UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The raman spectra of some organic materials and the absorption spectra of liquid oxygen Barton, Norman 1943

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1943_A8 B2 R2.pdf [ 22.12MB ]
Metadata
JSON: 831-1.0085365.json
JSON-LD: 831-1.0085365-ld.json
RDF/XML (Pretty): 831-1.0085365-rdf.xml
RDF/JSON: 831-1.0085365-rdf.json
Turtle: 831-1.0085365-turtle.txt
N-Triples: 831-1.0085365-rdf-ntriples.txt
Original Record: 831-1.0085365-source.json
Full Text
831-1.0085365-fulltext.txt
Citation
831-1.0085365.ris

Full Text

THE RAMAN SPECTRA OF SOME -ORGANIC MATERIALS -  ' • ., a n d ;  THE ABSORPTION SPECTRA OF L I QUID OXYGEN  by  NORMAN BARTON  A t h e s i s submitted I n p a r t i a l  fulfilment  of t h e r e q u i r e m e n t s f o r t h e d e g r e e o f M a s t e r o f A r t s i n t h e Department o f P h y s i c s .  •The U n i v e r s i t y o f B r i t i s h April  19^3  Columbia tf  /L  TABLE OF CONTENTS. P a r t I."Raman E f f e c t o f Some O r g a n i c M a t e r i a l s . " A.  Introduction  B.  History  C  Theory  D  0  B  E.  page  .  i  . 1. 4,  .  Experimental: 1.  Raman Tubes  13<>  2.  Sources  15«  3„  Filters  18*  4.  H e a t i n g System  .  19.  Resuits: 1.  Measurement o f p l a t e s  2.  Aliphatic  26.  Hydrocarbons: 2*7o  3<o  OcourGnc6  b  Structure  28.  c.  Raman s h i f t s  30.  d.  Octadecane  34.  e.  Duocosane  e  •••<»  3.  Decahydronaphthalene  4.  Carbon  .f........  36. 37.  Tetrachloride:  M o l e c u l a r s t r u c t u r e .........  43.  b.  Isotope effect  .....  44«  c.  Results  ............  45.  a  B  Part I I . "Absorption A. B.  0« Da  o f L i q u i d Oxygen."  Introduction  ,'. p a g e , 49„  Experimental: 1.  Optical line-up  2.  Cooling device  ,  Q\A1"t»s •••••*••••••••••• ••••••••«• Tin©tjiCQ,1  « • •  Part I I I . " Bibliography A.  50.  Raman E f f e c t ...  • • • * e * * o  51. o 5^•  "/ . 62,  L I S T OF FIGURES  1.  Modes o f v i b r a t i o n o f NOg , S 0  2«  Rs,xn.S/Ti . c s l l s  3.  Arrangement  ••*•••••  .page 1 1 .  2  « • « « • * * • •» • • • * • * • ••*pQ.§©  o f a r c s a b o u t Raman c e l l .  To f a c e page 1 5 .  , 5.  • RcHH Q.X1  C S « • • • • A • * • • « 99 • •  • • • • « • • • • • • • • • • p 3»^@ 1 6 •  6.  E l e c t r i c a l c i r c u i t f o r arcs To f a c e p^e 17. Q u a r t z m e r c u r y a r c ........... • « « • • ,e 9•9 .* • c epage 18.  7.  Fil"t*©2r G©1X. «o • •«»••«»••••••••.. .. To f a c e pag ;e 19:.  8.  Electrical  9.  Coifl.jp 3f*© S SOT*  i  c i r c u i t f o r h e a t i n g system • 9 • • To f a c e . pag ;e 2 0 . • e • • • • « * • • «  •  » • • • •  • * • * • « •  page 2 3 . pag ;e 2 3 .  10. 11.  R e a r vfe.ew o f m e r c u r y arc's.'.....  • • • • *  12.  A p p a r a t u s i n . operation......*> ....  * • • a • pag  pag ?e 24. 25.  13. The h y d r o c a r b o n m o l e c u l e , ....... .... To f a c e pag ^e 2 8 . 14. T r i p l e ' p o i n t , .... .... .. . . ......  e « • • * • © • « « e, epag 5© 3 0 .  15.  T a b l e f r o m H i b b e n . . . ..... . .•:.:.•'.•  16.  O p t i c a l arrangement  ..........  !  « » » 9 •  e • • # • pag S  e  32.  To f a c e pag s'e. 5 0 .  17. C o o l i n g a s s e m b l y '.............. • • «• To f a c e pag se 5 1 . 18.  Siphon arrangement  .........  Raman s p e c t r o g r a m s . . . . . . . . . . . . Spectrograms o f . l i q u i d  ....•;..... To f a c e pag $e 5 2 . » • » ••  page 48.  o x y g e n a b s o r p t i o n . . P&£je 6 1 .  L I S T OF TABLES I  Rotation  Raman f r e q u e n c y s h i f t s . ..,. ...... ....pag ,e 1 0 .  II  •  .page 2 1 .  III  O r g a n i c f i l t e r m a t e r i a l s . .... ........... . .....• .pag e 2 2 .  IV  Physical properties  V.  VII  of even a l i p h a t i c hydrocarbons  • • page 33.  Results  f o r Octadecane  • • page  35.  Results  f o r Duocosane  »  .pag  36.  Results  f o r c i . s - d e c a h y d r o n a p h t h a l e n e . ...... • .pag e 39.  e  .pag e 41.  VIII Results  f o r trans-decahydronaphthaiene. .  EX.  Results  f o r C C l ^ a t 15° C.  0  • page 47.  X  Results  f o r C C l ^ a t 40° G.  *  ..pag  XI  P h o t o g r a p h i c p l a t e s u s e d ........'...... ...  XII  Results  f o rl i q u i d  X I I I Widths of absorption  >  e  47.  .page 53.  o x y g e n . . . . . . . . . . . . . . . . . . • .pag e 53a. b a n d s . . . . . . . . . . . . . . . . . • .pag ,e 57. 3  XIV  Theoretical  calculations  for Z.-'£Transition  XV  Theoretical  calculations  f o r Z - c T r a n s i t i o n . 0 • pag,e 5.9.  XVI  Theoretical  c a l c u l a t i o n s for £-r> T r a n s i t i o n . 8 .pag ,e 59.  6  • pag;e 51.  h  3  f o r ^ s - ' - A T r a n s i t i o n . • • pag,e 60„  XVII T h e o r e t i c a l  calculations  XVIIITheor.etlcal  calculations f o r f  T r a n s i t i o n . • .pag ,e 6 0 . e  PART I  THE RAMAN SPECTRA  °£ SOME'- ORGANIC MATERIALS  INTRODUCTION. W i t h i n t h e l a s t few y e a r s D r . S e y e r o f t h e Department of Chemistry of t h e U n i v e r s i t y of Columbia has succeeded  i n o b t a i n i n g a s e r i e s of the  saturated a l i p h a t i c hydrocarbons . • J  i n a v e r y pure  British  o f t h e f o r m C H_ , ~ n 2n+- 2  s t a t e . As f a r as i t i s known t h i s i s t h e  only supply of these hydrocarbons  a v a i l a b l e . So f a r n o t  much i s known a b o u t t h e h i g h e r members o f t h e except t h e i r b o i l i n g p o i n t s , m e l t i n g p o i n t s ,  series densities,  and i n some c a s e s 'the i n d e x o f r e f r a c t i o n . I t was  s u g g e s t e d by: D r . H.D.  Smith t h a t i t might  be p o s s i b l e t o o b t a i n some f u r t h e r i n f o r m a t i o n c o n c e r n i n g t h e m o l e c u l a r s t r u c t u r e o f t h e s e compounds by s t u d y i n g t h e i r Raman E f f e c t s . The Raman E f f e c t s : o f t h e h i g h e r members h a d n o t been o b t a i n e d p r e v i o u s l y , i t i e s were n o t  since s u f f i c i e n t  quant-  available.  I t was  a l s o suggested t h a t f u r t h e r study of the  d e c a l i n m o l e c u l e m i g h t g i v e a more, d e f i n i t e p r o o f o f an i n d i c a t e d change i n t h e s t r u c t u r e o f t h e m o l e c u l e , as by Seyer., The  c i s isomer had been s t u d i e d  previously  and e v i d e n c e d e d u c e d f r o m t h e Raman E f f e c t s o v e r a o f t e m p e r a t u r e s o f a change o f m o l e c u l a r  found  range  configuration  o f t h e d e c a l i n i r i o l e c u l e - somewhere i n t h e r a n g e . I t hoped t h a t a s i m i l a r study of t h e t r a n s i s o m e r might  was yield  valuable results regarding i t s molecular configuration. 1  (75)  The numbers i n b r a c k e t s r e f e r t o t h e  Bibliography.  I n order t o t e s t t h e e f f i c i e n c y of t h e experi m e n t a l a r r a n g e m e n t i t was d e c i d e d t o o b t a i n t h e Raman spectrum  of carbon t e t r a c h l o r i d e ,  and compare i t w i t h  t h e r e s u l t s o b t a i n e d by p r e v i o u s w o r k e r s . A c a r e f u l l examination of t h e spectrograms Interesting  o b t a i n e d g a v e some v e r y  results.  I n v i e w o f t h e s e f a c t s t h e s e r e s e a r c h e s were u n d e r t a k e n a s s u g g e s t e d by D r . -Smith.  HISTORICAL. In the years since out  Tyndall  their early investigations  and R a y l e i g h  carried  on t h e s c a t t e r i n g o f l i g h t  much work h a s b e e n done i n t h i s f i e l d . I n I n d i a , p a r t i c u l a r l y , g r e a t p r o g r e s s was made, e s p e c i a l l y i n t h e t e n y e a r s a f t e r t h e G-reat War. Dr.. Raman than,, i n 1 9 2 3 , w h i l e studying a s c a t t e r i n g problem noted that i n a d d i t i o n t o t h e n o r m a l R a y l e i g h s c a t t e r i n g t h e r e a p p e a r e d a waak g l o w o f s l i g h t l y l o n g e r w a v e l e n g t h . He a t t r i b u t e d t h i s t o a weak f l u o r e s c e n c e .  The f e e b l e n e s s o f t h i s  scattering  d i s c o u r a g e d others,'from, t r y i n g t o f i n d t h i s e f f e c t i n o t h e r media. I n J a n u a r y , 1928, Venkateswaran that t h e v i s i b l e r a d i a t i o n which i s e x c i t e d glycerine  • noted i n pure  by u l t r a v i o l e t r a d i a t i o n ( s u n l i g h t  t h r o u g h C o r n i n g g l a s s G 586 ) i s s t r o n g l y The  filtered  polarised.  above f a c t , a n d Compton's s u c c e s s i n X - r a y  s c a t t e r i n g l e d C.V. Raman t o c o n s i d e r t h a t t h i s weak fluorescence  m i g h t be a n a l o g o u s t o t h e Compton E f f e c t .  He and K.C. K r i s h n a n  2  e x a m i n e d some 80 s u b s t a n c e s u s i n g  s u n l i g h t . The r e s u l t s were t h e same a a f o r f l u o r e s c e n c e but  t h e r a d i a t i o n was f o u n d t o be p o l a r i s e d .  remafckable d i s c o v e r y had  f o r t h e methods a n d m a t e r i a l s  been a t t h e d i s p o s a l  a monochromatic  t h e r e s u l t i n g spectrograms e x h i b i t e d  line  source spectra,  i n w h i c h . t h e new o r m o d i f i e d l i n e s a p p e a r e d a l o n g 1  (67)  2 (46)  used  o f s c i e n t i s t s f o r o v e r 50 y e a r s .  O b s e r v a t i o n s were now made w i t h and  T h i s was a  with  :  -2-  the l i n e c o r r e s p o n d i n g  t o the i n c i d e n t monochromatic  r a d i a t i o n . These l i n e s were p o l a r i s e d and w a v e l e n g t h . The  d i s c o v e r y was  of  longer  f i r s t published  February  1  28,  1928  . The  same e f f e c t wa3  by L a n d s b e r g H and M e n d e l s t a m m a f t e r Raman's o r i g i n a l The  i n Russia,  independently a b o u t two  weeks  announcement.  explanation  s u g g e s t e d by Raman was  the- change o f f r e q u e n c y was absorption  2  discovered  that  b r o u g h t a b o u t by t h e  partial  o f t h e i n c i d e n t quantum o f r a d i a t i o n by  m o l e c u l e , and  the  the  s a a t t e r i n g of t h e unabsorbed p a r t .  T h i s would g i v e r i s e t o l i n e s of l o n g e r wavelength ( i . e . l o w e r f r e q u e n c y ) t h a n the i n c i d e n t r a y . Such a of d i s p l a c e d f r e q u e n c i e s  had  b e e n p r e d i c t e d by  possibility Kramers 3  and H e i s e n b e r g i n 1 9 2 4 .  I n 1928  , A d o l p h Smekel  r e f e r r e d t o t h e f a c t t h a t he had t h e o r e t i c a l l y i n 1923.  be  Some e a r l y a u t h o r s r e f e r r e d t o  1928,  a c t u a l frequency s h i f t by benzene and  been c o n c e d e d t h a t i t  Rocard  reported  p o i n t e d out  l i n e s appearing  o f benzene s c a t t e r i n g m i g h t be  In the  3  (59)  4(60)  suggested t h a t spectrograms  c a u s e d by d i s t u r b i n g  f a c t o r s s u c h as i n t e r m o l e c u l a r f i e l d s and (34)  the  by w a t e r , c o r r e s p o n d t o t h e known i n f r a -  the d i f f u s e n e s s of the  2  that  i n the case of s c a t t e r i n g  r e d a b s o r p t i o n b a n d s o f t h e s e s u b s t a n c e s . He  (47)  this  c a l l e d t h e Raman E f f e c t . • • c In A p r i l ,  X  •  predicted this effect  as t h e S m e k e l E f f e c t , h o w e v e r i t h a s should  4  5  (52)  polymerisation.  