UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The conductance of electrolytes in high electric fields Birnboim, Meyer Harold 1956

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1956_A8 B4 C6.pdf [ 4.01MB ]
Metadata
JSON: 831-1.0085329.json
JSON-LD: 831-1.0085329-ld.json
RDF/XML (Pretty): 831-1.0085329-rdf.xml
RDF/JSON: 831-1.0085329-rdf.json
Turtle: 831-1.0085329-turtle.txt
N-Triples: 831-1.0085329-rdf-ntriples.txt
Original Record: 831-1.0085329-source.json
Full Text
831-1.0085329-fulltext.txt
Citation
831-1.0085329.ris

Full Text

THE CONDUCTANCE OF ELECTROLYTES IN HIGH ELECTRIC FIELDS by MEYER H. BIRNBOIM A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS I N THE DEPARTMENT of PHYSICS  We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e standard required from candidates f o r the degree of MASTER OF ARTS.  Members o f t h e Department o f  THE UNIVERSITY OF BRITISH COLUMBIA January,  1956.  THE CONDUCTANCE OF ELECTROLYTES IN HIGH ELECTRIC FIELDS  by  MEYER H. BIRNBOIM  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS I N THE DEPARTMENT of PHYSICS  THE UNIVERSITY OF BRITISH COLUMBIA  April,  1956.  i  ABSTRACT  An apparatus was developed to measure the conductance change of electrolytes i n the presence of high e l e c t r i c f i e l d s to a high degree of accuracy, end i s described herein.  The apparatus  employs square wave pulse excitation to a special conductivity bridge, and permits direct observation of pulse shape on a highspeed oscilloscope, as w e l l as separate compensation of r e s i s t i v e and capacitive unbalance. With t h i s apparatus, the high-field e l e c t r i c conductances of several solutions of b i o l o g i c a l l y interesting substances were investigated and c l a s s i f i e d .  The substances investigated, together  with the observed increment i n e l e c t r i c conductance at a f i e l d strength of 105 v o l t s per cm., are l i s t e d : 1.  glutamine (1.25 x 1 0 " % ) ,  2.  1 (+) arginine monhydrochloride  0.56%  (2.0 x 10-4M),  0.48%  3.  acetic acid (3.75 x 10-*M),  4.6%  4.  p-amino benzoic acid (5 x 10-5M),  5.5%  5. 6.  s u l f a n i l i c acid (6.55 X 10-5M), 1 (+) glutamic acid (1.22 x 10-5ll),  1.4-^ 2.6%  7.  glycine (0.6l M),  1.9%  8.  protamine sulfate (7.9 x 10-5 g/cc.)  40%  9.  agar (3 x 10-* g / c c ) ,  37%  '  Some of the observed results have been compared with those obtained by other methods, while the remaining substances have not been previously reported.  The results were discussed i n the l i g h t of  available theoretical information on the high-field conductance effect i n various types of electrolytes.  ii  Acknowledgement The p r e s e n t work was  c a r r i e d out under a IT.R.C.  r e s e a r c h g r a n t t o Dr. O t t o B l u h .  I g r a t e f u l l y acknowledge  f i n a n c i a l s u p p o r t i n f o r m o f an a s s i s t a n t s h i p g r a n t d u r i n g t h e s e s s i o n s 1953/5*- and 195 +/55> 1  1  from  this  and  Dr. B l i i h ' s c o n t i n u o u s i n t e r e s t i n t h e p r o g r e s s of t h e investigation.  iii  Illustrations Figure 1.  Subject  Page  Schematic diagram of t h e B r i d g e Circuit  2.  B l o c k Diagram of t h e A p p a r a t u s  3.  Schematic diagram of t h e P u l s e  5 10  Generator  11  h.  Photograph o f t h e A p p a r a t u s  12  5.  Photograph of t h e Apparatus  13  6.  B a l a n c e P a t t e r n s f o r S i m p l e Impedances a t Low F i e l d S t r e n g t h s  7.  B a l a n c e P a t t e r n s f o r Complex Impedances a t Low F i e l d S t r e n g t h s  8.  18  B a l a n c e P a t t e r n s f o r Complex Impedances at High F i e l d Strengths  9.  17  20  V e r t i c a l D e f l e c t i o n C a l i b r a t i o n Curve for Oscilloscope  2h  10.  P u l s e A m p l i t u d e C a l i b r a t i o n Curve  27  11.  Glutamine  33  12.  1(+)  33  13.  p - Amino B e n z o i c A c i d  36  lh.  A c e t i c Acid  36  15.  Glycine  38  16.  S u l f a n i l i c Acid  hi  17.  1(+)  hi  18.  Protamine S u l f a t e  hk  19.  Agar  hk  A r g i n i n e Monohydrochloride  Glutamic Acid  CONTENTS  > Page  Abstract  i  Acknowledgement Illustrations I. II.  III.  i i i  INTRODUCTION  1  DESCRIPTION OF APPARATUS  3  1.  Bridge C i r c u i t  h  2.  Conductivity Cells  6  3.  Pulse Generator  7  EXPERIMENTAL PROCEDURE  lh  1.  Balancing of the Bridge  lh  2.  (a) Determination of P u l s e Amplitude  16  (b) C a l c u l a t i o n o f F i e l d S t r e n g t h  22  3.  D e t e r m i n a t i o n o f R e l a t i v e Conductance  25  h.  P r e p a r a t i o n o f Water and o f S o l u t i o n s  28  5.  Temperature F l u c t u a t i o n and Polarization Effects  IV.  i i  EXPERIMENTAL RESULTS  29 30  Tables I I I t o X I Graphs f i g s . 7 t o 15. 7.  DISCUSSION OF RESULTS 1.  h$  T h e o r i e s o f Wien E f f e c t (a)  I n t e r i o n i c A t t r a c t i o n Theory f o r Strong E l e c t r o l y t e s  *+5  CONTENTS ( C o n t i n u e d )  (b)  Ion Association  Theory f o r Weak  Electrolytes  ^7  (c)  Wien E f f e c t i n P o l y e l e c t r o l y t e s  *+9  (d)  Wien E f f e c t i n C o l l o i d a l E l e c t r o l y t e s 50  2.  I n t e r p r e t a t i o n of Experimental Results  51  3.  Other E f f e c t s  56  (a)  Dielectric Effect  56  (b)  E f f e c t of I m p u r i t i e s  57  (c)  Pulse Duration  57  (d)  E f f e c t o f Temperature on R e l a t i v e Conductance  (e)  Hydrochloric  A c i d as a R e f e r e n c e  Electrolyte VI.  58  58  SUMMARY AND CONCLUSIONS  59  BIBLIOGRAPHY  6l  •I.  INTRODUCTION  I n 1927 Wien (21,22) d i s c o v e r e d t h a t t h e c o n d u c t i v i t y of a n e l e c t r o l y t i c s o l u t i o n i n c r e a s e s w i t h i n c r e a s i n g f i e l d s t r e n g t h when v e r y h i g h e l e c t r i c f i e l d s a r e a p p l i e d , i n o t h e r words, under t h e s e extreme c o n d i t i o n s Ohm's Law i s no l o n g e r v a l i d .  T h i s d e v i a t i o n f r o m Ohm's Law i s r e f e r r e d  t o a s t h e Wien e f f e c t .  Wien f u r t h e r showed t h a t f o r ex-  t r e m e l y h i g h f i e l d s t h e conductance o f e l e c t r o l y t i c  solut-  i o n s , w i t h c e r t a i n e x c e p t i o n s , tended towards a l i m i t i n g v a l u e which c o r r e s p o n d s  n e a r l y t o t h e l i m i t i n g conductance  a t i n f i n i t e d i l u t i o n as measured a t l o w f i e l d s . ' observed  Wien  t h a t t h e magnitude o f t h e e f f e c t was much l a r g e r  f o r weak e l e c t r o l y t e s t h a n f o r t h e c o r r e s p o n d i n g electrolytes i n similar solvents.  strong  He a l s o f o u n d t h e  magnitude o f t h e e f f e c t t o be i n v e r s e l y p r o p o r t i o n a l t o t h e d i e l e c t r i c constant of the s o l u t i o n . a f t e r w a r d s accounted  These e f f e c t s were  f o r by t h e t h e o r i e s o f i n t e r i o n i c  a t t r a c t i o n and o f i o n i c a s s o c i a t i o n as d e v e l o p e d H u c k e l , Onsager, W i l s o n and o t h e r s . summarized by E c k s t r o m  and Schmelzer  by Debeye,  T h i s work has been (8).  P a r t i c u l a r l y l a r g e Wien e f f e c t s were  subsequently  observed by M a l s c h and H a r t l e y (18), Adcock and C o l e B l u h and T e r e n t i u k (7) and B a i l e y e t a l (2,7) m a c r o m o l e c u l a r and c o l l o i d a l s o l u t i o n s .  (1),  f o r aqueous  Determination of  the e f f e c t f o r some ampholytes was c a r r i e d out by B l u h and T e r e n t i u k (7), and Berg and P a t t e r s o n (5)6).  - 1 -  - 2 -  The purpose of t h i s i n v e s t i g a t i o n has been (1)  to  d e v e l o p an a p p a r a t u s w h i c h would be c a p a b l e of measuring the  Wien e f f e c t t o a h i g h degree of a c c u r a c y , and (2)  c o n t i n u e t h e measurements of B l u h and T e r e n t i u k (7) b i o l o g i c a l l y important substances.  to on  An a p p a r a t u s has been  c o n s t r u c t e d w h i c h i s c a p a b l e of measuring t h e Wien e f f e c t a c c u r a t e l y over a wide range of f i e l d  strength, pulse  d u r a t i o n , and i n i t i a l c o n c e n t r a t i o n of s o l u t i o n s ; the  d e t a i l s are reported h e r e i n .  and  T h i s a p p a r a t u s was  used  t o measure t h e Wien e f f e c t i n a v a r i e t y of b i o l o g i c a l s u b s t a n c e s , many of w h i c h have n o t been p r e v i o u s l y r e ported. High f i e l d  s t r e n g t h s must be a p p l i e d i n o r d e r t o  o b t a i n a p p r e c i a b l e conductance changes i n aqueous s o l u t i o n s of most e l e c t r o l y t e s .  T h i s p l a c e s a number o f  restrict-  i o n s on t h e method of measurement n o t e n c o u n t e r e d i n measurements a t l o w f i e l d s .  The a p p r e c i a b l e t e m p e r a t u r e  i n the conductance c e l l s d i c t a t e s t h a t t h e h i g h f i e l d  rise  be  a p p l i e d f o r l e s s t h a n 10 m i c r o s e c o n d s , i n f o r m of a p u l s e , and t h e r e q u i r e m e n t of a c c u r a t e l y knowing t h e f i e l d  strength  i m p l i e s t h e use of t e c h n i q u e s f o r p r o d u c i n g a square p u l s e . Wien and M a l s c h s o l v e d t h e s e d i f f i c u l t i e s  by d e v e l o p i n g  a b a r r e t t e r b r i d g e method i n w h i c h a c r i t i c a l l y damped s i n e wave was a p p l i e d t o a d o u b l e Wheatstone b r i d g e network, where the  temperature s e n s i t i v e b a r r e t t e r elements i n t h e a u x i l i a r y  b r i d g e p e r m i t t h e d e t e r m i n a t i o n of t h e main b r i d g e b a l a n c e . The p r i n c i p a l drawbacks of t h e method a r e t h a t i t does n o t  - 3  -  p e r m i t o b s e r v a t i o n o f p u l s e shape or b e h a v i o r , and t h a t i t s L a t e r Fucks (10)  operation i s tedious. developed  and H u t e r  o s c i l l o g r a p h i c methods of o b s e r v a t i o n w h i c h were  l e s s time consuming, b u t a l s o l e s s p r e c i s e . (1)  (17)  Adcock and  Cole  have r e p o r t e d a method of measurement w h i c h employs  s q u a r e p u l s e e x c i t a t i o n and o s c i l l o g r a p h i c p r e s e n t a t i o n of bridge balance.  B l u h and T e r e n t u i k (7)  have r e p o r t e d  an  o s c i l l o g r a p h i c s c a n n i n g method f o r r a p i d i n v e s t i g a t i o n . method developed  by G l e d h i l l and P a t t e r s o n (1^,  15)  A  employs  a " d i f f e r e n t i a l p u l s e t r a n s f o r m e r " as t h e b a s i s of a b r i d g e c i r c u i t , square wave e x c i t a t i o n , and o s c i l l o g r a p h i c vation.  This apparatus  seems c a p a b l e  obser-  of more a c c u r a t e  r e s u l t s t h a n t h o s e o b t a i n e d by the p r e v i o u s methods, and i t i s on t h e s e l i n e s t h a t t h e a p p a r a t u s been  d e s c r i b e d below has  designed. Experimental  d a t a a r e p r e s e n t e d f o r some b i o l o g i c a l l y  i n t e r e s t i n g substances  w h i c h can be s a i d t o be r e p r e s e n t a t i v e  of the v a r i o u s c l a s s e s of aqueous s o l u t i o n s o f e l e c t r o l y t e s , w h i c h i n c l u d e s t r o n g and weak e l e c t r o l y t e s , a m p h o l y t e s , and p o l y e l e c t r o l y t e s such as p r o t e i n s and p o l y s a c c h a r i d e s . II  DESCRIPTION OF APPARATUS  I n d e s c r i b i n g t h e apparatus  developed  f o r the measure-  ment of t h e Wien e f f e c t we s h a l l d e s c r i b e f i r s t t h e b r i d g e c i r c u i t and c o n d u c t i v i t y c e l l s , and generator.  