UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Analysis of doubly and triply ionised indium Bhatia, Kuldip Singh

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1969_A1 B53.pdf [ 16.62MB ]
Metadata
JSON: 831-1.0084755.json
JSON-LD: 831-1.0084755-ld.json
RDF/XML (Pretty): 831-1.0084755-rdf.xml
RDF/JSON: 831-1.0084755-rdf.json
Turtle: 831-1.0084755-turtle.txt
N-Triples: 831-1.0084755-rdf-ntriples.txt
Original Record: 831-1.0084755-source.json
Full Text
831-1.0084755-fulltext.txt
Citation
831-1.0084755.ris

Full Text

ANALYSIS OF DOUBLY AND TRIPLY IONISED INDIUM by KULDIP S. BHATIA B.Sc.(Hons. ), Panjab University, (Chandigarhj,India. M.Sc.(Hons.), Panjab University, (Chandigarh),India. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of PHYSICS We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF A p r i l , BRITISH 1969. COLUMBIA In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y of B r i t i s h C olumbia, I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e . a n d Study. I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g of t h i s t h e s i s f o r s c h o l a r l y p u rposes may be g r a n t e d by the Head o f my Department or by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department The U n i v e r s i t y o f B r i t i s h Columbia Vancouver 8, Canada 'Theories are the millstones and the experimental data the grains fed into them. It i s obvious 'that the millstones alone cannot produce any thing useful however long they may turn,(Theory i s working on i t s e l f ) , But the q u a l i t y of f l o u r i s determined by the q u a l i t y of the grain and the rotten grain cannot y i e l d n u t r i t i o u s f l o u r . Therefore experimental physics i s the necessary prerequiste fo r the healthy development of our Science' Lord Kelvin. i i Table of Contents Abstract v Acknowledgements v i -Chapter I Introduction 1 Chapter II Experimental Techniques 4 Chapter III General Theory . 9 Rydberg Series and Moseley Diagrams 10 Regular and Irregular Doublet Laws; 14 - Lande's Interval Rule. 15 Selection Rules. 17 Chapter IV Indium I I I . .20 4d 1 0ns Series. 20 4d 1 0np Series 21 4d*^nd Series. . . . . . . ' . 2 3 4 d 1 0 n f Series. 24 P o l a r i s a t i o n formulae for Hydrogenic Series. 26 Terms A r i s i n g From Configuration 4d 5snl. 29 Theo r e t i c a l Calculations for 4d 5s5p. 36 Chapter V Indium IV 44 9 4d 5p Configuration. 45 « I l l 4d ns Configuration. 47 o 4d 5s Configuration 49 9 -4d 6s Configuration. 50 4d^7s Configuration and Series Limit. 53 4d 5s Configuration. 55 9 4d 5d Configuration. 58 -4d96p, 4d 94f-and 4d 85s5p Configuration. 62 4d 6d Configuration. 63 Conclusions and Suggestions for further work. 7 1 Bibliography. 72 Appendix .74 iv L i s t of Tables 1. n* for 4d ns Series in Isoelectronic Sequence of I n l l l . 20 2. n* for 4d*°nd Series i n Isoelectronic Sequence of I n l l l . 24 3. P o l a r i s a t i o n formulae applied to ng and nh se r i e s of I n l l l . 28 4. Extrapolations to predict the lowest l e v e l of 4d 95s5p in I n l l l . 30 5. Extrapolation of the multiplet i n t e r v a l s of 4 P and 4D i n 4d 95s5p. 31 6. Comparison of calculated and observed l e v e l s of 4d 95s( 3D)5p of I n l l l . 38 7. Energy Levels of Indium III. 39 8. Comparison of calculated and observed l e v e l s of 4d 95p i n InlV. 46 9. Comparison of calculated and observed l e v e l s of 4d 9ns series i n InlV. 52 10. J notation for d d configuration in InlV. 60 11. Energy Levels of InlV. 64 L i s t of Figures 1. Graph of $ - n - n* vs. absolute term values of 4d 1 0ns se r i e s . 22 2. Graph of & - n - n* vs. absolute term values 10 of 4d nd s e r i e s . 25 9 3. Levels of config.4d 5s5p of Agl iso-sequence. 33 4. Term rel a t i o n s h i p s in successive Indium Ions. 35 9 5. Intermediate coupling for 4d ns in Pdl i s o e l e c t r o n i c sequence. 51 8 2 6. 4d 5s structure i n i s o e l e c t r o n i c sequence of Pdl. 59 V ABSTRACT Emission spectra of Indium have been photographed over r j •the s p e c t r a l range from 340A° (177A° i n 2nd order) to 9500A0 using the dis r u p t i v e electrodeless and spark i n helium sources. -About 4000 l i n e s of Indium have been measured and 36% of these l i n e s are c l a s s i f i e d as belonging to the spectra of InI,InII, I n l l l j I n l V and InV. The analyses of I n l l l and InlV have been revised and extended to include 4d l 0ns(n=5 to 12), 4d 1 0np(n=5 to 9J, 4d 1 0nd (n=5 to 9) and 4d^nf(n=--4 to 7). P o l a r i s a t i o n theory has been applied to 4d*<")ng(n=-5 to 9) and 4d"^nh (n=*6 to 9) series and the i o n i z a t i o n p o t e n t i a l deduced from t h i s i s reported to be 226191.3 cm"\ The dipole p o l a r i z a b i l i t y of the 4d*° core i s estimated to be 3 9 9 ' 3.48a c . Most of the expected terms of 4d 5s5p and 4d 5s6s are 9 established for the f i r s t time. Some of the l e v e l s of 4d 5s5d are also added as well as some l e v e l s from the higher configurations 9 9 4d 5s7s and 4d 5s6d. In t r i p l y ionised iridium the new additions are to the 9 9 8 2 9 4d 5d, 4d 6d, 4d 5s and 4d 6p configurations. Houston's theory 9 of intermediate coupling has been su c c e s s f u l l y applied to 4d ns (n=5,6 and 7) terms. Tentative values are given to several l e v e l s 8 Q of 4d 5s5p and 4d 4f terms. The double l i m i t of InlV i s calculated 9 -1 -1 from 4d ns series as 461875 cm and 468989 cm Experimental r e s u l t s are compared with the t h e o r e t i c a l c a l c u l a t i o n s for some of the configurations of I n l l l and InlV. ACKNOWLEDGEMENTS I am much indebted to my supervisor Prof.A.M.Crooker for h i s kind assistance and encouragement a l l through t h i s work. He has given generously of his time and expert advice on numerous d i f f i c u l t questions. I wish to express my thanks to Dr. Rolf Mehlhorn of Lawrence Radiation Laboratory at Berkeley for doing^the t h e o r e t i c a l c a l c u l a t i o n s for some part of t h i s work. I am thankful to the members of my supervisory committee, Dr,B.Ahlborn, Dr.A.J.Barnard, and Dr.F.W.Dalby for h e l p f u l comments and suggestions.I have a great pleasure to thank Prof.A.G.Shenstone of Palmer Physics Laboratory, Princeton University, for c r i t i c a l examination of t h i s thesis and h e l p f u l comments. Technical assistance of M/s. J.Lees and A.J.Fraser i s much appreciated. Mr.V.S.Surana's help i n the preparation of t h i s text i s thankfully acknowledged. I am thankful to The National Research Council and the Department of Physics for the f i n a n c i a l assistance during t h i s work. F i n a l l y I wish to record my appreciation of the help and encouragement rendered to me by my wife P r a t i p a l K. Bhatia.She s a c r i f i e d much in keeping me r e l i e v e d from the worries of household problems. CHAPTER I 1 . ' i INTRODUCTION ' At the 50th anniversary meeting of Optical Society of America i n 1966, Prof .Bengt Edle'n gave an excellent review of 'Frontiers i n Spectroscopy'^ 1', In that he remarks about the big 1 boom of t h i s f i e l d during the decade centered arounfl 1930. Spectroscopy was one of the most cherished f i e l d of physics. But as Edlen puts i t , "The high tid e i n e v i t a b l y c a r r i e d some rubbish with i t " and as a r e s u l t the big volume of data created a chaos. Most of the spectra were barely touched upon and some of the adequately done turned out to be completely wrong. A look into the tables prepared by Shenstone^)^ Meggers^ 3' and D i e k e ^ ) and summarised i n a recent (5) report reveals the fragmentary knowledge we have about the most of these spectra. We know that the number of d i f f e r e n t spectra that can be produced by 102 elements i n a l l stages of i o n i s a t i o n t o t a l s 5253.Most of these spectra may each consist of several thousand l i n e s and the more complex spectra .of rare earth l i k e elements several tens of thousands of l i n e s , leaving us with a v i r t u a l l y inexhaustible f i e l d . In recent years there has been an active renewed i n t e r e s t i n the study of atomic spectra p a r t i c u l a r l y because of the much needed data f o r some of the new areas of research i n hot plasmas, s o l a r spectra, s o l i d state and to interpret the large quantum of data p i l i n g up r a p i d l y by the new techniques of spectroscopy applied to extra t e r r e s t r i a l astrophysics. The ever increasing demands of our old customers i n Astronomy i s another j u s t i f i c a t i o n of the objective of t h i s research. Most of the previous work i n spectroscopy was confined to the e a s i l y accessible region of v i s i b l e and near u l t r a v i o l e t spectrum. Infra red was opened up a f t e r the big boom was over .and s t i l l remains to a large extent an unexplored f i e l d . The other end of the spectrum below 2000A0 c a l l e d Vacuum U l t r a v i o l e t or XUV had to wait the necessary developments of techniques and instrumentation i n p a r t i c u l a r high r e f l e c t i o n gratings, Vacuum systems and s e n s i t i v e detectors, along v/ith the means to produce these spectra. XUV i s by f a r the largest part of the o p t i c a l spectrum and i s also the most important as f a r as the atomic structure i s concerned. The need to work i n t h i s region was well recognised as e a r l y as i n 1928 when the pioneer i n t h i s f i e l d Prof. Lyrsmn^J v/rote/'In the l a s t fourteen years the extreme u l t r a v i o l e t has changed from a l i t t l e known region to a well • recognised and important part of the spectrum". In t h i s report vie have recorded the spectra over a wide range of, 340A° to S5500A° but a major part of the work involves the vacuum u l t r a v i o l e t . (7) Looking through The Atomic Energy Level T a b l e s v ' compiled by Mrs. Moore S i t t e r l y i t i s found that i n the Pdl and Agl sequence the spectra of P d l , A g l , A g l l , C d l l and C d l l l are very well done by Shenstone and are highly r e l i a b l e . The other member of t h i s sequence SnIV and SnV has also been analysed by Shenstone and Y/hite and has been re c e n t l y revised and extended i n t h i s Lab by ( 8) C.M.V/u , thus Indium looks to be the missing l i n k of t h i s important group of complex spectra. ^ Some- ten years back Indium was studied i n t h i s laboratory by Nodwell ' and he could e s t a b l i s h some of the basic l e v e l s of q 2 these spectra. In p a r t i c u l a r h i s f i n d i n g of 4d 5s i n I n l l l ' was very^jgratifying. But unfortunately he had very l i m i t e d f a c i l i t i e s to work i n the region where most of doubly and t r i p l y ionised indium spectra, l i e . Since then a new three meter vacuum grating spectrograph has been b u i l t i n t h i s laboratory which can very well record the whole region from 340A0 to 2400A0 i n one exposure on 30" p l a t e s . Also since h i s two meter grazing incidence spectrograph was not a stigmatic one, he could not e x p l o i t much the spark i n Helium source which-gives very important and ind*.sponsible information about the various i o n i s a t i o n stages. Measuring accuracy at present - i s d e f i n i t e l y -ten -times more than i t was at that time mainly because of the use of Grant Automatic Comparator and the better dispersion i n the vacuum region. The use of computers for the reduction of data and a n a l y s i s , eliminates'some of the human error. The a v a i l a b i l i t y of more accurate and new standards of reference f o r the c a l c u l a t i o n of-,wavelengths i s an important factor f o r the better accuracy of our data. Also since then there has been a s i g n i f i c a n t development i n the sources to produce the spark spectra of i o n i s e d indium. Keeping a l l these things i n mind we had taken up t h i s project. The various corrections and extensions we have made to the previous analysis are given i n t h i s thesis. In b r i e f ' the i n t r o d u c t i o n can be best concluded by st a t i n g the three main ob j e c t i v e s of t h i s project as : ( i ) To obtain the l i s t of Indium l i n e s i n the region 340A°(177A° i n the 2nd order) to 9500A0 and t h e i r r e l a t i v e i n t e n s i t i e s i n d i f f e r e n t spark sources. ( i i ) To confirm and correct the energy l e v e l s of I n l l l and InlV est a b l i s h e d by previous workers and f i n a l l y ( i i i ) To extend the term scheme, for the higher configurations. 4 CHAPTER I I EXPERIMENTAL TECHNIQUES The spectrographs used for t h i s work are the three meter vacuum spectrograph b u i l t and designed here i n t h i s laboratory and which i s mounted in l i n e with a Hilger Spectrograph E(478), Littrow -mounted with interchangable qurtz and glass prism. The vacuum spectrograph i s designed to photograph a wide range from 340A° (177A° i n 2nd order) to 2440A0 on the 30"x2" Q-2 emulsion plates from l'lford. Angle of incidence was 9°-40' and the grating was manufactured by Bauch and Lomb ruled with 1200 l i n e s /mm, g i v i n g a r e c i p r o c a l "dispersion of 2.775 A°/mm. It was blazed for 1300A0.' Pressure maintained i n the vacuum chamber was always less than lullg except i n some exposures with spark i n He source where the source pressure was more than 10 cm of Hg, and-it'was d i f f i c u l t to maintain the pressure d i f f e r e n t i a l . However in such cases" the pressure never was more than 2u i n the vacuum tank of the spectro-graph. V/e simultaneously recorded the prism spectrum by putting the E(478) spectrograph on the other side of our double window sources. This was done because we strongly f e e l that the source conditions could never be exactly the same when i t i s run separately for recording d i f f e r e n t regions of the spectrum. This i s p a r t i c u l a r l y important when we consider the r e l a t i v e i n t e n s i t i e s of l i n e s over the whole range. The prism spectrograph records X2300A0 to X9500A0 on three 10" plates. Thus e s s e n t i a l l y we had recorded a region from 340A° to 9500A0 i n one shot without changing the source conditions. Two exposures v/ere always taken on each plate of vacuum spectrograph, one of the exposures being r e l a t i v e l y much shorter 5 than the other f o r a comparison. Photographic plates used are: ^ X340A0 to 3000A0 I l f o r d Q-2 plates. / X3000A0 to 6500A0 I l f o r d HP-3 plates. X4500A0 to 9500A° Kodak 1-K plates. (Developed i n D-19 developer) Q-2 and HP-3 plat e s were developed with the Johnson AZOL mixed with one part i n twenty parts of water. Light Sources The.two main l i g h t sources used for t h i s work v/ere the d i s r u p t i v e e l e c t r o d e l e s s discharge as described by Minnhagen^-1-0) and the spark i n He source as described i n Shenstone's^1'1"^ ^ a ^ r . on S i l l with a l i t t l e modification to make these su i t a b l e for Indium. (12) .From vapour pressure data " the vapour pressure of indium can be c a l c u l a t e d * approximately from the expression l o g 1 ( ) P = A + BT" 1 from tables * 1 2 * we note that for P=10"4 rnmHg, T=1000°K and -3 P. = 10 mmHg T=1100°K thus substitute these values i n the above equation and t h i s w i l l give us the values for A = 7.0 and B= -11000°K So indium has rather a low vapour pressure and a veryweak or no discharge was possible below 800°C and we had to use a heating oven which could s a f e l y go to a temperature of 1500°C though a s a t i s f a c t o r y discharge v/as possible at about. 1200°C corresponding to which the vapour pressure i n the discharge tube v/as about .10 . "mmllg. There i s a l i m i t to the maximum temperature because the softening point for the qurtz tube we use i s also near 1400°C. Even for 1200°C the S i l i c o n spectrum i s f a i r l y well excited. A great advantage of working at' these high temperatures i s that the plates turn out to be very clean and p r a c t i c a l l y free from impurity bands and f o r that reason v/e may suggest that before any run a tube should always be heated to the maximum temperature.so as to bake out the impurities and then one Eay work at the desired temperature. The operating frequency of the discharge v/as '3 At. Hertz fed through a bank of solar condensors with capacitance of ,005iifarads. The rapid oxidation of the c o i l was avoided by using an a l l o y NichromeV (Ni + Cr + Al) which could stand much longer and many more experimental runs. The spark i n He had no problem other than the f a c t that because of the low melting point of In i t would not stay f o r more than a few minutes i n the upper electrode which i s quite important for g e t t i n g the best pole e f f e c t . One can use a water cooled electrode or otherwise we d r i l l e d some f i n e holes i n the car ban cup and molten indium was forced out of these holes to st r e t c h i n t o wires forming beads at the surface which could remain suspended f o r a longer period of time. With t h i s exposure we had taken several exposures at d i f f e r e n t pressures of He and we observed that working at a higher pressure could give higher excitations but under t h i s . c o n d i t i o n i t was d i f f i c u l t to maintain the pressure d i f f e r e n t i a l from the vacuum chamber. Also higher pressure being pumped out at a f a s t e r speed gave better e x c i t a t i o n data, ye are sure to have excited I n l l l and InlV pretty well. We could compare our e x c i t a t i o n data with the one we had from Crooker's plates "taken i n Shenstone's .laboratory i n Princeton. More d e t a i l s of the experimental set up are (13) ! -described i n the thesis of K.A.Dick and that of K.Lyall^- 1-' 1'. The plates were measured on the Grant Automatic Line measuring Comparator which had a plate carriage of 250 mm. This sophisticated machine could measure sharp l i n e s within the accuracy of + 1 micron, and i t v/ould d i r e c t l y read the transmission of the l i n e s on the scale of 0 to 1000. For each plate t h i s transmission was normalised to read the most cle a r part of the plate as 990 and the complete cut o f f of the l i g h t to read 5. A r e l a t i o n of the transmission reading on the card to the r e l a t i v e i n t e n s i t y of the (15) l i n e i s worked out f o r t h i s comparator by Crooker and Wu . We had modified t h i s comparator to punch also one of 12 comments about the l i n e to specify the character of the l i n e . Calculations of wavelength and wave numbers are done by the computer I.B.M. 7044 using a polynomial f i t for the vacuum region and Hartmann dispersion formula for the prism plates. In the region below Xl7o0A° we used C,N and 0 standards as given i n Edlen's l i s t ^ ^ ) and since there are not many standards avai l a b l e to be used above 1930A° for the polynomial f i t , v/e had used s i l i c o n standards- taken from Toresson^ 1?) and R a d z i e m s k y e t a * papers. Even otherwise both the l i n e s ?t1930Ao and X2297A° the only avail a b l e sta-ndards are str o n l y blended by the Indium l i n e s . The appearance of s i l i c o n standards was an unexpected advantage of working at that high temperatures. 8 For the prism plates we used i r o n standards taken from Crosswhite and only for X greater than 6500A° we had to use the neon l i n e s as the standards. However the prism l i n e s were not wore accurate than £ .05A°. 9 CHAPTER III GENERAL THEORY The theory discussed i n t h i s chapter i s much les s comprehensive than the t i t l e suggests. Only those aspects of the theory of atomic spectra are b r i e f l y discussed which are d i r e c t l y r e l a t e d to the analysis of I n l l l and InlV. Modern theory of complex spectra stated with the fundamental paper of S l a t e r w h o gave with h i s diagonal sum method a very powerful t o o l f o r c a l c u l a t i n g the energy l e v e l s of a system of tv/o or more electrons. However i n the following considerations we v / i l l not follow the approach of c a l c u l a t i o n of each energy l e v e l but on the other hand we w i l l summarise some of the t h e o r e t i c a l guidelines for- the p r e d i c t i o n of a p a r t i c u l a r configuration and how to make the semi-empirical estimates about the f i n e structure of that c o n f i g u r a t i o n . I l l u s t r a t i o n of the applications of these w i l l be given f o r p a r t i c u l a r cases i n the chapters on I n l l l and InlV. For d e t a i l e d c a l c u l a t i o n s of energy l e v e l s from the quantum mechanical treatments the reader i s r e f e r r e d to the standard text,'Theory of Atomic Spectra (TAS)' by Condon and S h o r t l e y ^ 2 1 ^ or the o r i g i n a l papers i n l i t e r a t u r e . In some cases these c a l c u l a t i o n s might be vex'y h e l p f u l at l e a s t to give a very s a t i s f a c t o r y check on the a n a l y s i s but as we know that i n any complex spectrum so many other unknown perturbations are present that to expect a very close agree-went between the theory and the experiment may not be possible. Series i n any spectrum are supposed to behave i n a well predicted r e g u l a r i t y but i t happens not too i n f r e q u e n t l l y that a l l attempts to make to f i t a formula to them may f a i l , not due to the error i n 10 a n a l y s i s , but because of these unknown perturbations. The -calculation of these perturbation has shown i n some cases that the s h i f t s of l e v e l s by hundreds and even thousands i s not very improbable;. Thus i t should not be a cause to disturb i f one finds the l e v e l s very f a r from where one had expected them. Most h e l p f u l l guide to predict the region where one should search for the l e v e l s of a configuration i s the extrapolation from the neighbouring analysed spectra of an i s o e l e c t r o n i c sequence. In case of I n l l l and InlV we were fortunate to have the support of Shenstone's e x c e l l e n t analysis of the preceding members of these i s o e l e c t r o n i c sequences. The basis of a l l spectroscopic rul e s i s the R i t z combi-nation p r i n c i p l e which states that the wave numbers of any spectrum l i n e can be expressed as the difference between two terms of a system of terms c h a r a c t e r i s t i c of the atom or i n other words the d i f f e r e n c e between two terms gives r i s e to a s p e c t r a l l i n e whose frequencey y i s given by Bohr's r e l a t i o n • J> s E 2 " E l . (3.1) h and i n terms of wave numbers y = 2 _ L _ = T X - T 2. .....(3.2) he v/here h i s the Plank's constant and c i s the v e l o c i t y of l i g h t i n vacuum. T^ and Tg are the absolute term values or terms which for the one e l e c t r o n system with nuclear charge Z can be written as 1 1 T n RZ 2/n* 2 ...... (3.3) R- the Rydberg Constant i s R = - m i s the mass of the electron °h and e the charge. Equation (3.3) shows that the spectra of a l l hydrogenic l i k e spectra are s i m i l a r except f o r the increse of wavenurnber p scale by a factor of Z . In practice i t i s found that the term values are larger i n comparison to the hydrogenic terms which can be mathematically expressed by wri t i n g the above r e l a t i o n as 2 RZ (n- S ) 2 £> i s c a l l e d the quantum defect which takes d i f f e r e n t values fo r each seri e s but i s almost independent of n. Usually the denominator i n (3.4) i s replaced by n* and represents n - e f f e c t i v e , that i s e f f e c t i v e p r i n c i p a l quantum number. When there are N electrons out side the nucleus, the charge Z on the nucleus w i l l be neutralised by these loosely bound electrons c o n s t i t u t i n g the atomic core so that the net charge experienced by an electron reduces to Z-(N-l) = 1| and Eq.(3.4) can now be written as (n-5)^ n* Rydberg Series and Moseley Diagrams: Most of the early work i n spectroscopy was i n the d i r e c t i o n of f i n d i n g r e l a t i o n s to represent the term s e r i e s . If E i s the r e l a t i v e terra value counted upward from the ground state and E^ the l i m i t when the atom i s ionised, The absolute term value i s defined as R Tabs. = E£ " E - g"~ n* A s e r i e s of terms with the same L and J but with n(the p r i n c i p a l quantum number) increasing by u n i t step i s c a l l e d a Rydberg Series. Depending upon L-0,1,2,3,4,..... the se r i e s are named as Sharp s e r i e s , P r i n c i p a l s e r i e s , D i f f u s e s e r i e s , Fundamental s e r i e s and so on. The names are purely h i s t o r i c a l though they do represent to some extent the character of the l i n e s a r i s i n g from these s e r i e s . As we go along the s e r i e s the quantum defect S approaches a constant value asymptotically: hence by loc a t i n g the observed differences between the two consecutive members of the s e r i e s , En -- En,j_£ oil the ava i l a b l e t a b l e s v J J' of the differences 2 2 R (1/n* - l/(n*-i-l)'' ) , one may calcu l a t e n* and also obtain E„ and E n i l . Once tv/o members of the serie s are calcula t e d i n n n-t- x absolute term values, one may predict the unknown members of the ser i e s by the reverse process. An estimate of the increase i n n* for the next member can be best made from the corresponding series i n i s o e l e c t r o n i c sequence. For large n and also for higher l,the procedure i s quite accurate and i f such a s e r i e s i s av a i l a b l e the io n i s a t i o n p o t e n t i a l of the ion or the atom can be p r e c i s e l y known. (23) In Fowler's ,'Report on Series i n Line Spectra' "° various formulae have been stated to give a s a t i s f a c t o r y f i t to the s e r i e s . To f i r s t approximation the Ritz formula may be written 16 as • • . 6 - + BT' <3 '^ J " T 1 or i f we define the reduced term value t = —-vy- ==.... ~. R § * n* 2 and the curve $ = a + Bt be plotted i t should give a s t r a i g h t l i n e . Any experimental deviation of the curve from the s t r a i g h t l i n e can be further corrected by including the higher order terms i n t or w r i t i n g g « a + Bt + 7 - t 2 + j i t 3 + More often the s e r i e s are perturbed by the foreign terms and i n case we know the energy E D of the perturbing term we can account for the perturbation by adding to the n* a term a/(E n-E G) with the appropriate sign to make the i n t e r a c t i o n repulsive. Of course the appreciable i n t e r a c t i o n occurs only i f the terms have the sarae p a r i t y and J value. The absolute term value of the energy l e v e l may equally w e l l be expressed as ; T n = _Bl|iUL m_s&±*)* - ( 3 - 6 ) n n where s and P are screening and penetration parameters r e s p e c t i v e l y and as stated before i s the net charge on the electron i n a system of N electrons. For I n l l l and InlV the ^ i s 3 and 4 . It represents the degree of i o n i s a t i o n of the ion being considered. From t h i s we arive at a very simple but usefu l conclusion that i f s i m i l a r terms of the ions of an i s o e l e c t r o n i c sequence are plo t t e d as T n/R vs. Z i t should y i e l d a st r a i g h t l i n e with slope 1/n and the intercept on the -axis as the measure of the screening parameter. This i s a very h e l p f u l and f a i r l y r e l i a b l e way to 14 predict the approximate position of a term i f the same i s known in the other members of i t s i s o e l e c t r o n i c sequence. Regular and Irregular Doublet Laws: ' Above formula (3.6) c l e a r l y shows that the wave numbers corresponding to any t r a n s i t i o n between the two terms of same n i s l i n e a r l y dependent on Z or for the same n i n a spectrum 5 = ?n - T n = R / n 2 < 2 z)'(*i " % ) + ( V " - f ) = AZ + B -This also follows from Sommerfelds formula for one electron spectra i.e. T(n,j) = R/n2 ( Z - S ) 2 + ~4 ( Z - s ) 4 { ^ J J 2 - 3/4) ...(3.7) a here i s the f i n e structure constant and for nj. = = n and assuming j , = jo = j also s, = s we have the r e l a t i o n for the *• -t r a n s i t i o n which c l e a r l y i s determined by the d i f f e r e n t screening of the two o r b i t s and hence they are c a l l e d the screening doublets. The l a t t e r name i s i n anology with the doublets f i r s t observed i n X-rays. Regular Doublet Law^ On the vector model we can calculate the fin e structure of a multiplet by wr i t i n g the spin o r b i t i n t e r a c t i o n energy as r = i > ( i . s ) where n 3 1(1+1/2)(1+1) ^ = R. ———————————-—— '....(3.8) and since i . s --4a±l»--llltll.:.Sl2tl>-_ .....