UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Study of the spark spectra of tellurium Joshi, Yoginder N. 1964

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1964_A1 J6.pdf [ 31.26MB ]
Metadata
JSON: 831-1.0085829.json
JSON-LD: 831-1.0085829-ld.json
RDF/XML (Pretty): 831-1.0085829-rdf.xml
RDF/JSON: 831-1.0085829-rdf.json
Turtle: 831-1.0085829-turtle.txt
N-Triples: 831-1.0085829-rdf-ntriples.txt
Original Record: 831-1.0085829-source.json
Full Text
831-1.0085829-fulltext.txt
Citation
831-1.0085829.ris

Full Text

A STUDY OF  THE SPARK SPECTRA OF TELLURIUM  by YOGINDER  B.Sc.  (Hons.)  M.Sc.  JOSHI  The Punjab University, India  195*8  The Punjab University, India  1959  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of Physics  We accept t h i s thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 196U  In the  r e q u i r e m e n t s f o r an  British  mission  for reference  for extensive  p u r p o s e s may  be  cation  of  written  Department  of  M>  the  study.  c o p y i n g of  for  the  Library  V W X  Head o f my  c  •  Columbia,  fulfilment  University  shall  I further  of  of  make i t f r e e l y  agree for  that  Department  s h a l l not  per-  scholarly or  t h a t . c o p y i n g or  f i n a n c i a l gain  S'  the  this thesis  permission.  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada Date  degree at  I t i s understood  this thesis  w i t h o u t my  that  and  g r a n t e d by  representatives.  this thesis in partial  advanced  Columbia, I agree  available  his  presenting  be  by publi-  allowed  The U n i v e r s i t y o f B r i t i s h  Columbia  FACULTY OF GRADUATE STUDIES  PROGRAMME OF THE FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  of  YOGINDER  B.Sc. M.Sc,  N. JOSHI  (Hons.), The Punjab U n i v e r s i t y , I n d i a , 1958 The Punjab U n i v e r s i t y , I n d i a , 1959  THURSDAY, APRIL 16, 1964, AT 9:00 A.M. IN ROOM 301, LASSERRE BUILDING  COMMITTEE IN CHARGE Chairman: F.H. Soward C.W. C l a r k : : P.R. C r i t e h l o w A.M. Crooker  F.W. Dalby R.A. Nodwell C.Reid  External  F.S.  Argonne  Examiner: National  Tomkins  Laboratory  A STUDY OF THE SPARK SPECTRA OF TELLURIUM ABSTRACT  The spark s p e c t r a o f T e l l u r i u m have been photographed from the i n f r a r e d t o the u l t r a v i o l e t (9040 A t o 340 A) on a v a r i e t y o f s p e c t r o g r a p h s i n c l u d i n g a 3-metre normal, i n c i d e n c e vacuum s p e c t r o g r a p h , a 2-metre g r a z i n g i n c i dence vacuum s p e c t r o g r a p h , a 2 1 - f t , concave g r a t i n g s p e c t r o g r a p h , a H i l g e r Medium Quartz and a H i l g e r l a r g e automatic p r i s m s p e c t r o g r a p h . Two sources were used 1) a d i s r u p t i v e e l e c t r o d e l e s s d i s c h a r g e and 2) a condensed spark i n h e l i u m , The " p o l e e f f e c t " e x h i b i t e d by the s p e c t r a l l i n e s e x c i t e d i n the spark enabled us to a s s i g n each l i n e t o i t s a p p r o p r i a t e i o n i c p a r e n t , e i t h e r Te I , Te I I , Te I I I , o r Te IV. These e x c i t a t i o n assignments were c o n f i r m e d and extended by o b s e r v a t i o n s w i t h the e l e c t r o d e l e s s d i s c h a r g e , which e x c i t e d a l l the s p e c t r a i n c l u d i n g Te V and Te V I by v a r y i n g the t e l l u r i u m p r e s s u r e and the l e n g t h o f the e x t e r n a l spark-gap. Out o f 6000 l i n e s a p p e a r i n g on our p l a t e s 3500 have never been observed e a r l i e r . The r e g i o n 2200 A - 1300 A has been photographed s y s t e m a t i c a l l y f o r the f i r s t time s i n c e L a c r o u t e ' s work (1928). The whole o f the observed spect r a l r e g i o n has been photographed f o r the f i r s t time under u n i f o r m c o n d i t i o n s o f c o n t r o l l e d e x c i t a t i o n . s  These d a t a have been used t o c o n f i r m , r e v i s e and extend the a n a l y s e s o f Te I I I , Te I V , Te^V and Te V I . In b o t h Te I I I and Te IV the resonance l i n e s have been i n d e n t i f i e d f o r the f i r s t time. The number o f c l a s s i f i e d l i n e s have been i n c r e a s e d from 160 t o 560 i n Te I I I and from 25 t o 230 i n Te I V , w h i l e the number o f the l e v e l s has been i n c r e a s e d from 40 t o 85. i n Te I I I and from 14 to 56 i n Te IV. The v a l u e s o f t h e i o n i z a t i o n p o t e n t i a l s have been r e v i s e d t o 29.04 V o l t s (Te I I I ) and 37.41 V o l t s (Te I V ) . The h y d r o g e n i c l e v e l s i n Te IV a r e f i t t e d byta core p o l a r i z a t i o n parameter A = 715 which i n v o l v e s a core dipole p o l a r i z a b i l i t y oC = 41.1 x 10" ^8 cm?  The e x t e n s i o n s i n Te V and Te VI do not i n v o l v e such basic additions, In Te V, the number o f c l a s s i f i e d l i n e s have been i n c r e a s e d from 27 to 156 and i n Te. VI from 10 to 25, Twenty-four and f i v e l e v e l s have been added to Te V and Te VI r e s p e c t i v e l y , The r e v i s e d v a l u e s o f the I o n i z a t i o n P o t e n t i a l s are 58,6.3 V o l t s and 70.90 V o l t s f o r Te V and Te VI r e s p e c t i v e l y .  GRADUATE STUDIES  F i e l d o f Study:  Physics  Quantum Mechanics E l e c t r o m a g n e t i c Theory Nuclear  Physics  F.A.  Kaempffer  G.M.  Volkoff  J.B. Warren  Spectroscopy  A.M.  Crooker  Theory o f Measurements  A.M.  Crooker  Optics  A.M.  Crooker  Related  Studies:  Differential  Equations  C.W.  Clark  PUBLICATIONS  Note on n f 2p terms i n n ' s ^ n f c o n f i g u r a t i o n Y o g i n d e r N. J o s h i Science of Light 12, 28, 1963 Spark S p e c t r a o f T e l l u r i u m A.M. C r o o k e r and Y o g i n d e r N. J o s h i J . Opt. Soc. Amer. i n p r e s s  (ii) ABSTRACT  The spark spectra of Tellurium have been photographed from the infrared to the ultraviolet (90l*0 A  0  to 31*0 A ) on a variety of spectro0  graphs including a 3-metre normal incidence vacuum spectrograph  , a 2-  metre grazing incidence vacuum spectrograph, a 21-foot concave grating,a Hilger Medium Quartz and a Hilger large automatic glass-quartz prism spectrograph and some low dispersion spectrographs.  Two main sources  used were l ) a disruptive electrodeless discharge and 2) a condensed spark i n helium.  The pole effect exhibited by the spectral lines excited  in the spark enabled us to assign each line to the appropriate ionic parent, either Te I, Te II, Te III or Te IV.  These excitation assignments  were confirmed and extended by the electrodeless discharge which excited a l l the spectra including Te VI, by varying the Te pressure and the external-spark-gap length. Out of the 6000 lines appearing on our plates about 3500 were new lines.  The region 2200 A° - 1300 A° has been photo-  graphed systematically for the f i r s t time since Lacroute's time (1928). This data enabled us to confirm, revise and extend the analysis of Te III, Te IV, Te V and Te VI. In both Te III and Te IV we have identified the resonance lines for the f i r s t time and have increased the classified lines from 160 and 25 to 550 and 230 respectively.  The value of the ionization potentials  for these have been substantially revised.  The hydrogenic levels i n  Te IV are f i t t e d by a core polarization parameter A »7l5 which involves  (iii) a core polarizability  cK^hl.l  -28  x  10  3  cm.  The extensions of Te V  and Te VI while not involving such basic additions do contribute to an understanding of the spectral structure and ionization potentials.  A. M. Crooker  (iv) ACKNOWLEDGEMENTS I wish to express my deepest gratitude to Professor A.M. Crooker for introducing me to the subject of 'Experimental Spectroscopy', for suggesting the problem and for his invaluable help and guidance throughout the course of this investigation.  It was a great privilege for the  author to learn the subject from him and gain from his experience.  I  also wish to thank Dr. R.A. Nodwell for his help during a major part of the summer of 1962 and for advice and discussions from time to time. I would also l i k e to thank Mr. A. Fraser, Mr. ¥ . Morrison and Mr. J . Lees for their technical assistance. I take this opportunity to thank the Department of Physics for financial assistance i n the form of teaching and research assistantships (1961-63) and the Department of Geology for the Research Fellowship (19636I4.).  This financial help enabled me to carry on with my graduate studies  at the University of British Columbia. Finally, I wish to thank Mrs. J . Kirby for typing this manuscript with great care and patience.  V.  TABLE OF CONTENTS Pa^e Abstract  ii  Acknowledgements  . . . . . .  iv  Introduction . . . . . .  1  CHAPTER I THE GENERAL THEORY OF ATOMIC SPECTRA . . . Energy States and Term Values . . . . . . . . . . Series Limit and Ionization Potential . . . . . . Irregular doublet law and Mosley Diagram . . . . . Regular doublet law . . . . . . . . . . . . . . . Width of Multiplets . . . . . . . . . . . . Intensity of Spectral lines Selection Rules . . . . . . . . . . . Polarization of Atomic cores . . . . . . . . . . . Theory of Complex Spectra . . . . . . . . . . . . L-S case . . . . . . . . . . . . . . . . jj-Coupling . . . . . . . . . . . . . . . . . jl-Coupling . . . . . . . . . . . . . . . . . Intermediate Coupling * The Bacher-Goudsmit Method CHAPTER II EXPERIMENTAL PROCEDURE . Condensed Spark in Helium . . . Excitation Data . . . . . . Impurity Lines . . . . . . . Electrodeless Discharge Source . Experimental Arrangement . . Description of Operation . . Excitation Data" . . . . . . Impurity Lines . . . . . . . Reduction of Spectrograms' . . . Prism Spectrograph'. . . . . 3-metre Vacuum Spectrograph" 21' Grating Spectrograph". 2-metre Vacuum Spectrograph Standard Lines . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  . . . . .  . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  5 5 7 10 12 17 19 20 22 27 33 3h 36 38 UO kS U6 h9 $0 51 55 56 59 60 62 62 62 67 70 71  CHPATER III RESULTS AND ANLYSIS . . . . . . . . . . . . . . 72 Te I and Te II . . . . . . . . . . . . . . . . . . . . . 2l7 Te III . . . . . . . . . . . . . . . . . . . . . . . . • 2U7 5s.5P . . . . . . . . . . . . . . . . . . . . . 2U8 5S.5P D°. 251 S 3  %:  5s-5p ^ 3  and'F  252  VI.  Page  5s -5p S and 5"S'-5P-6P z  0  V .............  5s .5p.-ns . . . . . . . . . . . . . . . . . . . . 5s 5p-nd Configuration . . . . . . . . . . . . 5s". 5p-np, 5s i5p.Uf, 5i? Configurations' . . . . . Ionization Potential of Te III . . . . . . . . . Energy Levels of Te III . . . . . . . . . . . . Te IV . . . . . . . . . . . . . . . . . . . . . . . 2  2  2  z  Ss^?  . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  5s . ns Series . . . . . . . . . . . . . . . . . . . 5s ; ng and 5s*".nh Series . . . . . . . . . . . . . . 1  1  5sMjf r l  5s-5p ( F ) . n l Configurations 5s ^7d and 5p . . . . . . . . Motley Diagrams Energy L e v e l s of Te IV . Te V . . . . . . . . . . . . . . 5s.nd D 5p-6s Configuration . . . . 3  3  z  . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . .  0.  ,,3  .5P'S  0  . . . . . . . . . . .  253  2514 255 257 259 260 263 263  265 266  266  269 271 273 27U 276 276 279 280  5s -6p Configuration 28l 5s.ns Series 283 5s.Uf''V 283 Edlen Plots . . . . . . . . . . . 28U Ionization L i m i t . . . . . . . . . . . . . . . . . 285 Energy L e v e l s of Te'V . . . . . . . . . . . . . . 286 Te VI . 288 hd.$s D 288 lah and 7p*P°and Ionization Limit . . . . . . . . 290 Energy Levels'of Te V I . . . . . . . . . . . . . . 292 Te VII . . . . . . . . . . . . . 1 . . . I . 1 . . . . 293 Comparison of Wavelengths' . . . . . . . . . . . . 29h Microphotometer Traces . . . . . . . . . . . . . . . . 296 Appendix I . ' Ruling Errors i n Gratings and Ghosts . . 298 Appendix II. Relativity Correction Tables 301 2  Bibliography  303  TABLES  Page 1(a) (b) II 111(a) (b) IV V VI VII VIII 2X X Xl(a) (b) XII XIII XIV XV XVI XVII XVIII  Irregular Doublet Law . . . . . . . . . . . . . Irregular Doublet Law . . . . . . . . . . . . . Regular Doublet Law . . . . . . . . . . . . . . n 1(1+1) Calculations . . . . . . . . . . . . . nH (t+l)/R^ Calculations . . . . . . . . . . . Polarization functions P (n,t) and Q ( h , i ) . * s.s' case in Bacher-Goudsniit-Method . . . . . . . s.f case i n Bacher-Goudsmit-Method . . . . . . " . Plate Positions on 21-ft. grating Spectrograph. Table in 3-metre Spectrograph . . . . . . I A X I Table i n 3-metre Spectrograph . . . . . . Dispersion Table for 21' Grating Spectrograph . Wavelength List above 2,000 . . ., Wavelength List below 2,000 . . . . . . . . . . ns-np *SLterm in Periodic Table . . . . . . . . 5s-5p ^"Intervals in Te III . . . . . . . . . Energy Levels of Te III . . . . . . . . . . . . Irregular Doublet Law in Te IV . . . . . . . . Interaction Constant for 5s-5p P and P . . . Ionization Limit from Polarization Parameter. . Lande's Interval Factor in^PDF) in 5s5p( P)-nt Configurations. . XIX Regular Doublet Law for 7d D Te IV . . . . . . XX Energy Levels of Te IV . . . . . . . . . . . . XXI 5s<np configuration of Te V XXII Relative Position of Levels in'5s-l|f Config. . XXIII Energy Levels of Te V . . . . . 1 . . . . . . . XXIV(a) Irregular Doublet Law in Te VI 1 . . . . . . . (b) Regular Doublet Law in Te VI" . . . . . . . . . XXV Energy Levels i n Te VI . . . . . . . . . . . . XXVI Wavelength Comparison in Te VII . . . . . . . . XXVII a-d)Relativity Correction Tables . . . 3  5  3  z  2  11 12 Ik 15 16 26 Lj.2 UU 6l 65 66 69 7U 2l*9 251 260 26ij 265 268  3  A  270 271 271; 282 281* 286 289 289 292 29k 301  FIGURES To follow page 1. 2. 3. h. 5. 6. 7. 8. 9. 10. 11. 12. 13.  a,b,c) Condensed Spark i n Helium'Source . d) C i r c u i t Diagram . . a) Electrodeless Discharge Source . . . . . . . . . . b) C i r c u i t Diagram . . . . . . . . . . . . . . . . . a,b,c,d) 'Pole Effect' on Prism and Grating Plates. . a*b) Electrodeless Discharge Plates . . . . . . . . . Optical Diagram f o r 3-metre Grating . . . . . . . . . Meissner-Andrew Relation . . . . . . . . . . . . . . T r a n s i t i o n to j.j-coupling i n ' ?p. ns configuration, of . Te I I I . . . . . . . . . . . . . . . . . . . . . . . Series Diagram i n Te IV . . . . . . . . . . . . . . . Mofley Diagram i n Te IV . . . . . . . . . . . . . . . Bacher-Goudsmit Relation . . . . . . . . . . . . . . 5s-nd D i n Te V . . '. . . . . . . . . . . . . . . . . Edlen Plots . . . . . . . . . . . . . . . . . . . . Microphotometer Traces  h& hi 55 56 63 2?0 255 268 273 272 278  28U  y  297  1  INTRODUCTION  It is difficult to assess the present state of development of atomic spectroscopy.  Because there is a wealth of information and many of  the principles required for i t s complete development are at hand (EdlenFlugge: Vol. 27), some authors consider that atomic spectra were already well known i n 1920 (L.A. Borisoglebskii Soviet Physics Uspekhr 66, 19585 W.V. Houston Principles of Quantum Mechanics 1951, P» 117).  211, However,  other authorities concerned with the detailed applications in astrophysics and space research bemoan the fact that our knowledge is s t i l l too meager to solve important problems.  This latter point of view is supported by  the following authorities: (i) A.G. Shenstone  5, 210,  Reports on Progresses  1938  in Physics ( i i ) W.F. Meggers  ( i i i ) G.H. Dieke  J.O.S.A.  )  R.H. Crosswhite; (iv) P. Swings (v) Mrs. Sitterly  Ul, l U 3 , 1951  Applied Optics  2, 657,  1963  A . l . P . Handbook  7, 22, 1957  J.O.S.A.  Ul, 153, 1951  N.B.S. Circular  1*67  A survey of Mrs. S i t t e r l y s A . E . L . ( 31 ) reveals many gaps and many 1  enteries even in need of confirmation in relatively simple spectra.  More  accurate and extensive data is needed to check the different types of coupling calculations carried out by theoreticians. The aims of the present research project are:  2  (i)  To collect extensive and precise wavelength data, with excitation assignments in the spectral range 3^0 A to 9000 A°, never done before 0  comprehensively by a single group, (ii) (iii)  To confirm, revise and extend the spark spectra of Tellurium, To study the excitation characteristics of the spark sources - the condensed spark i n Helium and disruptive Electrodeless Discharge. The second, third, fourth and f i f t h spark spectra of Te were  known in a somewhat unsatisfactory way.  Rao and Krishnamurthy (t<*-^) had  given a good start i n the second spark spectra by classifying over 200 lines. However we failed to confirm 13 of their odd levels out of 56 odd and even levels and found their assignments incorrect i n many cases due i n part to incomplete and incorrect wavelength data.  We rejected only one level of  Rao i n Te IV and one level of Gibbs and Vieweg i n Te V.  It is emphasized  that i n the published analyses of the third, fourth and f i f t h spark spectra I|0 levels were established from only 65 lines i n the region 5U0 A° - 3585 A . 0  Such a sketchy analysis seriously needed confirmation.  Rao's  meas-  urements pretty consistently were low by 0.12 A° i n region 2600 A° - 7000 A  0  and appear not to be independent of Bloch's earlier work.  fying to note that,with not  It is grati-  very accurate and extensive data at his  disposal, Rao established the basic structures i n Te III, Te IV and Te VI correctly. The present analysis was started after compiling a wavelength l i s t of 6000 lines with excitation assignment for almost every l i n e .  Out  of these 5600 lines appeared on our plates and 3800 lines were new.  Te II  3  lines listed i n Table III of Sister B. Handrup's thesis ( i7 ) i n general did not appear on our plates. The pages to follow are divided into three chapters. does not contain any original contribution of the author.  Chapter I  The material has  been collected from the standard texts and the original articles of the various authors  (*> ^,°*, 5  'S,ife,n,  »s,2>  51, 3 t  *>  * ) , 35,39^0,  Ma, HS).  However, the presentation has been made i n such a way so as to emphasize the uses and applications of the simple laws in experimental work.  No calcul-  ations has been carried out for predicting any configuration or the Slater's parameters.  But a few pages have been devoted to this i n order to maintain  a continuity through this chapter. Chapter II containso-description, operation and characteristics of the two spark sources - Disruptive electrodeless discharge and the condensed spark i n Helium - mainly used i n the investigation.  There is also a  brief description regarding the reduction of the spectrograms taken on the 3-metre vacuum spectrograph and 21' grating spectrograph. Chapter III contains the master l i s t of 6000 lines running into 173 pages, with the intensity entries from various authors (wherever available), excitations assigned  and classification of a l l the lines class-  ified in Te III, Te IV, Te V and Te VI.  It is followed by the discussion  of the results, the transition of the spectra in their appropriate isoelectronic sequences and application of laws mentioned i n Chapter I . f i n a l l y contains the results of these extensions i n  It  tabular form.  Photoelectric traces of Te spectra, made with a Jarrell-Ash Console  comparator raicrophotometer, in region 380 A° - 1215 A° are given at the end of the third chapter.  CHAPTER I  The General Theory of Atomic Spectra  General Theory It is sometimes emphasized that the real birth of atomic spectroscopy was in year 1913 when Bohr announced his two fundamental postulates i. ii.  There exist stationary atomic states, The frequency of radiation emitted is the difference of the frequencies of two stationary energy states.  $ = Frequency of radiation emmitted. h=Planck's constant (6.6 x 10"" ^ 2  erg,  sec.)  Bohr's atomic model was based on that of Rutherford comprising a heavy nucleus surrounded by "planetary" electrons revolving around i n circular orbits.  Sommerfeld introduced the idea of e l l i p t i c orbits removing degeneracy  in principal quantum number while the introduction of the spin concept by Uhlenbeck and Goudsmit further removed the degenercy i n i£and J . exclusion principle put the arrangement i n order.  Pauli's  Heisenberg and Schro'dinger's  works opened an era of theoretical spectroscopy. In the following pages there is no intention to reproduce the basic treatments of atomic spectra problems, but vie wish to emphasize only those basic^theoretical and semi-empirical-principles which are used extensively in experimental spectroscopy.  The other basic relevant material can be looked  up i n the standard texts on the subject Cv * 5  21  ^ .  Energy States and Term Values i n Field-Free Isolated Atoms A spectral line results from a radiative transition between two energy states of an atom.  These two states are known as "J-Levels".  Each "J-Level"  6.  is characterized by the J-value and has a definite energy.  A set of multiple  J-levels with the same L value are sometimes called by many spectroscopists as  1  Term . 1  Thus the P term has three levels ?2> 3  3  a n c i  "^o*  The levels arising from a configuration i n which 2 1 L  is odd are called  i  ODD levels while those originating from configurations with 2 U  even are  i  called EVEN levels.  Quantum mechanically they have odd and even parity.  The odd levels are differentiated from even ones by putting o as a superscript on the Level symbol.  li.2^xi.3a-3v Is"- 2s- 2p. 3s. 3d 2  odd T. C even  V *D  From quantum mechanical treatment follows the important Laporte Rule "ElectricDipole transitions are possible only between levels of opposite parity". The frequency of a spectral line gives the difference between the energy of two levels involved i n such radiation.  If the energy of the lowest  ground state level is recognized as zero then energies measured of other levels with this reference w i l l be called "Relative Term Values". values go on increasing with increased excitation.  Obviously these  The energy required to  remove an electron from atom is called the Ionization energy.  If this energy  be recognized as zero and the energy of other levels measured w.r.t i t downward (-ve increasing numerically), the term values are called "Absolute Term Values".  In practice the minus sign is omitted. Since ionization potential is the last thing known absolutely i n a  spectruw^in general the energies of levels are represented i n relative term values..  It must be emphasized that when more than one electron is excited  in an atom, then their combined energy i s sometimes greater than the ionization  7.  energy and thus levels from such "doubly-excited" states can be above the ionization limit.  Such cases have been observed frequently (AEL).  Series Limit and Ionization Potential Liveing and Dewaf as far back as 1879 had found that spectral lines could often be arranged i n series.  Within each series the frequency differ-  ences and intensities decrease regularly towards higher members.  Balmer  observedaseries i n the hydrogen spectrum and represented i t by a simple formula which was extended by Rydberg and Ritz V  m is running  =  ]  -no and n is fixed i n series  S "*^' 0  R = Rydberg const. = h3y37-ZJT  Rydberg later observed that spectra i n various elements can be represented by difference of expressions, T n  , R Zo  R Zo  _  R Zo  where Zo = Effective nuclear charge 1, 2, . . . for arc, f i r s t spark, . . . . spectra. n* = Effective quantum no. T  s Quantum defect  n  = Principal Quantum no. a-  A series obeying this relation is known ds Rydberg series. A  members of series  For the lower  £ n * for successive members is greater than one and tends  to shrink to one for higher members.  This helps to find out series limit from  higher members  n-7 n *  T  T  R  '  O^) J  8 The difference of the rela tive term values of successive members of the series is looked up in the Rydberg tables and Tn and Tn-1 are calculated and thus the ionization limit.  Since a series only approaches a pure Rydberg form for very  high members, the limit of ionization obtained from the above procedure is always higher than the real one. Normally series i n the line spectra are perturbed, they f a i l to obey Rydberg's relation.  Langer ( U 6 ) , on a quantum-mechanical basis, gave the  expression for the absolute term value as Tn =  R Zo s +e*Tn)*-  Tn accounts for perturbation. Sometimes a single term affects the whole series.  Shenstone and Russell Tn=  (37-f)  have given for such a cases  R Zo 7  ~  B  where To = foreign perturbing term. Thus i f quantum defect is plotted against Tn, Rydberg series follows a line parallel to Tn-axis while Ritzean series a line with a s l o p e s .  To find the  correct l i m i t , is to find under which conditions the plot approximates a straight line.  Shenstone and Russell have also shown that a three term series  can always be fitted to a Ritz formula.  The method is to satisfy by t r i a l  and error the relation. T, - Tz T r~T7 x  where  =  (h» - n, ) - (n* - nO (n* - n j - n)  n* = n+<£ •+ <AT  The constants of this relation are found as follows:  3  9.  (ri*-n) (Tn-To) = p + S ' ( T n - T o )  Plot  (Tn-To)  1  P found from point where parabol^a crosses T = To. Plot for each term  " fnzW - * a and  +  <* are intercept^ and slope of line which represents plotted points  most nearly. When a series is well extended, with at least three members well established, Edlen and Risberg (/o-J> ) have given a method for adjustment of ionization limit from approximate value found (say from Rydberg relations). Let  =. Relative Term value.  E E  £  E  t  = Ionization l i m i t . = Approximate ionization l i m i t . JL  T Since  - Absolute Term value  =  - ~*  S"- =. n-n* by definition, and we assume with Ritz =  AS"  =  41 Then for any assumed can be improved to  o<+  -  B.T.  £n*  ,  . si- ^ | +  there corresponds an approximate value  S = S° + b>% « S"% M • ^  a , which  = < * + pT  Let three msnbers of the series be denoted by subscripts 1, 2, and 3. v - ~ • ATn -<v-  p Tn = 0  From this for n = 1 , 2, 3,on solving we get -  10..  If more than three members are known, then'AT is obtained by the method of least squares. .'-  E = Ionization Limit = E° + A T . L  This adjustment has been applied to every series having at least three well established members i n the spectrum.  Fortunately we were able to establish  such series i n Te III, Te IV, Te V and Te VI and their ionization limits have been subsequently modified.  Irregular Doublet Law and Moseley Diagrams The Rydberg formula can be modified as Tn = (Z - er ^ )  2  R_ n :  where <5~ is the screening constant Pi£ or  s  Z  -  >IR n If>JT/R is plotted as a function of Z, the curve is a straight line of slope for Z =0. These plots, from analogy i n X-ray  1 and i n t e r c e p t ] ^ ^ - ~ n  spectra are known as "MOSELEY DIAGRAMS".interpolating isoelectronic sequences.  These diagrams are very useful i n  Since  <3" does not remain constant  in the sequence, these plots usually deviate from a straight line* For terms with the same n, J and S values,  = ttz3 •- const. <  11.  This sometimes helps to predict terms having same quantum number n  T  Let T = 5s6s \ z  x  5J6p V  2  Table I(a)  In I  fl  0.  N|R  Sn II  l.oos-  . o. IHb  4.57  o.9o3  0.(>SI  0.367.  JR  Sb III  pi (r In "  L  J R  is  For Te IV  |R  Since 6s S,  o • o 91  =  R  (• ^) Sa  133U57.05" k  = IS76W-H  6pX  (calculated)  = l6/34&3£ k  (observed)  The above relation can be written i n another form T  ,  T  x  =  |  \(Z-  f c  -  (Z-<rf]  = | [2Z (T-^i ) - <*V>] E  = c Z + Cj, Where C-^ and C are constant. 2  'Irregular Doublet' law.  This relation is sometimes called tt^*.  In sequence, the difference of terms increases with  z.  Let T = 5s6pV x  T  2  5  5"s"6d D,  12,  Table 1(b)  T  ! - 2 T  In I  6933.69  Sn I I  17861;. 80  10931.11  12097.30  J  Sb I I I  29962.10  f o r Te IV  since 6p y 6d D 1  T t  -  x  t,  T  2  1166.19  1122$.$9  =  163960..15  s  = 207,187.7U  (calculated)  - 202,9^2.15"  (observed)  Though t h i s i s not a good p r e d i c t i o n f o r a spectroscopist, but as these states form the basic structure of the spectrum only the strongest Te IV l i n e s i n t h i s region need to be considered.  This extra p o l a t i o n has the second advant-  age that i t does not require absolute term values f o r computation as we are only i n t e r e s t e d i n d i f f e r e n c e s .  I t may be mentioned that even thoujfurreg-  u l a r doublet law requires T^ and T  2  to have the same J , i t has been found  to be u s e f u l as an e m p i r i c a l r e l a t i o n f o r non-equal J's too.  Regular Doublet Law ( R e l a t i v i t y Doublet Law) This law applies to one e l e c t r o n  terms with^same n, 1 and s values  -the  and i s <x- d i r e c t consequence o f ^ f i n e s t r u c t u r e s p l i t t i n g due to s p i n o~  "1k«  o r b i t i n t e r a c t i o n . In^case of one-electron A  E = Spin o r b i t i n t e r a c t i o n energy  spectrum,  13  a is spin-orbit interaction constant 1 and s are orbital and spin angular momentum of the electron.  On quan-  tum mechanical calculations, i t turns out  v  fRch  J(J+1) - L(lAl) - S(S+1)  1  \w:ifT)TJ7rT) J • In case of one electron AV -  §  J = I ± -|  Separation between  L-  and  u + L  u  . j . levels  In case of non-hydrogenie system, we have for non-penetrating orbits  for penetrating orbits  - *L^L_ <5" s Z Z  Z  i' o Z  Screening constant.  = Total nuclear charge. D  ts Effective nuclear charge on the outside of the closed shells. = Effective nuclear charge on inside during the penetration of the core.  Thus doublet separation varies as (Z - «" ; "u»«» » This is^regular doublet law.  H  or Z± Z m respective case. 0  This law is very instructive i n finding •U**.  doublet separation from the extra polation of the screening constants i n the isoelectronic sequence. Consider doublet separation of 5s op ( P. -  R, ).  111,  Table II  In I 298.18 z - cr X  cr  Sb III  Sn II  1668.0  883.0  12.19  16.01  18.75  49.00  50.00  51.00  36.51  33.99  32.25  2.82  I extrapolate  1 . 74  c r for Te IV  =  32.25 - 1.25 = 3 1 . 0  A t>- 2624.60 k -  2619.80 k  (calculated) (observed)  a.  This is^good prediction.  In many of the cases, however, we found that the  doublet separations observed were not this close,to the calculated values. Table III gives the values to be used i n doublet formula for n - 1 5 , Is 5. They are useful i n calculations of this type. Spin-Doublet Calculation Tables  1  The spin-doublet formula for doublet separation i s  where R  Rydberg const.,  s  . ©< = Sommerfeld's fine-structure  const. R*  s  e  5.«U35K  ©< =  Screening constant.  e^/hc.  Table I I I (a)  n  n  n 1(1*1) 3  3 I  2  3 li  8 27 6k  5 6 7 8 9 10 11 12  125 216 343 512 729 1000 1331  15  3375  13 14  1728 2197 2744  1=1 p 16  54  128  250 432 686  1024  1458 2000 2662 3456 4394 5488 6750  U2 d  162 384 750 1296 2058 3072 4374 6000  7986 10368 13182  16464 20250  U.3 f  768 1500 2592 4116  6114 «748 12000 15972 20736 26364 32928 40500  Ul*  g  2500 4320 6860  10240  14580 20000 26620 34560 43940 54880 67500  U5  6480 10290 15360 21870 30000 39930 51840 65910 82320 101250  h  Table III (b) Y  n  Ul X  2 3  U 5 6 7 8 9  10 1 1  12 1 3  Hi  15  P-  log X  2.7381 0.43745 9.2U10 0.96572 21.9046 1.34054 42.7825 1.63127 73.9282 1 . 8 6 8 8 1 117.395 2.06965 175.237 2.24362 21*9.508 2.39708 342.260 2.53436 ii55.5ii8 2.65853 591.425 2.77190 75l.9ii5 2.87619 939.161 2.9727U 3.06263 1155.13  1.2 X  d log X  1.44284 1.81766 2.10839 2.34593 2.54677 5 2 5 . 7 1 1 2.72075 748.523 2.87421 1026.78 3.01148 1366.66 3.13566 1774.28 3.2U902 2255.84 3.35331 2817.48 3.44986 3465.38 3.53975 27.723 65.714 128.348 221.784 352.186  1.3 X  n *(t+l) f log X  131.43 2 . 1 1 8 6 9 256.70 2.40943 443.57 2.64696 704.37 2.B4780 1046.29 3.01965 1497.05 3.17524 2053.56 3.31251 2733.29 3.43669 3548.55 3.55005 4511.67 3.65434 5634.97 3.75089 6930.77 3.84078  Ik X  g log X  US X  log X  427.825 2.63127 3 . 0 4 4 9 0 1 1 0 8 . 9 2 739.282 2.86o8l 3.06965 1760.93 3.24574 1173.95 1752.37 3.24363 2628.56 3.41972 2U95.08 3.39708 3742.61 3.57317 3U22.60 3.53U36 5 1 3 3 . 9 0 3.71045 4555.48 3.65853 6 b 3 3 . 2 2 3.83463 5914.25 3.77190 8 8 7 1 . 3 8 3 . 9 4 7 9 9 7519.45 3.87619 11279.2 4.05228 9391.61 3.97274 14087.4 4.14883 4.06263 17326.9 U.23872 11551.3  17. Width of Multiplets The multiplet splitting i s caused by the spin orbit interaction, which i n quantum mechanics is written as  ,  where  }^  / i . <^± \  e  - ~ IT^l \ 1  Y  <AV /  L i and Sj_ change i n a complicated way in classical motion and thus*matrix Hm is diagonal neither i n l j S i nor i n L , S schemes; only J commutes with and labels states. For normal multiplets we f i r s t consider only L-S coupling and IK*.  -IKt  thus neglect non-diagonal elements in^electrostatic matrix.  Then magnetic /V  interaction is introduced as perturbation to each L-S term individually A  and thus L-S assignments can be carried out. In the absence of magnetic interaction, Lj. precesses rapidly about L i n a complicated manner and similarly does S^ about S. in the direction of L and S are pectively.  \h^\  Their component  Cos (LLJL) and |Si\ Cos (SS-jJ res-  Weak magnetic interaction causes L and S to precess about J  so slowly that average can be taken  .  £  * t *  =SMV  The corresponding values from quantum mechanics are  C  **  ( U S >  _ g  ^  18.  This means that the spacing between two levels of a multiplet is proportional to higher J value - Lande's Interval Rule." Total Splitting = W( J max) - W(J min) = A S (L+l)  for L > S  - A L (Sfl)  for L<S  •A' is Lande's interval factor. In actual practice the coupling conditions always deviate from L-S, these splitting factor change.  Cohen ( ^ ) has discussed the de-  pendence of A (L,S) onL and S when different multiplets are given by the same configuration.  These calcuM-ions are complicated and involve many  matrix transformations. Goudsmit and HumphY<tyi(«7  ) have shown that Lande's interval  factor A can be calculated for con figurations obtained by adding an electron to a configuration of known A. This is most reliable i f the i n i t i a l configuration i s of equivalent electrons and the coupling of the i n i t i a l electrons i s not changed.  Obviously the interaction between the  i n i t i a l configuration (core) and added electron should not be very strong. If A^, L^, S^ - Correspond to Lande's interval factor, orbital quantum no and spin quantum no of the core, a , t, , s, - Correspond to the added electron. A, L , S 1 1 1 6 1 1  A  - Correspond to the final configuration.  A i [L(I>l)»L,(L - i).t,(U)I fs(S*l)+S,(S *l)- , ( + l ) l = lL 2LTL+1) J L 28(3+1) J l  r  l  S  S|  A  a fL(L*l)+M»l)-L,(Lfl)l -P , ^ L(L+1) "J 4.  2  • [S(S+1) + s,(s,+l)-S, (S+l)1 L 2Sts7l) J  19. Even for the case of non-equivalent electrons, this formula has been found to be very helpful.  We have made an extensive use of this  relation i n estimating the multiplet separations i n 5s.5p»6sV'and 0s.5p.6p *tpi>) i n Te IV.  The application can be seen on page 270.  It has been found by Trees (li3-b) that even though spin-other orbit interaction are not responsible for large variations i n the interval rule, the spin-spin interaction is responsible.  Araki (1*8) has shown this  to be the main contributor and emphasizes that calculations become much complicated for heavier elements.  Intensity of the Spectral Lines. The absolute determination of intensities is limited by the inadequate knowledge of the oscillator strengths and the dipole moments. Apart from this, even though a light source is reproducible to a great extent, i t is not possible to evaluate the efficiency of the photographic emulsion and the spectrograph.  The sensitivity of the photographic plate  and the source varies i n the different regions of the spectrum. In general (White, H.'W»-lt5 - page 205) the ratio, of the intensities of two lines can.be written as Im-*n _ Ip^q- '  -  K > ,  -AT —  _**/!cT  •  »» J~J±H  T  .-iit  5 v  where Is^/ls2 is the ratio of the intensities given by the "Sum Rule". This shows that even relative intensity relation is complicated.  20*  In multiplets, the ratio of the intensities i s given by BurgerDorgelo-"Qr-~nstein sum rule which states? "The Sum of the intensities of a l l the lines of a multiplet which start from a common i n i t i a l level is proportional to the quantum weight 2J+1 of i n i t i a l level. The sum of the intensities of a l l the lines of the multiplet which end on a common final level is proportional the the quantum weight 2J+1 of the final level". Tables are available (  7  ) where the relative intensities in  the multiplets have been calculated for L-S and j j coupling.  The relative  values help i n picking up the multiplets. Dirac  on quantum mechanical basis has derived ^expression for  intensities of lines i n terms of L. S and J and a const. can be omitted i n case of relative intensities.  This constant  His expression can be  used in j j coupling by substituting •) for 1 and J  2  (const.) for S.  A practical spectroscopist^consider; his visual estimates of the line intensities enough for his spectrum analysis.  However the sum rules  no longer hold when lineseiVe i n entirely different regions of the spectrum. The visual estimates also differ from person to person and normally the A  relative estimates of two lines quite close in the spectrum have any real significance.  Selection Rules Selection rules prohibit certain transitions.  The word 'prohib  1  21. electee  is quantitative rather than qualitative.  The ratio between dipole trans-  itions and quadruptole transitions is approximately 10*^ for r a d i a t i v e transfer.  The latter are usually called forbidden transition.  The s e l -  ection rules hold under the normal conditions defined as (<z) "Spectrum must be"isolated atom or ion" produced by atomic gas in temperature equilibrium not disturbed by external electric and magnetic fields.  The pressure should not be too high to f>-*-oJwe. mutual disturb-  ance nor too low to wreck equilibrium distribution". Under normal conditions only^dipole radiations are emitted but under abnormal conditions ( a's in sun, i n stars, etc.) transitions ( ^1) have been found to be very intense.  the forbidden Dipole radiations  s t r i c t l y obey the Laporte Rule. We shall enumerate rules only for dipole radiationss(1) J changes in a transition by 0 or ± 1 J = o —>  j ' m 0  is forbidden.  (2) There is no restriction on the change of n. (3) The strongest lines arise from one electron jump i n case the two configurations are well separated from each other. strict.  This is not very  Two electron transitions have often been found quite strong.  When they do so, one electron changes i t i 1 by a +1 But a+b a even.  and other by b.  Most probable values for a'and b are +1, 0.  coupling one j changes by 0, ±1 while other by 0,^1, + 2.  In j - j  More than one  electron transitions are frequent i f configuration perturbations are strong.  Three electron jumps are very rare.  22'. (li) In L-S coupling the additional rules are (i) L changes by 0, ± 1 . ( i i ) S changes by 0 only.  In complex spectra this f a i l s , Thus lines of different multiplicity  (intercombination lines) are forbidden. Intercombination lines i n most of the spectra are very strong. (5) In j - j coupling the additional restriction is A j = 0 x  A,J, _ o , ± l  (6) In intermediate coupling only f i r s t three rules stand since J is the only unambiguous quantum number.  Polarization of Atomic Cores The deviation of alkali spectra from usual hydrogenic behaviour lead Schrddinger to suggest the idea of penetrating and non-penetrating orbits.  According to him "Each electron completed Shell can be replaced  by an equivalent "charge of electricity distributed uniformly over surface of sphere of-suitable radius". When the valence electron orbit lies well outside the a. w.  a*°We->  core, i t is in Coulomb's f i e l d and describes Kepleri-Wvellipse. If i t is A  not very far away the f i e l d is slightly different from CoulombWnlt penetrates. an axis •-i-  aT  The outer-part of the ellipse undergoes a precession about • ' to i t s plane.  As penetration goes on increasing, deviation  from Conlomb's f i e l d goes on increasing and thus eccentricity of orbit increases.  Every time penetration takes place at different places but  at same distance from that of previous revolution.  23. In quantum mechanics penetration retains significance.  If v a l -  ence electron eigen function is large i n the region where eigen function of core electrons are large, the interaction w i l l be great, otherwise small. Since hydrogen like eigen function is large only for values of r trans:  versed by electron i n Kepler ellipse K = t(t+l), this leads to Schrb'dinger s 1  interpretations.  (Pauling and Goudsmit, page 3 8 , 3 9 ) .  •The increased force of the attraction between nucleus and electron at penetration increases the binding energy, the K~E and absolute term values but decreases the total energy of atomic system. The non-penetrating orbits are said to be hydrogenic but s t i l l their absolute term values are higher than hydrogenic value.  Born and Heisenberg  attributed this to a polarization of the atomic core.  In the Coulomb f i e l d  of the valence electron, the spherically symmetric core is repelled and distorted and the nucleus is attracted by virtue of the repulsion and attraction of like and unlike charges respectively.  This polarization  decreases the total energy of system and thus the energy levels are pushed down on the energy level diagram. Quantum mechanics has provided the correct equations for expressing this -effect and accurate values of the polarization of many atomic cores. Recently this subject has gained prominence because i t can be used to f i n d ° ^ and o( which enter into the expressions for refractive index of solutions (53).  The recent theoretical and experimental work has been due to Edlen,  Bockasten, Sternheimer, Risberg and Biermann (3>, 10, 7\ page 1 5 7 ) . The absolute term value T can be written as T = T„ + AT •+ A T H pen. pol.  21* T  = Hydrogenie term value.  K  AT_ „ = Penetration correction. Q  poll.  Tp ^ =• Polarization of atomic cores correction. Q  The hydrogenic term value consists of $imple Bohr's hydrogenic expression plus relativistic correction.  Tables are available f o r l a t t e r ^ ^ ^ V A  In most of the important cases, especially higher members of series the penetration correction is negligible and^whole contribution i s due to polarization. If the radius of valence electron orbit is situated i n a sensibly homogeneous f i e l d E - ~ .  Since a dipole of  x  strength^ gives a f i e l d of ^  f >">V„ ,then core is  along i t s axis, the valence electron w i l l  experience an attractive force. AF where  =  * <*L  <*d .  $s PoU^UUj  Thus Perturbing Potential  =  ^  ^  JAF-AT  Hence change in Energy AV4 - -  •  From quantum mechanical treatment (  Z  0  a  0  AT  -  FF  Aoi^i  e  )•  Effective nuclear charge of core.  = Bohr Radius <$ *a«£*T~M "v*^ ' =-AW =  °V  Tv?^ ^ ^  '  25. where  P(n,l) = R f ( n , U = R <r>  (%;)  2rfit4)tH*fKui)(^'i)  f i n , l j  A(Z,Z ). 0  ^  This has been drived on dtpole approximations.  Tables are available for  ^(n,d)<5). In quad*M£>ole approximations  The values of  ^ / a n d  < *f > 4  can be found i n most of the  textbooks on spectroscopy and quantum mechanics. the quadrupole expressions that a plot between  It is quite obvious from & T p ^ and q (n,l) is a 0  straight l i n e . Table IV gives the values of P (n,l) and q(n,l) for n =15.  This  theory is very useful i n predicting higher members of the hydrogenic series e.g. ng 2G and nh  series.  extension of these series i n Te IV.  Its use has has been made in the  Table IV Polarization jhw&.ov<,g,  P(n,g), q(n, Q ,  P(n,l) = R *(n,l) . q(n,t) ^ N»(n,l)/*(n,t)  n  1  1.2" pud; qlnd)  3 60.212 k 28,577 5 15.38k 6 9.139 5.8k5 7 8 3.955 2.796 9 10 2.0U8 11 1.U07 12 1.193 0.9ii0 13 li* 0.75k 15 0.61U  0.22222 0.27083 0.29101 0.3015 0.3076 0.3115 0.31k2 0.3161 0.3175 0.3186 0.319k 0.3200 0.3206  "1.3PCnfJ qlnfj  k.0825 2. 31x11 l.k336 0.9328 0.6379 0.k5k3 0.33LL 0.2306 0.1960 0.151x8 0.12kk 0.101k  0.02083 0.02667 0.02952 0.031lli 0.0322 0.0329 0.0333 0.0337 0.03U0 0.031x2 0.031x3 0.03U5  t.lx P(rig) qUgJ  0.557k 0.358k 0.2393 0.1662 0.1196 0.0887 0.0615 0.052k 0.0kl5 0.033k 0.0273  Plnh;  U5  0.0053 0.00695 O.lliiO 0.0078 0.0791 0.0562 0.008k o.okio 0.0087 0.0089 0.0307 0.021k 0.0091 0.018k 0.0093 0.0lk6 0.009k C.0118 0.009k 0.0097 0.0095  ./ s ) ^  I .6 q(nh)  0.0020 0.0026 0.0029 0.0032 0.0033 0.0035 0.0035 0.0036 0.0037 0.0037  0.030k 0.0223 0.0166 0.0126 0.0088 0.0076 0.0061 0.00k9  0.0098 0.0075 0.0058 O.OOkl 0.0036 0.0029 0.0023 o.ookl 0.0019  27.  Theory of Complex Spectra Usually a spectrum is called complex i f i t originates from more than one electron w i t h ^ > 0 »  In such spectra the appearance of the multi-  plets as groups of lines with regularity i n spacing and intensities, form the starting point for term identification.and consequently the singlets are more difficult to pick up. The motion of electrons i n an atom i s governed by the following interactionst (1) 'Attraction between electron and nucleus and repulsion' amongst 1  1  electrons follows the Electrostatic Interaction'. 1  (2) The orbital motions and intrinsic magnetic dipole moment spinning of the electrons produce "Magnetic Interactions". Thus theoretically the problem is - the solution of many particle Schrodinger's equation with Hamiltonian containing terms which are contributions due to these forces.  "When solved the eigen functions of Pauli  type w i l l yield the possible stationary states of motion and the energy eigen values yield the energies of these states.  The problem is mathe-  matically unmanageable and even for approximate solutions drastic assumptions have to be made*  Complex Spectra Consider the zero order approximation.  The electrons move i n a  central f i e l d then, neglecting the magnetic interaction, the Hamiltonian may be written as  28.  H, o  V al • • . I  . . . . . .  When u _ Reduced mass-of the electron-nucleus system. - Momentum of i - t h electron. U(r^)-  ~ Central f i e l d potential for electron at r^-distance away from the nucleus.  N = Total number of the electron. To a f i r s t approximation each electron i s considered as moving i n ihe f i e l d resulting from the Coulomb f i e l d of the nucleus (attractive) and the average f i e l d due to N-l electrons (repulsive). U ( r ) ^ - — -v c for r small r (penetration) -  - ( Z - N M ) - e ^ (Z-.-f-l)e^ ^ r r  l  a  r  (2) g  e  (non-penetrating)  We consider as perturbations effects on H J, as well as the primary Coulomb 0  binding electrons to the nucleus, the inter-electron interactions, or the electro-static interaction energy  =^  (3)  e  r ^ - Distance between i - t h and- j - t h electrons. Neglecting the complicated spin-spin and spin-other orbit interactions the spin-orbit interaction is  •= X. a(r^)  ''si  L -A-  (k)  x  Adding a l l these interaction energies, we have H  H  -2 L  r  1  J \>  CL  Thus the perturbation potential H «. H-H i,. -L ir  J-  v>i-, *>j- i iij r  (5)  IT Q  (6)  A  This type of motion is mathematically expressed by a wave function  29.  