UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Image isocon television system for the detection of astronomical spectra Buchholz, Vernon Lawrence 1972

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1972_A6_7 B82.pdf [ 2.99MB ]
Metadata
JSON: 831-1.0084823.json
JSON-LD: 831-1.0084823-ld.json
RDF/XML (Pretty): 831-1.0084823-rdf.xml
RDF/JSON: 831-1.0084823-rdf.json
Turtle: 831-1.0084823-turtle.txt
N-Triples: 831-1.0084823-rdf-ntriples.txt
Original Record: 831-1.0084823-source.json
Full Text
831-1.0084823-fulltext.txt
Citation
831-1.0084823.ris

Full Text

C I  IMAGE ISOCON TELEVISION SYSTEM FOR THE DETECTION OF ASTRONOMICAL SPECTRA by VERNON LAWRENCE B.Sc,  BUCHHOLZ  S t . Lojuis U n i v e r s i t y , 1968  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n t h e Department of GEOPHYSICS AND ASTRONOMY We a c c e p t t h i s t h e s i s a s c o n f o r m i n g required  to the  standard  THE UNIVERSITY OF BRITISH COLUMBIA S e p t e m b e r , 1972  In  presenting this  thesis  an advanced degree at the L i b r a r y I  further  for  of  the  requirements  the U n i v e r s i t y of B r i t i s h C o l u m b i a , I agree  s h a l l make i t  agree  fulfilment  freely  available  for  t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f  this  representatives. thesis for  It  financial  of  Geophysics  this  thesis  g a i n s h a l l not be allowed without my  and  Astronomy  The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada  Date  gpptpmhPr  ?R  r  1972  that  or  i s understood that c o p y i n g o r p u b l i c a t i o n  written permission.  Department  for  r e f e r e n c e and s t u d y .  s c h o l a r l y purposes may be g r a n t e d by the Head of my Department  by h i s of  in p a r t i a l  i  ABSTRACT  A complete of  astronomical  system  spectra  f o r the  has  detection  been c o n s t r u c t e d  image i s o c o n  (E.E.V. P850) t e l e v i s i o n  The  will  in  detector length  and  accomodate  has  photocathode.  the  Recording  i s onto  on-line  with  time d i s p l a y o f  via  the  computer.  given. the  Schematic author  function  of  and  the  the  s i g n a l output  The  MTF  as  millimeters an  S-20  spectra  magnetic  i s also on  an  provided  oscilloscope  temperature  exposure  can  based  the  on  of  light  be  the  level,  constructed  shown.  modulation  the  is  Fourier  analysis  is  exposure  transfer of  described. time,  and  is investigated.  seen  f a r exceeds t h a t of  control unit  camera a r e  determining  that  time o c c u r s a t t h e  application  the  signal circuits  f o r a known s i g n a l i n p u t ,  a function  It  MTF  user  video  modified  detector,  the  the  diagrams of  A method o f  target  of  detector.  IBM-compatible  The  the  80  an  computer.  A d e s c r i p t i o n of  by  spectra  recording  using  tube as  s p e c t r a l response  t a p e v i a an a real  two  and  the  lowest  predicted  a n a l y s i s of  as  best  MTF  target the  for a particular temperature.  maximum by  Krittman  (1962).  direct It i s  The  ii  assumed the  that  the Krittman  P850 image i s o c o n  target  spacing  with  and t h i n  analysis  can n o t be a p p l i e d  i t s large  target.  target  mesh-to-  to  iii  TABLE OF CONTENTS  Page INTRODUCTION  1  THE ISOCON TUBE AND CAMERA  5  THE VIDEO SIGNAL CIRCUITS  9  THE MODULATION TRANSFER FUNCTION  13  CONCLUSION  50  BIBLIOGRAPHY  52  APPENDIX A (SYSTEM SCHEMATICS)  53  APPENDIX B (COMPUTER PROGRAMS)  60  LIST OF FIGURES  Figure  Page  1  System block diagram  2  2  Isocon tube schematic  6  3  Video s i g n a l s  10  4  Video s i g n a l c i r c u i t  11  5  T y p i c a l d e t e c t o r MTF  14  6  S i g n a l output versus s e p a r a t i o n of l i n e scans  17  7  Krittman t h e o r e t i c a l maximum MTF  20  8  MTF t e s t set-up  22  9  Test p a t t e r n  23  10  Test p a t t e r n output  26  11  MTF measurement process  28  12  MTF as a f u n c t i o n o f l i g h t l e v e l  31  13  MTF a t -15 C  14  MTF a t 0*C  #  33 38  V  L I S T DF TABLES  Table  Page  1  MTF a t - 1 5 ° C , E x p o s u r e time low l i g h t l e v e l  17 s e c o n d s ,  41  2  MTF at - 1 5 ° C , E x p o s u r e medium l i g h t l e v e l  time  17 s e c o n d s ,  42  3  MTF at - 1 5 ° C , E x p o s u r e medium l i g h t l e v e l  time  35 s e c o n d s ,  43  4  MTF a t - 1 5 ° C , E x p o s u r e time medium l i g h t l e v e l  77 s e c o n d s ,  44  5  MTF a t - 1 5 ° C , E x p o s u r e t i m e medium l i g h t l e v e l  151  seconds,  45  6  MTF at - 1 5 ° C , E x p o s u r e t i m e medium l i g h t l e v e l  298  seconds,  46  7  MTF at 0 ° C , E x p o s u r e medium l i g h t l e v e l  time  17 s e c o n d s ,  47  8  MTF a t 0 ° C , E x p o s u r e medium l i g h t l e v e l  time  35 s e c o n d s ,  48  9  MTF a t 0 * C , E x p o s u r e medium l i g h t l e v e l  time  77 s e c o n d s ,  49  vi  ACKNOWLEDGEMENTS  I would l i k e agement  of  the  Geophysics thank  the  faculty  the  particular  Drs.  Auman, T . J . U l r y c h ,  J.R.  and  much h e l p  B . A . G o l d b e r g , B.  equiptment.  advice  help  and  encour-  Department I  of  would l i k e  to  institutions.  and G . A . H .  and i n s p i r a t i o n .  Isherwood,  and h e l p  Ms. Jean E i l e k  in  Messrs.  and R „  Knight  c o n s t r u c t i o n of  offered  much h e l p  Walker,  the  with  the  programming.  This University National  In  of  people  technical  computer  and s t a f f  the  following  Coutts,  gave  acknowledge  and A s t r o n o m y .  my a d v i s o r s , o f f e r e d R.  to  of  work was f i n a n c e d British  by a s c h o l a r s h i p from  C o l u m b i a and a g r a n t  Research C o u n c i l of  Canada.  from  the  the  1  INTRODUCTION  Recent brought to  about  replace  graphic useful  plate  spatial  resolution  at  the  consists  the  an E . E . V . to  of  of  unsatisfactory,  image s c a n n e r . detector  photomultiplier,  these  requirements,  of  PB50 image  The d a t a  tube.  After  isocon in  of  the  the  photo-  w i t h as h i g h a  the  The s y s t e m u s e s as a  television  tube,  modified  cooled  Marconi  a c q u i s i t i o n and r e c o r d i n g s y s t e m  system i s  Two s p e c t r a a r e sufficient  tube  and the  a system f o r  a greatly  analog-to-digital  shown i n  imaged o n t o  light  with  block the  has f a l l e n  duce a u s e f u l s i g n a l , an e l e c t r o n get  be a  converter, and a  display,  transport.  The whole 1.  But t o  must combine  I n t e r d a t a Model 4 c o m p u t e r w i t h o s c i l l o s c o p e  Figure  photo-  Astronomy and Space S c i e n c e  B r i t i s h Columbia.  about 0 ° C ,  tape  spectra,  a s t r o n o m i c a l s p e c t r a has been  a B i o m a t i o n 12 b i t  PEC m a g n e t i c  have  astronomical  photographic plate  Institute  U n i v e r s i t y of  camera.  often  technology  as p o s s i b l e .  view of  by f o r c e d a i r TF1709  the  and r e c o r d i n g o f  constructed  detector  but  any t e l e v i s i o n  p r e c i s i o n of  detection  detection  photomultiplier  c a p a c i t y of  In  the  or  alternative,  electric  television  new methods o f  the much u s e d ,  integrating  at  advances i n  reading  a television-type  d i a g r a m form  face  on the  of  the  isocon  beam s c a n s  raster  of  isocon to  the  up t o  in  protar-  999  SYSTEM ISOCON  BLOCK  DIAGRAM  CAMERA MASTFR  INTEGRATOR  CONTROL UNIT  I MULTIPLEXER  VIDEO  SIGNAL  INTEGRATOR  -7  2  ZF GATE I GATE  2  C O M P  LOGIC  U T E R  C O N T R O L  UN IT  M/  OSCILLOSCOPE  F IGURE  I  Dl LI  S P L A Y GHTS  3 non-interlaced dispersion. put  lines.  The tube  s i g n a l which i s  position  input.  The l i n e thus  a map o f  gate  the  the  integrated  same t h i n g in  to  the  raster  pulses,  core  of  of  the  magnetic  tape,  to  the  the  one s e t  switched o f f  isocon.  