(3.9) and f o r a single electron the doublet term has j = 1 ± 1/2 we have the energy difference of the doublet term as 15 Ra 2Z 4 E„ = (3.10) n 3 n For a non-hydrogenic o r b i t we of course have to take into account the screening e f f e c t due to the core of electrons and we must replace Z i n the above expression by (Z-s). Thus a plot of ( E/Rch) against Z for the same doublet i n the i s o -e l e c t r o n i c sequence should be a straight l i n e and from th i s one can also estimate the screening constant or the e f f e c t i v e charge. The a p p l i c a t i o n of the regular doublet law can be well 2 9 2 i l l u s t r a t e d by c a l c u l a t i o n of D separation of 4d 5s i n I n l l l , Z Ion E S 47 Agl 4471.9 23.69 48 C d l l 5363.7 23.31 49 I n l l l 6900 23.0 the observed value i s 6848.0 Cm . Lande's Interval Rule: In t h i s study of ionised Indium we are not dealing with a case of pure Russell-Saunders coupling. But since the deviations from L.S coupling change smoothly as we go along the i s o e l e c t r o n i c sequence therefore we can have a f a i r i n d i c a t i o n of the multiplet s p l i t t i n g by extrapolating the observed Lande's factor for each multiplet. In L.S coupling the r e l a t i o n (3.9) can be extended to many electron configurations by replacing j , l and s of a single 16 electron by the t o t a l L, S, and J of the term. The i n t e r v a l . between the two l e v e l s of J and J - l w i l l be L J ~ L J - 1 = J which means that the i n t e r v a l s are thus proportional to the r«lar"ger of the two J values. This i s known as the Lande's Interval Rule. For two electrons Goudsmit and Humphreys^ 2 4^ have derived the formula which gives us the s p l i t t i n g f actor PCn^ljL, n 2 l 2 i SL) f o r various terms and configurations i n terms of the parameters of the i n d i v i d u a l electrons. According to this': T L(L+1) + l w l i ' i - l ) - l o ( V l ) S(S+1) + s i ( s 1 + l ) - s 2 < S 2 + f* = p -. --- X — 2L(L + 1 ) 2S(S +1) L(L+1) + 1 2(1 2+D ~ l i d i + D S(S+l)+s 2(s2+l)'-s 1(s 1+l) v 2L(L + 1) 2S(S +1) (3.11) / ^>ft£ 9 P = - ---- can be obtained from 4d 5s i n InlV. 2 For a configuration of more than tv/o electrons p i s calculated by considering the parent term quantum numbers as l i and s and added to that i s the electron 1 JL Cd and s 2 giving us the f i n a l term with t o t a l L and S. As f o r the 9 3 4 •configuration 4d 5s( D)5p, the term D can be c a l c u l a t e d by s u b s t i t u t i n g li=2, s - j ^ l , 12=1, s2"=+l/2 and L=2,S~l-~. For some of the most common terms t h i s i n t e r v a l f a c t o r i s c a l c u l a t e d 1 7 i n TAS and a p p l i c a t i o n of t h i s formula applied to I n l l l and Iniy i s also i l l u s t r a t e d i n the following chapters. An add i t i o n a l advantage of c a l c u l a t i o n of f7 i s that i t gives us a rough estimate of the t o t a l spread of a multiplet, because with the change i n coupling though the mutual i n t e r v a l s between the members of the multiplet change yet their t o t a l spread approximately remains the same. Selection Rules: Much before the concept of parity was introduced the people i n spectroscopy were well aware that the t r a n s i t i o n s are only possible between one set of level s and another group ..of l e v e l s , t r a n s i t i o n s are not observed among the le v e l s of the same group. This l a t e r came out to be the natural consequence of quantum mechanics that i n an e l e c t r i c dipole r a d i a t i o n the odd p a r i t y l e v e l s can combine only with the even p a r i t y config-urations and vice versa, unless there i s an external e l e c t r i c f i e l d . The p a r i t y of a configuration i s determined from the sum of o r b i t a l angular momentum quantum numbers i . e ^ l . and the i p a r i t y i s odd or even depending upon th i s sum. The t r a n s i t i o n s due to quadrupole radiations are i n p r i n c i p l e possible but the pr o b a b i l i t y of.such t r a n s i t i o n s i s so small that the l i n e s should be rather weak. We have observed one such t r a n s i t i o n between 4d ]^5p 2 P ^ a n d 4d 1 06p 2P,y^°f * n H I . Otherwise the par i t y rule i s obeyed rather s t r i c t l y . As we go away from the Russell-Saunders Coupling the designations of l e v e l s i n the L.S scheme loses i t s meaning and the le v e l s are characterised by the t o t a l angular momentum 16 J . Normally the t r a n s i t i o n s .are only possible when J changes by 0 or + 1 except that J=0 to J=0 i s rigorously forbidden. For some of the t r a n s i t i o n s we have observed a change of J by ± 2.but again such s p e c t r a l l i n e s are extremely weak and the high nuclear moment of In i s large l y responsible for these t r a n s i t i o n s . In the other two fundamental s e l e c t i o n rules of -L.S coupling that f o r any t r a n s i t i o n L=0 or ±1 and S=0, the v i o l a t i o n s are so frequent that these rules do not seem to e x i s t at a l l . T r a n s i t i o n s in which S/ 0 are c a l l e d intercombination l i n e s and some of these are very strong l i n e s i n our spectra. Equally strong are the l i n e s for t r a n s i t i o n s where L changes by ±2 but f o r 2 we did f i n d the i n t e n s i t y appreciably -decreased though some exceptions are not ruled out. For a long time i t was assumed that in a t r a n s i t i o n only one electron w i l l jump at a time so that the strongest l i n e s w i l l a r i s e fi'om the t r a n s i t i o n s between the terms b u i l t up on the same state of ion. This i s only an approximate rule p a r t i c u l a r l y when the spectrum i s so complex that the wave-functions of various configurations can pa r t l y overlap and the t r a n s i t i o n s with double electron jump due to configuration mixing, are quite possible. In C d l l l and i n InlV we could e s t a b l i s h most of the l e v e l s of 4d 5s by looking at i t s combinations with the 4d^5p terms, and the l i n e s are not that weak as one would expect f o r these double electron jumps. If the selection; rules are v i o l a t e d the i n t e n s i t y rul e s are v i o l a t e d as much. The only guide l i n e we used regarding 19 the i n t e n s i t i e s was the comparison with the corresponding t r a n s i t i o n s i n Ag and Cd spectra. Most of the strong l i n e s i n these spectra were found to be equally strong i n Indium. However we did not depend much on the in t e n s i t y consideration for the analysis p a r t i c u l a r l y when the i n t e n s i t i e s are very s e n s i t i v e to the unknown conditions of discharge i n the l i g h t sources. 20 CHAPTER IV INDIUM III To s t a r t the analysis v/e f i r s t made the squai~e arrays for the known l e v e l s of I n l l l and t r i e d the Bockstan f i t(25) using the t r a n s i t i o n values from our own l i n e l i s t . This necessitated changing the values of the established l e v e l s by a few wave-numbers and some of the l e v e l s had to be completely rejected. 4d*^ns -Series: 10 2 Ground state of I n l l l i s 4d 5s a n d previous workers had found 4d''^6s, 7s and • 8s which are found to be correct except that each i s lower by about 4 Cm \ We have added the next four members of t h i s s e r i e s . The n* calculated f o r each l e v e l i s pretty close to the predicted value. A regu-l a r i t y of n* along the i s o e l e c t r o n i c sequence i s shown i n Table No.l. ' Table No.1 (n* f or the 4d^ns serie s i n the i s o e l e c t r o n i c sequence of Inlll') Term Agl C d l l I n l l l g for I n l l l 4d 5s 1.341 1.794 2.090 2.910 6s 2.432 2.867 3.154 2. 846 7s 3.450 3.885 4.171 2. 829 8s 4.456 4.893 5.180 2. 820 9s 5.459 5.897 6.184 2.816 10 s 6.461 6. 899 7.187 2.813 l i s 7.462 7.901 8.189 2.811 12s 8.463 8.902 9.191 2.809 A plot of the quantum defect for t h i s series against the term value T a b s o l u t e i s shown in f i g . ( 1 ) and i t i s very nearly a s t r a i g h t l i n e as expected from the Eq.(3.5A). We however did not use t h i s s e r i e s to calculate the i o n i s a t i o n p o t e n t i a l of I n l l l as the p o l a r i s a t i o n theory applied to the 4d*°ng serie s which c l o s e l y obeys the Rit z formula w i l l give a much more accurate value for the Limit. 4'd'^hp Series: Only the f i r s t two members of t h i s s e r i e s were known 1 0 before and the 4d 8p reported by Nodwell does not seem to be r i g h t . The d i f f i c u l t y i n f i n d i n g t h i s series i s understandable from the f a c t that t h i s i s strongly perturbed due to the inte r c o n f i g u r a t i o n perturbations from the 4d^5s5p terms. Fine structure i n t e r v a l for the JV can be calculated from the r e l a t i o n for absolute term value i.e T a b s - R V n * - 2 ( d n * ) T a b s dT — — su b s t i t u t i n g f o r T a j 3 S n* we have dT, the doublet separation 2 2 p _ C P3/2 ~ V 2 ~ ~ n*3" the constant C t h e o r e t i c a l l y i s supposed to be constant a l l along the s e r i e s , but a c t u a l l y i t decreases for the higher ^ - -members. As an example we can determine C using the f i r s t two members of t h i s series which were known before. C.G. of the doublet 4d 1 05p i s calculated to be 2. 865 2.855 U 2.845 L 2.835 L 2;825 L 2.815 L 2. 805 20 30 40 50 60 70 80 30 • Term Value Fig.l-. Graph o f $ =n-n* vs. absolute term values f o r 4 d l 0 n s s e r i e s i n I n l l l ICO 23 10 2 2< 2Pl/2) + 4 ( 2 P 3 / 2 ) C.G of 4d i U5p ^P = — 2 + 4 ' = 60079 and the corresponding n*-2.439 This gives us the value of the constant C as = 63009.0 Cm"'" S i m i l a r l y c a l c u l a t i o n of C f o r 4d^°6p gives the value 57175.0 showing that the constant decreases by about 9 o/o By extrapolating the increase i n n* f o r the next member of the s e r i e s from the i s o e l e c t r o n i c sequence we can approximately 2 10 locate the term P of 4d 7p at about 177500 corresponding to n* = 4.5000 and for the doublet separation we extrapolate from the f i r s t two known members so that, 4 d 1 0 5 p dn* = .0317 6p dn* = .0289 7p dn* .0270 approx. therefore the predicted doublet separation for 2p amounts to be around 580 Cm""* and the actual difference found to be -1 = 605 Cm . The corresponding constant C i s 54675.0 cm The next member 4d*^8p s i m i l a r l y i s predicted to have the doublet separatio of 300 Cm * and the observed difference i s -1 ' • 286 Cm . In spi t e of these close predictions we have not 10 been able to extend t h i s s e r i e s beyond 4d 9p, mainly due to the presence of 4d^5s5p configuration . 4d^^nd Series: tv>« O n l y A f i r s t three members of t h i s s e r i e s were known before. We have added the next 3 members. This s e r i e s , l i k e the sharp s e r i e s , also follows a quite regular n* and does 2 not seem to be perturbed, n* for the '•s' c o n , P a r e c J with the corresponding valu s for Agl and C d l i . 24 Table No. 2 (n* for the 4d*^nd s e r i e s i n the i s o e l e c t r o n i c sequence o f l n l l l ) y •! i Term Agl C d l l I n l l l f or I n l l l 4 d 1 05d 2.979 3.066 3.179 1.821 6d 3.987 4.093 4.213 1.787 7d 4.990 5.104 5.228 1.772 8d 5.992 6.109 6.234 1.766 9d , - 7.112 7.238 1.762 lOd - 8.114 8.239 . 1.761 Though one can reasonably well predict the next few members but i t defied a l l our e f f o r t s for the search of these l e v e l s . The other s t r i k i n g feature of t h i s series i s the f i n e structure s p l i t t i n g for the doublets. This difference decreases as we go along the series according to the regular 2 doublet law. The same r e l a t i o n s we used for the P separation should be applicable here also. Again the quantum defect plotted against the term value f a l l s f a i r l y well on a str a i g h t l i n e as shown i n the f i g . 4 d 1 0 n f Series: We could not extend the fundamental seri e s as far as we had hoped and the e s s e n t i a l reason i s again the mutual perturbation of t h i s series from the terms a r i s i n g due to 9 4d 5s5p configuration as i t was for the P r i n c i p a l Series. Only the f i r s t member of t h i s s e r i e s i s retained from the terms 26 reported before. Nodwell had mentioned 4d*°5f to be a very -1 - i close doublet at 184892 Cm separated only by 3Cm . We do _1 2 accept the l e v e l 184892 Cm to be a r e a l l e v e l as F 7 / 2 , but the other l e v e l ^F$/2 l i e s about 129 Cm * higher than ^ 7 / 2 So i n going from 4d'"°4f to 5f the normal doublet term becomes 2 inverted F and same i s the case for C d l l . The best check to these l e v e l s was from t h e i r combinations with the 4d*^ng series and we can see that the i n t e n s i t y for these t r a n s i t i o n s decreases i n a very systematic way as we go to the higher member t r a n s i t i o n s . Since the p o l a r i s a t i o n theory could not be applied to t h i s s e r i e s , we conclude that the f - o r b i t s are penetrating and perturbed i n the doubly ionised Indium. P o l a r i s a t i o n Formulae for the Hydrogenic Series: C a l c u l a t i o n of P o l a r i s a t i o n parameters shows that except i n the case of Agl the f - o r b i t s are hardly non-penetrating i n t h i s sequence. Even for the case of Agl ,the parameter A(Z) defined below i s constant only for the f i r s t two members i.e 4 d 1 0 4 f and 4d 5f, while i t i s about ten times less in 4d x06f. We believe that the 6f term may be perturbed due to i n t e r -configuration i n t e r a c t i o n s or probably needs a further confirmation, For Cdl'I and I n l l l the fundamental series corresponds to a system of penetrating o r b i t s thus as stated above , the p o l a r i s a t i o n theory i s not applicable. But the application to the 4d*^ng and 4d*°nh serie s i s found to be s a t i s f a c t o r y and i s treated i n the following discussion. The two parameter formula derived from the theory developed by Born,Heisenberg and W a l l e r ^ 2 ^ has been used. 27 According to t h i s the term defect aZ G R 3n 2 - i ( I + 1 ) P h 2 a c 3 n5(^-l/2)(e).(^+l/2)(/ + l)(^+3/2) = A(Z)P(n,g) where A(Z) i s substituted for and can be calculated 2 a D 3 i f the f i r s t two terms of the series are known. This formula can be further modified to include the quadrupole p o l a r i s a b i l i t y and i s given in Eq.(20.6) of Edlen's a r t i c l e ^ 2 ? ) . A p = T - T h = A(Z)P(n,£) ^  1 + K(Z)q(n,£) j <P(n,f) and q(n,^) are given i n Table 19 of the above reference (27), and for n and greater than 10 and 6 respectively, Crooker has calculated the values for these parameters. In the above equations T and T^ are the absolute term value and the corresponding hydrogenic term value which can . be calculated by using Sommerfelds f i n e structure formula: R \ f a § n 7 T ) i + — ( — „ 3/4 )C ( 4 . 2 ) h n 2 I n 2 (£+1/2) •) a here i s again the f i n e structure constant and i s the net chrge on the core. Values for the hydrogenic terms in the case of I n l l l are given below. Hydrogenic Terms for 4d"*"^ ng Series n T h n T h 5 39505.87 8 15432.00 6 27434.66 9 12192.92 7 20156.08 10 9S76.33 28 So the simultaneous equations to be solved i n t h i s case 10 -of 4d ng s e r i e s are: I.P - 186526.5 - 39505.87 = A(Z).5574^1 + .00534K(Z)5 I.P - 198654.0 - 27434.66 = A(Z).3584^1 + .00695K(Z)£ I.P - 205966.5 - 20156.08 = A(Z).2393^1 + .0078 K(Z)^ These give the values f o r the three constants of th i s spectrum as A(Z) = 282.0,K(Z) =2.34 and the i o n i s a t i o n p o t e n t i a l I.P i s established to be 226191.3 Cm""1, which i s higher by 12 Cm'1 above the value previously established by Nodwell. Results showing the comparison of the calculated and the experimentally observed values for 4d1^>ng and 4d*^nh series are shown i n Table No.3. Table No.3 (The p o l a r i s a t i o n formula applied to ng and nh series of Term Calculated Observed Term Calculated 4d 1 05g 186526.5 1S6526.5 4d 1 06h 19S724.0 6g 198654.0 198654.0 7h 20S012.0 7g 205966.5 205966;5 8h 210741.3 Sg 210710.8 210712.5 9h 213987.0 9g 213965.0 213966.8 10g 216289.8 - • The term value for 4d 1^6h i s established with as l i t t l e Observed 206011.C 210742.C 213986.5 one t r a n s i t i o n , but the t h e o r e t i c a l c a l c u l a t i o n i s enough support to the r e a l i t y of t h i s l e v e l . 29 Terms A r i s i n g From The Configuration 4d 5snl: Levels with odd P a r i t y : • An attempt has been made to f i n d the l e v e l s belonging to the configuration 4d 95s5p involving the excited 9 core 4d 5s. Nodwell has reported some of the l e v e l s of t h i s configuration but these do not show s a t i s f a c t o r y combinations according to our" l i n e l i s t and the e x c i t a t i o n data. He himself had indicated the need for further confirmation of these l e v e l s . We have rejected a l l h i s l e v e l s but one for which the desig-nation i s changed.lie had predicted the whole configuration -1 about 7000 Cm below the region where i t should a c t u a l l y l i e . To predict t h i s configuration we consider the energy required to r a i s e a 5s electron to the 5p o r b i t . This 9 9 happens i n various cases notably i n going from 4d 5s to 4d 5p i n InlV, 4d1<"*5s to 4d'"<">5p in I n l l l and we can extrapolate 9 9 9 for going from 4d 5s to 4d 5s5p i n t h i s case by looking at the s i m i l a r differences i n the i s o e l e c t r o n i c sequence. These differences are tabulated i n Table No.4 and by a l l these con-9 siderations we predict that the lowest l e v e l of 4d 5s5p should be f a i r l y close to 164000 ± 1500 Cm"1. We e s t a b l i s h the lowest l e v e l 4 P 5 / 2 a t 162759.0 Cm"1 and a l l the l e v e l s with J = 1/2 and 1 1/2 above t h i s go strongly to the ground state. We have observed almost a l l of these t r a n s i t i o n s i n both the electrode-less and spark i n Helium sources and their e x c i t a t i o n deduced from pole e f f e c t , confirm that these belong to the spectrum 3 0 o f doubly ionised Indium. • Table No.4 (Extrapolation to predict the lowest l e v e l of 4d 95s5p i n I n l l l ) T r a n s ition 4d 95s 2-4d 95s5p 4d 5s-4d 5p 9 9 4d 5s - 4d 5p Ag 25981 (Agl) 29552 (Agl) Cd 36931 ( C d l l ) .443.36 (Cdll) 41009 53359 (A g l I ) ( C d l l I ) In 49000 + 1500 57184 ( I n l l l ) 65214 (InlV) Addition of a 5p electron to the parent 4d 95s( D) gives r i s e to ihe terms 4P, 4D, 4F, 2P, 2D and 2 F while the addition of 5p electron to the parent 4d 95s( 1D) w i l l give the other set of 2 ? 2 doublets i.e P, "D and F. ~ Mul t i p l e t s p l i t t i n g can be calculated by using Eq.(3.11) by s u b s t i t u t i n g *1~2> s i ~ * > a n d l 2 r = 1 ' s 2 ~ + 1 / / 2 f o r where / * - - 1 W2 4 P (J>1 and S=3/2) P = (V - 1/6 %y 4D (L=2 and S--3/2) r = i / i 8 ^ , + 10/18 r' 4 F (L=3 and S=3/2) P - 4/9 p'+ 1/9 %-p For 2pop of th i s parent we have to use S 2 ~ -1/2 and 2P(L=l,S-l/2) = 3/1 + 1/2 \ 31 "D(L=2,S=l/2) p = 10/6 p •1/6 %p F(L-3,S-1/2) /"I = 4/3 p ' - 1/3 ^ S i m i l a r l y we can ca l c u l a t e these i n t e r v a l factors for the 2 9 1 other set of PDF due to the parent 4d 5s( D) by replacing s^=l by ST ="0 and the calculated r e s u l t s are 2 P = -1/2 %q 2 D = + 1/6 % ^ 2 F ' = + 1/3 %ff> A comparison of the extrapolated i n t e r v a l s and the corresponding observed i n t e r v a l s for ~p and 4D multiplets are given i n Table No. 5. 4 F i s not considered because of the missing l e v e l ^9/2* *r^ie o b s e r v e < 3 i n t e r v a l s are reasonably close to the extrapolated values. (Extrapolation Table No. 5. of the multiplet i n t e r v a l s 4 of P and 4 9 D in 4d 5 Terms Agl C d l l I n l l l " Observed 4 p 5 / 2 ~ 4 p3/2 4 4 P3/2- P i / 2 2.15xp 1.85x/*' -1053 2.20xT7 i . s o x r -1477 2.25x/~' 1.75X/-1 -1900 2.27X/7 1.72XA7 -2013 4 4 °7/2~ D5/2 4 4 D5/2" D3/2 4 4 D3/2 " D i / 2 l.lOxp 3.60X/H 2.8oxP 0.35xp 2.98xp 4.17x P O.OSxf7 2.3 x T 4.7 x p 0.09x/^ 2.28xP 5.13x/^ S -374 -426 -470 -517 32 . The term system i s plotted graphically i n f i g . ( 3 ^ and i t i s found that the graphs go reasonably well i n the expected way. On the y-axis i s plotted(E - E 0)/^*J-C where E Q i s the reference l e v e l from which the energy i s counted upward and i n the plot of t h i s configuration the reference l e v e l E Q i s 2 9 2 taken to be D3/2 of 4d 5s . • o 9 i .T h e o r e t i c a l l y PDF of 4d 5s(^D) parent should l i e as much above the other 2PDF of 4ct 95s(3 D) parent as i s the ^ 1 9 difference between "D and D of 4d 5s in InlV, but these terms are found to be i n a much higher region though we are ••not surprised because the same i r r e g u l a r i t y i s observed i n the case of Agl and C d l l . Levels with Even p a r i t y : 9 The configuration 4d 5s6s i s easy to predict a f t e r 9 o we have established 4d 5s"5. The" n* for t h i s i s 2.03 and the next series member should have n* around 3.09 which predicts t h i s configuration to be near 245000 Cm 1 . Nodwell had i d e n t i f i e d these l e v e l s much below t h i s region at about 205000 Cm *, but since he looked for these l e v e l s by the combinations with 9 ^ his 4d 5s5p te. ms which i s not accepted by our analysis, we rule out these l e v e l s as unreal. To e s t a b l i s h these l e v e l s i s d i f f i c u l t , p a r t l y due to the fact t h i s configuration l i e s about 20000 Cm-* above the i o n i s a t i o n l i m i t of I n l l l and partly due to the t r a n s i t i o n s from some of these l e v e l s being d i f f u s e and not appearing too strong on our spectrograms taken with moderate disx-ersion. The autoionisation w i l l make the analysis more d i f f i c u l t , i n that the l i n e s are broadened enough to c = 1.21 34 increase the wnvenumber tolerance and necessitate an i n d i v i d u a l study Of the l i n e s . The other main reason i s the lack of support from the corresponding analysis of C d l l . None ^  of these terms i s reported i n the l a t t e r analysis by Shenstone. Some of the terms e a r l i e r reported by Takahashi are completely rejected by S h e n s t o n e ^ mainly because he too reported these l e v e l s much below the i o n i s a t i o n l i m i t . The r e v i s i o n of this C d l l spectrum i s currently being done in th i s laboratory to decide the correct analysis. However once we have the correct region for these l e v e l s the fin e structure of the configuration can then be traced from the parent configuration of InlV and InV. The structure can be represented diagramatically as shown in Fig.4. Also one can extrapolate the multiplet s p l i t t i n g of 4D from the Lande 's i n t e r v a l factor as we did i i * the case of other m u l t i p l e t s belonging to the odd par i t y l e v e l s of 4d 95s5p. 4 2 We could i d e n t i f y D and D a r i s i n g from the parent 4d 95s( 3D) but the other 2D of 4d 95s( 1D)6s l i e s so much above 9 that i t i s e s s e n t i a l l y mixed with the configuration 4d 5s5d thus i s d i f f i c u l t to name with cer t a i n t y . 9 The configuration 4d 5s5d i s incomplete and the main reason i s our complete ignorance of th i s configuration i n any other member of i t s i s o e l e c t r o n i c sequence. We do hope that i t w i l l be possible to complete t h i s analysis a f t e r the current projects i n Ag and Cd are completed. Since i t i s much easier to choose some of the obvious ' ., I n V . I n l V I n l l l 9 q 9 1 (4d ) (4d 5s) 4d 5s6s Term r e l a t i o n s h i p s in successive Inditun Ions. (SCHEMATIC) 36 l e v e l s of 4d 95s7s and 4d 95s6d because of the high v/ave numbers of the t r a n s i t i o n s involved, we have added some of the l e v e l s belonging to these configurations. We believe that these two configurations are overlaping so much that i t i s not very meaningful to assign names other than the J values. The r e l a t i v e energy l e v e l s of I n l l l are given i n Table No.7. Theore t i c a l Calculations for 4d 95s5p: Since t h i s i s a three electron configuration which gives more than one term of a p a r t i c u l a r kind so the ordinary diagonal sum method of t h e o r e t i c a l c a l c u l a t i o n s for e l e c t r o s t a t i c energies w i l l y i e l d only the sum of th e i r (29) energies. Racah used his tensor method to overcome t h i s d i f f i c u l t y . His r e s u l t s for the e l e c t r o s t a t i c energies i n 9 the p a r t i c u l a r case of d sp are of i n t e r e s t to us and are given below: 4 p " V 7 F 2 - G p 2 P r " F o " 7 F 2 + G d + 1 0 G l * G p 2 + G d 2 + ^ 0 G l 2 - G p G d - 1 0 G 1 (G p +G d) 4D = F 0 + 7 F 2 - G p ^ = F 0 + 7 F 2 + G d * < G p 2 + G d 2 - G p G d ) 1 / 2 4 F _ F -2F -Gp 2 F = F o - 2 F 2 + G d + 1 5 G 3 ± G p 2 +G d 2 +225G 3 2-G pG d-15G 3(G p +G d) At our request Mehlhorn at Lawrence Radiation Laboratory did the calculations for the level s of thi s configuration using the observed lev e l s we had sent to him. 37 In Table No.6 his calculated l e v e l s are compared with the observed Values. Because of the large mean error the Slater parameters are not well defined, but t h i s i s probably a r e f l e c t i o n of configuration i n t e r a c t i o n rather than the error i n our analysis. In f a c t these c a l c u l a t i o n s should have been made i n context with the Agl i s o e l e c t r o n i c sequence which we hope would give a better f i t to the observed l e v e l s . For example these c a l c u l a t i o n s predict 4F5/2 - 4F7/2 to be as close as 2 Cm*** but the extrapolation from the i s o -e l e c t r o n i c sequence shows that t h i s should be around 200 Cm-1-The Calculated Parameters are: GjCdp) G,(ps) 4781.6 1700.4 17973.3 2873.6 F 2(dp) G 2(ds) G 3(dp) 25748.4 2942.8 10615.8 Fo 201614.8 38 Table No.6 (Comparison of calculated and observed lev e l s of 4d^5s5p) Term 4 4 4 P 2 § * 1 * "Pi 2 Calculated 163893.0 166998.2 169538.5 Observed 162753.6 167339.0 170811.6 1134.4 -340.8 1273.1 F4ir lF l 1689B0.3 168988.4 170401.0 167262.2 167727.0 170888.0 1728.3 1134.0 487.0 D 3 | 2 173897.3 173541.2 175728.1 177719.4 174310.2 174357.6 175538. 7 178187.5 -412.9 -816.4 189.4 -468.1 5p' 3| 177732.2 180052.9 176531.0 179928.6 1201.0 124.3 5p' P]! 2 p i 2 178019.0 1804.09.7 178616.0 179321.0 -597.0 1088.7 5p' 180567.9 181921.7 180945.0 182361.5 377.1 439.8 39 Config. 4 d 1 0 ( 1 S ) 5 s Table No. 7 (Energy Levels of I n l l l ) Desig 5s J Level ••• 0.0 Interval 4 d 1 0 ( 1 S ) 5 p 5p 5p# 0 * 57184.0 61527.3 4343.3 4 d 9 ( 2 D ) 5 s 2 5 s 2 2 D 2§ 115572.0 l l 122420.1 -6848.1 4 d 1 0 ( 1 S ) 6 s 6s Oir 126879.9 4d 1°( 1S)5d 5d 2 D 128457.7 2-it 128747.8 290. 1 4 d 1 0 ( 1 S ) 6 p 6p -p* o | 144588.6 145926.3 1337.7 4d 1°( 1S)4f 4f 3| 161973.8 161982.1 8.3 4d 95s( 3D)5p 5p' *p* 2§ 0| 162758.6 167339.1 170811.6 -4580.5 -3472.5 4d 95s( 3D)5p 5p' F* 4| 1* 167262.2 167727.3 170888.0 -465.3 -3160.7 4 d 1 0 ( 1 s ) 7 s 7s 0 ! 169434.6 40 Table No. 7 (Cont.) Config. Desig. 4 d 1 0 ( 1 S ) 6 d 6d T) 1| 2* Level 17053 5.8 170719.1 Interval 183.3 4d 95s( 3-D)5p 5p' 4D* 3| i i . 174310.2 174357.6 175538.7 178187.5 "47.4 -1181.1 •2648.8 4d 95s( 3D)5p 5p' JF* 2| - 3| 176531.2 179928.6 3397.4 4 d 1 0 ( 1 S ) 7 p 7p 0| 1| 177264.3 177868.7 604.4 4d 95s( 3D)5p 5p f 2P* 0| 178616.5 179321.0 -704.5 4d 95s( 3D)5p 5p' 2D* 1| 180945.0 182361.5 1416.5 4 d 1 0 ( 1 S ) 5 f 5f "F* 3§ 2|-184894.6 185024.3 -129.7 4dl°( 1S)5g 5g %r. AJL 1 G 4-|,3| 186526.5 4d 95s( 1D)5p 5p" 2F* ;: 3| 189346.8 194901.1 -5554.3 41 Table No. 7 (Cont.) Config. 4d 95s( 1D)5p Desig. 5p" 2P* J 1-1 Level ••• 188063.9 191508.5 Interval -3444.6 4d 95s( 1D)5p 4d 1°( 1S)8s 4 d 1 0 ( 1 S ) 7 d 5p' 8s 7d l 1 •2. "D 0"^  1| 2| 192848.3 189374.4 190038.2 190135.5 97.3 4 d 1 0 ( 1 S ) 8 p 8p P* 0| 1| 193522.3 193808.5 286.2 4 d 1 0 ( 1 S ) 6 f 6f 2 F * 3| Z 2 198348.7 198199.3 -150.6 4 d 1 0 ( 1 S ) 6 g 6g 2 G 4-|-,3| 198654.0 4 d 1 0 ( 1 S ) 9 s 9s 0| 200363.7 4d 1°( 1S)8d 8d JD 1| 200780.2 2| 200836.5 56.3 i n 1 2 4 d l u ( S)9p 9p P* 1|,0| 202136.4 4d 1°( 1S)7f 7f 3-|,2| 205828.0 4d 1°( 1S)7g 7g 2 G 4|,3-| 20596S.5 42 Table No. 7 (Cont.) Config. Desig. Level "" Interval . ,10,]. 4d ( S)7h 10 1 4d ( S)10s 4d- L O( AS)9d 7h 10s 9d 2TT,', H* 5|,<§ 206011.0 D 12 2^ ^2 207068.5 207339.4 207382.6 43.2 10 i 4d ( xS)8g 8g G 41,3-1- 210712.5 4 d 1 0 ( 1 S ) 8 h 8h JH* 5£,4i 210742.0 10 1 4d ( S j l l s l i s Ok- 211460.3 4 d 1 0 ( 1 S ) 1 0 d lOd D 1-1-,2| 4d 1 C V s)9g 9g G 4-|,3i 213966.8 4 d l 0 ( 1 S ) 9 h 9h 2H* 5^,4| 213986.2 4 d 1 0 ( 3 S ) 1 2 s 9 1 4d 55(^0)6s 12s 6s' 'D 3 1 2-1 0| 214497.3 238830.2 239909.4 244603.0 -1079.2 -4693.6 4d 95s( 3D)6s 6s' 2D l 1 X 2 244661.3 246354.0 -1692.7 43 Table No.7(eont.) Config. Desig. Level Interval 4d 95s5d 5d' 4d 95s( 3D)7s 4d 5s6d 6d 1 ol 247550. 2 2 . ^ 248134. 6 3 249009. 4 4 o i . 251095. 6 5 252560. 1 6 252992. 5 7 i - l 255783. 9 8 2 i 258173. 6 9 " 2 i ' 260347. 0 10 1| 261025. 6 11 2-1 261364. 2 12 3-1 264237. 7 13 2-1 264763. 9 4D 3 i 2 i 293519. 0 1-1 295849. 1 o-l 297703. 3 14 11 295207. 5 15 ^2 » A 2 296122. 5 16 299266. 9? 17 i i 299921. 2 18 ? 300118. 5 19 ° i 300308. 0 20 301410. 2? -2330.1 -1854.2 44 CHAPTER V ,/ INDIUM IV The previous analysis i s by Gibbs and White(^O) V ; J I O c l a s s i f i e d 36 l i n e s between 472.8A° to 1725A° . They established a l l the l e v e l s belonging to the configurations 4d*^(ground " 9 9 s t a t e ) , 4d 5p and 4d 5s. Nodwell revised t h i s spectrum but there i s not any s u b s t a n t i a l change i n the previous analysis except that his values are closer to our values for the t r a n s i t i o n s from odd l e v e l s to the ground state. But again a l l h i s l e v e l s are consistent l y lower by 48 Cm""* as compared to our d a t a . A l l these t r a n s i t i o n s to the ground state l i e i n the f a r u l t r a v i o l e t region where we believe our data to be more r e l i a b l e and also we have observed a l l these t r a n s i t i o n s i n the 1st, 2nd, 3rd and 4th orders . Except for t h i s change we have accepted designations of the terms to be correct. We have also observed a l l the expected t r a n s i t i o n s between these configurations, both i n spark i n He and the electrodeless sources. The e x c i t a t i o n data from the sj>ark i n He has further confirmed the previous analysis. Nodwell's a d d i t i o n a l l e v e l s which he a t t r i b u t e s to the 4d 96s and 4d 96p are rejected for the lack of s u f f i c i e n t support from our l i n e l i s t . Mehlhorn made the t h e o r e t i c a l 9 c a l c u l a t i o n s also, for 4d 5p terms and the mean error of 759 wavenumbers seems to be large but there i s not much doubt as to the correctness of these terms. We have extended t h i s analysis now to include most 45 of the expected l e v e l s of 4d 5s , 4d 6s, 4d y5d and 4d J7s. Some of the terms of 4d 96p, 4d 96d, 4d 94f, and 4d8Ss'5p are also included. The i o n i s a t i o n p o t e n t i a l i s calculated from the 4d 9ns s e r i e s . The term system i s based on the parent of 4d 9 which has a doublet separation of 7171 Cm""* as observed i n InV.The addition of the outer electron 1 w i l l give terms i n two groups with the parent separation of 7171 Cm *., i t w i l l be more so f o r the higher members approaching the jj coupling For such cases i t may seem t h e o r e t i c a l l y wrong to use the notation of L.S coupling but for the sake of s i m p l i c i t y and comparison within the i s o e l e c t r o n i c sequence we are A r e t a i n i n g these. 4d 95p Configuration: As stated before we have only confirmed t h i s system of terms from t h i s configuration. In Table No.8 are compared the t h e o r e t i c a l valu.es calculated byMehlhorn against the experimental values. Parameters Calculated by Mehlhorn Gx - 7762.6 G 3 = 2764.6 -2340.1 F 2 - 22467.5 F Q = 209653.7 46 Tabic No.8 (Comparison of calculated and observed values for terms of 4d 5p) Term Calc. Obs. At,-* Term Calc. Obs. A £ 3 p 193844. 