In  .July , 1 9 2 8 , Raman a n d K r i s h n a n  showed t h a t  t h e r e was a n e g a t i v e a b s o r p t i o n o f r a d i a t i o n , showing t h e p o s s i b i l i t y of h a v i n g energy g i v e n t o as w e l l as taken f r o m t h e i n c i d e n t quantum. Thi-s was a n e x p e r i m e n t a l of t h e I d e a o f i n d u c e d e m i s s i o n o f r a d i a t i o n , suggested  proof  first  by E i n s t e i n , i n c o n n e c t i o n w i t h b l a c k body  radiation. The above g i v e s a few h i g h l i g h t s o f t h e d i s c o v e r y o f t h e Raman E f f e c t . W i t h t h e d i s c o v e r y o f t h i s phenomenon an e n t i r e l y new f i e l d to  o f i n v e s t i g a t i o n h a s b e e n opened up  the p h y s i c i s t . I t i s a l s o o f great importance  c h e m i s t . By s t u d y i n g t h e f r e q u e n c y  t o the  s h i f t s and i n t e n s i t i e s  o f t h e l i n e s one c a n o b t a i n d a t a upon t h e i n t e r n a l , s t r u c ture of the molecules. In  the f i r s t  1 6 months a f t e r i t s d i s c o v e r y  150 papers- h a d b e e n p u b l i s h e d . S i n c e t h e n  literally  thousands of a r t i c l e s have appeared,and a l s o s e v e r a l e x c e l l e n t books. T h e ' f i e l d i s an e v e r b r o a d e n i n g one, and much r e s e a r c h r e m a i n s t o be done..  1  (47)  over  -4-  THE RAMAN  EFFECT.  A photon of l i g h t I s s a i d t o have a d e f i n i t e e n e r g y c o n t e n t , htf  ( quantum o f e n e r g y ) , where h i s  P l a n k ' s c o n s t a n t and V  i s t h e f r e q u e n c y . When s u c h a  p h o t o n c o l l i d e s w i t h a m o l e c u l e one o f t h e f o l l o w i n g t h r e e e v e n t s may (1)  occur:  No change t a k e s p l a c e i n t h e p h o t o n . T h i s i s  the ordinary R a y l e i g h s c a t t e r i n g . L o r d R a y l e i g h ' s formula f o r . t h e I n t e n s i t y of t h e s c a t t e r e d l i g h t i n a d i r e c t i o n m a k i n g an'angley/3'.: w i t h t h e i n c i d e n t r a y i s , incident light i s unpolarised:  i n which A  2  i f the  • m Vif  i s t h e i n t e n s i t y o f t h e i n c i d e n t l i g h t . , D° , D  t h e o p t i c a l d e n s i t i e s o f t h e p a r t i c l e s , and t h e medium I n w h i c h t h e y a r e i m m e r s e d , m t h e number o f p a r t i c l e s  , and  t h e wave-length. The r a t i o o f t h e a m p l i t u d e s o f t h e I n c i d e n t and s c a t t e r e d l i g h t i s  I =  2  kV / r A , w h e r e V i s  t h e volume o f t h e d i s t u r b i n g p a r t i c l e , r i s t h e d i s t a n c e f r o m t h e p a r t i c l e t o t h e p o i n t a t w h i c h r a t i o measurements a r e b e i n g made, k i s a p r o p o r t i o n a l i t y c o n s t a n t . (2)  The p h o t o n may  t o t h e m o l e c u l e . The  g i v e a l l or p a r t of i t s energy  e n e r g y may  be d i s t r i b u t e d t h r o u g h o u t  e i t h e r or b o t h of the v i b r a t i o n a l or r o t a t i o n a l of f r e e d o m  of t h e m o l e c u l e .  (3)  The m o l e c u l e may  i m p a r t energy t o the  degrees  photon,by  g i v i n g up v i b r a t i o n a l o r r o t a t i o n a l e n e r g y w h i c h i t already possesses.  To e x p r e s s t h i s m a t h e m a t i c a l l y we may s a y : , hv = h ^ ± where:  h i s Planck's  h^V-  constant,  y is.,, t h e f r e q u e n c y o f t h e i n c i d e n t t  Y i s the frequency  photon,  of the scattered  A F i s one o f t h e c h a r a c t e r i s t i c  photon,  vibrational  f r e q u e n c i e s ' o f t h e molecule.. I f the resultant a.spectrograph,  l i g h t i s e x a m i n e d by means o f  definite spectral  l i n e s are recorded. I f  a m o n o c h r o m a t i c s o u r c e i s u s e d we g e t a l i n e on t h e p l a t e  due t o i n c i d e n t  radiation.  example o f R a y l e i g h s c a t t e r i n g , energies are involved.  appearing  T h i s i s an  where no c h a n g e s  i nthe  O t h e r weak l i n e s o c c u r i f  d e f i n i t e amounts o f e n e r g y  h a v e been s u b t r a c t e d f r o m , o r  added t o t h e o r i g i n a l , q u a n t u m . The n e t r e s u l t o f t h e p r o c ess i s t h e p r o d u c t i o n o r r e r a d i a t i o n wavelengths  t h a n e x i s t i n t h e o r i g i n a l beam, a n d w h i c h i s  e m i t t e d by t h e m o l e c u l e s  themselves/  This i s closely related phenomenon, f l u o r e s c e n c e , i n w h i c h The  of l i g h t of d i f f e r e n t  Raman E f f e c t  t o another  physical  t h e quantum i s r e e m i t t e d . .  d i f f e r s from f l u o r e s c e n c e i n t h e f o l l o w i n g  t h r e e ways: (1)  The i n t e n s i t y i s o f an e n t i r e l y d i f f e r e n t  of m a g n i t u d e . (2) 1  ,  The p o l a r i s a t i o n (42)  i s very strong.  order  (3)  " .-• 'While, t h e f r e q u e n c y o f t h e f l u o r e s c e n t  i s .characteristic of t h e f r e q u e n c y M  o f t h e medium, a n d e n t i r e l y the exciting radiation,.the  radiation  independent frequency  of t h e Raman r a d i a t i o n depends upon t h e f r e q u e n c y o f t h e incident  r a d i a t i o n , and as t h e l a t t e r i s s h i f t e d i n the  spectrum, the s c a t t e r e d  radiation i s correspondingly  ; shifted. v  '  . The f o l l o w i n g  are the e s s e n t i a l features of  1  Raman r a d i a t i o n . " " (a)  I t s u n i v e r s a l i t y ; - I t may be o b t a i n e d f o r s o l i d ,  l i q u i d , o r gaseous forms of o r g a n i c o r i n o r g a n i c  material.  (b)  diffuse  . Spectral  c h a r a c t e r ; - There a r e l i n e s ,  b a n d s , a n d more o r l e s s d i f f u s e accompanying t h e l i n e s (c)  Theoretical  continuous  spectrum  or.bands. e x p l a n a t i o n o f t h e phenomenon;-  T h i s i n v o l v e s , a n e x c h a n g e o f e n e r g y b e t w e e n t h e quantum and t h e m o l e c u l e , a n d t h e e q u a l i t y  o f t h e . Ehange o f .  f r e q u e n c y t o a c h a r a c t e r i s t i c f r e q u e n c y o f t h e molecule., The  consequent  exploration  utility  o f t h e phenomenon a s a n a i d t o t h e  of molecular spectra,  e s p e c i a l l y i n the  'infra-red i s apparent. (d)  T h e r e i s a p o s s i b i l i t y o f a n l | enhancement  of frequency i n a d d i t i o n (e)  P o l a r i s a t i o n ; - There i s a s t r o n g  of the, Raman s p e c t r a l 1  t o the degredation of frequency.  (76)  lines.  polarisation  (f)  The new phenomenon d i f f e r s f r o m f l u o r e s c e n c e  hut i s r e l a t e d t o i t . (g)  I t - h a s an a n a l o g y t o t h e Oompton e f f e c t , a n d  i n d i c a t e s t h e e x i s t e n c e o f an X - r a y s c a t t e r i n g  with  . a l t e r e d w a v e l e n g t h o f a more g e n e r a l t y p e t h a n t h e Comptoh effect. L e t us c o n s i d e r t h e c a s e where t h e p h o t o n  loses  energy t o t h e m o l e c u l e . M a t h e m a t i c a l l y : hY = h v t  where:-  y  \\^ - h K  -  bAV  I s 'the r e s u l t i n g f r e q u e n c y ,  y i s the Incident frequency, t  o - A F i s the s h i f t i n frequency. T h i s shows t h a t t h e f r e q u e n c y o f t h e r e s u l t i n g i s l e s s than t h a t of the i n c i d e n t Now  since:  V ~  Therefore:  /L>  radiation  radiation.  ~% A  a n d h e n c e on t h e s p e c t r o g r a m t h e m o d i f i e d l i n e s a p p e a r on t h e l o n g e r w a v e l e n g t h  side/of the incident  line.  T h i s i s t h e most common t y p e o f t r a n s f e r . I n t h i s c a s e i t I s assumed t h a t t h e e n e r g y g i v e n t o t h e m o l e c u l e , i s d i s t r i b u t e d amongst i t s v i b r a t i o n r o t a t i o n d e g r e e s o f f r e e d o m . The s p e c t r a l l i n e s p r o d u c e d a r e commonly Stokes  called  lines. Now c o n s i d e r t h e c a s e where t h e m o l e c u l e s  themselves i m p a r t energy t o t h e photon, t h e n :  thus  |^ > V,  and f r o m  w e  ^ ^ X  Hence t h e s e , l i n e s f a l l  s e e  tkat  A <. /L  t  on t h e s h o r t e r w a v e l e n g t h  side of  the i n c i d e n t r a d i a t i o n . I n order f o r a molecule t o impart e n e r g y ~ i t must p o s s e s s more t h a n a c e r t a i n amount o f e n e r g y  minimum  c a l l e d the "groundcstate", that i s the  m o l e c u l e must be i n an " e x c i t e d s t a t e "  . A t room t e m p e r a t  f o r most m a t e r i a l s , most o f t h e m o l e c u l e s a r e i n t h e i r g r o u n d s t a t e . I t i s " e v i d e n t t h a t t h e number o f m o l e c u l e s w h i c h c a n i m p a r t e n e r g y i s v e r y s m a l l . The a n t i - S t o k e s l i n e s , as t h e s e s h o r t e r wavelength w i l l be f e w and v e r y weak..  •  l i n e s are c a l l e d ,  ,  I t was d e d u c e d f r o m wave m e c h a n i c s ^ t h a t t h e r a t i o o f t h e i n t e n s i t i e s ' o f t h e S t o k e s and a n t i - S t o k e s Raman l i n e s i s p r o p o r t i o n a l t o  N  2  / N  1  2  , where N  2  and N  n  1  a r e t h e numbers o f m o l e c u l e s p e r u n i t volume i n t h e n o r m a l and e x c i t e d s t a t e s r e s p e c t i v e l y . I t i s now obvious that the i n t e n s i t y of the a n t i - S t o k e s l i n e s depends upon t h e number o f m o l e c u l e s i n a n e x c i t e d I t i s p o s s i b l e t o r a i s e a. m o l e c u l e t o a h i g h e r  state.  energy  ,:  l e v e l by t h e r m a l a g i t a t i o n . As . the t e m e r a t u r e r i s e s t h e i n t e n s i t i e s of t h e a n t i - S t o k e s l i n e s should i n c r e a s e , compared t o t h o s e o f t h e s t o k e s l i n e s , T h e e a r l i e s t of t h i s was g i v e n f o r C C l ^ a t 34° C. a n d at. 81° 1  (8)  2  (32)  C.  proof 2  It  i s q u i t e obvious  that the differences  b e t w e e n t h e - f r e q u e n c i e s o f t h e Raman l i n e s a n d t h e frequency uencies  o f t h e i n c i d e n t l i n e c o u l d be e q u a l t o t h e f r e q -  o f some c o n c e i v a b l e e m i s s i o n o r a b s o r p t i o n l i n e s ,  of t h e s c a t t e r i n g  atom o r m o l e c u l e .  These have b e e n  shown t o be t h e l i n e s i n t h e i n f r a - r e d a b s o r p t i o n bands T p -z 5  of t h e s c a t t e r i n g m o l e c u l e  ' ^ . The f r e q u e n c i e s o f  v i b r a t i o n n e e d n o t be t h e f u n d a m e n t a l s . O v e r t o n e s may i n t h e Raman E f f e c t . I f t h e a n h a r m o n i c i t y of t h e d i a t o m i c m o l e c u l e  occur  i n the motion  i s t a k e n i n t o account and i s  assumed t o be t h e f i r s t h a r m o n i c I n t h e Raman s h i f t  becomes  f r o m 1/150 t o 1/400 o f t h e i n t e n s i t y o f t h e f u n d a m e n t a l . T h i s i n t e n s i t y i s so A c neglected  s m a l l t h a t i n most c a s e s i t may be  . , N o t a l l Raman l i n e s c o r r e s p o n d  to infra-red  a b s o r p t i o n b a n d s , n o r do a l l a b s o r p t i o n b a n d s h a v e Raman l i n e s c o n n e c t e d w i t h them .An example i s t h e c a s e where V  two i n f r a - r e d band's w i t h f r e q u e n c i e s ^ ,  h  have a s s o c i a t e d  w i t h them a t h i r d o p t i c a l l y i n a c t i v e f r e q u e n c y  P  5  The. p r o b a b i l i t y i s t h a t t h e Raman l i n e w i l l h a v e a frequency  shift  which i s | ^ = ^ _ p ,  o p t i c a l l y a c t i v e , w h i l e H,  }  1  (15)  2 ( 52 ) 3 ( 66 )  4 ( 4)  , a n d i s now  are o p t i c a l l y inactive. 5 ( 50)  -10F o r t h e d i a t o m i c m o l e c u l e we may, h a v e two t y p e s o f Raman s p e c t r a :  (1) R o t a t i o n a l , (2) V i b r a t i o n - r o t a t i o n .  The r o t a t i o n a l Raman l i n e s h a v e been f o u n d f o r H  2  0  molecules,  2  , and NO  , and s e v e r a l o t h e r of t h e l i g h t e r  , N  2  ,  and h a v e t h e f r e q u e n c y s h i f t s g i v e n i n T a b l e I . TABLE I  H  2  354, 589 cmT  •  1  1554,3085  cmT  1  °2 N  2331,4633  cmT  1  2  The m a g n i t u d e o f t h e f r e q u e n c y s h i f t f o r r o t a t i o n a l Raman spectra i s g i v e n by:  where:  J - quantum number o f t h e l o w e r B - r o t a t i o n a l constant .1  It  state,  h 8 ^'«c I  -.moment o f I n e r t i a o f t h e m o l e c u l e .  