UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A survey of water masses in the Sea of Okhotsk and the Bussol Strait Taylor, Colin E 1996

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1997-0027.pdf [ 8.27MB ]
Metadata
JSON: 831-1.0085150.json
JSON-LD: 831-1.0085150-ld.json
RDF/XML (Pretty): 831-1.0085150-rdf.xml
RDF/JSON: 831-1.0085150-rdf.json
Turtle: 831-1.0085150-turtle.txt
N-Triples: 831-1.0085150-rdf-ntriples.txt
Original Record: 831-1.0085150-source.json
Full Text
831-1.0085150-fulltext.txt
Citation
831-1.0085150.ris

Full Text

A Survey of Water Masses in The Sea of Okhotsk and The Bussol Strait by C o l i n E. Tay lo r B . S c . The Un ivers i t y of Br i t i sh C o l u m b i a , 1986 A T h e s i s Submi t ted In Par t ia l Fu l f i l lment Of The Requ i r emen ts For T h e Deg ree of Mas te r Of S c i e n c e in T h e Facu l t y Of G r a d u a t e S t ud i es (Depar tment of P h y s i c s ) W e accep t this t hes i s as con fo rming to the requ i red s tanda rd : The Un ivers i t y of Br i t ish C o l u m b i a D e c e m b e r 1996 © C. E. Tay lo r , 1996 f In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree ; that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. QL • Department of \j ^ c _ S The University of British Columbia Vancouver, Canada Date 0,,. r u DE-6 (2/88) II Abstract In Sep tembe r of 1993, a W o r l d O c e a n C i r cu la t i on Exper iment ( W O C E ) exped i t i on to the S e a of Okho tsk co l l ec ted hyd ro log i ca l da ta a long a t ransec t of the s e a , loca ted next to the nor thwest P a c i f i c . Hyd ro log i ca l samp l i ng was conduc ted at s e v e r a l s ta t ions over the Kur i l T r e n c h , and con t inued a long a l ine p a s s i n g through the B u s s o l Strai t and a c r o s s the S e a of Okho tsk to the con t inen ta l ma in land . The data co l l ec ted on this voyage sugges t that the S e a of Okho tsk p lays only an ind i rect role in the format ion of North P a c i f i c In termediate W a t e r (NPIW) and that much of the water in the S e a of Okho tsk has res i ded there for some t ime. A n e x c h a n g e of waters at depth over the B u s s o l S i l l is a l so s u g g e s t e d . Th i s paper wi l l d i s c u s s the p roper t ies of the water m a s s e s in the S e a of Okho tsk with respec t to the co l l ec ted da ta and focus on the e x c h a n g e a c r o s s the B u s s o l Stra i t . T h e r e s i d e n c e t ime of water m a s s e s and the effect of winter coo l i ng wi l l a l so be d e s c r i b e d . Table of Contents: Abs t rac t ii T a b l e of Con ten ts iii L ist of F i gu res v A c k n o w l e d g e m e n t vi i 1. Introduction 1 1.1. P h y s i c a l G e o g r a p h y of the S e a of Okho tsk 1 1.2. O c e a n o g r a p h i c F e a t u r e s of the S e a of Okho tsk 3 1.2.1. S e a Ice Format ion 3 1.2.2. Cur ren ts in the S e a of Okho tsk R e g i o n 5 1.2.3. T i d e s 6 1.2.4. Wa te r P rope r t i es 8 1.3. W o r l d O c e a n C i r cu l a t i on Exper iment Exped i t i on 1993 9 1.3.1. Wor l d O c e a n C i r cu l a t i on Exper iment ( W O C E ) 9 1.3.2. North P a c i f i c Intermediate W a t e r 10 1.3.3. The 1993 Okho tsk S e a Exped i t i on 11 2. Description of Data 13 2 .1 . C o l l e c t i o n Me thods 13 2 .2 . Da ta P r o c e s s i n g 14 2 .3 . O v e r v i e w of Da ta 15 3. Results 17 3 .1 . W a t e r M a s s e s in the S e a of Okho tsk 17 3 .1 .1 . S u r f a c e W a t e r s 18 3 .1 .2 . t h e Deryug in B a s i n W a t e r 20 3 .1 .3 . W a t e r M a s s e s near the B u s s o l S i l l 21 3.2. W a t e r P rope r t i es 24 3 .2 .1 . C h l o r o f l u o r o c a r b o n Dat ing of Okho tsk W a t e r s 24 3 .2 .2 . The Okho tsk Gy re and the B u s s o l Eddy 26 iv 3 .2 .3 . T ida l M ix ing over the B u s s o l S i l l 29 4. D iscuss ion 33 R e f e r e n c e s 34 Summary of F i g u r e s 37 A p p e n d i x A . - U s i n g C F C ' s to date o c e a n water m a s s e s 78 A p p e n d i x B. - N i sk in Bot t le Sa l in i t y Da ta . 80 V List of Figures: F i g . 1: The S e a of Okho tsk and the North P a c i f i c 39 F i g . 2: O c e a n o g r a p h i c fea tu res of Okho tsk S e a (Al fu l t is and 40 Mar t in , 1987) F i g . 3: The Kur i l I s lands and St ra i ts from P I C E S 41 F i g . 3 C a p t i o n s 42 F i g . 4: Bathymetry of S e a of Okho tsk from U .S . Nava l 43 O c e a n o g r a p h i c Of f i ce . F i g . 5: a) Deve lopmen t of S e a Ice over winter months ( J a p a n e s e 44 Me teo ro l og i ca l A g e n c y , 1990) b) Feb rua ry s e a ice extent 1973-76 ( P a r k i n s o n , 1990) 45 c) In terannual s e a ice cove r as a % of total a rea from H. 46 F r e e l a n d , comp i l ed with data sent by A l e x Bychov , P O I . F i g . 6: a) C i r cu la t i on of S o O in summer by W a t a n a b e 47 b) C i r cu la t i on of S o O a c c o r d i n g to L e o n o v 48 c) C i r cu la t i on of S o O a c c o r d i n g to M o r o s h k i n 49 d) Es t ima tes of su r face cur ren ts from l ida 50 (in kno ts : 1 knot = 0.514 m/s) e) The p r e s e n c e of the B u s s o l Eddy ( R o g a c h e v , 1 9 9 3 ) 51 f) G y r e s of the North P a c i f i c (Ohtan i et a l , 1991) 52 F i g . 7: a) Amp l i t udes of t idal componen ts (Suzuk i and Kanar i ) 53 b) T ida l componen ts in the Kur i l s f rom Luch in 54 c) T ida l pa ramete rs near the B u s s o l Strai t f rom Luch in 55 F i g . 8: Tempera tu re d is t r ibut ion a long nor th-south l ine at 56 approx imate ly 150° E (K i tan i , 1973) F i g . 9: W O C E survey l ines in the Nor thwest P a c i f i c 57 F i g . 10: Su rvey S ta t ions of W O C E Exped i t i on 9316 (Sept . 1993) 58 F i g . 11 : N P I W low sa l in i ty in t rus ion from H. F r e e l a n d 59 - so l i d l ines are 5, 6 and 7 deg ree iso therms vi - c lashed l ines are 26 .7 , 26.7 and 26 .8 i s o p y c n a l s F i g . 12 a) Po ten t ia l temperature over the t ransec t 60 b) Po ten t ia l tempera ture for f irst 500 meters 61 F i g . 13 a) Sa l in i t y over the t ransec t 62 b) Sa l in i t y for f irst 500 meters 63 F i g . 14 a) Po ten t ia l Dens i ty over the t ransec t 64 b) Po ten t ia l Dens i ty for f irst 500 meters 65 F i g . 15 P ro f i l es of S , T, 0 at va r ious s ta t ions a long the t ransec t 66 F i g . 16 T S plot for above s ta t ions 67 F i g . 17 a) Tempera tu re -sa l i n i t y p ro f i les for al l 30 s ta t ions . 68 b) T S pro f i les d i v ided into 3 reg ions 69 c) T S plots with dens i ty con tours and f r eez ing point. 70 F i g . 18 Po ten t ia l Dens i t y Con tou r i l lus t ra t ing 3 reg ions 71 F i g . 19 D i s s o l v e d 0 2 contour plot 72 F i g . 20 D i s s o l v e d s i l i ca te contour plot 73 F i g . 21 Po ten t ia l dens i ty near the B u s s o l S i l l 74 F i g . 22 T S plot for depths be low 1000 meters 75 F ig - 23 C F C age con tours for the S o O . 76 F i g . 24 Dynam ic he igh ts re la t ive to 1000 d B a r su r face for s ta t ions 77 where depth e x c e e d s 1000 rri (s ta t ions 1 to 23) VII Acknowledgements: For my long-su f fe r ing wi fe, A n g e l a and the other members of my fami ly who he lped a long the way. 1 1. Introduction 1.1. Physical Geography of the Sea of Okhotsk T h e S e a of Okho tsk is l oca ted in the Nor thwest P a c i f i c ( f igure 1); it is a marg ina l s e a sepa ra ted from the P a c i f i c by the cha in of Kur i l I s lands . T h e Kur i l i s l and cha in runs nor theast f rom the J a p a n e s e Is land of Hokka ido to the sou thern tip of K a m c h a t k a . The S e a of Okho tsk ( S o O ) is bo rde red by land on three s i d e s . In the eas t , the K a m c h a t k a P e n i n s u l a ex tends from the Kur i l s to the nor theast co rner of the S o O . T h e wes te rn border of the S o O is marked by S a k h a l i n Is land, s t re tch ing 800 k i lometers nor th-south a long the f lank. T h e nor thern shore of the S o O is ou t l ined by the coas t of con t inen ta l A s i a s w e e p i n g from the b a s e of the K a m c h a t k a P e n i n s u l a to the far wes te rn r e a c h e s of the s e a . The re are few large i s l ands in the S e a of Okho tsk itself, the la rgest be ing the S h a n t a r s k y Is land group, in Shan ta r sky Bay on the nor thwest con t inen ta l shel f . In a l l , the S o O s t re tches from 43° to 63° north lat i tude and from 135° to 165° eas t long i tude. The waters of the S e a of Okho tsk are s e p a r a t e d from the P a c i f i c O c e a n by the Kur i l R i d g e ( f igure 2). T h e r e are many i s l ands and st ra i ts a l ong this s p a n . The re are both R u s s i a n and J a p a n e s e n a m e s for the o c e a n o g r a p h i c fea tu res ( f igure 3 + cap t ions ) . On the Okho tsk s i de of the r idge, the s e a f loor d rops into the Kur i l B a s i n ; on the P a c i f i c s ide the depth i n c r e a s e s more rap id ly , fa l l ing into the Kur i l T r e n c h . E x c h a n g e be tween the two bod ies of water is a c c o m p l i s h e d through the many s t ra i ts . T h e B u s s o l Stra i t , in the midd le of the i s land c h a i n , has the deepes t s i l l at about 2300 meters . To the north, the K r u z e n s h t e r n Stra i t is the s e c o n d deepes t 2 p a s s a g e with a s i l l depth of 1400 meters . Other important s t ra i ts inc lude F r i z a and Nemuro St ra i ts among the sou the rn Kur i l s . T h e s e st ra i ts wi l l be ment ioned a g a i n later when cur rents and e x c h a n g e are d i s c u s s e d . T h e S e a of Okho tsk is a l so c o n n e c t e d to the J a p a n S e a by two s h a l l o w st ra i ts . The sou thern tip of S a k h a l i n Is land and the nor thern end of H o k k a i d o are s e p a r a t e d by the S o y a Stra i t , about 42 k i lometers w ide and 55 meters deep . The re is a l so a nar row strait be tween S a k h a l i n Is land and the Tar ta r in P e n i n s u l a ; the Tar ta r Strai t is on ly 8 k i lometers w ide at its nar rowest with a s i l l depth of 12 meters at low t ide. T h e bathymet r ic fea tu res of the S e a of Okho tsk are shown on f i gu res 2 and 4. It can be noted that the depth con tours on these two p lo ts are not ent i re ly in ag reement ; th is is an examp le of the lack of so l i d in format ion about the S e a of Okho tsk . However , th is d i s c r e p a n c y is minor and the main fea tu res are apparen t on both g raph i cs . T h e deepes t part of the S o O , the Kur i l B a s i n , is l oca ted in the sou thern por t ion of the s e a and r e a c h e s a max imum depth of about 3200 m. T h e Deryug in B a s i n , l oca ted off the eas t coas t of S a k h a l i n Is land, d rops to a depth of about 1700 meters . To the nor theast , the s h a l l o w T in ro B a s i n pa ra l l e l s the K a m c h a t k a coas t . The s e a a l s o has a few notab le r i ses . The K a s h e v o r o v a Bank , in the nor thwest S o O , r i ses above 200 meters in depth . Two other r i ses , the Insti tute of O c e a n o l o g y R i s e and the A c a d e m y of S c i e n c e R i s e , l ie be tween the Kur i l and Deryug in B a s i n s . T h e ove ra l l a rea of the S o O is about 1.5 mi l l ion squa re k i lometers and the a v e r a g e depth is approx imate ly 800 meters . 3 1.2. Oceanographic Features of the Sea of Okhotsk The de ta i l s of o c e a n o g r a p h i c p roper t ies of the Okho tsk S e a are not wel l known. Th i s body of water has been s a m p l e d ex tens i ve l y by Sov ie t sc ien t i s t s but there is a lack of quant i ta t ive in format ion a v a i l a b l e in E n g l i s h . Th i s sec t i on wi l l attempt to out l ine those fea tu res that have been c h r o n i c l e d by a number of r e s e a r c h efforts. 