Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Studies in the optical spectrum of singly ionized sodium, Na II Wu, Chien-Ming

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1971_A1 W8.pdf [ 9.96MB ]
Metadata
JSON: 831-1.0084833.json
JSON-LD: 831-1.0084833-ld.json
RDF/XML (Pretty): 831-1.0084833-rdf.xml
RDF/JSON: 831-1.0084833-rdf.json
Turtle: 831-1.0084833-turtle.txt
N-Triples: 831-1.0084833-rdf-ntriples.txt
Original Record: 831-1.0084833-source.json
Full Text
831-1.0084833-fulltext.txt
Citation
831-1.0084833.ris

Full Text

STUDIES IN THE OPTICAL SPECTRUM OF SINGLY IONIZED SODIUM, Na II.;. by CHIEN-MING WU B.Sc, National Taiwan University, 1962 M.Sc., Univ e r s i t y of B r i t i s h Columbia, 1967 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n the Department of PHYSICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January, 1971 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree at the U n i v e r s i t y of B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Depa rtment The U n i v e r s i t y o f B r i t i s h C olumbia Vancouver 8, Canada ABSTRACT The spectrum of the s i n g l y ionized sodium ion, Na I I , has been photographed i n the region between 350 X and 9000 X using as sources a condensed electrodeless discharge and a condensed spark i n helium. Exposures were taken on a 3-meter normal-incidence vacuum grating spectro-graph, on a 21-foot concave grating spectrograph, on a Hil g e r E-478 large interchangeable quartz and glass prism spectrograph, and Fabry-Perot interferometer. The term system has been revised and much extended. Five hundred and twenty-seven l i n e s (with twenty doubly i d e n t i f i e d ) • a r e c l a s s i f i e d as combinations between sixty-two odd levels and seventy-one 2 5 2 2 5 2 even l e v e l s . The i o n i z a t i o n l i m i t s , 2s 2p ( ^3/2^ a n c* ^s 2p ( have been redetermined as 381390.2 cm"1 and 382756.6 cm"1 (±2.0 cm 1 ) . ABSTRACT i i ACKNOWLEDGEMENTS v i i CHAPTER I INTRODUCTION 1 CHAPTER II THE BASIC THEORETICAL IDEAS 2.1 Coupling of the Electrons 3 2.2 Series Limit 9 2.3 P o l a r i z a t i o n Formula 11 2.4 Selection Rules 13 CHAPTER III EXPERIMENTAL PROCEDURE 3.1 L i g h t Source 15 3.1.1 Condensed spark i n helium ^ 3.1.2 Electrodeless discharge 15 3.2 A c q u i s i t i o n of Spectrograms 18 3.3 Measurement and Reduction of Spectrograms . . . 21 3.4 Fabry-Perot Interferometer 22 CHAPTER IV RESULT AND ANALYSIS 4.1 Energy Levels Observed 24 4.2 2p^ns Series.. 31 5 5 - 3 / 4.3 2p 3p and 2p 4p Configurations ^ 4.4 2p^nd Series 35 5 5 4.5 2p nf and 2p ng Series 39 4.6 Series Limit 39 CONCLUSION 46 BIBLIOGRAPHY kl A) For the measurement of g r a t i n g p l a t e s . . 76 B) For the measurement of prism p l a t e s . . . 76 ( I I ) Automatic Punching of I.B.M. Data Cards . . . 77 APPENDIX 2 Computer Program (I) Sample Program f o r L i n e a r I n t e r p o l a t i o n on 3-m Vacuum Spectrograph 79 ( I I ) Sample Program f o r Cubic F i t on 3-m Vacuum and 21-foot G r a t i n g Spectrograph 80 (III) Sample Program f o r Hartmann w i t h Cubic C o r r e c t i o n on Prism Spectrograph 83 APPENDIX 3 U n c l a s s i f i e d Line L i s t 90 APPENDIX 4 D e s c r i p t i o n of Exposures 105 LIST OF TABLES 1 Interferometric Data, Grating Data and Prism Data 23 2 Even Levels of Na II - 24 3 Odd Levels of Na I I 27 4 Observed and Calculated Levels of 2p"\\s of Na I I . . 33 5 T r a n s i t i o n from 4f, 5f, and 6f to 4s 34 6 The T r a n s i t i o n 3d — 4f i n Na II 37 7 The T r a n s i t i o n 3d' — 4f' i n Na II 38 8 Observed and Calculated Energy Levels of 2p~*4f, 2p 55f and 2p 56f 41 9 Observed and Calculated Energy Levels of 2p^7f, 2p 58f, 2p 56g and 2p 57g 43 10 P o l a r i z a t i o n Formula for 2p^n JL with JL. 3 44 11 L i s t of C l a s s i f i e d Na II Lines 49 LIST OF FIGURES Figure Page 1 Condensed Spark i n Helium Source . . 16 2 Power Supply C i r c u i t for Condensed Spark i n Helium Source 16 3 E l e c t r i c C i r c u i t f o r Electrodeless Discharge Source 17 ACKNOWLEDGEMENTS I wish to express my gratitude to Dr. A. M. Crooker for h i s i n t e r e s t , assistance, and encouragement during the course of this research. I t i s a pleasure to acknowledge the technical assistance of Mr. J. Lees, Mr. A. J. Fraser, and Mr. W. J. Morrison. CHAPTER I INTRODUCTION The spectrum of s i n g l y ionized sodium was f i r s t observed by 13 S c h i l l i n g e r (1909) . I t was again observed by Foote, Meggers, and Mohler^ thirte e n years l a t e r . Foote and his colleagues used a three electrode discharge tube, and studied the enhanced spark spectrum emitted as the potential gradient was increased. Ninety u n c l a s s i f i e d l i n e s were observed when the applied voltage was 5000 v o l t s . Most of these l i n e s were e i t h e r absent or very weak when the applied voltage was set below 30 v o l t s . But even when these spark l i n e s were excited the arc spectrum was dominant. No designations had been given to these ninety l i n e s by ; Foote et a l . The electrodeless discharge was run to excite the spark spectrum of sodium by Newman (1928) 1 1. He found that there are many groups of l i n e s i n the spectrum having constant differences but no term scheme had been arranged. Most of these l i n e s were c l a s s i f i e d l a t e r by 3 Bowen (1928) . A hollow cathode discharge was run on a 21-foot concave 8 grating spectrograph i n the near u l t r a - v i o l e t region by F r i s c h (1931) . One hundred and twenty-five l i n e s were observed of which one hundred and nine l i n e s were c l a s s i f i e d as the combinations between 2p~*3s - 2p^3p and 2p^3p - Z where Z belongs to either 3d or 4s configurations. In the 2 / 5 extreme u l t r a - v i o l e t region, Bowen (1924) and Edlen and Ericson (1930) had observed the resonance l i n e s 372.065 A* and 376.350 A. A high p o t e n t i a l 16 vacuum spark was used by Vance (1932) . Nine l i n e s were observed i n the o o region between 250 A and 380 A. These were c l a s s i f i e d as the tr a n s i t i o n s from 2p^ns, J = 1, (n = 3,4,5,6) and 2p^3d, J = 1, to the ground state 2pk . This analysis was revised by Soderqvist (1934)^. Since then nothing had been done u n t i l 1965 when Tsui et a l . (1965) used a s l i d i n g spark, actuated by a DC (10 - 30 KV) condensed discharge c i r c u i t , as l i g h t source. F i f t e e n previously unknown l i n e s , most of them d i f f u s e , o o were found i n the region from 4300 A to 4550 A. They were c l a s s i f i e d as combinations from 2p~*4f to 2p^3c}. The analyses of Ne-I l i k e ions were very incomplete except for the f i r s t member Ne I. I t i s very worthwhile to complete the whole ten-electron i s o e l e c t r o n i c sequence including the spectra of Na I I , Mg III and Al IV, since these are a l l very important i n Astrophysics and Astronomy. The purpose of this i n v e s t i g a t i o n i s to revise and extend the analysis of the spectrum of s i n g l y ionized sodium to provide a firm basis for the re-analysis, of the spectra of Mg I I I , and A l IV and succeeding members of ten-electron spectra. CHAPTER II, In this chapter we w i l l summarize those basic theoretical ideas and semi-empirical results which are useful in the analysis of spectra similar to the spectrum of singly ionized sodium. The basic treatment of a two 18 / 6 electron spectrum is given in detail by Condon and Shortley and Edlen . 2.1 Coupling of the Electrons The configurations of two electrons have several ways of arriving at the fi n a l resultant of four vectors, j?^, s^, JJ.^ , S2« The coupling scheme in each case depends on the relative strength of the various interactions. Since the spin-other orbit interaction, ( A^^) o r (s^A^ ^s n e g l i g i b l e , We need to consider only (5-^) > (S.2S2^' a n d ( s 1 s 2) l n t e r a c t i o n s -If the interactions, (Ji^j^) and ( s ^ ^ ) , are very large compared to the spin-orbit interaction, (#^s^) a n d ( i ^ ^ ) ' t n i s extreme coupling case is" called Russell-Saunders or L - S coupling. If the magnetic spin-orbit interactions ( j^s^).and (ft^s^) are the dominant factors then (jj) coupling results. In a third type of coupling, the spin-orbit interaction of the f i r s t electron, (X^ s-^)J is dominant and the second electron has large value (and therefore small (iX^s^) interaction when its coupled to to form an intermediate K, which then is coupled very weakly to to form final states with almost identical energies). This is called either (jL) or. (jK) coupling or "pair" coupling. In "pair" coupling, energy levels form two separate groups corres-ponding to the two core states characterised by = 8^ i 1/2. Then j and^2 couple together to yield a new quantum number K which is responsible for the main structure i n each group. The coupling of the spin s^ with K then y i e l d s a f i n e - s t r u c t u r e or " p a i r i n g " corresponding to J = K - 1/2. In many known cases the " p a i r s " are d i f f i c u l t to resolve. This term structure i s observed mostly i n a configuration consisting of one outer electron with high A-value (jl?3) outside a core comprised an almost closed s h e l l where the i n t e r a c t i o n (s^A^) of this core i s exceptionally strong and (s^i.^) °f the outer electron i s very weak. If we denote the i n t e r a c t i o n energies, (AX) Coulomb, (ss) exchange and ( s i ) s p i n - o r b i t by F, G, and g } r e s p e c t i v e l y , the r a t i o of J£ /F (or 5Q/G) w i l l characterise the coupling, with L - S coupling correspond-ing to 2£/F«l and ( j j ) coupling to 2£/F»l. Since 2^ varies roughly as the fourth power of e f f e c t i v e nuclear charge and F and G shows only a l i n e a r increase, we may expect a gradual t r a n s i t i o n from LS to ( j j ) with increasing atomic number and stage of i o n i s a t i o n . Most p r a c t i c a l cases < represent an intermediate type f o r which neither LS nor ( j j ) formulae i s adequate. : The intermediate coupling of a configuration consisting of one s 19 electron and other JL electron was f i r s t described by Houston . The four energy l e v e l s of an s Jj configuration are given by the r e l a t i o n s \ = F c -<lM>S n * J < G * + ( l / 4 ) £ - n a ) 2 +(L/Wl+ D$l , (2.1) V l = Fo " G* " 1 / 2 <*+ £ n J L 1 3 If we take 1/2 ( L 0 + L.) = F - (L/4)2* „ as zero level, then we x A o 7 ni have = -G*+ 1/2 U + 1 / 2 ) ^ = -G £ - l / 2 ( / + 1/2) £ n g and expressing the energy i n units of G^ + l / 2 ( £ + 1 / 2 ) ^ ^ , we obtain .2? n* By introducing a coupling parameter = l/ 2(j£+l/ 2 ) — - — and defines then and uj2+l -1 + 2«f <Gjl + ( i/4 ) £ n A ) 2 + a M ) m + D ^ n & = ( l - 1 / 2 ( R + l / 2 ) ^ n A : r ( l / 4 ) ^ n S ] 2 + ( 1/4 ) A (A+ = (i - a /2 ) i i^ n & ) 2 +a/4)i2(ji+ 1 - ^ n l + ^ n T 4 + ! } a t 1 ( 2 i l + 1 ) ' f 2 - £ ( 2 J t + 1) 1 -4 ! 2 JL + 1 ^ (1 " t ) We can transform equation ( 2 . 1 ) into s Jl E<VI> E ( \ ) L E(3 L j L) - 1 - 1 + 2 4' ( 2 . 2 ) i J l - ( 4 f i / ( 2 fi.+ 1)] • ^ (1 - 4' ) n(4X + 1) The d i s c u s s i o n of X * s i s reserved for the d e t a i l e d discus-sion of p^* ns on p.31. Closed and useful formulae for general i n t e r -mediate coupling cases are v i r t u a l l y r e s t r i c t e d to two electron configura-tions. The further r e s t r i c t i o n that one of the electrons be an s-electron makes for simple formulae governing the d i s p o s i t i o n of only four energy l e v e l s . Another r e s t r i c t e d "two electron" case was studied by Shortley and F r i e d ^ who showed that the observed energy structure of p^-f and p^'g can be well described by the simple expressions obtained by omitting a l l but the largest e l e c t r o s t a t i c parameter F^' 12 Racah has given the following formulae for pure pair coupling. Conf. P f Parent Level \ 2 Pair Symbol E + av Energy E + g av •~"» p av av av av 2 3 r 5F, 2 p 2 ~2 £ ? + 3 F 2 (2.3) 5 P g 2 E + S av p E + £ av -» p E ~k j£ - 28F. av 2 -'p 2 E - \ g + 49F, av ? n E av av 2 ^>p —2 " \ £ p + 2 2 F 2 --Z.-™2 (2.4) A high order approximation formulae was described by Humphreys et a l . as follows: P a r e n t L e v e l E n e rgy E av K + (10 7.5G 2 + 0.22G, 4 + 1.33JTf E av x& + (10 - 5 0 F 2 / ^ ' p ) F 2 " 7.5G 2 - 6 G. 4 - 1 . 7 l £ f E av K + ( 3 - 1 2 0 F 2 / ^ ) F 2 + 26.1G 2 - 6 G 4 - 1-7 5 f E av ( 3 - 1 2 0 F 2 / ^ p ) F 2 - 7.5G 2 - 6 G 4 + 1 . 2 l £ f E av 2-^P " 5 F 2 " 7.5G 2 + 25.11G, 4 - 1.83JTf E av i r - 5 F 2 - 7.5G 2 - 6 G 4 + 1.5_g f E av 2 > p - 1 2 F 2 + 42.9G 2 - 6 G 4 + E av 2-^P - 1 2 F 2 - 7.5G 2 - 6 G 4 - ^ f E + av -==»p + ( 1 2 0 F 2 / ^ p ) F 2 + 34.5G 2 - 6 G. 4 -E + av -=*• P + ( 1 2 0 F 2 / ^ p ) F 2 - 7.5G 2 - 6G. 4 + 1.4s£ f E + av + ( 5 0 F 2 / ^ p ) F 2 - 7.5G 2 + 12.6G. 4 + 1.5 5 f E + av + ( 5 0 F 2 / ^ p ) F 2 " 7.5G 2 - 6 G. 4 - 1.93jT f Conf. 5 P g Parent L e v e l < Energy M s E av - \S + (49 - • 1 4 3 7 F 2 / ^ p ) F 2 - 4.67G 3 + 1.74G + 1 . 6 8 ^ [4J< E av - \S * (49 " l « 7 F 2 / i 8 p ) F 2 - 4.67G 3 - 9.17G 5 - 2 . 2 8 . ? E av -K P + (22 - 2 8 2 3 F 2 / ^ p ) F 2 + 12.48G 3 - 9.17G 5 - 2.29 i" g E av - (22 - 2 8 2 3 F „ / r ) F . 2 - ,p 2 - 4.67G 3 - 9.17G 5 [4] 3 E av - 2i>p - 2 8 F 2 " 4 ' 6 7 G 3 + 39.92G 5 - 2.36 £ [4], E av - - 2 8 F 2 - 4.67G 3 - 9.17G 5 + [4] 3 E av - 2 S P - 5 5 F 2 + 26.19G 3 - 9.17G 5 + 1.79 4T ^ g (4]2 E av - 2 S P - 5 5 F 2 - 4.67G 3 - 9.17G 5 - 2.5 £ [4] 3 E av + + (2823F 2 / J* p)F 2 + 19.33G 3 - 9 0 1 7 G 5 - 2.5 Z° ° g [4], E av + + ( 2 8 2 3 F 2 / J p ) F 2 - 4.67G 3 - 9.17G 5 + 1.94 [4] 3 E av + + ( 1 4 3 7 F 2 / ^ p ) F 2 - 4.67G 3 + 20.83G 5 + ->g [4], E av + + ( 1 4 3 7 F 2 / j T p ) F 2 - 4.67G 3 - 9.17G 5 - 2 . 4 4 ^ (2.6) We define the absolute term value T, with i t s zero at the i o n i z a -tion l i m i t , i n terms of the r e l a t i v e term value E, with i t s zero at the ground state, by the r e l a t i o n T = - E where E ^ i s the r e l a t i v e term value of the serie s l i m i t . I f there i s a multiple series l i m i t , then each term value i s calculated according to i t s appropriate l i m i t . Now T n = 2 n (n-S) defines both n", the e f f e c t i v e quantum number and S, the quantum defect. In the absence of configuration i n t e r a c t i o n , the quantum defect, § = n - n'f, i s roughly constant f o r a given series of l e v e l s , and i t can be expressed i n a power serie s as given by Edlen^ & = a + bt + c t 2 + d t 3 + (2.7) i — 2 T where the reduced term value, t = (n*c) = I t i s useful to p l o t 5 for successive members of a term series against either t or T. This graph i s a smooth curve with s l i g h t v a r i a t i o n of $ as a function of n. The extrapolation of the curve can be used to confirm and r e f i n e the established i o n i z a t i o n l i m i t and i t s r e l a t e d term value and to predict the higher series members. o For example, one may s t a r t with an approximate series l i m i t E and the corresponding values, T° and S ° . One can then improve S and thus T by noting that S depends almost l i n e a r l y on the T. Since T = — — — , n by logarithmic d i f f e r e n t i a t i o n dT „ dn* T 2 Since n" = n - § ' . dn = - d S Therefore — = 2 — and we finally have our improved S = S° + A S = S° + jfn* =eC+ ? T (2.8) Equation (2.8) has three unknown A T , oCand ^ which can be determined from not necessarily successive three series members, with the result (T, - T )(S° -$°) - (T - .TO (S? " So) A T = 2 _ i £ £ =L_ £ 1 i L. _ ( 2 > 9 ) (Tx - T2)(n^'/T3 - n 2 / T j - (T£ - T j ^ / ^ - r ^ / T j If some of the members of a series may be perturbed by levels of the same J value arising from another configuration with the same parity, then both perturbed levels show a mutual repulsion from their unperturbed positions. In such cases theS-T plot shows a regular deviation from a 21 smooth curve. It was first shown by Shenstone and Russell that this deviation from the Ritz formula could be described empirically by adding terms X. °C./(T - T. ) , where T. are the absolute values of perturbing terms, i to the Ritz expression for n' f. A generalized series formula is $ = a + bt + ct2 + + £ c d / ( T - T ) n n n . i n i l (2.10) where the interaction parameters <sL are positive quantitives and assumed to be independent of n. 2.3 P o l a r i z a t i o n Formulae f o r H y d r o g e n i c - l i k e Terms El e c t r o n s such as nd, nf, ng, and nh have non-penetrating o r b i t s w i t h very small S . The quantum defect § then e x h i b i t s a s t r i k i n g r e g u l a r i t y i n i t s dependence on Ji, which i s connected w i t h the f a c t that f o r these s e r i e s % i s determined almost e n t i r e l y by the p o l a r i z a t i o n of the atomic core i n the f i e l d of the outer e l e c t r o n . I n the Coulomb f i e l d of the valence e l e c t r o n , the s p h e r i c a l l y symmetric core i s r e p e l l e d and d i s t o r t e d and the nucleus i s a t t r a c t e d . This p o l a r i z a t i o n produces a small increase i n b i n d i n g energy and the absolute term value T can be represented more a c c u r a t e l y by the formula T = T H + A T p o l , (2.11) where T^ = Hydrogenic term value and ATpol = P o l a r i z a t i o n of atomic core c o r r e c t i o n . The hydrogenic term value can be expressed as f o l l o w s : n s n * / 2 where oC = i s the Sommerfeld f i n e s t r u c t u r e constant, and 5 i s the he net charge of the core. I f the radius of valence e l e c t r o n o r b i t r i s l a r g e compared to the radius of the core, the core i s s i t u a t e d i n an approximately homogeneous e e l e c t r i c f i e l d E = — r . Since a d i p o l e of str e n g t h i i gives a p o t e n t i a l r ^  l ie Vd = ~^r~2 a t t n e p o s i t i o n of the valence e l e c t r o n , the f i e l d at the e l e c t r o n i s given by S V d E d = - — = 2 ^ = 2 <*.