UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Coal flotation : statistical comparison of a pilot flotation column and a batch mechanical cell Musara, Washington Tendai 1990

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1990_A7 M87.pdf [ 11.86MB ]
Metadata
JSON: 831-1.0081137.json
JSON-LD: 831-1.0081137-ld.json
RDF/XML (Pretty): 831-1.0081137-rdf.xml
RDF/JSON: 831-1.0081137-rdf.json
Turtle: 831-1.0081137-turtle.txt
N-Triples: 831-1.0081137-rdf-ntriples.txt
Original Record: 831-1.0081137-source.json
Full Text
831-1.0081137-fulltext.txt
Citation
831-1.0081137.ris

Full Text

COAL FLOTATION: STATISTICAL COMPARISON OF A PILOT FLOTATION COLUMN AND A BATCH MECHANICAL CELL by WASHINGTON TENDAI MUSARA B.Sc. (Chem. Eng.) Wales, U.K., 1985 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department of Mining and Mineral Processing Engineering We accept t h i s t h e s i s as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July, 1990 (*) Washington Tendai Musara In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of M(*J(<U6- AAJb <M(i>&ftft£ Pfcoteii £HG-weSdl** The University of British Columbia Vancouver, Canada DE-6 (2/88) i i ABSTRACT The e f f e c t of manipulated v a r i a b l e s on the f l o t a t i o n response of run-of-mine c o a l s u p p l i e d by Bullmoose Coal Mine (North East B r i t i s h Columbia) was s t u d i e d i n a p i l o t f l o t a t i o n column and a batch mechanical c e l l u s i n g experimental designs o f the f a c t o r i a l c l a s s a f t e r the c o a l had been stage crushed and ground to about 96 percent minus 600 |lm, the fe e d s i z e t o the f l o t a t i o n c i r c u i t at Bullmoose Coal Mine. The o b j e c t i v e was to o p t i m i s e s t a t i s t i c a l l y the two f l o t a t i o n u n i t s usings (1) s c r e e n i n g d e s i g n s , (2) the s t e e p e s t ascent technique, and (3) c e n t r a l composite designs, and to compare c e l l performance. The e f f i c i e n c y index was employed as the primary o p t i m i s a t i o n c r i t e r i o n . The two c e l l s y i e l d e d comparable e f f i c i e n c y i n d i c e s , but the product ash content of c l e a n c o a l from the f l o t a t i o n column was c o n s i s t e n t l y lower. E v a l u a t i o n of t h e e f f i c i e n c y i n d i c e s of i n d i v i d u a l s i z e f r a c t i o n s was a l s o c a r r i e d out at the optimum c o n d i t i o n s o f each c e l l . The approach taken was to separate the fe e d i n t o i n d i v i d u a l s i z e f r a c t i o n s , r e t a i n the f r a c t i o n s s e p a r a t e l y , and f l o a t them s e p a r a t e l y . The f l o t a t i o n column y i e l d e d higher e f f i c i e n c y i n d i c e s and lower product ash content when a f e e d with 15 percent s o l i d s was f l o a t e d . R e s u l t s obtained by f l o a t i n g i n d i v i d u a l s i z e f r a c t i o n s at 2 percent s o l i d s i n d i c a t e d t h a t i t i s d i f f i c u l t t o f l o a t s i z e s above 300 |lm i n both c e l l s at such a low pulp d e n s i t y . Below 300 Jim, the performance of both c e l l s was comparable. i i i TABLE OF CONTENTS A b s t r a c t i i Table of Contents i i i L i s t of Tables v L i s t o f F i g u r e s v i Acknowledgement v i i CHAPTER 1 I n t r o d u c t i o n 1 CHAPTER 2 DESIGN, OPERATION AND CONTROL OF FLOTATION COLUMNS 6 2.1 I n t r o d u c t i o n 6 2.2 Column Height and Diameter 7 2.3 F l o t a t i o n Column S i z i n g 9 2.4 A m e n a b i l i t y T e s t i n g 9 2.5 S c a l e up 10 2.6 The C o l l e c t i o n Zone 10 2.7 The F r o t h Zone 14 2.8 S i m u l a t i o n 15 2.9 Sparger Design 15 2.10 Washwater D i s t r i b u t o r 16 2.11 C o n t r o l of F l o t a t i o n Columns 17 2.2.0 Present C o n t r o l S t r a t e g i e s 19 2.2.1 B i a s C o n t r o l Loop 21 2.2.2 Pulp Level C o n t r o l 21 2.2.3 Washwater/Gas Hold Up I n t e r a c t i o n Loop 22 2.2.4 D i s t r i b u t e d F l o t a t i o n Column C o n t r o l 23 2.2.5 Summary 24 CHAPTER 3 COLUMN FLOTATION PARAMETERS AND THEIR EFFECTS 2 6 3.1 F l o t a t i o n Columns 30 3.1.1 I n f l u e n c e of Feed Rate 30 3.1.2 I n f l u e n c e of Feed Percent S o l i d s 30 3.1.3 I n f l u e n c e of Gas Rate 31 3.1.4 I n f l u e n c e of Washwater A d d i t i o n 33 3.1.5 I n f l u e n c e of F r o t h Depth 35 3.2 Mechanical C e l l s 35 3.2.1 I n f l u e n c e of A i r Flowrate and I m p e l l e r 35 3.2.3 I n f l u e n c e of Feed Percent S o l i d s 36 3.3 I n f l u e n c e of F r o t h e r C o n c e n t r a t i o n 36 3.4 I n f l u e n c e of C o l l e c t o r C o n c e n t r a t i o n 37 3.5 I n f l u e n c e of C o n d i t i o n i n g Time 38 3.6 I n f l u e n c e of P a r t i c l e S i z e 39 3.9 Summary 4 0 CHAPTER 4 APPARATUS, SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURE 41 4.1 D e s c r i p t i o n o f Apparatus and Equipment 41 4.1.1 F l o t a t i o n Column 41 i v 4.1.2 Batch Mechanical C e l l 46 4.2 Sample P r e p a r a t i o n 46 4.3 Experimental Procedure 48 4.3.1 Feed C o n d i t i o n i n g 4 9 4.3.2 Sampling 4 9 4.3.3 Data Adjustment 51 4.3.4 Screening Designs 53 4.3.5 Steepest Ascent 54 4.3.6 C e n t r a l Composite Design 58 4.3.7 E v a l u a t i o n o f Optimum Parameter S e t t i n g s 58 4.3.8 Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s 59 CHAPTER 5 RESULTS AND DISCUSSION 60 5.1 S t a t i s t i c a l O p t i m i s a t i o n o f F l o t a t i o n Column 60 5.1.1 Steepest Ascent 61 5.1.2 C e n t r a l Composite Design 62 5.1.3 E v a l u a t i o n of Optimum Parameter S e t t i n g s 77 5.1.4 Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s 78 5.2 S t a t i s t i c a l O p t i m i s a t i o n of Batch Mechanical C e l l 79 5.2.1 Screening Design 79 5.2.2 Steepest Ascent 80 5.2.3 C e n t r a l Composite Design 80 5.2.4 E v a l u a t i o n of Optimum Parameter S e t t i n g s 88 5.2.5 Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s 89 5.3.0 Comparison of F l o t a t i o n Column and Batch Mechanical C e l l 89 CHAPTER 6 SUMMARY AND CONCLUSIONS 95 RECOMMENDATIONS FOR FUTURE WORK 97 REFERENCES 99 APPENDICES 1. Response of Survey on F l o t a t i o n Columns 105 2. F l o t a t i o n Feed C h a r a c t e r i z a t i o n 115 3. Flowsheet f o r Simplex D i r e c t Search Routine 116 4. BASIC Simplex Program f o r Data Adjustment 117 5. R e s u l t s of F l o t a t i o n Column Screening Design 123 6. Sample C a l c u l a t i o n of SYSTAT 124 7. C e n t r a l Composite Design f o r F l o t a t i o n Column 134 8. SYSTAT Program P r i n t Out f o r F l o t a t i o n Column C e n t r a l Composite Design 138 9. R e s u l t s of Mechanical C e l l Screening Design 166 10. R e s u l t s of C e n t r a l Composite Design f o r M e c h a n i c a l C e l l 167 11. SYSTAT Program P r i n t Out For Mechanical C e l l C e n t r a l w i t h Star P o r t i o n Removed 169 12. Test Procedures 176 13. F l o t a t i o n Column Data Sheets 179 V LIST OF TABLES Table 1: V a r i a b l e s of Importance i n Coal F l o t a t i o n a) F l o t a t i o n Columns 28 b) Mechanical C e l l s 29 Table 2: F l o t a t i o n Column Sampling C o n d i t i o n s 50 Table 3a: Coded L e v e l s f o r F l o t a t i o n Column S c r e e n i n g Design 55 Table 3b: Coded L e v e l s f o r Mechanical C e l l S c r e e n i n g Design 55 Table 4: F l o t a t i o n Column F i r s t Order Model C o e f f i c i e n t s 61 Table 5: F l o t a t i o n Column Steepest Ascent R e s u l t s 62 Table 6: Coded and A c t u a l L e v e l s f o r F l o t a t i o n Column C e n t r a l Composite Design 63 Table 7: F l o t a t i o n Column Second Order Model C o e f f i c i e n t s and Corresponding S t a t i s t i c s Without 3 Term I n t e r a c t i o n s 64 Table 8: F l o t a t i o n Column Second Order Model C o e f f i c i e n t s and Corresponding S t a t i s t i c s With 3 Term I n t e r a c t i o n s 66 Table 9: S i g n i f i c a n t F l o t a t i o n Column E f f e c t s 70 Table 10: F l o t a t i o n Column Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s 79 Table 11: Mechanical C e l l F i r s t Order Model C o e f f i c i e n t s 80 Table 12: F l o t a t i o n Column Steepest Ascent R e s u l t s 81 Table 13: Coded and A c t u a l L e v e l s f o r M e c h a n i c a l C e l l C e n t r a l Composite Design 81 Table 14: Mechanical C e l l Second Order Model C o e f f i c i e n t s and Corresponding S t a t i s t i c s 82 Table 15: Mechanical C e l l Model C o e f f i c i e n t s w i t h S t a r P o r t i o n of Design Removed 8 6 Table 16: S i g n i f i c a n t E f f e c t s of Mechanical C e l l 86 Table 17: Mechanical C e l l Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s 89 Table 18: S i z e by S i z e Comparison of F l o t a t i o n Column and Batch Mechanical C e l l 90 LIST OF FIGURES F i g u r e 1: Schematic of a F l o t a t i o n Column 8 F i g u r e 2: Schematic of Batch F l o t a t i o n Column 13 F i g u r e 3a: Simple L e v e l C o n t r o l 20 F i g u r e 3b: Complete F l o t a t i o n Column S t a b i l i s i n g C o n t r o l 20 F i g u r e 4: D i s t r i b u t e d F l o t a t i o n Column C o n t r o l 23 F i g u r e 5: F l o t a t i o n Column Equipment Setup 42 F i g u r e 6: L e v e l C o n t r o l C i r c u i t 44 F i g u r e 7: S i z e Reduction Flowsheet 47 F i g u r e 8: M a t e r i a l Balance Around F l o t a t i o n Column 52 F i g u r e 9: I l l u s t r a t i o n of Steepest Ascent Technique 56 F i g u r e 10: Examination of F l o t a t i o n Column R e s i d u a l s 68 F i g u r e 11: Examination of Mechanical C e l l R e s i d u a l s f o r C e n t r a l Composite Design 84 F i g u r e 12: Examination of Mechanical C e l l R e s i d u a l s f o r C e n t r a l Composite Design with S t a r P o r t i o n Removed 85 F i g u r e 13: F l o t a t i o n of I n d i v i d u a l S i z e F r a c t i o n s at 15 % S o l i d s 92 F i g u r e 14: F l o t a t i o n of I n d i v i d u a l S i z e F r a c t i o n s at 2 % S o l i d s 93 vxx F i g u r e 15: S i z e by S i z e Comparison of Product Ash Contents at 15 % S o l i d s 94 ACKNOWLEDGEMENT The author wishes t o express h i s s i n c e r e g r a t i t u d e t o P r o f e s s o r A.L. Mular f o r h i s guidance, support and encouragement. F i n a n c i a l a s s i s t a n c e from The Science C o u n c i l o f B r i t i s h Columbia and The U n i v e r s i t y of B r i t i s h Columbia i s g r a t e f u l l y acknowledged. I am deeply i n d e b t e d t o The U n i v e r s i t y of Zimbabwe f o r p r o v i d i n g me with an o p p o r t u n i t y t o study at U.B.C. through t h e i r s t a f f development t r a i n i n g programme. I am a l s o deeply i n d e b t e d t o Bullmoose M i n i n g C o r p o r a t i o n f o r dona t i n g a tonne of c o a l which was used f o r the p r o j e c t . L a s t l y , but not l e a s t , I would l i k e t o express my s i n c e r e a p p r e c i a t i o n f o r the t e c h n i c a l s t a f f at The Centre f o r C o a l and M i n e r a l P r o c e s s i n g f o r t h e i r p r o f e s s i o n a l a s s i s t a n c e . 1 CHAPTER 1 INTRODUCTION While mineral f l o t a t i o n i s widely understood and c u r r e n t p r a c t i c e i s f a i r l y s o p h i s t i c a t e d , c o a l f l o t a t i o n i s s t i l l a r e l a t i v e l y crude p r o c e s s . In North America, most c o a l f l o t a t i o n c i r c u i t s are r e l a t i v e l y simple, and they produce a primary o r rougher concentrate and primary t a i l i n g s with no r e c l e a n i n g o f e i t h e r product (44). The s l u r r y g e n e r a l l y enter a bank of mechanical f l o t a t i o n c e l l s from dewatering screen or s i e v e bend underflows, or from c l a s s i f i e r o v e r flows. F l o t a t i o n i s a p p l i c a b l e t o s i z e f r a c t i o n s around and below 600 fim and no s e r i o u s attempt i s made t o c o n t r o l p u l p d e n s i t y which can vary from 4 t o 12 p e r c e n t . The o r i g i n a l mechanical c o a l f l o t a t i o n machines were a p p l i e d t o f r e e l y f l o a t i n g c o a l s and tended t o be simple, open t r o u g h d e s i g n s . G e n e r a l l y , c e l l volumes of 2.8 m3 were the most p o p u l a r i n an open trough arrangement of f i v e t o seven c e l l s . In recent years, a design tr.end of i n c r e a s i n g v o l u m e t r i c c a p a c i t y i n i n d i v i d u a l machines has emerged w i t h the r e s u l t t h a t most c u r r e n t i n s t a l l a t i o n s employ machines between 8.5 and 14.2 m3 (65) . 2 The appeal of i n d i v i d u a l l y l a r g e r f l o t a t i o n machines i s the (1) r e d u c t i o n i n f l o o r space, (2) r e d u c t i o n i n power consumed per t o n of s o l i d s p r o c e s s e d , (3) r e l a t i v e ease of c o n t r o l l i n g fewer machines, and (4) reduced maintenance c o s t s (66). As the p u b l i c become i n c r e a s i n g l y v o c a l r e g a r d i n g p o t e n t i a l e n v i r o n m e n t a l p o l l u t i o n from c o a l p r e p a r a t i o n p l a n t s and from c o a l f i r e d b o i l e r s i t has a l s o become a r e a l c h a l l e n g e f o r c o a l p r e p a r a t i o n e n g i n e e r s not only to r e c o v e r as much c o a l as p o s s i b l e p r i o r t o r e f u s e d i s p o s a l , but to produce and market the c l e a n e s t p o s s i b l e c o a l . As a r e s u l t o f such c h a l l e n g e s , the s h i f t i n d e s i g n i n g f l o t a t i o n machines f o r c o a l c l e a n i n g has moved towards f l o t a t i o n column type machines. These are proclaimed (47) to o f f e r the f o l l o w i n g advantages over mechanical c e l l s ; s m a l l e r f l o o r space requirements, h i g h e r grades without compromising recovery, a b i l i t y t o r e c o v e r f i n e r s i z e f r a c t i o n s , s i m p l i c i t y i n design, absence o f moving p a r t s which lowers o p e r a t i n g c o s t s , and a b e t t e r a m e n a b i l i t y t o automatic p r o c e s s c o n t r o l . A number of reasons have been advanced as t o why f l o t a t i o n columns have not enjoyed the same l e v e l of success i n c o a l f l o t a t i o n p l a n t s as i n the base metal i n d u s t r i e s . These reasons i n c l u d e (5): (1) There i s no unambiguous evidence t h a t column c e i l s o f f e r any 3 s i g n i f i c a n t a d v a n t a g e s o v e r m e c h a n i c a l c e l l s f o r t h e r e c o v e r y o f t h e c o a r s e r s i z e f r a c t i o n s . (2) C o a l f l o t a t i o n c o n c e n t r a t e r e p r e s e n t s o n l y a f r a c t i o n o f t h e t o t a l p r o d u c t f r o m a p r e p a r a t i o n p l a n t . (3) C o a l f l o t a t i o n c i r c u i t s n o r m a l l y c o n s i s t o f a s i n g l e r o u g h e r s t a g e and i n d u s t r y e c o n o m i c s do n o t r e w a r d t h e h i g h e r c o n c e n t r a t e g r a d e s o b t a i n a b l e i n f l o t a t i o n c o l u m n s . (4) I n d u s t r y c o n d i t i o n s h a v e n o t f a v o u r e d e x p e n d i t u r e f o r t h e r e p l a c e m e n t o f e x i s t i n g e q u i p m e n t . M i s r a a n d H a r r i s (4 6) a t t r i b u t e d t h e s e e m i n g l y l o w e n t h u s i a s m f o r u s i n g f l o t a t i o n c o l u m n c e l l s i n c o a l c l e a n i n g c i r c u i t s t o t h e f a c t t h a t s u c h u s e w o u l d b e r e s t r i c t e d t o d i l u t e p u l p s , - t h e r e b y l i m i t i n g t h e p r e p a r a t i o n p l a n t ' s t h r o u g h p u t . H o w e v e r , w o r k b y G r o p p o ( 1 ) , K a w a t r a a n d E i s e l e (2) , F l o t a t i o n C o l u m n Company o f C a n a d a L t d . (3) a n d Moon and S i r o i s (4) d e m o n s t r a t e d t h a t f l o t a t i o n c o l u m n s a r e c a p a b l e o f o p e r a t i n g a t s i g n i f i c a n t l y h i g h e r p u l p d e n s i t i e s t h a n m e c h a n i c a l c e l l s . T he f i r s t p u b l i s h e d c o m m e r c i a l a p p l i c a t i o n o f f l o t a t i o n c o l u m n s t o c o a l f l o t a t i o n was r e p o r t e d b y B e n s l e y e t a l (5) a t t h e T . D . M . R i v e r s i d e M i n e , A u s t r a l i a , i n t h e f o r m o f a u n i t c a l l e d t h e T o w e r F l o t a t i o n C e l l . T w e n t y f o u r o f t h e s e u n i t s w e r e e x p e c t e d t o r e c o v e r 4 an a d d i t i o n a l 210 000 tonnes of c o a l per annum from minus 38 micron m a t e r i a l which had been p r e v i o u s l y d i s c a r d e d , other i n d u s t r i a l a p p l i c a t i o n s of f l o t a t i o n columns f o r c o a l c l e a n i n g i n c l u d e the Devco V i c t o r i a J u n c t i o n coal p r e p a r a t i o n p l a n t (Canada) and the Tanoma Mine (68) i n Pennsylvania. The o b j e c t i v e s of the research conducted f o r t h i s t h e s i s were: (1) To compare s t a t i s t i c a l l y the i n f l u e n c e of o p e r a t i n g v a r i a b l e s on c o a l f l o t a t i o n using a p i l o t f l o t a t i o n column and a batch mechanical c e l l . (2) To optimise the performance of a 6.35 cm I.D. by 5.5 m t a l l l a b o r a t o r y f l o t a t i o n column using s t a t i s t i c a l e x p e r i m e n t a l designs of the f a c t o r i a l c l a s s . (3) To optimise the performance of a 5 L A g i t a i r mechanical c e l l u s i n g s t a t i s t i c a l experimental designs and compare i t s performance to the f l o t a t i o n column. (4) To determine the s u p e r i o r i t y or otherwise of each machine aga i n s t the other using p a r t i c l e s i z e as a c r i t e r i o n . The e f f i c i e n c y index (49) was chosen as the primary o p t i m i s a t i o n c r i t e r i o n . 5 In the f i r s t two chapters of t h i s t h e s i s , the fundamentals of d e s i g n i n g and operating f l o t a t i o n columns are d i s c u s s e d . Chapter 3 d e s c r i b e s the experimental procedures which were employed to o p t i m i s e the performance of the p i l o t f l o t a t i o n column and the batch mechanical c e l l . The r e s u l t s and d i s c u s s i o n , and summary and c o n c l u s i o n s are presented i n Chapter 4 and 5, r e s p e c t i v e l y . Recommendations f o r f u r t h e r work are a l s o o u t l i n e d i n Chapter 5. 6 CHAPTER 2 DESIGN, OPERATION AND CONTROL OF FLOTATION COLUMNS 2.1 Introduction U n t i l r e c e n t l y (6,7) there was no e s t a b l i s h e d method of f l o t a t i o n column scale-up and s i z i n g . The procedure f o r most operators was to c o n s t r u c t the column by volume replacement of e x i s t i n g mechanical c e l l s . The f o l l o w i n g statements t y p i f y the e a r l y column design p h i l o s o p h i e s : -(i) "The 34 inch diameter was d i c t a t e d by m a t e r i a l a v a i l a b i l i t y and the a d d i t i o n a l m a t e r i a l to be t r e a t e d at t h i s stage. the height was d i c t a t e d by a v a i l a b l e headroom" (8) ( i i ) "Several p u b l i s h e d reports and p r i v a t e communications about the a t t r a c t i v e r e s u l t s obtained by means of column a p p l i c a t i o n i n by product molybdenum pl a n t s i n Canada j u s t i f i e d the purchase of a 0.91m x 0.91 x 13.3m column from F l o t a t i o n Column Company of Canada" (9). Design v a r i a b l e s such as column height and diameter, type of sparger m a t e r i a l and type and p o s i t i o n of the washwater d i s t r i b u t o r a l l r e q u i r e c a r e f u l c o n s i d e r a t i o n during the design stage. The o v e r a l l manner i n which these design v a r i a b l e s are s e l e c t e d w i l l u l t i m a t e l y i n f l u e n c e the s e p a r a t i n g e f f i c i e n c y of the column by 7 i n f l u e n c i n g the behaviour of the non-design v a r i a b l e s such as input and output f l o w r a t e s , gas h o l d up, bubble s i z e , reagent dosages, r e t e n t i o n times of the p a r t i c l e s , and r a t e s of f l o t a t i o n . 2.2 Column Height and Diameter I n d u s t r i a l f l o t a t i o n columns are t y p i c a l l y 12 t o 15 m h i g h w i t h 0.3 to 2.0 m c r o s s s e c t i o n s , square or c i r c u l a r . Column h e i g h t i s u s u a l l y determined by the a v a i l a b l e headroom i n the c o n c e n t r a t o r b u i l d i n g . I f one were to assume that a v a i l a b l e headroom i s not a c o n s t r a i n t , the o v e r a l l height of the column would be d i c t a t e d by the need t o provide s u f f i c i e n t height f o r the descending s o l i d p a r t i c l e s t o c o l l i d e with and attach to r i s i n g a i r bubbles i n the c o l l e c t i o n zone, and the d e s i r e to p r o v i d e s u f f i c i e n t h e i g h t f o r the f r o t h zone. The c o l l e c t i o n zone i s the r e g i o n where t h e s o l i d p a r t i c l e s and a i r bubbles c o l l i d e and m i n e r a l laden bubbles r i s e and e n t e r the c l e a n i n g zone. In the f r o t h zone, l o o s e l y a t t a c h e d and e n t r a i n e d h y d r o p h i l l i c gangue minerals are washed back t o the c o l l e c t i o n zone so that a cl e a n e r concentrate i s produced. Fi g u r e 1 i s a schematic p r e s e n t a t i o n of the c o l l e c t i o n and f r o t h zones. The maximum diameter of the column i s r e g u l a t e d by t h e mixing c h a r a c t e r i s t i c s of the column. In g e n e r a l , a f l o t a t i o n column should be kept as narrow as p o s s i b l e so t h a t when i n o p e r a t i o n the column sim u l a t e s plug flow ' c o n d i t i o n s . I t i s , u n f o r t u n a t e l y , not always p r a t i c a l to i n s t a l l t a l l , narrow columns i n c o n c e n t r a t o r s 8 wash water canceotrat* CLEANING ZONE f « * d COLLECTION ZONE tailings r ' i g u r e 1: S c h e m a t i c o f a F l o t a t i o n C o l u m n (32) 9 because of l i m i t a t i o n s i n a v a i l a b l e headroom and the need to have a l l p a r t s of the column e q u a l l y a c c e s s i b l e f o r maintenance and c o n t r o l . A l s o , the economics of p r o c e s s i n g p r e s e n t day low grade ores has g r a d u a l l y s h i f t e d even the most r e l u c t a n t o p e r a t o r s towards l a r g e r machines. As a r e s u l t , f l o t a t i o n columns wi t h diameters up to and beyond 2 m are being b u i l t even though they e x h i b i t l a r g e d e v i a t i o n s from p l u g flow. To l i m i t a x i a l d i s p e r s i o n , l a r g e columns are commonly b a f f l e d i n t o a number of v e r t i c a l compartments between the f e e d p o i n t and the sparger r e g i o n . 