6 193894. 5 -50* F 2 205518. 3 205251.2 267.1 \ 197121. 8 196599. 0 522* 204947. 2 205849.4 -902.2 200567. 2 200553. 8 13* 208714. 5 208598.3 116. 2 V 201984. 204625. 6 2 201054. 204947. 3 6 930* 5b -312* at; ' \ 209583. 211136. 1 6 209781.0 21154.6. 9 - 197.9 - 410.3 3"2 201294. 7 202024. 8 -730* * * 1 D 2 213438. 4 212679.3 759.1 R.M.S error i s calculated to be = 759 Cm~l where mean error i s given by the following r e l a t i o n : R.M.S Error = j \ (AEj^ ) 2 / (n-m) V where A £ == Observed Energy - Calculated Energy n = Number of energies and m = Number of parameters involved. 47 4 d^ns Configuration: This configuration can be calculated on the b a s i s ( 31) of Houston's theory of intermediate coupling for two electron system when one of the electrons i s an s-electron. The e l e c t r o s t a t i c i n t e r a c t i o n i s given b y , Fo ~ G{ The matrix of : £ .s i n t e r a c t i o n for J = 2 3 U filt+0 which gives us the secular determinant: W - ( F Q - Gg ) + = 0 48 Solution of t h i s determinent gives the energy values fo r the terms of J = t 1 / 4 % ) 2 + l/ltCi+OU W f o r J = 1 i s s t r a i g h t forward because the spin o r b i t i n t e r a c t i o n i s only 1 x 1 matrix, so that V.j, = !•'„ - C. - 1/2 ( f H 1 )<iC For the complementary configuration £~^ + *.s we need only to change the sign ofNq,in the above equations to give us 1,1+1 f 3LlH = .£ -Gt - </z t %,u Since the l e v e l i n t e r v a l s are homogeneous expressions i n the parameter^? and G/ we can s i m p l i f y the ca l c u l a t i o n s by using only a s i n g l e parameter depending on the r a t i o of ^ and , Edlen ' introduces a couplingparameter ~ ™ ~ _ a n d d e f i n e s = s o that for X .=' 0 when^ ^  £ ^ (L. S coupling) 'Y* 0 and f o r X = c 5 0 G e « § ^ C ^ J * J c o u P l i n S ) r y / ' = 1 thus the p a r a m e t e r m e a s u r e s the r e l a t i v e strength of the couplings L.S and J . J . 49 2( + l Expressing the energies i n the unit of G/ 4 with zero of the configuration defined at 1/20-1% + 3L^ ) we can express the equations (5.3) i n terms of coupling parameter y as ( * (\.) - + 2 r 9 f In a p a r t i c u l a r case of d s substitute l~ 2 so that - 1 d 9.s 3n V - . - 1 - 1 -V 2 Y This theory can be immediately tested against the known configurations of 4d ns s e r i e s . A ,9-4d 5s: From the known l e v e l s we have the spin o r b i t parameter % d =( 3Dl - 3D 3)/2.5 = 2844 Cm"1. Zero of the conf i g u r a t i o n i s taken at (1D2•+ 3D 2)/2 = 134770. Unit of measurement ( G 2i-5/4i? ) = Zero - 3 D 3 . = 6089.8 The coupling parameter Y = "• 3 D 3 ) / 2 ( u n i t ) = .58379 Comparison of the observed and calculated values for t h i s configuration and for the next two members of t h i s series i s shown i n Table No.9. The agreement.is as good as can be expected. 50 4d 96s: * • • 9 Using the same formulae as i n the case of 4d 5s we have calculated parameters f o r t h i s configuration as The intermediate coupling for 4d 5s , 4d 6s and 4d 7s i s shown i n the diagraro(5" )• A l l the points l i e on the smooth curve becomes more j . j as v/e go to the higher members of the se r i e s . In the figure are also plotted the corresponding • 9 l e v e l s of Pdl i s o e l e c t r o n i c sequence and though 4d 5s shows the normal behaviour of i n c r e a s i n g ^ with the higher ion of 9 q the sequence but f o r 4d 6s and 4d 7s this i s s u r p r i s i n g l y opposite. Such a behaviour has not been reported e a r l i e r to the knowledge of the author. In the P d l ' t h i s r e v e r s a l appears 9 even in the 4d 5s terms where ^  for Pdl i s more than that of A g l l though for C d l l l , InlV and SnV the coupling becomes 9 more and more j . j as expected. The perturbation of 4d 6s and 7s i s ruled out because of the excellent f i t on the curve f o r a l l the members. It seems hard to explain exactly the cause of t h i s unusual behaviour p a r t i c u l a r l y since i t i s not too well known how the parameter Gj,varies along the i s o -e l e c t r o n i c sequence. Y/e know that the spin o r b i t parameter' ^ ' i l = 2863.6 G 2 - 633.5 parametery - .84963 and the coupling 9 as expected and increasing value o f ^ shows that the coupling 52 Table No. 9 q (Comparison of calculated and observed values of 4d'ns term Term 4d 95s 4d 96s 4d 97s Calculated Observed D 3 128680.6 128680.6 0.0 130842.5 130879.4 36.9 135790.9 135791.6 0.3 138698.3 138662.2 36. 1 s 290845.3 290S45.3 0.0 N 291550.1 291473.5 -76.6 3 D l 298004.5 298004.5 '. o . o 1 298566.5 298643.2 76.7 \ 360973.8 360973.8 0.0 361272.3 361240.9 -31.4 368073.4 368073.4 0.0 .368288.3 368321.4 32.1 Parameters for 9 4d y7s Coupling parameter Y =.9325 = 2840.0 Cm"1 Gz = 258.0 -1 Cm 53 9 4d 7s and Series Limit: A f t e r having got the f i r s t two members of t h i s s e r i e s i t was rather easy to locate the four l e v e l s of t h i s configuration. The i n t e n s i t y of the corresponding t r a n s i t i o n s i s f a l l i n g r a p i d l y with the higher members of t h i s s e r i e s . The parameters calculated are given below and the comparison of the calculated values for the l e v e l s with the observed values i s included i n the Table No.9. These three members 9 of 4d ns ser i e s helped us to calculate the i o n i s a t i o n p o t e n t i a l of InlV by means of a Rit z formula. A d i f f e r e n t behaviour i s shown by the ser i e s of t h i s configuration, 4d 9ns, where the spin o r b i t s p l i t t i n g i s due to the fi x e d d hole. As we go along the series the coupling i s r a p i d l y changing with n, we can see t h i s from the f a c t that the coupling parameter X » 5/4 w i l l G£ increase because of the rapid decrease i n the value of G approximately proportional to l/n*° while v Co remains p r a c t i c a l l y constant. A plot of the l e v e l s of 4d^ns against n* w i l l c l e a r l y show the approaching l i m i t as ^05/2 a n c* ^ D3/2 3 ^ In accordance with the theory the separation Dj^  - D3 i s found to be almost independent of n and remains close to 2 Q the D difference of the parent d . Thus InlV has a double-s e r i e s l i m i t which can be calculated by considering the n* for 3 D 3 and 3D]_ separately. To obtain the Limit E ° 1 f i r s t we s t a r t with the approximate value of E,° and the corresponding T° and 54 ]r>. From Eq.(3.5A) and the d e f i n i t i o n o f o we have the approx i . mate r e l a t i o n S +'ATn*/2T = a + BT by means of which the c o r r e c t i o n A T = E i - E^ can be determined from three s e r i e s members ( i n d i c e s 1,2,3) by s o l v i n g for£T (given i n Eq. 19.4 of E d l e n ' s ^ 2 7 ^ a r t i c l e ) i . e ( T l - T 2 ) ( S / - < ) - ( T 2 - T 3 )(£*-£*) A T = 2 - — ( T 1 - T 2 ) ( n * 3 / T 3 - n 2 V T 2 ) - (T 2-T 3) (nJ/T 2 - nJ/ T ] L) S t a r t i n g with.-..an approximate value f o r the . I o n i s a t i o n P o t e n t i a l as 350000 Cm~l we c a l c u l a t e d t h i s c o r r e c t i o n to be about 11000 wave numbers. T h i s method i n v o l v e s an i t e r a t i o n procedure , which on the next a p p l i c a t i o n gave t h i s c o r r e c t i o n to be 875 Cm \ thus e s t a b l i s h i n g the i o n i s a t i o n p o t e n t i a l of In IV to be at 461875 Cm"1 f o r the lower term 2 D 5 / 2 of 4d 9 . The second l i m i t of Inl V i s j u s t about as much higher -1 o as the c o n s i s t e n t d i f f e r e n c e of 7100 Cm between the °D and 3 D 3 of 4d 9ns s e r i e s i n InlV. The l i m i t 439000 cm"1 quoted i n (7) A.E.L Tables i s deriv e d from i s o e l e c t r o n i c s p e c t r a P d l through -1 SnV! which i s 28253 Cm l e s s than the l i m i t reported e a r l i e r (32) by Kruger and Shoupp . Our value i s e s s e n t i a l l y i n agreement with t h i s l a t t e r r eference except that we have quoted the 9 double l i m i t u sing three members of 4d ns s e r i e s . 55 8 2 4d 5s Configuration: O q This configuration gives r i s e to the F, P j i i' ' • and SDG terms, a l l of which have been found except the S Q which we have not been able to locate. (33) The analysis of A g l l made by E.Rasmussen and that of C d l l l made by Shenstone and Pitten g e r ( 2 8 ) were of .great assistance in the i d e n t i f i c a t i o n of t h i s structure. 8 2 Theory of Intermediate Coupling for 4d 5s : Using the spin o r b i t i n t e r a c t i o n matrices for 2 d given i n TAS(pp 268) we have derived the expressions for the l e v e l s of t h i s configuration. The e l e c t r o s t a t i c i n t e r a c t i o n energy i s given by 1 S = F 0 + 1'4F • + 126F 4 3 P = F Q + 7F 2 - 84 F 4 1D = F D - 3 F 2 + 36 F 4 3 F = F D + 4 F 2 - 9 F 4 XG F c + 4 F 2 + " F 4 t h i s e l e c t r o s t a t i c energy added to the diagonal terms of the spin o r b i t matrices gives us the general energy matrix for any r e l a t i v e strength of the L.S and J.J coupling. However t h i s does not include the intercohfiguration i n t e r a c t i o n s . In t h i s operation a minor p r a c t i c a l point i s to include properly the change of datum from a multiplet C.G to a stated reference level.. Me write below the spin o r b i t matrices and the secular determinant containing the sum of the spin o r b i t and e l e c t r o s t a t i c energies for each J. 56 J = O ( For J P and 1S ) spin o r b i t matrix i s o 2 'o 2]I -2/6 0 Secular determinant for J = 0 can now be written as W - (P 0 +7F 2-84F 4) yd W - (F 0+14F 2+126F 4) = 0 Solution of this determinant w i l l give the energies for 3 1 P and S„. o ° S i m i l a r l y the secular determinant for J = 4 can be written as: W - (F 0+4F 2+F 4J W - ( F 0 - 8 F 2 - 9 F 4 J - 3 / 2 ^ ~ 0 57 3 3 1 For J=2 the three terms F , P 2 and Dr> w i l l require the sol u t i o n of a 3x3 matrix which becomes cumbersome to be solved exactly to get the formal solution, but from the c o e f f i c i e n t s o of W in the secular equation we can get some useful information For J - l and J=3 the terms are li n e a r in W so these can give 3 o us d i r e c t l y the l e v e l s f or P^ and Fg. The t h e o r e t i c a l r e l a t i o n s for the complementary configuration 4d^5s 2 can be written by sub s t i t u t i n g J~ ~ ^>L/Ji i n the above formulae and f i n a l l y we get 3 p l = F o + 7 F 2 ~ 8 4 F 4 " 3 F 3 = F D - 8F 2 - 9F 4 - ^ J _ / 3 p \ = F D +21/2 F 2 + 21F 4 +$/2 ±1/2 J(7F2+210F4~5|) 2*56^(F 2+30F 4) ^ ~ F 0-2F 2-4F 4-3/4^ ^ B Y ^ F ^ T ^ f - ( 3 F 2 F 4 r 2 4 F 2 ^ - 2 0 F 4 ^ ) 3 3 Obviously P i ~ Fg ~ 15(F 2 - 5F 4) i s independent of coupling 3 -j and i f we know the other l e v e l s F 4 and •LG4 we can calculate the r e l a t i v e magnitude of Fg and F^. The attempts were made to apply these energy formulae to the observed energy l e v e l s , but there does not seem to be a systematic f i t for the parameters and the main reason for thi s i s probably the 9 perturbations of i t s higher members by the mixing of 4d 5d terms. The positions of the le v e l s were estimated by extrapolating•the corresponding terms in the i s o e l e c t r o n i c 3 sequence. Looking at the r e l a t i v e difference of Fg from the 58 3 D 3 of 4d^5s we estimate 3 F 3 as Pdl A g l l C d l l l InlV 2.70(2 x 3D 3) 1.25(2 x 3D 3) 1.15(2 x 3D 3) 1.09(2 x 3D 3} 3 1 This predicts F 3 to be around 282000 Cm" and the observed l e v e l i s at 283496 Cm \ M u l t i p l e t s p l i t t i n g i s also estimated by extrapolating the Lande's i n t e r v a l factor i n the other 3 members of t h i s sequence and i t i s found that F p a r t i c u l a r l y 3 f i t s very well according to the extrapolations. Since P i s not completely known in the other members except i n C d l l l i t i s d i f f i c u l t to make the estimates, and the presence of 3 9 another V P from 4d 5d very close to i t would make the 8 9 i d e n t i f i c a t i o n s s t i l l harder. In Figured, the terms of 4d 5s 3 are plotted r e l a t i v e to F 3 and we f i n d that the terms of InlV are f a i r l y at the expected positions. 9 4d 5d Configuration: The sequence Pdl ~ SnV shows a gradual t r a n s i t i o n 9 9 from Russell-Saunders to j . j coupling for d ,s, d .p and 9 d ,d configurations. By analogy with C u l l , Mrs. S i t t e r l y has prepared the table giving the J l coupling notation i n 9 the form suggested by Racah according to which the d .d l e v e l s should be designated as given in Table No.10 In such cases where one 1 electron i s firmly bound, the i n t e r a c t i o n with the second electron may appear as only a perturbation on the usual doublet s p l i t t i n g of the 59 24000 r-60 f i r s t electron. Racah has worked out for the cases where second electron i s weakly bound electron 1, so that the spin-spin i n t e r a c t i o n i s responsible only for a f i n e doubling of each j l state. Racah gives the formulae for j l coupling as v/ritten below: For the c o e f f i c i e n t f g C j l k ) of F^ i n energy l e v e l formula -6h 2 +'3h - 2J(J+1) KiH) f o ( j l k ) = — — — 4J(J+1)(2£ - 1)(2£ + 3) where 2h - K(K-i-l) - J(J+1) + 1) and K = J + £ Table No 10 (J notation for d 9.d configuration i n InlV) Config. L.S J l d e s i g . J Config. L.S j l d e s i g . J 4d 9( 2D 2-|)5d 3 S 1 5d 0 1/2 1 4d 9( 2Di-|)5d ^ 5d' o| 1 5d Jo 5d 41 5 " 5d 3 G 3 5d' 3| 3 3 G 4 4 3 G 4 4 5d 3 P 9 5d l | 2 5d ?D, 5d 1 ih 1 5d 5d 3 p ] 1 D 2 2 3 D o 5d 2-| 3 " 5d 3 F 0 5d • 2-| 3D 2 < 2 * . 3 F 3 5d 3| 3 3 F 4 4 In such cases the l e v e l s occur i n close pairs. The d parent gives r i s e to J = 2 1/2 and 1 1/2 and the d electron added 61 to i t gives K as . — ' . ' I -J 1 K 2 1/2 2 4 1/2, 3 1/2, 2 1/2, 1 1/2 and 1/2 1 1/2 .2 3 1/2, 2 1/2, 11/2, and 1/2. Substituting these values of j,1 and K i n the above equation v/e can cal c u l a t e the c o e f f i c i e n t s of F 2 and the energies for the p a i r s of each K can be written as K * s '= J f i l i a i o r J of l e v e l 3,4 2,3 1,2,4,5 0,1 2,3 1,2 3,4 1,0 This c l e a r l y shows the separation of the two groups of 9 l e v e l s by the parent difference of d and the level s within each group to appear as pairs and the lowest l e v e l s of the 3 lov/er group to have J = 1 and 0. V'e a c t u a l l y found S, and Parent K • Energy 3 1/2 + 6.8F 2 2 1/2 - V 4 F 2 D 2 1/2 2 2 4 F, 2D 1/2 " ^ - l 4 7/15 F 2 2 1/2 +3/2^_+ 7F g 1 1/2 .+3/2^+ F 2 1 1/2 3 1 / 2 + 3/2t#--2.8F 2 1/2 +3/2^-9.8F 2 62 another J=0 to be close to indicate a strong pair coupling r and t h i s was followed by a group of pairs of J=5,4 and 2,1 while the higher group was about as much higher as the parent separation 9 9 8 2 of d . Probably because i t l i e s so close to the 4d 6s and 4d 5s configurations, the pairs are not as close as expected but the order of J values i s approximately maintained. We do not rule out the p o s s i b i l i t y of wrong designations but there i s l i t t l e doubt as to the numerical and J values of the l e v e l s . In most of the l e v e l s we have observed a l l expected t r a n s i t i o n s f a i r l y strong and with the correct excitations observed i n spark i n helium. 9 9 8 4d 6p, 4d 4f and 4d 5s5p Configurations: The analysis of these configurations i s incomplete and therefore no attempt was made to consider them i n detail.The l e v e l s are designated by numbers and t h e i r J values. The t r a n s i t i o n s 9 9 ' from 4d 6p to the 4d 5s are i n the far u l t r a v i o l e t where the spectrum i s r e l a t i v e l y weak on our plates and and also the accuracy i n wavenumbers i s of the order of a few wavenumbers. The t r a n s i t i o n s 9 from 4d 6p to the other even l e v e l s are mainly in prism region where the dispersion and accuracy i s r e l a t i v e l y low, therefore the configuration could not be completed. The other two odd p a r i t y configurations are completely mixed with each other. However we have associated the l e v e l s found with th e i r parent configuration on the Q 8 2 basis of t h e i r t r a n s i t i o n s to 4d 95s and 4d 5s . We expect the 63 l e v e l to belong to 4d°5s5p i f i t shows strong t r a n s i t i o n s 9 to these two configurations while 4d 4f should go strongly j 9 v/ith the ground state and the 4d 5d terms. Though we have every hope that the l e v e l s reported for these configurations are r e a l but we would l i k e to add these to be tentative values. 9 4d 6d Configuration: This configuration also i s not complete but only 6 l e v e l s out of 18 are missing. Since the combinations 9 with the 4d 5p are not too strong as the t r a n s i t i o n s l i e in the short X region, we have not been able to observe a l l the expected t r a n s i t i o n s from these l e v e l s but .since these lev e l s c l a s s i f y the only strong l i n e s in that region we are d e f i n i t e about the r e a l i t y of these l e v e l s . 64 Table No. 11 (Energy Levels of InlV) Config. Desig. J Level Interval 4d 10 4 d 1 0 1 S 0 0.0 4 d 9 ( 2 D 2 A ) 5 s 4d 9( 2D-,i )5s A 2 4 d 9 ( 2 D 1 i )5s 5s 3D 5s D 3 2 1 1286S0.6 130879.4 135791.6 138662.2 -2198. 8 -4912.2 4 d 9 ( 2 D 9 l )5p 4 d 9 ( 2 n i )5p 1 2 5p 3P* 2 1 0 193894.5 200554.6 204947.3 -6660.1 -4392.7 4 d 9 ( 2 D 2 | )5p 4 d 9 ( 2 D T i )5p 5p F* 4 3 2 201053.7 196599.8 205251.9 4453.9 -8652.1 4d 9( 2D2| )5p 4 d 9 ( 2 D n l )5p 5p D* 3 2 1 205849.5 202024.5 211547.2 -3825.0 -9522.7 4d 9( 2D , )5p 5p XP* 1 208599.1 4 d 9 ( 2 D x i ) 5 p 5p 1 F * 3 209781.6 65 Table No. 11. (Cont.) Config. 4d 9( 2D 1i.)5p J. 2 Desig. Level 5p 1D* 2 212679.1 Interval 4 d 8 5 s 2 5 s 2 3 F 4 3 2 277343.5 283495.3 284986.1 -6151.8 -1490.8 '4d9(2Do> )5d 5d 3 S 285943.6 9 9 4d .(-D 2i)5*l 5d 3 P 2 1 0 288729.1 288818.8 289079.1 - 89.7 - 260.3 4 d 9 ( 2 D 9 i J 5 d ^ 2 4 d 9 ( 2 D 1 i ) 5 d 5d 5 4 3 289112.3? 289564.7 296993.1 - 452.4 -7428.4 8 ? 4d 5s^ 5 s 2 3 P 2 1 0 289513.4 294544.1 294785.2 •5030.7 • 241.1 4 d 9 ( 2 D 2 i ) 6 s 4d9(2D-, i_)6s 6s °D 3 2 1 290845.3 291473.5 29S004.5 - 628.2 -6531.0 66 Table No. 11.(Conf.) Config. Desig. J Level Interval 4 d 9( 2D 2|)5d 4 d 9 ( 2 D , i ) 5 d 5d °D 3 2 1 293254.3 297034.8 •300451.2 -3830. 5 -3366.4 4d 9( 2D 2-|)5d 4 d 9 ( 2 D 1 i ) 5 d 1'2 5d 3 F 4 3 2 293701.8 293228.1 299322.5 473.7 -6094.4 -4d9(2D,D.)5d 5d S O 295978.3 4 d 9 ( 2 D 1 i ) 5 d 5d 1 296721.8 4 d 8 5 s 2 5 s 2 lC 4 297364.6 4 d 8 5 s 2 5 s 2 2D 2 298160.7 4 d 9 ( 2 D r l ) 6 s 6s XD ' 2 298643.2 4 d 9 ( 2 D l 3 )5d A 2 5d AG 4 300984.2 4 d 9 ( 2 D 1 1 ) 5 d A"2 5d 3D 2 301454.3 67 Table No. 11 (Cont.) Config. Desig. Level Interval 4d 9( 2D)6p 1* 2* 3* 4* 5* 6* 7* 8* 9* 2 1 2 3 2 1 3 3 0 314276.5 316430.1 316464.3 316976.0 319967.4 320358.2 321152.7 321927.3 324057.2 4d 85s5p 4 d 9 ( 2 D j 4 f 10* 11* 3 2 324927.5 327317.3 8 4d 5s5p 12* 13* 1 1 329328.3 330111.2 4d (^D)4f 14* 331972.2 8 4d 5s5p 15* 332031.4 4d 9 ( 2 D ) 4 f 16* (2,1) 332790.5 17* 3 333025.8 18* 2 333057.9 4d 85s5p 19* 3 3 3 3 3 8 . 9 68 Table No.11 (Cont.) Config. Desig. 4 d 9 ( 2 D ) 4 f 20* Level 333381.5 Interval 4d 85s5p. 21* 22* 23* 24* 25* 26* 27* 28* 29* 30* 31* 32* 33* 34* 35* 36* 37* 38* 39* 3 2 3 2 3 2 1 3 1 1 2 2 3 3 2 2 3 1 2 335599.0 335716.3 335902.2 336446.3 336641.5 337029.2 337873.6 339241.1 339964.9 340028.5 340402.0 340470.2 345740.8 349089.2 351157.2 352252.3 353722.0 354932.2 356583.3 4d 9( 2D)6d 6d 357788.5 69 Table No. 11 (Cont. ) Config. Desig. J Level 4d 9( 2D)6d 6d 1 3 357970.7 2 2 358075.3 3 3 358398.1 8 4d 5s5p 40* 1 359251.7 4d 9( 2D)6d 6d 4 1 360007.6 4 d 9 ( 2 D 9 J7S 2 7s 3D 3 360973.8 2 361240.9 4 d 9 ( 2 D 1 x)7s 1 2 1 368073.3 4d 9( 2D)6d 6d 5 0 362098.5 4d 85s5p 41* 2 362117.3 4d 9( 2D)6d 6d 6 3 362122.6 4d 85s5p 42* 2 362949.0 9 9 4d ( zD)6d 6d 7 4 363878.2 8 3 365350. 0« ,9 3,2 365770.6 -267.1 -6832.4 Table No. 11 Config. 4d 9( 2D)6d 4d^5s5p 4d 9( 2D)6d 4 d 9 ( 2 D 1 i ) 7 s 4d**5s5p 70 (Cont.) Desig. 6d 10 43* 6d 11 7s *D 44* J Level 1 367537^8 1 367620.4 4 367995.1 2 368322.2 3 375802.0 Interval 71 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK About 4000 l i n e s of Indium were measured on our plates and 36% of these l i n e s are c l a s s i f i e d as belonging ' to the spectra of I n l , I n l l , I n l l l , I n l V and InV. The analyses of I n l l l and InlV are extensively revised and extended to es t a b l i s h most of the basic terms of these spectra. In doubly ionised Indium previous analyses l i s t e d 160 c l a s s i f i e d l i n e s out of which 63 l i n e s are accepted i n thi s a nalysis. Extensions and revisions of thi s analysis have brought the new t o t a l to 419 c l a s s i f i e d l i n e s . In InlV we have added 354 new c l a s s i f i c a t i o n s to the 37 l i n e s previously c l a s s i f i e d . Despite the extensive revisions and additions to these spectra much further work i s needed to be done. Use of the i n f r a - r e d spectrograph for X 9000A° and a grazing incidence spectrograph for X below 340A0 w i l l provide data which added to our l i n e l i s t can be he l p f u l for the analyses of I n l l and InV. Work with a high r e s o l u t i o n spectrograph should y i e l d useful information about the hyperfine structure i n Indium spectra. . - 1 Bibliography . z. 1. Edlen B. J 0 S A Vol. 56 No. 10 1285 (1966) 2. Shenstone A.G., Rep. Prog. Phys. 5, 210 (1939) 3. Meggers W.F. , J O S A 36, 431 (1946) 4 i . b . i . d 41, 143 (1951) 5. Report on Research i n Optical Spectroscopy, Publication 1699, National Academy of Sciences, Washington D.C (1968) 6. Lyman T.,'The spectroscopy of Extreme U l t r a v i o l e t ' Longmans Green and Co. London (1928) 7. Moore-Sitterly C.E., Atomic Energy Levels,Vol I I I , C i r c u l a r of the National Bureau of Standards, 467, (1958) 8. Wu CM., M.Sc. Thesis, University of B r i t i s h Columbia (1967) 9. Nodwell R.A.,Ph.D. Thesis, Department of Physics, University of B r i t i s h Columbial956.(Unpublished) 10. Minnhagen L. ,Petersson B. and Stigmark L. , Ark. Fys. 1.6, 541, (I960] 11. Shenstone A.G., Proc. Royal Soc. 261A.153 (1961) 12. Honig R.E.,Vapour pressure data for the Solid and Liquid Elements(R.C.A. Review Vol.XXIII No.4 (1962) 13. Dick K.A., M.Sc. Thesis, University of B r i t i s h Columbia (1963) 14. L y a l l K.R.,M.Sc. Thesis, University of B r i t i s h Columbia (1965) 15. Crooker A.M. and Wu CM., Private Communication. 16. Edlen B., Rep. Prog. Phys. Vol.XXVI,181, (1963) 17. Toresson Y.G., Ark. Fys. 17,179,(1959) i b i d . 18,389(1960) 18. Radziemsky L.J., Andrew K.L., Kaufman V., and Litzen U., JOSA 57,336 (1967) 73 19. Crosswhite H.M., John Hopkins Spectroscopy Report No. 13(1-958) 20. Slater J.C.,Phys. Rev. 34, 1293,(1929) , 21. Condon E.U., and Shortley G.H.,'Theory of Atomic Spectra' Cambridge Press (1935) 22. Rydberg Interpolation Tables Published by The Department of Physics,Princeton University (1934) 23. Fowler A., 'Report on Series i n Line Spectra' London , Fleetway Press (1922) 24. Goudsmit S., and Humphreys C.J., Phys. Rev. 31,960, (1928) 25. Bockasten K. Ark. Fys. 9, 457, (1955) 26. (a) Born M. and Heisenberg W. Z. Physik 23,338,(1924) (b) Waller I. i b i d . 38,635,(1926) 27. Edlen B. Handbuch Der Physik, Edited by S.Flugge. VolXXVII pp. 80, (1964) 28. Shenstone A.G., and Pittenger J.T. JOSA 39, 3, 219 (1949) 29. Racah G., Phys. Rev. 62, 523 (1942) 30. Gibbs R.C. and White H.E. Phys. Rev. 31,776 (1928) 31. Houston W.V. Phys. Rev. 33, 297, (1929) 32. Kruger P.G. and Shoupp W.E., Phys. Rev. 46,124 (1934) 33. Rasmussen E.,Kgl. Danske Videnskab., Math~fys. Medd. 18, No.5 10 (1940) 74 Appendix i In the following wave number and wavelengths tables we have included the r e l a t i v e transmissions of the l i n e s 1^ and Ig, taken from the two separate experimental runs with the di s r u p t i v e electrodeless discharge as the l i g h t source. The second run was a weak discharge and some l i n e s were not observed on these plates, p a r t i c u l a r l y those belonging to the higher i o n i s a t i o n stages and in the region below 1000A0. In many cases when the l i n e s were missing on these plates but those were observed i n spark i n He exposures, the transmission Ig i s taken from the l a t t e r , and i s marked (*). Probable e x c i t a t i o n as observed i n Spark i n He i s given i n column 5. In column 6 i s the i o n i s a t i o n stage of the atom to which the l i n e belongs and in the l a s t column i s stated the c l a s s i f i c a t i o n of the spectral l i n e s . The l e v e l s designated by (') in the text are printed i n this l i s t as with the symbol(@ ) due to the f a u l t y printer. Odd parity l e v e l s are marked (*) as in the text. Since no extensions were made to the analysis of Inl and I n l l , we have not stated the c l a s s i f i c a t i o n s for the l i n e s already reported in the literature.Any new l i n e s of these spectra bear the c l a s s i f i c a t i o n s as well as the f i r s t l e t t e r of the authors name. Lines marked (N) are due to Nodwell*s unpublished analysis. Every possible care has been taken to exclude the 2nd or higher orders-arid the impurities from t h i s l i s t . A l l these l i n e s appeared in the f i r s t order except those below 340A°. 21907.7 4564, ,605 796 21919.9 4562. .065 IV IV 21949.4 4555. .933 841 21961.9 4553. .340 538 I V • 21970.0 4551. .661 814 22038.3 4537. .535 800 2207b.9 4529, .827 7 29 22167.0 4511. .210 9 7 237 2 2212.4 4501, .990 622 11 22494. x> 4445. .5^1 5 5 i 416 22509.3 4442. . 3o9 272 IV IV 22578.0 4429, .0 90 722 IV 22604.6 4423, ,878 276 IV 22909.0 4365, ,097 858 22967.5 4353, ,9 78 246 541 I 22981.7 4351. ,288 672 23031.8 4341, ,823 319 154 I 23037.6 4340, ,730 338 23073.9 433 3, ,901 451 633 IV 23097.7 4329. ,433 663 IV 111 23284.1 4294. ,7 7b 479 IV I V 23427.2 4266, ,34^ 531 I 23506.8 4254. .068 83 148 111 111 23518.6 4251. .9^4 359 23613.3 .4234, .902 599 I 23773.4 420b, .362 371 4 1 2 * 11 23976.3 4170. .785 782 6 0 6 * IV 24200.9 4132. .0 78 580 24218. 1 412V. .143 463 2422.:.4 . 412b, 410 422 11 24232.7 412o, ,633 74D 24372.3 4102. , 9o5 8 i I 24449,5 4090, ,063 835 24549.0 4073. 4b6 69 304 111 24556.0 4072, 324 139 90 111 24571.9 4069, ,609 215 369 11 24580.7 4068. 232 578 24609.6 4063. 453 62 248 111 111 24620.5 4061. 656 563 24642.1 4058, 096 222 3 1 9 * 11 24714.7 4046, 175 199 4 4 5 * IV 24773.6 ^ 4 8 0 2 . 4 4036, 555 556 4 0 3 1 , 868 158 24345.0 4024. 953 81 253 111 111 24855.2 4U2 ^.03 517 11 5S2 3P1 - 6P 3* 6S 3D1 - 6P' 5* 5P@ 4P3/2* — S 2S1/2 5S2 2D3/2 - 6P 2P1/2* CL A S S I F I E D 6S 1D2 - 6P 7* 7P 2P1/2* 6S 1D2 - 6P 8* [5S2 2D3/2 - 6P 2P3/2* CLASS I F I ED CLAS51FI ED CLAS S I F I E D 4F 2F7/2* 4F 2F5/2* - 5G 2G - 5G 2G 6P 2P3/2* - 6D 2D5/2 CLAS S I F I E D 6P 2P1/2* - 7S 2 c l / 2 C L A i o I F I ED WW ^ 2 4 8 1 2 . 5 4 0 3 0 . 2 2 7 122 J.57* 8 1 8 j a a > —* <* p ^ - <s 'a. 2 4 8 9 8 . 3 4 0 1 6 . 3 3 8 IV 2 4 9 6 1 . 6 4 0 0 6 . 1 5 3 756 11 C L A S S I F I ED 2 5 1 0 6 . 3 3 9 8 3 . 0 6 4 233 502 IV 2 5 2 3 0 . 4 3 9 6 3 . 4 /3 376 5 0 9 * 11 C L A R I F I E D 2 5 4 0 9 . 6 3 9 3 5 . 5 2 0 697 11 C L A R I F I E D 2 5 5 0 2 . 5 3 9 2 1 . 1 6 4 IV 6 S 3D2 - 6P 4* 2 5 5 7 6 . 0 3 9 0 9 . 9 1 6 IV I V 5S2 3P0. - 6P 6* 2 5 5 9 7 . 4 3 9 0 b . 6 4 7 731 2 5 6 0 b . 9 3 9 0 5 . 3 3 0 4 3 4 I I I IV 5D 3 F 2 - 5-P@ 1 0 * 2 5 6 1 9 . 9 3 9 0 3 . 2 i b 144 230 11 C L A c o I F I E u ' 2 5 6 3 4 . 7 3 9 0 0 . 9 b 2 372 5 5 7 * IV 2 5 6 8 8 . 0 3 8 9 2 . 8 6 8 547 5F 2 F 5 / 2 * — 8 G 2G 2 5 7 0 0 . 7 3 8 9 0 . 9 4 5 531 11 C L A S S I F I E D 2 5 8 1 3 . 9 36 7 3.662 448 I I I I V 5S2 3P1 - 6P 6* 2 5 8 8 1 . 8 38 6 3.719 6 6 7 259 0 0 . 5 3 8 6 0 . 9 2 9 612 -2 5 9 2 6 . 0 3 6 5 7 . 1 3 2 428 2 5 9 4 6 . 4 3 8 5 4 . 0 9 9 70 116 I I I 111 6P 2 P 1 / 2 * - 6D 2D5/2 2 5 9 5 6 . 2 3 8 5 2 . 6 4 4 222 2 6 0 1 9 . 4 3 6 4 3 . 2 6 6 99 193 11 C L A S S I F I E D 2 6 0 5 2 . 7 3 8 3 6 . 3 7 4 611 I V 6S 3D1 - 6P 9* 2 6 0 6 9 . t> 3 8 3 5 . 8 6 5 71 138 11 C L A o S I F I ED 2 6 0 7 9 . 6 3 8 3 4 . 4 1 5 199 1 9 0 * 2 6 0 9 6 . 2 3 6 3 1 . 9 7 6 717 11 C L A S o I F I ED 2 6 1 2 6 . 4 3b2 I • 3 4 b 6 8 9 I I I 111 5P@ 2 D 3 / 2 * - . 10S 2 S 1 / 2 2 6 1 3 0 . 7 3 8 2 6 . 9 1 6 465 IV I V 6S 3D3 - 6P 4* 2 6 2 6 2 . 6 3 8 0 7 . 6 9 6 512 2 6 2 7 2 . 4 3 8 0 6 . 2 7 6 721 2 6 2 8 4 . 4 3 8 0 4 . 3 3 8 227 4 3 8 * IV 2 6 3 1 3 . 0 3 8 0 0 . 4 0 3 365 11 C L A S S I F I E D 2 6 3 1 9 . 0 3 7 9 9 . 3 3 6 753 2 6 3 2 6 . 7 3 7 9 6 . 4 2 5 848 2 6 3 3 6 . 0 3 7 9 7 . 0 6 4 376 2 6 3 4 0 . 8 3 7 9 6 . ^ 9 2 120 221 11 C L A S S I F I E D 2 6 3 9 3 . i 3 7 6 o . 8 o 9 746 371 111 5P@ 2 D 3 / 2 * - 9D 2D3/2 2 6 4 0 2 . 3 3 7 8 7 . 5 4 9 860 7 9 3 * IV 2 6 7 6 7 . 0 3 7 3 5 . 9 4 4 4 7 5 IV 5S2 1D2 - 5P@ 1 0 * 2 6 8 7 3 . 6 3 7 2 1 . 1 2 4 538 6 8 0 * IV 2 6 8 8 2 . 9 3 7 1 9 . 6 3 7 4 2 9 530 11 C L A S S I F I E D 2 6 9 0 0 . 7 3 7 1 7 . 3 75 169 307 11 C L A S S I F I E D 2 6 9 5 8 . 9 3 7 0 9 . 3 5 0 799 11 C L A S S I F I E D 2 6 9 5 0 . 6 3 7 1 0 . 4 9 3 401 IV I V 5S2 3P2 - 6P 3* 2 6 9 6 1 . 6 3 7 0 o . V 7 9 742 11 C L A S S 1 F I ED 2 7 0 6 2 . 4 3 69 5 • i o 4 309 516 11 C L A S S I F I E D 27411.4 3648.117 655 IV IV 5D 3G4 - 6P 4* 27462.5 3641.316 809 I I I IV 5S2 3P2 -6P 4* 27556.8 3628.868 889 11 C L A S S I F I ED 27576.4 3G2o.2b9 896 27843.2 3591.541 772 IV 5D 3D2 - 5P@ 10* 2 7 8 7 3 . 1 3587.688 730 I V 5D 1D2 - 5P@ 12* 28063.3 3563.373 821 111 4F 2 F 5 / 2 * — 7 D 2D3/2 28152.8 3552.045 730 601 111 4F 2 F 7 / 2 * — 7 D 2D5/2 27924.6 3581.072 873 IV I V 5D 3F3 -6P 7* 28654.4 3489.665 902 IV I V 5D 1D2 - 5P@ 1 3 * 28673.5 3487.541 625 IV IV 5D 3D3 - 6P~ 8* 29024.4 3445.377 654 7 0 6 * 111 29029.2 3444.807 876 29073.1 3439.60o 790 I V 111 5F 2 F 7 / 2 * — 9 G 2G 29199.8 3424.681 917 29513.1 338b.326 738 IV IV 582 3P1 - 6P 9* 29606.6 3377.602 848 11 C L A R I F I E D 29679.2 3369.363 857 5 6 0 * IV 6S 3D2 - 6P 7* 29945.0 3339.456 329 506 11 CLASS I F I ED 30307.4 3299.524 ^86 6 0 2 * IV IV 6S 3D3 - 6P 7* 30353.5 3294.513 548 536 IV I I.I 5S2 2D5/2 - 6P 2 P 3 / 2 * 30453.8 3263.6t><i 4«5 6 7 7 * I V 65 3D2 - 6P 8* 30627.8 3265.008 606 11 CLASS I F I ED 30664.3 3261.121 813 30679.3 3259.527 168 I C L A S S I F I E D 30684.8 3258.943 721 IV 66 1D2 - 5P@12* 30702.7 3257.043 106 I C L A ^ o I F I ED 30884.6 3237.aoO 461 11 C L A o S I F I ED 3099 1. 