UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Study of the spark spectra of tellurium Joshi, Yoginder N. 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A1 J6.pdf [ 31.26MB ]
Metadata
JSON: 831-1.0085829.json
JSON-LD: 831-1.0085829-ld.json
RDF/XML (Pretty): 831-1.0085829-rdf.xml
RDF/JSON: 831-1.0085829-rdf.json
Turtle: 831-1.0085829-turtle.txt
N-Triples: 831-1.0085829-rdf-ntriples.txt
Original Record: 831-1.0085829-source.json
Full Text
831-1.0085829-fulltext.txt
Citation
831-1.0085829.ris

Full Text

A STUDY OF THE SPARK SPECTRA OF TELLURIUM by YOGINDER JOSHI B.Sc. (Hons.) The Punjab University, India 195*8 M.Sc. The Punjab University, India 1959 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Physics We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA Apr i l , 196U In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I f u r t h e r agree that per-m i s s i o n f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s r e p r e s e n t a t i v e s . I t i s understood t h a t . c o p y i n g or p u b l i -c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed without my w r i t t e n p e r mission. Department of V W X S' c • The U n i v e r s i t y of B r i t i s h Columbia, Vancouver 8, Canada Date M> The U n i v e r s i t y of B r i t i s h Columbia FACULTY OF GRADUATE STUDIES PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of YOGINDER N. JOSHI B.Sc. (Hons.), The Punjab University, M.Sc, The Punjab Un i v e r s i t y , India, 1959 THURSDAY, APRIL 16, 1964, AT 9:00 A.M. IN ROOM 301, LASSERRE BUILDING India, 1958 COMMITTEE IN CHARGE Chairman: F.H. Soward C.W. Clark:: P.R. Critehlow A.M. Crooker F.W. Dalby R.A. Nodwell C.Reid External Examiner: Argonne National F.S. Tomkins Laboratory A STUDY OF THE SPARK SPECTRA OF TELLURIUM ABSTRACT The spark spectra of T e l l u r i u m have been photographed from the i n f r a r e d to the u l t r a v i o l e t (9040 A to 340 A) on a v a r i e t y of spectrographs i n c l u d i n g a 3-metre normal, incidence vacuum spectrograph, a 2-metre g r a z i n g i n c i -dence vacuum spectrograph, a 2 1 - f t , concave g r a t i n g spectrograph, a H i l g e r Medium Quartz and a H i l g e r large automatic prism spectrograph. Two sources were used -1) a d i s r u p t i v e e l e c t r o d e l e s s discharge and 2) a condensed spark i n helium, The "pole e f f e c t " e x h i b i t e d by the s p e c t r a l l i n e s e x c i t e d i n the spark enabled us to a ssign each l i n e to i t s appropriate i o n i c parent, e i t h e r Te I , Te I I , Te I I I , or Te IV. These e x c i t a t i o n assignments were confirmed and extended by observations w i t h the e l e c t r o d e l e s s discharge, which e x c i t e d a l l the spectra i n c l u d i n g Te V and Te V I s by v a r y i n g the t e l -l urium pressure and the length of the e x t e r n a l spark-gap. Out of 6000 l i n e s appearing on our p l a t e s 3500 have never been observed e a r l i e r . The region 2200 A - 1300 A has been photographed s y s t e m a t i c a l l y f o r the f i r s t time since Lacroute's work (1928). The whole of the observed spec-t r a l region has been photographed f o r the f i r s t time under uniform c o n d i t i o n s of c o n t r o l l e d e x c i t a t i o n . These data have been used to confirm, r e v i s e and extend the analyses of Te I I I , Te IV, Te^V and Te VI. In both Te I I I and Te IV the resonance l i n e s have been i n d e n t i f i e d f o r the f i r s t time. The number of c l a s s i f i e d l i n e s have been increased from 160 to 560 i n Te I I I and from 25 to 230 i n Te IV, while the number of the l e v e l s has been increased from 40 to 85. i n Te I I I and from 14 to 56 i n Te IV. The values of the i o n i z a t i o n p o t e n t i a l s have been r e v i s e d to 29.04 V o l t s (Te I I I ) and 37.41 V o l t s (Te I V ). The hydrogenic l e v e l s i n Te IV are f i t t e d byta core p o l a r i z a t i o n parameter A = 715 which i n v o l v e s a core d i p o l e p o l a r i z a b i l i t y oC = 41.1 x 10" ^ 8 cm? The extensions i n Te V and Te VI do not involve such basic additions, In Te V, the number of c l a s s i f i e d l i n e s have been increased from 27 to 156 and i n Te. VI from 10 to 25, Twenty-four and f i v e levels have been added to Te V and Te VI respectively, The revised values of the Ionization Potentials are 58,6.3 Volts and 70.90 Volts for Te V and Te VI respectively. GRADUATE STUDIES F i e l d of Study: Physics Quantum Mechanics F.A. Kaempffer Electromagnetic Theory G.M. Volkoff Nuclear Physics J.B. Warren Spectroscopy A.M. Crooker Theory of Measurements A.M. Crooker Optics A.M. Crooker Related Studies: D i f f e r e n t i a l Equations C.W. Clark PUBLICATIONS Note on nf 2p terms i n n's^ nf c o n f i g u r a t i o n Yoginder N. J o s h i Science of L i g h t 12, 28, 1963 Spark Spectra of T e l l u r i u m A.M. Crooker and Yoginder N. J o s h i J . Opt. Soc. Amer. i n press (ii) ABSTRACT The spark spectra of Tellurium have been photographed from the infrared to the ultraviolet (90l*0 A 0 to 31*0 A0) on a variety of spectro-graphs including a 3-metre normal incidence vacuum spectrograph , a 2-metre grazing incidence vacuum spectrograph, a 21-foot concave grating,a Hilger Medium Quartz and a Hilger large automatic glass-quartz prism spectrograph and some low dispersion spectrographs. Two main sources used were l) a disruptive electrodeless discharge and 2) a condensed spark in helium. The pole effect exhibited by the spectral lines excited in the spark enabled us to assign each line to the appropriate ionic parent, either Te I, Te II, Te III or Te IV. These excitation assignments were confirmed and extended by the electrodeless discharge which excited a l l the spectra including Te VI, by varying the Te pressure and the external-spark-gap length. Out of the 6000 lines appearing on our plates about 3500 were new lines. The region 2200 A° - 1300 A° has been photo-graphed systematically for the f i r s t time since Lacroute's time (1928). This data enabled us to confirm, revise and extend the analysis of Te III, Te IV, Te V and Te VI. In both Te III and Te IV we have identified the resonance lines for the f i r s t time and have increased the classified lines from 160 and 25 to 550 and 230 respectively. The value of the ionization potentials for these have been substantially revised. The hydrogenic levels in Te IV are fitted by a core polarization parameter A »7l5 which involves ( i i i ) -28 3 a core polarizability c K ^ h l . l x 10 cm. The extensions of Te V and Te VI while not involving such basic additions do contribute to an understanding of the spectral structure and ionization potentials. A. M. Crooker (iv) ACKNOWLEDGEMENTS I wish to express my deepest gratitude to Professor A.M. Crooker for introducing me to the subject of 'Experimental Spectroscopy', for suggesting the problem and for his invaluable help and guidance through-out the course of this investigation. It was a great privilege for the author to learn the subject from him and gain from his experience. I also wish to thank Dr. R.A. Nodwell for his help during a major part of the summer of 1962 and for advice and discussions from time to time. I would also like to thank Mr. A. Fraser, Mr. ¥ . Morrison and Mr. J . Lees for their technical assistance. I take this opportunity to thank the Department of Physics for financial assistance in the form of teaching and research assistantships (1961-63) and the Department of Geology for the Research Fellowship (1963-6I4.). This financial help enabled me to carry on with my graduate studies at the University of British Columbia. Finally, I wish to thank Mrs. J . Kirby for typing this manuscript with great care and patience. V. TABLE OF CONTENTS Pa^e Abstract i i Acknowledgements . . . . . . iv Introduction . . . . . . 1 CHAPTER I THE GENERAL THEORY OF ATOMIC SPECTRA . . . . . . 5 Energy States and Term Values . . . . . . . . . . . . . 5 Series Limit and Ionization Potential . . . . . . . . . 7 Irregular doublet law and Mosley Diagram . . . . . . . . 10 Regular doublet law . . . . . . . . . . . . . . . . . . 12 Width of Multiplets . . . . . . . . . . . . 17 Intensity of Spectral lines 19 Selection Rules . . . . . . . . . . . . . . 20 Polarization of Atomic cores . . . . . . . . . . . . . . 22 Theory of Complex Spectra . . . . . . . . . . . . . . . 27 L-S case . . . . . . . . . . . . . . . . . . . 33 jj-Coupling . . . . . . . . . . . . . . . . . . . . 3h jl-Coupling . . . . . . . . . . . . . . . . . . . . 36 Intermediate Coupling * 38 The Bacher-Goudsmit Method UO CHAPTER II EXPERIMENTAL PROCEDURE . . . . . . . . . . . . . kS Condensed Spark in Helium . . . . . . . . U6 Excitation Data . . . . . . . . . . . . . . . . . . h9 Impurity Lines . . . . . . . . . . . . . . . . . . . $0 Electrodeless Discharge Source . . . 51 Experimental Arrangement . . . . . . . . . 55 Description of Operation . . . . . . . . 56 Excitation Data" . . . . . . . . . . . . . . . . . . 59 Impurity Lines . . . . . . . . . . . . . . . . . . . 60 Reduction of Spectrograms' . . . . . . . . . . . . . . . 62 Prism Spectrograph'. . . . . . . . . . . . . . . . . 62 3-metre Vacuum Spectrograph" . . . . . . . . . . . . 62 21' Grating Spectrograph". 67 2-metre Vacuum Spectrograph . . 70 Standard Lines . . . . . 71 CHPATER III RESULTS AND ANLYSIS . . . . . . . . . . . . . . 72 Te I and Te II . . . . . . . . . . . . . . . . . . . . . 2l7 Te III . . . . . . . . . . . . . . . . . . . . . . . . • 2U7 5s.5P %: . . . . . . . . . . . . . . . . . . . . . 2U8 5S.5PS 3 D°. 251 5s-5p3 ^ and'F 252 VI. Page 5sz-5p S0 and 5"S'-5P-6P V ............. 253 5s2.5p.-ns . . . . . . . . . . . . . . . . . . . . . 2514 5s2 5p-nd Configuration . . . . . . . . . . . . . . 255 5s2". 5p-np, 5szi5p.Uf, 5i? Configurations' . . . . . . 257 Ionization Potential of Te III . . . . . . . . . . 259 Energy Levels of Te III . . . . . . . . . . . . . 260 Te IV . . . . . . . . . . . . . . . . . . . . . . . . 263 Ss^? . . . . . . . . . . . . . . . . . . . . . 263 5s1. ns Series . . . . . . . . . . . . . . . . . . . 265 5s1; ng and 5s*".nh Series . . . . . . . . . . . . . . 266 5sMjf lr 266 5s-5p ( 3 F).nl Configurations . . . . . . . . . . . 269 5sz^7d and 5p3 . . . . . . . . . . . . • 271 Motley Diagrams . . . . . . . . 273 Energy L e v e l s of Te IV . 27U Te V . . . . . . . . . . . . . . . . . . . . . . . 0 . 276 5s.nd , , 3D 276 5p-6s Configuration . . . . . . . . . . . . . . . 279 .5P'S 0 280 5s -6p Configuration 2 8 l 5s.ns Series 283 5 s . U f ' ' V 283 Edlen Plots . . . . . . . . . . . 28U Ionization L i m i t . . . . . . . . . . . . . . . . . 285 Energy Levels of Te'V . . . . . . . . . . . . . . 286 Te VI . 288 hd.$s 2D 288 lah and 7p*P°and Ionization Limit . . . . . . . . 290 Energy Levels'of Te VI . . . . . . . . . . . . . . 292 Te VII . . . . . . . . . . . . . 1 . . . I . 1 . . . . 293 Comparison of Wavelengths' . . . . . . . . . . . . 29h Microphotometer Traces . . . . . . . . . . . . . . . . 296 Appendix I . ' Ruling Errors in Gratings and Ghosts . . 298 Appendix II. Relativity Correction Tables 301 Bibliography 303 TABLES Page 1(a) Irregular Doublet Law . . . . . . . . . . . . . 11 (b) Irregular Doublet Law . . . . . . . . . . . . . 12 II Regular Doublet Law . . . . . . . . . . . . . . Ik 111(a) n 1(1+1) Calculations . . . . . . . . . . . . . 15 (b) nH (t+l)/R^ Calculations . . . . . . . . . . . 16 IV Polarization functions P (n,t) and Q ( h , i ) . * 26 V s.s' case in Bacher-Goudsniit-Method . . . . . . . Lj.2 VI s.f3 case in Bacher-Goudsmit-Method . . . . . ." . UU VII Plate Positions on 21-ft. grating Spectrograph. 6 l VIII Table in 3-metre Spectrograph . . . . . . 65 2X I A X I Table in 3-metre Spectrograph . . . . . . 66 X Dispersion Table for 21' Grating Spectrograph . 69 Xl(a) Wavelength List above 2,000 . . ., 7U (b) Wavelength List below 2,000 . . . . . . . . . . XII ns-np5*SLterm in Periodic Table . . . . . . . . 2l*9 XIII 5s-5p3 ^"Intervals in Te III . . . . . . . . . 251 XIV Energy Levels of Te III . . . . . . . . . . . . 260 XV Irregular Doublet Law in Te IV . . . . . . . . 26ij XVI Interaction Constant for 5s-5pz P and 2 P . . . 265 XVII Ionization Limit from Polarization Parameter. . 268 XVIII Lande's Interval Factor in^PDF) in 5s5p(3P)-nt Configurations. . 270 XIX Regular Doublet Law for 7dAD Te IV . . . . . . 271 XX Energy Levels of Te IV . . . . . . . . . . . . 271; XXI 5s<np configuration of Te V 282 XXII Relative Position of Levels in '5s-l|f Config. . 281* XXIII Energy Levels of Te V . . . . . 1 . . . . . . . 286 XXIV(a) Irregular Doublet Law in Te VI 1 . . . . . . . 289 (b) Regular Doublet Law in Te VI" . . . . . . . . . 289 XXV Energy Levels in Te VI . . . . . . . . . . . . 292 XXVI Wavelength Comparison in Te VII . . . . . . . . 29k XXVII a-d)Relativity Correction Tables . . . 301 FIGURES To follow page 1. a,b,c) Condensed Spark i n Helium'Source . h& d) Circuit Diagram . . hi 2. a) Electrodeless Discharge Source . . . . . . . . . . 55 b) Circuit Diagram . . . . . . . . . . . . . . . . . 56 3. a,b,c,d) 'Pole Effect' on Prism and Grating Plates. . h. a*b) Electrodeless Discharge Plates . . . . . . . . . 5. Optical Diagram for 3-metre Grating . . . . . . . . . 63 6. Meissner-Andrew Relation . . . . . . . . . . . . . . 2?0 7. Transition to j.j-coupling in' ?p. ns configuration, of . Te III. . . . . . . . . . . . . . . . . . . . . . . 255 8 . Series Diagram i n Te IV . . . . . . . . . . . . . . . 268 9. Mofley Diagram i n Te IV . . . . . . . . . . . . . . . 273 10. Bacher-Goudsmit Relation . . . . . . . . . . . . . . 272 11. 5s-nd D i n Te V . . '. . . . . . . . . . . . . . . . . 278 12. Edlen Plots . . . . . . . . . . . . . . . . . . . . 28Uy 13. Microphotometer Traces 297 1 INTRODUCTION It is difficult to assess the present state of development of atomic spectroscopy. Because there is a wealth of information and many of the principles required for its complete development are at hand (Edlen-Flugge: Vol. 27), some authors consider that atomic spectra were already well known in 1920 (L.A. Borisoglebskii Soviet Physics Uspekhr 66, 211, 19585 W.V. Houston Principles of Quantum Mechanics 1951, P» 117). However, other authorities concerned with the detailed applications in astrophysics and space research bemoan the fact that our knowledge is s t i l l too meager to solve important problems. This latter point of view is supported by the following authorities: (i) A.G. Shenstone Reports on Progresses 5, 210, 1938 in Physics ( i i ) W.F. Meggers J.O.S.A. Ul, l U 3 , 1951 Applied Optics 2, 657, 1963 ( i i i ) G.H. Dieke ) R.H. Crosswhite; (iv) P. Swings J.O.S.A. Ul, 153, 1951 (v) Mrs. Sitterly N.B.S. Circular 1*67 A survey of Mrs. Sitterly 1 s A .E .L . ( 31 ) reveals many gaps and many enteries even in need of confirmation in relatively simple spectra. More accurate and extensive data is needed to check the different types of coupling calculations carried out by theoreticians. The aims of the present research project are: A . l .P . Handbook 7, 22, 1957 2 (i) To collect extensive and precise wavelength data, with excitation assignments in the spectral range 3^0 A 0 to 9000 A°, never done before comprehensively by a single group, ( i i ) To confirm, revise and extend the spark spectra of Tellurium, ( i i i ) To study the excitation characteristics of the spark sources - the condensed spark in Helium and disruptive Electrodeless Discharge. The second, third, fourth and f i f th spark spectra of Te were known in a somewhat unsatisfactory way. Rao and Krishnamurthy (t<*-^ ) had given a good start in the second spark spectra by classifying over 200 lines. However we failed to confirm 13 of their odd levels out of 56 odd and even levels and found their assignments incorrect in many cases due in part to incomplete and incorrect wavelength data. We rejected only one level of Rao in Te IV and one level of Gibbs and Vieweg in Te V. It is emphasized that in the published analyses of the third, fourth and f i f th spark spectra I|0 levels were established from only 65 lines in the region 5U0 A° - 3585 A 0 . Such a sketchy analysis seriously needed confirmation. Rao's meas-urements pretty consistently were low by 0.12 A° in region 2600 A° - 7000 A 0 and appear not to be independent of Bloch's earlier work. It is grati-fying to note that,with not very accurate and extensive data at his disposal, Rao established the basic structures in Te III, Te IV and Te VI correctly. The present analysis was started after compiling a wavelength l i s t of 6000 lines with excitation assignment for almost every line. Out of these 5600 lines appeared on our plates and 3800 lines were new. Te II 3 lines listed in Table III of Sister B. Handrup's thesis ( i7 ) in general did not appear on our plates. The pages to follow are divided into three chapters. Chapter I does not contain any original contribution of the author. The material has been collected from the standard texts and the original articles of the various authors (*>5^,°*, ' S , i f e,n, »s,2> 51, 3 t *> * ) , 35,39^0, Ma, HS). However, the presentation has been made in such a way so as to emphasize the uses and applications of the simple laws in experimental work. No calcul-ations has been carried out for predicting any configuration or the Slater's parameters. But a few pages have been devoted to this in order to maintain a continuity through this chapter. Chapter II containso-description, operation and characteristics of the two spark sources - Disruptive electrodeless discharge and the con-densed spark in Helium - mainly used in the investigation. There is also a brief description regarding the reduction of the spectrograms taken on the 3-metre vacuum spectrograph and 21' grating spectrograph. Chapter III contains the master l i s t of 6000 lines running into 173 pages, with the intensity entries from various authors (wherever available), excitations assigned and classification of a l l the lines class-ified in Te III, Te IV, Te V and Te VI. It is followed by the discussion of the results, the transition of the spectra in their appropriate iso-electronic sequences and application of laws mentioned in Chapter I. It f inally contains the results of these extensions in tabular form. Photoelectric traces of Te spectra, made with a Jarrell-Ash Console comparator raicrophotometer, in region 380 A° - 1215 A° are given at the end of the third chapter. CHAPTER I The General Theory of Atomic Spectra General Theory It is sometimes emphasized that the real birth of atomic spectro-scopy was in year 1913 when Bohr announced his two fundamental postulates -i . There exist stationary atomic states, i i . The frequency of radiation emitted is the difference of the freq-uencies of two stationary energy states. $ = Frequency of radiation emmitted. h=Planck's constant (6.6 x 10""2^ erg, sec.) Bohr's atomic model was based on that of Rutherford comprising a heavy nucleus surrounded by "planetary" electrons revolving around in circular orbits. Sommerfeld introduced the idea of el l iptic orbits removing degeneracy in principal quantum number while the introduction of the spin concept by Uhlenbeck and Goudsmit further removed the degenercy in i£and J . Pauli's exclusion principle put the arrangement in order. Heisenberg and Schro'dinger's works opened an era of theoretical spectroscopy. In the following pages there is no intention to reproduce the basic treatments of atomic spectra problems, but vie wish to emphasize only those basic^theoretical and semi-empirical-principles which are used extensively in experimental spectroscopy. The other basic relevant material can be looked up in the standard texts on the subject Cv 5* 2 1 ^ . Energy States and Term Values in Field-Free Isolated Atoms A spectral line results from a radiative transition between two energy states of an atom. These two states are known as "J-Levels". Each "J-Level" 6 . is characterized by the J-value and has a definite energy. A set of multiple J-levels with the same L value are sometimes called by many spectroscopists as 1 Term1. Thus the 3P term has three levels 3?2> a n c i "^ o* The levels arising from a configuration in which 2 1L is odd are called i ODD levels while those originating from configurations with 2 U even are i called EVEN levels. Quantum mechanically they have odd and even parity. The odd levels are differentiated from even ones by putting o as a super-script on the Level symbol. li.2^xi.3a-3v odd V Is2"- 2s- 2p. 3s. 3d T. C even *D From quantum mechanical treatment follows the important Laporte Rule "Electric-Dipole transitions are possible only between levels of opposite parity". The frequency of a spectral line gives the difference between the energy of two levels involved in such radiation. If the energy of the lowest ground state level is recognized as zero then energies measured of other levels with this reference wi l l be called "Relative Term Values". Obviously these values go on increasing with increased excitation. The energy required to remove an electron from atom is called the Ionization energy. If this energy be recognized as zero and the energy of other levels measured w.r.t i t down-ward (-ve increasing numerically), the term values are called "Absolute Term Values". In practice the minus sign is omitted. Since ionization potential is the last thing known absolutely in a spectruw^in general the energies of levels are represented in relative term values.. It must be emphasized that when more than one electron is excited in an atom, then their combined energy is sometimes greater than the ionization 7. energy and thus levels from such "doubly-excited" states can be above the ionization limit. Such cases have been observed frequently (AEL). Series Limit and Ionization Potential Liveing and Dewaf as far back as 1879 had found that spectral lines could often be arranged in series. Within each series the frequency differ-ences and intensities decrease regularly towards higher members. Balmer observedaseries in the hydrogen spectrum and represented i t by a simple formula which was extended by Rydberg and Ritz V = ] m is running -no and n is fixed in series R = Rydberg const. = h3y37-ZJT S0"*^' Rydberg later observed that spectra in various elements can be represented by difference of expressions, T n , R Zo R Zo _ R Zo where Zo = Effective nuclear charge 1, 2, . . . for arc, f irst spark, . . . . spectra. n* = Effective quantum no. T s Quantum defect n = Principal Quantum no. a-A series obeying this relation is known dsARydberg series. For the lower members of series £ n * for successive members is greater than one and tends to shrink to one for higher members. This helps to find out series limit from higher members Tn-7 T n * R ' O ^ ) J 8 The difference of the rela tive term values of successive members of the series is looked up in the Rydberg tables and Tn and Tn-1 are calculated and thus the ionization limit. Since a series only approaches a pure Rydberg form for very high members, the limit of ionization obtained from the above procedure is always higher than the real one. Normally series in the line spectra are perturbed, they f a i l to obey Rydberg's relation. Langer (U6), on a quantum-mechanical basis, gave the expression for the absolute term value as Tn = R Zo s +e*Tn)*-Tn accounts for perturbation. Sometimes a single term affects the whole series. Shenstone and Russell ( 3 7 - f ) have given for such a cases R Zo Tn= ~ 7 B where To = foreign perturbing term. Thus i f quantum defect is plotted against Tn, Rydberg series follows a line parallel to Tn-axis while Ritzean series a line with a slopes. To find the correct limit, is to find under which conditions the plot approximates a straight line. Shenstone and Russell have also shown that a three term series can always be fitted to a Ritz formula. The method is to satisfy by t r i a l and error the relation. T, - Tz = (h» - n, ) - (n* - nO T x r~T7 (n* - n j - - n 3) where n* = n+<£ •+ <AT The constants of this relation are found as follows: 9. Plot (ri*-n) (Tn-To) = p+S'(Tn-To) (Tn-To)1 P found from point where parabol^a crosses T = To. Plot for each term " fnzW - * + a and <* are intercept^ and slope of line which represents plotted points most nearly. When a series is well extended, with at least three members well established, Edlen and Risberg (/o-J> ) have given a method for adjustment of ionization limit from approximate value found (say from Rydberg relations). Let E =. Relative Term value. E £ = Ionization limit. E t = Approximate ionization limit. JL T - Absolute Term value = - ~* Since S"- =. n-n* by definition, and we assume with Ritz = o<+ B . T . AS" = - £ n * 41 , . + si- ^ | Then for any assumed there corresponds an approximate value a , which can be improved to S = S° + b>% « S"% M • ^  = <* + pT Let three msnbers of the series be denoted by subscripts 1, 2, and 3. v - ~ • ATn -<v- p Tn = 0 From this for n =1, 2, 3,on solving we get -10.. If more than three members are known, then'AT is obtained by the method of least squares. .'- EL = Ionization Limit = E° + AT. This adjustment has been applied to every series having at least three well established members in the spectrum. Fortunately we were able to establish such series in Te III, Te IV, Te V and Te VI and their ionization limits have been subsequently modified. Irregular Doublet Law and Moseley Diagrams The Rydberg formula can be modified as Tn = (Z - er )2 ^ R_ n : where <5~ is the screening constant Pi£ Z or s ->IR n If>JT/R is plotted as a function of Z, the curve is a straight line of slope 1 and intercept]^ ^ - ~ for Z =0. These plots, from analogy in X-ray n spectra are known as "MOSELEY DIAGRAMS".- These diagrams are very useful in interpolating isoelectronic sequences. Since <3" does not remain constant in the sequence, these plots usually deviate from a straight line* For terms with the same n, J and S values, = <ttz3 •- const. 11. This sometimes helps to predict terms having same quantum number n Let T x = 5sz6s \ T 2 5J6p V Table I(a) In I Sn II Sb III f l N|R 0. 4.57 . o. IHb l.oos-J R 0.367. 0.(>SI o.9o3 pi (rL In " J R For Te IV is |R R = o • o 91 (•Sa^) Since 6s S, 133U57.05" k 6pX = IS76W-H (calculated) = l 6 / 3 4 & 3 £ k (observed) The above relation can be written in another form T, T x = | f c \(Z- - (Z-<rf] = |E [2Z ( T - ^ i ) - <*V>] = c Z + Cj, Where C-^  and C 2 are constant. This relation is sometimes called tt^*. 'Irregular Doublet' law. In sequence, the difference of terms increases with z. Let T x = 5s6pV T 2 5 5"s"6d D, 12, Table 1(b) T ! - T2 In I 6933.69 10931.11 12097.30 1166.19 Sn I I 17861;. 80 J Sb I I I 29962.10 f o r Te IV T x - T 2 = 1122$.$9 since 6p yt t, s 163960..15 6d1D = 207,187.7U (calculated) - 202,9^2.15" (observed) Though this i s not a good prediction f o r a spectroscopist, but as these states form the basic structure of the spectrum only the strongest Te IV l i n e s i n this region need to be considered. This extra polation has the second advant-age that i t does not require absolute term values f o r computation as we are only interested i n differences. I t may be mentioned that even thoujfurreg-ul a r doublet law requires T^ and T 2 to have the same J , i t has been found to be useful as an empirical r e l a t i o n f o r non-equal J's too. Regular Doublet Law ( R e l a t i v i t y Doublet Law) This law applies to one electron terms with^same n, 1 and s values -the and i s <x- direct consequence of^fine structure s p l i t t i n g due to spin-"1k« o~ o r b i t i n t e r a c t i o n . In^case of Aone-electron spectrum, E = Spin o r b i t interaction energy 13 a is spin-orbit interaction constant 1 and s are orbital and spin angular momentum of the electron. On quan-tum mechanical calculations, i t turns out v fRch 1 J(J+1) - L(lAl) - S(S+1) \w:ifT)TJ7rT) J • § In case of one electron J = I ± -| AV - Separation between L - u + L and u . j . levels In case of non-hydrogenie system, we have for non-penetrating orbits for penetrating orbits - *L^ L_ - Z i ' Zo <5" s Screening constant. Z = Total nuclear charge. Z D ts Effective nuclear charge on the outside of the closed shells. = Effective nuclear charge on inside during the penetration of the core. Thus doublet separation varies as (Z - «" ; H or Z± Z 0 m respective case. "u»«» » This is^regular doublet law. This law is very instructive in finding •U**. doublet separation from the extra polation of the screening constants in the isoelectronic sequence. Consider doublet separation of 5s op ( P. - R, ). Table II 111, In I Sn II Sb III 298.18 883.0 1668.0 z - cr 12.19 16.01 18.75 X 49.00 50.00 51.00 c r 36.51 33.99 32.25 2.82 1 . 74 I extrapolate c r for Te IV = 32.25 - 1.25 = 31.0 A t>- 2624.60 k (calculated) - 2619.80 k (observed) a . This is^good prediction. In many of the cases, however, we found that the doublet separations observed were not this close,to the calculated values. Table III gives the values to be used in doublet formula for n - 1 5 , Is 5. They are useful in calculations of this type. 1 Spin-Doublet Calculation Tables The spin-doublet formula for doublet separation is where R s Rydberg const., . ©< = Sommerfeld's fine-structure const. R * s 5.«U35K ©< = e^/hc. e Screening constant. Table I I I (a) n n3 I n 3 1(1*1) 1=1 p U2 d U.3 f Ul* g U 5 h 2 8 16 3 27 54 162 li 6k 128 384 768 5 125 250 750 1500 2500 6 216 432 1296 2592 4320 6480 7 343 686 2058 4116 6860 10290 8 512 1024 3072 6114 10240 15360 9 729 1458 4374 «748 14580 21870 10 1000 2000 6000 12000 20000 30000 11 1331 2662 7986 15972 26620 39930 12 1728 3456 10368 20736 34560 51840 13 2197 4394 13182 26364 43940 65910 14 2744 5488 16464 32928 54880 82320 15 3375 6750 20250 40500 67500 101250 Table III (b) Y n *(t+l) n U l P - 1.2 d 1.3 f Ik g US X log X X log X X log X X log X X log X 2 2.7381 0.43745 3 9.2U10 0.96572 27.723 1.44284 U 21.9046 1.34054 65.714 1.81766 131.43 2 . 1 1 8 6 9 5 42.7825 1.63127 128.348 2.10839 256.70 2.40943 427.825 2.63127 6 73.9282 1 . 8 6 8 8 1 221.784 2.34593 443.57 2.64696 739.282 2.86o8l 1 1 0 8 . 9 2 3 . 0 4 4 9 0 7 117.395 2.06965 352.186 2.54677 704.37 2.B4780 1 1 7 3 . 9 5 3.06965 1760.93 3 .24574 8 175.237 2.24362 5 2 5 . 7 1 1 2.72075 1 0 4 6 . 2 9 3.01965 1752.37 3.24363 2628.56 3.41972 9 2 1 * 9 . 5 0 8 2.39708 748.523 2.87421 1 4 9 7 . 0 5 3.17524 2U95.08 3.39708 3742.61 3.57317 10 342.260 2.53436 1026.78 3.01148 2053.56 3.31251 3U22.60 3.53U36 5 1 3 3 . 9 0 3.71045 1 1 ii55.5ii8 2.65853 1366.66 3.13566 2733.29 3.43669 4555.48 3.65853 6 b 3 3 . 2 2 3.83463 12 591.425 2.77190 1774.28 3.2U902 3548.55 3 .55005 5914.25 3.77190 8 8 7 1 . 3 8 3 . 9 4 7 9 9 1 3 75l.9ii5 2.87619 2255.84 3.35331 4511.67 3.65434 7519.45 3.87619 11279.2 4 .05228 Hi 939.161 2.9727U 2 8 1 7 . 4 8 3.44986 5634.97 3.75089 9391.61 3.97274 14087.4 4.14883 15 1 1 5 5 . 1 3 3.06263 3465.38 3.53975 6930.77 3.84078 11551.3 4.06263 17326.9 U.23872 17. Width of Multiplets The multiplet splitting is caused by the spin orbit interaction, which in quantum mechanics is written as , e / i . <^ ± \ where } ^ - ~ I T ^ l 1 \ Y <AV / L i and Sj_ change in a complicated way in classical motion and thus*matrix Hm is diagonal neither in l j S i nor in L, S schemes; only J commutes with and labels states. For normal multiplets we f irs t consider only L-S coupling and I K * . - I K t thus neglect non-diagonal elements in^electrostatic matrix. Then/Vmagnetic interaction is introduced asAperturbation to each L-S term individually and thus L-S assignments can be carried out. In the absence of magnetic interaction, Lj. precesses rapidly about L in a complicated manner and similarly does S^  about S. Their component in the direction of L and S are \h^\ Cos (LLJL) and |Si\ Cos (SS-jJ res-pectively. Weak magnetic interaction causes L and S to precess about J so slowly that average can be taken . £ * t * = S M V C * * ( U S > The corresponding values from quantum mechanics are _ g ^ 18. This means that the spacing between two levels of a multiplet is pro-portional to higher J value - Lande's Interval Rule." Total Splitting = W( J max) - W(J min) = A S (L+l) for L > S - A L (Sfl) for L<S •A' is Lande's interval factor. In actual practice the coupling conditions always deviate from L-S, these splitting factor change. Cohen ( ^ ) has discussed the de-pendence of A (L,S) onL and S when different multiplets are given by the same configuration. These calcuM-ions are complicated and involve many matrix transformations. Goudsmit and HumphY<tyi(«7 ) have shown that Lande's interval factor A can be calculated for con figurations obtained by adding an electron to a configuration of known A. This is most reliable i f the in i t ia l configuration is of equivalent electrons and the coupling of the in i t ia l electrons is not changed. Obviously the interaction between the in i t i a l configuration (core) and added electron should not be very strong. If A^, L^, S^  - Correspond to Lande's interval factor, orbital quantum no and spin quantum no of the core, a , t, , s, - Correspond to the added electron. A, L, S - Correspond to the final configuration. 1 1 1 6 1 1 A A i [L(I>l )»L, (L l - r i ) .t,(U)I fs(S*l)+S,(Sl*l)-S, ( S | + l ) l = A l L 2LTL+1) J L 28(3+1) J 4 . a fL(L*l)+M»l)-L,(Lfl)l • [S(S+1) + s,(s,+l)-S, (S+l)1 -P , ^ 2L(L+1) "J L 2Sts7l) J 19. Even for the case of non-equivalent electrons, this formula has been found to be very helpful. We have made an extensive use of this relation in estimating the multiplet separations in 5s.5p»6sV'and 0s.5p.6p *tpi>) in Te IV. The application can be seen on page 270. It has been found by Trees (li3-b) that even though spin-other orbit interaction are not responsible for large variations in the interval rule, the spin-spin interaction is responsible. Araki (1*8) has shown this to be the main contributor and emphasizes that calculations become much complicated for heavier elements. Intensity of the Spectral Lines. The absolute determination of intensities is limited by the inadequate knowledge of the oscillator strengths and the dipole moments. Apart from this, even though a light source is reproducible to a great extent, i t is not possible to evaluate the efficiency of the photographic emulsion and the spectrograph. The sensitivity of the photographic plate and the source varies in the different regions of the spectrum. In general (White, H.'W»-lt5 - page 205) the ratio, of the intens-ities of two lines can.be written as - K > , - A T »» T Im-*n _ — • J ~ J ± H . - i i -Ip^q- ' _**/!cT t 5 v where Is^/ls2 is the ratio of the intensities given by the "Sum Rule". This shows that even relative intensity relation is complicated. 20* In multiplets, the ratio of the intensities is given by Burger-Dorgelo-"Qr-~nstein sum rule which states? "The Sum of the intensities of a l l the lines of a multiplet which start from a common in i t i a l level is proportional to the quantum weight 2J+1 of in i t ia l level. The sum of the intensities of a l l the lines of the multiplet which end on a common final level is proportional the the quantum weight 2J+1 of the final level". Tables are available ( 7 ) where the relative intensities in the multiplets have been calculated for L-S and jj coupling. The relative values help in picking up the multiplets. Dirac on quantum mechanical basis has derived ^ expression for intensities of lines in terms of L. S and J and a const. This constant can be omitted in case of relative intensities. His expression can be used in j j coupling by substituting •) for 1 and J 2 (const.) for S. A practical spectroscopist^consider; his visual estimates of the line intensities enough for his spectrum analysis. However the sum rules no longer hold when lineseiVe in entirely different regions of the spectrum. The visual estimates also differ from person to person and normallyAthe relative estimates of two lines quite close in the spectrum have any real significance. Selection Rules Selection rules prohibit certain transitions. The word 'prohib1 21. electee is quantitative rather than qualitative. The ratio between dipole trans-itions and quadruptole transitions is approximately 10*^ for radiative transfer. The latter are usually called forbidden transition. The sel-ection rules hold under the normal conditions defined as (<z) "Spectrum must be"isolated atom or ion" produced by atomic gas in temp-erature equilibrium not disturbed by external electric and magnetic fields. The pressure should not be too high to f>-*-oJwe. mutual disturb-ance nor too low to wreck equilibrium distribution". Under normal conditions only^dipole radiations are emitted but under abnormal conditions ( a's in sun, in stars, etc.) the forbidden transitions ( ^1) have been found to be very intense. Dipole radiations strictly obey the Laporte Rule. We shall enumerate rules only for dipole radiationss-(1) J changes in a transition by 0 or ± 1 J = o —> j ' m 0 is forbidden. (2) There is no restriction on the change of n. (3) The strongest lines arise from one electron jump in case the two con-figurations are well separated from each other. This is not very strict . Two electron transitions have often been found quite strong. When they do so, one electron changes i t i 1 by a +1 and other by b. But a+b a even. Most probable values for a'and b are +1, 0. In j - j coupling one j changes by 0, ±1 while other by 0,^1, + 2. More than one electron transitions are frequent i f configuration perturbations are strong. Three electron jumps are very rare. 22'. (li) In L-S coupling the additional rules are (i) L changes by 0, ± 1 . In complex spectra this fa i l s , ( i i ) S changes by 0 only. Thus lines of different multiplicity (intercombination lines) are forbidden. Intercombination lines in most of the spectra are very strong. (5) In j - j coupling the additional restriction is A j x = 0 A,J, _ o , ± l (6) In intermediate coupling only f irs t three rules stand since J is the only unambiguous quantum number. Polarization of Atomic Cores The deviation of alkali spectra from usual hydrogenic behaviour lead Schrddinger to suggest the idea of penetrating and non-penetrating orbits. According to him "Each electron completed Shell can be replaced by an equivalent "charge of electricity distributed uniformly over surface of sphere of-suitable radius". When the valence electron orbit lies well outside the a*°We-> a. w. core, i t is inACoulomb's f ie ld and describes Kepleri-Wvellipse. If i t is not very far away the f ield is slightly different from CoulombWnlt penetrates. The outer-part of the ellipse undergoes a precession about an axis •-i- a T • ' to its plane. As penetration goes on increasing, deviation from Conlomb's f ie ld goes on increasing and thus eccentricity of orbit increases. Every time penetration takes place at different places but at same distance from that of previous revolution. 23. In quantum mechanics penetration retains significance. If val-ence electron eigen function is large in the region where eigen function of core electrons are large, the interaction wi l l be great, otherwise small. Since hydrogen like eigen function is : large only for values of r trans-versed by electron in Kepler ellipse K = t(t+l), this leads to Schrb'dinger1 s interpretations. (Pauling and Goudsmit, page 38 ,39) . •The increased force of the attraction between nucleus and electron at penetration increases the binding energy, the K~E and absolute term values but decreases the total energy of atomic system. The non-penetrating orbits are said to be hydrogenic but s t i l l their absolute term values are higher than hydrogenic value. Born and Heisenberg attributed this to a polarization of the atomic core. In the Coulomb field of the valence electron, the spherically symmetric core is repelled and distorted and the nucleus is attracted by virtue of the repulsion and attraction of like and unlike charges respectively. This polarization decreases the total energy of system and thus the energy levels are pushed down on the energy level diagram. Quantum mechanics has provided the correct equations for expressing this -effect and accurate values of the polarization of many atomic cores. Recently this subject has gained prominence because i t can be used to f ind°^ and o( which enter into the expressions for refractive index of solutions (53). The recent theoretical and experimental work has been due to Edlen, Bockasten, Sternheimer, Risberg and Biermann (3>, 10, 7\ page 157). The absolute term value T can be written as T = T„ + AT •+ A T H pen. pol. 21* T K = Hydrogenie term value. AT_Q„ = Penetration correction. p o l l . TpQ^ =• Polarization of atomic cores correction. The hydrogenic term value consists of $imple Bohr's hydrogenic expression plus relativistic correction. Tables are available f o r A l a t t e r ^ ^ ^ V In most of the important cases, especially higher members of series the penetration correction is negligible and^whole contribution is due to polarization. If the radius of valence electron orbit is f >">V„ ,then core is situated in a sensibly homogeneous f ield E - ~x. Since a dipole of strength^ gives a field of ^ along its axis, the valence electron wi l l experience an attractive force. AF = * <*L $s where <*d . P o U ^ U U j ^ ^ Thus Perturbing Potential = J A F - A T FF Aoi^i Hence change in Energy AV4 - - • e From quantum mechanical treatment ( ) • Z 0 - Effective nuclear charge of core. a 0 = Bohr Radius <$ *a«£*T~M "v*^ ' A T =-AW = °V Tv?^ ^ ^ ' 25. where P(n,l) = R f ( n , U = R <r> (%;) f i n , l j 2rfit4)tH*fKui)(^'i) A ( Z , Z 0 ) . ^ This has been drived on dtpole approximations. Tables are available for ^(n,d)<5). In quad*M£>ole approximations The values of ^ / a n d < *f4 > can be found in most of the textbooks on spectroscopy and quantum mechanics. It is quite obvious from the quadrupole expressions that a plot between & T p 0 ^ and q (n,l) is a straight line. Table IV gives the values of P (n,l) and q(n,l) for n =15. This theory is very useful in predicting higher members of the hydrogenic series e.g. ng 2G and nh series. Its use has has been made in the extension of these series in Te IV. Table IV Polarization jhw&.ov<,g, P(n,g), q(n, Q, P(n,l) = R *(n,l) . ./ s ) q(n,t) ^ N»(n , l ) /* (n , t ) ^ n 1 1.2" "1.3- t.lx U 5 I .6 pud; qlnd) PCnfJ qlnfj P(rig) qUgJ Plnh; q(nh) 3 60.212 0.22222 k 28,577 0.27083 k.0825 0.02083 5 15.38k 0.29101 2. 31x11 0.02667 0.557k 0.0053 6 9.139 0.3015 l.k336 0.02952 0.358k 0.00695 O.lliiO 0.0020 7 5.8k5 0.3076 0.9328 0.031lli 0.2393 0.0078 0.0791 0.0026 0.030k 8 3.955 0.3115 0.6379 0.0322 0.1662 0.008k 0.0562 0.0029 0.0223 0.0098 9 2.796 0.31k2 0.k5k3 0.0329 0.1196 0.0087 o.okio 0.0032 0.0166 0.0075 10 2.0U8 0.3161 0.33LL 0.0333 0.0887 0.0089 0.0307 0.0033 0.0126 0.0058 11 1.U07 0.3175 0.2306 0.0337 0.0615 0.0091 0.021k 0.0035 0.0088 O.OOkl 12 1.193 0.3186 0.1960 0.03U0 0.052k 0.0093 0.018k 0.0035 0.0076 0.0036 13 0.9ii0 0.319k 0.151x8 0.031x2 0.0kl5 0.009k 0 .0lk6 0.0036 0.0061 0.0029 li* 0.75k 0.3200 0.12kk 0.031x3 0.033k 0.009k C.0118 0.0037 0.00k9 0.0023 15 0.61U 0.3206 0.101k 0.03U5 0.0273 0.0095 0.0097 0.0037 o.ookl 0.0019 27. Theory of Complex Spectra Usually a spectrum is called complex i f i t originates from more than one electron with^>0» In such spectra the appearance of the multi-plets as groups of lines with regularity in spacing and intensities, form the starting point for term identification.and consequently the singlets are more difficult to pick up. The motion of electrons in an atom is governed by the following interactionst (1) 'Attraction 1 between electron and nucleus and 1 repulsion' amongst electrons follows the 1 Electrostatic Interaction'. (2) The orbital motions and intrinsic magnetic dipole moment spinning of the electrons produce "Magnetic Interactions". Thus theoretically the problem is - the solution of many particle Schrodinger's equation with Hamiltonian containing terms which are con-tributions due to these forces. "When solved the eigen functions of Pauli type wi l l yield the possible stationary states of motion and the energy eigen values yield the energies of these states. The problem is mathe-matically unmanageable and even for approximate solutions drastic assumptions have to be made* Complex Spectra Consider the zero order approximation. The electrons move in a central f ield then, neglecting the magnetic interaction, the Hamiltonian may be written as H, o 28. V al • • . I . . . . . . When u _ Reduced mass-of the electron-nucleus system. - Momentum of i - th electron. U(r^)- ~ Central f ie ld potential for electron at r^-distance away from the nucleus. N = Total number of the electron. To a f irst approximation each electron is considered as moving in ihe field resulting from the Coulomb field of the nucleus (attractive) and the average f ie ld due to N-l electrons (repulsive). U(r )^ - — -v c for r small r (penetration) (2) - - (Z-NM)-e^ (Z-.