UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Investigation of the selfpressure broadening of the Ne [Lambda] 6074.3 A° line profile by Zeeman scanning Burnett, John Crawford Duncan 1969

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
[if-you-see-this-DO-NOT-CLICK]
UBC_1970_A6_7 B87.pdf [ 2.86MB ]
Metadata
JSON: 1.0084802.json
JSON-LD: 1.0084802+ld.json
RDF/XML (Pretty): 1.0084802.xml
RDF/JSON: 1.0084802+rdf.json
Turtle: 1.0084802+rdf-turtle.txt
N-Triples: 1.0084802+rdf-ntriples.txt
Original Record: 1.0084802 +original-record.json
Full Text
1.0084802.txt
Citation
1.0084802.ris

Full Text

AN INVESTIGATION OF THE SELF- PRESSURE ' BROADENING OF THE Ne\6074.3 A 0 LINE PROFILE BY •- ZEEMAN SCANNING by JOHN C. BURNETT B.Sc, U n i v e r s i t y of B r i t i s h Columbia, 1959 A THESIS SUBMITTED IN PARTIAL FULFILMENT THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n the Department of PHYSICS We ac c e p t t h i s t h e s i s as co n f o r m i n g t o the r e q u i r e d s t a n d a r d : THE UNIVERSITY OF BRITISH COLUMBIA November, 1969 In presenting th is thesis in p a r t i a l f u l f i lment of the requirements for an advanced degree at the Un iver s i t y of B r i t i s h Columbia, I agree that the L ibrary sha l l make i t f r e e l y ava i l ab le for reference and Study. I further agree that permission for extensive copying of this thesis for s cho la r l y purposes may be granted by the Head of my Department or by his representat ives . It is understood that copying or pub l i ca t i on of this thes,is for f i n a n c i a l gain sha l l not be allowed without my wr i t ten permission. John C. Burnett) Department of Physics The Un ivers i ty of B r i t i s h Columbia Vancouver 8, Canada Date 1 0 N O V , 1 9 6 9 - i i - A b s t r a c t The- shape of the Ne.X6074.3 A° a b s o r p t i o n l i n e p r o f i l e has been i n v e s t i g a t e d u s i n g the Zeeman sc a n n i n g t e c h n i q u e . Neon glow d i s c h a r g e s a t t h r e e p r e s s u r e s , 2 T o r r , 50 T o r r , and 100 T o r r , were used as a b s o r b e r s w h i l e a 2 T o r r G e i s s l e r tube was used as the s o u r c e . The s e l f - p r e s s u r e b r o a d e n i n g of the observed l i n e was c l e a r l y observed and the r a t e of b r o a d e n i n g compares w e l l w i t h t h e o r e t i c a l e s t i m a t e s made from the impact t h e o r y w i t h a van der Waals i n t e r a c t i o n assumed. No s h i f t was d e t e c t e d , i n c o n t r a d i c t i o n t o the t h e o r y . T h i s l a c k of s h i f t , and the r a t e of p r e s s u r e b r o a d e n i n g o b s e r v e d , were i n agreement w i t h the r e s u l t s of Smi t h (14) r e g a r d i n g t h e s h i f t and br o a d e n i n g of the Ca. X6573 A° l i n e by neon. - i i i - TABLE OF CONTENTS Chapter Page A b s t r a c t i i T a b l e of C o n t e n t s i i i L i s t of F i g u r e s i v L i s t of R e f e r e n c e d E q u a t i o n s v Acknowledgements v i I I n t r o d u c t i o n 1 I I Theory . 4 A. S p e c t r a l L i n e A b s o r p t i o n and T r a n s m i s s i o n Curves 4 B. L i n e B r o a d e n i n g : P r e s s u r e Independent E f f e c t s 9 C. L i n e B r o a d e n i n g : P r e s s u r e Dependent E f f e c t s 12 D. S e l f A b s o r p t i o n Broadening 18 E. V o i g t P r o f i l e s 21 F. Zeeman Sc a n n i n g and Inhomogeneity Broadening 24 I I I A p p a r a t u s 27 A. Source 27 B. S c a n n i n g E l e c t r o m a g n e t 27 C. A b s o r p t i o n Tubes , 28 D. O p t i c a l System 30 E. E l e c t r o n i c D e t e c t i o n 32 IV E x p e r i m e n t a l P r o c e d u r e . 33 V Method of A n a l y s i s 34 A. C h o i c e of Model 34 B. S p e c i f i c P r o c e d u r e 35 VI R e s u l t s 37 A. D e t e c t i o n of Broadening 37 B. D e t e c t i o n of S h i f t 41 C. L i n e Shape D e t e r m i n a t i o n 41 D-. Rate of P r e s s u r e B r o a d e n i n g - Comparison w i t h Theory 42 E. V a l i d i t y of R e s u l t s 46 V I I C o n c l u d i n g D i s c u s s i o n . 53 B i b l i o g r a p h y 57 Appendix I F l o w c h a r t : Computer C a l c u l a t i o n of T r a n s m i s s i o n Curves 58 - i v - LIST OF FIGURES F i g u r e Page 1. T r a n s m i s s i o n Curve P a r a m e t e r s . 7 2. S p e c t r o s c o p i c D e s i g n a t i o n and Zeeman 25 E f f e c t f o r NeX6074.3 A 0. 3. A b s o r p t i o n Tube C o n s t r u c t i o n . 29 4. E x p e r i m e n t a l Arrangement. 31 5. T r a n s m i s s i o n Curves f o r D i f f e r e n t P r e s s u r e s ( t Q = 0.16). 38 6. T r a n s m i s s i o n Curves f o r D i f f e r e n t P r e s s u r e s ( t Q .= 0.33). 39 7. T r a n s m i s s i o n Curves f o r D i f f e r e n t P r e s s u r e s ( t 0 = 0.53). 40 8. T r a n s m i s s i o n Curve: Theory and Experiment (P = 2 Torr). 43 9. T r a n s m i s s i o n Curve: Theory and Experiment (P = 100 T o r r ) . 44 10. T r a n s m i s s i o n H a l f Width v e r s u s T r a n s m i s s i o n (Theory and E x p e r i m e n t ) . 45 11. Rate of P r e s s u r e Broadening. 47 12. E f f e c t of C u r r e n t R e g u l a t i o n F a i l u r e . 50 -v- LIST OF REFERENCED EQUATIONS E q u a t i o n s Page I , I I 4 I I I 5 I V 6 l V ( a ) 8 V 9 VI 11 V I I 14 V I I I 15 IX 19 X 21 X I 23 X I I 24 - v i - Acknowledgements I w i s h t o e x p r e s s my a p p r e c i a t i o n t o Dr. R. No d w e l l f o r h i s encouragement and s u p p o r t , both of my graduate work i n g e n e r a l and t h i s e x p e r i m e n t . I a l s o w i s h t o thank Dr. J . Meyer f o r h i s guidance and a d v i c e i n the p r e p a r a t i o n of t h i s t h e s i s . A d d i t i o n a l thanks are due t o : - Mr. B a r r y S t a n s f i e l d f o r h i s i n i t i a l work s e t t i n g up the Zeeman s c a n n i n g system and d e m o n s t r a t i n g i t s f e a s i b i l i t y . - Mr. Bar.ry S t a n s f i e l d and Dr. W. Seka f o r much h e l p f u l d i s c u s s i o n and a d v i c e . - Mr. J . Lees f o r h i s e x p e r t c o n s t r u c t i o n and f i l l i n g of the source and a b s o r b e r t u b e s . F i n a l l y I w i s h t o exp r e s s my g r a t i t u d e t o my w i f e , S y l v i a , f o r her c o n t i n u i n g p a t i e n c e and s u p p o r t . - 1 - CHAPTER I INTRODUCTION S p e c t r a l l i n e s , b o t h i n e m i s s i o n and a b s o r p t i o n , are c h a r a c t e r i z e d by t h e i r shape, f r e q u e n c y , and i n t e n s i t y or s t r e n g t h . The shape of a s p e c t r a l l i n e i s p r i m a r i l y d e t e r m i n e d by the p h y s i c a l environment of i t s s o u r c e , i n p a r t i c u l a r t he t e m p e r a t u r e , n e u t r a l p a r t i c l e d e n s i t y , e l e c t r o n d e n s i t y , and e l e c t r i c or magnetic f i e l d s p r e s e n t . For most h i g h t e m p e r a t u r e plasmas i n t h e absence of s t r o n g e l e c t r o m a g n e t i c f i e l d s t he shape of the l i n e i s d e t e r m i n e d by t h e temp e r a t u r e and e l e c t r o n d e n s i t y . A t lower t e m p e r a t u r e s i t i s the te m p e r a t u r e and n e u t r a l p a r t i c l e d e n s i t y w h i c h are u s u a l l y most s i g n i f i c a n t . G e i s s l e r tube and glow d i s c h a r g e plasmas, w h i c h b e l o n g t o the l a t t e r c l a s s of lo w e r t e m p e r a t u r e plasmas, are f r e q u e n t l y employed i n s p e c t r o s c o p i c work as so u r c e s or a b s o r b e r s of s p e c t r a l l i n e s . For example i n two r e c e n t experiments a t the U n i v e r s i t y of B r i t i s h Columbia the a b s o r p t i o n i n glow d i s c h a r g e s of l i g h t e m i t t e d by G e i s s l e r tubes has been used t o measure r e l a t i v e t r a n s i t i o n p r o b a b i l i t i e s i n neon. One experiment compared t h e a b s o r p t i o n s t r e n g t h s of v a r i o u s s p e c t r a l l i n e s ( l ) w h i l e the second u t i l i z e d Faraday r o t a t i o n i n a. glow d i s c h a r g e t u b e ( 2 ) . I n b o t h experiments i t was assumed t h a t the a b s o r p t i o n and e m i s s i o n l i n e shapes were G a u s s i a n , due t o t h e r m a l D o p p l e r b r o a d e n i n g a l o n e . A p p r e c i a b l e - 2 - departure from the Gaussian shapes assumed could a f f e c t the v a l i d i t y of these r e s u l t s . Estimates of pressure broadening, made ac c o r d i n g to the impact theory under the assumption of a van der Waals i n t e r a c t i o n , i n d i c a t e t h a t under glow d i s c h a r g e c o n d i t i o n s there may indeed be s u f f i c i e n t p r essure broadening to a l t e r the l i n e shapes s i g n i f i c a n t l y . In a d d i t i o n t h i s theory p r e d i c t s a s l i g h t , p r e ssure dependent, decrease i n the frequency of the s p e c t r a l l i n e . I t was thus d e s i r ^ a b l e to examine at l e a s t one such neon glow d i s c h a r g e l i n e not only to check the v a l i d i t y of the assumption of Gaussian l i n e shapes but a l s o to t e s t the t h e o r e t i c a l p r e d i c t i o n s . However the s p e c t r a l l i n e s i n glow d i s c h a r g e and G e i s s l e r tube plasmas are too narrow to be c o n v e n i e n t l y s t u d i e d by c o n v e n t i o n a l s p e c t r o g r a p h i c techniques unless equipment of very high r e s o l u t i o n (—£10 ) i s employed. I t had been demonstrated by S t a n s f i e l d ( 3 ) t h a t with the Zeeman scanning technique of B i t t e r et a l (4) I t should be p o s s i b l e to d i s c e r n the exact shape of such narrow s p e c t r a l l i n e s . With t h i s technique a s i n g l e cr-component of a normal Zeeman t r i p l e t i s i s o l a t e d and employed as a v a r i a b l e frequency source. I t i s passed through an absorber t o . scan the a b s o r p t i o n l i n e under examination. The f r a c t i o n a l t r a n s m i s s i o n i s obtained f o r a range of source f r e q u e n c i e s s u f f i c i e n t to span the a b s o r p t i o n l i n e . The r e s u l t a n t t r a n s m i s s i o n curves g e n e r a l l y r e f l e c t the shapes of both the -3- source and the a b s o r b e r and are s e n s i t i v e t o v a r i a t i o n s i n e i t h e r ; , By comparing t h e s e r e s u l t s t o the p r e d i c t i o n s of a s i m p l e model the l i n e shapes of so u r c e and a b s o r b e r may be e x t r a c t e d . As employed i n t h i s experiment t h e t e c h n i q u e seemed c a p a b l e of d e t e c t i n g changes i n the w i d t h of an a b s o r p t i o n l i n e as s m a l l as 2 mA° (which f o r the l i n e s t u d i e d c o r r e s p o n d s to 10% or l e s s of t h e h a l f w i d t h ) . I t a l s o seemed c a p a b l e of q u i t e a c c u r a t e d e t e r m i n a t i o n of t h e l i n e shape. Because the Zeeman s c a n n i n g a p p a r a t u s i s composed of equipment u s u a l l y a v a i l a b l e i n a l a b o r a t o r y or e l s e o b t a i n a b l e a t low c o s t , the t e c h n i q u e seemed a t t r a c t i v e as a s i m p l e , economic means of s t u d y i n g t h e shape of a narrow l i n e from a neon glow d i s c h a r g e . -4- CHAPTER I I THEORY A. S p e c t r a l L i n e A b s o r p t i o n and T r a n s m i s s i o n Curves As r a d i a t i o n p a s s e s t h r o u g h an element of a b s o r b i n g medium the f r a c t i o n of t h i s r a d i a t i o n absorbed i s d i r e c t l y p r o p o r t i o n a l t o the a b s o r b i n g ' s t r e n g t h ' of the medium and the l e n g t h of the a b s o r b e r t r a v e r s e d . d l J j L l = - k(?> )dx I ) l ( y ) i s the i n t e n s i t y of the r a d i a t i o n a t f r e q u e n c y ~P . k ( ^ ) i s t h e a b s o r p t i o n c o n s t a n t ( ' s t r e n g t h ' of the a b s o r b e r ) : a t f r e q u e n c y 7^ . dx i s the e l e m e n t a l l e n g t h of a b s o r b e r t r a v e r s e d . I n t e g r a t i n g f o r a homogeneous ab s o r b e r of l e n g t h J. and d e n o t i n g the i n c i d e n t i n t e n s i t y by l^(j? ) and the t r a n s m i t t e d i n t e n s i t y by Ij(7?): = I.(>>)exp{ - k{f)J] I I The a b s o r b e r w i l l i t s e l f emit- l i g h t a t f r e q u e n c y j). T h i s l i g h t w i l l have an i n t e n s i t y comparable t o 1̂  (1?) . However the s o u r c e i s i n t e n s i t y modulated and a l o c k - i n a m p l i f i e r i s employed t o d e t e r m i n e the t r a n s m i t t e d i n t e n s i t y . The unmodul- ated l i g h t e m i t t e d by the a b s o r b e r i s r e j e c t e d as n o i s e by the phase s e n s i t i v e d e t e c t i o n system. S i n c e t h e l o c k - i n a m p l i f i e r - 5 - used improved the s i g n a l - t o - n o i s e r a t i o by a f a c t o r of 100 or more, the l i g h t emitted by the absorber may be omitted from c o n s i d e r a t i o n . Hence Equation I I giv e s e x a c t l y the i n t e n s i t y emergent from an absorber of l e n g t h i . In the r e g i o n of an a b s o r p t i o n l i n e k ( ^ ) w i l l have a frequency dependence peaking at the l i n e centre ^ as i n d i c a t e d below. k( )\ 2 o.- A u s e f u l measure of the width of an a b s o r p t i o n l i n e i s the h a l f width which i s here d e f i n e d as the f u l l width at the half-maximum of ) - see above. I f a band of r a d i a t i o n w i t h frequency mean c h a r a c t e r i z e d by the shape I ^ ( ^ - ̂  ) i s passed through a l e n g t h 1 of absorber s p e c i f i e d by k ( ^ ) s k ( y - % ) where i s the c e n t r a l frequency of the absorber, then the r e s u l t a n t i n t e n s i t y at frequency i s : I f (/) = I^Z-^s )exp { - k ( / - ^ I I I - 6 - i i l . o - ^- exp{-k( iJ-tiU} ; < \ \ 1 \ 1 • \ 1 • \ ' • \ 1 \ 1 • \ 1 ''• \ 1 \ 1 • \ i \ i i \ i >—~ — i V The inc ident or source f lux i s : s(^) = y , I i ( > ? - ^ ) d y , o oO while the t o t a l f lux transmitted i s : 0 o The f r a c t i o n a l transmission i s the r a t i o of these two f luxes : tit) = ^ M 1 s(i ) IV Considering the absorber frequency j)0 as a constant the transmission w i l l vary with % , the mean frequency of the source, This i s depicted schematically i n F i g . 1. The width of t h i s transmission curve w i l l be defined as the f u l l width at ' half-minimum' - At- as indicated i n F i g . 1. Several s a l i e n t features of such transmission curves are: - 7 - -*» A t *• : t Q = l i n e c e n t r e (minimum) t r a n s m i s s i o n : At = t r a n s m i s s i o n h a l f width F i g . 1 T r a n s m i s s i o n Curve Parameters -8- (a) For f i x e d t , A t w i l l i n c r e a s e as t h e source w i d t h and the a b s o r b e r w i d t h i n c r e a s e , (b) For f i x e d source and a b s o r b e r w i d t h s , A t w i l l i n c r e a s e as i s i n c r e a s e d ( i . e . as t Q d e c r e a s e s ) . (c) For an i n f i n i t e l y narrow source r e p r e s e n t e d by lA?'-%) = then: 0{?t,?.) = I o e x p { - k(/>,- t ( ii) = exp{ - k ( ^ s - ^ )£} IVa Hence: Thus f o r a s u f f i c i e n t l y narrow source t ( ^ ) and A t depend on t h e shape of the a b s o r p t i o n l i n e o n l y . - 9 - B. L i n e B roadening: P r e s s u r e Independent E f f e c t s (1) N a t u r a l B r o a d e n i n g : No s p e c t r a l l i n e can be p e r f e c t l y monochromatic. Even an i s o l a t e d o s c i l l a t o r i s s t i l l p e r t u r b e d by the r e a c t i o n of i t s own r a d i a t i o n . C l a s s i c a l l y t h i s can be shown (5) t o r e s u l t i n the s p e c t r a l d i s t r i b u t i o n of i n t e n s i t y : i ( y - & ) • i where T i s the l i f e t i m e of the o s c i l l a t o r . The h a l f w i d t h of t h i s d i s t r i b u t i o n , r e f e r r e d t o as t h e n a t u r a l l i n e w i d t h , i s : _ l * ~ T The n o r m a l i z e d i n t e n s i t y i s : 27T (1?-%) 2 + (ML)2 V T h i s i n v e r s e square form of f r e q u e n c y dependence was o r i g i n a l l y d e r i v e d by H. A. L o r e n t z i n 1906 and has s i n c e been named the ' L o r e n t z i a n ' p r o f i l e . The quantum m e c h a n i c a l t r e a t m e n t of t h i s problem y i e l d s t h e same form of i n t e n s i t y d i s t r i b u t i o n and f u r t h e r m o r e shows, t h a t L\tfv e q u a l s the sum of the spontaneous t r a n s i t i o n p r o b a b i l i t i e s f o r a l l t r a n s i t i o n s from both the i n i t i a l and f i n a l s t a t e s . Thus f o r a l i n e r e s u l t i n g from a t r a n s i t i o n between s t a t e s m and n: M = LA^ + z A n n, n' 1 + 1 T n -10- where: and A n n, are the a p p r o p r i a t e E i n s t e i n A - c o e f f i c i e n t s . T and T are the ' l i f e t i m e s ' of the two s t a t e s . ° m n I n the o p t i c a l r e g i o n t h e n a t u r a l l i n e w idth, i s u s u a l l y n e g l i g i b l e compared t o the e f f e c t s of o t h e r b r a o d e n i n g mechanisms. F or the X6074.3 A 0 l i n e of N e l the l i f e t i m e has been measured t o be: 5*10" sec ( 7 ) . T h i s y i e l d s a n a t u r a l width, of A^ ^ 6*10 ^ cm ^ =0.06 mK. _ By comparison the D o p p l e r w i d t h (see below) i s : ~ 50 mK. (2) D o p p l e r B r o a d e n i n g : R e l a t i v e m otion between a source of r a d i a t i o n and an o b s e r v e r w i l l cause a f r e q u e n c y s h i f t of the observed r a d i a t i o n # (Doppler e f f e c t ) . The random t h e r m a l motions of an assemblage of r a d i a t i o n p a r t i c l e s w i l l r e s u l t i n a b r o a d e n i n g of the s p e c t r a l l i n e b e i n g o b s e r v e d . F o r a v e l o c i t y component a l o n g the l i n e of s i g h t v , the D o p p l e r f r e q u e n c y s h i f t i s : where )l i s the u n s h i f t e d f r e q u e n c y . I n an assemblage of p a r t i c l e s of mass M w i t h a M a x w e l l i a n v e l o c i t y d i s t r i b u t i o n c h a r a c t e r i z e d by a temperature T, the f r a c t i o n w i t h a l i n e of s i g h t v e l o c i t y component between v and v + dv i s : s s s -11- N i s t h e t o t a l number of p a r t i c l e s k i s Boltzmann's c o n s t a n t . For r a d i a t i n g p a r t i c l e s t h i s same f r a c t i o n w i l l have f r e q u e n c i e s between j) and A dP where c y° S u b s t i t u t i n g f o r v g : v l 2kT J N For an o p t i c a l l y t h i n i n c o h e r e n t source the i n t e n s i t y i s p r o p o r t i o n a l t o t h e number of r a d i a t i n g p a r t i c l e s : ^ " N I t i s the t o t a l l i n e i n t e n s i t y . The h a l f w i d t h of t h i s d i s t r i b u t i o n t { f u l l w i d t h a t h a l f - maximum) i s : A „ , „ i / AV = o -)?( 2 k T l n 2 V2 The n o r m a l i z e d i n t e n s i t y d i s t r i b u t i o n i s : y-ye) i 2 K ^ - v M - 2 / I n ? f - [ 2 Vln?