After  this  of  for  allow  s i g n a l , and the  intensity spectrum.  time,  to  the  falling  the  and r e l a y s display  period of  again  element. by  stored in data  the  onto  either  vital  infor-  panel.  r e c o r d e d , the time  reading (the  a c c u m u l a t e on  the  extracts  again.  and e v e n t u a l l y  In  added  this  to  ratio.  t h u s has an i n t e g r a t i n g on the  is  d i s p l a y of  preceding process occurs  The i s o c o n  999  digitized  r e a d i n g beam a g a i n  produce a high s i g n a l - t o - n o i s e  light  output  spectra is  light  Thus,  2.  one s p e c t r a l  pulses i s  light  a variable  the  The  p r o d u c e s up t o  within  digitized  the  in  each p u l s e c o r r e s p o n d s  voltage  enough s p e c t r a can be t a k e n  the  of  difference,  observer v i a  to  all  the  The c o m p u t e r o u t p u t s  sum o r  time)  way,  falling  and t h i s  exposure  the  of  p r o v i d e s an o s c i l l o s c o p e  After beam i s  light  computer.  spectrum or t h e i r mation  height  amplitude  each o f  A/D c o n v e r t e r , of  the  spectrum  1 which p r o d u c e s  light  s c a n each i n t e g r a t o r  and the  intensity  The a m p l i t u d e the  over  out-  versus  beam c r o s s e s  the  spectral  v e r s u s time  intensity  s w i t c h e s on i n t e g r a t o r to  the  happens w i t h s p e c t r u m 2 and i n t e g r a t o r  one f u l l  voltage  light  reading  and h o l d s a s i g n a l p r o p o r t i o n a l spectrum,  normal t o  produces a c u r r e n t  Each time  1, an e l e c t r o n i c  scan i s  tube  face  capacity,  d u r i n g the  since  exposure  4  time c o n t r i b u t e s  to  the  be c a l c u l a t e d from the be a p p r o x i m a t e l y where the  picture  an e f f e c t i v e approximately picture  1500  Nelson  is  0.01  (1969)  4000 A , t h i s  required  to  to  element,  square m i l l i m e t e r . at  can  Assuming means  saturate  one  have d i s c u s s e d  the  element.  of  the  Walker  et.  al.  (1971)  s y s t e m , and have shown i t noise.  where N i s  It  is  is  be c o m p a r a b l e  p o s s i b l e to  a N^ improvement  the  the  It  to  in  add the  for  its  to  successive signal-to-noise  number o f e x p o s u r e s .  purpose of  this  t h e s i s to  describe  i s o c o n and a s s o c i a t e d e l e c t r o n i c s which were  structed the  level  p h o t o - e l e c t r o n s per p i c t u r e  element  e x p o s u r e s and o b t a i n  image  g i v e n by P . D .  15,000 photons are  photomultiplier  ratio,  data  The s a t u r a t i o n  10% quantum e f f i c i e n c y  G.A.H. noise  signal.  operation  modulation t r a n s f e r  by t h e  author,  f u n c t i o n of  the  and t o  system.  the  con-  investigate  5  THE ISOCON TUBE AND CAMERA  The Figure  2.  isocon  It i s divided  image s e c t i o n , tion,  tube  photo-electrons,  given  onto  fields  the t a r g e t ) .  the  light  found  with  target  for  exposure  consists  reading  steering  alignment c o i l s ,  The which  are  of the a x i a l  demagnification  from  electric  takes  the t a r g e t .  t o the t a r g e t  area  i s cooled,to  place  mesh, l e a v i a q  c o r r e s p o n d i n g to I t was  about 0°C. t h e sharp  minutes.  and s c a n n i n g  gun, a c c e l e r a t i n g  plates  These  and t h e image r e m a i n s  beam g e n e r a t i o n  and  and s e p a r a t o r ,  and x and y s c a n n i n g  electron  i s centered  Primary  on t h e photocathode«  does n o t s p r e a d  o f an e l e c t r o n  electrodes,  S-20 p h o t o -  a r e imaged.  a p o s i t i v e charge p a t t e r n  times o f s e v e r a l  The  a circular  by a c t i o n  are a t t r a c t e d  i f the target  charge p a t t e r n  sec-  The p r i m a r y p h o t o - e l e c t r o n s c a u s e t h e  i n t e n s i t y pattern  that  the  and s c a n n i n g  o f f by t h e p h o t o c a t h o d e ,  ( a 2.4:1  secondary e l e c t r o n s target  main s e c t i o n s :  contains  emission of secondary e l e c t r o n s  the  form i n  section.  t h e two s p e c t r a  imaged o n t o t h e g l a s s magnetic  three  beam g e n e r a t i o n  image s e c t i o n  c a t h o d e upon which  and  into  the reading  and t h e m u l t i p l i e r  The  i s shown i n s c h e m a t i c  section  focusing  focusing  and  coils.  gun p r o d u c e s a beam o f e l e c t r o n s  and f o c u s e d  onto  the t a r g e t  by a c t i o n of  ISOCON  TUBE  SCHEMATIC  FIELD  1/VV///////////77/FOCUS NG SI  COILS  l IUURE  ///////////7777T/  2  7  the  alignment  field to  and f o c u s i n g  coils.  o f t h e x and y s c a n n i n g  scan a square t e l e v i s i o n  electron data  beam i s t u r n e d  The v a r i a b l e  coils  causes the e l e c t r o n  r a s t e r on t h e t a r g e t .  on f o r one  read-out  frames  (to f u l l y  discharge  o f f f o r the exposure p e r i o d  charge p a t t e r n  i s b u i l d i n g up on t h e t a r g e t ) .  potential  on g r i d  1 accomplishes  (while  subsequent  the t a r g e t ) .  beam i s t u r n e d  this  Then t h e  (while  turning  beam  This  frame  i s g a t h e r e d ) and r e m a i n s on f o r s e v e r a l  "erasing"  magnetic  a  A -170 v o l t o f f of the  beam.  Upon s t r i k i n g the  electrons  i n t h e beam:  charge p a t t e r n ; inverse are on  and  beam which i s p i c k e d of this  mation of the o r i g i n a l  in  return  that  and n e u t r a l i z e t h e  r e f l e c t e d ( t h e amount i n  scan,  to the charge  i t i s this  scattered  up by t h e e l e c t r o n m u l t i p l i e r , return  light  beam c o n t a i n s  pattern:  beam t h e h i g h e r  the i n f o r -  the higher  the s c a t -  was t h e i n t e n s i t y o f t h e l i g h t  p a r t i c u l a r s e c t i o n o f the scan.  The to  happen t o  t o t h e c h a r g e on t h e t a r g e t ) ; and some  In t h e i s o c o n  the modulation  tered  things  ( t h e amount i n d i r e c t p r o p o r t i o n  the t a r g e t ) .  return  three  some l a n d  some a r e d i r e c t l y  proportion  scattered  the t a r g e t ,  separate  four  steering  the s c a t t e r e d  the  reflected portion  the  electron  plates  portion  and s e p a r a t o r of the r e t u r n  i n the f o l l o w i n g  gun t h e e l e c t r o n  manner.  a r e used beam After  beam t r a v e l s t h r o u g h  from leaving  the r a d i a l  8  electric  field  steering  plates.  a helical target, of  up by the  opposite p i t c h .  on r e t u r n i n g separator  toward  reflected  path.  the  noise-free output  at  target,  scattered  and s t r i k e s  external  the  anode i s  diagrams of  given in  of  the  the  of  After  returns  reflected  the  for  a  in  a nonplates  beam s t r i k e s  through a hole  the in  multiplier.  produces a  the  helix  steering  electron virtually  beam s i g n a l .  10 m i c r o a m p e r e s .  allows  the  in  a seven-dynode  scattered  in  striking  beam r e t u r n s  beam p a s s e s  the  the  beam to move  portion  section is  on  This  use o f  Final  electron  a less  sensitive  amplifier.  g i v e n by P . D .  control  target.  dynode 1 o f  up t o  amplification  A fuller is  forward  The dynode m u l t i p l i c a t i o n amplification  multiplier  difference  a g a i n p a s s i n g through the  The m u l t i p l i e r multiplier.  the  portion  from t h e  separator  the  The s c a t t e r e d  After  while  potential  T h i s causes  trajectory  the  helical  the  set  unit  the  d e s c r i p t i o n of  Nelson  (1969).  the  operation of  The c o m p l e t e  m o d i f i e d M a r c o n i TF1709  c o n s t r u c t e d by t h e  Appendix A .  