UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Multiplicity in the spectra of cadmium I, II, and III Argyle, Sidney Charles 1950

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1950_A8 A72 M8.pdf [ 3.49MB ]
Metadata
JSON: 831-1.0085830.json
JSON-LD: 831-1.0085830-ld.json
RDF/XML (Pretty): 831-1.0085830-rdf.xml
RDF/JSON: 831-1.0085830-rdf.json
Turtle: 831-1.0085830-turtle.txt
N-Triples: 831-1.0085830-rdf-ntriples.txt
Original Record: 831-1.0085830-source.json
Full Text
831-1.0085830-fulltext.txt
Citation
831-1.0085830.ris

Full Text

L  ^3  7  HULTIPLIGITY I S THE SPECTRA OF CADMIUM I , I I and I I I  by SIDNEY CHARLES ARGYLE  A T h e s i s submitted i n P a r t i a l F u l f i l m e n t o f the Requirements f o r the Degree of MASTER OF ARTS i n the Department of PHYSICS  6o' THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1950  ABSTRACT A grating  spectrograph has  concave g r a t i n g w i t h a r a d i u s and  r u l e d at 600  been c o n s t r u c t e d  of c u r v a t u r e of 21.07  lines/mm. on an aluminum  The p l a t e h o l d e r ,  using  feet,  surface.  which i s loaded i n s e c t i o n s  2 x 18 i n c h p l a t e s , i s 13 f e e t l o n g , and  a  with  adequately covers  the wave-length range from 2000 A to 15,000 A. A water cooled and  S c h u l e r tube, a h e l i u m p u r i f y i n g system  a vacuum arc have a l s o been b u i l t and put The  spectra  above equipment has of cadmium, and  into  operation.  been used to i n v e s t i g a t e  51 l i n e s i n Cd  I and  Cd  the  I I have been  confirmed. S e v e r a l p r o m i s i n g l i n e s , namely X 4415.62, X 3533.71 X 3250.11, due  and  r e s p e c t i v e l y to the t r a n s i t i o n s 5p *T?i/>  i n Cd I I have been c a r e f u l l y s t u d i e d f o r i s o t o p e 21 f o o t g r a t i n g used i n t h i s study had i n g power to r e s o l v e  any  not  sufficient  The  resolv-  structure.  A comprehensive t a b l e of wave-lengths has f o r Cadmium I, I I and  shift.  III.  been compiled  ACKHOWIEDG-EMBNTS  The  author wishes to express h i s  g r a t i t u d e t o Dr. A. M. Crooker f o r h i s able a s s i s t a n c e and guidance. In a d d i t i o n he would l i k e t o acknowledge the work of Mr. A. J . F r a s e r and Mr. J . Lees i n connection  w i t h the  c o n s t r u c t i o n of equipment r e q u i r e d f o r this  research.  TABLE OP CONTENTS  Page I.  INTRODUCTION  1  A. Object B. Theory C E x p e r i m e n t a l Technique I I . APPARATUS  1 1 9 13  A. The L i g h t Sources B. The P u r i f y i n g System C. The Spectrograph  13 16 19  I I I .EXPERIMENTAL  24  IV. RESULTS  26  V.  APPENDIX  31  V I . BIBLIOGRAPHY  43  ILLUSTRATIONS Plate I.  The Helium P u r i f y i n g System.  Plate II.  The G r a t i n g Mount.  P l a t e I I I . The Spectrograph P l a t e H o l d e r .  PLATE I .  The Helium P u r i f y i n g System.  PLATS I I I .  The Spectrograph P l a t e Holder-  MULTIPLICITY IN THE  SPECTRA  03? CADMIUM I , I I  I.  • A.  and I I I  INTRODUCTION  OBJECT The  o b j e c t of t h i s r e s e a r c h was  sources and spectrographs  to develop s u i t a b l e  to undertake the study of m u l t i p l e t  and h y p e r f i n e s t r u c t u r e s i n the s p e c t r a of Cadmium I , I I and III. list XX  A b e g i n n i n g has been made i n e s t a b l i s h i n g a wave-length of cadmium s p e c t r a l l i n e s i n the o p t i c a l r e g i o n ,  2100  - 7400.  B.  THEORY  1.  Pine Structure The  theory of f i n e s t r u c t u r e i s f u l l y t r e a t e d i n many  standard t e x t s and w i l l be d e a l t w i t h only b r i e f l y The  here. ' '  energy of the atom and l i k e w i s e the energy of the  S. Tolansky, H y p e r f i n e s t r u c t u r e i n L i n e S p e c t r a Nuclear S p i n , Methuen and Co. L t d . , London, 1948. 1  G-. Herzberg, Atomic S p e c t r a and Atomic S t r u c t u r e , York, Dover P u b l i c a t i o n s , 1944. 2  E . "U." Condon and G. H. S h o r t l e y , The S p e c t r a , Cambridge P r e s s , 1935.  3  1  and New  Theory of Atomic  2  3  2.  component n  e l e c t r o n s depends on the quantum numbers n^,!^, Ji»  2 ' ^2* ^2*  e - t c  * ^ere  n  1, 2, 3, 4  1  0, 1, 2, 3, 4  J  1 + s  s  ± 1/2 f o r i n d i v i d u a l e l e c t r o n s .  The m u l t i p l i c i t y  of the energy l e v e l i s 2 s + 1.  s, p, d, f , g, h are used f o r v a l u e s respectively.  of 1 =  The l e t t e r s  0, 1, 2, 3, 4, 5  An atomic s t a t e which i s v i r t u a l l y a d e s c r i p -  t i o n of the energy and p o s i t i o n of the o p t i c a l e l e c t r o n i s designated  by the c a p i t a l l e t t e r s S, P, D, 3?, G.  of o n e - e l e c t r o n  I n the case  s p e c t r a these l e t t e r s c o i n c i d e w i t h the 1  v a l u e s , but i n atoms w i t h s e v e r a l v a l e n c e e l e c t r o n s the 1 and  s values  of the i n d i v i d u a l e l e c t r o n s can combine i n  d i f f e r e n t ways to g i v e a r e s u l t a n t J .  E i t h e r the i n d i v i d u a l  1 s and s's can combine to g i v e j v a l u e s which i n t u r n g i v e 1  a t o t a l value  J or the i n d i v i d u a l l ' s and s's can combine to  g i v e r e s u l t a n t L and S v a l u e s give a resultant J .  The former i s known as JJ c o u p l i n g , and  the l a t t e r , LS c o u p l i n g .  I t i s a l s o p o s s i b l e t o have i n t e r -  mediate forms of c o u p l i n g . one-electron  r e s p e c t i v e l y which.in turn  Whereas  the s e l e c t i o n r u l e s f o r  atoms i s :  J = ± 1 or 0 I = ± 1 ,  £o—*0  excludedj  3 The  selection  rules  J s  i n g e n e r a l become  ± 1 or 0  L = ±  '£(}'—*0 excluded^  1.  T h i s m u l t i p l i c i t y of a term g i v e s r i s e to a corresponding m u l t i p l i c i t y i n the  l i n e p a t t e r n known as a f i n e  structure  multiplet. Standard s p e c t r o s c o p i c n o t a t i o n w i l l be the  n o t a t i o n of LS  c o u p l i n g i s employed whenever t h i s can  done i n an unambiguous way. meant an be  By  eigenvalue of the  specified  by  the  the  F v a l u e of the  state.  transition  A line results  from  t o t a l i t y of a l l allowed components between two i f i e d by iplet  their respective J values.  i s the  s p e c i f i e d by  t o t a l i t y of l i n e s between two  adding t o ' a  "core" term an  called respectively, general, polyads.  levels  d,  etc  A super m u l t i p l e t  i s the  terms of two  electron  of two  configurations.  arise are in  t o t a l i t y of  polyads.  A  a r r a y i s the t o t a l i t y of p e r m i t t e d l i n e s connecting levels  are  multiplicity.  