Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Development of a laser oscillator-amplifier combination and a multi-channel spectral detection system… Albach, Gary George 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1972_A6_7 A43.pdf [ 3.87MB ]
Metadata
JSON: 831-1.0084863.json
JSON-LD: 831-1.0084863-ld.json
RDF/XML (Pretty): 831-1.0084863-rdf.xml
RDF/JSON: 831-1.0084863-rdf.json
Turtle: 831-1.0084863-turtle.txt
N-Triples: 831-1.0084863-rdf-ntriples.txt
Original Record: 831-1.0084863-source.json
Full Text
831-1.0084863-fulltext.txt
Citation
831-1.0084863.ris

Full Text

DEVELOPMENT OF A LASER OSCILLATOR-AMPLIFIER COMBINATION AND A MULTI -CHANNEL SPECTRAL DETECTION SYSTEM FOR LIGHT SCATTERING EXPERIMENTS by GARY GEORGE ALBACH B . S c , U n i v e r s i t y o f W a t e r l o o , 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n t h e D e p a r t m e n t o f PHYSICS We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF B R I T I S H COLUMBIA J u l y , 1972 In presenting t h i s thesis i n p a r t i a l fulfilment of the requirements for an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t freely available for reference and study. I further agree that permission for extensive copying of t h i s thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. I t i s understood that copying or publication of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of The University o,f B r i t i s h Columbia Vancouver 8, Canada ABSTRACT I n p r e p a r a t i o n f o r l a s e r l i g h t s c a t t e r i n g e x p e r i -m e n t s on p l a s m a s i n m a g n e t i c f i e l d s a p u l s e d r u b y l a s e r has b e e n d e v e l o p e d i n c o n j u n c t i o n w i t h a m u l t i c h a n n e l s p e c t r a l a n a l y s e r f o r d e t e c t i o n o f t h e s c a t t e r e d l i g h t . T h e l a s e r , c o n s i s t i n g o f s e p a r a t e o s c i l l a t o r and o a m p l i f i e r r o d s has a s p e c t r a l l i n e w i d t h o f .08 A a t p o w e r s up t o 100 M e g a w a t t s . The u s e o f a P o c k e l s C e l l as t h e Q - s w i t c h p e r m i t s a c c u r a t e s y n c h r o n i z a t i o n w i t h t h e s p e c t r a l a n a l y s e r and a l l e x t e r n a l e l e c t r o n i c s . F o r t h e m u l t i c h a n n e l d e t e c t i o n s y s t e m f i v e f i b e r o p t i c s s l i t b u n d l e s t r a n s m i t l i g h t f r o m t h e o u t p u t o f a m o n o c h r o m a t e r t o f i v e p h o t o m u l t i p i i e r t u b e s , w h i c h a r e g a t e d on f o r 100 n s e c d u r i n g t h e l a s e r p u l s e . The p u l s e s a r e d i s p l a y e d s e q u e n t i a l l y t o g i v e an i n t e n s i t y v s . w a v e l e n g t h p r o f i l e on an o s c i l l o s c o p e s c r e e n . TABLE OF CONTENTS Page ABSTRACT. i i LIST OF FIGURES v ACKNOWLEDGEMENTS v i i C h a p t e r 1 INTRODUCTION . 1 PART I 2 THE LASER SYSTEM • . 3 2.1 L a s e r A m p l i f i e r T h e o r y 3 2.2 O s c i l l a t o r D e s i g n 8 2.2.1 S p e c t r a l Width and Power O u t p u t . . . 8 2.2.2 R e p r o d u c i b i l i t y and S y n c r o n i z a t i o n . 10 2.2.3 Mode S e l e c t i o n 12 2.3 O s c i l l a t o r P e r f o r m a n c e . 17 2.3.1 S p e c t r a l Width . 17 2.3.2 P u l s e C h a r a c t e r i s t i c s 25 2.3.3 Summary . 26 i i i Chapter Page 2.4 A m p l i f i e r Performance 27 2.4.1 Energy Gain . 27 2.4.2 P u l s e D i s t o r t i o n 32 2.5 D i s c u s s i o n . 34 PART I I 3 THE DETECTION SYSTEM 37 3.1 Ge n e r a l O u t l i n e of P o l y c h r o m e t e r . . . . . . 37 3.2 F i b e r O p t i c s . 39 3.3 P h o t o m u l t i p l i e r s . 41 3.3.1 Design C o n s i d e r a t i o n s 41 3.3.2 Performance 46 3.4 D i s c u s s i o n 50 4 DISCUSSION 52 REFERENCES • • 54 APPENDICES I COMPARISON OF PHOTOMULTIPLIER PULSING TECHNIQUES . 58 I I PHOTOMULTIPLIER ELECTRONICS 64 i v LIST OF FIGURES F i g u r e Page 1. P o c k e l s C e l l C o n f i g u r a t i o n f o r \ Wave O p e r a t i o n . . 11 2. O p t i c s f o r A n a l y s i s o f S p e c t r a l C h a r a c -t e r i s t i c s o f L a s e r O s c i l l a t o r O u t p u t 17 3. O s c i l l a t o r O u t p u t : C o n f o c a l R e s o n a t o r 21 4. O s c i l l a t o r O u t p u t : P l a n e M i r r o r s ( 7 5 % f r o n t ) 21 5. O s c i l l a t o r O u t p u t : P l a n e M i r r o r s a)s,t>) ( 3 0 % f r o n t ) S h o w i n g Two C o n s e c u t i v e S h o t s One M i n u t e A p a r t 23 6. O s c i l l a t o r O u t p u t : P l a n e M i r r o r s and Dye C e l l 23 7. F r a c t i o n a l P o p u l a t i o n I n v e r s i o n v s . Pumping E n e r g y , 31 8. A m p l i f i e r G a i n v s . Pumping E n e r g y 33 9. L a s e r A m p l i f i e r P u l s e s , a) I n p u t , b) O u t p u t , N o r m a l i z e d t o Same E n e r g y 34 10. L a s e r O p e r a t i o n . 35 11. F i b e r O p t i c s S l i t P a c k a g e 40 v Fi gure Page 12. Photomultipiier End-Window Showing Method of Total Internal Reflection 41 13. Circui t of LED Driver . 47 14. Noise in PM Gating Electronics . 49 15. Photomultipiier Outputs: a) DC Light Input, b) 30 nsec Light Pulse. 49 16. Detection System Operation . . . 51 A- l Transmission Gate Circui t . 65 A-2 Avalanche Transistor Gate Pulse Generator. . . . 68 A-3 Power Supply for Gate Pulse Generator 70 vi ACKNOWLEDGEMENTS I w i s h t o t h a n k D r . J . M e y e r f o r s u g g e s t i n g and s u p e r v i s i n g t h e c o u r s e o f t h i s w o r k . Many t h a n k s a l s o go t o a l l t h e members o f t h e P l a s m a P h y s i c s G r o u p f o r many h o u r s o f u s e f u l d i s c u s s i o n . I w o u l d l i k e t o e x p r e s s my a p p r e c i a t i o n f o r t h e t e c h n i c a l a s s i s t a n c e o f Mr. D. S i e b e r g and Mr. J . Z a n g a n e h d u r i n g d e v e l o p m e n t o f t h e d e t e c t i o n e l e c t r o n i c s . I w o u l d a l s o l i k e t o a c k n o w l e d g e S h a r i H a l l e r f o r a f i n e j o b i n t h e t y p i n g o f t h i s t h e s i s . F i n a n c i a l a s s i s t a n c e f r o m t h e N a t i o n a l R e s e a r c h C o u n c i l i s g r a t e f u l l y a c k n o w l e d g e d . T h i s w o r k i s s u p p o r t e d by a g r a n t f r o m t h e A t o m i c E n e r g y C o n t r o l B o a r d o f C a n a d a . v i i Chapter 1 INTRODUCTION In any laser l i g h t scattering experiment the two essential pieces of diagnostic equipment are the laser i t s e l f and the detection system for the scattered l i g h t . The work presented here i s the development and operation of a complete system, consisting of a pulsed ruby laser in conjunction with a multichannel spectral analyser, for plasma diagnostics. As o r i g i n a l l y proposed, the apparatus was to be used to study pulsed plasmas in magnetic f i e l d s . This goal dictated that the laser have the following c h a r a c t e r i s t i c s : 1) h i g h s p e c t r a l b r i g h t n e s s 2) r e p r o d u c e i b l e p u l s e s 3) a c c u r a t e s y n c h r o n i z a t i o n t o e x t e r n a l e l e c t r o n i c s Chapter 2 describes the design considerations and performance of the laser system. The f i n a l design consists of a three-inch ruby rod in a low power o s c i l l a t o r with a Pockels Cell 1 2 Q - s w i t c h . T h i s i s f o l l o w e d b y a s i x i n c h r o d a s a p o w e r a m p l i f i e r . T h e v a r i o u s s e c t i o n s o f C h a p t e r 2 d e a l w i t h : ( 1 ) t h e r e l e v a n t t h e o r y n e c e s s a r y t o e v a l u a t e t h e l a s e r a m p l i f i e r p e r f o r m a n c e ; ( 2 ) t h e r e a s o n s t h e l a s e r was b u i l t a s i t was i n c l u d i n g t h e r e l e v a n t mode s e l e c t i o n t e c h n i q u e s t h a t w e r e c o n s i d e r e d ; ( 3 ) an e v a l u a t i o n o f t h e l a s e r o s c i l -l a t o r p e r f o r m a n c e ; ( 4 ) a n e v a l u a t i o n o f t h e l a s e r a m p l i f i e r p e r f o r m a n c e ; ( 5 ) a d i s c u s s i o n o f t h e c o m p l e t e l a s e r . T h e d e t e c t i o n s y s t e m i s e x p l a i n e d i n C h a p t e r 3 a n d c o n s i s t s o f f i v e p h o t o m u l t i p i i e r s e a c h r e c o r d i n g a s e p a r a t e s e g m e n t o f t h e d e s i r e d s c a t t e r e d l i g h t s p e c t r u m . F i b e r o p t i c s b u n d l e s t r a n s m i t l i g h t f r o m t h e o u t p u t o f a m o n o c h r o m a t e r t o t h e p h o t o m u l t i p i i e r s w h i c h a r e g a t e d o n f o r 1 0 0 n s e c d u r i n g t h e l a s e r p u l s e . T h e p u l s e s a r e d i s p l a y e d s e q u e n t i a l l y t o g i v e an i n t e n s i t y v s . w a v e l e n g t h p r o f i l e o n a n o s c i l l o s c o p e s c r e e n . T h e s e c t i o n s i n C h a p t e r 3 d e a l w i t h t h e c o n s t r u c t i o n o f t h e f i b e r o p t i c s b u n d l e s , t h e m e t h o d u s e d t o p u l s e t h e p h o t o m u l t i p i i e r s a n d an e v a l u a t i o n o f t h e d e t e c t i o n s y s t e m as a w h o l e . A p p e n d i x I r e v i e w s t h e t e c h n i q u e s t h a t h a v e b e e n u s e d b y o t h e r s t o p u l s e p h o t o m u l t i p i i e r s . A l l o f t h e s e a r e s h o w n t o h a v e s e r i o u s d r a w b a c k s i f a p p l i e d t o t h i s s y s t e m . A p p e n d i x I I d e t a i l s t h e o p e r a t i o n o f t h e new p u l s i n g c i r c u i t s t h a t w e r e d e v e l o p e d t o o v e r c o m e t h e s e d i f f i c u l t i e s . P A R T I C h a p t e r 2 THE LASER SYSTEM 2.1 L a s e r A m p l i f i e r T h e o r y S o much h a s b e e n w r i t t e n i n r e c e n t y e a r s a b o u t t h e t h e o r y o f l a s e r o p e r a t i o n t h a t a n y a t t e m p t h e r e t o d i s c u s s i t i n d e t a i l w o u l d b e f u t i l e . I n s t e a d a s i m p l i f i e d t r e a t m e n t , d u e l a r g e l y t o S t e e l e a n d D a v i s [ 1 ] , w i l l b e p r e s e n t e d t o p r o v i d e t h e n e c e s s a r y b a c k g r o u n d f o r t h e a n a l y s i s i n t h e s e c t i o n o n A m p l i f i e r P e r f o r m a n c e . I n p a r t i c u l a r t h e t h e o r y w i l l y i e l d an e x p r e s s i o n f o r t h e s i n g l e p a s s g a i n o f t h e l a s e r a m p l i f i e r a n d t h e f u n c t i o n a l f o r m o f t h e p o p u l a t i o n i n v e r s i o n w i t h pump e n e r g y . T h e p r o b l e m i s f o r m u l a t e d a s a t w o l e v e l a p p r o x i -m a t i o n t o t h e b a s i c t h r e e l e v e l s y s t e m f o r r u b y . I n t h i s a p p r o x i m a t i o n i t i s a s s u m e d t h a t t h e n o n - r a d i a t i v e t r a n s i -t i o n b e t w e e n t h e pump b a n d a n d t h e u p p e r l a s e r l e v e l i s much f a s t e r t h a n a l l o t h e r t r a n s i t i o n r a t e s f o r t h e s y s t e m . D e f i n i n g : N x , t h e e l e c t r o n p o p u l a t i o n d e n s i t y i n t h e g r o u n d s t a t e ; N 2 , t h e e l e c t r o n p o p u l a t i o n d e n s i t y i n t h e u