author  the  schematic  camera and t h e for  isocon  this  camera  master are  9  THE VIDEO SIGNAL CIRCUITS  The v i d e o electron  multiplier  as shown i n can be up to the  setting  each l i n e  dark  999 of  3a.  O n l y two  the  in  logic  the  beam i s  A line  spectral  from  the  video  is  retrace.  signal circuit  is  voltage  i n p u t , impedance  anode s i g n a l i s quency c u t - o f f  Its  coupled v i a f^  of  the  f |  Because the  capacitor  amplifier 2ttC x  10  MC 1552 is  C, thus  +1400 v o l t s ,  than  microfarad).  output  video  clamp i s  s i g n a l as shown i n  used,  there  is  the  4.  a The fre-  4  therefore  frequency  8  by:  and i t s  p o o r low  at  low  given  capacitor  a relatively  set  is  C must be a h i g h v o l t a g e  0.05  of  these  Figure  the  at  (less  at  the  10K ohms.  isocon is  be s m a l l  spectra.  each s p e c t r u m .  the  in  anode o f  "  a Motorola  in  c o r r e s p o n d s to  shown i n  is  100.  two  The d u r a t i o n  The b a s i c v i d e o a m p l i f i e r gain of  the  During  of  There  d e p e n d i n g on  no c u r r e n t  height  the  form,  shown.  m i c r o s e c o n d s w i t h about  p u l s e s depends on the  The c o m p l e t e  in  photocathode.  36.8  anode o f  The two p u l s e s  pulses s i t  so t h e r e  time i n  frame,  intensity  spectral full  the  s c a n s are  unit.  light  blanked  scan takes that  line  one f u l l  the  at  s i g n a l with a t y p i c a l  control  on which the  microseconds of two  a current  lines  current  retrace, times.  Figure  is  c o r r e s p o n d to  The p e d e s t a l the  s i g n a l which a p p e a r s  capacity  3b.  must  This  r e s p o n s e , with a  Figure  capacitor  results  typical  S i n c e no v i d e o  some " c r o s s - t a l k " from the  spectrum  1  10  ISCCON  OUTPUT  3A  FIGURE  AMPLIFIER  FIGURE  OUTPUT  3B  GATES  FIGURE  INTEGRATOR  FIGURE  3C  OUTPUT  3D  VIDEO  SIGNAL  CIRCUIT  FIGURE 4  12  pulse to the spectrum 2 pulse, because o f the negative shoot i n the spectrum 1 p u l s e . minimum and  voltage  This i s e a s i l y held to a  ( l e s s than 1%) by appropriate  spectrum s e p a r a t i o n . excursions  during  over-  choice of c a p a c i t o r C  The input diodes l i m i t the input the t u r n i n g on o f the 1400 v o l t  supply.  The  a m p l i f i e r s T l and T2 are impedance matching  emitter followers. cable.  T l couples  T2 couples  the s i g n a l v i a two 50 ohm cables to the  i n t e g r a t o r s . Their coupling 4 to C x 10 seconds.  The Chronetics  the s i g n a l to the 75 ohm main  time constants  i n t e g r a t o r s , or "area  Model 166.  are s e t equal  d e t e c t o r s " , are  During the d u r a t i o n of each s p e c t r e l  p u l s e , we open e l e c t r o n i c gates which turn on these two signal integrators.  The output o f each i n t e g r a t o r , which  i s p r o p o r t i o n a l to the area o f i t s r e s p e c t i v e s p e c t r a l p u l s e , i s held f o r 12 microseconds while are shown i n Figure 3c.  i t i s digitized.  The gates  T h e i r duretion and s e p a r a t i o n can  be set at the l o g i c c o n t r o l u n i t .  The output of the  i n t e g r a t o r s i s shown i n Figure 3d.  Since the l o g i c c o n t r o l u n i t c o n t a i n s a l l TTL c i r c u i t r y , i t was necessary to modify the i n t e g r a t o r s s l i g h t l y to accept  the +5 v o l t gate p u l s e s , r a t h e r than  the normal -700 m i l l i v o l t  pulses.  13  THE MODULATION TRANSFER FUNCTION  Of great s i g n i f i c a n c e i n any s p e c t r a l d e t e c t i o n system i s r e s o l u t i o n .  But a more important and u s e f u l  concept i s the modulation t r a n s f e r f u n c t i o n  (MTF) or ampli-  tude response as a f u n c t i o n of input s i n e wave s p a t i a l frequency ( c y c l e s / m i l l i m e t e r ) .  An e a s i l y understood method of measurement of MTF, which i l l u s t r a t e s the concept, i s as f o l l o w s .  Project test  p a t t e r n s which s i n u s o i d a l l y vary i n i n t e n s i t y onto the detector.  Then p l o t the amplitude of the s i g n a l output of  the d e t e c t o r as a f u n c t i o n of the s p a t i a l frequency o f the input t e s t p a t t e r n .  Figure 5a i l l u s t r a t e s the i n t e n s i t y  input at three s p a t i a l f r e q u e n c i e s , and F i g u r e 5b i l l u s t r a t e s three corresponding  t y p i c a l s i g n a l outputs.  In F i g u r e 5c,  we see the MTF f o r the t y p i c a l d e t e c t o r , normalized l a r g e s t s p a t i a l frequency.  to the  In almost a l l d e t e c t o r s ,  response decreases with i n c r e a s i n g s p a t i a l  frequencies.  T h i s method i l l u s t r a t e s the p r i n c i p l e s , but i s d i f f i c u l t to accomplish i n p r a c t i c e .  A more s a t i s f a c t o r y i n d i r e c t  method w i l l be described  later.  The i s o c o n , as with most d e t e c t o r s , has a decreasing response with  increasing s p a t i a l frequencies.  four main reasons f o r t h i s :  imaging of  There are  photo-electrons  onto the t a r g e t , f i n i t e width of the reading  beam, charge  14  TYPICAL  D E T ECTOR  FIGURE  M T F  5A  \J  VJ  \J i  i ;  FIGURE  i  ;  l  l  I*  !  !  i  5B  MTF .0-  1.0  2.0  3.0  FIGURE  4.0  5C  5.0  CYC./MM.  15  spread  on t h e t a r g e t ,  storage  target.  The designed and  i t .  image s e c t i o n  t h e image f o c u s c o i l coils  Appendix  A i n order  current  perpendicular  to the l i n e  scans.  spectra  A slight  causes the spectra  s h a p e d , b u t t h i s i s b e c a u s e we s c a n therefore  s c a n does n o t s e e .  done t o d i s c h a r g e  the e n t i r e  are e x a c t l y  d i s t o r t i o n near to appear  the f u l l  The f u l l  target  We  r o t a t e the  5-  t a r g e t , and  s e e t h e more d i s t o r t e d edges which a  commercial  The  and g r i d 6 p o t e n t i a l s  We must t h e n  our h o r i z o n t a l  edges o f t h e t a r g e t  i s 198 m i l l i a m p e r e s  t h e image on t h e t a r g e t .  resolution.  so t h a t  as M a r c o n i  i s 68 m i l l i a m p e r e s .  i n the photocathode  the best  exactly  as i n t h e camera d i a g r a m i n  to center  yoke s l i g h t l y  the  current  are connected  make a d j u s t m e n t s provide  i s operated  The f o c u s c o i l  orbiting  to  and t h e t h e o r e t i c a l r e s o l u t i o n o f t h e  target  to prevent  smaller scan i s charge  build-up.  The left  running  blanked. magnetic  scanning  during  coils  the exposure  I t was s u g g e s t e d field  i n the r e a d i n g  that  was " s p i l l i n g "  t h i s was t r u e .  time when t h e beam i s perhaps t h i s  We r a n t e s t s  A test pattern  isocon  a t a low l i g h t  level  During  8 f r a m e s we m a n u a l l y  during  the l i g h t  exposure  oscillating  i n t o t h e image s e c t i o n  a d e t e r i o r a t i o n of r e s o l u t i o n . if  beam s e c t i o n a r e  switched  time,  to determine  was p r o j e c t e d  and exposed  causing  onto the  f o r 150 s e c o n d s .  o f f the scanning  and s w i t c h e d  them  back  coils  16  on  f o r t h e r e a d i n g and e r a s i n g  B frames with scanning  t h e same t e s t  c o i l s were l e f t  between t h e two s e t s the  difficulty  leave  o f the t a r g e t .  running  of output  as u s u a l .  No  scan  criteria. rate be  detected without  finite  width then The  aliasing.  sampling  width.  Now  broad  lines  filter  p e r m i l l i m e t e r ) may  i s not i n f i n i t e s i m a l l y  i f t h e sample r a t e  frequency  are d i f f i c u l t  d e p e n d e n t on t h e e n e r g y  the l i n e s e p a r a t i o n ,  o f t h e beam w i d t h  from  the i s o c o n f o r a c o n s t a n t l i g h t i n p u t ,  line  scan  T h i s i s a graph  on t h e t a r g e t  separation increases,  effective  since  they  i n t h e beam.  examining  scans  filter.  