̂ -̂ )] . where l{P-2i) i s here the i n t e n s i t y a t f r e q u e n c y 1? per u n i t f r e q u e n c y i n t e r v a l . The D o p p l e r f r e q u e n c y s h i f t s a r i s i n g from t h e r m a l motions -12- thus g i v e the l i n e a G a u s s i a n shape. T h i s i s the major b r o a d e n i n g mechanism f o r G e i s s l e r tube and glow d i s c h a r g e plasmas such as employed i n t h i s e x p e r i m e n t . For the 'X6074.3A° l i n e of N e l ( i s o t o p e 20) a t T = 350 °K : A v ? ^ &VD = 49 mK C. L i n e Broadening: P r e s s u r e Dependent E f f e c t s The p e r t u r b a t i o n s of e m i t t e r s caused by e n c o u n t e r s w i t h s u r r o u n d i n g p a r t i c l e s r e s u l t i n a f u r t h e r b r o a d e n i n g of the s p e c t r a l l i n e . As p r e s s u r e and d e n s i t y are i n c r e a s e d the r a t e of such encounters i n c r e a s e s , w i t h c o n s e q u e n t l y g r e a t e r b r o a d e n i n g . I n t h i s way the b r o a d e n i n g i s p r e s s u r e dependent. (1) S t a r k B r o a d e n i n g : D u r i n g e n c o u n t e r s w i t h charged p a r t i c l e s the energy l e v e l s of an e m i t t e r are p e r t u r b e d ( S t a r k e f f e c t ) . T h i s . r e s u l t s i n broadened and s h i f t e d s p e c t r a l l i n e s , g e n e r a l l y of L o r e n t z i a n p r o f i l e . Compared t o i o n - b r o a d e n i n g , b r o a d e n i n g by e l e c t r o n s i s g e n e r a l l y the g r e a t e r e f f e c t . For low e l e c t r o n d e n s i t i e s , such as are encountered i n a glow d i s c h a r g e plasma, the e f f e c t of t h e e l e c t r o n s i s s p e c i f i c a l l y r e f e r r e d t o as ' e l e c t r o n - i m pact' b r o a d e n i n g . The w i d t h s and s h i f t s t h e r e b y produced are d i r e c t l y p r o p o r t i o n a l t o t h e e l e c t r o n d e n s i t y . To e s t i m a t e the s i g n i f i c a n c e of t h i s b r o a d e n i n g mechanism f o r t h e p r e s e n t experiment an e s t i m a t e of e l e c t r o n d e n s i t y i s r e q u i r e d . E c k e r and Z o l l e r (8) have c a l c u l a t e d v a l u e s f o r a h e l i u m plasma column. T h e i r c a l c u l a t i o n s y i e l d an e l e c t r o n 11 3 d e n s i t y n e ^ 10 cm f o r p r e s s u r e s , c u r r e n t s , and dimensions -13- such as employed i n t h i s e x p e r i m e n t . Assuming t h a t s i m i l a r v a l u e s can be expected f o r a neon discharge-, i t s h o u l d be s a f e 1 2 - 3 t o c o n s i d e r n g ^ 10 cm C a l c u l a t i o n s of the S t a r k b r o a d e n i n g parameters f o r N e l and o t h e r l i g h t elements have been performed by Griem ( 9 ) . From t h e s e c a l c u l a t i o n s the e l e c t r o n - i m p a c t h a l f w i d t h of the 12 -3 X6074.3 A 0 l i n e of N e l f o r n- <; 10 cm i s : A ^ < 0.017 mK The c o r r e s p o n d i n g s h i f t i s : A% < 0.009 mK. For t h e s e c a l c u l a t i o n s the e l e c t r o n t e m p e r a t u r e was chosen o . . • to be 25,000 K , t h e v a l u e found by I r w i n (10) f o r a s i m i l a r neon glow plasma. • ' S t a r k b r o a d e n i n g of t h i s magnitude i s n e g l i g i b l e compared w i t h t h e measured w i d t h and such a s m a l l s h i f t can not be r e s o l v e d by the e x p e r i m e n t a l s e t up. (2) Van der Waals Broadening and S h i f t : The energy l e v e l s of an e m i t t e r may a l s o be p e r t u r b e d d u r i n g e n c o u n t e r s w i t h n e u t r a l p a r t i c l e s . Here a l s o t h e r e g e n e r a l l y r e s u l t s a broadened and s h i f t e d s p e c t r a l l i n e of L o r e n t z i a n p r o f i l e . I n pure gases t h e m a j o r i t y of n e u t r a l p a r t i c l e s encountered by t h e e m i t t e r w i l l be ground s t a t e atoms of the same s p e c i e s . In t h e absence of any resonance e f f e c t s the i n t e r a c t i o n f o r c e s w i l l be p r i m a r i l y t h e Van der Waals a t t r a c t i o n . For t h i s -14- t h e l e v e l k i s p e r t u r b e d by: hOJ^_ - - ^6,k ^ i s the van der Waals c o n s t a n t f o r the l e v e l k and the p a r t i c u l a r p e r t u r b e r i n q u e s t i o n . r i s the d i s t a n c e between t h e r a d i a t o r and t h e p e r t u r b e r . For low d e n s i t y gases such as a glow d i s c h a r g e plasma the impact t h e o r y of L i n d h o l m and F o l e y (11) can q u i t e g e n e r a l l y be used. I n t h i s t h e o r y i t i s assumed t h a t the d u r a t i o n of the encounter I s n e g l i g i b l e ' compared t o the time i n t e r v a l between such e n c o u n t e r s . T h i s impact a p p r o x i m a t i o n i s g e n e r a l l y v a l i d f o r low p e r t u r b e r d e n s i t i e s such as i n t y p i c a l glow d i s c h a r g e plasmas. T h i s impact t h e o r y , i n c o n j u n c t i o n w i t h the van der Waals i n t e r a c t i o n assumed, p r e d i c t s a L o r e n t z i a n i n t e n s i t y d i s t r i b u t i o n whose h a l f w i d t h i s : t±9v = 1.3v* n sec 1 V I I ^ = - ^ where k and k d e s i g n a t e the i n i t i a l v i s the mean r e l a t i v e v e l o c i t y between e m i t t e r and p e r t u r b e r . •and f i n a l l e v e l s . n i s the number d e n s i t y of the p e r t u r b e r s . In a d d i t i o n t o t h e b r o a d e n i n g t h e impact t h e o r y a l s o p r e d i c t s a s h i f t of t h e s p e c t r a l l i n e t o the r e d . The r a t i o of b r o a d e n i n g t o s h i f t i s independent of both the i n t e r a c t i o n c o n s t a n t C5 and the mean r e l a t i v e v e l o c i t y v. For a w i d t h -15- the s h i f t i s : L\/0 = - i±£±. 2.76 The van der Waals c o n s t a n t s may be e s t i m a t e d u s i n g the f o l l o w i n g a p p r o x i m a t i o n by Un s o l d (12) : 2 2 2 6 ' k I T P ~ 2 5n* + 1 - 3J{/+ 1) -1 (• r a d sec cm V I I I e i s the e l e c t r o n i c c h a rge. 'fi i s P l a n c k ' s c o n s t a n t f o r a n g u l a r momentum. a i s the f i r s t Bohr r a d i u s , o n* i s t h e e f f e c t i v e quantum number of the l e v e l k, i i s the a n g u l a r momentum quantum number f o r the o p t i c a l e l e c t r o n i n l e v e l k. o<p i s the p o l a r i z a b i l i t y of the p e r t u r b i n g p a r t i c l e s . The v a l i d i t y of t h i s a p p r o x i m a t i o n r e s t s on the assumption t h a t the energy s e p a r a t i o n between t h e i n i t i a l and f i n a l l e v e l s of the e m i t t e r i s much s m a l l e r t h a n the energy s e p a r a t i o n of the ground s t a t e and lower e x c i t e d s t a t e s of the p e r t u r b e r ( f o r ground s t a t e p e r t u r b e r s ) . T h i s i s a r e a s o n a b l e assumption f o r a n o b l e gas p e r t u r b e r s i n c e t h e r e the f i r s t e x c i t e d s t a t e s l i e c o m p a r a t i v e l y h i g h as a r e s u l t of t h e i n c r e a s e i n p r i n c i p a l quantum number of the o p t i c a l e l e c t r o n . Hence Un s o l d ' s a p p r o x i m a t i o n V I I I s h o u l d be v a l i d f o r neon i n a glow d i s c h a r g e p lasma. The a p p l i c a t i o n of Uns o l d ' s a p p r o x i m a t i o n r e q u i r e s an -16- e s t i m a t e of the p o l a r i z a b i l i t y cX^ of neon. Two v a l u e s of t h i s have been u t i l i z e d . The f i r s t , a ^ t h e o r e t i c a l v a l u e , has -25 3 been t a k e n from A l l e n (13). who g i v e s c>< = 3.96*10 cm U s i n g t h e U n s o l d a p p r o x i m a t i o n V I I I t h i s y i e l d s : C 6 ( N e 6 0 7 4 / N e ) = 5.82-10 rad s e c " 1 cm° Hence from the impact t h e o r y r e l a t i o n VII : M - ^ ^ A 2 L = 1.24-lO"^ mK cm 3 n c n S e c o n d l y , an e x p e r i m e n t a l l y based v a l u e has been d e r i v e d from t h e r e s u l t s of Sm i t h (14) on t h e p r e s s u r e b r o a d e n i n g of Ca 2\6573 A° by neon. Smith's quoted v a l u e of A T*7 -18 3 = 11.0-10 mK cm and r e l a t i o n VII y i e l d : n C 6 ( C a 6 5 7 3 / N e ) = 2 . 2 7 - 1 0 " 3 2 r a d s e c " 1 cm 6 T h i s Ca A6573 A l i n e i s a 4s4p - 4s t r a n s i t i o n and the energy s e p a r a t i o n of the i n i t i a l and f i n a l s t a t e s i s r o u g h l y e q u a l to t h a t of the Ne "X6074.3 A° l i n e . Hence the U n s o l d a p p r o x i m a t i o n V I I I s h o u l d be e q u a l l y v a l i d i n t h i s c a s e . U s i n g r e l a t i o n V I I I t h e n , t h e p o l a r i z a b i l i t y of neon was d e r i v e d and from t h i s : C 6 ( N e 6 0 7 4 / N e ) = 1 ' 2 6 ' 1 0 ' 3 1 r a d s e c " 1 cm 6 W i t h r e l a t i o n VII a g a i n t h i s y i e l d s : A y = 1.69*10" 1 7 mK cm 3 . n o For a plasma w i t h T ^ 325 K and P = 10 T o r r ( t y p i c a l f o r -17- glow d i s c h a r g e s ) the n e u t r a l p a r t i c l e d e n s i t y n ^ 3-10 cm Under such c o n d i t i o n s t h e above r e s u l t s p r e d i c t van der Waals h a l f w i d t h s f o r the NeA6074.3 A 0 l i n e o f : * 3.7 mK ( t h e o r y ) A?J ~ 5.1 mK (from S m i t h (14) ) S i n c e t h i s i s 8 - 10 % of the D o p p l e r w i d t h f o r the same c o n d i t i o n s , van der Waals p r e s s u r e b r o a d e n i n g c o u l d s u b s t a n t i a l l y a f f e c t l i n e shapes i n a glow d i s c h a r g e . The e x p e r i m e n t a l r e s u l t s c o n f i r m t h i s e x p e c t a t i o n . The. impact t h e o r y w i t h van der Waals i n t e r a c t i o n a l s o p r e d i c t s a c o r r e s p o n d i n g l i n e s h i f t o f : A # ~1.8 mK t o the r e d . However a s h i f t of t h i s magnitude would be b a r e l y d e t e c t a b l e , i f a t a l l , w i t h the e x p e r i m e n t a l a p p a r a t u s employed. However the l a r g e r s h i f t s t o be expected a t the h i g h e r p r e s s u r e s used s h o u l d be e a s i l y d e t e c t e d . The s h i f t of t h e Ca A6573 A° l i n e broadened by neon observed by Smith (14) was not o n l y s m a l l e r by a f a c t o r of 15 t h a n t h e p r e d i c t i o n