2.3 F l o t a t i o n Column Si z i n g The ge n e r a l approach to s i z i n g f l o t a t i o n columns i s based on the work by Dobby (6), Dobby and F i n c h (10,7), Yianatos e t a l (11,12), Espinosa-Gomez et a l (13) and d e l V i l l a r (12, 13) . The s i z i n g procedure i n v o l v e s two s t e p s ; a m e n a b i l i t y t e s t i n g and s c a l e up. 2.4 Amenability Testing Amenability t e s t i n g c o n s i s t s of comparing the m e t a l l u r g y o b t a i n e d i n the l a b o r a t o r y with t h a t of the e x i s t i n g c i r c u i t where an e x i s t i n g c i r c u i t i s to be r e p l a c e d . Where p l a n t d a t a i s not a v a i l a b l e or a new o p e r a t i o n i s being brought i n t o p r o d u c t i o n a perfomance comparison should be made between a l a b o r a t o r y mechanical c e l l and a p i l o t f l o t a t i o n column. 10 2.5 Scale Dp The s c a l e up procedure i s model based. The f l o t a t i o n column i s d i v i d e d i n t o two zones; the c o l l e c t i o n zone and the f r o t h zone. Two separate models are employed to estimate the r e c o v e r y i n the two zones which are subsequently combined t o y i e l d an o v e r a l l column model (12) . 2.6 The C o l l e c t i o n Zone The c o l l e c t i o n zone recovery i s e s t i m a t e d from the u n i a x i a l d i s p e r s i o n model f i r s t r e p o r t e d by L e v e n s p i e l (14) and l a t e r employed t o s c a l e up f l o t a t i o n columns by Dobby and F i n c h (7) and L u t t r e l et a l (15). 4a£XP(0. 5 P e n ) R - 1 - P. (l+a) 2EXP{0 . 5Pepa) - (l-a) 2EXP(-0 . 5aPep) d - D a - v T l + Da/Pep) The parameter Da i s the Damkohler number, d e f i n e d by Da = k r p f o r a f i r s t o r d e r system. t p i s the p a r t i c l e s ' r e s i d e n c e time and k i s the f l o t a t i o n r a t e constant. Pe p i s the P e c l e t number o f the s o l i d p a r t i c l e s which i s d e f i n e d by . 11 w^AJL , I . 2 ) w h e r e U p i s t h e r e l a t i v e p a r t i c l e s / l i q u i d s e t t l i n g v e l o c i t y , Ux i s t h e l i q u i d i n t e r s t i t i a l v e l o c i t y , H i s t h e c o l l e c t i o n z o n e h e i g h t a n d D p i s t h e a x i a l d i s p e r s i o n c o e f f i c e n t . E m p i r i c a l m o d e l s f o r e s t i m a t i n g U p , U l f D ? a n d t ? c a n be f o u n d i n t h e l i t e r a t u r e (7 , 1 0 , 11/ 12) T h e p a r t i c l e s ' r e s i d e n c e t i m e i s g i v e n b y (10) -IE = ^ ( 1 . 3 ) UL + Up T h e i n t e r s t i t i a l l i q u i d r e s i d e n c e t i m e i s e s t i m a t e d f r o m (15) T , - — ( 1 . 4 - UL where uT 7 - ^ — r d - 5 ) w h e r e Q t i s t h e v o l u m e t r i c t a i l i n g s f l o w r a t e , A i s t h e c r o s s s e c t i o n a l a r e a o f t h e c o l u m n and e g i s t h e g a s h o l d u p . F o r s m a l l p a r t i c l e s , t h e a x i a l d i s p e r s i o n c o e f f i c i e n t i s a s s u m e d t o be e q u a l t o t h a t o f t h e l i q u i d . I t i s g i v e n b y ( 7 ) 12 Dp = 0 . 0 6 3 7 J C ( ^ ^ - ) 0 ' 3 (1-6) where Dc i s the diameter of the column and V g i s t h e s u p e r f i c i a l gas r a t e . The r e l a t i v e p a r t i c l e / l i q u i d v e l o c i t y i s e s t i m a t e d from (11) U = 9dp(l-eff)2-7 ( p p - p s u s p )  P 1 8 p L ( l + 0.15i?e°- 6 8 7 ) where g i s the a c c e l e r a t i o n due to g r a v i t y , d p i s the diameter of a p a r t i c l e , p p i s the d e n s i t y of p a r t i c l e s , p s u s ? i s the d e n s i t y of the suspension, p L i s the dynamic v i s c o s i t y of the l i q u i d , and Re p i s the Reynolds number of the p a r t i c l e s . The f l o t a t i o n r a t e constant i s a more d i f f i c u l t parameter t o measure, as the d i v e r s i t y of methods proposed i n the l i t e r a t u r e (7,15,16,17) i n d i c a t e s . A new i n n o v a t i v e method f o r measuring the f l o t a t i o n r a t e constant has been developed by Mular and Musara ( 1 8 ) . The t e c h n i q u e converts the continuous o p e r a t i n g f l o t a t i o n column i n t o a b a t c h r e c y c l e u n i t ( F i g u r e 2 ) . C o n d i t i o n e d feed i s added t o the column with a h e i g h t which can be v a r i e d from l e s s than 2 m t o above 5 m and the r e c i r c u l a t i o n pump i s s t a r t e d . The p u l p i s r e c i r c u l a t e d f o r about 3 t o 5 minutes t o a l l o w steady s t a t e c o n d i t i o n s t o be a t t a i n e d . The a i r i s turned on and batched timed samples are c o l l e c t e d s i m i l a r l y 13 Washwater CD • — i o o CD P H W Ti tuO CD CD 'rfi ^ •I—I E-i cd 41 f r o t h I z o n e Concen t ra te 1 c o l l e c t i o n z o n e A i r / Figure 2: Schematic of Ba tch F l o t a t i o n C o l u m n to the o r d i n a r y b a t c h mechanical c e l l . The data are then f i t t e d to any of a number of f i r s t order f l o t a t i o n flow models. Dowling et a l (19) provide a comprehensive review of these models. P e r c e i v e d advantages of the batch f l o t a t i o n column are: (i) because the column can be made v e r y short, the s m a l l e s t amount of sample i s r e q u i r e d f o r t e s t i n g . ( i i ) the top o f the column i s e a s i l y a c c e s s i b l e f o r c o l l e c t i n g batch samples•of the concentrate ( i i i ) I t can be e a s i l y c o n s t r u c t e d and operated by a s i n g l e o perator. (vi) the e f f e c t of pulp d e n s i t y on the f l o t a t i o n r a t e c o n s t a n t can be s t u d i e d . 2.7 The Froth Zone U n l i k e the c o l l e c t i o n zone, a p r e c i s e model f o r the f r o t h zone re c o v e r y has as yet t o be developed. There are two main parameters f o r p r e d i c t i n g the performance of the f r o t h zone; the c a r r y i n g c a p a c i t y and the p a r t i c l e drop back (20). C a r r y i n g c a p a c i t y i s d e f i n e d as the maximum concentrate s o l i d s r a t e (g/min/cm2) (13) C a = 0.068 (d 8 0 . p p ) (1.8) where d 8 0 r e f e r s t o the 80 % p a s s i n g aperture s i z e i\Xm) and p p i s the d e n s i t y of the p a r t i c l e s (g/cm3) . I t i s r e l a t e d to maximun 15 a c h i e v a b l e p a r t i c l e coverage of the bubbles and c o n s t i t u t e s an upper l i m i t t o the p a r t i c l e c o l l e c t i o n p r o c e s s (20) . P a r t i c l e drop back i s however s t i l l not i n c o r p o r a t e d i n t o p r e s e n t day f l o t a t i o n column s c a l e up procedures. The approach t o column s i z i n g i s e s s e n t i a l l y a computer s i m u l a t i o n e x e r c i s e . 2.8 Simulation A s i m u l a t o r based on the models and p h i l o s o p h y o u t l i n e d i n the p r e c e e d i n g s e c t i o n s was developed by del V i l l a r e t a l (12,22) . The s i m u l a t o r i s comprised of t h r e e s e c t i o n s ; a data i n p u t s e c t i o n , an e x e c u t i v e program and a f i n a l r e s u l t s p r i n t out s e c t i o n . Upon program ex e c u t i o n , the s i m u l a t o r provides a p r i n t out o f the m i x i n g parameters, r e c o v e r i e s , f l o w r a t e s and grades f o r t h e s e l e c t e d column s i z e . 2.9 Sparger Design E a r l y f a i l u r e s of f l o t a t i o n column t e c h n o l o g y can be p a r t l y a t t r i b u t e d t o poor sparger design (21). Today, most i n d u s t r i a l f l o t a t i o n columns are a e r a t e d with i n t e r n a l s p a r g e r s which can be rubber or f a b r i c . The c h o i c e of sparging m a t e r i a l s h o u l d c o n s i d e r (24) :-(i) i t s c a p a c i t y to generate s m a l l bubbles 16 ( i i ) i t s r e s i s t a n c e to wearing and s u s c e p t i b i l i t y t o p l u g g i n g . The d e s i g n of the sparger i s c r i t i c a l l y important because i t a f f e c t s the mixing c h a r a c t e r i s t i c s of the column, a i r h o l d up and bubble s i z e . These f a c t o r s , i n d i v i d u a l l y and when combined, a f f e c t the m e t a l l u r g i c a l performance of a f l o t a t i o n column. Xu and F i n c h (23) concluded t h a t sparger m a t e r i a l has a minor e f f e c t on bubble diameter and suggested t h a t d u r a b i l i t y s h o u l d be the v i t a l c o n s i d e r a t i o n when s e l e c t i n g a sparger. A survey conducted by C l i n g a n and McGregor (24) among i n d u s t r i a l column u s e r s i n d i c a t e d t h a t f a b r i c spargers are more wi d e l y used i n i n d u s t r y than any other sparger. Sparger p o s i t i o n i n g was i n v e s t i g a t e d by Y i a n a t o s et a l (25) who concluded t h a t the performance of a s i n g l e c y l i n d r i c a l s p a r g e r i n h o r i z o n t a l and v e r t i c a l p o s i t i o n s showed no s i g n i f i c a n t d i f f e r e n c e . By m a i n t a i n i n g the r a t i o of column c r o s s s e c t i o n a l a r e a t o s p a rger s u r f a c e area constant, Xu and F i n c h (23) showed t h a t bubble diameter and the s u p e r f i c i a l gas r a t e c o u l d be m a i n t a i n e d upon s c a l e up. They consequently i d e n t i f i e d t h i s r a t i o as a p o s s i b l e s c a l e up c r i t e r i o n f o r spargers. 2.10 Washwater Di s t r i b u t o r The washwater d i s t r i b u t o r can be a shower head type spray l o c a t e d 17 a s h o r t d i s t a n c e above the overflow l i p , or i t can be a spray header which i s l o c a t e d some d i s t a n c e j u s t below the o v e r f l o w l i p . Data p e r t a i n i n g t o the e f f e c t of the washwater d i s t r i b u t o r ' s d e sign on the performance of a f l o t a t i o n column i s scanty but the l o c a t i o n of t h e washwater d i s t r i b u t o r appears to i n f l u e n c e r e c o v e r y and grade. Washwater d i s t r i b u t o r s l o c a t e d a s h o r t d i s t a n c e above the overflow l i p g e n e r a l l y appear to c o n t r i b u t e t o higher c o n c e n t r a t e grades w h i l e p l a c i n g the d i s t r i b u t o r below the overflow l i p appears to c o n t r i b u t e t o s l i g h t l y h igher r e c o v e r i e s . 2.11 Control of F l o t a t i o n Columns I t i s common knowledge t h a t one of the advantages f l o t a t i o n columns have over mechanical c e l l s i s the s i m p l i c i t y w i t h which they can be automated. Present c o n t r o l s t r a t e g i e s c e n t r e around primary (regul a t o r y ) c o n t r o l ; t h a t i s , c o n t r o l of the p r o c e s s streams going i n t o and out o f the column. For e f f e c t i v e o p e r a t i o n of the column, the f o l l o w i n g c o n t r o l o b j e c t i v e s must be met (26):-(i) I n t e r f a c e l e v e l must be maintained near the s e t p o i n t l e v e l . I f the l e v e l i s t o o high, t h e r e w i l l be an i n s u f f i c i e n t c l e a n i n g zone 18 volume and the concentrate grade w i l l be poor. On t h e other hand, i f the p u l p l e v e l i s too low, the c o l l e c t i o n zone volume w i l l be reduced and the recovery w i l l be low. ( i i ) The net flow of washwater downwards towards the i n t e r f a c e must be p o s i t i v e ( p o s i t i v e b i a s ) to ensure c l e a n i n g a c t i o n , but must not be too l a r g e . Otherwise unnecessary d i l u t i o n of the underflow occurs. ( i i i ) Bubble s i z e i s c o n t r o l l e d by f r o t h e r a d d i t i o n r a t e s . I f the bubble s i z e i s too l a r g e there w i l l be i n s u f f i c i e n t c o n t a c t i n g area between p a r t i c l e and bubbles. On the o t h e r hand small bubbles necessary f o r i n c r e a s e d f l o t a t i o n r a t e s s h o u l d not be achieved at uneconomically high f r o t h e r a d d i t i o n r a t e s . Thus an economic balance s h o u l d be achieved between buble s i z e , f l o t a t i o n r a t e s and consumption of f r o t h e r . (iv) Gas r a t e must be c o n t r o l l e d at a l e v e l which maximises r e c o v e r y . I f the gas r a t e i s too h i g h e x e c e s s i v e h o l d up w i l l o ccur i n the column and r e s i d e n c e time of s l u r r y w i l l be decreased, or bubbles t h a t are too l a r g e w i l l be formed w i t h a corresponding l o s s i n c o n t a c t area; the c o l l e c t i o n zone becomes e x c e s s i v e l y mixed with l o s s of r e c o v e r y . Yianatos et a l (27) demonstrated t h a t excess gas r a t e can cause i n c r e a s e d entrainment i n t o and mixing i n the f r o t h zone, w i t h subsequent 19 l o s s i n grade. 2.2 . 0 Present Control Strategies The l o c a t i o n and a p p l i c a t i o n of the f l o t a t i o n column w i l l l a r g e l y determine t h e c o n t r o l system which s h o u l d be i n s t a l l e d (28) . Where a f l o t a t i o n column i s used as p a r t of a c l e a n i n g c i r c u i t f o r grade improvement, simple l e v e l c o n t r o l i s u s u a l l y s u f f i c i e n t ( F i g u r e 3a) . Where the column i s r e q u i r e d t o a c h i e v e b o t h grade and r e c o v e r y t a r g e t s , more a t t e n t i o n s h o u l d be p a i d t o mass b a l a n c i n g around the column (Figure 3b) . A 1988 i n d u s t r y survey by Mular and Musara (Appendix 1) w i t h a 50 % response i n d i c a t e d t h a t f l o t a t i o n column c o n t r o l by simple l e v e l c o n t r o l i s more w i d e l y used, l a r g e l y because most of the f l o t a t i o n columns are b e i n g used i n c l e a n i n g c i r c u i t s . The performance of the pulp l e v e l c o n t r o l l o o p i s h i g h l y dependent on the a c c u r a c y of the pulp l e v e l measuring d e v i c e . In i n d u s t r y , many methods o f measurement are employed i n the c o n t r o l o f p u l p l e v e l ; b a l l f l o a t s , d i f f e r e n t i a l p r e s s u r e c e l l s , pneumatic bubble tubes, p r e s s u r e s e n s i t i v e taps and c o n d u c t i v i t y p r o b e s . The d i f f e r e n t i a l p r e s s u r e c e l l i s s t i l l the most w i d e l y used l e v e l s e n s o r . In s imple l e v e l c o n t r o l , F i g u r e 3a, the measured l e v e l (or p r e s s u r e ) s i g n a l i s t r a n s m i t t e d t o a c o n t r o l l e r which then m a i n t a i n s t h e l e v e l by m a n i p u l a t i n g a c o n t r o l v a l v e on the t a i l i n g s 20 F i g u r e 3a: Simple L e v e l C o n t r o l (28) T * i ; . t « ; -<3-(3>-i ® -r <2>----—SH-1— < g v . - © L e g e n d MT MASK Transmitter F T F low Transmitter L T Level Transmit ter p T Pressure T fan imi t te r R Retro S t a t i o n F 'C Flow Indicating Control*** L IC Level Indicating Controller GRA Grade/Recovery Algor i thm OSA On-Straam Analysis f (») Computer Control S la tag* F i g u r e 3b: Complete F l o t a t i o n Column S t a b i l i z i n g C o n t r o l (59) 21 l i n e . A i r and washwater are manually s e t . The second c o n t r o l s t r a t e g y (Figure 3b) uses washwater a d d i t i o n r a t e t o c o n t r o l l e v e l . The c o n t r o l system e s s e n t i a l l y c o n s i s t s of t h r e e c o n t r o l l o o p s ; b i a s c o n t r o l , l e v e l c o n t r o l , and washwater gas h o l d up i n t e r a c t i o n loop (29,30) . 2.2.1 Bias Control loop B i a s i s d e f i n e d as the d i f f e r e n c e i n flow between t h e t a i l i n g s f l o w r a t e and the f e e d r a t e . F l o t a t i o n columns g e n e r a l l y o p e r a t e under a p o s i t i v e b i a s mode where the t a i l i n g s i s m a i n t a i n e d at a r a t e g r e a t e r than the feedr a t e . In t h i s l o o p , the f e e d and t a i l i n g s f l o w r a t e s are c o n t r o l l e r . The c o n t r o l l e r r e g u l a t e s the t a i l i n g s m a i n t a i n t h e r a t i o o f t a i l i n g s t o f e e d f l o w r a t e u s u a l l y i n the range 1.01 to 1.15 (30) . 2.2.2 Pulp Level Control I n s t r u m e n t a t i o n f o r the pulp l e v e l c o n t r o l l o o p i s comprised of a l e v e l sensor, washwater c o n t r o l v a l v e , a c o n t r o l l e r , and a washwater flowmeter. Pulp l e v e l c o n t r o l i s a c h i e v e d by washwater a d d i t i o n i n d i r e c t response t o changes i n the c o n c e n t r a t e v o l u m e t r i c f l o w r a t e . t r a n s m i t t e d t o a c o n t r o l v a l v e t o at a s e t p o i n t , 22 2.2.3 Washwater/Gas Holp Up Interaction Loop T h i s i s the loop r e s p o n s i b l e f o r the column t o achieve both grade and rec o v e r y t a r g e t s . The c o n t r o l p r i n c i p l e i s based on o b s e r v a t i o n s t h a t a i r h o l d up i s a more important parameter than a i r f l o w r a t e t o d e s c r i b e the performance of a f l o t a t i o n column when rec o v e r y i s taken as the primary response v a r i a b l e . For example, f o r the same a i r f l o w r a t e , the type and p h y s i c a l s t a t e of the a i r sparger has a s t r o n g i n f l u e n c e on a i r h o l d up though the a i r f l o w r a t e may be cons t a n t . Thus, a sparger w i t h l a r g e h o l e s can produce low a i r h o l d ups and, consequently, lower r e c o v e r y than a sparger- capable of produc i n g s m a l l e r a i r bubbles at the same a i r f l o w r a t e . In t h i s c o n t r o l scheme, the a i r f l o w r a t e and h o l d up are l i n k e d to the washwater a d d i t i o n l i n e by means of a programmable computer. The c o n c e n t r a t e s o l i d s r a t e i s computed. T h i s r a t e i s r e l a t e d t o the washwater requirement. The ope r a t o r i s s u p p l i e d with t a b l e s t o c a l c u l a t e t h i s requirement and he s e t s the c o n t r o l l e r a l g o r i t h m , F ( x ) , a c c o r d i n g l y . The c o n t r o l l e r then v a r i e s the s e t p o i n t of the h o l d up which i n t u r n causes an adjustment i n the f l o w r a t e s of a i r to the column. 2.2-4 D i s t r i b u t e d F l o t a t i o n Column Control A more advanced f l o t a t i o n control strategy was reported by the s t a f f at the U.S. Bureau of Mines (31) f o r a 5.5 m x 6.4 cm I.D. laboratory f l o t a t i o n column. The control system i s e s s e n t i a l l y a d i s t r i b u t e d c o n t r o l system (Figure 4). The system i s comprised of stand alone, s i n g l e loop primary c o n t r o l l e r s which interface d i r e c t l y with pumps, sensors, valves, transmitters, and transducers that receive process signals and supply outputs to drive the various process c o n t r o l l i n g a c t i v a t o r s . The stand alone con t r o l l e r s communicate through a Gateway to a supervisory control computer. The system has redundance because each c o n t r o l l e r w i l l control i t s loop independently i f the computer f a i l s . Also, f a i l u r e of one c o n t r o l l e r w i l l not a f f e c t the other c o n t r o l l e r s , which makes the system le s s vulnerable to equipment f a i l u r e and increases r e l i a b i l i t y . KEY Air, water, slurry Figure 4: F l o t a t i o n Column Distributed Control System 2 4 While primary process c o n t r o l i s achieved by the s i n g l e loop c o n t r o l l e r s , these c o n t r o l l e r s do not have m o n i t o r i n g c a p a b i l i t i e s such as data t r e n d i n g , dynamic f l o w c h a r t i n g ( h i s t o r i c a l and r e a l t i me), data storage,and manipulation or m u l t i p l e loop c o n t r o l from a s i n g l e keyboard. Therefore s u p e r v i s o r y redundant c o n t r o l was i n c l u d e d by l i n k i n g the stand alone c o n t r o l l e r s t o a m i c r o p r o c e s s o r to permit s u p e r v i s o r y c a p a b i l i t i e s . The d i s t r i b u t e d c o n t r o l system d e s c r i b e d above i s used to c o n t r o l a l a b o r a t o r y column at the U.S.B.M., S a l t Lake C i t y . I t ' s use on a p l a n t s i z e column i s s t i l l to be r e p o r t e d . 2.2.5 Summary F l o t a t i o n columns can now be designed and b u i l t based on r e l i a b l e s c i e n t i f i c methods. The s i m u l a t o r based method o f s i z i n g f l o t a t i o n columns i s widely accepted. Present day f l o t a t i o n c o n t r o l s t r a t e g i e s are e s s e n t i a l l y r e g u l a t o r y c o n t r o l which centre around m a i n t a i n i n g the p u l p l e v e l a t the d e s i r e d s e t p o i n t while p r o v i d i n g enough volume f o r the c o l l e c t i o n and f r o t h zone, r e s p e c t i v e l y . V a r i a b l e s which a f f e c t the m e t a l l u r g i c a l perfomance of f l o t a t i o n columns and the degree to which they i n t e r a c t a l s o need to be 25 t h o r o u g h l y understood b e f o r e f u r t h e r advancement can be made i n the areas of design, s c a l e up and control- a d d r e s s e d i n t h i s c h a p t e r . The next c h a p t e r covers the e f f e c t of p r o c e s s v a r i a b l e s on the m e t a l l u r g y r e s u l t i n g from f l o t a t i o n machines, i n c l u d i n g mechanical c e l l s . 26 CHAPTER 3 INFLUENCE OF FLOTATION PROCESS VARIABLES ON FLOTATION RESPONSE IN FLOTATION COLUMNS AND MECHANICAL CELLS The m e t a l l u r g i c a l performance of a f l o t a t i o n system i s i n f l u e n c e d by the i n t e r a c t i o n s between a host of v a r i a b l e s whose sum t o t a l c o n s t i t u t e s i t s p h y s i c a l and chemical c h a r a c t e r i s t i c s . Four c a t e g o r i e s of v a r i a b l e s of i n t e r e s t a r e : (1) d i s t u r b a n c e v a r i a b l e s (2) measured v a r i a b l e s (3) m a n i p u l a t e d v a r i a b l e s and (4) c o n t r o l l e d v a r i a b l e s . Tables 1(a) and 1(b) are a l i s t o f the v a r i a b l e s . D i s t u r b a n c e v a r i a b l e s are d i f f i c u l t t o c o n t r o l on l i n e because they depend on f a c t o r s which are o u t s i d e the c o n t r o l of the f l o t a t i o n column operator.' For c o a l , such f a c t o r s i n c l u d e f l u c t u a t i n g p e t r o g r a p h i c composition, f e e d ash c o n t e n t and s i z e d i s t r i b u t i o n . Often these v a r i a b l e s are extremely d i f f i c u l t t o q u a n t i f y on l i n e though they d i r e c t l y a f f e c t the c o n t r o l l e d v a r i a b l e s . The second group of v a r i a b l e s , measured v a r i a b l e s , are those which can be measured by sensors on l i n e . They i n c l u d e stream assays, v o l u m e t r i c flowra t e s , p u l p d e n s i t i e s , p a r t i c l e s i z e d i s t r i b u t i o n s , p u lp l e v e l and reagent c o n c e n t r a t i o n s . C o n t r o l l e d v a r i a b l e s are those which are c o n t r o l l e d t o a s e t p o i n t by m a n i p u l a t i o n of other v a r i a b l e s . Product ash content, r e c o v e r y (of combustibles) , bubble s i z e and f r o t h depth are c o n t r o l l e d 27 v a r i a b l e s . Manipulated v a r i a b l e s are those which can be manipulated i n o r d e r to c o n t r o l the c o n t r o l l e d v a r i a b l e s . For example, p r o d u c t ash content can be c o n t r o l l e d by manipulable v a r i a b l e s such as reagent dosages, a e r a t i o n i n t e n s i t y and p u l p l e v e l . As shown r e s p e c t i v e l y i n Tables 1(a) and 1(b), t h e r e i s s t r o n g i n t e r a c t i o n between the four c a t e g o r i e s of v a r i a b l e s i n f l o t a t i o n column and mechanical c e l l s . To a c e r t a i n extent, c o n t r o l l e d and measured v a r i a b l e s depend on the manipulated v a r i a b l e s . The measured v a r i a b l e s form the b a s i s of p r e s e n t day f l o t a t i o n process c o n t r o l s t r a t e g i e s . This chapter i s a l i t e r a t u r e review of t h e i n f l u e n c e of the manipulated v a r i a b l e s : feed r a t e , feed p e r c e n t s o l i d s , gas r a t e , washwater a d d i t i o n r a t e , f r o t h e r c o n c e n t r a t i o n , c o l l e c t o r c o n c e n t r a t i o n , f r o t h depth and feed p a r t i c l e s i z e on f l o t a t i o n response i n f l o t a t i o n columns i n g e n e r a l . The i n f l u e n c e of the manipulated v a r i a b l e s : feed percent s o l i d s , i m p e l l e r speed, a i r f l o w r a t e , f r o t h e r c o n c e n t r a t i o n , c o l l e c t o r c o n c e n t r a t i o n and f l o t a t i o n time on f l o t a t i o n response i n mechanical c e l l s i s i n c l u d e d . The manipulated v a r i a b l e s form the b a s i s o f experimental testwork conducted i n t h i s t h e s i s , i n a p i l o t f l o t a t i o n column and a batch mechanical c e l l . 