UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Spark spectra of thallium and lead Gutmann, Francis 1969

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1969_A1 G88.pdf [ 15.07MB ]
Metadata
JSON: 831-1.0084770.json
JSON-LD: 831-1.0084770-ld.json
RDF/XML (Pretty): 831-1.0084770-rdf.xml
RDF/JSON: 831-1.0084770-rdf.json
Turtle: 831-1.0084770-turtle.txt
N-Triples: 831-1.0084770-rdf-ntriples.txt
Original Record: 831-1.0084770-source.json
Full Text
831-1.0084770-fulltext.txt
Citation
831-1.0084770.ris

Full Text

SPARK SPECTRA OF THALLIUM AND LEAD by ' ' FRANCIS GUTMANN B. S c , U n i v e r s i t y o f B r i t i s h C o l u m b i a , 195& M.Sc. U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1958 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n t h e D e p a r t m e n t o f PHYSICS We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d THE UNIVERSITY OF BR I T I S H A u g u s t , I969 COLUMBIA In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and Study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . The U n i v e r s i t y of°B Vancouver 8, Canada Department i ABSTRACT The atomic spectra of Thai 1 ium were exci ted and photographed in the spectral o region from 340 to 9000 A , using both an electrodeless discharge and a spark-in-Hel ium as l i g h t sources. The s ingle e lectron Rydberg ser ies have been extended in TI I I I . The ion iza t ion potent ia l of TI III and Pb IV was determined from hydrogenic terms and found to be 240773 +5 cm" 1 and 342438 + 5 cm" 1 respec t i ve ly . 3 The dipole p o l a r i z a b i l i t y of TI III was found to be 2.53 + .02 a^ and 3 of Pb IV 4.37 + .04 a Q . Using a l i ne l i s t previously obtained in th is laboratory, terms belonging to three electron conf igurat ion were estab-l ished in TI III and Pb IV. 9 The 5d ns ser ies was extended in TI IV and an ion iza t ion potent ia l of 412500 + 300 cm" 1 ar r ived a t . In TI IV and Pb V the two electron 9 9 9 8 2 conf igurat ions 5d 6d, 5d 5f , 5d 7p and 5d 6s were p a r t i a l l y establ ished o while a number of terms belonging to the complex 5d 6s6p conf igurat ion could be i den t i f i ed as w e l l . The analys is of TI II was extended by 10 2 completing the 5d 6p conf igurat ion and ident i fy ing a number of odd and even par i ty terms above the f i r s t i on iza t ion l i m i t . These were 10 9 2 9 2 9 2 ten ta t i ve ly assigned to the 5d 6p7p, 5d 6s 7s , 5d 6s 6d, 5d36s6p and the 5d^6p7s conf igurat ions. The number of c l a s s i f i e d TI III l i n e s , involved in th is extension of the term ana l ys i s , has increased from 247 to 579. In the TI IV spectrum the increase in c l a s s i f i e d l i nes has been from 35 to 308 l i n e s . 11 In lead spectra the increase in Pb IV has been from 134 l ines to 460, and in Pb V the corresponding increase i s from 200 to 303 l i n e s . i i i TABLE OF CONTENTS ' PAGE A b s t r a c t i T a b l e o f C o n t e n t s i j i L i s t o f T a b l e s 1 L i s t o f F i g u r e s t V Acknowledgement v ^ I n t r o d u c t i o n . i 1 A v e r a g e E n e r g y o f C o n f i g u r a t i o n 5 Lower E n e r g y L i m i t o f a C o n f i g u r a t i o n 8 R e l a t i v e Term E n e r g i e s w i t h i n a C o n f i g u r a t i o n 11 G r a p h i c a l Methods 12 Wa v e n i e c h a n i c a l Methods 13 C o n f i g u r a t i o n I n t e r a c t i o n 17 E x p e r i m e n t a l P r o c e d u r e 20 S i n g l e E l e c t r o n s e r i e s i n A u - I I s o e l e c t r o n i c Sequence 27 The 5d^n 3 l ^ n ? l 2 C o n f i g u r a t i o n s . jG E x t e n s i o n s i n t h e Term A n a l y s i s o f T I IV and Pb V 52 E x t e n s i o n i n t h e A n a l y s i s o f T I I I 65 C o n c l u s i o n 69 T a b l e 5 71 i v LIST OF TABLES TABLE PAGE :i 1 S c r e e n i n g and S p i n - O r b i t Coupling Parameters 29 2 Hydrogenic S e r i e s 36 3 Intermediate C o u p l i n g A n a l y s i s 5^  k 5d 1 0 6p 2 C o n f i g u r a t i o n 65 5 R e l a t i v e Term Values 71 6 C l a s s i f i e d L i n e s 95 7 I n t e n s i t y Scale V L I S T OF FIGURES PAGE 5 d 1 0 n s S e r i e s 28 5 d^°np S e r i e s 30 5 d 1 0 n d S e r i e s 32 5 d 9 ( 2 D „ i ) 6 s 6 p c z C o n f i g u r a t i o n irO 5 d. 9( 2D n x ) 6 s 6 p -1- 2 C o n f i g u r a t i o n 5 d 9 6 s 6 d 5d9 1 6 s 6 d I 2 C o n f i g u r a t i o n 4-5 C o n f i g u r a t i o n 5 d 9 6 P 2 C o n f i g u r a t i o n 48 5 d 9 6 s 7 s C o n f i g u r a t i o n 51 5 d 9 ( 2 D ) 6 d C o n f i g u r a t i o n 57 5 d 9 ( 2 D 1 I ) 6 d C o n f i g u r a t i o n 58 5 d 9 5 f C o n f i g u r a t i o n 60 5 d 8 6 s 6 p C o n f i g u r a t i o n 62 5 d 8 6 s 2 C o n f i g u r a t i o n 63 v i • ACKNOWLEDGEMENT I am g r e a t l y i n d e b t e d t o P r o f e s s o r A.M. C r o o k e r who s u g g e s t e d t h i s p r o j e c t and p r o v i d e d me w i t h u n f a i l i n g g u i d a n c e d u r i n g t h e c o u r s e o f t h i s work. I would l i k e a l s o t o e x p r e s s my g r a t i t u d e t o M e s s r s . T. L e e s and A. E r a s e r f o r t h e i r i n v a l u a b l e t e c h n i c a l h e l p as w e l l as t o many f e l l o w s t u d e n t s f o r t h e i r s t i m u l a t i n g d i s c u s s i o n s w h i c h f r e q u e n t e r r e s u l t e d , i n a b e t t e r a p p r e c i a t i o n o f t h e p r o b l e m s i n v o l v e d . 1 CHAPTER t  INTRODUCTION The work pres e n t e d here extends the a n a l y s i s of atomic s p e c t r a of n a t u r a l l y o c c u r i n g heavy elements namely Au, T l and Pb. These elements l i e i n a re g i o n of the p e r i o d i c t a b l e where s e v e r a l e l e c t r o n s may e a s i l y be e x c i t e d s i m u l t a n e o u s l y . Thus we de a l with atomic cores i n v o l v i n g 5 d 8 , 5 d 9 and 5d * ^  e l e c t r o n s , and the valence e l e c t r o n s are coupled to these cores to produce a great v a r i e t y of s t a t i o n a r y s t a t e s . Because of the m u l t i p l i c i t y of atomic cores these s p e c t r a are i n t e r m e d i a t e i n complexity between simple s p e c t r a i n v o l v i n g one core and valence e l e c t r o n s and the h i g h l y complex l a n t h a n i d e and a c t e n i d e s p e c t r a with a m u l t i p l i c i t y of core s t a t e s a l l , with approximately the same energy. In heavy elements s p e c t r a i t i s expedient to e x p l o i t modern computpr techniques to handle the complex data problems i n v o l v e d i n measuring and a n a l y s i n g these s p e c t r a . The atomic s p e c t r a of these heavy metals show a number of c h a r a c t e r i s t i c d i s t i n g u i s h i n g f e a t u r e s : 1- Many c o n f i g u r a t i o n s a r i s i n g i n the energy l e v e l diagram e x h i b i t some of the best examples of j - j c o u p l i n g and to some degree a l s o j - 1 or " p a i r c o u p l i n g " . 2 2- The e x c i t a t i o n o f an i n n e r c o r e e l e c t r o n i s a h i g h l y c o m p e t i t i v e p r o c e s s w i t h t h e e x c i t a t i o n o f t h e v a l e n c e e l e c t r o n . Hence a s t u d y o f t h e s e s p e c t r a forms a u s e f u l l i n k , between o p t i c a l and x - r a y s p e c t r a . 3- A s t u d y b.C t h e c o n f i g u r a t i o n s o f t h e s e e l e m e n t s s h o u l d f a c i l i t a t e t h e a n a l y s i s o f t h e e x t r e m e l y complex a c t i n i d e s p e c t r a by e x p e r i m e n t a l e v a l u a t i o n o f t h e S l a t e r i n t e g r a l s F and G (Coulomb and E x c h a n g e ) i n n e i g h b o u r i n g e l e m e n t s . A p p a r e n t i n t h i s s t u d y a r e a l s o c e r t a i n f e a t u r e s w h i c h were f r e q u e n t l y o b s e r v e d b e f o r e i n a t o m i c s p e c t r a . T h e s e a r e " i r r e g u l a r i t i e s " a r i s i n g p r i m a r i l y f r o m c o n f i g u r a t i o n i n t e r a c t i o n and d e t e c t e d i n t h e form o f " a n o m a l o u s " l i n e i n t e n s i t i e s , d o u b l e e l e c t r o n t r a n s i t i o n s , and e x c e s s i v e l i n e b r o a d e n i n g . These o b s e r v a t i o n s , a l t h o u g h o f t e n t o o complex t o a c c o u n t f o r q u a n t i t a t i v e l y g i v e a d d i t i o n a l i n s i g h t i n t o t h e s t r u c t u r e o f a t o m i c s p e c t r a . A l t h o u g h t h e i n i t i a l aim was t o c o n c e n t r a t e on a s t u d y o f t h e d i f f e r e n t s p e c t r a o f T h a l l i u m i t was soon r e a l i z e d t h a t due t o t h e g r e a t number o f s p e c t r a l l i n e s a p a r a l l e l s t u d y , and p o s s i b l e e x t e n s i o n s i n as many members o f t h e i s o e l e c t r o n i c s e q u e n c e as p o s s i b l e , would be d e s i r a b l e , and would f u r t h e r m o r e y e l d more r e l i a b l e r e s u l t s . W i t h t h i s i n mind some m i n o r e x t e n s i o n s were made i n t h e s p e c t r u m o f Au 1, and some more s i g n i f i c a n t e x t e n s i o n s i n t h e s p e c t r a o f Pb IV and Pb V. Thus i t was p o s s i b l e 3 to o b t a i n an o v e r a l l p i c t u r e of the energy l e v e l scheme throughout the i s o e l e c t r o n i c sequence. There has been r e l a t i v e l y l i t t l e experimental work clone... . r e c e n t l y i n extending the term a n a l y s i s of heavy metals. Observations i n the i n f r a red re g i o n of the s p e c t r a were made r e c e n t l y at the N a t i o n a l Bureau of Standards i n Washington but o u t s i d e of these there were no e x t e n s i v e , good wavelength measurements a v a i l a b l e f o r the s p e c t r a of these elements. Most of the known energy l e v e l s are based on measurements made some t h i r t y years ago. Improvements i n the a n a l y s i s of Au I and Au I I were attempted i n t h i s l a b o r a t o r y a l s o but only i n so f a r as to f a c i l i t a t e the a n a l y s i s of the spectrum of T h a l l i u m and Lead. Mr. J . Ehrhardt i s working p r e s e n t l y on an ext e n s i o n of the term s t r u c t u r e of Gold at the U n i v e r s i t y of C a l i f o r n i a ( B e r k e l e y ) . E l l i s and Sawyer (1936) have e s t a b l i s h e d a l l the b a s i c terms as w e l l as many s e r i e s members i n TI I I while the b a s i c terms of TI I I I were e s t a b l i s h e d by McLennan, McLay and Crawford (1929). Pattabhiramayya and Rao (1930) extended the e a r l i e r work but only one l e v e l was shown to be c o r r e c t . The unpublished Ph.D. t h e s i s of Convey(t9^0) p r e s e n t s the best summary of the TI I I I s p e c t r a l a n a l y s i s p r i o r to the p r e s e n t work. T a b l e d c o n t a i n s the observed energy l e v e l s of T l I I I as w e l l as the authors., i n i t i a l s . k - . Mack and Fromer (1935) found the 5 d 9 6 s and 5 d 9 6 p c o n f i g u r a t i o n i n T l I V , no extensions being made i n t h i s spectrum up u n t i l the p r e s e n t work. L y a l l (T 965) obtained a r e v i s e d and improved l i n e l i s t of Lead and extended the e a r l i e r a n a l y s i s of Pb IV. The a n a l y s i s of Pb V was c a r r i e d out by Schoepfle ( 1 9 3 6 ) and based on l i n e s observed by A r v i d s o n ( 1 9 3 2 ) . L. White ( 1 9 6 7 ) observed again the spectrum of Lead and improved the l i n e l i s t i n the f a r U.V. re g i o n by u s i n g a hig h e r q u a l i t y g r a t i n g as w e l l as a r e c e n t l y a c q u i r e d auto-matic Grant comparator. CHAPTER 2 THEORY B e c a u s e o f t h e c o m p l e x i t y o f t h e o b s e r v e d s p e c t r a some a s p e c t s o f t h e t h e o r y o f a t o m i c s p e c t r a must be u s e d i n i t i a l l y i n o r d e r t o f a c i l i t a t e s p e c t r a l a n a l y s i s . In g e n e r a l i t i s p o s s i b l e t o o b t a i n a f a i r amount o f i n f o r m a t i o n a b o u t t h e e n e r g y l e v e l s t r u c t u r e u s i n g r e l a t i v e l y s i m p l e m e t h o d s . T h e s e y i e l d h e l p f u l i n f o r m a t i o n a b o u t t h e f o l l o w i n g c h a r a c t e r i s t i c s o f a c o n f i g u r a t i o n . 1- a) The a v e r a g e e n e r g y ( o r c e n t e r o f g r a v i t y ) o f a c o n f i g u r a t i o n . b ) * The l o w e r e n e r g y l i m i t o f a c o n f i g u r a t i o n . 2- The s t r u c t u r e o r r e l a t i v e p o s i t i o n s o f e n e r g y l e v e l s w i t h i n a c o n f i g u r a t i o n . ] a ) Average ( o r c e n t e r o f g r a v i t y ) e n e r g y o f a c o n f i g u r a t i o n Methods d e s c r i b e d h e r e a r e p r i m a r i l y c o n c e r n e d w i t h one o r two e l e c t r o n c o n f i g u r a t i o n s . P r e d i c t i o n c an be made t o a c e r t a i n d e g r e e o f a c c u r a c y by t h e f o l l o w i n g e q u a t i o n R J 2 n * 2 . . . . . ( 1 ) where n* i s t h e e f f e c t i v e p r i n c i p a l quantum number, T t h e a b s o l u t e term v a l u e and ^ i s t h e c h a r g e on t h e n u c l e u s ( i n u n i t s o f p r o t o n c h a r g e ) as seen by t h e e x c i t e d e l e c t r o n , a s s u m i n g 100% e f f e c t i v e s c r e e n i n g by e a c h o f t h e i n n e r e l e o t r o n s . 6 -Equation ( 1 ) i s d e r i v e d from a n o n - r e l a t i v i s t i c theory, assuming a c e n t r a l f i e l d approximation. Because n £ n , as one goes to hi g h e r s e r i e s members, n w i l l i n c r e a s e by increments of ( i + J*) where ,d"-^<C 1. I t was shown a l r e a d y by SchrBdinger ( 1 9 2 1 ) that i f , i n the case of s i n g l e - e l e c t r o n ns s e r i e s , an o r b i t i s assumed to c o n s i s t of a p e n e t r a t i n g and a n o n - p e n e t r a t i n g p a r t , then -0 w i l l approach a constant v a l u e . T h i s behaviour of n* can be shown q u a l i t a t i v e l y to be true a l s o f o r hi g h e r 1 angular momentum quantum number s t a t e s , u s i n g wavemechanical arguments. The approximate constancy of of the quantum d e f e c t t£, was used e x t e n s i v e l y to p r e d i c t h i g h e r s e r i e s members from equation ( l ) . A study of the v a r i a t i o n of - n - n* i s e s s e n t i a l l y a measure of the p e n e t r a t i o n of the e l e c t r o n o r b i t ; thus a study of i t s v a r i a t i o n along the i s o e l e c t r o n i c sequence, as w e l l as i t s dependence upon the angular momentum quantum number of the outer e l e c t r o n , at d i f f e r e n t i o n i z a t i o n stages, was very h e l p f u l i n e s t i m a t i n g the energie s of some c o n f i g u r a t i o n s . T h i s approach was not u s u a l l y considered to be very a c c u r a t e but was an a d d i t i o n a l check on other methods. • As one c o n s i d e r s c o n f i g u r a t i o n s of high e r and hi g h e r angular momentum quantum numbers a p o i n t i s e v e n t u a l l y reached where the quantum d e f e c t c i s very n e a r l y equal to zero, and the o r b i t i s e s s e n t i a l l y n o n - p e n e t r a t i n g ( i . e . d u r i n g a major 7 p a r t o f one p e r i o d ) . I t i s p o s s i b l e i n s u c h a c a s e t o a p p l y what i s g e n e r a l l y r e f e r r e d t o as t h e p o l a r i z a t i o n t h e o r y . T h i s i s a theory;, t h a t assumes a c e n t r a l f i e l d a p p r o x i m a t i o n . The t h e o r y t a k e s i n t o a c c o u n t t h e p o l a r i z a t i o n o f t h e n u c l e u s and t h e s u r r o u n d i n g e l e c t r o n c o r e , due t o t h e e l e c t r i c f i e l d p r o d u c e d by t h e v a l e n c e e l e c t r o n . W a l l e r , (1926) i n w o r k i n g out t h e t h e o r y , assumes t h e p o t e n t i a l e n e r g y o f t h e v a l e n c e e l e c t r o n i n t h e f i e l d o f t h e n u c l e u s and t h e s u r r o u n d i n g c o r e t o be 2 2 IT. \ e . o( e U ( r ) - " — " 2r*F ( 2 ) where was d e f i n e d i n e q u a t i o n (.1), oC i s t h e p o l a r i z a b i l i t y and r t h e d i s t a n c e between t h e e l e c t r o n and t h e n u c l e u s . A f t e r s o l v i n g t h e wave e q u a t i o n , u s i n g t h e above e x p r e s s i o n f o r t h e p o t e n t i a l , W a l l e r d e r i v e s 2 W n l = - T H - - V ~ a r V (3) where i s t h e a b s o l u t e h y d r o g e n i c t e r m v a l u e , and Wn^ i s t h e a b s o l u t e t e r m v a l u e o f t h e term i n q u e s t i o n . A s s u m i n g a c e n t r a l f i e l d a p p r o x i m a t i o n i f - i f t -) = K P ( n l ) r ^ (*0 where P i s a f u n c t i o n o f t h e p r i n c i p a l and o r b i t a l quantum numbers n and 1, and K i s a c o n s t a n t , hence Wn*. = - T w - A ( Z ) P ( n , l ) (5) 8 where A i s dependent upon the n u c l e a r charge Z. Th e r e f o r e a proper c l a s s i f i c a t i o n of one l i n e i n v o l v i n g two hydrogenic terms y i e l d s a value f o r the i o n i z a t i o n p o t e n t i a l as w e l l as the d i p o l e p o l a r i z a b i l i t y of the core. J b ) Lower Energy L i m i t of a C o n f i g u r a t i o n T h i s method o u t l i n e d by Bacher and Goudsmit (193^) i n v o l v e s approximate r e l a t i o n s between the energy of s t a t e s i n an atom at v a r i o u s stages of i o n i z a t i o n . They d e r i v e e x p r e s s i o n s f o r energie s of unknown terms i n terms of q u a n t i t i e s determined e x p e r i m e n t a l l y from a n a l y s i s of r e l a t e d s p e c t r a . For a two p a r t i c l e system one can w r i t e 'W(AB) = W(A) + W(B) + (AB) (6) where W(A) and W(B) are simgle e l e c t r o n e n e r g i e s and CJ (AB) i s the i n t e r a c t i o n or " p a i r " energy, between the two p a r t i c l e s . S i m i l a r l y i n a three e l e c t r o n case we can w r i t e W(ABC) = W(A) + W(B). .+ W(C) + 14 (AB) +. U(BC) + CJ(AC) + (ABC) = W(AB) + lvr(C) + CJ(AC) + OJ(BC) +-W (ABC) (7) T h i s theory can be a p p l i e d with a l i m i t e d degree of accuracy i n the present work to the complex three e l e c t r o n c o n f i g u r a t i o n s , $6.9 n,l,n2l2« The energy of the 5d*^ * S Q s t a t e i s taken to be zero on the energy s c a l e as suggested by Bacher. By adding to the 5d*^ core an e l e c t r o n and one "ho l e " , each i n 9 a known quantum s t a t e , a p a r t i c u l a r term of the 5d n ^ l ^ c o n f i g u r a t i o n i s b u i l t up. Extending t h i s to a three p a r t i c l e system with a 5d* ^  core the ab s o l u t e term v a l u e can be w r i t t e n as W ( 5 d t 0 , 5 d * , n , l l t n 2 l 2 ) = W ( 5 d ! ° , 5d* , n ^ ) * . W ( n 2 l 2 ) + \x> ( 5d* , n 2 l 2 ) + 10 tV ( 5d , h 2 l 2 ) + t0 ( 5 d * , n 1 l | , n 2 l 2 ) + + 10 CO (5d, n t l t , n 2 l 2 ) + .... .....(8) where 5d* r e f e r s to the "ho l e " being added. I n t e r a c t i o n s i n v o l v i n g the 5p^ and lower energy e l e c t r o n s are being ignored because a 100% s c r e e n i n g by the 5d*^ e l e c t r o n s i s being assumed. S i m i l a r l y , h i g h e r order c o r r e c t i o n terms such as the f o u r , f i v e p a r t i c l e i n t e r a c t i o n e n e r g i e s are being n e g l e c t e d . Since the 5 d ' ^ * S Q i s assumed to have zero energy W ( n 2 l 2 ) + 10Cj ( 5 d , n 2 l 2 ) = W ( n 2 l 2 ) * W ( 5 d 1 ° ) + 1 0 U J ( 5 d , n 2 l 2 ) 1 0 (9) W ( 5 d l u , n 2 l 2 ) where again i t i s assumed that the 5d*^ core screens the n 2 l 2 p a r t i c l e from any of the in n e r e l e c t r o n s . The term W ( 5d t 0 ) i n c l u d e s a l l the s i n g l e , " p a i r " , " t r i p l e " , "quadruple" e t c . , e n e r g i e s of a l l the p a r t i c l e s w i t h i n the 5 d * ^ c o r e . Thus, equation (8) can be w r i t t e n as 10 W ( 5 d t 0 , 5 d * f n r l t , n 2 l 2 ) = W ( 5 d 1 0 , 5d* , n t 1, ) + W ( 5 d 1 0 , n?l2 + 0J(5d* ; n 2 l 2 ) H - U M n ^ , n 2 l 2 ) + ^ ( 5<i*, n, 1, , n 2 l 2 ) ( Since the " p a i r " , " t r i p l e " , "quadruple" e t c . , e n e r g i e s form a r a p i d l y d e c r e a s i n g s e r i e s , t h i s method as o u t l i n e d by Bacher and Goudsmit i s of extreme p r a c t i c a l use. The s u c c e s s f u l a p p l i c a t i o n of t h i s method hinges upon the f a c t , however, that the b a s i c terms upon which the s t a t e i n q u e s t i o n i s b u i l t up are c l e a r l y d e f i n e d and w e l l known. In many cases i t i s p o s s i b l e to estimate the lower l i m i t of a c o n f i g u r a t i o n by making use of the " i r r e g u l a r d o u b l e t " law. I t was shown by Wentzel ( l 9 2 l ) that i f a mod i f i e d c e n t r a l f i e l d approximation i s assumed, t a k i n g i n t o account e l e c t r o n s c r e e n i n g , one can \v-rite the abs o l u t e term val u e s T(n, j) i n the form 2 T ( n , i) = (Z - s ) 2 + (z - d) n n 3 + z 4 / (1 where R i s Rydbergs c o n s t a n t , n the p r i n c i p a l quantum number, j the t o t a l angular momentum quantum number, Z the n u c l e a r charge, s the s c r e e n i n g constant due to a l l the i n n e r e l e c t r o n s and d a c o r r e c t i o n term which accounts f o r the r e l a t i v i s t i c v e l o c i t y e f f e c t as w e l l as the s p i n e f f e c t . I f the c o r r e c t i o n term d i s assumed 11 to be the same f o r two terms and i f t h e i r p r i n c i p a l as we l l as t o t a l angular momentum quantum numbers are equal, then T i 2R T 2 ( n , j ) - T, (n, j ) = — ( s 2 -' s,) n 2 ( s 2 + s, ) Z - ~~ 2 = o— By o b s e r v i n g the v a r i a t i o n of c7^/Z or CP—/ throughout the i s o e l e c t r o n i c sequence, where = Z - (N - l ) (N i s the number of e l e c t r o n s ) , i t i s p o s s i b l e to e x t r a p o l a t e and p r e d i c t the va l u e of <3~~ / $ f o r the member of the sequence under study. • Thus, i f the term T^(n,j) i s known and an estimate can be made of 0~ j the term value T (n,j) can be p r e d i c t e d . 2- The R e l a t i v e Term Energies w i t h i n a C o n f i g u r a t i o n a) Regular Doublet Law R e f e r r i n g to equation (ij.) one c o n s i d e r s the energy d i f f e r e n c e between two l e v e l s a r i s i n g from one - e l e c t r o n s p i n - o r b i t i n t e r a c t i o n . The terms w a l l have a l l the parameters o c c u r i n g i n equation ( l l ) e q u a l , the only d i f f e r e n c e coming about because of the two d i f f e r e n t t o t a l a n g u l a r momentum quantum numbers. I f = 1 + 2 » and . j = 1 - 2 , then Rc*- 2(Z - d ) 4 T_(n, - T (n, 1-1) = = T 2 1 n 3 l ( l + 1) (13) where terms i n v o l v i n g h i g h e r powers of (Z - d ) are being i g n o r e d . T h i s energy d i f f e r e n c e was f i r s t p r e d i c t e d by Heisenberg and Jordan (1926) u s i n g r e l a t i v i s t i c theory and t a k i n g i n t o account i n t e r a c t i o n between the s p i n and the magnetic f i e l d at the valence e l e c t r o n due to the r e l a t i v e motion of the nu c l e u s . I f the c o r r e c t i o n term d i s c a l c u l a t e d f o r some of the members of an i s o e l e c t r o n i c sequence, then t h i s c o r r e c t i o n term can be estimated f o r the atom being s t u d i e d . Knowing d, i t i s p o s s i b l e then to c a l c u l a t e the doublet s e p a r a t i o n 4 T. h) G r a p h i c a l Methods These are probably the most u s e f u l and simple methods a v a i l a b l e to analyze many of the c o n f i g u r a t i o n s encountered i n t h i s work. I t i s observed that the e l e c t r o s t a t i c 2 i n t e r a c t i o n s vary e s s e n t i a l l y as (Z - s) , while the s p i n o r b i t i n t e r a c t i o n s vary as (Z ~ d ) ^ , where Z i s the charge on the nucleus and s & d are the c o r r e c t i o n terms as d e f i n e d i n s e c t i o n l b . Assuming that a r e l a t i o n s h i p between T and Z e x i s t s , (where T i s the a b s o l u t e term v a l u e and Z the n u c l e a r charge), Edlen ( t 9 6 M suggests set of smooth non - i n t e r s e c t i n g curves, where <Q i s d e f i n e d i n s e c t i o n t a . Most c o n f i g u r a t i o n s were analyzed i n t h i s where E Q i s the r e l a t i v e term value of a chosen r e f e r e n c e l e v e l b elonging to a c o n f i g u r a t i o n while E i s the r e l a t i v e term value of the remaining l e v e l s belonging to the same that a graph of r e s u l t s , i n g e n e r a l , i n a work by p l o t t i n g a graph of E 13 c o n f i g u r a t i o n . H e r e , c i s a c o r r e c t i o n term w h i c h i s e s s e n t i a l l y u s e d t o n o r m a l i z e t h e t o t a l e n e r g y s p r e a d o f a c o n f i g u r a t i o n and )p i s t h e q u a n t i t y d e f i n e d i n s e c t i o n l a . The m e a n i n g o f t h i s semi - e m p i r i c a l method f o r a n a l y s i n g c o n f i g u r a t i o n s can be seen from e q u a t i o n 11. Whenever p o s s i b l e i t i s a d v a n t a g e o u s t o s e p a r a t e terms w h i c h a r e a s s o c i a t e d w i t h t h e same l i m i t , and t o c h o o s e as r e f e r e n c e l e v e l one w h i c h i s u n p e r t u r b e d t h r o u g h o u t t h e i s o e l e c t r o n i c s e q u e n c e . T h u s , by u s i n g t h e above g r a p h i c a l a n a l y s i s , i t i s p o s s i b l e t o p r e d i c t , by e x t r a p o l a t i o n , a p p r o x i m a t e l y t h e s t r u c t u r e o f r e l a t i v e l y complex c o n f i g u r a t i o n s . c) Wave M e c h a n i c a l Methods An o v e r a l l i n s p e c t i o n o f o b s e r v e d l e v e l s b e l o n g i n g t o any one c o n f i g u r a t i o n would y i e l d some i n f o r m a t i o n as t o t h e t y p e o f extreme c o u p l i n g scheme t h a t a p p r o x i m a t e s b e s t t h e o b s e r v e d s t r u c t u r e o f t h e c o n f i g u r a t i o n . Any o f t h e s e c o u p l i n g schemes c o u l d t h e n be u s e d t o p r e d i c t a p p r o x i m a t e l y t h e g r o u p i n g and o r d e r o f e n e r g y l e v e l s . In g e n e r a l , i t i s o b s e r v e d , t h a t i n t h e c a s e o f atoms w i t h h i g h - Z numbers, t h e m a g n e t i c i n t e r a c t i o n s between t h e s p i n o f e a c h e l e c t r o n and i t s own o r b i t a l m o t i o n o v e r r i d e s t h e e l e c t r o s t a t i c i n t e r a c t i o n s between e l e c t r o n s . T h i s f o r m o f c o u p l i n g , w h i c h i s p r e d o m i n a n t l y e n c o u n t e r e d i n t h e p r e s e n t a n a l y s i s , i s g e n e r a l l y r e f e r r e d t o as j - j c o u p l i n g . The R u s s e l -Ik Saunders type of c o u p l i n g can be s y m b o l i c a l l y expressed as £(1jlp)L(s j )s] J and thus can analogeously the j - j type of c o u p l i n g be represented by £ ( 1 j s j ) j | ( 1 2 s 2 ) j 2 J J. In j - j c o u p l i n g , the e l e c t r o s t a t i c i n t e r a c t i o n i s dominated by the s p i n - o r b i t i n t e r a c t i o n , which can be expressed i n the form H ••• <«»» n , l hi IT i ^ h e r e ^ n j j - i s the i n t e r a c t i o n constant and 1^  and sf are 'th the o r b i t a l and s p i n quantum numbers of the 7 e l e c t r o n . Cowan and Andrew .(1965) have r e c e n t l y given a f a i r l y comprehensive d i s c u s s i o n on the v a r i o u s other modes of c o u p l i n g . They c o n s i d e r two e l e c t r o n c o n f i g u r a t i o n s and i n d i c a t e that i n many cases one.can t a l k about " p a i r c o u p l i n g " and denote i t by £( 1 j l 2 s \ ) K, s2^ J J i n g e n e r a l . T h i s n o t a t i o n can be f u r t h e r broken down i n t o two more s p e c i f i c cases and expressed as | [ ( l t l 2 ) L s , ] K s 2|- J or | ( l l S l ) j t l ^ K s 2 J J where the two forms of c o u p l i n g schemes can be r e f e r r e d fJ;o as L - s and j - 1 c o u p l i n g r e s p e c t i v e l y . In g e n e r a l , the s t a t e v e c t o r s a r i s i n g from these v a r i o u s c o u p l i n g modes w i l l only approximate the t r u e e i g e n f u n c t i o n s of the Hamiltonian and w i l l t h e r e f o r e a l s o g i v e only approximate energy v a l u e s . The j - 1 c o u p l i n g scheme i s i n many i n s t a n c e s of a p p r e c i a b l e p r a c t i c a l h elp because i t enables one to p r e d i c t t h e o r e t i -c a l l y the approximate energy and order of terms without g e t t i n g i n v o l v e d i n very complex c a l c u l a t i o n s . I f 1^, S | , 12> s 2 r e f e r to the o r b i t a l and s p i n quantum number of the two i n t e r a c t i n g e l e c t r o n s , and t h e i r i n t e r -a c t i o n energies s a t i s f y the f o l l o w i n g c o n d i t i o n s , ( l 2 s 2 ) ~ ( s r s 2 ) — 0 ; ( l t l 2 ) « ( l t s t ) then simple e x p r e s s i o n s f o r term v a l u e s may be d e r i v e d . As c o n f i g u r a t i o n s with h i g h e r 1 2 quantum numbers are being c o n s i d e r e d , c o n d i t i o n s ( 1 5 ) are being s a t i s f i e d to a h i g h e r degree of approximation. S h o r t l e y and F r i e d (1938) have given equations f o r the d 9 g and d9f c o n f i g u r a t i o n s assuming a j - 1 c o u p l i n g scheme. The d 9 d c o n f i g u r a t i o n was analysed a c c o r d i n g to the method o u t l i n e d by Racah (t9^ 2 ) and the f o l l o w i n g equations were obtained ( I t f , 2] 2 i , + I) = ++3/2 $ d + 7 F 2 ( t i i , 2 ] i j , + i ) ' = + 3 /2!§d + 0F 2 ( t t i , 2 ] 3 i , + i) = + 3/2 ^ d - 2 . 8 F 2 ( t l i , 2 3 I , + I) = + 3/2 ltd - 9.BF 2 ( C 2 i , 2 ] 3I, + I) = - !§d + 6 . 8 F 2 ( t 2 | , 2 ] 2 | , +1) = - $ d + k.0F2 ( C z i , 2 ] u-i, + 4) = ( T 24, 2 ] i i , + i ) = _ ^ I _ 4 F 2 ( t z i , 2 l i , i 4) = - 14.5F 2 where i s d e f i n e d i n equation ( 1 U) and F 2 i s the 16 e l e c t r o s t a t i c i n t e r a c t i o n parameter (TAS ch viii)„ Each of the equations ('I 6) r e f e r s to the energy of the c e n t e r of g r a v i t y of a p a i r of l e v e l s with r e s p e c t to the c e n t e r of g r a v i t y of the whole c o n f i g u r a t i o n . 