1.2.1. S e a Ice Fo rma t ion A l though wi th in tempera te la t i tudes, the S e a of Okho tsk is cove red by a subs tan t ia l amount of pack ice every winter. The re are two pr imary r e a s o n s why this occu rs . In the nor thern winter, an a tmosphe r i c h igh is gene ra l l y s i tua ted over the S i b e r i a n land mass . The dominant w ind pat tern has out f low w inds p a s s i n g from the co ld cont inent , t rave l ing over the Okho tsk S e a towards the low p ressu re sys tem near the A leu t i an Is lands of A l a s k a . Th i s f low of co ld air has a d ras t i c effect on coo l i ng the S o O and c a u s i n g the format ion of s e a i ce . In add i t ion , there is a layer of re la t ive ly f resh water t rapped near the su r face of the S o O . Th i s layer is fed by the many r ivers d ra in i ng into the Okho tsk S e a ; the largest of t hese r ivers , the Amur R ive r , s u p p l i e s f resh water d i rec t ly into S h a n t a r s k y Bay . Th i s water is ca r r i ed sou thward by the Eas t S a k h a l i n Cur ren t promot ing the c rea t ion of s e a ice very ear ly a long the eas t coas t of S a k h a l i n Is land. The ice pack f irst beg ins forming in S h a n t a r s k y Bay in the wes te rn end of the S o O and in P e n z h i n s k a y a Bay in the nor theast co rner ( P I C E S , 1 9 9 5 ) . T h e ice can start fo rming as ear ly as November and grows south to a lat i tude of 45° N at the per iod of peak ice bu i ldup, in ear ly M a r c h . T h e typ ica l growth of the ice pack is shown in monthly s teps in f igure 5a . At its fu l les t extent , the ice 4 pack r e a c h e s to the nor thern coas t of Hok ka ido . The winter ice pack is f irst year ice as a l l of it mel ts the fo l low ing summer , somet imes as late as Ju ly . The re is some in te rannua l var iab i l i t y to the extent of s e a ice fo rmat ion . The s p r e a d of the ice pack to the south can vary great ly f rom year to year . F igu re 5b shows the ranges of the ice pack for four s u c c e s s i v e F e b r u a r y s . T h e long term var ia t ion in ice c o v e r a g e is shown in f igure 5c as a pe rcen tage of total su r f ace a r e a . It shou ld a l so be noted that there a p p e a r s to be an i nve rse co r re la t ion be tween ice format ion on the Okho tsk and Ber ing S e a s . That is , when the ice pack is la rge one winter on the S e a of Okho tsk , it is typ ica l l y a lean year for ice on the Be r i ng S e a and v i ce v e r s a . Th i s may be e x p l a i n e d by re la t ive movements of the key a tmosphe r i c fea tu res : the S i b e r i a n H igh and the A leu t i an Low. A s for the t h i c kness of the ice pack , l itt le data is ava i l ab l e . V i s u a l obse rva t i ons sugges t a t h i c kness of 1.5 m at the nor thern edge , d e c r e a s i n g to 0.5 m in the south ( A k a g a w a , 1969) . Ano the r fea ture the Okho tsk S e a exh ib i ts are po l ynyas . A po l ynya forms cons is ten t l y a long the nor thern S i b e r i a n coas t f rom T a u y s k a y a Bay wes tward past the ci ty of Okho tsk . Th i s po l ynya is p robab ly formed by the p reva i l i ng nor th-nor thwest w inds that occu r in the winter. Ano the r po l ynya is of ten repor ted near the K a s h e v a r o v a Bank ; this is most p robab ly c a u s e d by upwe l l ing or t idal mix ing. The effect these fea tu res have on water m a s s mod i f i ca t ion wi l l be ment ioned with the d i s c u s s i o n of S e a of Okho tsk water m a s s e s . 5 1.2.2. Cu r ren ts in the S e a of Okho tsk R e g i o n A l t hough there is only l imi ted in format ion regard ing the s t rengths of the cur rents in the S o O , it is ev ident that the c i r cu la t ion pat tern has a s t rong s e a s o n a l va r ia t ion . Ind icated by the p r e s e n c e of s e a ice , the cur ren ts in the summer are marked ly di f ferent from those in the winter. P e r h a p s the c lea res t ava i l ab l e summary of cur ren ts for summer t ime within th is s e a is shown in f igure 6a ( W a t a n a b e , 1963b) . Th i s map ou t l ines the gene ra l c y c l o n i c nature of the su r face c i r cu la t i on in the S o O . F rom the d iag ram it is ev ident that there is one large gyre in the cent ra l Okho tsk with subgy res in the nor thwest over T in ro B a s i n , a round T a r p e n i y a Bay in the west and over the Kur i l B a s i n in the sou th . Mo re de ta i l ed p ic tu res of the current pat tern in the Okho tsk s e a are shown in f igu res 6b (Leonov ,1960 ) and 6 c (Moroshk in ,1964 ) . Bo th of t hese s c h e m a t i c d iag rams of the su r face c i r cu la t ion in the S o O ind ica te a large number of sma l l e r e d d i e s wh ich may be of a tempora l nature. The main gyre over the Kur i l bas in a p p e a r s to be an t i c yc l on i c in nature whi le the gene ra l f low over the S o O is cyc l on i c . The re is a l so e v i d e n c e of a pers is ten t an t i c yc l on i c eddy on the P a c i f i c s i de of the B u s s o l Strai t ( R o g a c h e v , 1 9 9 1 ) shown in f igure 6e . The comp lex in teract ion be tween the Okho tsk S e a and the North P a c i f i c cur ren ts , pr imar i ly the O y a s h i o , is i l lus t ra ted in f igure 6f. T r a v e l i n g in a sou thwest d i rec t ion past the sou thern tip of K a m c h a t k a , the O y a s h i o pa ra l l e l s the cha in of Kur i l I s lands just ou ts ide the S o O . B ranch ing off the O y a s h i o and enter ing the Okho tsk S e a through the K r u z e n s h t e r n Stra i t , the W e s t K a m c h a t k a Cur ren t t rave ls nor thward in the S e a of Okho tsk beg inn ing the main c y c l o n i c gyre of the S o O . The Eas t S a k h a l i n Cur ren t f lows sou thward a long the wes te rn boundary of the S o O . T h e s e are the two most marked cur ren ts in 6 the s e a ; however , they can only be d e s c r i b e d in qua l i ta t ive terms b e c a u s e of the lack of a cons i s ten t s e r i e s of measu remen ts over t ime. Ano the r important current enters the Okho tsk S e a through the S o y a Strai t . T h e S o y a Cur ren t ca r r i es warm sa l i ne water f rom the J a p a n S e a . Th i s in t rus ion typ ica l l y f lows c l ose l y a long the nor thern coas t of Hokka ido . The pat tern of c i r cu la t ion c h a n g e s in the co lde r months. Wi th the onset of the winter i ce , the s t rength of the E a s t S a k h a l i n Cur ren t i n c r e a s e s , ca r ry ing pack ice to the nor thern s h o r e s of Hokka ido . A l s o at this t ime, the s t rength of the incoming S o y a Cur ren t d e c r e a s e s and this warmer , more sa l i ne water en ter ing the S o O is subduc ted by the co lde r waters a p p r o a c h i n g from the north. On the other s ide of the S e a of Okho tsk , the W e s t K a m c h a t k a Cur ren t con t i nues to br ing in warmer P a c i f i c water and this impedes the format ion of the ice pack in the eas te rn s ide of the S o O . S i n c e many of the es t ima tes of cur ren ts in the Okho tsk S e a have been ob ta ined with sa te l l i te t racked ins t ruments , the format ion of winter pack ice has proh ib i ted the co l l ec t i on of su r face current measu remen ts by these means . 1.2.3. T i d e s T h e S e a of Okho tsk e x p e r i e n c e s some of the la rgest t ides in the wor ld ' s o c e a n s ; seve ra l s tud ies have found e v i d e n c e of la rge t idal d i s s i pa t i on . In a recent a n a l y s i s us ing sa te l l i te a l t imet r ic da ta (Kan tha ,1995) , the Okho tsk S e a was found to be one of the wor ld ' s pr imary s i tes for d i ss i pa t i on of the d iu rna l K i t idal component . In another paper by J a p a n e s e sc ien t i s t s (Suzuk i and Kana r i , 1986 ) , da ta co l l e c ted in the ear ly 1920 's by O g u r a and S c h u r e m a n was u s e d to mode l the t ides in the S o O . Th i s mode l of the di f ferent t idal 7 componen ts ( f igure 7a) shows large amp l i t udes in the S e a of Okho tsk , e s p e c i a l l y in the a r e a s of She l i ko f Bay in the nor theast and S h a n t a r s k y B a y in the west . T h e mode l a l s o shows cur ren ts due to t ida l f lows are s t rong in the reg ions of the Kur i l S t ra i ts , near c a p e T a r p e n i y a , over the K a s h e v e r o v a Bank and in She l i ko f Bay . S u z u k i and Kanar i sugges t max imum t idal cur ren ts in the Kur i l S t ra i ts on the order of 20 -30 cm/s . Th i s is somewhat low c o m p a r e d with the f ind ings of E f imor (E f imor ,1985) , who s u g g e s t e d ve loc i t i es in the st ra i ts over 1 m/s. Ef imor , who s u g g e s t e d la rge O i t idal componen ts , c o n c u r s with the two p rev ious l y ment ioned s tud ies that the d i ss i pa t i on of t idal energy over the Okho tsk S e a is pr imar i ly d iu rna l in nature. However , in the reg ion of g rea tes t in terest - the Kur i l S t ra i ts , where e x c h a n g e be tween the Okho tsk and P a c i f i c t akes p l ace - the p ic ture is l e s s c lea r . The re is some s u g g e s t i o n that the f lows in the s t ra i ts t h e m s e l v e s are of a sem i -d iu rna l nature ( R a b i n o v i c h , 1 9 9 3 ) . A g raph i c p rov ided by V . A . Luch in ( P I C E S , 1 9 9 5 : A p p . B) shows the t idal f low in this reg ion to be qui te comp lex in nature ( f igure 7b), a mixture of d iu rna l and semi -d iu rna l componen ts . Luch in a l s o s u g g e s t s t ida l f lows in the B u s s o l Strai t on the order of 2 to 4 knots , or about 1 to 2 m/s ( f igure 7c) . The cur ren ts a s s o c i a t e d with the t idal f lows through the Kur i l i s l ands are so large in magn i tude they may overwhe lm the s teady cur ren ts . Th i s may be one r e a s o n for the lack quant i ta t ive v a l u e s for s teady cur ren ts in the S o O . T i d e s may a l s o be r e s p o n s i b l e for much of the ver t i ca l mix ing in the S e a of Okho tsk ; this wi l l be men t ioned when ver t i ca l mix ing is later d i s c u s s e d . 8 1.2.4. W a t e r P rope r t i es The waters of the S e a of Okho tsk c a n only be d e s c r i b e d qua l i ta t i ve ly at th is point . O c e a n o g r a p h i c samp l i ng has been c o n d u c t e d for over a century but there is a lack of pub l i shed da ta . T h e r e have been s e v e r a l thorough s tud ies of the S o O by R u s s i a n sc ien t i s t s , par t i cu la r ly those of L e o n o v (1960) and M o r o s h k i n (1964) . T h e work of K i tan i (1973) a l s o p rov ides a d iges t of in format ion on the subject . Desp i t e th is , there is no agg rega te unde rs tand ing of the fo rmat ion , var iab i l i t y and in terac t ion of the water m a s s e s in the S e a of Okho tsk . The re is on ly a gene ra l p ic ture of the nature of Okho tsk waters . T h e most obv ious feature of the water co lumn in the Okho tsk S e a is a d is t inct part i t ion be tween su r face and deep waters , i l lus t ra ted in the tempera ture con tours of K i tan i ( f igure 8). Th i s plot shows a c o l d f resh layer of water d i rec t ly be low the s e a su r face and ex tend ing down to about 200 meters . B e l o w that depth , the tempera ture and sa l in i ty vary only s l ight ly . Th i s upper layer is p resent over the ent i re S o O and is p robab ly the resul t of ice melt and con t inen ta l run-off. Li t t le is known however about how this s u b s u r f a c e layer in teracts with the waters be low. In cont ras t to the tempera ture min imum in the upper layer , the waters be low 200 meters tend to exhib i t a weak tempera ture maximum at a depth of about 1000 meters . B e l o w that depth , in the Kur i l and Deryug in B a s i n s , the tempera ture fa l l s on ly s l ight ly , d ropp ing at most half of one deg ree from 1000 meters depth to the bot tom. H o w this bottom water m a s s in teracts with the co lde r l aye rs above is to th is point con jec tu re . Th i s then is the in i t ia l dep ic t ion of water p roper t ies in the S o O : a c o l d , f resh layer of water just be low the s e a ' s su r face 9 be low wh ich is a compara t i ve l y uni form water mass ex tend ing to the bottom of the s e a ' s b a s i n s , with subt le va r ia t ions in depth . 