THE RAMM EFFECT OF CIS M B - TRAM'S 35ECAHTBROHAPHTHALEHE by Gennady Zotov A. Thesis submitted i n P a r t i a l F u l f i l m e n t o f The Requirements f o r the Degree o f MASTER OF ARTS i n the Department o f PHYSICS „ THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1940 CONTENTS Page Introduction I e II. Til© 02? « • • • « • • . « • • • D e s c r i p t i o n o f Apparatus and Procedure ' 1. The Raman Tube . . . . . . 2. S p e c t r o g r a p h s Equipment . 5 5 5 3. E x p e r i m e n t a l Procedure . . 7 I l l u s t r a t i o n o f the Set-up 4. H e a t i n g System 9 . . . . . . 10 5. Source and Temperature Control . . . . . . . . 11 I l l u s t r a t i o n of the C i r c u i t III. 1 13 INTRODUCTION I t i s only r e c e n t l y 1 t h a t Dr. W. F. Seyer, o f the Department o f Chemistry o f the U n i v e r s i t y of B r i t i s h has succeeded Columbia, i n s e p a r a t i n g c o m p l e t e l y the two isomers, c i s and t r a n s decahydronaphthalene. H i s work on t h e change i n the s u r f a c e t e n s i o n s , d e n s i t y e t c , w i t h temperature o f these substances r e v e a l e d the p o s s i b i l i t y e i t h e r o f f u r t h e r subd i v i s i o n o f t h e c i s and t r a n s froms or o f changes i n s t r u c t u r e of the o r i g i n a l molecules as we go t o h i g h e r temperatures. I t was suggested by Dr. H. D. Smith, t h a t t h i s problem be a t t a c k e d by a study o f the Raman e f f e e t o f these isomers a t v a r i o u s temperatures. The Raman spectrum o f deea3 l i n a t room temperatures has been s t u d i e d by s e v e r a l workers. These i n v e s t i g a t o r s , however, had no access t o t h e isomers i n the pure s t a t e , nor had they any knowledge o f t h e i r temperature behaviour. There i s r e a s o n t o b e l i e v e , t h e r e f o r e , t h a t t h e i r work d i d n o t g i v e as much evidence o f the i n t e r n a l s t r u c t u r e of the d e c a l i n molecule as i s , perhaps, p o s s i b l e to obtain. In view o f t h i s f a c t t h i s r e s e a r c h was undertaken as, suggested by D r . H. D. Smith. 1.& 2. Seyer & Walker, J.A.C.S., 60, 2125, 1938, and more r e c e n t work. 3. J a t k a f , I n d . J . P h y s i c s , 9:545, Qo 1 15, 1935. Bonino, AcCi L i n c e i A t t i . 22 pp. 438-443, Nov.17, 1935, and other papers. THE RAMAN EFFECT OF CIS AFP TRACTS I. DECAHYDROIAPHTHASE1E Theory I t was d i s c o v e r e d by Raman t h a t l i g h t i n c i d e n t on c l e a r substances i s not o n l y s c a t t e r e d t o produce l i g h t o f the same frequency as t h e i n c i d e n t r a d i a t i o n ( R a y l e i g h or c l a s s i c a l s c a t t e r i n g ) but t h a t new l i n e s appear i n the spectrum o f the s c a t t e r e d l i g h t having f r e q u e n c i e s t h a t a r e p e c u l i a r t o the s c a t t e r i n g substance. I t i s known t h a t a molecule o f any c h e m i c a l eom• J* pound c o n s i s t s i n g e n e r a l o f a d e f i n i t e number o f atoms o f d i f f e r e n t elements. Because of the molecule's s t a b i l i t y i t may be p i c t u r e d as formed from i t s c o n s t i t u e n t atoms i n a d e f i n i t e s t r u c t u r e i n space. The atoms themselves, however, v i b r a t e a t c e r t a i n p e r m i s s i b l e f r e q u e n c i e s governed by t h e i r number, mass and r e l a t i v e p o s i t i o n s w i t h r e s p e c t t o other members o f the m o l e c u l e . Thus a molecule may have a c e r t a i n energy because o f these i n t e r n a l v i b r a t i o n s i n which case i t i s s a i d t o be i n a c e r t a i n e x c i t e d energy s t a t e . Thus a photon, from a beam o f i n c i d e n t l i g h t , col- l i d i n g w i t h a molecule i n a g i v e n energy s t a t e , may e i t h e r "" impart some o f i t s energy t o t h e molecule and be s c a t t e r e d by the m o l e c u l e w i t h l e s s energy, or i t may reduce an e x c i t e d molecule t o a lower energy s t a t e "by talcing energy from i t , " and be s c a t t e r e d w i t h g r e a t e r energy. T h i s i s shown s y m b o l i c a l l y as f o l l o w s : - ± ^ V i.e. .or ^ = = -t>~% •= ^ y /r o j ^ % tz : # A ^ where i s the energy of the s c a t t e r e d photon /z i s P l a n c k ' s c o n s t a n t # i s the frequency o f the i n c i d e n t photon p i s the f r e q u e n c y o f the s c a t t e r e d photon, and V i s one o f the c h a r a c t e r i s t i c v i b r a t i o n a l f r e q u e n c i e s of the m o l e c u l e . The p r o b a b i l i t y o f g a i n o f energy by the photon i s much l e s s than t h e p r o b a b i l i t y ' o f energy l o s s , due t o t h e f a c t t h a t p r a c t i c a l l y a l l o f the m o l e c u l e s i n the s c a t t e r i n g substance are i n t h e i r normal, or l o w e s t , energy s t a t e . Hence i n g e n e r a l t h e r e are fewer Raman l i n e s , and these o f weaker i n t e n s i t y , due t o t h e energy g a i n than t o the energy l o s s o f the photon. Summing up we have f o r energy l o s s — hpj we have A* > A f o r energy g a i n + h P, we have /^^< z \- r where i s t h e wavelength o f t h e Raman l i g h t , and i s the wavelength o f t h e i n c i d e n t light. L i n e s a r i s i n g from the most common type o f energy change are sometimes r e f e r r e d t o as S t o k e s ' l i n e s ( r e p r e s e n t e d by t h e s u p e r s c r i p t "s";): w h i l e the other types are c a l l e d A n t i - S t o k e s ' l i n e s ( r e p r e s e n t e d "by t h e s u p e r s c r i p t "A.S'J), 1 We a l s o have » L,A, V where I i s the i n t e n s i t y o f t h e l i n e . In order to' o b t a i n t h e v i b r a t i o n a l f r e q u e n c i e s o f the molecule t h e f o l l o w i n g i n f o r m a t i o n i s obtained from the spectrograms: The photographic p l a t e b e a r i n g the spectrogram i s measured up on a comparator i n such a way t h a t the d i s t a n c e of each l i n e .from a c e r t a i n l i n e of s h o r t wavelength, say the v i o l e t Hg l i n e , X 4047 A.IJ., i s obtained i n c e n t i m e t e r s . S i m i l a r l y another p l a t e w i t h Hg and. Fe comparison s p e c t r a i s measured, and by proper t r a n s l a t i o n t h e r e a d i n g s are c o r r e l a t e d as i f the Raman and the Fe s p e c t r a were taken s i m u l taneously. This s u p e r p o s i t i o n of t h e Raman spectrum on t h a t o f the Fe enables the l a t t e r t o be used as a c o o r d i n a t e a x i s f o r i t s wavelengths a r e known. From the known v a l u e s o f the Fe l i n e s the v a l u e o f a g i v e n Raman l i n e i s found i n terms o f wavelengths by i n t e r p o l a t i o n o f i t s measured v a l u e and the v a l u e s o f the Wo c l o s e s t Fe l i n e s between which i t l i e s . These wavelengths a r e converted i n t o f r e q u e n c i e s (or more conv e n i e n t l y i n t o wave numbers). E s t i m a t e s of r e l a t i v e t i e s o f t h e Raman l i n e s a r e a l s o made. .The data thus intensiobtained i s i n t e r p r e t e d by the a i d o f the t h e o r y o u t l i n e d above. . • Thus w i t h t h e knowledge o f p o s s i b l e v i b r a t i o n a l frerquencies of the molecule and o f t h e approximate s t r u c t u r e of the molecule i n f e r r e d "by chemical c o n s i d e r a t i o n s , or by a mathematical treatment of the moleoule as a many-body problem i