secondly the pulse  - If -  1. The B r i d g e  Circuit  A schematic diagiam of t h e b r i d g e c i r c u i t i s shown i n f i g . 1.  The c o n d u c t i v i t y c e l l s I and I I c o n t a i n t h e e l e c t r o -  l y t e t o be measured and t h e r e f e r e n c e o e l e c t r o l y t e s o l u t i o n s . The b r i d g e c i r c u i t employs a d i f f e r e n t i a l p u l s e t r a n s former  (DPT), w h i c h i s used t o e s t a b l i s h t h e n u l l c o n d i t i o n  of t h e b r i d g e . connected  The two i d e n t i c a l  twin primary  windings  i n o p p o s i t i o n a r e i n s e r i e s w i t h t h e impedances  composed of t h e two c e l l s and t h e b a l a n c i n g r e s i s t o r s and eondensors (Ci,C2).  A h i g h speed o s c i l l o s c o p e i s used  t o observe t h e wave f o r m of t h e v o l t a g e d e v e l o p e d t h i r d w i n d i n g o f t h e DPT.  (Rl,R2)  across the  I f c u r r e n t s , equal both i n  a m p l i t u d e and phase, f l o w t h r o u g h t h e two opposed p r i m a r y w i n d i n g s , no n e t m a g n e t i c f l u x w i l l r e s u l t i n t h e c o r e o f t h e t r a n s f o r m e r , and no v o l t a g e w i l l be i n d u c e d i n t h e t h i r d winding.  I f t h e impedances connected  i n s e r i e s w i t h the  p u l s e g e n e r a t o r and t r a n s f o r m e r w i n d i n g s , a r e u n e q u a l , u n e q u a l c u r r e n t s w i l l f l o w i n t h e two w i n d i n g s , and a n e t magnetic f l u x p r o p o r t i o n a l t o t h e degree of u n b a l a n c e w i l l result,  so t h a t t h e s i g n a l a c r o s s t h e t h i r d w i n d i n g of t h e  t r a n s f o r m e r w i l l be observed  on t h e o s c i l l o s c o p e s c r e e n .  B a l a n c e i n t h e b r i d g e c i r c u i t i s thus shown by a n u l l i n v o l t a g e f r o m w i n d i n g 3»  Phase u n b a l a n c e due t o c a p a c i t i v e  u n b a l a n c e i n t h e two c e l l s w i l l appear as a s l o p i n g o r d i f f e r e n t i a t e d i n s t e a d of a f l a t - t o p p e d p u l s e ; b a l a n c e c a n be r e s t o r e d by means o f t h e h i g h v o l t a g e v a r i a b l e vacuum eondensors C i and C  2  (15-75  p f . ) . R e s i s t i v e unbalance  w h i c h i s p r o p o r t i o n a l t o t h e h e i g h t of t h e p u l s e  appearing  Differential Figure 1  0  Pulse Transformer (a)  Oscilloscope  (a) Schematic diagram of b r i d g e c i r c u i t , (b) E q u i v a l e n t c i r c u i t f o r an i d e a l c e l l , (c) Equivalent c i r c u i t f o r a r e a l c e l l .  on t h e o s c i l l o s c o p e c a n be compensated by means o f t h e v a r i a b l e r e s i s t a n c e s R i and R2 (each c o n s i s t i n g o f a group of f i v e G e n e r a l R a d i o d e c a d e - r e s i s t a n c e s t y p e 668 each group t o t a l l i n g 311 ohms.).  Any s m a l l d i f f e r e n c e s between w i n d i n g s  1 and 2 of t h e D.P.T. c a n be c o r r e c t e d by t r a n s p o s i n g t h e w i n d i n g s w i t h t h e r e v e r s i n g s w i t c h , and t a k i n g t h e a r i t h m e t i c mean o f t h e b a l a n c e p o i n t s .  The D.C. r e s i s t a n c e o f each  w i n d i n g i s o n l y o f t h e o r d e r o f 1 ohm., and t h e r e f o r e , p r a c t i c a l l y a l l t h e p u l s e v o l t a g e appears a c r o s s t h e c e l l s and r e s i s t a n c e s .  The t h i r d w i n d i n g o f t h e t r a n s f o r m e r i s  w e l l s h i e l d e d t o prevent pickup of t h e r a d i a t i o n from the p u l s e g e n e r a t o r and p r e v e n t c a p a c i t i v e c o u p l i n g t o p r i m a r y windings.  A T e k t r o n i x 517 A o s c i l l o s c o p e was used f o r p u l s e  o b s e r v a t i o n and a m p l i t u d e measurements.  The b u i l t - i n c a l i -  b r a t o r o f t h i s scope p r o v i d e d a s t a n d a r d p u l s e a m p l i t u d e . A 35 mm. camera attachment  permitted the photographing of  single pulses. 2.  Conductivity Cells The e l e c t r o d e s o f t h e c o n d u c t i v i t y c e l l s were h i g h l y  p o l i s h e d p l a t i n u m d i s c s of 1.6  0.090 cm. a p a r t .  cm. d i a m e t e r and spaced  The e l e c t r o d e s were s e a l e d i n t o a s u p p o r t -  i n g frame o f g l a s s t u b i n g , w h i c h i n t u r n was s e a l e d i n t o a g l a s s v e s s e l , c l o s e d except f o r t h e ground g l a s s j o i n t .  The  c e l l c o n s t a n t was 0.050. The two i d e n t i c a l c e l l s were suspended i n a c o n s t a n t temperature  bath of h i g h q u a l i t y transformer o i l from a  p l a s t i c r o d beam s u p p o r t r e s t i n g on t o p o f t h e b a t h .  Cir-  c u l a t i o n and m i x i n g o f t h e s o l u t i o n s was a c h i e v e d by a g i t a t i n g  - 7 -  the s o l u t i o n s through a gentle r o t a t i o n a l motion of the c e l l s about t h e i r s u p p o r t . An a l t e r n a t i v e method of c i r c u l a t i o n had been used i n the p r e l i m i n a r y experiments.  The c o n d u c t i v i t y c e l l  electrodes  were e c c e n t r i c a l l y suspended i n t h e beaker c o n t a i n i n g t h e solution.  C o n t i n u o u s r o t a t i o n o f t h e beaker by a motor  provided automatic c i r c u l a t i o n of the s o l u t i o n through the electrodes.  I n o r d e r t o p r o v i d e i s o l a t i o n f r o m t h e atmos-  p h e r e , a system o f c o n c e n t r i c b e a k e r s w i t h a l i q u i d was used. 0.90  mm.  The e l e c t r o d e s were 1.6  seal  cm. d i a m e t e r and spaced  The method o f c i r c u l a t i o n can be seen i n t h e  photograph o f f i g .  5«  N e i t h e r of t h e s e methods o f c i r c u l a t i o n were found t o be e n t i r e l y s a t i s f a c t o r y b u t t h e f i r s t mentioned method had a b e t t e r degree o f c o n t r o l .  S i n c e t h e s o l u t i o n s were  n i t r o g e n a t e d b e f o r e t h e measurements were t a k e n t o remove d i s s o l v e d c a r b o n d i o x i d e , t h e a g i t a t i o n of t h e s o l u t i o n tended t o f r e e some of t h e d i s s o l v e d n i t r o g e n and t o cause f o r m a t i o n o f minute gas b u b b l e s about t h e e l e c t r o d e s .  This  changes t h e e f f e c t i v e a r e a o f t h e e l e c t r o d e s and t h u s t h e r e s i s t a n c e of t h e s o l u t i o n , and a t h i g h f i e l d s caused arcing.  I t was found t h a t r e m o v a l of e x c e s s d i s s o l v e d  n i t r o g e n b e f o r e measurements, by s l i g h t h e a t i n g , and s t i r r i n g was of advantage. 3.  The P u l s e G e n e r a t o r A General Radio pulse generator p r o v i d e d low v o l t a g e  r e c t a n g u l a r p u l s e s o f 26 v o l t a m p l i t u d e , w h i c h were used t o determine the balance c o n d i t i o n s a t low f i e l d s  ("zero f i e l d " ) .  - 8 -  High voltage pulses a r e obtained from a high-voltage p u l s e r (fig. 2 , 3 , a n d  c o u l d be v a r i e d i n a m p l i t u d e  f r o m one t o  s i x t e e n k i l o v o l t s by changing t h e power s u p p l y output  with  a variac. transformer. Photographs o f t h e a p p a r a t u s  i s shown i n f i g s , h and  5, a b l o c k diagram i n f i g . 2, and a schematic f i g . 3*  diagram i n  I n the c o n s t r u c t i o n of the pulse generator  refer-  ence was made t o t h e p u l s e t e c h n i g u e s d e s c r i b e d i n t h e books o f G l a s c o e and Lebacqz; (13)  (20).  and o f V a l l e y and wallmann  The h i g h v o l t a g e p u l s e r i s d r i v e n by a l o w v o l t a g e p u l s e g e n e r a t o r , w h i c h i s i n t u r n d r i v e n by t h e t r i g g e r  generator.  The t r i g g e r g e n e r a t o r w h i c h t r i g g e r s b o t h p u l s e and o s c i l l o scope, i s a t h y r a t r o n r e l a x a t i o n o s c i l l a t o r the f r e q u e n c y  can be v a r i e d f r o m manual o p e r a t i o n t o 10  p u l s e s p e r second. shaping t h y r a t r o n The  (2050), i n w h i c h  These p u l s e s a r e f e d i n t o a second p u l s e -  (2050) i n c l u d e d i n t h e t r i g g e r g e n e r a t o r .  output p u l s e s a r e f e d s i m u l t a n e o u s l y i n t o a f i x e d  trigger  d e l a y u n i t and a v a r i a b l e t r i g g e r d e l a y u n i t , whieh b o t h c o n s i s t o f a r e s i s t a n c e - c a p a c i t y network i n t h e g r i d of t h e t h y r a t r o n s  circuits  (2050). The g r i d t o ground c a p a c i t y i n t h e  t r a i l i n g edge t h y r a t r o n c a n be v a r i e d , thus v a r y i n g t h e t i m e required.for grid-cathode capacity- t o reach the t h y r a t r o n t r i g g e r i n g v o l t a g e ; i n t h i s way t h e d e l a y between f i r i n g o f t h e l e a d i n g and t h e t r a i l i n g edge t h y r a t r o n s c a n be v a r i e d . When t h e l e a d i n g edge t h y r a t r o n f i r e s , t h e energy s t o r a g e condenser d i s c h a r g e s some o f i t s energy t o t h e g r i d s o f t h e h a r d tube p u l s e r , w h i l e t h e f i r i n g o f t h e t r a i l i n g  edge  t h y r a t r o n s h o r t - c i r c u i t s t h e g r i d s o f t h e p u l s e r t u b e s , and  cuts o f f the f i r s t thyratron.  The p u l s e g e n e r a t e d  by t h e  t h y r a t r o n s i n e f f e c t s w i t c h e s on and o f f t h e g r i d s o f t h e h a r d tube p u l s e r (two 5021»s i n p a r a l l e l ) .  The p u l s e  r e a c h i n g t h e g r i d s o f t h e 5021's has an a m p l i t u d e  o f 600  A 1 mf, 16 k v paper condenser i s used as t h e energy  volts.  s t o r a g e u n i t i n t h e h i g h v o l t a g e p u l s e r c i r c u i t , and i s charged t h r o u g h an i s o l a t i n g r e s i s t o r by t h e h i g h v o l t a g e power s u p p l y .  When t h e p u l s e r tubes a r e s w i t c h e d on and o f f  by t h e 600 v o l t p u l s e on t h e g r i d s , t h e condenser p a r t i a l l y discharges through t h e b r i d g e c i r c u i t .  A t t h e end o f t h e  p u l s e , t h e energy s t o r a g e condenser must r e c h a r g e  through  t h e b r i d g e c i r c u i t , thus a u t o m a t i c a l l y p r o v i d i n g a p u l s e of o p p o s i t e p o l a r i t y f o r t h e d e p o l a r i z a t i o n o f t h e e l e c t r o d e s . The p u l s e l e n g t h c a n be v a r i e d between 0.5 and 5° microsec, 30 amps.  and a m p l i t u d e up t o 16 k v , and t h e c u r r e n t up t o The r e p e t i t i o n f r e q u e n c y i s up t o 10 p e r second,  but t o m i n i m i z e h e a t i n g and p o l a r i z a t i o n e f f e c t s , t h e r e p e t i t i o n frequency i s kept t o 2 p e r minute, w h i l e a pulse l e n g t h o f 10 m i c r o s e c o n d s has been used. The h i g h v o l t a g e p u l s e a m p l i t u d e c a n be measured w i t h a c a p a c i t i v e v o l t a g e d i v i d e r ( J e n n i n g ' s h i g h - v o l t a g e vacuum t y p e ) o f r a t i o 110:1, and a c a l i b r a t e d o s c i l l o s c o p e (Tektronix 5l?A).  