same m u l t i p l i c i t y which s, p,  spec-  terms, which  monads, t r i a d s , pentads, e t c ,  m u l t i p l e t s connecting the  the  c o u p l i n g , a mult-  t h e i r term t y p e , or L v a l u e , and  A group of terms of the by  In LS  can  A hyperfine  from a r a d i a t i v e  s t a t e s of an atom.  be  s t a t e of an atom i s  f i e l d f r e e H a m i l t o n i a n , which  s t r u c t u r e component r e s u l t s between two  used, i n which  transition the  4 2.  Hyperfine Structure Two d i s t i n c t types of h y p e r f i n e s t r u c t u r e , h f s . , occur  i n line spectra. different  The f i r s t  type r e s u l t s from the f a c t t h a t  elements or i s o t o p e s have d i f f e r e n t n u c l e a r s p i n s .  1  The theory of t h i s type of h f s . i s v e r y s i m i l a r t o t h a t f o r the gross m u l t i p l e t s t r u c t u r e of an LS term.  F o r the h f s .  the i n t e r a c t i o n i s between the i n t r i n s i c n u c l e a r s p i n moment, r e p r e s e n t e d i n the v e c t o r model by I , and the t o t a l  angular  momentum of the e x t e r n a l e l e c t r o n s , r e p r e s e n t e d by J , t o form the r e s u l t a n t t o t a l angular momentum, F j of the whole atom. The m u l t i p l i c i t y of the l e v e l i s g i v e n by 21. + 1 or 2 J + 1, which ever i s s m a l l e r .  I t can be seen t h a t a l l s p e c t r a l  terms w i t h J = 0 show no h y p e r f i n e s t r u c t u r e , r e g a r d l e s s of nuclear spin. t u r e of t h i s  L i k e w i s e , a l l atoms w i t h 1 = 0  have no s t r u c -  type.  T h i s magnetic d i p o l e i n t e r a c t i o n between the nucleus and the f i e l d a t the nucleus due t o t h e motion of the e x t e r n a l e l e c t r o n s may always be w r i t t e n i n t h e form A T = A ( I • 1)  (cm" ) 1  where A i s the h f s . i n t e r v a l f a c t o r of the g i v e n J s t a t e and i n g e n e r a l depends on the c o n f i g u r a t i o n and c o u p l i n g s i t u a t i o n p e r t a i n i n g to the given J l e v e l . W. P a u l i , Haturwiss,  12, 741, 1924.  This formula  expresses  5 the f a c t that the h f s . i n t e r v a l s obey the i n t e r v a l r u l e , namely, that the i n t e r v a l between two s t a t e s i s p r o p o r t i o n a l to the h i g h e r F bounding the i n t e r v a l . and  This i n t e r v a l r u l e  the f a c t t h a t each F s t a t e i s (23? + l ) - f o l d  degenerate  form the b a s i s of the experimental methods f o r determining I from atomic  spectra.  Fermi has. shoxra  1  t h a t f o r a, s i n g l e s e l e c t r o n t h i s  i n t e r v a l f a c t o r can be w r i t t e n as  31 where /j, i s the n u c l e a r magnetic moment, JU. that of an e l e c t r o n Q  and {jj (0) the wave f u n c t i o n of the s e l e c t r o n at t h e nucleus. T h i s equation and i t s l a t e r r e f i n e m e n t s  2  form the b a s i s of  determining the magnetic moment of t h e nucleus from observat i o n s of the h f s . i n atomic s p e c t r a . e f f e c t of a nuclear in Casimir s 1  Since  This s u b j e c t and the  e l e c t r i c quadrupole moment i s w e l l t r e a t e d  monograph.  3  the magnetic moment of t h e p r o t o n i s much s m a l l e r  than that of the e l e c t r o n , i t i s t o be expected that the h f s . energy d i f f e r e n c e s a r e much s m a l l e r than the energy  differ-  1  E . Fermi, Z s . f . Phys., 60, 320, 1930.  2  E . Fermi and E• Segre, Z s . f . Phys., 82, 729, 1933.  H. B• G. Casimir, On the I n t e r a c t i o n between atomic ' " n u c l e i and e l e c t r o n s , A r c h i v e s du Musee T e y l e r , 8,2 02, 1936.  3  •6 ences encountered i n g r o s s s t r u c t u r e .  In p r a c t i c e  i t i s found  t h a t the former are of the order of 1000 times s m a l l e r than the  latter. The  second type of h f s •  elements c o n s i s t  a r i s e s from the f a c t  of a number of i s o t o p e s .  that-many  Since the i s o t o p e s  v a r y only i n the number of neutrons i n the n u c l e u s , t h i s effect i s small.  Four main f a c t o r s  contribute.  They are as  follows: 1) E f f e c t  of the "reduced mass," wobbling motion of the  nucleus 2) S p e c i f i c mass e f f e c t  The  3) E f f e c t  of n u c l e a r  size  4) E f f e c t  of n u c l e a r  polarization.  first  of these e f f e c t s  i s the t o t a l mass e f f e c t f o r the  c l a s s i c a l two body problem.  The e x i s t e n c e of t h e s p e c i f i c  mass e f f e c t i n non-hydrogen l i k e s p e c t r a was emphasized by E c k a r t and Hughes.  1  The e f f e c t of the f i n i t e s i z e of the  nucleus i n d e c r e a s i n g the b i n d i n g energy of the e l e c t r o n s was a p p a r e n t l y f i r s t understood by B r e i t . has  also  ation  recently  showed  i s not n e g l i g i b l e .  3  T h i s l a t t e r author  t h a t the e f f e c t of n u c l e a r p o l a r i z The odd mass i s o t o p e s of even-Z  elements show g r e a t e r p o l a r i z a t i o n  and t h e r e f o r e the centre of  1  D. S. Hughes and C. E c k a r t , Phys. Rev. , 56, 694, 1930.  2  G-. B r e i t , Phys. Rev., 42, 348, 1932.  3  G. B r e i t , Phys. Rev., 77, 5 6 9 ® , 1949.  g r a v i t y of the h f s - s p e c t r a l l i n e i s s h i f t e d towards the l i g h t e r even i s o t o p e as i n H g Ba  1 3 5  ,  Ba  1 3 7  1 9 9  , Hg  , Pt  2 0 1  1 1 7  , Sm  1 4 3  , Sm ^, 14  .  The simple mass e f f e c t i s p r e d i c t e d by Bohr's t h e o r y . I n g e n e r a l the s e r i e s terms of a spectrum can be f i t t e d t o a H i c k ' s formula which i s of the form  E  =  R Z  —  2  5— (n + a + b_) n 2  a and b are numerical  constants  n i s the e f f e c t i v e quantum number Z i s the e f f e c t i v e n u c l e a r charge R i s Rydberg's  constant.  S i n c e Rydberg's constant i s not s t r i c t l y  constant b u t  i n v o l v e s the reduced mass o f t h e e l e c t r o n , we have f o r t h e frequency  \) of a l i n e V  -  R x A  where A i s of the form ,2 A"" £ h (n + a + _b_ ) n  2  x  (n + a + 2  2  b n  )  ;  2  Now f o r the i s o t o p e c o n s t i t u e n t o f a l i n e , A i s constant s i n c e i t does not i n v o l v e the mass of the n u c l e u s .  I t follows  t h a t f o r two i s o t o p e s the d i f f e r e n c e i n wave number A V i s  8 g i v e n by  4\>  (R-L  =  -  R ) 2  (A) .  Making use of the f a c t that R i s p r o p o r t i o n a l -to ' e ^ n m  where m  e  ^  i s the mass of the e l e c t r o n and M^ i s the mass  of the nucleus,  i t i s e a s i l y shown that  /IV = V m  e  Mi - Mp, Mi M  .  