p p e r 3 4 exci ted s t a t e ; N 3 , the e lectron population in the pump l e v e l s ; N 0 = Ni + N 2 + N 3 , the to ta l e lect ron population dens i ty ; the two level approximation assumes N 3 = 0 so that No = Ni + N 2 . The standard energy balance equations for the rates of change of e lect ron density in the two laser leve ls are given as: = N 2acp - Nicrcp = ac p(N 2 - N j d N z - N l 0-cp - N 2acp = -ac p(N 2 - Ni) dt where: p = photon density causing st imulated emission [photons - cm" 3] o = rad ia t ion absorption c r o s s - s e c t i o n for C + 3 [cm* 2 ] r c = v e l o c i t y of l i g h t [ c m - s e c - 1 ] Defining n = N 2 - Nx as the e lect ron population invers ion density the two rate equations g ive : 5 In order to derive an expression for the gain i t is necessary to determine the photon density as a function of position and time. Using: = rate of change of photon density in volume dv canp = rate at which photons are generated by transitions in dv rate at which photons leave dv gives an equation of continuity: St = c a n P For a square photon pulse of length x 0 and density p 0 incident on the laser material at x = 0 and t = 0 6 B e l l m a n , B i r n b a u m and Wagner [2] have shown t h a t t h e s o l u -t i o n o f t h e a b o v e e q u a t i o n s f o r t h e p h o t o n d e n s i t y i s : p ( x , t ) = po * 1 - £ - e - a n ° ^ | e x p £ - 2 a P o c ( t - x / c f j • -1 w h e r e n 0 i s t h e i n v e r t e d e l e c t r o n p o p u l a t i o n d e n s i t y a t t i m e t = 0 . The t o t a l e n e r g y g a i n G i n a l a s e r m a t e r i a l o f l e n g t h L w i l l be g i v e n by t h e r a t i o o f e m e r g i n g p h o t o n d e n s i t y t o i n c i d e n t p h o t o n d e n s i t y : • CO G = 1 PO To p ( L , t ) d t S u b s t i t u t i n g f o r p ( L , t ) and i n t e g r a t i n g y i e l d s G = 1 2ap 0 C T 0 1 + £ e x p ( 2 a p 0 C T 0 ) - fj e x p ( n 0 a L ) (2.1) 7 To determine the dependence of population inver-sion density n 0 on the flashlamp energy E , neglect the thermal population of the upper laser level and assume the electron density population of the ground state to have the form: Ni = No e " B E 3 = KT to give n 0 = N 2 - N 0 e~^E Since the upper laser level in ruby is real ly a double level only one-half of the electrons pumped into i t are available for laser action. Accordi ngly: N 2 = Jj(N 0 - Ni ) = %N 0 - ^ (N 0 e" B E) And f i n a l l y : n 0 fcNoO - 3e"3 E ) (2.2) 8 In t h e s e c t i o n on A m p l i f i e r P e r f o r m a n c e e q u a t i o n s (2.1) and (2.2) w i l l be u s e d t o e v a l u a t e t h e p a r t i c u l a r c a s e o f a s i x i n c h r u b y r o d . 2.2 O s c i l l a t o r D e s i g n As o u t l i n e d i n t h e I n t r o d u c t i o n t h e l a s e r r e q u i r e d f o r t h e p r o p o s e d s c a t t e r i n g e x p e r i m e n t s had t o hav e t h e f o l l o w i n g s p e c i f i c a t i o n s : o 1) s p e c t r a l width < 0.5 A 2) power output > 75 MW 3) reproduceable pulses ii) accurate syncronization to other equipment U s i n g t h e s e c r i t e r i a i t was d e c i d e d t h a t t h e l a s e r s h o u l d c o n s i s t o f a t h r e e i n c h r u b y r o d i n a low power (10 - 20 MW) o s c i l l a t o r f o l l o w e d by a s i x i n c h r u b y r o d as a power a m p l i f i e r . The r e a s o n i n g w h i c h l e d t o t h i s c h o i c e i s d e s c r i b e d i n t h e f o l l o w i n g s e c t i o n and c a n b e s t be u n d e r -s t o o d by f i r s t c o n s i d e r i n g r e q u i r e m e n t s one and two and l a t e r r e q u i r e m e n t s t h r e e and f o u r . 2.2.1 S p e c t r a l W i d t h and Power O u t p u t When a l a s e r u s e s a s i n g l e r u b y r o d as a h i g h power o s c i l l a t o r , h e a t i n g e f f e c t s s e v e r e l y l i m i t t h e s p e c t r a l w i d t h 9 t h a t can be a t t a i n e d . S e v e r a l a u t h o r s [ 3 , 4 , 5 ] d e a l w i t h t h e e f f e c t s o f thermal gradients. These g r a d i e n t s , caused by t he f l a s h l a m p p u m p i n g , can p r o d u c e : a) v a r i a t i o n s i n o p t i c a l path length b) b i r e f r i n g e n c e due to s t r e s s e s W e l l i n g et al. [5 ] a n a l y s e the changes o f o p t i c a l pa th l e n g t h w i t h i n the pumping p e r i o d u s i n g s t r e a k and f r a m i n g camera p i c t u r e s o f i n t e r f e r e n c e p a t t e r n s . Sims et al. [4] c o n s i d e r t he p rob lem o f b i r e f r i n g e n c e and i t s e f f e c t on the o u t p u t p o l a r i z a t i o n o f the r o d . They show t h a t c o n s i d e r a b l e e f f e c t i s seen up to 18 s e c o n d s a f t e r the f l a s h l a m p p u l s e i s o v e r and t h a t b i r e f r i n g e n c e e f f e c t s a re reduced w i t h s h o r t e r r o d s . As w e l l as c a u s i n g p h y s i c a l changes i n the ruby r o d , h e a t i n g d u r i n g the pumping p r o c e s s can a l s o be r e s p o n -s i b l e f o r v a r i a t i o n s i n the ene rgy l e v e l scheme f o r r u b y . In 1916 G i b s o n [6 ] d i s c o v e r e d t h a t the peak o f the a b s o r p -t i o n l i n e s i s t e m p e r a t u r e d e p e n d e n t . S i n c e the c o n d i t i o n f o r l a s e r a c t i o n i s b e s t f u l f i l l e d a t the peak o f the f l u o r e s c e n c e l i n e , t he ruby o s c i l l a t i o n s s h o u l d e x h i b i t t he same d e p e n d e n c e . More r e c e n t l y I z a t t et al. [ 3 ] have v e r i f i e d t h i s a s s u m p t i o n w i t h F a b r y - P e r o t i n t e r f e r e n c e p a t t e r n s show ing the t h e r m a l dependence o f the l a s e r e m i s s i o n . 10 S m a l l e r , l o w e r power r o d s h a v e s e v e r a l o t h e r a d v a n -t a g e s b e s i d e s t h e r e d u c e d p r o b l e m s o f h e a t i n g . B r a d l e y et al. [ 7 ] d e s c r i b e m e a s u r e m e n t s o f f r e q u e n c y s h i f t s i n r u b y p u l s e s w h i c h a r e d e p e n d e n t on i n t e n s i t y . T h i s e f f e c t i s r e d u c e d w i t h l o w e r e n e r g y o s c i l l a t o r o u t p u t s . The mode s t r u c t u r e i n a l a s e r c a v i t y i s s t r o n g l y d e p e n d e n t on t h e c o n d i t i o n o f t h e o p t i c a l s u r f a c e s w i t h i n t h e c a v i t y , and t h e o p t i c a l q u a l i t y o f t h e r u b y r o d . I n a d d i t i o n t o a c h a n g e i n t h e mode s t r u c t u r e d e g r a d a t i o n o f r u b y q u a l i t y a l s o c a u s e s i n c r e a s e d p u l s e l e n g t h , d e c r e a s e d p ower and i n c r e a s e d beam d i v e r g e n c e [ 8 ] . A t l o w e r p o w e r s t h e o p t i c a l s u r f a c e s as w e l l h a v e l o n g e r u s e f u l l i v e s . 2.2.2 R e p r o d u c i b i l i t y and S y n c r o n i z a t i o n The r e q u i r e m e n t s o f h a v i n g r e p r o d u c e a b l e p u l s e s f r o m t h e l a s e r and a c c u r a t e s y n c r o n i z a t i o n w i t h e x t e r n a l e l e c t r o n i c s p l a c e a g r e a t d e a l o f i m p o r t a n c e on t h e c h o i c e and o p e r a t i o n o f t h e Q - s w i t c h t o be u s e d . S i n c e t h e t e c h -n i q u e was f i r s t d e s c r i b e d by M c C l u n g and H e l l w a r t h i n 1961 [ 9 ] and l a t e r t r e a t e d m a t h e m a t i c a l l y by Wagner and L e n g y e l [ 1 0 ] a l a r g e number o f m e t h o d s h a v e been d e v i s e d . F o r t h i s s y s t e m a P o c k e l s C e l l was c h o s e n as t h e Q - s w i t c h i n g e l e m e n t . The r e a s o n s f o r t h i s c h o i c e and t h e o p e r a t i o n o f t h e c e l l a r e o u t l i n e d b e l o w . 11 For the Pockels effect, the birefringence of a material varies linearly with applied electric f i e l d . Uni-axial crystals such as KDP, KD*P and ADP are generally used with their optical axis along the light beam. Effects such as Raman scattering are not observed and the control voltage for a KDP cell is typically only 7 kv. Syncronization of other equipment can be achieved with a high degree of reproduci b i 1 i ty. Figure (1) shows the basic configuration for quarter wave operation of the Pockels Cell. Seven kilovolts on the KDP CRYSTAL REAR POLARIZER RUBY REFLECTOR F i g u r e 1 Pockels C e l l C o n f i g u r a t i o n f o r % Wave Operation. i FRONT REFLECTOR plates is sufficient to rotate the plane of polarization of the ruby emission by 45°. After reflection from the 99% rear mirror and a further rotation of 45° the light is blocked by the crossed polarizer on its return path. To re-establish a high cavity Q a thyratron drops the 12 retardation voltage to zero in 20 nsec and thus allows laser action at a controlled time. The voltage is allowed to increase to 7 kv again to prevent multiple pulsing but this increase can proceed relat ively slowly (~ several micro-seconds) since the recovery time of the laser after emitting a giant pulse is on the order of 10 usee [11]. The only major disadvantage of the Pockels Cell is the damage that occurs to the crystal at high laser powers. However, by using the cel l in a low power o s c i l l a t o r , this problem is avoided. In this system more power is obtained by following the osc i l la tor with a six inch ruby rod as an amp!i f i er. 2.2.3 Mode Selection As mentioned ear l ier some methods must be used to control the resonant modes of the laser cavity in order to produce the desired output. These modes are c lass i f ied in two general categories: (a ) transverse modes w h i c h c o r r e s p o n d t o v a r i o u s g e o m e t r i c a l " r o u n d t r i p " c o n f i g u r a t i o n s , (b ) axial ( l o n g i t u d i n a l ) modes w h i c h c o r r e s p o n d t o t h e r e s o n a n c e c o n d i t i o n s f o r a F a b r y -P e r o t e t a I o n . The following is a consideration of some of the most common mode control techniques and their appl icabi l i ty to this system. 