  3 16  24.28 22.79 21.78 21.41 20.94  2 2  25 50 50 25 4  20.68 20.36 20.22 19.95 719.35  138758 138819 138846 138899 139014  III III  30 5 8 10  718.63 18.30 16.69 14.10 13.87  139154 139218 139530 140036 140082  4 1 2 30 30  13.27 12.40 11.85 11.39 11.04  140199 140371 140479 140570 140639  4 40 40 20 3  10.14 09.41 09.17 06.75 06.54  140817 140962 141010 141493 141535  3  05.70 05.28 04.87 03.84 03.53  141703 141788 141870 142078 142140  0 1 0 2 0  2  0 1  2 2 0 7 4 1  2  25 16 2  1  III  III  III III III III  2  4p Pi-4s4p 2p, 2  2  -124ii  Intensity  2  Wavenumber, (cm ) 142300 142393 142574 142794 143139  97.65 97.49 97.28 694.93 94.29  143338 143371 143414 143899 144032  20  93.14 92.21 91.23 90.89 90.66  144271 144465 144670 144741 144789  2 2 2 3  35 10 15 35 30  90.48 89.96 88.95 87.67 87.40  144827 144936 145148 145419 145476  1 1  12 10 8 2 30  87.10 86.49 85.87 685.15 684.60  145539 145669 145800 145953 146071  12 3 2 2 2  84.32 84.07 83.51 83.06 82.34  146130 146184 146304 146400 146555  1 16 2 10 2  81.49 80.50 79.40 78.86 77.78  146737' 146951 147189 147306 147541  4 6 10 50 2  77.08 76.63 76.12 74.49 73.82  147693 147791 147903 148260 148408  00 00 0 0 2 0 0 2  2 2 0  3  5  4 20 8 4 30  Classification  -1  02.74 02.28 01.39 700.31 698.62  0  30 4 10 2 2  Wavelength A vac  II*  III  -125-  Intensity K  y  V  4s24p P -4s 4d D^ 4s4d Do-4s4f Fo # 4s 4p2p -4s 4d2n,  4  65.71 65.43 61.63 57.95 57.68  150216 150279 151142 151987 152050  IV  4p2  0  6 25 20 20 3  55.16 54.16 52.65 52.43 52.12  152634 152868 153221 153273 153346  IV IV V  4s24D Pl-4s 4d D| 4s4d- D -4s4f ^ 3 *  8  6 2 1 1 30  51.23 50.14 48.44 46.12 44.88  153556 153813 154216 154770 155068  III  6  44.16 43.19 42.90 42.68 42.28  155241 155475 155545 155598 155695  V  30 20 1  41.68 41.12 40.87 640.56 38.22  155841 155977 156038 156113 156686  30 30 20 40 20  35.94 35.80 34.58 31.17 30.74  157248 157282 157585 158436 158544  •  30.67 27.63 26.43 25.82 22.56  158562 159330 159635 159790 160627  1 9 10  3 2  8 2 5 4 5  8  3 4  3  1  IV V IV  40 100  0 1 0 0  4  H e  Classification  148606 148843 148898 149232  10  3  S  Wavenumber (cm" )  72.92 71.85 71.60 670.10  8  8 9  G  Wavelength A vac  10 4 4 4 4 0 3  2  25 30 2  2 2 4  IV III  2  2  2  3  1  3  2  %  2  ft  Vp\ 2  2  2  L  2  4s4p P -4s5s S 1  3  1  1  ; 4p P|-4s 5s S^ 2  2  2  2  -126-  Intensity R  v  G  s  H e  Wavelength A vac  1  4 4 10 20 3  19.06 18.76 16.94 16.28 15.08  161535 161614 162090 162264 162580  50  8 3  55 70 35  14.32 13.64 13.12 612.98 11.10  162782 162962 163100 163137 163639  1 4 4  1 4 16 12 3  10.11 09.59 08.36 07.19 05.92  163905 164045 164376 164693 165038  4  1 1 1 6 30  05.20 04.75 02.91 601.97 01.75  165235 165358 165862 166121 166182  60 5 30 25 2  00.95 00.52 599.93 99.75 97.90  166403 166522 166686 166736 167252  50 7 1 1  97.39 96.12 94.93 93.97 93.50  167395 167751 168087 168359 168492  20 20 2 1 1  91.35 88.75 88.10 585.45 82.15  169105 169851 170039 170809 171777  10 5 1 1 8  81.20 80.50 75.90 74.86 74.44  172058 172265 173641 173955 174083  4 3  5 2  0  0 2  Classification  Wavenumber (cm- )  V  4s4p P -4s4d D 3 3 4s4p P -4s4d D  V  4s4p P -4s4d D  V  3  3  2  2  3  1  2  3  2  3  VI VI  V  4s4p P  V  4s4p P -4s4d D  V  VI  3  -4s4d D 3  1  3  3  1  2  1  -127  Intensity K  y 0 0 0  0 0 0 1 00 00  0  1 3 00  V  G  S  He  Wavelength A  v  c  73.56 70.20 68.11 66.30 65.10  174350 175377 176022 176585 176960  4 12 6 8  64.73 63.74 62.45 61.25 60.35  177076 177387 177794 178174 178459  12 30 1 16  60.15 58.30 57.49 55.70 54.97  178524 179115 179375 179953 180190  25 2 2 3  54.77 54.59 53.91 53.03 52.40  180255 180313 180535 180822 181028  2 2 10 3 1  51.91 51.03 50.46 49.49 45.76  181189 181478 181666 181987 183231  45.04 44.81 44.07 43.82 42.17  183473 183550 183800 183884 184444  41.90 40.37 39.80 39.47 39.13  18453b 185058 185254 185367 185484  38.47 38.15 37.65 537.18 35.89  185711 185822 185995 186157 186605  20 100  150 150 25 12  C  Classification  1  10 12 3 12 16  6 2 12 25 50  00  a  Wavenumber (cm" ) III III III  III  III  III  III III  III  -128-  Intensity K  y  1  0 2  3  2  0 0 1  00 00 00  4  00 2 00  0 3 2 0  1  0 2  G  s  186748 187406 187561 187811 188249  3 2 2  30.42 29.98 29.26 29.14 28.92  188530 188686 188943 188986 189064  28.33 28.20 27.52 ,27.21 27.10  189276 189322 189566 189678 189717  26.88 26.39 25.82 25.47 25.25  189797 189973 190179 190306 190386  25.13 24.47 24.08 24.01 23.53  190429 190669 190811 190836 191011  22.81 22.56 22. 