of the impact t h e o r y but was i n a d d i t i o n t o the b l u e . T h i s f a i l u r e of the t h e o r y was a t t r i b u t e d by Hindmarsh, P e t f o r d , and S m i t h (15) t o the o m i s s i o n of any r e p u l s i v e . f o r c e i n t h e i n t e r a c t i o n assumed. S i m i l a r r e s u l t s s h o u l d o b t a i n f o r the s h i f t of the Ne\6074.3 A° l i n e i n which case t h e a c t u a l s h i f t s produced would be beyond d e t e c t i o n w i t h t h e e x p e r i m e n t a l a p p a r a t u s . -18- D. S e l f A b s o r p t i o n B r o a dening The b r o a d e n i n g mechanisms d i s c u s s e d i n S e c t i o n s B and C a c t t o broaden a s p e c t r a l l i n e 'as i t i s e m i t t e d ' and r e s u l t from the immediate p h y s i c a l environment of the e m i t t i n g p a r t i c l e s . These mechanisms a p p l y t o both the e m i s s i o n and a b s o r p t i o n p r o c e s s e s . Subsequent t r a n s m i s s i o n t h r o u g h an a b s o r b i n g medium may f u r t h e r a f f e c t the i n t e n s i t y d i s t r i b u t i o n of the e m i t t e d l i g h t . S i n c e any p r a c t i c a l l i g h t source must be composed of many e m i t t i n g p a r t i c l e s , some of the l i g h t o r i g i n a t i n g from r e g i o n s most d i s t a n t from an o b s e r v e r may be p a r t i a l l y absorbed b e f o r e emerging from the volume of the s o u r c e . C o n s e q u e n t l y the r e s u l t a n t f r e q u e n c y d i s t r i b u t i o n of i n t e n s i t y from t h e source as a whole may d i f f e r from t h a t of t h e e m i t t i n g p a r t i c l e s per se. C o n s i d e r a homogenous source of d i m e n s i o n \l i n the l i n e of o b s e r v a t i o n . L e t the e m i s s i v i t y per u n i t l e n g t h be where y0 i s the s p e c t r a l l i n e c e n t r e , and l e t the a b s o r p t i o n c o n s t a n t (as d e f i n e d i n S e c t i o n A) be k(^ -j£). l i n e of o b s e r v a t i o n -19- I n t h e absence of any a b s o r p t i o n the emergent i n t e n s i t y a t f r e q u e n c y V would be = j{?-£)J. The i n t e n s i t y e m i t t e d by the element dx a t f r e q u e n c y 1? i s s i m i l a r l y : j ( ^ - j ^ ) d x . The amount of t h i s w h i c h emerges a t £ i s g i v e n by I I I : d l s ( y - ^ ) = j ( y - ^ ) e x p { - k ( y - ^ ) \l- x]} dx The net i n t e n s i t y i s found by i n t e g r a t i n g over the J s o u r c e : 1 - exp {- k(y-^)Jj The q u a n t i t y i n the exponent i s d e f i n e d as the o p t i c a l d epth : T(V-X) = k{?-X)J 1 - e x p f IX An o p t i c a l l y t h i n source i s one i n which any photon e m i t t e d has a h i g h p r o b a b i l i t y of e s c a p i n g (i,e. a v o i d i n g \ n a b s o r p t i o n ) . The c r i t e r i o n f o r o p t i c a l thinness a t f r e q u e n c y i s : T ( W ) « 1. For an o p t i c a l l y t h i n s ource : i iv-rt) ~ hW-X) i - ( i -TkV-ti) -20- From t h i s i t can be seen t h a t i n the o p t i c a l l y t h i n case t h e l i n e p r o f i l e of the e m i t t e d l i g h t i s u n a f f e c t e d . For an o p t i c a l l y t h i c k source ( but one i n w h i c h T ( V - t i ) * 1 s t i l l ) : i _ ( i _ 7 V - ^ ) + XW-V. 2 i - + 2 • • • • S i n c e i s g r e a t e s t f o r the c e n t r e of the l i n e ( i^ 7 — ]A0) t h e l i n e c o r e i s s e l f absorbed -more s t r o n g l y t han t h e w i n g s . As a r e s u l t the apparent h a l f w i d t h of the l i n e i n c r e a s e s : t r u e h a l f w i d t h apparent h a l f w i d t h t r u e l i n e shape s e l f absorbed p r o f i l e -21- E. V o i q t P r o f i l e s Where two d i f f e r e n t mechanisms a c t i n d e p e n d e n t l y t o broaden a l i n e the r e s u l t a n t l i n e p r o f i l e i s the c o n v o l u t i o n of t h e i r two shapes. I f S-^{)?-2l) i s t h e p r o f i l e due t o one mechanism and ^2^2^-Pa) i s the p r o f i l e due t o the o t h e r , t h e n one c o n s i d e r s each element of the Sj_ p r o f i l e t o be broadened w i t h an S2 shape. The r e s u l t a n t i n t e n s i t y a t any f r e q u e n c y "Ps i s t h e sum of a l l t h e c o n t r i b u t i o n s from each broadened element of S , . 1 -22- I f S^ i s G a u s s i a n and L o r e n t z i a n (or v i c e v e r s a ) t h e i r c o n v o l u t i o n i s d e f i n e d as a V o i g t p r o f i l e . I t can be shown (16) t h a t i f and are themselves V o i g t p r o f i l e s then t h e i r c o n v o l u t i o n S w i l l a l s o be a V o i g t p r o f i l e . F u r t h e r m o r e , s h o u l d S-̂  be formed from a G a u s s i a n of h a l f w i d t h and a L o r e n t z i a n of h a l f w i d t h AT^j , w h i l e r e s u l t s from a G a u s s i a n of h a l f w i d t h &%z and a L o r e n t z i a n of h a l f w i d t h AVL2 > S i s then the V o i g t p r o f i l e r e s u l t i n g from a G a u s s i a n of h a l f w i d t h and a L o r e n t z i a n of h a l f w i d t h AVL such t h a t : = + £ $ D Z The G a u s s i a n and L o r e n t z i a n p r o f i l e s are themselves extreme cases of V o i g t p r o f i l e s . C o n s e q u e n t l y , i f two b r o a d e n i n g mechanisms, each of w h i c h produces a L o r e n t z i a n p r o f i l e , a c t i n d e p e n d e n t l y t h e n the r e s u l t a n t l i n e shape w i l l be L o r e n t z i a n . For example, s h o u l d van der Waals b r o a d e n i n g and S t a r k b r o a d e n i n g both be s i g n i f i c a n t , t h e i r j o i n t r e s u l t w i l l be a L o r e n t z i a n p r o f i l e w i t h a h a l f w i d t h o f : S u b s t i t u t i n g i n e q u a t i o n X the G a u s s i a n of V I f o r S^ and the L o r e n t z i a n of V f o r S^ ( w i t h h a l f w i d t h s A1?D and r e s p e c t i v e l y ) : S ( * -7i) I 2 y T n T 2 i/TZT(y'-X AX -, 2 x fe N-/)2 + (^-)2 -1 d. - 2 3 - S e t t i n g x = 2 ) = F ( / - # ) dx = F d / stf-}/) = All f e x P I ' y2) dx o2 -oo * 2 27r/e J ( H K - X ) -x) 2 +(M)2 s " 2 S e t t i n g FA)£ = 2 V l n 2 = A V l n T = Y 2 2 A y D OO S ( ^ ) = _ Y / e x p { - x 2 } y ( F ( ^ - ^ ) - x - — d x (F(7i-y0) - x) 2 + Y 2 s -oo Al) The r a t i o of L o r e n t z i a n t o G a u s s i a n h a l f w i d t h : A = Ay D i s termed the V o i g t A-parameter. I t s p e c i f i e s the shape of the V o i g t p r o f i l e . A = 0 - pure G a u s s i a n A o0 - pure L o r e n t z i a n V a l u e s of the V o i g t i n t e g r a l of e q u a t i o n X I r e q u i r e d f o r t r a n s m i s s i o n curve* c a l c u l a t i o n s were computed u s i n g a F o r t r a n subprogramme d e v e l o p e d a t the U n i v e r s i t y of M i c h i g a n (17). -24- F. Zeeman S c a n n i n g and Inhomoqeneity Broadening The major group of v i s i b l e neon s p e c t r a l l i n e s r e s u l t s 5 5 from 2p 3p —*• 2p 3s t r a n s i t i o n s . W h i l e most of t h e s e l i n e s e x h i b i t complex (anomalous) Zeeman p a t t e r n s i n a magnetic f i e l d , s e v e r a l show t h e normal Zeeman p a t t e r n r e q u i r e d f o r Zeeman s c a n n i n g . The X6074.3 A° l i n e , w h i c h r e s u l t s from 3 3 , ' N a P —*• P t r a n s i t i o n , i s one of t h e s e (see F i q u r e 2 ) . 0 1 1 The s p l i t t i n g i s g i v e n (18) by: & = ± gHB X I I where B i s the a p p l i e d magnetic f i e l d ( g a u s s ) . -5 -1 -1 H = 4.695"10 cm gauss (the Zeeman c o n s t a n t ) . . g i s the s p l i t t i n g f a c t o r f o r the l i n e . (g = 1.45 f o r NeX6074.3 A° (18)) Zeeman s c a n n i n g i s e f f e c t e d by p l a c i n g the source i n a v a r i a b l e magnetic f i e l d . A beam i s t a k e n i n the d i r e c t i o n of the f i e l d ( l o n g i t u d i n a l l y ) . T h i s beam c o n t a i n s o n l y the two cr - components of the normal Zeeman t r i p l e t , w h i c h are r i g h t - and l e f t - hand c i r c u l a r l y p o l a r i z e d r e s p e c t i v e l y . A q u a r t e r wave p l a t e c o n v e r t s t h e s e t o m u t u a l l y p e r p e n d i c u l a r l i n e a r l y p o l a r i z e d beams. An a n a l y z i n g N i c o l p r i s m t h e n s u p p r e s s e s one of t h e s e two beams. As the magnetic f i e l d v a r i e s the Zeeman s h i f t , and hence the f r e q u e n c y , of the r e m a i n i n g beam v a r i e s . -25- Paschen n o t a t i o n LS n o t a t i o n 2.P, I s 2 9 S Q I s 2s 2p 3p J P 0 2 2 5 T I s 2s 2p 3s P, 77- F i g . 