-d -HS- = 2 JLA . 4-3 r r 3 5 r 2 where O C J = jir i s the d i p o l e p o l a r i z a b i l i t y of the atomic core. The perturbing p o t e n t i a l due to is f r aid 2 A V D = O ^ d dY = - 1-2r Averaging over the possible p o s i t i o n of the valence electron, we f i n d If °^d and r are i n atomic u n i t s , then A T - o ld R < r " 4 23 For this average Waller (1926) derived the expression: < r " 4 > = ^ 4 ( 3 n 2 - ^ ( x + 1)) ( 2 > 1 3 ) 2n 5(i>- %) 4(4 + \)(i+ 1)0* + 3/2) where n and JI are the quantum numbers of the valence el e c t r o n . If the electron i s close to the core, a term corresponding to the quadrupole d i s t o r t i o n should be added. The e l e c t r i c f i e l d gradient at the 2e nucleus i s —— , and hence the induced quandrupole moment i s given by Q = 2 <^  q/ r 3 where oCq i s the quadrupole p o l a r i z a b i l i t y of the atomic core. Q gives r i s e to the following p o t e n t i a l at the p o s i t i o n of the valence electron, V Q = Q 2 r 3 The r e s u l t i n g f i e l d i s given by 3 V q n Q e 3<^q e Eq = ^ — ^ = 3 ~ = V ar 2 4 r 7 One obtains for the p o t e n t i a l due to Eq * V q = E J „ E Q D V = ." . A Tq = < V 4 > If d.q i s i n atomic u n i t s , equation (2.11) may then be written: T = T H + i^d R ( r " 4 ) + q R ^ r ~ 6 y (2.14) where r ^ i s the average of r over the valence wave function 22 and i s given by Van Vleek (1934) : < r ~ 6 > = -£ 6{-35 n 4 - 5n 2 C6K*+1) - 5 J + 3(1-1) (Jt+1) (1+2)) 8n 7(^-3/2) (A-1/2)1(^-1/2) (£+1) (£+ 3/2) (£+2) (£+5/2) I t i s convenient to put equation (2.14) i n the form A p = T - T H = A(z)P(n,jO ( 1 + k(z)q(n,*)) (2.15) where A(z) =oid ^?4 / - 4 \ P(n,JL) = R r ^ ^ ^ 54 i 4 q(n,ji).- ^ £ • 5 6 < r " 4 > The geometrical factors P(n,A) and q(n,JL) had been calculated from hydrogenic wave-functions by Bockasten^ and tabulated i n Table 19 of reference (6). If any two hydrogenic terms are a v a i l a b l e , the d i p l e and quadrupole p o l a r i z a b i l i t y r e l a t e d to A(z) and k(z) r e s p e c t i v e l y can be determined by solving equations (2.15). Since the quadrupole term i s very much smaller than the dipole term, the dipole p o l a r i z a t i o n formula i s s t i l l a good approximation whenever the experimental uncertainty i s moderate. 2.4 Se l e c t i o n Rules The usual s e l e c t i o n rules f or atomic spectra are v a l i d only for e l e c t r i c dipole r a d i a t i o n . Transitions i n which the quantum number of only one e l e c t r o n change are always by f a r the most probable t r a n s i t i o n s i n which two or more el e c t r o n s jump at the same time are conside r a b l y weaker but are not forbidden by a s t r i c t s e l e c t i o n r u l e . E l e c t r i c 23 d i p o l e r a d i a t i o n s t r i c t l y obey the Laporte r u l e (1924) 1 The p r o b a b i l i t y f o r a t r a n s i t i o n f o r e l e c t r i c d i p o l e r a d i a t i o n i s high only when the quantum number of the two l e v e l s obey the f o l l o w i n g r u l e s : (1) J changes i n a t r a n s i t i o n by 0 or t 1, h e l d f o r any type of coupling J = 0 >• J 1 = 0 i s forbidden (2) In L - S coupling the a d d i t i o n a l r u l e s are ( i ) L change by 0, ^ 1 i ( i i ) S change by 0 only. (3) I n j - j coupling the a d d i t i o n a l r u l e i s A j | = 0 A j 2 = 0, ± 1. CHAPTER I I I EXPERIMENTAL PROCEDURE 3.1 Light Source Two l i g h t sources have been used extensively i n this i n v e s t i g a t i o n . The f i r s t i s a condensed spark i n helium, the second i s an electrodeless discharge. 3.1.1 Condensed spark i n helium The importance of this source had been described by Shenstone 1^. Spectral l i n e s belong to d i f f e r e n t i o n i z a t i o n stages show a d i s t i n c t "pole e f f e c t " . This gives a useful and usu a l l y r e l i a b l e guide i n compil-ing e x c i t a t i o n data f o r use i n the analysis of the various stage of i o n i z a t i o n . F i g . (1) shows the design of the source. Since the melting point of sodium i s quite low, sodium would f a l l out from the upper carbon cup afte r running the source f o r a few minutes. We put NaOH s o l u t i o n into small holes i n the upper carbon electrode and baked the electrode i n an oven u n t i l NaOH s o l u t i o n c r y s t a l l i z e d . This rod was then p r e s s - f i t t e d into the upper copper electrode. The e l e c t r i c c i r c u i t shown i n F i g . (2) consists of a 12 KV, 750 watt transformer, two 0.005 /lF - 25 KV condensers and an adjustable external spark gap i n a i r . The external spark gap was varied between 1 mm to 2 mm i n d i f f e r e n t exposures. 3.1.2 Electrodeless discharge I t was found that the electrodeless discharge give f a i r l y sharp l i n e and higher e x c i t a t i o n data. The e l e c t r i c c i r c u i t shown i n F i g . (3) Helium Quartz Window To Spectrograph 110V. Condensed Spark i n Helium F i g . 1 T E.S r 1 u iC To Electrodes I I T - Transformer 12KV, 750 watt C - Condenser tank 0.005 /"F, 25,000 v o l t s E.S - E x t e r n a l spark gap Power Supply C i r c u i t  Condensed Spark i n He Source F i g . 2 E T - X-ray transformer. Output 50 kv, 5 kwt. C - Condenser bank. 6 mica solar condensers, .0025M F. 25 kv,. 22 amp. at 3M</sec. Total capacity 0.0038/<F. R Variable resistance A - 50 amps. A.C. ammeter E - Adjustable external spark gap C i r c u i t Diagram Electrodeless Discharge Source F i g . 3 consists of 6 mica Solar condensers each of 0.0025/iF - 25 KV, forming the condenser bank, an X-ray 50 KV transformer and an adjustable external gap i n a i r . The external gap was set usually at 2 cm. The t o t a l capaci-tance of this condenser bank i s 0.0038yUF making the c i r c u i t resonate at about 3 MHz. The discharge tube was made of translucent quartzj The tube was wrapped with t h i n sheets of mica to improve the i n s u l a t i o n since the plasma ins i d e the tube i s quite conducting when the discharge i s running. 3.2 A c q u i s i t i o n of Spectrograms Several sets of spectrograms were taken on a 3-meter normal incidence vacuum grating spectrograph to cover the region from 350 X to 2440 X, using as sources a condensed electrodeless discharge and a con-densed spark i n helium. The plate holder was t h i r t y inches long holding one eighteen and one twelve inch plate. Successive exposures were made with the twelve and eighteen inch plates interchanged so that no region was missed i n the gap between plates. A l l plates used i n the vacuum spectrograph were I l f o r d Q - 2 plates. The oven surrounding the electrodeless discharge tube was heated to approximately 650°K i n order to provide enough vapor pressure, 0.05 t o r r , to i n i t i a t e the discharge. The gate valve between the s l i t and the main body of the spectrograph was kept closed u n t i l the pressure within the spectrograph had dropped to -4 o 10 t o r r . When the source tube was heated to approximately 650 K, the gate valve was opened and the pressure within the spectrograph rose to -4 5 x 10 t o r r , which held during the whole exposure time, 30 minutes. Developing time was two minutes, using Johnson Azol developer dilu^lted to 1 part i n 20 parts of water as recommended by the manufacturer. The spark-in-helium source was run for 40 minutes. Another several sets of spectrograms were taken simultaneously on the Hilg e r E-478 large interchangeable quartz and glass prism spectro-graph, using as sources an electrodeless discharge and a condensed spark i n helium, to cover the region from 2340 X to 9400 X. The vacuum and prism spectrographs were aligned with a common o p t i c a l axis so that the whole spectrum from 340 - 9400 X was photographed under i d e n t i c a l conditions of e x c i t a t i o n . The f i r s t exposure was taken on a H i l g e r quartz prism spectrograph covering the region from 2340 X to 3100 X on a ten inch I l f o r d Q - 2 plate. Both spectrographs were operated using a s l i t width of 8 microns. A ten-second i r o n arc exposure was taken to provide wavelength standards by reducing the s l i t length from i t s normal value of 18 mm to 6 mm. The plate was developed f o r two minutes i n either Johnson Azol developer as described above, or i n D 19. A second exposure was taken on the same E-478 quartz spectrograph set to cover the region from 3100 X to 7000 X on a ten inch HP 3 plate. Exposure time f o r both the sodium spectra and the i r o n standards were ' the same as f i r s t exposure. The plate was developed f o r 5 minutes i n Kodak D - 19 developer. A t h i r d and fourth exposure were taken on the Hilger E-478 using the large glass o p t i c a l t r a i n set to cover the region from 4500 X to 9400 X on a ten-inch Kodak type 1 - N plate. Both exposures were run for 40 minutes. With the s l i t length diaphragm closed to 6 millimeters, a forty-second neon discharge was taken to provide standards on the region with A. > 5600 X. A f i f t e e n second i r o n arc exposure was taken to provide standards by cl o s i n g the s l i t length diaphragm to 3 millimeters. The plate was developed f o r s i x minutes i n Kodak D - 19 developer. Four sets of spectrograms were taken on the 21-foot concave grating spectrograph i n an Eagle-Paschen mounting, using as source the condensed electrodeless discharge. The range of our 21-foot concave grating i n the present set-up i s from n = 9500 X to n X = 18400 X with a gap of 7 cm f o r the s l i t i n the middle. Due to the s l i t gap we lose the n X region, 14150 X - 14230 £\ The plate holder takes eight plates of eighteen inch length, four plates on either side of the s l i t that i s 6 feet of plate on both sides of the s l i t . A l l wavelengths between 2000 £ to 6133 X appear i n more than one order. The plate f a c t o r varies from 2.61 X/mm to 1.97 S/mm. i n the f i r s t order, as D = (bcos6)/R = 2.6368 • J I - (n x /b - s i n i ) 2 X/mm (with b = 16934 X and i = 25°). The f i r s t exposure was taken on two eighteen-inch I l f o r d Q - 2 plates and two eighteen-inch HP 3 plates to cover the region from n = 9500 X to n x = 14130; X. The discharge source was run f o r one hour using the s l i t width of 15 microns. An eight-minute i r o n arc exposure was taken to provide standards by passing the arc l i g h t through the d i s -charge tube onto the entrance s l i t of the grating spectrograph. A second exposure was taken on four eighteen-inch I l f o r d Q - 2 plates and two eighteen-inch HP 3 plates to cover the region from n X = 9500 X to n >- = 16370 X. The source was run f o r three and a hal f hours. An eight-minute i r o n arc exposure was taken to provide standards. A t h i r d exposure was taken on two eighteen-inch I l f o r d Q - 2 plates, four eighteen-inch HP 3 plates and two ten-inch Kodak type 1 - N plates to cover the region from 6600 %. to 9400 X. The source was run for two hours. A two-minute ir o n arc exposure was taken to provide standards. A fourth exposure was taken on four eighteen-inch I l f o r d Q - 2 plates and four eighteen-inch HP 3 plates to cover the region from n X. = 9500 X to n X. = 18400 X. The exposure time was one and a h a l f hours. A five-minute i r o n arc exposure was taken to provide standards. 3.3 Measurement and Reduction of Spectrograms A l l spectrograms were measured on a Grant automatic comparator with t r a v e l l i n g stage 250 mm reading to 1 ju. . A twelve key-board was used to i d e n t i f y the character of l i n e s according to an accepted code. The X; and Z readings f o r each l i n e are d i g i t i z e d by Datex encoders and automatically punched on an I.B.M. card, when the comparator operator decides the appropriate l i n e character key and depresses i t . Five l i n e s were punched on each I.B.M. card. Three computer programs, with I.B.M. cards as data card, were run through the U.B.C. computer to get the; wave-length and wave-number l i s t . Lines of C, H, N, and 0 were used as reference l i n e s to f i t a t h i r d -degree polynomial computer program i n the vacuum u l t r a - v i o l e t region. The wavelength error follows a normal d i s t r i b u t i o n with Cf = 0.003 S. F e l 4 and Nel were used as standards on the prism plate (H. M. Crosswhite, 1967) . The wavelength l i s t was obtained by f i t t i n g these l i n e s with a Hartmann formula with a t h i r d degree polynomial error curve as a c o r r e c t i o n f a c t o r . On the 21-foot grating spectrograms, Fe I and Fe I I were used to f i t the third-degree polynomial computer program to get the wavelength l i s t . The wavelength errors were estimated to be less than 0.003 A*. To sort out the orders of the l i n e of these spectrograms i s a tedious pro-cess. While most of the strong l i n e s had th e i r ghost l i n e s to i d e n t i f y the order, the other l i n e s were i d e n t i f i e d from the prism plates. The appearance of the same l i n e i n d i f f e r e n t orders helped to i d e n t i f y the • ^Details of the various codes used and of the recording of the data on I.B.M. cards are given i n Appendix I. order. A number of d i f f e r e n t type of plates were used to sort out the order of the l i n e as described previously. I l f o r d Q - 2 plate has i t s large wavelength l i m i t at 5000 X. HP 3 plate record the l i n e i n the region from 2340 X to 6600 X. Kodak type 1 - N plate i s s e n s i t i v e i n the 5800 -9400 X region. By changing the order of d i f f e r e n t type of plates, i t helped to sort out the order of the l i n e . In order to remove the impurity l i n e s , i t i s useful to have " a i r spectrograms" by running an electrodeless discharge with a "clean tube". Lines i d e n t i f i e d as N, 0, A, C, or H impurities on the a i r spectrograms were removed from the l i n e l i s t . 3.4 Fabry-Perot Interferometer A Fabry-Perot interferometer was used to investigate the f i n e structure of 2p~*3d - 2p~*4f combination. Two sets of spectrograms were taken, using 2.5 mm and 10 mm spacers, r e s p e c t i v e l y , to cover the region from 4000 A to 6100 A on ten inch HP 3 plates using as source a condensed electrodeless discharge. No f i n e structure was observed i n any of these spectrograms except f or the l i n e at 4308 A, which has the largest f i n e structure s p l i t t i n g . Even for t h i s l i n e the s p l i t t i n g was not c l e a r l y resolved i n the r i n g system, and was barely d i s t i n g u i s h a b l e on the com-parator's viewing screen. The method of c a l c u l a t i o n has been described very c l e a r l y by Meissner 1^. Table 1 displays the comparison between interferometric data and grating (or prism) data f o r some Na II l i n e s . TABLE 1--INTERFER0METRIC DATA, GRATING DATA AND PRISM DATA Interferometric Data X (A) VCcm"1) Grating Data and Prism Data 4 7 6 8 . 