2 Only the s i and p c o n f i g u r a t i o n s were f u l l y analysed u s i n g i n t e r m e d i a t e c o u p l i n g theory (even i n t h i s case, approximations are i n t r o d u c e d by i g n o r i n g s p i n - other o r b i t i n t e r a c t i o n s ) . I f one c o n s i d e r s the energy m a t r i c e s f o r these c o n f i g u r a t i o n s i n the L - S r e p r e s e n t a t i o n , then the o f f d i a g o n a l elements w i l l i n v o l v e s p i n - o r b i t i n t e r a c t i o n s only w h i l e the d i a g o n a l elements w i l l i n v o l v e the e l e c t r o s t a t i c i n t e r a c t i o n parameters. A f t e r s o l v i n g 2 the s e c u l a r equations f o r the s i and p c o n f i g u r a t i o n s , the f o l l o w i n g equations are obtained (TAS, ch x l ) . s i c o n f i g u r a t i o n : 3 Le-H = F 0 - G l + * X % !H* 3 H = F 0 - i $ n l ± / « h + ^ S n l ) 2 + i K l + t ) ^ 2 n l 3]-e -1 = F 0 - G l - 'tfd + 1> ¥ n l ( 1 7 ) For the c o n f i g u r a t i o n s ( l ^ + *s) ^x\l must be r e p l a c e d by - !§nl • p c o n f i g u r a t i o n ' D 2 , 3 P 2 = F 0 - 2 F 2 + ± 5 P ± / ( 3 F 2 ) 2 - 3 / 2 F 2 ^ p + 3/M^p ) 2 3 P t = F o ~ 5*2 " * ^ P ^ o . 3 P 0 = F 0 + 5 / 2 F 2 - \ % ± / ( l | ) F 2 2 + i | F 2 § p + ( 1 % ) ( 1 8 ) 17 The e l e c t r o s t a t i c i n t e r a c t i o n p a r a m e t e r s F^, Fp and G^ a r e d e f i n e d i n TAS c h a p t e r v i i i , and j s r3efi n e c* a s t h e s p i n - o r b i t i n t e r a c t i o n c o n s t a n t . The o b s e r v e d term v a l u e s can be g r a p h i c a l l y a n a l y s e d i f p a r a m e t e r s * ^ and ry^ a r e d e f i n e d as f o l l o w s : 1 +%) = = ( "^'^ ) ^ n i where n \ I s e x p r e s s e d i n e n e r g y u n i t s s u c h t h a t (G-^ + 2 . ^ ^ _ ^ n j _ ) = 1 . 3- C o n f i g u r a t i o n I n t e r a c t i o n ( B a c h e r , 1933) , - '"C.Ufford, 1933) -( W e n t z e l , 1927 - 28) - ( A l l e n , 1932). (Shenstone,1936 ) A l l t h e t h e o r e t i c a l d i s c u s s i o n s , so f a r , were c a r r i e d out on t h e a s s u m p t i o n t h a t a p a r t i c u l a r s t a t e v e c t o r b e l o n g i n g t o a c o n f i g u r a t i o n does n o t have components a l o n g s t a t e v e c t o r s a s s o c i a t e d w i t h o t h e r c o n f i g u r a t i o n s . I f t h i s a s s u m p t i o n i s b e i n g r e j e c t e d , t h e n t h e e n e r g y m a t r i x , w h i c h i n g e n e r a l i n c l u d e s s t a t e v e c t o r s f r o m s e v e r a l c o n f i g u r a t i o n s , has non - z e r o e l e m e n t s between s t a t e s b e l o n g i n g t o d i f f e r e n t c o n f i g u r a t i o n s . A l t h o u g h much work has been done i n c a l c u l a t i n g t h e s e e x t e n d e d m a t r i c e s , t h e r e i s s t i l l a v a s t amount o f e x p e r i m e n t a l d a t a a w a i t i n g t o be f u l l y a n a l y s e d . In t h i s work c o n f i g u r a t i o n i n t e r a c t i o n s show up i n d i f f e r e n t ways, s u c h a s : s h i f t s i n term v a l u e s , anomalous l i n e s t r e n g t h s , a p p a r e n t d o u b l e e l e c t r o n t r a n s i t i o n s , and e x c e s s i v e l i n e b r o a d e n i n g . A l l t h e s e a n o m a l i e s c a n , a t l e a s t q u a l i t a t i v e l y 18 be e x p l a i n e d , by r e a l i z i n g that the exact wavefunction c o n t a i n s components along s t a t e v e c t o r s a s s o c i a t e d with d i f f e r e n t c o n f i g u r a t i o n s . The components along s t a t e v e c t o r s b e l o n g i n g to d i f f e r e n t c o n f i g u r a t i o n s are u s u a l l y small and are, hence, c o n s i d e r e d as p e r t u r b a t i o n s and t r e a t e d as such. In many cases these components become l a r g e enough that i t i s meaningless to a s s o c i a t e the a c t u a l s t a t e v e c t o r with any p a r t i c u l a r c o n f i g u r a t i o n . In such cases names at t a c h e d to c e r t a i n terms become meaningless. In the case of pure R u s s e l l - Saunders c o u p l i n g , because J 2 . 1 2 and S 2 commute w i t h ^ e 2/r,- the e l e c t r o s t a t i c i n t e r a c t i o n o p e r a t o r , the energy matrix elements between s t a t e s with d i f f e r e n t L and S as w e l l as J quantum numbers w i l l be zero. S i m i l a r l y because the p a r i t y o perator occur only between s t a t e s having the same p a r i t y . T h e r e f o r e i n the case of pure R u s s e l l - Saunders c o u p l i n g c o n f i g u r a t i o n i n t e r a c t i o n s w i l l be r e s t r i c t e d to terms having the same p a r i t y , same L & S quantum numbers as w e l l as same J , the t o t a l a ngular momentum quantum number. S i m i l a r l y i n the case of pure j - j c o u p l i n g ^ o n l y terms having the same j , j„ and J quantum numbers as w e l l as the same p a r i t y w i l l p e r t u r b each other through the e l e c t r o s t a t i c i n t e r a c t i o n o p e r a t o r . The observed "two e l e c t r o n " t r a n s i t i o n s can be e x p l a i n e d very non - zero matrix elements w i l l .19 o f t e n by assuming: that the a c t u a l e i g e n f u n c t i o n of the system i s a l i n e a r combination of e i g e n f u n c t i o n s i n v o l v i n g other c o n f i g u r a t i o n s . I t can be shown that the e l e c t r i c and magnetic m u l t i p o l e operators have nonvanishing matrix elements only between s t a t e s f o r which one set of e l e c t r o n quantum numbers change. However i f the e i g e n f u n c t i o n i s given a name which i s only p a r t i a l l y a p p r o p r i a t e i t w i l l seem t h a t an apparent "double e l e c t r o n " t r a n s i t i o n o c c u r s , and hence one of the ba s i c s e l e c t i o n r u l e s i s being v i o l a t e d . A d i s c r e t e l e v e l above the i o n i z a t i o n l i m i t , which a r i s e s from an e x c i t e d core, may i n t e r a c t with the continuum •• (the continuous set of unbound s t a t e s ) , which i s a s s o c i a t e d with the term system below the i o n i z a t i o n l i m i t , having a non- e x c i t e d c o r e . I n t e r a c t i o n between the continuum and a d i s c r e t e l e v e l might g e n e r a l l y be expected i f some of the bound, s t a t e s below the i o n i z a t i o n l i m i t (having a non-excited, core) are capable of p e r t u r b i n g the d i s c r e t e l e v e l , l o c a t e d i n t h e i r continuum. In such a case, the true eigen-f u n c t i o n of the atomic s t a t e i s a l i n e a r combination of the e i g e n f u n c t i o n of the assumed s t a t e ( a s s o c i a t e d with the name given) and the e i g e n f u n c t i o n of the continuum. The l i f e t i m e of such a l e v e l w i l l be u n u s u a l l y small and the t r a n s i t i o n s from such a l e v e l w i l l be consequently very d i f f u s e . The l i f e time of such a s t a t e i s found to depend to a c e r t a i n degree a l s o upon the energy d i f f e r e n c e between the i o n i z a t i o n l i m i t and the l e v e l i n q u e s t i o n . 2 0 CHAPTER 3  EXPERIMENTAL PROCEDURES The f o l l o w i n g d i s c u s s i o n i s c o n c e r n e d w i t h t h e methods u s e d t o o b t a i n a w a v e l e n g t h l i s t o f t r a n s i t i o n s , o c c u r i n g i n t h e atoms u n d e r s t u d y . The o v e r a l l o b j e c t i s o f c o u r s e t o o b t a i n a l i n e l i s t c o n t a i n i n g as much i n f o r m a t i o n as p o s s i b l e a b o u t e v e r y o b s e r v e d t r a n s i t i o n . T h e r e a r e e s s e n t i a l l y two m a j o r s t e p s i n v o l v e d i n a c h i e v i n g t h i s o b j e c t . 1- A c q u i s i t i o n o f s p e c t r o g r a m s u s i n g a v a r i e t y o f s o u r c e s u n d e r d i f f e r e n t c o n d i t i o n s so as t o o b t a i n maximum i n f o r m a t i o n . 2- R e d u c t i o n and a n a l y s i s o f t h e s p e c t r o g r a m s i n v i e w o f o b t a i n i n g a r e l i a b l e w a v e l e n g t h l i s t , f r e e f r o m i m p u r i t i e s . 1 - A c q u i s i t i o n o f S p e c t r o g r a m s : The m a j o r emphasis was p l a c e d on o b t a i n i n g s p e c t r o g r a m s o f T h a l l i u m a l t h o u g h some p l a t e s o f G o l d as w e l l as o f L e a d were o b t a i n e d . T h e r e were e s s e n t i a l l y two s o u r c e s u s e d : a) S p a r k i n H e l i u m b) E l e c t r o d e l e s s D i s c h a r g e . B o t h o f t h e s e s o u r c e s have been f a i r l y e x t e n s i v e l y u s e d b e f o r e i n t h i s l a b o r a t o r y and a r e d e s c r i b e d i n d e t a i l by S h e n s t o n e (195M and by L y a l l C t 9 ^ 5 ) • • The s p e c t r u m o f G o l d was p h o t o g r a p h e d between ^ OOA^and 6 0 0 0 A °using a s p a r k i n H e l i u m s o u r c e . 21 Two a d d i t i o n a l e x p o s u r e s o f t h e s p e c t r u m o f L e a d were t a k e n u s i n g a s p a r k i n H e l i u m s o u r c e , and c o v e r i n g t h e r a n g e between 500A and 1 5 0 0 A . The T h a l l i u m s p e c t r u m was p h o t o g r a p h e d , u s i n g f i r s t t h e e l e c t r o d e l e s s d i s c h a r g e , between 3^0A and 9° 0 0 A o S e v e r a l e x p o s u r e s a t v a r i o u s v a p o u r p r e s s u r e s (and t e m p e r a t u r e s ) were t a k e n u n t i l t h e most s a t i s f a c t o r y d i s c h a r g e was o b t a i n e d a t a p p r o x i m a t e l y 10 'mm Hg. Some d i f f i c u l t y was e n c o u n t e r e d i n t r y i n g t o e l i m i n a t e m o l e c u l a r bands f r o m t h e d i s c h a r g e . The v a p o u r p r e s s u r e i s s u f f i c i e n t l y h i g h t o g e t a d i s c h a r g e a t a l r e a d y m o d e r a t e t e m p e r a t u r e s and t h e r e f o r e t h e i m p u r i t i e s were - n o t a d e q u a t e l y baked out and t h e a i r n o t c o m p l e t e l y removed d u r i n g t h e f i r s t few t r i a l s . A number o f a t t e m p t s were made t o r e c o r d t h e s p e c t r u m o f T h a l l i u m w i t h a s p a r k i n H e l i u m s o u r c e . The b e s t e x p o s u r e c o n t a i n s p r o b a b l y a b o u t "}0% o f the l i n e s r e c o r d e d w i t h t h e e l e c t r o d e l e s s d i s c h a r g e . The p r e s s u r e i n s i d e t h e s o u r c e r a n g e d between 20 Tojrr s>nd 50 T o r r o f H e l i u m . In o r d e r t o remove a l l t h e i m p u r i t y l i n e s n o t b e l o n g i n g t o t h e s p e c t r u m u n d e r s t u d y i t was f o u n d most c o n v e n i e n t t o r e c o r d a c o m p l e t e s p e c t r u m o f " a i r " u s i n g t h e e l e c t r o d e l e s s d i s c h a r g e s o u r c e w i t h a c l e a n t u b e . A 3 m e t e r n o r m a l i n c i d e n c e g r a t i n g vacuum s p e c t r o g r a p h was u s e d t o r e c o r d t r a n s i t i o n s between 3^0A°and 2k^0A° i n t h e f i r s t o r d e r . 22 A vacuum grown L i F window was used to d i s t i n g u i s h the l i n e s with wavelength l e s s than 1 0 ^ 0 A o „ A more d e t a i l e d d e s c r i p t i o n of the vacuum spectrograph i s given by Dick (1966). In the r e g i o n between 23^0 Q000A 0 the wavelengths were recorded with a H i l g e r E U78 l a r g e automatic q u a r t z / g l a s s prism s p e c t r o g r a p h , the g l a s s prism being used f o r the r e g i o n above 450OA 0. 2" Reduction and a n a l y s i s of spectrograms The unknown wavelengths were determined with r e s p e c t to i n t e r n a l standards, i n the vacuum r e g i o n . The i n t e r n a l standards were a c c u r a t e l y known wavelength of Carbon, N i t r o g e n and Oxygen as suggested by Edlen (1963)* while the s p e c t r o -grams of Gold were reduced u s i n g as w e l l i n t e r n a l Copper standards (Shenstone, 19^8). Iron, Neon and a d d i t i o n a l i n t e r n a l standards have been used f o r wavelength over 2 0 0 0 A 0 recorded on the prism s p e c t r o g r a p h . The i m p u r i t y l i n e s were f r e q u e n t l y a r e l i a b l e check on the v a l i d i t y of the e x t e r n a l standards. The vacuum wavelengths were determined by f i t t i n g a t h i r d degree polynomial to the standard l i n e s , while the u s u a l Hartmann d i s p e r s i o n formula was used to obtain a l i n e l i s t from the prism spectrograms. A l l the measurements of the s p e c t r o g r a p h i c p l a t e s were c a r r i e d out with a r e c e n t l y a c q u i r e d Grant comparator f i t t e d with a Tomkins-Fred head. With t h i s comparator i t was p o s s i b l e to o b t a i n f a r more o b j e c t i v e wavelength measurements arid improve those of f a i n t and d i f f u s e l i n e s . I n d i v i d u a l s e t t i n g s would g e n e r a l l y be reproduced on t h i s machine to w i t h i n three microns; however, because of the very l a r g e number of l i n e s , and consequently frequent b l e n d i n g among them, probably about 30% of the l i n e s e t t i n g s were not much b e t t e r than f i v e microns. In g e n e r a l two s p e c t r a l l i n e s twenty microns apart or more could be i n d i v i d u a l l y measured with t h i s machine. The expected e r r o r i n the p o s i t i o n measurements would r e s u l t i n an e r r o r of i 1cm~* at ^OOOOcm""1 and t^> 6cm"1 at 200000 cm"1 i n the f i r s t o r der of the g r a t i n g s p e c t r o g r a p h . The expected e r r o r i n the wavelength obtained from the prism spectrograph ranges down to about -05cm at approximately 20000cm (with the q u a r t z p r i s m ) . Spectrograms -of Gold were obtained with the spark i n Helium source only.' i " *he case of T h a l l i u m and Lead the s p e c t r a obtained from t h i s source were used only f o r e x c i t a t i o n d a t a . About 30% of the T h a l l i u m s p e c t r a l l i n e s observed with the e l e c t r o d e l e s s d i s c h a r g e source were a l s o seen on the spark i n Helium p l a t e s . S e v e r a l exposures were taken and more than one e x c i t a t i o n estimate recorded f o r a number of l i n e s i n the c l a s s i f i e d l i n e l i s t . An attempt was made to improve the e x c i t a t i o n d a t a , by u s i n g the o s c i l l o s c o p e measuring machine to o b t a i n v a r i a t i o n s i n l i n e i n t e n s i t i e s a l ong the l e n g t h of the l i n e . No marked improvement over 2k the v i s u a l estimates was evident although i t d i d become c l e a r from t h i s o b j e c t i v e approach that the e x c i t a t i o n estimates f o r very s t r o n g and very f a i n t l i n e s become r a t h e r ambiguous,, The Grant comparator a l s o anables one to measure s i m u l t a n e o u s l y the t r a n s m i s s i o n of the photo-g r a p h i c p l a t e at i n d i v i d u a l s e t t i n g s . Thus, the l i n e s t r e n g t h s are recorded i n terms of the p l a t e t r a n s m i s s i o n . The t r a n s m i s s i o n readings are then converted to approximate l i n e i n t e n s i t i e s u s i n g the data of t a b l e "f„ T h i s conversion t a b l e was suggested r e c e n t l y by Wu (1968) and was adopted f o r t h i s a n a l y s i s . I t must be r e a l i z e d however that the quoted i n t e n s i t i e s are only approximate, p r i m a r i l y because of b l e n d i n g e f f e c t s from neighbouring l i n e s . 2.5 CHAPTER k ANALYSIS Once a comprehensive l i n e l i s t i n c l u d i n g e x c i t a t i o n data of T h a l l i u m was obtained the next o b j e c t was to e s t a b l i s h some of the b a s i c atomic energy l e v e l s i n T l 111 and T l i V The approach taken d i d not c o n s i s t so much of an attempt to account f o r as many st r o n g l i n e s as p o s s i b l e , but r a t h e r of an attempt to e s t a b l i s h most of the b a s i c c o n f i g u r a t i o n s . As mentioned before i t was found that a simultaneous study of T l 111 and T l IV with Pb IV and Pb V was of v a l u a b l e h e l p . In analogy with atoms having s i m i l a r ground s t a t e s i t was d e c i d e d at the outset which c o n f i g u r a t i o n s would l i k e l y i n v o l v e b a s i c t r a n s i t i o n s . T a b l e ii on page 71 c o n t a i n s the l i s t , of observed energy l e v e l s of T l II,. T l I I I , T l IV, Pb IV, Pb V. The term v a l u e s were determined p r i m a r i l y with the h e l p of a computor program (Chan, T 9 6 6) which s e l e c t e d r e c u r r i n g sums (or d i f f e r e n c e ) of energy l e v e l s and t r a n s i t i o n s . The o r i g i n a l program was s l i g h t l y m o d i f i e d so as to reduce the number of s p u r i o u s c o i n c i d e n c e s being p r i n t e d out. However the problem of spurious c o i n c i d e n c e s remained the b i g g e s t problem throughout t h i s work. There were a l t o g e t h e r about 5000 l i n e s observed i n the T h a l l i u m spectrum between 3^0A° and 6000A°. In order to determine the term values 26 i t was a b s o l u t e l y n e c e s s a r y t o r e s t r i c t t h e s e a r c h t o e n e r g y l e v e l s w i t h w h i c h t h e new terms would combine w i t h m o d e r a t e . s t r e n g t h , as w e l l as s e l e c t i n g t h o s e l i n e s whose e x c i t a t i o n d a t a c o r r e s p o n d s t o t h e s p e c t r u m b e i n g s t u d i e d . The p r o g r a m o u t p u t was a l s o c o n t r o l l e d by i n c o r p o r a t i n g c o n d i t i o n s on t h e minimum number o f c o i n c i d e n c e s as w e l l as on t h e minimum d i s c r e p a n c y between v a l u e s b e l o n g i n g t o t h e same c o i n c i d e n c e . O n l y e l e c t r i c d i p o l e t r a n s i t i o n s were c o n s i d e r e d and i n c l u d e d i n t h e c l a s s i f i e d l i n e l i s t . F a i n t e r t r a n s i t i o n s t o o t h e r l e v e l s were l o o k e d f o r o n l y a f t e r a term v a l u e was f o u n d u s i n g a s e l e c t g r o u p o f e n e r g y l e v e l s . B e c a u s e o f t h e s i g n i f i c a n t p r o b a b i l i t y o f o b t a i n i n g s p u r i o u s " c h a n c e " t r a n s i t i o n s , t h e t o t a l a n g u l a r momentum quantum number J was u s u a l l y b a s e d on t h e e x p e c t e d strong-c o m b i n a t i o n s . In many i n s t a n c e s ( i . e . w a v e l e n g t h r e g i o n between 60000 c m - 1 and 120000 cm *) c o m b i n a t i o n s w i t h a b o u t twenty/ l e v e l s m i g h t be e x p e r i m e n t a l l y a b s e r v a b l e ( d i s r e g a r d i n g s e l e c t i o n r u l e s and t h e a s s i g n e d t o t a l a n g u l a r momentum quantum number J) ; i t can be shown t h a t i n t h e r e g i o n where most o f t h e t r a n s i t i o n s l i e , between 60000 c m - 1 and 120000 cm t h e r e w i l l o c c u r a b o u t two c h a n c e c o i n c i d e n c e s . ( R u s s e l l and i M o o r e , 1 9^) » The e x c i t a t i o n d a t a o b t a i n e d , from t h e s p a r k i n H e l i u m s o u r c e was a d e c i s i v e h e l p ; however i n t h e c a s e o f l i n e s where t h e b a c k g r o u n d was d e n s e , th e e s t i m a t e s o f e x c i t a t i o n have t o be t a k e n w i t h some r e s e r v a t i o n . 27 The S i n g l e - E l e c t r o n S e r i e s i n Au 1 I s o e l e c t r o n i c Sequences. A l l the extensions and r e v i s i o n s i n the s e r i e s of one -e l e c t r o n c o n f i g u r a t i o n s were concerned with the s p e c t r a of TI 111 and Pb IV. The c e n t e r of g r a v i t y of the newly determined s e r i e s members were p r e d i c t e d u s i n g eq. ( l ) and d i s r e g a r d i n g any p o s s i b l e p e r t u r b a t i o n s a r i s i n g from c o n f i -g u r a t i o n i n t e r a c t i o n s . The s p l i t t i n g s of the new doublet terms were p r e d i c t e d u s i n g equation (9)• The 5d*°ns S e r i e s : . The 5d*^9s and 5d*°1Os c o n f i g u r a t i o n s were added in the spectrum of TI 111. These c o n f i g u r a t i o n s are mixed with the 5d 96s6d, 5d 96p 2 and 5d 96s7s c o n f i g u r a t i o n s both i n TI 111 and Pb IV. I t i s not s u r p r i s i n g that a number of "double e l e c t r o n t r a n s i t i o n s " between the 5d 1 09s» 5d 1 0t0s and the 5d^6s6p c o n f i g u r a t i o n s were observed both i n TI 111 and i n Pb IV. The reasons f o r these apparent "double e l e c t r o n t r a n s i t i o n s " are d i s c u s s e d i n more d e t a i l i n s e c t i o n 3 on page 17. The 5d^°ns s e r i e s was f u l l y analysed by p l o t t i n g the quantum d e f e c t (n - n* ) ag a i n s t T a b s as shown i n f i g . 1 ( f a s c h e n , (1 928) L y a l l , 1965)]. The 5d t onp S e r i e s : The 5d*^8p c o n f i g u r a t i o n was added i n the a n a l y s i s of the T l 111 energy l e v e l s t r u c t u r e . I t was predicted, and found u s i n g the procedure d e s c r i b e d i n the i n t r o d u c t o r y remarks of t h i s s e c t i o n . Strong "double e l e c t r o n " t r a n s i t i o n s are observed between the 5d*°7p and the 5d96s 2 c o n f i g u r a t i o n s because of the o v e r l a p between the 5d'°7p and the 5d 96s6p -28-I I ' I I i f CP") 3.6o - 3.65 3.7o 3.75 3.8o T a b l e 1 S c r e e n i n g and S p i n - O r b i t C o u p l i n g Parameters f o r the 5 d ^ n l c o n f i g u r a t i o n s . Hg I I T l I I I • Pb IV 1 n np | nd. nf np nd nf j 1 • ' i np j nd ; nf | 5" S 42. 7 42.0 i 41.3 i (cm ) 6015 * -73J 7222 * -389J j 8516 * + 644? 6 S 31.0 61.3 ' ! 2 5 . 7 j 58.1 ' i 21.6 | 55.5 (cm" r) 6082 224 _____ 9876 f 526 ™ - 35 14040 | 903 j -105 7 S 36.2 62.7 32.2 | 59.9 i 28.7 | 57.9 S (cm" 1) :2448 | 102 -5.4 3783 j 230 - 19 5375 ) 407 - 57 8 S 46.4 .63.6 42.7 60.3 148 . ! i 40.7 j 56.2 j 5 (cm" 1) 569 54 960 1295 1 355 | 9 S ^ ( c m - 1 ) i i i 65.0 27 60.4 101 i l I i t S i s the s c r e e n i n g parameter and the s p i n - o r b i t c o u p l i n g parameter 9 2 * r e f e r s t o the 5d 6s c o n f i g u r a t i o n j" s t r o n g i n t e r c o n f i g u r a t i o n p e r t u r b a t i o n -3o-Figux*e 2 31 c o n f i g u r a t i o n s . Table 1 c o n t a i n s the s c r e e n i n g constants and the s p i n - o r b i t c o u p l i n g parameters, while f i g u r e (2) members of the i s o e l e c t r o n i c sequence. The 5d 1 0nd S e r i e s ; T h i s s e r i e s was extended to n = 9 i n TI I I I , while the 5d"*"°9d c o n f i g u r a t i o n could, not be f i r m l y e s t a b l i s h e d i n Pb IV. These new s e r i e s members were found from t r a n s i t i o n s to the 5d 1 06p, 5d 1 07p and 5 d 1 0 5 f c o n f i g u r a t i o n s . As i n the case of the 5d"*^ns and 5d^np s e r i e s members, observed "double e l e c t r o n " t r a n s i t i o n s might be e x p l a i n e d through c o n f i g u r a t i o n i n t e r a c t i o n . The 5d^6s6d, 5d^6p 2 and c o n f i g u r a t i o n s have very l i k e l y common s t a t e v e c t o r s with the h i g h e r 5d^^nd members. These 5d^^nd l e v e l s were named on the b a s i s of t h e i r s t r o n g combinations w i t h the 5d 1 06p, 5d 1 07p and 5 d 1 0 5 f l e v e l s and could thus be d i s t i n g u i s h e d from the l a r g e number of energy l e v e l s b elonging to the .Sd^n^l^nglg c o n f i g u r a t i o n s . Table 1, page 29> shows the 5d^°nd( 2D) s c r e e n i n g constants as w e l l as the s p i n - o r b i t c o u p l i n g parameters, while f i g u r e (3) i s a graph of (n - n*) vs. T a f 3 S f o r t h i s s e r i e s i n Hg 1 1 , T I • I I I and Pb IV. The 5 d 1 0 n f S e r i e s : The f i r s t three members of t h i s s e r i e s are now known i n TI I I I and Pb IV. P r i o r to t h i s a n a l y s i s only the 5 d 1 0 5 f c o n f i g u r a t i o n was known i n TI I I I . These new l e v e l s were shows the (n - n*) v s . T abs r e l a t i o n s h i p f o r some of the -32-F i g u r e 3 33 e s t a b l i s h e d from t r a n s i t i o n s between the 5d*^nd and <5dTOnf l e v e l s . I t was known a l r e a d y before (Meyer, 1.9*H) that the 5 d , 0 5 f ( 2 F ) i s very p e n e t r a t i n g and that i n these heavy elements n* i s very n e a r l y equal to f o u r . As one goes to s t r o n g e r f i e l d s , e.g. TI IV and Pb V the energy of the 5f o r b i t a l approaches that of the 6d. I t i s apparent that the 5d*®$f c o n f i g u r a t i o n i s badly perturbed by the 5d 96s6p c o n f i g u r a t i o n , both i n Pb IV as w e l l as i n TI 111. As d i s c u s s e d on page j4 , one can look best upon the 5d 96s6p c o n f i g u r a t i o n as a set of l e v e l s a r i s i n g from i n t e r a c t i o n s between the 5d9(-2D) core and the *p and -^ p of the outer (6s6p) e l e c t r o n group. I t i s p o s s i b l e to r e a l i s e that an i n t e r a c t i o n between the 5d'^5f and the 5d 96s6p c o n f i g u r a t i o n would e x i s t s i n c e both can g i v e r i s e to a F m u l t i p l e t . The 5d*°nf s e r i e s were extended i n TI 111 as w e l l as i n Pb IV up to n = 7. I t can be seen from the graph that the h i g h e r member s e r i e s agree w e l l with the r e s u l t s obtained i n Hg 11 by Paschen (1928). The s c r e e n i n g constant as w e l l as the s p i n - o r b i t parameters are given i n Table 1 on page 29 • 3^ The H y d r o g e n i c Term S e r i e s : No e x t e n s i o n s o f t h e s e terms were made i n t h e s p e c t r u m o f Pb IV beyond t h o s e e s t a b l i s h e d by L y a l l ( l 9 6 5 ) 9 however i n t h e c a s e o f T l 111 t h e 5d*°ng s e r i e s were e x t e n d e d up t o t h e n = 7 c o n f i g u r a t i o n , and t h e 5d*°6h, 5d'°7h and 5d^8h terms were added as w e l l . The 5 d t 0 n g S e r i e s : L y a l l (t965) e x t e n d e d t h e s e s e r i e s i n Pb IV up t o t h e 5d*^7g c o n f i g u r a t i o n w h i l e t h e same e x t e n s i o n s o f t h e 5 d ^ n g s e r i e s were made i n t h e T l 111 a n a l y s i s . The new 5 d ^ n g c o n f i g u r a t i o n s were d e t e r m i n e d on t h e b a s i s o f t r a n s i t i o n s t o t h e 5d*^5f c o n f i g u r a t i o n u s i n g t h e P o l a r i z a t i o n T h e o r y ( a s d e s c r i b e d on page 7 ) t o p r e d i c t a p p r o x i m a t e l y t h e i r e n e r g i e s . Most o f t h e members o f t h e 5d'"ng s e r i e s a r e v e r y l i k e l y p e r t u r b e d by n e i g h b o u r i n g e n e r g y l e v e l s a s s i g n e d t o t h e 5d 96s6d and 5d 96p 2 c o n f i g u r a t i o n s ; t h i s a s s u m p t i o n i s s u p p o r t e d by t h e o b s e r v e d s t r o n g " d o u b l e e l e c t r o n " t r a n s i t i o n s between t h e 5d*^ng te r m s and t h e 5d?6s6p c o n f i g u r a t i o n . T a b l e 2 shows t h e o b s e r v e d and t h e o r e t i c a l e n e r g i e s o f t h e 5d*°ng t e r m s . The t h e o r e t i c a l v a l u e s were c a l c u l a t e d f r o m t h e p o l a r i z a t i o n t h e o r y as d e s c r i b e d on page 7 , a s s u m i n g t h e v a l u e f o r t h e p a r a m e t e r A ( Z ) t o be t h e same as t h a t c a l c u l a t e d f r o m t h e 5d* °nh s e r i e s . 35 The 5d nh. S e r i e s ; The lowest three members of t h i s s e r i e s were e s t a b l i s h e d e a r l i e r by Crawford (1937) i n Pb IV. The present observa-t i o n s of the spectrum of T h a l l i u m 3 r.ielded i n t e n s e and d i f f u s e l i n e s t h a t are a s s o c i a t e d with the 5 d 1 ^ 5 g -5d"^°nh t r a n s i t i o n s . The 5d 1^nh terms are very n e a r l y hydrogenic and can thus be s u c c e s s f u l l y i n t e r p r e t e d by the p o l a r i z a t i o n theory. I f the quadropole c o r r e c t i o n term i s i g n o r e d the c a l c u l a t e d and observed energy values agree to w i t h i n ~ 2 cm"*"'". T h i s d i s c r e p a n c y could probably be reduced by adding the quadropole c o r r e c t i o n , however the l i m i t e d accuracy of the wavelength measurements i n that r e g i o n of the spectrum does not warrant i t . The accepted v a l u e s of the i o n i z a t i o n p o t e n t i a l and the A(Z) parameter were d e r i v e d on the b a s i s of a best f i t between the observed 10 5d nh energies and those c a l c u l a t e d u s i n g equation 5 of the p o l a r i z a t i o n theory. Table 2 shows the A(Z) parameters, as w e l l as the c o r r e s p o n d i n g c a l c u l a t e d and observed 5d*^nh terms, assuming the i o n i z a t i o n p o t e n t i a l s f o r TI 111 and Pb IV to be 240773 cm" 1 and cm" 1 r e s p e c t i v e l y . 36 Table 2 TI I I I Pb IV c a l c u l a t e d T r e l ( c m " ^ A observed T (cm" 1) r e l c a l c u l a t e d T .(era" 1) r e l A observed T (cm" 1) r e l 5d 1 05g( 2G) 201152 135 201017 270583 86 270497 5d 1 06g( 2G) 213263 96 213167 292246 129 292II7 5d 1 07g ( 2 a ) 220568 37 22 0531 305338 109 305229 5d 1 06h( 2H) 213313 2 213311 292539 -4 292543 5cl 1 07h ( 2 H ) 220601 220603 305517 305516 5d 1 0 8 h ( 2 H ) 225329 225328 313941 313939 A(Z) 205 - : . 