1 + 1000 7  ENERGY STORAGE CONDENSER  H.V. POWER SUPPLY 0-16 K.V. (Variable) <  FIXED TRIGGER DELAY  JL  TRIGGER GENERATOR Manual t o 10/second  - 150 7 500 V  LEADING EDGE TflYRATRON SWITCH  VARIABLE! TRIGGER DELAY  OSCILLOSCOPE 1  PULSER SWITCH TUBES  ENERGY STORAGE CONDENSER  TRAILING EDGE THYRATRON SWITCH  law Voltage Pulse Generator Fig. 2 .  ISOLbrim RES IS rANCE  High Voltage Pulse Generator  Block diagram o f pulse generator and bridge c i r c u i t .  D.P.T.  BRIDGE  CAPAcrrrvE VOLTAGE DIVIDER  r:  Bridge C i r c u i t  Trigger  Rate  Low  Generator  Voltage  Pulse  Shaper  '  High  1000 V  5Q0V  1.  j  IK COARSE RATE  rWv  1  1 i  Pulser  0-I6KV  •200K  200K>  Voltage  I0K.  IMF '  11  HI—  Bib Tl|MFf<  20 50  i  o  350 0.5 0.2J 0J[* 20 50  r<§l  EXT 3RNAL TR1GGBR  T r  5JK  20 50  i  .01  I0(  35*0  O o o  oj  1001  •Jo I  20 5 0 5J  I5K  •AAr-  <l M  to  i_L  -200<4K  K  I  <5K  5IK  11  JlOOK  '36K  COARSE F0lj3E W3DJH f ?  Mi i I OK  0p300T 6pOO  47 K60T600T  -400V 150  Hr—>  W2"50K  A/w—' FINS PULSE WIDTH  FINE RATE  -150 V F i g . J . Schematic diagram of pulse generator  6  1000 V  390K 680K  -  F i g . h.  12  -  Photograph of the Apparatus  Fig.  5.  Photograph of the Apparatus  - 1U, -  I I I EXPERIMENTAL PROCEDURE 1.  Balancing of the Bridge A s c h e m a t i c d i a g r a m o f the b r i d g e c i r c u i t i s shown  i n f i g . 1 ( a ) . F i g . 1(b) i l l u s t r a t e s the equivalent c i r c u i t & r t h e impedance o f a n i d e a l c o n d u c t i v i t y c e l l where t h e r e s i s t a n c e I s due t o the c o n d u c t i v i t y o f t h e e l e c t r o l y t i c s o l u t i o n and t h e p a r a l l e l c a p a c i t y i s due t o t h e two e l e c t r o d e s s e p a r a t e d by a s o l u t i o n o f h i g h d i e l e c t r i c Fig.  constant.  1 ( c ) i l l u s t r a t e s t h e proposed e q u i v a l e n t c i r c u i t f o r  t h e impedance o f a r e a l c e l l composed o f ( i ) t h e r e s i s t a n c e due t o t h e c o n d u c t i v i t y o f t h e s o l u t i o n , ( i i ) a s e r i e s c a p a c i t y , w h i c h has been i n t r o d u c e d t o a c c o u n t f o r t h e p o l a r i z a t i o n a t t h e e l e c t r o d e s and ( i i i ) a p a r a l l e l  capacity  due t o p r e s e n c e o f two c o n d u c t i n g e l e c t r o d e s s e p a r a t e d by a s o l u t i o n of h i g h d i e l e c t r i c  constant.  There i s no p r o v i s i o n  made f o r b a l a n c i n g t h e s e r i e s c a p a c i t y ( f i g . 1 ( c ) ) i n t h e two arms o f t h e b r i d g e , e x c e p t by j u d i c i o u s c h o i c e o f r e f e r e n c e e l e c t r o l y t e , such t h a t t h e amount and r a t e o f p o l a r i z a t i o n i n t h e two s o l u t i o n s w i l l be t h e same. The t r a c e s on t h e o s c i l l o s c o p e s c r e e n were photographed under v a r i o u s c o n d i t i o n s o f b a l a n c e and u n b a l a n c e of t h e bridge c i r c u i t .  A c t u a l photographs o f t h e t r a c e s a r e shown  i n f i g s . 6, 7» and 8. F i g . 6 i l l u s t r a t e s t h e case o f b a l a n c i n g a s i m p l e impedance o f f o r m o f f i g . 1 ( b ) .  The c o n d u c t i v i t y c e l l s a r e  r e p l a c e d each by a c h a i n o f c a r b o n r e s i s t o r s o f 3000 ohms total resistance.  Photograph 1 shows t h e f o r m o f t h e i n p u t  p u l s e t o t h e b r i d g e from t h e G e n e r a l R a d i o l o w v o l t a g e p u l s e  - 15 generator.  F o r pure r e s i s t i v e u n b a l a n c e t h e f o r m of t h e i n p u t  p u l s e i s reproduced  a t t h e b r i d g e o u t p u t , where the h e i g h t  of t h e f l a t t o p i s p r o p o r t i o n a l t o t h e degree of r e s i s t i v e u n b a l a n c e (photograph  3)»  I f c a p a c i t i v e unbalance i s  i n t r o d u c e d as w e l l , t h e n t h e output p u l s e a l s o appears d i f f e r e n t i a t e d (photograph amplitude balanced  2).  A r e c t a n g u l a r p u l s e of z e r o  i s o b t a i n e d when b o t h r e s i s t a n c e and c a p a c i t y a r e h)  (photograph  by means of R^,  R2 and C^,  C2.  i s of i n t e r e s t t o n o t e h e r e t h a t s i n c e t h e a m p l i t u d e  It  of,the  f l a t t o p of t h e p u l s e i s p r o p o r t i o n a l t o t h e degree o f r e s i s t i v e u n b a l a n c e , i t i s p o s s i b l e f r o m t h e measurement of p u l s e a m p l i t u d e s  f o r two s e t t i n g s of t h e compensating  r e s i s t a n c e s , t o e x t r a p o l a t e an e s t i m a t e o f t h e r e s i s t a n c e required f o r balancing.  T h i s i s of p a r t i c u l a r i m p o r t a n c e  a t h i g h f i e l d s t r e n g t h measurements, where economy of p u l s e s t o m i n i m i z e h e a t i n g and p o l a r i z a t i o n i s i m p o r t a n t . The photographs of f i g . 7 i l l u s t r a t e t h e r e s u l t of t h e presence i n t h e b r i d g e of complex impedances ( f i g .  1(c))  r e p r e s e n t e d by t h e e l e c t r o l y t i c c e l l s , c o n t a i n i n g agar and HC1  i n this instance.  The f i r s t photograph a g a i n shows  the l o w v o l t a g e i n p u t p u l s e , w h i l e t h e second shows t h e b e s t compromise a t c a p a c i t i v e and r e s i s t i v e b a l a n c e .  The  n e t c a p a c i t y u n b a l a n c e seems t o g i v e r i s e t o two p a i r s of spikes.  The  s p i k e s of each p a i r a r e o p p o s i t e l y d i r e c t e d ,  and t h e two p a i r s a r e a l s o o p p o s i t e l y d i r e c t e d .  Any  attempt t o r e d u c e t h e h e i g h t of one p a i r of s p i k e s by a d j u s t i n g C]_ or C2 i n c r e a s e s the h e i g h t of t h e second p a i r of s p i k e s , t h e r e f o r e t h e a r b i t r a r y compromise f o r c a p a c i t i v e  - 16 -  b a l a n c e was The  adopted making a l l s p i k e s of about e q u a l  height.  t h i r d photograph i l l u s t r a t e s the d e v i a t i o n from c a p a c i t i v e  b a l a n c e by i n c r e a s i n g the .capacity of the a g a r s i d e of  the  b r i d g e , w h i l e i n t h e f o u r t h case c a p a c i t y i s g r e a t e r on HC1  side.  M a i n t a i n i n g e x c e s s c a p a c i t y on t h e HC1  the b r i d g e , t h e r e s i s t a n c e i s b r o u g h t above and b a l a n c e on t h e HC1  s i d e of  below  s i d e of t h e b r i d g e (photographs 7  8 r e s p . ) , r e s u l t i n g i n the displacement  the  and  of t h e f l a t t o p  of  the p u l s e . Fig. impedance. 0.61  8 shows a n o t h e r example of b a l a n c i n g a complex I n t h i s case one  conductivity c e l l  M g l y c i n e s o l u t i o n and t h e o t h e r a HC1  solution.  reference  P h o t o g r a p h 1 shows the t y p i c a l b a l a n c e p a t t e r n  of a complex impedance a t l o w f i e l d s . f i e l d p u l s e of 130 (photograph 2),  I f however a h i g h  K.V./cm. i s a p p l i e d t o t h e  bridge  t h e n the b r i d g e o u t p u t p u l s e appears as i n  photographs 3 and  being e x t e r n a l l y attenuated  l a t t e r i n s t a n c e by a f a c t o r of 10. shape of t h i s p u l s e i s due with f i e l d  contains  i n the  whether t h e u n u s u a l  t o change i n c a p a c i t i v e b a l a n c e  ( c l o s e l y r e l a t e d t o p o l a r i z a t i o n ) or due  to  r e l a x a t i o n phenomenon c o u l d n o t be d e c i d e d , however, i n a l l c a s e s the c o n d i t i o n f o r r e s i s t i v e b a l a n c e was a r b i t r a r i l y t a k e n as z e r o a m p l i t u d e f o r the end d i f f e r e n t i a t e d p a r t of the 2.  (a)  Determination  somewhat  of t h e  non-  pulse.  of P u l s e A m p l i t u d e and F i e l d  The h i g h v o l t a g e p u l s e a p p l i e d t o t h e b r i d g e  Strength circuit  a l s o appears a t a c a p a c i t i v e v o l t a g e d i v i d e r , w h i c h , t o gether w i t h a d d i t i o n a l e x t e r n a l a t t e n u a t o r s , reduce the  - 17 -  If  Fig.  6.  O s c i l l o g r a p h i c Traces i n the B a l a n c i n g of a Simple Impedance i n t h e D.P.T. B r i d g e a t Low E l e c t r i c Fields.  The c o n d u c t i v i t y c e l l s were r e p l a c e d by c a r b o n r e s i s t a n c e s , each o f 3000 ohms t o t a l r e s i s t a n c e . 1.  Low v o l t a g e (26 v o l t ) i n p u t p u l s e i s shown.  2.  Output p u l s e when b o t h r e s i s t a n c e and c a p a c i t y are u n b a l a n c e d .  3.  Output p u l s e when c a p a c i t y i s b a l a n c e d and r e s i s t a n c e remains u n b a l a n c e d .  h.  Output p u l s e when r e s i s t a n c e and c a p a c i t y a r e both balanced.  - 18 -  \  r  i V  F i g . 7.  O s c i l l o g r a p h i c Traces i n the Balancing of a Complex Impedance i n t h e D.P.T. B r i d g e a t Low E l e c t r i c F i e l d s .  The c o n d u c t i v i t y c e l l s f o r m t h e complex impedance, and c o n t a i n 3 x IO"* " grams/cc. agar s o l u t i o n and t h e r e f e r e n c e s o l u t i o n o f HC1, r e s p e c t i v e l y . 4  1.  Low v o l t a g e (26 v o l t ) i n p u t p u l s e .  .2.  Output p u l s e w i t h t h e b e s t r e s i s t i v e and c a p a c i t i v e b a l a n c e t h a t c o u l d be o b t a i n e d .  3.  Output p u l s e when c a p a c i t y i s u n b a l a n c e d . The c a p a c i t y i s g r e a t e r i n t h e agar arm of t h e bridge.  k-.  Output p u l s e when c a p a c i t y i s u n b a l a n c e d . The c a p a c i t y i s now g r e a t e r i n t h e HC1 arm o f the b r i d g e .  - 19  vara  -  t  F i g . 7 (Continued). O s c i l l o g r a p h i c T r a c e s i n the B a l a n c i n g of a Impedance i n t h e D.P.T. B r i d g e a t Low Electric Fields. 5.  Output p u l s e when c a p a c i t y and r e s i s t a n c e a r e b o t h u n b a l a n c e d . C and R a r e b o t h g r e a t e r i n t h e HC1 arm of t h e b r i d g e .  6.  Output p u l s e when c a p a c i t y and r e s i s t a n c e a r e b o t h u n b a l a n c e d . C remains g r e a t e r i n t h e HC1 arm of t h e b r i d g e , w h i l e R i s now g r e a t e r i n the agar arm.  - 20 -  T  V  "7  F i g . 8.  O s c i l l o g r a p h i c T r a c e s i n t h e B a l a n c i n g o f a Complex Impedance i n t h e D.P.T. B r i d g e a t H i g h E l e c t r i c Fields.  The c o n d u c t i v i t y c e l l s f o r m t h e complex impedance, and c o n t a i n 0.6l M g l y c i n e and t h e r e f e r e n c e s o l u t i o n o f H C 1 . 1.  Output p u l s e w i t h t h e b e s t r e s i s t i v e and c a p a c i t i v e b a l a n c e a t l o w f i e l d (26 v o l t p u l s e ) .  2.  H i g h v o l t a g e i n p u t p u l s e ( f i e l d 130 K.V./cm.) i s shown.  3.  Output p u l s e a t h i g h f i e l d s t r e n g t h when r e s i s t a n c e i s s l i g h t l y unbalanced but best c a p a c i t i v e balance obtainable.  h.  