2  Of the eight s t a b l e i s o t o p e s  of cadmium t h i s  energy d i f f e r e n c e  would be g r e a t e s t f o r the i s o t o p e s 106 and 108. culation  A simple c a l -  shows t h a t f o r these two i s o t o p e s & V = 2.1 x 10  cm7  x  T h i s e f f e c t i s so s m a l l as to be masked by l i n e w i d t h i n even the f i n e s t l i n e  sources.  An e f f e c t t h a t comes under the (3) heading i s Isotope Displacement.  This e f f e c t i s much too l a r g e to be the r e s u l t  of simple mass s h i f t and must be a t t r i b u t e d  t o other  causes.  In a mixture of even i s o t o p e s , when t h i s e f f e c t i s p r e s e n t , the l i n e s due t o the d i f f e r e n t  i s o t o p e s do not f a l l  together  as would be expected from s p i n c o n s i d e r a t i o n s , but a r e slightl y d i s p l a c e d from each other. the centre  When odd i s o t o p e s are p r e s e n t  of g r a v i t y of the h f s . p a t t e r n i s o f t e n d i s p l a c e d  from the expected Large i s o t o p e  position. s h i f t s , due t o the f a c t o r s (3) and (4)  above , are expected f o r l i n e s I n v o l v i n g t r a n s i t i o n s configurations with d i f f e r e n t  numbers of s e l e c t r o n s .  between In the  l i n e s e s p e c i a l l y checked f o r i s o t o p e s h i f t i n t h i s tion this condition i s f u l f i l l e d , electron  double  p  t r a n s i t i o n : ; Sp^P  A  5d  0  C  EXPERIMENTAL TECHNIQUE  1.  L i g h t Source  s i n c e they i n v o l v e the  Q  y  investiga-  o  ?  53^ T ) .  In order t o e x c i t e the r e q u i r e d s p e c t r a i t i s necessary to  c o n s i d e r the f o l l o w i n g p o i n t s : (a) e x c i t a t i o n , , (b) l i n e  width,  (c) i n t e n s i t y .  S e v e r a l types of source i n use to-day  w i l l be d i s c u s s e d . The S c h u l e r tube, which i s v e r y w i d e l y used a t the p r e s e n t time, i s a development of the o r i g i n a l hollov/ cathode source used by P a s c h e n .  1  This source emits v e r y f i n e  e s p e c i a l l y when c o o l e d w i t h  liquid air.  lines  The i n t e n s i t y i s  h i g h , and.the window remains c l e a r even a f t e r s e v e r a l hours of  operation.  importance  These l a s t two  c o n s i d e r a t i o n s are of g r e a t  when l o n g exposures are  f a i n t components.  necessary t o b r i n g up  The e x c i t a t i o n , however, i s r e s t r i c t e d by  the i o n i z a t i o n p o t e n t i a l of the c a r r i e r gas used. ted  spectrum i s t h e r e f o r e , a c c o r d i n g t o t h e o r y , c o n f i n e d t o  the a r c III  The emit-  and f i r s t  spark;  but a c c o r d i n g t o S h e n s t o n e ,  2  Cd  l i n e s are emitted w i t h g r e a t i n t e n s i t y , and even more  completely than those of Cd I I .  This high e x c i t a t i o n  is  probably due t o the h i g h vapour p r e s s u r e of the metal and 1  A. G. Shenstone, R. P. P., 1938, page 210.  2  A. G. Shenstone, J . 0. S. A., 39, 210, 1949.  consequent  electron  10  excitation.  The e l e c t r o d e l e s s d i s c h a r g e tube used w i t h a condensed spark i s v e r y v a l u a b l e i n e x c i t i n g the h i g h e r spark s p e c t r a . T h i s source i s not as s u i t a b l e f o r the e m i s s i o n of f i n e as the c o o l e d h o l l o w cathode because  1  lines  of Doppler broadening.  This i s p a r t i c u l a r l y t r u e when the spectrum of low vapour p r e s s u r e metals i s t o be observed.  The degree o f i o n i z a t i o n  can be roughly c o n t r o l l e d by the s i z e of the e x t e r n a l spark gap, the c a p a c i t y and inductance i n the c i r c u i t , and the potential applied.  F o r extreme e x c i t a t i o n , c a p a c i t i e s up t o  .25 jM charged to a p o t e n t i a l of 100,000 v o l t s have been used. S o r t i n g out of l i n e s of a p a r t i c u l a r i o n i z a t i o n i s s i m p l i f i e d by the f a c t t h a t i n any p a r t i c u l a r vacuum spark only two degrees of i o n i z a t i o n occur w i t h g r e a t i n t e n s i t y . I f extremely f i n e l i n e s a r e r e q u i r e d f o r the s e p a r a t i o n of v e r y -close components then an atomic beam can be used. The beam-can be so w e l l c o l l i m a t e d by the use.of a p p r o p r i a t e s l i t s t h a t a Doppler width e q u i v a l e n t t o a few degrees a b s o l u t e can be o b t a i n e d i n a b s o r p t i o n s p e c t r a . ;Meissner g r e a t l y extended the use of t h i s ' t y p e of source by bombarding the atomic beam w i t h a s t r o n g beam of e l e c t r o n s t o g i v e an e m i s s i o n spectrum w i t h a l i n e b r e a d t h equal t o 5° K. An a r c or spark i n n i t r o g e n i s u s e f u l f o r the e x c i t a t i o n 1' C. R. Msenwanger, J . R. Holmes and G. L . W e i s s l e r , J . 0. S. A., 36, 581 - 7,. (1946). 2 H. A. Robinson,. Z. Phys., 100, 636 (1936).  11 of a r c or f i r s t usefulness parent  spark s p e c t r a .  There are two  of t h i s type of source:  down to at l e a s t  1000  A)  reasons f o r the,  (a) Pure n i t r o g e n i s t r a n s -  (b) Low  spark or a r c  lines  are almost absent from the u s u a l vacuum spark or a r c .  2.  Spectrographs When h i g h r e s o l u t i o n i s not necessary  of c l o s e s t r u c t u r e , or when the instrument  f o r the  separation  i s t o be used only"  f o r the i d e n t i f i c a t i o n of l i n e s , a g l a s s or quartz spectrograph  i s indispensable.  i n the gross  s t r u c t u r e or i f h y p e r f i n e  t o be r e s o l v e d , i t - i s  However, i f c l o s e  necessary  prism doublets  structure patterns  to use  some type of  are  inter-  ferometer . Interferometers  can be d i v i d e d i n t o f o u r g e n e r a l  groupsJ  (a) the r u l e d g r a t i n g , (b) the Lummer p l a t e - i n t e r f e r o m e t e r , (c) the  echelon-grating,  (d) the Fabry-Perot  interferometer. -  In t e r m s of the r e s o l v i n g l i m i t , which i s d e f i n e d as the h a l f w i d t h of the i n s t r u m e n t a l  d i f f r a c t i o n p a t t e r n , we have i n  p r a c t i c e f o r the above c l a s s i f i c a t i o n s r e s o l v i n g l i m i t s 0.06  cm." , 0.025 cm." , 0.01 1  1  cm."  1  and  0.0025 cm.  -1  of  respect-  i v e l y f o r the r e g i o n of 5000 A.  For the r u l e d g r a t i n g t h i s  l i m i t i s a t t a i n e d i n the f o u r t h  order.  1  1 S. Tolansky, High R e s o l u t i o n Spectroscopy, Methuen Co. L t d . , London, 1947.  