28 Table 1: Variables of Importance i n Coal f l o t a t i o n a) Column F l o t a t i o n (modified a f t e r Y n c h a u s t i et a l (33)) 1. Disturbance C o a l rank and type C o a l o x i d a t i o n U n c o n t r o l l e d feed r a t e f e e d s i z e d i s t r i b u t i o n Water c h a r a c t e r i s t i c s 2. Measured Assays (% ash, % Fe) V o l u m e t r i c flow r a t e s P u l p d e n s i t i e s P u l p l e v e l Gas h o l d up B i a s r a t e 3. Controlled Recovery (yield) Product ash content F r o t h depth Bubble s i z e Column zone l e n g t h 4. Manipulated P h y s i c a l Chemical A e r a t i o n Reagent dosages Pulp L e v e l Reagent a d d i t i o n B i a s r a t e p o i n t s C o n d i t i o n i n g time C o a r s e / f i n e s p l i t F r o t h s p r i n k l i n g r a t e 2 9 Table 1: Variables of Importance i n Coal F l o t a t i o n b) Mechanical C e l l s ( a f t e r Herbst and Bascur ( 5 7 )  1. Disturbance 2. Measured Coal rank and type Assays (% ash, % Fe) Coal O x i d a t i o n V o l u m e t r i c flow r a t e s U n c o n t r o l l e d feed r a t e P u l p d e n s i t i e s Feed s i z e d i s t r i b u t i o n P u l p l e v e l Presence of c l a y s l i m e s Torque (power) Water composition Controlled 4. Manipulated Recovery ( y i e l d ) Product ash content C i r c u l a t i n g loads F r o t h depth Percent s o l i d s P h y s i c a l Chemical A e r a t i o n Reagent dosages Im p e l l e r speed Reagent a d d i t i o n p o i n t s Pulp l e v e l C o n d i t i o n i n g time C o a r s e / f i n e s p l i t F r o t h s p r i n k l i n g r a t e 30 3.1 Flotation Columns 3.1.1 Influence of Feed rate The feed r a t e to a f l o t a t i o n column i s the primary v a r i a b l e which a f f e c t s the p a r t i c l e s ' residence time, and u l t i m a t e l y how much m a t e r i a l i s f l o a t e d per u n i t time. For a f l o t a t i o n column of f i x e d h e i g h t and diameter, i n c r e a s i n g the feed r a t e reduces the recovery and i n c r e a s e s the grade (32) . The l o s s i n recovery i s because as the f e e d r a t e i s i n c r e a s e d , the i n t e r s t i t i a l l i q u i d v e l o c i t y and a x i a l d i s p e r s i o n are i n c r e a s e d according t o equation (1.2). The i n c r e a s e i n a x i a l d i s p e r s i o n leads to l o s s of recovery a c c o r d i n g t o equation (1.1). Within p r a c t i c a l l i m i t s , t h i s l o s s i n r e c o v e r y can be compensated f o r by i n c r e a s i n g the gas r a t e . However, i n c r e a s i n g the gas r a t e a l s o i n c r e a s e s feed water entrainment t o the f r o t h zone with a consequent l o s s i n grade q u a l i t y . 3.1.2 Influence of Feed Percent Solids Feed percent s o l i d s by i t s e l f appears t o have l i t t l e e f f e c t on m e t a l l u r g i c a l performance as long as the c a r r y i n g c a p a c i t y of the column i s not exceeded. Feed streams c o n t a i n i n g i n excess of 30 percent c o a l s o l i d s have been f l o a t e d (4) with no apparent e f f e c t 31 on r e c o v e r y or concentrate grade. When c a r r y i n g c a p a c i t y i s not a c o n s t r a i n t , o p e r a t i n g a f l o t a t i o n column at hig h percent s o l i d s has the f o l l o w i n g advantages: (1) The a x i a l d i s p e r s i o n c o e f f i c i e n t i s reduced making flow-c o n d i t i o n s i n s i d e the column c l o s e r t o p l u g flow, and (2) C o l l e c t i o n zone r e t e n t i o n time i s i n c r e a s e d by h i n d e r e d s e t t l i n g . A s t r o n g i n t e r a c t i o n between the f e e d p e r c e n t s o l i d s and gas r a t e has been observed (34). The fe e d p e r c e n t s o l i d s and gas r a t e were c o r r e l a t e d t o the a x i a l d i s p e r s i o n c o e f f i c i e n t by E - 2 .98Z?c' 3 1 V f f EXP(-0 . 025S) (3.1) where Dc i s the diameter of the column and S i s the feed p e r c e n t s o l i d s . 3.1.3 Influence of Gas Rate The e f f e c t of gas r a t e on the performance o f a f l o t a t i o n column has been s t u d i e d by many authors (15,34,35). The gas r a t e has a s i g n i f i c a n t impact on the m e t a l l u r g y of both the c o l l e c t i o n and f r o t h zones. In the c o l l e c t i o n zone, i t has been shown (35,36) t h a t the r a t e 32 of f l o t a t i o n i s d i r e c t l y p r o p o r t i o n a l to the gas r a t e . The r a t e of f l o t a t i o n i s given by i c - l ^ ( 3 . 2 ) where V g i s the s u p e r f i c i a l gas r a t e , E i s the c o l l e c t i o n e f f i c i e n c y , or f r a c t i o n of a l l p a r t i c l e s swept out by the p r o j e c t e d area of the bubble that c o l l i d e with, a t t a c h t o , and remain at t a c h e d to the bubble u n t i l r e a c h i n g the c l e a n i n g zone (7) , d b i s the bubble diameter. Some r e s e a r c h e r s , f o r example Yoon et a l ( 6 7 ) , p r e f e r t o use the p r o b a b i l i t y of c o l l e c t i o n , P ( d e f i n e d as the f r a c t i o n of p a r t i c l e s i n the path of a bubble t h a t i s a c t u a l l y c o l l e c t e d by the bubble) i n p l a c e of the c o l l e c t i o n e f f i c i e n c y E i n equation ( 3 . 2 ) . T h i s i m p l i e s t h a t E and P are e s s e n t i a l l y the same q u a n t i t y . I n c r e a s i n g the gas r a t e has the e f f e c t of i n c r e a s i n g the bubble s i z e and a i r hold up. The bubble s i z e i s r e l a t e d to the a i r f l o w r a t e by (35) db-cv£ (3-3) where c i s the constant of p r o p o r t i n a l i t y and the exponent n i s dependent on sparger m a t e r i a l . Values of n which have been measured i n l a b o r a t o r y f l o t a t i o n columns are : 0 . 2 5 f o r a s t e e l s p a r g e r and 0 . 2 2 f o r a c l o t h sparger ( 6 , 3 5 ) . 33 I n c r e a s i n g the bubble s i z e reduces the c o n t a c t area between bubbles and p a r t i c l e s l e a d i n g to poor f l o t a t i o n r a t e s . The i n c r e a s e i n bubble s i z e caused by i n c r e a s e d gas r a t e can be compensated f o r by adding more f r o t h e r . However, t h e r e i s a l i m i t to the amount of f r o t h e r which can be e c o n o m i c a l l y added. Hence, the r e i s a l i m i t by which the gas r a t e can be m a n i p u l a t e d t o i n c r e a s e the r a t e of f l o t a t i o n . A x i a l d i s p e r s i o n i n the c o l l e c t i o n zone i s a l s o a f u n c t i o n of the gas r a t e (equation 1.6) . Since a major o b j e c t i v e when o p e r a t i n g a f l o t a t i o n column i s t o maintain as near p l u g flow c o n d i t i o n s as p o s s i b l e , t h e r e i s a l s o a l i m i t to the amount of gas which can be added. In the f r o t h zone, gas r a t e i s also an important f a c t o r . As the gas r a t e i s i n c r e a s e d , gas h o l d up i n the f r o t h zone d e c r e a s e s . This decrease i s caused by feed water entrainment t o t h e f r o t h zone which reduces the f r o t h zone volume by i n c r e a s i n g the c o l l e c t i o n zone volume. Increasing washwater a d d i t i o n can s t a b i l i z e the f r o t h zone and improve d e t e r i o r a t i n g c o n c e n t r a t e grades. Hence t h e r e i s an apparent i n t e r a c t i o n between the gas r a t e and washwater a d d i t i o n r a t e . 3.1.4 Influence of Washwater Addition Rate Not everyone agrees with the concept o f adding washwater t o column c e l l s , as evidenced by the designs employed i n E a s t European c o u n t r i e s (37). Brenda Mines L t d . , B r i t i s h Columbia, a l s o do not add water t o t h e i r copper and molybdenum c l e a n e r column c e l l s . N e v e r t h l e s s , i t i s widely accepted, p a r t i c u l a r l y i n North and South America, t h a t f l o t a t i o n columns owe most of t h e i r s u p e r i o r performance over mechanical c e l l s t o the washing away of l o o s e l y attached and e n t r a i n e d h y d r o p h i l i c gangue m i n e r a l s from the f r o t h zone by m a i n t a i n i n g a net downward flow of water, c a l l e d p o s i t i v e b i a s , through the f r o t h zone. The washwater serves f o u r p r i n c i p l e s purposes: (1) H y d r o p h i l i c gangue minerals, which e n t e r the f r o t h zone e i t h e r by l o o s e l y a t t a c h i n g themselves t o bubbles, or by h y d r a u l i c entrainment i n wakes behind bubbles, are washed back to the c o l l e c t i o n zone. (2) Feed water i s prevented from r e p o r t i n g t o the c o n c e n t r a t e so t h a t as l i t t l e of i t as p o s s i b l e r e p o r t s to the c o n c e n t r a t e . Dobby (6) estimated t h i s amount as one p e r c e n t of the v o l u m e t r i c feed water. (3) The column i s able t o operate under a p o s i t i v e b i a s mode (29) (4) F r o t h depth and f r o t h s t a b i l i t y are i n c r e a s e d (27) . Adding ex c e s s i v e washwater i n c r e a s e s mixing i n the zone and d e s t a b i l i s e s the f r o t h . Thus, a n e c e s s a r y t o add a minimum amount of washwater. c o l l e c t i o n o b j e c t i v e i s 35 3.1.5 Influence of Froth Depth Cleaning action in the f r o t h zone i s influenced not so much by the f r o t h depth as by i t s interaction with other variables. Most plant experiences suggest froth depth has no s i g n i f i c a n t e f f e c t on metallurgy (38). For example, Clingan and McGregor (24) varied the f r o t h depth in a 12 m plant column from 0.6 m to 1.0 m while maintaining other variables constant. Their r e s u l t s over the range investigated indicated that froth depth had l i t t l e or no eff e c t on concentrate grade or recovery of copper and molybdenum. There i s s i g n i f i c a n t i n t e r a c t i o n between the f r o t h depth, washwater addition rate and gas rate, as discussed i n the preceding sections. 3.2 Mechanical C e l l s 3.2.1 Influence of A i r Flowrate and Impeller Speed Experience has shown that a i r flowrate and impeller speed are both important factors i n achieving good f r o t h f l o t a t i o n of coal (58,57,56). Arbiter et a l (58) have shown that f l o t a t i o n recoveries can be re l a t e d to the a i r flowrate number, N by N = _Q_ (3.4) ND2 where Q = a i r flowrate, N = impeller speed, and D = impeller diameter. Too low an impeller speed results i n i n s u f f i c i e n t mixing, poor 36 e m u l s i f i c a t i o n and d i s p e r s i o n of reagents and inadequate bubble-p a r t i c l e c o l l i s i o n . On the other hand, e x c e s s i v e l y h i g h speeds can d e s t r o y a i r d i s p e r s i o n , d i s r u p t bubble p a r t i c l e attachment and produce an unstable f r o t h . The r a t e of f l o t a t i o n i n c r e a s e s with i n c r e a s i n g a i r f l o w r a t e , w i t h i n p r a c t i c a l l i m i t s (41). When the a i r f l o w r a t e i s i n c r e a s e d , the power i n t e n s i t y of the c e l l decreases, g i v i n g r i s e t o the p r o d u c t i o n of large bubbles which cause d e t e r i o r a t i o n o f f l o t a t i o n behaviour (57). This d e t e r i o r a t i o n i n f l o t a t i o n behaviour can be seen as i n c r e a s e d ash r e p o r t i n g to the concentrate. Only when the i m p e l l e r speed i s a d j u s t e d a c c o r d i n g l y w i l l an i n c r e a s i n g a i r f l o w r a t e produce an i n c r e a s e i n r e c o v e r y without i n c r e a s i n g the product ash c o n t e n t . 3.2.2 Influence of Feed Percent Solids Crawford (61) r e p o r t e d i n 1936 that the b e s t s o l i d s c o n c e n t r a t i o n f o r c o a l f l o t a t i o n was around 12 percent by weight. Everson (62) showed t h a t the optimum percent s o l i d s i s somewhat dependent on the c o n c e n t r a t i o n of f r o t h e r used; h i g h e r percent s o l i d s r e q u i r i n g higher f r o t h e r l e v e l s . Gayle and Eddy (63) r e p o r t e d t h a t more that 20 p e r c e n t s o l i d s i s d e t r i m e n t a l to f l o t a t i o n while Davis (64) has i n d i c a t e d that 18 p e r c e n t s o l i d s i s the maximum d e s i r a b l e . 3.3 Influence of Frother Concentration F r o t h e r s f a c i l i t a t e the formation of s t a b l e f r o t h s and r e g u l a t e 37 the bubble s i z e . The s i z e , number and s t a b i l i t y o f bubbles d u r i n g f l o t a t i o n can be r e g u l a t e d by c a r e f u l m a n i p u l a t i o n of the f r o t h e r c o n c e n t r a t i o n and gas r a t e . For a f i x e d gas r a t e , i n c r e a s i n g f r o t h e r c o n c e n t r a t i o n i n c r e a s e s the gas h o l d up i n the c o l l e c t i o n zone as s m a l l e r bubbles are produced. Because s m a l l e r bubbles have a lower r i s e v e l o c i t y , t h e r e i s an i n c r e a s e i n gas h o l d up i n the c o l l e c t i o n zone (38). Smaller bubbles a l s o mean a g r e a t e r s u r f a c e a r e a of gas cr o s s e s the pulp / f r o t h i n t e r f a c e per u n i t time ( s u r f a c e area r a t e ) . Consequently more water i s e n t r a i n e d i n t o the f r o t h zone, accompanied by a l o s s of concentrate grade. Dobby and F i n c h (35) suggest that i n g e n e r a l t h e r e appears t o be l i t t l e , i f any, b e n e f i t s to be gained from g e n e r a t i n g bubbles l e s s than about 0.5 mm i n diameter. F r o t h e r s commonly used i n c o a l f l o t a t i o n are Dowfroth M-150, commercial grade pine o i l , methyl i s o b u t y l c a r b o n o l (MIBC) and a combination of these f r o t h e r s . 3.4 Influence of Co l l e c t o r Concentration Coal i s h i g h l y hydrophobic, r e q u i r i n g o n l y r e l a t i v e l y small dosages o f c o l l e c t o r t o make i t f l o a t . C o l l e c t o r s commonly used are o i l based. Kerosene and f u e l o i l are the most po p u l a r . 38 S u f f i c i e n t c o l l e c t o r should be added to ensure t h a t the f l o t a t i o n r a t e s of the combustible p a r t i c l e s are h i g h . An i n c r e a s e i n the a d d i t i o n r a t e of c o l l e c t o r may e i t h e r i n c r e a s e or decrease s o l i d s r e c o v e r y and concentrate ash (39) . I f the i n i t i a l c o l l e c t o r a d d i t i o n i s low, f u r t h e r c o l l e c t o r a d d i t i o n i n c r e a s e s the h y d r o p h o b i c i t y and f l o a t a b i l i t y of the c o a l p a r t i c l e s r e s u l t i n g i n i n c r e a s e d recovery. However, when i n i t i a l c o l l e c t o r a d d i t i o n s are a l r e a d y high, i n c r e a s e d c o l l e c t o r a d d i t i o n w i l l have no e f f e c t on p a r t i c l e h y d r o p h o b i c i t y . Current p r a c t i c e i n c o a l f l o t a t i o n i n North America i s t o f l o a t w i t h i n a feed percent s o l i d s i n the range 3 to 20 p e r c e n t , with an approximate average of about 7 p e r c e n t . The c o a r s e r the p a r t i c l e s i n the feed the higher the p u l p d e n s i t y , and the f i n e r the p a r t i c l e s , the lower the pulp d e n s i t y . 3.5 Influence of Conditioning Time A c o n d i t i o n i n g p e r i o d i s o f t e n i n c o r p o r a t e d ahead of f l o t a t i o n . The c o n d i t i o n i n g time i n c o a l f l o t a t i o n depends mostly on the type of reagents used, rank of c o a l and type of f l o t a t i o n c i r c u i t i n use. In p r a c t i c e , the average c o n d i t i o n i n g time v a r i e s w i t h i n the range 2 t o 5 minutes (45) . Common i n d u s t r i a l feed p u l p c o n d i t i o n i n g s t r a t e g i e s i n c l u d e s i n g l e stage c o n d i t i o n i n g where a c o n d i t i o n i n g tank i s i n c o r p o r a t e d i n t o the f l o t a t i o n c i r c u i t ahead of a bank o f rougher f l o t a t i o n c e l l s . The f r o t h e r i s added e i t h e r j u s t b e f o r e 39 the f e e d e n t e r s the f i r s t f l o t a t i o n c e l l , or d i r e c t l y i n t o t h e f i r s t c e l l ; two stage c o n d i t i o n i n g where the c o l l e c t o r i s added at two p o i n t s , i n t o the c o n d i t i o n e r and j u s t p r i o r to the f i r s t f l o t a t i o n c e l l ; and two stage reagent a d d i t i o n where reagents are added t o the f i r s t bank of f l o t a t i o n c e l l s and a product i s c o l l e c t e d . The t a i l i n g s from the f i r s t bank of c e l l s are then r e c o n d i t i o n e d with more reagents and r e f l o a t e d . The p r a c t i c e at Bullmoose Coal Mine f a l l s i n t o the f i r s t c a t e g o r y ( s i n g l e stage c o n d i t i o n i n g ) where kerosene c o l l e c t o r i s added d i r e c t l y i n t o the f l o t a t i o n feed sump. The c o n d i t i o n e d f e e d i s then pumped i n t o a d i s t r i b u t i o n box where i t s p l i t s and e n t e r s two rows of Denver c e l l s . The MIBC f r o t h e r i s one stage dosed e i t h e r i n t o the f i r s t c e l l s on both rows of Denver c e l l s or i n t o the f e e d p i p e s r i g h t a f t e r the d i s t r i b u t i o n box (64). 3 . 6 P a r t i c l e Size The problem of p a r t i c l e s i z e v a r i a t i o n s i n c o a l f l o t a t i o n c i r c u i t s has been addressed by many authors (39,40,41,42,43). I t i s g e n e r a l l y c onsidered uneconomic to use f r o t h f l o t a t i o n f o r c o a l p a r t i c l e s above 600 um (44). The i d e a l s i z e of f l o t a t i o n feed was r e p o r t e d by Ozbayoglu (45) to be i n the range minus 300 Um to 150 Um. It has been suggested by Misra and H a r r i s (4 6) t h a t mechanical c e l l s are s u p e r i o r machines f o r f l o a t i n g c o a l feed w i t h a s i z e range above 80 um. Conversely, they concluded t h a t c o a l f i n e s 40 c o n t a i n i n g m i n u s 75 Jim m a t e r i a l p r o v i d e s t h e i d e a l f e e d f o r f l o t a t i o n i n a c o l u m n c e l l . I n c o n t r a s t , h o w e v e r , Reddy e t a l (47) o b s e r v e d f l o t a t i o n c o l u m n s t o be s u p e r i o r t o m e c h a n i c a l c e l l s when f l o a t i n g c o a l f i n e s < 500 Jim, t h e s i z e f r a c t i o n n o r m a l l y f l o a t e d i n m e c h a n i c a l c e l l s . O t h e r r e s e a r c h e r s ( 3 , 4 , 4 8 ) have o b s e r v e d f l o t a t i o n c o l u m n s t o g i v e s a t i s f a c t o r y p e r f o r m a n c e f o r s i z e f r a c t i o n s b e l o w 600 Jim. T h u s , i t w o u l d a p p e a r t h a t t h e p a r t i c l e s i z e f l o a t e d i n f l o t a t i o n c o l u m n s d e p e n d s on a c h i e v i n g t h e r i g h t c o m b i n a t i o n s o f g a s r a t e , r e a g e n t d o s a g e s , f r o t h d e p t h , f e e d r a t e a n d f e e d p e r c e n t s o l i d s . 3.7 Summary A number o f p a r a m e t e r s a f f e c t s t h e m e t a l l u r g i c a l p e r f o r m a n c e o f a f l o t a t i o n c o l u m n . T h e r e i s s t r o n g i n t e r a c t i o n b e t w e e n m o s t o f t h e p a r a m e t e r s , so t h a t t h e t r a d i t i o n a l a p p r o a c h o f s t u d y i n g t h e p a r a m e t e r s one a t a t i m e seems i n a d e q u a t e . F o r e x a m p l e , w h i l e t h e f r o t h d e p t h a l o n e a p p e a r s t o h a v e l i t t l e e f f e c t on t h e p e r f o r m a n c e o f t h e c o l u m n , i t s i n t e r a c t i o n w i t h t h e f r o t h e r c o n c e n t r a t i o n , gas r a t e and w a s h w a t e r r a t e a p p e a r s t o b e s i g n i f i c a n t . 41 CHAPTER 4 APPARATUS, SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURE 4.1 Description of Apparatus and Equipment Test work was conducted i n two l a b o r a t o r y f l o t a t i o n u n i t s ; a 6.35 cm I .D . x 5.5 m h i g h f l o t a t i o n column, and a 5 l i t r e A g i t a i r mechanical c e l l . 4.1.1 F l o t a t i o n Column The f l o t a t i o n column was co n s t r u c t e d from 9 x 61 cm p l e x i g l a s s t u b i n g f l a n g e d s e c t i o n s (Figure 5) . Each s e c t i o n has a plugged 2.54 cm diameter p o r t l o c a t e d i n the middle t o enable the f e e d l o c a t i o n p o i n t t o be v a r i e d s h o u l d the need a r i s e . The f l a n g e d s e c t i o n s were s e a l e d by O - r i n g s and b o l t e d together t o prevent leakage. The column i s kept i n a v e r t i c a l p o s i t i o n by c o l l a r clamps. Feed Location The f e e d e n t r y p o i n t i n f l o t a t i o n column i s t y p i c a l l y between 0.6 and 0.8 times the o v e r a l l height of the column. The f e e d e n t e r e d the column 7 6 cm below the overflow l i p . Feed Preparation Tank Feed s l u r r y was c o n d i t i o n e d i n a 50 l i t r e p l a s t i c tank t o which the r e q u i r e d dosages of f r o t h e r and c o l l e c t o r were added. The fee d was c o n d i t i o n e d f o r 5 minutes p r i o r to s t a r t i n g the f e e d pump. The feed 42 Air to and from Solenoid Valva 1. WaBhwater Distributor 2. Level Switch 3. Concentrate Launder 4. Air Sparger 5. Pinch Valve 6. Gate Valve 7, RefusB B. Feed Tank 9. Mixer 10. Pump Figure 5: Flotation Column Equipment Setup 43 r a t e t o the column was r e g u l a t e d by a r e c i r c u l a t i n g l i n e back to the c o n d i t i o n i n g tank. The f e e d was kept i n suspension by a 1/3 Hp a g i t a t o r . Washwater Dis t r i b u t o r A c i r c u l a r copper tube of dimeter 6.35 mm w i t h 0.635 mm h o l e s l o c a t e d at the same l e v e l as the o v e r f l o w l i p was used to d i s t r i b u t e washwater i n the f r o t h zone. Washwater was d i r e c t l y s u p p l i e d from the l a b o r a t o r y ' s main water l i n e . A v a r i a b l e area flowmeter was used to measure the washwater f l o w r a t e . A i r Supply A i r was i n t r o d u c e d i n t o the column through a p l a s t i c porous sp a r g e r . The a i r flowrate was measured by a rotameter. Concentrate Launder C l e a n c o a l overflowed i n t o a 15 cm I.D. c o n c e n t r a t e launder made from p l e x i g l a s s . Pulp Level Control Three major components, a Gems l e v e l switch, a S o l e n o i d v a l v e , and a pnuematic p i n c h valve were used f o r pulp l e v e l c o n t r o l . The l e v e l s w i t c h c o n s i s t s of a f l o a t connected t o a r e c e i v e r by two e l e c t r i c a l connections. The f l o a t i s p l a c e d i n a p l e x i g l a s s manometer t u b i n g attached to the column 107 cm above the feed p o i n t . The f l o a t can be a d j u s t e d to any h e i g h t ( l e v e l ) r e q u i r e d . 