n mechanics, employing methods s i m i l a r t o those developed by Bennison and o t h e r s , a more d e t a i l e d model o f the molecule may be c o n s t r u c t e d . An.intense monochromatic source of l i g h t must be used t o produce w e l l d e f i n e d s t r o n g Raman l i n e s t h a t are not obli- t e r a t e d by o t h e r l i n e s i n the spectrum of the i n c i d e n t l i g h t . Otherwise i f the source be weak i t i s i m p o s s i b l e t o o b t a i n Raman l i n e s w i t h i n reasonable p e r i o d s of time; and i f the source c o n t a i n s s e v e r a l i n t e n s e l i n e s i t i s d i f f i c u l t t o d e t e r mine from which i n c i d e n t l i n e a g i v e n Raman l i n e arises* The Eg are comes v e r y c l o s e t o being the source. ideal I t s spectrum, has o n l y two l i n e s v i z . , A A 4 0 4 7 , 4358 i n the r e g i o n A A4000-5000 A.U. g i v e r i s e t o Raman l i n e s . of i n t e n s i t i e s g r e a t enough t o Moreover t h i s r e g i o n i s remarkably f r e e from other l i n e s of l e s s e r i n t e n s i t y and these may be cut out of the spectrum of the i n c i d e n t l i g h t by the use of special filters. This f i l t e r i n g a l s o l e s s e n s the continuous background p r e s e n t i n t h i s r e g i o n o f the Hg a r c spectrum. - 5 III. D e s c r i p t i o n o f Apparatus and Procedure The standard method o f o b t a i n i n g good Raman p l a t e s c o n s i s t s o f r e c o r d i n g s p e e t r o g r a p h i c a l l y the l i g h t scattered by the substance i n a d i r e c t i o n a t r i g h t angles t o t h a t o f the incident l i g h t . Deviations from standard technique, however, were found n e c e s s a r y i n t h i s , work, and because of t h e i r . i n t e r e s t and importance are d e s c r i b e d below. I . The Raman Tube The Raman tube (46) c o n t a i n i n g the l i q u i d t o be s t u d i e d i s designed e s p e c i a l l y f o r work a t v a r i o u s tures. I t c o n s i s t s o f a double-walled tempera- c y l i n d r i c a l pyrex tube w i t h o u t s i d e dimensions of 4.1 cm,* diameter and 14*8 cm. length. The i n n e r tube t h a t holds t h e l i q u i d being investi- gated i s 2*6 cm, i n diameter and 11.1 cm. l o n g w i t h a c a p a c i t y of 60 c.e. I t s c o n s t r u c t i o n i s shown i n d e t a i l b y the s c a l e diagram designated The Fig. I. s i d e s o f the tube from A t o B and G t o 3 are blackened w i t h lampblack mixed w i t h s h e l l a c and a l c o h o l and the ends are covered except f o r spaces 13? and GH of 1 cm. diameter. A r i n g (I) i s a l s o p a i n t e d around the base of the thermometer w e l l . The b l a c k coats prevent the admission and r e f l e c t i o n of s t r a y l i g h t . At the back GrH a s m a l l plane m i r r o r (8) i s p l a c e d t o r e f l e c t back along the a x i s i n t o the s p e c t r o g r a p h the s c a t t e r e d l i g h t p r o c e e d i n g away from t h e i n s t r u m e n t . The 1 source, a Hg arc (48), i s p l a c e d as shown, and the l i g h t i s focussed on the a x i s of the Raman tube (46.) by means o f a l u m i num reflectors viz., drical reflector a parabolic reflector (49) and a c y l i n - (50) i n d i r e c t c o n t a c t w i t h (46). A g l a s s c e l l (47), 10 x 1 x 1 cm. duced between (46) and p r o t e c t the c e l l , i n size, i s intro- (48) t o h o l d the f i l t e r s o l u t i o n . t o l e s s e n e v a p o r a t i o n of the f i l t e r To solution and t o prevent h e a t i n g up of the l i q u i d by the arc, a copper. U-tube, through which c o l d water i s r u n n i n g c o n t i n u o u s l y , i s immersed i n the f i l t e