and  - •  12  As w e l l as the r e s o l v i n g l i m i t , t h r e e other f a c t o r s must be c o n s i d e r e d i n the s e l e c t i o n of a s u i t a b l e They are as f o l l o w s :  instrument.  •  (a) the e f f e c t i v e range of u s e f u l n e s s , (b) the ease of i n t e r p r e t a t i o n of o b s e r v a t i o n s , (c)  the r e l i a b i l i t y of the instrument.  The l i n e g r a t i n g and the r e f l e c t i n g  echelon can be used  over  the whole s p e c t r a l range from the i n f r a - r e d to the f a r u l t r a v i o l e t but the r e s o l v i n g l i m i t of these instruments i s p r o p o r t i o n a l t o the wave number.  The Fabry-Perot i n t e r f e r o m e t e r  and the Lummer p l a t e can work w i t h i n the range of q u a r t z . struments  of t r a n s m i s s i o n  In theory the r e s o l v i n g l i m i t of these two i n i s almost u n i f o r m over the range, but i n p r a c t i c e ,  because of mechanical c o n s i d e r a t i o n s , the r e s o l v i n g f a l l s towards the u l t r a - v i o l e t .  limit  From the p o i n t of view-of  ease of i n t e r p r e t a t i o n - t h e l i n e g r a t i n g i s f a r s u p e r i o r to the other instruments under c o n s i d e r a t i o n . The Fabry-Perot i n t e r f e r o m e t e r , because of i t s complete freedom from ghosts, i s i n g e n e r a l more r e l i a b l e other t h r e e instruments mentioned. t r e a t e d by  Tolansky.  than the  This subject i s w e l l  1  S. Tolansky, High R e s o l u t i o n Spectroscopy, Methuen and Go. Ltd.-, London, 1947.  1  13 II.  A.  APPARATUS  THE LIGHT SOURCE In order t o e x c i t e the cadmium s p e c t r a t h r e e types of  sources were used.  These were as f o l l o w s :  (a) An e l e c t r o d e l e s s d i s c h a r g e tube, (b) A vacuum a r c , (c) A Schiller tube. The e l e c t r o d e l e s s d i s c h a r g e tube used by the author Was v e r y simple i n form and c o n s i s t e d of a quartz tube 1 1/4 inches i n diameter and 16 inches l o n g w i t h an e v a c u a t i o n tube at one end. The o p e r a t i o n of t h i s source i s as f o l l o w s .  Several  s m a l l p i e c e s of cadmium are p l a c e d i n the tube, which i s then connected t o a mechanical vacuum pump and evacuated.  The'  tube i s then heated by means of bunsen lamps t o v a p o r i z e the. cadmium and swamp out i m p u r i t i e s . p r o c e s s i s continued throughout  The e v a c u a t i o n and h e a t i n g  the exposure.  E x c i t a t i o n can  be obtained e i t h e r by p l a c i n g the source i n s i d e the o s c i l l a t or inductance or by t a p p i n g o f f from each end of t h i s inductance and e x c i t i n g the s p e c t r a by means of e x t e r n a l e l e c t r o d e s i n the form of bands p l a c e d around each end of the tube.  T h i s source was used w i t h both R.E. and condensed- <~  spark e x c i t a t i o n .  The former was more convenient t o operate  than the l a t t e r , hut excitation.  can he expected to g i v e a more g e n t l e  In both cases, hut  g r e a t d i f f i c u l t y was trum.  e s p e c i a l l y i n the former,  experienced  i n o b t a i n i n g a c l e a n spec-  T h i s r e s u l t s from the f a c t t h a t t h i s type  f a v o u r s the e x c i t a t i o n of minute i m p u r i t i e s . recommends the use  source  Tolansky  of a c a r r i e r gas, w i t h the element t o be  analysed b e i n g i n t r o d u c e d as an gas  of  "impurity".  I f the  carrier  i s i n t r o d u c e d through a p u r i f y i n g system, l i t t l e  c u l t y should be experienced bands.  T h i s method was  from the presence of  diffi-  molecular  not used, s i n c e t h i s m o d i f i c a t i o n  would s e v e r e l y l i m i t the e x c i t a t i o n .  Another  difficulty  arose from the f a c t t h a t the windows soon became coated cadmium. i t was  with  In order to remove t h i s f i l m d u r i n g an exposure  necessary  to heat the windows t o a d u l l r e d h e a t ,  and  t h i s was  not e n t i r e l y s a t i s f a c t o r y because the windows soon  gathered  a brown coat on the i n n e r s i d e which c o u l d not  removed even by the use  of a c i d s .  l o n g exposures were r e q u i r e d .  The  outcome was  be  that very  This i n turn introduced  a  f u r t h e r d i f f i c u l t y i n that a l l the cadmium condensed i n the evacuation  tube b e f o r e the exposure was  completed."  This  d i f f i c u l t y c o u l d be e l i m i n a t e d by s e a l i n g o f f the tube once a pure spectrum was heated.  obtained;  the whole tube c o u l d then be  In t h i s case, however, i f a quartzr tube were used  i t Would have to be heated e l e c t r i c a l l y , as the seepage of hydrogen from bunsen lamps through the w a l l of the tube would soon cause a p r e s s u r e  increase.  15 Two  Schiller tubes, both of the same g e n e r a l form but  d i f f e r i n g i n s i z e and c o o l i n g methods, were b u i l t and put operation.  The l a r g e tube, which had a h o l l o w cathode 1  into cm.  i n diameter and 3 cms. deep,was b u i l t f i r s t and put i n t o use. T h i s tube operated most s a t i s f a c t o r i l y at a h e l i u m p r e s s u r e of about 1 mm.  of mercury.  Because  of the l a r g e metal  s u r f a c e s i n v o l v e d i n t h i s model, the p u r i f y i n g system  was  unable to handle the l a r g e volume of i m p u r i t i e s p r e s e n t , and a r e a l l y c l e a n spectrum was the tube was was b u i l t .  never o b t a i n e d .  For t h i s reason  d i s c a r d e d and a s m a l l e r one of improved d e s i g n T h i s model, which i s i l l u s t r a t e d below, gave ,a  spectrum which was f r e e from m o l e c u l a r bands w i t h i n a few minutes a f t e r c i r c u l a t i o n was  commenced.  c A  Scale - Actual  The m a t e r i a l s used are as f o l l o w s : A.  mild steel  C. pyrex  B.  brass  D-  quartz.  size.  16 This tube operates b e s t at the r a t h e r h i g h h e l i u m pressr. ure of 5 ram. At lower p r e s s u r e s  the d i s c h a r g e r e f u s e s to  remain i n the cathode h o l e . Operating 800 v o l t s .  c u r r e n t s v a r y from 50 to 250 ma.  A 2000ballast  stable operation.  at 400  r e s i s t o r i s used to p r o v i d e  It i s p o s s i b l e that a l a r g e r value  r e s i s t a n c e or the use  to  of a constant  of t h i s  c u r r e n t d e v i c e , which i s  of g r e a t v a l u e f o r i n s u r i n g s t a b i l i t y over a wide range of o p e r a t i n g c o n d i t i o n s , would improve the c h a r a c t e r i s t i c s of t h i s source. sources  Such a d e v i c e f o r use w i t h hollow  i s d e s c r i b e d by  Shenstone.  