44 a) Low pulp level Air To Valve (Valve Closed) Level Switch Open Solenoid Valve A i r Release Closed O 120 V Regulated High Pressure Air b) High pulp level Air From Pinch Valve (Valve Open} Level Switch Closed  Solenoid Valve Air Release Open (Air Out) ' o 120 V Regulated High "Pressure Air Figure 6: Level Control Circui t 45 The l e v e l c o n t r o l system does not d e t e c t the p u l p / f r o t h i n t e r f a c e as such. I t measures the d i f f e r e n c e i n height between t h e o v e r f l o w l i p and the height of f r o t h i n the manometer tube. The term f r o t h depth as used here ref.ers t o t h i s d i f f e r e n c e i n h e i g h t between the c e l l overflow l i p and the f r o t h h e i g h t i n the manometer tube. The l e v e l c o n t r o l c i r c u i t r y i s shown i n F i g u r e 6. I t o p e r a t e s as f o l l o w s . When the pulp l e v e l i s at a high p o i n t , the s w i t c h i s c l o s e d . The a i r r e l e a s e i s opened and a i r escapes from the p i n c h v a l v e . T h i s a c t i o n causes the p i n c h valve t o open and the p u l p l e v e l t o f a l l . The l e v e l s w i tch opens causing t h e a i r r e l e a s e t o c l o s e and h i g h pressure a i r to flow to the p i n c h v a l v e . The p i n c h v a l v e i s compressed and the l e v e l s t a r t s to r i s e s a g a i n . T h i s c y c l e i s repeated during o p e r a t i o n . C o n t r o l a c t i o n i s thus e s s e n t i a l l y On/Off a c t i o n which r e s u l t s i n continuous c y c l i n g of the p u l p . The extent of c y c l i n g was minimised by i n s t a l l i n g a p a r t i a l l y c l o s e d 1.27 cm ( h a l f inch) gate v a l v e below the p i n c h v a l v e . C y c l i n g was l i m i t e d t o ± 0.5 cm, r e p r e s e n t i n g 16 cm3 (0.016 1) of s l u r r y . A s i m i l a r c o n t r o l system was used by van D i e r e n (50) f o r p o t a s h f l o t a t i o n . C y c l i n g was observed to have l i t t l e e f f e c t on m e t a l l u r g i c a l performance. It i s , however, s t r e s s e d t h a t t h i s system i s not i d e a l f o r 46 c o n t r o l l i n g pulp l e v e l i n f l o t a t i o n columns. The s t r a t e g i e s d i s c u s s e d i n Chapter 1 are recommended. The system used here was chosen p u r e l y as a r e s u l t of budget c o n s t r a i n t s . 4.1.2 Batch Mechanical C e l l The A g i t a i r mechanical c e l l was equipped w i t h a v a r i a b l e speed i m p e l l e r with a range of 700 to 1 300 rpm. A i r i n t o the c e l l was measured by a rotameter. 4.2 Sample Preparation Run-of-mine c o a l s u p p l i e d by Bullmoose C o a l Mine l o c a t e d i n n o r t h e a s t e r n B r i t i s h Columbia was used i n a l l the testwork. The c o a l was a b l e n d of seams B and C i n a r a t i o of 70:30. The average ash content was assayed at UBC at 19.5 % ash. The c o a l b l e n d was d r i e d and stage crushed t o pass a 1.18 mm s i e v e . The feed was ground to 96 % < 600 Um, comparable t o the f l o t a t i o n f e e d at Bullmoose c o a l Mine which i s approximately 96 % < 600 um. The r e l e v a n t s i z e r e d u c t i o n steps are shown i n F i g u r e 7. The p a r t i c l e s i z e d i s t r i b u t i o n and ash a n a l y s e s produced by rod m i l l g r i n d i n g are compared to the f l o t a t i o n f e e d at Bullmoose Mine i n Appendix 2 . The Bullmoose Mine data i s from samples taken dur i n g the p e r i o d January to A p r i l , 1989. 47 Run—of—Mine—Coal Oversize •0.6 mm coal Oversize 1.18 mm Hammer mil l Figure 7: Size Reduction Flowsheet 48 4.3 Experimental Procedure F r a c t i o n a l 2 l e v e l f a c t o r i a l designs were employed t o o p t i m i s e the performance of the f l o t a t i o n column and the b a t c h mechanical c e l l u s i n g the e f f i c i e n c y index (49) as the p r i m a r y o p t i m i s a t i o n c r i t e r i o n . The e f f i c i e n c y index i s d e f i n e d by Efficiencylndex.E- Y i e l d x ^ ^ g s ash product ash ( 4 . i ; The y i e l d r e f e r s to the weight percentage of m a t e r i a l f e d to a c o a l p r e p a r a t i o n process which reports to the c o n c e n t r a t e ; t h a t i s , Yield, wt%- wt- o f c l e a n c o a l ^coveredx 1 Q Q % wt. of feed coal treated From the two product formula, u s i n g ash a n a l y s e s of the feed, c o n c e n t r a t e and t a i l i n g s , the y i e l d of c l e a n c o a l i s c a l c u l a t e d as f o l l o w s ; Yield, Y = Feed ash - Tailings ash x 1 0 Q % Product ash - Tailings ash (4.2) The e f f i c i e n c y index i s s t r u c t u r e d so t h a t h i g h values of i t r e p r e s e n t a h i g h q u a l i t y clean c o a l , and v i c e v e r s a . Thus a primary o b j e c t i v e of any c o a l c l e a n i n g p l a n t o p t i m i s a t i o n s t r a t e g y i s to o b t a i n the highest p o s s i b l e value of the e f f i c i e n c y index. O p t i m i s a t i o n was e f f e c t e d i n 3 steps, as f o l l o w s , (1) A s c r e e n i n g design y i e l d i n g a f i r s t o r d e r d e s i g n was employed 49 t o determine the l o c a l s l ope of the response s u r f a c e . (2) The optimum r e g i o n was approached u s i n g the s t e e p e s t ascent method, and (3) A c e n t r a l composite design which y i e l d s a second o r der design was employed t o obtain a l o c a l slope of the optimum.region. 4.3.1 Feed Conditioning In a l l the f l o t a t i o n t e s t s c a r r i e d out, feed c o n d i t i o n i n g was c a r r i e d out i n accordance w i t h the procedure recommended by Osborne (65) when conducting batch f l o t a t i o n t e s t s . The p u l p was mixed f o r 5 minutes at the a p p r o p r i a t e pulp d e n s i t y p r i o r t o reagent a d d i t i o n . S l u r r y c o n d i t i o n i n g (after mixing) was m a i n t a i n e d at 5 minutes. A s i m i l a r procedure has been used by R a s t o g i and Apian (56) on a P i t t s b u r g h c o a l sample using f u e l o i l as a c o l l e c t o r and MIBC as f r o t h e r . 4.3.2 Sampling The sampling campaign f o r the f l o t a t i o n column was conducted a c c o r d i n g to Table 2. Raw data c o n s i s t e d of the f o l l o w i n g items: (1) f e e d v o l u m e t r i c flowrate, Qf (2) concentrate v o l u m e t r i c flowrate, Qc (3) t a i l i n g s v o l u m e t r i c f l o w r a t e , Qt (4) p e r c e n t s o l i d s i n the i n d i v i d u a l streams (5) washwater f l o w r a t e (6) ash analyses f o r the feed, concentrate and t a i l i n g s The a c t u a l experimental procedures are shown i n Appendix 12. A l l the d a t a sheets are shown i n Appendix 13. 50 TABLE 2: COLUMN FLOTATION DATA SHEET DATE: RUN FLOTATION CONDITIONS Conditioning Time (min) Feed % Solids Feed rate (l/min) Air Flowrate (l/min) Washwater Flowrate (l/min) Frother Concentration (g/t) Collector Concentration (g/t) Froth Depth, ft Sampling Time, t (min) (1) Volume of f i l t r a t e (1) (2) Mass of wet f i l t e r cake (g) (3) Mass of dry f i l t e r cake (g) (4) % s o l i d s in concentrate (1) Volume of f i l t r a t e (1) (2) Mass of wet f i l t e r cake (g) (3) Mass of dry f i l t e r cake (g) (4) % solids in t a i l i n g s FLOTATION RESULTS A. CONCENTRATE STREAM B. TAILINGS STREAM C. ASH ANALYSES (1) (2) (3) Feed % ash Concentrate % ash Tailings % ash 4.3.3 Data Adjustment Raw data c o n t a i n e r r o r s which a r i s e from three p r i n c i p l e causes: (1) b i a s e r r o r due to instrument p r e c i s i o n , or measurement e r r o r s (2) e r r o r a s s o c i a t e d with random p r o c e s s f l u c t u a t i o n s (3) sampling e r r o r s . The data were s t a t i s t i c a l l y a d j u s t e d using t h e Simplex d i r e c t s e a r c h r o u t i n e (51,52). Search v a r i a b l e s were chosen from which a l l measured v a r i a b l e s could be p r e d i c t e d . The search r o u t i n e minimises the o b j e c t i v e f u n c t i o n OF - Y (Mi " M l )2 (4.3) Af-where ML i s a measured v a r i a b l e (raw data) , H i i s the p r e d i c t e d v a l u e of the measured v a r i a b l e . F i g u r e 8 shows mass b a l a n c i n g around the f l o t a t i o n column. The mass b a l a n c i n g r e l a t i o n s h i p s are: (a) S o l i d s Balance: F = C + T (4.4) (b) Water Balance: Wf + Ww = Wc + Wt (4.5) (c) Ash Balance: F.A f = C.AC + T.At (4.6) where F i s the s o l i d s f e e d r a t e , C i s the s o l i d s c o n c e n t r a t e r a t e , T i s the t a i l i n g s o l i d s r a t e , Wf i s the feed water r a t e , Ww i s the washwater f l o w r a t e , Wc i s the c o n c e n t r a t e water r a t e , Wt i s the t a i l i n g s water r a t e , A f i s the feed percent ash content, A c i s the c o n c e n t r a t e percent ash content, and A t i s the t a i l i n g s p e r c e n t ash c o ntent. 5 2 Qf.Pf Wf,F,Af Air Ww Qc,Pc Wc,C,Ac Qt.Pt ¥t ,T,At Figure 8: Material balance Around Flotat ion Column 5 3 From the mass balance r e l a t i o n s h i p s , seven s e a r c h v a r i a b l e s , 6, T, Ww, Wf, Wc, A c and At were chosen f o r data adjustment. The ' s t a n d s f o r search v a r i a b l e . Measured data p o i n t s were p r e d i c t e d from the f o l l o w i n g r e l a t i o n s h i p s C » £ ? c x P c (4.7) f = £ > t x P c (4.8) Ww = Ww (4.9) Wf - Q£ (1-P f) (4.10) Wc = O e(l-P e) Af = Af (4.12) £t-At (4.13) A flowsheet and a BASIC program showing the search r o u t i n e are i n c l u d e d i n Appendix 3 and 4, r e s p e c t i v e l y . Due to i t s batch mode of operation, data from the mechanical c e l l was not adjusted, s i n c e masses c o u l d be determined w i t h g r e a t e r p r e c i s i o n . 4.3.4 Screening Designs Seven v a r i a b l e s , feed r a t e , Cx ( l / m i n ) , f e e d percent s o l i d s , C 54 gas ( a i r ) r a t e , C 3 (l/min) , washwater r a t e , C 4 ( l / m i n ) , f r o t h e r c o n c e n t r a t i o n , C5, ( g / t ) , c o l l e c t o r c o n c e n t r a t i o n , C s, ( g / t ) , and f r o t h depth, C7 (cm) were i n c o r p o r a t e d i n t o a 2IV 7 - 3 f r a c t i o n a l f a c t o r i a l design. A. 2 I V 6 - 2 design with v a r i a b l e s , f e e d percent s o l i d s , Mlr i m p l e l l e r speed, M2, a i r f l o w r a t e , M3, . (l/min) , c o l l e c t o r c o n c e n t r a t i o n , M4 ( g / t ) , f r o t h e r c o n c e n t r a t i o n , M5 (g/t) and r e s i d e n c e time, M6 (min) was employed as the s c r e e n i n g d e s i g n f o r the b a t c h mechanical c e l l . The a c t u a l and coded l e v e l s employed t o generate f i r s t order models f o r the f l o t a t i o n column and b a t c h mechanical c e l l s are shown on Table 3a and 3b, r e s p e c t i v e l y . A d justed data from the screening designs were f i t t e d t o a f i r s t order model of the form E - a 0 ^ a A (4.14) i where E i s the e f f i c i e n c y index. The f i r s t order models were employed to c l i m b the response s u r f a c e u s i n g the steepest ascent technique. 4.3.5 Steepest Ascent The d i r e c t i o n of steepest ascent was e s t i m a t e d from the c o e f f i c i e n t s of the f i r s t order model. 55 Table 3a : F l o t a t i o n Column Coded L e v e l s S e l e c t e d L e v e l s , c< c , -1 - • i i — 0 1 2 6 10 C i = (C x - 5 ) / 4 c 2 5 1 7 . 5 30 c 2 = (C2 - 1 7 . 5 ) / 1 2 . 5 c 3 6 7 8 c 3 = (C 3 - 7) c 4 0.5 1.25 2 C 4 — ( C 4 - 1 . 2 5 ) / 0 . 7 5 c 5 40 60 80 c 5 = (C 5 - 6 0 ) / 2 0 c 6 800 1000 1200 C 6 = <C6 - 1 0 0 0 ) / 2 0 0 c 7 15 30 45 c 7 = (C 7 - 3 0 ) / 1 5 Table 3b: Batch Mechanical C e l l Coded L e v e l s S e l e c t e d l e v e l s , m. M, -1 0 1 Mi 5 17 .5 30 oh = (Mi - 1 7 . 5 ) / 1 2 . 5 M2 800 1000 1200 m2 = (M2 - 1 0 0 0 ) / 2 0 0 M3 6 7 8 m3 = (M3 - 7) M4 800 1000 1200 m4 = (M4 - 1 0 0 0 ) / 2 0 0 M5 40 60 80 m5 = (M4 -• 6 0 ) / 2 0 M6 4 6 8 m6 = (M6 - 6) 12 56 Experimental runs were performed along the path of s t e e p e s t ascent u n t i l f i r s t o r d e r e f f e c t s ceased to be of s i g n i f i c a n c e and second o r d e r e f f e c t s became s i g n i f i c a n t ; t h a t i s , the e f f i c i e n c y index c o u l d no l o n g e r be i n c r e a s e d . To i l l u s t r a t e the method of st e e p e s t ascent, a geometric r e p r e s e n t a t i o n o f a simple f u n c t i o n y = f ( x 1 ; x 2 ) i s shown on F i g u r e 9 . We s h a l l assume t h a t a f i r s t o r d e r e q u a t i o n g i v e n by y = a 0 + £ a i x i + e ( 4 . 1 5 ) Our o b j e c t i v e i s to advance from a p o i n t 0 whose c o o r d i n a t e s we s h a l l assume t o be ( 0 , 0 ) t o another p o i n t P whose c o o r d i n a t e s a r e ( X 2 p , X 2 p ) , whose reponse y i s higher than the response o b t a i n e d a t p o i n t O. By g e o m e t r i c a l analogy, the d i s t a n c e between R and O i s given by x l p R y x1=o 0. **> x7=o F i g u r e 9 : I l l u s t r a t i o n of s t e e p e s t Ascent Technique 57 R - JU1P - 0) 2 + (X2p - 0)2 By c a l c u l u s , the values of x ± which maximises y are g i v e n by 5y 5x, where Ll i s a m u l t i p l i e r . The a c t u a l v a l u e of fl i s g i v e n by Taking p a r t i a l d e r i v a t i v e s of e q u a t i o n (1.15), 6y . a Thus, the v a l u e s of x t which maximises y are given by x -I f R i s chosen to be u n i t y , the v e c t o r of u n i t l e n g t h i n the d i r e c t i o n of steepest ascent i s g i v e n by 58 A second o r d e r c e n t r a l composite design was then u t i l i s e d t o determine t h e optimum s e t t i n g s of the manipulated v a r i a b l e s . 4.3.6 Central Composite Design C e n t r a l composite designs f o r the f l o t a t i o n column and the batch mechanical c e l l were chosen such that the designs would be r o t a t a b l e . F o r k f a c t o r s , when a 2 k _ p f r a c t i o n a l f a c t o r i a l d e s ign i s used, the v a l u e of x which makes the design r o t a t a b l e i s computed from (54) = (2 k" p r c / r s ) 1 / 4 (4.16) where r c i s the number of times the cube i s r e p l i c a t e d i n the d e s i g n and r s i s the number of times t h e s t a r p o r t i o n i s r e p l i c a t e d . In t h i s case, r e p l i c a t i o n was not necessary. Both r c and r s have a value of u n i t y . 4.3.7 Evaluation of Optimum Parameter Settings Second order models of the form E- aQ *"£aiXi J j a ^ ' * £ E a ^ x j U . 17) 1-1 1-1 K J where generated. The second order e f f i c i e n c y index model was d i f f e r e n t i a t e d with r e s p e c t to each of the manipulated v a r i a b l e s appearing i n the model. The d e r i v a t i v e s were equated to z e r o . The 59 r e s u l t i n g normal equations were so l v e d using the Gauss S i e d e l e l i m i n a t i o n procedure t o y i e l d the optimum s e t t i n g s of each manipulated v a r i a b l e . 4.3.8 Model V a l i d a t i o n and P a r t i c l e Size Ef f e c t s Test runs were conducted at the optimum parameter s e t t i n g s d e r i v e d above on bulk 96 % < 600 Lim feed. The e f f i c i e n c y index and product ash contents obtained were compared to the value p r e d i c t e d from the second order model. To i n v e s t i g a t e the e f f e c t of p a r t i c l e s i z e on the e f f i c i e n c y index and product ash content, the f o l l o w i n g approach was employed. A bulk sample c o n s i s t i n g of minus 850 |!m m a t e r i a l was screened through 600, 300 and 150 Lim screens and i n d i v i d u a l s i z e f r a c t i o n s were r e t a i n e d s e p a r a t e l y . The i n d i v i d u a l s i z e f r a c t i o n s were f l o a t e d s e p a r a t e l y and the e f f i c i e n c y index computed. The r e s u l t s obtained i n the f l o t a t i o n column were compared t o those from the batch mechanical c e l l . 60 CHAPTER 5 RESULTS AND DISCUSSION S t a t i s t i c a l Optimisation of Flotation Column The c o n d i t i o n s employed f o r the s c r e e n i n g d e s i g n were o u t l i n e d i n Chapter 4. The r e s u l t s are shown i n Appendix 5. The 2 I V 7 - 3 f r a c t i o n a l f a c t o r i a l design u t i l i z e d f o r s c r e e n i n g w i l l p e r m i t e s t i m a t i o n of main e f f e c t s not confounded with o t h e r main e f f e c t s , or w i t h two f a c t o r i n t e r a c t i o n e f f e c t s . A s t a t i s t i c a l s o ftware package c a l l e d SYSTAT (53) was used t o f i t the d a t a to a f i r s t order model of the form E = a 0 + SiCi + a 2c 2 + a 3c 3 + a 4c 4 + a 5 c 5 + a 6c 6 + a 7 c 6 + a 7c 7 + e where e i s t h e r e s i d u a l e r r o r term which a r i s e s due t o (a) departure of t h e f i t t e d model from the t r u e model, c a l l e d l a c k of f i t and (b) pure e r r o r caused by p r o c e s s f l u c t u a t i o n s , d i s t u r b a n c e s , and measuring techniques. A sample c a l c u l a t i o n showing how SYSTAT generates i t s out i s shown i n Appendix 6. The p r e d i c t e d model c o e f f i c i e n t s f o r the e f f i c i e n c y index, E , y i e l d , Y, and product ash content, A, are p r e s e n t e d i n Table 4. The f i r s t order model f o r the e f f i c i e n c y index i s g i v e n by E = 161.32 - 89. 49c! - 108.42c 2 + 11.96c 3 - 2.44c„ + 6.20c 5 + 28.82c e - 85.09c 7 (5.1) 61 Table 4: F l o t a t i o n Column F i r s t Order Model C o e f f i c i e n t s V a r i a b l e C o e f f i c i e n t E Y Ac Constant, a 0 161.32 35.39 7.34 Feed r a t e , a-^ -89.49 -12.85 -1.04 Feed % S o l i d s , a 2 -108.42 -12.18 1. 98 A i r Flowrate, a 3 11.96 2.81 0. 08 Washwater Rate, a 4 -2.44 5.47 0. 68 F r o t h e r , a 5 6.20 0. 90 0 . 37 C o l l e c t o r , a 6 28.82 3.48 0.33 F r o t h Depth, a 7 -85.09 -15.08 -1.48 The model c o e f f i c i e n t s i n equation (1) were employed t o climb the response s u r f a c e by s t e e p e s t ascent. 5.1.1 Steepest Ascent An estimate of the d i r e c t i o n of s t e e p e s t ascent i s assumed t o f o l l o w the v e c t o r of c o e f f i c i e n t values [a l f a 2 i , a n] (54) . From Table 4 t h e le n g t h of t h i s v e c t o r i s L = V(-89.5) z+(-108.4) 2+(12) 2+(2.4) 2+(6.2) 2+(28.8) 2+(-85 . 1 ) 2 = 155.4 A v e c t o r of u n i t l e n g t h i n the d i r e c t i o n of s t e e p e s t ascent t h e r e f o r e has c o o r d i n a t e s [(-89.5/155.4), (-108.4/155.4), , (-85.1/155.4)], or [-0.58, -0.70, 0.08, -0.02, 0.04, 0.19, -0.55]. 62 The response s u r f a c e was climbed i n steps of 0.25. Table 5 shows the r e s u l t s of the steepest ascent e x c e r c i s e . The f i g u r e s i n br a c k e t s are the a c t u a l values of the coded l e v e l s • Table 5: Flo t a t i o n Column Steepest Ascent Results V a r i a b l e Code Step 1 Step 2 Step 3 C i -0.58 (3.68) -0.72 (3.12) -0.87 (2.52) c 2 -0.70 (8.75) -0.88 (6.50) -1. 05 (4.38) c 3 0.08 (7.08) 0.10 (7.10) 0.12 (7.12) c 4 -0.02 (1.24) -0.03 (1.22) -0 . 03 (1.22) c 5 0.04 (60.8) 0.05 (61.0) 0.06 (61.2) c 6 0.19 (1038) 0.24 (1048) 0.29 (1058) c 7 -0.55 ( 2 2 ) -0.69 (20) -0. 83 (18) E 517.03 438 . 86 394. 48 Y 75. 69 73. 00 69. 68 Af 18. 61 18 . 63 19. 13 Ac 7.70 7 . 92 7 . 93 Ar 52.59 47 . 60 44 . 89 Af = f e e d ash (%) , Ac = concentrate ash (%) , At = t a i l i n g s ash (%) The h i g h e s t value of the e f f i c i e n c y index was o b t a i n e d at the f i r s t step of steepest ascent. Therefore, the c e n t r a l composite design was c o n s t r u c t e d around step 1. 5.1.2 Central Composite Design The c e n t r a l composite design was chosen so t h a t f i r s t order i n t e r a c t i o n terms c o u l d be estimated, as w e l l as second order terms. A 2 V I I 7 - 1 design meets these requirements. °= was chosen to a c h i e v e r o t a t a b i l i t y . The coded and a c t u a l l e v e l s of the v a r i a b l e s are shown on Table 6. The design matrix and responses r e s u l t i n g from the design are shown i n Appendix 7. Table 6: F l o t a t i o n Column Coded and Actual Levels for Central Composite Design Code -2, . 83 -1 0 1 2.83 Ci 2. 8 3 .5 4 . 0 4.5 5.4 ;c1 = (C1 - 4)/0 . 5 C 2 3. 0 5 . 0 10 . 0 15. 0 17 . 0 r C 2 = (C 2 — 10)/2.5 c 3 4. 0 6 . 0 7 . 0 8.0 10.0 / c 3 = C 3 - . 7 c 4 0. 5 1 . 0 1. 25 1.5 2.0 /c 4 = ( C 4 — 1.25)/0.25 c 5 46. 0 55 .0 60 . 0 65.0 74 . 0 ; c 5 = <C5 - 60)/5 c 6 859. 0 950 . 0 1000 . 0 1050.0 1151 . 0 ; c 6 = (C 6 - 1000)/50 c 7 9. 0 15 . 0 18 . 0 21.0 27 . 0 ; c 7 = (C 7 - 18)/3 A f t e r assuming t h a t t h i r d and h i g h e r order terms are n e g l i g i b l e , the data i n Appendix 7 were f i t t e d to a second order model. The e s t i m a t e d model c o e f f i c i e n t s f o r the e f f i c i e n c y index are t a b u l a t e d i n T a b l e 7. W i t h i n the range of v a r i a b l e s s t u d i e d , the e f f e c t of the v a r i a b l e s Table 7: C o e f f i c i e n t s f o r E f f i c i e n c y Index and Co r r e s p o n d i n g S t a t i s t i c s E x c l u d i n g T h i r d Order Terms C o e f f i c i e n t F-Ratio C o e f f i c i e n t F - R a t i o C o e f f i c i e n t F - R a t i o a0= 124.96 8.07 a 5 5= 30 .46 6 . 91 a 2 6 ~ -4 . 05 0 . 08 ai= -110.67 70.11 a 6 6= -2 .00 0 .03 18 .34 1 .54 a2= 64.16 23.56 a 7 7= 13 . 14 1 .29 a 3 4 = ' -11 . 94 0 . 65 a3= 10. 02 0.58 a12=--35 .49 5 . 77 a 3 5 = ' -14 . 14 0 . 92 a4= -12.23 0.86 12 .88 0 .76 a 3 6= -8 .51 0 .33 a5= 53.37 16.31 a 1 4= 18 . 94 1 . 64 a 3 7 = -34 . 66 5 .50 as= -2. 66 0.04 a i 5 = -4 . 81 0 . 11 a 4 5= 11 . 14 0 .57 a7= -14.68 1.23 a l 6= -3 . 07 0 . 04 a 4 6 = -26 .26 3 .16 §11= 28 . 62 6.10 •38. 20 6. , 68 a47=--11. . 57 0 . 61 a 2 2 = 13. 98 1.46 a 2 3 = _ •46. .23 9. ,78 a 5e= 26 . ,29 3. 16 a 3 3= 6.43 0.31 a 2 4= -1. 93 0 . , 02 a5 7- -14 . 34 0 . 94 a 4 4= 21. 04 3.30 a 2 5 = 41. 93 8 . 05 a 67= 26. .59 3. 24 A n a l y s i s of V a r i a n c e  Source Sum-of-Sguares D.F. Mean Square F - R a t i o R 2 Regression 2516365.13 35 71896.15 5.143 0.786 Res i d u a l 685027.86 49 13980.16 65 on the e f f i c i e n c y index are i n the order; f e e d r a t e , f e e d percent s o l i d s , f r o t h e r c o n c e n t r a t i o n , f r o t h depth, washwater f l o w r a t e , a i r f l o w r a t e and c o l l e c t o r c o n c e n t r a t i o n . The equation r e s u l t i n g from the r e g r e s s i o n i s E = 124.96 - 110.67c! + 64 . 1 6 c 2 + 10 . 0 2 c 3 -12 . 2 3 c 4 + 5 3 . 