satisfying the Schrodinger equation of unperturbed case (7) The next problem is the choice of the wave function dp .  If  dp be  product of one electron wave functions, variables i n the above equation (7) can be separated and the solutions found.  Let the one-electron wave  function be denoted by u/2^. \ where n represents the four quantum nos. (n, 1, m^, m ) and x g  represents three space coordinates and fourth spin  coordinate. Let  £— = Q x l  (for simplicity)  The product of these functions are the approximate solutions.  It is also  obvious that any linear combination of these functions and the interchanging of any two of them is also a solution.  However the electrons are  fermicns and so must obey Pauli s exclusion principle and hence the linear 1  combinations functions must be antisymmetric. This is achieved when 4 i s written as 1  -(8) Ix  Where N""^ is merely a normalization factor.  w  I  Putting n = r? in above, the  determinant and hence the function ^vanishes.  Next we solve (7) by  standard perturbation methods writing the secular determinant and the equations therefrom.  30.  When interconfiguration perturbations are prominent, as is the common case, the Schrodinger's equation can be written asr.  where y ' s are the linear combinations of  •  Since E depends only  upon the set of quantum numbers n^ and 1^, specifying the particular electron configuration, the matrix elements due to different configuration be neglected and thus only diagonal terms are of any interest.  Again we  are only interested i n the relative position of levels and closed shells w i l l effect a l l levels equally., "TWs:/  closed.  Shell effect w i l l be  constant £©revery level and thus can be omitted. Matrix Element of the ) . > . f * . ./j,in\J,. )a <A\H\B> = )&P!) H 4 < W Perturbation Energy  , „ (9)  )  Where dv represents the integration over three space coordinates and Summation over the spins. From T.A.S. (page 17\ ), i f operator X is of the form x  s  2 x ( i )  (io)  where x(i) operating on the coordinates of ith electron, the author's (T.A.S.) have shown that (i)  <A \ X \ B> = 0 If B differs from A by more than one individual set of  one electron c^. nos. This is a consequence of the orthogonality relation of u(2_) i • (ii)<A|x|B> = ± <& l ~ \ e t > x  K  K  If Band A agree in a l l sets except Q, =L Q, N  (iii)<A\x|A>  =  Z <£\*\£>  31.  If Operator Y is of the form Y = £ y (i,j)  (12)  T.A.S. has shown that the diagonal elements are <A\Y|A>£J|u*(Q U * ( o j y ( i , j ) U.(Q ) 11.(0*) dr.dr. k  k  - J u J C Q * ) U*(Q ) y ( i , j ) U ( Q ) U . ( Q ) dr.dr J H  t  (13)  k  i  where drj_ and dr^ include summations over spin coordinates. H  //  II  The two  a  integrals in (13) are called DIRECT and EXCHANGE integrals.  Following  Slater's designations, they are denoted by J and K <A\Y|A> = J j j ( Q ,  Q*)  k  -  K (Q , Q*)]  (Iii)  k  J ( Q , Q ) = <QV \y ( i j ) \ Q V > K (Q ,Q ) < Q Q \ y (i,3)\ Q V > k  t  k  t  k  s  t  =  N  The Coulomb operator £ '  1>J B|  r  (electrostatic effect) is of form Y. ij  From elementary quantum mechanical treatment of one electron system of hydrogen atom, the functions IK(Q ) are the product of a YAdial 1  part and an angular part.  The angular part is spherical harmonic and  doesn't explicitly depend on the quantum numbers. In Legendre Polynomials,—!— 1 0 is the angle  = 4L. Tfcr. • k (cos.e)  Y° between r. and ij  operator can be expanded  p  2  Thus the matrix elements  \  /A\-—\A/  can be written as radial integrals depending on quantum nos. multiplied by angular integrals depending on lj_ and m^. (15) becomes  Thus the e.s  interaction  K  (QpQ^-^U^,  £  b (l m »l k  Q ,  Q  Q x  w ) Q l  rW(l^™Vl w *) Ql  Q  Where S indicates that a l l terras of sum vanishes except that m^= m^ s s which means there is no exchange effect between the electrons i n states of different m . s  x  \c  a* and b  are the angular integrals.  Due to spin consideration,  k functions id.ll vanish except for pairs of electrons having parallel spins.  The integrals a  k  and b  k  were introduced by Slater and are mostly  tabulated in a l l books on quantum mechanics (T.A.S, page are constants depending on d and _z . . D = 5 sd and so on). k k F  t78-i8$.  D^  only (D°= 1 for 3.s , D* = 3 for sp  and G , radial functions, are commonly known as Slater's  integrals.  These can only be evaluated i f the central f i e l d acting on  each electron is known and i n practice they are regarded as unknown parameters.  Both F and G are always +• ve and F k  equivalent. F  k  k  G when the electrons are k  =  They are independent ofra-j_and m .  k =  £fj*l  („  Q 1  t  Q 1  ) R^n  Q 2  l  Q 2  )•  Each term of J (direct integral) of given k corresponds to one term i n the expansion (in spherical harmonics - multipole) of the classical interaction between two electron clouds, J describing the electro-static interaction between p and p, d, f  p electron contains terms with k--0, 2.  F  corresponds to classical quad-  ruple-qua drupole interaction between charge clouds. electrons contains terms with k - 0, 2, U.  Similarly d with d,f  corresponds to the inter-  action of the quadrupole and the 16-pole and so on.  33-  The exchange integral has no classical analogue.  L-S Case Russell-Saunders coupling case, effectively treated for one and two electron spectra<S<j"tti«vector model, i s experienced when the electrostatic effects are very large compared to the magnetic effects. Thus we f i r s t omit magnetic interaction and calculate  e.s.  effects and later add this magnetic interaction as a perturbation.  Note,  however, that by confining ourselves to diagonal elements we assume n^ and 1^ of the individual electron fixed.  This is justified i f the energy  difference between different configurations are large compared with the energy difference between terms and hence configuration interaction (giving rise to the non-diagonal matrix elements) is absent. From (5>), we have  Obviously the f i r s t terms is same for a l l levels of the configuration. The separation is due to the second one. I  f  M  =2  s  ra  s  M  a n d  L  m  l  The secular equation factors into a chain of smaller secular equations, one for each M , s  value i . e there are non-diagonal components only bet-  ween determinental wave functions having a given M and M^. s  In solving  these the diagonal sum rule is generally used. "Sum of the roots of the equation is equal to the sum of the diagonal matrix elements in the equation."  3lu  Thus linear equations can easily be solved.  From this diagonal  sum rule we get the energies and not the wave functions.  Configurations  where more than one similar terms arise of similar designation as is the case with ^ . J j p S S d i n Te II where (PDF) arise both from 5s 5p" ( P)' 5d Z  3  and 5s*: 5^ ( *D)- 5d while *!) also arises from 5s". 5p ( S )>5d5 the diagonal 4  sum rule w i l l give sum of the energies of a l l these repeatedly occuring terms.  Racch ( 3 6 ) has developed powerful procedure by means of tensor  operators to overcome this difficulty. configuration.  He has drived general form for  We give his relation for s.p.s'  configuration r  P= F  (ns^ s ) + F (n p,n  - G° (ns,n'' s ) - i s Zp  s ) + F (ns,n p)  ( np,n  s ) - i G (ns,n p)  > ' = F ( s s ' )+ F'( 3 ) + F°(sp) ip  0  P  * [p (si l  G (ps' ) + l  1  G (sp) - 1 G (ss' )d (prf )  - I G° (ss' ) 0 (sp) - 1 G (ps ) G (sp)J Recah has also treated ttdL. rv s m b configuration. (  *  Condon and Shortley  7 ) Shortley and Fried ( * ° ) and others have treated many configurations  in the form of the F-and G-parameters.  These are very useful in predict-  ions even though i n general pure L-S coupling is a rare thing i n heavier elements. j - j Coupling In this type of coupling the magnetic interaction always dominates the electrostatic interaction.  The Hamiltonian in this case can be  written N  —«  35, The equation is f i r s t solved and electrostatic perturbation.  energy i s then added as  The resulting energies can be expressed in terras of radial  integrals F and G and magnetic interaction constant a ^ . k  k  A pure j-j coupling is very rare.  As magnetic interaction goes on  increasing the deviation from L - S becomes more and more pronounced.  This  has been found towards higher members in the isoelectronic sequence or higher members of the series in the same spectrum.  In whatever way the  transition takes place from L - S to j j , one rule is always obeyed "Curves belonging to the levels of equal J don't cross (J is perfectly valid quantum number in a l l the coupling schemes.) In np.n'p configuration, the energy in terms of F , G and 1 ^ fc  fc  are  J=3 J=2  3=  <L=1  2  J=0  \ J=2 J  *2  4 v.  J=l  E s i a ^ + l a ^ + P o + Pg - o " 2 G  E  E  = K =  + P  *  i- rip a  V K V  2 4a +|a n p  r f p  n  0  0-3F ^-3G  F  2  +  G  0  p  is = h np - a n p  + F F  2  2 "0 "2  F  +F -v5F  E=| a p - a , n  F  +  G  n  0  2  +-G _ G  - G2 -  G  0  5  2  36,  J  • i J ~  2  3 =2  •' 3 3 = 7?  J  *  »  2  E -a r  <  J.-l  E=-a  np  +  T  «ja , i - F . np np J +  J ,1  2 -a  J=0  E . - a ^  s  +& , F np 0  n p  - a  n  +  F  $G  2  Q  a _ a  r  f  p  +  F  Q  G,  j - t Coupling A third type of vector coupling has been ooserved in certain cases. Let us consider as a typical case a two electron configuration containing p-electron; with large(l.s) interaction and a second electron of large 1- • value ( i . e . /Small (l.s) interaction).  In this case i t can happen that some  of the magnetic interaction are small and others large as compared with electrostatic effects.  In configurations with shell of one hole and one  electron of higher 1, Shortley and Fried ( ^ 0 ) have calculated e.s interaction in , j - l coupling approximations and have found that the levels a**-in pairs. Since exchange forces act on spins, Racah has pointed out that i t is not sufficient for this coupling that spin orbit interaction of external  37  electron is weak but also G £ k  for a l l k.  F  This coupling can be well understood from the 3d.pg configuration of Cu II.  This configuration was f i r s t analysed by Shenstone and interpreted  by Shortley and Fried (1|0) • cL forms an inverted doublet whose splitting is due to spin-orbit interaction,which is very strong i n this case. Owing to negligible e.s interaction of the g-electron i t s  I-couples with J of  the core forming a resulting angular momentum ^ K > which can assume values lib 2 j * 3ib hi, 5i, 6§ f or J -  5/2 and 2 | , 3 * , Uib 5 | for  j = 3/2.  The  small separation between unresolved doublets is due to magnetic coupling of k with the s' of the g-electron, resulting i n .JJ* K ± -|. The accepted nomenclature is  (j) t  [k]  J  e.g.  (  Z  D. )  • Lui]  • 5g  In terms of vector coupling j* + I  « "£  ->  k  -*•  S  4  '=  From Fried's calculations (UO) the coefficients  of Slater's  can be written (36b) as f (n^ 6h +3h - 2J (J 1) t( U 1) lij ( j + l ) v 2 l - l ) ( 2 U 3 ) - J+ ^ O k (k+l)+J (j-tl) - l ( U l ) " 2 W (2 k i ) (2 J-a) l  f  F*  z  y  W  =  2  l  c  g  (g^l)  2  +  +  where h  . 11  .  *  and gj_  = g-factor of the parent ion.  (  k  *  l  }  - J (j » D g  D  -Eriksson (9) has considered j . l coupling for p . f and p.g configurations and f i n a l l y has arrived at two and three parameter equations for the energy relations.  The relative magnitudes of the coupling parameters can be  estimated from spurs Of energy matrices.  Since spurs are independent of  38  the coupling and they can be written down d i r e c t l y from the known values of the spin-orbit interactions i n j»j coupling and e.s interaction i n L-S coupling* We give below the relative energy values i n case of j - i  coupling  for p.f configuration K  J  Energy  2fr» 3$  2,3,3,U  F* - a  li  1,2  FV|  2|  2,3  FV|  +  ^  F  3i  3,U  F%|  *  ™  F*  U|  U,5  F%|  - £  +  - %  F* x  where the F's are Slater* s integrals and a i s the magnetic interaction constant.  In s t i l l more accurate calculations Eriksson has included i n the  energy expression Slater's G's, even though G's are quite small compared to F's. In case of 2p.Uf case of N I I F  a m  13.5*  0  *  « °«3  H  and G • 0.03 and thus one may obtain f a i r  agreement by omitting the effects of the G's.  Intermediate  Coupling  In actual practice the coupling i s neither pure L-S nor pure j - j , but i s i n an intermediate stage.  In such a case where the electrostatic  and the magnetic interactions are of the same order of magnitude, to derive the energy levels one has to use the matrix of the sum of the electrostatic and the magnetic energies and then to solve the secular equations.  The  matrix elements can be written either i n the LSJ or the j\) scheme. In the former the  39. electrostatic energy contributes only diagonal terms,,, same as in L-S scheme. Magnetic  interaction is diagonal in J..M.  It connects different  values of L and S but only those differing by one unit.  For those values  of J which appear only in one level the perturbation energy is simply equal to the corresponding diagonal element. times  s  For values of J- which appear n  an equation of nth degree has to be solved. It is emphasized that any diagonal element whose J occurs only -IK*  once is same in any representation and under any coupling condition which A  leaves J a good quantum no. Johnson ( '8 ) and Houston ( on this intermediate coupling basis. them in simpler forms.  '6 ) have treated many configurations Bedford ( 8-^) has reproduced most of  We w i l l only consider here Is configuration, which  has so often appeared in our present  investigation.  One singlet and one triplet state has same J i . e . 1. The energy equation can be written as  w*+(f - 2 g ) w - 2 g - 8. (UD | = 0 x  t  where  t  -  G-L is Slater's "exchange integral" parameter and  its denomin-  Representing the energy in units of a/2 (a/2= A = Laude's  ator (TAS p. 177).  interval factor), we get the roots as &i and 6^ and thus follows the famous Houston's Intermediate Coupling Relation.  (^ + 1) (£3+1) Where ^  and  and "h^ measured with respect to  are the energies of ^  the e.g. of unperturbed "^g^ and 1  L(U1)  predictinq L-^ once  3  ^.  This relation is very helpful i n  L^ ^ ^ have been established.  Cohen ( <2' ) has con-  ko  1L^, 3 l j ^ > 3L^, 3  nected the four energy levels  ^ of energy E-]_, Eg,  E^, E^, by the following relation  3 "u  k _d__  2 - ij  E2 - E  t+i  ' E X - E^  E  E  3  _  £  =  rnr  This result is useful i n comparing the experimental values when a l l are found with the theoretical value without the knowledge of the ionization limit.  This relation however leads to LS and j j case. In the pure L-S scheme, second term is negligible .  3, " ), E  E  _ E  2  3  *  t  (Lands' s Rule)  In the pure (j-j) scheme, f i r s t term is negligible E  E  Showing the  1 1 L-^ and I ^ ^  2 ~ U l " i| E  _ 1  E  a  r  +  e  coincident.  The Bacher-Goudsmit Method Bacher-Croudsmit method involves the calculations of the energies of the states i n different stages o f ionization.  These methods have been  recently modified and extended by Meshkov, Trees etc. ( > z7  useful i n cases where there is insufficient data available to  and are very po^-r^Ajt  isoelectronic sequence extensions ( i . e . the application of the doublet laws).  These relations relate energy differences i n various ionic spectra  of a single element and thus permit us to make "traverses" i n optical spectra orthogonal to the relationships i n isoelectronic spectra. Let us consider an ion (X+z) III with one outer electron in the  quantum state a or b with energy W(a) or W(b) respectively.  Let W (a,b)  be the energy of the neutral atom (2,Z) II when one electron is in the state a and the other in b. of the method.  Neglect degeneracy to explain the principle  The ion (2,Z)III in the state a passes to the atomic  state (Z,Z) II a, b by the addition of the electron i n the state b. If w(a,b) =. Interaction energy of two electrons W(a,b) = ¥ ( a )  W(b) -v w(a,b)  This can be extended to three electron (Z,Z) I or more electron case W(a,b,c) =. W(a)-t- W(b) -t- W(c) .+. w(a,b)  w(b,c) •+ w(a,c) -+ w(a,b,c)  = W(a,b) + W(a,c) * W(b,c) -[(W(a)+W(b) W(c) -*w(a,b,c)] +  Thus the energy of the atom has been defined in doubly ionized ions.  term3  of the singly and  The effect of the electrons on the core and de-  genetacy have not been taken into consideration.  Apart from this in  correlating a term of an atom with L and J values to the term in the ion, the states have to be considered individually. Consider two electron p  2  configuration.  These can be represented in scheme  The electrons in a and b states.  n.l.m-^ and m . s  Each of these states has M, and M values 2 , 0 ; 1,1; 0 , 1 ; -1,1,-1,1 they give rise to a single L s state.  For M^, Mg 1 , 0 and 0 , 0 pair each state by ri 1 "|,, y passes into m  linear combination of states belonging to different L,S scheme.  Matrix  methods help to find the coefficients of these combinations. For states  (0  |)(o4-)  W(a,b) = |  *D + ^ *S  Bacher and Goudsmit in their original paper have suggested the method for this purpose.  Sometimes the coefficients  are also found by the  inspection keeping i n mind the following rules: (i) Sum of the coefficients of each states is unity, ( i i ) Sum of the coefficients of a particular multiplet in a group with given M and M is unity, L  g  ( i i i ) Division into multiplets is same for two states which differ i n sign of either a l l m or a l l m . t  g  Recently Trees and others 0*3,-27) have derived linear theory similar to Goudsmit's which is a combination of Slater's integrals and empirically found corrections. of the ionization.  Trees (  The wave functions depend upon the degree ), Racah and Meshkov ( <*-7 ) have extended  the configurations originally treated by Bacher and Gondsmit. Consider the configuration s.s'  Table H m, » S m  g  1 2 1 2  4  s m  M  s  1 2 1  .-*2  1 "2  s  0  ss Multiplets  h  1 0  0  1 2 2  3c« 0  O  Let us see how the inspection rules work From rule ( i i i ) W(| 0; --| 0)  = W (-| 0, | 0 )  1 s 2 S 2  U3. From rule (i) and ( i i ) a l l coefficients  are |-.  Bacher and GoMdsmit's relations are given in terms of absolute energies but i n majority of the cases they turn out differences between the absolute terms of the same spectra and thus don't require the knowledge of the ionization l i m i t . Consider configuration ns.np  3  Bacher and Gondsmit give the relation W(sp  F  3  S) - W ( p . P ) l  i  |  3  s  =  wUp 1  _ 2  W  \)  - 2W (jfp P)+W(p*  ( - *p) £ p  (p  - 2W  3  \)  (J- *s)-»-W^p P) y  +  W  -t- W(p) - ¥()  P)  s  Trees^S- e) has shown that to f i r s t approximation this reduces to the II  U  well-known Andrew-^leissner relation (31  w(ap*s) - wtf p p) y  1  3  =  2  [w(sp \  - [w(  ).  l  S P  3  P ;  wt*p  ) -  t  )  w# %  -  This relation has been used i n establishing S. 5  \)  ]  )j  and*V i »  in Te I I I  L  and Te IV respectively. Meshkov (Zl-°*) has considered the coefficients of p s and p  to p .s .  of the fractional parentage  Logically to fix the relative contributions of  these we consider four electrons p,p,p,s.  There are three ways to get  p s out of these four while only one for p z  3  .  Thus we interpret that  ps has three times the contribution to p^s as compared to p  5  duce the table of Meshkov  .  We repro- *  Coefficients of Fractional Parentage  3  p S  s  3  S  5  •p 3p  p^s  P »P  3  N  ~i  i 3  2'  1  12  2k"  '• P X  t  8  Zl"  1  1 i. 3*  6*  2h-±  'D  1  -2  -3  -2  1  2*  3*  6*  1  i.  -8*  -3  These atomic energy relations have found extensive use i n our predictions, and i n general the experimental and theoretical values seem to agree well.  CHAPTER I I  Experimental Procedure  Ii5. Experimental Procedure The instruments used i n the present investigation included? i  21-ft. concave reflection grating spectrograph. i  ii  =25°  = 9.742°  Range . n X  * 77.47°  vi  9000 A - 18,000 A , 0  0  775 A°/ram.  4 •  350 A - 21*50 A , 0  0  Range  nX  200 A° - 6000 A , 0  65"-Wadsworth-mount reflection grating spectrograph. <&m 22 A°/mm.  v  nX,  2-metre grazing incidence vacuum spectrograph. i  iv  .  3-metre normal incidence vacuum spectrograph. i  iii  Range  Range  nX  6000 A - 12,000 A , 0  Hilger Medium Quartz prism spectrograph.  0  E498.  Hilger Automatic Littroouprism spectrograph with interchangeable Glass and (Quartz prisms.  E478.  A 3.ii metre Jarrell-Ash Ebert Spectrograph was also available i n the laboratory but no use was made of this since i t could photograph only a narrow range, and the range is altered by rotating the plane grating.  This is a handicap when one wants a complete set of spectrograms  covering the whole range of wavelengths under the same excitation conditions. Low dispersion but fast spectrographs, namely constant deviation spectrographs, have also been used. The plates were measured on a Zeiss-Abbe comparator specially modi f i e d by the maker at our suggestion to permit the measurement of 18" x 2 plates in three settings. M  U6. Light Sources Two light sources were .  used i n the present investigation  having appreciably different excitation characteristics.  The condensed  spark i n Helium could develop Te II and Te III strongly and Te IV weakly while disruptive electrodeless discharge i n favourable excitation conto ditions developed Te IV, Te V strongly, Te VI on^medium scale u>i1V > Te VII on a very weak scale.  These sources are discussed on the following  pages; Condensed Spark i n Helium The arc and spark i n the atmosphere of different inert gases such as Helium, Neon, Argon etc. have been studied from the very beginning of experimental spectroscopy.  The choice of the particular gas depends on  the nature of the problem under attack.  When sparks are run in the  atmosphere of the inert gas, the main considerations are - the excitation needed and the sputtering action of the substance.  Helium has the  highest excitation potential 19.7 volts and also has a very weak sputtering action due to low kinetic energy of its ions.  On the other hand  Argon and Neon atoms are much heavier and can cause greater sputtering but their excitation potentials are relatively L»vsyLl»5 volts and 16.6 volts respectively.  Sometimes a mixture of Argon and Helium i n different  proportions is used to combine both effects. A.  Since Tellurium sputtered appreciably in Helium atmosphere we did A  not try to use any other gas. ;'  The source is simple i n construct-  ion and operation. It was f i r s t used i n this laboratory by S. George (#--0 but he did not exploit i t much due to-IK* unavailability of 3-metre vacuum  To follow page L6  -^*To Spectrograph N  Quartz Window  Condensed Spark i n Helium Glass and Quartz Region Source F i g . 1(a)  LiF window  Quartz Window  Brass Taper  Helium  Rubber Stopper  | f^Copper  Condensed Spark i n Helium L i F Region Source F i g . 1(b)  U7.  spectrograph and ^"-Wadsworth mount spectrograph at that time (these two spectrographs being commissioned i n this laboratory recently). did not use this source below 1250 A . 0  been emphasized by Professor Shenstone  He  The importance of this source has (^Tb,c)  and is giving excellent  results i n case of As, In, Sb, An and B i , whose spectra are i n the process of analysis i n this laboratory now. The design of source i s similar to that used by Dr. George with modifications to suit conditions for Te.  Even though Te is a conductor  and can be made into rods for electrodes, i t was found advantageous to press-fit the metallic Tellurium electrodes into carbon cups i n order to get carbon lines as standards i n a l l spectral regions and especially inlU* vacuum ultraviolet.  F i g . I (a), (b) and (c) show the design of this  simple spark source i n Glass-Quartz, i n LiF and i n extreme ultraviolet region (XUV) where no windows may be used.  Up to 1070 A°, the Helium  from the He tank at about 1 atmosphere was bubbled through a water trough to prevent contamination by re-entrant a i r .  The neck of the bulb was made  longer so that the fine debris of Te sputtered during the run may not cover the Quartz or LiF window and obstruct the path of light to the spectrograph.  The power supply circuit shown i n F i g . 1(d) consists of a  20 kv,ikva output transformer, 0.005 ^F-25 kv condenser bank and an external spark gap of 6-9 mm. i n a i r .  The gap between Te electrodes was ad-  justed from 7-10 mm. i n different expos\ires. Below 2000 A , the quartz end of the source bulb was replaced by 0  a male brass fitting inside the female taper joint on the s l i t tube of the vacuum spectrograph.  A very thin LiF plate was fitted on the taper  To follow page U7«  Cu  Quartz Window To manometer  Condensed Spark i n Helium Extreme Vacuum U l t r a v i o l e t Region Source F i g . 1(c)  ES  110 V-  To Electrodes  T C E.S  -  Transformer 20,000 V. output, 1 kva rating. Condenser tank 0.005 /iF, 25,000 v o l t s . (External spark gap. (6 m.m. to 9 m.m. i n a i r .  Power Supply C i r c u i t Condensed Spark i n He Source F i g . 1(d)  1*8.  face and was almost on the s l i t .  LiF plate has the advantage of not  significantly contributing to insignificant astigmatism i n stigmatic gratings and at the same time transmitting to about 105>0 A instead of 0  about 1200 A° i n case of lenses. Up to 1050 A we did not run into any s e r i o u 3 difficulty i n 0  operating this source.  We soon ran into trouble in^XLJV,  A source was  designed similar to the one used by Professor Shenstone in Pt. II O^ ?) -  and i t was planned to make the Helium leak through s l i t into the spectrograph.  But Te is one of the most sputtering metal and its fine debris  f i l l e d bulb, the side tube and s l i t (xndth L p ) within a couple of minutes of operation.  The v i s i b i l i t y of the reflected image (seen from tube  identical to s l i t on the other side of the normal i n 3-metre vacuum spectrograph) was zero.  The difficulty observed was that while He leaked through  the s l i t i t swept Te debris along with i t .  The plugging of the s l i t was  suspected as soon as the vacuum i n the spectrograph, which had fallen due to Helium run, began to improve. After considering various aspects of the problem, design F i g . I (c) was f i n a l l y adopted.  T l and T2 tubes were so arranged that the Helium  flow was directed i n the space between Te electrodes. to Helium tank and T2 to a pump via monometer. the debris was directed away from the s l i t . l i t t l e wider.  T l was connected  Thus a major portion of  However, the s l i t was made a  To start with the spectrograph was pumped to 2 x 10"-' mm.  of Hg and then He allowed to flow and^pump connected to T2 started at the same time.  The spark was started a couple of minutes later.  k9.  The operating conditions weres Helium Pressure i n source  lt-8 cm of Hg  Pressure i n tank  0.2 - 0.3 mm. of Hg — 8 ja  S i l t width Exposure time  UO minutes  The diffusion pump and forepump were on when the source was i n operation. Under these conditions the source ran for about an hour without plugging the s l i t appreciably.  The low pressure in source bulb affected the excit-  ation favourably.  Excitation Data This source has been found to provide a reliable excitation data. The intensity with which excited He lines appeared on our plates, confirmed our belief that source should be able to excite Te II and Te III completely and Te IV weakly. The excellent pole effect shown by the lines helped to separate them out according to their ionic parentage.  The spark was imaged on s l i t  in prism spectrographs and 6£"-spectrograph.  3nnetric vacuum spectrograph  gave almost stigmatic images althrough its range.  In 2-metre vacuum  spectrograph the intensity variation of lines under varied excitation condition decided their ionic parentage. Different excitation lines appeared as Te I  They ran a l l along the length of plate with equal intensity and had no pole effect.  The lines involving the ground  state or metastable lower states showed nice reversals.  UJ  UJVO U ) OX?v  c?*=-  M  CN  VO  VO V O  vn co vn.  <  NO — J  o  H M  M H  M H  H H  UJ  ON  ON  ro  Vo U J U J I— M U) V O ro co co N O ro ro ro C O C vo v n v n o N MH H H H iMr -M H H H M M H  u>  1  1 u> r  n  ro ro  •* ro  NO NO  — j ONOO ro ro ro U> U) n u * M - J N O co co co H O O o o o vNO U) N O C O Er ro M ro N O N O O N U > U J VO-0 • ro UT.NO  M  M M  M M  - J U J - J H H M H O U T U J CO M M M M M M M M *H M M M M M M H M M M M N  ro ro ro ro  CO C D — J —3 U J M NO NO o n C O O N U) M M  NO  M M  _1  ro ro ro vnvn vn VnVO U J O CO o  ro ro ro ro C-crlr-rrN O N O —o Os VO M C D N O  o r o r o r o ro ro ro ro VO V O VoUJ U) U> U) U>  M M M M M  M M O M M M M M M M M  v M M M  >  4  O  M M  10  rr t  n  1  ro vn  M M  C D co-o  H \ A U ) f >  4 O  M M M  vn.OT.p-VJJ  M  O U> O N  M M M M M M M M M M  roro vovo roM OO  ro ro u> ro O vo vo vo  MM MM MM  M M  ro ro oo -o  M M  ro ro ro ro ro ro ro ro ro ro r o r o ro U) ro ro —J ONvnvn vo CD ro ro Mvnvo vn ON-EM M M M > M <J M < 4 M M o  u>  Prism P l a t e s a-P6223, b-P622l  r o r o r o roro roro ro M r * 0 v o I r-i-np-ETU) H * U ) V O c o - o - J O T . t r r o ro ro ro U J M M c o o v n C D oo o o v n - o o M U J C N O T . t ~ M fcU) U ) O-ro — vn J  M  M M M M  <i  M  MMM M M I H IH M M M  M  <q 3 ^  M M  M M  M M  O N C M I II I I M ^ - * - ^ M M O N Vo I I II I I <q O M M  G r a t i n g P l a t e s C-G6303 and  M M  M M M M  M M  M M vo co -o co  M  ON  co  M  d-6301 ,  Fig. 3 Showing. ' P o l e E f f e c t ' e x h i b i t e d by Prism and G r a t i n g p l a t e s i n condensed j spark i n Helium Source.  50  Te II  They were the strongest lines on our plates and ran a l l along the length of the plate.  They were distinctly thick  at poles as compared to the central portion. Te III  They were strong and showed very good pole effect.  Their  central parts i n almost every case were missing.  The  ratio of intensity at poles to that at centre ranged from 20;1 to 50:-l.  They could be easily separated from Te II  lines. Te IV  Their abundance was rare i n region above 2000 A , but i n 0  creased i n vacuum ultraviolet. 3585 A were f a i r l y strong. 0  The lines 2271 A and 0  They appeared just tips at  poles. Apart from this "pole effect", the external excitation conditions such as external gap length, electrode separation, pressure i n source bulb and external voltage applied helped to decide about many doubtful lines. Two classified Te V lines 151.9 A° and Hj06°\ appeared on our plates, 151|9 A° is coincident with a strong Te IV lines here classified for the f i r s t time while line at llt06 A is certainly a Te V line. 0  Fig. 3  <=Lshows this pole effect.  Impurity Lines The tank Helium obtained from OMY low temperature laboratory wots.,  <x~v.<L used without purification ^ contained about 1-2% Nitrogen and traces of Oxygen.  Apart from this Hydrogen and Carbon were also as impurities.  Thus new Te lines were thoroughly scrutinized  A  jro-f" these impurities :  51. before entering into our l i s t .  Carbon, Oxygen and Nitrogen lines served  -IK*  as standard in^Vacuum ultraviolet.  (B)  Electrodeless Discharge Source The electrodeless discharge source has several advantages over  the other spark discharge sources, which are enumerated below:: 1.  As no inner electrodes are used the spectrum is pure.  2.  It is operated at very low pressures and thus lines are very sharp.  Also due to low operating pressures i t can be used  easily with vacuum spectrographs. 3.  It selects minute traces of impurities and radiates their spectra very strongly, i . e . collisions of second kind are probably frequent.  L.  Thus impurity lines, i f any, can be easily picked up.  Since no electrodes are used, the discharge tube design is very simple, and vacuum can be easily maintained.  5.  Since i t operates at very low pressures, the amount of material needed for excitation purposes is small.  This is important i n  case of rare materials where material available is i n order of milligrams.  Apart from this, material having low vapour pressure  require high temperatures i n order to establish sufficient vapour pressure to initiate and maintain discharge.  This high temperat-  ure may melt internal electrodes and crack tungsten seals. 6.  It has the chacteristic of exciting intercombination lines and higher members of series adequately. Electrodeless Discharge sources are of two types depending on  52 which type of radio frequency circuit is used for excitation. i.  The continuous wave excitation.  The lines of force pro-  duced by the oscillation i n c o i l effectively form closed or spiral loops.  The i n i t i a l ions i n rarefied vapours  are set up i n motion by spiral f i e l d and ionized by collision resulting i n intense glow.  To enhance ioniz-  ation momenting power transferred to discharge is i n creased by operating the oscillator with pulses of high momenting pox*er.  This power momentarily transferred i s  proportioned to square of the anode voltage, ii.  Highly damped radio frequency currents.  In our present investigation we have used this second type extensively. The discharge is produced by placing the discharge tube, containing the metallic vapours at very low pressures, inside a longitudinal solenoid through which rapidly alternating currents flow along the oscillatory discharge of the condenser bank.  The main contribution to phenomena is due to  magnetic forces produced, but electrostatic effects also contribute and make mathematical computation complicated.  The maximum rate of change of  the magnetic fields needed inside solenoidal to produce discharge depends upon the nature of material, frequency of alternating currents, pressure inside tube and to some extent on the dimensions of tube. Sir J . J . Thomson ( ^ ) has dealt with both the experimental and theoretical aspects of such a discharge.  The operational aspect is that the So  -lUaJbr  discharge of condensers starts very rapid oscillations i n the circuit, the A  solenoid: ". is traversed by rapidly alternating currents.  These currents  53.  by e.ra. induction, produce an intense electric f i e l d i n the neighborhood of the solenoid and this f i e l d accelerates the electrons to excite the vapour of the metal inside the tube (having small i n i t i a l ionization due to cosmic rays and radio activity etc.) and so produces an intense luminous discharge. If v = velocity of electron sufficient to produce ionization. «Mean free path of electron, p = frequency of discharge. Then we have in these conditions = a.  -2(1) Xp m -——— where H = Field due to solenoidal for discharge, o v  a •=• Radius of tube. From this equation we infer that the f i e l d H required to produce a disc  charge is infinite when X(inversely proportional to pressure i n tube) is either zero or infinite.  Thus there i s a c r i t i c a l pressure,for certain  excitation^to make discharge run smoothly.  The next condition for such  velocity electron i s that i t should retain this energy t i l l the next collision occurs and we,finally get i n the damped oscillation case (H ) min.. « 3v o • s2  ra_ -  ( 2 )  •ae  •  Thus i n highly damped case only a few vibrations are effective. If  H = H Sin p t . Q  E.M.F. i n circuit = J (.H V  <£) = TTO:  (E.M.F.) max. =-VT<X R^p Thus for damped case from (2) and (3). (E.M.F.) . for passage of discharge iss mm.  COS pt. (3)  ft. (h) If V  0  = Pot to which condensers charged.  C  = Capacity of condensers.  I  = Current in Solenoidal.  I  = PCV sin pt.  (g)  Q  Magnetic force inside Solenoidal  -  U*Np C V  For damped case V 0  =  3 NlT"  vm '  (6)  U^aeNpc  This is not a rigorous mathematical relation.  F i r s t l y we have neglected  the electrostatic contribution and secondly we have not taken into account the shielding effect of the magnetic force due to currents i n the metallic vapours i n opporite direction to that of solenoid. jsan-qjtt.n thousands of .'ampopas.  Thooo" ourronto i n gag  To first^approximation i f we consider that  these effects only affect the magnitude of the nature of discharge then (6) can be changed from equality to. proportionality relation. where L is inductance of Solenoid. (7) X  (8)  Where E represents the degree of excitation and k is factor accounting for electrostatic and shielding effects. This result gives us a qualitative conditions under which suitable discharge can be run.  It is quite obvious of this that some of the factors  on which E depends effect one another and thus a sort of compromise has to be made.  Though the length of the tube has no appreciable effect on excit-  55ation, the greater discharge depth of emission enables higher state members to be observed.  Experimental Arrangement Pure Tellurium was obtained from Canada Copper Refineries Limited (over 99*99% pure) in the form of pellets. translucent quartz and measured 2hi  n  The discharge tube was made of  long and 1^" i n diameter.  Since the  plasma inside the tube, when the discharge is running, is quite conducting the tube was wrapped with thin sheets of mica to improve insulation. It was then screwed into an equally spaced ( ~ 0.3 cm. spacing),,.eight turns of thick copper wire number 6 gauge ( 0 . l 6 2  !r  diameter).  The electrical circuit, shown i n Figure II (b), consists of 6 mica solar condensers each of 0.0025 uF capacity rated 25 kv, 22 amps, at 3 megacycles per second frequency, forming the condenser bank. connected in three pairs on either side of the earth..  They were  The central ends were  earthed (point fixed on the center-tapped transformer), this provided a total capacity of 0.0038 nF and thus making the circuit resonate (for the L of the solenoid  2.5 jaH) at about 3 mc/second.  The output of the X-ray  transformer 50 kv, 5 k. watt was directly given to the condenser bank, making sure that the electrical leads were at least 6" away from any ground point.  The output from the condenser bank was connected in parallel with  the solenoid through a variable external spark gap.  The input supply was  taken through heavy wires from 50 amp., 115 volt mains.  A 50 amp. A.C. am-  meter along with a variable series resistance was placed in. the primary c i r cuit of the transformer. age.  In some cases the  The variable resistance controlled the output volt-  \  To follow page j £ .  •  r-i •ri o  O  X!  •P ..co  03  a3 0 ,0  •  03  03 ,0  §  u  P •P  p co a  T3  rH  03  CD  fl P • O  03 O  -P  03  0) r-l O  P •P  CO  o  • 03 r-l W> •rl fl o  o  03  -P tsO 03 •rH 03 W .fl to  CO •rl  I  I  I  ro  O 03 03 03  03 j> • P A £0 CD O 03 O 'rl  •S & •fl E  ;o co  I  co  I O I CMI O «3j  o  a.  E  1 |2  03 CO o to rf  ri -P fl  03 O O  •M SH  to  ro to  03 r-l 03 T3 O 5H  •P O 03  CM  60  id  56.  resistive control was replaced by a Type 1156 power state transformer rated at 115 V . , 6.1 kwa. To get required high temperature for a suitable vapour pressure, about half of the tube (including the exciting solenoid) was enclosed i n a transite furnace of dimensions 10§-" x 9" x 9" which was heated by four heaters each dissipating 500 watts at 12 amps, supported inside the four long edges of the furnace.  A variable resistance was put i n the heater  circuit to control heating current and hence vapour pressure i n the tube. It is essential, to prevent breakdown, that low voltage heaters were more than 3" from the high voltage c i r c u i t . The tube was connected through a liquid nitrogen trap to a cenco hyvac for :epump which continued pumping a l l the time.  A strong pinch clamp  on thick connecting rubber tubing controlled^vapour pressure i n the tube.  Description of Operation In the region 2000 A to 10,000 A the tube ends were sealed with 0  0  clear fused quartz windows, while i n the region between 300 A - 2000 A 0  0  brass taper was fixed on one end of the tube with removable LiF window. About 10 gms. of Te pellets were put into the tube and by rocking motion from the two ends of the tube they were moved to rest under the exciting soil.  The operating temperature was estimated by seni-empirical Clausius-  Claperon relation. log p  s:  - AT"  1  +• B  E_ i  V  115 V 50 amp.  i j  JL  i i  2i  ! T  =  i  _  — i  {—  _.  J  1L  i i  To Discharge Coil  IT  T' T - X - r a y transformer. Output 50 kv, 5 kwt. C -jCondenser bank. 6 mica solar condensers .0025 >uF. \ 25 kv, 22 amp. at 3 mc/sec. Total capacity 0.003b uF. R - Variable resistance. A - 50 amps. A . C ammeter. E - Adjustable external spark gap.  t-3 O H>  o t-  1  r->  O  Circuit Diagran -Electrodeless Discharge Source Fig.  2(b).  s; Xi  era CD  vn  ON  57.  Where A and B are constants and p is the vapour pressure i n ram. of Hg. Using p at i t s melting and boiling points for Tellurium, we have A  =  5753.7° K and B =  l.hll  For operating pressure i n the discharge tube at 50 n, the operating temperature comes out to be 382° C, which obviously can be easily controlled by our heater c i r c u i t . To start with,the tube was pumped for about 5 minutes to evacuate the air i n the tube and then the heater current was turned on.  The tube got  the requisite vapour pressure soon and then main ".• • was put on to start the discharge.  For few moments, the hydrogen leaked into the tube through fused  quartz windows, ' . .  ... giving a red discharge.  These radiations were pre-  vented from going to the spectrograph by putting a card-board i n front of s l i t (above 2000 A ) and closing slit valve in„case of^vacuum spectrograph. u  A  When the tube was properly conditioned and the red hydrogen discharge disappeared the light was allowed to enter the spectrograph. The colour of the discharge went from pinkish colour to yellow and then enormously bright shinning white as the excitation conditions became more and more favourable for higher and higher ionization.  In i t s best oper-  ation i t was observed that Te IV lines dominated the spectrum while Te V was well developed. intensity.  One must always comprise between higher excitation and higher  At low pressures, the vapour density of Te i n discharge was low  and consequently the intensity was weak but the excitation was high.  At the  higher pressure, the intensity was very strong but excitation f e l l with Te III and Te IV lines coming with same intensity.  When the pressure was s t i l l higher,  the discharge became of ring type confined i n shinning annular ring form.  58.  Whenever this was observed, the pinch clamp was openeid a b i t and the excess vapours allowed to be evacuated.  It requires constant observation by the  hand spectrograph (Canadian Arsenal No. 109) and adjustment of operating conditions, especially for long exposures on 21' grating spectrograph, to keep same excitation conditions throughout the exposure. charge also helped to evaluate excitation.  The colour of the dis-  Sometimes simultaneously pictures  were taken on small constant deviation spectrograph at certain intervals to check from known high excitation lines the excitation variation i n the source. and Hp were easy to identify. violet to  There is a group of strong Te III lines  and Te II and Te III lines near Hp  The intensities of Ho< and  Hp f e l l rapidly as the excitation of source went higher. After running the discharge for about 15 minutes depending upon the conditions of running, i t was found that the Tellurium diffused out of the furnace into the cooler part of the tube, causing windows to be coated with a thin film of the metal and obstructing the path of light.  Since the length  of the tube outside the furnace was much longer on the side of the s l i t than on the side away from the s l i t , the window towards the s l i t (fortunately) did not become coated soon. utes.  Thus discharge could be easily run for about 20 min-  The switch i n the transformer primary was then turned off and windows  were cleaned for about 2-3 minutes with hot gas flame.  In case of prism  spectrograph exposures the windows were cleaned after taking one complete exposure i n the region. If there is a leak i n the tube, allowing the air to come i n contact with metallic vapours, or the excitation conditions are very low the molecular bands are observed which make the task troublesome.  In some exposures on 21'  59.  grating spectrograph'these bands limited the excitation to Te III. In vacuum spectrograph, the spectrograph was evacuated to 5 x 10"*^ mm. of Hg. The external spark gap was adjusted at 2.5 cm. and current i n the transformer primary was set at 35 amps, for medium excitation conditions and It5 amps, for very high excitation case. LiF window attached to brass taper.  First two sets were taken with  This enables one to photograph to 1050 A . 0  The latter sets of plates were taken without any LiF and thus the spectrum photographed to 3li0 A . 0  The small LiF plate fixed on the upper part  of the 3-metre spectrograph s l i t did not allow transmission below 1050 A and 0  thus higher order of strong Te lines below 1050 A could easily be decided. 0  On prism spectrographs and vacuum spectrographs high and medium excitation exposures were taken on the same plate by racking the plate up i n second case.  A fan was used across the external spark gap to avoid arcing across the  electrodes and help raise the excitation. quite tedious.  But this excitation control was  On some of our medium excitation plates Te V lines were f a i r l y  strong, and i n some high excitation sets Te III lines appeared with reasonable intensity with some of Te VII classified lines.  Excitation Data Due to the extensive use of this source i n a l l the earlier investigations i n this laboratory, the maximum excitation i n the present set-up has been estimated between 200-230 electron volts and thus capable of exciting Te V lines nicely and Te VI lines with good intensity, a fact testified by our observations. Different sets of plates taken under different excitation conditions  H M  3  .  M >  CM M O M  rH  (-IM M M  >  M M  M M  M M M M M  M  M  M  M Q  M  >  >  C)  M H  M M  M  M  ON  CM  r—  co  SN  Fig. I E l e c t r o d e l e s s d i s c h a r g e spectrograms  G3-6308  and G 3 - 6 3 1 1 with High and Medium (a, b -  6308) and High and Medium ( c , d 6 3 1 1 ) . & * * * * * ° * i  i  ,n  60. on the 21' -grating spectrograph helped to sort cat the lines according to their proper ionization. instructive.  Blocks'  excitation data was both helpful and  Except for a few lines xie agreed f a i r l y well with his ionic  parentage assignments.  In prism spectrograph both medium and high excitation A  exposures were taken on the same plate.  For medium excitation the pressure  was allowed to develop, the external spark gap was reduced i n length to 1.5 cm. and out-put reduced by the reduction of primary current.  