1 1120 - 10 I o n . L i m i t 2^0773 - 5 cm1 | 341438 ± <; The 5 d 9 n : jl ^ n ^ l p c o n f i g u r a t i o n s i n TI I I I and Pb IV I t was found that i n the case of TI I I I and Pb IV nearly-a l l the energy l e v e l s a r i s i n g from the 5d 96s 2, 5d 96s7s, 5d 96s6p, 5d 96s7p, 5d 96s6d and 5d 96p 2 c o n f i g u r a t i o n s may be expected to l i e s u b s t a n t i a l l y below the 5d^ "^  i o n i z a t i o n l i m i t . T h i s f a c t made i t r e l a t i v e l y easy to e s t a b l i s h p a r t i a l l y the 5d- 6p c o n f i g u r a t i o n , not knoiirn p r e v i o u s l y i n any atomic spectrum, as w e l l as to f i n d some of the terms of the 5d 96 s7p c o n f i g u r a t i o n . I f one examines the terms a r i s i n g from the n d 9 ( 2 D ) e x c i t e d core along the TI I I I and Pb IV group i n the p e r i o d i c t a b l e , i t becomes evident that these l e v e l s are lowered r e l a t i v e to the nd^°n^l^ terms, as the p r i n c i p a l quantum number of the n d 9 ( 2 D ) core i n c r e a s e s . T h i s i s p r i m a r i l y due to the f a c t that the e l e c t r o n s h e l l s i n the high Z atoms become c l o s e r spaced and the energy d i f f e r e n c e s more i n f l u e n c e d by the o r b i t a l 37 quantum number. In other words, as the apparent n u c l e a r charge that the e l e c t r o n sees i n c r e a s e s , the dominant r o l e of the p r i n c i p a l quantum number i n d e t e r m i n i n g the term energy decreases ( i n the Actenide elements, the' 7 s s h e l l i s f i l l e d before the 6 d s h e l l ) . The 5 d 9 6 s 2 C o n f i g u r a t i o n : T h i s c o n f i g u r a t i o n was e s t a b l i s h e d e a r l i e r i n a l l the members of the Au I i s o e l e c t r o n i c sequence i n c l u d i n g B i V. The 5 d 9 ( 2 D ) 6 s 2 terms were found by Convey (19^0) and independently confirmed i n the present work. These two b a s i c terms were e s t a b l i s h e d i n the p r e s e n t work u s i n g the f o l l o w i n g t h e o r e t i c a l and e m p i r i c a l c a l c u l a t i o n s : 1) p r e d i c t i o n of the doublet s p l i t t i n g from the r e g u l a r d o u b l e t law a c c o r d i n g to equation (12} 2) p r e d i c t i o n of the 5 d 9 ( 2I> 21) 6 s 6 p ( 3 P D ) , J = 5 d 9 ( 2 B 2 | ) 6 s 2 energy d i f f e r e n c e from " i r r e g u l a r doublet law" a c c o r d i n g to equation (11) q 2 ? 3 ) p r e d i c t i o n of the c e n t e r of g r a v i t y of the 5 d ( D ) 6 s ~ c o n f i g u r a t i o n by a n a l y z i n g the v a r i a t i o n of the n* quantum number along the i s o e l e c t r o n i c sequence. The assumption that the t r a n s i t i o n d e f i n e d under 2) must be among the s t r o n g e s t l i n e s i n the spectrum, and that a 10 2 9 2 2 moderate i n t e n s i t y l i n e between 5 d " L U 6 p £ P i and 5 d ^ 6 s * D , i 2 J -2 can be a n t i c i p a t e d l e d to the establishment of the 5 d 9 6 s 2 c o n f i g u r a t i o n . These two terms were f u r t h e r confirmed by the s t r o n g t r a n s i t i o n between the ground s t a t e and the 3 8 9 5d 6s6p terms e s t a b l i s h e d on the b a s i s of the new 5d q 2 2 terms. I t was observed that the 5d-( D,i)6s term combines 10 ? moderately strongl)' with the 5d 6p, "Pi. term as w e l l as with the 5d 1 07p 2 P i , i terms. The 5d 9 ( 2D~.i ) 6s 2 l e v e l 2 » 1 2 ^2 1 0 2 combines with the 5d 7p P ^ i as w e l l , but i s otherwise 2 TO ? metastable because i t l i e s below the 5d 6p " P , i term. 10 2 The t r a n s i t i o n to the 5d 7p P terms can be understood i n terms of i n t e r c o n f i g u r a t i o n i n t e r a c t i o n s between the 5d 96s6p c o n f i g u r a t i o n and the 5d"^7p c o n f i g u r a t i o n . The q 2 2 10 2 t r a n s i t i o n between the 5d ( D. 1)6s and the 5d 6p ~Pi. term 12 2 i s d i f f i c u l t to understand i n terms of i n t e r c o n f i g u r a t i o n m i x i n g but e a s i e r i n terms of the high p o p u l a t i o n number of these low l y i n g l e v e l s . T h i s seems to be the dominating f a c t o r s i n c e the r e l a t i v e i n t e n s i t y of t h i s t r a n s i t i o n i n c r e a s e s by an order of magnitude i n going from Au I to TI I I I and Pb IV where the r e l a t i v e energies of the 10 2 9 2 2 5d 6p 'Pi. and 5d ( D x)6s l e v e l s are r e v e r s e d . 2 I2 The 5d 96 s6p C o n f i g u r a t i o n T h i s c o n f i g u r a t i o n i s e s t a b l i s h e d from t r a n s i t i o n s between i t and the 5 d 9 ( 2 B ) 6 s 2 and the 5d 1 06s 2 S i terms. Although 2 most of the l e v e l s of t h i s c o n f i g u r a t i o n are l i s t e d f o r Au I i n the "Atomic Energy L e v e l s " , Moore (1958) there d i d appear some doubt as to the r e a l i t y of a number of l e v e l s . In order to f a c i l i t a t e a more r e l i a b l e a n a l y s i s of t h i s c o n f i g u r a t i o n i n other members of the i s o e l e c t r o n i c sequence a wavelength l i s t was obtained, f o r Au I and some of the given l e v e l s r e v i s e d . The changes are by no means complete 39 but they d i d help to strengthen the proposed l e v e l s t r u c t u r e s i n T l I I I and Pb IV. The c o r r e s p o n d i n g term values i n Hg I I were a l s o examined and, although no new l i n e l i s t was compiled, the a v a i l a b l e data was r e i n t e r p r e t e d i n accordance with the new a n a l y s i s of t h i s c o n f i g u r a t i o n i n the remaining members of the i s o e l e c t r o n i c sequence. A minor c o r r e c t i o n was made as w e l l i n the a n a l y s i s of the 5d 96s6p c o n f i g u r a t i o n i n Pb IV. T h i s was done mainly because the a n t i c i p a t e d very s t r o n g t r a n s i t i o n s to the ground s t a t e from a l l the lower l y i n g J - it 1_" l e v e l s were not found even a f t e r a much improved l i n e l i s t of l e a d was r e c e n t l y here obtained by Mr. L. White. Except f o r the J = kj? l e v e l and one J = 3 i l e v e l a l l the 9 remaining 5d 6s6p terms i n T l I I I as given by Convey (19^0) have been confirmed i n the present a n a l y s i s . Most of the energy l e v e l s were e s t a b l i s h e d on the b a s i s of t r a n s i t i o n s to the ground s t a t e and the 5d (~D)6s c o n f i g u r a t i o n . However the J = 32 l e v e l s of t h i s c o n f i g u r a t i o n had to be confirmed with t r a n s i t i o n from the 5d^^ng and the 5-^nd ^Dgi l e v e l s . The "double e l e c t r o n t r a n s i t i o n " between the even 5d*^nl terms and the l e v e l s of t h i s c o n f i g u r a t i o n were observed because of the e x t e n s i v e m ixing between the 5d 96s6d, 5d 96s7s and 5d 96p 2 and. the higher members of the - ,10 n . even 5<1 n l s e r i e s . 9 The s t r u c t u r e of the 5d 6s6p c o n f i g u r a t i o n was g r a p h i c a l l y analysed as shown on pages k0 and k\ , u s i n g methods o u t l i n e d i n s e c t i o n on page 12 . The l e v e l s can be a s s i g n e d to 9 2 two groups a c c o r d i n g to the 5d (~D) parent term. Except ,9,2 5d ( D2 5)6s6p C o n f i g u r a t i o n E - E G / £ + 1.3 c-vA 8000 ( - E Q * 5 d 9 ( 2 D 2 < 5 ) 6 s 6 p ( 3 p 0 ) 7ooo 6000 4ooo 3ooo 2ooo looo 4 2, "4 1 . 5 Au 1 Hg 11 T l 111 Pb IV F i g u r e 4 Figure' 5 9 2 5d ( Dj^5)6s6p C o n f i g u r a t i o n 8ocuS h E 0 r 5d"( D 1 5 ) 6 s 6 p ( 3 p o ) 7ooo 6ooo 5ooo 4ooo 3ooo 2ooo<F looo ,9,2. Au 1 Hg 11 T l 111 J -01.-5 -9o. 5 -(so. 5 •41.5 -02. 5 '1.5 Pb IV i n a few cases where there was a l a r g e degree of m ixing most of the terms could be a s s o c i a t e d with e i t h e r of the two groups, the assignments being based on the i n t e n s i t i e s 9 2 9/-of the t r a n s i t i o n s between the 5d 6s and the 5d osop terms. I f ( l ^ , s ^ ) , s^, and ( l ^ , s ^ ) are taken as the o r b i t a l and 9 s p i n quantum numbers of the d , s and p e l e c t r o n s r e s p e c t -i v e l y ) then i t appears that the term s t r u c t u r e may be best i n s e c t i o n 2c on page \ h » T h i s c o u p l i n g scheme was a r r i v e d at a f t e r t a k i n g i n t o c o n s i d e r a t i o n the energy l e v e l s t r u c t u r e of the 5d~^6s6p c o n f i g u r a t i o n found i n the lower i o n i z a t i o n stages of the same atoms. 9 The 5d 6S7P C o n f i g u r a t i o n ; Only those energy l e v e l s that combine with the ground s t a t e 9 c o u l d be e s t a b l i s h e d to any degree of c e r t a i n t y . The 5d 6s7p c o n f i g u r a t i o n was found i n TI I I I only, because the t r a n s i -t i o n s to the ground s t a t e i n Pb IV l i e too f a r i n the u l t r a -v i o l e t r e g i o n f o r our d a t a . A complete d e t e r m i n a t i o n of t h i s c o n f i g u r a t i o n would be p o s s i b l e only a f t e r a d d i t i o n a l t h e o r e t i c a l c a l c u l a t i o n s were made because t r a n s i t i o n s to 9 0 the 5d 6s6d and 5d'6s7s c o n f i g u r a t i o n l i e i n the near i n f r a r e d r e g i o n where the s p e c t r a l i n t e n s i t y i s low with the sources used. A number of energy l e v e l s a s s o c i a t e d with t h i s c o n f i g u r a t i o n l i e above the f i r s t i o n i z a t i o n l i m i t but do not seem to be a p p r e c i a b l y broadened through i n t e r a c t i o n s with the continuum. d e s c r i b e d by a c o u p l i n g scheme denoted where the n o t a t i o n i s more full}'- d i s c u s s e d k3 . g The 5d 6s7s C o n f i g u r a t i o n : T h i s c o n f i g u r a t i o n was v i r t u a l l y unknown throughout the Au I i s o e l e c t r o n i c sequence. I t c o n s i s t s of two groups of 9,2 . f o u r l e v e l s separated approximately by the 5d ( D) energy d i f f e r e n c e . The only w e l l e s t a b l i s h e d terms be l o n g i n g to t h i s c o n f i g u r a t i o n are the fou r l e v e l s belonging to the lower group i n Au I. An attempt was made to e s t a b l i s h the upper f o u r l e v e l s i n Au I, but the source used d i d not b r i n g out the r e q u i r e d t r a n s i t i o n s , A group of two energy l e v e l s i n Hg I I which are l i s t e d by Moore (1958) but not named seem to c o r r e l a t e with the lower group of l e v e l s e s t a b l i s h e d l a t e r i n T l I I I and Pb IV. As a matter of f a c t McLennau, McLay and Crawford (1931) suggested that these energy l e v e l s might l i k e l y be a s s o c i a t e d with the 5d 96s7s c o n f i g u r a t i o n (they are named kr x, 5_i_ i n Moore's 2 2 c o m p i l a t i o n ) . 9 The approximate energy of the lower l i m i t of the 5d 6s7s c o n f i g u r a t i o n was estimated from the 5d*^ *S Q - 5d 96s, J = 3 energy d i f f e r e n c e , while r e a l i z i n g that the s c r e e n i n g e f f e c t of the 7s e l e c t r o n i s being ignored i n t h i s e s t i m a t e . The a c t u a l term va l u e s were e s t a b l i s h e d from t r a n s i t i o n s between the 5d 96s6p c o n f i g u r a t i o n and the 5 d 9 6 s7s c o n f i g u r a t i o n , assuming that the most probable t r a n s i t i o n s would occur 9 2 between l e v e l s having the same 5d ( D) parent term. The 5<l96s6d C o n f i g u r a t i o n : T h i r t e e n terms belonging to t h i s c o n f i g u r a t i o n are given f o r Au I by Moore (.1958). Outside of Au I, no terms b e l o n g i n g to t h i s c o n f i g u r a t i o n were p r e v i o u s l y i d e n t i f i e d i n any other members of the i s o e l e c t r o n i c sequence. The f a c t that t h i s c o n f i g u r a t i o n i s r a t h e r complex and that i t o v e r l a p s with the 5d 96s7s and 5d 96p 2 c o n f i g u r a t i o n s makes i t v i r t u a l l y i m p o s s i b l e to p r e d i c t i t s s t r u c t u r e i n any d e t a i l . I t i s w e l l known (Bacher (1933)) that pronounced p e r t u r b a t i o n s e x i s t between the 2p^3s3d and 2p^3p 2 c o n f i g u r a t i o n s i n Mg I, and hence s i m i l a r behaviour might be a n t i c i p a t e d i n these s p e c t r a . In e s t a b l i s h i n g t h i s c o n f i g u r a t i o n i t was t h e r e f o r e most u s e f u l to work s i m u l t a n e o u s l y on TI I I I and Pb IV s i n c e t h e i r l e v e l s t r u c t u r e should, be s i m i l a r . I t was assumed as well-that the combining p r o p e r t i e s of the same i n d i v i d u a l energy l e v e l s i n TI I I I and Pb IV would be somewhat s i m i l a r . The e x t e n s i v e e x c i t a t i o n data a v a i l a b l e i n the T h a l l i u m spectrum, as w e l l as the a d d i t i o n a l data a c q u i r e d f o r the p r e s e n t a n a l y s i s , was of s p e c i a l help i n a n a l y s i n g t h i s c o n f i g u r a t i o n . The only assumption made i n connection with the s t r u c t u r e of t h i s c o n f i g u r a t i o n was that i t c o n s i s t e d of b a s i c a l l y an upper and lower group, t h e i r energy s e p a r a t i o n being 9 2 approximately equal to the 5d ( D) d i f f e r e n c e . L e v e l s were ass i g n e d to e i t h e r of the two groups although i t must tre understood that the names of some of these l e v e l s are a r t i f i c i a l , to an a p p r e c i a b l e degree. As i n the case of the q 5d 6s7s c o n f i g u r a t i o n , the s e p a r a t i o n of t h i s c o n f i g u r a t i o n i n t o two groups i m p l i e d that s t r o n g e r t r a n s i t i o n s would be F i g u r e 6* 45oo -I E-. - E 0 / ^ cvr\ E 0_ » 6s6d (1) , 2.5 4ooc 35ocf-5d 6s6d C o n f i g u r a t i o n 2.5 3ooo 25oo 2.5 2.5 2ooo 15oo 1.5 looo 5oo 2.5 2.5 TI 111 Pb IV 2ooo 15oo looo 5oo o - 5oo looo 15oo 2poo 25oo T I 111 Pb 9 2 a n t i c i p a t e d between terms having the same 5d ( D) parent term. Of the 35 energy l e v e l s belonging to t h i s c o n f i g u r a t i o n only s i x t e e n of these were considered to be w e l l enough e s t a b l i s h e d , both i n T l I I I and Pb IV, f o r i n c l u s i o n here. The s i x t e e n terms assi g n e d to t h i s c o n f i g u r a t i o n -in T l I I I 9 and Pb IV are based on t r a n s i t i o n s to the 5<1 • 6s6p c o n f i g u r a t i o n only, although a number of a d d i t i o n a l d o u b l e - e l e c t r o n t r a n s i t i o n s were observed as w e l l . These l a t t e r t r a n s i t i o n s between the 5d 6s6d c o n f i g u r a t i o n and some of the odd 5d*^nl terms might be e x p l a i n e d i n terms of c o n f i g u r a t i o n 9 9 2 i n t e r a c t i o n s , p r i m a r i l y between the 5d 6s6d, and the 5d 6p * 0 9/- r and. 5d nd. c o n f i g u r a t i o n s . The s t r u c t u r e of the 5d osod c o n f i g u r a t i o n was only g r a p h i c a l l y analysed a c c o r d i n g to the ideas o u t l i n e d i n s e c t i o n 2 b on page \2 » and shown i n f i g u r e ' 6 , 7 . 9 2 The 5d 6p C o n f i g u r a t i o n : T h i s type of c o n f i g u r a t i o n was not e s t a b l i s h e d p r e v i o u s l y i n "any other atomic s p e c t r a , primaril}'' because these l e v e l s iv'ould be very h i g h , mainly above the f i r s t i o n i z a t i o n l i m i t . Convey (19^0) repo r t e d two energy l e v e l s b e l o n g i n g to t h i s c o n f i g u r a t i o n but only one i s confirmed here. In T l I I I and Pb IV t h i s c o n f i g u r a t i o n s t a r t s w e l l below the f i r s t i o n i z a t i o n l i m i t and hence a l l the J = Jr, 1 \, 2-| terms, 1 0 2 combining with the 5d P l e v e l s could be found. The graph on page ^8 shows the observed s t r u c t u r e of the 9/- 2 5d^6p c o n f i g u r a t i o n ; the l e v e l s are d i s t i n g u i s h e d a c c o r d i n g 2oooo r i E - E 0 /gen - I 9 2 5d 6p Configuration Figure 8 18ooo I6000 14ooo 12ooo loooo 8000 6000 4ooo 2ooo I 2o. - 1.5 5 d 9 ( 2 D 1 5 ) G p 2 ( 1 S 0 ) 19 18 1.5 2.5 . 1.5 2.5 9 2 2 1 2.5 5d ( D 2. 5)6p ( S b) 2.5 1-t o. 5 o. 5 1:: 2.5 1.5 1.5 5d 9( 2D l i 5)6p 2<3 P o) 1.5 Eo TI 111 2.5 2.5 5 d 9 ( 2 D 2 > 5 ) 6 p 2 ( 3 P o ) Pb IV 4s 9 ? \ to t h e i r 5d (~D). parent term. Although t h i s c o n f i g u r a t i o n i s s t r o n g l y mixed with the 9 9 5d 6 s 6 d and the 5 d 6 s 7 s c o n f i g u r a t i o n s the i n d i v i d u a l l e v e l s c o u l d be d i s c r i m i n a t e d from the p e r t u r b i n g c o n f i g u r a t i o n s on the b a s i s of the st r o n g t r a n s i t i o n s between the 5d op and 5 d 1 ^ > 6 p c o n f i g u r a t i o n s . These combinations were a n t i c i -pated and found i n analog}'' with the i n t e n s e l i n e s c o nnecting the 5 d * ^ 6 s and 5 d 9 6 s 6 p l e v e l s . The pro|>osed c o u p l i n g scheme f o r the 5 d ^ 6 s 6 p c o n f i g u r a t i o n as suggested on page 42. lead. 9 2 to the assumption that i n the 5d 6 p" c o n f i g u r a t i o n j t h e ( 6 p , 6 p ) e l e c t r o s t a t i c i n t e r a c t i o n s would dominate the 9 ( 5 d , 6 p ) e l e c t r o s t a t i c i n t e r a c t i o n s . Hence the c o u p l i n g s e c t i o n 2 c by f (1 s ) j f (1 1 )l,(s s ) S 1 j f J where the scheme may be expressed most c o n v e n i e n t l y as e x p l a i n e d i n 3 9 s u b s c r i p t s 3» 2 and 1 r e f e r to the 5d and the two op e l e c t r o n s r e s p e c t i v e l y . As mentioned e a r l i e r , the observed 9 9 2 l i n e i n t e n s i t i e s c o n n e c t i n g the 5d 6 s 6 p and the 5d 6p c o n f i g u r a t i o n s were of l i m i t e d help i n t r y i n g to name many 9 . 2 of the energy l e v e l s b e l o n g i n g to the 5d op c o n f i g u r a t i o n . 9 Strong p e r t u r b a t i o n s can be a n t i c i p a t e d between the 5d*6s'6d 9 . 2 and. the 5d op c o n f i g u r a t i o n p a r t i c u l a r l y between terms 1 2 i n v o l v i n g the D ' of the ( 6 s 6 d ) and. the (6p ) groups. "Double e l e c t r o n " t r a n s i t i o n s observed f r e q u e n t l y i n connecti o n with t h i s c o n f i g u r a t i o n are p r i m a r i l y due to 50 c o n f i g u r a t i o n i n t e r a c t i o n s with the h i g h e r members of - t h e ' 1 0 5d nd s e r i e s . Twenty one l e v e l s belonging to t h i s c o n f i g u r a t i o n were observed a l l of them combining s t r o n g l y with the 5-*^6p "ground s t a t e " . The 5d"6p7s C o n f i g u r a t i o n : T h i s c o n f i g u r a t i o n i s not quoted i n any of the p r e v i o u s a n a l y s i s of atomic s p e c t r a . A search f o r t h i s c o n f i g u r a t i o n was s t i m u l a t e d p r i m a r i l y because of two o b s e r v a t i o n s : 10 9 2 1) T r a n s i t i o n s between 5d 6p and the 5d 6p terms are n e a r l y as i n t e n s e as between the 5-*^6s ground s t a t e 9 and the 5d 6s6p terms; hence, a n a l o g o u s l y , one might expect a s i m i l a r system of energy l e v e l s , based on the 5d*^7s "ground s t a t e " . 2 ) A number of e x c e p t i o n a l l y d i f f u s e l i n e s i n the a n t i c i p a t e d wavelength r e g i o n and with the c o r r e c t e x c i t a t i o n are observed both i n the e l e c t r o d e l e s s d i s c h a r g e as w e l l as i n the spark i n helium source. The energy a s s o c i a t e d w i t h t h i s c o n f i g u r a t i o n was p r e d i c t e d by the method d e s c r i b e d i n s e c t i o n 1b on page 8 . Only 10 2 terms that combine with the 5d 6s S l e v e l were co n s i d e r e d 1 r e l i a b l e enough f o r i n c l u s i o n here. These energy l e v e l s l i e bett^een ^0000 cm * and 75000 cm -' above the f i r s t i o n i z a t i o n — t 9 3 l i m i t and w i t h i n 35000 era" from the 5d 6s( D^) i o n i z a t i o n l i m i t . I t i s c o n c e i v a b l e that i n t e r a c t i o n s between the 9 9 h i g h e r members of the 5<i 6snp s e r i e s and the 5d 6p7s l e v e l s are r e s p o n s i b l e f o r the broadening of these t r a n s i t i o n s . 35C-00 T r e l ( c n , ~ 1 > F i g u r e 9 .9 5d 6s7s C o n f i g u r a t i o n 3oooo z e r o : ( A u l , H g l l , T l l l l , P b l V ) : 5 d 9 6 s ( 3 D 3 ) 6 p i 5 +• 5 d i 0 7 s - 5 d i 0 6 p 1 > 5 z e r o : , ( A u l l . H g l l l , T 1 1 V , P b V ) t 5 d 9 6 s 3 D 3 25ooo 2oooo 15ooo — loooo oooo •tn C3 XS & J 2 1 3 O it I I I CO t> w o iO i : 2.5 3.5 3 < 2 1 (0 r-! rH 03 T3 lO 2.5 .1.5 iH rH rH / / J I 2 / / — 2 . 5 / j / /C / / I I i 1 -A • o C3 X3 4/. / / J • . tn CO 03 • x> in r4 -2 -1 / / 3 52 Extensions i n the Term A n a l y s i s of TI IV and Pb V. General Remarks Some of the b a s i c c o n f i g u r a t i o n s i n TI IV and Pb V were e s t a b l i s h e d by e a r l i e r workers; most of these were confirmed .by recent o b s e r v a t i o n s ( L y a l l (1 965) sWhite (1967)).To determine some of the more complex c o n f i g u r a t i o n s whose s t r u c t u r e cannot be a c c u r a t e l y p r e d i c t e d by simple t h e o r e t i c a c o n s i d e r a t i o n s , i t i s important to be able to d i s c r i m i n a t e between a chance c o i n c i d e n c e and a r e a l energy l e v e l . A side from s t r i v i n g f o r an optimum accuracy and r e l i a b i l i t y i n a l i n e l i s t i t i s d e s i r a b l e to c o n s i d e r more then one member of an i s o e l e c t r o n i c sequence. T h i s constant comparison of r e s u l t s can help immeasurably to d i s c r i m i n a t e between s i g n i f i c a n t c o i n c i d e n c e s and spu r i o u s r e s u l t s . In the case of Pb V many t r a n s i t i o n s occurred i n the f a r u l t r a -v i o l e t r e g i o n where chance c o i n c i d e n c e s are small while i n the case of both Pb V and TI IV the e x c i t a t i o n data obtained from the spark i n helium source was of i n v a l u a b l e h e l p . 9 The 5d ns C o n f i g u r a t i o n s ; 9 9 The 5d 7s and 5d 8s c o n f i g u r a t i o n s were added i n TI IV a The new terms were e s t a b l i s h e d from combinations with the 5d 96p c o n f i g u r a t i o n . Strong t r a n s i t i o n s were a n t i c i p a t e d . 53 be.ttvreen terms having the same 5 d y ( D) parent term.. The 9 njd n 2 s c o n f i g u r a t i o n s i n t h i s p a r t of the p e r i o d i c t a b l e are c l o s e r to pure j - j c o u p l i n g then i n any element of the lower - Z p e r i o d s of the p e r i o d i c t a b l e ; t h i s i s c l e a r i f examined i n t a b l e 3» 9 The 5d ns c o n f i g u r a t i o n s were analysed u s i n g the i n t e r -mediate c o u p l i n g theory as d e s c r i b e d on page \6' The 9 5 d ' 6s c o n f i g u r a t i o n s do not agree w e l l with the s t r u c t u r e p r e d i c t e d by the theory, very like!}' because of the p r o x i m i t y 8 , 2 of the 5d os c o n f i g u r a t i o n . As can be seen, the agreement with the i n t e r m e d i a t e c o u p l i n g theory improves as we go 8 2 out the i s o e l e c t r o n i c sequence, probably because the 5d 6s 9 and the 5d 6s c o n f i g u r a t i o n s become more separat e d . Agree-9 ment with the theory of the 5d 7 s c o n f i g u r a t i o n i s very good throughout the i s o e l e c t r o n i c sequence, while the 5 d 9 8 s c o n f i g u r a t i o n s i n Pb V and TI IV do not agree w e l l with the p r e d i c t e d s t r u c t u r e . T h i s l a t t e r c o n f i g u r a t i o n o v e r l a p s with 8 , 2 the 5d 6p c o n f i g u r a t i o n which might be r e s p o n s i b l e f o r 9 p e r t u r b a t i o n s a f f e c t i n g the 5d 8 s terms. 9 The 5d np C o n f i g u r a t i o n s 9/-The 5d 6p c o n f i g u r a t i o n was e s t a b l i s h e d by e a r l i e r workers i n a l l the members of the i s o e l e c t r o n i c sequence. I t was p o s s i b l e i n TI IV and Pb V to determine with confidence s i x 9 of the xpected twelve l e v e l s b l o n g i n g to the 5d 7 p c o n f i g u r a t i o n . Th se new l e v e l s were e s a b l i s h e on the s e c t i o n 2 c , page IJ ) are Leaf 5A omitted i n page numbering. 55 9 b a s i s of t r a n s i t i o n s to the 5d 6s terms. I t was assumed 9 t h a t the 5d 7p c o n f i g u r a t i o n could be d e s c r i b e d by a j - j c o u p l i n g scheme because the 5d 96p c o n f i g u r a t i o n i s a l r e a d y c l o s e r to j - j r a t h e r than I. - S c o u p l i n g . In e s t a b l i s h i n g 9 the 5rl 7p c o n f i g u r a t i o n s t r o n g combinations were a n t i c i p a t e d 9 ? . between l e v e l s having the same 5d (~D) parent term. The energy a s s o c i a t e d with t h i s c o n f i g u r a t i o n was p r e d i c t e d from equation 1 t a k i n g i n t o account the proper l i m i t . 9 The m i s s i n g terms of the 5d 7p c o n f i g u r a t i o n c o u l d be e s t a b l i s h e d with more c e r t a i n t y a f t e r a d d i t i o n a l t h e o r e t i c a l p r e d i c t i o n s , q The 5d 6d C o n f i g u r a t i o n ; T h i s c o n f i g u r a t i o n was v i r t u a l l y unknown throughout the 9 2 Pt I i s o e l e c t r o n i c sequence. Only the 5d ( D _)6d terms 2 g were established, p r e v i o u s l y i n the a n a l y s i s of Au I I ( P i a t t and Sawyer (19^1))• Most of the energy l e v e l s of 9 the 5d 6d c o n f i g u r a t i o n are now e s t a b l i s h e d i n T l IV and Pb V. 9 2 The approximate lower l i m i t f o r the 5d ( D ^) group of l e v e l s i n T l IV and Pb V was determined by methods d e s c r i b e d i n s e c t i o n l b of the theory. In a d d i t i o n , equation 1 was used to study the change i n the n* quantum number a s s o c i a t e d with the removal of a 5d e l e c t r o n from the n = 5 s h e l l . Thus, the i n c r e a s e i n n* between the lower term of the 5d*^nl c o n f i g u r a t i o n s and the lower l i m i t of the c o r r e s p o n d i n g 56 9 5d n l c o n f i g u r a t i o n s y i e l d e d a d d i t i o n a l i n f o r m a t i o n as to the approximate minimum term'value of the 5d96d c o n f i g u r a t i o n . The p r e d i c t i o n s made by the v a r i o u s methods d e s c r i b e d , agreed g e n e r a l l y to w i t h i n 5000 cm™ 1. An estimate of the i n t e r a c t i o n e n e r g i e s i n v o l v e d i n t h i s c o n f i g u r a t i o n was estimated, from the e s t a b l i s h e d terms i n Au I I as w e l l as the s p i n - o r b i t i n t e r a c t i o n s i n TI I I I and Pb IV of the 5d 9 and the 6d e l e c t r o n s . The simultaneous search f o r the 5d'*6d c o n f i g u r a -t i o n i n TI IV and i n Pb V was most h e l p f u l . The new terms of t h i s c o n f i g u r a t i o n were e s t a b l i s h e d from 9 t r a n s i t i o n s to the 5d 6p c o n f i g u r a t i o n . Since l e v e l s a r i s i n g Q 2 from the 5d ( D x) core are w e l l separated from those o . 2 . a s s o c i a t e d with the 5d ( D x) parent term, i t was assumed 1 2 that the most probable t r a n s i t i o n would occur between those 9 9 l e v e l s of the 5d 6p and 5d 6d c o n f i g u r a t i o n which have the same parent term. A rough idea as to the order and d i s t r i b u -t i o n of l e v e l s i n the 5d96d c o n f i g u r a t i o n can be obtained from the p a i r c o u p l i n g theory as d e s c r i b e d on page \ 5. F i g u r e 1 ' 9 2 and t t- show a g r a p h i c a l a n a l y s i s of the 5d ( D i ) 6d group 22 of l e v e l s a c c o r d i n g to the ideas d e s c r i b e d i n s e c t i o n l b of the theory. 9 5d 5f C o n f i g u r a t i o n T h i s c o n f i g u r a t i o n i s now p a r t i a l l y known i n the i s o e l e c t r o n i c sequence only i n TI IV and Pb V. An attempt was made to f i n d some of the terms of t h i s c o n f i g u r a t i o n i n Au I I ; i t seemed, however, that the spark i n helium source used d i d F i g u r e l o 'Au 11 Hg 111 T l IV Pb V 59 not b r i n g out sufficient!}'; the t r a n s i t i o n s between the 9 ' 9 5d 6d and the 5d 5f c o n f i g u r a t i o n s . I t was e v i d e n t , a f t e r these c o n f i g u r a t i o n s were p a r t i a l l y e s t a b l i s h e d i n TI IV and Pb V, that only one or two t r a n s i t i o n s from any one of 9 the 5d 5f s t a t e s a l s o occurred i n the spark i n helium. 9 Due to the f a c t that the nearest n^d n f c o n f i g u r a t i o n known i s i n Zn I I I (Dick (1966)), the search f o r t h i s c o n f i g u r a t i o n was, r a t h e r d i f f i c u l t . Most of the methods used with the 9 5d' 6s6d c o n f i g u r a t i o n virere employed here, i n order to o b t a i n an estimate of the term values of t h i s c o n f i g u r a t i o n . A simultaneous search f o r t h i s c o n f i g u r a t i o n both i n Pb V and TI- IV made the d e t e r m i n a t i o n of some of these energu l e v e l s p o s s i b l e . 9 The 5d 5f l e v e l s were e s t a b l i s h e d from t r a n s i t i o n s to the 9 5d 6d c o n f i g u r a t i o n , the s t r o n g e s t combinations being 9 2 a n t i c i p a t e d between terms having the same 5d ( D) parent 9.2 1 term. F i g u r e 12 shows the c e n t e r of g r a v i t y of the 5d ( D )5f p a i r s u s i n g the p a i r c o u p l i n g approximation, as w e l l as the observed energy v a l u e s . The K = (2-g-) p a i r of l e v e l s are being f o r c e d to f i t the theory i n both the upper and lower group. The parameters F , as d e f i n e d on page 15 , are taken to be 139 cm"1 and 188 cm"' f o r TI IV and Pb V r e s p e c t i v e l y . There are no t r a n s i t i o n s observed between 9 9 the 5d 5f and the 5d 6s c o n f i g u r a t i o n , but "double .electron" 9 8 2 t r a n s i t i o n s were observed between the 5d 5f and the 5d 6s 9 l e v e l s p o s s i b l y because of the mixing between the 5d 5f 8 and the 5d 6s6p c o n f i g u r a t i o n s . cm -1 J.5 -60-F i g u r e 12 K ,(3.5) lo 15 - Co - l o -15 -2o| --25 15 l o h (2.5) (1.5) 5 d 9 ( 2 D ) 5 f C o n f i g u r a t i o n F-2- = 139cm -1 (3.5) F = 188cm -1 J 3 . . ._r v L_ --.0-(2.5) t 2 3 2 3 •15 h ( 1 . 