T h i s i s i d e n t i c a l t o 3 above except a t t e n u a t e d x 10,  - 21 -  amplitude  of t h e p u l s e t o a i e v e l p e r m i t t i n g d i s p l a y on  t h e o s c i l l o s c o p e . I f the p u l s e h e i g h t (h) i s measured and t h e t o t a l a t t e n u a t i o n r a t i o (A) i s known, and  the  s e n s i t i v i t y (S) of t h e o s c i l l o s c o p e d e f l e c t i o n i s known i n volts/cm., then the pulse amplitude V i n v o l t s i s V = h.S.A. I n o r d e r t o a v o i d u n n e c e s s a r y r e p e t i t i o n of t h e p u l s e ( t o m i n i m i z e h e a t i n g e f f e c t s ) , i t was  f e l t convenient  have a secondary s t a n d a r d f o r p r e - s e t t i n g t o any height.  to  pulse  Measurement of t h e p r i m a r y a.c. v o l t a g e a p p l i e d  t o t h e h i g h v o l t a g e power s u p p l y seemed t o p r o v i d e a convenient  secondary s t a n d a r d , s i n c e t h e p u l s e  v a r i e s l i n e a r l y w i t h primary v o l t a g e .  amplitude  The v a r i a t i o n of t h e  p r i m a r y v o l t a g e by means of a v a r i a c , was u s e d t o change the pulse  amplitude.  The a t t e n u a t i o n A, mentioned above, i s p r o v i d e d  by  ( i ) the c a p a c i t i v e vacuum v o l t a g e d i v i d e r of r a t i o : A]_,  and  ( i i ) t h e b u i l t - i n c a p a c i t i v e a t t e n u a t o r of t h e cathode f o l l o w e r probe of ratio:-  A2»  and  ( i i i ) an e x t e r n a l c a l i -  b r a t e d T e k t r o n i x s t e p a t t e n u a t o r of r a t i o :  A3.  Thus t h e  t o t a l a t t e n u a t i o n between t h e h i g h v o l t a g e p u l s e and  the  o s c i l l o s c o p e i s A = A~L.A2.A3. The T e k t r o n i x 517A pulse type amplitude 0.01  o s c i l l o s c o p e i s equipped w i t h a  c a l i b r a t o r w i t h v a r i a b l e output  v o l t t o 5° v o l t p o s i t i v e p u l s e s , w h i c h was  s t a n d a r d of p u l s e h e i g h t .  from  used as t h e  By f e e d i n g the c a l i b r a t o r  output  d i r e c t l y t o the o s c i l l o s c o p e , i t s s e n s i t i v i t y i n volts/cm. i s d i r e c t l y d e t e r m i n e d (see t a b l e I and f i g . 9 ) .  Having  -  22  -  c a l i b r a t e d t h e o s c i l l o s c o p e s e n s i t i v i t y ( f i g . 9) way, t h e r a t i o A  2  i n this  can be a d j u s t e d t o any d e s i r e d v a l u e by  f e e d i n g t h e c a l i b r a t o r output i n t o t h e cathode f o l l o w e r and through t h e a t t e n u a t o r A3 i n t o t h e o s c i l l o s c o p e . Thus i t remains o n l y t o d e t e r m i n e t h e r a t i o A^. the amplitude  To do t h i s ,  of a low v o l t a g e pulse a p p l i e d t o the bridge  was measured f i r s t as i t appeared a c r o s s t h e b r i d g e and  directly  secondly through the c a p a c i t i v e v o l t a g e d i v i d e r .  each case A  2  and A^ were a d j u s t e d t o c o n v e n i e n t  In  ratios,  b e a r i n g i n mind n o t t o o v e r l o a d t h e cathode f o l l o w e r . pulses appearing  The  on t h e o s c i l l o s c o p e were photographed f o r  more a c c u r a t e measurement. The r e s u l t s appear i n T a b l e I I , w h i l e t h e c a l i b r a t i o n c u r v e , p r i m a r y a.c. v o l t s i n terms of p u l s e h e i g h t appears i n f i g . 10. 2.  (b) The F i e l d  Strength  End e f f e c t s b e i n g n e g l e c t e d , t h e f i e l d  strength  i n t h e p a r a l l e l d i s k c o n d u c t i v i t y c e l l i s g i v e n by • X = V d where V i s t h e v o l t a g e a c r o s s t h e c e l l and d i s t h e s p a c i n g between t h e p a r a l l e l e l e c t r o d e s .  The p u l s e h e i g h t  V  Q  a p p e a r i n g a c r o s s t h e b r i d g e as d e t e r m i n e d f r o m t h e c a l i b r a t ion  curve  ffig.ld)  i s d i v i d e d i n t o two p a r t s :  a c r o s s t h e s e r i e s compensating r e s i s t o r (Rj. case may be) and t h a t p a r t a c r o s s t h e c e l l . the c e l l r e s i s t a n c e - t h e n  where g e n e r a l l y R » R i .  o r  that ^2  a s  appearing ^ e h  Thus i f R i s  - 23 -  \  Table I C a l i b r a t i o n data f o r v e r t i c a l d e f l e c t i o n of T e k t r o n i x 517A o s c i l l o s c o p e  Input P u l s e *  Vertical  Deflection  volts  cms.  0.03*f  0.60  0.052  O.87  0.061  1.00  0.068  1.13  o.iou,  1.66  O.I36  2.13  0.266  2.35  •The s i g n a l s o u r c e was t h e p u l s e t y p e c a l i b r a t o r o f t h e T e k t r o n i x 517A o s c i l l o s c o p e .  F i g u r e 9.  V e r t i c a l d e f l e c t i o n c a l i b r a t i o n curve f o r the T e k t r o n i x 517A O s c i l l o s c o p e , ( d a t a f r o m T a b l e I )  - 25 3.  D e t e r m i n a t i o n o f t h e R e l a t i v e Conductance  /A  f t  The t h i r d and f o u r t h columns o f t h e t a b l e s o f e x p e r i mental r e s u l t s (Tables  I I I t o X I ) show t h e r e s i s t a n c e  r e q u i r e d i n s e r i e s w i t h each c o n d u c t i v i t y c e l l t o o b t a i n r e s i s t i v e balance a t various f i e l d  strengths.  The d i f f e r e n c e  between t h e s e two f i g u r e s g i v e s t h e d i f f e r e n c e i n r e s i s t a n c e of t h e e l e c t r o l y t e under i n v e s t i g a t i o n and t h e h y d r o c h l o r i c a c i d a t the p a r t i c u l a r f i e l d  strength.  We n o t e t h i s  d i f f e r e n c e by (iR) at a f i e l d  x  = (R ci - Relectrolyte^X H  strength.X.  The change i n r e s i s t a n c e o f t h e e l e c t r o l y t e r e l a t i v e t o HC1 a t f i e l d  s t r e n g t h s X and a t X = 0, i s g i v e n by (•R)  x  - (SR)  X=  o  =AR  w h i l e t h e r e l a t i v e change i n r e s i s t a n c e i s  *X F 0 where Rx=o ( * has  he  ze  *°  +  <* >X R  f i e l d r e s i s t a n c e of the e l e c t r o l y t e )  been d e t e r m i n e d by independant measurements and i s  given i n the footnotes  o f each t a b l e .  I t i s o f t e n more c o n v e n i e n t t o w r i t e t h e l a s t expression  i n terms o f t h e conductance ( A ) o f t h e s o l u t i o n  where A = 1 > so t h a t t h e r e l a t i v e change i n conductance R is  A A  - 26 -  Table I I P u l s e amplitude 1.  c a l i b r a t i o n data  S e n s i t i v i t y of T e k t r o n i x 517  oscilloscope.  Refer t o  f i g . 1 f o r c a l i b r a t i o n curve. 2.  Determination  of r a t i o A^ of c a p a c i t a n c e vacuum v o l t a g e  divider.  A  A^  2  Amplitude  a t Scope  Pulse  Output taken d i r e c t l y from  2000  10  Amplitude  source:  0.04-8 v o l t s  960  volts  Output taken through v o l t a g e d i v i d e r Aq_i  96  2  0.052  10.0  volts  Therefore voltage d i v i d e r ratio: 3.  Calibration  Pulser Primary ac. v o l t s  A]_ =  volts  960 • 10.0 = 96  curve  Scope Amplitude  A  2  A  3  Pulse K.V.  volts  13.8  .05*f  96  96  h  2.0  lh.6  .057  96  96  h  2.1  19.7  .037  96  96  8  2.7  25.2  .0^7  96  96  8  3.5  36.5  .054-  96  96  10  5.0  60.0  .ohh  96  96  20  8.1  95.0  .070  96  96  20  12.9  100  .038  96  96  4-0  lh.0  104-  .04-1  96  96  ho  15.1  - 27 -  20  60  PULSER PRIMARY - A.C. V O L T S F i g u r e 10.  Pulse Amplitude C a l i b r a t i o n Curve, Table II).  (data from  100  - 28  -  P r e p a r a t i o n of C o n d u c t i v i t y Water and The  c o n d u c t i v i t y water was  of  Solutions  prepared i n a three  stage  d i s t i l l a t i o n a p p a r a t u s ; the steam b e i n g condensed i n a b l o c k - t i n condenser.  N i t r o g e n was  bubbled through t h i s  w a t e r t o remove d i s s o l v e d c a r b o n d i o x i d e .  The w a t e r  was  t h e n h e a t e d t o about 80°C. t o remove e x c e s s d i s s o l v e d n i t r o g e n gas and t h e n c o o l e d t o the d e s i r e d t e m p e r a t u r e .  "7 The  s p e c i f i c c o n d u c t i v i t y was  mhos.  t h e n b e t t e r t h a n 5 x 10 '  Some of t h e samples of s u b s t a n c e s i n v e s t i g a t e d i n  t h i s s t u d y were r e c r y s t a l l i z e d and shown i n the f o o t n o t e s  some were n o t , as i s  of t h e t a b l e s of r e s u l t s .  The  samples were d i s s o l v e d i n t h e c o n d u c t i v i t y w a t e r t o f o r m a stock s o l u t i o n . The t o be  r e s i s t a n c e of s o l u t i o n i n the c e l l was  2000  arranged  ohms; t h e c o n c e n t r a t i o n r e q u i r e d t o a r r a n g e t h i s  being determined i n a separate c o n d u c t i v i t y bridge w i t h a sample of s o l u t i o n p r e p a r e d f r o m t h e s t o c k s o l u t i o n . hOO  c c . of s o l u t i o n was The  concentration  ence c e l l was  adjusted  placed i n the  About  cell.  of h y d r o c h l o r i c a c i d i n t h e r e f e r i n each case t o be about 100  ohms  l e s s t h a n t h e r e s i s t a n c e of t h e e l e c t r o l y t i c s o l u t i o n . The cell 250  c o n d u c t i v i t y of t h e e l e c t r o l y t i c s o l u t i o n i n t h e  (Ax=0) a t z e r o f i e l d v o l t s / c m . ) was  acid reference  ( i . e . at a f i e l d  strength  e s t a b l i s h e d by r e p l a c i n g the  of  hydrochloric  c e l l w i t h a Leeds and N o r t h r o p a c . -  dc.  decade r e s i s t a n c e box i n p a r a l l e l w i t h a v a r i a b l e c o n d e n s e r , and a d j u s t i n g the r e s i s t a n c e box t o o b t a i n a b a l a n c e . The low v o l t a g e i n p u t p u l s e i s a p p l i e d t o the b r i d g e t o o b t a i n  - 29 The p u l s e source was a 26 v o l t G e n e r a l  t h i s balance.  p u l s e - g e n e r a t o r , w h i c h was a l s o used t o e s t a b l i s h f i e l d balance against the h y d r o c h l o r i c a c i d  Radio  zero  reference  solution. 5. I I Temperature F l u c t u a t i o n and P o l a r i z a t i o n E f f e c t s The  (& R)^- _  w h i c h has been shown i n t h e t a b l e s as  a c o n s t a n t v a l u e , i n f a c t f l u c t u a t e d w i t h t i m e i n two ways. F i r s t due t o f l u c t u a t i o n s i n t e m p e r a t u r e o f t h e b a t h by as much as 1°C. d u r i n g t h e c o u r s e o f an e x p e r i m e n t , corresponded  a drift i n ( S R )  x  _ . Q  there  T h i s would o f c o u r s e  be p r o p o r t i o n a l t o t h e d i f f e r e n c e o f t h e t e m p e r a t u r e c o e f f i c i e n t s o f r e s i s t a n c e f o r t h e e l e c t r o l y t e and f o r t h e hydrochloric acid reference The v a l u e o f ( $R)Y_ -  solution. 0  a l s o d i f f e r e d depending on  whether t h i s was t a k e n b e f o r e o r a f t e r passage o f a h i g h voltage pulse.  The p r o c e d u r e was adopted t o t a k e f o r each  h i g h f i e l d r e s i s t a n c e measurement i t s own z e r o  field  r e s i s t a n c e r e f e r e n c e p o i n t , w h i c h was d e t e r m i n e d as t h e . mean o f t h e z e r o f i e l d r e s i s t a n c e r e a d i n g s measured immediately  p r e c e d i n g and one m i n u t e s u c c e e d i n g t h e  passage o f t h e h i g h v o l t a g e p u l s e .  The v a l u e s o f s e r i e s  r e s i s t a n c e g i v e n i n t h e t a b l e s were a d j u s t e d on t h i s b a s i s . However i n v i e w o f t h e e x p e r i m e n t s ,  as w e l l as t h o s e  of Fuoss (28)-, on t h e slow r e t u r n t o e q u i l i b r i u m a f t e r t h e passage o f a h i g h v o l t a g e p u l s e , i t may have been b e t t e r to take only the reading preceding the high f i e l d as t h e t r u e e q u i l i b r i u m v a l u e .  