The character-  istics of the discharge i n two cases were different as seen from its colour. Our excitation^was supplemented by^Sister B. Handrup ( > © ) for Te II and our excitation data from spark i n Helium spectrograms. Below 2200 A , no earlier excitation assignments existed except for 0  Te II lines and classified higher excitation lines.  The variation of the  intensities of lines with the varying excitation conditions helped to decide the ionic parentage of^majority of lines. Even though almost a l l the classified Te VII lines appeared with good intensity on our plates we feel our source as presently set up is not strong enough to develop Te VII completely and some of lines according to our excitation data, well could be of lower excitation. Impurity Lines Hydrogen lines appear with moderate intensity i n a l l our low excitation plates which may come from vacuum grease dissociated water vapours or r  from hydrocarbon impurities as well as from hydrogen diffusion through heated quartz.  N, 0 and C were found as impurities due to hydrocarbons,  vacuum grease and a i r leaks.  It is a tedious chore to weed out these impur-  i t y lines, but as light ions they display simple well known spectra which are useful as standardsright to the end of our range and thus enabled us to get good wavelength data.  No S i lines were, however, observed.  21 F t . G r a t i n g E l e c t r o d e l e s s D i s c h a r g e P l a t e - P o s i t i o n s (on 12 f t . Long P l a t e H o l d e r )  Plate Not Set  ;  Excit.  V  First Second Third  9ft0-  10730 1  Low Medium High  10730- 11900- 130J40- l l l l s o - \ 1U230- 15U00- I6ii0011900 130U0 1U150 17ii00 I6I4OO li;230 151+00 6 2 3 7  *  Q-01  Q-02  Q-09 •a0-17  Q-10 •xQ-18  17100-  18300 8  HP3-0I  HP3-ot  j HP3-05'  HP3-06  HP3-07  HP3-08  HP3-11  HP3-12  HP3-13  HP3-1U  HP3-15  HP3-16  HP3-19  HP3-20  N-21^  N-23** N-?)|*a  HP3-25  HP3-26  ! HP3-c  HP3-d  HP3-e  HP3-f  ; N' N-h i N-37* N-38*  N-i N-j  HP3-k  HP3-1  N-39* N-hO*  HP3-i4i  HP3-U2  ji  Fourth  High  HP3-a  HP3-b  Q-27**  Q-28** ! ^  Fifth  High  HP3-29  HP3-30  0-31*  Q-32* !  Sixth  Very High  Q-33**  HP3-3I  Q-35** 0-36**  !  4j  3  j  N—  g  Q - I l f o r d U l t r a v i o l e t s e n s i t i v e Q-2 p l a t e 2" x 18". HP3 - I l f o r d H y p e r s e n s i t i v e  P a n c h r o n a t i c b a c k e d 2" x 18".  N - Eastman Kodak H i - p l a t e s 2" x 10". * - P l a t e measured i n f u l l . ** - P l a t e measured i n p a r t . a, b ,  1 - N e i t h e r measured i n f u l l hor p a r t b u t compared t o g e t a n y new information i f possible.  6 2 .  Reduction of the Spectrograms The methods of the reduction of spectrograms for the prism and the grating cases used i n this laboratory were discussed i n detail by George (8-llb).  The following description discusses some of them i n details (those  not listed by George) and others i n brief according to the spectrograph used, (a)  Prism Spectrograph The prism spectrograms were reduced using the well known Hartmann  dispersion formula "X  - \  +  d -d 0  A 1 0 " plate was usually divided into three to four equal regions with a good many iron lines i n between. to draw a correction curve.  These iron lines, measured i n between, helped  At times when sufficient iron and copper stand-  ards were not available, the lines measured on the 2 1 ' - g r a t i n g spectrograph served as standards. The prism measurements serve mainly to determine the order of the lines on the 21'-grating and to pick up those fainter lines which f a i l to appear on the big grating.  However, the wave-length accuracy of fainter  lines is about AX = . 0 0 2 mm. x &(A°/mm.).  The "plate factor" (reciprocal  dispersion) x £ , according to Canchy's two constant dispersion formula No A 4- B/^x , varies as Xf.  This means the wave number accuracy d ^ i s proport-  ional t o X , being about O.hk at (b)  2000  A° and about  2 k  at  1 0 , 0 0 0  A , 0  3-metre Normal Incidence Vacuum Grating In reducing spectrograms from 3-metre vacuum spectrograph the method  of Boyce and Corapton (Ii9) has been employed.  63.  For normal incidence spectrographs  e — o  Point Dispersion* ( 8~o ) *4 " Where b is grating element and / * is the radius of curvature of grating. At any angle  B , dispersion f a l l s to  9  ~jr~  Change i n dispersion  6  b / , _ Cos. >' 1  9)  If we calculate our wavelengths according to point dispersion then in a distance ds a/tie, along the plate,  Expanding  »  A gets i n error by A X  in terms of 8 , for real 0 fi( A)  Since Q a l l along the range of spectrograph does not change appreciably from zero (in our case  0^ ~ 7° or 0.12 rad.) higher powers of 9 can be neglected.  AX Thus error introduced is  b 3!  -  3  (1)  $  +ve when Q t ve, -ve when 9 is -ve.  0 is  -ve when  on the same side of the normal ( X>) as is the reflected image R . I . Fig. ( Thus i f we calculate  A u s i n g ^ , a l l X 's greater 0  than X w i l l have values higher than true values 0  while those lower than "X„ w i l l be smaller than true values.  It is easy to see from (i) that & X is  symmetrical about X„ * i n fact the reciprocal dispersion.  )  6b.  Now  nX = X  The approximate  =  b(Sin i - Sin ©)•  \  _  a  (2)  b Sin (|) A> w i l l depart from true valuelby an  X^, calculated using  amount proportional to neglected difference between value of angle and i t s s i n e  -  Acv -  \  -  = X  = X ^ + 4>CU)  l . t  c  - 4,-s  1 ^ A}.  =  —  <P  The values of  (  3  )  are calculated for each thousandth of a radian of  original angle 0 and interpolations made according to adjusted form. In.our spectrograph, the light reflected from the glass plate fixed on second tube (similar to s l i t but on the other side of the normal) also produced faint lines on the top of our spectrogram.  If \ ' is the wave-  length of the line from glass-plate reflected light and X , is wavelength of the light correctly measured at same position from direct light. Then  1 + 1'=  Since  b  =  = 10/1200 A  Also  l  b  w  l  0  b ~ 2.1(5 a  X  =  A°/mm.  calculated from Boyce and to-nyjoion- equation are given i n Table Then f i t  .  A X to a "throw-back" formula of the type £\«[a  +b  (X-X f 0  + c  =*. (2.375 + 7.08x10-° ( X  )] ( X - " x J  - 1389)+5.hli  x 10- ( > -1390) lL  ( X -138b) x IO" . 3  9  J  Correction Table frr.II ATX +ve below 1389 A°,  0  300 Std. Int.  -  10  20  30  Uo  50  60  70  80  90  3.218 3.190  3.130 3.103  3.0UU  2.877  2.796  2.717  2.7.74  2.696  2.638 2.618  2.562 2.5U3  2.271  2.960 2.935 2.201  2.068 2.055  1.939  1.877 1.866  1.533  1.377 1.370 0.933  1.137  1.587 1.578 1.098 1.093  0.755  2.003 1.990 1.U28 1.U21 0.973 0.969 0.629 0.627 0.379 0.378  0.600 0.598  1.328 1.321 0.896 0.893 0.572 0.570  0.358 0.357  0.338 0.337  0.205  0.192  0.178 0.078  UOO Std. Int.  2.U87 2.U69  2.U1U 2.397  2.3U2 2.325  500 Std.  1.816  1.757  1.699  Int.  600 Std. Int.  700 Std. Int.  800 Std. Int.  900 1000 1100 1200 1300  1.805 1.280 1.27U 0.860 0.857 0.5U5 0.5UU 0.319 0.166  0.071 0.022 0.003  -ve above 1389 A° A~X. in A.U.  1.7U7  1.233 1.227  0.82k 0.821 0.518  0.517  0.300  0.153  0.06U  0.019 0.003  1.689 1.187  1.182 0.789 0.786 O.U93 0.U92 0.283 0.1U2 0.058  0.016  0.002  3.018  2.255 1.6U2 1.633  1.1U2  2.186  0.753 0.U68 O.U67 0.266 0.131 0.052 o.oiu  0.002  2.85k 2.13k  2.120  1.U80  1.U72  0.722  1.525 1.055 1.051 0.690 0.688  1.010 0.659 0.657  o.kkk 0.UU3  O.U22 0.L21  o.koo 0.399  0.250 0.121 0.0U7 0.012 0.001  0.235 0.111 0.0U2 0.010 0.001  0.220 0.102  0.720  l.oik  0.037 0.008  0.09U 0.033  0  0.007 0  1.927  0.929  0.086  0.029  0.005 0  0.025 0.00k 0 A  * The table of A X Correction is symmetrical about the normal 1389 A and thus can easily be extended from 1389 A° to 2k50 A . 0  Std. - for standard lines.  Int. - for  XvyV«.^erto>t<wL  X' 3  Table IX 0.1x00, table in inverse form showing wavelength range i n which the particular correction is to be applied. 0  0>ooi •  0 .003  0 00*1 0Q0S  0066  0 007  0-008 0  00 f  00 fo  .39 .38 .37 .36 .35 .31+ .33 .32 .31 .30  81x2.98 81*7.1*5 852.18 857.08 862.02 867.02 872.17 877.55 882.91* 888.31*  81x2.53 1x7.01 51.69 56.59 61.52 66.51 71.6L 77.01 82.U9 87.78  81x1.95 1x6.56 51.19 56.10 61.03 66.00 71.11 76.1*6 81.93 81x.22  81x1.1x5 1x6.11 50.70 55.61 60.53 65.50 70.58 75.92 81.38 86.76  8L0.99 1x5.66 50:22 55.12 6o:oL 65.01 70.06 75:38 80:83 86.29  81x0.1x5 1*5.21 1*9.71* 51*:63 59.51* 61*. 51 69.51* 7lx.81x 80.28 85.73  81x0. OX hi*: 76 1*9.28 51*.0ix 59.05 6U.02 69.03 7U.31 79.73 83.17  839.56 1*1*.32 1*8.82 53.65 58.55 63.52 68.51 73.77 79.18 8U.61  839.12 1x3.88 1x8.1x0 53.05 58.06 63.03 68.01 73.23 78.6L 8U.O6  838.68 1*3.1*3 1*7.99 52.66 57.57 62.52 67.52 72.70 78.08 83.50  838.21* 1*2.98 1*7.1*5 52.18 57.08 62.02 67.02 72.12 77.51* 82.91*  .29  89U.02 899.67 905.61 911.69 917.80 92!ul5 930.70 937.37 9L14.31 951.1*6  93.1x3 99.08 905.01  92.86 98.51 90lx.l;l 10.1x7 16.51* 22.87 29.37 36.12 1x2.90 50.01  92.30 -97:9U 903.81 09.86 15.92 22.23  91.73 97.37 903.22 09.25 15.29 21.60 28:o5 314.68 1x1.1x0 1*8.57  91.16 '96.80 902.6ix 08.6U lit. 67 20.96 27.1*0 31*. 01 1*0.71 1*7.85  90.60 96.23 902.03 08:03 llx.05 20.33 26.71* 33.31* 1x0.01 1*7.13  90.0k 95.66 901,kk 07.1*2 13.1x1* 19.69 26.09 32.68 39.U2 1x6.1x2  89.1*7 95.10 900.85 06.81 12.82 19.06 25.1*1* 32.02 38.71* 1*5.72  88.91 91*. 57  88.31* 91*. 00 899.67 905.61 11.69 17.80 21*. 15 30.70 37.37 1*1*. 31  .28 .27 .26 .25 .2h .23  .22 .21 .20  11.08  17.17 23.51 3o:oix 36.69 1x3.60 50.7lx  28.71  35.35 1x2.10 1x9.29  900.26 03.21 12.21 18.1*3  21*. 30  31.36 38.06 1*5.01  o. ON  0 .19 .ia . .17' .16 .15 .LU .13 .12 .11 .10 v  .09 .08 .07 .06 .05 .oh .03 .02 .01 0.00  • oo-l  0 093 0*994 9-OffS 9.00 6 o-007 0.092 •6-0*9 o.O/O 955.88 95k.kO 953.66 956.63 955.13 952.93 952.19 951.k6 62.67 6k. 21 63.44 61.90 61.13 60.37 59.61 58.59 69.65 68:85 68.05 67.36 66.57 72.05 71.25 70.U5 80.22 78.56 77.73 76.90 76.08 75.23 7k. k7 79.39 88:01 86.29 85.U3 83.61 88:87 8k. 57 82.75 87.15 9k:96 9k.09 93.19 92.30 91.k3 97.71 96.79 95.87 1006:98 1006.03 1005.08 100k. li; 1003.22 1002.30 1001.33 1000.k7 m:88 13.88 12.88 11.89 10.89 09.89 15.89 16.87 26.06 25.01 23.87 22.9k 21.92 20.90 19.83 27.11 j)0.«JO 36.96. 35.85 34.75 33.65 32.5k 31. U5 30.21  0.062*  958.89 958.13 957.38 966.57 65.78 64.99 73.66 72.85 97U.U7 81190 81.05 982.75 89.69 991.U3 90.55 98.62 iooo;U7 999.55 1008.92 1009.87 1007.95 18.86 17.86 1019.87 28.19 1030.57 29.29 10L1.50 39.29 i;0.35  h-?:.66 kl.50 k5.oi 48.60 47.40 k3.83 U9.81 46.20 52.22 51.12 1053.U5 63.86 61.22 59.89 58.56 57:26 55.98 5k. 71 53.U5 65.19 62.54 1066.53 76.10 7k. 68 73.28 71.89 70.61 69.2k 67.88 66.53 78.98 77.53 1080.U5 9i:09 871Q8 86:ii5 8k. 9k 83:kk 81.9k 80. k5 1095.90 ' 9k. 27 92.67 89:53 99.22 97.22 95.90 1113.12 1111.30 1109.50 1107.73 1105.98 1104.26 1102.56 1100.88 26.60 2U. 60 22.62 20.67 18.75 1116.85 111k.97 1113.12 30.69 28.63 1132.79 51.02 46:20 43.86 1*1.53 39.33 37.11 3k. 93 32.79 48.58 53.U8 1156.02 R 2 ^ < ^.26 75.96 72.88 69.90 67.02 6k. 16 61.38 58.66 56-02 1185.95 1227.5 1222.U 1217.5 1212.9 1208.6 1204.U5 1200.55 1196.80 1192.90 1189.50 1185.95 1295.0 1281.0 1272.2 1260.2 1252.2 12k5.1 1239.1 1233.1 1227.5 lli63 - 1315  67. These have been calculated on the I.B.M. 1620, and functional relationship inverted so that a t every spectral region we know A X w i t h + 0.0005 A . 0  The central section of this relationship for |AXl^0.5 A i s given i n 0  Table IX. In actual practice the practical dispersion is calculated betx^een two standard lines AX_ „  and  after adding their respective corrections AX and (  This practical dispersion takes into account any distortions of the  plate i n the plate holder.  At wavelengths where AX changes rapidly, separate  A X corrections have to be applied for standard lines and for interpolated lines as given i n Table VIII.  These practical dispersions i n general were  very close to the theoretical value.  A f i n a l correction curve is drawn from  the other standard lines i n between the original standards. The accuracy of X ' s between 900 A° and 1900 A° was better than  0.005 A° while on either side of this region i t was ± 0.01 A * The lower 0  accuracy was bettered by many of lines appearing i n higher orders and those above 2000 A appearing on 21' grating spectrograms. 0  (c)  21 f t . Grating Spectrograph (Eagle-Paschen Mounting) The range of our 21 f t . grating spectrograph i n the present set-up is  from nX9500 A° - I8,,k00 A with a gap of 7 cm. for the s l i t i n the middle. 0  The plate holder takes eight plates of 18" length, four on each side of t h e slit.  Accordingly a l l wavelengths between 2000 A and 8000 A appear i n more 0  than one order. Hi,  0  But due to the slit-gap we losfc the nXregion,, lk,l50 A° -  230 A . 0  The present grating setting may be summarized a s follows?  68.  Angle of incidence  i = 25°  Grating Translation position = 60.17 mm. Divided head turning from large to small readings Grating Element  b  ) ) - 280 divisions , where 1 div= )  = 16,93k A (l$000 lines/inch) 0  Radius of curvature R = 6L22.lL mm. S l i t width = X(f ^ = 6 u Using the grating, equation n"X. = b (Sin  i+ Sin 0)  Where 9 is the angle of diffraction, we get inverse dispersion in A°/mm. from the relation  k _  ^  ~  d  (n>) ds  _  b cos 0 R  = 2.63687 J 1 - (2L* - sin i f ^ b  Ao/mm.  The values of j& have been calculated a l l through the range of the spectrograph and have been tabulated i n Table % \>- 69.  The experimental dis-  persion values were calculated i n general from Fe standards on our plates. The theoretical and experimental values were quite close to the theoretically calculated ones. high n X- end of plates.  The plate factor varied rapidly as we proceeded to Thus the range over which linear experimental  was applied was contracted.  The experimental dispersions were calculated  between two standard lines whose nX  were always less than 60 A apart. 0  The iron lines measured in between these small regions gave correction values and helped to check and increase the accuracy of our wavelengthfl>7fl)  Table X 21' Grating Dispersion Table i n A°/mm. 000 9 10 11 12 13 IU 15 16 17 18  2.5990 2.5675 2.5260 2.1*71*2 2.U110 2.3358 2.2U7U 2.1kk0 2.0236  100 2.5963 2.5638 2.5213 2.L685 2.k0k0 2.3277 2.2378 2.1328 2.011  200 2.5935 2.5600 2.5166 2.1*625 2.3969 2.3193 2.2280 2.1211* 1.998  300  IiOO  2.5906 2.5562 2.5117 2.1*561* 2.3897 2.3108 2.2181 2.1099 1.981*  2.5876 2.5521 2.5065 2.1*501* 2.382k 2.3022 2.2080 2.0981 1.970  5oo  600  700  800  900  2.6111 2.53U5 2.5k8l 2.5013 2.kkk2 2.3750 2.2935 2.1978 2.0862  2.6089 2.5813 2.5k">9 2.k96l 2.k376 2.367k 2.28k5 2.187k 2.07kO  2.6066 2..5780 2.5395 2.k907 2.k311 2.3597 2.2755 2.1768 2.0617  2.60kl 2.57k6 2.5351 2.k855 2.k2k5 2.3518 2.2662 2.1661 2.0k91  2.6016 2.5711 2.5306 2.k800 2.U78 2.3k39 2.2569 2.1552 2.0365  70  determinations. from \  In general  2200 - $000 (?  Accuracy better thani0.005 A . 0  Above this accuracy was of the order of  ±0.01 A . 0  Tomkins and Fred (Hh ) have suggested that this sort of linear interpolation and correction curves may not be highly accurate. methodjthe accuracy of the measurements can be increased. te d«*fce.  By their  We have not  made use of their computation programmes in our measurements. A  The sorting out of the orders of the line in these grating spectrograms is a tedious process.  While most strong lines had their ghosts to  identify their order, the other lines were identified from prism plates. In many cases the appearance of the same line i n different orders helped to identify i t .  The type of the plate used also limited the possible  number of the orders.  For example Q-plates could not photograph higher  than $200 A° while HP3 though went to 6600 A did not go below 2300 A°. 0  The comparison of such plates and prism plates allowed the orders to be sorted.  It is almost too much to hope that our  X - l i s t s are without  error but the most probable errors will be in excitation assignments. There may be some impurity lines which could not have been weeded out. We may have rejected Tellurium lines coincident with impurity lines although the impurities HCN0 (in decreasing intensity) were not strong and we may reject some lines measured on 21 ft. grating plates through inability to assign an unambiguous order. 2-Meter Vacuum Spectrograph At grazing incidence the reflectivity of the grating is very high  71.  for  lower wavelengths as compared to higher wavelengths.  However, the  reduction of the spectrograms from grazing incidence spectrographs is comparatively much more.laborious and pains taking. -The ( u-b )  a n c  increase.  theory for such reductions has been discussed by Dr. George  i he has tabulated the theoretical dispersion at every 10 A  0  He has discussed in detail various methods of the reduction  of these spectrograms prevalent i n this laboratory.  Since dispersion  f a l l s rapidly at very low wavelengths, the necessity of good standard lines becomes more important.  Thus accuracy of measurements with this  spectrograph was lower than with 3-metre normal incidence one.  However,  below $00 A° this is the only spectrograph which gives very high intensity. s  Standard Lines Primary and Secondary iron Standards ( " ) were used between vJ  2600 A° and 9000 A°, while copper and 1&50 A . 0  /  ) standards used between 2600 A°  The problem of getting standards in vacuum ultraviolet and  extreme vacuum ultraviolet (X.U.V.) is very d i f f i c u l t .  In our investi-  gation the Carbon, Nitrogen, Oxygen and Hydrogen lines ('0- ) occurring as c  impurities provided good standards a l l through our spectra  range.  Some  of the strong lines Te V 36I4. A and 3?8 A° appeared i n different orders and 0  served as standards in the region.  CHAPTER I I I  Results and Analysis  72.  Results and Analysis The majority of the lines appeared on several plates and, i n the case of the grating, the stronger lines appeared i n several orders. Whenever a line was measured on different plates, an average wavelength was calculated by giving proper weight  to each measurement.  The  accuracies on different spectrographs have been discussed i n Chapter II. The earlier measurements of the Blochs and Rao were not very accurate.  We could not find any consistency in the differences between  our measurements and their measurement. Bloch s values than Rao's. 1  However, we were closer to  Rao's values were i n general 0.12 A lower 0  than our values i n the region from 3000 A to 7200 A . 0  0  Our own measure-  ments were confirmed by the fact that they agreed with the Te II line measurements at Professor Mack's laboratory by Pick, Ross and B. Handrup ( / * ). The region from 2200 A° to 1300 A° had not been photographed since La.crouta! s time (1928).  He measured only 120 lines i n this region.  Rao and Gibbs and Vieweg apparently used his values. ments, were not of very high precision. 0.3 A . 0  Lacrout's measure-  In many cases he was out by 0.2 A°-  It i s quite interesting to note that the four classified lines  in Te IV and Te V i n this region, had their wavelengths measured correctly within "T 0.02 A . 0  Our line l i s t i n this region contains more than IkOO  lines. The analysis was started with a l i s t of 6000 lines out of which about 5600 appeared on our plates and nearly 3500 were not known earlier. Almost a l l lines has their excitations established by observation of  73-  pole-effect i n the helium spark.  Table XT gives this l i s t with a l l the  classified lines i n Te III, IV, V and VI.  TABLE XI  (a)  7li. -  CATALOGUE AND CLASSIFICATION OF TELLURIUM LINES ABOVE 2000 A  0  Different notations used i n the intensity column are as followssB  -  Intensity due to Bloch ( ^-^>),  H  -  Intensity due to Sister B. Handrup ( '8 ).  L  -  Intensity due to Lacroute ( <*").  Jl  -  Author's intensity on Grating Spectrograph (21') with  i  Electrodeless discharge source. J2  -  Author's intensity on Prism spectrograph (Hilger Eli78) with Electrodeless discharge source.  J3  -  Author's intensity with Spark i n Helium source.  R  -  Intensity due to Rao and Krishnamurthy  (20^).  Intensity i n Column B followed by a small letter stands for intensi t i e s given by Ruedy ( & ), Bartelt ( 3 ) etc. 3  A l l intensities are on visual scale of 0 - 1000  Electrodeless discharge source, on 21' grating.  0 - $00  Electrodeless discharge source, on Prism.  0 - 1000  Electrodeless discharge source, Vacuum Grating.  0 - 300  Spark i n Helium, Prism.  As mentioned earlier (page l9 ) , the intensity estimates are accurate only within restricted wavelength regions and thus relative intensities of two lines i n different spectral regions have l i t t l e significance. Also d  stands for diffuse l i n e ,  c  complex unresolved lines.  S double line. In excitation column, I , I I , I I I , IV, V, VI and VII stand for the  75.. assignment of the line to arc, f i r s t spark, second spark, third spark, fourth spark, f i f t h spark, and sixth spark spectra.  These assignments  followed by C mean the line has been classified by earlier authors. Lines with intensity between 0-5 were too weak to be measured under the comparator and i n general were picked by eyepiece (scale accuracy 1/25 m.m.), thus their accuracy is one order less than claimed for stronger lines.  R  B  V  X refers to the configurations -5s- Sp  H  Jl  J2  8r 30r 6 1 I5r I5r  8r 50r  8  J3  ^air l.A.  °K vac.  Excit.  10 20 10 20  90U2.2 03.7 8997.3 8898.00 96.L2  11056.2 11103.h 11113.8 11235.36 11237.39  I I II c II  30 30  53.00 30.38 25.25 20.30 19.67  11292.47 11321.ho 11328.01 1133U.3U 11335.18  I I II II II  09.30 8771.16 61.32 58.09 47.57 hli.25 33.83 15.95 10.23 01.13 8688.10 79.95 72.53 70.70 69.81  11348.52 397.87 II4IO.67 11414.49 11428.60  II I II I II  11432.95 11446.59 11470.07 111+77.60 11489.61  II II II III I  11506.83 11517.65 11527.50 11529.93 11531.11  II c III II II II  66.1*3 5l.81i U5.90 38.70 34.46  11535.61 11555.06 11563.01 11572.64 11578.32  II II III II II  2 2 1  10  U  8  30 30  30  80  1 h 2 10 h  20r h 15 0 1 0 0 0  30 70 30 h 25 20 25 150  8 5  5$'' and ps^P-"?^  30 ho 60 100 20  80  Class.  76. TABLE XI  R  B  H  6 8 0 10  J,  J 15 60 100 5  0 12  100  3  25  10  15 15  a 0 a  15  0 0 5 a i 30 6 a 0  3 1 a a  ao  30 30 30 30  a  20  30 10  20  200 50  80 20  15 25 30  20  0 10 2  5 50  10 30  6  ao  30  a 6 2 3 0  15 25 15 8  20  3  20 10  3  (a) (continued)  ^- a i r I.A.  Co K vac.  Excit.  28. a i 26.75 21.68 12.00 oa.63  11586.aa 11588.67 Il595.a8 11608.52 11618.a6  II II C II C II  8593.8a 78.89 75.78 67.86 a2.aa  11633.06 11653.32 11657.55 11668.33 11702.a9  III II II III X2u$s5 5d 'tf II  11712.32 11725.ia 11731.9a 117ao.67 ii7aa.22  II III I II II C  08.99 00.33 8a92.10 77.13 55.53  117a9.05 11761.03 11772.a2 11793.20 11823.3a  II C I II c II II c  U9.97 a6.89 aa.85 39.93 38.96  11831.11 Il835.a3 11838.29 Il8a5.18 U8a6.55  II c II II II II c  31.00 27.36 2a. 93 08.60  11857.73 11862.85 11866.28 11889.32  II II II II  839a.65 72.2a 66.89  11909.07 119ao.96 119a8.59 11952.22 1195a.72  II II c II II II  11987.26 11995.ia 12021.3a 120ai.8a 120a6.81  II II II c II II  35.68 26.3a 2i.ao 15.06 12. a-9  6a. 3a  62.60 39.90 3a.a2  16.26  02.10 8298.67  Class.  P  c c c c  77. TABLE JO. (a) (continued)  H  J,  li 0 15  Excit,  91.08 87.83 73.86 66.11 61.27  12057.81* 12062.56 12082.93 12091*. 25 12101.35  II II II C III II  20 5o  52.1*3 U2.58 37.60 33.22 30.12  12111*. 31 12128.78 12136.12 1211*2.58 1211*7.16  II II II II  30 15  22.88 11.53 03.59 8195.81  12157.85 12177.61 12186.1*1* 12198.01  III III II C III  90.9k 86.25 82.28 81.22 78.38 7U.07  12205.26 12212.21* 12218.18 12219.76 1222l*.00 12230.1*5  II c II c II II III II  72.U1 55.76 51i.li7 50.1k 30.1*3  12232.93 12257.90 12259.81* 12266.35 12296.06  II II c II c II II c  22.10 18.1*8 I5.1i7 10.88 03.96  12308.71 123H*.19 12318.31 12325.88 12336.25  II c II c II II II  20  808U.87 72.56 70.92 66.1*7 61*. 00  12365.39 12381.61* 12386.75 12393.59 12397.38  II II II c II II  liO  63.31* 51i.8l 51*. 00 50.03 1*6.21  12398.1*0 121*11.5U 121*12.78 121*18.90 121*21*. 80  II II c II II II  3  10  20  200 5  liO  0 15  0 1 1 0  25 25 liO  0 6 20 0 0  35 25  300  100  35  0 0 ii 8 0 8 10 li 3 0 0 0 0 0 0 2 6 1 1 3  liO 70  20 30  5  75  35  15  100  liO  30 5 20  20  15  80 80  ^ a i r l.A.  S*K vac.  J  78. TABLE XI  R  B  H  J  2 0 0 0 0  20  2  10  0  J  li 0 0 15 6 1 1 0 li 2 15  10  30  li  200 60  20  150  Class.  12L72.56 121*90.1*6 121*97.99 12508.29 125H*. 90  II III II II  82.01 80.97 80.10 75.62 57.21  12521*. 73 12526.36 12527.73 12531*. 77 12563.76  II II II II III  55.21 52.38 51.12 50.39 1*8.1*9  12566.92 12571.39 12573.39 12571*. 51* 12577.55  II c " II II II c II  1*7.79 1*5.31* 1*1*. 72 1*3.11 39.51* 31*. 20  12578.66 12582.53 12583.52 12586.07 12591.73 12600.20  II II II II II II  80  33.27 28.23 25.61 23.18 21.50  12601.68 12609.69 12613.86 12617.72 12620.1*0  II II II II II  15  18.96 15.73 12.02 09.80 01.90  1262l*.l*5 12629.60 12635.52 12639.07 12651.70  II II II II II  12653.25 12655.78 12660.07 12671.23 12675.1*0  II II II  20  00.93 7899.36 96.68 89.72 87.13  60  10  60 20  25  100  Excit.  15.1*0 03.91 7999.09 92.50 88.28  30  15  li 2 1 1 0 0 0 3  75  vac.  I I I 5 I 5p5dF -5s5p6p P II II II II  0  1 1 1 10 0  a i r I.A.  (continued)  12L27.1* 121*1*1.82 121*58.26 12U67.93 121*69.57  0 0 1 50 50 50 50d  a  liii.5o 35.20 2U.59 18.37 17.32  20 100  5 i* I* I*  A 3  ()  liOd  3  J  II  c  c c c c  c  l  79 TABLE  R  B  0 8 2 2 10 0 0  0  6 k 0  0  10  72.50  lOr  5r  0 k 0 1 k k 1 0  Excit.  Class.  12698.91* 12707.18 12716.77 1271*5.28 1278k.50  III II C II II I  07.1*1* 03.78 01.68  12786.36 12789.69 12801*. 77 12810.78 1281k.23  II II C II II II C  30 20 8  7795.56 80.29  1282k.28 128k9.k6  II C II  25 8d 15 12 8 15 15 20 30 30  62.98 61.76 2k.2k 10.7k 7699.50  12878.10 12880.13 129k2.71 12965.36 1298k.28  20 30 10  96.19 88.60 65.23 k8.k2 35.2k  12989.86 13002.70 130k2.33 13070.99 13093.56  20 20  22.2k 7589.38 85.82 76.60 72.63 69.91  13115.89 H I IV 13172.68 III 13178.88 II C 1319k.91 II 13201.82 III5s5p6sP-5s5p6pD 13206.56 II  25  7556.89 53.80 5l.k9 kl.59 32.55  13229.32 1323k.73 13238.77 13256.15 13272.07  I II II II C I  15 5 20 5 25d 8  lk.65 07.2k 06.22 Ok.10 Ol.kO  13303.68 13316.80 13318.61 13322.37 13327.17  II II il II II C  67.1*6  25 1*0  30 35 15 60  15 30  5  6l.k7 1*3.88 19.82 18.68 16.65  10 20  20 30  200 0 Ii 0 0  (continued)  air I . A . G~K vac.  H  2 8 1 0  XI (a)  30  5  IIl5£5p5di>5s5p6pI> III ' ' II , IIl5s5p6citf.-Xlk II z  II II C II C II II C  3  1  1  1  80.  TABLE XI (a) (continued)  H  10 0 15 6  10  12 1 10 0 0 1 10 0 0 0 10  J  J,  10  a  1 6 0 a  10 200  3  ao 50  100  30  80 0 25  30 30  10 10  15 0 5  10 10  200  5  100  10  20 20  20  20 0  2  10  100 5 50 10 100 35 60  <3*K vac.  Excit.  ?a 7.ai 81.00 76.72 68.U3 65.aa  1333a.28 13363.51 13371.16 13386.00 13391.38  Ill II C II II II  6i.ia 53.a8 a5.8o 23.89 08.80  13399.10 13ai2.86 13a26.69 13a66.33 13a93.75  II II II II II C  o  15 15  25 5 0 5 10  ^•air l . A .  20  10  02.08 73sa.a2 80.77 73.25 7292.76  13^.99  13538.30 135a5.00 13558.81 13708.a6  Class.  Iii5s5p5cib-5i5p6pp ni5s5p6dVx ia III II C III  1  3  89.26 63.80 a6.78 37.39 36.82  13715.03 13763.11 13799.23 13813.3a 138ia.a3  II II II c II c II  35.85 3i.ai 21.23 ia.65 10.25  13816.28 1382a.76 138aa.29 13856.86 13865.32  II II II  z  IV5^6dD-5s5p6sF  7198.70 91.08 80.23 65.02  III 13887.58 II 13902.29 III IV 13923.29 13952.86 III  a9.56 aa.6i 35.3a 20.00 16.U5 16.30  13983.02 III IV II 13992.71 ia010.88 III iaoai.o« III IV laoaa.os III II iaoa8.38  i  81  TABLE 3_J (a) (continued)  R  B  3 1  H  j  J  (  10 5 8 20 lu  78.30 68.00 63.50 59.00 51**00  11*123.80 11*11*1*. 37 11*153.38 11*162.1*0 11*172.1*6  2  12  10  150 10 100  60  1*9.85 1*8.71 39.10 20.01* 16.18  11*180.80 11*183.09 11*202.1*5 11*21*0.99 11*21*8.83  20  00.09 699i*.88 89.90 81.30 77.31* 62.72 59.12  10 35  38.95 30.93 2l*.86 15.75 13.08 07.31* 6885.16 78.10  11*281.59 11*292.23 11*302.1*1 11*320.02 11*328.2 11*358.21* 11*365.67 11*393.63 11*1*07. U8 ll*l*2l*.10 11*1*37.71* 110*55.76 11*1*61.31* 11*1*73.35 11*519.98 11*531*. 88  10 20  70.51* 67.17 66.50 53.88 1*7.79  11*550.87 11*558.01 11*559.1*5 11*586.25 11*599.22  ii  10  0  10  20 20  1  3 1 0 3 3 ii 2 1  0 0 0  100  15 15 10 10  0  2  vac. 1U055.37 11*073.78 11*085.1*0 11*099.00 11*112.00  0  1*  "Xair l . A . 7112.76 03.1*5 7097.60 90.75 81*. 22  15" 1*0  3  1 0 5  3  li 0 5 0 8 0 7 7  0 20 0 30 100 25 30 25 50 80  1*5.61 1*0  20  15 0  Excit.  I  I  I  I I  I  V  I  I I  C  I V I I  I I I I  I  I  I  I I  I  I  I  I  I  I  C 1115s I I  I I I I I  I I  c  5s. c  I I I I I I I  I  I  11 I  I  I  II I I I I  i l l 5s 11 c I  I  I  X  I I  I I  c  I I I I I  I  I  I  I  I  I  I  I  I  I  I I I I  c c  Class.  82. TABLE XI  R  B  H  / l a i r I.A.  o  25  3 1 3  20  35 0  1 0  35 25  1 k 0 0 3  10 60  10  20 00 0 0 1 3 1 2 2d 1 1 3  25  00  2  5 1 0 3 2 1 0  25 10  10 15 30  30 1 0  (a) (continued)  30  10  20  vac.  Excit.  Class.  k3.9k i i i . 76 38.25 37.65 32.59  Ik607.k3 Ik6l2.08 Ik6l9.58 lk620.87 lk631.69  II III  28.85 6796.66 95.50 8k.07 82.5k 80.31  lk639.72 lk709.0k lk711.57 lk736.35 lk739.68 lk7kk.52:  III III  61.55 51.86 k8.kl k6.l6 36.32  Ik785.k2 lk806.65 lk81k.22 Ik8l9.l6 Ik8k0.80  c I I I X9.-535P7S P  31.56 30.k9 23.06 21.51 13.00  LL851.29 lk853.65 lk870.07 Ik873.k9 lk892.37  Ob. 60  01.k3 00.61 6690.1k 88. k9  lk902.13 Ik9l8.07 lk919.90 Ik9k3.2k Ik9k6.92  87.36 86.16 8k.5k 76.08 72.70  Ik9k9.k5 lk952.13 lk955.78 lk97k.72 lk982.31  70.02 61.10 59.91 58.23 57.67  lk988.32 15008.39 15011.07 1501k.86 15016.12  ,  3  lll5i5p5dP-5s5p6pS II ill  '  III  I I  5  I I I I I I I I I  b* - X lk  I I I I I I  I I I I  I I I  I I  H  v  I  -L  iv5s$r$agt-5s7d ix c •* I I  I I  in I I  c  I I I  I I I  I I  V  c  I I  I I I I I  I I I I I I I  c c  83. TABLE XI  R  B  H  6 10  10 6  2 li  0 8  75 75 30 15 liO  0  12  00 1 3 3 2 3 li  J  20  2  200 250, 15  li  25 10 15  1 2  1 10 1 5 li li 5  &K vac.  20  661*9.73 1*8.58 lili.12 iiO.78 37.06  15031*. ol* 15036.67 1501*6.76 15051*. 32 15062.76  20 20  10.55 05.38 03.0U 6596.1*8 85.12  15123.15 15131*. 98 l5lli0.3L 15155.1*2 15181.56  82.96 78.60 7U.65 71*. 50 63.88  15186.51* 15196.60 15205.73 15206.07 15230.69  1*6.50 1*1.95 37.07 29.05 28.35 61*91.81  15271.12 15281.73 15293.16 15311.91* 15313.58 15399.75  61*89.56 87.18 7li.l*0 69.32  151*05.12 151*10.77 151*1*1.18 151*53.30  57.80 37.08 23.06 17.02 12.18  151*80.88 15530.70 1556U.59 15579.26 15591.02  01.1*7 6396.1*9 90.11* 70.88 67.11*  15617 15629.25 1561*1*. 78 15692.08 15701.30  ho ho  6 1  20 10  10 5  20  50 15  5" li 8  10  10 i5o 0  30 30 5 5  °n c i °^ c  10  1 3 6  3 1  ^air l.A.  ,  li 2  (a) (continued)  20 5  300 100 30 25  100 30  25 25 12 0 150  10 20  30  50  n  Excit.  I I I I I  I  C C I  I  I I I I  Class.  V  C C  I I I  I  I  I  I  I I I I  I I I  I  I  I I I I  c  I I I  I I I I  I  I  I I I I I I  I I I I  c  ni5s5] c c I  I  I I I  I  c c c iv5s7, c I I I I  I I  I I  ni5s5] c x 2*" . in c I I  I  I  I  I I  d  81*.  TABLE XI (a) (continued)  • B  H  J  1 7 3 1* 1  2 5 3 3 7  li 10  2  l  8  10 li  3 2 1 1 li 2 3 1  2 6  6  15  15  vac.  Excit.  Class.  15798.16 15807.1*5 15831.1*5 15861.08 15862.62  iii5s5p5dP-5s 5p6pD  6298.70 93.62 86.93 8U.90 81.70  15871.91 1588U.72 15901.61 15906.75 1591U.85  in  10 10 100  73.1*0 66.2k 60.U2 59.1*2 Ii5.1i5  15935.90 1595U.13 15968.96 15971.51 16007.22  8 0 200 100 100 20 15  1*3.21* 39.31* 30.73 21.50 16.60  16012.63 16022.92 160U5.06 16068.85 16081.51  11*. 78 11.1*0 03.29 02.25 6195.00  16086.22 16091*. 97 16116.01 16118.71* 16137.60  87.56 83.37 81.91* 80.65 71.88  16156.99 16167.91* 16171.68 16175.05 16198.03  200 100  3  K  23.10 2L.38 18.79 03.00 02.39  5  0  8  ^  1*5.51* ' 35.55 30.06  20  liO  0  I.A..  15709.22 1571*1*. 78 15751*. 76 15779.59 15793.27  200 8 25 5  1* 1 0  3 6 0 0 0  ^air  ,  15 150 15 15 l5o  15 12 liO 15  30  5  10 25  30 25 35 25  63.93 h9.^  I I  \.  1  a  1  III5J5p5dF-5s5p6pD I I I  iii5s5p5dTi-5s5p6pP in ^  I  1  I I I I  in  c  I I  c  I I  in I I  I I  in  c c c  I I I I I I  I I  c  I I  in  c  I I  I V  I I I  I I I I I I  c c  I I I  I I  c  I I I I I I I I I I  c  85.  TABLE XL (a) (continued)  R  B  H  2 6 2 5  2 8  1*  8  J  15  3  100  1*0  60  20  6 1 0 3 3 2 5 0  0  100 120 1 15  5 150 15 0 20  10  1*  1 1  3  1  1 1 3 6 0 2 1 3 3  20  8 10  20 150 5  15 12  150 150 10  16210.1*2 16211.21* 1621*2.05 1621*5.69 16252.50  II C II C II III II  1*9.1*8 1*6.1*7 1*5.10  16257.01* 16265.00 16265.98 16270.1*8 16276.36  II II II III III  1*0.25 36.81 22.51 11+.87  8  10  67.16 66.85 55.16 53.78 51.20  32.71*  5  20 25 0  Excit.  1*2.18  0 3  v5~K vac.  1*1*.1*0  20  0 1 0  ^•air l.A.  60  Glass.  II 16281.1*7 16290.60 III 16301.1*1 III IV 16328.66 1631*9.06  06.51 05.78 03.98 02.80 6090.35  16371.1*1* 16373.39 16378.22 16381.38 161*11*. 86  85.52 82.26 78.25 73.35 61*. 23  161*27.91 161*36.72 161*1*7.56 161*60.83 161*85.57  55.80 51*. 20 50.37 1*7.1*2 39.00  16508.52 16512.88 16523.33 16531.1*1 16551*.1*6  11 II 0 3 , 3 i n 5i5p5cuf5#5p6pP  25.98 22.81 22.06 19.53 17.70  16590.21 16598.91* 16601.01 16607.99 16613.03  i n 5i5p5dfr-5s5p6pb 11 ' IV IV IV?  III Hl5s5p5dif5s5p6pp  in  )  iv 5safy-5s6ab, 11 * * 11 11  in  lie  0  11  1  06. TABLE XI (a) (continued)  B  H  J,  6 1 2 2  10  10  3  200  ao  1*  3  1  7 6 6  10  a  1 10 15 6 • 10 1  a  3  7 3 2  50  10 8 15  10 10 120 100  20  0 30 20 10  10  50  300 200 30  20 20  20 ao 10 200 100 20 8 20  3 0 0  a a  5 12  5  35  100  75  100  25  3  i2 a  15 10 10 8 10  15 20  150 200  ^ • a i r I.A,  50  150  2  3 3 2 6 7  J  13.1*9 08.52  Excit.  16621.98  II c II II C III III  1662a.69  Class.  07.95  oa.37  I6638.aa l66ao.01 i66a9.9a  01.35 5V99.08 93.86 93.07 85.63  16658.31 1666a.61 16679.12 16681.32 16702.05  II C III II C  85.08 77.3a 7a. 66 72.6a 6a. sa  16703.61 16725.23 16732.73 16738.39 16760.27  III II C II C II C IV  16788.00 16826.38 1681*1.28 I68a9.60 16872.5a  II C II C III II C  16913.78 16921.16 16932.5a I69aa.85 1695a.10  IIl5#p6sfc-5s*5p6pb II III II C II  ai.ao  36.15 33.22  25.15 10.70 08.12 Oli. 15 5899.86 96.65  1  1  3  C  3  IH5^5p6s^-5s 5p6pP, l  96.13 91.50 89.98 88.89 73.80  16955.56 III IV 16968.88 III 16973.29 III 16976.a3 Hl5s 5p5dD-5s 5p6pS 17020.03  71.78  17025.88  66.15 30 30  CJ'K vac.  59.70 58.63 51.12  1  170a2.22  17061.00 1706a.12 17086.01  II II II II C II C  1  87. TABLE  R  B 2 k 0 0 3 k 5 6 6 1 1 3 1 6  H  J  8  J,  10 50  20  20  5  i5o 100 100 15  30  2 10 8  10  100 10 100 10  10  liO  80  5  1 00 2 2  0 10 10  3  0  5 li 7 li 3 10  liO 30  6  20 0 liO  15  200  75  2 2 15  10 30 300 10 25  2 2 7 0 0 3  J  10  75  150 10 35  90  0 90  XI (a) (continued)  ^ - a i r l . A . G'K vac.  Excit.  Class.  li5.02 li3.36 1*2.15 36.83 35.05  17103.8L 17108.70 17112.2h 17127.83 17133.09  28.62 27.95 26.52 2li.2li 20.31  17151.98 17153.95 17158.16 1716L.88 17176.L6  16.8U 15.77 05.75 03. OL 579L.6L  17186.71 17189.87 17219.53 17227.57 17225.25  II III II II c III  92.27 89.22 88.16 87.00 85.12  17259.59 17268.71 17271.87 1727L.86 17280.95  II III II c II  77.28 72.25 70.95 69.65 65.25  1730L.39 17319.L7 17323.37 17327.27 173L0.L9  iii5s5p6dP-5s"5pLfF II c II II c  63.9k  55.86 L8.70 L6.31  173LL.L3 173L8.L0 17368.77 17390.L3 17397.66  L5.75 L1.6L 39.86 36.30 32.L5  17399.35 17L11.81 17L17.20 17L28.01 17L39.71  62.62  II c II c III IV II c II  iii5s 5 5d|-5s5p6pF 1  P  II c II c II c  z  i  II II c II c III II II c II iii5s-5p5dtf-5&5p6pD  88 TABLE XI (a) (continued)  R  B  H  J  6  10  0 20 1 2 2  15  20  15  100 20  35 0  1 10 2 2 1  100  3  0 2  10  6  15  50 250  h h  10  15  h  ao  10  a  15 20  20  30  30 30  0 100  5o  75  5o  200 30 100  300  00  ao  10  5  0  a 1  6  15  20 100 20  20  25 l5o 15  0  a 1  10  0 0  70  100  ao  8  3  6  3 2 0 8  10 00  15  17a89.67 17505.93 17511.36 175ia.05 17537.83  II II II II C II  175a3.31  17560.7a 17565.ao  86.30  17579.a2 17581.2a  II II II II II  85.7a 79.6a 77.16 76.13 72.28  17582.97 17601.88 17606.a7 17612.76 1762a.72  II C II C II II II C  67.90 66.56 66.20 60.53  17638.33 176a2.50 176a3.62 17661.29  II II II C III  55.17 51.93 51.75 51.60 a9.26 ao.76  17667.80 17688.16 17688.72 17689.20 17696.52 17723.18  II C II C II II C II C  36.90 36.08 32.27 30.62 27.ao  17737.92 177a9.91 17755.11 17765.27  23.65 18.a7 08.93 06.17 05.88 5592.90 91.11 82.73 ao.as 78.78 76.35  17777.11 17793.50 17823.79 17832.56 17833.a8 1787a.86 17880.58 17907.ai 179ia.63 17920.09 17927.89  100  09.00 08.12 00.38 5698.60 92.9a 91.a3  100  25  1  3  Excit.  10.77  60 aoo  0 1  a  G'K vac.  16.08  0  a  ^ • a i r I.A.  80 00 80  60  20  20  5 250  50  86.89  Class.  17735.3a III II c II III II c II III II III5S5P6SP-5S5P6PP,  II IIC II C  :  39. TABLE XI  R  H  3 0 1 1 2  2  iiO  2  30 25  J,  "^air l . A .  J,  B  GT* K vac.  Excit.  17950.58 17952.58 17957.67 17959.80 17962.77  -I I C II II C  10  69.30 68.68 67.10 66. U5 65.53  25  58.62 56.23 U2.00 37.92 36.66  17985.09 17992.83 18039.01 18052.30 18056.Ul  32.05 25.90 22.ii8 17.55  10O71.U5 13091.56 18102.79 13118.96  IU. 13  87.95 8U.32  18130.20 18169.99 18198.30 18216.69 18228.75  80.78 79.08 77.65 75.25 7U.66  182L0.52 182L6.18 18250.9li 18258.9U 18260.91  72.16 69.33 68.60 68.08 66.62  18269.25 18278.70 18281.13 18282.87 18287.76  65.16 59.67 57.29 55.89 U9.8ii  18292.6U 18311.02 18319.01 18323.71 I83iiii.08  20  0  5  6 k  2  30 0 35 200 15  1 h  3  20 0 15 150  ii  ii  10 2 6 1  15 20  10 0 15 150 5 15 100 200 100 10 1 15 15  30 30 200 30  80  15  5  0 15  00 0  10  5 3  15  7  15  20  75 20 0 00 75 300  (a) (continued)  6o  80  02.05  Class.  3  i l l xio-5s5p8s P; II c  III  III5S5P6SP-5S5P6PP ll ' ° li Ili5s5p6s'pl5s5p6pl> Iii5s5p5di5-5l5p6pi) II c  II II c I I I IV II II c  in II  in  11 c II c  vn.  H  O  O  O O  vn  vn ro  H O  H O  ro v n  H v n  H  N  o  C~  ON  O  vn  ro co vo vo C r Vo C r • • •  oo  O •  Vo •  O N - J - 0 O ro ro  oc  o - o • v n ->J  cx cc C C r  H H  oc cc CC H vo vo  H H  H H  O  oo c c oo co O N C r O vo H c r vo —o  H H  O  H H  O  M  O  1  v n  H  VO  v-  1  oro  H v n  vo  H v n  H  vo  ro  O  v n c - v o  o  o  ro v n  C r  o  oo  O  r-  1  ro vo • f co  Y-  ro vo vo O C T <« • vo ON ON V o  c vn  o  C r • • Co O ON O  cc O N C r v o  CD  ro ro C r v o ro c r c r - o  cc co oo cc - j —o —o ON C r v o ro cc O vo H C r  O H H  oo  v n CO v n  •a v n o.  vo v n  ON —J • H ON  H oc ON —J v n  H oo ON ro ON  o  v n COHO  vn vn  vn  I  _ O  H cc ON ro NO  H H co co ON ON ro ro co-*]  O ro vo C r ON c - v o vo v n ON  M  O  H  CC  ro O  v n ON ON ON VO ON ON ON • • • • r O pr O N v o v n ON v o  H M  H  ot  • C r H  1  vo  H  O  r-> y- y->  1  cx - j  -  M  M  O  ro  ro  H  ro  ro  o oooo  ro v n  co —j ON -O  «  O  O H  o o  cc cc cc cc oc - j V o ro oc v n vo cc  H  ro  C T H  vnui ro vn. vo  H  H ro H H • • H o Vo C r  }-> t-' r-  1  oc cc OO ON v n ON  H  vn  O v n • o O  cc vo .— N° VM  |vi  ro v n  oo  r- r- >-•}-• >-> 1  Vo  ro  M  H  vn ovoo Oo OoO o Oo  H  C T  H  vn  H O  H  H Vo Vo O  ro  ro O  oo  ro  vn ro  C r v o  -0 v*) • ON v n  CO C • ON ro -  o  oo  V- h1  1  }->  CD OO CC CO CD  o  o  O N v n v n v n v n ON ro ro c r ON v o O N ON H ro — j C r  H H  vn— J o  o  H H  H H  H O  O  vo vo vo v n ON ro • • • VO VO O vo  ro ro  ro v n  v n  o  ro O  ro O  H H ro ON ro • • • C T - . J c r ro v n  o  ro v n • Vo ro  ro ON •  o  co  - j - j  v n vo ro ON c o ON  ON ro O v n  H H  O  H H  O  vo  ro C r  vo  —J ON c o  H H  H H  O  O  ro  O  ro vo CD r o • • cr - j co-vi  vo Vo • v n vo  c r ro « ro o  j r v n • H w n  y- y- h-> }-> }-• 1  CD CC CD OO CO  c-rc-c-c-  oo  H  ro v n  1  OC CC CD CC  oc C r c r v o vo Vo H O vo ONVn CC H v o v o v o ro - o H ON oc co Vo ro -~J  o  H < v n  H H  H M  W  M  <i vn.  WW  ^  a,.  v n  v  p.  r"-r  -rjn,  v^i* v n  un CO  '  t J ^  v n ca v n v n  D>  91. TABLE XI (a) (continued)  B  H  J,  u U 2 1  10  3  10  2 1  15 8 20 10  ii  2 2  2 2 0 2  h  2 0 3 3  20 10  15 10  vac.  80.L9 78.56 71.19 6U.L0 59.10  18932.37 13939.29 18965.76 18990.25 19009.38  Excit.  Class.  III 5s5pP-5s5p6pD III III IV II III IV 1  19019.IU 19053.06 19063.27 19076.11  75 5 15 200 0  liO  38.13 32.69 30.38 27.U7 23.82  19085.U6 19105.30 1911U.10 1912U.0U 19137.77  22.11 19.52 15-9U 08. Ul 08.08  191UU.03 19153.53 19166.30 1919U.37 1919$.$9  IV 5s5p6sP;-5s7dD  19267.75 19292.58 1931U.83 19319.01 19325.58  III IV ni5s 5p5diT-5s5p6pS  10  30 15  II ni5s5p5drA5s5p6pD II c II c 3  3  3  3  II c III IV IV III III II c II c 1  » , • • > .  1  100 125 125 0 200  100  5188.58 81.90 75.93 7U.81 73.05  35 120 20 35  20 30 20 Uo  71.U2 6U.02 5U.2U U9.9U  19331.67 19359.36 19396.08 19U12.31  20  UU.08 U3.5U U2.17 38.32  19U3U.U2 19U36.U6 19UU1.6U 19U56.20  II III i v IU 5s5p7s Tf-X12 III IV  37.35 3U.26 33.20 31.02 29.93  19U59.80 19U71.58 19U75.61 19U83.87 19U88.01  III IV  25 50 10  0 00  ^ a i r l.A.  56.UO U7.0U UU.23 Lo.70  )0  2 3 1  20  3  30 10 10 10  30 5  J  150 250 30 20  10 30 0  2  3  A  35 30 30 30 20  0  0  J  10 CO lOOd 100 0  20 25  20 Uo  * - Lines of entirely different nature  l  III X 6 - 5 ^ D 8 S P! 3  II c II II c II c II c  II c II c II  2  i  i  92. TABLE XI ( ) (continued) a  R  B  H  0 2  20  10 20  Uo  10  3  2  J  20 30 5 100 25  1  0  J.  10 10  10  0  15  3  2  20  2  0  20  6  10  1  150 5 0 50 5o 10 ho  2  L  25 15  80  75 10 10 15 200 15 100 00  3  20  10 10 20  10 30  Uo 20  100 50  00 0 5 200 100 10 20 25 30 30  25 100 60 5 5 15  10 30  30 10  ^-air l . A .  G'K vac.  Excit.  2U.0U 12.13 07.8U 05.52 5096.56  19510.36 19555.89 19572.31 19581.20 19615.61  II II C IV II C IV  93.28 90.18 82.61 79. U3 75.UO.  19628.2U 196U0.19 19669.U3 19681.75 19697.37  I I I IV II C I III  72.16 68.75 65.70 63.02 61.96  19710.00 19723.2U 19735.11 19715.56  197U9.69  III II c III IV  60.37 U8.U5 U2.75  19755.86 19802.53 1982U.91  II G III III  Ul.19 37.9U 30.76 20.39 17.15  19831.OU 198L3.87 19872.18 19913.22 19926.07  I I I IV II C III I I I X6i  09.3U 07.15 03.26 00.82  19957.13 19965.86 19981.U2 19991.16  II c  U997.90 9U.10 92.88 85.06 78.U3  20002.8U 20018.06 20022.95 2005U.35 20081.05  I I I IV I I I IV I I I IV III III  75.75 69.23 61.88 59.95 52.9U  20091.86 20118.22 201L8.05 20155.88 2018U.U0  I I I IV IV II c III  Class.  TABLE Xi  B  H  J,  2  1  10  3  2  10  2 U  0 ii 6  15 6 30 20 100 30 150  3  1  7 5  10 6  20 20  6  6  30  25 150 120 15 150  50 100  15 75 200  6  "8 .2  10 li 10  5  J 20 25 10 100  3  (a) (continued)  ^air l.A.  <o"  K vac.  Excit,  20  38.69 25.23 ?n.?9 19,11  202U2.63 20297.97 20318.35 20323.22  10 20 30  13.72 12.03 10.58 0U.UU  203U5.51 20352.51 20358.51 20383.99  01.16 U899.36 9U.99 93.63 89.21 85.21  20397.63 20L05.12 20U23.3U 20U29.01 20UU7.U7 20U6U.25  II C III IV II C II C III II C  20U70.58 20U86.6U 20U99.7U 2050U.91  III 5s! IV i l l 5s" II II c  30  10 Uo 30 liO  II C II C III II II II  5s' C C C  6 1  15  33.70 79.87 76.75 76.70 75.52  0 15 6 15  100 30 75  .75 20d 250 75 200  Uo  72.U9 69. U6 66.25 65.13 6U.10  20517.66 20530.U2 205U3.96 205U8.69 20553.OU  IV II II c II c II c  25 5 25  0 10 20 50 100  30  56.76 5U.00 U7.82 Uli.98 U2.90  20582.65 20595.80 20622.09 2063U.21 206U3.03  III IV III IV IV II c  U1.72 U0.30 39.32 35.55 33.92  206U8.06 2065U.12 20658.30 2067U.liO 20681.37  li  6  1 0 0  10  10 25 25 30 15  30  liO  XU99.9S  II c II c III  Class.  9U  T A B L E  R  B  H  J  10  15  30  li  6  10  250 20 10 120 0  3  liO 20  00 0 0 10  0 0  5 1  10  li 5 12  li li 7 2  0 1 0 li 2 5  6  1 20  10 3 15 1  3  1 U 10  10 10 10 100  100 10  10 120 10 120 15  30  200 koo 0 5  60 30  100 35 200 30 20  30 20 UO  10 0 5 0 .100 75 25 200  20 10 30  XI  (a) (continued)  ^air l.A.  vac.  31.28 29.39 28.U 2 27.11* 19.81  20692.67 20700.76 2070U.92 20710.U1 207U1.90  19.U8 15.01 13.06 11.35 10.08  207U3.32 20762.57 20771.02 20778.UO 20783.89  09. Ob 05.99 03.15 U796.09 9U.57  20788.21 20001.57 20bl3.86 20bUU.U9 20851.10  92.52 8U.88 83.52 75.U6 7U.65  20860.01 20093.31 20b99.25 2093U.56 20938.11  71.56 69.77 66.06 65.00 63.63  20951.67 20963.92 20975.8U 20980.50 20986.5U  57.Hi 56. UO 53.22 U9.85  21015.16 21022.85 21032.U9 210U7.UO  U0.95 38.67 35.92 33.67 31.26  21086.90 31097.05 21109.3U 21119.68 21130.12  Excit,  I I  C  I I  C  I I I  I I I I I  I I I I V  I I  c  I I  I I I I I I I I  c  51  i n 5s I I I I I I  c c c  I I  I I I I I I  c c  I I T V I I I I  C C  Class.  95 TABLE  J2  J3  A a i r l.A.  200 20 300 10  20  29.88 26. 9U 25.8U 18.22 17.31  21136.28 211U9.U3 2115U.35 21188.51 21192.59  6 10  20 25 10 20 10 100 30 Uo 250 100  16.82 12.31 11.1b 06.53  2119U.79 21215.07 21220.16 212U5.63  U  5  20 15 100  03.15 01.17 96.39  21256.38 21265.33 21287.01  1 8 2 2 1  15 0  8b.U3 86.92 81.06 76.85 76.57  21323.IU 21330.01 21356.71 21375.93 21377.21  35 10 15 5 30 20 35 i5o 100 10 15  76.12 73.75 70.12 65.36 6U.17  21379.26 21390.10 21U06.72 21U28.65 21U3U.07  15 15 35 250  57.88 5U.37  21U63.01 21U79.19  U9.12 U7.5U U5.23 UU.81  21502.U6 21510.7U 21521.UU 21528.02  U3.55 11,26 Ul.12 38.38  21529.22 21539.8U 215UO.U9 21553.21  iii5s 5p6p\-5#5p7sV c  37.90 36.70 33.90 33.26 30.61  21555.UU 21561.02 2157U.0U 21577.02 21589.37  in  B  H  U 2 6 0 0  10 3  3  li  5 5  OO  5  3 5 10  2 10  10  15  0  5 2  li  2 0  1 5  3 li  •  Jl  X I (a) (continued)  15  8 5o 30 250 0 20 10 25  25 15  150 200 15 10  10 75 6 20 50 100* 10 100 liO Uo  10  25 0 0 30 20 100  30"  70 60  75 25 10  20  20  G"K  vac.  Excit.  I I  Class.  C  9 3 „ 3 IIl5s5p6sP-5s5p6pD 1 1  I I  '  I I  C  I I  C  I I I  I I I I  C  c  I V  I I I  I V  I I I  I I  c  I I I  I I  c  I I I I I  I I  c  I I  I I I I  c c  I I  I I I  I I  c  I V I I I I  c c  I I I  2  I I  I I I I  iii5l5p5dV-5s5p6 p ,  P  I I  96.. TABLE X I  B  H  J l J2 J3  1 2 1  0 1 0  25 75  20  20  1  10  15  8 50  10  0  10 250  5 10  0  20  0 0 25  3 1  6 5  15  60  1 2  0  2 0  8 3  5 l  75  15 0  20 15 30 120 10 25 15  50  10  00 15 25  0  15  5  69.93  io  86.98 81.11* 79.31* 77.81 75.58  o  7U.57 72.32  30  69.71 68.97  100 25  20 15w  70.1*0  61*.85 63.95 62.1*3  61.98 20  59.18 57.79  55.21*  53.95  52.60  21721.71 21733.70 21737.99 2171*2.20 21761.93 21769.01* 21780.75 21791*. 76 21822.53  21831.11 21838.1*0 2181*9.01*  21853.86 21861*. 61 21873.80 21877.10 21880.61* 21900.38 2190L.70 21911.99 2191U.16 21927.61 21931*. 30 2191*6.57 21952.79 21959.30  C  I I  2161*0.90  21706.81 21709.92  02.1*0  I I  21633.01  05.56  1*599.86  Excit.  21591.09  21658.38  93.90 92.1*0  15 0 75  C K vac.  15.86  98.95 98.07  150 25  10  21.25  19.59  01*. 90  0  3  Xair l.A. 30.21*  0 0 2  (a) (continued)  I I  c  I I I I  C  I I  C  I I I  5i  I V  rv  5, I V  I I I  I I  I I  C  c  I V  I I  I I  c  I I  ni5s ! i  I I  c  I V  I I I  I I  I I I I  c c  Class  97 TABLE XI  R  (a)  (continued)  B  H  J l J2  J3  ^ a i r I.A.  C K vac.  Excit.  li  3 0 0 1 li  10  20  52.18 51.62  21961.32 21966.92 21970.10 21988.1*6 21991.31  II C II II C II II  1*5.07 U3.7li 1*2.65 1*1.50  IV II II II  38.26  21995.72 22002.15 22007.1*3 22013.00 22028.71  37.08 35.85 3U.U5 30.1*5 29.50  22031*.!*!