5 ) 1 2 -2o --25 --r3o - Theory (o.5) 1 o T l IV o? i ? Pb IV 6t 8 2 8 The 5 d 6 s and $<] 6 s 6 p C o n f i g u r a t i o n : 8 2 An attempt was made to e s t a b l i s h the 5 d 6 s c o n f i g u r a t i o n q i n TI IV and Pb V from t r a n s i t i o n s to the 5 d 6 p c o n f i g u r a t i o n . However, no s t r o n g l i n e s were observed e i t h e r i n Pb V nor i n TI IV. Thus i t became c l e a r that one would have to 8 e s t a b l i s h f i r s t some of the 5d 6 s 6 p energy l e v e l s and only 8 ^ 2 then t r y to determine the 5 d 6 s c o n f i g u r a t i o n . Since the 8 5 d 6 s 6 p c o n f i g u r a t i o n i s very complex, terms which combine q with at l e a s t two of the f o u r 5 d 6 s l e v e l s were only c o n s i d e r e d as r e a l . S p e c t r a l l i n e s which were observed with the spark i n helium source, and whose e x c i t a t i o n s were t h e r e f o r e known were i n the case of TI IV considered only^ i n the search f o r the 5 d osop terms. The energy l e v e l s i n TI IV and Pb V were unambiguously determined when the above r e s t r i c t i o n s were taken i n t o account, and when they were analysed together with the term values of the c o r r e s p o n d i n g l e v e l s i n Hg I I I . F i g u r e 14- ^ s a g r a p h i c r e p r e s e n t a t i o n of the c o n f i g u r a t i o n a c c o r d i n g to the s e m i e m p h i r i c a l method o u t l i n e d i n s e c t i o n 2 b of the theory. The t o t a l angular momentum quantum numbers j f o r some of these l e v e l s are not too w e l l d e f i n e d . 8 A f t e r some of these 5 d 6 s 6 p l e v e l s have been determined i t 8 2 was p o s s i b l e to e s t a b l i s h the 5 d 6 s c o n f i g u r a t i o n . T h i s c o n f i g u r a t i o n has been found i n a l l the other members of the i s o e l e c t r o n i c sequence and thus i t s s t r u c t u r e could be e a s i l y p r e d i c t e d by e x t r a p o l a t i o n from the l i g h t e r members of the i s o e l e c t r o n i c sequence. -62= F i g u r e 14 Q 5d 6s6p C o n f i g u r a t i o n 12ooo l l o o o loooo 9ooo 8000 _ 7ooo 6000 5ooo 4 000 3ooo 2ooo -looo O — O— "3 ~ - O -02 - O 3 Hg-1-11 -T-1-1V - o l -Pb.-.V - 6 3 -8ooo 7oooh-6oooh-5oOOr" J 4 2 4ooc 3ooq— 2ood--O 2 l o o d -J_ J_ Pt 1 Au 1 1 Hg 1 1 1 T l IV Pb v F i g u r e 1 3 6k 8 2 The approximate energy a s s o c i a t e d w i t h the 5d 6s c o n f i g u r a t i o n was p r e d i c t e d by methods o u t l i n e d i n s e c t i o n l b of the theory. In t h i s . c a s e the energy d i f f e r e n c e 5d'° * S Q - 5d 96s ^D^ 8,2 was doubled to estimate the lower l i m i t of the 5d 6s c o n f i g u r a t i o n . Extension i n the A n a l y s i s of TI 11 Only minor extensions were made i n the a n a l y s i s of TI . 1 1 . A e e l a t i v e l y l a r g e number of sharp low e x c i t a t i o n l i n e s s t i l l remain u n c l a s s i f i e d , p a r t i c u l a r l y between 1000 A and 1500 A The 5 d 1 0 6 p 2 C o n f i g u r a t i o n ; A l l of the terms b e l o n g i n g to t h i s c o n f i g u r a t i o n except the h i g h * S Q term have been e s t a b l i s h e d e a r l i e r , and confirmed i n the a n a l y s i s . The 1 Term was e s t a b l i s h e d from t r a n s i -t i o n s to the 5d*°6s6p c o n f i g u r a t i o n . Table 4 shows the observed and c a l c u l a t e d r e l a t i v e term v a l u e s , u s i n g the i n t e r m e d i a t e c o u p l i n g theory as o u t l i n e d i n s e c t i o n 2c of the theory; the parameters F and have been e s t a b l i s h e d 2 P The from the ( 3 P Q + *S ) , 3 P j and ( 1 S Q - 3 P Q ) e n e r g i e s discrepanc3 r of the * l e v e l i s due to p e r t u r b a t i o n s from the ^D^ term of the 5d*°6s6d c o n f i g u r a t i o n s . T h i s type of c o n f i g u r a t i o n i n t e r a c t i o n was d i s c u s s e d i n d e t a i l by Dacher (T 933) f ° r the case of Mg 1. I t can be seen that the 5 d 1 0 6 p 2 ? D 2 term i s high by 1906 cm"' w h ile the 5d*°6s6d *D 2 term i s pushed below the 5d*°6s6d 3D m u l t i p l e t Table 4 1 0 ? R e l a t i v e Term Values of the 5d'"6p Configu r a t i o n Tr e l ( c a l c ) ,cm"*1 T r e l ' o b s * ' , c m " ' 3 P Q 117355 117411.6 3 P . I.25340 125340.4 3 P 2 130026 128821.6 * D 139076 l4l.982.0 1 S Q 1 50417 150 0 F 2 + 1139,3 cm" 1 S p = 7 7 24 . 3 cm" 1 66 g o The 5d 6s ?s Configii r a t i on : T h i s c o n f i g u r a t i o n was t e n t a t i v e l y e s t a b l i s h e d on the b a s i s of 9 ? t r a n s i t i o n s to the 5d 6s"6p c o n f i g u r a t i o n . Strong t r a n s i t i o n s between the 5d 96s7s and the 5d 96s6p c o n f i g u r a t i o n s i n T l I I I i m p l i e d that some of the u n c l a s s i f i e d low e x c i t a t i o n l i n e s observed i n the T h a l l i u m spectrum could a r i s e i n connection with the 5d os 7s c o n f i g u r a t i o n . However, the l i n e s are moderately sharp, which i s s u r p r i s i n g i n viex^ of the f a c t that the 5d'^6snd continuum c o u l d c o n c e i v a b l y broaden the l i n e s 9 2 a s s o c i a t e d with the 5d 6s 7s c o n f i g u r a t i o n (Shenstone I936 '* An approximate estimate as to the energies of t h i s c o n f i g u r a t i o n was obtained by the method d e s c r i b e d i n s e c t i o n 1b on page 8 • T r a n s i t i o n s between the 5d 96s6p and the 5d"^6s7s c o n f i g u r a t i o n i n T l I I I as w e l l as t r a n s i t i o n s between the 5d 96p and the 9 5d 7s c o n f i g u r a t i o n i n T l IV gave a f a i r l y good estimate as 9 2 to the l o c a t i o n of the 5d 6s 7s terms. T h i s c o n f i g u r a t i o n was analysed u s i n g i n t e r m e d i a t e c o u p l i n g theory d e s c r i b e d i n s e c t i o n 2c on page 13 . The c a l c u l a t e d and observed term val u e s r e l a t i v e to i (JB2 + 'D 2) are expressed i n energy u n i t s d e f i n e d i n s e c t i o n 2c of the theory. The 5d 96s 6d Configu r a t i o n : In analogy with t r a n s i t i o n s between the 5d 96s6p and the s6d c o n f i g u r a t i o n s observed i n T l I I I some af the u n c l a s s i f i e d low e x c i t a t i o n l i n e s might be a s s o c i a t e d with 9 2 t r a n s i t i o n s i n v o l v i n g the 5d 6s ~6d. c o n f i g u r a t i o n . The energy 67 ; r e g i o n where t h i s c o n f i g u r a t i o n would, l i e was estimated from methods d e s c r i b e d i n s e c t i o n l b of the theory while the approximate grouping of l e v e l s and energy range of t h i s c o n f i g u r a t i o n was estimated from the 5d^6d c o n f i g u r a t i o n , i n T l IV. Q .?. . The two groups of l e v e l s a s s o c i a t e d with the 5d ( D) parent terms were each e s t a b l i s h e d from combinations with the 5d"6s 6p l e v e l s having the same 5d'( D) parent term. It i s r a t h e r s u r p r i s i n g that a l l the t r a n s i t i o n s from the 5d 96s 26d l e v e l s above i o n i z a t i o n are not found to be more d i f f u s e , s i n c e one might a n t i c i p a t e d energy l e v e l broadening due to 9 d the 5d 6sn continuum (Shenstone 1936 )» 10 9 ? The C o n f i g u r a t i o n s 5d 6p7p and 5d 6s6p* A search f o r l e v e l s b e l o n g i n g to these c o n f i g u r a t i o n was s t i m u l a t e d by the numerous low e x c i t a t i o n l i n e s observed with the spark o i n helium below the 1000 A r e g i o n . Both of these c o n f i g u r a -t i o n s are expected to have t r a n s i t i o n s to the 5d*^6s6p and the 5d'°6p 2 c o n f i g u r a t i o n s . Only a few l e v e l s of each of these c o n f i g u r a t i o n s could be i d e n t i f i e d with c e r t a i n t y because t r a n s i t i o n to the low l y i n g 5d'^6s6p c o n f i g u r a t i o n was i n s i s t e d upon. To determine the energy l e v e l s of these c o n f i g u r a t i o n s only l i n e s with an e s t a b l i s h e d T l I I e x c i t a t i o n have been used, thus e l i m i n a t i n g as much as p o s s i b l e any spurious c o i n c i d e n c e s . The approximate energies of these c o n f i g u r a t i o n s were deduced by methods o u t l i n e d i n s e c t i o n of the theory. 10, The f o u r l e v e l s a s s o c i a t e d with the 5d op7p c o n f i g u r a t i o n 68 are t e n t a t i v e l y l a b e l l e d as vl) and D l e v e l s , while the 9 2 5d 6s6p c o n f i g u r a t i o n i s too complex to gi v e any i n t e r p r e t a -t i o n here. . The C o n f i g u r a t i o n 5d*°6p7s The f o u r l e v e l s b e l o n g i n g to t h i s c o n f i g u r a t i o n were p r e v i o u s -l y known i n Pb I I I and are the only odd l e v e l s known above the f i r s t i o n i z a t i o n l i m i t . The s t r u c t u r e f o l l o w s f a i r l y c l o s e l y the j - s c o u p l i n g scheme, both i n TI I I and i n Pb I I I . The J = 0 l e v e l could not be i d e n t i f i e d with c e r t a i n t y i n TI I I but the remaining three l e v e l s c o n s i s t of a par with J = 1 and J = 2 separated from the lower J = 1 l e v e l by approximately 1 0 , 2 the 5d 6p P energy d i f f e r e n c e . 69 Conclusion One can say that the work undertaken here enhanced somewhat the understanding and knowledge of the s p e c t r a of heavy metals. Some b a s i c c o n f i g u r a t i o n s i n these s p e c t r a are c l o s e r to pure 3 - j c o u p l i n g then to L - S c o u p l i n g , xv'hile some of the h i g h e r s e r i e s members are probably one of the best examples of j - j c o u p l i n g . T h i s a n a l y s i s l e f t some unanswered q u e s t i o n s and suggests f u r t h e r work along c e r t a i n d i r e c t i o n s . There i s a l a r g e number of r e l a t i v e l y sharp l i n e s which remain u n c l a s s i f i e d and which must belong to the spectrum of TI I I . It i s s u r p r i s i n g that none of these l i n e s are not more d i f f u s e s i n c e most of them must a r i s e from c o n f i g u r a t i o n l y i n g i n the continuum above the f i r s t i o n i z a t i o n l i m i t . In TI I I I i t 9 would be of i n t e r e s t to extend, the 5d 6sns s e r i e s above the i o n i z a t i o n l i m i t and study the energy l e v e l broadening due 9 to i n t e r a c t i o n s i?ith the continuum. The 5d 6p7s c o n f i g u r a -t i o n i n TI I I I might need f u r t h e r v e r i f i c a t i o n . A number of TI I I I l i n e s remain s t i l l u n c l a s s i f i e d , however, they are most l i k e l y connected with the m i s s i n g terms of the 5d 96s6d and 5d^6p 2 c o n f i g u r a t i o n s . There i s an immense number of u n c l a s s i f i e d TI IV l i n e s i n the r e g i o n below 1200 A ° ; these are very l i k e l y a s s o c i a t e d with 9 8-2 the 5d 6p - 5d 6p t r a n s i t i o n s , however, no attempt was made to e s t a b l i s h any of these terms, and there probably would not be very much gained to attempt t h i s task at p r e s e n t . 70 Q 8 2 The h i g h e r 5d nd members i n TI IV are mixed with the 5d 6p c o n f i g u r a t i o n and s i n c e both of these c o n f i g u r a t i o n s combine s t r o n g l y with the 5d 96p terms no attempt was made to extend 9 the 5d nd s e r i e s . Q 8 2 Since the 5d 6s and 5d 6s c o n f i g u r a t i o n p e r t u r b each other throughout the Pt I i s o e l e c t r o n i c sequence, and s i n c e they are f a i r l y w e l l i s o l a t e d from any other even panty c o n f i g u r a -t i o n i t might be a r e l a t i v e l y simple t h e o r e t i c a l problem to compute the term v a l u e s , t a k i n g i n t o account c o n f i g u r a t i o n i n t e r a c t i o n s . There i s a l s o a f a i r number of very d i f f u s e TI I I I and TI IV emission l i n e s as w e l l as a number of a b s o r p t i o n l i n e s remaining to be e x p l a i n e d . At t h i s p o i n t i t i s c l e a r that Hg I I and to a l e s s e r degree Hg I I I are the m i s s i n g l i n k s i n these elements and should be re-examined s i n c e even the b a s i c c o n f i g u r a t i o n such as 5d 96s6p i n Hg I I needs f u r t h e r study. In c o n c l u s i o n i t can be s a i d that the s p e c t r a s t u d i e d here show probably the most h i g h l y developed m u l t i p l e - e x c i t a t i o n s p e c t r a . TABLE 5 A) ENERGY LEVELS OF TL I I I C - REPORTED BY CONVEY DESIG J 6S 2S 0.5 6P 2P 0.5* 6S2 2D 2.5 6P 2P 1.5* 6S2 2D 1.5 6S6P ( 1) 2.5* 6S6P ( 2) 3.5* 6S6P ( 3) 2.5* 6S6P ( 4) 1.5* 7S 2S 0.5 6S6P ( 6) 1.5* 6S6P ( 7) 2.5* 6S6P ( 8) 1.5* 6S6P ( 1 0 ) 3.5* 6S6P ( 9) 0.5* 6D 2D 1.5. • 6D 2D 2.5 6S6P ( 1 1 ) 2.5* 6S6P ( 1 2 ) 1.5* 6S6P (13) 0.5* 6S6P ( 1 5 ) 1.5* 6S6P ( 1 4 ) 3.5* CONFIG 5D10 6S 5D10 6P 5D9 6S2 5D10 6P 5D9 6S2 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D10 7S 5D96S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D10 60. 5D10 6D 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P T(REL ) 0.0 6415 8.9 66541.7 78974.2 84596.2 121333.6 126782.5 127377. 1 129163.3 139 217.8 140021.6 142912.3 143146.3 143210, 1 143373.9 145362.1 146676. 1 147004.0 149770.4 150853.6 155860.5 155 921.4 AU TH C C C c c c c c c c c c c c c c c c c c . DES IG 6S6P (16) 7P 29 6S6P (17) 6S6P (18) 6S6P (19) 6S6P (20) 7P 29 6S6P (22) 6S6P (21) 5F 2F 6S6P (23) 8S 2S 70 8P 8P 5G 5G 20 2P 2P 2G 2G 6P2 ( 1) 6F 2F 6F 9S 2F 2S 6S7S ( 1) 80 20 8D 20 6S7S ( 2) J 0.5* 0.5* 2.5* 1 . 5 * 3.5* 2 .5* 1.5* 2.5* 0.5* 2.5* 1.5* 0.5 2.5 0.5* 1 .5* 4.5 3.5 2.5 3.5* 2.5* 0.5 3.5 1 .5 2 .5 2 .5 CONF IG 509 6S6P 5010 7P 609 6S6P 509 6S6P 509 6S6P 509 6S6P 5D10 7P 5D9 6S6P 5D9 6S6P 5010 5F 509 6S6P 5D10 8S 5010 70 5D10 8P 5010 8P 5010 5G 5D10 5G 509 6P2 5 010 6F 5010 5F 5010 9S 509 6S7S 5010 60 5010 80 5D9 6S7S T(REL ) 156228.3 157863.5 159609.7 160012.0 161207. 1 162301.6 163540.0 173818.1 174742.7 176962.2 1 7 8 4 8 1 . 1 183196.3 186958.7 192411.8 193849.8 201013.6 201017.7 20 1483.2 201621.8 201744.9 203536.0 204689.6 205268 .6 205637.4 2065 26.3 AUTH C C c c c c c c c c c c c c c c c c D E S I G 6 S 7 S ( 3 ) 6 P 2 ( 3 ) 6 S 7 S ( 4 ) 6 P 2 ( 2 ) 6 S 6 D ( 1 ) 6.S6D ( 2 ) 6 S 6 D ( 8 ) 6 0 2 G 6 H 2 H 6 P 2 ( 4 ) 7 F 7 F 2 F 2 F 6 P 2 ( 5 ) 1 0 S . IS 6 S 6 D ( 3 ) 6 P 2 ( 6 ) 9 D 2 D 6 S 6 D ( 4 ) 9 D 2 D 6 S 6 D ( 6 ) 6 S 6 D ( 5 ) 7 G 2 G 7 H 2 H 6 P 2 ( 1 1 ) J 1 . 5 1 . 5 2 . 5 2 . 5 2 . 5 2 . 5 1 . 5 3 , 4 4 , 5 * 0 . 5 2 . 5 * 3 . 5 * 1 . 5 0 . 5 1 . 5 . 2 . 5 1 . 5 1 . 5 2 . 5 2 . 5 2 . 5 3 , 4 4 , 5 * 1 . 5 C O N F I G 5 D 9 6 S 7 S 5 D 9 6 P 2 5 0 9 6 S 7 S 5 D 9 6 P 2 5 D 9 6 S 6 D 5 D 9 6 S 6 D 5 D 9 6 S 6 D 5 D 1 0 6 G 5 D 1 0 6 H 5 D 9 6 P 2 5 D 1 0 7 F 5 D 1 0 7 F 5 D 9 6 P 2 5 D 1 0 1 0 S 5 D 9 6 S 6 D 5 D 9 6 P 2 5 D 1 0 9 D 5 D 9 6 S 6 D 5 D 1 0 5 D 5 D 9 6 S 6 D 5 D 9 6 S 6 D 5 D 1 0 7 G 5 D 1 0 7 H 5 D 9 6 P 2 T ( R E L ) 2 0 9 4 0 3 . 5 2 1 0 5 1 2 . 3 2 1 0 8 6 7 . 6 2 1 1 2 5 0 . 1 2 1 1 3 7 0 . 5 2 1 1 5 3 0 . 9 2 1 1 8 8 9 . 5 2 1 3 1 6 5 . 7 2 1 3 3 1 1 . 5 2 1 3 3 7 1 . 3 2 1 3 5 0 6 . 7 2 1 3 4 3 8 . 5 2 1 4 4 7 1 . 5 2 1 4 6 0 4 . 6 2 1 4 7 2 7 . 9 2 1 5 6 3 9 . 8 2 1 5 7 3 8 . 4 2 1 5 9 0 2 . 2 2 1 5 9 9 1 . 2 2 1 7 5 7 9 . 7 2 1 7 6 9 9 . 1 2 2 0 5 3 0 . 3 2 2 0 6 0 2 . 8 2 2 1 7 8 8 . 5 A U T H C C DESIG J 6S7P ( 2) 1.5* 6S7S ( 5) 0.5 6P2 ( 7) 1.5 6S7S ( 7) 1.5 6P2 ( 8) 0.5 6S6D ( 7) 1.5 8H 2H 4,5* 6P2 (12) 0.5 6S7S ( 6) 1.5 6S7P ( 3) 1.5* 6P2 (15) 0.5 6P2 ( 9) 2.5 6P2 {13) 1.5 6S7S ( 8) 2.5 6S6D ( 9) 1.5 6P2 (17) 1.5 6P2 (16) 2.5 6S6D (10) 2.5 6S6D ( 1 2 ) 2 .5 6S6D (11) 1.5 6S7P ( 4) 0.5* 6P2 ( 10) 2 .5 6S60 (13) 2.5 6S6D (14) 1.5 6S6D (15) 1.5 CONF IG 5D9 6S7P 509 6S7S 509 6P2 5D9 6S7S 509 6P2 509 6S6D 5010 8H 509 6P2 509 6S7S 509 6S7P 509 6P2 . 509 6P2 509 6P2 509 6S7S 5D9 6S6D 509 6P2 509 6P2 5D9 6S6D 5D9 6S6D 5D9 6S6D 509 6S7P 509 6P2. 5D9 6S6D 509 6S60 509 6S6D T(REL ) 222773.6 223367.3 223554.5 2 2 4 1 9 5 . 1 224753.1 224867.2 225327 .6 225407.9 226503.8 227136.0 227696.5 228187.0 228557.3 229218.0 229497.4 231216 .5 233080.7 234369.6 234974.1 235696.1 237235.6 23 817 1.9 238192.3 239152.6 239555.4 DESIG J 6S6D ( 1 6 ) 2.5 6S7P ( 5) 1.5* 6P2 ( 1 8 ) 1.5 6S7P ( 6) 1.5* 6S7P ( 7) 1.5* 6P2 ( 2 0 ) 2.5 6S7P ( 8) 1.5* 6P2 (21) 1.5 6P7S ( 1) 1.5* 6P7S ( 2) 1.5* 6P7S ( 4) 1.5* 6P7S ( 5) 1.5* 6P7S ( 6) 1.5* 6S7P ( 1) 1.5* 5 F 2 F 3.5* CONFIG 5D9 6S6D 5D9 6S7P 5D9 6P2 5D9 6S7P 5D9 6S7P 5D9 6P2 5D9 6S7P 5D9 6P2 5D9 6P7S 5D9 6P7S 509 6P7S. 5D9 6S6P 5D9 6P7S 5D9 6S8P 5D10 5F T(REL ) 239840.0 239885.5 242230.0 243840.5 247269.3 248635 . 1 248769.3 251657.7 255772.9 280774.3 300645.3 305 182.2 313167.6 314975.8 318778.2 175599.3 AUTH B) ENERGY LEVELS OF LEAD L - REPORTED BY LYALL IV DES IG .. J 6S 2S 0.5 6P 2P 0.5* 6P 2P 1.5* 6S2 20 2.5 • 6S2 2 0 1.5 6S6P ( 1) 2.5* 6S6P ( 2) 3.5* 6S6P ( 3 ) 2 . 5 * 6S6P ( 4) 1.5* 6D 20 1.5 7S 2S 0.5 6S6P ( 5) 4.5* 60 20 2.5 6S6P ( 6 ) 1 .5* 6S6P ( 8 ) 1 . 5 * 6S6P ( 7 ) 2 .5* 6S6P ( 10) 3.5* 6S6P ( 9) 0.5* 6S6P (11) 2.5* 6S6P (12) 1.5* 6S6P (13) 0.5* 6S6P (14) 3.5* 6S6P (15) 1.5* 7 P 2 P 0.5* CONFIG 5010 6S 5010 6P 5010 6P 509 6S2 509 6S2 5D9 6S6P 509 6S6P 5D9 6S6P 5D9 6S6P 5010 6D 5D10 7S 5D9 6S6P 5010 60 509 6S6P 509 6S6P 509 6S6P 5D9 6S6P 5D9 6S6P 509 6S6P 5D9 6S6P 5D9 6S6P 509 6S6P 5D9 6S6P 5010 7P T ( R F L ) 0.0 76157.3 97218.5 10125 1.5 122567.8 166368.4 172666.9 173248.9 175388.8 184559.3 185103.5 186549.0 1868 17.0 188759.1 193487 .4 193775 .8 193855.2 19414 8.4 197024.1 200021.6 20 1460.6 2085 24.4 209052.4 209789.4 AUTH L L L L L L L L L L L L L L L . L L L L L L L DESIG J 6S6P (16) 0.5* 6S6P (17) 2.5* 6S6P (18) 1.5* 6S6P (19) 3.5* 6S6P (20) 2.5* 7P 2P 1.5* 5 F 2 F 2.5* 5 F 2 F 3.5* 6S6P (21) 0.5* 6S6P (22) 2.5* 6S6P (23) 1.5* 8S 2S 0.5 7D 2 0 1.5 7D 2D 2.5 6P2 ( 1) 2.5 8P 2P 0.5* 8P 2P 1.5* 6P2 ( 2) 2.5 5G 2G 4.5 5G 2G .3.5 6F 2F 3.5* 6F 2F 2.5* 6P2 ( 3) 1.5 6S6D ( 1) 2.5 CONF IG 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D10 7P 5D10 5F 5D10 5F 5D9 6S6P 5D9 6S6P 5D9 6S6P 5D10 8S 5010 7D 5D10 7D 5D9 6P2 5D10 8P 5D10 8P. 5D9 6P2 5D10 5G 5D10 5G 5D10 6F 5010 6F 5D9 6P2 5D9 6S6D T ( R E D 210369.8 213520.2 214842.2 214892.5 217 215.9 217852.6 219461.7 221716.5 23 1013.5 232638.5 235566.4 24 96 35 . 1 25 040 3.0 25 1420.2 26 1196 .0 262494.4 2644 37.1 268874.2 270496.7 27 0499.5 27 22.11.0 272578.9 2 7 7514.5 280078.0 OES IG 9 S 2 S 8D 2D 8D 2D 6S6D ( 2) 6S6D ( 3) 6S7S ( 2) 6P2 (11) 6S7S ( 3) 6S7S ( 1) 6S7S ( 4) 6S6D ( 5) 6G 2G 6S6D ( 6) 6H 2H 6P2 ( 5) 7F 2F 7F 2F 6S6D ( 7) 10S IS 9D 2D 6P2 ( 6) 9D 2D 6S6D ( 9) J 0.5 1 .5 2 .5 2 .5 1 .5 2 .5 2 .5 1 .5 3 .5 2 .5 2 .5 3,4 2.5 4,5* 1 .5 3.5* 2 . 5 * 1.5 0 .5 1 .5 2.5 2 .5 1 .5 CONF IG 5D10 9S 5D10 8D 5D10 8D 5D9 6S6D 5D9 6S6D 5D9 6S7S 5D9 6P2 5D9 6S7S 5D9 6S7S 509 6S7S 509 6S6D 5010 6G 5D9 6S6D 5010 6H 5D96&I 5 010 7F 5D10 7F 509 6S6D 5010 10S 5D10 90 50 9 6P2 5D10 90 : 509 6S60 T(REL ) 280830.6 28 1113.7 28 1599.6 283596.5 285276.1 28 64 97 .4 286821.7 288601.6 284598.1 290622.7 291408.3 29 2 1 1 6 . 7 292474.4 292542,9 292747.5 294858.7 295056.8 296258 .5 298435 .6 298452.8 298575.0 2987 17 .6 300377.9 A U TH L L L L L DESIG J 6P2 ( 1 2 ) 0.5 6P2 ( 7 ) 1.5 6S7S ( 5) 0.5 7G 2G 3,4 7H 2H 4,5* 6S6D ( 11) 1.5 6S7S ( 6) 1.5 6S7S ( 7) 1.5 6P2 ( 8 ) 0.5 6P2 ( 1 5 ) 0.5 6P2 ( 1 4 ) 1.5 6S6D ( 1 2 ) 2.5 6P2 ( 9) 2.5 6P2 ( 1 0 ) 2.5 8H 2H 4,5* 6S7S ( 8) 2.5 6S6D ( 1 3 ) 2.5 6S6D (14) 1.5 6P2 ( 1 6 ) " 2 . 5 6S6D ( 1 5 ) 1 .5 6S6D (16) 2.5 6P2 (17) 1.5 6P2 (18) 1.5 6P2 ( 20 ) 2.5 6P2' ' (21) 1.5 6P2 (19) 0.5 CONFIG 5D9 6P2 5D9 6P2 5D9 6S7S 5D10 7G 5D10 6H 5D9 6S6D 509 6S7S 5D9 6S7S 5D9 6P2 5D9 6P2 5D9 6P2 5D9 6S6D 509 6P2 5D9 6P2 5D10 8H 5D9 6S7S 5D9 6S6D 5D9 6S6D 5D9 6P2 5D9 6S6D 5D96S6D 5D9 6P2 5D9 6P2 5D9 6P2 5D9 6P2 509 6P2 T(REL ) 301756.8 303642.8 304297.7 3 0 5 2 2 9 . 1 305516.2 306254.9 306706.3 307398.6 307473.9 308437.4 308488.8 310492.3 311433.5 313219.5 .J 3 13939.4 314 96 1.8 315500.2 315571.5 317998.4 3185 34.8 '318662.6 318877.1 324388.5 324705.3 3 24931.4' 326258.8 C) E M - MOORE DES IG 5010 ISO 6S ( 2 . 5 , 0 6S ( 2 . 5 , 0 . 5 ) 6S ( 1 . 5 , 0 . 5 ) 6S ( 1 . 5 , 0 . 5 ) 6P ( 2 . 5 , 0 . 5 ) 6P ( 2 . 5 , 0 . 5 ) 6S2 (1) 6P ( 1.5,0.5) 6P ( 1 . 5 , 0 . 5 ) 6P ( 2 . 5 , 1 . 5 ) 6P ( 2 . 5 , 1 . 5 ) 6S2 (2) 6P ( 2 . 5 , 1 . 5 ) 6P ( 2 . 5 , 1 . 5 ) 6S2 (3) 6P ( 1 . 5 , 1 . 5 ) 6P ( 1 . 5 , 1 . 5 ) 6S2 (5) 6P ( 1.5,1.5) 6P ( 1 . 5 , 1 . 5 ) 6S2 (6) 6S2 (7) ERGY LEVELS 1 - 508 + J 0.0 5 ) 3 . 0 2.0 1.0 2.0 2 . 0 * 3.0* 4.0 ' » 2 .0* 1.0* 4.0* 2.0* 2.0 ' 3.0* 1.0* 3.0 • 0.0* 3.0* 2.0 • 1.0* 2.0* 1.0 ' 4.0 • OF TL IV DES IG T(REL ) AU TH 0.0 M 75029.2 M 78643.2 M 93674.9 M 96725.3 M 147631.7 M 149836.5 M 162090.0 166421.7 M 167497.4 M 167672.0 M 170333.5 M 171737.3 172273.1 M 175286.6 M 18 0106.3 181089.7 M 187671.7 M 187 986.8 188230.7 M 190141.8 M . 193708.9 198546.1 DESIG J T ( R E L ) AU TH 6S2 (8) 2.0 ' 2 0 6 0 9 6 . 1 6S6P ( 1) 3.0* ' 225283.2 6S6P ( 2) 1.0* 1 226261.4 6S6P ( 3) 1.0* • 226826.4 6S6P ( 4 ) 3.0* ' 2 3 2 7 4 9 . 9 6S6P ( 5) 3.0* » 234337.6 6S6P ( 6) 2.0* ' 240355.2 6S6P ( 7) 3.0* ' 2 4 1 9 2 6 . 3 6D 2 . 5 ( 0 . 5 ) 1.0 247502.8 6S6P ( 8) 3.0* • 247917.7 6S6P ( 9) 3.0* • 249366.5 6D 2 . 5 ( 4 . 5 ) 4.0 2 4 9 6 2 6 . 0 6D 2 . 5 ( 1 . 5 ) 2 . 0 2 5 0 1 6 6 . 9 6D 2 . 5 ( 1 . 5 ) 1.0 251801.7 6D 2 . 5 ( 2 . 5 ) 3.0 253095.8 60 2 . 5 ( 3 . 5 ) 3.0 254155.2 6S6P ( 1 0 ) 3.0* • 254509.7 6S6P (11) 2.0* ' 255206.5 7S ( 2 . 5 , 0 . 5 ) 3.0 2 5 5 4 0 7 . 0 7S ( 2 . 5 , 0 , 5 ) 2.0 256162.8 60 2 , 5 ( 2 . 5 ) 2.0 256262.0 6D 2 . 5 ( 3 , 5 ) 4,0 256962.4 6S6P (12) 2.0* » 261676.4 60 1 . 5 ( 3 . 5 ) 3.0 268071.0 DES IG 6D 1.5(0.5) 6S6P (13) 6S6P (14) 6D 1.5(1.5) 6D 1.5(1.5) 6D 1.5(2.5) 6D 1.5(2.5) 7S ( 1 . 5 , 0 . 5 ) 7P ( 2 . 5 , 0 . 5 ) 7S ( 1 . 5 , 0 . 5 ) 7P ( 2 . 5 , 0 . 5 ) 7P ( 2 . 5 , 1 . 5 ) 7P ( 2 . 5 , 1 . 5 ) 5F 2 . 5 ( 0 . 5 ) 5 F 2 . 5 ( 0 . 5 ) 5F 2 . 5 ( 1 . 5 ) 7P ( 1 . 5 , 0 . 5 ) 5F 2 . 5 ( 1 . 5 ) 7P ( 1 . 5 , 0 . 5 ) 5F 2 . 5 ( 2 . 5 ) 5F 2 . 5 ( 2 . 5 ) 5F 2 . 5 ( 3 . 5 ) 5F 1.5(1.5) 5F 1.5(1.5) J T ( R E L ) AU TH 1.0 268177.5 2.0* ' 268961.9 2.0* » 269295.2 2.0 2 72 5 95.0 1.0 272980.5 2.0 275160.0 3.0 275969.0 1.0 2 74157.7 2.0* 276168.2 2.0 274711 .4 3.0* 277404.6 2.0* 283412.4 3.0* 284658.4 1.0* 2 94074.6 0.0* 294430.5 2.0* 295726.8 2 .0* 2 9 5 8 6 7 . 1 1.0* 296025.7 1.0* 296221.8 3.0* 297752.0 2.0* 298023.4 3.0* 299316.1 1.0* 310710.1 2.0* 311483.2 DESIG J 5F 1 . 5 ( 2 . 5 ) 3.0* 5F 1 . 5 ( 2 . 5 ) 2.0* 5F 1 . 5 ( 3 . 5 ) 3.0* 5F 1 . 5 ( 3 . 5 ) 4.0* 8S ( 2 . 5 , 0 . 5 ) 3.0 8S (2.5 ,0 .5 ) 2 .0 8S ( 1 . 5 , 0 . 5 ) 1 . 0 8S ( 1 . 5 , 0 . 5 ) 2.0 \ T ( R E L ) AUTH 314859.3 314378.7 316653.5 316755.8 320563.5 3 2 1 0 1 8 . 1 33 92 03.7 339458.0 0) ENERGY LEVELS OF PB V M - MOORE ' - 508 + DESIG DESIG J T(REL ) 5D10 ISO 0.0 0.0 6S ( 2 . 5 , 0 . 5 ) 3.0 110767.9 6S ( 2 . 5 , 0 . 5 ) 2.0 114706.1 6S (1.5 ,0.5 ) 1 .0 1 3 2 7 1 2 . 1 6S ( 1 . 5 , 0 . 5 ) 2.0 135998.1 6P ( 2 . 5 , 0 . 5 ) 2.0* 194803.5 6P ( 2 . 5 , 0 . 5 ) 3.0* 197132.5 6P ( 1 . 5 , 0 . 5 ) 2.0* 217068.9 6P ( 1 . 5 , 0 . 5 ) 1.0* 219489.2 6P ( 2 . 5 , 1 . 5 ) 4.0* 221068.9 6P ( 2 . 5 , 1 . 5 ) 2.0* 223909.7 6P ( 2 . 5 , 1 . 5 ) 3.0* 2 2 6 5 1 2 . 1 6P ( 2 . 5 , 1 . 5 ) 1.0* 227837.4 6S2 (1) 4.0 2 3 1 2 0 5 . 3 6P ( 1 . 5 , 1 . 5 ) 0.0* 237393.7 6S2 (2) 2.0 243110.5 6P ( 1 . 5 , 1 . 5 ) 3.0* 2 4 4 6 6 0 . 9 6P ( 1 . 5 , 1 . 5 ) 1.0* 245277.6 6P ( 1 . 5 , 1 . 5 ) 2.0* 2 4 7 5 9 5 . 0 6S2 (3) 3.0 253590.7 6S2 (5) 2.0 ' 262437.7 6S2 (6) 1.0 2 7 1 3 0 6 . 9 DESIG J 6S2 (7) 4.0 6S2 (8) 2.0 6S6P ( 1) 3.0* 6S6P ( 2 ) 1.0* 6S6P ( 3) 1.0* 6S6P ( 4) 3.0* 6D 2 . 5 ( 0 . 5 ) 0.0 6S6P ( 5) 3.0* 6D 2 . 5 ( 0 . 5 ) 1.0 6D 2 . 5 ( 4 . 5 ) 4.0 6D 2 . 5 ( 1 . 5 ) 2.0 6S6P ( 6) 2.0* 6D 2 . 5 ( 1 . 5 ) 1.0 6D 2 . 5 ( 2 . 5 ) 2.0 6S6P ( 7 ) 3.0* 6D 2 . 5 ( 2 . 5 ) 3.0 6D 2 . 5 ( 3 . 5 ) 3.0 60 2 . 5 ( 3 . 5 ) 4.0 6S6P ( 8 ) _ ..3.0* 6S6P ( 9) 3.0* 7S ( 2 . 5 , 0 . 5 ) 3.0 7S ( 2 . 5 , 0 . 5 ) 2.0 6S6P (10) 3.0* 6D 1.5(0.5) 1.0 T ( R E L ) ' AUTH 2 7 5 8 3 1 . 3 ' 283652.5* 3 0 5 9 1 7 . 3 ' 3 0 6 1 9 5 . 7 ' 308692 .8' 3 1 6 2 3 9 . 9 ' 316834.2 3 1 7 0 5 9 . 9 ' 318316.3 322165 .4 322552.3 324204.1« 324436.1 325467.5 326283.6" 327434.3 328234.0 329988.8 331 2 9 7 . 7 ' 336366.6 ' 338441.2 M 33 92 34.9 M 3 4 2 7 7 0 . 6 ' 343094.0 DESIG J T ( R E L ) AUTH 6D 1 . 5 ( 3 . 5 ) 3.0 344123.8 6S6P ( 1 1 ) 2.0* 3 4 6 2 5 6 . 5 • 60 1 .5( 1 .5) 1 .0 348970.0 6D 1 . 5 ( 1 . 5 ) 2.0 349378.2 6D 1 . 5 ( 2 . 5 ) 2.0 351643.0 6D 1 . 5 ( 2 . 5 ) 3 . 0 353280.0 6S6P ( 1 2 ) 2.0* 3 5 4 0 3 8 . 7 ' 7S ( 1 . 5 , 0 . 5 ) 1.0 360496.3 M 7S ( 1 . 5 , 0 . 5 ) 2.0 361073.9 M 6S6P ( 1 3 ) 2.0* 3 6 1 7 5 3 . 3 ' . 6S6P (14) 2.0* 3 6 3 6 9 0 . 0 ' 7P ( 2 . 5 , 0 . 5 ) 2.0* 368269.9 5F 2 . 5 ( 0 . 5 ) 0.0* 368346.3 5F 2 . 5 ( 0 . 5 ) 1.0* 368925.2 7P ( 2 . 5 , 0 . 5 ) 3.0* 369992.0 5F 2 .5( 1 .5) 2.0* 3 7 0551.5 5F 2 . 5 ( 1 . 5 ) 1.0* 371093.8 5F 2 . 5 ( 2 . 5 ) 3.0* 373238.1 5F 2 . 5 ( 2 . 5 ) 2.0* 373745.7 5F 2 . 5 ( 3 . 5 ) 4.0* 375502.3 5F 2 . 5 ( 3 . 5 ) 3.0* 375530.6 7P ( 2 . 5 , 1 . 5 ) 4.0* 376304.6 7P ( 2 . 5 , 1 . 5 ) 2.0* 3 7 8 8 5 4 . 1 DESIG J T ( R E L ) AUTH IP ( 2 . 5 , 1 . 5 ) 3.0* 380820.6 7P ( 1 . 5 , 0 . 5 ) 2.0* 390529.1 5F 1.5(1.5) 1.0* 391978.9 5F 1.5(1.5) 2.0* 392993.0 7P ( 1 . 5 , 0 . 5 ) 1.0* 393300.6 5F 1 . 5 ( 2 . 5 ) 2.0* 396065.7 5F 1.5(2.5) 3.0* 396255.7 5F 1.5(3.5) 3.0* 397564.1 DESIG J T ( R E L ) AUTH 7P (2.5,1.5) 3.0* 380820.6 7P (1.5,0.5) 2.0*. 390529.1 7P (1.5,0.5) 1.0* 393300.6 E) ENERGY LEVELS OF TL I I M - MOORE • - 509 + DESIG DESIG J T(REL ) AUTH DERF 6S2 IS 0.0 00.0 6S6P 3P . 0.0 ' 49450.5 M 6S6P 3P 1.0 52392.8 M 6S6P 3P 2.0 61726.5 M 6S6P IP 1.0 75662.0 M 6S7S 3S 1.0" 105227,9 M 6S7S IS 0.0 107999.4 M 6S26P ( 2 . 5 , 0 . 5 ) 2.0. 110390.0' M 6S26P ( 2 . 5 , 0 . 5 ) 3.0 110869.2' 6S6D ID 2.0 115164.2 M 6S6D 3D 1.0 116150.8 M 6S6D 3D 2.0 116433.5 M 6S6D 3D 3.0 11682 8.2 M 6P2 3P 0.0 117411.6 M 6S7P 3P 0.0 119365.9 M 6S7P 3P 1.0 119578.8 M 6S7P 3P . 2.0 122035.0 M 6S7P IP 1.0 122 3 83.1 M 6P2 3P 1.0 125340.4 M 6S26P ( 2 . 5 , 1 . 5 ) 2.0 125441.9' M 6S26P ( 2 . 5 , 1 . 5 ) 1.0 126207.4' M 6S26P ( 2 . 5 , 1 . 5 ) 3.0 128666.6' M DESIG J T(REL ) . AUTH 6P2 3P 2.0 128821.6 M 6S26P ( 1 . 5 , 0 . 5 ) 2.0 1 2 9 1 6 0 . 2 1 M 6S8S 3S 1.0 133571.4 M 6S8S IS 0.0 134297.1 M 6S26P ( 1 . 5 , 0 . 5 ) 1.0 1 3 4 3 6 7 . 7 ' M 6S5F 3F 3.0 136121.3 M 6S5F 3F 2.0 136218.8 M 6S5F 3F 4.0 136232.0 M 6S5F IF 3.0 136269.5 M 6S7D ID 2.0 136893.3 M 6S7D 3D 1.0 137930.1 M 6S7D 3D 2.0 138056.4 M 6S7D 3D 3.0 138208.1 M 6S8P 3P 1.0 139368.4 M 6S8P . 3P 2.0 140310.0 M 6S8P IP 1 .0 141006.3 M_ 6P2 ID 2.0 141984.2 M 6S26P ( 1 . 5 , 1 . 5 ) 3.0 1 4 2 7 8 4 . 8 ' M 6S26P ( 1 . 5 , 1 . 5 ) 1.0 1 4 3 6 1 9 . 2 ' M 6S26P ( 1 . 5 , 1 . 5 ) 2.0 1 4 5 0 9 4 . 2 ' M• 6S9S 3S 1.0 145418.6 M 6S9S IS 0.0 145594.1 M 6S6F 3F .4.0 146501.1 M 6S6F 3F 2.0 146525.7 M DESIG J 6S6F 3F 3.0 656F IF 3.0 6S5G 1,3,G 3,4,5 6S8D 3D 1.0 6S8D 3D 2.0 6S8D 3D 3.0 6S9P 3P 1.0 6S8D ID 2.0 6S9P 3P 2.0 6S9P IP 1.0 6P2 IS 0.0 6S10S 3S 1.0 6S7F 3F 2.0 6S7F 3F 3,4 6S7F IF 3.0 6S6G 1,3,G 3,4,5 6S9D 3D 1.0 6S9D 3D 2.0 6S9D .3D 3.0. 6S9D ID 2.0 6S10P 3P 2.0 6S10P IP 1.0 6S11S 3S 1.0 6S10D 3D 1.0 T ( R E L ) AU TH 146536.8 M 146547.6 M 147071.9 M 1476 06.1 M 147655.9 M 147752.1 M 148351.3 M 148468.3 M 148829.1 M 149065.4 M 15 0474.0 151572.8 M 152109.0 M 152110.7 M 152145.5 M 152 473.5 M 152 82 3.6 M 152850.3 M 152 908.5 . M 153204.6 M 153535.5 M 153634.8 M 155189.5 M 155967.9 M DES IG J 6S10D 3D 2.0 6S10D 3D 3.0 6S10D ID 2.0 6S11P IP 1.0 6S12S 3S 1.0 6S11D 3D 2.0 6S11D 3D 3.0 6S11D ID 2.0 6S27S ( 2 . 5 , 0 . 5 ) 3.0 6S27S ( 2 . 5 , 0 . 5 ) 2.0 6P7S ( 0 . 5 , 0 . 5 ) 1.0 6S6P2 (1) 2.0 6S6P2 (2) 1.0 6S26D (1) 1.0 6S26D (2) 2.0 6P7S ( 1 . 5 , 0 . 5 ) 2.0 6S26D (3) 2.0 6P7S ( 1 . 5 , 0 . 5 ) 1.0 6S27S 5gl.5,0.5< 1.0 6S27S %1.5,0.5< 2.0 6P7P (1) 1.0 6S6P2 (5) 2.0 6S26D (4) 2.0 T ( R E L ) 155985.9 156020.7 156180. 1 156478.6 157484.1 158030.5 158042.3 158141.7 162390.9 162685 .6 165476 .5 166598 .0 167341.0 171425. 1 174956. 1 177 92 9.0 178661 .0 179162 .0 180336.7 180536.0 183756.5 188405 .5 189241.0 DESIG 6P7P 6S26D 6S26D 6P7P 6S6P2 6S26D 6S6P2 6P7P 6S6P2 6S6P2 J ( 2 ) 2.0 (5) 1.0 (6) 2.0 (3) 3.0 (3) 3.0 (7) 2.0 (4) 3.0-(4) 2.0 (6) 2.0 (7) T ( R E L ) AUTH 190753.0 191620.0' 193835.2• 195973.0 1 9 6 1 8 4 . 5 ' 198032.0' 2 0 0 6 9 7 . 2 ' 201103.0 223287 .3 « 2 2 4 0 2 0 . 6 ' TABLE 6 C L A S S I F I E D LINES OF THALLIUM I I I 11-GUTMANN 12-CQNVEY E-EXCITATION WN WL(VAC ) I 1 12 E C L A S S I F I C A T I O N 11545.5 8661 . 75 6F 2F 3. 5* - 6G 2G 3,4 12300.8 8129.553 700 5 5G 2G 4.5 - 6H 2H 4,5* 12427.0 8047. 15 3 5G 2G 3,4 - 7F " 2F : 3.5* 12493.8 8004. 950 3 3 5G 2G 3,4 - 7F 2F 2.5* 12504.2 7997 .313 400 6D 2D 1.5 - 7P 2P 0.5* 16862.5 5930.319 1000 25 6D 2D 2.5 - 7P 2P 1.5* 18176.7 5501.549 1000 20 6D 2D 1.5 - 7P 2P 1.5* 19588.6 5105.010 15 10 5G 2G 4.5 - 7H 2H 4,5* 19654.1 5087.997 3000 80 4 ' 7P 2P 1. 5* 8S 2S 0.5 20436.3 4893.254 4000 . 70 6P 2P 0.5* - 6S2 2D 1.5 20622.3 4849.120 5 8P 2P 1. 5* - 6P2 ( 5) 1.5 21104.0 4738.438 1000 80 6S7P ( 1) 1.5* - 6S6D (16) 2.5 21496.7 4651.877 300 8D 2D 2.5 - 6S7P ( 3) 1.5* 21887 .2 4568.880 15 8P 2P 1.5* - 90 2D 1.5 22 822 .1 4381.718 250 40 3 7P 2P 1.5* - 7D 2D 2.5 22822 . 1 4381 .718 250 40 7P 2P 1.5* - 7D 2D 1.5 23327 .0 4236.878 35 10 8P 2P 0.5* - 9D 2D 1 .5 2 342 1.0 4269.672 2000 75 7P 2P 1.5* - 7D 2D 2.5 23492 .4 4256.696 20 0 8P 2P 0. 5* - 6S6D ( 1 ) 1.5 24055.8 4157.002 1000 65 3 5F 2F 2.5* - 5G 2G 3.5 24312.7 4113.0 77 160 1 5G 2G 4. 5 - 8H 2H 4,5* 24323.7 4111.217 2000 80 7S 2S 0.5 - 7P 2P 1.5* 24658.4 4055.413 20 1 6S6P ( 20) 2.5* - 7D 2D 2.5 25335.1 •3947.093 600 70 3 7P 2P 0.5* - 8S 2S 0.5 25345.7 3945.442 350 5 6S6P ( 1 ) 2.5* - 6D 20 2.5 25345 .7 3945.442 350 5 6S6D ( 8) 1.5 - 6S7P ( 4) 0.5* 25418.0 3934.220 3000 . 95 5F 2F 3.5* - 5G 2G 4.5 2 570 6. 1 3890.127 20 6S6D ( 2) 2.5 - 6S7P ( 4) 0.5* 25882 .6 3863.599 20 5F 2F 3. 5* - 6P2 ( 2) 2.5 25987 .8 3847.959 20 6P2 ( 2) 2.5 - 6S7P ( 4) 0.5* 26367.6 3792.533 500 60 6S7S ( 4) 2.5 - 6S7P ( 4) 0.5* 26377 .8 3791.067 30 7F 2F 2.5* — 6S6D ( 16 ) 2.5 TL I I I (CONT) WN WL(VAC) 11 12 E C L A S S I F I C A T I O N 26442 .3 3781 .819 25 6F 2F 2.5* — 6P2 ( 9) 2.5 2 6449.2 3780 .833 20 7F 2F 3.5* - 6S6D (16) 2.5 26477.3 3776 .820 . 3000 80 1 "fD 20 2.5 - 7F 2F 3.5* 26547.7 3766.804 20 6 7D 2 c) 2.5 - 7F 2F 2.5* 26969.5 3707.892 15 ' 0 6S6P ( 16) 0.5* - 8S 2S 0.5 2 7 140 . 