13 Apertures: By p l a c i n g a s m a l l a p e r t u r e i n s i d e t h e l a s e r c a v i t y , t h e F r e s n e l number c an be r e d u c e d t o a l l o w o n l y low o r d e r t r a n s v e r s e modes t o e x i s t . T h i s r e d u c t i o n i n mode v o l u m e i s a c c o m p a n i e d by a r e d u c t i o n i n v o l u m e o f a c t i v e m a t e r i a l u s e d and h e n c e by a r e d u c t i o n i n e n e r g y o u t p u t . F o r t h i s r e a s o n a p e r t u r e s w e r e n o t u s e d . Mirror Separation: I n c r e a s i n g t h e m i r r o r s e p a r a -t i o n w i l l a l s o d e c r e a s e t h e F r e s n e l number and l i m i t t h e number o f t r a n s v e r s e modes. B u t b e c a u s e t h e a x i a l modes a r e s p a c e d by AX = A 2 / 2 L w h e r e L = o p t i c a l l e n g t h o f c a v i t y , i n c r e a s i n g L a l s o i n c r e a s e s t h e number o f a x i a l modes. S i n c e i t i s d e s i r a b l e t o h a v e t h e f e w e s t number o f a x i a l modes i n s i d e t h e f l u o r e s c e n t l i n e w i d t h as p o s s i b l e , t h e u s u a l p r a c t i c e i s t o h a v e t h e s h o r t e s t p o s s i b l e c a v i t y and r e s t r i c t t r a n s v e r s e modes i n o t h e r ways. Pump Power: Ross [ 1 2 ] shows t h a t d u r i n g t h e f l a s h -lamp p u m p i n g p u l s e t h e p o p u l a t i o n a t t h e c e n t r e o f t h e r u b y r o d i s i n v e r t e d f i r s t . As t h e low o r d e r t r a n s v e r s e modes a r e r e s t r i c t e d t o t h e c e n t r e o f t h e r o d , t h e s e w i l l b e g i n t o l a s e f i r s t . H i g h e r pump p o w e r s r e s u l t i n a l a r g e r c r o s s -s e c t i o n o f t h e r o d b e i n g i n v e r t e d . T h u s i f pump power i s 14 k e p t nea r t h r e s h o l d o n l y t he l o w e s t o r d e r t r a n s v e r s e modes w i l l l a s e . T h i s t e c h n i q u e was s u c c e s s f u l l y used i n the f i n a l d e s i g n as e x p l a i n e d i n the s e c t i o n " O s c i 1 1 a t o r  P e r f o r m a n c e . " L o w e r i n g t he pumping power a l s o l o w e r s the l a s e r o u t p u t wh i ch i n t h i s case e x t e n d s the l i f e o f the o p t i c a l s u r f a c e s . Etalon F i l t e r s : C o l l i n s and Wh i te [13 ] f i r s t s u g g e s t e d p l a c i n g a t i l t e d F a b r y - P e r o t e t a l o n i n s i d e the l a s e r c a v i t y t o a c t as a transmission mode s e l e c t o r . T h i s second r e s o n a n t c a v i t y w i t h s h o r t e r l e n g t h must have a s m a l l e r mode d e n s i t y t han the main c a v i t y . O s c i l l a t i o n s can o n l y o c c u r a t t h o s e f r e q u e n c i e s w h i c h s a t i s f y t h e r e s o n a n t c o n -d i t i o n f o r bo th c a v i t i e s . Use o f two e t a l o n s , t i l t e d i n two p e r p e n d i c u l a r p l a n e s o f f e r s bo th a x i a l and t r a n s v e r s e s e l e c t i o n . However , f o r r e a s o n a b l e f i n e s s e t he p l a t e s must be c o a t e d f o r a h i g h r e f l e c t i v i t y (60-80%) wh ich r e s u l t s i n a d r a s t i c r e d u c t i o n o f o u t p u t power [ 1 4 ] . T h i s t e c h n i q u e was no t t r i e d . Resonant Reflectors: An e t a l o n can a l s o be used as a reflection mode s e l e c t o r i f i t forms the o u t p u t m i r r o r 15 o f t he c a v i t y [ 1 8 ] . In the case o f s e v e r a l uncoa ted f l a t s s t a c k e d t o g e t h e r the r e f l e c t i v i t y becomes: R = 1 - d / n )2 N ^ 2 1 + ( l / n ) 2 N where N = number o f p l a t e s n = i n d e x o f r e f r a c t i o n o f p l a t e The r e s o n a t o r Q o f the main l a s e r c a v i t y i s e f f e c t i v e l y modu-l a t e d by t he mode s t r u c t u r e o f the e t a l o n , so a g a i n the o n l y o s c i l l a t i o n s t h a t w i l l o c c u r a re t hose t h a t s a t i s f y a l l the r e s o n a n t c o n d i t i o n s . For a homogeneous ly b roadened s y s t e m such as ruby power i s no t r e j e c t e d i n unwanted modes bu t r a t h e r c h a n n e l l e d i n t o the s e l e c t e d w a v e l e n g t h s [ 1 9 ] . T h i s method was r e j e c t e d i n the i n t e r e s t s o f s i m p l i c i t y and ease o f o p e r a t i o n because the r e f l e c t o r must be t e m p e r a t u r e tuned to g i v e maximum l a s e r o u t p u t [ 1 4 ] . However , a m o d i f i c a t i o n on the e t a l o n t e c h n i q u e was s u c c e s s f u l l y e m p l o y e d . By u s i n g a ruby rod w i t h p l a n e p a r a l l e l ends and no a n t i - r e f 1 e c t i o n c o a t i n g s a r e s o n a n t c a v i t y c o u l d be s e t up between the o u t p u t m i r r o r and one o f the ends o f the r o d . T u n i n g t h i s c a v i t y by a d j u s t i n g the t i l t o f the ruby p roved s i m p l e and r e l i a b l e . 16 Saturable Absorbers: A s u i t a b l y a b s o r b i n g dye when p l a c e d i n t he l a s e r c a v i t y w i l l b l e a c h and become t r a n s -p a r e n t a t some c r i t i c a l power d e n s i t y . As e x p l a i n e d by Sooy [ 15 ] modes w i t h f r e q u e n c y c l o s e s t t o the c e n t r e of t he ruby f l u o r e s c e n c e l i n e w i l l r e a c h t h r e s h o l d f i r s t , b l e a c h t h e dye and grow e x p o n e n t i a l l y . In t h i s l a s e r a dye c e l l was used s u c c e s s f u l l y as a mode s e l e c t o r i n c o n j u n c t i o n w i t h a P o c k e l s C e l l Q - s w i t c h i n the same c a v i t y . Spherical Resonators: R e p l a c i n g e i t h e r o r bo th o f t he p l a n e c a v i t y end m i r r o r s w i t h s p h e r i c a l m i r r o r s can p r o d u c e c o n f i g u r a t i o n s i n w h i c h a l l the t r a n s v e r s e modes a r e d e g e n e r a t e . The h e m i c o n c e n t r i c case [12 ] i s i n s e n s i t i v e t o m e c h a n i c a l v i b r a t i o n s but the e x c e s s i v e i n t e n s i t y a t the f o c a l s p o t damages the p l a n e m i r r o r . A c o n f o c a l r e s o -n a t o r was t r i e d i n t h i s o s c i l l a t o r w i t h m i r r o r s w h i c h had e q u a l r a d i i o f c u r v a t u r e o f 50 cm. As shown i n the nex t s e c t i o n the r e s u l t s were not p a r t i c u l a r l y good . One s h o u l d a l s o no te t h a t even w i t h p l a n e m i r r o r s d e f e c t s and t h e r m a l g r a d i e n t s can a c t as l e n s e s and cause t he r e s o n a t o r t o o s c i l l a t e i n a s e m i - c o n f o c a l mode. T h i s p o i n t i s a l s o p e r s u e d more f u l l y i n the nex t s e c t i o n . 17 2 . 3 O s c i l l a t o r P e r f o r m a n c e 2 . 3 . 1 S p e c t r a l Wid th The s p e c t r a l o u t p u t of the l a s e r o s c i l l a t o r was examined u s i n g the a r rangement i n F i g u r e ( 2 ) . A f t e r r e f l e c -t i o n f rom a g l a s s p l a t e the a t t e n u a t e d l a s e r beam was LIGHT DUMP GLASS PLATE LASER NEGATIVE LENS ALUMINUM DIFFUSING SCREEN D=3 400 mm F.L. LENS WRATTEN NO. 29 FABRY-PEROT CAMERA N.D. 0.3 FILTER F i g u r e 2. Optics f o r A n a l y s i s of S p e c t r a l C h a r a c t e r i s t i c s of Laser O s c i l -- l a t o r Output. expanded w i t h a n e g a t i v e l e n s and r e f l e c t e d on to the F a b r y -P e r o t p l a t e s w i t h an a luminum d i f f u s i n g s c r e e n . A 400 mm f o c a l l e n g t h l e n s imaged the i n t e r f e r e n c e p a t t e r n on the p l a n e o f a n e u t r a l d e n s i t y f i l t e r ( d e n s i t y 0 . 3 ) . The p a t t e r n and f i l t e r were then pho tog raphed on T R I - X (ASA 400) f i l m u s i n g a c l o s e - u p l e n s and a #29 W r a t t e n f i l t e r t o r e d u c e s t r a y l i g h t . As seen i n the f o l l o w i n g p r i n t s the n e u t r a l 18 d e n s i t y f i l t e r c o v e r e d o n l y h a l f the r i n g p a t t e r n . T h i s t e c h n i q u e g r e a t l y s i m p l i f i e d the measurements o f the h a l f -w i d t h s o f t he r i n g s because no H-D cu rve i s r e q u i r e d f o r the f i l m . U s i n g a m i c r o d e n s i t o m e t e r the h a l f - i n t e n s i t y p o i n t s on a p a r t i c u l a r r i n g a re found s i m p l y by c o m p a r i s o n w i t h the o t h e r h a l f o f the p a t t e r n . Wi th a p l a t e s e p a r a t i o n o f 5 mm the free spectral o o range a t 6943 A was A X g R = 0 . 4 8 A. The f i n e s s e o f the p l a t e s was a p p r o x i m a t e l y 30 so t h a t the chromatic resolving o power was a p p r o x i m a t e l y AXX = 0 .016 A. In o r d e r to e s t i m a t e the e r r o r s due to i n s t r u m e n t b r o a d e n i n g t he t r e a t m e n t used by Cooper and G r e i g [ 16 ] p r o v e s h e l p f u l . I f t r u e s o u r c e w i d t h measured s o u r c e w i d t h t h e n 1) t he minimum e f f e c t o f the i n s t r u m e n t i s z e r o b r o a d e n i n g , i . e . AX T = AX M 2) the w o r s t e f f e c t o f i n s t r u m e n t b r o a d -e n i n g i s AX.. = AX^ + AX, 3 M T H. AXr AX M 19 Assuming t h a t the t r u e w i d t h A X T l i e s a t the mean between t h e s e two l i m i t s g i v e s : A X S R A X T = A X M - ( 1 ± 1 } Now f o r a c c u r a c y , A X M / A X g R must be as l a r g e as p o s s i b l e S i n c e s u c c e s s i v e o r d e r s o f i n t e r f e r e n c e p a t t e r n must no t o v e r l a p , the maximum v a l u e o f A A „ / A A „ „ i s l i m i t e d t o : M * - T -hence A X T = A A M (1 - 1 /F ± 1 /F) o For the measurements p r e s e n t e d here A X M ^ 0.1 A and F == 3 0 , g i v i n g A X T = 0.1 (1 - .03 ± .03 ) T a k i n g the ave rage between t h e s e l i m i t s A X T = .0965 ± .0035 Thus t he i n s t r u m e n t b r o a d e n i n g e r r o r f o r a measured w i d t h o f 0.1 A i s o f the o r d e r o f 4%. 20 Added to the e r r o r s i n the d e n s i t o m e t e r r e a d i n g s one must c o n c l u d e t h a t the f o l l o w i n g r e s u l t s a re a c c u r a t e to about 15% a t b e s t . F o l l o w i n g i s a l i s t o f the v a r i o u s mode c o n t r o l methods t h a t were t r i e d and the s u c c e s s o b t a i n e d w i t h e a c h . S P H E R I C A L MIRRORS: F i g u r e (3) shows t h e o s c i l l a t o r o u t p u t f o r a c o n f o c a l c o n f i g u r a t i o n u s i n g s p h e r i c a l m i r r o r s o f 50 cm r a d i i and r e f l e c t i v i t i e s o f 30% ( f r o n t ) and 99.9% ( r e a r ) . Many modes a re seen to be l a s i n g ove r the who le f r e e s p e c t r a l range o f the i n s t r u m e n t . No amount o f m i r r o r a d j u s t m e n t c o u l d reduce t h e s e s i g n i f i c a n t l y and hence no q u a n t i t a t i v e a n a l y s i s was c a r r i e d o u t . PLANE MIRRORS: R e p l a c i n g the s p h e r i c a l m i r r o r s w i t h p l a n e m i r r o r s (75% f r o n t ) gave the o u t p u t i n F i g u r e ( 4 ) . A t r i p l e s e t o f o modes are r e s o l v e d w i t h a t o t a l h a l f - w i d t h o f 0 .24 A . T h i s o u t p u t i s much n a r r o w e r t han f o r the c o n f o c a l case and as p o i n t e d ou t i n the s e c t i o n on mode c o n t r o l , may be a t t r i b u t e d to d e f e c t s and t h e r m a l g r a d i e n t s l i m i t i n g the number o f o s c i l l a t i n g modes. F i g u r e H. O s c i l l a o t r Output: (75% f r o n t ) . P l a n e M i r r o r s 22 In a t t e m p t i n g t o nar row the o u t p u t l i n e w i d t h f u r t h e r two changes were made t o g e t h e r : a) output mirror changed to 30$ r e f l e c t i v i t y b) ruby face aligned p a r a l l e l to output mirror. In a d d i t i o n , the s p a c i n g between the c a v i t y end m i r r o r s was g r e a t e r than 50 cm. S i n c e the ruby i s o n l y 3" x 3 / 8 " d i a m e t e r , t r a n s v e r s e modes a re s t r o n g l y d i f f r a c t i o n l i m i t e d . F i g u r e s 5 (a) and (b) show the o u t p u t u s i n g the 30% f r o n t m i r r o r a l i g n e d w i t h the ruby f a c e . They show two c o n s e c u t i v e s h o t s w i t h a one m inu te i n t e r v a l b e t w e e n . In F i g u r e 5 (a) a s i n g l e l i n e i s seen w i t h a h a l f - w i d t h o f o 0 .042 A . The nex t p h o t o g r a p h , F i g u r e 5 (b) , shows an o u t -pu t w i t h two c o m p o n e n t s , each w i t h a w i d t h equa l t o the o i n s t r u m e n t a l r e s o l v i n g power (~ .02 A ) . The t o t a l w i d t h o f bo th components t o g e t h e r i s o .084 A . The l a s e r power o u t p u t was 20 MW. These pho tog raphs a l s o show the t e m p e r a t u r e d e p e n -den t f r e q u e n c y s h i f t d i s c u s s e d e a r l i e r . As the ruby warms up the f r i n g e p a t t e r n moves o u t w a r d , i n d i c a t i n g a s h i f t toward l o n g e r w a v e l e n g t h s . 