c a n be s e e n s i n c e B »~ l / l  t h a t f o r heavy m o l e c u l e s t h e  r o t a t i o n a l l i n e s w i l l be v e r y c l o s e tfo t h e i n c i d e n t 12 and w i l l a p p e a r a s w i n g s . ' .. It of (1)  line  i s t o be n o t e d t h a t t h e r e a r e two t y p e s  molecules: P o l a r m o l e c u l e s ; - These a r e i n f l u e n c e d by t h e  a l t e r n a t i n g ©lectric^fields o f l i g h t . . (2)  N o n - p o l a r m o l e c u l e s ; - These have no v i b r a t i o n  r o t a t i o n Raman s p e c t r a , a n d a r e n o t i n f l u e n c e d by t h e alternating electric 1 (2) 2 (65)  fields.  From s u c h a humble b e g i n n i n g i t i s p o s s i b l e t o f i n d , t h e o r e t i c a l l y t h e f r e q u e n c y s h i f t s t o be e x p e c t e d i n Raman s p e c t r a . A g a i n i t w i l l  depend u p o n w h e t h e r t h e  molecule i s p o l a r or non-polar.  A diagram  showing t h e  v a r i o u s modes o f v i b r a t i o n f o r e a c h t y p e o f t r i a t o m i c molecule i s g i v e n i n f i g u r e 1.  The NO  molecule i s non-  p o l a r , w h i l e t h e SO m o l e c u l e i s p o l a r . I f we know t h e • 2 Raman s h i f t s  , and t h e g e n e r a l c o n s t r u c t i o n o f t h e m o l e c u l e  we. a r e a b l e b y u s i n g g e n e r a l i z e d c o o r d i n a t e s a p p l i e d t o t h e H a m i l t o n l a n energy f u n c t i o n  , t o show t h e d e t a i l e d  c o n f i g u r a t i o n o f t h e m o l e c u l e . A s i s t o be e x p e c t e d t h e more atoms i n t h e m o l e c u l e t h e . m o r e c o m p l i c a t e d t h e p r o b l e m . D e t a i l s of v i b r a t i o n a l  s t r u c t u r e and s p e c t r a o f p o l y -  a t o m i c m o l e c u l e s , t o 1 2 atom m o l e c u l e s , h a v e been theory.-*-» >3>4*5j6  by many w o r k e r s u s i n g g r o u p  0  N  . ©  ®  1  0 —  V  0^-  *  i  2  0 ^ &  ©  1>  x so.  „ r r  - . - - r - - ^ Q  -*®  8^4  J©  A fig. 1  (3)  2 (73)  3 (23)  4 (15)  1.  5 (16)  6 (50)  studied  -12-  P e r h a p s t h e most d i s t i n g u i s h i n g  f a c t o r of t h e  Raman r a d i a t i o n i s t h e p o l a r i s a t i o n o f t h e m o d i f i e d A g r e a t d e a l o f work h a s "been a c c o m p l i s h e d I t i s not desirable  h e r e t o go i n t o d e t a i l  p o l a r i s a t i o n . The f o l l o w i n g  i n this  1  (56)  2 (62)  field.  concerning  three references give  i n s i g h t i n t o t h e methods e m p l o y e d i n d e t e r m i n i n g ising factor p  lines.  -  a varied the polar-  , a n d i t s v a l u e f o r some compounds 1 > 2 3 « S  3  (9)  1  -> EXPERIMENTAL Raman Tubes : When o n l y s m a l l ' q u a n t i t i e s o f t h e m a t e r i a l s were a v a i l a b l e  , a s m a l l Raman c e l l was r e q u i r e d . A. s i n g l e  w a l l e d p#rex t u b e  ,1.3 cm. o u t s i d e d i a m e t e r a n d 8,0 cm.  l o n g , w i t h p l a n e p a r a l l e l p y r e x windows s e a l e d i n a t t h e ends , was u s e d .  S e c t i o n s o f t h e t u b e were b l a c k e n e d w i t h  l a m p b l a c k a n d s h e l l a c , a s shown i n f i g u r e 2. The p l a n e windows were b l a c k e n e d , e x c e p t . f o r c i r c l e s o f d i a m e t e r s 0.8 cm.  A b l a c k r i n g ; was p a i n t e d a r o u n d t h e t h e r m o m e t e r :  w e l l . T h i s b l a c k coat prevented r e f l e c t i o n  of stray  l i g h t f r o m t h e s i d e w a l l s a n d e n d s . A t one e n d o f t h e t u b e was p l a c e d a s m a l l p l a n e m i r r o r ^ w h i c h was a d j u s t e d t o r e f l e c t t h e l i g h t back a l o n g t h e o p t i c a l a x i s t o t h e :  spectrograph. This mirror r e f l e c t e d the l i g h t  whichthad  b e e n s c a t t e r e d i n a d i r e c t i o n away f r o m t h e i n s t r u m e n t , hence almost d o u b l i n g t h e i n t e n s i t y  of t h e s c a t t e r e d  light falling  i  oh t h e s l i t .  F o r d e c a l i n and carbon t e t r a c h l o r i d e ,  which  were o b t a i n a b l e i n l a r g e r q u a n t i t i e s , a d o u b l e w a l l e d Raman t u b e was e m p i o y e d . l t c o n s i s t e d o f a d o u b l e w a l l e d c y l i n d r i c a l pyrex tube w i t h o u t s i d e dimensions d i a m e t e r a n d 14.8 cm.  o f 4.1 cm.  i n length.. The i n n e r t u b e w h i c h h o l d s  t h e m a t e r i a l b e i n g i n v e s t i g a t e d was 2.6 cm. i n d i a m e t e r a n d 11.1 cm. l o n g . The d o u b l e w a l l was r e q u i r e d f o r work a t d i f f e r e n t t e m p e r a t u r e s . The ends were b l a c k e n e d a s b e f o r e , and a. l a r g e r p l a n e m i r r o r u s e d a s b e f o r e .  1  To f a c e page 15.  fig.  3.  An Adam H i l g e r c o n s t a n t d e v i a t i o n s p e c t r g g r a p h w i t h a g l a s s p r i s m , P e l l i n B r o c a t y p e , was u s e d .  Two  d i f f e r e n t cameras were a v a i l a b l e , one w h i c h gave a d i s p e r s i o n o f 70 A?  p e r mm.  and a s e c o n d  d i s p e r s i o n o f about 4 5 A? p e r mm. 5000  w h i c h gave a  i n the region  4000 t o  A?  Eastman s p e c t r o s c o p i c p l a t e s o f t h e type 1 0 3 - 0 were f o u n d most s u i t a b l e , a l t h o u g h Cramer D r y p l a t e s o f t h e type Hi-Speed  were f o u n d t o be e q u a l l y s e n s i t i v e . The l a t t e r  - p l a t e s : . , h o w e v e r , were t o o t h i c k f o r t h e p l a t e h o l d e r . u s e d . B o t h t y p e s e were d e v e l o p e d i n t h e h i g h c o n t r a s t D-19»  and f i x e d i n F - 5  developer  solution.  Sources: The s o u r c e o f i l l u m i n a t i o n c o n s i s t e d o f 6 s p e c i a l p y r e x mercury  a r c s , a n d one q u a r t z m e r c u r y a r c ,  ^ a r r a n g e d about t h e Raman t u b e a s shown i n f i g u r e 3» The a r c s were p l a c e d p a r a l l e l t o the. Raman- t u b e  , and t h e  l i g h t f o c u s s e d a l o n g i t s o p t i c a l a x i s by means o f t h r e e aluminium  reflectors. The t y p e o f p y r e x a r c i s shown i-n f i g u r e 4 .  I t was a t h i n w a l l e d p y r e x t u b e 0 , 9 cm. one m e r c u r y  diameter w i t h  p o o l e l e c t r o d e , and one t u n g s t e n  A second tungstem  electrode  electrode.  not connected t o the e l e c t r i c a l  c i r c u i t was i n t r o d u c e d a n d u s e d o n l y i n s t a r t i n g t h e a r c s . T h e s e a r c s were r u n i n p a r a l l e l f r o m t h e same 110 v o l t D.C. s o u r c e  , fig.  5.  At. 3 . 2 .  amperes t h e a r c s o p e r a t e  Raman a r c s . F i g u r e 4.  T o f a c e page 17.  flB-  5.  ' '  . . -17-  i n d e f i n i t e l y . E a c h lamp h a d i t s own e l e c t r i c a l  circuit  c o n s i s t i n g o f a v a r i a b l e r e s i s t a n c e R a n d a choke c o i l L , The choke c o i l h a d a r e s i s t a n c e o f 5.82 ohms , a n d was n  made up o f 685 t u r n s o f # 18 c o p p e r w i r e a r o u n d a l% laminated circuit  i r o n c o r e . The ammeter A, was i n t r o d u c e d i n t o t h e  by c l o s i n g s w i t c h S I a n d t h e n o p e n i n g s w i t c h S 2 .  By means o f t h i s arrangement"- o n l y one ammeter was n e e d e d to  f i n d t h e c u r r e n t f l o w i n g i n each o f t h e c i r c u i t s , and  i t was n o t n e c e s s a r y  t o l e a v e t h e ammeter i n t h e  circuit.  T h e r e were two: means by w h i c h t h e a r c s c o u l d be s t a r t e d : (1)  A h i g h v o l t a g e t r a n s f o r m e r was c o n n e c t e d  across  t h e a r c , f r o m t h e dummy e l e c t r o d e t o t h e m e r c u r y p o o l e l e c t r o d e . The w h o l e a r c was h e a t e d  w i t h a bunsen  burner,  and the, h i g h . v o l t a g e was a p p l i e d . I m m e d i a t e l y t h e a r c struck  the transformer  was t u r n e d o f f a n d t h e c u r r e n t  r e g u l a t e d t o 3.2 amps b y v a r y i n g t h e r e s i s t a n c e R. (2)  I f a high voltage Tesla c o i l  ( l e a k t e s t e r ) was  a v a i l a b l e i t was p o s s i b l e t o s t a r t t h e a r c s by h e a t i n g t h e negative  end o f t h e a r c ( t h e m e r c u r y p o o l e l e c t r o d e ) a n d  a p p l y i n g t h e c o n t a c t o f t h e c o i l t o the, dummy e l e c t r o d e . , A b l a s t o f c o l d a i r was r e g u l a t e d , , t o sweep  along the  s i d e s of. t h e a r c s t o a s s i s t i n t h e c o n d e n s a t i o n ;  mercury vapor.  :  of the  The t e m p e r a t u r e c o n d i t i o n i n s t a r t i n g t h e  a r c s was c r i t i c a l .  -18The  q u a r t z m e r c u r y a r c c o n s i s t e d of a q u a r t z  t u b e w i t h m e r c u r y p o o l e i c t r o d e s ( f i g u r e 6) . T h i s a r c did  n o t n e e d a choke c o i l i n t h e c i r c u i t .  s t r u c k a t 3.2  The  arc  amps, and a l l o w e d t o r u n f o r a few  t h e n t h e c u r r e n t was  r e g u l a t e d t o be 2.6  amps  was minutes,  with a  b l a s t o f c o l d a i r b l o w i n g on t h e n e g a t i v e t e r m i n a l . The was  i n b e s t a d j u s t m e n t when a t an a n g l e o f 6° t o t h e  h o r i z o n t a l . Under such  c o n d i t i o n s the arc  operated  indefinitely.  figure  6.  Filters: Raman s p e c t r a may l i n e s > X 4047 A?  and  4358 A?  be  e x c i t e d by t h e m e r c u r y  i n the v i s i b l e r e g i o n .  The  arc  To f a c e page 19  fig.7  -19mercury  s p e c t r u m , a l t h o u g h t h e most c o n v e n i e n t , h a s t h e  .following three disadvantages: (1) A  T h e r e i s a c o n t i n u o u s b a c k g r o u n d between Hg 4358 A ?  (2)  a n d Hg. A 4916 A ?  B o t h Hg AA  4047 A? a n d 4358 A ?  give r i s e to  Raman l i n e s , a n d i t i s d i f f i c u l t t o d e t e r m i n e w h i c h i s t h e exciting (3)  radiation.  '  U n d e r r a d i a t i o n f r o m H g A 4 o 4 7 A? some m a t e r i a l s  fluoresce. In  odder t o o b t a i n a monochromatic  from t h e mercury  arcs a f i l t e r  radiation  s o l u t i o n must be p l a c e d  b e t w e e n them a n d t h e Raman t u b e . A c y l i n d r i c a l g l a s s  cell  ( f i g u r e 7) a b o u t 20 cm. long,, a n d h a v i n g a space o f 1 cm. b e t w e e n t h e i n n e r and o u t e r w a l l s , was u s e d . The s o l u t i o n was p o u r e d i n b e t w e e n t h e w a l l s , a n d was k e p t c o o l b y h a v i n g a s t r e a m o f c o l d w a t e r f l o w i n g t h r o u g h two g l a s s t u b e s :  .sit; ;the \top; of: .the: c e l l  a s shown i n f i g . 7*  The p r o b l e m o f f i l t e r  s o l u / t i o n s was s t u d i e d  s e p e r a t e l y w i t h t h e r e s u l t s as g i v e n i n T a b l e I I f o r inorganic m a t e r i a l s . Table I I I gives the organic materials w h i c h may be u s e d . Heating  System: It  was d e s i r a b l e t o s t u d y t h e m a t e r i a l s  under  d i f f e r e n t temperature conditions. This n e c e s s i t a t e d the u s e ^ b f s o m e ' h e a t i n g s y s t e m . When t h e d o u b l e w a l l e d Raman t u b e c o u l d be u s e d  , a s t r e a m o f warm a i r was c i r c u l a t e d  To f a c e page 20.  f i g . 8.  -20between t h e i n n e r walled c e l l air  w a l l s . When o n l y t h e s i n g l e  c o u l d he u s e d i t was  necessary  a l o n g , .the a x i s o f t h e Raman t u b e . , ; The  to force hot  ;  stream o f a i r was'supplied  c o m p r e s s o r ( f i g u r e 9)  from a  , so s i t u a t e d t h a t t h e  c o u l d n o t be; t r a n s m i t t e d  to the  .  