1.3. World Ocean Circulation Experiment Expedit ion Th i s r e s e a r c h effort was c o n d u c t e d as a very sma l l part of the in ternat iona l W o r l d O c e a n C i r cu la t i on Exper iment ( W O C E ) . T h e exped i t i on was under taken to improve o c e a n o g r a p h i c know ledge of the Okho tsk S e a and nor thwest P a c i f i c by comp le t ing the wes te rnmos t segment of W O C E survey l ine P a c i f i c O n e (P1) . Th i s s tudy is an attempt to br ing to l ight some of the fea tu res of a sma l l part of the wor ld ' s o c e a n s and add to the g loba l W O C E p ic ture. 1.3.1. The W o r l d O c e a n C i r cu l a t i on Exper iment I T h e W O C E is an in ternat iona l under tak ing by sc ien t i s t s f rom more than 30 coun t r ies , conc l ud i ng in 1997. T h e goa l of the program is to deve lop better mode l ing t echn iques of wor ld o c e a n c i r cu la t i on and to ga in a better unde rs tand ing of how the o c e a n s and a tmosphere affect long- term g loba l c l ima tes . At p resent , there is no wor ldw ide sys tem in p l ace for moni tor ing g loba l o c e a n i c c h a n g e s ; the W O C E wi l l hopefu l l y p rov ide some d i rec t ion in the d e s i g n of an obse rv i ng sys tem. Wi th the p r e s e n c e of more re l iab le o c e a n i c and a t m o s p h e r i c da ta , better p red ic t i ons cou ld be made of how human and natura l i n f l uences are a f fect ing c l imate . Par t of the W O C E program invo lves ac t ive samp l i ng of o c e a n waters a long many t ransec ts . F igu re 9 shows the W O C E samp l i ng reg ime for the P a c i f i c ; note l ine P a c i f i c O n e (P1) . L ine P1 t ransec ts the P a c i f i c eas t -wes t at a lat i tude of about 45° N, f rom the ma in land 10 U S coas t to near the Kur i l I s lands . At this point , l ine P1 b reaks up into two s e c t i o n s : one go ing southwest towards J a p a n , and one go ing nor thwest to the S i b e r i a n ma in land . T h e l ine go ing nor thwest through the S e a of Okho tsk comp le tes the P a c i f i c c r o s s i n g , and is re fer red to as l ine P a c i f i c O n e W e s t ( P 1 W ) . Th i s is the su rvey d e s c r i b e d in th is t hes i s , with s ta t ion pos i t i ons g iven in f igure 10. 1.3.2. North P a c i f i c In termediate Wa te r Th i s s tudy is important for a number of r e a s o n s . F i rs t of a l l , there is the a b s e n c e of qual i ty o c e a n o g r a p h i c data a v a i l a b l e for th is part of the wor ld ' s o c e a n s . S e c o n d l y , there is the ques t ion of the format ion of North P a c i f i c Intermediate W a t e r (NP IW) . The Nor theas t P a c i f i c ma in ta ins a sa l in i ty min imum in the top 1000 meters of the water co lumn ; the water mass in a nar row band of dens i t i es on e i ther s ide of this min imum has been dubbed North P a c i f i c In termediate Wa te r . Its p r e s e n c e throughout the North P a c i f i c has been wel l documen ted and d e s c r i b e d by R e i d (1965) and T a l l e y (1991) . Its p r e s e n c e a long a nor th-south t ransec t at 165° W is shown g raph ica l l y in f igure 11 (p rov ided by H. F ree land ) . Th i s p ic ture shows a tongue of low sa l in i ty water reach ing to a depth of about 600 meters and ex tend ing as far south as 15° N lat i tude. T h e or ig in of th is f reshe r water is b e l i e v e d to be in the M ixed W a t e r R e g i o n of the Ku rosh io and O y a s h i o cur ren ts , to the eas t of J a p a n . However , the p r o c e s s l ead ing to its format ion is poor ly unde rs tood . It was s u g g e s t e d by W u s t (1930) that the S e a of Okho tsk was the format ion s i te for N P I W and that th is f resher , d e n s e r water sp i l l ed out through the B u s s o l Strai t into the P a c i f i c . O thers have a l s o s u g g e s t e d that a great dea l of water m a s s mod i f i ca t ion takes p l ace in the S o O . Favor i te (1976) s u g g e s t s that much of the Eas t K a m c h a t k a Cur ren t , 11 f lowing south a long the Kur i l s , en ters the Okho tsk , is modi f ied and then re -en te rs the P a c i f i c a s a la rge part of the O y a s h i o Cur rent . Th i s rec i r cu la ted water, co lde r and f resher as a resul t of mod i f i ca t ion , s u b s i d e s under warmer Ku rosh ib water to form N P I W . K i tan i (1973) a d d e d further weight to this argument , sugges t i ng that water m a s s mod i f i ca t ion on the nor thern con t inen ta l she l f of the S o O due to winter vent i la t ion wou ld p roduce d e n s e water that might then f low into the P a c i f i c . However , R e i d (1973) b e l i e v e s that the amount of water p roduced in the S e a of Okho tsk wou ld not be adequa te to form the la rge N P I W water m a s s . In a recent s tudy (Ta l ley et a l , 1994) , it is s u g g e s t e d that d i rect ven t i la t ion on the nor thern con t inen ta l she l f of the Okho tsk S e a p lays an important ro le in p roduc ing th is water m a s s . The role of the Okho tsk S e a on the format ion of Nor th P a c i f i c In termediate Wa te r has rema ined unc lear , main ly from lack of da ta . Th i s paper wi l l d i s c u s s the data taken from this exped i t i on c o n c e r n i n g th is ques t i on . 1.3.3. The 1993 Okho tsk S e a Exped i t i on A W O C E exped i t i on to the S e a of Okho tsk was conduc ted in the fal l of 1993. In coope ra t i on with the P a c i f i c O c e a n o l o g i c a l Insti tute, (POI) , the sh ip A l e k s a n d r N e s m e y a n o v was u s e d as the plat form for a l l exper imenta l work. The sh ip left V lad i vos tok , home of PO I , on Augus t 3 1 , 1993 a n d was at s e a for 22 days . T h e ob jec t ive of the samp l i ng program was to comple te o c e a n o g r a p h i c su rvey l ine P 1 W (Pac i f i c O n e Wes t ) and so con t inue the l ine P1 a c r o s s the P a c i f i c . To this end , 30 hyd ro log i ca l su rvey s ta t ions were c h o s e n to t ransec t the S e a of Okho tsk (f ig. 10). B e g i n n i n g ou ts ide the S o O , over the Kur i l T r e n c h , the su rvey l ine p a s s e s through the B u s s o l Stra i t , over the Kur i l and Deryug in B a s i n s , past the K a s h e v o r o v a R i s e and to the 12 S i b e r i a n con t inen ta l shel f . A l o n g with the thirty s ta t ions a long th is l ine, another eight s ta t ions to the west of P 1 W were a l so s a m p l e d . The main survey l ine, s ta t ions 1 to 30, c r o s s e s the deepes t o c e a n o g r a p h i c fea tu res of the S e a of Okho tsk and comp le tes the P a c i f i c su rvey l ine, P 1 . T h e data reco rded from this voyage do not sugges t a large s c a l e e x c h a n g e of water be tween the Okho tsk S e a and the P a c i f i c O c e a n at the dep ths and dens i t i es of the North P a c i f i c In termediate W a t e r m a s s . However , it must be r e c o g n i z e d that this study l ooked at only one of the many st ra i ts through the Kur i l I s lands and samp l i ng w a s on ly conduc ted at the height of summer . A g a i n , l i tt le is known about Okho tsk water behav io r s in winter and o thers ( B o b k o v , 1 9 9 3 and Oh tan i ,1991 ) have s u g g e s t e d that out f low of Okho tsk waters may occu r in s t ra i ts far ther to the southwest . W h a t e v e r the c a s e , the da ta from this s tudy imply that the S e a of Okho tsk may p lay only a minor ro le in the vent i la t ion of North P a c i f i c water and that much of the water in the S e a of Okho tsk has been there for some yea rs . T h e da ta wi l l a l s o i l lust rate that there is l itt le hor izon ta l mix ing of P a c i f i c and Okho tsk waters in the re levant f irst 1000 meters of depth . However , s i n c e these da ta were taken in a s ing le summer month and do not i nc lude any es t ima tes of t ranspor t be tween the Okho tsk and P a c i f i c , the comp le te p ic ture of water m a s s p roduc t ion rema ins u n r e s o l v e d . T h e data p resen ted wi l l a l s o show many of the water p roper t ies of the S e a of Okho tsk not ava i l ab l e unti l th is t ime. 13 2. Description of Data 2.1. Col lect ion Methods S a m p l i n g was per formed with ins t ruments p rov ided by the Institute of O c e a n S c i e n c e s ( IOS) , S i d n e y , B C , C a n a d a . The Conduc t i v i t y -Tempera tu re -Dep th P r o b e ( C T D ) prof i ler was a Gu i l d l i ne 8736 d e v i c e ca l i b ra ted just before sh ipment to V lad i vos tok ; th is ca l ib ra t ion was conf i rmed when the unit was re turned to IOS after the exped i t i on . T h e C T D was t ranspor ted from IOS to V l a d i v o s t o k aboa rd a sh ipp ing con ta ine r as was other sc ien t i f i c equ ipment . The probe i tself was a t tached to an array of 23 10- l i t re N i sk in S a m p l i n g Bot t les ; the who le unit was lowered together by an onboa rd w inch . Af ter c o n s i d e r i n g the weight of the samp l i ng unit, the weight of r e l e a s e d c a b l e and safe ty , a max imum samp l i ng depth of 3400 meters was p o s s i b l e . T h e s i gna l s sent from the p robe a long a t r ansm iss i on wire ins ide the main cab le were logged at 40 s a m p l e s per s e c o n d . T h e unit was lowered and ra i sed at a rate of approx imate ly 1 meter per s e c o n d in the water co lumn ; the depth of the C T D was m e a s u r e d with a p ressu re s e n s o r . T h e data were s to red on hard d isk for later a n a l y s i s . T h e C T D P r o b e and N isk in Bot t les were f irst tes ted at a s ta t ion (stat ion 'A ' ) on the way to the beg inn ing of the t ransec t . The 10 l i tre N i sk in bot t les o c c a s i o n a l l y did not f i re dur ing th is test but that p rob lem was co r rec ted for subsequen t t r ia ls . The C T D prof i ler d id not exhib i t any p rob lems dur ing this test; samp l i ng b e g a n on the south end of the t ransect , at s ta t ion 1 ( f igure 10). T h e deep s ta t ions (s tat ions 1 through 5), where the probe was d ropped to its max imum depth of 3400 meters , took about 45 minutes to samp le 14 go ing one d i rec t ion . Of cou rse , the depth of water at the f irst few s ta t ions was wel l over 3400 meters as these s ta t ions were over the Kur i l T r e n c h so only the top of the water co lumn cou ld be s a m p l e d . However , for a l l the sha l l ower s ta t ions from the B u s s o l Strai t to the con t inen ta l shel f , the probe was d ropped to wi th in 50 meters of the bot tom. It took about three hours to s team be tween the hyd ro log i ca l samp l i ng s ta t ions , wh ich were about 30 naut ica l mi les apart . Fo r the most part, the s e a s were fa i r ly ca lm and the w a v e s l ight; samp l i ng was not per fo rmed dur ing heavy s e a s . A storm sys tem did d is rupt samp l i ng after s ta t ion 18. T h e A . N e s m e y a n o v s teamed north out of the sys tem to con t inue samp l i ng at s ta t ion 24 before re turn ing a few days later to comp le te s ta t ions 19 through 23 . H e n c e , the s ta t ions were not s a m p l e d in cons is ten t numer i ca l order The pos i t ion of the A . N e s m e y a n o v was de te rmined by G P S moni tors l oca ted on the br idge and in the data co l l ec t i on a r e a . The f ocus of this paper wi l l be on the da ta l ogged by the C T D probe; however , a number of o thers pa ramete rs were m e a s u r e d us ing s e a water s a m p l e s re t r ieved with the N i sk in bot t les . T h e s e water s a m p l e s were a n a l y z e d for sa l in i ty and ch lo ro f l uo roca rbon ( C F C - 1 1 and C F C - 1 2 ) concen t ra t i on as wel l as d i s s o l v e d oxygen , ni trate, phospha te and a number of other c h e m i c a l pa ramete rs . The resu l ts ob ta ined for sa l in i ty f rom the water s a m p l e s were c h e c k e d aga ins t the C T D da ta ; s imi la r ly , r eve rs ing thermometers t r iggered at va r i ous dep ths were u s e d as c r o s s c h e c k s on the C T D tempera ture resu l ts (see A p p e n d i x B) . 