23 Figure 6 . O s c i l l a t o r Output: Plane M i r r o r s and Dye C e l l . 24 D Y E C E L L : As the l a s t mode s e l e c t i n g t e c h n i q u e a c e l l o f c r y p t o c y a n i n e d i s s o l v e d i n methano l was p l a c e d i n the l a s e r c a v i t y between the f r o n t m i r r o r and the r u b y . The dye c o n -c e n t r a t i o n was a d j u s t e d e x p e r i m e n t a l l y t o g i v e a r e a s o n a b l e compromise between mode s t r u c t u r e and power o u t p u t . " F i g u r e (6) shows the l i n e w i d t h f o r a dye c o n c e n t r a t i o n g i v i n g 10 MW o u t p u t a t the same pump ene rgy as i n the o t h e r c a s e s . The h a l f - w i d t h i s .074 A . From t h i s i t i s p o s s i b l e t o e s t i m a t e the number o f a x i a l modes t h a t a re l a s i n g . The a x i a l mode s p a c i n g i s o g i v e n by AX = X 0 2 / 2 d . For X 0 = 6943 A and an o p t i c a l c a v i t y l e n g t h d = 50 cm: AX = .0048 A Thus the number o f l a s i n g modes must be a t l e a s t ( . 0 7 4 / . 0 0 4 8 ) = 1 5 . T h i s i s i n agreement w i t h McClung and We ine r [17 ] who found the dye no t e n t i r e l y r e l i a b l e i n s u r p r e s s i n g a l l unwanted modes a t h i g h power . A l t h o u g h the dye does l i m i t the number o f modes , i t s p r i m a r y advan tage appears to be i n s t a b i l i z i n g the l a s e r o u t p u t . The g i a n t p u l s e s a re smoother than w i t h the P o c k e l s 25 C e l l a l o n e . Magyar [14] s u g g e s t s t h i s i s due to the absence o f modes w h i c h bea t w i t h one a n o t h e r and modu la te the p u l s e . C l o s e l y a l l i e d to the s p e c t r a l w i d t h o f the o u t p u t i s the coherence l e n g t h I = c/Av ; where c = speed o f l i g h t and Av = f r e q u e n c y s p r e a d o f l a s e r o u t p u t . For t h i s c a s e : AX - .08 A t h e r e f o r e Av « 5 GHz and the c o h e r e n c e l e n g t h I = 6 cm. 2 . 3 . 2 P u l s e C h a r a c t e r i s t i c s In a d d i t i o n to the s p e c t r a l w i d t h o f t he l a s e r o u t p u t the s i z e and shape o f the p u l s e s a re a l s o i m p o r t a n t . Fo r the f o l l o w i n g the p u l s e l e n g t h w i l l be d e f i n e d as the f u l l w i d t h a t h a l f maximum h e i g h t as measured by a PIN p h o t o d i o d e and a T e k t r o n i x 519 o s c i l l o s c o p e . The ene rgy i s the t o t a l ene rgy i n a s i n g l e g i a n t p u l s e measured w i t h a TRG Model 101 t h e r m o p i l e . The most s i g n i f i c a n t component a f f e c t i n g p u l s e shape i s the p o l a r i z e r a s s o c i a t e d w i t h the P o c k e l s C e l l . T h i s i s a s t a c k o f t h i n q u a r t z p l a t e s t h a t p o l a r i z e by m u l t i p l e r e f l e c t i o n . T y p i c a l l y w i t h the maximum number o f 26 p l a t e s ( e i g h t ) the o u t p u t p u l s e was abou t 25 nsec w ide w i t h an ene rgy o f 0 . 5 j o u l e s , i . e . 20 MW. Removing p l a t e s f rom the p o l a r i z e r has the e f f e c t o f i n c r e a s i n g bo th p u l s e ene rgy and w i d t h i n r o u g h l y the same r a t i o . Fo r example w i t h no p o l a r i z e r the g i a n t p u l s e l a s t s about 70 nsec and c o n t a i n s 1.4 j o u l e s o f e n e r g y , a g a i n g i v i n g about 20 MW o f power . In g e n e r a l o p e r a t i o n the o u t p u t p u l s e i s about 0 .6 j o u l e s i n 30 n s e c . The u n c e r t a i n t y i n o u t p u t power v a r i e s abou t ±15%, most o f w h i c h i s v a r i a t i o n i n p u l s e w i d t h . For an o u t p u t o f 0 .6 j o u l e s the pump ene rgy i s 1600 j o u l e s , g i v i n g an e f f i c i e n c y o f 0 .4%. 2 . 3 . 3 Summary From the F a b r y - P e r o t pho tog raphs one can see t h a t the l a s e r o s c i l l a t o r , u s i n g p l a n e m i r r o r s , a P o c k e l s C e l l Q - s w i t c h and c a r e f u l a l i g n m e n t o f the ruby r o d , i s c a p a b l e o o f p r o d u c i n g a s p e c t r a l o u t p u t .08 A (5 GHz) w ide a t 20 o M e g a w a t t s . Powers up to 30 MW and 0.1 A w i d t h s can be p roduced bu t more r a p i d d e g r a d a t i o n o f the o p t i c a l s u r f a c e s r e s u l t s . W i th a c e l l o f c r y p t o c y a n i n e and methano l i n the c a v i t y the o u t p u t w i d t h n a r r o w s , the power d rops a c c o r d i n g 27 to the dye c o n c e n t r a t i o n and the p u l s e e n v e l o p e becomes s m o o t h e r . The c o h e r e n c e l e n g t h o f the l a s e r o u t p u t f o r a s p e c t r a l w i d t h o f .08 A i s 6 cm. 2 . 4 A m p l i f i e r P e r f o r m a n c e Fo r t h i s sys tem the most i m p o r t a n t a m p l i f i e r p a r -ameter i s the gain a c h i e v e d w i t h a p a r t i c u l a r ene rgy i n p u t to the f l a s h l a m p s . E f f i c i e n c y , and p o s s i b l e p u l s e s h o r t e n -i n g a re o t h e r u s e f u l c h a r a c t e r i s t i c s t h a t were s t u d i e d , bu t the m a j o r i t y o f t he f o l l o w i n g a n a l y s i s d e a l s w i t h t he d e -pendence o f the p o p u l a t i o n i n v e r s i o n and g a i n on i n p u t e n e r g y . 2 . 4 . 1 Ene rgy G a i n In S e c t i o n 2.1 an e x p r e s s i o n f o r the ene rgy g a i n i n a l a s e r a m p l i f i e r o f l e n g t h L was d e r i v e d to b e : o G = 28 To s i m p l i f y t h i s f o r the e x p e r i m e n t a l case we use the f o l 1 o w i ng : p 0 c x 0 = number o f p h o t o n s / u n i t a r e a i n c i d e n t on f a c e o f l a s e r rod d u r i n g p u l s e o f t ime T 0 T o t a l i n c i d e n t p o w e r / u n i t a r e a = P / A = hv ( n o . o f p h o t o n s ) A T 0 = h v p 0 c Now, i f t he a m p l i f i e r i s to o p e r a t e w e l l w i t h i n i t s u n s a t u r a t e d r e g i o n , the i n p u t pho ton f l u x must be s m a l l so t h a t 2 a p 0 C T 0 << 1 c T h i s c o n d i t i o n can be shown to e x i s t by c o n s i d e r i n g the o u t -put o f the l a s e r o s c i l l a t o r and by c a l c u l a t i n g 29 2 a p 0 c x 0 = ^ . P. . .081 w h e r e : a = r a d i a t i o n a b s o r p t i o n c r o s s s e c t i o n f o r chromium = 2 .5 x 1 0 ~ 2 0 c m + 2 T 0 = 30 x 1 0 " 9 s e c v = 4 . 3 x 1 0 1 * HZ P = 2 x 10' w a t t s A = 1.3 cm 2 Wi th the above r e s t r i c t i o n , the e x p r e s s i o n f o r the ene rgy g a i n r e d u c e s t o : G = e n 0 a L A l s o i n S e c t i o n 2.1 the f r a c t i o n a l p o p u l a t i o n i n v e r s i o n was found to have the f o l l o w i n g f u n c t i o n dependence 30 on the f l a s h l a m p ene rgy E : He. _ v 1 - 3 e " e E where B> d e f i n e d as the pumping c o e f f i c i e n t , i s a measure o f t h e e f f i c i e n c y o f the p a r t i c u l a r pumping c o n f i g u r a t i o n ( i n t h i s c a s e , two l i n e a r w a t e r c o o l e d f l a s h l a m p s w i t h i n a d o u b l e e l l i p t i c a l c a v i t y w i t h the ruby a t the common f o c i ) . To d e t e r m i n e B, e x p e r i m e n t a l d a t a shows t h a t the a m p l i f i e r gave a u n i t y g a i n f o r an i n p u t ene rgy o f 2100 j o u l e s . U s i n g e q u a t i o n ( 2 . 2 ) w i t h no = 0 and E = 2100 j o u l e s g i v e s : B = 5 .23 x 10" 1 * j o u l e s " 1 S u b s t i t u t i o n o f t h i s v a l u e o f B i n t o e q u a t i o n ( 2 . 2 ) g i v e s the fo rm o f the f r a c t i o n a l p o p u l a t i o n i n v e r s i o n shown i n F i g u r e ( 7 ) . Here the i n v e r s i o n i s e x p r e s s e d as a p e r c e n t a g e ( q 0 / N 0 x 100%) and the maximum energy i s l i m i t e d by the s t o r a g e o f the c a p a c i t o r bank . 31 32 U s i n g the dependence i n F i g u r e ( 7 ) , t he s i m p l i f i e d g a i n e x p r e s s i o n o f e q u a t i o n ( 2 . 1 ) and the v a l u e N 0 = 8 . 8 x 1 0 1 8 c m - 3 , the c a l c u l a t e d g a i n v s . f l a s h l a m p ene rgy c u r v e i s shown i n F i g u r e ( 8 ) , a l o n g w i t h the e x p e r i m e n t a l p o i n t s f o r the s i x i n c h a m p l i f i e r r o d . The agreement i s seen to be r e a s o n a b l e c o n s i d e r i n g t h a t the t h e o r e t i c a l t r e a t m e n t was done f o r an i d e a l s q u a r e p u l s e i n p u t t o the a m p l i f i e r . 2 . 4 . 2 P u l s e D i s t o r t i o n S a t u r a t i o n i n a l a s e r a m p l i f i e r o c c u r s when the i n c i d e n t pho ton f l u x i s l a r g e enough to c o m p l e t e l y empty t he upper e x c t e d l a s e r l e v e l i n the a c t i v e m a t e r i a l . Fo r a p u l s e i n p u t t h i s r e s u l t s i n d i s t o r t i o n o f the p u l s e shape due t o h i g h e r a m p l i f i c a t i o n o f the l e a d i n g edge than o f the t r a i l i n g e d g e . The o u t p u t p u l s e i s thus s h o r t e n e d by t h e s a t u r a t i o n e f f e c t and the power i s c o r r e s p o n d i n g l y i n c r e a s e d . However , the a n a l y s i s f o r the g a i n o f the a m p l i -f i e r i n the p r e c e d i n g s e c t i o n r e q u i r e d t h a t t h e r e be no s a t u r a t i o n , i . e . 2 a p 0CT 0 << 1 . T h i s was c a l c u l a t e d t o be t r u e and the e x p e r i m e n t a l v e r i f i c a t i o n i s shown i n F i g u r e ( 9 ) , wh i ch g i v e s t y p i c a l i n p u t and o u t p u t p u l s e s t o the a m p l i f i e r . I t i s seen t h a t t h e r e i s no p u l s e shape 34 d i s t o r t i o n and t h a t the power g a i n o f the a m p l i f i e r i s equa l to i t s energy g a i n . (a ) (b) INPUT OUTPUT Figure 9 . Laser A m p l i f i e r Pulses Normalized to the Same Energy. 2 . 