UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A Vlasov plasma simulation code Loewenhardt, Peter Karl

Abstract

A 1-1/2 dimensional, electromagnetic Vlasov plasma simulation code, relativistically correct, was constructed and tested. The code can deal with one or two species, each with a Maxwellian distribution and a possible drift velocity. The code also allows external fields, such as a laser, to be included in the simulations. Simulations of Landau damping, the two-stream instability and stimulated Raman scattering were carried out and compared with theory and with the results of the particle code EM1. When dealing with electrostatic problems, the Vlasov code gave results agreeing very closely with theory in both non-relativistic and relativistic regimes. Here the Vlasov code preformed better than EM1 which had problems with background noise and longer run times. When a laser field was included within the simulations, however, the Vlasov code produced some spurious features, unlike EM1. These anomalous features may be caused by aliasing, recurrence or by some other unknown effect. Since realistic results are produced as well, it is believed that this problem can be overcome. When a very high intensity laser was included in the simulations the Vlasov code produced much better results but was plagued by very long run times.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.