2.2. Data Processing The raw data taken from e a c h s tat ion were in i t ia l ly p r o c e s s e d on board sh ip . Th i s was done in a number of s teps . F i rs t of a l l , the 15 data were sor ted by p ressu re to a l ign the s a m p l e s taken as the probe was lowered with reco rds co l l ec ted as it was ra i sed . T h e s e data were then f i l tered to remove s p i k e s in the pro f i les of conduct iv i ty and tempera ture . A s ment ioned above , data were co l l ec ted at a rate of 40 s a m p l e s / s e c o n d . T h e C T D probe was moved through the water co lumn at approx imate ly 1 meter per s e c o n d so there were about 80 s a m p l e s taken in e a c h meter of water t rave rsed in both d i rec t ions of t rave l . Th i s of c o u r s e makes for very large data f i l es ; to get the data in a more usefu l form, one meter a v e r a g e f i les were p roduced . A l l the reco rds within one meter in terva ls were a v e r a g e d and the p ressu re measu remen ts conver ted to depth . T h e potent ia l dens i ty for e a c h record was a l so c a l c u l a t e d . T h e end resul t was tabu lar da ta show ing potent ia l dens i ty , tempera tu re , sa l in i ty at e a c h one meter depth for e a c h s ta t ion . 2.3. Overview of Data Contou r p lots of the three p r inc ipa l p roper t ies s a m p l e d with the C T D d e v i c e over the t ransec t are shown in f igures 12, 13, 14. Fo r examp le , f igure 12 shows the tempera ture d is t r ibu t ion over the ent i re p a s s a g e ; both to ful l depth and a more de ta i l ed plot for the top 500 meters . F i g u r e s 13 and 14 show s im i la r g raph i cs for sa l in i ty and potent ia l dens i ty . The bottom shown on these p lo ts rep resen ts the maximum depth of e a c h C T D cas t of 3400 meters , not the ac tua l s e a bottom for the very deep s ta t ions . A no tab le fea ture of al l three of these p lo ts is the d ramat ic c h a n g e s near the s e a ' s su r face , in the top 100 meters . Th i s var ia t ion is better r e s o l v e d in p ro f i les . F i gu re 15 shows T, S and a pro f i les for s e v e r a l s ta t ions : one ou ts ide the S o O , one over the B u s s o l S i l l , one in e a c h of the Kur i l and 16 De ryug ina B a s i n s . A tempera ture ve r sus sa l in i ty plot is a l s o shown for t hese se lec t s ta t ions - f igure 16. T h e s e f igu res i l lus t ra te the g e n e r a l overa l l p roper t ies of the water m a s s e s in the Okho tsk S e a as s a m p l e d dur ing this exped i t i on ; the next sec t i on wi l l attempt to d e s c r i b e some of the more spec i f i c f i nd ings of the exped i t i on . 17 3. Results 3.1. Water Masses in the Sea of Okhotsk A common method of typ i fy ing water m a s s e s is by plot t ing a tempera ture ve r sus sa l in i ty (TS) cha rac te r i s t i c d iag ram. Th i s a p p r o a c h was f irst used ear ly this century ( H e l l a n d - H a n s e n , 1916) and p rov ides a good method of b reak ing water s a m p l e s at va r i ous depths into di f ferent water m a s s e s . A l l water s a m p l e s with s imi la r T S cha rac te r i s t i c s can be g rouped as a s ing le water m a s s . The T S plot for the data taken for the S e a of Okho tsk s ta t ions revea l some cogent fea tu res (f igure 17a). T h e T S pro f i les on th is f igure have been c a t e g o r i z e d by co lour into g roups : one group for those p lots from s ta t ions ou ts ide the S o O , one for those in the Kur i l B a s i n , one for the Deryug in B a s i n and the sha l l ower s ta t ions on the nor thwest con t inen ta l shel f . A l l 30 pro f i les have a s im i la r form down to 100 meters of dep th , i.e. the T S pro f i les for a l l the s ta t ions show an abrupt drop in tempera ture from the su r face to 100 meters . The s ta t ions in the Deryug in B a s i n and Con t inen ta l She l f g roup (in red) appea r to have a lower su r face sa l in i ty than the s ta t ions far ther sou th . B e l o w that depth , the cu rves sepa ra te into fam i l i es desc r i b i ng the bas in waters in the Okho tsk S e a and a reg ion e n c o m p a s s i n g the P a c i f i c water ou ts ide the B u s s o l Stra i t . T h e r e is an obv ious sepa ra t i on of water m a s s e s be tween open P a c i f i c water and Okho tsk water be tween the dep ths of 750 meters down to about 1800 meters . In this depth range , the open P a c i f i c waters (in b lack) are s l ight ly warmer than those in the S o O . B e l o w 1800 meters , the Okho tsk water in the Kur i l B a s i n has s im i la r cha rac te r i s t i c s to open P a c i f i c waters . Rough l y , the s a m p l e d water can be d i v ided into the 18 three reg ions on the T S d iag ram; these a l s o appea r geog raph i ca l l y on the potent ia l dens i ty contour plot ( f igure 18). F i rs t of a l l , there is the uppermost 200 meters where sa l in i ty and e s p e c i a l l y tempera ture undergo dramat ic c h a n g e s with depth ( S u r f a c e Wate r ) . T h e n there is the reg ion be low this where there is l itt le c h a n g e to the bottom of the Deryug in B a s i n (Deryug in B a s i n Wate r ) . F ina l l y , there is the reg ion of mix ing be tween the P a c i f i c and the Kur i l B a s i n near the B u s s o l Strai t ( B u s s o l S i l l Wate r ) . Th i s sec t i on of the report wi l l attempt to d e s c r i b e these three reg ions and d i s c u s s the poss ib i l i t y of e x c h a n g e with water ou ts ide the S e a of Okho tsk . 3 .1 .1 . S u r f a c e W a t e r T h e water in the f irst 200 meters exh ib i ts spme ex t remely co ld tempera tu res . T h e water d i rect ly at the s e a su r face has a temperature of a few d e g r e e s C e l s i u s , p resumab ly warmed by contac t with the a tmosphere ; however the s u b s u r f a c e water at about 100 meters depth is much co lder . Th i s water m a s s , f irst ident i f ied by K i tan i (1973) , shows po ten t ia l tempera tu res as low as -1.1 °C. S h o w n best in f igure 12b, th is water a p p e a r s co ldes t at the noted depth in a layer c e n t e r e d over the Deryug in B a s i n . Ano the r pocket of co ld water ex is ts ou ts ide the B u s s o l Strai t but it shou ld be noted that this co ld water is s ign i f i can t ly warmer than that in the S o O at the same depth . P r e s u m a b l y , th is co ld water is left over f rom last w in ter 's ice pack wh ich has subsequen t l y mel ted in the sp r ing . T h e water m a s s is a l s o qui te f r esh , with sa l i n i t i es l ess than 33 .2 . The f r e s h n e s s of this water m a s s is p robab ly best at t r ibuted to in f low from the many r ivers su r round ing the S o O . T h e la rgest r iver to f low into the Okho tsk S e a , the Amur R ive r , has a mean annua l out f low of 315 k m 3 ( U N E S C O , 1974) . P r e s u m a b l y , the out f low from the Amur 19 and other r ivers o c c u r s main ly dur ing the summer months so that this water has a c h a n c e to mix with Okho tsk su r face water . D i s c h a r g e from other r ivers and a net p rec ip i ta t ion su rp lus amount to another 530 k m 3 (Aota , 1991) . S p r e a d over the a v e r a g e 6 0 % of the S o O that exh ib i ts s e a ice e a c h year , this f resh water input accoun ts for an even layer about a meter th ick. Th i s f resh water is s t rong ly buoyant and c rea tes a sharp pynoc l i ne p revent ing ver t i ca l mix ing with the water be low; note the rap id i n c r e a s e of dens i ty with depth in the f irst 100 meters for a l l of the dens i ty pro f i les in f igure 15. It is the low sa l in i ty of the su r face water that p r o d u c e s the pynoc l i ne , ma in ta in ing the su r face layer . Th i s is ano ther s ign i f i can t r e a s o n for s e a ice forming at the low la t i tudes in the south of the s e a ; the f resh water layer f r e e z e s read i ly in the winter. A l t hough the exped i t i on da ta were co l l ec ted in the summer , even the sa l t ies t water at the s e a su r face , at 32 .9 , can on ly r each a potent ia l dens i ty of 26 .5 before f r eez ing at T * -1 .5° C (f igure 17c) . At this dens i ty , the water can only vent i la te down to 200 meters or so as shown on the dens i ty con tours . That is , water of th is dens i ty is found at a depth of about 200 meters in the S o O . The re fo re , the su r face waters are somewhat i so la ted from the deepe r waters , be low 200 meters . It is in teres t ing to note that this dens i ty , 26 .5 , is s l ight ly be low the range of the dens i t i es for North P a c i f i c In termediate Wate r , d i s c u s s e d ear l ie r . T h e N P I W genera l l y has a dens i ty of 26.7 to 26 .9 (Ta l ley , 1993) , It has been shown by K i tan i that d i rect vent i la t ion of su r face water o c c u r s in the S o O dur ing the winter a l ong the nor thern con t inen ta l shel f . It is be l i eved that th is a d v e c t e d water then sp i l l s into the d e e p e r Deryug in B a s i n . However , if th is co ld , f resh su r face water unde rgoes downwe l l i ng dur ing the winter, it cou ld not reach the depths of the N P I W m a s s , at least not in the S e a of Okho tsk , acco rd i ng to the potent ia l dens i ty 20 con tours co l l ec ted for th is s tudy. It must be remembered however that th is da ta set was e s t a b l i s h e d in the summer and the potent ia l dens i ty con tours may be qui te di f ferent in the winter, a l l ow ing deepe r vent i la t ion . A l s o , the p roduc t ion of an Okho tsk componen t of N P I W may take p lace to the eas t or west of the t ransec t l ine and not appea r on these con tours . N o n e t h e l e s s , one might expec t some e v i d e n c e of this vent i la t ion to show up in the Deryug in B a s i n , the deepes t bas in in the nor thern part of the s e a and it is not read i l y apparen t . The water in this bas in wi l l be e x a m i n e d in the next sec t i on . It may be p o s s i b l e to p roduce water of suf f ic ient dens i ty and f r e s h n e s s for N P I W through other p r o c e s s e s such as d i f fus ion but this requ i res a long t ime pe r iod , sugges t i ng p roduc t ion is s low. P r e s u m a b l y , the great quant i t ies of water c o m p o s i n g the N P I W cou ld not be fo rmed by d i rect over turn of su r face waters . F ina l l y , it shou ld be noted that the co ld f resh su r face layer ex tends over the ent i re t ransec t . However , in the 500 meter tempera ture and sa l in i ty con tours ( f igures 12b and 13b) there a p p e a r s to be a d iscont inu i ty over the B u s s o l S i l l a round s ta t ion 7. Th i s may be e v i d e n c e of t idal mix ing over the s i l l and wi l l be d i s c u s s e d in 3 .2 .3 . 