-f-l)e^ ^ l a r g e (non-penetrating) r r We consider as perturbations effects on H 0J , as well as the primary Coulomb binding electrons to the nucleus, the inter-electron interactions, or the electro-static interaction energy =^ e (3) r ^ - Distance between i - th and- j - th electrons. Neglecting the complicated spin-spin and spin-other orbit interactions the spin-orbit interaction is •= X. a(r^) L -A- (k) ''si x Adding a l l these interaction energies, we have H H - 2 L r 1 J \>CL I T Thus the perturbation potential H «. H-HQ i,. L r i J v>i-, r i i (5) (6) - - - *>j- A i j This type of motion is mathematically expressed by a wave function 2 9 . satisfying the Schrodinger equation of unperturbed case (7) The next problem is the choice of the wave function dp . If dp be product of one electron wave functions, variables in the above equation (7) can be separated and the solutions found. Let the one-electron wave function be denoted by u/2^. \ where n represents the four quantum nos. (n, 1, m ,^ mg) and x represents three space coordinates and fourth spin coordinate. Let £— = Q (for simplicity) x l The product of these functions are the approximate solutions. It is also obvious that any linear combination of these functions and the inter-changing of any two of them is also a solution. However the electrons are fermicns and so must obey Pauli 1s exclusion principle and hence the linear combinations functions must be antisymmetric. This is achieved when 41 is written as I x w I -(8) Where N""^  is merely a normalization factor. Putting n = r? in above, the determinant and hence the function ^vanishes. Next we solve (7) by standard perturbation methods writing the secular determinant and the equations therefrom. 30. When interconfiguration perturbations are prominent, as is the common case, the Schrodinger's equation can be written asr. where y ' s are the linear combinations of • Since E depends only upon the set of quantum numbers n^ and 1^, specifying the particular electron configuration, the matrix elements due to different configuration be neglected and thus only diagonal terms are of any interest. Again we are only interested in the relative position of levels and closed shells wil l effect a l l levels equally., "TWs:/ closed. Shell effect wi l l be constant £©revery level and thus can be omitted. Matrix Element of the ) . > . f * . . / j , i n \ J , . , „ )a <A\H\B> = )&P!) H 4 < W (9) Perturbation Energy ) Where dv represents the integration over three space coordinates and Summation over the spins. From T.A.S. (page 17\ ), i f operator X is of the form x s 2 x ( i ) (io) where x(i) operating on the coordinates of ith electron, the author's (T.A.S.) have shown that (i) <A \X\ B> = 0 If B differs from A by more than one individual set of one electron c^ . nos. This is a consequence of the orthogonality relation of u(2_) i • x (ii)<A|x |B> = ± < & l ~ \ e t > K K If Band A agree in a l l sets except Q, =L Q, N (iii)<A\x |A> = Z <£\*\£> 31. If Operator Y is of the form Y = £ y ( i , j ) (12) T.A.S. has shown that the diagonal elements are <A\Y|A>£J|u*(Qk U * ( o j y ( i , j ) U.(Q k) 11.(0*) dr.dr. - J u J C Q * ) U*(QH) y ( i , j ) U i (Q t ) U . (Q k ) dr.dr J (13) where drj_ and dr^ include summations over spin coordinates. The two // H I  a integrals in (13) are called DIRECT and EXCHANGE integrals. Following Slater's designations, they are denoted by J and K <A\Y|A> = J j j ( Q k , Q*) - K (Q k, Q*)] (Iii) J (Q k ,Q t )= <QV \y ( i s j ) \ Q V > K (Q k ,Q t ) = < Q k Q t \ y ( i ,3 ) \ Q V > N The Coulomb operator £ - (electrostatic effect) is of form Y. 1>J'B| r i j From elementary quantum mechanical treatment of one electron system of hydrogen atom, the functions IK(Q1) are the product of a YAdial part and an angular part. The angular part is spherical harmonic and doesn't explicitly depend on the quantum numbers. In Legendre Polynomials,—!— operator can be expanded 1 = 4L. Tfcr. • p k (cos.e) i j Y° 2 \ 0 is the angle between r. and Thus the matrix elements /A\-—\A/ can be written as radial integrals depending on quantum nos. multiplied by angular integrals depending on lj_ and m .^ Thus the e.s interaction (15) becomes K (QpQ^-^U^, £ b k ( l Q , m Q » l Q x w Q l ) rW(l^™VlQ lwQ*) Where S indicates that a l l terras of sum vanishes except that m^ = m^ s s which means there is no exchange effect between the electrons in states of different m s. \c x a* and b are the angular integrals. Due to spin consideration, k functions id.ll vanish except for pairs of electrons having parallel spins. The integrals a k and b k were introduced by Slater and are mostly tabulated in a l l books on quantum mechanics (T.A.S, page t 7 8 - i 8 $ . D^ are constants depending on d and only (D°= 1 for 3.s , D* = 3 for sp _z . . D = 5 sd and so on). k k F and G , radial functions, are commonly known as Slater's integrals. These can only be evaluated i f the central f ield acting on each electron is known and in practice they are regarded as unknown para-meters. Both F k and G k are always +• ve and F k = G k when the electrons are equivalent. They are independent of ra-j_ and m . F k = £fj*l ( „ Q 1 t Q 1 ) R ^ n Q 2 l Q 2 ) • Each term of J (direct integral) of given k corresponds to one term in the expansion (in spherical harmonics - multipole) of the classical inter-action between two electron clouds, J describing the electro-static interaction between p and p, d, f p electron contains terms with k--0, 2. F corresponds to classical quad-ruple-qua drupole interaction between charge clouds. Similarly d with d,f electrons contains terms with k - 0, 2, U. corresponds to the inter-action of the quadrupole and the 16-pole and so on. 33-The exchange integral has no classical analogue. L-S Case Russell-Saunders coupling case, effectively treated for one and two electron spectra<S<j"tti«vector model, is experienced when the electro-static effects are very large compared to the magnetic effects. Thus we f i rs t omit magnetic interaction and calculate e.s. effects and later add this magnetic interaction as a perturbation. Note, however, that by confining ourselves to diagonal elements we assume n^ and 1^  of the individual electron fixed. This is justified i f the energy difference between different configurations are large compared with the energy difference between terms and hence configuration interaction (giving rise to the non-diagonal matrix elements) is absent. From (5>), we have Obviously the f irst terms is same for a l l levels of the configuration. The separation is due to the second one. I f Ms =2 ras a n d ML m l The secular equation factors into a chain of smaller secular equations, one for each M s , value i .e there are non-diagonal components only bet-ween determinental wave functions having a given M s and M^. In solving these the diagonal sum rule is generally used. "Sum of the roots of the equation is equal to the sum of the diagonal matrix elements in the equation." 3lu Thus linear equations can easily be solved. From this diagonal sum rule we get the energies and not the wave functions. Configurations where more than one similar terms arise of similar designation as is the case with ^.JjpSSd in Te II where Z(PDF) arise both from 5s 5p" (3P)' 5d and 5s*: 5^ ( *D)- 5d while *!) also arises from 5s4". 5p ( S )>5d5 the diagonal sum rule will give sum of the energies of a l l these repeatedly occuring terms. Racch ( 3 6 ) has developed powerful procedure by means of tensor operators to overcome this difficulty. He has drived general form for configuration. We give his relation for s.p.s' configuration r P= F (ns^ s ) + F (n p,n s ) + F (ns,n p) - G° (ns,n'' s ) - i s ( n p , n s ) - i G (ns,n p) Z p > i p '=F 0 (ss' )+ F'( P3 ) + F°(sp) * [pl (si G l (ps' ) + 1 G (sp) - 1 G (ss' )d (prf ) - I G° (ss' ) 0 (sp) - 1 G (ps ) G (sp)J * Recah has also treated ttdL. rv s m b configuration. Condon and Shortley ( 7 ) Shortley and Fried ( *° ) and others have treated many configurations in the form of the F-and G-parameters. These are very useful in predict-ions even though in general pure L-S coupling is a rare thing in heavier elements. j - j Coupling In this type of coupling the magnetic interaction always dominates the electrostatic interaction. The Hamiltonian in this case can be written N —« 35, The equation is f irst solved and electrostatic energy is then added as perturbation. The resulting energies can be expressed in terras of radial integrals F k and G k and magnetic interaction constant a ^ . A pure j-j coupling is very rare. As magnetic interaction goes on increasing the deviation from L - S becomes more and more pronounced. This has been found towards higher members in the isoelectronic sequence or higher members of the series in the same spectrum. In whatever way the transition takes place from L - S to j j , one rule is always obeyed "Curves belonging to the levels of equal J don't cross (J is perfectly valid quantum number in a l l the coupling schemes.) In np.n'p configuration, the energy in terms of Ffc , Gfc and 1 ^ are E s i a ^ + l a ^ + P o + Pg - Go " G2 E = K P + i - a r i p + F 0 - 3 F 2 ^ - 3 G 2 E = * V K V F 0 + F 2 " G0 " G2 2 4 a n p + | a r f p + F 0 - v 5 F 2 + - G 0 _ 5 G 2 3 =2 J=3 J=2 <L=1 J=0 J*2 4 \ J=2 E = | a n p - a n , p + F 0 - G v. J=l is = h np - a n p 2 F n -36, • i •' 3 < J ~ 2 3 = 7? J » 2 E r -a + & , + F np n p T 0 J . - l E=-a + «ja , i - F . - $G np n p J 2 3 = 2 J * a J , 1 2 s - a n p - a n + F Q J = 0 E . - a ^ _ a r f p + F Q G, j - t Coupling A third type of vector coupling has been ooserved in certain cases. Let us consider as a typical case a two electron configuration containing p-electron; with large(l.s) interaction and a second electron of large 1- • value (i .e. /Small (l.s) interaction). In this case i t can happen that some of the magnetic interaction are small and others large as compared with electrostatic effects. In configurations with shell of one hole and one electron of higher 1, Shortley and Fried ( ^ 0 ) have calculated e.s inter-action in ,j- l coupling approximations and have found that the levels a**-in pairs. Since exchange forces act on spins, Racah has pointed out that i t is not sufficient for this coupling that spin orbit interaction of external 37 electron is weak but also G k £ F for a l l k. This coupling can be well understood from the 3d.pg configuration of Cu II. This configuration was f irst analysed by Shenstone and interpreted by Shortley and Fried (1|0) • cL forms an inverted doublet whose splitting is due to spin-orbit interaction,which is very strong in this case. Owing to negligible e.s interaction of the g-electron its I-couples with J of the core forming a resulting angular momentum ^ K > which can assume values lib 2j* 3ib hi, 5i, 6§ f or J - 5/2 and 2|, 3* , Uib 5 | for j = 3/2. The small separation between unresolved doublets is due to magnetic coupling of k with the s' of the g-electron, resulting in .JJ* K ± -|. The accepted nomenclature is (j) t [k] J e.g. ( Z D. ) • 5g • Lui] In terms of vector coupling j* + I « "£ -> -*• k 4 S ' = From Fried's calculations (UO) the coefficients of Slater's F* can be written (36b) as f l ( n ^ 6h z +3h - 2J (J 1) t( U 1)  f y W = lij ( j + l ) v 2 l - l ) ( 2 U 3 ) c - 2 J + l ^ O k (k+l)+J (j-tl) - l ( U l ) (g^l) g " 2 W + 2 (2 k + i ) (2 J-a) where h . 11 . * ( k * l } - J g ( j » D D and gj_ = g-factor of the parent ion. -Eriksson (9) has considered j . l coupling for p.f and p.g configurations and finally has arrived at two and three parameter equations for the energy relations. The relative magnitudes of the coupling parameters can be estimated from spurs Of energy matrices. Since spurs are independent of 38 the coupling and they can be written down directly from the known values of the spin-orbit interactions i n j»j coupling and e.s interaction i n L-S coupling* We give below the relative energy values i n case of j - i coupling for p.f configuration K J Energy 2fr» 3$ 2,3,3,U F* - a l i 1,2 FV| - % F* 2| 2,3 FV| + ^ Fx 3 i 3,U F%| * ™ F* U | U,5 F%| - £ + where the F's are Slater* s integrals and a i s the magnetic interaction con-stant. In s t i l l more accurate calculations Eriksson has included i n the energy expression Slater's G's, even though G's are quite small compared to F's. In case of 2p.Uf case of N I I a * H F m 13.5* 0 « °«3 and G • 0.03 and thus one may obtain f a i r agreement by omitting the effects of the G's. Intermediate Coupling In actual practice the coupling i s neither pure L-S nor pure j - j , but i s i n an intermediate stage. In such a case where the electrostatic and the magnetic interactions are of the same order of magnitude, to derive the energy levels one has to use the matrix of the sum of the electrostatic and the magnetic energies and then to solve the secular equations. The matrix elements can be written either i n the LSJ or the j\) scheme. In the former the 39. electrostatic energy contributes only diagonal terms,,, same as in L-S scheme. Magnetic interaction is diagonal in J..M. It connects different values of L and S but only those differing by one unit. For those values of J which appear only in one level the perturbation energy is simply equal to the corresponding diagonal element. For values of J- which appear n timess an equation of nth degree has to be solved. It is emphasized that any diagonal element whose J occurs only -IK* once isAsame in any representation and under any coupling condition which leaves J a good quantum no. Johnson ( '8 ) and Houston ( '6 ) have treated many configurations on this intermediate coupling basis. Bedford ( 8-^) has reproduced most of them in simpler forms. We wil l only consider here Is configuration, which has so often appeared in our present investigation. One singlet and one triplet state has same J i .e . 1. The energy equation can be written as w*+(f - 2 g t ) w - 2 gt - 8. (UD |x = 0 where -G-L is Slater's "exchange integral" parameter and its denomin-ator (TAS p. 177). Representing the energy in units of a/2 (a/2= A = Laude's interval factor), we get the roots as &i and 6^ and thus follows the famous Houston's Intermediate Coupling Relation. (^ + 1) (£3+1) L(U1) Where ^ and are the energies of ^ and "h^ measured with respect to the e.g. of unperturbed "^g^ and ^. This relation is very helpful in 1 3 predictinq L-^  once L^ ^ ^ have been established. Cohen ( <2' ) has con-ko 1 3 3 3 nected the four energy levels L^, l j^> L^, ^ of energy E-]_, Eg, E^, E^, by the following relation 2 - £ij E3 " Eu k _d__ _ E 2 - E 3 t+i ' E X - E^ = rnr This result is useful in comparing the experimental values when a l l are found with the theoretical value without the knowledge of the ionization limit. This relation however leads to LS and j j case. In the pure L-S scheme, second term is negligible . 3, " E), t E 2 _ E3 * (Lands' s Rule) In the pure (j-j) scheme, f irs t term is negligible E2 ~ E U _ 1 E l " E i | 1 1 Showing the L-^  and I ^ + ^ a r e coincident. The Bacher-Goudsmit Method Bacher-Croudsmit method involves the calculations of the energies of the states in different stages of ionization. These methods have been recently modified and extended by Meshkov, Trees etc. (z7> and are very useful in cases where there is insufficient data available to po^-r^Ajt isoelectronic sequence extensions (i .e. the application of the doublet laws). These relations relate energy differences in various ionic spectra of a single element and thus permit us to make "traverses" in optical spectra orthogonal to the relationships in isoelectronic spectra. Let us consider an ion (X+z) III with one outer electron in the quantum state a or b with energy W(a) or W(b) respectively. Let W (a,b) be the energy of the neutral atom (2,Z) II when one electron is in the state a and the other in b. Neglect degeneracy to explain the principle of the method. The ion (2,Z)III in the state a passes to the atomic state (Z,Z) II a, b by the addition of the electron in the state b. If w(a,b) =. Interaction energy of two electrons W(a,b) = ¥(a) W(b) -v w(a,b) This can be extended to three electron (Z,Z) I or more electron case W(a,b,c) =. W(a)-t- W(b) -t- W(c) .+. w(a,b) w(b,c) •+ w(a,c) -+ w(a,b,c) = W(a,b) + W(a,c) * W(b,c) -[(W(a)+W(b)+W(c) -*w(a,b,c)] Thus the energy of the atom has been defined in term3 of the singly and doubly ionized ions. The effect of the electrons on the core and de-genetacy have not been taken into consideration. Apart from this in correlating a term of an atom with L and J values to the term in the ion, the states have to be considered individually. Consider two electron p 2 configuration. The electrons in a and b states. These can be represented in scheme n.l.m-^ and m s. Each of these states has M, and M values 2 , 0 ; 1,1; 0 , 1 ; -1,1,-1,1 they give rise to a single L s state. For M^, Mg 1 ,0 and 0 , 0 pair each state by ri 1 "|,,my passes into linear combination of states belonging to different L,S scheme. Matrix methods help to find the coefficients of these combinations. For states ( 0 |)(o4-) W(a,b) = | *D + ^ *S Bacher and Goudsmit in their original paper have suggested the method for this purpose. Sometimes the coefficients are also found by the inspection keeping in mind the following rules: (i) Sum of the coefficients of each states is unity, ( i i ) Sum of the coefficients of a particular multiplet in a group with given M L and M g is unity, ( i i i ) Division into multiplets is same for two states which differ in sign of either a l l mt or a l l m g. Recently Trees and others 0*3,-27) have derived linear theory similar to Goudsmit's which is a combination of Slater's integrals and empirically found corrections. The wave functions depend upon the degree of the ionization. Trees ( ), Racah and Meshkov ( <*-7 ) have extended the configurations originally treated by Bacher and Gondsmit. Consider the configuration s.s' Table H m, » 0 S mg s ms Ms ss Multiplets 1 2 1 2 1 h 1 2 1 .-*2 0 1 3c« 1 2 0 2 s 4 1 "2 0 2 O 2 S Let us see how the inspection rules work From rule ( i i i ) W(| 0; --| 0) = W (-| 0, | 0) U3. From rule (i) and (i i) a l l coefficients are |-. Bacher and GoMdsmit's relations are given in terms of absolute energies but in majority of the cases they turn out differences between the absolute terms of the same spectra and thus don't require the knowledge of the ionization limit. Consider configuration ns.np3 Bacher and Gondsmit give the relation W(sp 3 FS) - W ( s l p i . 3 P ) = | wUp1 \) - 2W (jfp P)+W(p* \ ) _ 2 W ( £ p - *p) + W(J- *s)-»-W^p yP) - 2W (p 3P) -t- W(p) - ¥(s) Trees^S- e) has shown that to f irst approximation this reduces to the II U well-known Andrew-^leissner relation (31 ). w(ap* ys) - wtf p1 3p) = 2 [w(spl \ t ) - wt*p \ ) ] - [w( S P 3 P ; ) - w# % )j This relation has been used in establishing 5S. and*V i » L in Te III and Te IV respectively. Meshkov (Zl-°*) has considered the coefficients of the fractional parentage of p s and p to p .s . Logically to fix the relative contributions of these we consider four electrons p,p,p,s. There are three ways to get pz s out of these four while only one for p3 . Thus we interpret that ps has three times the contribution to p^ s as compared to p5 . We repro- * duce the table of Meshkov Coefficients of Fractional Parentage 3 p S N P3 p s^ »P '• X P -3s ~i 12 i 3 t 81 1 5S 2 ' 1 i. 3* •p 2k" 6* -2 -3 3p 2h-± -2 1 'D 2* 3* Z l " 1 6* 1 i . -8* -3 These atomic energy relations have found extensive use in our predictions, and in general the experimental and theoretical values seem to agree well. CHAPTER I I Experimental Procedure Ii5. Experimental Procedure The instruments used in the present investigation included? i 21-ft. concave reflection grating spectrograph. i =25° Range . nX, 9000 A 0 - 18,000 A 0 , i i 3-metre normal incidence vacuum spectrograph. i = 9.742° 4 • 775 A°/ram. Range . nX 350 A 0 - 21*50 A 0 , i i i 2-metre grazing incidence vacuum spectrograph. i * 77.47° Range nX 200 A° - 6000 A 0 , iv 65"-Wadsworth-mount reflection grating spectrograph. <&m 22 A°/mm. Range n X 6000 A 0 - 12,000 A 0 , v Hilger Medium Quartz prism spectrograph. E498. v i Hilger Automatic Littroouprism spectrograph with interchangeable Glass and (Quartz prisms. E478. A 3.ii metre Jarrell-Ash Ebert Spectrograph was also available in the laboratory but no use was made of this since i t could photograph only a narrow range, and the range is altered by rotating the plane grating. This is a handicap when one wants a complete set of spectrograms covering the whole range of wavelengths under the same excitation condit-ions. Low dispersion but fast spectrographs, namely constant deviation spectrographs, have also been used. The plates were measured on a Zeiss-Abbe comparator specially mod-ified by the maker at our suggestion to permit the measurement of 18" x 2M plates in three settings. U6. Light Sources Two light sources were . used in the present investigation having appreciably different excitation characteristics. The condensed spark in Helium could develop Te II and Te III strongly and Te IV weakly while disruptive electrodeless discharge in favourable excitation con-to ditions developed Te IV, Te V strongly, Te VI on^ medium scale u>i1V > Te VII on a very weak scale. These sources are discussed on the following pages; Condensed Spark in Helium The arc and spark in the atmosphere of different inert gases such as Helium, Neon, Argon etc. have been studied from the very beginning of experimental spectroscopy. The choice of the particular gas depends on the nature of the problem under attack. When sparks are run in the atmosphere of the inert gas, the main considerations are - the excitat-ion needed and the sputtering action of the substance. Helium has the highest excitation potential 19.7 volts and also has a very weak sputter-ing action due to low kinetic energy of its ions. On the other hand Argon and Neon atoms are much heavier and can cause greater sputtering but their excitation potentials are relatively L»vsyLl»5 volts and 16.6 volts respectively. Sometimes a mixture of Argon and Helium in different proportions is used to combine both effects. A . Since Tellurium sputtered appreciably inAHelium atmosphere we did not try to use any other gas. ;' The source is simple in construct-ion and operation. It was f irst used in this laboratory by S. George (#--0 -IK* but he did not exploit i t much due to unavailability of 3-metre vacuum To follow page L6 -^ *To Spectrograph N Quartz Window Condensed Spark i n Helium Glass and Quartz Region Source Fig. 1(a) Quartz Window Helium LiF window Brass Taper Rubber | f^Copper Stopper Condensed Spark i n Helium LiF Region Source Fig. 1(b) U7. spectrograph and ^ "-Wadsworth mount spectrograph at that time (these two spectrographs being commissioned in this laboratory recently). He did not use this source below 1250 A 0 . The importance of this source has been emphasized by Professor Shenstone (^Tb,c) and is giving excellent results in case of As, In, Sb, An and Bi , whose spectra are in the process of analysis in this laboratory now. The design of source is similar to that used by Dr. George with modifications to suit conditions for Te. Even though Te is a conductor and can be made into rods for electrodes, i t was found advantageous to press-fit the metallic Tellurium electrodes into carbon cups in order to get carbon lines as standards in a l l spectral regions and especially inlU* vacuum ultraviolet. Fig. I (a), (b) and (c) show the design of this simple spark source in Glass-Quartz, in LiF and in extreme ultraviolet region (XUV) where no windows may be used. Up to 1070 A°, the Helium from the He tank at about 1 atmosphere was bubbled through a water trough to prevent contamination by re-entrant air . The neck of the bulb was made longer so that the fine debris of Te sputtered during the run may not cover the Quartz or LiF window and obstruct the path of light to the spectrograph. The power supply circuit shown in Fig. 1(d) consists of a 20 kv,ikva output transformer, 0.005 ^F-25 kv condenser bank and an exter-nal spark gap of 6-9 mm. in air . The gap between Te electrodes was ad-justed from 7-10 mm. in different expos\ires. Below 2000 A 0 , the quartz end of the source bulb was replaced by a male brass fitting inside the female taper joint on the s l i t tube of the vacuum spectrograph. A very thin LiF plate was fitted on the taper To follow page U7« Cu Quartz Window To manometer Condensed Spark i n Helium Extreme Vacuum Ultraviolet Region Source Fig. 1(c) 110 V-ES To Electrodes T - Transformer 20,000 V. output, 1 kva rating. C - Condenser tank 0.005 /iF, 25,000 volts. E.S - (External spark gap. (6 m.m. to 9 m.m. i n a i r . Power Supply Circuit  Condensed Spark i n He Source Fig. 1(d) 1*8. face and was almost on the s l i t . LiF plate has the advantage of not significantly contributing to insignificant astigmatism in stigmatic gratings and at the same time transmitting to about 105>0 A 0 instead of about 1200 A° in case of lenses. Up to 1050 A 0 we did not run into any seriou3 difficulty in operating this source. We soon ran into trouble in^XLJV, A source was designed similar to the one used by Professor Shenstone in Pt. II O^ -?) and i t was planned to make the Helium leak through s l i t into the spectro-graph. But Te is one of the most sputtering metal and its fine debris f i l l ed bulb, the side tube and s l i t (xndth L p ) within a couple of min-utes of operation. The v is ib i l i ty of the reflected image (seen from tube identical to s l i t on the other side of the normal in 3-metre vacuum spectro-graph) was zero. The difficulty observed was that while He leaked through the s l i t i t swept Te debris along with i t . The plugging of the s l i t was suspected as soon as the vacuum in the spectrograph, which had fallen due to Helium run, began to improve. After considering various aspects of the problem, design Fig. I (c) was finally adopted. Tl and T2 tubes were so arranged that the Helium flow was directed in the space between Te electrodes. Tl was connected to Helium tank and T2 to a pump via monometer. Thus a major portion of the debris was directed away from the s l i t . However, the s l i t was made a l i t t l e wider. To start with the spectrograph was pumped to 2 x 10"-' mm. of Hg and then He allowed to flow and^ pump connected to T2 started at the same time. The spark was started a couple of minutes later. k9. The operating conditions weres Helium Pressure in source lt-8 cm of Hg Pressure in tank 0.2 - 0.3 mm. of Hg Si l t width — 8 ja Exposure time UO minutes The diffusion pump and forepump were on when the source was in operation. Under these conditions the source ran for about an hour without plugging the s l i t appreciably. The low pressure in source bulb affected the excit-ation favourably. Excitation Data This source has been found to provide a reliable excitation data. The intensity with which excited He lines appeared on our plates, confirmed our belief that source should be able to excite Te II and Te III completely and Te IV weakly. The excellent pole effect shown by the lines helped to separate them out according to their ionic parentage. The spark was imaged on s l i t in prism spectrographs and 6£"-spectrograph. 3nnetric vacuum spectrograph gave almost stigmatic images althrough its range. In 2-metre vacuum spectrograph the intensity variation of lines under varied excitation con-dition decided their ionic parentage. Different excitation lines appeared as -Te I They ran a l l along the length of plate with equal intensity and had no pole effect. The lines involving the ground state or metastable lower states showed nice reversals. UJVO U ) O X ? v C N U J V O V O vn c?*=-co N O — J o vn. O N M H M M < M H H H H V O U J U J O N ro ro N O U) V O u> ro ro ro vo vnvn ir-oNM H M M H H H H M Vo U J I—1 M co co C O C -H H M H 1 U> U) u> H O O U) N O C O ro UT.NO M M M M M •* ro r n NO U > U J VO-0 • ro ro N O N O — j ONOO ro ro ro o o o v n u * M - J N O co co co Er ro M ro N O N O O N - J U J - J H H M H O U T U J C O M M M M M M M M * H M M M M M M H N M M M M 10 _1 ro CO U J on ro ro ro C D — J —3 M N O N O C O O N U) M M M M M M ro ro ro ro vn vnvn vn VnVO U J N O O CO o M M M > M M M 4 M O ro ro ro ro C - c r l r - r r -N O N O —o Os V O M C D N O M M O M M M M M M M M o r o r o r o ro ro ro ro VO V O VoUJ U) U> U) U> C D co-o vn . O T.p-V J J H \ A U ) f M O U> O N v > M M M M M M 4 M M M M M M O M M M M roro ro ro vovo u> ro roM O vo O O vo vo M M M M M M M M M M ro ro oo - o r1 r t ro ro ro ro ro roro ro —J ONvnvn Mvnvo vn M > < 4 o ro ro ro U) u> vo CD n ro ro ro ro ro ro O N - E -M M M M <J M M M Prism Plates a-P6223, b-P622l M M M M <i M MMM M M M I H IH M M M <q ^ 3 J r o r o r o roro roro r*0 vo I r-i-np-ETU) H * U ) V O c o - o - J O T . t r r o M ro U J M M coovnCD oo oovn -o o M U J CNOT. fc- U ) U ) O-ro — M M M O N C M I II I I M ^ - * - ^ M M M M M M M M M O N Vo I I II I I <q O M M M M M M ro M M ro ro vo t ~ M -o vn M co co O N co M M Grating Plates C-G6303 and d-6301 , F i g . 3 Showing. 'Pole E f f e c t ' exhibited by Prism and Grating p l a t e s i n condensed j spark i n Helium Source. 50 Te II They were the strongest lines on our plates and ran a l l along the length of the plate. They were distinctly thick at poles as compared to the central portion. Te III They were strong and showed very good pole effect. Their central parts in almost every case were missing. The ratio of intensity at poles to that at centre ranged from 20;1 to 50:-l. They could be easily separated from Te II lines. Te IV Their abundance was rare in region above 2000 A 0 , but i n -creased in vacuum ultraviolet. The lines 2271 A 0 and 3585 A 0 were fa ir ly strong. They appeared just tips at poles. Apart from this "pole effect", the external excitation conditions such as external gap length, electrode separation, pressure in source bulb and external voltage applied helped to decide about many doubtful lines. Two classified Te V lines 151.9 A° and Hj06°\ appeared on our plates, 151|9 A° is coincident with a strong Te IV lines here classified for the f irst time while line at llt06 A 0 is certainly a Te V line. Fig. 3 <=Lshows this pole effect. Impurity Lines The tank Helium obtained from OMY low temperature laboratory wots., <x~v.<L used without purification ^ contained about 1-2% Nitrogen and traces of Oxygen. Apart from this Hydrogen and Carbon were alsoAas impurities. Thus new Te lines were thoroughly scrutinized jro-f:" these impurities 51. before entering into our l i s t . Carbon, Oxygen and Nitrogen lines served -IK* as standard in^Vacuum ultraviolet. (B) Electrodeless Discharge Source The electrodeless discharge source has several advantages over the other spark discharge sources, which are enumerated below:: 1. As no inner electrodes are used the spectrum is pure. 2. It is operated at very low pressures and thus lines are very sharp. Also due to low operating pressures i t can be used easily with vacuum spectrographs. 3. It selects minute traces of impurities and radiates their spectra very strongly, i .e . collisions of second kind are probably freq-uent. Thus impurity lines, i f any, can be easily picked up. L. Since no electrodes are used, the discharge tube design is very simple, and vacuum can be easily maintained. 5. Since i t operates at very low pressures, the amount of material needed for excitation purposes is small. This is important in case of rare materials where material available is in order of milligrams. Apart from this, material having low vapour pressure require high temperatures in order to establish sufficient vapour pressure to initiate and maintain discharge. This high temperat-ure may melt internal electrodes and crack tungsten seals. 6. It has the chacteristic of exciting intercombination lines and higher members of series adequately. Electrodeless Discharge sources are of two types depending on 52 which type of radio frequency circuit is used for excitation. i . The continuous wave excitation. The lines of force pro-duced by the oscillation in coil effectively form closed or spiral loops. The i n i t i a l ions in rarefied vapours are set up in motion by spiral field and ionized by collision resulting in intense glow. To enhance ioniz-ation momenting power transferred to discharge is in -creased by operating the oscillator with pulses of high momenting pox*er. This power momentarily transferred is proportioned to square of the anode voltage, i i . Highly damped radio frequency currents. In our present investigation we have used this second type extensively. The discharge is produced by placing the discharge tube, containing the metallic vapours at very low pressures, inside a longitudinal solenoid through which rapidly alternating currents flow along the oscillatory dis-charge of the condenser bank. The main contribution to phenomena is due to magnetic forces produced, but electrostatic effects also contribute and make mathematical computation complicated. The maximum rate of change of the magnetic fields needed inside solenoidal to produce discharge depends upon the nature of material, frequency of alternating currents, pressure inside tube and to some extent on the dimensions of tube. Sir J . J . Thomson ( ^ ) has dealt with both the experimental and theoretical aspects of such a discharge. The operational aspect is that the So -lUaJbr discharge of condensers starts very rapid oscillations in the circuit, Athe solenoid: ". is traversed by rapidly alternating currents. These currents 53. by e.ra. induction, produce an intense electric f ie ld in the neighborhood of the solenoid and this f ie ld accelerates the electrons to excite the vapour of the metal inside the tube (having small in i t i a l ionization due to cosmic rays and radio activity etc.) and so produces an intense luminous discharge. If v = velocity of electron sufficient to produce ionization. «Mean free path of electron, p = frequency of discharge. Then we have in these conditions -v = a. -2- (1) Xp m -——— where H = Field due to solenoidal for discharge, o a •=• Radius of tube. From this equation we infer that the f ie ld H c required to produce a dis-charge is infinite when X(inversely proportional to pressure in tube) is either zero or infinite. Thus there is a cr i t ical pressure,for certain excitation^to make discharge run smoothly. The next condition for such velocity electron is that i t should retain this energy t i l l the next collision occurs and we,finally get in the damped oscillation case -(H ) min.. « 3v ra_ ( 2 ) o • s2 - •ae • Thus in highly damped case only a few vibrations are effective. If H = HQ Sin pt . E.M.F. in circuit = J V (.H <£) = TTO: C O S pt . (E.M.F.) max. =-VT<X R^ p (3) Thus for damped case from (2) and (3). (E.M.F.) . for passage of discharge iss mm. ft. (h) If V 0 = Pot to which condensers charged. C = Capacity of condensers. I = Current in Solenoidal. I = PCVQ sin pt. (g) Magnetic force inside Solenoidal - U*Np C V For damped case -V = 3 vm (6) 0 NlT" ' U a^eNpc This is not a rigorous mathematical relation. Firstly we have neglected the electrostatic contribution and secondly we have not taken into account the shielding effect of the magnetic force due to currents in the metallic vapours in opporite direction to that of solenoid. Thooo" ourronto in gag jsan-qjtt.n thousands of .'ampopas. To first^approximation i f we consider that these effects only affect the magnitude of the nature of discharge then (6) can be changed from equality to. proportionality relation. where L is inductance of Solenoid. (7) X (8) Where E represents the degree of excitation and k is factor accounting for electrostatic and shielding effects. This result gives us a qualitative conditions under which suitable discharge can be run. It is quite obvious of this that some of the factors on which E depends effect one another and thus a sort of compromise has to be made. Though the length of the tube has no appreciable effect on excit-55-ation, the greater discharge depth of emission enables higher state members to be observed. Experimental Arrangement Pure Tellurium was obtained from Canada Copper Refineries Limited (over 99*99% pure) in the form of pellets. The discharge tube was made of translucent quartz and measured 2hin long and 1^ " in diameter. Since the plasma inside the tube, when the discharge is running, is quite conduct-ing the tube was wrapped with thin sheets of mica to improve insulation. It was then screwed into an equally spaced ( ~ 0.3 cm. spacing),,.eight turns of thick copper wire number 6 gauge (0. l62 ! r diameter). The electrical circuit, shown in Figure II (b), consists of 6 mica solar condensers each of 0.0025 uF capacity rated 25 kv, 22 amps, at 3 megacycles per second frequency, forming the condenser bank. They were connected in three pairs on either side of the earth.. The central ends were earthed (point fixed on the center-tapped transformer), this provided a total capacity of 0.0038 nF and thus making the circuit resonate (for the L of the solenoid 2.5 jaH) at about 3 mc/second. The output of the X-ray transformer 50 kv, 5 k. watt was directly given to the condenser bank, making sure that the electrical leads were at least 6" away from any ground point. The output from the condenser bank was connected in parallel with the solenoid through a variable external spark gap. The input supply was taken through heavy wires from 50 amp., 115 volt mains. A 50 amp. A.C. am-meter along with a variable series resistance was placed in. the primary c i r -cuit of the transformer. The variable resistance controlled the output volt-age. In some cases the \ To follow page j £ . • r-i •ri o O X! •P ..co 03 a 03 ,0 • 03 03 u ,0 p P co •P a CD T3 rH fl P • O 0) r-l O 03 - P tsO 03 •rH 03 W . f l to P r i •P - P fl 03 O •M O SH CO o o CO •rl 03 j> -•P A £0 CD O 03 O 'rl I I I I I I I 03 - P 03 • 03 r-l W> •rl fl o ro O 03 03 03 •S & •fl E ; o co co O CM O «3j o 03 O § to 03 o to rf ro to 03 r-l 03 T3 O 5H •P O 03 CO CM 60 id a. E 1 |2 56. resistive control was replaced by a Type 1156 power state transformer rated at 115 V . , 6.1 kwa. To get required high temperature for a suitable vapour pressure, about half of the tube (including the exciting solenoid) was enclosed in a transite furnace of dimensions 10§-" x 9" x 9" which was heated by four heaters each dissipating 500 watts at 12 amps, supported inside the four long edges of the furnace. A variable resistance was put in the heater circuit to control heating current and hence vapour pressure in the tube. It is essential, to prevent breakdown, that low voltage heaters were more than 3" from the high voltage circuit. The tube was connected through a liquid nitrogen trap to a cenco hyvac for :epump which continued pumping a l l the time. A strong pinch clamp on thick connecting rubber tubing controlled^vapour pressure in the tube. Description of Operation In the region 2000 A 0 to 10,000 A 0 the tube ends were sealed with clear fused quartz windows, while in the region between 300 A 0 - 2000 A 0 brass taper was fixed on one end of the tube with removable LiF window. About 10 gms. of Te pellets were put into the tube and by rocking motion from the two ends of the tube they were moved to rest under the exciting so i l . The operating temperature was estimated by seni-empirical Clausius-Claperon relation. log p s: - AT" 1 +• B 115 V 50 amp. T' {— i i _ — i i V j J i L J 1 L i 2 i i E_ To Discharge Coil ! T = i _. IT T -X-ray transformer. Output 50 kv, 5 kwt. C -jCondenser bank. 6 mica solar condensers .0025 >uF. \ 25 kv, 22 amp. at 3 mc/sec. Total capacity 0.003b uF. R - Variable resistance. A - 50 amps. A . C ammeter. E - Adjustable external spark gap. Circuit Diagran -Electrodeless Discharge Source Fig. 2(b). t-3 O H> o t-1 r-> O s; Xi era CD vn ON 57. Where A and B are constants and p is the vapour pressure in ram. of Hg. Using p at its melting and boiling points for Tellurium, we have -A = 5753.7° K and B = l.hll For operating pressure in the discharge tube at 50 n, the operating temper-ature comes out to be 382° C, which obviously can be easily controlled by our heater circuit . To start with,the tube was pumped for about 5 minutes to evacuate the air in the tube and then the heater current was turned on. The tube got the requisite vapour pressure soon and then main ".• • was put on to start the discharge. For few moments, the hydrogen leaked into the tube through fused quartz windows, ' . . ... giving a red discharge. These radiations were pre-vented from going to the spectrograph by putting a card-board in front of s l i t (above 2000 A u) and closing Aslit valve in„case of^ vacuum spectrograph. When the tube was properly conditioned and the red hydrogen discharge dis-appeared the light was allowed to enter the spectrograph. The colour of the discharge went from pinkish colour to yellow and then enormously bright shinning white as the excitation conditions became more and more favourable for higher and higher ionization. In its best oper-ation i t was observed that Te IV lines dominated the spectrum while Te V was well developed. One must always comprise between higher excitation and higher intensity. At low pressures, the vapour density of Te in discharge was low and consequently the intensity was weak but the excitation was high. At the higher pressure, the intensity was very strong but excitation f e l l with Te III and Te IV lines coming with same intensity. When the pressure was s t i l l higher, the discharge became of ring type confined in shinning annular ring form. 58. Whenever this was observed, the pinch clamp was openeid a bit and the excess vapours allowed to be evacuated. It requires constant observation by the hand spectrograph (Canadian Arsenal No. 109) and adjustment of operating con-ditions, especially for long exposures on 21' grating spectrograph, to keep same excitation conditions throughout the exposure. The colour of the dis-charge also helped to evaluate excitation. Sometimes simultaneously pictures were taken on small constant deviation spectrograph at certain intervals to check from known high excitation lines the excitation variation in the source. and Hp were easy to identify. There is a group of strong Te III lines violet to and Te II and Te III lines near Hp The intensities of Ho< and Hp f e l l rapidly as the excitation of source went higher. After running the discharge for about 15 minutes depending upon the conditions of running, i t was found that the Tellurium diffused out of the furnace into the cooler part of the tube, causing windows to be coated with a thin film of the metal and obstructing the path of light. Since the length of the tube outside the furnace was much longer on the side of the s l i t than on the side away from the s l i t , the window towards the s l i t (fortunately) did not become coated soon. Thus discharge could be easily run for about 20 min-utes. The switch in the transformer primary was then turned off and windows were cleaned for about 2-3 minutes with hot gas flame. In case of prism spectrograph exposures the windows were cleaned after taking one complete ex-posure in the region. If there is a leak in the tube, allowing the air to come in contact with metallic vapours, or the excitation conditions are very low the molecular bands are observed which make the task troublesome. In some exposures on 21' 59. grating spectrograph'these bands limited the excitation to Te III. In vacuum spectrograph, the spectrograph was evacuated to 5 x 10"*^  mm. of Hg. The external spark gap was adjusted at 2.5 cm. and current in the transformer primary was set at 35 amps, for medium excitation conditions and It5 amps, for very high excitation case. First two sets were taken with LiF window attached to brass taper. This enables one to photograph to 1050 A 0 . The latter sets of plates were taken without any LiF and thus the spectrum photographed to 3li0 A 0 . The small LiF plate fixed on the upper part of the 3-metre spectrograph s l i t did not allow transmission below 1050 A 0 and thus higher order of strong Te lines below 1050 A 0 could easily be decided. On prism spectrographs and vacuum spectrographs high and medium excit-ation exposures were taken on the same plate by racking the plate up in second case. A fan was used across the external spark gap to avoid arcing across the electrodes and help raise the excitation. But this excitation control was quite tedious. On some of our medium excitation plates Te V lines were fairly strong, and in some high excitation sets Te III lines appeared with reasonable intensity with some of Te VII classified lines. Excitation Data Due to the extensive use of this source in a l l the earlier investigat-ions in this laboratory, the maximum excitation in the present set-up has been estimated between 200-230 electron volts and thus capable of exciting Te V lines nicely and Te VI lines with good intensity, a fact testified by our observations. Different sets of plates taken under different excitation conditions 3 H . M > CM M rH (-IM > M M M M M M M M M M > > M O M M M M M M M Q C) M M M M M ON CM co r— H SN Fig. I E l e c t r o d e l e s s discharge spectrograms G3-6308 and G 3 - 6 3 1 1 with High and Medium (a, b -6308) and High and Medium ( c , d 6311 ) .