r s o l u t i o n t o a depth j u s t c l e a r i n g the top o f the Raman tube. The heat from the are i s thus absorbed by the f i l t e r s o l u t i o n and t h e n c a r r i e d away by the c o l d water. Source A mercury a r c c o n s i s t i n g of a q u a r t z tube w i t h merc u r y p o o l e l e c t r o d e s i s used as a source. The arc i s equipped w i t h aluminum f i n s f o r r a d i a t i o n o f heat generated d u r i n g i t s operation. the tube. The arc i s s t r u c k at 3.2 amps, w i t h 24 v o l t s across The c u r r e n t then f a l l s t o 1.6 amps, a t 66 v o l t s as mercury g l o b u l e s are evaporated from the s i d e s of the tube. On the c o m p l e t i o n of e v a p o r a t i o n the c u r r e n t r i s e s t o 1.8 at 60 v o l t s . An a i r stream i s t h e n turned on, and p l a y i n g on the n e g a t i v e end of the q u a r t z tube. 2.8 amps, at 30 v o l t s a c r o s s the a r e . maintained, The.flow of the stream i s a d j u s t e d so t h a t the amperage reaches at amps, and remains Under these c o n d i - t i o n s the a r c operates f o r an i n d e f i n i t e p e r i o d o f time. Filter Owing t o t h e f a c t t h a t mercury a r c s g i v e a c o n t i nuous background f o r l o n g exposures i n t h e r e g i o n AA.4360 4800 A.U., which would c u t out t h e weaker Raman l i n e s , a f i l t e r i s i n t r o d u c e d between t h e source and the tube. S u f f i c i e n t fluorescene, d i s s o l v e d i n a small quantity of a l c o h o l , i s added t o water i n the g l a s s c e l l t o c u t out most o f t h i s background without A a p p r e c i a b l y c u t t i n g down t h e i n t e n s i t y o f 4916 A.F. Z. Spee t r o g r a p h i c Equlpment To o b t a i n the spectrograms Eastman photographic . p l a t e s o f type 105-0 were u s e d . These p l a t e s were by t h i s company e s p e c i a l l y f o r Raman spectroscopy. introduced They were developed i n D - 19 developer and f i x e d i n a F 5 s o l u t i o n . The s p e c t r o g r a p h used was. a H i l g e r Constant t i o n ins t r a ^ Devia- w i t h a d i s p e r s i o n of 17 A.TJ. p e r mm. i n the region u t i l i z e d . 3. E x p e r i m e n t a l The Pr o cedure s c a t t e r e d l i g h t from the Raman tube i s focussed on t h e s p e c t r o g r a p h shown i n F i g . I I . slit (1) by the condensing l e n s ( 2 ) , as I n order t o p r e v e n t l i g h t r e f l e c t e d from the s i d e s o f t h e Raman tube from r e a c h i n g the s l i t o f the spectrograph two b l a c k e n e d m e t a l diaphragms ( 4 ) , (5) w i t h openings of 1 em, diameter a r e i n t r o d u c e d ; t h e condensing l e n s i t s e l f i s blackened a l s o except f o r a c e n t r a l p o r t i o n of the same s i z e as the diaphragm openings. I n order t o decrease the exposure times g r e a t care was t a k e n t o use t h e maximum•amount of s c a t t e r e d energy. For t h i s reason t h e alignment o f the o p t i c a l system deserves part i c u l a r a t t e n t i o n , t h e procedure being as f o l l o w s : A s m a l l plane m i r r o r (3) was i n s e r t e d between t h e condensing l e n s (2) and the f i r s t diaphragm (4) a t an angle of 45° t o t h e d i r e c t i o n o f t h e s c a t t e r e d beam. The p o s i t i o n s o f t h e diaphragms 14) and (5) were changed i n t h e i r r e s p e c t i v e •planes by the o b s e r v e r , w h i l e v i e w i n g i n ( 3 ) , so t h a t a s e t of c o n c e n t r i c r i n g s (15) were formed by t h e openings (4), ( 5 ) , (6) and t h e i r r e s p e c t i v e images ( 1 2 ) , (11), (10) i n the m i r r o r ( 8 ) , w i t h the image ( 1 3 ) , o f the e y e , ( 9 ) , a t the c