3 .1 .2 . T h e Deryug in B a s i n W a t e r T h e p h y s i c a l p roper t ies of the water m a s s in th is reg ion s e e m to sugges t that there is l itt le c h a n g e in the d e e p waters and that this water m a s s has res i ded there for some t ime. T h e potent ia l dens i ty and sa l in i ty con tou rs are both fa i r ly f lat in this r e g i o n . T h e s l ight doming of the i s o p y c h a l s near the su r face ( f igure 14b) is ind ica t i ve of the gene ra l c y c l o n i c c i r cu la t ion pat tern s u g g e s t e d for the S e a of Okho tsk . A n es t imate is made of the s t rength of this c i r cu la t i on in sec t i on 3 .2 .2 . The re is a l s o l itt le var ia t ion in tempera tu re ; f rom 600 21 meters to the bot tom, the tempera ture va r ies l ess than 0.25 C° ( f igure 12a). T h e s e fac to rs sugges t that th is water m a s s has res i ded in the Deryug in B a s i n for some t ime and has not been f l ushed out year ly by d i rect ven t i la t ion . The re is no e v i d e n c e for the a p p e a r a n c e of co lde r f reshe r water from the nor thern con t inen ta l shel f . The potent ia l dens i ty con tours ac tua l l y r ise at the nor thern end of the Deryug in B a s i n ; th is may be e v i d e n c e of t idal mix ing. T h e d i s s o l v e d oxygen concen t ra t i on ( f igure 19) is very low at the bottom of the b a s i n ; as we l l , the d i s s o l v e d s i l i ca te concen t ra t i on i n c r e a s e s with depth (f igure 20) . If the water in the Deryug in B a s i n was ven t i la ted f requent ly , the concen t ra t i on of O 2 wou ld be s im i la r throughout the water co lumn. In fact, the deep waters in th is b a s i n exhib i t the lowest oxygen concen t ra t i ons throughout the t ransec t with the excep t ion of water just ou ts ide the B u s s o l Stra i t . T h e Deryug in B a s i n water a l s o has a h igher s i l i ca te concen t ra t i on than th is other water m a s s ; the s i l i ca te concen t ra t i on at the bottom of the bas in is the h ighest found . A l l t hese fac tors , the flat con tours and the t racer concen t ra t i ons , sugges t that th is water m a s s has not been d is tu rbed recent ly by ver t i ca l mix ing or convec t i ve vent i la t ion . 3 .1 .3 . W a t e r M a s s e s near the B u s s o l S i l l It is ev ident f rom the contour p lots of al l the dynamic p roper t ies that there is a d is junc t ion at the B u s s o l S i l l . Th i s is d i s p l a y e d most c lea r l y on the potent ia l tempera ture con tours ( f igure 12a and 12b). The re is a c lea r sepa ra t i on of water m a s s e s on e i ther s ide of the B u s s o l S i l l in the upper 600 meters of the water co lumn . T h e con tours of sa l in i ty and dens i ty a l s o show a d iscont inu i ty in this reg ion . The con tours for sa l in i ty fa l l to a min imum at s ta t ion 3, r ise aga in at s ta t ion 5, and then dip once more on the other s i de on the 22 s i l l near s ta t ion 7. T h e loca l i s o p y c n a l s mirror the var ia t ion in sa l in i ty ; the c h a n g e in tempera ture be low 60 meters depth is too s l ight to s ign i f i can t ly a l ter the dens i ty . T h e s e p roper t ies , as wel l as the oxygen and s i l i ca te pro f i les , sugges t that there is some ver t ica l mix ing in the f irst 800 meters of the water co lumn . A s d i s c u s s e d ear l ie r , th is mix ing is in part the resul t of t idal f lows through the B u s s o l Stra i t , es t imated to be some of the la rges t in the wor ld and this p r o c e s s is d i s c u s s e d in 3 .2 .3 . T h e i s o p y c n a l con tours a l so sugges t the ex i s t ence of a s t rong su r face eddy near the B u s s o l Stra i t . The c i r cu la t ion of this eddy is d i s c u s s e d in 3 .2 .2 . At the s e a su r face immedia te ly over the s i l l , be tween s ta t ions 6 & 7, the coo le r tempera ture con tours a p p r o a c h the su r face : e v i d e n c e of ver t i ca l mix ing of the co ld s u b s u r f a c e water with the s l ight ly warmer water f rom be low. Th i s mix ing a p p e a r s to ex tend down a few hundred meters ; this is men t ioned in 3 .2 .3 . However , on e i ther s ide of the s i l l , the co ld water m a s s e s cen te red at about 100 meters depth have di f ferent cha rac te r i s t i c s . T h e co ld water m a s s loca ted ent i re ly wi th in the S o O has a s ign i f i can t l y lower tempera ture than that s a m p l e d at the same depth in the P a c i f i c : at s ta t ion 20 , the tempera ture min imum a p p r o a c h e s -1 .0 °C whi le its counterpar t in the P a c i f i c is warmer at about 1.5 °C. Thus , the var ia t ion in the con tours and the temperature d i f fe rence of t hese water m a s s e s sugges t that though there is some ver t i ca l mix ing, net ho r i zon ta l e x c h a n g e of water a c r o s s the B u s s o l Strai t is weak , at least in the upper 800 meters of the water co lumn . B e l o w that depth , the p ic ture is di f ferent. The re a p p e a r s to be a por t ion of the water co lumn be tween about 800 and 1800 meters in wh ich l itt le ver t i ca l mix ing takes p l ace . D i rec t ly over the B u s s o l S i l l , be tween s ta t ions 6 and 7, the i s o p y c n a l s are fa i r ly f lat ( f igure 14a) . Th i s s u g g e s t s there is l itt le ver t i ca l movement of water . A l s o , there 23 a p p e a r s to be a d is t inct sepa ra t i on of water m a s s e s on e i ther s ide of the s i l l . A magn i f ied T S d iag ram for those s ta t ions in the Kur i l B a s i n and those in the P a c i f i c show a s ign i f i can t tempera ture d i f fe rence for the two g roups of s ta t ions (F igure 22) . T h e P a c i f i c waters are s l ight ly warmer than those in the Kur i l B a s i n and this d is t inc t ion ex i s t s be tween the dep ths of a round 800 and 1800 meters . B e l o w these dep ths , the T S s igna tu res reconve rge . Th i s gap be tween the two fami l i es of cu rves ind ica tes that there is l itt le ho r i zon ta l p a s s a g e of water f rom the P a c i f i c to the Okho tsk S e a at the dep ths men t ioned . A c l o s e r look at the potent ia l dens i ty s t ructure ( f igure 21) s u g g e s t s that there has been an inf low into the Kur i l B a s i n f rom the P a c i f i c . Th i s w a s a l so h y p o t h e s i z e d by Y a s u o k a (1967-1968) . Near the depth of the B u s s o l S i l l , it s e e m s some hor i zon ta l e x c h a n g e is tak ing p l ace . The contour p lots of potent ia l tempera tu re , sa l in i ty and dens i ty exhib i t s im i la r water p roper t ies at dep ths of 2000 meters in the open P a c i f i c with those at 3000 meters near the bottom of the Kur i l B a s i n . Th i s s u g g e s t s there is an e x c h a n g e of waters over the B u s s o l S i l l be low 1800 meters , pr imar i ly an inf low from the P a c i f i c into the Kur i l B a s i n . T h e i s o p y c n a l s lead from the s i l l down into the b a s i n , sugges t i ng a f low para l le l to the bottom down into the Kur i l B a s i n . The re fo re , it is un l ike ly that water is f lowing out from the Okho tsk S e a and enter ing the P a c i f i c at th is depth . Th i s is wel l be low the dep ths re levant to the North P a c i f i c Intermediate W a t e r m a s s and the water in this reg ion has too h igh a dens i ty for N P I W . It is unc lea r how this deep inf low af fects the c i r cu la t ion in the Kur i l B a s i n but it may be part of an an t i c yc l on i c current s u g g e s t e d for the b a s i n . 24 In summary , the water co lumn over the B u s s o l S i l l has three par ts : mix ing in the su r face layer down to a few hundred meters , a s t ra t i f ied midd le layer , and a deep inf low at depth . 3.2. Other Features of the Sea of Okhotsk T h e da ta co l l ec ted from the waters of the S e a of Okho tsk a l s o exhib i t other in teres t ing cha rac te r i s t i c s . C h l o r o f l u o r o c a r b o n s wi l l be u s e d as a c h e m i c a l t racer in this sec t i on to attempt to date the bas in waters in the S o O . T h e s e an th ropogen i c c h e m i c a l s have grown in use as an o c e a n o g r a p h i c t racer s i nce the ear ly 1980 ' s ; s e e A p p e n d i x A for a more comp le te d i s c u s s i o n of their use and deve lopmen t . Es t ima tes of the s t rength of the c y c l o n i c f low a l s o wi l l be made from the i sopycna l da ta . F ina l l y , t idal mix ing over the B u s s o l S i l l and K a s h e v o r o v a Bank wi l l be d i s c u s s e d . 3 .2 .1 . C h l o r o f l u o r o c a r b o n Dat ing of Okho tsk W a t e r s Fur ther e v i d e n c e of the re la t ive age of b a s i n waters in the S e a of Okho tsk is shown through the use of ch lo ro f l uo roca rbons ( C F C s ) as c h e m i c a l t race rs . T r i ch lo ro f l uo romethane ( C F C - 1 1 ) and d i ch lo ro f l uo romethane ( C F C - 1 2 ) are manmade s u b s t a n c e s manu fac tu red s i nce the ear ly 1900 's . P r o d u c e d in great amounts s i nce 1950, t hese unreac t i ve c h e m i c a l s have been d i s p e r s e d through the a tmosphere and subsequen t l y d i s s o l v e d in the o c e a n s . W a r n e r and W e i s s (1985) have d e s c r i b e d the so lub i l i t y of t hese C F C s as a func t ion of o c e a n temperature and sa l in i ty . T h e rat io of the amount of C F C - 1 1 to C F C - 1 2 in the a tmosphe re has c h a n g e d over t ime. The re fo re , a water samp le tes ted for t hese f reons and then co r rec ted for so lub i l i t y can have its C F C rat io c o m p a r e d to that of the a tmosphere . A s s u m i n g that the C F C ratio of the water 25 s a m p l e d has not c h a n g e d s i nce the C F C s were a b s o r b e d , the data can infer a t ime when the water samp le was last in contact with the a tmosphere . The dat ing techn ique is d e s c r i b e d by Doney and Bu l l i s te r (1992) . Unfor tunate ly , there are some l imi ta t ions to this p r o c e s s . The C F C rat io is only good for dat ing water m a s s e s that were last in equ i l ib r ium with the a tmosphere be tween the yea rs 1950 and 1980. Ou t s i de of this per iod of yea rs the C F C rat io l eve ls off, p roduc ing ambigu i ty it the dat ing p r o c e s s (see A p p e n d i x A ) . M ix ing can a l s o have an effect on the dat ing resu l ts . The b lend ing of a younger , more recent ly at su r face water m a s s with an o lder one wi l l p roduce an age more heav i l y we igh ted to the younger samp le b e c a u s e the concen t ra t i ons of both C F C s have i n c r e a s e d with t ime. C o n s e q u e n t l y , the techn ique p rov ides only a lower bound of the true age , or number of yea rs s i nce the tes ted water s a m p l e s were last at the su r face . Desp i te these res t r i c t ions , the C F C rat io can present ins ight into the age of a s u b m e r g e d water mass . F igu re 23 shows the age con tours for the S e a of Okho tsk t ransec t g iven as yea rs in last contact with the a tmosphere . T h e s e con tours g ive a rough es t imate of the r e s i d e n c e t ime of bas in waters . The C F C data s u g g e s t s that the waters o c c u p y i n g the bottom of the Deryug in B a s i n have res i ded there for some 20 to 30 y e a r s . For tuna te ly , this e ra l ies wi thin the s p a n of yea rs wh ich can be un ique ly de te rmined by C F C dat ing . Of cou rse , at the su r face the water cannot be accu ra te l y da ted b e c a u s e al l yea rs after 1980 have s im i la r C F C rat ios . Th i s gene ra tes some ambigu i ty in the top 200 meters of the water co lumn . It is ev ident that in the dep ths of in terest to N P I W format ion , down to 1000 meters or so , that the water m a s s has res i ded in the s e a ' s bas in for a s p a n of many y e a r s . 