cathode  1  A vacuum a r c w i t h e x t e r n a l l y a d j u s t e d e l e c t r o d e s quartz windows f o r o p e r a t i o n w i t h or without was  a magnetic  b u i l t as an aid! i n i d e n t i f y i n g e x c i t a t i o n l e v e l s .  source  B.  and  i s shown on page  field This  17•  THE PURIFYING SYSTEM The p u r i f y i n g system , which i s w e l l d e s c r i b e d by T o l 2  ansky,  i s i l l u s t r a t e d on P l a t e I .  In the o p e r a t i o n of t h i s system, some care must be i f the system i s to f u n c t i o n p r o p e r l y . 1  A. G. Shenstone,-R. P. P.,  2  S. Tolansky,  1938,  The f i r s t page  1947.  step i s t o  210.  High R e s o l u t i o n Spectroscopy,  Co. L t d . , London,  taken  Methuen and  17  The Vacuum Arc• hake out the charcoal trap under vacuum a t a temperature of 500° C f o r s e v e r a l hours i f a i r has leaked i n t o the system. This can he done by means of an e l e c t r i c furnace which was b u i l t f o r the purpose.  The r e q u i r e d temperature i s obtained  by applying 75 v o l t s to the terminals by means of a v a r i a c . This voltage should a l s o be a p p l i e d to the furnace on the copper oxide trap during the baking process to prevent the condensation of mercury and other i m p u r i t i e s i n t h i s t r a p . Having baked out the t r a p , the system i s now ready f o r operation.  The f o l l o w i n g procedure should be f o l l o w e d i f  s a t i s f a c t o r y r e s u l t s are to be obtained. on the system should be cooled  with  The two c o l d t r a p s  e i t h e r l i q u i d a i r or a  mixture of a l c o h o l and dry i c e f o r a p e r i o d of 15 minutes  18  b e f o r e the c i r c u l a t i o n pump i s p u t i n t o o p e r a t i o n . p r e v e n t s mercury vapour from r e a c h i n g the l i g h t b e i n g absorbed by the cadmium and b r a s s .  This  source and  A few mm. of h e l i u m  should then be i n t r o d u c e d i n t o t h e system i n s m a l l q u a n t i t i e s . I f a l a r g e q u a n t i t y i s i n t r o d u c e d a t once, or i f the copper oxide i s heated f i r s t , t h e c o o l i n g l i q u i d t r a p i s sure t o b o i l  over.  on the c h a r c o a l  The copper oxide should now be  heated by a p p l y i n g 90 v o l t s t o the t e r m i n a l s of the f u r n a c e . V o l t a g e should not be a p p l i e d t o the source u n t i l the gas has  c i r c u l a t e d f o r some 5 or 10 minutes, s i n c e , i f there i s  any  oxygen p r e s e n t , the cadmium w i l l o x i d i z e r a p i d l y and the  tube may have t o be dismantled and cleaned w i t h n i t r i c  acid.  T h i s o p e r a t i o n n e c e s s i t a t e s r e - o x i d i z i n g the cathode.  Under  no circumstances  should t h e source be operated i f i t i s  known t h a t a i r has l e a k e d i n t o the system.  The mercury pump  should be operated a t about 1 cm. p r e s s u r e . On a l o n g exposure i t may be necessary t o i n t r o d u c e an a d d i t i o n a l s m a l l q u a n t i t y of h e l i u m i n t o t h e system t o r e p l a c e the h e l i u m absorbed  by the c h a r c o a l .  I f these p r e -  c a u t i o n s are taken, no d i f f i c u l t y should be experienced i n o b t a i n i n g a c l e a n , b r i l l i a n t spectrum.  19  C .  T H E  1 .  T h e  S P E C T R O G R A P H  G r a t i n g  T h e  p e r  2 1  mm.  h a v e  f  o  f  r  M o u n t  t  5  . c o n c a v e  1 / 2  r o t a t i o n ,  g r a t i n g  b a s e  i s  d i v i d e d  t o  .  i  -  ° ,  r o t a t i o n  w i t h  a  s c a l e  s  m a r k e d  t h u s  4 5  t h e  T h e  i  n  a  t h e  r e a d i n g  c m .  i  n  n  e a c h  T h e  w a s  i n c h e s  r u l e d  i  s  d  b e i n g  i  s  g r a t i n g  u s e d  w a s  i  o  i  n  o f  n  o n e  l i n e s  s o  a s  v e r n i e r  4 . 5 °  c m s .  d  i  v  t e m p o r a r i l y ,  a v a i l a b l e .  i  f  o  i  a n d  s  i  t o  T h e  d i a l  e q u i v a l e n t  t r a n s l a t i o n  t h a t  n o t  6 0 0  a d j u s t m e n t s .  i  v  t  m o u n t e d  t h e  r o t a t i o n  s u c h  a  w h e r e a s  c a l i b r a t e d  i n c h e s ,  s  v e r t i c a l i t y  d e g r e e s ,  s c a l e  s c a l e  i  a n d  i  s u r f a c e  g r a t i n g  v e r n i e r .  c a l i b r a t e d  c o n s t a n t s  o f  s e c t i o n s ,  g i v i n g  c a l i b r a t e d  i n c h e s .  s c a l e  i  d i r e c t  i n c h e s  t r a n s l a t i o n  i n t o  o f  g r a t i n g • w h i c h  o  n  s i n c e  T h e  r  o n e  s  e q u i p p e d  a  v e r n i e r  =  0 . 0 0 5  a  s u i t a b l e  g r a t i n g  a r e :  R  =  6 4 2 . 2 1 4  G r a t i n g  c m s .  s p a c e  D i s p e r s i o n  r  =  1 6 , 6 6 6 . 6  2 . 5 9 5 1 8 8  A .  c o s  ft  A / m m .  n  T h e o r e t i c a l  o r d . e r  i  n  w h i c h  r e s o l v i n g  t h e  g r a t i n g  p o w e r  i  s  =  u s e d .  n  x  8 2 , 5 0 0  w h e r e  n  i  s  t h e  20  2-  The P l a t e  The  plate holder,  inch plates, held in  Holder  which i s loaded w i t h eight  i s d e s i g n e d f o r ease o f l o a d i n g .  s n u g l y i n p o s i t i o n h y means  the p l a t e holder.  rotated  of c l i p s  t h r o u g h any a n g l e r e q u i r e d .  This  The p l a t e s a r e  that  The w h o l e p l a t e h o l d e r  eighteen-  f i t into  beam c a n be  rotation i s cal-  ibrated i n inches with a conversion  f a c t o r of 1 i n c h  The  eliminates  use of such a long p l a t e holder  of f r e q u e n t  =.97276°.  the necessity  r e - s e t t i n g i n order t o cover the spectrum.  Letting  i = 19° i n the fundamental g r a t i n g  nX = d ( s i n i + s i n 0) g i v e s  6051 a n d 1587 A  formula  0 a 2 ° 9* a n d 3 5 ° 5 1  two ends o f t h e p l a t e h o l d e r . are  slots  Therefore,  1  f o r the  the l i m i t s  on nX  respectively.  n i s the order i n which the spectrum i s observed. X i s t h e w a v e - l e n g t h i n A. d i s the grating i  i s the angle  of  s p a c e i n A. incidence.  0. i s t h e a n g l e t o t h e s p e c t r u m l i n e b e i n g On a l l o w i n g holder,  some t o l e r a n c e  observed.  a t t h e ends o f t h e p l a t e  t h e u s e f u l wave-lengh range i s ;  1 st  order  6100  15150  2 nd  order  3050  7575  3 rd  order  2050  5050  21 4th  order  2000  3780  5th  order  2000  3000  7575  15150 occurs only i n the 1 s t o r d e r .  5050  7575 occurs only i n the 2nd o r d e r .  3050  5050 occurs only i n the 2nd and 3 r d o r d e r .  2050 •  3050 occurs only i n the 3 r d and 4 t h o r d e r .  