e n t r e . This ensures an' unhindered path of t h e s c a t t e r e d beam w h i l e p r e v e n t i n g any s t r a y l i g h t from r e a c h i n g the: s p e c t r o g r a p h . W i t h the m i r r o r (3) now removed, a p i e c e o f t r a n s l u c e n t paper was p l a c e d d i r e c t l y i n the p a t h o f t h e beam and i n c o n t a c t w i t h the diaphragm s i d e of the l e n s ( 2 ) , and the l e n s was moved i n i t s plane u n t i l the c e n t r a l p o r t i o n was conc e n t r i c w i t h the c r o s s s e c t i o n of the beam. The paper was then taken away and the s p e c t r o g r a p h was moved a l o n g the d i r e c t i o n o f the beam t o a p o i n t where a sharp image on the slit (1) was s e c u r e d . The image was made s l i g h t l y l a r g e r than t h e . s l i t t o ensure t h a t n o ' l i g h t r e f l e c t e d by the w a l l s of the Raman tube be sent through the s l i t . The adjustment o f the s p e c t r o g r a p h was c a r r i e d out by the standard method of s e t t i n g the c o l l i m a t o r for p a r a l l e l l i g h t , and the f o c u s s i n g o f the s p e c t r a l l i n e s c a r r i e d out by the a i d o f the Foucou.lt shadow t e s t . was The condensing l e n s (2) chosen o f such a f o c a l l e n g t h (F = 2.54 cm.) that the l i g h t from the sharp image ( o f a b r i g h t o b j e c t of the r e q u i r e d s i z e - 1 cm. diameter - p l a c e d at the c e n t r e of the Raman tube) on the s l i t j u s t f i l l e d the c o l l i m a t o r lens. The white from a broken Beckmann thermometer served as a b r i g h t A s t r i p of sheet aluminum i n s e r t e d object. i n the Raman tube was used a l s o t o advantage as a b r i g h t the l i g h t from the Hg a r c o u t s i d e , f o r t h e F o u c o u l t t e s t . T h i s was e s p e c i a l l y d e s i r a b l e scale s o u r c e , by r e f l e c t i n g w i t h t h e Hg b l u e l i n e , A 4358, and the v i o l e t l i n e , A 4047, f o r t h e i r i n t e n s i t i e s were t o o low for s a t i s f a c t o r y v i s u a l observation. - 10 U s i n g w h i t e l i g h t , w i t h such a r e f l e c t o r i n p o s i t i o n , the f o l l o w i n g procedure was adopted t o throw the maximum energy on t o t h e p h o t o g r a p h i c p l a t e : W i t h the s l i t open wide and a p i e c e o f t r a n s l u c e n t paper a t the condensing l e n s the s p e c t r o g r a p h was r o t a t e d about a v e r t i c a l a x i s and l e v e l l e d by the observer u n t i l he c o u l d see through the camera l e n s (17) a c o l o r e d spot of l i g h t a t the c e n t r e o f t h e "frame" formed by t h e edges o f t h e p r i s m (16) n e a r e s t t o the camera l e n s . To g e t maximum energy f o r minimum w i d t h of t h e spect r a l l i n e , t h e s l i t was f i r s t c l o s e d , and then s l o w l y opened w h i l e i t s image was b e i n g observed a t t h e f o c a l plane o f t h e camera (18) by t h e eye w i t h a narrow c y l i n d r i c a l l e n s (F = 1 em.) p l a c e d j u s t i n f r o n t o f i t . The a x i s o f the c y l i n d r i c a l l e n s was p l a c e d p e r p e n d i c u l a r t o the image ( o r the s p e c t r a l line). F o r t h i s purpose Hg l i g h t was used w i t h a l l o b s t r u c - t i o n s such as t h e t r a n s l u c e n t paper and m i r r o r removed. The l i n e appeared o f l a r g e and c o n s t a n t w i d t h , b u t shaded, as shown i n ( 2 0 ) , t h e shadow d i s a p p e a r i n g a c r o s s the image i n t o the s i d e on w i d e n i n g the s l i t . The proper w i d t h was d e t e r - mined a t t h e s p a c i n g o f t h e s l i t where the shadow had j u s t disappeared. 