1 3684.584 2000 40 3 6D 20 2.5 - 6S6P (22 ) 2.5* 27140.1 3684.585 2000 40 3 7D 20 1.5 - 7F 2F 2.5* 27155 .7 3682 .468 15 6S6P (23) 1.5* - 8D 20 2.5 2 7199.1 3676.592 250 5 6S6P ( 22 ) 2.5* - 5G 2G 3.5 27336.2 3658.153 200 " 6 0 6S6P (15) 1.5* 8S 2S 0.5 2 7349.2 3656.414 15 50 •• 6S6P ( 17 ) 2.5* - 7D 20 2.5 27501 .3 3636.192 15 0 6P2 ( 5) 1.5 - 6S7P ( 5) 1.5* 27593.6 3624.029 20 6F 2F 3.5* - 6S7S ( 8) 2.5 27667.7 3614 .323 30 9 6S6P ( 22) 2.5* - 6P2 ( 1 ) 2.5 27831.4 3593.064 60 3 6S7S ( 3). 1.5 - 6S7P ( 4) 0.5* 28043.2 3 5 65.92 7 20 6S6P (23) 1.5* - 6S7S ( 2) 2.5 28306.2 3532 .795 25 2 5F 2F 2.5* - 8D 20 1.5 28454 .8 3514.346 4000 80 60 20 1.5 - 6S6P (22 ) 2.5* 28503.2 3508.378 2000 90 3 7P 2P 0.5* - 70 2D 1.5 28677.3 3487.079 15 0 5F 2F 2.5* - 80 2D 2.5 28923.5 3457 .396 3000 90 60 20 2.5 - 5F 2F 3.5* 29091 .5 3437.430 15 1 7P ' 2P 0. 5* - 7D 20 2.5 30037.5 3329.172 75 20 5F 2F 3.5* - 8D 20 2.5 30285 .4 3301.921 250 55 60 20 2.5 - 5F 2F 2.5* 30338.9 3296 .098 20 25 6S6D ( 8) 1.5 - 6S7P ( 5 ) 1.5* 30503 .4 3278.323 45 55 6S6P ( 15) 1.5* - 70 20 1.5 30858.1 3240.640 130 20 3 6S6D ( 1) 2.5 - 6S7P ( 5 ) 1.5* 31096.4 3215 .806 800 60 3 6S6P ( 15) 1.5* - 70 2D 2.5 31528.4 3171 .744 15 8 . 9D 20 1.5 - 6S7P ( 6) 1.5* 31601.5 3164.407 2000 "70 3 6D 20 1.5 - 5F 2F 2.5* 31781.5 • 3146.485 300 8P 2P 0. 5* - 6S7S ( 7) 1.5 31806.3 3143.982 400 1 6D 2D 2.5 - 6S6P (23 ) 1.5* 31817.8 3142.895 90 1 6S6P ( 22) 2.5* - 80 2D 2.5 32028.6 3122.210 35 1 "'" 6S6P ( 23) 1.5* - 6P2 ( 3) 1.5 TL I I I WN WL(VAC ) 11 12 32341.1 3092.041 30 2 29468.2 3393.489 50 0 32706.5 3057.496 15 5 32747.5 3053.668 40 25 32889.7 3040.466 15 0 32993.7 3030 .882 100 10 33052.8 3025.462 50 10 33230.6 3009.2 75 25 33950.4 2945.473 15 2 36202.6 2762 .233 160 35 37146.8 2692.022 0 37160.8 2691 .008 5 1 3 72 64.9 2683.490 0 5 37551.9 2662.981 10 37568.8 2661.783 350 45 37768.4 2647 .716 0 0 38695.9 2584.253 0 0 39029.8 2562.145 0 39097.1 2557.734 0 39260.8 2547 .070 10 8 39361.4 2540.560 0 0 39576.0 2526.784 3 5 10 39812.4 2511.780 80 15 39860.7 2508.737 20 1 39994.1 2 5 0 0 . 3 6 9 45 25 40275 .8 2482 .881 5 0 40389.7 2 4 7 5 . 8 7 9 60 . 15 40615.5 2462.114 5 40 651.7 2459.922 . 5 0 41729.4 • 2396 .392 15 8 41821 .0 2391.143 50 1 41873.0 2388.174 160 5 41920.0 2 3 85.4 96 140 2 42095 .2 2375.568 650 45 42 175 .2 2371.062 50 (CONT) E C L A S S I F I C A T I O N 8P 2P 0.5* - 6P2 ( 8) 0.5 6F 2F 2.5* - 6P2 ( 17 ) 1.5 6S6P (22) 2.5* - 6S7S ( 2) 2.5 6F 2F 3 . 5* - 6S6D ( 10 ) 2.5 6S6P (23) 1. 5* - 6S6D ( 1 ) 2.5 8P 2P 0.5* - 6P2 ( 12 ) 0.5 6S6P (23) 1.5* - 6S6D ( 2) 2.5 6F 2F 2.5* - 6S6D ( 12 ) 2.5 6F 2F 2.5* - 6S6D ( 11 ) 1.5 3 : 5F 2F 2. 5* - 6G 2G 3,4 6S6P ( 21 ) 0. 5* - 6S6D ( 8) 1.5 6S6P (23 ) 1.5* - 6P2 ( 6) 2.5 6S6D ( 1) 2.5 - 6S7P ( 7) 1.5 6S6P (22) 2.5* - 6S6D ( 1) 2.5 3 5F 2F 3.5* - 6G . 2G 3,4 6S7S ( 4) 2.5 - 6S7P ( 7) 1.5 9S 2S 0.5 - 6S7P ( 5) 1.5 5F 2F 2.5* - 9D 2D 2.5 6S6P (23) 1.5* - 6S6D ( 6) 2.5 7S 2S 0.5 - 6S6P ( 23 ) 1.5 6S6P ( 11 ) 2.5* - 70 • 20 1.5 3 8S 2S 0.5 - 6S7P ( 2) 1.5 •6S6P ( 19 ) 3. 5* . - 5G 2G 3.5 6S6P ( 21 ) 0.5* - 10S IS -0.5 3 7P 2P 1.5* - 9S 2S 0.5 6S6P ( 19 ) 3.5* - 6P2 ( 1 ) 2.5 3 5F 2F 3. 5* 90 2D 2.5 5F 2F 2.5* - 6S6D ( 6) 2.5 6S6P ( 22 ) 2.5* - 6P2 ( 5) 1.5 7P 2P 1.5* - 8D 2D . 1.5 4 6S6P ( 22 ) 2.5* - 6P2 ( 6) 2.5 4- 6S6P • ( 17 ) 2.5* ' - 6P2 ( 1 ). 2.5 3 6S6P ( 2?) 2.5* 90 2D 1.5 7P 2P 1.5* - 8D 2D 2.5 6S6P ( 22) 2. 5* 90 2D 2.5 TL I I I WN WL(VAC) 11 12 42605 .2 2347.131 40D 0 42781 .3 2337.470 8 5.0 40 43177 . 1 2 316.043 30 43219 . 1 2313.792 60 4 43282 .6 2310.397 35 43305 .4 2 309.181 90 43336 .7 2307.513 . 25 43482 . 1 2299.797 . 400 0 43567 .8 2295.273 40 43732 .9 2286.608 '. ": 15 43941 .6 2275.748 20 44046 .5 2270.328 10 1 44343 .9 2255.102 50 2 44566 . 5 2243.838 900 15 45090 .8 ' 2217.747 35 15 45093 .3 2217.624 35 ' 45302 .7 2207.374 20 8 45622 .4 2191.906 180 9 45627 .4 2191.666 130 9 45675 .8 2189.343 . 500 12 45706 . 5 2187 .873 25 0 45734 .9 2186.514 10 46027 .5 2172.614 15 46710 .8 2140.833 120 46741 .8 2139.413 40 46926 .8 2130.978 160 6 46971 .1 2128.969 15 47051 .5 2125.331 15 47309 .0 2113.763 100 • 3 4 740 9 . 1 2109.300 400 15 47677 .0 2097.447 200 8 47832 .8 2090.616 35 47968 06 2084.697 5 48211 .9 2074.177 50' " 2 (CONT) E C L A S S I F I C A T I O N 6P2 ( 10) 2.5 - 6P7S ( 1 ) 1 .5 3 6S2 2D 1.5 - 6S6P ( 3) 2.5 6S6P ( 6) 1.5* - 8S 2S 0.5 4 6S6P ( 8) 1.5* - . 70 2D • 1.5 8P 2P 0. 5* - 6S6D ( 11 ) 1.5 2 6S6P (23 ) 1.5* - 6P2 ( 11 ) 1.5 6S6P ( 20) 2.5* - 8D 2D 2.5 6S6P ( 19 ) 3.5* - 6S7S ( 1 ) 3.5 4 5F 2F 2.5* - 7G 2G 3,4 9S 2S 0. 5 - 6S7P ( 6) 1.5 8S 2S 0.5 - 6S7P ( 3) 1 .5 6S6P ( 7 ) 2 . 5* - 7D 2D 2.5 8P 2P 1.5* - 6S6D ( 13) 2.5 3 6S2 2D 1.5 - 6S6P ( 4) 1.5 6S6P ( 14) 3.5* • - 5G 2G 4.5 6S6P ( 14) 3.5* - 5G 2G 3.5 8 P 2P 1.5* - 6S6D ( 14) 1.5 2 6S6P ( 15) 1.5* - 6P2 ( 1 ) 2.5 6S6P ( 18 ) 1.5* - 8D 2D 2.5 3 7P 2P 0.5* - 9S 2S 0.5 8P 2P 1.5* - 6S6D ( 15 ) 1.5 60 2D 2.5 - 8P 2P 0.5 6S6P ( 17 ) 2.5* - 8D 2D 2.5 3 6S6P ( 22 ) 2.5* - 7G 2G 3,4 8P 2P 0.5* - 6S6D ( 14) 1.5 4 6S6P ( 23) 1.5* - 6P2 ( 12) 0.5 2 7P 2P 1.5* - 6P2 ( 3) 1.5 4 60 2D 1.5 - ' 8P 2P 0.5 6S6P ( 16) 0.5* - 9S 2S 0.5 4 7P 2P 0.5* - 8D 2D 1.5 3 6S6P ( 15) 1.5* - 9S 2S 0.5 7P 2P 1.5* - 6S6D ( 1 ) 2.5 6S6P ( 22 ) 2.5* - 6P2 ( 11 ) 1.5 6S6P ( 20) 2.5* - 6P2 ( 3) 1.5 TL II WN WL(VAC ) 11 12 48351.0 2068.210 20 1 48443.0 2064.282 5 48487 .4 2062.391 15. 48624.7 2056.568 30 48768.0 2050.525 120 3 48949.1 2042 .938 25 0 49067.2 20 3 8.021 40 1 49215 .9 2031.864 20 49227.4 2031 .389 10 0 49393.1 2024.574 ' 5 0 4940 1.0 2024.251 20D 49406.6 2024.021 15 2 49454 .7 2022 .053 50 0 49589.4 2016.560 10 49715.3 ' 2011 .453 100 9 49778.1 . 2008.916 200 18 50667.3 1973.660 • ' 10 50667.3 1973.660 10 50858.2 1966.251 0 51048.8 1958.910 5 51358.2 1947.109 30 1 51519.8' 1941.001 10 0 51542.0 1940.165 10 51549.0 1939.902 10D 51591.6 1933.300 5 51760 .8 1931.964 60 3 51760.8 1931.964 • 60 3 51956.0 1924.706 80 52096.6 1919.511 70 3 52169.0 1916.847 30 3 52200.4 1915.694 25 0 52279.2 1912.807 100 5 52428.7 1907.352 15 52449.0 1906.614 50 52534.6 1903.507 5 53192.2 1879.975 60 (CONT) E CLASSIFICATION 7P 2P 1.5* - 6S6D ( 8 ) 1 .5 5F 2F 2 .5* 6P2 ( 12 ) 0 .5 60 20 1.5 - 8P 2P 1 .5 4 6S6P ( 21 ) 0. 5* - 6S7S ( 5) 0 .5 4 6S6P ( 14) 3 .5* - 6S7S ( 1 ) 3 .5 6S6P ( 20) 2.5* . - 6P2 ( 2) 2 .5 3 6S6P ( 20) 2 .5* - 6S6D ( 1 ) 2 .5 4 6S6P ( 23) 1. 5* - 6P2 (15) 0 .5 6S6P ( 20) 2 .5* - 6S6D ( 2) 2 .5 6S6P ( 18 ) 1. 5* - 6S7S ( 3) 1 .5 6P2 ( 21 ) 1 . 5 - 6P7S ( 4) 1 .5 6S6P (15) 1. 5* - 80 2 0 1 .5 4 6S6P ( 21 ) Oo 5* - 6S7S ( 7 ) 1 .5 6S6P ( 20 ) 2 .5* - 6S6D ( 8) 1 .5 6S6P ( 14) 3 .5* - 8D 2D 2 .5 3 6S6P ( 15) 1.5* - 8D 2D 2 .5 6S6P ( 21 ) 0 .5* - 6P2 (12) 0 .5 6S6P ( 15) 1.5* - 6S7S ( 2) 2 .5 6S6P ( 18 ) 1.5* - 6S7S ( 4) 2 .5 6S6P ( 22 ) 2 .5* - 6S6D ( 7) 1 .5 3 6S6P ( 18 ) 1.5* - 6S6D ( 1 ) 2 .5 6S6P ( 18 ) 1.5* - 6S6D ( 2) 2 .5 7P 2P 0 .5* - 6S7S ( 3) 1 .5 6S7S ( 8) 2.5 - 6P7S ( 1 ) 1 .5 6S6P ( 22 ) 2 .5* - 6P2 ( 12 ) 0 .5 3 6S6P ( 17 ) 2 .5* - 6S6D ( 1 ) 2 .5 3 6S6P ( 21 ) 0 .5* - 6S7S ( 6) 1 .5 3 6S6P ( 19 ) 3 .5* - 6G 2G 3 ,4 5F 2F 3 .5* - 6P2 ( 15 ) 0 .5 6S6P ( 20) 2. 5* - 6P2 ( 5) 1 .5 7P ' 2P 1. 5* - 9D 2D 1 .5 4 6S6P ( 17 ) 2. 5* - 6S6D ( 8) 1 .5 6S6P ( 20) 2 .5* - 6S6D ( 3) 1 .5 2 7P 2P 1.5* - 90 20 2 .5 5F 2F 2 .5* - 6S6D ( 9) 1 .5 7S 2S 0.5 - 8P 2P 0 .5 TL I I I (CONT) WM WL(VAC) I I 12 E C L A S S I F I C A T I O N 53814.1 1858.249 25 6S6P ( 21 ) 0.5* 6P2 (13 ) 1.5 54014.6 1851.351 10 6S6P (11) 2.5* 5G 2G 3.5 54284.8 1842.136 5 6S6P ( 16) 0.5* - 6P2 ( 3) 1.5 54369.2 1839.277 ". 90 4 6S6P ( 22 ) 2.5* - 6P2 ( 9) 2.5 54434.5 1837.070 50 , 4 6S6P ( 19 ) 3.5* . - 6P2 ( 6) 2.5 544 61.4 1836.163 20 •: 6S6P ( 18 ) 1.5* - 6P2 ( 5) 1.5 54479.8 1835.543 20 6S6P ( 11 ) 2.5* - 6P2 ( 1 ) 2.5 54601.5 1831 .452 50 3 6S6P (23) 1 . 5* - 6P2 ( 16) 2.5 54630.2 1830.489 60 7S 2S 0.5 - 8P 2P .1.5 54754.9 1826.321 '. 20' 6S6P ( 21 ) 0.5* - 6S6D ( 9 ) 1.5 54791.8 1825.091 350 10 3 6S2 20 2.5 - 6S6P ( 1 ) 2.5 54860.4 1822 .808 3 5 1 4 6S6P ( 17 ) 2.5* - 6P2 ( 5) 1.5 54945.6 1819.982 35 6D 20 2.5 - 6F 2F 3.5 55023.6 1817.402 30 6S6P (16) 0.5* - 6P2 ( 2) 2.5 55067.9 1815.940 .15 60 2D 2.5 - 6F 2F 2.5 55270.7 1809.277 30 " 7D 2D 2.5 - 6S-7P ( 5) 1.5 55 3 99,3 1805.077 45 3 6S6P ( 22) 2.5* - 6S7S ( 8) 2.5 55424.9 1804.243 250 6 . 3 6S2 2D 1.5 - 6S6P ( 6) •1.5 55447.5 1803.508 3 5. 6S6P ( 14) 3.5* - 6S6D (. 1 ) 2.5 55509.0 1801 .510 130 3 3 6S6P ( 15) 1.5* 6S6D ( 1 ) 2.5 55626.3 1797.711 60 6S6P ( 18 ) 1.5* - 6P2 ( 6) 2.5 55890.3 1789.219 75 " 3 . 4 6S6P (23 ) 1. 5* - 6S6D ( 10 ) 2.5 55 97 9.7 1786.362 10 6S6P ( 18 ) 1.5* - 90 2D 2.5 56030.0 1784.758 70 3 ' 6S6P (15) 1.5* 6S6D ( 8) 1.5 56492.0 1770.162 20 4 6S6P (23) 1.5* - 6S6D ( 12 ) 2.5 56739.1 1762 .453 5 7P 2P 0.5* - 10S IS 0.5 5 6 865 .9 1758.523 • 40 7P 2P 0.5* - 6S6D ( 3) 1.5 57141.6 1750.039 10 ' 4 6S6P ( 16) 0.5* - 6P2 ( 4) 0.5 57244.2 1746.902 20 6S6P ( 14) 3.5* - 6G 2G 3,4 57405 .4 1741.996 40 5F 2F 2.5* - 6S6D ( 10) 2.5 57479.0 1739.766 15 5F 2.F 3.5* - 6P2 ( 16 ) 2.5 57683.1 1733 .610 25 6S6P ( 11 ) 2.5* - 6S7S ( 1) 3.5 TL I I WN WL(VAC) 11 . 12 57691 .1 1733.370 0 57795.2 1730.247 20 57802.8 1730.020 10 U 1 57874.0 1727.892 40 57971 .4 1724.989 15 58035 .3 1723.089 40 58243.6 1716 .927 50 58315.8 1714.801 100 5 58336.4 1714.196 20 58549.8 1707.948 130 2 58570.4 1707.347 15 58635.5 1705.451 130 0 5 8 7 3 7 . 1 1702.501 15 58987.6 1695.272 15 5 9631.9 1676 .955 30 59675.5 1675.730 0 59709.6 1674.773 35 3 59779.1 1672 .825 75 2 59879.4 1670.023 15 0 60012 .5 1666.320 15 . 60041.6 1665.512 50 60072 .3 1664.661 50 60165 .9 1662 .071 60 60 174.4 1661.836 60 60240.9 1660.002 300 60 60240.8 1660 .005 300 60 60672 .6 1648.190 50 3 60 906.4 1641.864 5 61034.1 1638.428 25 61328.4 1630.566 15 61779.4 1618.663 50 61779.4 1618.663 50 62260.0 1606.168 50 ( CONT) E C L A S S I F I C A T I O N 6S6P < 18 ) 1.5* 6S6D ( 5) 2.5 6S6P ( 4) 1.5* - 70 2D 2.5 6S6P ( 10 ) 3.5* - 5G 2G 4.5 3 7P 2H 0.5* - 9D 2D 1.5 6S6P ( 17 ) 2.5* - 6S6D ( 6) 2.5 3. 7P 2P 0.5* - 6S6D ( 4) 1.5 4 6S6P ( 16) 0.5* - 6P2 ( 5 ) 1.5 3 6S2 2 0 1.5 - 6S6P ( 7) 2.5 6S6P ( 8) 1.5* - 6P2 ( 1 ) 2.5 3 6S2 20 1.5 - 6S6P ( 8) 1.5 6S6P ( 7) 2.5* - 6P2 ( 1) 2.5 2 6S6P ( 11 ) 2.5* - 8D 2D 2.5 5F 2F 2.5* - . 6S6D ( 11 ) 1.5 3 6S6P ( 3) 2.5* • - 7D 20 1.5 6S6P ( 12) 1.5* - 6S7S ( 3 ) 1.5 6S6P ( 16) 0.5* - 6S6D ( 4) 1.5 3 6S6P (23) 1.5* - 6S6D ( 13 ) 2.5 3 6S6P ( 15) 1.5* - 6P2 ( 6) 2.5 6S6P { 15 ) 1.5* - 9D 2D 1.5 6S6P ( 13) 0.5* - 6S7S ( 4) 2.5 2 6S6P ( 15) 1.5* - 6S6D ( 4) 1.5 3 6S6P ( 14) 3. 5* - 9D 2D 2.5 6S6P ( 9) 0.5* - 9S 2S 0.5 6S6P ( 2) 3. 5* - 70 2D 2.5 3 6S2 2D 2.5 6S6P ( 2 ) 3.5 3 6P 2P 1.5* - 7S 2S 0.5 4 6S6P (23) 1.5* ' - 6S6D ( 14) 1.5 70 2D 1.5 - 6S7P ( 6) 1.5 2 6S6P ( 13) 0.5* - 6S6D ( 8) 1.5 7P 2P 1.5* - 6S6D ( 7) 1.5 3 6S6P ( 7) 2.5* - 6S7S ( 1) 3.5 3 6S6P ( 18 ) 1.5* - 6P2 ( 11 ) 1.5 6S6P ( 9) 0.5* — 8D 2D 2.5 TL I I I (CONT) WN WL(VAC) 11 12 • E C L A S S I F I C A T I O N 62407.0. 1602.384 160 2 5 3 6S2 20 1.5 — 6S6P ( 11 ) 2.5* 62 4 92 .0 1600 .205 5 0 6S6P ( 8 ) 1.5* - 8D 2D 2.5 62 5 64.3 1598.356 30 ' 6S6P ( 20) 2.5* - 6S6D ( 7) 1.5 62575.2 15 98.0 77 15 5F 2F 3. 5* - 6P2 ( 10) 2.5 62619.7 1596.942 200 30 3 6S2 2D 2.5 • 6S6P ( 4) 1.5* 62 924.8 1589.199 10 5F 2F 2.5* - 6S6D (16) 2.5 63509.2 1574.575 10 6S6P ( 11 ) 2.5* - 6P2 ( 3) 1.5 63542.2 1573.757 15 6S6P ( 18 ) 1.5* - 6P2 ( 7) 1.5 63613.5 1571.993 140 . 1 5 . 3 6S6P ( 7) 2.5* - 6S7S ( 2) 2.5 63873.8 1565.587 ' . 40 3 6S6P ( 13) 0.5* - 6S6D ( 3) 1.5 63946.0 1563 .819 . 25 6S6P ( 17 ) 2.5* - 6P2 ( 7) 1.5 64159.4 155 8.618 300 80 6S 2S 0. 5 6P 2P 0.5* 64609.3 1547.765 10 6S6P (14 ) 3 . 5* - 7G 2G 3,4 64 644.1 1546.932 15 7P 2P 1.5* 6P2 ( 9) 2 .5 64882.4 1541.250 . 5 6S6P ( 11 ) 2.5* p - 6S6D ( 8) 1.5 64956.0 1539.504 15D 6S6D ( 11 ) 1.5 - 6P-7S ( 2) 1.5* 65017.0 1538.059 120 25 7P 2P 1.5* - 6P2 ( 13) 1.5 65174.2 1534.349 130 8 3 6S2 2 0 1.5 - 6S6P ( 12 ) 1.5* 6 5257.3 1532.396 60 2 3 6S6P ( 17 ) 2.5* - 6S6D ( 7) 1.5 65396.7 1529.129 5 4 6S6P ( 18 ) 1. 5 * - 6P2 ( 12 ) 0.5 65559.4 1525 .334 5 6S6P ( 16) 0. 5* - 6P2 ( 11 ) 1.5 65 86 8.7 1518.172 15 6S6P ( 12) 1.5* - 6P2 ( 6) 2.5 66064.3 1513.677 10 6S6P ( 22 ) 2.5* - 6S6D ( 16) 2.5 66256.9 1509.277 100 7 3 6S6P ( 8) 1.5* 6S7S ( 3) 1.5 66256.9 1509.277 100 7 3 6S6P ( 20) 2.5* - 6P2 ( 13) 1.5 66256.9 1509.277 100 7 3 6S2 2D 1.5 - 6S6P (13) 0.5* 66389.5 1506.262 - 130 25 3 6P 2P 1.5* - 6D 2D 1.5 66490.9 1503.965 100 4 6S6P ( 18 ) 1.5* - 6S7S ( 6) 1.5 66490 .9 1503.965 100 4 6S6P ( 7) 2.5* - 6S7S ( 3) 1.5 66763 .0 1497.836 5 6D 2D 2.5 - 7F 2F 3.5* 66831 .5 1496 .300 5 6D 20 2.5 - 7F 2F 2.5* 66888.2 1495.032 5 7P 2P 0.5* - 6P2 ( 8) 0.5 67322.6 1485.385 5 6S6P ( 16) 0.5* 6P2 ( 7) 1.5 6 7 5 0 8 . 1 1481 .304 35 6S6P ( 15) 1.5* - 6S7S ( 5) 0.5 TL I I I (CONT) WN WL(VAC ) 11 12 E C L A S S I F I C A T I O N 67703.7 1477.024 160 50 3 6P 2P 1.5* 60 20 2.5 67968.4 1471.272 30 6S6P ( 16) 0.5* - 6S7S ( 7) 1.5 68040.7 1469.709 60 6 3 6S6P ( 10) 3. 5* - 6P2 ( 2) 2.5 68384.0 1462.330 80 17 4 6S6P ( 8) 1.5* - 6S6D ( 2 ) 2.5 68457 .0 1460.771 60 5 3 6S6P ( 7) 2.5* - 6S6D ( 1 ) 2.5 68616.4 1457 .378 120 20 6S6P ( 7) 2.5* - 6S6D ( 2) 2.5 68638.3 1456.913 15 6S6P ( 11 ) 2.5* - 6P2 ( 6) 2.5 68732.1 1454.924 5 6S6P ( 11 ) 2.5* - 90 20 1.5 68914.2 •1451.080 10 6S6P ( 20 ) 2.5* - 6P2 (17 ) 1.5 68945 .7 1450.417 35 3 6S6P ( 17 ) 2.5* - 6P2 ( 13) 1.5 69180.4 1445.496 5 6S6P ( 16) 0.5* - 6P2 ( 12 ) 0.5 69205.0 1444.982 90 30 3 6S6P ( 18 ) 1.5* - 6S7S ( 8) 2.5 6 9 546.5 1437.887 40 2 6S6P ( 15) 1.5* - 6P2 ( 12 ) 0.5 70224.4 1424.006 15 . 6S6P ( 8 ) 1.5* - 6P2 ( 4) 0.5 70492 .2 1418.5 97 10 6S6P ( 6) 1.5* - 6P2 ( 3) 1 .5 70692 .4 1414.579 10 4 7P 2P 0.5* . 6P2 (13 ) 1.5 70846.1 1411.510 50 6S6P ( 6) 1. 5 * - 6S7S ( 4) 2.5 70935.2 1409.737 20 6S6P (13) 0.5* - 6P2 ( 11 ) 1.5 71095.5 1406.559 10 6S6P ( 9) 0.5* - 6P2 ( 5 ) 1.5 71204.6 1404.404 75 6S6P ( 18 ) 1.5* - 6P2 (17 ) 1.5 71226.2 1403.978 ' 50 1 3 6S6P ( 6) 1.5* - 6P2 ( 2) 2.5 71264.6 1403.221 60 2 '. 3 6S2 20 1.5 - 6S6P ( 15 ) 1.5* 71351.9 1401.504 60 2 3 6S6P ( 9) 0.5* - 6S6D ( 3) 1 .5 71423.4 1400.101 40D 8 4 6S7S ( 8) 2.5 - 6P7S ( 2 ) 1.5* 71560.6 1397.417 15 6S6P ( 7) 2.5* - 6P2 ( 5) 1.5 71580.0 1397.038 50 3 6S6P ( 8 ) 1.5* - 6S6D ( 3 ) 1. 5 71632.7 1396.010 45 0 3 6S2 20 1.5 - 6S6P ( 16) 0.5* 71814.6 1392.475 50 4 6S6P ( 7) 2.5* - 6S6D ( 3) 1.5 71834.6 1392.087 70 6S6P ( 15) 1.5* - 6P2 ( 15 ) 0.5 71867.3 . 1391 .453 60 . 9 4 6S6P ( 6) 1.5* 6S6D ( 8 ) 1.5 72017.6 1388.549 25 0 6S6P ( 12) 1.5* - 6P2 ( 11 ) 1.5 72320.4 1382 .736 75 8 3 6S6P ( 4) 1.5* - 6P2 ( 1 ) 2.5 72328.8 1382.575 50 3 3 6S6P ( 16) 0.5* — 6P2 ( 13 ) 1.5 WN WL(VAC) 11 12 72328 .0. 13 82 .5 90 50 3 72702 .5 1375.469 20 72728 .2 1374.982 60 72755 »7 1374.463 75 50 72989 .9 1370 .053 50 73350 .5 1363 .317 20 0 73479 .3 1360.927 10 4 73580 .0 1359.065 450 73595 .9 135 8.771 70 73608 o0 1358.548 120D 50 73642 o9 1357.904 10 0 737 84 .9 1355.291 45 3 74105 ,0 1349.437 60 8 74148 . 1 1348.652 40D 8 743 60 .2 1344.805 15 74370 .9 1344.612 45 6 74423 .6 1343.660 30 5 74452 .0 1343.147 . 15 74 553 .8 1341.313 • 2 5. 74553 .8 1341.313 25 74 701 .8 1338.656 75 15 74760 08 1337.599 30 74981 .9 1333.655 15 74988 .0 1333.547 15 75012 .8 1333.106 50 3 7 5059 .3 1332 .280 100 60 75 3 54 .8 1327.055 • 120 75366 .0 1326.858 70 30 75414 .9 1325.998 40 2 75889 .9 1317.698 80 40 75880 .6 1317.860 25 75970 .9 1316.293 5 76348 .2 1309.789 5 76369 .7 1309.420 100 30 TL III (CONT) E CLASSIFICATION 3 6S6P ( 15) 1.5* - 6P2 ( 9) 2.5 6S6P (13) 0 .5* • - 6P2 ( 7) 1.5 3 6S6P ( 7) 2 .5* - 6P2 ( 6 ) 2.5 3 6S6P ( 8) 1.5* - 6S6D ( 4) 1.5 4 6S6P ( 7) 2 .5* . - 6S6D ( 4) 1.5 6S6P ( 6) 1.5* - 6P2 ( 4) 0.5 6S2 2 0 2.5 - 6S6P ( 6) 1.5 3 6S6P ( 14) 3 .5* - 6S6D ( 9) 1.5 4 6S6P ( 12) 1.5* - 6S7S ( 5) 0.5 3 6S6D (15) 1.5 - 6P7S ( 5 ) 1.5 6S6P ( 3) 2 .5* - 5G 2G 3.5 3 6S6P ( 12 ) 1.5* - 6P2 ( 7) 1.5 3 6S6P ( 3) 2 .5* - 6P2 ( 1 ) 2.5 6S7S ( 6) 1.5 - 6P7S ( 2 ) 1.5 6S6P ( 18 ) 1.5* -• 6S6D ( 10) 2.5 4 6S6P ( 10 ) 3 .5* - 6S6D ( 6) 2.5 2 6S6P ( 12) 1.5* - 6S7S ( 7) 1.5 6S6P ( 6) 1.5* - 6P2 ( 5) 1.5 4 6S6P (13) 0. 5* - 6P2 (.12 ) 0.5 4 6S6P ( 8 ) 1.5* - 6S6D ( 5 ) 2.5 3 6S6P ( 2) 3. 5* - 6P2 ( 1 ) 2 .5 3 " 6S6P ( 17 ) 2 .5* - 6S6D ( 10) 2.5 6S6P . ( 12) 1.5* - 6P2 ( 8) 0.5 6S6P ( 16) 0 .5* - 6P2 (17 ) 1.5 3 6S2 20 1.5 - 6S6P ( 17) 2.5 3 6P 2P 0 .5* - 7S 2S 0.5 6S6P ( 15) 1. 5* - 6P2 ( 17 ) 1.5 4 6S6P ( 17 ) 2 .5* 6S6D ( 12 ) 2.5 4 6S2 20 1.5 - 6S6P ( 18 ) 1.5 3 6S6P (20) 2 .5* - 6S6D ( 13 ) 2.5 6S6P ( 6 ) 1.5* - 6S6D ( 4) 1.5 6S6P ( 6) 1.5* - 9D 2D 2.5 7P 2P 1.5* - 6S6D ( 16 ) 2.5 3 6S2 20 2.5 - 6S6P ( 7) 2.5 WN WL(VAC ) 11 12 76550 .4 1306.329 50 5 76603 .9 1305.417 85 25 76668 . 1 1304.323 80 40 76737 .4 1303.146 15 76987 .0 1298 .921 25D 2 76987 .0 1298.921 25D 2 77192 .3 1295.466 50 6 77291 .0 1293.812 10 77362 .7 1292 .613 60 15 77706 o2 1286.899 75 25 7770 6 .2 1286.899 75 25 77907 .2 1283 .578 15 7 8197 .2 1278.818 150 78414 .4 1275.276 50 1 78560 .8 1272.899 100 45 78642 .6 1271.575 " 50 78796 .6 1269.090 20D 78974 .6 1266.230 . 160 60 79113 .8 12 64.00 2 10 , 79150 .4 12 63.417 70 30 79542 .3 12 57.193 35 5 79727 .7 1254.269 60 5 79835 .4 1252 .577 70 35 79945 .8 12 50.847 80 35 8 0181 .0 1247.178 25 1 80222 . 1 1246.53 9 60 30 80278 . 1 1245.670 40 3 80 407 .0 1243.673 50 80462 .0 1242.823 50 20 80820 .9 1237.304 70 . 30 81047 .6 1233.843 . 50 10 81204 .9 1231.453 75 30 81380 .4 1228.797 50 81448 .3 1227.773 . 5 81538 .7 1226.412 40 8 81704 .3 1223.926 25 0 TL III (CONT) E CLASSIFICATION 6S6P ( 11 ) 2.5 = « - 6P2 ( 7) 1.5 3 6S2 2D 2.5 - 6S6P ( 8) 1.5 3 6S2 20 2.5 - 6S6P ( 10) 3.5 6S6P ( 12) 1.5' u - 6S7S ( 6) 1.5 A 6S6P ( 19 ) 3.5 = - 6S6D ( 13 ) 2.5 4 6P2 ( 9) 2.5 - 6P7S ( 4) 1.5 3 6S6P ( 11 ) 2.5 = * - 6S7S ( 7) 1.5 6S6P (23) 1.5 = - 6P2 (21 ) 1.5 3 6S6P ( 4) 1.5 = - 6S7S ( 2 ) 2.5 3 6S6P ( 13) 0.5' - 6P2 (13) 1.5 3 6S2 2D 1.5 - 6S6P ( 20 ) 2.5 6S6P ( 2) 3. 5 = - 6S7S ( 1 ) 3.5 6S6D (12) 2.5 - 6P7S ( 5) 1.5 3 6S6P ( 9 ) 0.5* • - 6P2 ( 11 ) 1.5 4 6S6P ( 17 ) 2.5 = - 6P2 ( 10) 2.5 3 6S6P ( 13) 0.5= r - 6.S6D ( 9) 1.5 6S6D ( 10) 2.5 - 6P7S ( 5 ) 1.5 6S 2S 0. 5 - 6P 2P 1 .5 6S6P (15) 1.5 = r- - 6S6D (12) 2.5 4 6S6P ( 3) 2.5 = : - 6S7S ( 2) 2.5 3 6S6P ( 18 ) 1.5 = c - 6S6D ( 15 ) 1.5 4 6S6P ( 12) 1.5 = - 6S6D ( 9) 1.5 4 6S6P (15) 1.5' - 6S6D ( 11 ) 1.5 3 6S6P ( 17 ) 2.5 = : - 6S6D ( 15 ) 1.5 3 6S6P ( 9) 0.5 = - 6P2 ( 7 ) 1.5 3 6S6P ( 8 ) 1.5 = < - 6S7S ( 5 ) 0.5 3 6S6P ( 17) 2.5 = - 6S6D ( 16 ) 2.5 3 6S6P ( 8 ) 1.5 = - 6P2 ( 7) 1.5 4 6S2 2D 2.5 - 6S6P ( 11 ) 2.5 3 6S6P ( 9) 0. 5 = c - 6S7S ( 7) 1.5 3 6S6P ( .8 ) 1.5 = 6S7S ( 7) 1.5 3 6P 2P 0. 5 = < - 60 2D 1.5 6S6P ( 9) 0.5 = - 6P2 ( 8) 0.5 6S6P ( 12) 1.5* - 6P2 (17) 1.5 4 6S6P ( 20 ) 2.5- - 6P2 ( 18 ) 1.5 3 6S6P ( 4) 1.5 = - 6S7S ( 4) 2.5 TL I I I WN WL(VAC) 11 12 81720.9 1223.677 25 0 81954.7 1220.186 30 81954.7 1220.186 30 82205.5 1216.464 45 6 82494.6 1212.201 40 2 83133.9 1202.879 40 : 10 83490.2 1197.74 5 30 6 83731.6 1194.292 100 83870.2 1192 .319 200 83992 .2 1190.5 87 45 5 84153.7 1188.302 250 84208.9 1187.52 3 35 ' 1 84302.5 1186.204 60 3 84587.2 1182 .212 250 15 84 748.7 1179.959 60 84845.7. 1178.610 60 0 84977.8 1176.778 ' 160 8 5 310.2 1172.193 40 85 5 65.3 1168.698 130 • 2 85928.9 1163.753 200 6 86075.8 1161.767 ' 100 3 864 7 7.6 1156.369 160 86481.9 1156.311 160 30 86826.8 1151.718 3 5 87094.0 1148.185 85 4 87495.4 1142.917 500 7 87674.6 1140.581 75 1 87969.4 1136.759 30 88072 .5 1135.42 8 45 3 88262.8 1132.980 60 6 88299.0 1132.516 50 88400.3 1131.218 90 88525.7 1129.615 10 88855.0 1125.429 120 40 89158.2 1121.602 20 (CONT) E C L A S S I F I C A T I O N 3 6S6P ( 8) 1.5* - 6S6D ( 7 ) 1.5 4 6S6P ( 22 ) 2.5* - 6P2 ( 21 ) 1.5 4 6S6P ( 7) 2. 5* - 6S6D ( 7) 1.5 6S6P ( 4) 1.5* - 6S6D ( 1 ) 2.5 3 6S6P ( 11 ) 2.5* • - 6S60 ( 9) 1.5 3 6S6P ( 3) 2.5* - 6P2 ( 3) 1.5 3 6S6P ( 3) 2.5* - 6S7S ( 4) 2.5 6S6P ( 2) 3.5* - 6P2 ( 3) 1.5 6S6P ( 3) 2.5* - 6P2 ( 2) 2.5 6S6P ( 3) 2.5* - 6S6D ( 1 ) 2.5 6S6P ( 3) 2.5* - 6S6D ( 2 ) 2.5 6S6P ( 4) 1.5* - 6P2 ( 4) 0.5 6S6P ( 1 ) 2.5* - 80 2D 2.5 3 6S6P ( 2) 3.5* - 6S6D ( 1 ) 2.5 3 6S6P ( 2) 3.5* - 6S6D ( 2) 2.5 3 6S6P (13) 0.5* - 6S6D ('ID 1.5 6S6P ( 10) 3.5* - 6P2 ( 9) 2.5 4 6S6P ( 4) 1. 5* - 6P2 ( 5 ) 1.5 6S6P ( 4) 1.5* - 6S6D ( 3) 1.5 2 6S6P ( 12 ) 1.5* - 6S6D ( 11 ) 1.5 2 6S6P ( 11 ) 2.5* - 6P2 (16) 2.5 3 6S6P ( 4) 1. 5* - 6P2 ( 6) 2.5 . 6S6P ( 6) 1.5* - 6S7S ( 6) 1.5 4 6S6P ( 4) 1.5* - 90 2D 2.5 3 6S6P ( 3) 2.5* - 6P2 ( 5) 1.5 3 6S6D ( 5) 2.5 - 6P7S ( 4) 1.5 6 6S6P ( 6) 1.5* - 6P2 (15) 0.5 3 6S6P ( 11 ) 2.5* - 6S6D ( 12 ) 2.5 3 6S6P ( 8) 1.5* 6P2 ( 17 ) 1.5 3 6S6P ( 3) 2.5* - 6P2 ( 6) 2.5 6S6P (13) 0.5* - 6S6D (14) 1 .5 4. 6S6P. ( 12 ) 1.5* - 6P2 ( 10) 2.5 3 6S6P ( 3) 2. 5* - 6S6D ( 4) 1.5 4 6S6P ( 2) 3.5* - 6P2 ( 6) 2.5 6S6P ( 17 ) 2.5* - . 6P2 .... (20) 2.5 TL I I WN WL(VAC) 11 12 89192 »6 1121.169 75 4 89218 .4 1120.845 160 30 89318 .7 1119.5 86 • • 100 30 89381 .2 1118.804 120 30 89381 .2 1118.804 120 30 89918 .4 1112.119 60 0 90035 .6 1110.672 45 0 90146 .2 1109.309 100 35 90199 .0 1108.660 50 0 90918 .7 1099.884 . 130 . 7 91 156 .8 1097.011 40 92 32 2 .4 1083.161 ... 40 5 92 540 .6 1080 .607 20 1 92550 .2 1080.495 60 1 92881 .2 1076.644 50 93067 .4 10 74.490 : 100 28 93469 .0 1069.873 85 10 93469 .0 1069.873 85 10 93806 .3 1066.026 ' 90D . 1 93834 .2 1065.142 120 35 94347.0 1059.917 75 10 94411 .8 1059.190 60 5 94 5 68 .4 1057.436 100 94665 .8 1056.348 130 32 95028 .0 1052 .321 50 95591 . 1 1046.122 85 10 95705 .6 1044.871- 100 95760 . 5 1044.272 130 40 95760 .5 1044.272 130 40 96178 .3 1039.736 5 0 96245 .6 1039.009 60 3 96366 .0 1037.710 85 10 96 644 »4 1034.721 130 40 96741 .3 1033.685 •' 40 1 96835 .5 1032.679 30 (CONT) E C L A S S I F I C A T I O N 3 6S6P ( 6) 1.5* - 6S7S ( 8) 2.5 3 6S2 2D 1.5 - 6S6P ( 22 ) 2.5 3 6S2 20 2.5 - 6S6P ( 15 ) 1.5 3 6S2 20 2.5 - 6S6P ( 14) 3.5 3 6S6P ( 12) 1. 5* - 6S6D ( 14) 1.5 .4 6S6P ( 1) 2.5* - 6P2 ( 2 ) 2.5 3 6S6P ( 1 ) 2.5* - 6S6D ( 1 ) 2.5 3 6S2 2D 1.5 - 6S6P ( 21 ) 0.5 3 6S6P ( 1 ) 2.5* - 6S6D ( 2 ) 2.5 3 6S6P ( 2) 3.5* - 6S6D ( 5 ) 2.5 6S6P ( 10) 3. 5* - 6S6D ( 10 ) 2.5 6S6P ( 9) 0.5* , - 6S6D ( 11 ) 1.5 3 6S6P (16) 0.5* 6P2 ( 20 ) 2.5 3 6S6P ( 1 1 ) 2.5* - 6S6D ( 15 ) 1.5 3 6S6P ( 11) 2.5* - 6S6D ( 16) 2.5 3 6S2 20 2.5 - 6.S6P ( 17) 2.5 4 6S2 20 2.5 - 6S6P (18 ) 1.5 4 6S6P ( 20) 2.5* - 6P2 ( 21 ) 1.5 3 6S6D ( 1 ) 2.5 - 6P7S ( 4) 1.5 3 6S2 2D 1.5 - 6S6P ( 23 ) 1.5 3 6S6P ( 6) 1.5* - 6S6D ( 10 ) 2.5 6S6P ( 3) 2.5* - 6P2 ( 11 ) 1.5 3 6S6P. ( 1 ) 2.5* - 6S6D ( 4) 1.5 3 6S2 20 2.5 - 6S6P ( 19 ) 3.5 6S6P ( 8) 1.5* - 6P2 ( 10 ) 2.5 3 6S6P ( 4) 1.5* - 6P2 ( 8) 0.5 6S6P ( 4) 1.5* - 6S6D ( 7) 1.5 3 6S6P ( 18 ) 1. 5* - 6P2 ( 21 ) 1.5 3 6S2 20 2.5 - 6S6P ( 20 ). 2.5 4 6S6P ( 3) 2.5* - 6P2 ( 7) 1.5 3 6S6P ( 1) 2.5* - 6S6D ( 6) 2.5 3 6S6P ( 1) 2.5* - 6S6D ( 5 ) 2.5 4 6S6P ( 7) 2.5* - 6S6D (15) 1 .5 6S6P ( 8) 1.5* - 6S6D ( 16) 2.5 4 6S6P ( 11) 2.5* - 6P2 (18 ) 1.5 TL I I I (CONT) WN WL(VAC) • 11 12 E C L A S S I F I C A T I O N 98031.3 1020.082 60 1 4 6S6P ( 3) 2.5* — 6P2 ( 12 ) 0.5 98561.6 1014.594 500 4 10S IS 0.5 - 6P7S ( 5) 1. 5* 100 331.4 996.697 45 2 . 4 6S6P ( 4) 1.5* - 6S60 ( 9) 1 .5 100594 .6 994.089 45 60 20 2.5 - 6S7P ( 6) 1.5* 101651.5 983 .753 60D 9 4 9S 2S 0.5 - 6P7S ( 4) 1 . 5 * 101765.8 982 .648 50 4 6S6P ( 11 ) 2.5* - 6P2 ( 20 ) 2.5 101840.6 981.92 7 40 ' 7 6S6P ( 3) 2.5* - 6S7S ( 8) 2.5 103533.2 965.874 40 4 6S6P ( 1 ) 2.5* - 6S6D ( 7) 1.5 103602.2 965 .230 600 9 3 6S6D ( 1 ) 2.5 - 6P7S ( 6) 1.5* 10422 3.4 959.477 130 18 3 6P 2P 1.5* - 8S 2S 0.5 104463.7 957.270 15D 4 6P2 ( 3) 1.5 - 6P7S ( 6) 1 . 5 * 105172. 1 950 .823' 20 6S6P ( 1 ) 2.5* - 6S7S ( 6) 1.5 106848.9 935.901 • 15 6S6P ( 1 ) 2.5* - 6P2 ( 9) 2.5 107224.0 932.627 35 3 6S6P ( 1 ) 2.5* - 6P2 ( 13 ) 1.5 107275.8 932.177 30 6 4 6S2 20 2.5 - 6S6P ( 22 ) 2.5* 107390.4 931.182 75 1 3 6P 2P 1. 5* - 70 2D 1.5 107982.9 926.073 160 15 . 3 6P 2P 1.5* - 70 . 20 2.5 10820 5.0 924.172 60 10 4 6S2 2 0 2.5 - 6S6P ( 21 ) 0.5* 109708. 1 911.510 800 10 4 80 20 1.5 - 6P7S ( 6) •1.5* 11042 2.0 905.617 60 1 3 6S2 20 2.5 - 5F 2F 2.5* 110 718.2 90 3.194 25 4 6S6P ( 4) 1. 5* - 6S6D (16) 2.5 111939.6 893.339 90 3 6S2 20 2.5 - 6S6P ( 23) 1 .5* 112 510.0 888 .810 80 3 6S6P ( 3) 2.5* - 6S6D ( 16) 2.5 115750.5 863.927 40' 6S6P ( 6) 1.5* - 6P2 ( 21 ) 1.5 117058.5 854.274 7 0 6S6P ( 2 ) 3.5* - 6P2 ( 18 ) 1 .5 117820.0 848 .752 40 5 4 6S6P ( 1 ) 2.5* - 6S6D ( 14) 1.5 118550.9 843.520 70 3 6S6P ( 1 ) 2.5* . - 6S6D (16) 2 . 5 1190 37.2 840.074 160 8 3 6P 2P 0.5* - 8S 2S 0.5 121987.9 819.753 600 2 4 8S 2S 0.5 - 6P7S ( 4) 1 . 5 * 122205 .3 818.295 1 60 15 3 6P 2P 0.5* - 70 2D 1.5 122507.2 816.279 85 3 6S6P ( 1 ) 2.5* 6P2 ( 18 ) 1.5 124561 .9 802.814 160 2 3 . 6P 2P 1.5* • - 9S 2S 0.5 12 62 92 .6 791.812 100 6P 2P 1. 5* - 80 2D 1.5 126663.8 789.492 160. " 1 3 6P 2P 1.5* - 80 2D 2.5 129162.8 774.217 250 30 3 6S 2S 0.5 - . 6S6P ( 4) 1.5* TL I I I (CONT) WM WL(VAC ) 11 12 E C L A S S I F I C A T I O N 129975.6 769.375 20D 8S 2S 0.5 — 6P7S ( 5) 1.5 131535.2 760.253 160 0 3 6P 2P . 1.5* - 6P2 ( 3) 1.5 131779.0 758.846 50 8S 2S 0. 5 - 6P7S ( 6) 1.5 132278.0 755 .984 "• 120 0 3 " 6P 2P 1.5* - 6P2 ( 2) 2.5 132396.5 755 .307 75 4 6P 2P 1.5* - 6S&D ( 1 ) 2.5 132915 .0 752.361 25 6P 2P 1.5* - 6S6D ( 8) 1.5 135631.6 737.291 10 6P 2P 1.5* - 10S IS 0.5 136663.2 731 .726 70 3 6P 2P 1.5* - 6P2 ( 6) 2.5 137016.7 729.838 130 3 6P 2P 1.5* - 90 2D 2.5 139377.2 717.477 200 1 2 6P 2P 0.5* - 9S 2S 0.5 140022.9 714.169 300 30 3 6S 2S 0.5 - 6S6P ( 6) 1.5 141109.1 708.672 160 0 3 6P 2P 0.5* - 80 20 1.5 141557.5 706.427 400 4 7S 2S 0.5 - 6P7S ( 1 ) 1.5 142815.6 700 .204 80 4 6P 2P 1.5* - 6P2 ( 11 ) 1.5 143146 .9 698.583 300 15 3 6S 2S 0. 5 - 6S6P ( 8) 1.5 143373.4 697.479 3 00 25 3 6S 2S 0.5 - 6S6P ( 9) 0.5 144582.6 691.646 20 6P 2P 1. 5* - 6P2 ( 7) 1.5 146355.2 683.269 200 3 3 6P 2P 0.5* - 6P2 ( 3) 1.5 146434.6 682.899 40 4 6P 2P 1.5* - 6P2 ( 12 ) 0.5 148722 .8 672.392 120 4 6P 2P 1. 5* - 6P2 ( 15 ) 0.5 149212 .4 670.186 180 3 6P 2P 1.5* - 6P2 ( 9) 2.5 149212.4 670.186 '" 180 . 3 6P 2P 0.5* - 6P2 ( 4) 0.5 149582.2 668 .529 100 3 6P 2P 1.5* - 6P2 ( 13 ) 1.5 149770.2 667 .690 300 30 3 6S 2S 0.5 - 6S6P ( 12) 1.5 150311 .4 665.286 0 6P 2P 0.5* - 6P2 ( 5 ) 1.5 1-5044 5 .7 664.692 20 6P 2P 0.5* - 10 S IS 0.5 150568.0 664.152 200 3 6P 2P 0.5* - 6S6D ( 3) 1.5 150853.8 662.893 350 28 4 6S 2S 0.5 - 6S6P ( 13 ) 0.5 151579.4 659.720 85 3 6P 2P 0. 5* - 90 20 1 .5 152242 .8 656 .846 100 3 6P 2P 1. 5* - 6P2 ( 17) 1.5 1 52641 .3 655.131 60 4 6S2 20 1.5 - 6S7P ( 4) 0.5 154107.0 648.-900 160 3 4 6P 2P 1. 5* - 6P2 ( 16 ) 2.5 3. 55 860 .2 641.601 250 20 3 6S 2S 0.5 - 6S6P ( 15 ) 1 .5 156230.6 640.079 2 50 18 ' 3 6S 2S 0.5 - 6S6P ( 16) 0.5 156230.6 640.079 250 18 3 6S2 20 2.5 - 6S7P ( 2) 1.5 TL I I I WN WL(VAC ) 11 12 156721.2 638.076 60 157634.7 634.378 35 157362.2 633.464 • 200 1 159198.0 628.149 100 159397.2 627.364, , 160 1 160010.4 624.959 250 25 1 60 5 94 .4 622 .687 100 160594.4 • 622.687 100 161247.8 620.163 160 2 161425.6 619.480 130D 162 669.8 614.742 85 163537.7 611 .480 .. 160 20 163537.7 611.480 160 20 164042.6 609.598 85 164 866.2 606.55-2 80 165965 .8. 602.534 130D 167059.9 598.588 . 85 167059.9 598.588 85 169794.7 538.947 • 100 173949.4 574.880 160D 1 74 743.6' 572.267 . 160 8 175760.0 568.953 160D 178481.8 5 60.2 81 80 0 180728.0 553.318 85 191612.2 521 .887 100 192411.2 519.720 35 193850.9 515 .860 • 10 1 216050.9 462*854 15D 218778.5 457.083 180 222775.5 448.882 20 227135.3 440.266 , 30 237232.6 421.527 10 242230.2 412.830 10 247270.2 404.416 25 248633.9 402.198 25 (CONT) E C L A S S I F I C A T I O N 3 6P 2P 1.5* - 6S6D ( 11 ) 1.5 4 6S2 20 1.5 - 6S7P ( 5 ) 1.5* 3 6S 2S 0.5 - 7P 2P 0.5* 3 6P 2P 1.5* - 6P2 ( 10 ) 2.5 3 6P 2P 0.5*. - 6P2 ( 7) 1.5 3 6S 2S 0.5 - 6S6P ( 18 ) 1.5* 3 6P 2P 0.5* - 6P2 ( 8) 0.5 3 6S2 2D 2.5 - 6S7P ( 3) 1.5* 3 6P 2P 0.5* - 6P2 ( 12 ) 0.5 7S 2S 0.5 - 6P7S ( 2 ) 1.5* 3 6S2 2D 1.5 - 6S7P ( 6) 1.5* 3 6P 2P 0.5* - 6P2 ( 15 ) 0.5 3 6S 2S 0.5 - 7P 2P 1.5* 3 6S2 2D 1.5 - 6S7P ( 7) 1.5* 4 6P 2P 1.5* - 6P2 (18) 1.5 4 7S 2S 0.5 - 6P7S ( 4) 1.5* 3 6P 2P 0.5* - 6P2 ( 17 ) 1.5 3 oS2 2D 1.5 - 6S7P ( 8 ) 1.5* 4 6P 2? 1.5* - 6P2 ( 20 ) 2.5 4 7S 2S 0.5 - 6P7S ( 5 ) 1.5* 3 6S 2S 0.5 - 6S6P ( 21 ) 0.5* 4 7S ' 2S 0.5 - 6P7S ( 6) 1.5* 3 6S 2S 0.5 - 6S6P ( 23 ) 1.5* 4 6S2 2D 2.5 - 6S7P ( 6) 1.5* 5 6P 2P 0.5* - 6P2 (21 ) 1 .5 6S 2S 0.5 - 8P 2P 0.5* 6S 2S 0. 5 - 8P 2P 1 . 5 * 6S2 20 1.5 - 6P7S ( 2 ) 1.5* 6S 2S 0. 5 - 6S7P ( 1 ) 1.5* 6S 2S 0.5 - 6S7P ( 2 ) 1.5* 6S 2S 0.5 - 6S7P ( 3) 1.5* 6S 2S 0. 5 - 6S7P ( 4) 0.5* 6S 2S 0.5 - 6S7P ( 5) 1.5* 6S 2S 0.5 - 6S7P ( 6) 1.5* 6S 2S 0.5 - 6S7P ( 7) 1.5* W N W L ( V A C ) C L A S S I F I E D L I N E S O F L E A D I V I I E C L A S S I F I C A T I O N 1 3 0 1 7 . 6 7 6 8 1 . 9 0 3 6 0 7 D 2 0 2 . 5 8 P 2 P 1 . 5 * 1 4 0 3 6 . 0 7 1 2 4 . 5 3 7 2 5 7 D 2 0 1 . 5 - 8 P 2 P 1 . 5 * 1 4 3 0 3 . 7 6 7 5 5 . 0 6 8 8 0 8 S 2 S 0 . 5 - 8 P 2 P 1 . 5 * 1 6 9 0 2 . 8 5 9 1 6 . 1 8 0 2 5 6 D 2 0 1 . 5 - 6 S 6 P ( 1 3 ) 0 . 5 * 1 7 5 4 1 . 5 5 7 0 0 . 7 6 7 8 0 6 P 2 ( 3 ) 1 . 5 - 7 F 2 F 2 . 5 * 1 7 7 6 5 . 3 5 6 2 8 . 9 5 1 5 6 S 6 P ( 2 2 ) 2 . 5 * - 7 D 2 D 1 . 5 1 8 1 9 1 . 7 5 4 9 7 . 0 1 2 0 6 S 6 P ( 1 ) 2 . 5 * - 6 0 2 D 1 . 5 1 8 3 6 0 . 4 5 4 4 6 . 5 0 4 7 7 F 2 F 3 . 5 * - 6 P 2 ( 1 0 ) 2 . 5 1 9 1 9 7 . 2 5 2 0 9 . 0 9 3 1 0 0 4 6 F 2 F 3 . 5 * - 6 S 6 D ( 5 ) 2 . 5 1 9 3 9 0 . 3 5 1 5 7 . 2 1 8 1 0 6 S 6 P ( 2.1 ) 0 . 5 * - 7 0 2 D 1 . 5 2 0 5 1 6 . 3 4 8 7 4 . 1 7 3 1 0 7 F 2 F 2 . 5 * - 6 S 6 D ( 1 4 ) 1 . 5 2 0 7 1 1 . 6 4 3 2 8 . 2 1 2 1 0 0 7 F 2 F 3 . 5 * - 6 S 6 D ( 1 4 ) 1 . 5 2 0 9 1 6 . 8 4 7 3 0 . 8 4 6 0 6 S 7 S ( 1 ) 3 . 5 - 7 H 2 H 4 , 5 * 2 1 7 0 7 . 6 4 6 0 6 . 6 8 2 2 0 0 4 6 D 2 D 2 . 5 - 6 S 6 P ( 1 4 ) 3 . 5 * 2 2 0 4 6 . 5 4 5 3 5 . 8 6 7 4 0 0 5 G 2 G 4 . 5 - 6 H 2 H 4 , 5 * 2 2 0 8 4 . 6 4 5 2 8 . 0 4 2 5 8 P 2 P 1 . 5 * - 6 S 6 D ( 4 ) 1 . 5 2 2 2 3 5 . 0 4 4 9 7 . 4 1 4 2 5 0 4 6 0 2 D 2 . 5 - 6 S 6 P ( 1 5 ) 1 . 5 * 2 2 4 2 0 . 6 4 4 6 0 . 1 8 4 1 5 6 H 2 H 4 , 5 * - 6 S 7 S ( 8 ) 2 . 5 2 3 9 4 8 . 7 4 1 7 5 . 5 9 2 3 0 4 7 S 2 S 0 . 5 - 6 S 6 P ( 1 5 ) 1 . 5 * 2 4 4 9 2 . 8 4 0 8 2 . 8 3 3 7 6 D 2 D 1 . 