05 21.89 21.28  191274 191366 191553 191611 191835  20.77 20.20 19.60 18.58 18.25  192023 192234 192456 192834 192957  17.59 17.20 16.60 15.49 14.02  193203 193349 193573 193990 194545  8 8 3 6 75 30 10  0  20  3 0 0 0 00  2 1 50 4 7 3 75 20 30 16 2 3  Classification  1  35.48 33.60 33.16 32.45 31.21  120  2  He  Wavenumber (cm" )  4 20 60 2 60  00 4  00  4  V  Wavelength X vac  III III  III  III III III III  V HI III III  4s4p P -4s5s S 3  3  2  1  -129-  Intensity Ky  3  1  00  00 00 00  00 2  00 00 00  V  G  S  H e  Wavelength 7\ vac  Wavenumber (cm -1  1 1 1 60 60  12.14 11.44 10.95 509.98 08.13  195259 195526 195714 196086 196800  25 5 15 3 2  07.55 07.23 05.72 04.86 01.61  197025 197149 197738 198075 199358  1 4 2 6 2  500.33 499.65 C 98.07 96.52 93.59  199868 200140 200775 201402 202597  2 2 2 6  93.39 92.82 89.88 89.34 88.84  202679 202914 204132 204357 204566  4 3 12 12  88.09 87.64 86.03 85.65 85.15  204880 205069 205749 205910 206122  35 4 1 1  84.67 84.04 83.67 82.66 82.05  206326 206595 206753 207185 207447  81.57 80.48 79.05 78.64 78.10  207654 208125 208746 208925 209161  76.94 76.61 76.25 75.23 75.04  209670 209815 209974 210424 210509  4 1 2 4 2 1 1 8  Classification  3 3 4s4p P -4s5s S 1  4s5p°P -4s5s S 1  2Q 3 4p P -4p7s P  (  d  1  x  -130-  Intensity K  y  00 00 00  00 00 00  00  00 2  00  V  G  Wavelength ~K vac  Sge  Wavenumber (cm" 1  10  74.53 73.47 73.15 71.05 70.47  210734 211207 211349 212292 212553  1 6 2 2  69.51 69.16 68.57 466.76 66.58  212988 213147 213415 214243 214326  12 2 2  66.47 66.24 65.53 64.80 63.76  214376 214482 214809 215146 215629  0 3 2 3 100  63.25 62.06 60.61 60.23 459.52  215866 216422 217103 217283 217618  58.70 57.45 57.11 56.58 52.83  218007 218603 218766 219020 220833  0 0 2 4 2  50.69 47.62 45.75 45.42 43.39  221882 223404 224341 224507 225535  2 3 3 2  42.94 42.02 40.45 39.70 39.51  225764 226234 227041 227428 227526  0 0 2 2 2  39.13 38.62 37.50 37.19 34.91  227723 227988 228571 228734 229933  3 2  10  2 2 3  C  Class i f i c a t ion  VI  4p P -5s S  VI  4p P£-5s S£  2  2  3  2  2  *  -131-  Intensity Ky  00  3 1 2 3 2 1 1 2 2  00 00  V  G  S  Wavelength A vac  He  2 10 4 6  Wavenumber (cm -  Classification  _J  33.42 33.16 29.90 29.68 28.52  230723 230861 232612 232731 233361  28.22 26.82 24.96 22.95 21.99  IV  ,2.2, ,2c J 2 I 4s*4p"R -4s*5cTD  233524 234291 235316 236435 236972  IV  4 s 4 p 2 P a -4s 5<rD_,  237727 238174 238544 238703 239860  IV  4s 4p2P|-4s 5d2D3  0  20.65 19.86 19.21 418.93 16.91  12 2 2 2 0  15.38 13.48 13.23 413.09 10.15  240743 241850 241996 242078 243813  IV  4s 4p P£-4s 6s S£  0 2 3 4 2  09.24 06.07 05.30 04.90 04.70  244355 246263 246731 246975 247097  3 2 2 3 2  03.42 03.16 02.82 02.62 401.50  247881 248040 248250 248373 249066  3 4 4 6 4  397.43 95.57 95.38 92.18 91.93  251617 252800 252921 254985 255148  89.27 86.13 75.93 74.48 74.11  256891 258980 266007 267037 267301  60 2 20 35  3 8 2 3 6  C  2  2  2  2  9y  2  2  2  2  -132Intensity Ky  0 0 0 0  0  00 00  V  G 2 4 3 6 3  S  Wavelength A vac  H e  Wavenumber (cm-  Classif ication  1  73.81 71.71 69.64 66.75 64.35  267516 269027 270534 272665 274461 275771 276962 277116 277770 278373  IV  4s 4p P. - 4 s 7 s S  2 2  62.62 61.06 60.86 60.01 59.23  2 2 1 1 2  57.00 55.09 53.72 53.34 50.95  280112 281619 282709 283014 284941  IV  4s 4p P^-4s 7s S  1 1 1 2 2  49.45 49.01 46.65 345.73 45.36  286164 286525 288475 289243 289553  38.60 32.13  295334 301087  2 3  C  2  2  2  2  7*  2  2  2  2  -132aTable 2a. Supplementary l i s t of Selenium l i n e s Intensity  Wavelength A vac  Wavenumber (cm-1)  4980.90 4721.34 15.15 12.64 10.73  20070 21174.5 21202.3 21213.6 21222.2  50 50 5d 100 15d  09.30 08.00 05.54 03.41 4699.40  21228.6 21234.5 21245.6 21255.2 21273.3  lOd 50 100 2d 75  96.72 94.85 93.04 90.34 87.60  21285.5 21294.0 21302.2 21314.5 21326.9  10 5d lOd 50 lOd  81.41 80.01 76.38 75.11 73.16  21355.1 21361.5 21378.1 21383.9 21392.8  30 50 25 50 50  67.51 66.74 61.64 54.67 50.58  21418.7 21422.2 21445.7 21477.8 21496.7  100 10 20 5  10  43.26 41.99 40.92 32.50 4126.80  21530.6 21536.5 21541.4 21580.6 24225.0  5 10 100 150 5  4115.27 4097.53 4063.26 4042.89 4035.64  24292.9 24398.0 24603.8 24727.8 24772.2  15d 400d 600d 3 2  4035.24 4026.43 4026.07 4001.64 3965.71  24774.7 24828.6 24831.1 24982.7 25209.0  EpP  lOd lOd 10 50  R  s  H E  E G D  K  100  i  Classification  IV  6d D^-6p P^  IV  6g^G-8h H  2  9  2  2  -132 bIntensity  Wavelength 7\ vac  Wavenumber (cm" )  6 6 30 0 0  3548.56 3545.85 3535.33 3488.45 3456.24  28172.4 28193.9 28277.8 28657.8 28924.8  0 5 10 10 120  3429.52 3428.06 3427.80 3020.00 2815.98  29150.3 29162.6 29164.8 33102.9 35501.2  500 5d 40 40 10  2680.74 2648.95 2640.92 2640.28 2630.61  37292.0 37739.6 27854.3 37863.4 38002.6  5 0 5 0  2617.24 2598.12 2582.25 2566.20 2563.84  38196.8 38477.8 38714.4 38956.4 38992.3  80d 5 5d 5 500  2513.28 2419.17 2418.88 2416.23 2413.21  39776.6 41323.9 41328.8 41374.3 41426.1  50 10 10 5d 0  2412.71 2136.63 2111.16 2089.94 2074.78  41434.6 46788.0 47352.3 47833.2 48182.6  5  2062.78  48462.8  £G D  K  1  Classification  -133-  TABLE 3  TERMS OF THE SE III SPECTRUM  Term  4s 4p 2  Level  Interval  n*  0.0  2  1739 1739  1.9945 2194  S  L  4p5p 'D  2  3933  2  13031  2.0415  0  26821  2.104  1  150760  3.154  1  153210  3.194  2.003  309.5 153519.5  3.199 3171.5  3  156691.0  3.254  0  154781  3.221 1577  156358  3.247 1514  2  157872  3.274  1  159300.5  3.300  2  161168  3.334  -134-  Term ODD:  4s4p  Level  l  3  D  Interval  n*  2  69136  2.337  1  91088  2.493 1634  92722  2.506 3827  3  96549  2.537  0  106475  2.536  i  115 2.624  106590  j!  