4. H e a t i n g System For exposures a t h i g h temperatures the l i q u i d i n the tube was r a i s e d t o the r e q u i r e d temperature by p a s s i n g a stream of heated a i r through the j a c k e t around the Raman tube. The - 11 stream was s u p p l i e d by a four-vane water c o o l e d compressor r u n at 1725 r e v s , per min. by a 1/8 H.P. A.C. motor drawing 3 amps and heated on being passed through a h e l i c a l copper tube i n an oven. A.C, The oven was heated by an e l e c t r i c r e s i s t e r (27) on The upper l i m i t o f the c u r r e n t was determined by the s e t t i n g of the r h e o s t a t (R) and t h e h e a t i n g c o n t r o l l e d by a stove thermostat (30) on a U.C. r e l a y ( 3 2 ) . The upper limit of the c u r r e n t used was a safeguard t o prevent o v e r h e a t i n g i n case o f f a i l u r e o f the r e l a y . . Source and Temperature, C o n t r o l A l t h o u g h the s t r o n g e r Raman l i n e s of t h e d e e a l i n isomers c o u l d be photographed i n 30 or 40 minutes, much l o n g e r exposures (144 hours) were taken i n order t h a t many o f the weakest Raman t r a n s i t i o n s might be r e c o r d e d on the s p e c t r o graphic p l a t e . A study o f these f a i n t e r l i n e s was n e c e s s a r y i f any s l i g h t changes i n m o l e c u l a r s t r u c t u r e w i t h temperature were t o be i n v e s t i g a t e d . Therefore i n order t o m a i n t a i n the temperature of the" l i q u i d a t a c o n s t a n t v a l u e and t o guard, from any p o s s i b l e f a i l u r e s i n e l e c t r i c a l s u p p l y or other cont i n g e n c i e s the f o l l o w i n g e l e c t r i c a l c i r c u i t was used as shown in Fig. I I I . The motor (45) r u n n i n g the compressor which c i r c u l a t e d a stream o f a i r (shown by the d o t t e d arrow) over t h e * h e a t i n g element (27) t o heat the l i q u i d i n the Raman tube (26) was on the 1 1 0 - v o l t A.C. l i n e . I n the event o f the compressor' - 12 f a i l u r e the p r o t e c t i v e fuse (43) was c u r r e n t i n the motor c i r c u i t , "blown" "by the growing 1 To a v o i d the "blowing ? due to the c u r r e n t surge on s t a r t i n g , the motor the by^pass s w i t c h was c l o s e d f i r s t , the fuse s w i t c h (42) was then (44) was closed next, (44) and opened. Since, oh the s t o p p i n g of the compressor, the liquid i n the Raman tube; would c o o l t o room temperature i t was s a r y t h a t the arc be cut o f f i n order t o prevent of the spectrum due neces- superposition t o the exposure a t the room temperature on the one being t a k e n at h i g h e r temperatures. the primary of the t r a n s f o r m e r (40) was For t h i s purpose put across the motor, at 110 v o l t s , but i n s e r i e s w i t h the f u s e , to a c t u a t e the. r e l a y (39) on i t s secondary a t 500 v o l t s . When the motor was the c o i l of the r e l a y h e l d i n suspension which was the i r o n yoke (38) t o a t t a c h e d the mercury s w i t c h (37) c l o s i n g the B.C. m a i n t a i n the arc (25). was running On, the "blowing r e l e a s e d , b r e a k i n g the B.C. Switch 11 of t h e . f u s e the yoke (41) was introduced f o r s a f e t y w h i l e working on the adjustment of the r e l a y . When h e a t i n g was not r e q u i r e d ( i . e . (45) not used) the a r c was t a i n e d by s h o r t i n g the mercury s w i t c h by means of key The a r c (25) was on the 110 v o l t s B.C.. w i t h a p r o t e c t i v e r e s i s t a n c e (35) which was 2.8 to main- (36). line i n series adjusted to read amps, on the ammeter (21) when o p e r a t i n g under steady