2000  2050 occurs only i n the 3 r d , 4 t h and 5th o r d e r .  3.  The Measurement of Wave Lengths f o r M u l t i p l e t ; A n a l y s i s S i n c e , f o r the purpose of m u l t i p l e t a n a l y s i s , the meas-  urement of Wave-lengths should be c o r r e c t t o .01 c m  - 1  in  order t o reduce the p r o b a b i l i t y of chance c o i n c i d e n c e s i n the analysis,  1  i t i s q u i t e e s s e n t i a l to make c o r r e c t i o n s t o the  wave-lengths, c a l c u l a t e d by the method of c o i n c i d e n c e s , f o r changes i n atmospheric p r e s s u r e and temperature. a n a l y s i s of the problem i s p r e s e n t e d  An o r i g i n a l  below.  In the g r a t i n g equation nX = b ( s i n i + s i n /$) X i s the wave-length measured i n a i r .  I f i t i s wished t o  reduce the wave-length t o vacuum i t i s necessary  to write  nX = H b ( s i n i + s i n 0) where N i s the index of the a i r . Then, f o r a d e f i n i t e s p e c t r a l  line,  H. H. R u s s e l l and I . S. Bowen, Mount Wilson C o n t r i b u t i o n No. 375, 1929, A s t r . J n l . , 69, 196, 1929. 1  22  dN  + db  3sT  b  And i f f o r N the  -Q  cos 0 6.0  +  sin i +  sin0  G-lads-tone-Daie-app-roximat-ion  (N - l ) T/p  - a constant  (where T i s the temperature  and p the p r e s s u r e )  i s used  w i t h the c o n d i t i o n f o r sharp l i n e s , i . e . , 6.0 = 0, the f o l l o w ing r e l a t i o n i s obtained: dH N  db  =  - oC d  T  where c< i s the l i n e a r c o e f f i c i e n t of expansion of the g r a t i n g . On u s i n g the r e l a t i o n  (* - .1)  d¥  dp P  _  dT T  f o r dU i n the above equation i t becomes  (*  - i)  \7S-1  p  - 0  T J  I t i s proposed t o s a t i s f y these equations approximately w i t h a barothermograph.  I n many i n s t a n c e s i t i s s u f f i c i e n t  to h o l d T constant; then (N - 1) U and  6.0 -  -  dp_ p  +  cos 0 6.0 sin i + sin 0  m  {TS - l) dp_ ( s i n i + - s i n 0) _ (TS - 1), dp_ TS  p  cos  0  "S  p  nX Nb  ,cos0  and the s h i f t i n p o s i t i o n of the s p e c t r a l l i n e ds i s g i v e n by  ds = R d $  = (3ST S  dp_ p  1 )  A D  where D i s the p l a t e f a c t o r , or r e c i p r o c a l d i s p e r s i o n dX/ds a (Mb cos 0)/nR. dX  s  Therefore the apparent s h i f t of wave-length  Dds i s .  dX =  - (N -  dp_ A p  1 )  IT  Or t o achieve a p r a c t i c a l r e s o l v i n g power of R necessary  to keep dA < X/Ri  i.e.  (* ; IT  D  *  <  which f o r R-^ =  1 )  SB.  A  p  RJ&  <  1  s x/dX  i t is  J L .  R  x  - 1 )  2 0 0 , 0 0 0  r e q u i r e s dp <  1 2 . 6 mm.  at  7 6 0  mm.  In a s i m i l a r manner i t can he shown t h a t f o r a g i v e n c o i n c i d e n c e a t nX, ds = nX (R/b (cos ^ T ) ( l ^ . - 3ST) dp/p 1  r  g i v e s the displacement change.  of the c o i n c i d e n c e on a p r e s s u r e  24 III.  During light of  t h e p r o c e s s of d e s i g n and  s o u r c e s , numerous t e s t  investigating  This  EXPERIMENTAL  intensity,  construction  p l a t e s were excitation  e x p e r i m e n t a l e v i d e n c e showed t h a t  s o u r c e was  most s u i t a b l e  Spectrograms copper brass  A  ence of copper  Another minor  believed  l o w , no  a t t e m p t was  faint the  i n spite  from the presence  that  remained, however, were low i n i n t e n s i t y  not be  of  purification.  cathode, could  of thorough o x i d i z a t i o n  of  eliminated  The  completely. and  of the lines  caused  difficulty.  To f a c i l i t a t e  the focusing  l o w p o w e r e d m i c r o s c o p e was  in  of  the i n t e n s i t y  made a t  inconvenience resulted  which,  As  iron  of the concave g r a t i n g ,  m o d i f i e d so as  the f o c a l p l a n e of the o b j e c t i v e  could  cathode  t o come f r o m  lines  at  spectrum.  at hand.  iron  little  purpose  s p e c t r u m a n a l y s i s , however, showed t h e p r e s i n t h e cadmium s u p p l y .  l i n e s was  a hollow  of  s o u r c e showed t h e p r e s e n c e  l i n e s which were at f i r s t anode.  these  of t h i s  the  taken f o r the  and p u r i t y  f o r the purpose  of  t h e n be  the grating  placed i n the p l a t e  lens.  The  h o l d e r and  worth  the time  edges  microscope  the discrepancy  f o c u s r e a d o f f on t h e m i c r o s c o p e  i n s t r u m e n t p r o v e d t o be w e l l construction.  to have k n i f e  a  scale.  spent  on i t s  This  25 When the equipment Was working s a t i s f a c t o r i l y ,  spectro-  grams were taken on a H i l g e r E . l s p e c t r o g r a p h and on the foot grating. was  21  T o t a l exposure time f o r the H i l g e r spectrogram  52 minutes.  I t was necessary t o change the o p e r a t i n g  c o n d i t i o n s of the Schiiler tube at i n t e r v a l s d u r i n g the exposure t o m a i n t a i n the r e q u i r e d e x c i t a t i o n .  Data f o r the expos-  ure i s g i v e n below. Current  Voltage  Time  3 mm.  100  ma.  450  15  3 mm.  125  »  500  II  5  »  3  u  150  »  600  II  3  "  4  tt  150  «'  630  II  14  "  175  "  660  II  10  "  200  »  700  II  5  »  Helium P r e s s u r e  4  II  ti  4  volts  52 The e x c i t a t i o n was  min  minutes.  determined by v i e w i n g the source w i t h  a d i r e c t v i s i o n spectroscope from time to time d u r i n g the exposure. Two  exposures were taken on the g r a t i n g w i t h exposure  times of 30 minutes and 7 minutes. Helium P r e s s u r e  Data i s g i v e n below.  Current  Voltage  Time  30  5  mm.  170  ma.  600  volts  7  mm.  200  ma-  750  volts•  min.  7 min.  26  RESULTS  A 21 f o o t concave g r a t i n g , t h r e e l i g h t sources and a p u r i f y i n g system f o r h e l i u m were b u i l t and put i n t o  operation.  Spectrograms were taken, and 51 l i n e s i n Cd I and Cd I I were confirmed.  S e v e r a l p r o m i s i n g l i n e s , namely X 4415.62,  X 3535".71 and X 3250.11 due r e s p e c t i v e l y t o the t r a n s i t i o n s 5  P ?il/  4d 5s  2  9  2  5p P ° . y  4d 5s  2  9  2  2  2  2  2  D  2  y  ,  2  5p  4d 5 s 9  2  2 ] ^ , and  I>^j, i n Cd I I have been c a r e f u l l y J-72  studied f o r isotope  shift.  The 21 f o o t g r a t i n g used i n t h i s  study had not s u f f i c i e n t r e s o l v i n g power to r e s o l v e any structure. S i n c e the doublet laws and Mosley diagrams a p p l i e d t o on  i s o e l e c t r i c sequences p r o v i d e the experimental f o u n d a t i o n f o r the d i s c o v e r y  and assignment of s p e c t r a l terms, the doublet  laws were a p p l i e d t o r e p r e s e n t a t i v e  doublets i n the i s o e l e c -  t r o n i c sequences i n v o l v i n g Cd I , Cd I I and Cd I I I i n order t o check the assignments of c o n f i g u r a t i o n s For  i n the s p e c t r a .  