vibration  spectrograph  Raman c e l l . The  small  or  the  f o r the heater  is  g i v e r i , i n f i g u r e 8'. The. a i r p a s s e d t h r o u g h a s m a l l m e t a l containerand  was  h e a t e d by an o r d i n a r y , 5 5 0  coil";(:7)f  this coil  r e g u l a t e d by means o f t h e r h e o s t a t s  (1):and  t l i e s e were c o n n e c t e d i n s e r i e s a c r o s s a 110 ; source;. ..T-h-'e:/-dbubl'e'" t h r o w s w i t c h rheostat if  d e s i r e d . The  the current f l o w i n g i n the heater regulated.by  a r e l a y (9) .The  s u p p l i e d by  w i t h the h e a t e r  coil.  one  :  operated  ; i n d e f1 h i t e,: t i me.;  A.C. to tap off  rheostat  (2)  The (6)  temperature  was  .-In s e r i e s  current f o r the  t h e magnet i n " s e r i e s  ';fey/' ^tap'pIng.,'off 2 v o l t s f r o m t h e 110  c o u l d be  . B o t h of  volt  c o i l . T h e e n e r g i s i n g c u r r e n t was  t h e a r c s . T h i s s y s t e m was  .  ammeter (3) m e a s u r e d  magnetising  connecting  c o u l d be  (2)  desired,and  means of ah oven t h e r m o s t a t  ^with, t h i s -was  v  (4) e n a b l e d  (1) i f a h i g h c u r r e n t was  a low c u r r e n t was  r e l a y was  watt heating  f o u n d t o be  obtained  v o l t D. C. m a i n s u p p l y i n g satisfactory,  automatically, with safety, for  and an  -21-  TABLE I I  Material. Cobaltous  :  chloride  W a v e l e n g t h removed. Hg  5461, 4 9 1 6 , 4358 A?  Iodine i n carbon tetrachloride  Hg  5461,4916 A?  Potassium  Hg  4916,4358 , 4047 A?  Bichromate  Nickel  Nitrate  Hg  4 0 4 7 A?  Nickel  Chloride  . Hg  4047 A?  Nickel  Sulphate '  Kg  4047 A9  Sodium N i t r i t e  (cone.) Hg  '  4047 A. • t  Fluorescein  Continuous background b e t w e e n Hg 4358 a n d 4916 A?  \  -22-  TABLE I I I Material  Quinine  lines removed.. sulphate  Remarks -  Hg  4047 A?  Decomposes on p r o longed exposures.  Hg  4047 A?  J u s t decreases the i n t e n s i t y .  sodium s a l t s of ''Or-;.ere:s'oipht'h-ai.eI'n / . Hg  4047 A?  m-dinitrobenzene  praesbdymium  Cobalt  '••'•'•"  eliminates the h a l a t i o n of. Hg 4358 A?  sulpho,cyanide  Acetic acid i n 'water  Hg  4358 A?  Hg  1849  A?  C o b a l t ! t h i o c y a n a t e . '. Hg '•••?' soln. '  49i'6 A?  p-nitrotoluene  4047 A?  :  Hg  6 % solution of •Hg . n i t r o b e n z e n e and 0 . 5 gnu Rhodamihe 50e x t r a c t e d w i t h 100 cc. a l c o h o l a t 96oc.  +  2 solution; of p - n i t r o t o l u e n e and 1 part i n 50,000 of Rhodamine d y e 5C-DN e x t r a I n a 30 mm. / l a y e r ''  4047 A?  Hg. 4 0 4 7 , _ 4916 AT :  diminishes the background between . Hg 4358 and 5461 k°.  a b s o r b s 60 % o f Hg 4047 A?  transmits: 1% 4047 A? 1% 4916 A? 70'% 4358 A?  -24-  The a p p a r a t u s i n o p e r a t i o n . F i g . 12.  -26RESULTS I n most c a s e s i t i s p o s s i b l e t o f i n d t h e w a v e l e n g t h o f t h e unknown l i n e s b y a d i r e c t  comparison  w i t h a s t a n d a r d p h o t o g r a p h e d on t h e same p l a t e .  I t was n o t  considered advisable t o photograph the i r o n a r c standard on t h e same p l a t e a s t h e Raman s p e c t r u m . Hence a n i n d i r e c t method o f o b t a i n i n g t h e w a v e l e n g t h s o f t h e Raman l i n e s had. t o be employed.. The Raman s p e c t r o g r a m i s m e a s u r e d on t h e c o m p a r a t o r i n s u c h a-way t h a t t h e d i s t a n c e from' a f i x e d reference l i n e  , one o f t h e Hg l i n e s , t o e a c h o f t h e  Raman l i n e s i s known. An i r o n a r c s p e c t r u m i s measured f r o m the- same r e f e r e n c e p o i n t . . By p r o p e r t r a n s l a t i o n t h e r e a d i n g s c a n be c o r r e l a t e d a s i f t h e Raman a n d i r o n  spectra  were t a k e n on t h e same p i , a t e . From t h e known v a l u e s o f t h e i r o n l i n e s t h e wavelength-: o f t h e Raman line;.: c a n be found by d i r e c t the it  interpolation  v a l u e s , o f t h e two c l o s e s t lies.  o f I t s . measured v a l u e and i r o n l i n e s between which  This w i l l give accurate results  provided the  d i f f e r e n c e I n w a v e l e n g t h o f t h e two i r o n l i n e s  is-hot  g r e a t e r t h a n 30-40 A? :  A s a c h e c k on some p l a t e s i t was n e c e s s a r y t o  use a f o r m o f i n t e r p o l a t i o n of 100 t o 200 A?  f o r m u l a which h e l d f o r a • range  Identification  o f t h e Raman l i n e s was  a i d e d by t h e Use o f a M o l l R e c o r d i n g , M i c r o p h o t o m e t e r .  1  I  -27ALIPHATIC HYDRO CARBONS Occurence; It  i s only r e c e n t l y t h a t a f a i r l y  complete s e t  of t h e even s a t u r a t e d a l i p h a t i c . h y d r o c a r b o n s of t h e form ;*  c  H n  2n+2-  h  a  v  e  ^  e  e  n  o b t a i n e d I n a p u r e s t a t e . The a l i p h a t i c  s e r i e s s t a r t s w i t h the" s i m p l e m o l e c u l e  methane CH^ , a n d .  e a c h s u c c e s s i v e member adds C H . 2  The  lower hydrocarbons  c a n be s y n t h e s i s e d q u i t e  e a s i l y . Many o f t h e h i g h e r h y d r o c a r b o n s Those of t h e t y p e G H n  low b o i l i n g f r a c t i o n s  2 r l +  2  a  r  e  occur i n nature.  c o n t a i n e d ".in t h e l i g h t e r  o f most p e t r o l e u m s .  eums t h e s e xsan be r e m o v e d by* c h i l l i n g ,  I n some p e t r o l -  thus  manufacturing  t h e p a r r a f i n e wax o f commerce. T h i s c o n t a i n s a m i x t u r e o f - t h e members o f t h e s e r i e s f r o m G„„H ,^, 22 46 ;  ber of hydrocarbons  t o G M , . The num26 54 '  i s o l a t e d from petroleum  .Many p a r r a f i n e hydrocarbons  i s small.  are produced i n a v a r i e t y of  b i o l o g i c a l p r o c e s s e s , a n d many o f t h e h i g h e r members • • O c c u r . i n s m a l l q u a n t i t i e s i n many e s s e n t i a l o i l s . rose o i l contains s u f f i c i e n t - l a r g e c r y s t a l s on. c h i l l i n g .  stearoptene T h i s crude  Commercial  t o separate i n  s t e a r o p t e n e has been  s e p a r a t e d i n t o p a r r a f i n e s m e l t i n g a t 22° C. a n d 40-41° Q. .r"'^lieSe.\cbxild be H e p t a d e c a n e G ^ H ^ H e p t a e o s a n e G ^H^g 2  and Henelsosane C g ^ H ^ •  and Hentricosane  G-^Hg^  occur i n  b e e s wax. C a n d e l i l l a wax, u s e d i n m a k i n g p h o n o g r a p h r e c o r d s , c o n t a i n s a b o u t 74-76 % ofl d o t r i a c o n t a n e C  E . 32 66 Small:'quantities of c r y s t a l l i n e p a r r a f i n e s occur i n c e r t a i n '''V.E^cai'yT)tus- oiis.. P e n t a c o n t a n e -CL JEL- . h a s b e e n f o u n d i n ,-V'./v.Y , X, '. 50- 102".  ;  v  A  :  :  rr  To f a c e page 28.  |  H— C I 1 H  H i — Ci 1  H |  H |  C—H  —  H fig.  1  1  H  H  13 a.  f i g . 13 b.  v  -28-  ./.  Lancashire  c o a l . This hydrocarbon i s the highest  monologue  •which has•:"been: f o u n d o c c u r r i n g n a t u r a l l y . E v i d e n c e o f t h e e x i s t e n c e o f h i g h e r members'has ' 0  been I n d i c a t e d .  The:, s e r i e s w i t h Which . t h i s r e s e a r c h was •  / p a r t i c u l a r l y i n t e r e s t e d c o m p r i s e d t h e e v e n members  from  : 0.:U  glass  to, C i,H »: I t waa p o s s i b l e w i t h t h e p r e s e n t 7  7A  :\e.q:Ui'p'ment\.ot;o; f I n d \the Raman s p e c t r a o f two members o n l y , ^ 1 8 ^ 3 8 - ^ ^22^4-6" ^ a  rl<  e  latesii'avallable physical properties  \of:the%members'of t h e s e r i e s a r e g i v e n i n T a b l e I V . /Structure: ;  ' . . ' 'v'\;  v  .Thes  chain, molecules.  f o r m what a r e known a s l o n g The m o l e c u l e : i s c o n s i d e r e d  a s ' i n d i c a t e d i n , , f i g . . ,13 a, ;  It  is^ ;;nb^>'kn'bwn,:defihitel;y  c f t h e form;  t o be a c h a i n , ,  GH^  ^  GH  what f o r m t h i s , c h a i n  ;  •takes,.. T h e c h a i n i s n o t c o n s i d e r e d  2  'J-n-2  C H  3*  actually,  t o b e / l i n e a r , but i s  t h o u g h t t o be a s p i r a l w i t h t h e C atoms f o r m i n g  the main  S p i r a l , a two d i m e n s i o n a l . / r e p r e s e n t a t i o n i s g i v e n i n f i g •;i3vW  temperature, the  Wangle j0 i s / c o n s i d e r e d t o , be t h e same t h r o u g h o u t t h e chain''. (  rWith; i n c r e a s e i n . temperature i t I s p o s s i b l e t h a t the c h a i n /may  s t r e t c h , but t h i s  c a n n o t be shown c h e m i c a l l y . However,,  i n t h e Raman e f f e c t i f  t h e change i n a n g l e  "bugh i t ^1,11, a f f e c t t h e f r e q u e n c y vtemper^ture.: v '  :  •  '  "  I  ,  s h i f t s w i t h a change i n  ;  :  •  0 i s g r e a t en-  ; .It-can'be.,:secn  f;Our;fflaIirty|)es  ;  from: f i g , 1 3  that there w i l l  be  of v i b r a t i o n , b o t h t r a n s v e r s e and l i n e a r  -29-  C-C l i n k a g e , a n d b o t h t r a n s v e r s e and l i n e a r C-H l i n k a g e . The  l i n e a r o s c i l l a t i o n s take place along t h e valence  and  the transverse V i b r a t i o n s are r e a l l y  perpendicular t o these valence linkages  bonds,  deformations  b o n d s . G-H a n d C-C  h a v e c h a r a c t e r i s t i c f r e q u e n c i e s . . I f t h e two end  / s e c t i o n a a r e c o n s i d e r e d , i t i s t o be n o t e d t h a t t h e C-H frequencies  should d i f f e r from those  of t h e i n n e r  C-H  l i n k a g e s . One can.draw ah a n a l o g y t o t h e c h i l d ' s game o f 'crack t h e whip  1  i n which, t h e end p e r s o n r e c e i v e s an  e x t r a . p u l s e o f energy and i s o f t e n v i o l e n t l y  shaken.  S i m i l a r l y t h e e n d atoms s h o u l d r e c e i v e an e x t r a p u l s e o f energy  and s h o u l d o s c i l l a t e w i t h a s l i g h t l y  frequency^ by t h e s e  different  I t I s h o p e d t h a t t h i s f a c t may be i l l u s t r a t e d long chain molecules,  p a r t i c u l a r l y f o r those  as many a s 30 t o 34 C a t o m s , where t h e e f f e c t s s h o u l d  with become  q u i t e measurable. No n o n - b e n z e n o i d h y d r o c a r b o n s a r e known t o ..fluoresce', h o w e v e r some, o f t h e h i g h e r members a p p e a r t o f l u o r e s c e . U n d o u b t e d l y t h i s i s due t o t h e s e m i - c r y s t a l l i n e s t r u c t u r e of t h e l i q u i d . I t i s necessary  to raise.the  m a t e r i a l w e l l above t h e m e l t i n g p o i n t b e f o r e  i t becomes  o p t i c a l l y t r a n s p a r e n t . As t h e t e m p e r a t u r e i n c r e a s e s t h e fluorescence decreases.  The e x p l a n a t i o n , may be a s f o l l o w s .  I n some .substances i t i s t h o u g h t t h a t t h e t r i p l e p o i n t i s not  r e a l l y a p o i n t , b u t a d e f i n i t e r e g i o n where b o t h  s o l i d and l i q u i d  s t a t e s may e x i s t s i m u l t a n e o u s l y , f i g . 1 4 .  -30The r e g i o n i s t h o u g h t t o be f a i r l y l a r g e h y d r o c a r b o n s , p r o b a b l y about 10° means t h a t t h e l i q u i d may  f o r the  higher  temperature range.  This  contain srystals f o r quite a  r a n g e o f t e m p e r a t u r e above t h e m e l t i n g p o i n t . These c r y s t a l s could s c a t t e r the l i g h t ,  s i m i l a r t o f l u o r e s c e n c e . The  member o f t h e s e r i e s f o r w h i c h t h i s i s a d i s t i n c t  fig.  Raman  first  feature  14.  