5 - 6 S 6 P ( 1 5 ) 1 . 5 * 2 4 6 8 5 . 6 4 0 5 0 . 9 4 5 8 0 4 7 S 2 S 0 . 5 - 7 P 2 P 0 . 5 * 2 5 2 2 9 . 6 3 9 6 3 . 5 9 8 1 0 0 4 6 D 2 D 1 . 5 - 7 P 2 P 0 . 5 * 2 5 2 6 6 . 2 3 9 5 7 . 8 5 7 5 7 S 2 S 0 . 5 - 6 S 6 P ( 1 6 ) 0 . 5 * 2 5 3 4 9 . 0 3 9 4 4 . 9 2 9 2 5 1 6 P 2 P 1 . 5 * - 6 S 2 2 0 1 . 5 2 5 4 5 6 . 8 3 9 2 8 . 2 2 4 0 2 6 H 2 H 4 , 5 * - 6 P 2 ( 1 6 ) 2 . 5 2 5 8 1 0 . 4 3 8 7 4 . 4 0 7 7 6 0 2 D 1 . 5 - 6 S 6 P ( 1 6 ) 0 . 5 * 2 6 1 2 0 . 0 3 8 2 8 . 4 8 4 4 0 3 " 6 H 2 H 4 , 5 * - 6 S 6 D ( 1 6 ) 2 . 5 2 8 0 2 5 . 7 3 5 6 8 . 1 5 4 2 5 5 6 D 2 D 2 . 5 - 6 S 6 P ( 1 8 ) 1 . 5 * 2 8 9 6 0 . 7 3 4 5 2 . 9 5 5 1 0 6 D 2 D 1 . 5 - 6 S 6 P ( 1 7 ) 2 . 5 * 2 9 7 0 3 . 6 3 3 6 6 . 5 9 5 2 5 5 5 F 2 F 3 . 5 * - 7 D 2 0 2 . 5 2 9 7 3 9 . 2 3 3 6 2 . 5 6 5 2 5 5 7 S 2 S 0 . 5 - 6 S 6 P ( 1 8 ) 1 . 5 * 2 9 8 4 7 . 5 3 3 5 0 . 3 6 4 7 7 F 2 F 3 . 5 * - 6 P 2 ( 2 0 ) 2 . 5 3 0 2 8 3 . 8 3 3 0 2 . 0 9 6 2 6 D 2 D 1 . 5 - 6 S 6 P ( 1 8 ) 1 . 5 * 3 0 9 4 1 . 6 3 2 3 1 . 8 9 5 " 2 5 4 ' 5 F 2 ' F 2 . 5 * - 7 D 2 D 1 . 5 3 1 0 3 5 . 7 3 2 2 2 . 0 9 6 7 0 4 6 D 2 D 2 . 5 - 7 P 2 P 1 . 5 * WN WL(VAC) II PB IV(CONT) E CLASSIFICATION 31783 .0 3146.336 30 5 7P 2P 1.5* - 8S 2S 0.5 31959. 1 3128.999 1 5F 2F 2 .5* - 70 2D 2.5 32550.9 3072 . 112 25 4 7P 2P 1.5* - 7D 2D 1 .5 32645.3 3063.228 30 4 60 2D 2.5 - 5F 2F 2.5 32657.8 3062 .056 7 60 20 1.5 - 6S6P (20) 2.5 32749.8 3053 .454 80 4 7S 2S 0.5 - 7P 2P 1.5 33293 .5 3003.589 25 4 6D 2D 1.5 - 7P 2P 1.5 33568.2 2979.010 60 5 7P 2P 1.5* - 70 2D 2.5 34899.9 2865.338 80 5 6D 20 2.5 - 5F 2F 3 .5 34903.0 2865 .083 80 5 6D 20 1.5 - 5F 2F 2.5 35018.4 2855.642 10 5G 2G 4. 5 - 7H 2H 4 ,5 36578.3 2733.861 7 4 6S6P ( 18 ) 1.5* - 7D 2D 2.5 37901.5 2638.418 5 4 6S6P ( 17 ) 2 .5* - 7D 2D 2.5 39846.4 2509.637 20 7P 2P 0 .5* - 8S 2S 0.5 40033 .5 2497.908 2 6S6P ( 16) 0 .5* - 70 2D 1.5 40583.9 2464.031 5 • " 6S6P (15) 1.5* - 8S 2S 0.5 40613.6 2462.229 40 7P 2P 0 .5* - 70 2D 1.5 41008.6 2 438.513 20 6F 2F 3 .5* - 6P2 ( 10 ) 2.5 41148.1 2430.246 5 , 8P 2P 0 .5* - 6P2 ( 7) 1.5 41350.6 2418.345 400 4 6S6P (15) 1.5* - 7D 20 1.5 41731.4 2 3 96.2 77 • 7 5F 2F 2 .5* - 6P2 ( 1 ) 2.5 42368.4 2360.2 50 400 5 ' 6S6P ( 15) 1. 5* - 70 2D 2.5 42895.9 2331.225 250 6S6P ( 14) 3. 5* - 7D 2D 2.5 43342.5 2307.204 0 7P 2P 1.5* - . 6P2 ( 1 ) 2.5 43439.0 2302.079 150 5G 2G 3.5 - 8H 2H 4 ,5 43763.3 2285 .020 0 8P 2P 0 .5* - 6S6D ( 11 ) 1.5 43799.9 2283.110 20 6S2 2D 1.5 - 6S6P ( 1 ) 2.5 44000.6 2272.696 3 8P 2P 1.5* - 6P2 ( 15 ) 0.5 44209.3 2261.968 500 8P 2P 0 .5* - 6S7S ( 6) 1.5 44876.2 2228.353 0 6S6P ( 22 ) 2 .5* - 6P2 ( 3) 1.5 44 90 3.3 2227.008 4 8P 2P 0 .5* - 6S7S ( 7) 1.5 45065.0 2219.017 1 6P2 ( 2) 2.5 - 8H 2H 4,5 45262.3 2 20 9.3 44 5 6S6P (23) 1. 5* - 9S 2S 0.5 45545.3 2195 .616 0 6S6P (23) 1.5* - 8D , 20 1.5 45788.8 2183.940 3 6F 2F 3. 5* 6P2 ( 16) 2.5 PB IV(CONT) WN WL(VAC ) 11 • E C L A S S I F I C A T I O N 45910.8 2178.137 300 4 7S 2S 0.5 6S6P ( 21 ) 0.5* 4 5 944.1 2176.55 8 10 8P 2P 0. 5* - 6P2 ( 15 ) 0.5 45955.5 2176 .018 0 1 6F 2F 2.5* - 6S6D ( 15 ) 1.5 460 33.8 2172.317 1 5 6S6P (23 ) 1.5* - 80 2D ' 2.5 4635 5 . 4 2157.246 80 6S6P ( 18 ) 1 . 5* - 6P2 ( 1 ) 2.5 46410.3 2154.694 400 6P 2P 0.5* - 6S2 20 1.5 46454.5 2152.644 200 6D 2D 1.5 - 6S6P ( 21 ) 0.5* 46501.1 2150.487 1 6S6P ( 21 ) 0. 5* - 6P2 ( 3) 1 .5 46667.7 2142 .810 1 6F 2F 3.5* - 6P2 ( 17) 1.5 47156.1 2120 .616 20 5F 2F 3. 5* - 6P2 ( 2) 2.5 47675.9 2097.496 3 6S6P ( 17 ) 2.5* - 6P2 ( 1 ) 2.5 48030.4 2082 .015 1 6S6P (23 ) 1..5* - 6S6D ( 2) 2.5 480 7 9 . 6 2079.884 300 4 60 2D 1 . 5 - 6S6P (22 ) 2.5* 48174.7 2075.778 100 6S6P (13 ) 0.5* - 8S 2S 0.5 48472.7 2063.017 15 6S6P ( 22 ) 2.5* - 8D 2D 1.5 48748.7 2051 .337 40 6D 2D 2.5 - 6S6P (23 ) 1.5* 4 87 80 .4 2050.004 300 4 5F 2F 3.5* - 5G 2G 4.5 48 9 4 1 . 9 2043.239 300 6S6P (13 ) 0. 5* - 7D 20 1.5 49613.5 2015.580 0' 6S6P ( 12) 1. 5* - 8S 2S 0.5 50 101 .3 1995.956 2 6S6P ( 21 ) 0. 5* - 80 2D 1 .5 50461 .9 1931.693 40 IS 2S 0.5 - 6S6P ( 23) 1.5* 50680 .2 1973.157 200 5 6S2 2D 1.5 - 6S6P ( 3) 2.5* 50959.7 1962 .335 1 6S6P (235 1.5* - 6S6D ( 4) 1.5 50959.7 1902.335 1 6S6P ( 22) 2. 5* - 6S6D ( 2) 2.5 51006.1 1960 .550 4 6D 2D 1.5 - 6S6P ( 23) 1.5* 51037.5 195 9.344 300 5 5F 2F 2.5* - 50 2G 3.5 51398 .1 1945.597 10 6S6P ( 12) 1.5* - 70 • 2D 2.5 51811.5 1930.073 15 6F 2F 2.5* - 6P2 ( 18 ) 1.5 51958.3 1924.620 100 6S6P ( 22) 2.5* - 6S7S ( 1 ) 3.5 52637.4 1899.790 1 6S6P ( 22 ) 2.5* - 6S6D ( 3) 1.5 5282 1 .0 1893.186 200 5 6S2 2D 1.5 - 6S6P ( 4) 1.5* 53036.0 1885 .512 25 6S6P (23 ) 1.5* - 6S7S ( 3 ) 1 .5 5 30 76.6 1884.069 20 8P 2P 0.5* - 6S6D ( 14) 1.5 53378.6 1873.410 4 6S6P ( i i ) 2.5* - 70 2D 1 .5 53560.1 1867.061 5 8P 2P 1.5* - 6P2 ( 16) 2.5 53859.4 1856.686 0 5 6S6P ( 22) 2.5* - 6S7S ( 2) 2.5 54033.8 1850.693 0 6S6P ( 18 ) 1.5* - 6P2 ( 2) 2.5 PB I V ( C O N T ) WN WL(VAC) I I E . C L A S S I F I C A T I O N 5 4 1 8 4 . 3 . 1 8 4 5 . 5 5 3 i o 6S6P ( 22) 2 . 5 * - 6P2 ( 11 ) 2 . 5 5 4 3 9 5 . 3 183 8 . 3 94 3 6S6P ( 11 ) 2 . 5 * - 70 2D 2 . 5 5 4 4 4 2 . 9 1 8 3 6 . 7 8 7 0 8P 2P 1 .5* - 6P2 (17) 1 .5 5 5 0 5 5 . 7 1 8 1 6 . 3 4 2 0 6S6P (23) 1 . 5 * - 6S7S ( 4) 2 . 5 5 5 4 8 7 . 7 1 8 0 2 . 2 0 1 4 6S6P ( 9) 0 . 5* 8S 2S 0 . 5 5 5 5 1 1 . 2 1801 .438 10 6S6P ( 21 ) 0 . 5 * • - 6S6D ( 4) 1 .5 5 5 8 0 8 . 6 1 7 9 1 . 8 3 9 0 6S6P ( 21 ) 0 . 5* - 6P2 ( 11 ) 2 . 5 5 5 8 4 2 . 2 1 7 9 0 . 7 6 0 10 6S6P (23) 1 . 5 * - 6S6D ( 5) 2 . 5 5 5 9 6 5 . 1 17 86 . 82 8 40 . . 6S6P ( 22 ) 2 . 5 * - 6S7S ( 3) 1 .5 5 6 2 5 5 . 3 1 7 7 7 . 6 1 0 30 6S6P ( 9) 0 .5* ' - 70 2D 1 .5 5 6 9 0 8 . 6 1 7 5 7 . 2 0 4 2 6S6P (23) 1 .5* - 6S6D ( 6) 2 . 5 5 6 9 1 5 . 7 1 7 5 6 . 9 8 4 7 . 6S6P ( • 8 ) 1 . 5 * 70 2D 1 .5 5 7 1 8 0 . 1 1 7 4 8 . 8 6 0 0 6S6P ( 23) 1 .5* - 6P2 ( 5) 1 .5 5 7 5 8 6 . 1 1 7 3 6 . 5 3 0 5 6S6P ( 21 ) 0 . 5 * - 6S7S ( 3 ) 1 .5 5 8 3 6 3 . 0 1 7 1 3 . 4 1 4 1 5F 2F 3 . 5 * 6S6D ( 1 ) 2 . 5 5 9 4 7 6 . 1 . 1 6 8 1 . 3 4 8 25 6S6P ( 22) 2 . 5 * - 6G • 2G 3 , 4 5 9 9 5 1 . 8 1 6 6 8 . 0 0 7 0 8P 2P 1 . 5 * - 6P2 (18) 1 .5 6 0 1 0 8 . 6 1 6 6 3 . 6 5 5 10 6S6P (22) 2 . 5 * - 6P2 ( 5) 1.5 6 0 6 1 6 . 4 1 6 4 9 . 7 1 9 • 0 5F 2F 2 . 5 * - 6S6D ( 1) 2 . 5 6 0 6 9 1 . 5 1647 . 677 0 6S6P (23) 1 . 5 * • - 6S6D ( 7) 1.5 6 1 6 4 3 . 3 1622 . 236 0 6S6P ( 6) 1 .5* - 70 2D 1 .5 6 1 6 5 2 . 3 1 6 2 2 . 0 0 0 40 5F 2F 2 . 5 * - 80 2D 1 .5 6 1 9 7 2 . 1 1 6 1 3 . 6 2 9 100 6S6P ( 14) 3 . 5* - 5G 2G 4 . 5 6 2 6 6 0 . 1 1 5 9 5 . 9 1 2 0 6S6P ( 6) 1. 5* - 70 2D 2 . 5 62672 .3 1 5 9 5 . 6 0 1 0 6S6P ( 18 ) 1 . 5 * - 6P2 ( 3) 1 .5 6 2 8 7 0 . 5 1 5 9 0 . 5 7 1 6S6P (23) 1 . 5 * - 10S IS 0 . 5 62 880 .0 15 90 .331 • 5 5F 2F 3 . 5* - 6S7S ( 1 ) 3 . 5 6 2 9 7 8 . 4 1587 . 846 30 7P 2P 1 . 5 * - 9S 2S 0 . 5 6 3 0 0 6 . 7 1 5 8 7 . 1 3 3 0 6S6P (23) 1 . 5 * - 6P2 ( 6) 2 . 5 6 3 2 6 1 . 0 1 5 8 0 . 7 5 3 15 7P 2P 1 . 5 * - 8D 20 1.5 6 3 7 4 7 . 2 1 5 6 8 . 6 9 6 130 7P 2P 1 .5* - 8D 20 2 . 5 64172 . 6 1 5 5 8 . 2 9 7 10 6S6P ( 11 ) 2 . 5 * - 6P2 ( 1 ) 2 . 5 6 5 1 1 6 . 4 1 5 3 5 . 7 1 1 350 4 6S2 2D 2 . 5 6S6P ( 1 ) 2.5=! 6 5 1 3 6 . 4 1 5 3 5 . 2 4 0 1 5F 2F 2 . 5 * - 6S7S ( 1) 3 . 5 6 5 7 4 6 . 1 1 5 2 1 . 0 0 3 5 7P 2P 1 . 5 * - 6S6D ( 2) 2 . 5 WN WL(VAC) I I PB IV(COMT) E C L A S S I F I C A T I O N 65816.9 1519.367 0 6S6P ( 22) 2.5* - 90 20 65816.9 1519.367 0 5F 2F 2.5* - 6S6D ( 3) 65988.8 1515.40 9 0 6S6P ( 18 ) 1.5* - 9S 2S 66081.6 1513.281 20 6S6P ( 12) 2.5* - 90 20 ' 66191.8 1510.761 180 4 6S6P (23) 1.5* - 6P2 ( 12 ) 66191.8 1510.761 180 4 6S2 20 1.5 - 6S6P ( 6) 66269.9 150 8.981 3 6S6P ( 18 ) 1.5* - 80 2D 67047.2 1491 .487 3 5 6S6P ( 9) 0.5* - 6P2 ( 1 ) 67359.4 1484 .574 0 5F 2F 2.5* - 6P2 ( 11 ) 67383.6 1484.041 120 6S6P ( 20) 2.5* - 6S7S ( 1) 67422 .0 1483.195 0 6S6P ( 7) 2. 5* - 6P2 ( 1 ) 67422.0 1483 .195 0 6S6P ( 21 ) 0.5* - 10S IS 67422 .0 1483.195 0 7P 2P 1.5* - 6S6D ( 3) 67589.6 147 9.518 0 6S6P ( 17 ) 2.5* - 80 20 6 7708 .5 1476.919 40 6S6P ( 8) 1.5* - 6P2 ( 1 ) 68461 .4 1460 .677 10 6S6P (15) 1 . 5* - 6P2 ( 3) 68351 .0 1452.412 15 6S6P ( 12) 1.5* - 6P2 ( 2) 69138.5 1446.372 0 5F 2F 2.5* - 6S7S ( 3) 69278.3 1443.453 0 6S6P ( 20) 2.5* - 6S7S ( 2) 70402 .8 1420.398 140 5F 2F 3.5* - 6G 2G 70460 .0 1419.245 3 6S6P (16) 0.5* - 9S 2S 70687.8 1414.671 10 6S6P (23 ) 1.5* - 6S6D ( 11 ) 70 744 .6 1413.53 5 10 6S6P (21) 0.5* - 6P2 ( 12 ) 70744.6 1413.535 10 6S6P ( 16) 0.5* - 8D 2D 70921 .5 1410.010 10 6S2 20 1.5 - 6S6P ( 8) 71040.8 1407 .642 40 7P 2P 0.5* - 9S 2S 71160 .4 1405.276 35 5F 2F 2.5* - 6S7S ( 4) 71207.6 1404.3 44 250 4 6S2 2D 1.5 - 6S6P ( 7) 71326.0 140 2.013 40 7P 2P 0. 5* - 8D 2D 71415.3 1400 .260 450 4 6S2 2D 2.5 - 6S6P ( 2) 71580.7 1397 .025 140 6S2 2D 1.5 - 6S6P ( 9) 71757.9 1393 .575 30 6S6P ( 17 ) 2.5* - 6S6D ( 3) 71779.8 1393 .150 25 6S6P (15) 1.5* - 9S 2S 71997.6 1388.935 400 4 6S2 2D 2.5 - 6S6P ( 3) 1. 1, 0 , 2, 0 , 1, 1 , 2.5 2.5 3.5 2.5 0.5 1.5 1.5 2 1 2 1 2 3,4 0.5 1.5 0.5 1.5 1.5 0.5 2.5 2.5 1.5 3.5 0.5 1.5 0.5 2.5 PB IV(CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 72063.0 .1387 .675 15 6S6P ( 15 ) 1.5* - 80 2D 1.5 72546.1 1378.434 50 6S6P ( 15) 1.5* - 80 2D 2.5 73475.4 1361 .000 5 6S6P ( 11 ) 2.5* - 5G 2G 3.5 74243.9 1346.912 5 6S6P ( 4) 1.5* - 8S 2S 0.5 74456.9 1343.059 300 4 6S2 20 1.5 6S6P ( 11 ) 2.5 74 541 .9 1341 .527 20 3 6S6P ( 15) 1.5* - 6S6D ( 2) 2.5 74541 .9 1341.527 20 3 5F 2F 3.5* - 6S6D ( 7) 1.5 74903.8 1335.046 15 6S6P ( 20) 2.5* - 6G 2G 3,4 75012.6 1333.109 4 6S6P ( 4) 1.5* - 70 2D 1.5 75099.2 1331.572 100 2 6S6P ( 7) 2.5* - 6P2 ( 2) 2.5 75485 .1 1324.765 10 7P 2P 0.5* - 6S6D ( 3) 1.5 75533.5 1323.916 200 3 6S6P ( 20) 2.5* - 6P2. ( 5) 1.5 76031 .3 1315.239 40 6S6P ( 4) 1.5* - 70 2D 2.5 76072.4 1314.537 100 6S6P { 14) 3.5* - " 6S7S ( 1 ) 3.5 76158.7 1313.048 450 4 6S 2S 0.5 - 6P 2P 0.5 76644.8 1304.720' 5 0 6S6P ( 10) 3.5* - 5G 2G 3.5 76724.7 1303.361 40 6S6P ( 7) 2.5* - 5G 2G 3.5 77032 .8 1298.148 10 7P 2P 0.5* - 6P2 ( 11 ) 2.5 77389.5 1292.165 15- 7S 2S 0.5 - 8P 2P 0.5 77445 .7 1291.227 200 4 6S6P ( 15) 1.5* - 6S7S ( 2) 2.5 77453.3 1291 .101 250 4 6S2 20 1.5 - 6S6P (12 ) 1.5 77470.4 12 90.816 200 6S6P { 15) 1.5* - 6S6D ( 4) 1.5 77652.8 1287 .784 15 . 6S6P (23) 1.5* - 6P2 ( 10) 2.5 77935.0 12 33.121 120 ' 4 60 . 20 1.5 - 8P 2P 0.5 77974.0 1282 .479 0 6S6P ( 14) 3.5* - 6S7S ( 2 ) 2.5 78752 .5 1269.801 15 6S6P ( 2) 3. 5* - 70 2D 2.5 78892 .2 1267.552 200 6S2 20 1.5 - 6S6P ( 13 ) 0.5 78992.1 1265 .949 3 5 5F 2F 2.5* - 90 2D 1.5 79042.9 1265 .136 120 4 6S6P (20) 2.5* - 6S6D ( 7) 1.5 79115.6 1263.973 10 5F 2F 2.5* - 6P2 ( 6) 2.5 79333 .4 1260.503 35 7S 2S 0.5 - 8P 2P 1.5 79369.2 1259.935 20 6S6P ( 13) 0.5* - 9S 2S 0.5 79552 .3 1257.035 15 • 6S6P (15 ) 1.5* - 6S7S ( 3) 1.5 79652.3 1255 .457 15 .' 6S6P ( 13) 0.5* - 8D .  2D 1.5 79876.3 1251 .936 25 6D 20 1.5 - 8P 2P 1.5 WN WL(VAC) I I PB IV(CONT) E C L A S S I F I C A T I O N 80582.5 1240.964 1 7P 2P 1 . 5 * - 10S IS 0.5 80720.5 1233.843 10 7P 2P 1. 5* - 6P2 ( 6) 2.5 80863.8 1236 .647 100 7P 2P 1.5* - 90 2D 2.5 8 1 0 92 . 3 1233.163 15 6S6P ( 12) 1 . 5 * - 80 20 "1.5 81417.5 1228.237 15 6S6P ( 18 ) 1 . 5 * . - 6S6D ( 7) 1.5 81581.2 1225 .773 10 6S6.P ( 12) 1.5* - 80 2D 2.5 82322.3 1214.738 40 4 6S6P ( 22 ) 2.5* - 6S7S ( 8) 2.5 82526 . 1 1211 .73 8 20 7P 2P 1.5* - 6S6D ( 9) 1 . 5 82860.6 1206.846 70 4 • 6S6P ( 22 ) 2.5* - 6S6D ( 13 ) 2.5 82882 .9 1206.521 160 4' 6 S6 P ( 14) 3.5* - 6S6D ( 5 ) 2.5 83053.3 1204.046 50' 6S6P ( 11) 2.5* - 6S6D ( 1 ) 2.5 83 422.9 1198.712 40 6S6P ( 15) 1.5* - 6S6D ( 6) 2.5 33512.7 1197 .42 3 100 5F 2F 3.5* - 7G 2G 3,4 33575.8 1196.519 10 6S6P ( 12) 1.5* - 6S6D ( 2) 2.5 83592 .7 1196.277 80 6S6P (14) 3.5* - 6G 2G 3,4 83592 .7 1196.277 80 6S6P ( 18 ) 1 . 5 * - 10S IS 0.5 83738.5 1194.194 40 6S6P ( 7) 2.5* - 6P2 ( 3) 1 .5 33948.0 1191 .214 80 4 6S6P ( 14) 3. 5* - 6S6D ( 6) 2.5 83948.0 1191.214 80 4 6S6P ( 21 ) 0.5* • - 6S7S ( 8 ) 2.5 84036.9 1189.953 500 5 . 6S6P ( 1 ) 2.5* - 70 2D 1.5 84090 .0 1189.202 70 6S6P ( 11 ) 2.5* - 80 2D 1 .5 84183.5 1187.881 2 5 " 5F 2F 2.5* 6P2 ( 7) 1.5 85361 .5 1171.488 30 6S6P ( 22 ) 2.5* - 6P2 ( 16) 2.5 85361.5 1171.488 30 6S6P ( 13) 0. 5* 6P2 ( 11 ) 2.5 85805.2 1165.431 70 6S6P ( 4) 1 . 5 * - 6P2 ( 1 ) 2.5 86303.2 1158.706 80 4 6S6P ( 7) 2.5* - 6S6D ( 1 ) 2.5 86484.7 1156.274 • 80 6S2 2D 1 . 5 - 6S6P ( 15 ) 1 .5 86589.2 1154.87 8 50 4 6S6P ( 8) 1.5* - 6S6D ( 1 ) 2.5 86858.3 1151.300 25 4 6S6P ( 17 ) 2.5* - 6S6D ( 9) 1 . 5 87139.2 1147.589 80 6S6P ( 13) 0. 5* •- 6S7S ( 3) 1.5 87224.5 1146.467 100 5 6S2 2D 1 . 5 - 7P 2P 0.5 87341.6 1144.930 400 4 6P 2P 1.5* - 6D 20 1 .5 87341.6 1144.930 400 4 6S6P ( 8) 1.5* - 9S 2S 0.5 87506.5 1142.772 250 6S2 2D 2.5 - 6S6P ( 6) 1.5 87576.0 1141.865 35 6S6P ( 11 ) 2.5* - 6S7S ( 1 ) 3.5 87801 .6 1138.931 120 5 6S2 2D 1.5 - 6S6P ( 16) 0.5 PB IV(CONT) WM WL(VAC) II E CLASSIFICATION 87863.2 1138. 133 80 6S6P ( 21 ) 0 .5 ' 5 - 6P2 (17) 1.5 87885 .7 1137.842 450 4 6P 2P 1.5' - 7S 2S 0.5 88012.2 1136.206 7 6S6P ( 20) 2.5 = < - 7G 2G 3 ,4 8 80 81 .7 . 1135.310 2 5 6 6S6P (16) 0 .5 ' - 90 20 1.5 88647.0 1128.070 40 7P 2P 0. 5' - - 10S IS 0 .5 88663.9 1127.855 20 7P 2P 0 .5 ' - 90 2D 1.5 83756.1 1126.683 2 0 6S6P ( 6) 1.5 = - 6P2 ( 3) 1 .5 88800.0 1126.126 15 6S6P ( 18 ) 1.5 = - 6P2 ( 7) 1.5 8 94 53.7 1117.897 60 4 6S6P ( 18 ) 1.5 = - 6S7S ( 5 ) .0.5 89599.3 1116.080 500 ' . . 4 6P 2P 1.5' r - 60 2D 2.5 89662.1 1115.298 140 6 6S6P ( 15) 1.5 = ; - 90 2D 2.5 89798.7 1113.60 2 70 4 6S6P ( 11 ) 2 .5 ' - 6P2 (11) 2.5 90053 .2 1110.455 80 6S6P ( 14) 3.5 = - 6P2 ( 6) 2.5 90109.2 1109.765 180 2 6S6P ( 8) 1.5' - 6S60 ( 2) 2.5 90588.5 1103.893 250 3 7P 2P 0. 5' - 6S6D ( 9) 1.5 90635.6 1103.319 120 V 6 7P 2P 1.5.' - 6P.2 ( 14) 1.5 90952.8 1099.471 180 4 6S2 2 0 1.5 - 6S6P (17) 2.5 91223.3 1096.211 120 6 6S6P ( 20) 2 .5 ' - 6P2 ( 15 ) 0.5 91325.0 10 94.990 2 0 6S6P ( 15) 1.5' c - 6S6D ( 9) 1.5 91411.7 1093.952 60 4 6S6P ( 18 ) 1.5' - 6S6D ( 11 ) 1.5 91708.5 1090.411 10 6S6P ( 17 ) 2.5' - 7G 2G 3 ,4 91748.2 1089.940 140 4 6S6P ( 22 ) 2.5 = - - 6P2 ( 18 ) 1.5 92236.1 1084.174 600 4 6S2 20 2.5 - 6S6P ( 8) 1 .5 92274.5 1083 .723 90 6S2 20 1 . 5 - 6S6P ( 18 ) 1.5 92354.4 1082.785 5 6 6S6P ( 6) 1.5' If - 80 2D 1.5 92375 .0 1082.544 75 6S6P ( 9) 0 .5 ' u - 6S6D ( 4) 1.5 92523.5 1080 . 806 450 4 6S2 20 2.5 - 6S6P ( 7) 2.5 92602.8 1079.881 180 4 6S2 20 2 .5 - 6S6P ( 10) 3.5 92 702 .8 1078.716 80 4 6S6P ( 15) 1.5 = ; - 6P2 ( 12 ) 0 .5 92842.6 1077 .092 50 6S6P ( 6) 1.5' - 80 2D 2.5 93244.5 1072 .449 25 5F 2F 3 .5 ' - 6S7S ( 8) 2.5 93275.6 1072.092 350 3 6S6P (16) 0. 5' - 6P2 ( 7) 1.5 93275.6 1072.092 350 3 6S6P ( 20) 2.5 = - 6S6D ( 12 ) 2.5 93486.6 1069.672 80 4 6S6P ( 4) 1.5' - 6P2 ( 2) 2.5 93648.7 1067.820 90 4 6S6P ( 18 ) 1.5 = < - 6P2 ( 14) 1.5 93929.9 1064.624 50 4 6S6P ( 16) 0 .5* - 6S7S ( 5 ) 0.5 PB IV(CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 94452 .0 1058.739 70 6S6P ( 9) 0.5* - 6S7S ( 3) 1.5 94 5 90.9 1057.184 35 6S6P ( 15) 1.5* - 6P2 ( 7) 1.5 94649.7 1056.527 450 6S2 2D 1.5 - 6S6P ( 20 ) 2.5 94 7 99.2 10 54.861 80 4 6S6P ( 13) 0. 5* - 6S6D ( 7) 1.5 9 4 8 2 7 . 1 1054.551 60 4 6S6P ( 7) 2.5* - 6S7S ( 3) 1.5 94827 .1 1054 .551 60 4 6S6P ( 1 ) 2.5* - 6P2 ( 1) 2.5 94835.3 1054.460 70 4 6S6P ( 6) 1.5* - 6S6D ( 2) 2.5 95093.0 1051 .602 50 6S6P ( 11 ) 2.5* - 6G 2G 3,4 95282.7 1049.508 160 6S2 2D 1.5 - 7P 2P 1.5 95501 .1- 1047.108 60 5F 2F 2.5* - 6S7S ( 8) 2.5 95598 .8 1046.038 40 4 6S6P ( 19 ) 3.5* - 6S6D ( 12) 2.5 95772.7 1044.139 450 4 6S2 20 2.5 - 6S6P ( 11 ) 2.5 96039.7 1041 .236 400 6 5F 2F 2.5* - 6S6D ( 13) 2.5 96108.0 1040.496 35 5F . 2F 2.5* - 6S6D ( 14) 1.5 96337.2 10 3 8.021 70 4 6S6P ( 16) 0.5* - 6S7S ( 6) 1 .5 96704.5 1034.078 120 6S6P ( 14) 3. 5* - 7G 2G 3,4 96894.3 1032 .052 500 4 6S2 2D 1.5 - 5F 2F 2.5 96992 .1 1031 .012 1 6S6P ( 13) 0.5* - 90 20 1.5 97219.0 1028 .606 300 . 4 6S 2S 0.5 - 6P 2P 1.5 97629.4 1024.282 180 5 6S6P ( 7) 2.5* - 6S6D ( 5) 2.5 '97922 .4 1021.217 50 4 6S6P ( 8) 1.5* - 6S6D ( 5) 2.5 98062 .9 1019.754 50 6 "' 6S6P ( 6) 1.5* - 6P2 ( 11 ) 2.5 98336.2 1016.920 120 . 5 6S6P ( 7) 2.5* - 6G 2G 3,4 98355 .0 1016 .725 60 4 6S6P ( 20) 2.5* - 6S6D ( 14) 1.5 98429.6 1015.955 70 5 6S6P ( 12 ) 1.5* - 9D 20 1.5 98620.3 1013.990 60 4 6S6P ( 10) 3.5* - 6S6D ( 6) 2.5 986 94.3 1013.2 30 120 5 6S6P ( 12) 1.5* - 90 2D 2.5 98771 .2 1012.441 200 . 4 6S2 2D 2.5 - 6S6P ( 12 ) 1.5 99071.1 1009.376 140 4 5F 2F 2.5* - 6S6D ( 15 ) 1.5 99700.1 1003.008 80 .. 4 6S6P ( 17 ) 2.5* - 6P2 ( 10 ) 2.5 100143.4 998 .568 40 6 7P 2P 1.5* 6P2 (16) 2.5 100658.8 993.455 90 4 6S6P ( 18 ) 1.5* - 6S6D ( 13 ) 2.5 100811.2 991.953 40 7P 2P 1.5* - . 6S6D ( 16 ) 2.5 101662.7 983.645 70 4 6S6P ( 20) 2. 5* - 6P2 (17) 1.5 101696.2 983.321 50 6S6P ( U ) 2.5* - 9D 2D 2.5 101864.6 981.695 60 4 6S6P ( 6) 1.5* - 6S7S ( 4) 2.5 PB IV(CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 102052.0 979.893 120 6S6P ( 17 ) 2.5* - 6S6D (14) 1.5 102109.1 979.345 160 5 6S6P ( 9) 0.5* - 6S6D ( 7) 1.5 102180.2 978.663 90 5 . . . 6S6P ( 13) 0.5* - 6P2 ( 7) 1.5 102292.1 977.593 75 6S6P (22 ) 2.5* - 6P2 (21) 1.5 102381 .1 976.743 160 4 6S6P (15) 1.5* - 6P2 ( 9) 2.5 102907.8 971.744 40 6S6P ( 14) 3.5* 6P2 ( 9) 2.5 103155.7 96 9.40 8 140 4 . 6S6P ( 18 ) 1.5* - 6P2 (16) 2.5 103693.5 964.381 30 4 6S6P ( 18 ) 1.5* - 6S6D ( 15 ) 1.5 103821.1 963.195 120 6S6P ( 18 ) 1.5* - 6S6D (16) 2.5 103919.4 962 .284 30 6S6P ( 21 ) 0.5* - 6P2 ( 21 ) 1.5 103986.5 961 .663 35 4 6S6P ( 6) 1.5* - 6P2 ( 5) 1.5 104265.9 959.086 120 4. 6S6P ( 3) 2.5* - 6P2 ( 3) 1.5 104948.4 952.849 180 5 6 S6 P ( 8) 1.5* - 10S IS 0.5 105084.4 951 .616 60 6S6P ( 8) 1.5* - 6P2 ( 6) 2.5 105357.8 94 9.147 50 6S6P ( 17 ) 2.5* - 6P2 (17) 1.5 105443.0 948.380 10 6S6P ( 4) 1.5* - 9S 2S 0.5 105728.5 945.819 15 6S6P ( 4) 1.5* - 8D 2D 1.5 106617.9 937.929 10 6S6P ( 11 ) 2.5* - 6P2 ( 7) 1.5 106890.0 935.541 40 . . . 4 6S6P ( '8) 1.5* - 6S6D ( 9) 1.5 107030.5 934.313 70 4. 6S6P ( 13) 0.5* - 6P2 ( 14) 1.5 107173.8 933.064 2 5 6S6P ( 20) 2.5* - 6P2 ( 18) 1.5 107273.5 932.197 250 4 6S2 2D 2.5 - 6S6P ( 14 ) 3.5* 107490.2 930.317 120 4 6S6P ( 20) 2.5* - 6P2 (20 ) 2.5 107800.2 927.642 250 4 . 6S2 2D 2.5 - 6S6P ( 15 ) 1.5* 107865.2 927.083 40 6S6P ( 3) 2.5* - 8D 20 1.5 108164.2 924.520 180 6S6P ( 16) 0.5* - 6S6D ( 15 ) 1.5 10 82 66.5 923.647- 70 6S6P ( 8 ) 1.5* - 6P2 ( 12 ) 0.5 108402.0 922.492 300 4 6P 2P 0.5* - 60 2D 1.5 108445.6 922.121 250 5 6S2 2D 1.5 - 6S6P (21 ) 0.5* 108505.3 921.614 100 4 6S6P ( 16) 0.5* - 6P2 ( 17) 1.5 108944.7 917.897 300 4 6P 2P 0.5* - 7S 2S 0.5 108944.7 917.897 300 4 6P 2P 0.5* - 7S 2S 0.5 109231.2 915.489 160 4 6S6P ( 11 ) 2.5* - 6S60 ( 11 ) 1.5 109476.4 913 .439 25 6S6P ( 14) 3.5* - 6P2 ( 16) 2.5 109493.3 913.298 30 6S6P ( 9) 0.5* - 6P2 ( 7) 1.5 109680.9 911.736 60 4 6S6P ( 11 ) 2.5* - 6S7S ( 6) 1.5 PB IV(CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 109693.8 911 .629 3 6S6P ( 6) 1.5* - 9D 2D 1.5 109823.0 910.556 2 5 6S6P (15) 1.5* - 6P2 (17) 1.5 109975.9 909.290 40 0S6P ( 1 3 ) 0.5* - 6P2 ( 9) 2.5 110070.5 908.509 300 4 6S2 2 0 1.5 - 6S6P (22) 2.5 110155.5 907.808 70 6S6P ( 8) 1.5* - 6P2 ( 7) 1.5 111134.0 899.815 100 6S6P ( 4) 1.5* - 6S6D ( 4) 1.5 111929.8 893.417 130 6S6P ( 2) 3.5* - 6S7S ( 1 ) 3.5 112026.0 892.650 80 4 6S6P ( 3) 2.5* - 6S6D ( 3) 1.5 11210 6.7 892.007 5 6S6P ( 9) 0.5* - 6S60 ( 11 ) 1.5 112269.1 8 90.717 3 50 4 6S2 2D 2.5 - 6S6P (17 ) 2.5 112995 .9 884.988 350 4 6S2 2D 1.5 - 6S6P ( 23) 1.5 112998.8 884.965 350 4 6S6P ( 6) 1.5* - . 6P2 ( 12 ) 0.5 113213.6 883.286 60 5F 2F 3.5* - 6P2 ' ( 2 1 ) 1.5 113213.6 883.286 60 6S6P ( 4) 1.5* - 6S7S ( 3) 1.5 113249.4 883 .007 60 4 6S6P ( 3). 2.5* - 6S7S ( 2) 2.5 113249.4 883.007 60 4 6S6P ( 9) 0.5* - 6S7S ( 7) 1.5 113571.7 830.501 160 6S6P ( 3) 2.5* - 6P2 ( 11 ) 2.5 113591.1 830 .351 180 6S2 2D 2.5 - 6S6P (18) 1.5 114290.5 874.963 100 4 6S6P ( 9) 0.5* - 6P2 ( 15) 0.5 114747.1 871.482 10 6S6P ( 1 ) 2.5* 8D 2D 1.5 114884.0 870.443 3.50 5 6S6P ( 6) 1.5* - 6P2 ( 7) 1.5 115227.1 867.851 5 6S6P ( 1 ) 2.5* - 80 2D 2.5 115477.6 865.969 30 6S6P ( 12) 1.5* - 6S6D ( 13 ) 2.5 11 5551 ,4 865.416 60 6S6P ( 12) 1.5* - 6S6D (14) 1.5 115887.7 862.904 40 6S6P ( 16) 0.5* - 6P2 ( 19) 0.5 115965.0 862.329 40 0 4 6S2 2D 2.5 - 6S6P (20) 2.5 116599.2 857.639 450 5 6S2 2D 2.5 - 7P 2P 1.5 117004.5 854 .668 160 4 6S6P ( 8) 1.5* - 6S6D ( 12 ) 2.5 117227.0 853.046 250 4 6S6P ( 1 ) 2.5* - 6S6D ( 2) 2.5 117373 .6 851.980 200 4 6S6P ( 3) 2. 5* - 6S7S ( 4) 2.5 117493.5 851.111 20 6S6P ( 6) 1.5* - 6S6D ( 11 ) 1.5 118211 .0 845.945 350 4 6S2 20 2.5 - 5F 2F 2.5 118515.7 843.770 80 6S6P (12 ) 1.5* 6S6D ( 15) 1.5 118641 .4 842.876 2 00 " ' . 4 ' 6S6P ( 12) 1.5* - 6S6D (16) 2.5 PB-TV(CONT) WN WL(VAC) II E CLASSIFICATION 118641 .4. 842.876 200 4 6S6P ( 6) 1.5* - 6S7S ( 7) 1.5 118714.4 842.358 140 4 6S6P ( 6) 1.5* 6P2 ( 8) 0.5 118907.5 840.990 200 4 . 6S6P ( 1 ) 2.5* - 6S6D ( 3) 1.5 119450.3 837.168 80 6S6P ( 2) 3.5* - 6G 2G '3,4 119499.3 836.825 60 6S6P ( 3) 2.5* - 6P2 ( 5) 1.5 121473.0 823.228 60 4 6S6P .( 8 ) 1.5* - 6S7S ( 8) 2.5 121510.2 822.976 120 4 6S6P ( 11 ) 2. 5* - 6S6D ( 15) 1.5 121644.4 822.068 250 6S6P ( 10 ) 3.5* - 6S6D ( 13) 2.5 122231 .6 818.119 90 6S6P ( 1 ) 2.5* - 6S7S ( 3) 1.5 123063.1 812.591 400 3 6S6P ( 4) 1.5* - 90 20 1.5 124224.7 804.993 120 6S6P ( 7) 2.5* - 6P2 (16) 2.5 124387.2 803.941 120 6S6P ( 9) 0.5* . - 6S6D ( 15 ) 1.5 124560.3 802.824 160 6S6P ( 16) 0. 5* - 6P2 (21 ) 1 .5 125172.4 798.898 160 6S6P ( 8 ) 1.5* - 6S6D ( 16) 2.5 125385.6 797.540 100 . 6S6P ( 8) 1.5* - ' 6P2 ( 17) 1.5 125468.0 797 .016 140 6S6P ( 3) 2.5* - 9D 2D 2.5 12 60 53.3 793 .315 60 6S6P ( 2) 3. 5* - 90 2D 2.5 126812.5 738.566 100 5 6S6P ( 6) 1 . 5* - 6S6D ( 14) 1.5 128253.6 779.705 3 5 6S6P ( 4) 1.5* - 6P2 ( 7 ) 1.5 131321.0 761.493 20 6S6P ( 4) 1 . 5* - 6S7S ( 6) 1.5 131389.8 761.094 300 6S2 2D 2.5 - 6S6P ( 22 ) 2.5* 134315.6 744.515 100 6S2 2D 2.5 - 6S6P ( 23) 1.5* 136043.1 735.061 35 6S6P . ( 4) 1.5* - 6P2 ( 9) 2.5 137826.9 ' 725.548 30 6S6P ( 2 ) 3.5* 6S6D ( 12) 2.5 141441.1 70 7.00 8 30 6S6P ( 8) 1.5* - 6P2 ( 21 ) 1.5 152417.0 656.095 2 50 4 6P 2P 1.5* - 8S 2S 0.5 153183 .2 652.813 • 80 6 6P 2P 1.5* - 7D 20 1.5 154201.5 648.502 300 4 6P 2P 1.5* - 70 2D 2.5 163184.8 612.802 50 6S2 2D 2.5 - 8P 2P 1.5* 163978.8 609.835 60 6P 2P 1. 5* - 6P2 ( 1) 2.5 171654.7 582.565 35 6P 2P 1.5*" - 6P2 ( 2) 2.5 173478.6 576.440 160 4 6P 2P 0.5* - 8S 2S 0.5 174246.1 573.901 200 4 6P 2P 0.5* - 7D 20 1.5 175390.0 570.158 500 4" 6S 2S 0.5 - 6S6P ( 4) 1.5* 183612.6 544.62 5 50 6 P. 2P 1.5* - 9S . 2S 0.5 PB IV(CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 18875 8.7 52 9.777 3 50 4 6S 2S 0.5 - 6S6P ( 6) 1.5* 193486.5 516.832 50 6S 2S 0.5 - 6S6P ( 8 ) 1.5* 194149.0 515.068 250 3 6S 2S 0.5 - 6S6P ( 9) 0.5* 200023.2 499.942 300 4 - 6S 2S 0.5 - 6S6P ( 12 ) 1.5* 201357.6 496.629 90 6P 2P 0.5* - 6P2 ( 3) 1.5 201357.6 496.629 90 6P 2P 1.5* - 6P2 ( 6) 2.5 201460.2 496.376 250 6S 2S 0.5 - 6S6P (13 ) 0.5* 204674.4 488 .581 30 6P 2P 0.5* - 9S 2S 0.5 204956.3 4 8 7 . 9 0 9 20 6P 2P 0. 5* - 8D 20 1.5 206423.1 484.442 40 6P 2P 1.-5* - 6P2 ( 7) 1.5 209051.1 473.352 180 4 6S 2S 0.5 - 6S6P (15 ) 1 . 5 * 209789.6 476 .668 60 6S 2S 0.5 - 7P 2P 0.5* 210255.4 475.612 60 6P 2P 1.5* - 6P2 ( 8) 0.5 210363.7 475.356 250 4 6S 2S 0.5 - 6S6P ( 16) 0.5* 210662.9 474.692 60 4 6P 2P 0.5* - 6P2 ( 11 ) 2.5 211216.4 473.448 70 6P 2P 1. 5* - 6P.2 ( 15 ) 0.5 211268.2 473.332 60 6P 2P 1.5* - 6P2 ( 14) 1.5 214215.3 466.820 50 6P 2P 1.5* - 6P2 ( 9) 2.5 214842.6 465.457 140 4 6S 2S 0. 5 - 6S6P ( 18 ) 1.5* 21600 2.3 462 .958 40 6P 2P 1.5* - 6P2 ( 10) 2.5 216591.3 461.699 70 4 6P 2P 0.5* - 6P2 ( 5 ) 1 .5 217853.6 459.024 140 4 6S 2S 0.5 - 7P 2P 1.5* 218353.0 457 .974 10 6P 2P 1.5* - 6S6D ( 14 ) 1 .5 220781.3 452 .937 60 6P 2P 1. 5* - 6P2 ( 16 ) 2.5 22165 9.2 451.143 35 6P 2P 1.5* - 6P2 (17 ) 1.5 225600.2 443.262 50 6P 2P 0.5* - 6P2 ( 12 ) 0.5 227485.7 43 9.5 88 40 6P 2P 0. 5* - 6P2 ( 7) 1.5 227485.7 439.588 40 6P 2P 1.5* ' - 6P2 ( 20) 2.5 229041.0 436.603 70 5 6P 2P 1.5* - 6P2 ( 19 ) 0.5 230098.8 434.596 10 6P 2P 0.5* - 6S6D ( 11 ) 1.5 231013.6 432.375 90 6S 2S 0.5 - 6S6P (21 ) 0.5* 248230.7 402.851 40 6P 2P 0.5* - 6P2 ( 18 ) 1.5 258774.4 386.437 15 6P 2P 0. 5* - 6P2 (21 ) 1 .5 264434.8 378.165 30 6S 2S 0.5 - 8P , 2P 1.5* WN C L A S S I F I E D LINES OF THALLIUM IV WL(VAC) I I E C L A S S I F I C A T I O N 2151008 464 3.82 8 ; 180 7S ( 1 . 5 , 0 . 5 ) 2.0 - 7P ( 1 . 5 , 0 . 5 ) 22480.6 4448.279 15 c c 1.5(2.5) 3.0* - 8S ( 1.5,0.5) 22 65 8.3 4413.3 94 3 0 6S6P ( 4) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 23041 .7 4339.958 60 . 7S ( 1 . 5 , 0 . 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 23071 .1 43 34.42 7 35 6D 2 . 5 ( 2 . 5 ) 3.0 - 7P ( 2 . 5 , 0 . 5 ) 2 3165.9 4316 .690 50 6D 1.5(2.5) 2.0 - 5F 2 . 5 ( 2 . 5 ) 23265 .4 42 98 .22 8 20 6D 1.5(2.5) 3.0 - 5F 2 . 5 ( 3 . 5 ) 23310.2 4289.967 20 7S ( 1.5,0.5) 2.0 - 5F 2 . 5 ( 2 . 5 ) 2 3340.1 42 84.472 . ^ p Q 6S6P ( 3 ) 1.0* - 6D 2 . 5 ( 1 . 5 ) 23376.7 4277 .764 60 6P ( 2 . 5 , 1 . 5 ) 2.0* - 6S2 (6) 2 3 413.9 42 70 .96 7 1000 6S6P ( 4) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 23595.5 423 8 .096 • 20 7S ( 1 . 5 , 0 . 5 ) 1.0 - 5F 2 . 5 ( 2 . 5 ) 24695.7 4049.2 88 2 0 7P ( 1 . 5 , 0 . 5 ) 2.0* - 8S ( 2 . 5 , 0 . 5 ) 25428.9 3932 .533 100 6D 1.5(1.5) 2.0 - 5F 2 . 5 ( 2 . 5 ) 2 65 99.6 " ' 3759.455 " 2 0 6S6P ( 9) 3.0* - 60 .1.5(2.5) 2 6654.2 3751 .754 35 6S2. ( 8 ) 2.0 6S6P ( 4) 27149.2 3683.350 2 0 6D ( 2 . 5 , 2 . 5 ) 2.0 - 7P ( 2 . 5 , 1.5) 27657.1 . 3615.708 20 60 1.5(3.5) 3.0 - 5F 2 . 5 ( 1 . 5 ) 27713.4 3 608.363 20 60 1.5( 1.5) 1.0 - 5F 2 . 5 ( 3 . 5 ) 27713.6 3608 .337 20 6S6P ( 6) 2.0* - 6D 1.5(3.5) 27780 .0 35 99.712 20 6D 2 . 5 ( 4 . 5 ) 4.0 - 7P ( 2 . 5 , 0 . 5 ) 27812.2 3595.544 20 6S6P ( 1) 3.0* - 60 2 . 5 ( 2 . 5 ) 2 800 5.4 3570.740 15 7S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 1.5) 28211. .5 3 544.654 30 6P ( 2 . 5 , 1 . 5 ) 2.0* - 6S2 (7) 2 8242.2 3540 .80 3. 60 6S2 (8 ) 2.0 - 6S6P ( 5) 2 83 92.8 3522 .020 20 6D ( 2 . 5 , 2 . 5 ) 2.0 - 7P ( 2 . 5 , 1 . 5 ) 2 8871 .9 3 4 6 3 . 5 7 5 ' 7 0 • " ' 6S6P ( 1 ) 3.0* ' - 6D 2 . 5 ( 3 . 5 ) 2 9257.7 3417.904 • 20 6D 2 . 5 ( 3 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) 29253 .2 3.418.42 9 20 7S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) 29576 .4 3331 .074 160 3 60 1.5(0.5) 1.0 - 5F 2 . 5 ( 2 . 5 ) 29902 .6 3344.191 20 6S6P ( 2) 1. 0* - 7S ( 2 . 5 , 0 . 5 ) 29953.0 3338.564 35 60 1.5(3.5) 3.0 - 5F 2 . 5 ( 2 . 5 ) 30 50 3.4 ' " 3 2 7 8 . 3 2 3 '•"60 0 60 2 . 5 ( 3 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) 32475 .6 3079.235 • 70 6P ( 2 . 5 , 0 . 5 ) 2.0* - 6S2 (3) 1.0 2.0 3.0 3.0 : 2.0: 3.0 3.0 2 .0 : 2.0 1.0 2.0 3.0' 3.0 2.0' 3.0 3.0' 2.0 = 2.0' 3.0 = 3.0 3.0 = 3.0 2.0 = 4.0 3.0 = 3.0' 3.0 2.0' 3.0' 3.0' 2.0 2.0' 3.0 = 3.0 TL IV (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 33822 .8 2956.536 5 6P ( 2 . 5 , 1 . 5 ) 3.0* - 6S2 (3) 2.0 34202.3 2 92 3.7 80 . 35 6S2 (7 ) 4. 0 - 6S6P ( 4) 3.0* 35832 .3 2 7 90.77 8 5 6S2 ( 3 ) 2.0 - 6S6P ( 7) 3.0* 3 816 9.3 2829.550 0 60 2 . 5 ( 2 . 5 ) 2.0 - 5F 2 . 5 ( 0 . 5 ) 0.0* 38640.5 2587 .953 0 6S6P ( 5 ) ' 3.0* - 6D 1 . 5 ( 1 . 5 ) 2.0 39260.8 2 547.070 10 60 2 . 5 ( 3 . 5 ) 4. 0 - 7P ( 1 . 5 , 0 . 5 ) 1.0* 410 5 0.2 243 6.042 75 4 6 0 ' 1 . 5 ( 1 . 5 ) 1.0 - 5F 1.5(1.5) 2.0* 41373.1 2 416.740 2 5 4 60 1.5(1.5) 1.0 - 5F 1.5( 1.5) 1.0* 4 1 4 9 1 . 0 . 2410.161 ""160 4 60 2 . 5 ( 2 . 5 ) 2.0 5F 2 . 5 ( 2 . 5 ) 3.0* 41762 .3 2 3 94.504 350 4 60 2 . 5 ( 2 , 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 2.0* 4176 2.5 23 94.4 92 200 4 60 1.5(1.5) 2.0 - 5F 1.5(1.5) 1.0* 41821 .0 2 3 91.143 30 4 60 1.5(2.5) 2.0 - 5F 1.5(2.5) 3.0* 41821 .0 2 3 91.143 30 4 6S2 . ( 8 ) 2.0 - 6S6P ( 8) 3.0* 41961.4 2 3 83.143 70 6S6P ( 4) 3.0* - 7S ( 1 . 5 , 0 . 5 ) 2.0 42161 .9 "2371.811" 40 "" 4 60 " " 1.5(2.5) 2.0 5F .1.5(2.5) 2.0* 42 345 .3 2361.537 30 7S ( 2 . 5 , 0 . 5 ) 3.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 42616.8 2346.492 25 7S ( 2 . 5 , 0 . 5 ) 3.0 - 5F 2 . 5 ( 2 . 5 ) 2.0* 42931 .6 2 32 6,5 77 . 2 5 7P ( 1.5,0.5) 1.0* - 8S ( 1.5,0.5) 1.0 43192 .7 2315.206 60 4 60 1.5(2.5) 2.0 - 5F 1.5(3.5) 3.0* 43219.1 2313.797 8 5 4 6S6P ( 4) 3.0* - 60 1.5(2.5) 3.0 4333 6.7 2 307.513 40 7P ( 1 . 5 , 0 . 5 ) 2.0* - 8S ( 1 . 5 , 0 . 5 ) 1.0 43269.8 2 311.081 90 4 6S2 (8) 2.0 - 6S6P ( 9) 3.0* 43380.6 2 305.178 35 6S2 (7 ) 4.0 - 6S6P ( 7) 3.0* 43 5 92.8 2293.957 50 7P ( 1 . 5 , 0 . 5 ) 2.0* - 8S ( 1 . 5 , 0 . 5 ) 2.0 43 5 95 .7 2293.304 50 4 60 2 . 5 ( 3 . 5 ) 3.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 44343 .9 2255.100 45 60 1.5(1.5) 1.0 - 5F 1.5(2.5) 2.0* 443 84. 1 2253.058 35 "4" 60 1.5(1.5) 2.0 - 5F 1.5(2.5) 3.0* 44396 .5 2252.430 90 7P ( 2 . 5 , 0 . 5 ) 2.0* - SS ( 2 . 5 , 0 . 5 ) 3.0 4 5 0 5 8 . 1 2219.358 10 60 1 . 5 ( 3 . 5 ) 3.0 - 5F 1.5(1.5) 3.0* 45 75 6.5 2185.430 60 4 60 1.5(1,5) 2.0 - 5F 1.5(3.5) 3.0 * 45851 .9 2180.933 35 - • 4 60 1.5(0.5) 1.0 - 5F 1.5(1.5) 2.0* 45 949.8 2176.2 83 25 ' 6D 2 , 5 ( 1 . 5 ) 1.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 4613 8.2 2167.401 ' 30 60 2 . 5 ( 2 . 5 ) 3.0 - 5F 2 . 5 ( 3 . 5 ) 3.0* 46158.5 2166.44 8 1000 4 6S2 (3) 3.0 - 6S6P ( 2) 1.0* 46220.9 2163 .523 75 4 60 2 . 5 ( 1 . 5 ) 1.0 - 5F 2 . 5 ( 1 , 5 ) 1.0* 46644.6 2143.871 60 A . 6S2 (6 ) 1.0 - 6S6P ( 6) 2 .0 * TL IV (CONT) WM WL(VAC ) 11 E C L A S S I F I CAT ION 46718=2 2140.493 2 0 . 6S6P ( 2 ) 1.0* - 60 1 . 5 ( 1 . 5 ) 2.0 46926.8 2130 .97 8 160 4 6D 2 . 5 ( 0 . 5 ) 1.0 - 5F' 2 . 5 ( 0 . 5 ) 0.0* 47309.0 " 2113.763 " 8 5 6S6P ( 1 ) 3.0* - 60 1 . 5 ( 3 . 5 ) 3.0 4 7 8 5 6 . 3 2089.589 20. 3 6 0 2 . 5 ( 1 . 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 2.0* 48331 .1 1069.790 25 6S6P ( 3) 1. 0* - 60 1 . 5 ( 2 . 5 ) 2.0 48410.9 2065 .650 15 6S2 (8) 2.0 - 6S6P ( 10 ) 3.0* 4 3 900.1 2044.986 10 • 6S6P ( 2 ) 1. 0* - 60 1 . 5 ( 2 . 5 ) 2.0 49250.4 2030 .440 75 4 60 1 . 5 ( 3 . 5 ) 3.0 - 5F 1 . 5 ( 2 . 5 ) 2.0* 49370.4 2025.505' "120 """ 4 6S2 (7 ) 4.0 - 6S6P ( 8 ) 3.0* 50251.2 1990 .002 15 6 0 2 . 5 ( 0 . 5 ) 1.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 50685.1 1972.966 5 6S6P ( 1) 3.0* - 60 1 . 5 ( 2 . 