26 Th i s is ano ther ind ica t ion that the S e a of Okho tsk is not ven t i la ted to this depth with co lde r f resh su r face waters on a f requent b a s i s . 3 .2 .2 . The Okho tsk Gy re and the B u s s o l Eddy A s ment ioned ear l ie r , the c y c l o n i c c i r cu la t ion of the su r face waters is ev ident in the gene ra l doming of the i s o p y c n a l s over the center of the S e a of Okhotsk . U s i n g a geos t roph i c mode l , the s t rength of this gy re ' s f low can be es t ima ted . The geos t roph i c t echn ique a s s u m e s a b a l a n c e be tween C o r i o l i s and p ressu re f o r ces . Hor i zon ta l d i f fe rences in dens i ty , apparen t in the s l o p e d i s o p y c n a l con tou rs , c rea te hor i zon ta l p ressu re g rad ien ts . In a sec t i on of water with s l o p e d i s o p y c n a l s ( p ' s ) , there is a c o r r e s p o n d i n g set of i soba rs (P ' s ) , con tours of equa l p ressu re , wh ich have oppos i te s l o p e s : p 3 ^ ""~P"3 p 2 0? P i P o p1 F o r c e due to Hor i zon ta l P r e s s u r e Grad ien t C o r i o l i s F o r c e due to mot ion of water down grad ient D i rec t ion of current is out of page for Nor thern H e m i s p h e r e Po The s l o p e s in the i soba r i c su r f aces are c rea ted by the dens i ty f i e ld ; the hor i zon ta l d i f fe rence in p ressu re c rea tes a fo rce wh ich d r i ves water down the s l o p e s of the i soba rs . A s the water f lows down the i soba rs , it is ac ted on by the C o r i o l i s fo rce wh ich de f lec ts the f low e i ther into or out of the page . W h e n the f low at ta ins a cer ta in s p e e d , the p ressu re grad ient fo rce wi l l be b a l a n c e d by the C o r i o l i s fo rce : 27 Coriolis Force = 2vQsin d> = — = Pressure Force p ax. where v=current s p e e d , Q=angu la r rotat ion s p e e d of the earth (7 .29x10" 5 / second ) , <|)=latitude, p=average dens i ty and dPIdx is the hor i zon ta l p ressu re grad ient . At th is point, the f low of water is no longer down the i soba rs but a l ong them at right a n g l e s to the grad ient . In the Nor thern H e m i s p h e r e , water f lowing to the right is de f l ec ted out of the page by the C o r i o l i s fo rce wh i le f lows to the left are sh i f ted into the page . T h e oppos i te ho lds true in the Sou the rn H e m i s p h e r e . For the dens i ty con tours from the S o O , there fore , i s o p y c n a l s s l op ing up from south (stat ion 1) to north (s tat ion 30) sugges t a f low to the eas t wh i le those s l op ing down sugges t a f low to the west . Ove r the Kur i l and Deryug in B a s i n s , the s l o p e s of the i s o p y c n a l s are cons is ten t with the s u g g e s t e d c y c l o n i c f low of the Okho tsk G y r e . It is important to note that the geos t roph i c mode l re l i es on there be ing a re fe rence leve l where the s l o p e s of the i s o p y c n a l s and i soba rs are c o n s i d e r e d leve l . Th i s leve l of no mot ion is the b a s e l i n e from wh ich the s l o p e s of the p r e s s u r e g rad ien ts above and be low are c a l c u l a t e d . Th i s is one l imi tat ion of app l y i ng the geos t roph i c mode l : a l l the cur ren ts ca l cu l a t ed are re la t ive to the current at the re fe rence leve l . T h e re fe rence leve l is usua l l y c h o s e n at some depth where the current is c o n s i d e r e d to be a lmost ze ro but th is cannot a lways p rac t i ca l l y be de te rm ined . A better a l te rnat ive is to use a re fe rence leve l where the current is wel l mon i to red : a leve l of known mot ion. F rom this point , a l l the other cur ren ts can be found re la t ive to th is e s t a b l i s h e d va lue . However , da ta on the s teady state t ranspor t of water is not a lways a v a i l a b l e or cons is ten t . S i n c e geos t roph i c es t ima tes of current a s s u m e no f r ic t ion and ignore t rans ient cur rents , us ing a m e a s u r e d va lue of current for a 28 re fe rence va lue must be done care fu l l y . In any c a s e , no such current v a l u e s are p resen t l y a v a i l a b l e for the S e a of Okho tsk . Ano the r way of look ing at the p r e s s u r e d is t r ibu t ion is to c rea te a vary ing dynamic height at the s e a su r face wh ich s imi la r ly a c c o u n t s for the h igher p ressu re at ce r ta in l oca t ions . D i f f e rences in dynamic height represen t p ressu re d i f f e rences wh ich ref lect the hor i zon ta l p ressu re grad ient ; la rger dynamic he igh ts c o i n c i d e with h igher p r e s s u r e s and v i ce v e r s a . A g a i n , t hese dynamic he igh ts are c a l c u l a t e d re la t ive to a re fe rence leve l . F igu re 24 shows the dynamic height a long the t ransec t where the s ta t ion depth is d e e p e r than 1000 meters . The re fe rence leve l is the 1000 d B a r p r e s s u r e su r face . The south end of the t ransec t is on the left s ide of the f igure and the north end , s ta t ion 23 , at the right. Nor th of s ta t ion 23 , the depth is l ess than the re fe rence leve l and the geos t roph i c mode l b reaks down as f r ic t ion with the bottom b e c o m e s a s ign i f i can t factor ; there is p robab ly some in te r fe rence from rec i rcu la t ion of water off the nor thern con t inen ta l shel f . In this d iag ram, the dynamic height s l op ing up to the right rep resen ts current f lowing to the west and s l op ing down, f low to the eas t . T h e s teepe r the s l ope , the larger the magn i tude of the current . The g raph i c of dynam ic height has some obv ious fea tu res . T h e an t i c yc l on i c B u s s o l Eddy is read i ly apparent , cen te red a round s ta t ion 3. Th i s eddy may be temporary , its var iab i l i t y with t ime is not wel l known. The dynamic height plot can be u s e d to es t imate the s t rength of su r face cur ren ts . The current ve loc i t y on e i ther s ide of the eddy has a magn i tude of « 1 m/s; th is is somewhat h igher than that co l l e c ted from sa te l l i te t racked dri f ter da ta (Thomson et a l . , 1996) . However , this c i r cu la t i on is di f f icul t to es t imate b e c a u s e of the c l o s e pack ing of the i s o p y c n a l s near the su r face . The i sopycna l con tours sugges t that th is eddy a p p e a r s to penet ra te to at 29 least the depth of the B u s s o l S i l l at 2300 meters . T h e main Okho tsk Gy re is a l s o apparen t be tween s ta t ions 8 and 22 . Un l i ke the B u s s o l Eddy , this gyre has a lower dynamic height at its center , be ing cyc l on i c . T h e current a p p e a r s to be larger at the south end with a magn i tude of be tween 40 -50 cm/s . The current at the north end is about half that, a round 20 cm/s . T h e s e es t ima tes are in the range for su r face cur ren ts g iven by l ida (1969) shown in f igure 6d . The magn i tudes of these cur ren ts are sma l l , p robab ly on the s a m e order as the loca l t idal cur ren ts d i s c u s s e d ear l ie r . Th i s is not an uncommon s i tuat ion near coas ta l a r e a s . Be tween s ta t ions 5 and 8, d i rect ly over the B u s s o l S i l l and be tween the B u s s o l Eddy and the Okho tsk G y r e , there is a large c h a n g e in the dynamic height . Th i s feature is p robab ly more due to the mix ing ment ioned in the next sec t i on than any eas t -wes t f low, a l though some may be occu r r i ng . It is un l ike ly , however , that any s teady state geos t roph i c current wou ld occu r be tween the i s l ands of the Kur i l Is land c h a i n . A l though the geos t roph i c mode l does prov ide some use fu l es t ima tes of la rge s c a l e cur ren ts , it is l imi ted be ing app l i ed to short term da ta . It must be remembered that these current es t imates are b a s e d on a ' snapsho t ' of da ta co l l e c ted over a few days at one t ime of the year . 3 .2 .3 . T ida l M ix ing over the B u s s o l S i l l T h e S e a of Okho tsk is the s i te of la rge t idal f lows. T h e r e is c o n s i d e r a b l e t ida l f r ic t ion in the st ra i ts be tween the Kur i l I s lands . T h e data co l l ec ted from this exped i t i on g ive some idea of what is happen ing in the B u s s o l Stra i t . T h e contour p lots of the p h y s i c a l p roper t ies - tempera ture , sa l in i ty , dens i ty - a l l i nd ica te an unst ra t i f ied water m a s s near the s e a su r face d i rec t ly over the s i l l 30 down to a depth of about 800 meters . P r e s u m a b l y , the large t idal cur ren ts through the strait are r e s p o n s i b l e for th is mix ing . The st rength of ver t i ca l mix ing can be es t imated from energy a rguments (Garret t , 1978) . For a heat f lux Q f lowing into a unit su r face a rea of depth h with spec i f i c heat c p and thermal e x p a n s i o n coef f i c ien t a , potent ia l energy is c rea ted at a rate of gccQh/2c p if comp le te ver t i ca l mix ing is a s s u m e d . M e c h a n i c a l energy from t idal f r ic t ion is supp l i ed at a rate of 4ypu 3 /37t where y is the bottom f r ic t ion coef f ic ient , p the dens i ty and u the a v e r a g e t ida l s t rength . The re fo re , the rat io of the requ i red energy for mix ing to the ac tua l energy d i s s i p a t e d p rov ides a quant i ta t ive mix ing e f f i c iency : 37T .gaQh/8c p ypu 3 . In a water co lumn where Q, c p , a , p , and y are fa i r ly cons tan t , the mix ing parameter bo i l s down to h /u 3 . Th i s is the H u n t e r - S i m p s o n parameter , f irst u s e d to d e s c r i b e the leve l of mix ing in the Irish S e a (Hunter , 1974) . A s a t idal current with a mean ampl i tude u f lows a c r o s s a s e a of mean depth h, the t idal ac t ion st i rs the water co lumn p roduc ing a we l l -m ixed lower layer . In very deep water, the bottom boundary layer is d is t inct f rom the su r face and the water co lumn is s t ra t i f ied . At sha l l ower dep ths , however , where h is low or at s i te where the t idal current u is la rge, the ent i re co lumn water is m ixed : the bottom boundary layer r e a c h e s the su r face . Th i s t rans i t ion from a par t ia l ly mixed water co lumn to a ful ly mixed one can be p red ic ted by a cha rac te r i s t i c va lue of h /u 3 « 100 m" 2 s 3 (Garret t , 1978) . Of c o u r s e , in many a r e a s the a s s u m p t i o n of uni form water p roper t ies made to reso l ve the parameter of h /u 3 is m i s l ead ing . In add i t ion , there are other fac to rs inc lud ing f resh water run-off and wind mix ing wh ich effect ver t i ca l s t ructure. However , Garret t was ab le to use the H-S parameter to e f fec t ive ly d e s c r i b e mix ing of t idal f ronts in the Bay of Fundy . 