con- ditions. (32) and Taps on (35) s u p p l i e d v o l t a g e t o operate (33) . Relay (33) operated the r e l a y s the e l e c t r i c c l o c k (34) which stopped on the f a i l u r e of the arc or of the compressor - 13 thus r e c o r d i n g the exposure time. Relay t r o l l e d the A.C. (28). (32) i n s e r i e s w i t h the thermostat c u r r e n t i n the heater (30) con- (27) read by the ammeter The h y b r i d s w i t c h (31) w i t h the s h o r t i n g key (29) was used to t e s t the working of (32), to s e t (30) f o r o p e r a t i o n at the r e q u i r e d temperature, and t o speed up i n i t i a l without d i s t u r b i n g the s e t t i n g on (30). heating - 14 I I I . :; R e s u l t s : A number o f e x c e l l e n t Raman spectrograms have been obtained and s e v e r a l o f these are reproduced i n P l a t e s I , I.I, and I I I . P l a t e I shows the Raman spectrum obtained with c i s decanaphthalene a t 20° C..,'while P l a t e IT was obtained with the same l i q u i d maintained a t a temperature of 65° C., t h a t i s , at a p o i n t w e l l above the " t r a n s i t i o n " temperature observed by Seyer* P l a t e I I I i s t h e Raman spectrum o f the t r a n s modi- f i c a t i o n m a i n t a i n e d a t 20° 0. A l a r g e number o f Raman l i n e s were observed i n a l l three spectrograms, and the f i r s t columns of Tables I and I I g i v e the wavelengths of these l i n e s , i n Angstrom u n i t s . The'second columns of each t a b l e give; t h e f r e - quency numbers c o r r e s p o n d i n g t o these wavelengths, w h i l e the t h i r d and f o u r t h columns g i v e the AV.^'s or Raman frequency: s h i f t s from the two i n c i d e n t l i n e s X4047 A. and A 4358 A. In order to f a c i l i t a t e an examination of t h e s p e c t r a obtained, t r a c i n g s were obtained of P l a t e s I , I I , and I I I . w i t h a M o l l micr©photometer Copies o f these t r a c i n g s are r e p r o - duced here i n P l a t e s IV, V, and V I . An examination o f P l a t e s I and I I I o f t h e c i s and t r a n s isomers, along w i t h t h e i r cor- responding mierophotometer t r a c i n g s shows t h a t there are v e r y great d i f f e r e n c e s i n the Raman s p e c t r a o f the two m o d i f i c a t i o n s a t room temperature. From the wavelength and frequency d i f f e r e n c e s g i v e n i n Tables I and I I , one sees t h a t many l i n e s appearing i n the spectrum o f the c i s isomer do n o t appear i n t h a t o f t h e t r a n s m o d i f i c a t i o n , and that many " t r a n s " f r e - * • - 15 T quencies are absent i n the ' c i s " spectrum. I n both s p e c t r a however a number of new Raman l i n e s are found t h a t have not been r e c o r d e d by p r e v i o u s w o r k e r s . A f u r t h e r study o f these new f r e q u e n c i e s may f u r n i s h v a l u a b l e i n f o r m a t i o n c o n c e r n i n g the s t r u c t u r e o f the " c i s " and " t r a n s " m o d i f i c a t i o n s o f the decahydronaphthalene m o l e c u l e . A c a r e f u l comparison o f P l a t e s I and I I and t h e i r microphotometer t r a c i n g s i V and Y y i e l d s p o s s i b l y t h e most i n t e r e s t i n g r e s u l t o f t h i s r e s e a r c h ; namely,- d i f f e r e n c e s are observed i n the two s p e c t r a t h a t i n a l l p r o b a b i l i t y i n d i c a t e a change i n the m o l e c u l a r s t r u c t u r e of c i s decahydronaphthalene as i t i s taken from 20° C. t o 65° C, I f t h i s i s so, we have an e x p l a n a t i o n o f the sudden changes observed i n the p h y s i c a l p r o p e r t i e s o f t h i s isomer i n the neighborhood o f 55° C. A s i m i l a r change f o r t r a n s decahydronaphthalene a t 85° G. i s i n d i c a t e d b y Seyer's work and a study i s b e i n g made a t the present time of t h i s isomer a t temperatures above and below this transition point. Table I ( C i s ) # X 1 2 3 4 5 6 7 8 . 