5 ) 3.0 5082 1 .8 1967.660 50 4 6S2 (7 ) 4.0 - 6S6P ( 9) 3.0* 50 906.8 1964.3 74 250 4 6S ( 1.5,0.5) 2.0 - 6P ' ( 2 . 5 , 0 . 5 ) 2.0* 53111.6 1882.828 250 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 0 . 5 ) 3 .0 * 53956 .5 " 1853.345 200 ' 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 2 . 5 , 0 . 5 ) 2.0* 55579.6 1799.221 70 6S2 (8 ) 2.0 - 6S6P ( 12 ) 2.0* 57358.0 1743.436 0 6P ( 1.5, 1.5) 2.0* - 6D 2 . 5 ( 0 . 5 ) 1.0 57864.7 172 8.169 0 . 7S ( 2 . 5 , 0 . 5 ) 2.0 - 5F 1 . 5 ( 1 . 5 ) 2.0* 5 934.1 .2 1685.170 10 6S6P ( 12) 2.0* - 8$ ( 2 . 5 , 0 . 5 ) 2.0 59930.7 1668 .594' 15 6S2 (5 ) 2.0 - 6S6P ( 8 ) 3.0* 61377.7 162 9.2 56 " '.' 3 0 " 6S2 (5 ) 2.0 - 6S6P ( 9) 3.0* 61657.8 1621 .855 40 4 6P ( 1 . 5 , 1 . 5 ) 2.0* - 60 2 . 5 ( 1 . 5 ) 1.0 61957.6 1614.007 30 6P ( 1 . 5 , 1 . 5 ) 3.0* - 60 2 . 5 ( 4 . 5 ) 4.0 62492.0 1600 .205 10 6P ( 1 . 5 , 1 . 5 ) 3.0* - 60 . 2 . 5 ( 1 . 5 ) 2.0 62954.2 1588 .456 60' 6P ( 1 . 5 , 1 . 5 ) 2.0* - 60 2 . 5 ( 2 . 5 ) 3.0 63189.0 15 32 .553 15 • 4 60 2 . 5 ( 1 . 5 ) 2.0 - 5F 1.5(1.5) 1.0* 65813 .0 ' 1519.457 25 " "" 6S6P (11 ) 2.0* - 8S ( 2 . 5 , 0 . 5 ) 2.0 66412.3 1505 .734 15 6P ( 1 . 5 , 1 . 5 ) 0.0* 60 2 . 5 ( 0 . 5 ) 1 .0 67220.5 1487.641 60 4 6S2 (5 ) 2.0 - 6S6P ( 11 ) 2.0* 6796 8.4 1471.272 35 6S2 (6 ) 1.0 - 6S6P ( 12 ) 2.0* 68619.4 1457.314' 100 4 6S2 ( 2 ) 2.0 - 6S6P ( 6) 2.0* 6872 8. 1 1455 .008 10 60 2 . 5 ( 4 . 5 ) 4.0 - 5F . 1. 5 ( 3 . 5 ) 3.0* 6 8 987.2 1449.544"* 160'"' '." 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 0 . 5 ) 2.0* 69290 .2 1443 .2.0 6 15 6P ( 1 . 5 , 1 . 5 ) 3.0* - 6D 2 . 5 ( 3 . 5 ) 4.0 69696.2 1434.798 140 4 6S ( 1 . 5 , 0 . 5 ) 2.0. - 6P ( 1 . 5 , 0 . 5 ) 2.0* 70075 .3 1427.036 15 6S2 ( 8 ) 2.0 - 7P ( 2 . 5 , 0 . 5 ) 2.0* TL IV W N WL(VAC ) 11 E 70188.4 1424.737 90 / , T 6S2 70772 .2. 1412 .984 ' 120 . •  4 6S 71193.3 1404.617 " 160 • 4 6S 72 5 82.8 13 77.73 7 160' 4 6S 72 74 6.6 1374.635 140 4 6S 73099.6 1367.997 30 •4 •'. 6S6P 73607.6 13 5 8.555 5 6S 73 822.6 13 54.5 99 50 4 6S. 747 86.9 .1337.133 140 '4 6S 75100 .8 1331.544 '70 4 6S2 75546.7 1323.685 90 4 6S 75 990.7 1315.951 ' 7 0 4 6P 7665 8.5 1304.487 100 4 6S . 77170.6 1295.830 50 ' 4 6P 77891.6" 1283 .835" " 80 "•" 4'.' 6P 78560.6 1272.903 120 4 6S 78560.8 12 72.8 99 120 4 6S2 79835.4 1252.577 ' 80 4 6P 7983 5.4 12 52.5 77 80 4 6S2 80 3 97.6 1243.818 45 4 . 6P 80820.9 1237.304 90 4 6P 80 976.7 1234.923 5 0 4 6P 80976.7 1234.923 50 4 6S2 810 32.4 12 33.313 2 00 6P 8146 8.8 1227.464 50 4 6P 81611.1 122 5.32 4 90 • 6S 818 8 2.5 1221.262 60 3" 6P 81954.7 1220.186 40 4 6P 82494.6 1212.20 1 50 3 6P 83133 .9 1202 .879. 50 3 6P 83823.2 1192.9 87 35 6P 83 992 .2 1190.5 87 40 6P 84017.2 1190 .2 32"' ' 1 6 0 " ' 6P 84302.5 1186.204 50 6P 84571.5 1182.431 200 • 6P OMT) C L A S S I F I C A T I O M (2) 2.0 - 6S6P ( 7) 3.0 ( 1.5,0.5) 2.0 - 6P ( 1.5,0.5) 1.0 ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 0 . 5 ) 3.0 ( 2 . 5 , 0 . 5 ) 3.0 - . 6P ( 2 . 5 , 0 . 5 ) 2.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 1 . 5 , 0 . 5 ) 2.0 ( 8) 3.0* - 8S ( 2 . 5 , 0 . 5 ) 2.0 ( 1 . 5 , 0 . 5 ) 2 . 0 - 6P ( 2 . 5 , 1 . 5 ) 2.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6P (1 . 5 , 0 . 5 ) . 1.0 ( 2 . 5 , 0 . 5 ) '3.0 - 6P ( 2 . 5 , 0 . 5 ) 3.0 (3) 3.0 - 6S6P (11) 2.0 ( 1 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 3.0 ( 1 . 5 , 1 . 5 ) 2 . 0* - 60 1.5(1.5) 2.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 2 . 5 , 1 . 5 ) 2.0 (2.5,1.5.) 2.0* - 60 2 . 5 ( 0 . 5 ) 1.0 ( 2 . 5 , 1 . 5 ) 3.0* -' 60 . 2 . 5 ( 1 . 5 ) 2.0 ( 1 . 5 , 0 . 5 ) .2.0 - 6P ( 2 . 5 , 1 . 5 ) 1 .0 ( 3 ) . 2.0 - 7P ( 2 . 5 , 1 . 5 ) 3.0 ( 2 . 5 , 1.5) 2.0* - 6 0 2 . 5 ( 1 . 5 ) 2.0 ( 1 ) 4.0 - 6S6P ( 7) 3.0 ( 1 . 5 , 1 . 5 ) 3.0* 60 1.5(3.5) 3.0 ( 2 . 5 , 1 . 5 ) 3.0* - 60 2 . 5 ( 2 . 5 ) 3.0 ( 2 . 5 , 1 . 5 ) 1.0* - 60 2 . 5 ( 2 . 5 ) 2.0 ( 5 ) 2.0 ' - 6S6P ( 13 ) .2.0 ( 1 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 0 . 5 ) 1.0 ( 2 . 5 , 1 . 5 ) 2.0* - 60 2 . 5 ( 1 . 5 ) 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 2 . 5 , 1 . 5 ) 1.0 ( 2 . 5 , 1 . 5 ) 3.0* - . 60 2 . 5 ( 3 . 5 ) 3.0 ( 2 . 5 , 1.5) 4. 0* - 60 2 . 5 ( 4 . 5 ) 4.0 ( 2 . 5 , 1 . 5 ) 4.0* - 60 2 . 5 ( 1 . 5 ) 2.0 ( 2 . 5 , 1 . 5 ) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 3.0 ( 2 . 5 , 1 . 5 1 2.0* - 60 2 . 5 ( 3 . 5 ) 3.0 ( 2 . 5 , 1.5) 3.0* - 60 2 . 5 ( 2 . 5 ) 2.0 ( 1 . 5 , 1 . 5 ) 2. 0* - 7S ( 1 . 5 , 0 . 5 ) 1.0 ( 1.5,0.5) 1.0* - 60 2.5( 1.5) 1.0 ( 1 . 5 , 1 . 5 ) 2.0* - -7S-. ( 1 . 5 , 0 . 5 ) 2.0 TL IV (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 84691.9 1180 .750 70 6S6P ( 10 ) 3.0* - 8S ( 1 . 5 , 0 . 5 ) 1.0 84691.9 1180 .750 70 6P ( 2 . 5 , 1 . 5 ) 3.0* - 60 2 . 5 ( 3 . 5 ) 4.0 8474 8.7 1179.959 60 4 6P ( 1 . 5 , 1 . 5 ) 1.0*. - 60 1.5(1.5) 2.0 85310.2 1172.193 40 4 6P ( 1 . 5 , 1 . 5 ) 3.0* - 6D 1. 5 ( 1 . 5 ) 2.0 85820.6 1165.221 200 4 6P ( 1 . 5 , 1 . 5 ) 2.0* - 60 1.5(2.5) 3.0 85824.2 1165.172 1 60 4 6S2 (1) 4.0 - 6S6P ( 8) 3.0* 85826.6 1165 .140 160 4 6P ( 2 . 5 , 1 . 5 ) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 2.0 86477.6 1156.369 140 3 6P ( 1 . 5 , 1 . 5 ) 1.0* - 7S ( 1 . 5 , 0 . 5 ) 2.0 86481.9 1156.311 160 6P ( 2 . 5 , 1 . 5 ) 4.0* - 6D 2 . 5 ( 3 . 5 ) 3.0 86 92 9.6 1150.356 6 0 "? 4 6P ( 1 . 5 , 1 . 5 ) 1.0* 60 1.5(2.5) 2.0 87413.2 1143.992 120 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 1 . 5 , 1 . 5 ) 0.0* 87735.3 1139.7 92 5 0 6P ( 2 . 5 , 1 . 5 ) 4. 0* - 7S ( 2 . 5 , 0 . 5 ) 3.0 87735 .3 1139.792 50 6P ( 1 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 3 . 5 ) 3.0 87 77 8.8 1139.227 1 60 3 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1.5,0.5) 2.0* 88299.0 1132 .516 30 4 6P ( 1 . 5 , 1 . 5 ) 3.0* - 60 1.5(2.5) 3.0 88665 .8 1127.831 100 4 6P ( 1.5,0.5) 1.0* 7S ( 2 . 5 , 0 . 5 ) 2.0 88853.2 1125.452 140 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 0 . 5 ) 1.0* 88355 .0 1125.42 9 1 40 4 6S2 (3) 3.0 - 6S6P (13) 2.0* 88985.6 1123.777 30 3 6P ( 1 . 5 , 0 . 5 ) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 3.0 892 90.6 1119.93 9 100 6P ( 2 . 5 , 1 . 5 ) 4. 0* - 60 2 . 5 ( 3 . 5 ) 4.0 39704.2 1114.775 400 4 6S2 ( 6 ) 1.0 - 7P ( 2 . 5 , 1 . 5 ) 2.0* 8993 8.4 1111.872 100 " 3 6S2 ( 2) 2.0 - 6S6P (12) 2.0* 90947.0 1099.541 180 4 6S ( 1.5,0.5) 2.0 - 6P ( 1.5,1.5) 3.0* 91373 .2 1094.413 160 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 1.5,0.5) 2.0* 91505 .6 1092 .829 140 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 1.0* 91 50 7.1 1092.811 130 4 6P ( 1 . 5 , 1 . 5 ) 0. 0* - 60 1. 5 ( 1 . 5 ) 1.0 91691.2 1090 .617 140 4 6S ( 2 . 5 , 0 . 5 ) 2.0 6P ( 2 . 5 , 1 . 5 ) 2.0* 92 62 3 .0 1079.645 90 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 2 . 5 , 1 . 5 ) 4.0* 93067.4 1074.490 100 3 6P ( 1 . 5 , 1 . 5 ) 0.0* - 7S ( 1.5,0.5) 1.0 93418.0 1070.458 100 4 6S ( 1.5,0.5) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 2.0* 93630.1 1068.033 100 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 3.0* 94554.1 1057.596 250 4 6S ( 1.5,0.5) 1.0 - 6P ( 1 . 5 , 1 . 5 ) 1 .0 * 952 8 4 . 4 1049.490 100 3 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 2 . 5 , 1 . 5 ) 2.0* 96467.6 1036.617 300 3 6S ( 1 . 5 , 0 . 5 ) 1.0 ' - 6P ( 1 . 5 , 1 . 5 ) 2 .0 * 96644.4 1034.721 250 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 1.0* TL IV (CONT) WN . WL(VAC ) 11 E C L A S S I F I C A T I O N 97223.8 1028.555 100 4 6S2 (2) 2.0 — 6S6P ( 13) 97223.8 1028.555 100 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 2 . 5 , 1 . 5 ) 97557.8 1025.033 250 4 6S2 (2) 2.0 - 6S6P ( 14) 97732 .8 1023.198 200 6P ( 1.5,0.5) 1. 0* - 6D 1. 5 ( 0 . 5 ) 9 8 8 7 0 . 1 1011 .428 160 4 6P ( 2 . 5 , 1 . 5 ) 1. 0* - 7S ( 1.5,0.5) 99424.6 1005 .787 140 4 6P ( 2 . 5 , 1.5) 1. 0* - 7S ( 1 . 5 , 0 . 5 ) 995 88 .2 1004.135 180 4 6S2 ( 1 ) 4.0 - 6S6P ( 12 ) 99788.6 1002.118 300 4 6P ( 2 . 5 , 0 . 5 ) 3.0* - 6D 2 . 5 ( 4 . 5 ) 99874.2 1001.260 300 4 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 0 . 5 ) 100331 .5 996.6 96 2 00 4 6P ( 2 . 5 , 0 . 5 ) 3. 0* - 60 2 . 5 ( 1 . 5 ) 10 1651.5 983 .753 60 4 6P ( 1 . 5 , 0 . 5 ) 2.0* 60 1.5(3.5) 103259.0 968.439 100 4 6P ( 2 . 5 , 0 . 5 ) 3.0* - 6D 2 . 5 ( 2 . 5 ) 104171.0 959.960 120 4 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 1 . 5 ) 104319.6 958.593 120 4 6P ( 2 . 5 , 0 . 5 ) 3. 0* - 60 2 . 5 ( 3 . 5 ) 105098 .4 951 .489 50 4 6P ( 1 . 5 , 0 . 5 ) 1.0* 6D 1.5(1.5) 105463.1 948.199 100 4' 6P ( 2 . 5 , 0 . 5 ) 2.0* 60 2 . 5 ( 2 . 5 ) 10 54 82.8 948 .022 50 4 6P • ( 1 . 5 , 0 . 5 ) 1.0* -• 60 1.5(1.5) 106171 .0 941 .877 60 4, 6P ( 1 . 5 , 0 . 5 ) 2.0* . — 60 1.5(1.5) 106327.5 940.4 90 100 4 6P ( 2 . 5 , 0 . 5 ) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 10 6 519.2 938.798 60 4 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 3 . 5 ) 107125.2 933.487 90 4 6P (2.5 ,0.5) 3.0* - 60 2 . 5 ( 3 . 5 ) 107662 .0 . 928.833 5 0 6P ( 1 . 5 , 0 . 5 ) 1.0* - 6D 1.5(2.5) 107775.3 927 .856 100 4 6P ( 2 . 5 , 0 . 5 ) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 108530 .6 921.399 80 4 6P ( 2 . 5 , 0 . 5 ) 2. 0* - 7S ( 2 . 5 , 0 . 5 ) 108628.9 920.565 85 . 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 2 . 5 ) 108738.3 919.639 60 4 6P ( 1 . 5 , 0 . 5 ) 2 . 0* - 6D 1. 5 ( 2 . 5 ) 109027.4 917.201 80 6 S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 109583 .6 912.545 70 6S ( 2 . 5 , 0 . 5 ) 2.0 . 6P ( 1 . 5 , 1 . 5 ) 110035 .8 908.795 350 4 6S2 ( 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 110879.8 901.877 60 6S2 (8 ) 2.0 - 5F 1.5(2.5) 111243.3 898 .931 130 4 6S2 ( 5 ) 2.0 - 5F 2 . 5 ( 3 . 5 ) 111498.4 896 .874 100 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 112253.2 890.843 8 5 4 6S2 ( 8 ) 2.0 • - 5F ' 1.5(3.5) 11237 8.9 889.347 40 4 . 6S6P' ( 3) 1.0* - 8S ( 1.5,0.5) 112622.2 887 .924 100 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 1 . 5 , 1 . 5 ) 113199.1 883.399 10 6S6P ( 2) 1.0* - 8 S ( 1 . 5 , 0 . 5 ) 2.0 = 3 , 2, 1 , 1 , 2 , 2, 0 = 0 = 0 0 0 0 = 4.0 1.0 2.0 3.0 3.0 1.0 3.0 1.0 3.0 2.0 1.0 2.0 3.0 4.0 2.0 3.0 2.0 2.0 2.0 3.0 = 1.0 = 2.0 = 3.0 = 3.0 = 2.0=. 3.0 = 1.0 3.0 = 2.0 TL IV (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 114076.9 876.602 100 4 6S2 < 1) 4.0 - 7P ( 2 .5 , 0 . 5 ) 2.0* 115091.4 86 8.875 100 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 1 . 5 , 1 . 5 ) 2.0* 117645.3 850 .014 200 4 6S2 (3) 3.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 117918.8 848.041 160 4 . 6S2 (3) 3.0 - 5F 2 . 5 ( 2 . 5 ) 2.0* 125345.6 . 7 97.7 94 85 4 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 1 . 5 ( 1 . 5 ) 2.0 124964.3 800 .229 20 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 1 . 5 ( 1 . 5 ) 1 .0 121322.6 824.249 120 4 6S2 ( 1) 4.0 - 7P ( 2 . 5 , 1 . 5 ) 2.0* 126016. 1 793 .549 .15 4 6S2 (2) 2.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 126132 .6 792.816 85 6P ( 2 . 5 , 0 . 5 ) 3.0* - 60 1 . 5 ( 2 . 5 ) 3.0 127493.5 784.354 . 100 4 6S2 (2) 2.0 — 5F 2 . 5 ( 3 . 5 ) 3.0* 128337.4 779.196 45 6P ( 2 . 5 , 0 . 5 ) 2. 0* - 60 1 . 5 ( 2 . 5) 3.0 123557.6 777.861 120 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 1 ) 3.0* 129332.0 773 .203 5 6S2 (5) 2.0 - 5F 1 . 5 ( 2 . 5 ) 2.0* 130100.7 768.635 90 4 . .6S ( 1.5,0.5) 2.0 - 6S6P ( 3) 1.0* 132588 .5 754.213 50 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6S6P ( 2 ) 1.0* 133152.4 7 5 1 . 0 1 9 " 80 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6S6P ( 3) 1.0* 135666.7 737.100 . 30 6S2 ( 1 ) 4.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 137613.2 726.674 250 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 5 ) 3.0* 142619.0 701.169 25 6S2 (2) 2.0 - 5F 1 . 5 ( 1 . 5) 1.0* 145202 .0 683 .696 60 . 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 7) 3.0* 146612 .6 682 .069 0 4 6S2 (2) 2.0 - 5F 1 . 5 ( 3 . 5 ) 3.0* 146681 .8 681 .748 ' 200 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6S6P ( 6) 2.0* 147618 .2 6 77.42 3 70 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 2) 1.0* 148744.6 672.293 160 . . 4 6P ( 2 . 5 , 1 . 5 ) 3.0* - 8S ( 2 . 5 , 0 . 5 ) 2.0 149064.7 670.850 100 4 6P ( 1 . 5 , 1 . 5 ) 2.0* - 8S ( 1 .5,0. 5 ) . 1.0 1502 3 5.2 665 .623 80 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 1 ) 3.0* 151785.4 658.825 50 4 6P ( 1 . 5 , 1 . 5 ) 3.0* - 8S ( 1 .5 , 0 . 5 ) 2.0 152641.3 655 .131 70 " 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 9 ) 3.0* 152892 .1 654.056 25 6P ( 2 . 5 , 1 . 5 ) 4.0* - 8S ( 2 .5,0. 5 ) 3.0 154107.0 648 .900 180 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - *6S6P ( 4) 3.0* 155694.8 642.282 200 4 6S ( 2.5,0.5) 2.0 - 6S6P ( 5) 3.0* 157700.6 634.113 250 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 4) 3.0* 157784.8 633.775 160 4 6S ( 1.5,0.5) 2.0 - 6S6P ( 10) 3.0* 158113.5 632 .457' 10 6P ( 1 . 5 , 1 . 5 ) 0.0* - 8S ( 1 .5 , 0 . 5) 1.0 158482.1 630 .986 120 4 6S ( 1.5,0.5) 2.0 - 6S6P ( 11 ) 2.0* 159287.6 627.795 250 4 6S ( 2 . 5 , 0 . 5 ) 3.0 ' - 6S6P ( 5 ) 3.0* TL IV (CONT) WN . WL(VAC) I I E C L A S S I F I C A T I O N 160835.1 621.755 200 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6S6P ( 10 ) 3.0* 161711.2 618.386 250 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 6) 2.0* 163281.6 612 .439 35 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 7) 3.0* 164950.9 606.241 180 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - ' 6S6P (12) 2 .0 * 165303.7 604.947 200 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 6) 2.0* 167496.7 597.027 300 4 50 10 ISO 0.0 - 6P ( 1 .5,0. 5 ) 1.0* 169273.6 590 .760 120 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 8 ) 3.0* 170 724.3 585.740 200 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 9) 3.0* 170724.3 585 .740 200 . 4 6P ( 2 . 5 , 0 . 5 ) 3.0* - '8S ( 2 .5,0. 5 ) 3.0 171182.2 5 84.173 120 6P ( 2 . 5 , 0 . 5 ) 3.0* - 8S ( 2 .5,0. 5) 2.0 171708.4 582.383 100 6P ( 1 . 5 , 0 . 5 ) 1.0* - 8S ( 1 .5,0. 5) 1.0 172868.5 578.474 . 120 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 8) 3.0* 172932 .4 578.2 61 40 6P ( 2 . 5 , 0 . 5 ) 2.0* - BS ( 2 .5,0. 5) 3.0 173035.7 5 77.915 35 6P ( 1.5,0.5) 2.0* - 8S ( 1 .5,0. 5 ) 2 .0 175285.9 570.497 300 4 5D10 ISO 0.0 6P ( 2 . 5 , 1 . 5 ) 1.0* 175285.9 5 70.497 300 4" 6S ( 1 . 5 , 0 . 5 ) 1.0 6S6P (13) 2.0* 175865.3 568.617 200 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 10 ) 3.0* 1765 64.0 566 .367 160 4 6S ( 2 . 5 , 0 . 5 ) 2.0 -• 6S6P (11) 2.0* 179461.9 557.221 200 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P' ( 10) 3.0* 180677.6 553.472 160 4 6S ( 1 . 5 , 0 . 5 ) 2.0 - 7P ( 2 .5,0. 5 ) 3.0* 186627.4 535 .827 160 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 12 ) 2.0* 188232.0 531 .259 200 4 50 10 ISO 0.0 - 6P ( 1 . 5 , 1 . 5 ) 1 .0* 190320.3 525.430 100 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 13 ) 2.0* 190653.7 524.511 140 4 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 14) 2.0* 194245.2 514.813 90 . 4 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 14) 2.0* 197524.7 506.266 10 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 .5,0. 5 ) 2.0* 198763.3 503.111 350 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 .5,0. 5 ) 3.0* 199139.0 502.162 200 6S ( 1 . 5 , 0 . 5 ) 2.0 • - - 7P ( 1 .5,0. 5) 2.0* 199497.4 501.2 60 300 6S ( 1 . 5 , 0 . 5 ) 2.0 - 7P ( 1 .5,0. 5 ) 1.0* 201118.6 497.219 300 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 .5,0. 5 ) 2.0* 201295.8 496.781 450 6S ( 1 . 5 , 0 . 5 ) 2.0 5F 2 . 5 ( 2 . 5 ) 2 .0* 202193.9 494.575 15 6S ( 1. 5,0.5) 1.0 7'P ( 1 .5,0. 5 ) 2.0* 202354.4 .494.182 20 6S ( 2 . 5 , 0 . 5 ) 3.0 7P ( 2 .5 , 0 . 5 ) 3.0* 202545.0 493.717 10 6S ( 1.5,0.5) 1.0 - 7P ( 1 .5,0. 5 ) 1 .0* 204765.7 488.363 300 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 . 5 , 1 . 5 ) 2.0* 206019.2 485.392 20 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P (2 . 5 , 1 . 5 ) 3.0* WM WL(VAC ) I I TL IV E (CONT) ' C L A S S I F I C A T I O N 208366 . 1 479 .925 25 209605 .0 477 .088 15 220822 .7 452 .852 ' 25 222979 .6 443 .472 25 238335 .9 419 .576 • 10 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P 6S ( 2 . 5 , 0 . 5 ) 2.0 - 5F 6S ( 2 . 5 , 0 . 5 ) 2.0 - 5F ( 2 . 5 , 1 . 5 ) 2.0 ( 2 . 5 , 1 . 5 ) 3.0 ( 1 . 5 , 0 . 5 V 2.0 2 . 5 ( 2 . 5 ) 2.0 1.5(2.5) 3.0 C L A S S I F I E D LINES OF 11 -LYALL I2-WHITE WN WL(VAC) I 1 E 14 803.7 6755.068 80 7S 150 31.2 6652 .829 100 '. . 4 6S6P 16635.1 6011.385 20 6S6P 20218.1 4 9 4 6 . 0 6 3 10 60 20 7 87.0 4 8 1 0 . 6 9 9 80 • 60 212 96.0 4695 .717 5 6S6P 2 9112.9 0 60 • 29603.2 3378 . 0 1 3 2 .... 60 33 40 8.5 2993 .250 1 6S2 3 9619.7 2523.997 7 7S 41227 .9 2425.542 300 .. . 4 6S2 4 1 5 8 4 . 6 2404.736 7 7S • 41656.1 2 4 0 0 . 6 0 9 10 6D 4 2 5 5 7 . 9 2349.740 7 60 42 630.7 2345.727 2 6S2 4 2 7 7 5 . 6 2 33 7.7 81 0 . 6S6P 4 2 8 8 0 . 3 2 3 3 2 . 0 7 3 4 . • 60 43116.8 2319.232 100 6D 43249.4 2 312.171 7 60 43436.7 2302 .20 1 150 . 6S6P 43457.2 2301 .115 50 60 4 3 7 5 7 . 6 2285.317 2 6S2 43 833.0 2281.336 4 60 43910 .4 2277.365 200 60 43923.4 2276.692 5 60 442 5 3.5 2259.708 400 6S6P 44490.1 2247.69.1 8 0 60 4 4 9 3 2 . 4 2225.565 40 6S2 45514.1 2197.121 100 •60 4 5 7 5 3 . 3 2185.635 0 6S2 45716.1 2187.413 1 60 4 6 1 1 1 . 6 2168.652 200 ' 60 4 6 6 5 8 . 6 2143.228 2 00 6D LEAD V E-EXCITATION C L A S S I F I C A T I O N ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 1 2 ) 2.0* ( 6) 2.0* - 7S (2 .5,0.5) 2.0 ( 1 ) 3.0* - 60 2 . 5 ( 1 . 5 ) 2.0 2 . 5 ( 1 . 5 ) 2.0 - 6S6P ( 1 0 ) 3.0* 2 . 5 ( 2 . 5 ) 2.0 - 6S6P ( 11 ) 2.0* ( 3) 1.0* - 60 2 . 5 ( 3 . 5 ) 4.0 1 . 5 ( 3 . 5 ) 3.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* 2 . 5 ( 1 . 5 ) 1.0 - 6S6P ( 12 ) 2.0* (8 ) 2.0 - 6S6P ( 5) 3.0* ( 2 . 5 , 0 . 5 ) 2.0 - 7P (2 .5,1.5) 2.0* (7 ) 4.0 - 6S6P ( 5) 3.0* ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 .5,1.5) 3.0* 1 . 5 ( 2 . 5 ) 2.0 - 7P ( 1 .5,0.5) 1 , 0 * 2 . 5 ( 2 . 5 ) 3.0 7P (2 .5,0.5) 3.0* (8 ) 2.0 - ' 6S6P ( 7) 3.0* ( 2) 1. 0* - 60 1 . 5 ( 1 . 5 ) 1.0 2 . 5 ( 2 . 5 ) 2.0 - 5F 2 . 5 ( 0 . 5 ) 0.0* 2 . 5 ( 2 . 5 ) 3.0 - 5F 2 . 5 ( 1 . 5 ) 2.0* 2 . 5 ( 3 . 5 ) 4.0 - 5F 2 . 5 ( 2 . 5 ) 3.0* ( 5) 3.0* - 7S ( 1 .5,0.5) 1.0 2 . 5 ( 2 . 5 ) 2.0 - 5F 2 . 5 ( 0 . 5 ) 1.0* (5 ) 2.0 - 6S6P ( 2) 1.0* 2 . 5 ( 1 . 5 ) 1.0 - 7P ( 2 .5,0.5) 2.0* 2 .5 ( ].. 5 ) 1.0 - 5F 2 . 5 ( 0 . 5 ) 0.0* 1 . 5 ( 1 . 5 ) 3.0 - 7P ( 1 .5,0.5) 1.0* ( 4) 3.0* - 7S ( 1 .5,0.5) 1.0 2 . 5 ( 1 . 5 ) 1.0 - ' 5F 2 . 5 ( 0 . 5 ) 1.0* (6 ) 1.0 - 6S6P ( 4) 3.0* 2 . 5 ( 3 . 5 ) 3.0 - 5F 2 .5(2.5.) 2.0* (6 ) 1.0 - 6S6P ( 5) 3.0* 2 . 5 ( 1 . 5 ) 2.0 - 7P (2 .5,0.5) 2.0* 2 . 5 ( 1 . 5 ) 1.0 - 5F 2 . 5 ( 1 . 5 ) 2.0* 2. 5 ( 1.5) 1.0 5F 2 . 5 ( 1 . 5 ) 1.0* • PB V {GONT) WN WL(VAC) . . I I E CLASSIFICATION 47295 o3 2114.3 75 40 60 2 , 5 ( 3 . 5 ) 3.0 - 5F 2 . 5 ( 3 . 5 ) 4 .0* 473 98.4 2109.776 5 . 6P ( 2 . 5 , 1 . 5 ) 2 .0* - 6S2 (6) 1.0 47645.9 2098.816 7 1 6S2 ' (8 ) 2.0 - 6S6P ( 8) 3 .0* 47769.8 2093.373 . 2 0 6D 2 . 5 ( 2 . 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 3 .0* 47826.0 20 90.913 5 60 2 . 5 ( 4 . 5 ) 4.0 - 7P ( 2 . 5 , 0 . 5 ) 3 .0* 48002.8 20 83 .212 10 60 2 . 5 ( 1 . 5 ) 2.0 5F 2 . 5 ( 1 . 5 ) 2.0* 4 80 97.4 2079.114 150 6D 2 . 5 ( 2 . 5 ) 3.0 - 5F 2 . 5 ( 3 . 5 ) 4 .0* 48068.1 20 80.3 82 2 60 • 2 . 5 ( 3 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) .4.0* 48278.4 2071.320 ' 40 60 ' 2 . 5 ( 2 . 5 ) 2.0 - • 5F 2 . 5 ( 2 . 5 ) 2 .0* 48306.8 2070.102 1 6P ( 2 . 5 , 0 . 5 ) 2 .0* - 6S2 (2) 2.0 48543.3 2060.017 .40. 60 2 . 5 ( 1 . 5 ) 2.0 - . 5F 2 . 5 ( 1 . 5 ) 1.0* 48884.4 2045.642 • 40 6D 1 .5 (1 .5) 1.0 -• 5F 1 .5 (1 .5 ) 1.0* 49311.9 202 7.90 8 10 60 2 . 5 ( 1 . 5 ) 1.0 5F 2 . 5 ( 2 . 5 ) 2 .0* 49954.7 2.001 .814 1 60 2 .5 (0 .5 ) . 1.0 - 7P ( 2 . 5 , 0 . 5 ) 2 .0* 50029.3 ' '1998 .82 9' '"2 0 0 ' 5 . 60 2 . 5 ( 0 . 5 ) 1.0 5F . 2 . 5 ( 0 . 5 ) 0 .0* 5 0035.4 1998.585 40 60 2 . 5 ( 2 . 5 ) 2.0 - 5F 2 . 5 ( 3 . 5 ) 3 .0* 50609.5 1975.914 5 6D 2 . 5 ( 0 . 5 ) 1.0 - 5F 2 . 5 ( 0 . 5 ) 1.0* 50621.3 1975.453 • - 5 6D 2 . 5 ( 3 . 5 ) 3.0 - . 7P ( 2 . 5 , 1 . 5 ) 2 .0* 50687.7 1972.865 5 60 2 . 5 ( 1 . 5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 3 .0* 51073.7 1957.955 100 60 2 . 5 ( 4 . 5 ) 4 .0 - 5F 2 . 5 ( 2 . 5 ) 3 .0* 51191.2 ' 195 3 .461' 6D 2 . 5 ( 1 . 5 ) 2.0 - • 5F 2 . 5 ( 2 . 5 ) 2 .0* 51421.0 1944.731 1 6D 2 . 5 ( 2 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) 2 .0* 51578.4 193 8,7 96 ; 2 60 2 . 5 ( 4 . 5 ) 4.0 - 5F 2 . 5 ( 2 . 5 ) 2 .0* 51921 .8 1925.973 15 6P ( 2 . 5 , 1 . 5 ) 2 .0* - 6S2 (7) 4.0 52090.3 1919.743 • 80 60 2 . 5 ( 0 . 5 ) 0.0 - 5F 2 . 5 ( 0 . 5 ) 1.0* 52090.3 1919.743 • . 7S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 1 . 5 , 0 . 5 ) 2 .0* 52237.5 1914.334 ""40' 1 60 2 . 5 ( 0 . 5 ) 1.0 - 5F 2 . 5 ( 1 . 5 ) 2 .0* 52586.5 1901 .629 1 60 2 . 5 ( 3 . 5 ) 3.0 - 7P ( 2 . 5 , 1 . 5 ) 3 .0* 5 2 604.6 1900.974 0 6S2 (3) 3.0 - 6S6P ( 2) 1.0* 52714.3 1897 .018 40 6S2 ( 8 ) 2.0 - 6S6P ( 9) 3 .0* 52896.9 .18 90.470 20 6S2 (6 ) 1.0 - 6S6P ( 6) 2 .0* 52947.3 '1888.670 40 60 2 . 5 ( 1 . 5 ) 2.0 - 5F 2 . 5 ( 3 . 5 ) 3 .0* 53338.5 '1874,818 2 0 6D 2 . 5 ( 4 . 5 ) 4.0 - 5F" 2.5.(3.5) 3 .0* 53384.3 1873 .210 1 60 2 . 5 ( 2 . 5 ) 2.0 - 7P ( 2 . 5 , 1 . 5 ) 2.0* 53384.3 1873,210 60 2 . 5 ( 2 . 5 ) 3.0 - 7P ( 2 . 5 , 1.5) 3 .0* PB V (CONT) VIN WL(VAC ) 11 E CLA! 53761.7 1860.060 0 7S ( 2 . 5 , 0 . 5 ) 2.0 5 3 8 0 3 . 1 185 8.62 9 2 6S2 (5 ) 2.0 54259.2 1843.00 5"" 40 "' 60 2 . 5 ( 0 . 5 ) 0.0 54576.5 1832.290 1 . 6S6P ( 1 ) 3.0* 54760.7 182 6.127 3 6P ( 2 . 5 , 1 . 5 ) 4. 0* 55101.2 1814.842 5 6S2 (3) 3.0 55428.5 1804.126 7 6D 2 . 5 ( 0 . 5 ) 1.0 . 55467.1 1802 .871 . 40 6S2 . (7 ) 4.0 5 6345.5 1774.765 ' 5 '" 6 P ( 1 . 5 , 0 . 5 ) 1. 0* 57623.4 1735 .406 0 IS ( 2 . 5 , 0 . 5 ) 3.0 53758.4 1701.884 3 6P ( 1 . 5 , 0 . 5 ) 2.0* 59744.9 1673.783 4 6P ( 2 . 5 , 1 . 5 ) 2.0* 59990 .7. 1666.92 5 7 6S2 (6 ) 1.0 60539.7 1651 .809 15 60 2 . 5 ( 0 . 5 ) 1.0 61133.9 1635 .754"" ' 150 ' 5 6S " ( 1 . 5 , 0 . 5 ) 2.0 62505 .3 1599.852 3 60 2 . 5 ( 0 . 5 ) 1.0 65061.4 1537.010 7 60 2 . 5 ( 2 . 5 ) 2.0 66265 .0. 1509.092 20 6 0 2 . 5 ( 3 . 5 ) 4.0 67833.5 1474.198 10 . 60 2. 5 ( 3 . 5 ) 3.0 67835 .8 1474.148 0 60 - 2 . 5 ( 2 . 5 ) 2.0 67 849.6 1473 .848"" 0 60 2 . 5 ( 3 . 5 ) 4.0 6797 8 . 1 1471.062 0 60 2 . 5 ( 1 . 5 ) 2.0 6 8 819.4 1453.079 7 60 2 . 5 ( 2 . 5 ) 3.0 68861 .6 1452.188 7 60 . 2.5 ( 1.5). 1.0 70724.3 1413.941 3 10 6P ( 1 . 5 , 1.5) 2.0* 70744.6 1413.535 3 10 . 60 2 . 5 ( 1 . 5 ) 2.0 740 90.5 134 9 . 7 0 1 " "." 3 5 60 2 . 5 ( 4 . 5 ) 4.0 76664.2 1304.390 3 60 2 . 5 ( 3 . 5 ) 3.0 77707.8 1286 .872 20 35. . 4 6S2 (3) 3.0 79429.0 1258.986 12 100 60 2 . 5 ( 2 . 5 ) 2.0 79336.1 . 1252 .566 5 25 6P ( 1.5, 1.5) 2.0* 80098.0 1248.471 150 450 5 6S ( 2 . 5 , 0 . 5 ) 2.0 80190.0 1247.038 ' ""• 15 . ' 45 6P ( 1 . 5 , 1 . 5 ) 1.0* 80331 .5 1244.842 0 5 6S2 (5 ) 2.0 80636 .2 1240.138 2 10 6P ( 1 . 5 , 1 . 5 ) 2.0* SSI FICATION 5F 6S6P 5F 7S 6S2 6S6P 5F • 6S6P 6S2 5F 6S2 6S2 6S6P 7P 6P 7P 7P 5F 5F 7P 7P 7P 5F 7P 60 7P 5F 7P 6S6P 7P 60 6P 6D 6S6P 60 1 2 ( 1 ( 2 (2 ( 2 ( 1 1 1 ( 1 5 ( 1 . 5 ) ( 4) 5 ( 1 . 5 ) 5,0.5) (7) ( 3) 5 ( 2 . 5 ) ( 8) (7) ,5(2.5) (7) (8) ( 8) ,5,1.5) .5,0. .5,1 ,5,0. ,5(2 ,5(2, ,5,0 5 ) 5) 5 ) 5) 5 ) 5) 5 ) 5 ) 5 ) 5,0.5) 5 ( 0 . 5 ) 5,0.5) 5 ( 2 . 5 ) 5,1.5) ( 8) 5,1.5) 5 ( 2 . 5 ) ( 2 . 5 , 0 . 5 ) 2 , 5 ( 2 . 5 ) ( 10 ) 2 . 5 ( 3 . 5 ) ( 1 . 5 , 1 . ( 1 . 5 , 0 1.5(2, ( 1 2, (1. 1. ( 1 ( 1 2, 2,0=: 3.01 1,0 = 1.0 4.0 1.0 = 2.0 = 3.0 = 4.0 3.0 = 4.0 2.0 3.0 = 2.0 = 3.0 = 3.0 = 2.0 = 2.0 = 3.0 = 1.0 = 3.0 = 2.0 = 2.0 = 1.0 = 1.0 1.0 = 2.0 = 2.0 = 3.0 = 2.0 = 3.0 2.0=: 2.0 3.0=: 3.0 PB V (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 810 70.1 1233.500 100 450 5 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 0 . 5 ) 2.0 = 83575.8 1196.519 . 15 6P ( 1 . 5 , 1 . 5 ) 3.0* - 60 2 . 5 ( 3 . 5 ) 3.0 83819.9 1193 .034 "' 12 75 6S2 ( 5 ) 2.0 - 6S6P (11 ) 2.0 = 84357.4 1185.432 150 550 5 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 1 . 5 , 0 . 5 ) 2.0 = 85922 .0 1163 .846 10 45 6S2 (7 ) 4.0 - 6S6P ( 13) . 2.0 = 86364.8 1157.879 200 500 5 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 2 . 5 , 0 . 5 ) 3.0 = 8677 8.4 1152.360 120 160 5 6S ( 1.5,0.5) 1.0 - 6P ( 1 . 5 , 0 . 5 ) 1.0 = 87439.2 1143.652 20 25 6S2 (8 ) 2.0 - 5F 2 . 5 ( 1 . 5 ) 1.0 = 87912 .3 1137.497 * 200 " 400 '5 " 6S ( 1.5,0.5) 2.0 -• 6P ( 2 . 5 , 1 . 5 ) 2.0 = 88185 .5 • 1133.973 20 6S2 (2) 2.0 - 6S6P ( 8) 3.0 = 89179,7 1121 .331 . 50 160 6S2 (3) 3.0 6S6P ( 10 ) 3.0 = 90 514.7 1104.793 150 250 5 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 3.0 = 9119 8.0 10 96 .515 150 350 5 6S ( 1.5,0.5) 1.0 - 6P ( 2 . 5 , 1 . 5 ) 2.0 = 91839.0 • 1088.862 . 150 400 A 6S ' ( 1.5,0.5) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 1.0 = 9395 8.0 1064.305 15 6P ( 1 . 5 , 1 . 5 ) 1. 0* 7S (.2.5,0.5) 2.0 94159.8 1062 .024 15 6S2 (7 ) 4.0 - 7P ( 2 . 5 , 0 . 5 ) 3.0 = 9440 5.7 1059.258 .15 160 4 6P ( 2 . 5 , 1 . 5 ) 2.0* - 6D 2 . 5 ( 0 . 5 ) 1 .0 94572 .5 1057.3 90 2 10 6P ( 1 . 5 , 1 . 5 ) 3.0* 7S ( 2 . 5 , 0 . 5 ) 2.0 95124.4 1051.255 100 400 4 6S ( 1 . 5 , 0 . 5 ) 1.0 - 6P ( 2 . 5 , 1 . 5 ) 1.0 = 95653.8 1045.437 5 50 6P ( 2 . 5 , 1 . 5 ) 3.0* - 6D 2 . 5 ( 4 . 5 ) 4.0 96039.7 1041.236 ' 100 '400 4' 6P ( 2 . 5 , 1 . 5 ) 3.0* -• 60 2 . 5 ( 1 . 5 ) 2.0 97 342.5 1027.301 60 6P ( 1 . 5 , 0 . 5 ) 1.0* - 60 2 . 5 ( 0 . 5 ) 0.0 97629.4 1024.282 2 160 5 6P ( 2 . 5 , 1 . 5 ) 1.0* - 60 2 . 5 ( 2 . 5 ) 2.0 98 642.4 1013.763 45 6P ( 2 . 5 , 1 . 5 ) 2.0* . - 60 2 . 5 ( 1 . 5 ) 2.0 98830.4 1011 .834 60 6P ( 1.5,0.5) 1.0* - 6D 2 . 5 ( 0 . 5 ) 1.0 99315.1 1006.896- 5 35 6S2 (5 ) 2.0 - 6S6P (13) 2.0 = 99461 .0 1005.419' 160 6P ( 1 . 5 , 1 . 5 ) 3.0* - 60 1.5(3.5) 3.0 99700.1 1003.008 7 85 . 4 6S2 (7 ) 4.0 - 5F 2 . 5 ( 3 . 5 ) 4.0 = 100092 .3 999.078 60 6S2 ( 1) 4.0 - 6S6P ( 8) 3.0 = 100528.4 994.744 85 5 6P ( 2 . 5 , 1 . 5 ) '2.0* - 60 2 . 5 ( 1 . 5 ) 1.0 101097.5 98 9.144 20 160 4 6P ( 2 . 5 , 1 . 5 ) 4.0* - 6D 2 . 5 ( 4 . 5 ) 4.0 101721.9 983.072 7 60 4 6P ( 2 . 5 , 1 . 5 ) 3.0* -' 60 2 . 5 ( 3 . 5 ) 3.0 1017 82.2 982.490 35 6P ( 1 . 5 , 1 . 5 ) 2.0* - 60 1.5(1.5) 2.0 103148.1 969.480 7 130 6S2 (2) 2.0 - 6S6P ( 11 ) 2.0 = 103475 .2 966 .415 45 6P ( 2 . 5 , 1 . 5 ) 3.0* - . 60 .. 2 . 5 ( 3 . 5 ) 4.0 PB V (CONT) 103 6 93.5 964.381 85 6P ( 1 . 5 , 1 . 5) 1. 0* - 60 1.5(1.5) 104326.9 958 .526 0 40 6P ( 2 . 5 , 1 . 5) 2.0* - 60 2 . 5 ( 3 . 5 ) 1043 96.6 957.886 15 6P ( 2 . 5 , 1 . 5) 4. 0* - 60 2 . 5 ( 2 . 5 ) 104681.8 955.276 20 250 4 6S ( 1 . 5 , 0 . 5) 1.0 - 6P ( 1 . 5 , 1 . 5 ) 104718.0 954.946 85 6P ( 1 . 5 , 1 . 5) 3.0* - 60 1.5(1.5) 104783.0 . 954.353 100 300 4 6S ( 2 . 5 , 0 . 5) 2.0 - 6P ( 1 . 5 , 0 . 5 ) 1 0 5 1 60 .4 950.928 20 160 6S2 (1) 4.0 - 6S6P ( 9) 105685 .3 946.205 160 4 6P ( 1 . 5 , 1 . 5) 2.0* - 6D 1.5(2.5) 106299.2 940.741 30 160 4 6S ( 2 . 5 , 0 . 5) 3.0 . - 6P ( 1 . 5 , 0 . 5 ) 106365.3 940.156 4 100 6P ( 2 . 5 , 1 . 5) 4.0* - 60 2 . 5 ( 2 . 5 ) •10 73 64.8 931.404 45 6P ( 1 . 5 , 0 . 5 ) 2.0* - 6D 2.5( 1.5) 108164.2 924.520 30 160 4 6S2 (3) 3.0 - 6S6P ( 13) 108618.2 920 .656 160 6P ( 1 . 5 , 1 . 5) 3.0* - 60 1.5(2.5) 108662 .7 920 .279 100 30 0 4 6S ( 1 . 5 , 0 . 5) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 10 8921.8 91 8 .0 90 100 300 5 6P ( 2 . 5 , 1 . 5) 4. 0* - 60 2 . 5 ( 3 . 5 ) 109204.4 915.714 100 350 6S ( 2 . 5 , 0 . 5) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 109278.9 915.090 30 200 4 6S ( 1 . 5 , 0 . 5) 2.0 - . 6P ( 1 . 5 , 1 . 5 ) 109645.9 912.027 2 45 6S2 (8 ) 2.0 - 7P ( 1 . 5 , 0 . 5 ) 111308.4 898 .405 2 40 4 6S2 (5 ) 2.0 - 5F 2 . 5 ( 2 . 5 ) 111399.0 897.674 1 60 6P ( 2 . 5 , 1 . 5) 1.0* - 7S ( 2 . 5 , 0 . 5 ) 111597.1 8 96.0 81 80 300 4 6S ( 1 . 5 , 0 . 5) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 11180 6.4 894 .403 80 350 4 6S ( 2 . 5 , 0 . 5) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 11192 9.8 893.417 7 130 4 6P ( 2 . 5 , 1 . 5) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 112565 .2 888.374 50 350 3 6S ( 1 . 5 , 0 . 5) 1.0 - 6P ( 1 . 5 , 1 . 5 ) 112724.8 887.116 2 85 6P ( 2 . 5 , 1. 5) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 11290 1.4 885 .729 1 60 6P ( 1 . 5 , 1 . 5) 2.0* - 7S ( 1 . 5 , 0 . 5 ) 113135.2 883.898 100 450 5 6S ( 2 . 5 , 0 . 5) 2.0 - 6P ( 2 . 5 , 1 . 5 ) 113571.7 880 .501 160 4 6S2 (8 ) 2.0 - 7P ( 1 . 5 , 1 . 5 ) 114 884.0 870.443 40 350 5 6S ( 1.5,0. 5) 1.0 - 6P ( 1.5,1.5) 115326.3 867.105 250 5 6P ( 2 . 5 , 1 . 5) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 115744.8 863.970 40 500 4 6S ( 2 . 5 , 0 . 5) 3.0 - 6P ( 2 . 5 , 1 . 5 ) 116412. 1 859.017 200 5 6P ( 1 . 5 , 1 . 5 ) 3.0* - 7S ( 1 . 5 , 0 . 5 ) 117373.6 851.980 0 200 4 6P ( 2 . 5 , 1 . 5) 4.0* - 7S ( 2 . 5 , 0 . 5 ) 118641.4 842 .876 1 200 6S2 (2) 2.0 - 6S6P ( 13) 120580 .6 829.321 15 2 00 4 6S2 ( 2 ) 2.0 - 6S6P ( 14) 1.0 3.0 2.0 0.0 = 2.0 1.0 = 3.0 = 3.0 2.0 = 3.0 1 .0 2.0 = 3.0 3.0 = 4.0 2.0 = 1.0 = 1.0 = 2.0 = 2.0 2.0 = 3.0 = 3.0 1.0 = 2.0 1.0 1.0 = 0.0 = 2.0 = 2.0 3.0 = 2.0 3.0 2.0=' 2.0 = WN W L(VAC ) I 1 PB V (CONT) C L A S S I F I C A T I O N 121135.5 825 .522 85 6P ( 2 . 5 , 1 . 5 ) 1.0* - 6D 1. 5 ( 1 . 5 ) 121937.5 820.092 7 20 0 5 6S2 (3) 3.0 - 5F 2 . 5 ( 3 . 5 ) 122167.2 818.550 45 6P ( 1.5,0.5) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 122835.2 814.099 7 200 6S2 ( 1 ) 4.0 - 6S6P ( 12 ) 123104.3 812.319 7 130 6P ( 1 . 5 , 1 . 5 ) 0. 0* - 7S ( 1.5,0.5) 123513.2 809.630 40 450 5 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 0 . 5 ) 125030.9 7 99.80 2 20 130 4 6P ( 2 . 5 , 0 . 5 ) 3. 0* - 6D 2 . 5 ( 4 . 5 ) 125468.0 797.016 160 4 6P ( 2 . 5 , 1 . 5 ) 2.0* - 6D 1 . 5 ( 1 . 5 ) 127056.4 737.052 130 6P ( 1 . 5 , 0 . 5 ) 2.0* - 60 1 . 5 ( 3 . 5 ) 127748.0 782.791 70 350 5" 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 1 . 5 ) 128335.6 779.207 30 6P ( 2 . 5 , 0 . 5 ) 3.0* - 60 2 . 5 ( 2 . 5 ) 129631.4 771 .418 40 35 0 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 1 . 5 ) 129955.7 769.493 80 450 4 ; 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 130302.0 767.448 80 450 4 6P ( 2 . 