&** i *** i ° , n * 60. on the 21' -grating spectrograph helped to sort cat the lines according to their proper ionization. Blocks' excitation data was both helpful and instructive. Except for a few lines xie agreed fair ly well with his ionic parentage assignments. In prism spectrograph both medium and high excitation A exposures were taken on the same plate. For medium excitation the pressure was allowed to develop, the external spark gap was reduced in length to 1.5 cm. and out-put reduced by the reduction of primary current. The character-istics of the discharge in two cases were different as seen from its colour. Our excitation^was supplemented by^Sister B. Handrup ( > © ) for Te II and our excitation data from spark in Helium spectrograms. Below 2200 A 0 , no earlier excitation assignments existed except for Te II lines and classified higher excitation lines. The variation of the intensities of lines with the varying excitation conditions helped to decide the ionic parentage of^majority of lines. Even though almost a l l the classified Te VII lines appeared with good intensity on our plates we feel our source as presently set up is not strong enough to develop Te VII completely and some of lines according to our excitation data, well could be of lower excitation. Impurity Lines Hydrogen lines appear with moderate intensity in a l l our low excit-ation plates which may come from vacuum greaserdissociated water vapours or from hydrocarbon impurities as well as from hydrogen diffusion through heated quartz. N, 0 and C were found as impurities due to hydrocarbons, vacuum grease and air leaks. It is a tedious chore to weed out these impur-i ty lines, but as light ions they display simple well known spectra which are useful as standardsright to the end of our range and thus enabled us to get good wavelength data. No Si lines were, however, observed. 21 F t . G r a t i n g E l e c t r o d e l e s s Discharge P l a t e - P o s i t i o n s (on 12 f t . Long P l a t e Holder) Plate Not Set V ; Excit. 9ft0-10730 1 10730-11900 2 11900-130U0 3 130J40-1U150 l l l l s o - \ 1U230-li;230 151+00 15U00-I6I4OO 6 I6ii00-17ii00 7 17100-18300 8 F i r s t Low Q-01 * Q-02 HP3-0I HP3-ot j HP3-05' HP3-06 HP3-07 HP3-08 Second Medium Q-09 Q-10 HP3-11 HP3-12 HP3-13 HP3-1U HP3-15 HP3-16 Third High •a-0-17 •x-Q-18 HP3-19 HP3-20 ji N-21^ j N — N-23** N-?)|*a HP3-25 HP3-26 Fourth High HP3-a HP3-b Q-27** Q-28** ! ^ ! HP3-c HP3-d HP3-e HP3-f F i f t h High HP3-29 HP3-30 0-31* ! Q-32* ! 4j ; N- g 3 ' N-h N-i N-j HP3-k HP3-1 Sixth Very High Q-33** HP3-3I Q-35** 0-36** i N-37* N-38* N-39* N-hO* HP3-i4i HP3-U2 Q - I l f o r d U l t r a v i o l e t s e n s i t i v e Q-2 p l a t e 2" x 18". HP3 - I l f o r d H y p ersensitive Panchronatic backed 2" x 18". N - Eastman Kodak Hi-plates 2" x 10". * - P l a t e measured i n f u l l . ** - P l a t e measured i n p a r t . a, b, 1 - Neit h e r measured i n f u l l hor p a r t but compared t o get any new in f o r m a t i o n i f p o s s i b l e . 6 2 . Reduction of the Spectrograms The methods of the reduction of spectrograms for the prism and the grating cases used in this laboratory were discussed in detail by George (8 - l l b ) . The following description discusses some of them in details (those not listed by George) and others in brief according to the spectrograph used, (a) Prism Spectrograph The prism spectrograms were reduced using the well known Hartmann dispersion formula -"X - \ + d 0-d A 1 0 " plate was usually divided into three to four equal regions with a good many iron lines in between. These iron lines, measured in between, helped to draw a correction curve. At times when sufficient iron and copper stand-ards were not available, the lines measured on the 21'-grating spectrograph served as standards. The prism measurements serve mainly to determine the order of the lines on the 21'-grating and to pick up those fainter lines which f a i l to appear on the big grating. However, the wave-length accuracy of fainter lines is about AX = . 0 0 2 mm. x &(A°/mm.). The "plate factor" (reciprocal dispersion) x£ , according to Canchy's two constant dispersion formula No A 4- B/^x , varies as Xf. This means the wave number accuracy d^is proport-ional t o X , being about O.hk at 2 0 0 0 A° and about 2 k at 1 0 , 0 0 0 A 0 , (b) 3-metre Normal Incidence Vacuum Grating In reducing spectrograms from 3-metre vacuum spectrograph the method of Boyce and Corapton (Ii9) has been employed. 63. For normal incidence spectrographs e — o Point Dispersion* ( 8~o ) *4 " Where b is grating element and /* is the radius of curvature of grating. At any angle B , dispersion falls to 9 ~jr~ 6 Change in dispersion b / , _ Cos. 9) > ' 1 If we calculate our wavelengths according to point dispersion then in a distance ds a/tie, along the plate, A gets in error by A X » in terms of 8 , for real 0 fi( A) Expanding Since Q a l l along the range of spectrograph does not change appreciably from zero (in our case 0^ ~ 7° or 0.12 rad.) higher powers of 9 can be neglected. AX - b $3 (1) 3! Thus error introduced is +ve when Q t ve, -ve when 9 is -ve. 0 is -ve when on the same side of the normal ( X>) as is the reflected image R.I. Fig. ( ) Thus i f we calculate A u s i n g ^ 0 , a l l X 's greater than X 0 wil l have values higher than true values while those lower than "X„ wi l l be smaller than true values. It is easy to see from (i) that & X is symmetrical about X„ * in fact the reciprocal dispersion. 6b. Now n X = b(Sin i - Sin ©)• (2) X = \a _ b Sin (|) The approximate X^, calculated using A> wil l depart from true valuelby an amount proportional to neglected difference between value of angle and its s i n e - Acv - \ - = X c - 4,-s l t . = X ^ + 4>CU) = 1 ^ A } . — ( 3 ) The values of <P are calculated for each thousandth of a radian of original angle 0 and interpolations made according to adjusted form. In.our spectrograph, the light reflected from the glass plate fixed on second tube (similar to s l i t but on the other side of the normal) also produced faint lines on the top of our spectrogram. If \ ' is the wave-length of the line from glass-plate reflected light and X , is wave-length of the light correctly measured at same position from direct light. Then 1 + 1 ' = = l b w l Since b = 10/1200 A 0 X = Also ba~ 2.1(5 A°/mm. calculated from Boyce and to-nyjoion- equation are given in Table . Then f i t A X to a "throw-back" formula of the type £ \ « [ a +b ( X - X 0 f + c )] ( X - " x J =*. (2.375 + 7.08x10-° ( X - 1389)+5.hli x 10- l L( > -1390) J ( X -138b)3 x IO" 9. Correction Table frr.II ATX +ve below 1389 A°, -ve above 1389 A° A~X. in A.U. 0 10 20 30 Uo 50 60 70 80 90 300 Std. Int. - 3.218 3.190 3.130 3.103 3.0UU 3.018 2.960 2.935 2.877 2.85k 2.796 2.7.74 2.717 2.696 2.638 2.618 2.562 2.5U3 UOO Std. Int. 2.U87 2.U69 2.U1U 2.397 2.3U2 2.325 2.271 2.255 2.201 2.186 2.13k 2.120 2.068 2.055 2.003 1.990 1.939 1.927 1.877 1.866 500 Std. Int. 1.816 1.805 1.757 1.7U7 1.699 1.689 1.6U2 1.633 1.587 1.578 1.533 1.525 1.U80 1.U72 1.U28 1.U21 1.377 1.370 1.328 1.321 600 Std. Int. 1.280 1.27U 1.233 1.227 1.187 1.182 1.1U2 1.137 1.098 1.093 1.055 1.051 l.oik 1.010 0.973 0.969 0.933 0.929 0.896 0.893 700 Std. Int. 0.860 0.857 0.82k 0.821 0.789 0.786 0.755 0.753 0.722 0.720 0.690 0.688 0.659 0.657 0.629 0.627 0.600 0.598 0.572 0.570 800 Std. Int. 0.5U5 0.5UU 0.518 0.517 O.U93 0.U92 0.U68 O.U67 o.kkk 0.UU3 O.U22 0.L21 o.koo 0.399 0.379 0.378 0.358 0.357 0.338 0.337 900 1000 0.319 0.166 0.300 0.153 0.283 0.1U2 0.266 0.131 0.250 0.121 0.235 0.111 0.220 0.102 0.205 0.09U 0.192 0.086 0.178 0.078 1100 1200 0.071 0.022 0.06U 0.019 0.058 0.016 0.052 o.oiu 0.0U7 0.012 0.0U2 0.010 0.037 0.008 0.033 0.007 0.029 0.005 0.025 0.00k A 1300 0.003 0.003 0.002 0.002 0.001 0.001 0 0 0 0 * The table of AX Correction is symmetrical about the normal 1389 A and thus can easily be extended from 1389 A° to 2k50 A 0 . Std. - for standard lines. Int. - for XvyV«.^ erto>t<wL X' 3 Table IX 0.1x00, table in inverse form showing wavelength range in which the particular correction is to be applied. 0 0>ooi • 0 .003 0 00*1 0Q0S 0066 0 007 0-008 0 00 f 00 fo .39 81x2.98 81x2.53 81x1.95 81x1.1x5 8L0.99 81x0.1x5 81x0. OX 839.56 839.12 838.68 838.21* .38 81*7.1*5 1x7.01 1x6.56 1x6.11 1x5.66 1*5.21 hi*: 76 1*1*.32 1x3.88 1*3.1*3 1*2.98 .37 852.18 51.69 51.19 50.70 50:22 1*9.71* 1*9.28 1*8.82 1x8.1x0 1*7.99 1*7.1*5 .36 857.08 56.59 56.10 55.61 55.12 51*:63 51*.0ix 53.65 53.05 52.66 52.18 .35 862.02 61.52 61.03 60.53 6o:oL 59.51* 59.05 58.55 58.06 57.57 57.08 .31+ 867.02 66.51 66.00 65.50 65.01 61*. 51 6U.02 63.52 63.03 62.52 62.02 .33 872.17 71.6L 71.11 70.58 70.06 69.51* 69.03 68.51 68.01 67.52 67.02 .32 877.55 77.01 76.1*6 75.92 75:38 7lx.81x 7U.31 73.77 73.23 72.70 72.12 .31 882.91* 82.U9 81.93 81.38 80:83 80.28 79.73 79.18 78.6L 78.08 77.51* .30 888.31* 87.78 81x.22 86.76 86.29 85.73 83.17 8U.61 8U.O6 83.50 82.91* .29 .28 .27 .26 .25 .2h .23 .22 .21 .20 89U.02 899.67 905.61 911.69 917.80 92!ul5 930.70 937.37 9L14.31 951.1*6 93.1x3 99.08 905.01 11.08 17.17 23.51 3o:oix 36.69 1x3.60 50.7lx 92.86 98.51 90lx.l;l 10.1x7 16.51* 22.87 29.37 36.12 1x2.90 50.01 92.30 -97:9U 903.81 09.86 15.92 22.23 28.71 35.35 1x2.10 1x9.29 91.73 97.37 903.22 09.25 15.29 21.60 28:o5 314.68 1x1.1x0 1*8.57 91.16 '96.80 902.6ix 08.6U l i t . 67 20.96 27.1*0 31*. 01 1*0.71 1*7.85 90.60 96.23 902.03 08:03 llx.05 20.33 26.71* 33.31* 1x0.01 1*7.13 90.0k 95.66 901,kk 07.1*2 13.1x1* 19.69 26.09 32.68 39.U2 1x6.1x2 89.1*7 95.10 900.85 06.81 12.82 19.06 25.1*1* 32.02 38.71* 1*5.72 88.91 91*. 57 900.26 03.21 12.21 18.1*3 21*. 30 31.36 38.06 1*5.01 88.31* 91*. 00 899.67 905.61 11.69 17.80 21*. 15 30.70 37.37 1*1*. 31 o. O N 0 • oo-l 0.062* 0 093 0*994 9-OffS 9.00 6 o-007 0.092 •6-0*9 o.O/O .19 958.89 958.13 957.38 956.63 955.88 955.13 95k.kO 953.66 952.93 952.19 951.k6 .iav. 966.57 65.78 64.99 6k. 21 63.44 62.67 61.90 61.13 60.37 59.61 58.59 .17' .16 97U.U7 73.66 72.85 72.05 71.25 70.U5 69.65 68:85 68.05 67.36 66.57 982.75 81190 81.05 80.22 79.39 78.56 77.73 76.90 76.08 75.23 7k. k7 .15 991.U3 90.55 89.69 88:87 88:01 87.15 86.29 85.U3 8k. 57 83.61 82.75 .LU iooo;U7 999.55 98.62 97.71 96.79 95.87 9k:96 9k.09 93.19 92.30 91.k3 .13 1009.87 1008.92 1007.95 1006:98 1006.03 1005.08 100k. li; 1003.22 1002.30 1001.33 1000.k7 .12 1019.87 18.86 17.86 16.87 15.89 m:88 13.88 12.88 11.89 10.89 09.89 .11 1030.57 29.29 28.19 27.11 26.06 25.01 23.87 22.9k 21.92 20.90 19.83 .10 10L1.50 i;0.35 39.29 j)0.«JO 36.96. 35.85 34.75 33.65 32.5k 31. U5 30.21 .09 1053.U5 52.22 51.12 U9.81 48.60 47.40 46.20 k5.oi k3.83 h-?:.66 kl.50 .08 1066.53 65.19 63.86 62.54 61.22 59.89 58.56 57:26 55.98 5k. 71 53.U5 .07 1080.U5 78.98 77.53 76.10 7k. 68 73.28 71.89 70.61 69.2k 67.88 66.53 .06 1095.90 ' 9k. 27 92.67 9i:09 89:53 871Q8 86:ii5 8k. 9k 83:kk 81.9k 80. k5 .05 1113.12 1111.30 1109.50 1107.73 1105.98 1104.26 1102.56 1100.88 99.22 97.22 95.90 .oh 1132.79 30.69 28.63 26.60 2U. 60 22.62 20.67 18.75 1116.85 111k.97 1113.12 .03 1156.02 53.U8 51.02 48.58 46:20 43.86 1*1.53 39.33 37.11 3k. 93 32.79 .02 1185.95 R 2 ^ < ^.26 75.96 72.88 69.90 67.02 6k. 16 61.38 58.66 56-02 .01 1227.5 1222.U 1217.5 1212.9 1208.6 1204.U5 1200.55 1196.80 1192.90 1189.50 1185.95 0.00 lli63 - 1315 1295.0 1281.0 1272.2 1260.2 1252.2 12k5.1 1239.1 1233.1 1227.5 67. These have been calculated on the I.B.M. 1620, and functional relation-ship inverted so that a t every spectral region we know A X w i t h + 0.0005 A 0 . The central section of this relationship for |AXl^0.5 A 0 is given in Table IX. In actual practice the practical dispersion is calculated betx^ een two standard lines and after adding their respective corrections AX(and A X _ „ This practical dispersion takes into account any distortions of the plate in the plate holder. At wavelengths where AX changes rapidly, separate A X corrections have to be applied for standard lines and for interpolated lines as given in Table VIII. These practical dispersions in general were very close to the theoretical value. A final correction curve is drawn from the other standard lines in between the original standards. The accuracy of X ' s between 900 A° and 1900 A° was better than 0.005 A° while on either side of this region i t was ± 0.01 A 0 * The lower accuracy was bettered by many of lines appearing in higher orders and those above 2000 A 0 appearing on 21' grating spectrograms. (c) 21 f t . Grating Spectrograph (Eagle-Paschen Mounting) The range of our 21 f t . grating spectrograph in the present set-up is from nX9500 A° - I8,,k00 A 0 with a gap of 7 cm. for the s l i t in the middle. The plate holder takes eight plates of 18" length, four on each side of the s l i t . Accordingly a l l wavelengths between 2000 A 0 and 8000 A 0 appear in more than one order. But due to the slit-gap we losfc the nXregion,, lk,l50 A° -H i , 230 A 0 . The present grating setting may be summarized as follows? 68. Angle of incidence i = 25° Grating Translation position = 60.17 mm. Divided head turning from ) ) - 280 divisions , where 1 div= large to small readings ) Grating Element b = 16,93k A 0 (l$000 lines/inch) Radius of curvature R = 6L22.lL mm. Sl i t width = X(f ^  = 6 u Using the grating, equation n"X. = b (Sin i+ Sin 0) Where 9 is the angle of diffraction, we get inverse dispersion in A°/mm. from the relation k _ d (n>) _ b cos 0 ^ ~ ds R = 2.63687 J 1 - (2L* - sin i f Ao/mm. ^ b The values of j& have been calculated a l l through the range of the spect-rograph and have been tabulated in Table % \>- 69. The experimental dis-persion values were calculated in general from Fe standards on our plates. The theoretical and experimental values were quite close to the theoretic-ally calculated ones. The plate factor varied rapidly as we proceeded to high n X- end of plates. Thus the range over which linear experimental was applied was contracted. The experimental dispersions were calculated between two standard lines whose nX were always less than 60 A 0 apart. The iron lines measured in between these small regions gave correction values and helped to check and increase the accuracy of our wavelengthfl>7fl) Table X 21' Grating Dispersion Table in A°/mm. 000 100 200 300 IiOO 9 10 2.5990 2.5963 2.5935 2.5906 2.5876 11 2.5675 2.5638 2.5600 2.5562 2.5521 12 2.5260 2.5213 2.5166 2.5117 2.5065 13 2.1*71*2 2.L685 2.1*625 2.1*561* 2.1*501* IU 2.U110 2.k0k0 2.3969 2.3897 2.382k 15 2.3358 2.3277 2.3193 2.3108 2.3022 16 2.2U7U 2.2378 2.2280 2.2181 2.2080 17 2.1kk0 2.1328 2.1211* 2.1099 2.0981 18 2.0236 2.011 1.998 1.981* 1.970 5oo 2.6111 2.53U5 2.5k8l 2.5013 2.kkk2 2.3750 2.2935 2.1978 2.0862 600 2.6089 2.5813 2.5k">9 2.k96l 2.k376 2.367k 2.28k5 2.187k 2.07kO 700 2.6066 2..5780 2.5395 2.k907 2.k311 2.3597 2.2755 2.1768 2.0617 800 2.60kl 2.57k6 2.5351 2.k855 2.k2k5 2.3518 2.2662 2.1661 2.0k91 900 2.6016 2.5711 2.5306 2.k800 2.U78 2.3k39 2.2569 2.1552 2.0365 70 determinations. In general from \ 2200 - $000 (? Accuracy better thani0.005 A 0 . Above this accuracy was of the order of ±0.01 A 0 . Tomkins and Fred (Hh ) have suggested that this sort of linear interpolation and correction curves may not be highly accurate. By their methodjthe accuracy of the measurements can be increased. We have not te d«*fce. made use of their computation programmesAin our measurements. The sorting out of the orders of the line in these grating spectro-grams is a tedious process. While most strong lines had their ghosts to identify their order, the other lines were identified from prism plates. In many cases the appearance of the same line in different orders helped to identify i t . The type of the plate used also limited the possible number of the orders. For example Q-plates could not photograph higher than $200 A° while HP3 though went to 6600 A 0 did not go below 2300 A°. The comparison of such plates and prism plates allowed the orders to be sorted. It is almost too much to hope that our X - l ists are without error but the most probable errors will be in excitation assignments. There may be some impurity lines which could not have been weeded out. We may have rejected Tellurium lines coincident with impurity lines although the impurities HCN0 (in decreasing intensity) were not strong and we may reject some lines measured on 21 ft. grating plates through inability to assign an unambiguous order. 2-Meter Vacuum Spectrograph At grazing incidence the reflectivity of the grating is very high 71. for lower wavelengths as compared to higher wavelengths. However, the reduction of the spectrograms from grazing incidence spectrographs is comparatively much more.laborious and pains taking. -The theory for such reductions has been discussed by Dr. George ( u-b ) a n c i he has tabulated the theoretical dispersion at every 10 A 0 increase. He has discussed in detail various methods of the reduction of these spectrograms prevalent in this laboratory. Since dispersion falls rapidly at very low wavelengths, the necessity of good standard lines becomes more important. Thus accuracy of measurements with this spectrograph was lower than with 3-metre normal incidence one. However, below $00 A° s this is the only spectrograph which gives very high intensity. Standard Lines Primary and Secondary iron Standards ( vJ" / ) were used between 2600 A° and 9000 A°, while copper ) standards used between 2600 A° and 1&50 A 0 . The problem of getting standards in vacuum ultraviolet and extreme vacuum ultraviolet (X.U.V.) is very diff icult . In our investi-gation the Carbon, Nitrogen, Oxygen and Hydrogen lines ('0- c) occurring as impurities provided good standards a l l through our spectra range. Some of the strong lines Te V 36I4. A 0 and 3?8 A° appeared in different orders and served as standards in the region. CHAPTER III Results and Analysis 72. Results and Analysis The majority of the lines appeared on several plates and, in the case of the grating, the stronger lines appeared in several orders. Whenever a line was measured on different plates, an average wavelength was calculated by giving proper weight to each measurement. The accuracies on different spectrographs have been discussed in Chapter II. The earlier measurements of the Blochs and Rao were not very accurate. We could not find any consistency in the differences between our measurements and their measurement. However, we were closer to Bloch1 s values than Rao's. Rao's values were in general 0.12 A 0 lower than our values in the region from 3000 A 0 to 7200 A 0 . Our own measure-ments were confirmed by the fact that they agreed with the Te II line measurements at Professor Mack's laboratory by Pick, Ross and B. Handrup ( / * ). The region from 2200 A° to 1300 A° had not been photographed since La.crouta! s time (1928). He measured only 120 lines in this region. Rao and Gibbs and Vieweg apparently used his values. Lacrout's measure-ments, were not of very high precision. In many cases he was out by 0.2 A°-0.3 A 0 . It is quite interesting to note that the four classified lines in Te IV and Te V in this region, had their wavelengths measured correctly within "T 0.02 A 0 . Our line l i s t in this region contains more than IkOO lines. The analysis was started with a l i s t of 6000 lines out of which about 5600 appeared on our plates and nearly 3500 were not known earlier. Almost a l l lines has their excitations established by observation of 73-pole-effect in the helium spark. Table XT gives this l i s t with a l l the classified lines in Te III, IV, V and VI. TABLE XI (a) 7li. -CATALOGUE AND CLASSIFICATION OF TELLURIUM LINES ABOVE 2000 A 0 Different notations used in the intensity column are as followss-B - Intensity due to Bloch ( -^^ >), H - Intensity due to Sister B. Handrup ( '8 ). L - Intensity due to Lacroute ( <*i"). J l - Author's intensity on Grating Spectrograph (21') with Electrodeless discharge source. J2 - Author's intensity on Prism spectrograph (Hilger Eli78) with Electrodeless discharge source. J3 - Author's intensity with Spark in Helium source. R - Intensity due to Rao and Krishnamurthy ( 2 0 ^ ) . Intensity in Column B followed by a small letter stands for intens-ities given by Ruedy ( 3 & ), Bartelt ( 3 ) etc. A l l intensities are on visual scale of -0 - 1000 Electrodeless discharge source, on 21' grating. 0 - $00 Electrodeless discharge source, on Prism. 0 - 1000 Electrodeless discharge source, Vacuum Grating. 0 - 300 Spark in Helium, Prism. As mentioned earlier (page l9 ) , the intensity estimates are accur-ate only within restricted wavelength regions and thus relative intensit-ies of two lines in different spectral regions have l i t t l e significance. Also -d stands for diffuse line, c complex unresolved lines. S double line. In excitation column, I, II, III, IV, V, VI and VII stand for the 75.. assignment of the line to arc, f irst spark, second spark, third spark, fourth spark, fifth spark, and sixth spark spectra. These assignments followed by C mean the line has been classified by earlier authors. Lines with intensity between 0-5 were too weak to be measured under the comparator and in general were picked by eyepiece (scale accuracy 1/25 m.m.), thus their accuracy is one order less than claimed for stronger lines. VX refers to the configurations -5s- Sp 5$'' and ps^P-"?^ R B H J l J2 J3 ^ a i r l . A . °K vac. Excit. Class. 8r 10 90U2.2 11056.2 I 30r 20 03.7 11103.h I 10 8997.3 11113.8 6 8 20 8898.00 11235.36 II c 1 96.L2 11237.39 II I5r 30 53.00 11292.47 I I5r 30 30.38 11321.ho I 2 25.25 11328.01 II 2 10 20.30 1133U.3U II 1 19.67 11335.18 II U 8 30 09.30 11348.52 II 8r 30 8771.16 397.87 I 1 61.32 II4IO.67 II 50r 30 80 58.09 11414.49 I h 47.57 11428.60 II 2 30 hli.25 11432.95 II 10 70 30 33.83 11446.59 II h 30 ho 15.95 11470.07 II h 10.23 111+77.60 III 20r 25 60 01.13 11489.61 I h 20 100 8688.10 11506.83 II c 25 79.95 11517.65 III 15 150 20 72.53 11527.50 II 0 70.70 11529.93 II 1 69.81 11531.11 II 0 66.1*3 11535.61 II 0 5l.81i 11555.06 II 8 U5.90 11563.01 III 5 80 38.70 11572.64 II 0 34.46 11578.32 II 76. TABLE XI (a) (continued) R B H J, J 3 ^- air I.A. Co K vac. Excit. Class. 15 28. a i 11586.aa 6 26.75 11588.67 II 8 60 21.68 Il595.a8 II C 0 12.00 11608.52 II C 10 100 ao oa.63 11618.a6 II 5 8593.8a 11633.06 III 0 78.89 11653.32 II 12 100 30 75.78 11657.55 II 30 67.86 11668.33 III X2 3 25 a2.aa 11702.a9 II 10 15 30 35.68 11712.32 II 15 26.3a 11725.ia III a 30 2i.ao 11731.9a I 0 15 15.06 117ao.67 II a 12. a-9 ii7aa.22 II C 0 08.99 117a9.05 II C a 20 00.33 11761.03 I 0 8a92.10 11772.a2 II c 5 30 20 77.13 11793.20 II a 10 55.53 11823.3a II c i U9.97 11831.11 II c 30 200 80 a6.89 Il835.a3 II 6 50 20 aa.85 11838.29 II a 39.93 Il8a5.18 II 0 38.96 U8a6.55 II c 3 15 31.00 11857.73 II c 1 27.36 11862.85 II c a 25 2a. 93 11866.28 II c a 30 20 08.60 11889.32 II c 0 5 10 839a.65 11909.07 II 10 50 30 72.2a 119ao.96 II c 2 66.89 119a8.59 II 3 6a. 3a 11952.22 II 6 ao 30 62.60 1195a.72 II a 15 20 39.90 11987.26 II 6 25 3a.a2 11995.ia II 2 15 20 16.26 12021.3a II c 3 8 10 02.10 120ai.8a II 0 8298.67 120a6.81 II u$s5 P5d 'tf TABLE JO. (a) (continued) 77. H J, J 3 ^ a i r l . A . S*K vac. Excit, li 10 20 91.08 12057.81* II 0 87.83 12062.56 II 15 200 liO 73.86 12082.93 II C 5 66.11 12091*. 25 III 0 61.27 12101.35 II 20 52.1*3 12111*. 31 0 15 5o U2.58 12128.78 II 1 37.60 12136.12 II 1 33.22 1211*2.58 II 0 25 30.12 1211*7.16 II 25 30 22.88 12157.85 III liO 15 11.53 12177.61 III 0 03.59 12186.1*1* II C 35 8195.81 12198.01 III 6 90.9k 12205.26 II c 20 25 300 100 86.25 12212.21* II c 0 82.28 12218.18 II 0 81.22 12219.76 II 35 78.38 1222l*.00 III 0 7U.07 12230.1*5 II 0 72.U1 12232.93 II i i liO 20 55.76 12257.90 II c 8 70 30 51i.li7 12259.81* II c 0 50.1k 12266.35 II 8 5 75 35 30.1*3 12296.06 II c 10 15 100 liO 22.10 12308.71 II c li 18.1*8 123H*.19 II c 3 30 20 I5.1i7 12318.31 II 5 10.88 12325.88 II 0 20 03.96 12336.25 II 0 20 808U.87 12365.39 II 0 15 72.56 12381.61* II 0 70.92 12386.75 II c 0 66.1*7 12393.59 II 0 61*. 00 12397.38 II 2 80 liO 63.31* 12398.1*0 II 6 80 51i.8l 121*11.5U II c 1 51*. 00 121*12.78 II 1 50.03 121*18.90 II 3 1*6.21 121*21*. 80 II TABLE XI ( a) (continued) 78. R B H J2 J 3 A a i r I.A. vac. Excit. Class. 2 20 liii.5o 12L27.1* I I I 5 I 0 35.20 121*1*1.82 II 0 10 30 2U.59 121*58.26 II 0 18.37 12U67.93 II 0 17.32 121*69.57 II 0 20 15.1*0 12L72.56 II 100 03.91 121*90.1*6 III 0 7999.09 121*97.99 II 0 92.50 12508.29 II c 1 88.28 125H*. 90 5 50 82.01 12521*. 73 II i* 50 80.97 12526.36 II I* 50 80.10 12527.73 II I* 50d 60 75.62 12531*. 77 II III 0 57.21 12563.76 1 55.21 12566.92 II c 1 52.38 12571.39 " II 1 51.12 12573.39 II 10 10 75 10 50.39 12571*. 51* II c 0 1*8.1*9 12577.55 II li 1*7.79 12578.66 II 0 1*5.31* 12582.53 II 0 1*1*. 72 12583.52 II 15 30 200 60 1*3.11 12586.07 II c 6 60 20 39.51* 12591.73 II c 1 31*. 20 12600.20 II 1 33.27 12601.68 II c 0 28.23 12609.69 II li 15 25.61 12613.86 II 2 23.18 12617.72 II 15 20 150 80 21.50 12620.1*0 II c li 18.96 1262l*.l*5 II 2 25 15.73 12629.60 II 1 12.02 12635.52 II 1 09.80 12639.07 II 0 15 01.90 12651.70 II 0 00.93 12653.25 II c 0 7899.36 12655.78 II 3 liOd 96.68 12660.07 II 100 89.72 12671.23 li 20 87.13 12675.1*0 II 5p5dFJ-5s5p6p3Pl 79 TABLE XI (a) (continued) R B H air I.A. G~K vac. Excit. Class. lOr 5r 2 8 1 0 0 8 2 2 10 0 0 0 6 k 0 0 0 Ii 0 0 0 k 0 1 k k 1 0 10 25 30 35 15 60 25 8d 15 12 8 15 15 20 30 30 200 15 30 5 5 15 5 5 25d 8 1*0 10 20 30 20 8 20 30 20 30 10 20 20 30 25 20 72.50 12698.91* III 67.1*6 12707.18 II C 6l.k7 12716.77 II 1*3.88 1271*5.28 II 19.82 1278k.50 I 18.68 12786.36 II 16.65 12789.69 II C 07.1*1* 12801*. 77 II 03.78 12810.78 II 01.68 1281k.23 II C 7795.56 1282k.28 II C 80.29 128k9.k6 II 62.98 12878.10 IIl5£5p5di>5s5p6pI> 61.76 12880.13 III ' ' 2k.2k 129k2.71 II , 10.7k 12965.36 IIl5s5p6citf.-Xlkz 7699.50 1298k.28 II 96.19 12989.86 II 88.60 13002.70 II C 65.23 130k2.33 II C k8.k2 13070.99 II 35.2k 13093.56 II C 22.2k 13115.89 H I IV 7589.38 13172.68 III 85.82 13178.88 II C 76.60 1319k.91 II 3 72.63 13201.82 III5s15p6sP-5s5p6pD 69.91 13206.56 II 1 1 7556.89 13229.32 I 53.80 1323k.73 II 5l .k9 13238.77 II kl.59 13256.15 II C 32.55 13272.07 I lk .65 13303.68 II 07.2k 13316.80 II 06.22 13318.61 i l Ok.10 13322.37 II Ol.kO 13327.17 II C 80. TABLE XI (a) (continued) H J, J 3 ^•air l . A . <3*K vac. Excit. Class. 10 ?a o 7.ai 1333a.28 I l l 10 10 200 ao 81.00 13363.51 II C 0 76.72 13371.16 II 15 15 50 68.U3 13386.00 II 6 15 65.aa 13391.38 II 12 100 30 6i.ia 13399.10 II 1 53.a8 13ai2.86 II 10 80 30 a5.8o 13a26.69 II 0 30 23.89 13a66.33 II 0 25 08.80 13a93.75 II C 0 25 02.08 13^.99 Iii5s5p5cib-5i5p6pp1 5 10 73sa.a2 13538.30 ni5s5p6dVx ia 0 80.77 135a5.00 III 3 z 1 5 10 73.25 13558.81 II C 10 10 7292.76 13708.a6 III 10 15 89.26 13715.03 II 0 0 10 63.80 13763.11 II 0 5 10 a6.78 13799.23 II c 0 37.39 13813.3a II c 10 a 200 5 36.82 138ia.a3 II 1 35.85 13816.28 II 6 100 10 3i . a i 1382a.76 II 0 21.23 138aa.29 II a 20 20 ia.65 13856.86 20 10.25 13865.32 IV5^6dD-5s5p6sFi 20 7198.70 13887.58 III 0 20 91.08 13902.29 II 10 100 80.23 13923.29 III IV 5 65.02 13952.86 III 50 a9.56 13983.02 III IV 2 10 10 aa .6i 13992.71 II 100 35.3a ia010.88 III 35 20.00 iaoai.o« III IV 60 16.U5 laoaa.os III 16.30 iaoa8.38 II TABLE 3_J (a) (continued) 81 R B H j ( J 3 "Xair l . A . vac. Excit. Class. 15" 7112.76 1U055.37 I I I I V 3 1*0 20 03.1*5 11*073.78 I I I 1 ii 10 20 7097.60 11*085.1*0 I I C 90.75 11*099.00 I V 3 81*. 22 11*112.00 I I 0 10 78.30 11*123.80 I I I 5 68.00 11*11*1*. 37 I I I 8 63.50 11*153.38 I I I 20 59.00 11*162.1*0 I I I lu 51**00 11*172.1*6 I I I 1 2 12 1*9.85 11*180.80 I I C 0 1*8.71 11*183.09 1115s 5 10 150 100 39.10 11*202.1*5 I I c 10 20.01* 11*21*0.99 I I I 5s. 1* 10 100 60 16.18 11*21*8.83 I I c 0 15 00.09 11*281.59 I I I 15 699i*.88 11*292.23 I I I 0 10 89.90 11*302.1*1 I I I 10 81.30 11*320.02 11 1 77.31* 11*328.2 I I I 0 62.72 11*358.21* I I 2 li 20 20 59.12 11*365.67 I I 0 0 1*5.61 11*393.63 I I 3 30 38.95 11*1*07. U8 i l l 5s 5 100 1*0 30.93 ll*l*2l*.10 11 c 1 25 2l*.86 11*1*37.71* I I I X 0 0 15.75 110*55.76 I I 3 8 30 20 13.08 11*1*61.31* I I c 0 25 07.31* 11*1*73.35 I I 3 7 50 10 6885.16 11*519.98 I I c ii 7 80 35 78.10 11*531*. 88 I I c 2 15 70.51* 11*550.87 I I I 1 0 67.17 11*558.01 I I I 0 66.50 11*559.1*5 I I I 0 10 53.88 11*586.25 I I 0 20 1*7.79 11*599.22 I I TABLE XI (a) (continued) 82. R B H / l a i r I.A. vac. Excit. Class. 3 1 3 1 0 1 k 0 0 3 0 0 1 3 1 2 2d 1 1 3 5 1 0 3 2 1 0 00 2 o 25 20 35 0 35 25 10 10 60 20 00 25 25 10 1 0 10 15 30 30 30 10 20 k3.9k i i i . 76 38.25 37.65 32.59 28.85 6796.66 95.50 8k.07 82.5k 80.31 61.55 51.86 k8.kl k6.l6 36.32 31.56 30.k9 23.06 21.51 13.00 Ob. 60 01.k3 00.61 6690.1k 88. k9 87.36 86.16 8k.5k 76.08 72.70 70.02 61.10 59.91 58.23 57.67 Ik607.k3 Ik6l2.08 Ik6l9.58 lk620.87 lk631.69 lk639.72 lk709.0k lk711.57 lk736.35 lk739.68 lk7kk.52: Ik785.k2 lk806.65 lk81k.22 Ik8l9.l6 Ik8k0.80 LL851.29 lk853.65 lk870.07 Ik873.k9 lk892.37 lk902.13 Ik9l8.07 lk919.90 Ik9k3.2k Ik9k6.92 Ik9k9.k5 lk952.13 lk955.78 lk97k.72 lk982.31 lk988.32 15008.39 15011.07 1501k.86 15016.12 II III , 3 lll5i5p5dP-5s5p6pS II ' i l l III III III I I c I I I X9.-535P7S5P I I I I I I I I I I I I b* - X lk I I I I I I I I I I I I H I v -L iv5s$r$agt-5s7d ix I I c •* I I i n I I I I c I I I I V I I c I I I I I I I I I c I I c I I I 83. TABLE XI (a) (continued) R B H J , ^ a i r l . A . &K vac. Excit. 6 10 75 ho 661*9.73 15031*. ol* I I C 10 6 75 ho 1*8.58 15036.67 I I C 30 lili.12 1501*6.76 I I I I V 2 0 15 iiO.78 15051*. 32 I I C li 8 liO 20 37.06 15062.76 I I C 0 12 10.55 15123.15 I I 00 05.38 15131*. 98 I I I 1 03.0U l 5 l l i 0 . 3 L I I 3 li 20 20 6596.1*8 15155.1*2 I I 3 2 20 85.12 15181.56 I I 2 200 °n c i 82.96 15186.51* I I 2 250, °^ c n 78.60 15196.60 I I I li 15 20 7U.65 15205.73 I I 3 71*. 50 15206.07 I I c li 10 63.88 15230.69 I I I 1 25 1*6.50 15271.12 I I I 3 10 10 1*1.95 15281.73 I I I 6 15 i5o 37.07 15293.16 I I I 0 29.05 15311.91* I I I 1 28.35 15313.58 I I 2 61*91.81 15399.75 I I c 10 30 61*89.56 151*05.12 n i 5 s 5 ] 6 5 30 20 87.18 151*10.77 I I c 3 1 5 5 7li.l*0 151*1*1.18 I I c 1 5 69.32 151*53.30 I I 1 57.80 151*80.88 I I c 10 20 50 300 100 37.08 15530.70 I I c 10 15 100 30 23.06 1556U.59 I I c 1 30 17.02 15579.26 iv5s7, 5 5" 25 30 12.18 15591.02 I I c li 25 10 01.1*7 15617 n i 5 s 5 ] li li 25 20 6396.1*9 15629.25 I I c 12 90.11* 1561*1*. 78 I I I x 0 70.88 15692.08 i n 5 8 10 150 50 67.11* 15701.30 I I c Class. 2*" d . 81*. TABLE XI (a) (continued) • B H J , ^ a i r I.A.. ^ K vac. Excit. Class. 1 63.93 15709.22 I I \ . 1 7 200 20 h9.^ 1571*1*. 78 III5J5p5dF-5s5p6pD 3 8 1*5.51* ' 15751*. 76 I I I a 1 1* 25 5 35.55 15779.59 iii5s5p5dTi-5s5p6pP 1 5 30.06 15793.27 i n ^ I 1* liO 23.10 15798.16 iii5s5p5dP-5s15p6pD 1 2L.38 15807.1*5 I I 0 18.79 15831.1*5 I I c 0 03.00 15861.08 i n 0 02.39 15862.62 I I 3 200 6298.70 15871.91 i n 6 8 100 30 93.62 1588U.72 I I c 0 86.93 15901.61 i n 0 8U.90 15906.75 0 81.70 1591U.85 I I 2 3 15 5 73.1*0 15935.90 I I 5 150 66.2k 1595U.13 i n 3 15 10 60.U2 15968.96 I I c 3 li 15 10 59.1*2 15971.51 I I c 7 10 15 l5o 100 Ii5.1i5 16007.22 I I c 2 l 8 1*3.21* 16012.63 I I 0 39.31* 16022.92 8 10 15 200 100 30.73 160U5.06 I I c 100 21.50 16068.85 i n li 15 20 16.60 16081.51 I I c 15 11*. 78 16086.22 I I I I V 3 2 12 10 11.1*0 16091*. 97 I I 2 03.29 16116.01 I I c 6 liO 25 02.25 16118.71* I I c 1 15 6195.00 16137.60 I I I 1 87.56 16156.99 I I c li 6 30 25 83.37 16167.91* I I 2 81.91* 16171.68 I I c 3 35 80.65 16175.05 I I I 1 25 71.88 16198.03 I I I 85. TABLE XL (a) (continued) R B H J 3 ^•air l.A. v5~K vac. Excit. Glass. 2 2 67.16 16210.1*2 II C 6 8 100 1*0 66.85 16211.21* II C 2 55.16 1621*2.05 II 5 15 53.78 1621*5.69 III 1* 8 60 20 51.20 16252.50 II 6 1*9.1*8 16257.01* II 1 1*6.1*7 16265.00 II 0 1*5.10 16265.98 II 3 100 1*1*.1*0 16270.1*8 III 3 120 1*2.18 16276.36 III 2 1 5 10 1*0.25 16281.1*7 II 5 15 150 36.81 16290.60 III 0 15 32.71* 16301.1*1 III IV 0 22.51 16328.66 20 11+.87 1631*9.06 20 06.51 16371.1*1* III 0 05.78 16373.39 0 1 5 03.98 16378.22 Hl5s5p5dif5s5p6pp) 0 02.80 16381.38 i n 0 6090.35 161*11*. 86 20 85.52 161*27.91 iv 5safy-5s6ab, 3 1* 25 20 82.26 161*36.72 11 * * 0 78.25 161*1*7.56 11 1 73.35 161*60.83 11 1 8 61*. 23 161*85.57 i n 1 8 55.80 16508.52 11 1 51*. 20 16512.88 II 0 3 , 3 3 3 20 50.37 16523.33 i n 5i5p5cuf5#5p6pP0 6 10 10 150 60 1*7.1*2 16531.1*1 l i e 0 39.00 16551*.1*6 11 1 2 5 25.98 16590.21 i n 5i5p5dfr-5s5p6pb 1 22.81 16598.91* 11 ' 1 3 15 150 22.06 16601.01 IV 3 12 150 19.53 16607.99 IV 10 17.70 16613.03 IV? 06. TABLE XI (a) (continued) B H J, J 3 ^•air I.A, CJ'K vac. Excit. Class. 6 10 10 200 50 16621.98 II c 1 13.1*9 1662a.69 II 2 3 20 08.52 I6638.aa II C 2 ao 07.95 l66ao.01 III 1* 150 oa.37 i66a9.9a III 2 1 10 0 01.35 16658.31 II C 10 5V99.08 1666a.61 III 7 10 10 120 30 93.86 16679.12 II C 6 a 8 100 20 93.07 16681.32 1 1 C 3 3 6 15 10 85.63 16702.05 IH5 5^p6s^ -5sl5p6pP, 10 85.08 16703.61 III 1 77.3a 16725.23 II C 10 15 50 300 20 7a. 66 16732.73 II C 6 • 10 200 20 72.6a 16738.39 II C 1 30 6a. sa 16760.27 IV a 3 20 ao 16788.00 II C 10 ai.ao 16826.38 7 50 200 100 36.15 1681*1.28 II C 3 20 33.22 I68a9.60 III 2 8 25.15 16872.5a II C 3 20 10.70 16913.78 IIl5#p6sfc-5s*5p6pb 0 08.12 16921.16 II 0 5 Oli. 15 16932.5a III a 12 5 5899.86 I69aa.85 II C a 96.65 1695a.10 II 35 100 96.13 16955.56 III IV 3 25 91.50 16968.88 III i 75 100 89.98 16973.29 III 2 88.89 16976.a3 a 15 73.80 17020.03 Hl5s15p5dD-5s15p6pS 3 10 71.78 17025.88 II 3 10 66.15 170a2.22 II 2 59.70 17061.00 II 6 8 15 150 30 58.63 1706a.12 II C 7 10 20 200 30 51.12 17086.01 II C TABLE XI (a) (continued) 87. R B H J J J, ^-air l . A . G'K vac. Excit. Class. 2 10 20 k 8 50 0 0 3 20 5 k 2 5 i5o 30 6 10 10 100 6 8 100 liO 1 15 1 3 100 1 10 6 10 100 80 10 5 1 00 0 2 10 liO 2 10 3 0 20 30 0 5 6 liO li 7 15 200 75 li 2 10 3 2 30 10 15 75 300 90 10 2 25 2 0 7 10 150 90 0 0 10 3 35 li5.02 17103.8L li3.36 17108.70 1*2.15 17112.2h 36.83 17127.83 35.05 17133.09 28.62 17151.98 27.95 17153.95 26.52 17158.16 2li.2li 1716L.88 20.31 17176.L6 16.8U 17186.71 15.77 17189.87 05.75 17219.53 03. OL 17227.57 579L.6L 17225.25 92.27 17259.59 89.22 17268.71 88.16 17271.87 87.00 1727L.86 85.12 17280.95 77.28 1730L.39 72.25 17319.L7 70.95 17323.37 69.65 17327.27 65.25 173L0.L9 63.9k 173LL.L3 62.62 173L8.L0 55.86 17368.77 L8.70 17390.L3 L6.31 17397.66 L5.75 17399.35 L1.6L 17L11.81 39.86 17L17.20 36.30 17L28.01 32.L5 17L39.71 II c II c III IV II c II iii5s15P5d|-5s5p6pF II c z II c II c II III II II c III II III II c II iii5s5p6dP-5s"5pLfFi II c II II c II II c II c III II II c II iii5s-5p5dtf-5&5p6pD 88 TABLE XI (a) (continued) R B H J ^ • a i r I.A. G'K vac. Excit. Class. 0 16.08 17a89.67 II a 10.77 17505.93 II 6 0 15 09.00 17511.36 II 10 20 60 aoo 100 08.12 175ia.05 II C 1 20 20 00.38 17537.83 II 2 15 100 5698.60 175a3.31 II 2 35 92.9a 17560.7a II 0 91.a3 17565.ao II 1 0 86.89 17579.a2 II 1 25 86.30 17581.2a II 1 85.7a 17582.97 II C a 10 100 79.6a 17601.88 II C 2 30 77.16 17606.a7 II 2 20 76.13 17612.76 II 3 1 30 30 72.28 1762a.72 II C 3 0 10 67.90 17638.33 II 2 66.56 176a2.50 II 6 15 50 250 75 66.20 176a3.62 II C 0 60.53 17661.29 III h 10 15 100 5o 55.17 17667.80 II C h a 5o 51.93 17688.16 II C 15 200 51.75 17688.72 II h ao 30 51.60 17689.20 II C 10 20 100 300 ao a9.26 17696.52 II C 00 ao.76 17723.18 10 36.90 17735.3a 5 36.08 17737.92 0 20 32.27 177a9.91 III a 6 15 100 70 30.62 17755.11 II c 1 20 27.ao 17765.27 II 0 25 23.65 17777.11 III a 10 20 l5o 100 18.a7 17793.50 II c 0 15 ao 08.93 17823.79 II 1 0 06.17 17832.56 III 8 05.88 17833.a8 3 6 80 60 5592.90 1787a.86 II 00 91.11 17880.58 III5S5P6SP-5S5P6PP, : 3 10 80 82.73 17907.ai 2 00 20 20 ao.as 179ia.63 II 0 5 78.78 17920.09 IIC 8 15 100 250 50 76.35 17927.89 II C 39. TABLE XI (a) (continued) R B H J, J , "^air l . A . GT* K vac. Excit. Class. 3 2 iiO 20 69.30 17950.58 - I I C 0 68.68 17952.58 I I 1 67.10 17957.67 I I C 3 1 30 66. U5 17959.80 i l l xio-5s5p8s P; 2 2 25 10 65.53 17962.77 I I c 0 58.62 17985.09 30 56.23 17992.83 I I I 35 0 U2.00 18039.01 III5S5P6SP-5S5P6PP 5 6 200 37.92 18052.30 k 2 15 25 36.66 18056.Ul l l ' ° 1 20 15 32.05 10O71.U5 l i 0 25.90 13091.56 15 22.ii8 18102.79 Ili5s5p6s'pl5s5p6pl> h ii 150 20 17.55 13118.96 10 IU. 13 18130.20 0 02.05 18169.99 Iii5s5p5di5-5l5p6pi) 3 ii 15 150 5 18198.30 10 15 100 200 100 87.95 18216.69 I I c 10 8U.32 18228.75 2 1 30 80.78 182L0.52 I I 6 15 30 200 80 79.08 182L6.18 I I c 30 77.65 18250.9li I I I IV 15 75.25 18258.9U I I 1 15 5 7U.66 18260.91 I I c 0 72.16 18269.25 00 15 69.33 18278.70 i n 0 68.60 18281.13 I I 10 68.08 18282.87 i n 5 66.62 18287.76 3 15 20 75 6o 65.16 18292.6U 11 c 20 59.67 18311.02 0 57.29 18319.01 00 55.89 18323.71 7 15 75 300 80 U9.8ii I83iiii.08 I I c vn. H O O C r v o vn ro C T M r o Vo H M O C T H r o O H H O O vn r o H O vn H H vnui ro vn. v n r o r o r o r o O H O r o v n r o v n H v - 1 o r o VO O H r o H H v n vo vn O vn o o H N H O O O O H o o o o v n v o o H o v n r o v n H v n c - v o o o o o o o r o C r o v n o r o O H H o o v n r o v n r o v n H r o o O O o r o H o o O N O C ~ o o c v o o o vo r o O O o o r o O CC H O O r o O r o O vn r o c o v o v o o o C r V o C r O V o • • • • • H V o O N - J - 0 V o O O r o r o O o H r o r o v n - o H H v o • • • • • o v n H o f O ->J V o C r c o r o v o v o c - v n O C T C r o O <« • • • • v o O N C o O C r O N V o O N O H v n O N O N O N O N V O O N O N O N — J • • • • • r O pr O N v o H v n o O N v o O N vn v o - 0 C O v o v o o v*) C - v n O N r o • • • • • O N O N V O V O O v n r o o o v o H H r o r o r o o O N r o v n O N • • • • • C T - . J o V o o c r r o v n r o c o r o v o v o c r j r -CD r o V o r o v n • • • « • c r - j v n r o H c o - v i v o o w n r-1 r-1 >-•}-• >-> c c o c o c o o c c v o c c c c o o c o . — OO CC O N C r N° O N H O v o }-> t-' r-1 r-1 Y-1 cx c c c c c c c x c c c c o c - j - j C V o r o o c C r v n v o c c v o r-> y-1 y-> c o c c c o o o c c — j - j — o — o O N O N C r v o r o c c - O O v o H C r H H H H H o c c c c o c o o o O N O N O N O N O N — J r o r o r o r o v n N O c o - * ] O N V-1 h-1 }-> CD OO CC CO CD O N v n v n v n v n o O N r o r o o c r O N v o O N O N CD CC CD OO CO c-rc-c-c-- j v n v o r o r o - j O N c o O N C r y-1 y-1 h-> }-> }-• OC CC CD CC o c C r c r v o v o V o H O v o O N V n CC H v o v o v o VM v n v o H c r |vi O N v o v o — o c c O N C r v o CD r o r o C r v o v o r o c r c r - o v n O r o v o C r O N c - v o v o v n O N H r o vn o r o — j C r o — J r o O N r o O v o v o O v n — J O N c o r o - o H O N o c c o o V o r o - ~ J H H H H H H H H H H O O O H H H « ot v n CO v n •a v n o. v n _ COHO O vn vn vn I H M M H M M O O H H H H H H H H H H M H H H H H H H < H M < i v n v n . O O W WW ^ a,. v n v t J ^ p . r"-r v n - r j n , ca v ^ i * v n v n ' un v n CO D> TABLE XI (a) (continued) 91. B H J, JA J 3 ^ a i r l . A . vac. Excit. Class. 35 80.L9 18932.37 III 5s5pP-5s5p6pD 30 78.56 13939.29 III 1 30 71.19 18965.76 III IV 0 30 20 6U.L0 18990.25 II 20 59.10 19009.38 III IV u 10 150 30 56.UO 19019.IU II 3 3 U 15 250 10 U7.0U 19053.06 ni5s5p5drA5s5p6pD 2 2 8 30 10 UU.23 19063.27 II c 3 3 1 1 20 10 Lo.70 19076.11 II c 3 10 20 75 liO 38.13 19085.U6 II c 5 32.69 19105.30 15 30.38 1911U.10 III IV 10 200 10 27.U7 1912U.0U IV 0 23.82 19137.77 III 10 22.11 191UU.03 III 2 30 30 19.52 19153.53 II c 0 15-9U 19166.30 II c ii 15 08. Ul 1919U.37 1 1 » , • • > . 0 30 08.08 1919$.$9 IV 5s5p6sP;-5s7dDi 2 5 100 20 5188.58 19267.75 III IV 2 h 125 25 81.90 19292.58 ni5s l5p5diT-5s5p6pS i 125 75.93 1931U.83 III X 6 - 5 ^D8 S 3P! 0 7U.81 19319.01 3 2 20 200 100 73.05 19325.58 II c 2 35 20 71.U2 19331.67 II 2 0 10 120 30 6U.02 19359.36 II c 0 3 20 20 5U.2U 19396.08 II c 2 3 35 Uo U9.9U 19U12.31 II c )0 20 UU.08 19U3U.U2 II 25 U3.5U 19U36.U6 III iv 50 U2.17 19UU1.6U IU 5s5p7s Tf-X122 10 38.32 19U56.20 III IV 10 37.35 19U59.80 III IV CO 3U.26 19U71.58 2 15 lOOd 20 33.20 19U75.61 II c 3 0 10 100 Uo 31.02 19U83.87 II c 1 00 0 29.93 19U88.01 II * - Lines of entirely different nature 92. TABLE XI ( a) (continued) R B H J. J 3 ^-air l . A . G'K vac. Excit. 0 20 20 10 2U.0U 19510.36 I I 2 30 20 12.13 19555.89 I I C 5 100 07.8U 19572.31 IV 1 25 20 05.52 19581.20 I I C Uo 5096.56 19615.61 IV 25 93.28 19628.2U I I I IV 0 10 15 10 90.18 196U0.19 I I C 10 10 82.61 19669.U3 I 3 10 150 20 79. U3 19681.75 I I I 5 75.UO. 19697.37 0 72.16 19710.00 50 10 68.75 19723.2U I I I 2 10 5o 30 65.70 19735.11 I I c 10 63.02 19715.56 I I I ho 61.96 197U9.69 IV 2 0 15 75 Uo 60.37 19755.86 I I G 10 20 U8.U5 19802.53 I I I 10 U2.75 1982U.91 I I I 15 Ul.19 19831.OU I I I IV 3 2 20 200 100 37.9U 198L3.87 I I C 15 30.76 19872.18 I I I 2 0 20 100 50 20.39 19913.22 I I I X6 i 00 17.15 19926.07 00 09.3U 19957.13 0 07.15 19965.86 5 03.26 19981.U2 L 6 80 200 100 00.82 19991.16 I I c 10 U997.90 20002.8U I I I IV 20 9U.10 20018.06 I I I IV 25 92.88 20022.95 I I I IV 30 10 85.06 2005U.35 I I I 10 30 30 78.U3 20081.05 I I I 25 75.75 20091.86 I I I IV 100 69.23 20118.22 IV 1 5 60 30 61.88 201L8.05 I I c 5 59.95 20155.88 15 10 52.9U 2018U.U0 I I I Class. TABLE Xi (a) (continued) B H J, J 3 ^ a i r l . A . <o" K vac. Excit, 20 38.69 202U2.63 2 1 10 25 30 25.23 20297.97 II C 10 ?n.?9 20318.35 3 2 10 100 20 19,11 20323.22 II C 15 13.72 203U5.51 III 5s' 2 0 6 30 10 12.03 20352.51 II C U ii 20 100 20 10.58 20358.51 II C 6 6 30 150 30 0U.UU 20383.99 II C 3 1 5 10 01.16 20397.63 II C 25 U899.36 20L05.12 III IV 7 10 20 150 U o 9U.99 20U23.3U II C 5 6 20 120 30 93.63 20U29.01 II C 15 89.21 20UU7.U7 III 6 6 30 150 liO 85.21 20U6U.25 II C 15 33.70 20U70.58 III 5s! 50 75 79.87 20U86.6U IV "8 100 200 76.75 20U99.7U i l l 5s" 6 30 76.70 XU99.9S II .2 1 15 75.52 2050U.91 II c .75 72.U9 20517.66 IV 0 20d 69. U6 20530.U2 II 10 15 100 250 liO 66.25 205U3.96 II c li 6 30 75 65.13 205U8.69 II c 10 15 75 200 U o 6U.10 20553.OU II c 0 56.76 20582.65 10 5U.00 20595.80 III IV 25 20 U7.82 20622.09 III IV 5 50 Uli.98 2063U.21 IV li 6 25 100 30 U2.90 206U3.03 II c 1 10 10 U1.72 206U8.06 II c 0 25 U0.30 2065U.12 II c 0 25 39.32 20658.30 III 30 35.55 2067U.liO 15 33.92 20681.37 Class. 9U T A B L E XI (a) (continued) R 10 B H J 3 ^ a i r l . A . vac. Excit, 10 15 30 250 liO 31.28 20692.67 I I C 20 29.39 20700.76 10 28.U 2 2070U.92 li 6 10 120 20 27.11* 20710.U1 I I C 0 19.81 207U1.90 00 19.U8 207U3.32 I I I 0 15.01 20762.57 0 13.06 20771.02 0 10 11.35 20778.UO I I 0 10.08 20783.89 I I I 10 09. Ob 20788.21 I I I 120 05.99 20001.57 I V 10 03.15 20bl3.86 5 6 10 120 30 U796.09 20bUU.U9 I I c 1 15 9U.57 20851.10 I I li 10 92.52 20860.01 I I I 5 1 10 200 60 8U.88 20093.31 I I c 12 20 100 koo 30 83.52 20b99.25 I I I 5 1 0 75.U6 2093U.56 5 7U.65 20938.11 i n 5s li 10 100 100 30 71.56 20951.67 I I c li 3 35 20 69.77 20963.92 I I c 7 15 10 200 UO 66.06 20975.8U I I c 2 1 30 65.00 20980.50 I I 20 63.63 20986.5U 10 57.Hi 21015.16 0 0 56. UO 21022.85 I I 1 3 5 53.22 21032.U9 I I c 0 U9.85 210U7.UO I I c 0 U0.95 21086.90 li 1 .100 20 38.67 31097.05 I I 75 35.92 21109.3U T V 2 U 25 10 33.67 21119.68 I I C 5 10 200 30 31.26 21130.12 I I C Class. 95 TABLE X I (a) (continued) B H J l J2 J3 A a i r l.A. G " K vac. Excit. Class. U 10 200 20 29.88 21136.28 I I C 2 3 20 26. 9U 211U9.U3 1 1 9 3 „ 3 6 300 30" 25.8U 2115U.35 IIl5s5p6sP-5s5p6pD 0 10 18.22 21188.51 I I ' 0 17.31 21192.59 I I C 3 li 25 20 16.82 2119U.79 I I C 10 20 12.31 21215.07 I I I 5 6 10 100 30 11.1b 21220.16 I I C 5 10 Uo 250 100 06.53 212U5.63 I I c 20 03.15 21256.38 I I I I V 15 01.17 21265.33 I I I I V U 5 15 100 70 96.39 21287.01 I I c 1 8 5o 8b.U3 21323.IU I I I 8 15 30 250 60 86.92 21330.01 I I c 2 0 0 20 81.06 21356.71 I I 2 10 25 76.85 21375.93 I I I 1 76.57 21377.21 I I c OO 5 35 10 76.12 21379.26 I I 15 73.75 21390.10 3 2 5 30 20 70.12 21U06.72 I I c 5 10 35 i5o 100 65.36 21U28.65 I I c 10 10 15 6U.17 21U3U.07 I I 15 15 57.88 21U63.01 I I I 10 15 35 250 75 5U.37 21U79.19 I I c 0 25 150 U9.12 21502.U6 I V li 5 15 200 25 U7.5U 21510.7U I I c 2 2 15 10 U5.23 21521.UU I I c 0 • 10 UU.81 21528.02 I I I 1 10 75 U3.55 21529.22 iii5s25p6p\-5#5p7sV 5 6 20 50 20 11,26 21539.8U I I c 100* 10 100 Ul.12 215UO.U9 I I liO Uo 38.38 21553.21 I I 25 37.90 21555.UU i n 0 36.70 21561.02 0 33.90 2157U.0U iii5l5p5dV-5s5p6P ,p 3 30 33.26 21577.02 li 10 20 100 20 30.61 21589.37 I I 96.. TABLE X I (a) (continued) B H J l J2 J3 Xair l . A . C K vac. Excit. Class 1 0 25 30.21* 21591.09 I I C 2 1 20 75 21.25 21633.01 I I 1 0 20 10 19.59 2161*0.90 I I c 0 15.86 21658.38 0 0 05.56 21706.81 I I 2 1 8 10 01*. 