2 S p e c t r o s c o p i c D e s i g n a t i o n and Zeeman E f f e c t f o r Ne 'X6074.3 A° -26- 9 B i i -9 T h i s t e c h n i q u e p r o v i d e s a s i n g l e s p e c t r a l l i n e of v a r i a b l e f r e q u e n c y , t h i s f r e q u e n c y b e i n g determined by e q u a t i o n X I I i n c o n j u n c t i o n w i t h t h e o r i e n t a t i o n of the N i c o l p r i s m and the sense of the magnetic f i e l d . I f the magnetic f i e l d i s not homogeneous over the volume of the source t h e n t h e source l i n e shape may be d i s t o r t e d . C o n t r i b u t i o n s from r e g i o n s w i t h s l i g h t l y d i f f e r e n t magnetic f i e l d s t r e n g t h s would have c o r r e s p o n d i n g l y d i f f e r e n t f r e q u e n c y s h i f t s . The r e s u l t a n t l i n e p r d f i l e would thus appear broadened and p o s s i b l y asymmetric. T h i s f i e l d i nhomogeneity b r o a d e n i n g w i l l i n c r e a s e w i t h magnetic f i e l d s t r e n g t h . The e f f e c t would thus be g r e a t e s t f o r measurements of the wings of t h e a b s o r p t i o n l i n e . -27- CHAPTER I I I APPARATUS A. Source A neon G e i s s l e r tube f i l l e d t o 2 T o r r p r e s s u r e s e r v e d as the s o u r c e . The gas was i s o t o p i c a l l y pure Ne20 w i t h a 0.6 M o l . % hydrogen i m p u r i t y . The o u t e r s u r f a c e of the c a p i l l a r y s e c t i o n was c o a t e d w i t h b l a c k enamel p a i n t except f o r a s m a l l a p e r t u r e of 1 mm d i a m e t e r . The c a p i l l a r y i t s e l f had a d i a m e t e r of 1 mm so t h a t the source volume was a p p r o x i m a t e l y one c u b i c m i l l i m e t r e . The tube was o p e r a t e d from a 1000 v o l t r e g u l a t e d s u p p l y a t a c u r r e n t of 4 ma. The c u r r e n t was c o n t r o l l e d by a s e r i e s pentode and b a l l a s t r e s i s t o r . The d i s c h a r g e was i n i t i a t e d w i t h a T e s l a c o i l . B. S c a n n i n g E l e c t r o m a g n e t The G e i s s l e r tube source was c e n t r a l l y p o s i t i o n e d between the p o l e s of an e l e c t r o m a g n e t . The p o l e p i e c e s were h o l l o w c e n t r e d w i t h the c e n t r a l h o l e t a p e r i n g t o 3 mm d i a m e t e r n e a r e s t the s o u r c e . M a gnetic f i e l d s t r e n g t h v e r s u s e l e c t r o m a g n e t c u r r e n t c a l i b r a t i o n f o r the f i e l d a t the source p o s i t i o n was o b t a i n e d u s i n g : a B e l l Model .240 gaussmeter (a H a l l probe i n s t r u m e n t ) . Measurements of f i e l d i nhomogeneity i n d i c a t e no f i e l d -28- g r a d i e n t s g r e a t e r t h a n 3% per cm i n t h e c e n t r a l r e g i o n . Over 1 mm (the c h a r a c t e r i s t i c l e n g t h of the source) t h e r e i s l e s s than 0.3% v a r i a t i o n . The maximum Zeeman s h i f t r e q u i r e d was 0,4 cm"-'- , i n which case t h i s i nhomogeneity r e s u l t s i n s h i f t d i f f e r e n c e s of not more than 1.2 mK. S i n c e t h i s i s l e s s t h a n 3% of the source h a l f w i d t h , and s i n c e the f i e l d s t r e n g t h was u s u a l l y much lower than t h i s , f i e l d i nhomogeneity br o a d e n i n g was not c o n s i d e r e d s i g n i f i c a n t i n t h i s e x periment. C. A b s o r p t i o n Tubes The a b s o r b e r was a h o l l o w cathode glow d i s c h a r g e i n i s o t o p i c a l l y pure Ne20 ( a l s o w i t h t h e 0.6 M o l . % hydrogen i m p u r i t y ) . The source beam was passed t h r o u g h the h o l l o w c athode. A b s o r p t i o n tubes of t h r e e d i f f e r e n t f i l l i n g p r e s s u r e s , 2 T o r r , 50 T o r r , and 100 T o r r , were employed. The d i s c h a r g e i n a l l t h r e e tubes was m a i n t a i n e d by a 1400 v o l t r e g u l a t e d s u p p l y w i t h t h e c u r r e n t c o n t r o l l e d by a s e r i e s pentode and b a l l a s t r e s i s t o r . The b a l l a s t was made as l a r g e as p o s s i b l e i n o r d e r t o reduce c u r r e n t f l u c t u a t i o n s . The d i s c h a r g e u s u a l l y had t o be i n i t i a t e d w i t h a T e s l a c o i l . D i f f e r e n t a b s o r p t i o n s t r e n g t h s were o b t a i n e d by v a r y i n g the c u r r e n t between 0.3 ma and 16 ma. 26 cm F i g . 3 A b s o r p t i o n Tube C o n s t r u c t i o n -30- D. O p t i c a l System The beam emergent from the magnet was rendered p a r a l l e l by l e n s (see F i g . 4 ) . A f t e r a m p l i t u d e m o d u l a t i o n a t 990 Hz by the chopping wheel i t passed i n t o the a b s o r b e r t h r o u g h the h o l l o w cathode. The s m a l l cathode bore (3 t o 5 mm I D ) , a l o n g w i t h a 3 mm d i a m e t e r stop p l a c e d on the e x i t end of the a b s o r p t i o n t u b e , ensured t h a t o n l y a s m a l l r e l a t i v e l y homogeneous r e g i o n i n the c e n t r e of the a b s o r p t i o n tube a t t e n u a t e d the beam. Next f o l l o w e d the q u a r t e r wave p l a t e and the a n a l y z i n g N i c o l p r i s m . These were p l a c e d a f t e r the a b s o r b e r so t h a t t h e y a l s o s e r v e d t o suppress p a r t of the ' n o i s e ' e m i s s i o n from t h e a b s o r b e r . The second l e n s L.2 f o c u s s e d the beam onto the e n t r a n c e s l i t of a 500 mm Bausch and Lomb g r a t i n g monochromator of low d i s p e r s i o n . The e n t r a n c e s l i t and s t o p s were opened j u s t wide enough t o a c c e p t a l l the source beam. The e x i t s l i t was opened s u f f i c i e n t l y wide t o e a s i l y a c c e p t the e n t i r e s p e c t r a l l i n e but y e t kept narrow enough t o s t i l l e x c l u d e any nearby s p e c t r a l l i n e s . The l i g h t emerging from the monochromator was c o n v e r t e d t o e l e c t r i c a l c u r r e n t by a P h i l l i p s 150 CVP P h o t o m u l t i p l i e r o p e r a t e d a t a p p r o x i m a t e l y 1500 v o l t s and c o o l e d by d r y i c e . Electromagnet Stop Absorption Tube -Geissler Tube (Source) Hollow Cathode Light | Photo-t r a n s i s t o r '— Chopping Wheel ( f c = 990 Hz) N i c o l L2 Monochramator Prism Quarter Wave Plate Lock-In A m p l i f i e r Narrow Band A m p l i f i e r Phase Sens. Detector Integrator Chart Recorder Photo- m u l t i p l i e r ' F i g . 4 Experimental Arrangement -32- E. E l e c t r o n i c D e t e c t i o n C o n d i t i o n s i n t h e a b s o r p t i o n tubes f l u c t u a t e d , c a u s i n g f l u c t u a t i o n s both i n the r a d i a t i o n e m i t t e d and the a b s o r p t i o n s t r e n g t h . I n o r d e r t o a c h i e v e a s a t i s f a c t o r y s i g n a l t o n o i s e r a t i o i t was n e c e s s a r y t o employ phase s e n s i t i v e d e t e c t i o n and s i g n a l i n t e g r a t i o n . The p h o t o m u l t i p l i e r s i g n a l was sent t o a P r i n c e t o n A p p l i e d R esearch L o c k - I n A m p l i f i e r (Model 120). E s s e n t i a l l y t h i s d e v i c e i s a narrow band a m p l i f i e r tuned t o the chopper f r e q u e n c y of 990 Hz f o l l o w e d by a phase s e n s i t i v e d e t e c t o r . A s i g n a l , produced by the chopping wheel w i t h a l i g h t and a p h o t o - s e n s i t i v e t r a n s i t o r s u p p l i e d t h e phase r e f e r e n c e . The d.c. s i g n a l produced was f e d t o an RC i n t e g r a t i n g network ( i n c o r p o r a t e d i n the Lock-Kin A m p l i f i e r ) . Time c o n s t a n t s from 0.3 sec t o 3 sec were employed depending - upon the n o i s e e n c o u n t e r e d . The o u t p u t was m o n i t o r e d on a H e a t h k i t C h a r t Recorder (Model EUW - 20A). -33- CHAPTER IV EXPERIMENTAL PROCEDURE The o p t i c a l _ s y s t e m was i n i t i a l l y a l i g n e d on the beam of a c o n t i n u o u s He-Ne l a s e r shone i n t o the e x i t s l i t of the monochromator. F i n a l a l i g n m e n t was a c c o m p l i s h e d by minor adj u s t m e n t s t o the source p o s i t i o n , the a b s o r p t i o n tube p o s i t i o n , and t h e p o s i t i o n of the l e n s L2 such t h a t a maximum s i g n a l was o b t a i n e d . The d i r e c t i o n of the f r e q u e n c y s h i f t ( the s i g n i n e q u a t i o n X I I ) was determined by s u b s t i t u t i n g a source of n a t u r a l neon. The presence of the Ne22 i s o t o p e caused an asymmetry i n the t r a n s m i s s i o n curve from which the d i r e c t i o n of the s h i f t c o u l d be deduced. Each t r a n s m i s s i o n curve was o b t a i n e d by v a r y i n g the e l e c t r o m a g n e t c u r r e n t m o n o t o n i c a l l y and i n d i s c r e t e s t e p s . For each c u r r e n t v a l u e , and hence each source f r e q u e n c y , the t r a n s m i t t e d l i n e i n t e n s i t y was measured both w i t h the a b s o r b i n g d i s c h a r g e s w i t c h e d on and o f f . The r a t i o n of t h e s e two i n t e n s i t i e s y i e l d s the f r a c t i o n a l t r a n s m i s s i o n t . The o source f r e q u e n c y was o b t a i n e d by c o n v e r t i n g the e l e c t r o m a g n e t c u r r e n t v a l u e t o t h e c o r r e s p o n d i n g magnetic f i e l d s t r e n g t h u s i n g the magnet c a l i b r a t i o n and th e n s u b s t i t u t i n g i n t o e q u a t i o n X I I . W i t h each a b s o r p t i o n tube the t r a n s m i s s i o n c u r v e s were o b t a i n e d f o r a range of a b s o r p t i o n s t r e n g t h s by v a r y i n g the a b s o r p t i o n tube c u r r e n t from experiment t o ex p e r i m e n t . - 3 4 - CHAPTER V METHOD OF ANALYSIS A. C h o i c e of Model The shape of the a b s o r p t i o n l i n e cannot be d i r e c t l y o b t a i n e d from a t r a n s m i s s i o n c u r v e . I t i s n e c e s s a r y t o con s i d e r - models i n wh i c h the e x a c t p r o f i l e s of the source and the a b s o r b e r are s p e c i f i e d and from t h e s e t o compute t h e o r e t i c a l t r a n s m i s s i o n c u r v e s . The model wh i c h produces the c l o s e s t a p p r o x i m a t i o n t o the e x p e r i m e n t a l r e s u l t i s t h e n c o n s i d e r e d t o d e s c r i b e the a b s o r p t i o n l i n e . U n f o r t u n a t e l y t h i s p rocedure may not y i e l d a unique r e s u l t . However, i f i t be assumed t h a t the shape of the a b s o r p t i o n l i n e does not change as the a b s o r p t i o n s t r e n g t h k Q i s varied., (by a l t e r i n g the a b s o r b e r c u r r e n t ) , t h e n the v a r i a t i o n of the t r a n s m i s s i o n p r o f i l e s w i t h a b s o r p t i o n s t r e n g t h o f f e r s an a d d i t i o n a l c o n s t r a i n t on the model. T h i s e n a b l e s a c h o i c e t o be made from an