D  -74  2  106516  2.6235  2  112565  2.681  124050  2.800  4p4d  1258 2.814  125308 2100  4p5s  4  127408  2.838  0  126275  2.825 504 2.831  126779 3609.6 2  130388.6  2.873  1  131653.6  2.889  -135-  Term  Level  4p4d  3  D  Interval  n*  1  136946  2.956  2  139203  2.985  1  140639  3.005 -1228.5  139410.5  2.988 2607.3  4p4d  142013.8  3.025  142316  3.0285 443  142759  3.0345 -52  F 4p6s  3  P  2  142707  3.034  3  148676.3  3.122  187167.4  3.965 257.6  187425.0  3.973 4096.5  191521.5  4.110  -136-  Term 4p5d  3  J F  2  Level  Interval  188427.2  n* 4.004  1219.3 3  189646.5  4.045 1945.0  3  D  4  191591.5  4.112  1  190840  4.086 -821  2  190019.2  4.058 3894  3  193915  4.196  4p6s  X  P  1  192159.7  4.131  4p5d  1  D  2  193303.5  4.174  3p  Q  0  195094  4.241 -143.3  1  194950.7  4.236 -223  F  X  4p7s  3  P  2  194727.7  4.227  3  196844.2  4.311  0  209235  4.922 166  1  209391  4.932 4237  X  Se IV ( P) l i m i t 2  P  2  213628  5.211  1  214017  5.239  250,000 cm = 30.99 ev  -1  -137-  TABLE 4  TERMS OF THE SE IV SPECTRUM  Term  J  Level  Interval  n*  ODD: 4s 4p 2  2  P  \  0.0 4372.4  1§ .2  o  4s 5p  *V  4372.4  2.266  ,  §  189913  3.350 1198  l£ 4s 6p 2  2  P  §  191111  c  3.363  256074  4.409 701  if 4s 7p 2  2  P  |  256775  4.427  287785  5.475 442  l£ 4s .4f 2  2  F  2£  288127  5.491  229714  3.880 -30  3£ 4s .5f 2  2  F  2£  229684  3.879  272001  4.859 -21  3*  271980  4.859  -138-  Term 4s .6h 2  4s  2  4s  2  4p  3  2  J H  7h 8h  2 2  H  4  S  H  f  Level  Interval  n*  4f, 5f  297542  5.996  4§,5f  310515  6.997  4f,5§  318915  6.997  If  202290  3.482  £  79393  EVEN: 4s4p  4  2  p  2.5645 1588  if  80981  2.572 2599  2  D  2f  83582  2.585  If  104211  2.693 494  2f  104705  2.6955  S  |  128787  2.8405  2p  f  136140  2.890  2  2214  4s 4d 2  2  D  If  138354  If  153217  2.905 3.015 389  153606  3.018  -139-  Term  J  4s 5s 2  2  S  4s 5d  2  D  2  \ \\  Level  Interval  n*  157241  3.047  23114.1  4.020 152  2§ 4s 6d 2  2  D  \\  237899  4.023  276696  5.020 153  2\ 4s26s  S  \  276849  5.026  240751  4.077  4s 7s 2  2  S  £  280145  5.149  4s 5g 2  2  G  3$,4£  275854  4.993  4s 6g 2  2  G  3£,4£  297468  5.991  4s 7g 2  2  G  3£,4|  310489  6.996  4s 8g 2  2  G  3£,4§  318893  6.996  4s 9g  2  G  3£,4f  324662  8.992  2  Se V ( XS0)  Limit - 346,373 cm"  -140-  TABLE 5  TERMS OF THE SE V SPECTRUM  Term  Level  4s' 4p'  3  S  0  0.0  P  0  211780  Interval  n*  2.844 2306  214086  2.8535 4532  4s4d  218618  2.8735  2  213196  2.850  1  257536  3.0575 210  257746  3.0585 319  4s5d  258065  3.0605  380270  4.009 91  380361  4.010 135  4s5s  380496  4.0115  S  1  287423  3.226  is  0  297930  3.28  J  -141-  Term ODD:  Level  4s4p  Interval  89761  n* 2.439  1590 91351  2.443 3614  2  94965  2.453  1  131732  2.558  326365  3.495  4s5p  553 326918  3.499 912  2  327830  3.506  1  328249  3.510  361336  3.803  4s4f  762 361998  3.811 1558  4  363656  3.837  3  366467  3.856  Se VI ( S^) l i m i t - 550,976 cm" 2  1  -142-  CHAPTER IV The Precise Determination of Spectral Wavelengths. Interference Spectroscopy. Two s p e c i a l i z e d types of spectroscopic problems c a l l f o r instruments of very high resolving power.  In the f i r s t , of  which hyperfine and isotope structure studies are involved, i t i s desired to separate very close and narrow l i n e s and i n the second, i t i s desired to measure the spectral wavelengths as p r e c i s e l y as possible. Five p r i n c i p a l types of instruments are available to give resolving power larger than 200,000.  These are the large  d i f f r a c t i o n grating, the Michelson echelon, the Lummer-Gehrcke plate, the wedge etalon(40a,b) and the Fabry-Perot etalon.  The  interferometer of Fabry and Perot i s the most important, since i t can be used f o r  a) wavelength measurements of highest  precision r e l a t i v e to one single standard l i n e , of narrow l i n e structures and  b) resolution  c) determination of true l i n e  width and i n t e n s i t y d i s t r i b u t i o n i n spectral l i n e s .  The i n t e r -  ferometer consists of a plane p a r a l l e l " a i r plate" formed by two plane surfaces of two glass or quartz plates which are kept at a constant distance by means of a spacer made of quartz or invar (64 per cent iron, 36 per cent nickel) since both have very small thermal expansion c o e f f i c i e n t s .  The resolving power  of t h i s instrument can be varied over a wide range by proper choice of the gap between the plates and the r e f l e c t i n g power  -143-  of the metal f i l m s .  The two surfaces forming the " a i r plate"  are coated with a t h i n but highly r e f l e c t i n g metal f i l m , usually aluminum or s i l v e r .  The metal f i l m r e f l e c t s 80% to 90%  of the incident l i g h t and transmits  2% to 5%.  An incident wave  i s multiply r e f l e c t e d between the interferometer  plates and  s p l i t into many waves which i n t e r f e r e at i n f i n i t y , i . e . i n the f o c a l plane of a projecting lens.  The patterns formed are  interference fringes of equal i n c l i n a t i o n and consist of concentric sharp c i r c l e s .  