the r a p i d c a l c u l a t i o n of the r e g u l a r  A\) :  Rc(  2  n a t a b l e of the q u a n t i t y  3  (z - s )  d o u b l e t law  4  1(1 + l)  log n  3  l i t + l)  R o(  2  was made.  27 This t a b l e and a p p l i c a t i o n s of the doublet laws are t a b u l a t e d below.  The v a l u e of Rc< u s e d 2  Table of l o g  n  i s 5.844 cm."  1  1  I { :i + l )  3  Rot  d  P  1.  2  f  h  g  i  2  .4374  3  .9657  1.4428  4  1.3405  1.8176  2.1187  5  1.6312  2.1084  2.4094  2.6312  6  1.8688  2.3460  2.6469  2.8688  3.0449  7  2.0696  2.5468  2.8477  3.0696  3.2456  3.3919  8  2.2436  2.7207  3.0218  3.2436  3.4917  3.5658  9  2.3971  2.8142  3.1752  3.3971  3.5732  3.7193  10  2.5343  3.0115  3.3125  3.5343  3.7104  3.8565  A p p l i c a t i o n of the Regular or Spin Doublet Law t o the i s o e l e c t r o n i c sequence Cd I, In I I , Sn I I I , Sb IV, ;. i n v o l v i n g the t r a n s i t i o n (5s 5p ^F  Q  Element  Z  (Z - s)  — —  s  Cd I  48  1,613  16.21  31.79  In I I  49  3,552  19.74  29.26  Sn I I I  50  5,681  22.20  27.80  Sb IV  51  8,125  24.42  26.58  3  P ). P  As  • 2.53 1.46 1.22  R. T. B i r g e , Rev.Mod.Phys., 15, 233, 1941.  28 2.  Application involving  Ag I , Cd I I , I n I I I , Sn I V  t h e t r a n s i t i o n (Sp  Element Ag  t o t h e sequence  Z 47  I  920.6  Pyg  (Z-s)  s  14.09  32.91  A  a  2.96 Cd I I  48  2483  18.05  29.95  In I I I  49  4342  20.76  28.24  Sn IV  50  6518  22.98  27.02  1.71  3.  Application involving  t o t h e sequence  Ag I I , Cd I I I , I n I V , Sn V  the t r a n s i t i o n ( 4 d  Element II  Z  1.22  9  5s D 3  3  — -  (Z-s)  s  47  4574.8  23.42  23.58  Cd I I I  48  5766.1  24.80  23.20  In  49  7108  25.74  23.26  50  8620  27.43  23.57  Ag  3  D ). 1  .38 .06  IV  Sn V  +  .31  Application sequences Sn I V ) , tions (4d 5s 9  of  (Cd I ,  (Pd I ,  (5s 3  the In  II,  Ag I I ,  4d  1  .Element  9  Sn I I I ,  Cd I I I ,  5s  2  D  Irregular-Doublet  5p 5p  5s  2  3  3  1  p£),  Sh  Law t o  IV),  In IV) (5s  2  the  (Ag I ,  Cd I I ,  involving  S-^  the  5p  .  isoelectronic  2  P-^°) • S  5 s 5p  Q  Cd  I  30,656  In  II  43,349  Sn  III  55,191  Sb  IV  66,700  3  P °  12,693 11,842 11,509  Element  A  Ag  I  29,552  Cd  II  44,135  In  III  57,185  Sb  IV  '69,559  v  14,583 13,050 12,474  1  Element  4d 5s D 9  3  1  Pd  I  26,086  Ag  II  39,882  Cd  III  52,536  In  IV  64,769  4d 5p P ° 9  3  1  A V  13,796 12,654 12,233  P y  In  III,  transig  ),  30 A  a n d  c o m p r e h e n s i v e  C d  I  I  I  w a s  l i s t  c o m p i l e d ,  o f  s h o w i n g  c l a s s i f i c a t i o n .  T h i s  T h e  c o n f i r m e d  w a v e - l e n g t h s  w a v e - l e n g t h s  t a b l e  i  b y  s  o f  i n t e n s i t y ,  d i s p l a y e d  t h e  a u t h o r  i  C d  I ,  C d  I I  w a v e - l e n g t h  n  t h e  a r e  a n d  A p p e n d i x .  m a r k e d  w i t h  a n  a s t e r i s k .  T h e  e d  f r o m  ( l l )  a s  a n d  v a l u e s  f o u r  o  r  t h e  s o u r c e s .  ( 1 2 )  o b t a i n e d  f  b y  i  n  t h e  t h e  i n t e n s i t i e s  F o r  c o l u m n s  b i b l i o g r a p h y .  a u t h o r .  o f  1 ,  t h e  2  C o l .  a n d  4  l i n e s  3  w e r e  r e f e r  g i v e s  t h e  t o  c o l l e c t -  ( 1 7 ) ,  v a l u e s  APPENDIX  Table of 'Wave-Lengths of Cadmium showing I n t e n s i t y ,  I, I I  Wave-Length and C l a s s i f i c a t i o n  39,086 16,482 16,433 16,401 15,713 15,258 15,154 14,853 14,474 14,354 • 14,327 13,979 11,630 11,268 10,395  lu  -  8,200.07 8,066.99 7,399.2 7,396.67 7,385.3  70 800  1000 1000  100  30  II  7,383.9 7,346.2 7,284.38 7,275.75 7,237.01  100 10 50  30 5h 20  and I I I  10  7,132.27 6,935.46 6,818.39 6,778.10 6,759.189  II II II II II +  II  500 10 5 25  100  400 15  30  500 400  2000  30 15  1000 50 50 10  15 15 100 300 30 50 10 40 10 5  2 2 1 200 1000  5  3  6725.780 6684.161 6574.098 6567.648 6468.6  6464.936 6449.456 6438.4 69 6 6359.982 6354.724 +  +  +  6329.97 6325.19 6198.26 6165 . 6128.66 6116.19 6111.52 6099.18 6031.38 5895.8  +  II II I II II  +  +  5880.220 5868.502 5843.305 5802.801 5783.93  10  5762. 5761. 5736. 5716. 5708.77  10 5 10 15  5673. 5637.26 5606.85 5604.683 5598.769  20 100  II II II II  +  +  5568.36 5471.25 5449.41 5381.887 5378.134"*"  II II II II  II  II II II II II  I 1  2  3  4  1000  75  100  5  6r 10  1000  20 1000 10  20 50 10 5 30 20  2 1 3  10  30 Ow  1500  20 Ow 8r  1000 50  2 3 4  5  2 5 30 20 1000  1500 3  100 5 100 5h 5h  8  c  X  50 10 5  5339.50 5337.484 5297.65 5271.600 5268.007  +  II  +  II II  5194.66 5182. 5154.68 5142.90 5085.824" *  II I  5025.50 • 4918.85 ^ 4881.725 4834.64 4828.52  II II II II  4799.918+ 4744.693 4741.776 4678.156 4662.352*  I II II I I  4615.75 4615.39 4614.17 4605.71 4588.45  I I I II II  4535.16 4511.34 4451.00 4441.76 4440.45  II I II II II  II  +  1  +  +  II II I II II  4437.91 4415.63 4413.042 .4412.41 4384.52  +  4306.82 4285.078 4245.760 4243.428 4216.9 +  +  I II II II  50  3  200  20  5h 5b. 1 100 20 15  10 1 lOr  100 100 150  100 50 8 5 20 50  25  800 1000  800  100  a  II II II II II I II I  3826.71 3779.63 3767.336 3729.06 3723.2.  II II II I  40 500 800  3666.756 3649.597 3614.450+ 3612.88 ] 3610.510  II I I I I  100 50 20 30  3595.5 , 3535.69 3524.11 + 3500.00 3495.436  I II  500 600 20 10  3481.71 3467.66 + 3466.2D.rJ" 3464.426* 3442.416  I I II II  5 20 500  3422.998 3422.228 3420.194* 3417.491* 3403.653*  II II II II I  15r  20 60 800 1000  4110.169 4094.8 4044.830 4029.124 4006.867+  II I II  3981.77 3957.244 3905.1 3852.L 3827.41  15 1 5  20  4141.49 3"* 4140.54134.7 68"* 4127. 4112.367  H  +  +  I 1  2  G 3  30 50 10 . 10 50 3 150  5 6 1 1 10 15 300 300  25  25  2 200  10  1500 100 150  3388.884+ 3385.486 3376.866* 3355.362* 3343.209  II II II II II  3298.97 3283.565 3261.057 3252.525 3250.328  I II I I II  +  +  3194.42 3179.96 3164.34 3146.76 3133.17  II II II II I  3  2 4  10  15 3  3112.206 3104.59 3093.769 3092.337 3089.856  10 30  40h  2 4  +  II II II II  3129.21 3124.40 3121.80 3118.92 3112.96  12  3084.866 3082.68 3081.484 3080.83 3077.2  2 2h 15h 2 5  3071.65 3068.79 3064.955 3063.725 3060.28  150  + +  3250.17 3238.742 3232.26 3222.614 3215.95  10 10 10 2 2  3  20 100  2  100 5 2 2  10 5 2 1 .10 1 50  4  II II  I II I  X  I 1  2  3  1  2 2 2 10 2h  4 10 50  12  25  50 200 1000  20  15  200 50 200 5 20 51 5h  4 3059.22 3057.51 3056.41 3053.1 3048.82 3039.572 3035.72 3030.605 3017.32 3014.3  10 4 10 10 25  3011.3 3005.41 3001.51 2996.5 . 