3 7 c 5 - 2.66c 6 - 14.68c 7 + 28.62c! 2 + 13.98c 2 2 + 6 . 4 3 c 3 2 + 21.04c 4 2 + 3 0.46c 5 2 - 2 . 0 c 6 2 + 13.14c 7 2 - 3 5 . 4 9 0 ^ + 12. 8 8 0 ^ 3 + 18.94c 1c4 - 4.81c 1c 5 - 3 . 0 7 0 ^ - 3 8 . 2 ^ 0 , - 46.23c 2c 3 - 1.93c 2c 4 + 41.93c 2c 5 - 4.05c 2c 6 + I8.34c 2c 7 - 11.94c 3c 4 -14.14c 3c 5 - 8.51c 3c 6 - 34.66c 3c7 + 11.14c 4c 5 - 26.26c 4c 6 -11.57c 4c 7 + 26.29c 5c 6 - 14.34c 5c 7 + 26.59c 6c 7 (5.2) The m u l t i p l e index of determination R2 i s on t h e low s i d e , s u g g e s t i n g that t h i r d and h i g h e r order i n t e r a c t i o n e f f e c t s may be important i n the f l o t a t i o n column environment. The low v a l u e of R2 c l e a r l y i n d i c a t e s l a c k of f i t i n the model. As a r e s u l t , the assumption t h a t t h i r d order terms are n e g l i g i b l e was r e j e c t e d and a second model i n c o r p o r a t i n g t h i r d order terms was f i t t e d t o the data. The model c o e f f i c i e n t s and c o r r e s p o n d i n g s t a t i s t i c s a re shown on Table 8. There i s a s i g n i f i c a n t improvement i n t h e v a l u e o f the m u l t i p l e index of determination from 0.786 when t h i r d o r d e r terms were excluded, t o 0.93 when they were i n c l u d e d . T h i s c l e a r l y i n d i c a t e s t h i r d order terms are s i g n i f i c a n t and the p r e v i o u s assumption t h a t 66 Table 8: C o e f f i c i e n t s f o r E f f i c i e n c y Index and Co r r e s p o n d i n g S t a t i s t i c s I n c l u d i n g T h i r d Order terms Term F - r a t i o Term F - R a t i o Term F - R a t i o ao = 124.96 7 . 00 a 4 6 = -26.26 2, . 74 a 2 4 5 = -2, .37 0. 02 a i =• -110.67 60 . 87 a 4 7 = -11.57 0 .53 a 2 4 6 = 4 . 44 0.08 a 2 = 64.16 20 . 46 a 5 6 = 26.29 2 . 75 a 2 4 7 = 6 . 94 0 .19 a 3 = 10. 02 0.50 a 5 7 = -14.34 0 . 82 a 2 5 6 = 3 .35 0 . 05 a 4 = -12.23 0.74 a 6 7 = 26.59 2 . 81 a 2 5 7 = 4 . 72 0.09 a s = 53. 37 14 .16 a i 2 3 = 27.78 3, . 08 a 2 6 7 = 7 , . 80 0 . 24 ae = - 2 . 6 6 0 . 04 a i 2 4 = 10.25 0, . 42 a 3 4 5 = 18 , .37 1. 34 a 7 = -14.68 1. 07 a i 2 5 = -16.70 1 . 11 a 3 4 6 = 15, . 67 0 . 98 a 1 2= -35.49 5. 01 a i 2 6 = -18.37 1. 34 a 3 4 7 = -5. 21 0 . 11 a i 3 = 12.88 0. 66 a 1 2 7= -16.26 1. 05 a 3 5 6 = ~ 17 . 24 1.18 a i 4 = 18. 94 1.43 a i 3 4 ~ 20.36 1. 65 a 3 5 7 = - 25. 08 2.50 a i 5 = - 4 . 8 1 0 . 09 a i 3 5 = 1.48 0. 01 a 3 6 7 = 4 . 11 0 . 07 !16 = - 3.07 0 . 04 a i 3 6 = 2.59 0. 03 a 4 5 6 = 13. 53 0.73 a 1 7= -38.20 5. 80 a i 3 7 = -15.36 0. 94 a 4 5 7 = -9. 68 0 . 37 -46.23 8.50 a i 4 5 = - 8.33 0. 28 a 4 6 7 = _ 17. 41 1. 21 a 2 4= -1. 93 0 . 02 a i 4 6 = 0.08 0. 00 a 5 6 7 = 15. 86 0.56 a 2 5 = 41. 93 6.99 a 1 4 7 = = 12.02 0. 57 § 1 1 = 28 . 62 5.30 a 2 6 = - 4.05 0. 07 a i 5 6 = -20.92 1. 74 a 2 2 = 13. . 98 1. 27 a 2 7= 18.34 1.34 a i 5 7 = 22. 68 2. 07 a 3 3 — 6. . 43 0. 27 a 3 4 = -11.94 0 . 57 a i 6 7 = -7 .14 0. 20 a 4 4 = 21. . 04 2. 86 a 3 5= -14.14 0 . 80 a 2 3 4 = -5.43 0. 12 a 5 5 = 30. .46 6. 00 § 3 6 = - 8.51 0.29 a 2 3 5 = 3.03 0 . 04 a 6 6 = -2 . 00 0 . 03 a 3 7= -34.66 4. 77 a 2 3 6 = 4.84 0. 09 a 7 7 = 13. . 14 1. 12 a 4 5 = 11.14 0 .49 a 2 3 7 = -32.32 4 . 15 A n a l y s i s of V a r i a n c e Source Sum-of-Squares D.F. Mean Square F - R a t i o R 2 R e g r e s s i o n 2 975 986.4 70 42 514.1 2.641 0 . 93 R e s i d u a l 225 406.6 14 16 100.5 67 they are i n s i g n i f i c a n t r e s u l t e d i n s e r i o u s l a c k o f f i t . F i g u r e 10 i s a p l o t of r e s i d u a l s a g a i n s t the run number. The r e s i d u a l s form a h o r i z o n t a l band p a r a l l e l t o the h o r i z o n t a l a x i s , c o n f i r m i n g that the model w i t h t h i r d o r d e r terms does not e x h i b i t s e r i o u s l a c k of f i t .The f u l l s t a t i s t i c a l model f o r the e f f i c i e n c y index i s given by equation (5.3) E - 124.96-110 .67^+64 .16 c 2 + 10 . 02c 3-12 . 23c 4 + 53 . 37c 5-2 .66c 6 -14. 68 C 7+28 .62c 2 + 13 .9 8c|+6 .43c 3 2 + 21. 04C 4+30 . 46 C 5 2 -2 .00c62 + 13 .14c 2-35 .49c 1 2 + 12 . 88c 1 3 + 18 . 94c 1 4-4 . 81c 1 5 -3 . 07c 1 6-38 . 20c 1 7-46 . 23 c 2 3 - l . 93 C 2 4 +41. 93 c 2 5-4 . 05c 2 6 18 . 34c 2 7-11.94c 3 4-14 .14c 3 5-8 . 51c 3 6-34 . 66 c 3 7 + l l . 14c 4 5-26 . 26c 4 6 -11. 57c 4 7+26 .29c 5 6-14 . 34c 5 7 + 26 . 59c 6 7+27 .7 8 c 1 2 3 + 10 . 2 5 c 1 2 4 -16 .7 0c,,--18 . 37C.,,.-16 . 26 c,„ + 20 . 36 c.,, +1. 48c, „ + 2 . 59 c. -15 .36c 1 3 7 - 8 . 33c 1 4 5+0 . 08c 1 4 6 + 12 . 02c 1 4 7-20 .92c 1 5 6 + 22 . 6 8 c 1 5 7 -7 .14c 1 6 7 - 5 . 43 c 2 3 4+3 . 0 3 c 2 3 5 + 4 . 84 c 2 3 6-32 . 32c 2 3 7-2 . 37 c 2 4 5 4 .44c,,,+6 .94c,,7+3 . 35c,«+4 .73c,„+7 . 80c,,.,+ 18 . 37 c. 15 .67c 3 4 6-5 . 21c 3 4 7-17 . 24 c 3 5 6 - 25 . 08 c 3 5 7+4 . l l c 3 6 7 + 13 . 53c 4 5 6 -9 .68c 4 5 7-17 . 4 1 C 4 6 7 + 11.85c 5 6 7 (5.3) Run number 69 The output generated by the SYSTAT s t a t i s t i c a l package i s shown i n Appendix 8 . I t i s s t r e s s e d t h a t t h i s type of model cannot be used f o r s i m u l a t i o n or d e s i g n purposes. Rather, i t a l l o w s us t o i d e n t i f y v a r i a b l e s and i n t e r a c t i o n s which are of s i g n i f i c a n c e i n the f l o t a t i o n column environment, and serves as a p r e l u d e t o d e v e l o p i n g b e t t e r c o n t r o l s t r a t e g i e s f o r f l o t a t i o n columns, and a l s o t o understand the p h y s i c o c h e m i c a l processes and subprocesses o c c u r r i n g w i t h i n . By comparing the F - r a t i o s o b t a i n e d by a n a l y s i s of v a r i a n c e t o the F - r a t i o s of i n d i v i d u a l c o e f f i c i e n t s (Table 8), terms which s i g n i f i c a n t l y c o n t r i b u t e to the model can be i s o l a t e d from those which are i n s i g n i f i c a n t . When the F - r a t i o o f an i n d i v i d u a l term i s l e s s than the F - r a t i o obtained by a n a l y s i s o f v a r i a n c e , t h a t term i s s t a t i s t i c a l l y i n s i g n i f i c a n t . Only the terms which were s t a t i s t i c a l l y s i g n i f i c a n t were i n c l u d e d i n the d i s c u s s i o n which f o l l o w s . The f a c t o r s and i n t e r a c t i o n terms which were judged t o have a s i g n i f i c a n t i n f l u e n c e on the e f f i c i e n c y index are shown i n T a b l e 9, i n d e c r e a s i n g o r d e r of importance from top t o bottom. W i t h i n the range s t u d i e d , the a i r f l o w r a t e , f r o t h depth, wash water a d d i t i o n r a t e and c o l l e c t o r c o n c e n t r a t i o n d i d not a f f e c t the 70 e f f i c i e n c y index s i g n i f i c a n t l y . T able 9 : S i g n i f i c a n t F l o t a t i o n Column E f f e c t s | S i n g l e F a c t o r Second Order| I n t e r a c t i o n Terms | Terms Terms | i a) Two Term I n t e r a c t i o n s | f e e d r a t e | f e e d r a t e |feed % s o l i d s / a i r f l o w r a t e |feed % s o l i d s f r o t h e r | feed % s o l i d s / f r o t h e r | f r o t h e r 1 1 feed r a t e / f r o t h depth 1 1 1 feed r a t e / f e e d % s o l i d s 1 I 1 a i r f l o w r a t e / f r o t h depth 1 1 1 c o l l e c t o r / f r o t h depth 1 1 1 f r o t h e r / c o l l e c t o r 1 ' w a s h w a t e r / c o l l e c t o r b) Three Term I n t e r a c t i o n s 1 1 1 feed r a t e / f e e d % s o l i d s / a i r f l o w r a t e I l I % s o l i d s / a i r f l o w r a t e / f r o t h depth In base metal f l o t a t i o n c i r c u i t s where f l o t a t i o n columns are used p r i m a r i l y as c l e a n e r s , i t has been argued t h a t as w e l l as e n s u r i n g t h a t the column operates under p o s i t i v e b i a s ( 29 ), washwater a l s o h e l p s t o deepen and s t a b i l i z e the f r o t h zone (27) . The r e s u l t s p r e s e n t e d here suggest t h a t washwater may not be an 71 important v a r i a b l e i n c o a l c l e a n i n g . P a r e t h et a l (55) have a l s o r e p o r t e d an i n s i g n i f i c a n t e f f e c t of washwater on t h e e f f i c i e n c y index u s i n g a Plackett-Burman s t a t i s t i c a l e x p e r i m e n t a l d e s i g n . However, they concluded that a i r f l o w r a t e i s the most important s i n g l e f a c t o r which a f f e c t s the e f f i c i e n c y index. The range of a i r f l o w r a t e s t u d i e d was 1 to 3 l/min, which i s below the range of 4 to 8 l/min employed i n the experiments c a r r i e d out here. Thus, a p l a u s i b l e p o s t u l a t i o n on the i n s i g n i f i c a n t i n f l u e n c e of a i r f l o w r a t e observed here i s that at the upper end of the s c a l e , t h e r e i s l i t t l e b e n e f i t t o be gained from h i g h e r a i r f l o w r a t e s . The f r o t h depth a l s o had a s t a t i s t i c a l l y i n s i g n i f i c a n t i n f l u e n c e on the e f f i c i e n c y index. This r e s u l t i s i n agreement wi t h those p u b l i s h e d by C l i n g a n and McGregor (24) who concluded t h a t f r o t h depth had no e f f e c t on the m e t a l l u r g y of a f l o t a t i o n column. C l i n g a n and Mcgregor's c o n c l u s i o n was drawn from testwork conducted on a 12 m t a l l column used as a c l e a n e r f o r a copper c o n c e n t r a t e . The f r o t h depth was v a r i e d between 0.6 m t o 1.0 m. The f i r s t order terms shown i n Table 9 suggests t h a t , w i t h i n the range of v a r i a b l e s s t u d i e d , three v a r i a b l e s : (1) f e e d r a t e , (2) feed percent s o l i d s , and (3) f r o t h e r c o n c e n t r a t i o n have a s i g n i f i c a n t i n f l u e n c e on the e f f i c i e n c y index. 72 The s i g n i f i c a n t i n f l u e n c e of feed rat e can be e x p l a i n e d i n terms of the c a r r y i n g c a p a c i t y of the column, the column's r e s i d e n c e time and a x i a l d i s p e r s i o n . S t a r t i n g from a low value, when the feed r a t e i s i n c r e a s e d at a f i x e d f e e d percent s o l i d s the column's c a r r y i n g c a p a c i t y i s a l s o i n c r e a s e d , u n t i l a maximum i s reached. F u r t h e r i n c r e a s e i n feed r a t e beyond t h i s maximum reduces the column's c a r r y i n g c a p a c i t y , and consequently, the e f f i c i e n c y index. Residence time and a x i a l d i s p e r s i o n are both n e g a t i v e l y a f f e c t e d by i n c r e a s i n g f e e d r a t e . I n c r e a s i n g the feed r a t e reduces the column's r e s i d e n c e time by i n c r e a s i n g the i n t e r s t i t i a l l i q u i d v e l o c i t y . T h i s can be compensated f o r by reducing the f r o t h zone h e i g h t ( i n c r e a s i n g the c o l l e c t i o n zone h e i g h t ) . A x i a l d i s p e r s i o n a l s o i n c r e a s e s column t o d e v i a t e from p l u g flow decrease i n the e f f i c i e n c y index. causing the flow regime i n the c o n d i t i o n s . The net r e s u l t i s a I t has been suggested (3,4,55) that feed percent s o l i d s has an i n s i g n i f i c a n t i n f l u e n c e on the metallurgy of f l o t a t i o n columns. The r e s u l t s p r e s e n t e d here suggest that h i g h pulp d e n s i t i e s have a p o s i t i v e e f f e c t on the e f f i c i e n c y index. High feed p u l p d e n s i t i e s i n c r e a s e apparent hindered s e t t l i n g i n the c o l l e c t i o n zone and 73 i n c r e a s e the res i d e n c e time, and a l s o reduce a x i a l m i xing thereby e n s u r i n g t h a t the f l o t a t i o n column behaves more l i k e a p l u g flow r e a c t o r . High dosages of f r o t h e r have a p o s i t i v e i n f l u e n c e on the e f f i c i e n c y index. I n c r e a s i n g f r o t h e r c o n c e n t r a t i o n i n c r e a s e s the gas h o l d up i n t h e c o l l e c t i o n zone as s m a l l e r bubbles are produced.The s m a l l bubbles i n c r e a s e f l o t a t i o n r a t e s by i n c r e a s i n g the c o n t a c t area f o r bubbles and p a r t i c l e s . Hence, an accompanying i n c r e a s e i n the e f f i c i e n c y index i s observed. However, t h e r e i s a l i m i t t o the amount of f r o t h e r which can be added, f o r two reasons: (1) S m a l l e r bubbles cause a g r e a t e r percentage of f e e d water t o be e n t r a i n e d t o the f r o t h zone (38). (2) There i s l i t t l e b e n e f i t to be gained from g e n e r a t i n g bubbles l e s s than 0.5 mm i n diameter (35). Two Term Interactions The e i g h t s i g n i f i c a n t i n t e r a c t i o n terms are shown i n Table 8. The i n t e r a c t i o n between feed percent s o l i d s and gas r a t e has a l s o been observed by Laplante et a l (34) who proposed t h a t the two terms are l i n k e d t o the a x i a l d i s p e r s i o n c o e f f i c i e n t by the c o r r e l a t i o n E - 2 .98U^ 3 1 V f f EX'P(-0 .0255) where S i s the feed percent s o l i d s . From t h i s c o r r e l a t i o n , i t i s apparent t h a t high gas r a t e s i n c r e a s e a x i a l m i xing i n the c o l l e c t i o n zone. The negative i n f l u e n c e of h i g h gas r a t e can be cou n t e r a c t e d by a hig h feed percent s o l i d s . There i s a l s o a s i g n i f i c a n t i n t e r a c t i o n between the fe e d percent s o l i d s and f r o t h e r c o n c e n t r a t i o n . The e f f i c i e n c y index can be maximised by adding a hig h dosage of f r o t h e r t o a f e e d w i t h a h i g h pulp d e n s i t y . The i n t e r a c t i o n between feed r a t e and f r o t h depth was expected, from the view p o i n t of residence time. High f e e d r a t e s reduce the re s i d e n c e time i n the c o l l e c t i o n zone. For a f l o t a t i o n column of f i x e d h eight, the residen c e time can be i n c r e a s e d by r e d u c i n g the f r o t h zone heigh t . However, c a u t i o n should be e x e r c i s e d when red u c i n g the f r o t h zone height i n order to ensure product q u a l i t y . The i n t e r a c t i o n between feed percent s o l i d s and f e e d r a t e was a l s o expected s i n c e these two f a c t o r s are mainly r e s p o n s i b l e f o r d e f i n i n g the c a r r y i n g c a p a c i t y of the column. High f e e d r a t e s at hi g h pulp d e n s i t i e s w i l l reduce the column's c a r r y i n g c a p a c i t y . Thus, t h e r e i s a maximum amount of s o l i d s which can be f e d to a column f o r a f i x e d feed r a t e . Beyond t h i s maximum, the c a r r y i n g c a p a c i t y f a l l s , t ogether with the e f f i c i e n c y index. As w i l l be d i s c u s s e d l a t e r , the a i r f l o w r a t e a l s o i n t e r a c t s s i g n i f i c a n t l y with the feed percent s o l i d s and the feed r a t e . 75 The i n t e r a c t i o n between gas r a t e and f r o t h depth i s w e l l known, having been demonstrated by Yianatos et a l (27) . E x c e s s i v e gas r a t e s can cause i n c r e a s e d entrainment i n t o and m ixing i n the f r o t h zone, with subsequent l o s s i n grade. When a h i g h e f f i c i e n c y index i s the o b j e c t i v e , a combination of low gas r a t e and a deep f r o t h depth i s d e s i r a b l e . S i g n i f i c a n t two term i n t e r a c t i o n s between the c o l l e c t o r c o n c e n t r a t i o n and f r o t h depth, f r o t h e r c o n c e n t r a t i o n and c o l l e c t o r c o n c e n t r a t i o n , and washwater a d d i t i o n r a t e and c o l l e c t o r c o n c e n t r a t i o n were observed here. Since, the c o l l e c t o r c o n c e n t r a t i o n i s r a r e l y i n c o r p o r a t e d i n t o f l o t a t i o n column s t a t i s t i c a l experimental designs, the i n t e r a c t i o n s observed here have, t o the author's knowledge, not been r e p o r t e d i n the r e l e v a n t l i t e r a t u r e . The i n t e r a c t i o n between the c o l l e c t o r dosage and f r o t h depth can be e x p l a i n e d i n terms of the h y d r o p h o b i c i t y of the c o a l feed p a r t i c l e s . A combination of low c o l l e c t o r dosage and deep f r o t h has a n e g ative i n f l u e n c e on the e f f i c i e n c y index. Under these c o n d i t i o n s , weakly attached p a r t i c l e s detach from bubbles as a r e s u l t of the i n c r e a s e d r e s i d e n c e time i n the f r o t h zone. Thus, hig h e f f i c i e n c y i n d i c e s are favoured under c o n d i t i o n s of h i g h c o l l e c t o r dosages and deep f r o t h s beds. The i n t e r a c t i o n between f r o t h e r and c o l l e c t o r has r a r e l y been 76 d i s c u s s e d i n the a v a i l a b l e l i t e r a t u r e on column f l o t a t i o n , though some important observations have been made i n mechanical f l o t a t i o n c e l l s . G e n e r a l l y , excess c o l l e c t o r has the a c t i o n of i n h i b i t i n g the f u n c t i o n i n g of f r o t h e r . Lynch et a l (39) and Rao et a l (60) have suggested t h a t the presence of c o l l e c t o r i n excess of the amount r e q u i r e d t o render the c o a l p a r t i c l e s hydrophobic d i v e r t s the f u n c t i o n i n g of the f r o t h e r by causing i t t o e m u l s i f y the excess c o l l e c t o r . The j o i n t e f f e c t i s to reduce the e f f i c i e n c y index. A s i m i l a r i n t e r a c t i o n c o u l d take p l a c e i n f l o t a t i o n columns. Though washwater and c o l l e c t o r on t h e i r own do not have a s i g n i f i c a n t i n f l u e n c e on the e f f i c i e n c y index, t h e i r i n t e r a c t i o n with each other i s s i g n i f i c a n t . The r e s u l t s suggest t h a t f o r a f i x e d c o l l e c t o r a d d i t i o n r a t e , the washwater sh o u l d be kept t o a minimum t o ensure good f l o t a t i o n r e s u l t s . Three Term Interactions Three term i n t e r a c t i o n s between the feed p e r c e n t s o l i d s , f e e d r a t e and a i r f l o w r a t e , and between the feed percent s o l i d s , a i r f l o w r a t e and f r o t h depth were s i g n i f i c a n t . The i n t e r a c t i o n between the feed percent s o l i d s , f e e d r a t e and a i r f l o w r a t e can a l s o be e x p l a i n e d i n terms of the c a r r y i n g c a p a c i t y . As a l r e a d y mentioned, the feed r a t e and feed p e r c e n t s o l i d s are the primary f a c t o r s which govern the column's c a r r y i n g c a p a c i t y . An 77 e f f e c t of the a i r f l o w r a t e on the c a r r y i n g c a p a c i t y was f i r s t o bserved by Espinosa-Gomez et a l (13). However, Espinosa-Gomez et a l f a i l e d t o confirm the e f f e c t of gas r a t e on the c a r r y i n g c a p a c i t y . The three term i n t e r a c t i o n r e p o r t e d here suggests t h a t gas r a t e should be taken i n t o account when the column's c a r r y i n g c a p a c i t y i s determined f o r f l o t a t i o n column s i z i n g . The i n t e r a c t i o n between a i r flowrate, feed percent s o l i d s and f r o t h depth i s complex. A p o s s i b l e e x p l a n a t i o n i s t h a t s i n c e h i g h a i r f l o w r a t e s and shallow f r o t h s r e s u l t i n feed water entrainment to the concentrate, h i g h feed percent s o l i d s can be used t o minimise the amount of feed water e n t e r i n g the f r o t h zone. However, as a l r e a d y noted, the amount of s o l i d s which can be added to a f l o t a t i o n column i s r e g u l a t e d by the column's c a r r y i n g c a p a c i t y . 5.1.3 Evaluation of Optimum Parameter Settings Due t o the presence of three term i n t e r a c t i o n s the e q u a t i o n (5.3) cannot be employed to evaluate the optimum s e t t i n g s f o r the parameters. As a r e s u l t , the optimum s e t t i n g s of the parameters were approximated from equation (5.2), which i s e s s e n t i a l l y e q u a t i o n (5.3) without the three term i n t e r a c t i o n terms. D i f f e r e n t i a t i n g equation (3) with r e s p e c t to r e s p e c t t o each of the v a r i a b l e s clf c 2, c 3, c 4, c 5, c 6 and c 7 and e q u a t i n g the d e r i v a t i v e s t o zero y i e l d s a set of seven normal equations which can be w r i t t e n i n matrix form. The matrix was s o l v e d by the 78 Gaussian e l i m i n a t i o n procedure to y i e l d the optimum coded l e v e l s as, f e e d r a t e (1.5), feed percent s o l i d s (1.6), a i r f l o w r a t e (-1.65), washwater f l o w r a t e (0.02), f r o t h e r c o n c e n t r a t i o n (-2.2), c o l l e c t o r c o n c e n t r a t i o n (0.001) and f r o t h depth (-2.2). The a c t u a l optimum l e v e l s computed from the coded l e v e l s are; (1) f e e d r a t e =4.8 l/min, (2) feed percent s o l i d s = 14 %, (3) a i r f l o w r a t e = 5.4 l/min, (4) washwater f l o w r a t e =1.25 l/min, (5) f r o t h e r =49.5 g/t, (6) c o l l e c t o r = 1000 g/t, and (7) f r o t h depth = 11.4 cm. 5.1.4 Model Va l i d a t i o n and P a r t i c l e Size E f f e c t s The v a l i d i t y of the p r e d i c t e d model can be e s t a b l i s h e d by p l o t t i n g r e s i d u a l s a g a i n s t the sequence of t e s t runs. Such a p l o t i s shown i n F i g u r e 9. The r e s i d u a l s are approximately e v e n l y d i s t r i b u t e d about the o r i g i n . The p l o t suggest t h a t w i t h i n the bounds of experimental e r r o r , the model i n c o r p o r a t i n g t h r e e term i n t e r a c t i o n s adequately f i t s the data. Table 10 shows the r e s u l t s of f l o t a t i o n t e s t s c a r r i e d out at the optimum parameter s e t t i n g s . The measured e f f i c i e n c y index of 483.5 i s comparable to the value of 471.54 p r e d i c t e d from the model. The s m a l l d i f f e r e n c e suggest that the model f i t s the data w i t h i n the bounds of experimental e r r o r . The e f f i c i e n c y i n d i c e s f o r i n d i v i d u a l s i z e f r a c t i o n s i n c r e a s e with d e c r e a s i n g feed p a r t i c l e s i z e . The low e f f i c i e n c y index a s s o c i a t e d with l a r g e p a r t i c l e s i z e s can be a t t r i b u t e d t o i n s u f f i c i e n t 79 r e s i d e n c e time. Table 10: Model V a l i d a t i o n and P a r t i c l e S i z e E f f e c t s P a r t i c l e S i z e , micron E f f i c i e n c y Index Y Ac At Af Bulk < 600 483.5 80.4 7.7 46.3 15. 3 -850 + 600 15.3 6.1 7 . 5 18. 8 18. 1 -600 + 300 272.2 55. 6 5.4 26.4 14. 7 -300 + 150 523. 9 72.2 7 . 1 51.5 19. 4 - 150 575.3 84.3 9.1 62.1 17 . 4 Large p a r t i c l e s s e t t l e at f a s t e r v e l o c i t i e s compared t o p a r t i c l e s of s m a l l e r diameter. Hence f o r a f i x e d c o l l e c t i o n zone h e i g h t and f l o t a t i o n c o n d i t i o n s , the e f f i c i e n c y index f o r l a r g e r s i z e f r a c t i o n s i s lower than f o r s m a l l e r s i z e f r a c t i o n s . 