The sharpness i s due to the great  number of i n t e r f e r i n g waves formed by successive  splitting  (division) of amplitude. Fundamental Relations. The path difference between consecutive  waves i s given  by the fundamental r e l a t i o n (4.1)  PA •= 2tcos0 where  p  i s the order number,  A  i s the wavelength i n a i r ,  t  i s the thickness of the plane p a r a l l e l " a i r plate", and  9  i s the angle of incidence of the wave normal (ray).  s t r u c t i v e interference takes place i f p  i s an integer.  each of the concentric c i r c l e s belongs a c e r t a i n angle and a c e r t a i n order number Introducing the f o c a l length  the radius F  ConTo Q  p . R  of an interference r i n g and  of a projecting lens we can replace  cosO by a series expansion cos© = 1 -  9,2 + 2  +  -144-  We can neglect higher terms since R « F .  Thus we obtain  Hi -)  PA - 2t (1  2F ' 2  or using the diameter D of the interference rings equation (4.1) can be written as (4.2) From f i g u r e  we can see that cos9i  ( 2 P  + R i  (4.3)  2)f  (1 - l i j )  8F  But  2  (2t)cos© = ( 2 * ) ( 1 A  A  (^)(1  or i n terms of wave numbers  -?~) 2F 2  D • 8F '  (4.4)  2  as  p = 2t.Vcos© - 2t> (1 - i ~ ) 8F  (4.5)  2  D i f f e r e n t i a t i n g equation (4.4) we get  dp = -(2£)sin0d© = -(.?1)(* )dR A  A  F  2  (4.6)  -145-  It can be seen from (4.6) that the order of the f r i n g e s decreases with increasing angle of incidence radius  R .  For  dp = -1  ©  or increasing  we get  <  2  H _  R =  (4.7)  2tR  which means that f o r larger r a d i i , consecutive c i r c l e s are closer  together.  Let R  Q  be the radius of the innermost ring^R-^ that of  the next r i n g and so on. (k+l)  t n  ring.  Then R  w i l l be the radius of the  k  We can write  O  p  a F  A  - p  1  2  . 1 -  0  -  A  AF  (4.9)  2  II  P  = P  k  - k -  Q  -  (4.10)  A  AF  2  Subtracting (4.10) from (4.9) we get  (P. - PL) - (k - i ) = <Rk - R i ) t 1 K 2 2  2  ( 4  1 1 }  x p  or (Rk  -  2  2  (k-i) Using  AF  Rj )  "  2  =  A  R  (4.12)  2  t  D (Dj. - D ) -5 (k-i) 2  2  ±  47vF  2  t  AD  _ 2  (4.13)  -146-  Order Ntuaber of the Center of the Ring System. At the center  P -~  (4ol4)  A  where  P P  i s the non-integral order. can be expressed by the integral order of the f i r s t  bright f r i n g e  P  Q  and a p o s i t i v e f r a c t i o n a l p a r t , ^ , or by  the order of the ( k + l )  fringe as  t n  P - P  + k +€  k  .  Using equations (4.4) and (4.14) we have - P - P. - k - ( - l - ) R k ^2  2 k  F  Using equation (4.13) €=  _ - k . (R -Rj ) 2  2  k  (k-i) - ( R kR i -% ) (k-i) 2 2  2  °*  2  _ i  -  i  (k-i)  AR  2  1  AD  2  - k  (4.15)  -147-  Since for the Innermost c i r c l e i = o, we have £ = * 2 ?  Crossing the Interferometer  S  S  * >  2  .  .  (4.17)  with a Spectrograph.  Two d i f f e r e n t methods are usually used. a) External mounting. The interferometer  i s set up i n front of the s l i t of the  spectrograph i n such a way that the interference fringes are projected on the s l i t by means of an achromatic lens. l i g h t source i s focused on the interferometer.  The  This gives a  symmetric i n t e n s i t y d i s t r i b u t i o n i n the interference f r i n g e s . The interferometer  i s oriented so that the center of the  c i r c u l a r fringes coincides with the center of the rather wide slit.  The d i f f e r e n t s p e c t r a l l i n e s seen i n the spectrograph  are traversed by fringes symmetrically  arranged with respect  to the center of the s l i t . b) Internal mounting. Here the interferometer  i s placed between the collimator  lens and the dispersing system. Adjustment of the Interferometer. When one looks normally through the etalon at a monochromatic source, say a cool AH-1 mercury lamp, the fringe system w i l l be seen.  With the etalon f i x e d , move the eye  across the f i e l d of view along a diameter with a spring c l i p  -148-  at one end.  Theory shows that the f r i n g e of highest order  occurs at the center of the pattern.  Therefore as the eye  i s moved so that the l i n e of sight travels along a diameter, widening the fringes ( i . e . a new fringe appears i n the center of the pattern) means that i n t h i s d i r e c t i o n the separator spacing must be reduced. ,  Conversely i f the  fringes collapse the eye i s looking through a part of the etalon with a reduced separator thickness.  By adjusting  the pressure of the spring c l i p s make the separator spacing so equal that the r i n g diameters stay constant as the eye i s moved over the surface of the etalon.  Now the etalon i s  adjusted to be crossed with the spectrograph. Resolving Power of the Fabry-Perot  Interferometer.  By d e f i n i t i o n the resolving power of a spectrograph i s given by the expression Bwhere AA i s the wavelength difference of two spectral l i n e s which can be seen just separated by the instrument. PA  =  2t  On d i f f e r e n t i a t i o n we get PM Resolving power  + AAP - o .  R = — = _JL .  -149-  This means measuring the s h i f t of one l i n e i n terms of the order p number of the other l i n e , we have a s h i f t of at least .6p =• —  to  obtain the l i m i t of resolution. The resolving power depends on the r e f l e c t i v i t y  r  of the  m e t a l l i c f i l m and the order of interference p . It i s given by the approximate expression  (3£)  1-r  Intensity D i s t r i b u t i o n i n the Interference Patterns. In the case of the interferometer which can be compared to  a grating consisting of a great number of s l i t s , the  s t r i k i n g difference i s that the i n t e n s i t i e s of two consecutive beams are not equal but decrease systematically with the number of r e f l e c t i o n s . The following expressions are derived by Meissner Imax -  s  A  ,2  U-r)2 s  I  m i n  (33)  2  S  (l r)  2  +  where the i n t e n s i t y c o e f f i c i e n t s s and r are c a l l e d transmission and r e f l e c t i o n powers. The change i n wavelength necessary to s h i f t the r i n g system by the distance of consecutive orders i s c a l l e d "spectral range" ^A7^>  -150-  pA - 2t  2t The change i n ")) corresponding to a change of one integer i n p  is  2t  2t  2t  Correction f o r Phase Change at Reflection. It can be seen that i f we determine any wavelength with respect to a standard  A  l i n e , using d i f f e r e n t etalon gaps  A varies systematically with increasing thickness t . i s so because i n deriving the fundamental r e l a t i o n  This 2t P = — , "K  we did not take into account the phase change which waves suffer when r e f l e c t e d at the surface of the metal f i l m of the interferometer plates.  If t h i s phase s h i f t i s constant  for a l l wavelengths there w i l l be no correction, since the standard  l i n e w i l l also be s h i f t e d by the same amount.  Unfortunately function of  i t can be shown that the phase s h i f t i s a 7\ .  Meissner ( 3 2 ) gives a good account of the  derivations and using 2 d i f f e r e n t spacer gaps t ^ and t gives the wavelength corrections for the same A  as  2  he  -151-  A A  2  -  (A  2  -  A  X  )  ±—  t -t 2  where A^ and A t j and t  2  2  1  are the values obtained for the same A using  respectively.  The corrections AA^ and A A  be added to the uncorrected wavelengths A^ and A 2  2  should  It i s  possible to explain t h i s phenomenon "dispersion of phase change" by the application of electromagnetic theory of metals as was shown by Juergen Bauer (IS).  I t can be seen  that the correction f o r phase change i s only necessary i f measurements of wavelengths at a larger distance from the standard l i n e have to be made.  Correction f o r the Dispersion of A i r . The standard wavelengths are by d e f i n i t i o n referred to "standard a i r " , v i z . dry a i r containing 0.03 per cent by volume of C 0  2  at a pressure of 760 mm Hg at 0°C and a  temperature of 15°C. Meggers & Peters give the following correction to be added ( £ 8 ) 4  g  - * <»o " o ) n  Q  where A i s the wavelength of the unknown l i n e ,  n is 0  the index of r e f r a c t i o n f o r t h i s wavelength, n ' that of 0  the primary standard, both at normal conditions, P the density of the a i r f o r the conditions ( t°C, hem Hg) at which the measurements are made, and standard condition (15°C, 76 cm Hg).  ^  Q  the density f o r  -152-  However, Edle'n (10) points out that the above formula i s no longer s u f f i c i e n t l y accurate f o r precision spectroscopists and he has derived the following dispersion formula,  * ° 2  - A  2  - <A* - A^ 2  ) (0.0013882P _ 7s l+0.00367t  ± )  1  where A2  A ° i s the unknown wavelength at standard 2  the same as a c t u a l l y measured, A ^  length, A A and  a 2  AI  nd A A i  conditions,  i s the reference wave-  are the vacuum corrections f o r A2  p and t actual pressure and temperature.  Calculation of the F r a c t i o n a l Part £ . From equation (4.17)  If only two fringes are available there i s only one method possible.  Let the diameter of the f i r s t r i n g be D , that Q  of the second D^.  In t h i s case  However, i n high precision work a better method i s highly preferable.  Roeser gives a convenient method using the  method of least squares.  -153-  From equation (4.13) Dj^  Let  Djj = Y,  D  2 Q  - A,  2  - D  + k AD  2 Q  k - X  (4.18)  2  and  A D  = B  2  .  Then (4.18) becomes Y - A + BX .  (4.19)  Referring to Roeser's paper ( 4 - 3 ) i t i s seen  B  -  6  (n-l)(y -y )+(n-3)(y _ n  1  n  n(n  2  1  - y*)+ • • •  + 1)  E  n(n2-l) 6 and A = Ym - BX m . n  being the number of observations, in our case XJJJ  = Average of X (k)  Y  = Average of Y (Dj^ )  n = k - 1.  2  m  In the present case the method used can be i l l u s t r a t e d by an o  example f o r the neon l i n e  A *= 5852.4878 A.  -1542 D  Frxnge No.  Y D  7  95.199  6  83.302  5  71.334  4  59.582  3  47.582  2  35.545  1  23.590  0  11.539  - -="g— B 53.459 (center of gravity)  m  2 Q  2 ^ A D X "g  » center of gravity -  - 53.459 - 11.947 x 3.5 = 11.645. o  To calculate D  7  2  - D  Q  2  -  are taken.  