* 2201*0.1*1 2201*7.22 22066.68 22071.30  II C II C  26.87 26.75 25.37 23.53 22.20  2208i*.12 22081*. 71 22091.1*1* 22100.1*3 22106.92  Iii5s5p5dl£-5s5p6pl) II c  21.1*5 16.16 11*. 79 11*. 05 10.82  22110.59 22136.1*8 2211*3.20 2211*6.87 22162.73  III II  07.31 0l*.51* 02.68 01.73 1*1*98.58  22179.98 22193.62 22202.78 22207.1*7 22223.01  97.10 95.78 9l*.l*3 92.73 91.13  22230.32 22236.85 2221*3.53 22251.91* 22259.87  2 2 li 5 1 1 0  10  li 2  1 0  3  1  2 2  3  5 10 10 10  35 20  15 liO 75  75  15  10 0 10 25  20 10 20 15 75 20 30  1 0  20 10 30  0  10  1 1 li  6  20 10 10 20  25  2  3  30  1  3  5  20  25 lOd  20  15 15  20  20 0 25  10 30 liO  10 10  20  50.36 1*6.57 1*5.98  Class.  II C 3  I I I 5s5p6dV-XH*  II c III III$£5p5d T - X l l * , III II  II  A  98. TABLE XI ( ) a  R  B  H  Jl  J2  J3  1 3  3  10  35  30  3 3  3 2  10 10  30 25  20 20  10 100  15 15 25  10 10 200 10 10  1  1 00 5 5  10  6  8 5 15  82.28 81.79 78.68 76.61 7U.30  22303.81 22306.2U 22321.73 22332.05 223U3.57  72.86 69.UU 68.52 67.6U 66.26  22350.81 22367.91 22372.52 22376.92 22383.83  12 12 5  6U.97 62.53 60.63 57.5U  22390.30 22U02.5U 22U12.08 22U27.61  20 BO 15  55.6U 55.28 U9.06  22U37.17 22U38.98 22U70.35  25 15 l5o  U7.65 U7.01 U6.02 3U.97  22U77.U7 22U80.65 22U85.72 225U1.76  33. UO 31.00 30.19 28.60 28.18  225U9.7U 22561.96 22566.08 2257U.18 22576.32  27.38 25.98 21.78 21.15 16.96  22580.UO 22587.5U 22608.99 22612.21 22633.66  20 200 Uo 50  -  0 5 0  3  25 5 5  25 75 5 20 50 15 200  100  & K vac. 22262.69 22268.7U 22273.01 2227U.20 22291.57  UO  0 5  0  00 2  A air l . A . 90.56 89.3U 88.U8 88.2U 85.7U  15 75 30 Uo 20  1 1  (continued)  80 20 20  20  Excit. II II II II II  Class.  C C C C  II III II C  IV III II III III III X ^ s ^ s  \  III III II C IV I I  c  5s6dj>5p s, , l  Ili5s5p5cttfc5i5p6pp ,  i  Ill  X3-5s5p8sV  III IV IV II II c III IV  99 TABLE XI (a) (continued)  B  H  J3  22711.17 22715.66 22728.62 227ai.5a 227a6.oa  II c IV III II II c III  93.59 89.99 87.80 86.8a 86.50  2275a.06 22772.72 2278a.08 22789.07 22790.83  15  85.12 8a. 71 82.90 81.12 80.70  22798.00 22799.61 22809.5a 22818.81 22820.99  II II c III IV II III  i 30 20  30 25 20 150 30 50  80 25  79.87 79.67 77.12 73.01  22825.32 22826.36 22839.66 22861.11  III II II c II c  10 2  30  25 250 20  30 25  71.30 70.56 68.23  22870.06 22873.93 22886.12  lll5s5p6p^5s^p6dF; Hl5s 5p6s r-5s5p6pP II  65.95 65.00 6a. o i 61.27 6o.ai  22898.07 22903.05 22908.25 22922.6a 22927.15  III , • , lll5s5p6pP-5s 5p7sY II c ' II c  3 a  a  a  2  10 75 50 25 100 5 10 120 25 10 5  a  20  00 70 5 1*5 10 35  30 30 30  ao 20 30  25 0 1  1 9 a  12  Glass.  01.88 01.01 a398.50 96.01 95. i a  5 0 0  8  Excit.  Ill5s5p6pp5s5p7s p; IV III IV III  a  5 h  K vac. 22660.27 2266a.58 22686.80 22692.a7  6  I  X a i r I.A. 11.77 10.93 06.63 05.51  2  k  J2  30 300 35 350 5 15 5 20  h h  0  Jl  9 7  15 20 i5o 10 60 10 15  75 ao  100 200 100 a5o  10 30  $ 15 10 10 15 200  58.31 55.8a 53.10 52.18 51.27  3  r  II c ni5i5p6pD 5s5p6d^ r  x  5  l  l  22938.25 3 22951.26 ^j Hi5s5p5d^-5s5p6p\ * * ( . i a ) 1.39, 22965.70 22970.55 IV 22975.35 1  1  1  100.  TABLE XT (a) (continued)  R  B  H  Jl  3  5  25 200 Lo 25 150 20  2  J2 J 3  air l . A . L3L9.30 L8.07 L6.86  <oK  vac.  Excit.  22985.75 22992.26 22998.66  C  I I I V  C  I I  10 5 Lo 35 20 15 15 0  1 1 0 0  00  1 0  30  x5 35  10  3 3 3 1 L 00 1 1 00  30  Lo*  0  0 0 10 80  150  20  Lo  0 8 100 15 15 75  30  75 10  20  0 10 5 0 10  U5.18 LL.LO L3.22 L2.L6 L l . 95  23007.55 23011.68 23017.93 23021.95 2302L.66  Ll.02 LO.33 39.7L 38.58  23029.59 23033.25 23036.38 230L2.5L  35.93 3L.07 32.5L 32.03 31.21  23056.62 23066.51 2307L.65 23077.36 23081.7L  29.02 28.76 27. LO 25.77 23.77  23093.L1 2309L.79 23102.05 23110.81 23121.50  22.71 21.96 20.91 20.35  23127.16 23131.17 23136.79 23139.79  19.29 18.22 17.15 16.56 16.20  231L5.L7 23151.20 23156.9L 23160.10 23162.03  15.39 13.L 2 13.03 12.18 09.03  23166.38 23176.96 23179.05 23183.62 23200.56  Class.  I I  C  I I  I  I I I  III  V  xB ~ 5s%fisif c %  I I I I I  c  I I  I I I xL 5s5p3s P , lll5s 5p6 P-5s5p6dF ° r  i  P  i  I V I V  ll c  3  9 t  llT5.^5p6p'B-5s5p6dF ,  ( >  I I I  I I  c  I I I  I I  c  IH5s5p6pP-5s5p6d¥  II c  I I I  i l l X3-5i5p8s 'p"  101.  TABLE XI (a)  R  B  H  LO  1 1$  0  Jl  J2  J3  ^•air I.A,  200  20 15 li50 5  30 75  Ii307.l8 06.57 02.27 li297.35  23210.53 23213.81 23237.01 23263.60  30 10 100 100 5  96.72 9U.78 91*. 28 93.39 89.li9  23267.02 23277.52 23280.23 23285.06 23306.22  88.55 85.87 83.65 83.03 81.88  23311.33 23325.96 23338.Olx 2331x1.1x2 2331x7.68  80.33 79.1i8 77.86 77.li6  23356.11x 23360.77 23369.62 23371.80  1 5 5  3 7  a 10  l* 5  6  10 12  1 1  0 1  2  2  li 5  6 • li  10  3  2  a  a  10  30  h  2  5  li  2 1  2 1  (continued)  80 120 0 20 10 10 15 10 20  U  20 25 30 liO 10 20 0  vac.  Excit.  II C , , ni5i5p5dP;-5i5p6pD  3  III II II c II c II c II III II c II c  liO 100 00  30 30  76.73 73.U3 69.73  23375.79 23393.81x 23lxllx.lO  II c II c  25 0 250 25 5  25  61x.35 63.33 61.10 59.26 58.32  23lxli3.61x 23lili9.2li 231x61.51 23li71.61x 231x76.82  II  57.57 56.10 51.62 51.15  231x80.96 231x89.07 23513.81 235l6.lil  1x8.00 lx6.U7 1x5.92 lxli.97  23539.1xlj 235li2.37 2351i5^li2 23550.69  20  ho 10 liO 10 20 15 15  70  20 30 20 20  Class.  II III IV III IV II II c II c II c III  102  TABLE X I (a) (continued)  R  Jl  J2  3  10  5 35 10 5 80  2  10  B  H  0  10* l  2  1*  h  5  I*  h  10  10  20  6  0  LO  2  3  20  00 1  3  10 15  2  li  10  1  2  10  3  li  8  a  50  80 5 100 10 75  J3  10 30  25 30  200 00 15 30 30  100  25 10  15  25 25  15  00 25 15 10 0 20 10 10 25 10 300 35  20  10  20 30  3-air  l.A.  U239.39 37.lili 36.9U 3U.79 31.77  K  vac.  Excit.  23581.68 23592.53 23595.31 23607.29 2362li.l3  30.87 30.33 28.1*8 27.71 25.73  23629.16 23632.17 2361*2.51 2361i6.8l 23657.89  20. h3 15.72 15.07 12.58 11.86  23687.59 23711*. 05 23717.70 23731.72 2371*1.1*1  11.32 10.37 Oli.75 1*199.89 99.32  23738.82 237Ui.l7 23775.96 23803.16 23806.69  97.98 97.25 95.57 91*. 55 93.31*  23809.61* 23818.1*3 23827.96 23833.76 2381*0.61*  92.58 91.87  2381*1.95 2381*9.56  8U.89 61*. 01* 83.66 81.59 80.92  23888.76 23893.61 23895.78 23907.60 23911.1*3  I I  Class.  C  I I  I I  C  I I I  I I  I I  C  I I  C  Hl5s5r7s P> X l l * :  I I  C  I I  C  z  I I  lV5s5p5dg-5s 5p6p\ c * I I  I I  c  I I  c  III I V  5s5p5a%-5s5p6 b P  :  103  TABLE  E  5  8  J3  ^ a i r I.A.  G'K vac.  200 10 00 25 35  30  bl79.2b 78.71 77.39 76.15 75.3li  23921.0b 2392b.08 23931.63 23938.7b 239b3.38  73.1b 69.78 65.58 63.55  23955.99 23975.30 23999.52 2b011.22  63.3li 59.87 58.U3 55.U2  2b012.b3 2b032.b5 2bOb0.77 2b058.l8  55.1b 52.89 52.36 51.83 b9.05  2b059.80 2b072.83 2b075.91 2b078.98 2b095.11  20 0 bo 15 20  b5.93 bb.58 b3.06 U2.09 bO. 30  2bll3.2b 2bl21.09 2bl29.9b 2bl35.58 2blb6.02  1  10 20 5 5 20  37.31 36.28 33.90 33.5b 32.bl  2bl63.b6 2bl69.b8 2bl83.39 2bl85.b9 2bl92.10  li 2  5 10 20 5 30 20  31.78 30.96 29.12 28.18 27.33 27.00  2bl95.79 2b200.59 2b211.b3 2b2l6.95 2b221.93 2b223.87  H  5  6  Jl  6  8  25  li  li  15  5 0  li 1  6  10 200 10 100  25 5  200 30 30 10  8  35 10 20 300 15  75  1  8  0  3 2  ( a ) (continued)  J2  B  2 1  XI  12 15  50 30  30 0 30  0  liO  Excit.  ill  Class.  5l5p5dD-5s5 6pP P  a  in I l l iv IV II c II c in 5S5p5dV-5*5p6pl| II c III IV II c II c .  in 5s5p6sP°-5s5p6pV  in  II c I I  II c  in II c II c  lOli.  TABLE XI ( a ) (continued)  R  B  H  J l J2  120  10 25 300  J3  30  35 0  io  1 1 I* 30*  10  150 15 20 15 0 30 5 15 15 15 125  io 15 150 300 20 25  10  o  5  5  8 10  10  8 0  30  ho  ho  20  £10 15 15  20  10 10  50 30 15  7  5  0  ho  1*00 300  75  20  ioo l*5o  15  air I.A. 1*126.55 23.50 22.89 20.50  vac,  Excit.  Class.  21*226.50 21*21*1*. 1*2 i n rv III 5s5p6sP*-5s5p6pP 21*21*8.01 21*262.07 III IV 5  l  i  16.32 13.56 12.50  21*286.70 21*302.99 21*309.25  11.81 10.80 09. 1*1 08.75 07.06  21*313.33 21*319.30 21*327.53 21*331.1*3 21*31*1.50  II  06.28 03.96 03.39 01.06  21*31*6.07 21*359.82 21*363.21 21*377.01*  II II  1*0.97.86 97.1*0 96.65 95.39  21*396.08 21*398.81 21*1*03.30 21*1*10.78  91.90 91.01 88.97 87.13  21*1*31.66 21*1*36.97 21*1*1*9.22 21*1*60.16  III IV III IV II III  85.75 83.92 83.23 82.1*3  21*1*68.1*2 21*1*79.32 21*1*83.52 21*1*88.32  II III  80.81* 79.58 71*. 88  21*1*97.86 21*505.1*2 21*533.68  73.1*8 73.16 72.78 71.18  21*51*2.11 2l*51*l*.03 21*51*6.30 21*555.97  II  II II  ii c III 5s5p6sP,-5s5p6pF III IV III IV  1  II i l l 5s5p6sP-5s5p6pD i l l 5l5p6sP] -5s 5p6pP II c >  1  o  105. TABLEXI (a) (continued)  B  H  Jl  J2  J3  25 10 10 15 10  12  1  5oo  1 1 10  10  5 2 '  1 2 30 20  300  5oo  10 5 30 12  25 IiOO  100 50  Uo  5 30 30 15  1  150 75  Uo  Uo 30  6  10  10 8  1  Uo 10 150 0 0  U  10 20  62.13 59.37 58.78 57.77 55.79  2U610.66 2U627.39 2U630.97 2U637.96 2U6U9.12  55.58 55.01 52.29 51.28 U9.68  2U650.U6 2U653.92 2U670.U6 2U676.61 2U686.36  U8.89 U7.17 U6.7U  2U691.18 2U701.67 2U70U.29 2U719.7U 2U72U.38  Ul.32 35.6U 35.03 32.87  U  10  2U576.97 2U582.10 2U588.15 2U601.70  U2.90  20  10  <3" K vac.  U067.70 66.85 65.85 63.61  U3.U5  00  0  I.A.  UU.21  0 30 15 10 10 2  A air  2U727.75 2U737.U1 2U772.22 2U775.96 2U789.23  29.7U 28.56 26.26 2U.91 2U.53  2U808.U8 2U815.7U 2U829.91  2U.15 19.88 19.57 18.33 16.77  2U8U2.93 2U869.37 2U871.29 2U878.96 2U888.62  Excit. . IV I I I IV III III III  IV  5s!  II II II  III II II  C  51  I I I IV II II  c c  IV II  III  II  c  III  2U838.2U 2U8U0.59  iv 5s II  c  Class.  106.  TABLE XI  B  H  3  6 20  6  30  1  6  J3  "A.air l . A .  2U899.97  30  U01U.9L 13.86 11.69 09.70 Ob. 23  2U906.66 2U920.13 2U932.50 2U9U1.6U  II II C  Uo Uoo 100 5 8 Uo 15 0  06.52 03.02 01.65 3998.28  2U952.28 2U97U.09 2U982.6U 25003.69  II C  95.85 95.23 93.6b 93.10  25016.89 25022.77 25032.U8 25036.12  92.38 91.72 90.06 88.36 87.69  250U0.63 250UU.77 25055.19 25065.86 25070.07 25073.09 250b0.l3 250b9.57 25107.33  Jl  3 3 6 00  0 00  K vac.  2  15 20  u 10  10 200 25 30  20  20  15  20  125 Uoo 20 200  30 Uo  87.21 b6.09 8U.59 81.77  25 Uo  15 10 20 200 15 200  Uo 30  80.59 78.37 75.9U 69.22  2511U.8U 25128.85 251UU.20 25186.76  68.57 68.35 66.56 66.00 65.20  25190.88 25192.28 25203.6U 25207.20 25212.29  6U.20 60.06 59.17  25218.65 252U5.00 25250.68  0  6 3  J2  15 30 25 15 125 25 15  1 1  2  (a) (continued)  1 10 1 1 10  100 500 15 1 30 35 1 15  20  8 2 1  10  10 15  25 25 30  10  Excit.  Class.  II , 3 III X2 - 535p3s£ C  i  II II  J.  \ \  3  »  III 5s5p6p -5s5p6dD n  IV. I l l II II C II C II c II III 5s5p5dP-5s5p6pS II c  II c II c III 5s5p5cnf5f5p6pD ,  II II II c II c II  107. TABLE x£  R  B  H  0 1  Jl  8 15  3  15  30  1  5  15  1 1 2  10  20 20  2 2 2  J2  J3  15 15 10 25 200  0 10  50 25 30 30 100  30* 30 10 8  30  20  0 20 25  10 8  2  20 U 20 10  30 100 10 5 0 25 Uo 150  10 5 5 5  2  20 8 10 10 20  0  6 2  10 10  20 25 20 20  5 5  2528U.32 25295.6U 25307.0U 25308.26 25322.16  37.91 36.27 33.72 33.29  25387.03 25398.31 25U1U.06 25U16.8U  31.U9  25U28.U7 25UU3.U2 25UU5.55 25U53.33 25U55.20  27.6U  27.36  25  vac.  38.37  28.85  5  G'K  25328.77 253U1.U8 25368.80 25380.52 2538U.06  29.18  10 7  20  52.13 50.35 50.16 U7.99  39.92  20  (continued)  l . A .  U6.96 UU.98 U0.73  1 0  2 1  •^air  (a)  3953.90  25 Uo 10 15 0 20 50 10 50  7  Excit.  I I I I  C C  I I I I I  C  I V  I I  C C  I I  c  I I  I V  I I  c  I I  J  -  Iii5s5p6sp-5s5p6pp I I  23.66 22.38  25U79.20 25U87.51 25508.06  18.53 09.81  05.70 05.16  25512.55 25569.U3 25596.33 25599.87  3891.96 91.38 85.36 8U.72 83.30  25686.73 25690.50 25730.29 2573U.59 257UU.00  I I I  82.12 80.57 79.13 78.76 77.20  25751.83 25762.11 25771.67 2577U.13 2578U.U9  I I  19.22  Class.  I I I I  I I I I  '  c c c c  I I I I  5$f 5s7s X  IV  r  I I  I I  I I  c c  108 TABLE 20  B  H  Jl  J2  J3  00  6  10 0  15  5  0  2 U 1 2 1  5  2  0  1 1  10 10  1  1 1 1 1  Uo  10 10 5 10 25 60 100 10 12 5 200 300 20 25  12  30  1 1  15 5 25  10  10  0 2  10 1 Uo  35 150 100  15  200 0 0 0  258U0.73  II  61.18  25891.51 25936.10 25953.20 25962.U3 25993.67  II II II IV II  UU.2U Ul.78 39.51  25823.51  26005.57  31.58 28.5U 26.60 19.52  26091.U8 26112.18 26125.U9 26173.91  11  26197.21 26212.66 26226.96 262U2.93 26268.02  11 II c 11  8  16.12 13.-8 7 11.79 09. U7 05.83  20  OU.73 02. U6 00.93 3798.08 97.22  26275.62 26291.30 26308.80 26321.61 26327.57  95.33 88.72 87.31 86.31 83.76  263U0.67 26386.62 26396.51 26U03.U8 26U21.27  15 35 150 10  II C  35.81  0  0  25788.88 25797.60 2580U.99  36.^  15  20 20 Uo 100 200  Excit.  26022.22 26037.60 26057.68 26062.71  25  20 10  vac.  3876.5U 75.23 7U.12 71.3U 68.76  52.00 50.63 U6.00  20  (continued)  ^ » a i r I.A.  . 5U.5U  5 35  20 8  (a)  8  Class.  lll5i5p5<-5s5p6pD II c Iii5s5p5drf5i5p6pq  11  1  1  ,  • =  ,  iH5i5p5df-5s5p6pD  11 c 11 c 11 c Iil5s5p6s p-5^5p6ps 3  t  109. TABLE XI  R  B  00  H  Jl  2 100 8 20 20 15 1 8  1  J2  J3  /lair l.A.  <s"K vac.  ho  8  30 20 10 20  3780.82 76.71+ 75.72 70.31 69.32  261+1+1.81 261+70.36 261+77.51 26515.h9 26522.U6  25 15 10 30 20  65.07 6U.30 63.U3 59.52 5U.66  26552.39 26557.82 26563.95 26591.57 26625.98  52.03 1+2.91 38.73 36.70  2661+1+.61+ 26709.62 26739.1+7 26753.99  II  36.6h 33.70 29.07 26.b9 25.68  2675L.U2 26775.1+8 26808.72^ 26821.39/ 26833.10  II III IV IV II  21+.19 20.27 18.21 16.77 15.22  2681+3.81+ 26872.11 26b86.99 26b97.i+l 26908.63  II II II II  li+.i+l 12.56 11.98 11.56  26911+.50 26927.90 26932.11 26935.16  II IV II II  08.57 03.03 01.69 3698.1+5 97.90  26956.91; 26997.26 27007.03 27030.68 2703U.70  II  9L.29 91.85 90.25 87.21+ 83.U7  27061.11 27078.99 27090.73 27112.81+ 2711)0.58  8  10 15 15 20 100 60* 25 10 10  1 0  20  15  120 bo 120 20 200 30 80 25 bO  7  15  1 8 5  5 20 20  20  10  30 00 30 30 20  l 75 1 2 ll 3 0  0  1+ 35 0  1 5  75 25 5 10 70  Uo 15 8 25 8 20 15 100 6  00 0  10 5  (a) (continued)  5  Excit. II II II  i  II II i III  IY  III5: III III III II II  Class.  110. TABLE  R  B  H  Jl  J2  J3  1 1 1 0  7  1  3  10  3 5  10 2 3 U  27167.27 27170.73 27171.63 27177.01 27179.01  Excit.  Class.  C  Uo  8 20  30 50 00 0 0  76.13 7U.36 73.22 71.88 71.10  2719U.75 27207.85 27216.29 27226.22 27232.00  30  200 15 0  69.90 62.00 60.78 56.93 56.U5  272U0.91 27299.73 27308.83 27337.57 273U1.16  5U.37 50.05 U9.51 U7.61 U6.01  27356.71  UU.U7 UU.25 U2.77 39.16 37.37  27U31.00 27U32.67 27UU3.80 27U71.02 27U8U.53  36.95 3U.55 33.70 32.55 26.75  27U87.70 27505.93 27512.36 27521.07 27565.07  III5S5P6SP-5S5P6PD  26.21 23.22 21.85 19.62 17.56  27569.17 27591.92 27602.35 27619.36 27635.07  Iil5s5p6sif-5s5p6jfei Iii5i5p6pfes5p7spr lii5s5 5o^-5s-5p6p\ II c  75  30 15 50 200 300 20  8  <^K vac.  5  15  0 00 7  •^air I.A. 3679.85 79.38 79.26 78.53 78.26  1  10  XI' (a) (continued)  60 80 75 120 10 50 5 0 5 8 25 200  5  10 10 100  U 2 1* 5  10 75 120 30 100 100 120 30 30 150  20 20  10 20  10 10 20  27389.08  27393.13 27U07.39 27U19.U2  I I I I I I I I  C C  I I I  I I  C  IV  .iii5s5p5d!^5^5p6pTj  I I  I I I I  c  ni5l5p5dF-5l5p6pP  III5s5p6pD-5s5p6d3" in  IV  P  IU.  TABLE XI  R  B  2 2  H  5 5  0  1  1  u  00  2 2  7 5  3616.20 1U.56 12.91 11.78 11.72  276U5.U6 27658.00 27670.63 27679.29 27679.75  V III II C II  11.1.8  27683.88  00 15 200 100 2 15  03.60 01.30 00.98 3S99.9S  277U2.10 27755.96 27762.28 27770.22  II IV5a! Ill  20  20 5 60  98.66 96.72 96.30 95.39 93.63  27780.17 27795.18 27798.39 27605.U3 27819.12  III II C III II III  10  Uo  50  100 5  93.38 91.57 89.77 88.U5 88. U3 87.10 85.35 83.22 81.60 78.U5 75.UU  27821.05 27835.07 278U9.03 27859.27 27859.U2 27869.75 27883.35 27899.92 27912.53 27937.10 27960.61  II II •III II IV II IV  Uo 35 30 30  73.55 72.U9 70.76 69.8U  27975.39 27983.69 27997.2U 2800U.U6  III  35 75 20  68.12 67.83 67.UO 66.13  28010.11 28020.23 28023.61 28030.28  III iv5s! Ill III  30 Uo 25  8 60 80 75  J3  10  0  l 0 0 0 0 0 1 0  150**  5 U5o 20 5o 35 10 25 30  1000  10  20 l  ^•air l . A .  Excit,  J2  1 10  a  vac.  Jl  00 00 00 1  ( ) (continued)  10 10 20 30  10  15 3  G'K  Class.  5s6s&-5s£pV  II  III II c  II IV  4  TABLE XI  R  B  H  Jl  J2  J3  00 1 00 00 u 7  25 10 8 25 1  3 00 0 00  0 80 15  0 35 200 IiOO 300 35 20 120* 25  200  15 5  5 0  00 0 00  10 8  1  25  1  30 20  75 30 0  1  12  20  50 1  5o  125 0  0 0 li 00 1 1  2  ho* Uo* 30 200*  1  25  20 10  30 10 75  5 10 10 75  20  (a) (continued)  ^-air I.A.  vac.  3565.55 6U.50 60.16 58.9U 58.56  28038.IU 280U6.U8 28080.66 28090.28  5U.96 52.18 50.73 U9.U6 U6.8U U5.86  28121.72  28093.28  281U3.73 28155.22 28165.29  28186.08 28193.87  28208.98 28216.63 28227.38 2823U.U7  Excit. IV  IIl5s5p6pI)-5s5p6dF; III III  II C IV  28250.26  37.56 36. U9 32.55 31.U8 30.18  28260.00 28268.55 28300.07 28308.6U 28319.07  II III II  26.33 2U.51 23.UU 22.29 22.16  283U9.97 2836U.61 28373.22 28382.U8 28383.53  IV III  28391.91 28396.10  28U07.6U 23U36.72 28UU6.35  28UU8.05 28U68.21  28U72.67  1  II C  U3.96 U3.00 Ul.65 U0.76 38.78  21.12 20.60 19.17 15.57 1U.38 1U.17 11.69 11. IU 10.60 07.9U 06.97 05.57  Class.  3t  lil5!5p6pS-5s5p7sP  III II II  IV5s5p6sP5s5p6pD, r  III II II II II  c  r; 5s5p5dc-5s7d n iv ^ III IV  28U77.05  28U98.6U 28506.52 28509.77  IV 5s5p6sPV5s7dD. II Y  113. TABLE  R  10  B  H  cr'Kvac.  3505.16 03.26 00.70 3li99.20 97.87  28521.23 28536.70 28557.56 28569.80 28580.66  96.28 9li.30 93.10 91.22 88.29  28593.65 28609.85 28619.67 28635.08 28659.13  86.96 86.11 83.9U 83.67 82.91  28670.05 28677.01* 2869i*.90 28697.12 28703.38  II II II C II c IV  82.62 80.32 78.82 78.13  28705.77 28721*. 7li 28737.12 287li2.82  III II c II c II  5 300  77.05 76.75 76.1*7 75.98 7U.83  28751.83 2875li.3l 28756.62 28760.67 28770.19  III II II  50 200 5 5 250  73.57 67.78 66.68 65.25 63.65  28780.62 28828.66 28837.81 2881*9.71 28863.03  .Ill5i5p6p$-5s5p7s!p; III5S5P6 ^-5S5P7S R:  20 10 20 75 150 100 100 150 150  62.59 58.13 56.88 55.66 55.12  28871.86 28909.09 28919.5U 28929.75 2893U.27  J2  00  15  1  10  15 5 5 5 2  10  1000 100 1 1  00 2  0  10 2  7  3  0 0 6  20 li 80 70  15 1 5  20 30 75 150 5 15 5 100 15 8 300 30 200  5  300  20  20  200 10  5 35 30  l 20  J3  20  1 ii  3 2 li  5oo  1 20 10 10  l  (a) (continued)  "Xair I.A.  Jl  1 1 00  XI  10  10  15 20  * - lines identified only on 21' grating.  Excit.  Class.  IV  IH5s5p8s¥-5s5plifF III  x  II II C  m  III5S5P6SE-5S5P6P12 S  p  i n 5s5p6p r>-5s5p7sV 3  II c 1  1  C  3  3  Hl5s5p6pP 5s 5p7sP; ,  II c  r  Ilk TABLE  R  H  2 1 2 3  75 100 100 10 15  3 3 00 00  1  0 0 0 0 00  J l J2 J3  2 2  25 150 20  42.25 41.20 38.75 38.39 37.1L  290L2.L1 29051.27 29072.06 29075.09 29085.67  20 20 10' 80 0  3L.L0 33.29 29.70 28.17 26.Ll  2910b.86 29118.27 291L8.7L 29161.75 29176.72  50 80 5o 10 15  23.29 21.32 19.63 16.72 15.25  29203.30 29220.12 2923L.55 29259.LL 29272.03  13.8L 10.87 09.92 07.60 07.09  2928L.12 29309.61 29317.7b 29337.73 293L2.12  06.79 06.73 05.83 03.31 00.55  293LL.70 293L5.22 29352.97 2937L.70 29398.5L  3398.1L 97.25 9L.87 9L.L6 92.88  29L19.L7 29L27.17 29LL7.80 291*51.35 291*65.59  bO  200 10  00  50  2  5o  00 00 2  100 10  100  100  L  30) onn 25)'  0  L5 15  00  8  0  10  200  K vac. 289L3.6L 2896L.LL 28975.60 28980.97 2902L.71  200 5 75 150 60 150  5o  air l . A . 3L5L.OO 51.52 50.19 u9.55 44.35  12 200  80  10 30  X I (a) (continued)  200 25 100 25 35 10 100 5  20  25  Excit.  Class.  !V5s5p5d«-5s5p6pb I I I iv yj  Yi  iii5s5p6pD-5s5p6db' II c 1  II C I I I 5s5p6pvr<W ,  ill5i5p6 V5s 5p7sV 1  P  ill II ill IV ill II c IV II c in I I I 5s5p6p ?-a II ' II c II IV II c II 3  IV III IV  II c  TABLE X I  R  B  H  00 00  Jl  10  J3  10 15 0 0  ko 150  10  00  2  20 5 5  k 5o  150  A air l . A .  & K vac.  3386.30 85.70 8k. 71 80.53  29522.30 29527.53 29536.17 29572.67  II II  7k. 10 72.10 71.00 69.0k 68. k9 67.85 65.1k  29629.01 296k6.58 29656.26 29673.50 29678.35 29683.98 29707.88  II C  29728.90 29729.17 29752.87 29761.11 29770.15  II II  3  30  62.76 62.73 60.05 59.13 58.11  2  U5 120 30 100 10 10 5 L0 200  56.86 55.32 5k.07 52.1k 52.10  29781.23 2979k.90 29805.99 29823.15 29823.50  52.ok 50.65 k5.89 kk.7k kk.5l kl.89  2982k.0k 29836.kl 29878.8k 29889.11 29891.17 2991k.59  k0.08 36.18 35.k6 3k.30 32.5k  29930.80 299k7.83 29972.25 29982.67 29998.50  30.50 29.25 28.21 25.59 2k. 90  30016.87 30028.1k 30037.52 30061.18 30067.kl  7  30 10 2 1  5 20 2 6  10 6  1 1  75 200  0  7  20  25 50 200 100 200* 30 15 200*  5  8  30  ho 150  5  10  J2  (a) (continued)  60  25 5 0  0 150 10 200 250 25 25 75  30 5  Excit.  Class.  II  lV5s5p6sg-5s5p6pT3  i  II  Ii c III III II II c II II c IV II II III II IV II c lll5l5p6p D-5§5p7sV 3  ii c  116, TABLE XI/ (a) (continued)  R  B  H  Jl  U 1  li ii  75  J2 100  25  0  00 1 9 10  7 6  120 80  0  #  2  10  U  100  1  5  25  2 1  2  3 3  10 1  5o  10 35  35 150  5  20  i5o 100  5  liO  110  200  ii  10 20  50  IliO  750*••  20 35 5oo  100  200 250  1000 300 Uo 15  30  10 10  <3"K vac.  Excit.  3323.00 21.93 19.76  3008U.60 30095.83 30113.95  II c II  18.57 17.66 16.U5 1U.83 13.80 12.96 12.09 11.23 10.76 08.53 06.98  3012U.8U 30133.10 301UU.09 30158.82 30168.19 30175.8U 30183.76 30191.59 30195.88 30216.23 30230.38 302U0.81  05.8U  1 5  Xair l.A.  05.65  10 20 20  1 U h  5  25  2  3  5  10  200 200 iiO  1  5  00  150 150  750?? 5 15 5  9  0 2  2  5  2  0 10  J3  20 10  302U2.5U  i l l 555 6pW 11 P  wl  Hl5i5p6pS-5l5p6dD ill ill IV in 11 111 in  0U.17 02.38 01.U8 01.37  30256.09 30272.U8 30280.73 30281.7U  01.10 3299.32 98.71 96.58 9U.20  3028U.22 30300.5U 30306.15 30325.73 303U7.63  II III III II  93.36 91.02 87.92 87.61 87.56  30355.37 30376.95 30U05.58 30U08.UU 30U08.91  III II c  85.9U 85.8U 85.15 82.6U 78.71  30U23.90 30U2U.82 30U31.21 30U91.06  77.U2 76.69 75.79 75.21 7U.00  30503.06 30509.85 30518.23 30523.63 3053U.91  30U5U.U7  Class.  in 11 II c  1  1  1  >  3  3.  lll5s5p6pP 5i5p7sP 4r  lll5s5p6pD-5s5p6dF 11 11 IV IV II c II c IV 5s6sV5s6pPt IV ^ IV  i  117.  TABLE  R  B  H  li  2 li 2  30  10  8  10  1 6 6 2 9 0 1  0 0  a 3  2  1 3 2 5 2  a  2 2 1 0 8  Jl  J2  25 200 300 15 200  120 100 120 15 250  25 25 0 20 100 200 0 5 0 60 100 200 12 30 ao 200 250 20 12 5o 15  10 10  10  (a) (continued)  air I.A.  G'K vac,  Excit.  3270.16 68.79 68.39 65.88 6a. 78  30570.76 30583.57 30587.31 30610.81 3C621.11  IIl5s5p6sP^5s5^p6pP II c III  61.96 61.29 60.90 58.69 57.76 56.79 56.7a  306a7.58 30653.88  30657.5a 30678.33 30687.09 30696.22 30696.69  l  1  1  lll5s5p6pP-5s5p6dX IIl5s5pir:5s&p6p R IIl5i5p8sP;-5sWF . Ill III IV (  3  i  II c II  30732.35 307a7.aa 30761.U7 30781.5a  75 0  a5.92 aa.07 a3.69 U3.12 38.a2  30798.99 30816.55 30820.25 30825.66 30870.39  0 25 100 100 ao  36.93 35.33 33.30 32.59 30.91  3088a.60 30899.87 30919.26 30926.05 309a2.13  5o 200 20 30 10 10 100 30  29.a9 28.19 26.50 25.28 23.68  30955.72 30968.19 3098a.ai 30996.12 31011.50  III IV  20 15 20 100 200 10 10  22.58 19.ai 18.36 17.59 16.23  31022.08  II  10 acr 10  15 25 15 8  2 30  10  30790.07  31052.62 31062.75 31070.18 31083.32  3  3  1  52.96 51.32 U9.88 a7.76 a6.86  10  Class.  IV III III III ' Iii5s5ps°-5s5p6pp  0  iv IV lll5s5p6s P>5s5p6pP 3  1  III , . Ill5s5p6p\-5s5p7slf li c IV 5P*tf-5l7dD 4  a  3 .  IIl5s5p6pD -5s5p6dD1 II C i  |  IIl5s5p6pP^5s5p6dD  118,  TABLE XL (a) (continued)  R  B  10  7 6 1  H  5  J2  J3  10 35 250 liO 150  5  Jl  5o 200 10 10  U 3 3 3  8 0  10  5o  93.10  0 1 0  a  50 350  6  75 0  30  10 100 5 30 30  3 2  8  15  3  3-  15  30  10 i5o  10  1 1 0 1  90.72  10  li  5  9ii.lil 93.59  0  5o  150 15  20  10  10  5  25  10 100 25  1 1  25  1 10  3214.71 13.31 12.10 11.18 10.02 03.39 3195-03  8  15  l.A.  100 liO 75 lo  10  2 3 2 8  10  Xair  30 15  10  89.82  88.32  86.UO 8U.06 83.9U 83.31 82.U9 79.96 77.75 76.51 75.1U 7U.U5  v a  c.  31098.01 31111.52 31123.25  31132.18 3HU3.U3  31207.97 31289.60 31295.67 31303.71 31308.51  31331.86  313U0.69 31355.U3 3137U.32 31397.37 31398.55  31UOU.77 31U12.86  Excit.  IH5s! IV V II C IV 1115s!  iv5s.' I I  II  C  II  C  in  in  IV 5s! IH5s! I l l 5s! Ill  31U37.8U  i l l 51'  31U85.55 31U92.39  Ave.  72.12 70.83 67.11 65.5U 63.73  31515.52 315U8.23 31565.36 31581.01 31599.07  IH5I II II III III  61.93 60.65 59.31 58.93  31617.16  31629.96  II c II II II  58.23 58.11 5U.U7  3165U.19 31655.39 31691.90 3169U.11 31701.65  IIl5s!  58.51  5U.25 53.50  31U59.70 31U71.98  316U3.37 316U7.17 31651.38  Class.  III  1  II II II c  3  c  119.  TABLE XI-  R  B  H  2 1 it  Jl  J2  6 25  liO  "^•air I.A.  <3~K vac.  3l52.9ii 52.31 51.U9 50.96 ii9.8l  31707.28 31713.61 31721.86 31727.20 31738.78  U7-U1  li5.19 U3.65 1*2.92 111. 62  31762.97 31785.38 31800.95 31808.31* 31821.50  1+0.68 37.11 36.1+7 36.19 35.91  31831.02 31867.23 31873.73 31876.57 31879.1*2  31.3$ 33.U3 32.58 32.16 30.55  •31895.1*8 31901+.61+ 31913.30 31917.58 31933.99  5o i5o 0  30.21+ 29.95 29.1*8 28.80 28.2li  31937.15 3191*0.11 3191*1*. 90 31951.81+ 31957.56  21* 20 10 10 io loo  27.61+ 26.35 25.95 25.00 21+.05 23.93 22.91+  31963.69 31976.87 31980.97 31990.68 32000.51 32001.71* 32011.88  10 100  22.58 21.73 20.1+5 19.68 18.05  32015.57 32021*. 29 32037.1+2 3201+5.33 32051.77  12  J3  25 100 . 5  3 1  10  2  8  5 100 15 5 25  20  120  5 2  1 1  10  1  1 1 3  10  1 2  25 20 10  20  100  2  6 li  2  10 20 30  1 1 1  15 5 15  3  5  2 1 6 1  (a) (continued)  liO  30 200  15  Excit.  Class.  II  HI  3  3  Hl5^5p6pP-5s5p6dD" II II  3  II  III 5fep6pP^ ., w  II II I I  |  .3  in5s5pii-5s5p6pD  i  I I I I I I  I I I I I I  c  I I I I  I I 1  1  3  Ill5s5p6sp-5s5p6pp 1  V 5s6sS-5s6pP,°  i  I I  II c II.  ii  1  1  3  ll]5s5p6pj>5s5p6dD° II II II II  ill  120. TABLE M  B  H 1 1  1 U  1 1 li  2 3 2  1 7 1 8 1 1 1. 1 1 1  6 5  8 1 5 1 1 5 3  1 1  J l J2 J3  (a) (continued)  C K vac.  Excit.  3117.75 17.18 16.22 1U.73 1U.01  32065.16 32071.02 32080.90 32096.2U 32103.66  TI II  10 20 30 200 10 25  13.28 12.03 ll.UU 10.53 10.18  32111.18 3212U.08 32130.17 32139.56 321U3.18  5  09.31 07.26 07.10 06.53 05.95  32152.17 32173.38 32175.03 32180.9U 32186.9U  0U.U5 02.33 02.16 01.51  05.61  32190.U7 32202.U9 3222U.U9 32226.26 32233.01  01.20 3099.38 98.60 97.38 96.80  32236.23 32255.15 32263.27 32275.97 32282.02  95.71 95.30 9U.61 92.76 92.36  32293.37 32297.66 3230U.86 3232U.17 32328.35  91.35 90.36 89.72 87.56 85.62  32338.91 323U9.27 32355.97 32378.60 32398.95  5  20 10 10  30 150 io  50  10  80 10  10  Uo  10  10 10 35 10  50 200 25 150 20 125 20 50 200 15 75 10 30  air l.A.  Class.  I I I I I  I V  Ill5s 5p6pp 5i5p6c$ a  r  I I  li ll ii c in I I I I  I I I I I I I I I I  c  I I I I I I I V I I  lli585p6pR-5i5p iFf lll5i5p6p P-5s5p6dY 7  3  I I  Hl5^5p6pV5l5p7sP I I I I I I I I I I I  0 ()  TABLE X2 (a) (continued)  R  B  2 0  H  Jl  J2  1  30 10 10  10 30 30 10 10 10  1 1  0 5  8 3  8  15  35 30  100 150 1 20  1 1 7  0  1 1 1 1 1 1 2  3 0 1 1 0 2 1 3  2  200 200  2 10 2 1 8 15  10 12 1  J3  25  25  ho  250  25  20 100 15 15  15  15  8 10 20 30 8  15  30 1*0  30 50  5  50 1*5  20  30  3085.20 83.86 81.67 79.96 79.16 78.37  321*03.1*6 321*17.51* 321*1*0.57 321*58.58 321*67.01 321*75.31*  IV II IV II  78.13 76.60 73.56 73.06 72.33  321*77.87 32l*9l*.01 32526.11* 32531.1*3 32539.16  IV III  71.11* 71.1*7 70.09 68.98 68.65  32551.77 32558.87 32562.90 32571*. 67 32578.17  lli5s5pP.-5i5p6pD,, ili5i5p6p D-5^5p7sV 11  68.33 67.92 67.70 66.30  32581.57 32585.92 32588.26 32603.13 32610.01*  11 11 11 11 ill  65.01* 61*. 26 61*. 22 63.69  32616.53 3262l*.83 32625.26 32630.90 32636.66  11  61.56  32653.59 32678.99 32693.71* 32705.28 32721.55  63.15  59.18 57.80 56.72 55.20  35  30  C R vac.  65.65  10 10  20 100  A air l . A .  10 10  51*. 51* 53.15  52.1*6  51.96 51.1*8  32728.62 3271*3.51 32750.91 32756.28 32761.1*3  Excit.  Class.  II  11 c . Iv5s5p6slf5s5p6pp, 11. i a  4  11 a  II  11 11  II c  in 1 1  i n 5s5p6pS-5l5p6dP 3  II II c  IV II c II c II II  122. TABLE XI  B  3 6 0 10 00 2  H  70 1  Jl  J2  5 30 100  25 60 200  8  200 1+00  1*0  10  1 1 3 2 2  20 1  8 10  8  10  10 35  2  li  10  10 li  50  75 30  U  2 5 2 3 7 3 0 00  " X a i r I .A.  G'K  vac.  Excit,  Class.  3050.77 50.06 1*9.1*1 1*8.11+ 1*6.97  32769.05 32776.67 32783.66 32797.32 32809.91  Ill III III $35p6pb-a III II C  1*1*. 95 1*3.35 1+0.1+9 39.65 38.83  32831.67 3281*9.03 32879.92 32889.00 32896.79  II III IV  10 20 20 20 25  37.51+ 31+.62 33.35 30.68 29.96  32911.81+ 3291*3.50 32957.21+ 32986.32 32991+.15  III II II II •IV  1*0  28.1+9 28.22 21+.58 21+.23 23.30  33010.16 33013.11 33052.83 33056.65 33066.82  20.00 19.07 18.1*7 17.56 15.05  33102.91* 33113.13 33119.71 33129.70 33157.27  II c  13.60 12.02 09.98 08.79 06.35  33173.22 33179.60 33213.10 33226.21* 33253.19  III II C II C III II C  05.77 01*. 81* 02.1*6 01.1*7 2999.16  33259.61 33270.01 33296.37  10 20 0  20 200 30 10 0 300 125  15  60 20 15 125 10 75 35 125 20 200  12  0 35  15 8  J3  (a) (continued)  75 12 12 10  20  30  15 10 10 10 6  33307.3$ 33333.00  |  10*4  II  II c II II c  II V 5s6sS 5s6pP; r  II C III II III  123.. TABLE XI  H 3  G'K vac.  Excit.  2998.89 98.78 98.05 97.0a 96.a2  33336.10 33337.22 333a5.3a 33356.57 33363.a7  II II II IIl5l5p5dF;-5s5p6pP  5o 12 10 35 50  95.66 93.22 92.58 90.7a 88.9a  33371.93 33399.13 33ao6.27 331+26.82 331+1+6.91+  15 15 75 10 ao  87.98 86.5a 85.ai 83.85 83.31  33a57.68 33a73.8l 33a86.a8 33503.98 33510.oa  12 25 15 ioo 75 200 75 220  82.2a 80.98 79.98 78.02 77.18  33522.06 33536.23 335U7.1i8 33569.55 33579.02  75.89 73.68 72.15 71.58 70.26 69.75  33593.57 33618.53 33635.83 336a2.29 33657.23 33663.01  67.20 66.90 62.2a 61.18 6o.3a  33691.93 3369a.20 337U8.a5 33760.52 33770.09  59.a2 57.62 56.a9  33780.59 33801. lit 3381U.06 33825.27 33831.02  7 h  8  15  2 3  2 a  10 10 10  U  8  3  10  a 6 6 50 20  8  10  a 3 3  5 20  15 7  J2  30 20 120 200 0  1  8 7 8  ^ a i r I.A.  2 1 15  10 8  Jl  J3  (a) (continued)  8 8  10  ioo 25o 50 200 10 10 75 200 15 15 125  10 20 20  aOO 20 5 5 5  50 125 5 20 100 20 50 75 50  10 10  55.51  5a.92  Class.  i  II c II c II c IV II III IV  lH5^5p54-5§5p6pP  1  i n 5s5pi-5s-5p6pi> 11 c III iv Hl5s 5p54-5s5p6pi3 l  ill 11 c 11  in II c II IV  12U TABLE x i  B 00 0 li 3 8 l i 2  8 2 a  H  1 1 8  7  6 1  0 a  1  2 7 0  25  30 25 ao  20  30  10 0 100  10  10 25  50 a i  J3  5 10  30  5  ao 10 15 15  5  15 50 15 12 75  30 100 ao ao  10  5oo  20  30  5  20 30 30 30  0 0 12y 200 0 12 ao 25  1  0  a  5  30  1000 30 20 5 1 10 30  ao  J2  10  30  2 0  2 3  Jl  10 20 200 12 10  (a) (continued)  "A.air I.A.  G'K vac.  Excit.  2953.76 52.77 51.77 51.U6 50.23  338U5.30 3385D.65 33868.11 33871.67 33885.78  U9.53 as. 6 i U6.68 U5.92. aa.91  33893.83 339oa.ao 33926.60 33935.35 3391*6.98  Ill II C II II C IV 5pF-5!8s S iff V IV 5^6p p,-5s5dD, III II c II II c  aa.26 a3.53 a2.11 ao.93 37.85  33977.55 33962.89 33979.28 33992.91 3a028.5a  II c III II G  36.78 35.92 35.73 3U.29 33.12  3Uoao.8i 3ao50.90 3U053.10 3ao69.81 3ao83.39  32.02 31.87 30.17. 30.oa 29.95  3a096.l8 3a097.92 3ail7.70 3ail9.21 3ai20.26  29.27 28.07 27.22 25.33  3ai28.l8 3ai30.5l 3ai52.07 3ai65.a9 3ai7a.i3  II c II IV III IV IV  23.96  3ai90.26  II II c III II c II  26.05  5  20  22.56 22.00  19.89  16.35 i a . 53  3a206.39  3a213.l8 3a237.90 3U279.U5 3a299.67  Glass.  J  x  l  IV II III II III II lll5^5p6pD 5s5p6dX r  125. TABLE  Jl  J2  0  10  3 2  10  8 10 30 20  B  U 0 2 3  H  25  J3  15  10 2  50  50  10  25  20  10  10  5  10  20  5oo  5oo  5o  6  10  Uo  150  20  0  1  5  0 10 20  1 0  15  5  120  2  100 2 20  0 2 0  10 10  20 20  25  10 20  2  1  3  0  2  5  1 1  10 10  10 35  25  25 25  20 30 200 Uoo  ( ) (continued) a  "Xair l . A .  & K vac.  2913.30 12.60 11.36 08.36 07.77  3U315.32 31*323.57 3U338.18 3U373.59 31*380.57  06.93 05.83 .  3U390.50 3Ll*03.5l  03. IU 00.63  3UU35.38 3LU65.17  0U.05  30 0 20 10  3ST  50  3UU2U.59  Excit.  II III 5s5p6sP-5s5p6pS IV II II II II  00.18 2898.98 97.96 96.72 95.U3  31*1*70.52 3UU8U.78 31*1*96.92 31*511.68  93.28 87.78 86.77 85.70 8U.U8  3U552.70 3U618.U7 3U631.U3 3U6U3.U3 31*658.08  II II III  83.76 82.89 81.71 80.39 79.63  3U666.85 3U677.31 3U691.51 3U707.UO 3U716.56  IV II  78.25 76.88 75.80 75.U7 73.20  3U733.20 3U7U9.73 3U762.78 31*766.77 3U79U.23  iv II III III  72.08 71.33 69.77 68.81 67.67  3U807.79  II II II II II  3U527.05  3U816.88  3U835.80 3U8U7.U6 3U861.31  Class.  C  IIZ(O) 1.05J-»J+1  III 5s5p6pD-5s5p6dD II c 5l5g&-5$7hV  126.  TABLE #  R  B  H  1 2  8  8  2 5 2 2 8  Jl  0 20 30  k5 50 200 20* 10*  1 00 1 0 00 1  5  k  1* 1 1 3  J3  10 12 0 0 25 150 50 0 5oo  20  1  ko  10  10 10  100  20  6  k  10  k  100 50 15  10 200 75S"  10 60 50 75 100 100  20  20 8  3  (continued)  1\a±r l . A .  ^ K vac.  2867.39 65.03 61U5 6k.32 63.5k  3k86k.71 3k893.k2 3k900.k8 3k902.06 3k911.57  62.k9 61.02  3k92k.37 3k9k2.31 3k953.06 3k962.35 3k975.31  59.38 58.32  Excit.  III III IV II C III 5s5p5d4r5s5p6pP II III II J^J^-1 3  5k.02 53.88 52.71 51.17 50.70 50.09  35029.71 350kk.07 35062.99 35068.77 35076.27  IV II II II  k9.21 k7.60 k2.66 k2.02  35087.10 35106.9k 3512k.69 35167.93 35175.85  II  kl.73 kl.18 ko.ik 39.09  35l79.k3 35186.2k 35199.12 35212.26  35.5k 35.10 3k.80 32.99 31. k6  35256.33 35261.80 35265.53 35288.06 35307.12  k6.l6  Clasb.  IV III  3k987.l8 35002.k9 35009.k7 35013.03 35027.99  57.35 56.10 55.53  Uo  5 0 200 10  n  60.1k  20 10  1 6 00 3  J2  ()  III HI  3  K.  J  «  IV 5s5p6sP-5s5p6pL\  IV II  II II II ill II IV  c 5s5p6sif-5s5p6pD  c  n .  H  iv 5s5p6sP}-5s5p6pPi  127  TABLE XI' (a) (continued)  R  "Xair.I.A.  CK vac.  10 0 10 150 10  2830.26 29.33 27.19 26.a9  35322.08 35333.69 35338.9a 35360.a3 35369.18  20 25 50  22.oa 21.52 20.59 20.13  35U2U-9U 35a3i.a7 35aa3.i5 35aa8.93  18.67  3$a67.28  0 5 0 25 30  16.91  35U89.U3 35500.ao 35509.22 35526.76 355a7.59  5 35 0 0 5  n.a5 09.87 09.18  3  30 25  15  a  a  3  ao  5o 75  B  H Jl  00 0 100  ii  2 3  2 6  5  a  0 2 1  15 25 30*  ao 10  i  0 3 00  35  10  00 1  10  10 3 10  30  5oo 20 200  J2 J3  25 50  28.91  a  16. oa  15.3a 13.95 12.30  10 10 300 250  6 1 00  200 10  150 15  2  20  5 35  30  35a6a.39  Class.  II  II  IV lv535o5'd. r-5s5p6pl) IV5. d  1  in  11 11 IV 11 11 11 IV II  35558.3a 35578.32 35587.06 35611.52 35621.80  II III III  oa.98 02.91 02.53 02.03 01.23  356ao.33 35666.6a 35671.a8 35678.08 35688,03  III IV II IV III  2797.97 97.70 97.01 96.10 93.2a  35729.73 35733.17 357ai.93 35753.62 35790.21  IV III II  91.9a 89.89 88.93 88.a3 86.aa  35806.87 35833.18 358a5.5l 35851.93 35877.53  07.25 o6.aa  ao ao  60  18.90  Excit.  II  III III II II  128 TABLE XI  R  B  H  00 1  Jl  10 10  1 1 3  5  5 2  1  J2  IV  25 35 5 5 0 15  79.16 78.10 77. OU 76.U9 75.73 73.97 73.18 72.67 72. IU 70.72 70.30  35971.1*8 35985.20 35998.9U 36006.06 36015.92 36038.76 360U8.90 36055.53 36062.55 36080.89 36086.36  II II C II C  69.66 69.23 68.53 67.15 66.5U  3609U.70 36100.30 36109.U3 36127.56 36135.52  Arc  62.27 61.60 61.09 60.30 59.50  36191.36 36200.lU 36206.83 36217.19 36227.68  II  58.51 57.60 55.6U 53.92 53.62 52.26  362U0.81 36252.77 36278.5U 36301.20 36305.15 36323.09  III II IV  51.53 U8.63 U7.22 U6.33 U5.56  36332.72 36371.0U 36389.69 36U00.83 36U11.70  IV  Uo 50  Uo Uo 5 5 300 10 0 30 5  3  1  20  Uo  1 U 0 2  30 1  0 0 3 3  1  20 5 10 300* 12 10  35889.50 35898.26 35926.90  Excit,  35965.01  2 3  200  vac.  2785.51 8U.83 82.61 80.U5 79.66  6  20  A a i r l.A.  5 10 15 10 25  0  6  J3  (a) (continued)  5 6o 10 25 0 0 10 25 25  3  20  2 2 5  25  25 0 25  200  250  8  35951*. 80  Class.  II II  . IV III ? iv 5; III 5;  II C  iIII l l 5i 5s5p6pP-5s5p6dP; III II  II II  IV III III  129.  TABLE  H  R  Jl  1*  3  1 2 5 2  0 1  6  1  20 10  J2  5  20 30 200 300 10  10  15  36.7k 35.9li 35.U5  32.52  27.98 27.Ll  26.96 26.33  1*00 250  10  39.58 39.01  36.81*  5 25 10  ii2.1iii liO.32  38.53 37.893  25 0  10  "Xair l.A.  27li3.20  8  10 35 35 0  C  K  vac.  IV  36L81.31 361*91.16 361*98.75  II II  36505. lli 36513.6k 36527.68 36529.01  IV IV IV III  3651*6.2h 36585.11* 3661*6.28 36653.91*  IV II  36L53.11  36659.-98 36668.1*5  36698.1*6  0 0  23.10 22.2U 21.22 20.36 20.15  0  19.1*8  36760.92  250  00 00  5  10 15  20  214.20  36697.11 36723.53 36737.29 3671*8.90  V IV IV  11 .11  36751.71*  36766.19 36768.36 36787.70 36808.96  11  0 0  18.93 17.50 15.93  0 7 1  10 li 20 20 200 200 20 10  15.01  36821.1*3  III IV II II  30  13.19  11.58 11.05 10.26  t  . 3  iv 5i IV 5l8s\-5|5p5d f i  0 10 00  19.09  Class  36S39.69  36689.1*1*  200  Excit.  361*1*3.02 ,  2L.77  15  6  00  J3  XL (a) (continued)  3681*6.12  36867.99 36875.20  36885.91*  IV IV  130, TABLE X I (a) (continued)  R  B  H  Jl  J2  8 3  0 0 10 15  12  0 20  00 0 0 5  2 li li  30 i5o  75  200  li  5o 200 liO 150  li  30 100  7  0 0 0  10 0  20  li  50  1  15 15 10  1  3 00 2 6 2 2 1 2  10  10  5o 10  50 250 25 25 25  30 100 5o 300  0  10 5  1 1  10 25 0  10  20 20  10  10 150 10 20 100 10  15 50 10  20 00  " X a i r I.A.  G'K vac.  Excit.  2708. ii2  Ill  05.99 05.37 03.1*7  36910.99 36935.67 3691*1*. 13 36952.59 36978.56  01.52 00.09 2697.61 95.U7 95.11  37005.21* 3702U.83) 37058.86 37088.27 37093.22  9l*.l*8 93.90 93.51 92.92 92.60  37101.90 37109.88 37115.28 37123.38 37127.79  91.86 90.97 90. IU 89.03 88.27  37138.00 37150.27 37161.71* 37177.07 37187.56  86.50 8U.li8 83.76 83.15 82.06  37212.07 372U0.07 37250.05 37258.52 37273.66  80.52 79.83 78.37 77.13 71*. 12  37295.06 3730l*.80 37325.13 3731*2.1*1 3738U.U3  73.28 72.20 71.82  37396.18 371*11.29 371*16.61 371*1*0.56 371*53.37  06.61  5 10  3 6 0 2 1  10 20  J3  10 5  10 2  10 8  70.11  69.20  Class*.  II II II C III II II c . • ill 5s5p.£5!5p6p P 3  ;  )  I I  IV IV IV  I I  IV IV I I  IV  c  iv 5s5p5d £-5s9sK II c  h  I I I I I I  I I  ill II II II IV II II  3  5s5p\-5#p6p\  131.  TABLE XT  R  (a)  (continued)  "A-air l . A .  Jl  J2  1 U  8 50  1  3  15 100 5 15 10  2668.80 66.67 66.08 65.57 6U.86  37U58.9U 37U88.85 37U97.1U 3750U.31 3751U.30  0 20  5 6  15 5o 75  6U.58 63.11 62.10 61.11 59.63 59.20 58. U8 57.70 56.25 5U. 88 53.53 53.10  37518.2U 37S3&.9S 37553.19 37567.15 37588.05 3759U.13 3760U.30 37615.3U 37635.8.7 37655.28 3767U.U3 37680.5U  II II II II IV III  51.02 50.62 U9.79 U8.59 U8.U8  37710.09 37715.78 37727.59 377UU.68 377U6.25  II c III 5: II  U7.U9 U6.82 U6.U0 U6.10 UU.86  37760.36 37769.91 37775.91 37780.19 37797.90  II III II  37826.U8 37837.9U 378U0.37 37863.30 37877.20  III II II V III.  37879.36 37858.55 37899.03 37923.17 37931.95  II  B  0 3 1 2  H  80  200 0  8 10  100 Uo  0 0  20 15 15  20  5 100 15 20 10  10  00  ll 100 3  200  J3  20  35 75  10 5 200 i5o  10 10  0  10  0 0 2  10 5 5  10 5 5 5 30  5 3  100 20  100 Uo  li  50 10  60 20  U2.86 U2.06 Ul.89 U0.29 39.32  2  5  6  200 8 ' 300  30 5 120 25 200  39.18 38.5U 37.81 36.13 35.52  10  20  10 15  CK  vac.  Excit III III II c  II II c c c c 5i  II  III IV III  5s6sq-5s6p  V  w  X»  a,  co XA  XA.  XA  XA  r>(0 XA  a  XA  M  H  H  H  M M M M  M M  HOI  XAXA  * to  a  t> H  XAXA  'co  XA  _co°  XA  vO vo O h CL.  x£ m  "to  XA CO XA  XA  XA  > M H H U M M  XAVC>  NMMFH H  a a,  M  XAXA  M U M  M M  M M > > M H M M M  M M M M M M  XAXA  M M  O r— C — ON ONO XACO  j_ccror—O C O O N i—i f A _ J ON O NO O O Nr>cococo fACAfAfAfA  O M N O O CON CM O CM ON  rA M O C O C f A f A f A CM CM NO CM  XA CO  ON < A M O C ON VO OO _=t cvj  o o  _cj  O  ONXA CM NO  a o a o CA XA r > - r - - o XA C O CO C O O N O O O O O O O M c o c o c o c o oo o o oo f A CA CA CA CA CA CA  co-cfoo M CM CM M M M co c o oo f A <A f A  CM CM CM C—NO C O M  XA CM CM MO CM O N  _JCX  JNOCO t— o -=r  vO 1 A - ^ f _3 _=t f A CM CM CM CM CM CM CM  CM CM r-i CM CM CM  C O  XA CA S3 XA M XA CM P—NO  O ON fAOO NO CM CO CA H CO XA <A ON CO  OO CM (AvO M XAvO O CM _Cf M M CM CM CM CO CO CO CO CO CA f A CA CA CA  M XA CM co CA  ON ON O ON r—  OO X A c O M ON  M  ON  M  NO X A C C T  M M M M  _=T O XA O XA  r—  CA C"\ \Q vO CO  r—  r-— ON \o NO _CT CM r—i XA O M0 O NO r— CM fA St St -cJ XA CO CO CO CO DO (A CA CA f A CA  NO oo f - _ c j CO M CM f A X A C - CO LA X A X A X A X A CO CO CO OD CO rA f A CA f A f A  M CM r— M CO CO ON XA CM _=t O S3 O C—  CO ON M t— f A r - H W CM CM  M M f A CM oo M ON M  fA CM O O ON C O vO M M M M O O O  XA f A ON CO XA O O ON ON ON XA  J J CM M M ON ON ON ON ON  O XA CM O f - ON O H CM CM f A CA co co co co CA CA CA f A  O ON <A J fA « A co co CA f A  oO-  XA CA  CM  XA  XA  O O OXA CM O CM f A CM  O O XA CM M t—  XA O _ J O M O CM CA  O O O CAMO 3D  o  O CM co  co  fA  o  M  -CJ  o  XA O fA  XA  XA O O X A X A M CM _ct CM f A  XA O O O fA CM CA  O CM  O O fA O M  XAO f A CM  O O fA r-i  o o  o o  XA  XA CM  St  O  o o  XA M  M  CM  CM  O M  XA O r-i CM O XA  o  XA  r-i  O M CM M  CM XA  C M  M  M  CM O  CA O CO M CM  O  r-i  NO  133. TABLE XI"  R  B B  H H  5 00 00  JJll  75 5  u  35  7  20  5  100  1 3  5 10  u  10 20 25  00 00 00  U  9  10  30  250 100  1 3  10 25  5  75  (a)  (continued)  J2 J2  J3 J3  "Xair l.A. A a i r l.A.  5 100 10 10 0  2 30  2587.97 85.99  30 10 i5o 15 100 15 30  Uo 10 100 5 5 10 20 20 10 0 100  150 5  50 20  20  0 0 0 Uoo 0  Uo  50 10 0 200 0 25  U 20  vac. vac.  8U.36 83.6U 81.58  38628.83 38658.U0 38682.77 38693.55 3872U.U2  80.92 80.16 79.20 77.82 77.52  3873U.32 337U5.72 38760.1U 38780.88 38785.39  77.25 76.05 75.55 7U.16 73.60 73.03 71.32 70.39 70.18  38789.U6 38807.52 38815.06 38836.01 388UU.U6 38853.06 38871.03 38878.89 38892.95 38896.13  69.68 69.16 68.75 68.01 67.82  38903.69 28911.57 38917.78 38928.99 38931.87  66.85 66.61 66.U1 6U.52 6U.36 63.70  389U6.57 38950.21 38953.25 38981.95 3898U.38 3899U.U1  63.68 62.22 61.78 60 ..52 59.60 59.38 58.07  39003.8U 39016.93 39023.63 390U2.83 39056.86 39060.2i 39080.21  71.8U  10  C G"K K  Excit. Exc:  Class.  II II IV IV II III II II II II  IV III IV III II  IV V III IV IV ! Ill  I'o  .1,3  13U TABLE Xt/~ (a) (continued)  B  H  Jl  10 0 0 1 5 c  12 25 100 10  25 25 5 75. 120 •30 Uo  1 2  Uo 25 20 Uo Uo  3  10 10  2  10  30 50 10 200 0  10 2  500 10  25 25 5 500 5  1 0 1 1 3  15 10 20 15 L5  Uo 35 Uo 30 5o  2  10  6 U  Uo 300 Uo  1 1  J3  10 10 5 20 20  20 5 10 15 10  2 00  10  J2  20 20  5 20 u 2  20  #  5 300 Uo 5  200 10  A.air l . A .  C K vac.  2557.2U 56.80 55.10 5U.59 53.63  39092.89 39099.62 39125.62 39133.U3 391U8.1U  52.63 51.91 50.U1 50.21 U9.19  39163.U7 3917U.52 39197.55 39200.62 39216.30  L8.20 U6.98 U6.37 U5.38 UU.77  39231.87 39250.U7 39259.87 39275.IU 3928U.55  UU.36 U3.68 U2.66 Ul.93 U0.93  39290.88 39301.38 39317.IU 39328.U3 393U3.90  III II  U0.U1 38.69 38.22 37.81 37.15  39351.95 39378.61 39385.89 39392.26 39U02.50  II II IV IV  36. OU 35.38 3U.01 33.U5 33.05  39U19.7L 39U30.00  IV IVI IV II IV  31.83 31.10 30.71 30.10 28.65  39U85.27 39U96.66 39503.05 39512.26 3953U.91  39U60.03 39U66.26  Excit.  Class.  IV IV III III III I I I  IV  II IV II  IV  n  III ill Arc ill  5s5p'tf-5s5p6pD ,  135. TABLE XI  R  B  H  Jl  J2  J3  10  Xair l.A.  3 2 1  20 10 12  50 Uo 20  2528.U5 27.72 27.18 25.81 25.25  li  25  100  2U.85 6  1 2  10 20 10  30 25 Uo 5o  0 li 0 0  8 12 15 15 25 100 10 10 15  2  0 0  5  5  U  15  5  12  5o* 10 . 25  2  (a) (continued)  1 2  25 10  0 0  20  8  25  0  0  15  0 0 0 0 0  21.56  u  Excit.  39538.OU  Ill  395U9.L5 39557.90  39$19.3$  39588.13  39$9h.kO 39606.16  39620.12 396L6.0lj  20.67 18.99  39660.OU 39686.U8  18.35 17.6U  39696.56 39707.75  16.U8 16.03  39726.05 39733.15  15.66  39738.99  15.33 15.00 1U.60  397UU.21  13.29  39776.U6  397U9.U2 39755.7U  IV II  ill  IV IV IV in  10.05  39816.21 39827.79  rv rv  09.50  39836.67  rv  07.70 06.32  398U7.15 39851.28 39865.26 39893.72 39905.82  03. Uo  39932.11 39939.13 39958.60 39961.6U  03.88  03.06 01.8U 01.65  in IV  39887.20  05.91 05.15  39926.06  JL  r  39781.20  08.8U  5s5ft?-5l5pUfF  rv 5s5p6sp; 5s5p6 \  IV in  08.58  Class.  IV IV5s5o5d d°-5s5p6oF IV " 'i  39767.28  12.99 10.78  60 12  20  23.21  13.87  35  15  21.10  C K vac.  in  5P^5S5P6P V  P  136.,  TABLE Jg?  R  B  3 10 3  10  H  Jl  0  10  k  100  3  50  8  liO 15  25 5 30  "99.20 98.67  kOG00.80 k0009.28  III III III IV  98.05 97.50 97.29  k0019.21  III III III  96.10 95.55  k0028.02 U0031.38 koo5o.k6 k0059.29  5 10  86.66 86.36 85.2k 8k. 10  k0202.k6 k0207.31  81.73 81.2k 80.81  k0282.30  20  1 0  10  5o  10 5o 30 6o 30 5o 10 50 100 100 5 20 5 10 10 10  10 8  90.38 89.15 87.66  0  30 5 50  50 liO  82.32  10 10 8  20  10  on CJ  79.8k 78.56  78.19 77.90 77.70  76.5k 76.10 70.71  15  Excit.  39973.9k 39985.13 39990.88  k0073.90 k0101.06 k0108.29 k0112.80 k0119.72 k0131.95 k01k2.k3 kOl62.26 kOl86.30  1  00  2500.88 00.18 2li99.82  vac.  9U-6U 92.95 92.50 92.22 91.79 91.03  20 100  0  l.A.  75 20 8 25 8 10 150 200 200 8 10 8 30 100 100 150 12  3  1 li 1 2  \a±r  5  25  k  J3  10 20 200 i5o 100 30 125 15  1 0 00  10  J2  (a) (continued)  75.3k 75.01 7k. 50 72.87  k0225.k2 k02k3.88 k0272.73  k0290.25 k0297.23 k0312.99  L0333.80 k0339.82  k03kk.5k  k03k7.80 k0366.69 k0373.86 k0380.22 k0386.26 k0391.6k  k0399.96  kOk28.22  Class.  IV rv i i i i  n n n n rv rv  i n IV i n i n i n II i n 5s5pl-5s5p6p S i n ii 3  ni II III! II IV  1  137. TABLE "XI  R  B  H  Jl  J2  10  15 5 30 15 15  10  200  7  30  300 20 200 5 10  0 0 0  10 10 10  5 20 25 25 5  1 1  15  5 12.  10 50 30 25 15  2 0  10 10  Uo  2  10  Uo Uo  J3  10 20  u  u  30 10 5  3 3 00  20 20  2  15  7 0 0  5o 10 10  l5o 100 25 15  Uo  5 200 150 30 0  10  (a) (continued)  "Xair l . A .  <CK  vac.  Exc:  2U72.2U 71.89 71.55 70.8U 70.23  LOU36.88 U0Uu2.60 LOLL8.17 UOL59.79 LOL69.77  69.63 68.68 67.66 67.52 66.72  LOL79.60 U0U95.18 U0511.91 L051U.21 U0527.3U  6U.50 6U.36 6U.01 63.5U 63.36  U056U.00 U0566.31 U0572.O7 L0579.81 U0582.77  61.83 61.32  51.69  57.U7  L0607.98 U0616.39 L06L5.62 U0676.37 L0680.01  56.8U 56.39 55.90 55.51 5U.88 53.03  U0690.U3 ' U0697.56 L0706.OO U0712.U7 L0722.91 U0737.02  IV rv  52.51 51.87 51.16 U8.57 U7.89  L0762.25 L0772.89 L078L.70 L0827.82 L0839.16  rv in IV  U7.2U U6.83 U5.5U UU.60 UU.08  U0850.00 L0856.85 U0878.39 L089U.11 U0902.81  Class.  IIII l l 5s5p6t>D-5s5p6dD III III III IV  IV II III  II V II III  rv rv  rv IV rv in  138.. TABLE  R  B  H  0  0  Jl  J2  3 3  a  %air l . A .  <5"K vac.  Excit.  2UU3.8U U3.63  U0906.82 U0910.3U  Ill  5  10  10 25  U2.85 U2.13  U0923.39 U0935.U6  20  20 20 15 15 25  10  Ul.79 Ul.23 U0.7U Uo.Uo 39.57  U09U1.15 U095o.5li L0958.76 U096U.U7 U0978.U0  100 12 30 125 60  20 10 10 10 15  38.75 37.7U 37.5U 36.57 3U.71  U0992.17 U1009.15 U1012.52 U1028.33 U1060.17  II C III II C II II C  5  3U.38 33.8U 33.26 32.80  U1065.7U U107U.85 U108U.63 U1092.U0  IV III IV  32.12 31.73 31. UU 30.73 30.0U  U1103.88 U1U0.U8 U1115.38 U1127.38 U1139.06  29.70 29. UO 28.86 27.61 26.77  UllUU.81 U11U9.89 U1159.72 U1180.22 U119U.U7  II IV III  26.36 26.19 25.97 25.52 2U.87 2U.6U  U1201.U3 U120U.32 U1208.06 U1215.70 U1226.7U U1230.65  111 5s5p5dfes5plA rv  00 0  XI ( ) (continued)  5  50  100  0 5 U  10  2 15 10  3 3  20 10  3  12 10  0  5o 30 30 30 25 60 ilO 10 00 0 25 20 15 0  a  50  i  10  l  10  300 IlO 35 Uo 35 15  J3  20 10  8 5  15 10  Class.  III III II C  III II c II  i n  iv  5prf5s5p6p  V  139 TABLE  R  B B  H H  JJll J2 J2 Uo 100 75  1 1  7  50 8 10  75  "AXaaii r II.A. .A.  < <a"K ="K vac.  Uo Uo 5 Uo 10  2U2U.31 23.97 23.78 23.5U 22.90  U1236.26 U12U2.0U U12U5.28 U12U9.36 U1260.25  10 30 30 50 75  22.00 21.16 20.13 19.20 18.96  U1275.58 U1289.90 U1307.U6 U1323.51 U1327.61  18.75 18.26 17.27 17.06 16.00  U1331.20 U1339.57 U1356.U9 U1360.09 U1378.23  15.86 15.59 15.17 1U.68 1U.36 1U.07  U1380.62 U1385.25 U1392.UU U1U00.8U U1U06.32 UlUll.30  20 15  13.22 12.88 12.01 11.37 10.86  U1U25.71 U1U31.72 U1UU6.66 U1U57.65 U1U66.U2  20  10.U0 09.U2 08.92 08.61 07.62  U1U7U.33 U1U91.19 U1U99.80 U1505.1U U1522.20  07.50 06.08 05.71 05.00 03.6U  U152U.27 U15U8.77 U1555.16 U1567.U2 U1590.9U  10 250 10 0 20  0  75 125 10 0 10 20  3 6 2  30 0 150 125 150  7  75 l5o  35 50 25  5 15 0 0 Uo 2 0 0  10 10 10  6  100  XI (a) (continued)  Uo 25 25 25 200  J3 3  J  30  l5d 10  30  u 100  Excit.  