4 3226.702 807 31082.0 3217.296 788 8 2 2 * IV IV 6S 3D3 - 6P 8 * 3119 9.0 3205.231 746 IV 31238.3 3201.199 654 5 5 5 * 111 IV 5D 3P2 - 6P 5* 31370.0 3187.759 431 31521.4 3 i72.448 8a6 IV 5D 3D1 - 4F 14* 31826. 9 3141.996 696 IV 31670.5 3137. t> 9 8 510 31897.0 3135.091 0 IV 31906.6 3134.148 514 31936.3 313 1.233 500 31985.9 3126.378 960 32225.8 3103.104 414 32250.5 3100.727 328 612 11 C L A S S I F I E D 32392.9 3087.096 177 32421.0 3084.421 5 319 11 C L A S S I F I E D 32424. b 3084.173 540 565 IV 5 D 3P2 - 6P 7* 32446.0 3032.044 756 I I I 3 2 4 7 3 . ^ 3079.462 3 o l 3 2 3 9 8 . i 306 7.bo3 630 I I I C L A S S I F I E D 32606.3 3066.892 967 785 I I I IV 5D 1P1 - 5P@ 1 2 * 32708.9 3057.272 250 IV I V 5D 3F2 - 5P@ 15* 32 733.3 3053.127 966 I I C L A S S I F I E D 32801.1 3046.678 709 I C L A S S I F I E D 32809.2 3047.926 605 I I I 3291 6 . 1 3036.0^7 454 I I I 32949.1 3034.964 378 678 32954.2 3034.515 849 33041.3 3026.497 776 I I 33073.0 3023.6 14 956 I I C L A S S I F I ED 3^226.6 300 9 . OJ>7 232 I I I 1 I I 5D 2D5/2 - 4F 2 F 5 / 2 * 33234.3 3006.940 192 I I I I I I 5D 2D5/2 -4F 2 F 7 / 2 * 33329.0 3000.39U 843 647 I V 6S 1D2 - 4F 14* 33406.5 2993.429 948 I I 33454.9 2989.099 448 I V 6S 3D2 - 5P@ 10* 33466.0 296 7.9 29 706 711 I I I IV 5D 3F2 - 4F 16* 33514.9 2983.748 203 I I I 111 5D 2D3/2 -4F 2 F 5 / 2 * 33530.3 2982.377 767 33556.2 2980.075 743 I I I 33578.7 2978.078 948 33703.3 2967.069 953 I V 50 3F2 - 4F 1 7 * 33808.4 2957.645 439 I C L A S S I F I E D 33354.7 2953.8 00 965 3 4 0 0 0 . 0 2 9 4 1 . 1 lb 561 389 34011.3 2940.199 505 I I I 111 5D 2D5/2 -5P@ 4 P 5 / 2 * 34016.0 2939.793 5 39 623 I-1 I I V 5D 3F2 -5P@ 19* 34024.2 2 9 3 9.085 407 620 I I I I V 6S 3D1 - 5P@ 15* 34112.7 2931.460 846 741 34146.3 2926.575 729 606 I I I IV 6S 1D2 - 4F 16* 34273.0 2917.749 919 I I I 34288.2 2916.455 962 34302.9 5D 2D3/2 -7P@24P5/2* 34317.6 2913.957 669 I I I 34382.6 2908.448 822 908 IV 6S 1D2 - 4F 17* 34447.2 2902.994 956 903 I I I I V 5D 1D2 - 5P@ 2 3 * 3 446 6.9 2901.334 486 570 I I I 34543.0 2694.943 684 I I I IV 5S2 3P0 - 5P@ 12* 34646•2 2866.3 19 980 603 34648.0 2886.169 982 722 34669.0 2834.421 994 801 I I I 34738.3 2878.667 6 6 6 I I I I V 6S 1D2 - 4F 2 0 * 34783.0 2874.968 984 925 5S2 3P1 - 5P<? 12* 34837.6 2870 .462 870 670 I I I 34887.4 2866 • 3 64 957 890 IV 50 3D2 - 4F 14* 34913.7 2664, .205 993 I I I 34942.6 2661 . 6 3 0 961 34946.6 2661. .209 829 8 8 1 * I I I I V 5D 3D2 - 5P@ 1 5 * 35002.4 2o56 • 947 712 I I I 35064.3 2851. .904 926 698 I I I 35076.0 2850 .9 3 2 678 I I 35104.3 284o .654 722 I I 35180.4 2842 .492 921 I I I 35206.8 2840 .360 753 588 I I -3 5239.0 2837. .765 449 I C L A S S I F I E D 35231.0 2838. ,409 962 660 3 5 2 9 0 . i 2633. .6 56 929 478 I I I 3 5 4 5 6 . o 2820. .35 7 9o0 I I CLAoi> 1 F I ED 35466.5 2817, 814 776 533 35567.1 2811. .567 807 841 I I I I V 5S2 3P1 - 5P@ 13* 35881.3 z78o. ,96 7 556 368 I I I 35887.0 2 786. , 524 455 I 1 I 35897.2 27 ab. ,733 673 I I I 3:?9i7.4 2 7 8 4. , l o 6 965 65 1 I I I 36043.1 2774, 456 877 5 5 5 ^ I I I 36 3 17.0 2753. .531 781 11 C L A o S I F I E D 36356.5 2750, 540 414 111 5P@ 4D5/2* — 8 G 2G 36393.0 2747. ,781 142 I I I IV 5D 3F2 - 5P@ 2 2 * 36410.1 2746. .491 401 I I I 36468.0 2742, ,130 661 I I I 36 4 71.7 2 741. 652 908 591 I 1 I 36482.0 2741. 0 76 716 I I I 36492.2 2740. 312 167 423 36672.0 2726. 6 76 157 I I I 111 4F 2 F 7 / 2 * — 6 G 2G 36680.2 2726. 266 167 I I I 111 4F 2 F 5 / 2 * — 6 G 2G 36810.8 2716. 594 453 722 I I I 36816.2 2716. 196 730 36819.0 2715. 989 605 36843.1 2714. 212 928 37047.0 2699. 274 912 I I I 37074.3 2697. 28t> 622 717 I I I 37100.2 2695. 403 719 816 I I I 3 7245.0 2664. 924 816 11 C L A o S I F I E D 37250.6 2683. 930 841 718 I V 6S 1D2 - 5P@23* 37317.5 2679. 700 896 833 I I I IV 5D 3F2 - 5P@ 2 5 * 37343.3 2677. 857 601 722 I I I 3 7 3 7 7 . 6 2675. 399 420 11 C L A S S I F I E D 37460.2 2 6 6 9 . 500 450 11 C L A o S l F I ED 37514.6 2665. .629 333 903 ) I I I 37577.7 2661, .133 504 678 I I I 37803.0 2645. ,293 626 928 I I I IV 552 3P2 - 4F 1 1 * 38076.1 2626. .161 255 I I I 111 5P@ 4 P 5 / 2 * - 8L) 2D5/2 38113.6 2623. .735 556 I I I I V 5D 3S1 - 6P 9* 3638 5.6 2605. . 130 060 742 I I I I V 65 1D2 - 5P@26* 38424.2 2602, o 2 7 866 I C L A o S l F I E D 38513.6 2 5 9 6 , ,4 72 765 I I I I V 552 3P1 ~ 4F 18* 38569.6 2 5 9 2 . ,716 671 11 C L A o o I F I E u 38667.7 2566, 136 722 I V 65 3D2 5P@ 1 3 * 38794.0 2 577, 6o5 471 I I I I V 5S2 3P1 - 5P@ 19* 38376.9 2572, ,222 663 11 C L A S S I F I E D 39199.2 2551, ,072 530 I I 39227.4 2 5 4 9 . ,239 616 IV 65 1D2 - 5P@27* 39266.0 254o, ,7 33 919 I I I 111 5D 5D 2D3/2 - 5P(? 4 F 5 / 2 * 39269.5 2546. .306 653 11 C L A S S I F I E D 3 9 3 1 1 . 4 <L343 < .7*1 925 75 8 I I I 39330.3 2542. ,5 69 759 672 I I I 39460.7 2534. , l o 7 958 I I I 39554.7 2520 , .145 263 233 111 552 2D3/2 - 4F 2 F 5 / 2 * 39814.6 2511. ,641 774 I I I IV 552 3P2 - 5P@ 12* 3 9 9 1 7 . 5 2505. . i 6 7 894 IV 5D 3F2 - 5P@ 28* 39974.0 2501. ,626 945 11 CLASS I F RED •+0110.6 2493. 0 94 710 IV 5D 3F3 - 5P@ 1 9 * 40127.3 2492. ,069 905 I I I I V 5D 3D3 - 4F 2 0 * 402 1 0 .9 2486, , 608 946 11 CLA5SIFRED 4 0 2 4 3 .8 2484. ,855 876 I I I 40319.2 2480. 208 632 738 I I I 40339.0 2476, ,991 205 5S2 2D3/2 -5P@ 4 P 5 / 2 * 40404.7 2474. ,9 60 445 40455.7 2471. 640 817 40469.5 2470. ,997 7 78 665 IV 40596.3 2463. ,x57 385 619 IV IV 5D 3P2 - 5P@ 1 2 * 40637.3 2460. ,793 938 I CLASS I F I ED 40641.0 2460. ,369 608 I I I IV 5D 3F2 - 5P@ 2 9 * 40643.3 2460. ,430 642 11 C L A S S I F I E D 40908.4 2444. ,466 701 IV 4 0921.7 2443, ,691 912 111 4.100 8.4 2436, ,525 869 IV 4 1079.3 2434, ,3x6 316 413 IV IV 5S2 1D2 - 5P@ 2 8 * 4 1 0 9 2 . i 2433, ,568 9 76 11 C L A S S I F I E D 41100.2 2433, ,078 630 763 41111.9 2432, ,306 945 41122.5 2431, ,759 417 LV 4113 4.7 2431, 0 J8 730 41140.0 2430 41143.0 2430 41151.4 2430 41164.6 242V 41171.9 2 42 8 41187.9 2427 41201.7 2427 41206.8 2426 41211.1 242o 41219.0 2 4^o 41222.4 2425 41227.9 2425 41234.5 2425 41239.6 2424 4 1 2 5 6 . 0 2423 41266.6 2423 41274.4 2422 41292.5 2421 41308.1 2420 41313.9 2420 41317.0 2420 41325.7 2419 41331.0 2 4 i 9 41337.0 2419 41346.9 241o 41357.3 2417 41351.8 2418 41365.3 2417 41373.4 2417-41385.9 2416 41390.7 2416 41394.3 2415 41401.3 2415 41408.2 2414 41415.8 2414 41424.8 2414 41432.9 2413 41442.8 2412 41452.1 2412 41472.7 2411 41482.4 2410 41487.4 2410 41501.6 2409 41533.6 2407 41539.2 2407 724 409 547 279 051 528 809 2 72 300 466 841 683 893 696 924 0 o4 9 34 7o4 9 5 6 3 5 1 6 9 f Oub 899 0 0 6 865 542 923 1 5 4 772 842 605 648 b33 175 523 233 216 417 809 915 747 915 6 53 891 493 909 311 857 802 898 491 873 140 6 79 561 771 941 840 274 690 4b5 749 012 81 277 2b2 767 002 250 792 833 5 71 659 961 103 775 557 861 0 13 460 759 3 4 1 798 904 250 638 42 3 800 225 292 661 890 370 909 3 4o 157 6o9 692 J>O5 371 I C L A R I F I E D IV 5D 1P1 - 5P@ 2 7 * II 6P 3 P 2 * - 1 3 G 3G3 (3 I I I IV 5S2 3P1 - 5P@ 2 2 * I I C L A S S I F I E D I I C L A S S I F I E D I I C L A o o i F I E D I I 6P 3 P 1 * - 1 5 s ISO b IV 5D 3P1 - 5P@ 1 3 * I V 6S 3D2 - 4 F 1 6 * II C L A S S I F I E D IV I I 6P 3 P 1 * -14D 1D2 B I I I IV 5D 3S1 - 4 F 1 1 * I I C L A S S I F I E D I I C L A S S I F I E D I I I I I C L A s S I F I E u IV I I I I I I C L A S S I F I E D I I C L A S S I F I E D 5 > D 3 56536.5 1768. 769 768 56237.6 1776. 170 803 56672.7 1764, 5 18 5S2 2D3/2 -5P@ 2 P 1 / 2 * 56672.7 1764, 518 390 716 56691.4 1763. 936 739 779 I 5 6 7 4 0 . 3 1762, .416 726 56 745.3 1762. 234 t>63 56805 . 5 1760. ,393 228 480 I I I 56865.4 1750, ,539 665 56876.4 1 7 5 o , i 9 o b 13 I I C L A s S l F I ED 56883.9 17 5 7, 96 7 563 ** 56901.7 1757, ,417 494 I C L A S S I F I E D 56908.7 1757, 201 443 I CLASS I F I ED 56939.0 1756, ,265 414 56944.2 1756, 105 473 56960.4 1755. 606 658 56931.6 1754. ,9 52 655 57057.2 1752. 0 2 7 533 768 5 7 0 5 0 . 5 1752. ,833 3 36 5 70 6 5 . 9 1752, ,360 505 I I I 57083.6 17 51, ,317 341 I 57106.0 1751. ,129 209 57184.4 1740. ,7 29 1 14 103 I I I I I I 5S 2S1/2 — 5 P 2 P 1 / 2 * 57282.0 i 7 4 5 . .731 463 5 7 2 9 0 . 5 1743. , 246 3 35 I I C L A S S I F I E D 5 7 36 6.4 1743. .161 486 779 57375.3 1742. 910 271 I 57420.8 1741, ,5 29 105 754 I I 57430.4 1741. .236 271 57462.0 1740, ,261 626 582 57493.6 1739, ,324 667 5 7 5 0 6 . 6 173 8, ,931 719 57527.0 1736. , 3 i 4 635 57550. 1 1737, ,616 608 I I I 5P@ 2D5/2* - 6S@ 4D3/2 57560.6 1737, ,2 99 647 782 57566.9 17 3 7. ,109 • 685 57576.3 1736, .826 696 785 57593.0 1736, ,5^2 616 789 57608.7 1735. ,849 625 57616.1 1735, »b26 666 889 I V 65 3D2 - 5P@ 34* 57623.5 1735, ,403 660 5 7 6 3 7 . 5 1734. . 9o2 666 37643.3 1734 . 7 <+ 7 7 06 696 5P@<a 2P3/2* -65@ 2D3/2 5 7 6 5 2 . 5 1734 . 5 3 0 634 5 / 6 6 3 . 7 1 7 3 4 .19 3 O 3 i 76 1 41556.5 2406, • 362 768 I I 6P 3P2* -160 102 ti 41562.1 2406. .038 880 41569.8 2405. .393 225 385 41577.8 2405, .130 800 41584.1 2404. . 765 821 I V 6S 3D2 - 4F 18* 41590.9 2404, .372 90 5 3 9 * I I I 41609.1 2403, .320 909 41613.6 2403. .061 803 IV 4 1618.0 2402. .806 926 41625.0 2402. .402 860 I I I 4 1 6 3 6 . 3 2401. . 6 5 3 679 41631.4 2402. .033 631 4 1 6 4 8 . 7 2401. .035 8 6 9 41662.2 2 4 0 0 . .2 37 636 41&66. 4 2399. . 9 00 131 I C L A S S I F I E D 41677.9 2399. . 5 5 3 860 41696.1 2396, .306 86 237 I I I 41704.1 2397, ,846 648 11 6P 3 P 1 * -16S ISO B 41711.5 2397, .420 874 41724.1 2396. . 6 96 94 320 I I I 4173U.3 2396. .340 132 440 I 41733.6 2 3 9 6 , . 1 5 1 7 1 6 41747.0 2393. .362 621 417 3 8 . 2 2 j . 9 4 . . 7 5 9 882 41750.0 2395. ,210 614 4 1 7 8 3 . 8 2 3 9 3 , .2 72 906 41803.0 2392. 173 865 4 1 3 0 6 . 8 2391. ,955 838 41814.6 239 1. 509 866 41827.0 2390, 800 104 11 C L A S S I F I ED 418 3 6.9 2390. 234 110 I C L A S S I F I E D 4 1 3 4 6 . 7 2369. 6 7 5 652 41852.3 2 3 8 9 . 5 4 4 278 478 41858.4 2389. 007 583 — 41866.9 2366. 4 U 6 0 6 I I I 11 5P2 3P1 - 8F 3F*B 4189 5. 1 2586. ,914 239 664 41897.2 2386, 7 94 221 432 41901.9 2386, 5 2 7 103 632 I I I IV 5S2 3P1 - 5P@ 24* 41923.1 2385. 5 2 0 79 11 C L A S S I F I E D 41937.6 2364. 4 6 4 571 11 6S 3S1 - 8P 3 P 1 * B 41946.2 2384, 006 237 612 I V 6S 3D3 - 4F 16* 41957.6 2363. 336 82 11 C L A S S I F I ED 41975.6 2382. 3 5 6 693 41966.2 2362. 736 124 472 I 4 1990.1 2381. 3 14 c5 188 I I I 42000.0 2380. .952 569 + 42007.2 2380, .344 653 42017.0 2379, .969 654 42022.3 2 37 9 , . oo9 069 I C L A s s I F I E D 42036.6 237o. . 6 0 6 0 9 6 I C L A S S I F I E D 4 2043.3 237o .376 927 42067.4 2377 . 138 805 I I C L A S S I F I E D 42089.2 2375 .906 6 76 42096.0 2375 .523 815 I I 5P2 3P0 - 10P 3P1*B 42103.4 2374 .992 6 78 -4211<+. 9 23/4, .437 53b 662 I I 5P2 3P2 - 1UF 3F3*B 42126.5 2 3 7 3 . 603 922 I I CLAoSIFRED 4 2 1 3 2 . 3 2 3 7 3, .4 lb 669 I I C L A s s I F I ED 42134.4 2 3 7 5 . ,338 913 I I CLAsSI FRED 4217u.o 2371. , 3 U V 140 683 I I 68 3 s l - 8P 1P1 * B 42181.3 2 3 70, ,706 472 IV '68 3D3 - 4F 17* 42193.8 2369, ,904 927 42206.2 2369. .320 591 42217.6 2368, .600 686 42242.3 2 3 6 7. 295 632 42264.8 2366, .035 909 42273.V 23b3 , .2^6 303 I I C L A S S I F I ED 42301.7 2363, ,9 71 921 I I C L A S S I F I E D 42309.6 2363, .530 9 39 I I C L A s S l F 1 ED 42316.4 2 363, . 12O 926 4232 3 . 6 23b2 < .7 37 6 1 6 42354.6 2361. ,00 7 5D 2D5/2 - 5P@ 4 P 1 / 2 * 4 2 3 6 0 . 9 2360. . 2 i.1 766 I V 5D 3F3 - 5P@ 2 1* 42372.0 23b0, ,049 624 42376.x 2339. ,021 472 42398.0 2356, 602 445 42414.4 2357. .690 649 I I C L A S S I F I E D 4 2 4 3 0 . 1 2356. 817 98 I I C L A o s I F I ED 42437.7 235b, 393 783 I I 5P2 3P1 - I I P 1P1*3 42443.6 2356, 060 871 42452;2 2353, 3 9 i 706 42453.8 2355, 224 93 3 8 3 * IV IV 5S2 3P2 - 4F 14* 4 2 4 6 2 . 6 2355, 014 195 473 IV IV 5D 3D3 - 5P@ 2 2 * 42 47 3 . 2 2334. 4^ .6 637 42485.0 2353. 7 72 100 312 IV IV 5S2 3P1 - 5P@ 26* 42492.0 2353. 3 34 600 42496.5 2353 . 1 3 5 167 11 42498.3 2353. 035 231 42506.8 2332. 51>5 766 4 2 5 1 0 . d 2352. 3 4 3 707 42518.0 2351. .945 268 4 2 5 2 6 . 4 2331. .400 85 4 2 5 3 D . 3 2350. .966 96 42547.2 2350. .331 786 42556.3 2 j 4 9 . .628 745 42562.5 2 349. ,466 640 42571.2 2349. ,006 335 42 5 7 4.7 234o. ,813 271 42582.6 2340. ,366 903 42588.9 2346. ,030 8 8 6 42602.4 2347. ,266 103 42614.5 234o. ,019 735 42b2 3.3 2540. .0^5 624 42631.2 2345. ,700 907 42644.2 2 5 4 4 , , V 0 3 3 5 5 42649.6 2 3 4 4 . .o'/7 o o2 42656.4 2344. ,204 2 79 42687.o 2342, ,0 17 776 42692.0 2342. ,539 8 76 4269 7.3 2342, ,0o6 913 4 2 7 1 8 . 9 2340, ,804 193 42749.4 2 3 3 9 . ,214 9 35 4275 6.5 2336, ,7 16 361 42770.4 2336, ,066 943 42794.6 2 3 3 6 , ,753 672 42800.6 233o, .403 o73 4 2 8 2 J . 6 2333, , x 0 i 0 27 4283o.6 2 3 J 4 . ,441 9 3 9 42854.4 2333. , 4o3 205 42863.4 2 352. , 9 V3 407 42868.3 2332. ,713 6 77 4 2 8 7 9 . 2 2332. , 153 596 42938.9 2320, ,091 667 42941.7 2320, ,7^9 844 42953.5 2328, ,099 698 42964.6 232 7, 498 931 42969.9 232 /. 2 i 0 876 42979.9 2320. ,6o9 694 42985.2 232o, , 3 02 306 42992.0 2326. 014 846 4302U. 5 2324, <r/3 649 43027.2 2324. > i i 1 830 43031.6 2323, 674 606 4 3 0 3 4 .3 2323. 728 848 43055.7 2322. 3 7 3 914 498 302 714 603 473 368 719 870 IV IV I I IV IV I I I IV I I I I I I I I I IV 11 11 11 11 562 3P2 - 5P@ 1 5 * C L A 8 8 I F I ED 6S 3D3 - 4F 2 0 * C L A S S I F I E D C L A s s I F I L U C L A s s I F I ED C L A S S I F I E D 5D 3D3 - 8F 1F3 5D 3D2 - 5P@ 2 9 * C L A S S I F I E D C L A S S I F I E D C L A S S I F I E D C L A S S I F I E D 43050.8 2322. 637 817 43083.2 2321. 090 919 43095.7 2320, ,417 937 4 j 10 o • 7 231V, .717 163 I I C L A S S I F I E D 4 3 1 2 1 . 3 2319. .040 9 i 4 4 3 1 2 8 . 3 23iO, > u o 3 6 74 43133.5 2318. ,364 938 43146.3 2317, . 0 9 6 930 4 315 3.7 2 317. .29b 9 4 i IV 50 3'P1 ~ 4F 14* 43164.0 2316, . 743 661 I I I 43175.2 2316. . 144 119 527 I I I 43182.2 2315. . 7 69 434 I C L A S S I F I E D 43187.2 2315. 501 623 686 IV 43194.0 2315. . 1 36 6 74 I I C L A S S I F I E D 4 3 2 0 3 . 1 2 314. . 649 649 432 1 2 . 4 2 3 14. .131 114 416 IV IV 5D 3P1 - 5P@ 15* 43226.6 2313. ,3 90 649 4322 9 . 2 2 3 1 3 . 2 J 3 OoO 43217.1 2 313, o99 133 I I C L A S S I F I E D 43233.4 2313, ,0 27 6 72 43247.2 2312. .2 68 113 423 I I I 43273.6 2310, ,867 747 43277.0 2310, ,6 96 419 IV 5S2 3P2 - 4F. 16* 4 3 2 8 0 . 8 2310, 493 513 I CLASS I F I ED 43288 . 9 2 310, 061 462 I C L A s S l F I ED 43296.0 2309. 576 595 43306.6 2 3 09, 117 570 43314.4 230o, fOl 343 4 3 3 2 3 . 7 ^306, 202 327 43326.0 2 3 0 7, 9 76 226 514 I V 5S2 3P1 - 5P@ 27* 43336.0 2307. 550 148 I C L A S S I F I E D 43340.4 2307. 316 116 43351.0 230o. 7 32 94 I 11 C L A D S I F I E D 43365.2 2305. 997 169 11 C L A S S I F R E D 43370.4 2305. 720 241 43386.2 2304. 8o0 189 I I I I V 5D 3D3 - 5P@ 2 5 * 4339 1.6 2304. 594 445 43395.4 2304, 392 576 43403.0 2303, 908 574 43407.7 2303. 739 322 43413.0 2303. 4 3 7 . 798 IV 5D 3F3 - 5P@ 2 5 * 4341d.2 2303. i o 2 4 77 I C L A o s I F I E u 43422.0 2302. 980 675 43432.9 2302. 402 669 43437.a 2302. 142 560 11 C L A S S I F I E D 4 3 4 4 7 . 9 2301 .607 89 294 4 3 4 6 1 . 6 2300 .862 699 4 3 4 6 6 . 0 2299 • 433 773 4j>495. 7 2299 .078 643 4 3 5 0 0 . 9 2296 .803 480 4 3 5 0 o . 0 2290 .428 733 911 4 3 5 3 0 . 3 229 7 . 2 40 i 9 6 623 4 3 5 3 o . 9 229o . 9U2 8^6 4 3 5 4 4 . 3 2290, . 30 i 693 4 3 5 4 7 . 0 22Vo, .309 036 848 43 5 53. 9 2296. .006 676 859 4 3 5 5 7 . 9 2295. .795 807 812 4 3 5 6 2 . 4 2295 .338 8 72 939 4 3 5 7 6 . 9 2294. . 7 94 939 43594.7 2293. ,6 37 621 4 3 6 0 7 . 2 2293. .199 736 4 3 6 1 5 . 5 2292. , o o 6 669 751 4 3 6 4 2 . 6 229 1. ,329 664 4 3 6 6 2 . 7 2290. ,264 0 3 7 4 J D 9 5 . 4 2 2 o u . ,o /3 103 i 9 9 4 3 7 0 5 . 7 22oo« 031 694 43 718. 4 2207, ,366 916 43731 . 9 2266. , ooO 111 238 4 3 7 4 8 . 6 2265, 7 77 916 4 3 7 5 8 . 9 2285, 249 904 867 4 3 7 7 5 . i X 2284, 404 478 4 3 7 8 7 . 3 2 2 8 3, . 7o7 644 854 4 3 8 0 7 . 8 2282, 6V9 844 4 3 8 1 3 . 3 2282. 500 2 64 4 3 6 2 3 . 0 2 2 8 i . O U 5 236 736 4 3 8 3 1 . 1 226 1, 46 3 143 4 3 8 4 0 . 2 2280, 595 666 4 3 6 6 8 . 0 22 79, 3 00 623 4 3 8 8 1 . 1 2276. 8o5 240 43899.8 2277. 915 736 803 4 3 9 0 6 . 7 2277. 337 • 5 73 4 3 9 1 3 . 9 2277. 183 640 4 3 9 2 4 . 0 2276. 660 660 821 4 3 9 3 2 . 4 2276. 224 700 43939.5 2276. o37 126 443 4 3 9 4 5 . 2 2273. 5 o i _ 630 4 3 9 5 7 . 4 2 2 7 4. 9 3 U 523 4 3 9 b 4 . 7 2274, 3 3 2 3 10 4 3 9 8 4 . 4 2275. 333 90 300 4 3 9 9 3 . 2 2 2 / 5 . 0/9 9 3 364 6P 2 P 3 / 2 * — 6 * 2 8 1 / 2 5D 3G4 - 4F 17* C L A S S I F I E D C L A s s I F I ED 5D 3D2 - I I P 1P1*B 552 3P2 - 4F 18* 5D 3D1 - I I P 3P1*B 5D 3D1 - I I P 1P1*B C L A S S I F I E D 5D 3D3 - 5P@ 2 6 * 5S2 3F4 - 6P 7* C L A s s I FRED 5s2 3P2 - 5P@ 19* C L A o s I F I L U 5S2 3P2 - 4F 2 0 * C L A s o I F I ED 68 2S1/2 - 5P/ 4 P 1 / 2 * C L A S S I F I E D 4F 2 F 7 / 2 * 4F 2 F 5 / 2 * — 7G 2G — 70 2G 44009,6 2272 .221 830 I I I 4 4 0 1 i . a 22 7 2 . i x 8 561 I 4 4 0 2 3 .6 2271, .309 653 44035.0 2270. .921 290 440 3 8.. 3 2270 .751 358 44043.5 2270 .379 500 I I 44057.2 2 2 69 .7 77 71,0 I 44061.4 22 69 .360 735 I V 44067.3 22 6 9 .226 786 44072.5 226o . 9 0 9 768 11 44077.9 226o .711 611 I 4 4 0 8 7 . 1 226o .237 796 I 44093.2 226 7, .923 854 I 44098.1 2267, ,0 71 820 4 4 1 1 2 .6 2266. .920 112 630 I I I 111 44125.5 2266, . 2o3 820 IV 44134.6 2263, ,7b6 840 I I I 4 4 1 4 3 . 9 2265, ,519 821 44147.2 2265, , 149 640 44152.3 2204, ,o i 7 o47 44160.7 2.264, ,43 7 639 44167.o 22b4, , i J 3 0 16 I V 44177.2 2263. • o i l 793 44183.4 2263. ,191 737 44192.0 22 62. ,0 33 412 731 IV 44209.6 2261. 942 90 158 I I I 111 44223.2 2261. ,237 508 44229.7 2260. 9 24 3 74 44246.9 2260, 045 754 44252.1 2259, ,7 60 621 44257.1 2259. 524 626 IV 44 2 6 5 . o 225V, ,0o0 o34 44270.6 2258, 0 23 613 44277.6 2 2 2 0. 4 7 0 039 44284.7 2256. 116 792 44296.7 2237. 3O3 o47 I V 44300.5 22 3 7, 3 11 626 4 4 3 0 9 . 8 225u, 6 3 7 793 11 44317.5 225o. 445 774 11 44342.8 2255. i 5o 666 44354.8 2234. 547 682 44369.0 22 5 3 . 826 871 44389.3 2252. 7 03 766 44394.6 2 2 3 2 . 3 l o 613 44394.0 2222, 3 IO 0 14 68 281/2 - 5P/ 4 F 1 / 2 * C L A o o I F I ED 5P2 3P0 - I I P 3P1*B C L A 0 0 I F I E U 5D 3P2 •- 4F 16* 5P2 3P0 - H P 1P1*B C L A 0 0 I F I E D C L A o o I F I ED 6P 2 P 3 / 2 * — 7 D 2D3/2 6b 3D2 - 5P@ 2 1 * 5D 3 o l - 5P@ 1 3 * 6P 2 P 3 / 2 * — 7 D 2D5/2 5D 3P0 - 5P@ 19* 5D 3P2 - 4F 17* C L A o o I F I ED C L A o o I F I ED - T > - p - . p > j ? - j p £ - . p - 4 : - . p - . ^ . p - j ^ j ? ' . ^ . ^ . ^ j ? - j ^ . ^ j ^ U U". 4 > 4 > ^ 4 > 4 > J > ^ ^ J > 4 > 4 > 4 > ^ ^ f - - p - - p - . p - . p - - r > - . p - . p - . p - . r > . p - . p - . p - . p - . p - . p - . p - . p - . p - . f > . p - . p -O O IV CO > I ^ C M « l i ' i O f f i 0 ' ' U i W H ^ t t - J C ' U i U H > ! r~ l-" vO - J ui N M O OO • N l W U ' l \ ) i 9 » - J > l u i J M \ J M O N w c rv w K c a c i f >c ^  a a I; I- H c ^ c i — on - j h-' rv -P- rv; o- or -J a- rv O.- rv H- cr cr --J a OJ rv VJ- Cr -P- 4> C U CC C. a. ->! .p- CT Cr O J vO or O ~ J 0T 0 K O K N W O S P r - a > I K U O c f U i N ^ W v r O H rv M i\ rv iv rv rv rv rv rv rv iv rv rv rv r-; iv rv> rv rv' r>j rv IS rv rv rv rv rv M rv rv rv rv iv r\ iv iv: rv r\. rv rv rv iv rv rv rv ro rv rv> rv rv> ro rv rv rv rv rvi rv rv rv> rvi rv rv> rv tv rv r.; rv rv rv rv rv rv> rv rv K rv rv rv.' rv rvrv rv rv rv rv rv iv rv rv rv ro rv iv rv rv ro rv iv rv. rv ro OJ OJ OJ C>J O: OJ OJ OJ OJ OJ I>. i w u w u ^ ^ f f - -P- -P- -P- -p- -P- -P- -P- -P -P- -P- on OP on t— ro c OJ o; o. J?- VJ- or c o. OOHM IV. OJ -P -p- 4> or or. c _j a ex vc c I-j i—1 rv o- or or o • -j a a o. vc c rv a c K o jf- vr M rv VJ- u r- a- t— -P- u ^ o.+• o cr -P- J? C. or o> rv u u vc u- vc >c w w c o o> H u i ; ^  a o or H-* v -p- c• vo VJ a c a J? o rv a rv OJ vo o v> o o o •-- rv -< c. -P —j rv .p- O VC C O- ~J C U C -J VC t— O> C VC -P-rv J?- c rv -vi i-^ o o.cr c vc vc rv• o i-" a c vc o iv rv i - ! I~ O -J a • \c cr ^  vc ^  iv vc vc r - u o*' or oo o o or. OJ cr -vi H -j -j a a rv> 0 0 CO cc <C vD vO v C vC o l— ui cr >c oo i—1 VJ- cr vj- OJ i—• rv - J C r - ~ j o o c r i - C r o cc CC' Oc or rv JP- cr rv o -P- rv o r-' u o u w ^ u i f - v C v r f - H ^ c o. a a. -j cc ro cr CJ CC I-1 CC co J? iv OJ - j r o - P - v O i — o o n O v c r - r-CCvOvDCrJp-^-vlOOl— c a a cc CJ a o a oc - s i vC• -P- O J U i O J I — vC £- QJ vO cr on o OJ cr OJ ro on co * vO (V) VO r—1 vC OJ < I - " on on CT VJl UI X) (/> X) o- X) rv ro fS ® cr ro on Cr ro cr XI OJ O -p- a ro O XI X) o 00 oo n \ r- 1 00 on n oo on \ O r - rv X) \ r c IV) M > * IV) ro > rv rv 0 * 1 1 1 (s y—* T l l CO 1 1 1 a »—• l o on VJl rr, Cr on 4> vO on 0 X) "D c X! X| a c X) <e> f® ce) ro Cr C8) ro <e> •t" -P- rv ro O rv X -p- ro c Ui oo OJ VjJ * ro cc \ * \ * rv> ro ro * c 45018.6 2221. .304 425 655 4:>023.3 2221. ,0 72 693 I I I 5P@@ 2 F 7 / 2 * - 6o@ 4D5/2 4 5 0 3 3 . 6 2220. .364 762 45046.8 2219. ,914 368 45040.8 2220. .209 658 786 4 5 0 4 3 .9 2220. .0 36 608 45053.4 2219, .586 6 14 45056.7 2219 ,4<L6 769 IV 6S 3D3 - 5P@ 2 3 * 4 5 0 6 7 . b 2216 ,6o9 291 I C L A o b 1 F I ED 4 5 0 7 0 . 9 2218. .726 180 I C L A ooIFIED_ 4 5 0 7 6 . i 221o, .3 72 783 4 5 0 8 2 . 6 221o, . x 4 i 7o5 4 5 0 8 7 . 1 22 17, . 9 2 9 721 4 5 1 3 1 . 7 2215. .7 37 809 45134.6 2215. . 5 9 5 610 4 3 1 4 3 . 7 2215. . 149 803 4 5 1 5 2 . 1 2214, .736 805 45160.4 2214, ,329 739 45164.2 2214. .143 806 45172.4 2213. .741 779 45179.2 2213. ,408 811 I V 562 3P0 - 5P@ 29* 4 5 2 1 0 . 7 2211. ,606 3 b i I C L A o b I F I ED 45229.7 2210, ,937 775 I 452 3 9. 9 2210, ,438 400 796 45252.8 2209. ,808 146 43257.5 2 2 0 9. ,5 79 694 45267.6 220V. ,066 744 45302.1 6248 I I C L A o o I F I ED 45306 . 1 2207, .111 109 538 I I I 5o2 2D3/2 - 5P@ 4 P 5 / 2 * 45331 . 1 2205, ,991 118 I I C L A o o I F I ED 45346.0 2205, ,266 651 45355.7 2204, ,795 700 778 45362.2 2204, ,479 723 45372.9 2203, , 93y 658 I I 5D 3D3 - 10F 3F3*B 45385.2 2205, , 3 o i 663 I I 50 3D3 - 1CF 3F4*B 45395.1 2202, ,861 4 36 I I 5D 3D3 - 10F 1F3*B 45410.5 2202, , 134 493 760 45419.0 2201. 722 696 I V 5S2 3P1 - 5P@ 2 9 * 45426.7 2201. 3 49 518 45436.3 2200, .874 503 45449.6 2200. .239 94 224 I I I I I I 6P 2 P 1 / 2 * - 70 2D3/2 45461.6 2199. .639 482 45466.4 2199, .330 610 45487.1 2190, 425 425 45496.9 2197, 932 591 11 5D 3D3 - 10H 3H *B 45512.6 219 7, . 164 612 665 I I 50 3U2 - 10F 3F3*b 45530.3 2196. .340 669 I I C L A S S I F I E D 45536.6 2196, ,036 694 45545.9 2195. . 3 o 7 713 I I I 6P 2 P 1 / 2 * - 70 205/2 .45 5 5 5. 5 2193 .125 708 IV 6S 302 - 5P@ 2 6 * 45562.9 2194 .766 710 45571.6 2194 .349 629 45578.4 2194, ,022 708 45585.9 2193, .661 613 4 5 5 9 2 . 6 2193. .338 702 I I 50 301 - 10F 3F3*B 45600.7 2192, .949 602 722 I I I IV 6S 303 - 5P@ 2 4 * 45604.9 2192 .747 643 45610.7 2 192, , 400 274 986 I I I 50 205/2 -5P@ 4 0 5 / 2 * 4561o.2 2 19 2, .204 646 43625.8 2 i 9 1 .7 42 6 34 I 1 66 3S1 - 6F 3 F 3 * 6 45636.3 2191. . 142 591 45645.9 2190 .777 603 45668.3 216 9 ,703 703 4 5 6 8 4 . 2 2186. .941 651 45691 . 3 218b. .600 591 45698.4 2188, .260 483 45705.4 2167. .925 607 I C L A S S I F I E D 45721.3 218 7, , 164 636 45732.7 2186, ,619 652 43 7 3 9.3 2 l 6 o . , 304 646 45751.8 2185. ,706 654 4575o.3 2 l a 5, ,3 96 599 45770.8 2184. ,799 640 45796.2 21b3. 3b7 13b 4 2 8 * I V 6S 3D3 - 5P@ 2 5 * 4 5 8 2 4 . i 21 d 2 . 23b 318 b98 11 5P2 3P1 - 12F 3F3*b 45846.2 2181. 111 514 45856.6 2160. 711 499 I C L A S S I F I E D 45863.1 2160, 402 525 45866.1 2160. ,259 411 623 45869.4 2180, 103 541 I 45889.4 2179. 152 543 45683.1 217 9. 452 546 I C L A S S I F I E D 45900.3 111 498 1 I I 111 50 205/2 -5P@ 4 P 5 / 2 * 45923.9 217 7. 315 344 699 45926.4 217 7. 397 269 660 45939.a 2176. 7 62 564 45934.6 2177. 008 588 43949.2 2176. 31b 4 o i 666 45952.8 217b, 146 549 45959.9 2175. 8x0 5 59 45966.0 43969.7 43998.7 46015.6 46028.6 '46034. 3 46079.3 46046.0 46057.2 46065.5 46087.4 460 8 7.0 46095.7 4610 i . o 46146.3 46159.7 46162.9 46170.7 46177.9 46184.4 46 2 0 2.0 46206.9 46225.0 4622d.4 46236.6 4&243.4 46253.1 4 o 2 6 3 . / 46275.6 46289.6 4 6 3 0 5 . 4 46314.4 46335.0 46337.7 46344.6 46365.3 46371.6 46376.5 4 6 3 8 8 . 0 4 b 3 9 3 . 2 46401.9 4640V.6 4 6 4 1 9 . 4 46424.2 46429.6 2175.321 2173.340 2173.974 2173.167 2172.562 2172.293 2171.741 2171.213 2170.822 2169.790 2169.009 2169.400 2 i 6 V . H o 216 7.021 2166.392 2166.242 2165.67b 2 i 6 5 . 3 3 8 2163.233 2164.408 2164.179 2163.532 2163.1 / 2 2 l o 2 . 0 0 6 2162.471 216 2.017 2 1 6 1 * 4 20 2 1 6 0 . 9 0 6 2160.312 215 9.573 2139.136 2150.196 2150.070 2157.749 2156.7 65 2 i 5 6 . 4 9 2 2156.172 215 5.702 2133.M-OO 2155.064 2 l 5 4 . 7 i 7 2154.272 2154.049 2135.f9ti 538 457 333 o70 474 666 316 7 1 2 * 527 416 527 485 728 485 651 490 490 490 431 960 303 749 390 798 433 868 520 323 522 505 430 5 0 6 * 526 8 3 8 * 520 501 313 531 5 5 2 566 131 46 5 567 426 215 616 215 761 565 690 280 661 524 533 473 716 402 893 115 735 9 0 146 364 879 431 4t>9 IV IV 5D 3S1 - 4F 14* IV 5D 3G4 - 5P@ 2 1 * I I C L A S S I F I E D I C L A S S I F I E D IV 5D 3S1 - 5Pg> 15* I I I I I I 5P@@ 2 F 7 / 2 * - 6S@ 4D3/2 I I 5D 3D3 - 1 IF 3F3*N I I 5D 3D3 - 11F 3F4*B I C L A o o I F I E D I I 5D 3D3 - 11F l F 3 * b IV 5S2 3P2 - 5P@ 2 2 * IV I I 5P@ 4 F 5 / 2 * 9G 2G I I C L A S S I F I E D I I I I I 5D 302 - 11F 1F3*B IV 5D 3G4 - 5P@ 2 3 * IV IV 5S2 3P2 - 5P@ 2 3 * IV I I I I I I 552 2D5/2 -4F 2 F 5 / 2 * I I I I I I 5S2 2D5/2 - 4 F 2 F 7 / 2 * p- p- .p- p~ 4> -p- -p- 4> 4> 4> 4> 4> 4> J> P> .p- 4: p- 4> P> 4> -P- 4> 4 > 4 > 4 > ^ - ^ 4 > 4 > 4 > 4> -P- J> -p- 4> P> p~ p- p-. p- -p- p- 4> P> -j ~J -J CA c- CA CA CA CA a- o CA CA o CA c o- cr•i>ac^^^c^^c^^c^cp^c^^c>^0'^^^ciO'0'0 ,co> c o o o ^ v C c O \ o \ O v o o j c c c c r x t t t o u vc a o -J u cr ro ro vc c> CA C VC IV• I-- LOui vo co a ~J vr \C a c ro o u o ^ a a ^  c cf ui c N o o 4> H h' 4> 4> i\. o A o vc o VJ- -vi c v.- r o o o A o CA ~j j> ~j o vr o c c o o cr P- J> r o „• p- CA J>U> A. ro rv ro iv A A. A., AO AJ ro fv iv ro A. AO A. A. A. ro ro ro ro A~ ro• ro A.- A. AO iv ro ro iv ro iv ro rv ro A. ro A. A. ro A AO t— *—1 J— 1 \—t I— f—J I—' I—' H-1 I—' \—' t—' i—1 I— I— • I— I— • — I— I—1 I— V—" I—• I—• I—' I—•• I— I—: f— I—1 H~* 1—1 1— I—• »—* I—> f—• J — I— h-J I—' I—1 t—• t—1 A ro ro ro A.; rv ro rv ro u i U> LO LO vo U U> L> W U1 W W W P> J> p- J> p- r> p- p- p- j> p- p- j> p- ^  p vr vr vr v rvn f U O - j N O v C ^ v O C U U ^ W V T t i C ' f f ^ v i C i f O h M N U 4> p- U Ui Ui Cr CA CA -v: -~J a t—• ro A. LO Vj. LO > J> c- r o v.- o <J: co N. j> VJ a o u cc o c h w M - j c a w c i r »~ i C P> t - - P~ vC A. p- U U! -J a O VJ CC Vj CC H V C \ VJ' or H c VI U' i j 1 v: 1 p p u.' a 1- K O p u i c p vr. p - j p u - a N U v c - - i a i v i O H P < H t 1 vr o u o r v 00 -JOP a : v.- r o t J> c v.- c 1- c - v i a 1— c : vj- p- A. p- \~ CA A. c VJ- p- ~j c ^ o c - u ' U ^ N U O U VC U> V> r> p u H- vr vj- vo LP vj o.) rv vji 00 vr vr vj. ui vr CA vr vr -P> vr u> u i U ' vr u i cr- vr vj- CA cr CA N v o c o a P P a P o - p p c v o c o c H i i ' . w t c o i i j i o c O H a v C N j o o N -v l C- 33 u- ^ O U i H CC - J \— CA *C• vr Ao u ro p- rv j> o c o j> a- a- CA c c o vr vr vr VJ vr vr p-I-^ I-^ I— 1 - ' ro o v o ~j c c -vi rv ro vr vc a v>j VX CO CC. VO ro CC CA oo p- \~ >o vo p NP vf a CA —j vr vC cr o CC U ) CA U i O ~ J O CO CA ex CC VO CO t~- a v£> C C v C CO LO 1^—« »—< »—• %—< 1—1 >—. 1—1 »—« )—« < < < < 1—1 >—< _ 1 1 >—t 1—1 1 1 K—« >—« < < t 1— ) • > 1 t—1 •—1 VJI vr Ul X a !© VJI LO CA ro CA CA O Ln Cn in AO 1—' vr X ' LO \ t-> i-> X LO ro Cr •v ro C rv c * 1 1 l 1 •p-1 l l 1 1 CA LP T l vr C X X X c c O re X X 1—• Ul I-1 ro CA X J> X u> c >-' * O I—1 X Vx * u * I—1 \ rv cr ro CD * V . 47102.0 2123. ,052 408 696 I V 47110.9 2122. 631 616 47114.0 2122, 311 625 713 IV 47126.6 2121. ,944 5o9 717 IV IV 4 7 1 3 3 . 0 212 1. .636 465 47158.1 2120. , 3 2 b 538 775 47161.8 2120, 560 39 5 775 47175.3 211V, ,733 531 4 7 1 8 5 . 1 2x19, , 2 06 3 5 5 I I I 11 47209.8 2116. 204 605 47217.1 2117. . 6 7 7 576 47230.2 2117, 289 600 4 7 2 3 3 . 6 2 117. 137 606 6 3 4 * I I I 47243.8 2116. .680 551 4 7 2 4 9 . 8 2116, 411 501 47264.1 2115. 7 71 564 47269. 7 2113, .320 599 47277.1 2113, . l o 9 594 4 7 2 8 3 .6 2114. ,903 613 47290.5 2114, ,390 587 47310.2 2113, ,709 605 47 3 2 2. o 211 J . , 1 3 3 566 47342.7 2112, ,2 3 0 3 73 47348.0 2112. ,022 475 47361.8 2111, ,406 583 47408.4 2109. ,331 586 47419.4 2 106, 6 42 565 7 9 8 * IV 47438.2 2108. ,006 485 7 9 8 * 47446.9 2107, , o 19 543 4 7 4 6 3 . 6 2106, .6 78 135 356 I I I 4 7 4 8 6 . / 2103. . 7o4 469 617 11 47504.8 2105. .030 148 3 6 8 * I I I 47515.5 2104. .376 223 11 47531.3 2103. ,868 609 6 1 7 * IV 4 7538.5 2103, ,538 600 4 7 5 6 9 . 1 2102, 205 616 47578.5 2101. 790 600 47582.4 2101. 617 600 868 IV 47589.2 2101, 317 508 47600.5 2100. .818 573 47616.7 2100. ,015 549 47637.8 2099. .173 5 76 47656.6 2096, 345 14 7 608 47660.2 2098. 187 293 701 4768 7.5 2U96. . y 06 432 6S 1D2 - 5P@33* 5D 3S1 - 4F 18* 582 3P2 - 5P@ 2 5 * 562 2D5/2 -5P<a 4 P 5 / 2 * 5P@@ 2 F 7 / 2 * - 68@ 4D5/2 5P2 102 - 8F 3F*b C L A S S I F I ED 5S2 3F4 - 5P<? 10* 47693.2 2096. 735 527 47703.2 2096. 295 572 47716.9 2095. 694 250 706 I V 4 7 7 2 6 . 1 2095. 290 560 47736.2 2094. 846 596 47732.0 2095. 031 595 47744.0 2094. 504 583 47752.4 2094. 136 590 47764.0 2093. 627 343 4 7 7 6 6.3 2093. 5 i 7 543 868 I V 47766.6 2093, .42 5 545 4 7 7 8 3 . 5 2092. 773 393 11 4 7 8 0 1 . 3 2091. 993 527 47804.0 2091. 6 75 540 860 I V 47820.2 2091. 166 133 334 I I I 4 7 9 1 8 . 7 2086. ,8b8 479 772 47948.0 2063, .3 93 227 667 4 7 9 5 0.2 2085, .49 7 276 676 47963.6 2064, .9 14 116 140 IV 47979.6 2064, 219 348 47986.6 2083, 906 i 5 2 352 48007.4 2083, 012 217 648 48026.7 2062, .17 5 292 504 11 46039.3 2081. .0^0 i 2o 410 I I I IV 48044.7 2081. ,395 288 720 48054.8 2060. .938 226 496 11 48071.0 2 080. ,256 144 397 IV IV 48095.0 2079. .216 116 11 48119.0 2078. .161 224 614 48135.1 2077, . 4 0 0 263 866 43143.5 2077. .124 3 73 718 46157.2 2 0 7 o. 353 160 347 48165.6 2076. .171 461 718 48174.8 2075, .7 74 458 818 48196.9 2 0 7 4. 822 439 663 46240.9 2072, .930 .3 94 668 46263.5 2071 ,9 39 124 201 I I I 48273.7 2071 .521 334 649 48280.5 2071. .230 507 881 4829 1. 1 2070, .7 75 520 895 4 8 3 1 0 . 1 2069. ,961 426 733 48317.4 2069, ,648 136 235 I I I 4 8 3 2 5 . 5 2069. ,301 430 668 46334.4 2066, ,920 299 4 8 3 4 0 . 4 206b. ,663 307 698 5D 3P2 - 5P@ 24* 66 3D2 5D 2D5/2 5S2 3F2 5P@ 2 8 * 5P@ 2 F 5 / 2 * 4F 16* 5P2 1D2 5S2 3F2 I I P 3P1*B • 4F 17* 5P2 1D2 - H P 1P1*B 5S2 3F2 -4F 18* CLAoSIFI£0 w'N A l I I EX I ON C L A S S I F I C A T I O N 14954.0 668 7. .174 632 I V 5D 3F2 - 6P 1* 15009.2 6662. .580 708 I V 5D 102 - 6P 3* 16013.7 6244, .653 682 IV IV 17179.0 3 8 2 1. .061 710 5D 2D5/2 - 6P 2P3/2 17470.0 3 7 24, 098 348 619 50 2D3/2 - 6P 2P3/2 17554. 