31 At the B u s s o l S i l l , where the depth is 2300 meters and the t idal cur rents are es t imated to be about 1-2 m/s, the va lue of h /u 3 is too h igh to an t i c ipa te ful l mix ing of the water co lumn at the ful l depth of the s i l l . Th i s is of cou rse what is o b s e r v e d , as d i s c u s s e d ear l i e r (3.1.3) where it was ment ioned that ver t i ca l mix ing had only occu r red in the f irst few hundred meters . However , the B u s s o l S i l l is a s a d d l e point be tween two i s l ands and more comp le te mix ing of the water co lumn may occu r on the s i d e s of the strait where the water is sha l lower . Tu rn ing th is equa t ion a round and us ing h /u 3 = 100 and g iv ing u a maximum va lue of 2 m/s, the depth of ful l mix ing can be es t ima ted to be about 500 -600 meters and this can occu r on e i ther s ide of the strait : deep water ^ - - ^ _ L - ^ - ^ Of c o u r s e , this es t imate gene ra tes a mix ing depth that the Hunter -S i m p s o n parameter was not d e s i g n e d to predic t . In fact, the h /u 3 parameter was or ig ina l l y to d e s c r i b e t idal f lows into s h a l l o w s e a s , not over deep s i l l s . However , this es t imate a g r e e s wel l with the p rev ious obse rva t i ons and with R o g a c h e v (1995) who s u g g e s t e d mix ing does take p lace down to depths of 400 -500 meters . The R o g a c h e v es t imates are for ne ighbor ing V r i e s (F r i za ) Stra i t , rather than B u s s o l Strai t but one might a s s u m e s im i la r s t ructure. If the water co lumn was ent i re ly mixed at the s i d e s of the strait , th is wou ld prov ide a m e c h a n i s m for the downward ver t i ca l movement of the co ld f resh su r face water . A s the t ida l cur ren ts moved back and forth C r o s s - s e c t i o n of B u s s o l Stra i t s t ra t i f ied mixed a r e a s on the s i d e s of B u s s o l Strai t 32 over the s i l l , th is water wou ld be mixed a c r o s s the strait and ca r r i ed out to the P a c i f i c . It is a l so in teres t ing to note that the water in the B u s s o l Strai t has a dens i ty range of 26 .6 at 100 meters to 27 .0 at 600 meters . Th i s dens i ty range is very s im i la r to that of N P I W and at s im i la r dep ths . North P a c i f i c In termediate W a t e r ( f igure 11) a p p e a r s a c r o s s the suba rc t i c gyre of the North P a c i f i c as a low sa l in i ty in t rus ion. The re is noth ing to sugges t , however , that large quant i t ies of this mixed water are be ing p roduced s i n c e its p roper t ies are dependen t on the smal l quant i ty of water in the thin s u b s u r f a c e layer . A l s o , the water in the B u s s o l Strai t is somewhat coo le r and f reshe r than the main body of N P I W whi le of s im i la r dens i ty . T h e mixed su r face water in the B u s s o l Strai t may be further t rans fo rmed but how this o c c u r s is unknown; su re ly the O y a s h i o current and the B u s s o l Eddy p lay a ro le . Unt i l current measu remen ts at a l l dep ths and t ranspor t es t imates can be made, the s t rength of the in f luence of water mixed in the B u s s o l Stra i t cannot be de te rm ined . 33 4. D iscussion The S e a of Okho tsk has been s u g g e s t e d as a p o s s i b l e s o u r c e for North P a c i f i c Intermediate Wate r , a water mass c h a r a c t e r i z e d by a sa l in i ty min imum in the top 1000 meters . It is b e l i e v e d that deep convec t i on cou ld occu r down to th is depth as resul t of winter coo l i ng of su r face waters in the S o O . T h e data ga the red from the W O C E Exped i t i on 1993 ind ica te that ver t i ca l mix ing is tak ing p l a c e near the su r face of the B u s s o l Stra i t , pr imar i ly due to t ida l f lows. The re is no e v i d e n c e of large s c a l e e x c h a n g e of Okho tsk and P a c i f i c water at the dens i ty and depths a s c r i b e d to N P I W . That s a i d , it shou ld a l s o be noted that th is accoun t on ly e x a m i n e s water p roper t ies as reco rded in one summer month in 1993 . The re is no examina t ion of annua l and in te rannua l var iab i l i t y in the cond i t i ons in the S e a of Okho tsk . A s we l l , th is paper only e x a m i n e s the e x c h a n g e of waters th rough a s ing le strait in the Kur i l Is land c h a i n , a lbe i t the deepes t one. T h e c i r cu la t ion pat terns and mix ing p r o c e s s e s in this s e a are not wel l known and th is may accoun t for the d i f fe rence in op in ion as to the role of the S e a of Okho tsk p lays in water m a s s fo rmat ion . On the pos i t i ve s ide , the da ta d id conf i rm the gene ra l c y c l o n i c f low of the Okho tsk G y r e and a l s o subs tan t ia ted the deep inf low of P a c i f i c water over the B u s s o l S i l l . Unt i l t idal e f fects are a c c o u n t e d for and t ranspor t es t ima tes are under taken in the B u s s o l Stra i t , e x c h a n g e be tween the P a c i f i c and the S e a of Okho tsk wi l l be o b f u s c a t e d . Fur ther s tudy is n e e d e d to d i s ce rn the true nature of what may be a comp lex in terac t ion be tween these bod ies of water. 34 References: A k a g a w a M. S e a ice in the Okho tsk S e a . Kisho-Kenkyuu Note, 101, 47 -77 , 1969. (In J a p a n e s e ) . Ao ta M. and M. Ish ikawa. F r e s h water supp ly to the S e a of Okho tsk and vo lume t ranspor t of S o y a W a r m Current . Bull. Hokkaido Nat. Fish. Res. Inst., 55, 109 -113 , 1991 . (In J a p a n e s e ) . A l fu l t i s M.A. , and S. Mar t in . Sa te l l i t e p a s s i v e m ic rowave s tud ies of the S e a of Okho tsk ice cove r and its re la t ion to o c e a n i c p r o c e s s e s . J. Geophys. Res., 92, 13, 13 -13028 , 1987. Ba thymet r i c A t l a s of the North P a c i f i c O c e a n , U . S . N a v a l O c e a n o g r a p h i c Of f ice , W a s h i n g t o n D .C . , 1973 . Bobkov A . A . New s c h e m a of the c i r cu la t i on and water m a s s d is t r ibut ion in the sou thern Kur i l a r e a . Umi to Sora, 69 :41 -52 1993 . Doney S . C . and J . L .Bu l l i s te r . A ch lo ro f l uo roca rbon sec t i on in the eas te rn North A t lan t ic . Deep-Sea Res. 39, 1857 -1883 , 1992. Ef imor V . V . , E .A . Ku l i kov , A . B . R a b i n o v i c h and I.V. F a i n . W a v e s on Bounda ry R e g i o n s of the O c e a n . Hydrometeoizdat, Sa in t P e t e r s b u r g , 1985. Favor i te F., A . J . D o d i m e a d and K. N a s u . O c e a n o g r a p h y of the S u b a r c t i c P a c i f i c R e g i o n , 1960 -71 . International North Pacific Fisheries Commission, 33, 187pp. , 1976. Garre t t C . J . R . , J . R . K e e l e y and D.A. G r e e n b u r g . T ida l M ix ing ve r sus The rma l S t ra t i f i ca t ion in the Bay of Fundy and Gu l f of M a i n e . Atmosphere-Ocean 16 (4) 4 0 3 - 4 2 3 , 1978. Hunter J . R . and J . H . S i m p s o n . Fron ts in the Ir ish S e a . Nature, vo l . 250 , A u g . 2, 1974. H e l l a n d - H a n s e n B. N o g e n hyd rog ra f i scke metodor . Forh. Skandinaviske Naturforske mote, 16, 357 -359 , 1916. l ida H. O c e a n o g r a p h i c C o n d i t i o n s of the Okho tsk S e a . Kisho-Kenkyuu Note. 1 0 1 : 4 8 0 - 4 9 1 , 1969. (In J a p a n e s e ) 35 Kan tha L . H . , C . T i e m e y , J . W . L o p e z , S . D . D e s a i , M . E . P a r k e and L. Drex ler . Ba ro t rop i c t ides in the g loba l o c e a n s from a non l i ea r mode l ass im i l a t i ng a l t imetr ic t ides . 2. A l t imet r i c and g e o p h y s i c a l imp l i ca t ions . Jou rna l of G e o p h y s i c a l R e s e a r c h , V o l . 100, No. C 1 2 , pp 2 5 3 0 9 - 2 5 3 1 7 , Dec . 15, 1995. K i tan i K., A n o c e a n o g r a p h i c s tudy of the S e a of Okh tosk -Par t i cu la r l y in regard to co ld waters . Bull. Far Seas Fish. Res. Lab. 9, 45 -77 , 1973. Leonov A . K . The S e a of Okho tsk . NTIS A D 639 585 , 95pp. , Natl. Tech. Inf. Serv., Sp r i ng f i e l d , V a , 1960. Luch in V . A . 1. R u s s i a n Hyd ro log i ca l S t ud i es in the Okho tsk S e a -H is to r i ca l B a c k g r o u n d . 2. S y s t e m of Cur ren ts and P e c u l a r i t i e s of Tempera tu re Dis t r ibu t ion in the Okho tsk S e a . Hydrometeorology and Hydrochemistry of the Seas, Sa in t P e t e r s b u r g , 1993 . Ohtan i K. R e - c o n s i d e r a t i o n on the def in i t ion of the O y a s h i o . Bull. Tohoku Reg. Fish. Res. Lab., 55, 1-24, 1991 . P a r k i n s o n C . L . , The impact of the S i b e r i a n H igh and A l e u t i a n Low on the s e a - i c e cove r of the S e a of Okho tsk . Annals of Glaciology, 14, 2 2 6 - 2 2 9 . 1990. P I C E S Sc ien t i f i c Repor t No. 2. The Okho tsk S e a and O y a s h i o R e g i o n (Repor t of W o r k i n g G r o u p 1). E d . by L .D. Ta l l ey and Y . N a g a t a . Ap r i l , 1995. M o r o s h k i n K.V. New S c h e m e of the su r face Okh tosk S e a cur ren ts . Oceanology 1(4):641 -643 , 1964. R a b i n o v i c h A . B . Long Grav i ta t i ona l W a v e s in the O c e a n : T rapp ing , R e s o n a n c e and Sca t te r i ng . Hydrometeoizdat, Sa in t P e t e r s b u r g , 1993. R e i d J . L . , In termediate waters of the P a c i f i c O c e a n . John Hopkins Press, Ba l t imore , M D . , U . S . A . , 85pp . , 1965. R e i d J . L . , Nor thwest P a c i f i c O c e a n waters in winter. John Hopkins Press, Ba l t imore , M D . , U . S . A . , 96pp . , 1973. 36 R o g a c h e v K . A . . A . S . Bychkov , P . Y . T i s h c h e n k o , E . C . C a r m a c k , C . S . W o n g and P . H . L e b l o n d . C i r cu la t i on and M ix ing P r o c e s s e s in f luenc ing ca rbon d iox ide par t ia l p ressu re dur ing summer in the Kur i l Is land reg ion be tween the S e a of Okho tsk and the wes te rn suba rc t i c P a c i f i c . Draft, Ju ly 1995. R o g a c h e v K.A. , E . C . C a r m a c k , G.I. Y u r a s o v , M. M i y a k e and V . S o s n i n . S t ruc ture of warm core r ings and vo lume t ranspor t of the O y a s h i o and K a m c h a t k a Cur ren t in Au tumn 1990. Proceedings of the Nemuro Workshop on western subarctic circulation, P I C E S 1993. R o g a c h e v K.A. and V . G o r y a c h e v . M ix ing in the warm core r ing of the Ku rosh io . J. of Geophys. Res., 96 :8773-8777, 1991 . S u z u k i K. and S. K a n a r i . T ida l S imu la t i on of the S e a of Okh tosk . Kaiyo Kagaku, 18 :455 -463 , 1986. (In J a p a n e s e ) Ta l l ey L .D. A n Okho tsk S e a water anomaly : imp l i ca t ions for vent i la t ion in the North P a c i f i c . Deep-Sea Res., 38, supp . 1, s 1 7 1 -s 1 9 0 , 1991 . Ta l l ey L. D., D is t r ibu t ion and Format ion of North P a c i f i c In termediate Wate r . J. Phys. Oceanogr. 