9 1G 11 12 13 14 15 16 17 18 19 20' • 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 4132.8 : A 4173.6 4190.9 4204.6 4213.1 4218.8 4223.6 4255.9 4264.9 4268.1 4275.5 4280.5 4297.5 4427.3 4442.3 4476.0 4504.2 4514.7 4523.1' 4526.3 4534.6 4542.2, 4550.5 : 4552.9 4559.4 4565.8 4571.6 4575.6 4581.3 4584.5 4587.5 4593.0 4602.9 4608.3 4614.1 4624.1 4628.3 4631.1 4635.0 4651.2 4655.6 4929.0 4940.0 4948.6 4960.4 4976.7 4980.4 4987.4 4993*6 4999.0 5028.2 . 5050.3 5127.2 r 715.5 752 .0 850.9 928.6 97 6.6 1008.6 1035.6 1066.9 121*3 e 2 1264.8 1282.3 1322.9 1350.2 1442.6 2124.6 2200.8 2370.3 2510.1 2561.7 2602.8 2618.5 2658.9 2695.8 2735.9 2747.5 2778.8 2809.6 2837.3 2856.4 2883.6 2898.9 2913.1 2939.2 2986.0 3001.5 3038.8 3086.6 3105.2 3118.3 3136.4 3211.6 3221.9 4423.0 44#8.1 4503.3 4:5131 e «3 4617.4 4632.3 4660.4 4685.4 : 4707.0 4823.1 4910.1 5207.0 357.2 433.4 602.9 742.7 794.3 83,5.4 851.1 891.5 928.4 968.6 980.1 1011.4 1042.2 1069.9 1089.0 1116.2 1131.5 1145.7 1171.8 1218.6 1244.1 1271.4 1318.2 1337.8 1350.9 1369.0 1444.2 1464.5 2655.6 2700.7 2735.9 2783.9 2850.0 2864.9 2893.0 2918.0 2939.6 3055.7 3142,7 3439.6 Table I I f A 1 2. 4113•6 4128,3 4171.7 4189.3 4193.7 4221.5 4225.6 • 4241.-8 . 4245*5 4257.8 4261.9 4265.0 4273.7 4278.4 4282.0 4297.3 4415.1 4418.4 4453.4;4495.7 4524.0' 4550.6 4533.7 4541i4 4546.8. 4554.9 4568.2 4571.9 4681.2 4586.7 4607.0 4617.0 4623.6 4630.9 4634.9 4636.1 4651*0 4928.0 4960.3 4972.1 4977.3 4986-. 0 4993.0 4997.6 5011.3 5030.1 5128.9 5178.3 . 4 5., 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 (Trans) A V 402.6 489.2 •741.1 841.8 966.8 1023.8 1046.8 1137.1 11.57.6 1225.7 1248,3 1265,3 1307.0 1338.6 1358.4 1441.5 2062.2 2079.1 2256.9 2468.1 2607.2 2639*4 2654.5 2691.9 2718.1 27 62.0 2821.1 2838.8 2883.2 2909.3 3005.4 3052.4 3083.3 3117.4 3136.0 3141.6 3210.7 4418.8 4550.9 4598.8 4619.8 4654,8 4682.9 4701.4 4756.0 4830.6 5213.5 5399.4 294.8 311.7 589.5 700.7 839 * 8 872.0 887.1 950.7 994.6 1053.7 1071.4 1115.8 1141.9 1238.0 1285.0 1315.9 1350.0 1368.6 1374.2 2661.4 2785.5 2831,4 2852.4 2887.4 2915.5 2934.0 2988*6 3063.2 3446.1 3652.0 PI ate I Plale'JL' Plate 7 late 71/ VL
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The Raman effect of cis and trans decahydronaphthalene
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
The Raman effect of cis and trans decahydronaphthalene Zotov, Gennady 1940
pdf
Page Metadata
Item Metadata
Title | The Raman effect of cis and trans decahydronaphthalene |
Creator |
Zotov, Gennady |
Publisher | University of British Columbia |
Date Issued | 1940 |
Description | [No abstract submitted] |
Subject |
Raman effect |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-11-07 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0085860 |
URI | http://hdl.handle.net/2429/38833 |
Degree |
Master of Arts - MA |
Program |
Physics |
Affiliation |
Science, Faculty of Physics and Astronomy, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
Aggregated Source Repository | DSpace |
Download
- Media
- 831-UBC_1940_A8 Z6 R2.pdf [ 9.03MB ]
- Metadata
- JSON: 831-1.0085860.json
- JSON-LD: 831-1.0085860-ld.json
- RDF/XML (Pretty): 831-1.0085860-rdf.xml
- RDF/JSON: 831-1.0085860-rdf.json
- Turtle: 831-1.0085860-turtle.txt
- N-Triples: 831-1.0085860-rdf-ntriples.txt
- Original Record: 831-1.0085860-source.json
- Full Text
- 831-1.0085860-fulltext.txt
- Citation
- 831-1.0085860.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0085860/manifest