2 3 o 9 o , o42 5 79 7 8 0 * IV IV 5D 1P1 - 6P 1* 17633-5 3664. .399 832 I V 5D 3F2 . - 6P 4* 1 7 7 1 0 . 0 5b46 . 327 736 6S 2 S I / 2 - 6P 2P1/2 17820.o 5611 . 420 636 IV 63 1D2 - 6P 3* 19046.0 5 2 30. 44b 166 86 6S 2S1/2 - 6P" 2P3/2 19 517.0 3 12 3, 738 774 I I C L A s S I F I E O 19 9 0 7 . 6 502 3. 2 07 782 IV IV 5D 3D1 - 6 P / 6 * 2 0 0 9 7 . 7 4975 . 694 886 11 CLASS I F I ED 2 0 5 06.0 4876, 6 21 742 I V 5D 1F3 -6P 8* 2 0 9 4 1 . 7 4773 , 162 374 567 5F 2 F 5 / 2 * - 76 2G 2 0 9 6 b . 6 4 7 6 c 9 90 822 880 I I I 210 7 0 , o 4746 , 904 253 494 5F 2 F 7 / 2 * - 7G 2G 2119 0 . 7 4719, 0 3 i 413 2 1 3 4 0 , 3 466 5 . 9 7 0 83 11 C L A o o l F I ED 2 1 3 4 b . o 4 6 ii 4. 718 121 2 .1 3 7 1. 2 467 9 . 194 241 2 1 3 5 3 . 7 4-662. 3 91 74 11 C L A S S I F I ED 2 1 4 4 7 . 7 46 62. 5 05 547 21471.8 465 /. 2 71 74 11 CLASS I F I ED 2 x 4 d o .. b 4633. 367 233 i 7 J. i. CLASS I F .1 ED 215 0 3 . 3 4650. 4 0 6 500 21^. 24.5 46 4 3. 669 94 11 C L A S S I F I E D 2 13 3 9.2 4o42, 696 367 21554.3 463 V, 445 76 11 C L A S S I F I E D 2 1 5 6 6 . 6 4636, 327 332 2 1 5 7 9 . o 4633. 963 640 2 1 6 0 3 . 8 462b. 6 15 63 7 11 C L A S S I F I E D 2163d.0 4o2 1. 499 639 11 C L A S S I F I E D 21633.3 4b 17. 807 621 716 11 C L A S S I F I ED 21663.1 4616, 143 606 21680.0 4612. 546 595 21693.4 460 9 , 697 542 2 1 7 0 0 . 8 4608, 125 480 6 8 8 * IV 2 1 7 1 4 . 8 4 6 0 3 , 154 737 IV 6S 1D2 - 6P 6* 21756.1 4596. 412 694 21771.4 4 3 9 5 , i 02 663 716 I V 21853.2 4 5 7 5 , 909 643 21883.6 4369, 214 433 6 8 3 * IV IV 5S2 3P1 - 6P 2* 21894.0 4567. 461 811 48357.0 2067. .933 161 413 IV IV 552 3F2 - 5P@ 19* 46359.6 2067, ,842 161 419 IV I V 552 3P2 - 5P@ 2 7 * 48371 .2 2067, , 346 635 48380.3 2066, ,957 650 48392.6 2066, .432 352 8 1 6 * I I I 46394.7 2066, .342 332 716 I I I IV 6S 3D3 - 5P@ 2 8 * 48420.2 2065 .234 266 535 48441.2 2064 .356 627 48448.8 2064 .035 463 628 48467.6 2063 .234 163 249 IV 48486.7 2062 .421 522 888 4849o.3 2062, . 2o0 392 79 8 IV IV 65 3D2 - 5P@ 9 2 * 48499.5 2 0 6 x , .6/7 368 636 4o5 0 9.o 2061, ,446 206 610 46516.6 2061. , 142 604- I I I -48523.0 2060, .878 536 790 48551.6 2059. . 664 527 618 48560.9 2059, ,270 344 564 48573.4 2058. .740 176 649 48584.7 2056. .261 650 48597.1 2057, .7^6 633 48604.3 2057. .431 646 69 9 IV 46618.3 205o , .6 30 563 46o29 . 2 2056, ,3/8 192 513 I I I I I 66 15u - I I P 3P1*B 4d651.9 2055. .418 5 66 I I 65 loO - I I P 1P1*B 48642.8 2055, ,803 512 665 IV 46 6 5 7.9 2055 ,165 602 I I I 66 281/2 — 5 P @ 4D3/2* 48702.9 2053, ,266 146 329 I I I 4 8 7 3 0 . 7 2052, ,094 138 766 I I I 4F 2 F 7 / 2 * — 8G 2G 48739.0 2051. .745 134 875 4F 2 F 5 / 2 * — 8 G 2G 46772.7 2050, ,3 27 506 48779.0 2050. ,063 532 4 8 7 9 3 . 1 2049, ,4 70 522 888 IV 5D 3P0 - 5P@ 2 7 * 48803.1 204o. .966 138 770 5D 2D3/2 — 7 P 2 P 1 / 2 * 4 8 8 1 1 . 3 2046, . 706 316 760 48858.6 2046. ,714 3 /9 76 9 48863.3 2046, ,526 673 48877.5 2045, ,931 703 48384.2 2045, .651 699 48897.0 2045 , ,115 262 682 49045.5 2038, .923 392 674 -48231 . 1 2073, ,351 132 448 48476.5 2062. 855 606 I I C L A S S I F I E D 48906.2 2044. ,731 716 48 919.8 2044, , 162 72 7 48934.7 2043, 540 497 674 48951.2 2042, 631 718 48974.3 2041, 6 0 / 693 893 48984.3 2041, 4 70 601 I I 49008.9 2040. ,446 367 617 I I 49014.7 2040, 204 622 812 4 9 0 2 6 . 6 2039, ,618 467 588 49068.3 2037, .9 76 688 49083.0 203 7. 365 712 784 49102.2 2036, 5o9 666 6 3 5 * 49119.1 2035, 808 131 508 I I I I I I 49140.3 2034, 990 741 3 0 8 * I 4 914o.1 2034. 7 49 7 37 49174.0 2033, ,595 770 49186.5 2033. .0 78 766 49246.3 2030. .609 242 656 49303.6 202 o. 167 189 407 4 9 3 2 1 . 8 2027. 301 143 270 IV 49341.1 2026, ,708 743 4 9 3 5 5 . 1 202o. ,133 698 I I 4 9 3 7 3 . 1 2025. 394 470 657 49389.2 2024. ,734 734 49401.9 2024. ,214 653 4 9 4 0 9 . 1 2023. .9 19 214 926 4 9 4 2 5 . 3 2025, 3 3 7 797 49 4 4 2.7 2U2 i. , .3 45 393 9d2 49460.9 2021. , 7 99 769 49 4 7 0.1 2 02 1, .423 763 49515.6 2019. ,366 701 874 4 9 5 2 9 . / 2018. .991 141 208 IV 4 9 6 0 6 . 5 2015, ,863 263 432 49621.6 2015. .251 193 746 49645.1 2014. ,297 329 609 4 9 6 5 5 . 1 2015. .692 419 608 4 9 6 6 6 . 1 2013. . 3o5 548 799 49675.3 2013. ,073 608 IV 49694.0 2012, ,313 606 723 49704.6 2011, , 6 0 0 161 604 I I I I I I 4 9 7 2 9 . i 2010. . 0 9 5 b90 965 I I I 49743.0 2010. ,333 803 990 49762.0 2009, .306 690 788 49772.0 2009. ,162 813 I V 4978 1. 6 2006, .7 74 806 I I 49788.0 2006, .516 802 49802.2 2007, . y43 795 C L A S S I F I E D 6S 3S1 - 7F 3 F 3 * B 5D 2D5/2 — 7 P 2 P 3 / 2 * C L A S S I F I E D 7P 2 P^ ~ $ d Z 5D 3G4 - 5P@ 2 8 * 5P@@ 2D5/2* -6S@ 4 u l / 2 5D 2D /2 - 5P@ 4 0 1 / 2 * 5D 3S1 -5P@ 2 2 * 6S 3S1 - 10P 3P1*B 49827.6 2006.920 823 49847.6 2006.115 244 612 49866.<+ 2005.276 16 7 49896.4 2U04.153 606 49 90 3.7 2003.839 806 4 9 9 1 4 . 3 2003.426 o 16 49929.7 2002.616 783 49936.2 2002.475 791 4 9 9 5 3 . 9 2001.846 140 280 4 9 9 7 1 . 1 2001.157 747 4 9 9 9 4 . 3 2000.228 650 723 4 9 9 9 7 . 8 2 0 0 0 . 0 0 6 613 713 50005.3 199 9.768 582 50009.6 1 9 9 9 . 6 i 6 714 50025.0 1999.000 817 50049.0 1998.042 796 5 0 0 6 3 . 5 1997.463 777 860 500 74.4 19 9 7.028 645 716 50069.0 1996.446 635 710 50102.5 1995.908 770 50110.7 1995.502 656 50118.0 1995.291 774 50148.0 1994.097 599 713 50156.2 19 9 3.o92 699 30168.6 199 3.2 79 765 50176.3 19 9 2.973 7 l 5 746 5 0 1 9 5 . o 1992.206 555 600 p u l 9 9 . 1 1 992.0o6 bHl 773 5 0 2 38.4 1990.309 7 34 50251.4 1969.994 733 50273.0 1989.139 218 660 50296.3 1988.2 16 754 50313.8 198 7.3 2 6 477 678 5032 5.9 1967.048 399 613 50371.4 1965.254 698 773 50383.3 1 9 8 4 . 7 0 5 632 712 30395.4 1984.30o 739 50402.2 1984.040 766 50433.2 1 V O 2 . 0 2 1 703 816 50450.0 1962.161 792 602 50451.6 1982.090 792 5 0 4 8 5 . 1 1960.782 701 832 50518.9 19 7 9.437 5o6 732 5 0 5 2 5 . 5 1 9 7 V . 19 9 343 6 5 0 * 50530.6 197 8.99 1 471 700 111 I I I 50 2D5/2 — 3 P @ 2 P 3 / 2 * IV I I I I 5P2 1D2 - 10F 3F3*B 5P2 102 - 10F 1F3*B 5P@© 2P3/ 2 * - 6o@ 4D5/2 5D 20 /2 — 5 P @ 2 P 3 / 2 * I I I I I I I V 6S 2S1/2 -7P 2 P 3 / 2 * 5S2 3P2 - 5P@ 29* 30572.5 1977 .339 116 50540.4 1978. ,615 446 607 50592.5 1976 .3 78 231 332 5 0 6 0 3 . 5 1976 .148 461 606 5 0 6 0 7 . 3 1976, .000 513 768 50615.5 1975 .6 79 506 676 50625.7 1975. .261 593 702 50634.5 1974. ,938 730 897 50645.2 1974. .521 637 782 50665.8 1973. .718 301 468 50675.3 1973, .3 48 800 50684.5 1972. ,990 807 5069 1. 3 1972, .725 813 999 50704.6 1972. .208 801 999 50710.3 1971, . 9o6 7b l b68 50721.2 1971. . 5b2 7 3 i 836 50729.5 19 71, ,240 793 692 5 0 7 7 5 . 1 1969, ,4o9 7 i 0 819 50786.0 . 1969, ,047 610 718 50794.5 1966, ,717 583 50804.1 1968, ,345 420 610 50814.6 1967. ,9^8 388 461 50820.4 1967. ,714 293 358 50823.7 1967, 5b6 247 362 50828.2 1967. .412 202 368 50846.3 196b. , / i i 114 389 3 0 8 6 5 . 3 1965. 9 7 7 147 337 3 0 6 7 9 . 1 19 6 5 . ,444 339 426 30870.6 19 65. , 764 228 338 50882 . 3 1965. ,320 42b 513 50885.4 1965. 200 426 483 50888.9 1965, ,065 442 553 50896.5 1964, ,7 72 563 720 50909.3 1964, ,2 78 617 701 50922.2 1963, ,760 735 810 50911.2 1964. 204 628 716 50929.3 1963. ,506 692 728 30944.8 1962, ,y09 615 7 1 3 * 3 0 9 5 5 . 1 1962, 5 12 766 50975.9 1961, 711 614 50961.2 1962. 2 77 788 50988.0 l 9 b l . 24b 753 50993.8 1961. 023 620 51011.7 1960. 333 660 31037.3 I 9 5 y , J 5 1 810 11 C L A S S I F I E D IV IV 5S2 3F2 - 5P@ 2 2 * 5P@(s> 2 F 7 / 2 * -6S@ 4D1/2 I I I I I I I I V 5P2 1D2 5P2 1D2 5D 3P0 11F 3F3*N 11F 1F3*B - 5P@ 24* 6S 251/2 — 7 P 2 P 3 / 2 * 51073.9 195 7 .947 612 51057.0 1958 .595 660 51050.5 1958 .845 803 51085.0 195 7 .522 831 31091.2 1957 .2 64 612 •31121 . 0 1956 .120 633 3 112 7.9 1953 . 0 / 9 653 31171.3 1934 .2^0 695 708 51182. 1 1953 . o08 533 951 3 1 1 9 4 . 5 1 9 3 3 .5 42 708 3 1212.3 1932, .656 774 31239.3 1951 , o l 9 769 671 31255.0 1951. ,029 725 3 1 2 7 2 . 9 1950, • 346 7 68 51293.5 1949, ,565 798 313 0 7 . 6 1949, ,021 7 7 6 51341.9 1947, ,727 669 313 4 7 . 0 1947, ,311 803 313 7 5.7 x94o, ,321 645 3138 0.x J-94O, .2 /9 716 51404.4 1945, ,339 763 31420.3 1944, . 73 7 832 949 5 1 4 2 5 . 6 1944, ,337 062 51453.3 1943, ,502 644 644 5 1 4 8 6 . 7 1942, ,249 640 8 5 0 * 51502.6 1941, ,650 778 51507.6 1941. 461 607 5153 7.6 19 40. 3 5 l 796 31545.4 1940, 057 793 31556.7 1939. 3 57 707 51570.5 1939. 093 581 650 51576.o 1930, Vox / o o 715 31595.9 193b, 136 761 51604.6 19 3/. 604 678 751 51616.4 1937. 5 0 9 456 51627.0 1936. 9 71 426 538 51647.1 193o. 217 113 128 51690.8 1934. 5o0 633 638 51701.4 1934. 104 793 793 31736.0 1932. 8 90 51756.2 1932. 1 5 6 304 861 31767.0 1931. 7 5 3 146 198 5174 7.2 19^2. + 'U 733 31772.4 1931. 351 436 456 51615.4 1929. 92o 60H- 604 +V 5D 3S1 - 5P@ 2 6 * 5D 2D5/-2 -5P@ 2 F 7 / 2 * I I 66 361 - 8F 3F*i5 6S 2S1/2 — 5 P @ 4D1/2* 5P@@ 2D5/2* -68@ 2D3/2 I I C L A S S I F I E D I I I IV I I I 6S 2S1/2 - 5P@ 2 P 3 / 2 * I I 6S 3S1 - H P 1P1*B 5S2 2D5/2 - 7P 2 P 3 / 2 * I I C L A S S I F I E D 5P@@ 2P1/2* -6o@ 2D5/2 31843.3 192b .662 716 716 51862.6 192b .172 172 119 2 1 6 8 4 . 4 192 7 . 3b2 472 70 1 51929.0 1925 .706 584 816 .51938.1 1925 .369 567 315 51953.9 1924 • 7 b 3 631 3 3 6 5 1 9 7 0 . 1 1924 . l o 3 263 432 31984.5 1923 . b30 497 200 51902.5 l 9 2 o . oo9 b33 5 1 9 9 3 . 0 1925 .5 3 6 43 3 235 51995.9 1925 , 2 2 9 43 / 3 1 3 * 6 2 017.5 1922 .437 932 676 32022.0 1922 .264 990 656 52 0 9 5 . 7 1919 .544 964 831 5 2 1 2 1 . 7 1916. . 3 6 / 934 805 52139.8 1917. .92 1 648 831 52154.1 1917 .593 310 2 7 3 * 52159.4 1917. .200 622 32166.4 IV 16. ,206 936 835 32193.3 1913. . 6 o l 952 32203.b 1913. ,37/ 991 52211.4 1913. .291 3 74 52216.3 19 15. ,111 920 524 32233.1 1914. ,422 9 96 32241.1 1914, 202 915 32244.9 1914. ,0b2 6 18 497 32251.9 1913, ,60b 409 841 32267.2 1913, ,246 907 818 52271.7 1913. ,06 1 9 9 9 52282.0 1912, 704 958 5229U.6 1912. 390 6 76 819 52305.4 1911, 646 612 657 523 3 7 . 6 1910. 6 72 563 52301.0 1912. 009 926 812 52363.0 1909, 745 824 5 2 3 6 6 . 4 19 09, 621 669 741 52379.6 1909, 140 700 712 32417.4 1907, 7b3 574 817 52438.7 1906, 9 69 870 588 52449.0 1906. 614 9 9 9 52454.2 1906. 42 5 924 704 52476.9 1905. 600 881 62485.6 1905. 264 974 52 4 9 6 . 3 1904. 8 2 4 999 3 2 311.4 1904, 348 566 311 IV IV IV 111 I V 149 913 5D 3S1 552 2D3/2 4F 2F7/.2* 4F 2 F 5 / 2 * • 5P@ 2 7 * •5P(? 4D5/2* •9G 2G •9G 2G IV I I I I I I 552 2D5/2 - 5P@ 4 F 5 / 2 * 5D 2D5/2 -5Pts? 2D3/2* 5D 2D /2 -5P@ 2D3/2* 52566.2 1902 .363 938 49 7 52575.2 1902 .037 999 52585.6 1901 .661 953 52620.3 1900 .40 7 984 52631.0 1900 .021 876 834 •52641.6 i 8 9 9 .631 922 821 32675.8 1896 .403 6b6 664 52711.4 169 7 .123 933 52725.5 1696 • O ± 3 999 52734.5 1696 .292 636 842 52758.9 l b 9 3 .413 694 477 52773.5 1894 .800 963 828 52790.3 1694, .287 878 838 52824.9 1893, ,047 430 52847.0 1692, ,235 726 52397.6 1890, . 445 721 52936.1 1889, ,070 836 790 52979.9 1887, .506 999 5 3071.6 1684, ,247 976 53080.2 1883, ,942 315 829 53099.3 1663, , 264 V09 59 3 35119.3 1682 . , 2 4 0 316 153 33141.9 l a s i , .7 34 7 3b 664 53151.9 ±86 i . 400 999 848 53180.7 1880, ,381 553 33202.3 18 7 V, . b i d 922 774 33213.2 1 b 7 9 , 233 3 76 33233.9 167o. .302 637 672 33246.2 187 7, 998 798 580 53260.3 16 7 7. 571 999 787 53306.9 1875, 9 30 676 53319.5 1675. 466 92o 779 53336.7 1374, 802 930 673 53397.2 1672. 73 7 663 53469.1 1870. 239 6 0 3 966 53497.0 1869. 264 334 8 34 33561.9 16bO« 99V 9 73 53568.5 1866. 7b9 909 53604.4 1665. 519 636 828 53617.1 1865. 0 77 763 671 53632.4 1864, 545 746 53680.1 1862 . 666 191 53702.2 1662. 121 923 33709.0 1861. 8o5 946 53736.4 166U, 936 669 IV I I I IV I I I 111 562 2D3/2 -5P@ 4 0 3 / 2 * 6S@ 205/2 5P@(? 2 0 5 / 2 * -5D@ 2 ( 3 / 2 ) I I I I I 50 2D5/2 — 5 P @ 2 0 5 / 2 * C L A S S I F I E D 3 3 79 9.7 x856. .7 46 999 33613.9 1656, .236 922 999 53839.1 i o 3 7 , .306 999 33843.1 1857, . 24o 9 78 53873.8 1856, .1*1 744 53903.9 1655, .133 959 641 53916.o i 6 54, .716 204 23 7 33932.8 1654, .139 922 54000.8 1851, .824 697 3 4019.7 1651, .17 7 322 300 34045.6 1850, .2o9 150 115 54071.4 1849, .407 596 938 5 4 0 7 9 . 6 xo4V < ,12b 44 / 495 54086.0 1848, ,907 316 901 54089.4 1640. ,791 372 959 5410U.4 1846. ,415 8 36 54109.2 184o. , 115 410 146 24112.2 1646 , ,012 21 I 146 54246.7 1843, ,4 30 503 54257. 1 1843. ,0 7 7 723 942 54266.0 1842, ,7 74 722 5427o. 1 1042. . 304 161 54285.6 1842. , 102 527 5 4 2 9 8 . i 1841, 6o5 712 949 54318.3 1841. 000 705 5 4 3 8 1 . 1 16 3 0, ,674 643 54411.6 16 3 7, 0 3 7 406 34430. 5 163 1, ,009 404 154 34490.6 1833, .172 911 3 4 516.7 1834. ,2 33 719 34576.5 i o 3 2 , .2 23 747 54656.5 1629, 609 756 54660.0 1829, .491 701 54630.5 1830, .479 898 54771.o 1825, .73 7 111 956 54790. 0 1623. .131 l i b 54797.7 1824, ,694 981 54834.7 1823, .063 807 54643.7 1823, , 303 54656.6 1822, V26 605 956 34851.9 1623, .091 6x5 478 54863.3 1622. 7 i 2 748 54870.3 1822. 480 859 34880.2 1622. 131 638 54888.3 182 1. oo2 460 891 111 5D 2D /2 — 5 P @ 2D5/2* I I I I I I 5P@@ 2D3/2* -6S@ 4D1/2 I I I I I I 5P 2 P 3 / 2 * -'532 2D5/2 I I I 5P(s'@ 2D3/2* -63(2> 2133/2 IV IV I I I 5P@@ 2D5/2* -5D@ 3 (3/ 2 ) I I I I I I 5S2 2D3/2 - 5P@ 2 F 5 / 2 * IV I V I I 6S 3D2 - 5P<? 3 3 * C L A S s I F I t U I I I 6P 2 P 3 / 2 * — 9 8 251/2 552 2D3/2 -7P 2 P 1 / 2 * 6P 2 P 3 / 2 * — 8 D 2D3/2 ! 54895.4 1821. .646 920 I V 6S 3D3 - 5P@ 3 3 * 54910.2 1821, ,163 321 133 I I I I I I 6P 2 P 3 / 2 * — 6 0 205/2 35012.9 1817, ,73 3 936 55018.0 A817. , 3 o 7 766 939 IV 6S 102 - 5P037* 55022.3 i 8 1 7, 445 444 959 '55055.2 i o 16. , 5 3 9 662 55081.4 1815. .495 7 66 55086.6 1815. .317 771 5509 1. 1 1815. ,175 829 55 150.5 1813. .220 794 I I C L A S S I F I E D 55158.3 1612. ,964 834 965 ** 5 5 1 7 3 . 7 1612, , 4 3 8 723 977 55183.3 1812. , 142 615 5 5 1 8 8 . 6 16 11 < ,962 621 55196.5 1611. . 7 JLO 662 665 55201.6 1811. ,353 429 196 I I I 5P@(? 2 F 7 / 2 * -5D@ 3 (3/2) 55232.1 1610. .341 132 116 I V I V 5S 1D2 - 5P 3P2* 55314.0 1807. ,861 219 55323.5 1807. .530 537 55343.7 180b. ,690 536 35377.5 1805. .7 68 890 55388.3 1805, .435 876 55398.0 1805. . 1 19 840 55402.7 1804, ,966 769 35411.9 1804, ,66 7 533 55432. 1 1804, ,009 673 55447.6 1803. , 305 784 407 5S2 2D3/2 — 7 P 2 P 3 / 2 * 35470.3 1602, . 767 7 54 35476.4 1802. ,503 3 3 5 568 I v 3 5 5 2 3 . 3 1801. .039 621 3 3 13 3.7 1813, , 7 73 759 55546.3 1800. ,300 777 55501.4 1801. 756 391 583 -55569 . 5 1799. ,548 668 55577.7 1799, ,263 303 908 55584.9 1799, ,030 679 I C L A S S I F I E D 33593.1 1796, , 7 64 26b IV 56648.3 1 79 6, 994 756 356 59.3 179o« 643 696 55670.2 1796, 293 762 55680.9 1795. ,946 806 55681.4 1793. 932 60b IV 5S2 3F4 - 4F 17* 35692.4 1795. 377 5 53 55727.0 1794. 462 790 55750.5 1793. 7 06 747 \W U O O Q o o o o o o o o o o CT U VJ 1 u- VJ~ Ln VJl Ui LT VJl LT U' LT u u cr u u- O'l cr VJ- cr e'- LT LT u- u Ui CJ Ui VJ) cn U; Ui Ui cn cr. CJ cr CT' cn VJl VJl cr 0- O'- cr Cr cr cr CT cr CT cr cr cr cr cr Cr Cr o CT CT Cr cr cr O er O Cr cr cr cr Cr cr cr cr cr a- cr cr VJ u- CJ U cn VJl VJ-i cr- VJl vji VJ! CP VJi VJl VJl JP- -P -p- •p- -p- LO LO LO LO L>: LO rv rv r-" I—1 r—' r— r— O o O O O o O O vC vO vC CC 1^ -Sl -J LO -s/ cr cr VJ> -P- IV) h- 1 o VO -si cr VJI LO co -sj cr cn O —J cr vO CO CC - s i cn -P- LO o sO CD -J cn -P- LO rv -p- CO ro CO CO 1^ cr o- vj er e -P- cr rv CO vO cr vO rv -p 1—' -P- vO -si C cr CC Cr c -sl CC r— -p cn U rv vC P-J CO r—• t—' r—1 ( V Oc c rv o Co O) o ( V rv C cr vC c rv LO -p- a C t— r— cr -p- o o Cc o cr cr r— cr 1—' o vC 4> - s i o sC a eo CX -p- Cr. t— K - t— •—• t— r-1 r-" I—1 I—1 r—' t— K : t-• r— r— r- r— r-1 r—i 1—> r— r-J t—' r—' I- 1—' h-J r - 1 r—1 r- I—* r—' i—• r— J— r- (-' - J - j «ii - j - j -J -J -sj - s i —J -J -J -sj --J — J -sl ~ J -sl -sl -sl -sl —sl -sj -si "si - s l -J -J -sl -sl - s l -sj - s ! -sl -s| c- a Cr cr cr cr cr cr cr - s i -J - s i -sj -si - s i -si -s! "sj -sl -sl -sj CC a a a CO CO Cr CO CC Cc a CC Cr a c: vC vC vC c~ Cv cr c vC v£ vC o O f-J t-1 (V Co 0. -P- - P - P cr cr -sl vC vC s£ o o r— r—' (V) rv fv U -P- 4> -P- u u -si —s' o vr. rv rv u" c u Ct C rv -P r—1 Co Cr o U" r—' CO o u. c c - s j -P vC sC -P- JP- vf -^ j c •P- -p- LT Cc jr c L>: -sj o u u vC r— rv - i vC r-^  VT 4> r- I V VJ vO P- rv LO cr C - P u u a a -p -P- rv -P cr u L> a. cr r K -P O CC' rv 1—1 a rv -p- c -P •P vO vC -p VJ- -P iv vC C v rv ev- -P- co LO -p- o o H J r— LO o. cr o- L>. a -P- rv -P- a- cr u vC o - P Co CT LO LP ev- o a u vC -p- -  O CT ro -p VJl er cr cr Cr LO r - 1 -p- LT a cr a VJl r— rv cr -P- r— -P- CO -J rv VJl cn Cc cr -sl 4> LO en cr a —J c rv Co co vC I V >—° ro cr -p- o O o Cc rv LO LO o (— o rv u rv LO -P- a; ro h-1 Lx o r—' CT Jp- i — —i o U cr c cr —S* i - ' J> -P- - s l •P a c cr c cr LO LO Lo vC LT Cc rv. c c u -p u cr -P- -P- cr -p- L> CO cr -j u -sl Co sC CO cr -sl —J -P- LO ro u a i—• t—• cr rv - i -P- -J cr vC 1—• vC -sl vC CT 4> -P- vC vO vC r- ' C a cc -J o o cr ro co cn - s l CC r— rv LO -p- -sl p- cr o UI vO -P- IV) rv ro cr -sj cn ro LO CO VJl h~1 rv U: cr ON Jps cn D IV) O (V) I I VJl n rv "n cn "Ss ro * cn O ro o cn "-s ro I I cn T l rv T l cn ^ s rv cn cr CD TJ ro ro TJ ro L>> ~-s ro ro l I l VJl CC TJ C ce ro rv c TJ LO CO v. --s ( V rv * cn rv rv I l cr T l rv T l ro cn TJ eg) ro TJ CO \ rv * I cr <j> c© rv c cn \ ro n > o a IT; C cr cn TJ CO ro rv> T j r o r-'O \ c o rv " -s * rv I I cn vO TJ t /C® ro .p-rv ro j US f\ fS SS f\ f> f*\ <^ rs f% c\ f\ ^ f\ 57671.2 1733. ,966 723 57677.6 i733< ,7 75 631 57699.7 1733. .111 622 57713.7 1732. .691 248 400 57137.3 1750 .170 211 543 57231.6 1747, ,280 2 10 552 57800.5 1730. ,069 631 57817.6 i 7 2 9 , ,377 630 37826.7 172 9, 305 592 57907.7 1726. ,6 66 360 57913.0 1726. .728 303 774 57917.7 1726. ,566 371 767 57937.6 1725. .995 105 133 37971.2 17 2 4. ,994 537 744 57979,4 1724. .751 608 37962.4 1723 . 236 569 58006.7 1723. ,939 446 58027.0 1723. ,336 707 38033.2 1723. , 15* 663 36043.4 17 2 2. ,649 363 38062.9 1722. ,270 346 754 38071.9 1722. ,OU3 64 5 58102.8 1721. ,067 162 257 56142.7 1719. ,906 589 33159.0 1719. ,424 551 783 33 186.0 1716. 36 / 317 272 58198 . 3 1716, ,263 584 58207.7 1717, 9 66 591 58223.6 1717. 517 460 58237.3 1717. 113 265 38257.0 1716, 532 103 36251.4 1716, 697 123 190 36283.4 1715. 734 531 38295.6 1713. .3 95 3b3 645 58306.0 1715. 089 578 53316.2 1714. ,769 358 58323.6 1714. 3 i 3 646 58334.5 1714. 251 636 58344.5 1713. 938 646 58354.7 1713. 658 565 58373.2 1713. 115 514 58391.0 1712. 593 694 58497.8 1709. 466 572 38513.4 1709. 010 214 3 8 5 2 o . 3 1706, . o 2 6 29 7 800 IV IV 55 1D2 - 5P 3 F 3 * IV I I I IV I I I I I I I I I I I I 5P 3 P 1 * ~ 5P2 3P0 B I I I 552 2D3/2 -5P@ 2 0 3 / 2 * 5 6 5 4 1 . 4 5 8 6 5 2 . 7 3 8 6 8 6 . i 5 8 7 0 0 . 8 5 8 7 3 8 . 9 • 5 8 7 7 2 . 9 5 8 7 8 6 . 0 5 8 8 0 3 . 2 5 8 8 1 1 . 3 5 8 8 2 4 . 3 5 8 8 5 5 . 0 3 8 8 7 2 . 2 5 8 9 2 4 . 0 3 8 9 4 1 . 1 5 9 0 0 9 . 3 3 9 0 2 2 . 2 5 9 0 4 6 . 6 5 9 0 4 1 . 5 5 9 0 5 6 . 7 5 9 2 1 6 . 2 5 9 2 2 3 . 7 5 9 2 5 6 . 9 2 9 2 8 9 . 4 5 9 3 1 6 . 3 5 9 3 9 6 . 3 2 9 4 2 7.8 5 9 4 7 0 . 3 5 9 4 7 7 . 8 3 9 4 3 7 . 7 5 9 4 9 6 . 9 5 9 5 0 6 . 7 5 9 5 1 5 . 7 3 9 5 2 4 . 4 5 9 5 3 9 . 3 5 9 5 3 2 . 2 3 9 5 7 2 . 1 5 9 5 7 5 . 0 5 9 6 0 6 . 7 5 9 6 2 7 . 0 5 9 6 3 3 . 2 3 9 6 4 1 . 8 3 9 6 5 6 . 5 3 9 6 6 o . 0 5 9 6 7 6.6 3 9 7 0 6 . 4 170o . 193 557 1 7 0 4 .931 528 170 3 .923 592 1703 .554 472 1 702 .449 94 1701 . 464 499 1701, .065 172 465 1700 .588 405 1700 .334 313 1699, .9 72 90 169 9 .091 540 1690. .395 5 3 1 1697, . 101 6 2 0 1696. .609 568 1694. ,648 631 789 1694. .2 78 651 1693. .213 6 0 4 789 1693. .724 556 1693, , 2o8 492 168 o . ,727 593 l o 8 6, , 3 13 257 4 2 1 166 7, ,510 460 i 6 6 0, , o 4 c 190 766 1663, .6 72 4 9 4 826 16o3 , ,607 201 780 i 6 3 2 . .7x4 4 5 4 82 8 1 6 6 1 , 512 790 168 1. 300 567 1 6 8 1 . 0 2 0 719 1 6 8 0 . 760 501 759 1 6 8 0 . 463 743 775 1 6 8 0 . 2 29 760 i 6 7 9 . 963 6 3 4 722 1 6 7 9 . 3 65 367 607 167 v. 7o3 601 1 o 7 o . 030 794 1 6 7 o . 356 1 6 7 7 . o 6 4 643 1 6 7 7 . 0 9 3 510 Io 7 6 . 916 712 1 6 7 6 . 6 76 801 1 6 7 6 . 207 740 1 6 7 5 . 996 662 736 1 6 7 5 . 693 720 510 16 7 4. 862 460 C L A 8 6 1 F I E D I I C L A S S I F I E D I I I I I I 5o2 2D5/2 -NP@ 4D5/2* I I IV I I I 5D 2D5/2 - 5P@@ 2 F 5 / 2 * IV 5P@@ 2P3/2* -5D@ 2 (3 / 2 ) IV I I I 5P@@ 2 F 5 / 2 * -5D@ 1 (1 / 2 ) IV IV IV 552 3P2 - 5P@ 34* 5D 2D /2 - 5P@@ 2 F 5 / 2 * o 59724.9 1674 .344 480 59736.6 1674 .016 109 123 I I I 59773.2 1672 .991 301 463 IV 59813 . 3 1671 . 8 6 9 9 8 I I 39841 .3 1671 .067 601 59853.0 1670 .760 453 483 59888. 1 1669 .76 1 401 450 59899.5 1669 .463 98 I I 59949.2 1666 .0 79 568 5994/1.0 1 6 6 6 .237 361 392 I I I I I I 39967.5 16 6 7, .570 331 536 I I I I I I 60029.4 1665 .850 387 754 IV 60053.8 1665 .174 423 00063.6 j.664 . 8 9 6 o b i 774 60085.9" 1664, ,264 663 778 I I I 60124.0 1663 .229 742 6 0 1 4 1 . 6 1662 .743 6 6 0 I I I 60160.6 1662 .217 640 60166.4 1662, ,037 725 60177.3 1661, ,736 777 60187.0 1661, ,488 762 60192.2 1661. ,345 740 60213.0 1660, ,7 71 I I I 60223.o i 6 6 0 . ,42 3 634 60239.9 1660. 029 6 23 60251.9 1659. 6 99 546 I I I 60261 .7 1659. 429 540 60272.9 1659. 120 681 60286.9 165o. 7 33 60302.2 1656. 3 i 4 563 60420.5 1655. 067 543 60442.6 1634. 457 640 6 0 4 5 6 . 1 1654. 093 532 60482.7 1653. 365 601 60488.4 1653. 210 602 60506.5 1632. 715 719 60529.4 1652. 090 689 60547.7 1651. 590 605 782 60564.6 1631. 130 762 60596.3 1650. 2 1 l 489 6 7 7* I I I I I I 60610.0 1649, 893 643 IV 60633.1 1649. 264 762 60652.9 1646. 726 750 60660.6 1648. 517 589 60675.4 1648. 1 14 647 C L A S S I F I E O C L A S S I F I E D 5S2 2D3/2 --5P@ 2D5/2* 5o2 2D5/2 -5P@ 4D3/2* 5P@@ 2P1/2* -5D@ 5 ( 3 / 2 ) 5P@ 2 P 3 / 2 * - 6S@ 4D5/2 5D 2D3/2 5P@@ 2P3/2 5P@ca 2F7/2 - 5D 2D5/2 6S 1D2 - 5P@ 4 0 * 60691.4 1647, ,680 660 805 00699.3 164 7 ,4o5 632 60714.1 1647 .064 734 60744.1 1646 .250 710 60753.7 1645 .990 666 I V 6 0 7 6 2 . 5 1645 .7 32 567 60768.6 1642 . 5 0 7 562 755 60731.7 1646 .5 67 7 30 60779.0 1645 .305 562 IV 6 0788.1 1645 .059 636 60798.4 1644 .760 646 60619.5 1644 .2 10 534 60834.9 1643 .7 93 510 60346.6 1643 .42 3 631 759 60842.2 1643 , . 5 9o 562 757 60871.3 1642, .810 530 727 6 06 9 3.0 1642 .225 85 148 I I I I I I 60919.3 1641, .516 563 736 60939.1 1640, .963 616 60931.0 1641, .201 638 60943.9 1640 ,833 602 I I I 60959 . 5 1640, ,433 285 411 I I I I I I 60973.9 1640 ,046 160 I I I I I 60989.9 ' 1639, . 6 16 498 704 61003.6 1639. .246 596 61016.9 16 3 o , .090 532 720 61020.7 1638. .768 543 720 61028.2 l o 3 o, 3o7 521 709 6 i 0 3 7 . 1 l 6 3 o , 340 433 684 61043.4 1638, 125 560 754 61063.9 1637, 629 540 61066.6 1637. 503 491 61075.6 1637. .315 592 61103.1 1636. 5 76 520 61126.9 1635. 941 504 730 o l 14* . 2 1635 . 332 462 713 61154.1 i & 3 5 . 213 470 708 6116 7.8 l o 3 4 . 84/ 5 72 740 61180.3 1634. 313 562 61213.o 16 3 3. 624 404 686 o i 2 2 3 . 1 i o 3 5 . 3 70 492 734 61239.3 l o 3 2 . 933 503 61251.2 1632. 6 2 i 466 731 61260.7 1632. 360 461 61269.4 1632. 136 426 5S2 3F2 - 5P@ 3 3 * 6S 3D2 - 5P@ 3 6 * 5P 2 P 3 / 2 * - 582 2D3/2 5P@(? 2 F 5 / 2 * -5D@ 3 ( 3 / 2 ) 582 2D5/2 - 5P@ 2 F 5 / 2 * C L A S S I F I E D 61290.5 1631. ,574 423 823 5P@ 2 P 3 / 2 * - 6S@ 4D3/2 61317.9 i 6 3 0 . ,845 480 61362.3 1629. ,o60 320 695 61386.5 1628. ,9 70 330 663 61412.4 l62o< ,336 370 623 I C L A S S I F I E D 61422.1 i 6 2 o , ,076 405 765 61453.0 162 7. ,260 290 595 61527.7 1625. .204 96 99 I I I I I I 55 2S1/2 - 5P 2 P 3 / 2 * 51618.4 1622. .892 299 I I C L A o S I F I ED 61654.5 1621. .942 420 666 61686.8 1621. ,040 432 689 6169 9.9 1620, . 748 445 657 I 61705.4 l o 2 0 , .604 421 657 I I C L A S S I F I E D 61714.7 1620. .3 29 467 693 61725.0 ±020. . U09 4 50 652 &1736 . 2 1619. .793 360 444 I I C L A S S I F I E D 61745.4 1 6 1 9 . 2 34 323 5 6 3 61780.1 1618. .644 320 570 I I I 61794.6 1610, .2 39 460 699 61809.3 1617. ,680 494 722 61821.2 1617, .568 492 731 61833.1 101 7. ,257 310 I 1 I I I I 6S 2S1/2 - 5P@@ 2 P 3 / 2 * 61359.2 1616, 5 74 355 544 I 618 5 3.9 1616. ,7 13 445 666 61867.3 1616, ,363 43 7 589 0 1891.2 1615 . .739 98 I V IV 55 102 - 5P 3 P 1 * 61919.6 i 6 1 4 . ,992 312 684 61927.3 1614. .79 7 2 70 577 IV 61948.4 1614. ,2 47 416 61940.5 1614. 433 367 61977.4 l o l 3 . ,491 237 I I I 5P@@ 2 F 7 / 2 * -5D@ 6 (7 / 2 ) 61990.0 1613. , 163 247 538 I 619 6 3.9 1613, ,713 247 539 I 62012.7 1612. ,3 73 237 210 62027.3 1612, .193 493 I I C L A S S I F I E D 62039.7 1611, .871 495 667 7P 2 P 3 / 2 * - 6S@ 403/2 62047.8 1611. , 6 o l 480 675 62061.1 1611. .315 406 641 I 62076.1 l o i o . 926 4 70 638 62066.9 1610, .394 520 62099.3 1610, . 324 437 642 I 62113.8 1609. .948 406 656 62149.2 1609, 031 420 618 I 62141.0 1609. 243 492 62174.2 1606. .3 04 295 516 1 62191.7 1607 .932 270 454 I 62204.7 1607 .596 250 I I C L A S S I F I E D 62216.3 160 7 .3 22 98 113 I I I I C L A s S l F I ED b2226.6 i 6 0 o ,9 7o 270 641 .62 2 3 7. 3 l 6 0 o . 748 438 727 62256.o 1606 .250 450 689 6 2 2 7 0 . 2 1605 .905 492 729 52260.7 1605 .634 512 62298.0 1605 . 188 400 718 I I I 552 2D5/2 -7P 2 P 3 / 2 * 62306.0 1604 .982 500 618 6 2 3 1 3 . 3 1604 . 794 460 666 62326.2 1604 .462 440 637 62339.4 1604 .122 490 751 62 3 5 7.8 1603 .649 299 638 6 2 3 7 2 . 1 1603 .261 485 740 b2 36 7•2 1602. .8 9 J 375 610 I 62397.9 1602 .616 398 796 I 62422.3 1601 .992 392 756 62434.4 1601. . b ti 1 467 66 7 62 4 5 2 . 9 1601, ,207 462 62464. 1 1600. .920 515 649 in • 62479. 1 1600, .535 480 836 6P 2 P 1 / 2 * - 10s 2S1/2 62605.2 1597, ,311 380 476 TST 5S2 2D3/2 — 5 F 2 F 5 / 2 * 62632.3 1596, ,620 5 I I I I 5P 1P1* - 6D 1D2 B 66737.0 1496, ,419 825 7P 2 P 3 / 2 * - 65@ 4D1/2 62 7 5 2 . 0 15 9 3, ,3 75 817 111 6P 2 P 1 / 2 * - 9D 2D3/2 62941.6 13b6. ,7 74 999 62 99 4.9 1567. ,430 769 6 3 0 1 3 . 1 1386. 921 618 IV 5S 3D2 - 5P 3 F 3 * 6 3073.3 1585, ,457 608 63089.9 1585. 040 734 63133.3 1563. ,950 637 743 63160.1 1583. 2 76 458 476 I 63220.5 1581. 770 458 508 i 6 3 234.6 1581. 413 562 669 63246.8 158 1. 108 • 586 675 63261.0 15 8 0. 753 533 675 63290.2 1580, 023 590 813 111 5P@> 4D3/2* - 6s@ 4D5/2 6 3 314.6 1579. 415 595 63349.5 1578. 544 464 576 6 3 3 6 i . 6 157b. 256 301 IV 5S 1D2 - 5P 3D2* 63379.0 157 7. 810 111 5P@ 2 F 5 / 2 * - 65@ 4D3/2 63395.5 1577. 399 373 445 63409.1 1577. O o l 453 569 63446.3 157b. 13b 495 502 63467.0 1575, 622 339 428 63480.8 1575. 279 356 63496.3 1574, 895 521 637 6 3 5 0 6 . 1 1574. .602 4 i 5 63554.8 1573. ,445 452 599 63364.o 1373. . 19 o 603 65375.9 i 3 7 ^ , , 9<-3 5 73 674 63563.1 137^. ,693 330 694 63613.2 15 72, 001 538 6 7 8 * o 3 6 3 2 . 3 1571. .329 3 13 473 63652.2 1571, 038 601 6 3 6 8 2 . 1 1570. 300 443 443 63700.0 1569, ,839 380 831 63719.4 1569, ,361 504 771 6372 6 . 3 1569. . 162 419 563 63740.8 1566, ,6 34 629 767 6 3 7 4 7 . 9 156b. .6 79 671 778 63791.4 1567, ,609 649 63799.6 1567. ,408 694 692 6 3 8 0 4.9 1367, 2 76 6 66 765 o 3 8 3 o . 1 1 3 o u . , 2 12 446 528 63871.9 1365, ,634 768 768 63902.4 1564. , 6 06 7 89 63932 . 2 1564, ,137 683 705 6 3 9 8 6 . 1 1562. ,639 730 800 639 7 1 . 5 1563, ,196 642 784 64002.9 1562. ,429 630 719 64017.2 1562, 060 674 724 6402.6. 6 1561. , 6 3 l 772 679 64043.9 136 1. ,429 344 64073.7 1560, ,703 371 64090.4 1560, ,296 362 64115.6 1559 .731 566 659 64122.9 1359, ,305 692 6415 6.9 1556, ,6 79 583 650 64186.2 15 5 7, 967 . 836 64202.0 1557, ,564 623 853 64208.0 1557 ,438 609 64246.2 1556, .512 792 593 64337.7 1554. ,299 616 64357.1 1553. ,830 3 61 215 64372.8 1553, ,431 662 799 64391.9 1552. ,990 717 813 64413.5 1352, .4*1 397 64419.0 1552, ,337 593 C L A S S I F I E D 6S 2S1/2 -5P@@ 2D3/2* 5P@ 2D3/2* -66@ 2D5/2 C L A S S I F I E D C L A S S I F I E D C L A o o 1 F I ED 5S2 3P2 - 5P@ 37* 5o2 2D5/2 - 5P@ 2 F 7 / 2 * 5P@ 4D3/2* - 6o@ 4D3/2 5D 2D3/2 - 5P@@ 2 P 1 / 2 * 64435.2 1551. ,947 505 612 64505. 7 1550. ,231 524 634 64515.8 1550. ,008 559 6 4 5 2 3 . 3 1549. ,626 666 752 6 4 5 3 6 . 4 1549, ,313 790 883 6 4 6 2 8 . 7 1547. ,300 548 606 64637.3 1547, ,0 94 708 603 6 3 6 4 2 . 4 1523, , 406 695 776 6 4 6 6 1 .3 1 54o, ,320 615 64702.0 1545. , 347 774 683 64709.4 1545, ,571 7 72 64732.3 1544. ,624 503 745 6 4 7 6 1 . 2 1644, , i o 4 339 229 64777.5 1543. . 7 46 460 560 64804. 7 1543. ,096 709 841 64835.0 1542. .3 77 800 6 4 8 4 2 . 9 1542, ,139 843 6 4 8 7 0 . 4 1541. .335 789 852 6 4 8 9 3 . 1 1640. ,9 96 825 949 64906. 7 1 54U. .073 840 956 64924.2 1540. ,268 544 64946.4 1539, , 6o4 899 6 4 9 6 2 . 1 1539, ,559 766 805 65018. 1 1538, .053 656 934 65038.4 1537, ,353 709 63060.4 1537, .033 559 487 03157.3 1534. , 7 47 o03 6 2 9 * 6 5 1 6 8 . 9 13 34. 474 604 6 2 3 * 63213.0 1533. ,4o7 323 195 63233.6 15 3 2. ,9 05 319 112 65264.2 1532. ,254 456 510 6 5 2 9 0 . 7 153 i« .612 6 3 3 737 6 3 3 1 4 . 9 133 1. , 044 423 6 3 3 3 2.2 1330, ,1/0 321 113 65373.3 1229. , 0 76 479 553 05421.4 1520. 352 461 65437.2 1528, , l o 3 723 65466. 7 1527. , 4 9 4 798 65473.9 1527. 526 758 851 65500.3 1526. ,711 371 468 6 5 5 2 3 . 6 1526. 051 544 634 6 5 5 6 0 . 4 1525, 311 682 754 6556 5 . 5 1524. 7 2 7 621 713 6 5 59 2.9 1524. 356 482 9 0 7 * 65699.6 1324. , 4UO 656 768 IV I I I 65 2S1/2 -8P 2 P 3 / 2 * I I I 552 2D3/2 —5P@@ 2 F 5 / 2 * IV 5P 1D2* - 552 3F4 5P@> 2 F 7 / 2 * -65@ 2D5/2 IV IV 55 3D1 - 5P 3 P 1 * I I C L A S S I F I E D I I C L A S S I F I E D I I I I I I 5D 2D5/2 -5P@@ 2P3/2 I I I IV IV 55 3D3 - 5P 3P2 I I I I I I 5P 2P 1 / 2 * - 552 2D3/2 I I I I I I I I I 5P 2 P 3 / 2 * - 6o 2 o l / 2 5o2 2D5/2 -5P@ 2D3/2* I I I 5D@ 2 -8P 2 P 3 / 2 * I I I IV i 65657.4 1523 65720.1 1521 65775.1 1520 65791.2 1519 .6 5806.5 1519 65816.8 1519 65833.3 1518 65851.2 151o 65903.9 1517 6 5 9 2 6 . 4 1516 D 5 9 5 2 . 2 131o o5969.1 1313 6 3 9 6 7 . 9 1515 6 6 0 7 1 . 6 1515 66085.3 1313 66114.1 1312 66127.8 1512 66152.3 1311 66171.0 1511 66177.6 1511 66195.2 1510 D6233.1 i 5 0 v o628 9 • <+ 1300 66303.0 1 5 0 8 6 6 3 7 4 . 6 1506 6 6 3 9 7 . 6 1 5 0 6 00416.5 1503 66537.2 1502 66646.9 1500 66559.5 i 5 0 2 66 58 9. 1 15 0.1 66613.7 1501 66636.7 1500 0 6 6 8 3 . 1 i 4 9 V 66707.0 1499 66 726.6 i 4 9 o 66789.4 149/ 66891.6 1494 66931.1 1494 66951.1 1 4 9 5 66973.1 1493 66960.0 1493 67057.1 1491 67147.0 148 9 0 7 1 5 6 . 