2996.03  10 25 10 40  2992.3 2987.2 2981.89 2981.34 2980.63  10 10 15 5 5  2971.2 2964.3 2961.47 2960.83 2953.2  25 35  2951.82 2948.16 2943.831 2934.15 2931.14  2 5d  C  III II  I  I I I  I  II  50 8 3 3 45  2929.271 2927.867 2926.93 2919.13 2914.672  II II  2 15 30  2912.491 2911.627 2910.8 2908.74 2903.13  II II  II  I I  10 10 50R 200R  25  3 2 3 30  100 15 8 • 5 200  20  100  30 10 5  20 3 10  0  3 3 30  30 1 20  3 3 25 3 50  20  5  2  5 2 12 501a 1001a 501a  1000 20  5 2 5 200  50  15 2  2893.740 2893.28 2886.607, 2881.23 2880.77  II  2868.26 2862.31 2856.458 2841.60 2836.91  I I II  2834.08 2833.06 2823.19 2819.865 2813.389  II  2810.894 2809.01 2805.59 2799.57 2799.000  II III II II  2798 .14 2780.28 2776.08 2775.05 2771.923  I II  II I I  I  II II II  :  2768.47 2767.320 2767.15 2766.96 2764.11 2763.89 2757.83 2756.79 2753.80 2751.88 2748.55 2733.86 2726.93 2723.363 2720.2  II III I I  II I II  75  5 3 30 5  50 1 0  3. 3  10 100 4 50 15 25 40 10  2d 10  5011  10  10  8  75 3  2677.64 2675.36 2674.69 2672.624 2670.202 2668.20 2660.40 2659.226 • 2659.021 2657.00 2654.27 2650.293 2649.52 2646.84 2645.86  5  2640.69 2639.50 2638.326 2636.29 2633.63  3 2 3  40 2 50 3  0 15  2691.386 2688.195 2687.69 2685.08 2679.968  2 3 5 2 5  2 5 0  2716.00 2712.57 2707.93 2707.003 2702.7  2  2  2633.20 2632.24 2630.558 2630.371 2629.05 2626.11 2622.937 2618.807 2617.87 2617.13  I  II II II I II II IT II I II  II  I  I III II I II III  I 1  2  25h  30  3 50 500  3 25 5h 50 2 . 1 2  2 2 3 2 2 2 2 3 4 5 150  3  1 15 50  3  25h lu  10 2 3 3  15h  2614.96 2613.12 2612.19 2611.81 2602.18  I  2601.48 2600.79 2600.32 2596.13 2592.14  I  4  2588.51 2586.43 2585.07 2580.30 2572". 930 2565.88 2564.02 2559 .3 2558.0 2554.51  2  2541.64 2533.91 2526.05 2525.389 2525.45  3 25  50  2 30  I I II I  =  2553.56 2552.91 2552.827 2551 .976 2544.71  30  10  G  10 10 100  1 0  X  =  2524.68 2521.6 2520'.954 2518.79 2517.25 2516.22 2512.37 2510.15 2509il07 2508.91  I  II II I I II  II I II II I  2 15 4 30  25 40 40 2  15 2 50 500  50 2 2 3 10 5 10  2 8  2502.99 2500.86 2499.81 2496.53 2495.584  II  2468.25 2457.87 2445.6 2434.3 2433.42  II  2427.075 2426.355 2419.49 2418.70 . 2418.243  5  15 5 2 10  2387.326 2377.63 2376.83 2367.93 2367.13  5  3 10  2 40  2h 2 2 2 10b.  50 1 200  10  2 2 5 lOOh 20 3  II  2487.92 2476.18 2475.23 2470.61 2469.733  3 5 25 20 5  50 7  III  2366.19 2365.36 2360.64 2350.30 2349.86  II II  II III II III II II II II  2347.65 2346.625 2345.51 2332.98 2330.11 2329.282 2322.50 2321.074 2321.94 2317.46  I III II  41  2 30  1000 2  3 20  3 3 2 3 2 4 4  20 1500  20 2 2 3  20 1000 5  30 300 2 2 2d 2 2  2306.61 2304.46 2301.18 2296.76 2295.83 2295.32 2294.28 2292.02 2290.86 2290.11 2288.74 2288.02 2284.67 2271.63 2269.82 2267.47 2265.81 2265.02 2263.65 2256.11 2255.77 2251.54 2246.80 2242.43 2240.99  3 5 2  2240.45 2239.86 2238.57 2236.32 2233.96  3 2 3 2  2230.37 2224.39 2223.57 2222.67 2222.08  3 80  2316.51 2313.. 49 2312.77 2312.42 2307.78  II II I II  II I  II II  II  42 I 1  2  10 5  3h 2 10 Oh 2 50  1000 5 100  5 5  15  3  5  2 3 1 2  ' 5  30  50  3 2 2 20  1000R  50 5  3  2 2 10  20  5  X  10 20  0  4 2221.229 2219.12 2213.70 2211.15 2210.37  II  2209.65 2204.18 2194.56 2188.81 2188.55  II II III  2187.80 2186.95 2186.30 2182.64 2181.88  II  2181.39 2176.88 2168.77 2162-94 2156.64  II  2155.70 2155.06 2151.06 2148.96 2147.76 2145.04 2144.408 2129.12 2128.488 2116.80 2111.60 2100.47  II II  II  II II II III III  For I n t e n s i t y , C o l 1. Shenstone (17); C o l . 2. Kayser & i ) ; C o l . 3. M. I . T. wave-length t a b l e s (12); C o l . 4. Author.  43  BIBLIOGRAPHY  1.  B a l y , E . C. C., Spectroscopy, Longman's, Green and London, 1929, V o l . I .  Co.,  2.  B i r g e , R. T., A new t a b l e of v a l u e s of the g e n e r a l physi c a l c o n s t a n t s , Review of Modern P h y s i c s , 13, 233, 1941.  3.  B r e i t , G., Isotope displacement i n h y p e r f i n e s t r u c t u r e , P h y s i c a l Review, 42, 348, 1932.  4.  B r e i t , G., Arfken, G. B. and Clendenin, W. W., Spectros c o p i c i s o t o p e s h i f t and n u c l e a r p o l a r i z a t i o n , P h y s i c a l Review, 77, 569 ( L ) , 1949.  5.  C a s i m i r , H. B. G., On the i n t e r a c t i o n between atomic n u c l e i and e l e c t r o n s , A r c h i v e s du Musee TeyIer, 8, 202, 1936. ;  6.  Condon, E . U., and S h o r t l e y , G. H., s p e c t r a , Cambridge P r e s s ,  The theory 1935.  of atomic  7.  Eermi, E . -P., Uber d i e Magnet i s chen Moment e der Atomkerne, Z e i t s c h r i f t f u r P h y s i k , 60, 320, 1930.  8.  Herzberg, G., Atomic s p e c t r a and atomic s t r u c t u r e , Dover P u b l i c a t i o n s , New York, 1944.  9.  Hughes, D. S. and E c k a r t , C , E f f e c t " of motion of the nucleus on the s p e c t r a of L i I and L i I I , P h y s i c a l Review, 36, 694, 1930.  II  10.  Kayser, H., T a b e l i e der H a u p t l i n l e n der L i n i e n s p e k t r e n A3-ler Elemente, J . S p r i n g e r , B e r l i n , 1939.  11.  Kayser, H., Handbuch der S p e c t r o s c o p i c , S. Leipzig.  12.  Massachusetts I n s t i t u t e of Technology wave-length t a b l e s , J . V/iley and Sons Inc.,,-New York, 19.39.  13.  Mazumder, K. C , Spectrum of d o u b l y - i o n i z e d cadmium, Indian J o u r n a l of P h y s i c s , 17, 229, 1943.  Hirzel,  44 14.  Nisenwanger, C. R., Holmes," J . R., and Weis'sler, G. L«, E l e c t r o d e l e s s discharge at h i g h f r e q u e n c i e s and low p r e s s u r e s , J o u r n a l of the O p t i c a l S o c i e t y of America, 36, 581, 1946.  15.  Robinson, H. A., Bemerkungen uber d i e Spektxali nt e ns i t aten i n Pernen U l t r a v i o l e t und Schatzung von Temperaturen und Drucken im Vakuumfunken, Z e i t s c h r i f t f u r Physik, 100, 636, 1936.  16.  R u s s e l l , . H. N., and I . S. Bowen, Mount W i l s o n C o n t r i b u t i o n No. 375, 1929, A s t r o p h y s i c a l J o u r n a l , 69, 196, 1929.  17.  Shenstone, A. G. and P i t t e n g e r , J . T., Cadmium S p e c t r a , J o u r n a l of the O p t i c a l S o c i e t y of America, 39, 210, 1949.  18.  Shenstone, A. G., Atomic s p e c t r a , Reports on p r o g r e s s P h y s i c s , Page 210, 1938.  19.  Tolansky, S., Co.,  20.  Tolansky, S., H y p e r f i n e S t r u c t u r e and n u c l e a r Methuen and Go. L t d . , London, 1948.  21.  White, H. E., I n t r o d u c t i o n to atomic s p e c t r a , Mc-Graw H i l l Book Co. Inc., New York and London, 1948.  |(  High r e s o l u t i o n spectroscopy, L t d . , London, 1947.  in  Methuen and spin,  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085830/manifest

Comment

Related Items