shift: The Raman s h i f t i s a f u n c t i o n o f t h e  forces  e x i s t i n g b e t w e e n t h e atoms i n t h e m o l e c u l e , t h e t y p e o f m o t i o n o f t h e atom, t h e symmetry o f t h e m o l e c u l e , and  the  r e l a t i v e masses o f t h e a t o m s . O r g a n i c , compounds a r e particularly 11lustratine (1) (2)  of these r e l a t i o n s h i p s because:  t h e i r l i n k a g e s a r e almost always :  homopolar;  t h e t y p e o f b i n d i n g i n many c a s e s h a s been  e s t a b l i s h e d by c h e m i c a l means..  -31The s i m p l e - c o m p o u n d s of t h i s s e r i e s h a v e a l r e a d y r e c e i v e d some a t t e n t i o n .  F i g u r e 15 i s a p o r t i o n o f a t a b l e i n  H i b b e n , .showing t h e i n t e n s i t y  and f r e q u e n c y s h i f t s of Raman  l i n e s f o r t h e l o w e r members o f t h e The  series.  simplest saturated aliphatic 4  methane, i s a m o l e c u l e o f t h e t y p e A X . line characteristic vibration  o f .the C-H  i n the - d i r e c t i o n  T h i s has  one,strong  l i n e a r o s c i l l a t i o n , the  o f t h e v a l e n c e bond. I n  two s t r o n g l i n e s A P = 2 9 0 0 and 2955 cmT multiplicity  hydrocarbon,  of t h e hydrogen  1  appear.  ethane  The,  l i n e s i n c r e a s e s with the  C o m p l e x i t y of t h e m o l e c u l e t o b u t a n e , a f t e r w h i c h t h e r e is  no m a r k e d c h a n g e . A p p e a r a n c e o f t h e s e new  attributed  t o t h e p e r t u r b i n g i n f l u e n c e of v a l e n c e f o r c e s  and t o t h e F e r m i R e s o n a n c e e f f e c t G0  2  first  b i n d i n g v a r i e s f r o m 2850 t o 3300 cmT  indicate  noted f o r the  average v a l u e f o r A V f o r t h e 0 - H  m o l e c u l e . The  c h a i n hew  lines i s  1  .With the l e n g t h e n i n g  l i n e s appear at lower f r e q u e n c i e s which  could  a s l i g h t l o o s e n i n g o f t h e b o n d i n t h e s e compounds.  There a l s o . a p p e a r s a d e f o r m a t i o n type of v i b r a t i o n w h i c h owes i t s o r i g i n . t o  t h e . b e n d i n g moment of t h e  £ (c-H), hydrogen  bond,and i s a l m o s t p e r p e n d i c u l a r t o t h e l i n e a r o s c i l l a t i o n s , and f o r w h i c h  1  /\ V  The f i r s t  v a r i e s f r o m 1100 G-G  //——  t o 1400  cm.  1  linkage i s found i n ethanejH I C - — —  H I C —  1 H  1 H  /y  •32-1 T h i s shows a s t r o n g l i n e a t ^ ^ = 9 9 3 cm. -1 l i n e a t At>= 975 cm, 12 to the i s o t o p e is  and a weak  T h i s weaker l i n e h a s been a t t r i b u t e d 13  C  - C  v i b r a t i o n . The C-C  a l s o a l o n g t h e v a l e n c e bond . T h e r e o c c u r  v i b r a t i o n s C-G b e l o w s l i g h t l y w i t h e a c h CH  linkage transverse  - 600 cmT These d e c r e a s e increment, u n t i l f o r long chains 1  theiH-* becomes v e r y s m a l l and t h e i n t e n s i t y v e r y O  6cDO  <tc O  2CDO  a DO  /2 OO  /Ol DO  CM  /4 00  weak.  /600  2900  ^!  -  4  _ _ _ J 1 1 (CH ) CHCH 3 2  1 ! 1  3  •  ll ,  I  1  S  i L i  Ci!(%(>!!(>t/,e,ll,, 3 2  2  (eH ) CHCH ,CfCH ) 3 2  :  , 1  , 1 ,  1  1 11  ,  1  1  1  1 1  ,  I*.  i  11  .  '.—  III  s(r  J  _ _ l |j  1  ll  ,  1  1  1 1 1  II  /ooo  1 /WO ,s(C h')  15.  I  1  ....  _  11 n II I I  1 1 .1 1 111  1  11  _^ '200  _  ll i L  .  L  11  11 . 1 ,  L 1 1  J L L _  1 •  .  c)  ?ig.  1  l  1  1  .  .. .  1, l l  _  11  1 1 11 u_l  . i.l ,. 000  1  1 1  1  iOO  ll j i  1  1  ,1,  II  Ml  -  1 1  1 1  1  1  .1 C,O'!P?  . • 1  1  11 ll  ,  1  I  ^20  J  1  l u i i  • 1  3 i  l lu l  ,  I  1 1  _, ... ,,  *  j 1  1  X i l 1 1,.  1  3 2  L i _  11  ll  1  J . i 1  i._ 1 C/£  1 H i  1  1  S  (CH ) CH(CH,) CH(CH )  1  1  ,.!  7  1.  L a _ J  1,1.  (CH ) CC H S  ,  1 1 1  1 3  1  1  ~x  (CH ) CHC H 3  1  1  1  1 3 2  ..  1  _  li  _JL1.11  J  :i 1 ;  , _ J l J l l _  „Ji„_. i  n1  _  -33-  TABLE I V Material  •  Molecular weight  Density'  Boiling Melting point point. •  G  12 26  C  l4 30  H  H  [ 16 34 C  C  C  H  18 33 H  H  20 42  G  22 46  G  24 50  H  H  C  26 54  C  28 58  C  29 60  C  30 62  H  H  H  H  °32 66 H  C  34 70  C  36 74  C  60 122  H  H  H  Duodec ane Tetradecane Hexadecane Octade cane Eicosane Duocosane Tetra-: cosane isohexacosane Octacosane Nonacosane Triacontane DOtri-contane tetratric contane Sextrfa contane  170.2 198.23  '  -12°  .766  214.5°  .765  252.5  5.5  287.5  20  226.27  G.  •254.3  .7768  317  28  282.33  .778  205  38  3IO.36  .778  317.4  44.4  338.39  57786  324.1  51.1  207  61  317  60  366.42 394.45  ;  64 422.48 450.51  .  .7797  186  66  .775  310;  74-5  478.54  71.8  506.57  76 101-2  -34-  Octadecane  G-^gH-^g  S e v e r a l e x c e l l e n t spectrogram's at v a r i o u s t e m p e r a t u r e s . In  were o b t a i n e d  The r e s u l t s a r e g i v e n i n t a b l e V.  c o l u m n 1" i s g i v e n t h e w a v e l e n g t h  o f t h e Raman l i n e s , .  and i n " c o l u m n 2 t h e c o r r e s p o n d i n g , f r e q u e n c y number i n cmT  1  I n columns-3 and 4  a r e g i v e n t h e Raman f r e q u e n c y  s h i f t s from. X, Hg 4 o 4 7 A 9 The  a n d A Hg 4 3 5 8 A?  respectively.  r e s u l t s are. v e r y i n t e r e s t i n g i n t h e f a c t  that a l l f o u r types of v i b r a t i o n s  o c c u r . T h e r e a r e two  s e t s , o f . l i n e s w h i c h a p p e a r t o be b a n d s . The l i n e s w i t h frequency  s h i f t s of 1080, 1 0 9 9 . 1 ,  1 1 1 6 1 2 cmT  1  take the  a p p e a r a n c e o f a b a n d . The l i n e s w i t h f r e q u e n c y 2807,  2 8 3 1 , 2 8 5 2 cm"  to note  1  form  s h i f t s of  another band. I t i s of i n t e r e s t  t h a t "these t h r e e l i n e s a r e masked by a c o n t i n u u m  which covers t h i s p o r t i o n of t h e p l a t e . i s strongest at  4 9 6 6 A?  and extends  T h i s continuum about 2 5 A?  to  A 4987 A9.  I t w i l l be o f i n t e r e s t t o s t u d y t h i s compound a t much h i g h e r t e m p e r a t u r e s ,  t o s e e i f t h e r e i s much  change i n t h e f r e q u e n c i e s o f v i b r a t i o n w i t h  temperature.  TABLE V  Wavelength i n A? 414-0.3 4213.3 4228.3 4258.1 4265.1 4271.9 4286.6 ^ 4296.1 4389.4 4444.7 4456.7 4495.2 4504.9: 4573.7 4577.7 4581.3 4590.5 : 4595.2 4614.6 4620.1 .-. 4648.8 4784 4831 4887 4938.5 4966 4972 4977.4 4987 5001.7 5026 5047 5071  Frequency i n cmTl 24146.0 23732.9 23643.5 23478.0 ,23439.5 , " 23402.3 23343.723270.4 22775.8 22492 .422431.8 22239.7 22191.8. 21858.0 2I838.9 21821.8 21778.0 21755.8 21664.3 21638.5 21505.0' 20897 20694 20457 20243 20131 20107 20085.2 20045 19988 19899 19808 19714  AV'.  559.0. 977.1 .'IO61.5 1227.0 1265.5 1302.8 1361.3 1434.6 1929.2 2212.6 2273.2 2465.3 2513.2 2847.0 2866.1 , 2883*2 2927.0 2949.2. 3040.7 3066.5 3200 3808  162.2 445.6 506.2 698.3 746.2 1080.0 1099.1 1116.2 1160.0 1182.2 1273.7 1299.5 1433 2041 2244 2481 2695 2807 2831 2852.8/ •.2893 • 2950 3039 3130 3224,  -36Duocosane  C  H  22 46 I t .was i m p o s s i b l e t o o b t a i n a g o o d  of  spectrogram  t h e Raman e f f e c t o f t h i s m a t e r i a l . The e x p e r i m e n t a l  a r r a n g e m e n t d i d n o t a l l o w a h i g h enough t e m p e r a t u r e t o be r e a c h e d . The h i g h e s t t e m p e r a t u r e  o f 80° G. was n o t  s u f f i c i e n t t o e l i m i n a t e a l l the opalescence t h a t good spectrograms  . I t i s hoped  w i l l be o b t a i n e d when q u a r t z c a n  be u s e d t h r o u g h o u t . The r e s u l t s o b t a i n e d a r e g i v e n i n T a b l e V I . T h e s e l i n e s a r e a l m o s t a l l e x c i t e d , by Hg 4047 A ?  I t i s t o be n o t e d t h a t e v e n t h o u g h  f e w l i n e s t h e y seem t o f a l l c l a s s e s £ ( C- C)  }  (C —  %  there are  i n t o the three general  C ) £ (C—H) }  described previously.  F u r t h e r work w i l l be c a r r i e d : o u t u s i n g t h e q u a r t z a p p a r a t u s . TABLE V I Y/ave l e n g t h i n A?  Frequency' in cmT  4l60.1  24031.1  4168.5  23982.7  4185.5  23885.3.  4195.4  23828.9  .  4282.1  23346.5  . 1358.5  4292.3  23291.0  1414.0  ^4442.8;, %A44.9, 4449.5  '  AV'  1  ;  673.9 .  712.p 819.7 886.1.  2203  436  22491.4  2213.6  446.6  22468.1  2236.9  469.9  22502.0  I t i s o n l y r e c e n t l y t h a t Dr. Seyer of the Department  of Chemistry has succeeded i n s e p a r a t i n g t h e  c i s a n d t r a n s i s o m e r s o f d e c a l i n . H i s work on t h e d e n s i t i e s and s u r f a c e t e n s i o n s h a s i n d i c a t e d t h a t t h e r e may be a change i n t h e m o l e c u l a r s t r u c t u r e o f t h e c i s i s o m e r a t 51° G. a n d a s i m i l a r change i n t h e t r a n s i s o m e r a t 85° C. ';' I t was s u g g e s t e d t h a t t h e s t u d y o f t h e Raman s p e c t r a o f the" t w o i s o m e r s w o u l d r e v e a l  definitely  a change I n s t r u c t u r e s h o u l d one o c c u r . The Raman E f f e c t o f t h e e l s i s o m e r a t 20° C. a n d 6:5° C. a n d t h e t r a n s 1  i s o m e r a t 20°; were o b t a i n e d i n 1940 ,, The p r e s e n t i n v e s t i g a t i o n s were because t h e e x p e r i m e n t a l arrangement used p r e v i o u s l y  carried.out  was s u p e r i o r t o t h a t  . I t was t h o u g h t t h a t t h e s p e c t r o g r a m s  _  o b t a i n e d may h a v e more new l i n e s t h a n h a d teeen n o t e d b e f o r e . -The  c i s i s o m e r was s t u d i e d a t 20° Gy'and 75- 80° C. a n d '  t h e s p e c t r o g r a m s o b t a i n e d i n d i c a t e a change i n t h e Raman s p e c t r a , : Somewhere i n t h e r a n g e . The t r a n s i s o m e r was s t u d i e d a t 20° C. a n d 100° C. ., b u t t h e s p e c t r o g r a m s . o b t a i n e d i n d i c a t e t h e r e i s no change, i n t h e Raman s p e c t r a , e x c e p t a change i n t h e i n t e n s i t i e s , w h i c h i s e x p e c t e d . The  first  column o f T a b l e V I I a n d T a b l e V I I I g i v e t h e  w a v e l e n g t h s o f t h e Raman l i n e s o f c i s a n d t r a n s / r e s p e c t i v e l y , while 1  the  (75)  s e c o n d column g i v e s  the frequency  number  -38-  corresponding t o the wavelength are g i v e n t h e frequency exciting lines  Hg  •  . I n columns t h r e e a n d f o u r  s h i f t s i n cmT 4 0 4 7 A?  1  f r o m t h e two  a n d 4 3 5 8 A?  Q u i t e a number o f new l i n e s were r e c o r d e d , and t h e w a v e l e n g t h s  o f some o f t h e o t h e r s were f o u n d more  accurately.  y  -39Gis Decahydronaphthalene. TABLE V I I . Wavelength. 4054.4 4056.9 4071.9 4086.2 4092.1 4102.6 4103.1 4121.6 4137.5 4145.8 4171.1 4180.7 4186.3 4189.8 4196.4 4204 4206*8 4213.0 4218.1 4223.-6 4228.9 4229.2 4232.6 4237.5 4240.8 4245.9 4251.0 4255.1 4258.3 4262.5 4273.7 4296.5 4419.2 4425.-6 4430.5 4436.6 4442.8 4445.8 4474.6 4504.0 4514.4 452'3.6  Frequency • 24657.6 24642.4 24551.6 24465.7 24430.4 24367.9' 24365.O 24255.6 24162;.4 24114.0 23967.7 23912.723880.7 23860.8 23823.3 23780 23764.4 23729.4 23700.7 23669.8 23640.2 23638.5 23619.5 23592.2 23573.8 23545.5 23517.3 23494.6 23477.0 23453.8 23392.4 23268.2' 22622.2 22589.5 22564.5 22533.5 22502.0 22486.8 22342.1 22196.3 22145.1 22100.1  .  Av' 47.4 62.6. 153.4 239.3 274.6 337.1 340.0 499.-4 542.6 591.0 738.3 792.3 824.3 844.2 881.7 925. 941.6 975.6 1004.3 1035.2 1064.8 IO66.5 1085.5 1112.8 1131.2 1159.5 1187.7 1210.A 1228.0 1251.2 1312.6 1436.8 2082.8 2115.5 2140.5 2171.5 2203.0 2218.2 2362.9 2509.7 2559.9 2604.9  AV"  315.8 348.5 373.5 404.5 436.0 451.2 595.9 741.7 792.9 583739  1  -40Wavelength  Frequency  4526.6 4534.3 4543.3 4550.0 4553.0 4558.8 4572.7 4576.1 4583.1 4589.2 4594.7 4602.6 4608.1 4618.3 4623.2 4628.4 4649.6 4651.7 4655.8 4925.7 4947.7 4980.7  22085.5 22048.0 22004..3 21971.9 21957.4 21929.5 21862.8q 21846.6 21813.2 21784.2 21758.1 . 21720.8 21694.9 21646.9 21624.0 21599,. 