of this  theoretically,  from  the l i n e  F i g u r e 6.  s m a l l , but  a c t as an a n a l o g  distribution  beam  i s s e t so t h a t t h e  characteristics  to analyze  A reasonable idea  of  with  o n e - h a l f t h e sample  However, t h e e l e c t r o n  r e a d i n g beam w i l l  exact s p a t i a l  are  g r e a t e r than  o f t h e r e a d i n g beam i s g r e a t e r t h a n this  the t a r g e t  u p p e r l i m i t on t h e s p a t i a l  t h e number o f s c a n  w h i c h does t h i s of  s w i t c h , we  c a n be d e t e c t e d i s s e t by t h e N y q u i s t  No f r e q u e n c y  (i.e.,  Because o f  c o i l s operating continuously.  the r e a d i n g beam, a d e f i n i t e that  difference  c o u l d be s e e n .  Because o f o u r method o f s a m p l i n g  frequency  another  p a t t e r n on t h e i s o c o n , t h e  o f d e s i g n i n g an a u t o m a t i c  the scanning  During  can be g o t t e n  of signal  versus separation  and p h o t o c a t h o d e . the s i g n a l  output  will  As t h e  also increase  SCAN SEPARATION ON PHOTOCATHODE 30  60 i  90  120  i  |&o  i  i  180  210  i  i  240 ( i  uM)  '  RELATIVE SIGNAL 5 4 32  i  20  40  SCAN  • 60  •  80  SEPARATION ON TARGET  FIGURE  6  i 100  (yuM)  18  (since until  each  scan d i s c h a r g e s  t h e beam no l o n g e r  previous  beam.  separation  At t h i s  that  maximum  that  scan  separation  than  aliasing  will  w h i c h i s used  the  s p r e a d which  the i s o c o n . target,  target  and c o n s e q u e n t  because  the g l a s s  sets  t h e maximum  In o r d e r  area.  A closed,  coils.  forced  image s m e a r i n g c a n  exposure  the t a r g e t It i s this time  possible  the r e s i s t a n c e o f  convection  cooling  system i s  by d r y i c e between t h e t u b e a n d  Temperatures  t u b e c a n be m a i n t a i n e d  MTF as a f u n c t i o n this  i t i s unlikely  we must r e f r i g e r a t e t h e t u b e , e s p e c i a l l y i n t h e  focusing  isocon  indi-  Since the  o f which  to increase  used w h i c h p a s s e s a i r c o o l e d the  which  i n normal  made has a l e s s - t h a n - i n f i n i t e r e s i s t a n c e .  with  set-up,  occur.  o c c u r on t h e t a r g e t  charge  i n the scan  90 m i c r o n s on  i s 170 m i c r o n s on t h e p h o t o c a t h o d e ,  Charge s p r e a d  is  our c o n t r o l  i s greater  by t h e  Over t h e f u l l  (220 m i c r o n s on t h e p h o t o c a t h o d e ) .  line  operation  scanned  an i n c r e a s e  the s i g n a l . with  o f the t a r g e t ) ,  o f f i n s i g n a l was n o t i c e d ,  t h e beam w i d t h  target  the area  separation,  possible  however, no l e v e l l i n g  the  overlaps  does n o t i n c r e a s e  range o f s e p a r a t i o n s  cates  a larger portion  at the t a r g e t  area  o f the  between 4°C and - 1 5 ° C .  o f temperature w i l l  be seen  The  later i n  chapter*  potential  Because  the reading  pattern  on t h e beam s i d e  a theoretical limit  beam i s s c a t t e r e d  by t h e  o f the t a r g e t ,  o f r e s o l u t i o n due t o t h e  there i s  transformation  19  of  the  get  to  charge the  limiting  potential  resolution  He g i v e s the spatial  pattern  on the  photocathode  pattern is  on the  frequency of  reading  d i s c u s s e d by I . M .  s i n e wave r e s p o n s e 0,  side of  (MTF),  as a f u n c t i o n  the  beam s i d e .  Krittman  normalized of  tar-  full  This  (1963). to  a  cycles/millimeter  (N): -2 MTF (N)  Nt,  = e  -2  x  4 where:  For  the  t  = target mesh-to-target  2  thickness  plot  quency o f  upper l i m i t  we n o r m a l i z e d  of  (in  spacing of MTF i s  the  MTF t o  if  The f i n a l  on the  The t h e o r e t i c a l tube  geometry  MTF, a l t h o u g h ,  much h i g h e r analysis. function are  MTF i s  than  that  resolution  both  assumed to  tube  as we s h a l l  be i n d e p e n d e n t  exposure t i m e .  It  tube  for  potentials  is  Krittman the  the  the  best  fre-  see,  the  assumptions.  above  four is  a  upper l i m i t  target the  resolution  for  is  are  a  conditions,  temperature  practice  limit  Krittman  section resolution  of  tar-  low MTF  target  and o p e r a t i n g  therefore  In  wide  a very  s u g g e s t e d by a s i m p l e  geometry  the  the  and s e t s a b a s i c u p p e r  Beam w i d t h and image of  of  7.  a spatial  target,  a composite of  alone  Figure  at  one c o n s i d e r e d o n l y t h e  millimeters  millimeter,  Because o f  would r e s u l t ,  millimeters).  2 x 10  0.75  unity  0.046 c y c l e s / m i l l i m e t e r .  of  spacing (in _3  shown i n  mesh s p a c i n g and t h i n  function  millimeters)  t h i c k n e s s of  get-to-target  factors.  2  = target  and a t a r g e t m e s h - t o - t a r g e t  this  Nt  t^  isocon with a t a r g e t  theoretical  N(t,+2t,) *  -e  to  set  a short  but  and up  the  exposure  20  F I G U R E  7  21  time the  (when t h e r e lowering  is little  o f MTF  with  charge  exposure  of charge  spread.  effect  a f u n c t i o n o f t i m e and  as  I t i s the  produce  w h i c h would e l i m i n a t e test  illustrates equal  to  patterns the  test  i t s focal  d i a m e t e r o f 0.5 light is  the  fixed  2.49 is  at  and  set-up.  directly  t o the  millimeters thick.  p r o p o r t i o n a l t o the  entire  test  set-up  The The  test  was  duced line  covered  appeared strength  The profile  as  line  i(x).  of  the  Now  isocon  the  This  detection  the  test  face  9a.  One  with  system h(x)  pattern  plate i s  illumination The  box„  slit  lines,  slits.  i n each  "spectrum"  pro-  with  the  constant.  assumed t o have the profile  a  parallel  four p a i r s of  Thus the  i ( x ) i s convolved  has  transparency.  o f each p a i r a  9b.  The  8  distance  which  in a light-tight  in Figure  was  Figure  photocathode  c o n s i s t s of  p a i r s are  isocon  i n almost  isocon.  p l a t e , and  a film.  result  difficult-to-  pinhole,  four p a i r s of emission  ratio  of Figure  is  with  for  l e n s i s at a  pattern  placed  given  o f the  need  the  Thus the  pattern  dimensions are  pair  face  test  was  MTF  This results of  that  which shows i t s  quality optics.  from  photocathode  assume  is primarily a  spread  the  The  millimeter.  and  temperature.  the  high  length  time  charge  A method o f m e a s u r i n g designed  spread),  as  intensity  a f u n c t i o n of p o s i t i o n  the  transfer function  t o p r o d u c e the  output  o(x).  MTF  TEST  PATTERN  T E S T SET  LAMP  LENS  ISOCON CAMERA  PHOTOCATHODE PINHOLE  DI  FFUSING  S C R E E N  FIGURE 8  23  T E S T  P A T T E R N UNITS)  (MM. CD  <X> vc ro rO  i n rO CM i n  — fO  o  r-  i  12.640 2.217  12.645 2.060  12.709 2.534  FIGURE  I N T E N S I T Y  9 A  P A T T E R N  n  >-  x FIGURE  9 B  2.474  24  i(x) Now  * h(x) = o(x)  taking Fourier transforms  and a p p l y i n g t h e c o n v o l u t i o n  theorem: I(N) where  the c a p i t a l s  frequency. The  MTF  o f t h e system  ature  light  =  M  are complex.  the amplitude  transform  p o r t i o n (or  H(N).  0  D  level  (H(N)) .  So we c a n  «gg  procedure  s e t up i n t h e l i g h t - t i g h t to a s p e c i f i c  was t u r n e d  9.1  and m o n i t o r e d  microseconds  A block of data  f o r each p a r t i c u l a r  light  level  used.  temper-  After  used.  signal  The s i g n a l  Gate 2  to c o i n c i d e pulse  from  integrator  was r e a d  on m a g n e t i c  (from  tape  i n the at the  The beam r e m a i n e d on f o r an  frames a f t e r  taken  time  The s i g n a l  recorded  o f each e x p o s u r e t i m e .  