A D , the difference between the squares  7 A D  2  , D  6  2  -D,  2  =  5 A D  2  , D  5  2  - D  2  -  2  3 A D  2  , D  4  2  - D  3  2  =A D  These differences are m u l t i p l i e d by 7, 5, 3 and 1  and the f i n a l average value of A D  2  i s calculated as below: D  2  83.660 x 7 -  585.620 (49)  59.712 x 5 =  298.560 (25)  35.789 x 3 -  107.367 ( 9)  12.000 x 1 =  12.000 ( 1) 1003.547-?-84  AD  2  -  11.947 .  2  -1552  11.645 11.947  - 0.975 .  Accurate Wavelength Measurement. 1) Calculation of 2t using Standard Line (A). Approximate value of 2t = 2t'. PA - 2t' 2t»  p -  Calculate  T-  *£ f o r standard l i n e (A). 2t - (p + £ ) A .  2) To f i n d other Wavelengths when 2t i s known. Step I. Calculate integral order  p 2t  p  where  A'  • v  i s the approximate value from l i t e r a t u r e .  -156-  Step I I . Calculate wavelength from 2t  where £ i s calculated f o r the l i n e  (V).  Sample Calculation. Approximate value of 2t^ 2t' = 1.577887 Standard l i n e 7^ - 5400.5617 A. (Neon) p = 1-577887 5400.5617 £ f o r \i = 0.065  where  P  29217.091  =  i s the i n t e g r a l order number.  Q  2t = (PQ+C)*! - (29217.065)5400.5617 - 1.577885 A * = 5748.29 £ f o r 7v» - 0.605 Integral order  p -  1  ,  5  7  7  8  8  5  5748.29 = 27449.641  1-577885 27449.605  ^  5748.297 I .  To Check the Order Number. To make sure that the order number we calculated f o r V  (standard l i n e ) 5400.5617 i s the correct one we adopt  -157-  the following method. Choose three l i n e s including 7^ 7s = 5400.56i7 ±  A  2  = 5748.2985  X  3  = 5764.4180 .  According to the fundamental r e l a t i o n s (Pl+Cl)*! " ( P ^ 2 2 +  ) A  =  ( p  2  £i,  £  a  n  d  2  £3  +  ) A  = 29217 .  Integral order Calculate  3 *3 3 '  Cl €2  =  0.065 - 0.605  C3 = 0.856  P  + 2  C  = 2  (  P l C i > ^- • +  A  2  l - 0.93950613 A2  A  ii *3  Pi + € i 29215.065 29216.065 29217.065 29218.065 29219.065  P2+  - 0.93687891  *3  C2  P3+ £ 3  27447.733 27448.672 27449.611 27450.551 27451.490  Checking with the calculated values of £  27370.978 27371.918 27372.852 27373.788 27374.725  2  and £ 3  seen that 29217 i s the correct order number p^.  i t is  -158-  Error Calculation f o r ?v. Derivation of the Formula used,  tf . °° 2 AD  A  B  2  log£\ =* log A-log B ,d£\ _ dA , dB v c •'max ™r * A B —  ,  p  x^x  = p  (dA , dB~|  s^s  where the subscript x stands f o r the unknown l i n e and s stands for the standard  line. p  *x  s s A  x  P  d  d£  A x  dA  s  (P+O  A  S  Since  d£  s  x  (P+O  s  i s n e g l i g i b l y small we can write dA  x  =»  d  A  Cs  d  X  (P+C)  S  C x  .  (P+O  X  (B)  -159-  Sample Calculation. A  s  - 7601.5444 A A - 8.773  dA - 0.003  B - 3.969  dB - 0.014  .452 O.OI4J 0.003 0.452 L I— + 3.969] S.773 n  A  c  n  0.002 *x A  7664.891 8.837  B -.7.963  dA  .003  dB  .037  0.901 0.901  0.003 ^ 0 8.837  0.005  x  7664.891  0.002 20757.452  0.005 20585.901  ± 0.003 A .  Interferometric Wavelength Measurements i n the Arc Spectrum of Potassium (KI). Using the above method wavelengths have been measured for 38 l i n e s i n the arc speetrum of potassium.  The purpose  of t h i s investigation was to measure i n t e r f e r o m e t r i c a l l y as many l i n e s as possible and to check the interferometric wavelength measurements of the d i f f u s e s e r i e s s a t e l l i t e s  -160-  made by Masaki and Kobayakawa ( 2 5 ) . Experimental D e t a i l s. Light Source. An electrodeless discharge tube containing potassium and argon as a c a r r i e r gas at a pressure of 0.8 mm of Hg was used. This source was excited by means of a "Raytheon Microtherm" microwave generator operating at a frequency of 2450 megacycles per second. Spectrographic Equipment. A big glass prism spectrograph and a Hilger large glass spectrograph were used i n t h i s investigation. spacers were used (2t « 2 0 mm; «12 mm). Hg  2 different  The green l i n e of  from a water-cooled Meggers tube was used as the o  standard l i n e .  The wavelength of t h i s l i n e i s 7\ ± ^ 5460.7529 A. &  r  Spectrogram. A l l spectrograms were taken on Eastman spectroscopic plates. Exposure time varied from two minutes to s i x hours.  The  exposure time f o r the standard l i n e was four minutes. A l l spectrograms were measured on a Zeiss-Abbe comparator. wavelengths were reduced to standard conditions.  The  Corrections  for temperature and pressure are made by means of Edlen's formula.  Corrections f o r phase change were not made since they  were estimated to be smaller than the random errors of the measurements.  Wavelengths determined are mean values from two  or more spectrograms except f o r the 1  s t  nine l i n e s which were  -161-  based on only one spectrogram.  The error l i m i t s are estimated  to be 0.003 A at 6000 A and 0.002 A at 4000 1. above 9500 A s e n s i t i z e d  In the region  I - Z(2) plates were used.  Results. Wavelength Tables. Table  ,6 '. . At present the most accurate and extensive measurements  of potassium wavelengths seem to be those of Risberg (41). Most of the wavelengths measured are i n excellent agreement with Risberg's values.  