5 P i s c u s s i on F i g u r e (10) shows the assemb ly o f the comp le te l a s e r s y s t e m . The SYNC OUT p u l s e f rom the P o c k e l s C e l l D r i v e r i s used to t r i g g e r the d e t e c t i o n sys tem p r e s e n t e d i n the nex t c h a p t e r . D u r i n g the t ime o f the f l a s h l a m p pumping the l a s e r i t s e l f i s t r i g g e r a b l e ove r a range o f s e v e r a l hundred m i c r o s e c o n d s w i t h an u n c e r t a i n t y o f about one m i c r o s e c o n d . The p r i m a r y s o u r c e o f t h i s j i t t e r i s the y rear / reflector ' / / p.c. polarizer 30% 3 in. ruby dye 7kv T P O C K E L S C E L L driver f lashlamps A oscillator capacitor bank X 6 in. ruby •v_ , —^ light out ^ flashlamps amplifier capacitor bank sync, out to detection system laser trigger in from plasma electronics -O pulse from plasma electronics to fire flashlamps (advanced 800/Jsec w.r.t. laser trigger pulse) F i g u r e 10. L a s e r O p e r a t i o n . co en 36 t h y r a t r o n i n the P o c k e l s C e l l D r i v e r . However , the t r i g g e r p u l s e f o r the d e t e c t i o n sys tem i s t a k e n d i r e c t l y f rom the c a b l e d r i v i n g the P o c k e l s C e l l so the s y n c r o n i z a t i o n between the l a s e r and the d e t e c t i o n e l e c t r o n i c s i s a c c u r a t e to s e v e r a l n a n o s e c o n d s . As shown i n the s e c t i o n on O s c i l l a t o r P e r f o r m a n c e the s p e c t r a l o u t p u t o f the l a s e r i s r e a s o n a b l y nar row even though none o f the o p t i c a l components were o f p a r t i c u -l a r l y good q u a l i t y . In f a c t , as the e a r l y t e s t i n g was c a r r i e d ou t a t h i g h powers (> 50 MW) c o n s i d e r a b l e damage o c c u r r e d t o some o f t he o p t i c a l s u r f a c e s . C o n s i d e r i n g t h i s , b e t t e r s p e c t r a l w i d t h i s t o be e x p e c t e d i f a new ruby rod and KDP c r y s t a l were t o be used i n the o s c i l l a t o r . The w i d t h c o u l d a l s o be nar rowed f u r t h e r w i t h e t a l o n f i l t e r s and a p e r t u r e s i n s i d e the c a v i t y but any such sys tem wou ld r e q u i r e a t l e a s t one more a m p l i f i e r s t a g e to m a i n t a i n the power o u t p u t a t i t s p r e s e n t l e v e l . P A R T I I C h a p t e r 3 THE DETECTION SYSTEM 3.1 G e n e r a l O u t l i n e o f P o l y c h r o m a t o r The pu rpose o f any m u l t i c h a n n e l s y s t e m . i s to a l l o w s e v e r a l segments o f a s p e c t r u m to be o b s e r v e d s i m u l t a n e o u s l y . S e p a r a t e p h o t o m u l t i p i i e r s a re g e n e r a l l y used to m o n i t o r the d e s i r e d w a v e l e n g t h segments i n the o u t p u t o f a s p e c t r o -g raph . In t h i s s ys tem the e x i t s l i t o f a monochromator i s r e p l a c e d w i t h a package o f f i v e i n d i v i d u a l s l i t s c o n -s t r u c t e d f rom g l a s s f i b e r s . The f i b e r s c a r r y l i g h t to f i v e p h o t o m u l t i p i i e r t u b e s . To d i s p l a y the o u t p u t o f the p h o t o -m u l t i p l i e r s , the most s t r a i g h t f o r w a r d way would be to use f i v e s e p a r a t e o s c i l l o s c o p e s w i t h r e c o r d i n g c a m e r a s . W h i l e t h i s has been d o n e , the o b v i o u s d i s a d v a n t a g e i s the c o s t o f the equ ipment i n v o l v e d . I n s t e a d o f t h i s , a method was d e v i s e d to d i s p l a y a l l the p h o t o m u l t i p i i e r o u t p u t s on a s i n g l e o s c i l l o s c o p e t r a c e . As w i t h any p u l s e d s c a t t e r i n g e x p e r i m e n t the p h o t o -m u l t i p l i e r s a re r e q u i r e d to d e t e c t a s h o r t p u l s e o f s c a t t e r e d 37 38 l a s e r l i g h t . T h i s l i g h t p u l s e a r r i v e s s i m u l t a n e o u s l y a t each p h o t o c a t h o d e and hence a l l the o u t p u t p u l s e s come f rom the p h o t o t u b e s a t the same t ime ( n e g l e c t i n g t r a n s i t t ime v a r i a t i o n s f rom tube to t u b e ) . By s i m p l y e l e c t r o n i c a l l y d e l a y i n g each p u l s e i t i s seen t h a t they can be s e q u e n t i a l l y d i s p l a y e d on a s i n g l e o s c i l l o s c o p e t r a c e . T h i s has the f u r t h e r advan tage t h a t w i t h p r o p e r c a l i b r a t i o n the o s c i l -l o s c o p e r e c o r d i n g i s a d i r e c t measure o f i n t e n s i t y v s . w a v e l e n g t h . T h i s s i m p l e method has one v e r y b a s i c p r o b l e m . The i n f o r m a t i o n d i s p l a y e d on the scope i s a c t u a l l y the sum o f a l l t he p h o t o m u l t i p i i e r o u t p u t s , each d e l a y e d a g a i n s t one a n o t h e r . But i n a d d i t i o n t o the l a s e r p u l s e , each p h o t o t u b e a l s o sees the backg round l i g h t f rom the p lasma wh ich appears as a DC l e v e l i n the o u t p u t o f the t u b e . So on the scope t r a c e , as a l l the PM o u t p u t s were added the f i n a l b a s e l i n e wou ld appear as a n o i s e l e v e l f i v e t imes g r e a t e r than f rom one tube a l o n e . To p r e v e n t t h i s , each p h o t o m u l t i p i i e r i s p u l s e d on f o r an i n t e r v a l e x a c t l y as l o n g as the d e l a y between t u b e s . T h i s e l i m i n a t e s the o v e r l a p p i n g o f the backg round l e v e l s by e f f e c t i v e l y d i s p l a y i n g o n l y one tube a t a t i m e . The f o l l o w i n g s e c t i o n s d e s c r i b e the f i b e r o p t i c s used f o r the s l i t p a c k a g e s , the d e s i g n o f the p h o t o m u l t i p i i e r c i r c u i t s and the p e r f o r m a n c e o f the f i n a l s y s t e m . 39 3 . 2 F i b e r O p t i c s F i g u r e (11) shows the s l i t package t h a t i s p l a c e d a t the e x i t p l a n e o f the monochromato r . S i n g l e l a y e r s o f . 003 i n c h g l a s s f i b e r s (Edmonds #41,225) a re s t a c k e d between s p a c e r s h e e t s o f . 003 i n c h s t a i n l e s s s t e e l and the who le assemb ly cemented w i t h c l e a r e p o x y . Wi th a monochromator o o f 10 A/mm d i s p e r s i o n t h e s e s l i t s g i v e f i v e s p e c t r a l p o i n t s o o each s e p a r a t e d by 0 .75 A w i t h a r e s o l u t i o n o f 0 . 7 5 A . The t r a n s m i s s i o n c h a r a c t e r i s t i c s o f the f i b e r o p t i c s b u n d l e s a re s t r o n g l y dependen t on the q u a l i t y o f the end p o l i s h i n g and to a l e s s e r e x t e n t on the q u a l i t y o f g l a s s [ 2 0 ] . I d e a l l y , l i g h t s h o u l d l e a v e a f i b e r a t the same a n g l e a t wh ich i t e n t e r e d , i . e . p r e s e r v a t i o n o f s o l i d a n g l e . But d e f e c t s i n p o l i s h i n g the ends o f t he f i b e r s l e a v e i r -r e g u l a r i t i e s wh i ch randomly s c a t t e r the l i g h t . Added to the normal r e f l e c t i o n l o s s a t a g l a s s - a i r i n t e r f a c e the t o t a l l i g h t l o s t per end i s t y p i c a l l y .15-20%. A b s o r p t i o n i n the g l a s s adds a n o t h e r 7% pe r f o o t o f f i b e r so f o r t h e s e b u n d l e s the e s t i m a t e d t r a n s m i s s i o n i s about 70%. L o s s e s f rom one end are n e g l e c t e d here because o f the method used to i n t r o d u c e the l i g h t i n t o the p h o t o m u l t i p i i e r s . T h i s i s e l a b o r a t e d on i n the s e c t i o n e n t i t l e d P h o t o m u l t i p i i e r s :  D e s i g n C o n s i d e r a t i o n s . F i g u r e 11. F i b e r O p t i c s S l i t P a c k a g e . 41 3 . 3 P h o t o m u l t i p i i e r s 3 . 3 . 1 D e s i g n C o n s i d e r a t i o n s Quantum Efficiency Enhancement: In 1965 G u n t e r , E r i c s o n and G r a n t [ 2 1 , 2 2 ] showed e x p e r i m e n t a l l y t h a t the s e n s i t i v i t y o f a p h o t o m u l t i p i i e r c o u l d be i n c r e a s e d by t o t a l i n t e r n a l r e f l e c t i o n o f l i g h t i n the end window o f the t u b e . Under optimum c o n d i t i o n s t hey showed t h a t n e a r l y a 5 x i n c r e a s e i n quantum e f f i c i e n c y (QE) was p o s s i b l e w i t h red l i g h t . A m a t h e m a t i c a l model c o n s i d e r e d by S i z e l o v e and Love [23 ] p r e d i c t e d s i m i l a r r e s u l t s . A s i m i l a r t e c h n i q u e was used i n t h i s s ys tem to c o u p l e l i g h t f rom the f i b e r o p t i c b u n d l e s i n t o the p h o t o -m u l t i p l i e r s (EMI 9558A, S -20 ) s u r f a c e . The f i n a l a r r a n g e -ment i s shown i n F i g u r e ( 1 2 ) . L i g h t f rom the g l a s s f i b e r s B E A M F i g u r e 1 2 . P h o t o m u l t i p l i e r End Window Showing Method of T o t a l I n t e r n a l R e f l e c t i o n . 42 e n t e r s the end window a t 45° t h rough a drop o f index m a t c h -i n g p a r a f f i n o i l . The l i g h t i s t r a p p e d by t o t a l i n t e r n a l r e f l e c t i o n between the p h o t o c a t h o d e and the tube f a c e and r e l e a s e s p h o t o e l e c t r o n s on each b o u n c e . In agreement w i t h J e n n i n g s et al. [24 ] b l u e and g r e e n l i g h t i s c o m p l e t e l y a b s o r b e d i n t h i s p r o c e s s as seen by o b s e r v i n g the l i g h t wh i ch f i n a l l y e s c a p e s from the edge o f the w indow. The quantum e f f i c i e n c y o f a p h o t o m u l t i p l i e r i s g i ven by [25] : QE = S x 1 2 3 x 9 ' 5 x 100% w h e r e : X = w a v e l e n g t h i n n a n o m e t e r s S = c a t h o d e r a d i a n t s e n s i t i v i t y Camp/wat t ] ] = c u r r e n t l e a v i n g p h o t o c a t h o d e i n c i d e n t r a d i a n t power I f the w a v e l e n g t h and pho ton f l u x o f the i n c i d e n t r a d i a t i o n a re kep t c o n s t a n t a long w i t h the g a i n o f the dynode s t a g e s o f the tube i t i s seen t h a t the anode c u r r e n t i s d i r e c t l y p r o p o r t i o n a l to the Q E . Thus the i n c r e a s e i n QE by any enhancement t e c h n i q u e i s e a s i l y found d i r e c t l y by m e a s u r i n g the anode c u r r e n t . 