90 21709.92 I I C 10 15 50 250 60 02.1*0 21721.71 I I C 5 1*599.86 21733.70 0 10 98.95 21737.99 I I I 5i 0 98.07 2171*2.20 75 93.90 21761.93 I V 3 20 150 92.1*0 21769.01* rv 5, 25 69.93 21780.75 I I I I V 0 15 86.98 21791*. 76 I I C 0 0 81.11* 21822.53 I I c 25 75 79.31* 21831.11 I V 10 77.81 21838.1*0 3 15 15 io 75.58 2181*9.01* I I 1 0 7U.57 21853.86 I I c 1 20 15 o 72.32 21861*. 61 I I 6 30 120 70.1*0 21873.80 ni5si! 5 2 10 25 30 69.71 21877.10 I I c 0 15 50 68.97 21880.61* I V 00 61*.85 21900.38 15 63.95 2190L.70 2 10 25 62.1*3 21911.99 I I I 0 61.98 2191U.16 I I 0 59.18 21927.61 8 5 15 100 20 57.79 21931*. 30 I I c 3 l 5 25 55.21* 2191*6.57 I I c 20 53.95 21952.79 15w 52.60 21959.30 TABLE XI (a) (continued) 97 R B H J l J2 J3 ^ a i r I.A. C K vac. E x c i t . C l a s s . l i 3 10 35 20 52.18 21961.32 I I C 2 0 20 51.62 21966.92 I I 2 0 5 15 50.36 21970.10 I I C li 1 10 liO 30 1*6.57 21988.1*6 I I 5 li 10 75 1*5.98 21991.31 I I 10 75 1*5.07 21995.72 IV 1 10 15 U3.7li 22002.15 I I 1 10 1*2.65 22007.1*3 I I 0 0 1*1.50 22013.00 I I 10 38.26 22028.71 li 1 25 20 37.08 22031*.!*!* I I C 2 0 20 10 35.85 2201*0.1*1 I I C 10 3U.U5 2201*7.22 20 30.1*5 22066.68 3 1 15 10 29.50 22071.30 I I C 2 75 26.87 2208i*.12 Iii5s5p5dl£-5s5p6pl) 2 3 20 26.75 22081*. 71 I I c 3 20 25.37 22091.1*1* 25 23.53 22100.1*3 I I I 5s5p6dV-XH*A 2 30 22.20 22106.92 1 20 21.1*5 22110.59 I I I 0 10 16.16 22136.1*8 I I 30 11*. 79 2211*3.20 3 0 10 25 20 11*. 05 2211*6.87 I I c lOd 10.82 22162.73 I I I 1 15 20 07.31 22179.98 15 0l*.51* 22193.62 III$£5p5d T - X l l * , 1 20 02.68 22202.78 I I I 0 01.73 22207.1*7 li 1 5 25 1*1*98.58 22223.01 I I 10 97.10 22230.32 30 95.78 22236.85 6 3 20 liO 20 9l*.l*3 2221*3.53 I I 10 92.73 22251.91* 10 91.13 22259.87 98. TABLE XI ( a) (continued) R B H J l J2 J3 A air l . A . & K vac. Excit. Class. 1 90.56 22262.69 II C 3 3 10 35 30 89.3U 22268.7U II C 88.U8 22273.01 II 3 3 10 30 20 88.2U 2227U.20 II C 3 2 10 25 20 85.7U 22291.57 II C 1 15 10 82.28 22303.81 II 15 10 81.79 22306.2U III 10 100 25 200 UO 78.68 22321.73 II C 10 76.61 22332.05 10 7U.30 223U3.57 15 72.86 22350.81 75 69.UU 22367.91 IV 1 30 0 68.52 22372.52 III 1 Uo 5 67.6U 22376.92 II 20 66.26 22383.83 III 0 6U.97 22390.30 III 12 62.53 22U02.5U 12 60.63 22U12.08 III X ^ s ^ s \ 5 57.5U 22U27.61 00 20 55.6U 22U37.17 III 2 BO 55.28 22U38.98 III 15 U9.06 22U70.35 1 U7.65 22U77.U7 II C 00 8 25 U7.01 22U80.65 5 15 U6.02 22U85.72 IV 5s6dj>5p s, 5 10 15 l5o 80 3U.97 225U1.76 I I c , l 5 6 20 200 20 33. UO 225U9.7U Ili5s5p5cttfc5i5p6p,pi 20 31.00 22561.96 Uo 25 30.19 22566.08 - 50 5 28.60 2257U.18 I l l X3-5s5p8sV 5 28.18 22576.32 25 27.38 22580.UO III IV 100 75 25.98 22587.5U IV 0 5 20 21.78 22608.99 II 5 3 20 50 21.15 22612.21 II c 0 15 200 16.96 22633.66 III IV 99 TABLE XI (a) (continued) B H J l J2 J3 X air I.A. K vac. Excit. Glass. h 30 300 11.77 22660.27 Ill5s5p6ppr5s5p7s3p; h 35 350 10.93 2266a.58 IV 5 15 06.63 22686.80 III IV 2 5 20 05.51 22692.a7 III 6 a 10 75 30 01.88 22711.17 II c 50 25 01.01 22715.66 IV III 5 3 5 100 30 a398.50 22728.62 II 0 a 10 120 30 96.01 227ai.5a II c 0 25 95. i a 227a6.oa III 00 93.59 2275a.06 a a 10 70 ao 89.99 22772.72 II c 5 87.80 2278a.08 2 5 1*5 20 86.8a 22789.07 ni5i5p6pDr5s5p6d^ 10 86.50 22790.83 k a 20 35 30 85.12 22798.00 II 0 8a. 71 22799.61 II c 25 82.90 22809.5a III IV 0 81.12 22818.81 II 1 15 80.70 22820.99 III I 79.87 22825.32 III i 25 30 79.67 22826.36 II 5 30 20 150 80 77.12 22839.66 II c h 20 30 50 25 73.01 22861.11 II c 25 71.30 22870.06 lll5s5p6p^5s^p6dF; 8 10 30 250 30 70.56 22873.93 Hl5sx5p6s5r-5s5p6pPl 2 20 25 68.23 22886.12 II 1 65.95 22898.07 III , • , 15 65.00 22903.05 lll5s5p6pP-5s l5p7sY 9 9 20 i5o 75 6a. o i 22908.25 II c ' a 7 10 60 ao 61.27 22922.6a II c 15 10 6o.ai 22927.15 100 200 10 58.31 22938.25 1 1 1 3 12 100 a5o 30 55.8a 22951.26 ^ j Hi5s5p5d^-5s5p6p\ * * ( . i a ) 1.39, $ 15 53.10 22965.70 10 10 52.18 22970.55 15 200 51.27 22975.35 IV 100. TABLE XT (a) (continued) R B H J l J2 J3 air l . A . <oK vac. Excit. Class. 3 2 1 1 0 0 1 0 3 3 3 1 L 00 1 1 00 5 25 200 Lo 25 150 20 Lo* 10 5 Lo 35 20 15 15 0 00 3 0 x5 35 0 0 10 10 80 150 0 8 100 15 15 0 75 10 0 10 5 0 10 30 20 Lo 75 30 20 L3L9.30 L8.07 L6.86 U5.18 LL.LO L3.22 L2.L6 L l . 95 L l . 0 2 LO.33 39.7L 38.58 35.93 3L.07 32.5L 32.03 31.21 29.02 28.76 27. LO 25.77 23.77 22.71 21.96 20.91 20.35 19.29 18.22 17.15 16.56 16.20 15.39 13.L 2 13.03 12.18 09.03 22985.75 22992.26 22998.66 23007.55 23011.68 23017.93 23021.95 2302L.66 23029.59 23033.25 23036.38 230L2.5L 23056.62 23066.51 2307L.65 23077.36 23081.7L 23093.L1 2309L.79 23102.05 23110.81 23121.50 23127.16 23131.17 23136.79 23139.79 231L5.L7 23151.20 23156.9L 23160.10 23162.03 23166.38 23176.96 23179.05 23183.62 23200.56 I I C I V I I C I I I I C I I I I V I I I xB%~ 5s%fisif I I c I I I I I c I I I xLr5s5p3s P , lll5si5p6PP-5s5p6dFi° I V I V l l c 3 9 t llT5,.^ 5p6p'B-5s5p6dF(> I I I I I c I I I I I c IH5s5p6pP-5s5p6d¥ II c I I I i l l X3-5i5p8s 'p" 101. TABLE XI (a) (continued) R B H Jl J2 J3 ^•air I.A, vac. Excit. Class. 20 Ii307.l8 23210.53 1 0 15 30 06.57 23213.81 II C , , LO 1$ 200 li50 75 02.27 23237.01 ni5i5p5dP;-5i5p6pD3 5 li297.35 23263.60 1 30 96.72 23267.02 III 10 9U.78 23277.52 5 3 a 100 20 91*. 28 23280.23 II 5 7 10 100 25 93.39 23285.06 II c 5 89.li9 23306.22 l* 10 80 30 88.55 23311.33 II c 5 6 12 120 liO 85.87 23325.96 II c 0 83.65 23338.Olx 1 0 20 83.03 2331x1.1x2 II III 1 1 10 10 81.88 2331x7.68 II c 10 80.33 23356.11x 2 2 15 20 79.1i8 23360.77 II c 10 0 77.86 23369.62 20 77.li6 23371.80 li 6 liO 30 76.73 23375.79 II c 5 • li 10 100 30 73.U3 23393.81x II c 00 69.73 23lxllx.lO 3 2 a 25 25 61x.35 23lxli3.61x II 0 63.33 23lili9.2li a 10 30 250 70 61.10 231x61.51 II 25 59.26 23li71.61x III IV 5 58.32 231x76.82 20 57.57 231x80.96 III IV h 2 U ho 20 56.10 231x89.07 II 10 51.62 23513.81 5 li liO 30 51.15 235l6.lil II c 10 1x8.00 23539.1xlj 2 2 20 20 lx6.U7 235li2.37 II c 1 1 15 1x5.92 2351i5^ li2 II c 15 20 lxli.97 23550.69 III 102 TABLE X I (a) (continued) R B H J l J2 J3 3 - a i r l.A. K vac. E x c i t . C l a s s . 0 10* 5 U239.39 23581.68 I I C l 35 10 3 7.lili 23592.53 I I 10 36.9U 23595.31 5 3U.79 23607.29 3 10 80 30 31.77 2362li.l3 I I C 2 2 10 80 30.87 23629.16 I I I 5 30.33 23632.17 1* h 5 100 25 28.1*8 2361*2.51 I I 10 27.71 2361i6.8l I* h 10 75 30 25.73 23657.89 I I C 6 10 20 200 100 20. h3 23687.59 I I C 00 15.72 23711*. 05 15 15.07 23717.70 Hl5s5r7s :P> X l l * z 30 12.58 23731.72 30 11.86 2371*1.1*1 2 3 20 25 15 11.32 23738.82 I I C 10 10.37 237Ui. l7 0 00 10 Oli .75 23775.96 I I 1 3 15 25 15 1*199.89 23803.16 I I C 25 99.32 23806.69 00 97.98 23809.61* lV5s5p5dg-5s 5p6p\ 2 l i 10 25 20 97.25 23818.1*3 I I c * 15 95.57 23827.96 10 91*. 55 23833.76 0 93.31* 2381*0.61* 1 2 10 20 10 92.58 2381*1.95 I I c 10 91.87 2381*9.56 10 8U.89 23888.76 3 l i 8 25 20 61*. 01* 23893.61 I I c 10 83.66 23895.78 I I I 5s5p5a%-5s5p6P:b LO a 50 300 30 81.59 23907.60 35 80.92 23911.1*3 I V TABLE XI (a) (continued) 103 E B H J l J2 J3 ^ a i r I.A. G'K vac. Excit. Class. 5 6 200 30 b l 7 9 . 2 b 23921.0b 10 78.71 2392b.08 ill 5l5p5dD-5s5 P 6pP a 00 77.39 23931.63 25 76.15 23938.7b in iv 35 75.3li 239b3.38 I l l IV 10 73.1b 23955.99 6 8 25 200 50 69.78 23975.30 II c 10 65.58 23999.52 li li 15 100 30 63.55 2b011.22 II c 5 5 25 200 63.3li 2b012.b3 in 5S5p5dV-5*5p6pl| 0 5 30 59.87 2b032.b5 II c 30 58.U3 2bOb0.77 III IV 10 55.U2 2b058.l8 2 li 8 35 30 55.1b 2b059.80 II c 1 1 10 0 52.89 2b072.83 II c . 20 52.36 2b075.91 in 5s5p6sP°-5s5p6pV 8 6 75 300 30 51.83 2b078.98 15 b9.05 2b095.11 20 b5.93 2 b l l 3 . 2 b 0 bb.58 2bl21.09 1 8 bo b 3 . 0 6 2 b l 2 9 . 9 b in 15 U2.09 2bl35.58 20 bO. 30 2blb6.02 10 37.31 2 b l 6 3 . b 6 20 36.28 2bl69.b8 0 5 33.90 2 b l 8 3 . 3 9 II c 5 0 33.5b 2bl85.b9 I I 1 20 32.bl 2bl92.10 II c 5 31.78 2 b l 9 5 . 7 9 10 30.96 2b200.59 20 29.12 2b211.b3 in 5 28.18 2b2l6.95 3 li 12 30 liO 27.33 2b221.93 II c 2 2 15 20 27.00 2b223.87 II c l O l i . TABLE XI (a) (continued) R B H J l J2 J3 air I.A. vac, Excit. Class. 10 7 5 15 8 10 1 1 10 25 120 300 35 0 io 150 15 20 15 0 30 5 30 15 I* 15 15 30* 10 125 io 15 150 300 20 25 10 10 o 5 ho 20 50 30 15 £10 15 10 1*00 300 8 20 ioo l*5o 0 15 5 20 30 ho 0 ho 75 1*126.55 23.50 22.89 20.50 16.32 13.56 12.50 11.81 10.80 09. 1*1 08.75 07.06 06.28 03.96 03.39 01.06 1*0.97.86 97.1*0 96.65 95.39 91.90 91.01 88.97 87.13 85.75 83.92 83.23 82.1*3 80.81* 79.58 71*. 88 73.1*8 73.16 72.78 71.18 21*226.50 21*21*1*. 1*2 21*21*8.01 21*262.07 21*286.70 21*302.99 21*309.25 21*313.33 21*319.30 21*327.53 21*331.1*3 21*31*1.50 21*31*6.07 21*359.82 21*363.21 21*377.01* 21*396.08 21*398.81 21*1*03.30 21*1*10.78 21*1*31.66 21*1*36.97 21*1*1*9.22 21*1*60.16 21*1*68.1*2 21*1*79.32 21*1*83.52 21*1*88.32 21*1*97.86 21*505.1*2 21*533.68 21*51*2.11 2l*51*l*.03 21*51*6.30 21*555.97 i n rv 5 III 5s5p6sP*-5sl5p6pPi III IV II II II II II II i i c III 5s5p6sP,-5s5p6pF1 III IV III IV III IV III IV II III II III II i l l 5s5p6sP-5s5p6pD i l l 5l5p6sP]>-5s15p6pPo II c 105. TABLEXI (a) (continued) 10 10 B H Jl J2 J3 A air I.A. <3" K vac. Excit. 25 U067.70 2U576.97 . IV 10 66.85 2U582.10 I I I IV 10 65.85 2U588.15 I I I 15 63.61 2U601.70 I I I IV 12 5oo 5oo 100 62.13 2U610.66 I I I 5s! 1 10 59.37 2U627.39 I I 5 58.78 2U630.97 1 30 50 57.77 2U637.96 I I 1 12 55.79 2U6U9.12 I I C 25 55.58 2U650.U6 I I I 51 10 300 IiOO Uo 55.01 2U653.92 1 52.29 2U670.U6 I I 2 5 51.28 2U676.61 I I 30 U9.68 2U686.36 I I I IV 5 30 30 150 Uo U8.89 2U691.18 I I c 2 20 15 75 30 U7.17 2U701.67 I I c Uo U6.7U 2U70U.29 IV ' 1 UU.21 2U719.7U I I 10 U3.U5 2U72U.38 0 U2.90 2U727.75 30 Ul.32 2U737.U1 I I I 15 35.6U 2U772.22 10 35.03 2U775.96 10 32.87 2U789.23 2 6 10 Uo 20 29.7U 2U808.U8 I I c 10 28.56 2U815.7U 1 8 150 26.26 2U829.91 I I I 0 2U.91 2U838.2U 0 2U.53 2U8U0.59 00 2U.15 2U8U2.93 19.88 2U869.37 iv 5s U 19.57 2U871.29 10 18.33 2U878.96 0 U 10 20 10 16.77 2U888.62 I I c C l a s s . 106. TABLE XI (a) (continued) B H J l J2 J3 "A.air l . A . K vac. Excit. Class. 15 U01U.9L 2U899.97 6 30 25 13.86 2U906.66 II 3 20 15 125 30 11.69 2U920.13 II C 25 09.70 2U932.50 15 Ob. 23 2U9U1.6U 6 30 Uo Uoo 100 06.52 2U952.28 II C 5 03.02 2U97U.09 1 6 8 Uo 15 01.65 2U982.6U II C , 3 0 3998.28 25003.69 III X2i- 535p3s£ 1 95.85 25016.89 II 1 95.23 25022.77 II 15 93.6b 25032.U8 J. \ \ 3» 0 2 20 93.10 25036.12 III 5s5p6pn-5s5p6dD 10 92.38 250U0.63 200 91.72 250UU.77 IV. 1 u 25 90.06 25055.19 I l l II 2 10 10 30 20 88.36 25065.86 II C 1 87.69 25070.07 II C 1 20 15 87.21 25073.09 II c 10 b6.09 250b0.l3 II 5s5p5dP-5s5p6pS 6 125 Uoo 30 8U.59 250b9.57 III 3 20 20 200 Uo 81.77 25107.33 II c 15 80.59 2511U.8U 10 78.37 25128.85 3 25 20 200 Uo 75.9U 251UU.20 II c 3 Uo 15 200 30 69.22 25186.76 II c 6 100 500 20 68.57 25190.88 III 5s5p5cnf5f5p6p,D 15 68.35 25192.28 00 1 30 35 66.56 25203.6U II 1 66.00 25207.20 II 15 65.20 25212.29 0 8 10 25 10 6U.20 25218.65 II c 2 25 60.06 252U5.00 II c 00 1 15 30 10 59.17 25250.68 II 107. TABLE x£7 ( a ) ( c o n t i n u e d ) R B H J l J2 J3 • ^ a i r l . A . G'K v a c . E x c i t . C l a s s . 15 3 9 5 3 . 9 0 2528U.32 0 8 15 0 52.13 25295.6U I I C 1 15 10 10 50.35 25307.0U I I C 25 50.16 25308.26 I I I 3 15 30 200 30 U7.99 25322.16 I I C 1 5 15 25 U6.96 25328.77 Uo UU.98 253U1.U8 I V 10 U0.73 25368.80 1 15 39 . 9 2 25380.52 I I C 1 0 38.37 2538U.06 I I C 20 37 . 9 1 25387.03 2 10 20 50 20 36 . 2 7 25398.31 I I c 10 33 . 7 2 25U1U.06 20 50 33 . 2 9 25U16.8U I V 2 30* 30 50 20 31.U9 25U28.U7 I I c 25 29.18 25UU3.U2 10 30 2 8 . 8 5 25UU5.55 I I J -2 30 100 5 27.6U 25U53.33 Iii5s5p6sp-5s5p6pp 2 8 27.36 25U55.20 I I ' 1 10 25 0 10 23.66 25U79.20 I I c 0 7 20 8 22.38 25U87.51 I I c 25 19.22 25508.06 2 20 30 100 10 1 8 . 5 3 25512.55 I I c U 10 5 09 . 8 1 25569.U3 I I c 2 20 25 5 0 5 05.70 25596.33 I I 1 10 Uo 150 5 05.16 25599.87 I I 20 3891.96 25686.73 I V 5$fr5s7s X 8 91.38 25690.50 10 85.36 25730.29 I I I 10 8U.72 2573U.59 2 20 20 83.30 257UU.00 I I 20 82.12 25751.83 0 6 25 5 80.57 25762.11 I I c 2 10 79.13 25771.67 I I c 20 78.76 2577U.13 10 20 5 77.20 2578U.U9 I I 108 TABLE 20 (a) (continued) B H J l J2 J3 ^ » a i r I.A. vac. Excit. Class. 00 6 10 15 5 3876.5U 25788.88 II C 0 15 75.23 25797.60 5 7U.12 2580U.99 10 25 71.3U 25823.51 0 2 10 Uo 68.76 258U0.73 II U 10 61.18 25891.51 II 1 10 5 . 5U.5U 25936.10 II 2 10 25 52.00 25953.20 II 60 100 50.63 25962.U3 IV 1 10 U6.00 25993.67 II 1 12 5 UU.2U 26005.57 5 200 300 20 Ul.78 26022.22 lll5i5p5<-5s5p6pD 2 20 25 39.51 26037.60 II c 1 12 5 36.^ 26057.68 0 30 35 35.81 26062.71 Iii5s5p5drf5i5p6pq 1 31.58 26091.U8 11 25 28.5U 26112.18 20 20 26.60 26125.U9 1 8 10 19.52 26173.91 11 1 10 10 16.12 26197.21 11 1 13.-8 7 26212.66 II c 1 15 20 11.79 26226.96 11 1 20 Uo 09. U7 262U2.93 1 1 , •= , 1 100 200 8 05.83 26268.02 iH5i5p5df-5s5p6pD 0 OU.73 26275.62 15 02. U6 26291.30 0 10 35 150 00.93 26308.80 11 c 1 10 3798.08 26321.61 11 c 0 Uo 35 150 20 97.22 26327.57 11 c 15 95.33 263U0.67 Iil5s5p6s3p-5^5p6pst 2 100 200 8 88.72 26386.62 0 87.31 26396.51 0 86.31 26U03.U8 0 83.76 26U21.27 TABLE XI (a) (continued) 109. R B H J l J2 J3 / l a i r l . A . <s"K vac. Excit. Class. 2 100 ho 8 3780.82 261+1+1.81 II 8 20 30 76.71+ 261+70.36 II 00 15 20 20 75.72 261+77.51 II i 10 70.31 26515.h9 1 20 69.32 26522.U6 II 25 65.07 26552.39 8 20 15 6U.30 26557.82 II i 10 63.U3 26563.95 30 8 59.52 26591.57 III 20 5U.66 26625.98 10 52.03 2661+1+.61+ 15 15 1+2.91 26709.62 20 100 38.73 26739.1+7 IY 1 60* 25 10 36.70 26753.99 II 10 120 20 36.6h 2675L.U2 II 1 bo 120 33.70 26775.1+8 III 20 200 29.07 26808.72^ IV 30 80 26.b9 26821.39/ IV 0 15 25 bO 10 25.68 26833.10 II 7 15 30 21+.19 2681+3.81+ II 00 20.27 26872.11 1 5 30 18.21 26b86.99 II 8 20 30 16.77 26b97.i+l II 5 20 20 15.22 26908.63 II l li+.i+l 26911+.50 II 75 12.56 26927.90 IV 1 10 11.98 26932.11 II 2 5 75 11.56 26935.16 II ll 1+ 25 08.57 26956.91; II 5 03.03 26997.26 10 01.69 27007.03 III5: 3 35 70 5 3698.1+5 27030.68 0 0 97.90 2703U.70 III 00 6 Uo 9L.29 27061.11 III 15 91.85 27078.99 0 8 25 90.25 27090.73 III 1 8 20 87.21+ 27112.81+ II 0 5 15 100 83.U7 2711)0.58 II TABLE XI' (a) (continued) 110. R B H J l J2 J3 •^air I.A. <^ K vac. Excit. Class. 1 3679.85 27167.27 I I C 1 79.38 27170.73 I I 7 15 75 79.26 27171.63 I I C 1 78.53 27177.01 I I C 5 Uo 78.26 27179.01 I I I 0 1 8 30 76.13 2719U.75 I I C 20 50 7U.36 27207.85 IV 00 73.22 27216.29 0 71.88 27226.22 0 71.10 27232.00 3 30 200 69.90 272U0.91 .iii5s5p5d!^5^5p6pTj 15 62.00 27299.73 0 60.78 27308.83 1 56.93 27337.57 I I 30 56.U5 273U1.16 0 15 5U.37 27356.71 I I 10 50.05 27389.08 I I c 00 50 20 U9.51 27393.13 10 7 200 300 20 U7.61 27U07.39 ni5l5p5dF-5l5p6pP 20 U6.01 27U19.U2 3 8 60 80 UU.U7 27U31.00 5 75 120 10 UU.25 27U32.67 III5s5p6pD-5s5p6d3" 10 U2.77 27UU3.80 50 20 39.16 27U71.02 i n 5 37.37 27U8U.53 0 36.95 27U87.70 5 3U.55 27505.93 10 8 33.70 27512.36 IV 10 25 32.55 27521.07 10 5 100 200 10 26.75 27565.07 III5S5P6SP-5S5P6PD 10 26.21 27569.17 Iil5s5p6sif-5s5p6jfei 2 U 75 120 10 23.22 27591.92 3 2 30 100 21.85 27602.35 Iii5i5p6pfes5p7spr U 1* 100 120 19.62 27619.36 l ii5s5 P 5o^-5s-5p6p\ 5 30 30 150 20 17.56 27635.07 II c I U . TABLE XI ( a) (continued) R B H J l J2 J3 ^•air l.A. G'K vac. Excit, 8 3616.20 276U5.U6 30 60 1U.56 27658.00 V 2 Uo 80 12.91 27670.63 III 2 5 25 75 10 11.78 27679.29 II C 5 11.72 27679.75 II 0 1 0 11.1.8 27683.88 II 00 03.60 277U2.10 1 u 15 01.30 27755.96 II 200 100 00.98 27762.28 IV5a! 00 2 15 3S99.9S 27770.22 I l l 00 98.66 27780.17 III 1 96.72 27795.18 II C 00 20 96.30 27798.39 III 00 10 5 95.39 27605.U3 II 1 20 60 93.63 27819.12 III 2 10 Uo 10 93.38 27821.05 II 7 91.57 27835.07 II 2 50 100 89.77 278U9.03 •III 5 5 88.U5 27859.27 II 150** 88. U3 27859.U2 IV 5 87.10 27869.75 II 10 1000 U5o 15 85.35 27883.35 IV 20 83.22 27899.92 35 5o 3 81.60 27912.53 III l 10 25 78.U5 27937.10 II c 30 75.UU 27960.61 0 20 Uo 73.55 27975.39 III 35 72.U9 27983.69 0 l 30 70.76 27997.2U II 0 10 30 69.8U 2800U.U6 IV 0 10 68.12 28010.11 III 0 20 35 67.83 28020.23 iv5s! 1 30 75 67.UO 28023.61 I l l 0 20 66.13 28030.28 III Class. 5s6s&-5s£pV 4 TABLE XI (a) (continued) R B H J l J2 J3 ^-air I.A. vac. Excit. Class. 00 3565.55 0 6U.50 1 25 80 60.16 00 10 58.9U 00 8 15 58.56 0 5U.96 u 25 35 200 20 52.18 7 IiOO 300 10 50.73 35 U9.U6 1 20 U6.8U 120* U5.86 3 25 200 U3.96 00 U3.00 0 15 5 Ul.65 00 5 U0.76 0 38.78 00 37.56 0 10 30 36. U9 00 8 32.55 10 31.U8 1 25 75 30.18 1 30 75 26.33 20 30 2U.51 0 23.UU 0 22.29 0 1 12 20 22.16 li 50 5o 125 20 21.12 00 1 0 20.60 1 19.17 1 15.57 ho* 1U.38 Uo* 1U.17 30 5 11.69 200* 11. IU 10 10.60 10 07.9U 2 25 75 06.97 1 05.57 28038.IU 280U6.U8 28080.66 28090.28 28093.28 28121.72 281U3.73 28155.22 28165.29 28186.08 28193.87 28208.98 28216.63 28227.38 2823U.U7 28250.26 28260.00 28268.55 28300.07 28308.6U 28319.07 283U9.97 2836U.61 28373.22 28382.U8 28383.53 28391.91 28396.10 28U07.6U 23U36.72 28UU6.35 28UU8.05 28U68.21 28U72.67 28U77.05 28U98.6U 28506.52 28509.77 IV IIl5s5p6pI)-5s5p6dF; III 1 III II C II C IV 3t lil5!5p6pS-5s5p7sP III II II II III II IV5s5p6sPr5s5p6pD, IV III III II II c II II r; 5s5p5dc-5s7d n iv ^ III IV IV 5s5p6sPYV5s7dD. II T A B L E XI (a) (continued) 113. R B H J l J2 J3 "Xair I.A. cr'Kvac. Excit. Class. 00 15 15 3505.16 28521.23 IV 5 03.26 28536.70 5 00.70 28557.56 5 3li99.20 28569.80 1 10 2 97.87 28580.66 10 10 1000 5oo 20 96.28 28593.65 IH5s5p8s¥-5s5plifF x 100 200 9li.30 28609.85 I I I 10 93.10 28619.67 1 91.22 28635.08 I I 1 20 88.29 28659.13 I I C 1 20 86.96 28670.05 I I 20 5 li 86.11 28677.01* I I 1 10 35 80 10 83.9U 2869i*.90 I I C 1 10 30 70 83.67 28697.12 I I c 00 82.91 28703.38 IV 00 20 30 82.62 28705.77 I I I 2 15 75 150 10 80.32 28721*. 7li I I c 1 5 15 78.82 28737.12 I I c 5 5 78.13 287li2.82 I I 0 77.05 28751.83 I I I l 100 76.75 2875li.3l I I 0 15 76.1*7 28756.62 I I 0 8 5 75.98 28760.67 m 10 6 300 300 7U.83 28770.19 III5S5P6SE-5S5P6P12 2 1 30 50 73.57 28780.62 .Ill5i5p6p$-5s5p7s!p; ii 200 200 67.78 28828.66 III5S5P6p^-5S5P7SSR: 5 66.68 28837.81 5 65.25 2881*9.71 i n 5s5p6p3r>-5s5p7sV 7 5 300 250 63.65 28863.03 20 62.59 28871.86 l 10 20 58.13 28909.09 I I c 3 20 75 150 15 56.88 28919.5U 1 1 C 3 3 3 2 100 100 55.66 28929.75 Hl5s5p6pPr5s,5p7sP; li 20 150 150 20 55.12 2893U.27 I I c * - lines identified only on 21' grating. Ilk TABLE XI (a) (continued) R H J l J2 J3 air l . A . K vac. Excit. Class. 12 3L5L.OO 2 75 200 51.52 1 100 bO 50.19 2 100 200 u9.55 10 10 44.35 3 15 80 200 20 42.25 5 41.20 3 75 150 38.75 3 60 150 38.39 00 37.1L 00 1 10 20 3L.L0 30 20 33.29 10' 29.70 0 5o 80 28.17 0 0 26.Ll 0 2 25 50 23.29 0 150 80 21.32 00 2 20 5o 19.63 10 16.72 00 50 15 15.25 2 5o 100 13.8L 10 10.87 00 09.92 00 07.60 2 100 100 07.09 L 30) onn 25 06.79 25)' 200 06.73 25 05.83 0 L5 100 03.31 15 25 00.55 00 8 35 3398.1L 10 97.25 0 10 100 9L.87 200 9L.L6 5 92.88 289L3.6L 2896L.LL 28975.60 28980.97 2902L.71 290L2.L1 29051.27 29072.06 29075.09 29085.67 2910b.86 29118.27 291L8.7L 29161.75 29176.72 29203.30 29220.12 2923L.55 29259.LL 29272.03 2928L.12 29309.61 29317.7b 29337.73 293L2.12 293LL.70 293L5.22 29352.97 2937L.70 29398.5L 29L19.L7 29L27.17 29LL7.80 291*51.35 291*65.59 !V5s5p5d«-5s5p6pb I I I iv yj- Yi iii5s5p6pD-5s5p6db' I I c 1 I I C I I I 5s5p6pvr<W , ill5i5p6PV5s15p7sV i l l I I i l l IV i l l I I c IV I I c i n I I I 5s5p6p 3?-a I I ' I I c I I IV I I c I I IV I I I I I c IV TABLE XI (a) (continued) R B H J l J2 J3 A air l . A . & K vac. Excit. Class. 00 00 10 k 7 3 2 10 2 6 1 1 5 5 0 8 7 30 10 2 1 5 20 10 6 60 10 15 0 0 0 75 150 10 200 250 25 25 10 2 30 ko 150 00 20 5 5 5o 150 75 200 30 U5 120 30 100 10 10 5 L0 200 20 25 50 200 100 200* 30 15 ho 150 200* 25 5 0 30 5 3386.30 85.70 8k. 71 80.53 7k. 10 72.10 71.00 69.0k 68. k9 67.85 65.1k 62.76 62.73 60.05 59.13 58.11 56.86 55.32 5k.07 52.1k 52.10 52.ok 50.65 k5.89 kk.7k k k . 5 l kl.89 k0.08 36.18 35.k6 3k.30 32.5k 30.50 29.25 28.21 25.59 2k. 90 29522.30 29527.53 29536.17 29572.67 29629.01 296k6.58 29656.26 29673.50 29678.35 29683.98 29707.88 29728.90 29729.17 29752.87 29761.11 29770.15 29781.23 2979k.90 29805.99 29823.15 29823.50 2982k.0k 29836.kl 29878.8k 29889.11 29891.17 2991k.59 29930.80 299k7.83 29972.25 29982.67 29998.50 30016.87 30028.1k 30037.52 30061.18 30067.kl II II II C II lV5s5p6sg-5s5p6pT3i II II II I i c III III II II c II II c IV II II III II IV II c lll5l5p6p 3D-5§5p7sV i i c 116, TABLE XI/ (a) (continued) R B H J l J2 J3 Xair l.A. <3"K vac. E x c i t . Class. U li 75 100 2 3323.00 3008U.60 II c 1 ii 25 5 21.93 30095.83 II 0 19.76 30113.95 00 2 18.57 3012U.8U i l l 555 P6pW w l 1 17.66 30133.10 11 00 16.U5 301UU.09 Hl5i5p6pS-5l5p6dD 9 7 120 150 5 1U.83 30158.82 10 6 80 150 13.80 30168.19 i l l 10 12.96 30175.8U 0 # 12.09 30183.76 i l l 750?? 11.23 30191.59 IV 0 5 15 10.76 30195.88 i n 5 08.53 30216.23 11 10 9 200 200 5 06.98 30230.38 111 iiO 05.8U 302U0.81 1 25 05.65 302U2.5U i n 10 0U.17 30256.09 0 20 02.38 30272.U8 i n 2 01.U8 30280.73 11 1 01.37 30281.7U II c 2 20 5o 01.10 3028U.22 II III 5 10 3299.32 30300.5U III 2 10 35 98.71 30306.15 II 1 25 35 96.58 30325.73 1 1 1 > 3 3 . 5 U 100 150 5 9U.20 303U7.63 lll5s5p6pP4r5i5p7sPi 3 200 i5o 93.36 30355.37 III 1 ii 20 100 5 91.02 30376.95 II c U 50 IliO 87.92 30U05.58 5 h liO 110 87.61 30U08.UU lll5s5p6pD-5s5p6dF 2 87.56 30U08.91 11 1 85.9U 30U23.90 11 750*•• 85.8U 30U2U.82 IV 2 20 100 85.15 30U31.21 IV 3 10 35 200 20 82.6U 30U5U.U7 II c 3 20 5oo 250 10 78.71 30U91.06 II c 10 1000 300 77.U2 30503.06 IV 5s6sV5s6pPt U o 76.69 30509.85 IV ^ 1 15 75.79 30518.23 IV 30 10 75.21 30523.63 10 7U.00 3053U.91 117. TABLE (a) (continued) R B H J l J2 2 25 120 li 30 200 100 li 2 300 120 15 15 10 8 200 250 25 25 1 20 0 10 6 100 200 5 0 0 6 60 100 200 12 2 30 ao 9 200 250 0 20 1 12 5o 15 2 0 10 30 acr 0 2 10 75 0 0 1 15 25 a 25 100 3 15 100 3 2 8 ao 5 5o 200 2 20 30 10 a 2 10 100 2 30 1 20 0 15 20 8 100 200 10 10 10 10 10 10 10 air I.A. 3270.16 68.79 68.39 65.88 6a. 78 61.96 61.29 60.90 58.69 57.76 56.79 56.7a 52.96 51.32 U9.88 a7.76 a6.86 a5.92 aa.07 a3.69 U3.12 38.a2 36.93 35.33 33.30 32.59 30.91 29.a9 28.19 26.50 25.28 23.68 22.58 19.ai 18.36 17.59 16.23 G'K vac, 30570.76 30583.57 30587.31 30610.81 3C621.11 306a7.58 30653.88 30657.5a 30678.33 30687.09 30696.22 30696.69 30732.35 307a7.aa 30761.U7 30781.5a 30790.07 30798.99 30816.55 30820.25 30825.66 30870.39 3088a.60 30899.87 30919.26 30926.05 309a2.13 30955.72 30968.19 3 0 9 8 a .ai 30996.12 31011.50 31022.08 31052.62 31062.75 31070.18 31083.32 Excit. Class. IIl5s5p6sP^5s5^p6pPl II c III 1 1 1 3 3 lll5s5p6pP(-5s5p6dX IIl5s5pir:5s&p6p 3R I I l 5 i 5 p 8 s P ; - 5 s W F i . I l l III IV II c II IV III III III ' Iii5s5ps°-5s5p6pp0 iv IV lll5s5p6s3P>5s5p6pP1 III , . I l l 5 s5p6p\ -5 s5p7s l f l i c 4 IV 5P* tf- 5l7dDa III IV IIl5s5p6pDi-5s5p6dD| II C 3 . 1II IIl5s5p6pP^5s5p6dD 118, TABLE XL (a) (continued) R B H J l J2 J3 Xair l.A. v a c . Excit. Class. 10 8 0 10 3214.71 31098.01 IH5s! 7 35 250 5 13.31 31111.52 liO 150 12.10 31123.25 IV V 6 5 5o 200 10 11.18 31132.18 II C 1 10 10.02 3HU3.U3 IV U 10 100 03.39 31207.97 1115s! liO 3195-03 31289.60 iv5s.' 3 75 9ii.lil 31295.67 I I 3 lo 93.59 31303.71 II C 3 5o 93.10 31308.51 i n 10 0 90.72 31331.86 2 10 8 5o 89.82 313U0.69 II C 3 15 75 15 88.32 31355.U3 i n 2 a 50 86.UO 3137U.32 IV 5s! 8 150 350 8 8U.06 31397.37 IH5s! 15 0 83.9U 31398.55 I l l 5s! 10 83.31 31UOU.77 0 82.U9 31U12.86 I l l 1 30 79.96 31U37.8U i l l 51' 0 6 15 77.75 31U59.70 III 30 76.51 31U71.98 li 10 i5o 20 75.1U 31U85.55 Ave. 10 7U.U5 31U92.39 3 10 100 72.12 31515.52 IH5I 1 1 5 30 70.83 315U8.23 II 1 30 67.11 31565.36 II 0 65.5U 31581.01 III 1 10 63.73 31599.07 III 5 10 61.93 31617.16 5 10 25 100 10 60.65 31629.96 II c 3- 59.31 316U3.37 II 1 25 58.93 316U7.17 II 1 58.51 31651.38 II 3 25 58.23 3165U.19 I I l 5 s ! 1 58.11 31655.39 II 5U.U7 31691.90 II 2 10 30 5U.25 3169U.11 II c 15 53.50 31701.65 3 c 119. TABLE XI- (a) (continued) R B H J l J2 J3 "^•air I.A. <3~K vac. 2 6 25 3l52.9ii 31707.28 1 25 liO 52.31 31713.61 it 12 100 . 51.U9 31721.86 50.96 31727.20 5 i i 9 . 8 l 31738.78 5 U7-U1 31762.97 3 10 100 li5.19 31785.38 1 15 U3.65 31800.95 5 1*2.92 31808.31* 2 8 25 111. 62 31821.50 1 1+0.68 31831.02 5 20 120 37.11 31867.23 1 36.1+7 31873.73 2 10 25 36.19 31876.57 1 20 35.91 31879.1*2 1 10 31.3$ •31895.1*8 1 33.U3 31901+.61+ 3 10 20 100 15 32.58 31913.30 1 32.16 31917.58 2 30.55 31933.99 2 30.21+ 31937.15 2 10 liO 29.95 3191*0.11 6 20 5o 29.1*8 3191*1*. 90 li 30 i5o 28.80 31951.81+ 1 0 28.2li 31957.56 Excit. Class. 3 5 1 1 2 1 6 1 15 21* 20 10 10 5 io 15 loo 10 100 30 200 27.61+ 26.35 25.95 25.00 21+.05 23.93 22.91+ 22.58 21.73 20.1+5 19.68 18.05 31963.69 31976.87 31980.97 31990.68 32000.51 32001.71* 32011.88 32015.57 32021*. 29 32037.1+2 3201+5.33 32051.77 II H I 3 3 Hl5^ 5p6pP-5s5p6dD" II 3 II II III 5fep6pP^w., II II I I | . 3 in5s5pii-5s5p6pD i I I I I I I I I I I I I c I I I I I I 1 1 3 Ill5s5p6sp1-5s5p6ppi V 5s6sS-5s6pP,° I I II c II. i i 1 1 3 ll]5s5p6pj>5s5p6dD° II II II II i l l 120. TABLE M (a) (continued) B H J l J2 J3 air l.A. CK vac. Excit. Class. 1 1 6 5 1 U l i 2 3 2 8 1 1 1 7 1 8 1 1 1. 1 1 1 5 3 1 5 1 1 1 1 5 20 10 10 10 20 30 200 10 25 5 30 150 io 50 10 10 10 80 10 Uo 10 10 35 10 50 200 25 150 20 125 20 50 200 15 75 10 30 3117.75 17.18 16.22 1U.73 1U.01 13.28 12.03 ll.UU 10.53 10.18 09.31 07.26 07.10 06.53 05.95 05.61 0U.U5 02.33 02.16 01.51 01.20 3099.38 98.60 97.38 96.80 95.71 95.30 9U.61 92.76 92.36 91.35 90.36 89.72 87.56 85.62 32065.16 32071.02 32080.90 32096.2U 32103.66 32111.18 3212U.08 32130.17 32139.56 321U3.18 32152.17 32173.38 32175.03 32180.9U 32186.9U 32190.U7 32202.U9 3222U.U9 32226.26 32233.01 32236.23 32255.15 32263.27 32275.97 32282.02 32293.37 32297.66 3230U.86 3232U.17 32328.35 32338.91 323U9.27 32355.97 32378.60 32398.95 TI I I I I I I I I V Ill5sa5p6ppr5i5p6c$ I I l i l l i i c i n I I I I I I I I I I I I I I c I I I I I I I V I I lli585p6pR-5i5p7iFf lll5i5p6p3P-5s5p6dY I I Hl5^5p6pV5l5p7sP()0 I I I I I I I I I I I TABLE X2 (a) (continued) R B H J l J2 J3 A air l . A . C R vac. Excit. Class. 30 10 3085.20 321*03.1*6 IV 2 1 10 30 83.86 321*17.51* II 0 10 30 81.67 321*1*0.57 IV 1 10 79.96 321*58.58 II 10 79.16 321*67.01 1 10 78.37 321*75.31* II 0 8 78.13 321*77.87 IV 5 35 200 76.60 32l*9l*.01 III 8 15 30 200 25 73.56 32526.11* 11 c . 3 100 150 73.06 32531.1*3 Iv5s5p6slf5s5p6pp, 1 20 72.33 32539.16 11. a i 4 1 71.11* 32551.77 11 1 71.1*7 32558.87 25 70.09 32562.90 lli5s5pP.-5i5p6pD,, 7 ho 250 68.98 32571*. 67 ili5i5p6paD-5^5p7sV 1 68.65 32578.17 11 1 68.33 32581.57 11 1 25 67.92 32585.92 11 1 20 100 67.70 32588.26 11 1 66.30 32603.13 11 0 15 15 65.65 32610.01* i l l 1 65.01* 32616.53 11 2 15 10 61*. 26 3262l*.83 II 15 10 61*. 22 32625.26 11 2 63.69 32630.90 11 3 10 20 100 15 63.15 32636.66 II c 0 30 61.56 32653.59 i n 1 2 8 35 59.18 32678.99 1 1 3 1 10 1*0 57.80 32693.71* i n 5s5p6pS-5l5p6dP 0 1 30 56.72 32705.28 II 2 8 20 50 55.20 32721.55 II c 1 30 30 51*. 51* 32728.62 IV 3 15 8 50 10 53.15 3271*3.51 II c 2 10 5 1*5 10 52.1*6 32750.91 II c 12 51.96 32756.28 II 1 20 30 51.1*8 32761.1*3 II TABLE XI (a) (continued) 122. B H J l J2 J3 " X a i r I .A. G'K vac. Excit, Class. 5 25 3050.77 32769.05 I l l 3 30 60 50.06 32776.67 III $35p6pb-a 6 100 200 8 1*9.1*1 32783.66 III 0 1*8.11+ 32797.32 III | 1 0 * 4 10 70 200 1+00 1*0 1*6.97 32809.91 II C 1 10 1*1*. 95 32831.67 II 00 10 1*3.35 3281*9.03 III 2 20 1+0.1+9 32879.92 IV 0 39.65 32889.00 1 38.83 32896.79 II 1 10 37.51+ 32911.81+ III 3 20 31+.62 3291*3.50 II 2 20 33.35 32957.21+ II 20 30.68 32986.32 II 2 20 25 29.96 32991+.15 •IV U 8 1*0 28.1+9 33010.16 II c 1 10 28.22 33013.11 II 20 21+.58 33052.83 10 21+.23 33056.65 8 10 35 200 20 23.30 33066.82 II c 2 li 10 30 20.00 33102.91* II c 10 19.07 33113.13 0 18.1*7 33119.71 10 50 75 300 30 17.56 33129.70 II li 30 125 15.05 33157.27 V 5s6sSr5s6pP; 2 20 60 13.60 33173.22 III 5 15 15 125 15 12.02 33179.60 II C 2 8 10 75 10 09.98 33213.10 II C 3 35 125 08.79 33226.21* III 7 15 20 200 10 06.35 33253.19 II C 0 05.77 33259.61 3 12 35 75 10 01*. 81* 33270.01 II C 0 12 02.1*6 33296.37 III 00 12 01.1*7 33307.3$ II 10 6 2999.16 33333.00 III TABLE XI (a) (continued) 123.. H J l J2 J3 ^ a i r I.A. G'K vac. Excit. Class. 3 7 h 2 3 1 U 3 a 6 8 6 8 7 8 8 10 2 1 30 20 a 3 3 15 120 200 0 8 15 2 a 10 5 20 15 7 10 10 10 8 10 10 5o 12 10 35 50 15 15 75 10 ao 12 25 15 ioo 75 200 75 220 50 ioo 25o 20 50 200 10 10 75 200 15 50 125 5 20 100 20 50 75 50 8 8 10 20 20 15 125 aOO 20 5 5 5 10 10 2998.89 98.78 98.05 97.0a 96.a2 95.66 93.22 92.58 90 . 7 a 88.9a 87.98 86.5a 85.ai 83.85 83.31 82.2a 80.98 79.98 78.02 77.18 75.89 73.68 72.15 71.58 70.26 69.75 67.20 66.90 62.2a 61.18 6o.3a 59.a2 57.62 56.a9 55.51 5a.92 33336.10 33337.22 333a5.3a 33356.57 33363.a7 33371.93 33399.13 33ao6.27 331+26.82 331+1+6.91+ 33a57.68 33a73.8l 33a86.a8 33503.98 33510.oa 33522.06 33536.23 335U7.1i8 33569.55 33579.02 33593.57 33618.53 33635.83 336a2.29 33657.23 33663.01 33691.93 3369a.20 337U8.a5 33760.52 33770.09 33780.59 33801. lit 3381U.06 33825.27 33831.02 II II II IIl5l5p5dF;-5s5p6pPi II c II c II c IV II III IV lH5^ 5p54-5§5p6pP1 i n 5s5pi-5s-5p6pi> 11 c III iv Hl5sl5p54-5s5p6pi3 i l l 11 c 11 i n II c II IV 12U TABLE x i (a) (continued) B H J l J2 J3 "A.air I.A. G'K vac. Excit. Glass. 00 10 2953.76 338U5.30 I l l 0 1 20 52.77 3385D.65 II C 1 5 30 51.77 33868.11 II li 8 30 30 10 51.U6 33871.67 II C 3 30 30 50.23 33885.78 IV 5pF-5!8sJS iff Vx 8 1000 5oo U9 .53 33893.83 IV 5^6plp,-5s5dD, l 30 a s . 6 i 339oa.ao III i 5 20 30 5 U6.68 33926.60 II c 1 25 U5.92. 33935.35 II 2 10 30 ao 10 aa.91 3391*6.98 II c 0 aa .26 33977.55 0 a3 .53 33962.89 8 ao 12y 200 30 a2.11 33979.28 II c 2 12 0 ao.93 33992.91 III a 7 25 ao 3 7 . 8 5 3a028.5a II G 2 20 20 36.78 3Uoao.8i IV 0 35.92 3ao50.90 II 10 35.73 3U053.10 0 5 3U.29 3ao69.81 6 30 100 33.12 3ao83.39 III 1 ao 32.02 3a096.l8 II 2 10 31.87 3a097.92 III 3 10 30.17. 3ail7.70 II 1 15 30 .oa 3a i l9 .21 15 5 29.95 3ai20 .26 lll5^5p6pDr5s5p6dX 0 1 10 15 29.27 3ai28.l8 II c a 25 50 28.07 3ai30.5l II 0 30 15 27.22 3ai52.07 IV 12 26.05 3ai65.a9 III IV 5 50 75 25.33 3ai7a.i3 IV a a 30 100 5 23.96 3ai90.26 II i 10 22.56 3a206.39 II c 2 ao 20 22.00 3a213.l8 III 7 25 ao 200 20 19.89 3a237.90 II c 0 12 16.35 3U279.U5 II 10 i a . 53 3a299.67 125. TABLE 3ST ( a) (continued) B H J l J2 J3 "Xair l . A . & K vac. E x c i t . C l a s s . 0 10 8 2913.30 3U315.32 II 10 12.60 31*323.57 III 5s5p6sP-5s5p6pS 3 10 30 11.36 3U338.18 2 25 20 08.36 3U373.59 IV 15 07.77 31*380.57 U 10 50 50 10 06.93 3U390.50 II C 0 10 05.83 . 3Ll*03.5l II 2 10 25 0U.05 3UU2U.59 II 2 03. IU 3UU35.38 II 3 20 30 00.63 3LU65.17 5 00.18 31*1*70.52 0 2898.98 3UU8U.78 20 97.96 31*1*96.92 10 96.72 31*511.68 IIZ(O) 1.05J-»J+1 10 20 5oo 5oo 5o 95.U3 3U527.05 6 10 Uo 150 20 93.28 3U552.70 II 1 87.78 3U618.U7 II 0 5 86.77 3U631.U3 III 0 85.70 3U6U3.U3 10 8U.U8 31*658.08 1 15 20 83.76 3U666.85 IV 0 5 82.89 3U677.31 II 10 81.71 3U691.51 5 100 120 80.39 3U707.UO III 5s5p6pD-5s5p6dD 2 2 20 35 79.63 3U716.56 II c 0 10 20 78.25 3U733.20 iv 5l5g&-5$7hV 2 10 20 76.88 3U7U9.73 II 0 75.80 3U762.78 III 25 10 75.U7 31*766.77 III 20 73.20 3U79U.23 2 1 10 25 72.08 3U807.79 II 1 1 10 25 71.33 3U816.88 II 3 20 25 69.77 3U835.80 II 0 30 200 Uoo 50 68.81 3U8U7.U6 II 2 67.67 3U861.31 II 126. TABLE # (n) (continued) R B H J l J2 J3 1\a±r l .A . ^ K vac. Excit. Clasb. 10 2867.39 3k86k.71 1 12 65.03 3k893.k2 IV 8 0 61U5 3k900.k8 III 0 6k.32 3k902.06 2 2 0 63.5k 3k911.57 III 25 62.k9 3k92k.37 III IV 5 20 k5 150 20 61.02 3k9k2.31 II C 3 3 8 2 50 50 60.1k 3k953.06 III 5s5p5d4r5s5p6pPJ 2 0 59.38 3k962.35 II III 8 30 200 5oo ko 58.32 3k975.31 II J^J -^1 1 20* 57.35 3k987.l8 III 10* 56.10 35002.k9 H I K . « Uo 55.53 35009.k7 IV 5s5p6sP-5s5p6pL\ 00 35013.03 IV 1 5k.02 35027.99 II 20 53.88 35029.71 0 10 52.71 350kk.07 IV 00 51.17 35062.99 II 1 10 50.70 35068.77 II 1 10 50.09 35076.27 II 5 k9.21 35087.10 0 k7.60 35106.9k 5 10 100 200 20 k6.l6 3512k.69 II 10 k2.66 35167.93 1 k2.02 35175.85 II 10 kl .73 35l79.k3 6 20 6 200 20 kl.18 35186.2k II 00 ko.ik 35199.12 3 k 10 75S" 8 39.09 35212.26 II c 10 35.5k 35256.33 i l l 5s5p6sif-5s5p6pD k 1* 100 60 3 35.10 35261.80 1 k 50 50 3k.80 35265.53 II c 1 15 75 32.99 35288.06 IV n . H 3 100 100 31. k6 35307.12 iv 5s5p6sP}-5s5p6pPi TABLE XI' (a) (continued) 127 R B H J l J2 J3 "Xair.I.A. CK vac. Excit. Class. 10 00 10 2830.26 35322.08 II 0 0 29.33 35333.69 II 10 28.91 35338.9a ii 100 150 27.19 35360.a3 IV 10 26.a9 35369.18 IV5. 20 22.oa 35U2U-9U i n 2 15 25 21.52 35a3i.a7 11 3 2 25 50 20.59 35aa3.i5 11 30* 20.13 35aa8.93 IV 6 25 18.90 35a6a.39 11 5 a ao 50 a 18.67 3$a67.28 11 0 16.91 35U89.U3 0 10 5 16. oa 35500.ao 11 0 15.3a 35509.22 2 35 25 13.95 35526.76 IV 1 i 30 12.30 355a7.59 II 0 5 n.a5 35558.3a II 3 10 35 09.87 35578.32 III 00 0 09.18 35587.06 III 0 07.25 35611.52 00 5 o6.aa 35621.80 II 1 a 15 oa.98 356ao.33 III a 30 ao 02.91 35666.6a IV 3 25 ao 02.53 35671.a8 II 5o 02.03 35678.08 IV 3 ao 75 01.23 35688,03 III 10 2797.97 35729.73 10 97.70 35733.17 10 5oo 300 97.01 357ai.93 IV 3 20 60 96.10 35753.62 III 10 30 200 250 30 93.2a 35790.21 II 6 200 150 91.9a 35806.87 III 1 10 15 89.89 35833.18 III 00 88.93 358a5.5l II 5 88.a3 35851.93 2 20 35 86.aa 35877.53 II lv 35o5'd.d r-5s5p6pl)1 128 TABLE XI (a) (continued) R B H J l J2 J3 A a i r l . A . vac. Excit, 5 2785.51 35889.50 00 10 10 8U.83 35898.26 II 1 10 15 82.61 35926.90 II 10 80.U5 35951*. 80 1 25 79.66 35965.01 IV 1 5 25 79.16 35971.1*8 II 3 5 2 35 78.10 35985.20 II C 1 5 77. OU 35998.9U II C 5 76.U9 36006.06 0 75.73 36015.92 0 6 15 73.97 36038.76 . IV 73.18 360U8.90 III ? 2 Uo Uo 72.67 36055.53 iv 5; 3 50 Uo 72. IU 36062.55 III 5; 5 70.72 36080.89 5 70.30 36086.36 6 20 200 300 Uo 69.66 3609U.70 Arc 10 69.23 36100.30 0 68.53 36109.U3 3 1 20 30 67.15 36127.56 II C 5 66.5U 36135.52 1 62.27 36191.36 II 5 61.60 36200.lU U 30 6o 61.09 36206.83 III 5i 0 10 60.30 36217.19 III 2 1 20 25 59.50 36227.68 II 0 0 58.51 362U0.81 III 0 5 0 57.60 36252.77 II 10 10 55.6U 36278.5U IV 300* 53.92 36301.20 3 1 12 25 53.62 36305.15 II 3 10 25 52.26 36323.09 II 3 20 25 51.53 36332.72 IV 0 U8.63 36371.0U 2 25 25 U7.22 36389.69 IV 2 U6.33 36U00.83 III 5 200 250 8 U5.56 36U11.70 III Class. i l l s5p6pP-5s5p6dP; TABLE XL (a) (continued) 129. R H J l J2 J3 " X a i r l . A . C K vac. Excit. Class t 1* 8 27li3.20 361*1*3.02 , IV 10 ii2.1iii 36L53.11 3 1 20 35 5 liO.32 36L81.31 II 1 10 35 39.58 361*91.16 II 0 39.01 361*98.75 2 20 30 38.53 36505. ll i IV 5 200 300 37.893 36513.6k IV 2 36.81* 36527.68 IV 10 25 36.7k 36529.01 III 0 35.9li 36S39.69 5 35.U5 3651*6.2h 0 32.52 36585.11* IV 1 10 25 27.98 3661*6.28 II 10 27.Ll 36653.91* 10 15 26.96 36659.-98 iv 5i 6 1*00 250 26.33 36668.1*5 V 10 1 5 2L.77 36689.1*1* IV 6 200 250 20 214.20 36697.11 IV 10 23.10 36698.1*6 00 5 15 22.2U 36723.53 11 00 21.22 36737.29 .11 0 20.36 3671*8.90 0 20.15 36751.71* 0 19.1*8 36760.92 00 19.09 36766.19 11 0 18.93 36768.36 0 10 17.50 36787.70 IV 0 00 15.93 36808.96 IV 10 15.01 36821.1*3 III 0 li 20 13.19 3681*6.12 IV 7 20 200 200 30 11.58 36867.99 II 1 20 11.05 36875.20 II 10 10.26 36885.91* . 3 IV 5l8s\-5|5p5d f i 130, TABLE X I (a) (continued) R B H J l J2 J3 " X a i r I.A. G'K vac. Excit. Class*. 00 0 2708. ii2 36910.99 I l l 0 06.61 36935.67 0 8 10 05.99 3691*1*. 13 II 0 3 15 05.37 36952.59 II 5 10 30 i5o 10 03.1*7 36978.56 II C 0 01.52 37005.21* 2 12 20 00.09 3702U.83) III li 75 200 20 2697.61 37058.86 II 7 5o 200 20 95.U7 37088.27 II c 3 . • li li liO 150 95.11 37093.22 i l l 5s5p.£5!5p6p;P) li 30 100 10 9l*.l*8 37101.90 I I 0 10 5 93.90 37109.88 IV 0 0 10 93.51 37115.28 IV 0 20 92.92 37123.38 IV 10 92.60 37127.79 li 50 150 10 91.86 37138.00 I I 1 10 90.97 37150.27 IV 1 15 20 90. IU 37161.71* IV 3 15 100 5 89.03 37177.07 I I c 00 10 10 88.27 37187.56 IV 2 10 50 86.50 37212.07 iv 5s5p5d £-5s9sK 6 5o 250 10 8U.li8 372U0.07 II c h 2 25 2 83.76 37250.05 I I 2 10 25 83.15 37258.52 I I 1 25 82.06 37273.66 I I 3 30 100 10 80.52 37295.06 I I 3 2 6 5o 300 8 79.83 3730l*.80 i l l 5s5p\-5#p6p\ 0 10 15 78.37 37325.13 II 2 20 50 77.13 3731*2.1*1 II 1 10 71*. 12 3738U.U3 II 0 10 73.28 37396.18 IV 5 72.20 371*11.29 1 10 71.82 371*16.61 II 1 25 20 70.11 371*1*0.56 II 0 00 69.20 371*53.37 131. TABLE XT (a) (continued) R B H J l J2 J3 "A-air l . A . C K vac. Excit 1 8 15 2668.80 37U58.9U III U 50 100 66.67 37U88.85 III 5 66.08 37U97.1U 15 65.57 3750U.31 1 3 10 6U.86 3751U.30 II c 0 6U.58 37518.2U 15 20 63.11 37S3&.9S 5 5o 200 8 62.10 37553.19 II 6 80 75 200 10 61.11 37567.15 II c 0 59.63 37588.05 100 59.20 3759U.13 0 5 58. U8 3760U.30 II c 3 Uo 20 100 10 57.70 37615.3U II c 1 15 15 56.25 37635.8.7 II 2 15 20 5U. 88 37655.28 II c 0 20 10 53.53 3767U.U3 IV 0 00 53.10 37680.5U III 5i 10 51.02 37710.09 5 50.62 37715.78 ll 100 35 200 10 U9.79 37727.59 II c 3 75 i5o 10 U8.59 377UU.68 III 5: 20 U8.U8 377U6.25 II 0 10 10 U7.U9 37760.36 II 5 U6.82 37769.91 0 10 5 U6.U0 37775.91 II 0 5 5 U6.10 37780.19 III 2 5 30 UU.86 37797.90 II 5 100 100 U2.86 37826.U8 III 3 20 Uo U2.06 37837.9U II 20 Ul.89 378U0.37 II li 50 60 U0.29 37863.30 V 10 20 39.32 37877.20 III. 2 5 30 39.18 37879.36 II 5 38.5U 37858.55 6 200 120 10 37.81 37899.03 III 8 25 36.13 37923.17 IV 10 ' 300 200 15 35.52 37931.95 III 5s6sq-5s6p V t> H H H H M M M M M X» a, XA XA M M X A r>(0 X A a X A "to X A > M H H U M w c o XA. XA _co ° X A x£ m X A * to a XA CO X A NMMFH M H vO vo Oh CL. X A X A 'co HOI X A X A XAVC> a a, X A X A X A X A M U M M M M M > > M M H M M M M M M M M M M O r— C— ON M O N O X A C O X A ON <A M O C- o CO ON VO OO _=t cvj o _cj ONXA O CM NO C O XA CA S3 XA M XA CM P—NO O ON fAOO NO CM CO CA H CO XA <A ON CO _=T O XA O XA r-— ON r— \o NO CA C"\ \Q vO CO o NO r— oo j _ c c r o r — O ao ao CA XA r > - r - - o - c o - c f o o C O O N i—i f A _ J _ J C X XA C O CO C O O N O M CM CM O N O N O O O O O O O O O M M M M N r > c o c o c o c o co c o c o oo oo oo co co oo f A C A f A f A f A fA CA CA CA CA CA CA fA <A fA OO CM (AvO M XAvO O CM _Cf M M CM CM CM CO CO CO CO CO CA fA CA CA CA M O XA CM O O ON XA f - ON O H <A J CM CM CM fA CA fA « A co co co co co co co CA CA CA CA fA CA fA _CT CM r—i XA O M0 O NO r— CM fA St St -cJ XA CO CO CO CO DO (A CA CA fA CA O- f - _ c j CO M CM f A X A C - CO LA XAXA XAXA CO CO CO OD CO rA fA CA fA fA O M N O O C-ON CM O CM ON CM CM CM C—NO C O M JNOCO t— o -=r XA CM CM MO CM O N ON ON O ON r— OO X A c O M M M CM r— M CO CO ON XA CM _=t O S3 O C— CO ON M t— fA r - H W CM CM M M XA fA CM oo M ON CA M rA M O C O C -fA fA fA CM CM NO CM vO 1A -^ f _3 _=t fA CM CM CM CM CM CM CM CM CM r-i CM CM CM ON ON NO XA-CCT M M M M M fA CM O O ON CO vO M M M M O O O XA fA ON CO XA O O ON ON ON XA CM J J CM M M ON ON ON ON ON X A XA O O O X A CM O CM fA CM XA O _ J O M O CM CA O O XA CM M t— o o XA O fA XA O O XAXA M CM _ct CM fA O O O CAMO 3D XA O CM X A O fA CM XA O O O fA CM CA O O fA O M O O fA r-i XA CM o o M O St o o CM o o CM XA XA M O M XA O r-i CM O XA O CM o XA o r-i co fA M -CJ O M CM M CM XA M CM O CA O CO M CM O r-i NO c o C M M 133. TABLE XI" (a) (continued) R B H J l J2 J3 A a i r l.A. G"K vac. Excit. Class.   l  "Xai   C K . xc: 5 2 2587.97 38628.83 5 75 100 30 85.99 38658.U0 II 00 5 10 8U.36 38682.77 II 00 10 83.6U 38693.55 IV 0 81.58 3872U.U2 u 35 30 80.92 3873U.32 IV 10 80.16 337U5.72 7 20 i5o 150 79.20 38760.1U II 15 77.82 38780.88 5 100 100 5 77.52 38785.39 III 15 77.25 38789.U6 1 5 10 30 76.05 38807.52 II 3 20 Uo 50 75.55 38815.06 II 10 7U.16 38836.01 II 10 73.60 388UU.U6 u 25 100 20 73.03 38853.06 II 5 71.8U 38871.03 5 71.32 38878.89 10 70.39 38892.95 00 20 70.18 38896.13 IV 00 20 10 69.68 38903.69 III 00 10 69.16 28911.57 IV 0 68.75 38917.78 U 30 100 20 68.01 38928.99 III 10 67.82 38931.87 II 0 66.85 389U6.57 0 66.61 38950.21 0 66.U1 38953.25 9 250 Uoo 6U.52 38981.95 IV 100 6U.36 3898U.38 V 0 63.70 3899U.U1 1 10 Uo 63.68 39003.8U III 3 25 50 U 62.22 39016.93 IV 10 61.78 39023.63 IV ! 0 60 ..52 390U2.83 5 75 200 20 59.60 39056.86 I l l 0 59.38 39060.2i 25 58.07 39080.21 I'o .1,3 13U TABLE Xt/~ (a) (continued) B H J l J2 J3 A .air l . A . C K vac. Excit. Class. 10 10 2557.2U 39092.89 10 56.80 39099.62 5 55.10 39125.62 10 20 5U.59 39133.U3 IV 20 53.63 391U8.1U 0 25 52.63 39163.U7 IV 0 12 25 5 51.91 3917U.52 III 1 25 75. 50.U1 39197.55 III 5 100 120 •30 50.21 39200.62 III c 10 Uo U9 .19 39216.30 I I I 2 20 Uo L8.20 39231.87 I V 00 5 25 U6.98 39250.U7 II 10 20 U6.37 39259.87 1 15 Uo U5.38 39275.IU IV 2 10 Uo 20 UU.77 3928U.55 II 10 30 UU.36 39290.88 III 3 10 50 20 U3.68 39301.38 II 10 U2.66 39317.IU 2 10 200 Ul.93 39328.U3 IV 0 U0.93 393U3.90 1 25 5 U0.U1 39351.95 II 1 25 20 38.69 39378.61 II 5 38.22 39385.89 IV 10 500 500 u 37.81 39392.26 IV 2 10 5 2 37.15 39U02.50 n 1 15 Uo 36. OU 39U19.7L IV 0 10 35 35.38 39U30.00 IVI 1 20 Uo 3U.01 IV 1 15 30 20 33.U5 39U60.03 II 3 L5 5o 33.05 39U66.26 IV 2 # 10 31.83 39U85.27 III 5 31.10 39U96.66 6 Uo 300 300 200 30.71 39503.05 Arc U Uo Uo 10 30.10 39512.26 i l l 5 28.65 3953U.91 i l l 5s5p,'tf-5s5p6pD TABLE XI (a) (continued) 135. R B H J l J2 J3 Xair l.A. CK vac. Excit. Class. 10 2528.U5 39538.OU I l l 5 27.72 395U9.L5 3 20 50 27.18 39557.90 IV 2 10 Uo 25.81 39$19.3$ IV5s5o5d d°-5s5p6oF 1 12 20 25.25 39588.13 IV " ' i li 25 100 2U.85 39$9h.kO IV 5 21.10 39606.16 0 30 6 23.21 39620.12 II 0 10 25 21.56 396L6.0lj 1 20 Uo 20.67 39660.OU i l l 5s5ft?-5l5pUfFJL 2 10 5o 18.99 39686.U8 rv 5s5p6sp;r5s5p6P\ 8 12 2 18.35 39696.56 0 15 15 17.6U 39707.75 IV li 25 100 U 16.U8 39726.05 IV 0 10 10 16.03 39733.15 IV 0 15 15.66 39738.99 i n 15 15.33 397UU.21 5 15.00 397U9.U2 12 1U.60 39755.7U 5o* 13.87 39767.28 IV 10 . 25 13.29 39776.U6 i n 1 25 35 12.99 39781.20 rv 2 2 10 60 10.78 39816.21 rv 12 10.05 39827.79 0 20 09.50 39836.67 rv 5P^5S5P6P V 15 08.8U 398U7.15 20 u 08.58 39851.28 i n 0 8 25 07.70 39865.26 IV 0 06.32 39887.20 0 05.91 39893.72 15 05.15 39905.82 i n 0 03.88 39926.06 0 03. Uo 39932.11 0 03.06 39939.13 0 01.8U 39958.60 0 01.65 39961.6U TABLE Jg? (a) (continued) 136., R B H J l J2 J3 \a±r l.A. vac. Excit. Class. 10 3 15 50 10 2500.88 39973.9k I I I 20 00.18 39985.13 I I I 10 200 i5o 100 2li99.82 39990.88 III 3 30 125 "99.20 kOG00.80 IV 5 98.67 k0009.28 1 25 liO 98.05 k0019.21 I I I 0 8 15 10 97.50 k0028.02 I I I 00 25 97.29 U0031.38 I I I 5 96.10 koo5o.k6 0 10 30 95.55 k0059.29 IV k 100 75 9U-6U k0073.90 r v 20 92.95 k0101.06 25 8 92.50 k0108.29 i n 10 8 92.22 k0112.80 i n 10 150 200 200 91.79 k0119.72 i n 10 8 91.03 k0131.95 i n k 30 100 8 90.38 k01k2.k3 r v 3 100 150 89.15 kOl62.26 r v 12 87.66 kOl86.30 5 86.66 k0202.k6 10 86.36 k0207.31 3 20 100 85.2k k0225.k2 i n 0 8k. 10 k02k3.88 1 20 5o 82.32 k0272.73 IV 1 10 5o 10 81.73 k0282.30 i n l i 30 6o 10 81.2k k0290.25 i n 1 30 5o 80.81 k0297.23 i n 2 10 50 8 79.8k k0312.99 II 100 100 20 on CJ 78.56 L0333.80 i n 5 78.19 k0339.82 i n 0 20 77.90 k03kk.5k i i 5 77.70 k03k7.80 10 10 76.5k k0366.69 ni 10 76.10 k0373.86 00 10 30 70.71 k0380.22 II 5 75.3k k0386.26 III! 1 10 50 15 75.01 k0391.6k II 0 8 50 7k. 50 k0399.96 IV liO 72.87 kOk28.22 5s5pl-5s5p6p 3S 1 137. TABLE "XI (a) (continued) R B H J l J2 J3 "Xair l . A . <CK vac. Exc: 15 2U72.2U LOU36.88 5 71.89 U0Uu2.60 10 30 71.55 LOLL8.17 III 15 70.8U UOL59.79 15 10 70.23 LOL69.77 III 10 200 300 20 69.63 LOL79.60 III 20 68.68 U0U95.18 III 7 30 200 67.66 U0511.91 IV 5 67.52 L051U.21 10 66.72 U0527.3U 5 6U.50 U056U.00 0 10 20 6U.36 U0566.31 IV 0 10 25 u 6U.01 U0572.O7 II 0 10 25 63.5U L0579.81 III 5 63.36 U0582.77 10 61.83 L0607.98 1 15 5 50 61.32 U0616.39 II 30 L06L5.62 V 1 12. 25 51.69 U0676.37 II 15 u 57.U7 L0680.01 III 2 10 U o 56.8U U0690.U3 IV 0 10 30 56.39 ' U0697.56 rv 10 55.90 L0706.OO 2 10 U o 55.51 U0712.U7 rv U o 5U.88 L0722.91 rv 5 53.03 U0737.02 3 20 l5o 52.51 L0762.25 rv 3 20 100 51.87 L0772.89 i n 00 25 51.16 L078L.70 IV 15 U8.57 L0827.82 2 15 U o 10 U7.89 L0839.16 rv 5 U7.2U U0850.00 7 5o 200 U6.83 L0856.85 IV 0 10 150 U5.5U U0878.39 rv 0 10 30 UU . 6 0 L089U.11 i n 0 UU . 0 8 U0902.81 Class. l l 5s5p6t>D-5s5p6dD TABLE XI ( a) (continued) 138.. R B H J l J2 J3 %air l . A . <5"K vac. Excit. Class. 0 3 2UU3.8U U0906.82 I l l 3 5 U3.63 U0910.3U 10 U2.85 U0923.39 0 10 25 U2.13 U0935.U6 III 20 Ul.79 U09U1.15 00 20 Ul.23 U095o.5li III 15 U0.7U L0958.76 15 Uo.Uo U096U.U7 0 20 25 10 39.57 U0978.U0 II C 5 50 100 100 20 38.75 U0992.17 II C 12 10 37.7U U1009.15 III 0 2 30 10 37.5U U1012.52 II C 5 10 15 125 10 36.57 U1028.33 II U 10 60 15 3U.71 U1060.17 II C 3 20 5o 3U.38 U1065.7U IV 3 10 30 5 33.8U U107U.85 III 30 33.26 U108U.63 IV 30 32.80 U1092.U0 25 32.12 U1103.88 12 60 20 31.73 U1U0.U8 III 3 10 ilO 10 31. UU U1115.38 II c 10 30.73 U1127.38 0 00 30.0U U1139.06 II 0 29.70 UllUU.81 II 25 8 29. UO U11U9.89 IV 20 5 28.86 U1159.72 III 15 27.61 U1180.22 0 26.77 U119U.U7 a 50 300 15 26.36 U1201.U3 111 5s5p5dfes5plA IlO 26.19 U120U.32 rv i 10 35 10 25.97 U1208.06 i n Uo 25.52 U1215.70 l 10 35 2U.87 U1226.7U i v 5prf5s5p6p V 15 2U.6U U1230.65 139 TABLE XI (a) (continued) R B H J l J2 J3 A a i r I.A. <a"K vac. Excit. Class.  