7 21501.2' 21491.5 21472.6 20296.0 20205.8 20071.9 20034.9 20009.6 19994.0 • 19889.4  4989.9 4996.2 5000.1 5026.4  2619.5 2657.0 2700.7 2933.1 2747,6 2775.5 2832.2 2858.4 2 8 9 1 ..8 2920.8 2946.9 .2984.2 3010.1 3058.1. 3081.0 3105.3 3203.8 3213.5 3332.4 3409.0 4499.2 4633.1 4670.1 4696.4 4711.0 4815.6  852.5 890.0 933.7 966.1 980.6 1008.5 1075.2 1091.4 1124.8 1153.8 1179.9 1217.2 1243.1 1291.1 1314.0 1338.3 1436.8 1446.5 1465.4 2642.0 2732.2 2866.1 2903,1 2928.4 2944.0 3048.6  -4iT r ans de c a h y d r o n a p h t h a i e n e TABLE V I I I  : .Wavelength. > F r e q u e n c y : 4101.9 4113.4 4127,2. 4172.4 4184.5 .4189.0 , 4193.8 4211.7 4223.4 4238.9 4242.2 4256.8 4261.0 4263.6 4267.2 4277.4 4280.2 4316.4 4318.9 4375.4 4429.2 4449.95 4501.3 4519.5 4524.7 4530.1 4537.1 4541.2 4550.3 4564.1 4570.0 4577.6 4581.8 4586.3 4600.2 4606.2; 4609.1 4617.8 1 ; I  24372.0 24304.0 24222.7 23960.3 23891.0 23865.3 23838.O 23736.7 23671;0 23584.4 23566.0 23485.223462.0 23447.8 23428.0 23372.1 23356.8 23161.0 23147.6 • 22848.6 22571.0 22466.0 22209.6 22120.2 22094.7 22068.4 22034.4 22014.5 21970.4 21904.0 21875.7 21839.4 21819.4 21798.0 21732.1 21704.8 21690.2 21649.3  333.0 401.0 482.3 745.7 814.0 839.7 867.0 968.3 1034.0 1120.6 1139.0 1219.8 1243.0 1257.0 2.  1277.0 1332.9 ;, 1 3 4 8 . 2 1544.0 1557.4 1956.4 2134.O 2239.0. 2495.4. 2584.8 2610 -3 2636.6 2670.6 2690.5 2734.6 2801.0. 2829.3 2865.6 2885.6 2907.0 2972.9 3000.2 3014.8 3055.7 6  89.4 367.0 472.0 728.4 817.8 843.3 869.6 903.6 923.5 967.6 1034.0 1062.3 1098.6. 1118.6 1140.0 1205.9 1233.2 1247.8 1288.7  A  42Wavelength  Frequency  4624.8 4627.95 4646.0. ;4648.2. 4928.7 4977.5 4985.1 4993.2 4997.9 5025.7  21616.5 21602.0 21517.9 21507.2 20283.7 20084.8 20054.2 20021.7 20002.3 19892.2  AV"  3088,5 3103.0 3187.1 3197.8 4421.3 4620.2 4650.8 4683.3 4702.7 4812,8  1321.5 1336.0 1420.1 1430.8 2654.3 2853.2 2883.8 2916.3 2935.7 3045.8  -43-  Carbon T e t r a c h l o r i d e . I n the. attempt t o e s t a b l i s h t h e .of o u r e x p e r i m e n t a l , a r r a n g e m e n t by o t h e r w o r k e r s , i t was spectrum  efficiency  compared t o t h a t u s e d  d e c i d e d t h a t t h e s i m p l e Raman  of C a r b o n t e t r a c h l o r i d e w o u l d be e a s i e s t t o  o b t a i n and w o u l d  suffice.  T h i s molecule  i s known t o be of t h e t y p e 0  MX  and i s t e t r a h e d r a l i n s h a p e , w i t h the. c h l o r i n e atoms a t t h e . c o r n e r s o f t h e b a s e and t h e ; c a r b o n atom a t t h e apex a s i n t h e f i g u r e . I t i s a fairly  simple mathematical  problem  to' show t h a t s u c h a m o l e c u l e have 9 f u n d a m e n t a l  i  should  modes of v i b r a t i o n . However t h e s e a r e • i n t o g r o u p s of 3 , 3 , 2 , 1 ,  not a l l d i s t i n c t , but f a l l a r e d e n o t e d , by y  V V^V^ %  . Dennison  f o u r g r o u n d v i b r a t i o n s , o f w h i c h two The  :  frequency  f r e q u e n c y due frequency  shift  o f 219  cm.  1  1  The  1  1  (79)  2  (80)  1  the  molecule. 1  shifts '  of C C l ^ : 2 1 9 , 3 1 4 ,  a: c o m b i n a t i o n of t h e f r e q u e n c i e s 4 5 9 cmT  The  i s c o n s i d e r e d t o be  d o u b l e t . 7 6 0 , 7 8 9 cmT  the. s h i f t of 1539 the doublet.  inactive  i s c o n s i d e r e d t o be t h e .  f o l l o w i n g f i v e frequency  f o u n d i n the. Raman s p e c t r u m cm"  are o p t i c a l l y  t o t h e r o t a r y movement o f t h e The  789  1  and  c o n s i d e r s t h e r e are  t o t h e e x p a n s i o n of t h e m o l e c u l e .  s h i f t o f 4 5 9 cmT  frequency.due  cl  459,  2  are 760,  i s c o n s i d e r e d t o be and 3 1 4  cmT  1  while  i s c o n s i d e r e d t o be an o v e r t o n e .  of  -44-  It  i s w e l l known t h a t t h e r e a r e two i s o t o p e s  of c h l o r i n e , atomic  weights  3 5 , a n d 37 . I t h a s been  determined that ordinary CCI4 contains the f o l l o w i n g f i v e compounds A CClf cci^ci cci  3 < r  31.6  %  3 7  42.2  %  3 ?  21.1  %  ci 2 2 cci ci^ 3 cci3 4  4.7 % 0.-4 fa  We may t h e r e f o r e e x p e c t t h a t t h e Raman f r e q u e n c i e s differ  s l i g h t l y f o r t h e d i f f e r e n t k i n d s o f CCI4 . O n l y t h e  f i r s t three w i l l  e n t e r i n t o t h e R man s p e c t r u m . A a  o f t h e t y p e CX'X^ ' a l s o has" 9  molecule  f u n d a m e n t a l modes o f  v i b r a t i o n , which group themselves i n t o t h r e e uencies  will  single  freq-  and t h r e e double f r e q u e n c i e s . I n t h e case o f t h e :  i s o t o p i c molecule ••'At t h e f r e q u e n c y  CX X 2  2  a l l nine frequencies are d i s t i n c t .  s h i f t 459 cm7"*"  we e x p e c t  t o get a t r i p l e t  s e p a r a t i o n o f a b o u t 3 cmt^ . A t t h e ^ f r e q u e n c y 217  cm?-'-  we e x p e c t  In  t h e o t h e r . l i h e s t h e change i n f r e q u e n c y  s h i f t of /  :  a q u a r t e t s e p a r a t i o n o f 2.9 cm."^  e i t h e r too complicated,  shift i s  o r beyond t h e r e s o l u t i o n of o u r  instrument. I t has been noted in  t h a t t h e r e i s .a Raman l i n e  s o l i d carbon t e t r a c h l o r i d e with a frequency -1  85 cm.  T h i s h a s b e e n a t t r i b u t e d t o a f r e q u e n c y of  v i b r a t i o n of the c r y s t a l 1 (81)  s h i f t of  lattice.  .•.-45-. The Raman s p e c t r o g r a m s  o b t a i n e d by us g i v e  i n t e r e s t i n g r e s u l t s . I n a d d i t i o n t o a l l known f r e q u e n c y s h i f t s , t h e r e were o b s e r v e d on o u r p l a t e s t h r e e a d d i t i o n a l f r e q u e n c y s h i f t s , 92 at cmT  15°: C 1  cm"  a t 40°  Hg 4339, 4347  15° 'C.  1  The  with the material 92  line with A P =  cmT  t h e r e was 1  A? l i n e s . I t was n o t e d t h a t a t  a l i n e w i t h an a n t i - S t o k e s s h i f t  of  , w h i c h h a d no S t o k e s l i n e c o r r e s p o n d i n g t o . I t .  B o t h S t o k e s and a n t i - S t o k e s are  G.  cm"  h a s no anti->Stokes l i n e , f o r i t w o u l d be masked by  t h e AA  121  and 408  , 1 7 5 , 382  lines with  175  =  p r e s e n t . U n f o r t u m a t e l y on t h e s p e c t r o g r a m s  m a t e r i a l a t 40°  C. t h e S t o k e s l i n e 175 cmT^  the: g e n e r a l b a c k g r o u n d on t h e p l a t e s . f r e q u e n c y s h i f t o f 468  cmT  1  The  cmT  1  of t h e  i s masked by l i n e with the  i s e x c i t e d by b o t h k14047  and  43.58;. A?'- a n d h e n c e must, be a c h a r a c t e r i s t i c Raman l i n e . I n all  c a s e s th,ese l i n e  a r e weak.  I t h a s b e e n s u g g e s t e d t h a t t h e A-V  92  cmT  1  corresponds t o the l i n e found i n s o ^ i d carbon . t e t r a c h l o r i d e , and c a n be a t t r i b u t e d  t o the p r e s i s t e n c e of the  l a t t i c e beyond the m e l t i n g p o i n t . I t i s a l s o that the l i n e 9 2 emT  1  - 180  cmT  1  crystal  Important  i s j u s t double the frequency  T h i s seems t o s u g g e s t t h a t an o v e r t o n e o f t h e  frequency e x i s t s . The  first  . r e s u l t s i n d i c a t e t h a t t h e r e may  c o m b i n a t i o n s o f f r e q u e n c i e s . T h e A ^ = 4 0 8 cmT  1  be  other  c o u l d be "1  c o n s i d e r e d t o be a c o m b i n a t i o n o f Af-^219 cmT  1  and 180  cm.  -46It  c a n be s e e n t h a t t h e f r e q u e n c y  c o n c e i v a b l y be a c o m b i n a t i o n •219'  cm"  a n d 9 2 cmT  1  1  of  3 1 1 cmT  shift  t h e fundamental  . At the present  1  could shift  t i m e no e f f o r t  i s made t o s t a t e t h a t t h e f r e q u e n c i e s 92 cm"  1  and 180 c m ?  1  a r e t h e o t h e r two / f u n d a m e n t a l f r e q u e n c i e s o f C C l ^ , b u t t h i s I s an i n t e r e s t i n g s p e c u l a t i o n d e s e r v i n g f u r t h e r study. On o u r p l a t e s we c o u l d d e t e c t t h e l i n e a t 303.5 cm"  1  > a s e p a r a t i o n o f 10 cmT^  a t ,313.5 cmT ,, We a l s o o b t a i n e d 1  f r o m t h e main  a triplet  line  s e p a r a t i o n of  1 ;  t h e l i n e w i t h A P 458 cmT . The f r e q u e n c i e s a r e 443.1 and 468.3 and  CHIT!  9.6 cmT  , w i t h s e p a r a t i o n s f r o m t h e main l i n e of 15.6 1  r e s p e c t i v e l y . These s h i f t s . a r e much g r e a t e r  t h a n t h e ones c a l c u l a t e d f o r t h e i s o t o p e e f f e c t . However the  d i s p e r s i o n of the instrument  assure  accuracy  i s n o t g r e a t , enough t o  i n such a s m a l l change. I n a c c u r a c y i s  a l s o caused by t h e f u z z y appearance o f t h e l i n e s .  Another  weak l i n e w h i c h a p p e a r s h a s t h e s h i f t o f 430.9 cmT is  conceivable  1  t h a t t h e s e may be due t o t h e i s o t o p e  . I t effect.  I t w o u l d be o f i n t e r e s t t o o b t a i n s p e c t r o grams o n i n s t r u m e n t s  w i t h g r e a t e r d i s p e r s i o n and r e s o l v i n g  power. I t i s hoped t h a t t h i s w i l l be accomplished near f u t u r e .  i n the  -47TABLE I X GC1 Wavelength 4267.1 4273.8 4298.6 4317.1 4327.4 4335.5 4375.9 4391.8 4400.4 4418.8 .4432.1. . 4447.3 4507.3 4513:. 6 . 4671.8 :  ;  4  15°C.  Frequency  i  -490 -459 -319 -219 -164 -121 92 175 219 314 382 459 758 789 1539  23428 23397 23257 23157 23102 23059 22846 22763 22719 22624 22556 22479 22180 22149 21399  TABLE X CG1 Wavelength .40.82.2. . 4098.8 4114.7 4123.9 4176.0 4181.8 4273.7 4300 $317.6 4324.3 4380 (?) • 4400.4 4416.8 4418.8 4437.3 . 4441.8 4444.2. 4447.3 4449.2 4507.3 4513.6 4671.8  Frequency 24489.7 ' 24390.5 24296.3 24242.0 23939.6 23906.4 23392.4 23249.323154.5 23118.6. 22825 22718.3 22634.5 22624.2 22529.9 22507.1 22494.9 22479.3 22469.7 22180 22149 21399  4  40°G. AV  1  215.3 314.5 408.7 463.0 765.4 798.6 1312.6  -454.4 -311.3 -216.5 -180.6 113 • 219.7 303.5 313.5 408.1 430.9 443.I 458.7 468.3 758 789 1539  -48"ft  frrn  I  I  L  Men  f)A/ L i j  m i IIIIHIUM  cop^  £S  WAf  Raman S p e c t r u m o f C i s D e a c a h y d r o n a p h t h a l e n e  I I I II  Tl  n m r n r  II  Raman S p e c t r u m o f T r a n s D e c a h y d r o n a p h t h a l e n e ,  TTT  III L_JL  Raman S p e c t r u m o f C a r b o n  Tetrachloride.  nnr  ILL Raman S p e c t r u m All  of  spectrograms approx X 3 .  Octadecane  Q  PART I I  THE ABSORPTION BANDS of LIQUID OXYGEN  -49I INTRODUCTION: The a b s o r p t i o n bands, o f l i q u i d not  oxygen h a v e  b e e n s t u d i e d c o m p l e t e l y . The p r e s e n t work was u n d e r -  t a k e n by t h e a u t h o r and D r . Smith, a t t h e U n i v e r s i t y o f •'California-, and  Berkeley, California,  t h e p l a t e s were e x a m i n e d and m e a s u r e d a t t h e  U n i v e r s i t y of B r i t i s h project of  i n , t h e summer o f 1 9 4 1 ;  C o l u m b i a l a t e r , t h e same y e a r . The  c o n s i s t e d o f t h e s t u d y o f t h e a b s o r p t i o n bands  liquid  oxygen  b e t w e e n X 4200 A?  a n d A 1 2 , 0 0 0 A?  u s i n g v a r i o u s depths, o f t h e l i q u i d . Many w o r k e r s had p r e v i o u s l y s t u d i e d these bands to  b u t no one h a d b e e n a b l e  obtain very long o p t i c a l path lengths i n the l i q u i d .  ;An e x t e n s i v e s t u d y was made b y J.C. McLennan,H.D..Smith, J.O. Y f l l h e l m  1  u s i n g 3 2 cm. o f l i q u i d  p h o t o g r a p h i c r a n g e up t o A l 0 , 6 0 0 A ?  o x y g e n , and a P a t h l e n g t h s up t o 2  one m e t e r i n l e n g t h h a v e b e e n u s e d b y R. G u i l l i e n  3 ' '  i n 1 9 3 6 . A s f a r a s i s known no work h a s b e e n done on oxygen i n t h e l i q u i d  state  since tjhis.  