i n i t i a l s e t of models. The s p e c t r a l l i n e s of source and abs o r b e r were b o t h c o n s i d e r e d t o be d e s c r i b e d by V o i g t p r o f i l e s . T h e i r G a u s s i a n h a l f w i d t h s were assumed t o r e s u l t s o l e l y from D o p p l e r b r o a d e n i n g . S i n c e t h e G e i s s l e r tube c a p i l l a r y was s l i g h t l y warmer than the a b s o r p t i o n tube and s i n c e b oth were warmer than room t e m p e r a t u r e , i t c o u l d be assumed: (b) T > 300 ° K -35- where T and T are t h e source and a b s o r b e r s a tem p e r a t u r e s r e s p e c t i v e l y . The L o r e n t z i a n h a l f w i d t h s were assumed t o r e s u l t e n t i r e l y from p r e s s u r e broadening.. C o n s e q u e n t l y the l i n e s of the 2 T o r r p r e s s u r e a b s o r b e r c o u l d be assumed t o have the same L o r e n t z i a n h a l f w i d t h ( A3^s ) as t h e s o u r c e . The source was c o n s i d e r e d f u r t h e r broadened by s e l f a b s o r p t i a n . For an i n t r i n s i c V o i g t shape S ( / -7{ ) the s e l f absorbed shape was t a k e n as : I i O 7 - ^ ) o< 1 - ex.p{ - K-S(^-Ti)} T h i s r e s u l t s from e q u a t i o n IX under t h e assumption t h a t jitf-tl) and k(P-%) have the same f r e q u e n c y dependence. The h i g h e r p r e s s u r e a b s o r b e r s were assumed t o have the same te m p e r a t u r e as the 2 T o r r p r e s s u r e a b s o r b e r s i n c e t h e i r t ubes were not n o t i c e a b l y warmer d u r i n g o p e r a t i o n t h a n the 2 T o r r t u b e . The t r a n s m i s s i o n c u r v e s f o r t h e s e a b s o r b e r s p r o v i d e a f u r t h e r t e s t f o r t h e models. B. S p e c i f i c P r o c e d u r e (1) An assignment of T s, T g, A ^ s , and K was made. (2) The a b s o r p t i o n s t r e n g t h k(O)./ was v a r i e d u n t i l a l i n e c e n t r e t r a n s m i s s i o n t 0 of 0.33 was o b t a i n e d . (3) The f u l l t r a n s m i s s i o n curve was c a l c u l a t e d , p l o t t e d , and t h e n compared w i t h the e x p e r i m e n t a l r e s u l t s f o r the 2 T o r r a b s o r b e r i n which t 0 e q u a l l e d 0.33. (4) The parameters (T , T a, A ^ s , K) were v a r i e d u n t i l -36- an a c c e p t a b l e f i t was o b t a i n e d . (5) T r a n s m i s s i o n c u r v e s f o r t = 0.16 and t Q = 0.53 were th e n c a l c u l a t e d f o r t h e s e parameters and compared t o the c o r r e s p o n d i n g e x p e r i m e n t a l r e s u l t s (see F i g u r e 8 ) . (6) A graph of t r a n s m i s s i o n h a l f w i d t h ( A t ) v e r s u s t was computed f o r a range of v a l u e s of the abs o r b e r L o r e n t z i a n h a l f w i d t h . These were th e n compared w i t h the e x p e r i m e n t a l r e s u l t s f o r a l l t h r e e p r e s s u r e s (see F i g u r e 1 0 ) . (7) F i n a l l y t r a n s m i s s i o n c u r v e s f o r the i n d i c a t e d a b s o r b e r L o r e n t z i a n h a l f w i d t h s of the 50 T o r r and 100 T o r r p r e s s u r e a b s o r b e r s were computed f o r t = 0.33 and compared t o the c o r r e s p o n d i n g e x p e r i m e n t a l r e s u l t s (see F i g u r e 9 ) . By r e p e a t e d t r i a l and e r r o r a s e t of parameters (T_, T , AJ> , K) was o b t a i n e d which s a t i s f i e d a l l t h e s e checks and is ' t e s t s . In a d d i t i o n a L o r e n t z i a n h a l f w i d t h was t h e r e b y a s s i g n e d f o r each a b s o r b e r p r e s s u r e . -37- CHAPTER VI RESULTS A. D e t e c t i o n of Broadening Broadening can be d e t e c t e d by comparing the t r a n s m i s s i o n c u r v e s f o r a b s o r p t i o n tubes of d i f f e r e n t f i l l i n g p r e s s u r e s . In cases where the l i n e c e n t r e t r a n s m i s s i o n s t are e q u a l such o n comparisons c l e a r l y demonstrate the p r e s s u r e b r o a d e n i n g of the a b s o r p t i o n l i n e . F i g u r e s 5, 6, and 7 on the next t h r e e pages show e x p e r i m e n t a l r e s u l t s f o r t 0 = 0.16, 0.33, and 0.53 r e s p e c t i v e l y . I n terms of t r a n s m i s s i o n curve h a l f w i d t h s ( A t ) t h e s e r e s u l t s are summarized below: t o At(mK) 2 T o r r 50 T o r r 100 T o r r 0.16 106 123 144 0.33 91 109 132 0.53 87 98 121 Width v a r i a t i o n s l e s s than t h o s e observed here c o u l d s t i l l be d e t e c t e d . E x p e r i e n c e i n d i c a t e d t h a t c u r v e s w i t h a f i f t h of such w i d t h d i f f e r e n c e s c o u l d s t i l l be unambiguously d i s t i n g u i s h e d . I n s e c t i o n C f o l l o w i n g i t w i l l be seen t h a t from 2 T o r r t o 100 T o r r t h e r e was an i n c r e a s e i n t h e L o r e n t z i a n h a l f w i d t h of the a b s o r b e r s of a p p r o x i m a t e l y 45 mK. Hence stu d y of the t r a n s m i s s i o n c u r v e s would enable an i n c r e a s e i n the a b s o r b e r h a l f w i d t h of as l i t t l e as 5 mK t o be d e t e c t e d . c o •H tn w •H £ fO u H 1—1 03 C O •H -p b 03 1.0 0.9 t 0.8 -h 0.7 0.6 0.5' 0.4 0.3 0.2 f 0.1 0 o b o. o b' g X v o ^ X ° x o o X X X o 6 ~e>—sr 9 0 * G O ° • X * O ° o X o a P = 2 T o r r x P = 50 T o r r o P = 100 T o r r -250 -200 -150 -100 -50 • % +50 +100 Source S h i f t from L i n e Centre- (mK) F i g . 5 T r a n s m i s s i o n Curves f o r D i f f e r e n t P r e s s u r e s ( t 0 = 0.16) -150 +200 +250 1 . 0 o a o 0.8 i 0.6 + 0.44- 0 . 3 f 0.2 + -250 o " X <» ° X X o • Q X X o • • I ft x x * A X .X o 0 >; o o 9 ' ° X o • * o X o • P = 2 T o r r x p = 50 T o r r o p = 100 T o r r -200 -150 -100 -50 14 +50 +100 +150 ' Source S h i f t from L i n e C e n t r e (mK) F i g . 6 T r a n s m i s s i o n Curves f o r D i f f e r e n t P r e s s u r e s ( t Q = 0.33) -280 +250 F r a c t i o n a l T r a n s m i s s i o n H n CO D 01 3 H- 01 W H- O O C fi < CD in H - , O H a H- l-h i-h CD fi fD D r f TJ fi CD O) cn C fi CD O) O O CJl OJ O ro CJi 0 4 - ro o o H - 1 cn • o 1 H crr 00 o o c fi o CD I CO o' ZT H- t-h c+ fi O 3 3 + CD CH O. O CD c+ fi CD + 3 O + 1—1 CJl + o + ro o o + ro CJl o o ro o -+- o 4 - o o o o —J o co o vO o TJ TJ II II II t—1 CJl ro o O o H H o H O fi O fi fi fi fi fi o e oo 0 ej O X o > » o Xo 0 X o o x © O X © o X » X » O £c 0 * O X © O X • o X o X o O X o O X » 0 X e o >c© — 0 X© 0 X© oy O 9 0X o © Cv- "0t7- -41- B. D e t e c t i o n of S h i f t There i s a s l i g h t but u b i q u i t o u s asymmetry of the t r a n s m i s s i o n c u r v e s w i t h r e s p e c t t o the d e s i g n a t e d z e r o f i e l d - z e r o s h i f t p o s i t i o n . However the c u r v e s are a l l more or l e s s symmetric about an o r d i n a t e of + 4 mK. There was no d i s c e r n a b l e v a r i a t i o n of t h i s o f f s e t w i t h p r e s s u r e . As a r e s u l t i t must be c o n c l u d e d t h a t no s i g n i f i c a n t p r e s s u r e s h i f t has been d e t e c t e d . Any r e a l s h i f t due t o p r e s s u r e must have been a t most l e s s t h a n 4 mK f o r the 100 T o r r absorber.. Such m i n i m a l p r e s s u r e s h i f t , i n d i sagreement w i t h the impact t h e o r y f o r a van der Waals i n t e r a c t i o n , i s c o n s i s t e n t w i t h the r e s u l t s of S m i t h ( 1 4 ) . The l i n e c e n t r e t r a n s m i s s i o n , t , was t a k e n on the a x i s o of symmetry/in each c a s e . C. L i n e Shape D e t e r m i n a t i o n As a r e s u l t of the a n a l y s i s by m o d e l l i n g (as d e s c r i b e d i n C h apter V s e c t i o n B ) , the parameters of the model of b e s t f i t a r e : Source A b s o r b e r ( s ) = 50 mK (=f> T = 360 °K) s ' = 6 mK ( s o u r c e V o i g t A = 0.12) A ^ „ = 48 mK (=• T = 325 °K). K = 1.5 The L o r e n t z i a n h a l f w i d t h s of the a b s o r b e r s , as c o n c l u d e d -42- from t h e t v e r s u s A t curves (see F i g u r e 1 0 ) , are t a b l e d below: P r e s s u r e ( T o r r ) L\VL* (mK) V o i g t A 2 7 0.14 50 23 0.48 100 48 1.00 The comparison of t h e o r e t i c a l and e x p e r i m e n t a l t r a n s m i s s i o n c u r v e s f o r p r e s s u r e s of 2 T o r r and 100 T o r r are d i s p l a y e d i n F i g u r e s 8 and 9 r e s p e c t i v e l y . F i g u r e 10 shows the t h e o r e t i c a l c u r v e s f o r l i n e c e n t r e t r a n s m i s s i o n v e r s u s h a l f w i d t h f o r the model of b e s t f i t , w i t h the e x p e r i m e n t a l r e s u l t s a l s o d i s p l a y e d . I t was p r i m a r i l y from t h i s curve t h a t the assignment of L o r e n t z i a n h a l f w i d t h s f o r the h i g h e r p r e s s u r e a b s o r b e r s was made. D. Rate of P r e s s u r e Broadening -•Comparison w i t h Theory The r e s u l t s t a b u l a t e d above may most e a s i l y be compared with, t h e o r y by means of a ' r a t e of p r e s s u r e b r o a d e n i n g ' graph - see F i g u r e 11 - i n which the a b s o r b e r L o r e n t z i a n h a l f w i d t h i s p l o t t e d a g a i n s t p r e s s u r e (and d e n s i t y ) . The d a t a are i n s u f f i c i e n t t o p e r m i t c o n c l u s i o n s r e g a r d i n g the l i n e a r i t y of t h i s c u r v e . However, assuming a l i n e a r r e l a t i o n s h i p p a s s i n g t h r o u g h the o r i g i n (as p r e d i c t e d by the impact t h e o r y ) then the b e s t s t r a i g h t l i n e has a s l o p e : F r a c t i o n a l T r a n s m i s s i o n F r a c t i o n a l Transmission o o o ' o o i ro ot- H 1 OJ ro D o CD Cr 3 if) (Si P- 1 O h-• CJl O" O C M < fD 1 1.0 0.9 + 0.8 + 0.7 0.6 o.4 + 0.3 0.2 0.1 + V o i g t A = 0 ( a b s o r b e r ) — Theory(model of b e s t f i t ) » P = 2 T o r r x P = 50 T o r r o P = 100 T o r r 10 70 80 90 100- 110 120 130 140 150 T r a n s m i s s i o n Curve H a l f Width (mK) F i g . 