J l 2 J 3 " X a i I . A  =U o U o 2U2U.31 U1236.26 100 U o 23.97 U12U2.0U 5 23.78 U12U5.28 75 U o 23.5U U12U9.36 10 22.90 U1260.25 10 22.00 U1275.58 1 50 30 21.16 U1289.90 1 8 30 30 20.13 U1307.U6 10 50 19.20 U1323.51 75 18.96 U1327.61 10 18.75 U1331.20 7 75 250 l 5 d 18.26 U1339.57 10 17.27 U1356.U9 0 17.06 U1360.09 20 10 16.00 U1378.23 75 75 15.86 U1380.62 7 l5o 125 15.59 U1385.25 10 15.17 U1392.UU 0 1U.68 U1U00.8U 10 1U.36 U1U06.32 0 20 1U.07 U l U l l . 3 0 30 30 13.22 U1U25.71 0 12.88 U1U31.72 3 35 150 12.01 U1UU6.66 6 50 125 20 11.37 U1U57.65 2 25 150 15 10.86 U1U66.U2 5 10.U0 U1U7U.33 15 09.U2 U1U91.19 0 08.92 U1U99.80 0 08.61 U1505.1U U o 20 07.62 U1522.20 2 10 U o 07.50 U152U.27 0 10 25 06.08 U15U8.77 0 10 25 u 05.71 U1555.16 25 05.00 U1567.U2 6 100 200 100 03.6U U1590.9U I V I I I I I I I V I V IV$s5p5d a-5s5popD I V iv 5p%-5s5p6pV III 5s5fD-5s5p6p ,^ i n I V 5s5r)fe-5s6p *l£ i l l 5s5p6p^5s5p7saR! I I I I I I 5s25p6p D-d" I V 1 i n 5s5p5dtf-5p' 5 P , I V i v 5s5p5d b-5s5popto I I I 5^7p5d tt-x^ i v ' ' ' . K Iv5s5p5dc75s5p6pp i v I I I I I T A B L E X L ( a) (continued) lUo. R B H J l J2 J3 / l a i r l . A . C K vac. Excit. Class. 8 8 500 500 20 2U03.01 U1601.8U IV 5s6pl£-5s6d \ 3 t -3 10 12 35 10 01.7U U1623.83 II 10 10 01.38 U1630.07 III 5s5p6pSr5s5p6di2 15 01.09 U1635.09 lOw 00.9U U1637.87 12 00.60 U16U3.59 III 5 99.70 U1659.20 II 10 50 2399.21 U1667.71 rv 00 5 99.00 U1671.35 IV 5s5p6pDr5s5p8s3lf 2 98.Ul U1681.60 III 5 97.55 U1696.55 5 96.83 U1709.07 5 5 30 100 15 96.53 U171U.29 III 5s5pPl-5s5p6pD 10 ho 95.66 kl729.UU 0 10 25 95.15 U1738.32 IV 20 9U.29 U1753.30 0 u 93.50 U1767.08 III 0 10 30 15 92.23 U1789.25 II 5s5p6pD-5s5p6dP0 15 91.92 U179U.66 III 0 90.98 U1811.08 15 90.20 U182U.73 5 35 75 89.85 U1830.85 IV 5s5p6sMp>5s5p6pk i 10 Uo 89.25 U18U1.36 IV i 5 U5 87.90 U1865.00 rv 20 30 87.82 U1866.UO 11 c 12 25 87.61 U1870.09 25 100 86.7U U1883.59 rv i 5 0 86.61 U1887.62 11 0 86.06 U1897.28 10 200 100 Uoo 200w 85.78 U1902.19 Arc 5 8U.90 U1917.65 0 8U.0U U1932.77 5 83.83 U1936.U6 5 83.58 U19U0.86 10 200 100 Uoo lOOw 33.26 U19U6.U8 Arc 1 00 10 15 82.22 U196U.79 III 5s5p6pt-5s5p7sP 10 81.96 U1969.37 . 1 00 12 81.60 U1975.71 III 10 81.2U U1982.06 20 80.38 U1997.22 10 80.05 U2003.0U i u i * TABLE ;X'I (a) (continued) B H J l J2 J3 "A.air I.A. vac. Excit. Class. 00 5 2379.U9 U2012.92 IV 10 50 77.99 U2039.U2 IV 1 10 5o 10 77.73 U20UU.01 III 1 8 50 77.U8 U20U8.U3 IV 15 50 77.21 U2053.21 iv5s 1 8 6o 76.28 U2069.8U IV 6 U o 250 20 7U.98 U2092.86 i n 8 73.U7 U2119.63 20 73.06 U2126.90 i i 3 35 100 72.89 U2129.92 IV 20 71.06 U2162.25 5 70.78 U2167.UO i n 5 15 70.2U U2177.01 7 200 200 10 69.9U U2182.35 IV 00 69.15 U2196.U1 1 20 68.50 U2207.98 IV 15 30 68.3U U2210.8U 3 20 100 10 67.01 U223U.55 i n 0 25 65.63 U2259.18 IV 15 62.51 U231U.97 2 20 75 61.67 U2330.01 IV 0 61.U9 U2333.2U 5 60.90 U23U3.82 10 60.56 U23U9.91 2 30 60 60*30 U235U.58 rv5s 0 59.89 U2361.93 2 10 50 59.56 U2367.86 IV 0 5 U o 58.97 U2378.U5 i n i 3 25 100 U o 58.2U U2391.56 I I 2 30 100 5 56.60 U2U21.06 i n 2 55.08 U2UU8.U3 i n 2 30 5U.92 U2U51.31 IV 25 5U.79 U2U53.65 10 5U.20 U2U6U.U7 5 s 5 ^ 5 s 6 p Pt Ih2. TABLE XI (a) (continued) R H J l J2 J3 X air l . A . (TK vac. Excit. Clasps. 5 5 o o 2 1 1 1 1 U 0 0 2 0 10 0 75 200 10 5o 150 lo 20 20 50 5o 12 5o 75 15 12 0 0 20 10 60 25 100 io 50 i o * 15 20 150 20 15 90 15* 15 15* 15 15* 15 125 200 6* 10* 20* 25 l * 5 0 20 20 15 10 30 10 10 Uo 25 10 30 2353.91 52.81 51.25 50.69 50.15 U9.75 U9-U3 L8.77 U8.U7 L7.68 U6.62 U3.88 U3.U2 U2.76 1*2.39 l i l . 53 Ul. 13 39.1*2 38.99 37.95 37.33 36.16 35.77 35.1+7 3U.93 3U.59 3U-U7 3U.1U 32.35 31.81 31.06 30.55 30.29 29.91 1*21+69.52 U2U89.37 1+2517.37 1+2527.1+9 U2537.UU U25UU.68 U2550.U8 1+2562.1*3 1*2567.36 1*2582.18 b2601.ll 1*2651.20 1+2659.57 U2671.58 1*2678.32 1*2693.99 1+2700.37 U2732.U9 1*271+0.31* 12759.35 1*2770.68 U2792.10 1*2799.21 l*28ol*. 71* U281U.82 1*2821.05 1*2823.25 1*2829.30 U2862.16 U2872.09 U2885.88 1*2895.26 1*2900.01* 1+2907.01* III 5s5i^-5s5p6PDau III III III II lV5s5p5dF-535p6P,b 11 i n 5s5p5d4D-5s5pufF, 11 c i n 5s5p6pi»-5s5p6dif i n 5s5p6pi3-5^p8s3p; 11 c I V IV 3 3 III 5s5p6d5-5s5pUfF l rv iv v rv , • i n 5s5p6ps-5s5p8sP, i n i n 11 ** Intensity stared (*) in Column J l means the intensity on 3-metric vacuum grating only. TABLE X* (a) (continued) 11*3. R B H J l J2 J 3 'Xair I .A. vac. Excit. Class. 0 2329.70 U2910.91 7 1000 500 0 29.17 U2920.67 I V 15 28. UO U293U.86 5* shldr 28.07 U29U0.9U io* 15 27.78 U29U6.29 5 50 150 15 27.1*9 U2951.6U I I I 5* shldr 27.23 U2956.U3 2* 26.75 U2965.29 2 20 100 0 26.2U U297U.71 I V I** 2U.63 U300U.U6 1* 21.18 U3012.79 2* 23.88 U3018.3U 1* 23.56 U302U.26 12* 23.36 U3027.96 V I V 3 N , 2 20 100 5 22.2U U30U8.71 i l l 5s15P5dlf5s5plifF3 10 22.08 U3051.68 20* 15 21.80 U3056.87 I V 20* 20 21.33 U3065.58 V I V 20 20.23 U3085.99 I I I 5s5pp;-565p6p3pi 1 3 30 120 10 20.09 U3088.59 0 19.91 U3091.93 0 19.77 U309U.53 15* o 19.67 U3096.39 I V V 15* 20 18.71 U311U.23 V 15* 15 17.96 U3128.17 I V I I I 15* io 17.61 U313U.68 12* 17.37 U3139.15 iv 5s5gG-5i£8h R * 8* shldr 17.02 U31U5.66 1 20 50 15 16.73 U3151.06 I I 0 20 50 5 16.38 U3157.58 I V 15* U3173.61 00 30* 1*0 1U.3U U3195.61 I V 25* 25 13.73 U3206.99 I V io* 15 13.17 U3211.85 V ihk. TABLE X I (a) (continued) R B H J i J2 J3 Aair l.A. Cs'K vac. Excit. Class. 10* 2313.37 h3213.72 rv 10* 13.2h h 3 2 l 6 . l 5 V 3* 12. lh h3236.70 2 70* 150 11.83 h32h2.50 i n 5s5p6pt)rc5 , . 3 3 100* 200 15 10.65 h326h.57 i l l 5s5p?-5s5p6pP 1 25* 75 15 09.19 h3291.92 I I i n 10* 07.91 h33l5.92 rv 0 10 07.52 h3323.2h 0* 06.8h h3336.01 i l l 5s5p6pD-5s5p6dD° 12* 20 06.h9 h33h2.58 10* 20 5 05.h9 h336l.37 rv . • » 20* 25 05.26 U3365.70 i n 3 10 60 25 Oh. 31 h3383.57 I I 20* 25 Oh.02 h3389.03 rv5s5o5d a-5s5p6p!D 30* 10 02.78 h3hl2.39 I V > L 20* 20 10 oi.ho h3h38.hl I I I 10* 0 01.10 h3hhh.07 I V 1 00 20 75 0 2299.92 h3h66.36 I I 1 30* 50 20 99. hO h3h76.l8 I I c ho* ho 99. lh h3h81.10 0 60* 60 98.85 h3h86.5 rv 5pi?r5s5p6pHP1„ h* 98.37 h3h95.66 >i 'a. 0 30 5 97.19 h3518.00 rv ^ , o 10* 75 96.70 h3527.h7 Hi5s5p6p D - C , 10* 0 95.91 h35h2.25 rv 15* 20 15 95.69 h35h6.h2 i n 20* 10 9S.3S h3552.68 rv v 25* 20 9h.85 h3562.36 rv 10* 12 5 9h.62 h3566.72 8*) 9h.59 h3567.29 15*) -> 9L.28 h3573.18 10* 0 9h.00 h3578.h9 rv 10* 93.7h h3583.h3 rv 10* 5 92.10 h36lh.6o rv 10* 10 91.85 h36l9.36 rv 10* 8 90.97 h3636.11 TABLE xf (a) (continued) R B H J l J2 J3 1 air I . A . <^"K vac. Excit, Class OO bO* 25 2290.68 b36bl.63 I V 15* 10 89.95 b3655.5b I V V 150* i5o 88.89 b3675.75 I V 2* 88,bO b3685.10 15* 15 5 88.25 b3687.96 I I I 100* 150 15 87.8b b3695.79 I I I 2* 5 10 87.0b b3711.07 1000 boo 86.67 b37l8.1b I V 15* 25 86.18 b3727.5l I I I 12* 25 86.08 b3729.b2 I I I ! 0* 85.89 b3733.05 20* 50 10 85.62 b3738.22 I l l 10* 85.50 b37b0.5l I I I I V 20* 30 8b.69 b3756.21 I V 15* 10 8b. 37 b3762.3b 17 25 8b. 27 b376b.25 i n 5s] 0*d 8b.07 b3768.08 2* 82.96 b3789.36 6* 12 82.80 b3792.b2 I I I 5* 82.59 b3796.b5 0* 82.26 b3802.78 0* 81.1b b382b.28 I I 2* 1ft 80.2b b38bl.57 I I I 2* AV/ 80.00 b38b6.19 I I I 25* 28 79.07 b386b.08 V 6* 10 78.50 b3875.0b I I I 3* 77.13 b3901.b3 5* 15 76.56 b3912.b2 h* 76.17 b39l8.01 3* 75.72 b3928.63 5* 0 75.79 b3931.13 20* 12 75.17 b3939.2b I V V 20* 18 7b. 71 b39b8.12 IY 5S5P5 b* 7b. 29 b3956.2b I V 5S5P5 5I5P5C§-5P Pa 5sbf^-5s6d D *4. 11*6. TABLE ti (a) (continued) R B H J l J2 J3 A air I . A . vac. Excit. Class. 20* 15* 10 10* 20 1000* 500 i o * 15 15* 25 30* 25 10 20* 25 20* 25 20 2273.83 73.30 72.95 71.97 70.12 69.97 69.67 68.53 66.33 66.13 1*3965.13 1*3975.37 1*3982.11+ 1*1*001.11 1*1*031.11* 1*1*039.28 1+1*01+5.69 1*1*067.81 1+1+110.58 1*1*111*. 1*7 I I I 5s5p5d D - X 2 , I I I I V I I I X u i v 5piJ5s5P6p IV 5s5'p5d b-5s5p6r]p I I I I V * 3. 3 00 1* 3 1 0 35 i5o ioo I** ioo ]5o io* io 20-* 20 30* 50 300 200 15* io 5o* ioo 15 10 60 1+0 13 200 200 100 1*0 100 0 5* 15* 15 3 1+0 200 100 20 100 5o* 50 20* 0 30* 30 3* 20 5* 30 30* 1+5 25* 50 30 65.55 65.31* 65.01 61+. 22 63.1*5 62.69 61.61+ 61.25 60.79 59.61+ 59.01+ 58.11 57.13 56.29 55.51 55.32 51+.96 51+.27 53.98 53.52 53.25 52.80 51.97 50.82 1*1+125.76 1+1+129.85 1+1*136.28 1+1+151.67 1+1*166.69 1+1+181.52 1+1+202.02 1+1+209.61+ 1+1+218.61+ 1+1+21+1.13 1*1*252.88 1*1*271.10 1*1*290.32 1+1+306.60 1*1*322.11 1*1*325.85 1+1+332.92 1*1*31*6.1+9 1+1+353.37 1+1+361.21+ 1*1*366.56 1+1+375.1+2 1*1*391.77 l+l*l*li*.l*l* Arc I V 5 l l * f F r 5 l 5 g ^ i l l 535p5daVx5z v I I X iv 5lltff£-5sa5gTi I V I V I I I Ai*c i n 5s5p5d§-5s5pl*fF, v 5slifr-5B'6d"T) I I I iv 3 Arc o ,. iv 5s?p5d c-535p6pp. •1 *4 I V I I I I I I I V I I I lh7. TABLE XI ( a) (continued) R H J l J2 J3 A -air l . A . 6"K vac. Excit. Class. 3 00 1 00 2 10*d 2250.U2 l5*d 5 50.02 10* 10 U9.10 5* 25 1*8.75 2* 1+8.16 1 a* 1*7.96 12* 1+7.50 1 50* 50 1+6.06 1 80* 75 U5.U5 15* 10 39.75 20* 5 h2.6o 30* 15 10 hi . 8 7 10 0 hi . 72 100* Uo hl.h6 h* 10; 39.71 100 200 25 39.51 8* 10 38.75 100 75 38.38 20* 15 37.85 5* 37.15 3* 36.85 2* 36.55 30* 5 36.23 35* 15 35.88 30* 18 35.77 20* 35.60 20* 10 31*. 39 3* 3 h . l 6 3* 33.87 3* 33.6h 25* 15 33. lh 100* 60 32.51 50 200 31.3h 30* •5 10 29.h3 1+1+1+22.33 hhh30.23 hhhh8.h0 hhh55.71 hhh66.98 hhh70.93 hhh80.03 hh508.5h hh520.62 hh53h.5o hl+577.19 hh591.70 hh59h.68 hh599.85 hh63h.69 hh638.87 hh653.82 hh66l.h0 hh671.97 hh685.95 hh691.9h hh697.93 hh70h.33 hh711.32 hh713.52 hh716.92 hh7hl.l3 UU7U5.73 1*1*751.51 1+1*756.15 hh766.l6 1+1*778.79 hh802.27 hh8h0.6h IY V V IV IV V II II III II II r v IV III III iv v Ill5s5p^ - 5s5p6P P, II 3 3 ni5s5p5d]J-5s5phfF IV IV i n V i l l 5s 5P P - X 2 r v i n 5s5p6p p - d * r v * r v IV r v iV5l6Pp-5s7sS r v ^ 1 1 11*8 TABLE XI' (a) (continued) R B H J l J2 J3 "Xair l.A. vac. Excit. Class.  J l ' .ai L . 10* 2228.83 1*1*852.70 30* 5 28.1*3 1*1*860.75 30* 25 10 28.12 1*1*866.99 5* 28.02 1*1*869.01 10* 27.92 1*1*871.02 1* 300 5oo 15 26.08 1*1*908.10 0 25.50 1*1*919.79 1*0* 10 25.27 1*1*921*. 21* 50* 10 25.06 1*1*928.68 0 30 150 1*0 21*. 1*7 1*1*91*0.59 0 30 100 5 2l*.03 1*1*91*9.1*8 20* 15 23.15 1*1*967.26 1 30 200 5 21.87 1*1*993.16 1*0* 15 18.08 1*5070.02 35* 25 17.53 1*5081.19 25 30 10 16.61 1*5099.69 20 5 16.17 1*5108.85 50* 1*0 15.62 1*5120.01* 20* 10 15.03 1*5132.06 70* 30 11*. 50 1*511*2.86 5o* 0 11.02 1*5152.61* 10* 0 12.81* 1*5175.69 80* 60 11.58 1*5202.1*1* 1 30 100 10 10.38 1*5226.97 0 10* 09.31* 1*521*8.26 20* 15 09.06 l*525U.oo 1 10 200 100 08.80 1*5259.31 00 1*0 100 07.22 1*5291.70 10 35 75 07.12 1*5293.75 15* 05.1*5 1*5321.88 35* 15 05-25 1*5332.15 25* 18 01*. 71 1*531*3.25 25* 12 Oi*.33 1*5351.06 IV r v r v r v ni5s5pp;-5i5p6pD ni5s5p5di^ 5i5pl*fF4j I75s5pV5l6pV 5. '»• III 14 rv5s5p5dc-5s5p6p5, i n 1 * i n r v V5sl*fFH-5s6dDj Iii5l5p6p -^5l5p6di20 v r v r v 3 . Iii5s5pp°-5s5p6p3s; 11 i n i n 11 r v v IU5i5pi5dDJ-5pP3. V5sl*fF-5s6dI) Ih9» TABLE XlT (a) (continued) R L H J l J2 J3 A a i r I.A. C^Kvac. Excit. Class.. ho* 20 2203.68 U536U.Ua III IV Uo* 30 25 03.52 U5367.73 Arc 8* 0 03.08 U5376.78 IV 60* 20 10 02.68 U5385.02 III So* 18 01.93 U5UOO.U8 IV 12* 01.39 U5U11.61 i l l 5s5p^5s5p6pD 50 25 00.93 U5U21.10 8* 2199.77 U5UU5.0U 12* 99.26 U5U53.51 IV 99.06 U5U59.71 II 100* 100 25 97.96 U5U82.U5 III 200* 100 N II 97.56 U5U90.73 III 15* 96.58 U5511.02 V 10* 95.71 U5529.05 5* 95.33 U5536.93 20* 12 9U.60 U5552.27 V 5sU#-5s6dD 200* 50 10 93.82 U5568.U7 III 3 3 25 93.65 U5571.99 30* 92.2U U5601.09 IV 20* 92.0U U5605.25 IV Uo* 25 15 91.25 U5621.90 60* 35 90.82 U5630.85 v5s5d p-5s6p p 15* 15 89.50 U5658.1U iv v 15* 5 89.23 U5663.77 V 5sUfF-5s6dD 15* 88.7U U5673.99 IV 1 1 20* 0 88.38 U5681.50 IV 20* 87.71+ U569U.86 V 15* 5 87.U1 U5701.96 IV 25* 20 10 87.15 U5707.39 30 100 Uo 86.U2 U5722.65 III 5l5p6 PP-5s5p6dr 50 120 20 85.81 U5735.UO i l l 5s5pl?-5i5p6pb( 35 100 85.30 U57U8.17 i n 5s5£k-5s)5p6p^ 30* 30 15 8U.66 U5759.26 IV 8* 83.58 U5779.79 V 83.1+ 1+5786 II c 150. TABLE " X I (a) (continued) R L H J l J2 J3 X air l . A . C K vac. Excit. Class., 7* 2183.09 35* 10 82.50 5* 82.03 10 80.hh (8* 79.38 (8* 79.25 30* 10 79.00 15* 78.L0 UO* 0 77.36 30 76.95 10 75.61 5 7h.93 5o* 150 20 7h.00 15 73.21 20 10 72.12 25 71.28 10 12 70.30 25 5 20 69.99 20 69.50 20 69.1h 10 68. Oh 30 5 67.36 200 100 66.88 25 5 66.16 15 65.81 (10 65.h6 (10 20 65.32 50 20 6L.91 (12 6h.50 (12 10 6h.28 6 6h.l6 10 63.62 20 20 62.95 15 62.55 100 ho 61.61 h5792.l6 I V h580h.53 I V h58lh.ho I I I h58h7.80 rv h5870.08 i n h5872.82 i n h5878.08 i l l 5s5p6pDi-5s5p6dlf h5890.71 I I I h5912.63 V h5921.27 I V h$9U9.^ h5963.91 h5983.78 i n 5p5d £-5s5p6pp h6000.28 rv5s h6023.56 rv h60hl.36 V h6062.l5 h6068.73 I I h6079.13 V 5shf^ -5s6dD h6086.77 V h6ll0 . l5 I I h6l2h.6l rv h6l3h.83 rv h6l50.l6 I I h6i57.6l i n h6l65.07 h6l68.05 5s6pff-5s6dij h6l76.79 V h6l85.5h V h6l90.23 I V h6l92.79 i n h620h.32 I V V h62l8.62 i n h6227.17 V L. U h62h7.27 iv 5s5 p5d F-5s5p6r> D 151 TABLE X I (a) (continued) J l J2 J3 Aair l . A . vac. 20 2161.06 1*6259.03 100 100 60.17 1*6278.09 100 100 100 59.86 U628L.73 20 58.91 1*6305.09 15 5 58.69 1*6309.80 50 15 56.86 1*631*9.30 ho 15 55.61 1*6375.31 h 0 51*. 98 1*6389.72 5o 25 5U.27 1*61*05.01 25 5L.02 1*61*10.17 60 30 30 53.62 1*61*19.01 10 53.31* 1*61*25.01* 10 52.83 1*61*36.01* 5 51.83 1*61*57.61 ho 15 30 51.09 1*61*73.58 50 15 50.68 1*61*82.1*1* 25 10 25 50.20 1*61*92.82 15 1*9.1*8 1*6508.38 20 1*9.01 1*6518.55 12 1*7.68 1*651*7.35 15* 75 100 1*7.36 1*6556.1,5 10 1*6.66 1*6569.1*6 20 1*6.00. 1*6583.78 5 1*5.60 1*6592.1*6 10 1*3.97 1*6627.87 50 60 1*3.02 1*661*8.51* 200 150 100 1*2.83 1*6652.67 100 80 20 1*2.20 1*6666.39 5o 10 1*0.98 1*6692.97 ao 10 1*0.31 1,6707.58 25 39.1*5 1*6726.35 h , 38.71* 3671*1.86 (30 37.99 U6758.25 (15 37.83 1*6761.31 ho 10 8 37.10 1*6777.72 Excit. Class. iv 5pi5-5s5p6pV rv * Arc rv rv i n ,, ^ V 5s6p^5s6dD i l l 5s5p^5s5p6pD I I I 5s5p5d T) - x i 1 I I I I I I I I I I I I I I V I I I I I I 5&p5d rtxl* v -Arc III v 5i*5s'P-5s8sS. I l l V 5sl*/F^5s6dD Arc III rv rv rv v rv i n rv i n . 3 i n 5 S 5 P P - 5S 5 P 6 P ^ Any starred intensity in J l stands now for intensity from 21' grating TABLE l i (a) (continued) R L H J l J2 J3 X air I . A . vac. Excit. Class. 3 1 60 20 2136.70 a6786.a7 I V 5o 0 35.99 a6802.02 I V 10 35.79 a68o6.ao IV5s5] 80 3a.53 a683a.02 I V 5 3a. 22 a6838.63 I I I 2 33.92 a68a7.ao I I I a 31.59 a68$8.60 I V 2 30.36 a6925.67 IV5S5] 30 29.11 a69a6.59 V 10 27.88 a6980.3a I V 8 27.71 a698a.o9 I V 25 5 5 27.52 a6989.17 I I I 15 27.17 a6996.02 I V 25 , 26.a3 a7012.36 I V 15 26.03 U7021.21 I I I 25 25.a3 a703a.a8 V ao 5 25.17 a7oao.23 V 6o 0 23.98 a7066.57 V 12 22.97 a7088.96 100 25 15 22.39 U7101.83 I I I I V 10 21.93 a7112.03 60 21.20 a7i28.2a i l l 5s 300 60 50 21.08 a7130.91 50 20 30 19.78 a7l59.80 I I c 20 19.18 a7173.l5 V 15 20 18.93 a7178.27 I I I ao 17.78 a72oa.32 I V 100 ao ao 16.79 a7226.39 I I I 60 20 150 15.U5 a7256.30 I I c 10 15.07 a726a.78 I I I 18 30 ia.93 a7267.92 I I I 15 15 ia . 8 3 a7270.l5 III5S5J 15 ia . 2 7 a7282.67 Iii5s5i 10 50 13.82 a7292.28 i n 12 13.36 a7303.02 •1 5163^-5^^ 5^5S5P6 P X5, 153 TABLE XI ( a ) (continued) R L H J l J2 J3 /\,air l . A . C k vac. Excit. Class. 10 2113-05 1*7309.96 (30 12.62 1*7319.58 V (30 12.1*9 1*7322.1*9 V 10 12.07 1*7331.90 III 20 11.51 1*731*1*.1*5 IV 10 11.18 1*7351.85 15 12 10.63 1*7361*.18 rv 25 30 10.30 1*7371.59 III 6 750 200 200 09.10 1*7398.75 II III 20 25 07.26 1*71*39.91 III 12d 06.75 1*71*51.39 rv 20 05.09 1*71*88.79 V 25 01*. 59 1*7500.07 rv 15 03.09 1*7533.91* rv 30 02.32 1*7551.31* rv 100 20$" 1*0 02.09 1*7556.51* 100 01.1*9 1*7570.12 IV 5pi1r5s5p6p S.; 100 01.31* 1*7573.51 V 5s6pP*-5s6d3D 3 150 100 60 01.070 1*7579.69 i l l 5s5p5d\iX7x 35 00.39 1*7595.02 v 3 25 25 00.19 1*7599.56 III 7 2099.28 1*7620.1*1 III IV 10 98.81 1*7631.07 III 5s5p5d 'P-X7,, 18 98.16 1*761*5.82 25 10 97.16 1*7668.53 i n 12 15 96.70 1*7678.99 i n 60s 5o 96.06 1*7693.51* i n 5o 95.01 1*7717.1*1* rv 30 100 91*. 30 1*7733.61 rv 25 93.71 1*771*7.06 v 15 91.98 1*7786.53 i n 15 91.1*2 1*7799.32 rv v 8 91.11* 1*7805.72 i n rv 10 90.71* l*78ll*.86 rv i n 35 8 100 90.1*0 1*7822.61* i n 5s5p5d'P3-xi TABLE XI (a) (continued) R H J l J2 J3 air I.A. vac. Excit. Class, UOO* 2 0 10 200 20 30 100 15 bo Uo 15 20 20 250 30 150 10 Uo 10 10 20 20 25 60 30 70 10 15 5o 5 50 15 15 25 0 100 10 100 0 10 i5o 300 20 5 5 Uo 25 25 200 2088.7U U7860.63 V 5s6pPl-5s6d D 87.82 U7881.71 II 87.28 U789U.10 IV 86.98 U7900.98 Arc 85.89 U7926.00 III 85.36 U7938.18 III 3 , 8U.60 U7955.65 III 5s5pE-5s5p6PD 8U.29 U7962.78 III 8U.06 U7968.07 III 83.89 U7971.98 III 5s5p5dl^ 5s15pUfFa 83.U5 U7982.ll IV 83.0U U7991.55 II C 82.75 U7998.00 II c • -81.51 U8026.82 III 5s5p5dP-X8 81.19 U803U.20 Arc 80.U6 U8051.05 v rv 80.19 U8057.28 II IV 79.27 U8078.5U 78.80 U8089.UO III 3 , 78.U6 U8097.27 HI 5s5p6pl^ 5s5p6dl2 78.06 U8106.53 in rv 77.98 U8108.38 III IV 77 .25 U8125.28 rv , , 76.70 U8138.02 V 5s5dD-5aUf F 76.28 U81U7.76 III * " 75.92 U8156.10 IV 5s5p5d a-5s5p6pP,. 75.19 U8173.0U ill 1 7U.82 U8181.63 II 7U.5U U8188.13 H , u 7U.30 U8193.70 lV5s5p5pF-5s5p6p-73.58 U8210.U3 rv 73.22 U8218.80 IV 72.U7 U8236.2U rv 72.28 U82U0.66 71.05 U8269.31 Arc 155. TABLE XI ( a) (continued) R L H J l J2 J3 ^air I.A. <3"K vac. Excit. Class. 15 2070.51 U8201.89 V IV , 3 I4 69.90 U8296.ll lll5s5p6sP^-5s5pUfF 1 15 69.69 U8301.01 IV V 12 68.U6 U8329.73 V IV 15 68.18 U8336.27 V UO 67.72 U83U7.02 IV 7 67.U8 U8352.63 IV U 67.28 U8357.30 3 3 10 67.02 U8363.38 V 5fSsPl-5s8s S 6 20 15 66.3U U8379.29 II 10 15 65.80 U8391.9U HI 5 65.U7 U8399.67 UO 6U.1U U8U30.8U 6 63.73 U8UU0.U6 , . . 50 10 63.33 U8UU9.85 III 5s5p5d^-5^ \ 35 80 62.70 U8U6U.6U II 2 62.32 U8U73.57 5 61.96 U8U82.50 10 61.37 U8U95.90 ,U 60.10 U8525.79 rv 15 10 59.63 U8536.86 V 1 10 59.00 U8551.70 II 25 30 57.67 U8583.08 III 50 57.11 U8596.30 V rv 20 56.7U U8605.0U rv v 10 56.03 U8621.82 III 50 55.01 U86U5.9U III IV 60 5U.56 U8656.59 V rv 6 5U.11 U8667.25 1 53.90 U8672.22 300 60 52.77 U8699.01 III 5s5p6pl>-5s5p6dlf 0 UO 10 52.28 U8710.63 II 10 51.83. U8721.31 i n rv 2 5 5o.99 U87U1.26 11 20d 50.8U U87UU.82 IV 156, TABLE XI (a) (continued) R L H J l J2 J3 Xair l . A . C K vac. Excit. Class. 12 25 30 0 20 2 10 1 1 300 5 10 10 80 60 100 10 20 1 U 30 25 30 Uo 100 60 150 20U9.81 U9.U7 U8.8U U8.19 U7.88 U6,L0 U5.69 U5.3U U5.16 U3.50 U2.97 U2.75 Ul.73 U1.2U U0.7U U0.39 U0.16 39.83 39.39 38.23 37.96 37.83 37.29 U8769.31 U8778.35 U8792.39 U8807.87 U8815.25 U8850.55 U8867.50 U8875.86 U8880.16 U8919.85 U8932.5U U8937.81 L8962.25 U8973.99 U8985.99 U899U.39 UQ999.91 U9007.8U U9018.65 U90U6.5U U9053.03 U9056.16 U9069.16 i l l 5s5p6pP-5s5p6dP° IY V • 1 III IY i l l 5&5p5d V-x^  i n i l l i l l rv 5s5gQ-5s9nHB ?? II c rv v Tv535T)5dF°-535p6pDJ rv ' * '* Arc iv 5s5p5d j3-5s5p6pEj III V 5s6p3p:-5s6dD 20 30 10 120 50 35 25 100 5s 5 30 150 50 8 0 20 5o 15 36.83 36.02 35.U5 3U.67 3U.30 3U.ll 33.85 33.52 32.60 32.02 31.31 30.95 30.U1 30.10 29.19 U9080.2U U9099.76 U9113.50 U9132.32 U91U1.26 U91U5.8U U9152.13 U9160.10 U9182.3U U9196.38 U9213.57 U9222.28 U9235.37 U92U2.89 U926U.97 III V III III V rv v rv i n rv 5s5ptv.5s5p6PD I l l 5s5p36pi>5s5p6dE i l l 5s5^5s"5p6pJP, 157. TABLE Xf ( a) (continued) R H J l J2 J3 i r I . A . CO"K vac. Excit. Class. 0 2029.0b b9268.6l 5 28.68 b9277.35 I I I 25 28.08 b9291.92 iv 5s b 27.bO b9308.b5 i n 35 27.07 b93l6.b7 I V 5 25.b7 b9355.b2 i n 10 25.15 b9363.21 rr (2 2b. 96 b9367.8b (2 2b.86 b9370.28 120 60 2b. b6 b9380.03 i n 5 23. b8 b9b03.9b io 10 23.10 b9bl3.22 rv 8 22.71 b9b22.7b i n 10 22.25 b9b33.98 i n 80 10 21.71 b9bb7.l8 i n 80 5 21.27 b9b57.9b I V 20 5 21.0b b9b63.57 I V 80 8 20.88 b9b67.b8 I V 100 20.71 b9b71.6b rv v 80 20.2b b9b83.l5 V 200 20 19.92 b9b90.98 i n boo 15 19.56 b9b99.8l i n bo I8.b3 b9527.5l i n 6 18.16 b953b.l3 i n J 20 17.71 b95b5.l8 v rv 15 17. b8 b9550.82 iv 5»f 35 16.68 b9570.b7 I V 15 15.83 b9591.37 V 20 15 lb. 99 b96l2.03 i n 10 13.78 b96bl.59 i n 10 13.71 b96b3.8l rv boo 20 13.03 b9660.06 I I 5 12.05 b968b.50 i n 10 11.02 b9709.9b rv 10 10.69 b97l8.10 V 15 10.13 b9731.9b 5 s 5 ^ 5 t 5 p 6 P P E 5sbfV-5s7d Dt 5s5^bt-5s5p6PD 5S 1 5P5($-5P \ 5d F F r 5 s 5 p 6 p Z | P J 5sbf fe s7dD, 5sbfF-5s7d I). TABLE XI? (a) (continued) R L H J l J2 J3 air I.A. K vac. Excit. Class.' 50 100 2009.53 1*971*6.79 17 5o 07.95 1*9785.92 IV 3d 07.53 1*9796.33 III 20 06.8li 1*9813.1*5 III 80 05.89 1*9837.03 IV 2 05.36 1*9850.20 III II 20 01+.15 1*9880.29 V 20 03.88 1*9887.01 V (12 03.33 U9900.70 III (12 03.17 li990li.68 IV 12 02.88 1*9911.90 II 100 200 02.13 1*9930.60 Arc 25 01.21 IV 10 00.91 1*9961.03 IV 100 100 00.27 1*9977.01 Arc 12 1999.65 1*9992.50 0 99.36 1*9999.75 I I I 159. TABLE X I (b) Catalogue and Classification of Tellurium Lines Below 2000 A° Different notations used in the intensity column are as follows:-B - Intensity due to Block ( Z-t ) . H - Intensity due to Sister B Handrup ( >B ). J l - Author's intensity with Electrodeless discharge source. J2 - Author's intensity with Spark in Helium source. K - Intensity from Kelley1 s book («).This, however, excludes the lines in Bloch's and Lacroute's list& L - Intensity due to Lacroute ( *2^'). Intensities are again on the visual scale ofs-0 - 1000 Electrodeless Discharge source. 0 - 300 Spark in Helium source. Re3t of symbols have the same meaning as in Table JS7 (a). X refers to configurations 5s,5p.7p/5pi'ar,d 530plif> K. L H J l J2 X I . A 0 (vac.) . <^ K vac. Excit. Class. 10 10 1999.62U 50009.1*1 III (12 99.105 50022.39 III (12. 98.907 50025.31* III 750 200 98.000 50050.05 II 20 96.907 50075.1*1* V 00 96.717 50082.21 10 96.308 50092.148 rv 6 95.331 50117.00 i n 100 300 9U-8UU 50129.21* Arc 30 93.2l.tl 50169.55 IV 160. TABLE M (b) (continued) K L H J l J 2 A l.A 0 (vac.) C ^ K vac. Excit. Class. 00 1992.90 50178.06 15 92.607 50185.59 IV 12 91.882 50203.78 V 30 90.628 50235.Ul V 1 0 0 90.387 502U1.U9 II 10 89.206 50271.32 100 88.386 50292.05 III 8 87.3U2 50318.U7 III 5 87.022 50326.57. III 25 86.888 50329.97 V 8 86.503 50339.72 00 85.93 5035U.2L. II 20 85.700 50360.08 V 8 .8U.967 50378.68 rv 6 15 8U.716 50385.05 . i n 10 10 8L.372 50393.78 i n 80 8U.O8I 50401.17 111 20 83.652 50U12.07 IV 75 83.145 50U2U.96 i n (12 82.636 50U37.91 i n (15 82.533 50UU0.53 IV 15 82.2h6 50UU7.83 rv v 30 81.589 50U6U.56 IV 120 81.324 5olj7l.31 V 20 80.58U 50U90.16 V 100 15 80.208 50U99.75 i n 5 80.036 5050U.1U i n Uo 79.696 50512.81 V 2 15 79.217 50525.OU 30 25 78.278 505U9.02 III 5o 77.559 50567.Uo IV 1 18 10 77.30L 50573.92 II 15 76.857 V 15 76.634 50591.06 V 1 V • 5s6p3lf - 5s6d3D, 5p6s 'pf - 5s8s S„ 161. TABLE XI (b) (continued) K L H J l J2 I.A..° (vac.) K vac. Excit. Class. 50 1976.086 50605.08 0 30 75.31*1 50621*. 18 30 10 75.086 50630.07 150 5 73.561 50669.83 60 10 72.592 50691*. 73 25 20 71.595 50720.36 00 71.252 50729.19 0 70.1*83 5071*8.98 15 70.321; 50753.08 10 69.951 50762.69 25 69.376 50777.51 20 6 68.180 50800.62 12 68.218 50807.39 15 67.878 50816.16 5d 67.561 508 21*. 35 5o 20 67.113 50835.93 2d 66.825 5081*3.37 0 60 100 66.136 50861.19 30 65.811* 50869.52 100 65.295 50882.95 5 65.081 50888. Ii9 00 0 61*. 571* 50901.63 30 5 61*.038 50915.52 20 63.1*10* 50930.92 3 100 100 62.808 5091*5.35 25 15 62.210 50962.95 30 100 60.895 50997.13 0 60.339 51011.59 30 60.153 51016.1*3 0 59.962 51021.1*0 15 59.335 51037.73 15 100 58.223 51066.71 120 100 57.821 51077.20 100 ho 56.869 51102.05 h 56.617 51108.63 III IV II III V 5s6pY-5s6dT* rv IV III 5&p6s 'P-X7Z V III TV V i l l 5s5p6d W x i l , 111 ' 5l5p6s \-5v\ i n rv i n v v 6#5p6p 31^-C3 5s6p3£- 5s6d3D III II rv rv 5a5p56, a-5s5p6pV 11 c '* i n 11 Arc iv 5s5p5dVl5s5p6pP ± rv 5 S 5 P 6 S ^ - 5s9s\ Arc Arc I'll 162. TABLE XI (b) (continued) K L H J l J2 "A.I.A0 (vac) K vac. Excit. Class. 35 80 1955.20U 5HU5.56 Arc 30 20 5U.861 5115U.5U III 30 UO 5U.302 51169.17 III 25 10 53.U9U 51190.33 III IV 3d 52.738 51210.15 V lid 52.571 5121U.53 III 6 51.870 51232.92 100 30 51.387 512U5.61 IV 120 51.070 51253.93 IV V 10 50.138 51278.U3 III 10 U9.25U 5l?0l.68 III IV 10 U9.01U 51308.00 III IV 20 20 U0.339 51325.77 III 12 U7.660 513U3.66 15 U6.816 51365.93 IV V 10 U6.550 51372.95 V 20 U6.019 51386.96 III 15 U5.658 51396.50 rv liO 15 UU.93U 51U15.63 i n 30 UU.59U 51U2U.62 rv liO 10 U3.370 51U57.01 i n 15 U3.1U0 51U63.10 11 100 20 U2.53U 51U79.16 IV u Ul.775 51U99.28 30 U0.3U8 51537.15 rv 10 39.501 51559.66 V 15 39.317 SlS6h^S V (10 38.782 51578.78 i n (10 8 38.618 51583.IU i n 20 37.262 51619.25 rv 8 37.00U 51626.12 i n 50 15 36.705 5163U.09 i n 2 36.33U 516U3.99 0 35.900 51655.57 1° 5s5p6p'D - 5§5p8s V 5S5P 1 s - 5S5P* V 5l5p5d D-JCLO 163.. TABLE M (b) (continued) H J l J2 \[.A..0 (vac.) C R vac. Excit. 15 5 1935.597 51663.65 I l l 15 3U.770 51685.7U V 50 Uo 3U.U17 51695.17 I I I 30 3U.168 51701.82 I V 20 33.919 51708.U8 rv 6 10 33.558 51718.13 00 33.221 51727.15 00 32.892 51735.95 0 31.782 51765.68 0 31.U62 5177U.26 25 30.UL8 51801.L5 rv 10 30.120 51810.26 i n 60 29.862 51817.18 I V 300 70 29.U33 51828.70 i n 00 28.517 51853.32 u 28.116 5186U.10 25 27.625 51877.32 rv 30 27.UU8 51882.08 rv t 26.996 5189U.25 10 26.372 51911.06 i n 15 25.UU7 51936.00 i n u 25.2U5 519U1.L5 i n 20 25.0U3 519U6.90 H I 8d 2U.232 51968.79 i n 15 23.516 51988.lU i n 8 1 23.301 51993.95 i n 12 23.1U3 51998.22 i n 15 22.955 52003.36 i n 0 22.653 520I1.L7 10 22.387 52018o67 rv 80 15 21.966 52030.06 i n 10 21.568 520U0.8U i n 5o 21.362 520U6.U2 i n 20 21.226 52050.10 i n 5&p5d 5 i f x i i 5s5pLK- 5*6pX , 5s5p6p3p - 5s5p6d D " Ss$i6d Lyx6, 5s5p6s ' P ; - 5P \ 5&5p5d3ifx2 161+ TABLE XI (b) (continued) K L H J l J2 X l . A 0 (vac.) vac. Excit. Class. 10 1 9 2 0.662 52065.39 I l l 20d 20.UU6 52071.2U V 5i5P6p "D-d" U O 30 20.21+1 52076.80 III 30 19.795 52088.90 V u 19.515 52096.50 2 1 19.163 52106.05 III 5 1 8 . 9 3 9 52112.IU III 8 18.66U 52119.60 III 30 17.78U 521U3.52 III 5s5p6p^-d<; 50 17.3UO 52155.60 IV U o 17.105 52159.81 V 5s6pV- 5s6dD 3 16.706 52172.85 IV 1 X 5 1 6 . 2 0 8 5218U.23 IV 8 0 15.632 52202.10 IV 50 1U.6U8 52228.93 IV 15 1U.U02 52235.6U IV 5s5d*p, - 5]3 s]j 5o 100 1 3 . 1 6 8 52269.33 II 10 12.878 52277.25 1 8 12.382 52290.81 III 5s5p6p3p,-dl° 8 2 11.2U0 52322.06 III 30 10 10.830 52333.28 III 5s5 P6p 3D - 5sx5p8s P . ' 30 1 0 . 6 1 U 52339.20 IV 15 09.99b 52356.19 III 5S5P P - X I O , 3 U O 100 0 9 . 6 9 2 5236U.U7 Arc 2 0 09.WJ9 52370.31 V 0 300 20 0 8 . U 1 3 52399.56 III 5s5p6p>.- 5S5P8s3p; 20 10 07.959 52U12.03 III 5s5p6p3D, - 5s5p6d "E* U o 06.802 52bb3.8b III 555p6pSP, - 5I5P8S SP: 00 06.212 52U60.07 50 10 05.209 52b87.68 I I I r v 10 20 OU.732 52500.83 15 OU.209 52515.25 IV V U o 10 0 3 . 1 3 7 525UU.83 i n 5s5p6P 3P, - 5s5p8sjp,° 10 10 02.830 52553.30 i n 165 TABLE XI (b) (continued) H J l J2 Xl.A0 (vac.) vac. Excit. Class. 15 1902.597 52559.7U III ! 20 100 02.301 52567.92 II 10 5 01.767 52582.68 III 5 01.6U2 52586.IU IV 8 01.265 52596.57 III 30 5 00.9U3 52605.U8 III 5 1899.906 5263U.19 rv 25 99.5U8 526UU .ll rv v 50 5 98.U5U 5267U.UU IV kd 97.99U 52687.21 11 10d 97.825 52691.90 11 1 0 97.22U 52708.59 i n 30 96.681 52723.68 IV 0 96.303 52731.97 50 100 96.100 52739.8U Arc 30 95.919 527UU.87 rv 25 30 9U.978 52771.07 III 5 9U.505 52782.01 III 2d 9U.266 52790.90 III 6 93.896 52801.21 25 5 92.9U1 52827.85 III 6 5 92.23U 528U7.59 5 91.982 5285U.63 20 5 91.628 5296U.52 rv Uo 91.113 52878.92 15 90.298 52901.72 V 15 89.691 52918.71 V 5 89.262 52930.73 U 89.005 52937.93 i n 30d 88.307 V VI. 2 87.9UU 52967.68 30 10 87.065 52992.35 I l l 0 86.806 52999.62 0 86.6U2 5300U.23 10 86.U53 53009.5U rv 5p V , - 5s9s \ 5l5dD ,-5p Ms; 166. TABLE XI (b) (continued) H J l J2 A l . A 0 (vac.) vac. Excit. Class. 30 0 0 200 0 10 15 20 8 12 15d 0 20d 0 0 25 a o Uo 15 30 10 20 10 Uo 25 60 10 80 20 10 20 12 12 12 15 10 (10 (15 25 30 10 25 25 12 *g 1886.235 85.886 85.598 8U.969 8U.636 8U.U77 8U.3U9 8U.086 83.867 83.U07 83.166 81.766 80.758 - 19.995 79.751 78.38U 78.171 77.97U 77.650 76.135 75.129 7U.906 7U.055 73.5U5 73.293 72.908 72.6U5 72.271 71.878 71.396 71.025 70.152 69.973 69.651 53015.67 53025.U8 53033.58 53051.28 53060.65 53065.13 53068.73 53076.U 53082.31 53095.27 53102.07 531U1.58 53170.06 53191.6U 53198.5U 53237.26 532U3.29 532U6.88 53258.06 53301.07 53329.50 53336.01 53360.23 5337U.76 53381.9U 53392.91 53UOO.U1 53U11.08 53U22.29 53U36.05 53UU6.65 53U71.59 53U76.71 53U85.92 Ill5s5p5d 3r£-X2i II c III IV i n rv rv rv v VI v v i v " i n 5s5p6s P(-XI rv v rv rv v i n v v rv i n rv, . ' i n 5s5p5dT-x3l i n rv i n v rv III 5s5p5d^-X9,. 167. TABLE XI' (b) (continued) H J l J2 / \ l . A . ° (vac.) ^ K vac. Excit. Class. 10 10 20 50 15 1869.079 67.858 67.683 67.137 66.357 53502.29 53537.27 5351*2.28 53557.91* 53580.32 III 5&p5d P-X5 IV IV 15 20 20 20 10 66.127 65.632 63.631 62.778 61.673 53586.93 53601.11* 53658.70 536«3.27 53715.13 rv III V rv i n 6 oo 100 60 200 l*o 5 io 60.831 53739.1*1* IV 60.1*29 53751.05 Arc H . ' ' », 60.189 53757.98 iv535p5dF.-~5a5pbpP 59.166 53787.56 III 8s 50 8 110 300 8 58.811 58.293 57.280 56.871 53797.81* 53812.83 5381*2.18 53851*. Ol* II III Arc III IV 50 15 o 10 20 15 loo 25 1* 5 (300 300 (100 25 56.1*28 56.017 55.593 55.151* 51*. 730 51*. 317 51*. 083 53.697 53.1*21 53.191 53866.89 53878.82 53891.13 53903.89 53916.21 53928.22 53935.02 5391*6.25 53951*. 29 53960.98 II III III 5s5p5d jf-XT^  Arc III rv III IV 15 15 5o 1* 120 300 3 80 1 120 300 52.805 51.999 51.1*29 50.988 50.1*81 53972.23 53995.71 51*012.31* 51*025.21 51*01*0.01 rv Arc III rv Arc 168 TABLE H (b). (continued) H J l J2 A l . A 0 (vac.) vac. E x c i t . 20 150 18U9.611 5U065.U3 II 15 U9.127 5U079.5B III IV I5d U8.838 5U088.03 III IV 200 25 U8.359 5U102.05 III (15 U7.730 5U120.U7 IV III (12 U7.606 5U12U.10 IV 12 U7.088 51+139.28 0 U6.U19 5U158.89 1 US.350 5U190.27 10 5 U3.926 5U232.12 Arc (35 U3.U35 5U2U6.56 rv (20 U3.305 5U250.39 IV V 20 U3.078 5U257.07 III ho 100 U2.668 5U269.1U II III 5d U2.U71 5U27U.9U 10 Ul.6oU 5U300.50 III IV 60 Ul.358 5U307.75 III ! 0 U0.895 5U321.U1 Uo U5 Uo.028 5U3U7.00 I l l 75 10 39.U19 5U365.00 IV 15 38.878 5U380.99 rv 30 38.365 5U396.17 IV 50 100 37.687 5UU16.2U 11 25 37.515 5UU21.33 IV 25 37.373 5UU25.5U III IV 10 36.368 51+1+55-32 300 50 36.025 5UU65.U9 III 12 3U.761 5U503.02 V 20 3U.271 5U517.58 V 15 8 33.391 5U5U3.7U TV 5s 50 32.91+2 5U557.ll IV 15 31.307 5U605.81 V 10 31.077 5U612.67 III U 5 30.736 51+622.85 III 15 15 29.1+1+8 5U661.30 IV Class. 00 0 . 3 . iv 5S5P 3, - 5l6p ?l T T V '» r 3 169.. TABLE Xl (b) (continued) H J l J2 (vac.) vac. Excit. Class. 10 0 10 1829.050 51*673.20 So 100 28.675 51+68 l+.l+l Arc 250 liO 27.830 5U709.69 III 00 27.201*. 51*723.1+3 I I I 20 26.893 51+737.75 V 200 35 26.U3U Sli7Sl.50 III 100 liO 25.1ilili 51+781.20 Arc 30 25.096 51+791.61+ IV 0 2U.733 51t802.51i 5 30 23.793 51i830.79 I I I 10 23.187 51+81+9.01 V lid 22.981 51i855.21 IV 80 22.1+61 51i870.86 I I I 10 150 300 22.125 51i880.98 Arc 10 21.521 5U899.18 IV V 10 15 \9.9$3 51+91+6.1+8 I I I IS 19.756 51+952.1+3 I I I 30 60 19.089 51*972.58 I I I 6 18.790 514981.61 V 10 18.568 51i988.33 V IS 8 18.02U 5500li.78 III rv liS 17.531* 55019.61 IV So 20 17.290 55027.00 i n IS I6.911i 55038.38 i n 30 16.561 5501*9.08 V 20 16.395 5S051i . i l i n rv 200 15.358 55085.56 rv v 100 25 15.128 55092.51* i n 20 lli.73li 55101*. 50 i n 20 10 13.799 55132.91 i n 30 5 13.325 5511*7.32 i n IS 12.291 55178.78 V 20 liO 12.073 S5l8S.li2 11 0 11.078 55215.71* 5s5p6p5P - 5l5P8s ' P * 5S5p5d 'P-X13, 5s5^ \ - 5s5p6p D 3 J 5s5p5d 3P-X6 111 5 3 5 ^ " 5^P 6P' P. 11 5B5P5^ D>X9, o i-i T3 g • r l - P O O -4 • r-4 to CO X | £0 r - l O •a \r\ • - P . U N •H O > Ex M M « X I O C A V A r - l o 0 \ CM GO CO r - i CO H J H C O O CM MO C— OO i—I CM CM CM CM CA LA X A L A L A L A b L A L A X A X A I A • r ^ O c o f A c o co t-— ON CACO c o > OO -Ct CM MO ON v • O ON ON c o c— o i- l o o o o CO • r-4 r < CM o o •"3- r-4 f A r - l o XA_CT o o •-5 r-4 CM r-4 -N£ MO cx I A Am L A I IS co L A r-i M > M > M I A I A -CO X A "co DO a L A L A I a, MO e. L A "CO L A M rH _5vV •a -o X A X A 1AXA X A X A M M M L A O U <J M M > > M M O ^ H H <5 M M M M M H M O > < M M XA r-4 r—_ctXA ON r-4-Ct_cr f - ON ON CM OO r— t^- NO NO CA C— O X A X A r-4 M CA CO ON CM O ON ON L A CM V A r - l NO -Ct r-4 ON CO NO O ON -CT r-4 <A r—I NO NO NO r-4 r - l XA ON "LA O C r - l "LA r-4 CM CA O O CM <A c c o O ( A CA r A C A - C t "LA "LAVA L A L A X A X A LA L A L A r-4 ON ON CM O O MD r-4 ON CA NO CM ON MD O NO t>- <ANO XA O H X A N Q r— _cr _cr-d-_cr-^ r X A X A X A X A X A L A L A "LA I A L A CA GO ON J - ON <A C~- O ON OO c o - c t < A c o L A CM O r-4 r-4 _=f ON CA-CfNO ON _CT X A X A X A X A L A LA I A LA I A X A L A L A L A L A CM r-i r-4 f — X A X A O -Cf r - l X A O CO -Ct 3D C— CM O f A ON O r-i C A - C t X A r— NO NO NO NO NO X A LA X A X A X A X A X A X A X A X A NO NO X A X A N O r-4 X A r - l NO CM 23 f A CN <A -CT C— 0 \ ON <A LA. NO NO NO r— c— X A X A X A X A X A X A X A X A X A L A NO NO I—4 C CA C A - C t NO J - r— O X A CA CM X A CM O - N O ON r— NO CO ON O r-i C— f— o-ao oo L A X A X A X A X A X A X A X A X A L A CO CM CA r-4 O r - l C A - C t CM X A C A X A CM CO X A t— t > - X A X A X A o o o o o -Cf -Ct CA CM CM o o o o o o o o r - l O CM X A CM O X A O O O CM CA r-4 CM O O O O O CO CM O H 4 CM CM O O ON CO O O O ON ON X A X A 1-4 r-4 •a O X A O O -Ct r-4 r-4 NO O r - l CO C— NO NO ON ON ON ON ON NO X A X A _ c f CA ON ON ON ON ON f A CM CM r-i r-i ON ON ON ON ON O O O O r-i r-l X) O X A C O O X A CA r-4 CM H i O o CM O X A O NO CO O O O NO X A O O O O o O C O O -Ct r-4 CM CA (A O X A X A O O AJ CA r~t r - l X A O O CO r-4 CM CO "> m to C O $ - 1 C O C O £ "ft -v* d w i r— i r-T I -d ct, i "> ft a i X A X A vO 0 - H 05 v Q v Q . -ft ft ft - C O - vO ft ft °CO X A X A XA * ft 1 A 1 A J '•m "*r> " t o (Oft 1 A CO «*0 «nft XA X A X A X A " M X A X A X A ^ XA U \ " «*«0 X A X A M O Pi O O O fn M M M M > J> M M M M M > M > > > > > > jfj > > > In > j-l M « ^ M M M M M M M M M M M M M M M M <U <r< <«J M M M M H M M M M M f > M M > > M M M M M M J C O C O N c O C A v O C ^ - C A C~— f A O CM f A XAMD r— M ON O v O v v O O v X A CO 0 \ 4 0 4 CO J O f - O f A O N j f A f A M ON ON J C M f A Ov vO CM VO OO X A V O O CA J r— Ov M f A M O v X A v O O ON H ON CM OO M C — CVJVO ONCM\0 J H X A O r — v O f A f A f A ON C- CM O v O J O M ON CM CM NO CM C M X A r —ON M J J L A X A NOONCMJT>- Ov O st X A DO M CM CM J C— C O O M J X A XA I CO ON O OO CO CO DO Ov 0 \ O v O \ 0 \ O v O s O O O O M M M M CM CM CM CM CM CM f A f A f A f A f A f A f A f A J X A X A X A X A X A X A X A X A X A X A X A v O v O v O vO vO vO vO vO vO vO vO vO vO M3 vO vO vO vO vO MO vO vO vO X A X A X A X A X A X A X A X A X A L A X A X A X A X A X A X A I A X A X A X A X A X A X A X A X A X A X A X A X A X A X A X A X A X A f A C—vO f A M P - St VO XA CM M St XA M f A M X A M X A CO co st O X A f A CM M CO O f~- Ov vO Ov St X A CA J MD Ov DO CM _ J ON M CO P-NO r - o M st r— NO XA O r— co O f A M O CM CM M CM C— f— ON NO st so O X A X A C O XA M M C O CM f A 30 C O ON C— ON X A st H O ON r— C A O O - - 0 0C < A ON NO st ON M O ON ON C O ON ON C O C O C O r — r— r— r— f -C O C O C O C O vo xr\ j j r A co co co co co CM CM M O ON CO 30 CO CO N COCOCO N f -r — r — C— c— r — NO X A X A J J r— r— r— r— J CA f A f A CM r;— t— c— t— c— O O O X A M O O CM X A OO O ON CM NO to * X A T l O IS XA M O XA M O O O ao O J O f A M M O O X A O f A M f A CM O J O X A M XA X A CM O O X A X A O M f A M CM X A CM XA O O M M CM X A O O O O O CA CM CM M M X A X A O X A O rA St O 172, TABLE XI (b) (continued) J l J2 "Xl.A0 (vac.) G K vac. Excit. 750 150 1772.U66 561+18.58 I l l 10 100 72.211* 561*26.60 II 00 71.9UU 561*35.20 00 71.7U3 561*41.60 100 25 70.958 561*66.62 III 5 70.1*01* 561*81*. 29 25d 69.1*90 56513.1*6 V 10 68.833 5653U.U5 III 12 68.508 5651*4.81* n 5. 35 68.288 56551.88 I l l 50 67.805 56567.33 III 25 20 67.520 56576.1*5 III 15 66.083 56622.1*9 I I I r v 30 65.636 56636.82 V 25 65.056 56655.1*3 III 8 6U.886 56660.89 IV 10 6U.U9U 56673.1*8 III 50 6U.217 56682.37 V 18 63.599 56702.2U III 18 63.216 56714.55 111 r v 25 10 62.835 56726.81 TV 25 62.155 56739.01* V i5o 10 62.061 56751.73 III 100 100 61.152 56781.02 III 20 60.91*1* 56787 .73 00 60.105 56812.22 25 60.021 56817.51 IV 12 59.71*0 56826.58 III 1 20 59.U03 56837.U7 IV V 120 200 59.26U 5681*1.96 Arc 8 58.1*06 56869.69 IV Uo 100 58.192 56876.61 II 25 58.059 56880.92 III IV 150 57.UU3 56900.85 I I I r v 60 100 57.050 56913.58 11 120 56.016 5691*7.09 V 5d 55.669 56958.35 H Class. 00 i l l 5s5p* if- 5si5p6p3pJl .11 , „ r v s5p5dV-5s5p6 P \ • T T '»• X l '3 3 . 173 TABLE XT. (b) (continued) K H J l J2 "Xl . A 0 (vac.) C K vac. Excit, 50 1755.151 56975.16 III 20 5U.9U6 56981.82 V 10 5U.571 56993.99 IV 15 5U.209 57005.76 III 5 53.6U9 57023.96 III 8 52.808 57051.32 U 52.603 57057.99 6 52.3U6 57066.36 ko 100 52.057 57075.77 II III 150 on NIII 51.705 57087.2U III 10 51.525 57093.11 150 200 50.871 57HU.UU Arc Uo 5o.58o 57123.93 III. 10 50.372 57130.72 I l l 30 50.205 57136.17 IV V Uo U9.627 57155.OU III 25 U9.U27 57161.58 IV V 25 U9.288 57166.12 rv v 30 10 U7.880 57212.17 I I I rv 20 10 U6.995 572U1.15 i n 2 750 100 U6.227 57266.33 I I 30 U6.01U 57273.31 III IV 20 U5.672 5728U.53 i n 0 U5.0U3 57305.18 u UU.739 57315.17 120 UU.3U3 57328.18 III IV (25 U3.663 57350.5U) V VI (25 U3.55U 5735U.12) V VI Uo U3.192 57366.03 i n 80 U U2.0UU 57U03.8U i n 5o U1.6U2 57L17.09 V IV 60 20 Ul.356 57U26.52 III IV 12 U1.02U 57U37.U7 IV V 80 U0.300 57U61.35 III 20 Uo.090 57U65.30 IV 10 39.502 57U87.72 III 25 39.3U3 57U92.98 III 100 38.882 57508.22 V 15 38.53U 57519.73 V 30 37.091 57567.51 V Class. 5s25p6s P,-X32 5sx5p5dV- 5 s 5 p U f \ 5l5p5d J i fx7 1 3 5s5 P6s P-X5-V - » w . — - _ 5a5p5d rf x i i 3 5s15p5dV- 5s5pUf 5§5p5d JF 3''- 5 s 5 p U f \ 5s6 P 'p;. 5s 7s 17U. TABLE XI (b) (continued) L H J l J2 A l . A 0 (vac.) ^ vac. Excit. Class. 00 0 1736.65U 57582.00 60 36.357 57591.85 IV 0 36.15U 57598.58 III Uo 2 35.8U3 57608.90 rv 60 35.U98 57620.35 V (35 2 35.306 57626.73 V (50 35.186 57630.71 V Uo . 5 3U.092 57667.07 IV 200d UO 33.U29 57689.13 m 5s5p5d 'F-Xll 5 32.752 57711.67 III IV 10 32.U33 57722.29 i n 30d 31.693 577U6.96 i n 5s5p5d p>xiU. 120 100 30.626 57782,56 Arc Uo Uo 29.962 5780U.7U III 20 15 29.301 5782U.16 III 12 29.109 57833.26 IV 15 28.616 578U9.75 V 5S5P* 'Ff-xi^ Uo 80 28.230 57862.67 III 10 27.6UU 57882.30 IV 80 5o 27.076 57901.3U II C Uo 50 26.796 57910.73 III 8 25.709 579U7.20 U 25.01U 57970.55 25 2U.767 57978.85 IV 5sUf Y,- 5s 5 23.920 58007.3U 10 23.516 58020.93 IV 100 80 22.528 5805U.21 II III 15 22.3U8 58060.28 100 22.018 58071.U1 IV 5o 21.727 58081.22 rv v 100 21.150 58100.69 on ArcIIl5s5p5dT-X 50 20.903 58109.03 III 8 20.678 58116.63 15 20.U37 5812U.77 175. TABLE XI ( b ) (continued) K 0 0 H J l J2 A.I.A0 (vac.) ^"K vac. Excit, 00 1719.736 581L8.U6 11 10 19.U6U 58157.66 rv 100 10 19.11U 58169.50 rv Uo 18.935 58175.56 V l 150 18.563 58188.15 11 c 30 25 18.113 58203.39 i n 35 17.521 58223.L6 rv 10 17.196 5823U.U8 i n Uoo 16.105 58271.50 V 5o 10 15.859 58279.85 rv l 15*275 58200.31 15 15 1U.586 58323.12 i n 25 1U.086 583U0.13 rv 8 13.75U 15 15 13.U35 58362.30 i n 50 5 13.063 5837U.97 rv 5oo 20 coinc. 12.772 5838U.89 V 50 6 11.6U6 58U23.30 rv 20 10 11.U29 58U30.71 i n 50 11.056 53UU3.U5 rv 15 09.8U6 58U8U.80 IV 5d 09.561 58U9U.55 120 09.087 58510.78 rv 120 10 08.801 58520.57 i n 10 08.212 585U0.75 IV 150 i5o 08.0U6 585U6.UU Arc 30 07.858 58552.88 III 20 06.867 58586.88 rv v 100 i5o 06.718 58591.99 Arc Uo 06.3U7 5860U.73 III 8 8 06.127 58612.29 20 05.520 58633.15 III 50 05.209 586U3.8U rv 00 OU.790 58658.26 15 OU.U77 58669.03 .V Class. 3. 5s5d \ - 5s6P'p; 5s5d3L - 5s6p3Po° 5J5P6S V - 5£ X 5sUf JF;- 5s5p6p^D, 5 s 5 i 5 \ - 5§5P6p 3s 176. TABLE XI (b) (continued) K H Jl J2 /Vl.A0 (vac.) "^k vac. Excit, li|0 50 1703.266 58710.7U IV 0 02.9U9 58721.67 III So 02.772 58727.77 V 100 100 02.227 587U6.53 Arc 6 250 100 01.571 58769.22 II C Uo 01.368 58776.2U IV 150 00.761 58797.21 V 120 200 1699.899 58527.03 Arc 100 20 98.9U1 58860.20 III 2 98.U25 58878.08 10 98 .081 58890.01 V rv Od 97.870 58897.33 rv 50 97.23U 58919.UO III 100 96.89U 58931.21 IV 50 96.71U 58937.U6 III 15 95.879 58966.U8 v rv 6o 10 9U.880 59001.23 i n 5 9U.216 5902U.36 15 25 9U.OU5 59030.31 i n Uo 93.U17 59052.21 i n 15 93.087 59063.72 V 10 92.701 59077.18 i n 20 92.330 59090.IU i n 5 91.5U5 59117.56 V 15 91.2U5 59128.OU IV V 00 90.702 591U7.03 II Uoo 25 89.823 59177.80 III IV 10 89.290 59196.U7 60 100 88.77U 5921U.56 Arc 70 50 87.952 592U3.UO III 50 87.687 59252.70 III 5 87.U51 59260.99 10 87.132 59272.19 III 70 60 86.702 59287.30 III Class. 5 s5dY- Sshf% TT l a - } > i o 5S5P D° - 5s5p6p 3S ( 5s5p6s3Pl-x6i 5s5 P5dV - 5s5pUf \ 5p6s \ \ - 5s8s S, i n 5s5p5d V - 5s5pUf F. 177. TABLE XI (b) (continued) K H OO 12 00 15 00 J l J2 A l . A 0 (vac.) C R vac. Excit, 5o Uo 1686.3Ul 59299.99 III 5o 60 86.100 59308.U7 III 100 200 85.202 593U0.07 II ho 8U.955 593U8.77 V 10 8U.633 59360.11 V 15 83.693 59393.26 III 5 83.218 59U10.02 10 82.8U1 59U23.33 III 0 82.511 59U3L.98 50 100 82.116 59UU8.9U i i : 5o 81.579 59L67.92 III 25 81.1U1 59U83.U2 III 8 80.522 59505.33 250 79.82U 59530.05 III 8 79.380 595U5.79 60 79.208 59551.H9 rv 60 100 79.033 59558.10 Arc 2 78.556 59575.02 2 78.217 59587.05 100 100 77.791 59602.18 Arc 35 77.363 59617.39 III IV 5 76.803 59637.30 60 Uo 75.918 59668.80 Arc 600 Uo 75.U16 59686.67 ( w ( III 10 7U.583 59722.32 80 7U.OU8 59135.h5 rv 25 10 73.U13 59758.12 i n 8 73.183 59766.33 i n 12 73.017 59772.26 rv 20 72.700 59783.59 i n 30 72.376 59795.17 rv 300 100 71.7UU 59817.78 i n 600 100 71.U26 59829.15 i n 00 70.337 59868.16 Class, 5p6s3P°- 5s8s"S, 5s5p6s P~X7^  5s5p5d U-X8, 5s5p5d3F^  - 5a%>Uf% 5s5d'"D _ 5sUfXx 5p S - 5i8s S,(x 5s.5p63 T r X l , 5 l U f V - 5s5p6p^3i 5t5v %- 5s5p6p 'Dx 5sUf \ - 5s5P6pHD 3 i 5l5p1^ - 5s5pV% 178. TABLE X2 (b) (continued) K H J l J2 Al . A . 0 (vac.) Ck vac. Excit, 5 1670.065 59877.91 Uo 69.685 59891.5U III IV 20 5 69.306 59905.1U IV 250 0 68.5U0 59932.6U \v 200 15 68.162 599U6.22 rv 300 67.708 59962.5k IV 2 66.9U5 599&9.99 2 66.695 59998.99 50 65.995 6002U.19 IV 100 65.589 60038.83 IV V i5o 65..285 600U9.86 V 5o 7U.7U3 60069.3U v rv Uo Uo 6U.551 60076.27 i n Uo 6U.071 60093.59 IV V 10 63.922 60098.98 i n 2 63.81U 60102.88 i n 100 150 63.319 00120.76 Arc 25 62.U15 60153.U6 rv v 35 61.89U 60172.31 rv v 25 61.3U1 60192.3U IV V 0 61.129 60200.03 00 60.U2U 60225.59 1000 30 59.9U2 602U3.07 IV 2 59.065 6027U.92 5 0 58.732 60287.02 i n rv 15 58.516 6029U.87 30 56.663 60362.31 rv v 0 2 55.53U 60U03.U8 Arc 10 5U.5U1 60U39.73 rv 5o 5U.025 60U58.58 V 50 7 52.879 60500.50 11 c 300 52.U69 60515.51 V 5 52.01U 60532.18 111 rv 8 51.676 605UU.57 III IV Class. 5s6p'3P°- 5s 7s \ 5s5p , i l f - 5s5p6p D 5s6p"V- 5s7sJS 5s5d D - 5 s 6 p T j 179. TABLE XI (b) (continued) K H J l J2 ^ I . A ° (vac.) cTc vac. Excit, 5 1651.109 60565.36 5 50.801+ 60576.55 1 50.61+3 60582.1+6 III 30 20 50.1+76 60588.59 III 25 1+9.809 60613.08 IV l+o 50 1+9.350 60629.95 III 3 1+9.035 6061+1.53 Uo 1*8.551 60659.31* IV 25 1+8.321 60667.80 III 10 1*7.919 60682.60 III IV 20 10 1+7.530 60696.93 III 8 1+6.1+60 60736.37 IV V ? 100 Imp? 1+5.90 60757.0 10? 1*5.261+ 60780.52 25 1+5.101* 60783.1*8 Arc 10 1+1+.631+ 60d03.8l 1 UU..313 60815.67 1 U3.Q69 60832.10 1+ 1*3.597 6081+2.17 15 1*3.1*1*5 6081+7.80 III 00 1*2.825 60870.76 15 1*2.195 60891+.11 2d 1+ 1*1.710 60912.10 IV 2d 1*1.1+70 60921.01 200 100 1*0.180 60968.92 II C 25 150 39.57 60991.6 III 25 39.1*1 60997.5 III 6 50 20 38.925 61015.61 II C 00 38.321+ 61037.99 III 15 10 38.028 6101+9.02 III 15 37.716 61060.65 III IV 00 37.295 61076.35 2 36.907 61090.83 25 36.300 61113.1*9 111 rv Class. 5s5p6s3|-X92 5s5p5dY- 5s5pltf F. 5s5p6s •'EC-XIO. 5s5p6s 'If-X8,. 5s5p6s JP,-X?1 180. TABLE Mi (b) (continued) K 00 H J l J2 / l l . A 0 (vac.) <MC vac. Excit, 80 150 S" 1635.927 6ll27.a3 II • 30 35.763 61133.56 III rv 6d 3 ,s 35.320 61150.12 S 6 35.032 61160.89 in (15 3a. 761 61171.03 in 18 25 3a.a5o 61182.67 in 00 3a.o5 61197.6 80 33.761 61208.a7 IV 3 33.09a 6l233.a7 2 32.655 6l2a9.93 60 32.17a 61267.98 V 3 31.803 61281.91 60 60 3o.oaa 6i3a8.oa II a 25 29.763 61358.62 in 120 29.a55 61370.22 V 60 35 28.6U7 6iaoo.b6 rv (20 28.313 6iai3 .26 in (18 28.130 6ia20.l6 rv 25 27.a56 6iaa5.6o rv U 27.067 6ia60.29 20 26.a63 611*83.11 III IV 18 26.150 6LU9a.95 III IV 20 25.502 61519.a6 rv 1 100 10 25.256 61528.77 i n 10 2a.715 615U9.26 V 30 0 2a.370 61562.33 rv 60 20 2a.o58 6157U.16 i n 15 23.876 61581.06 IV a 23.052 61612.33 12 22.7U5 61623.98 V 25 22.182 616U5.37 i n 25 21.7U3 61662.06 V 15 20.705 61701.55 III IV 3 20.375 6l7lU.ll 8 20.089 61725.01 rv v Class. 