5.2.0 S t a t i s t i c a l Optimisation of Batch Mechanical C e l l 5.2.1 Screening Design The r e s u l t s of the mechanical c e l l s c r e e n i n g d e s i g n are shown i n Appendix 9. The p r e d i c t e d f i r s t order model c o e f f i c i e n t s are shown i n Table 11. Table 11 suggests t h a t w i t h i n the range s t u d i e d , the c o n c e n t r a t i o n of c o l l e c t o r does not s i g n i f i c a n t l y a f f e c t the e f f i c i e n c y index. Thus, e l i m i n a t i n g c o l l e c t o r c o n c e n t r a t i o n by s e t t i n g i t at i t s centre p o i n t l e v e l , the model f o r e f f i c i e n c y 80 index i s s i m p l i f i e d t o E = 252.76 - 85.10m! - 61.45m2 + 7.70m3 + 35.03m5 + 41.54m6 5.2.2 Steepest Ascent R e s u l t s of steepest ascent, based on the s i m p l i f i e d model, performed s i m i l a r l y t o the f l o t a t i o n column are shown Table 12. The path of s t e e p e s t ascent was climbed i n steps of 0.5. The h i g h e s t e f f i c i e n c y index was obtained at the f i r s t step of s t e e p e s t ascent. Therefore the centre p o i n t s of the c e n t r a l composite design were chosen c l o s e to step 1. 5.2.3 Central Composite Design A 2 V I 5 - 1 f r a c t i o n a l f a c t o r i a l design which i s capable o f e s t i m a t i n g f i r s t order, two term i n t e r a c t i o n and second order terms independently had the coded and a c t u a l l e v e l s shown i n Table 13. Table 11: E f f i c i e n c y Index F i r s t Order C o e f f i c i e n t s f o r Batch Mechanical C e l l  a 0 = 252.76 a x = -85.10 a 2 = -61.45 a 3 = 7.70 a 4 = 0.34 a 5 = 35.03 a. 41.54  A n a l y s i s of Variance  Source Sum-of-Squares D.F. Mean-Square F - R a t i o R2 Regression 224 474.1 6 37 412.35 5.27 0.742 R e s i d u a l 78 148.29 11 7 104.39 81 Table 12: R e s u l t s of Steepest Ascent E x c e r c i s e V a r i a b l e Code Step 1 Step 2  mj -0.72 (8.5) -1.08 (4.0) m2 -0.52 (896) -0.78 (844) m3 0.07 (7.0) 0.09 (7.1) m5 0.30 (66) 0.45 (69) m6 0.35 (4.7) 0.53 (5.05) E 308.4 248.6 Y 73.2 80.6 Af 17.4 9 16.16 Ac 9.4 11.5 Ar 39.6 ' 35 . 5 Table 13 : Mechanical C e l l A c t u a l and Coded L e v e l s f o r C e n t r a l Composite Design Code 2* -1 0 1 2 M1 8 10 12 14 16; % = (Mi -12)12 M 2 700 800 900 1000 1100; m2 = (M2 -900)/100 M 3 4 5 6 7 8; m3 = M3 - 6 M5 40 900 50 60 80; m5 = (M5 -60)/10 M6 2 3 4 5 6; m6 = M6 - 4 82 The c o l l e c t o r c o n c e n t r a t i o n was maintained at 1000 g/ t . The r e s u l t s are shown i n Appendix 10 and Table 14. The model f o r e f f i c i e n c y index d e r i v e d by f i t t i n g a second order model t o the data i s E = 269.64 - 1.24m! - 21.44m2 + 15.80m3 - 5.47m5 + 46.01m6_ 2.69m1 2 + 3.18m2 2 + 3 . 35m3 2 + 11 . 56m5 2 + 28.63m6 2 + 5.4 9m! m2 + 1.7 9m! m3 + 10.51m! m5 + 6.97mi m6 + 16.53m2 m3 -1.01m2 m5 - 6.22m2 m6 + 17.49m3 m5 - 3.94m3 m6 + 3.32m5 m6 Table 14: Second Order C o e f f i c i e n t s f o r E f f i c i e n c y Index and Corresponding S t a t i s t i c s  C o e f f i c i e n t F-Ratio C o e f f i c i e n t F-Ratio C o e f f i c i e n c t F - R a t i o a 0 = 269.64 46.01 a 2 2 = 3.18 0 .06 ais = 6. 97 0 .22 a i = -1.24 0.01 a33 = 3.35 0 . 07 a23 = 16 . 53 1 .21 a 2 =-21.44 3.05 a55 =11.56 0 .79 a25 =-1.01 0 . 00 a 3 =15.80 1.66 a 6 6 =28.63 4 . 84 a26 =-6.22 0 . 17 a 5 =-5.47 0.20 a 1 2 =5.4 9 0 . 13 a 3 5 = 17 .49 1 .36 a 6 =46.01 14.07 a i 3 = 1.79 0 . 01 a 3 6 =-3.94 0 . 07 an =2. 69 0.04 ais =10.51 0 . ,49 a S f i = 3. 32 0 . 05 A n a l y s i s i f Variance  | E f f i c i e n c y Index |Source Sum-of-Squares D.F. Mean Square F - R a t i o R2 R e g r e s s i o n 104 543.39 20 5 227.17 1.447 0.786 |Residual 25 287.60 7 3 612.51 83 The squared m u l t i p l e index R 2 i s on the low s i d e , s u g g e s t i n g t h a t t h e r e i s s i g n i f i c a n t lack of f i t i n the model. T h i s i s supported by the p l o t of r e s i d u a l s versus run number ( F i g u r e 11) , which shows a d i s t i n c t s h i f t away from the optimum when the s t a r p o r t i o n of the de s i g n i s in t r o d u c e d . As a r e s u l t of the l a c k of f i t observed, the s t a r p o r t i o n of the design was r e j e c t e d . Data from the cube and c e n t r e p o r t i o n s of the design were f i t t e d t o a f i r s t o rder model capapable of e s t i m a t i n g main and two f a c t o r i n t e r a c t i o n terms. The f u l l S y s t a t p r i n t out i s shown i n Appendix 11. The computed model c o e f f i c i e n t s and t h e i r corresponding s t a t i s t i c s are shown i n Table 15. The complete model f o r the e f f i c i e n c y index i s E - 330 .4-1.56/^-21. 07/772 + 19 .41m3-5 . 06m5+43 . 21m6 + 5 . 5/27^2 + 1 .79/7y7?3 + 10 . 51/77JZT75+6 . 97/77^+16 . 53/772/773-1 . 01/772/775-6 . 21/772J776 + 17 . 4 9/273/775 - 3 . 9 4/773/776+3 . 32i7752776 (5.4) The r e s i d u a l s based on equation (5.4) were p l o t t e d a g a i n s t the run number. The p l o t ( Fig u r e 12) i n d i c a t e s t h a t t h e r e i s no l a c k of f i t between experimental data and the f i t t e d model; t h a t i s , the r e s i d u a l s are randomly d i s t r i b u t e d about the o r i g i n . From the F - t e s t s , the e f f e c t s of s i g n i f i c a n c e were i d e n t i f i e d . They are summarised on Table 16, i n d e c r e a s i n g order from top to bottom. Figure 11: Mechanical Cell Residuals Residuals vs Run number Run Number Figure 1 2 : Mechanical Cell Residuals 50 60 -\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Run number 86 Table 15: F i r s t Order Model Coefficents Including Two Term Interactions  C o e f f i c i e n t F -. r a t i o C o e f f i c i e n t F - R a t i o a 0 = 330.44 3 498.83 a i 5 = 10.51 3 .145 a x = -1.56 0.069 aig = 6. 97 1. 384 a 2 = -21. 07 12. 65 a23 = 16.53 7 .786 a 3 = 19.41 10.73 a25 = -1.01 0 . 029 a 5 = -5.06 0. 728 a26 = -6.21 1.102 a 6 = 43.21 53.184 a 3 5 = 17.49 8 . 719 a 1 2 5.50 0.86 a 3 6 -3. 94 0 . 443 a 1 3 = 1.79 0 .092 • = 3. 32 0 . 314 A n a l y s i s of Variance . Source Sum-of-Squares D.F. Mean Square F - R a t i o R2  Regression 56 850.75 15 3 790.05 6.749 0.981 R e s i d u a l 1 123.21 2 Table 16: S i g n i f i c a n t E f f e c t s of Batch Mechanical C e l l |Response | F i r s t Order | I n t e r a c t i o n Terms | | V a r i a b l e 1 E f f e c t 1 1 1 E | F l o t a t i o n Time | I m p e l l e r / F l o t a t i o n Time j 1 |Impeller | a i r f l o w r a t e / f r o t h e r c o n c e n t r a t i o n | | A i r Flowrate l a i r f l o w r a t e / i m p e l l e r speed 1 87 W i t h i n the range of v a r i a b l e s s t u d i e d , the f e e d p e r c e n t s o l i d s d i d not have a s i g n i f i c a n t i n f l u e n c e on the e f f i c i e n c y index. I t s i n t e r a c t i o n with the. other f a c t o r s was a l s o i n s i g n i f i c a n t . The e f f i c i e n c y index was s i g n i f i c a n t l y a f f e c t e d by the f l o t a t i o n time, i m p e l l e r speed and a i r f l o w r a t e , i n t h a t o r d e r . Long f l o t a t i o n times, h i g h a i r f l o w r a t e s and low i m p e l l e r speed favour h i g h e f f i c i e n c y i n d i c i e s . The e f f e c t of i m p e l l e r speed and a i r f l o w r a t e on c o a l f l o t a t i o n i n mechanical c e l l s i s w e l l known, having been the s u b j e c t of d i s c u s s i o n i n a number of p u b l i c a t i o n s (57, 57, 58) . The two f a c t o r s are l i n k e d to each other by the a i r flow number (58) N = Q/ND3 (5.5) where Q i s the a i r flowrate, N i s the i m p e l l e r speed, and D i s i m p e l l e r diamenter which i s a f i x e d constant. As expected, there i s s i g n i f i c a n t i n t e r a c t i o n between the f r o t h e r c o n c e n t r a t i o n and a e r a t i o n r a t e . A e r a t i o n r a t e and f r o t h e r c o n c e n t r a t i o n j o i n t l y i n f l u e n c e bubble s i z e , which i n t u r n i n f l u e n c e the r a t e of f l o t a t i o n . Too h i g h an a e r a t i o n r a t e causes the formation of l a r g e bubbles which are d e t r i m e n t a l t o s u c c e s s f u l f l o t a t i o n . To c e r t a i n extent, the g e n e r a t i o n of l a r g e bubbles can be c o u n t e r a c t e d by high f r o t h e r dosages. S i g n i f i c a n t i n t e r a c t i o n between f r o t h e r dosage, i m p e l l e r speed and a i r f l o w r a t e has a l s o been observed by R a s t o g i and Apian (56) who concluded t h a t the a i r flowrate was the most important v a r i a b l e , f o l l o w e d by f r o t h e r dosage, and to a l e s s e r extent i m p e l l e r speed. Using mass flow of c l e a n c o a l as the primary response v a r i a b l e , Bascur and Herbst (57) concluded that the best f l o t a t i o n r e s u l t s o c c u r r e d when the a i r f l o w r a t e and i m p e l l e r speed were manipulated j o i n t l y t o achieve the c o r r e c t bubble s i z e d i s t r i b u t i o n . Thus, the r e s u l t s presented here are i n agreement w i t h those p u b l i s h e d by previous workers. 5.2.4 Evaluation of Optimum Parameter Settings Optimum parameter s e t t i n g s were computed s i m i l a r l y t o the f l o t a t i o n column from the f i r s t order model which i n c l u d e s two term i n t e r a c t i o n terms equation (5.4). The optimum coded l e v e l s of the v a r i a b l e s are (1) feed percent s o l i d s (-4.12), (2) i m p e l l e r speed (0.20), (3) a i r f l o w r a t e (2.78), (4) f r o t h e r c o n c e n t r a t i o n (-0.77), and (5) f l o t a t i o n time (0.50). The a c t u a l l e v e l s are (1) feed percent s o l i d s (3.76 % ) , (2) i m p e l l e r speed (920 rpm), (3) a i r f l o w r a t e (8.78 l/min), (4) f r o t h e r c o n c e n t r a t i o n (52.3 g / t ) , and (5) f l o t a t i o n time (4 min 30 sec) . The c o l l e c t o r c o n c e n t r a t i o n was kept constant at 1000 g/t. R e s u l t s of t e s t s conducted at the optimum parameter s e t t i n g s are shown on Table 17. The e f f i c i e n c y index o b t a i n e d (323.8) by f l o a t i n g bulk 96 % < 600 Lim at optimum c o n d i t i o n s i s s l i g h t l y lower than the value of 370.6 p r e d i c t e d from e q u a t i o n (5.4). 89 5.2.5 Model Validation and P a r t i c l e Size E f f e c t s . Table 17: Model Validation and Size E f f e c t s P a r t i c l e S i z e , micron E f f i c i e n c y Index Y Ac At Af 96 % < 600 323. 8 62.1 7.2 37 .5 18. 7 -850 + 600 0 - - 18. 8 -600 + 300 0 - - - 21. 1 -300 + 150 315.1 57.4 6.9 37. 9 20. 1 - 150 422.5 73.2 9.0 51. 9 20. 5 When f l o a t i n g i n d i v i d u a l s i z e f r a c t i o n s s e p a r a t e l y , p a r t i c l e s above 300 Um could not be f l o a t e d . This r e s u l t was expected because of the low feed percent s o l i d s . Current p r a c t i c e i n North America i s to f l o a t i n the range 3 - 2 0 percent s o l i d s , w i t h an approximate average of about 7 %. Generally, the coarser the c o a l p a r t i c l e s , the higher the feed percent s o l i d s , and the f i n e r the feed s i z e f r a c t i o n , the lower the feed percent s o l i d s . 5.3.0 Comparison of Fl o t a t i o n Column and Batch Mechanical C e l l R e s u l t s from the screening and c e n t r a l composite designs suggest t h a t the f l o t a t i o n column i s at l e a s t equal to the mechanical c e l l when f l o a t i n g bulk 96 % < 600 um coal f i n e s when the e f f i c i e n c y index i s taken as the primary response v a r i a b l e . The product ash content i s however, g e n e r a l l y lower f o r the f l o t a t i o n column. This i s a r e s u l t of the washwater and deeper f r o t h i n the f l o t a t i o n column. 90 To compare the performance of the f l o t a t i o n column t o the b a t c h mechanical c e l l , i n d i v i d u a l s i z e f r a c t i o n s were f l o a t e d i n the batch mechanical c e l l at reagent dosages and a i r f l o w r a t e s i m i l a r to the o p t i m i s e d f l o t a t i o n column. The i m p e l l e r speed and r e s i d e n c e time were maintained at 920 rpm and 4.5 minutes, r e s p e c t i v e l y . T ests were conducted at 2 percent and 15 pe r c e n t s o l i d s , two extremes of the feed percent s o l i d s . I n d i v i d u a l s i z e f r a c t i o n s were a l s o f l o a t e d at 2 % s o l i d s i n the f l o t a t i o n column. Table 18: Size by Size Comparison of F l o t a t i o n Column and Batch Mechanical C e l l  a) 15 % s o l i d s  P a r t i c l e S i z e , Lim F l o t a t i o n Column Mechanical C e l l E Ac Y At Af E Ac Y At Af 96 % < 600 483.7 7.7 80.4 46.3 15.3 274.7 11.7 50.7 42.8 19.5 -850 + 600 15.3 7.5 6.1 18.8 18.1 199.8 9.3 35.3 34.2 20.7 -600 + 300 272.2 5.4 55.6 26.4 14.7 122.6 11.0 33.1 23.7 16.5 -300 + 150 523.9 7.1 72.2 51.5 19.4 264.0 13.1 48.6 43.0 19.0 - 150 575.3 9.1 84.3 62.1 17.4 257.3 11.4 47.5 41.0 19.8 b) 2 % S o l i d s  P a r t i c l e S i z e , (lm E Ac Y At Af E Ac Y At Af 96 % < 600 119.3 7.5 34.9 25.6 19.3 175.3 7.3 43.6 29.6 19.7 - 850 + 600 - - - - 19.5 - 19.6 - 600 + 300 - - 18.8 - 19.4 - 300 + 150 229.6 8.0 54.2 33.9 19.9 241.9 7.0 53.5 31.7 18.5 - 150 231.0 6.0 46.3 29.9 18.9 191.1 8.0 48.8 31.3 19.9 The r e s u l t s are shown on Table 18a and 18b, and on F i g u r e s 13, 14 and 15. Bulk f l o t a t i o n of 96 % <600 um fe e d at 15 % s o l i d s and 2 % s o l i d s suggest t h a t at the higher pulp d e n s i t y the f l o t a t i o n column y i e l d s a h i g h e r e f f i c i e n c y index at a lower product ash con t e n t . At 2 % s o l i d s , the mechanical c e l l e f f i c i e n c y index i s g r e a t e r . When f l o a t i n g i n d i v i d u a l s i z e f r a c t i o n s at 15 % s o l i d s , the f l o t a t i o n column y i e l d s e f f i c i e n c y i n d i c e s which are h i g h e r f o r the s i z e f r a c t i o n s around and below 600 um (Figure 13) . The product ash content i s a l s o s i g n i f i c a n t l y lower f o r the f l o t a t i o n column (Figure 15). The mechanical c e l l y i e l d e d a h i g h e r e f f i c i e n c y index f o r s i z e f r a c t i o n s i n the range 600 to 850 um. However, the ash content was g r e a t e r than f o r the f l o t a t i o n column. Since c o a l f l o t a t i o n c i r c u i t s are normally f e d with m a t e r i a l s below 500 um, the r e s u l t s i n d i c a t e t h a t at high pulp d e n s i t i e s f l o t a t i o n column are b e t t e r s u i t e d t o separate the combustible f r a c t i o n from ash. At 2 % s o l i d s i t was not p o s s i b l e t o f l o a t s i z e f r a c t i o n s around and above 600 Um i n both f l o t a t i o n machines (Figure 14) . F a i l u r e t o f l o a t coarse s i z e f r a c t i o n s i s caused by the absence of h i n d e r e d s e t t l i n g at low pulp d e n s i t i e s . Below 600 um, F i g u r e 14 suggests t h a t the performance of both c e l l s i s s i m i l a r . The product ash contents are a l s o roughly s i m i l a r (Table 18b). 600 500 H 400 H 300 H 200 100 H 100 Figure 13: Flotation of Individual Size Fraction at 15 % Solids 300 500 Particle Size, micron Flotation Column +• Mechanical Cell 700 900 Figure 14: Flotation of Individual Size Fractions at 2 % Solids 260 - i — 1 1 1 r i T i i - i 100 300 500 700 900 Particle Size, micron B Flotation Column + Mechanical Cell 100 Figure 15: Size by size ash contents at 15% solids 300 500 Particle Size, micron 700 •fe 900 Flotation Column +• Mechanical Cell CHAPTER 6 6.1 SUMMARY AND CONCLUSIONS A study of the effects of manipulated variables on the e f f i c i e n c y index of coal f l o t a t i o n in a p i l o t f l o t a t i o n column and a 5 L batch mechanical c e l l has been conducted. The following conclusions, based on the f l o t a t i o n conditions and within the range of variables employed, were made. (1) When f l o a t i n g bulk minus 600 Lim coal both c e l l s are capable of giving s a t i s f a c t o r y performance based on the e f f i c i e n c y index. However, the f l o t a t i o n column generally y i e l d s a product with lower ash, primarily due to the washwater and deeper f r o t h . (2) Using the p i l o t f l o t a t i o n column, factors which had a s t a t i s t i c a l l y s i g n i f i c a n t f i r s t order e f f e c t on the e f f i c i e n c y index were ranked in decreasing order of s i g n i f i c a n c e as; feed rate, feed percent solids, and frother concentration. The order of significance of two term interaction e f f e c t s observed was; feed percent s o l i d s / a i r flowrate, feed percent s o l i d s / f r o t h e r concentration, feed rate/froth depth, feed rate/feed percent s o l i d s , and a i r flowrate/froth depth, c o l l e c t o r concentration/froth depth, frother concentration/collector concentration, and washwater flowrate/ c o l l e c t o r concentration. 96 (3) Most of the t h r e e term i n t e r a c t i o n terms were s t a t i s t i c a l l y i n s i g n i f i c a n t . Three term i n t e r a c t i o n s which were of s i g n i f i c a n c e i n v o l v e d the feed r a t e , f e e d p e r c e n t s o l i d s and a i r f l o w r a t e , and the feed percent s o l i d s , a i r f l o w r a t e and f r o t h depth. (4) E f f i c i e n c y i n d i c e s from the batch mechanical c e l l were a f f e c t e d s i g n i f i c a n t l y by the residence time, i m p e l l e r speed and a i r f l o w r a t e , i n t h a t order. Two f a c t o r i n t e r a c t i o n s were observed t o be s t a t i s t i c a l l y s i g n i f i c a n t , between the i m p e l l e r speed and f l o t a t i o n time, a i r f l o w r a t e / f r o t h e r c o n c e n t r a t i o n , and a i r f l o w r a t e / i m p e l l e r speed. (5) F a c t o r s which had a s t a t i s t i c a l l y i n s i g n i f i c a n t e f f e c t on the e f f i c i e n c y index were the feed percent s o l i d s , f r o t h e r c o n c e n t r a t i o n , and c o l l e c t o r c o n c e n t r a t i o n . Hence, w i t h i n the range s t u d i e d , while the feed percent s o l i d s appears t o be a s i g n i f i c a n t f a c t o r i n f l o t a t i o n columns, i t does not seem t o be a s i g n i f i c a n t f a c t o r i n mechanical c e l l s . (6) E v a l u a t i o n of the optimum f l o t a t i o n c o n d i t i o n s demonstrated t h a t , while f l o t a t i o n columns can be s a t i s f a c t o r i l y operated at h i g h pulp d e n s i t i e s , the s o l i d s c o n c e n t r a t i o n i n the f e e d to mechanical c e l l s should be kept i n the lower range. (7) Comparison of the f l o t a t i o n column and b a t c h mechanical c e l l by 97 f l o a t i n g i n d i v i d u a l s i z e f r a c t i o n s at 15 p e r c e n t s o l i d s and 2 percent s o l i d s i n d i c a t e d t h a t : -i ) E f f i c i e n c y i n d i c e s are higher i n f l o t a t i o n columns at the hi g h e r pulp d e n s i t y . The product ash content i s a l s o c o n s i s t e n t l y lower, i i ) At the lower pulp d e n s i t y , s i z e f r a c t i o n s above 300 um are d i f f i c u l t t o f l o a t i n both c e l l s . For s i z e f r a c t i o n s below 300 urn, the e f f i c i e n c y index from the ba t c h mechanical c e l l i s h i g h e r . However, i n the f l o a t a b l e s i z e range the product ash content i s equal i n both c e l l s . 6.2 Recommendations for Future Work 1. The r e s u l t s presented here suggest t h a t f l o t a t i o n columns at l e a s t equal the performance of mechanical c e l l s when f l o a t i n g b ulk < 600 um c o a l f i n e s when the e f f i c i e n c y index i s taken as the primary response v a r i a b l e . However, the product ash content i s g e n e r a l l y lower f o r the f l o t a t i o n column. More testwork needs to be conducted on a c t u a l p l a n t feed from Bullmoose Coal Mine to c o n c l u s i v e l y e s t a b l i s h the f e a s i b i l i t y of r e p l a c i n g the mechanical f l o t a t i o n c e l l s c u r r e n t l y i n o p e r a t i o n w i t h f l o t a t i o n columns. 2. S i g n i f i c a n t t h r e e term i n t e r a c t i o n s were observed between the the f e e d r a t e , feed percent s o l i d s and a i r f l o w r a t e , and the feed percent s o l i d s , a i r f l o w r a t e and f r o t h depth. The 98 i n t e r a c t i o n between feed r a t e , feed p e r c e n t s o l i d s and a i r f l o w r a t e have p e r v i o u s l y r e p o r t e d i n the l i t e r a t u r e ( 3 4 ), a l b e i t i n c o n c l u s i v e l y . T h i s r e l a t i o n should be e x p l o r e d f u r t h e r and a s u i t a b l e model developed f o r the purposes of s c a l e up. S i m i l a r l y , a r e l a t i o n s h i p between f e e d r a t e , f e e d p e r c e n t s o l i d s and a i r f l o w r a t e s u i t a b l e f o r s c a l e up purposes needs to be developed. 99 REFERENCES 1. Groppo, J . , 1986.Column F l o t a t i o n Shows Higher Recovery wi t h  Less Ash, Coal Mining, August, pp 36-38. 2. Kawatra, S.K. and E i s e l e , T.C., 1988. S t u d i e s R e l a t i n g t o  Removal of P y r i t i c Sulphur from Coal by Column F l o t a t i o n , Column F l o t a t i o n '88 (Sastry, K.V.S.,ed.), Phoenix, A r i z o n a , pp 213-220. 3. Column F l o t a t i o n Company of Canada L t d . , 1982. Column F l o t a t i o n  S e p a r a t i o n of High Sulphur Coal i n a 2 Inch P i l o t Column, CANMET Contr a c t Report No. 05Q81-00153. 4. Moon, K.S. and S i r i o s , L.L., 1982, B e n e f i c i a t i o n of High  Sulphur Coal by Column F l o t a t i o n , CANMET D i v i s i o n Report ESP/MSL 82-67 (IR). 5. Bensley, C , Roberts, T., N i c o l , S. and Lamb, R. , 1987. Column F l o t a t i o n : The Development of the Tower F l o t a t i o n  C e l l , Proc. 4th A u s t r a l i a n Coal P r e p a r a t i o n Conference, pp 153-169. 6. Dobby, G.S., 1984. PhD Thesis, M c G i l l U n i v e r s i t y . 7. Dobby, G.S. and F i n c h , J.A., 1 9 8 6 . F l o t a t i o n Column S c a l e up  and M o d e l l i n g , CIM B u l l e t i n , V o l 7, pp 89-96 8. Anon., 1984. P r e l i m i n a r y T e s t i n g of Column F l o t a t i o n C e l l s , Brenda Mines L t d Report. 9. Aravena, J . , 1987. Column F l o t a t i o n A p p l i c a t i o n at  Chiquicamata's Molybdenite F l o t a t i o n P l a n t , Copper '87 (Mular, A.L., Gonzalez, G. and Barahona, C, ed.) C h i l e a n IMM, pp 155-169. 10. Dobby, G.S. and Finch, J.A., 1985. Mixing C h a r a c t e r i s t i c s  of I n d u s t r i a l F l o t a t i o n Columns, Chem. Eng. S c i . , V o l . 40, pp 1061-1068. 11. Yianatos, J.B. and Finch, J.A. and Laplante, A.R., 1986. Apparent Hindered S e t t l i n g i n a G a s - L i q u i d - S o l i d s  Countercurrent Column, Int. Jour. M i n e r a l P r o c e s s i n g , 1986, pp 155-165. 12. Yianatos, J.B., d e l V i l l a r , R., F i n c h , J.A. and L a p l a n t e , A.R., 1987: P r e l i m i n a r y F l o t a t i o n Column Design Using P i l o t S c a l e  Data: Copper '87, (Mular, A.L., Gonzalez, G. and Barahona, C , ed), C h i l e a n IMM, V o l . 2, pp 171-184. 13. Espinosa-Gomez, R., Yianatos, J.B., F i n c h , J.A. and Johnson, N.W., 1988.Carrying Capacity L i m i t a t i o n s i n F l o t a t i o n Column 100 Fr o t h s , Column F l o t a t i o n '88 ( S a s t r i , K.V.S., ed) , AIME, Phoenix, Ar i z o n a , pp 143-148. 