target.  The  d u r a t i o n and t i m e d  not used.  and t h e d a t a  five  the t e s t  on a c h a r t r e c o r d e r .  exposure  m i l l i m e t e r high s l i t s ) .  additional  box w i t h  on and a d j u s t e d t o g i v e t h e d e s i r e d  a t the p a r t i c u l a r  1 was  went as f o l l o w s .  temperature.  t h e c e n t e r o f t h e 3.2 m i c r o s e c o n d  u s u a l manner  the  i s simply  held constant  1 d u r i n g gate  end  transforms  general experimental  s e t a t 1.2  with  F  and c o o l e d  was  signal  the  T  i s o c o n was  pattern,  was  and N i s t h e s p a t i a l  t h e MTF by t h e f o l l o w i n g :  The  The  the t r a n s f o r m  o f t h e complex  M  The  denote  Remember t h a t t h e s e  modulus), find  x H(N) = 0(N)  read-out,  discharge  o f up t o 50 r e a d - o u t s  exposure each  to f u l l y  block  time,  was  temperature,  o f d a t a was  and  taken, the  25  pinhole the  was  covered  and  "dark c u r r e n t " was  averaged,  The  tapes  and  the  subtracted,  a block  of data  were r e a d ,  existing  Columbia.  averaged block  990  cell. lines  a typical the  Only the used).  center  Figure  file.  The  also  pulse  intensified,  the  and  450  10  light  isocon,  p a i r was  was  the  i f the  appropriate  in a f i l e  be  o f the f o u n d by  centers  ratio  was  360  IBM  were s t o r e d  shows a p l o t  intensity  was  U n i v e r s i t y of  stored  lines  between the  assume t h a t the  r a n g e o f the  o f the  sample r a t e can  number o f p o i n t s  of  "dark c u r r e n t "  p r o g r a m s , on  computer c e n t e r  data  read-outs  each b l o c k  averaged  computer a t the Each  50  taken.  appropriate  using  o f about  was  o f the  British on  (out  of  output  of  counting  o f the  slits.  i n the  linear  pulse  constant.  As  target saturation occurs,  We  heights  the  this  the  in a  light  is  ratio  becomes u n i t y .  Following  the  p r e v i o u s l y o u t l i n e d method,  computer programs were w r i t t e n the  data  pulse  in files.  Fourier  d e n s i t i e s , and  transform,  sample r a t e t e n  values  first  program  p a i r i ( x ) i n accordance with  d i m e n s i o n s and  o(x),  The  to determine  was  i(x).  to the  The  Nyquist  generated  the  test  c a l c u l a t e d the  In o r d e r  times g r e a t e r  used on  o f N up  I(N).  than  the  to a v o i d that  modulus frequency  MTF an  from input  pattern  slit  discrete aliasing,  used on of  two  I(N)  o f the  the  a output  for a l l basic  sample  26  TEST  0.0  10.0  PATTERN  20.0 LINE  FIGURE  OUTPUT  (XlO  10  1  30JJ )  40.0  50  27  rate  was  data  files  its  stored in a f i l e . a s e l e c t e d output  discrete  This  0(N)  by  all  cases  by  Mod  a s e v e n p o i n t wide  normalized a file.  t o the  lowest  F i g u r e 11  the  data.  (pulse  pairs  The  and  transforms  5.95  - 0.05  d i v i d e d Mod  the  center  non-linearity  the  about Q% g r e a t e r f o r t h e  pairs. was  Thus f o r p u l s e  2.97  in this  t o e l i m i n a t e the  method, t h e  above manner f o r t h e each  be  the  spatial transfer  frequency.  averaging,  standard  with  the  two  stored in  entire  over two  process.  128  pulse  the the  scanning  points pairs  circuits,  outer  Nyquist lowest  two  pulse  frequency frequency  of  systematic  f u n c t i o n s found  pulse p a i r s  the c e n t r a l  program was  standard  effects  T h i s averaged  f u n c t i o n over A third  give  transfer  center  photocathode.  results  2 &. 3,  then  0.046 c y c l e s p e r m - i l l i m e t e r .  In o r d e r  at  i n the  c y c l e s p e r m i l l i m e t e r and  examined was  errors  pairs  was  0(N)  samples p e r m i l l i m e t e r .  Because o f a s l i g h t sample r a t e was  I(i\!)  function (in  were t a k e n  sample r a t e f o r t h e  calculated  o f N and  plots  the  i t s modulus.  T h i s MTF  non-zero value  from  p a r t s of both  a smoothing  with  read  and  took  real  triangle)  illustrates  2 &. 3) was  o(x)  and  t o p r o d u c e a smooth MTF.  In a l l c a s e s , in  the  each w i t h  program  pair  0(N),  a l s o smoothed  convolving  I(N)  second  pulse  Fourier transform  same program  and  The  were  MTF  the  averaged  i s assumed  region of  w r i t t e n t o do  d e v i a t i o n s , and  in  the  this  make p l o t s  deviation error bars.  to  The  of  the  outer  MTF  TAKEN OF  FROM  ISOCON  MEASUREMENT  PROCESS  TAPES OUTPUT  M O D (O(N))  MOOTHED MOD  t i uurtt I I  (O(N))  29  two  pulse pairs  greater  sample  The 12-14  and  spatial  were not rate  frequency  a t which  Figure light  level  ( T a b l e 2) of  that  target  light the  12a  half  i s t h e MTF  broadening  the  The  MTF  T h i s produces  comparison  to  about  half  the  Figure exposure target  times,  saturation  13  temperature  17.0  3-6)  seconds  at -15°C.  one-quarter time level  and is  noticable in  level  same s i g n a l among v a r i o u s following  same s i g n a l  12b  level,  line  made i t level  in  temperatures transfer corresponding  value.  ( T a b l e s 1,  from  a  at a  Figure  lines,  signal  T h e r e f o r e , a l l the  f u n c t i o n s were measured a t t h e  taken  light  25%,  became  o f about  a t the low  t o measure a l l MTFs a t the  times.  i n MTF  level.  the base o f the e m i s s i o n  to i n s u r e a proper  spatial  same e x p o s u r e  necessary  exposure  t o the  level  on  of  temperatures,  saturation  T h i s dependence o f MTF  and  as a f u n c t i o n  shows the MTF  spectra.  order  MTF  out  (but a t the  deteriorated.  near  shown i n F i g u r e s  deviation  at a s i g n a l  i n F i g u r e 12a temperature).  standard  ( T a b l e 1)  o f about  significantly  The  levels,  the  are  i s given f o r various  and  because  difficult.  results  l i s t e d i n T a b l e s 1-9.  times,  in detail,  made c o m p a r i s o n  most i m p o r t a n t  frequency  exposure  examined  Thi3  shows the MTF  t o 298 i s the  at v a r i o u s  seconds,  with  lowest  target  the  30  temperature  that  shows t h e MTF to  77  seconds,  can be  reached.  at three exposure with the t a r g e t  Figure  14  t i m e s , from temperature  (Tables 17.0 at  7-9)  seconds  0°C.  31  M T F A S A F U N C T I O N CF LIGHT  LEVEL  o  i  i  03  a'  I  I  I i  to  :-l  'I  21a  'I..  'Hi...  CM  a'  a a  0.0  1  0.4  n  0.8 CYC/MM  FIGURE  1 1.2  I2A  1 1.6  i  2.0  32  M T F  A S  A  F U N C T I O N  O F  L I G H T  L E V E L  o  to  I  I  I I  2H Q1  0.0  Mill 1  1  1  1  0.4  0.8  1.2  1.6  CYC/MM  F I G U R E  I2B  1  2.0  33  M T F AT -15° C EXP. TIME 17 SEC.  o i  x  03  I  I I  I  in a  I  — -I  J  T  ''Hi.,,  CM  o'  CD  o | 0-0  I 0.4  |  1  1  0.8  1.2  1.6  CYC/MM  FIGURE  I3A  1  2.0  34  MTF EXP.  AT  TIME  -I5°C 35  SEC.  03  I I  U3  a '  I  r i  •  i I  0.0  1 0.4  1 0.8  1 1.2  CYC/MM  FIGURE  I3B  1 1.6  1 2.0  35  M T F AT EXP.  TIME  »  -I5°C 77  SEC.  »  ' I 1  T  1  III* '  1  1  0.8  K2  CYC/MM  FIGURE  I3C  1  36  MTF EXP.  AT TIME  -I5°C 151  SEC.  oo  U3  21  a  CM  ''1  a  I 0.0  I  0.4  0.8  crc/MM  F I G U R E  1.2  I 3 D  37  M T F A T -I5°C EXP. TIME  298 SEC.  cn  10  o  - A 2 1 °  1  I  j  I  I  •  I  a '  1  1  a a  i .  0.0  11  1  1  1  1  0.4  0.8  1.2  1.6  CYC/MM  FIGURE  I3E  1  2.0  38  MTF  AT  E X P . TIME  0°C 17  SEC.  I I  I I  1  \  i  i  i  ' 11 i • • • * 0.0  1 0.4  1 0.8  1 1.2  CYC/MM  FIGURE  I4A  1 1.6  1 ZJJ  MTF AT C°C EXP  TIME 3 5 S E C  as a'  10  i I I tM  f  0.0  1 0.4  ' l ,  1 0.8  'MI 1 1.2  CYC/MM  FIGURE I4B  1 1.6  1 2.0  40  M T F AT C ° C EXP.  TIME  77  S E C .  03  to  21 a  CN I  a  i  i 0.0  , 0.4  1  « Ii  . . . .  i  , 0.8  1 1.2  CYC/MM  FIGURE  I4C  1 1.6  1 2.0  TABLE 1 MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33  FREQUENCY 0.046492 0.092984 0.139477 0.185?69 0.232461 0.278953 0.325445 0 . 