43 To measure the enhancement the method o f F i g u r e (12) was compared to a s i m i l a r a r rangement i n wh i ch l i g h t f rom the f i b e r s e n t e r e d the tube normal to the s u r f a c e at the c e n t r e o f the p h o t o c a t h o d e . Us ing a g a l l i u m - a r s e n i d e o l i g h t - e m i t t i n g d i o d e as the l i g h t s o u r c e (X ~ 6600 A) the quantum e f f i c i e n c y was found to i n c r e a s e by a f a c t o r o f 3 . T h i s i s s l i g h t l y l o w e r than t h a t c l a i m e d by G u n t h e r , E r i c s o n and G r a n t [21] bu t i d e n t i c a l t o the enhancement a c h i e v e d by Oke and S c h i l d [26] who a l s o i n v e s t i g a t e d S20 s u r f a c e s i n the red end o f the s p e c t r u m . A c c e p t i n g the EMI s p e c i f i c a t i o n s t h a t the t y p i c a l QE o f an S20 s u r f a c e a t 6943 A i s about 3.5% i t i s seen t h a t the enhanced QE i s about 10% a t t h i s w a v e l e n g t h . Phot omul t i p l i e v Pulsing: The b a s i c o p e r a t i o n o f the d e t e c t i o n s y s t e m , as b r i e f l y o u t l i n e d e a r l i e r , i s as f o l l o w s : a l a s e r l i g h t p u l s e a r r i v e s s i m u l t a n e o u s l y a t each p h o t o m u l t i p i i e r ; each anode p u l s e i s s u i t a b l y d e l a y e d and d i s p l a y e d s e q u e n t i a l l y on a s i n g l e o s c i l l o s c o p e . As the l a s e r p u l s e i s a p p r o x i m a t e l y 30 nsec l o n g , the d e l a y between p h o t o m u l t i p i i e r s was chosen as 100 nsec and a c h i e v e d by e q u a l l e n g t h s o f d e l a y c a b l e . Tha t i s , the s i g n a l f rom the f i r s t tube a r r i v e s a t the scope w i t h no d e l a y , the second 44 t u b e ' s p u l s e i s d e l a y e d by 100 n s e c , the t h i r d tube by 200 nsec e t c . u n t i l a l l f i v e s i g n a l s a re d i s p l a y e d . To a v o i d a d d i n g the backg round l e v e l s , the PM's must a l l be p u l s e d on f o r 100 nsec d u r i n g the l a s e r p u l s e and then t u r n e d o f f a g a i n . A p p e n d i x I r e v i e w s the p o s s i b l e c o n f i g u r a t i o n s used f o r p u l s i n g photomul t i p i i e r s , and the r e s t o f t h i s s e c t i o n d e a l s s p e c i f i c a l l y w i t h the two methods t r i e d . One o f the methods was s u c c e s s f u l and an e x p l a n a t i o n i s g i v e n f o r the f a i l u r e o f the o t h e r . In g e n e r a l t h e r e a re two c h o i c e s f o r p u l s i n g pho tomu1 t i p i i e r s : (a ) s w i t c h i n g t h e t u b e i t s e l f on and o f f , o r (b) e l e c t r o n i c a l l y g a t i n g t h e o u t p u t s i g n a l Method (a) was i n v e s t i g a t e d f i r s t because f a s t t r a n s m i s s i o n g a t e s were no t a v a i l a b l e w i t h the p r o p e r s p e c i f i c a t i o n s , and because by p u l s i n g the tube an i n c r e a s e i n the g a i n can be a c h i e v e d under the p r o p e r c o n d i t i o n s [ 2 7 ] . PULSING THE PHOTOMULTIPLIER-TUBE S p e c i f i c a l l y , the ca thode was p u l s e d n e g a t i v e w i t h r e s p e c t to the f i r s t dynode . A p u l s e g e n e r a t o r u s i n g a mercu ry 45 w e t t e d r e l a y and a d e l a y c a b l e gave a 150 v o l t p u l s e , 100 nsec w i d e , w i t h r i s e and f a l l t imes o f l e s s than one nano-second bu t was d i s c a r d e d because i t had a j i t t e r on the o r d e r of 1 u s e e . A n o t h e r g e n e r a t o r u s i n g a h i g h v o l t a g e t r a n s i s t o r d r i v e n by a o n e - s h o t m u l t i v i b r a t o r a l s o gave f a s t s q u a r e p u l s e s w i t h j i t t e r s l e s s than one n a n o s e c o n d . But the o u t p u t o f the p h o t o m u l t i p i i e r l a s t e d much l o n g e r when i l l u m i n a t e d w i t h a DC l i g h t s o u r c e than 100 n s e c , and a l a r g e s p i k e was p r e s e n t i n the o u t p u t a t the b e g i n n i n g o f the ga te p u l s e . T h i s s p i k e was a t t r i b u t e d to a ca thode space cha rge and cu red by b i a s i n g the ca thode ten v o l t s p o s i t i v e w i t h r e s p e c t to the f i r s t dynode . Nex t a n e g a t i v e s i n e - s h a p e d p u l s e was a p p l i e d to the ca thode i n s t e a d o f the squa re p u l s e . Wi th t h i s t h e r e was even l e s s n o i s e i n the o u t p u t bu t i n a l l c a s e s the anode c u r r e n t p u l s e was c o n s i d e r a b l y l o n g e r than 100 n s e c , an u n s a t i s f a c t o r y c o n d i t i o n because o f the d e l a y l i n e s . An e x p l a n a t i o n f o r the l e n g t h o f the anode p u l s e i s g i v e n by F a r i n e l l i and Ma lvano [ 2 8 ] . They c o n s i d e r t h a t the ca thode i s a t h i n l a y e r o f s e m i c o n d u c t i n g m a t e r i a l and t h a t a p u l s e a p p l i e d to i t s c i r c u m f e r e n c e t a k e s a r e l a t i v e l y l o n g t ime to t r a v e l a c r o s s the s u r f a c e . By s o l v i n g the r e l e v a n t p r o p a g a t i o n e q u a t i o n they can e s t i m a t e the t r a n s i t t ime o f a p u l s e t h rough the p h o t o c a t h o d e . A s i m i l a r e f f e c t i s no ted by De M a r t i n i and Wacks [29 ] and by S u e m a t s u , 46 Normura and Tom i t a [30] who p l o t the e q u i d e l a y l i n e s on the p h o t o c a t h o d e o f an RCA 7102 . A l l t h i s p o i n t s out the f a c t t h a t p u l s i n g the p h o t o c a t h o d e i s an u n a c c e p t a b l e method because o f the f undamen ta l l i m i t a t i o n o f the tube i t s e l f . G A T I N G PM O U T P U T The s u c c e s s f u l p u l s i n g t e c h n i q u e uses a t r a n s m i s s i o n ga te on the o u t p u t c i r c u i t o f each p h o t o m u l t i p l i e r . The t ubes a re run c o n t i n u o u s l y and the o u t p u t s sampled f o r 100 nsec d u r i n g t he l a s e r p u l s e . Space cha rge p rob lems a s s o c i a t e d w i t h p u l s i n g t he tubes t h e m s e l v e s a re e l i m i n a t e d because o f t he c o n t i n u o u s o p e r a t i o n . A d e t a i l e d d e s c r i p t i o n o f the o p e r a t i o n o f the t r a n s m i s s i o n g a t e s , a l o n g w i t h the c i r c u i t s i n v o l v e d i s g i v e n i n Append i x I I . 3 . 3 . 2 P e r f o r m a n c e To e v a l u a t e the p e r f o r m a n c e o f the comp le te d e t e c -t i o n s y s t e m , a l i g h t - e m i t t i n g d i o d e (LED) was used as a p u l s e d l i g h t s o u r c e i n the c i r c u i t o f F i g u r e ( 1 3 ) . The l i g h t o u t p u t f o l l o w s the shape o f the d r i v i n g p u l s e and the LED has a r i s e t i m e o f l e s s than f i v e n s e c . 47 Q +3v t o — ( Datapulse + out MLED630 N O T E : Peak emission wavelength of LED is 6600 A F i g u r e 13. C i r c u i t of LED D r i v e r . P r o v i s i o n was made i n the w i r i n g o f the p h o t o -m u l t i p l i e r s to v a r y the v o l t a g e o f dynodes D4 and D5 o f each tube between 33% and 100% o f the ave rage i n t e r d y n o d e v o l t a g e . Fo r a Venetian b l i n d s t r u c t u r e such as p r e s e n t i n the EMI 9558 t h i s v o l t a g e v a r i a t i o n g i v e s a g a i n a d j u s t m e n t o f about 30% f rom the maximum [ 3 1 ] . T h i s a l l o w s a l l f i v e c h a n n e l s t o be a d j u s t e d f o r the same absolute s e n s i t i v i t y by compen-sat ing f o r i nd iv idua l v a r i a t i o n s i n tube gain and op t ica l f i b e r t r a n s m i s s i o n . 48 Each tube as w e l l has a t r a n s i t t ime d e l a y between the a r r i v a l of t he l i g h t p u l s e and the anode c u r r e n t p u l s e . S i n c e a l l the tubes have t he same o v e r a l l b i a s on t h e i r dynode c h a i n s , the t r a n s i t t imes are a l l r e a s o n a b l y equa l (~ 50 n s e c ) and no p r o v i s i o n i s made to compensate f o r d i f f e r e n c e s . F i g u r e (14) shows the n o i s e i n the o u t p u t when no l i g h t i s p r e s e n t . The o s c i l l o s c o p e i s a T e c k t r o n i x 7704 w i t h 150 MHz b a n d w i d t h . T h i s n o i s e r e s u l t s f rom d i f f e r e n c e s i n r i s e and f a l l t imes o f the p o s i t i v e and n e g a t i v e ga te p u l s e s r e q u i r e d by the t r a n s m i s s i o n g a t e s . I t s peak v a l u e i s l e s s t han 50 mV. T h i s n o i s e l e v e l i s much l e s s than t h a t a c h i e v e d by De Marco and Penco [27 ] who c l a i m to have d e v e l o p e d a v e r y low n o i s e p u l s i n g t e c h n i q u e . F i g u r e s (15a) and (15b) show the o u t p u t o f the sys tem f o r a DC l i g h t l e v e l and a 30 nsec l i g h t p u l s e r e s p e c -t i v e l y f rom the LED s o u r c e . A l t h o u g h the l i g h t p u l s e has r i s e and f a l l t imes o f f i v e nsec i t i s seen t h a t the PM p u l s e s a re c o n s i s t e n t w i t h the s p e c i f i c a t i o n s o f 15 nsec r i s e t i m e f o r t h e s e t u b e s . The v a r i a t i o n s i n a m p l i t u d e o f the p u l s e s i n F i g u r e (15b) i s a s t a t i s t i c a l f l u c t u a t i o n due to the e x t r e m e l y low l i g h t o u t p u t o f the LED s o u r c e at t h i s p u l s e w i d t h . In bo th p h o t o g r a p h s t he l e n g t h o f t he PM g a t i n g p u l s e s has been made s l i g h t l y s h o r t e r than the 100 nsec v e r t i c a l s c a l e : 200 mV/division Fi g u r e 14. Noise i n PM Gating E l e c t r o n i c s . Figure 1 5 . P h o t o m u l t i p l i e r Outputs. 50 i n t e r - c h a n n e l d e l a y , thus a l l o w i n g the i n d i v i d u a l c h a n n e l s to be e a s i l y i d e n t i f i e d . 3 .4 P i s c u s s i on The c o m p l e t e sys tem i s shown i n F i g u r e ( 1 6 ) . A f t e r an a p p r o p r i a t e d e l a y t o a l l o w f o r the t r a n s i t t ime o f the l a s e r l i g h t and the i n t e r n a l t r a n s i t t ime o f the p h o t o m u l -t i p l i e r s , the ga te p u l s e g e n e r a t o r ( F i g u r e A - 2 , A p p e n d i x I I ) i s t r i g g e r e d by a s y n c p u l s e f rom the P o c k e l s C e l l . I t i n t u r n t r i g g e r s t he scope and opens the t r a n s m i s s i o n g a t e s ( F i g u r e A - l , A p p e n d i x I I ) t o a l l o w the PM p u l s e s t o pass i n t o the d e l a y c a b l e s . Each p u l s e i s t hen d e l a y e d by a d i f f e r e n t amount and d i s p l a y e d s e q u e n t i a l l y on the s c o p e . Bo th ends o f t h e t o t a l d e l a y l i n e a re t e r m i n a t e d by the l i n e ' s c h a r -a c t e r i s t i c impedance to p r e v e n t r e f l e c t i o n s . The method o f u s i n g t r a n s m i s s i o n g a t e s to p u l s e t he PM o u t p u t s appea rs s u p e r i o r to p u l s i n g the tubes them-s e l v e s . As e x p l a i n e d i n A p p e n d i x I the b e s t t e c h n i q u e s r e p o r t e d to da te have g a i n r i s e t i m e s o f 20 nsec and s p u r i o u s n o i s e b u r s t s o f a t l e a s t 100 mV. In the sys tem p r e s e n t e d he re t he g a i n r i s e t i m e i s f i v e nsec and a l l e l e c t r i c a l n o i s e i n the o u t p u t i s be low 50 mV. In a d d i t i o n the c u t o f f e f f i c -i e n c y o f the g a t e s i s v e r y h i g h , i n c o n t r a s t to one o f the b e s t p u l s e d tube methods [ 2 7 ] . light inputs from monochromator via fiber optics photomultipliers —jtlftJUb—1—JlxJUib—1—<SlMSlSLs 47 to all gates variable delay delay cables (100 nsec""^ each) tout gate pulse generator sync transmission gates signal in 6 sync, pulse from POCKELS CELL driver F i g u r e 16 . D e t e c t i o n System O p e r a t i o n . C h a p t e r 4 CONCLUSION In p r e p a r a t i o n f o r f u t u r e l a s e r l i g h t s c a t t e r i n g e x p e r i m e n t s on p lasmas a p u l s e d ruby l a s e r has been d e v e l o p e d i n c o n j u n c t i o n w i t h a m u l t i c h a n n e l s p e c t r a l a n a l y s e r f o r d e t e c t i o n o f the s c a t t e r e d l i g h t . The l a s e r , c o n s i s t i n g o f s e p a r a t e o s c i l l a t o r and o a m p l i f i e r r o d s , has a s p e c t r a l l i n e w i d t h o f 0 .08 A a t powers up to 150 M e g a w a t t s . The use o f a P o c k e l s C e l l as the Q-s w i t c h p e r m i t s a c c u r a t e s y n c r o n i z a t i o n w i t h the s p e c t r a l a n a l y s e r and a l l e x t e r n a l e l e c t r o n i c s . Fo r the m u l t i c h a n n e l d e t e c t i o n sys tem the o u t p u t s o f f i v e g a t e d p h o t o m u l t i p l i e r s a re s e q u e n t i a l l y d i s p l a y e d to g i v e an i n t e n s i t y v s . w a v e l e n g t h p r o f i l e on an o s c i l l o -scope s c r e e n . The a b i l i t y to r e c o r d f i v e d a t a p o i n t s s i m u l -t a n e o u s l y g r e a t l y s i m p l i f i e s the measurements o f s c a t t e r e d p r o f i l e s and r e d u c e s the e r r o r i n v o l v e d i n p l o t t i n g them. F u t u r e improvements to the sys tem s h o u l d i n c l u d e b e t t e r q u a l i t y o p t i c a l components i n the l a s e r and more 52 53 deve lopmen t o f the methods i n v o l v e d i n mak ing the g l a s s f i b e r s l i t s . B e t t e r o p t i c a l components would r e s u l t i n a n a r r o w e r , more s t a b l e mode p a t t e r n f o r the l a s e r . S m a l l e r g l a s s f i b e r s and pe rhaps b e t t e r s t a c k i n g t e c h n i q u e s c o u l d r e s u l t i n more a c c u r a t e s l i t s p a c i n g and l e s s l i g h t l o s s to the p h o t o m u l t i p i i e r s . REFERENCES S t e e l e , E . L . and W.C. D a v i s . 