5 s 5 d X - 5s6p3P; 5s5p" Pv- 5 p V , 5 s 5 p 5 d 3 £ - 5 P \ 181, TABLE XL (b) (continued) K L H J l J2 *Xl.A° (vac) K vac. Excit, 00 1619.73 61738.7 15 1 19.529 6171+6.35 I I I IV 30 30 18.761 61775.65 I I I l+o 18.001 61801.61 V 10 30 17.1+07 61827.36 I I 10 16.591 61858.57 rv 80 15.609 61896.17 V 20 15.1+81+ 61900.96 60 6 15.159 61913.Ul IV 15 11+.813 61926.68 rv i n 0 1U.U52 619U0.53 0 11+.208 6191+9.89 20d 5 13.7UI+ 61967,70 i n 30 13.1+37 61979.1+9 V 0 10 30 5 13.190 61988.98 11 15 11.1*87 62051+.U9 I I I IV 3 30 11.351 62059.73 30 10.938 62075.61+ i n rv Uo 10.297 62100.35 i n 20 09.362 62136.1+3 V 15 09.162 621U+.15 V 2 08.986 62150.95 2 08.81+8 62156.28 0 10 20 08.1+12 62173.13 I I 0 8 60 07.930 62191.77 III 25 25 07.701 62197.53 I I 0 30 07.601 62201+.1+9 2 06.990 62228.15 h 06.736 62237.98 10 30 06.1+91 6221+7.1+7 I I I 5 06.000 62266.51 2 05.739 62276.63 30 05.202 6229U.36 I I I IV 2 01+.806 62312.83 5 ol+.i+i+o 62327.05 I I I Class. 5s6p3p;- 5s7s's. 5s5d^ - 5s6p^ 5s5p6p3Pe - 5s5p8s 'p0 5s*5p6s frxio, 5§5p6p^ - 5^>v^i 182 TABLE M (b) (continued) H J l J 2 /I l.A 0 (vac.) G"K vac. Excit, 2 Oli. 129 62339.13 10 03.731 62351|.60 IV 20 03.3U9 62369.U6 IV III 00 03.15 62372.0 15 ? 1 02.883 62387.59 IV III 15 02.1|0ii 62I1O6.2U rv i n Jl 02.007 62ii21.70 V 20 1 01.653 62ii35.50 IV 20 01.077 62li57.96 rv 3 150 200 00.786 62li69.32 II c liO 00.226 62li91.l8 rv v 2 1599.953 62501.8U 2 99.56k 62517.0U 200 50 99.356 62525.17 i n 15 98.9U8 6251il.l3 III IV 50 98.329 62565.35 V (18 30 97.7U6 62588.18 i n (25 97.579 6259U.72 V 20 96.825 6262k.35 V 8 96.605 62632.90 V 15 20 96.212 626L8.32 III 6 96.068 62653.93 III IV ll 95.658 62670.08 II 1 8 95.300 6268k.Ik II 100 100 9li.l92 62727.71 II c ll 93.890 62739.59 III IV 6 93.751 627li5.06 IV (20 93.L38 62757.39 III IV (12 15 93.257 6276k.52 50 91.890 62818.k2 IV III 80 20 91.712 62825.kk rv i n 15 '91.22k 628kk.71 rv 15 91.000 62853.56 r XI, J-6 90.395 62877.k7 Class. 3 ° 5s5d." - 5skf\ 5s5d § - 5s6p P° 5shx\- 5s5p6p"P. 5s5p5d3P»Xl2, 183 TABLE X I (b) (continued) K L H J l J2 \ l . k ° (vac.) ^ vac. Excit, Class. 15d T590.00U 62892.93 15 89.371 62917.98 rv 3 88.9L6 6293U.31 2 88.766 629U1.9U « 3 -Uo 88.297 62960.52 V 5s5dJrj - 5sUf F; 0 87.83 62979.0 15 15 87.370 62997.29 rrr 8 87.080 63008.50 rv v 10 2 0 120 100 86.550 63029.85 11 c 35 86.190 630UU.15 V 5p6s P, - 5s8s So 60 2 85.UU5 63073.78 rv 50 85.010 63091.09 V 5s5d D - 5s6p P( 20 8U.870 63096.66 rv Od 8U.U3 6311U.18 Od 83.93 6313U.11 25 83.L73 63152.33 V 2 83.261 63160.79 20 81.926 6321U.09 > 3 60 15 81.075 632U8.11 i n 5S5P D - 5s5pUf Fj_ u tf0.586 63267.68 50 130.368 63276.U1 V 5s5d3D - 5sUfV 50 100 79.860 63296.75 III IV 2d 79.170 6332U.U1 U 78.553 633U9.16 0 100 Uo 77.992 63371.68 11 c 100 5 77.6L7 63385.5U V 5s5d \ - 5sUf 3F„ 0 77.02 63U10.7 3 i 0 76.71 63U23.2 lOd 76.U8U 63U32.30 iv n r 2 75.925 63U5U.80 5s"5p6s ^ r l \ Uo 75.U95 63U72.12 i n 25 30 7U.90U 63U95.9U rv 8 6 7U.UO0 63516.27 i n rv 18U. TABLE M. (b) (continued) H J l J2 l l . A 0 (vac.) K vac. Excit, ilO 157U.212 63523.85 17 V 18 8 73.555 63550.37 17 30 72.575 63589.98 17 V 2 72.35U 63598.91 IV V 15 71.970 6361U. Ii 5 III 50 30 71.U90 63633.88 17 III 30 71.303 636U1.U5 IV V. 10 10 70.950 63655.75 III 20 70.77U 63662.89 IV V 12 70.530 63672.78 IV V 25 70.3U7 63680.20 rv v lOd 69.810 63701.98 15 69.20U 63726.58 17 50 68.915 63738.32 V 15 68.530 63753.97 17 20 U5 68.012 63775.03 11 50 67.U06 63799.68 7 100 67.07U 63813.20 7 Uo 66.617 63831.82 IV V 20 50 65.911 63860.59 II 10d 65.3U7 63883.60 III IV 20 50 6U.83 6390U.7 II 15 6U.O01 63935.31 12 63.717 63950.20 UOd 62.UUO 6U002.U6 IV 8d 62.050 6U018.Ua 70 61.733 6U031.aU III 5 25 61.0U0 6U059.86 III 30 59.975 6U103.60 III IV 20 59.500 6U123.12 III 8 59.062 6U1U1.1U BO 60 58.301 6U169.17 IV 20 57.003 6U225.96 V 0 100 Uo 56.770 6U235.57 III II Uo 100 55.020 6U307.86 5a5p6s >P'-X52 5s5d3D, - 5sUf 3Et 5 s 5 d \ - 5sUf 3Fj 5s? P5d^-Xi3 I 0 F3 TABLE M . (b) (continued) H Jl J2 A l . A 0 (vac.) C K vac. Excit. Class. 15 30 3d 2d 100 80 30 70 20 250 20 80 750 25 Uoo Uo 50 60 18 80 15 1 100 100 U 30 25 u BO 150 20 25 30 10 5 60 60 12 150 50 12 200 100 10 50 18 5 0 60 15 8 155U.350 6U335.58 5U.166 6U3U3.20 53.776 6U359.35 53.U01 6U371.57 53.020 6U390.68 51.892 6UU37.U8 51.650 6LUU7.53 50.795 6UU83.06 50.230 6U506.56 U9.2U6 6U5U7.53 U8.225 6L590.10 U7.725 6U610.97 U7.U35 6U623.07 U7.280 6U629.55 U6.287 6U671.05 U5.720 6U69U.78 U5.U50 6U706.08 U5.100 6U720.7U UU.612 6U7U1.18 UU.085 6U763.28 U2.575 6U826.67 U2.305 6U838.02 U2.116 6U8U5.97 Ul.516 6U871.21 Ul.266 6U881.73 Uo.912 6U896.6U Uo.330 6U921.16 U0.173 6U927.78 39.570 6U953.21 39.311 6U96U.1U 38.718 6U989.17 38.39 65003.0 37.80U 65027.80 37.50 650U0.6 IV V I I I IV I I I I I I I I IV I I M (IV 5l5p Pi - 5s5p" Pi tv SsSv^K- 5^3P0 I I I IV i n 11 IV 11 c I I I 5s5p°D0- 5s5pUf\ IV v I I I I I IV I I I IV I I I I I I 5&P5d3Fa-x3* 111 5s5p \ - 5s5pUf \ 11 c IV i n 5S5P5QT-XUZ I I I 5s5p5d3F>x5a i n 186. TABLE XI (b) (continued) H J l J2 / l l . A 0 ( v a c . ) < 3 K vac. Excit. Class. 80 10 1536.915 65065. lil IV V 100 36.5U6 65081.01+ V 10 shldr 36.327 65090.31 15 30 35.957 65105.99 III 8 35.708 65116.55 8 35.317 65133.13 50 35.020 651U5.7U III 60 50 3U.870 65152.10 III 00 3U.23 65179.3 6 3U.007 65188.76 k 33.735 65200.32 III 20 33.U22 65213.63 80 60 33.187 65223.62 HI 00 32.55 65250.7 30 32.209 65265.25 V 00 15 31.89 65278.39 II 25 31.225 65307.19 V Uo 30.795 65325.5U IV V 20 30.01(7 65357.1+7 V 10 29.907 65363.U6 V 100 25 29.1+26 65381+.01 III IV 30 27.956 651+1+6.92 V 12 \ 27.296 651+75.20 III 18 J 30 r 27.102 65U83.52 III 30w 26.90 651+92.2 IV V 2 200 100 26.051 65528.61 III 15 25.370 65557.87 IV V 100 2U.718 65585.90 IV V 25 2 3 . 7 5 6 65627.31 V 10 10 23.UUU 6561+0.75 III 18 6 23.327 6561+5.79 I I I 8d 22.867 65665.62 2 1 21.99 65703.h 25 15 21.681 65716.80 I I I 5s5d D^- 5sl+f lEj a&pfiA - 5s5p8s v 5a5p6s'P-X12il 187 TABLE XI (b) (continued) K H J l J2 Xl„A° (vac.) 6~k vac. Excit. Class. Uo 30 1521.068 657U3.29 III 20 20 20.666 65760.67 III 00 150 20 20.288 65777.02 IV 30 19.232 65822.7U IV V 00 l5o 25 18.737 658UU.19 IV 30 25 17.708 65888.83 III 35 17.331 65905.20 IV 15 17.0U5 65917.63 V 15 d 25 16.639 65935.27 III 25d 16.1U0 65956.97 rv v 15 10 15.133 66000.81 i n 30 2 1U.U3U 66031.27 III IV Uo 2 1U.10U 660U5.67 IV 1 00 100 80 13.36U 66077.96 11 c 5 12.926 66097.09 III IV 18 12.629 66110.07 III IV 12 12.251 66126.59 i n rv 30 150 Imp? 11.2U9 66170.UL i n 100 11.008 66180.99 1 0 i5o 100 10.295 66212.2b rr c 30 09.688 66238.86 6 09.U02 6 6 2 5 l.iil 5o 09.122 66263.70 rv 30 08.623 66285.62 rv 1 08.U23 6629U.U1 25 20 08.109 66308.21 rrr 10 07.570 66331.92 rv 5 07.060 6635U-36 00 ii 120 06.670 66371.5U rr 6d 6 06.110 66396.22 r r r 00 120 05.U20 66U26.65 rv v 50 05.10U 66UU0.60 III ! lOd OU.370 66U73.01 i n 1 10 0U.113 66L8U.37 5s5p6p 3 D - 5sl5p8s P,e 5lUf X- #6gxG 5slifV,- S&gti 188. TABLE XI (b) (continued) K H J l J2 A .I .A 0 (vac.) vac. Excit, 35 1503.885 661+91+. 1+5 III 10 03. Will 66513.96 IV V 15 03.180 66525.61+ IV V 20 02.902 66537.91+ III 10 02.11i0 66571.70 IV 12 2 01.823 66585.75 III 15 01.221 66612.1+5 IV b 5 00.968 66623.68 III 25 00.255 66655.31+ IV 6 lli99.765 66677.12 li 99.586 66685.08 5 99.069 66708.08 80 20 98.36U 66739.1+6 IV 5 97.805 66760.80 II III 30d 97.257 66788.81 rv 30d 80 96.330 66830.18 11 12d 95.5U8 66865.13 30 95.13 66883.8 rv 25 9U.26U 66922.58 V 30 91.792 67033.1+8 IV li 90.93$ 67072.01 60 ii5 90.ii72 67092.85 i n 15 89.911 67118.11 IV 7 150 15 89.515 67135.95 III lid 89.070 67156.02 25d 10 88.1+73 67182.95 rv 2d 87.91+0 67207.02 30 87.21+5 67238.1+2 III IV lOd 86.803 67258.1+1 rv .111 8d 86.561+ 67269.22 IV III 12 25 85.002 67339.98 i n 25 81+.690 67351+.13 IV 00 81+.1+8 67363.6 IV 25 81+. 173 67377.60 IV Class 5 3 ^ 6 8^-113, 5a15p5d3g-XU1 5s15P5d ¥-x5, 5&5p6s 3 P - X 7 . 5S5PV- 5sl5Pl+f\ 189 TABLE XI (b) (continued) J l J2 X l . A 0 (vac.) "^"k vac. Excit, 18 20 11*83.778 67395.53 I I I 1.5 83.561 671*05.25 IV 20 83.262 671*18.98 IV 00 83.03 671*29.5 30 20 82.811 671*39.1*8 I I I 0 82.1+1+ 671*56.1* 30 30 82.090 671*72.29 I I I 10 6 81.820 671*81*. 58 I I I 25 81.630 671*93.21* rv 20 81.159 675H*.70 .rv 30 81.032 67520.1+9 IV 30 80.657 67537.59 i n 8d 80.377 67550.37 IV 20 79.652 67583.1*6 IV V 15 79.111+ 67608.05 rv 80 78.869 67619.25 rv Od 78.22 6761+8.9 18 77.901 67663.51* i n 10 77.660 67671*. 57 8 77.291 67691.1*8 25 77.102 67700.11 i n 0 76.82 67713.1 25 76.617 67722.37 IV V 10 76.023 6771*9.63 i n 6 75.723 67763.liO i* 75.1*68 67775.11 0 75.16 67789.3 I I 5oo 100 73.938 6781+5.1*6 i n 80 73.517 67861+.85 IV 20d 73.176 67880.56 V 0 72.70 67902.50 15 72.518 67910.89 rv 0 72.36 67918.2 100 20 71.51*9 67955.61A I I I IV 100 20 71.360 67961+.3l*>' i n rv K H Class 5sSp6s-?PrX8z 5S5P - 5s5p6P P( 5s25p6s lP'-X13 5 s 5 ^ - 5l5p6p*D 5£5P* \ - 5S5P % #'so- 5s6p3P° 190. TABLE XI (b) (continued) L H J l J2 Al.A 0 (vac.) C K vac. Excit, Od 1U70.86 67987.U 30 69.951 68029.U8 IV 25 69.567 680U7.26 IV 6d 25 69.076 68070.00 II hd 68.569 68093.50 Od 67.7U 68131.9 0 80 120 67.150 68159.36 II C lOd 66.508 68189.20 1 2 250 100 65.70U 68226.60 II C 1 6 150 100 65.2UO 682U8.21 II C 0 6U.210 68296.22 III 50 63.516 68328.61 V 25 30 63.261 683U0.51 III 30 30 62.792 68362.U2 III 1 U 150 150 61.68? 68U1U.10 II c 50 61.335 68U30.58 V 10 60.620 68U6U.O8 rv 1 (150 20 59.927 68U96.57 III IV (Uoo Uo 59.690 68507.70 i n 5 2 5oo 15 58.3UO 68571.12 rv 10d 15 57.U60 63612.52 i n 18 56.960 68636.07 rv 70 80 56.U70 68659.16 III IV 100 30 55.896 68686.23 i n 5 50 Imp. 55.077 6872U.89 2 80 l5o 5U.339 60759.76 II c 8d 53.901 6878O.U8 60d 52.850 68830.2U rv 15 u 52.U22 68850.52 IV 00 51.92 6887U.3 00 50. U6 689U3.6 in 0 50.21 68955.5 15 U9.92U 68969.IU IV V 8 U9.U69 68990.79 K Class. 5S5P3'IT-X2 ^s5p5d3Fi-X7, 3_» 5s15p6s *P-X10 TABLE 5 (b) (continued) 191 K L H J l J2 Al.A0 (vac.) vac. Excit. Class. 0 IS 1UU9.230 69002.16 200 15 U8.928 69016.55 1000 30 U8.056 69058.11 IV U7.97U 69062.02 II 2 U7.26 69096.1 2 U6.82 69117.1 500 15 U6.136 691U9.79 IV lOd 1 UU.98 69205.1 rv ( 2d U3.761 69263.55 (12d U3.U86 69276.7U ( 2d U3.281 69286.58 3d U2.629 69317.90 25 15 U2.312 69333.13 III 30 Ul.092 69391.83 V 15 U0.739 69U08.83 500 39'.557 69U65.82 IV 100 39.U2U 69U72.23 II 100 38.6U1 69510.9 III Uo 38.269 69528.03 IV V 20 37.501 69565.17 v rv UOd 37.02U 69588.25 V IV ( 2d 36.27 6962U.8 ( 2d 36.10 69633.0 10? 35.66 6965U.5 100 30 35.UU7 6966U.72 i n 12 3U.853 69693.56 i n 30 Uo 33.899 69739.92 i n 2d 33.575 69755.69 15 20 33.120 69777.83 i n 10 32.853 697U0.83 30 31.U75 69858.02 V 00 31.00 69881.2 15 30.230 69918.83 IV V Od 29.670 699U6.22 5J6P 5S5P P, 5'l5p6s P - X l ^ V - 5P \ 5s5P5d%.X? 2 5s5p5d^-x6 192. TABLE XI (b) (continued) K L H J l J2 A i . A 0 (vac.) G~K vac. Excit. Class. Od 11*29.160 69971.18 1 28.888 69981*. 50 Od 28.103 70006.79 00 28.028 70026.61* IV 25 27.556 7001*9.80 III 12d 27.010 70076.60 III IV 25 26.566 70098.1*1 III 2 2 26.291 70111.92 III 12 26.000 70126.23 V IV 0 25.700 7011*0.99 0 200 50 2l*.232 70213.28 II 8 23.777 70235.72 V IV 12 6 23.290 70259.76 100 80 22.062 70320.1*3 II c 0 21.1*73. 7031*9.66 35d 20.590 70393.29 V VI 35 19.222 701*61.11* IV V 25 18.508 701*96.61 III 30 18.21*0 70509.93 IV 25 17.71*1* 70531*. 60 III 25 17.21*5 70559.1*1* IV V 200 16.800 70581.60 V IV 50 16.218 70610.60 IV V 30 20 15.81*5 70629.21 III 50 15.608 7061*1.03 IV V I5d 11*. 908 70675.98 8d 11*. 561* 70693.17 80 Hi. 170 70712.86 V 30 13.818 70730.1*7 17 I'll 1 12.822 70780.33 200 100 11.88 70827.6 18 10.251 70909.37 IV V 18 10.126 70915.65 IV V 30 09.1*1*0 70950.17 rv v 5s6s 2£r5s5p5d b'.t i l l 5s5£ % - 5s5p* s 5s5p \ - 5s5pl*f F3 Nitrogen. 193. TABLE 3H (b) (continued) K L H J l J2 A . I . A 0 (vac.) S^ K vac. Excit. Class. 10 1 1 ii 8 ia09.l63 7096U.12 70 12 08.375 71003.82 IV III 12 07.975 23.99 V 12 07.711 71037.31 IV III 100 07.030 71071.70 rv 1000 10 06.533 71096.81 V 0 05.5a 711U7.0 III IV 0 05.32 71158.2 V 150 100 oa.975 71175.65 II c 180 oa.670 71191.10 rv ao oa.65 71192.1 II c 15 oa.i88 71215.5a i n a 03.a38 71253.60 180 02.811 71285.a5 i n 200 30 02.195 71316.76 i n rv 15 00.283 7iaia.ia IV V 00 1399.8a 7LU36.7 15 99.$62 71U50.93 V i 98.926 7LU83.ai 0 98.632 71a9s.ua 1 98.39a 71510.61 18 d 97.611 71550.67 rv v 20 97.222 71570.59 III IV 1 96.551 7l6oa.98 00 96.2a 1 20  150 100 95.790 7i6aa.o2 II c 200 100 95.2ao 71672.26 II c 1 9a.350 71718.01 20 , (93.93 71739.6 300 ' (93.79 717a6.8 III 0 93.078 71733.a9 6 92.565 71809.9a li 92.iaa 71331.65 rv v 0 91.265 71877.0U 0 90.7ao 7190a.17 5s5P P - 5P DX 5s5^V- $ K S^P5d3F-X9; 19k. o TABLE XI (b) (continued) K L H J l J2 \l.A° (vac.) vac. Excit. Class. 2 1390.U80 71917.62 30 90.113 71936.60 V 60 89.602 71963.06 IV III 0 '89.209 71983.U1 8 88.98U 71995.07 IV V 0 88.79 72005.1 8 88.350 72027.95 0 88.15 72038.33 50 87.767 72058.21 IV III ho 37.6U7 7206U.UU IV 8d Imp? 87.3U8 72079.97 6 86.859 72105.39 rv v 150 200 86.127 721U3.U7 II c 70 85.U6U 72177.99 V Uo 85.055 72199.30 VI 0 8U.15 722U6.5 00 83.6U 72273.1 00 83.Ul 72285.2 8 83.1U5 72299.00 IV v 8 82.U3U 72336.19 IV V 2 82.098 72353.77 IV v 8 81.U88 72385.72 10 80.310 72UU7.50 IV 1 79.687 72U80.21 rv 200 i5o 78.923 72520.37 II c 1 78.020 72567.89 200 150 76.908 72626.50 II c 60 75.978 72675.59 rv 300 i5o 7U.8U5 72735.U8 II c Uo 7U.390 72759.56 V 8 73.650 72798.75 rv 60 72.260 72872.U9 rv 6d 71.603 72907.Uo rv 5d 71.308 72923.08 i n 15 69.80U 73003.15 V TABLE Xi (b) (continued) K L H J l J2 " X l . A 0 (vac.) vac. Excit. Class. 12 1368.821+ 73055.1+2 V 12 68.61+7 73061+.86 IV 8 300 200 66.700 73168.95 II c 30 66.010 73205.91 V 1 65.261+ 7321+5.91 1 61+.622 73280.37 50 63.1+62 7331+2.72 III 9 1+00 200 63.251+ 73353.91 II c 12 62.51+5 73392.08 V 1 62.130 731+11+. U+ 0 61.58 731+1+0.88 20 60.916 731+79.93 IV III 25 60.800 731+86.19 IV 5 60.51+0 73500.23 IV 3d 59.838 73538.18 III 6 59.219 73571.67 III 2d 58.331 73610.76 III 15 57.992 73638.11+ III 12 57.191 73681.60 III 2d 56.377 73725.82 III IV 250 $$.96 73771.07 IV 1 55.017 73799.82 15 51+.1+10 73832.89 V 0 51+. 120 7381+8.70 2 53.670 73873.2 III 2 10 53.1+95 73882.80 II 15 52.992 73910.27 IV 2 52.268 7391+9.81+ 3 51.820 73971+.35 lOd 51.691+ 73981.25 IV V l5d 51.618 13955.9$ III 1+ 51.205 71+008.02 IV 10 50.970 71+020.89 III l+o 50.630 71+039.53 IV 5S5P VP - 5S5P Pi $s$f> 'D2-X6 196 TABLE XI (b) (continued) K L H J l J2 "Xl.A0 (vac.) <3*K vac. Excit. Class. 10 10 1350.112 71*067.93 III 8 1*9.660 71*092.7U ( 6 20 1*9.105 71*123.22 III ( 8 1+8.850 71*137.23 III 6 18.655 71*11*7.95 IV 00 15 Imp? 1*8.25 71*170.2 30 1*7.861+ 71*191.1*7 III 35 1*7.570 71*207.65 rv 0 U6.890 71*21*5.12 0 16.390 71*272.69 2 20 1*6.121 71*287.53 II 7 1+00 150 1*5.250 71*335.63 II 3 1*3.6oo 7UU26.92 15 15 13.292 71*1*1*3.98 rv 8 U3.03U 71*1*58.28 IV 20 1*2.1*37 71*1*91.1*0 UO 1*1.875 71*522.59 IV V 00 1*1.31*0 71*552.32 10 1*0. 1*1*8 71*601.93 IV V 2 1*0.200 71*615.73 i n 18 25 39.388 71*663.76 i n 300 30 38.338 71*719.55 i n 15 37.925 71*7)42.61 IV 7 300 60 36.1*21* 71*826.56 II 15 35 35.232 71*893.36 III 15 31*. 951* 71*908.95 rv 80 50 33.670 71*981.07 i n 6 33.281 75002.95 8 32.961 75020.95 10 32.676 75037.00 i n 12 32.3U5 75055.61* IV V 10 32.11*2 75067.08 IV 6 31.852 75083.1*2 i n 5 31.502 75103.16 IV 1 31.335 75112.58 5&p6s *rLxi3' 5S5PY-X32 5 S # \ - 5s5£ V 5rios V5s5p?d 4 197 TABLE XH (b) (continued) K L H J l J2 \l.A° (vac.) C k vac. Excit. Class: 10 1330.00 75188.0 100 30 29.830 75197.59 V IV 00 28.20 75289.9 00 27.32 75339.8 (25 10 26.970 75359.66 (25 26.623 75379.-37 II c 5 25.851 75123.09 rv v 00 25.56 75b39.8 8 10 300 100 2U.918 75U76.3? II c 25 2b.203 75517.13 V 5«5p ^ 200 1 23.9k6 75531.79 III 0 23.28 75569.8 2 80 8 22.202 75631.11 II c 0 21.70 75660.1 2h 20.86 75708.3 II c 2 20.190 757b6.68 200 ? 18.950 75817.89 IV V 0 18.213 75860.28 30 17.U10 75906.52 iv v (25 17.160 75920.93 IV (20 17.0bii 75927.61 IV (25 16.955 75932.7U H I 5s5p5d-,F-X12t 30 16.535 75956.97 IV 30 16.29 75971.1 III 25 15.989 75988.b7 IV 10 15.577 76012.23 IV 5 30 15.U5 76019.62 II 5 15.300 76028.29 rv 5s5p*.V5s5p5dy 18 15.055 760U2.U5 30 lb.510 76073.98 5 d \ - 6pV 3 200 13.900 76109.30 VI 250 10 13.070 76157.bl i n 5s5pM>*x 3 * 30 12.710 76178.29 rv 30 6 12.550 76187.58 III IV 198. TABLE XI (b) (continued) B H J l J 2 I .A 0 (vac.) K vac. Excit, l5d 1312.158 76210.31+ r i l l 1 12d 11.01+6 76271+.98 2^0 30 10.660 76297.1+1+ III 6 09.952 76338.68 V IV 5 08.850 761+02.95 I I I rv 6 08.1+12 761+28.53 III IV 5 08.101 761+1+6.70 IV V 2 60 10 07.155 76502.03 II c 1 1 06.857 76519.1+7 1L 8 250 80 06.5!i5 76537.71+ II c 10 05.657 76589.80 iiO 05.517 76598.01 VI ii oh.350 76666.51+ 60 03.69ii 76705.12 IV 30 03.330 76726.51+ III 30 01.12U 76856.63 III IV 1 OO.L76 76891+.93 2 1299. Iil6 76957.65 50 98.915 76987.31+ IV 8 98.515 77011.05 3 98.33 77022.0 3L 2 750 100 98.06 77038.0 Coinlll ; 2 97.05 77098.0 III 15 96.711+ 77118.01 0 96.105 7715U.25 2 100 100 95.630 7 7 1 8 2 . 5 3 II c 120 10 95.115 77213.23 III 30 91+.533 7721+7.91+ IV III 20 10 93.205 77327.27 III 00 9 2 . 8 6 7731+7.9 2 750 1 0 91.888 771+06.10 II 5 9 0 . 9 6 771+61.7 III IV 25 6 90.5hh 771+86.71 IV 10 90.101+ 77513.11+ x 200 5 89.575 7751+1+.93 IV III 5S5P 3P-xi+, 5S5P S< 5s5p6s5P, 6 p \ - 7s V 5s6s kr$s$p5*d d ~^5p6s 'P-Xlii 5s5d ZD c 5 p \ i P-, 0 I 'cm* \ A X A rt X A t A _ 3 X A S O 1 _ , to ft m co^ro 7-1 cv<tn ^ f t X A X A „ X A X A X A X . X A X A X A CO pS . I W v O " X A I ><i ! I I . " fx ," ) X A i 8 r H f t " C Q ° M f t " f t X I * Q , " f t ft t t , ftT3 \/NXA A f t ~ X A X A X A X A X A X A X A \ 0 X A r i v l t Q X A "10 "<0 tQ^tO -*m CO "CO COrlCO-lCQ 1 T \ X A tQ X A X A X A X A X A X A X A X A X A X A M ^ O O t—I O O O | | | | H M M M > M M M M H > H M M M M M M > M M M ^ > £ > L J M M M l M M M M M M M M M M M M M M M M M M M M fc> M M > M M M M M M M I—I M 1—I M O M M N O O N O N ' C O C M P - M D C A M H C O C O C O O H O C M D \ p - C M N O C M C O 4 H P - - C T - C f O P - N Q M X A c O O C M C A X A C O C K O X A P — M - C f - C f M C O P - _ C f - C f C A C O [ - C M O \0 C M C O M C O C M P - C O o • • o • • i • • • • i • * • • • s • • i , « o • o • o • a > J O H J J P - C M f A N O O M M O - C T X A M O f A f A C M CN ON P - . ^ f X A f A C A O O M C M P - M P - O O P - O N P - f A - C T P - O N r t C M X A P - C M N O C M O N f A M O M C M C A - C T M X A P - C f H I X M J p - O C A P - O N M X A X A N O P - P - P - P - C O C O C O 3 D ON ON O O M M C M C M C M CM < A C A < A - C f X A X A NQ NO N O P ~ P - P - P - 3D e-— c— c— c— P — P - P - P — p - p— P - P - • so c o c o m c o c o X J C O C O O O C O G O C O S O C O C O C O C O C O C O C O O O t— i— c~— c— c— P — c— r— p— P — c— p-p—p-p—p— P — p— t— P ^ - E — P — P — P — P — P — P — P — P — P — P - P — MO O CO M CO C A v O O ao -cr -cr C M V • o • • O N ao P - N O M3 C O X > C O 3 D 3 D C M M P - X A M D C O C M P - C M O P ^ - _ c r M O N « o « • X A X A X A - C f C O C O C O C O P - O X A M N O X A o - c r X A M f A P - N O . a e « o a _Cf _CT < A C M M C O C O C O C O C O O X A O s C— C M O N O v M X A O O - C f C O - C f X A < A * • • o • O ON ON C O C O O O P — C — C — p— C O X A C A X A O N C A N O C M O M C J O N O O C M O N e • e o o O O P - N O N O X A p- P - P - P - P -N O M M M C A N O C— O f A M r — N O P — C N N O • • • • e _ c f f A CM M M f A - C T P - O N C M C A O M C A ON t C A ri^O O J O N *• « • • e • M O O ON ON a o P - P - P - N O NO NO X A C M O M X A C M o o X A f A O C O o o o C M C M C A c •H O O O o M O O O O O C O 3 D C O t 2 J3 M O C M C M O C M - — w O C M C M O M M M 3D O f A si CM o o o o M O O X A O O O X A X A - C t M M M O C M O C O O O M C M X A O X A O O C O X A CM O M M P - CM O O O X A O O O X A O C M C M C M CM C M C M O N -Ct O O N O O M O O f A O O O X A C M < A 200. TABLE AT (b) (continued) B H 3L 3 U h J l J2 A l . A 0 (vac.) CK vac. Excit, 200 10 1267.990 7886U.98 VI 8d 67.890 78871.20 lOd 67.797 78876.99 IV lOd 66.062 78985.08 I I I (I2d 65.030 790U9.51 IV (20d 6U.730 79068.26 IV Id 6U.16 79103.9 0 63.8? 79122.1 I I C 12 63.337 79152.32 V 0? 62.50 79207.9 12 62.U21 69212.88 10 8 62.277 79221.92 I I I 6 62.089 79233.72 v r v 6 61.878 792U6.97 V IV 12 60.U13 79339.08 I I I IV 12 59.'1UU 79U19.0U I I I ( U 58.U05 79U65.68 IV V ( 5 57.985 79U92.21 r v v 2 57.571 79518.38 kOO 56.532 7953U.13 . I I 20 56.38 79593.7 I I 10 796U9.67 Uo 10 5U.235 79729.88 IV I I I 100 80 53.6U5 79767.U0 I I c 2? 53.256 79792.16 V 60 52.611 79833.25 I I c Id 51.735 79889.12 8 51.385 79911.1*6 I I I IV 80 6 50.UU7 79971.Ul I I I 15 50.072 79995.U0 V 10 U9.176 80052.78 IV 12 U8.U58 80098.81 IV I I I 6d U7.956 80131.OU V Class. 5d XD t- 6pV. 5s5A-X9a 5s 5P fr- 5s5pUf'PS 201, TABLE XI (b) (continued) K H lh J l J2 A l . A 0 (vac.;) C R vac. Excit, 20 121*7.561* 80156.21 V 200 ao 1*6.976 8019U.01 I I I 15 16.190 802l*li.59 V liO ii5.9U0 80260.69 I I I IV l* 1*5.51*7 80286.02 I I c 250 20 hli.210 80372.29 r v 00 Ii3.51i5 801*15.27 30 1*2.879 801*58.36 r v 125 1*2.000 80515.30 VI 15 1*1.85 ,80525.03 I I c 2 1*1.590 8051*1.89 12 1*1.31*0 80558.11 r v v 2 1*1.030 80578.23 0 1*0.21*5 80629.21* h 39.980 8061*6.1*7 V 6 39.181* 80698.27 30 38.81*0 80720.68 I I i n 10 38.1*93 8071*3.30 IV 5 37.91*1 80779.30 IV 15 37.188 80828.1*6 i n 250 36.275 80888'. 16 V h 35.709 80925.21 IV 0 35.236 80956.19 31*. 861 80980.78 I I I 30 15 31*. 081+ 81031.77 I I I IV 50 20 33.91*5 8101*0.89 I I I 10 33.1*81* 81071.18 I I I 150 25 33.035 81100.70 V IV 18d 32.3l*U 8111*6.18 V lOd 31.878 81176.87 r v i n 2 31.370 81210.36 5 15 31.11*2 81225.1*0 I I 3 30.756 81250.88 7d 29.996 81301.08 5 20 29.368 8131*2.61 I I Class. 5d'D r*6p^ 5868*3, - 5P6S'P; III 585)3 D - 5s5pl*f \ 5S5P'P;- 5$>V 202. TABLE XI (b) (continued) B H J l J2 X l . A ° (vac.) C £ vac. Excit. 00 2 Uo 35 1228.960 81369.62 II 0 0 30 28.39 81L07.U II 20 27.552 81U62.95 IV III U 2 7 . 0 7 0 81U9U.95 80 25.990 81566.7U V IV 00 80 35 25.760 81582.0U II C lOd 25-U23 8160U.U8 IV 20d 2U.621 81657.92 r v 0 2 200 50 2U.016 81698.28 II c 12d 23.1U8 81756.26 r v U 22.67U 81787.96 r v 60 22.302 81812.85 V 2 21.922 81838.29 60 21.536 8186U.15 i n r v 1 9 200 15 21.055 81896.39 II c 20 20.32U 819U5.U6 i v ; 0 2 200 15 19.960 81969.90 11 c 60 19.U38 820014.99 i n 8d 18.380 82076.20 Id 17.90 • 82108 .55 IV lOd 17.622 82127.30 III IV U 17.032 82167 .11 30d 16.630 821914.26 V lOd 1U.667 82327.10 IV V 25 13.UOO 82U13.06 III IV 1 5 200 L.0 13.050 82U36.83 11 0 1 100 30 12.566 82U69.7U 11 c 0 11.753 82525.07 00 U 2 11.U26 825U7.35 11 1 1 150 bo 11.065 82571.95 11 8 10.68U 82597.9U V U 08.889 82720.59 i v 5, 2 9 200 50 08.53U 827UU.88 II c 00 0 85 30 07.935 82785.59 III 0 07.510 82815.05 K Class. 10 $v\ - 5s6 P y 5s5d al)r5s5p5d d* 5s5rf D-5s5p5d d;4 515^ s - 5s5P6s y 203. TABLE XI (b) (continued) K B H J l J2 Al . A ° (vac.) ° K v ; ) c . Excit. Class. 12 1207.110 828U2.50 IV 5 06.805 82863.U3 U llOO Uo 06.U26 82889.U7 I I I 12 05.171 82975.78 V 0 0U.U05 83028.55 I I I 20 Uo 03.597 8308U.29 I I I 0 00 100 2 03.211 53110.95 I I I 1 120 02.7UO 831U3.U9 I I I IV 2 02.617 83152.00 I I 8 02.180 83182.22 V U 01.765 83210.95 I I I r v 12d 1198.362 83Uit7.2U 6 98.002 83U72.31 150 20 97.726 83U91.55 IV 00 U Ud 97.368 83516.52 r r 2 200 96.938 835U6.52 IV 00 150 100 96.U71 83579.13 r r c lid 96.088 13605.89 5 95.183 83669.20 r v v 8 9U.U69 83719.21 r r r rv 00 9U.OU8 837U8.73 00 93.566 83782.55 0 Uo 20 93.070 83817.38 r r r 10 8 92.100 83879.96 r r r r v 6 91.70U 83913.U6 r r r 6 91.563 83923.39 IV 5 91.189 839L9.7U r v 8 12 90.999 83963.13 i n 5 90.392 8U005.95 rv 25 89.96U. 8U036.16 IV 22 89.632 8U059.61 r n Uo 89.1U2' 8U09U.25 IV 1 120 100 88.866 8U113-77 r n 15d 88.372 8U1L8.7U IV V 5S5P:3D; 5S5P P;-XII3 5S5P D - 5s5p 5s5 PVt- 5s5p B,J 4 o 5s5d.%- 5S5P6S P. 5S5P1 \ - 5s5rs; 20U. TABLE %I (b) (continued) K 10 B H J l J2 / \ l .A° (vac.) C k vac. Excj 2 200 60 1185.889 81*321*. 93 III 20d 20 85.251* 81*370.11 III li 81*. 790 81*1*03.15 18 81*. 225 81*1*1*3.1*2 V 6 10 83.980 81*1*60.89 III 6 83.700 81*1*80.87 l5d on N III 83.053 81*527.07 IV 0 10 82.638 81*556.73 (25 82.307 81*580.1*1 rv v (30 82.035 81*599.87 IV V 00 100 100 81.1*79 81*639.68 I I 00 80.69 81*696.2 00 80.1*1* 81*711*. 2 5 79.988 81*71*6.63 » 6 79.770 81*762.29 0 80 lOOd 79.305 81*789.96 i n : 1 79.21*5 81*800.0 I I 0 78.855 81*828.08 0 78.65 81*81*2.8 00 78.50 81*853.6 0 78.22 81*873.8 00 77.99 81*890.3 25 on N I 77.701 81*911.20 V 0 IlO 8.0 76.81*5 81*972.96 I I 50 Imp? 76.61*5 81*987.1*1 12 5o 50 on C I 75.79 8501*9.2 I I 00 71*. 66 85131.0 0 10 50 60 71*. 266 85159.59 I I 2 72.890 85259.1*9 3 72.551 8528U.ll* 22 72.160 85312.59 IV V 25 71.561* 85355.99 i n 2d 70.805 85U11.32 3d 70.535 85U31.03 Class. 5 s V s - 5l5p5d3D 5s5p* 'tf-XlU, 5P3P - 5s6P p; TABLE M (b) (continued) 205. 1 10 B H J l J2 X l . A 0 (vac.) vac. Excit. 20 1170.232 85U53.15 20 20 69.71U 85U90.99 I l l 10 69.35 85517.6 00 50 69.017 855U1.96 III U 1000 50 68.380 85588.60 IV 00 Uo 10 67.605 856U5.U1 rv 00 50 0 67.1U6 85679.09 rv 15 66.870 85699.35 3 20 66.U6U 85729.18 i n 8 66.258 857UU.33 rv U 65.731 85783.09 00 30 65.U9 85800.8 8 65.015 85835.81 7d 63.295 85962.72 20d 62.U26 86026.99 rv 15 61.736 86078.02 IV 0 10 150 50 61.367 86105.U2 I I 20 60.970 8613U.87 i n U 60.080 86200.96 3 5 59.290 86259.70 I I 10 86311.UU rv 10 58.359 86329.03 i n rv 00 60 57.888 8636U.1U i n 5 57.302 86U07.87 0 0 56.515 86U67.U2 II c 3 56.200 86U90.23 12 25 55.9UO 86509.69 i n rv 15 55.7Uo 8652U.66 IV 12d 2 5U.963 86582.87 i n rv 1 2 5U.652 86606.19 i i 0 UO 5U.156 866U3.U1 I I 3 53.80U 86669.8U 3 53.668 86680.06 3 53.388 86701.10 5 10 53.139 86719.82 II c Class,  5S5P\I- 5P3 %  5 S 5 P % - 5 s 6 P ^ 5s*5d |-5s5p5d 3 X 206. TABLE XI (b) (continued) K B H J l J2 A l . A 0 (vac.) vac. Excit, 2 1152.81*2 8671*2.16 20 30 52.606 86759.92 III (25 52.176 86792.30 V (20 51.987 86806.51* IV 2 300 30 51.255 86861.73 III 3 0 50.67 86905.9 II 0 50.261+ 86936.57 00 ho 100 1*9.71*8 86975.59 III IV Id 1*8.180 8 7091*. 36 5 1*7.600 87138.38 10 1*7.375 87155.1*7 0 1*6.731* 8 7201*. 19 1 3 1*6.180 8721*6.31* II c 3 1*6.030 8725.7.76 IV 3 1*5.869 87270.02 • 2 1*5.650 87286.70 5 1*5.215 87319.85 r v 1 160 80 1*1*. 711* 87358.07 i n 1 6 200 80 1*1*. 131* 871*02.35 II c 6 Imp? 1*3.637 871*1*0.31* 6d 1*2.931* 8 71*91*. 12 IV 0 60 2 1*2.610 87518.93 V 1 1*2.21*5 8751*6.89 15 15 1*1.930 87571.05 IV 6d 1*1.615 87595.21 III IV 00 20d 15 1*1.197 87627.29 IV 0 50 6 1*0.1*50 87681*.69 IV 18 1*0.057 87711*.92 V 15 39.519 87756.33 V 12 39.320 87771.66 III IV 1*0 50 38.655 87822.92 11 5 38.283 87851.62 3 37.981 8787U.93 3 37.825 87886.98 5 37.636 87901.58 a. . 5s6s S - 5p6s P" i v 5S5P"V 5 s 6 P V T TV(t - 3 V TABLE /XI (b) (continued) 207 K B H J l J2 Al.A° (vac.) 6"1v vac. Excit. Class. 15 6 1137.107 8791+2.1+8 IV 2 36.952 8795U.1+7 ( o 36.658 87977.22 ( 1 36.317 88003.62 ( 3 35.922 88031+.22 lid 33.881+ 88192.1+5 IV 2 33.395 88230.50 III ( 6 33.180 8821+7.21+ III ( 6 32.961 88261+.30 rv 0 1 100 100 32.295 88316.21 II 12d 31.930 8831+1+.69 III 1 60 80 31.055 881+13.01+ III 30 80 30.1+70 881+58.79 II 00 1 10 10 30.265 881+71+.83 II 12d 29.868 88505.92 V 10 29.21+5 88551+.75 rv 0 50 28.1+80 88611+.78 V 0 28.33 88626.6 V liO 28.130 8861+2.27 rv v 00 27.66 88679.2 5 27.1+00 88699.67 IV 15 26.1+05 88778.02 oo 3 (20 A 26.200 88791+.18 11 c (10 26.019 88808.1+5 IV 12 25.7liO 88830.1+6 V 5 21+.965 88891.66 IV 0 100 10 21+.530 88926.05 III IV 2 200 15 21+.150 88956.11 i n 1 150 10 23.505 89007.17 v n c : 5 23.305 89023.02 VII Id 22.59 89079.7 00 100 22.318 89101.31 11 2 21.1+25 89172.26 0 21.311 89181.33 IV 00? 21.183 89191.51 X 5s*6s S-5s5p5d |^  5s5A-xil+,. 3 o 515x5 \ - 5s5^ P; S^p^Pn- 5s5p6s P^ J 5 p ^ i - Sshf X , 1 2 . .3_o 208. TABLE JEE (b) (continued) H J l J2 1 I.A° (vac.) <*K vac. E x c i t . Class. 00 0 10 1120.81*7 89218.25 6 20.265 8926i*.60 0 20.150 89273.76 0 19.660 89312.83 IV 6 19.533 89322.96 rv v 20 19.11*3 8935i*.09 III 18 18.1*52 891*09.30 IV 1 18.01*2 891*1*2.08 0 17.926 891*51.36 0 17.780 891*63.05 80 50 16.905 89533.13 II III 50 25 16.177 89591.53 III 30 15.755 89625.1*2 V 00 15.37 89656.1* 20 15.050 89682.08 V IV 10 11*. 750 89706.22 V IV 2 11*. 510 89725.53 6d 11*. 01*9 89762.66 IV (20 5 13.369 89817.1*9 III IV (30 13.205 89830.72 IV III 0 13.010 8981*6.1*6 25d 12.560 89882.80 V 00 11.91* 89932.92 75 11.61*5 89956.78 V 2 11.28 89986.3 15 10.985 90010.22 III 15d 10.535 9001*6.69 IV 12d Complex 10.20 90073.9 III 10 09.955 90093.75 6d 09.632 90119.97 rv v li 09.250 90151.01 V 20 09.02 90169.7 IV (12 08.576 90205.82 IV (10 08.366 90222.91 rv 80 60 07.651 90281.15 i n 5s5p*P(I- 5s5p6pMs° 5*5^x8, 5S5P P r5s5p5d < t 5l5p 3P - 5 S 5PV * 209. TABLE X2 (b) (continued) H J l J2 l . A 0 (vac.) <S"k vac. Excit. Class. 150 50 1106.61+0 90363.63 III 0 05.010 901+96.92 25 l+o 01+.71+3 90518.80 II 5d 01+.218 90561.83 2 03.890 90588.71+ 5 03.31+2 90633.73 lOw.d 02.31+1+ 90715.79 (10 00.796 9081+3.52 V ( 8 00.1+1+2 90872.58 III ( 2 00.327 90882.08 2 1099.81+2 90922.16 5 99.1+32 90956.06 00 99.237 90972.20 25 99.065 90986.1+3 IV 1: 20 98.61+0 91021.63 V 15 98.363 9101+1+.59 00 98.031 91072.11 10 97.828 91088.96 0 97.665 91102.1+8 00 97.1+80 91117.81+ (h 97.037 91151+.63 IV ( 6 96.1+15 91206.35 IV 0 96.166 91227.06 1 96.008 9121+0.21 100 1+5 95.237 91301+.U+ III 8 91+.890 91333.38 IV 5 91+.661 91352.1+9 V 3 91+.1+50 91370.10 ( 5 93.701+ 911+32.1+2 rv v (10 93.231 911+71.98 IV V ( 5 92.970 911+93.82 IV V 2 92.123 91561+.78 i n 20 91.896 91583.80 V 5S15P \ - 5sl5P6s V 5&p 1P-5s5p5d d\ Ya '2 5!5P'P, - 5s5p P 5 S 5 P / I >X6 i $f\ - 5s6 P 3„o 210 TABLE XI (b) (continued) B H J l J2 Xl.A0 (vac.) vac. Excit. 20 1091.625 91606.55 V 10 91.360 91628.80 0 91.160 9l6k5.59 V 00 25 30 90.875 91669.5k I I C 2 150 90.09U 91735.21 IV 6 89.965 917k6.07 I I 00 89.803 91759.71 2 200 25 89.0U2 91823.83 I I I 10 88.U29 91875.5k rv U 10 88.070 91905.86 I I c Id 87.5U1 91950.56 Id 87.11k 91986.68 v 00 30 80 86.672 9202k.09 I I c Uo 85.68 92108.2 rv 10 85.060 92160.81 5 83.680 92278.17 VII 3 UO 80 83.397 92302.27 i n 3 83.132 9232k.86 i n 0 82.6k5 92366.39 20 82.238 92k01.12 V U 81.832 92k35.80 1 100 100 81.295 92k8l.71 i n 5 80.03' 92590.0 i n 0 15 79.73 92615.8 i n 9 8 79.07 92672.k I I 6 25 78.8kO 92692.16 U 78.60 92712.8 6 5oo 30 77.9k6 92769.03 rv 8 Uo 30 77.66 92793.65 I I c U shldr. 77.505 92807.00 i n 25 77.036 928k7.kl i n 25 coin. 76.5U0 92890.19 0 8 75.9k6 929kl.k7 I I i n kd 75.681 9296k.37 I I Class 5p £ - 5s6p V 5 ^ i - 5 s # V 5H5P U.x8s 5S*5P1 s - 5s5^ P,° r-l r-l CM to CO cti 1-1 o o o M O-. XA 01 XA > 73 XA ft XA 0} X A "oi X A > M > M ,0? 73 xr\ Xr\ co L A I JJ H r XA CO XA M CD 73 XA ^ XA CO X A CO, X A 00 X A H 5 73 XA ^ XA CO XA XA CO XA 73 G> •g •rl -P o o 9 9 o a! > 1 « o ct) > o «=«! O M NO ON r-l CA CM M3 CA CO ON ON C — X A NO C— C A CM XAMD CA ON NO NO N O CO O -—cf co" co O st _cf XA-cf_=f ON CA r-l CA_=r ON C— CO C—XA CM CAMD X A X A r-J NO _=f r-t CA P - v O CM ON CO CA -CT CA fA_=f ON CM -Cf XA P-ON O O O O CM CA CA CA <A ON ON ON ON ON CO P— _cr co P - X A r-4 C A ON P-vO _Cf C O ON O -Cf O C A -Cf N O ON_Cf r l r l r l H CM C A C A C A C A C A ON ON ON ON ON rH C A N © OO P— -Cf r-i C M ON N O X A - C f O -Cf CA CM O CA-Cf CA ON NO O CA f A CA -Cf XA X A CA CA CA CA f A ON ON ON ON ON X A C O X A r-l CM -Cf C— C— CM -Cf P - ON - c f r-l X A CM -Cf C A X A X A C O O C A X A X A X A N O NO N O f A CA CA r A CA ON ON ON ON ON X A X A X A X A C O CO r— CM ON CA CO X A CA ON C— r—i P - _c f r— c— CO O -CfNO CA NO f— CO CO ON f A f A f A f A f A ON ON ON ON ON f A - C f f A CM f A t - r-l r— O -Cf ON O O I-I r-i CA-C f -C f -C f -CT ON ON ON ON ON -Cf P- O r-l O -CT-CT X A O -cr^cr O N fA _ c r O P - H -Cf i—I XA f A X A r-l NO O NO CM X A r-l f A O O ON ON O CM N O r—I CM f A f A f A - c f - c r - c r _cf-cf ON ON ON ON ON CM CM _Cf i—1 l—l NO NO XA-Cf CM P -X A - C f - C f - C f - C f C— p - P— P - C— o r-l fA fA fA fA CM r-i O ON ON ON P- P - N O M0 NO CO CO CO £ — P— NO NO NO NO N O P- P - X A X A - C f N O N O NO NO N O -CT f A f A CM CM NO NO NO NO NO r-l O O O ON N O NO N O NO X A CM •-a o N O o rH O r-l CO X A r-l 73 73 CM CM O O O 73 73 O CM f A f A X A O r-4 CM O O O O XA 73 X A CM Xi O 73 73 O O r-l O CM CM CM CM O O CM O r-l 73 X A X A XA -C f f A i—I i—l CM 73 O X A X A CM CM r-l CM CQ XA O O O O CM CVI O r-l 212. TABLE XI (b) (continued) K B H J l J2 \l.k° (vac.) Ck Vac. Excit. Class. 2 8 100 50 1059.445 91*389.05 II 3 58.8kU 91+1+42.62 5 58.27 94493.8 IV 8 58.12 94507.2 V 00 20 56.92 9 4 6 I 4 . 6 V 6 56.836 91+622.07 II 1 2 56.571 94645.8O 10 56.138 9468U.60 rv h 55.938 94702.53 v h 55.61+5 94728.82 V 10 55.440 91+71+7.22 V 0 100 10 54.620 94820.89 V 0 80 10 54.200 94858.67 III 15 53.075 94960.00 rv 3 52.903 94975.52 IV 20 52.625 95000.60 IV V 5 52.262 95033.37 2 51.855 95070.IU 30 S* 51.595 95093.65 V 4 51.120 95136.62 00 12 10 50.926 9515U.18 III 0 25 20 50.342 95207.09 II 0 U9.66 95268.9 25 U8.883 95339.52 IV V 00 47.81 951+37.2 III 0 0 kOS- 47 .590 95U57.20 II 00 0 30 47 .150 951*97.31 II 12 1+6.81+6 95525.04 V 2 46.483 95558.17 2d 1+5.71+0 95626.07 1 50 45.205 95675.02 IV 1 60 35 U4.817 95710.55 III 12 44.3U8 95753.53 III 2 80 44.035 95782.23 V  5 s 5 £ \ - 5 s 6 P 1p i 3o 5s5p i'P-5s5p5c e v 5 ^ , - 5 s 6 p ^ 5s5p\P, - 5S5P k 5i5t> s 0- 5s"5p5d'pi 0 TABLE XI- (b) (continued) 213 K 2 8 12 00 B H J l J2 XL .A° (vac.) Ck vac. Excit, 1 UO 10U2.782 95897.33 V 0 U2.130 95957.32 1 . Ul .953 95973.62 2 Ul.512 9601U.26 2 U1.U62 96018.87 00 Ul .22 960U1.2 2 U0.323 9612U.00 2 39.730 96178.82 5 39.U50 9620U.73 20 38.825 96262.61 V 1 38.038 96335.59 0 50 Uo 37.396 96395.21 III U 200 37.188 96U1U.5U V 50 2 37.005 96U31.56 III IV 0 36.U27 96U85..33 -1 Imp? 36.16 96510.2 2 100 25 35.7U3 965U9.05 III 2 120 30 35.U05 96580.57 III u 35.00 96618.3 V 0 0 20 30 3U.705 966U5.91 II c 3 33.9U5 96716.95 III 0 U 33.811 96729.U8 II c 1 U 33.10 96796. II c 5 300 0 33.079 96798.02 V 2 100 35 32.U50 96857.00 III 2 31.526 969U3.76 00 8 8 30.60U 97030.U8 II c 2 UO 15 30.230 97065.71 II c 25 29.925 9709U.U5 IV 2 29.U20 971U2.09 V 30 28.618 97217.83 VI 00 30 27.735 97301.35 VII (25 • 26.783 97391.57 VI (25 26.622 97U06.8L VI Class. 5£ £ - 5s6p ?' 5 s 5 P 3 i t - 5 P P 5*5^A- 5s5p5d3F; - 5S5P°P,° 5^ D - 5sUfX 515$ \ - 5s5^ 5S5P3P - 5$\ 5S5PX'D - 5s5p6s V 5 R ' I X - 5sUf F,° 211+ TABLE XL (b) (continued) H Jl J2 Al.A 0 (vac.) Ck vac. Excit. Class. 10 0 1026.006 971+65.32 0 25.381+ 97521+.1+1+ 20 2U.93L. 97567.26 IV 0 21+.598 97599.26 3 00 80 21+.271 97630.1+2 II 1 1+ 25 20 23.392 97711+.27 II 0 5 25 20 22.727 97777.81 II 10 21.91+5 97852.63 V 2 21.1+87 . 97896.50 2 21.260 97918.26 6 20.516 97989.65 rv 1+ 20.012 98038.07 0 15 19.758 98062.1+9 III 5w 19.266 98109.02 3 100 25 18.870 9811+7.95 III U 150 18.029 98229.03 V 5 17.183 98310.73 2 2 16.81+2 9831+3.70 II 00 0 16.57 98370. II 1 0 16.110 981+11+. 55 V 00 0 12 15.630 981+61.06 II 15 15.353 981+87.92 18 l!+. 350 98585.31 rv 0 5 22 12 11+.191+ 98600.1+7 II (2 13.585 98659.71 IV (2 13.360 98681.62 13.020 98711+.71+ ( 1 12.852 98731.11 ^(2 12.690 9871+6.91 8 12.303 98781+.66 12 11.1+96 98863.1+7 IV U 11.096 98902.58 IV 3d 10.955 98916.38 111 10 09.221+ 99086.01+ V 5S5P D - 5S5P6S3PI 5S-5P*\- 5l-5p5d3F; 5S5P3P - 5 P \ 5r3- D - 5sl+f Fa t 0 3 5S5P P-5s5p5d ct 5stf kxi3 215. TABLE XI (b) (continued) K B H J l J2 Al„A° (vac.) G "K vac. ExcJ 1 1008.7U6 99132.99 III I5d 07.903 99215.90 IV 1 6 liOd 20 07.760 99229.98 II 20d 07.290 99276.28 V VI 2 06.738 99330.71 3 50 20 06.L36 99360.52 III 5 05.711 99k32.l5 V 1 0 liO Ok.885 99513.88 II 3 60 0L.i|20 99559.95 III 12 Imp? Ok.006 99601.00 IV 00 6h 15 03.7U3 99627.10 II 00 12 02.681+ 99732.32 III 5 02.1k7 99785.76 30 01.905 99809.87 IV 1 3 liO .01.750 99825.31 II 5 01.593 998k0.96 5 01.20k 99879.75 12 5 00.865 99913.58 III 5 00.607 99939.3k 3 60 12 OO.k02 99959.82 III 8 oo.okk 99995.61 12 li 999.503 1000k9.7 III 5 97.367 10026k.0 k 200 96.837 100317.3 IY 5 95.936 100k08.1 IV V 2 50 95.6U5 100k37.k III 5 9k.793 100523.k 1 12 9k.k30 100560.1 II k 8 93.893 10061k.5 II 00 93.758 100628.1 IV 00 93.635 1006k0.6 0 0 30 93.366 100667.8 II 1 k li5 92.636 1007kl.8 II 5 92.$95 1007k6.0 xcit. Class, 10 5s5d'D - 5p6s3P^ r.3p-i l l 5!5P P - 5 l 5 p 5 d \ i n 5S5P TL - 5s5p5d P° it 216. TABLE XXI (b) (continued) B H J l J2 A l . A 0 (vac.) CK vac. Excit, 2 992.05U 100800.9 5 90.773 100931.3 III 2 90.353 10097U.1 III 8 90.150 10099U.8 III 0 18 89.UU5 101066.8 II c 1 89.230 101088.7 0 35 U 88.715 1011U1.U III 6 88.UU2 101169.3 IV 2 87.965 101218.2 00 12 87.376 101278.5 rv 5 86.720 1013U5.9 IV V 5 85.7L0 101UU6.6 V 00 15 85.U90 101U72.3 III (3 85.272 101U9U.8 (2 85.001 101522.7 5 8U.750 1015U8.6 rv i n Us Imp? 8U.295 101595.6 1 2 18 83.922 10163U.1 I I 1 0 12 82.613 101769.5 I I 2 81.65U 101868.9 5 81.58U 101876.2 0 80.978 101939.1 2 80.U30 101996.1 rv c 00 30 79.9U0 1020U7.1 m 0 25 79.6U6 102077.7 V 2 79.1U8 102129.6 rv v 1 10 79.027 1021U2.2 V 2 60 78.709 102175.U rv 2 78.308 102217.3 i n 00 1 10 78.026 1022U6.8 II c Od 77.593 102292.1 U 76.6UU 102391.5 u 76.125 102UU5.9 V 2 75.979 102U61.2 v . 0 5 75.75U 102U8U.9 II c I t Js 3S, 5sUf V,-5s8 t 5l5p- P0 - 5s5p" V 1 V . "•, l o 217. TABLE 32 (b) (continued) K B H J l J2 X l . A 0 (vac.) C K vac. Excit. Class. 00 10 975.1*90 102512.6 V I I ( 3 7ii.820 102583.1 (10 7h.637 102602.3 V ( 3 7U.U30 10262l*.l 5 w.d 71+.079 102661.1 8 3 60 73.580 102713.7 I I I 5I5A - 5s5p6s3pJ 2d 73.11*0 102760.1 8 72.630 1028lU.o V 00 72.1*5 102833. 6w 71.816 102900.1 I I I r v • 8 2 80d 71.155 102970.2 I I I 5s5p- \ - 5l5p6s P.* 8 70.398 103050.5 r v 00 10 70.161* 103075.1* V 10 69.853 103108.1* IV V 0 69.598 103135.5 2 69.1*32 103153.2 00 69.261 103171.1* 00 69.089 103189.7 5s5£ »-5e 0 15 68.823 103218.0 IV !5p5d'F^  1 12 68.278 103276.1 I I c li 50 67.592 10331*9.1* V 5s6P3p;- 5s8s S, 1 1 30 67.1*08 103369.0 11 1 li 67.11*6 103397.0 I I I IV 6 66.1*03 1031*76.5 i n 2 3 15 65.971* 10351*1.8 i n 5S5P \ - 5l5 P 5d 3i] 6 ( 5 . 65.691 103552.8 V ( 5 61*. 328 103699.2 r v ( 3 61*. 198 103713.11* IV 2 30d 63.530 103785.1 V 1 63.170 103823.8 1 » 1 30 62.365 103910.7 V 5S5P P, - 5s5d D 10 62.156 103933.3 IV V 1 15 61.868 103961*.1* IV V 15 61.086 101*01*8.9 r v v 218. TABLE XL (b) (continued) K B H J l J2 A I. A 0 (vac.) AK vac. Excit. Class. 0 960.835 101*076.1 1 59.985 101*168.3 15 59.523 101218.5 i n : ( 3 58.736 10l*30l*.0 ( 3 58.577 101*321.3 1* 100 57.901+ 101*391*. 6 V 1 30 57.561 101*1*31.7 V 1 57.178 101*1*73.7 5 56.551 101*51*2.3 V It 56.175 101*583.1* V 1 56.033 101*598.9 00 55.1*78 101*659.7 2 55.175 101*692.9 5 51*. 760 101*738.1* 5 120 51*. 380 101*780.1 V 00 12 53.819 101*81*1.7 V 00 2 12 53.115 101*919.1 II 1 15 52.552 101*981.1 IV V 0 10 52.088 105032.3 IV V 25 51.1*05 105107.7 6 250 51.008 105151.6 VI 18 ? 50.556 105201.6 0 10 1*9.095 105363.5 1 1+8.80 105396. 0 1*8.656 1051*12.3 1 1*8.1*38 1051*36.5 0 00 8 1*8.087 1051*75.6 II 0 5 1*7.696 105519.1 2 1*7.51*8 105535.6-5 1*7.000 105596.6 V 0 5 1*6.529 10561*9.2 II U 1*6.252 105680.1 2 1*6.050 105702.7 2 1*5.611* 105751.1* 5s5 P^f- 5 P \ 5s5p'if- 5s5d5D io   l . o 780.  v 5s$p3P*- 5P'D vi 5 s \ - $ v \ 5s5d3D - 5p6s P" 219 TABLE XI (b) (continued) K B H J l J2 AloA0 (vac.) it" vac. Excit, 00 2 9a5.a25 105772.5 00 2 2 as.290 105787.6 II 0 6 as.072 105812.0 II 2 aa.813 1058ai.l 00 2 1 aa.567 105868.6 II c 2 aa.a?6 105878.8 V 00 18 aa.225 105907.0 IX 00 12 a3.70S 105965.3 IV 00 10 a3.a25 105996.8-1 a3.129 106030.0 II 1 3 30 a2..9a9 IO6050.3 III 20 a2.7i8 106076.3 V 6 a2.5i8 106098.8 IV 3 a2.306 106113.6 V 8 a i . 9 7 6 106159.8 ( o a o . 8 n 106291.3 ( o ao„678 IO6306.3 3 ao .ia9 106366.1 0 39.913 106392.8 2 5 39.asa io6aaa.8 V li 38.9a5 106S02.S 0 38;690 106531.5 7 li 150 38.15a 106592.3 V-20d 37.963 10661a.0 IV 3 as 37.312 106688.1 III 3 So 35.9li8 10681+3.6 V 00 1 10 3a.83a 106970.9 II 00 10 3 a .2ii 1070a2.2 rv 00 0 8 33.632 107108.6 II c 10 32.6a5 107221.9 V 8 li ao 32.3aS 107256.a III li li So 31.890 107308.8 V 2d 31.511 1073S2.S 10 3 35 30.839 107a30.0 III Class. SsSd^D - 5 p 6 s V 5s5£V5s5p5dV; $6$\ - 5S5P6SV 536?'?°- 5s8s 'so 5s5d 3q - 5P6S3P; - SSSPV 5s6p 3P°- 5s7s 3S 0 g 5 1 $ a - 5ISP6S3P: SS5P3P;= .5P°P, SiSpl,D - 5 £ 5 P 5 d V 220. TABLE 12L (b) (continued) 10 10 7 00 K B H J l J2 A.I.A 0 (vac.) <°K vac. Excit. Class. (•< 930.021l 107521*.! V 0 ( 5 29.938 10753U.1 V 35 29.522 107582.2 III 2 28.U72 107703.9 3 25 28.273 107726.9 III li 28.016 107756.8 27.81 107780.7 VII li 15 27.771 107785.2 II 2 26.7kk 107901*. 7 III 1 26.1+U2 107939.8 rv 2 25.5lli 10801*8.1 rv v 2 25.033 108l0l*.3 VII 00 1 2U.900 108119.8 0 2U.782 108133.6 00 li 21*. 618 108152.8 rv 3 10 21*. 272 108193.3 VII 00 0 21*. 00 108225.1 11 3 23.829 10821*5.2 rv v 2 20 22.715 108375.8 V 00 6 22.1*66 1081*05.1 00 5 22.190 1081*37.5 1 8 21.867 1081*75.5 3 30 21.200 108551*. 1 i n 3 20.888 108590.8 rv v 0 20.250 108666.1 rv 0 ll 8 19.525 108751.8 11 0 3 18.81*6 108832.2 1 1 LS.73li 10881*5.1* 11 0 18.630 108857.8 0 10 18.07U 108923.7 IV 00 10 17.718 108962.1* IV V 0 2 16.506 109110.0 2 16.298 109131*. 8 0 US 11*. 570 1093U1.0 IV V 1 10 13.950 1091*15.2 IV V 3 •  5s5p b-5s5p5d 5 S 5 P \ - fs5 P 5d 3P 2 5s5?bf5s5p5d ^ ra co 73 NO** "UN ft-C OH X A X A X A rta (OtBl XAXA-LA I I I i*BJ «05 «(tQ X A X A X A o M fc» M M M M M M M M M M > ^p? 73*73 U P X A X A ir> t<Q_ CL CL, X A X A X A co ««cn *tn X A X A X A I I r So I X A ^ & -«CQ _0 «<D ^ X A X A X A tn fa» M M > M M M M M M M > co a," vO * (0 CL,<X, co X A X A co rlB) 03 X A X A X A 1 1 1 ft or n "> r< Cl, t x O , vO X A X A a 4(0 >CQ X A X A X A M > M M M M M > V5 r-a -a X A X A X A I XA< X A M fa» M >• M M > M X A HCX, X A CD X A M M M > > M M M > > > > M M M O N N O -CT f A O M X A C — P— O O X A X A M X A f A O S C v l s O c O -CT X A CM O N P - _ = f - C + ON CO C M X A - C f X A O O -Cf NO N D ^ t H C M N OO CO X A - C f NO CM CO X A P - C A O O N O -Cf X A O N O N -Cf O CM M CM X A M D P - f A O O X A -Cf f A O P— CO f A O O M M f A O O O C A N O P— O X A v O f A ON . C A N O C O X A O O CM N O C O M M f A C M - C f f A - C f - C f X A N O P - P - C— CO CO O N M M M CM CM CM C A -Cf X A N O P-^ P - O O C O O O O N O N O O - O M CM f A - C f - C f X A X A O N O N O N O N O N O N O N O N O N O O O O O O O O O O O O O O O O O r A r A r A r A r A r A r A r A r A r A O O O O O O O O O M rArArArArArArArArArArA r-i rA r-i rA rA rA rA r-i r-i rA rA M M M M rA r-i rA rA rA rA rA rA rA rA rArArArArArArArArArArA rA rA rA rA rA rA rA rA rA rA rA rA rA rA rA O - C f N O M r-i O X A - C f X A N O O N M X A O N C A _ C f r-i X A O N N O N O t— M M C O - c f O C O M C M O N O P - P - < A O N O O C O P -X A - C t O N X A O N CM CM CM M N O f A O N X A f A M 0O O P - X A N O O X A f A O O N f A O -Cf f A c o CM O C O CM O N C— O C O O M O C A O N 00 P - _ = T C M O N M f A O M D CM C M C O X A C O O N p -M -Cf C M X A - C f f A C M C M M O rA rA rA rA rA O N O O O O N C O M M M O O P - p - P - P - N O M D X A - C f f A f A C M O O O O O O O O O O O CM CM M M O O O O O O O O O O N O N O O O O N O N C O C O C— P — N O N O O N O N O N O N O N O O X A O f A X A CM M O O O - C f - C f M D N O X A M - C f - C f X A O O X A X A X A f A CM CO M 73 O f A O X A f A CM X A f A O X A O CM CM CM O CM O o CM —Cf CM O 73 - C f f A f A CM O CM -Cf M M O CA O O 73 M MD MO P — C O C O O O N X A M M f A 222.. TABLE XI (b) (continued) 60 B H J l J2 Al . A 0 (vac.) 6"K vac. Excit, 12 896.008 111606.2 VI 0 3 2 95.582 111659.2 II 8 600 95.195 111707.5 V 00 2 9U.U70 111798.1 1 10 9U.035 111852.5 V 3 30 93.165 111961.1* III 2 15 92.930 111990.9 II c 1 92.1*95 11201*5.5 III IV 00 8 91.815 112130.9 111 rv 1 10 91.1*02 112182.8 IV 1 91.201* 112207.8 1 91.050 112227.2 2 90.81*0 112253.6 0 8 90.1*60 112301.5 1 6 887.750 11261*1*. 3 II c 2 87.525 112672.9 1* 50 87.01*2 112731*. 2 i n 5 86.880 U2751*.8 2 1 25 86.315 112826.7 II c 1* 86.085 112856.0 0 15 85.525 112927.1* rv 3 30 81*. 61*9 113039.2 i n 0 15 83.172 113228.2 rv 0 30 82.825 113272.7 V VI 15 82.589 113303.0 rv v 1* 81.555 1131*35.9 0 5 81.276 1131*71.8 2h 5 81.187 1131*83.3 II C 8 81.087 1131*96.2 rv 00 1* 5 80.700 11351*6.1 II c 5 80.560 11356L.1 1 80.1+611 113576.5 1 79.993 113637.3 1 79.51*8 113691*. 8 +d5s" D . t L - 5s5P5d'D; 5S5P i?x- 5P D*i 5S5P-V- 5s-5p5d3P,° i  5S5P\1- 5i3 V. 223. TABLE <& (b) (continued) K B H J l J2 A l . A 0 (vac.) vac. Exc: 8 879.082 113755.0 5 78.866 113783.0 2 10 78.283 113858.5 I I 10 77.839 113916.1 20 3 35 77.515 113958.2 V I I 8 76.82U 11U0U8.0 0 1 20 76.U50 11U096.6 I I 5' 76.206 11U128.U 30 75-762 11U186.3 V 8 3 iiO 75.518 11U218.1 I I I 10 75.126 11U269.3 rv v 8 3 60 7U.520 11U3U8.5 i n 3 2 73.9UU 11UU23.8 I I o. 12 73.755 11UUU8.6 IV V 12 72.975 11U550.8 IV V U 5 200 72.815 11U571.8 V 2 30 72.0U5 11U673.0 V 3 UO 70.853 11U830.0 i n 3 U o 70.55U 11U869.U V 0 10 69.8U2 11U963.U V 00 2 69.310 115033.8 IV 5 68.736 115109.8 rv 0 10 68.56U 115132.6 rv 8 68.U52 1151U7.U IV 1 10 68.002 115207.1 V 5 67.856 115226.5 U o 12 66.928 1153U9.8 VII 1 15 66.363 115U25.1 IV 6 65.856 115U92.7 V 5 65.516 115538.0 IV 5 6U.U37 115682.2 IV 00 2 6U.301 l l 5 7 o r.U I I 6 3 35 63.936 1157U9.3 i n cit. Class. i l l 5I5P 3? - 5i5p6s'p/ 3D° 3. 