Class.  I V I I I  I I I  I V  I V  IV$s5p5d a-5s5popD I V  5p%-5s5p6pV 5s5fD-5s5p6p^,  iv III i n  IV 5s5r)fe-5s6p *l£ i l l 5s5p6p^5s5p7s R! a  I I I  I I I 5s 5p6p D-d" 2  1  I V  5s5p5dtf-5p' P ,  i n  5  I V  i v 5s5p5d b-5s5popto I I I 5^7p5d tt-x^ iv ' ' '. Iv5s5p5dc 5s5p6pp K  7  iv I I I  I I  lUo. TABLE  R  B  8  8  3  J3  /lair l.A.  10  500 12  500 35 10 15  20 10 10  2U03.01 01.7U 01.38 01.09 00.9U 00.60 99.70 2399.21  10  50 5  lOw 5  30 10 10  0  10  0  100  15  35 20  i  12 25 5  25 100  U5  30  0  0 Uoo 200w 5  0  1  00 00  200  100 10  II III 5s5p6pD-5s5p6dP  86.06 85.78 8U.90 8U.0U 83.83 83.58 33.26  U1897.28 U1902.19 U1917.65 U1932.77 U1936.U6 U19U0.86 U19U6.U8  82.22 81.96 81.60 81.2U 80.38 80.05  U196U.79 U1969.37 U1975.71 U1982.06 U1997.22 U2003.0U  92.23  Uo  200 100  90.98 90.20 89.85 89.25 87.90 87.82 87.61 86.7U 86.61  U1789.25 U179U.66 U1811.08 U182U.73 U1830.85 U18U1.36 U1865.00 U1866.UO U1870.09 U1883.59 U1887.62  15  10  5  III  30 15  0  5 5  Uoo lOOw 15 10  12 20 10  10  Class.  U171U.29 kl729.UU U1738.32 U1753.30 U1767.08  u  15 75  Excit.  98.Ul 97.55 96.83  0  25 20  vac.  IV 5s6pl£-5s6d \ II 3 t III 5s5p6pS 5s5p6di2  96.53 95.66 95.15 9U.29 93.50  ho  C K  U1601.8U U1623.83 U1630.07 U1635.09 U1637.87 U16U3.59 U1659.20 U1667.71 U1671.35 U1681.60 U1696.55 U1709.07  99.00  2  5  10  (continued)  J2  5 5  10  a  Jl  00  5 i i  ()  H  12  5  XL  91.92  -  r  III II rv IV III 5s5p6pD 5s5p8s lf 3  r  5s5pP -5s5p6pD l  IV III 0  IV IV 5s5p6s p>5s5p6pk rv 11 c M  rv 11 Arc  Arc III 5s5p6pt-5s5p7sP .1  III  iui* TABLE  B  H  00  Jl  10 10  1 1  8  15  8 Uo  1 6 20 3  7 1 3 0  35  200  15 20  J2  5 50 5o 50 50  10  6o 250 8  20  20 5 15 200 00  I.A.  77.99  77.73 77.U8 77.21  76.28 7U.98 73.U7 73.06  72.89 71.06  70.78  vac. U2012.92 U2039.U2 U20UU.01 U20U8.U3 U2053.21 U2069.8U  U2092.86 U2119.63 U2126.90  U2129.92 U2162.25 U2167.UO U2177.01 U2182.35 U2196.U1  10  70.2U 69.9U 69.15  U2207.98  10  68.50 68.3U 67.01 65.63  15 75 0 5 10  62.51 61.67 61.U9 60.90 60.56  U231U.97 U2330.01 U2333.2U U23U3.82 U23U9.91  Uo  60*30 59.89 59.56 58.97 58.2U  U235U.58 U2361.93 U2367.86 U2378.U5 U2391.56  5  56.60 55.08 5U.92 5U.79 5U.20  U2U21.06 U2UU8.U3 U2U51.31 U2U53.65 U2U6U.U7  20 30 100 25  20  2  30  2 0  10 5 25  60 0 50 Uo 100  30  100  2 2 2  "A.air  2379.U9  100  2  3  J3  X'I (a) (continued)  ;  30 25 10  U2210.8U U223U.55 U2259.18  Excit.  Class.  IV IV III IV  iv5s IV  in ii IV  in 5 IV  IV  in IV  5s5^5s6p P  IV  rv5s IV  in  II  in in IV  i  t  Ih2. TABLE XI  R  H  Jl  5  75  5  5o  o o 2 1  lo  20  J2 J3 10 0 200 10 150  20  20 50  15 10  5o 12 5o 75 15  20  30  12 0  1 1 1  0 20  10 60 25 100 io  50  0 0 2  i o * 15 20 150 20 15 90  0  15* 15  U  15* 15 15* 15 125 200  10 10 Uo  25 10 30  (a) (continued)  X air l . A .  (TK vac.  2353.91  1*21+69.52  52.81 51.25 50.69 50.15  U9.75 U9-U3 L8.77 U8.U7 L7.68 U6.62 U3.88 U3.U2 U2.76 1*2.39  1+2517.37 1+2527.1+9  III  U2537.UU  III  U25UU.68 U2550.U8 1+2562.1*3 1*2567.36 1*2582.18  III III II  b2601.ll 1*2651.20 1+2659.57  U2671.58  37.95  37.33 36.16 35.77 35.1+7 3U.93  1*2770.68 U2792.10 1*2799.21 l*28ol*. 71* U281U.82  3U.59  1*2821.05 1*2823.25 1*2829.30 U2862.16 U2872.09  39.1*2 38.99  3U-U7 3U.1U  6* 10*  31.06  30.55 30.29 29.91  Clasps.  5s5i^-5s5p6 D P  au  lV5 5p5dF-535p6 b ,  s  P  11  i n 5s5p5dD-5s5pufF, 4  1*2678.32  1*2693.99 1+2700.37 U2732.U9 1*271+0.31* 12759.35  l i l . 53 Ul. 13  32.35 31.81  20* 25 l* 5 0  U2U89.37  Excit.  U2885.88 1*2895.26 1*2900.01* 1+2907.01*  c i n 5s5p6pi»-5s5p6dif i n 5s5p6pi3-5^p8s p; 11  3  11 c IV  IV 3 III 5s5p6d5-5s5pUfF 3  l  rv  iv v rv  ,•  i n 5s5p6ps-5s5p8sP,  in in  11  ** Intensity stared (*) in Column J l means the intensity on 3-metric vacuum grating only.  11*3. TABLE X* (a) (continued)  R  B  7  5 2  2  H  J l J2 0 1000 500 15 5* shldr io* 15  3  1 0 00  3  'Xair I . A .  vac.  Excit.  2329.70 29.17 28. UO 28.07 27.78  U2910.91 U2920.67  50 150 15 5* shldr 2* 0 20 100 I**  27.1*9 27.23 26.75 26.2U 2U.63  U2951.6U U2956.U3 U2965.29 U297U.71 U300U.U6  1* 2* 1* 12* 20 100  5  21.18 23.88 23.56 23.36 22.2U  U3012.79 U3018.3U U302U.26 U3027.96 U30U8.71 U3051.68 U3056.87 U3065.58 U3085.99 U3088.59  V  20 10  22.08 21.80 21.33 20.23 20.09  0 0 15* o 15* 20 15* 15  19.91 19.77 19.67 18.71 17.96  U3091.93 U309U.53 U3096.39 U311U.23 U3128.17  I V  15* 12* 8* 20 20  17.61 17.37 17.02 16.73 16.38  U313U.68 U3139.15 U31U5.66 U3151.06 U3157.58  1U.3U 13.73 13.17  U3173.61 U3195.61 U3206.99 U3211.85  10 20* 15 20* 20 1  J  30 120  0  io shldr 50 15 50 5  15* 30* 1*0 25* 25 io* 15  Class.  I V  U293U.86 U29U0.9U U29U6.29  I I I  I V  V  I V  3  N  ,  i l l 5s 5 5dlf5s5plifF 1  P  3  I V I V  5s5pp;-565p6pp  III  3  i  V V  I V  I I I  iv I I I V  I V I V V  5s5gG-5i£8h R *  ihk. TABLE X I (a) (continued)  R  3  B  H Ji  1  3  0 0  J3  10* 10* 3* 70* 150 100* 200  2 3  1 1  J2  00  15  A a i r l.A.  Cs'K vac.  2313.37 13.2h 12. lh 11.83 10.65  h3213.72 h32l6.l5 h3236.70 h32h2.50 h326h.57 h3291.92 h33l5.92 h3323.2h  25* 10* 0  10  09.19 07.91 07.52  0* 12* 10* 20* 10  20 20 25 60  06.8h 06.h9 05.h9 05.26 Oh. 31  h3336.01 h33h2.58 h336l.37 U3365.70 h3383.57  20* 30* 20* 10*  25 10 20 0  Oh.02 02.78 oi.ho 01.10  h3389.03 h3hl2.39 h3h38.hl h3hhh.07  20 30* ho* 60* h*  75 50 ho 60  2299.92 99. hO 99. lh 98.85 98.37  h3h66.36 h3h76.l8 h3h81.10 h3h86.5 h3h95.66  97.19 96.70 95.91 95.69 9S.3S  h3518.00 h3527.h7 h35h2.25 h35h6.h2 h3552.68  9h.85 9h.62 9h.59 9L.28 9h.00  h3562.36 h3566.72 h3567.29 h3573.18 h3578.h9  93.7h 92.10 91.85 90.97  h3583.h3 h36lh.6o h36l9.36 h3636.11  30 10* 10* 15* 20*  75  15  75 0 20 10  25* 20 10* 12 8*) -> 15*) 10* 0 10* 10* 10* 10*  5 10  8  5 25  10 0 20  5 15  5  Excit.  Class.  rv V  i n 5s5p6pt) c5 I I  , .  r  5s5p?-5s5p6pP  ill  in rv  i l l 5s5p6pD-5s5p6dD°  rv in  .  •  »  I I  rv5s5o5d a-5s5p6p!D I V  >  L  I I I I V  I I I I  rv  c 5pi?r5s5p6p P „ H  1  >i  'a.  rv ^ , Hi5s5p6p D - C , rv in rv v o  rv  rv rv rv rv  TABLE xf  R  B  H  Jl  J2 J3  bO* 25 15* 10 150* i5o 2* 15* 100* 2* 1000 15*  OO  15 150 5 boo 25  5 15 10  12* 25 0* 20* 50 10* 20* 30  10  15*  10  25 0*d 2* 6* 12 5* 0* 0* 2* 2*  1ft  AV/  25* 28 6* 10 3* 5* h* 3* 5* 0 20* 12 20* 18 b*  15  (a) (continued)  1 air  I.A.  <^"K vac.  2290.68 89.95 88.89 88,bO  b36bl.63 b3655.5b b3675.75 b3685.10  88.25 87.8b 87.0b 86.67 86.18  b3687.96 b3695.79 b3711.07 b37l8.1b b3727.5l  86.08 85.89 85.62 85.50 8b.69  b3729.b2 b3733.05 b3738.22 b37b0.5l b3756.21  8b. 37 8b. 27 8b.07 82.96 82.80  b3762.3b b376b.25 b3768.08 b3789.36 b3792.b2  82.59 82.26 81.1b 80.2b 80.00  b3796.b5 b3802.78 b382b.28 b38bl.57 b38b6.19  79.07 78.50 77.13 76.56 76.17  b386b.08 b3875.0b b3901.b3 b3912.b2 b39l8.01  75.72 75.79 75.17 7b. 71 7b. 29  b3928.63 b3931.13 b3939.2b b39b8.12 b3956.2b  Excit,  Class  I V I V  V I V  I I I I I I  I V I I I  5I5P5C§-5P P  I I I  !  a  Ill I I I  I V  I V  17 i n 5s] I I I  I I I I I I I I  V  5sbf^-5s6d D  I I I  I V  V  IY5S5P5 IV5S5P5  *4.  11*6. TABLE ti  R  B  H  Jl  J2  20* 15* 10 10* 20 1000* 500 i o * 15  J3  20  15* 30*  25 25 10 20* 25 20* 25  35  3. 3  00 1*  3 1  i5o  I** ioo ]5o io* io 0  13  3  20-* 20 30* 50 300 200 15* io 5o* ioo 60 1+0 200 200 1*0 100 5* 15* 15  ioo  15 10 100 0  I.A.  2273.83 73.30 72.95 71.97 70.12  20 100 5o* 50 20* 0  30  vac.  1*3965.13 1*3975.37 1*3982.11+ 1*1*001.11 1*1*031.11*  69.97 69.67 68.53 66.33 66.13  1*1*039.28 1+1*01+5.69 1*1*067.81 1+1+110.58 1*1*111*. 1*7  65.55  65.01 61+. 22  1*1+125.76 1+1+129.85 1+1*136.28 1+1+151.67  63.1*5 62.69  1+1*166.69 1+1+181.52  65.31*  61.61+  1+1+209.61+ 1+1+218.61+  59.61+  1+1+21+1.13 1*1*252.88 1*1*271.10 1*1*290.32 1+1+306.60  59.01+ 58.11 57.13  55.51 55.32 51+.96  Excit.  1*1*322.11 1*1*325.85  51+.27 53.98  1+1+332.92 1*1*31*6.1+9 1+1+353.37  53.52 53.25 52.80 51.97 50.82  1+1+361.21+ 1*1*366.56 1+1+375.1+2 1*1*391.77 l+l*l*li*.l*l*  Class.  I I I 5s5p5d D - X 2 , I I I I V  X u 5piJ5s5 6p  I I I  iv  P  IV 5s5'p5d b-5s5p6r]p I I I  I V  *  Arc 5ll*fFr5l5g^  IV  i l l 535p5d V 5 a  x  z  v I I  1+1+202.02  61.25 60.79  56.29  1+0 200 100  30* 30 3* 20 5* 30 30* 1+5 25* 50  A air  (a) (continued)  X  5lltff£-5s 5gTi  iv  a  I V  I V  I I I  Ai*c  i n 5s5p5d§-5s5pl*fF, v  I I I  iv  5slifr-5B'6d"T)3  Arc o ,. iv 5s?p5d c-5 5p6pp. •1 *4 3  I V  I I I I I I I I I  I V  lh7. TABLE XI ( ) (continued) a  H  R  Jl  J2 J3  10*d l5*d 5 10* 10 5* 1 1 1  25  2*  a*  12* 50*  50  80* 75 15* 10  20* 30* 10 100* 3 00 1  5 15 0  Uo  h* 10; 100 200 8* 10 100 75 20* 15 5* 3* 2* 30* 35* 30* 20* 20* 3* 3*  10  25  5 15  18 10  3*  00 2  25* 15 100* 60 50 200 30* •5  10  A-air l . A .  6"K vac.  2250.U2 50.02 U9.10 1*8.75  1+1+1+22.33 hhh30.23 hhhh8.h0 hhh55.71  IY V V IV IV V II  1+8.16 1*7.96 1+7.50 1+6.06 U5.U5  hhh66.98 hhh70.93 hhh80.03 hh508.5h hh520.62  II III II II  39.75 h2.6o hi. 8 7 h i . 72 hl.h6  hh53h.5o hl+577.19 hh591.70 hh59h.68 hh599.85  39.71  hh63h.69 hh638.87 hh653.82 hh66l.h0 hh671.97  39.51 38.75 38.38 37.85  Excit.  Class.  rv IV III III iv v  Ill5s5p^ - 5s5p6 P, P  II  3  IV  37.15 36.85 36.55 36.23 35.88  hh685.95 hh691.9h hh697.93 hh70h.33  35.77 35.60 31*. 39 3h.l6 33.87  rv hh713.52 hh716.92 hh7hl.l3 i n 5s5p6p p - d * rv * UU7U5.73 rv 1*1*751.51  33.6h 33. lh 32.51 31.3h 29.h3  1+1*756.15 hh766.l6 1+1*778.79 hh802.27 hh8h0.6h  hh711.32  3  ni5s5p5d]J-5s5phfF IV  i n V  i l l 5s 5P P - X 2  IV rv iV5l6 p-5s7sS rv ^ P  11  11*8 TABLE XI'  R  B B  H H JJll  1 00  0  Excit.  Class.  rv  2l*.03 23.15 21.87 18.08 17.53  1*1*91*9.1*8 1*1*967.26 1*1*993.16 1*5070.02 1*5081.19  16.61 16.17 15.62 15.03 11*. 50  1*5099.69 1*5108.85 1*5120.01* 1*5132.06 1*511*2.86  i n rv  11.02 12.81* 11.58 10.38 09.31*  1*5152.61* 1*5175.69 1*5202.1*1* 1*5226.97 1*521*8.26  v rv rv . Iii5s5pp°-5s5p6p s; 11  20* 15 10 200 100 1*0 100 10 35 75 15*  09.06 08.80 07.22 07.12 05.1*5  l*525U.oo 1*5259.31 1*5291.70 1*5293.75 1*5321.88  35* 25* 25*  05-25 01*. 71 Oi*.33  1*5332.15 1*531*3.25 1*5351.06  5oo 0 1*0* 10 50* 10 30 150  1  10  2228.83 28.1*3 28.12 28.02 27.92  vac.  1*1*908.10 1*1*919.79 1*1*921*. 21* 1*1*928.68 1*1*91*0.59  5 25  300  0  "Xair Ll.A. 'X.air A.  26.08 25.50 25.27 25.06 21*. 1*7  30* 5* 10*  0  J3 J3  IV rv rv  30*  1*  (continued)  1*1*852.70 1*1*860.75 1*1*866.99 1*1*869.01 1*1*871.02  10*  1  J2 J2  (a)  30 20* 30 1*0* 35*  100 15 200 15 25  25 20 50* 20* 70*  30 5 1*0 10 30  5o* 0 10* 0 80* 60 30 100 10*  15 18 12  15  1*0 5 5  10  10  ni5s5pp;-5i5p6pD ni5s5p5di^5i5pl*fF  4j  I75s5pV5l6pV '»•  5.  III  14  rv5s5p5dc-5s5p6p5,  i n  *  1  V5sl*fF -5s6dDj H  Iii5l5p6p^-5l5p6di2  0  3  3  i n i n 11 rv v IU5i5p 5dD -5pP . V5sl*fF-5s6dI) i  J  3  Ih9»  TABLE XlT (a)  R  L  H  J2  J3  ho* 20 Uo* 30  25  Jl  8* 60* So*  12* 50 8* 12*  0 20 18  10  25  100* 100 200* 100 15* 10*  25  5*  20* 200*  12 50 25  10  Uo* 25  15  30* 20* 60* 15* 15*  15*  35 15 5  20* 0 20* 5 15* 25* 20 30 100 50 120 35 100 30* 30 8*  10  Uo 20 15  N II  (continued)  A a i r I.A.  C^Kvac.  2203.68 03.52 03.08 02.68 01.93  U536U.Ua U5367.73 U5376.78 U5385.02  01.39 00.93 2199.77 99.26 99.06  U5U11.61 U5U21.10 U5UU5.0U U5U53.51 U5U59.71  97.96 97.56 96.58 95.71 95.33  U5U82.U5 U5U90.73 U5511.02 U5529.05 U5536.93  III III V  9U.60 93.82 93.65 92.2U 92.0U  U5552.27 U5568.U7 U5571.99 U5601.09 U5605.25  V 5sU#-5s6dD III  91.25 90.82 89.50 89.23 88.7U  U5621.90 U5630.85 U5658.1U U5663.77 U5673.99  88.38 87.71+ 87.U1 87.15 86.U2  U5681.50 U569U.86 U5701.96 U5707.39 U5722.65  III  85.81 85.30 8U.66 83.58 83.1+  U5735.UO U57U8.17 U5759.26 U5779.79 1+5786  i l l 5s5pl?-5i5p6pb i n 5s5£k-5s)5p6p^ IV V II c  U5UOO.U8  Excit.  Class..  III IV Arc IV III IV ill  5s5p^5s5p6pD  IV II  3  3  IV IV v5s5d p-5s6p p iv v V 5sUfF-5s6dD IV 1  1  IV V IV 5l5p6 P-5s5p6dr P  (  150. TABLE  R  L  H  Jl  X air l . A .  C K vac.  7* 35* 10 5* 10 (8* (8*  2183.09 82.50 82.03 80.hh 79.38 79.25  h5792.l6 h580h.53 h58lh.ho h58h7.80 h5870.08 h5872.82  10  h5878.08  0  79.00 78.L0 77.36  h5912.63  V  30 10 5 5o* 150 15 20 10  h5921.27  I V  20  76.95 75.61 7h.93 7h.00 73.21 72.12  20  71.28 70.30 69.99 69.50 69.1h  h60hl.36 h6062.l5 h6068.73 h6079.13 h6086.77  68. Oh 67.36 66.88 66.16 65.81  h6ll0.l5 h6l2h.6l h6l3h.83 h6l50.l6 h6i57.6l  65.h6 65.32 6L.91 6h.50 6h.28  h6l65.07 h6l68.05 h6l76.79 h6l85.5h h6l90.23  6h.l6 63.62 62.95 62.55 61.61  h6l92.79 h620h.32 h62l8.62 h6227.17 h62h7.27  30* 15* UO*  25 10 25 20 20 10 30 200 25 15 (10 (10 50 (12 (12 6 10 20 15 100  J2  12 5  5 100 5  20 20 10  20 ho  J3  " X I (a) (continued)  h5890.71  h$9U9.^ h5963.91  h5983.78 h6000.28 h6023.56  Excit.  Class.,  I V I V I I I  rv in in i l l 5s5p6pDi-5s5p6dlf I I I  in rv5s 5p5d £-5s5p6pp rv V  I I V V  5shf^-5s6dD  I I  rv rv I I  in  V  5s6pff-5s6dij  V I V  in I V  V  in V  L.  U  iv 5s5p5d F-5s5p6r> D  151 TABLE X I (a) (continued)  Jl 20 100 100 20 15 50 ho h  5o 25  J2  100 100  J3  Aair l.A.  100  2161.06 60.17 59.86 58.91 58.69  1*6259.03 1*6278.09 U628L.73 1*6305.09 1*6309.80  56.86 55.61 51*. 98 5U.27 5L.02  1*631*9.30 1*6375.31 1*6389.72 1*61*05.01 1*61*10.17  53.62 53.31* 52.83 51.83 51.09 50.68  1*61*19.01 1*61*25.01* 1*61*36.01* 1*61*57.61 1*61*73.58 1*61*82.1*1*  50.20 1*9.1*8 1*9.01 1*7.68 1*7.36  1*61*92.82 1*6508.38 1*6518.55 1*651*7.35 1*6556.1,5  1*6.66 1*6.00. 1*5.60 1*3.97  1*6569.1*6 1*6583.78 1*6592.1*6 1*6627.87  1*3.02 1*2.83 1*2.20 1*0.98 1*0.31  1*661*8.51* 1*6652.67 1*6666.39 1*6692.97 1,6707.58  39.1*5 , 38.71* 37.99 37.83 37.10  1*6726.35 3671*1.86 U6758.25 1*6761.31 1*6777.72  5 15 15 0 25  60 10 10 5  30  ho  15 15  30  10  25  50 25 15 20 12 15*  75  30  100  10 20 5 10 50 200 100 5o ao  60 150 80 10 10  100 20  25 h  (30 (15 ho  10  8  vac.  Excit.  Class. 5pi5-5s5p6pV *  iv rv Arc rv  rv i n  V ill  ,,  ^  5s6p^5s6dD 5s5p^5s5p6pD  I I I 5s5p5d T) - x i I I I I I I I I I I I I I I  V I I I  I I I 5&p5d rtxl* v Arc III  v  5i*5s'P-5s8sS.  V  5sl*/F^5s6dD  Ill  Arc III rv rv rv v rv i n rv i n in  .  3  5S5PP-5S5P6P^  Any starred intensity i n J l stands now for intensity from 21' grating  1  TABLE l i (a) (continued)  R  L  H  Jl  J2  60 5o 10 80 5  20 0  J3  2 a 2 30 10 8 25 15 25 15 25 ao 6o 12 100  300 50 20 15 ao 100 60 10 18 15 15 10 12  I.A.  5  5  5 0 25  15  60 60 20  50 30 20  ao 20  15  ao 150 30 50  vac.  2136.70 35.99 35.79 3a.53 3a. 22  a6786.a7 a6802.02 a68o6.ao a683a.02 a6838.63  33.92 31.59 30.36 27.88  a68a7.ao a68$8.60 a6925.67 a69a6.59 a6980.3a  27.71 27.52 27.17 , 26.a3 26.03  a698a.o9 a6989.17 a6996.02 a7012.36 U7021.21  25.a3 25.17 23.98 22.97 22.39  a703a.a8 a7oao.23 a7066.57 a7088.96 U7101.83  21.93 21.20 21.08 19.78 19.18  a7112.03 a7i28.2a a7130.91 a7l59.80 a7173.l5  18.93 17.78 16.79 15.U5 15.07  a7178.27 a72oa.32 a7226.39 a7256.30 a726a.78  ia.93 ia.83 ia.27 13.82 13.36  a7267.92 a7270.l5 a7282.67 a7292.28 a7303.02  29.11  10 3 1  Xair  Excit.  Class.  I V I V  IV5s5] I V I I I  I I I I V  IV5S5] V  •1  I V  I V I I I  5163^-5^^ 5^5S5P6  I V I V  P  I I I  V V V  I I I  I V  i l l 5s I I c V  I I I I V I I I I I  c  I I I  I I I  III5S5J  Iii5s5i in  X5,  153 TABLE XI  R  L  H  Jl  J2  J3  10 (30 (30 10 20  6  10 15 25 750 20  12 200  30 200 25  12d 20 25 15 30  3  100 100 100 150 35 25 7 10 18 25 12  20$" 100  60 25  10 15  60s 5o 30 100 25 15 15 8 10 35  1*0  8  5o  100  ( a ) (continued)  /\,air l . A .  C k vac.  Excit.  2113-05 12.62 12.1*9 12.07 11.51  1*7309.96 1*7319.58 1*7322.1*9 1*7331.90 1*731*1*.1*5  V V III IV  11.18 10.63 10.30 09.10 07.26  1*7351.85 1*7361*.18 1*7371.59 1*7398.75 1*71*39.91  rv III II III III  06.75 05.09 01*. 59 03.09 02.32  1*71*51.39 1*71*88.79 1*7500.07 1*7533.91* 1*7551.31*  rv V rv rv rv  02.09 01.1*9 01.31* 01.070 00.39 00.19 2099.28 98.81 98.16 97.16 96.70  Class.  1*7556.51* 1*7570.12 IV 5pi1r5s5p6p S.; V 5s6pP*-5s6d D 1*7573.51 i l l 5s5p5d\iX7 1*7579.69 v 1*7595.02 III 1*7599.56 1*7620.1*1 III IV 1*7631.07 III 5s5p5d 'P-X7,, 1*761*5.82 in 1*7668.53 in 1*7678.99 3  x  3  96.06 95.01 91*. 30 93.71 91.98  1*7693.51* 1*7717.1*1* 1*7733.61 1*771*7.06 1*7786.53  91.1*2 91.11* 90.71* 90.1*0  1*7799.32 1*7805.72 l*78ll*.86 1*7822.61*  in rv rv v in rv v i n rv rv i n i n 5s5p5d'P -xi 3  TABLE  R  H  Jl 200 20 30 100 15 bo Uo 15  2  0 UOO*  J3 10 100 0  10  20 20 250  i5o  30 150  300  10 Uo 10 10 20 20 25 60 30 70 10 15 5o  5  50  10  J2  15 15 25 0 100  20  5 5  XI  (a) (continued)  air  I.A.  vac.  2088.7U 87.82 87.28 86.98  U7860.63 U7881.71 U789U.10 U7900.98  85.89 85.36 8U.60 8U.29 8U.06  U7926.00 U7938.18 U7955.65 U7962.78 U7968.07  83.89  83.0U 82.75 81.51 81.19  U7971.98 U7982.ll U7991.55 U7998.00 U8026.82 U803U.20  80.U6  U8051.05  79.27 78.80 78.U6  U8078.5U U8089.UO U8097.27  78.06  U8106.53  77.25  U8125.28  83.U5  80.19  77.98  U8057.28  U8108.38  25 25  76.70 76.28 75.92 75.19 7U.82 7U.5U  200  73.58 73.22 72.U7 72.28  U82U0.66  71.05  U8269.31  Uo  7U.30  U8138.02 U81U7.76 U8156.10  U8173.0U U8181.63 U8188.13 U8193.70  U8210.U3 U8218.80 U8236.2U  Excit. V  II IV Arc III III III  III III  Class, 5s6pP-5s6d D l  , 5s5pE-5s5p6D 3  P  III 5s5p5dl^5s5pUfF 1  a  IV  II C II c • III 5s5p5dP-X8 Arc v rv  II IV  III , H I 5s5p6pl^5s5p6dl2 3  in  rv  III IV rv  ,  ,  V 5s5dD-5aUf F III * " IV 5s5p5d a-5s5p6pP,. ill II H, u 1  lV5s5p5pF-5s5p6p-  rv IV rv Arc  155. TABLE XI ( ) (continued) a  R  L  H  Jl  J2  J3  2070.51 69.90 69.69 68.U6  U8201.89 U8296.ll U8301.01 U8329.73  UO  67.72  67.U8 67.28 67.02 66.3U  U83U7.02 U8352.63 U8357.30 U8363.38 U8379.29  65.80 65.U7 6U.1U 63.73 63.33  U8391.9U U8399.67 U8U30.8U U8UU0.U6 U8UU9.85  62.70 62.32  U8U6U.6U U8U73.57  68.18  7  10 20  6  10 5 UO 6 50 35 2  15 15  10 80  5  61.96  10 ,U 1  U8336.27  Excit.  Class.  V IV , lll5s5p6sP^-5s5pUfF IV V V IV 3  IV IV V II  3 3 5fSsP -5s8s S  , . . III 5s5p5d^-5^ \ II  U8U82.50 rv  59.63 59.00 57.67 57.11 56.7U  U8536.86 U8551.70 U8583.08 U8596.30 U8605.0U  V II III V rv rv v  10 50 60  56.03 55.01 5U.56  U8621.82 U86U5.9U U8656.59  III III IV V rv  1  53.90  U8672.22  52.77 52.28 51.83.  U8699.01 U8710.63 U8721.31 U87U1.26 U87UU.82  10 30  300 UO 10 2 20d  5U.11  60 10 5  5o.99  50.8U  l  HI  U8U95.90 U8525.79  15 10 25 50 20  1  V  61.37 60.10  6  0  <3"K vac.  15 I4 15 12  15  U  ^ a i r I.A.  U8667.25  III 5s5p6pl>-5s5p6dlf II i n rv 11 IV  156,  TABLE XI R  L  H  Jl 12 25 30 0 20 2 10 1 1  J2  J3  (a) (continued)  Xair l . A .  C K  vac.  Excit.  Class.  100  20U9.81 U9.U7 U8.8U U8.19 U7.88 U6,L0 U5.69 U5.3U U5.16 U3.50  U8769.31 U8778.35 U8792.39 U8807.87 U8815.25 U8850.55 U8867.50 U8875.86 U8880.16 U8919.85 U8932.5U U8937.81 L8962.25 U8973.99 U8985.99  rv 5s5gQ-5s9nH ??  60  U2.97 U2.75 Ul.73 U1.2U U0.7U  U899U.39 UQ999.91 U9007.8U  Tv535T)5dF°-535p6pD  150  U0.39 U0.16 39.83  1 U 30 25 30  39.39 38.23 37.96 37.83 37.29  U9018.65 U90U6.5U iv 5s5p5d j3-5s5p6pEj U9053.03 III U9056.16 V 5s6pp:-5s6dD U9069.16  20 30 10 120 50  36.83 36.02 35.U5 3U.67 3U.30  U9080.2U U9099.76 U9113.50 U9132.32 U91U1.26  35 25 100 5s 5  3U.ll 33.85 33.52 32.60 32.02  U91U5.8U U9152.13 U9160.10 U9182.3U U9196.38  30 150 50 8 0  31.31 30.95 30.U1 30.10 29.19  U9213.57 U9222.28 U9235.37 U92U2.89 U926U.97  300 5 10 10 80 60 100 10 20  Uo  20 5o  15  i l l 5s5p6pP-5s5p6dP°  IY V III IY  •  1  i l l 5&5p5d V-x^ in ill ill B  II c  rv v rv  Arc  '*  '* J  3  III V III III  5s5ptv.5s5p6 D P  V  rv v rv in  rv  Ill ill  5s5p 6pi>5s5p6dE 5s5^5s"5p6p P, 3  J  157. TABLE X f  R  H  Jl  J2  J3  ir  () a  I . A .  0 5 25 b 35  2029.0b  5  25.b7 25.15  28.68  28.08 27.bO 27.07  10  2b. 96 2b.86  (2 (2  120 5 io  8 10 80 80  20 80 100 80  200  boo  60  23.10 22.71 22.25  10  21.71  20  15  bo 15 35  20 10 10  boo  5 10  10 15  21.27 21.0b  20.88 20.71  20.2b  19.92 19.56  CO"K  vac.  b9268.6l b9277.35  b9291.92  b9308.b5 b93l6.b7  Excit.  I I I  I V  b9355.b2 b9363.21 b9367.8b  in rr  b9380.03 b9b03.9b  in  5s5^5t5p6 P  E  b9bl3.22  rv in in  5sbfV-5s7d D  t  b9bb7.l8 b9b57.9b b9b63.57 b9b67.b8  in  5s5^bt-5s5p6 D  b9370.28  b9b22.7b b9b33.98  b9b71.6b  b9b83.l5 b9b90.98  b9b99.8l  I V  rv v V  in in  15.83  b9591.37  13.78  b96bl.59  20  13.71 13.03  12.05 11.02  10.69 10.13  b96l2.03  b96b3.8l b9660.06 b968b.50 b9709.9b b97l8.10 b9731.9b  P  I V  16.68  lb. 99  P  I V  in b9527.5l b953b.l3 i n J b95b5.l8 v rv b9550.82 iv 5»f I V b9570.b7  15  Class.  iv 5s in  18.16 17.71 17. b8  I8.b3  6 20  15  2b. b6 23. b8  10  5 5 8  (continued)  5S 5P5($-5P  \  1  5d F 5 s 5 p 6 p P F  Z|  r  J  V  in in rv  5sbffes7dD,  I I  in rv V  5sbfF-5s7d I).  TABLE XI? (a) (continued)  R  L  H  Jl  50 5o 3d 20  J2  J3  100  80  air I.A.  K vac.  2009.53  1*971*6.79 1*9785.92 1*9796.33 1*9813.1*5 1*9837.03  17 IV III III IV  05.36  III II V V III IV II Arc IV IV Arc  07.95 07.53 06.8li 05.89  2 20 20 (12 (12  03.88 03.33 03.17  1*9850.20 1*9880.29 1*9887.01 U9900.70 li990li.68  12  02.88  1*9911.90  100  25 10 100 12 0  01+.15  200 100  Excit.  02.13  01.21 00.91  00.27 1999.65  99.36  I I  I  1*9930.60  1*9961.03 1*9977.01  1*9992.50  1*9999.75  Class.'  159.  TABLE X I (b) Catalogue and Classification of Tellurium Lines Below 2000 A° Different notations used in the intensity column are as follows:B  -  Intensity due to Block ( Z - t ) .  H  -  Intensity due to Sister B Handrup ( >B ).  Jl  -  Author's intensity with Electrodeless discharge source.  J2  -  Author's intensity with Spark i n Helium source.  K  -  Intensity from Kelley s book («).This, however, excludes the 1  lines i n Bloch's and Lacroute's list& L  -  Intensity due to Lacroute ( * ^'). 2  Intensities are again on the visual scale ofs0 - 1000  Electrodeless Discharge source.  0 -  Spark in Helium source.  300  Re3t of symbols have the same meaning as i n Table  JS7 (a).  X refers to configurations 5s,5p.7p5p'ar,d 530plif i  >  /  K.  L  H  Jl  J2  10 (12 (12. 750 20  10  00 10 6 100 30  X I . A  0  (vac.)  300  Excit.  50025.31*  98.000  96.907  50050.05 50075.1*1*  III III III II V  96.717 96.308 95.331 9U-8UU 93.2l.tl  50082.21 50092.148 50117.00 50129.21* 50169.55  rv in Arc IV  1999.62U 99.105  200  . <^K vac.  98.907  50009.1*1 50022.39  Class.  160. TABLE M  K  L  H  Jl  J2  00 15 12 30  1  00  0  (vac.)  1992.90 92.607 91.882 90.628 90.387  00  C ^ K vac. 50178.06 50185.59 50203.78 50235.Ul 502U1.U9  Excit.  89.206 88.386 87.3U2 87.022 86.888  50271.32 50292.05 50318.U7 50326.57. 50329.97  III III III V  8  86.503 85.93 85.700 .8U.967 8U.716  50339.72 5035U.2L. 50360.08 50378.68 50385.05 .  II V rv in  8L.372 8U.O8I 83.652 83.145 82.636 82.533  50393.78 50401.17 50U12.07 50U2U.96 50U37.91 50UU0.53  in 111 IV in in IV  15  82.2h6 81.589 81.324 80.58U 80.208  50UU7.83 50U6U.56 5olj7l.31 50U90.16 50U99.75  rv v IV V V in  5050U.1U 50512.81 50525.OU 505U9.02  in  15 25  80.036 79.696 79.217 78.278 77.559 77.30L 76.857 76.634  50567.Uo 50573.92  20 8 6  15 30 120 20 100 5 Uo 2 30 5o 18 15 15  15 10  10  50591.06  Class.  IV V V II  10 100 8 5 25  10 80 20 75 (12 (15  1  Al.A  (b) (continued)  V  III IV II V V  1 V  •  5s6p lf - 5s6d D, 3  3  5p6s 'pf- 5s8s S„  161. TABLE  K  L  H  0  Jl  J2  b  (continued)  I.A..° (vac.)  K vac.  Excit.  Class.  1976.086 75.31*1 75.086 73.561 72.592  50605.08 50621*. 18 50630.07 50669.83 50691*. 73  71.595 71.252 70.1*83 70.321; 69.951  50720.36 50729.19 5071*8.98 50753.08 50762.69  69.376 68.180 68.218 67.878 67.561  V 50777.51 III 50800.62 50807.39 TV V 50816.16 i l l 5s5p6d W x i l , 508 21*. 35 111 ' 5l5p6s \-5v\ 50835.93 5081*3.37 50861.19 50869.52 50882.95  in  100  67.113 66.825 66.136 65.811* 65.295  5  65.081  61*.038 63.1*10* 62.808  50888. Ii9 50901.63 50915.52 50930.92 5091*5.35  III II rv rv 5a5p56, a-5s5p6pV 11 c '*  62.210 60.895 60.339 60.153 59.962  50962.95 50997.13 51011.59 51016.1*3 51021.1*0  in 11 Arc i v 5s5p5dVl5s5p6pP  59.335  51037.73 51066.71 51077.20 51102.05 51108.63  rv Arc Arc I'll  50 30 30 150 60 25 00  10 5  10  20  0  15 10  25 20  12  6  15 5d  0  XI ( )  20 5o 2d 60 100 30  00 30  20 3 100  25 30 0 30  0 5 100 15 100  0  15 15 100 120 100 100 ho h  61*. 571*  58.223 57.821 56.869 56.617  III IV II III V 5s6pY-5s6dT* rv IV III  5&p6s 'P-X7  Z  i n rv 6#5p6p 1^-C 3  v v  3  5s6p £- 5s6d D 3  5S5P6S^-  3  ±  5s9s\  162. TABLE  K  L  H Jl 35 30 30 25 3d lid 6 100 120 10 10 10 20 12 15 10 20 15 liO 30 liO 15 100 u 30 10 15 (10 (10  J2 80 20 UO 10  30  20  15 10 20  8  20  8  50 2 0  15  XI (b) (continued)  "A.I.A (vac) 0  K vac.  Excit.  1955.20U 5U.861 5U.302 53.U9U 52.738 52.571  5HU5.56 5115U.5U 51169.17 51190.33 51210.15 5121U.53  Arc III III III IV V III  51.870 51.387 51.070  51232.92 512U5.61 51253.93  IV IV V  50.138 U9.25U U9.01U U0.339 U7.660  51278.U3 5l?0l.68 51308.00 51325.77 513U3.66  III III IV III IV III  U6.816 U6.550 U6.019 U5.658 UU.93U  51365.93 51372.95 51386.96 51396.50 51U15.63  IV V V III  UU.59U U3.370 U3.1U0 Ul.775  51U2U.62 51U57.01 51U63.10 51U79.16 51U99.28  U0.3U8 39.501 39.317 38.782 38.618  51537.15 51559.66 SlS6h^S 51578.78 51583.IU  37.262 37.00U 36.705 36.33U 35.900  51619.25 51626.12 5163U.09 516U3.99 51655.57  U2.53U  rv  Class.  1°  5s5p6p'D - 5§5p8s V  in  rv  in 11 IV  5S5P  1  s  -  5S5P*  rv  V V in in  rv in in  5l5p5d D-JCLO  V  163..  TABLE M  H  (b) (continued)  vac.  Excit.  Jl  J2  \[.A.. (vac.)  15 15 50 30 20  5  1935.597 3U.770 3U.U17 3U.168 33.919  51663.65 51685.7U 51695.17 51701.82 51708.U8  33.558 33.221 32.892 31.782 31.U62  51718.13 51727.15 51735.95 51765.68 5177U.26  30.UL8 30.120 29.862 29.U33 28.517  51801.L5 51810.26 51817.18 51828.70 51853.32  28.116 27.625 27.UU8 26.996  5186U.10 51877.32 51882.08 5189U.25  26.372 25.UU7 25.2U5 25.0U3 2U.232  51911.06 51936.00 519U1.L5 519U6.90 51968.79  23.516 23.301 23.1U3 22.955 22.653  51988.lU 51993.95 51998.22 52003.36 520I1.L7  in in in in  22.387 21.966 21.568 21.362 21.226  52018o67 52030.06 520U0.8U 520U6.U2 52050.10  rv in in in in  6 00 00 0 0 25 10 60 300 00  Uo  10  70  u  25 30 t  10 15  u 20  8d  15 8 12 15 0 10 80 10 5o 20  1  15  0  CR  Ill  5&p5d ifxi 5  i  V I I I IV  rv  rv in  5s5p K- 5*6pX , L  5s5p6p p - 5s5p6d D " 3  IV  in  rv rv in in in  Ss$i6d Lyx6,  H I  in  5s5p6s ' P ; - 5P \ 5&5p5d ifx2 3  161+  TABLE  K  L  H  Jl  10 20d UO  30  J2  2  30  1  10  2 0  0  52106.05  1U.U02 1 3 . 1 6 8  12.878 12.382 11.2U0 10.830 10.61U  100  300 20 Uo 00  20 10  50 10 15 Uo 10  10 20 10 10  52076.80  19.163  15.632 1U.6U8  2  52065.39 52071.2U 52088.90 52096.50  16.208  1 8  vac.  19.795 19.515  16.706  15 5o 100 10  U O  20.UU6 20.21+1  17.105  50  3  (vac.)  18.66U 17.78U 17.3UO  8 0  30 30 15  0  1 8 . 9 3 9  Uo 3 5  8  Xl.A  1920.662  u  5 8 30 50  XI (b) (continued)  09.99b 0 9 . 6 9 2  09.WJ9 08.U13  07.959 06.802 06.212 05.209  OU.732 OU.209 03.137  02.830  52112.IU  52119.60 521U3.52 52155.60  Excit. Ill V III V  Class.  5i5 6p "D-d" P  III III III III IV  5s5p6p^-d ; <  52159.81  V IV IV IV IV  5s6pV- 5s6dD  52235.6U 52269.33 52277.25  IV II  5s5d*p, - 5]3 s]j  52172.85 5218U.23 52202.10 52228.93  X  1  52290.81  III III  5s5p6p p,-d°  52333.28 52339.20  III IV III Arc V  5s5 6p D - 5s5p8s P.' 5S5P  III III III  5s5p6p>.- 5S5 8s p; 5s5p6p D, - 5s5p6d "E*  52322.06  52356.19  5236U.U7 52370.31  52399.56 52U12.03 52bb3.8b 52U60.07 52b87.68 52500.83 52515.25 525UU.83 52553.30  I I I  i n i n  3  l  3  x  P  P - X I O ,  3  P  3  555p6p P, - 5I5P8S P: S  S  rv IV V 5s5p6 P, 3  P  -  5s5p8s p,° j  165 TABLE  H  Jl 15 20 10 5 8 30 5 25 50  J2  100 5  5 5  kd  10d 0  30  0 50  30  100  25 5 2d 6 25  30  6 5 20  5  Uo  5  5  15  XI (b) (continued)  Xl.A  0  (vac.)  vac. 52559.7U 52567.92 52582.68 52586.IU 52596.57  00.9U3 1899.906 99.5U8 98.U5U 97.99U 97.825  52605.U8 5263U.19 526UU.ll 5267U.UU 52687.21 52691.90  97.22U 96.681 96.303 96.100 95.919  52708.59 52723.68 52731.97 52739.8U 527UU.87  in IV  9U.978 9U.505 9U.266 93.896 92.9U1  52771.07 52782.01 52790.90 52801.21 52827.85  III III III  92.23U 91.982 91.628 91.113 90.298  528U7.59 5285U.63 5296U.52 52878.92 52901.72  89.691  89.262  52918.71 52930.73 52937.93  2  87.9UU  52967.68  87.065 86.806 86.6U2 86.U53  52992.35 52999.62 5300U.23 53009.5U  89.005 88.307  30 0 0 10  10  Class.  III ! II III IV III  1902.597 02.301 01.767 01.6U2 01.265  15 5 U  30d  Excit.  III rv rv v IV 5p V , - 5s9s \ 11 11 1  Arc rv  III  rv V V in V VI. Ill  rrvv  5l5dD,-5p s; M  166.  TABLE XI  H  Jl  J2  30 0 0 200  20  0 10 15 20 8  10 20 12  12 15d 0 20d 0 0 25 a o Uo  Al.A  *g  12  0  (b) (continued)  (vac.)  vac.  1886.235 85.886 85.598 8U.969  53015.67 53025.U8 53033.58 53051.28  8U.636 8U.U77 8U.3U9 8U.086 83.867  53060.65 53065.13 53068.73 53076.U 53082.31  83.U07  81.766 80.758 - 19.995  53095.27 53102.07 531U1.58 53170.06 53191.6U  79.751 78.38U 78.171 77.97U 77.650  53198.5U 53237.26 532U3.29 532U6.88 53258.06  83.166  15 30 10 20 10  12  76.135 75.129 7U.906 7U.055 73.5U5  53301.07 53329.50 53336.01 53360.23 5337U.76  15 (10 (15 25 30  10  73.293 72.908 72.6U5 72.271 71.878  53381.9U 53392.91 53UOO.U1 53U11.08 53U22.29  Uo 25 60 10 80  25  71.396 71.025 70.152 69.973 69.651  53U36.05 53UU6.65 53U71.59 53U76.71 53U85.92  10  25 12  Excit.  Class.  Ill5s5p5dr£-X2 3  i  II c III IV i n rv rv rv v VI v vi  v  "  i n 5s5p6s P -XI (  rv v rv rv v in v v rv i n rv, . ' in 5s5p5dT-x3  l  i n rv in v rv III 5s5p5d^-X9,.  167. TABLE  H  6 oo  15  15 15  Jl  XI' (b) (continued)  / \ l . A . ° (vac.)  ^ K vac.  Excit.  10 10 20 50 15  1869.079 67.858 67.683 67.137 66.357  53502.29 53537.27 5351*2.28 53557.91* 53580.32  III 5&p5d P-X5  15 20 20 20 10  66.127 65.632 63.631 62.778 61.673  53586.93 53601.11* 53658.70 536«3.27 53715.13  100 60 200 l*o 5 io  60.831 60.1*29 60.189 59.166  53739.1*1* 53751.05 53757.98 53787.56  IV Arc . ' ' », iv535p5dF.-~5a5pbpP III  8s 50 8 110 300 8  58.811 58.293 57.280 56.871  53797.81* 53812.83 5381*2.18 53851*. Ol*  II III  o 10 50 20 15 loo 25  56.1*28 56.017 55.593 55.151* 51*. 730  53866.89 53878.82 53891.13 53903.89 53916.21  1* 5 (300 300 (100 25  51*. 317 51*. 083 53.697 53.1*21 53.191  53928.22 53935.02 5391*6.25 53951*. 29 53960.98  5o 1* 120 300 3 80 1 120 300  52.805 51.999 51.1*29 50.988 50.1*81  53972.23 53995.71 51*012.31* 51*025.21 51*01*0.01  J2  Class.  IV IV rv  III V rv in  H  Arc  III IV II III III 5s5p5d jf-XT^  Arc  III rv III IV rv Arc  III rv Arc  168  TABLE  H  00  Jl  20 150 15 I5d 200 25 (15 (12  Al.A  (b). ( c o n t i n u e d )  0  (vac.)  vac.  Class.  Excit.  U7.606  5U065.U3 5U079.5B 5U088.03 5U102.05 5U120.U7 5U12U.10  II III IV III IV III IV III IV  5  U7.088 U6.U19 US.350 U3.926  51+139.28 5U158.89 5U190.27 5U232.12  Arc  (35 (20 20 ho 100 5d  U3.U35 U3.305 U3.078 U2.668 U2.U71  5U2U6.56 5U250.39 5U257.07 5U269.1U 5U27U.9U  rv IV V III II III  Ul.6oU Ul.358 U0.895 Uo.028  III IV III !  39.U19  5U300.50 5U307.75 5U321.U1 5U3U7.00 5U365.00  38.878 38.365 37.687 37.515 37.373  5U380.99 5U396.17 5UU16.2U 5UU21.33 5UU25.5U  rv IV 11 IV iv 5S5P 3, - 5l6p ?l TV '» IIIT IV  8  36.368 36.025 3U.761 3U.271 33.391  51+1+55-32 5UU65.U9 5U503.02 5U517.58 5U5U3.7U  III V V TV 5s  5 15  32.91+2 31.307 31.077 30.736 29.1+1+8  5U557.ll 5U605.81 5U612.67 51+622.85 5U661.30  IV V III III IV  12 0 1 10  10 60 0 Uo 75 15 30 50 25 25 0  J2  H  10 300 12 20 15 50 15 10 U 15  U5 10  100  50  18U9.611 U9.127 U8.838 U8.359 U7.730  .3.  Ill IV  r  3  169..  TABLE Xl  H  Jl  10 So  J2  250 00 20  liO  200 100 30 0  35 liO  5  30  150  10 10 IS 30  6  300  15  60  10  IS liS So IS 30 0  20 200 100 20 20  30 IS 20 0  28.675 27.830  27.201*. 26.893  26.U3U 25.1ilili 25.096  2U.733 23.793 23.187 22.981 22.1+61  80  10  (vac.)  1829.050 100  10 lid 10  (b) (continued)  8 20  22.125 21.521  \9.9$3 19.756  19.089  18.790 18.568 18.02U  17.531* 17.290 I6.911i 16.561 16.395 15.358  25  15.128  vac.  51*673.20 51+68 l+.l+l  Arc  Class.  III  5s5p6p P - 5l5 8s 'P*  51+737.75  III V  5S5p5d 'P-X13,  Sli7Sl.50  III  5s5^ \ - 5s5p6p D 3 J  5U709.69 51*723.1+3  51+781.20 51+791.61+ 51t802.51i  Arc IV  51i830.79  III  51+81+9.01 51i855.21  V IV III  51i870.86 51i880.98  5U899.18 51+91+6.1+8 51+952.1+3 51*972.58 514981.61 51i988.33 5500li.78 55019.61 55027.00  55038.38 5501*9.08 5S051i.il 55085.56 55092.51* 55101*. 50  10  lli.73li 13.799  5  13.325  5511*7.32  liO  12.291 12.073  55178.78  11.078  Excit.  55132.91  S5l8S.li2  55215.71*  5  P  5s5p5d P-X6 3  Arc IV V III III III V V I I I rv IV  in in  V  i n rv rv v 111 5 3 5 ^ " 5^P P' . in 11 5 B 5 P 5 ^ D>X9, in in 6  in V 11  P  "co DO  a  MO  LA  cx  o  •  £0 r-l O  •a \r\  IS co LA  •  .  •H -P O  Ex  >  T3  g •rl -P  « o CO  b  I  I  |  UN  _5vV  LA  LA  X  to CO  i-i  IA Am  -4 r-4  a,  •a -o  e.  XAXA  IA  MO  IA -CO XA  LA "CO LA  1AXA  LA  XAXA O  M  r-i  M  XI  O  C A V A r-l  H CM CM LA LA  J H C O O MO C— OO CM CM CM C A XA L A LA LA LAXAXA IA  0 \ CM GO CO r - i  i—I  M  > M > M  CM CA <A c CA r A "LAVA X A LA  O  O  co O CA-Ct LA LA LA LA  r—  M  M  rH  XA r-4 r—_ctXA ON r-4-Ct_cr f r-4 CM (A "LA XA  U >  <J  M M  >  M  M M M  O ^ H H  <5 M M  M M  >  M H  O <  M  M M  r-4 r - l XA ON "LA O C r - l "LA  ON ON CM OO t^- NO NO CA C—  O  CA C O ON CM O  X A X A r-4  ON ON r - l NO  L A CM V A -Ct r-4 ON  CO NO O ON -CT r-4 <A r—I NO NO  NO  NO O  _cr _cr-d-_cr-^r  O r-4 r-4 _=f CA-CfNO ON XAXAXAXA LA I A LA I A LA LA LA LA  CM O f A ON O r-i C A - C t X A r— NO NO NO NO NO XA LA XA XA XA XA X A X A X A X A  f A C N <A -CT C— 0 \ ON <A LA. NO NO NO r — c— XA X A X A X A X A XA X A X A XA LA  CM O - N O ON r— NO CO ON O r-i  XA XAXAXAXA L A L A "LA I A L A  CM ON _CT LA XA  CM r-i r-4 f — X A X A O -Cf r - l X A O CO -Ct 3D C—  NO NO X A X A N O r-4 X A r - l NO CM  NO NO I—4 C CA C A - C t NO J - r— O X A CA CM X A  CO CM CA r-4 O r - l C A - C t CM X A C A X A CM CO X A  O O ON CO O O ON ON  C O C— NO NO ON ON ON ON ON  NO X A X A _ c f CA ON ON ON ON ON  f A CM CM r-i r-i  XAXA 1-4 r-4  O O  O  CO  t>- < A N O X A H X A N Q r—  M  23  f— o-ao oo  C— LA X A X A X A X A X A X A X A X A LA  O O  • co  >  v • o  •  r ^ O c o fAco t-— ON C A C O c o OO -Ct CM MO ON  r-4 ON ON CM O O MD r-4 ON CA NO CM ON MD O  CA GO ON J - ON <A C~- O ON OO co -ct <Aco L A  O  t— t > - X A X A X A  -Cf -Ct C A CM CM  i-l CO  ON ON c o  c—  oooo  o ooo o  o oooo  CM  O  ON ON ON ON ON  r-4  r<  o o  CM  •"3-  r-l •-5  o o  r-4 f A o  XA_CT o r-4 CM  o  O CM  r-l  o  O XA O CM  O O CA r-4 CM  r-4  XA CM  O O O CO CM O H 4 CM  r-i  •a  O X A O O -Ct  r-4 r-4  NO  O  r-l  O O  X) r-l  O XACO O XA CA r-4 CM H i  o  O XA  O  NO  -N£  r-4 CM  O O  CO  O  NO  O XA  CM  O O O O o O CO O -Ct r-4 CM CA (A  O O  O  O XAXA O O AJ CA r~t r - l X A  CO  ">  CO  £  TI  XA  vO  XA '•m XA  XA "*r> XA ^  XA "to XA  ft  M O fn M M M « ^ M M M M M M M M M  H  0  >  J> M  r-  " > ft a  -H  * (Oft XA  -v*  XAXA i  i -CO-  ft  M M M M  «*«0  r—  -d ct,  XA  ft  "  i  w  CO CO  "ft  U\ d  m to  $-1  ft  M M M  05 vO  1A "M XA M M M  M M M  i  vQvQ  ft  ft  1A1A CO «*0 XAXA  M M M  M M M  .  °CO J  -  «nft XA  >  Pi  M > > M M M f > M M M M  > M  > >  > M  >  O jfj <U  M  > > M  >  >  O In <r<  O j-l <«J  >  J C O C O N c O f A O N j f A f A  CAvOC^-CA  C~— f A O CM f A MONONJCM  X A M D r— M ON f A Ov v O CM VO  OvOvvOOvXA OO X A V O O C A  CO 0 \ 4 0 4 J r— Ov M f A  CO J O f- O M O v X A v O O  ON H ON CM OO CMXAr—ONM OO C O CO DO Ov XAXAXAXAXA XAXAXAXAXA  M C — CVJVO J J L A X A 0 \ O v O \ 0 \ XAXA XAXA XAXA XAXA  ONCM\0 J H NOONCMJT>O v O s O O O XAXAvOvOvO LA X A X A X A X A  X A O r — v O f A Ov O st X A DO O M M M M vO vO v O v O v O XAXAIAXAXA  f A f A ON C - CM M CM CM J C— CM CM CM CM CM v O v O v O vO v O XAXAXAXAXA  O v O J O M C O O M J X A CM f A f A f A f A M3 v O v O v O v O XAXAXAXAXA  ON CM CM NO CM XA I CO ON O fA f A f A fA J vO MO v O v O v O XAXAXAXAXA  f A C—vO f A M PVO X A CM M XA M f A  M XA M XA CO c o O X A f A CM M  CO O f~- Ov v O Ov X A CA J MD Ov DO CM _ J  ON M CO P - N O r- o M r— NO X A O r— c o  O f A M O CM CM M CM C— f— ON NO so O  CO  O ON ON C O ON ON C O C O C O  r— r— r— f -  vo x r \ j j rA co c o co co co  CM CM M O ON CO 30 CO CO N  COCOCO N f -  CO CO CO CO  St St  M  st  r—  St  st  st  r— r — C—  c—  r—  XAXA CO XA M M C O CM f A 30 ON C— ON X A NO X A X A J r— r— r— r—  J  st CA <A  H O  ON  O r— O - - 0 0C  ON NO st ON  J CA f A f A CM r;— t — c— t — c—  to O O O XA M O J  O O M  O fA  O O CM X A  ao MO  O O fA  OO  XA O M fA  CM O J M XA  O CM  ON  O XA X A CM  NO  O M  O XAXA O fA M CM  *  O XA M  XA Tl O IS X A M  X A CM X A O O M M CM X A  O O O O C A CM CM M M  O  XAXA O  rA  XA O O  St  172,  TABLE XI  H  Jl  J2  00  750 10 00 00 100  150 100  (b) (continued)  "Xl.A (vac.) 0  G  K vac.  Excit.  1772.U66 72.211* 71.9UU 71.7U3 70.958  561+18.58 561*26.60 561*35.20 561*41.60 561*66.62  70.1*01* 69.1*90 68.833 68.508 68.288  561*81*. 29 56513.1*6 5653U.U5 5651*4.81* 56551.88  67.805 67.520 66.083 65.636 65.056  56567.33 56576.1*5 56622.1*9 56636.82 56655.1*3  6U.886 6U.U9U 6U.217 63.599  56660.89 56673.1*8 56682.37 56702.2U  IV III V III  63.216 62.835 62.155 62.061 61.152  56714.55 56726.81 56739.01* 56751.73 56781.02  111 r v TV V III III  20 00 25  60.91*1* 60.105 60.021  56787.73 56812.22 56817.51  IV  12 20 120 8 Uo  100  59.71*0 59.U03 59.26U 58.1*06 58.192  56826.58 56837.U7 5681*1.96 56869.69 56876.61  III IV V Arc IV II  25 150 60 100 120 5d  58.059 57.UU3 57.050 56.016 55.669  56880.92 56900.85 56913.58 5691*7.09 56958.35  III IV  25  5 25d 10 12 35 50 25 15 30 25  20  8 10 50 18 18 25 25 i5o 100  10 10 100  200  Class.  Ill II iIII ll  5s5p* if- 5s 5p6p p  V III rn v 5. 5s5p5dV-5s5p6 '»• I•lTlT  ,  .11  III III I I I  V III  I I I  11 V  3  i  rv  rv  '3 3 .  1  „  \  P X  l  Jl  173  TABLE  K  H  Jl  J2  50  XT. (b) (continued)  "Xl.A  0  (vac.)  C K vac.  Excit,  Class. 5s 5p6s P,-X3  1755.151 5U.9U6 5U.571 5U.209 53.6U9  56975.16 56981.82 56993.99 57005.76 57023.96  150  52.808 52.603 52.3U6 100 52.057 on N I I I 51.705  57051.32 57057.99 57066.36 57075.77 57087.2U  10 150  200  51.525 50.871 5o.58o 50.372 50.205  57093.11  57123.93 57130.72 57136.17  III. Ill IV V  U9.627 U9.U27 U9.288 U7.880  57155.OU 57161.58 57166.12 57212.17  III 5a5p5d r f x i i IV V rv v I I I rv  U6.995 U6.227 U6.01U U5.672 U5.0U3  572U1.15 57266.33 57273.31 5728U.53 57305.18  UU.739 UU.3U3 U3.663 U3.55U U3.192  57315.17 57328.18 57350.5U) 5735U.12) 57366.03  I I I IV V VI V VI i n  U2.0UU U1.6U2 Ul.356 U1.02U U0.300 Uo.090 39.502 39.3U3 38.882 38.53U 37.091  57U03.8U 57L17.09 57U26.52 57U37.U7 57U61.35 57U65.30 57U87.72 57U92.98 57508.22 57519.73 57567.51  5§5p5d F ''- 5 s 5 p U f \ in V IV I I I IV IV V III IV III III V 5s6 'p;. 5s 7s V V  20 10 15  5  8  U  6  ko  Uo 10  30  Uo 25 25 30 20 2 750  30 20 0  10 10 100  u  120 (25 (25  Uo 80  5o 60 12 80  20  10  25 100 15 30  U 20  57HU.UU  III  V IV III III  2  2  5s 5p5dV- 5 s 5 p U f \ x  5l5p5d ifx7 J  3  1  II I I I III  Arc  5s5 6s P-X5P  V -»  w  .  — -  _  3  i n  II  I I I IV i n  5s 5p5dV- 5s5pUf 1  J  P  3  17U. TABLE XI  L  H  Jl 0 60 0 Uo 60  J2  2  2 (35 (50 Uo . 5 200d UO  5 10 30d 120 100 Uo Uo 20 15  00  12 15 Uo 10 80 Uo 8 U 25 5 10 100 15 100  5o  100 50 8 15  80  5o 50  80  Al.A  0  (b) (continued)  (vac.)  ^  vac.  Excit.  Class.  1736.65U 36.357 36.15U 35.8U3 35.U98  57582.00 57591.85 57598.58 57608.90 57620.35  35.306 35.186 3U.092 33.U29 32.752  57626.73 57630.71 57667.07 57689.13 57711.67  V V IV m 5s5p5d 'F-Xll III IV  32.U33 31.693 30.626  29.301  57722.29 577U6.96 57782,56 5780U.7U 5782U.16  in in 5s5p5d p>xiU. Arc III III  29.109 28.616 28.230 27.6UU 27.076  57833.26 578U9.75 57862.67 57882.30 57901.3U  IV V III 5S5P* 'Ff-xi^ IV II C  26.796 25.709 25.01U 2U.767 23.920  57910.73 579U7.20 57970.55 57978.85 58007.3U  III  23.516 22.528 22.3U8 22.018  58020.93 5805U.21 58060.28 58071.U1  IV II III  21.727 21.150 20.903 20.678 20.U37  58081.22 58100.69 58109.03 58116.63 5812U.77  rv v on ArcIIl5s5p5dT-X III  29.962  IV III rv V  IV  5sUf Y,- 5s  IV  175. TABLE XI ( b ) (continued)  K  H  Jl 00 10 100  l  Uo  25  5o  10  l 15 25 8 15 50 5oo 50 20 50 15 5d 120 120 10  0  10  30 35 10  15 15 5 20 coinc. 6 10  10  150 i5o 30 20 100 i5o  Uo  8 20 50 00 15  8  ^"K vac.  Excit,  1719.736 19.U6U 19.11U 18.935 18.563  581L8.U6 58157.66 58169.50 58175.56 58188.15  11  18.113 17.521 17.196 16.105 15.859  58203.39 58223.L6 5823U.U8 58271.50 58279.85  in rv in  15*275 1U.586 1U.086 13.75U 13.U35  58200.31 58323.12 583U0.13  in rv  58362.30  in  13.063 12.772 11.6U6 11.U29 11.056  5837U.97 5838U.89 58U23.30 58U30.71 53UU3.U5  09.8U6 09.561 09.087  58U8U.80 58U9U.55 58510.78 58520.57 585U0.75  A.I.A (vac.)  150  Uoo  0  J2  0  08.801  08.212 08.0U6  07.858 06.867 06.718 06.3U7  585U6.UU 58552.88 58586.88 58591.99 5860U.73  06.127 05.520 05.209 OU.790 OU.U77  58612.29 58633.15 586U3.8U 58658.26 58669.03  Class.  rv rv  V 11 c  V  rv  rv V  rv in rv  3. 5s5d \ - 5s6 'p; P  5s5d L - 5s6p P ° 3  3  o  IV  rv in  IV  5J5P6S V - 5£ X 5sUf F;- 5s5p6p^D, J  Arc III  rv v  Arc III III  rv .V  5 s 5 i 5 \ - 5§5 6p s 3  P  176.  TABLE XI  K  H  (b) (continued)  Jl  J2  /Vl.A (vac.)  li|0  50  1703.266 02.9U9 02.772 02.227  58710.7U 58721.67 58727.77 587U6.53  IV TT III V Arc  01.571 01.368 00.761 1699.899 98.9U1  58769.22 58776.2U 58797.21 58527.03 58860.20  II C IV V Arc III  2 10 Od 50 100  98.U25 98 .081 97.870 97.23U 96.89U  58878.08 58890.01 58897.33 58919.UO 58931.21  50 15 6o 5 15  96.71U 95.879 9U.880 9U.216 9U.OU5  58937.U6 58966.U8 59001.23 5902U.36 59030.31  III v rv in  Uo 15 10 20 5  93.U17 93.087 92.701 92.330 91.5U5  59052.21 59063.72 59077.18 59090.IU 59117.56  in V in in V  15 00 Uoo 10 60  91.2U5 90.702 89.823 89.290 88.77U  59128.OU 591U7.03 59177.80 59196.U7 5921U.56  IV V II III IV  87.952 87.687 87.U51 87.132 86.702  592U3.UO 59252.70 59260.99 59272.19 59287.30  0 So 100  6 250 Uo 150 120 100  70 50 5 10 70  100 100 200 20  10 25  25 100 50  60  0  ^"k  vac.  Excit,  V rv rv III IV  Class. 5s5dYl  Sshf%  a-  }  >  i o  5S5P D° - 5s5p6p S 3  5s5p6s P -x6  (  3  l  i  5s5 5dV - 5s5pUf P  \  in  5p6s \ \ - 5s8s S,  Arc III III in III III  5s5p5d V - 5s5pUf F.  177.  TABLE XI  K  H  Jl  J2  5o 5o 100 ho 10  Uo 60 200  15  5  10 0 50  OO  12  00  00  C R vac.  Excit,  1686.3Ul 86.100 85.202 8U.955 8U.633  59299.99 59308.U7 593U0.07 593U8.77 59360.11  III III II V V  5p6s P°- 5s8s"S,  83.693 83.218 82.8U1 82.511  59393.26 59U10.02 59U23.33 59U3L.98 59UU8.9U  III  5s5p6s P~X7^  III III  5s5p5d U-X8,  III  5s5p5dF^ - 5a%>Uf%  0  (vac.)  82.116  5o 25 8 250  81.579 81.1U1 80.522 79.82U  59L67.92 59U83.U2 59505.33 59530.05  8 60 60 2 2  79.380 79.208 79.033 78.556 78.217  595U5.79 59551.H9 59558.10 59575.02 59587.05  77.791 77.363 76.803 75.918 75.U16  59602.18 59617.39 59637.30 59668.80 59686.67  12  7U.583 7U.OU8 73.U13 73.183 73.017  59722.32 59135.h5 59758.12 59766.33 59772.26  20 30 300 600 00  72.700 72.376 71.7UU 71.U26 70.337  59783.59 59795.17 59817.78 59829.15 59868.16  100 35 5 60 600  15  100  Al.A  (b) (continued)  10 80 25  8  100  100 Uo Uo  10  100 100  Class,  3  III ii:  rv Arc  3  5s5d'"D _ 5sUfXx  Arc III IV Arc  ( w ( III  5p S - 5i8s S,  (x  5s.5p63 T X l , r  rv in in rv  5 l U f V - 5s5p6p^  i n rv i n i n  5t5v %- 5s5p6p 'Dx 5sUf \ - 5s5 6p D  3i  H  P  5l5p ^ - 5s5pV% 1  3i  178. TABLE X2  K  H  Jl 5 Uo 20 250 200  J2  Al.A.  5 0 15  300 2 2 50 100 i5o 5o Uo Uo 10  Uo  2 100 150 25 35 25 0 00 1000 2 5 15 30 0 10 5o 50 300 5 8  30 0 2  7  (b) (continued)  0  (vac.)  C k vac.  1670.065 69.685 69.306 68.5U0 68.162  59877.91 59891.5U 59905.1U 59932.6U 599U6.22  67.708 66.9U5 66.695  59962.5k 599&9.99  Excit,  Class.  III IV IV  \v  rv  IV  65.589  65.995  59998.99 6002U.19 60038.83  65..285 7U.7U3 6U.551 6U.071 63.922  600U9.86 60069.3U 60076.27 60093.59 60098.98  63.81U 63.319 62.U15 61.89U 61.3U1  60102.88 00120.76 60153.U6 60172.31 60192.3U  Arc rv v rv v IV V  61.129 60.U2U 59.9U2 59.065  60200.03 60225.59 602U3.07 6027U.92  IV  58.732 58.516 56.663 55.53U 5U.5U1  60287.02 6029U.87 60362.31 60U03.U8 60U39.73  i n rv  5U.025 52.879 52.U69 52.01U 51.676  60U58.58 60500.50 60515.51 60532.18 605UU.57  V 5s6p"V- 5s7s S 11 c V 5s5d D - 5 s 6 p T j 111 rv III IV  IV IV V V v rv  5s6p' P°- 5s 7s \ 3  in  IV V  in in  5 s 5 p l f - 5s5p6p D ,i  rv v Arc rv J  179. TABLE  K  ^ I . A ° (vac.)  cTc vac.  Excit,  1651.109 50.801+ 50.61+3 50.1+76 1+9.809  60565.36 60576.55 60582.1+6 60588.59 60613.08  III III IV  1+9.350 1+9.035 1*8.551 1+8.321 1*7.919  60629.95 6061+1.53 60659.31* 60667.80 60682.60  1+7.530 1+6.1+60 1+5.90 1*5.261+ 1+5.101*  60696.93 60736.37 60757.0 60780.52 60783.1*8  1+1+.631+ UU..313 U3.Q69 1*3.597 1*3.1*1*5  60d03.8l 60815.67 60832.10 6081+2.17 6081+7.80  00 15 2d 1+ 2d 200 100  1*2.825 1*2.195 1*1.710 1*1.1+70 1*0.180  60870.76 60891+.11 60912.10 60921.01 60968.92  25 150 25 50 20 00 15 10  39.57 39.1*1 38.925 38.321+ 38.028  60991.6 60997.5 61015.61 61037.99 6101+9.02  15 00 2 25  37.716 37.295 36.907 36.300  61060.65 61076.35 61090.83 61113.1*9  H Jl 5 5 1 30 25  l+o 3  J2  20 50  U o 25 10  20 8 ?  10? 25  10 100 Imp?  10 1 1 1+ 15  6  XI (b) (continued)  Class.  5s5p6s |-X9 3  2  III IV III III IV III IV V Arc  III  5s5p5dY-  5s5pltf  IV II C III 5s5p6s •'EC-XIO. 5s5p6s 'If-X8,. III II C III 5s5p6sP,-X? III J  1  III IV 111  rv  F.  180.  TABLE Mi  K  H J l  J2  80 150 S" 30 6d ,s 3  S (15 6  18 00 80  25  3 2  00  60 3 60  a  120 60 (20 (18 25  60 25  35  U  20 18 20 1 100 10 30  60 15  a  12 25 25 15 3 8  /ll.A  0  (b) (continued)  (vac.)  1635.927  35.763  35.320 35.032 3a. 761  6ll27.a3  II •  61133.56  III r v  61160.89  in in in  61150.12 61171.03  61182.67 61197.6 61208.a7 6l233.a7  32.17a  61267.98 61281.91 6i3a8.oa  31.803 3o.oaa 29.763  6l2a9.93  V II  29.a55  61370.22  in  28.6U7  6iaoo.b6 6iai3.26 6ia20.l6 6iaa5.6o 6ia60.29  rv  28.313 28.130 27.a56  26.150  25.502  25.256  2a.715  2a.370 2a.o58  23.876  23.052 22.7U5  611*83.11  6LU9a.95 61519.a6  61528.77  615U9.26 61562.33  6157U.16 61581.06  61612.33 61623.98  22.182  616U5.37 61662.06  20.705 20.375  61701.55  21.7U3 20.089  Class.  IV  61358.62  26.a63  0 20  Excit,  3a.a5o 3a.o5 33.761 33.09a 32.655  27.067  10  <MC vac.  6l7lU.ll 61725.01  V  5 s 5 d X - 5s6p P; 3  in rv rv  5s5p" P - 5 p V , v  III IV IIIrv IV in 5s5p5d £- 5 P \ V 3  rv  in IV V in V III IV rv v  181, TABLE  K  L  H  Jl  J2  00 15 30  1 30  10  0  8  0  Excit,  17.1+07 16.591 15.609 15.1+81+ 15.159  61827.36 61858.57 61896.17 61900.96 61913.Ul  II  11+.813 1U.U52 11+.208 13.7UI+ 13.1+37  61926.68 619U0.53 6191+9.89 61967,70 61979.1+9  rv i n  13.190 11.1*87 11.351 10.938 10.297  61988.98 62051+.U9 62059.73 62075.61+ 62100.35  11 I I I IV  20 15 2 2 20  09.362 09.162 08.986 08.81+8 08.1+12  62136.1+3 621U+.15 62150.95 62156.28 62173.13  V V  60 25 30 2  07.930 07.701 07.601 06.990 06.736 06.1+91  62191.77 62197.53 62201+.1+9 62228.15 62237.98 6221+7.1+7  06.000 05.739 05.202 01+.806 ol+.i+i+o  62266.51 62276.63 6229U.36 62312.83 62327.05  15 0 0 20d 30  0  K vac. 61738.7 6171+6.35 61775.65 61801.61  10 10 80 20 60  10  *Xl.A° (vac) 1619.73 19.529 18.761 18.001  l+o  0  XL (b) (continued)  30 15 3 30 Uo  h  10  5 2 30 2 5  30  6  5 5 30  25  30  I I I IV III V  rv V  Class.  