pulse  - 30 IV.  EXPERIMENTAL RESULTS  The e x p e r i m e n t a l r e s u l t s a r e p r e s e n t e d i n T a b l e s I I I t o X I , and i l l u s t r a t e d i n g r a p h i c a l f o r m by f i g s . 11 t o 19. They c a n be a r r a n g e d i n t o t h r e e c a t a g o r i e s : and 1(+)  ( I ) glutamine  a r g i n i n e m o n o h y d r o c h l o r i d e showing n e g l i g i b l e  Wien e f f e c t ( l e s s ' t h a n 0.%  a t 100 KV./cm.); ( i i ) p-amino  b e n z o i c a c i d , a c e t i c a c i d , s u l f a n i l i c a c i d , 1(+) a c i d and g l y c i n e  glutamic  showing i n c r e a s e s i n conductance o f between  2% and 6$, and ( i i i ) p r o t a m i n e s u l f a t e and a g a r showing a conductance i n c r e a s e o f about k-0%. f u l l y discussed  later.  The r e s u l t s a r e more  - 31 Table I I I Conductance i n h i g h e l e c t r i c f i e l d s of 1.25  x  -4-  10  M  g l u t a m i n e r e l a t i v e t o 6 x 10"^ M HC1 a t 26.5°C.  Pulser Primary  Pulse  ac. v o l t s  K.V.  Series Resistance HC1 S i d e Soln. Side ohms  Field  A A//,  K.V./cm.  %  0  0  172  0  0  0  5  1.9  165  0  21  0.35  30.4-  4..0  161  0  0.55  60.0  7.9  159  , 0  ^5 88  13.2  159  0  14-.  100  0.64-  111  0.64-  Notes: 1. P r e p a r a t i o n : The g l u t a m i n e (GBI Brand) was r e - c r y s t a l l i z € t w i c e f r o m w a t e r , oven ' d r i e d , t h e n d i s s o l v e d i n c o n d u c t i v i t y water. 2. The z e r o f i e l d r e s i s t a n c e o f t h e g l u t a m i n e s o l u t i o n was 2010 ohms; and s p e c i f i c r e s i s t a n c e o f 4-.0 x: IO " ohms. 4  - 32 T a b l e 17 Conductance  i n h i g h e l e c t r i c f i e l d s o f 2.0 x IO" * M 1(+) 1  a r g i n i n e - m o n o h y d r o c h l o r i d e r e l a t i v e t o 6 x 1 0 " ^ M HC1 a t 26.*f°C. Pulser Primary  Pulse  ac. v o l t s  K.V.  Series Resistance HC1 S i d e Soln. Side ohms  Field  AA  K.7./cm  /Ao  %  0  0  225  0  0  0  25.2  225  0  37  0  53.3  3.3 6.8  0  76  0.51  89.5  11.9  215 213  0  132  0.61  Notes: 1. P r e p a r a t i o n . The 1(+) a r g i n i n e m o n o h y d r o c h l o r i d e (GBI Brand) was d i s s o l v e d d i r e c t l y i n t o t h e c o n d u c t i v i t y w a t e r . 2. The z e r o f i e l d r e s i s t a n c e o f t h e 1(+) a r g i n i n e monoh y d r o c h l o r i d e s o l u t i o n was I 9 8 O ohms; and t h e s p e c i f i c r e s i s t a n c e was 4-.0 x 10^" ohms.  - 33  40 F i g u r e 11.  FIELD  KV/  120  CM.  The conductance i n h i g h e l e c t r i c f i e l d s of 1.25 z IO- " M g l u t a m i n e r e l a t i v e t o 6 x 10"5 M HC1 a t 26o5°C 4  40 F i g u r e 12.  80  -  80  FIELD  120  KV / CM.  160  The conductance i n h i g h e l e c t r i c f i e l d s o f 2.0 x 10 M 1(+) A r g i n i n e M o n o h y d r o c h l o r i d e r e l a t i v e t o 6 x 10"5 M HC1 a t 26. lf°C.  - 3>+ -  Table V Conductance i n h i g h e l e c t r i c f i e l d s o f 5.0 x 10"^ b e n z o i c a c i d r e l a t i v e t o ^.^ x 10  Pulser Primary  Pulse  ac. v o l t s  K.V.  -lf  M p-amino-  M HC1 a t 21°C.  Series Resistance HC1 S i d e Soln. Side  Field K.V./cm  ohms  %  0  0.6  129  0  13  1.7  125  0  19  2.0  25  3.3  121  0  37  3-0  37.5  5.0  119  0  55  3.7  h2  5.6  118  0  62  3.8  62.5  8.3  115  0  92  h.7  75  9.9  109  0  110  6.1  87  11.5  106  0  128  6.9  6.6  1.0  Notes: 1. Preparation: The F i s h e r S c i e n t i f i c Co. Reagent Grade p a r a - a m i n o - b e n z o i c a c i d was d i r e c t l y d i s s o l v e d i n c o n d u c t i v i t y water. 2. Z e r o f i e l d r e s i s t a n c e o f t h e p-amino b e n z o i c a c i d ( R _ ) was 393 ohms: and s p e c i f i c r e s i s t a n c e 7.7 x 103 ohms. x  Q  - 35 -  T a b l e 71 Conductance i n h i g h e l e c t r i c f i e l d o f 3.75  x 10"^ M  a c e t i c a c i d r e l a t i v e t o 0.7 x 1 0 ~ M HC1, a t 24-.0°C. l+  Pulser Primary ac. v o l t s  Pulse  Series Resistance HC1 S i d e Soln. Side  K.7.  Field K.7./cm  ohms  %  0  0  118  0  0  11.2  1.5  112  0  17  22.3  3.0  98  0  33  4,5.0  6.0  67  0  67  3.0  62.1  8.2  hh  0  91  ^  80.2  10.6  27  0  118  5.^  90.2  . 11.9  21  0  132  5.7  0.36 1.2  .  Notes: 1. Preparation: The a c e t i c a c i d was p u r i f i e d by t r i p l e vacuum d i s t i l l a t i o n , and d i l u t e d i n c o n d u c t i v i t y w a t e r o f s p e c i f i c conductance o f 5 x 10-7 mhos. 2. Z e r o f i e l d r e s i s t a n c e o f a c e t i c a c i d ( R « ) ohms; and s p e c i f i c r e s i s t a n c e 3*39 x 104" ohms. x  3.  Z e r o f i e l d r e s i s t a n c e of HC1 was 1570  0  ohms.  w  a  s  1^90  - 36 -  120  KV/CM. F i g u r e 13.  The conductance i n h i g h e l e c t r i c f i e l d s of 5 x 10"3 M p a m i n o b e n z o i c a c i d r e l a t i v e t o l+.5x IO- * M HC1 a t 21 °C. r  1  120  KV / CM. Figure l * . 1  The conductance i n h i g h e l e c t r i c f i e l d s of 3.75 x IO" * M a c e t i c a c i d r e l a t i v e t o 0.7 x 10-'+ HC1 a t 2*f.0°C. 4  - 37 -  Table' V I I Conductance i n  h i g h e l e c t r i c f i e l d si o f 0.61 M g l y c i n e  r e l a t i v e t o 2 x 10" 5.M HC1 a t t e m p e r a t u r e s o f 25.8°C. and  26.0°C.  Pulser Primary ac.  volts  Pulse  Series HC1 S i d e  K.V.  Resistance Soln. Side  Field K.V./cm  ohms  %  Temperature 25.8°C.  0  0  0  107  160  17.8  2.3  95  160  2h.h  0.39  36.5  1+.8  72  160  50  i.i4-  70.0  9.3  38  160  98  2.25  0  Temperature 26.0°C.  0  0  70  160  0  0  19.2  2.6  61  160  27.8  0.29  50.5  6.7  50  160  70  0.65  70.5  9.3  30  160  98  1.30  90.0  11.9  23  160  12*f  1.53  Notes: 1. Preparation: The g l y c i n e was t h r e e t i m e s r e c r y s t a l l i z e d f r o m w a t e r , oven d r i e d , t h e n d i s s o l v e d i n c o n d u c t i v i t y w a t e r . 2. The z e r o f i e l d r e s i s t a n c e o f t h e g l y c i n e was 3066 ohms; and s p e c i f i c r e s i s t a n c e 6.1 x I O ohms. 4-  40  F i g u r e 15.  80 FIELD  120 . KV/CM.  160  The conductance i n h i g h e l e c t r i c f i e l d s o f 0.61 M g l y c i n e r e l a t i v e t o 2 x 10-5 M HC1 a t t e m p e r a t u r e s of 25.8°C. and 26 0°C. o  - 39 -  Table V I I I Conductance i n h i g h e l e c t r i c f i e l d s o f 6.55 s u l f a n i l i c acid relative  x 10"^ M  t o 7 x 1 0 " ^ M HC1 a t temperatures  of  23.5®C. and 26A°C.  Pulser Primary ac. v o l t s  Pulse  Series Resistance HC1 S i d e Soln. Side  K.V.  ohms  Field K.V./cm  Temperature 23.5°C.  0  0  24-9  0  0  39.5 69.0  5.2  229  0  56  1.09  9.1  215  0  101  1.87  0  Temperature 26.4-°C.  0  0  208  0  0  0  14-. 1  1.9  199.5  0  21  0.4-7  37.1  ^.9  195  0  0.72  83.O  11.0  189  0  55 122  1.04-  Notes: 1. P r e p a r a t i o n s B a k e r ' s Reagent Grade S u l f a n i l i c a c i d (NH C H S03H.H O: M.W. 191.20) was d i s s o l v e d i n c o n d u c t i v i t y water. 2  6  lf  2  2. Z e r o f i e l d r e s i s t a n c e o f s u l f a n i l i c a c i d was 1820 ohms; and s p e c i f i c r e s i s t a n c e 3«64- x H r " ohms. 3. A d r i f t o f t h e n u l l p o i n t a t z e r o f i e l d was o b s e r v e d , whose magnitude was as much as 12 ohms, i n t h e t r i a l a t 26.4-°C. Thus t h e r e s i s t a n c e v a l u e s t a b u l a t e d r e p r e s e n t a mean o f z e r o f i e l d r e s i s t a n c e r e a d i n g s t a k e n s h o r t l y b e f o r e and s h o r t l y a f t e r t h e a c t u a l f i e l d measurements. T h i s d r i f t i s a t l e a s t i n p a r t due t o changes i n b a t h t e m p e r a t u r e .  - ko -  Table IX D a t a on t h e conductance i n h i g h e l e c t r i c f i e l d s o f 1.22 glutamic  Pulser Primary ac. v o l t s  Pulse  acid  x 10"3  r e l a t i v e t o 6 x 10"? M HC1 a t 26.2°C  Series Resistance HC1 S i d e Soln. Side  K.V.  Field  A/VA  K.V./cm  ohms  %  0  0  210  0  0  0  lh. 0  1.9  208  0  21  0.1  37.0  h.9  186  0  5^  1.2  70.5  9.3  155  0  103  3-7  95  12.6  126  0  14-0  *f.2  101+  13.8  120  0  153  h.5  Notes: 1. Preparation. The 1(+) g l u t a m i c a c i d (GBI Brand) was r e - c r y s t a l l i z e d t w i c e f r o m w a t e r , oven d r i e d , t h e n d i s s o l v e d i n c o n d u c t i v i t y water.  2. The z e r o f i e l d r e s i s t a n c e o f 1(+), g l u t a m i c ohms; and s p e c i f i c r e s i s t a n c e h.17 x IO " ohms. 4  a c i d was 2009  M  -  Ifl  © 23.5* C • 26.4° C  i  2  < <  40  F i g u r e 16;  80 FIELD  120 KV / CM,  160  The conductance i n h i g h e l e c t r i c f i e l d s o f 6.55 x 10-5 M s u l f a n i l i c a c i d r e l a t i v e t o  7 x 10-5 M HC1 a t temperatures o f 23.5°C. and 26A°C.  120 KV / CM.  F i g u r e 17.  The conductance i n h i g h e l e c t r i c f i e l d s o f 1.22 x 10~1 M 1(+) g l u t a m i c a c i d r e l a t i v e  t o 6 x 10-5 M HC1 a t 26.2°C.  -  1+2  -  Table X Conductande i n h i g h e l e c t r i c f i e l d s o f 7.9 x 1 0 " ? grams/cc. p r o t a m i n e s u l f a t e r e l a t i v e t o 5 x 1 0 " ? M H C 1 a t 26°C. and 6 x 1 0 " ? M H C 1 a t 27.3*0.  Pulser Primary ac. v o l t s  Pulse  Series Resistance HCL S i d e Soln. Side  K.7.  Field K.V./em.  ohms  %  Temperature 26°C.  0  0  107  0  0  0  lh.5  1.9  0  58  21  7.9  37  h.9  0  307  4-7  19.7  Temperature 27.3°C.  0  0  28.2 70.2  382*  0  0  0  3.7  20  0  hi  17.2  9.3  0  290  89  32.0  Notes: 1. P r e p a r a t i o n . Reagent grade p r o t a m i n e s u l f a t e was d i s s o l v e d i n c o n d u c t i v i t y water. 2. The z e r o f i e l d r e s i s t a n c e o f t h e protamine s u l f a t e was 2100 ohms; and s p e c i f i c r e s i s t a n c e h.2 x 1QT ohms. * Note t h a t an a d d i t i o n a l e x t e r n a l r e s i s t a n c e o f 102 ohms was added i n t h i s i n s t a n c e t o a l l o w b a l a n c i n g a t z e r o f i e l d , s i n c e t h e b r i d g e had o n l y p e r m i t t e d i n s e r t i o n o f up t o 311 ohms.  - h3 -  Table X I Conductance i n h i g h e l e c t r i c f i e l d s o f 3 x l O ' ^ g 1 c c Agar r e l a t i v e t o HC1 a t 25°C.  Pulser Primary  Pulse  ac.  K.V.  volts  Series Resistance HC1 S i d e Soln. Side ohms Run  Field  * /a. a  K.V./cm.  %  1  0  0  0  hO  0  0  7.0  0.9  0  138  M-.7  13.8  1.9  0  28h  9.3 18  258  0  0  0  0  282  Run  0  0 h.h  3M-  Run  0  0  i+7. h  6.3 8.6  6h.5  2 25.9  h2  3 0  516*  6.9  0  177  0  259  0  0  33.2  64-  37.2  Notes: 1. P r e p a r a t i o n . The agar sample was d i r e c t l y d i s s o l v e d i n c o n d u c t i v i t y water. 2. The z e r o f i e l d r e s i s t a n c e o f agar was 208h ohms; and s p e c i f i c r e s i s t a n c e h.2 x IO " ohms. 4  3. C o n c e n t r a t i o n o f HC1 was 5 x IO"? M i n r u n 1, i n r u n 2, and 7 x 10"5 M i n r u n 3.  6 x 10"5  M  * Note t h a t an a d d i t i o n a l e x t e r n a l r e s i s t a n c e o f 320 ohms was added i n t h i s i n s t a n c e t o a l l o w b a l a n c i n g a t z e r o f i e l d , s i n c e t h e b r i d g e had o n l y p e r m i t t e d i n s e r t i o n o f up t o 311 ohms.  20  40 FIELD  60 KV / C M .  