9 0 2 4 7 4 1 . 6 6 9 4 7 3 2 . 5 0 2 4 7 3 1 . 1 4 1 4 7 2 2 . 3 3 3 4 5 9 0 . 9 3 3 4 5 2 4 . 9 7 7 4 4 9 0 . 1 6 2 4 4 8 1 . 6 6 4 4 4 7 8 . 7 9 7 4 4 7 4 . 6 3 3 4 4 5 7 . 2 2 3 4 4 5 5 . 2 2 4 4 4 0 5 . 1 1 3 4 5 5 1 . 5 1 8 4 5 1 9 . 2 0 1 4 3 9 2 . 8 1 4 4 3 6 8 . 6 0 0 4 3 4 4 . 1 0 8 4 3 0 9 . 0 4 3 4 3 0 8 . 8 1 7 4 2 9 2 . 4 8 8 2 0 9 6 3 . 3 3 2 1 0 8 3 . 7 2 2 1 1 2 4 . 5 6 2 1 1 3 0 . 6 4 2 1 1 7 0 . 0 5 2 1 7 7 5 . 9 6 2 2 0 9 3 . 3 7 2 2 2 6 4 . 6 7 2 2 3 0 6 . 8 8 2 2 3 2 1 . 1 9 2 2 3 4 1 . 9 3 2 2 4 2 9 . 2 0 2 2 4 3 9 . 2 6 2 2 6 9 4 . 5 2 2 1 9 6 4 . 5 4 2 2 1 2 1 . 6 0 2 2 7 5 8 . 0 6 2 2 8 8 4 . 2 0 2 3 0 1 3 . 2 2 2 3 2 0 0 . 4 8 2 3 2 0 1 . 7 0 2 3 2 8 9 . 9 6 V(cal.) . 2 6 . 8 8 . 4 8 . 7 0 . 2 1 . 9 5 . 3 8 . 7 3 . 8 3 . 1 3 . 9 3 . 3 0 . 2 3 . 4 6 . 5 1 . 5 9 . 0 9 . 2 6 . 1 3 . 4 8 . 6 9 . 9 4 X (A) 4 7 6 8 . 7 9 * 4 7 4 1 . 5 2 * 4 7 3 2 . 5 6 * 4 7 3 1 . 1 0 " 4 7 2 2 . 2 3 * 4 5 9 0 . 9 2 0 4 5 2 4 . 9 8 1 4 4 9 0 . 1 5 4 4 4 8 1 . 6 6 5 4 4 7 8 . 7 9 7 4 4 7 4 . 6 3 1 4 4 5 7 . 2 0 8 4 4 5 5 . 2 2 9 4 4 0 5 . 1 2 4 4 5 5 1 . 5 3 1 4 5 1 9 . 2 0 7 4 3 9 2 . 8 0 8 4 3 6 8 . 6 0 0 4 3 4 4 . 1 1 1 4 3 0 9 . 0 4 2 4 3 0 8 . 8 1 1 4 2 9 2 . 4 8 3 . 8 . 4 . 3 . 8 , 5 . 0 3 . 3 5 . 7 1 . 8 8 . 1 9 . 9 4 . 2 7 . 2 4 . 4 6 . 4 7 . 57 . 0 9 . 2 0 . 2 0 . 4 9 . 7 3 Line appears on the prism plate only. CHAPTER I V RESULT AND ANALYSIS 4.1 Energy L e v e l s Observed TABLE 2--EVEN LEVELS OF Na I I Conf. D e s l g . L e v e l (cm ^) * n 9 6 l-H, 0.0 1.07280 2 P 5 ( 2 P 3 ) 3 P 3p U K 293220.33 2.23122 2 3 P [41 3 297248.82 2.28400 3 P [41 2 297635.61 2.28927 3 P ( 4 ] l 298165.44 2.29655 3p [41 2 299189.96 2.31082 3p l\)o 300387.82 2.32784 2 P 5 ( 2 P l ) 3 p 3 P ' b i l l 299885.37 2.30144 2 3P< [41 2 300103.92 2.30448 3p' U l i 300507.11 2.31012 3 P ' U l o 308860.80 2.43721 2 p 5 ( 2 P 3 ) 4 p 4p [ IK 340239.8 3.26599 2 . 4p [ 4 L 341109.7 3.30107 4 P [41. 341457.7 3.31542 4p [4K 341907.0 3.33423 4 P [41 2 341957.4 3.33636 4p [Ho 342344.0 3.35284 2p 5( 2 P l)4p 2p 5( 2P 3)4f 2p 5( 2P 1)4f 2p 5( 2P 3)5f 4P' 3427 38.6 3.31188 4P' ( 4 ] 2 343256.8 3.33353 4p' 342971.0 3.32154 4P' fl)o 343469.2 3.34253 4f [4h 353837.23 3.99133 4f f 4 ) 2 353838.44 4f M l 3 353881.13 3.99451 4f HU 353881.16 4f (4) 3 353925.81 3.99776 4f f 4 ] 2 353926.69 4f 353972.42 4.00116 4f f 4 h 353972.63 4 f 14) 3 355280.89 3.99694 4f 1 f 4 h 355281.16 4 f 4f 1 5f f 4 ] 3 f41a [ 4 h 355283.70 355284.53 363767.98 3.99714 4.99082 5f f 4 ) 2 363769.03 5f [4J 5 363790.60 4.99402 5f 363790.64 5f f 4 ) 3 363814.78 4.99746 2 p 5 ( 2 P 1 ) 5 f 2 2 p 5 ( 2 P 3 ) 6 f 2 2 p 5 ( 2 P 1 ) 6 f 2 2 p 5 ( 2 P 3 ) 7 f 5f ( 4 ] 2 5f 5f 5f' ( 4 ] 3 5f' ( 4 L 5f 1 [ 4 L 5 f ( 4 h 6f [ 4 h 6f (41 a 6f [4] 5 6f (4)4 6f (4) 3 6f ( 4 ) 2 6f ( 4 ) 3 6f [ 4 ] 4 6 f ( 4 ) 3 6f' 'A)u 6 f [4)s 6 f 1 [ 4 ) 2 7f [4), 7f ' 4 ] 2 363815.38 363837.82 363837.94 365173.54 365173.82 365173.94 365174.75 369158.71 369159.46 369171.93 369172.01 369186.50 369186.73 369199.58 369199.68 370547.74 370547.87 370548.06 370548.50 372407.6 372407.9 4.99637 4.99643 5.99049 5.99373 5.99731 6.0052 5.99604 5.99612 6.99038 7 f (4] 5,4 372415.9 7 f ( 4 1 3,2 3 7 2 4 2 5 ' 4 7f [4)4f3 372433.3 2 p 5 ( 2 P 1 ) 7 f 7f* [4]4 3 373787.8 7f* [ z | ] 373788.0 7 f ' [ 2| ] 373788.2 2 p 5 ( 2 P 3 ) 8 f 8f [ l | ] 2 j_ 374514.9 2 8 f [4] 5,4 3 7 4 5 2 ° ' 3 8f [4] 3,2 3 7 4 5 2 6 - 3 8f [ 3 ^ ] 4 j 3 374532.1 2 p 5 ( 2 P 1 ) 8 f 8 f (4)43 375890.0 8 f ' t 4 ] 3 2 375890.0 TABLE 3--ODD LEVELS OF Na I I L e v e l n" 264924.32 1.94134 265689.62 1.94775 266281.62 1.94127 268762.96 1.96228 330549.35 2.93830 330636.75 2.94082 Conf. 2 p 5 ( 2 P 3 ) 3 s 2 2 p 5 ( 2 P 1 ) 3 s 2 2 p 5 ( 2 P 3 ) 3 d D e s i g . 3s H}2 3s 3s' [ i l o 3s' 3d [ l ] o 3d [11: 2 p 5 ( 2 P 1 ) 3 d 2 p 5 ( 2 P 3 ) 4 s 2 p 5 ( 2 P 1 ) 4 s 2 p 5 ( 2 P 3 ) 4 d - HU 330789.05 2.94525 3a [3iL 331123.04 2.95502 3d HU 331186.70 2.95689 3d [4)2 331665.59 2.97109 331707.90 2.97236 331745.06 2.97347 332802.21 2.96425 3d'[4]3 332841.93 2.96543 3d'(4]2 332962.57 2.96902 3 d ' [ 4]i 333162.94 2.97501 *• HU 331496.51 2.96605 *• 331873.93 2.97734 332710.11 2.96152 333107.74 2.97336 - [ Ho 352969.8 3.92995 4d [ l ] i 353032.9 3.93432 * [4J2 353151.8 3.94259 « (4K 353202.6 3.94614 - [4J3 353240.4 3.94879 4d (4L 353463.2 3.96451 353483.8 3.96598 4d (4]> 353600.6 3.97430 2p 5( 2P 1)4d 4d' [ 4 ] 2 354526.3 3.94316 2 4d' [ 4 ) 3 354559.2 3.94546 4d' ( 4 ] 2 354707.0 3.95584 4d' t4]x 354876.5 3.96785 2p 5( 2P 3)5s 5s [ 4 J 2 353536.7 3.96974 2 5s 353719.3 3.98282 2p 5( 2P 1)5s 5s' ( i)o 354859.8 3.96667 2 5s' 354997.8 3.97651 2p 5( 2P 3)5d 5d 363332.2 4.93023 2 5d 363347.4 4.93231 5d 363441.7 4.94525 5d [4Ji 363631.9 4.97166 2p 5( 2P 1)5d 5d' [ 4 ] 2 364744.1 2 5d' (4Jx 364931.1 2p 5( 2P 3)6s 6s ( 4 ] 2 363610.2 4.96862 2 6s (4J: 363725.8 4.98485 2p 5( 2P 1)6s 6s* l i l o 365009.9 4.97328 "2 6s' ( I K 365043.5 4.97800 2p 5( 2P 3)6d 6d 368494.1 5.83409 ' 5 2 2 2 PV P l )6d 0 6d' [ 4 ] i 370035.6 5.87410 2p 5( 2P3)?s 5 2 2 5 2 2 2p^( P 3)6g 2 p 5 ( 2 P 1 ) 6 g 2 p 5 ( 2 P 3 ) 7 g 2 P 5 ( 2 P 1 ) 7 g - (4L - ' [ I L 6* [4)3,2 ^ [4h,5 6* [4] 4,3 6* [4] 5,4 6^ (4) 5 , 4 6 S ' [4)4,3 7 S [4)3,2 7 S [4)6,5 7§ [4)4,3 ? S [4)5,4 ^ [4)5,4 7g' [4)4,3 369070.5 370378.6 369184,02 369189.22 369198.66 369203.4 370560.57 372423.4 372426.7 372432.33 372436.16 373796.4 5.96900 5.95493 The J = 1 l e v e l s i n the 2p 3s configurations were established from 6 1 / the t r a n s i t i o n s to the ground state 2p Sp. These two t r a n s i t i o n s , 372.075A and 396.379A, were observed i n 1st, 2nd, to 6th order. The estimated standard deviation i n the wave-numbers of these l i n e s was T 2.0 em l . The wave-number assignment of the r e s t of the levels i n Na II were based on these two l e v e l s . Although the wave-number of the t r a n s i -tions connecting a l l the higher l e v e l s were measured very accurately, we s t i l l have the same standard deviation (+ 2.0 cm l) for a l l the levels r\ i 2 2 * 2 i n Na I I . The i o n i z a t i o n p o t e n t i a l , 2s 2p5/ ( a n d 2 s 2$$f ( P i / 2 ^ ' -1 -1 -1 has been redetermined as 381390.2 cm and 382756,6 cm (1 2.0 cm ): 4.2 2p^ns Series n 41+1 y° The l e v e l s of X s are obtained by reversing the sign i n 45L+1 the equation (1). The four energy le v e l s of the c o n f i g u r a t i o n ^ s are given by the following formulae * 4 * + 1 s J*+l F - G.-o S = F q + 1 / 4 ^ ± / < € , - l / ^ n J 2 + l/4K*-l ) S n 2 (4.17) By introducing a coupling parameter * =X/(i +X), where "X= (24+l)/4Gj[ th ' ^ n ^ / 4 and expressing the energy i n units of G ^ - (2J?+l)/4" wi 1 3 1/2 ( L^+ L^) as the zero l e v e l , we transform the previous r e l a t i o n s into -1 E ( \ - l } = - 1 + 2 ^ E(,Lft) = ± J 1 - 4 ( 0 l + l / ( 2 f t + l ) l (1-V|>) (4.18) If we substitute X = 1 into equations (18), the four l e v e l s of p^s configuration can be written as follows: f E ( 3 P 2 ) = -1 5 . p s < E( 3P ) = -1 + 2 4> o (4.19) E(Y) \> . = + / 1 - 8 / 3 ^ ( 1 - vj/ ) E ( 3 P 1 ) I t can be seen from Table 4 that the 2p"*3s configuration f i t very well with the predicted l e v e l s i n intermediate coupling. " -3 Since G^ i s expected to vary approximately as (n ) while a very s l i g h t increase i n ^ i s expected with increasing n as the screening due to the s electron decrease as n increases, the d i f f e r e n c e between ns 1^"^ ") 2 a n c ^ n s ^ l } o sh° ul (l remain nearly constant for a l l ns series and equal to 3/22^. The separation ^"JJQ " | ^ ^ 2  which. should remain v i r t u a l l y constant shows an i r r e g u l a r i t y f or a l l series but n = 3. These large i r r e g u l a r i t i e s are due to the presence of f o r e i g n terms. In a t r a n s i t i o n array, the set of l i n e s connecting a s i n g l e given l e v e l of one configuration with a l l l e v e l s of the other configuration we s h a l l c a l l the J - f i l l r e f e r r i n g to that l e v e l . For any coupling, 24 ' Shortley has proved that the strengths of the J - f i l e s r e f e r r i n g to the levels of the i n i t i a l or f i n a l configuration are proportional to the statistical weight 2J + 1 of that l e v e l . From an examination of Table 6, we see that the observed strengths of the J f i l e s f o r J = 2, 1 and 0 l e v e l s of the 2p~*3d configuration are too low. This indicates that the i n t e n s i t i e s of J = 2, 1 and .0 l e v e l s of the 2p 3d configuration ^is'borrowed by the 5 5 5 le v e l s of 2p 4s configuration to give the t r a n s i t i o n s 2p nf—>2p 4s. Table 5 shows the t r a n s i t i o n s from nf to 4s. TABLE 4.--OBSERVED AND CALCULATED LEVELS OF 2p 5ns of Na II Conf. 3s 4s 5s Desig. Mi (Do U K [4] 2 f i l e 111: HI 2 (Ho N)i (Ho (Hi 904.87 809.07 882.07 933.1 1623.32 387.53 160.3 74.6 Level (obs.) Level (calc.) 264924.32 264924.32 265689.62 266281.62 265689.64 266281.62 268762.96 268762.94 331496.51 331873.93 332710.11 333107.74 353536.7 353719.3 354859.8 354997.8 363610.2 363725.8 365009.9 365043.5 Desig. 4f 4f 4f 4 f 4£ 5f 5f 6£ 6f [41 [4)2 (4)2 (4K 1413 (412 [4)2 (4]3 [4)2 L e v e l 353925.81 353926.69 353838.44 353837.23 355283.70 363815.38 363769.03 369186.50 369159.46 4s (4) 331496.51 22429.27 22341.94 23787.16 32272.3 37689.96 37663.1 4s 331873.93 22052.69 21964.47 21963.24 31941.45 37285.5 5 5 4.3 2p 3p and 2p 4p Configurations 2 2 Since the s e p a r a t i o n of ^ \ j 2 a n d F3/2 '*"S r e l a t * v e l y l a r g e compared wi t h other f a c t o r s which determine the term s t r u c t u r e , i t i s s t i l l a good approximation to ne g l e c t the i n t e r a c t i o n between groups of l e v e l s from d i f f e r e n t parentage. The approximate energy s t r u c t u r e of p^p were given as f o l l o w s : (18) [ k In * E + £ ~ JT + 2 G I 2 JO av — ? np o [ i l l - E a v + ifP + i iT„ 'np [4]: " = E + 2 "av p 2 >^ np E + r - r av - J p i np 141 3 141 2 [ 4 ) 2 14): ( 4 L av = E av \ r - 7 r + | F. + 4G, 2 p 4-*np 2 2 ^ + / ^ p + | F 2 ) 2 + ( 2 F 0 - 4G n)' = E av -is. 4- ,np - — F 2 2 + 4~^np E a v " 2^p 1 2 2 2 F 2 ) 2 + 20 F 2 2 5 F. + 4G • + \ gnn 2 o I ~* np (4.20) These approximate equations have been shown to reproduce the observed l e v e l s of higher n w i t h i n the accuracy of experimental e r r o r . This i s not the case f o r our observed 2p^3p and 2p~*4p c o n f i g u r a t i o n s . We cannot neglect the i n t e r a c t i o n between l e v e l s a r i s i n g from d i f f e r e n t parentage because : the magnitude of G q i n the 2p^3p c o n f i g u r a t i o n i s about twice the value of 5 2^ a n <^ ^n t' l e ^P^4p c o n f i g u r a t i o n i t i s s t i l l q u i t e large compared to >^ 2 . A complete theory f o r the p^p c o n f i g u r a t i o n i s needed to improve the agreement between the observed and c a l c u l a t e d l e v e l s f o r lower n. 4.4 2p nd Series In most p d c o n f i g u r a t i o n s , the t o t a l spreading of each group i s r e l a t i v e l y small compared w i t h the separation of the two l e v e l s of the 2 i n v e r t e d core, P. I t i s q u i t e reasonable to neglect the i n t e r a c t i o n between the l e v e l s a r i s i n g from d i f f e r e n t parentage. The approximate formulae are given i n TAS p. 313 r I41 3 • = E av + ? P + ^ n d + 3 ° G 3 14) 2 • = E av + f » d ' 14] 2 • = E av " 2 i^nd ' [ 4 h • = E av + r 3 p - I £ n d + 20 „ ~3 J l = E av I 2 -^p + *^*nd 2F 2 (41s H I , = E av I 2 ~ p 4 — na + f F 2 + 3 0 G 3 '3 < 2 H I (4) 14 L (f]i + 29 10 6 G 3 + ! * T n d ) 2 + 9 6 < 3 G 3 " \ F 2 > 2 (4.21) E - I r - 1 ? + 5 F av 2 4 3 n d 2 2 * s 4 •=» nd 11 * >2 10 " 2 ' 84 ^ 2 25 "2 av - 1 v + 2 0 .-. nd 2 " 2 3 1 < f ^ " 1 5 ? 2 + i | = t ) 2 + F 2 ) 2 ( l l o - E 1 av 2 3 2 h nd " 7 F 2 The observed l e v e l s of.2p 53d and 2p"*4d c o n f i g u r a t i o n s do not f i t t h i s approximation. F 2 i s l a r g e r than i n the .Ne I 2p^nd s e r i e s . This should be the same f o r a l l Ne I - l i k e i o n s . I t i s obvious that the p a i r of I 2 J 2,1 (4) 2 l e v e l to° l o w a n d t n e j 4] 1 l e v e l n i B n - This i s 5 ' ( 1 l ] 2 , i a n d [4) 2 1 l e v e l s s n o u l d l i e below the p a i r of ^^ "j 2 3 l e v e l s - We observed the caused by the ex i s t e n c e of p e r t u r b i n g terms from 2p 4s [4) 2 > 1-2p 55s ( 2 p 3 / 2 ) 4 f M c > 2 7 2 3 2 J 5 4 "4 3 3 2 2 1 Z I 2J+1 J E 353881.13 353881.16 353972.63 353972.42 353925.81 353926.69 35383844 353837.23 7 4 331123.04' 1COJ 22755.09 250 22849.60 22802.80 139 2 3 331186.70 800 22694.46 150 22758.68 15 22739.93 138 5 3 331707.90 0 22173.11 750 22264.71 160 22217.89 20 22218.80 15 22130.52 13 5 2 2 331665.59 550 2230688 10 22260.33 160 22261.16 10 22171.66" 14 6 3 2 330789.05 (300) 200 23136.75 0 23137.62 (100) 75 23049.37 5 23048.17 5 6 ( 1 3 6 ) 2 1 331745.06 (190) 80 22181.63 50 22093.35 (100) 4 3 ( 1 4 0 ) 1 1 330636.75 35 23289.99 (100) 160 23201.73 4 0 2320049 78 (137) 2 0 330549.35 (40) 100 23287.92 100 ( 140) 91 8 9 8 9 100 5 6 ( 9 9 ) 62 (TOO). • 6 0 ( 1 0 0 ) 5 2 ( 9 8 ) 2J+1 ( 2 p i / 2 ) 4 £ K 7 2 5 2 2 1 2 J - M 1 4 3 3 2 K J E 355281.16 355280.89 355283.70 355284.53 5 2 3 332841.93 850 22439.24 60 22441.72 0 2 244 259 130 2 332802.21 500 22478.68 35 22482.30 107 3 2 2 332962.57 30 22318.53 550 22321.16 0 2232203 116 1 333162.94 3 50 22122 57 117 5 1 2J-+1 9 4 7 6 8 7 7 7 4.5 2p^nf and 2p^ng Series The p^nf and p^ng series were not known i n the Ne I - l i k e ions, except f o r Ne I. The 2p~nf terms were established from the t r a n s i t i o n s to the 2p^3d configuration. These hydrogenic terms e x h i b i t pair coupling with very small s p l i t t i n g . The s p l i t t i n g of the pairs i n the 4f configura-tion range from 0.03 cm ^ to 1.2 cm ^. Most of them can be resolved by using the 21-foot grating spectrograph. As i l l u s t r a t e d i n Table 6 and Table 7, every 4 f l e v e l usually combines with several 3d l e v e l s . The nf l e v e l s also combine with ns l e v e l s , i n d i c a t i n g ns - n'd configuration perturbation. 20 The pair coupling was described i n i t i a l l y by Shortley and F r i e d 12 6 and Racah and i s summarised by Edlen and i s treated i n higher order 9 approximation by Humphreys et a l . . Table 8 displays a comparison between the observed energy le v e l s of 4f, 5f, and 6f configurations and the value calculated by means of the equations (6). Table 9 continas a comparison between the observed energy le v e l s of 7f, 8f, 6g and 7g con-figur a t i o n s and the t h e o r e t i c a l values, calculated by means of the equations (3) and (4). Racah's formulae are seen to represent the structure of unresolved pair coupling quite w e l l . For resolved pairs Humphreys' formulae seem better than the previous lower order formulae. 4.6 Series Limit 5 5 The hydrogenic nature of 2p nf and 2p ng enable us to test the p o l a r i z a t i o n formulae. If we denote by E the r e l a t i v e term value, counted upward from the ground state, and by E the value of the series l i m i t on this same scale, the absolute term value i s defined as T = E^j - E. P o l a r i z a t i o n formula can be rewritten as T - T H = A(Z)-p(n,J0 ( 1 + K(Z)-q(n,A)] (4.22) By applying this formula to the center of gra v i t y of 4f, 5f and 6f con-f i g u r a t i o n s , we obtained three simultaneous equations: - 381801.759 = 4.0825A(Z) [ 1 + 0.02083K(Z)] Ejj - 381819.772 = 2.3411A(Z) [ 1 + 0.02667K(Z)J E^ - 381829.596 = 1.4336A(Z) ( 1 + 0.02952K(Z)J By solving these three equations, we have A(Z) = 9.664 K(Z) = 5.4209 E ^ = 381845.767 cm"1 Since A = oC 3 ^ , and K = -2-^3. } °^d .