5 , 0 . 5 ) 3.0* - 6D 2 . 5 ( 2 . 5 ) 130570.1 765.872 40 250 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6P ( 1 . 5 , 1 . 5 ) 130666.7 765.306 75 6P ( 2 . 5 , 0 . 5 ) 2.0* 60 2 . 5 ( 2 . 5 ) 131102.1 762.764 40 160 6P ( 2 . 5 , 0 . 5 ) 3.0* - 60 2 . 5 ( 3 . 5 ) 131902.5 758.136 60 6P ( 1 . 5 , 0 . 5 ) 2.0* 6D . 1.5( 1.5) 132154.2 75 6.6 92 35 •6P ( 1.5,0.5) 1. 0* - 6D 1. 5 ( 2 . 5 ) 132309.8 755.802 2 50 6P ( 1 . 5 , 0 . 5 ) 2.0* - 60 1.5(1.5) 132631.1 753.971 0 30 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 2 . 5 ) 132660.3 753.805 2 '3 5 . 6P ( 2 . 5 , 1 . 5 ) 1.0* - 7S ( 1 . 5 , 0 . 5 ) 132887 .2 752 .513 40 . 250 6S ( 2 . 5 , 0 . 5 ) 2.0 ' - 6P ( 1 . 5 , 1 . 5 ) 13 3237.6 750.539 2 45 6P ( 2 . 5 , 1 . 5 ) 1.0* 7S ( 1.5,0.5) 133429.9 749.457 50 300 6P ( 2 . 5 , 0 . 5 ) 2.0* - 60 2 . 5 ( 3 . 5 ) 134575.6 743.077 45 6P ( 1 . 5 , 0 . 5 ) 2.0* - 6D 1.5(2.5) 136826.4 730.853 30 130 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6P ( 1 . 5 , 1 . 5 ) 141310.2 707.663 40 160 6P ( 2 . 5 , 0 . 5 ) 3.0* 7S ( 2 . 5 , 0 . 5 ) 141584.5 706.292 10 100 6P ( 1.5,0.5) 1.0* - 7S ( 1.5,0.5) 142099.3 703.733 40 55 0 • 6P ( 2 . 5 , 0 . 5 ) 3.0* - 7S ( 2 . 5 , 0 . 5 ) 143428.0 697.214 100 6P ( 1.5,0.5) 2.0* - 7S ( 1.5,0.5) 143636.9 696.200 40 20 0 6P ( 2 . 5 , 0 . 5 ) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 144005.9 694.416 10 .100 6P ( 1.5,0.5) 2.0* • - • 7S ( 1 . 5 , 0 . 5 ) 144432.1 692.367 7 6P ( 2 . 5 , 0 . 5 ) 2.0* - 7S ( 2 . 5 , 0 . 5 ) 151841.8 658.580 25 6P ( 2 . 5 , 0 . 5 ) 3.0* - 60 1 . 5 ( 1 . 5 ) 169916.6 588.524 10 6S ( 1.5,0.5) 2.0 - 6S6P ( 1 ) 1 .0 4.0 = 2.0 2.0 = 1.0 1 .0 4.0 2.0 3.0 2.0 2.0 1.0 3.0 = 3.0 1 .0 = 2.0 3.0 1.0 2.0 2.0 3.0 1.0 2.0 = 2.0 3.0 2.0 2.0 = 3.0 2.0 2.0 1.0 3.0 2.0 2.0 1.0 3.0 = PB V (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 181062.2 552.296 2 50 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 5 ) 3.0* 188208.0 531.327 10 6S ( 1.5,0.5) 2.0 - 6S6P ( 6) 2.0* 191490.0 522 .220 3 . 30 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 2 ) 1.0* 191490.5 522.219 3 30 ' 6 S ( 1.5,0.5) 1.0 - 6S6P ( 6) 2.0* 193986.0 515.501 75 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 3 ) 1.0* 195149.7 512 .427 0 25 6S (.2.5,0.5) 3.0 - 6S6P ( 1 ) 3.0* 201532.0 496.199 3 100 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 4 ) 3.0* 202354.2 494.183 2 40 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 5) 3.0* 205470.0 486 .689 5 45 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 4) . 3.0* 206291.5 4 84.751 5 ' 50 6S ( 2 . 5 , 0 . 5 ) 3.0 - • 6S6P ( 5) 3.0* 209497.4 477 .333 . ' 6 60 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 6 ) 2.0* 210255.4 475.612 60 6S ( 1.5,0.5) 2.0 - 6S6P ( 11 ) 2.0* 211576.6 472.642 5 45 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 7 ) 3.0* 213437.6 468.521 0 30 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 6) 2.0* 215516.8 464.001 50 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 7 ) 3.0* 216591.3 4 6 1 . 6 9 9 12 ' 75 6$ ( 2 . 5 , 0 . 5 ) 2.0 6S6P ( 8) 3.0* 218038.3 45 8.63 5 25 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 12 ) 2.0* 220530 .0 453.453 30 100 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 8) 3.0* 221659.2 451.143 . 35 6S ( 2 . 5 , 0 . 5 ) 2.0 6S6P ( 9 ) 3.0* 225600.2 443.262 6 45 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 9) 3.0* 227694.0 43 9.186 30 6S ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P ( 14) 2.0 * 227833.7 438.907 160 5D10 ISO 0.0 - • 6P ( 2 . , 1. 5 ) 1.0* 228066.3 438.469 7 50 6S ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P ( 10 ) 3.0* 229041.0 436.603 15' 75 6S ( 1.5,0.5) 1.0 - 6S6P ( 13) 2.0* 232002.4 431.030 15 75 6S ( 2 . 5 , 0 . 5 ) 3.0 . - 6S6P ( 10 ) 3.0* 233991.5 427.366 3 25 6S ( 1.5,0.5) 2.0 - 7P ( 2 . , 0. 5 ) 3.0* 235490.8 424.645- 25 130 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 11 ) 2.0* 243271.7 411.063 4 40 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 12) 2.0* 245278.4 407.700 200 5010 ISO 0.0 - 6P ( 1. ,1 . 5) 1.0* 247050.2 404.776 50 6S ( 2 . 5 , 0 . 5 ) 2.0 - • 6S6P ( 13) 2.0* 250982 .6 398.434 15 6S ( 2 . 5 , 0 . 5 ) '3.0 - 6S6P ( 13) 2.0* 252919.3 395.383 75 6S ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P ( 14) 2.0* 253563.2 394.379 5 60 6S ( 2 . 5 , 0 . 5 ) 2.0 . - 7P ( 2 . 5 ,0 . 5 ) 2.0* 254530.6 3 92 .880 4" 50 6S (.1.5,0.5) 2.0 - 7P ( 1. 5 , 0. 5 ) 2.0* 255286.3 391 .717 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 . 5 ,0 . 5) 3.0* PB V (CONT) WN WL(VAC) I I E C L A S S I F I C A T I O N 255842.8 390 .865 0 15 6S ( 2 . 5 , 0 . 5 ) 2.0 - 5F 2.5(1 .5) 2 . 0'* 257503.0 388.345 5 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 0 .5) 2.0* 257818.3 387 .870 3 35 6S ( 1 . 5 , 0 . 5 ) 1.0 - 7P ( 1 . 5 , 0 .5) 2.0* 259223.8 385.767 1 25 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 0 .5) 3.0* 261842 .5 381.909 25 6S ( 1 . 5 , 0 . 5 ) 2.0 - 7P ( 1 . 5 , 1 .5 ) 3.0* 264144.3 378.581 5 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 . 5 , 1 .5 ) 2.0* 264508.0 378.060 3 30 6S ( 1 . 5 , 0 . 5 ) 1.0 - 7P • ( 1 . 5 , 1 .5 ) 0,0* 265148.2 377.148 10 6S ( 1.5,0.5) 2.0 - 7P ( 1 . 5 , 1 .5) 1.0* 265539.4 376.592 1 30 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 1 .5) 4.0* 266117.4 375 .774 20 6S ( 2 . 5 , 0 . 5 ) 2.0 - 7P ( 2 . 5 , 1 . 5 ) 3 .0* 268088.6 373 .011 20 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P . ( 2 . 5 , 1 .5 ) 2.0* 2 6 8 4 3 1 . 9 372.534 2 40 6S ( 1.5,0.5) 1.0 - 7P ( 1 . 5 , 1 .5 ) 1 . 0 * 268898 .9 371.887 10 6S ( 1 . 5 , 0 . 5 ) 2.0 - 7P . ( 1 . 5 , 1 .5) 2.0* 270050.6 370.301 15 6S ( 2 . 5 , 0 . 5 ) 3.0 - 7P ( 2 . 5 , 1 .5.) 3.0* 272182.9 367.400 7 60 6S ( 1 . 5 , 0 . 5 ) 1.0 - 7P ( 1 . 5 , 1 .5) 2.0* C L A S S I F I E D LINES OF TL I I WN WL(VAC ) 11 E 15855.9 6306.801 25 6S6F 19603.5 5101.130 1000 6S26P 21 105.1 4738.191 2 000 2 6S6D 21184.1 4720 .521 30 6P2 21265.0 4702.5 63 160 6S5F 2160 1.2 4629.372 40 6S26P 21616.2 4626.160. 50 ••; 6S26P 21629.9 4623.230 450 2 , 6S26P 21771 .9 4593.076 2000 2 6S5F 21811.8 4584.674 25 • 6S5F 21811.8 4584.674 25 6S5F 21908.3 4564.480 2 5 " 6S5F 22021.0 4541.120' 75 . 6S5F 22260.2 4492.323 300 • 1 6S26P 22 375.8 4469.114 1000 6S8P 22403.7 4463.548 5 5 0 ' 6S7P 22936.5 4359.863 100 6S6D 2 3071.1 4334.427 . 25 6S9P 23011.2 4345.710 40 6P2 2 3024.0 4343.294 2000 6S26P 23032.8 4341.635 1000 6S7P 23116.7 4325 .877 130 6S26P 23212.2 4 3 0 8 . 0 7 9 50 6S7P 23291.7 4293.375 500 6P2 23322.1 4287.779 550 6P2 23382.7 4276.666 1 2000 6S7P 23492 .4 4256.696 10 3 6P2 23595.5 4238.096 3 5 6P2 23665.1 4225.632 40 1 6S26P 23665 .1 4225.632 40 . 6S26P 23689.1 4221.351 25 6S26P 23746.2 4 2 1 1 . 2 0 0 ..... 2 5 ... 6S26P 23774.7 4206.152 25 6S26P C L A S S I F I C A T I O N 3F 3.0 - 6S27S ( 2 . 5 , 0 . 5) 3.0 ( 1 . 5 , 1 . 5 ) 3.0 - 6S27S (2 . 5 , 0 . 5 ) 3.0 ID 2.0 - 6S5F I F 3.0 3P 1.0 - 6S6F 3F 2.0 . 3F 2.0 - 6S12S 3S 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S10D 3D 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S100 3D 2.0 ( 2 . 5 , 1 . 5 ) 2.0 - 6S5G 1,3,G 3 ,4,5 IF 3.0 - 6S110 3D 3.0 3F 2.0 - 6S11D 3D 2.0 3F 4. 0 - 6 S11 0 3D 3.0 3F 3.0 - 6S11D 3D 2.0 3F 3.0 - • 6 S11 0 ID 2.0 ( 2 . 5 , 1 . 5 ) 1.0 - 6S80 ID 2.0 3P 2.0 - 6S27S (•2 .5,0. 5) 2.0 3P . 1.0 - 6P2 ID 2.0 3D 2.0 ' - 6S8P 3P . 1.0 3P 1.0 - 6S260 ( 1 ) 1.0 3P 1.0 - 6S9P 3P 1.0 ( 2 . 5 , 1 . 5 ) 2.0 - 6S8D ID 2.0 IP 1.0 - 6S9S 3S 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S12S 3S 1.0 IP 1.0 6S9S IS 0.0 3P 2.0 - • 6S7F 3F. 3,4 3P 2.0 - 6S7F I F 3.0 3P 2.0 - 6S9S 3S 1.0 ID 2.0 - 6P7S (0 .5,0. 5) 1.0 3P 0.0 - 6S8P IP 1.0 ( 1.5,0.5) .2.0 - 6S9D 3D 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S11D 3D 2.0 ( 1 . 5 , 0 . 5 ) 2.0 - 6S9D 3D 2.0 ( 1.5,0.5) 2.0 - 6S9D 3D . 3.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S11D ID • 2.0 TL I I WN WL(VAC ) 11 E 23879.2 4187.745 2000 6S60 23932.7 4178.384 15 - 6S7S 24184.0 4134.965 1000 6S26P 24204.0 4131 .548 2000 6S6D 24712.7 4046.502 35 6P2 25365.4 3 942 .3 78 60 6S26P 25623 .2 3902.713 250 6S7P 25717.6 3888.388 2000 1 6S7P 25841.4 3869.759 900 6S6D 25841 .4 3869.759 500 6S7P 25957.9 3852.392 400 6S6D 26015.2 3843.907 25 6S7P 26022 .6 3842.814 20 6S26P 2 60 54.0 3838.182 50 6S7P 26086.8 3833 .356 1000 2 6S7P 2 6160.7 3822 .528 100 1 655F 2 62 87.9 3804.032 40 6S8P 26207.1 3815.760 25 6P2 26335.6 3797,142 20 6S8P 26350.2 3795.038 550 6S6D 26368.6 3792 .389 ' 2000 6S7S 26415.9 3785.599 15 ' 6S5F 26467.1 3778.276 70 6S5F 26514.5 3771 .521 20 6S7F 26551.6 3766.251 25 6S7F 26500.7 3773 .485 130 6S26P 27186.7 3678.269 75 1 6S6D 27319.4 3660.402 30 6S26P 27354.1 3655 .759 40 6S26P 27380.7 3652 .208' 20 6S26P 27408.3 3648.530 25 6S26P (CONT) C L A S S I F I C A T I O N 3D 2.0 - 6S8P 3P 2.0 3S 1.0 - 6S26P ( 1. 5,0 .5 ) 2.0 ( 2 . 5 . 1 . 5) 3.0 - 6S9D 3D 2.0 ID 2.0 - 6S8P 3P 1.0 3P 2.0 - 6S10P 3P 2.0 ( 2 . 5 . 1 . 5) 1.0 - 6S10S 3S 1.0 3P 2.0 - 6S8D 3D 2.0 3P 2.0 - 6S8D 3D 3.0 ID 2.0 - 6S8P IP 1.0 3P 1.0 - 6S9S 3S 1.0 3D 3.0 - 6S26P ( 1 . 5,1 .5 ) 3.0 3P 1.0 - 6S9S IS 0.0 ( 2 .5 , 0 . 5) 3.0 - 6S7D ID 2.0 3P 0.0 - 6S9S 3S 1.0 IP 1.0 - 6S8D ID 2.0 3F 4.0 6S27S ( 2 . 5,0 .5 ) 3.0 3P 2.0 - 6S6P2 ( 1 ) 2.0 3P 0.0 - 6S26P ( 1. 5,1 .5 ) 1.0 IP 1.0 6S6P2 (2) 1.0 3D 2.0 - 6S26P ( 1. 5,1 .5 ) 3.0 IS 0.0 6S26P ( 1 . 5,0 .5) 1 .0 IF 3.0 - 6S27S ( 2 . 5,0 .5 ) 2.0 3F 2.0 - 6S2 7S ( 2 . 5,0 .5) 2.0 IF 3.0 - 6S2 6D ( 3 ) 2.0 3F 2.0 - 6S2 6D (3) 2.0 ( 2 .5,0. 5) 2.0 - 6S7D ID 2.0 3D 2.0 - 6S26P (1 . 5,1 .5) 1 .0 ( 2 . 5 , 1 . 5) 3.0 - 6S10D 3D 2.0 ( 2 . 5 , 1 . 5) 3.0 - 6S10D 3D 3.0 ( 2 . 5 , 1 . 5) 2.0 - 6S9D 3D 1.0 ( 2 . 5 , 1 . 5) 2.0 - 6S9D 3D 2.0 TL I I (CONT) WN WL (VAC) 11 E 27466.6 3640.786 30 6S6D 27619.8 3620.591 25 6S60 27666.6 3614.467 130 6S26P 27817.0 3594.924 100 6S26P 28027.5 3567.924 75 6S7P 28076.6 3561 .685 950 6S7P 28195.4 3546.678 60 6P2 -2 8219.3 3543.674 • 130 6S7S 28225.9 3542.845 15 6S7F 28240.4 3541.026 3 50 6S7P 2 82 93 .0 3534.443 130 • 6P2 2 8316.3 3531.535 40 6S26P 28324.8 3530.475 3000 1 6S26P 28392.8 3522.020 100 6S7F 2 840 7.1 3520.247 • 1000 6S6F 2 842 6.6 3517.832 160 " 6S7F 28426.6 3517.832 160 6S7F 28454.8 3514.346 4000 3 6S6D 28887.8 3461 .669 160 . 6S7P 28944.7 3454.864 550 6S6 0 2 9192 .9 3425.490 20 6S7P 29563.0 3382 .607 "'"2000 2 6S6P 29673.1 3370.056 200 6S6D 29709.0 3365.983 30 6S6D 29861.7 3348.771 700 6S26P 29930.4 3341.085 25 6S60 30092 .4 3323.098 . 20 6S60 3010 1.5 3322.094 130 6S6D 30113.4 3320.781 75 6S60 30310.4 3299.198 40 6S9P 30377.8 32 91.87 8 100 6S6D 30476.1 3281.260 20 6S5F 30 43 9.6 32 85.194 . 35 6S7P 30467.6 3282.175 10 6S7P 30545.6 3273.794 40 6S26P C L A S S I F I C A T I O N 3D 1.0 - 6S26P ( 1 .5,1 .5) 1.0 ID 2.0 - 6S26P ( 1 .5,1 .5 ) 3.0 ( 2 .5,0.5) 2.0 - 6S7D 3D 2.0 ( 2 .5,0.5) 2.0 - 6S7D 3D 3.0 3P 1.0 - 6S8D 3D 1.0 3P 1.0 - 6S8D 3D 2.0 3P 1.0 - 6S10P 3P 2.0 IS 0.0 - 6S5F 3F 2.0 3F 2.0 - . 6S27S ( 1 .5,0 .5) 1 .0 3P 0.0 - 6S8D 3D 1.0 3P 1.0 - 6S10P IP 1.0 ( 1 .5,0.5) 1.0 - 6S2 7S ( 2 .5,0 .5 ) 2.0 ( 1 .5,0.5) 2.0 - 6S12S 3S 1.0 IF 3.0 - 6S27S ( 1 .5,0 .5 ) 2.0 IF 3.0 - 6S26D ( 2 ) 2.0 3F 2.0 - 6S27S CI .5,0 .5 ) 2.0 3F 3,4 - 6S27S ( 1 .5,0 .5) 2.0 ID 2.0 - 6S26P ( 1 .5,1 .5 ) 1.0 3P 1.0 - 6S8D 10 2.0 3D 1.0 - 6S26P ( 1 .5,1 .5 ) 2.0 IP 1.0 - 6S10S 3S 1.0 IP 1.0 - 6S7S 3S 1.0 3D 3.0 - 6S6F 3F 4.0 3D 3.0 - 6S6F 3F 3.0 ( 1 . 5 , 1.5) 2.0 - 6S26D ( 2) 2.0 ID 2.0 - 6S26P ( 1 . 5 , 1 .5 ) 2.0 3D 2.0 - 6S6F 3F 2.0 3D 2.0 - 6S6F 3F 3.0 3D 2.0 - 6S6F IF 3.0 3P 1.0 - 6S26D (3) 2.0 3D 1.0 - 6S6F 3F 2.0 3F 3.0 - 6S6P2 ( 1 ) 2.0 IP 1.0 - 6S9D 3D 1.0 IP 1.0 - 6S9D 3D 2.0 ( 2 .5,1.5) 2.0 - 6S100 3D 2.0 TL I I (CONT) WN WL(VAC) 11 E 30580 .7 3270 .036 10 6 S 26 P 30820.2 3244.625 30 6S7P 30874.9 3238.377 30. 6S7P 30939. 15 3232 .114 15 6P2 30989.5 3226.899 15 6S7S 31140.3 3211 .273 35 6P2 3116 8.3 3208.388 75 . 6S7P 31359.9 3188.786 15 6S6D 31374.3 3187.322 160 6S6D 31384.2 3186.317 " 1 3 0 6S6D 31471.5 3177 .478 50 6S9P 31651.7 3159.388 50 6P2 31916.5 3133.176 10 6S6D 31933.7 3131.438 75 6S26P 32044.4 3120.670 75 6S26P 32201.3 3105.465 20 6S6D 32339.0 3092.242 450 6S6P 32677 .0 3060.256 50 6S6D 33008.4 3029.532 130 ; 6S7S 33155.8 3016.0 64 10 6S7P 33188.3 3013.0 65 10 6S6D 33230.6 3009.275 25 6S26P 33524.2 2982.920 30 6S26P 33724.2 2965 .230 10 6S26P 33950.4 2945.473 15 6S8P 33950.4 2945.473 15 6S7P 3 50 99,7 2849.027 • 85 3 . 6S7P 35099 .7 2849.027 85 "" 3 6S7P 35676,0 2803.005 5 3 6S6D 35676.0 2303.005 5 6S6D 35713.5 2800.062 10 3 6S6D 35778.9 2794.943 10 6S7S 3 5 944.1 2782.098 25 3 6P2 C L A S S I F I C A T I O N ( 2 .5,1.5) 2.0 - 6S10D 3D 3.0 IP 1.0 - 6S9D ID 2.0 3P 2.0 - 6S9D 3D 3.0 3P 0.0 - 6S9P 3P 1.0 3S 1.0 - 6S5F 3F 2 .0 3P 1.0 - 6S11P IP 1.0 3P 2.0 - 6S9D . ID 2.0 ID 2.0 - 6S6F 3F 2.0 ID 2.0 - 6S6F 3F 3.0 ID 2.0 - • 6S6F IF 3.0 IP 1.0 6S27S ( 1 .5,0 .5) 2.0 3P 0.0 - . 6S9P IP 1.0 3D 2.0 - • 6S9P 3P 1.0 ( 2 .5,1.5) 1.0 6S11D ID 2.0 ( 2 .5,1.5) 2.0 - 6S12S 3S 1 .0 3D 1.0 - . 6S9P 3P 1.0 IP 1.0 - 6S7S IS 0.0 3D 1.0 - 6S9P ' 3P 2.0 IS 0.0 - 6S8P IP 1.0 3P 2.0 - 6S11S 3S 1.0 ID 2.0 - 6S9P 3P 1.0 ( 1 .5,0.5) 2.0 - • 6S27S ( 2 .5,0 .5 ) 3.0 ( 1 .5,0.5) 2.0 - 6S27S ( 2 .5,0 .5) 2.0 ( 2 .5,1.5) 3.0 ' - 6S27S ( 2 .5,0 .5 ) 3.0 IP 1.0 - 6S26D (2) 2.0 3P 2.0 - 6S 10D 3D 2.0 IP 1.0 - 6S12S 3S 1.0 IP 1.0 -' 6S12S 3S 1.0 3D 2.0 - 6S7F 3F 2.0 3D 2.0 - 6S7F . 3F 3,4 3D '2.0 - 6S7F . I F 3.0 3S 1.0 - 6S8P IP 1.0 ID 2.0 - 6P7S ( 1 .5,0 .5) 2.0 TL I I (CONT) WN WL(VAC ) 11 E 36008.8 2 777.0 99 100 3 6S7P 36654.9 2728.148 10 3 6S7P 36654.9 2728.148 10 3 6P2 36717.2 2723.519 10 6S26P 37177.1 2689.828 10 3 6P2 37232.6 2685.818 0 6S6F 37243.8 2685.011 5 6S26P 37264.9 2683 .490 0 6S26P 37654.4 2655.732 0 6S8P 37601.8 2659.447 0 6S26P 37751 .4 2 648.90 8 0 6S26P 3790 6.1 2638.098 0 6S7P 38116.3 2623.549 0 6S7P 38561.8 2593.240 , 0 6S7P 38688 .5 2584.747 •• 0 6S5F 3 873 8.5 2 581.411 5 6S5F 39329.4 2542 .627 25 . 3 6S8P 40302.2 2481.254 15 6S7P 40410.7 2474.5 92 60 6S9P 40588.6 2463.746 0. 6S26P 40651.7 2459.922 5 6S7P 41068.4 2434.962 50 6S7S 41166.6 2 42 9.154 60 6S6P 41166.6 2429.154 60 6S8P 41183.8 2428.139 35 6S26P 41133.1 2431.132 100 2 6S26P 41747 .3 2 3 95.3 64 50 1 6S6P 42460.7 2355.119 15 2 6S26P 42519.7 2351 .851 60 6S26P 42647.6 2344.798 25 6S10P 42705.2 2341.635 60 6S6F 42817.4 2335.499 5 6S26P 43107.7 2319.771 50 3 6S7P C L A S S I F I C A T I O N 3P 2.0 - 6S11D 3D 3.0 3P 0.0 - 6S10D 3D 3.0 3P 2.0 - 6P7S ( 0 .5 ,0 .5) 1.0 (1 .5,1.5) 1.0 - 6S27S ( 1 .5,0 .5 ) 1.0 ID 2.0 - 6P7S ( 1 .5,0 .5) 1.0 3F 2.0 - 6P7P ( 1 ) 1.0 ( 2 .5,1.5) 2.0 - 6S27S ( 2 .5,0 .5) 2.0 ( 2 .5,0.5) 2.0 - 6S8D 3D 2.0 IP 1.0 - 6S26D (3) 2.0 ( 2 .5,0.5) 3.0 - 6S8D ID 2.0 ( 1 .5,1.5) 3.0 - 6S27S ( 1 .5,0 .5) 2.0 3P 1.0 - 6 S 12 S 3S 1.0 3P 0. 0 - 6S12S 3S 1.0 3P 1.0 - 6S11D ID 2.0 IF 3.0 - 6S26D (2) 2.0 3F 2.0 6S26D (2 ) 2.0 IP 1.0 - . 6S27S ( 1 .5,0 .5) 1.0 IP 1.0 6S27S ( 2 .5,0 .5 ) 2.0 3P 2.0 - 6S26D (4) 2.0 ( 1 .5,0.5) 1.0 - 6S26D (2 ) 2.0 3P 2.0 - 6S2 7S ( 2 .5,0 .5) 2.0 IS 0.0 - 6S9P IP 1.0 IP 1.0 - 6S6D 3D 3.0 3P 1.0 - 6S27S ( 1 .5,0 .5 ) 2.0 ( 2 .5,0.5) 2.0 - 6S10S 3S 1.0 ( 2 .5,1.5) 1.0 - 6S6P2 ( 2 ) 1.0 IP 1.0 - 6P2 3P 0.0 ( 2 .5,0.5) 2.0 - 6S9D 3D 2.0 ( 2 .5,0.5) 2.0 - 6S9D 3D 3.0 3P 2.0 - 6S6P2 (3) 3.0 3F 3.0 . - 6S26D (4) 2.0 ( 2 .5,0.5) 2.0 - 6S9D ID 2.0 3P 1.0 6S27S ( 2 .5,0 .5) 2.0 TL I I (CONT) WN WL(VAC) H E C L A S S I F I C A T I O N 43269.8 2311.081 70 6S9P 3P 1.0 - 6S26D (5) 1.0 47640.9 2099.037 1 6S26P ( 2 .5,0. 5) 2.0 - 6S110 3D 2.0 43500.4 • 2298.829 2 000 6S6P 3P 2.0 - 6S7S 3S 1.0 43599.8 2293 .589 300 2 6S7S 3S 1.0 - 6S9P 3P 2.0 43864.2 2279.763 25 6S7F 3F 2.0 - 6P7P (3) 3.0 44037.5 22 70.7 92 80 6S7F IF 3.0 - 6S6P2 ( 3 ) 3.0 44075 .9 2268.814 2 5 6S7F 3F 2.0 - 6S6P2 (3) 3.0 44147.8 2265.119 500 3 6S26P ( 1 * 5 * 1 * 5) 2.0 - 6S260 (4) 2.0 44216.4 2261.604 25 . 6S6F 3F 3.0 - 6P7P (2) 2.0 44216.4 2261.604 25 " 6S7P IP 1.0 - • 6S6P2 (1) 2.0 44218.4 2261.502 25 6 S 11P IP 1.0 - 6S6P2 (4) 3.0 442 67.9 2258.973 50 6S5F IF 3.0 - 6S27S ( 1.5,0.5) 2.0 442 94.8 2257.601 25 6S26P ( 1 .5,0. 5) 1.0 - 6S260 (3) 2.0 443 88.1 22 52.85 6 - 30 6S8P 3P 1.0 6P7P ( I V 1.0 44396.5 2252.430 70 6S10P IP 1.0 - 6S260 (7) 2.0 44626.2 2240.836'" 5 0 6S11P IP 1.0 6P7P . (4) 2.0 44 801.6 2232.063 15 . 6S26P (2 .5,0. 5) 2.0 - 6S11S 3S 1.0 45093.3 2217.624 30 6S6F 3F 2.0 - 6S26D (5). 1.0 455 97.6 2193.0 98 30 6S26P ( 2 .5,0. 5) 2.0 -• 6S10D 3D 2.0 45628.4 2191.617 130 6S26P ( 2 .5,0. 5) D 2.0 - 6S10D 3D 3.0 45634.4 2191.329 20 6S7S IS 0.0 - 6S10P • IP 1.0 45622.4 2191.906 180 2 6S26P ( 1 . 5 , 1 . 5) 3.0 - • 6S6P2 (5 ) 2.0 45622.4 2191.906 180 2 6S26P ( 1 . 5 , 1 . 5) 1.0 - 6S26D (4) 2.0 45791.0 2183.835 15 6S26P ( 2 .5,0. 5) 2.0 - 6S100 ID 2.0 45795.8 2183.606 20 6S26P ( 1 .5,0. 5) 2.0 - 6S260 (2) 2.0 46457.2 2152 .519 100 2 6S26P ( 1 . 5 , 1 . 5) 3.0 - 6S26D (4) 2.0 47160.5 2120.419" 10 6S10P 3P 2.0 - 6S6P2 (4) 3.0 47160.5 2.120.419 10 6S26P ( 2 .5,0. 5) 3.0 - 6S11D 3D 2.0 47274.0 2115.328 45 6S26P ( 2 .5,0. 5) 3.0 - 6S110 ID 2.0 47309.0 2113.763 90 6S6F 3F 2.0 - 6S26D (6) 2.0 47352 .6 2111 .816 25 6S9P 3P 2.0 - 6S6P2 (3) 3.0 47567.4 2102.280 70 4 6S10P 3P 2.0 6P7P (4) 2.0 47651 .4 2098.574 35 2 6S26P ( 2 .5,0.5) 2.0 - 6S11D . .3D 3.0 TL I I WN WL(VAC) 11 E 47968 .6 2084.697 10 6S26P 48001 .4 2083 .273 5 2 6S26P 48305 .8 2070.145 25 6S7S 48552 .0 2059.647 ; 100 4 6S7F 48590 .2 . 2058.028 25 4 6S7F 48748 .8 2051 .333 30 2 6S26P 48742 .4 2051 .602 30 2 6S26P 49106 .9 2036.379 " 15 2 6P2 49393 . 1 2024.574 10 6S7P 49677 .9 2012.96 8 180 2 6S9P 49684 .7 2012.692 35 6S6F 49677 .9 2012.968 200 2 6S6P 49871 .7 2005.145 15 6S8P 49993 .7 2000.252 15 2 6S26P 50214 .5 1991.457 50 2 6S26P 51048 .8 1958.910 10 6S26P 51519 .8 1941.001 15 6S26P 51816 .5 1929.887 5 6S26P 52296 .4 1912.178 20 6S26P 52346 .6 1910.344 25 6S9P 52393 .4 1908.637 400 2 6S2 52455 .4 1906.381 "• 5 6S26P 52 83 5 .5 1892.667 350 2 6S6P 52969 . 1 1887.893 5 6S5F 52937 .3 1889.027 35 2 6S26P 5 315 9 .8 1881.121 300 2 6S6P 53437 .9 1871 .331 250 2 6S6P 54128 .2 1847.466 10 6S26P 54424 .7 1837.401 600 2 6S6P 54409 .7 1837 .908 15 6S26P 54630 .2 1830.489 60 6S5F 54708 .6 1827.866 350 2 6S6P (CONT) C L A S S I F I C A T I O N (1 . 5 , 1 . 5) 3. 0 - 6P7P (2) 2.0 (1 . 5 , 1 . 5) 1.0 - 6S26D. ( 5 ) 1.0 3S 1.0 - 6 S 10 P 3P 2.0 IF i.O - 6S6P2 (4) 3.0 3F 2.0 - 6S6P2 (4) 3.0 ( 2 . 5 , 1 . 5) 1.0 • - 6S26D (2 ) 2.0 ( 1 . 5 , 1 . 5) 2.0 - 6S26D (6) 2.0 3P 2.0 - 6P7S ( 1 .5,0 .5 ) 2.0 3P 2.0 - 6S26D ( 1) 1 .0 3P 1.0 •- 6S2 6D (7 ) 2.0 3F 4.0 - 6S6P2 (3) 3.0 IP 1.0 - 6P2 3P 1.0 3P 1.0 - 6S26D (4) 2 .0 ( 2 . 5 , 1 . 5) 3.0 - 6S2 6D (3) 2.0 ( 1 . 5 , 1 . 5) 1.0 - 6S26D (6) 2.0 ( 1 . 5 , 1 . 5) 3.0 - 6S26D (6) 2.0 ( 2 .5,0. 5) 3.0 - 6S2 7S ( 2 .5,0 .5) 3.0 ( 2 .5,0.5) 3.0 - 6S27S (2 .5,0 .5 ) 2.0 ( 2 .5,0. 5) 2.0 - 6S27S ( 2 .5,0 .5) 2.0 3P 1.0 - 6S6P2 (4) 3.0 IS 0.0 - 6S6P 3P 1.0 ( 2 . 5 , 1 . 5) 1.0 - 6S26D (3 ) 2.0 3P 1.0 - 6S7S 3S 1.0 IF 3.0 - 6S26D (4) 2.0 ( 1 . 5 , 1 . 5) 2.0 - 6S26D (7) 2.0 IP 1.0 - 6P2 3P 2.0 3P 2.0 - 6S6D ID 2 .0 ( 2 . 5 , 1 . 5) 1.0 - 6S27S ( 1 .5,0 .5 ) 1.0 3P 2.0 - 6S6D 3D 1.0 ( 1 . 5 , 1 . 5) 1.0 - 6S26D (7 ) 2.0 3F 3.0 - 6P7P (2) 2.0 3P 2.0 - 6S6D 3D 2.0 TL I I (CONT) WN WL(VAC) 11 E-55103.1 1814.780 400 2 6S6P 55377.2 1805.797 10 6S7P 55606.9 1798.338 . 250 2 6S6P 5 5 777.0 1792.354 300 2 6S6P 56209.2 1779.068 15 6S26P 56382.8 1773.591 50 2 6S26P 57251.6 1746 .676 20 2 6S26P 57954.5 172 5 .492 10 6S7P 57910.0 1726 .317 20 2 6S26P 58660.6 1704.722 . 5 6S8P 53635.5 1705.451 100 2 6S6P 59755.1 1673.497 10 6S5F 59954.8 1667.923 5 2 6S5F 60974.4 1640.033 5 6S7P 61034.1 1638.428 25 2 6S26P 6 1 0 3 4 . 1 1638.428 25 2 6S26P 61232.4 1633 .122 130 2 6S6P 61328.4 1630.5 66 15 6S8P 62462.7 1600 .955 5 6S26P 62771.4 1593.082 160 2 6S6P 63613.5 1571 .993 130 3 6S6P 63758.2 1568.426 " 160 2 '•• 6S6P 64427.3 1552 .137 30 6S5F 64548.6 1549.220 10 6S26P 64566.3 1548.796 20 2 6S26P 64675.4 1546.183 40 6S26P 64882 .4 1541 .250 10 6S5F 65017.0 1538.059 130 .' 2 6S6P 65311 .0 1531.136 10 6S26P 66368 .6 1506 .737 15 6S7P 66323.4 1507.763 130 2 6S6P 66 700.6 1499.237 130 2 6S6P 670 94.8 1490.428 100 2 6S6P 67025.6 1491.967 5 6S26P C L A S S I F I C A T I O N 3P 2.0 - 6S6D 3D 3.0 3P 1.0 - 6S26D ( 2 ) 2.0 3P 1.0 - 6S7S IS 0.0 3P 0.0 - 6S7S 3S 1.0 ( 2 .5,0.5) 2.0 - 6S6P2 ( 1 ) 2.0 ( 1 .5,0.5) 1.0 - 6P7P ( 2 ) 2.0 ( 1 .5,0.5) 1.0 - 6S26D (5 ) 1.0. IP 1.0 - 6S2 7S ( 1 .5,0. 5) 1 .0 ( 1 .5,1.5) 3.0 - 6S6P2 (4) 3.0 3P 1.0 - 6S260 (7) 2.0 IP 1.0 - 6S8S IS 0.0 3F 2.0 - 6P7P (3) 3.0 3F 4.0 - 6S6P2 (3) 3.0 3P 0.0 - 6S2 7S CI .5,0. 5) 1 .0 ( 2 .5,0.5) 3.0 . - 6S26D 2 . 5 ( 4 . 5 ) 4.0 ( 2 .5,0.5) 2.0 - ' 6S260 ( 1 ) 1. .0 IP 1.0 - • 6S7D ID 2.0 3P 1.0 6S6P2 (4) 3.0 ( 1 .5,0.5) 2.0 - 6S2 60 ( 5 ) 1.0 3P 1.0 - 6S60 ID 2.0 3P 2.0 - 6P2 3P 1.0 3P 1.0 - 6S6D 3D 1.0 IF 3.0 - 6S6P2 (4) 3.0 ( 2 .5, 1.5) 1.0 - 6P7P ( 2 ) 2.0 ( 2 .5,0.5) 2.0 - 6S26D (2 ) 2.0 ( 1 .5,0.5) 2.0 - 6S260 (6) 2.0 3F 2.0 - 6P7P (4) 2.0 3P 1.0 - 6P2 3P 0.0 ( 2 .5,1.5) 2.0 - 6P7P ( 2 ) 2.0 3P 2.0 - 6S6P2 ( 5) 2.0 IP 1.0 - 6P2 ID 2.0 3 n 0.0 - 6S6D 3D 1 .0 3P 2,0 ' - 6P2 3P 2.0 ( 1 .5,0.5) 2.0 - 6S6P2 (3) 3.0 TL I I WN WL(VAC) 11 E 67792 .4 1475.092 15 2 6S26P 68395.8 1462.078 5 6S26P 68872.0 1451.969 15 2 6S26P 69665.8 '143 5.42 5 10 6S26P 69753.6 1433.515 15 6S6P 70 3.43 .0 .1425.659 0 6S26P 71161.2 1405.262 40 2 6S7S 71174.0 1405.007 • 50 1 6S7P 71844.1 1391.903 85 2 6S6P 71944.8 1389.955 '. 30 3 6S6P 72032.3 1388.266 0 6S26P 72434.0 1380.567 10 6S26P 72702.5 1375.468 20 2 6S7S 72806.6 1373 .502 75 2 6S6P 72947.8 1370.843 85 3 6S6P 73935.5 1352.530 " ' 2 0 .2 . 6S7S 74148.7 1348.641 50 6S7P 744 87.6 1342.505 20 2 6S26P 74810.8 1336.705 40 1 6S6P 74897.5 1335.158 60 3 6S26P 75168.0 1330.353 85 2 6S6P 75663.0 1321 .650 100 3 6S2 75889.9 1317.698 60 3 6S6P 76204.6 1312.257 60 2 6S6P 76429.4 1308.397 85 2 6S6P 76482.3 1307.492 75 2 6S6P 78722.0 12 70 .293. 35 6S7P 79067.4 1264.744 : 30 ""'2 6S7P 79883.2 1251 .828 15 6S26P 80518.0 1241.958 30 6S6P 81118.4 1232 .766 15 6S7P 8117 9.2 1231 .843 60 3 6S6P 81232.1 1231.040 250 2 6S26P 81903.7 1220.946 85 2 6S6P (CONT) C L A S S I F I C A T I O N ( 2 .5,0.5) 3.0 - 6S26D (3) 2.0 ( 2 .5,1.5) 2.0 - 6S26D (6) 2.0 ( 1 .5,0.5) 2.0 - 6S26D (7) 2 .0 ( 2 .5,0.5) 3.0 - • 6S27S ( 1 .5,0 .5 ) 2.0 IP 1.0 - 6S9S 3S 1 .0 ( 2 .5,0.5) 2.0 - 6S27S ( 1 .5,0 .5 ) 2.0 IS 0.0 - 6P7S ( 1 .5,0 .5 ) 2.0 3P 1.0 - 6P7P (2 ) 2.0 3P 2.0 - 6S8S 3S 1 .0 IP 1.0 - • 6S8D 3D 1.0 ( 2 .5,1.5) 3.0 - 6S6P2 (4) 3.0 ( 2 .5,1.5) 3.0 - 6P7P (4) 2.0 3S 1.0 — 6P7S ( 1 .5,0 .5) 2.0 IP 1.0 - 6S8D ID 2.0 3P 1.0 - 6P2 3P 1.0 3S 1.0 6P7S . .( 1 .5,0 .5 ) 1.0 3P 2.0 - 6S6P2 (3) 3.0 ( 2 .5,1.5) 1.0 - 6S6P2 (4) 3.0 IP 1.0 - 6P2 IS 0.0 ( 2 .5,1.5) 1.0 - 6P7P (4) 2.0 3P 2.0. - 6S7D ID 2.0 IS 0.0 - • 6S6P IP 1.0 3P 0.0 - 6P2 3P 1.0 3P 2.0 - 6S7D 3D 1.0 3P 1.0 - 6P2 3P 2.0 3P 2.0 - 6S7D 3D 3.0 IP 1.0 - 6P7P (4) 2.0 3P 2.0 - 6P7P (4) 2.0 ( 2 .5,0.5) 3.0 - 6P7P (2) 2.0 IP 1.0 - 6S10D ID 2.0 3P .1.0 - 6S6P2 (4) 3.0 3P 1.0 - 6S8S 3S 1.0 ( 2 .5,0.5) 2.0 - 6S26D (5) 1 .0 3P 1.0 - 6S8S IS • 0.0 TL I I (CONT) WN WL(VAC ) I 1 E 83691.0 1194.87 2 50 2 6S6P 83 918.0 1191.639 5 6S8P 84120.7 1188.763 40 2 6S6P • 84501 .5 1183.411 160 6S6P 85537.2 1169.082 300 2 6S6P 85663.4 1167.3 60 300 2 6S6P 85794.9 1165.570 160 2 6S26P 85928.9 1163.753 160 2 6S6P 8 847 9.6 1130,204 100 6S6P 88919.8 1124,60 9 10 6S26P 89593.6 1116,151 35 3 6S6P 89345.4 1113.023 50 2 6S6P 89830.7 1113.205 • 15 6S26P 90710.2 1102.412 90 4 6S26P 9112 3.3 1097.414 60 2 6S6P 91181 .8 1096.710 75 2 6S6P 93025.3 1074.971 60 2 6S6P 93202.1 1072.937 60 2 6S6P 94127,4 1062 .390 . ,• .60 2 6S26P 94238.5 1061 .137 50 6S6P 94259.1 1060.906 30 6S6P 95264.1 1049.713 100 2 6S6P-9 6 0 7 6 . 1 1040.842 35 . 2 6S6P . 96314.1 1038.270 60 6S6P 98081.0 1019.565 50 2 6S6P 99179.1 1008.277 50 6S6P 100665.0 993.394 75 3 6S6P 102794.3 972.812 35 6S6P 103374.5 967.357 75 6S6P 104873.8 . 953 .527 80 2 6S6P 104873.8 953.52 7 60 2 6S6P 10 5 749.8 . 945 .628 60 6S6P 106519.2 938 .798 50 4 6S6P 108092 .0 92 5.138 40 - 2 6S6P 112740.3 886 .994. 100 2 6S6P C L A S S I F I C A T I O N 3P 2.0 - 6S9S 3S 1.0 3P 1.0 - 6S6P2 (6) 2.0 3P 0.0 - 6S8S 3S 1.0 3P 1.0 - 6S7D ID 2.0 3P 1.0 - 6S7D 3D 1.0 3P 1.0 - 6S7D 3D 2.0 ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P2 ( 3 ) 3.0 3P 2.0 - 6S8D 3D . 2.0 3P 0.0 - 6S70 3D 1.0 ( 1 . 5 , 0 . 5 ) 1.0 - 6S6P2 (6) 2.0 3P 1.0 - 6P2 ID 2.0 3P 2.0 - 6S10S 3S 1.0 ( 2 . 5 , 0 . 5 ) 3.0 - 6S6P2 ( 4 ) 3.0 ( 2 . 5 , 0 . 5 ) 2.0 - 6P7P ( 4 ) 2.0 3P 2.0 - 6S9D 3D 2.0 3P 2.0 -. 6S9D 30 3.0. 3P 1.0 -. 6S9S 3S 1.0 3P 1.0 -. 6S9S IS 0.0 ( 1 . 5 , 0 . 5 ) 2.0 - 6S6P2 (6 ) 2.0 3P 2.0 - 6S10D 3D 1.0 3P 2.0 - 6S10D 3D 2.0 3P 1.0 - 6S8D 30 2.0 3P 1.0 - 6S8D ID 2.0 3P 2.0 - 6S11D 3D 3.0 3P 1.0 - 6P2 IS 0.0 3P 1.0 - 6S10S 3S ' 1.0 3P 2.0 - 6S2 7S ( 2 . 5 , 0 . 5 ) 3.0 3P 1.0 - 6S11S 3S 1.0 3P 0.0 - 6S9D 3D 1.0 3P 2.0 - 6S6P2 ( 1 ) 2.0 IP 1.0 - 6S2 7S ( 1.5,0. 5) 2.0 . 3P 1.0 - 6S11D ID 2.0 3P 0.0 6S10D 3D 1.0 IP 1.0 - 6P7P . ( 1 ) 1.0 IP. 1.0 - 6S6P2 (5 ) 2.0 TL I I ( WN WL(VAC) IT E 112895.3 885.776 5 6S26P 114948.2 869.957 180 2 6S6P 115091.3 868 .875 90 2 6S6P 119578.2 836.273 100 2 6S2 122383.6 817 .103 1 30 2 6S2 125037.5 799.760 10 2 6S6P 125437.5 797 .210 50 6S6P 126207.8 792.344 200 2 6S2 12 9025.4 775.041 35 6S6P . 134248.9 7 4 4 . 8 8 5 ' 40 2 6S6P 13430 8.4 744.555 15 2 6S6P 134368.6 744.221 2 50 2 6S2 134458.1 743.726 • 35 2 6S6P 139377.2 717.477 100 2 6S6P 141444.6 706.991 35 . 6S6P 142782.6 700 .3 65 100 " 4 6 S 2 149064.7 670.850 100 6S2 161560.8 618.962 •• 70 1 6S6P 142782.6 700.365 100 , 4 6S2 CONT) C L A S S I F I C A T I O N ( 2 . 5 , 0 . 5 ) 2.0 - 6S6P2 (6 ) 2.0 3P 1.0 - 6S6P2 ( 2 ) 1 .0 IP 1.0 - 6P7P ( 2 ) 2.0 IS 0.0 - 6S7P 3P 1.0 IS 0.0 - 6S7P IP 1.0 IP . 1.0 - 6S6P2 (4) 3.0 IP 1.0 - 6P7P (4) 2.0 IS 0.0 - 6S26P ( 2 .5,1 .5) 1 .0 3P 2.0 - 6P7P ( 2 ) 2.0 3P 2.0 6P7P (3) 3.0 3P 0.0 - 6P7P ( 1 ) 1.0 IS 0.0 - 6S26P ( 1 .5,0 .5) 1 .0 3P 2.0 - 6S6P2 (3 ) 3.0 3P 2.0 6P7P (4) 2.0 3P 1.0 - 6S26D (6 ) 2.0 IS 0.0 6S26P ( 1 .5,1 .5 ) 3.0 IS 0.0 - 6S9P IP 1.0 3P 2.0 - 6S6P2 (6) 2.0 IS 0.0 - 6S26P ( 1 . 5., 1 .5 ) 3.0 Table 7 I n t e n s i t y S cale T r a n s . Inten. Trans 0 . l e t en. 975 + 0 190 - 209 300 . 930 - 975 5 175 - 189 350 870' - 929 . t o , t6i* - 17k kQO 8 t.O - 869 15 15^ - 163 ^50 760 - 8Q9 20 1^ 5 - 153 500 7 1 0 - 759 25 1 38 - 1 kk 550 .660 - 709 30 130- 1 37 600 625 - 659 35 | 125 - 129 650 580 - 62U kO 1 | 120 - 1 2^- 700 560 - 579 h5 j 116 - 119 750 515 - 559 50 ! 112 - U 5 800 if-6o - 51'-* 60 '! 108 - 1 11 850 k\S - 1+59 75 • 10^- 1 07 900 386 - ki? 85 102 - 1 03 950 .3^3 - 385 1 00 80 - 1 02 1 000 300 - 3^ 2 130 55 - 79 2 000 263 - 200 1 60 ko - 5k 3000 232 - 262 200 30 - 39 ^000 210 - 231 250 5000 BIBLIOGRAPHY C.'-W. A l l e n , P h y s . Rev. 22., 1*2, 55, (1932) R. F. B a c b e r , P h y s . Rev. hjt 26k. (1933) C. Chan, Ph.D. T h e s i s (t 9^6) E. U. Condon and G. H. S h o r t l e y , "The T h e o r y o f A t o m i c " S p e c t r a " ( C a m b r i d g e U n i v e r s i t y P r e s s , 1963) J . Convey, Ph.D. T h e s i s , U n i v e r s i t y o f T o r o n t o (19^0) R. D. Cowen and K. L . Andrew, J . Opt. S o c . Am. J55_, 502, (1965) H. M. C r o s s w h i t e , John H o p k i n s S p e c t r o s c o p i c R e p o r t No.13. (1958) K. D i c k , M.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , (1966) B. E d l e n , Handbuch d e r P h y s i k , 27, 80, (196*0 Rep. P r o g r . P h y s . 26, l 8 t , (1963) C. B. E l l i s and R. H. Sawyer, P h y s . Rev. k^, (1936) W. H e i s e n b e r g and J o r d a n , Z e i t . P h y s . 2 Z > 2^3, (1926) H. K a y s e r , " T A b e l l e d e r H a u p t l i n i e n d e r L i n i e n s p e c t r e n a l l e r E l e m e n t e " , B e r l i n V e r l a g von J u l i u s S p r i n g e r , (1939) R. L. K e l l y , "A t a b l e o f E m i s s i o n L i n e s i n t h e Vacuum U l t r a v i o l e t f o r a l l E l e m e n t s " , USRL 5612 K. L y a l l , M.Sc. T h e s i s , U n i v e r s i t y o f B r i t i s h C o l u m b i a , (1965) J . E . Mack and M. F r o m e r , P h y s . Rev. _^8, 357, (1935) M. G. M a r t i n and J . S u g a r , p r i v a t e c o m m u n i c a t i o n , (19&9) •M. C. Mayer, P h y s . Rev. 60, 184, ( 19k\ ) J . C. McLennan, A. B. McLay and.M. F. C r a w f o r d , P r o c , Roy. S o c . London f A ], 1 3*+, k\ , ( 1 931 ) J . C. McLennan and W. F. C r a w f o r d , p r o c Roy. S o c . London [ A j J_2J, -50, (1929) Co E. Moore, " A t o m i c E n e r g y L e v e l s " * U. S. N a t i o n a l B u r e a u o f S t a n d a r d s , C i r c u l a r ^67, 0952) F. P a s c b e n , A k a d . W i s s . , B e r l i n ( p h ys - Math. K l . ) S i t z . P a r t s 31 - 33, p . 53«5 (1928) P. P a t t a b h i r a m a y y a and A. S. Rao, I n d i a n . J . P h y s . j>, ^07 , ( 1930) J . R. P i a t t and R. A. Sawyer, P h y s . Rev. 60, 866, ( 19**t ) G. Ra c a h , P h y s . Rev. 6j_, 537, (19^2) A. E. R u a r k and H. C. U r e y , "Atoms, M o l e c u l e s and Q u a n t a " McGraw - H i l l Book Comp. (1930) H. N. R u s s e l and C. E. Moore, T r a n s . Am. P h i l . S o c . , x x x i v - p a r t i i (19^) G. K. S c h o e p f l e , P h y s . Rev. JjOt 538, (1936) E. S c h r o d i n g e r , Z e i t . P h y s . k. 3U7, (1921) A. G. S h e n s t o n e , P h i l . T r a n s . Roy. S o c . (London) A 23 5. No.751, 195, (1936) P h i l . T r a n s . Roy. S o c . (London) .A 2^1, No.832, 297, (19^8) P h y s . Rev. 37* t?0t A, (1931) G. H. S h o r t l e y and B. F r i e d , P h y s . Rev. J>k, 738, (1938) : P h y s . Rev. 5kt 7^9, ( 1938) C. W. U f f o r d , P h y s . Rev. kk, 732, (1933) I . W a l k e r , Z e i t . P h y s . 38, 635, (1926) G. U' e n t z e l , Z e i t . P hys, j_6, 51 , (1922) Z e i t . P h y s . kj_, 52^, (1927) Z e i t . P h y s . 2j), 321 , (1 928) L . W h i t e , p r i v a t e communucation, (1967) M. Wu, p r i v a t e c o m m u n i c a t i o n , (1968) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0084770/manifest

Comment

Related Items