1965. " L a s e r A m p l i f i e r s J . A p p i . P h y s . , 3_6(2): 3 4 8 - 3 5 1 . B e l l m a n , R. , G. B i rnbaum and W.G. Wagner. 1963 . " T r a n s m i s s i o n o f Monoch roma t i c R a d i a t i o n i n a Two-L e v e l M a t e r i a l . " J . A p p i . P h y s . , 3 4 ( 4 ) : 780 . I z a t t , J . R . , R . C . M i t c h e l l and H. A . Daw. 1966. "The rma l Dependence o f Ruby L a s e r E m i s s i o n . " J . A p p i . P h y s . , 3 7 ( 4 ) : 1 5 5 8 - 6 2 . S imms, S . D . , A . S t e i n and C. R o t h . 1967 . "Rods Pumped by F l a s h l a m p s . " A p p i . O p t . , 6^(3): 5 7 9 - 5 8 0 . W e l l i n g , H . , C . J . B i c k a r t and H .G . A n d r e s e n . "Change o f O p t i c a l Pa th Leng th i n L a s e r Rods w i t h i n the Pumping P e r i o d . " IEEE J . Quan t . E l e c t r o n i c s , Q E - 1 ( 5 ) : 2 2 3 - 4 . G i b s o n , K . S . 1916. "The E f f e c t of Tempera tu re upon the A b s o r p t i o n Spec t rum o f a S y n t h e t i c R u b y . " P h y s . R e v . , 8 : 3 8 . B r a d l e y , D . J . , G. Magyar and M .C . R i c h a r d s o n . 1966. " I n t e n s i t y Dependent F requency S h i f t i n Ruby L a s e r G i a n t P u l s e s . " N a t u r e , 212 : 6 3 - 4 . B r a d l e y , D . J . , A .W. M c C u l l o u g h and P . D . S m i t h . 1966 . " I n t e r n a l S e l f - D a m a g e i n a 25 MW Ruby L a s e r O s c i l l a t o r B r i t . J . A p p i . P h y s . , 1 7.( 1 9 ) : 1 221 - 2 2 . M c C l u n g , F . J . and R.W. H e l l w a r t h . 1963 . " C h a r a c t e r s t i c s o f G i a n t O p t i c a l P u l s a t i o n s from R u b y . " P r o c . I E E E , 5 1 ( 1 ) : 4 6 - 5 3 . 54 55 [10 ] Wagner , W.G. and B . A . L e n g y e l . 1963 . " E v o l u t i o n of the G i a n t P u l s e i n a L a s e r . " J . A p p l . P h y s . , 34(7) : 2 0 4 0 - 4 6 . [11 ] L e n g y e l , B e l a A . 1962 . L a s e r s . John W i l e y & Sons I n c . New Y o r k . [12 ] R o s s , D. 1966. L a s e r s , L i g h t A m p l i f i e r s and O s c i l l a t o r s . Academic P r e s s , London and New Y o r k . [13 ] C o l l i n s , S . A . and G . R . W h i t e . 1963 . " I n t e r f e r o m e t e r L a s e r Mode S e l e c t o r . " A p p l . O p t . , 2: 448 . [14 ] M a g y a r , G. 1969 . "Mode S e l e c t i o n T e c h n i q u e s f o r S o l i d - S t a t e L a s e r s . " O p t i c s & L a s e r T e c h n o l o g y , 1 ( 5 ) : 2 3 1 - 3 9 . [15 ] S o o y , W. 1965 . "The N a t u r a l S e l e c t i o n o f Modes i n a P a s s i v e Q - S w i t c h e d L a s e r . " A p p l . P h y s . L e t t . , 7_: 36 . [ 16 ] C o o p e r , J . and J . R . G r e i g . A R a p i d S c a n n i n g F a b r y -P e r o t S p e c t r o m e t e r . I m p e r i a l C o l l e g e , London . [17 ] M c C l u n g , F . J . and D. W e i n e r . 1965 . " L o n g i t u d i n a l Mode C o n t r o l i n G i a n t P u l s e L a s e r s . " IEEE J . Quan t . E l e c t r o n i c s , 1 : 9 4 - 9 9 . [18 ] M a g y a r , G. 1967. " S i m p l e G i a n t P u l s e Ruby L a s e r o f H igh S p e c t r a l B r i g h t n e s s . " Rev . S c i . I n s t r . , 38_: 517 . [19 ] S t e i n , A . 1967. "Mode S e l e c t i o n f o r G i a n t P u l s e Ruby L a s e r s . " A p p l . O p t . , 6 ( 1 2 ) : 2 1 9 3 - 4 . [20 ] C o r n i n g G l a s s Works . 1969 . End F i n i s h i n g C o n s i d e r -a t i o n s . [21 ] G u n t e r , W.D. J r . , E . F . E r i c k s o n and G . R . G r a n t . 1965. "Enhancement o f P h o t o m u l t i p i i e r S e n s i t i v i t y by T o t a l I n t e r n a l R e f l e c t i o n . " A p p l . O p t . , 4 ( 4 ) : 512 . 56 [22] G r a n t , G . R . , W.D. G u n t e r , J r . and E . F . E r i c k s o n . 1965 . " H i g h A b s o l u t e P h o t o c a t h o d e S e n s i t i v i t y . " Rev . S c i . I n s t r . , 36_: 1 5 1 1 - 1 2 . [23 ] S i z e l o v e , J . R . and J . A . Love I I I . 1967 . " A n a l y s i s o f a M u l t i p l e R e f l e c t i v e T r a n s l u c e n t P h o t o c a t h o d e . " A p p i . Op t . , 6 (3 ) : 4 4 3 - 6 . [24 ] J e n n i n g s , R . J . , W.D. G u n t e r , J r . and G . R . G r a n t . Quantum E f f i c i e n c i e s G r e a t e r than 50% f rom C o m m e r c i a l l y A v a i l a b l e P h o t o m u l t i p i i e r s . Ames R e s e a r c h C e n t r e , NASA, M o f f e t t F i e l d , C a l i f . , 94035 . [25 ] RCA. T e c h n i c a l Manual P T - 6 0 . P h o t o t u b e s and P h o t o c e l 1 s . [26 ] O k e , J . B . and R . E . S c h i l d . 1968. "A P r a c t i c a l M u l -t i p l e R e f l e c t i o n T e c h n i q u e f o r Imp rov ing the Quantum E f f i c i e n c y o f P h o t o m u l t i p i i e r T u b e s . " A p p i . O p t . , 7 ( 4 ) : 6 1 7 - 2 2 . [27 ] De M a r c o , F. and E. P e n c o . 1969 . " P u l s e d P h o t o -m u l t i p l i e r s . " Rev . S c i . I n s t r . , 40_(9): 1 1 5 8 - 6 0 . [28 ] F a r i n e l l i , U and R. M a l v a n o . 1958 . " P u l s i n g o f P h o t o -m u l t i p l i e r s . " Rev . S c i . I n s t r . , 29^(8): 6 9 9 - 7 0 1 . [29 ] De M a r t i n i , F. and K . P . Wacks . 1967. " P h o t o m u l t i p i i e r Gate f o r S t i m u l a t e d Spon taneous L i g h t S c a t t e r i n g D i s c r i m i n a t i o n . " Rev . S c i . I n s t r . , 38 . (7 ) : 8 6 6 - 6 8 . [30 ] S u e m a t s u , Y . , K. Normura and E. T o m i t a . 1968. "Measurement o f D e l a y Time D i f f e r e n c e s on the P h o t o -ca thode S u r f a c e o f a P h o t o m u l t i p i i e r . " P r o c . I E E E , 5 6 ( 8 ) : 1 4 0 5 - 6 . [31 ] [32 ] EMI . An I n t r o d u c t i o n to the P h o t o m u 1 t i p 1 i e r . P o s t , R . F . 1952 . "The P e r f o r m a n c e o f P u l s e d P h o t o -m u l t i p l i e r s . " N u c l e o n i c s , 1_0: 4 6 . 57 [33 ] S i n g e r , S . , L . K . Neher and R. R u e h l e . " P u l s e d P h o t o -m u l t i p l i e r s f o r F a s t S c i n t i l l a t i o n C o u n t i n g . " Rev . S c i . I n s t r . , 27 : 4 0 . [34 ] E l p h i c k , B . L . 1959 . "A Method of A p p l y i n g an A v a l a n c h e T r a n s i s t o r G e n e r a t e d 70 ns G a t i n g P u l s e to a Focused P h o t o m u l t i p l i e r . " J . S c i . I n s t r u m . ( J . P h y s . E) , 2: 9 5 3 - 5 5 . APPENDIX I COMPARISON OF PHOTOMULTIPLIER PULSING TECHNIQUES In t he c o u r s e o f d e v e l o p i n g a s u i t a b l e p h o t o m u l -t i p l i e r g a t e , a s u r v e y was done o f the e x i s t i n g t e c h n i q u e s . T h i s i s p r e s e n t e d be low and t he r e l e v a n t t e r m i n o l o g y i s as fo l1ows : gain visetime : l e n g t h o f t i m e r e q u i r e d t o s w i t c h g a i n o f t u b e f r o m 10$ t o 90% o f i t s f u l l v a l u e . cutoff e f f i c i e n c y : r a t i o o f o u t p u t f o r t u b e ON t o o u t p u t f o r t u b e O F F . gain a m p l i f i c a t i o n : i n c r e a s e in g a i n o f t u b e o v e r n o r m a l n o n - p u l s e d o p e r a t i o n . As w e l l , K r e f e r s t o the ca thode and D n to the n t t L dynode o f a t u b e . 58 59 P u l s i n g Whole R e s i s t o r C h a i n In normal o p e r a t i o n the g a i n o f a p h o t o m u l t i p i i e r i s l i m i t e d by the maximum i n t e r - d y n o d e v o l t a g e t h a t can be a p p l i e d b e f o r e a r c i n g o c c u r s . However , i f the v o l t a g e to the dynode c h a i n i s s u p p l i e d as a s u f f i c i e n t l y s h o r t p u l s e , t h i s maximum v o l t a g e may be s a f e l y exceeded owing to the low m o b i l i t y o f i o n s r e l a t i v e to e l e c t r o n s [ 3 2 ] . As shown by P o s t [32 ] o v e r v o l t i n g the tube i n such a manner can l e a d to a s u b s t a n t i a l a m p l i f i c a t i o n o f g a i n . P u l s i n g a 931A w i t h a 4 kv p u l s e 2 . 5 usee l o n g r e s u l t e d i n an o v e r a l l g a i n o f 1 0 9 , an i n c r e a s e o f 2 x 1 0 3 o v e r the normal g a i n f o r t h i s t u b e . S i n g e r et al. [ 33 ] have r e p o r t e d s i m i l a r r e s u l t s f rom the same t y p e o f t u b e , and De Marco and Penco [27 ] r e p o r t a g a i n a m p l i f i c a t i o n o f 1 0 3 by d r i v i n g an RCA 7265 w i t h a 6 kv p u l s e . The g a i n r i s e t i m e i n t h i s l a t t e r case i s c l a i m e d to be 10 n s e c . T h i s i s i n d i r e c t c o n t r a s t to the work o f F a r i n e l l i and Ma lvano [28 ] who show t h a t f a s t r i s e s s h o u l d be s e v e r e l y l i m i t e d by the ca thode r e s i s t i v i t y . In a d d i t i o n to the advan tage o f g a i n a m p l i f i c a -t i o n p u l s i n g the who le dynode c h a i n a l s o has an e x c e l l e n t c u t o f f e f f i c i e n c y , t y p i c a l l y 1 0 6 [ 2 7 ] . D e s p i t e t h e s e advan tages t h i s method has s e v e r a l s e v e r e d i s a d v a n t a g e s wh ich make the t e c h n i q u e g e n e r a l l y u n a c c e p t a b l e : (a) the p u l s e g e n e r a t o r must s u p p l y f a s t , 60 w e l l - f o r m e d h i g h v o l t a g e p u l s e s w i t h n e g l i g i b l e j i t t e r i n t o a low impedance l o a d ; (b) the g a i n r i s e t i m e i s l i m i t e d by t he ca thode r e s i s t i v i t y [ 2 8 ] ; ( c ) l a r g e n o i s e s i g n a l s a re p r e s e n t i n the o u t p u t [ 2 7 ] ; (d) a t h i g h o v e r v o l t a g e s some tubes have a t endency t o o s c i l l a t e [ 3 3 ] . P u l s i n g F o c u s i n g E l e c t r o d e F a r i n e l l i and Ma lvano [28 ] r e p o r t t h i s the most c o n v e n i e n t method f o r them when u s i n g a Dumont 6292 p h o t o -t u b e . No i n d i c a t i o n o f the n o i s e i n t r o d u c e d i n the o u t p u t i s g i v e n and the c u t o f f e f f i c i e n c y seems v e r y g o o d . E l p h r i c k [34] p