*. oL, = 0.604 a 3 = 0.0895 x 1 0 - 2 4 cm d o 5 -40 and oC = 0.819 a = 0.0340 x 10 cm q o The i n t e r v a l , 1366.35 cm 1 , i s taken from the extrapolation of 3/2 j£ i n Table 8. The series l i m i t , 2 p 5 ( 2 P 3 ^ 2 ) and  2P5(2"p1/2) a r e 381390.2 and 383756.6 (±2.0 cm"1) res p e c t i v e l y . In view of the good agreement between observed and calculated term defects, A p = T - T shown i n Table 10, i t can be assumed that the formula w i l l give accurate values of the term defects also for X ~>/i. The term value thus calculated for nf, ng and nh series are included i n Table 10. n~Tv G4 4f 1 5f 4 h 4 ) 2 4 ) 5 4 L 4 ) 3 4 ) 2 4 ) 3 4)4 4 L 4)4 4 ) 3 41 2 i h i i 2 J 2 I h 414 413 910.900 400.128 ,0245 ,0071 2.5856 O b s . L e v e l C a l . L e v e l D i f f 353837.23 353837.16 + .07 353838.44 353838.53 -.09 353881.13 353881.07 + .06 353881.16 353881.15 + .01 353925.81 353925.92 -.11 353926.69 353926.63 + .06 353972.42 353972.57 -.15 353972.63 353972.74 -.11 355280.89 355280.69 + .20 355281.16 355280.96 + .20 355283.70 355283.82 -.12 355284.53 355284.71 -.18 363767.98 363768.02 + .04 363769.03 363769.06 + .03 363790.60 363790.49 -.11 363790.64 363790.62 -.02 363814.78 363814.76 + .02 TABLE 8 ( C o n t ' d . ) 41 2 910 .=910 400.250 .0193 .0064 2.5850 363815.38 363815.35 + .03 4] 3 363837.82 363837.90 -.08 41 4 363837.94 363838.00 -.06 41 3 365173.42 375173.37 + .05 41 4 365173.70 375173.56 + .14 4) 3 365174.10 365174.23 -.13 41 . 2 365174.82 365174.96 -.14 41 1 369158.71 369158.78 -.07 41 2 369159.46 369159.43 + .03 41 5 369171.93 369171.89 + .04 41 4 369172.01 369172.01 + .0 41 3 369186.50 369186.36 + ,14 41 2 910.910 403.272 .0121 .0051 2.5855 369186.73 369186.74 -.01 4! 3 369199.58 369199.66 -.08 4! 4 369199.68 369199.73 -.05 41 3 370547.74 370547.74 + .0 4' 1 4 • 370547.87 370547.88 -.01 4 3 370548.06 370548.05 + .01 l • 2 370548.50 370548.51 -.01 9.10.79 910.89 n 3 F 2 L K (4) (4) (4) 141 (4]' (4)' obs. 372415.9 372433.3 372425.4 372407.8 910. 79 401. 31 7f c a l . 372415.9 372433.4 372425.3 372407.7 d i f f . 0.0 -0.1 +0.1 +0.1 obs. 374520.3 374532.1 374526.3 374514.9 910. 55 404. 48 8f c a l . 374520.2 . 374532.1 374526.5 374514.7 d i f f . +0.1 0.0 -0.2 +0.2 373787.8 373788.1 373787.9 373787.9 -0.1 +0.2 375890.0 375890.0 0.0 40.67 40.99 6'g 7g obs. c a l . d i f f . obs. c a l . d i f f . (4) (4) [4] (4) (41' (4)' 369189.22 369189.11 +0.11 372426.7 372426.7 0.0 369203.4 369203.6 -0.2 372436.2 372435.9 +0„3 369198.66 369198.52 +0.14 372432.5 372432.7 -0.2 369184.02 369184.01 +0.01 372423.4 372423.5 -0.1 370560.57 370560.57 0.0 373796.4 373796.4 0.0 4> OO Conf. 4 f 5'f 6f 7f 8 f 9f l O f 5g 6g 7g 8g 9g 10g H (cm ) 27433.82 17557.65 12192.81 8957.98 6858.45 5419.02 4389.41 17557.60 12192.79 8957.96 6858.44 5419.01 4389.40 12192.77 TABLE 10--POLARIZATION FORMULA FOR 2p n JL WITH Jl ^  3 A p = 9.664 p(n,S) [l + 5.421 q(njO) E A= 381849.37 obs. (cm ) 27477.73 17583.55 12208.89 8968.53 6866.22 A p ( o b s . ) A p.(cal.) 12195.89 8960.18 (cm 1 ) 43.91 25.90 16.08 10.55 7.77 3.10 2.22 (cm ) 43.91 25.90 16.07 10.54 7.24 5.17 3.82 5.54 3.59 2.41 1.68 1.21 0.90 1.11 c a l . (cm l ) 27477.73 17583.55 12208.88 8968.52 6865.69 5424.19 4393.23 17563.14 12196.38 8960.37 6860.12 5420.22 4390.30 12193.88 E ( c a l . ) (cm ) 354367.94 364262.12 369636.79 372877.15 374979.98 376421.48 374452.44 364286.53 369649.39 372885.30 374985.55 376425.45 377455.37 369652.79 7h . 8957.95 8h 6858.43 9h 5419.01 lOh 4389.39 0.78 8958.73 0.55 6858.98 0.40 5419.41 0.30 4389.69 372886.94 374986.69 376426.26 377455.98 F i v e hundred and twenty-seven l i n e s are c l a s s i f i e d (with twenty doubly i d e n t i f i e d ) as combinations between sixty-two odd l e v e l s and seventy-one even l e v e l s . One hundred new energy l e v e l s have been e s t a b l i s h e d i n t h i s i n v e s t i g a t i o n of which s i x t y l e v e l s are based on nf and ng c o n f i g u r a t i o n s . These groups of hydrogenic l e v e l s form an e x c e l l e n t o b s e r v a t i o n a l basis f o r c a l c u l a t i n g the s e r i e s l i m i t and a study of the approximate p a i r coupling i n the p"*Ji c o n f i g u r a t i o n . BIBLIOGRAPHY K. Bockasten, A r k i v for Fysik, 10, 567 (1956). and K. B. Johnsson, Arkiv f o r Fysik 38, 563 (1969). I. S. Bowen, Phys. Rev. 23, 1 (1924). _ , Phys. Rev. 31, 967 (1928). H. M. Crosswhite, private communication (1967). B. Ed1en and A. Ericson, Compt. Rend. 190, 116 (1930). B. Edlen, Hanbuch der Physik, Vol. XXVII. P. D f'Foote, W. F. Meggers, and F. L. Mohler, The Astrophysical Journal, 55, 145 (1922). R. F r i s c h , Z. Physik 70, 498 (1931). C. J. Humphreys, E. Paul, J r . , R. D. Cowan, and K. L. Andrew, J. Opt. Soc. Am. 57, 855 (1967). K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941). F. H. Newman, P h i l . Mag. 5, 150 (1928). G. Racah, Phys. Rev. 61, 537 (1942). S c h i l l i n g e r , Akad. Wiss. Wien S i t z - Ber 118, 11 (1909). J. Soderqvist, Nova. Acta Reg. Soc. S c i . Uppsala (IV) 9, No. 7, 22 (1934). P. C. Tsui, S.-C. Ma, and C. M, Wu, Chinese J. of Phys. (Taiwan) 3 No. 1, 127 (1965). B. B f Vance, Phys. Rev. 41, 480 (1932). A. G. Shenstone, J. Opt. Soc. Am. 44, 749 (1954). _, J. Opt. Soc. Am. 45, 868 (1955). 18 E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra". 19 W. V. Houston, Phys. Rev. 33, 297 (1929). 20 G. H. Shortley and B. Freid, Phys. Rev. 54", 749 (1938). 21 A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 415 (1932). 22 J. H. Van Vleck, Proc. Roy. Soc. (London) A 143, 679 (1934). 23 I. Z. Waller, Z. Phys. 38, 635 (1926). 24 G. H. Shortley, Phys. Rev. 47, 295 (1935). TABLE 11. --LIST OF ( CLASSIFIED N a i l LINES h A. v a c \J v a c J/cal Conf. 10 269.993 370380.0 78.6 - 7s' till 7 270.947 369075.9 70.5 - 7s 5 271.373 368497.1 94.1 - 6d [ih 12 273.940 365043.4 43.5 - 6s' till 12 274.023 364932.9 31.1 - 5d' biK 20 274.931 363727.6 25.8 *1il. - 6s bib 20 275.003 363632.4 31.9 - 5d HK 5 275.218 363348.3 47.4 - 5d [iL 25 281.691 354998.9 97.8 *iii. - 5s' till 25 281.788 354876.7 76.5 *iii. - 4d' bill 35 282.709 353720.6 19.3 - 5s ['ill 35 282.803 353603.0 0.6 - 4d biK 15 283.258 353035.0 32.9 - 4d [ib 160 300.153 333163.4 62.9 - 3d' bill 160 300.202 333109.0 7.7 - 4s' [ih 90 301.318 331875.3 73.9 - 4s biK 100 301.436 331745.4 45.0 *6lil„ - 3d biK 60 302.446 330637.5 36.7 *6[il. - 3d [ib 300 372.075 268763.0 63.0 - 3s' [ib 350 376.379 265689.6 89.6 - 3s Nli 60 1293.974 77281.3 12 1297.856 77050.2 15 1298.142 77033.2 30 1299.018 769,81.2 15 1303.957 76689.6 15 1304.546 76655.0 20 1306.618 76533.4 10 1307.936 76456.3 10 1311.158 76278.5 30 1312.026 76218.0 20 1312.587 76185.4 30 1319.815 75768.2 12 1322.295 75626.1 50 1327.742 75315.8 12 1328.497 75273.0 35 1338.575 74706.3 35 1341.369 74550.7 20 1342.401 74493.4 45 1347.543 74209.1 12 1351.799 73975.5 81.4 3s M i - 4p' 49.0 - [>i] 1 - 4p' 33.1 38 [4] 2 J Ox. - 4p K 2 82.7 '•[4] 2 - 4p H ] i 89.4 H i ] o - 4p' 54.4 38 [xi] i - 4 P [ i ) o 33.4 3 8 [ii] 2 - 4p [4] 2 57,0 - (il o - 4 P [>ijl 67.8 3s [4] i - 4 P [4)2 17.4 - 4 P 85.4 38 [4] 2 - 4p [4] 3 68.1 38 B] i - 4 P [4)2 25.4 3 8 ( i ] o - 4p M l 15.5 3s (!i] 2 - 4p 73.8 3> [i] i - 6d [ i ] i 6.2 3 s - 4 P ' [ i ] o 50.2 38 [4]i - 4 P [ « 1 93.8 - 4 P ' ( i ] 2 08.0 3 S ' [ ^ ) 1 - 4 P ' [ i ] i 75.6 - 4 P ' 35 1352.118 83958.0 20 1359.055 73580.5 15 1366.242 73193.5 90 1374.688 72743.8 15 1375.618 72694.6 30 1381.236 72398.9 10 1384.794 72212.9 10 1392.316 71822.8 15 1392.940 71790.6 12 1398.143 71523.5 30 1399.070 71476.1 12 1399.860 71435.7 90 on N a m 1404.675 71190.9 12 1410.374 70903.2 7 1411.536 70844.8 20 1418.579 70493.1 12 1420.216 70411.8 7 1421.889 70329.0 12 1422.996 70274.3 7 1425.499 70150.9 58„2 3s' [i)o - 4>UL 81.0 3s' - *>U]o 94.4 3s' UL - *" [4] 2 43.0 3p UL - - U L 94.7 3s UL - 4 P [4] 2 400.0 3p w , -13.2 3p [4] i - - U L 23.2 3p UL - 6-'UL 89.6 3p UL " -[Do 23.8 3p UL " -'[4] 2 76.8 3s [ i^ - UJ x 34.9 3p W , - * [4] X 88.9 3p [4J 2 -05.1 3p UL - - [4] x 45.6 3p UL - < 4 L 93.2 3p" Wx -11.6 3p UL " M [4] i 28.7 3p [4] i - " f i l l 74.7 3 P ' UL - [4] x 50.2 3p' [4]x - -14] x 7 1426.048 70123.9 10 1429.963 69931.9 7 1431.015 69880.5 15 1431.228 69870.1 10 1435.776 69648.8 30 1442.907 69304.6 12 1455.969 68682.8 10 1462.160 68392.0 10 1470.916 67984.8 15 1481.578 68495.6 15 1483.570 67407.9 25 1485.987 67295.3 45 1495.212 66880,1 40 1496.011 66844.4 45 1497.731 66767.7 25 1501.995 66578.1 80 1506.407 66383.1 60 1506.914 66360.8 35 1510.701 66194.4 70 1513.102 66989.4 27.1 -31.7 6d(4]i 80.5 3P(4] 2 - 4 i L 71.5 - ( i L 47.8 04.1 * (4] 2" 82.7 * [ £ l o - K4L 90.2 3p,[4]2 - « ( i ] i 87.0 95.3 * [4] 3 - 5d(4}2 07.9 3>[4L -- ( i l l 95.5 3» [4] 2 - *{4) i 78.1 3P [4] 1 - - f i ] i 44.5 3p[4]l • 6 s ' ( i ] o 65.7 3"[4]i --14] i 78.1 3»[4L -*'(4] 2 83.1 3f[4]3 " -[4] i 61.4 3»(4]3 -44] 2 92.9 3>(4]3 --(4] 2 90.2 ^[4]2 - -[4] i 30 1515.229 65996.6 30 1515.709 65975.7 35 1518.505 65854.2 60 1519.629 65805.5 30 1525.311 65560.4 15 1527.555 65464.1 20 1527.985 65445.7 10 1534.163 65182,1 25 1534.538 65166.2 12 1534.737 65157.7 12 1539.895 64939.5 15 1547.066 64638.5 20 1549.392 64543.1 20 1549.507 64536.7 20 1550.348 64501,7 20 1551,793 64441.6 20 1552.203 64424.5 15 1556.370 64252.1 12 1556.753 64236.3 7 1558.678 64156.9 96.3 3 P[4; m bi) i 74.6 3p ( i 6s bi) 2 53.5 3p bi 6s'[ i) i 06.1 3p bi. 5d [li] 2 60.4 3P [li] 65 bi) i 66.5 3P [4] 5d bi) i 44.8 3p bi. 6s [li] 2 82.0 3P [li- 5d [ i) i 66,8 sp [ l | 5d [ i) o 58.1 3P [l|] -'(ill 39.6 3p'[li] 6s'(ili 40.2 3p'[lf M,bi)i 43.3 3P H, 5i'bi)i 36.4 L - 6s'ii) i 35.8 3P [li j Ii - 6s bi) i 02.8 »•[*: 6s'(ilo 42.0 3p ['i 5d (4l i 24.0 v [ i ; K'il 1 51.7 3p bi U -^ Hl 2 37.0 v [ i ; "'Nl 2 57.4 3P [if 10 1568.673 63748.2 46.5 20 1569.264 63724.2 24.8 10 1573.430 63555.4 56.3 12 1574.110 63528.0 28.0 7 1574.664 63505.6 06.3 15 1575.749 63461.9 62.0 12 1576.118 63447.0 46.8 12 1578.807 63338.9 38.0 37.8 25 1581.108 63246.8 44.1 20 1581.835 63217.7 18.7 20 1584.173 63124.4 24.8 7 1588.983 62933.3 34.6 15 1591.321 62840.9 40.3 7 1591.712 62825.4 25.1 12 1621.940 61654.6 56.2 12 1622.347 61639.1 39.5 20 1626.372 61486.6 86.7 20 1652.921 60499.0 99.0 60 on C I 1657.918 60316.6 16.4 35 1668.569 59931.6 31.5 ' p ' L ^ J i - 5d - 6s [41 2 - 5d [41 2 v [ 4 ] 2 - 5d ( 4 l x - 6s [ 4 ] 2 V [4] X - 5d [ i ) i 3 "' [4] i - 5d [ i ] . 3 p [ i ] o - 6s [4 ]x 3 P ' [4] 2 - 5d [ 4 ] 2 » [1] 0 - 5d [ 4 ] x v [ i l x - 6s [41 x v [ i j V - 5d [41 x V [\] X - 5d [41 2 V [ D X [ i l x V ( i l 1 - 5d _ 2 J 0 3> [1] X - 4d' [4]x 3> [ 1 ] ! - »ii)o 3> [1] X - 4d ' [ x | ] 2 3> [ i ] 1 M L 3> [1] x : 4 i 2 3> [ i l x " « [41 2 35 1671.886 59812.7 15 1673.649 59749.7 15 1743.309 57362.2 0 1746.996 57241.1 12 1752.185 57071.6 30 1759.572 56832.0 7 1763.325 56711.0 30 1763.841 56694.5 7 1768.603 56541.8 90 1776.571 56288.2 40 1778.243 56235.3 0 1778.905 56214.4 0 1779.906 56182.8 60 1783.043 56083.9 15 1783.475 56070.3 12 1785.989 55991.4 80 1787.189 55953.8 45 1788.846 55902.0 2 1790.565 55848.4 35 1791.224 55827.7 12.6 4 d UL 49.5 3 p( iL - 4dU]o 62.2 3p(4]2 -40.9 3 P [4] 2 - 4d'[4]x 71.4 * [4] 2 - 4d'(4]i 32.4 »!>i]i -11.1 3> [4] x - «{4]x 94.4 ^T4]o 41.6 * [4]! - 4d'[4j 2 87.9 3P[4J3 - 5s [4] 2 35.0 3 p [4] 3 - 4d [4] 3 14.4 3p(4]3 - 4d [4] 2 82.7 vfijo -83.7 3- [4] 2 - 56 [4] ! 70.3 3»'[l]o -91.6 3 p [4] 3 - 4d [4] 3 53.8 3p[4]3 - 4d(4], 01.1 3p[4]2 - - [4] 2 03.0 3p[4]3 - 4d [4] 2 48.2 3p[4]2 - 4d [4] 3 27.6 3p[4]2 - 4d [4] 2 30 1791.862 55807.9 1 1795.772 55686.4 80 1798.410 55604.7 25 1800.048 55554.1 45 1801.256 55516.8 12 1805.998 .55371.1 10 1806.061 55369.1 90 1807.092 55337.5 60 1808.375 55298.3 25 1814.474 55112.4 5 1818.473 54991.2 7 1818.628 54986.5 20 1819.024 54974.5 50 1821.695 54893.9 5 1822.568 54867.6 0 1824.098 54821.6 7 1825.730 ' 54772.6 20 1830.124 54641.1 12 1831.172 54609.8 07.9 3P [ l i ] 2 '••[di 86.5 SP [i±] 1 -•['iii 04.8 3 P [ 4 J 2 - [41 3 53.9 3P [l±] 1 - [411 16.2 3P [4J 2 - [4] 2 17.0 3P [li] 2 -•[4) 2 71.3 3P [ l | ] 1 - [4] 2 69.2 3P [ l i ] 2 "•[4] 2 36,3 3P [ l i ] 2 H4) 2 97.8 3P [ l i ] 1 - [4] 2 12.4 3P [ l | ] 1 - [ i ] i 91.1 3 p ^ [ l i ] 1 H 4 L 86.4 3P [ l i ] 1 - [4] i 74.4 »"[4] 1 - [ i ] o 93.9 3 P ' [ 1 | ] 2 " O h 87.5 3P [ l | ] 1 « [ i)x 21.6 3 p . [ l | ] 1 «'[4] 2 71.1 0 « [4] ! 72.6 3 p { l | ] 2 -•[4)! 40.9 3 p ' [ l i ] 1 -•[4] 2 10.0 H i ] 0 H i ] i 1 1831.402 54603.0 03.1 4.5 1833.873 54529.4 29.3 14) 2 •• • 5 s [4h 80 on Nam 1835.217 54489.4 90.7 • M I L 88.7 3 P [ ! ) O • • -[4]. 2 1836.367 54455.4 • 55.3 • -'(4j3 15 1837.522 54421.1 22.4 3p ' [ 1 i] 2 • • w [4] 2 45 1837.890 54410.2 10.6 3p ( 1 i ] 2 • 20 1839.270 54369.4 69.4 3p ' [ ih • 25 1839.835 54352.7 52.7 3p'(i!) i • • "'[ijo 20 1840.032 54346.9 46.7 3P 2 - • H 4 ] 2 60 1841.822 54294.1 93.8 3 P [ I | ) 2 • • -[4) 3 70 1845.016 54200.1 199.9 3 P O K " • M 4 L 45 1850.150 54049.7 50.4 3 P [ l i ] 2 -' 4 d[4] 3 70. 1851.194 54019.2 19.2 v U h -• «'(4J2 80 1853.166 53961.7 61.8 3P(11]2 ' « [ 4 ] 2 25 1857.265 53842.6 42.9 3 P ( 1 | ] 2 ' 40 1857.576 53833.6 33.9 3P'(4] 1 -• -[4]: 15 1863.898 53651.0 51.3 3 P ' ( 1 l ) l " -(4) 2 35 1865.139 53615.3 15.4 3p'0i]2 -45 1866.452 53577.6 77.8 3 p ' [ 1 i ] i - 4 d[4] 2 40 1871.517 53432.6 45 1873.369 53379.8 15 1874.098 53359.0 60 1875.075 53331.2 20 1877.365 53266.1 30 1879.240 53213.0 160 1881.912 53137.4 20 1883.460 53093.8 20 1883.804 53084.1 50 1885.091 53047.8 45 1885.742 53029.5 30 1889.317 52929.2 30 1899.523 52644.8 15 1903.831 52525.7 15 1906.112 52462.8 h h h ^ Mr ^ . 50 2166.769 46137.2 0 2172.490 46015.7 32.8 * [4l 2 79.9 3P'[4J 2 - " [41 3 59.3 " [41 2 31.5 - [411 66.4 i - « [41 2 12.2 * [41 1 12.8 « [41 1 36.5 « [ 4 U 93.5 4 d [ 4 h 84.4 v O i j i - « [ i l » 47.9 4d [41 2 29.6 » [41 2 29.0 3 P ' [ l i ] 2 -45.1 44.7 3 p - f i ] i - 4d (41 2 25.8 3 P ' f l ] l " " ( 1 1 1 62.7 v [ l ] i -4 d [ l l o ) / ( C a l c , • ) 37.0 -'(111 15.7 V f i ] „ -4 d'(4l i 7 2216.560 45100.9 80 2228.529 44858.7 10 2260.495 44224.4 5 2262.665 44182.0 10 2273.808 43965.5 15 2286.264 43726.0 20 2302.923 43409.7 20 2303.263 43403.3 80 2303.582 43397.3 60 2306.968 43333.6 300 190 2315.647 43171.21 30 2320.130 43087.7 40 2322.264 43048.2 15 2324.927 42998.9 15 2324.927 42998.9 30 2328.805 42927.3 30 2332.109 42866.5 59 00.9 3d ( 4 L " 8 f 1 l ^ U 3,2 58.7 3p' U L - 5s 24.4 3d U L - 8 f ' L^J 4,3 - 8 f ' I 2} 3,2 82.1 3d U L - 8 f ' [4J4,3 - 8 f ' r 2^ 1 L 2 J 3,2 65.5 3d U L - 8f [4] 2,1 25.8 . 3d UL - 8f [4) 2,1 09.1 3d UL - 8f Vl L 2 J 4,3 03.3 . 3d UL - 8f L 2 J 3,2 97.3 3d UL - 8f [4] 5,4 33.6 3d UL - 8f (4) 5,4 71.18 3s UL - 3p.' f i ) L 2 J 0 87.8 3d' U L - 8f * [4)4,3 - 8 f ' vi L 2 J 3 ,2 48.1 3d (4) 3 - 8 f ' vi k°2J 4,3 - 8f 1 vi . 2J 3 ,2 98.8 3d U L - 7f' . 2 j 3,2 98.8 3d U L - 7 f 1 vi . 2 j 3 , 2 27.4 3d' (4) 2 - 8 f 1 . 2 j 3,2 66.5 3d (4) a - 8f VI - 2 i 4,3 40 10 2334.403 15 1 25 2 35 10 60 20 30 100 25 70 15 300 70 190 2420.991 60 12 300 60 2424.729 100 20 2452.657 42824.3 2337.377 42769.9 20 12 2339.724 42727.0 2373.329 42122.0 2375.731 42079.5 2388.289' 41858.2 130 45 2393.275 41771.0 2395.642 41729.8 2401.014 41636.4 45 10 4202.019 41618.9 2419.965 41310.4 41292.86 2423.724 41246.3 41229.2 200 35 2439.144 40985.6 250 60 2441.495 40945.9 200 35 2448.715 40825.4 200 35 2452.180 40767.7 40759.7 24.2 69.8 27.0 22.2 79.9 58.2 71.1 70.8 29.9 36.3 18.9 10.3 92.86 46.6 29.2 85.6 45.9 25.4 67.7 59.8 42.0 3d 3d 3d' 3d 3d 3d 3d 3d 3d' 3d 3d 3d 3d 3d 3d 3d' 3d' 3d' 3d 3d 3d 4 L 4 h 4 h 4] 2 41 3 2 J 0 Ih ih 4] 2 n 2 J 2 4)2 4), 4), 4 L 4 L 4)2 4 b 4 L 4 L 4 L 4 L 8f 8f 8f 7f' 7 f 7f 7f 7f 8f 7f 7f 7f 7f 7f 7f 7f' 7f' 7 f ' 7f 7f 7f 3 3 '2 J 4,3 II 2 J 4 , 3 M 2 J 2 ,1 i h , i h . ] II 2 J 2 ,1 11 2 J 2 •iii II 2 J 3,2 2J 2 i] 4 , 3 il 2 J 5 ,4 i l 2 J 4 , 3 iL, iL, I ) , , 11 2 J 3 2] 3 , i r 2 j 1 ^ J 4 , 3 40 2460.776 40625.3 1000 800 2493.149 40097.82 300 60 2502.839 39942.59 25 2504.791 39911.5 450 95 2506.301 39887.42 45 2514.412 39758.8 600 300 2515.455 39742.28 10 2559.971 39051.2 50 2525.647 39581.9 600 280 2531.538 39489.81 30 2571.103 38882.2 35 2573.910 38839.8 550 350 2586.308 38653.59 60 2589.269 38609.4 40 2593.269 38549.8 600 300 2594.958 38524.75 45 6 2600,325 38445.24 130 10 2603.563 38397.43 45 2605.388 38370.5 850 700 2611.812 38276.17 60 2625.515 38076.4 40 2626.368 38064.1 300 35 2627.414 38048.89 60 2629.909 38012.9 35 2630.766 38000.4 25.4 3d [4L - 7f L 4,3 25.3 3d' (4L - 7 f ' fail L 2 J 2 97.84 3s' ( IL - 3 P ' [ 2 ] 0 42.61 3 P t i l . -3d (4)! 