0 i 4 8 9 . U56 497 566 603 321 2 i 6 352 698 725 9o0 753 853 607 816 369 818 966 785 796 3 75 705 816 361 658 705 o 4 3 7 5 6 756 2 3 0 761 826 o o 1 7 3 3 76 2 4*9 625 310 7 24 82 1 196 809 3 3 7 776 2 2 3 455 376 6 3 9 564 666 2 3 6 771 789 081 814 958 6 0<4 711 655 o i 9 319 114 3 3 / 790 793 227 748 857 oOO 312 956 0 79 756 817 630 7 34 797 9 19 731 769 445 728 857 415 676 713 747 313 97 193 390 462 630 757 860 6 3 0 634 767 093 805 6 U 0 ' 6 i i 244 377 233 936 716 - 693 0 74 318 105 6*7 593 699 137 79 0 644 429 782 266 516 673 270 763 032 616 I IV IV 58 302 - 5P 3 P 1 * I I I 5P@ 2D5/2* -5D@ 2 (3/ 2 ) IV 50 3.P0 - 5P@ 3 8 * IV I I I I I I 66 2S1/2 - 5P@@ 2 P 1 / 2 * 5P@ 2 P 3 / 2 * 65c? 401/2 I I I 5P@@ 205 / 2 * -5D@ l u (3/ 2 ) I I I 5D 20U/2 -5P@@ 2 0 5 / 2 * IV 5S2 3F2 - 5P@ 3 5 * IV IV 58 301 " 5P 302* I I I 352 2D3/2 - 5P@@ 2 P 3 / 2 * I I I 5P@ 4 0 1 / 2 * 6o@ 401/2 I I I 5P@@ 2 F 7 / 2 * -5D@ 9 (5 / 2 ) IV IV 55 1D2 - 5P 3 F 2 * I I I I I I 552 2D5/2 -5P@ 2D5/2* I I I I I I 5P 2 P 3 / 2 * -50 203/2 67131.9 1469 .605 658 704 67186.0 146 8 . 405 306 192 I I I I V 5S 1D2 - 5P 3D3* 67221.6 146 7 .617 313 96 I I I 111 5P 2 P 3 / 2 * - 5D 2D5/2 67242.3 146 7 .129 465 713 67265.2 I486 • O 2 3 603 710 •67277.2 1486 .368 760 67289.2 1 46 o . 116 770 6 7 3 0 1 . 2 1465 .628 761 6 7 314.0 1485 . 3 75 73 3 806 I I I 6 7 3 3 8 . o 1482 .0^.6 43 7 199 I I I 111 7P 2 P 1 / 2 * - 6S@ 401/2 67420.6 1463 .226 423 573 I I I -6 7 4 8 7.3 146 i .726 7 J2 3 9 t i * o7 5 5 6 • 7 1460 .194 494 314 IV I V 5P 1 F 3 * - 582 3F4 676 3 6 . 8 1476 .441 611 6777o.2 1475. .401 8 98 6 7 8 6 2 . 4 1473. .3 70 897 999 6 7 8 5 0 . 8 1473 .822 854 922 IV 6 7 6 8 3 . 6 147 3 . i l O 606 706 I I I o 7 9 1 o . 7 1472, ,349 360 194 IV IV 5S 3D3 - 5P 3 F 3 * 6 8 0 2 7 . 8 1469. .987 90 3 6 8 0 3 6 . 8 1469. .793 874 974 D6109.3 1466, .217 737 683 111 6813 9.7 1467, .3 73 540 I 66167.3 1 4 0 6 , .9/5 949 602 111 5P@ 4 0 1 / 2 * 6o@ 203/2 68190.6 1466. .476 999 o 6 2 5 7 . 1 1465. 049 944 6 6 3 7 3 . 9 1462 . .246 936 66392.2 1462. 152 999 68401.1 1461. 965 999 935 68441. 7 1461. 098 9 79 6 6 4 01 . 7 1461. 952 999 823 IV 5S2 3F4 - 5P@ 3 3 * 66530.5 1458. 140 929 6 8 6 0 2 .3 14 5 7, 677 869 68620.1 14 5 7. 299 9 33 68638.6 1456. 9 02 600 6 8 6 4 7 . 6 1456. 711 653 6 8 6 7 7 . 6 i 4 5 6 . 061 999 — 6 8 73U.6 1434. 922 664 6 8 4 3 2 . 4 1461. 296 626 746 111 68863.6 1452. 104 869 999 68872.5 1451. 9 63 74 3 849 6 8 9 0 4 .4 1451. 286 834 68933.0 1450. 664 999 837 111 5Pc? 2 P 3 / 2 * -5D@ 1 ( 1 / 2 ) 6 8 9 6 2 . 1 1450. 072 999 66975.3 1449. 794 9 64 999 -J -j -si -si .-si -sj -J -si a- u 0' c CA c c o- O cr CA CA 0'-a-o ON cr a o- c ON cr Cr cr c cr cr O cr cr cr o O u a o o c O o o o c v C oC v C v C NC vC v i . sO v O NO NO NL NO NC NO NC v O NO NC NC NO NO v O NO NC NO NO NC NC iv rv) rv rv> r — I-- o o o o o o v O sC sG NO 00 C C 0-a C o -J -si -si cr ON vn vr p - P> u vo u> VO VO ro ro r-J r — ' C o ON rv rv> VJ1 o ViJ VJl Ul +> rv 1—' v O 00 O - u OC "-J CA rv VJl CO -j VJl rv O C U a; CA NO o> p - rv 1—' VJl O C c cr o rvi cr c rv rv vC C A ON rv rv rv a U rv c NC ON O : o 1—' vr J > o VJi rv. a C C C u o v C a u rv -si cr +> NO VC C c- rv vr NO c VJ rv -J vr Ui 4> vr U) rv A. c J > vr a sC C r CO a VJ. rv. NO vr -4 —s! o a a- vr NO ro u LO NO rv NC CA r — i-* r - J i - * i — r— 1—' r—> I — 1 i—• i—• 1— r - ' r— r-J r - ' r— r - 1—' r— K — i— I - r- ' r— r— i - ' t—• r— 1— i—• 1—' 4> P> u p - P> -P- +> P> P> 4> p r P P> P- rs t p> P> 4> P> 4> p- P> P- P- P- 4r P- P> P> p> P- 4> p> P> P> P> p> 4> rv CT rv rv rv rv tv I V rv rv rv rv A' rv, rv rv u Ui o; to U! U.1 Ul u> v>> V>: u V0 U) V- U L0 P> p> P> J> P- P~ J> P- p> p> rv; u V T VJl VJ 0 O -sj a; C C a 0 sC vC c H- A; t-1 rv v-; V>; 4> -P- p > Cr —j ~sj NO vO O r— rv I V v.- P> o- c C -s CC VJ-1 rv C c 4> o VJ VJ p - -si u O-Cc V c c. c |N. Cr o I— -P - J c. U h • C NO -J Nf, VJ _ ^ ^ » c- rv NO L> O •F- P> rv -si c 0 4> r - * i—• c I V P- u 0 VJ NO VJ V O CA C O 0 vc: cr 1— c cr P~ r— NO 1— u _j C c u a P> c cr- -J CA NO —4 C sC NO ro O v C 4r u c- rv ON cr a o o A; vr v C "sj C vo v O -si 4> VO u 0-o rv Vi' CA a o a vr C J> v O vC •0 V T CW a a v C v O 00 C o v C s0 v C -sj u C C -J O a NC NO v C CO -si O U) o p > cr -si u O : C c NC 4> o? CC a U) VJi C -sj --J c a Cr Vj-' v C -j VJ"' Ui —J U> O rv P> -P cr v C C a o rv p > rv NO -si O vr^  vo cr O ON u; vC- NC U r-' u i ~ ON U' —si 4> 4> a u NC c -F rv c o o v O 0C cr- VJ' -si *^- ! u a vr i—' vr P> ON t— C 1— o vr c o 4> vr v O -sj J> -J -si c DC -J cr O -si -si v C CO CD v O s0 v O r - ' v C sO v O sC NO C o ^1 c- a u- NO NO rv CO NO ro 4> C C cr cr 4> V O vC I V NO +> p> cr <0 rv' +> ON U) p> o Or VO o -si r — v> 0 NO l - J o -si rv a cr - J CD o v C C C CO CC CO cr v>; -si u u VJl O t—1 cr p > P> CA VJl "Si O O VJl o P> NO C v C cr-»—4 »-H 1—( I—I i—. >—, *—* i—. < 1—* »—' < r—* »—i < t—• I—i >—i i—i t-H > »—' *— t t—1 » < •—i »—1 1—t 1—1 ,—< i—- i—i i—i i—* < < t t i—i < ,—1 < *~ • I—* >—< >—< *— * • *—• t—1 r—' • - J -s) v r v r U l v r v r v r VP X) x> T l ~v TJ TJ VP Cr. TJ fe) fe) f® r® tr rof® ro ro O U l U l v n ro VJl "0 "C rv o- Cr, rv ro Cn Co ro j> VO U J o ro n T3 o ro D O s ^ Vx) T l U ) VJl r- 1 u> i—• CP • u> U> U ) ro M V VJl o O s. V v r u ^s V . * * rv NS r-" ro ro rv 1—' rv \ r-1 iv ro * I V * * * ro * * 1 l 1 v r 1 v r 1 l 1 o 1 1 VP l 1 I l CC ON e VP v r c cr VJl a < v r VP Xt/i ON CA f® r® Tj r® (j TJ f®. T l TJ f® o o ro r® <e> CC I V rv ro Tl J> v o c o- L O T l U ) U C3 rv> +> — — D vo i—• T l — -si TJ •V r—• r- 1 vr. UJ r-1 s. \ ro i—* \ C. rv \ V. \ * * rv rv s rv * * ro rv ro rv * 7 0 3 1 2 . 8 1422, .216 9 3 4 7 0 3 3 3 . 4 142 1, .800 951 7 0 3 4 6 . 7 1421. .531 615 7 0 3 6 6 . 0 x 4 2 i , . 141 973 7 0 3 8 9 . 8 1420, .660 969 •7046 8. b 1419, . Uob 918 983 7 0 5 1 5 . 4 1416. .130 443 532 I I I 5P 1 P 1 * - 8b lcsO B 7 0 5 3 4 . 3 1417. .730 612 816 I I 5P 3 P 1 * - 50 102 B 7 0 6 3 3 . 6 1415, ,733 9 3 4 7078 7.6 1412. . o 7 3 999 7 0 8 1 7 . 0 1412. ,090 579 405 IV IV ' 5P 1D2* - 5b2 3 F 3 7 0 9 5 7 . 2 140 9 . .300 876 713 111 5P@@ 2 F 7 / 2 * -5D@ 13 (X) 7 1 0 5 8 . 9 1407. ,283 801 940 7 1 0 8 9 . 1 140b. .665 6 66 719 7 1 1 0 3 . 2 140o . ,406 461 186 I I I 111 5P@ 4 F 5 / 2 * - 6b@ 4 0 5 / 2 7 1 1 1 9 . o 1406, . O02 367 187 I V IV 5S 1D2 - 5P I F 3* '/1145 . 2 1405 . , 3 7 o 3 o 3 19 0 IV 5b 302 - 5P 302 7 1 1 9 0.4 1404, . 6 b 4 544 6 0 2 * IV 7 1 2 1 5 . 3 1404. ,193 601 7 1 2 2 6 . 7 1403, ,968 756 7 i 2 7 3 . 1 i 4 0 J . .0x3 37b 97 1 I I 111 5P 2 P 1 / 2 * - 5 0 2 0 3 / 2 7 1 3 2 6 . 7 1402. .000 726 7 1 3 6 1 . 2 1 4 0 1 . .322 694 7 1 3 4 8 . 6 1401. .369 778 7 1 3 4 1 . 3 1 4 0 1 . .713 772 783 7 1 3 7 1 . 9 1401. .112 6b8 7 1 4 6 7 . 5 1399, .25 7 996 7 x 4 9 2 .3 1 39 o . . i-Jl 4 4 3 282 IV I V 5P 3 0 3 * - 5b2 3 F 4 715 0 9.4 1 3 9 o . , 4 i o 6 X 2 7 1 6 0 4 . 5 13 9 6 . 560 907 111 5P@ 2 F 5 / 2 * -50@ 2 13/2) 7 i o 4 5 . 0 1 3 9 3 , 771 902 973 7 1 6 5 6 . 2 1395 . .333 888 7 1 6 6 9 . 4 1 3 9 3 , 29b b43 695 7 1 6 7 6 . 4 13 9 5. 159 723 813 I I I 7168 6. 5 1 3 9 4 . 9 24 687 688 11 5P 1 P 1 * - 70 301 B 7 1 7 1 7 . 3 1 3 9 4 . ,364 729 7 1 7 4 6 . 9 1 3 9 3 . 7b8 58b 149 I V 5 S 2 3 F 4 - 5P@ 3 4 * 7 1 7 5 1 . 0 1393, 709 381 5 8 3 * IV 718 2 9.7 1 3 9 2 . l o 2 731 980 716 3 7.6 1392, 023 8 o 9 999 718 5 3.9 139 1, 7x3 9 a 3 7 1 8 8 0 . 8 1 3 9 1 . 192 999 7 1 9 1 2 . 4 1 3 9 0 . 5 o l 988 999 2 7 1 9 4 5 . 6 1 3 8 9 , 933 930 893 7 1 9 6 9 . 4 ± 3 8 9 , 4 79 69 7 686 I I I 719S2.7 1389 .223 886 710 71999.7 136b .695 999 72012.4 1388 .650 699 72047.3 1387 .977 838 447 72059.3 1367 .746 622 7214 5.0 1366 .u97 975 72182.4 1365 .3 79 2 5 5 318 72214.5 1504 . 7 b 3 929 72126.7 1386 .411 5 76 640 72255.3 1 564 .0^0 o51 900 72263.4 136 5 .6 26 633 72272.4 1335 .634 602 888 72281.5 1385 ,4o0 o80 699 72303.0 1 3 8 2 .9 73 697 541 72326.8 1382 .2 73 606 648 72391.6 136 1 .3 76 523 72370.2 1381. ,7b4 3 78 192 72431.7 1380 .611 730 850 72445.4 1380 .330 873 72457.5 1360. .119 789 72466.7 1379, ,9u6 739 889 7 2 4 8 i . 7 1379. .b39 466 381 72490,6 1379, ,4o9 634 72508.4 1379. . J.31 571 670 72521.4 137o. .903 566 72529.7 137d. .746 •591 72 546.2 137d. .394 629 72569.1 13 7 7, .99 7 606 672 7 2 6 0 3 . 1 13 7 7. ,257 951 72615.9 13 7 7, .109 oo3 /2629.4 i 3 7 o . , d 3 3 627 695 72636.1 137b. .bob 711 72691.9 1373, ,6b9 836 72712.9 13 7 3. t i l 9 60 72753.2 1374. ,510 677 746 72807.2 1375. ,491 414 242 7 2 8 3 0 . 3 1373. 055 828 890 72866.0 1372, 3 o2 531 713 72884.a 1372. 028 391 267 72927.4 13 71. 2 27 7 74 756 72937.0 1371. 046 597 812 72973.2 1570. 566 394 340 73007.7 1369, 719 966 73024.3 1369. 40 7 692 918 73045.5 1369. 010 839 I I I 5P@ 4 D 5 / 2 * - 6 5 © 2 D 3 / 2 IV I I I 5P@ 4 D 3 / 2 * 5D@ 1 v 1 / 2 ) 5P@ 2 D 3 / 2 * - 5 D @ 5 1 3 / 2 ) Iv I I I 5P@ 4 F 5 / 2 * - 6o@ 4 D 3 / 2 I I I I I I 5P@@ 2 F 5 / 2 * - 5 D @ 9 i 5 / 2 ) IV 5P 1 D 2 * - 5 s 2 3 F 2 IV IV 58 3D3 - 5P 3 F 4 * I I I I I I 5P@ 2 P 3 / 2 * - 5D@ 4 I I I 5o2 2 D 5 / 2 - 5P@@ 2 F 5 / 2 * IV ' H I 5P@ 4 P 3 / 2 * - 6o@ 4 D 3 / 2 Iv I I I 5P(2? 2 F 7 / 2 * - 5 0 @ 6 . 7 / 2 ) IV Iv 5o 3D1 - 5P 1 P 1 * I v I v IV 5o 102 - 5P 3 D 1 * 73064, ,9 1 3 6 6 . .646 999 792 111 5P@ 2 F 7 / 2 * -5D@ 5 ( 3 / 2 ) 73123. > 1 1367 .367 894 810 73141. . 6 13 6 7, .207 716 111 5o2 205/2 - 5P@@ 2 P 3 / 2 * 73134, ,3 1366 .413 805 768 73246. , 6 1363 .231 6 6 2 712 7-319 2. , 9 136o . 2 5 3 945 622 111 5P@ 4D5/2* -5D@ 1 ( 1 / 2 ) 73266. . 1 1364 .906 90 7 899 I V 5P 1D2* - 50 3 o l 73314. .4 x 3 6 5 . 9 o9 923 73345 . 4 1 503 . 4 i 2 300 394 IV IV 5S 303 - 5P 3 0 2 * 75370. . 3 1362 .946 9 99 7 3 332. , 9 1362 . obO 999 -73402, . 6 1362 . 5 3 0 866 918 73424, > 3 1361, . 9 47 3 o9 66 1 I I I I I I 5P@ 2D5/2* -5D@ 7 13/2) 73441. 1 1361, .033 473 619 I I I 73441, . 1 1 30 1. . b 5 3 473 541 I I I IV 5P 3 0 1 * - 562 3F2 73468, 5 1361. . 1 2 8 800 73494. 6 -i 3 0 0 . .640 9 59 73547, . 5 1359, . 6 6 6 999 73354, . 3 1339 . 3 5 6 972 73563. . 3 1359 . 5 7 0 973 73533. .0 1359. ,010 643 498 I I 73614, .0 1 5 3 0. .45 7 999 7 5 6 7 2 , 4 1 3 5 / . > 5 oO 422 470 I I I 73716. 4 1356. . 5 3 0 716 950 7 3 710, ,4 133o. . 3 3 0 716 827 IV 5P 1 F 3 * - 562 3F3 73734, .3 1336, . 2 2 1 743 918 73775. 4 1355. ,4b5 378 153 IV I I I 5P@ 4D5/2* -500 2 ( 3 / 2 ) 73790, 0 1355. .197 I I I 5P@ 4 P 1 / 2 * -6S@ 4D1/2 73849. 0 1354. .114 910 9 8 0 * I I I 73374. 4 1 3 5 3 . 649 5 10 650 I I I 73881. 4 13 3 3 . . 5 ^ 1 546 7 0 6 * 73906, 2 1353. .006 949 73955. 6 1 3 5 2 , . x 9 6 450 650 I I I 73984. 0 1351. .644 733 612 I I I 74017. 9 1351. .025 364 115 I V I V 5o 1D2 - 5P 1D2* 74054. 9 1350. . 5 5 0 738 74079. 4 1349, .90 3 644 840 74114. 6 i 3 4 9 . 2 0 2 969 74125. 5 1349. 063 838 74146. 3 1346, 665 840 74222. 2 1347. 306 677 74279. 2 1346. 2 7 2 843 74375. 7 1344. 3 2 3 336 216 I V 5b 3D2 - 5P 3F2 74403. b 1344. 0 2 i 626 716 74424. 3 1345. 04 ( 5 3 b 74484.4 1342.563 738 74494.1 1342.366 611 719 74514.5 1342.0^1 700 898 74539.3 1341.574 604 • 74544.5 1341.461 556 898 74588.9 1340.o82 713 989 74617.2 1340.174 968 74649.0 1339.603 387 713 7468 2.7 1336.996 736 74747.0 133 7.8 46 880 840 74767.0 i s> 3 7 • 4 o 6 o92 644 74761.4 1337.589 723 610 74802.3 1336.654 621 38 7 74843.5 1336.032 566 74954.6 133 4.137 344 3 5 7 * 74970.3 1533.8 62 335 205 75009.1 133 3.172 462 336 75018.9 1332.997 581 780 75033.8 1332.733 804 75066.9 1332.145 436 460 7 5 0 9 6 . 0 1331.629 660 640 7 512 4.3 i 3 3 i . 1 2 7 7yx 856 75139.4 1330.660 526 713 75156.9 1330. O-JQ 891 75176.2 i 3 3 0 . 2 0 8 832 75264.7 1326.644 663 713 75296.5 1326.063 967 988 75322.4 1327.626 999 75359.1 1326.980 559 75 8 75406.6 1326.144 772 75427.4 1325.778 860 75454.2 1323.307 999 999 75469.3 1325.042 999 999 75493.6 1 3 2 4 . o i 2 673 890 75508.3 1324.558 999 666 75552.3 1323.266 601 8 75 75570.4 1323.269 916 958 75595.6 1322 . 6 2 8 928 75613.6 1322.513 395 398 75640.0 1322.052 548 810 75691.6 1321.151 946 75679.7 1321.358 967 9 6 7 * 75704.9 1320.918 969 75729.6 1320.464 45 5 327 75755.5 1320.036 352 226 I v I I I 5P@ 4D1/2* 5D@ 5 ( 3 / 2 ) IV IV IV 55 302 - 5P 3D3* I I I I I I 562 2D5/2 -5P@@ 2 0 3 / 2 * IV I I I I I I 7P 2 P 3 / 2 * - =>D@ 6 I I I I I I I I I 5P@ 4D3/2* 5D@ 4 ( 1 / 2 ) I C L A S S I F I E D IV I I I I I I I I I 7P 2 P 1 / 2 * - 5D@ 6 IV IV 5S 3D1 - 5P 3D1* 75843.8 1318, .499 785 75855.5 1318, ,296 933 111 5P@ 2 F 7 / 2 * -5D@ 7 ( 3 / 2 ) 75877.5 1317, .914 611 75890.6 1317. ,686 410 630 IV 75916.9 131 7. . 195 592 75937.0 1316, .661 331 204 I I I 111 582 2D5/2 - 8P 2 P 3 / 2 * 75962.8 131b. .434 374 491 I I I 75997. 5 1315. .833 842 999 76036.8 1315. .133 380 918 IV 76048.8 1314, .9 45 734 860 IV 5P 1D2* - 5D 3P2 7 6 0 7 9 . 0 1314. .423 999 76096.3 1314. . 1^4 999 11 5P 1P1* - 9S 3S1 B 76112.2 1313. , b30 658 76126.6 1313. .601 877 7 6 1 3 9 . 5 1313. ,3 62 918 IV 5P 102* - 5D 3P1 76157.1 1313. ,075 769 969 7617 5. d 1312. ,7 53 7 77 111 5P@@ 2 F 5 / 2 * -50@ 12 (7/2 76200.7 1312. ,324 547 721 IV 76217.5 1312. 0 J 5 767 76291.4 1310, ,764 759 693 IV 5P 3 F 4 * - 5S2 3F4 76323.5 1310, ,212 488 I 76346.3 1309. ,821 480 724 76386.4 1309, , 134 536 802 IV 5P 1 P 1 * . - 5S2 . 3F2 76402.6 1306. ,836 806 76417.5 1306. 60 i 639 895 111 7644 7.8 130o, , U b2 999 76467.0 1307, 7 34 686 788 IV 111 5P@ 2 F 5 / 2 * -5D@ 5 ( 3 / 2 ) 76498.6 1307, ,2 13 749 849 I 7 6 5 7 0 . 7 1305. , 9b3 398 365 IV IV 5S 303 - 5P 3 F 2 * 76336.8 1309. .964 355 780 111 76482.1 1307. .495 861 11 C L A S S I F I E D 76692 . 0 1303. .917 720 76745.7 1303. 005 648 999 76764.5 1302. 685 500 990 76822.2 1301. 707 752 988 76887.9 1300. .593 333 225 IV IV 5S 3D1 - 5P 1D2* 76918.0 1300. ,066 613 837 76932.4 1299. 642 670 537 I I I . 5P@ 4 F 5 / 2 * -6S@ 2D5/2 76943.7 1299, b52 716 76959.7 1299, 361 5 5b 77032.5 1296, 123 740 940 I 77054.4 129 7. 7 84 720 11 5P 1 P 1 * - 8D 3D2 B 77090.6 1297, 172 682 75 1 IV 77141.3 1296. 322 319 405 111 77166.1 1295, ,8 72 331 403 IV IV 5S 3D3 - 5P 3D3* 77216.6 1295. .053 392 732 IV 77263.6 1294. .2 72 561 639 I I I 111 5P@ 4P3/2* -65© 4 u l / 2 77276.3 i.29 4 .0/2 o v 2 582 2D5/2 - 5P@© 2P1/2* 77291.8 1295 . 7 9 o 7 59 V99 77320.2 12v 3 . 523 6o2 06 6 IV 111 5P@ 4P3/2* -65© 2U3/2 77343.o 1292 .93 / 433 517 IV IV 5P 1P1* - 50 361 77359.9 1292. . o29 3 9 i 632 IV 7 7 3 6 9.3 i 2 9 2 , .302 446 610 I I 11 5P .1P1* - 60 luZ b 77386.3 1292. ,2 18 833 77451.9 x 2 9 i . , J.24 671 111 5P@ 4D3/2* 5-0© 5 (3/2) 7 7 5 3 1 . 1 128V. .005 336 403 IV IV 5P 301* - 50 3P0 7 7 5 9 5 . 3 1288. .7 30 527 794 111 5P@ 4D1/2* 50© 7 (3/2) 77647.0 1267, ,600 430 616 I V IV 5P 303* - 552 3F3 77674.4 i 2 6 7 . . <+23 517 951 7 7 719.2 1 2 0 6 < , 6 0 2 320 32 1 I V I V 58 302 - 5P 1 P 1 * 77740.1 1286, ,202 765 77 78 1. 7 1265. ,649 608 97 8 I 77 7 9 1 . 7 1263, ,4o4 392 476 IV 77819.1 1283. ,032 647 77628.3 1264, , o 7 6 70o 962 77866.2 1284. , 234 67 3 966 I 77893.1 1285, ,7 76 596 11 C L A 5 S I F I E O 77900.6 1283, ,306 587 919 IV 77967,7 ±2o2, ,3 02 310 769 IV IV 5P 3D1* - 552 3P2* 78011.6 1281, , 8 o l 866 7 6 0 7 5 . 5 1260, 8 12 720 I 7 8 168 . 4 127V, ,269 7 06 IV 5P 102* - 66 303 7 8 2 0 0 . 3 12 7 0, ,767 326 169 111 5P@ 4D5/2* -50© 3 (3/2) 7823 5.2 i 2 7 o . ,1V/ 2 / i 63 7 111 5S2 205/2 - 5P@© 2P3/2* 78 244.0 12 7 0 , 033 401 356 I V 5P 3F2* - 352 3F3 7 6 3 3 4 . 4 1276. ,3 7o 632 913 78349.2 i 2 7 o . ,53 7 430 536 IV 78373.0 1273, ,9 50 746 78389.6 1275, ,679 600 78405.4 1273, .422 823 78469.6 1274. 3 79 810 999 78493.5 12 7 3, .991 7 64 945 73509.2 1273, ,736 652 78530.1 12 7 5, ,597 039 78540.9 12 7 5. 222 7 2 l 78594.6 12 7 2. 549 /23 692 78629.3 1271. 791 903 111 5P@ 4F5/2* -65© 203/2 78642.0 1271. 3 02 939 78663.4 1271. 239 696 111 5P@ 2D5/2* -50@ 10 (3/2) 7 8 69 4.2 1270. 742 727 975 7 8 7 2 4 . 6 1 2 7 0 7 8 7 4 0 . 2 1 2 6 V 7 8 7 6 0 . 0 1 2 6 9 7 6 7 8 6 . 7 1 2 6 V 7 6 7 9 3 . 0 1 2 6 9 7 8 8 3 9 . 1 1 2 6 6 7 8 8 6 3 . 2 1 2 6 o 7 8 8 7 9 . 9 1 2 6 7 7 8 9 0 2 . 7 1 2 6 7 7 8 9 4 7 . 2 1 2 6 6 7 8 9 5 9 . 2 1 2 6 o 7 8 9 7 3 . 4 1 2 6 0 7 9 0 1 2 . 4 1 2 6 5 7 9 0 9 5 . 2 1 2 6 4 7 9 1 3 8 . 6 1 2 6 3 7 9 1 6 o . 3 1 2 0 3 7 9 1 6 3 . x i 2 o 2 7 9 2 2 3 . 2 1 2 6 2 7 9 2 4 9 . 3 x 2 6 1 7 9 2 9 9 . 7 1 2 6 1 7 9 3 1 7 . 3 1 2 6 0 7 9 3 2 9 . 2 1 2 6 0 7 9 3 7 0 . 4 1 2 5 V 7 9 3 9 3 . 0 1 2 5 9 7 9 5 1 1 . 8 1 2 5 7 7 9 5 4 1 . 5 1 2 5 7 7 9 5 7 1 . 2 1 2 5 6 / V 2 6 0 . 5 x 2 5 6 7 9 5 9 8 . 2 1 2 5 6 7 9 6 2 0 . 2 1 2 5 5 7 9 6 3 3 . 0 1 2 5 5 7 9 6 9 4 . 6 1 2 5 4 7 9 7 1 3 . 7 1 2 5 4 7 9 7 3 5 . 0 1 2 5 4 7 9 7 4 6 . 3 1 2 5 3 7 9 7 6 6 . 6 1 2 5 3 7 9 7 8 2 . 8 1 2 3 3 7 9 7 8 2 . 8 1 2 3 5 7 9 8 0 6 . 0 1 2 5 3 79 8 1 7 . 0 1 2 2 2 7 9 8 5 9 . 4 1 2 5 2 7 9 8 6 5 . 4 1 2 5 2 7 9 9 0 0 . 9 1 2 5 1 7 9 9 2 5 . 0 1 2 5 1 7 9 9 3 6 . 3 1 2 5 0 2 5 1 7 2 5 9 9 9 7 5 1 6 8 0 3 3 3 7 3 3 2 6 0 5 4 6 1 i o 4 9 6 8 3 2 4 U 6 4 5 2 7 0 1 0 1 9 6 3 3 9 3 7 7 5 0 5 3 1 3 8 4 3 0 0 2 3 8 6 b 9 3 5 7 5 0 1 4 7 7 3 73 4 1 7 2 4 9 6 6 5 5 4 2 6 2 4 3 7 2 5 3 1 299 5 5/ 8 1 4 6 0 6 4 6 9 8 3 0 164 3 o 7 67 6 6 64 6 5 0 762 25 7 6 0 6 4 6 7 0 5 0 4 2 3 6 8 5 0 5 9 4 3 2 5 0 3 7 6 9 4 5 3 3 70 2 8 6 2 6 0 9 1 6 5 8 1 6 3 3 3 2 3 6 1 4 6 75 6 1 0 8 0 0 2 0 5 5 9 6 0 4 6 7 3 6 6 8 6 8 6 0 * 5 6 9 <+o6 5 4 8 3 1 0 6 1 4 9 0 5 4 5 2 4 2 3 7 6 1 6 9 2 7 3 7 7 9 0 5 9 2 4 9 0 3 1 6 1 0 4 l o 6 4 0 5 7 1 3 9 11 6 2 2 6 5 8 6 4 6 8 4 8 4 0 3 6 5 9 4 0 3 6 5 9 0 3 9 5 7 1 6 7 1 8 3 5 3 2 0 1 5 3 2 0 i 6 1 7 • 6 3 7 1 0 7 6 3 3 6 7 0 4 2 5 6 7 7 7 9 2 * 1 73 4 5 8 902 7 79 676 111 IV IV I IV I IV IV 5P 1 0 2 * - 68 302 IV IV 5S' 302 - 5P 1 F 3 * IV 5P 1 F 3 * - 50 3P2 IV " • IV I I I 5P@ 4 P 3 / 2 * -6S@ 203/2 IV 5P 3D3* - 5S2 3F2 I I I I 5P 3 P u * - 7s 3 o l B IV I I I 5P@ 2 F 5 / 2 * -5D@ 7 ( 3 / 2 ) . I I C L A o S I F I E D I I I I I I 552 2D5/2 -5P@@ 2D5/2* I I C L A S S I F I E D I I I I IV IV 111 IV IV 5P 3 F 2 * - 5S2 3F2 IV 5P 1F3* - 50 3G4 IV 5P 3D1* - 6S 3D2 80013.7 1249. 786 8-16 808 I 80021.2 1249, 669 626 I I I I I 5P 3 P 1 * - 78 ISO B 60056.7 1249. ,003 759 80073.6 1246. ,831 638 818 80131.8 1247. ,9^4 646 931 IV 5P 1 P 1 * - 50 3P2 6 0 1 8 7 . i 1247. ,063 701 80211.0 i 2 4 o , .7x2 3 72 648 IV I I I 5P@ 4 P 3 / 2 * -5D@ 1 ( 1 / 2 ) 60234.4 1240, ,346 o59 80262.4 1243, ,913 6 60 950 I I 5P 1P1* - 90 3D1 B 80308.2 1245, 203 399 538 IV I I I 7P 2 P 3 / 2 * - 50(? 20 6 0 3 3 4 . 5 1244. ,798 567 831 o0364.4 1244, , 5o2 005 892 80391.3 1243. ,916 806 876 80408.3 1243. ,633 391 638 IV I I I 5P@ 4 F 5 / 2 * -5D@ 2 (3/2) 80443.8 1243, ,104 411 638 I 12 I I 5P 1 P 1 * - 90 102 N 8 0 4 8 1 . 2 1242. , 3 2o 42 1 616 I V 5P 1 P 1 * - bo 3P0 80499.7 1242 .241 376 276 IV 6 0 5 2 0 . o 1241. .918 5 70 567 60559.x i 2 4 i , ,522 293 131 IV 80577.7 1241. .030 306 328 IV I V 5P 1D2* - 50 303 80594.0 1240, ,7o7 508 455 60643.0 1240. .033 549 6 4 8 * I 60630.6 1240. .221. 605 750 I 80667.8 1239. .632 293 355 IV IV 5S 302 - 5P 3 0 1 * 80693.6 12 3 9. 226 470 806 IV 5P 3 F 2 * - 50 3S1 60714.5 1236, .935 583 826 I I 80745.1 1233. ,465 42 7 653 IV I V 5P 3 F 3 * - 582 3F4 80771.0 1236, 0o8 491 361 80803.9 1237, 564 809 920 60349.6 123o. ,664 630 80841.4 1236. 9 90 757 I I 11 5P 3P2* - 60 102 B 80864.1 1236. ,643 9 18 60883.3 1236, ,349 76 7 898 60915.6 i 2 3 5 , ,626 3 5 5 630 IV IV 5P I P I * - 582 3 P 2 * 80926.2 1233, ,694 377 262 IV 80942.2 1233. , 449 517 794 8 0 9 8 3 . 1 1234, ,826 789 I. 80997.6 1234. ,601 605 938 IV 5P 3 P 0 * - 50 3S1 81016.0 1234. 324 703 61063.2 1233. ,005 432 773 IV IV 5P 1 F 3 * - 6 8 303 81100.4 1233. 040 305 290 IV I V 5S 3D3 - 5P 1 F 3 * 01191.9 1231. 650 866 61139.3 i232« , 44o 373 776 6 1 1 7 u . 2 123 1, ,9/5 6 2 I 6 8 1 6 1 2 2 0 . 0 1231, , 2 i 5 7 62 69 0 -31231. 6 1231 8 1 2 4 7 . 3 1230 8 1 2 6 2 . 2 1230 81277. 7 1230 8 1 2 9 9 . 9 1230 8 1 3 4 1 . 0 122* 813 6 9. 1 i 2 2 o o l 3 1 6 . 4 I2<L9 8142 7.7 122o 61442.4 122 7 8147U. 4 122 7 8 1 5 3 1 . 2 122o 6 1 5 5 9 . 0 l 2 2 o 3 1 5 5 1 . 3 i 2 2 o 8 1 5 9 5 . 2 1225 81619.3 1225 61657.7 1224 81670. 3 1224 61682. 9 1224 617 0 5 . 8 1223 0 1 7 6 9 . 4 1222 6 1 7 3 1 . 2 122 -5 61800.0 1222 31812. 6 1222 6 1 8 4 9 . 0 1221 81864.8 1221 81676. 9 1221 6 1 8 9 2 . 9 i 2 2 1 3 1 9 4 3 . 3 1220 81965.9 1220 82006. 9 1219 8 2 0 2 6 . 3 1219 b205O. 0 12 16 820 6 7 . 0 1218 6 2 0 9 0 . 9 1218 62104.6 1217 82146.2 1217 8 2 1 6 9 . 9 1216 o 2 2 0 3 . 6 1216 82318. 3 1214 62342.4 1214 62393.3 1213 8 2 4 1 0 . 3 1213 3 2 4 4 3 . 6 12l2 0 2 4 6 3 . / 1212 048 595 878 3 10 711 902 3o4 775 350 658 724 014 566 650 392 397 244 9oo 705 7 34 7 24 904 0o3 2ob 493 062 463 440 484 911 324 792 09 7 432 434 219 6 71 678 302 639 918 2 00 862 024 615 743 4^5 776 246 406 804 903 396 722 931 640 2 2 3 317 935 4o2 206 353 306 406 433 702 473 32b 390 727 34b 327 920 107 584 798 356 808 020 612 7 7 1 * 410 621 7 5 7 * l i b 726 67 6 727 640 97 7 517 618 837 162 818 939 .9 3 5 3 12 608 896 991 666 492 447 541 797 503 785 441 603 901 691 639 863 436 895 *4 I 43 3 655 023 3 2 3 72 3 I IV I I I 5P@ 4D5/2* -5D@ 7 ( 3 / 2 ) IV 5P 3D2* - 5*32 3F3 IV I I I I 5P@ 4 P 3 / 2 * -5D@ 3 ( 3 / 2 ) IV 5P 3D1* - 50 3F3 I I I I I I 5P@ 2 P 3 / 2 * -50@ 9 ( 5 / 2 ) IV IV 5S 302 - 5P 102* IV IV 5P 1 0 2 * - 5S2 3P1 I I I 5P@ 2D5/2* -5D(2> 12 (7/2) I IV I I I 11 5P 1 P 1 * - 113 l b u b IV 5P 1D2 - 562 3P0 I I 5P 1P1* - 10D 302 B I I I 5P@ 2 P 3 / 2 * -50@ 10 ( 3 / 2 ) IV 5P 3 F 4 * - 562 3F3 I I I I 5P 3Pu* - 60 301 82480.2 1212. 412 625 111 7P 2 P 3 / 2 * - 5D@ 9 82515.7 1211. 891 459 627 IV 82546.7 1211. 435 714 923 I 6 2 3 6 8 • b 1211. 114 636 691 I I 82580.2 1210. ,944 456 679 IV -82612.5 1210. 471 347 430 82635.4 1210. .135 324 384 IV 111 5P@ 4D3/2* 5D@ 8 ( 5 / 2 ) 82658.V 1209. .791 585 673 111 b 2 6 7 6 . 9 1209, ,326 713 312 111 6269 1 . 0 i 2 0 9 . ,321 716 IV 5P 1 F 3 * - 6_S 302 o2b98.0 1209, ,2 19 73 1 82714.1 1206, ,9 64 484 40 7 11 62727.6 120b, , 7b6 712 827 4 6 . 0 1206. .518 7 22 5P@ 2 P 3 / 2 * -5D@ 11 (X) 82776. 0 120b, ,080 743 8 2813.3 12 0 7, ,233 339 326 I 62874.0 120b. ,o51 90 363 IV 5P 1 P 1 * - 66 302 82881.6 i 2 0 6 , ,53b 276 388 IV I V 5P 3D3* - 5D 3P2 82916.5 1206. ,033 401 639 82927.4 1205. ,8 74 500 111 62961.0 1205. ,3 66 339 604 111 I V 5P 3 0 2 * - 552 3F2 62971.9 1205. ,2 27 473 I 62951.8 1^05. , 3 i 9 447 43 1 11 82997.5 1204. .8 26 342 643 I V IV 5P 3D1* - 552 3P1 8 3013.9 1204. , 6 l b 771 6 3 0 2 7 . 1 1204. .426 621 83054.4 1204. ,030 527 877 83064.6 1203. ,662 430 713 111 83116.2 1203. , 106 838 83190.1 1202. ,066 951 83237.0 1201. .369 333 IV 5P 3D1* - 552 3P0 63273.7 1200. .659 331 231 IV -8 3 295.6 1200, ,541 629 727 83333.0 1200. .OU5 587 -63369.0 i 19 9. ,4o / 3 4 4 2 i l * I 63406.4 1196, ,949 466 367 111 63416.8 1196, .7 71 600 83434.8 119 6. ,341 543 823 83447.2 1196, , 3b3 511 I V 5P 1 F 3 * - 50 3F3 83478.1 1197. ,9 19 41b 888 IV IV 5P 3 F 2 * - 50 3P2 8 3 56 7.5 119b. ,637 815 I V 5P 3 F 2 * - 50 3P1 83591.1 1196, 500 347 656 IV I I I 5P@ 4 P 5 / 2 * -65@ 203/2 83715.4 1194, ,523 270 708 IV I V 5P 3D3* - 5D 3G4 8375b.2 119:>. ,941 417 846 IV 111 5P@ 4P3/2* -5D@ 4 ( 1 / 2 ) 63774.5 119 3. , 6 6 4 360 11 11 5P 1 P 1 * - H D 302 B 83619.2 1193. 044 408 I 11 111 5P@ 4D5/2* -bU& 6 ( 5 / 2 ) 83870.7 1192. 311 340 704 I I I IV 5P 3P0* - 50 3P1 63920.7 119 1. b O i 369 480 IV I V 5P 1F3 - 50 3F4 63944.5 1191. 2b3 463 236 I I I 8 3 987.9 I 19 0 .  040 328 145 I I I 83999.7 1190. ,4bO 252 218 I V I V 5S 303 - 5P 102* 04043.1 118 V. . o ob b40 492 IV IV 5P 102* - 50 1P1 84074.3 118V, .424 566 943 I 84123.7 118o. ,7 2b 323 8 413 5.5 1160, 32V b O l 938 0415 2 .7 i l b o . ,2 74 3 72 964 I ** 84183.8 1167. ,880 572 943 I b4193.3 116 7. 740 358 943 34203.1 118 7, ,3 77 578 04261.8 1186. .777 336 367 I V IV 5P 3 F 2 * - 5o2 3P2* 84296.2 116b, ,295 654 64329.4 116 5. ,8 2b 360 561 111 64350. 9 1185. ,524 623 925 043o6•6 116 3 , 2 72 b 0 1 9b4 I 84374. 3 1185. .195 6 79 64406.1 1184. .7 46 295 302 IV IV 5P 102* - 50 302 84432.0 1184, . 3 b5 3 36 688 IV IV 5P 3 0 1 * - 50 ISO 34432.0 1184, . 3b5 336 454 IV I V 5P 3 P 1 * - 562 3F2 64456.2 1164, .04b 307 879 0 447 4.2 1163, .793 930 0 4 4 9 5.2 1163. .499 731 5P@ 2 F 5 / 2 * -50(5 l b (3/2 84526.3 1163, ,0b4 303 336 IV 34543.5 1162. .826 543 o 4 5 7 2 • b l i b * , , 3 74 422 7 o l * I 64602.8 1161, 9V4 535 8 70 84703.0 1160. ,5 96 674 84741.6 1180, ,023 413 947 34760.7 1179. 792 841 961 IV 5P 1 F 3 * - 552 3P1 8 4 7 7 i . 3 117 9, ,645 817 9 d l 64800.1 1179. 244 692 11 5P 1P1* - 120 303 6 84808.o 117 9, 126 752 5P@ 4D3/2* 50@ 9 ( 5 / 2 ) 0 48 3 3.7 1 i 7 o , 777 783 IV 111 5P@ 4 F 5 / 2 * -50© 6 ( 7 / 2 ) 64666.9 x 1 7 o , , 2 oo 428 6 8 8 * 111 84888.6 1178. ,014 45 3 935 64910.2 117 7, .715 552 I 84930.2 1177. 437 2 71 308 IV 8499b.3 1176. 5 19 246 712 111 I V 5P 3 0 3 * - 65 303 85134.b 1174. o i l 495 6 1 0 * 111 85152.5 1174. 364 406 85175.2 1174, 031 401 I V I V 5P 3 0 1 * - 50 1P1 65204. 0 1173. 654 680 85212. 8 1173. 533 716 65224, 7 1 1 7 3 . 309 710 65266, 4 1172. o09 323 IV 111 5P@ 4 F 5 / 2 * -50© 5 ( 3 / 2 ) 65277. 3 1172. ,643 3/6 4 2 4 * IV 05294. 7 ±172. 406 421 6 7 3 * I I I 65310. 4 1172. 190 7o6 6 2 3 2 5 . »o 1171. .901 712 IV 5P 102* - 65 3D1 85347. 3 1171, 6 7 6 904 85392. 3 1171, 066 323 410 IV IV 5P 3 P 1 * - .50 351 83423. 9 1170, ,564 625 7 1 3 * I 8548 6. 0 1169, .753 672 89 1 5P@ 4D3/2* 50© l u ( 3 / 2 ) 83503. 8 l l o v , 3 59 703 85526. . 6 116V, 200 5b4 I I I 8 2 5 3 7 . 9 l l o v , .0/2 367 409 IV I V 5P 3 0 1 * - 50 3U2 65394. o 1 1 6 0 , , 29o 541 42 1 I i I I V 5P 3 F 2 * - 6o 303 63610. .6 116o. ,080 2b9 IV 03o22. .4 1x 6 7 , , V i 9 442 716 IV 5P 3 0 3 * - 65 302 63723. 6 1166, .340 665 o5813, > 6 1163 , , 3 1 o 718 85838, . 5 1164, .9 78 794 65855. 6 1164, . 744 799 85922. . 3 1163, ,842 410 I o5946« . 3 1163, . 3 5 i 3 23 780 IV IV 5P 1 P 1 * - 582 3P1 06015. 2 1102. , 3o5 722 11 5P 1P1* - 155 351 b 6o034. . 7 11 02 . .522 616 11 5P 1P1* - 155 160 6 66108, 0 1161. ,5 32 469 966 I o o l 2 6 . . 4 1161. ,037 7 30 11 5P 1P1* - 140 30 b 66145, , 7 1160. ,624 382 416 I I I 111 5P© 2 P 3 / 2 * -50© 13 (X) 66186. . 1 1100. .235 449 I V 5P 1 P 1 * - 5b2 3P0 86221, . 7 113V. , oO 1 262 580 111 I V 5P 3 F 2 * - 65 302 66260, . 1 113 9, ,2o5 725 86 29 7, ,2 115o, , 7 ob 363 969 86394. . 6 1157. ,477 514 86417. » 0 115 7. , l o 9 3o7 965 66435, , 0 1156, ,671 337 814 I V 5P 3 0 1 * - 66 301 66486. , 8 1150. , 24o 7 76 06518, > 2 1155, , 620 '369 659 86535, . 2 1155, ,599 653 06560, ,9 1155, ,23b 634 921 86611, . 3 1154. ,581 484 783 IV IV 5P 3 0 1 * - 552 102 06626. , 9 1154, , 5 7 o 573 6o2 86645, 0 1154, ,136 406 498 IV IV 5P 102 - 50 3F2 36665. 8 1153. .838 465 513 IV 111 5P@ 4D5/2* -50© l u ( 3 / 2 ) 86705, , 2 1153, ,333 600 I V 5P 3D2* - 50 3P2 86723.1 1153. 095 616 624 66733.4 1152. 932 4 /4 650 I I I 86824.6 1131. 747 393 610 IV 6 6 3 6 3 . / 1131. . 2^y 792 36896.1 1130, .815 434 780 IV IV 5P 3 F 3 * - 582 3F3 66906.9 1130, .657 633 86950.0 1150. .086 646 765 IV 8 6 9 7 3 . 3 1149. .7 76 689 87007.1 1149. ,331 658 816 IV 111 5P@ 4D5V2* -5D@ 11 (X) 87042.4 1140. .865 446 688 IV 87069.7 1146, 305 442 818 111 87099.6 1140. 108 602 IV 5P 3 0 1 * - 66 1D2 8 716 3 . 7 114 7 . 240 634 6 7 1 7 4 . 3 114 7. ,127 777 6 / 1 8 7 . 6 x 14o, .932 7 22 738 I 67211.4 1146. ,659 432 IV 5P 1 F 3 * - 50 3G3 87223.6 114o. .43 2 451 6 7 2 6 3 . 9 1145. , y ^ . 5 711 668 I 67304.8 1145, .412 498 806 IV IV 5P 1 F3* - 50 302 67322.3 1143, ,165 484 967 I 87377.9 1144, .434 396 476 IV I V 5P 3D3* - 5D 3F3 87387.3 1144, ,331 409 82 87403.9 1144, . 114 620 IV 5P 3 0 3 * - 50 3D3 8 7 4 / 5 . 2 1143, ,161 8 33 87488.6 1143, .006 536 812 . IV I V 5P 3D2* - 5o2 3 P 2 * 67504.1 1142. ,604 698 87518.3 H 4 2 . . 6 1 6 999 87 5 5 0 . 6 1142. ,197 580 967 6 7 5 4 1 . 7 1142 . 3 1 5 636 980 87584. / 1141. ,732 607 I V I V 5P 1 F 3 * - 5o2 1G4 o7595.3 1141. .6 14 4o6 968 8 7 6 1 4 . 9 1141. , 5 36 554 968 IV 67651.7 1140. .8 79 466 966 87675.2 1140. .373 617 983 87436.4 1143, ,668 873 503 87801.1 113o. .936 758 67822. 7 113 6. . 6 3 6 063 8 7 3 5 1 . 6 1156. .201 712 966 IV 5P 303 - 50 3F4 6 7 9 1 8 . 4 1 i 3 7 . ,410 7 70 67977.0 1136. .661 430 797 IV IV 5P 3 F 2 * - 50 3F3 8 8 0 0 2 . 4 1136. ,353 415 968 I V 5P 3 F 2 * - 5D 3D3 68 0 5 7 . 5 1135. .624 523 96 7 IV 111 5P@ 4 F 5 / 2 * -5D@ 7 ( 3 / 2 ) 88056.3 1135. , 6 l l 523 IV I V 5P 3 F 4 * - 50 3G5 88123.6 1134. . / to 431 7 8 5 * IV I V 5P 1 P 1 * - 50 1P1 66175.6 1134. . 101 523 961 IV I V 5P 3 P i * - 50 3P2 88194.8 1133. ,834 955 6 8 2 1 4 . 8 1133. .697 631 83232.3 1133. . 3b9 640 983 111 5P@ 2 F 5 / 2 * -50@ 13 (X) 3b264.3 1132. , V3b 6 3 3 I V 5P 3 P 1 * - 3D 3P1 b8315.5 1132. .304 632 8 8 3 4 4 . i 1131. , 93o 698 8838o.6 1131, ,4 70 382 420 IV IV 5P IF 3* - 582 102 6840 5.6 1131, , 130 640 86426.b 1130, , 0 o 1 693 88432.7 1130, .603 723 8848u.o 1130. .112 439 851 I I I 1 V 5P 1 P 1 * - 50 302 8 8 5 1 1 . 5 1129, ,797 778 I V 5P 3 F 4 * - 50 3G4 88579.3 1120. .932 770 b862 2.o i 120, ,3 7o 3 /6 525 I I I 8 8 6 4 * . 9 1 i 2 0 . . 1*2 496 38710.7 112 7. .260 380 773 I 8 6 741.0 112b, .373 7 29 IV 5P 102* - 50 1F3 68770.2 112o, .426 460 691 IV I V 5P 102 - 50 102 68818.6 1123. .690 6b0 I V 5P 3 0 2 * - 68 303 88537.3 1129, ,40/ 022 981 88833.5 1123. .701 999 68860.0 1125, ,366 64 7 968 IV IV 5P 1 F 3 * - 68 102 88880.6 1125, .105 998 8 8 9 0 5 . 1 1124, .795 533 877 IV 88960.6 1124, .093 447 771 IV I V 5P 3 P 1 * -582 3 P 2 * 6b978.0 1123. ,673 562 705 66991.0 1123. 69v 7o6 89047.4 1122. 9 97 764 89105.0 i l 2 2 . 2 / i 489 0 9 1 5 1 . 1 112 1, , o91 639 8917 0.7 1121, ,44 5 800 39190.1 112 1. 201 646 701 I 39224.3 1120, ,7o8 6b9 5P@ 4D3/2* 5D@ 13 (X) 89275.6 1120, 12/ 796 b9293.2 1119, 906 569 968 IV 5P 3 F 2 * - 562 3P1 8 9 3 2 5 . 1 1119, 506 528 89360.1 1119. 068 546 I 6 9 3 66.7 1118, 965 494 976 8 9 3 7 8 . 7 11 l b . 633 5 14 976 89407.0 1 l i b . 461 517 979 IV 5P 1 P 1 * - 6b 301 69432.3 1 1 1 o« l o * b 71 69449.4 1117. 950 485 940 IV IV 5P 3 0 2 * - 60 302 89485.4 1117, 501 735 89511.1 1117, 160 a 75 09530.9 1116. 933 557 89542.7 1 1 l e . 7 6 0 40 7 817 IV IV 5P 1 F 3 * - 50 3F2 69571.9 1116.422 608 I I I 5P 3P2* - 70 1 0 * b 39596.1 1116.120 372 502 IV IV 5P 3P0* - 582 3P1 . 89646.0 1115.499 618 8 9 6 7 3.6 1115.153 587 729 89688. t> i l l 4 . y o 9 662 89707.3 1114.7 36 694 -69745.9 1114.237 602 69763.4 1114.013 562 953 89792.2 1115.6o2 414 802 I V 5P 3 F 4 * - 63 303 89843.8 1113.0 43 451 947 89874.3 1112.663 702 89890.2 1112.4o6 503 954 I I I 89904.3 1112.294 673 I V 5P 3D1* - 50 102 89919.3 1112.106 8 56 89933.9 i l i l . 9 2 6 6 3 l 89944.3 1111.797 511 953 IV 89968.7 1111.496 557 957 90003.5 1 I I I . O 0 6 461 92 7 IV 90016.8 1 1 1 0 . 9 0 4 541 90047.3 1110.327 572 I 90125.2 1109.566 675 90143.0 1109.348 796 90134. 5 1108.838 626 90235.0 110 6 . 2 1 / 514 I I 1 111 5P@ 4 P 5 / 2 * -50@ 5 ( 3 / 2 ) 90266.9 1107.826 728 I I I 90327.0 1107.089 429 912 I 90 3 7 7.7 1106.468 764 90390.6 1106.310 760 90409.4 1106.080 503 958 5P® 4D5/2* -5D@ 13 (X) 90438.0 1105.730 758 90493. 