5s6p p;- 5s7s's. 3  5s5d^ - 5s6p^  IV  in  V  i n rv in  5s5p6p P - 5s5p8s 'p 3  0  e  II  III  5s*5p6s frxio,  II  III  I I I IV III  5§5p6p^ -  5^>v^i  182  TABLE M  H  J l 2 10 20 00 15  15 Jl 20 20 3 150 liO 2 2 200 15 50 (18 (25 20 8 15 6 ll 1 100 ll 6 (20 (12 50 80 15 15 6  J2  1  ?  1 200  50  30  20  8 100  15 20  (b) (continued)  /I l . A (vac.) 0  "K vac.  G  Excit,  Class.  Oli. 129 03.731 03.3U9 03.15 02.883  62339.13 62351|.60 62369.U6 62372.0 62387.59  02.1|0ii 02.007 01.653 01.077 00.786  62I1O6.2U 62ii21.70 62ii35.50 62li57.96 62li69.32  rv i n  00.226  rv v  99.356 98.9U8  62li91.l8 62501.8U 62517.0U 62525.17 6251il.l3  98.329 97.7U6 97.579  62565.35 62588.18 6259U.72  V  96.825 96.605 96.212 96.068 95.658  6262k.35 62632.90 626L8.32 62653.93 62670.08  V V III III IV II  95.300 9li.l92 93.890 93.751 93.L38 93.257  6268k.Ik 62727.71 62739.59 627li5.06 62757.39 6276k.52  II II c III IV IV 5shx\III IV  91.890 91.712 '91.22k 91.000 90.395  62818.k2 62825.kk 628kk.71 62853.56 62877.k7  IV I I I  1599.953 99.56k  IV IV I I I IV I I I V IV  5s5d." -  3 ° 5skf\  rv  II c  in  III IV  in  5s5d § - 5s6p P°  V  rv i n rvr XI, J-  5s5p6p"P.  5s5p5d P»Xl2, 3  183 TABLE X I (b) (continued)  K  L  H  Jl  J2  T590.00U  15d  15 3 2  89.371  88.9L6  88.766 88.297  Uo  0 15 10  2  ^  vac.  62892.93  62917.98 6293U.31  629U1.9U 62960.52  Excit,  V  62979.0  0 120 100 35  86.550  86.190  63029.85 630UU.15  60 50 20  85.UU5 85.010 8U.870 8U.U3 83.93  63073.78 63091.09 63096.66 6311U.18 6313U.11  rv  83.L73 83.261  V  tf0.586  63152.33 63160.79 6321U.09 632U8.11 63267.68  50 50 100 2d U 100 Uo  130.368  63276.U1  100 0 0  77.6L7 77.02  V  76.71  63385.5U 63U10.7 63U23.2  76.U8U 75.925 75.U95 7U.90U 7U.UO0  63U32.30 63U5U.80 63U72.12 63U95.9U 63516.27  iv n r  8  15  2  25 2 20 60  u  15  5  lOd  2 Uo 25 8  30 6  87.370 87.080  81.926 81.075  79.860 79.170 78.553 77.992  62997.29 63008.50  63296.75 6332U.U1 633U9.16 63371.68  Class.  rv  87.83  Od Od  0  \ l . k ° (vac.)  «  3  -  5s5d rj - 5sUf F; J  rrr rv v  11 c V  V  rv  in V III IV  5p6s P, - 5s8s S  o  5s5d D - 5s6p P  (  >  3  5s5pUf Fj_  5S5P D -  5s5d D - 5 s U f V 3  11 c 5s5d \3 - 5sUf F„ 3  i  in 5s"5p6s ^ l \ rv i n rv r  18U. TABLE M. (b) (continued)  H  Jl ilO 18 30 2 15  J2  ll.A  0  (vac.)  K vac.  Excit,  157U.212 73.555 72.575 72.35U 71.970  63523.85 63550.37 63589.98 63598.91 6361U. Ii 5  17 V 17 17 V IV V III  71.U90 71.303 70.950 70.77U 70.530  63633.88 636U1.U5 63655.75 63662.89 63672.78  17 III IV V. III IV V IV V  70.3U7 69.810 69.20U 68.915 68.530  63680.20 63701.98 63726.58 63738.32 63753.97  rv v  63775.03 63799.68 63813.20 63831.82 63860.59  11  50  68.012 67.U06 67.07U 66.617 65.911  10d 20 50 15 12 UOd  65.3U7 6U.83 6U.O01 63.717 62.UUO  63883.60 6390U.7 63935.31 63950.20 6U002.U6  8d 70 5 30 20  62.050 61.733 61.0U0 59.975 59.500  6U018.Ua 6U031.aU 6U059.86 6U103.60 6U123.12  III III III IV III 5s? 5d^-Xi3  59.062 58.301 57.003 56.770 55.020  6U1U1.1U 6U169.17 6U225.96 6U235.57 6U307.86  IV V III II  50 30 10 20 12  8  30 10  25 lOd 15 50 15 20 50 100 Uo 20  U5  25  8 BO 60 20 0 100 Uo Uo 100  5a5p6s P'-X5 >  2  17 V 17 7 7  IV V II  5s5d D, - 5sUf Et 5 s 5 d \ - 5sUf Fj 3  3  3  III IV II IV  P  I  0 F  3  TABLE  H  Jl J2  M . (b) (continued)  A l . A (vac.) C K vac. 0  Excit.  155U.350 5U.166 53.776 53.U01  6U335.58 6U3U3.20 6U359.35 6U371.57  53.020 51.892 51.650 50.795 50.230  6U390.68 6UU37.U8 6LUU7.53 6UU83.06 6U506.56  U9.2U6 U8.225 U7.725 U7.U35 U7.280  6U5U7.53 6L590.10 6U610.97 6U623.07 6U629.55  1 100 100 U 30 25 u  U6.287 U5.720 U5.U50 U5.100 UU.612  6U671.05 6U69U.78 6U706.08 6U720.7U 6U7U1.18  150 20 25 30 10 5 60 60  UU.085 U2.575 U2.305 U2.116 Ul.516  6U763.28 6U826.67 6U838.02 6U8U5.97 6U871.21  12 150 50 12 200 100 10  Ul.266 Uo.912 Uo.330 U0.173 39.570  6U881.73 6U896.6U 6U921.16 6U927.78 6U953.21  III 111  39.311 38.718 38.39 37.80U 37.50  6U96U.1U 6U989.17 65003.0 65027.80 650U0.6  IV  15 30 3d 2d 100 30 20 250 20  80 70  750 Uoo 50 18 15  25 Uo 60 80  80  BO  50 18 0 60 15  5 8  Class.  IV V I I I IV  III II I I I IV  M  II  (IV 5l5p Pi - 5s5p" P i tv SsSv^K- 5^ P 3  0  I I I IV  in 11 IV  11  c  III IV  v  5s5p°D - 5s5pUf\ 0  II I I I IV I I I IV III  5& 5d F -x3* 5s5p \ - 5s5pUf \ 3  P  a  11 c  in  5S5P5QT-XU  III  5s5p5dF>x5  in  Z  3  a  186.  TABLE XI (b) (continued)  H  Jl  J2  80 10 100 10 shldr 30 15 8 8 50 60 00 6  30 00 25 Uo 20  30w  < 3  K  vac.  Excit. IV V V  50  35.317 35.020 3U.870 3U.23 3U.007  65133.13 651U5.7U 65152.10 65179.3 65188.76 65200.32 65213.63 65223.62 65250.7  III  60  33.735 33.U22 33.187 32.55 32.209 31.89 31.225 30.795 30.01(7  65265.25 65278.39 65307.19 65325.5U 65357.1+7  V II V IV V V  29.907  65363.U6 65381+.01 651+1+6.92 651+75.20 65U83.52  V III IV V III III  651+92.2 65528.61 65557.87 65585.90 65627.31  IV V III IV V IV V V  6561+0.75 6561+5.79 65665.62 65703.h 65716.80  III III  15  100  15 100 25 10 18 8d 2 25  (vac.)  65065. lil 65081.01+ 65090.31 65105.99 65116.55  10 100 25 30 12 \ 18 J 30 r 2 200  0  1536.915 36.5U6 36.327 35.957 35.708  k  20 80 00  /ll.A  29.1+26  27.956 27.296 27.102  26.90 26.051 25.370 2U.718 23.756  10  6 1 15  23.UUU 23.327 22.867 21.99 21.681  Class.  5s5d D^- 5sl+f Ej l  III  III III  HI  III  a&pfiA - 5s5p8s v  5a5p6s'P-X12  il  187  TABLE  H  K  Jl  J2  Uo  30 20 20  20 150 30 l5o  00 00  30 35 15 15 d 25d 15 30 1  1  00  0  Uo  100 5  18 12 30 100 i5o  25 25 25 10 2 2 80  150 Imp? 100  30 6 5o 30  00 00  ii  1 25 10 5 120 6d 120 50  lOd 10  20  6  XI (b) (continued)  Xl„A°  (vac.)  6~k vac.  Excit.  1521.068 20.666 20.288 19.232 18.737  657U3.29 65760.67 65777.02 65822.7U 658UU.19  III III IV IV V IV  17.708 17.331 17.0U5 16.639 16.1U0  65888.83 65905.20 65917.63 65935.27 65956.97  III IV V III  rv v  15.133 1U.U3U 1U.10U 13.36U 12.926  66000.81 66031.27 660U5.67 66077.96 66097.09  III IV IV 11 c III IV  12.629 12.251 11.2U9 11.008 10.295  66110.07 66126.59 66170.UL 66180.99 66212.2b  09.688 09.U02 09.122 08.623  66238.86 6625l.iil 66263.70 66285.62  08.U23 08.109 07.570 07.060 06.670  6629U.U1 66308.21 66331.92 6635U-36 66371.5U  06.110 05.U20 05.10U OU.370 0U.113  66396.22 66U26.65 66UU0.60 66U73.01 66L8U.37  5s5p6p D - 5s 5p8s P, 3  5lUf X-  l  e  #6g G x  5slifV,- S&gti  in  III IV  i n rv in rr c  rv rv  rrr rv rr  rrr rv v  III !  in  Class.  1  188.  TABLE XI (b) (continued)  K  H  Jl  J2  A.I.A  0  (vac.)  vac.  Excit,  1503.885 03. Will 03.180 02.902 02.11i0  661+91+. 1+5 III 66513.96 IV V 66525.61+ IV V III 66537.91+ IV 66571.70  5  01.823 01.221 00.968 00.255 lli99.765  66585.75 66612.1+5 66623.68 66655.31+ 66677.12  20  99.586 99.069 98.36U 97.805 97.257  66685.08 66708.08 66739.1+6 66760.80 66788.81  30d 80 12d 30 25 30  96.330 95.5U8 95.13 9U.26U 91.792  66830.18 66865.13 66883.8 66922.58 67033.1+8  li 60 ii5 15 7 150 15 lid  90.93$  35 10 15 20 10 12 15 b 25 6 li 5 80 5 30d  2  III IV III IV  53^68^-113,  5a 5p5d g-XU 1  3  1  5s 5 5d ¥-x5, 1  P  IV II III rv 11 rv V IV  90.ii72 89.911 89.515 89.070  67072.01 67092.85 67118.11 67135.95 67156.02  25d 10 2d 30 lOd 8d  88.1+73 87.91+0 87.21+5 86.803 86.561+  67182.95 67207.02 67238.1+2 67258.1+1 67269.22  III IV rv .111 IV III  12 25 00 25  85.002 81+.690 81+.1+8 81+. 173  67339.98 67351+.13 67363.6 67377.60  in IV IV IV  25  Class  in IV III rv  5&5p6s  3  P-X7.  5S5PV- 5s 5 l+f\ l  P  189 TABLE XI  K  H  (b) (continued)  ^""k vac.  Excit,  11*83.778 83.561 83.262 83.03 82.811  67395.53 671*05.25 671*18.98 671*29.5 671*39.1*8  III IV IV  82.1+1+ 82.090 81.820 81.630 81.159  671*56.1* 671*72.29 671*81*. 58 671*93.21* 675H*.70  30 30 8d 20 15  81.032 80.657 80.377 79.652 79.111+  67520.1+9 67537.59 67550.37 67583.1*6 67608.05  80 Od 18 10 8  78.869 78.22 77.901 77.660 77.291  67619.25 6761+8.9 67663.51* 67671*. 57 67691.1*8  25 0 25 10 6  77.102 76.82 76.617 76.023 75.723  67700.11 67713.1 67722.37 6771*9.63 67763.liO  IV V  i* 0 5oo 100 80 20d  75.1*68 75.16 73.938 73.517 73.176  67775.11 67789.3 6781+5.1*6 67861+.85 67880.56  in  0 15 0 100 100  72.70 72.518 72.36 71.51*9 71.360  67902.50 rv 67910.89 67918.2 67955.61A I I I IV 67961+.3l*>' i n rv  Jl  J2  18 1.5 20 00 30  20  0 30 10 25 20  20 30 6  20 20  Xl.A  0  (vac.)  Class  III  III III  rv .rv  5sSp6s- P X8 ?  r  z  IV  in  5S5P  - 5s5p6 P P  (  IV IV V  rv  rv in  in in  5s 5p6sP'-X13 l  2  5s5^-  5l5p6p*D  II  IV V  5£5P* \ - 5S5P % #'so  5s6p P° 3  190. TABLE XI  K  L  H  Jl  J2  5  vac.  67.7U 67.150 66.508 65.70U  68131.9 68159.36 68189.20 68226.60  6 150 100 0 50 25 30 30 30  65.2UO 6U.210 63.516 63.261 62.792  682U8.21 68296.22 68328.61 683U0.51 68362.U2  U 150 150 50 10 (150 20 (Uoo Uo  61.68? 61.335 60.620 59.927 59.690  68U1U.10 68U30.58 68U6U.O8 68U96.57 68507.70  2 5oo 10d 18 70 100  80 30  58.3UO 57.U60 56.960 56.U70 55.896  68571.12 63612.52 68636.07 68659.16 68686.23  5 50 Imp. 80 l5o 8d 60d 15 u  55.077 5U.339 53.901 52.850 52.U22  6872U.89 60759.76 6878O.U8 68830.2U 68850.52  00 00 0 15 8  51.92 50. U6 50.21 U9.92U U9.U69  6887U.3 689U3.6 68955.5 68969.IU 68990.79  0  1  C K  80 120 lOd 2 250 100  25  hd  1  (vac.)  67987.U 68029.U8 680U7.26 68070.00 68093.50  30 25 6d  1  0  1U70.86 69.951 69.567 69.076 68.569  Od  1  Al.A  (b) (continued)  2  Od  15 15  Excit,  Class.  IV IV II  II C II C II C III 5S5P 'IT-X2 V III III 3  II c V  rv  III IV  in  ^s5p5d F-X7, 3  i  rv in rv  III IV  3_»  in II c  rv  IV  in  IV V  5s5p6s *P-X10 1  191  TABLE 5  K  L  H  Jl IS 200 1000  0  J2  15 30  2 2 500 15 lOd 1 ( 2d (12d ( 2d 3d 25 30 15  15  500 100 Uo  100  20 UOd ( 2d ( 2d 10? 100 12 30 2d 15 10 30 00 15 Od  30  Uo 20  Al.A  0  () b  (continued)  (vac.)  vac.  Excit.  1UU9.230 U8.928 U8.056 U7.97U U7.26  69002.16 69016.55 69058.11 69062.02 69096.1  U6.82 U6.136 UU.98 U3.761 U3.U86 U3.281  69117.1 691U9.79 69205.1 69263.55 69276.7U 69286.58  U2.629 U2.312 Ul.092 U0.739  69317.90 69333.13 69391.83 69U08.83  III V  39'.557 39.U2U 38.6U1 38.269  69U65.82 69U72.23 69510.9 69528.03  IV II III IV V  37.501 37.02U 36.27 36.10 35.66  69565.17 69588.25 6962U.8 69633.0 6965U.5  v rv V IV  35.UU7 3U.853 33.899 33.575 33.120  6966U.72 69693.56 69739.92 69755.69 69777.83  in in in  32.853 31.U75 31.00 30.230 29.670  697U0.83 69858.02 69881.2 69918.83 699U6.22  Class.  IV II  IV rv  in V IV V  5J6  P  5S5P P,  5'l5p6s P - X l ^  V - 5P 5s5 5d%.X? 5s5p5d^-x6 P  2  \  192. TABLE XI  K  L  H  Jl  Ai.A  (b) (continued)  ~K vac.  Excit.  11*29.160 28.888 28.103 28.028 27.556  69971.18 69981*. 50 70006.79 70026.61* 7001*9.80  IV iIII ll  2  27.010 26.566 26.291 26.000 25.700  70076.60 70098.1*1 70111.92 70126.23 7011*0.99  III IV III III V IV  0 200 50 8 12 6 100 80  2l*.232 23.777 23.290 22.062 21.1*73.  70213.28 70235.72 70259.76 70320.1*3 7031*9.66  II V IV  35d 35  20.590 19.222 18.508 18.21*0 17.71*1*  70393.29 V VI 701*61.11* IV V III 701*96.61 IV 70509.93 70531*. 60 III  17.21*5 16.800 16.218 15.81*5 15.608  70559.1*1* 70581.60 70610.60 70629.21 7061*1.03  IV V V IV IV V III IV V  11*. 908 11*. 561* Hi. 170 13.818  70675.98 70693.17 70712.86 70730.1*7  V  17 I'll  12.822 11.88 10.251 10.126 09.1*1*0  70780.33 70827.6 70909.37 70915.65 70950.17  IV V IV V rv v  J2  Od  1  Od  00 25  12d 25  2 12 0  0  25  30 25 25  200 50  30 50  20  I5d 8d 80 30 1 200 18 18 30  100  0  (vac.)  G  Class.  5s6s £r5s5p5d b'.t 5s5£ % - 5s5p* s 2  II c  5s5p \ - 5s5pl*f F  3  Nitrogen.  193. TABLE 3H (b) (continued)  K  L  H  Jl  A . I . A (vac.)  S^K vac.  ia09.l63 08.375 07.975 07.711 07.030  7096U.12 71023.99 71003. 82 71037.31 71071.70  IV III V IV III rv  1000 10 0 0 150 100 180  06.533 05.5a 05.32 oa.975 oa.670  71096.81 711U7.0 71158.2 71175.65 71191.10  V 5s5 P - 5P D III IV V II c rv  ao  oa.65 oa.i88 03.a38 02.811 02.195  71192.1 71215.5a 71253.60  00.283 1399.8a  7iaia.ia 7LU36.7 71U50.93 7LU83.ai 71a9s.ua  8 70 12 12 100 10 1 1 ii  15 a 180 200  J2 12  30  15 00 15 i 0 1 18 d 20 1 00 150 100 200 100 1 20 300 0 6 li 0 0  0  99.$62  98.926 98.632  Excit.  Class.  X  P  II c in  5s5^V- $ K  in S^ 5d F-X9; 71285.a5 71316.76 i n rv 3  P  98.39a 97.611 97.222 96.551 96.2a  71510.61 71550.67 71570.59  95.790 95.2ao 9a.350 , (93.93 ' (93.79  7i6aa.o2 71672.26 71718.01 71739.6 717a6.8  93.078 92.565 92.iaa 91.265 90.7ao  71733.a9  IV V V  rv v III IV  71620.9 7l6oa.98  71809.9a 71331.65 71877.0U 7190a.17  II c II c III  rv v  19k. TABLE XI  K  L  H  Jl  J2  \l.A° (vac.)  0 8  1390.U80 90.113 89.602 '89.209 88.98U  0  88.79  2 30  60  8  6  Imp?  150 70  200  71917.62 71936.60 71963.06 71983.U1 71995.07  87.3U8  72079.97  86.127  721U3.U7 72177.99 72199.30  86.859  Excit.  V IV III IV V  72005.1  72027.95 72038.33  87.767 37.6U7  8d  vac.  88.15  88.350  0 50 ho  o  (b) (continued)  72058.21 7206U.UU 72105.39  IV III IV rv v  Uo 0 00 00  8U.15 83.6U 83.Ul  722U6.5 72273.1  83.1U5 82.U3U  72299.00 72336.19  IV v IV V  82.098 81.U88 80.310 79.687 78.923  72353.77 72385.72  IV v  78.020  72567.89  8 8 2  8  10 1 200  i5o  1 200  150  60 300 i5o Uo  76.908 75.978  72285.2  72UU7.50 72U80.21 72520.37  72626.50 72675.59  7U.8U5  72735.U8  8  73.650  5d 15  71.603 71.308 69.80U  72798.75 72872.U9  60 6d  7U.390 72.260  72759.56  72907.Uo 72923.08 73003.15  c  IIV VI  85.U6U 85.055  IV rv II  c  c IIVc II rv  rv rv rv  in  V  Class.  TABLE Xi  K  L  H  Jl  J2  "Xl.A  0  (b) (continued)  (vac.)  vac.  Excit.  12 12 8 300 200 30 1  1368.821+ 68.61+7 66.700 66.010 65.261+  1 50 9 1+00 200 12 1  61+.622 63.1+62 63.251+ 62.51+5 62.130  73280.37 7331+2.72 73353.91 73392.08 731+11+. U+  III II c V  0 20 25 5  61.58 60.916 60.800 60.51+0  731+1+0.88 731+79.93 731+86.19 73500.23  IV III IV IV  3d 6 2d 15 12  59.838 59.219 58.331 57.992 57.191  73538.18 73571.67 73610.76 73638.11+ 73681.60  2d 250 1 15 0  56.377 55.017 51+.1+10 51+. 120  73725.82 73771.07 73799.82 73832.89 7381+8.70  53.670 53.1+95 52.992 52.268 51.820  73873.2 73882.80 73910.27 7391+9.81+ 73971+.35  III II IV  51.691+ 51.618 51.205 50.970 50.630  73981.25  IV V III IV III IV  2 2 15 2 3 lOd l5d 1+ 10 l+o  $$.96  10  73055.1+2 73061+.86 73168.95 73205.91 7321+5.91  13955.9$  71+008.02 71+020.89 71+039.53  Class.  V IV II c V  III III III III III III IV IV 5S5P P - 5S5P Pi V  V  $s$f> 'D2-X6  196 TABLE  K  L  H Jl  XI (b) (continued)  "Xl.A (vac.) 0  <3*K vac.  Excit.  1350.112 1*9.660 1*9.105 1+8.850 18.655  71*067.93 71*092.7U 71*123.22 71*137.23 71*11*7.95  III  1*8.25 1*7.861+ 1*7.570 U6.890 16.390  71*170.2 71*191.1*7 71*207.65 71*21*5.12 71*272.69  2 20 1+00 150 7 3 15 15 8  1*6.121 1*5.250 1*3.6oo 13.292 U3.03U  71*287.53 71*335.63 7UU26.92 71*1*1*3.98 71*1*58.28  20 UO 00 10 2  1*2.1*37 1*1.875 1*1.31*0 1*0. 1*1*8 1*0.200  71*1*91.1*0 71*522.59 71*552.32 71*601.93 71*615.73  39.388 38.338 37.925 36.1*21*  71*663.76 71*719.55 71*7)42.61 71*826.56  in in IV II  35.232 31*. 951* 33.670 33.281 32.961 32.676  71*893.36 71*908.95 71*981.07 75002.95 75020.95 75037.00  III rv in  32.3U5 32.11*2 31.852 31.502 31.335  75055.61* 75067.08 75083.1*2 75103.16 75112.58  IV V IV in IV  10 8 ( 6 ( 8 6 00 30 35 0 0  18 300 15 7 300 15 15 80 6 8 10 12 10 6 5 1  J2 10 20  15 Imp?  25 30 60 35 50  Class.  III III IV III rv  5&p6s *rLxi3'  II II rv IV IV V IV V in  in  5S5PY-X3  2  5 S # \ - 5s5£ V 5rios V5s5p?d 4  197 TABLE XH (b) (continued)  K  L  H  Jl 10 100 00 00 (25 (25  8  J2  30 10  5 00 10 300 25 200  100  0 80 0  8  2 2h  1  2 200 0 30 (25 (20 (25 30 25 10 5  3  5 18 30 200 250 30 30  ?  30 30  10 6  \l.A°  (vac.)  C k vac.  Excit.  1330.00 29.830 28.20 27.32 26.970 26.623  75188.0 75197.59 75289.9 75339.8 75359.66 75379.-37  25.851 25.56 2U.918 2b.203 23.9k6  75123.09 75b39.8 75U76.3? 75517.13 75531.79  23.28 22.202 21.70 20.86 20.190  75569.8 75631.11 75660.1 75708.3 757b6.68  18.950 18.213 17.U10 17.160 17.0bii 16.955  75817.89 75860.28 75906.52 75920.93 75927.61 75932.7U  IV V  16.535 16.29 15.989 15.577 15.U5  75956.97 75971.1 75988.b7 76012.23 76019.62  IV III IV IV II  15.300 15.055 lb.510 13.900 13.070 12.710 12.550  76028.29 760U2.U5 76073.98 76109.30 76157.bl 76178.29 76187.58  rv  Class:  V IV  II c rv v II c V III 5«5p  ^  II c II c  iv v IV IV HI  5s5p5d- F-X12 ,  t  5s5p*.V5s5p5dy  5 d \ - 6pV VI in 5s5pM>*x 3 * rv III IV  198.  TABLE XI (b) (continued)  B  H  3 3L  I.A  30  1312.158 11.01+6 10.660 09.952 08.850  76210.31+ 76271+.98 76297.1+1+ 76338.68 761+02.95  10  08.1+12 08.101 07.155 06.857 06.5!i5  761+28.53 761+1+6.70 76502.03 76519.1+7 76537.71+  10 iiO ii 60 30  05.657 05.517 oh.350 03.69ii 03.330  76589.80 76598.01 76666.51+ 76705.12 76726.51+  30 1 2 50 8  01.12U OO.L76 1299. Iil6 98.915 98.515  76856.63 76891+.93 76957.65 76987.31+ 77011.05  l5d 12d 2^0 6 5  1  1 1L  J2  Jl  6 5 2 60 1 8 250  2  2  x  (vac.)  K vac.  Excit, rill  5S5P P-xi+, 3  III 5S5P S< V IV I I I rv  5s5p6s P, 5  III IV IV V II c II c VI IV III  6 p \ - 7s  V  5s6s k $s$p5*d d r  III IV IV  98.33 98.06 97.05 96.711+ 96.105  77022.0 77038.0 Coinlll ; III 77098.0 77118.01 7715U.25  100 100 120 10 30 20 10 00  95.630 95.115 91+.533 93.205  77182.53  II c ^~5p6s 'P-Xlii III IV III III  92.86  77213.23 7721+7.91+ 77327.27 7731+7.9  750  91.888 90.96 90.5hh 90.101+ 89.575  771+06.10 771+61.7 771+86.71 77513.11+ 7751+1+.93  II III IV IV 5s5d D 5 p \ i  750 15 0  2  80  0  25 10 200  100 2  10  5 6 5  Z  c  IV III  P-, \ A  X A  , to  ft  0 'cm* I  vO"  r H f t \/NXA rivltQ 1T\XA  CQ°  ^  O  O  | | H M LJM M M  M M  e-—  t— i—  O  MO CO M CO  O  CAvO  a o -cr -cr  CM  V • o • • O N a o P - N O M3 C O X > C O 3D 3 D CM M  >  M M  M l M M  c~— c— c— P —  c— r— p— P — c—  P - X A M D C O CM P - C M O P^-_cr M O N  P -  o  «  •  X A X A X A - C f CO C O C O C O  M  M M  X A  O  M N O X A o -cr XA M f A P - N O .a e « o a _Cf _CT < A C M M CO C O C O C O C O  M M > 1—I  M  M N O O N O N ' C O C M P - M D C A O C M C AX A C O C K O X AP— • i • • • • i • * P - C M f AN O O M M O -CT P - O N r t C M X AP - C MN O C M P - P - C O C O C O 3 D ON ON O P — P - P - P — p - p— P - P - • so  «  I  "fx,")  * Q , " f t X A X A -*m CO X A X A  X A "CO X A  t—I  X A X A X A W X A i  8  t t , ftT3 X A \ 0 X A COrlCO-lCQ X A X A X A  ft  O  O  O  | |  M fc> I—I  M O M P-NQ M X A c O o • • o • J O H J J P - O N P - f A-CT XA X A N O P - P c— c— c—  .  1_  cv<tn ^ f t  .  II.  !  "ft XI X A X A tQ^tO X A X A  f t X A "<0 X A  "10 X A  X A SO  7 -1 X  X A X A  pS > < i  M  ~  co^ro  „ X A  I  X A  " A f t X A tQ M  X A  _ 3  X A t A  rt  m  X A CO  M H C O C O C O M - C f - C f M CO • • • s • X AM O f A f A O N f AM O M C M O M M C M C M  cocomcoco p-p—p-p—p—  O ON -Cf * O OO  X A O s C— C M Ov M XA O O C O -Cf X A <A • • o • ON ON C O C O P — C — C — p—  H > H M M M M M M M M M M  M  O H O CM D \ P - _ C f - C f C A C O C M CN ON P - . ^ f C A-CT M X A P C M CM < A C A < A X J C O C O O O C O  P — p— t— P ^ - E —  CO X A C A X A O N CA NO CM O M CJ O N OO CM O N OO  e  p-  •  e  o o  P - N O N O X A P - P - P - P -  M M M M M M M M  M M  >  M M  P— P— P— P— P—  M M C— O r—NO P — • • • _ c f f A CM  M M  ^ > £ M M  > M  M  p - C MN O C MC O [ - C M O \0 C M • i, « o • X A f A C A O O C f H I X M J - C f X A X A NQ NO G O C O S O C O C O  NO NO  M M  M CA f A M C N N O • e M M  4 H P - -CT - C f O CO M C O C MP -C O o • o • a > M C MP - M P -O O p - O C AP - O N M N O P ~ P - P - P - 3D C O C O C O C O C O O O  P— P— P— P— P - P—  fA-CT O M ri^O  *•  «  P - O N CM C A C A ON t C A O J O N  •  •  M P -  O O ON P - P - N O  O CO  O O 3D C O  e • ON a o NO NO  c  •H O O  X A CM  XA CM  O M  t J3 O CM CM O C M - — w  o o XA f A  o CM  O CO  o o CM C A  O  o  O O  M  2  M  O O M  CM C M M M  3D  o  O f A  si CM  o o M  o  O O M  O X A O O X A X A - C t M M  CM  O M  C O O CM  O X A  O X A O O X A CM O M P CM  CO M  O O O X A O O O X A O C M CM C M CM C M C M  O  O O  NO  X A CM  O  M  O O  <A  fA  O  ON  -Ct  O  O  200.  TABLE  B  H  Jl  J2  200 8d  10  U h  Al.A  (b) (continued)  0  (vac.)  C K vac.  Excit,  Class.  lOd  1267.990 67.890 67.797 66.062  7886U.98 78871.20 78876.99 78985.08  (I2d (20d Id 0 12  65.030 6U.730 6U.16 63.8? 63.337  790U9.51 79068.26 79103.9 79122.1 79152.32  0? 12 10 6 6  62.50 62.U21 62.277 62.089 61.878  79207.9 69212.88 79221.92 79233.72 792U6.97  12 12 (U ( 5  60.U13 59.'1UU 58.U05 57.985  79339.08 79U19.0U 79U65.68 79U92.21  2 20  57.571 56.532 56.38  10  5U.235  79518.38 II 7953U.13 . II 79593.7 796U9.67 IV I I I 79729.88  100 2? 60 Id 8  80  53.6U5 53.256 52.611 51.735 51.385  79767.U0 79792.16 79833.25 79889.12 79911.1*6  I I I IV  80 15 10 12 6d  6  50.UU7 50.072 U9.176 U8.U58 U7.956  79971.Ul 79995.U0 80052.78 80098.81 80131.OU  III 5s 5P fr- 5s5pUf'P V IV IV I I I V  lOd  3L 3  AT  kOO  10 Uo  8  VI  5d D - 6 p V . X  t  IV III IV IV II C V  III v rv V IV I I I IV III 5s5A-X9 IV V rv v  a  II c V II c  S  201, TABLE XI  K  H  Jl  J2  20 200 15  ao  0  (vac.;)  CR  vac.  Excit,  121*7.561* 1*6.976 16.190 ii5.9U0 1*5.51*7  80156.21 8019U.01 802l*li.59 80260.69 80286.02  V III V I I I IV II c  hli.210 Ii3.51i5 1*2.879 1*2.000 1*1.85  80372.29 801*15.27 801*58.36 80515.30 ,80525.03  rv  2 12 2 0  1*1.590 1*1.31*0 1*1.030 1*0.21*5 39.980  8051*1.89 80558.11 80578.23 80629.21* 8061*6.1*7  6 30 10 5 15  39.181* 38.81*0 38.1*93 37.91*1 37.188  80698.27 80720.68 8071*3.30 80779.30 80828.1*6  250  36.275 35.709 35.236 31*. 861  80888'. 16 80925.21 80956.19 80980.78  31*. 081+ 33.91*5 33.1*81* 33.035 32.3l*U 31.878  81031.77 8101*0.89 81071.18 81100.70  31.370 31.11*2 30.756 29.996 29.368  81210.36 81225.1*0 81250.88 81301.08 8131*2.61  liO  l*  lh  A l.A  (b) (continued)  250 00 30 125  20  15  h  h  0 30 50 10 150  18d lOd  2 5 3 7d 5  15 20 25  15 20  8111*6.18  81176.87  Class.  rv VI II  c  5d'D *6p^ r  rv v V  5868*3, - 5P6S'P;  i n  II IV IV  i n III  585)3 D - 5s5pl*f \  V IV  5S5P'P;-  III I I I IV III III V IV V  rv  i n  II  II  5$>V  202.  TABLE  K  B  H  Jl  J2  00 0  2 0  Uo  35 30  00 0  1 0  2  9 2  20 U 80 80 lOd 20d 200 12d U 60 2 60 200 20 200 60 8d Id  10  5 1  00 1  U 1  2 00  9 0  200 100 0 2 150 8 U 200  85 0  X l . A ° (vac.) 1228.960 28.39 27.552  35 50  15 15  25.990  81566.7U  V IV  25.760 25-U23 2U.621 2U.016 23.1U8  81582.0U 8160U.U8 81657.92 81698.28 81756.26  II C IV rv II c rv  22.67U 22.302 21.922 21.536 21.055  81787.96 81812.85 81838.29 8186U.15 81896.39  rv V  20.32U 19.960 19.U38 18.380 17.90  819U5.U6 81969.90 820014.99 82076.20  i n  $v\ - 5s6  P  y  iv ;5s5d l) 5s5p5d d* 11 c i n a  r  • 82108.55  IV  82127.30  III IV  82167.11  Class.  rv II c  821914.26  V IV V III IV  13.050 12.566 11.753 11.U26 11.065  82U36.83 82U69.7U  11 11 c  825U7.35 82571.95  11  10.68U 08.889 08.53U 07.935 07.510  82597.9U 82720.59 827UU.88 82785.59 82815.05  13.UOO  50 30  81U9U.95  82327.10 82U13.06  1U.667  bo  Excit. II II IV III  17.622 17.032 16.630  L.0 30  C £ vac. 81369.62 81L07.U 81U62.95  27.070  lOd U 30d lOd 25 1 0  XI (b) (continued)  82525.07  11  V 5s5rf D-5s5p5d d;4 i v 5, II c III 515^ s - 5s5P6s y  203. TABLE XI  K  B  H  J2  A l . A ° (vac.)  °Kv;)c.  Uo  1207.110 06.805 06.U26 05.171  828U2.50 82863.U3 82889.U7 82975.78  0U.U05 03.597 03.211 02.7UO 02.617  83028.55 8308U.29 53110.95 831U3.U9 83152.00  20  02.180 01.765 1198.362 98.002 97.726  83182.22 83210.95 83Uit7.2U 83U72.31 83U91.55  Ud 200 150 100 lid 5  97.368 96.938 96.U71 96.088 95.183  83516.52 835U6.52 83579.13 13605.89 83669.20  9U.U69 9U.OU8 93.566 93.070 92.100  83719.21 837U8.73 83782.55 83817.38 83879.96  91.70U 91.563 91.189 90.392  83913.U6 83923.39 839L9.7U 83963.13 8U005.95  rrr IV rv i n rv  89.96U. 89.632 89.1U2' 88.866 88.372  8U036.16 8U059.61 8U09U.25 8U113-77 8U1L8.7U  IV r n IV r n IV V  12 5 llOO 12  U  0  Jl  0 20 00 100 1 120 2 8 U 12d 6 150  00 2 00  0  U  8 00 00 Uo 10 6 6 5 8 5 25  1  (b) (continued)  Uo 2  20 8  12  22 Uo 120 100 15d  90.999  Excit.  Class.  IV 5S5P D;  III V  :3  III 5S5P P;-XII III III 5S5P D - 5s5p I I I IV II 3  V III  rv  IV rr IV rr c  5s5 Vt- 5s5p B,J P  rv v rrr  rv  rrr r r r rv  4 o  5s5d.%- 5S5P6S P.  5S5P \ 1  5s5rs;  20U. TABLE %I  K  B  H  C k vac.  Excj  1185.889 85.251* 81*. 790 81*. 225 83.980  81*321*. 93 81*370.11 81*1*03.15 81*1*1*3.1*2 81*1*60.89  III III  83.700 83.053 82.638 82.307 82.035  81*1*80.87 81*527.07 81*556.73 81*580.1*1 81*599.87  81.1*79 80.69 80.1*1* 79.988  81*639.68 81*696.2 81*711*. 2 81*71*6.63  0 0  79.770 79.305 79.21*5 78.855 78.65  81*762.29 81*789.96 81*800.0 81*828.08 81*81*2.8  00 0 00 25 IlO  on N I 8.0  78.50 78.22 77.99 77.701 76.81*5  81*853.6 81*873.8 81*890.3 81*911.20 81*972.96  50 5o 00 50 2  Imp? 76.61*5 50 onC I 75.79 71*. 66 60 71*. 266 72.890  Jl  J2  /\l.A°  200 60 20d 20  2  li  18 6 6 l5d 0 (25 (30 00  0  1  0 12 10  0  10 on N III 10  100 100 00 00 5  »  10  (b) (continued)  6 80 lOOd  3 22 25 2d 3d  (vac.)  72.551 72.160 71.561* 70.805 70.535  81*987.1*1 8501*9.2 85131.0 85159.59 85259.1*9 8528U.ll* 85312.59 85355.99 85U11.32 85U31.03  V  III  Class. 5 s V s - 5l5p5d D 3  5s5p* 'tf-XlU,  IV  rv v IV V II  in : II  V II  II II  IV V  in  5P P 3  5s6 p; P  205. TABLE M  B  1 10  H  Jl  00 00  20 20  00 0  1 0  5  (vac.)  vac.  Excit.  67.605 67.1U6 66.870 66.U6U 66.258  856U5.U1 85679.09 85699.35 85729.18 857UU.33  i n rv  65.731 65.U9 65.015 63.295 62.U26  85783.09 85800.8 85835.81 85962.72 86026.99  rv  61.736 61.367 60.970 60.080 59.290  86078.02 86105.U2 8613U.87 86200.96 86259.70  10 10 60 5  58.359 57.888 57.302  86311.UU 86329.03 8636U.1U 86U07.87  rv i n rv i n  0 3 12 15 12d 2 UO 3 3 3 10  56.515 56.200 55.9UO 55.7Uo 5U.963 5U.652 5U.156 53.80U 53.668 53.388 53.139  86U67.U2 86U90.23 86509.69 8652U.66 86582.87 86606.19 866U3.U1 86669.8U 86680.06 86701.10 86719.82  II c  Uo 50 15 3 8  10  0  85U53.15 85U90.99 85517.6 855U1.96 85588.60  50 10 0 20  U 00 30 8 7d 20d 0  Xl.A  1170.232 69.71U 69.35 69.017 68.380  20 10 50 1000  00 U  J2  (b) (continued)  15 150 20 U 3  50 5  25 2  Class,  Ill III IV rv rv rv rv  5S5P\I- 5P % 5S5P%- 5 s 6 ^ 3  P  5s*5d |-5s5p5d  IV II  i n  3  II  i n rv IV i n rv ii II  II c  X  206. TABLE XI  K  B  2 00  H  Jl  2 20 (25 (20 300 0 3 0  ho Id  J2  Al.A  30 30 100  5 10  1 0  00 0  0  (vac.)  1152.81*2 52.606 52.176 51.987 51.255 50.67 50.261+ 1*9.71*8 1*8.180 1*7.600 1*7.375  vac.  8 7201*. 19 8721*6.31* 8725.7.76 87270.02 87286.70  5 160 80 6 200 80 6 Imp? 6d  1*5.215 1*1*. 711* 1*1*. 131* 1*3.637 1*2.931*  87319.85 87358.07 871*02.35 871*1*0.31* 8 71*91*. 12  60 2 1 15 15 6d 20d 15  1*2.610 1*2.21*5 1*1.930 1*1.615 1*1.197  87518.93 8751*6.89 87571.05 87595.21 87627.29  50  6  15 12 1*0  50  1*0.1*50 1*0.057 39.519 39.320 38.655  87681*.69 87711*.92 87756.33 87771.66 87822.92  38.283 37.981 37.825 37.636  87851.62 8787U.93 87886.98 87901.58  18  5 3 3 5  Excit,  8671*2.16 III 86759.92 V 86792.30 IV 86806.51* III 86861.73 II 86905.9 86936.57 86975.59 III IV 8 7091*. 36 87138.38 87155.1*7  1*6.731* 1*6.180 1*6.030 1*5.869 1*5.650  1  1  0 3 3 3 •2  (b) (continued)  II c IV  a. .  rv i n  II c IV  V  5s6s S - 5p6s P"  iIVv 5S5P"V 5 s 6 V ( III IV T TV IV P  t  IV V V III IV  11  -3  V  207  TABLE  K  B  H  Jl  J2  6 2 ( o ( 1 ( 3  0  1  1 00  1  0  oo  15  0 2 1  00  3  /XI (b) (continued)  Al.A°  (vac.)  6"1v vac.  Excit.  Class.  1137.107 36.952 36.658 36.317 35.922  8791+2.1+8 8795U.1+7 87977.22 88003.62 88031+.22  IV  33.881+ 33.395 33.180 32.961 32.295  88192.1+5 88230.50 8821+7.21+ 88261+.30 88316.21  IV III III rv II  31.930 31.055 30.1+70 30.265 29.868  8831+1+.69 881+13.01+ 881+58.79 881+71+.83 88505.92  III III II II V  5s5A-xil+,. 515x5 \ - 5s5^ P;  10 50 0 liO 00  29.21+5 28.1+80 28.33 28.130 27.66  88551+.75 88611+.78 88626.6 8861+2.27 88679.2  rv V V rv v  S^p^Pn- 5s5p6s P^J  5 15 (20 (10 12  88699.67 88778.02 88791+.18 88808.1+5 88830.1+6  IV  A  27.1+00 26.1+05 26.200 26.019 25.7liO  10 15 10  21+.965 21+.530 21+.150 23.505 23.305  88891.66 88926.05 88956.11 89007.17 89023.02  IV III IV in vn : VII  22.59 22.318 21.1+25 21.311 21.183  89079.7 89101.31 89172.26 89181.33 89191.51  lid 2 ( 6 ( 6 100 100 12d 60 30 10 12d  5 100 200 150 5 Id 100 2 0 00?  80 80 10  X  5s*6s S-5s5p5d |^ 3  o  5 p ^ i - Sshf X  11 c IV V  c  11 IV  ,12.  .3_o  208. TABLE  H  00  0  JEE (b) (continued)  1 I.A° (vac.)  <*K vac.  10 6 0 0 6  1120.81*7 20.265 20.150 19.660 19.533  89218.25 8926i*.60 89273.76 89312.83 89322.96  20 18 1 0  19.11*3 18.1*52 18.01*2 17.926  8935i*.09 891*09.30 891*1*2.08 891*51.36  17.780 16.905 16.177 15.755 15.37  891*63.05 89533.13 89591.53 89625.1*2 89656.1*  15.050 11*. 750 11*. 510 11*. 01*9 13.205  89682.08 89706.22 89725.53 89762.66 89817.1*9 89830.72  0 25d 00 75 2  13.010 12.560 11.91* 11.61*5 11.28  8981*6.1*6 89882.80 89932.92 89956.78 89986.3  15 15d 12d Complex 10 6d  10.985 10.535 10.20 09.632  90010.22 9001*6.69 90073.9 90093.75 90119.97  rv v  09.250 09.02 08.576 08.366 07.651  90151.01 90169.7 90205.82 90222.91 90281.15  V IV IV rv i n  J l J2  0 80 50 30 00 20 10 2 6d (20 (30  50 25  5  li  20 (12 (10 80  60  13.369  09.955  Excit.  IV rv v  Class.  5s5p*P - 5s5p6p s° M  (I  III IV  II I I I III V V IV V IV IV I I I IV IV I I I V V III IV III  5*5^x8,  5S5P P 5s5p5d < r  t  5l5p P - 5S5PV * 3  209. TABLE X2 (b) (continued)  H  Jl  J2  150 50 0 25 l+o 5d 2  l.A  0  (vac.)  <S"k vac.  1106.61+0 05.010 01+.71+3 01+.218 03.890  90363.63 901+96.92 90518.80 90561.83 90588.71+  (10 (8 (2  03.31+2 02.31+1+ 00.796 00.1+1+2 00.327  90633.73 90715.79 9081+3.52 90872.58 90882.08  2 5 00 25 20  1099.81+2 99.1+32 99.237 99.065 98.61+0  90922.16 90956.06 90972.20 90986.1+3 91021.63  15 00 10  98.363 98.031 97.828  9101+1+.59 91072.11 91088.96  0 00  (6 0  97.665 97.1+80 97.037 96.1+15 96.166  91102.1+8 91117.81+ 91151+.63 91206.35 91227.06  1 100 1+5 8 5 3  96.008 95.237 91+.890 91+.661 91+.1+50  (5 (10 (5 2 20  93.701+ 93.231 92.970 92.123 91.896  5  lOw.d  (h  9121+0.21  91301+.U+  91333.38 91352.1+9 91370.10  Excit. III  Class. 5S 5P 1  \ - 5s 5 6s V l  P  II  V III  IV 1: V  IV IV  5&p P-5s5p5d d\  III IV V  5!5P'P, - 5s5p P  911+32.1+2 rv v 911+71.98 IV V 911+93.82 IV V 91561+.78 i n V 91583.80  1  Ya  5S5P/I>X6  '2  i  $f\ - 5s6  3„o P  210  TABLE  B  H  20 10 0 25 150  Xl.A  0  (vac.)  vac.  Excit.  Class  V  5p £ - 5s6p V  91606.55 91628.80 9l6k5.59 91669.5k 91735.21  89.965 89.803 89.0U2 88.U29 88.070  917k6.07 91759.71 91823.83 91875.5k 91905.86  III  Id Id 30 80 Uo 10  87.5U1 87.11k 86.672 85.68 85.060  91950.56 91986.68 9202k.09 92108.2 92160.81  II  5 UO 3 0 20  83.680 83.397 83.132 82.6k5 82.238  92278.17 92302.27 9232k.86 92366.39 92k01.12  U 100 100 5 0 15 9 8  81.832 81.295 80.03' 79.73 79.07  92k35.80 92k8l.71 92590.0 92615.8 92672.k  6 25 U 5oo 30 8 Uo 30  78.8kO 78.60 77.9k6 77.66  92692.16 92712.8 92769.03 92793.65  77.505 77.036 76.5U0 75.9k6 75.681  92807.00 928k7.kl 92890.19 929kl.k7 9296k.37  6 2  U 00  3  6  J2  1091.625 91.360 91.160 90.875 90.09U  00 2  1  Jl  X I (b) (continued)  0  00 200 10 10  30  25  80  U shldr. 25 25 coin. 8 kd  V II IV  C  II  rv  II  v rv  c  c  VII  5 ^ i -  in in  5H5P U.x8  5s#V s  V  in in in  5S*5P s - 5s5^ P,° 1  II  rv II  c  in in II  in II  ,0? CD 73 xr\  73 XA  r-l r-l CM  to  0}  LA  co  XA  O-. XA  CO  ft  Xr\  I  XA  cti  1-1 o XA  M  >  73 G>  o a! > 1 «  •g  •rl -P  XA  o  o  JJ  H r XA CO XA  "oi  01  73 XA  M  >M >  st  73 XA ^ XA CO XA  ^  XA CO XA  CO, XA 00 XA  XA CO XA  H5  M  NO O N r-l CA CM M3 C A  CO O N O N C — X A NO C — C A C M  XAMD C A ON NO NO N O CO O -  —cf co" co O _cf XA-cf_=f O N  CA r-l CA_=r O N C— C O C — X A CM  CAMD XAXA r-J NO _=f r-t CA  P-vO  CA ON ON CM ON  CO  ON O -Cf O C A - C f N O ON_Cf r l r l r l H CM  CA CA fA CA ON  X A CM -Cf C A X A XACO O CAXA X A X A N O NO N O f A CA CA r A CA ON O N O N O N O N  r—i CO NO fA ON  P - _ c f r— c— O - C f N O CA f — CO CO O N fA fA fA fA ON ON ON ON  f A - C f f A CM f A t - r-l O -Cf ON O O I-I r-i CA-Cf-Cf-Cf-CT ON O N O N O N ON  X A r-l f A ON ON O r—I CM f A -cf-cr-cr ON ON ON  -CT C A f A _ = f CM -Cf X A P O O O O CA CA CA <A ON ON ON ON  CA CA CA CA C A  O N O N O N O N ON  CM O C A - C f O N NO O C A CA -Cf X A X A CA CA CA f A O N O N ON O N  r—  CM O N C O O O CM N O fA fA _cf-cf ON ON  o o o ct)  > o «=«! O  9 9  M  CO P— _cr co P - X A r-4 C A O N P - v O _Cf  P— -Cf r-i C M O N N O X A - C f O -Cf  XACO X A r-l CM -Cf C— C— CM -Cf P - O N - c f r - l  X A X A X A XACO CO r— CM ON C A CO X A C A O N C—  -Cf P - O r - l O -cr^cr O N f A _ c r -Cf i—I X A f A X A  -CT-CT XA O O P - H r-l NO O NO CM  CM CM _Cf i—1 l—l NO NO X A - C f CM P -  XA-Cf-Cf-Cf-Cf C— p - P— P - C—  f A f A f A f A CM  r-i  CO C O C O £ — P— NO N O N O NO N O  N O N O NO NO N O  P-  -CT f A f A CM CM NO NO NO NO NO  NO  rH  OO  o  O ON ON ON P - P - N O M0 NO  P-XAXA-Cf  r-l  O O O ON NO N O NO X A  r-l  CM  •-a r-l  CAN©  73 73 CM CM O  O  O  O O  o  o  NO  rH  73 73 CM f A f A X A r-4 CM  O O XA  O r-l 73 X A CM  O O  XA  CO  73 O O  73 r-l O CM  CM CM CM O CM  O O r-l  Xi O  CQ  XA  CVI  O r-l  O O  O O  CM  73 X A X A XA-Cf f A i—I i—l CM  O  XAXA r-l CM  73 CM CM  212.  TABLE  K  B  H  2  8 100  00  J2  Jl  C k ac.  Excit.  1059.445 58.8kU 58.27 58.12  91*389.05 91+1+42.62 94493.8 94507.2  II  56.92 56.836 56.571 56.138 55.938  946I4.6 91+622.07 94645.8O 9468U.60 94702.53  V II  55.61+5 55.440 54.620 54.200 53.075  94728.82 91+71+7.22 94820.89 94858.67 94960.00  V V V III  52.903 52.625 52.262 51.855 51.595  94975.52 95000.60 95033.37 95070.IU 95093.65  51.120 50.926 50.342 U9.66 U8.883  95136.62 9515U.18 95207.09 95268.9 95339.52  00 kOS 30 12 2  47.81 47.590 47.150 1+6.81+6 46.483  951+37.2 95U57.20 951*97.31 95525.04 95558.17  2d 50 60 12  1+5.71+0 45.205 U4.817 44.3U8 44.035  95626.07 95675.02 95710.55 95753.53 95782.23  50  3 5 8 6  1  20 2 10  h h  10 100 80 15  0 0  10 10  3 20 5 2 30 S* 4 12 25 0 25  00 0  0 00  1 1 2  0 0  XI (b) (continued)  10 20  -  80  35  \l.k° (vac.)  V  IV V  Class.  5s5£\-  rv v  rv  5s6 p 1  P  i  3o  5s5p 'P-5s5p5c i  e  IV IV V vV  5^,-5s6p^  III II IV V III II II V  IV III III V  5s5p\P, - 5S5P k 5i5t> s 0 - 5s"5p5d'pi 0  213  TABLE XI- (b) (continued)  K  B  H  1  2 8  Jl  12  5  0 0 1  2 00 2  00 00  Excit,  Class.  V  5£ £ - 5s6p ?'  95897.33 95957.32 95973.62 9601U.26 96018.87  00 2 2 5 20  Ul.22 U0.323 39.730 39.U50 38.825  960U1.2 9612U.00 96178.82 9620U.73 96262.61  V  38.038 37.396 37.188 37.005  96335.59 96395.21 96U1U.5U 96U31.56  III V III IV  36.U27 36.16 35.7U3 35.U05 35.00  96U85..33 96510.2 965U9.05 96580.57 96618.3  III III V  3U.705 33.9U5 33.811 33.10 33.079  966U5.91 96716.95 96729.U8 96796. 96798.02  II c III 515$ \ - 5s5^ II c II c V 5S5P P - 5$\  32.U50 31.526 30.60U 30.230 29.925  96857.00 969U3.76 97030.U8 97065.71 9709U.U5  III  29.U20 28.618 27.735 • 26.783 26.622  971U2.09 97217.83 97301.35 97391.57 97U06.8L  V VI VII VI VI  Uo 2 Imp? 25 30  u 0  C k vac.  10U2.782 U2.130 . Ul.953 Ul.512 U1.U62  0 1 100 120  2 2  X L . A ° (vac.)  UO 0 1 2 2  1 50 200 50  0 U  J2  20 3 U 300 100 2 8 UO 25 2 30 30 (25 (25  30 U 0 35 8 15  5s5  3 P  it-  5PP  -  5*5^A-  5s5p5d F; - 5S5P°P,° 3  5^ D - 5sUfX  3  5S5P 'D X  5s5p6s V  II c II c IV 5R'IX-  5sUf  F,°  211+ TABLE XL (b) (continued)  3 1 0  H  Jl  00  0 0 20 0 80  1+ 5  25 25 10 2 2  J2  10  3  U 00 1  2 0 0  00  0  0  5  (vac.)  2U.93L.  21+.598 21+.271 20 20  97989.65 98038.07 98062.1+9 98109.02 9811+7.95  rv  18.870 18.029 17.183 16.81+2 16.57 16.110  15.630  12 15  18 22 (2 (2 ( 1  ^(2  8  12  U  3d 10  12  II  20.516  19.266  15.353 l!+. 350  11+.191+ 13.585  13.360 13.020 12.852  12.690 12.303  11.1+96 11.096 10.955 09.221+  98229.03 98310.73 9831+3.70 98370. 981+11+. 55 981+61.06 981+87.92 98585.31 98600.1+7 98659.71 98681.62 98711+.71+ 98731.11 9871+6.91 98781+.66 98863.1+7 98902.58 98916.38 99086.01+  Class.  IV  II II V  20.012  150 5 2  971+65.32 97521+.1+1+ 97567.26 97599.26 97630.1+2  Excit.  97711+.27 97777.81 97852.63 97896.50 97918.26  19.758 25  C k vac.  23.392 22.727 21.91+5  21.1+87 . 21.260  1+  15 5w 100  0  1026.006 25.381+  6 0  Al.A  III  5S5P D - 5S5P6S PI  III  5S-5P*\- 5l-5p5d F;  3  3  V  5S5P P - 5 P \  II II V  5r3- D - 5sl+f F3  3  t  0  a  II  rv II IV  IV IV 111 V  5S5P P-5s5p5d c  t  5stf k x i 3  215. TABLE XI  K  B  1  H  6  1 3 00  00 1  0  liOd 20d  20  1008.7U6 07.903 07.760 07.290 06.738  99132.99 99215.90 99229.98 99276.28 99330.71  III IV II V VI  50  20  06.L36 05.711 Ok.885 0L.i|20  99360.52 99k32.l5 99513.88  III V II III IV  03.7U3 02.681+ 02.1k7 01.905 .01.750  99627.10 99732.32 99785.76 99809.87 99825.31  01.593 01.20k 00.865 00.607 OO.k02  998k0.96 99879.75 99913.58  III  99959.82  III ill  99995.61 1000k9.7 10026k.0 100317.3 100k08.1  9k.793 9k.k30 93.893 93.758  100k37.k 100523.k 100560.1 10061k.5 100628.1  93.635 93.366 92.636  1006k0.6 100667.8 1007kl.8 1007k6.0  1 I5d  5  liO  60  Imp?  6h 15  12  5 30 liO  5 5  12  10  5 60  3  8  5 12  Ok.006  k  200  5  oo.okk 999.503 97.367 96.837 95.936  2  50  95.6U5  12  5  5  1 k  12  8 00 00  0 1  0 k  ExcJ Excit.  A l „ A ° (vac.)  12  3  "K vac.  J2  Jl  2  3  (b) (continued)  30 li5 5  li  92.$95  G  99559.95  99601.00  99939.3k  II III  Class,  5s5d'D - 5p6s P^ 3  r.3p-  IV II  5!5P P - 5 l 5 p 5 d \  III IY IV V III in II II IV II II  5S5P TL - 5s5p5d P°  it  216. TABLE XXI (b) (continued)  B  H  0 0 00  00  1  1  2 0  00  0 1 2  00  Jl  0  A l.A  0  (vac.)  CK vac.  Excit,  2 5 2 8 18  992.05U 90.773 90.353 90.150 89.UU5  100800.9 100931.3 10097U.1  10099U.8 101066.8  III III III II c  1 35 6 2 12  89.230 88.715 88.UU2 87.965 87.376  101088.7 1011U1.U 101169.3  III IV  101278.5  rv  5 5 15 (3 (2  86.720 85.7L0 85.U90 85.272 85.001  1013U5.9 101UU6.6  IV V V III  5 Us 18 12 2  8U.750 8U.295 83.922 82.613 81.65U  1015U8.6 101595.6  U  Imp?  5 0 2 30 25  81.58U 80.978  2 10  79.1U8  60  1  J2  2 10  Od U u 2 5  80.U30  79.9U0 79.6U6  101218.2  101U72.3 101U9U.8  It  5sUf V,-5s8 Js S, 5l5p- P - 5s5p" V t  0  101522.7  10163U.1  101769.5 101868.9 101876.2 101939.1 101996.1 1020U7.1 102077.7  rv i n II II  rv c  m  1V  . "•,  V  79.027 78.709 78.308 78.026  102129.6 1021U2.2 102175.U 102217.3 1022U6.8  rv v V rv in II c  77.593 76.6UU 76.125 75.979 75.75U  102292.1 102391.5 102UU5.9 102U61.2 102U8U.9  V v . II c  lo  3  217.  TABLE  K  B  H  00  8  J2  Xl.A  10 ( 3 (10 ( 3 5 w.d  3 00  8  Jl  2  0 1 li 1  2  3  2 1  1  0  (b) (continued)  (vac.)  C  K  vac.  Excit.  975.1*90 7ii.820 7h.637 7U.U30 71+.079  102512.6 102583.1 102602.3 10262l*.l 102661.1  VII  60 2d 8  73.580 73.11*0 72.630 72.1*5  102713.7 102760.1 1028lU.o 102833.  III  6w 80d  102900.1 102970.2 103050.5 103075.1* 103108.1*  III III  10 10  71.816 71.155 70.398 70.161* 69.853  0 2 00 00 15  69.598 69.1*32 69.261 69.089 68.823  103135.5 103153.2 103171.1* 103189.7 103218.0  12 50 30 li 6  68.278 67.592 67.1*08 67.11*6 66.1*03  103276.1 10331*9.1* 103369.0 103397.0 1031*76.5  15 ( 5 ( 5 ( 3 30d  65.971* 65.691 61*. 328 61*. 198 63.530  10351*1.8 103552.8 103699.2 103713.11* 103785.1  63.170 62.365 62.156 61.868 61.086  103823.8 103910.7 103933.3 103961*.1* 101*01*8.9  8  00  32  1 30 10 15 15  .  Class.  V  5I5A - 5s5p6s pJ 3  V  rv  rv  •  5s5p- \ - 5l5p6s P.*  V IV V  5s5£ »-5e!5p5d'F^  IV II V  c  11  5s6 p;- 5s8s S, 3  P  1  I I I IV  i n  i n V  3 6 5S5P \ - 5l5 P 5d i]  rv  IV V  V IV V IV V  rv v  1 »  5S5P P, - 5s5d D  1  218.  TABLE  K  B  H  Jl  J2  101*391*. 6 101*1*31.7 101*1*73.7 101*51*2.3 101*583.1*  56.033 55.1*78 55.175 51*. 760 51*. 380 5l*.38o  101*598.9 101*659.7 101*692.9 101*738.1* 101*780.1 101*780.1  53.819 53.115 52.552 52.088  101*81*1.7 101*919.1 101*981.1 105032.3  51.1*05 51.008 50.556 1*9.095 1+8.80  105107.7 105151.6 105201.6 105363.5 105396.  1*8.656 1*8.1*38 1*8.087 1*7.696 1*7.51*8  1051*12.3 1051*36.5 1051*75.6 105519.1 105535.6-  1*7.000 1*6.529 1*6.252 1*6.050 1*5.611*  105596.6 10561*9.2 105680.1 105702.7 105751.1*  1  1 00 2  00  5  120 120  1  2  0  12 15  25 250  18 10  0  1  0 0  12 10  6  00  0 1 8 5  2  0  AK vac.  57.901+ 57.561 57.178 56.551 56.175  5  00  (vac.)  100 30  5 5  0  960.835 59.985 59.523 58.736 58.577  It  io  A I. A  0 1  15 ( 3 ( 3  1* 1  XL (b) (continued)  5 5  U 2 2  ?  101*076.1 101*168.3 101218.5 10l*30l*.0 101*321.3  Excit.  Class.  in :  V V  5s5 ^f- 5 P \ P  5s5p'if- 5s5d D 5  V V  V v  5s$p P*3  5P'D  V II IV V IV V VI vi  5s\-$  v  \  II  V II  5s5d D - 5p6s P" 3  219 TABLE XI  K  B  H  00 00 0  2  00  2  AloA  0  (vac.)  it" vac.  Excit,  Class.  9a5.a25 as.290 as.072 aa.813 aa.567  105772.5 105787.6 105812.0 1058ai.l 105868.6  2 18 12 10  aa.a?6 aa.225 a3.70S a3.a25 a3.129  105878.8 105907.0 105965.3 105996.8106030.0  V IX IV  a2..9a9  a2.5i8 a2.306 ai.976  IO6050.3 106076.3 106098.8 106113.6 106159.8  III V IV V  ( o ( o 3 0 5  ao.8n ao„678 ao.ia9 39.913 39.asa  106291.3 IO6306.3 106366.1 106392.8 io6aaa.8  V  38.9a5 38;690  38.15a  3  li 0 150 20d as  37.963 37.312  106S02.S 106531.5 106592.3 10661a.0 106688.1  VIV III  3 00 00 00  So 10 10 8  35.9li8 3a.83a 3a.2ii 33.632  10681+3.6 106970.9 1070a2.2 107108.6  V II rv II c  10 ao So 2d 35  32.6a5 32.3aS 31.890 31.511 30.839  107221.9 107256.a 107308.8 1073S2.S 107a30.0  V III V  5 1 $ a - 5IS 6S P:  III  SiSp D - 5 £ 5 5 d V  00  1  30 20 6 3 8  3  2  7  J2  2 2 6 2 1  00 00 1  Jl  (b) (continued)  li  8 li  li li  10  3  1 0  a2.7i8  II II II c SsSd^D - 5 p 6 s V 5s5£V5s5p5dV;  II $6$\ - 5S5P6SV 536?'?°- 5s8s 's o  5s5d q - 5P6S P; 3  3  - SSSPV 5s6p P°- 5s7s S 3  3  g  0  3  P  SS5P P;= .5P°P, 3  l,  P  220.  TABLE 12L (b) (continued)  K  10 10  B  H  0 3  7  00  li  00 00 3 00  0  2 00 00 1 3  0 0  ll 1  0 00 0 0 1  Jl  J2  A.I.A  0  (vac.)  <°K vac.  Excit.  Class.  V V III  (•< ( 5 35 2 25  930.021l 29.938 29.522 28.U72 28.273  107521*.! 10753U.1 107582.2 107703.9 107726.9  li 15 2 1  28.016 27.81 27.771 26.7kk 26.1+U2  107756.8 107780.7 107785.2 107901*. 7 107939.8  2 2 1 0 li  25.5lli 25.033 2U.900 2U.782 21*. 618  10801*8.1 108l0l*.3 108119.8 108133.6 108152.8  rv v VII  10 3 20 6  21*. 272 21*. 00 23.829 22.715 22.1*66  108193.3 108225.1 10821*5.2 108375.8 1081*05.1  VII 11 rv v V  5 8 30 3 0  22.190 21.867 21.200 20.888 20.250  1081*37.5 1081*75.5 108551*. 1 108590.8 108666.1  8 3 1 0 10  19.525 18.81*6 LS.73li 18.630 18.07U  108751.8 108832.2 10881*5.1* 108857.8 108923.7  10 2 2 US 10  17.718 16.506 16.298 11*. 570 13.950  108962.1* 109110.0 109131*. 8 1093U1.0 1091*15.2  3•  III VII II III rv  rv  5s5p b-5s5p5d  in rv v rv 11 11 IV IV V IV V IV V  5 S 5 P \ - fs5 5d P 3  P  5s5?b 5s5p5d f  ^  2  a  ra co"UN73  ^ p ? 73*73  NO**  P  ft-C OH XAXAXA  rta  I  I  X A X A ir> t<Q_ C L CL, XAXAXA XAXAXA  I  i*BJ «05 «(tQ  XAXAXA  co  co  XA  So  I  I  (0  r  co ««cn *tn  (OtBl  XAXA-LA  X A ^ &  ^  XAXAXA  ft nor Cl, vO  a  tn  XA  o M fc» M M M M M M M M M M >  fa» M M M M M M M  >  O N N O -CT f A  O  N D ^ t H C M N CO f A O O M M C— CO CO O N M ON ON ONONO O O O O M  OO CO fAOO M M O O  rA rA rA rA rA  rArArArArArArArArArArA rArArArArArArArArArArA  O -Cf N O M r-i O X A - C f X A NO ON M XA ON  C A _ C f r-i X A O N NO NO M M CO - c f O C O M  f A CM CM M  O M  O  rA rA rA rA rA  ON  O O X A O f A X A CM M  M X A C — P—  t—  O M  O M  ON O  CO O  O O O -Cf XA X A f A  XA XA  1 1 ">  O  O  XAXAMXAfAOS  t x O, XAXA 4(0 >CQ XAXA  M  MD MO  O  73 - C f f A f A CM  P—CO C O  O  XA  M fa» M >• M MM > M  CvlsOcO  HCX, XA CD XA  XA<  r-  -CT  M  >  M  >  M > > M M M  >  >  M M  X A CM  ONP-_=f-C+ -Cf O CM M CM N O C O M O O- O M r Ar Ar Ar  C M O N O P - P - < A O N O O CO P X A - C t O N X A O N CM C M C M M N O f A ON X A f A M 0O O P - X A N O O X A  fA O ON f A O -Cf f A c o CM O C O CM O N  C— O C O O M O C A ON 00 P - _ = T CM O N M  f A O M D CM C M CO X A C O O N p M -Cf CM X A - C f  P-p-P-P-NOMDXA-CffAfACM O O O O O O O O O O O  CM O  O O  CO ON  r-i rA r-i rA rA rA rA rA rA rA  CM M M O O O O O  73  -CfMDNOXAM-Cf-CfXAO O X A CM CO M  CM  -Cf M  O M  ONXA M  CM  M  rA rA r-i r-i rA rA rA rA rA rA  O  O  CA  fA  O O  O O  ON ON O N ON CO  CM X A f A O  O X A fA  O fA  CM M CM Ar A  ON CO C M X A - C f  N O -Cf X A O N O N CANOCOXAOO OOC OOO O NO N O O O O O  O  CM —Cf CM  I  V5  r<  X A - C f NO CM CO X A P - C A O O O C A N O P— O X A v O f A ON . C M C M CM C A - C f X A N O P-^ P O O O O O O O O O  XA  XA  M > M M M M M >  M M >  X A O O - C f NO X A - C f f A O P— -CfXANO P - P ON O NO NONON O O O O O  rA r-i rA rA rA  vO * CL,<X, XAXA rlB) 03 XAXA  1  I  «CQ _ 0 «<D  -a  co a,"  U  X A MD P - fAOO fA CM-Cf fA-Cf fA-Cf-Cf XAXA r Ar Ar Ar A r A M M M M  rA rA rA rA rA rA  XA O  o O  O  C— P — N O N O ON ON ON ON  73  CM CM CM  222.. TABLE  B  60  H  Jl  J2  XI (b) (continued)  Al.A  0  (vac.)  6"K vac.  Excit,  12 2 3 600 2 10  896.008 95.582 95.195 9U.U70 9U.035  111606.2 111659.2 111707.5 111798.1 111852.5  VI II V  00 1  30 15 1 8 10  93.165 92.930 92.1*95 91.815 91.1*02  111961.1* 111990.9 11201*5.5 112130.9 112182.8  III II c III IV 111 rv IV  0  1 1 2 8  91.201* 91.050 90.81*0 90.1*60  112207.8 112227.2 112253.6 112301.5  6 2 50 5 25  887.750 87.525 87.01*2 86.880 86.315  11261*1*. 3 112672.9 112731*. 2 U2751*.8 112826.7  in  86.085 85.525 81*. 61*9 83.172 82.825  112856.0 112927.1* 113039.2 113228.2 113272.7  rv in rv V VI  15 1* 5 2h 5 8  82.589 81.555 81.276 81.187 81.087  113303.0 1131*35.9 1131*71.8 1131*83.3 1131*96.2  1*  80.700 80.560 80.1+611 79.993 79.51*8  11351*6.1 11356L.1 113576.5 113637.3 113691*. 8  0 8 00 1 3 2  1 1* 2  1  1* 15 30 15 30  0 3 0 0  0  00  5 5 1 1 1  +d5s" D .  t  L  V  II c - 5s5 5d'D; P  II c 5S5P i?x- 5P D * i  5S5P-V- 5s-5p5d P,° 3  rv v II C rv iv 5S5P\1- 5i3 V . II c  223.  TABLE  K  B  H  8 5  (vac.)  vac.  11U0U8.0 11U096.6 11U128.U 11U186.3 11U218.1  12  75.126 7U.520 73.9UU 73.755 72.975  11U269.3 11U3U8.5 11UU23.8 11UUU8.6 11U550.8  5  200  72.815  11U571.8  2 3  UO  30  72.0U5 70.853 70.55U  11U673.0 11U830.0 11U869.U  69.8U2  8  3  8  3  10 35  1  20  5' 30 iiO 10  o.  3  60 2 12  879.082  3  Uo  0 00  10  0  10  68.736 68.56U  11U963.U 115033.8 115109.8 115132.6  1  8 10 5 12 15  68.U52 68.002 67.856 66.928 66.363  1151U7.U 115207.1 115226.5 1153U9.8 115U25.1  00 3  6 5 5 2 35  65.856 65.516 6U.U37 6U.301 63.936  115U92.7 115538.0 115682.2 ll57or.U 1157U9.3  1  6  0  76.82U 76.U50 76.206 75-762 75.518  3  10  8  U  Al.A  113755.0 113783.0 113858.5 113916.1 113958.2  0  U  J2  78.866 78.283 77.839 77.515  2 20  Jl  <& (b) (continued)  o  2 5  69.310  Exc: Excit.  Class.  II VII  II V  iI lIlI  5I5P ? 3  5i5p6s'p/  rv v in  D°  3  3.  II IV V IV V V  5S5P P° - 5$ ?  \  V  in  V V IV  rv rv IV V VII IV V IV IV II  in  b, - 5S5P6S p*  5p s-5pos p 5s5p*^-?s5;p5d C  it  5s5d D - 5p6s p° 3  3  CD CO  ro  M  M  ro  o 8 o  ro  ro  ro  U>IO  M M  M  IO M r oONONO v n  O  v n v n v n v n . v n r ow r o t - C "  v n vnvn. v n v n t r " V n V n O N —J  v n v n v n vnvn. CD C O V O V O  v n —4 r o o C O v o c o ONv o ro U I O V A C O  o p - ~ 4 f - J C - C O O V * J O M v n ro O O  r v j \ o H - ~ j — a - o v n o f r -  M H M r—' r — ' r—'  I—' I—• I— I—' 1^— M M MM M  c o C D C -r o O  Cr tr- tr- cr CDVO V Q V O  t r f r - v n v n v n V O O O M r-  C - v O M f - j o v o v n v n v n ro ON  fO  O  vn. ro ro O vn.  r o o v n f  ro  M CO M M O  M M  O v n V*J  r oO  (O  ro v n v n  ro v n ro O r o  co  • ••*  1  •••••  •••••  v n v n ON O NON V I V I O H H  0 0 0 0 0 H H WVJJU)  ONW ON O C c a j r o r o v o ON—J c c o ON  v n COO O VO \ O C - J H H O — J O O v o  V T V C D H O U l o f U ^ O - O r o ONtO  I—  1—' r- t— r- r I—' M M r- M  M  ••••• -  —0 — J - J — J o o - o — j - j v n NO v n r o c o o - o r o  -^3 - 0 —0 —0 — J —o ON o ( r u — J M NO NO u j - o o v n v n  o  — J —0 - o ON u u ro o vo O N O O N V O V O v n r - o ^ j H  M M H M M r - r - l - r - » ON ONON ON ON V O C O C O - J O N O N — o V»J r o r o O - J O W R H  •••••  •••••  v n v n  r o v n c c o - > 3  M  V*J v n C D O N O N  o  V_J  |_i  r-'r-'r-'r-'  ON.tr-  M M M M  1  r-J  r—' r—  M M  !