11.7 3d U L - 6 f ' [4L 87.41 3p U L - 4s' 59.0 3d [4L - 6 f 1 [413 42.24 3p U L - 3d' [4L 51.55 4s U L - 6 f ' [4L 81.88 3p U L - 3d' U L 89.78 3p U L - 4s f i l L 2 J 0 82.2 3d U L - 6f 1 1 2 > 4 , 3 39.9 3d [4L - 6 f ' U L . 3 53.59 3p U L - 4s (4L 09.36 3d [ 2 i 0 6f [4L 49.98 3d U L - 6f 14] 2 24.73 3d U L - 3d [41: 45.26 3p U L - 3d [412 97.45 3d U L - 6f [4] 3 70.3 3d U L - 6f [412 76.18 3p [ i h - 4s L 2 J 2 76.59 3d U L - 6f U] 4 , 3 63.46 3d [4L - 6f 48.89 3d U L - 6f 14] 5 12.93 3d U L - 6f 1 2 j 4 , 3 7999.92 3d U L - 6f L 2j 3 ,2 300 40 2631.812 200 25 2651.313 80 2652.430 80 50 90 10 2667.395 60 100 45 2670.027 200 70 2674.035 150 30 2679.252 130 37985 . 3 1 160 20 2648.532 37745.53 37705.94 37690.0 200 25 2659.810 37585.49 850 700 2660.997 37568.72 200 20 2663.460 37533.99 2664.358 37521.3 350 30 2666.458 37491.78 2654.331 37663.1 37478.62 2669.372 37450.9 37441.67 1000 850 2671.826 37416.47 60 2672.027 37413.65 37385.56 850 700 2678.085 37329.02 37312.76 2749.649 36357.5 85.31 45.53 05.94 89.99 85.49 68.72 33.99 21.0 91.78 62.95 78.60 51.6 41.67 16.42 13.65 85.56 29.02 12.80 57.7 57.3 3d 3d' 3d' 4s 3d* 3p 3d 3d 3d 4s 3d 3d 3d 3p 3d 3d' 3p 4s 3d' 3d' i] I] U i] h) \\i I] I] i] I] I) IJ iK iii i i '2J 1 I] 2) 2 i)i 1) i IT 2i 3 1] 2) 2 3 2 3 2 2 2 } ^ 2 2 J 2 3 2 J 2 3 2 J 3 6f 6 f 1 6f 1 6f 6 f 1 3d 6f 6f 6f 6f 6f 6f 6f 3d 6f 6f 1 3d 6f 6f 6f 35 1 2759. 797 36223. 85 23.93 25 2761. 861 36196. 8 96.83 20 2775. 113 36023. 9 23.79 80 25 2799. 211 35713. 82 13.75 650 600 2808. 706 35593. 10 93.11 850 850 2809. 520 35582. 79 82.79 160 30 2811. 840 35553. 43 53.39 250 70 2813. 900 35527. 40 27.33 350 130 2818. 288 35472.09 72.13 600 400 2829. 868 35326. 94 26.96 800 600 2839. 564 35206. 32 06.32 1000 1200 2841. 724 35179. 56 79.60 30 2842. 762 35166. 7 66.6 650 500 2856. 508 34997. 50 97.50 800 600 2859. 488" 34961. 03 61.05 350 80 2861. 019 34942. 32 42.30 750 650 2871. 275 34817. 51 17.49 650 60 2 872. 954 3479 7. 17 97. 13 900 900 2881. 146 3469 8. 23 98.20 850 600 2886. 257 34636 . 79 36.77 3d' U l - 6f (4J3 3d' U l - 6f U] 2 3d' U l - 6f U ] a 3 P U J 3 - 3d' (4]2 3p [41 - 3d' [4L 3s [ 4 l i \ l 3p - 3d' [4J2 3p [4l2 - 3d' [4L 3P U) 2 - 4s' U L 3P [4)2 - 3d' UJ 2 3P [41 - 3d' (4J3 3s [4]2 - 3 P ' (4J. 3 P | ;4]2 - 3d' (4]2 3P( - 3d' [4]. 3s' | ' U • - 3p' [4L 3 P | - 4s' 3s 1 | - 3p' I l l 3P[ ' 4 ) l • - 3d' b\}2 3 , [ - 3 P L 2 J 0 3P( - 3d' [4)2 900 700 2901.139 34459.12 800 550 2904.716 34416.69 1100 950 2904.915 34414.33 250 250 1100 1400 1200 1200 1300 1500 1000 650 750 400 850 450 950 600 450 90 800 450 950 450 1200 1300 1100 650 850 450 450 140 80 500 120 2907.40 2907.52 1100 1100 2917.520 2919.049 2919.850 2920.945 2923.485 2930.882 2934.079 2937.735 2942.657 2945.702 2947.449 2951.235 2952.396 2960.116 2965.742 2968.48 2970.727 600 300 2974.235 750 400 2974.988 1000 1000 2977.125 34384.9 34383.5 34265.66 34247.71 34238.31 34225.48 34195.74 34109.44 34072.28 34029.88 33972.96 33937.84 33917.73 33874.22 33860.90 33772.60 33708.53 33677.4 33651.97 33612.28 33603.77 33579.65 44.67 59.08 16.77 1430 85.05 83.37 65.64 47.69 38.32 25.49 95.75 09.45 72.29 29.98 72.98 37.97 17.78 74.22 60.90 72.61 08.49 77.43 51.97 12.25 03.75 79.62 3p 3p 3p 3 s 3d 3d 3s 3p 3p 3s 3s 3p 3p 3p 3p 3p 3 P 3p 3p 3 P 3 P 4s 3p 3p 3s' 3p 4 ] l • 64 • - [Do 4 ] 3 • • 3 d I 4 ] 3 4 L • • 3 d [4]2 4)x • • *•[•]}., 4 ] 2 • • 5 f ' [ 4 ] 3 4] 2 • • " ' [ 4 ) 3 4] 2 • • 3> [4J2 4 L • • >° [4)2 4 ] 2 • • *• ( 4 L 2 J 0 • V [ lb 1 1 . 2 J 0 • v f 4 ) x 4 L • • 3 d (41! 4 ] 2 • • 3 d [ 4 ) 3 4) 2 • • 3 d [4] 2 4) 2 • • - ' [ 4 ] ! 4) 3 • • 3 d [4] 3 4)2 • • *- [ 1] X 4] 3 - 3 d [4] 4 4] 2 • • *S [4] 2 4] 2 • 3 d' [ 4] 2 4 ] . • *-(41i 4] 2 - « ' [ 4 ) 3 4J 2 - 3 d ' [4 ] 2 i i i • 2j 2 3 d l 4] 2 11 . 2 J 0 • 3"'[ 4] 1 4]i • 3 d [ 4] x 1100 1200 2979, .657 33551, .12 51.18 3» [4 )i - 3d [ 4 ) 3 1100 750 2980, .627 33540, .20 40.23 3 f [ 4 ] 3 -3 d ( 4 j 2 1300 1200 2984, .186 33500, .20 500.34 - [ 4 ] . -3 U 4 J 2 500.15 3d ( 4 J 2 300 2987 .213 33466. ,2 65.7 3 d [ 4 ] 3 - 5 £ ' [ 4 k 550 100 3004, ,149 33277. ,60 77.57 v [ 4 J x -750 600 3007.442 33241. ,16 41.12 » U K -750 200 3009, .137 33222. ,44 22.37 -450 30 3009. ,482 33218, ,63 18.63 M t i ] o - « [ 411 160 3013. ,10 33178, ,8 78.63 3 d ( w -5f [ 4 ] 2 600 400 3015. ,395 33153. ,49 53.44 3 4 4 ] 2 - 3d [ 41 2 450 45 3017. ,341 33132. ,11 32.28 - [ \h - * [4] 2 160 20 3022. 348 33077. ,23 77.20 H 4 J . - 3 d ' ( 4 ] 2 130 3024. 00 33059. 1 59.02 v [ 4 J ! -300 60 3027. 062 33025. 71 25.73 3d ( 4 ] 2 - - [ 4 ) 3 400 450 3029. 070 33003.83 03.82 - L 4 ) 2 - *-* [ i ] , 40 3029. 320 33001. 21 01.14 3 f [ 4 ] 2 -3d[ \h 200 3031. 26 32980. 0 80.0 3 d [ 4 j 2 - " [ 4 ] 2 400 700 3037. 076 32916. 83 16.84 3 p ' [ 4 ] ! - 3 d ' [ 4 ] 2 350 40 3042. 461 32858. 57 58.65 v [ 4 ) , - -'[4J! 400 250 3045.600 30824.70 350 500 3050.210 32775.10 550 900 3053.666 32738.01 550 90 3055.347 32719.99 45 3055.822 32714.91 550 1100 3056.161 32711.28 55Q 7 5 0 3057.375 32698.29 550 3057.95 32692.1 550 150 3058.720 32683.91 700 250 3060.251 32667.56. 800 550 3061.350 32655.84 25 3061.792 32651.12 500 200 3064.375 32623.60 500 160 3066.223 32603.94 500 450 3066.535 32600.62 350 160 3070-829 32555.04 550 750 3074.334 32517.92 550 900 3078.318 32475.84 170 3078.752 32471.26 24.74 75.12 38.01 19.92 14.90 11.29 98.29 91.7 83.97 67.56 55.83 51.12 23.61 03.94 00.63 55.10 17.94 75.82 75.63 71.31 3P' 3 P 3p' 4 2 2 J 2 I L 2 4 i l l i l 2 J 0 1 1 2 J 2 11 2 J 0 i l i i i l i l i l i l IK I L i i 2 J 1 i] 3 I L II 11 i i 2 J 1 il 2 J 2 3 p H)i 3 P 3d 3s 3p' 3d 3p 3d 3p' 3d 3p 3d 3p' 3 P 3p 3s 3p 2 2 J 2 4s' 3d' 3d' 4s' 5f 3 P 3d' 5f 4s 5f 3d' 5f 3d 5f 4 s ' 3d 3d 3 P 3d 3d i ] 2 J 0 Di i i 2 J 3 i h I L Ai •2 J 2 1 1 "2 J 2 2 J 3 I L I L IL i i 2 J 3 1 1 '2 J 2 I L I L i i 2 J 1 "2 J 3 i L i l "2 J 2 1 4-[ I L 550 800 3080.254 32455.43 450 65 3087.060 32383.88 450 80 3088.263 32371.21 550 250 3092.035 32311.77 550 1100 3092.732 32324.49 650 25 3094.449 32306.55 650 20 3095.552 32295.04 60 3097.73 322.72.3 500 70 3103.578 32211.53 500 190 3104.403 32202.97 350 70 3107.370 32172.22 300 15 3109.538 32149.79 450 90 3111.453 32130.01 500 20 3113.693 32106.89 10 3114.130 32102.30 60 300 3116.01 32082.9 3117.231 32070.4 15 3118.134 32061.17 350 15 3121.759 32023.94 400 45 3122.935 32011.88 55.46 83.91 71.21 31.77 24.50 06.55 95.10 72.52 11.53 03.00 72.23 49.79 30.04 06.88 02.39 82.7 70.32 61.13 23.97 11.88 3p' 3p 3 d 1 3d' 3s 3p' 4s 3d' 3p' 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d' 4 L 4 L 41 41. 4h iii 4 J 2 4) i ] 2 2 J 1 4} 4) 4) i i '2 J 3 II 2 J 2 1 1 2 13 1 1 2 J 1 '2 J 3 iJi • i h •3d 1 3d 5f * 5f ' 3p 4s id' 4 f 5 f 1 4s 5f 5f 5f 5f 5f 5f 5f 5f 5f 5 f 1 41 -1 2 J 0 4 ] 3 41 4), 4] 2 4h 4J 2 41 3 4Ji 41 3 41 2 4], 41 3 411 41 4 4] 2 4} 2 4] 2 41 2 1700 550 3124.415 31996.72 600 250 3125.212 31988.56 600 950 3129.377 31945.98 80 3129.821 31941.45 2500 700 3135.483 31883.70 1700 550 3137.861 31859.61 950 400 3145.706 31780.16 2000 650 3149.283 31744.07 70 35 3159.527 31641.15 250 40 3161.154 31624.86 90 3162.53 31611.1 96.83 3p [4] 2 88.56 3P' [ 4 h 45.99 3s [4J> 41.45 4s 2 ) 0 83.82 3s' 59.69 3p' 14 L 80.22 3p' Al 44.15 3s' A*I 41.14 3 P ' A) 2 24.86 3s' A)i 11.14 3 P ' '4L 350 130 3163.246 31603.95 03.98 3P* A) 2 -• 3i [ 4 ] 3 2000 650 3163.736 31599.06 99.09 3 P Al> • • M [4] 2 200 100 3167.484 31561.67 61.67 3 P' A\2 • • 3d A) 2 700 400 3175.086 31486.10 86.11 3p 2 J 0 *• A), 1000 400 3179.064 31446.70 46.79 3P 80 20 3188.127 31357.31 57.24 3p . 2 J 0 "Al 1700 650 3189.790 31340.97 40.96 3s' Al - v [ 4 L 60 40 3200.300 31238.04 37.95 3p' U K - 3d [ 4] i 1600 750 3212.190 31122.42 22.41 3s' uu - »• {4] i 450 200 3216.283 31082.81 82.87 3 P ' r 4 J 2 - 3d [ 4J 3 Al Al Al Al Al Ali 4s [4] 2 3d 4s 3 P 5f 3p 3d 3d 3 P 3d 60 12 3221.175 31035.61 35.61 3d 1 60 5 3223.506 31013.17 13.17 3d" 35 5 3225.290 30996.02 96.01 3d" 450 200 3225.977 30989.41 89.40 3p' 700 350 3234.927 30903.68 03.68 3p' 40 10 3240.324 30852.21 52.21 3d' 400 250 3250.949 30751.38 51.38 3p' 1500 900 3257.964 30685.17 85.13 3p' 650 600 3260.210 30664.03 63.98 3p' 950 800 3274.220 30532.83 32.83 3p' 1700 1800 3285.602 30427.06 27.00 3s' 1700 450 3301.349 30281.93 81.94 3p' 1500 1000 3304.957 30248.87 48.93 3p 1000 600 3318.039 30129.61 29.64 3p' 950 650 3327.689 30042.24 42.24 3p 200 180 3400.093 29402.52 02.48 3s' 450 50Q 3462.491 28872.65 72.65 3s* 1500 1100 3533.052 28296.05 96.01 3s 1200 840 3631.272 27530.71 30.71 3s 850 600 3711.070 26938.74 38.71 3s' 50 80 4056.007 24647.83 47.78 3d 2 2 L2 J 2 U U U U i U i U U U ih 2j 2 U i t ] l 2 J 0 U i U i U i U i 4] 2 4 ] l II 2 J o U i 5f 5f 5f 4s 3d 5f 3d 3d 3d 3d 3p 3d 3d 3d 3d 3p 3 P 3 P 3 P 3p 4 f ' 4] 3 4] 2 4 ] 4 4] 2 4] 2 4 ) 3 U i 4J2 11 2 J 0 i l . 4] 2 4 J 2 U i U i II 2 J 0 4)1 4J2 U i U i U i 412 200 60 4081.369 24494.67 130 25 4087.603 24457.31 300 200 4113.704 24302.14 250 250 4123.082 24246.86 90 4149.07 24095.0 130 20 4202.764 23787.16 130 4232.72 23618.8 250 4233.26 23615.8 200 4240.37 23576.2 250 35 4240,903 23573.25 250 35 4292.483 23289.99 250 100 4292.864 23287.92 250 160 4308.811 23201.73 250 80 4309.042 23200.49 5 4320.751 250 200 4320.913 23136.75 250 75 4337.294 23049.37 5 4337.520 23048.17 250 300 4344.111 23013.20 200 100 4368.600 22884.20 200 250 4375,215 22849.60 94.65 57.37 02.14 46.94 94.5 87.19 18.9 15.3 76.6 75.8 73,26 89.94 87.88 01.69 00.48 7.62 37.65 36.76 49.39 48.18 13.13 84.26 49.59 3d 3s' 3 P ' 3p' 3d 4s 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3p' 3 P ' 3d 4 J 2 • - 4 f ' ( 4 J 3 • 3p [ U i 11 2 J 0 ±1 - 3d' [ 4 ] i r 11 2 J 0 4 ] 3 • "r S - 4 f 1 L 2 J 1 [ 4 J 4 4 J 2 ' - 4 f 1 [ 4 J 3 4 ] 2 • - 4 f 1 [4] 24] 2 • • 4 f [ 4 J 3 41 -• 4 f 1 [4] 2 4 ] 3 • • 4 f ' [ 4 ) 3 4 ] 3 • • 4 f ' [ 4 K U i • • 4 f I  2 J 2 11 . 2 J 0 4f [ 4 ] i i l . • •il -4 f ii f [ 4 J 2 f i l l 2 J 1 4 ] 2 - 4 f L ^ J 1 L 2 J 2 4 ) 2 - 4 f [ 4 ] 3 4 J 2 - 4 f [ 4 J 2 4 ) 2 -i i -4f [4Ji f i l l 2 J 0 2 J 0 4S 3d L L 2 J 1 [ 4 ] i 4 ] 4 - 4 f [41 160 20 4384.194 22802.80 02.77 3d ( 4 J 4 - 4f [4] 3 200 150 4387.489 22785.68 85.72 3d [4]3 - 4 f (4]3 250 1000 4392.808 22758.09 58.09 3d (4]4 - 4 f [4] 3 160 15 4396.317 22739.93 39.99 3d HI,. - 4 f [ 4 J 2 200 800 4405.124 22694.46 94.46 3d ( 4 L - 4 f [4j4 130 4443.20 22500.0 00.5 4p (_ 2 J 3 - 6s (4J2 200 35 4446.69 5 22482.30 82.32 3d' [4]2 - 4 f ' [4]2 200 500 4447.411 22478.68 78.68 3d' (4]2 • - 4 f 1 (4)3 5 4454.564 22442.59 42.60 3d' [4]3 • • 4 f ' [4] 2 200 60 4454.736 22441.72 41.77 3d' L 2 ,1 3 - 4 f ' [4)3 200 850 4455.229 22439.24 39.23 3d' [ 4 J 3 • " 4 f ' [ 4 J 4 20 4457.925 22430.21 30.18 4s (4)2 • • 4 f (4)2 200 350 4457.208 22429.27 29.30 4s [4]2 • • 4f [4]3 200 60 4474.631 22341.94 41.93 4s (4)2 -4 f [4] 2100 4478.623 22322.03 21.96 3d' [4]2 -4 f ' [4]2 200 550 4478.797 22321.16 21.13 3d' (4]2 -4 f ' [4]3 200 550 4481.665 22306.88 06.83 3d [4)2 -4 f [4]3 200 750 4490.154 22264.71 64.73 3d (4)3 -4 f [4]4 200 160 4490.869 22261.16 61.10 3d [4]2 -4 f [ 4 J 2 10 4491.037 22260.33 60.22 3d [4]2 -4 f (4J3 20 4499.431 22218.80 200 160 4499.615 22217.89 200 80 4506.972 22181.63 130 10 4508.997 22171.66 130 15 4517.380 22130.52 200 350 4519.207 22121.57 200 50 4524.981 22093.35 90 4529.31 50 50 160 160 4689.64 4722.23 4731.10 22072.2 200 300 4533.323 22052.69 200 40 4551.531 21964.47 80 20 4551.787 21963.24 160 50 4590.920 21776.03 4633.94 21573.9 21317.6 21170.5 21130.8 100 0 4732.499 21124.58 160 0 4741.665 21983.74 40 50 4749.85 4757.71 21047.4 21012.6 18.79 17.91 81.63 71.64 30.54 21.59 93.38 72.5 52.76 64.51 63.30 75.95 74.3 17.7 70.2 30.7 24.48 83.88 48 .3 13.5 3d 3d 3d 3d 3d 3d' 3d 4p' 4s 4s 4s 3p' 4 P ' 4d 3d' 3d' 3d' 3d' 4d 4d ' 4h 4] 3 4 L 4) a 4J3 4h 4h IL 4h 4). 4]i 2 J 0 11 2 J 0 "2 J 2 4L U4J3 4)2 4)3 4h 4L 4f 4f 4f 4 f 4f 4 f ' 4f 6s ' 4f 4f 4f 3d 6s 8f 4f 4f 4f 4f 8f 8f 1 n 2 j 2 i i 2,13 I V 2 j 2 • i h 1 1 2 J 2 ^ 1 '2 J 2 1 1 2 J 2 1]. 1 1 2 J 2 11 2 J 2 •iii l ] i D i I]: i l : i l i ] i ] i ) . i ] 2 15 3 2 J 3 2 J 4 45 4761.31 20996.7 160 4768.79 20963.8 100 4788.79 20876.3 50 4814.75 20763.7 50 5 4835.259 20675.64 60 5143.11 19438.1 45 5187.15 19273.0 100 5191.65 19256.3 50 520^.33 19212.6 80 5208,55 19193.8 45 5213.49 19175.7 45 5239.43 19080.7 45 5275.72 18949.5 45 5379.02 18585.6 60 5390.63 18545.6 45 5399.41 18515.4 70 7 5400.464 18511.78 73 96.5 3d' H h - 4f (4]2 64.12 3d' NJ 2 - 4£ [4]2 75.9 3d' 14] 2 - 4f [4]2 63.75 3d' H J i -4f [4]2 75.70 3d' 4f t4jY 37.8 4d L 2 J 0 7f [4j\ 73.6 4d i 2J i 7f [4]2 56.1 4d [4]2 - 7f [4]2 13.3 4d NJ* - 7f [4] 5 92.9 4d [4] a - 7f L 32] 4,3 75.5 4d [4] 3 - 7f [4J* 81.0 4d* [4]2 - 7f • 49.5 4d H ) , -7£ [4j\.3 86.17 4f [4j\ - 7g . 2 J 2 84.96 4£ [4]a - 7g L 2 j 3,2 45.55 4f [4W 7g 4] 6,5 15.52 4f ' [4]3 - 7g' L41 ,.* - 7g' [4) 4 .3 11.78 4f ' [4],.,- 7g' ; U ] 3.4 - 7g' ; :4k, 45 5402.07 18506.3 90 10 5414.546 18463.64 60 6175.25 16189.2 70 6199.26 16126.5 70 6234.68 16034,9 80 6260.01 15970.0 80 6274.74 15932.5 60 6310.80 15841.5 60 6352.83 15736.7 60 6358.05 15723.7 70 6361.15 15715.9 70 6366.41 16703.1 60 6378.91 15672.3 50 6475.29 15439.1 90 20 6514.210 15346.82 80 6524.68 15322.2 130 25 6530.698 15308.07 130 15 6544.036 15276.87 06.52 4f R ] 3 - 7g [4]4,3 05.64 4f - 7g [41 63.64 4f L ^ J4,3 7g HI,, 88.9 4d L 2 J 0 6f [41 26.6 4d Hi - 6f HI 34.7 69.3 4d 4d [41 -HJ* -6f 6f [41 [41 31.6 4d H)3 -6f [41 41.1 4d' HL - 6f' HI 36.4 4d r 2 i l -L 2 J 2 6f Hi 23.5 15.9 4d 4d [4}2 -[41 -6f 6f l Z 2 J 3 , 2 02.9 72.0 4d 4d' HI -HI -6f 6 f L 2 J 3,2 [4]2 39.4 5s Hl- 6f [4J> 46,79 22.25 4f 4f Hl -Hl,„-6g 6g r 2^ 1 L 2 J2 ,3 08.07 4f 6g (4]..S 76.87 4f1 [41 -6g' 6g' Hk* [ 3 2 J 4 , 3 130 12 6545.753 15272.86 72.85 4 f 80 12 6552.432 15257.29 57.33 4 f 15 6565.850 15226.12 26.13 4 f [4]3 - 6g [4)4, [ 2\}i - 6? [2i]3, [31]4,3- ^ [4] 4,-: 3 2 3Example6 of Codes Used A) For the measurement of grating plates: My code f o r 3 m grating plates 0) Operator has checked f or order of l i n e but, because l i n e i s weak or blended, cannot be sure of order. 1) Line i s c e r t a i n l y of f i r s t order. 2) Line i s c e r t a i n l y of order > 1. 3) (This key malfunctions too frequently to be used.) 4) Component on low- x side of l i n e . 5) Component on high- x side of l i n e . 6) Main l i n e of 4) which may or may not have been measured when l i n e asymmetric. 7) Main l i n e of 5) which may or may not have been measured when l i n e asymmetric. I f s a t e l l i t e s not measured then the asymmetry i s s l i g h t but noticeable. 8) Weak l i n e , to i d e n t i f y background l e v e l on z scale. 9) Standard l i n e . D) Broad d i f f u s e l i n e , i f strong probably overexposed. R) Either physical or photographic r e v e r s a l . B) For the measurement of prism plates: My code for prism plates 0) Ordinary l i n e . 1) Wide l i n e with square top. 2) Standard l i n e on top of ordinary l i n e . 4) Component on low-x side of l i n e . 5) Component on high- x side of l i n e . - 6) Main l i n e of 4) which may or may not have been measured when l i n e asymmetric. 7) Main l i n e of 5) which may or may not have been measured when l i n e asymmetric. I f s a t e l l i t e s not measured then the asymmetry i s s l i g h t but noticeable. 8) Weak l i n e , to i d e n t i f y background l e v e l on z scale. 