u l s e s the f o c u s o f an RCA 6810 w i t h a s p e c i a l a v a l a n c h e t r a n s i s t o r c i r c u i t and shows g a i n r i s e t i m e s o f 10 n s e c . He p o i n t s out t h a t b i a s i n g the f o c u s e l e c t r o d e to p h o t o -c a t h o d e p o t e n t i a l and then p u l s i n g i t p o s i t i v e r e s u l t s i n l a r g e n o i s e t r a n s i e n t s due to space cha rge a c c u m u l a t i o n s . I n s t e a d , he b i a s e s the f o c u s i n g e l e c t r o d e to the second dynode p o t e n t i a l and p u l s e s i t n e g a t i v e l y . No n o i s e m e a s u r e -ments a re g i v e n and a g a i n the c u t o f f e f f i c i e n c y seems v e r y g o o d . P u l s i n g C a t h o d e - F i r s t Dynode S t a g e Two p o s s i b i l i t i e s a re p r e s e n t h e r e : 61 1. P u l s i n g K Negative with Respect to DI. A l t h o u g h an e x c e l l e n t c u t o f f e f f i c i e n c y can be a c h i e v e d and the n o i s e i n the o u t p u t can be made v e r y l o w , t h i s method i s not a d v i s a b l e because of i t s poor g a i n r i s e -t i m e . As e x p l a i n e d by F a r i n e l l i and Ma lvano [28 ] and c o n -f i r m e d by De M a r t i n i and Wacks [29 ] and the work i n t h i s t h e s i s , a v o l t a g e p u l s e r e q u i r e s c o n s i d e r a b l e t ime to t r a v e l a c r o s s the p h o t o c a t h o d e , wh i ch i s a t h i n l a y e r o f s e m i c o n -d u c t i n g m a t e r i a l . In a d d i t i o n , the tube g a i n i s most s e n s i t i v e t o f l u c t u a t i o n s i n the K-D l s t a g e w h i c h s h o u l d p r e f e r a b l y be v o l t a g e s t a b i l i z e d . 2. P u l s i n g DI P o s i t i v e with Respect to K. De M a r t i n i and Wacks [29] r e p o r t a method o f p u l s i n g an RCA 7265 d e t e c t o r w i t h a p o s i t i v e s q u a r e p u l s e a p p l i e d t o the f i r s t dynode w h i c h i s b i a s e d n e g a t i v e w i t h r e s p e c t to the c a t h o d e . An e x c e l l e n t c u t o f f e f f i c i e n c y i s a c h i e v e d and the g a i n r i s e t i m e i s c l a i m e d to be b e t t e r t han 20 n s e c . However , no n o i s e measurements a re g i v e n , no m e n t i o n i s made o f space cha rge t r a n s i e n t s and the ga te p u l s e w i d t h i s v e r y l o n g (100 y s e c ) . 62 P u l s i n g C a t h o d e and F i r s t Two D y n o d e s As found by De Marco and Penco [27J p u l s i n g K-D1-D2 w i t h a n e g a t i v e p u l s e has the same c h a r a c t e r i s t i c s as t h o s e o u t l i n e d above f o r p u l s i n g the ca thode a l o n e . The c u t o f f e f f i c i e n c y i s v e r y good and the g a i n r i s e t i m e i s p o o r . E l p h i c k [34 ] a l s o r e p o r t s a method i n wh i ch D2 i s b i a s e d to the p o t e n t i a l o f DI and then p u l s e d p o s i t i v e . He c o n -s i d e r s t h i s u n s a t i s f a c t o r y because o f poor g a i n r i s e t i m e . P u l s i n g L a s t Dynode S t a g e s De Marco and Penco [27 ] recommend a c i r c u i t t hey d e v e l o p e d to p u l s e dynodes D12 and D13 o f an RCA 7265 t u b e . They show g a i n r i s e t i m e s o f 20 nsec and ga te p u l s e s 300 nsec l o n g . However the d i s a d v a n t a g e s a re as f o l l o w s : a) t h e O N / O F F r a t i o f o r c u t o f f e f f i c i e n c y i s o n l y a b o u t 3 0 0 , b) e v e n w i t h e l a b o r a t e s h i e l d i n g t h e o u t -p u t n o i s e i s g r e a t e r t h a n 200 mV, c ) t h e method r e q u i r e s a 400 v o l t s q u a r e p u l s e o f a p p r o p r i a t e w i d t h . 63 C o u p l i n g Anode S i g n a l T h r o u g h T r a n s m i s s i o n G a t e I n s t e a d of s w i t c h i n g the PM on and o f f a d i f f e r e n t app roach i s to ga te the anode s i g n a l f o r the d e s i r e d t i m e . T h i s l e a v e s t he tube r u n n i n g c o n t i n u o u s l y and e l i m i n a t e s the d i f f i c u l t i e s of t r a n s i e n t n o i s e and g a i n r i s e t i m e s a s s o -c i a t e d w i t h the p r e v i o u s t e c h n i q u e s . However , the method i s not u s e f u l f o r s i t u a t i o n s where the PM must be p u l s e d to p r e v e n t o v e r l o a d i n g . F a r i n e l l i and Ma lvano [28 ] men t i on e l e c t r o n i c g a t i n g and d i s c o u n t i t as b e i n g i m p r a c t i c a l . S i n c e then improved t e c h n o l o g y has made the method f a r more a t t r a c t i v e . U s i n g the g a t e s d e v e l o p e d f o r t h i s t h e s i s (Append i x I I ) t he p u l s e d p h o t o m u l t i p i i e r s have the f o l l o w i n g c h a r a c t e r i s t i c s : a) c u t o f f e f f i c i e n c y i s as good as f o u n d by p u l s i n g p h o t o c a t h o d e ( p r o b a b l y g r e a t e r t h a n \0h), b) t h e e f f e c t i v e g a i n r i s e t i m e i s l e s s t h a n f i v e n s e c . T h i s i s t h e t u r n - o n t i m e f o r t h e g a t e s , c ) o u t p u t n o i s e i s l e s s t h a n 50 mV w h i c h i s c o n s i d e r a b l y l e s s t h a n f o r any o t h e r s y s t e m p r e s e n t e d i n t h e l i t e r a t u r e . APPENDIX I I PHOTOMULTIPLIER ELECTRONICS Each s e t o f dynode c h a i n r e s i s t o r s i s w i r e d as a s t a n d a r d c o n f i g u r a t i o n w i t h two m ino r e x c e p t i o n s . F i r s t l y , t he p o t e n t i a l o f t he f o u r t h dynode (D4) w i t h r e s p e c t to D5 i s v a r i a b l e f rom 33% to 100% of t he ave rage i n t e r d y n o d e v o l t a g e . T h i s a l l o w s a 30% v a r i a t i o n i n the g a i n o f each t u b e . S e c o n d l y , t he anode l o a d r e s i s t a n c e i s p a r t o f t he t r a n s m i s s i o n ga te c i r c u i t and i s a d j u s t a b l e . Wi th a b i a s o f - 1500 v o l t s the c h a i n c u r r e n t pe r tube i s about 1 ma. A l l the dynode c h a i n s a re c o n n e c t e d i n p a r a l l e l to the same h i g h v o l t a g e s u p p l y . The anode o f each tube i s c o n n e c t e d to a s e p a r a t e t r a n s m i s s i o n ga te c i r c u i t shown i n F i g u r e ( A - l ) . A l l f i v e g a t e s a re i d e n t i c a l and a l l a re d r i v e n i n p a r a l l e l by a p u l s e g e n e r a t o r d e s c r i b e d l a t e r . The h e a r t o f t he ga te i s a h i g h s p e e d , u n i t y g a i n b u f f e r d e s i g n a t e d LH0033 by the m a n u f a c t u r e r , N a t i o n a l S e m i c o n d u c t o r C o r p o r a t i o n . The c h a r -a c t e r i s t i c s t h a t make i t p a r t i c u l a r l y a t t r a c t i v e a re as f o l l o w s : i n p u t impedance of 1 0 1 1 ohms, o u t p u t impedance 64 F i g u r e A - l . T r a n s m i s s i o n Gate C i r c u i t . 66 o f 6 ohms, bandw id th o f TOO MHz. W h i l e not o r i g i n a l l y i n -tended to be used w i t h a p u l s e d power s u p p l y , i t pe r f o rms v e r y w e l l i n the c i r c u i t g i v e n . I t s o n l y i n c o n v e n i e n c e i s the r e q u i r e m e n t o f two s u p p l y v o l t a g e s p o s i t i v e and n e g a t i v e w i t h r e s p e c t to g r o u n d . Thus t u r n i n g the ga te on f o r 100 nsec r e q u i r e s two s i m u l t a n e o u s s q u a r e c u r r e n t p u l s e s each 100 nsec l o n g and o f o p p o s i t e p o l a r i t y . R e f e r r i n g to F i g u r e ( A - l ) the IK p o t e n t i o m e t e r between i n p u t and g round s e r v e s as the anode l o a d o f the PM. T h i s a d j u s t m e n t v a r i e s the o u t p u t o f each ga te and to some e x t e n t the r i s e t i m e . The d r i v i n g p u l s e s e n t e r t h r o u g h p r o p e r l y t e r m i n a t e d c o a x i a l c a b l e s f rom the p u l s e g e n e r a t o r t o p i n s 10 and 12 o f the b u f f e r . Damping r e s i s t o r s o f 100 ohms each c o n n e c t t h e s e i n p u t s to p i n s 9 and 1 r e s p e c t i v e l y to a l l o w the b u f f e r to d r i v e l o n g c o a x i a l c a b l e s . The 100 ohm po t between p i n s 7 and 10 p r o v i d e s a d j u s t m e n t f o r o f f s e t n u l l . Ou tpu t i s t h r o u g h an i s o l a t i o n r e s i s t o r to a s t a n d a r d c o a x i a l c o n n e c t o r . The o u t p u t f rom the b u f f e r i s a c o m b i n a t i o n o f the i n p u t s i g n a l and the a l g e b r a i c a d d i t i o n o f the two s u p p l y v o l t a g e s . N o r m a l l y the s u p p l y v o l t a g e s would be DC and any v a r i a t i o n between them wou ld appear as a DC l e v e l i n the o u t p u t , wh i ch c o u l d be removed w i t h the o f f s e t a d j u s t . But i n t h i s a p p l i c a t i o n the s u p p l i e s a re p u l s e d so i t i s e s s e n t i a l 67 t h a t the two o p p o s i t e g o i n g p u l s e shapes be as n e a r l y i d e n -t i c a l as p o s s i b l e . Any v a r i a t i o n s i n the t ime o f a r r i v a l or i n the r i s e t i m e s o f d r i v i n g p u l s e s w i l l show up as n o i s e s p i k e s i n the o u t p u t . In a d d i t i o n , each b u f f e r r e q u i r e s t h a t the p u l s e s have an a m p l i t u d e o f a t l e a s t ±5 v o l t s and s i n c e a l l a re d r i v e n i n p a r a l l e l t h i s means t h a t the g e n -e r a t o r must work i n t o a s o u r c e impedance o f 10 ohms. The c i r c u i t o f the g a t i n g p u l s e g e n e r a t o r t h a t meets t h e s e s p e c i f i c a t i o n s i s shown i n F i g u r e ( A - 2 ) . H igh speed t r a n s i s t o r s a re used i n an a v a l a n c h e mode to d i s c h a r g e c a b l e s o f 50 nsec e l e c t r i c a l l e n g t h . Two t r a n s i s t o r s p r o -duce the p o s i t i v e and n e g a t i v e g o i n g p u l s e s w h i l e a t h i r d i s used w i t h a c a p a c i t o r to p r o v i d e a sync p u l s e o u t p u t . The two d r i v i n g p u l s e s a re a d j u s t e d to be e q u a l i n w i d t h by v a r y i n g the l e n g t h s o f the d i s c h a r g e c a b l e s . The o v e r a l l c h a r a c t e r i s t i c s o f the g e n e r a t o r a re as f o l l o w s : I n p u t t r i g g e r I eve I : O u t p u t p u l s e a m p l i t u d e s O u t p u t p u l s e w i d t h s : Outp ut r i s e t i mes : O u t p u t f a l l t i m e s : S y n c p u l s e a m p l i t u d e : S y n c p u l s e w i d t h : S y n c p u l s e r i s e t i m e : 300 mV ± 5 V i n t o 10 ohm Ioad 100 ns I e s s t h a n 2 n s e c 5 n s e c + 10 V i n t o 50 ohm Ioad a p p r o x . I y s e c 5 n s e c F i g u r e A-2. A v a l a n c h e T r a n s i s t o r Gate P u l s e G e n e r a t o r . 69 F i g u r e (A -3 ) shows the power s u p p l y f o r the ga te p u l s e g e n e r a t o r . The v o l t a g e s a re a d j u s t e d to g i v e r e l i -a b l e a v a l a n c h e o p e r a t i o n and equa l o u t p u t p u l s e a m p l i t u d e s . F i g u r e A - 3 . Power Supp l y f o r Gate P u l s e G e n e r a t o r . o 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0084863/manifest

Comment

Related Items