10 T r a n s m i s s i o n H a l f Width v e r s u s T r a n s m i s s i o n (Theory and E x p e r i m e n t ) 160 -46- = 1.6-10 mK cm 3 n B o t h e s t i m a t e s c a l c u l a t e d i n the t h e o r y (Chapter I I , s e c t i o n C ) are d i s p l a y e d as w e l l . I t can be seen t h a t the e x p e r i m e n t a l r e s u l t s show a r a t e of p r e s s u r e b r o a d e n i n g n e a r l y 50 % g r e a t e r t h a n t h a t p r e d i c t e d by t h e o r y . However t h e r e i s c l o s e agreement w i t h the s e m i - e m p i r i c a l r a t e d e r i v e d * from the r e s u l t s of S m i t h ( 1 4 ) . E. V a l i d i t y of R e s u l t s ( 1 ) R e l i a b i l i t y : S i n c e the r e s u l t s are d e r i v e d t h r o u g h a complex p r o c e s s of p r o f i l e a n a l y s i s and parameter v a r i a t i o n , e r r o r e s t i m a t e s are d i f f i c u l t and somewhat u n c e r t a i n . The e r r o r e s t i m a t e s shown are p r i m a r i l y based on s e l f - c o n s i s t e n c y . I n matching e x p e r i m e n t a l and t h e o r e t i c a l t r a n s m i s s i o n c u r v e s the f i t t i n g e r r o r s are q u i t e s m a l l s i n c e t h e c u r v e s are so s i m i l a r . V a r i a t i o n of the a b s o r b e r V o i g t A parameter by more t h a n - 0.05 d i s t o r t e d t h e shape of the t h e o r e t i c a l c urve s u f f i c i e n t l y t o cause r e j e c t i o n of the f i t . S i m i l a r l y , v a r i a t i o n of the D o p p l e r h a l f w i d t h a s s i g n e d t o the a b s o r b e r by more t h a n t 2 mK a l t e r e d the w i d t h of the t h e o r e t i c a l c urve enough t o make the l a c k of f i t a p p a r e n t . Moreover v a r i a t i o n s o f ' t h e s e two parameters c o u l d not be made a l t o g e t h e r i n d e p e n d e n t l y , f o r d e c r e a s e s i n the a s s i g n e d D o p p l e r w i d t h would e v e n t u a l l y n e c e s s i t a t e c o n c u r r e n t i n c r e a s e s i n the a s s i g n e d V o i g t A parameter, e t c . As a r e s u l t the u n c e r t a i n t y -47- P r e s s u r e D e n s i t y P i g . 11 Rate of P r e s s u r e B r o a d e n i n g -48- i n t h e a s s i g n e d a b s o r b e r L o r e n t z i a n h a l f w i d t h i s t h e r e b y p r o b a b l y no more tha n i 4 mK. From the t r a n s m i s s i o n v e r s u s h a l f w i d t h r e l a t i o n (see F i g u r e 10) upon which the f i n a l e s t i m a t e s were based t h e r e i s a range of V o i g t A parameters (and hence L o r e n t z i a n h a l f w i d t h s ) spanned by the e x p e r i m e n t a l p o i n t s . P r e s s u r e ( T o r r ) A ^ (mK> (minimum) (mK) (maximum) (mK) 2 7 2.5 10.5 50 23 20.5 26.0 100 48 46.0 49.5 These v a r i a t i o n s , i n c o n j u n c t i o n w i t h the f i t t i n g e r r o r s d e s c r i b e d above, were used as the b a s i s f o r a s s i g n i n g the c o n f i d e n c e l i m i t s d i s p l a y e d i n F i g u r e 11. (2) S y s t e m a t i c E r r o r s : S i n c e a l l the t r a n s m i s s i o n c u r v e s showed the same s l i g h t s h i f t of a p p r o x i m a t e l y 4 mK, which was moreover independent of p r e s s u r e , an ap p a r a t u s e r r o r i s s u s p e c t e d . T h i s + 4 mK o f f s e t i s thought t o have o r i g i n a t e d i n a f a i l u r e of the s c a n n i n g e l e c t r o m a g n e t t o f o l l o w p e r f e c t l y i t s c a l i b r a t i o n c u r v e . T h i s c o n d i t i o n r e s u l t s from i m p e r f e c t r e g u l a t i o n of the e l e c t r o m a g n e t c u r r e n t i n the f a c e of v a r i a t i o n s of the c o i l r e s i s t a n c e due t o h e a t i n g . A f t e r the c u r r e n t was r e v e r s e d (the t r a n s i t i o n from n e g a t i v e t o p o s i t i v e s h i f t ) i t was t o -49- have been m o n o t o n i c a l l y i n c r e a s e d i n .order t o f o l l o w the c a l i b r a t i o n c u r v e . However a f t e r each c u r r e n t i n c r e m e n t (0.2 amp) the c o i l s warmed f u r t h e r and t h e i r r e s i s t a n c e i n c r e a s e d . There was a tendency f o r the c u r r e n t t o then d e c r e a s e v e r y s l i g h t l y , i n s p i t e of the , r e g u l a t i o n p r o v i d e d i n the e l e c t r o m a g n e t c u r r e n t power s u p p l y . T h i s would have t a k e n the magnet o f f the assumed c a l i b r a t i o n c u rve and s l i g h t l y i n t o the ' i n t e r i o r ' of the h y s t e r i s i s l o o p . The a c t u a l magnetic f i e l d would be l e s s than t h a t assumed. T h i s would r e s u l t i n an e x p a n s i o n of the f r e q u e n c y s c a l e f o r t h i s h a l f of the t r a n s m i s s i o n c u r v e i n t h a t the a c t u a l f i e l d (and Zeeman s h i f t ) are l e s s t h a n t h o s e a s s i g n e d . As a r e s u l t the c e n t r e of g r a v i t y of the t r a n s m i s s i o n curve would be d i s p l a c e d t o t h e h i g h f r e q u e n c y s i d e (see F i g u r e 12). I n a d d i t i o n t o p r o d u c i n g the apparent s h i f t , t h i s e f f e c t must a l s o have caused a p p a r e n t l y w i d e r t r a n s m i s s i o n c u r v e s . No a t t e m p t , however, was made t o c o r r e c t f o r t h i s p o s s i b l e e r r o r and t h e o r e t i c a l p r o f i l e s were f i t t e d t o the c e n t r e of symmetry. The r a t e of b r o a d e n i n g graph ( F i g u r e 11) r e v e a l s what i s p o s s i b l y the e f f e c t of a second source of s y s t e m a t i c e r r o r . The L o r e n t z i a n w i d t h a s s i g n e d t o the 2 T o r r a b s o r b e r i s a p p a r e n t l y too g r e a t s i n c e a l l p r e s s u r e b r o a d e n i n g t h e o r i e s p r e d i c t h a l f w i d t h s d i r e c t l y p r o p o r t i o n a l t o p r e s s u r e (and d e n s i t y ) . . In the l i m i t of z e r o p r e s s u r e the L o r e n t z i a n h a l f w i d t h s h o u l d approach th e n a t u r a l l i n e w i d t h (here o n l y — 0.6 mK). 1 . 0 - - / , ' ': / • i: i: t • i • ' > i • I • »: i • a c t u a l c u r v e apparent curve due t o i m p e r f e c t r e g u l a t i o n F i g . 12 E f f e c t of C u r r e n t R e g u l a t i o n F a i l u r e -51- S i n c e t h i s i s n e g l i g i b l e t h e n f o r the 2 T o r r a b s o r b e r the expected L o r e n t z i a n w i d t h s h o u l d be the van der Waals w i d t h of ^ 1 mK o n l y . - o u t s i d e the c o n f i d e n c e l i m i t s a s s i g n e d ! The o r i g i n o f . t h i s a p p a r e n t l y e x c e s s i v e L o r e n t z i a n w i d t h i s i n a l l p r o b a b i l i t y unaccounted b r o a d e n i n g of the s o u r c e . S e v e r a l minor b r o a d e n i n g e f f e c t s which.were n e g l e c t e d a r e : 1. magnetic f i e l d i n h o m o g e n e i t i e s (see Chapter I I ).' 2. a l t e r a t i o n of the source l i n e shape as t h e s c a n n i n g magnetic , f i e l d i s v a r i e d . 3. v a r i a t i o n s i n the s e l f a b s o r p t i o n r e s u l t i n g from t h e i n h o m o g e n e o u s ' c y l i n d e r i c a l n a t u r e of t h e s o u r c e , ( i n c o n t r a s t t o the homogeneous, p l a n e - p a r a l l e l source assumed i n the t h e o r y ) I t has .been p o i n t e d out by van de H u l s t and R e e s i n c k (16) t h a t "the c o m b i n a t i o n of many independent b r o a d e n i n g e f f e c t s tends t o y i e l d a V o i g t p r o f i l e " . The source l i n e s h o u l d t h u s have had ' a V o i g t type p r o f i l e , as was assumed. However the L o r e n t z i a n component s h o u l d p r o p e r l y have been g r e a t e r t h a n the L o r e n t z i a n h a l f w i d t h a s c r i b e d t o p r e s s u r e b r o a d e n i n g a l o n e . I n t h e a n a l y s i s the source and' t h e 2 T o r r a b s o r b e r were assumed t o have had e q u a l L o r e n t z i a n h a l f w i d t h s s i n c e t h e i r p r e s s u r e s were e q u a l . Thus an exaggerated. L o r e n t z i a n h a l f w i d t h must have been a s c r i b e d t o t h e 2 T o r r a b s o r b e r i n o r d e r t o f i t the t r a n s m i s s i o n c u r v e s . Such an e r r o r i n t h e source l i n e shape w i l l a l s o c r e a t e e r r o r s in':the r e s u l t s f o r the h i g h e r p r e s s u r e a b s o r b e r s . However -52- f o r t h e s e i t was found t h a t the L o r e n t z i a n w i d t h s of the d e r i v e d l i n e p r o f i l e s were l e s s a f f e c t e d by changes i n the assumed source shape t h a n were th o s e of the 2 T o r r a b s o r b e r . Hence, as might be a n t i c i p a t e d from the t h e o r y (see. e q u a t i o n IVA), the r e s u l t s f o r the h i g h e r p r e s s u r e a b s o r b e r s would have been l e s s a f f e c t e d by such an e r r o r i n t h e source l i n e shape. -53- CHAPTER V I I CONCLUDING DISCUSSION The Zeeman s c a n n i n g t e c h n i q u e has shown i t s e l f w e l l s u i t e d t o the d e t e r m i n a t i o n of narrow s p e c t r a l l i n e p r o f i l e s . The a b i l i t y t o d e t e c t d i f f e r e n c e s as low as 5 mK (or 2 mA° ) i n a b s o r p t i o n l i n e w i d t h may be c o n s i d e r e d t o r e p r e s e n t a r e s o l u t i o n of — 3*10^, w h i c h i s d i f f i c u l t t o o b t a i n o t h e r w i s e except w i t h s o p h i s t i c a t e d s p e c t r