9) Standard l i n e . D) Broad d i f f u s e l i n e , i f strong probably overexposed. R) Either physical or photographic r e v e r s a l . I. Automatic Punching of I.B.M. Data Cards The f i r s t s i x data p o s i t i o n s p e c i f y the p o s i t i o n of the spectral l i n e , x, to the nearest micron; the seventh p o s i t i o n i s blank, the l i n e density D i s photometered automatically and the photometer output z i s d i g i t i s e d and recorded as three figures i n p o s i t i o n 8, 9 and 10. The photo-meter amplifier c i r c u i t i s always adjusted f o r zero and for range so that when D > 3 achieved by interposing a computer card i n the o p t i c a l l i g h t path, the z s a t i s f i e s 20 > Z > 0 and when D i s approximately 0, with clear photographic plate, the z reading s a t i s f i e d 950 > Z > 975. There i s some d r i f t i n this a m p l i f i e r c i r c u i t , so we usually allow about 15 minutes for the ampli f i e r to s t a b i l i z e , while we o i l and run-in the motivating lead-screw and nut on the comparator. P o s i t i o n 11 i s blank while p o s i t i o n 12 records the l i n e character according to an accepted code (including 0 to 9 i n c l u s i v e and the alphabetic characters D and R). P o s i t i o n 13 i s an automatic a s t e r i s k * to indicate the l i n e measurement i s complete and this arrangement permits easy checking that the I.B.M. 526 key punch i s operating c o r r e c t l y . Thus 012345 678 9* means a standard l i n e (9) has been measured 345 mm. with z reading 678 (weak l i n e ) . ( 1 ) . F O R L I N E A R I N T E R P O L A T I O N O N 3 - M V A C U U M S P E C T R O G R A P H * S I G M O N M F I I T = 4 0 P = 5 0 $ P A S S W O R D _ _ _ _ ; _ _ S R U N * F O R T R A N S C A R D S = * S O U R C E * S P RTN T = * S I M K * C P R0G R A M M U M B E R 8 ( M O D I F I E D ) C C A L C U L A T I O N O F C O R R E C T E D W A V E L E N G T H S A M D W A V E N U M B E R S F R O M C V A C U U M S P E C T R O G R A P H P L A T E S . D I M F N S I ON D D L ( 5 ) , T T ( 5 ) , C C O M ( 5 ) A = 2.375 B = 7.8 8 E-8 C = 5.44 E-14 D = 1.0 F-9 10 R F A D D I S P 1, S I , S2, D l , D2 = ( S2 - S I ) / ( D 2 - D l ) PRINT 4, DISP 6 R F A D DO 7 DL = 2, ( DDL ( I ), TT ( I ) , CCOM( I ), I..= J = 1,5 DDL(J ) 1,5 i T = TT( J ) COM = CCOM(J) IF (DL ) 10, 5, Q _ 9 WL = DHL SI + ( DL - D l )*0 ISP = 13 89 .0 - WL CORR = (A + R*DWL**2 " C*DWL**4)*( Dl- L**3 ) * D WL = WL + CORR WN = (1.0 £8)/WL W L 2 = WL/2. WN2 = WN*2. WL 3 = WL/3. WM3 = WN*3. W L 4 = WL/4. WM4 = WN*4. PRINT 100, DL, T, COM, WL, WN, ¥L 2, WN2, W L 3 , W N 3 7 CONT INUE 100 FORMAT ( I X , F 8 . 3 , 15, I X , A2, 8X , F10.3 , F l O . l , 10X, 2 ( F 1 0 . 3, 1 2 X, F l O . l ) ) GO TO 6 5 STOP 1 FORMAT ( 2 F 1 0 . 3 , 2F8.3)„ .... 2 FORMAT ( 5 ( 0 6 . 3 , I X , 13, I X , A l , 1 XT) 4 FORMAT ( 1 H - , 15X, 13HDISPERSI ON = , F10 .11/ ) END SENDFILF SRUN -LOAD# 5=*S0URCE* 6=*SINK* 19 31 .285 2299 .399 50 .92 1 183.623 _ 0 1149 1 405 0*0 11749 9 08 0*011808 89 0 0 * O i l 89 7 9 25 0*0123 67 9 32 0* MA 672f • • 6 MA 672f • • 0 NA 67?f • « • NA67?.fi • • O NA 67? 8 • • • N A 67 2 8 239092 594 0*239144 605 0*239707 39 1 0*240004 270 0*240170 378 0* MA 672 8 THERE MUST RE A BLANK CARD AFTER THE DATA DECK TO STOP THE EXCUTinw ftFNDF ILF $S IGNOFF ( 2 ) . F O R C U B I C F I T ON 3-M VACUUM AND 21-FOOT G R A T I N G S P E C T R O G R A P H SSIGNON ME I I T=60 P = 50 ^PASSWORD $ RUM * FORTRAN SCA RD.S = *S OURC E* S PR I NT = * S I NK* REAL *8 X , Y , V , V Y , X X , A , Q , B , E , E P , E S U M , T , S , E T , C C R , C R , W L ,WL 1,WL?, 1WL3,D1,DW1 ,02 ,DW2 ,03 ,DW3 ,WL IV »WL 2.V , WL 3V , W N1,W M2 , WN3, XN D I M E N S I O N A ( 7,7) , V ( 1 3 ) , V Y ( 8 ) , _ X ( 5 0 ) , _ Y ( 5 0 ) , B ( 7 ) ' DIME N S I ON E P ( 5 0 ) D I M E N S I O N C C R ( 5 ) , T T R N S ( 5 ) , C C 0 M ( 5 ) 300 READ 320 , M, MDATA , I F V A C , N l , N 2 , N3  32 0 FORMAT ( 6 1 3 ) READ 3 3 0 , ( X ( I ) , Y d ) , I = 1, MDATA) 3 3 0 FORMAT ( F 7 . 3 , RX, F 1 0 . 3 ) . 331 P R I N T 3 2 3 , N, NDATA, I F V A C " " " " " 3 2 3 FORMAT ( 1 H 0 , 4HN = , 1 3 , 5 X , 8HNDATA = , 1 3 , 5 X , 8 H I F V A C = , 1 3 / ) C B E G I N C A L C U L A T I O N OF POLYNOMIAL C O E F F I C I E N T S C N IS THE P O L Y N O M I A L DEGREE C NDATA IS THF NO. OF DATA P O I N T S MP1=M+1 ' " " " NP2=M+2 N2 1 = 2 » N + 1  E = 0 . DO 1 0 0 1=1, NP2 V ( I ) = 0 100 V Y ( I ) = 0 . DO 1 06 I = N P 2 , N 2 1 10 6 V( I )=0 .  DO 10 5 1=1,NDATA VY( 1 ) = V Y ( 1 )+Y( I ) V Y ( NP 2 ) = V Y ( N P2 ) + Y ( I ) **2.._ XX = X( I ) DO 10 1 J = 2 , N P 1 V ( J ) = V ( J ) + X X  VY ( J ) =\/Y( J ) +XX*Y ( I ) 101 X X = X X * X ( I ) DO 10 5 J = MP?,M21 v ( J ) = v(' J ) + xx " " " 105 xx = x x * x ( I ) V ( 1)=NDATA  C ABOVE B U I L T UP V,NUW B U I L D UP A DO 1 0 2 K=1,NP1 DO 102 L = l , K • K S L 1 = K-L+1 " " "" " " " " 102 A ( L , K S L 1 ) = V ( K ) DO 1 0 3 K = N P ? , N 2 1 LS=M21-K+1 DO 10 3 L = 1 , L S K L N P 1 = K+L-MP 1 _ MP2L=NP2 - L 103 A ( K L N P 1 , N P 2 L ) = V ( K ) DO 10 4 K = l ,NP1  104 A ( K , NP 2 ) = V Y ( K ) C WE NOW SOLVE A MATRIX A OF N + 1 ROWS AMD NP 2 COLUMNS DO 399 1 = 1 , N IP 1=1 + 1 ~ " ~ ~ " DO 399 J = I P1 , N P1 0 = A ( J , I ) / A( I , I ) DO 399 K = I P 1 , NP2 399 A ( J , K ) = A ( J , K ) - A ( I , K ) * 0 B ( N P 1 ) = A ( N P 1 , N P 2 ) / A ( N P 1 , N P 1 ) DO 3 0 1 1=2,NP1  J = MP2- I J P 1 = J + l B ( J ) = A ( J ,NP2 ) _ . _. DO 3 0 2 K = J P 1 , N P 1 302 B( J ) = 6( J )-P>( K )*A( J,K ) 301 B ( J ) = B ( J ) / A ( J , J )  DO 39 8 I = 1, MP1 39 8 E = E + B( I )*VY( I ) E = V Y ( N P 2 ) - E ESUM = " o . ' " " " DO 333 K = 1, NDATA E P ( K ) = ( Y ( K ) - ( ( ( B ( 4 ) * X ( K ) + B ( 3 ) ) * X ( K ) + B ( 2 ) ) * X ( K )  1 + B ( 1 ) ) ) * * 2 3 3 3 ESUM = ESUM + E P ( K ) C _ C ' END C A L C UL AT I ON 0 F P O L Y N O M I A L COE FFTC I E N TS C NP1=N+1 P R I N T 3 1 0 , ( K , B ( K ) , K = 1 , N P 1 ) 310 FORMAT ( 1 X , 2HB( I 3 , 2 H ) = E 1 5 .8 ) XN = NDATA E =DSORT ( E S U M / X N ) P R I N T 3 4 0 , E 340 FORMAT ( 1 H - , 22HL EAST SQUARES ERROR = , E 1 5 . R )  DO 431 I = 1, NDATA T = X ( I ) S = ( ( B ( 4 ) * T + B( 3 ) )*T +„...B( 2) )..*T_+_B ( 1 ) 4 3 1 P R I N T 4 3 0 , Y( I ) , S 4 3 0 FORMAT ( fSX , 2 F 1 0 . 3 / ) E = 2.»E . NS = 0 I = 1 4 1 0 T = X ( I ) ET = D A B S ( Y ( i ) - ( { ( B ( 4 ) * T + B(3))^T +B(2))*T + B( 1 ) ) ) IF (E - ET) 4 0 1 , 4 0 1 , 4 3 5 4 0 1 NS = MS + 1 NDATA = NDATA - 1 DO 4 0 2 J = 1,NDATA X ( J ) = X ( J + 1 ) 4 0 2 Y ( J ) = Y ( J + l ) 4 3 5 1 = 1 + 1 IF ( I - NDATA ) 4 1 0 , 4 1 0 , 4 1 1  4 1 1 I F ( N S ) 9 0 0 , 9 0 0 , 3 3 1 9 00 IF ( N 3 ) 7 0 0 , 7 0 0 , 42 0 42 0 PR TNT 6 0 0 , N l , N2, N3 600 FORMAT ( 1 H - , HHPOS IT IOI\F, 3X ,~"4HTRNS, 4 X , 3HC0 M, 7 X, 1 2 , I X , 15H0RDER, 2 5 X , 1 2 , I X , 5H0RDER, 1 5 X , 1 2 , I X , 5H0RDER) 601 RFAD 500 , ( C T . R ( I ) , T T R . N S ( I ) , C C Q M ( I ) , I = 1,5)  DO 1000 J = 1,5 CR = C C R ( J ) TRNS = TTRMS ( J ) COM = C C O M ( J ) IF ( C R ) 3 0 0 , 4 5 0 , 4 2 1 421 VIL = ( ( B ( 4 ) ^ C R + B ( 3 ) ) * C R + B ( 2 ) ) * C R + B ( l )  EMI = N l EN2 = N2 E N 3 = N3 WL1 = W L / E M 1  WL2 = W L / E N 2 WL3 = W L / E N 3 I F ( I F V A C ) 5 0 1 , . 5 0 1 , 5 0 2 5 0 1 D l = ( ( 1 . 0 E 4 1 / W L 1 ) * * 2 DWl = W L 1 * ( 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . 11 . 0 E 7  D2 = ( ( 1 . 0 E 4 ) / W L 2 ) * * 2 DW2 = W L 2 * ( 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . 1 1 . 0 E 7 . _ .... 0 3 = ( ( 1 . 0 E 4 ) / W L 3 )**2 DW3 = W L 3 * ( 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . 11 . 0 E 7 W L I V = WL1 + DWl WL2V = WL2 + DW2 WL3V = . W L 3 . + DW3 WN1 = ( 1 . 0 F R ) / W L 1 V WN2 = ( 1 . 0 E 8 ) / W L 2 V WM3 = ( 1 . 0 E 8 ) / W L 3 V GO TO 8 5 5 50 2 WN1 = ( 1 . 0 E 8 ) / W L 1 WN2 = ( 1 . 0 E 8 ) / W L 2 W N 3 = ( 1 . 0 E R ) / W L 3 8 5 5 P R I N T 5 0 3 , C R , T R N S , C O M , W L 1 , W N 1 , WL 2 , WN2 , WL 3 , WN3 10 0 0 C O N T I N U E  50 3 FORMAT ( 1 X , F 8 . 3 , 1 X , I 5 , 1 X , A 2 , 2 X , F 1 0 . 3 , 3 X , F 1 0 . 1 , 1 O X , 2 ( F 1 0 . 3 , I 3 X , F 10 . 1 ) ) GO TO 6 0 1 7 0 0 IF ( 0 2 ) 8 0 0 , POO , 7 0 1 ~ " 7 0 1 P R I N T 6 0 0 , N l , N2 6 0 2 READ 5 0 0 , ( C C R ( I ) , T T R N S ( I ) , C C O M ( I ) , I = 1 , 5 )  DO 1 0 0 1 J = 1 , 5 CR = C C R ( J ) T R N S = . TTRNS ( J.) _ _ . COM = C C O M ( J ) IF ( C R ) 3 0 0 , 4 5 0 , 7 2 1 7 2 1 WL = ( ( B ( 4 ) * C R + R ( 3))*CR + B ( 2 ) ) * C R + B ( l )  E M I = N l EN2 = N2 WL1 = W L / E N 1 WL2 = WI. / FN2 I F ( I F V A C ) 7 5 1 , 7 5 1 , 7 5 2 7 5 2 WN1 = ( 1 . 0 E 8 ) / W L 1  WN2 = ( 1 . 0 E 8 ) / W L 2 GO TO 7 5 3 7 5 1 D l = ( ( 1 . 0 E 4 ) / W L 1 ) * * 2 . DWl = WL1 ••{ 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . - D l ) + 2 5 5 4 . 0 / ( 4 1 . - 0 1 ) ) / 1 1 . 0 E 7 D2 = ( ( 1 . 0 F 4 ) / W L 2 ) * * 2  DW2 = W L 2 * ( 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . - D 2 ) + 2 5 5 4 . 0 / ( 4 1 . - D 2 ) ) / I I . 0 E 7 W L I V = WL1 • + DWl WL2V = WL2 + DW2 WN1 = ( 1 . 0 E 8 ) / W L 1 V WN2 = ( 1 . O F 8 ) /WL2 V - D l ) + 2 5 5 4 . 0 / ( 4 1 . - D l ) ) / - D 2 ) + 2 5 5 4 . 0 / ( 4 1 . - D 2 ) ) / - D 3 ) + 2 5 5 4 . 0 / ( 4 1 . - D 3 ) ) / 753 P R I N T 503 ,CR,TRNS,COM ,WL1 ,WN1,WL2,WN? 1001 CONTINUE GO TO 60? 800 P R I N T 6 0 0 , N l  60 3 READ 5 0 0 , ( C C R ( I ) , T T R N S ( I ) , C C O M ( I ) , I = 1,5) DO 1 0 0 ? J = 1,5 CR = CCR( J ) TRNS = T T R N S ( J ) ~ COM = C C O M ( J ) IF ( C R ) 3 0 0 , 4 5 0 , 821  8 ? 1 WL = ( ( B ( 4 ) * C R + B ( 3 ) ) * C R + B ( 2 ) ) * C R + B ( l ) EN 1 = N l WL1 = WL/EN1 _____ IF ( I F V A C ) 8 5 1 , 8 5 1 ,' 8 52""" " 852 WN1 = ( 1 . 0 E 8 ) / W L 1 GO TO 853  851 D l - ( ( 1 .0E4 ) /WL1 )**2 DW1 = WL1*( 643 .2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . - D l ) + 2 5 5 4 . 0 / ( 4 1 . - D l ) ) / 11 .0E7 WL1V = WL1 + DW1 " " " ~ ' WN1 = ( 1 . 0 E 8 ) / W L 1 V 8 5 3 P R I N T 5 0 3 , CR, T R N S , COM, WL1, WN1  1002 CONTINUE GO TO 60 3 4 5 0 STOP 500 FORMAT ( 5 ( F 6.3, 1 4 , 1 X , A l , I X ) ) END SFNDF I L F SRUM - L P A D - 5 = * S 0 U R C F * 6=* = S I N K * 3 7 1 1 2 16. 29 4 1152 .150 4 0 . 7 6 6 10 84.2 85 6 7 . 5 2 1 1010 .1.08 10 1.442 9 1 6 . 1 0 2 1 3 1 . 2 3 1 833 . 614 15 6.449 7 6 3 . 8 4 9 1 7 8 . 4 2 6 70 3 .09 1 0 1 5 8 4 8 618 0 * 0 1 5 9 65 421 0-= 0 1 6 1 5 7 392 0 * 0 1 6 2 9 4 267 0 * 0 1 6 4 4 6 331 0* MA 6 7 ? 7 • • • • • N A 6 7 ? 7 • • « • • NA 672 7 N A 6 7 ? 7 N A 6 7 ? 7 1 7 7 4 6 4 9 0 1 0 * 1 7 7 6 1 1 889. 0 * 1 7.8.1 5 0._ 2 52„ .0* 17 8 507 „ 2 39 , 0* 17 870 1 _ 29 8 0* NA.6727 THERE MUST BE A. BLANK CARD AFTER THE DATA DECK TO STOP THE F X C U T I O N $ E N D F I L F SS IGNOFF ( 3 ) . HARTMANN WITH C U B I C C O R R E C T I O N ON H I L G E R 4 7 8 P R I S M S P E C T R O G R A P H SSIGNON ME I I T=60 P = 50 ^PASSWORD .4.RUN * FORT RAN S C A RDS =*S OURC E* S P R I NT =* S IN K*  C COMPUTE HARTMANN D I S P E R S I O N C O NSTANTS. EL( 3 ) LARGER THAN E L ( 1 ) . DOUBLE P R E C I S I O N D, E L , X, Y, DC, ABC, BCD, CDO, ELO, DP, DD, XO DOUBLE P R E C I S I O N DU , C, DB,_YY, DY, DS OR T DOUBLE P R E C I S I O N T, S, F T , E L F , F L G , OWL, D l , CORR, E L F V , UN, EP DOUBLE P R E C I S I O N E, V, V Y , X X , B, ESUM, A, 0 D I M E N S I O N D ( 3 ) ' , E L O ) , D P ( 3 ) , DD( 3 ) DIM EMS I ON A ( 7 , 7 ) , V ( 1 3 ) , V Y ( 8 ) , X ( 5 0 ) , Y ( 5 0 ) , B ( 7 ) , X Q ( 5 0 ) D I M E N S I O N E P ( 5 0 ) , Y Y ( 5 0 ) , D Y ( 5 0 ) , F ( 5 0 ) , 0 F ( 5 0 ) , D I S P ( 5 0 ) D I M E N S I O N I D M T K 5 ) , DDC ( 5 ) , TRNS ( 5 ) 21 READ 1, ( 0 ( 1 ) , EL I I ) , I = P R I N T 31 P R I N T 3 2 , ( EL I I ) ,_ D ( I ) , I 300 READ 3 2 0 , N, NDATA 320 FORMAT ( 2 1 3 ) RFAD 3 3 0 , ( X ( I ) , Y( I ) , I C FEED I N THE WAVELENGTHS- USED FOR THE HARTMANN CONSTANTS ALONG C WITH THE WAVELENGTHS USED FOR THE POLYNOMIAL F I T . 330 FORMAT ( D 7 . 3 , 1 0 X , D 8 . 3 L WR IT E( 6,19 00 )' 1 9 0 0 F O R M A T ( 1 H 0 , 35HTHE FOLLOWING I S FROM THE POLY STDS) WRITE ( 6,9 00 )  9 0 0 FORMAT( 1H0 , 1 0 H D I S P , A/MM, 5 X , 7 H W L U + 1 ) , 1 4 X , 5 H W L ( I ) , 1 1 X , . 1 7HCR( 1+1 ) , 1 0 X , 5HCR( I ) ) NDM 1 = NDATA - 1 ; DO 1 0 0 0 1 = 1 , NDM1 D I S P ( I ) = ( Y ( I + 1) - Y ( I ) ) / ( X ( I + 1 ) - X ( I ) ) 1 0 0 0 W R I T E ( 6 , 1 0 0 1 ) D I S P ( I ) , Y ( I + 1 ) , Y I I ) , X( I +1 ), X ( I )  1001 FORMAT( I X , F 7 . 3 , 6X , 2 ( 0 1 4 . 7 , 4X ) , 2 ( 0 1 3 . 6 , 3X) ) IF ( D ( 3 ) - D ( 1 ) ) 1 1 , 8 , 8 . 11 0 0 ...13 I . =.. 1,. N _ _._ _. 13 DD( I ) = 5 0 0 . 0 - D( I ) DO 14 I = 1, NDATA 14 X 0( I ) = 5 00 .0 - X( I )  ABC = I DDI 2) BCD = (DDI 3) CDO = I DDI 3) ELO = EL I 1 ) -DO = A B C * I E L I C = CDO* DO  OB = DO + DDI 1 ) P R I N T 4 3 , F L O , C, DB P R I N T 888 DO 60 I = 1 , NDATA " " ' Y Y I I ) = ELO + C/IDB - XOI I ) ) DY( I ) = Y I I ) - Y YI I )  PR I NT 79 , Y l I ) , YYI I ) , DYI I ) 79 FORMAT ( I X , . 4 P 2 D 2 3 . 3 , 3 X , 0 P D 1 2 . 3 ) 60 CONTINUE; _ 22.1 P R I N T 4 2 3 , N, NDATA 4 2 3 FORMAT ( 1 H 0 , 4 H N = , 1 3 , 5 X , 8HNDATA C B E G I N C A L C U L A T I O N OF POLYNOMIAL C O E F F I C I E N T S C C N = P OL YNOMIA L DEGREE, NDATA=NUMBE R_OF POLYNOMIAL STANDARDS. C NP1=N+1 MP2=N + 2  M21=2*N+1 E = 0.0 00 DO 200 1 = 1 , N P 2 VI I ) = 0.0DO 200 V Y ( I ) = 0.ODO 00 20 6 I = N P 2 , N2 1 1 , 3 ) ..JL_1.»_3.) = 1, NDATA) - DD( 1 ) ) / ( E L I 2 ) - E L I 1 ) ) - DDI 1 ) ) / ( E L I 3) - E L I 1) ) - DDI 2 ) ) /( ABC _- BCD ) • C DO 2) - ELO) = , 1 3 , 5 X ) DO 2 0 5 1 = 1 , N D A T A V Y ( 1 )=-VY( 1 ) + D Y ( I ) V Y ( N P 2 ) = V Y ( M P 2 ) + D Y ( I ) * * 2  X X = X Q ( I ) DO 2 0 1 J = 2 , M P 1 V( J ) - V ( J ) + X X V Y ( J ) = V Y ( J ) + X X * P Y ( I ) 2 0 1 XX = X X * X O ( I ) DO 2 0 5 J = N P 2 , N 2 1  V ( J ) = V ( J ) + X X 2 0 5 XX = X X * X Q ( I ) V ( 1 ) = N D A T A _ C A B O V E B U I L T U P V , N O W B U I L D U P A ~ ~ DO 7 0 2 K = 1 , N P 1 DO 7 0 ? L = l , l <  K S L 1 = K - L + 1 7 0 2 A ( L , K S L 1 ) = V ( K ) DO 7 0 3 K = N P 2 , M 2 1 L S = N 2 1 - K + 1 " DO 7 0 3 L = 1 , L S K L M P 1 = K + L - N P I  N P 2 L = M P 2 - L 7 0 3 A ( K L N P l , M P 2 L ) = V ( K ) DO 7 0 4 K = l , N P 1 7 0 4 A ( K , N P 2 ) = V Y ( K ) " C WE MOW S O L V E A M A T R I X A O F N + 1 ROWS A N D N P 2 C O L U M N S DO 7 9 9 1 = 1 , N  . I P 1 = I + 1 DO 7 9 9 J = I P 1 , N P 1 0 = A ( J , I ) / A ( I , I ) . _ DO 7 9 9 K = I P 1 , M P 2 7 9 9 A ( J T K ) = A ( J , K ) - A ( I , K ) * Q B ( M P 1 ) = A ( N P1. , N P 2 ) / A ( N P 1 t N P 1 )  DO 7 1 1 I = 2 , N P 1 • J = N P 2 - I J P 1 = J + 1 B ( J ) = A ( J » N P 2 ) DO 7 1 2 K = J P 1 , N P 1 7 1 2 B ( J ) = R ( J ) - B ( K ) * A ( J T K )  7 1 1 B ( J ) = B ( J ) / A ( J , J ) DO 4 9 8 1 = 1 , N P 1 4 9 8 E = E + B ( I ) * V Y ( I ) _ E = V Y ( N P 2 ) - E ' " ~ ~ " " " E S U M = 0 . 0 DO DO 4 3 3 K = 1 , N D A T A  E P ( K ) = ( D Y { K ) - ( ( ( B ( 4 ) * X 0 ( K ) + B ( 3 ) ) * X 0 ( K ) + B ( 2 ) ) * X 0 1 K ) 1 + B ( 1 ) ) ) * * 2 4 3 3 E S U M = E S U M .+ E P ( K ) c " ' " C E N D C A L C U L A T I O N O F P O L Y N O M I A L C O E F F I C I E N T S C M P 1 = N + 1 P R I N T 6 1 0 , ( K , B ( K ) , K = l , N P 1 ) 6 1 0 F O R M A T ( I X , 2 H B ( I 3 , 2 H ) = D 2 3 . 6 ) .._ XM = N D A T A E = D S Q R T ( E S U M / X N ) P R I N T 4 4 0 , E  4 4 0 F O R M A T ( 1 X , 2 1 H L E A S T S Q U A R E S E R RO R = , 0 1 2 . 5 ) E = 2 . * E NS = 0 I = 1 5 1 0 T = X 0 ( I ) ET = D A B S ( D Y U ) - ( U B ( 4 ) * T + B ( 3 ) ) * T + B ( 2 ) ) * T + B ( l ) ) ) _ I F_ .( E - ET ) 5 0 1 , 5 0 1 , 535 . 5 0 1 NS = NS + 1 NDATA = NDATA - 1 DO 5 0 2 J = 1 , N D A T A :  X O ( J ) = X O ( J + 1.) 5 0 2 D Y ( J ) = D Y ( J + 1 ) 5 3 I ..= . 1 _ IF ( I - NDATA ) 5 1 0 , 5 1 0 , 5 1 1 5 1 1 C O N T I N U E I F ( N S ) 6 , 6 , 2 2 1 ABC = ( D ( 2 ) - D ( 1 ) ) / ( E L ( 2 ) - E L ( D ) BCD = ( D ( 3 ) - ' 0 ( 1 ) ) / ( E L ( 3 ) - E L ( D ) CDO = ( D ( 3 ) - D ( 2 ) ) / ( A B C - B C D ) ELO = E L ( 1 ) - CDO DO = A B C * ( E L ( 2 ) - E L O ) C = CDO*DO DB = DO + 0 ( 1 ) 2 3 P R I N T 3 3 , E L O , C , DB P R I N T 9 9 9 _ DO 5 0 1 = 1 , NDATA Y Y ( I ) = ELO + C / ( D B - X( I ) ) DY( I ) = Y( I ) - Y Y ( I ) P R I N T 69 , Y ( I ) , YY( I ) , D Y ( I ) N 50 C O N T I N U E 69 FORMAT ( I X , 1 2 X , D l 4 . 7 , 1,2X , D 14 . 7 , _ 4X , D 1 0 . 3 ) 3 3 1 W R I T E ( 6 , 3 2 3 ) N , NDATA 3 2 3 F O R M A T ( 1 H O , 4HN = , 1 3 , 5 X , 8 H N D A T A = , 1 3 , 5X C C B E G I N C A L C U L A T I O N OF P O L Y N O M I A L C O E F F I C I E N T S C C N I S THF POL YNOM I A L . . D E G R E E _ C NDATA IS THE N 0 . OF DATA P O I N T S C MP 1=N+1 NP?=:\'+2 N 2 1 = 2-:=N+1 E = 0 . 0 D O DO 1 0 0 I = l , N P ? f V( I ) = 0 . 0 DO. 1.00 V Y ( I ) = 0 . 0 0 0 DO 10 6 I = M P 2 , N 2 1 1 0 6 V I I ) = 0 . 