14. L e v e n s p i e l , 0., 1972. Chemical Reaction E n g i n e e r i n g , John Wiley and Sons. 15 L u t t r e l , G.H., Adel, G.T., Yoon, R.H. and Weber, A.T., 1988. Microbubble F l o t a t i o n of Fine Coal, Column F l o t a t i o n '88, ( S a s t r i , K.V.S., ed.) AIME, Phoenix, A r i z o n a , pp 205-211. 16. C o n t i n i , N.J., Wilson, S.W. and Dobby, G.S., 1988. Measurement  of Rate Data i n F l o t a t i o n Columns, Column F l o t a t i o n '88, ( S a s t r i , K.V.S., ed.) AIME Phoenix, A r i z o n a , pp 81-89. 17. F a l u t s u , M. and Dobby, G.S., 1989. D i r e c t Measurement of F r o t h  Drop Back and C o l l e c t i o n Zone Recovery i n a L a b o r a t o r y  F l o t a t i o n Column, Minerals Eng., pp 377-386. 18. Mular, A.L. and Musara, W.T., 1989. A Batch F l o t a t i o n Column  f o r Rate Data Measurement, In P r e p a r a t i o n , Department of Mining and M i n e r a l Process Engineering, U n i v e r s i t y of B r i t i s h Columbia 19. Dowling, E.C., Klimpel, R.R. and Apian, F.F., 1985. Model  D i s c r i m i n a t i o n i n the F l o t a t i o n of a Porphyry Copper Ore, M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , May, pp 87-101. 20. d e l V i l l a r , R. , Gomez, CO., Finch, J.A. and Espinosa-Gomez, R., 1989. F l o t a t i o n Column Amenability T e s t i n g and Scale-up  Parameter E s t i m a t i o n Tests, P r o c e s s i n g of Complex Ores, (Dobby G.S. and Rao, S.R., ed), CIM, pp 349-358. 21. Wheeler, D.A., 1966. B i g F l o t a t i o n Column M i l l T e s t s , E & MJ, November, pp 98-193. 22. d e l V i l l a r , R., F i n c h , J.A., Yianatos, J.B. and L a p l a n t e , A.R., 1988. Column F l o t a t i o n S i m u l ation, Computer A p p l i c a t i o n s i n the M i n e r a l Industry, (Fystas, C o l l i n s and S i n g h a l , ed.), Balkema, pp 233-239. 23 Xu, M. and F i n c h , J.A., 1989. Bubble Diameter E s t i m a t i o n i n a  M e c h a n i c a l l y A g i t a t e d F l o t a t i o n machine. M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , Feb., pp 43-44. 24. C l i n g a n , B.V. and McGregor, D.R., 1987. Column F l o t a t i o n  Experience at Magma Copper Company, M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , pp 121-125. 25. Yianatos, J.B., Marchese, M., Hutchinson, S. and Wiles, R.J., 1989. C h a r a c t e r i s t i c s of Gas Sparging Media i n F l o t a t i o n  Columns, P r o c e s s i n g of Complex Ores, (Dobby, G.S. and Rao, S.R. ed.) CIM, pp 359-368. 101 26. Moy, M.H. and F i n c h , J.A., 1988. Developments i n the C o n t r o l  of F l o t a t i o n Columns, I n t . Jour. M i n e r a l P r o c e s s i n g , pp 255-278 27. Yianatos, J.B., Finch, J.A. and Lapl a n t e , A.R., 1987. The .Cleaning; A c t i o n i n F l o t a t i o n Column F r o t h s , Trans. IMM C199-205. 28. H i l l , . H . N . , 1985. Micropr o c e s s o r C o n t r o l of Column F l o t a t i o n " Process, ISA, pp 149-152. 29. Amelunxen, R.L., 1985. The Mechanics of O p e r a t i o n of Column  F l o t a t i o n Machines, 17th Canadian M i n e r a l P r o c e s s o r s Conference , Ottawa. 30. Amelunxen, R.L., Dobby, G.S. and F i n c h , J.A., 1985. Column  F l o t a t i o n : Some P l a n t Experience and Model Development, Automation For M i n e r a l Resource Development, IAFC Symposium S e r i e s , (Norrie, A. and Turner, D.R., ed.), Pergamon P r e s s , pp 259-264. 31. U.S. Bureau of Mines S t a f f , 1989. T a r g e t t i n g Automation  i n Mining and Pro c e s s i n g , E & MJ, Nov., pp5 6-61. 32. Yianatos, J.B.. Espinosa-Gomez, R., F i n c h , J.A., L a p l a n t e , A.R. and Dobby, G.S., 1988. E f f e c t of Column Height and  Diameter on F l o t a t i o n Column Performance, M i n e r a l s & M e t a l l u r g i c a l P r o c e s s i n g , Feb., p p l l - 1 4 . 33. Ynchausti, R.A., Herbst, J.A. and Hales, L.B., 1988. Unique  Problems and O p p o r t u n i t i e s A s s o c i a t e d with Automation of  Column F l o t a t i o n C e l l s , Column F l o t a t i o n '88, ( S a s t r i , K.V.S., ed), AIME, Phoenix, A r i z o n a , pp 27-33. 34. Laplante, A.R., Yianatos, J . and F i n c h , J.A., 1988. On the  Mixing C h a r a c t e r i s t i c s of the C o l l e c t i o n Zone i n F l o t a t i o n  Columns, Column F l o t a t i o n '88, ( S a s t r i , K.V.S., ed), AIME, Phoenix, A r i z o n a , pp 69-79. 35. Dobby, G.S. and Finch, J.A., 1986. P a r t i c l e C o l l e c t i o n i n  Columns - Gas Rate and Bubble S i z e E f f e c t s , Can. Met. Q u a r t e r l y , V o l . 25, No. 1, pp 9-14. 36. Jameson, C.J., Nam, S. and Moo Young, M., 1977. P h y s i c a l  F a c t o r s A f f e c t i n g Recovery Rates i n F l o t a t i o n , M i n e r a l S c i . Eng., V o l . 9, pp 103-118. 37. Tyurnikova., V.I. and Naumov, M.E., 1981. Improving the  E f f e c t i v e n e s s of F l o t a t i o n , Technicopy L t d . , Glos., England. 102 F i n c h , J.A., Yianatos, J.B. and Dobby, G.S., 1988. Column  Fro t h s , P r i v a t e Communication. Lynch, A.J., Johnson, N.W., Manlapig, E.V. and Thorne, C.G., 1981. M i n e r a l and.Coal F l o t a t i o n C i r c u i t s : T h e i r S i m u l a t i o n  and C o n t r o l , E l s e v i e r S c i e n t i f i c P u b l i s h i n g Co., New York. 40. Sun, S. and Zimmerman, R.E., 1950. The Mechanism of Coarse Coal  and M i n e r a l F l o t a t i o n s , Trans AIME, V o l . 187, pp 616 - 622. 41. Apian, F.F., 1976. Coal F l o t a t i o n , FLOTATION - Gaudin Memorial Volume, V o l . 2, AIME, pp 1235-1264. 42. F i r t h , B.A., Swanson, A.R. and N i c o l , S.K., 1978. The I n f l u e n c e  of Feed S i z e D i s t r i b u t i o n on the Staged F l o t a t i o n of P o o r l y  F l o a t i n g Coals, Proc. Aust. IMM, No. 2 67, pp 4 9-53. 43. B e t h e l l , P.J. and P h i l l i p s , D.I., 1986. E f f e c t i v e D e s l i m i n g of  F r o t h F l o t a t i o n C e l l Feed at E l k Run Coal Co., M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , August, pp 154-158. 44. Leonard, J.W., 1979. Coal P r e p a r a t i o n , AIME, New York. 45. Ozbayoglu, G., 1987.Coal F l o t a t i o n , M i n e r a l P r o c e s s i n g Design, (Yarar, B. and Dogan, Z.M., ed.), Nato ASI S e r i e s , pp 76-105. 46. Misra, M. and H a r r i s , R., 1988, Column F l o t a t i o n o f F i n e Coal  From Waste Coal r e f u s e . Column F l o t a t i o n '88, ( S a s t r i , K.V.S., ed.) AIME, Phoenix, A r i z o n a , pp 235-242. 47. Reddy, P.S.R., Kumar, S.G., Bhattacharyya, K.K., S a s t r i , S.R.S. and Narasimhan, K.S., 1988. F l o t a t i o n Column For F i n e Coal  B e n e f i c i a t i o n . I n t . Jour. M i n e r a l P r o c e s s i n g , 24, pp 161-172. 48. P l i t t , L.R., O f o r i , P. and Mohamedbhai, 1987. Column F l o t a t i o n  T e s t s , Luscar Stereo L td, F i n a l Report, Depart. Min. & Met. Eng., U n i v e r s i t y of A l b e r t a . 49. T s i p e r o v i c h , M.V. and Evtushenko, V, 1959. P r e p a r a t i o n and  C a r b i n i z a t i o n of Coals, V o l . 1, Sverdlovsk, M e t a l l u r g i z d a t , 72. 50. van Dieren, D., 1986. Design, C o n s t r u c t i o n and T e s t i n g of a  Column F l o t a t i o n C e l l , BASc Thesis, Depart. Min. & M i n e r a l Proc Eng., U n i v e r s i t y of B r i t i s h Columbia. 38 . 39. 51. Nelder, J.A. and Mead, R.A., 1965. A Simplex Method f o r  F u n c t i o n M i n i m i s a t i o n , Computer Jour., 7, pp 308. 103 52. Mular, A.L., 1976. O p t i m i s a t i o n of F l o t a t i o n P l a n t s , FLOTATION - Gaudin Memorial Volume, ( Fuerstenau, M.C., ed) , AIME, pp 895-935. 53. S y s t a t , 1989. UBC Computer Science S e r v i c e s . 54. Box, G.P. and Draper, N.R., 1987. E m p i r i c a l Model B u i l d i n g  and Response Surfaces, John and Wiley and Sons. 55. Parekh, B.K., Bland, A.E. and Groppo, J.G., 1989. A P a r a m e t r i c  Study of Column F l o t a t i o n f o r F ine Coal C l e a n i n g , P r i v a t e Communication. 56. R a s t o g i , R.C. and Apian, F., 1985. Coal F l o t a t i o n As A Rate  Process, M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , August pp 137-145. 57. Herbst, J.A. and Bascur, O.A., 1985. A l t e r n a t i v e C o n t r o l  S t r a t e g i e s f o r Coal F l o t a t i o n , M i n e r a l s and M e t a l l u r g i c a l P r o c e s s i n g , Feb., pp 1-9. 58. A r b i t e r , N., H a r r i s , C.C. and Yap, R.F., 1968. A Hydrodynamic  Approach to F l o t a t i o n Scale-up, V I I I I n t e r . M i n e r a l Proc. Congress, Lenigrad, pp 588-607. 59. C l a r i d g e , P.G., Holmes, G.P. and Redfearn, M.A.,1989. F l o t a t i o n , Operation and Maintenance i n M i n e r a l P r o c e s s i n g P l a n t s , CIM S p e c i a l Volume 40 (Claridge,P.G., ed) pp 267-290 60. Rao, T.C., P i l l a i , K.J., and Vanangamudi, M. (1982), S t a t i s t i c a l A n a l y s i s of Coal F l o t a t i o n - A P r e l u d e to Process  O p t i m i s a t i o n , IX I n t e r n a t i o n a l Coal P r e p a r a t i o n Congress, New D e l h i 61. Crawford, J.T. (1936). Importance of Pulp D e n s i t y , P a r t i c l e  S i z e and Feed Regu l a t i o n i n F l o t a t i o n C o a l , T r a n s . AIME, V o l . 2, pp.150-162 62. Everson, G.F. (1957). F l o t a t i o n of Low Rank C o a l , I I . A  S t a t i s t i c a l I n v e s t i g a t i o n of Six F a c t o r s I n f l u e n c i n g F r o t h F l o t a t i o n , J o u r n a l I n s t i t u t e of F u e l , V o l . 30, 1957, pp298-309 63. Gayle, J.B. and Eddy, W.H. (1962). E f f e c t s of S e l e c t e d  Operating V a r i a b l e s on Continuous Coal F l o t a t i o n , US Bureau of Mines, RI 5989. 64. Davis, D.H. (1948), F r o t h F l o t a t i o n of Minus 48 Mesh  Bituminous Coal S l u r r i e s , Trans. AIME, V o l . 177, pp 320-337 104 65. Osborne, D.G. (1988). Coal P r e p a r a t i o n Technology, V o l . 2, 66. Degner, V.R. (1989). Chapter 16, I n d u s t r i a l P r a c t i c e of F i n e Coal Cleaning, Klimpel, R. and L u c k i e P.T. (ed.). 67. Yoon, R.H. and L u t t r e l , G.H., 1986. The E f f e c t of Bubble S i z e  on F i n e Coal Cleaning, Coal P r e p a r a t i o n , V o l . 2. 68. N a l i s n i c k , T.A. (1988). The Tanoma Mining Company's F l o t a i r e  C e l l , Coal P r e p a r a t i o n '88, pp 445-457. 105 APPENDIX 1 REPONSE TO QUESTIONNARE ON COLUMN FLOTATION 106 1. a) Response from Mount Isa Mines Ltd: Zn Retreatment Columns Column number 1 2 3 2.5 16 1 Zn Cleaner Perf . Rubber 1) Column Diameter (m) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used Air 8) Type of Washwater Tray Distributor 9) Slurry Feedrate (l/min) 1 550 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (1/mln) 600 12) Percent Solids in Feed 30 13) Feed P a r t i c l e Size (Um) 14) Recovery (%) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp level Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition 2.5 16 1 Zn Cleaner Perf. Rubber Air Tray 600 Not Given 2.5 16 0.8 Zn Cleaner Perf. Rubber Air Tray * 2 000 600 Not Given d e o < 37 um 75 % Zn Magnetic Magnetic Magnetic Not Specified Vortex Vortex Vortex Vortex Vortex Vortex D.P. c e l l D.P. c e l l D.P.cell 21) Bias Control Manual Manual Manual 107 b) Response from Mount Isa Mines Ltd Cu Retreatment Columns Column number 2.5 16 1 Cu Cleaner Perf. Rubber 1) Column Diameter (m) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used Air 8) Type of Washwater Tray Distr ibutor 9) Slurry Feedrate (l/min) 1 100 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (l/min) 480 12) Percent Solids in Feed 30 13) Feed P a r t i c l e Size (Lim) 14) Recovery (%) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp l e v e l Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition 2.5 16 1 Cu Cleaner Perf. Rubber Air Tray 360 Not Given dao < 20 Lim 90 % Cu Magnetic N/A N/A Vortex Vortex Vortex Vortex D.P. c e l l D.P. c e l l 2.5 16 0.8 Cu Cleaner Perf. Rubber A i r Tray 1 400 300 Not Given Magnetic Vortex Vortex D.P.cell 21) Bias Control Manual Manual Manual 108 c) Response from Mount Isa Mines Ltd: Low Grade Middling Columns Column number  TT Column Diameter Cm) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used 8) Type of Washwater Distributor 9) Slurry Feedrate (l/min) 10) Ta i l i n g s Flowrate (l/min) 11) Washwater Flowrate (l/min) 12) Percent Solids in Feed 13) Feed P a r t i c l e Size (Um) 14) Recovery (%) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp l e v e l Control(please mark with cross) 1 ~2T5" 2 "2T5~ 3 I. b 13 1 Pb/Zn Cleaner Perf . Rubber Air Tray 1 680 780 30 13 1 Pb/Zn Cleaner Perf. Rubber Air Tray 600 Not Given d a o < 35 um 60 % Pb, 75 % Magnetic N/A N/A N/A Vortex Vortex Vortex Vortex D.P. c e l l D.P. c e l l 13 0.8 Pb/Zn Cleaner Perf. Rubber Air Tray 2100 420 Not Given Zn Magnetic N/A Vortex Vortex D.P.cell a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition 21) Bias Control Manual Manual Manual 109 2) Response from Cominco Metals (Sullivan Concentrator) Column number 1 1) Column Diameter (m) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 2.5 12 0.91 Zn Inter. & F i n a l Cleaner In One Stage Cominco Air Sparging System 7) Type of Gas Used 8) Type of Washwater Distr ibutor 9) Slurry Feedrate (l/min) 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (l/min) 12) Percent Solids in Feed 13) Feed P a r t i c l e Size (Hm) 14) Recovery (%) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp l e v e l Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition Air Piping Manifold 3 600 3 800 700 45 - 50 d a o < 35 Urn Not Given Magnetic Magnetic Vortex Vortex Float X 21) Bias Control Manual 110 3) Response from Cominco Metals (Polaris Concentrator) 1 0.61 10.3 0.46 Pb Cleaner Column number  1) Column Diameter TnTJ 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used Air 8) Type of Washwater Distr ibutor 9) Slurry Feedrate (l/min) 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (l/min) 12) Percent Solids in Feed 13) Feed P a r t i c l e Size (Um) 14) Recovery (% Pb) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp level Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition 2 0.76 9.75 0.56 Pb Cleaner Perf . Rubber Air Perf. Rubber Piping Manifold 221 210 53 45 90% < 75pm 25 N/A N/A Rotameter Rotameter D.P. c e l l 211 232 110 41 78 % < 75 Um 53 N/A N/A Rotameter Rotameter D.P. c e l l 21) Bias Control Manual Manual I l l 4) Response from Maqma Copper Company (San Manuel) Column Number K x l 5 ) 2 3 4 1) Column Diameter (m) 1.83 1.52 1.2x1.2 0.46 2) Column Height (m) 11.94 11.94 10.06 9.75 3) Froth depth (m) 0.61 0.61 0.81 0.66 4) Type of c i r c u i t Cu/Mo Cu/mo Cu Cu 5) Application (Cleaners) Final F i n a l Inter. Inter. 6) Type of Sparger Fabric Fabric Fabric Fabric 7) Type of Gas Used Air Air A i r A i r 8) Type of Washwater Multiple Spray Bar Distributor 9) 1 Slurry Feedrate (l/min) 1 600 1 600 550 50 10) Tailings Flowrate (l/min) 1 800 1 800 N/A 60 11) Washwater Flowrate (l/min) 227. 227 115 14 12) Percent Solids in Feed 9 9 5 8 13) Feed P a r t i c l e Size(% <44Hm) 80 80 90 90 14) Recovery (% Pb) 93 93 90 90 15) Type of Feed Flowmeter N/A N/A N/A N/A 16) Type of Ta i l i n g s Flowmeter N/A N/A N/A N/A 17) Air Flowmeter O r i f i c e Plate O r i f i c e Plate O r i f i c e Plate O r i f i c e Plate 18) Washwater Flowmeter O r i f i c e Plate O r i f i c e Plate O r i f i c e Plate O r i f i c e Plate 19) Pulp Level Sensor Metri tape (as 1) D .P.c e l l (as 3) 20) Pulp level Control(please mark with cross) a) Pinch Valve on Tailings i Line X X X X b) Variable speed Valve c) By Washwater addition 21) Bias Control Bias control not used 112 5) Response From Highland Valley Copper Column Number 1 2 3_ 1) Column Diameter (m) 0.91 x 1.83 0.86 0.86 2) Column Height (m) 12 10.4 10.4 3) Froth depth (m) 0.46 0.3 0.3 4) Type of c i r c u i t Bulk Cu/Mo Mo Mo 5) Application ( Cleaners) Intermediate F i n a l F i n a l 6) Type of Sparger P e r f o r a t e d R u b b e r 7) Type of Gas Used Air Nitrogen Nitrogen 8) Type of Washwater Spray Bar Distributor Spray Bar Spray Bar 9) Slurry Feedrate (l/min) 5 900 250 250 10) Tailings Flowrate (l/min) 5 400 240 240 11) Washwater Flowrate (l/min) 500 150 150 12) Percent Solids in Feed 20 20 20 13) Feed P a r t i c l e Size (dso),Um 150 38 38 14) Recovery (% ) 20 40 40 15) Type of Feed Flowmeter None None None 16) Type of Tailings Flowmeter None None None 17) Air Flowmeter Rotameter Rotameter Rotameter 18) Washwater Flowmeter O r i f i c e + D.P. c e l l O r i f i c e + D.P. c e l l O r i f i c e + D.P. c e l l 19) Pulp Level Sensor D.P. c e l l D.P. c e l l D.P. c e l l 20) Pulp l e v e l Control(please mark with cross) a) Pinch Valve on Tailings b) Variable speed Valve c) By Washwater addition Line X X X 21) Bias Control Bias control not used 113 6) Response from Inco (Falconbridge) Column Number 1) Column Diameter (m) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used 8) Type of Washwater Distributor 0.91 13.7 1 Cu/Ni 2.13 12.8 1 Cu/Ni 2.13 12.8 1 Cu/Ni Cu/Ni Separately Producing F i n a l Cu concentrate grade Fabric: Air/Water Mixture Air Overhead & Submerged Air Overhead Air Submerged 9) Slurry Feedrate (l/min) 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (l/min) 12) Percent Solids in Feed 13) Feed P a r t i c l e Size(d 8o),um 14) Recovery (% ) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 380 1 170 1 325 460 1 170 1 415 110 375 575 35 35 35 80 80 80 85 78 62 K r o h n e M a g n e t i c K r o h n e M a g n e t i c N o t G i v e n O r i f i c e Plate Unspecified 19) Pulp Level Sensor D.P. c e l l 20) Pulp l e v e l Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition X 3 Pt.Conductivity Probe 21) Bias Control Automatic Automatic Automatic 114 7) Response from Harbour Lights Mining Limited Column Number 1) Column Diameter (m) 2) Column Height (m) 3) Froth depth (m) 4) Type of c i r c u i t 5) Application 6) Type of Sparger 7) Type of Gas Used 8) Type of Washwater Distributor 2.5 12 1 ± 0.75 Au Roughing Fabr ic Air Spray Bar 1.2 12 1.5 ± 0.50 Au Cleaning Fabr ic Air Spray Bar 9) Slurry Feedrate (l/min) 10) Tailings Flowrate (l/min) 11) Washwater Flowrate (l/min) 12) Percent Solids in Feed 13) Feed P a r t i c l e Size(dao),Um 14) Recovery (% ) 15) Type of Feed Flowmeter 16) Type of Tailings Flowmeter 17) Air Flowmeter 18) Washwater Flowmeter 19) Pulp Level Sensor 20) Pulp level Control(please mark with cross) a) Pinch Valve on Tailings Line b) Variable speed Valve c) By Washwater addition 3 300 3 150 0 - 420 35 70 48 None None Rotameter Rotameter D.P. c e l l 460 400 0 - 6 6 15 Not Given 32 None None Rotameter Rotameter D.P. c e l l 21) Bias Control Bias control not used 115 Appendix 2: Flotation Feed Characterization a) B u l l m o o s e C o a l M i n e  P a r t i c l e " B " Seam " C " Seam S i z e , Jim Wt % A s h % Wt % A s h % + 600 3 . 3 7 .11 4 . 5 2 1 . 23 - 600 + 250 3 0 . 1 5 .90 32 . 5 1 6 . 4 7 - 250 + 150 1 9 . 6 6 .74 20 . 5 1 9 . 3 9 - 150 + 75 18 .4 8 .68 19 . 7 2 3 . 6 6 - 75 28 . 6 1 4 . 8 3 22 . 8 2 6 . 7 8 TOTAL 1 0 0 . 0 9 .17 100 . 0 2 1 . 08 b) U n i v e r s i t y o f B r i t i s h C o l u m b i a P a r t i c l e S i z e , Mm Wt % A s h % + 600 3 .9 34 . 3 -600 + 425 1 8 . 9 25 . 2 - 4 2 5 + 300 1 4 . 8 19 . 6 -300 + 212 1 2 . 9 1 5 . 5 -212 + 150 1 1 . 4 14 . 2 -150 + 106 7 .7 1 5 . 8 -106 + 75 5 .1 1 5 . 3 -75 + 53 5 .3 1 7 . 0 53 2 0 . 0 2 4 . 9 TOTAL u 1 0 0 . 0 2 0 . 5 116 Appendix 3: Flowsheet f o r Simplex Direct Search Routine (1) C A L C X, A N D (RSS), FIND h, S. L FORM X , - (1 + «) X . - oX , CALCULATE (RSS), IS (RSS), < (RSS) L NO I YES \ FORM X. - (1 + r) x, - r X. IS (RSS). < (RSS) L YES NO REPLACE \ BY X, IS (RSS), > (RSS). J NO •YES REPLACE X, BY X, HAS MIN. BEEN REACHED NO J IS (RSS), > (RSS), YES •NO —I REPLACE \ BY X, J FORM X. - JO, + (1 - « X. IS (RSS). > (RSS),, -> YES NO REPLACE ALL X, BY 1/2 (X, + X) L REPLACE \ BY X. YES *• PRINTOUT STOP Appendix 4: BASIC Simplex Program for Data Adjustment 10 20 30 40 50 60 70 80 90 10 11 12 13 14' 15 IS1 17 18 19 20 21 24 25' 26' 27 28 29 30 31 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50' 51 52 53 54 55 56 57 58 118 PROGRAM REM DATA ADJUSTMENT REM REM ******COAL CLEANING*********** REM FOR FLOTATION COLUMN DIM REM******D(1,N) DCI, io :>, c c i , i o :>, x *: 11, i O ) , z < i , i o : > , Y(11,.D , QC11, io:> OF OF ***Q CN+1,N): F < 11 ) , F1 C11 ) ****FCli:>=ARRAY FOR MACROVARIABLES ****F1C11 !>=ADJUSTED VALUES FOR MACROVARIABLES =ARRAY STEPS C207. OF START VALUES) REM *****CC 1, N.) = ARRAY STARTING VALUES REM *#*XCN+1,N:> = STARTING SIMPLEX REM ***Z C 1, N)=STORAGE FOR REFLECTED VERTICES REM ***YCN+1, 1) OBJECTIVE FUNCTION VALUES REM C >=TEMPORARY STORAGE ARRAY DIM REM REM REM REM DATA REM: DATA 2.038,0.098,4.569,0.5,0.05,0.225,0.013,6.1,53.7,19.9 READ N,A,V,B,T REM REM REM REM REM REM REM REM FOR 1=1 TO READ FCI) NEXT I 10, 1 DATA 0, INPUT 10 Qf,Qc,Qt,Qw,Pf,PcfPt,Ac,At S< Af **N=NUMBER OF #*V=C #*B=C OEFFIENT OEFFIENT •EFFIENT OF **T=NUMBER **M=NUMBER *M1=NUMBER T OF OF SEARCH VARIABLES OF REFLECTION OF EXPANSION OF CONTRACTION MACROVARIABLES MICROVARIABLES SETS OF MICROVARIABLES FOR 1=1 TO LET Y C1, 1> = NEXT I FOR 1=1 TO FOR J=l TO XCI, J:>=0! NEXT J NEXT I FOR J=l TO ZC1, J!)=0! NEXT J FOR 1=1 FDR J=l QC NEXT J NEXT I REM *** C1 , :: C1, CCI, ::ci, :C1, ; c i . TO TO N+l 0 ! N+l N N N+l N I, J :> =0 ! :C1, REM REM REM SET UP INITIAL F C2.) *F C6.'> FC3>*FC7) >=F C4) F C1)* C1-FC5)> FC2)*C1-F(6)) )=FC8:> FC9) SIMPLEX CALCULATING STEP VALUES: 207. OF START VALUES 119 5 3 0 6 0 0 £ 1 0 6 2 0 £ 3 0 6 4 0 £ 5 0 6 6 0 £ 7 0 6 8 0 £ 9 0 7 0 0 7 1 0 7 2 0 7 3 0 7 4 0 7 5 0 7 6 0 7 7 0 7 8 0 7 9 0 8 0 0 8 1 0 8 2 0 8 3 0 8 4 0 8 5 0 8 6 0 8 7 0 8 8 0 8 9 0 9 0 0 9 1 0 9 2 0 9 3 0 9 4 0 9 5 0 9 6 0 9 7 0 9 8 0 9 9 0 1000 101 c 102C 1030 104C 1050 10SC 107C 108C 109C 11 OC 11 IC 112C 113C 1 14C 115C F O R J = l TO N D c i , J:> = . 2-*c<: i , j> NEXT J REM S E T T I N G UP I N I T I A L S I M P L E X REM FOR J = l TO N FOR 1 = 1 TO N+l x c i, J :J =c <: i , J.> - D < i , J:> / <: J + I :> I F I=J+1 THEN 6 9 0 NEXT I x <: i , J :> -c <: i , J :> + J * D <: I , J :> / <: J + I :> F O R I=J+2 TO N+l X C I, J.')=CC 1, J.) NEXT I NEXT J REM REM C A L C U L A T I O N O F STANDARD ERROR OF O B J E C T I V E FUNCTION REM L E T Z9=0 L E T T 3 = 9 . 