The p r e s e n t work was done u s i n g p a t h l e n g t h s up t o 1 8 0 cm. o f l i q u i d of  A 4200 A?  o x y g e n , and a p h o t o g r a p h i c r a n g e  t o A 1 2 , 0 0 0 A ? . T h i s work was done i n  p r e p a r a t i o n f o r a study of the a b s o r p t i o n s p e c t r a of liquid  hydrogen.' It  using solid  i s h o p e d t h a t some work may be done  later  o x y g e n . Some work h a s b e e n done ^ a n d 6 b a n d s  h a v e b e e n f o u n d b e t w e e n X 4 4 0 0 A ? a n d A 6 2 0 0 A? f o r t h e s o l i d 1  (89)  2 (84)  3 (85).  4 (89)  To f a c e page 50.  fig.  16.  EXPERIMENTAL. . T h e  :  method o f o b t a i n i n g a l o n g o p t i c a l  i n t h e l i q u i d o x y g e n was  b a s e d upon  that  path  developed  1  by H.D. S m i t h and J.K. M a r s h a l l . The d i a g r a m o f t h e o p t i c a l system: u s e d i s g i v e n i n f i g u r e 1 6 . L i g h t f r o m •'  :  • t h e carbohf;arc :focussed,  p a s s e d t h r o u g h a d i a p h r a g m D-^ and was  b y t h e l e n s L^^ , on t h e p i n h o l e  aperture  D  ,". 2  ,  s i t u a t e d i n the. flask,.. a f t e r b e i n g r e f l e c t e d a t t h e m i r r o r M^V The beam e n t e r e d  the f l a s k through the c i r c u l a r  o p e n i n g D^, i n t h e eap w h i c h c o v e r e d t h e mouth o f t h e container.//The l i g h t from p  traversed the length of the  ;  \ f l a s k . , and.was r e f l e c t e d b a c k a l o n g t h e t u b e mirror M s i t u a t e d c  by a c o n c a v e  a t t h e b o t t o m t>f t h e f l a s k , w i t h i t s  a x i s p a r a l l e l t o t h e a x i s o f t h e f l a s k . The beam t h e n M^ , two p l a n e  suffered reflections a t , a n d  m i r r o r s s u s p e n d e d f r o m t h e c a p G , and a d j u s t e d t h e beam r e f l e c t e d f r o m  returned  •MqV.. By a d j u s t i n g m i r r o r s M-j and possible  aluminized so t h a t  t o t h e concave m i r r o r ^ c a r e f u l l y i t was  t o o b t a i n m u l t i p l e r e f l e c t i o n s o f t h e beam a t M3,  ¥.,, and-M s o t h a t many t r a v e r s a l s o f t h e f l a s k b y t h e beam: \ c were o b t a i n e d .  By c a r e f u l l .adjustment a t o t a l p a t h l e n g t h ,  i n a i r , g r e a t e r t h a n 200 f e e t was - f i n a l l y r e f l e c t e d f r o m M  could'be obtained. /to m i r r o r M  2  The l i g h t  through the  c i r c u l a r o p e n i n g D-^ , s i t u a t e d i n the. cap G. The l i g h t r e f l e c t e d b y Mg  was f o c u s s e d  on t h e s l i t  of the  spectrograph  by /a ^short, f o c a l , l e n g t h l e n s L . A ^ l • • m i r r o r s u s e d were 2  •aluminized. 1  (91)  To f a c e page 51  fig-  17.  -51-  T h i s a r r a n g e m e n t was s a t i s f a c t o r y i n t h e gaseous s t a t e .  When u s i n g l i q u i d o x y g e n , i t was  • f o u n d a d v i s a b l e t o l e t t h e l i g h t f r o m M-j^ be / d i r e c t l y ; t o '_(•_• by M beam when f o c u s s e d  f o r oxygen  reflected  .Otherwise, the i n t e n s i t y  on t h e s l i t  ; weak.  of t h e  of the spectrograph  was t o o  At  atmospheric pressure  obtain a quiet surface  i t is. difficult  on a l o n g c o l u m n o f l i q u i d  e v e n when i t i s c o n t a i n e d  i n a g o o d Dewar f l a s k .  to  oxygen, Even  when b o i l i n g g e n t l y t h e s u r f a c e i s so t u r b u l e n t t h a t t h e intensity It  o f t h e emergent beam i s s e r i o u s l y  was n e c e s s a r y  t o devise  impaired.  a method o f k e e p i n g t h e  l i q u i d oxygen, q u i e s c e n t . The  o x y g e n was p l a c e d i n a vacuum g l a s k  150.cm;, l o n g w i t h a n i n s i d e silvered kindly  on t h e i n s i d e .  provided  (1)•  d i a m e t e r o f 1 2 cm. , w h i c h was  T h i s e x c e l l e n t Dewar f l a s k was  by P r o f e s s o r G i a u q u e o f t h e Department  '.Of C h e m i s t r y - o f t h e U n i v e r s i t y o f C a l i f o r n i a , The f l a s k .was p l a c e d i h s i d e  a t h i n w a l l e d sheet metal c o n t a i n e r  •op.ett. a t / t h e / t o p . A t t h e t o p f e l t this  :  ( 3 ) was f o r c e d / b e t w e e n  c o n t a i n e r a n d t h e f l a s k t o p r o v i d e b o t h an a b s o r b e n t  f o r ; w a t e r v a p o r , and an i n s u l a t i n g The  (2)  'dead  11  a i r space.  whole, was n o w - p l a c e d i n a m e t a l c o n t a i n e r  walls;3  M  thick  a .quiescent  (4)  , whose  are f i l l e d w i t h Kapok.In order t o maintain  s u r f a c e i t was n e c e s s a r y  c a r b o n d i o x i d e between t h e i n n e r  t o p l a c e chopped  ( 2 ) and a u t e r  solid  (4) metal  To f a c e page 52.  fig.  18.  -52- c o n t a i n e r s , A d d i t i o n a l c o o l i n g was p r o v i d e d by p o u r i n g l i q u i d a i r t h r o u g h a s m a l l t u b e (5) l e a d i n g t o t h e b o t t o m o f t h e d r y i c e . I t was p o s s i b l e t o m a i n t a i n  a small  amount o f l i q u i d a i r i n t h e b o t t o m o f t h e d r y i c e c o n t a i n e r . The  c o m p l e t e a s s e m b l y i s e x h i b i t e d i n f i g u r e 17. Once t h e  o u t e r c o n t a i n e r h a d been., l o w e r e d t o t h e . t e m p e r a t u r e o f l i q u i d a i r i t was p o s s i b l e t o k e e p l i q u i d oxygen i n t h e vacuum f l a s k f o r a b o u t 72 h o u r s . The  vacuum f l a s k h a d t o be p r e c o o l e d .  iminate t h e a t e r vapor  To e l -  ,the f l a s k was f l u s h e d w i t h  d r y oxygen i n t h e g a s e o u s s t a t e . S m a l l amounts o f l i q u i d air  were p o u r e d c a r e f u l l y i n t o t h e f l a s k ', and t h i s was  allowed t o evaporate,then  t h e l i q u i d o x y g e n was p o u r e d  d l o w l y i n t o t h e f l a s k . Oxygen a t l o w p r e s s u r e .Into' thei u p p e r p a r t o f t h e Dewar f l a s k  was f o r c e d  , thus f o r c i n g the  l i q u i d o x y g e n up t h e s m a l l c e n t r a l p i p e , f r o m where i t was  p i p e d o v e r t o t h e vacuum f l a s k . H e r e i t was f i l t e r e d  t o : r e m o v e any i c e p a r t i c l e s b e f o r e b e i n g p o u r e d I n t o t h e vacuum f l a s k . F i g u r e ,18 shows t h i s  assembly.  An Adam H i l g e r c o n s t a n t  deviation spectro-  g r a p h w i t h a g l a s s p r i s m was u s e d f o r a l l s p e c t r o g r a m s b e t w e e n X X 4 2 0 0 a n d 1 2 , 0 0 0 A?  E x c e l l e n t s p e c t r o g r a m s : were  o b t a i n e d .'using E a s t m a n s p e c t r o s c o p i c and  p l a t e s of t h e types  r a n g e s g i v e n i n t a b l e XI'•'. Types R.U/Z were  sensitized/by using;a hydroxide,3  s o l u t i o n o f 2 p a r t s o f 2 8 $ ammonium  p a r t s o f e t h y l a l c o h o l , and 7 p a r t s  water. The.plates  were u s e d i m m e d i a t e l y  after  distilled  sensitizing.  -53TABLE X I Range i n A ? ^ 4600-6800 6700-7200 6800-7500 7300-8500 10,000-12,000  TAbLEJB Bands found by Author,  10,680 10,350 9900 , 9280 9160  McLennan, L i v e i n g S m i t h ,& & Dewar Wilhelm. mean i n l i q u i d 0g  S h a v e r , ATMOSPHERIC O U G E N . mean m 140 Atm. l i q u i d . 0 L i v e i n g Shaver Herman 2& Dewar mean mean.  Earth's Hilger Oxygen Dieke & Ba-bcock Band, limits •  Enesis  'G-uillien  12,610 10,600  10,420 9300  9190  9190.  7650  8150 7635  6900  6895  6300  6320  6290  5780  5780  5669  8300 8140 7640 7525 6860 6365-70  7665  7600  7660-  6916 6368  6800 6300  6285  6800 6305  6285  6290 5770  5826  5775  5800  5785  58OO  5340  5364 4982  5350  5350 .  5350  £350  4955-60 4830-35  4816  4773  4816  5820  4802 4628  4470  4475  4460 4200  4456 4208  4433  4458  •  4775  77037593 69476869 6319c6276 58345788  5335  5325  4775  4773  4475  4472  -54- • RESULTS." :  '  -  Excellent  bands o f l i q u i d  spectrograms o f t t h e a b s o r p t i o n .  o x y g e n b e t w e e n -AX 4200 A?  and  1 2 , 0 0 0 A?  were o b t a i n e d , u s i n g a p a t f i l e n g t h i n t h e l i q u i d o f 160 t o 200 cm. S e v e n t e e n bands were m e a s u r e d i n t h i s  region.  Some o f t h e bands were v e r y w i d e , h a v i n g w i d t h s a s g r e a t as 3 5 0 A9  a n d o v e r l a p p i n g w e a k e r members  of other  •  s y s t e m s i n some c a s e s . In the  Table X I I i s recorded t h e wavelengths of  a b s o r p t i o n b a n d s o f o x y g e n . The l i s t  aboveX4000 A °  i s as complete.  as i t I s p o s s i b l e t o g i v e at t h e present  t i m e . I n : column lb a r e l i s t e d t h e w a v e l e n g t h s i n A ? o f t h e •heads o f t h e bands,.found b y ' t h e a u t h o r . I n column 2 a p p e a r the  r e s u l t s o f McLennan,Smith and W i l h e l m  a b o u t 3 2 c ^ ' o f l i q u i d o x y g e n . The n e x t  who u s e d columns,,4,5 6y7,8, s  g i v e t h e mean w a v e l e n g t h s o f t h e b a n d s o b s e r v e d b y L i v e i n g and D e w a r  2  21  , Shaver-^, and Herman ' , i n t h e a b s o r p t i o n  spectra of l i q u i d The/ l i m i t s  o x y g e n , a n d oxygen at, h i g h p r e s s u r e s .  o f t h e a t m o s p h e r i c a b s o r p t i o n bands a s o b s e r v e d  by D i e k e a n d B a b c o c k ^, a r e g i v e n i n column 8. I n columns 9^10,11>  appear t h e r e s u l t s of H i l g e r , K n e s i s ^ , and 7  Guillieh:.: '® who u s e d l i q u i d  oxygen.  As f a r a s i t h a s b e e n p o s s i b l e t o d e t e r m i n e the 1  sharp;edge  (89)  2  o f t h e b a n d s betweenX4200 A? a n d A l 2 , 0 0 0 A ?  (87)  3  (90)  4 (  )  5  (83)  6 (86)  7 (84) 8 (85)  -55-  i s on t h e s i d e o f t h e l o n g e r w a v e l e n g t h , and t h e bands a r e d e g r a d e d t o t h e s h o r t e r w a v e l e n g t h s « , I t was  possible  t o g i v e g i c c u r a t e l y o n l y t h e w a v e l e n g t h s o f t h e band h e a d s . S e v e r a l f a c t o r s c o n t i r b u t e t o the i m p o s s i b i l i t y a c c u r a t e measurement v a r i a t i o n was  of  o f t h e l o w e r l i m i t o f the. band.  due m a i n l y t o t h e v a r i a t i o n o f  The  optical  p a t h l e n g t h i n t h e l i q u i d . The  approximate w i d t h s of the  bands a r e l i s t e d i n T a b l e X I I I  . Exposures of 6 minutes  were r e q u i r e d t o r e c o r d b a n d s i n t h e v i s i b l e  region,  w h i l e e x p o s u r e s o f two h o u r s were r e q u i r e d f o r t h o s e i n the i n f r a - r e d  region. The b r o a d e s t bands a r e t h o s e o f X X  5340, A?  5820,6365  A?  . The  4830,  a b s o r p t i o n bands o f X X  4960,7640  a r e q u i t e narrow,, w h i l e t h a t o f X 6 8 6 0 A? i s e x t r e m e l y  n a r r o w . The b a n d s AX  , 8 1 4 0 , 9 1 6 0 , 9 9 0 0 , 1 0 , 3 5 0 A?  i n f r a - r e d appear narrower p h o t o g r a p h . I t was by K n e s i s a t A 9160  i n the  and a r e more d i f f i c u l t  to  f o u n d t h a t t h e band g i v e n a t 12^610  d i d n o t a p p e a r on o u r p l a t e s . The v e r y f a i n t A?  A? band  a p p e a r e d on some p l a t e s , w i t h s h o r t p a t h  m e n g t h , b u t on o t h e r s was s t r o n g band a t A 9 2 8 0  c o m p l e t e l y masked b y - t h e  wide  A?  I t was n o t e d t h a t t h e band a t A  4460  A?  a p p e a r e d v e r y s t r o n g l y on s p e c t r o g r a m s t a k e n w i t h c o m p a r a t i v e l y s h o r t p a t h , l e n g t h s . However a s t h e p a t h l e n g t h •* i n t h e g r o u p o f bands 2400-2800 A ? the bands degrade towards the l o n g e r wavelengths, but these are thought t o be due t o t h e 0^ m o l e c u l e .  -56-  increased  I t was n o t e d t h a t a band a t A 4 4 7 5 A ?  