Table  7 contains a comparison of the  present measurements of the diffuse series s a t e l l i t e s , with the values of Masaki and Kobayakawa ( £ 5 ) . The only possible explanation f o r the disagreement  could be that Masaki and  Kobayakawa might have made an error i n determining the i n t e g r a l order number (see page 156for the method).  Table  WAVELENGTHS MEASURED IN POTASSIUM  References to some previous measurements. D E HBB M(l) Intensity  = =  DattaC*) M(2) EdlenC2>) R Hetzler, Borman and BurnsdS) W Meggers(?.<£) MK  o  = = = =  Meggers&Z> RisbergC*!) Wagman Masaki and Kobayakawa  Previous Measurements  9  air> 11772.83  2.83R; 3.05M(1); 2.66M(2)  8491.81  8  11769.64  9.62R; 9.41M(1)  8494.12  9  11690.21  0.21R; 0.17M(1); 89.76M(2)  8551.82  8  11022.66  2.67R;  9069.73  9  11019.86  9.87R;  A  A  7  9597.829  7.829R;  8  9595.703  5.704R;  10  6938.764  9  2.3M(1)  cm  -1  9072.04  Classification 4P  3/2  4P  3/2  4 P  l/2  3D  3/2 5  10416.17  3D  3/2  5.60E  10418.47  3D  5/2  8.767R; 9.50D; 8.76E; 8.774HBB  14407.81  4p  6911.081  1.084R; 1.80D; 1./08E; 1.087HBB  14465.53  4p  y/2  8  5831.886  1.887R; 2.31D; 1..89E  17142.36  4P  3/2  6  5831.718  1.593MK  17142.85  4P  3/2  7  5812.149  2.148R; 2.71D; 2.15E  17200.57  4 P  l/2  8  5801.753  1.752Rj 2.16D; 1.74E  17231.39  4P  3/2  8  5782.387  2.384R; 2.77D; 9.66E  17289.10  4P  :.3/  2  Sl/2  3D  5/2  3D  3/2  3D  3/2  5F  5/2  5F  3D /2  7.76E  7.1M(1)  -  mm  -  -  7 / 2  6F  5/2  6F  7/2  6 S  l/2  6 S  l/2  5D  5/2  5D  3/2  5D  3/2  7 S  l/2  7 S  l/2  Table <c>  I  (Continued) 5359.576 j 9.574R; 9.521Dj 9.66E  18653.01  4P  3/2  5359.498  9.583MK  18653.28  4P  3/2  5342.970  2.970R; 2.974D; 3.07E  18710.98  7  5339.688  9.688Rj 9.670D; 9.79E  18722.48  4P  3/2  6  5323.278  3.276R; 3.228D; 3.38E  18780.19  4P  4/2  6  5112.256  2.249R; 2.204D  19555.39  4P  4  5112.217  2.129HK  19555.54  4  6  5099.201  9.200R; 9.180D  19605.45  4P  3/2  5  5097.173  7.171RJ 7.144D  19613.25  4 P  l/2  5  5084.236  4.226R; 4.212D  19663.16  4p  5  4965.034  5.031R; 5.038D  20135.23  4P  3/2  3  4965.011  4.919MK  20135.36  4P  3/2  4  4956.148  6.146R; 6.043D  20171.33  4p  3/2  4  4950.823  0.815R; 0.816D  20193.03  4 P  l/2  4  4942.011  2.015R; 1.964D  20229.03  4p  rl/2  5  4869.766  9.757Rj 9.70D  20529.13  4P  3/2  4  4863.482  3.483R; 3.61D  20555.66  4P  3/2  4  4856.098  6.090R; 6.03D  20586.92  4 p  l/2  7 5 6  i  •  4*1/2  3 / 2  *3/2  :J/2  -  -  -  6D  5/2  6D  3/2  6D  3/2  8 S  l/2  8 S  l/2  7D  5/2  7D  3/2  9 S  l/2  7D  3/2  9 S  l/2  8D  5/2  8D  3/2  10S 8D  3/2  1 0 S  9D  1 / 2  l/2  5/2  HSl/2 9D  3/2  Table S  (Continued)  3  4849.868  9.865R; 9.88D  20614.21  4 P  ' 1/2 " H S l / 2  4  4804.349  4.348R; 5.19D  20808.66  4P  3/2 "  5  4642.370  2.373R| 2.172D  21534.69  4S  6  4641.872  1.876R; 1,585D  21537.00  4 S  l/2 "  8  4047.210  7.206Rj 7.201D; 7.214W  24701.40  4 S  l/2 "  9  4044.139  4.136R; 4.140D; 4.145W  24720.16  4Si/  -  1 / 2  2  1 0 D  5/2  3D  5/2  3D  3/2  5 P  l/2  - 5P /2 3  Table 7 A  a  i  r  ,  o A  WAVELENGTHS OF THE FOUR SATELLITES MEASURED IN DIFFUSE SERIES A  air>  A  (  M  K  )  A  a  i  r  A  (C)  Classif ication  5831.718  5831.593  5831.715  4P  3 / 4  - 5D  3 / 2  5359.498  5359.583  5359.499  4P  3 / 2  - 6D  3 / 2  5112.217  5112.129  5112.208  4P  4965.011  4964.919  4965.006  4P  3/2 " 3/2 7D  3 / 2  - 8D  3 / 2  Wavelengths i n column 2 (MK) are due to Masaki and Kobayakawa. Wavelengths i n column 3 (C) are calculated using the s p l i t t i n g s observed by Masaki and Kobayakawa.  -166-  TRACES OF THE SPARK SPECTRA OF SELENIUM FOR A  1100 A  The following figures are photoelectric traces made with a Jarre11-Ash console comparator  microphotometer.  The source i s an electrodeless spark discharge (see Chapter I I ) .  -167-  -169-  -171-  Summary We may summarize i n a few sentences the main r e s u l t s attained and the conclusions reached i n the course of t h i s research.  We have confirmed, with the aid of Fabry Perot  patterns, that the electrodeless spark discharge i s an i d e a l source f o r the production high e x c i t a t i o n .  of sharp and intense l i n e s at quite  We have outlined detailed steps f o r the  "method of set-backs", used i n the i d e n t i f i c a t i o n of the spectral l i n e s i n the vacuum grating region. We have introduced  our observations  to make a complete  r e v i s i o n of the square arrays of Se I I , Se I I I , Se IV, Se V and Se VI and have revised most of the term values and extended the previous analyses i n Se I I I , Se IV and Se V. The main features of the analysis are the establishment of the deepest excited terms 4s4p  3 5  S ° i n Se III and 4s4p  2  4  2  P  i n Se IV. In addition we have also established some of the basic terms i n Se I I I , Se IV and Se V. Intermediate coupling theory has been compared with observed l e v e l s wherever possible. agreement i s good.  In most cases the  We have noticed that the study of the  spark spectra of bromine i s f a r from complete and experimental investigations i n these are desirable.  The number  of u n c l a s s i f i e d l i n e s i s quite large, and we estimate that i t involves about 40% of the t o t a l l i g h t output.  