-t  M M  r-  <<  1  l-j  <  <i  1  H  < H  M  M  O  H  1  V  J  _  <  ,  J  <  J  wur  0  I  I  v n  *»  K  ®  v*-l  i  I  v n v n v n v n  vn.  a. a  1  %  to ^ v j \ J  v n v n  0  vn t i  o i  1  O  H  -  o  M M M <!  H  M  <  <  M  v n co  v n v n co i o *  »•»-  <  v n  r  I  v n  v n v n  o  v n v n  _P-  JD  v>  1  1  1  1  ON ONON ONON U I N W H H u v o r > t - o vo vo vo ro M  M M M M 1 1 1 h - r— r ONO V n v n v n O O NO CD C O - o v o v o o o v n O M O —i  - j o o o - a o o  - J ONO - J OO  1  M  M  r—' r—  \<i <  M  «*  v n  M  u  CO  v n  £  v n  • * M>  1  •••••  1  «••••  f  a  £ I  •••-«'•  M M  O  m v n  v  t  <  M M M M M M M M M ON ON ON ON ON v n v n f f U> NO O O * v n M U > c o o v n  O ».i  a 9  1  J  M M M M  H  . <3 v n v n  J  -  o  w  I  l v n  l  M j  O N n  CO Q,  «  -*TJ  v n Cflf v n  1  1  v n  v n  c -  vn.  CO"  ca  JOL o  225.  TABLE  B  H  Jl  J2  00 1 6 2 5 5 0  50 10 U 00 0  00 00 00  9 8 1*  0 8$  ° c 2 2 2 2 2 1 1 5 1 5 2  it  (b) (continued)  /II.A  0  (vac.)  81+8.210 17.508 1*7.016 1*6.550 1*6.135  vac. 117895.3 117993.0 118061.5 118126.5 118181*. 5  1*5.855 1*1*. 910 1*1*. 1*70 1*1*.135 1*3.778  118223.6 118355.8 1181*17.5 1181*61*. 5 118 511*. 6  5 2 5 5 5  1*3.550 1*3.31*5 1*3.026 1*2.700 1*1.935  11851*6.6 118575.1* 118620.3 118666.2 118771*.0  5 2 50 20 10  1*1.81*1 - 1*1.580 1*0.368 1*0.275 39.821  118787.3 118821*.! 118995.5 119008.7 119073.0  10 8 2d 10 2 00 10 12 5 5 20 35 5 6 30 00 10  39.515 37.910 37.395 36.91*0 36.51*2 36.180 35.580 35i096 3l*.l*30 31*. 060 33.762 33.61*0 33.091* 31.596 30.930 30.61*0 30.21*8  119116.1* 1193l*l*.6 1191*18.0 1191*82.9 119539.7 119591.5 119677.1* 11971*6.7 11981*2.3 119895.5 119938.3 119955.9 120035.1 120250.7 12031*7.1 120389.1 1201*1*5.9  ?  Excit.  Class.  V IV V  rv  1 O  .1^,3.  V VI  VII  1  V  rv  rv rv in V V V  II VII  rv in IV V  in  rv  5s5d D, - 5p6s'p;  i  226,  TABLE M  B  H  00 0  Jl  26.938 26.830 26.652 25.998 25.257  120928.1 1209143.9 120969.9 121065.7 12117li.lt  VII  25.065 21+.81+0 2I+.I+30 23.955 23.210  121202.6 121235.6 121295.9 121365.9 1211+75.7  IV  22.952 22.270 22.000 20.61+0 20.233  121513.8 121611+.6 121651+.5 121856.1 121916.6  II  c  V II  c  li ii 5  19.967 19.070 18.335 17.385 16.962  121956.1 122089.7 122199.3 I223I+I.I+ 1221+01+.7  15 3 5 10 00  16.760 16.265 15.885 15.672 15.372  1221+35.0 122509.2 122566.3 122598.3 12261+3.1+  2 1 2 2 10  15.150 12.816 12.601+ 11.71+0 11.090  12^676.8 123029.1 123061.2 123192.2 123290.9  8 5 0  3  15  1  2 20 10  l  5 ( 1+  ( U 5 15  00  U 1 0 2  1  0  Excit. VII  20 10  2  vac. 120505. 120620.0 120695.1i 120756.9 120831.6  1  0  "Xl.A.° (vac.) 829.81+ 29.050 28.532 28.110 27.598  0 3 5  3  J2  (b) (continued)  7  Glass.  V IV V IV 5s 5P !^-5s5p5d e - 14 y c  v  V IV  5*5F T)j5s5pSd f  V II rv in  11  V  c 5s5ji> D - 5s5p6s L  5&$X-  5s5 5d'p P  227 TABLE EC (b) (continued)  K  B  H  3  0  J l J2  Al.A  0  (vac.)  vac.  00 5 20 2 1  810.1+20 10.203 09.321 08.670 08.507  123392.8 123a25.9 i2356o.a 123659.8 12368Ii.8  5 2 00 2 5  08.191 07.510 07.052 06.091 05.800  123733.1 123837.5 123907.8 12ao55.0 i2aioo.3  80 15 0 16 a  0lu910 oa.516 Oli.2liO 03.787 03.585  a 2 8 2  Excit.  Class.  iv v IV V IV V  II III  5S5P* P„ - 5S5P if  12U237.5 12U298.3 i2a3ai.o i2aan.i i2aaa2.a  rv II  5I5P*PI - 5l6s s  rv  5s5p \ - 5S5P6SV  03.1+73 03.003 02.057 01.650  i2aa59.7 12a532.5 12U679.a 12U7a2.7  11  3  2 (2 ( 2 (2 50  oi.aoo 01.080 00.907 00.738 00.266  12a78l.6 12a831.5 12U858.5 i2a88a.8 12U958.5  2 1  15 15 2 30 25  00.010 799.57U 99.280 99.077 98.700  i2a998.a 125066.6 125112.6 i25iaa.a 125203.5  rv v IV  3  2 2 5 7 35  98.070 97.679 97.280 96.9a5 96.160  125302.3 125363.7 I25a26.5 125a79.2 125602.9  11 V VI  5 1  1  1 0  3  0  IV  5s5? P 5s5p5dV  rv v rv v IV  5s5^ 5s5 5dV  IV V III IV  r  f  P  228 TABLE  K  B  H  Jl  J2  Al.A° (vac.)  10 U ( ii 25 2 ( 2 ( 2 5 35 0  93.351 93.181 91.931* 90.870 90.1*00  12601+7.6 126071+.6 126273.1 1261+1+3.0 126518.2  20 5 20 20 25 10  12661+9.5 126781+.5 12683U.li 126883.1 126912.9 12691+9.5 126967.0 127051+.1 127089.0 12721+3.6 127267.0  V VI II V VI V VI  i (2  89.581 88.71+0 88.1+30 88.127 87.91+2 87.715 87.606 87.066 86.850 85.891+ 85.750  30 60 (2 ( 1 1  81+.832 81+.625 83.970 83.81+5 83.080  1271+15.8 1271+1+9.1+2 127555.9 127576.2 127700.9  rv rv  30 25 20 2  82.658 81.1+00 80.1+03 79.31+2  127769.7 127975.1+ 128138.9 128313.1+  8 2 5 5 iiO 12  79.115 78.595 78.180 77.293 76.900 76.1+75  128350.8 1281+36.5 128505. 128651.7 128716.7 128787.2  3  0 0 1 0  2  00 15 2  13 'A  2 3 1 2  3  Excit.  125722.6 125801.5 125887.5 125906.2 126020.8  3  0  K vac.  <sr  795.U02 9U.903 9i|.360 9ii.2i*2 93.520  I  1+  XI (b) (continued)  •o* ~"  !  w  Class,  IV V IV V II  V  iv :5S5P P-5s5p5d^  rv  in  5 5s5p 3r5s5p5d g  II  V  V  rv  IV V  5 S 5 P V 5P %i 5S-5PP£- 5£5d*D. 1  5S5P - 5P if ? I  II  V V III IV  5S5P P! 5  5M  229.  TABLE XT  K  B  H  Jl  2 (15 (12 1 00  0  (vac.)  vac.  Excit.  Class,  III IV IV V VI  7U.352 71+.026 73.585• 73.312 72.810  12911+0.2 129191+.6 129268.3 129313.9 129397.9  V v  5S5P Pf - 5s6s s  71.51+1+ 71.150 70.81+5 70.61+0 70.1+75  129610.2 129676.5 129727.8 129762.3 129790.1  V v  5S5P V - 5s5d*D  129918.7 12991+1+.1 129961.8 130139.2 130282.3 .  17  60d 10  69.712 69.562 69.1+57 68.1+08 67.561+  30 2 8d 200 2  67.307 65.637 63.981 63.1+06 61.81+3'  130325.9 130610.2 130893.3 130991.9 131260.7  IV.  2 10 0  8  30 10  60.767 60.11+0 59.380 59.115 58.917  1311+1+6.3 131551*. 7 131686.1+ 131732.1+ 131766.7 .  2  20 30 00 00 30  58.21+2 57.981+ 57.175 56.363 55.663  131881+.0 131928.9 132069.9 132211.7 132331*. 1  JL  2  25 2 5  1 3  2 2  25 2 5 5 5  3 5 3 15  Xl.A  128827.8 128955.1+ 128980.7 129021+.8 129080.5  1  000  J2  (b) (continued)  6  3  3  30  ( o ( o  776.230 75.1+62 75.310 75.01+5 71.710  IV III rv  V V  3 o  •4 5^0  V  V VI V VI  III iIVv IV V  5s5$\-5*^  230. TABLE XL (b) (continued)  K  B 3  H  1  0 1  5 2  3  J l J2  1*  0  (vac.)  ^ C vac.  Excit.  25 1* 5 2  751*. 780 5a.526 54.1U2 53.750  2 00 00 35 2  53.1*69 53.059 52.226 51.810 •  132719.5 132791.7 ' 1328li*.7 132938.8 133012.3  2 2 10 2 60  51.678 51.1*25 50.670 50.1*52 . 1*9.290  133035.7 133080.5 133211*. 3 133253.0 1331*59.7  V IV V IV IV  10 25 12 10 2  1*8.860 1*8.5ll* 1*8.339 1*8.11*0 1*7.882  133536.3 133598.0 133629.3 133661*. 8  V II  10 5 15 00 10 0  Xl.A  2  52.929  Imp?  1*7.582 1*6.796 1*6.31*6 1*6.01*5 1*5.528  (10 (10 (10  1*1*. 910 1*1*.1*9 1*1*.112 1*3.950 1*3.832  I50d 15 10 10 10  1*3.020 1*2.318 1*1.860 1*1.623 1*1.100  1321*88.9  132533.5 132601.0 132670.0  II  IV rv  Class".  U$t\-  5ft;  III VI VI  io  5P P, - 5d D  3n  133710.9  V s. S5 5«L s u  133761*. 6 133905.1* 133986.1 131*01*0.2 131*133.1  IV rv  131*21*1*.!*  131*320. 131*388.1* 131*1*17.6 131*1*39.0 131*585.9  131*713.2 131*796.3 131*839.1* 131*931*. 6  A  It  •l  II C VI IV?? VI V V V V  VI VI VI VI VI  Sstp^  3 1  f?  - 5S5P6S ?,  U  231.  TABLE  K  B k  0 2 0 0  1  1 5 1  H  Jl  J2  .VI (b) (continued)  Al.A  0  (vac.)  vac.  100 2 2 ( 8 (8  7U0.1+80 39.618 39.270 39.032 38.188  18 0 10 00 12  37.798 37.551+ 37.180 36.952 36.832  135583.3 135652.1 135691+.1 135716.1  2 2 2 10  36.072 35.225 31+. 850 3U.551  135856.3 136012.8 136080.7 136137.6  ( 2 ( 1 1+ 10 25  33.875  33.1+76 33.158 32.875  136263.0 136281.2 136337.1 136396.3 1361+1+8.9  2 10 00 1 12  32.220 31.870 31.680 31.258 31.01+2  136571.0 136636.3 136671.8 136750.7 136789.9  30.1+18 30.092 . 29.860 29.730 29.1+80 29.082 27.501 27.011+ 26.820 26.382 25.860  136907.9 136969.0 137012.6 137037.0 137081+.0 137158.8 1371+56.9 1375U8.9 137585.7 137668.6 137767.6  15 0 (30 (25 00 0 20 1 120 10 15  33.777  Imp?  13501+7.5 135201+.9 135268.6 135312.1 1351+66.8 13^3^  Excit. V  Class. 5s5p P * - 5s6s S  E  V VI  V VI  IV V VI  585^*P-5s5p5d d ' t  VI IV  5S5P P - 5P tf V  t  V V VI V V rv v rv  5S5P i f - 5s5d D 5S5J"P -  Sstf6s\  232 TABLE Xl< (b) (continued)  H  10  5  0  3 0 2  2 a Od 2  1  Jl  J2  Xl.A  0  (vac.)  K vac.  5 10 150 2 8  725.090 2a.57a 2u.oao 23.3U5 22.7U8  137913.9 138012.1 138113.9 1382a6.6 138360.8  15 0 20 2 10  22.3a5 22.130 21.790 20.780 20.610  138U38.0 138a79.2 i385aa.5 138738.6 138771.3  Od UOd 2 18 20  20.308 19.785 19.a20 19.060 18.525  138829.5 138930.a 139000.9 139070.5 13917a.O  2 12 1 5 10  18.025 17.780 16.915 15.630 ia.782  139270.9 139318.5 139a86.6 139737.0 139902.8  7 a 20 00  ia.i5a 13.235 13.000 12.655  ia0025.8 ia0206.3 1U0252.5 iao32o.a  60  00 25 12  11.727 11.19 10.985 10.730 10.610  iao5o3.3 iao6o9. iao667.8 iao7oo.a iao72a.2  2 5 10 2 00  09.872 09.383 09.139 08.670 07.825  iao870.5 ia0967.6 iaioi6.i  iano9.a iai277.9  Excit.  Class  IV  rv  V  III  1  rv  VI  rv  <1 A  IV rv  V  in  V V  5P P-5 6S P; 3  3  P  rv v  V IV IV  FUs5p5d a (4  rv 11  Vi  V IV  rv v  55p P-5s5p5d ct. H  >/  2  ' i  233. TABLE  B  00  00  H  Jl  U 0  (vac.)  vac.  00.300 00.178  11+2795.9  99.01+5  11+3052.3  05.81+0  05.390 05.280 03.83 02.61+0  00.600 00.1+10  699.71+2 99.1+25 99.335 97.11+0 96.800 96.381 95.220  2 12 18 10  91+.500 91.210 93.9U9  0 10  92.038 91.738 91.577  1+  lOOd 12  5  2 10  93.200  90.835  90.295 89.532 89.190 89.010 88.826  87.818  Excit.  Class.  V  5p P - 5p6s P°  11+1306.1+  00 2 00 00 00  10 2 0  0  707.682 06.778 06.1+12  i 10 12  1  A.I-.A  00 1 2 10 5 00 10 2 20 25  15 50  00  J2  M (b) (continued)  lkll+87.2  11+1560.5 11+1675.2 11+1765.6  11+1787.7 11+2079.8 11+2320.1+ 11+2731+.8 11+2773.5  IV V rv  5s 5P P^- 5s5p6s p,*  vi VI  11+2820.8 Ll+2909.8 11+2971+. 6 11(2992.9 11+31+1+3.2 11+3513.2 11+3599.6 11+3839.1+ 11+3988.5 11+1+01+8.6 11+1+102.8 11+1+258.5 11+1+500.7 11+1+563.1+ li+1+597.1 11+1+752.1+ 11+1+865.6 11+5025.9 11+5097.9 11+5135.8  11+5171+. 6 11+5387.3  in  rv  in  5S5PA- 5s5p6dV 5s5pik-  5s5p6s^  5I5P'D - 5S5P7S P° 3  (  i n ? ? 5sVi>- «r« IV  Iv  5s5p V5s5p5d e"  vi  *  vi VI vi vi iv  ill  t  5p  P. - 5d D. L  t  5S5P £ - 5s5p6d F  a  231+. TABLE XI  B 00 00 2  H  Jl  Xl.k  J2  0  OOd  (vac.)  10 8 30 10 2  687.1*1*0 85.80 81*. 721+  5 7 1 8  83.285 82.1+60 81.630  81*'. 070 83.500  ^"K vac.  Excit.,  Class.  11*51*67.3 11*5815.1 ll*6ol*l*. 2 11*6183.9 11*6305.8  V  5P \ - 5 6s V  rv v rv v  79.05  78.525 78.21*5 77.825 77.500 75.88-2  11*7378.5 11*71*39.1* 11*7530.7 11+7601.5 ll*7951*.8  r/.  75.1+15 75.020 71*. 700 7U.555 7l*.l*5o  11+8057.1 11*811*3.8 11*8 211*. 0 11*821*5.9 11*8269.0  V V V  71*. 230  73.292 72.162 70.790 70.080  11*8317.3 11+8521+.0 11*8773.7 11*9078.0 11+9235.9  1 15 5 l 10  69.575 69.168 68.060 67.361 66.591  11*931*8.5 11+91+39.3 11*9687.2 11+981*3.9 150017.0  0 0 0 15 00  66.320 66.000 65.602 65.21*7 6U..870  150078.1 150150.2 150239.9 150320.1 1501+05.1+  79.960  0  0 1 0 10  2  0  5 2 1  10 5 5 l 20  Imp.  P  VI V  11*6351.8 11*6528.7 11*6707.2 11*7067.5 11*7261*. 6  OOd 0  (b) (continued)  5s5p P,-5s5d 'D  V  3  5S5P *P|-5s5p5d i  VI V V III V V  5v\-  V  tf\ - 5 6s p;  rv v  VI  5p6s V  5  P  235  TABLE  K  B  Jl  J2  A l . A ° (vac.)  <°K  vac.  10 i* 8 5 5  661+.312 63.510 63.325 62.910 62.637  150531.7 150713.6 150755.7 150850.0 150912.2  2 2 10 5  61.855 61.695 61.220 60.950  151090.5 151127.0 151235.6 151297.1*  12 20 10 5  60.11*8 59.86 59.660 59.536 58.550  1511*81.2 15151*7.3 151593.3 151621.8 15181*8.8  2 0 0 00 20  58.330 57.1*60 56.81*1 56.180 56.020  151899.5 152100.5 15221*3.9 152397.-2 1521*31*.!*  55.52  00  20 5 10  00  22  55.050 51*. 120 53.900 53.1*65 53.328  152550.7 152660.1 152877.2 152928.6 153030.1* 153062.5  30 0 8 20 2  52.610 51.820 50.860 50.550 50.210  153230.9 1531*16.6 15361*2.9 153716.1 153796.5  30d 10 1 10 12  1*9.217 1*8.703 1*8.320 1*7.827 1*6.910  151*031.7 151*153.8 151*21*1*.8 151*362.2 151*581.0  0 OO  •0 0  0  H  X I (b) (continued)  Od 1  15  Excit.  Class; ;  VI IV V IV V IV V IV V  V VI VI V  5pD - 5 6s V P  VI  V 5p 0 P, - 5 6s 1.p * V VI P  IV  (  5S5P p-5s5p5d'  gj  VI  III  1  »  -a ^  5I5P £ - 5l5 7s P; P  VI III 5S5P \ - 5S5P7SV III 5S5P'D - 5s5p6d p; III 5I5P7S'P; V VI V VI III 5S5P \ - 5s5p6d J  III 5S5P D - 5s5p6dV V VI  V VI III 5S5P\- 5i5p6d F 3  %  236.  TABLE  K  B .  H  Jl  Al.A  0  (vac.)  vac.  Excit.  Class.  61*6.781 1*6.562 1*6.180 1*5.833 1*5.165  151*611.8 151*661*. 2 151*755.7 151*838.8 151*999.1  00 00 00 1 5  1*1*. 720 1*1*.1*57 1*1*. 305 1*3.781* 1*3.050  155106.1 155169.1* 155206.0 155331.6 155508.9  2 30 30 2 2  1*2.700 1*1.726 1*1.603 1*1.113 1*0.885  1^593.6 155829.8 155859.6 155978.8 156031*. 2  10 2 2  1*0.220 39.800 39.555  156196.3 156298.9 156358.7  III  5s5p" \ - 5s5 7s V  10 00 00 6 6  39.200 38.737 38.650 38.350 37.821  1561*1*5.6 156558.9 15o580.3 156653.9 156783.8  III  5I5P P, - 5S5P7S P;  III  5a5p^- a  5 3 3 5 2  37.1*65 37.278 36.31*0 36.11*7 35.91*8  156871.1* 156917.1* 15711*8.7 157196.1* 15721*5.6  1 1 2 2 5  35.796 35.570 35.280 31*. 725 31*. 1*50  157283.2 157339.1 1571*10.9 15751*9.6 157636.8  15 22 2 60d 0  2d  J2  XL (b) (continued)  III III V  III  5S5P TL- 5s5p6d*Ll 5S5PP, - 5!5p6d E; 3  3  5S5PY- 5S6S' S ?  1  5S5P P - 5 s 5 p 6 d V  •V  V  P  3  3  I of a  V VI III VI  IV  5s5p- D - 5s5p6d V  237.  TABLE  B  H  J l J2 1 2 2 25  2 2  2 15 1  1 2 5  0  °K vac.  631). 050 33.1*35 33.100 32.91*6 32.313  157716.3 157869.1* 157952.9 157991.1* 15811*9.5  31.1*10 31.070  158375.7 1581*61.0 158572.9 1591*36.8  30.625  27.208 26.920  25.930 25.535  159762.3  159863.2 159911*. 3  2  23.600  0 2 12 8 00  22.027 21.788 20.338 19.675 19.090  160761*. 7 160826.5 161202.5 161371*. 9 161527.1*  1 12  18.675 17.839  161635.8 161851*.5 1621*23.1* 1621*56.3 162601*. 3  15.675  15.550  15  11*. 990  l*0d 18 18 no 10 5  13.870 13.870 1 5 itn 13.251 13.025  2 2 12 10 00  IV V IV V III V III III  5I5P P, - 5l5p6dV 3  V VI  160359.2  162817.7 162900.9 162900.9 -.^on^c i. 163065.1* 163125.5  12.780 12.656  163190.7 163223.7 163332.0 163509.6 163591.2  11.585 11.280  Class.  16011*9.1  li*.l81*  12.250  Excit.  IS9S09.9  1  12 0  3 1  Al.A (vac.)  25.335 2l*.l*l8  2  0 0  XI (b) (continued)  III V VI III III VI V III III T T T III  III III V  5s5p  P°-  S,  5s'6s 5s5p6d % 5s5p*D - 5s5p6d'iT  5s5p~'B.  -  5S5P R3  $ £ % \ -  5s5p6d D; 5s5 6d D° 3  S  P  238  TABLE XI  B  H  Jl 0 0 10  000  A I. A  0  (vac.)  G~K vac. 163620.6 16361+8.9 163802.9 163891+.9 16391+0.9  Excit.  00  611.170 11.061+ 10.1*90 10.11+7 09.976  5 l l 5 5  08.560 07.591+ 07.218 06.1+79 06.320  161+322.3 161+583.6 161+685.5 . 161+886.2 161+929.1+  IV II IV V  00 5  0 10  05.995 05.850 05.687 05.396 05.086  165017.9 165057.1+ ' 165101.8 165181.1 165265.8  III  1 5 5 5 25 25 10 10  0I+.1I+8 03.786 03.611 03.386 03.011  165522.1+ 165621.6 165669.6 165731.1+ 165831+.5  0 5 7 1* 10  01.712 00.951 598.970 98.586 98.015  166192.5 1661+02.9 166953.3 167060.1+ 167219.9  0 10 2 2 10  97.586 97.361 97.200 97.100 96.5U5  167339.9 1671+02.9 1671+1+8.1 1671+76.1 167631.9  2 0 0 5 0  96.175 96.010 95.605 95.280 95.11+0  167736.0 167782.1+ 167896.5 167988.2 168027.7  5  00 l 00  J2  (b) (continued)  III III  V  Class.  5S5PASstfX-  5s5p6d'lf 5s5p6d ir 3  V  V  III III  V IIII H V  inr  HI  i n  $s$$% - 5I5P7S¥ 5S5P S - 5s5p6dV2° 5S5P B°- 5s6s s, 5s5£3P, - 5s5p7s 'P° 3  5^  J  ' D - s s . -i)j» P| 3  5s5p 'p.- di  5S5P P, - 5 s 5 6 d V P  239. TABLE  K  B  H  J l J2  0  6  0  (vac.)  591.952 94.319  ^  vac.  168080.8  168259.8 168725.7 168871.9  92.018  168913.8  89.923 89.730 88.607  169017.7 169513.7 169569.1 169892.7  87.275 86.900 83.430 82.152 80.265  170278.0 170386.8 171400.2 171776.5 172335.1  8 h 5 5 25  79.990 78.525 78.105 77.9U5 77.08L  172U16.8 l72853.ii 172978.9 173026.9 173285.0  3 0 2 2  U  75.505 74.050 73.555 73.3li8 73.0U8  173760.ii 17ii200.9 17U351.2 1744lii.2 17ii505.5  00 2 k C 6  72.730 70.i|00 69.500 68.900 67.950  17I1602.4 175315.6 175592.6  20 2 h 2 0  67.360 66.917 66.555 66.270 65.800  5 2 6d 6d 0 ( 1 ( 1 0 12 1  6  ll.A  92.678 92.165  ii 10 2 0  XI (b) (continued)  91.65U  Excit.  III V  HI VI VI  Class.  5s5p if - 5s6s S  5s5£ P - 5s5p6d if 5d D,<_- 7p tf 5P 6s  3  t  3  m  5s5p \ -  III HI i n  5S5P P - 5s5p6d 'p° $&v\- 5s5p8s P: „ 5 s 5 A - 5s5p8s p;  5s"5p6d ? ;  175777.8  176071.8  I76251i.9 176392.7 l76505.ii 17659ii.2 1767I1O.9  3  3  2kO.. TABLE  K  B  00  0 5  k 00  H  Jl  J2  XI (b) (continued)  Al.A (vac) 0  vac.  5 3 15 15 00  56L.980 6k.855 61i.375 63.539 62.850  176997.1+ 177036.6 177187.2 1771+50.0 177667.2  0 00 2 2 6  62.110 59.270 58.1|80 57.312 57.015  177901.1 17880li.5 179057.5 1791+32.7 179528.1+  li 2d li 0  56.620 55.902 55.510 5k.753  179655.8 179887.8 18001k.8 180260.k  5 0 00 3  5k.183 50.58 u8.00h U7.820 L6.760  I80kk5.8 181626. I82k80.k l825kl.7 182895.6  3 5 5 3 20  1+6.213 L2.669 1+2.572 1+2.268 1+0.21+2  183078.8 I8k27k.k I8k307.3 I8kkl0.7 185102.2  2 2 10 3 1  39.060 38.81+0 38.100 37.210 37.105  185508.1 185583.9 185839.1 I86lk7.0 186183.3  Id 2 2 0 1  36.815 35.51+6 31+.270 32.51+0 30.1+1+5  186283.9 186725.3 187171.3 187779.3 188520.9  Excit.  Clase.  III  5S5P D - 5s5p8s P°  III III  5s5p'P d,° 3.0 5I5P P - 5s5p8s 1>  III VI  5  III  5I5P  V III  5S5P P - 5s5 8s P  rv  r  1  P  V  6s  \ -  ^ 5S5P8S P 3  3  P  2U1. TABLE XI* (b) (continued)  K  B  H  00  Jl  J2  ll,A° (vac.) 530.11+8 29.121 28.531  0 2 2 2  28.300  28.000  Od  189501.6 189591.1* 18961+1.8 189697.2 189879.1+  26.295 22.522 22.1+10 20.990  190007.5 190186.1+ 191379.5 1911+20.5 19191+2.3  (2 (2 (2 IS  20.750 19.855 19.600 19.1*15 16.211  192030.7 192361.3 1921+55.7 192521+.3 193719.2  25  15-120  6 2 2  2 10 ( 6  ( 8 00 1  0  1+ 0  2 2 6 3  3  188626.6 188992.7 189203.7 189286.1+ 189393.9  27.700 27.1*50 27.310  3 00  2  vac.  2 10 5 0 2 00  27.156 26.650 on 0 III  25.800  11*. 71 13.070 12.082 10.170 09.352 08.1+35 07.820  07.680 05.822  05.1+77 01+.936  Excit.  Class.  III  5I5A  III  5S5PP, - Ss5p8sV  5s5p8s V  3  V V V V V V V  rv  5S5P P" - 5s'6d D  191*129.5 191+281+.2 191*905.2 195281.2  IV  Sa$pY- 5s6d ID  196013.1 196327.9 196682.0 196920.2 19697l*.5  VI  5p  IV  SsSp ?'-  197698.0 197832.9 19801+1+.9  (I  * i  15  P* - 1+d 5s 1  D  xi  5s7s S,^  2h2,  TABLE XT (b) (continued)  K B  H  1  Jl  10  2  95.710 91*. 960 92.750  25  Qh.ShS 82.553 82.370 81.585 80.680  206379.2 207231.1 207309.8 20761*7.7 208038.6  U  79.300 78.380 77.7UO 76.1*30 75.U52  208637.6 209038.8 209318.9 209891*.!* 210326.2  l*d  71*. 765  72.58 72.1*63 69.860 69.1*7  210630.5 211601*.!* 211656.8 212829.1* 213006.2  10 3 20 8  69.010 66.700 65-1*16 61*. 675 6U.250  213215.1 211*270.1* 211*861.6 21520U.2 215U01.2  3 5 1 00  59.318 59.158 58.800 58.580  217711*.! 217789.9  0 20  5  3 0  8 00 2 5  2  200000.0 200779.0 201730.9 202036.5 20291*2.7  20U915.9  2  1  <=~K vac.  88.005 87.025 86.736 85.930 85.100  3  00?  (vac.)  500.000  8  00?  0  1*98.060  5 i*  2  Xl.k  2 10  3  J2  2 0  Ud  205328.3 2051*50.2 205790.9 20611*3.1  217959.9 21806!*. 5  Excit.  IV  Class.  5s5p l £ - 5s6d D  Si$ \-5s7s\  rv  vi  v  5 *p'- l*d 5 l \ P  i n rv VI  v  5S5P P" - 5s6d D'  TABLE  K  B  0  2  2 0 00  H  J l J2  XI (b) (continued)  A l . A ° (vac.)  6~K vac.  5 Id 10 2 2  1+55.666 53.U51* 52.910 51.510 51.200  2191*59.0 220529.5 220791+.1+ 22LL79.0 221631.2  00 2 2 12d 15  50.235 1+9.076 1+6.968 1+5.605 U5.1+20  222106.2 222679.5 223729.7 221+1+H+.0 221+507.2  8 1+ 5 2 0  1+3.395 1+2.021 1+0.160 38.905 38.765  225532.5 226233.6 227190.1 227839.7 227912.1+  2 8 2 8 00  37.320 36.175 35.1+1+0 33.050 29.710  228665.5 229265.8 229652.8 230920.2 232715.1  1 8 3 6 2  28.181+ 27.300 23.750 22.980 22.250  23351+1+.5 231+027.6 235988.2 2361+17.8 236826.5  1+ 8 10 5 5  21.653 21.330 19.1+77 18.615 18.278  237161.8 23731+3.6 238392.1 238882.9 239075.k  15 6 8 15  17.538 16.1+10 15.800 13.1+30 13.05  2391+99.2 21+011+7.9 2l+o5oo;2 21+1878.9 21+2101.5  Excit.  Class.  71  5pY - k i $ i \ k  1  IV V  , 5s5pY-5s7sS  IV  ^ . 5s5p ^ - 5s7d D„  IV  ft  a  4  , 5s5p P.- 5s8s '* o  IV  5s5p P*- 5s7d D * **  V V  5s5p P*- 5s6d D, 5S5P*P£- 5s6d D  V IV rv  5s5pV- 5 s 6 d %  J  5  3  5 S 5 P \ - 5s88*S»* H 5&5P*P,- 5S5P6P P, ' l  1  2UU  TABLE Xr£7(b) (continued)  B 0 0 00 1 3 0 00  2 0  Id 2 U 6  00 0 7 2 0 0 1  H  Jl  J2  AI„A° (vac.)  vac.  Exc:  V V V  5s5p R°- 5s6d D, 5s5p FT - 5 s 6 d l \ 5S5P P;- 5s7s's,  V  5S5P P°- 5s6d D  V V  5S5P V - 5s7s s.  Class.  10 5 8 15 25  an.6oa  05.863 05.090 OU.760 02.U85  2U2951.9 2U6388.6 2U6858.7 2U7060.0 2U8U56.5  10 6  OO.U53 00.380 399.U9 97.170  2U9717.2 2U9762.7 250319.2 251781.U  2d 3d 15 10  u  92.300 91.968 89.961 85.580 85.250  25U907.0. 255122.9 256U36. 259350. 259571.7  3 5 1 5 10  82.832 79.650 79.500 76.170 7U.UU0  261211.2 263U00.5 26350U.6 265837.3 267065.5  2  7U.152 7U.086 71.877 71.350 6U.U20  267271.1 267318.2 268906.1 269287.7 27UU08.7  V  5s S - 5s6 P°  62.9U2 62.0U0 59.38 59.06 . 58.800  275526.1 276212.6 278257.0 278505.0 278706.8  V  5s s  56.110 50.107 U9.220 U5.17  280812.1 285626.9 286061.6 286352.U 289712.3  U2.51 39.86  291962.3 29U238.8  00  a  00 3  ao  5w 0 uo 2 6 2 2  a a  VI  3  J  3  J  5S5P P;3  5s7s s, 3  3  P  - 5s6pV  x  5 V P  t  7s\  21*5".  TABLE X I (c) The lines appearing on our plates i n this region were picked up from second and third orders.  The intensity symbols have same meaning as i n  Table XI (a) f.nri XI (b). K  B  1 00 5 6 0  Jl  00 7 0 3 1 1*. 1* 6  (vac.)  - - 08.15 . 292.80 88.39  0 1  1 2 1 2 1 2  coin.  <^K vac.  297522. 3H167. 311*197.6 318601.2 323530.  83.98  321*517. 31*11*3731*6753. 31*8918. 352137.  81.10 80.037 78.00 75.603 7l*.06  35571*5. 357095.7 359712. 36281*0.8 361*881*.  73.58 72.25 72.09 71.58 69.90  365521*. 367309. 367525. 368216.  68.607 68.38  372291.1  86.60  0 1 2 2 00 5 00  0  336.11 21.37 18.271 13.872 09.09  6 10  0 0 0 00 0 0 2 0 1* 1  Xl.A  J2  68.00 65.768 61*.1*3 61*. 001* 63.75 61.685 59.710 57.565  370508.  372606.  373131*. 376268.0 378172. 378782.1 37911*7. 382138.8 38501+1+.9 388251.5  Excit.  Class.  VI  5p P - 7s S y  Vl  VI 5s S*- 6p R VI 5s*S - 6p*P , /2 (  2U6 TABLE XI' ( ) (continued) c  K  B  Jl  5 1* 3 0 0  0  5 3 1 1 6  h  0 li 3 6 1 0 6 00  J2  Al.A  0  (vac.)  <=! vac.  251*. 680 53.98 52.71*1 52.1*0 51.79  39261*9.6 393731. 395661.9 396196. 397156.  1  50.002 1*6.63 1*5.18 1*1*.82  39999.7 1*051*66. 1*07863. 1*081*63.  0 1  1*3.896 1*2.270 1*1.93 36.1*70  1*10010.8 1*12762.6 1*1331*3. 1*21061.5 1*22886.6  32.350 29.12 28.65 27.830 27.15  1*30385.2 1*361*52. 1*3731*9. 1*38923.7 1*1*0238.  0  0 00 1 1  37.U9S  Excit.  VI VI VII VII VII VII  Class.  5s \ - 7p K 5s\- TP\  2U7. Te I and Te II The arc spectrum of Tellurium was f i r s t analysed by McLennan and Crawford (6) and subsequently revised and extended by Ruedy (35) and Bartelt (3).  They have classified i n a l l over 100 lines i n this  spectrum between the region 11081+ A - 161+5 A . 0  0  P.M. Griffin and  Vander Sluis have reported (ll+) that their work on this spectrum is i n progress at Oak Ridge National Laboratory supplemented by their Zeeman Effect data.  Consequently we did not try to analyze this spectrum.  The f i r s t spark spectrum of Te was f i r s t studied by Rao and Sastsy (3l+-t») whose analysis has been completely revised by Mack, Murakawa, Ross et a l (28) and Mack and Handrup (18) at Professor Mack's laboratory.  They have assigned over 1500 lines to this spectrum and  analysed over five hundred lines and thus established a very good energy level scheme.  Since the classified lines accounted for most of the  intensity i n the region 700 A° to 8900 A°, no attempt was made to extend their analysis.  Te III The ground state of the second spark spectrum of Tellurium is 5s5p P » an even parity state. l  1  The early analysis i s entirely due to Krishnamurthy and Rao (20, 31+) who have classified a l i t t l e over 200 lines i n the region 612 A° 6977 A . 0  From the square array i t soon became evident that some of the  levels show quite appreciable irregularities i n the Sn I l i k e the iso-  21*8. -electronic sequence which is now much better known than i n the days of Rao and Murty's analysis.  Apart from this, their wave length measure-  ments were in doubt and many levels needed careful study and confirmation on the basis of the available Zeeman effect data (13). In the present analysis, lines belonging to this spectrum have been thoroughly checked for excitation using the 'pole effect' shown by these lines.  In general a l l the lines here classified show their  appropriate excitation characteristics i n both spark-in-helium and electrodeless discharge. In a l l cases where we suspect an unresolved coincidence of lines x^re mention this coincidence specifically.  5s 5p £ This term, the deepest i n the f i r s t odd configuration above the ground state  was not established earlier.  According to the definition  of resonance lines, the ground state combinations of this term should give resonance lines and obviously they should be among the strongest lines of this spectrum.  The establishing of this term apart from being basic could  verify the theory of Andrew, Meissner and Trees (31, k3-e). was made d i f f i c u l t due t o V  v  But prediction  i n Te IV 5s 5^ configuration being not est-  ablished. It is worthwhile to mention that almost a l l  terms have been  established after 191*5 and thus i t is not surprising why Rao and Murty failed to establish i t .  2l+9 Table X I I ns.np S* term i n t h e P e r i o d i c T a b l e J  Spectra  R e l a t i v e Term  Value K  E s t a b l i s h e d by  C I N II 0 III  33735.2 1+6785.1 60312.1  Shenstone, A.G. (37d) E d l e n , B. E d l e n , B.  Si I P II SIII  33326.2 1+5696.8  Shenstone, A.G. (37e) 1957 M a r t i n , W.C., (32) 1956  Ge I As I I Se I I I  1+1926.7 51+812 68502  M e i s s n e r & Andrew (31) 1957 Crooker & B e d f o r d (8a) 1951+ C r o o k e r & George (8b) 1962  Sn I Sb I I Te I I I  39625.5 5172b 61+585-£  Shenstone, A.G. (37e) C r o o k e r & Chan 1961+ Crooker & J o s h i 1963  Pb I Bi I I Po I I I  7611+7  Crawford  -  191+7  -  m  (6)  M e i s s n e r and Andrew (31) have shown t h a t t h e d i f f e r e n c e between a b s o l u t e term v a l u e s o f ns np* S[ and ns.np P ( t h e r e l a t i v e term v a l u e o f 3  0  S°) o f a g i v e n i o n o r atom i s v e r y c l o s e l y t h e same as t h a t between a b s o l u t e term v a l u e s o f c o r r e s p o n d i n g p a r e n t l e v e l s ns np P and ns np P o f t h e next h i g h e r i o n s .  Even though t h e y a r r i v e d a t t h i s r e l a t i o n e m p i r i c a l l y ,  T r e e s (1+8-3) showed t h a t t h i s c o n t e n t i o n was a d i r e c t r e s u l t o f B a c h e r Gondsmit Atomic Energy r e l a t i o n s (1+). From F i g . 6  250.  SS iTfc  z  A  ss .i-f> 2  M l  b  5 S . S |p.  TeSL  Fig. 6 Thus we have b - a = B-A U,  - L) - L  z =  ( L - L ) - (L - L ) 5  H  or L, = 2(L - L j - ( L S  - L»)  g  Thus L, determination does not involve absolute term values. H  But as relative position of  P,  was not known, so we f i r s t moved to Ji  lower configuration of Te I? to establish Estimating *P^ L,  at  P  76,000 k  •* 2 (76j000) - 85,997 = 66,000 k  (Predicted)  A search was made i n region 60,000 - 75,000 cm-*- for i t s combination -  with ground state levels ^  and P with difference 3alO.U5 crn""^". Two 3  z  251. sets of such combinations were found quite close to each other. these the right one was picked up on the basis of intensities  Out of  consistent  with Ge I, As II and Se III.  ^ 61+585.20 cm"  \  1  = 2.01+7  n#  5s5p D°,, 3 Zl  Rao and Murty had fixed these levels but their reality was i n serious need of confirmation since they showed anomalous irregularity i n spacing.  The situation i n Sn I like isoelectronic sequence is -  V  Vi  56658.0  Sb II  9  X  -i>:  Sn I  3  66291.7  IB  S651+1+.8 66502.6  57181.6 67888.2  The pure L-S coupling theory gives zero separation between the levels  e>^ "tKe  term; . the  Under this condition we do not expect large separations for  terms.  But according to Rao and Murty s analysis 1  \  -  *D J.  3  3  D  = 691*0.7 c m  D  = 10820.6 c m '  -1  1  I  Even though Rao's lines were not suspected according to our excitation data, the anomalous separations put his levels i n doubt.  Also they were  "tWe  quite sketchy in square array diagram. A  On the basis of new data avail-  able i n Sn I and Sb II, the separations were predicted around 350 cm"  1  252. and 2,100 cm .  One of Rao's level  D was accepted with value modified  according to our X-measured while ^  V  \ - V) A(  5s. 5p ^  ?  3  = 82887.00  cm  = 83201.90  cm"*"'"  = 85203.00  crrf*^"  31U.90  cm"^  = 2001.10  cm"''"  =  3  and D° were rejected and fixed as  andV  3  It was quite difficult from the data available in the isoelectronic sequence to predict the relative positions of study of the periodic table data i n ns-np elusion drived was that  and P*.  configuration, the only con-  P should be higher than (  made easier by the knowledge of  S* ,  From the  ?°?  n d  S . (  But the task was  P* terms of the configuration.  In terms of Slater's parameter G,  'p'-V  r~  'D'- D° 3  - — 2 —  V  =  - 's°  — r ~  =  «  G  G, = 801+3.1 k P  0  <. 11171+7 k  3  s f ^ 88715 k  It may be pointed out that these estimates are not accurate since the relations assume that the coupling is pure L-S. Again using Goudsmit's Atomic Energy relations  SP rs-.V) , ^ . f ^ p - V ] sp* ( y ~V) sp* • | \ > - *?] 3  and  - s . 2 \ y - v] - 5 (V - V] P  P  253.  We get 'P° = 125197.3 k  3  123658.2 k  sf =  3 •  But this also failed to give any consistent value.  The position of £j  was expected near the average value of the two calculated.  After a  thorough search in the region from 85000 - 125000/Cthe following levels were finally accepted -  5s 5p  V  5s 5p'  V  5  This  101U7U.1 k  = 12U053.0 k  P° perturbed P* of 5p- 6s and pushed i t below pJ of the same l  configuration. 3  =  3  Due to this perturbation these combinations of *P^ and  0  S  S  were not as strong as we would have expected them to be.  0  in $s -5p  and 5s-5p-6p  The ground state configuration was well established by Rao and Krishnamurthy except for 's . o  To establish a singlet is always quite  tricky since they combine only with levels with J=l. Pure L-S coupling theory gives for s.p  g I *p  .  1.5 -  t  1  configuration (say)  But as was obvious from s^-p "*P separations, the coupling was not near 1  to L-S, the deviation was calculated i n the isoelectronic sequence  Thus interpolating linearly  c Te III  S  =  30726  * 1.19  (Predicted)  25U.  Thus we expect 5s-5p S near 30900 k. l  o  A search was made i n the proper region for combinations with 5s -5p P,° 3  and  5  D ° . They were confirmed by their combinations with %s- 5p- 6s ^P," and  V S  =  o  S  o  31,li29.0 k.  was also the only level not known i n 5s"-5p- 6p configuration and i t  was located not far from the main configuration levels.  's,  -= 1L6508.5 k  5s- 5p- ns 5s 5p-5s configuration was originally established by Rao and conz  firmed from our investigation.  The point of interest was the position of  5s-5p.6s P° which was identified below Pj of the same configuration. - From Houston's theory of intermediate coupling (page 38). Lande's interval factor from  and p^=265l k 3  e g lies 2651 below P^ 3  From ( fc.-n ) ( fc +) ) 3  and  t » y B  3  A  =  - l ( l + l ) « -2  ,1.90*4  t,, 1.212  % = 3213 k  Thus Houston's theory predicts V  3213 - 2651 = 562 k above  indicates that coupling is very close to j - j type.  But none of the line  in the vicinity substituted for the combination 5s*".5p gave necessary combinations for confirmation. be its strongest combination.  and  - 5s"". 5p.6s 'p ,  This combination ought to  After great search i t was resolved that  255.  this  P of 5s. 5p  P is strongly perturbed by  configuration,and levels  of 5p>5d configuration with J a 1, which lies above i t , and both get mutually repelled. urbation pushes i t .  Since  P  ought to be pretty close to  P , the pert-  Thus we accept the identification of Rao.  To our  knowledge, this is a unique example of perturbation i n such a configuration.  The level  i•  P however has been confirmed on the basis of Zeeman  i  effect data.  i3o Rao had established 5p-7s ' P out of which we found only two were real with J =1 value but were given with the wrong designation. £  could not be confirmed, this put everything i n doubt.  should be 9222 k (5p l£_ - ^ X  i n Te IT).  P^ separation  It was soon observed  that Rao had estimated the configuration much higher. was f i n a l l y found to be much lower.  P^ ,  Since  5p.7s configuration  Since Rao s limit was based on np. ns 1  3  ^  series, a new series limit was found and next series numbers searched  for and established. The intensities did not go very regularly in the series members indicating the names given to the different levels are just traditional and less meaningful.  The other fact clear from the series was the way in  which the coupling was approaching more and more to  coupling approx-  imations and this is shown i n F i g . 7. •5s -5p-nd Configuration x  5s*- 5p- 5d configuration was established by Rao and Murty, except the ^  level.  Designations of Rao's levels were changed by Mrs. Sitterby  To follow page 2S$ 10*0  'Pi  9.0  8.0  r  7^0  0  6.0 o o l\  9222.6k  ^  Te IV 5pl|-to  5.0  906iw6k 9201;8k  iu.o 7951.8k 1  3.0  2.0 L  1.0  0.0  3  *o-  n^cT  n=7  nQ.8  Showing the r s l a t i v e positions of four levels' l,3p i n 5p.ns configuration of Te I I I , i l l u s t r a t i n g - t h e trend towards j-j coupling a s we go higner up i n s e r i e s .  Fig/- 7  256.  ( 3#3 )  t  o  suit Zeeman effect data.  We found that under the new designat-  ion there is a better run of intensities. partially inverted while  In t h i s  A  F*was erect,  P was found to be inverted.  D'was  The way i n which these  levels have been designated by L-S names has no real significance.  The  In the established 5 ^ 5 p . 6 d  only valid number may be considered as J .  configuration, the levels suggested by Rao were checked with our more accurate and extensive observations.  Only five of his twelve levels were  found to be real out of which two did not belong to this configuration. A search was made i n the whole of the region with different sets of combinations accepted. assigned was picked up. a, b, c  Out of the sets chosen, the present set with J-values At f i r s t i t was decided to name them by letter  etc. to avoid confusion with L-S nomenclature, but later i t  was found desirable to put tentative L-S assignment on the basis of the strength of various combinations and keeping i n view their relative assignments i n 5p-5d.  In this manner F was e r e c t ,  partially inverted.  3  P was inverted while "^D was  3  In 5p. 5d singlets were separated from triplets; and  were relatively high, but i n ' 6 d F^ was found quite deep.  To distinguish  F^ and 'if , which were quite close to each other, the only c r i t e r i a used was the intensities. Transition 5p-6p \  - 5p-6d V - 5p.6d  \  Intensity  Fl  (100 -  .  (15  - 5p-6d %  -  £ 3  - 5p-6d 'F/  -  (80  257.  5s-5p-np, 5s.5p.Uf and 5p Configurations. 5s-5p- 6p configuration was established by Rao except for level i S .  We have confirmed his levels.  The designations of his levels were  changed by Mrs. Sitterly as follows  according to the available Zeeman  0  effect data. Configuration  Rao and Murty  5s.5P- 6p  3  Mrs. Sitterly ('"Q  D,  Theoretically one would expect  3  P,  P^ to be the deepest i n this  configuration.  However, i n the isoelectric sequence of Sn I this has not  been the case.  We have accepted Mrs. Sitterly's designations even though  these names are of conventional interest.  The second fact obvious from  this was that a l l 10 levels were somewhat grouped in two parts - about 7000 k apart.  This indicates that deeper four levels arise from 5sT 5p ( P?,)  core while upper six from 5s* 5p (  ) core.  This however would make the  names assigned to these levels quite irrelevant. In the next series member 5s . 5p. 7p> things become s t i l l more z  complicated.  The positions of 5s .5p. kf and $p -configuration were close to  the predicted position of 5p-7p.  i  In predicting the position for 5$ » we  know about 85000 k energy is needed i n going from 5s. 5p to 5s•5p . 3  In order  to remove another electron from 5s orbit to 5p orbit we may need about 85,000 k more (neglecting the effect of changed core i n the second case).  258  Thus 5p* predicted  =  k.  170,000  5p-iif configuration was incompletely known i n Sn I and Sb II.  By extra-  polating n# for the lowest level (J=2) i n them  Let n* for T III (J=2 level)  » 2.980  e  Relative position  - 162,690 k  This J«2 w i l l be however from 5p (^J)  c  o  r  e  while levels with 5p C*^)  core w i l l be high enough to mix with 5p levels. H  n# for 5 p - 6 p Jj> i s m 3 . 0 i j . 7 and extra polating n* for 5 p . 7 p > we get 3  5p.7p  3  J\ = 1 6 5 , 0 0 0 k.  Thus a l l these levels w i l l be mixed up and i t w i l l be quite hard to assign them to their proper configurations.  However the deeper group from 5^"- 5p  ( P ) kf should be the deepest levels from these three configurations. (/  Again i t is interesting to note that whereas one expects *F to be deepest,, 3  T  2  was found to be deepest and F was erect.  The naming of  and  is  based on their combinations. In the case of the remaining levels, there was no criteria for such assignments and levels have been designated by Arabic numerals.  However,  at tamers where we have put L-S nane to a level i t is on the basis of some combinations.  Due to this complexity of situation and configuration  perturbation, no j - I coupling scheme could be worked out for them.  259.  I o n i z a t i o n P o t e n t i a l f o r Te I I I The i o n i z a t i o n p o t e n t i a l i n t h e l i t e r a t u r e was due t o Rao and tAufct^ , was q u i t e h i g h due t o h i s wrong i d e n t i f i c a t i o n o f np.ns s e r i e s .  On our  new measurements, we have extended t h i s s e r i e s t o n » 8 and t h u s , were able t o get a better value o f the l i m i t . S t a r t i n g w i t h Rydberg Series 5p-6s P, and 5p-7s applied  l i m i t o f 225,500 k c a l c u l a t e d  P^ members,the E d l e n - R i s b e r g (10b)  o n l y once t o t h e members 5p.6s AT  -  from  a d j u s t m e n t was  P, , 5p -7s P , 5p-8s  P  (  .  - J46O k  I o n i z a t i o n P o t e n t i a l o f Te I I I (Te IV ^P^)« 225,01+0 k = 27.90 v o l t s . A t o t a l o f 550 l i n e s a r e now c l a s s i f i e d i n t h i s spectrum.  260 Table XIV Energy Levels of Te III.  Config.  Desig.  J  Level (k)  Interval  n*  EVEN LEVELS 5sV  £s\5p 5s5p.6p x  5i.$P.6p 5s.5p.6p 5|-5p6p 5|5p6p 5s5p6p 5s5pl+f  5s.5p.7p) 5s-5pUf)  5P*  0 1 2 5PX 'D 2 0 5P 's 5P6P D 1 2 3 5p6p ^ 0 1 2 5p.6 'p 1 5P6P ^S 1 5P.6P D 2 0 5P6P s 2 5pl+f F 3 , ii 3 3 z. 5P" P 1 5P-7P) 1 5pl+f5 2 2' 5P" 5 3 2 1+ 2 5 2 6 1 7 2 2 8 9 2 1 10 11 3 12 2 1 13 Hi 2 ti  J  3  Z  3  P  3  P  0.0 li756.5 8166.9 17359.1 31ii29.0 128622.8 132331+.1 13995U.0 132267.3 132122.3 139668.3 13829U.1 11+1807.1 11+2985.3 H+6508.5 163715.7 165172.0 16681+1.7 165563.2 16621+1+.2 1671+09.0 168762.0 171193.0 171302.0 171339.0 171+1+55.0 171+817.0 175211.0 176O01+.O 1761+11.0 178057.0 18061+1.0 1819H+.0 181+932.0  1+756; 5 31+10U  3711.3 7619.9 -11+5.0 751+6.0  11+56.3 1669.7  2.009 2.117 2.131+ 2.181 2.259 3.200 3.261+ 3.1+07 3.263 3.260 3.1+01 3.391+ 3.1+1+5 3.1+69 3.51+6 1+.013 1+.062 1+.120 li.075 1+.098 li.HiO 1+.189 1+.283 1+.287 1+.289 1+.1+19 U.l+35 U.l+52 1+.1+88 li.507 1+.586  h,m  1+.786 1+.962  261.  Config.  ODD  Desig.  J  Level  (k)  Interval  n*  L E V E L S  5p 5p  > *D  3  5S5P  3  3  2  1 2  0 1 ? 5s-5p* 5S-5P  5P 5P  5t-5p5d  5p5d F  3  3  5s5p.6s  3  'D  2  S  1  3  3  2  5p6s ¥  5s5p£d  5p5d P  5S5P  5P 5pSd  2  3  5s5p5d  5#p5d 5s5p.7s 5&5p6d 5s.5p6d  3  'P  V  5p5d P 5p5d ' F 5p.7s ^ P  5p.6d  3  F  5p.6d ^  5&5p6d  5p6d  P  V  3  P  1151+20.3 11571+1+.3  12251U.5 120901.0  119581+.0 11779U.5 1 1 6 7 1 7 . 2  12h053.0  2  121+787.0  1  3 Q  1 2 2  3 a i  1 0  •  530.5  -1550.7  1596.7 221+1+.6  25U.9 7696.9  111+215.1  2  3 5P.6S  107723.1+  X  2  5S5P.6S  101+711+.0  1071+68.5  2  3H+.9  2001.1  101U7U.1  0 1  3 0 1  3  9 5 0 2 9 . ! i  2.01+7***  100167.8 106311.7 108556.3  1 1  3  96580.1  3 Ii  5p6s ' P 5p5d D  5s5p6s 5&5p5d  61+585.2 82887.0 83201.9 85203.0 96059.6  6770.2 -1613.5  -1789.5 -1076.3  12721+0*8  1701+17.9  2.912  2.898 2.901  2.883** 2.868**  3.006 3.101+  3.080 3.060 3.-035 3.020  3.139 3.177  127187.3  160951.0 1611973 170015*6 162713.0 1628 2li. 7 163075.5 163330.3 171966.1 171391*0 170587.6 17781+5.0 171+500.8  2.865 2.881+  3.178  21+6.3  8818.3 81.7  250.8  8635.8 -575.1  3.926 3.933 3.921**  3.982  3.981+ 3.993  1+.001  1+.311+ 1+.291 3.938**  -331+1+.2 -1+082.9  2.575 2.1+21  1+.252  262.  Desig.  Config.  a  1 or 2 1 or 2  5p6d 'F Sp6d "D 5p6d 'P  3  b  5s5p6d 5s5p6d 5s5p6d  c  5p.8s 'p  2 1  k.239 k.278  k.706 k.737 k.858  18103k.2 183196.8 I8kkl0.k I8k566.a  l8k6^7.1 193768.1 I9k368.0  1  n*  3.9k2  180)432.8  1 3 1 0  Interval  l6lk66.3 170079.7 171066.1  2  d 5p.8s P 3  5s5p8s  Level (k)  J  k.930 100.8 9101.0  k.9k0 k.9k6 k.939**  k.979**  1  **  n* for 5pns P , 'P calculated w.r.t. Te IV 5p V as l i m i t , a.  HHS-  n# calculated w.r.t. Te IV 5s5p P as l i m i t . No precise limit"can be assigned to a l l the other levels of 5s5p? configuration (Bacher-Gbudsmit P.R. 1+6,956, 193k) so their have not been entered.  3  Limit (Te IV 5p p 2  ) = 225,0k0 k.  263,  Te IV The earlier work on this spectra was due to Rao (3l+-a) who established the basic structures and classified 27 lines.  We confirmed the  ionic parentage of a l l his lines but his level 7s £\yWas found to be wrong. Z  He also failed to identify the resonance lines and thus establish the deepest even term  Since Rao's observations were limited to 71+9 A , and 0  he had no good data in the region 1300 A to 2200 A , some of his levels 0  needed confirmation.  0  The 781+ A line apparently observed by him as 0  single, appeared on our plates as a well-resolved double l i n e .  The  stronger component had a wavelength valve f i t t i n g nicely i n the square array diagram.  The other classified line 81+0 A (separated by much smaller 0  wave number difference than 781+ A ) reported by him as a close double was 0  confirmee by us as double. resolved 81+0 A  0  It i s quite interesting to note that he  ( ^13.2 k) but failed to resolve 781+ A A  0  (AV-3U.6 k).  Our observations confirmed the levels established by him.  5S.5P V This is the deepest even term and according to definition i t s combinations with the ground state should yield the resonance lines. term has been established i n Sn II and Sb III.  Its position was est-  imated from Andrew^Meissner*s relation since ££ i n Te III had been ff  established. Using the relation of page ( ^  s o  )  f  we get  = \ [61+585.2 + 85997.0]  This  261+,  = 75291.1  k  (Predicted)  = 78281.1  k  (Observed)  It was found to be quite displaced from its calculated position.  But the  identification did not trouble us, since the lines should be among the strongest in the spectra, the required lines could be picked up easily. It is gratifying to note a l l these lines showed strong, complete reversals as expected.  The line 151*9 A used for 5s* 5p P i - 5& 5p V appeared with 0  intensity 25 i n spark and boomed to 750 R i n the electrodeless discharge. It was found to be i n coincidence with Te V 5s5p 'if - Sv\»  Table XV  shows the application of the irregular doublet law to these resonance lines. Table XV  5P P;- 5S5PV Z  p  l, - . t p  \ - V  %. ^ - \: H  14  Sn II  Sb III  Te IIII  1+61+61*. 2  51*365  69665.8  1*831*8.0  57960  73771.1  1*2212.8  1*7789  6021*3.1  l*ltll6.6  51381*  61+51*7.5  1*61*78.6  57780  69058.1  1.2l*  1.78  1.05  From pure L-S coupling considerations (T.A.S. 199), the interaction constant for the 5p electron is connected to the interval factor of  265.  5S5P  of this configuration as  P and*P  n "p) Table X V I  rep) =% P 7  shows the interaction constants calculated on this basis i n  the isoelectronic sequence. Table XVI  Sb III  Sn II  Y&C P)  Te IV  1263  9005  9U5  3200  7U9U  6612  The deviations from pure theoretical relations may be attributed to deviations from pure L=*S coupling, the perturbations among levels or even to the improper naming of the levels, since the 5p S  l i e s near the  P.  5s-ns Series. Rao had reported the 7s ^ level on the basis of very strong combinIx.  ation with 6 p V .  The lines used by him were doubtlessly Te IV lines and of  right intensity but their separation was far greater than the tolerance a l l owed.  The 6p ( P,° - P,i ) difference was calculated from 21 f t . grating Z  2  2  spectrograms. Mean 6p P* Z  /i  - 6p\  = 2619.83 k  The \ of the two lines picked up by Rao were also calculated from 21 f t . grating spectrograms.  266  op^Py - 6p V from Rao's lines « 2615.86 k. We are convinced we cannot be out by  O.k k on the basis of the measure-  ments on 21 f t . grating spectrograph in this region and consequently the level was rejected. ion.  Thus a search was i n the region for other combinat-  The only strong pair of IV lines picked up by us established 7s ^S. tx 6f V  - 6p V  from new 7s*S =2619.91 k  But the intensity f e l l by a factor of 10.  The next series member 8s *S Z.  was s t i l l weaker by a factor of 10.  yi  i  While we did not anticipate 5s-9s S,  combinations could be picked up, however, they were there, though extremely weak.  This extension helped to give a better value of the l i m i t .  5sJtfV The position of i+f F was predicted from the relative position of X  these levels i n the isoelectronic sequence and strong combinations were looked for with 5dV  ,j> .  • ^ i ? 'a.  A=771 k difference.  A thorough search was made i n the region for •  -  The only strong combinations were picked up estab-  lished i t . It was found that 1+f F was inverted with a separation of gave x-jeak combinations with 6d D.  Only uf F^ - 6d  66 k and  could be located  on our plates. 5s.ng and 5s-nh Series and PolarjLzation of Core. Once Uf F was established a search was made for ng*G terms. 2.  Since  the ng G series is nearly hydrogenic, we did not have to scan a long range  267.  for the proper combinations,  1+f - 5g combinations and hf - 6g combinations  were i n the region where we had a l o t of intensity on the plates. combinations were confirmed from their proper separation.  These  When extending  the ng series to n » 7 , i t was found that l|f F - 7g G combinations coincided I  with two classified lines of Te IV and Te VI.  8g*G combinations were  extremely weak and no further extension was contemplated. A t r i a l was made to locate n^ series and we were successful i n extending i t to n » 8 . The f a l l off i n intensity in the series members was very rapid. The establishment of the  G  and  polarizationtheory to this spectrum.  