371937 0.418*30 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 I. 0 2 2 0 2 7 1.069320 1 . 115812 1.162304 1.208797 I.255288 1. 301 781 1.348272 I.394765 1.441257 1.487749 1.534242  at - 1 5 ° C ,  Exposure  P U L S E 2 MTF 1.000000 0.964462 0.914994 0.838861 0.809816 0.778145 0.742503 0.705782 0.665929 0.629864 0.599172 0.579031 0.561270 0.529138 0.487151 0.443177 0.402699 0.369648 0.345104 0.331566 0.328967 0 . 3 1 3 906 0.284609 0.252649 0.219551 0.197473 0.189066 0.187655 0.200158 0.208032 0.192236 0.172211 U . L4t>964  time 17. s e c o n d s , medium  P U L S E 3 MTF I.000000 3 .978735 0.929465 0.847236 3.788706 0.744314 0.715650 0.691363 0.664524 0.631887 0.585963 3.541570 0.509562 0.487967 3.470731 0.456878 0.444734 0 .42074 7 3 .393814 0.369568 3 .344639 3 .322629 0.303873 0.295100 3 .298149 0 .29443 9 0.281504 0.252979 0.212831 0.187666 0 .187384 3 .217992 0.265200  light  level.  AVERAGE MTF I.000000 0.971599 0.922229 0 . 8 4 304 8 D.799261 0.76123 0 0.729076 0.698572 0 .665226 0.630875 0.592567 3.560305 0.535416 0.508552 3.478941 3.450028 0.423716 0.395197 0.369459 0.350567 0.336803 3.318268 0.294241 0.273875 3.258850 0.245956 0.235285 0.220317 0.206494 0 . 1 9 7 84 9 ' 0 . 189810 3.195101 0.205582  STAND.DEV. 0. 0 0.010092 0 .010232 0.005922 0.014928 0.023922 3.018988 0.010196 0.000994 3 .001430 0.009340 0.026483 0.03S5S3 0.029112 0.011611 0.009688 3.029723 0.036133 0.034443 3.025B72 0.011082 0 .006169 0.013S21 0 . 0 3 0018 0.055577 0.068565 3.0653'J4 0.04619 I 0.00896 I 3 .014401 0 . 0 0 3 4 31 0.032372 D . 0 8 4 3 12  TABLE MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  FREQUENCY 0.046492 0.092984 0 . 139<.77 0. 1 8 5 9 6 9 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1.022827 1 . 069320 1.115812 I. 162304 1.208797 1.255288 1.301781 1.348272 1.394765 1.441257  at - 1 5 ° C ,  Exposure time  PULSE2 MTF 1.000000 0.930168 0.819016 0.646437 0.569363 0.512162 0.478026 0.451969 0.423622 0 . 4 0 32 63 0.381951 0.363929 0.349310 0 . 3 1 7 6 73 0 . 2 8 702 8 0.260561 0.231563 0.213464 0.203745 0.195961 0.200939 0.192861 0.173336 0.152722 0.137860 0.124789 0.112655 0.108739 0.102325 0.102821 0.106041  17  2 seconds,  P U L S E 3 MTF I.000000 0.934666 3.809838 3 .620855 0.529029 3.471195 3 .4358^9 0.410622 0.3654B7 3.366028 0.33870? 0.308517 3.283389 3.260432 0.245493 3.237914 3 .241161 0.238506 0.227410 3 .214577 0.204480 0.200296 0 . 196464 3 . 1 9 1 712 0.17609? 3.160612 3.14963 5 0.146882 0.158075 3 .18383 I 0.235012  low  light  level.  A V E * AGE MTF 1 .000000 3.932417 0.814427 3.6336^6 3.549196 0.491678 3 .456938 0.431296 0.404554 3.384645 3.360327 3.336223 0.316349 3.289053 0.2662SI 0.249238 3.23636? 0.2?5935 0.215577 3.205269 3.202709 3.196579 0. 184900 3.172217 3.156975 0. 142700 3.131145 0.1 2781 I 0.130200 3.143326 3.170526  STAND. DEV, 0.0 3.003181 0.006490 0.018089 3.328521 0 . 0 2 8 95K 3.029824 3.029236 0.026965 3.026329 0.030582 3.339192 3.046613 0.040475 3.029370 0.016014 3 .006787 3.017707 0.016733 0.013164 3.002504 3.005258 3.016354 3 .027570 3.327034 0 . 0 2 5 331 0.026149 3 .02S9 7 1 0 . 0 3 94 21 0.057282 0.091196  TABLE 3 MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  at - 1 5 ° C ,  FREQUENCY 0.046492 0.092984 0 . 139477 0.185969 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1.022827 1.069320 1.115812 1.162304 1.208797 1.255288  Exposure  PULSE2 MTF 1.000000 0.938162 0.841406 0.707416 0.637697 0.586706 0.547267 0.511547 0.473967 0.442054 0.414175 0.388847 0.362293 0.331014 0.303670 0.277957 0.256241 0.235397 0.212153 0.189884 0.172671 0. 156953 0.142383 0.126236 0 . 103542 0.083526 0.065001  time 35  s e c o n d s , medium l i g h t  PULSE 3 MTF I.000000 0.936862 0.825208 3.688902 0.622279 0.584147 3.560257 0 . 5 3 4216 0.503873 3.464240 3.418193 0.378587 3.351984 3.334780 3.315437 0 .295508 0 .273694 0.239688 0.214879 0.198896 3.181158 0. 172181 0.165564 3 .159785 0.159951 0.161888 0.161140  level.  AVE* AGE MTF I .000000 0.937511 0.833307 3.698159 3.629988 0.585426 3.553762 3.522881 0.488920 0.453147 3.416184 3.3 83 717 0.357139 3.332897 0.309554 0.286732 3.264967 3.237542 3.213516 0 . 194390 3.176915 3.164557 0.153974 3.143011 3.131746 0 . 12270 7 3.113070  STAND. DE Vi 0.0 3.000919 0.01 1454 0.013092 0.010902 0.0018 09 0.009186 0.016030 3.021147 0.015688 0.002841 3.007255 0.0072B9 3.002663 0.003321 0.012410 0.012341 0.003034 3.001927 0.006372 0.006001 3 .0107S8 0.016392 0.023723 0.039887 0.055410 3.067980  TABLE 4 MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  at - 1 5 ° C ,  FREQUENCY 0.046492 0.0929a4 0 . 139477 U.185969 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1. 0 2 2 8 2 7 1.069320 1.115412 1 . 1 6 2 304 1.208797 1.255288 1.301781 1.348272 I.394765 1.441257 1.487749  Exposure  PULSE2 MTF 1.000000 0 . 9 30 8 82 0.824119 0.664921 0.604157 0.550159 0.511162 0.477435 0.438461 0.402983 0.368262 0.337487 0.303639 0.274621 0.244093 0.213516 0.189934 0.168078 0.151987 0 . 143325 0 . 1 3 52 64 0.124021 0 . 107491 0.089297 0 .080230 0.074843 0.076550 0.087374 0.093258 0.093729 0.078647 u.060917  t i m e 77  s e c o n d s , medium l i g h t  PUL S F 3 MTF I.000000 0.947801 0 . 8 4 2 03 0 0.687761 0.61044 0 3.556984 0.525275 D.498267 3.459586 0.412155 0.355960 0.307296 0.274581 0 . 2 5302 2 0 . 2 3 1 709 3 .212889 0.193677 3.172091 3 .157518 0.148226 0 . 144397 3 .139122 0.133462 3.126374 0 . 112638 3.108424 3.106583 0.100522 3 .100652 0.105339 3 . 118530 3 .146083  level.  AVERAGE MTF I.000000 3.939341 3 .833074 3.676341 0 . 6 0 72 98 3.553571 3.518218 0.487851 3.449023 0.4075S9 0.362111 3.322391 3.289110 0.263822 0 . 2 3 7901 3.213202 3.191806 0.170084 3 . 1 5 4 75 3 3 . 145775 0.139830 3.131572 3.120476 3.107835 0.096434 3.091633 3.091566 0. 093948 3 .096955 3.099534 0.098589 3.103500  ST AMD.DEV 0.0 3.011963 0.012665 3.016150 0.004443 0.004826 3 .009979 0.014731 3.014937 0.OOS485 0.008699 3.021348 0.020547 3.015272 3.008757 0.000443 3 .002645 0.002838 0.00391 1 3.0034b6 0.006458 0.010677 0.018365 3.025217 0.022916 0.023746 3.021237 0.009297 0 .005228 3.008210 0.028201 0.060221  /  TABLE 5 MTF a t - 1 5 ° C ,  1 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 17 18 19  FREUUEMCY 0.046492 0.092984 0.139477 0.185969 0.232461 0.278953 0.325445 U.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0. 883351  Exposure  PULSF2 MTF 1.000000 0.953566 0.869226 0.730865 0.632821 0.549979 0.494991 0.450959 0.410542 0.375655 0.342477 0.312342 0.281950 0.248280 0.213463 0.184206 0.155491 0.130319 0.113515  time 151 s e c o n d s , medium l i g h t  PULSE3 MTF I .000000 0.952424 0.853038 0.711359 0.619852 3 .559223 0.521677 3.488894 3.451035 0.407670 3.356813 0.31072 5 0.281011 0.262777 0.247288 3.236979 0.228912 0.209263 3.189475  level.  AVERAGE MTF 1.000000 3.952995 3.861132 0.721112 0.626337 3.554601 3.5083 34 0.469926 3.430789 3.391662 0.34964 5 3.311534 3.281481 3.255528 0.230376 3.210592 3.192201 0.169791 3.151495  ST AMD.DEV 0.0 3.000807 0.011447 3.013/93 0.009171 0.006536 3.3188/0 0.026824 3.028633 0.022S38 0.010137 3.001144 0.000664 0.0102>1 0.02 3918 0.037316 3 .051915 0.055822 0.053712  TABLE 6 MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  at - 1 5 ° C ,  FREQUENCY 0.046492 0.092984 0.139477 0.185969 0. 232461 .0.278953 0.325445 0 . 371 937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1. 0 2 2 8 2 7 1.069320 1.115812 1.162304 1.208797  Exposure  PUL SE 2 MTF 1.000000 0.930972 0.807582 0.635862 0.497683 0.406651 0.353945 0.313683 0.276687 0.243821 0.213109 0.185504 0.158393 0.135442 0.115765 0.099054 0.084655 0.0 72313 0.061515 0.054113 0.049298 0.043832 0.040591 0.036079 0.032498 0.031076  t i m e 298  s e c o n d s , medium l i g h t  PUL SE 3 MTF 1 .000000 3 .936475 0.803375 0 .629253 3 .5063.3 I 0.435591 0.393705 3.354377 3.309626 0.261538 3.21542 I 3 .180670 0.159524 0.143141 3 .126604 0.11074 3 0.095413 0.083601 3 .074281 0.067965 0.062317 3.356252 0.054697 0.053248 3 .351175 0.049998  level.  