80  F i g u r e 18. The conductance i n h i g h e l e c t r i c f i e l d s o f 7.9 x 10-5 grams/cc.. P r o t a m i n e S u l f a t e r e l a t i v e t o 5 x 10"? M HC1 a t 25°C. and  6 x 10-5 M HC1 a t 27.3°C.  60 KV / CM. F i g u r e 19.  The conductance i n h i g h e l e c t r i c f i e l d s o f 3 x IO* grams/cc. Agar r e l a t i v e t o HC1 a t 4,  25°C  - h5 V. 6.  DISCUSSION OF RESULTS  T h e o r i e s of the Wien E f f e c t (a) I n t e r i o n i c a t t r a c t i o n t h e o r y f o r  strong  electrolytes. A s t r o n g e l e c t r o l y t e i s d e f i n e d t o be one the ions are completely  dissociated.  The  i n which  electrostatic  a t t r a c t i o n s and r e p u l s i o n s between the i o n s of t h e do n o t p e r m i t a p e r f e c t l y random d i s t r i b u t i o n ;  solute  rather  on  t h e time average t h e r e w i l l be more i o n s of u n l i k e s i g n t h a n of l i k e s i g n i n the n e i g h b o r h o o d of a g i v e n i o n . I n t h e absence of an e x t e r n a l f i e l d t h i s i o n atmosphere has  a c e n t r a l l y symmetrical d i s t r i b u t i o n .  One  of  c h a r a c t e r i s t i c s of t h i s atmosphere i s t h a t i t has f i n i t e t i m e of r e l a x a t i o n , i . e . , i t does not instantaneously  the a  disappear  when the c e n t r a l i o n i s removed.  When a s t a t i o n a r y s m a l l e l e c t r i c f i e l d i s a p p l i e d , causing ion  the c e n t r a l i o n t o move, t h e d i s t r i b u t i o n of t h e  atmosphere becomes a s y m e t r i c ,  i . e . , t h e atmosphere i n  f r o n t of the i o n has not s u f f i c i e n t t i m e t o b u i l d up,  and  t h e atmosphere t o the r e a r has not s u f f i c i e n t t i m e t o decay t o e q u i l i b r i u m v a l u e .  The n e t charge of  counter-  i o n s t o t h e r e a r of the c e n t r a l i o n t h u s becomes g r e a t e r than i n f r o n t , tending  t o d e c r e a s e t h e m o b i l i t y of  the  i o n s , and t h u s g i v e s r i s e t o t h e r e l a x a t i o n f o r c e w h i c h r e t a r d s t h e m o t i o n of the c e n t r a l i o n .  A s i d e f r o m the  f r i c t i o n a l f o r c e of the s o l v e n t opposing t h e movement of the i o n i n the e l e c t r i c f i e l d , there i s a f u r t h e r r e t a r d a t i o n f o r c e c a l l e d t h e e l e c t r o p h o r e t i c e f f e c t or h y d r o -  - 4-6 -  d y n a m i c a l e f f e c t w h i c h i s a consequence o f t h e s o l v a t i o n of i o n s .  The e f f e c t a r i s e s s i n c e each moving i o n c a r r i e s  solvent with i t ;  t h e n t h e c e n t r a l i o n moving i n a d i r e c t i o n  o p p o s i t e t o i t s i o n atmosphere appears t o be moving i n a s o l v e n t w h i c h i s n o t s t a t i o n a r y , b u t r a t h e r , one moving w i t h t h e i o n atmosphere.  At i n f i n i t e d i l u t i o n the i o n  atmosphere, and c o n s e q u e n t l y b o t h t h e r e l a x a t i o n and electrophoretic e f f e c t s , disappear.  Both the r e l a x a t i o n  and e l e c t r o p h o r e t i c e f f e c t s f o r m t h e b a s i s o f t h e DebeyeH u c k e l - Onsager t h e o r y o f e l e c t r o l y t i c conductance a t ordinary low f i e l d s .  F o r convenience i n d i s c u s s i o n the  i o n atmosphere i s o f t e n r e g a r d e d as a t h i n s p h e r i c a l  shell  of charge o f r a d i u s r ; t h i s r a d i u s c o r r e s p o n d i n g t o t h e Q  maximum i n t h e charge d i s t r i b u t i o n of t h e i o n atmosphere, and i n t h e symbols o f E a r n e d and Owen (16) i s g i v e n by t h e expressions 2 r*  DKT  1  1  I f a h i g h e l e c t r i c f i e l d , of t h e o r d e r o f a f e w hundred K.V./cm., i s a p p l i e d t o t h e s o l u t i o n , t h e i o n s a r e g i v e n v e r y h i g h v e l o c i t i e s , so g r e a t t h a t an i o n would t r a v e l s e v e r a l t i m e s t h e t h i c k n e s s ( 2 r ) o f t h e i o n atmo0  sphere i n t h e t i m e i t would t a k e t h e atmosphere t o f o r m ( i . e . during the r e l a x a t i o n time).  T h e r e f o r e t h e i o n s mov-  i n g i n h i g h f i e l d s have l o s t t h e i r i o n atmosphere, and behave a l m o s t t h e same as i o n s i n a s o l u t i o n a t i n f i n i t e d i l u t i o n , w h i c h , because o f t h e g r e a t i n t e r i o n i c d i s t a n c e s , have no i o n atmosphere.  The r e t a r d i n g r e l a x a t i o n f o r c e  - h7 -  d i s a p p e a r s , i n c r e a s i n g t h e m o b i l i t y of t h e i o n , and r e s u l t ing  i n t h e Wien e f f e c t , i . e . an i n c r e a s e i n conductance o f  t h e s o l u t i o n ; however t h e s m a l l r e t a r d a t i o n due t o t h e e l e e t r o p h o r e t i c e f f e c t s h o u l d r e m a i n , assuming t h a t t h e s o l v a t i o n of t h e i o n s i s u n a f f e c t e d by t h e speed of t h e i o n s , since the solvated counterions are s t i l l present a t appreciable solute concentrations. (b)  I o n A s s o c i a t i o n Theory f o r weak e l e c t r o l y t e s .  Weak e l e c t r o l y t e s i n t h e p r e s e n c e of h i g h  fields  e x h i b i t d e v i a t i o n s f r o m Ohm's Law w h i c h a r e c e t . p a r . many t i m e s g r e a t e r t h a n those o f s t r o n g e l e c t r o l y t e s of e q u i v a l e n t ionic strength.  The conductance i s found t o be p r o p o r t i o n a l  t o t h e f i e l d s t r e n g t h X f o r a c o n s i d e r a b l e r a n g e , and i t s l i m i t corresponds approximately  t o t h e conductance f o r Onsager (19)  complete d i s s o c i a t i o n of t h e weak e l e c t r o l y t e .  proposed a t h e o r y t o e v a l u a t e t h e e q u i l i b r i u m c o n s t a n t i n weak e l e c t r o l y t e s by c o n s i d e r a t i o n of t h e r a t e s o f d i s s o c i a t i o n and r e c o m b i n a t i o n  of t h e i o n s .  Bjerrum  t h e p r o b a b i l i t y o f f o r m a t i o n of i o n p a i r s ( t o be  evaluated defined)  below f r o m f r e e i o n s i n s o l u t i o n by c o n s i d e r i n g Coulomb f o r c e s and t h e r m a l f o r c e s a c t i n g on t h e i o n s .  By a p p l y i n g  the Maxwell-Boltzmann d i s t r i b u t i o n l a w , he d e r i v e d an e x p r e s s i o n f o r t h e p r o b a b i l i t y of two i o n s b e i n g by a d i s t a n c e r .  separated  The p r o b a b i l i t y - s e p a r a t i o n c u r v e f o r two  i o n s of o p p o s i t e s i g n has a minimum i n p r o b a b i l i t y a t a s e p a r a t i o n of  r = q, where t h e p r o b a b i l i t y r i s e s r a p i d l y  f o r r l e s s t h a n q and r i s e s s l o w l y f o r r g r e a t e r t h a n q.  - 1+8 -  Onsager assumed t h a t i o n s s e p a r a t e d by a d i s t a n c e l e s s t h a n q c o u l d be c o n s i d e r e d as a s s o c i a t e d , t h a t i s , as an i o n p a i r w h i l e f o r r g r e a t e r t h a n q the i o n s a r e assumed t o be f r e e , that i s completely d i s s o c i a t e d .  For weak e l e c t r o l y t e s ,  t h a t i s s m a l l i o n i c c o n c e n t r a t i o n s , q i s much l e s s t h a n r ( t h e r a d i u s of the i o n atmosphere).  Q  Onsager shows t h a t  the e l e c t r i c f i e l d produces a s h i f t i n the minimum of  the  p r o b a b i l i t y d i s t r i b u t i o n f u n c t i o n , i . e . i n q, and t h u s a change i n the i o n i z a t i o n c o n s t a n t , i . e . on the average more i o n s w i l l have a s e p a r a t i o n g r e a t e r t h a n q i n the p r e s e n c e of the f i e l d .  T h i s change  K(X) v a r i e s l i n e a r l y KCo)  w i t h the f i e l d X, and depends on ions, i i .  i . the v a l e n c e  t h e m o b i l i t y of the i o n s , i i i .  degree of d i s s o c i a t i o n <^ , 0  on the  i v . on the d i e l e c t r i c  of t h e initial constant  D. The r e l a t i v e change of conductance i n weak e l e c t r o a c c o r d i n g t o Onsager (19)  l y t e s i s expressed  symbols of. Harned and Owen (16),  ^ x  = .o  r  i  i n the  by t h e f o l l o w i n g f o r m u l a :  " •  Weak ampholytes' such as t h e amino a c i d s behave as weak e l e c t r o l y t e s .  According  t o the z w i t t e r i o n t h e o r y  ampholyte can e x i s t as ( i ) a d o u b l y charged m o l e c u l e ,  an that  i s one charge of each s i g n , ( i i ) as a p o s i t i v e i o n w i t h OH" H^o*  c o u n t e r i o n , ( i i i ) or as a n e g a t i v e i o n w i t h an counterion.  There i s an e q u i l i b r i u m p r o c e s s  s t a t e ( i ) and s t a t e s ( i i ) and  ( i i i ) , w i t h the  an  or between  ionization  - '+9 -  constant K and  K  b  representing  e q u i l i b r i u m between ( i ) and ( i i )  between ( i ) and ( i i i ) .  a  I n state  ( i ) the t o t a l  charge e q u a l s z e r o , so t h a t i n t h i s form t h e ampholyte does n o t c o n t r i b u t e when i n s t a t e s  as a c u r r e n t  ( i i ) or ( i i i ) .  c a r r i e r , b u t o n l y does so  Each of t h e s e i o n i z a t i o n  c o n s t a n t s c a n be changed i n t h e p r e s e n c e o f a f i e l d as i n Onsager's t h e o r y , g i v i n g r i s e t o a change i n c o n d u c t i v i t y . When K  a  and K  D  a r e g r e a t l y d i f f e r e n t , one need o n l y c o n s i d e r  t h e l a r g e r one of t h e s e c o n s t a n t s .  S t r o n g ampholytes must  be c o n s i d e r e d t h e same as s t r o n g e l e c t r o l y t e s , i . e . . c o m p l e t e l y d i s s o c i a t e d , each i o n h a v i n g I t s own c o u n t e r i o n atmosphere. (c)  Polyelectrolytes  P o l y e l e c t r o l y t e s may be d i v i d e d i n t o s t r o n g and weak polyelectrolytes.  A s t r o n g p o l y e l e c t r o l y t e i s one whose  f r e e monomers would be c o m p l e t e l y d i s s o c i a t e d i n t o i o n s .  A  weak p o l y e l e c t r o l y t e i s one whose f r e e monomers would o n l y partly dissociate into ions. complex c o m b i n a t i o n o f t h e s e .  I n fact proteins  a r e some  Theories f o r the behavior  of p o l y e l e c t r o l y t e s i n an e l e c t r i c f i e l d have been d e v e l o p e d by Fuoss (2,9,12).  The s t a t i s t i c a l  c o i l c h a r a c t e r i s t i c of  a n e u t r a l polymer i s d i s t e n d e d by t h e  intramolecular  Coulomb r e p u l s i o n among t h e b u i l t - i n i o n s  of t h e p o l y -  e l e c t r o l y t e , b u t t h i s i s p a r t i a l l y s c r e e n e d by t h e c o u n t e r i o n s which a r e h e l d i n t h e volume o f t h e c o i l by t h e t o t a l ionic field.  One would e x p e c t a weak t y p e o f p o l y e l e c t r o l y t t e  t o behave more c l o s e l y l i k e a n e u t r a l p o l y m e r , t h a t i s , t e n d towards c o i l i n g , w h i l e t h e s t r o n g e r t y p e would t e n d t o be  - 50 -  distended  as d e s c r i b e d .  For strong p o l y e l e c t r o l y t e s a  dynamic e q u i l i b r i u m e x i s t s between f r e e and a s s o c i a t e d counterions,  the former being  r a d i u s o f t h e polymer c o i l .  