0 DO DO 1 0 5 1 = 1 , N D A T A V Y ( 1 ) =VY( 1 ) +DY( I ) "' \/Y ( MP2 ) =VY( N P 2 ) +DY( I )• XX = X( I ) DO 1 0 1 J = 2 » M P 1 V ( J ) = V ( J ) + X X V Y ( J ) = V Y ( J ) + X X * D Y ( I ) 10] . XX = X X * X ( I ) DO 1 0 5 J = N P 2 , N 2 1 V ( J ) = V ( J ) + X X 105 X X = X X * X ( I ) \/( 1 ) = MO A T.A C ABOVE B U I L T OP V,NOW B U I L D UP A DO 1 0 2 K=1,NP1  DO 10 2 1=1 ,< K S L 1 = K - L + 1 10 2 A ( L , K S L1 ) = V ( K ) _ _____ _____ __ _ __ _ _ ; 00 1 0 3 K=NP2,N21 " " ~ " ~ " LS=N21-K+1 DO 1 0 3 L = 1,LS  K L N P 1 = K + L - N P 1 NP2L=MP2-L 103 A( KLMP1 ,NP2L )=V( K ) _ _ __ DO 1 0 4 K=1,NP], 104 A ( K , N P 2 ) = V Y ( K ) C WE MOW SOLVE A MATRIX A OF N + 1 ROWS AMD NP2 COLUMNS  DO 399 I = 1 , N I P 1 = 1 + 1 DO 399 J = I P l r N P l _ _ _ _ _ Q = A ( J , I ) /A( I , I ) DO 399 K = I P I , NP2 399 A ( J , K ) = A ( J , K ) - A(I,K)»Q  B (MP1 ) = A( MP1 ,-NP2 )/A( NP1 ,NP1 ) DO 3 0 1 1 = 2 ,NP1 J = N P 2 - I ' J P 1 = J + l " ' " " " B ( J ) = A ( J , N P 2 ) DO 3 0 2 K = J P 1 ,MP1  302 B ( J ) = B ( J ) - B ( K ) * A ( J , K ) 301 B ( J ) = B ( J ) / A ( J , J ) DO 39 8 I = 1, NP1 39 8 E = E + B ( I ) * V Y ( . I ) ~ ~ " " E = V Y ( N P 2 ) - E ESUM = 0.0 DO  DO 33 3 K = 1, NDATA E P ( K ) = ( D Y ( K ) - ( ( ( B ( 4 ) * X ( K ) + B ( 3 ) ) * X ( K ) + B ( 2 ) ) * X ( K ) 1 + B( 1 ) ) 333 ESUM = ESUM + E P ( K ) " ~ "'' C C END C A L C U L A T I O N OF POLYNOMIAL C O E F F I C I E N T S  C NP1=N+1 P R I N T 310 , ( K, B ( K ) , K = 1 , N P I J 310 FORMAT ( I X , 2 HB( I 3,2 H)=D2 3.6) XN = MDATA E = DSORT(ESOM/XM )  P R I N T 3 4 0 , E 3 4 0 FORM A T ( l X , 21'HLEAST SQUARES E R R 0 R = , 0 1 2 . 5 ) E = 2 . * E , _ N S = 0 " ' " 1 = 1 4],0 T = X ( I )  . E T = DA B S ( DY ( I ) - ( ( ( B ( 4 ) *T + B ( 3 ) ) * T + B ( 2 ) ) * T + B ( 1 ) ) ) IF ( E - ET ) 4.01 , 4 0 1 , 43 5 40 1 NS = NS + 1 • : .. MDATA = NDATA - 1 """ DO 40 2 J = 1, NDATA X ( J ) = X ( J + l ) 40 2 D Y ( J ) = DY( J + 1) 4 3 5 I = I + 1 I F ( I - NDATA ) 4 1 0 , 4 1 0 , 41 1 411 CONTINUE  IF (MS) 6, 6, 331 6 W R I T E ( 6 , 1 5 0 0 ) 1 5 0 0 . FORMA T ( 1H-,.. 6X , 5HIDENT_, 6 X , .8JHP0.SJ T I ON ,..5X ,__5HTRANS , ..JL4X t I 10HWAVELENGTH, 1 5 X , 1 0 H W* A V EN i) M R E"R" ) 100 6 READ 2, ( D D C ( I ) , T R N S ( I ) , I D N T l ( I ) , I = 1, 5) DO 5 1 = 1 , 5  IDENT1 = IDNT1( I ) DC. = DDC ( I ) TRANS = T R N S ( T ) 16 IF ( DC ) 21 ,' 1 2 , 4 " ~ " " 4 E L F = E L 0 + C / ( D R - D C ) DWL = ( ( B ( 4 ) * D C + B ( 3 ) ) * D C + B ( 2 ) ) * D C + R ( l )  ELG = E L F + DWL D l = ( ( 1 .0E4 ) / E L G ) * * 2 CORR = E L G * ( 6 4 3 . 2 8 + 2 9 4 9 8 1 . 0 / ( 1 4 6 . - 0 1 ) + 2 5 5 4 . 0 / ( 4 1 . - 0 1 ) ) / I I .OF 7 F L F V = ELG + CORR WN = ( 1.QF8 ) / E L F V  P R I N T 3, I D E N T 1 , DC, T RANS, E L G , WN 5 CONTINUE . GO TO 100 6 12 STOP 1 FORMAT ( D 7 . 3 , 0 1 0 . 3 ) 2 FORMATt 5( F 6 . 3 , I X , 1 3 , I X , A l , I X ) )  3 FORMAT ( 1 0 X , A 2 , 4 X , 0 1 3 . 6 , 3 X , 1 3 , 2 ( 1 3 X , D 1 4 . 7 ) ) 31 FORMAT!1H-, 21HTHE HARTMANN STDS ARE) . 3 2 FOR M A T _ ( 1 X , 5 X , 0 1 4 . 7 , IX., _1HA ,_5X , 2 H A T , . 3 X , 0 1 4 . 7 , 1X,..2HMM, // 33 FORMAT (1 HO, 9 HC ON STA NTS, 5 X , 6HEL0= , D 2 1 . 1 2 , 5X, 4HC= , 0 2 0 . 1 4 , 1 5 X , 5 H D B = , 022 . 1 2 / / ) 43 FORMAT (1 HO, 9 HCONSTANTS, 5 X , 6HEL0= , 0 2 1 . 1 2 , 5X, 4HC= , 0 2 0 . 1 4 , 1 5 X , 5 HDB= , 0 2 2 . 1 2 / / ) 888 FORMAT ( 1 H - , 61H TRUE WL HART WL 1 WLT - WLH) 9 9 9 FORMAT ( 1 H - , 61H TRUE WL HART WL 1 WLT - WLH) STOP END * ENDF I L E SRUN -L OA DU 5 = * S 0 U R C E * 6 = * S I N K * 4. 329 2 3 3 2 .79 6 5 2 . 699 2 4 4 0 . 1 0 9 10 3 . 9 4 6 2 5 7 5 . 7 4 4 . 3 11 4.329 2 3 3 2 .79 6 9 . 879 2 3 4 4 . 2 7 9 19 . 582 2 3 6 4 . 8 2 5 2 7 . 4 9 4 2 3 8 2 . 0 3 6 4 0 . 3 4 3 2 4 1 1 . 0 6 6 52 . 699 2 4 4 0 . 1 0 9 6 5 . 8 3 2 2 4 7 2 . 3 4 3 7 5 . 2 69 2.49 6.533 8 6 . 842 2 52 7.43 4 9 4 . 8 4 7 2 549 . 613 10 3 . 9 4 6 2 5 75 .744 10 2 9 7 8 6 0 4 6*10 3 2 9 4 3 9 4 1*10 3 4 2 8 3 03 1* 10 3 8 1 7 2 0 8 1*10 39 4 6 5 1 0 4* R E 7 0 0 6 THERE MUST BE. A BLA MK CARD __AFJER„.THE_ DAT A._ DECK .TO S TO P _„JH E E X C U T 1 0 N S>ENDF IL E $ S I G N O F F A P P E N D I X 3. U N C L A S S I F I E D L I N E L I S T WL = WAVE NUMBER IN VACUUM WL = WAVELENGTH IN VACUUM I F WAVELENGTH I S L E S S THAN 2000.648A WL = WAVELENGTH IN AIR IF WAVELENGTH IS' BIGGER THAN 2 0 0 0 .648A I 1 = ...L I MF I NT EMS IT Y . OF . EX P 0.S UR E... . 1 12 = L I N F I N T E N S I T Y OF EXPOSURE 2 13 = L INE I N T E N S I T Y OF EXPOSURE 3 SOURCE SP E C T R O G R A P H FXPOSURF 1 E L E C T R O D F L E S S D I S C H A R G E • 3-METER EXPOSURE 2 i i P R I S M EXPOSURE 3 i i - - 21-FOOT WL WN 11 12 13 3 65 .5 84 2 7 35 3 5 . 1 7 3 7 5 . 3 4 0 '2 6642 5.1 40 3 7 5 . 7 3 0 . 2 6 6 1 4 8. 6 .45 . 3 7 6 . 9 2 1 2 65 3 0 7 . 6 45 3 83 .399 . 2 6 0 8 2 5.2 12 389 .362 2 5 6 8 3 0 . 4 7 3 9 4 . 9 0 4 2 5 3 2 2 6 . 1 2 4 7 9 . 3 8 5 2 08 6 0 0 . 6 2 5 1 6 . 7 1 5 . 19 353 0.3 ...5 5 3 4 . 7 1 4 1 8 7 0 1 5 . 9 10 5 4 4 . 5 0 9 .18365 1.7 30 5 7 3 . 6 3 9 . 1 7 4 3 2 5 .7 5 6 1 7 . 4 1 5 1 6 1 6 6 5 . 6 7 619 . 8 7 6 1 61 322 . 6 10 62 3 .704 ... 1 6 0 3 3 2 . 2 _ 5 _ .__ 63 8 . 8 3 2 -156535 .6 5 642 .524 155 63 6.3 7 6 4 4 . 4 0 0 155 1 8 3 . 1 30 659 .378 1 5 1 6 5 8 . 1 5 6 8 1 . 0 9 6 1.4 6649 . 8 7 689 . 60 5 14 5 0 10.5 2.0 69 1. .79 9 144 5 5 4 . 8 12 70 6.677 1 4 1 5 07 .5 7 719 .89 1 1389 09 . 8 7 7 4 5 . 1 5 7 13 4 2 0 0 . 0 50 7 5 7 . 3 3 1 132 0 4 2 . 7 60 7 5 7 . 8 9 2 1319 4 4 . 9 „ 45 759 .225 1 3 1 7 1 3 . 2 - 60 765 .788 13 05 8 4 . 5 20 7 6 6 . 4 2 9 1 3 0 4 7 5 . 2 20 7 7 6 . 6 6 8 . 12 8 7 5 5 . 1 20 7 7 8 . 4 1 3 12 84 6 6 .4 40 7 8 0 .422 . 12 8 1 3 5 .9 .... .12 7 8 1 . 1 7 1 12.8012 .9 12 7 8 1 . 7 5 2 1.2 79 17.8 20 782 .900 1 2 7 7 3 0 . 2 30 7 8 5 .088 12 73 7 4 . 3 40 78 6.009 12 7 2 2 5 . 0 30 7 8 6 . 4 7 7 1271.49 .3.... 1.5 7 8 R . 3 6 9 12 6 8 4 4 . 2 25 7 8 9 . 1 7 7 12 6 7 1 4 . 3 20 79 0 . 5 4 6 12 649 4 . 8 70 79 6.301 1 2 5 5 8 0 . 7 20 79 8 . 0 1 3 12 5 3 1 1 . 2 15 80 2 . 19 7 1 2 4 6 5 7 . 7 20 809 . 4 1 3 1 2 3 5 4 6 . 4 15 8 1 5 . 6 3 1 1 2 2 6 0 4 . 5 20 8 3 0 . 1 0 5 1 2 0 4 6 6 . 7 20 831 .528 12 02 6 0 . 6 30 8 4 4 . 3 4 1 1 1 8 4 3 5 . 6 12 8 6 8 . 7 3 8 11 5 1 09 . 6 30 8 7 1 . 4 7 3 114 74 8 . 2 12 89 3.899 11 18 69 .4 25 895 .054 111 725 .1 20 8 9 9 . 3 4 2 1 1 1 1 9 2 . 4 20 9 00 .9 0 4 1 1 0 9 9 9 . 6 30 9 0 2 . 7 63 1 1 0 7 7 1. 1 25 9 11 .067 109 761 .4 25 9 1 1 . 8 1 5 109 67 1.4 20 9 1 5 . 2 1 7 109 2 6 3 . 8 20 9 22 .829 1 0 8 3 62 .4 25 9 4 8 . 8 8 7 1 0 5 3 8 6 . 6 9 5 2 . 5 7 0 1 049 79 . 2 25 9 5 4 . 2 9 9 104 789 .0 20 9 5 6 . 6 7 6 1 0 4 5 2 8 . 6 20 9 5 8 .0 2.0 1 0 4 3 8 1 .9 20 9 5 8.450 1 0 4 3 35 . 1 30 9 60 . 6 8 6 104 09 2 . 3 20 9 6 6 . 1 1 2 1 0 3 5 0 7 . 6 25 9 69 .8 65 103 107 .2 30 9 7 8 . 2 0 7 1 0 2 2 2 7 . 9 5 0 9 9 0 . 61 3 1 0 0 9 4 7 . 6 45 9 9 3 . 0 5 4 1 0 0 6 9 9 . 4 40 1.006.1 R5 99 3 85 .3 30 1 0 0 9 . 4 2 8 99 0 6 6 . 0 30 10 3 4 . 1 6 2 9 6 69 6 . 6 45 1059 . 0 6 6 9 4 4 2 2 . 9 35 10 67.1 65 9 3 7 0 6 . 2 35 10 6 8 . 0 1 6 .9 3 6 3 1.5 40 1 0 8 0 . 8 8 5 9 2 5 1 6 . 8 4 5 10 81 .079 9 25 0 0 . 2 30 1 0 8 1 . 8 3 6 9 2 4 3 5 . 4 35 10 8 3 . 5 9 4 .9 22 8 5 . 5 20 1 0 8 5 . 0 0 3 92 165 .6 40 1 0 8 7 . 2 3 8 9 19 7 6 . 2 _ ...20 _ 1 0 8 7 . 7 0 1 , 9 19 3 7.0 1 5 10 87.89 5 9 19 2 0. 6 25 1088 . 699 91 852 .7 50 109 3 . 4 4 7 9 1 4 5 3 .9 25 1 1 2 5 . 5 0 ? 8 8 8 4 9 . 2 50 1 1 3 3 . 3 9 0 8 82 3 0.9 160 1 1 3 7 . 0 2 0 879 49 .2 60 1 1 4 3 . 1 8 5 8 7 4 7 4 . 9 60 1 1 4 6 . 1 5 7 8 7 2 4 7 .3 60 1 147.9 67 8 7 110.5 60 1 1 5 7 . 2 9 1 8 6 4 0 8 . 4 40 11 65 . 548 8 5 79 6.6 ...60... • ' . 1 1 7 0 . 0 4 6 85 4 66.7 35 1 1 72 . 69 8 8 5 2 7 3 . 5 50 1172 .9 69 8 5 2 5 3 .7 40 1 1 7 6 . 7 9 4 849 7 6 . 6 160 1 1 7 7 . 2 3 8 8 4 9 4 4 . 6 60 1 1 7 7 . 4 2 6 849 3 1.0 60 117 8 . 2 5 6 84 87 1 . 2 130 1 1 7 8 . 7 7 7 8 4 8 3 3 . 7 60 1179 . 212 84 8 0 2 . 4 60 1179 .62 3 8 4 7 7 2 .9 40 1 1 8 0 . 1 5 3 8 4 7 3 4 . 8 ' 60 . 1 1 8 3 . 1 0 9 8 4 5 2 3 . 0 7 0 1 1 8 3 . 4 9 8 8449 5 .3 30 1 1 8 4 . 4 2 1 8 4 4 2 9 .4 70 119 8 . 2 3 7 8 3 4 5 5 .9 25 1 1 9 8 . 7 6 7 8 34 19 . 0 „.„_ 40.... _ 1199 .9 41 8 3 3 3 7 .4 35 1 2 0 0 .0 79 8 3 3 2 7 . 8 30 1 2 1 3 . 9 9 8 8 2 3 7 2 .4 30 1 2 1 7 . 4 7 2 8 2 13 7.4 45 12 4 2 . 0 48 8 0 5 1 2 . 2 15 1 2 42 . 850 • 8 04 7 3 . 2 20 1 2 4 3 . 4 2 7 8 0 4 2 2 .9 30 1 2 44 . 5 11 8 0 3 5 2 .8 20 12 5 4 . 8 1 3 79 69 3 . 1 . 30 12 5 5 . 3 54 7 9 6 5 8 . 8 25 12 6 4 . 8 9 1 79 058 . 2 12 1 2 6 8 . 9 4 7 . 7 88 05 .5 5 _.. 1 2 8 2 . 3 4 8 779 8 1 .9 15 12 8 5 . 3 84 7 7 7 9 7 .8 30 129 4 . 69 6 7 7 2 3 8 . 2 15 129 5 . 1 84 7 72 10.3 30 1299 .89 5 769 29 .3 60 1310.07R .7633 1.3 45 1 3 1 6 . 5 3 0 7 5 9 5 7 .3 12 1 3 2 9 . 3 54 7 5 2 2 4 . 5 30 133 6.11 2 7 4 8 4 3 . 5 25 13 40 . 689 745 88 .5 35 1 3 4 7 . 2 1 0 7 4 2 2 7 .5 35 1 3 49 . 60 2 7 4 0 9 5 .9... 15 1349 .87 6 7 4 0 8 0 .9 25 1. 352 .904 7 39 1 5 . 1 130 13 6 1 . 2 1 7 7 3 4 6 3 .7 15 1 3 61 .9 0 5 7 342 6.6 • 130 1 3 7 2 . 3 4 9 7 2 8 6 7 . 8 60 1 3 73 .451. 72 8 09 .3 15 1380 . 6 2 3 72 43 1. 1 12 1 3 81 . 633 7 2 3 7 8 . 1 12 13 8 5 . 2 9 6 72 1 8 6 . 7 10 13 8 5 . 4 65 72 177 .9 12 1 3 8 6 . 0 7 6 72 1 4 6 . 1 10 1 3 9 2 . 0 7 2 7 1 8 3 7 . 3 . 1 5 139 5 .19 3 71 674 .7 10 140 6.85 0 7 1 0 8 0 . 8 15 140 7.30 8 7 1 0 5 7.7 25 1 4 1 5 .762 7 0 6 3 3 . 3 10 1 4 1 9 . 3 1 1 7 0 4 5 6.7 15 1 4 2 0 . 9 09 7 03 7 7 . 3 25 142 8 . 889 69 9 8 4 .4 7 • 1430.1.66 699 22 .0 7 1 4 3 5 . 0 5 4 69 683 .8 10 1445.751 69 168.2 20 1449.32? 6899 7.8 45 1452.973 6882 6.8 20 1454.976 68729 . 6 15 1459.748 685 05 .0 15 14 60 .7 75 68456.8 10 . 14 61 .1 63 6843 8. 6 _______ 25. 1465 .944 68215 .4 20 1 4 7 ? . 64? 679 05. 2 7 1 4 7 3 . 8 ? 6 67850 . 6 12 1474.687 678 11.0 12 1475 .411 67777.7 15 1475.530 67772.3 15 1476.301 6773 6.9 10 1476.673 6 77 19 .8 10 1485.443 67320.0 20 1486.300 672 8 1. 1. 25 1487.466 67228.4 50 1489 .2 61 67147.4 ' 5 0 149 2 . 3 71 67007 .5 20 149 4.9 43 6689 2.2 20 1500.006 66666.4 25 1501.427 6 66 03.3 35 1502.661 66548.6 30 1503.4 69 665 12 .9 ._. .... 35.... 150 7.8 69 66318.8 35 1508.981 6 62 69 .9 30 1510.518 66202 .4 35 1511 .040 66179 . 6 40 1513.487 66072 . 6 50 1513.9 5 3 6605?.3 _ 3 5 1514.21 • 1514.241 66039.7 30 1514.632 6602 2 . 6 30 1516.219 65953.5 25 1517.604 65 89 3 .4 30 1518.042 65874.3 30 1518.664 65 847 .4 35 1519.005 65832 . 6 40 1523.388 65 643 . 2 30 1 523 .563 65 63 5.6 30 152 6.021 65 529.9 15 1 52 6.9 00 . 6549 2.2 „ 20 . . 1528.532 65422 .3 20 1 529 .208 6539 3.3 15 1 5 31 . 49 7 65 29 5 .6 20 1533.176 65224.1 10 1540.688 649 0 6.1 7 1543.665 64780.9 12 1550.09 5 64 5 12 . 2 15 1557.557 642 03.1 7 15 65.838 63 8 6 3 . 6 12 1 5 66.2 62 63 84 6.3 12 1570.024 63 69 3 . 3 12 15 71.205 63 64 5.4 7 ... ._ 1575.039 63 49 0 . 5 10 1 5 79 . 1 80 63324.0 15 15 79 .40 8 63 3 14 .0 12 1 5 7 9 . 9 9 3 6 3 2 9 1 . 4 2 0 1 5 8 7 . 0 8 0 63 00 8 . 8 3 0 1 5 8 7 . 8 0 7 6 2 9 79 . 9 5 1 5 8 8 . 7 6 4 6 2 9 4 2 . 0 15 1 5 9 4 . 7 5 2 6 2 7 0 5 . 7 2 1 6 0 4 . 8 8 8 62 309 . 7 2 5 1 60 7 . 5 1 4 6 2 2 . 0 7 . 8 . 4 5 1 6 1 7 . 8 9 6 6 1 8 0 8 . 7 10 1 6 3 0 . 5 7 9 6 1 3 2 7 . 9 1 1 6 3 4 . 0 5 7 61 19 7 . 4 15 1 6 3 5 . 1 9 4 6 1 1 5 4 . 8 2 0 1 6 3 5 . 9 4 8 61 12 6 . 6 10 1 63 7 . 2 9 3 . 6 1 0 7 6 . 4 . 10 1 639 . 2 60 6 1 0 0 3 . 2 12 1 64 6 . 0 1 8 6 0 7 5 2 . 7 12 1 65 1 . 60 1 60 5 4 7 . 3 5 1 669 . 81 7 5 9 8 8 6 . 8 2 0 1 6 9 9 . 3 1 4 5.8 8 4 7 . 3 2 5 1 7 1 1 . 1 39 5 8 4 4 0 . 6 2 0 _ 1 7 2 8 . 2 9 2 5 7 8 6 0 . 6 6 0 1 7 3 7 . 7 3 2 5 7 5 4 6 . 3 2 0 1 7 69 . 8 7 8 5 6 5 0 1 . 2 3 0 1 7 7 3 . 5 5 0 5 63 84 . 1 1 2 1 8 0 4 . 6 2 3 5 5 4 1 3 . 2 3 0 1 8 0 5 . 7 9 5 5 5 3 7 7 . 3 , 2 0 1 8 0 6 . 7 0 4 5 5 3 4 9 . 4 20 1 8 1 2 . 5 7 3 5 5 1 7 0 . 2 2 0 1 8 1 7 . 6 3 6 5 5 0 1 6 . 5 2 0 1 8 6 2 . 8 3 2 5 3 6 8 1 . 7 2 0 1 8 6 3 . 0 9 0 53 6 7 4 . 3 25 1 8 6 5 . 4 3 3 5 3 6 0 6 . 9 2 0 1 8 7 5 . 5 65 5 3 3 1 7 . 3 3 0 1 87 6 . 19 1 5 3 2 9 9 . 5 3 0 1 8 8 0 . 0 4 0 53 19 0 . 3 2 5 1 8 8 0 . 6 9 9 5 3 1 7 1 . 7 7 0 1 8 8 1 . 0 9 0 53 1 6 0 . 7 3 5 18 8 4 . 7 5 6 5 3 0 5 7 . 3 2 0 1 8 8 7 . 0 3 2 5 2 9 9 3 . 3 5 0 1 8 9 2 . 0 5 2 5 2 8 5 2 . 7 3 0 189 5 . 8 9 5 5 2 7 4 5 . 5 3 0 19 0 0 . 1 8 4 5 2 6 2 6 . 5 1 3 0 1 9 0 7 . 0 3 7 5 2 4 3 7 . 4 1 3 0 1 9 0 9 . 8 3 3 5 2 3 6 0 . 6 4 0 19 1 5 . 4 3 6 52 2 0 7 . 4 ' 3 5 19 1 7 . 3 63 5 2 1 5 5 . 0 8 0 1 9 2 3 . 9 8 5 5 1 9 7 5 . 5 60 1 9 2 5 . 2 0 8 5 1 9 4 2 . 4 5 0 1 9 2 6 . 7 3 4 5 1 9 0 1 . 3 4 0 19 3 0 . 3 1 5 ._ . 5 1 8 0 5 . 0 . . , . . _ „ . , . . _,40., 1 9 3 2 . 7 6 0 51 7 3 9 . 5 1 6 0 1 9 3 6 . 8 5 9 5 1 6 3 0 . 0 2 5 19 3 8 . 4 2 3 5 1 5 8 8 . 3 20 19 3 8 . 6 6 4 5 1 5 8 1 . 9 3 0 19 4 3 . 0 62 5 1 4 6 5 . 2 2 0 1 9 4 6 . 2 0 6 5 13 8 2 . 0 . . , 35 1 9 4 8 . 5 31 51 32 0 . 7 7 1.9 6 7 . 6 3 4 5 0 8 2 2 . 4 9 0 19 6 8 . 2 79 5 0 8 0 5 . 8 2 5 19 72 .81?. 5 0689 .1 25 1 9 7 3 .863 5 0 6 6 2 . 1 7 19 7 4 . 1 62 5 0 6 5 4 . 4 30 1 9 7 5 .634 5 0 6 1 6 . 7 35 1 9 9 0 .2 68 5 02 4 4 . 5 40 199 1 .00 1 50 22 6.0 60 1 9 9 1 .718 5 0 2 0 7 . 9 . . . .20„_ . 2 0 0 0 . 4 5 5 49 9 8 8 . 6 30 2 0 0 4 . 2 2 9 4 9 8 7 8 . 3 60 2.00 5 .55 8 49 845 .3 5 0 2 0 0 9 .32 1 4 9 7 5 2 . 0 20 2009 .567 49 74 5 .9 7 2 0 1 0 . 0 9 3 49 7 32 .9 . ...10.. 2 0 1 7 . 1 3 7 49 5 61 .7 160 2 0 1 7 . 2 59 4 9 5 5 6 . 2 20 2 0 1 8 . 4 0 9 49 528 .0 40 2 0 1 9 . 2 1 9 49 5 0 8 . 1 25 2 0 2 3 . 2 4 0 . 49 409 .7 40 2 0 4 1 . 6 7 2 4 89 63 .7 .200 2 0 4 3 . 3 0 9 4 8 9 2 4 . 5 2 ? ( ) Q i o 2 0 4 4 . 8 3 0 4 8 8 8 8 . 1 70 2 0 4 8 . 3 2 1 4 8 8 0 4 .8 25 2 0 5 0 . 8 7 7 4 8 7 4 6 . 4 8 0 2 0 5 1 .49 6 48 729 .3 160 2 0 59 . 617 4 8 5 3 7 . 2 2 ... 20 60 .3 69 4 8 5 1 9 .5 130 2 0 6 6 . 6 1 1 4 83 72 .9 25 0 20 66.9 12 4 8 3 6 5 .4 9 0 2 0 7 2 . 6 7 8 4 8 2 3 1.4. 130 2 0 7 7 . 1 7 8 48 12 6.9 20 2 0 7 7 . 9 8 0 4 8 1 0 8 . 3 5 0 20 82 .9 10 4 7 9 9 4 . 5 160 209 4 . 8 1 8 .4 772 1.7 35 2 1 0 2 . 7 7 1 4 7 5 4 1 . 2 1 60 2 1 0 4 . 5 1 6 4 7 5 0 1 . 8 7 2 1 0 4 . 7 6 8 4 7 4 9 6. 1 15 2 1 0 9 .300 4 739 4. ...25 2 1 0 9 . 5 8 5 4 7 3 8 7 .7 7 2 1 1 2 . 6 5 7 4 7 3 18 .8 50 2 1 1 4 . 5 5 1 4 7 2 4 . 2 1 1 4 . 5 5 1 4 7 2 7 6 . 4 20 2 1 1 6 . 1 4 3 4 7 2 4 0 . 8 60 2 1 1 9 . 4 2 8 4 7 1 6 7 . 6 .... .„_ 15 2 1 2 0 . 7 70 47 1 3 7 . 8 20 2 1 2 4 . 5 1 6 .4 7 0 5 4 . 7 9 0 2.12 6. 63 8 47 00 7 .7 2 0 0 2 1 2 7 . 62 7 4 69 8 5 .9 35 2 1 2 7 . 8 5 1 4 6 9 8 0 .9 2 0 0 2 1 4 0 . 7 2 8 4.669 8.4 _ 3 0 0 2 1 4 1 . 0 7 3 4 6 69 0 .8 160 2 1 4 4 . 2 0 3 4 6 6 2 2 . 7 80 2 1 4 4 . 5 6 7 4 6 6 1 4 . 7 8 3 0 0 5 2 1 4 6 . 2 3 5 4 65 78 .5 60 2 1 4 8 . 5 8 1 4 6 5 2 7 . 7 160 2 1 5 5 . 7 7 4 4 63 72 .5 60 2 1 5 9 . 1 0 3 4 6 3 0 1 . 0 45 2 1 6 3 . 1 9 2 4 62 13.5 30 21 69 .7 2.0 4 6 0 7 4 . 5 25 2 1 8 5 . 3 0 4 4 5 7 4 5 . 9 3 5 2 1 8 5 . 5 0 6 4 5 7 4 1 . 7 3 0 2 1 9 6 . 1 2 2 4 5 5 2 0 . 6 3 5 2 2 0 8 . 0 7 6 4 5 2 7 4 . 2 8 0 2 2 1 2 . 3 59 4 5 1 8 6 . 5 4 5 2 2 1 3 . 2 8 1 4 5 1 6 7 . 7 5 2 2 2 9 . 1 5 6 . . . . 4 4 8 4 6 . 1__.. 3 0 2 2 3 1 . 3 9 9 4 4 8 0 1 . 0 6 0 2 2 3 5 . 5 4 9 4 4 7 1 7 . 9 1 5 2 2 4 7 . 4 6 4 4 4 4 8 0 . 8 2 5 2 2 7 9 . 5 0 7 4 3 8 5 5 . 4 0 4 0 0 2 5 2 2 8 1 . 6 4 3 4 3 8 1 4 . 5 3 0 0 2 2 8 7 . 8 2 2 4 3 6 9 6 . 2 _ . . „ . 7 _ 2 2 9 1 . 1 9 8 4 3 6 3 3 . 8 2 2 3 1 . 8 . 6 8 7 4 3 1 1 4 . 6 7 2 3 2 4 . 5 9 8 4 3 0 0 5 . 0 2 0 2 3 3 1 . 4 4 4 4 2 8 7 8 . 7 1 5 2 3 5 5 . 7 4 3 4 2 4 3 6 . 5 1 5 2 3 6 8 . 5 1 0 4 2 2 0 7 . 7 2 0 2 3 7 2 . 6 5 8 4 2 1 3 4 . 0 2 0 2 3 7 8 . 0 3 9 4 2 0 3 8 . 6 2 0 2 3 7 9 . 2 1 8 4 2 0 1 7 . 8 2 0 2 3 8 2 . 2 9 1 4 1 9 6 3 . 6 2 5 3 5 2 3 8 3 . 9 1 8 4 1 9 3 5 . 0 2 5 2 3 8 5 . 6 0 9 4 1 9 0 5 . 2 2 5 7_ 2 3 8 6 . 2 8 9 4 1 8 9 3 . 3 3 5 2 3 8 7 . 0 2 2 4 1 8 8 0 . 4 4 3 5 0 5 5 0 2 5 0 2 3 8 7 . 8 1 7 4 1 8 6 6 . 5 3 5 1 5 2 3 9 0 . 4 5 2 4 1 8 2 0 . 3 3 0 2 3 9 2 . 3 2 4 4 1 7 8 7 . 6 3 5 1 0 2 3 9 3 . 6 1 2 4 1 7 6 5 . 1 4 3 5 0 1 6 0 1 0 2 3 9 4 . 0 5 5 4 1 7 5 7 . 4 2 4 0 0 5 5 0 1 0 0 2 3 9 6 . 5 5 9 4 1 7 1 3 . 8 3 0 2 4 0 3 . 4 9 9 4 1 5 9 3 . 3 3 0 2 4 0 5 . 9 3 8 4 1 5 5 1 . 2 3 0 2 4 0 9 . 0 9 8 4 1 4 9 6 . 7 ' 3 0 2 4 1 0 . 5 4 9 4 1 . 4 7 1 . 7 .30 . 2 4 1 2 . 5 4 4 4 1 4 3 7 . 4 3 0 2 4 1 7 . 1 2 1 4 1 3 5 9 . 0 3 0 2 4 2 2 . 0 7 1 4 1 2 7 4 . 5 3 5 2 4 2 7 . 4 3 7 4 1 1 8 3 . 2 3 5 2 4 2 7 . 9 6 8 4 1 1 7 4 . 2 3 5 1 2 2 4 2 9 . 3 2 2 4 1 1 5 1 . 3 _ 3 5 _ _ _ 2 4 3 3 . 8 4 0 4 1 0 7 4 . 9 " 3 5 2 4 3 4 . 5 4 ] . 4 1 0 6 . 3 . 0 3 5 2 4 3 7 . 1 1 2 4 1 0 1 9 . 7 3 5 2 4 4 2 . 5 1 3 4 09 2 9 . 0 8 0 2 0 2 4 4 3 . 5 4 1 4 0 9 1 1 . 8 4 5 1 0 2 4 4 4 . 4 3 9 4 0 8 9 3 . .4 3 5 2 4 4 5 . 