23, 517 -537 , 1993. T h o m s o n R . E . , P . H . Leb l ond and A . B . R a b i n o v i c h . O c e a n i c o d y s s e y of a sa te l l i te t racked drif ter: North P a c i f i c var iab i l i t y de l i nea ted by a s ing le dri f ter t ra jectory. Submi t ted to: Journal of Oceanography, 1996. W a r n e r M . J . and R . F . W e i s s . So lub i l i t i es of ch l o ro f l uo roca rbons 11 and 12 in water and seawate r . Deep-Sea Res. 32, 1485 -1497 , 1985. W a t a n a b e K. On the re in fo rcement drift of the Eas t S a k h a l i n Cur ren t p r e c e d i n g to the ice s e a s o n off the coas t of H o k k a i d o - S tudy in s e a ice in the Okho tsk S e a (IV). Oceanography Mag., 14, 117 -130 , 1963b. Wus t G . , M e r i d i o n a l e S c h i c h t u n g und T ie fenz i r ku la t i on in der Wes tha l f t en der dre i O z e a n e . Journal du Conseil, C o n s e i l In ternat ional pour I 'Explorat ion de la mer, 5, 21pp . , 1930. 37 Summary of Figures: F i g . 1: The S e a of Okho tsk and the North P a c i f i c F i g . 2: O c e a n o g r a p h i c fea tu res of Okho tsk S e a (Al fu l t is and Mar t in , 1987) F i g . 3: The Kur i l Is lands and St ra i ts f rom P I C E S F i g . 4: Bathymetry of S e a of Okho tsk f rom U .S . Nava l O c e a n o g r a p h i c Of f ice . F i g . 5: a) Deve lopmen t of S e a Ice over winter months ( J a p a n e s e M e t e o r o l o g i c a l A g e n c y , 1990) b) Feb rua ry s e a ice extent 1973-76 ( P a r k i n s o n , 1990) c) In terannual s e a ice cove r as a % of total a rea from H. F r e e l a n d , comp i l ed with da ta sent by A l e x B y c h o v , P O L F i g . 6: a) C i r cu la t i on of S o O in summer by W a t a n a b e b) C i r cu l a t i on of S o O a c c o r d i n g to L e o n o v c) C i r cu la t i on of S o O a c c o r d i n g to M o r o s h k i n d) Es t ima tes of su r face cur ren ts f rom l i da (in knots: 1 knot = 0 .514 m/s) e) t h e p r e s e n c e of the B u s s o l Eddy ( R o g a c h e v , 1993) f) G y r e s of the North P a c i f i c (Ohtan i et a l , 1991) F i g . 7: a) Amp l i t udes of t idal componen ts (Suzuk i and Kanar i ) b) T i da l componen ts in the Kur i l s f rom Luch in c) T i da l pa ramete rs near the B u s s o l Strai t f rom Luch in F i g . 8: Tempera tu re d is t r ibut ion a l ong nor th-south l ine at approx imate ly 150° E (K i tan i , 1973) F i g . 9: W O C E su rvey l ines in the Nor thwest P a c i f i c F i g . 10: Su rvey S ta t i ons of W O C E Exped i t i on 9316 (Sept . 1993) F i g . 11: N P I W low sa l in i ty in t rus ion from H. F r e e l a n d - so l i d l ines are 5, 6 and 7 deg ree i so therms - d a s h e d l ines are 26 .7 , 26.7 and 26 .8 i s o p y c n a l s 38 F i g . 12: a) Po ten t ia l tempera ture over the t ransec t b) Po ten t ia l tempera ture for f irst 500 meters F i g . 13: a) Sa l in i t y over the t ransec t b) Sa l in i t y for f irst 500 meters F i g . 14: a) Po ten t ia l Dens i t y over the t ransec t b) Po ten t ia l Dens i ty for f i rst 500 meters F i g . 15: P ro f i l es of S , T, 0 at va r i ous s ta t ions a long the t ransec t F i g . 16: T S plot for above s ta t ions F i g . 17: a) Tempera tu re -sa l i n i t y p ro f i les for al l 30 s ta t ions . b) T S pro f i les d i v ided into 3 reg ions c) T S plots with dens i ty con tours and f r eez ing point. F i g . 18: Po ten t ia l Dens i t y Con tou r i l lus t ra t ing 3 reg ions F i g . 19: D i s s o l v e d 0 2 con tour plot F i g . 20 : D i s s o l v e d s i l i ca te contour plot F i g . 2 1 : Po ten t ia l dens i ty near the B u s s o l S i l l F i g . 22 : T S plot for depths be low 1000 meters F i g . 23 : C F C age con tours for the S o O . F i g . 24: Dynam ic he igh ts re la t ive to 1000 d B a r su r face for s ta t ions where depth e x c e e d s 1000 m (s tat ions 1 to 23) 39 F igu re 1 F igure 2 41 1U* 150' 156* F igure 3 42 Table 1. Geographical locations in the Okhotsk Sea region: (old) indicates that the Russian is preferred Label Russian Japanese Note a Pervyy Kuril'sky Proliv Simusyu Kaikyo (old) strait b Ostrov Shumshu Simusyu To (old) island c Ostrov Paramusir ParamusiruTo (old) island d Chetvertyy Kuril'skiy Proliv Onekotan Kaikyo (old) strait e Ostrov Onekotan Onekotan To (old) island f Proliv Krenitsyna Harumukotan Kaikyo (old) strait g Proliv Cevergina Syasukotan Kaikyo (old) strait h Proliv Kruzenshtema Musiru Kaikyo (old) strait i Proliv Nadezhdy Rasyuwa Kaikyo (old) strait j Proliv Rikorda Ketoi Kaikyo (old) strait k Proliv Diany Simusiru Kaikyo (old) strait 1 Ostrov Shimushir Simusiru To (old) island m Proliv Bussol' Kita-Uruppu Suido (old) strait n Proliv Urup Minami-Uruppu Suido (old) strait o Ostrov Urup UruppuTo (old) island p Proliv Friza Etorohu Kaikyo strait q Ostrov Iturup Etorohu To (old) island r Proliv Ekaterina Kunasiri Kaikyo island s Ostrov Kunasir Kunasiri To , , . island t ? Nemuro Kaikyo strait u Siretoko Misaki cape v Soya Misaki cape w La Perouse (strait) Soya Kaikyo strait x Mys Kril'on Nisi-Notoro Misaki (old) cape y ZalivAniva AniwaWan (old) bay z Mys Aniwa Naka-Siretoko Misaki (old) cape A Zaliv Terpeniya TaraikaWan (old) bay B Mys Terpeniya Kita-Siretoko Misaki (old) cape C Gulf of Tartary strait D Mys Telizavety cape E Sakhalinskiy Zaliv bay F Ostrov Iony island G Kashevarov Bank rise H Deryugin Basin basin I Instituta Okeanologii Rise rise J Akademii Nauk Rise , rise K Kuril Basin basin L Penzhinsky Zaliv (Shelikova Zaliv) bay M Tinro Basin basin F igu re 3 C a p t i o n s 43 F igu re 5a 4 5 46 C3 0 CO B o O c o ki > o (0 flj c 3 •o (0 0) o CO o o o o o o o o o o ejj CO 9 in 0  CN o o o 6 6 o 6 6 6 6 1 CD 00 CO m CO CM T — o • • • • 0 • • • o CD Q 9m* WISE ^—^Z^Sk."* IFf l " ' • • . ' ^ • • • k • • ! tW ^A ^ 1 1 Ik. Ik W~JM i JV i . ^IIJI i f iiir J j^r ji • i r j i p m j | . *w » 1 I I ' , " » * * " v w n\r\. yrn^jk . ^ / s i i t • W / • "Ilk. ^ I B k ^ i * * k f A IlV i R i lai l l l l l l l l i l i ^ ^ % ; II l [ f r # " . ' . * V " " " I * _ K \ i k V J H j w m r ~ * y ' S h ^ . I F J v iisBr nkiir .. #*— mw sir: Figure 5c -1.6-06 68- 88 Z8-98 Q8-fr8 88-28 1.8- 08 -6Z-8Z 11-91 -9Z-W. <5 9 ZtZL - IL-0L 69- 89 Z9-99 99-179 £9-29 1.9- 09 69-89 Z9-99 ) Al F igu re 6a 48 Figure 6b Figure 6c Figure 6d 51 Dynam ic height at the s e a su r face re la t ive to 1000 dbar in fa l l , 1990, show ing Kur i l e d d i e s ( R o g a c h e v et a l . , 1993) . F igu re 6e Figure 6f 53 Figure 7a 54 T y p e of t idal current in the 0-25 m layer 1 - comp lex with p reva i l i ng semid iu rna l t ides 2 - comp lex with p reva i l i ng d iu rna l 3 - d iu rna l (Luch in) F igu re 7b Figure 7c Figure 8 57 W O C E Survey L ines in the P a c i f i c (from the W O C E Homepage ) F igu re 9 58 -135 -140 -145 -150 -155 -1B0 -135 -140 -IMS -150 -155 -160 W O C E E X P O C O P E 9 0 B M 9 3 1 6 / 1 " f l K . R . N E S M E Y N O V S E P T E M B E R 1 9 Figure 10 59 o o o o o CN ^ CO 00 O Figure 11 ( s jd )e iu ) m d a Q Figure 12a Figure 12b ( S J 9 J 8 U J ) i\\tidQ Figure 13a ( s j a j a u i ) i j j d e a F igu re 13b ( s j e j e i u ) q j d e a Figure 14a ( s j d ) d i u ) M J d a a Figure 14b 67 F igu re Figure 17a Figure 17b 71 -Q E ZD z c o co 3 c o o (0 c CD Q o JC O 0) (0 c o c o 0. ( s j a j e i u ) q j d e a F igu re 18 72 Figure 19 73 Station Number Distance (km.) Figure 20 7 4 75 Figure 22 76 Figure 23 77 78 Appendix A: The Use of Chlorof luorocarbons as Oceanographic Tracers Two indust r ia l l y p roduced C F C s , f reon-11 and f reon-12 , have found recent use as c h e m i c a l t racers in o c e a n o g r a p h i c work. T h e s e s u b s t a n c e s are an th ropogen ic , p roduced only by human indust r ia l act iv i ty beg inn ing a round 1912. T h e techn ique was p i o n e e r e d by Bu l l i s te r and W e i s s in the ear ly 1980 's and has been d e v e l o p e d to "age" water m a s s e s . That is, the samp l i ng of t hese C F C s is u s e d to f ind out how long a deep water samp le has rema ined be low the su r face , out of contact with the a tmosphere . U s i n g indust r ia l output f i gu res , the concen t ra t i ons of the two f reons have been moni tored over t ime. The concen t ra t i ons of both C F C - 1 1 (C11) and C F C -12(C12) were p resent in t race amounts in the a tmosphere as ear ly as 1930 and have r i sen s tead i l y eve r s i n c e : C11 and C12 over time 1930 1938 1947 1955 1963 Year 1972 1980 1988 It is pr imar i ly the rat io of t hese two concen t ra t i ons that is u s e d to f ind the age of a water samp le . F i rs t of a l l , the leve l of e a c h C F C in a samp le must be no rma l i zed a c c o r d i n g to their so lub i l i t i es at the s a m p l e d tempera ture and sa l in i ty . Af ter that, the rat io of their concen t ra t i ons can be c o m p a r e d to that es t ima ted for the a tmosphe re : 79 Ratio of Freon Concentrations over Time [C11/C12] -r 0.6 1940 " 4- 0.5 - 0.4 - 0.3 - 0.2 - 0.1 4- o 1930 1950 1960 1970 1980 1990 Year Th is g i ves an idea of when the water samp le was last in contac t and mix ing with the a tmosphere . T h e f reon concen t ra t i ons g iven for the a tmosphere are a s s u m e d to be cons tan t over the nor thern hem isphe re and tes t ing to date (1993) has so far concu r red . Two th ings shou ld be noted from this plot. Most obv ious l y , the f reon dat ing sys tem can only un ique ly ident i fy water s a m p l e s that were last in equ i l i b r ium with the a tmosphere be tween 1950 and 1980. Ou ts i de of t hese l imits, the concen t ra t i on rat io cannot d i s t i ngu ish be tween di f ferent yea rs . M ix ing can a l s o p lay a ro le . T h e b lend ing of an "o lder" and a "younger " water samp le wi l l g ive more weight to the younger samp le s i nce the amount of C F C s in the younger samp le wi l l dominate the propor t ions . T h e resul t is that a water samp le is a lways at least as o ld as the C F C rat io s u g g e s t s on the ave rage . C F C s are unreac t i ve and their concen t ra t i ons c h a n g e only with mix ing when taken out of contac t with the a tmosphere . Th i s method of dat ing water s a m p l e s re l i es on s e v e r a l a s s u m p t i o n s , l is ted above , but used in con junc t ion with other t echn iques can prov ide some un ique in format ion about the s a m p l e under test. 80 Appendix B. A Comparison of CTD and Niskin Bottle Salinitv(Conductivity) Data. The following Data table contains the raw data collected for salinity from the expedition. All values are in psu, using the PSS-78 convention. The depth of sampling is roughly described by the pressure in decibars (1dBar - 1 meter). The values listed for measured bottle salinity which are negative indicate a missing sample. Since the comparison data is long (14 pages), one comparison has been selected from each station. No reversing thermometer data was available. Station No.# Bottle No.# Depth (dBar) CTD Salinity Measured Bottle Salinity 1 13 1000.3 34.4220 34.4112 2 14 1001.8 34.3656 34.3541 3 13 999.1 34.2907 34.2766 4 14 999.7 34.3758 34.3634 5 13 999.7 34.3989 34.3865 6 10 1005.2 34.2996 34.2846 7 13 1001.1 34.2925 34.2792 8 14 1001.5 34.2084 34.1937 9 14 1000.9 34.2593 34.2484 10 9 1001.3 34.2959 34.2820 11 4 999.2 34.3364 34.3175 12 3 898.8 34.3085 34.2881 13 3 997.7 34.3523 34.3327 14 5 998.7 34.3354 34.3160 15 3 1001.6 34.3355 34.3160 16 3 998.3 34.3362 34.3190 17 3 999.9 34.3219 34.3030 18 4 999.4 34.3357 34.3210 19 5 998.1 34.3297 34.3150 20 5 999.6 34.3406 34.3230 21 4 1001.4 34.3522 34.3360 22 6 998.9 34.3333 34.3180 23 3 996.7 34.2835 34.2630 24 3 199.7 33.5935 33.5720 25 2 198.6 33.3981 33.3700 26 2 200.7 33.3194 33.2800 27 10 100.5 33.1508 33.0980 28 17 99.3 33.2978 33.2490 29 2 99.3 33.3116 33.2590 30 9 49.7 33.0324 32.9890 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0085150/manifest

Comment

Related Items