t h o s e o u t s i d e of t h e average The a s s o c i a t e d  do n o t c o n t r i b u t e t o c o u n t e r i o n  counterions  c u r r e n t , t h u s t h e con-  ductance o f a p o l y e l e c t r o l y t e i s t h e r e f o r e l e s s t h a n t h a t of t h e c o r r e s p o n d i n g ion  monomeric s a l t a t the, same  ( i . e . many o f t h e c o u n t e r i o n s  the c o i l ) .  concentrat-  a r e t i e d up i n o r n e a r  The p o l y i o n has no sharp boundary due t o  i n t r a m o l e c u l a r Brownian m o t i o n ; however, we c a n imagine a zone i n w h i c h t h e 1 > p t e n t i a l energy of t h e p o l y i o n i s o f t h e o r d e r o f kT, and d e f i n e t h i s zone as t h e p e r i p h e r y o f the p o l y - i o n .  A s m a l l d e c r e a s e i n p o t e n t i a l energy due t o  t h e p r e s e n c e of an e x t e r n a l f i e l d , s h o u l d t h e r e f o r e t o remove some o f t h e p e r i p h e r a l a s s o c i a t e d and t h e r e f o r e i n c r e a s e t h e p o p u l a t i o n o f f r e e and t h u s t h e conductance.  suffice  counterions counterions  One would t h u s e x p e c t a l a r g e  Wien e f f e c t ; i n f a c t t h e conductance s h o u l d be much g r e a t e r t h a n t h e conductance a t i n f i n i t e  dilution,  (d) C o l l o i d a l E l e c t r o l y t e s I n c o l l o i d a l e l e c t r o l y t e s , such as t h o s e f r o m s a l t s of l o n g c h a i n f a t t y a c i d s w h i c h c o n t a i n an i o n i z a b l e group attached  t o a large organic residue, the i o n i c m i c e l l e  t h e o r y assumes t h a t t h e a n i o n s o f t h e f a t t y a c i d s a l t s f o r m l a r g e a g g r e g a t e s c a l l e d i o n i c m i c e l l e s , w h i c h have a h i g h charge due t o t h e many component i o n s .  The  m i c e l l e w i l l have a h i g h e r m o b i l i t y t h a n t h e n o r m a l i o n  - 51 s i n c e t h e charge i s p r o p o r t i o n a l t o t h e volume, i . e . r , J  w h i l e the v i s c o u s r e s i s t a n c e i s p r o p o r t i o n a l t o the r a d i u s , 1. e. r . Q  F o r m a t i o n of m i c e l l e s can t a k e p l a c e o n l y i f - t h e  c o h e s i v e f o r c e s between t h e i n t r a m i c e l l a r u n i t s a r e g r e a t e r t h a n the Coulomb r e p u l s i v e f o r c e s between u n i t s ( t h e f o r m e r being greater f o r l a r g e r i n t r a m i c e l l a r u n i t s . F o r unaggregated  charged u n i t s ( s t r o n g e l e c t r o l y t e s )  the c o n d u c t i v i t y would i n c r e a s e i n an e l e c t r i c f i e l d  to  t h e l i m i t i n g conductance f o r i n f i n i t e d i l u t i o n .  ionic  m i c e l l e s , removal  For  of t h e i o n atmosphere around t h e m i c e l l e  by a h i g h e l e c t r i c f i e l d would l e a d t o a v e r y l a r g e Wien e f f e c t as e x p e c t e d from t h e t h e o r y f o r s t r o n g e l e c t r o l y t e s c a r r y i n g a l a r g e number o f c h a r g e s .  T h i s Wien e f f e c t  would be much l a r g e r t h a n t h e l i m i t i n g conductance f o r t h e c o r r e s p o n d i n g unaggregated  m i c e l l a r u n i t s , because upon  removal of t h e i o n atmosphere by the e l e c t r i c f i e l d ,  the  m i c e l l e has r e l a t i v e l y a g r e a t e r m o b i l i t y t h a n t h e c o r r e s p o n d i n g unaggregated 2,  unit.  I n t e r p r e t a t i o n of E x p e r i m e n t a l R e s u l t s The e x p e r i m e n t a l d a t a as p l o t t e d i n t h e graphs of  f i g s . 11 t o 19, can be d i v i d e d i n t o t h r e e c a t a g o r i e s a c c o r d i n g t o the magnitude of t h e Wien e f f e c t . i. may  G l u t a m i n e , and a r g i n i n e - m o n o h y d r o c h l o r i d e  which  be c l a s s i f i e d as r e l a t i v e l y s t r o n g e l e c t r o l y t e s , show  s m a l l i n c r e a s e s i n conductance a t 100 K.V./cm. The c h e m i c a l f o r m u l a f o r g l u t a m i n e i s i  - 52 H N H  H  2  /  I  »  HOOC - C - C - C - CONHo I I I  H  H  H  From t h e e x p e r i m e n t a l d a t a o f f i g . 11,  theincrease i n  r e l a t i v e conductance a t 100 K.V./cm. o f t h e 1.25 x IO"" " M 4  g l u t a m i n e i s s e e n t o be  0.56$,  value f o r higher f i e l d s .  and i t approaches a l i m i t i n g  Thus, t h i s ampholyte behaves as  a s t r o n g e l e c t r o l y t e , however no i o n i z a t i o n c o n s t a n t a r e a v a i l a b l e t o check t h e s e The  data  results.  c h e m i c a l f o r m u l a f o r 1(+)  arginine  monohydrochloride  is: NH  H H • i HCltH N - C - N - C - C - C - C I  H i  2  H i  t  H  H i  i  H  l  COOH  l  H  NH  2  From t h e e x p e r i m e n t a l d a t a o f f i g . 12, t h e i n c r e a s e i n r e l a t i v e conductance a t 100 K.V./cm. o f t h e 2.0 x 10 a r g i n i n e monohydrochloride  -lf  M  i s seen t o be 0.h8%; and  approaches a l i m i t i n g v a l u e f o r h i g h e r f i e l d s .  Therefore  t h i s ampholyte appears t o behave as a s t r o n g e l e c t r o l y t e , however, t h i s r e s u l t may be l a r g e l y due t o t h e h y d r o c h l o r i c a c i d which i s a s s o c i a t e d w i t h t h e a r g i n i n e , but which i s freed i nsolution.  The h i g h c o n d u c t i v i t y o f t h e HC1  i o n s (which may be r e g a r d e d as a bound i m p u r i t y ) p r e dominates t o such an e x t e n t t h a t t h e Wien e f f e c t due t o t h e a r g i n i n e a l o n e i s masked. ii.  A c e t i c a c i d , p-amino b e n z o i c a c i d ,  glycine,  s u l f a n i l i c a c i d , and g l u t a m i c a c i d a r e r e p r e s e n t a t i v e o f weak e l e c t r o l y t e s and weak ampholytes showing r e l a t i v e  - 53 conductance i n c r e a s e s o f l.h% t o 5*5% a t 100 K.V./cm. f i e l d . The c h e m i c a l f o r m u l a f o r a c e t i c a c i d i s : H i H - C - COOH I H From t h e e x p e r i m e n t a l d a t a o f f i g . 1*+, t h e i n c r e a s e i n r e l a t i v e conductance a t 100 K.V./cm. o f t h e 3.75 x IO"* " M 4  a c e t i c a c i d i s seen t o he h.6%.  T h i s r e s u l t compares  w i t h 5*1% r e l a t i v e conductance i n c r e a s e s i n  favorably  7 A x IO"" " M h y d r o c h l o r i c  a c i d as measured  4  by B a i l e y  The i o n i z a t i o n c o n s t a n t o f a c e t i c a c i d i s 1.7  (3).  x 10"5«  The c h e m i c a l f o r m u l a f o r t h e ampholyte p-amino benzoic a c i d i s : HOOC - ^ " " ^ - NH  2  From t h e e x p e r i m e n t a l d a t a o f f i g . 13, t h e r e l a t i v e conductance i n c r e a s e a t 100 K.V./cm. o f t h e 5 x 10"3 M p-amino b e n z o i c a c i d i s seen t o be 5*5%* even l a r g e r for acetic acid.  than  No i o n i z a t i o n c o n s t a n t d a t a a r e a v a i l a b l e ,  so t h a t t h e s e r e s u l t s cannot be compared q u a n t i t a t i v e l y . The c h e m i c a l f o r m u l a f o r g l y c i n e i s : H H-C  i  I  - COOH  NH  2  From t h e e x p e r i m e n t a l d a t a o f f i g . 15* t h e i n c r e a s e i n r e l a t i v e conductance a t 100 K.V./cm. o f t h e 0.61 M g l y c i n e i s seen t o be 1.9%*  G l y c i n e i s an amino a c i d , and behaves  as a weak ampholyte, w i t h b o t h a c i d i c and b a s i c The a c i d r e a c t i o n f o r g l y c i n e i s w r i t t e n as  reactions.  -  (NH3  CH  .  +  COOH) ^r m^E +  2  54- -  J.  2  COO" + H  with the i o n i z a t i o n constant  = 4-.4-7 x 1 0 ~ 3 ,  while the basic r e a c t i o n i s  with the i o n i z a t i o n  constant  Kg = 6.04- x 10"5 t 2 5 ° C a  The  r e a c t i o n whose i o n s a r e p r e s e n t  i n solution i n  g r e a t e r c o n c e n t r a t i o n , and t h e r e f o r e t h e Wien e f f e c t w h i c h w i l l predominate, i s represented And  by t h e a c i d i o n i z a t i o n .  i f t h e i o n i z a t i o n c o n s t a n t s a r e f a r d i f f e r e n t as i n  t h i s c a s e , t h e l a r g e r a l o n e need t o be c o n s i d e r e d .  The  conductance i n c r e a s e of 1.9$ f o r g l y c i n e cannot be compared t o t h a t f o r a c e t i c a c i d , s i n c e t h e c o n c e n t r a t i o n s are.far different.  Berg and P a t t e r s o n ( 5 ) f o r e q u i v a l e n t  c o n c e n t r a t i o n s and f i e l d  s t r e n g t h s show t h a t t h e r e l a t i v e  i n c r e a s e a t 100.K.V./cm. v a r i e s f r o m 1,1% t o 4-.3$ as an i m p u r i t y c o n c e n t r a t i o n ammonium c h l o r i d e i s v a r i e d f r o m 10"^ M t o zero.  Our r e s u l t s f a l l w i t h i n t h i s r a n g e , b u t  t h e p u r i t y o f our sample o f g l y c i n e i s u n c e r t a i n . The  c h e m i c a l f o r m u l a f o r t h e ampholyte  acid Is:  sulfanilic  0 OH 0  From t h e e x p e r i m e n t a l  data of f i g . 16, the r e l a t i v e  conductance i n c r e a s e of t h e 6.55 x 10"-* M s u l f a n i l i c a t 1 0 0 K.V./cm. i s seen t o be 1.4-$.  acid  The l a r g e r a c i d  -4-  i o n i z a t i o n constant  i s 6.2 x 1 0  which i s l a r g e r than t h a t  - ?? f o r a c e t i c a c i d (1.7  x 10"?)  so t h a t one would e x p e c t a  s m a l l e r Wien e f f e c t , and t h i s i s found t o be c o r r e c t . The c h e m i c a l f o r m u l a f o r t h e ampholyte glutamic a c i d i s :  H  H  NH  i  i  i  I  I  I  H  H  H  1(+)  2  HOOC - G - C - C - COOH  From t h e e x p e r i m e n t a l d a t a o f f i g . 17, conductance i n c r e a s e M 1(+)  the r e l a t i v e  a t 100 K.V./cm. o f t h e 1.22  g l u t a m i c a c i d i s seen t o be 2.6$.  i s smaller  x 10"3  The Wien e f f e c t  t h a n t h a t f o r a c e t i c a c i d , however, d a t a on  the i o n i z a t i o n c o n s t a n t s i s n o t a v a i l a b l e . iii. and  P r o t a m i n e s u l f a t e and agar a r e p o l y e l e c t r o l y t e  show v e r y l a r g e conductance i n c r e a s e s a t h i g h e l e c t r i c  f i e l d s , as one would e x p e c t f r o m . t h e Wien e f f e c t t h e o r y f o r p o l y e l e c t r o l y t e s as o u t l i n e d i n t h e p r e v i o u s  section.  P r o t a m i n e s u l f a t e i s a p o l y p e p t i d e whose main constituent well-defined  i s t h e amino a c i d a r g i n i n e , however i t i s n o t chemically.  From t h e e x p e r i m e n t a l d a t a o f  f i g . 18, t h e r e l a t i v e conductance i n c r e a s e  a t 100 K.V./cm.  of t h e 7*9 x 10"? g./cc. p r o t a m i n e s u l f a t e i s seen t o be h0%.  T h i s i s c e r t a i n l y much l a r g e r t h a n what one measures  f o r t h e i n d i v i d u a l component amino a c i d s , w h i c h i s i n agreement w i t h e x p e c t a t i o n s f r o m t h e Wien e f f e c t t h e o r y for polyelectrolytes. Agar i s a p o l y s a c c h a r i d e , i . e . a p o l y d e c t r o l y t e o f of perhaps 100 u n i t s o r more, o f w h i c h t h e p r i n c i p a l b u i l d i n g u n i t i s D - g a l a c t o p y r a n o s e , and a l t h o u g h t h e  - 56 -  e x a c t m o l e c u l a r w e i g h t i s unknown, t h e u n i t s o f i t s chemical  s t r u c t u r e can be w r i t t e n a s :  Prom t h e e x p e r i m e n t a l  d a t a of f i g . 19, t h e r e l a t i v e  conductance i n c r e a s e a t 100 K.V./cm. of t h e 3 x IO" " 4  g./cc. agar i s seen t o be 37%•  Agar a l s o show t h e v e r y  l a r g e Wien e f f e c t t h a t one would expect f r o m a p o l y electrolyte,  y  Q u a l i t a t i v e l y t h e s e r e s u l t s agree w i t h from the t h e o r i e s p r e v i o u s l y o u t l i n e d .  