AVERAGE MTF 1.000000 3.933723 3.805478 0.632557 3.502007 3.421121 3.373825 0.334030 3.29315 7 3.252580 0.214265 3.183087 3.158958 0.139291 3 . 1 2 1 185 3.104899 3.090034 0.077957 3.067898 0.061039 0.055808 3.050042 0.047644 0.044663 3.041836 3.040537  STAND.DEV 0.0 0.003891 0.002975 0.004673 0.006115 0.020464 3.028114 3.028775 0.023291 3.012^27 0.001635 0 . 0 0 3 4 18 3.000330 0.005444 3.007664 0.008265 3 .007607 0.0079H1 0.009027 0.009795 0.009205 0.008782 0.009974 0.012140 0 . 0 1 3 2 06 0.013380  TABLE 7 MTF a t O C . E x p o s u r e time 17 s e c o n d s , medium d  I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3  2  FREQUENCY 0.046492 0.092984 0. 139477 0.185969 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1.022827 1.069320 I.115812 1. 162304 1 .208797 1.255288 1.301781 1 . 3482 72 I.394765 1. 44125 7 1.48/iH9  PULSE2 MTF I.000000 0.920133 0.788966 0.606371 0.498396 0.428170 0.380793 0.339577 0.295767 0.258842 0.229983 0.213858 0.205574 0.184153 0. 1560 70 0. 128300 0. 10 5240 0.090645 0.084804 0.086010 0.088897 0.080606 0.064258 0.048455 0.037892 0.033719 0.035563 0.041909 0.047246 0.049740 0.3 43636 0.035941  PULSE3 MTF 1.000000 0.92929? 0.798 03 6 3.637285 0.534735 0.469612 0.426055 0.381752 0.340250 0.307441 3.269887 0.231630 0.196702 3.16653 6 0.141547 0.12513 9 0.120962 0-114072 0.101031 3.086532 3.372205 0.063572 0.0 6095 7 3.063485 0.059748 0.054543 0.047213 0.04 3686 0.042316 ;> .0 44173 3 .354961 0.071410  light  level.  AVE*AGE MTF 1 .000000 0.924712 0.793500 3.621828 3.516566 0.440891 3.403424 3 .360664 0.318009 0.283141 3 .249935 3.222744 0.201138 3.175345 3.148808 0.126719 3.113101 3.10235 9 0.09291 B 0.08 62 71 3.080551 0.072089 0.062608 3.054470 0.048820 0.044131 3.341388 3.042798 0.044781 0.046957 3.049299 0.053676  STAND.DEV. 0.0 3 .00S476 0.006413 0.021860 0.025695 0.029304 0.032005 0.02 98 2 2 3.031455 0.034365 0.0282 17 3-012557 0.0062 7 3 3.012457 0.0102S9 0.002235 0. 011 11 1 0.016565 3.011474 0.000369 0.011803 3.012044 0.002334 0.008507 0.015455 0.014724 0.008238 0.001257 3.003486 0.003937 0 . "J U b U U rl 3.025030  TABLE 8 MTF  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  FREQUENCY 0.046492 0.092984 0 . 139477 0 . 185969 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836859 0.883351 0.929844 0.976336 1.022827 1.069320 1.115812 1.162304  a t Q°C,  E x p o s u r e t i m e 35 s e c o n d s , medium l i g h t  PULSE2 MTF 1.000000 0.936919 0.820543 0.656949 0.524772 0.439113 0.389172 0.349567 0.308845 0.270922 0.236004 0.204050 0.178280 0.154629 0 . 132816 0.114093 0.095995 0.081875 0.070775 0.062873 0.056817 0.048478 0.041021 0.034722 0.030774  .  P J L S E 3 MTF I.000000 0.935041 0.806044 3.6465 8 0 0.534710 0.463176 0.416417 0.368860 3.322078 3.282788 3 .246337 0.212504 0 . 183337 3.15H318 0.135043 0.118077 0.111880 0.102874 0.091765 0.080376 3 .367434 0.06052 3 0.058856 3 .358931 0.059293  level.  A V E * AGE MTF 1 .000000 0.935980 0 . 8 1 3 2 93 3.651764 3.529741 0.451144 3.402795 3.359213 3 . 3 1 5 4 SI 0.276855 3.24117 1 0.208277 0.180809 3.1564 73 3. 133930 0.116085 3. 103937 3.092374 0.081270 0 . 0 7 1 625 3 . 0 6 ? 125 3.054500 0.049939 3.046827 0.045034  S T A N D . DEV, 0.0 3.001323 0.010253 0.007332 0.007027 0.017015 0.019265 0.013643 3 .009357 0.008391 0.007307 3.005973 0.003576 0.002608 0.001575 0.002817 0.011232 0.014848 0.314B42 0.012376 0.007508 3.003517 0.012611 0.017118 0.020166  TABLE 9  MTF at  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  FRFUUEMCY 0.046492 0.092984 0.139477 0.185969 0.232461 0.278953 0.325445 0.371937 0.418430 0.464922 0.511414 0.557906 0.604398 0.650890 0.697383 0.743875 0.790367 0.836B59 0. 8 8 3 3 5 1 0.929844 0.976336 1.022827 1.069320 1.115812  0°C,  E x p o s u r e time 77  P U L S E 2 MTF 1.000000 0.902361 0.732812 0.501020 0.338834 0.245978 0.201750 0.171507 0.145061 0.122249 0.103553 0.085984 0.069904 0.057415 0.045495 0.040521 0.034545 0.032325 0.033009 0.032417 0.033763 0.030719 0.026822 0.024937  seconds,  P U L S E 3 MTF I .000000 0.899555 0.705387 0.460978 3.31994 5 3.249165 0.212064 0 . 1 8 0 75 0 3.147687 0.118754 0.095358 0.076000 0.065606 0.059118 3 .054476 3-053094 0.052531 0.045677 3 .337458 0.032850 0.029878 3 .032944 0.04055 5 0.046363  medium l i g h t  AVERAGE  level.  MTF  I.000000 3.900958 3.719100 0.480999 0.329389 3 .247572 0.206907 0.17612 9 3. 1 4 6 3 7 4 3. 1 2 0 5 0 1 0.099455 0.080992 3.067755 0.058266 0.049985 3.046808 0.043538 0.039001 3.035233 0.032634 0.031820 3.031832 3 .033689 0.035650  STAND.DEV. 0.0 0.001984 0.01939 3 3.028314 0.013356 0.002253 3.007293 0.006536 0.001857 0.002471 0.005795 0.00 7 0 6 0 0.003039 3.001204 0 . 0 0 6 3 51 0.008891 3 . 0 1 2 7 18 0.00944 I 0.003 146 3.000306 0.002748 0.001573 0.0097 10 3.315150  50  CONCLUSION  It  is  difficult  which c o n t r i b u t e at  to  the  s h o r t exposure times  beam  (  analog This  220  to  MTF o f the  scan s e p a r a t i o n i s  less  the  v a r i o u s mechanisms  isocon width  detector. of  photocathode)  with a d e f i n i t e  prevents a l i a s i n g or  the  finite  m i c r o n s on t h e  filter  isolate  the  maximum MTF s e t  regarding is  the  exceeded i n  high frequency  cut-off.  under-sampling provided that  than  the  that  the  Krittman  because of and t h i n  the  by the  assumptions of  P850 i s o c o n .  target  the  effects  For  l o n g e r exposure times  temperature  of  the  concluded,  apply i n our  mesh-to-target  (1962) target therefore,  case spacing  is  it  is  the  target  reveal  on r e s o l u t i o n .  obvious that  a low  target  required.  resolution in  a lowering of  F i g u r e s 13 and 14 w i l l  c h a r g e s p r e a d at  Several  great  is  at  that  target.  An e x a m i n a t i o n o f  of  It  we see  Krittman  transfer  f o r m u l a does not  very large  the  beam w i d t h .  charge-to-potential the  reading  a c t s as an  By c o m p a r i n g F i g u r e 7 and F i g u r e 1 3 a , the  But  t h i n g s can be s u g g e s t e d f o r the  target  difficulty  in  isocon  system.  temperature. uniformly  improvement  The most o b v i o u s i s However,  refrigerating  because of the  very  the  large  51  tube,  and the  uniform cannot  danger  cooling is  of  not  be o b t a i n e d  thermal achieved,  without  great  Some improvement scanning  a l o n g the  spectra. by C H .  Schade, S r .  resolution of  the  (sample  this  the  line  difficulty  o v e r one y e a r .  versatile  tool  for  of  at  at  present  the  risk.  c o u l d be had by  normal  scan d i r e c t i o n .  rate  It  and some  to  the discussed  t h e r e would be an i n c r e a s e  required least  The i s o c o n s y s t e m as i t for  than  if  temperatures  self-"sharpening" effect  rate  is  target  resolution  data  method  lower  rather  (1967)  the  tremendous  direction second)  along  in  spectra  Because o f  stresses occurring  10  because  by s c a n n i n g i n samples per  considered  this  micro-  unfeasible.  now s t a n d s has been  has p r o v e d t o observation  However  of  in  be a u s e f u l  used  and  astronomical  spectra.  52  BIBLIOGRAPHY  Krittman,  Lathi,  I.M., R e s o l u t i o n of E l e c t r o s t a t i c Storage Targets, IEEE T r a n s a c t i o n s on E l e c t r o n D e v i c e s , V o l . E D - 1 0 , p. 404, The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c E n g i n e e r s I n c . , New Y o r k , 1963.  B . P . , S i g n a l s . Systems and S o n s , New Y o r k ,  and C o m m u n i c a t i o n , 1965.  John  Wiley  r Mauser,  D . P . , The Image I s o c o n — A L o w - L i g h t L e v e l T e l e v i s i o n T u b e , IEEE T r a n s a c t i o n s on B r o a d c a s t i n g , V o l . B C 1 5 , No. 2 , p. 3 9 , The I n s t i t u t e o f E l e c t r i c a l and E l e c t r o n i c E n g i n e e r s I n c . , New Y o r k , 1969.  