o g r a p h i c t e c h n i q u e s . By comparing a b s o r b e r s a t d i f f e r e n t p r e s s u r e s the e x t e n t of p r e s s u r e b r o a d e n i n g f o r Ne"\6074.3 A° has been determined f o r glow d i s c h a r g e c o n d i t i o n s . I t i s apparent from t h e r e s u l t s t h a t even a t p r e s s u r e s as low as a few T o r r t h i s l i n e w i l l e x h i b i t a non-Gaussian p r o f i l e . A t 10 T o r r and 325 °K the Ne 'X6074.3 A 0 l i n e shows a V o i g t A parameter of A = 0.1 ( i n t e r - p o l a t e d from F i g u r e 1 1 ) . The p r e s s u r e b r o a d e n i n g c o u l d be c a l c u l a t e d q u i t e w e l l from t h e o r y . T h i s i s p r o b a b l y t r u e a l s o f o r o t h e r l i n e s of the neon t r i p l e t system w h i c h are u n a f f e c t e d by resonance e f f e c t s . Those neon l i n e s a f f e c t e d by resonance broa d e n i n g l i k e l y e x h i b i t V o i g t A v a l u e s even g r e a t e r than Ne'X6074.3 A 0 under s i m i l a r c o n d i t i o n s . Thus, th e c a s u a l assumption of G a u s s i a n p r o f i l e s f o r neon glow d i s c h a r g e l i n e s i s i n e r r o r . Where such an assumption • i s t o be made the^consequences of the p r e s s u r e b r o a d e n i n g s h o u l d f i r s t be checked. -54- Close agreement f o r the r a t e of pressure broadening has been obtained w i t h values c a l c u l a t e d u s i n g the impact theory w i t h a van der Waals i n t e r a c t i o n p o s t u l a t e d . The experimental value of = 1.6*10 mK cm agrees w i t h the value d e r i v e d from the r e s u l t s of Smith (14) to more or l e s s w i t h i n the assigned confidence l i m i t s . The more t h e o r e t i c a l value i s l i k e w i s e e n c o u r a g i n g l y c l o s e - to w i t h i n 50 %. Such good agreement would appear to j u s t i f y the use of Unsold's approximation (equation V I I I ) . The l a c k of observed s h i f t , c o n s i s t e n t w i t h the r e s u l t s of Smith (14), confirms the f a i l u r e of the van der Waals i n t e r a c t i o n to p r o p e r l y d e s c r i b e the em i t t e r - p e r t u r b e r i n t e r a c t i o n i n t h i s i n s t a n c e . The i n c l u s i o n of a r e p u l s i v e term, as advocated by Hindmarsh, P e t f o r d , and Smith (15), i s e v i d e n t l y r e q u i r e d . Such a c o n s i d e r a t i o n f a l l s beyond the scope of the present work and would l i k e l y r e q u i r e a more accurate study of the s h i f t . T h i s i s one reason why an i n v e s t i g a t i o n of. one or two argon l i n e s by t h i s Zeeman scanning technique would be most i n t e r e s t i n g . Of course argon has a l s o been used i n glow d i s c h a r g e s f o r s i m i l a r experiments (19, 20) to those p r e v i o u s l y noted (1, 2) so t h e r e f o r e i t i s d e s i r e a b l e to check argon l i n e shapes as w e l l . In a d d i t i o n the r e s u l t s of Smith (14) i n d i c a t e t h a t argon behaves c l o s e l y to the p r e d i c t i o n s of the impact theory w i t h a van der Waals i n t e r a c t i o n . In p a r t i c u l a r the s h i f t to width r a t i o i s c l o s e -55- t o t h e 1:2.76 v a l u e p r e d i c t e d . Thus f o r h i g h e r p r e s s u r e s such as '50 or 100 T o r r the s h i f t s h o u l d be e a s i l y d e t e c t e d . An i n v e s t i g a t i o n i n argon, t h e n , o f f e r s an e x c e l l e n t o p p o r t u n i t y not o n l y t o check t h e s e l i n e shapes but t o a l s o f u r t h e r t e s t the Zeeman s c a n n i n g t e c h n i q u e and c o n f i r m Smith's f i n d i n g s i n t h e case of argon s e l f - p r e s s u r e b r o a d e n i n g and s h i f t . For f u t u r e work s e v e r a l improvements i n the Zeeman s c a n n i n g a p p a r a t u s can be s u g g e s t e d . The w i d t h of the sour c e l i n e i s analogous t o the a p p a r a t u s w i d t h of a s p e c t r o g r a p h or i n t e r f e r o m e t r i c system i n t h a t the source p r o f i l e i s f o l d e d w i t h t h a t of the a b s o r b e r t o produce the e x p e r i m e n t a l r e s u l t . I d e a l l y the source l i n e w i d t h s h o u l d be s i g n i f i c a n t l y l e s s than t h a t of the a b s o r b e r . Then, as suggested by the t h e o r y (see e q u a t i o n IVA)., the shape of the t r a n s m i s s i o n curve depends almost s o l e l y on t h e a b s o r b e r ' s l i n e shape. Such a s i t u a t i o n was not a c h i e v e d i n t h i s experiment but where i t was approached w i t h the 100 T o r r a b s o r b e r the r e s u l t s are more r e l i a b l e . At lower p r e s s u r e s the l i n e w i d t h s of both source and a b s o r b e r are p r i m a r i l y d e t e r m i n e d by D o p p l e r b r o a d e n i n g and are thus comparable. U n l e s s d r a s t i c c o o l i n g or some o t h e r means i s employed t o reduce t h e D o p p l e r w i d t h of the source the i d e a l narrow - source s i t u a t i o n i s u n r e a l i z a b l e . A l t e r n a t e l y , however, a p r e c i s e d e t e r m i n a t i o n of the source l i n e shape w i l l p e r m i t an a c c u r a t e measurement of the a b s o r b e r l i n e shape. T h i s c o u l d be a c c o m p l i s h e d by r e d u c i n g the source p r e s s u r e and o p t i c a l t h i c k n e s s so t h a t p r e s s u r e -56- b r o a d e n i n g and s e l f a b s o r p t i o n are e f f e c t i v e l y e l i m i n a t e d . Then D o p p l e r .broadening a l o n e would determine the source l i n e shape. These measures would i m p l y a l s o a source of low i n t e n s i t y , r e d u c i n g the s i g n a l - t o - n o i s e r a t i o and v e r y l i k e l y n e c e s s i t a t i n g a more e f f i c i e n t d e t e c t i o n system t h a n t h a t employed i n t h i s e x p e r i m e n t . In a d d i t i o n magnetic f i e l d inhomogeneity would have t o be f u r t h e r reduced to- guarantee the absence of any b r o a d e n i n g r e s u l t i n g t h e r e f r o m . W i t h such improvements the number of " f r e e " parameters t o be s a t i s f i e d i n t h e a n a l y s i s would be reduced and the r e s u l t s not o n l y more e a s i l y o b t a i n e d but a l s o more r e l i a b l e . •In v i e w of the e n c o u r a g i n g r e s u l t s o b t a i n e d i n t h i s experiment i t i s hoped t h a t f u t u r e work, w i t h the ap p a r a t u s f u r t h e r r e f i n e d , w i l l be c a r r i e d o u t . -57- BIBLIOGRAPHY (1) N o d w e l l , R., van A n d e l , H., & Robinson, A. : JQSRT 8 , p. 859 (1968). 2) Seka, W., & Curzon, F.': JQSRT 8 , p. 1147 (1968). 3) S t a n s f i e l d , B. : M.A.Sc. T h e s i s (U.B.C. - 1967). 4) B i t t e r , P l o t k i n , T i c h t e r , T e v i o t d a l e , & Young : Phys. Rev. 91 , p. 421 (1953). 5) H e i t l e r , W. : The Quantum Theory of R a d i a t i o n , O.U.P. ( 3 r d Ed. - 1959) S e c t i o n I , 4(pp. 25 - 3 4 ) . 6) H e i t l e r , W. : i b i d S e c t i o n V, 18(pp. 181 - 185). 7) Nodwel, R., van A n d e l , H., & Robin s o n , A. : i b i d p. 872. 8) E c k e r , G. & Z o l l e r . 0. : Phys. F I . 7 , p. 1996 (1964). 9) Griem, H. : Plasma S p e c t r o s c o p y , M c G r a w - H i l l (1964) T a b l e 4-5 10 11 12 13 14 15 16 17 18 19 20 I r w i n , J.C. : Ph.D. T h e s i s (U.B.C. - 1965). F o l e y , H. : Phys. Rev. 69 , p. 616 (1946). U n s o l d , A. : P h v s i k der Sternatmospharen , S p r i n g e r ( 2 n d Ed. - 1955). A l l e n , C.W. : A s t r o p h y s i c a l Q u a n t i t i e s , A t h l o n e ( 2 n d Ed. - 1963). S m i t h , G. : . P r o c . Roy. Soc. A297 , p. 288 (1967). Hindmarsh. P e t f o r d , & Smith' : P r o c .Roy .Soc. A297, p.296 (1967). Van de H u l s t & R e e s i n c k : App. J . 106 , p. 121 (1947). Young, C. : JQSRT 5 , p. 549 (1965). I n t e r n a t i o n a l C r i t i c a l T a b l e s V : M c G r a w - H i l l (1929) p . 4 1 8 f f . J a c o b s o n , T. : Ph.D. T h e s i s , (U.B.C. - 1969). Stockmayer, P. : M.Sc. T h e s i s (U.B.C. - 1969). -58- APPENDIX I F l o w c h a r t : Computer C a l c u l a t i o n of T r a n s m i s s i o n Curves * ( a ) START I Read , AVM , &T?L% , K, A, t ( C a l c u l a t e and s t o r e the a b s o r b e r p r o f i l e (VGA(J)) f o r an o r d i n a t e s p a c i n g of 2.5 mK C a l c u l a t e and s t o r e the source p r o f i l e f o r an o r d i n a t e s p a c i n g of 2.5 mK I n t e g r a t e the source t o compute S{JZ) k Q i = 10.0 Compute 0{2i) and t V a r y k Q^ by i t e r a t i v e h a l v i n g NO * ( b ) * ( c ) * ( c ) *(a) *(d) -59- r Compute and s t o r e the ab s o r b e r f u n c t i o n : ex.p{ -kJ(VGA{j))} Compute the t r a n s m i s s i o n f o r a l l source f r e q u e n c i e s r W r i t e and p l o t the t r a n s m i s s i o n c u r v e . ^STOP *Notes: (a) The c a l c u l a t i o n s were performed on an IBM 7044 computer * (b) A i s the V o i g t A parameter f o r the a b s o r b e r ; o t h e r symbols are as d e f i n e d i n Cha p t e r s I I and V. (c) The p r o f i l e i s c a l c u l a t e d u s i n g the VOIGT s u b r o u t i n e (17) f o r each s p e c i f i c f r e q u e n c y . '(d) The i n t e g r a t i o n was performed by use of a composite Newton - Cotes f o r m u l a of o r d e r 4 ( c l o s e d ) i n 100 s t e p s from - 10 t o + 10 h a l f w i d t h s .

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 3 0
France 1 0
China 1 22
City Views Downloads
Ashburn 2 0
Redmond 1 0
Unknown 1 1
Beijing 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0084802/manifest

Comment

Related Items