1 1105.057 672 90507.0 1104.887 609 90527.0 1104.643 749 90551.1 1104.349 522 962 9 0 5 6 9 . 1 1104.129 627 90597.7 1103.761 896 9060o.4 1103.630 847 9C698.4 1102.555 958 90724.2 1102.242 465 961 I V 5P 1 P 1 * - 50 3F2 90753.2 1101.890 507 I I 90778.3 1101.585 608 90793.0 1101.362 621 956 11 5P 3P0* - 83 351 b 90818.0 1101.103 580 955 IV 5S2 3F2 - 3P@ 4 3 * 9o833.9 1100.91 1 631 5P 4 P 3 / 2 * -5D<? 8 (5/2+ H H H H H H H H H r - H K H K H P P H H H H H H H H I - H H H H H H H H H H H H r - ' O O O O O O cca(XC»CD-g--g-j~j v o ^ u i v j O K ' v o - J u i j p - r v c c. H w K J> vc w MJ) U a ui CX rv +> O L> C C rv cn 4> u p a v r 4 > p * c w N i \ r - N ' r - c o a i v j w w VJI v*c cc * r~' rv co vj- rv -p- i—* rv -p- o rv CP o o rv v> i — 1 rv .p- - s j cr o o rv p> o o rv o ff o- co VJJ ff. cr CO OC CC O -SJ 1—- t— |— r~ I—' r— 1 r-» H H- h~ r—J K r~' t— H"1 1—' h—' h-' i— ' I—I— ' t—' i— I—'1— 1— 1— I—! H- ' I—» r—' r—1 I—; )— 1 I—1 t— r—1 I— (- • I— I—' |—1 I—1 r—' r- 1 C C O C O O O O O O O C C O O C : C C O O C C C C C O O O O O C - O C C O C C C O O O C i - J t - ' i - ' cc a' ct. a cc cc co <x a vc vC ^ cx o a a vr vc vc vc vc c o o i — r - v-' rv rv co co to o~ -f> -p- -p- -p- cr c r u cr cr ff cr -j -J C a a cc vc vo so o o c rv co —J vc- r—• co cc. vc rv -p- O I—; .p —J VC rv -—J rv? ^  01 \C H U C G H- CO .p- o .p- 0-- o cr so 1—• cr •—j rv cc t—• o -P- cn u -v; r— co a s j w o vc -p- —J H 0 a c i " -J ro vr vr H >i o a co vc-1- 1 c P- rv 0 co o -p rv VJ < G U O CO cr vc rv - s i o rv t-' o o cr vc a o vc c vc o vC VJI vc rv -p N o b w a u ^ f a a w w IVJ a VP o i>; u; a N >c H ecru ff Cr - J CP ff C l J> 0- -sj vf CC C ^ - v C v C v O v C - P O - J C S C C -p - v j i - J OC vC - J ff p P U i W - s | O v£ - s j a ' X ^ V J i U i C O f f f f o o ^ c ^ w w v T ' C c o ^ C i C K v r i c i v j w - j r ' W v r ' x > o f f b ' h ' C c i v i s i K j o - g i - ' O c a u - O r - v O i o O ' C D i r ff-P-ou. r v i o f f v r o v C s O H C C ' v C r — v o o o r o - j v e c c ^ r v vC vO vC vO - s l a sO - J CC C* ff ff 1—' -P- CC CO -p- 0 —j 1—> O •P- 0 O CO C o CO ff rv rv >—1 1—1 1—1 1—1 »—1 >~ < < < I < 1— M »—1 »—« 1—, (—1 1—1 < 1—1 1—1 < < < < < < < < < •—1 1 1 < < < < V J l cn cn TJ TJ TJ cn cn cn cn cn 1—* ff CO cn cn cn cn h-1 cn cn TJ TJ TJ TJ TJ T l C o TJ TJ TJ TJ T| TJ TJ CO CO CO 1—• CO CO co t-' * CO CO CO CO co TJ T l TJ n T l c T| CO CO TJ O rv 0 rv CO rv rv TJ TJ ro co * * * * * * * * 1 1 1 l 1 1 1 1 1 1 1 1 1 cn 1 1 cn cn cn cn CT cn -P cn VJl - J cn O ff cn C O c c O T l Cn c c O tr c rv r - 1 CO CO 1—• r—1 CO O r - 1 c TJ co c T l \-> i — 1 TJ CO vo -P- CO TJ t—' rv t—• cn C o "sj CD 1-' c; O CO O I—" CO * -P- rv 1—1 rv a cc c 91912.7 1087, 9o9 636 91919.0 1087. 914 649 9 1 9 4 4 . 0 1067. 609 845 919 7 3.4 1067. 271 896 92005.6 1086. 690 652 671 I I I 92035.8 1086. .534 610 500 IV 92057.4 1086. .279 374 610 IV IV 59 3 P 2 * - 5D 3S1 92051.4 1086. ,350 347 770 IV 92074.6 1066. .0 76 604 92154.o 1083. , 1 3 5 078 92128.4 1065. .442 338 513 111 I V 5P 3 F 3 * - 50' 3P2 92 310. 1 1003. .305 443 909 IV I V 5P 3D3* - 562 102 92352.o 1062. .6 07 4 77 972 IV 9247o.0 1061. . 5 D 2 713 92532.0 1080. 707 560 92553.1 1060. , 4 o l 6 74 92597.3 10 7 9 . 945 772 92648.7 1079. ,346 729 IV 5P 3 F 4 * - 50 3F4 92694.2 1070, .6 16 657 92725.4 107o. ,453 605 92757.5 1078, .060 6 0 7 * 111 I V 5P 3 F 2 * - 65 301 92794. 1 1077. , o 3 3 330 706 IV I V 5P 3 0 3 * - 65 102 92821.6 10 7/, .3 33 636 870 92335.2 1077. , i 7 0 603 111 92856.5 10 70. . 9 5 1 404 716 . 111 I V 5P 1 P 1 * - 50 102 92909.1 107O . 5 2 1 447 614 IV IV 5P 3 F 2 * - 552 102 92964.6 1075 . 6 / 0 414 626 I V 5P 3 F 3 * - 50 304 93007.6 107 5 .161 635 835 IV 111 5P@ 4 P 3 / 2 * -5D@ 9 ( 5 / 2 ) 93028.0 1074. .945 9 39 111 5P<? 4 P 5 / 2 * -5D@ 7 ( 3 / 2 ) 93058.0 1074. ,599 766 IV 5P 3P0* - 65 3D1 93080.1 1074. .343 903 93113.0 1073. ,904 455 972 I V 93126.2 1073, .812 6 76 93149.0 1073. ,549 690-93160.6 1075, .415 7 76 93181.3 1073. . 1 7 7 806 93197.7 1072, ,96o 628 I 93219.6 i 0 7 2 • 7 5 0 946 93271.9 1072, ,154 876 939 93296.3 1071, , o 34 306 939 IV 111 5P@ 4 F 5 / 2 * -5U<£? 10 (3/2 93319.0 1071, .593 626 93354.0 1071, ,191 775 93389.3 1070, . 7o6 9 29 IV 5P 3 F 2 * - 68 1D2 93436.6 1070, .246 512 798 111 95474.0 10 6 9, .6 16 390 416 IV I V 5P 3 0 3 * - 50 3F2 9349b.6 ±06v.5b9 540 93 b 8 9 . / 10bb.4V4 636 I 93609.9 1068.263 362 612 IV 93562.8 1 0 6 5 . b O l 594 .93639.6 1067.922 663 I I I 111 5P@ 4 F 5 / 2 * - 5D@ 11 93670.9 1067.36 7 365 755 IV 93752.5 1066.638 413 888 I 93777.3 1066.356 500 93642.0 1065.621 863 93866.4 106 5.321 799 -93885.5 1065.127 5 67 93911.4 1064.633 940 93936.3 1064.22D 999 93960.6 1064.276 999 9 3 9 9 1 . 2 1063.9 29 447 631 IV I V 5P 3 P 1 * - 582 3P1 9 4 0 1 8 . 6 1063.619 939 9 4 0 3 2 . 3 1063.464 903 94049.2 1063.2 1 i 728 IV 94069.6 1063.043 375 433 IV I V 5P 3 F 2 * - 50 3F2 940 9 5.3 1062.732 816 11 5P 3P2* - 6G 3G 9 4 1 6 1 . 0 1062.011 879 94145.2 1062.169 947 94184.3 1061.748 775 I V 94213.9 l O b l . 4 1 5 677 94245.6 1061.057 357 480 ' IV IV 5P 3 F 3 * - 65 3D3 942 5 8 . 1 1060.9 i 7 495 698 11 11 5P 3P2* - 80 302 9427 9. 3 1060.676 451 607 11 11 5P 3P2* - 80 303 94306.2 1060.3 33 771 94328.7 1060.123 620 9 4 4 4 3 . 6 1038.631 613 9 4 4 6 3 . 1 105b.614 646 94519.5 1057.983 727 9 4 5 7 2 . 1 1057.394 683 94600.8 1057.074 930 IV 5P 3D3* - 5D 301 94656.4 ±058.433 913 9 4 6 9 7 . 3 1055.994 327 613 IV IV 5P 3 0 2 * - 50 1P1 94726.6 1055.6 70 6 73 94740.2 1053.518 743 9 4 7 7 3 . 6 1055.144 693 9 4 7 9 3 . 3 1054.927 799 9 4 8 3 o .O 1034.443 330 477 IV IV 5P 3 P 2 * - 50 3P2 94873.o 1054.032 3b 5 684 IV I V 5P 3 F 3 * - 65 302 9 4 9 0 1 . 3 1053.726 734 94961.5 1053.058 768 I 94977.7 1052.679 776 I 9 4 9 1 1 . 5 1 0 5 3 . ,613 893 9 5 0 0 3 . 5 1052. • 593 556 9 5 0 2 0 . 0 1052. ,410 333 958 IV 9 5 0 6 0 . 7 ' 1 0 5 1 . ,939 396 69 3 IV IV 5P 3 D 2 * - 50 302 9 5 1 3 5 . 1 1 0 5 1 . . X37 8 14 I V 5P 3 0 3 - 5 0 1G4 9 5 1 5 2 . 4 10 5 0 , ,946 633 878 9 5 1 7 5 . 5 1050. ,691 468 I 9 5 2 0 0 . 6 1050. ,414 656 9 0 8 * IV 5P 3 F 2 * - 30 301 9 5 2 2 4 . 7 1050, , 146 795 9 5 2 5 6 . 4 1049. .798 886 9 5 3 1 9 . 6 1049 , . 102 671 880 95381.4 1040, .4*2 926 9 5 3 5 9 . 4 1046, 004 6 4 7 9 5 4 0 0 . 0 1048. .216 742 I 9 3 4 2 2 . 0 104 /, . V ( 0 7o5 9 5 4 2 3 . 3 1047, .9 62 4o0 IV 5P 3 P 1 * - 50 150 9 5 4 3 9 . 9 1047, ,760 584 V5491.2 i 0 4 7 , .21 / 761 9 5 5 0 7 . 9 1 0 4 7 . ,034 436 9 0 2 * IV I V 5P 3 P 0 * - 50 301 9 5 5 4 0 . 6 104b, ,0 73 631 9 5 6 2 0 . 6 1045, ,796 396 698 IV I V 5P 3 P 2 * - 552 3 P 2 * 9 5 6 5 7.9 104 5 . ,392 721 9 5 6 9 4 . 7 1044, ,990 917 95713.2 1044. , /06 999 9 5 7 9 5 . 3 1043. ,893 517 IV 95607.5 1043. , 7 o 0 626 9 5 8 4 3 . 9 1043. , 3 o 3 8 73 95830.7 1043. ,507 979 9 5 9 4 1 . 6 1042, .301 5 76 999 . IV IV 5P 3 F 4 * - 50 3G3 9 5 9 9 8 . 3 1 0 4 1 . 663 800 I 9 6 0 1 5 . 8 1 0 4 1 . .317 999 9 6 0 3 0 . 2 10 4 1 , 3 39 999 I V 5P 3 F 4 * - 50 302 9 6 0 5 2 . 4 1041, .098 942 9 6 0 6 6 . 0 1040. 931 647 I 9 6 1 1 5 . 9 1 0 4 0 . 4 1 1 616 9 6 1 2 6 . 7 10 4 0 , 2 9 4 746 9 6 1 4 9 . 0 10 4 0 . 052 727 9 o l 7 0 . 0 1039. 625 360 626 IV IV 5P 3 F 2 * - 50 1F3 9 6 2 0 4 . 4 1039, 45 3 429 I V 5P 3 F 2 * - 50 102 9 6 2 7 6 . 6 10 3 o . 6 72 701 9 6 3 1 3 . 0 103o. 281 919 I V 5P 3 F 4 * - 552 1G4 9 6 3 3 4 . 6 1030. 0 4 9 758 9 0 3 6 4 . 3 1037. l e i 083 96507.6 1036. l o o 303 813 IV 111 5P@ 4 F 5 / 2 * -50@ 12 ( 7 / 2 9 6 5 3 3 . 4 1035. 9 1 1 6 76 764 IV IV 5P 3 P 1 * - 50 302 96553.3 1035. 697 580 9 6 6 1 9 . 7 1034. 966 7 1 6 * 9662b.0 1034. 9 18 426 647 96653.2 1034, o2 7 7 26 9b699.b 1034. 130 711 96741.3 1033, 6b5 500 9b759.8 1038, 4b7 426 813 96773.8 1033, 336 448 85 1 96" 794.8 1033. .113 721 96819.0 1032. 835 411 96834.6 1032. 669 445 9 6 8 7 9 . 1 1032. 214 647 96910.3 1031, 862 328 895 96950.2 1031, 457 206 640 96965.0 1031. .300 309 9b990.3 1031, 0 3 1 2 o i 872 96 9 00.4 1031, , 9 b 7 219 893 97023.7 1030, , o7b 331 902 97038.3 1030, .521 378 97061.6 1030, ,274 491 9 7 0 7 3 . 1 1030, ,152 463 97103.4 102V. ,830 549 97122.2 1029, . o 3 1 609 97144.9 1029, ,390 435 97165.4 1029, ,173 238 794 9 719 2.5 1028, ,834 326 97229.0 1028. .500 298 97 2 5 7.0 1023 .204 402 97297.7 1027 , 7/4 364 609 97330.0 1027, .432 361 97365.2 1027, .061 478 97406.2 1026 .6*9 449 97419.9 1026 .464 505 97450.7 1026 .160 525 97529.2 1025 .334 261 97550.3 1025 .112 416 97582.0 1024 .7 79 270 648 97608.1 1024 .505 326 858 97627.6 1024 .301 430 97663.9 1023 .920 373 9 7689.5 1023 . O 3 1 240 97722.3 1023 • * 74 331 97748.0 1023 ,039 425 97765.5 1022 .6 56 562 9 7 R n 5 . 1 1022 .442 519 I I I IV 5P 3 0 2 * - 68 102 I I I IV 5P 3 F 3 * - 50 3 F 3 IV 5P 3 F 3 * - 5 0 303 II II 5P 3 P 1 * - 80 302 B IV I I 5P 3 P 2 * - 10S 381 B IV IV 5P 3 P 2 * - 68 3D3 IV I I I 5P@ 4 P 3 / 2 * - 5 D @ 12 ( 7 / 2 ) I I I 5P@ 4 F 5 / 2 * - 5 0 @ 13 (X) IV 5P 3 F 3 * - 50 3 F 4 IV IV IV IV 5P 3D2* - 50 3F2 IV 5P 3 P 1 * - 68 3D1 IV IV IV IV 5P 3 P 2 * - 65 302 IV 5P 3 P 1 * - 5S2 102 IV IV IV 5P 3 P 0 * - 8 0 301 B 97829.7 1022. . 164 714 97841.1 1022. .065 756 97862.8 1021. .639 708 97880.6 1021 .653 479 97891.0 1021 . 5 44 436 9 7 9 0 S . 3 1021 .362 313 97922.6 1021 .215 600 97935.6 1021 .0 79 646 97963.5 1020 .788 465 97991.5 1020. .497 665 98002.7 1020, .380 681 98034.6 1020. .048 750 98050.1 1019. .887 615 98065.3 1019. .729 384 98086.4 1019, ,509 672 98111.1 1019. .253 368 98140.8 1018. ,944 606 9b156.0 l O i o . .78b 623 98196.9 1016. . 3b2 438 98210.2 1016, . *24 598 98224.4 101b. .077 604 96247.4 1017. ,839 616 98274.2 1017. .361 704 98294.5 1017. ,331 535 98307.9 1017. .212 443 98339.8 1016, ,882 427 98354.8 1016. .727 591 98373.6 1016, ,533 3 79 98416.5 1016, .090 5 53 98448.0 1015. ,7b3 6 64 98455.5 1015. ,6 87 631 98469.2 1015. .546 519 98528.3 1014, 937 506 98518.0 1015. ,043 770 96566.5 1014. 523 638 98594.9 1014. 251 543 98610.8 1014. 068 761 9 8 629.4 1013. 896 789 96665.2 1013. 529 709 98716.0 1013, 007 756 9 6 7 6 9 . 3 1012. 436 281 98802.5 1012. 120 613 9 8 3 34.4 1011. 793 530 9885o.3 1011. 549 562 98880.b 1011. 3 19 317 691 I I I IV 5P 3 P 1 * - 6S 1D2 I I I IV 5S2 3F4 - 5P@ 4 3 * IV I I I 5P@ 4 P 5 / 2 * -5D@ 11 (X) IV IV 5P 3 P 1 * - 50 3F2 98820. 1 98907.0 98941.0 9 9 0 5 6 . 7 • 99070.3 99079.3 99096.1 99130.7 99152.5 99166.0 99225.3 99241.4 99271.4 9 9 2 9 9 . 6 99315.4 99335.7 9 9 3 5 5.8 9 9 3 6 8 . 5 99388.5 9 9 3 9 3 . 2 99399.0 99431.7 99471.5 9949 1.0 99507.5 99522.3 99544.5 99566.5 99579.7 99606.9 99618.2 9 9 6 3 5 . 0 99654.2 99672.1 99709.8 99722.8 99733.3 9 9 7 5 8 . 1 99776.6 99794.8 99806.9 9 98 2 2.1 99835.1 99879.3 9 9 Q m .7 1 0 1 1 . 1011. 1010. 1009. 1009. 1009. 1009. 1006. 1006. 100b. 1007. 1007. 1007. 1007. 1006. 1006. 100t>. 1006. 1006. 1006. 1006. 1005. 100 5. 1005 . 1004. 1004. 1004. 1004. 1004. 1003. 1003. 1003. 1003. 1003. 1002. 1002. 1002. 1002. 1002. 1002. 1001. 1001. 1001. 1 0 0 1 . i nno* 940 051 703 523 384 293 121 769 347 410 807 644 339 053 89 3 687 484 335 153 105 046 715 313 116 949 800 576 354 221 947 833 663 470 290 910 780 674 425 239 036 935 7o2 632 2 0 8 984 646 615 519 571 478 526 563 656 560 687 514 651 661 633 589 307 691 639 568 400 400 413 367 667 790 611 751 521 661 7 44 637 706 644 742 760 719 710 763 571 441 642 663 630 643 A 74 I I 5P 3P2* - U S 3S1 B 716 I I I I I I I I I I I I IV IV IV IV I V 11 I V I V 11 5P 3P2 - 5D 3F3 5P 3 P 1 * - 105 3 o l B 5P 3D2 - 5D 1F3 5P 3 0 2 * - 50 102 5P 3 P 1 * -. 10S ISO B I I I I I 5P@@ 2 F 7 / 2 * -7S@ 405/2 T v 99930.5 1000.695 478 IV 5P 3F4 -5D 1G4 99946.0 1000.540 401 99954.6 1000.454 439 99993.6 1000.064 736 100023.9 999.761 449 1000 51.3 99 9.467 34 7 I 100135.2 996.650 593 100147.1 99a.331 473 100164.9 99d.354 582 100190.8 998.096 629 100239.3 9 9 7 . t o l l 332 IV 100296.0 99 7.049 370 100313.9 996.871 472 100349.3 996.519 577 100366.0 996.333 534 IV I V 5P 3 F 4 * - 5D 1F3 100393.3 996.082 394 810 IV I V 5P 3 F 3 * - 5D 3G3 100441.8 99 5.601 389 IV 100487.9 995.145 443 I V 5P 3 F 3 * - 5D 3D2 100541.1 994.6 18 318 IV 100575.3 994.2 60 431 85 1 100597.2 994.063 648 100629.2 993.747 661 100652.0 993.322 399 716 I I I IV 5P 3P2* - 562 3P1 100689.6 9 9 3 . x 4 9 662 I I 100708.3 992.967 842 I I 5P 3P2* - 125 351 B 100765. 5 992.403 537 IV 5P 3 F 3 * - 552 1G4 100801.8 992.046 674 100820.9 991.838 491 100903.9 991.042 319 598 I V 5P 3 P 1 * - 50 1D2 100971.9 990.3 75 567 I I 100952.7 990.563 663 111 5P@@ 20 5 / 2 * -7S(g 403/2 100990.6 9 9 0 . i d 9 474 I I 11 5P 3P2* - 11D 3D2 B 101068.0 96 9.433 393 870 101101.7 989.103 549 101119.3 966. 9_>1 44o 101148.5 986.645 • 389 101201.6 986.125 569 101217.7 987.969 690 101237.0 987.781 641 101246.1 987.692 663 101284.5 987.318 580 101323.7 966.936 5 53 101356.7 966.615 561 101357.3 98 6.609 563 101367.0 986.514 643 101382.3 986.365 691 101397.4 986.219 680 101444.5 985.701 759 101465.9 985.553 662 101484.1 985.376 577 101499.8 985.224 634 101531.2 9 8 4.919 658 101568.4 964.556 582 10158S.4 984.364 647 101604.7 984.206 839 101621.0 984.049 660 101690.4 98 3.5 11 623 101699.2 983.292 7 36 101724.3 963.049 859 101756.3 9o2.7 40 713 101781.0 982.502 488 1018 01.2 962.307 7 94 101835.2 961.979 638 101874.9 961.596 618 1019 2 8.4 981.081 633 1 0 1 9 8 4 . 9 980.537 589 101940.8 980.961 647 101996. 1 960.450 563 102019.5 980.205 430 102042.6 9 7 9 . 9 6 3 293 102086.2 9 79.545 •521 102107.2 979.363 600 102122.3 9 79.218 572 102146.2 9 7 6 . 9 o 9 782 102175.2 9 7 6.711 652 102190.2 9 7 0 .5b7 669 102210.2 978.376 610 10228 1.2 977.697 455 102229.6 97o.190 544 102260.9 977.891 467 102308.4 977.437 369 102399.6 976.366 384 102437.1 976.209 450 102458.0 976.010 468 1 0 2 4 9 6 . 1 975.647 483 102535.1 975.276 439 102554.4 975.092 638 102575.7 974.890 680 102587.0 974.762 684 102612.1 9 7 4 .544 818 111 5P@@ 2 F 7 / 2 * -6D@ 14 ( 3 / 2 ) 468 898 I I I I I I I I I I I I I I I 5P 3 P 1 * - 118 361 B 5P 3 P 1 * - 115 3SO B 5P 3P2* ~ 13S 3S1 B IV I I I I I V I I C L A S S I F I E D C L A S S I F I E D 5P 3 F 3 * - 6o 1D2 5P 3 P 1 * - 10D 1D2 B I I I I 5P 3P2* - 14S 3i>l B 102640.1 974. .2 78 628 102666.7 974. .026 478 102676.9 973. .929 421 102724.4 973. .4 79 275 102782.5 972. .926 5 90 102812.1 972. ,648 473 102827.4 972. .203 449 102872.7 972. .075 787 1 0 2 3 8 6 . 6 971. .942 774 102912.9 971. ,696 393 102958.7 971. .263 394 103028.4 9 70. ,606 623 103100.4 969, .9*8 518 103123.7 969. , 7u9 710 103146.1 96V .499 745 103174.4 969. ,2^3 661 105191.4 ' 96V. 0 73 569 103209.3 968, 905 721 103229.9 96o. .712 745 103247.3 96o. . 346 756 103394.4 967, .170 694 103419.5 966, 936 714 103439.7 966. . 7 47 703 103451.7 96o, .o33 696 103464.9 966. .311 681 10350 2.9 9o6. .137 686 103521.5 962 . . 9o5 599 103539.1 96 2. 819 602 103557.3 965, .644 6 90 103567.6 965. .553 619 103635.4 964, 921 665 103666.7 9 64, 630 747 103696.8 964, 331 620 103745.9 963. 894 619 103769.2 963, 677 321 103853.1 962, 899 528 103885.4 962. 599 676 1 0 3 9 1 J . 2 9o2. 342 501 103926.7 962. 217 478 103969.5 961. 0 * i 483 103980.9 961. 715 6 3 6 103993.1 961. 602 731 104021.0 961. 344 6 72 104060.6 960. 979 669 104086.4 960. 740 702 494 IV IV IV 5P 3F3^ - 5D 3F2 5P 3P2* - 5D 1P1 I V IV 5P 3P2* - 5D 3G3 5P 3P2* - 5D 3D2 I I I I 5P 3 P 1 * - 11D 3D2 B 874 IV I I 5P 3P2* - 168 351 B I I 5P 3P2* - 176 351 B 104121.8 960. .414 674 104134.7 960 .295 721 I I 5P 3P2* - 160 3D 104157.6 960 .084 707 104176.6 959 .907 604 .104199. 1 959 .701 451 10426o•6 95V .0 76 411 7 1 2 * IV IV 5P 3 P 2 * - 552 102 104338.5 958 .419 49 8 104381.0 958. .029 571 IV 5P 3F3-* -5D 1G4 104405.8 957. .801 666 104433.6 957 .546 788 I I 5P 3 P 2 * --17D 3D i 04449.1 9 5 7. .404 I I 104500.5 956. .933 450 104534.4 9 56, .623 756 I I 5P 3P0* - 110 302 104534.4 956, .623 7 56 I I 5P 3 P 1 * - 120 1D2 104564.9 95o .344 5 16 104577.7 956. .227 703 104396.9 956. .083 779 104623.7 955. .806 763 104680.6 955. .2 65 747 104703.3 955, ,080 535 153684.4 74 6, ,030 7 84 I I I 5P@ 4 F 5 / 2 * - 6D@ 20 133707.6 747, ,901 961 133759.6 747, ,610 798 133801.6 747, ,3 75 999 133936.9 746, ,620 938 134030.7 746. .09 6 826 134178.9 745, ,2 74 664 l o 4 2 5 2 . 7 744, .864 965 134302.0 744, ,391 999 134394.8 744, ,0 76 999 134435.3 743, ,652 999 134516.3 743, ,39 3 701 134575.9 748, ,0/5 999 134604.4 742, 916 999 104729.4 954, ,642 364 104749.4 954, .639 277 588 IV IV 5P 3 P 2 * - 65 102 104768.9 954, ,462 528 104789.5 954, .296 614 104824.3 9 53, 9 77 541 I V 5P 3F3* - 5D 1F3 104854.6 953. 702 594 I V 5P 3F3* - 50 1D2 1 0 4 S 8 3 . 1 955. 442 6 29 104905.6 953. 238 785 10492^.7 953. 063 709 104974.9 952. 609 571 104999.0 952, 390 558 I 105016.7 952. 230 467 I I I 5P@@ 2D5/2* -6D@ 16 (3/ 2 ) 105068.1 951, 764 565 105087.6 951. 5o7 718 I I I I 5P 3 P 1 * - 146 331 F3 105122.3 951, .2 73 5 76 I I 5P 3 P 1 * - 143 130 B 1.0 5150.4 951, ,019 675 105197.0 9 50. .597 434 10^227.9 950. ,3 16 643 I I C L A S S I F I E D 105241.9 950. . 192 653 I I 5P 3 P 1 * - 13D 3D2 b 105258.6 950. .041 6 14 I 105327.7 949, .418 648 105334.V 94V, .173 6 73 I I 5P 3P0* - 13o 3 s l b 105379.1 946. .935 533 105401.8 946, ,7p0 361 5P@@ 2D5/2* -6D@ 18 ( 1 / 2 ) 105431.5 94o, .465 491 868 I V 5P 3 P 2 * ~ 3D 3F2 105451.7 948, 301 751 I I I 5P@<» 2 F 5 / 2 * -7o@ 4D5/2 105508.1 94 7. . 7 9 5 613 105037.2 932. .044 476 103551.3 94 7, ,40 7 633 I I 5P 3P0* - 12D 3D2 6 105571.4 947. .226 363 105630.1 946, ,700 571 105660. 1 9 46. .43 1 586 10566 7.6 946, . 362 595 105639.8 946, ,163 625 10573 8.7 945, .7 28 350 I I I 105823.9 944, ,966 533 105871.4 944, .542 661 10 5 8 41.2 944. .612 549 I I 5P 3 P 1 * - 14D 1D2 3 105 68 5.4 944, .417 573 105954.1 943. .805 793 105921.4 944. ,096 695 105995.9 943. ,451 741 105964.9 943. ,709 756 106015.1 943, 262 803 106042.8 943. 015 662 106057.4 942. 606 .557 106088.6 942. 608 • 698 10 6 1 2 0 . 1 942. 329 495 106132.2 942. ,221 416 IV 106148.2 942. 0 79 699 106171.3 941, 8 72 712 I I 5P 3 P 1 * - 163 351 B 106204.7 941. 578 616 106226.1 941. 371 628 106256.3 94 i . 121 836 106272. 2 940, 980 806 1063 15. 0 940, 601 627 I I 5 p 3Po* - 13D 3D B 106357.7 106373.4 106526.7 106577.5 106593.5 106624.S 106688.0 106708.8 106733.8 106756.2 106777.6 106833.0 106948.5 107004.2 107035.0 107072.5 107111.2 107131.9 107200.3 10 7221.9 i 0 7 2 6 4 . 9 107316.6 107386.2 107408.5 107447.2 107461.6 107528.8 10 7 5 31.8 107557.4 107501.0 107604.3 107637.8 107665.1 107716.2 107796.6 10 7 6 2 4.9 107843.0 107895.3 10790 7.7 107944.2 107963.2 107984.2 106056.0 1 0 d l 3 4 . 0 106153.1 940, .223 627 940 ,0b5 413 938, ,714 737 936. ,284 810 93 6 . 144 554 937, , 8bb 763 937, ,313 874 93 7, , 130 761 936. .910 528 93o, .714 454 936 ,22b 362 936, ,040 588 933, ,029 620 934. ,543 756 934, .274 788 93 3. ,947 636 933, .609 453 93 3. ,429 742 932. .6 33 784 932. . b45 73x 932. ,c i l 5 6 l 931. .6 22 636 931. ,2 1b 826 931, .025 615 930. , b90 606 9 30.  3b5 675 92V. .983 859 92 9. 957 729 929. 736 698 930. 224 873 92 9, 331 999 929. 042 606 926, 6U6 626 926, 365 559 92 7, b73 742 92 7, 45U • 723 92 7, 2 74 366 926, 840 365 92b. 7x6 286 926. 405 533 926, 242 566 926. 061 746 923. 446 675 924. 7 79 718 924. b 12 746 5P 3 P 1 * - 16D 3D B I V I I I 5P@(? 2P1/ 2 * -6D@ 16 ( 3 / 2 ) IV 5P@@> 2P 1 / 2 * -6D@> 18 ( 1 / 2 ) IV 5P 3 P 2 * -5D 1F3 IV 5P 3 P 2 * - 5D 1D2 I I I 8P 2P3/2*—6D@ 20 I I 582 l S u -6P 3P1*N I I I I I I 5P 2 P 3 / 2 * - 75 251/2 I I I 5P@@ 2 F 5 / 2 * -6D@ 15 ( 5 / 2 ) K - l~ J I 1 I 1 I ' ) — r-* ) ' J ' I—' c—1 1—' y-> t — | — ' j — ' J _ J i— I—1 (—• t — t — r- ' i — 1— i>—1 t—* )— ' I—1 t—* t — 1 r - J ) — 1— r~ I — J , — > | — J (—t j — i J—J )—i f_- |_' I— i — l — 1— t — i — o o o o o o o o o o o o o o o c o o o o o o o o c o o o o o o o o o o o o o o o o o o o c vo v-o <-c KO vr. VC VC VC VC VO VC VC VC VO CC C ^  VC S' I£ a a ffi CC a M a a O a a co a a co a a a 4 > M M O O O v O \ O v C c c a C C - - j - ^ - j O; CT- VJl CO VJl O -p- K> vO .p- OJ CC CT N E W H O u i ^ U i O f f l U i O H C o O H C O J u i ^ H f f i ^ H C C O U i W H a N vo -j i — cc co vc a ' o o -P c -i> >— - j or vo -J. oo a . G U-N-^WVCKOPVOCI-VX l O ^ - j - j ^ ^ w p v r i w c u f o'- ro co oo on -J cr tr a. o r- c c \ o-: >~ a o- -J ro N. c vc cr N w vc H e vcrvo. - j t r t — avo*-oonro»--*> v£ vC vO vC O vC v£ vC vr vC vC vO vC vc ^  C3 o o o o o c o o c i ' i — i — ' ! — 1 i — i—' t— i—11—'i—• \—1 i — 1 t— i—' i—> r—1 i—* )—' i — i—1 j—' i — 1 rv rv rv ro rv rv ro ro r\j rv rv iv rv or- cr -J cr cc- o vc vc vi; vc c c c i — f— i — iv, o. o.: o>. u f f w u i m s i a i c c c c c c c >— i — rv rv oo o. o -p-c c o w cr ^  u w N <i v f ^  o w a CM b' v- ^  c C rv cc oo or t— c rvi J> oo vj c vc rv- or -.j .jr co o rv VJ- c 0 0" (— C- O C C O -J C -P' 0^  O 1- o- CT- O v_o O; vC i - U or or J> H 4> C vO O. - -p- C O rv C i — or i — vO vc -,' c c o OJ ex vo rv: co co c oc vc a ~J a u- - s i -p- OO J> CO or o rv or o or vc i — on -r> o rv co cr- vo o o or vc o fv rv cr cr u cr - - j ^ P - c r c n v D - s i v o a c ~ j c r p - u , u i ( j i c»cr-j -s i-jcr ^ K - , a - ~ j c r f v c v M 4 r c r v c - - j i v c r r — x ^ r o o o - - j r v r v vc t — - s i i — vo o cc cr crco rv K- c -J i— oo OJ I— a cr co -j a co - j rv oo cr on oo co -f> - j or - s i - s i c - .p- co cn a cr -P- cr - s j c o —j a oo £- on rv o i— VJI or o: i- • - s 1 a- H ro - j vrj' t— i— iCff iOiCOHff iOVl ivrClvJr - f fCrHCCWr'sJ iCrv) CC -J CO a rv oo < < < on on on on TJ TJ TJ TJ ce) ® on fg) Ce) rv ro cr TJ TJ rv rv ro OJ oo o T | -s. X i — oo on rv ro u v . * * c rv rv> * * 1 cr l cr l -si 1 1 cr cr TJ (/' o o CS> rg ro ro i — •P- c o l — 0 0 on oo TJ i — V . V 1— — \ ro ro rv CX * s . ro I I I I I I I I I I I K-1 r— 1 I—' H-1 r - 1 I—1 K-' I—" 1 1 I r—' t—' r—' r— 1 r - 1 ( — »-—' i ' .— | h ^ h ^ t ^ ^ ' t ^ ^ ^ ] ^ ! ^ ) — h ' t ^ ^ t — >-^)^^}^h-'h-'t--,t-J>—1t , I—1 I-" fr— fr- fr- ' I—1 t—' fr"' r~' 1 H- I—1 I ' fr-' I—1 k-" 1-r—l-' I 1 I I—J h—' I—' r-' I—1 i— ) I—; fr-' 1—' I—' fr— r— fr~' t—1 fr—1 I—1 I—1 fr-' |—' 1 ' fr-J r—' , r o r o r v r o r o r o r o r v r v r v r o r o r o r o r v r o r v r o r v »—• y— h-- fr-1 i—> I-J i—• >—• i - ' i—• KJ >-J 1—1 1— fr-' 1—• fr-1 O O C C O O ca OJ cc - j - j cr- cr cr v r p- p- p w w w w ^ c o i c c a a ^ c > o > u i u i p w u w r v ) p H O O o o < c o j ' > i > i > i o i - g j p - r v c A U ' v o u i r - j v c - J 4 > o v o - - j - r > r ^ • O- Cr CO fr-* pr C; U i P> fr-' C vC: 0- v C O CO U) C. C r - J C V T ^ I - J H H O O CT P> 0- O C K i t 1 P P W r v l H v O w C C -si vC j P C U ' O ' K ' p s j k C 0 K H N ; p - j > i f f i c , P v c p a L " ' v c o ! W r j N H r ' ' t n c r c u O - s i -O VO c c ui t~ I_O p- r v v c v r v>. I i , cc OJ oz cc a a c c a ; c a ( j a a c o c o c o a a a o . c a <x c a c c c o a c c c c a a- a ' o. o; vc vc o vr; o r c c v c * c vc , c r a c c a - c E C c a a : a t t l l ' C I M f s j s i s i ^ c v C s i C v C C O O C I v J M v.- pr p cr C'I Ci O- C C -s' - J C. C c C i C O C C C C i - ' N J M t P vc » - ' vo o r c vo o- vc. r - K- rv c r c vc o VJ- c - rv - - j v r r KV>V,V p v c w u v c c v c p c r v> o r o vo - j p> c c a -J c r ro a. iv -P o rv p> a cr- a c rv v c - H c c n a c r c p v o ^ c u v c rv a —J V> -J a vo i ~ - -o v r u P- i — a i - 1 o r o p> rv p r o fr-v r i n H - j u vc- o K p o h v n P N o u ; p v c p K c c o i— u' u ' rv o t - j c r rv vc c . o rv. -J -J VO CC c r -J CC H c r O VC —J —J ui o c r v x c r cc c c c p p p p c r t r a ^ N J V i i O ' P v T v C v O v O P M U 1 O i W v C VO VO 1—' — 1 - J V)! IT L'i C M t - CC \C' O vC I—1 vo c c - o - o vc - s j -pr- - j c r —j - s i v r c r C r fr- CT Cc oC a P W O U U o c cr o c a i>' c o -J p i o o w i i : H ui vC P 0> v r - j O O s i - J CT si sj ^ | u i v r U C s l c C h ' C o P s i c r ^ K - c j P C O i C P c o w (vi vn co p H a H u; cr ci -sj OC Or -sj fr-' 0 0 c r o cr v n v r TJ r© ro ro o TJ v n \ ro ro r * * < I 1 l ( 1 cr * cs ~j J fS c 1 H fr—* rv t/ J I-* —- ~s v o rv ro —.* VJl TJ re ro D v n ro l - s i re 1 v n \ ro V.-Y—' r-' I—'1—'I—'I—'I—' 1—' I—1 I—1 r—' I—'I—' J—1 I—' t—* r—* h— I— I— r-Jr--r—,HJr-Jr-,r-Jl— r-^K 'r-^l—• |—' [—* I—1 I—1 t—1 I—1 f—1 I—h-^ r~* H"1 (— i—' • — '—' •— *—1 I : I—' I—' I—' I—' 1—' I—* r—4 r—* •—' I— 1—' r— I—1 I—' r— t—' >—1 r~J I—* r—' I—1 I—1 J— I— I— I— I— r- 1 1—' r—1 I—' H- r-J r-J H J I— I— r— VJ", LPVJ" u i vj' -p- -p- -P -T> -f> -f> -p- -P -p- -f> -p- 4> -P 4> .p- -P -p- .p- -p- J> -p- J> -P- VO Lo LO VO VO UJ LO VO LO W Vii ij: W W W N W r - < O O O v C v e C C C X : C f i ro i—' ex \JJ o -P- LO <x u i iJO i—• co r\j j> ro o (x i— 1 CJ fv iji CD co b.' —j u - 1 -P" cj - u i Lo .p r j vO rv p r\i vr ^ i—• vo -sj vo O -J H i t M sj c i C C M T H VTi C C C f M - 4> N C U" U ' UJ LO rv Ui t— 4> -J -p- C C' O" IV: VJJ -P C IV vC C C vC a ~J LO —-j vt" a i \ i O - ' v r o H N - c N ' H s j Q i * o -J i— a - o m LO -J rv, vr H- rv -p- x - y-> t-> o o vr rv » - rv i— ~.i t - vc cr cc cc co o co co cc cc OJ co oc- co a a a - a o- a a cc a co cc co cc- cr cc o a a c c~ cc cc cc a cc co o cc cc co cc er cr CT- cr- cr o-' c• - s i -J - j - s i -j - j - j -si -J -J -,• - j - j -J - v i —j - j - j - s i - s i - s i - s i - s t ~J cr cc co co cc a oo cc cc ex c a --j C" a vc \f vc o o o o o i—1 i— r—1 i—• rv rv vo vo L>- -p P- .p- vr> vr c o- cr c a \c \c vc o C O H H K ' M O -P- -P- vr-vr tt C ' c H vri vr o -P- o co vo i— cr u cr u - s i rv c vc i— -P vc. rv - s i K- cr --J V- VC O r. VC O LO CJ -P OI\ vr c : c vc t- .p-V". ~J -P- r--1 -P c oc c u r— vo vc cs L c o v>. - s o u vr O" VO LO CC - s i t-> v£ vc c c r - N s j j j t> \o s i c u u v c u r v . -p-p- vc a. -P- u ' r— vc .p- vo r- j -s 1 LJ c r i— cr -C1 rv rv u o - s i -p- VC vn vo a t-> vc t— vt c i— rj ^  u w K vr c H vc p a ~jrv -si cr vc cr cr <x. MD cr a . cr on --j vc - s i c - vc cc -si a c c • c ^ ^ o v r - p • v ^ e ^ c ^ v ^ • ^ ^ 4 r u • - - ^ ^ - s l e x v o v o • v c • c • • P ^ v c v c e ^ rv vr vr -p- cr rv rv - s i cr vo vn Lxi cc o o rv c vc vc -si cr rv cr LO *C VC C: VC CN IVJ O c LO J> 4> CT- i— r. rv LV- -P- rv U~ U" - s i u i a - u i u - 4 > c c c c x L o o 4 r H - ' e r - s i v c c r - c r l i i v C O s i o c a r - s j O - j H U - j s j c o c E O r - v o u ' v p - p a u cc-CC •p-03 vC VJl rv -p-cc cr vn TJ c&> rv T| -sj rv * VJl TJ rv TJ rv l -j (A c® -P-m N rv I cr rv c u Ns (V c 1— t— r—' |—' |—' t— I I—' I—1 y~* I 1 r—' 1—' 1—1 J ' I—' I t~* r- J r"* I—' 1 r—' I—' I—' l-'r— r " J r — I—1 K-1 I—' r — r— 1 r - J r - J r - J r - ' r — ' r - ' r — r — 1 '—' t—' t—'I H I |—' r—1 I—; H"1 I—• I—'I—' H - I r — I- 1— I— 1 r—' t—' H~ I H J I I—1 K l — ' r ~ H J I— 'I—'I— 'I H ' H ' I— 1 H J r— K ; r— ' I H"' ff C~ tt ff s i s i s i s i s i s i s i s i s | s i s i s i s i s j sj s | s j CT O' C CT O* CT ^ r o M r — O v O v C C D s l C ^ C A U . U " ^ L > 3 H - ' - > | v O P > H ' V J i ^ U i ^ C A i > O C C U ^ a b 0" Vj'; C C' O O VO M l\J VJ U". VC C C C IV S' VC s i p- U -F~ s i b_' t— f VO Vj. VJl CC l\J p- VJ". s i p- CO IV C. I— CC t— O VJl O C vO C. vO vji Cc M O - P C ' V C O P V T C P K P> s i a s i a -P vj O I— vj C sC vf: s i Co vo rv- r v a sj u- c rv a a a a a o> a c o a c c c c a a- a cc a- o o a a- o.> c c o. a- cc o.- cc a cc o c c cc co or: ct co ct co cc c a a ff oa o, jp- P P P p p p p p ui v r v j V" ui v." u' ui v r v r vn v r v j v n v r vr v r u v r v r o* o 0S cr cr cr c cr cr cr c cr C cr c- , v j U" C Cr s i o a vC vr o C O 1—• HJ H- IN: A, VJ." VO V>J pr v r 0~ C s i s . vr v f O O rv rv IV IV b b. p- p> V v r V' mo s i vC i- s i c : O p - bi v i : c C- s i O U s j vc u s i C 4> vo o: p> p - U> C 0 O H O s i O IV v r v f l>" vC H b H- rv s i CT. vc C (V C Cc b. V' s i r. O b: O b IV P C? 0. C V: V IV s i b' i - J C O C b- v H v r H p v n C VJ O s i jp- b K H H- s ! C o a vr, u- vc o: b- c vc p^ vo rv o. H- a. u o p - tv a- s i s i vc c b; rv s i u rv cr vc o o H- a a p> p- s i s i a. v r u U" Cc C s j O CT 03 s i OJ vC s i b J s i CO s i C. vf. vC vC vC Or vC >l vC' vf i C C VP ff vii s a Ct C~- Cf C >l vf ^ >| a a Co s, u . v i « VJ- VJJ  ^  M.  VJJ  j u. .. M- M Jc- vr. cr o i— vr- (-' JP- vc I— H si vr r v a- c. a c- o si P N . n v c a > i N v C N C h > i c o p p > i i i ; v c c c H P U v v i o v c V i i v c v - c v C v C v c p a r o v r v c c w - j v i a. a vc HO p u r v vr vc H- t-> p - or, cr H-' v n o vc c vr vc o vc c c r v i— vo vr O! s i c r cc vO c c Co P -bJ VJl TJ re r v vn r v * vn TJ re rv vn TJ re rv o vn v. rv * vn TJ re rv TJ Vx) rv vn TJ re vn rv TJ T i r® vn s. rv rv o * vr vr TJ re rv TJ vo s. rv vn TJ re M o vn \ rv * I Cr C re s i ff re Pr vo l cr O re I s i (/ re +> o VO r v l * s i i 0 vn re c re C r-> ui cr cr o re l s | C/i re rv vo rv rv rv rv c I—- h~* r—' I—- b—1 I—' > — ' I—1 I—' r— i I—' J—' 1—1 I—' 1—1 t— I— 1—1 1—' 1—> I—» I—1 1—' I—J I—' K—' f-— 1—• I— 1- J 1—1 1- J |—1 )—> )—> |—' )—' |— h ' H H P P H H fV |V fV. IV rV IV H-' f—' |—' I—1 H— 1— I—' I—• h-J r- ; i — I—1 I—' 1— t~' I—'• I—' I—1 I—' r- 1 K I—' h K— 1—' |—' h J 1—1 r" ' r—1 r~ I— H • V—1 K— I—' I—' C O O C O O so c O VJO VC VC VC VC VC OC V O V C c * vC - C ~D C Cc Cc K Ct Or a Cc. a> Cr Cc Cc cc cc CP Cc Cc Cc Cc OJ Co Or Co O j i j c i u r r v r v i v i x o ^ c ^ - C P > K - ' C T O M o O v O O v J ^ v O O - - P > r — ^ l O f f f t H 4 > ^ | ^ o s | ^ ^ ; l J C ^ ( ^ c c p N l v c ^ l C l - J T • T l C • ^ J ^ ^ s i u-- a c - u i ur rv vo CT vo vo u U. CT CQ m p s i p~ Cc s r— OJ M O Lo U- U' H oc r; O 4> or cc or a a a cc or. cc ex a a cn cc cc a a a - a> cc a-, or c c a - c c c c c c t a c c o a ex a a a. cc a. o. cc cc cc cc cc a L o LO V o L-: 0.: LO LO LO LO L0 VO LO LO v.'.' VO W l C U i U ^ W b ' P P P P P P P P P P P P P P P P I - P P c. C 1- i — H- r~> p> vr vji ui O o s i s j s i a o a a < vo \c c c c o K- I—• t— rv rv rv IV VO VO P> p> pr- pr- pr P~ -P- L n u i U v C r - P v O - J O P O - K H l i h ' p - J C H LO CC p O vC O o: r v L> s ' u s j r v u rv s j c s j u u >- c o cr L> vo o r v H H v c K v o v c a v o o u i p p a i ; >c a o u' H cc < H c u co s i c. rv pr o rv p> c s j o rv C K: P P C a >r >- p-K v O s i C. s i V: v O p- rv. L> vf, u CT O I- v~- r- rv. K J cc o C rv tr vji cc c o c rv LO rv v> CT rv s j vo c- c c o H u u w s i 0 0 s i U CT CT- P> -P> U l s i CO s ! U i vC s i C C s i Vr C a; CT CT- CT CC oO C L " v l i v C v O v O v C C . v C ' C ^ v O v C O ' t t v C v C v O v O v C s j P N ' - v l v n v i ) v O l > J v O P C r I — v C U C C U vC v C vO p cO P W ro -4 P K O - O - H C C i - ' v C c C O - f u H 0- a Or oC P> CT- vC oO p- I-" (V vC LT LO CT- VJi CT- LO a v ca C H-' IV i - CT- Or v C vo I — LO LO Co U i I-- oC C CT- O LO vC CO 0 CT Or C U i U vC s i oO oC vO Cc vC CO pr-rv U l VJl vr, U l VJl VJl m X I T J X I X X X X c© <© f© r© <e> c© r© VJI •P- U l rv rv rv rv rv rv X I o X I o ~n X •n f© L O <© L O U l vo VJI vo VJl s . \ s . rv rv rv rv- rv rv rv rv c "Tl * * * * L O VJl s v. fV) rv l l l 1 l I * * CT- s i s i CT-1 1 0 0 o s i r© o C© f© f© CT C© (©. c o f© K-1 f© H-' •p- -p- <© I-1 t—' 4> 0 0 c CT P r •p- I—" v> r - 1 rv c -~ VJl — o -~ — V*) L O I—1 rv rv L O L O s. \ s \ s. rv rv rv rv rv — — —. v 120466.0 630 .110 827 12049 6.y 629 .863 468 120320.6 829 .734 503 120546.6 8 29 . 