On some p l a t e s b o t h b a n d s were c l e a r , on o t h e r s A 4 4 7 5 A?.seemed t o mask t h a t o f A A 7 6 4 0 A? a p p e a r e d s t r o n g  appeared, t h e band  4 4 6 0 A? . The band a t  on a l l p l a t e ' s , r e g a r d l e s s o f  p a t h l e n g t h . However i t was n o t e d t h a t w i t h a p a t h  length  o f 1 6 0 cm. o f l i q u i d o x y g e n a weaker b a n d a t \ 7 5 2 5 A ? appeared.  TABLE X I I I P o s i t i o n of Band head i n A?  ^Approximate width i n Angstrom U n i t s ;  180 cm. path  1 3 0 cm, path.  4200 4460  20  4475  10  4830 .  130  4960'  30  20  I30  5340  160  135  5820  .360  300  380  350  6365  6860 7525,  •  ,  30 ;,  50 •  25  7640  ••J  8140 9160 9280  (200)  9900  (280) •  10,350 10,680  J  (280)  -58THEORETIGAL For energy s t a t e s referred  t h e t h e o r e t i c a l . c o n s i d e r a t i o n s of t h e  of t h e oxygen m o l e c u l e , t h e r e a d e r i s  t o t h e p a p e r "by J.G. McLennan, H.D.  Wilhelm,  1  . The t a b l e s  S m i t h , J.O.  of t h e o r e t i c a l values f o r the  w a v e l e n g t h s o f t h e b a n d s due t o c e r t a i n t r a n s i t i o n s h a v e b e e n s u p p l e m e n t e d and a r e r e p r o d u c e d B a n d S y s t e m due t o fc  P '= 13596  3  herein.  2  ^  Transition.  H"°=,13122  ,  ^_=1429-  tO^=1576  *e«£ = l 4  x^oo£=11.4  ol - 1 4 1 5 b'=l4  TABLE X I V v"  v»  0  0  !  . cm?  x  Wavelength Observed i n A. limits.  13122  7618  7640  1401. •  14523  6883  6860  2  2774  15896  6289  6365  0  3  4119  17241  5798  5820  0  4  5436  18558  5 3 8 7 •;  5340  5 •  6725  19847  5037  4955  0  6  7986  21108  4736  4830  0  7  ' 9219  22341  4475  4475  •  6  j  0  y  1 0  [  a'v'-b'v"  "°  :  1  B a n d System due t o  1 : (89)  ^=18727  6J'_-1576  03^-1494  ^60^=11.4  Transition,  -59:  e^>e=l2  K°°=18686  1  a =1482  b'=I2 TABLE, XV. v"  V*  0  0  0  '  0  K  cmT  1  Wavelength Observed  18686  5350  5340  1470  20155  4960  4955-60  2  2914  21600  4628  3  4338  0 0  ,a'v'-b"v"  : 23024  4342 3  Band S y s t e m due t o Z e,  W = 20940 ^  D  v  4460. Transition.  <o£»1576  =1524  ?c;>e=11.4  ^^^12  P°°= 20914  . <£• =1512 'b'=12 TABLE XVI v" 0  a'v'-b'v" 0  0 • d.  V  cmT  1  Wavelength Observed.  0  20914  4780  4830  1500  22415  ,4460  4460  2976  23890  4185  4200  3  Band S y s t e m due t o 2 — A . K  el  =982i-l254n-12 n  60^,=1254t24n '  2  ; Transition.  u>;-1576  ^ ^ ' = 11.4 • '"= 9 6 6 0 - 1 2 4 2 n v  a  1  =1242 •+• 2 4 n  I2n  2  1  -60TABLE X V I I v"  V  0  mO  0  n+1  *12 30  0  n+2  0  8  a'v'-b-'v"  K cmT  2  a'n-b'n + 0  1  .Wavelength O b s e r v e d  9660  10,350  10,350  10890  9180  9280  +2436  12096  8265  8140  n+3  +3618  13278  7529  7525  0  n+4  +4776  14436  6925  6860  0  n+5  ' +5910  . 15570  6426  6365  0  n+6  +7020  16680  5993/  5820  0  n+7.  +8106-  17766  5627  0  n+8  + 9158  18818  5312.6  5340  0  n+-9  +10206  19866  5032  4955  o  n+10  +11220  20880  4788  4830  J  B a n d S y s t e m , T r a n s i t i o n unknown;. J>- 7 9 3 0 - 1 4 3 6  n -  12n  2  TMBI& X V I I I v"  v  0  n  7930  12,610  12,610  0  n+1  9366  10,680  10,680  0  n+2  10754  9290  9290  0  n+3  - 8240  8140  !  a'v'-b'v"  p  cmT  12130  1  Wavelength Observed  -6i-  A b s o r p t i o n Bands o f L i q u i d  Oxygen.  PART I I I  'BIBLIOGRAPHY.  -62-  BI'BLI OG-RAPHY. The f o l l o w i n g b i b l i o g r a p h y has b e e n p r e p a r e d w i t h a two f o l d , p u r p o s e . One i s t o p r o v i d e a s e r i e s of r e f e r e n c e s t o the o r i g i n a l a r t i c l e s concerning v a r i o u s f a c t s s t a t e d i n t h e t h e s i s . The o t h e r i s t o p r o v i d e a meager l i s t o f t h e a v a i l a b l e . r e f e r e n c e s on ( 1 ) t h e R a m a n ' E f f e c t ( 2 ) A b s o r p t i o n B a n d s of l i q u i d o x y g e n , w i t h r e f e r e n c e t o t h e t y p e of" a p p a r a t u s u s e d , and t h e m a t e r i a l s w i t h w h i c h we a r e a t p r e s e n t concerned. The numbers on t h e l e f t , a r e t h o s e c i t e d i n t h e footnotes- of the text.The r e f e r e n c e s are l i s t e d i n the alphabetical order o f t h e i r a u t h o r ' s names. The a r t i c l e s by j o i n t a u t h o r s h i p a p p e a r . u n d e r t h e name o f t h e a u t h o r whose name a p p e a r s f i r s t I n t h e t i t l e . T h e o t h e r a u t h o r s a r e l i s t e d i n t h e i r r e s p e c t i v e p l a c e s and c r o s s r e f e r e n c e s g i v e n . Part I 1  Raman E f f e c t :  Andrews See 3 8 . A n d e r s o n , T.F. , . J . C P , i j 161? 1934 , Bak,B. .See No., 3 3 . Baker, See No. 21. •• ' B a l a k r i s h n a n , T.A.S. See No. 45. Bapaya, K I . A. S.P. A , 1 0 , 2 5 3 - 6 1 , Oct 1939. B e r n s t e i n , H.S. See N o . 3 3 . Bhagavantum,S. " S c a t t e r i n g of L i g h t and t h e Raman E f f e c t " ' : I . A . S . P . A , 1 0 , 2 2 4 - 2 8 Oct. 1939 :Bhattacharya . ' See No. 4 3 . .Bonino, and C e l l a A t t i . Acad. L i n e i , 1 3 , 7 8 4 , 1931. Cabbanes, J . Comptes Rendus 1 8 6 , 1 2 0 1 1928. G a l l i h a n , D , &Salant J.CP. 2,317, 1934 ' Carrelli, A A t t i d e l l a Reale.Accademia . N a z i o n a l e R o m e , 8 , 1 5 5 j ^S, 1928. Cella, See, No. 5*. C h a u d h u r i , B'.K. I.J..P. 11,204, 1937. ...... Cheng, Hsueh,Wu. . . J . C P . 8 , J a n . 1938. C l e v l a h d , F . J . ( M u r r a y ) J . C P . 8,. 1940. i« Haney , S h a k e l f o r d , ' : J . C P . 8 , Feb, 1940. " (Murray,Tarfin. J.CP. 10,172-6 1942. " J.CP. 9,722,24 1941. C r a w f o r d , B.L. J . C P . 8 , 526-31 1940. &Wil.son. J.CP.. 9, 3 2 3 - 2 9 1941. D a u r e , P. T h e s i s , U n i v . of P a r i s , 1929. D h a i s , N.R. • See No. 3 7 . , , • Sdsall, J.CP. 4 , 1 , 1936. . & Wilson, J.CP,. 1 , 124, 1938. For, J . J . & Martin Roy. S o c . P r o c . , A , 1 7 5 , 2 0 8 , 1940. G-locker, &. & B a k e r J.CP. 10,305-6 1942. ;  2 .3 4  :  5 6 7 8 9 10 11 12 13 14 15 16: 17 18 19 20 21  u  -63G-rosse, Gupta, J . Han,  See N o . 5 4 . See No. 6 5 . See No. 3 6 . 22 " M o l e c u l a r S p e c t r a and M o l e c u l a r Hefctzberg, Structure". 23 " Raman E f f e c t and i t s C h e m i c a l Hibben, J . Application". 24 " J . C P . 3. 6 7 5 , 1939. Hsueh, See No. 1 0 . Jacobsen, See No. 5 4 . 25 J a t k a r , S.K. I.J.P. 9, 545, 1935. 26 K a h o v e c , L , & Wagner Z.Phys.Chem,B 4 7 , 4 8 - 5 4 1940. 27 K i r b y - S m i t h , & S p o n e r J.C.P. 9 , 6 6 7 , 1941. " See No. 6 2 . 28 • K o h i r a u s h , K.W.F. . & Wittek' Z.Phys.Chem B 4 7 , 5 5 - 6 5 . 1939. ii 29 Z.Phys.Chem B 4 8 , 7.- 1_1 , 1940. 30 " & Koppl Z.Phys.Chem B 2 6 , 2 0 9 , 19g4. 31 Kramers, Nature, 113, 673. 1924. 32 Krishnan,K.S. Nature, 122, 650, 1928. See No. 4 4 . • See No. 4 7 . 33 L a n g s e t h , B a k , B e r n s f e e i n J.C.P. 8 , 4 0 3 - 9 1940. 3 4 L a n d s b e r g & Mendelstamm N a t u r w i s s 2 8 , 5 5 7 , 1928. 3 5 Mahadwan, I . J . P . 4 , 457 1929. Mendelstamm See No. 3 4 . M a r t i n , A.E. See No, 2 0 . 36 Mat s u n o , Hah Bull.Chem.SOB.Japan 8,333,1933 37 M i t r a Z. P h y s . 1 0 3 , 5 4 2 . 1936. 38 M u k e r j i , S . K . & Dhai's. P h i l . Mag. 1 0 7 9 - 9 7 June 1 9 3 5 . M u r r a y , M.J. See No.' 11 ti See No. 1 2 . !1 See No. 1 3 . 3 8 a ' J t a g e n d r a , N..S. I . J . P .. 8, 5 8 1 , 1934. 39 M u r r a y ? ! . J . & Andrews J . C . P . 1 , 4 0 6 , 1933. J.C.P. 10"J8l-7 1942. 40 N""i•e "l s e n , J . R . & Ward P h y s . Rev. 4 2 , 5 8 1 , 1932. 41 P f u n d P r i n g s h e l m , P. Naturwiss, 16,597, 1928. 42 P r o s e d , K, 43 & B h a t f e a e h a r y a , D.K. Z.Phys. 1 1 3 , 9 - 1 0 pp637-59,1939. 44 Raman, C.V. N a t u r e CXXI, 5 0 1 , 1928. " & Balakrishnan P r o d . A. &. A, 1 4 , 2 2 8 , 45 1941. it »» 46 I.J.P. 2,387-98 1928. " & Krishnan 47 Nature 122,12 1928. 48 R a o , A.L. I . J . P . 14,207-12 1 940. u 49 P r o c I . A. S. A, 14,48, 1941. 50 R e d l i c h , 1.0. J.C.P. 9,298-305 1941. A.W. 51 R i e t z , Z.Phys.Chem. B 4 6 , 1 8 1 - 9 3 1 9 4 0 . 52 R o c a r d , Y. Comptes Rendus 1 8 6 , 1 1 0 7 , 1 9 2 8 . 53 Rosenbaum, E . J . J.C.P. 9 , 2 9 5 - 9 7 1941. " & G r o s s e & J a c o b s e n J . Am.Chem. S o c . 6 1 , 6 8 9 , 1939. 54 H  -6455 56 57 58  S a h a , B, S a k s e n a , D.B. " » •Salant,. E.O. ShakeIford, S m e k e l , A.  I.J.P. 14,123-28 1940. P r o c . I . A. S. A , 1 2 , 3 1 2 1940. P r o c I . A. S. A,12,321 1940. P r o c . I . A. £. A , 1 0 , 4 4 9 1939. See No. 7. See No. 12. 59 Naturwiss. 16, 612, 1928. 60 " Naturwiss 11, 873 1923. 61 :Spedding,F.H. &Stamm J.Chem.P. 1 0 , 1 7 6 7 8 3 1 942. -Sponer,H. See No. 27. 62 " & Kirby-Smith J.C.P. 9 , 667-72 1942 63 Sree J . M y s o r e U n i v . 2,15,105- 7 1942 Stamm, F .R. See No. 61. 64 S t i t t , F . & Yost, J.C.P. 5 , 90 1937. .65 S u k a r , S. C. & G u p t a I . J.P. 12,35-46 1 66 . S u t h e r l a n d , G.B.B.M. " I n f r a - r e d Raman S p e c t r a " 9 3 8 . Menthuen,: T a r f i n , S. See No. 13. 67 V e n k a t e s w a r a n , K. P r o c . I . A. S. A , 1 4 , 5 2 9 1941. 68 V o g e , H.H. J.C.P. 2 , 2 6 7 , 1 934. Wagner, See No. 28. Ward, N.E.. See No. 40. • YiTilson, E.B. See No. 19. Wittek See No. 2 8. 11 See No. 29. 69 Wood, R.W. Optic's Ch. 14,: 1934. 70 " Phil. Mag. VX 729, 1928. 71 " J.C.P. 5 1937. 72 f o l k e n s t e i n , M.W. . j ! p h y s . U..S.S.R. 5 , 2 - 3 , 1941; Wu See 10. 73 Wu, " V i b r a t i o n a l S p e c t r a and S t r u c t u r e of polyatomic molecules .Yost, P.M. See No. 64. Miso.elaneous: 74 Brooks"/ "Non-Benzenoid Hydrocarbons" 75 Z o t o v , G. T h e s i s , U n i v . oB B r i t i s h Columbia, 1940. 76 Faraday S o c i e t y : " M o l e c u l a r S p e c t r a and M o l e c u l a r Structure- A general Discussion, i n S e p t 51929 "~ 77 McLennan,. J.C. & McLe od Nature 1 2 3 , 6 0 , 1929. t) A t o m s , M o l e c u l e s , & Q u a n t a . .78 Ruark, & U r e y , 79 Bhagavantum,S. I.J.P. - ,79, 1932. 80 Sirkar, S.C. I.J.P. - ,189, 1936. 81 . S u t h e r l a n d , & Wu. J. C P . -114-18, 1938. 11  -65-  P a r t I I Oxygen-• Bab c o c k , Dewar,  83 84 85 86 87 88 89 90• 91  ." :• *• .'. I, See N o . - 8 3 . See No. 87. ' it See No. 8 8 . . Dieke & Babcock, Proc. Nat.Acad.Sci. 13,670,1927. G - u i l l i e n , R. Comptes Rendus, 2 0 2 , 1 3 7 3 - 7 5 , 1 9 3 6 . " '• Comptes R e n d u s , 2 0 2 , 1 4 2 3 - 2 6 , 1 9 3 6 . Knesis, Z. P h y s . 8 6 , 5 8 3 . 1933. L i v e i n g & Dewar . P h i l . Mag. 26,387, 1888. L i v e i n g k Dewar P h i l . Mag. 34,205, 1892. M a r s h a l l , J.K. See No. 9 1 . McLennan, J.C. Trans.Roy.Soc.Can. 24,-, Smith & Wilhelm. 1930. Trans,Roy.Soc.Can. 15,7, Shaver, 1921. J.O.S.A. 3 0 , 8 , P 3 3 8 . 194i. S m i t h j H . D . & M a r s h a l l See No. 8 9 . See No. 8 9 . Wilhelm,- J.O. - — 000 ©oo ---  -66-  BEY to The a b r e v i a t i o n a i n t h e B i b l i o g r a p h y , Indian Journal of Physics. J . Am.Chem. S o c .  J o u r n a l of t h e American Chemistry S o c i e t y .  J.-CP.  J o u r n a l of Chemical P h y s i c s .  J.Mysore U n i v .  J o u r n a l o f t h e Mysore U n i v e r s i t y ,  J.O/.S.A. Naturwiss. Phil.  - . im.  Mag.  J o u r n a l of the O p t i c a l S o c i e t y of A m e r i c a . Die  Naturwissenschaften.  The P h i l o s o p h i c a l M a g a z i n e .  P h y s . Rev*  The, P h y s i c a l R e v i e w .  P r o c . I . A. S.  The P r o c e e d i n g s o f t h e I n d i a n Academy o f S c i e n c e s .  Proc. N a t . Acad. S c i .  The P r o c e e d i n g s o f t h e N a t u r a l Academy o f S c i e n c e s .  Roy.  The P r o c e e d i n g s o f t h e R o y a l Society.  Soc. Proc.  T r a n s . Roy. S o c . Can.  The T r a n s a c t i o n s o f t h e R o y a l S o c i e t y o f Canada,  Z. P h y s .  Zeitschrift f u r Physichallsche.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085365/manifest

Comment

Related Items