5S5P ?P° - 5$ \ b, - 5S5P6S p* 5p s-5pos p 5s5p*^ -?s5;p5d Cit 5s5d3D - 5p6s 3p° CD CO ro r o M M r o r o 8 o o r o r o O U > I O M M fO M IO M M CO M M M M (O r o o v n f c o C D C - r o O v n . r o r o O v n . r o O N O N O v n O O O v n V * J r o O r o v n v n r o v n r o O r o co Cr tr- tr- cr t r f r - v n v n v n v n v n v n v n . v n v n v n v n . v n v n v n v n v n v n v n . v n v n O N O N O N 0 0 0 0 0 CDVO V Q V O V O O O M r-1 r o w r o t - C " t r " V n V n O N —J CD C O V O V O V I V I O H H H H WVJJU) • • • * • • • • • • • • • • • • • • • • • • - « ' • • • • • • C - v O M f v n —4 r o o C O o p - ~ 4 f - J O N W O N O C - v n C O O O V O V T V C D H O U l - j o v o v n v o c o O N v o r o C - C O O V * J O r v j \ o H - ~ j c a j r o r o v o \ O C - J H H o f U ^ O v n v n r o O N U I O V A C O M v n r o O O — a - o v n o f r - O N — J c - c o O N O — J O O v o - O r o O N t - 1 O V_J | _ i M H M r - 1 r - J I—' I—• I—1 I—' 1^—1 M M H M M I—1 M M M M 1—' r- 1 t—1 r- 1 r- 1 M M M M M r - ' r - ' r - ' r - ' r—' r — ' r—' r — ' r — 1 M M M M M r - , r - J l - J r - J » - J M M M M M I—' M M r- 1 M r—' r—1 h- 1 r—1 r- 1 —0 — J - J — J -^ 3 - 0 —0 —0 — J — J —0 - o O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N O V n v n v n o o - o — j - j —o O N o ( r u u u r o o v o V O C O C O - J O N v n v n f f U > U I N W H H O O N O C D C O v n N O v n r o o — J M N O N O O N O O N V O V O O N — o V»J r o r o N O O O * - 1 v n u v o r > t - o - o v o v o o o c o o - o r o u j - o o v n v n v n r - o ^ j H O - J O W R H M U > c o o v n v o v o v o r o M v n O M O —i • • • • • • • • • • « • • • • v n v n O N . t r - r o v n c c o - > 3 M H O H V J V*J v n C D O N O N o O H - o f - j o o o - a o o - J O N O - J O O M M M < H M M M !-t M l-j M _ M M M M M M <! M \<i < M M << < <i M < < H < H M < < M < M M . <3 O O v n v n v n *» » . i v n v n v n v n «* wur a 9 0 1 co co i o * a u % K ® £ £ 0 v*-l i I »•»- r l I I vn t i I I I l to ^ m M v n v n v j \ J v n v n v n v n v n j v n v n v n . o i v n o v n v n O N v n v n t • * v M > v> o w n « JOL a. a _ P - JD CO Q, -*TJ M M M v n v n CO Cflf v n v n 1 1 v n v n CO" ca c - v n . o 225. TABLE it (b) (continued) B H J l J2 /II.A0 (vac.) vac. Excit. Class. 9 8 1* 00 81+8.210 117895.3 1 17.508 117993.0 6 1*7.016 118061.5 2 1*6.550 118126.5 V 5 1*6.135 118181*. 5 IV V 5 50 1*5.855 118223.6 rv 0 10 1*1*. 910 118355.8 V VI U ? 1*1*. 1*70 1181*17.5 00 1*1*.135 1181*61*. 5 0 1*3.778 118 511*. 6 00 5 1*3.550 11851*6.6 2 1*3.31*5 118575.1* V I I 5 1*3.026 118620.3 1 00 5 1*2.700 118666.2 V 00 5 1*1.935 118771*.0 rv 5 1*1.81*1 118787.3 0 2 - 1*1.580 118821*.! 8$ 50 1*0.368 118995.5 rv °c 20 1*0.275 119008.7 rv 2 10 39.821 119073.0 i n 2 10 39.515 119116.1* V 2 8 37.910 1193l*l*.6 V 2d 37.395 1191*18.0 2 10 36.91*0 1191*82.9 V 2 36.51*2 119539.7 00 36.180 119591.5 2 10 35.580 119677.1* I I 12 35i096 11971*6.7 V I I 1 5 3l*.l*30 11981*2.3 1 5 31*. 060 119895.5 20 33.762 119938.3 5 35 33.61*0 119955.9 rv 1 5 33.091* 120035.1 i n 6 31.596 120250.7 IV V 5 30 30.930 12031*7.1 i n 00 30.61*0 120389.1 2 10 30.21*8 1201*1*5.9 rv 1 O . 1 ^ , 3 . 5s5d D, - 5p6s'p;i 226, TABLE M (b) (continued) B H J l J2 "Xl .A . ° (vac.) vac. Excit. Glass. 829.81+ 120505. VII 00 0 29.050 120620.0 0 3 28.532 120695.1i 5 28.110 120756.9 1 27.598 120831.6 3 20 26.938 120928.1 VII 10 26.830 1209143.9 8 26.652 120969.9 V IV 5 25.998 121065.7 V IV 0 25.257 12117li.lt 3 15 25.065 121202.6 IV l 21+.81+0 121235.6 2 2I+.I+30 121295.9 1 20 23.955 121365.9 V 10 23.210 1211+75.7 IV 0 2 5 22.952 121513.8 II c ( 1+ 22.270 121611+.6 ( U 22.000 121651+.5 5 20.61+0 121856.1 V 00 15 20.233 121916.6 II c U 19.967 121956.1 V 7 19.070 122089.7 1 li 18.335 122199.3 II c ii 17.385 I223I+I.I+ 0 5 16.962 1221+01+.7 rv 2 15 16.760 1221+35.0 i n 3 16.265 122509.2 5 15.885 122566.3 10 15.672 122598.3 00 15.372 12261+3.1+ 1 2 15.150 12^676.8 11 1 12.816 123029.1 2 12.601+ 123061.2 2 11.71+0 123192.2 0 10 11.090 123290.9 V 5s 5P !^-5s5p5d e - 14 c yv 5*5F T)j5s5pSd f 5s5ji> D L- 5s5p6s 5&$X- 5s5P5d'p 227 TABLE EC (b) (continued) K B H J l J2 A l . A 0 (vac.) vac. Excit. Class. 00 810.1+20 123392.8 iv v 5 10.203 123a25.9 IV V 3 20 09.321 i2356o.a IV V 2 08.670 123659.8 1 08.507 12368Ii.8 5 08.191 123733.1 0 2 07.510 123837.5 II 00 07.052 123907.8 2 06.091 12ao55.0 III 5 05.800 i2aioo.3 5 80 0lu910 12U237.5 rv 1 1 15 oa.516 12U298.3 II 0 Oli.2liO i2a3ai.o 1 16 03.787 i 2 a a n.i a 03.585 i2aaa2.a rv 0 a 03.1+73 i2aa59.7 11 2 03.003 12a532.5 8 02.057 12U679.a IV 2 01.650 12U7a2.7 2 oi.aoo 12a78l .6 ( 2 01.080 12a831.5 ( 2 00.907 12U858.5 rv v ( 2 00.738 i2a88a.8 rv v 3 50 00.266 12U958.5 IV 15 00.010 i2a998.a IV V 15 799.57U 125066.6 III IV 2 99.280 125112.6 2 30 99.077 i25iaa.a rv v 1 25 98.700 125203.5 IV 2 98.070 125302.3 2 97.679 125363.7 5 97.280 I25a26.5 3 7 96.9a5 125a79.2 11 3 35 96.160 125602.9 V VI 5S5P* P„ - 5S5P if0 5I5P*PI - 5l6s s 5s5p \ - 5S5P6SV 5s5? Pr5s5p5dV 5 s 5 ^ f 5 s 5 P 5 d V 228 TABLE XI (b) (continued) K B H J l J2 Al.A° (vac.) <srK vac. Excit. 10 795.U02 125722.6 U 9U.903 125801.5 IV V I 2 9i|.360 125887.5 ( ii 9ii.2i*2 125906.2 3 25 93.520 126020.8 IV V 2 ( 2 93.351 12601+7.6 II ( 2 93.181 126071+.6 5 91.931* 126273.1 1+ 35 90.870 1261+1+3.0 V 0 90.1*00 126518.2 iv : 0 20 89.581 12661+9.5 V VI 3 5 88.71+0 126781+.5 II 20 88.1+30 12683U.li V VI 0 20 88.127 126883.1 V VI 0 25 87.91+2 126912.9 rv 5 10 •o*w~"! 87.715 12691+9.5 i n 1 87.606 126967.0 II 00 87.066 127051+.1 0 15 86.850 127089.0 V i 2 85.891+ 12721+3.6 ( 2 85.750 127267.0 13 30 81+.832 1271+15.8 rv 'A 60 81+.625 1271+1+9.1+2 rv ( 2 83.970 127555.9 ( 1 83.81+5 127576.2 1 83.080 127700.9 2 30 82.658 127769.7 V 3 25 81.1+00 127975.1+ rv 1 20 80.1+03 128138.9 IV V 2 79.31+2 128313.1+ 2 8 79.115 128350.8 II 2 78.595 1281+36.5 5 78.180 128505. V 5 77.293 128651.7 3 iiO 76.900 128716.7 V 12 76.1+75 128787.2 III IV Class, 5S5P P-5s5p5d^ s5p 3r5s5p5d g 5S5PV 5S-5P1P£-5P %i 5£5d*D. 5S5P ? I- 5P if 5S5P5P! - 5M 229. TABLE XT (b) (continued) K B H J l J2 Xl.A 0 (vac.) vac. E x c i t . Class, 000 15 2 776.230 128827.8 III IV 1 (15 75.1+62 128955.1+ IV J L (12 75.310 128980.7 V VI 1 75.01+5 129021+.8 00 71.710 129080.5 2 25 7U.352 12911+0.2 V 2 71+.026 129191+.6 5 73.585• 129268.3 2 73.312 129313.9 1 2 72.810 129397.9 3 25 71.51+1+ 129610.2 V 2 71.150 129676.5 5 70.81+5 129727.8 IV 5 70.61+0 129762.3 III 5 70.1+75 129790.1 rv 3 30 69.712 129918.7 17 ( o 69.562 12991+1+.1 ( o 69.1+57 129961.8 5 60d 68.1+08 130139.2 V 10 67.561+ 130282.3 . V 3 30 67.307 130325.9 IV. 2 65.637 130610.2 8d 63.981 130893.3 6 200 63.1+06 130991.9 V 2 61.81+3' 131260.7 2 60.767 1311+1+6.3 10 60.11+0 131551*. 7 V VI 8 59.380 131686.1+ V VI 0 30 59.115 131732.1+ 10 58.917 131766.7 . 2 20 58.21+2 131881+.0 III 3 30 57.981+ 131928.9 IV 00 57.175 132069.9 00 56.363 132211.7 3 30 55.663 132331*. 1 IV V v 5S5P Pf - 5s6s s v 5S5P V - 5s5d*D 3 o 5^ 0 •4 i v 5 s 5 $ \ - 5 * ^ 230. TABLE XL (b) (continued) K B H J l J2 Xl . A 0 (vac.) ^ C vac. Excit. Class". 3 25 751*. 780 1321*88.9 IV 1 1* 5a.526 132533.5 II 5 54.1U2 132601.0 2 53.750 132670.0 0 2 53.1*69 132719.5 III 00 53.059 132791.7 ' 00 5 2 . 9 2 9 1328li*.7 1 35 52.226 132938.8 VI 2 51.810 • 133012.3 2 51.678 133035.7 2 51.1*25 133080.5 V 10 50.670 133211*. 3 IV V 2 50.1*52 . 133253.0 IV 5 60 1*9.290 1331*59.7 IV 10 1*8.860 133536.3 2 25 1*8.5ll* 133598.0 V 3 12 1*8.339 - 133629.3 II 10 1*8.11*0 133661*. 8 2 1*7.882 133710.9 10 1*7.582 133761*. 6 V s. 5 1*6.796 133905.1* 15 Imp? 1*6.31*6 133986.1 00 1*6.01*5 131*01*0.2 10 1*5.528 131*133.1 IV 2 1*1*. 910 131*21*1*.!* 0 1*1*.1*9 131*320. II C (10 1*1*.112 131*388.1* VI (10 1*3.950 131*1*17.6 IV?? (10 1*3.832 131*1*39.0 VI 1* I50d 1*3.020 131*585.9 VI 15 1*2.318 131*713.2 V VI 10 1*1.860 131*796.3 V VI 10 1*1.623 131*839.1* V VI 10 1*1.100 131*931*. 6 V VI rv U$t\- 5 f t ; i o I 5P P, - 5d DA • l It 3n S5 5«L us 1 3f? rv Sstp^ - 5S5P6S ?,U 231. TABLE .VI (b) (continued) K B H J l J2 A l . A 0 (vac.) vac. Excit. Class. k 100 7U0.1+80 13501+7.5 V 2 39.618 135201+.9 2 39.270 135268.6 ( 8 39.032 135312.1 (8 38.188 1351+66.8 18 37.798 13^3^ V VI 0 37.551+ 135583.3 10 37.180 135652.1 00 36.952 135691+.1 12 36.832 135716.1 V VI 2 36.072 135856.3 2 35.225 136012.8 2 31+. 850 136080.7 10 3U.551 136137.6 ( 2 33.875 136263.0 ( 1 33.777 136281.2 1+ 33.1+76 136337.1 0 10 33.158 136396.3 IV 2 25 32.875 1361+1+8.9 V VI 2 32.220 136571.0 0 10 31.870 136636.3 VI 00 31.680 136671.8 1 31.258 136750.7 0 12 31.01+2 136789.9 IV 15 30.1+18 136907.9 V 0 30.092 136969.0 1 (30 . 29.860 137012.6 V (25 29.730 137037.0 VI 00 29.1+80 137081+.0 0 29.082 137158.8 1 20 27.501 1371+56.9 V 1 Imp? 27.011+ 1375U8.9 5 120 26.820 137585.7 V 10 26.382 137668.6 rv v 1 15 25.860 137767.6 rv 5s5p P*- 5s6s SE 585^*Pt-5s5p5d d ' 5S5P P V - 5P tft 5S5P i f - 5s5d D 5S5J"P - Sstf6s\ 232 TABLE Xl< (b) (continued) H J l J2 X l . A 0 (vac.) K vac. Excit. Class 10 5 725.090 137913.9 IV 10 2a.57a 138012.1 rv 5 150 2u.oao 138113.9 V 2 23.3U5 1382a6.6 8 22.7U8 138360.8 III 1 0 15 22.3a5 138U38.0 rv 0 22.130 138a79.2 20 21.790 i385aa.5 VI 2 20.780 138738.6 rv 10 20.610 138771.3 IV Od 20.308 138829.5 3 UOd 19.785 138930.a rv 2 19.a20 139000.9 0 18 19.060 139070.5 V 2 20 18.525 13917a.O i n 2 18.025 139270.9 12 17.780 139318.5 V 1 16.915 139a86.6 5 15.630 139737.0 rv v 10 ia.782 139902.8 V 7 ia . i 5 a ia0025.8 IV a 13.235 ia0206 .3 IV 2 20 13.000 1U0252.5 rv 1 00 12.655 iao32o.a 11 a 60 11.727 iao5o3.3 V Od 11.19 iao6o9. 00 10.985 iao667.8 2 25 10.730 iao7oo.a IV 12 10.610 iao72a.2 2 09.872 iao870.5 5 09.383 ia0967.6 10 09.139 i a i o i 6 . i rv v 2 08.670 iano9.a 00 07.825 iai277 . 9 <1 A  5P 3P - 5 P 6S 3P; FUs5p5d a (4 Vi 55pHP-5s5p5d ct. >/2 ' i 233. TABLE M (b) (continued) B H J l J2 A.I-.A0 (vac.) vac. Excit. Class. 00 00 00 1 U 0 0 00 1 2 10 5 00 10 2 20 25 00 2 00 00 00 15 50 i 10 12 2 12 18 10 0 10 1+ lOOd 12 10 2 5 2 10 707.682 06.778 06.1+12 05.81+0 05.390 05.280 03.83 02.61+0 00.600 00.1+10 0 0 . 3 0 0 00.178 699.71+2 99.1+25 99.335 99.01+5 97.11+0 96.800 96.381 95.220 91+.500 91.210 93.9U9 93.200 92.038 91.738 91.577 90.835 90.295 89.532 89.190 89.010 88.826 87.818 11+1306.1+ lkll+87.2 11+1560.5 11+1675.2 11+1765.6 11+1787.7 11+2079.8 11+2320.1+ 11+2731+.8 11+2773.5 11+2795.9 11+2820.8 Ll+2909.8 11+2971+. 6 11(2992.9 11+3052.3 11+31+1+3.2 11+3513.2 11+3599.6 11+3839.1+ 11+3988.5 11+1+01+8.6 11+1+102.8 11+1+258.5 11+1+500.7 11+1+563.1+ li+1+597.1 11+1+752.1+ 11+1+865.6 11+5025.9 11+5097.9 11+5135.8 11+5171+. 6 11+5387.3 V 5p P - 5p6s P° IV V rv 5s 5P P^ - 5s5p6s p,* v i VI i n 5S5PA- 5s5p6dV rv 5 s 5 p i k - 5 s 5 p 6 s ^ t i n 5I5P'D - 5S5P7S3P(° i n ? ? 5sVi>- «r« IV Iv 5s5p V5s5p5d e" v i * vi VI 5p P. - 5d D. v i L t vi iv i l l 5S5P £ - 5s5p6d Fa 231+. TABLE XI (b) (continued) B H J l J2 Xl.k0 (vac.) "^K vac. Excit., Class. 00 10 687.1*1*0 11*51*67.3 V 00 8 85.80 11*5815.1 2 30 81*. 721+ ll*6ol*l*. 2 VI 10 81*'. 070 11*6183.9 V 2 83.500 11*6305.8 rv v 5 83.285 11*6351.8 rv v 7 82.1+60 11*6528.7 1 81.630 11*6707.2 8 79.960 11*7067.5 V OOd 79.05 11*7261*. 6 0 0 78.525 11*7378.5 0 78.21*5 11*71*39.1* OOd 1 77.825 11*7530.7 0 77.500 11+7601.5 10 75.88-2 ll*7951*.8 r / . 2 75.1+15 11+8057.1 0 75.020 11*811*3.8 5 71*. 700 11*8 211*. 0 V 2 7U.555 11*821*5.9 V 1 7l*.l*5o 11*8269.0 V 10 71*. 230 11*8317.3 VI 5 73.292 11+8521+.0 V 5 72.162 11*8773.7 V l 70.790 11*9078.0 20 Imp. 70.080 11+9235.9 III 1 69.575 11*931*8.5 15 69.168 11+91+39.3 V 5 68.060 11*9687.2 V l 67.361 11+981*3.9 rv v 10 66.591 150017.0 0 66.320 150078.1 V 0 66.000 150150.2 0 65.602 150239.9 15 65.21*7 150320.1 VI 00 6U..870 1501+05.1+ 5P \ - 5P6s V 5s5p3P,-5s5d 'D 5S5P *P|-5s5p5d i 5v\- 5p6s V tf\ - 5P6s5p; 235 TABLE XI (b) (continued) K B H J l J2 A l . A ° (vac.) <°K vac. Exc i t . Class; ; 10 661+.312 150531.7 VI i * 63.510 150713.6 IV V 8 63.325 150755.7 IV V 5 62.910 150850.0 IV V 5 62.637 150912.2 IV V 2 61.855 151090.5 2 61.695 151127.0 V 10 61.220 151235.6 VI 5 60.950 151297.1* VI 12 60.11*8 1511*81.2 V 5pD - 5P6s V 0 59.86 15151*7.3 OO 20 59.660 151593.3 VI 10 59.536 151621.8 0 1 5 58.550 15181*8.8 V 5p P, - 5P6s .p(* 2 58.330 151899.5 V VI 0 57.1*60 152100.5 0 56.81*1 15221*3.9 IV 5S5P p-5s5p5d'gj 00 56.180 152397.-2 •0 20 56.020 1521*31*.!* VI 0 55.52 152550.7 1 » -a ^ 20 55.050 152660.1 III 5I5P £ - 5l5P7s P; 5 51*. 120 152877.2 00 10 53.900 152928.6 VI 15 53.1*65 153030.1* III 5S5P \ - 5S5P7SV 00 22 53.328 153062.5 III 5S5P'D - 5s5p6dJp; 30 52.610 153230.9 III 5I5P7S'P; 0 51.820 1531*16.6 V VI 8 50.860 15361*2.9 V VI 5S5P \ - 5s5p6d 0 Od 20 50.550 153716.1 III 2 50.210 153796.5 1 30d 1*9.217 151*031.7 III 5S5P D - 5s5p6dV 10 1*8.703 151*153.8 V VI 1 1*8.320 151*21*1*.8 10 1*7.827 151*362.2 V VI 12 1*6.910 151*581.0 III 5S5P\- 5i5p6d3F% 236. TABLE XL (b) (continued) K B . H J l J2 A l . A 0 (vac.) vac. Excit. Class. 2d 15 61*6.781 151*611.8 III 22 1*6.562 151*661*. 2 III 2 1*6.180 151*755.7 60d 1*5.833 151*838.8 V 0 1*5.165 151*999.1 00 1*1*. 720 155106.1 00 1*1*.1*57 155169.1* III 00 1*1*. 305 155206.0 1 1*3.781* 155331.6 5 1*3.050 155508.9 •V 2 1*2.700 1^593.6 30 1*1.726 155829.8 30 1*1.603 155859.6 V 2 1*1.113 155978.8 2 1*0.885 156031*. 2 10 1*0.220 156196.3 III 2 39.800 156298.9 2 39.555 156358.7 10 39.200 1561*1*5.6 III 00 38.737 156558.9 00 38.650 15o580.3 6 38.350 156653.9 III 6 37.821 156783.8 5 37.1*65 156871.1* V VI 3 37.278 156917.1* 3 36.31*0 15711*8.7 III 5 36.11*7 157196.1* VI 2 35.91*8 15721*5.6 1 35.796 157283.2 1 35.570 157339.1 2 35.280 1571*10.9 2 31*. 725 15751*9.6 5 31*. 1*50 157636.8 IV 5S5P TL- 5s5p6d*Ll 5S5P 3P, - 5!5p6d3E; 5S5PY- 5S6S'?S1 5S5P P - 5 s 5 p 6 d V 5s5p" \ - 5s5P7s V 5I5P3P, - 5S5P7S3P; 5a5p^- a I o f a 5s5p- D - 5s5p6d V 237. TABLE XI (b) (continued) B H J l J2 Al.A0 (vac.) °K vac. Excit. Class. 1 631). 050 157716.3 2 33.1*35 157869.1* IV V 2 33.100 157952.9 IV V 25 32.91*6 157991.1* III 2 32.313 15811*9.5 V 2 31.1*10 158375.7 2 31.070 1581*61.0 15 30.625 158572.9 III 1 27.208 1591*36.8 1 26.920 IS9S09.9 2 25.930 159762.3 5 25.535 159863.2 V VI 2 25.335 159911*. 3 1 2l*.l*l8 16011*9.1 2 23.600 160359.2 0 22.027 160761*. 7 2 21.788 160826.5 12 20.338 161202.5 III 8 19.675 161371*. 9 V VI 00 19.090 161527.1* 1 18.675 161635.8 12 17.839 161851*.5 III 12 15.675 1621*23.1* III 0 15.550 1621*56.3 15 11*. 990 162601*. 3 VI l*0d li*.l81* 162817.7 V 18 13.870 162900.9 III 10 13.251 163065.1* III 5 13.025 163125.5 2 12.780 163190.7 2 12.656 163223.7 III 12 12.250 163332.0 III 10 11.585 163509.6 V 00 11.280 163591.2 III 5I5P3P, - 5l5p6dV 0 3 5s5p P°- 5s'6s S, 0 1  I 5s5p~'B. - 5s5p6d % no 1 5 itn -.^on^c i. T T T 5s5p*D - 5s5p6d ' iT 5S5P3R- 5s5p6d3D; $ £ % \ - 5s5 P6d SD° 238 TABLE XI (b) (continued) B H J l J2 A I. A 0 (vac.) G~K vac. Excit. Class. 0 611.170 163620.6 0 11.061+ 16361+8.9 III 10 10.1*90 163802.9 III 10.11+7 163891+.9 V 00 09.976 16391+0.9 5 08.560 161+322.3 V l 07.591+ 161+583.6 l 07.218 161+685.5 . 5 06.1+79 161+886.2 IV II 5 06.320 161+929.1+ IV V 00 05.995 165017.9 5 05.850 165057.1+ ' 5 05.687 165101.8 0 05.396 165181.1 10 05.086 165265.8 III 1 0I+.1I+8 165522.1+ 5 03.786 165621.6 V 5 03.611 165669.6 III 25 03.386 165731.1+ V 10 03.011 165831+.5 III 0 01.712 166192.5 5 00.951 1661+02.9 V 7 598.970 166953.3 1* 98.586 167060.1+ i n r 10 98.015 167219.9 H I 0 97.586 167339.9 10 97.361 1671+02.9 2 97.200 1671+1+8.1 2 97.100 1671+76.1 10 96.5U5 167631.9 2 96.175 167736.0 0 96.010 167782.1+ 0 95.605 167896.5 5 95.280 167988.2 i n 0 95.11+0 168027.7 5S5PA- 5s5p6d'lf SstfX- 5s5p6d3ir $s$$% - 5I5P7S¥ 00  5S5P S - 5s5p6dV2° 000 l   5S5P3B°- 5s6s Js, 00  H 5s5£3P, - 5s5p7s 'P° 5^ 'D - s s . -i)j»3P| 5s5p 'p.- di 5S5P P, - 5 s 5 P6dV 239. TABLE XI (b) (continued) K B H J l J2 l l . A 0 (vac.) ^ vac. Excit. Class. 0 591.952 168080.8 ii 94.319 168259.8 III 10 92.678 168725.7 V 5s5p if - 5s6s S 2 92.165 168871.9 0 5 92.018 168913.8 2 91.65U 169017.7 6d 89.923 169513.7 6d 89.730 169569.1 0 88.607 169892.7 ( 1 87.275 170278.0 ( 1 86.900 170386.8 0 83.430 171400.2 12 82.152 171776.5 1 80.265 172335.1 8 79.990 172U16.8 h 78.525 l72853.ii H I 5s5£ P - 5s5p6d if 5 78.105 172978.9 5 77.9U5 173026.9 VI 5d D,<_- 7p tft 6 6 25 77.08L 173285.0 VI 5P 6s 3 75.505 173760.ii 0 74.050 17ii200.9 2 73.555 17U351.2 2 73.3li8 1744lii.2 3 3 U 73.0U8 17ii505.5 m 5s5p \ - 5s"5p6d ?; 00 72.730 17I1602.4 2 70.i|00 175315.6 k 69.500 175592.6 C 68.900 175777.8 6 67.950 176071.8 20 67.360 I76251i.9 III 5S5P P - 5s5p6d 'p° 2 66.917 176392.7 H I $&v\- 5s5p8s3P: „ h 66.555 l76505.ii i n 5s5A - 5s5p8s3p; 2 66.270 17659ii.2 0 65.800 1767I1O.9 2kO.. TABLE XI (b) (continued) K B H J l J2 Al.A0 (vac) vac. Excit. Clase. 00 0 5 k 00 5 56L.980 176997.1+ III 3 6k.855 177036.6 15 61i.375 177187.2 15 63.539 1771+50.0 00 62.850 177667.2 0 62.110 177901.1 00 59.270 17880li.5 2 58.1|80 179057.5 2 57.312 1791+32.7 6 57.015 179528.1+ li 56.620 179655.8 III 2d 55.902 179887.8 III li 55.510 18001k.8 0 5k.753 180260.k 5 5k.183 I80kk5.8 50.58 181626. 0 u8.00h I82k80.k 00 U7.820 l825kl.7 3 L6.760 182895.6 3 1+6.213 183078.8 5 L2.669 I8k27k.k 5 1+2.572 I8k307.3 3 1+2.268 I8kkl0.7 III 20 1+0.21+2 185102.2 VI 2 39.060 185508.1 2 38.81+0 185583.9 III 10 38.100 185839.1 3 37.210 I86lk7.0 V 1 37.105 186183.3 III Id 36.815 186283.9 rv 2 35.51+6 186725.3 2 31+.270 187171.3 0 32.51+0 187779.3 1 30.1+1+5 188520.9 5S5P D - 5s5p8s P° 5s5p'P r d,° 5I5P1 P - 5s5p8s 1> 3.0 5P V 6s ^ 5I5P \ - 5S5P8S3P 5S5P3P - 5s5P8s P TABLE XI* (b) (continued) 2U1. K B H J l J2 ll,A° (vac.) vac. Excit. Class. 00 0 530.11+8 188626.6 2 29.121 188992.7 III 2 28.531 189203.7 2 28.300 189286.1+ Od 28.000 189393.9 3 27.700 189501.6 00 27.1*50 189591.1* III 6 27.310 18961+1.8 2 27.156 189697.2 2 26.650 189879.1+ 2 26.295 190007.5 10 on 0 III 25.800 190186.1+ ( 6 22.522 191379.5 V 2 ( 8 22.1+10 1911+20.5 V 00 20.990 19191+2.3 V 1 20.750 192030.7 V ( 2 19.855 192361.3 V ( 2 19.600 1921+55.7 V ( 2 19.1*15 192521+.3 V 0 IS 16.211 193719.2 rv 1+ 25 15-120 191*129.5 IV 0 11*. 71 191+281+.2 2 13.070 191*905.2 2 12.082 195281.2 6 10.170 196013.1 VI 3 09.352 196327.9 2 08.1+35 196682.0 10 07.820 196920.2 IV 3 5 07.680 19697l*.5 0 05.822 197698.0 2 05.1+77 197832.9 00 01+.936 19801+1+.9 5I5A 5s5p8s V 5S5P3P, - Ss5p8sV 5S5P P" - 5s'6d D(I Sa$pY- 5s6d ID 1 5 * i 5p P* - 1+d 5s Dxi SsSp1?'- 5s7s S,^  2h2, TABLE XT (b) (continued) K B H J l J2 Xl.k0 (vac.) <=~K vac. Excit. Class. 2 500.000 200000.0 1 10 1*98.060 200779.0 2 95.710 201730.9 10 91*. 960 202036.5 3 25 92.750 20291*2.7 5 88.005 20U915.9 i* 87.025 205328.3 8 86.736 2051*50.2 0 85.930 205790.9 2 20 85.100 20611*3.1 3 Qh.ShS 206379.2 2 82.553 207231.1 5 82.370 207309.8 3 81.585 20761*7.7 0 80.680 208038.6 U 79.300 208637.6 8 78.380 209038.8 00 77.7UO 209318.9 2 76.1*30 209891*.!* 5 75.U52 210326.2 l*d 71*. 765 210630.5 00? 72.58 211601*.!* 2 72.1*63 211656.8 0 69.860 212829.1* 00? 69.1*7 213006.2 1 10 69.010 213215.1 3 66.700 211*270.1* 2 20 65-1*16 211*861.6 8 61*. 675 21520U.2 Ud 6U.250 215U01.2 3 59.318 217711*.! 5 59.158 217789.9 1 58.800 217959.9 00 58.580 21806!*. 5 IV 5s5p l £ - 5s6d D rv Si$v\-5s7s\ v i 5P*p'- l*d 5l \ i n rv VI v 5S5P P" - 5s6d D' TABLE XI (b) (continued) K B H J l J2 A l . A ° (vac.) 6~K vac. Excit. Class. 5 1+55.666 2191*59.0 71 5pY - k i $ i \ Id 53.U51* 220529.5 k 1 0 10 52.910 220791+.1+ 2 51.510 22LL79.0 2 51.200 221631.2 00 50.235 222106.2 2 1+9.076 222679.5 2 1+6.968 223729.7 2 12d 1+5.605 221+1+H+.0 IV , 15 U5.1+20 221+507.2 V 5s5pY-5s7sS f t 8 1+3.395 225532.5 1+ 1+2.021 226233.6 ^ . a 4 5 1+0.160 227190.1 IV 5s5p ^ - 5s7d D„ 2 38.905 227839.7 0 38.765 227912.1+ 2 37.320 228665.5 8 36.175 229265.8 2 35.1+1+0 229652.8 , o 8 33.050 230920.2 IV 5s5p P.- 5s8s 00 29.710 232715.1 '* 1 28.181+ 23351+1+.5 8 27.300 231+027.6 3 23.750 235988.2 6 22.980 2361+17.8 IV 5s5p P*- 5s7d DJ 2 22.250 236826.5 * ** 1+ 21.653 237161.8 8 21.330 23731+3.6 10 19.1+77 238392.1 5 18.615 238882.9 V 5s5p P*- 5s6d D, 5 18.278 239075.k V 5S5P*P£- 5s6d5D3 2 15 17.538 2391+99.2 V 5s5pV- 5 s 6 d % 6 16.1+10 21+011+7.9 IV 5S5P\- 5s88*S»* 8 15.800 2l+o5oo;2 rv 5&5P*P,- 5S5P6PHP, 0 15 13.1+30 21+1878.9 'l 1 00 13.05 21+2101.5 TABLE Xr£7(b) (continued) 2UU B H J l J2 AI„A° (vac.) vac. Exc: 0 10 an.6oa 2U2951.9 0 5 05.863 2U6388.6 00 8 05.090 2U6858.7 V 1 15 OU.760 2U7060.0 V 3 25 02.U85 2U8U56.5 V 10 OO.U53 2U9717.2 0 6 00.380 2U9762.7 V 00 399.U9 250319.2 00 97.170 251781.U 2d 92.300 25U907.0. 3d 91.968 255122.9 2 15 89.961 256U36. V 0 10 85.580 259350. V u 85.250 259571.7 3 82.832 261211.2 Id 5 79.650 263U00.5 1 79.500 26350U.6 5 76.170 265837.3 2 10 7U.UU0 267065.5 2 7U.152 267271.1 U a 7U.086 267318.2 00 71.877 268906.1 3 71.350 269287.7 6 ao 6U.U20 27UU08.7 V 5w 62.9U2 275526.1 0 62.0U0 276212.6 00 59.38 278257.0 0 59.06 . 278505.0 7 uo 58.800 278706.8 V 2 56.110 280812.1 2 6 50.107 285626.9 VI 2 286061.6 2 U9.220 286352.U 0 U5.17 289712.3 0 a U2.51 291962.3 1 a 39.86 29U238.8 Class. 5s5p R°- 5s6d3D, 5s5p JFT - 5s6d 3 l \ 5S5P JP;- 5s7s's, 5S5P P°- 5s6d D 5S5P V - 5s7s s. 5S5P 3P;- 5s7s3s, 5s S - 5s6 P 3P° 5sxs - 5 s 6 p V 5 P V t - 7 s \ 21*5". TABLE XI (c) The lines appearing on our plates in this region were picked up from second and third orders. The intensity symbols have same meaning as in Table XI (a) f.nri XI (b). K B J l J2 X l . A 0 (vac.) <^K vac. Excit. Class. 1 336.11 297522. VI 5p Py - 7s SVl 00 21.37 3H167. 5 6 18.271 311*197.6 VI 5s S*- 6p R/2 6 10 13.872 318601.2 VI 5s*S - 6p*P(, 0 09.09 323530. 0 - - 08.15 . 321*517. 0 292.80 31*11*37-0 88.39 31*6753. 00 86.60 31*8918. 0 83.98 352137. 0 81.10 35571*5. 2 0 80.037 357095.7 0 78.00 359712. 1* 1 75.603 36281*0.8 1 7l*.06 361*881*. 0 73.58 365521*. 1 72.25 367309. 2 72.09 367525. 2 71.58 368216. 00 69.90 370508. 5 1 68.607 372291.1 00 68.38 372606. 00 68.00 373131*. 7 2 65.768 376268.0 0 61*.1*3 378172. 3 1 61*. 001* 378782.1 1 63.75 37911*7. 1*. 2 61.685 382138.8 1* 1 59.710 38501+1+.9 6 2 coin. 57.565 388251.5 2U6 TABLE XI' ( c) (continued) K B J l J2 A l . A 0 (vac.) <=! vac. Excit. Class. 5 0 251*. 680 39261*9.6 1* 53.98 393731. 3 0 52.71*1 395661.9 0 52.1*0 396196. 0 51.79 397156. 5 1 50.002 39999.7 3 1*6.63 1*051*66. 1 1*5.18 1*07863. 1 1*1*.82 1*081*63. 6 0 1*3.896 1*10010.8 VI h 1 1*2.270 1*12762.6 VI 0 1*1.93 1*1331*3. li 0 37.U9S 1*21061.5 VII 3 00 36.1*70 1*22886.6 VII 6 1 32.350 1*30385.2 VII 1 29.12 1*361*52. 0 28.65 1*3731*9. 6 1 27.830 1*38923.7 VII 00 27.15 1*1*0238. 5s \ - 7p K 5 s \ - T P \ 2U7. Te I and Te II The arc spectrum of Tellurium was f irst analysed by McLennan and Crawford (6) and subsequently revised and extended by Ruedy (35) and Bartelt (3). They have classified in a l l over 100 lines in this spectrum between the region 11081+ A 0 - 161+5 A 0 . P.M. Griffin and Vander Sluis have reported (ll+) that their work on this spectrum is in progress at Oak Ridge National Laboratory supplemented by their Zeeman Effect data. Consequently we did not try to analyze this spectrum. The f irst spark spectrum of Te was f i rs t studied by Rao and Sastsy (3l+-t») whose analysis has been completely revised by Mack, Murakawa, Ross et al (28) and Mack and Handrup (18) at Professor Mack's laboratory. They have assigned over 1500 lines to this spectrum and analysed over five hundred lines and thus established a very good energy level scheme. Since the classified lines accounted for most of the intensity in the region 700 A° to 8900 A°, no attempt was made to extend their analysis. Te III The ground state of the second spark spectrum of Tellurium is 5s5pl P » an even parity state. 1 The early analysis is entirely due to Krishnamurthy and Rao (20, 31+) who have classified a l i t t l e over 200 lines in the region 612 A° -6977 A 0 . From the square array i t soon became evident that some of the levels show quite appreciable irregularities in the Sn I l ike the iso-21*8. -electronic sequence which is now much better known than in the days of Rao and Murty's analysis. Apart from this, their wave length measure-ments were in doubt and many levels needed careful study and confirmation on the basis of the available Zeeman effect data (13). In the present analysis, lines belonging to this spectrum have been thoroughly checked for excitation using the 'pole effect' shown by these lines. In general a l l the lines here classified show their appropriate excitation characteristics in both spark-in-helium and elec-trodeless discharge. In a l l cases where we suspect an unresolved coincid-ence of lines x^re mention this coincidence specifically. 5s 5p £ This term, the deepest in the f irs t odd configuration above the ground state was not established earlier. According to the definition of resonance lines, the ground state combinations of this term should give resonance lines and obviously they should be among the strongest lines of this spectrum. The establishing of this term apart from being basic could verify the theory of Andrew, Meissner and Trees (31, k3-e). But prediction was made difficult due t o V v in Te IV 5s 5^ configuration being not est-ablished. It is worthwhile to mention that almost a l l terms have been established after 191*5 and thus i t is not surprising why Rao and Murty failed to establish i t . 2l+9 Table X I I ns.np JS* term i n the P e r i o d i c Table Spectra R e l a t i v e Term E s t a b l i s h e d by Value K C I 33735.2 Shenstone, A.G. (37d) 191+7 N I I 1+6785.1 Edlen, B. 0 I I I 60312.1 Edlen, B. S i I 33326.2 Shenstone, A.G. (37e) 1957 P I I 1+5696.8 M a r t i n , W.C., (32) 1956 S I I I - -Ge I 1+1926.7 Meissner & Andrew (31) 1957 As I I 51+812 Crooker & Bedford (8a) 1951+ Se I I I 68502 Crooker & George (8b) 1962 Sn I 39625.5 Shenstone, A.G. (37e) Sb I I 5172b Crooker & Chan 1961+ Te I I I 61+585-£ Crooker & J o s h i 1963 Pb I m B i I I 7611+7 Crawford (6) Po I I I Meissner and Andrew (31) have shown t h a t the d i f f e r e n c e between absolute term values of ns np* S[ and ns.np 3P 0 (the r e l a t i v e term value of S°) of a g i v e n i o n or atom i s very c l o s e l y the same as t h a t between a b s o l -ute term values of corresponding parent l e v e l s ns np P and ns np P of the next higher i o n s . Even though they a r r i v e d a t t h i s r e l a t i o n e m p i r i c a l l y , Trees (1+8-3) showed t h a t t h i s c o n t e n t i o n was a d i r e c t r e s u l t of Bacher-Gondsmit Atomic Energy r e l a t i o n s (1+). From F i g . 6 250. SS iTfc ss2.i-f> 5 S . S |p. z M l A b T e S L Fig. 6 Thus we have b - a = B - A U , - L ) - L z = (L 5 - L ) - (LH - L ) or L, = 2(LS - L j - ( L g - L») Thus L, determination does not involve absolute term values. H But as relative position of P, was not known, so we f irst moved to J i lower configuration of Te I? to establish P Estimating *P^ at 76,000 k L, •* 2 (76j000) - 85,997 = 66,000 k (Predicted) A search was made in region 60,000 - 75,000 cm--*- for its combination with ground state levels ^ and 3 P z with difference 3alO.U5 crn""^ ". Two 251. sets of such combinations were found quite close to each other. Out of these the right one was picked up on the basis of intensities consistent with Ge I, As II and Se III. \ ^ 61+585.20 cm"1 n# = 2.01+7 5s5p D°,, Zl 3 Rao and Murty had fixed these levels but their reality was in serious need of confirmation since they showed anomalous irregularity in spacing. The situation in Sn I like isoelectronic sequence is -V i V X 3 9 Sn I Sb II -i>: 56658.0 66291.7 S651+1+.8 66502.6 IB 57181.6 67888.2 The pure L-S coupling theory gives zero separation between the levels e>^ "tKe term; . Under this condition we do not expect large separations for the terms. But according to Rao and Murty1s analysis -\ - 3 D = 691*0.7 cm - 1 *D - 3 D = 10820.6 c m ' 1 J. I Even though Rao's lines were not suspected according to our excitation data, the anomalous separations put his levels in doubt. Also they were "tWe quite sketchy inAsquare array diagram. On the basis of new data avail-able in Sn I and Sb II, the separations were predicted around 350 cm"1 252. and 2,100 cm . One of Rao's level D was accepted with value modified according to our X-measured while ^ and 3D° were rejected and fixed as V = 82887.00 cm = 83201.90 cm"*"'" \ = 85203.00 crrf*^ " - V ) = 31U.90 cm"^ A ( 3 ? = 2001.10 cm"''" 5s. 5p3 ^ andV It was quite difficult from the data available in the isoelectro-nic sequence to predict the relative positions of and P*. From the study of the periodic table data in ns-np configuration, the only con-elusion drived was that P( should be higher than S( . But the task was made easier by the knowledge of S* , ? ° ? n d P* terms of the configuration. In terms of Slater's parameter G, ' p ' - V 'D'- 3D° V - 's° r ~ - — 2 — = — r ~ = G« G, = 801+3.1 k P0 <. 11171+7 k 3 s f ^ 88715 k It may be pointed out that these estimates are not accurate since the relations assume that the coupling is pure L-S. Again using Goudsmit's Atomic Energy relations SP3 rs-.V) , ^ . f ^ p - V ] - s P . 2 \ y - v] and sp* ( y ~V) sp* • | \ > - *?] - 5 P (V - V] 253. We get 'P° = 125197.3 k 3sf = 123658.2 k 3 • But this also failed to give any consistent value. The position of £j was expected near the average value of the two calculated. After a thorough search in the region from 85000 - 125000/Cthe following levels were finally accepted -5s 5p5 V = 101U7U.1 k 5s 5p' V = 12U053.0 k This P° perturbed lP* of 5p- 6s and pushed i t below 3pJ of the same configuration. Due to this perturbation these combinations of *P^  and 3 0 S were not as strong as we would have expected them to be. S0 in $s -5p and 5s-5p-6p The ground state configuration was well established by Rao and Krishnamurthy except for 'so . To establish a singlet is always quite tricky since they combine only with levels with J=l. Pure L-S coupling theory gives for s.p 1 configuration g I *p . 1.5 - t (say) But as was obvious from s -^p1 "*P separations, the coupling was not near to L-S, the deviation was calculated in the isoelectronic sequence Thus interpolating linearly c Te III * 1.19 S = 30726 (Predicted) 25U. Thus we expect 5s-5p lSo near 30900 k. A search was made in the proper region for combinations with 5s -5p 3P,° and 5 D°. They were confirmed by their combinations with %s- 5p- 6s P^," and V So = 31,li29.0 k. So was also the only level not known in 5s"-5p- 6p configuration and i t was located not far from the main configuration levels. 's, -= 1L6508.5 k 5s- 5p- ns 5sz5p-5s configuration was originally established by Rao and con-firmed from our investigation. The point of interest was the position of 5s-5p.6s P° which was identified below Pj of the same configuration. - From Houston's theory of intermediate coupling (page 38). Lande's interval factor from and 3p^=265l k e g lies 2651 below 3P^ From ( fc.-n ) ( fc3+) ) = - l ( l + l ) « -2 and t 3 » B y A ,1.90*4 t,, 1.212 % = 3213 k Thus Houston's theory predicts V 3213 - 2651 = 562 k above and indicates that coupling is very close to j - j type. But none of the line in the vicinity substituted for the combination 5s*".5p - 5s"". 5p.6s 'p , gave necessary combinations for confirmation. This combination ought to be its strongest combination. After great search i t was resolved that 255. this P is strongly perturbed by P of 5s. 5p configuration,and levels of 5p>5d configuration with J a 1, which lies above i t , and both get mutually repelled. Since P ought to be pretty close to P , the pert-urbation pushes i t . Thus we accept the identification of Rao. To our knowledge, this is a unique example of perturbation in such a configurat-i • ion. The level P however has been confirmed on the basis of Zeeman i effect data. i 3 o Rao had established 5p-7s ' P out of which we found only two were real with J =1 value but were given with the wrong designation. Since £ could not be confirmed, this put everything in doubt. P^  , P^  separation should be 9222 k (5p Xl£_ - ^ in Te IT). It was soon observed that Rao had estimated the configuration much higher. 5p.7s configuration was f inally found to be much lower. Since Rao1s limit was based on np. ns 3 ^ series, a new series limit was found and next series numbers searched for and established. The intensities did not go very regularly in the series members indicating the names given to the different levels are just traditional and less meaningful. The other fact clear from the series was the way in which the coupling was approaching more and more to coupling approx-imations and this is shown in Fig. 7. •5sx-5p-nd Configuration 5s*- 5p- 5d configuration was established by Rao and Murty, except the ^ level. Designations of Rao's levels were changed by Mrs. Sitterby 10*0 9.0 8.0 r 0 7^0 6.0 -o o l\ ^ 5.0 iu.o 1 3.0 2.0 L 1.0 0.0 7951.8k n^cT To follow page 2S$ 3*o-906iw6k 'Pi n=7 9222.6k Te IV 5pl|-to 9201;8k Q.8 n Showing the rslative positions of four levels' l,3p i n 5p.ns configuration of Te III, illustrating-the trend towards j-j coupling a s we go higner up i n series. Fig/- 7 256. ( 3#3 ) t o suit Zeeman effect data. We found that under the new designat-ion there is a better run of intensities. In this A F*was erect, D'was partially inverted while P was found to be inverted. The way in which these levels have been designated by L-S names has no real significance. The only valid number may be considered as J . In the established 5^5p.6d configuration, the levels suggested by Rao were checked with our more accurate and extensive observations. Only five of his twelve levels were found to be real out of which two did not belong to this configuration. A search was made in the whole of the region with different sets of combinations accepted. Out of the sets chosen, the present set with J-values assigned was picked up. At f irst i t was decided to name them by letter a, b, c etc. to avoid confusion with L-S nomenclature, but later i t was found desirable to put tentative L-S assignment on the basis of the strength of various combinations and keeping in view their relative assign-ments in 5p-5d. In this manner 3 F was erect , 3 P was inverted while "^ D was partially inverted. In 5p. 5d singlets were separated from triplets; and were relatively high, but in '6d F^  was found quite deep. To distinguish F^  and 'if , which were quite close to each other, the only criteria used was the intensities. Transition Intensity 5p-6p \ - 5p-6d V (100 - 5p.6d Fl - . (15 \ - 5p-6d % - £ 3 - 5p-6d 'F/ - (80 257. 5s-5p-np, 5s.5p.Uf and 5p Configurations. 5s-5p- 6p configuration was established by Rao except for level i S0 . We have confirmed his levels. The designations of his levels were changed by Mrs. Sitterly as follows according to the available Zeeman effect data. Configuration Rao and Murty Mrs. Sitterly ('"Q 5s.5P- 6p 3 D, 3 P, Theoretically one would expect P^  to be the deepest in this configuration. However, in the isoelectric sequence of Sn I this has not been the case. We have accepted Mrs. Sitterly's designations even though these names are of conventional interest. The second fact obvious from this was that a l l 10 levels were somewhat grouped in two parts - about 7000 k apart. This indicates that deeper four levels arise from 5sT 5p ( P?,) core while upper six from 5s* 5p ( ) core. This however would make the names assigned to these levels quite irrelevant. In the next series member 5sz. 5p. 7p> things become s t i l l more complicated. The positions of 5s i.5p. kf and $p -configuration were close to the predicted position of 5p-7p. In predicting the position for 5$ » we know about 85000 k energy is needed in going from 5s. 5p to 5s•5p3 . In order to remove another electron from 5s orbit to 5p orbit we may need about 85,000 k more (neglecting the effect of changed core in the second case). 258 Thus 5p* predicted = 1 7 0 , 0 0 0 k. 5p-iif configuration was incompletely known in Sn I and Sb II. By extra-polating n# for the lowest level (J=2) in them Let n* for T e III (J=2 level) » 2 . 9 8 0 Relative position - 1 6 2 , 6 9 0 k This J«2 wil l be however from 5p (^J) c o r e while levels with 5p C*^) core wil l be high enough to mix with 5pH levels. n# for 5 p - 6 p 3Jj> i sm3.0i j .7 and extra polating n* for 5p .7p> we get 5 p . 7 p 3J\ = 1 6 5 , 0 0 0 k. Thus a l l these levels wi l l be mixed up and i t will be quite hard to assign them to their proper configurations. However the deeper group from 5^ "- 5p ( P(/ ) kf should be the deepest levels from these three configurations. Again i t is interesting to note that whereas one expects *F3 to be deepest,, T 2 was found to be deepest and F was erect. The naming of and is based on their combinations. In the case of the remaining levels, there was no criteria for such assignments and levels have been designated by Arabic numerals. However, at tamers where we have put L-S nane to a level i t is on the basis of some combinations. Due to this complexity of situation and configuration perturbation, no j - I coupling scheme could be worked out for them. 259. I o n i z a t i o n P o t e n t i a l f o r Te I I I The i o n i z a t i o n p o t e n t i a l i n the l i t e r a t u r e was due to Rao and tAufct^  , was q u i t e high due to h i s wrong i d e n t i f i c a t i o n of np.ns s e r i e s . On our new measurements, we have extended t h i s s e r i e s t o n » 8 and thus, were able t o get a b e t t e r value of the l i m i t . S t a r t i n g w i t h Rydberg S e r i e s l i m i t of 225,500 k c a l c u l a t e d from 5p-6s P, and 5p-7s P^  members,the Edlen-Risberg (10b) adjustment was ap p l i e d only once t o the members 5p.6s P, , 5p -7s P , 5p-8s P( . A T - - J46O k I o n i z a t i o n P o t e n t i a l of Te I I I (Te IV ^ P^)« 225,01+0 k = 27.90 v o l t s . A t o t a l of 550 l i n e s are now c l a s s i f i e d i n t h i s spectrum. 260 Table XIV Energy Levels of Te III. Config. Desig. J Level (k) Interval n* EVEN LEVELS ti 3P 5PX 'D 5PZ 's 0 1 2 0.0 li756.5 8166.9 1+756; 5 31+10U 2.009 2.117 2.131+ 5 s V £s\5px 2 0 17359.1 31ii29.0 2.181 2.259 5s5p.6p 5i.$P.6p 5s.5p.6p 5|-5p6p 5|5p6p 5s5p6p 5P6P 3D 5p6p ^ 5p.6P 'p 5P6P S^ 5P.6P D 5P6P s 1 2 3 128622.8 132331+.1 13995U.0 3711.3 7619.9 3.200 3.261+ 3.1+07 0 1 2 132267.3 132122.3 139668.3 -11+5.0 751+6.0 3.263 3.260 3.1+01 1 1 2 0 13829U.1 11+1807.1 11+2985.3 H+6508.5 3.391+ 3.1+1+5 3.1+69 3.51+6 5s5pl+f 5pl+f 3 F 2 3 , ii 163715.7 165172.0 16681+1.7 11+56.3 1669.7 1+.013 1+.062 1+.120 3 165563.2 li .075 5P" 3P z. 16621+1+.2 1+.098 5s.5p.7p) 5P-7P) 1 1 1671+09.0 li.HiO 5s-5pUf) 5pl+f5 2 2' 168762.0 1+.189 5P* J 5P" 5 3 2 171193.0 1+.283 1+ 2 171302.0 1+.287 5 2 171339.0 1+.289 6 1 171+1+55.0 1+.1+19 7 2 171+817.0 U.l+35 8 2 175211.0 U.l+52 9 2 176O01+.O 1+.1+88 10 1 1761+11.0 li .507 11 3 178057.0 1+.586 12 2 18061+1.0 h,m 13 1 1819H+.0 1+.786 Hi 2 181+932.0 1+.962 261. Config. Desig. J Level (k) Interval n* O D D L E V E L S 5S5P 3 5s-5p* 5S-5P3 5p3 > 2 61+585.2 2.01+7*** 5p3 *D 1 2 82887.0 83201.9 85203.0 3H+.9 2001.1 • 0 1 ? 96059.6 96580.1 9 5 0 2 9 . ! i 530.5 -1550.7 5P 3 ' D 5P 3 3 S 2 1 100167.8 101U7U.1 5t-5p5d 5p5d 3 F 2 3 Ii 1 0 1 + 7 1 1 + . 0 106311.7 108556.3 1596.7 221+1+.6 2.865 2.881+ 2 . 9 1 2 5s5p.6s 5s5p6s 5p6s ¥ 5p6s ' P 0 1 2 1071+68.5 107723.1+ 1151+20.3 25U.9 7696.9 2.898 2.901 2.883** 1 111+215.1 2.868** 5&5p5d 5s5p£d 5p5d 3D 5p5d 3 P 1 2 3 11571+1+.3 12251U.5 1 2 0 9 0 1 . 0 6770.2 -1613.5 3.006 3 . 1 0 1 + 3.080 0 1 2 119581+.0 11779U.5 1 1 6 7 1 7 . 2 -1789.5 -1076.3 3.060 3.-035 3.020 5S5P3 5P3 ' P X 12h053.0 5s5p5d 5#p5d 5pSd V 5p5d P 5p5d ' F 2 1 3 121+787.0 1 2 7 1 8 7 . 3 12721+0*8 3.139 3.177 3 . 1 7 8 5s5p.7s 5p.7s ^ P Q 1 2 160951.0 1611973 170015*6 21+6.3 8818.3 3.926 3.933 3 . 9 2 1 * * 5&5p6d 5s.5p6d 5p.6d 3 F 5p.6d ^ 2 3 a 162713.0 1628 2 l i . 7 163075.5 81.7 250 .8 3.982 3.981+ 3.993 i 2 3 163330.3 171966.1 171391*0 8635.8 -575.1 1+.001 1+.311+ 1+.291 5S5P.6S 5P.6S V P 1 170587.6 3.938** 5&5p6d 5p6d 3 P 0 17781+5.0 171+500.8 1701+17.9 -331+1+.2 -1+082.9 2.575 2.1+21 1+.252 262. Config. Desig. J Level (k) Interval n* a 1 or 2 l6lk66.3 3.9k2 b 1 or 2 170079.7 k.239 5s5p6d 5s5p6d 5s5p6d 5p6d 'F Sp6d "D 5p6d 'P 3 2 1 171066.1 180)432.8 18103k.2 k.278 k.706 k.737 c 3 183196.8 k.858 d 1 I8kkl0.k k.930 5p.8s 3 P 0 1 2 I 8 k 5 6 6.a l8k6^7.1 193768.1 100.8 9101.0 k .9k0 k .9k6 k .939** 5s5p8s 5p.8s 'p 1 I9k368.0 k.979** ** n* for 5pns3P , 'P calculated w.r.t. Te IV 5p V as l imit, a. 1 HHS- n# calculated w.r.t. Te IV 5s5p P as limit. No precise limit"can be assigned to a l l the other levels of 5s5p? configuration (Bacher-Gbudsmit P.R. 1+6,956, 193k) so their have not been entered. Limit (Te IV 5p 2p ) = 225,0k0 k. 263, Te IV The earlier work on this spectra was due to Rao (3l+-a) who establ-ished the basic structures and classified 27 lines. We confirmed the ionic parentage of a l l his lines but his level 7sZ£\yWas found to be wrong. He also failed to identify the resonance lines and thus establish the deep-est even term Since Rao's observations were limited to 71+9 A 0 , and he had no good data in the region 1300 A 0 to 2200 A 0 , some of his levels needed confirmation. The 781+ A 0 line apparently observed by him as single, appeared on our plates as a well-resolved double line. The stronger component had a wavelength valve f itt ing nicely in the square array diagram. The other classified line 81+0 A 0 (separated by much smaller wave number difference than 781+ A 0) reported by him as a close double was confirmee by us as double. It is quite interesting to note that he resolved 81+0 A 0 (A^13.2 k) but failed to resolve 781+ A 0 (AV-3U.6 k). Our observations confirmed the levels established by him. 5S.5P V This is the deepest even term and according to definition its combinations with the ground state should yield the resonance lines. This term has been established in Sn II and Sb III. Its position was est-imated from Andrew^Meissner*s relation since ff££ in Te III had been established. Using the relation of page ( ^ s o ) f we get = \ [61+585.2 + 85997.0] 261+, = 75291.1 k (Predicted) = 78281.1 k (Observed) It was found to be quite displaced from its calculated position. But the identification did not trouble us, since the lines should be among the strongest in the spectra, the required lines could be picked up easily. It is gratifying to note a l l these lines showed strong, complete reversals as expected. The line 151*9 A 0 used for 5s* 5p Pi - 5& 5p V appeared with intensity 25 in spark and boomed to 750 R in the electrodeless discharge. It was found to be in coincidence with Te V 5s5p 'if - Sv\» Table XV shows the application of the irregular doublet law to these resonance lines. Table XV Sn II Sb III Te IIII 5PZP;- 5S5PV 1+61+61*. 2 51*365 69665.8 p l , - p . t 1*831*8.0 57960 73771.1 \ - V 1*2212.8 1*7789 6021*3.1 %. - l*ltll6.6 51381* 61+51*7.5 ^ - \: 1*61*78.6 57780 69058.1 H 14 1.2l* 1.78 1.05 From pure L-S coupling considerations (T.A.S. 199), the interaction constant for the 5p electron is connected to the interval factor of 265. 5S5P P and*P of this configuration as n "p) rep) =% 7P Table X V I shows the interaction constants calculated on this basis in the isoelectronic sequence. Table XVI Sn II Sb III Te IV 1263 9005 9U5 Y&C P) 3200 7U9U 6612 The deviations from pure theoretical relations may be attributed to deviations from pure L=*S coupling, the perturbations among levels or even to the improper naming of the levels, since the 5p S lies near the P. 5s-ns Series. Rao had reported the 7s ^ level on the basis of very strong combin-Ix. ation with 6 p V . The lines used by him were doubtlessly Te IV lines and of right intensity but their separation was far greater than the tolerance al l -owed. The 6p (ZP,°2 - 2P,i ) difference was calculated from 21 f t . grating spectrograms. Mean 6pZP*/i - 6p\ = 2619.83 k The \ of the two lines picked up by Rao were also calculated from 21 f t . grating spectrograms. 2 6 6 op^ Py - 6p V from Rao's lines « 2615.86 k. We are convinced we cannot be out by O.k k on the basis of the measure-ments on 21 f t . grating spectrograph in this region and consequently the level was rejected. Thus a search was in the region for other combinat-ion. The only strong pair of IV lines picked up by us established 7s ^ S. tx 6f V - 6p V from new 7s*S =2619.91 k But the intensity f e l l by a factor of 10. The next series member 8s *Syi Z . i was s t i l l weaker by a factor of 10. While we did not anticipate 5s-9s S, combinations could be picked up, however, they were there, though extremely weak. This extension helped to give a better value of the limit. 5sJtfV The position of i+fXF was predicted from the relative position of these levels in the isoelectronic sequence and strong combinations were looked for with 5dV ,j> . A thorough search was made in the region for • ^ i ? ' a . • -A=771 k difference. The only strong combinations were picked up estab-lished i t . It was found that 1+f F was inverted with a separation of 66 k and gave x-jeak combinations with 6d D. Only uf F^ - 6d could be located on our plates. 