3 40 843 120587.6 629 .2 71 898 120793.6 827 .627 871 120864.5 82 7 .3 73 685 120841.8 82 7 .326 o99 120996.0 826 .4 74 b48 121046.2 82b . l 3 l 963 121036.0 825 .846 796 1 2 1 1 0 6 . 7 325 . 7 0 3 869 12113 6 . 7 825 .514 966 1 2 1 1 6 6 . 8 822 . 2 9 2 936 121296.3 824 .413 696 1 2 1 3 1 6 . 9 6 2 4 . 2 74 961 121366.2 823. .925 666 12139o.6 825. . 7 45 /53 121466.6 623 . l 22 636 12155 9.J 622. .641 745 12139 5 . 7 8 2 2 . .396 666 121637.6 822 . .1x5 360 121666.1 62 1. 906 567 12169 2.7 6 2 1. 742 7 63 121739.0 82 1. 429 907 1 2 1 7 6 5 . 7 82 1, 249 9 99 121633.0 820, 796 921 1216 7 4 . 9 620. 513 369 12189 6. . 4 620, 355 926 1219 3 9 . 3 619. 946 616 1 2 2 0 4 3 . 3 619. 381 999 1 2 2 1 2 4 . 9 616. 634 683 122161.7 816. 5o7 . 930 12220O . 9 6 l o . 291 371 122284.6 6X7. y 63 769 122343.2 817. 5 73 • 8b6 1 2 2 3 5 6 . 5 617. 2 71 921 1 2 2 4 2 1 . 3 616. 851 312 1 2 2 5 0 7 . 9 816. 274 820 122531.1 816. 119 670 122616.6 815. 5 49 792 1 2 2 7 7 3 . 4 614. 509 436 122806.o 614. 267 769 122846.x 614. 0 15 646 12 2 8 7 7 . 3 313. 820 916 I I I 5P@ 2D3/2* - 60@ 20 I I I 5P@ 4D3/2* 6D@ 15 ( 5 / 2 ) I I I 5PO 2 F 5 / 2 * -7o@ 401/2 I I I 5P@ 4D5/2* -7s@ 403/2 I I I 5P@ 2 P 3 / 2 * -60@ 18 ( 1 / 2 ) I I I 5P@ 4D5/2* -6D@ 15 ,5/2) I I I 5P@ 4D1/2* 60© 16 ( 1 / 2 ) I I I 5P@ 4D3/2* 7b@ 401/2 122933.7 813 .447 753 122911.2 615 .596 9o3 123006.1 812 .968 966 123129.b 612 .131 7 09 123191.9 811 .742 774 123223.4 611 .3 34 913 I I I 123348.0 810 .7 14 893 I I I 1 2 3 3 9 2 . 3 b 10 . 4 2 2 911 I I I 12340 7.2 610 . 3 2 5 892 12549 9.2 oOV . 7 22 460 12360b.1 609 .008 941 12 36 5 8.9 8 06 .676 871 123675.4 806 .566 747 12 3 7 3 9.7 80b .148 964 123710.5 80b .5 39 9 99 123797.6 8 07, .7 69 943 123330.9 807, .553 718 123886.1 607 .193 939 124151.2 805 .469 977 124230.1 804. .6 34 718 124304.0 804 ,479 978 124352.6 80*+, . l o 4 991 124367.3 804, .0 70 943 124397.8 603, .8 73 722 I I I 124459.0 803. .47 7 948 124523.7 603, .060 999 124562.1 8O2, .6 64 bb6 I I I 124609.6 802, 506 761 124638.4 802. 321 977 124735.6 801, 6 96 944 124908.6 800, 565 710 I I I 125007.o 799, 930 704 125129.4 799, 173 839 125155.0 79 V . 009 768 123257.6 79 b. 333 999 125357.2 79 7. 720 999 125380.7 797. 371 733 125432.9 79 7. 239 963 125456.0 797. 092 901 123562.8 796. 414 643 I I I 125626.0 796. 014 901 125762.4 79 5. 130 996 I I I 125793.9 794. 931 934 125820.6 794. 782 905 125868.2 7y4. 4o2 023 I I I 5PC? 401/2*-6D@ 2u 5PC? 4D5/2* -7o@ 4D1/2 5P@ 2 F 5 / 2 * -60(5 16 ,3/2) 5PC? 4Pl/2*-6D@ 14 I I 5P@ 4D3/2* 60@ 17 IA) 5P@ 4D5/2*-6D@ 16 5P@ 4D5/2* -6D@ 16 (3/2) 5P@ 4D5/2* -6D@ 17 (X) 5P(? 4 F 5 / 2 * 78@ 405/2 5P@ 403/2*-6D@ 20 125885.0 794 .376 945 125935.5 794. .03 7 9 79 126029.0 79 3. .466 999 126139.8 792. .771 831 126179.9 792. .319 876 1 2 6 2 6 1 . 9 792. ,005 611 1 2 6 3 0 9 . 1 791. ,709 598 126453.1 790. ,607 892 1 2 6 4 8 2 . 3 790, ,624 908 126507.6 790, ,466 907 126607.7 769, . 841 699 1 2 6 6 5 0 . 7 78 9, ,5 73 649 1206 9 7 .o 769, . 2 oo 999 126726.6 76 9, .100 869 126770.2 78 6, ,8 29 996 1 2 6 8 7 4 . 3 76 8, .162 423 1 2 6 9 5 6 . 7 78 7. 670 388 126992.8 7b 7. .440 333 127056.3 767. 053 665 127114.5 780. .694 999 127156.6 786. .431 976 127196.6 766. . 163 999 12 7 2 5 9 . 0 763. , 7 94 9 99 1 2 7 2 8 5 . 3 76 5. . o5 ( 645 127326.1 783, ,563 999 1 2 7 4 8 1 . 9 76 4. .423 731 127554.5 163, Voii 632 1 2 7 6 0 0 . 3 783. .697 915 12 7677 . 3 76 5. 2^5 8 33 127724.2 76 2. 9 J7 7 55 127799.6 762. 47 5 909 127846.2 762. i 9 0 416 127894.6 781, 694 415 127914.0 781. 7 75 465 127930.6 76 1, 3b6 925 126040.9 761. 000 743 1 2 8 0 8 1 . 7 780, 732 999 126143.9 760, 3 73 919 12 8 2 9 1 . 7 779. 4 74 9 94 128323.o 77 9. 2o0 999 128346.4 77 9. 141 929 126 39 5.0 776. 643 999 128423.0 776. 6 77 714 126459.4 778. 456 369 12 3 5 11.1 77o. 143 568 8 9 8 * I I I I I I I 5S2 ISO -7P 3P1*B 5P@ 4D5/2* - 60@ 20 IV I I I 5PS> 4 F 5 / 2 * •6D@ 14 ( 3 / 2 ) 524 I I I I I I 5P 2 P 3 / 2 * •85 251/2 871 IV I I I 5P@ 4 F 5 / 2 * -6D@ 15 ( 5 / 2 ) 5P 2 P 3 / 2 * - 70 203/2 126609.3 77 7 . 24V 423 1 2 6 6 8 0 . 4 777 . 119 566 12674b. t> 7 7b ,7u7 3 36 129071.5 774 .7 66 976 129114.b 774 . 20o 662 129205.2 77 5 .9 75 999 129226.6 775 .823 999 12940 3 . / 77 2 . 7o5 0 39 129492.V 772 .243 795 129617.7 771 .500 560 129708.4 770 .9 60 999 129730.b 7 70 .827 999 129770.o 770 .5o9 999 129613.2 77u. ,3 5b 9 99 129835.5 770. .205 907 129675.4 709, , 9 0 1 999 129975. 7 7 69 . 5 ob 99 9 130012.5 769, .127 620 130051.3 766 .927 999 130078.3 766. ,76 7 999 130180.6 76 8 . 164 999 130193.7 768, , 0d6 999 130252.o 767. ,7 3b 999 13G366.6 767. ,068 607 130418.2 766. .764 999 130464.8 766. ,490 9 99 13049 1.6 7 6 6 , 553 956 130872.o 764, 102 622 131070. 6 762, 948 909 131263.3 761, o28 723 131319.6 761. 201 867 131348.0 761. 365 931 1313 7 4.9 761. ioO 650 131420.8 760. 915 959 131538.5 760. 234 719 131615.9 759. 707 ' 896 131700.8 7 59. 29 7 999 131725.5 759. I26 000 1 5 19 3 o . 7 72 7. 939 999 1 3 x 9 7 9 . o 7 5 7. 6 9 5 999 132008.0 757. 530 801 152159.5 75o. 061 025 132190.9 756. 402 479 132247.5 756. I28 980 132310.9 755. 796 999 465 616 I I I 5P 2 P 3 / 2 * - 70 205/2 I I I 5P@' 4Pl/2*-6D@ 18 I I I 5P@ 4 F 5 / 2 * -78(s> 4 o l / 2 I I I 5P(? 4P3/2*-75© 401/2 I I I 5P@ 4F5/2*-6D@ 16 I I I I I I 5P 2 P 1 / 2 * -8S 281/2 U 132393.7 755 .323 920 15244b.1 755 . O 3 O 999 i 8 2 5 8 9 . b 754 .20b o76 132616.1 754 .036 601 132743.7 755 .531 92 1 152773.4 7 33 . 132 0 o2 152864.6 762. .701 4o L 133071.4 751 .4 76 839 13309 1. 3 751. .3 63 693 13 310 3.7 751. .265 999 133158.2 750. ,966 999 133204.6 760. . 7 24 999 133263.2 750 .395 983 133390.6 74 9 . b 79 942 133470.7 749 .228 999 133571.5 74o . b64 662 154749.9 742. .1x6 999 154786.0 ,41. .91 / 999 134845.8 741, .399 999 13489b.7 741, ,29 7 961 134980.2 740, ,649 673 135026. 1 740, ,5 98 999 135141.6 739, ,965 730 133401.7 73 b, 543 999 135471.7 736. 162 999 135513.3 73 7, 935 999 133534.7 73 7, , b l 8 986 1 3 3 6 6 o •7 7 3o, ,9 92 999 153740.2 73b, ,701 999 13 5 7 7 7.9 73o, 49 7 936 135861.4 73b. 044 773 136093.5 734, 77b 605 136265.4 73 3, , 7(33 9 99 156446.9 73 2. 6 75 9 17 136 4 8 6 . 5 732, b/3 .7 64 136554.5 732. 508 • 999 136037.3 735, 093 981 136651.5 731. 7o9 o91 136733.3 731. 063 999 156614.4 730. 9 j.7 90o 156662.0 730. bo3 9 99 136973.4 73 0, 0b9 999 137103.2 729. 8 76 826 137135.0 729. 208 695 137166.4 72o. 935 8/6 588 I I I I I I I I 1 I I I I I I I I I 5P@ 4 F 5 / 2 * -6D@ 17 ( X ) 5P@ 4 P 5 / 2 * -60@ 14 (3/2) 5P@ 4P3/2*-6u(2> 18 5P 2 P 1 / 2 * - 70 203/2 5P(? 4P5/2*-75@ 4D3/2 9 1 2 * I I I I I I 582 150 - 8P 3 P 1 * B 552 150 - 8P 1 P 1 * B 137282.3 720 . 4^6 999 137353.9 72 o .020 9 99 I I I 5P@ 4 P 5 / 2 * -6D@ 17 (X) 137552.2 726 .99 7 999 I I I 5P@ 4 P 5 / 2 * -60© 18 (1/2 1 3 7 6 7 2 . i 72 0 . 3 64 924 137767.0 72 5 .863 999 1 3 7 8 2 o . 9 72 5 .25 7 626 1 3 7 8 7 4 . i 72 5 .299 9 83 15 7 9 0 4 . 1 72 5 . 142 7 70 157996.8 724 .644 999 138032.3 724 .467 999 138107.3 724 .073 986 1 3 6 2 4 5 . 1 72 5 .2 23 665 138331.3 722. .902 999 138659.4 721. . 192 365 138835.0 720 .2 79 I I I 5P 2 P 3 / 2 * - 98 261/2 139253.0 7 I d . .117 I I I 5P 2 P 3 / 2 * - 80 203/2 159309.0 717. .0^9 031 I I I 5P 2 P 3 / 2 * - 80 Zub/Z 140735.2 710. .554 928 I I 552 180 - 9P 3 P 1 * B 142855.o 700 .008 999 142925.6 69 9. . 0 o 6 999 143047.1 699, ,0 70 999 143181.6 69 0 . 415 636 664 I I I I I I 5P 2 P 1 / 2 * - 95 2 o l / 2 148273.1 6 9 7. . vob 9 55 1 4 5 1 3 1 . 9 698. .626 9 99 143446.6 69 7. . 114 999 143597.2 o9o, .392 000 884 I I I I I I 5P 2 P 1 / 2 * - 80 2D3/2 143707.3 69 5. 659 371 I I 5S2 160 - 10P 3P1*B 145818.7 69 2. .320 99 9 143905.1 694. ,9 02 999 144014.5 6 94, 272 999 144115.4 693 . 066 9 99 144155.6 69 o. 092 999 144264.3 69 3. 172 999 144310.3 692. 951 999 144399.0 692 . 626 999 144445.7 692. 502 999 144690.6 691. 0O6 39 7 282 I I I I I I 55 251/2 -6P 2 P 1 / 2 * 144690.0 690. 179 971 144968.9 68 9. 803 999 145085.2 669. 250 932 145139.5 68o. 99 3 7 3 3 14521U.9 63o. 624 999 143266.9 63 0. 3 0 0 9 94 145396.5 08 7. 7 74 965 145390.5 Ob 7 . / 7 3 6 19 I V 5P 102* - 60 3P2 145657, .0 686, .344 837 145612, . 0 665 , .613 537 I I I 55P 2 P 3 / 2 * -90 203/2 145926, , 4 6o 3 , . 2 6 o 391 277 I I I I I I 55 251/2 - 6P 2 P 3 / 2 * 146051, . 5 664. .690 877 146176. . 6 684, , 104 983 146241, .4 683 .801 906 I V 5P 3D1* - 6D 351 14o35e. . 9 60 5, .261 833 146462 , 9 68 2, .767 999 14o 32 6, . 4 6 0 2, .462 66o I V 5P 3 0 1 * - 60 3P2 14o 59 2, » 9 60 2, ±47 946 ». 146634 » 2 68 1 , .966 9 99 146700. . 5 661, .661 999 146815, . 9 08 1, . 123 999 146651, . 7 680, . 9 3 9 999 146912. . 5 680 , . 6 77 999 14699 9, .0 660 . .2 77 999 I I 147112, .0 6 79. .7 24 9 99 147191. . 6 67 9. 5 07 89 3 147326. ,4 6 Vo, . 7 6 5 914 I V 5P 102 - 60 4 147386. . 2 67o. ,400 999 147489. , 2 6 7 0 , .016 9 99 147711. . 9 6 7 o. . 9 94 9 99 147436. > 5 o 7 o, .2 39 999 147737, »2 676. 6 76 998 147806, .0 67 6. 263 999 147676, , 7 &7o. .2 59 992 143041. . 3 675, ,46 7 9 10 148155. ,2 674. .968 931 148233. > 5 674, .611 999 148294, 6 674. 533 960 I V 5P 102* - 75 303 143422, 0 675 , 725 529 149035. 1 670. 963 603 1 I I 14908 4, , 2 670, .7 62 842 149146. , 7 67 0. .4 72 3 00 149191. . 6 670. .2 79 952 IV 5P 1P1* - 60 301 149262, > 2 66 9. .961 922 149409. , 8 66 9, ,300 955 149572. 3 060 . 3 71 999 149614. ,9 66o« 383 999 149695, . 3 6 6 o . 024 976 I V 5P 3 0 1 * - 76 3D2 149746. 6 66 7. 794 955 149820. 0 667. 432 999 149684, 3 667. 1 O i 767 111 5P 2 P 1 / 2 * - 105 261/2 149919. 2 oo 1« >02O 749 I I I i 4 9 9 3 U . 6 OOO < 9 /4 040 7 0 3 * i I 1 111 5P 2 P 3 / 2 * - 116 261/2 149891.3 66 7 . 150 l o l I 1 I I 1 1 5P 2 P 1 / 2 * — 108 251/2 150015.5 666 .596 999 150087.7 666 .2 77 999 150156.2 665 .9 73 750 I I I 5P 2 P 1 / 2 * - 90 203/2 150250.3 665 .556 9b4 150357. 7 666 .081 950 150432.7 664 .749 999 150479.0 664 .5 45 988 120552.6 664 . 2 i 9 I V 5P 301 - 60 5 130594.2 o64 . 0 36 964 I 5 0 b 8 2 . o 663 .6 47 999 -150859.1 662 io/U 9 72 150983.8 662 .325 996 151193.3 66 1 < .404 978 I V 5P 1F3* - 7b 3u3 i 3 l 3 2 2 . 1 660. . o 42 96 7 1315 2 3.0 659 .9 66 662 15 1624.5 6 5 9. 524 9 54 151728.1 659, .0 74 999 1516 4 2.1 656. .379 911 151963.9 6 5 6, .051 994 l 3 i 9 9 3 . 2 63 7. . 9^:4 996 132039.6 6 5 7. ,7 23 9 99 132121.9 657. > 5 D o 624 IV 5P 3 0 3 * - 60 1 1522 30. 1 6 56, . o 9 6 761 I V 5P 3 0 3 * - 60 3P2 152250.9 656. 611 905 152 3 8 1 . 7 66o, ,247 999 1 3 2 4 8 1 . a O 5 3 . b i b 999 1 3 2 5 5 1 . i 6 3 3. 3 16 726 I V 5P 3 0 3 * - 60 3 152605.9 655. 2o3 999 132646.4 553. 109 622 I V 5P 1 P 1 * - 78 302 152670.0 655. 008 638 I V 5P 102* — 60 8 1 3 2 7 5 2 . i 634. 6 3 5 999 132839.9 634. 2 79 912 IV 5P 3P0* - 60 351 152699.2 6 34. 0 26 979 132969. 7 6 5 3. /24 6 o 9 716 * 1 V I I I 5P 2P3/2 - 12b 2 c l / 2 132971.0 635. 719 622 IV 153064.6 653. 5 18 639 153094.0 653. 193 600 IV 5P 102* - 60 9 153219.0 652. 6 O 1 904 133390.4 651. 951 7b4 153455.4 6 5 1 . 6 5 5 819 133499.7 6 5 1 . 467 561 I V 5P 1P1* - 6D 5 153664.2 650. 635 914 1 53833. 1 650. 065 999 1539 15.6 649. 7 0 1 9 99 154099.0 046 .953 625 I V 5P 1F3 60 7 134213.9 04o .430 965 154276.3 64o .179 7 7 1 I I I 5P 2 P 1 / 2 * - 116251/2 154370.4 647 .793 942 134473.2 64 7 .50 1 968 154605.8 646 .806 976 154661.5 64o . 3 74 999 1 3 4 7 5 2 . I 64o .193 956 IV 5P 3 F 2 * - 60 4 154655.3 045 . 7 64 500 I V 5P 102* - 60 10 154904.9 645 .3 37 999 1 5 5 3 9 1 . 7 645 . 3 3 5 602 IV 5P 303* - 75 302 15545o.4 645 .26/ 760 155572.7 642 . 7 0 6 664 904 155642.9 o4«i. . 4 9 0 7 7 i I V 5P 10 2* - 75 102 155856.7 641, .607 569 1 3 5 9 1 6 . 4 641. . 569 8 72 155986.3 641, ,0 74 605 I v 5P 1 F 3 * - 60 9 156056.4 640, ,794 999 I V 5P 30 2 * - 60 3P2 156090.6 640, ,6 54 989 156118.2 640, 540 985 136275.4 6 3 V . , o9o 782 I V 5P 3 0 3 * - 60 6 1 5 6 2 8 7 . 3 6 3 9. 847 910 1 5 6 3 9 6 . a 6 3 9 , 591 999 16o52 7.9 63o, 0 o4 999 I V 5P 3 0 1 * - 7o 301 j . 3 6 3 8 3.5 6 3 0 . 029 821 136630.c 636, 44o • 996 1 5 6 7 2 4 . 3 6 3 8 . 0o2 839 156816.2 63 7. 6 0 1 973 156873.2 0 3 7 . 45 6 578 I V 5P 3 F 2 * - 60 6 156916.7 63 7. 281 627 889 I V 5P 3F4* - 60 1 157122.4 636. 446 999 157173.6 636. 239 694 157313.9 63 3. 6 72 111 5P 2 P 1 / 2 * - 126 251/2 157344.4 635. 349 853 I V 5P 3 F 4 * - 60 3 157434.7 635. 104 741 13 7 515.0 634. 0 3 / 063 I V 5P 3 P 1 * - 60 3P2 1 5 7 6 0 0 . 0 0 5 4 . 5 13 876 15 769 8.1 63 4. i 2 5 999 167230.4 633. 903 700 CI I I V 5P 3 P 1 * - 60 351 15/754.7 633. 0 96 999 IV -5P 1 F 3 * - 6u l u 157898.4 6 3 3 . 339 822 157986.7 63 2 . 937 999 I V 5P 3 0 2 * - 60 4 158029.2 6 3 2 . 794 999 158095.5 6 3 2 . 529 999 158152.6 632. 300 999 158213.0 632 .059 999 IV 5P 1 F 3 * 60 11 158290.0 631 .752 951 I V 5P I F 3* - 7b 301 158373.6 631 .4x0 999 158540.4 630 .754 695 IV 5P 1 F 3 * — 75 102 158805.6 629 . 7 u l 936 136438.7 63 i . i 3 9 999 158867.7 62 V .435 b93 153940.6 629 • l o b 756 N i l IV 5P 1 P 1 * — 60 l u 1 59054.7 62o .715 999 15 918 2.7 62b .209 999 -159214.6 62b .0b3 65b I V 5P 3D2* - 76 302 159350.9 62 7 . 546 999 159454.7 62 7 .13 7 999 I V 5P 3 P 1 * — 6U 4 1 5 9 5 0 1 .6 620 .9 32 993 159559.5 626 .725 999 159607.5 626 .55b 999 139667.7 62o < . 3u 1 778 IV 5P 3 0 3 * - 60 8 139724.2 62o. .079 865 I V 5P 1 P 1 * — 7o 102 139779.9 623. . o b i 841 1 5 9 9 19 . 7 6 * 3 . . 3 14 625 I V 5P 3 F 4 * — 7o 303 159959.9 b25. .127 885 160000.9 624, .996 997 160094.4 624. .631 893 I V 5P 3 F 2 * - 60 8 160126.2 624, .507 980 160186.4 624. .273 916 160227.5 624. . i b 999 160280.7 o23. .905 961 i 60470.4 623. i o 8 999 1 6 0 6 9 5 . 3 022 . 2 v5 723 160739.0 622. 127 9 99 160794.0 621. 914 999 i o 0 9 6 9 . 1 621. 2 37 999 161122.4 620. 646 999 161208.5 620. 315 673 161369.5 619. b96 994 161371.3 b 1 V . o69 8 88 I V 5P 3 F 3 * — 60 1 161619.4 b i o . 7 3b 9 99 l o i 6 6 7 . d 616. 322 999 161799.0 618. 031 750 I V 5P 3 F 3 * — 60 3 x 6 l 9 4 4 . 7 617. 495 843 162147.5 616. 722 6 72 I V 5P 3D3* - 60 11 162395. 1 6 1 3 . 7b2 943 162472.3 6 1 3 . 490 968 IV 5P 3 0 3 * - 7b 102 l o 2 o 3 2 . 9 6 1 4. 662 999 162824.ti O l 4 . 127 818 IV 5P 3 F 2 * - 7c 3i3 i 162890.4 613 .910 745 163070.6 613 .231 998 IV 5P 3 F 2 * - 75 1D2 163187.0 612 .794 940 163300.4 612 . 508 999 163321.6 611 .540 986 163693.4 610 .125 627 I V 5P 3 P 2 * - 60 351 163920.7 610 .051 866 163977.1 609 .641 716 164075.8 609 .474 656 716 IV 5P 3P2* - 60 1 164123.3 609 .297 639 164189.6 609 .052 999 I V 5P 3P2* - 6u "3P2 164269.4 606 .756 886 164504.0 607 .888 725 I V 5P 3P2* - 60 3 16463 9.9 607 . 3 06 714 I V 5P 3 F 3 * - 75 302 164738.0 607 .024 999 i o 4 7 8 4 . 3 606 .635 9 99 905 1646 9 7.x 606 .439 999 165088.8 605 .735 9 72 165170. 1 605 .436 999 165522.9 604, . 146 702 I V 5P 3 F 3 * - 60 6 165331.6 604, . o43 999 165873.0 602, .671 999 166108.6 602. .016 722 IV 5P 3P2* - 60 4 166200.4 601. .663 999 166293.4 601. .3 47 921 IV 5P 3D2* - 75 102 166570.4 600. ,347 903 166984.4 59o, .658 750 I V 5P 3 P 1 * - 60 10 167077.7 596. 5 24 711 I V 5P 3P2* - 75 303 157279.5 59 7, 802 532 I V 5P 3 F 3 * - 60 7 167340.2 69 7, 3 o3 446 526 I I 1 111 55 251/2 - 5P@ 4 P 3 / 2 * 170857.4 565, 2 6 3 691 171149.7 564, 264 560 861 171316.5 53 3, 7X3 482 607 171393.5 56 3, 453 834 171502.3 583. 063 672 17262 7.1 579, 2 63 999 173286.2 577. 060 961 173350.6 576, 665 991 17418 2.0 574. x l 2 968 I V 5P 3P2* - 76 301 174409.3 673. 564 902 174824.3 572. 005 999 174993.2 571. 4 5 i 99x 175537.7 569. 6 76 469 654 1 I I 111 55 251/2 - 5P@ 4D3/2* 1 7 5 6 1 2 . i 369. 45 7 626 IV 55 102 - 6P 1* 176531.0 566 « 4/3 55 261/2 - 5P<s 2 F 5 / 2 * 177262.6 564 .133 466 620 I I I I I I 5S 2S1/2 - 7P 2 P 1 / 2 * 177769.0 562 .528 646 IV 5S 102 - 6P 2* 177867.6 562 .216 4 74 I I I I I I 58 251/2 - 7P 2 P 3 / 2 * 1 78186.0 561 . 2 i i 466 662 I I I I I i 5S 251/2 - 5P@ 4 0 1 / 2 * 176615.7 5 29 .66 1 4/0 641 I I I I I I 5S 251/2 - 5P@ 2 P 3 / 2 * 1-76718. 3 559 .525 925 179109.3 5 56 . 3 18 969 1 7 9 3 i 9 . 2 657 .6 64 2 i 6 663 180149.6 555 ,094 471 180637.o 563 .292 9 70 I V 55 301 - 6P 2* 180676.4 553 .4/6 720 IV 5S 301 - 6P. 3* 16 09 4 3.0 352. .624 696 111 5S 251/2 - 5P@ 2 0 3 / 2 * 181651.0 550, ,306 828 864 161905.5 549, ,756 931 181977.6 549, ,318 737 182487.6 54 7, , 9o2 926 I V 5S 102 - 6P 7* 163265.3 545, ,63 7 743 I V 55 102 - 6P 6* 184013.8 543, ,438 643 164076.4 543, .2 47 683 164182.7 542. ,9 59 963 I V 55 301 - 6P 5* 164975.9 340, . o i l 917 168590.7 53o. .320 692 IV 5S 302 - 6P 3* 165677.4 536, . 5e9 920 16626b.2 356. .666 74 3 1 V 55 102 - 5P4 ' 10* 166310.4 336, . 7 39 913 166711.7 535. . 5o5 922 187286.9 533, ,940 875 187522.4 533. ,2 70 9 99 1 3 7 7 2 7 . 4 532, ,667 968 167903.6 532. , 168 999 188106.5 331. 614 999 1 6 8 2 6 5 . 1 531. . 166 888 I V 5S 3D1 - 6P 9* 183399.0 530, 768 975 188540.1 530. 391 786 188642.2 530. 104 842 166969.8 529. i 62 817 855 169295.6 526. 2 74 999 189383.6 526, 029 983 169634.4 52 7. 330 916 18988 1. 8 526, 643 9 70 190144.9 225, 915 637 1 9 0 3 0 2 . 6 325. 4/9 814 190396.6 523. 219 635 1 9 0 6 6 1 . 5 524. 490 524 IV 55 102 - 5P@ 12* 190886.1 523. 667 999 191042.3 523. ,444 490 I V 55 3D2 - 6P 8* 191280.o 522. .7 92 861 I V 55 303 - 6P 5* 191509.5 322. .167 571 800 55 251/2 -8P 2 P 3 / 2 * 191734.5 521 .535 965 191981.3 520. .884 948 192187.0 520 .3 27 833 860 1 9 2 4 7 2 . 3 519. .333 469 IV 5S 303 - 6P 7* 192556. 7 519. .3 22 918 193015.1 51b. .0 94 670 876 193248.3 217 .4b9 494 IV 55 303 - 6-P . 8* 1 9 3 3 4 2 . 3 5 17, .217 951 193531.5 516, • 7 i 2 558 195666.0 5 i o , .348 929 193937.5 513. .830 681 194047.6 515, . 3 3 7 759 194127.6 313. . i 2 5 969 194330.3 514, .3 67 447 I V 55 3D1 - 5P@ 1 3 * 194612.4 313, .642 966 194677.4 513, .6 70 601 IV 5S 102 - 5P@ 19* 194777.0 ,40o 6 1 I 194840.4 313. .241 938 195009.2 512, , 796 910 193781.5 510. .773 571 196131.3 509, . OD3 474 196245.4 5 09. .566 519 IV IV 55 303 - 5P@ 10* 196607.8 506, .627 876 196679.4 508, .442 468 197550.9 506, , 199 754 IV 5S 301 - 5Pc? 19* 197778.3 505, ,617 999 197 69 9.2 505. ,306 999 198009.5 505. ,026 965 296 167.0 3 3 2 . , 3 o3 V C L A S S I F I E D 198181.7 504, , 56 1 999 19 6 3 7 o . 3 304. 092 46b I V 55 102 - 5P@ * 6 * 198445.4 503. ,917 885 198568.2 503. ,605 999 199555.4 501. ,114 989 199760.0 500. 601 979 199661.9 500. ,345 502 200554.6 498, ,617 383 IV I V 4D10 150 - 5P 3 P 1 * 200724.7 498, ,195 925 200965.1 49 7, ,5 99 962 2 0 1 0 5 3 . 1 497. 561 901 201232.o 496. V 3 7 979 2 0 1 4 5 4 . 3 4Vo« 3 90 964 2 0 1 6 8 4 . 1 495. . 6 2 3 9 6 4 ^ 0 1 7 4 4 . 7 4 9 5 . . 6 76 9 3 3 2 0 1 8 6 6 . 0 4 9 5 . . 3 7 8 9 6 0 2 0 1 9 9 7 . 7 4 9 5 , .055 9 7 3 2 0 2 1 3 6 . 2 4 9 4 , . 7 1 6 4 5 4 2 0 2 2 8 0 . 6 4 9 4 , , 3 6 3 9 6 1 2 0 2 3 5 6 . 3 4 9 4 , , 1 7 8 9 6 9 2 0 2 4 5 6 . 6 4 9 3 . , 9 2 3 8 2 9 2 0 2 7 6 6 . 0 4 9 3 , , 1 7 9 991 2 0 2 8 4 6 . 0 4 9 2 . . 9 b 3 6 1 8 2 0 2 9 8 6 . 3 4 V 2 , , 6 4 4 9 4 7 * 0 2 9 3 0 . 7 4 9 2 . , / / V 9 4 3 2 0 3113.7 4 9 2 , , 5 3 5 9 b b 2 0 3 1 7 7 . 5 4 9 2 . . 1 6 0 9 7 3 2 0 3 2 7 8 . 9 4 9 1 , . 9 3 3 9 4 3 2 0 3 3 1 9 . 2 4 9 1 . . 8 3 7 5 4 5 2 0 3 5 4 1 . 4 4 9 1 , 3 0 1 9 71 2 0 3 6 2 4 . 9 4 9 1 . .099 9 5 9 2 0 3 6 7 1 . 8 4 9 0 . . 9 d 6 9 6 5 2 0 3 7 9 0 . 9 4 9 0 , . 6 9 9 9 5 6 2 0 3 9 9 8 . 5 4 9 0 , .200 9 4 5 2 0 4 2 3 2 . 5 4 b V . 6 3 1 VoO 2 0 4 7 2 0 . 9 4 8 b , , 4 70 7 7 7 2 0 4 9 8 7 . 1 4 6 7, .6 3 6 887 2 0 4 9 3 1 . 3 4 6 7. , 9 b 6 933 2 0 5 0 5 0 . 9 4 8 7 , . 6 8 4 9 6 5 2 0 5 3 3 3 . 5 4 6 7 . ,008 8 9 0 2 0 5 9 2 6 . 9 4 8 5 . . 6 0 9 6 3 1 2 U 6 1 ^ 7 . 3 4 8 5 . 0 9 0 4 7 3 2 0 6 1 9 9 . 8 4 6 4 . 9 6 7 8 0 1 2 0 6 3 3 0 . 1 4 8 4 . .660 9 6 4 2 0 6 4 2 5 . 2 4 8 4 . , 4 3 / 9 3 7 2 0 6 6 2 3 . 3 4 0 3 . v / 3 422 2 0 7 1 6 3 . 2 4 6 2 . 6 6 5 4 7 6 2 0 / 2 2 2 . 3 4 o 2 . 2 0 7 3 b 7 2 0 7 5 7 0 . 5 4 8 1 . 7 6 4 4 5 6 2 0 7 6 4 7 . 3 4 8 1 . 566 4 6 5 2 0 7 2 3 2 . 6 4 8 2 . 5 5 0 5 3 1 2 0 7 8 0 8 . 6 4 8 1 . 212 9 2 7 2 0 8 2 2 3 . 9 4 3 0 . 2 5 2 6 8 1 2 0 8 5 9 8 . 4 4 7 9 . 3 9 0 363 2 0 8 6 1 7 . 4 4 7 V . 3 4 6 383 2 0 6 8 7 1 . 8 4 7 6 . 7 6 3 9 0 3 2 0 9 0 0 9 . 1 4 7 8 . 4 4 8 7 7 2 2 0 9 0 7 3 . 0 47b. 3 0 2 6 6 0 I V 5S 3D2 - 5P@ 19* I V 5S 3D2 - 5P@ 2 1 * I V 5S 302 - 5Pt? 2 6 * IV 58 303 - 5P<9 2 3 * 643 IV IV 4010 180 - 5P 1 P 1 * 209302.1 209472.5 2 0 9 7 0 9 . 1 209396.8 210004.3 210045.7 2 1 0 2 1 7 . 1 210444.4 210850.7 211044.9 211420.1 211547.3 211646.7 2 x 1 9 7 7 . 3 2 x 2 1 2 5 . 9 212246.6 212344.2 2 12583.7 212842.4 213248.0 2 13301.5 213519.5 2 13 58 8.7 213931.2 214343.9 214707.6 214823.7 214857.1 214985.4 2 13454.3 215503.8 215868.6 216046.7 2 16183.2 2 1 6 2 5 3 . 1 216384.7 2 16 5 30.7 216878.0 217058.4 217476.9 217596.2 217 7 1 2 . 3 2 1 7 9 2 1 . 9 2 16068.0 2 13206.7 47 7, .7 78 597 47 7 . 8b9 796 476 ,851 906 476 .425 500 476 .181 894 476 ,087 898 475 ,b99 473 475 .165 942 474 .269 941 47 3 .6 33 470 472 .992 496 472 . 7 06 369 472 . 4ob 501 4/1 .7 4b 954 471, .42 5 906 471. .150 903 470, .934 533 470. .403 468 469, .831 926 46b, ,938 902 468. ,620 469 46b, ,842 696 468. ,190 638 46 7. .331 496 466, ,540 544 463. 749 559 465. <+9 b 756 463 , 42o 460 463. 146 942 464. 136 767 464. 029 445 463. 245 926 462. 839 407 462. 5 71 484 462. 421 594 462. 140 445 461« 3 26 466 461. 069 636 460. 706 436 459. 8 19 409 45 V. 363 362 459. 322 410 45b. 860 490 458. 5 73 420 456. 2 77 376 4D10 180 - 5P 3 0 1 * IV 5S 102 - 5P@ 36* IV 5S 302 - 5P@ 3 3 * IV 5S 3D3 - 5P<? 3 3 * IV 5S 1D2 - 5P@ 39* IV 5S 3D2 - 5P@ 34* 2 1 d 2 6 7 . 1 450 .154 433 2 1 0 4 3 2 . 1 45 7 .806 8 73 2 i 8 8 2 4 . 0 456 . V 66 3 76 219141.2 45o .327 520 I V 5S 3D1 - 5P@ 38* 2 19433.7 455 .719 443 220277.6 45 3 .973 406 I V 5S 3D2 - 5P@ 3 5 * 2 2 0 344.9 42 5 .634 4o3 220409.6 453 . 701 504 I V 5S 303 - 5P@ 34* 220589.1 453 .332 642 I V 5S 102 - 5P@ 4 0 * 220655.9 453 . 194 69 7 220783.4 452 .933 482 220904.3 452 .665 550 221126.2 452 .2 30 339 221373.3 451. .7 26 509 I V 5S 302 - 5P@ 3 6 * 221472.4 45 i . 31 / 3 33 2 2 1 6 4 5 . 3 451. .171 429 ^21872.6 450, .709 503 2 2 2 2 4 3 . 3 44V. .937 484 222476.8 44 9, . 4 6 * 6 3o 222620.9 449 .194 431 222841.o 440, . 7 49 562 I V 5S 3D2 - 5P@ 3 7 * 223036.2 446, .354 410 223277.4 44 7, .6 73 422 223459.6 44 7, .208 502 I V 5S 301 - 5P@ 4 0 * 223570.8 44 7. . 2 6 0 405 I V 5S 303 - 5P@ 3b* 2 2 3 7 7 2 . 5 44o, . o 1o 404 224053.4 446 , .822 479 I V 58 302 - 5P@ 36 * 2 2 4288.4 445 . . o35 502 I V 58 102 - 5P@ 4 2 * 2 2 4409.5 445 , .614 417 225041.6 444. . 362 566 I V 58 303 - 5P@ 3 7* 225106.2 444. 231 641 225322.4 443. ,609 494 225383.o 443. 666 225432.1 44 3. 393 400 2 2 5 7 0 2 . 3 443, 062 701 1 V 5S 3D2 — 5P@ 3 9 * 2 2 6 0 6 0 . 7 442. 359 540 226241.2 442. 006 411 2 2 o 3 2 6 . 7 441. 639 4 78 I V 56 301 - 5P@ 4 1 * 226976.9 440. 5 73 502 227160.6 440. 217 469 I V 53 301 - 5P@ 4 2 * 2 2 7 6 2 2 . 0 43 V . 323 38/ 227772.7 439. 034 403 227902.9 436. 7 63 527 IV 5S 303 - 5P@ 3 9 * 228043.2 436. 3 10 476 228478.7 43 7. 6/6 637 I V 58 303 - 5P@ 3 5 * rv rv N ^ ^ ^ ^ ^ J ^ v i r ^ l ^ ) ^ J ^ ^ l ^ J ^ M o ^ MV ; M rv k K N; w ^ ^ ^ ^ ^ ^ ^ J ^ ) ^ J ^ ^ J ^ ^ ^ j ^ ^ ^ • ^ ^ J -P- -P -p- C b. U W li) U' W U U' LO Li b. li. l i U W U' W W Lo L>- Vw Vo V. Lv. LO LO- LO Lo u i W b J U W W U W N f v j f v K r u O O vC Cc O C^  ^ 1 -sl -sj —I Q' L r U L1 U" ^  p ^ U W W b- O- NJ IV f\j r—- H- H- I—1 r—* O O O O O C O v C v C v C C c CD rv> cc vo VJ. vcvpvovcvrir-' o w H f f a i w u M r ' O - j f f ' r ' K j O -si rv o CC cr -P- W N E S I C T P K I H O ^ P O V C C J * ^ • ! ^ O J > H > o c c c E v p v r i L > J r ^ -p- »C rv a : -0 C I— C c O -J LO .p- U L>IV -J -O rv - J c u - ^ C C v t C h \ C N O C ^ W f f ( > a C f v O l ) : i i ' C r ( ) ; I I < vr -si cc vr -P- -P- o rv cr o vr o -s1 a 4> a .p -p- rv L> rv vo - j o <-c x> s j t x u ^ j v c s i H H C c O ' a i v u ' s i c f a o •p-jp-x^J,>4>-p--P--P-4>-P--P-P4>-P--^-p£^ r— »— t— i — t— r— r—j rv rv) rv rv rv rv rv rv- rv rv rv rv rv rv rv rv rv rv rv LO LO- LO LO LO LO LO LO VO LO LO LO L>' LO LO LO LO LO VO -p- U C —! 0. v£ vr o O r—1 r-1 LC L> -p- P -P -p O » J « J NI oc a O < >t C C r-HWN. N W U ' b . ^ f f - f f ^ O f J ' s l P r H p U N r > r o v p r j > r X H P P U r i VC C I - U s l O W H a U i£ Vv C O M > P U i r C K f - C r O vC VJ- -si VO a vc u c c P - j - j s j a. c u i) -P- cr vr i si cc cc t— v> -p- \c o -P c VJ. vr or i — -P> vr i—• - s i - ^  -j i — u C i-> vo - J rv rv N P c c i - ' ^ c p p H t f P ' O a vr u LK O cr i — vo -s. vr a o vo a rv cc- ^  o p H o> v h \ 1- w i - c -c vo vo rv rv LO LO rv LO LP vr cr -p- vr vr -P-Cc -si Cc jr- rv i — cr LO -sj rv »—* i — vj' O vC -si vv vr -si a -J i — r- vr rv rv cr vc ui p VJ p P C M J I P a u p p ui a- Lv-rv vc Lr —si vr vc 0s LO ro vc o 1- cr u a -P -P i — rv cr cr LO vr rv cr vr UJ VJI -p- u CP p - i p vr ui p (> yi ip vi - l cr vr p a a p u i u i r j - H P p a N C H O O VP PVCO>LTVCV0I-V> OCCOHU'U < < < r r > > o 0 (J v i— »—-T, T| i—' < m ITI c c VJl vo vr TJ c© -P-vo * n r > o (/ t-H T l M Hi C VJl cr LO C vo vr TJ O -P-rv vn cr LO C VO vr TJ <e) -P-VJl c/i vo o rv vr TJ (e> -P-rv * VJl Cn r, LO r" o > rv o C/. t—• T l I •—< rr- VJI C TJ fs) •p-I—' * n r~ > C/ Cr rh n r-> Cr tr m c 2 4 1 3 7 4 . 1 414, ,295 346 241512.0 414, 058 40 3 2 4 1 8 2 1 . 3 413, ,520 397 241943.0 413, ,320 465 242466.0 412, , 4 2 6 3o7 24304b.3 411. , 4 3 4 450 243139.2 411, ,287 463 2 4 3 2 7 7 .3 4 1 x . ,033 373 243669.5 410, ,392 634 243871.6 410. ,032 427 244011.6 409, ,817 696 2 4 4 1 4 9 . 1 40 V, ,386 498 244167.6 4 0 9 , ,555 698 2 4 4 5 8 3 . 6 40o, ,658 503 2 4 4 7 7 5 . 1 40 3, ,538 491 2 4 4 9 2 4 . 4 403, 2o9 401 245061.3 408 , ,061 482 2 4 5 1 1 9 .3 40 7 ,  v 64 243 245312.5 4 0 7, ,643 432 24344 7 . 4 40 /, , 4 i 9 271 2 4 5 5 2 o . 6 4 0 7, , 2 6 6 241 245906.6 406, ,633 389 246123.5 406, ,300 502 246230.8 406, , 123 401 246525.5 403, ,638 5 46 2 4 6 6 9 6 . 2 405, ,3 37 331 247121.2 404, , 6 6 0 475 2 4 7 5 3 8 . 4 4 0 3, ,978 568 2 48106.7 403 .052 416 2 4 6 2 3 9 .6 402, ,837 632 ^46504.9 402, ,407 228 2 4 9 6 3 6 . 4 400, ,579 223 2 49956.8 4 0 0 , ,069 266 2 3 0 1 1 5 . 1 399. , 6 l b 246 2 5 0 1 7 9 . 1 399, ,714 331 2 3 0 3 4 7 . 2 3 9 9 , 445 383 2 5 1 4 1 6 . 7 39 7, , 743 311 251967.2 396, ,877 668 252210.6 596, ,494 354 252686.6 392 . ,7 47 234 2 5 2 8 0 4 . 1 395. , 5b3 397 223637.0 394, ,263 406 23 3 8 7 2 . 7 392, , o 9 o 2 i 0 2 3 5 9 16.3 398, ,631 217 2 34029.6 39 3. ,632 293 IV 55 3D2 - 5P@ 4 3 * V C L A S S I F I E D IV 5S 3D3 - 5P@ 4 3 * V C L A s s l F I E u V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D V C L A S S I F I E D 2 5 4 8 0 0.3 392 .464 234 2 5 4 9 1 * . 3 392 . 2 9 1 261 V C L A s s I F I ED 2 5 5 1 4 5 . 5 391 . 9 3 3 300 2 5 5 7 8 9 . 4 390 . 9 47 463 V C L A S S I F I E D 2 -55821 .5 390 . 3 9 6 254 2 5 6 3 8 3 . 8 390 . 0 4 0 253 V C L A S S I F I E D 2 5 7 1 2 5 . 0 36 o, . 9 1 3 229 V CLASS I F I ED 2 3 7 28 2.2 3 o o « . 6 7o 2 63 V C L A s s 1 F I to 2 5 7 9 6 3 . 1 38 7 . 6 3 2 488 2 5 8 8 9 4 . 9 366 .257 250 V C L A S S I F I E D 2 3 8 9 1 2 . 5 386 . 2 3 1 230 2 5 9 3 3 6 . 7 3 6 5 , . 3 9 9 5 75 2 5 9 8 6 6.9 364, . 0 1 2 572 V C L A s s I F I ED 2 6 0 2 9 5.2 364 . 1 7 9 664 2 6 1 0 5 4.3 383 . 0 b 2 281 V C L A S S I F I ED 2 6 1 0 5 4 . 8 3 8 3 . . 0 6 1 V C L A s S l F I ED 2 6 1 2 5 8.0 3 8 2 , . 7o3 230 2 6 1 5 2 9 . 1 3 8 * . . 367 499 2 6 1 6 6 7 . 1 38 1, . o 1 3 5 06 2 6 2 0 8 3 . 4 38 i . . 330 263 V C L A S s I F I ED 2 0 2 3 6 2.9 3o i , . 1 2 i 764 2 6 2 9 6 1 . 9 3 8 0 , . 2 6 3 262 2 0 2 9 6 1 . V 380 , .2 63 262 V C L A S S I F I ED 2 6 3 1 7 2.3 3 7 9 , .9 79 726 2 6 3 349•o 3 7 9 . . 7 2 3 6«0 2 6 3 5 5 4.0 37 V. . 4 2 9 419 V C L A s s I F I ED 2 6 3 6 6 8 . 3 37 9. . 2 6 4 307 2 6 412 2.8 3 7 8 . .612 229 2 6 4 4 7 6 . 1 3 7 8 . 106 6 36 2 6 5 2 2 7.6 37 7. 0 35 490 2 6 3 3 9 5.9 3 7 6 . 7 Vb 251 V C L A s s I F I ED 2 6 5 3 9 7 . o 3 7 6 . 793 V C L A S S I F I E D 2 6 5 9 0 0.3 3 7 6 . .Ool 260 V C L A S S I F I ED 2 6606 3 . o 3 7 5 . o30 263 \l C L A S s 1 F I ED 2 6 7 0 6 4 . 4 3 7 4 . 442 435 2 6 7 3 2 2 . 0 3 7 4 , .Ool • 339 2 6 8 1 4 6 . 4 3 7 2 . 931 000 2 6 8 2 2 3.9 3 7 2 . 623 285 V C L A S S I F I E D 2 6 8 2 2 4 . 3 3 7 2 . 822 V C L A S S I F I ED 2 6 8 6 6 3 . 1 3 7 2 . 213 655 2 6 9 0 1 3.8 3 7 1 . 728 369 2 6 9 3 4 8 . 3 3 7 1 . 2o6 76 3 2 7 0 1 9 2 . 2 3 7 0 . 107 236 2 7 0 5 5 1 . 9 36V . 013 503 2 7 0 6 8 9 . 5 36 V. 42/ 593 270859.8 369. .195 590 271228.4 368, .693 280 2 7 1 4 5 9 . 1 3 D 6 < .380 798 272189.5 367, .391 396 272441.6 367 .031 693 272566.5 366 .663 V C L A S S I F I E D 2 72 67 6.8 36o .732 746 272843.3 366 .511 603 273373.2 363, .798 463 2 740 5 3.3 364 .693 7 79 274459.5 364 .332 693 276370.3 361 .3 7* 317 278343.5 339, .268 000 2 7 9 3 4 2 . -J 357. ,7*o 707 279745.6 357. , 4o8 654 281315.5 355. .4 75 716 282520.1 353, ,937 821 282874.6 353. .514 650 262995.1 338, ,363 717 V CLASS I F I E O 282990.5 353. ,369 V C L A S S I F I E D 2 83350.7 352. ,920 736 283787.3 352. .3 77 743 263940.9 349, ,723 633 2 66617.9 34o . .897 856 266812.1 346, , 660 926 V C L A S S I F I E D 266612.3 34o, .660 V C L A S S I F I ED 2 87 00 5.4 348, ,426 941 2 8940 9.4 345. .331 V C L A S S I F I E D 290160.4 344. ,637 V C L A S S I F I E D 29399 1.7 340, .146 V C L A S S I F I E D 2 9 6072.0 33 7. 756 V C L A S S I F I E D 296582.0 337, 175 V C L A s S l F I E O 2 97 7 74.0 333, 825 V C L A S S I F I E D 300494.0 332, 765 V C L A s S l F I ED 303240.0 329, 7 72 V C L A S s l F I E O 3 03976.0 326, 9 71 V C L A S S I F I E D 304947.0 327, 926 V C L A S S I F I E D 305342.0 327, 502 V C L A s s I F I ED 307663.0 325. 031 V C L A S S I F I E D 511149.0 321, 5 6 9 V C L A s s I F I EL; 316428.2 316. 027 999 IV 4D10 ISO - 6P /.AHI GURU J l K.A K.HALSA WAHIGURU J l K l FATEH 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0084755/manifest

Comment

Related Items