expectations  I t i s a t present  i m p o s s i b l e t o attempt t o e v a l u a t e t h e r e s u l t s q u a n t i t a t i v e l y because t h e s e s u b s t a n c e s a r e i n g e n e r a l n o t s u f f i c i e n t l y w e l l defined 3.  chemically.  Other E f f e c t s (a)  Dielectric Effects  I t has been suggested t h a t p a r t of t h e i n c r e a s e i n conductance i n h i g h f i e l d s i s due t o a d i e l e c t r i c  effect,  inasmuch as amino a c i d s , p o l y p e p t i d e s and peptones a r e known t o have h i g h d i e l e c t r i c c o n s t a n t s .  I n the presence  of t h e h i g h f i e l d t h e r e may be an i n c r e a s e i n t h e d i p o l e l e n g t h r e s u l t i n g i n an i n c r e a s e i n p o l a r i z a t i o n .  This  e f f e c t should give r i s e t o c a p a c i t i v e unbalance. The method of b a l a n c i n g p e r m i t s s e p a r a t i o n of r e s i s t i v e and c a p a c i t i v e e f f e c t s as p r e v i o u s l y o u t l i n e d ,  -  but no a p p r e c i a b l e observed.  57 -  c a p a c i t i v e change w i t h f i e l d was  I n t h i s work, t h e d i p o l e e f f e c t was n o t s t u d i e d  i n d e t a i l , and t h e l a r g e magnitude o f t h e c a p a c i t i v e " s p i k e s " made o b s e r v a t i o n s  o f c a p a c i t i v e changes  difficult.  (b) The E f f e c t o f I m p u r i t i e s I m p u r i t i e s o f an e l e c t r o l y t i c n a t u r e w i l l , o f c o u r s e , have an e f f e c t on t h e z e r o f i e l d conductance o f the s o l u t i o n s . difficult  S i n c e many o f t h e i m p u r i t i e s a r e o f t e n  t o remove, p a r t i c u l a r l y f r o m amino a c i d s and  o t h e r b i o l o g i c a l m a t e r i a l , t h e Wien e f f e c t s c a n be masked by t h e p r e s e n c e o f t h e s e a d d i t i o n a l f o r e i g n i o n s carriers).  (current  I n the present i n v e s t i g a t i o n , the r e s u l t s  a r e p r o b a b l y a f f e c t e d by i m p u r i t i e s w h i c h c o u l d n o t be removed d u r i n g t h e p r e p a r a t i o n  o f t h e samples.  Patterson  (7) 11) i n v e s t i g a t e d s y s t e m a t i c a l l y t h e e f f e c t o f i m p u r i t i e s (KBr)  on t h e Wien e f f e c t o f g l y c i n e and of p o l y - * - v i n y l 1  N-n-butylpyridinium and  bromide r e l a t i v e t o h y d r o c h l o r i c a c i d  observed a r e d u c t i o n i n t h e Wien e f f e c t . (c.) P u l s e  Duration  Another c o n s i d e r a t i o n of some Importance i s t h a t o f t h e r e l a x a t i o n t i m e o f t h e i o n atmosphere and t h e d u r a t i o n of t h e a p p l i e d e l e c t r i c p u l s e .  I n large molecules the  r e l a x a t i o n time may be o f s e v e r a l m i c r o s e c o n d and  duration  thus e q u i l i b r i u m may n o t be reached d u r i n g t h e  d u r a t i o n of t h e p u l s e . phenomenon i s r e q u i r e d .  Further i n v e s t i g a t i o n of t h i s  - 58 (d)  E f f e c t of Temperature on R e l a t i v e Conductance  I t i s of i n t e r e s t t o n o t e t h a t B a i l e y and (3)  Patterson  have shown i n e x p e r i m e n t s on a c e t i c a c i d and  lithium  f e r r o c y a n i d e over the t e m p e r a t u r e range f r o m 5°C. t h a t A A//L^  w i l l v a r y by l e s s t h a n 10$  t o 55°C.,  f o r any c h o i c e  of  f i e l d i n t e n s i t y ; i n agreement w i t h the p r e d i c t i o n s of t h e above mentioned t h e o r i e s . A  The  t e m p e r a t u r e v a r i a t i o n of  i t s e l f i s of c o u r s e g r e a t , so a s p e c i a l A  0  h i g h v o l t a g e p u l s e measurement was  f o r each  0  determined.  (e) H y d r o c h l o r i c A c i d as a R e f e r e n c e E l e c t r o l y t e H y d r o c h l o r i c a c i d was since i t s cation H  +  or H^O*,  chosen as a r e f e r e n c e as t h e case may  be, might be  expected t o give a p o l a r i z a t i o n e f f e c t a t the  electrodes  e q u a l t o the p o l a r i z a t i o n e f f e c t produced i n t h e e l e c t r o l y t e s h a v i n g the same c a t i o n .  other  Hydrochloric acid  i t s e l f shows a s m a l l Wien e f f e c t , and was p e r f e c t as a r e f e r e n c e  electrolyt  b e l i e v e d t o be  solution.  I t seems t h a t t h e r e i s some o b j e c t i o n t o the use  of  h y d r o c h l o r i c a c i d as a r e f e r e n c e e l e c t r o l y t e namely, t h a t a t the s m a l l c o n c e n t r a t i o n s t h a t were employed, an a p p r e c i a b l e amount of the h y d r o c h l o r i c a c i d i o n s were d e p l e t e d f r o m the s o l u t i o n v i a p o l a r i z a t i o n a t t h e e l e c t r o d e even d u r i n g t h e d u r a t i o n of a s i n g l e h i g h v o l t a g e p u l s e . Inasmuch as i t was  c o n s i d e r e d d e s i r a b l e t o make the  c o n d u c t i v i t y c e l l r e s i s t a n c e greater than  2000  ohms i n  o r d e r not t o o v e r l o a d the h i g h v o l t a g e p u l s e r , the c o n c e n t r a t i o n of the h y d r o c h l o r i c a c i d must be albout  6  x  10"5  M.  D u r i n g the passage of a s i n g l e  10,000  volt,  - 59 5 microsecond pulse, a simple e l e c t r o - c h e m i c a l c a l c u l a t i o n shows t h a t about 7*5% of t h e h y d r o c h l o r i c a c i d i o n s between the e l e c t r o d e s a r e used up.  I n general, t h i s effect i s  n o t so predominant i n t h e e l e c t r o l y t e under i n v e s t i g a t i o n , inasmuch as t h e c o n c e n t r a t i o n of t h e l a t t e r was g r e a t e r because o f t h e lower c o n d u c t i v i t i e s i n v o l v e d .  T h i s would  appear t o a c c o u n t f o r t h e shape o f t h e p u l s e output  from  the b r i d g e c i r c u i t a t h i g h e l e c t r i c f i e l d s as observed i n f i g . 8 and photograph 3.  At t h i s small concentration  of h y d r o c h l o r i c a c i d , t h e n a t u r e o f t h e complex dynamic r e a c t i o n s a t t h e e l e c t r o d e s becomes i m p o r t a n t , so t h a t t h i s may a c c o u n t f o r some o f t h e observed  fluctuations  of z e r o f i e l d b a l a n c e d u r i n g t h e i n t e r - h i g h - v o l t a g e pulse i n t e r v a l .  T h i s e n t i r e e f f e c t c o u l d be m i n i m i z e d  by d e s i g n i n g a c o n d u c t i v i t y c e l l w i t h a l a r g e r c e l l c o n s t a n t ; thus p e r m i t t i n g h i g h e r e l e c t r o l y t e  concentrations  t o be used. VI.  SUMMARY AND CONCLUSIONS  An a p p a r a t u s  was c o n s t r u c t e d t o measure t h e c o n d u c t -  ance change o f e l e c t r o l y t e s i n t h e p r e s e n c e o f h i g h e l e c t r i c f i e l d s t o a h i g h degree of a c c u r a c y . apparatus for  This  p e r m i t s d i r e c t o b s e r v a t i o n of p u l s e shape, and  s e p a r a t e compensation o f r e s i s t i v e and c a p a c i t i v e  unbalance.  The a m p l i t u d e  of the r e c t a n g u l a r pulses can  be e a s i l y v a r i e d f r o m one t o s i x t e e n k i l o v o l t s ( c o r r e s ponding t o f i e l d  s t r e n g t h s up t o two hundred K.V./em.  w i t h our c o n d u c t i v i t y c e l l s ) , t h e p u l s e wijth i t s v a r i a b l e 4  - 60 -  f r o m 0.1 t o 50 m i c r o s e c o n d d u r a t i o n , and t h e r e p e t i t i o n r a t e can be v a r i e d f r o m manual t o 20 p u l s e s p e r second. With the high-voltage-pulse bridge apparatus which has  been d e s c r i b e d , t h e h i g h - f i e l d e l e c t r i c conductance  of s e v e r a l  solutions  o f b i o l o g i c a l l y i n t e r e s t i n g sub-  s t a n c e s was i n v e s t i g a t e d investigated,  and c l a s s i f i e d .  The s u b s t a n c e s  t o g e t h e r w i t h t h e observed i n c r e m e n t i n  e l e c t r i c conductance a t a f i e l d s t r e n g t h o f 10?  volts  per  cm., and t h e i r c l a s s i f i c a t i o n s a r e l i s t e d :  i.  Ampholytes w h i c h behave as s t r o n g e l e c t r o l y t e s :  1.  glutamine  2.  1(+)  0.56$  (1.25 x lO-'+M),  arginine  monhydrochloride  (2.0 x 10-4-M), ii.  0.1+8$  Weak e l e c t r o l y t e s and ampholytes w h i c h behave as weak e l e c t r o l y t e s :  iii.  3.  acetic acid  (3.75 x l O " ^ ) ,  l+.  p-amino b e n z o i c a c i d  5.  s u l f a n i l i c acid  6.  1(+)  7.  glycine  (0.61  (5 x 10"^M),  (6.55  glutamic acid  *+.6$  x 10~?M),  (1.22  5*5% l.h%  x 10"3M),  2.6$ 1.9$  M),  Polyelectrolytes 8.  p r o t a m i n e s u l f a t e (7.9 x 10"?  9.  agar (3 x IO" " g / c c ) ,  g/cc.) k-0% 37$  4  Some of t h e observed r e s u l t s have been compared w i t h t h o s e o b t a i n e d by o t h e r methods, w h i l e t h e r e m a i n i n g subs t a n c e s have n o t been p r e v i o u s l y  r e p o r t e d . . The r e s u l t s  were d i s c u s s e d i n t h e l i g h t of a v a i l a b l e  theoretical  i n f o r m a t i o n on t h e h i g h - f i e l d conductance e f f e c t i n v a r i o u s types of e l e c t r o l y t e s .  - 61 -  BIBLIOGRAPHY 1.  Adcock, W.A.,  and C o l e ,  J . A . C S . 7JL, 2.  7jf, 184-5-6, 1952.  B a i l e y , F.E., and P a t t e r s o n , A. Sc. 9., 285,  1953.  Berg, D. and P a t t e r s o n , A. J . A . C S . 25,  7.  1952.  Berg, D. and P a t t e r s o n , A. J . A . C S . Z2, 14-82-4-,  6.  B l u h , 0,  4-835-6, 1953.  and T e r e n t i u k , F.- •  1950.  J . Chem. Phys. 18, 1664-8, 8.  Eckstrom, H.C  and Schmelzer,  Chem. Revs. 24-, 367, 9.  E d e l s o n , D. and Fuoss,  1939. 1950.  Fucks, W. Annals der P h y s i k (5),  11.  Fuoss, R.M.  and E l l i o t ,  J.A.CS. 12.  Fuoss,  12,  306,  1932.  M.A.  6Z, 1339, 194-5.  R.M. J . Polymer  13.  C.  R.M.  J . A . C S . 2 i , 306, 10.  R.M.  7it, 4-756-9, 1952.  J . Polymer 5.  194-9-  B a i l e y , F.E., and P a t t e r s o n , A. J.A.CS.  4-.  2835,  B a i l e y , F.E., P a t t e r s o n , A., and Fuoss, J.A.CS.  3.  R.H.  Sc.  12, 185, 195*K  Glascoe and Lebacqz P u l s e Generators. V o l . 5? R a d i a t i o n L a b o r a t o r y S e r i e s , McGraw H i l l ,  N.Y., 194-8.  14-.  G l e d h i l l , J.A.,  and P a t t e r s o n , A.  Rev. Sc. I n s t r 15.  G l e d h i l l , J.A.,  20, 960, 194-9.  and P a t t e r s o n , A.  J . Phys Chem. ^6, 16.  999,  1952.  Harned, H.S. and Owen, B.B. The P h y s i c a l Chemistry of E l e c t r o l y t i c S o l u t i o n s . Rheinhold P u b l i s h i n g Corp., N.Y., 2nd e d i t i o n , 1950.  pp. 95-HH-, 214--7.  - 62 17. 18. 19.  H u t e r , W. A n n a l s d e r p h y s i k (5), 24-, 253, 1935. M a l s c h , J . and H a r t l e y , G.S. Z. P h y s i k . Chem. A 1 7 0 . 321, 1934-. Onsager, L. J . Chem Phys 2 , 599, 1934-.  20.  V a l l e y , G.E., and Wallman, H. Vacuum Tube A m p l i f i e r s , R a d i a t i o n Lab. S e r i e s 18, McGraw H i l l , 194-8.  21.  Wien, M. and M a l s c h , J . Annalen d e r P h y s i k (4-), 83, 205,  22. 23.  Wien, M. A n n a l e n d e r P h y s i k 8^, 327,  1927.  1927.  W i l s o n , W.S. Dissertation, Yale University,  1936.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085329/manifest

Comment

Related Items