H  series J^YVVVVUA • =UVJ-  A  the  In the case of ng and nh series  one can safely assume that the increase i n binding energy over the hydrogenic value is solely due to polarization of the atomic core. From Chapter I, page Z3 , we have A T  pol=  T  "  T  H  A  T  T  =  A ( Z  » » Z  )  P ( n  * .- " l )  t  B  t ' ") 2  2  Q ( n  »^ )  If we neglect the quadrupole polarizability part in this equation (which is very small compared to the dipole polarizability), A can be easily calculated.  A was calculated for a l l the members of ng series and  nh series (assuming ionization limit of 308,100 k for Te IV). Rydberg constant for Te = 109737.25 k Average Polarization Parameter A=^ =.  715.0  From this,dipole polarizability of the core was calculated .  A  y  <X^ ,s Dipole polarizability = Ul.lU x 10~  28  cm  3  = g  •  a  3  ^jp  268.  Once t h i s has been calculated, the higher members of the series could be accurately f i x e d .  From this,both series could not be extended further.  From the above equation T = T + AT H  T l  e  = T  -*- A(Z Z ) P(n,t )  T  0  - t  e  i s i o n i z a t i o n l i m i t f o r Te IV, and t i s the r e l a t i v e term value "  T  ° =  f  ^  T H  r  A  T  r  A  (z, z )  p(n,n  0  Thus using the value 715 f o r dipole p o l a r i z a t i o n parameter , i o n i z a t i o n l i m i t was calculated f o r each member of ng and nh s e r i e s .  Table  gives these values.  Table XVII  Level  t (K)  ATr  ?H  (  K)  *  T P  (  (IO  ol.  T Ionization P o l . D  IO  5g*G  231130.9  70231.6  0.9  398.5  3Q1761.9  6g G  252772.1+ 1+8771.9  0.7  256.3  301801.3  7g G  265798.0 35832.1+  0.5  171.1  301802.0  Qg^  271+21+9.0 271+31+. 2  0.1+  118.8  301802.1+  6h H°  252900.0  1+8771.9  0.1+  81.5  301753.8  7h H°  26586U.1 35832.1+  0.3  56.6  301753.1+  8hV  271+270.1  0.3  1+0.2  30171+1+.8  1  J  Z  Z  271+31+.2  This gives the Ionization p o t e n t i a l c f  301751.3  k f o r nh^H s e r i e s .  301802.0 ' \  k f o r ng G series and z  To follow  page  ?.6S  269.  = 301776 + 25 k  Ionization potential  = 37.ii ev  5s-5p ( P)-6s, 5s-5p C P)-5d and gs.gp.C ?) 6p Configurations. 3  3  3  not  The configurations involving "excited" core have been studied A  extensively i n these spectra.  One of the reasons for this may be that  most of their transitions to opposite parity levels involve transitions of two electrons or three electrons.  Only few levels of such configurat3  ions have been identified in In I and Sn II.  Since 5s-5p P° was about  30,000 k higher than 5s-5p'P°in Te V, so levels on $3. 5p ('p) core are expected approximately this much higher than those from the 5s. 5p ( P) J  core. At the time of this analysis, none of these configurations were identified in Sb III (these have now been interpolated by Crooker and Chan), any kind of extrapolation was not precise. ular doublet law to the 5s.5p P«, - 5s-5p- 6s H  By applying the irreg-  transition, and extra-  polating from In I, Sn II to Te IV, the relative position was estimated around 210,000 k while the relative position of levels when extrapolated gave the value 219,000 k.  The configuration could also be estimated  (very vaguely) by considering 5s$p6s as second series member of 5s-5p (5s.5p.5s) with limit at 5s.5p P of Te V. 3  This gave 5s*.5p, n* = 2.156  and taking 5s.5p.6s's n* » 3.20 we get relative position at 212,500k. None of these estimates are precise enough to be relied upon, but they give a region where to look for the combinations.  Since 5s"«5d configuration was  270  about 5500 k lower than Si. 6s, one would expected 5s.5p.5d to be lower than 5s.5p.6s.  To estimate 5s.5p«6p, we can start with 5s*. 5p* as the f i r s t  member limiting on 5s 5p P* (Te V). 3  Thus from n*  = 2.385 and n*  = 3.1*0  we obtain the relative term value of this configuration as 233,000 k. Attempt was made f i r s t of a l l to establish 5s5p6sV'to have- a starting point.  They have strong combinations with 5 s - 5 p V .  then was found to give strong combinations with 5s.5p.6s.  5s-5p-6p  Both these  configurations were found to be higher than estimated. • Though the interval factor for 5s-5p-6s P°was pretty close to the predicted values from . Humphry* ^-Goudsmit relation (page 18) the other terms did not agree with predictions.  Table XVIII shows these deviations.  Table XVIII it  e  Lande's interval factor A from Goudsmit-Humphijysrelation 5s 5P ( P)'-5d cal,. obs. 3  Term  "I * A  +  21*21  A -r 5 * * T8 1*87  ?  2  A  +  876  ( P)--6s3  P  obs.  Iv  \ *z  -1057 1  5s-5 cal.  5S-5P ( P)-6p cal. obs. 3  ]  2327  A  t  "**  I *. a  1502  1233  1502  535  a 1  2 1161* -  where Ags.5p ( ?)]=3632.0 from 5s-5p P°of Te V 3  3  271.  5d * 308.7 from 5s- 5d "D o f Te IV 2  a  6 p =171+6.5 f r o m 5 s - 6 p V o f Te IV  I n 5s 5p ( P } 5d i t was q u i t e d i f f i c u l t t o a s s i g n L-S nomenclature 3  to a l l the l e v e l s excepting have l e f t them w i t h o u t  5s.7d and 5p*  "V.  They can be a r r a n g e d i n groups b u t we  names.  Configurations.  Once a b e t t e r l i m i t has been e s t a b l i s h e d , t h e p o s i t i o n o f 5s-7d D c o u l d be p r e c i s e l y e s t i m a t e d . 5d D  6dD  X  n#  3.178 5s-7d D  s  1+.220 237,830 k  7dD 5.21+0 (say) (Predicted)  = 236,51+6.3 k  (Established)  But 7d d i d n o t combine s t r o n g l y w i t h any t h i n g and t h u s f u r t h e r e x t e n s i o n of t h e s e r i e s was n o t e x p e c t e d .  By a p p l i c a t i o n o f t h e R e g u l a r d o u b l e t l a w  t o I n I l i k e i s o e l e c t r o n i c sequence (though i t was n o t known i n Sb I I I ) , t h e d o u b l e t s e p a r a t i o n o f 7d D c o u l d be e s t i m a t e d .  Table XIX  Ay  In I  Sn I I  25.31+  51+.6  _  9.72  11.78  . —  51  %  1+9-  50  G"  39.28  38.22 -1.06  Sb I I I  -  272.  is screening constant It has been observed in case of 5s" 6p"P (page 15) thatA * decreases 0  v  as we go high up i n the sequence, i f we assume the same trend as say 0.93 we get  - 1.00 and A q r , T « -  A^J*^^  SK-  <3^  ^ 36.29  •"•  and  - 15.71 (Predicted)  & » - 165.2 k  (Observed)  = 231.3 k  Thus observed value is quite far from the predicted value. In case of 5 p - configurations 3  which ^S* is the deepest.  >  " V and '"P" levels arise out of  It was not known in In I isoelectronic sequence,  though i t had been identified in As III and Se IV in this laboratory ( 8 a , 8b).  Equations (25) and (26) of Bacher-Goudsmit's paper ( W, (p  = 3W (p P)  3  W,  (p> D°) Z  w, (p *P) 3  - 3W  a 3  . |W  (p P). x3  = § W(p*  +  •*  ) give  (pV)  |w (frVj) _ |w  H  (p^D)  -r  3W  fe  ( V) p  ) - 3W (p t) X  These energies must be measured with respect to the naked nucleus or to the core.  From this we estimate V from above relation as shown in F i g . 10 l,0HH,«\qHk.  571,9 W 2p° sfa  Li-m-.t  TeYl  V  7  F i g . 10  r  k  273  Thus we start with Ud relation i n terms of a, b,  core (Limit of Te VI as zero) and  E , E ^ c , y and z t  x  Ho  a _ z + 1,0UU>99U a Absolute value of  10  S w . r . t . Ud core  = 3 [ s + j] -31-) t  = 3 [E.-t-y  -x]  = 1,17U,077 ••• z = 129,083 k Thus relative position of p  V  =  301,776 - 129,083 172,693 k (predicted)  =  180,U56 k (observed)  From another relation of Bacher-Goudsmit method 3 P  CV- *D) = ^ ( P - -'D)  In tlbis, due to differences involved i n same ion, relative energy values can be used.  .-.  p  ( V - D) = 687U.2 k 2  This value could not be taken as precise since 'D was so much perturbed in Te V that i t was lying very much below ? 3  an arbitrary choice.  x  .  The D named by us is X  It may be a part of the f?s. 5p ( $)-5>d configuration. 3  Thus these two configuration cannot be separated precisely.  Mosjey Diagrams MosJ-ey Diagrams have been mentioned on page 10. they have been drawn for 5>s-5p^\.i  In figure 9,  x j. » 7sZS, 7d ^D and Uf F° terms.  230 lines are now classified in this spectrum.  Z  To follow page  0.00 I  In I  1  !  _ J  1  Sn II — ^  273  Sb III Zo  W&M DIAGRAMS FOR Te IV g) not known Fig. 9 ?  I -  Te IV  271*. Table X X Energy Level of Te IV  Config..  J  De3ig.  Level (k)  Interval  n*  EVEN LEVELS 5&5p\  5p*  5s5p"  5p  P  5s5p 5s5 ^  5tf  2  5P"  5#5d  5d  "T>  5s6s 5s6d  6s 6d  Z  5s7i3  7s  5&g Sild  5g 7d  5s8s  8s  Z  Z  S  *G *!) 2  S  5s5p( P).6p  6p'  *P  5s5p( P)6p  6p' S. 6g 0 9s *S 7g G 8g *0 H  i  2  D  ** D  3  1  S  6p'  3  i  P  5s5p( P).6p 3  i  .  s  Z  P  1  D _  ——  it .  1  2  3§,l*J i  —^?  x  Si-9s  2  5&g  i "2"  •si i.i ^2>'+2  69565.9 73770.1 78281.1 92769.1 9U810. li 109539.1* 119010.5 119955.1 1271*1*6.5 128218.2 1331*57*1 20291*2.2 203352*1 20611+2.6 231130*9 2361+07.5 236638.8  1*301*. 2 1*511.0 201*1.3 91*1*.6 771.7  1*09.9  231.3  21*0138.2 21*2911.0 21*1*971*. 5 2l+553l*.2 21+6923.1 21+7590.8 21+971+2.7 252521.0 253267*0 252772.1+ 258935*7 265798*0 271*21*9.0  2.363** 2.379 2.397  3.171* 3.181 3.230 1*.215 l*.22l+ U.285 1+.9855 5.183 5.192 5.31*6  2063.5 559.7 388.9 2151.9 2778.3  3.529*** 3.555 3.562 3.580 3.589 3.618 3.656 3*663 5.9850 6.1+02 6.9860 7.9865  275.  Config.  Desig.  Interval  Level (k)  n*  LEVELS  ol>T>  5P  5S5P  o.o  5s6p  6p  5P  a?  3  5saf 5s5 ( P)-5d 3  P  5d 2|  5s5 ( P)5d 3  P  5P  l|?  5S5P( P).6S  6s  5s5 ( P>5d  5d'  3  3  P  6h  5s 7h 5l8h 5s^9h  7h 8h 9h  **  P  I 1  li £ pi  5s6h 2  I  If  3  n* f o r 5S5P have been cannot be 1+6, 956,  V  X  Z  2619.8  180U56*1 18699)4.6 186928.9 195982 198726 202968 201586 203U80•  1* 2i  hf  9222.6  9222.6 1613UO.I4 163960*2  l l  1  •H  U|,5i  H H H??  M*5*  hh$\  -65.7  2.1+12 2.1+50 3.536 3.571 3.80U 3.911 3.910 3.057*** 3.079 3.081 3.119 3.161  206259.6 205697.8 207902.8 211537.0 217213.8  -561.8 363U.2 5676.8  )4.288 4>275 3.158*** 3.191 3.21+5  208195 210165 213970 211+21+6 221721 252900.0  3.179 3.211+ 3.217 3.291+  265861+.1 271+270.1 280063.0??  6.992 7.990 8.992  5.991+  "P calculated w.r.t. 5s5p P of Te V. No n* values entered f o r rest of the levels of 5s- 5p since they assigned to any precise l i m i t (Bacher-Goudsmit P.R. 1931+). 3  n* i n 5s5p ( P)-6s,'5s5p ( P)-5d"and 5s5p ( P)-<>P configuration terms have been calculated w.r.t. l i m i t (5s5p*P l i m i t i n g term i n Te V). 3  3  Limit (Te V 'S) « 301776 k 9  3  276  Te V The fourth spark spectra of Tellurium has 5s*"S as the ground state. 0  Gibbs and Vieweg (12) classified twenty three lines i n the region 603 A  0  and l$h9 A . 2 . Bloch and L . Bloch (2-c) later identified five lines in 0  the region 358 A and U02 A establishing three additional levels. 0  0  Two of the twenty three lines of Gibbs and Vieweg 1281 A and 0  151+9 A° appeared on our spk-in-He plates. basic structure of this spectrum.  Both these lines establish the  From further scrutiny of plates i t was  found that l5u9A°line of T V coincides with l5u9#resonance line of Te IV e  and 1281 is also a coincidence.  The rest of the lines were confirmed  belonging to this spectrum from our excitation data.  Two of their levels  5s-5d !D and D were based on single lines and obviously needed confirmation. The three levels  5s-6pP'"., 'P", and 5s-7s S, established by the 3  3  L  Blochs on five lines needed confirmation.  A l l the combinations of these  levels with other levels were i n region from 1300 A - 2000 A , the region 0  0  not studied for higher excitation earlier. Te V lines were recognized by comparing spark-in-helium with Electrodeless Discharge plates and also comparing low and high excitation plates of the electrodeless discharge.  5s-5d D and 'D and 5s-6d 3  3  z  VJ3  D  The choice of 763.I4O6 A lines for 5s-5p ff 0  ition appeared to be a right choice.  3  - 5s• 5d ^  trans-  This line was one of the strongest  lines i n the region and had an ionization assignment as Te V.  In fact  there did not seem to be any other line i n the region to replace i t .  It  277. was soon confirmed by its strong combination with 5s 6p V . Thus $s-5a \  = 216,993.7 k.  3  Gibbs and Vieweg chose 910.863 A line as a combination 5s-5p 0  P* -  i  .  5s.5d  But this seemed to be a wrong choice becauses:  (1) The line seemed to have the chacteristics of a Te IV line more than of a T V line. e  (2) This same line was used by Rao as the combination 5&-5p *Pi 5s. 5^ \  i n Te IV.  (3) The '"D level established on the basis of this line failed to give any other combination with either 5s -5p P° and P° or 5s- 6p P° , 3  3  3  (  3  Rl and  P ',° .  (li) It was not i n the region predicted from isoelectrone sequence or Houston's theory of intermediate coupling. Their wrong choice is probably due to the wrong establishment of D in l  Sb IV. 3  In the 5s-5d configuration  3  1} and "D have their ' J ' only occuring  once and are thus independent of coupling, while  3  \  and B get perturbed,  having the same J value. Lande's interval factor from D  and D •=• 276 k.  3  3  I  of D =552 k below \  e.g.  3  .  .  From Houston's intermediate coupling relation (e,+ l) where  e  i=  E  /  A  l) = and  (t ^) 3  -l(t+i)  tj, = E/A  E, and Ej are the energy of ^ 3  3  andJD  D . A is Lande's interval factor.  3  (perturbing terms) w.r.t. to e.g. of  278  I n our case c  -303  V 275-  = - 1.098  S u b s t i t u t i n g i n Houston's r e l a t i o n f o r ( e, l ) ( - 1.098 +  -r  L=.2  1) = -6  e,+ l = 61.22 £, = 60.22  ... B, « £,  - 60.22 x 276 = 16,620.7 k  Thus Houston's r e l a t i o n p r e d i c t s while 910 A  0  l i n e e s t a b l i s h e d i t only  'l^ about 16,000 k above 1) 3  U500 k above  3  ]3 .  This separation agreed w i t h the D - D  separation of 11576.9 k i n I n I I  and 12589.1 k i n Sn I I I and [3537 k of Sb  IV?J  Due to the probably i n c o r r e c t i d e n t i f i c a t i o n of *D i n Sb IV, p r e d i c t i o n on the b a s i s of i r r e g u l a r doublet law f o r 5s-5p 'ff - 5s-5d lT_was not p o s s i b l e . 1  V  6  -L  .sJi  ss  5&,S|> rj  F i g . 11  279. In the search, combinations with both 5s-5p for.  \° and 5s-6p  P were looked  As is clear from Fig.ll C =B - b A =B -* a  a+b = A - C * 167,000 k Thus two lines whose wave numbers add to 167,000 k were looked for i n region 35,000 k to 60,000 k .  Out of the four seemingly good sets picked  up, only one was confirmed by its combinations with other terms and supported by their excitation assignments. Thus 5s.5d 'D  From nsns  Predicted  = 233,6lU./4 k  Observed  =233,973  k  series a better limit for the spectrum was establ-  ished, and n* for 5s-5d D terms were calculated. ,3  the term values for were looked f o r .  3  D,  JX3  were calculated.  From n* extrapolations  The combinations with 5s-5p P 3  A l l these combinations were i n the extreme ultraviolet  and consequently their identification did not better us much.  The terms  thus established were confirmed through their combination with 5s-6p 5s.Iif  '  , 3  ' P°and 3  F . Since a l l these combinations f e l l i n intensity rapidly from  the 5s.5d case, the series extension for 5s.nd was not expected.  5p-6s Configuration This configuration i s not known i n the isoelectronic sequence. Since electron excitation i n Te IV was complicated, i t was believed that 5s-6s configuration is liable to be excited.  280.  To estimate its position was quite a difficult thing. was to estimate from 5s,5s-5p and 5s-6s relative position. a value ~ 325,000 k.  One method  This gave i t  In this rough estimation different screening con-  ditions in case of the core may effect quite a b i t .  The second mathod ( a ^  a^^StEte^fetts&Ejd) is t o consider 5p-6s as the second series member o f 5p-5s (5s 5p ) which may limit on5f> P'in Te VI. l  This gives 5p- 5s ^ a  n* =2.368, and taking n* ^3.370 for 5p-6s P° (T =2i|l,565 k), we get 3  5p-6s  ~ 333,500 k.  Even though both estimation were devoid of any  rigorous mathematical bearing, the configuration may l i e around 330,000 k. A search was made from 315,000 k t o 3u5,000 k for these levels.  Since  such series must end up o n 5p, the  a n d P levels should be separated  by the difference o f 5p P  The levels finally accepted, as  Te VI.  0  expected, gave stronger combinations with 5p configuration as compared Z  t o 5s.5d configuration. Te V  5p6s Jf  Te VI  5p-  - \  3  a  = 10757 k  P ! - P4 =11817 k Z  t  In general the combinations were f a i r l y weak signifying that this sort of excitations are not favoured by the source conditions.  -5P 'SC i n 5p* configuration was the only term not identified earlier. Though singlets are always the hardest t o pick up, but this was made s t i l l more d i f f i c u l t by its absence i n Cd I like isoelectronic sequence.  Again,  since 'D in the configuration was found t o be below P,. , no L-S coupling 3  relation can be applied.  Using the atomic energy relation o f Bacher and  281,  Goudsmit.  s ^ p - V ) . ^ p - ' d -»• s p 3  P  33,395  p \ _ V - s ] H-  =  z  p^P - ' s j = 33,39$ Thus ^  ilV-p*] I 37,800  - 18,900 = lk U9$  k  s  lies ll+,l+95 k above"P  (l87,38U k ) .  •*• ' s = (Predicted) = 201,879 k. o  This however is a fair prediction since been much perturbed by  of p" configuration has 1  .  Again a search was made for two lines whose wave numbers add up to 167,000 k combing p"" S  0  to 5s-5p *P° and 5s-6p  P° .  The search was not restricted  to predicted region but the whole region from p ^  upwards to 5s- 5d D. 3  a  We got two sets giving combination a l l along the row. unreal since the combination 5s-5p P, - 5p"" S 3  0  But one of them was  was enormously strong com-  pared to 5s - 5p 'ff - 5p"~ ' s ^ . .-•  S  « 206,-528 k.  D  5s•6p Configuration. Bloch's (2d) established- P* and P^ of this configuration on two strong lines at 358 A and 361+ A , 0  0  These two lines were of proper intensity  and at proper position but each fixed one level and consequently needed serious confirmation.  As soon as our data was ready in the region from  1300 - 2000 A , these two levels were confirmed excellently by their com0  binations with 5p and 5s. 5d configurations terms. x  5s-6p ions.  P  (  ,  P to 5p P  0  The transitions between  and D_ were weak being two electron transit-  282  As is clear from the Table XXI, the coupling deviates more and more.  Table XXI  Separations  Config..  Sn III  In II  Sb IV  Te V Present Invest.*  - P;  5u2..l  107U.0  •p; - p;  11865.5  17206.8  20682.7 23392  25703  13036.U  1968U.8  2U71U.9 29252  33683  70.7  179.3  1269.9  13U9.9  1287.7 1226  1UU3.0  1937.3  2510.0  p;  3  3  5s -Up  Cd I  - P; 3  'if  x - \° 5s '6p  •p;  - P; 3  16U8.U  275.6  2265.0  2915  U08*  350  3292  1  1196* U29U*  From L-S in 5s 5p configuration as we go higher and higher in electronic This deviation increases quite rapidly in 5 s . 6 p configuration,  sequence.  the coupling is quite close to j - j coupling. From the isoelectronic sequence and the progression of the deviations from L-S coupling, the positions of  r  0  and P could easily be predicted  accurately after establishing P° and 'p,°. 3  5s-6p ?2 3  w  a  s  x  The transitions 5s-5d *1]  the starting point in the search.  -  After establishing Pj. , 3  ^P, i t had to be located in a very narrow region of about 6 0 0 k and at the same time to pick up a Te"V line.  283.  5s -6p  3  p; =27U,001 p;  = 2',U,Uo8.7  £  » 277,506  'if  = 278,706  3  3  li07.7 3,297.3  5s.ns S e r i e s . 5s-6s S  was e s t a b l i s h e d b y Gibbs and Vieweg ( - ) and c o n f i r m e d  3  ,2  from our o b s e r v a t i o n and s i m i l a r l y 5s. 7s S 3  'S  c  e s t a b l i s h e d by B l o c h ( a — c ) .  i n b o t h c o n f i g u r a t i o n s were n o t e s t a b l i s h e d e a r l i e r .  Their p o s i t i o n 3  was p r e d i c t e d f r o m i s o e l e c t r o n i c sequence b y e x t e n d i n g on a l i n e a r s c a l e . were l o o k e d f o r .  The i n t e n s e c o m b i n a t i o n s w i t h  1  S  -  5s. 5p  S  0  separation  'if and 5s. 6p  The l i n e s p i c k e d up from e x c i t a t i o n d a t a .  5s. 6s 'S . 2ii6,752 o  5s .7s S, -33U,U58 3  'S  =  Once 5s .6s and 5 s . 7 s ' S ,3  be o b t a i n e d  336,213 were e s t a b l i s h e d a b e t t e r v a l u e o f t h e l i m i t  could  and a s e a r c h m de f o r t h e n e x t s e r i e s member 5s >8s S ^ and ^S J  0  were e s t a b l i s h e d b u t t h e c o m b i n a t i o n s were q u i t e weak i n g e n e r a l and further extension  o f t h e s e r i e s was n o t e x p e c t e d .  we f i n d t h a t though  w i t h Sb IV *S  5s  3S^  On s t u d y i n g E d l e n p l o t s i_ . goes r e g u l a r l y i n t h e sequence S f i n d s a b r e o X 0  showing t h a t Sb I V has t o be smoothed.  ht^F T h i s c o n f i g u r a t i o n was e s t a b l i s h e d a l l a l o n g t h e i s o e l e c t r o n i c  sequence and we had l i t t l e d i f f i c u l t y i n p i c k i n g up t h e p r o p e r c o m b i n a t i o n s .  281+.  The interesting thing observed was the odd separation between F° - F^ i  and \  - ^  .  One expects \  -  3  to be larger than F j - ^  in  3  general, but xire had i t the other way around.  Table XXII gives 'the relat-  ive position of levels i n the sequence.  Table XXII Relative Position of levels i n 5s.l+f Configuration. 3 .  i o  - Fa - ip  Spectra  X  Cd I  65581.7  65581..7  65581.7  In II  123637.9  12361+3.0  123659.7  123691+.1  3.21  Sn III  179306.8  17931+3.0  17910+1.1 179702.2  2.71  Sb IV  227059  227H+1+  227391+  229592  1.88  Te V  2791+13.1+  279950.3  280375.1+  281215.6  0.79  i •  FH  stf  1  *  l  not established.  Edlen Plots It has been observed i n the isoelectronic sequence that there is some sort of regularity in the curves when E„- E is plotted vs. X- +d a  where E - E is the relative value of the term under consideration, %„ is o  the effective nuclear charge and d is a constant empirically fixed to make the plots run smoothly.  Such plots are sometimes called "Edlen  To follow page 28-U  Cd I  In ,11  Sn III  Sto i t  Edien Plots.' (d Fig.IZ  . 0.3)  1 3 * for 5s6p *"T scale should r<Sad 10;000k less.  Te V  285,  Plots".  They have been plotted i n Fig.  becomes clear that 5s.7s *S  IZ .  On f i r s t observation,  it  , 1+s 1+f F i n Sb IV seems to be out of  position while a l l others run smoothly.  Empirically d has been found to  be 0.3 i n order to make them run smoothly.  When the term under consider-  ation belongs to a spectrumfor 4n isoelectronic sequence such plots can predict i t very nicely. i  Ionization Limit  i i  The ionization potential for Te V was calculated by Gibbs and Vieweg ( >2. ) as l+862l+l+ k on the basis of absolute term values extraf  polated on a Mosley diagram. an ionization potential of  Finkelnberg and Humbach (  5"3i ^oofc  ) interpolated  from the study of screening constants.,  Both these values failed to be consistent with our observations and extensions. 3  On Rydberg formula the limit from 5s.6s to be 1+73,900 k.  3  S, and 5s. 7s  S was found (  After the establishment of 5s.8s Sj , we had three 3  members of the series known and hence Edlen-Risberg limit adjustment f o r mula could be applied. From Edlen's formula AT  =  -91+6.2 k  Ionization Potential for Te V (Te VI S ) .-1+72,951+ k »58.63 ev This value is about 1.1 volt less than Gibbs-Vieweg's value and about 7 volts less than Fjinkelnburg-Humbach's value. in this spectrum.  ll+2 lines are now classified  286  Table XXIII Energy Levels of Te V  Config.  Desig,  J  Level Ck)  Interval  n*  EVEN LEVELS , Si  st  5s*  S  5P  *P  0 0 1 2  Sv 5?  5P 'S  2 0  5d  1  x  2  5s(*S)5d 5s( S)5d Z  5s( S)6s 5s( S)6s 5s( S).6d 1  I  Z  5s( S).6d 2  5s( S).7s X  53(^)83  3  D  D 6s S 6s 'S 5d  3  6d  3  D  6d *D 7s S 3  's  8s S 8s 'S 3  2  3 2 1 0 1 2  3 2  1 0 1 0  0.0 176253.li  1821+19.7  192596.2 182805.5 206527,6  215611.7  216137.U 216991.9 233073.8 21+0850.1 21+6751.6  321+880.0  325079.7 325505.5 326565.1+ 331+1+56.6 336210,8  6166.3  10176.5  525.7 85I+.5  2.1+085 2.626**a  2.61+6#*a 2.68l*»a 3.265  3.269 3.271+ 3.382 3.1+38 3.1+825  199.7  1+25.8  1+.301+ 1+.307 1+.3H+ 1+.329 1+.1+51  1+.1+79'  380855.1;  5.U58 5.578  381+780.2  DDD LEVELS SSCSJSP  5S( S)5P x  SsC$)6p  5s(*S)6p  5P  A  P  'P 6p P SP  3  6p 'P  0 1 2 1 0  1 12  75110.1+ 78025.0  86006.3 111708.0 273997.U 271+1+08.9 277507.8 278702.8  29U+.6 7981.3  2.626  2.6355  2.663 2.756  1*11.5 3098.9  3.711+ 3.717 3.71+7 7.758  287 Config.  Desig.  J  5s( S)i+f  kf  2  2  3  F  kt F 6s 3p  2  X  J*.  i  6s  n* f o r 5p  **  X  P  2kk.6  32173^-9 332U92.0  3.355**  33^269.5  2  w.r.t. 5p P - L i (Te V I ) l i m i t . 2  1  n* w . r . t . l i m i t 5p P'(Te V I ) . No p r e c i s e l i m i t can be t o t h e r e s t o f the L e v e l s i n 5P^ •  **a  2  assigned  (Te VI S i ) = U72,95*+ k.  Limit  Supplementary  3.3^9** 3.31+5**  10758.1  1  1  2  3.765 3.770 3-77^ 3.783 3.31+8**  536.9 1+25.1  6s3p , c a l c u l a t e d w . r . t . 5p P i (Te V I ) limit',"and f o r  5p 6 s P , P 3  279950.3 2 8 0 3 7 5 • 281215.6 321^90.3  1 2 1  5P( P)6S 2  n*  279IH3A  3 li, 3 0  5s( S)Uf  Interval  Level (k)  2  Levels  The f o l l o w i n g t h r e e Con|ig. 5s( s)7  l e v e l s have been t e n t a t i v e l y e s t a b l i s h e d :  Desig.  -J  ^  2  P  3P 5S( S)7P  2  ^  2  Level(k)  l  3^9212.8 \____ 151+0.7  2  350753-5  1  351679-3  The i n t e n s i t i e s o f d i f f e r e n t combinations a r e n o t v e r y have p r o p e r ' e x c i t a t i o n c h a r a c t e r .  Interval  They need f u r t h e r  s a t i s f a c t o r y but lines confirmation.  5£'7P P« l e v e l c o u l d n o t be l o c a t e d a t the p r o p e r p o s i t i o n . o n l y c o m b i n a t i o n s we c o u l d g e t were 5s.5d D 3  5s.7s  3  - 5s.7P P ° 3  X  S l  - 5s.7  P  3 ° P  13366^0 1081+37(5  p l a c i n g 5 s . 7 p 3p°=: 3I+9277 k and making 5 s . 7 p 3p°p rtially a  inverted.  The  238.  Te VI The earlier work on the fift>  spark spectra was carried out by Rao  (3U-&) who identified the resonance lines and classified 10 lines i n the range between 5U0 A and 131U A . 0  0  Later on L and E Bloch (2-6) tentatively  established 7pV and 7s padding four new lines to the l i s t of the classified lines.  A l l these lines according to our excitation data, are of the right  ionic parentage.  Thus our data confirms the earlier work.  Our source excitation i n the case of the prism spectrograms was not high enough to excite Te VI and the combinations and 2796 A° could not be located on our plates.  6s*S,-  6p*P*at 2U89 A°  While 2I489 A line may be 0  hidden by a Te IV line at 2U89.1? A (100), the second was not there. 0  A  Simultaneous exposure on vacuum grating and prism spectrograph may help to locate these lines and confirm the 6 s ^ l e v e l .  Ud.^s  D It was observed in the Ag I-like isoelectronic sequence that core 10  the Ud  gets excited easily.  When one electron from core goes to next  A -orbit the s-orbit gets completed and the d-orbit of core is left with one hole.  This d.s configuration w i l l yield only an inverted  C terra.  The precise prediction for *D with conventional extrapolation and irregular doublet laws was made d i f f i c u l t due to its non-identification i n Sb V.  289. Table XXIV (a) Irregular doublet law for 5p P°, - 1+d 5s D,  Spectra  5s P - ha 5s D  Ag I  -  Cd II  v;  v  3  203.h Z 28^3-7  2261+0.3  8561.5  31U05.2  In III  51+01+5.5  Sn IV  93161.3  Sb V  139137.8  Te VI  19112U.1  (Predicted)  196013.0  (Observed)  850..9  7710.6  39115.8  -850.9  6860.7  1+5976.5  -850.9  6009.8  51986.3  Table XXIV (b) Regular doublet law applied to 1+d 5s D  Ag I 1+1+71.9  Cd II 51+31+.8  23.29  21+.1+3  1+7  i+8  23.71  23.57 0.11+  In III  68U6.1 25.90 . U9 23.10 0.1+7  0.33  Sn IV  Sb V  Te VI  8655.h  10810  1371+0  27.1+7  29.12  30.83  50  51  52  22.53  21.88  21.17  0.57 0.10  (0.65)  (0.08)  (0.71) (0.06)  290.  A V ( U d 5s V) = 13,7UO Z  (Predicted)  s 11,631.1 (Observed)  "The lines picked up for establishing this doublet were the only lines with the right 5p P* separation appearing on our plates. Z  This doublet  was confirmed by its combination with 7p P whereas its combinations with op P were i n the far red.  7s S, 7p P and Ionization Limit. 7s^5 and 7p P levels were tentatively established by L and £ Z  Bloch ( ° c ) on the basis of four strong lines appearing on their plates. A  We observed these lines and confirmed their excitation.  7p *P was con-  firmed by i t s combinations with Ud** $s *D. 7p*P combinations with 5d D 2  were very weak and only 5d D - 7p Pj. could be located on our plates.  7s S  was confirmed by i t s combinations with 6p*P* The confirmation of these two levels extended both np and ns series which helped to find a better value for the ionization potential.  The two  series d i d not give a consistent value for the limit when n «s6 and n «7 members of these series were used i n Rydberg relation. for n s V series  Limit.572,300 k  for n p V series  Limit*575,700 k  As both these series have three manbers of the series known we can apply the Edlen-Risberg limit adjustment formula (page *! ).  When applied  separately to these series i t gave A T for np series -1001.0 k and AT for ns series -3128.8 k.  Thus after this adjustment  291.  Ionization limit  from np series  = 571+,699.0 k  from ns series  =£69,171.0 k  Taking mean we have Ionization Limit of Te VI (Te VII 's ) 0  . 571,91+0 k = 10-3  25 lines are now classified i n this spectrum.  volts  292,  Table XXV Energy Levels of Te VI  Config.  Desig.  J  5s 5d  •*  Level  Interval  n*  EVEN LEVELS lid( 's)5s  S D  Z Z  hd\ S)6a  6s *S  111 5s  5s  2  Ud( 'S)7s  1  X  2*  0*0 238087.6 239736.2  1  278L36.2  D  301161+.7 312795.8  fS  i 2  *P *?  1  7s  2.628 3.U140 3.1+U8  I6I48.6  3.669 3.821 3.9014 1+.670  11631.1  390798.0  ODD LEVELS t|d( 's)5p lid( S)6p  93331+.6 105150.2  11815.6  2.873 2.909  ii  3H4I98.I4 3l8601.li  1+1+03.0  3.915 3.91*9  it  I4IOOIO.8 I4I2762.6  2751.8  U.939 li.982  ii i  Ud( 'S^p  Limit (Te VII 's ) o  571,91+0 k 1  Te VII The s i x t h spark spectrum^of  293-  Tellurium has l+d S as the ground state. Q  Shoepfle ( *i ) c l a s s i f i e d 2l+ l i n e s i n region 781+ A to observe resonance l i n e s .  to 1123 A  0  0  but f a i l e d  The following year Shoupp and Kruger  discovered the resonance l i n e s i n the region 227 A  0  (J-*-*')  to 236 A . 0  In 1937 E. Bloch and L. Bloch ( Z-c-) published the values of the same terms derived from t h e i r measurements using an electrodeless discharge source i n place of hot spark source of early authors. groups assigned 1+5 l i n e s to t h i s spectrum.  Thus these three  But t h e i r measurements i n the  majority of cases are so d i f f e r e n t that one i s tempted to question whether the lines i d e n t i f i e d are the same l i n e s or d i f f e r e n t . From the excitation c h a r a c t e r i s t i c s of our high e x c i t a t i o n source we doubt i f we could excit Te VII to any reasonable i n t e n s i t y .  In some  sets on vacuum spectrograph (Plate no. G3-6310, G3-6311) the e x c i t a t i o n was high enough to give resonance l i n e s of Te VI as one of the strongests on the plate, i n such sets some of Te VII l i n e s could show up.  Due to lack of  proper high excitation from source, we have not been able t o reconcile the two previous p u b l i c a t i o n s . In Table S I  we compare the wavelengths of l i n e s measured by  Shoeffle ( Hi ) and Bloch (Z-o) with those measured i n present i n v e s t i gation.  We give t h e A o f l i n e s from our measurements which i s nearest to  the previous value.  Single s t a r means l i n e may not be the same, the one  observed by e a r l i e r authors. lower e x c i t a t i o n .  Double star means the l i n e probably belongs &>  There i s a p o s s i b i l i t y that some of the l i n e s with  doubtful e x c i t a t i o n are coincidences of low and high e x c i t a t i o n l i n e s which cannot be separated under present r e s o l u t i o n .  29k-  Te VII continued The following three levels have been revised, where we agree with both early authors. 10  I  0.0  Ud  lid5p  'P,'  1+22,886 k  P/  1+30,385 k  D°  1+38,921+ k  3  (  TableM Schoeple, Intensity Shoup  \  15  28.61  00  20.50 07.51;  0 2  25  75. OU 61+.85  8 0  56.68  0  27.81 25.12  7 0  _  13.01 11.77 —  20 1  Au thor  ~X 23.1+6 1035.81 27.82  00  —  07.80 0iu90 oli.li5  1 1 3  (996.86]  1*  75.1*2 -  Intensity  A 1 1 1 2  liU.69  1123.36  996.90 991*. 50  Intensity  1188.92  _ _  Bloch  00  -  1188.866 (III) l4.li.7ll* (III C  23.505 coinc. 1035.71*3 ( H I C 28.618 —  20.516 07.76 Oli.885 0ii.li20 996.837 (IV C) 91*. 1*30 75.1*90  -  120** 150** 150** 100** 30 30 6 1+Od* 1*0 60** 200** 12* 10  —  1+5.1*3 31*. 79 27.70 21+.89  OOd 00 00 00  2U.32 12.87 11.51 08.09 07.13  3 2 1 Od  0  56.551 1+5.1*25 31*. 831* 27.771 21+.900  5* 2* 10 15 1  21+.272 12.901+ 11.51*1 08.119 07.157  10 50** 10 1* 5  295.  Te VII continued  Schoeple, Shoup  Intensity  Bloch  Intensity  Author  Intensity  a 902.63  15  l  898.09 !  77.59  20  66.99  U  61.60  00  52.87 U3.21  1 2  1  29.8U 27.06  30  902.58  1  85.35  77.5U 66.93  0 3 0  60.93  00  898.19  U3.51*  00 00  35. OU  U  Ul.90  26.9U  2 3  03.72*  1  30.21*  2U3.8bO U2.2U8  5 5  2U3.90**  37.5U1  2 2  37.5U 36.U5** 32.37  32.338 27.823  —  75U.75  Uo 35  85.525  77.515 66.928 61.010  52.762 U3.3U5 U1.935  <=.  78U.09  36.U60  898.1B3  61.507  1 1  03.56  902.537  Id  U2.27**  27.8U  2 6 U U  3 10 8  Imp?  35.096 30.2U8 26.938  15 15 15* 35 2* 5 2 2 2 12 10* 20  2 2 783.970 25 5U.780 2U3.896(VI C) 0 * * U2.270(VI C) 1** 93.585  1* 37.U59 36.U70(VI C) 0 * * 32.350 3 27.830 2  *  Wavelength discordant, may refer to a different line.  **  Main intensity may arise from lower excitation.  296,  Microphotometer Traces The response of an emulsion to the beam of light depends on intensity and A of the light, the nature of the emulsion, the time of exposure and the nature and mode of developing.  This limits the use of  photographic photometry for absolute photometric measurements. usefulness i n giving a permanent record i n simple form^and i t s  But its sensitivity  to pick up weak lines, and in comparison of the intensities of two lines quite close which cannot be differentiated i n strength with visual aid makes i t a good tool in spectroscopy. If d = Density on photographic plate d  - log  I  = Intensity of light transmitted by the clear plate.  I  0  =  log  gyZ-^  s(lntensity of light transmitted by the measured portion (of the plate.  G, G' , G,  - Galvanometer (or the automatic recorder) deflections corresponding to the intensity I » I 6  and no light respectively. G - G  0  G - G'  is called "Clear Reading" of plate. is called "Blackening" of plate.  Since G depends on brightness of the desitometer beam as well as on the transmission of the unexposed portion (which varies considerable along the plate), so the very uniform intensity comparison i n different regions are not very precise. Very close lines can be best resolved by taking a narrow and  297r  short s l i t s and measuring near the tip of the spectral l i n e .  But very-  short and narrow s l i t s cause variation i n the deflection due to g*ainness in emulsion.  Thus length, width and resolution are compromised in an  actual case. The figures on the following pages contain photoelectric traces of the spark spectra of Tellurium spectrograms.  The plate was Ilford  Ultraviolet sensitive Q-2 2" x 18" developed with Johnson' Azcl developer ?  (diluted with 1+0 parts water) for l | minutes, fixed i n Kodak F-5 fixer. The source was Disruptive Electrodeless discharge source, spectrograph was 3-metre vacuum spectrograph. Exposure time for High Excitation  = 35 minutes.  The specification of the microphotometer operation were S l i t width  =  1+ yu  S l i t length  -  1.6 mm.  Speed  = 2.5 nan. (of plate)/min.  This particular speed was given priority due to 3-metre vacuum spectrograph (  ,>6V=2.77f" A ° / W i » ) »  Since this speed traced 1 mm. of the. plate on 1 inch  of tracing paper, and thus giving a "dispersion" of  ^ i . i A°/cm. on the  chart and making the job of identifying the lines very easy.  298  Appendix I Ruling Errors i n Gratings and Ghosts An ideal concave grating has grooves which are parallel circular arcs evenly spaced along a chord and exactly identical i n form and i n depth. Any departure from perfection of any or grating errors (amphitude or a phase error) may introduce defects i n the resulting spectral line.  While  the curveture introduces astigmatism, the departure from parallelism produces variation i n the grating element along the longitudinal strip and thus the definition of the image changes. focusing while the latter is very serious.  The former can be minimized by The relationship of faulty  grating performance to specific grating errors have been the subject of many studies. The errors i n spacing are very troublesome especially when they are periodic, as then they give rise to an appreciable accummulative effect.  These arise from the slope of the screw thread of the ruling machine  or from the elastic deformation of the parts' of the machine which is repeated systematically i n each turn of the screw.  These errors give rise to  ghosts or false lines i n the spectrum which are symmetrically placed with respect to the parent line.  These false lines (ghosts) are called "Rowland  Ghosts", f i r s t observed by Quincke i n 1872 and theoretically explained by Rowland and Pierce. For any parent line A , the false line (ghost) 7^ is related as following  X  = A (i ±  a )  _JD  299.  n - order of the spectrum. m - order of the ghost ( ± 1 , ± 2, etc) p l i n e s / p e r i o d i c error. s  ^lines/rotation of the thread screw. The intensity of the ghost lines increase approximately as the square of the order of the parent line.  Their intensity should be less than 0,5% of the  parent line i n the f i r s t order i f the grating is to be used for higher orders. Some gratings have more than the periodic error and produce a set of Rowland ghosts for each periodic error present.  The intensity variation amonst  the different order ghost varies from grating to grating and is the characteristic  of the ruling engine which ruled the grating.  On our 21' grating  spectrograms f i r s t order ghosts were roughly double as intense as the second order, third order were weak while fourth order were again strong. This characteristic intensity-variation i s repeated for a l l strong lines and constitutes a "finger print" identification of the particular grating. To identify the ghosts on the plates directly relation (l) put in a different form using  =  x  ^'^  is  s  £ 5 = Distance of ghost from parent line i n mm. = Inverse Dispersion A°/mm, X to be measured in International Augstroms . •p' is the characteristic of the ruling machine and normally the value is supplied by the manufacturers or can be easily deduced by the observer.  300.  A s from (2) has been calculated i n a l l n A. ranges for a l l the spectrographs in this laboratory and from the curves drawn therefrom, i t can be read directly. The less important and much weaker (intensity less than 0.1$ of the parent line) are "Lymen Ghosts" which l i e quite far from the parent line e.g. 2/5, 3/5, h/5 etc. appear.  In modern gratings these false lines seldom  These have not been identified on any of our gratings.  R e l a t i v i s t i c Correction Tables AT  2  4  R °( Zo = — TT—  / n  -  ( " ^  3\  ]j)  R - Rydberg Const. = 109737.25cm  f o r Te  °< = Somraerfeld's fine-structure const. R^=  5.81+3 cm Table-TTdCa)  n  1+ 5 6 7 8 9 10 11 12 13 11+  1.2 D 0.51936 0.3101+0 0.18701+ 0.11901+ 0.07981+ 0.05600 0.01+061+ 0.0301+0 0.02331 0.01826 0.011+56 0.01181  1=3 F  0.11+352 0.1011+1+ 0.06960 0.01+861+ 0.03501+ 0.02592 0.01968 0.01528 0.01208 0.00970 0.00790  U1+  U5 G  0.051+08 0.01+20* 0.03136 0.02352 0.01726 0.01386 0.01082 0.00861 0.00701 0.0057  H  .0 . 021+61+ 0.02032 0.01616 0.01261+ 0.00992 0.00798 0.0061+5 0.00528 0.001+37  Table E S S (b) 3 1+ 5 6 7 8 9 10 11 12 13 11*  2.62926 1.5711+0 0.91+689 0.60261). 0.1+01+19 0.28350 0.2057U 0.15390 0.11802 0.0921+2 0.07371 0.05978  0  0.72657 0.51351+ 0.35235 0..2I+62I+ 0.17739 0.13122 0.09963 0.07736 0.06116 0.01+909 0.01+001  0.27378 0.21303 0.15876 0.11907 0.08991 0.06966 0.051+76 0.1+366 0.035h8 0.02908  —  0.121+71+ 0.10287 0.08181 0.06399 0.05022 0.01+01+2 0.03261+ 0.02673 0.02211  302.  Table 2ZEr(c)  n  ~ T l 2 "  3 1+ 5 6 7  8.30976 1+. 9661+0 2.99261+ 1.901+61+ 1.277U1+ 0.B9600 0.65021+ 0.1+861+0 0.37330 0.2921 0.2330 0.1889  8  9 10 11 12 13 11+  D  1=3  F  2.29632 1.62301+ 1.11360 0.7782U 0.56061+ 0.1+11+72 0.311+88 0.21+1+1+8 0.19328 0.15510  0.1261+6  1=1+  G  U5  H  —  0.86528 0.67328 0.50176 0.37632 0.281+16 0.22016 0.17306 0.13798 0.11213 0.09190  _  0.391+21+ 0.32512 0.25856 0.20221+ 0.15872 0.12771+ 0.10316 0.081+1+8 0.06989  Table gS7l(d)  3 1+ 5 6 7 8 9 10 11 12 13 11+  20.2875 12.3190 7.3063 1+.6500 3.1188 2.1875 1.5875 1.1875 0.9106 0.7131 0.5788 0.1+613  —  5.60625 3.97250 2.71875 1.90000 1.36875 1.02870 0.76875 0.59688 0.1+7168 0.378»0 0.30875  —  2.11250 1.61+375 1.22500 0.91875 0.69375 0.53750 0.1+2250 0.33688 0.27375 0.221+38  —  0.96250 0.79375 0.63125 0.1+9375 0.38750 0.31188 0.25188 0.20625 0.17063  303. BIBLIOGRAPHY 1. Anderson, J . A . , Astrophys. J . , 59, 76, 1921+. 2. a) b) c) d) 3.  Bloch, Bloch, Bloch, Bloch,  E., E., E.i E.,  Blochi Bloch, Bloch, Bloch,  L.iJ.Phys. Radium, 1+, 622, 1911+. L . i Ann. Phys., Paris, 13, 233, 1930. L.i^Phys. Radium, 6, 1+1+1, 1935. L.,J.Phys. Radium, 8, 22l+, 1937.  Bartelt, 0., Z. Phys., 88, 522, 1931*.  1+. Bacher, R . F . , Goudsmit, S., Phys. Rev., 1+6, 91+8, 1931+. 5.  Bockasten, K . , Ark. For Fysik, 9, 30, 1955.  6. a) Crawford, M . F . , McLennan, J . C . , P h i l . Mag., 1+, 1*86, 1927. b) Crawford, M . F . , McLennan, J . C . and McLay, A . B . , Proc. Roy. Soc. ( A f ) 11+3, 51+0, 1931+. c) Crawford, M . F . , and Wills, L . A . , Phys. Rev., 1+8, 69, 1935. 7. Condon, E . U . , Shortley, G . H . , The Theory of Atomic Spectra, Cambridge Press (1951). 8. a) Crooker, A . M . , Bedford, R.E.-*, Phys. Rev., 96, 81+7, 195J+ -fcPh.D. Thesis, The University of British Columbia, 1955. b) Crooker, A . M . , George S., Applied Spectroscopy, 17 (5), 193, 1963. 9. Eriksson, K.B.S., Phys. Rev., 102, 102, 1956. 10.  11.  a) b) c) d)  Edleni B . , Proc. Rydberg Continental Conference, 1955. Edlen, B . , Risberg, P . , Ark. For Fysik, 39, 553, 1956. Edlen, B./ Rep. Progr. i n Phys., XXVI, l 8 l , 1963. Edle'n, B . , Encyclopedia of Physics S. Flugge ed, Vol. 27, Springer Verlag (In press), t  a) Finkelnburg, W., Humbach, W., Naturwiss, 1+2, 35, 1955* b) George, S., Ph.D. Thesis, The University of British Columbia, 1962.  12.  Gibbs, R . C . , Vieweg, A . M . , Phys. Rev., 3l+, 1+00, 1929.  12^  Goudsmit, S., Humphreys, C . J . , Atomic Energy States.  13.  Green, J . B . , Loring, R . A . , Phys. Rev., 90, 180, 1953.  ll+.  G r i f f i n , P.M., Oak Ridge Natural Lab., (1957).  15.  Herzberg, G . , Atomic Spectra and Atomic Structure, Dover Pub..  16.  Houston, W.V., Phys. Rev., 83, 297, 1929.  30U 17.  a) Harrison, G.R., M.I.T. Wavelength Tables. b) Harrison, G.R,, Lord, R . C . , Loofbourow, J . R . , Practical Spectroscopy (Prentice-Hall).  18^  Handrup, B . , Ph.D. Thesis, University of Wisconsin, I960.  18? Johnson, M.H., Phys. Rev., 38, 1628, 1931; 39, 197, 1932. 19. Klinkenberg, P . F . , Rev. Mod. Phys. 2l+, 63, 1952. 20. a) Krishnaraurthy, S . G . , Current Science, 2, 210, 1933. b) Krishnaraurthy, S . G . , Nature, 131+, 1255, 1931+. c) Krishnamurthy, S . G . , Proc. Roy. Soc. (A), 151, 178, 1935. 21.  Kuhn, H.G., Atomic Spectra, Longmans 1962.  22. Kayser, H . , 'Handbuch der Spektroskopie', Vol. 6, page 626. 23. Kelly, R . L . , Vacuum U.V. Emmission Lines, U.C.R.L. 5612, 2l+. a) Kruger, P . G . , Shoupp, W.E., Phys. Rev., 1*6, 121;, 1931. b) Kruger, P . G . , Weissberg, Phys. Rev., 1+8, 659, 1935. 25.  Lacroute, P . , J . Phys. Radium, 9, 180, 1928.  26.  Lang, R . G . , Proc. Nat. Acad. S c i . , 13, 31+1, 1927.  27. a) Meshkov, S., Phys. Rev., 91, 871, 1953. b) Meshkov, S. and Ufford, C.W., Phys. Rev., 9l+, 75, 1951+. 28. Mack, J . E . , Murakawa, K . , Ross, J.S.., Pick, F.A. and Van Den Bosch,J.C», Phys. Rev., 83, 651+, 1951. 29. Murakawa, K . , Ross, J . S . , Phys. Rev., 85, 559, 1952. 30. Moore, C . E . , Atomic Energy Levels, N.B.S. Circular 1+67. 31. Meissner, K.W., Andrew, K.L., J . Opt. Soc. Amer., 1+7* 5 0 , 1957* 8  32. Martin, W.C., Ph.D. Thesis, University of Princeton, 1956. 33. Nodwell, R . A . , Ph.D. Thesis, University of British Columbia, 1956. 31+. a) b) c) d)  Rao, Rao, Rao, Rao,  K . R . , Proc, Roy. Soc. (A), 133, 220, 1931. K.R.,.Nature, 127, 236, 1931. K.R.., Sastry, M.G., Indian^-Phys.., ll+, 1+23, 191+0. K.R.., Krishnamurthy, S . G . , Proc. Roy. Soc. (A), 158, 562, 1937.  35. Ruedy, J . E . , Phys. Rev., 1+1, 588, 1932.  305. 36.. a) Racah, G . , Phys. Rev., 61, 186, 19ij2. b) Racah, G . , Phys. Rev., 6 l , 537, 191+2. c) Racahj G . ; Phys. Rev.; 62, 1+38, 191+2. 'd) Racah, G . ; Phys. Rev., 62, 523, 191+2. e) Racah, G . , Phys. Rev., 63, 367,'191+3.' f) Racah, G . , Phys. Rev., 76, 1352, 191+9. g) Mrs. Sitterly, see reference 30, C E . Moore. a) b) c) d) e) f) g)  38.  Sawyer, R . A . , Experimental Spectroscopy,  39.  a) Slater, J . C , Phys. Rev., 3l+, 1293, 1929. b) Slater, J . C .  1+0.  Shortley, G.H. Fried, B . , Phys. Rev., 51+, 739, 1938.  .1+1.  Schoepfle, G . K . , Phys. Rev., 1+3, 7l+2, 1933.  1+2.  Thomson, J . J . , P h i l . Mag., l+(7), No. 25, 1128, 1927.  1+3. a) b) c) d) e) f)  Shenstone, Shenstone; Shenstone; Shenstone, Shenstone, Shenstone, Shenstone,  A . G . , Phil. Trans. (A), 235, 195, 1936. A . G . , J . Opt. Soc. Amer., 1+J+, 71+9, 195U. A.G..; J . Opt. Soc. Amer., 1+5, 868, 1955. A . G . ; Phys. Rev., 7l+, 1+11, 191+7. A . G . , N.B.S. Circular 1+67, page 2l+0, vol. III. A.G.and Russell,'H.N., Phys. Rev., 39, 1+15, 1932. A . G . , P h i l . Trans. (A), 237, 1+53, 1938.  37.  Trees, R.E- , Trees, R.E ,, Trees, R.E Trees, R . £ . , Trees, R.fe.; Trees, R.e.,  Dover Pub. 1963.  Phys. Rev., 82, 683,'1951.  Phys. Rev.; 81+, 1089, 1951. Phys. Rev., 85, 382; 1952. Phys. R e v . 9 2 , 308, 1953. J . Opt. Soc. Amer;, 1+8, 1958. Jour. Res. N.B.S., 195k*  1+1+. Tomkins, F . S . , Fred, M . , Applied Optics, 2 (7) 715, 1963. 1+5*  White, H.W., Introduction to Atomic Spectra, McGraw-Hill.  1+6.  Langer, R.M., Phys. Rev., 35, 61+9, 1930.  1+7. Pauling, L . Gondsmit, S., The Structure of Line Spectra, Dover, 1963. 1+8. Araki, G . , Progress in Theoretical Physics, 3, 152, 1959. 1+9.  Compton, K . T . , Boyce, J . C , Rev. Scient, Inst., 5 ( 6 ) , 218, 1931+.  50.  Crosswhite, H.M., The John Hopkins Univ. Tech. Report, 13, 1958.  51.  Wilkinson, P . G . , The Spectrum of Fe I, J . Opt. Soc. Amer., 1+7, 182,1957,  52.  Handbuch der Astrophysik, Vol. III/2, 1930.  306.  53.  Tessman, -J.-R.,, Kahn, A . H . , Sockley, W., Physical Review. 92, 890, 1953.  5U.  Interpolation and Applied Tables, H.M. Stationery Office, London.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085829/manifest

Comment

Related Items