7 7 9 4 0 8 7 4 .4 4 0 2 4 4 6 . 2 0 0 4 0 8 6 7 . 4 4 0 2 4 4 7 . 1 9 5 4 0 8 5 9 . 7 3 5 2 4 4 9 . 7 7 3 4 0 8 0 7 . 7 4 0 2 4 5 7 . 4 7 7 4 0 6 7 9 . 8 2 0 2 4 6 6 . 3 6 8 ' 4 0 5 3 3 . 2 2 0 2 4 9 4 . 6 6 1 4 0 0 7 3 . 5 2" 1 3 0 6™ 2 4 9 7 . 8 4 6 4 0 0 2 2 . 4 3 1 3 0 5 2 4 9 8 . 1 2 4 4 0 0 1 8 . 2 7 0 2504.285 399 19 .5 25 2 52 7.70 5 39 549 .7 40 2545.095 39279 .5 25 2 54 6.2 79 39261.2 35 2546.939 39251.0 20 2558.022 39 08 1 .0 15 2565 .476 3 89 67.4 15 ... 2568.104 38927.6 12 2 5 75.70 3 3 88 12 .7 15 2577.645 38783 .5 15 2 602 .9 74 3 84 0 6. 1 25 2 60 7.39 3 38341.0 80 2 608.856 3 83 19 .5_,__ _ 30 2613.486 38251.6 60 2 61 6.833 3 82 02 .7 25 2 63 6.127 3 7 623 .3 35 2 637.505 3 79 13 .32 90 20 1 2647 .785 37756.2 30 2 650.534 3 77 17.0 35 2 659 .0 29 3759 6.5 60 2 662 .39 4 3 75 49 .0 70 2670.406 37436.4 130 2 675 .2 66 3 73 68 .4 5.0 2 675 .9 41 373 5 8 .9 60 2 682 . 194 . .. 3727 1.8 .... .45. 2683.622 372 52 .0 25 2 685 .083 3 72 31.7 20 2 69 3 . 7 1 2 37112 .5 15 2 69 8 .04 8 3 7052.8 15 2710.08 36888.3 25 2714.73 3 6825.2 7.0 2720.50 36747 .1 25 2723.93 3 67 00.8 45 2731.82 36594.8 25 . 2738.74 3 65 02 . 3 15 2741.27 3 64 68 . 6 25 2746.77 3 639 5 .6 1 30 2 748.9 8 36366.4 25 2750.51 3 6346. 1 60 2762 .78 36184.7 25 2 7 6 7 . 61 3 612 1.6 35 2781.70 35938 . 6 15 2785 .78 35886.0 .. ........ 15... 2 78 6. 1 1 35881 .7 15 2 7 88 .49 3 5 8 5 1 . 1 70 2789.35 35840. 1 20 2 79 2 . 68 3 5 797.3 15 2806.94 35615 .5 60 2807.75 3 5 605.2 9.0 2 810.64 ' 35568.6 130 2 811.43 3 55 5 8.6 80 2 817.21 35485 .7 5.0 2 820.71 35441.6 25 2 821.49 35431 .8 2 5 2 824.41 3539 5.2 25 2 828,35 35345 .9 3.5 2 831 .92 3 5301.3 35 2832 .2 6 3 5 29 7 .1 35 2 8 3 3 . 6 1 3 5 2 8 0 . 3 45 2 8 4 8 . 6 3 35 09 4.3 60 2 849 .11 3 5 0 8 8 . 4 40 2 8 5 0 .02 3 5 0 7 7 . 2 35 2 8 5 0 . 7 2 3 5 0 6 8 . 5 35 2 8 5 1 . 1 6 3 5 0 6 3 . 1 4 0 ... 2 8 62 .9 6 349 18.6... 40 2 8 6 3 . 6 6 349 1 0 . 1 60 2 8 6 7 . 9 6 3 4 8 5 7 . 8 50 2 8 6 8 . 3 1 3 4 8 5 3 . 5 60 2 8 69 .30 3 4 8 4 1 . 5 50 2 8 7 5 . 7 3 3 4 7 6 3 . 6 50 2 8 7 7 . 3 8 3 4 7 4 3 . 6 _ 7.0 2 8 3 6 . 0 7 35 249 .7 8 0 2 8 7 9 .041 3 4 7 2 3 . 6 0 1 30 10 2 8 8 4 . 2 4 9 3 4 6 6 0 . 8 8 9 0 10 2 8 8 7 . 9 5 3 4 6 1 6 . 5 100 2 8 8 8 . 9 5 ' 34 6 0 4 . 5 8 0 2 889 . 61 3 4 5 9 6 . 6 70 2 89 0 .5 1 3 4 5 8 5 . 8 50 '289 1 .21 3 4 5 7 7 . 5 70 289 6.61 3 4 5 1 3 . 0 60 2 89 7 .40 3 4 5 0 3 . 6 70 2 9 0 8 . 5 6 3 4 3 7 1 . 2 160 2 9 3 5 . 5 5 3 4 0 5 5 . 2 1 30. 29 61 .67 33 7 5 4 . 9 80 29 68 .97 3 3 6 7 1 . 9 9.0 2 9 7 2 .72 33 629 .4 160 29 7 6 . 6 8 6 .3 3 5 8 4 . 60 4 0 0 50 29 8 6.4 5 1 3 3 4 7 4 . 7 8 3 0 0 35 299 6.89 3 3 3 5 8 . 2 40 3 0 0 0 . 8 6 3 3 3 1 4 . 1 130 3 0 0 2 .92 3 3 2 9 1.2 130 3 0 1 1 . 5 1 33 19 6.3 60 3 0 1 8 . 3 2 4 3 3 1 2 1.32 1 60 10 3 0 1 9 . 9 8 33 103 • 1. 80 30 2 1 . 3 7 . 3 3 0 8 7 . 9 200 3 0 2 5 . 3 1 3 3 0 4 4 . 8 60 3 0 3 8 . 7 2 3 2 8 9 9 .0 350 3 0 4 0 . 1 3 32 883 .8 160 30 4 3 . 1 0 3 2 8 5 1.7 2 00 3 0 4 8 .9 5 3 2 7 8 8 . 6 200 3 0 8 2 .9 3 3 2 4 2 7 . 3 _30.._ 3 0 8 3 .57 3 2 4 2 0 .5 25 ' 3 0 8 5 .57 . 3 2 3 9 9 .5 35 3089 .99 3 2 3 5 3 . 2 130 309 3 .089 3 2 3 2 0 . 7 6 4 0 0 1 3 0 3 0 9 4 . 67 3 2 3 0 4 . 2 200 3 0 9 6 . 4 8 3 22 85.4 70 309 6.71 3 2 2 8 3 . 0 70 3 0 9 9 . 0 2 3 2 2 5 9 .0 60 3099 .80 3 2 2 5 0 . 8 4 5 3 1 0 2 . 7 7 322 19 .9 40 3 1 1 0 . 2 3 32 142 . 6 130 3 1 1 2 . 9 2 4 32 1 1 4 . 8 2 70... 2 5.... 3119 .15 3 2 0 5 0 . 7 40 3 1 2 6 . 4 4 319 7 6.0 100 3 1 3 2 . 3 0 319 1 6 . 2 80 3 3. 3 8 .9 4 3 1 8 4 8 . 7 100 3 1 4 0 . 5 ? 31 832 . 6 35 3 1 4 0 . 9 5 3 1 8 2 8 . 3 35 3 1 4 1 . 2 1 31 82 5 . 6 35 3 1 4 1 . 8 2 3 18 19 .5 30 3 1 4 2 . 6 7 3 1 8 1 0 . 9 35 3 1 4 6 . 9 4 3 17 6 7 . 7 45 3 1 5 0 . 4 9 3 1 7 3 1 . 9 60 3 1 5 0 . 7 8 3 17 29 . 0 55 3 1 5 1 . 4 4 3 1 7 2 2 . 3 50 3 1 5 2 . 0 3 3 1 7 1 6 . 4 40 3 1 5 3 . 2 4 3 1 7 0 4 . 2 4 0 3 1 5 3 . 7 7 3 1 6 9 8 . 9 _ ..60 3 1 5 4 . 9 8 31 68 6.7 4 5 3 1 5 5 . 4 8 3 1 6 8 1 . 7 . 45 3 1 5 5 . 8 5 31 6 7 8 . 0 4 5 3 1 5 8 . 4 2 3 1 6 5 2 . 1 2 50 3 1 6 5 . 2 5 31 583 .9 70 3 1 6 6 . 3 6 315 72 .9 30 3 1 6 6 . 7 7 3 1 5 6 8 . 8 ' 30 3 1 69 . 5 8 3 1 5 4 0 . 8 300 3 1 7 1 . 6 2 31 5 2 0 . 5 25 3 1 7 2 . 7 0 3 15 09 . 8 25 3 1 7 3 . 4 2 '31 502 . 6 15 3 1 8 0 . 9 4 3 1 4 2 8 . 2 1 60 3 1 8 6 . 2 4 31 375 .9 40 3 1 8 7 . 7 8 3 1 3 60.7 8 0 3189 .002 3 1 3 4 8 .7 1 200 15 3 1 9 2 .06 3 1 3 1 8 . 7 40 3192 .21 3 1 3 1 7 . 2 35 319 4.14 3 1 2 9 8 . 2 .8.0... . 319 5 .79 3 1 2 8 2 .1 25 3 1 9 8 . 9 3 3 12 5 1.4 20 3 2 0 4 . 2 1 31 199 .9 4 5 3 2 0 4 . 89 3119 3.3 25 3 2 0 8 . 5 1 31 158 .1 20 3 2 1 2 . 8 2 0 3 1 1 1 6 . 3 2 ......2 0 0 10 3 2 1 4 . 7 7 3109 7.4 130 3 2 1 7 . 5 2 3 1 0 7 0 . 8 35 3 2 2 1 . 4 7 3 1 0 3 2 . 8 30 3 2 2 2 . 3 4 3 1 0 2 4 . 4 40 3 2 2 4 . 3 7 3 1 0 0 4 .8 50 3229 . 11 •3 09 59 .3.„ 80 32 3 1 . 4 1 309 3 7.3 ~ 4 5 32 3 6.70 3 0 8 8 6 . 8 20 3 2 3 8 . 2 0 3 0 8 7 2 .4 . 12 3239 .22 3 08 62.7 15 3242 .0 6 30 835 .7 ' 15 3 2 4 4 . 5 2 3 08 12 .3 _ __. .15 3 2 4 4 . 8 8 3 0 8 0 8 .9 . 20 3 2 4 7 . 4 2 3 07 84.8 40. 3 2 4 7 . 9 1 , 30 78 0.1 20 3 2 4 8.46 3 0 7 7 4 . 9 35 3 2 5 1 . 6 8 30 744 .5 300 3 2 5 4 . 3 9 3 07 18.9 _ _30 ...... 3 2 5 4 . 7 1 3 0 7 1 5 . 8 , 30 32 55 . 1 1 307 12 . 1 40 32 61 . 67 30 65 0.3 30. 32 62 . 3 8 3 0 6 4 3 . 6 30 32 63 . 5 9 3 0 6 3 2 . 3 1 3 0 3 2 6 8 . 3 1 3 05 8 8 . 0 2 5 3 2 7 1 . 5 8 3 0 5 5 7 . 5 2 5 3 2 7 2 . 7 4 3 0 5 4 6 . 6 7 0 3 2 7 8 . 0 2 3 0 4 9 7 . 4 4 0 3 2 7 8 . 7 7 3 0 4 9 0 . 4 3 5 3 2 8 0 . 2 5 3 0 4 7 6 . 7 3 5 3 2 8 2 . 7 8 3 04 5 3 . 2 9 0 3 2 8 9 . 3 4 3 0 3 9 2 . 5 6 0 3 2 9 0 . 4 4 3 0 3 8 2 . 3 8 0 3 2 9 1 . 3 7 3 0 3 7 3 . 7 5 0 3 2 9 2 . 5 0 .. . . . 3 0 3 63 ..3„_. _ . 8 0 3 2 9 4 . 7 4 3 0 3 4 2 . 7 6 0 3 2 9 5 . 65 3 0 3 3 4 . 3 60 329 7 . 1 4 3 0 3 2 0 . 6 7 0 3 2 9 8 . 3 1 3 0 3 09 . 8 7 0 3 2 9 9 . 6 8 3 0 29 7 . 3 1 3 0 3 3 0 7 . 8 8 3 0 2 2 2 . . 1 . 2 0 0 3 3 1 2 . 6 8 3 0 1 7 8 . 3 6 0 3 3 1 3 . 7 6 3 0 1 6 8 . 5 9 0 3 3 1 4 . 0 8 30 165 . 6 7 0 3 3 2 0 . 2 2 3 0 109 . 8 60 3 3 2 0 . 5 9 3 0 1 0 6 . 5 6 0 .. 3 3 2 3 . 9 3 . 3 0 0 7 6 . 2 ._ 60 3 3 2 6 . 4 2 3 0 0 5 3 . 7 6 0 3 3 2 6 . 8 9 0 3 0 0 4 9 . 4 6 1 0 0 2 5 3 3 3 3 . 0 7 2 9 9 9 3 . 7 6 0 3 3 3 3 . 6 8 ' . 2 9 9 8 8 . 2 60 3 3 3 4 . 4 5 2 9 9 8 1 . 3 7 0 3 3 3 8 . 0 1 . . 2 9 9 49 . 3 _ : . 7 0 3 3 3 8 . 7 1 2 9 9 4 3 . 0 5 0 3 3 39 . 2 1 2 9 9 3 8 . 6 4 0 3 3 3 9 . 8 2 2 9 9 3 3 . 1 4 5 3 3 4 1 . 7 7 2 9 9 1 5 . 7 . 8 0 3 3 4 2 . 2 6 2 9 9 11 . 2 1 0 0 3 3 4 3 . 1 7 2 9 9 0 3 . 1 _ „__„ 7.0 3 3 4 6 . 2 9 29 8 7 5 . 2 6 0 3 3 4 7 . 5 7 2 9 8 6 3 . 8 50 3 3 4 9 . 4 7 2 9 8 4 6 . 8 6 0 3 3 5 1 . 9 6 2 9 8 2 4 . 7 9 0 3 3 5 3 . 8 9 ' 2 9 8 0 7 . 6 3 0 0 3 3 5 4 . 1 6 2 9 8 0 5 . 1 3 0 0 3 3 5 5 . 7 6 29 79 0 . 9 5 0 3 3 6 0 . 1 9 2 9 7 5 1 . 7 5 0 0 3 3 6 2 . 3 3 2 9 7 3 2 . 7 1 6 0 3 3 62 . 79 2 9 7 2 8 . 7 1 60 33 6 4 . 0 1 2 9 7 1 7 . 9 1 3 0 3 3 6 4 . 7 4 2 9 7 1 1 . 4 1 30 33 6 8 . 6 3 2 29 6 7 7 . 1 0 1 6 0 3 3 69 . 39 2 9 6 7 0 . 4 2 00 3 3 7 2 . 2 2 29 64 5 . 5 1 6 0 3 3 7 4 . 8 0 2 9 6 2 2 . 9 50 3 3 7 5 . 4 8 29 6 1 6 . 9 5 0 3 3 7 8 . 7 1 29 5 8 8 . 6 . 3.5 3 3 8 0 . 3 3 2 9 5 7 4 . 4 4 0 3 3 8 4 . 7 5 2 9 5 3 5 . 8 3 5 3 3 8 7 . 2 7 ' 2 9 5 1 3 . 8 2 5 3 3 8 7 . 8 5 2 9 5 0 8 . 8 50 339 5 .38 2 9 4 4 3 . 3 4 0 3 3 9 5 .78 2 9 4 3 9 .9 40 3 3 9 8 . 8 0 29 4 1 3 .7 50 3399 .26 2 9 4 09 .7 60 3 4 1 0 . 8 3 29 39 6.2 12 3 4 2 1 . 3 5 29 2 19 .8 60 3 4 2 3 . 5 9 29 2 0 0 . 7 7 0 3 4 2 4 . 0 3 29 19 7 . 0 1 30 3 4 2 5 . 3 0 29 1 8 6 . 1 30 3 4 3 1 . 7 1 2 9 1 3 1 . 6 25 3 4 3 3 . 4 9 2 9 1 1 6 . 5 4 0 3 4 3 9 .25 29 0 67 .7 30 3 4 4 0 . 1 2 29 0 60 .4 35 3 4 4 3 .36 29 0 3 3 . 1 50 3 4 5 0 . 1 7 2 8 9 7 5 .8 20 3 4 5 0 . 8 8 2 89 69 . 8 20 3 4 5 5 . 2 8 2 8 9 3 2 .9 25 3 4 5 7 . 0 3 2 89.18.3. 15 3 4 5 8 . 9 5 289 0 2 . 3 15 3 4 6 8 . 7 1 2 8 8 2 0 . 9 25 3 4 7 3 .21 2 8 7 8 3 . 6 35 3 4 7 5 . 8 1 2 87 62 . 0 70 3 4 8 2 . 0 0 2 8 7 1 0 . 9 4 0 3 4 8 4 . 0 2 2 8 69 4.3 40 3 4 8 5 . 7 4 28 6 8 0 . 1 2 0 3 4 9 8 .2 6 2 8 5 7 7 .5 1 60 3 5 1 6 . 9 5 2 8 4 2 5.6 60 3 5 2 5 . 2 9 ' ' 2 8 3 5 8 .3 60 3 5 2 7 . 9 7 2 8 3 3 6 . 8 8 0 3 5 2 9 . 1 1. 2 8 3 2 7 . 7 1 30 3 5 3 0 . 4 8 2 8 3 1 6 . 7 160 3 5 4 0 . 2 3 2 82 38 .7 70 3 5 4 1 . 3 6 7 8 2 2 9 .7 60 3 5 5 0 . 5 7 2 8 1 5 6 . 4 60 3 5 5 1 .9 2 2 8 1 4 5 . 7 4 5 3 5 52 .50 2 8 1 4 1 . 1 .60 3 5 5 4 . 1 2 28 12 8.3 60 3 5 6 6 . 1 8 2 8 0 3 3 . 2 1 30 3 5 7 0 . 4 8 2 7 9 9 9 . 4 130 3 5 9 7 . 4 2 2 77 89 .8 35 3 5 9 8 . 3 7 2 7 7 8 2 .4 25 3 609 .5 5 2 769 6.4 .60 .... 3 6 1 5 . 5 8 2 7 65 0. 2 4 0 3 6 6 8 . 65 2 7 2 5 0 . 2 30 3 6 9 4 . 2 0 2 7 0 6 1 . 7 25 3 7 0 1 . 0 0 2 70 12.0 30. 3 7 0 1 . 5 8 2 7 0 0 7 . 8 . 30 3 7 4 3 . 3 3 2 6 7 0 6 . 6 45 379 8.2 5 2 6 3 2 0 .4 130 3 8 0 6 . 5 3 2 62 63.2 130 3 8 1 3 . 1 2 2 6 2 1 7 . 8 100 3 8 1 4 . 6 1 2 62 07 . 6 60 3 8 2 0 . 5 0 2 6 1 6 7 . 2 70 3 8 5 8 . 3 2 2 59 10.7 ....5.00 3 8 7 1 . 2 6 25 8 3 0 . 7 3 0 0 3 8 7 8 . 9 6 2 5 7 7 2 . 8 1 60 3 8 8 7 . 2 2 2 5 7 1 8 . 0 9 0 3 8 8 8 .87 2 5 7 0 7 . 1 1 30 389 5.78 25 665 .5 130 389 6.92 2 5 6 5 4 . 0 70 3901 .67 2 5 62 2 . 8 9 0 39 03 . 69 2 5 609 .5 80 3 9 0 4 . 7 4 2 5 602 . 6 100 . 3 9 1 0 . 2 6 . .. 2 5 5 66.5 .... 100 .. 39 2 6 . 71 2 5 4 5 9 .4 100 3 9 3 6 . 9 6 2 5 3 9 3 . 1 100 39 39 .45 2 5 3 7 7 . 1 60 3 9 4 1 .50 2 5 3 6 3 .9 80 39 42 .9 8 25.354.2 130 39 85 . 85 ... 2 508 1.7 30 399 6.9 7 2 5 0 1 1 .9 130 3 9 9 8 .78 2 5 0 0 0 . 6 70 4 0 0 3 . 6 3 2 4 9 7 0 . 3 . 4 5 4 0 0 4 . 9 8 2 49 61.9 100 4 0 2 7 . 9 3 2 4 8 1 9 . 6 4 0 40 59 . 6.7 . 2 4 6 2 5 . 6 45 4 1 0 7 . 3 5 2 4 3 3 9 .7 35 4 1 2 7 . 0 3 2 4 2 2 3 . 7 80 4 1 6 5 . 2 7 2 4 0 0 1.3 4 0 4 1 6 8 . 0 3 239 85 .4 60 4 1 7 1 . 9 3 239 62 .9 160 .. 4 1 7 2 ..88 2 39 5 7.5 1..6Q.. 4 1 7 4 . 1 3 2 3 9 5 0 . 3 150 4 1 9 4 . 0 2 2 3 8 3 6 . 7 60 4 2 0 4 . 8 4 2 3 7 7 5 .4 60 42 0 8.72. 2 3 7 5 3 . 5 8.0 421 6.27 2 3 7 1 1 . 0 160 42 30 .9.6.. 2 3 6 2 8 . 6 50 4 2 4 2 . 8 1 2 3 5 6 2 . 7 70 4 2 4 3 . 4 1 2 35 59 .3 70 4 2 4 6 . 8 3 23 5 4 0 . 3 50 42 60.5 8 2 34 64.4 200 429 0.3 8 2 3 3 0 1 . 4 60 4 3 0 2 . 19 2 32 3 7 . 5 70 4 3 0 4 . 5 3 2 3 2 2 4 . 8 60 4 3 0 5 .87 2 3 2 17 .6 .60 4 3 0 6 . 7 5 2 3 2 1 2 . 8 70 4 3 2 6.9 a 2 3 1 0 4 . 3 1 30 4 3 3 4 . 4 ? 2 3 0.64.7 8 0 43 5 3 . 6 0 2 29 63 . 0 .60 4 3 7 8 . 1 9 22 834 .1 . 4 4 0 1 . 4 1 2 2 7 13.6 9 0 4 4 3 5.18 22 54 0.7 60 4 4 3 8 . 4 7 2 2 5 2 4 . 0 . 1 30 4 4 4 1 . 0 0 22 51 1 . 1 100 4 4 4 ? . 59 . 2 2 5 03 . 1...... 1:60 ... 4 4 4 5 .9 ? 8 2 2 4 8 6 . 1 8 160 25 4 4 5 1 . 8 3 . 2 2 4 5 6 . 4 60 4 4 5 9 . 5 1 22 4 1 7 . 7 80 4 4 7 ? . 1 0 2 2 3 5 4 . 6 100 4 4 7 2 . 7 4 22 351 .4 9 0 4 4 8 0 . 4 2 3 2 2 3 1 3 . 0 7 1,30 . 30 44 8 7 . 7 9 2 2 2 7 6 . 4 130 449 6.15 2 22 3 5 . 0 1'30 4 5 0 3 . 69 3 22 19 7 .77 130 12 4 5 1 0 . 4 7 5 2 2 1 6 4 . 4 0 1 6 0 2 5 4 5 1 4 . 4 1 2 2 1 4 5 . 1 6 0 4 5 2 6 . 6 1 2 2 0 8 5 . 4 4 0 4 5 3 8 . 0 3 2 2 0 2 9 . 8 6 0 4 5 4 7 . 8 4 5 2 19 8 2 . 2 7 8 0 1 2 4 5 4 9 . 5 0 2 1 9 7 4 . 3 4 5 4 5 5 8 . 3 2 2 19 3 1 . 8 5.0 . . . . 4 5 69 . 0 7 2 1 8 8 0 . 2 7 0 4 5 7 0 . 4 4 3 2 1 8 7 3 . 5 9 1 3 0 3 0 4 5 7 3 . 5 5 2 1 8 5 8 . 7 5 0 4 5 7 8 . 4 2 2 1 8 3 5 . 5 6 0 4 5 8 4 . 3 8 3 2 1 8 0 7 . 0 8 8 0 1 0 4 5 9 8 . 1 9 . . . . 2 1 7 4 1 . 6 5 0 . 4 5 9 9 . 7 4 . 2 1 7 3 4 . 3 6 0 4 6 1 3 . 3 8 2 1 6 7 0 . 0 1 3 0 4 6 1 4 . 5 5 21 6 6 4 . 5 5 0 4 6 4 6 . 2 0 2 1 5 1 6 . 9 7 0 4 7 2 8 . 6 0 2 1 1 4 2 . 0 4 0 4 7 3 3 . 7 4 . 2 1 1 1 9 . 0 4 5 4 7 9 4 . 4 9 2.0 8 5 1 . 4 4 5 4 8 0 2 . 8 2 . 2 0 8 15 . 3 4 5 4 8 1 0 . 0 3 2 0 7 8 4 . 1 4 5 4 8 4 1 . 8 8 2 0 6 4 7 . 3 4 5 4 8 8 5 . 4 0 • 2 0 4 6 3 . 4 4 5 4 9 0 7 . 9 3 2 0 3 69 . 5 4 0 4 9 2 3 . 8 0 2 0 3 0 3 . 8 4 5 4 9 7 3 . 2 6 2 0 1 0 1 . 9 . 6 0 5 1 3 3 . 7 5 1 9 4 7 3 . 5 1 0 0 5 1 9 5 . 2 3 1 9 2 4 3 . 1 1 0 0 5 2 0 6 . 0 8 19 2 0 3 . 0 4 5 . 5 2 0 9 . 9 4 . 1 9 1 8 8 . 7 4 0 5 2 2 8 . 1 9 19 1 2 1 . 7 3 5 5 2 3 5 . 3 1 1 9 0 9 5 . 7 ' 4 5 5 2 6 0 . 6 6 19 0 0 3 . 7 5 0 5 2 9 1 . 6 5 1 8 8 9 2 . 4 7 0 5 3 0 4 . 4 7 1 8 8 4 6 . 8 4 0 5 3 0 7 . 3 6 1 8 8 3 6 . 5 5 3 0 9 . 1 4 1 8 8 3 0 . 2 5 0 5 3 6 0 . 4 1 1 8 6 5 0 . 1 5 0 5 3 6 2 . 4 6 1 8 6 4 3 . 0 4 0 5 4 4 1 . 2 0 1 8 3 7 3 . 2 8 0 5 4 8 5 . 9 0 1 8 2 2 3 . 5 3 5 5 5 2 1 . 1 1 , 1 8 1 0 7 . 3 . _„80 5 5 3 3 . 7 2 1 8 0 6 6 . 0 5 0 5 5 9 8 . 3 0 1 7 8 5 7 . 6 5 0 5 6 0 7 . 7 4 1 7 8 2 7 . 5 5 0 5 6 5 5 . 6 3 1 7 6 7 6 . 6 8 0 5 6 6 4 . 7 8 ' 1 7 6 4 8 . 0 1 0 0 5 7 0 0 . 0 7 1.75 3 8 . 8 1 3 0 5 7 0 6 . 0 0 1 7 5 2 0 . 6 ~~ 1 3 0 5 7 0 8 . 1 2 1 7 5 1 4 . 0 1 3 0 5 7 0 9 . 6 1 1 7 5 0 9 . 5 1 3 0 5 7 1 6 . 1 7 1 7 4 8 9 . 4 1 0 0 5 7 2 1 . 3 8 1 7 4 7 3 . 5 1 0 0 5 7 3 1 . 9 4 1 7 4 4 1 . 2 . 6 0 5 7 4 8 . 1 1 1 7 3 9 2 . 2 5 0 5 7 6 5 . 3 7 1 7 3 4 0 . 1 6 0 5 8 2 6 . 8 4 1 7 1 5 7 . 2 7 0 5 8 3 6 . 8 7 1 7 1 2 7 . 7 9 0 5 9 2 1 . 3 5 1 6 8 8 3 . 4 1 3 0 5 9 4 0 . 9 0 1 6 8 2 7 . 8 1 3 0 5 9 7 3 . 5 9 1 6 7 3 5 . 7 7 0 6 0 2 6 . 6 7 1 6 5 8 8 . 3 5 0 6 0 6 3 . 2 7 1 6 4 8 8 . 2 6 0 6 1 2 1 . 4 6 1 6 3 3 1 . 4 5 0 • 6 1 8 7 . 6 6 1 6 1 5 6 . 7 6 0 6 2 3 2 . 2 2 1 6 0 4 1 . 2 6 0 6 2 9 4 . 6 6 1 5 8 8 2 . 1 7 0 6 4 0 4 . 7 9 1 5 6 0 9 . 0 6 0 6 4 3 8 . 7 5 1 5 5 2 6 . 7 5 0 6 4 4 4 . 8 5 1 . 5 5 . 1 2 . 0 _ _ _ _ 5 0 ; 6 4 5 0 . 7 6 1 5 4 9 7 . 8 4 5 6 4 6 2 . 2 1 1 5 4 7 0 . 3 6 0 6 4 7 1 . 3 3 1 5 4 4 8 . 5 5 0 6 4 7 5 . 2 9 1 5 4 3 9 . 0 5 0 6 6 0 9 . 3 1 5 1 2 6 . 0 6 0 6 6 5 1 . 5 1 5 0 3 0 . 0 7 .0 . . . • _ . 6 6 8 9 . 0 1 4 9 4 5 . 8 4 5 6 7 7 4 . 1 1 4 7 5 8 . 0 4 5 6 7 8 9 . 5 1 4 7 2 4 . 6 4 0 6 8 3 7 . 8 1 4 6 2 0 . 6 2 5 APPENDIX 4 DESCRIPTION OF EXPOSURES Al l exposures have been enlarged 2.5 times. Exposure Time Exposure Minutes Spectrograph Source 1 5 3-m Electrodeless Discharge 2 30 3-m " 11 3 90 21-foot " " 4 15 Fabry-Perot Interferometer " Na_£ 3 7 2 ^NauaSo - Na"2T410 O I 4 2 9 OET459 •NaJU 2 5 0 ( 2 ) OUT 5 0 8 O H T 5 2 5 N aLTT267(2) N ^ H I 2 72(2) N a l [ 2 8 2 ( 2 ) On 5 8 0 N a n 3 0 1 ( 2 ) O H 6 1 6 O H 6 1 6 O Y 6 2 9 Na]_Z319(2) C H 6 5 1 -On 6 7 3 - C I L T 6 9 0 -O IE 7 0 2 -Off 7 1 8 Na IL372(2 ) Na:_LT250(3) N a H 3 8 0 ( 2 ) O I E 7 7 9 - O E Z . 7 9 0 •OIL 7 9 6 3— NaUl267(3) = _ — N a i l 271(3) E | — Na]_74l0(2) O E 8 3 2 -Na l 1280(3) NaEZ"410(2) O H 8 3 3 N a I I 2 8 2 ( 3 ) NaUJ215(4) O l T 4 4 2 ( 2 ) 7 N a T J 3 p O ( 3 ) _ c | | l 9 0 7 •Nal i r922 NaY463(2) -NaLV319(3) - C U T 9 7 7 - C I H 9 9 1 -Nam 2 5 0 ( 4 ) - O H I 507(2) - C L T 1 0 3 6 - O U T 525(2) NalTC 2 5 0 ( 4 ) C H 1 0 3 6 On 5 2 5 ( 2 ) Nam 2 6 7 ( 4 ) N a E Z " 3 6 0 ( 3 ) N a E 3 7 2 ( 3 ) Nam 3 8 0 ( 3 ) Nam 1 1 8 0 O J _ Z 3 9 5 ( 3 ) Nan 301(4) Na__T4l0(3) CUT 1247 N a m 251(5) Nal_7319(4) N a m 214(6) O I 1 3 0 2 C J T 1 3 2 3 C U 1 3 3 4 NaHL267(5) N a E 2 71(5) SiJ_T1393 OUT 7 0 3 ( 2 ) Nai l282(5) 0 , n 7 l 8 ( 2 ) •Naiff 3 6 0 ( 4 ) I l l • NalT 3 7 2 ( 4 ) N a n 3 0 0 ( 5 ) N a m 2 5 0 ( 6 ) N a U 3 78(4) O H 5 0 8(3) C I 2 : 1 5 4 8 C I 1 5 6 0 - O H 7 8 7 ( 2 ) N a J 2 : 3 1 9 ( 5 ) N a n 2 6 8(6) NaEZ. 4 1 0 ( 4 ) C I 1 6 5 7 OEZ"554(3) OIE 8 3 5 ( 2 ) 1 6 9 9(?) •1728C?) NaII1798 NaILT1849 Na376(5) Na_E1887 NaUr 380(5) -1907(?) NaILI1926 C I 1 9 3 0 . _ . 1 9 3 2 ( ? ) Cni977(2) 1 9 6 7 ( ? ) N a l U 1 9 8 5 2 0 4 1 (?) N a _ _ T 4 l O ( 5 ) 2 0 6 0 (?) 2 0 6 6 (?) 2 0 7 2 ( ? ) 2 0 8 2 ( ? ) 2 1 0 2 ( ? ) o u r 7 0 3 ( 3 ) N a _ L T 2 1 1 6 2 1 2 7 ( ? ) 2151C?) N a _ L 2 1 6 6 N a H I 2 1 7 4 N a U I 2 2 0 2 ; ^ - N a T J 2 2 2 8 N a I 1 3 7 6 ( 6 ) — - N a m 3 7 8 ( 6 ) • 3 2 2 7 9 C ? ) — N a m 2 2 8 5 C I H 2 2 9 7 ' N a I J J 2 3 1 0 N a n 2 3 1 5 N a ] J 2 3 3 4 C 1 1 1 1 1 7 5 ( 2 ) N a H T 2 3 6 7 2 3 8 7 ( ? ) - - 2 3 9 4 ( ? ) N a H 2 4 0 1 i M a I U 2 4 0 6 Ghos t N a n 3189 N a I E 2 5 5 3 N a n 3 2 0 0 N a m 2 5 6 3 Ghost N a n 3212 N a n 3 2 1 6 N a n 4 2 9 2 ; 4 o N a n 3 2 2 5 N a n 4 3 0 | ' ^ 2 N a n 2 5 8 6 " N a n 3 2 3 4 N a n 4 3 2 0 N a 4 3 7 5 ^Ghost - N a H 3 2 8 5 - N a l T 4 3 8 7 Na I E4392 NaH3301 N a I 3 3 0 2 NaIT4405 Nan 3 3 0 4 O U 4 4 1 5 Nan 3318 NaJL2660 NaE 3 3 27 N a L T 4 4 4 7 - N a H 4 4 4 y - N a n 2671 - N a E 4 4 5 ^ 7 - N a m 2 2 3 0 - N a _ _ 2 6 7 8 N a J J 4 4 7 4 78 81 - N a U 4 4 9 0 - N a I E 2 2 4 6 - N a l 4 4 9 7 - N a _ 4 4 9 9 -Na_r r2251 - N a _ 4 5 0 6 N a H 4 5 0 6 N a I I 4 5 1 9 N a J J 4 5 2 4 a j i 3 4 0 0 N a j i 4 5 5 1 - N a H 4 2 9 2 - N a H 4 3 0 8 - N a E 4 3 2 0 N a n 4 3 9 2 N a U 4 4 0 5 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0084833/manifest

Comment

Related Items