Nelson,  P . D . , Advances i n E l e c t r o n i c s and E l e c t r o n P h y s i c s , e d . by J . D . McGee, D . M c M u l l e n and E . Kaham, V o l . 28A, p . 2 0 9 , Academic P r e s s , L o n d o n , 1 9 6 9 .  Schade,  O . H . , The R e s o l v i n g - P o w e r F u n c t i o n gnd Quantum P r o c e s s e s o f T e l e v i s i o n C a m e r a s , RCA R e v i e w , V o l . 2 8 , p . 4 6 0 , RCA L a b o r a t o r i e s , Princeton, New J e r s e y , 1967.  Walker,  G . A . H . , Auman, J . R . , B u c h h o l z , V . L . , G o l d b e r g , B . A . , Gower, A . C , I s h e r w o o d , B . C . , K n i g h t , R . , W r i g h t , D . , A p p l i c a t i o n o f an Image I s o c o n and Computer t o Direct D i g i t i z a t i o n of Astronomical Spectra, Advances i n E l e c t r o n i c s and E l e c t r o n P h y s i c s , i n p r i n t , Academic P r e s s , L o n d o n .  53  APPENDIX A  SYSTEM SCHEMATICS  Schematic B o a r d I,  Page Video Follower  Isocon Rear Socket  54  Interconnection  55  Board J  56  Board H  57  Video  Amplifier  58  Focus  C o i l Current  Master  Regulator  Control Unit  59 (In  Pocket)  I s o c o n Camera Main Frame  (In  Pocket)  Line  (In  Pocket)  Scan U n i t  o  54  VIDEO FOLLOWER  SKBC  • 1400 V  ISOCON REAR SOCKET INTERCONNECTION  BOARD J  LINEARITY 500  L-O  1  : .  BOARD  H  _  O Qu  •uvQ  CD  VIDEO AMPLIFIER  FOCUS  COIL  CURRENT  REGULATOR  60  APPENDIX  B  COMPUTER PROGRAMS  61 N ( 1) D I M E N S I O N AM T F M ( 4 5 3 ) D I M E N S I O N D ( 4 5 1 ) , S E C ( 2 0 0 0 ) , A S ? 1 ( 2 0 0 0 ) , A M T F ( 4 5 3 ) , F * EQ ( 4 5 0 ) RE AL S T A R l 4 0 0 0 ) , i> [ 4 0 0 0) , X P ( 4 0 0 3 ) S I M P L E X TRAN< 2 0 3 3 ) , W O R M 2 0 0 0 ) READ ( 5 , 1 1 0 0 ) L 3 E 5 , L N u V W I D T H 1 , SE P , WI DTH2 , H L , H H , SR FDRMAT (2I5,5F6.3) 3  1100  3  LI=IFIX(WIDTH1*SR*13.0+1.5) L 2 = I = I X ( ( tl I DT HI +SE ) *=S R * 1 0 . 0+ I . 5 ) t3=I IX((WIDTHl + SE'+WIDTH2)*SR*10.0+1.5) 3  c  EQUIVALENCE (STAR.TRAN) t H \ ' 0 0 = L N O / 2+1 L^3=10*LN0 LHND=LN0/2+l 29 501 503  30 29 J=i,Ll STAR(J)=HL 33 501 J=L1.U2 STAR(J)=0.0 33 503 J=L2,L3 S T A R ( J ) =rH  30 505 J=L3,LN0 505 STAR(J)=0.0 C * * N 3 R M A L I Z I N G T O 1 0 3 AT MAX 17 XX=STAR(l) M(1)=LNO 33 15 J=1,LN0 IF ( S T A R ( J ) . G E . X O 50 TO XX = S T A R . ( J ) 15  :DNTINUE  16  30 16 J = l , L N O STARlJ)=STAR(J)-<X  XX =  15  STARU)  33 12 J=1,LN0 IF ( S T A R ( J ) . L E . X O 3 0 T O 12 XX = STAR(J) 12 : 0 N T I N U 6 FAC = 1 0 0 . 0 / XX 3D 1 3 J = i , L N 0 S T A R ( J ) = FAZ * STAUJ) 13 C O N T I N U E C * * U N F I L T E R E D S C A ^ OUTPUT WRITE (6,108) 10B FDRMAT (•OSIG^ALM WRITE ( 6 , 1 0 0 ) (STAR(J), J = 1,L^1D) 100 FDRMAT (• •,20F6.2) 22 WRITE (6,101) 1 0 1 F D R M A T I • OAM P L I T U D E S P E C T R J * ) C**TRANSFORMIN5 : A L L FOURT (STAR,^,1,-1,0,WORK,2000) 33 2 0 J = 1 , LFND PSPEC(J) =SQRT(REAL(T\AN(J)*C0^ JG(TRANU ) 20 :0NTINUE WRITE (6,106) (PS'ECtJ),J=1,LHN3) 106 FDRMAT (» •,5F13.5) WRITE (8) ( P S P E 3 ( J ) , J = l , L H N 0 0 ) 9 9 9 9 STOP 1  END  )))  C**4 C**5 C**7 C c**a  C O N T A I N S AMP SPEC DF I N P J T PJLSES CDNTAIN'S L B E G , L ^ D , S * (2I5,1F6.3) C O N T A I N S NWIND M D . OF P O I N T S IN W I N D O W U 5 ) ) AND WIND (WINDOW V A L U E S (8F10.5)) CONTAINS OJTPUT ULSES IN TE J E R. N i l ) 3 I ME NSI ON AMTFN( 453 ), K I N D 1 5 0 ) 3 I MENS I ON D( 4 5 1 ) , ? S ? E C ( 2 0 0 0 ) , A S? 1 (2 OO 0 ). A MT F ( 4 53 ), F I E3( 4 5 0 ) REAL S T A R ( 4 0 0 0 ) , 40 0 0 ) , X P ( 4 0 3 3 ) COMPLEX TRAN( 2033 ),WO*K( 2 0 0 0 ) READ ( 8, 1000) (3(L),L=1,451) 1 C 0 0 FDR MAT ( 5 0 F 5 . 0 ) READ ( 5 , 1 1 0 0 ) L 3 E G» L N O , SR 1 1 0 0 FORMAT (2I5,1F6.3) READ ( 7 , 5 ) NrfIND READ 1 7 , 5 0 3 ) ( W H 3 { J ) • J = 1, HA I ) 5 FORMAT ( 1 5 ) 5 0 3 FDRMAT ( 8 F 1 0 . 5 ) ^HWIND=NWIND/2 DD 5 0 0 J = i , L N O S T A R ( J ) = C ( L B EG) LBEG = LBEG«-1 500 CONTINUE N(1)=LN0 LHND=LN0/2f1 L^OO=LNO LHNOO=LHNO EQUIVALENCE (STAR,AN) L=0 M=0 : A L L PLOTS C**NDR,MALI ZI NS T O 103 AT MAX 17 X X = S T A ! U 1) >I(1)=LN0 DD 15 J = 1 , L N 0 IF { S T A % ( J ) . G E . X < ) SO T O 15 XX = S T A i U J ) 15 C O N T I N U E DO 1 6 J = 1 . L N 0 16 S T A R ( J ) = S T A R ( J ) - X X XX = S T A R ( l ) D3 1 2 J = i , L N O IF ( S T A * ( J ) . L E . X < ) 3 0 T O 1 2 XX = S T A R ( J ) 12 C O N T I N U E FAC = 1 0 0 . 0 / XX DD 13 J = i , L N O S T A R ( J ) = FA3 * S T A U J ) 13 C O N T I N U E C * * U N F I L T E * E D SCAN OUTPUT WRITE (6,108) 108 FDRMAT COSIG^ALM WRITE ( 6 , 1 0 0 ) (STAUJ), J= l,LS3) 100 FDRMAT ( » « , 2 X , 2 D F 6 . 2 ) DD 2 1 J = 1 , L M 3 X=>(J)=(.10*J)-.l3 21 C O N T I N U E DD 1 4 J = 1 , L M 3 Y ? ( J ) = S T A R ( J ) / 2 0 . 0 I2.0 J  CONTINUE 63 CALL LINE ( X P . Y P , L N O , I ) A=IFIX ( XP(LNO) +2.0 J C A L L PLOT (A,0.3,-3) C**TRANSFD*MINJ C A L L FQU^T (STAR,N,1,-1,0,WORK,2000) 14  33 2 0 J = 1, LHN3  P S P E C ( J ) = SQRT( R E A L I T * AN( J ) * C O N J G ( T R A N ( J ) ) ) ) 20 C O N T I N U E C * * A M P L I T U D E SPECTRUM 3UTPUT. 22 WRITE ( 6 , 101) 101 FDRMAT ( •OAMPL ITUDE S P E C T R J M * ) WRITE (6,106) (?S EC(J),J=1,LHN3) 106 FDRMAT (• • , 5 F 1 3 . 5 ) 3D 2 5 J= 1,LHN0 X ( J)=( . l * J ) - . 1 Y?(J) = (PSPEClJ)/'S?EC( 1 ) ) * 13.0 IF ( Y P ( J ) . G T . 1 0 . 3 ) r P ( J ) = 1 0 . D 25 C O N T I N U E A=IF I X U P ( L H N D D ) + 2 . 0 ) CALL LINE (XP,YP,LHNOO,1) C A L L PLOT ( A , 0 . 3 , - 3 ) L =L+ i IF ( L . E 3 . 2 . 0 R . L . E D . 4 ) 3 0 TQ 7 0 4 C**SM03THIN3 3D 31 J = l , N H W I N D 31 STAR(J)=PSPEC(NHWIND+2-J) DD 701 J = 1 , L H N 0 701 STAR(NHWIND+J)=PSP=C(J) 3D 702 J = l , L H N O PSPEC(J)=0.0 DD 703 NN=1,NWIND 7 0 3 P S P E C ( J ) = P S P E C ( J ) + S T A R I J - U N N ) *W IND ( NN) 702 CDNTINUE G3 TO 22 70 4 CONTINUE M = H+1 IF ( M . N E . l ) GO TD 5 0 5 C * * R E A D I N 3 AMP S P E C DF INPUT P J L S E 9 DD 2 8 J =1,LH*10 28 A S P K J ) =PSPEC(J) READ ( 4 ) ( PSPEC< J ) , J = 1 , L H N 0 ) GO TO 2-2 5 05 C D N T I N U E ' C * * N D RM A L I Z E AND O U T P U T MTF C A L L AXIS ( 0 . 0 , D . O , •CYC/MM , - 6 , 1 0 . 0 , 0 . 0 , 0 . 0 , 3 . 2 ) C A L L AXIS ( 0 . 0 , 3 . 0 , • M T F ' , 3 , 1 0 . 3 , 9 3 . 0 , 0 . 0 , . 1 2 5 1 WRITE (6,801) 8 0 1 FDRMAT ( » 0 FREQUENCY NDR MALI I ED 33 601 J = 2 , L H N 0 3 AMTF ( J ) = A S P K J ) / ' S ^ E C U ) FRED{J)=FLOAT(J-l)*S*/LNOO AMTF N ( J ) = AMT F ( J ) / A M T F ( 2 ) WRITE (6, 1200) J , F * E O ( J ) , A M T F M ( J ) 1200 FDRMAT (I5,2F20.6) WRITE ( 3 ) FREQ( J ) , A M T F N U ) 601 CONTINUE DD 602 J = 2 , L H N D 3 IF ( F R E Q ( J ) . G T . 2 . 0 ) 3 0 TO 6 0 3 IF ( A M T F N ( J ) . G T . l . l 875 ) AMT FN ( J ) =1 . 2 5 5  3  1  MTF»]  X ( J ) = F* EQ(J)*5.D Y?(J)=AMTFNfJ}*3.0 CALL SYMBOL ( XP( J ) , i? ( J ) , . 01 , 3,D . 0 , -1 ) 602 CONTINUE 603 CALL PLOTNO 9999 STOP E^O 3  65  D I MENS I CN A M T F H 233 ), AMTF2( 200) , PRE 3 (200) : A L L PLOTS L=0 LHN0=65 WRITE ( 6 . 1 4 ) 14 FDRMAT ( • 1 » / / / / / / / / / / 15X, •FREQUENCY», 7X» • P J _ S - F « , 6 X , 'AVERAGE M T= • , SX, • S T i \ ' D . DE V . •) : A L L AXIS (0.0,3.3,»MTF•,3,10.3,93.0,0.0,.1) SALL AXIS ( 0 . 0 , 3 . 3 , 'CYC/MM* , - 6 , 13 . 0 , 0 . 0 , 0 . 0 , 0 3D 11 J = l , L H N O READ (3) FREQ< J) , AMTFIIJ ) READ (4) FREQl* J) , AMTF2 t J ) AV=( AMTF l ( J ) « - A « T F 2 ( J ) ) / 2 . 0 SD = ( ( AV- AMT f 1 ( J) )**2+( A V - A 1 T F 2 I J ) ) * * 2 ) * * 0 . 5 WRITE ( 5 , 1 2 ) J , F R E 3 1 J ) , A M T F 1 ( J) , AMTF2 (J ) , W , S 12 FDRMAT ( I 8 , 5 F 1 7 . 6 ) AV=10.0*AV SD=10.0*SD FRE3(J)=FREQ(J)*5.3 :=SD/AV  IF ( C . 3 T . 0 . 2 5 ) L=L+t IF ( L . E Q . 3 ) GO TD 13 IF (FREQ( J ). G T . 1 3 . 3 ) 3 0 TO 1 3 CALL SYMBOL (FRE3(J>,AV,SD,13,3.3,-l) 11 CONTINUE 13 WRITE ( 6 , 1 5 ) 15 FDRMAT ( » 1 » ) 2ALL PLOTNO STOP END  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0084823/manifest

Comment

Related Items