5s.ng and 5s-nh Series and PolarjLzation of Core. Once Uf F was established a search was made for ng*G terms. Since 2. the ng G series is nearly hydrogenic, we did not have to scan a long range 267. for the proper combinations, 1+f - 5g combinations and hf - 6g combinations were in the region where we had a lot of intensity on the plates. These combinations were confirmed from their proper separation. When extending the ng series to n » 7 , i t was found that l|f F - 7g IG combinations coincided with two classified lines of Te IV and Te VI. 8g*G combinations were extremely weak and no further extension was contemplated. A t r i a l was made to locate n^ series and we were successful in extending i t to n » 8 . The f a l l off in intensity in the series members was very rapid. The establishment of the G and H series J^ YVVVVUA • =UVJ- A the polarizationtheory to this spectrum. In the case of ng and nh series one can safely assume that the increase in binding energy over the hydro-genic value is solely due to polarization of the atomic core. From Chapter I, page Z3 , we have A T p o l = T " T H A T T = A ( Z » Z » ) P ( n * l ) . - t " B t 2 ' 2 " ) Q ( n » ^ ) If we neglect the quadrupole polarizability part in this equation (which is very small compared to the dipole polarizability), A can be easily calculated. A was calculated for a l l the members of ng series and nh series (assuming ionization limit of 308,100 k for Te IV). Rydberg constant for Te = 109737.25 k Average Polarization Parameter A=^ =. 715.0 From this,dipole polarizability of the core was calculated . Ay a 3 <X^  ,s Dipole polarizability = g • ^jp = Ul.lU x 10~2 8 cm3 268. Once this has been calculated, the higher members of the series could be accurately fixed. From this,both series could not be extended further. From the above equation T = T H + ATT -*- A(Z Z 0) P(n,t ) T = T e - t l e i s ionization limit f o r Te IV, and t i s the relative term value " T° = f ^ T H r A T r A (z, z 0 ) p(n,n Thus using the value 715 for dipole polarization parameter , ionization l i m i t was calculated for each member of ng and nh series. Table gives these values. Table XVII Level t ( K ) ? H ( K ) ATr ( I O * T P o l . ( I O TD Ionization Pol. 5g*G 231130.9 70231.6 0.9 398.5 3Q1761.9 6g1G 252772.1+ 1+8771.9 0.7 256.3 301801.3 7gJG 265798.0 35832.1+ 0.5 171.1 301802.0 Qg^ 271+21+9.0 271+31+. 2 0.1+ 118.8 301802.1+ 6hZH° 252900.0 1+8771.9 0.1+ 81.5 301753.8 7hZH° 26586U.1 35832.1+ 0.3 56.6 301753.1+ 8 h V 271+270.1 271+31+.2 0.3 1+0.2 30171+1+.8 This gives the Ionization potential cf 301802.0 k for ngzG series and 301751.3 k for nh^H series. ' \ To follow p a g e ?.6S 269. Ionization potential = 301776 + 25 k = 37.ii ev 5s-5p (3P)-6s, 5s-5p C3P)-5d and gs.gp.C3?) 6p Configurations. not The configurations involving "excited" core haveAbeen studied extensively in these spectra. One of the reasons for this may be that most of their transitions to opposite parity levels involve transitions of two electrons or three electrons. Only few levels of such configurat-3 ions have been identified in In I and Sn II. Since 5s-5p P° was about 30,000 k higher than 5s-5p'P°in Te V, so levels on $3. 5p ('p) core are expected approximately this much higher than those from the 5s. 5p (JP) core. At the time of this analysis, none of these configurations were identified in Sb III (these have now been interpolated by Crooker and Chan), any kind of extrapolation was not precise. By applying the irreg-ular doublet law to the 5s.5pHP«, - 5s-5p- 6s transition, and extra-polating from In I, Sn II to Te IV, the relative position was estimated around 210,000 k while the relative position of levels when extrapolated gave the value 219,000 k. The configuration could also be estimated (very vaguely) by considering 5s$p6s as second series member of 5s-5p (5s.5p.5s) with limit at 5s.5p3P of Te V. This gave 5s*.5p, n* = 2.156 and taking 5s.5p.6s's n* » 3.20 we get relative position at 212,500k. None of these estimates are precise enough to be relied upon, but they give a region where to look for the combinations. Since 5s"«5d configuration was 270 about 5500 k lower than Si. 6s, one would expected 5s.5p.5d to be lower than 5s.5p.6s. To estimate 5s.5p«6p, we can start with 5s*. 5p* as the first member limiting on 5s 5p3P* (Te V). Thus from n* = 2.385 and n* = 3.1*0 we obtain the relative term value of this configuration as 233,000 k. Attempt was made f irs t of a l l to establish 5s5p6sV'to have- a starting point. They have strong combinations with 5 s - 5 p V . 5s-5p-6p then was found to give strong combinations with 5s.5p.6s. Both these configurations were found to be higher than estimated. • Though the interval factor for 5s-5p-6s P°was pretty close to the predicted values from . Humphry* ^ -Goudsmit relation (page 18) the other terms did not agree with predictions. Table XVIII shows these deviations. Table XVIII it e Lande's interval factor A from Goudsmit-Humphijysrelation Term 5s 5P (3P)'-5d 5s-5 P (3P)--6s- 5S-5P (3P)-6p cal,. obs. cal. obs. cal. obs. "I A* + \ *z I v ] A t "** I a*. -1057 21*21 2327 1502 1233 1 A - r 5 a ? * * T8 1 1*87 1502 535 2 A + 2 876 1161* -where Ags.5p ( 3?)]=3632.0 from 5s-5p 3P°of Te V 271. 5d * 308.7 from 5s- 5d2"D of Te IV a 6 p =171+6.5 from 5 s - 6 p V of Te IV In 5s 5p ( 3P} 5d i t was q u i t e d i f f i c u l t to a s s i g n L-S nomenclature t o a l l the l e v e l s excepting "V. They can be arranged i n groups but we have l e f t them without names. 5s.7d and 5p* C o n f i g u r a t i o n s . Once a b e t t e r l i m i t has been e s t a b l i s h e d , the p o s i t i o n of 5s-7d D could be p r e c i s e l y estimated. 5d XD 6 d D 7 d D n# 3.178 1+.220 5.21+0 (say) 5s-7d D s 237,830 k (Pr e d i c t e d ) = 236,51+6.3 k ( E s t a b l i s h e d ) But 7d d i d not combine s t r o n g l y w i t h any t h i n g and thus f u r t h e r extension of the s e r i e s was not expected. By a p p l i c a t i o n of the Regular doublet law to I n I l i k e i s o e l e c t r o n i c sequence (though i t was not known i n Sb I I I ) , the doublet s e p a r a t i o n of 7d D could be estimated. Table XIX I n I Sn I I Sb I I I Ay 25.31+ 51+.6 _ 9.72 11.78 . — % 1+9- 50 51 G" 39.28 38.22 --1 .06 272. is screening constant It has been observed in case of 5s" 6p"vP (page 15) thatA0* decreases as we go high up in the sequence, i f we assume the same trend as say A^J*^^ 0.93 we get - 1.00 and A q r , T « - SK-<3^ ^ 36.29 and - 15.71 (Predicted) (Observed) •"• & » - 165.2 k = 231.3 k Thus observed value is quite far from the predicted value. In case of 5p 3 - configurations > " V and '"P" levels arise out of which S^* is the deepest. It was not known in In I isoelectronic sequence, though i t had been identified in As III and Se IV in this laboratory (8a, 8b). Equations (25) and (26) of Bacher-Goudsmit's paper ( H ) give W, (p3 = 3W (pa 3P) - 3W (pV) W, (p> ZD°) . |W (px3P). + |w (frVj) _ 3W (pV) w , (p3 *P) = § W(p* •* |w (p^D) - r fe ) - 3W (p Xt) These energies must be measured with respect to the naked nucleus or to the core. From this we estimate V from above relation as shown in Fig. 10 l,0HH,«\qHk. 571,9 W k 2 p ° s f a r Li-m-.t T e Y l V 7 Fig. 10 273 Thus we start with Ud core (Limit of Te VI as zero) and relation in terms of a, b, E t , E x ^ c , y and z Ho 10 a _ z + 1,0UU>99U a Absolute value of S w.r.t. Ud core = 3 [ s t + j] -31-) = 3 [E.-t-y -x] = 1,17U,077 ••• z = 129,083 k Thus relative position of p V = 301,776 - 129,083 172,693 k (predicted) = 180,U56 k (observed) From another relation of Bacher-Goudsmit method P3 CV- *D) = ^ ( P - -'D) In tlbis, due to differences involved in same ion, relative energy values can be used. .-. p ( V - 2D) = 687U.2 k This value could not be taken as precise since 'D was so much perturbed in Te V that i t was lying very much below 3 ? x . The X D named by us is an arbitrary choice. It may be a part of the f?s. 5p (3$)-5>d configuration. Thus these two configuration cannot be separated precisely. Mosjey Diagrams MosJ-ey Diagrams have been mentioned on page 10. In figure 9, they have been drawn for 5>s-5p^ \.i x j. » 7sZS, 7d D^ and UfZF° terms. 230 lines are now classified in this spectrum. To follow page 273 0.00 I 1 _ J ! 1 I -In I Sn II Sb III Te IV — ^ Zo W&M DIAGRAMS FOR Te IV g)?not known Fig. 9  271*. Table X X Energy Level of Te IV Config.. D e 3 i g . J Level (k) Interval n* EVEN LEVELS 5&5p\ 5s5p" 5s5p 5s5P^ 5p* P 1 69565.9 73770.1 78281.1 1*301*. 2 1*511.0 2.363** 2.379 2.397 5p D — — _ . i 92769.1 9U810. li 201*1.3 5tf 2s i 109539.1* 5P" ZP 119010.5 119955.1 91*1*.6 5#5d 5d "T> 1 1271*1*6.5 128218.2 771.7 3.171* 3.181 5s6s 6s ZS i 2 1331*57*1 3.230 5s6d 6d ZD i t 20291*2.2 203352*1 1*09.9 1*.215 l*.22l+ 5s7i3 7s ZS . 1 2 20611+2.6 U.285 5&g 5g *G 3§,l*J 231130*9 1+.9855 Sild 7d *!) 2361+07.5 236638.8 231.3 5.183 5.192 5s8s 8s 2S i 21*0138.2 5.31*6 5s5p(3P).6p 5s5p(3P).6p 5s5p(3P)6p 6p' ** D 21*2911.0 21*1*971*. 5 2l+553l*.2 21+6923.1 2063.5 559.7 388.9 3.529*** 3.555 3.562 3.580 6p' *P —^? 21+7590.8 21+971+2.7 252521.0 2151.9 2778.3 3.589 3.618 3.656 6p' HS. 253267*0 3*663 6g x 0 252772.1+ 5.9850 Si-9s 9s *S i " 2 " 258935*7 6.1+02 7g 2 G 265798*0 6.9860 5&g 8g *0 •si i.i 2^>'+2 271*21*9.0 7.9865 275. Config. Desig. Level (k) Interval n* ol>T> L E V E L S 5S5P 5P l l o.o 9222.6 9222.6 2.1+12 2.1+50 5s6p 6p 1613UO.I4 163960*2 2619.8 3.536 3.571 5P3 a? 1* 180U56*1 3.80U 5saf hf 2i 18699)4.6 186928.9 -65.7 3.911 3.910 5s5 P( 3P)-5d 5 s 5 P( 3P ) 5 d 5d 2| 195982 198726 202968 If l |? 201586 203U80• I 3.057*** 3.079 3.081 3.119 3.161 5P 3 206259.6 205697.8 -561.8 )4.288 4>275 5S5P(3P).6S 6s P 1 I 207902.8 211537.0 217213.8 363U.2 5676.8 3.158*** 3.191 3.21+5 5s5 P( 3P>5d 5d' l i £ pi 1 208195 210165 213970 211+21+6 221721 3.179 3.211+ 3.217 3.291+ 5s6h 6h •H U|,5i 252900.0 5.991+ 5s27h 7h X H M * 5 * 265861+.1 6.992 5l8h 8h H hh$\ 271+270.1 7.990 5s^ 9h 9h ZH?? 280063.0?? 8.992 ** n* for 5S5PV "P calculated w.r.t. 5s5p3P of Te V. No n* values have been entered for rest of the levels of 5s- 5p since they cannot be assigned to any precise limit (Bacher-Goudsmit P.R. 1+6, 956, 1931+). n* i n 5s5p ( 3P)-6s,'5s5p ( 3P)-5d"and 5s5p (3P)-<>P configuration terms have been calculated w.r.t. l i m i t (5s5p*P limiting term i n Te V). Limit (Te V 'S) « 301776 k 9 276 Te V The fourth spark spectra of Tellurium has 5s*"S0as the ground state. Gibbs and Vieweg (12) classified twenty three lines in the region 603 A 0 and l$h9 A 0 . 2 . Bloch and L. Bloch (2-c) later identified five lines in the region 358 A 0 and U02 A 0 establishing three additional levels. Two of the twenty three lines of Gibbs and Vieweg 1281 A 0 and 151+9 A° appeared on our spk-in-He plates. Both these lines establish the basic structure of this spectrum. From further scrutiny of plates i t was found that l5u9A°line of T e V coincides with l5u9#resonance line of Te IV and 1281 is also a coincidence. The rest of the lines were confirmed belonging to this spectrum from our excitation data. Two of their levels 5s-5d !D and D were based on single lines and obviously needed confirmation. The three levels 5s-6p3PL'"., 'P," and 5s-7s 3S, established by the Blochs on five lines needed confirmation. A l l the combinations of these levels with other levels were in region from 1300 A 0 - 2000 A 0 , the region not studied for higher excitation earlier. Te V lines were recognized by comparing spark-in-helium with Electrodeless Discharge plates and also comparing low and high excitation plates of the electrodeless discharge. 5s-5d 3 D 3 and 'Dz and 5s-6d VJ3D The choice of 763.I4O6 A 0 lines for 5s-5p 3ff - 5s• 5d ^ trans-ition appeared to be a right choice. This line was one of the strongest lines in the region and had an ionization assignment as Te V. In fact there did not seem to be any other line in the region to replace i t . It 277. was soon confirmed by its strong combination with 5s 6p V . Thus $s-5a3\ = 216,993.7 k. Gibbs and Vieweg chose 910.863 A 0 line as a combination 5s-5p P* -i 5s.5d . But this seemed to be a wrong choice becauses: (1) The line seemed to have the chacteristics of a Te IV line more than of a T e V line. (2) This same line was used by Rao as the combination 5&-5p *Pi 5s. 5^ \ in Te IV. (3) The '"D level established on the basis of this line failed to give any other combination with either 5s -5p 3P° and 3P° or 5s- 6p 3P°( , 3Rl and 'P,° . (li) It was not in the region predicted from isoelectrone sequence or Houston's theory of intermediate coupling. Their wrong choice is probably due to the wrong establishment of lD in Sb IV. 3 3 In the 5s-5d configuration 1} and "D have their ' J ' only occuring once and are thus independent of coupling, while 3 \ and B get perturbed, having the same J value. Lande's interval factor from 3D and3D •=• 276 k. I . 3 e .g . of 3 D =552 k below \ . From Houston's intermediate coupling relation ( t 3 ^) (e,+ l) l) = - l ( t + i ) where e i = E / A and tj, = E/A E, and Ej are the energy of ^ and3JD (perturbing terms) w.r.t. to e.g. of 3D . A is Lande's interval factor. 278 In our case c -303 V 275- = - 1.098 Substituting i n Houston's r e l a t i o n f o r L=.2 ( e,+ l ) ( - 1.098 -r 1) = -6 e,+ l = 61.22 £, = 60.22 ... B, « £, - 60.22 x 276 = 16,620.7 k Thus Houston's r e l a t i o n predicts 'l^ about 16,000 k above 31) while 910 A 0 l i n e established i t only U500 k above 3]3 . This separation agreed with the D - D separation of 11576.9 k i n In I I and 12589.1 k i n Sn I I I and [3537 k of Sb IV?J Due to the probably incorrect i d e n t i f i c a t i o n of *D i n Sb IV, prediction on the basis of ir r e g u l a r doublet law for 5s-5p 'ff - 5s-5d 1lT_was not possible. V 6 -L ss.sJi 5&,S|> rj F i g . 11 279. In the search, combinations with both 5s-5p \° and 5s-6p P were looked for. As is clear from Fig.ll C = B - b A =B -* a a+b = A - C * 167,000 k Thus two lines whose wave numbers add to 167,000 k were looked for in region 35,000 k to 60,000 k . Out of the four seemingly good sets picked up, only one was confirmed by its combinations with other terms and supp-orted by their excitation assignments. Thus 5s.5d 'D Predicted = 233,6lU./4 k Observed =233,973 k From nsns series a better limit for the spectrum was establ-ished, and n* for 5s-5d ,3D terms were calculated. From n* extrapolations the term values for 3D, J X 3 were calculated. The combinations with 5s-5p 3 P were looked for. A l l these combinations were in the extreme ultraviolet and consequently their identification did not better us much. The terms thus established were confirmed through their combination with 5s-6p ' 3 P°and 5s.Iif ' , 3 F . Since a l l these combinations f e l l in intensity rapidly from the 5s.5d case, the series extension for 5s.nd was not expected. 5p-6s Configuration This configuration is not known in the isoelectronic sequence. Since electron excitation in Te IV was complicated, i t was believed that 5s-6s configuration is liable to be excited. 280. To estimate its position was quite a difficult thing. One method was to estimate from 5s,5s-5p and 5s-6s relative position. This gave i t a value ~ 325,000 k. In this rough estimation different screening con-ditions in case of the core may effect quite a bit . The second mathod (a^ a^^StEte^fetts&Ejd) is t o consider 5p-6s as the second series member o f 5p-5s (5s 5p ) which may limit on5f>lP'in Te VI. This gives 5p- 5s ^ a n* =2.368, and taking n* ^3.370 for 5p-6s 3P° (T =2i | l,565 k), we get 5p-6s ~ 333,500 k. Even though both estimation were devoid of any rigorous mathematical bearing, the configuration may l ie around 330,000 k. A search was made from 315,000 k t o 3u5,000 k for these levels. Since such series must end up on 5p, the a n d P0 levels should be separated by the difference o f 5p P Te VI. The levels finally accepted, as expected, gave stronger combinations with 5pZ configuration as compared t o 5s.5d configuration. Te V 5p6s 3Jf - \ = 10757 k Te VI 5p- aP! t- ZP4 =11817 k In general the combinations were fairly weak signifying that this sort of excitations are not favoured by the source conditions. -5P 'SC in 5p* configuration was the only term not identified earlier. Though singlets are always the hardest t o pick up, but this was made s t i l l more diff icult by its absence in Cd I like isoelectronic sequence. Again, since 'D in the configuration was found t o be below 3P,. , no L-S coupling relation can be applied. Using the atomic energy relation o f Bacher and 281, Goudsmit. s ^ p - V ) . P ^ 3 p - ' d -»• s p i l V - p * ] 33,395 = p z \ _ V - s ] H- I 37,800 p^P - ' s j = 33,39$ - 18,900 = lksU9$ k Thus ^ lies ll+,l+95 k above"P (l87,38U k ) . •*• ' s o = (Predicted) = 201,879 k. This however is a fair prediction since of p1" configuration has been much perturbed by . Again a search was made for two lines whose wave numbers add up to 167,000 k combing p"" S0 to 5s-5p *P° and 5s-6p P° . The search was not restricted to predicted region but the whole region from p ^ a upwards to 5s- 5d 3D. We got two sets giving combination a l l along the row. But one of them was unreal since the combination 5s-5p 3P, - 5p"" S0 was enormously strong com-pared to 5s - 5p 'ff - 5p"~ ' s ^ . .-• SD « 206,-528 k. 5s•6p Configuration. Bloch's (2d) established- P* and P^  of this configuration on two strong lines at 358 A 0 and 361+ A 0 , These two lines were of proper intensity and at proper position but each fixed one level and consequently needed serious confirmation. As soon as our data was ready in the region from 1300 - 2000 A 0 , these two levels were confirmed excellently by their com-binations with 5px and 5s. 5d configurations terms. The transitions between 5s-6p P( , P to 5p P0 and D_ were weak being two electron transit-ions. 282 As is clear from the Table XXI, the coupling deviates more and more. Table XXI Config.. Separations Cd I In II Sn III Sb IV Te V Present Invest.* 5s -Up p; - 3P; 5u2..l 107U.0 16U8.U 2265.0 2915 •p; - 3p; 11865.5 17206.8 20682.7 23392 25703 'if - 3P; 13036.U 1968U.8 2U71U.9 29252 33683 5s '6p x - \° 70.7 179.3 275.6 350 U08* •p; - 3P; 1269.9 13U9.9 1287.7 1226 1 1196* 1UU3.0 1937.3 2510.0 3292 U29U* From L-S in 5s 5p configuration as we go higher and higher in electronic sequence. This deviation increases quite rapidly in 5s .6p configuration, the coupling is quite close to j - j coupling. From the isoelectronic sequence and the progression of the deviations from L-S coupling, the positions of r0 and Px could easily be predicted accurately after establishing 3P° and 'p,°. The transitions 5s-5d *1] -5s-6p 3?2 w a s the starting point in the search. After establishing 3Pj. , P^, i t had to be located in a very narrow region of about 600 k and at the same time to pick up a Te"V line. 283. 5s -6p 3p; =27U,001 li07.7 3p; = 2',U,Uo8.7 3,297.3 3 £ » 277,506 'if = 278,706 5s.ns S e r i e s . 5s-6s 3S was e s t a b l i s h e d b y Gibbs and Vieweg ( ,2- ) and confirmed from our observation and s i m i l a r l y 5s. 7s 3S e s t a b l i s h e d by Bloch ( a — c ) . 'S c i n both c o n f i g u r a t i o n s were not e s t a b l i s h e d e a r l i e r . T h e i r p o s i t i o n 3 1 was p r e d i c t e d from i s o e l e c t r o n i c sequence by extending S - S0 separation on a l i n e a r s c a l e . The in t e n s e combinations w i t h 5s. 5p 'if and 5s. 6p were looked f o r . The l i n e s p i c k e d up from e x c i t a t i o n data. 5s. 6s 'So . 2ii6,752 5s .7s 3S, -33U,U58 'S = 336,213 Once 5s .6s and 5s .7s ',3S were e s t a b l i s h e d a b e t t e r value of the l i m i t could be obtained and a search m de f o r the next s e r i e s member 5s >8s J S ^ and ^S0 were e s t a b l i s h e d but the combinations were q u i t e weak i n general and f u r t h e r extension of the s e r i e s was not expected. On studying Edlen p l o t s 3 i _ . we f i n d t h a t though S^  goes r e g u l a r l y i n the sequence S0 f i n d s a b r e o X w i t h Sb IV *S showing t h a t Sb IV has t o be smoothed. 5s ht^F This c o n f i g u r a t i o n was e s t a b l i s h e d a l l along the i s o e l e c t r o n i c sequence and we had l i t t l e d i f f i c u l t y i n p i c k i n g up the proper combinations. 281+. The interesting thing observed was the odd separation between iF° - 3F^ and \ - ^ . One expects \ - to be larger than 3 F j - ^ in general, but xire had i t the other way around. Table XXII gives 'the relat-ive position of levels in the sequence. Table XXII Relative Position of levels in 5s.l+f Configuration. Spectra X i • 3 . i o FH - Fa stf1 - ip l Cd I 65581.7 65581..7 65581.7 In II 123637.9 12361+3.0 123659.7 123691+.1 3.21 Sn III 179306.8 17931+3.0 17910+1.1 179702.2 2.71 Sb IV 227059 227H+1+ 227391+ 229592 1.88 Te V 2791+13.1+ 279950.3 280375.1+ 281215.6 0.79 * not established. Edlen Plots It has been observed in the isoelectronic sequence that there is some sort of regularity in the curves when E„- E is plotted vs. X-a+d where E o - E is the relative value of the term under consideration, %„ is the effective nuclear charge and d is a constant empirically fixed to make the plots run smoothly. Such plots are sometimes called "Edlen To follow page 28-U Cd I In ,11 Sn III Sto i t . Te V Edien Plots.' (d 0 .3 ) Fig.IZ 1 3 * for 5s6p *"T scale should r<Sad 10;000k less. 285, Plots". They have been plotted in Fig. IZ . On f irst observation, i t becomes clear that 5s.7s *S , 1+s 1+f F in Sb IV seems to be out of position while a l l others run smoothly. Empirically d has been found to be 0.3 in order to make them run smoothly. When the term under consider-ation belongs to a spectrumfor 4n isoelectronic sequence such plots can predict i t very nicely. i Ionization Limit i i The ionization potential for Te V was calculated by Gibbs and Vieweg ( >2. ) as l+86f2l+l+ k on the basis of absolute term values extra-polated on a Mosley diagram. Finkelnberg and Humbach ( ) interpolated an ionization potential of 5 " 3 i ^ o o f c from the study of screening constants., Both these values failed to be consistent with our observations and ex-tensions. 3 3 On Rydberg formula the limit from 5s.6s S, and 5s. 7s S( was found to be 1+73,900 k. After the establishment of 5s.8s 3Sj , we had three members of the series known and hence Edlen-Risberg limit adjustment for-mula could be applied. From Edlen's formula AT = -91+6.2 k Ionization Potential for Te V (Te VI S ) .-1+72,951+ k »58.63 ev This value is about 1.1 volt less than Gibbs-Vieweg's value and about 7 volts less than Fjinkelnburg-Humbach's value. ll+2 lines are now classified in this spectrum. 286 Table XXIII Energy Levels of Te V Config. Desig, J Level Ck) Interval n* EVEN LEVELS , Si 5s* S 0 0.0 2.1+085 st 5P *P 0 1 2 176253.li 1821+19.7 192596.2 6166.3 10176.5 2.626**a 2.61+6#*a 2.68l*»a Svx 5? 5P2 'S 2 0 182805.5 206527,6 5s(*S)5d 5s(ZS)5d 5d 3D 1 2 3 215611.7 216137.U 216991.9 525.7 85I+.5 3.265 3.269 3.271+ 5d D 2 233073.8 3.382 5s(1S)6s 5s(IS)6s 6s 3S 6s 'S 1 0 21+0850.1 21+6751.6 3.1+38 3.1+825 5s(ZS).6d 6d 3D 1 2 3 321+880.0 325079.7 325505.5 199.7 1+25.8 1+.301+ 1+.307 1+.3H+ 5s(2S).6d 6d *D 2 326565.1+ 1+.329 5s(XS).7s 7s 3S 's 1 0 331+1+56.6 336210,8 1+.1+51 1+.1+79' 53(^)83 8s 3S 8s 'S 1 0 380855.1; 381+780.2 5.U58 5.578 DDD LEVELS SSCSJSP 5P A P 0 1 2 75110.1+ 78025.0 86006.3 29U+.6 7981.3 2 . 6 2 6 2.6355 2.663 5S(xS)5P SP 'P 1 111708.0 2.756 SsC$)6p 6p 3P 0 1 2 273997.U 271+1+08.9 277507.8 1*11.5 3098.9 3.711+ 3.717 3.71+7 5s(*S)6p 6p 'P 1 278702.8 7.758 287 Config. Desig. J Level (k) I n t e r v a l n* 5s( 2S)i+f 5 s( 2S) U f kf 3 F kt X F 2 3 - li, 2 7 9 I H 3 A 279950.3 2 8 0 3 7 5 • 536.9 1+25.1 3.765 3.770 3-77^ 3 281215.6 3.783 J*. 5P( 2P ) 6S 6s 3p 0 1 2 321^90.3 32173^-9 332U92.0 2kk.6 10758.1 3.31+8** 3.3^9** 3.31+5** i 6s X P 1 33^269.5 3 .355** ** n* f o r 5p 6s3p 1, c a l c u l a t e d w.r.t. 5p 2 P i (Te VI) limit',"and f o r 5p 6 s 3P 2, 1 P 1 w.r.t. 5p 2P-Li (Te VI) l i m i t . **a n* w.r.t. l i m i t 5p 2P'(Te VI). No precise l i m i t can be assigned to the r e s t of the Levels i n 5P^ • Limit (Te VI 2 S i ) = U72,95*+ k. Supplementary Levels The f o l l o w i n g three l e v e l s have been t e n t a t i v e l y established: Con|ig. Desig. -J Level(k) I n t e r v a l 5 s( 2s ) 7 P ^ l 3^9212.8 \____ 151+0.7 3P 2 2 350753-5 5 S ( 2 S ) 7 P ^ 1 351679-3 The i n t e n s i t i e s of d i f f e r e n t combinations are not very s a t i s f a c t o r y but l i n e s have proper'excitation character. They need f u r t h e r confirmation. 5£'7P P« l e v e l could not be located at the proper p o s i t i o n . The only combinations we could get were 5 s . 5 d 3 D X - 5 s . 7P 3 P ° 1 3 3 6 6 ^ 0 5s .7s 3 S l - 5 s . 7 P 3 P ° 1081+37(5 p l a c i n g 5s .7p 3p°=: 3I+9277 k and making 5s .7p 3p°p artially inverted. 238. Te VI The earlier work on the fift> spark spectra was carried out by Rao (3U-&) who identified the resonance lines and classified 10 lines in the range between 5U0 A 0 and 131U A 0 . Later on L and E Bloch (2-6) tentatively established 7pV and 7s padding four new lines to the l i s t of the classified lines. A l l these lines according to our excitation data, are of the right ionic parentage. Thus our data confirms the earlier work. Our source excitation in the case of the prism spectrograms was not high enough to excite Te VI and the combinations 6 s * S , - 6p*P*at 2U89 A° and 2796 A° could not be located on our plates. While 2I489 A 0 line may be hidden by a Te IV line at 2U89.1? A 0 (100), the second was not there. A Simultaneous exposure on vacuum grating and prism spectrograph may help to locate these lines and confirm the 6 s ^ l e v e l . Ud.^s D It was observed in the Ag I-like isoelectronic sequence that core 1 0 the Ud gets excited easily. When one electron from core goes to next A -orbit the s-orbit gets completed and the d-orbit of core is left with one hole. This d.s configuration wil l yield only an inverted C terra. The precise prediction for *D with conventional extrapolation and irregular doublet laws was made difficult due to its non-identification in Sb V. 289. Table XXIV (a) Irregular doublet law for 5p P°, - 1+d 5s D, Spectra 5s P - ha 5s D v; v 3 Ag I - 203.h Z 28^3-7 Cd II 2261+0.3 8561.5 31U05.2 850..9 In III 51+01+5.5 7710.6 39115.8 -850.9 Sn IV 93161.3 6860.7 1+5976.5 -850.9 Sb V 139137.8 6009.8 51986.3 Te VI 19112U.1 196013.0 (Predicted) (Observed) Table XXIV (b) Regular doublet law applied to 1+d 5s D Ag I Cd II In III Sn IV Sb V Te VI 1+1+71.9 51+31+.8 68U6.1 8655.h 10810 1371+0 23.29 21+.1+3 25.90 27.1+7 29.12 30.83 1+7 i+8 . U9 50 51 52 23.71 23.57 23.10 22.53 21.88 21.17 0.11+ 0.1+7 0.57 (0.65) (0.71) 0.33 0.10 (0.08) (0.06) 290. A V ( U d 5s ZV) = 13,7UO (Predicted) s 11,631.1 (Observed) "The lines picked up for establishing this doublet were the only lines with the right 5pZP* separation appearing on our plates. This doublet was confirmed by its combination with 7p P whereas its combinations with op P were in the far red. 7s S, 7p P and Ionization Limit. 7s^5 and 7pZP levels were tentatively established by L and £ Bloch ( A ° c ) on the basis of four strong lines appearing on their plates. We observed these lines and confirmed their excitation. 7p *P was con-firmed by its combinations with Ud** $s *D. 7p*P combinations with 5d2D were very weak and only 5d D - 7p Pj. could be located on our plates. 7s S was confirmed by its combinations with 6p*P* The confirmation of these two levels extended both np and ns series which helped to find a better value for the ionization potential. The two series d i d not give a consistent value for the limit when n «s6 and n «7 members of these series were used in Rydberg relation. for n s V series Limit.572,300 k for npV series Limit*575,700 k As both these series have three manbers of the series known we can apply the Edlen-Risberg limit adjustment formula (page *! ). When applied separately to these series i t gave AT for np series -1001.0 k and AT for ns series -3128.8 k. Thus after this adjustment 291. Ionization limit from np series = 571+,699.0 k from ns series =£69,171.0 k Taking mean we have Ionization Limit of Te VI (Te VII 's0 ) . 571,91+0 k = 10-3 volts 25 lines are now classified in this spectrum. 292, Table XXV Energy Levels of Te VI Config. Desig. J Level Interval n* EVEN LEVELS lid( 's)5s 5s ZS •* 0*0 2.628 5d ZD 2* 238087.6 239736.2 I6I48.6 3.U140 3.1+U8 hd\ S)6a 6s *S 1 278L36.2 3.669 111 5s2 5s1 XD 301161+.7 312795.8 11631.1 3.821 3.9014 Ud( 'S)7s 7s fS i 2 390798.0 1+.670 ODD LEVELS t|d( 's)5p *P *? 1 i i 93331+.6 105150.2 11815.6 2.873 2.909 lid( S)6p i i i 3H4I98.I4 3l8601 . l i 1+1+03.0 3.915 3.91*9 Ud( 'S^p i t I4IOOIO.8 I4I2762.6 2751.8 U.939 li.982 Limit (Te VII 'so ) - 571,91+0 k 1 Te VII 293-The sixth spark spectrum^of Tellurium has l+d SQ as the ground state. Shoepfle ( *i ) classified 2l+ lines i n region 781+ A 0 to 1123 A 0 but fai l e d to observe resonance lines. The following year Shoupp and Kruger (J-*-*') discovered the resonance lines i n the region 227 A 0 to 236 A 0. In 1937 E. Bloch and L. Bloch ( Z-c-) published the values of the same terms derived from their measurements using an electrodeless discharge source i n place of hot spark source of early authors. Thus these three groups assigned 1+5 lines to this spectrum. But their measurements i n the majority of cases are so different that one i s tempted to question whether the lines identified are the same lines or different. From the excitation characteristics of our high excitation source we doubt i f we could excit Te VII to any reasonable intensity. In some sets on vacuum spectrograph (Plate no. G3-6310, G3-6311) the excitation was high enough to give resonance lines of Te VI as one of the strongests on the plate, i n such sets some of Te VII lines could show up. Due to lack of proper high excitation from source, we have not been able to reconcile the two previous publications. In Table S I we compare the wavelengths of lines measured by Shoeffle ( Hi ) and Bloch (Z-o) with those measured in present investi-gation. We give theAof lines from our measurements which i s nearest to the previous value. Single star means line may not be the same, the one observed by earlier authors. Double star means the li n e probably belongs &> lower excitation. There i s a pos s i b i l i t y that some of the lines with doubtful excitation are coincidences of low and high excitation lines which cannot be separated under present resolution. 29k-Te VII continued The following three levels have been revised, where we agree with both early authors. 10 I Ud 0.0 lid5p 'P,' 1+22,886 k P/ 1+30,385 k 3D(° 1+38,921+ k T a b l e M Schoeple, Intensity Bloch Intensity Au thor Intensity Shoup A \ ~X 1188.92 1 1188.866 (III) 120** _ liU.69 1 l4.li.7ll* (III C 150** 1123.36 15 23.1+6 1 23.505 coinc. 150** _ 1035.81 2 1035.71*3 (HI C 100** 28.61 00 - 28.618 30 27.82 00 — 30 20.50 0 — 20.516 6 07.51; 2 07.80 1 07.76 1+Od* 0iu90 1 Oli.885 1*0 - oli.li5 3 0ii.li20 60** 996.90 25 (996.86] 1* 996.837 (IV C) 200** 991*. 50 - 91*. 1*30 12* 75.1*2 00 75.1*90 10 75. OU 8 - -61+.85 0 - — 56.68 0 56.551 5* 1+5.1*3 OOd 1+5.1*25 2* 31*. 79 00 31*. 831* 10 27.81 7 27.70 00 27.771 15 25.12 0 21+.89 00 21+.900 1 _ 2U.32 3 21+.272 10 13.01 20 12.87 2 12.901+ 50** 11.77 1 11.51 1 11.51*1 10 08.09 Od 08.119 1* — 07.13 0 07.157 5 Te VII continued 295. Schoeple, Intensity Bloch Intensity Author Intensity Shoup a 902.63 15 902.58 1 902.537 15 898.09 l 898.19 Id 898.1B3 15 ! 85.35 0 85.525 15* 77.59 20 77.5U 3 77.515 35 66.99 U 66.93 0 66.928 61.60 00 61.507 2* 60.93 00 61.010 5 52.87 1 <=. 52.762 2 U3.21 2 U3.51* 00 U3.3U5 2 Ul.90 00 U1.935 2 35. OU U Imp? 35.096 12 29.8U 1 30.21* 2 30.2U8 10* 27.06 30 26.9U 3 26.938 20 03.56 1 03.72* 1 93.585 2 78U.09 1 — 783.970 2 75U.75 2 5U.780 25 2U3.8bO 5 2U3.90** 6 2U3.896(VI C) 0** U2.2U8 5 U2.27** U U2.270(VI C) 1** 37.5U1 2 37.5U U 37.U59 1* 36.U60 2 36.U5** 3 36.U70(VI C) 0** 32.338 Uo 32.37 10 32.350 3 27.823 35 27.8U 8 27.830 2 * Wavelength discordant, may refer to a different line. ** Main intensity may arise from lower excitation. 296, Microphotometer Traces The response of an emulsion to the beam of light depends on intensity and A of the light, the nature of the emulsion, the time of exposure and the nature and mode of developing. This limits the use of photographic photometry for absolute photometric measurements. But its usefulness in giving a permanent record in simple form^and its sensitivity to pick up weak lines, and in comparison of the intensities of two lines quite close which cannot be differentiated in strength with visual aid -makes i t a good tool in spectroscopy. If d = Density on photographic plate d - log = log g y Z - ^ I 0 = Intensity of light transmitted by the clear plate. I s(lntensity of light transmitted by the measured portion (of the plate. G, G' , G, - Galvanometer (or the automatic recorder) deflections corresponding to the intensity I 6 » I and no light respectively. G - G0 is called "Clear Reading" of plate. G - G' is called "Blackening" of plate. Since G depends on brightness of the desitometer beam as well as on the transmission of the unexposed portion (which varies considerable along the plate), so the very uniform intensity comparison in different regions are not very precise. Very close lines can be best resolved by taking a narrow and 297r short sl its and measuring near the tip of the spectral l ine. But very-short and narrow s l i ts cause variation in the deflection due to g*ainness in emulsion. Thus length, width and resolution are compromised in an actual case. The figures on the following pages contain photoelectric traces of the spark spectra of Tellurium spectrograms. The plate was Ilford Ultraviolet sensitive Q-2 2" x 18"?developed with Johnson' Azcl developer (diluted with 1+0 parts water) for l | minutes, fixed in Kodak F-5 fixer. The source was Disruptive Electrodeless discharge source, spectrograph was 3-metre vacuum spectrograph. Exposure time for High Excitation = 35 minutes. The specification of the microphotometer operation were S l i t width = 1+ yu S l i t length - 1.6 mm. Speed = 2.5 nan. (of plate)/min. This particular speed was given priority due to 3-metre vacuum spectrograph ( ,>6V=2.77f" A°/Wi»)» Since this speed traced 1 mm. of the. plate on 1 inch of tracing paper, and thus giving a "dispersion" of ^ i . i A°/cm. on the chart and making the job of identifying the lines very easy. 298 Appendix I  Ruling Errors in Gratings and Ghosts An ideal concave grating has grooves which are parallel circular arcs evenly spaced along a chord and exactly identical in form and in depth. Any departure from perfection of any or grating errors (amphitude or a phase error) may introduce defects in the resulting spectral line. While the curveture introduces astigmatism, the departure from parallelism pro-duces variation in the grating element along the longitudinal strip and thus the definition of the image changes. The former can be minimized by focusing while the latter is very serious. The relationship of faulty grating performance to specific grating errors have been the subject of many studies. The errors in spacing are very troublesome especially when they are periodic, as then they give rise to an appreciable accummulative effect. These arise from the slope of the screw thread of the ruling machine or from the elastic deformation of the parts' of the machine which is re-peated systematically in each turn of the screw. These errors give rise to ghosts or false lines in the spectrum which are symmetrically placed with respect to the parent line. These false lines (ghosts) are called "Rowland Ghosts", f irs t observed by Quincke in 1872 and theoretically explained by Rowland and Pierce. For any parent line A , the false line (ghost) 7^  is related as following X = A ( i ± a ) _ J D 299. n - order of the spectrum. m - order of the ghost ( ± 1 , ± 2, etc) p s l ines/periodic error. ^lines/rotation of the thread screw. The intensity of the ghost lines increase approximately as the square of the order of the parent line. Their intensity should be less than 0,5% of the parent line in the f irst order i f the grating is to be used for higher orders. Some gratings have more than the periodic error and produce a set of Rowland ghosts for each periodic error present. The intensity variation amonst the different order ghost varies from grating to grating and is the character-ist ic of the ruling engine which ruled the grating. On our 21' grating spectrograms f irst order ghosts were roughly double as intense as the second order, third order were weak while fourth order were again strong. This characteristic intensity-variation is repeated for a l l strong lines and constitutes a "finger print" identification of the particular grating. To identify the ghosts on the plates directly relation (l) is put in a different form using = x ^ ' ^ s £5 = Distance of ghost from parent line in mm. = Inverse Dispersion A°/mm, X to be measured in International Augstroms . •p' is the characteristic of the ruling machine and normally the value is supplied by the manufacturers or can be easily deduced by the observer. 300. A s from (2) has been calculated in a l l n A. ranges for a l l the spectro-graphs in this laboratory and from the curves drawn therefrom, i t can be read directly. The less important and much weaker (intensity less than 0.1$ of the parent line) are "Lymen Ghosts" which l i e quite far from the parent line e.g. 2/5, 3/5, h/5 etc. In modern gratings these false lines seldom appear. These have not been identified on any of our gratings. Relativistic Correction Tables 2 4 A T R °( Zo / n 3\ = — TT— ( " ^ - ]j) R - Rydberg Const. = 109737.25cm for Te °< = Somraerfeld's fine-structure const. R ^= 5.81+3 cm Table-TTdCa) n 1.2 D 1 = 3 F U1+ G U 5 H 0.51936 1+ 0.3101+0 0.11+352 5 0.18701+ 0.1011+1+ 0.051+08 .-6 0.11901+ 0.06960 0.01+20* 0 . 021+61+ 7 0.07981+ 0.01+861+ 0.03136 0.02032 8 0.05600 0.03501+ 0.02352 0.01616 9 0.01+061+ 0.02592 0.01726 0.01261+ 10 0.0301+0 0.01968 0.01386 0.00992 11 0.02331 0.01528 0.01082 0.00798 12 0.01826 0.01208 0.00861 0.0061+5 13 0.011+56 0.00970 0.00701 0.00528 11+ 0.01181 0.00790 0.0057 0.001+37 Table ESS (b) 3 2.62926 0 1+ 1.5711+0 0.72657 5 0.91+689 0.51351+ 0.27378 — 6 0.60261). 0.35235 0.21303 0.121+71+ 7 0.1+01+19 0..2I+62I+ 0.15876 0.10287 8 0.28350 0.17739 0.11907 0.08181 9 0.2057U 0.13122 0.08991 0.06399 10 0.15390 0.09963 0.06966 0.05022 11 0.11802 0.07736 0.051+76 0.01+01+2 12 0.0921+2 0.06116 0.1+366 0.03261+ 13 0.07371 0.01+909 0.035h8 0.02673 11* 0.05978 0.01+001 0.02908 0.02211 302. Table 2ZEr(c) n ~ T l 2 " 1=3 1=1+ U5 D F G H 3 8.30976 1+ 1+. 9661+0 2.29632 — 5 2.99261+ 1.62301+ 0.86528 _ 6 1.901+61+ 1.11360 0.67328 0.391+21+ 7 1.277U1+ 0.7782U 0.50176 0.32512 8 0.B9600 0.56061+ 0.37632 0.25856 9 0.65021+ 0.1+11+72 0.281+16 0.20221+ 10 0.1+861+0 0.311+88 0.22016 0.15872 11 0.37330 0.21+1+1+8 0.17306 0.12771+ 12 0.2921 0.19328 0.13798 0.10316 13 0.2330 0.15510 0.11213 0.081+1+8 11+ 0.1889 0.1261+6 0.09190 0.06989 Table gS7l(d) 3 20.2875 — 1+ 12.3190 5.60625 — — 5 7.3063 3.97250 2.11250 6 1+.6500 2.71875 1.61+375 0.96250 7 3.1188 1.90000 1.22500 0.79375 8 2.1875 1.36875 0.91875 0.63125 9 1.5875 1.02870 0.69375 0.1+9375 10 1.1875 0.76875 0.53750 0.38750 11 0.9106 0.59688 0.1+2250 0.31188 12 0.7131 0.1+7168 0.33688 0.25188 13 0.5788 0.378»0 0.27375 0.20625 11+ 0.1+613 0.30875 0.221+38 0.17063 303. BIBLIOGRAPHY 1. Anderson, J . A . , Astrophys. J . , 59, 76, 1921+. 2. a) Bloch, E . , Blochi L.iJ.Phys. Radium, 1+, 622, 1911+. b) Bloch, E . , Bloch, L . i Ann. Phys., Paris, 13, 233, 1930. c) Bloch, E . i Bloch, L.i^Phys. Radium, 6, 1+1+1, 1935. d) Bloch, E . , Bloch, L.,J.Phys. Radium, 8, 22l+, 1937. 3. Bartelt, 0., Z. Phys., 88, 522, 1931*. 1+. Bacher, R .F . , Goudsmit, S., Phys. Rev., 1+6, 91+8, 1931+. 5. Bockasten, K. , Ark. For Fysik, 9, 30, 1955. 6. a) Crawford, M.F. , McLennan, J . C . , Phil . Mag., 1+, 1*86, 1927. b) Crawford, M.F. , McLennan, J . C . and McLay, A.B. , Proc. Roy. Soc. ( A f ) 11+3, 51+0, 1931+. c) Crawford, M.F. , and Wills, L . A . , Phys. Rev., 1+8, 69, 1935. 7. Condon, E . U . , Shortley, G.H., The Theory of Atomic Spectra, Cambridge Press (1951). 8. a) Crooker, A.M., Bedford, R.E.-*, Phys. Rev., 96, 81+7, 195J+ -fcPh.D. Thesis, The University of British Columbia, 1955. b) Crooker, A.M., George S., Applied Spectroscopy, 17 (5), 193, 1963. 9. Eriksson, K.B.S. , Phys. Rev., 102, 102, 1956. 10. a) Edleni B. , Proc. Rydberg Continental Conference, 1955. b) Edlen, B. , Risberg, P. , Ark. For Fysik, 39, 553, 1956. c) Edlen, B./t Rep. Progr. in Phys., XXVI, l 8 l , 1963. d) Edle'n, B. , Encyclopedia of Physics S. Flugge ed, Vol. 27, Springer Verlag (In press), 11. a) Finkelnburg, W., Humbach, W., Naturwiss, 1+2, 35, 1955* b) George, S., Ph.D. Thesis, The University of British Columbia, 1962. 12. Gibbs, R . C . , Vieweg, A.M., Phys. Rev., 3l+, 1+00, 1929. 12^ Goudsmit, S., Humphreys, C . J . , Atomic Energy States. 13. Green, J . B . , Loring, R.A. , Phys. Rev., 90, 180, 1953. ll+. Griff in, P.M., Oak Ridge Natural Lab., (1957). 15. Herzberg, G . , Atomic Spectra and Atomic Structure, Dover Pub.. 16. Houston, W.V., Phys. Rev., 83, 297, 1929. 30U 17. a) Harrison, G.R., M.I.T. Wavelength Tables. b) Harrison, G.R,, Lord, R .C. , Loofbourow, J .R. , Practical Spectro- scopy (Prentice-Hall). 18^ Handrup, B. , Ph.D. Thesis, University of Wisconsin, I960. 18? Johnson, M.H., Phys. Rev., 38, 1628, 1931; 39, 197, 1932. 19. Klinkenberg, P .F . , Rev. Mod. Phys. 2l+, 63, 1952. 20. a) Krishnaraurthy, S.G. , Current Science, 2, 210, 1933. b) Krishnaraurthy, S.G., Nature, 131+, 1255, 1931+. c) Krishnamurthy, S .G. , Proc. Roy. Soc. (A), 151, 178, 1935. 21. Kuhn, H.G., Atomic Spectra, Longmans 1962. 22. Kayser, H . , 'Handbuch der Spektroskopie', Vol. 6, page 626. 23. Kelly, R . L . , Vacuum U.V. Emmission Lines, U.C.R.L. 5612, 2l+. a) Kruger, P .G. , Shoupp, W.E., Phys. Rev., 1*6, 121;, 1931. b) Kruger, P .G. , Weissberg, Phys. Rev., 1+8, 659, 1935. 25. Lacroute, P. , J . Phys. Radium, 9, 180, 1928. 26. Lang, R.G. , Proc. Nat. Acad. Sc i . , 13, 31+1, 1927. 27. a) Meshkov, S., Phys. Rev., 91, 871, 1953. b) Meshkov, S. and Ufford, C.W., Phys. Rev., 9l+, 75, 1951+. 28. Mack, J . E . , Murakawa, K. , Ross, J.S.., Pick, F.A. and Van Den Bosch,J.C», Phys. Rev., 83, 651+, 1951. 29. Murakawa, K. , Ross, J . S . , Phys. Rev., 85, 559, 1952. 30. Moore, C . E . , Atomic Energy Levels, N.B.S. Circular 1+67. 31. Meissner, K.W., Andrew, K.L., J . Opt. Soc. Amer., 1+7* 8 5 0 , 1957* 32. Martin, W.C., Ph.D. Thesis, University of Princeton, 1956. 33. Nodwell, R.A. , Ph.D. Thesis, University of British Columbia, 1956. 31+. a) Rao, K.R., Proc, Roy. Soc. (A), 133, 220, 1931. b) Rao, K.R.,.Nature, 127, 236, 1931. c) Rao, K.R.., Sastry, M.G., Indian^-Phys.., ll+, 1+23, 191+0. d) Rao, K.R.., Krishnamurthy, S .G. , Proc. Roy. Soc. (A), 158, 562, 1937. 35. Ruedy, J . E . , Phys. Rev., 1+1, 588, 1932. 305. 36.. a) Racah, G . , Phys. Rev., 61, 186, 19ij2. b) Racah, G . , Phys. Rev., 6 l , 537, 191+2. c) Racahj G.; Phys. Rev.; 62, 1+38, 191+2. 'd) Racah, G . ; Phys. Rev., 62, 523, 191+2. e) Racah, G . , Phys. Rev., 63, 367,'191+3.' f) Racah, G . , Phys. Rev., 76, 1352, 191+9. g) Mrs. Sitterly, see reference 30, C E . Moore. 37. a) Shenstone, A . G . , Phil . Trans. (A), 235, 195, 1936. b) Shenstone; A . G . , J . Opt. Soc. Amer., 1+J+, 71+9, 195U. c) Shenstone; A.G..; J . Opt. Soc. Amer., 1+5, 868, 1955. d) Shenstone, A.G. ; Phys. Rev., 7l+, 1+11, 191+7. e) Shenstone, A .G. , N.B.S. Circular 1+67, page 2l+0, vol. III. f) Shenstone, A.G.and Russell,'H.N., Phys. Rev., 39, 1+15, 1932. g) Shenstone, A .G. , Phi l . Trans. (A), 237, 1+53, 1938. 38. Sawyer, R.A. , Experimental Spectroscopy, Dover Pub. 1963. 39. a) Slater, J . C , Phys. Rev., 3l+, 1293, 1929. b) Slater, J .C . 1+0. Shortley, G.H. Fried, B. , Phys. Rev., 51+, 739, 1938. .1+1. Schoepfle, G.K., Phys. Rev., 1+3, 7l+2, 1933. 1+2. Thomson, J . J . , Phi l . Mag., l+(7), No. 25, 1128, 1927. 1+3. a) Trees, R.E-b) Trees, R.E c) Trees, R.E , Phys. Rev., 82, 683,'1951. ,, Phys. Rev.; 81+, 1089, 1951. Phys. Rev., 85, 382; 1952. d) Trees, R . £ . , Phys. R e v .92, 308, 1953. e) Trees, R.fe.; J . Opt. Soc. Amer;, 1+8, 1958. f) Trees, R.e., Jour. Res. N.B.S., 195k* 1+1+. Tomkins, F .S . , Fred, M. , Applied Optics, 2 (7) 715, 1963. 1+5* White, H.W., Introduction to Atomic Spectra, McGraw-Hill. 1+6. Langer, R.M., Phys. Rev., 35, 61+9, 1930. 1+7. Pauling, L. Gondsmit, S., The Structure of Line Spectra, Dover, 1963. 1+8. Araki, G . , Progress in Theoretical Physics, 3, 152, 1959. 1+9. Compton, K .T . , Boyce, J . C , Rev. Scient, Inst., 5 ( 6 ) , 218, 1931+. 50. Crosswhite, H.M., The John Hopkins Univ. Tech. Report, 13, 1958. 51. Wilkinson, P .G. , The Spectrum of Fe I, J . Opt. Soc. Amer., 1+7, 182,1957, 52. Handbuch der Astrophysik, Vol. III/2, 1930. 306. 53. Tessman, -J.-R.,, Kahn, A .H. , Sockley, W., Physical Review. 92, 890, 1953. 5U. Interpolation and Applied Tables, H.M. Stationery Office, London. 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085829/manifest

Comment

Related Items