Thirty  eight l i n e s i n the arc spectrum of potassium have been measured i n t e r f e r o m e t r i c a l l y .  -172-  APPENDIX  Grating Ghosts. Both the 21 foot concave grating and the 2 meter vacuum grating displayed Rowland ghosts.  This has been a valuable  help i n i d e n t i f y i n g the order of l i n e s from the grating since the ghost spacing at various nA i s a function of the order. Rowland ghosts have an i n t e n s i t y I(n) i n the nth order I(n) = I ( l ) n , where the i n t e n s i t y i n the f i r s t order 1(1) 2  may be approximately 0.2% of the parent l i n e i n t e n s i t y and are positioned according  to the equation  &(nA) -  ^  where  m = ±1, +2, etc. i s the ghost order,  and  p = number of r u l i n g s involved i n the periodic e r r o r j  in the 2 m  (Bausch and Lomb) grating t h i s  in the 21 foot (Johns Hopkins) Since  AA = 4&&s  grating t h i s  p = 720 p = 750 „  , t h i s gives f o r the separation of the  f i r s t order ghost A s =^p . We can, therefore, use the dispersion tables to calculate For example, using A = 2040 A As =  2040 1  4.339x720  49= 4.339  As,  A/mm.  mm. = 0.653 mm.  Paschen (34) has summarized the properties of Rowland ghosts.  -173-  BIBLIOGRAPHY  1.  Andrew, K.L., and Meissner, K.W.  2.  Bacher, R.F.  3.  Bacher, R.F., and Goudsmit, S.  4.  Badami, J.S., and Rao, K.R.  J.O.S.A. 47, 850, 1957.  Phys. Rev. 43, 264, 1933. Phys. Rev. 46, 948, 1934.  Proc. Roy. Soc. London (A) 140,  387, 1933. 5a. B a r t e l t , 0. b. 6.  "  Naturwiss 22, 291, 1934.  "  Zeit. Phys. 91, 444, 1934.  Bedford, R.E.  Ph.D. Thesis, University of B r i t i s h Columbia,  1955. 7.  Condon, E.U., and Shortley, G H.  "Theory of Atomic Spectra",  Cambridge University Press, 1935. 8. 9. 10.  Datta, S.  Proc. Roy. Soc. London (A) 99, 69, 1921.  Edlen, B.  Zeit. Phys. 98, 445, 1936.  Edlen, B.  J.O.S.A. 43, 339, 1953.  11a. Edlen, B., and Risberg, P.  Arkiv fbr Fysik 10, 553, 1956.  b. Eriksson, K.B.S., Phys. Rev. 102, 102, 1956. 12.  Goudet, G.  J. Phys. et Rad. 6, 443, 1935.  13.  Goudsmit, S.A., and Humphreys, C.  14.  Harrison, G.R.  15.  Hetzler, C W., Boreman, R.W.,  Phys. Rev. 31, 960, 1928.  Reports on Progress i n Physics 8, 212, 1941. and Burns, K.  656, 1935. 16.  Houston, W.V.  Phys. Rev. 33, 297, 1929.  17a. Johnson, Jr. M.H. b.  "  "  "  Phys. Rev. 38, 1628, 1931. "  "  39, 197, 1932.  Phys. Rev. 48,  -174-  18.  Jeurgen Bauer,  19.  Kayser, H.  20.  Kelly, R.L.  Ann. der Physik  (5) 20, 481,  1934.  "Handbuch der Spectroscopic" Vol. 6, p. Vacuum U l t r a v i o l e t Emission Lines.  456.  Stanford  Research Institute, C a l i f . 21.  Krishnamurthi,  S.G.,  and Rao,  London (A) 149, 56, 22a. Kuhn, H.G.  K.R.  Proc. Roy.  1935.  Atomic Spectra, Longmans,  b. Lubzinski, J.F.  M.A.  Mack, J. E., Stehn, J. and Edlen, B.  24.  Martin, D.C.  25.  Masaki, O.,  Phys. Rev.  48, 938,  Kobayakawa, K.J.  J. Res. Nat. Bur,  27.  Meggers, W.F.  J.  28.  Meggers, W.F.,  31.  1932.  1935.  "  "  Stand. 10, 669,  "  and Peters, C.G.  "  14, 487,  1933. 1935.  B u l l . Bur. Stand. 14,  1919.  Meissner, K.W., 91, 427,  30.  J.O.S.A. 22, 245,  1936.  Meggers, W.F.  29.  1950.  J. S c i . Hiroshima Univ.  26.  697,  1962.  Thesis, Dept. of Physics, U.B.C.  23.  (A) 6, 217,  Soc.  B a r t e l t , 0., and Eckstein, L., Zeit. Phys.  1934.  Meissner, K.W. Meissner, K.W.  Zeit. Phys. 94, 810, and Luft, K.F.  Ann.  1935.  der Phys. 5, 29,  698,  1937. 32.  Meissner, K.W.  33.  Moore, C.E.  J.O.S.A.  V. 31, 6, 405,  "Atomic Energy Levels".  Standards, Vol. 2,  National Bureau of  1952.  34.  Paschen, F.  35.  Pauling, L., and Goudsmit, S. Spectra".  1941.  Ann. der Phys. 34, 130,  McGraw H i l l , New  "The York,  1939. Structure of Line 1930.  -175-  36a. Racah, G. b.  it  c.  tt  d. 37.  tt  Phys. Rev.  61, 186, 1942. 62, 438, 1942.  tt  tt  62, 523, 1942. 61, 537, 1942.  Rao, K.R. and Badami, J.S. Proc. Roy. Soc. London (A) 131, 159, 1931.  38.  Rao, K.R. and Badami, J.S. Proc. Roy. Soc. London (A) 131, 166, 1931.  39.  Rao, K.R. and Murti, S.G.K.  Proc. Roy. Soc. London (A) 145,  681, 1934. 40a. Rasmussen, E. Dan. Mat. Fys. Medd. 23, nr 3, 1945. b. Hermansen, A. 41.  Risberg, P.  Univ. Fysik Lab. Copenhagen, Denmark.  Arkiv f o r Fysik, Bd. 10, nr 41, 1956.  42a. Ruedy, J.E., and Gibbs, R.C. b. ."  "  "  "  "  Phys. Rev. 46, 880, 1934. Zeit. Phys. 94, 080, 1935.  43.  Roeser, H.M.  S c i . Pap. Bur. Stand. 16, 363, 1920.  44.  Sawyer, R.A. and Humphreys, C.J.  45.  Shenstone, A.G.  46.  Shenstone, A.G. and Russell, H.N.  47.  Slater, J.C. Phys. Rev. 34, 1293, 1929.  48.  Van den Bosch, J.C. Physica 14, No. 4, 249, 1948.  49.  Wagman, N.E., Univ. Pittsburgh B u l l . 34, 1, 1937.  50.  White, H.E.  Phys. Rev. 32, 583, 1928.  Reports on Progress i n Physics 5, 222, 1938. Phys. Rev. 39, 415, 1932.  "Introduction to Atomic Spectra".  McGraw H i l l ,  New York, 1934. 51.  Harrison, G.R.  M.I.T. Wavelength Tables, New York,  John Wiley & Sons, Inc., 1939. 52.  Finkelnburg, W., and Humbach, W.  Naturwiss. 42, 35, 1955.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085864/manifest

Comment

Related Items