9 9 9 9 9 9 E + 3 7 FOR 1=1 TO N+l LET H=I GOSUB 2 3 9 0 REM REM y<: i , l :>=YI NEXT I GOSUB 2 6 2 0 L E T T1=0 LET T2=0 FOR 1=1 TO N+l L E T T2=T2+YC 1 , 1 ) NEXT I FOR 1=1 TO N+l T l = T i + cY c i , i :> - T 2 / cN+ i :> :> •-•2 NEXT I L E T T=SQRCT1/N> I F T M E - 0 8 THEN 1620 GOTO 1000 P R I N T P R I N T " C Y C L E L I M I T CONVERGENCE F U N C T I O N " ; T 3 , T P R I N T L E T H=L GOSUB 2 3 9 0 R E M * * * * ^ * * V A L U E S OF PREDICTED FLOWRATES Q d , Q t , Q o , Q u , O f R E M : * * * * P R 0 G OUTPUT FOR Q f , Q c AND Qt L P R I N T T A B C 1 8 ) ; " * # * V O L U M E T R I C F L O W R A T E S , Q f , Q c , Q t CKG/MIN) L P R I N T T A B C 1 8 ) ; "RAW D A T A " ; T A B C 4 6 ) ; " A D J U S T E D DATA" L P R I N T " F E E D FLOWRATE " ; T A B C 2 1 ) ; F C 1 ) ; T A B ( 4 6 ) ; F l C 1 ) L P R I N T L P R I N T " C O N C . FLOWRATE " ; TAB C21) ; F C2) -f TAB C46) ; F l <2) L P R I N T L P R I N T " T A I L S FLOWRATE " T A B C 2 1 ) ; F C 3 ) ; T A B C 4 6 ) ; F l C 3 ) L P R I N T L P R I N T T A B C 2 6 ) ; " S T R E A M PULP D E N S I T I E S " L P R I N T TAB C 1 8 ) ; " R A W D A T A " ; T A B ( 4 6 ) ; " A D J U S T E D DATA" L P R I N T 1160 L P R I N T " F E E D " ; T A B C 1 8 ) ; 1 0 0 * F C 5 ) ; T A B C 4 6 ) 1 0 0 * F 1 C 5 ) 1170 L P R I N T 1180 L P R I N T " C O N C E N T R A T E " ; T A B C 1 8 ) ; 1 0 0 * F C 6 ) ; T A B C 4 6 ) ; 1 0 0 * F 1 C 6 ) 1190 L P R I N T 1200 L P R I N T " T A I L I N G S " ; TABC 18) ; 1 0 0 * F (7 ) ; TABC46) ; 1 0 0 * F 1 C7) 1210 L P R I N T 1220 L P R I N T 1230 L P R I N T T A B C 1 8 ) ; " A D J U S T E D S O L I D S B A L A N C E , k g / m i n " 1240 L P R I N T "CONCENTRATE SOL I D S " ; T A B ( 4 6 ) ; X C L , 1 ) 1250 L P R I N T 1260 L P R I N T " T A I L I N G S S O L I D S " ; T A B C 4 6 ) ; X C L , 2 ) 1270 L P R I N T 1280 L P R I N T " F E E D S O L I D S " ; T A B ( 4 6 ) ; X C L , 1 ) + X C L , 2 ) 1290 L P R I N T T A B ( 1 8 ) ; " A D J U S T E D WATER B A L A N C E , l / m i n " 1300 L P R I N T "WASH WATER RATE " ; T A B C 4 6 ) ; F l C 4 ) 1310 L P R I N T 1320 L P R I N T "CONCENTRATE WATER R A T E " ; T A B ( 4 6 ) ; X C L , 5 ) 1330 L P R I N T 1340 L P R I N T " 1 3 4 0 L P R I N T " F E E D WATER R A T E " ; T A B C 4 6 ) ; X C L , 4 ) 1350 L P R I N T 1360 L P R I N T " T A I L I N G S WATER RATE " ; T A B C 4 6 ) ; X C L , 4 ) + X C L , 3 ) - X C L , .1370 REM : V A L U E S OF ADJUSTED A S S A Y S 1380 LPR I NT; TAB C 2 4 ) ; " STREAM 7. ASH CONTENTS" 1390 L P R I N T T A B C 1 8 ) ; "RAW D A T A " ; T A B C 4 6 ) ; " A D J U S T E D DATA" 1400 L P R I N T " F E E D 7. ASH " ; TAB C18) ; F C10) ; TAB C46) ; F l C10) 1410 L P R I N T 1420 L P R I N T " C O N C . 7. ASH " ; TAB C IS) ; F C8) ; TAB C46) ; F1 C8) 1430 L P R I N T 1440 L P R I N T " T A I L S 7. A S H " ; TAB C I S ) ; F (9 ) ; TAB C46) ", F l C9) 1450 L P R I N T 1460 R E M : Y I E L D COMPUTATION 1470 Y1 = 1 0 0 * C F C 1 0 ) - F ( 9 ) ) / C F C 8 ) - F C 9 ) ) 1480 Y2 = 1 0 0 * C F 1 C 1 0 ) - F 1 C 9 ) ) / C F 1 C 8 ) - F 1 C 9 ) ) 1490 L P R I N T ; T A B C 3 0 ) ; "PRODUCT Y I E L D " 1500 L P R I N T ; T A B C I S ) ; "RAW Y I E L D " ; T A B C 4 6 ) ; " A D J U S T E D Y I E L D " 1510 L P R I N T T A B C 1 8 ) ; Y l ; T A B C 4 6 ) ; Y 2 1520 L P R I N T 1530 R E M : E F F I C I E N C Y INDEX C T s i p e r o v i c h 2< E v t u s h e n k o ; 1959 ) 1540 E 3 = Y 1 * F C 9 ) / F C 3 ) 1550 E4 = Y 2 * F 1 C 9 ) / F 1 C 8) 1560 L P R I N T 1570 L P R I N T ; T A B C 2 0 ) ; " E F F I C I E N C Y INDEX C T s i p e r o v i c h 3< E v t u s h e n k 1580 L P R I N T ; T A B C 1 3 ) ; " R A W E F F . I N D E X " ; T A B C 4 6 ) ; " A D J . E F F . I N D E X " 1590 L P R I N T T A B C 1 8 ) ; E 3 ; T A B C 4 6 ) ; E 4 1600 L P R I N T 1610 STOP 1620 I F Z9>500 THEN 980 1630 I F T>T3 THEM 1690 1640 LET T3=T 1650 P R I N T " Z 9 = " ; Z 9 , " T = " ; T , " Y C L , 1 ) = " ; Y C L , 1 ) , " Y C H , 1) = " ; Y C H , 1) 1660 REM 1670 R E M * * * * * * * * * * * R E F L E C T I O N 1680 REM 1690 FOR J = l TO N 1700 FOR 1=1 TO N+l 1710 0 ( I , J ) = X C I , J ) 1720 NEXT I 1730 NEXT J 1740 REM C A L C U L A T I O N OF CENTROID 121 1 7 5 0 FOR J=l TO N 1760 L E T P=0 1770 FOR 1= 1 TO N+l 1 7 3 0 I F I=H THEN 1800 1 7 3 0 L E T F - P + X C I , J ) / N 1800 NEXT I 1 8 1 0 L E T ZC1,J> = C1+A:>*P-A*XCH,J) 18 2 0 L E T X C H , J ) = Z < 1 , J ) 1 8 3 0 DCI,J:>=P 1840 NEXT J 1 8 5 0 GOSUB 2 3 9 0 I 8 6 0 L E T Y=Y1 1 8 7 0 I F Y>=YCL,i:> THEN 1980 1880 REM 1 8 9 0 REM****************** EXPANSION 19 0 0 REM 1 9 1 0 FOR J=l TO N 1920 L E T X C H, J !> = C 1 + V ) *Z C1, J ) - V*P 1 9 3 0 NEXT J 1940 GOSUB 2 3 9 0 1 9 5 0 I F Y1>=Y THEN 1990 1960 L E T YCH, 1)=Y1 1970 GOTO 8 6 0 1980 I F Y>YCS,i:> THEN 2 0 4 0 1990 L E T YCH, 1') =Y 2 0 0 0 FOR J=l TO N 2 0 1 0 L E T X CH, J.')=Z C1, J ) 2 0 2 0 NEXT J 2 0 3 0 GOTO 8 6 0 2 0 4 0 I F Y>YCH,i:> THEN 2 1 8 0 2 0 5 0 FOR J=l TO N 2 0 6 0 L E T X CH, J > - Z C I , J ) 2 0 7 0 NEXT J 2 0 8 0 L E T YCH, 1) ==Y 2 0 9 0 FOR J=l TO N 2 1 0 0 Q C H , J ) = X C H , J ) 2 1 1 0 NEXT J 2 1 2 0 REM 2 1 3 0 REM**************CONTRACTION 2 1 4 0 REM 2 1 5 0 FOR J=l TO N 2 1 6 0 X CH, J ) :-Q CH, J.I 2 1 7 0 NEXT J 2 1 3 0 FOR J=l TO N 2 1 9 0 L E T X C H, J !> =B*X C H, J ) + C1 -B') *P 2 2 0 0 NEXT J 2 2 1 0 GOSUB 2 3 9 0 2 2 2 0 I F Yl>YCH,i:> THEN 2 2 8 0 2 2 3 0 L E T YCH,1>=Y1 2 2 4 0 GOTO 8 6 0 2 2 5 0 REM 2 2 6 0 REM************** REDUCE S I Z E OF SIMPLEX 2 2 7 0 REM 2 2 8 0 FOR J=l TO N 2 2 9 0 FOR 1=1 TO N+l 2 3 0 0 L E T X C I , J:) = CQCI, J)+QCL, J.) )/2 2 3 1 0 NEXT I 122 240 241 242 M3 M4C 245 246 247 248' 249 250' 251 CHANGE=";18 NEXT J L E T Z8=Z8+1 P R I N T P R I N T " S T E P P R I N T GOTO 7 9 0 REN S I = 0 F l C1>=XCH, 1>+XCH,2:>+XCH,4} F l C2)=X CH, 1) +X CH, 5 ) F l C3:)=XCH, 2:>+XCH, 4 ) + X C H , 3 ) - X CH, 5) F l C4:i=XCH,3:> F I C5:> = C X C H , I:>+XCH,2-:> :> /FI C D F l C6>=XCH, l . ' ) / F i C2.-) F l C 7 ) = X C H , 2 : ) / F 1 C 3 : ) F 1 ( 8 ) = X ( H , 6 ) F l C9:>=XCH,7.-! F l C 10:> = CX CH, 1 :>*X CH, 6)+X CH, 2') * X CH, 7 ) ) / CXCH, 1') +X CH, 2 ) ) REM REM P R E D I C T E D VALUES OF SCREENED FRACTIONS 31=0 FOR K = l TO 10 L E T S l = 3 1 + C C F C r O - F l CK.'> ') /F CK.)) •"•2 NEXT K Y1=S1 Z9=Z9+1 RETURN REM C A L C QF H I G H , 2 n d H IGH,SLOWEST O B J E C T I V E FUNCTION V A L U E S L = l H=l S = l REM REM L E T L E T L E T FOR 1=2 TO N+l I F Y C 1 , 1 ) > Y CH, 1 ; THEN 2 7 0 0 I F Y C I , 1 X Y C L , 1) THEN 2 7 2 0 NEXT I GOTO 2 7 4 0 L E T H=I GOTO 2 6 7 0 L E T L=I 7 3 0 GOTO 2 6 8 0 L E T R=YCH, 1.') L E T YCH,1>=0 FOR 1=2 TO N+l I F Y C 1 , 1 > >Y CS, 1 :> THEN 2 8 0 0 NEXT I GOTO 2 8 2 0 L E T S=I GOTO 2 7 8 0 L E T Y C H , l.)=R RETURN END 123 Appendix 5: Results of Flotation Column Screening Design Run# c l c2 c3 c4 c5 c6 c7 E Y Ac Ar Af 1 -1 -1 -1 -1 -1 -1 -1 505. 61 66.47 6.04 45.9 19 .41 2 1 -1 -1 -1 1 -1 1 0 0 0 " 0 0 3 -1 1 -1 -1 1 1 1 105. 17 36.53 10.16 29 .24 22.27 4 1 1 -1 -1 -1 1 -1 24 . 28 14.69 11.00 18. 19 17.14 5 -1 -1 1 1 1 1 -1 676. 18 86.6 7.67 59.91 14.84 6 1 -1 1 -1 -1 1 1 0 0 0 * 0 0 7 -1 1 1 -1 -1 -1 1 99. 89 44.77 11.4 25.57 19.25 8 1 1 1 -1 1 -1 -1 34 . 62 19.06 8.93 16.23 14.84 9 -1 -1 -1 1 -1 1 1 274. 23 48.32 6.08 34.50 20.76 10 1 -1 -1 1 1 1 -1 351. 61 88 . 77 10. 12 40.10 13.49 11 -1 1 -1 1 1 -1 -1 55. 85 30.57 11.13 20.34 17.52 12 1 1 -1 1 -1 -1 1 13. 79 4.03 5. 53 18.88 18.34 13 -1 -1 1 1 1 -1 1 226. 16 47.09 6.93 33.29 20.88 14 1 -1 1 1 -1 -1 -1 259 . 75 72.99 8.09 28 . 78 13.68 15 -1 1 1 1 -1 1 -1 199 . 06 54.31 9 . 61 35.23 21.31 16 1 1 1 1 1 1 1 26 . 22 10. 47 8.72 21.83 20.46 17 0 0 0 0 0 0 0 24. 39 6.38 5. 35 20.46 19 . 50 18 0 0 0 0 0 0 0 26. 91 6.90 5.34 20.87 19.80 * No concentrate overflow Af = feed ash (%), Ac = concentrate ash (%), At = t a i l i n g s ash (%) 124 Appendix 6: An i l l u s t r a t i o n of the computations c a r r i e d out by the SYSTAT s t a t i s t i c a l package i n MGLH mode 125 The response of a sample of coal to changes in the levels of two factors, a i r flowrate (Xx) and frother concentration (X 2) was examined using the a second order experimental design. The design and responses ( e f f i c i e n c y indices) are shown below. Run ft Xo X i X 2 Y 1 1 -1 -1 130 2 1 1 -1 121 3 1 -1 1 110 4 1 1 1 125 5 1 -1.5 0 107 6 1 1.5 0 117 7 1 0 -1.5 112 8 1 0 1 . 5 111 9 1 0 0 149 10 1 0 0 152 11 1 0 0 148 12 1 0 0 153 Calculate: -a) The regression c o e f f i c i e n t s for an appropriate seconi model b ) The residual sum of squares, S S r . . l d u a l a c) The regression sum of squares, SS* d) The c r i t i c a l F - r a t i o e) The standard error, SE, associated with each c o e f f i c i e n t , and f) The multiple index of determination, R 2 126 g) The F - ratio for each parameter sum of squares. h) Based on the information obtained above, attempt to simplify the model. Solution Second Order model to be f i t t e d i s y - a 0 + a tjq + a ^ + altxl + a 2 2 x f + a ^ x ^ + © The residual sum of squares, S, the given by 5 - g e 2 - g (y - a 0 - a ^ - a ^ - alxxl - a22xjjf + a ^ x ^ ) 2 The objective i s to find the values of the c o e f f i c i e n t s a 0 ax, a 2 , a u , a 2 2 and ax 2 which minimises the residual sum squares. This minimum occurs when dS _ _dS_ m _BS_ _ J§_ _ dS _ dS _ dS12 da 0 dcty da2 <?a2 ^ 2 2 ^ 1 2 ~_ 12 - - 2 g (y - a a - a ^ - a 2 x , - a^x? - a 2 2 x | - a^x^) 127 - l 2 a o + a i E * i + ^ E " ^ + a i i E x i + a 2 2 E x * + ^ E ^ i z " E ^ (1) Similarly, a < E ^ l + ^ E ** + a a E x i X 2 + a n E • x i + a 2 2 E ^ + a i a E * - " E x i ^ ( 2 } a o E x 2 + a i E x i x 2 + a a E ^ + a n E x * x 2 + a 2 2 E x * + a i a E x i x 2 - E -^y ( 3 )  a o E * i + a i E * i 4 a 2 E * i * 2 + ^ ^ " E ^ i ( 4 ) ^ E ^ + ^ E ^ + ^ E - ^ ^ i E ^ 2 + a 2 2 E * 2 + a i 2 E x i x 2 " E y j f 2 ( 5 ) a o E X l X 2 + a i E X l X 2 + a 2 E X l X 2 2 + a ^ " E (6) But, 12 E * ! - 0 ' E ^ - 0 ' E ^ - 1 5 3 5 ' E x i 2 - 8 - 5 ' E x i - 8 - 5 ' E * ^ - 0 i - i ^xfxj-O, Ejqxl-O, 52x^-21, £ x | - 0 , £ x*-14.125 J ^ X j - O , E ^ 2 " 9 9 0 ' E x 2 * - 14-125, E ^ * * " ° ' E ^ " 987.75 £ j q 2 x | -4, E * * ! ^ " 2 4 ' E ^ " -17.5 Hence equations (1) to (6) can be written as 12a 0 + 8.53^ + 8.5a 2 2 - £ y (2) (3) (4) (5) (6) 128 8.5a! - J ^ y 8.5a2 - J ^ y 8.5a0 + 14.1253^ + 43J2 - J^yxf 8.5a0 + 43^ + I4.i25a 2 2 - £ y x | Subtracting (3) from (2) gives 10.1253!! - 10.125s22 - ^ x ^ y - J ^ y * i i " a 22 + 0.09 876 5 ( £ x\y - £ x|y) Multiply equation (1) by 8.5/12 (= 0.70833) to obtain equation (7) 8.5a 0 + 6.02au + 6 . 0 2 a „ - 0.70833j^y (?) Subtracting equation (7) from equation ( 4 ) gives 8.105au + 2.02a 2 2 - JJxfy - 0 . 7 0 8 3 3 £ y Substituting for a n in equation (8) gives a22+0.0988 (J^xfy-J^xfy) - 0 . 2 4 9 2 a 2 2 - 0 . 1 2 3 £ x f y - 0 . 0 8 7 4 £ y (8) 129 OR, a^ - 0 . 0 3 2 £ x 1 2 y + 0 . 1 3 1 5 £ xfy - 0.1164j> (9) a u - 0 . 0 3 2 £ x f y + 0 . 1 3 2 £ x | y - 0 . i i 6 £ y + o . 0 9 9 ( £ x f y - £ Xjfy) (10) OR a^ - 0 . 1 3 2 ] T x f y + 0 . 0 3 2 £ x | y - 0.116j}y <1:L> Substituting for a n and a 2 2 in eguation (1) gives ao - 0.248J)y - 0.185j^xfy - 0.045J2x|y (12) a) Computation of regression c o e f f i c i e n t s From equations 12, 2, 3, 10, 11 and 6, ao = 150.84; a i = 2 .47; a 2 = 2 .06; a n = 16.07 a 2 2 = 16.30 a i 2 = 6.00 b) Computation of SS,... ' it S3, 7 residuals " ] C ^ i - ^ i > 2 " H8 .37 c) Computation of S S x m v x : m m m X o n • g r I o n + s s • u r « A z r c r o x r (13) 1 3 0 S S p u x r . « K X r o K is calculated from the centre point runs Hence, S S ^ - £ (y, - y i ) 2 - 17.00 S S t o t a l c o r r . £ O K m a a n ~ S S c a a l d u a l a S S zr • • j r • « • 1 o n 12 G 2 total coir fox aaan J u n where G - (J )y u ) 2 Therefore S S t o t . i c o r r . e o e m.-n = 3 5 3 4 . 9 2 Hence from equation ( 1 3 ) , S S c . 9 r . . . i o n = 3 5 3 4 . 9 2 - 1 1 8 . 3 7 = 3 4 1 6 . 5 5 d) Computation of the C r i t i c a l F - r a t i o Let ( 1 ) Degrees of freedom associated with S S t o t . i = d f t ( 2 ) Degrees of freedom associated with S S c . g r » « i o n = df^.^ ( 3 ) Degrees of freedom associated with SSresiduals = df*: d f t = d f r . o + df* „ _ i - <a*reg + number of coeff. in model ( = 6 ) Therefore, d f K « a = 1 2 - 1 - 6 = 5 . The c r i t i c a l F - r a t i o i s given by F - SSfV—^f**** - 34.64 131 e) Computation of Standard Error, SE Close inspection of equations (12), (2), (3), (10), (11) and (6) shows that the general forms of the equations are a 0 - 0 . 2 4 8 £ y ~ O.lssJTx^ - 0 . 0 4 5 j ]x|y at - O.lieJ^x^y a n - 0 . 0 3 2£x iy + 0.132£x]y - 0 . 1 1 6£y *ij - o . 25jr;x^ The multiplying factors which give the regression c o e f f i c i e n t s also provide the standard errors of estimate of the respective c o e f f i c i e n t s (Cochran and Cox, 1984). Hence, SE(.a0) - &/0.248} SBlaJ - S / 0 . 1 1 8 SE(an) - S / T O . 0 3 2 + 0.1315) > SEla^) - 5VT0.25) where S = ( SS*.. l < a u . x « / d f ^ ) 1 ' 2 = (118 . 37/6 ) i / = = 4.442. Therefore, SE(a 0) = 2.21; SE(ax) = SE(a 2) = 1.52 SE(an) = SE(a 2 2) = 1.61; SE(a i 2) = 2.22 e) The F - r a t i o for each parameter sum of squares Where one degree of freedom is associated with each parameter, the F- r a t i o associated with each parameter sum of squares is equivalent to the square of the that parameter's t s t a t i s t i c (Box et a l ; 1978). The t S t a t i s t i c is given by given by 132 t = ( a -B)/ SE(a) (14) where a = estimated value of c o e f f i c i e n t SE(a) = standard error of c o e f f i c i e n t The n u l l hypothesis requires that B = 0, reducing equation (14) to t = a/SE(a) Thus, when the estimated c o e f f i c i e n t s are divided by their respective standard errors, the t s t a t i s t i c i s obtained. Squaring the t s t a t i s t i c gives the F - rat i o s the co e f f i c i e n t s , as shown below. Coefficient SE(a) t tz = F a o = 150.84 2.21 68.15 4 644.42 a i = 2.47 1.52 1.62 2.62 a 2 = - 2.06 1.52 - 1.35 1.82 a n =- 16.07 1.61 - 9.97 99.40 a 2 2 =- 16.29 1.61 - 10.11 102.21 a 1 2 = 6.00 2.22 2.70 7.29 f) The Multiple index of Determination, R 3 R 2 = SSr«gr«s«lon / S S t o t . l a a K x: . £or con.t.nt = 3 416.55/3534.92 = 0.97 g) Model Si m p l i f i c a t i o n One way to simplify the model is to compare the c r i t i c a l F -rat i o 133 to the F -ra t i o of each c o e f f i c i e n t . When the c r i t i c a l F -r a t i o i s less than the F r a t i o of a c o e f f i c i e n t , that c o e f f i c i e n t is considered to be i n s i g n i f i c a n t . Based on t h i s analysis, the co e f f i c i e n t s which are s i g n i f i c a n t are: (1) the constant term, (2) a n , and a 2 2 . When employed in MGLH (multivariate general li n e a r hypothesis) mode to perform the calculations shown above, a t y p i c a l Systat output would be as shown overleaf 134 Appendix 7: C e n t r a l Composite Design F l o t a t i o n Column a) Cube P o r t i o n Runft c x c 2 c 3 c 4 c s C s c 7 E Y Ac Ar Af 1 -1 -1 -1 -1 -1 -1 1 161.14 34.91 6.7 30.74 22.34 2 1 - 1 - 1 -1 -1 -1 -1 52.59 14.88 5.3 18.90 16.89 3 -1 1 - 1 -1 -1 -1 -1 361.63 67.58 8.0 43.13 19.43 4 1 1 - 1 - 1 - 1 - 1 1 37.0 11.4 5.8 18.89 17.40 5 - 1 - 1 1 -1 -1 -1 -1 403.4 92.8 9.6 40.68 11.84 6 1 - 1 1 - 1 - 1 - 1 1 35.8 12.27 6.1 17.90 16.46 7 -1 1 1 - 1 - 1 - 1 1 454.9 71.2 7.3 46.86 18.73 8 1 1 1 - 1 - 1 - 1 - 1 326.6 69.9 9.1 38.24 17.84 9 -1 -1 -1 1 -1 -1 -1 280.7 50.5 6.6 36.73 21.51 10 1 - 1 - 1 1 -1 -1 1 26.6 6.1 4.9 21.46 20.46 11 - 1 1 - 1 1 -1 -1 1 620.1 71.9 6.5 56.04 20.43 12 1 1 -1 1 -1 -1 -1 190.7 49.4 7.5 29.11 18.46 13 - 1 - 1 1 1 -1 -1 1 361.9 51.0 5.7 40.72 22.87 14 1 -1 1 1 - 1 -1 -1 136.4 42.7 8.2 26.33 18.61 15 -1 1 1 1 - 1 -1 -1 157.2 53.2 10.2 30.22 19.58 16 1 1 1 1 - 1 - 1 1 34.5 9.4 5.6 20.67 19.26 17 -1 -1 -1 -1 1 -1 -1 136.1 31.1 6.0 26.01 19.76 18 1 - 1 - 1 - 1 1 - 1 1 14.5 4.6 5.3 16.73 16.20 19 -1 1 - 1 - 1 1 - 1 1 638.1 75.3 6.7 56.73 19.07 20 1 1 -1 -1 1 -1 -1 222.7 45.1 6.2 30.48 19.51 21 -1 - 1 1 - 1 1 - 1 1 219.9 36.3 5.7 34.68 24.16 2 2 - 1 - 1 1 -1 1 - 1 -1 214.4 60.6 8.9 31.51 17.81 23 -1 1 1 -1 1 -1 -1 586.9 84.9 9.4 65.27 17.89 135 Cube P o r t i o n (cont'd) Runtt c x C 2 _ c 3 c 4 c 5 c 6 c_7 E Y Ac Ar Af 24 1 1 1 - 1 1 - 1 1 53.4 15.0 6.2 21.95 25 -1 -1 -1 1 1 -1 1 58 . 0 10.6 5.2 28 . 28 26 1 - 1 - 1 1 1 -1 -1 34.7 11.7 6.3 18.83 2 7 - 1 1 - 1 1 1 -1 -1 521.8 69.5 7.1 53.03 28 1 1 - 1 1 1 - 1 1 310.4 56.5 6.2 34.03 2 9 - 1 - 1 1 1 1 -1 -1 381.3 64.5 7.9 46.74 30 1 - 1 1 1 1 - 1 1 27.6 10.1 6.1 16.75 3 1 - 1 1 1 1 1 - 1 1 246.6 50.0 6.7 32.94 32 1 1 1 1 1 - 1 - 1 444.9 87.2 11.6 58.95 33 -1 -1 -1 -1 -1 1 -1 133.7 22.1 5.5 32.95 34 1 -1 -1 - 1 - 1 1 1 53.3 17.7 6.3 19.00 35 -1 1 - 1 - 1 - 1 1 1 621.0 86.4 7.7 55.16 36 1 1 -1 -1 -1 1 -1 77.8 31.4 10.0 25.08 37 -1 -1 1 - 1 - 1 1 1 540.8 64.3 6.1 51.48 38 1 - 1 1 -1 -1 1 -1 220.6 58.5 8.4 31.83 3 9 - 1 1 1 -1 -1 1 -1 279.8 69.9 10.3 41.30 40 1 1 1 - 1 - 1 1 1 41.2 10.9 5.9 22.37 41 -1 - 1 - 1 1 - 1 1 1 9.8 3.7 8.6 23.13 42 1 - 1 - 1 1 - 1 1 -1 25.7 8.4 6.0 18.21 43 -1 1 - 1 1 - 1 1 -1 181.2 50.5 8.6 30.79 44 1 1 - 1 1 - 1 1 1 27.5 7.9 5.9 20.41 45 - 1 - 1 1 1 -1 1 -1 93.6 20.1 5.7 26.64 46 1 - 1 1 1 - 1 1 1 28.7 9.4 5.9 17.95 Af = feed ash (%), Ac = concentrate ash (%), At = t a i l i n g s ash (%) 136 Cube P o r t i o n (cont'd) RunJ cx c 2 c 3 c cs c 6 c 7 E Y Ac Ar Af 47 - 1 1 1 1 -1 1 1 184.8 41.5 7.1 31.43 21.31 48 1 1 1 1 - 1 1 - 1 159.6 50.0 9.4 30.02 19.71 49 -1 - 1 - 1 - 1 1 1 1 330.1 50.8 5.8 37.93 21.62 50 1 - 1 - 1 - 1 1 1 -1 155.9 38.8 6.0 23.95 16.97 51 - 1 1 - 1 - 1 1 1 -1 603.5 85.3 6.8 48.30 12.92 52 1 1 - 1 - 1 1 1 1 415.2 58.6 6.4 45.12 22.42 53 - 1 - 1 1 - 1 1 1 -1 242.7 47.7 6.1 31.26 19.29 54 1 - 1 1 - 1 1 1 1 66.5 21.1 6.3 19.84 16.99 55 -1 1 1 -1 1 1 1 630.6 74.3 7.8 66.38 22.88 56 1 1 1 - 1 1 1 - 1 225.6 67.9 10.5 34.76 18.27 57 - 1 - 1 - 1 1 1 1 -1 257.2 47.4 5.7 31.17 19.14 58 1 - 1 - 1 1 1 1 1 37.0 11.0 5.5 18.30 16.88 59 -1 1 -1 1 1 1 1 827.6 87.4 7.3 69.36 15.16 60 1 1 - 1 1 1 1 - 1 102.4 34.5 7.5 22.20 17.12 61 -1 -1 1 1 1 1 1 164.5 31.6 5.9 30.73 22.89 62 1 - 1 1 1 1 1 - 1 224.4 55.1 7.6 31.07 18.15 63 -1 1 1 1 1 1 - 1 496.9 80.4 9.8 60.67 19.78 64 1 1 1 1 1 1 1 92.5 25.8 6.5 23.30 18.97 Af = feed ash (%), Ac = c o n c e n t r a t e ash (%), At = t a i l i n g s ash (%) 137 b) Star P o r t i o n Run# C i c 2 c 3 CA C s C e C 7 E Y Ac Ar Af 65 -2.83 0 0 0 0 0 0 658 . 5 75.7 6 . 4 56.74 19 .17 66 2.83 0 0 0 0 0 0 34 . 9 11 . 5 7 . 2 21 . 78 20.10 67 0 -2 .83 0 0 0 0 0 210 . 1 50 . 0 7.9 33. 37 20.66 68 0 2 .83 0 0 0 0 0 248 .9 45.6 5.7 31.32 19.65 69 0 0 -2 .83 0 0 0 0 64 . 8 17.2 5.7 21 . 49 18.78 70 0 0 2.83 0 0 0 0 273 . 3 65 .1 8 . 5 35. 51 17.91 71 0 0 0 -2 .83 0 0 0 • 146 . 2 33 . 4 6.7 29 . 25 21.72 72 0 0 0 2 .83 0 0 0 425.8 59.8 6 . 3 44. 49 21.62 73 0 0 0 0 -•2.83 0 0 84.7 22 . 9 6 . 1 22 . 51 18.75 74 0 0 0 0 2 .83 0 0 638 . 2 75.9 6 . 2 52 . 06 17 .27 75 0 0 0 0 0 -2 .83 0 110 . 9 23.5 5.8 27 . 19 22.15 76 0 0 0 0 0 2.83 0 92.2 38 . 0 10 . 7 25. 88 20 .10 7 7 0 0 0 0 0 0 -2 .83 338 . 5 88 . 6 10 . 4 39 .66 13. 72 78 0 0 0 0 0 0 2 . 83 107.0 21 . 2 5.2 26 . 09 21. 66 c) Centre P o i n t s 79 0 0 0 0 0 0 0 217 . 6 38 . 2 5.9 33 . 69 23 . 09 80 0 0 0 0 0 0 0 110.0 25.3 6.2 .27.16 21. 86 81 0 0 0 0 0 0 0 116 . 5 25.9 6 . 6 29.69 23 . 70 82 0 0 0 0 0 0 0 143.1 30.2 6 . 2 29.57 22.52 83 0 0 0 0 0 0 0 94.5 27 . 5 6 . 8 23 . 32 18 . 77 84 0 0 0 0 0 0 0 56.0 15.2 6.3 23.14 20.58 85 0 0 0 0 0 0 .0 122.0 49 . 1 11.7 29 .16 20. 60 Af = feed ash (%), Ac = concentrate ash (%), Af = t a i l i n g s ash (%) 138 Appendix 8: SYSTAT pzogram p r i n t out for f l o t a t i o n column central composite design DEP VAR: E N: 85 1 3 9 MULTIPLE R: .964 SQUARED MULTIPLE R A D J S Q U A R E D M U L T I P L E R : . 5 7 8 S T A N D A R D E R R O R OF E S T I M A T E : 1 2 6 . 8 88 a V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E T C O N S T A N T 1 2 4 . 9 5 7 4 7 . 2 0 3 0 . 0 0 0 2 . 6 4 7 C I - 1 1 0 . 6 7 3 1 4 . 1 8 5 - 0 . 5 5 3 1 . 0 0 0 - 7 . 8 0 2 C 2 6 4 . 1 5 8 1 4 . 1 8 5 0 . 3 2 1 1 . 0 0 0 4 . 52 3 C 3 1 0 . 0 2 3 1 4 . 1 8 5 0 . 0 5 0 1 . 0 0 0 0 . 7 0 7 C 4 - 1 2 . 2 2 9 1 4 . 1 8 5 - 0 . 0 6 1 1 . 0 0 0 - 0 . 8 6 2 C 5 5 3 . 3 7 3 1 4 . 1 8 5 0 . 2 6 7 1 . 0 0 0 3 . 7 6 3 C6 - 2 . 6.61 1 4 . 1 8 5 - 0 . 0 1 3 1 . 0 0 0 - 0 . 1 8 8 C7 - 1 4 . 6 8 4 1 4 . 1 8 5 - 0 . 0 7 3 1 . 0 0 0 - 1 . 0 3 5 C I * C I 2 8 . 6 1 5 1 2 . 4 3 1 0 . 1 7 3 0 . 8 9 1 2 . 3 0 2 C 2 * C 2 1 3 . 9 8 1 1 2 . 4 3 1 0 . 0 8 5 0 . 8 9 1 1 . 1 2 5 C 3 * C 3 6 . 4 3 4 1 2 . 4 3 1 0 . 0 3 9 0 . 8 9 1 0 . 5 1 8 C 4 * C 4 2 1 . 0 3 6 1 2 . 4 3 1 0 . 1 2 7 0 . 8 9 1 1 . 6 9 2 C 5 * C 5 3 0 . 4 5 7 1 2 . 4 3 1 0 . 1 8 4 0 . 8 9 1 2 . 4 5 0 C 6 * C 6 - 1 . 9 9 5 1 2 . 4 3 1 - 0 . 0 1 2 0 . 8 9 1 - 0 . 1 6 0 C 7 * C 7 1 3 . 1 3 9 1 2 . 4 3 1 0 . 0 7 9 0 . 8 9 1 1 . 0 5 7 C I * C 2 - 3 5 . 4 8 8 1 5 . 8 6 1 - 0 . 1 5 9 1 . 0 0 0 - 2 . 2 3 7 C I * C 3 1 2 . 8 7 5 1 5 . 8 6 1 0 . 0 5 8 1 . 0 0 0 0 . 8 1 2 C I * C 4 1 8 . 9 4 1 1 5 . 8 6 1 0 . 0 8 5 1 . 0 0 0 1 . 1 9 4 C I * C 5 - 4 . 8 1 2 1 5 . 8 6 1 - 0 . 0 2 2 1 . 0 0 0 - 0 . 3 0 3 C I * C 6 - 3 . 0 6 9 1 5 . 8 6 1 - 0 . 0 1 4 1 . 0 0 0 - 0 . 1 9 3 C I * C7 > - 3 8 . 2 0 3 1 5 . 8 6 1 - 0 . 1 7 1 1 . 0 0 0 - 2 . 4 0 9 C 2 * C 3 - 4 6 . 2 2 8 1 5 . 8 6 1 - 0 . 2 0 7 1 . 0 0 0 - 2 . 9 1 5 C 2 * C 4 - 1 . 9 2 5 1 5 . 8 6 1 - 0 . 0 0 9 1 . 0 0 0 - 0 . 1 2 1 C 2 * C 5 4 1 . 9 3 4 1 5 . 8 6 1 0 . 1 8 7 1 . OOO 2 . 6 4 4 C 2 * C 6 - 4 . 0 5 3 1 5 . 8 6 1 - 0 . 0 1 8 1 . 0 0 0 - 0 . 2 5 6 C 2 * C7 1 8 . 3 4 4 1 5 . 8 6 1 0 . 0 8 2 1 . 0 0 0 1 . 1 5 7 C 3 * C 4 - 1 1 . 9 4 4 1 5 . 8 6 1 - 0 . 0 5 3 1 . 0 0 0 - 0 . 7 5 3 C 3 * C 5 - 1 4 . 1 4 1 1 5 . 8 6 1 - 0 . 0 6 3 1 . 0 0 0 - 0 . 8 9 2 C 3 * C 6 - 8 . 5 0 9 1 5 . 8 6 1 - 0 . 0 3 8 1 . 0 0 0 - 0 . 5 3 6 C 3 * C 7 - 3 4 . 6 5 6 1 5 . 8 6 1 - 0 . 1 5 5 1 . 0 0 0 - 2 . 1 8 5 C 4 * C 5 C 4 * C 6 C 4 * C7 C 5 * C 6 C 5 * C 7 C 6 * C 7 C l * C 2 * C 3 C l * C 2 * C 4 C l * C 2 * C 5 C l * C 2 * C 6 C l * C 2 * C7 C l * C 3 * C 4 C l * C 3 * C 5 C l * C 3 * C 6 C l * C 3 * C7 C l * C 4 * C 5 C l * C 4 * C 6 C l * C 4 * C7 C l * C 5 * C 6 C l * C 5 * C7 C l * C 6 * 11 . 1 4 4 - 2 6 . 2 5 6 - 1 1 . 5 7 2 2 6 . 2 9 1 - 1 4 . 3 3 8 2 6 . 5 9 4 2 7 . 7 7 8 1 0 . 2 5 0 - 1 6 . 7 0 3 - 1 8 . 3 6 6 - 1 6 . 2 5 6 2 0 . 3 5 6 1 . 4 8 4 2 . 5 9 1 - 1 5 . 3 5 6 - 8 . 3 2 5 0 . 0 7 5 1 2 . 0 2 2 - 2 0 . 9 1 6 2 2 . 6 8 1 lUi 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 0 . 0 5 0 - 0 . 1 1 7 - 0 . 0 5 2 0 . 1 1 8 - 0 . 0 6 4 0 . 1 1 9 0 . 1 2 4 0 . 0 4 6 - 0 . 0 7 5 - 0 . 0 8 2 - 0 . 0 7 3 0 . 0 9 1 0 . 0 0 7 0 . 0 1 2 - 0 . 0 6 9 - 0 . 0 3 7 0 . 0 0 0 0 . 0 5 4 - 0 . 0 9 4 0 . 1 0 1 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 1 . 0 0 0 0 . 7 0 3 1 . 6 5 5 0 . 7 3 0 1 . 6 5 8 0 . 9 0 4 1 . 6 7 7 1 . 0 0 0 1 . 7 5 1 1 . 0 0 0 0 . 6 4 6 1 . 0 0 0 - 1 . 0 5 3 1 . 0 0 0 - 1 . 1 5 8 1 . 0 0 0 - 1 . 0 2 5 1 . 0 0 0 1 . 2 8 3 1 . 0 0 0 0 . 0 9 4 1 . 0 0 0 0 . 1 6 3 1 . 0 0 0 - 0 . 9 6 8 1 . 0 0 0 - 0 . 5 2 5 1 . 0 0 0 0 . 0 0 5 1 . 0 0 0 0 . 7 5 8 1 . 0 0 0 - 1 . 3 1 9 1 . 0 0 0 1 . 4 3 0 C7 C 2 * C 3 * C4 C 2 * C 3 * C5 C 2 * C 3 * C6 C 2 * C 3 * C7 C 2 * C 4 * C5 C 2 * C 4 * C6 C 2 * C 4 * C7 C 2 * C 5 * C6 C 2 * C 5 * C7 C 2 * C 6 * C7 C 3 * C 4 * C5 C 3 * C 4 * C6 C 3 * C 4 * C7 C 3 * C 5 * C6 C 3 * C 5 * C7 C 3 * C 6 * C7 C 4 * C 5 * C6 C 4 * C 5 * C7 C 4 * •7 . 138 •5 . 434 3 . 031 4 . 8 4 4 - 3 2 . 3 2 2 -2 . 366 4. 441 6 . 944 3 . 350 4. 728 7 .803 1 8 . 3 6 6 15 . 666 •5 .213 17 . 244 - 2 5 . 0 S 4 4 . 1 0 9 1 3 . 5 3 4 - 9 . 6 7 5 lh2 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 3 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 15 .861 15 .861 15 .861 1 5 . 8 6 1 15 .861 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 1 5 . 8 6 1 0. 032 - 0 . 0 2 4 0. 014 0. 022 - 0 . 1 4 5 - 0 . O i l 0. 020 0. 031 0. 015 0. 021 0. 035 0. 082 0. 070 0. 023 - 0 . 0 7 7 0 . 1 1 2 0. 018 0. 061 0. 043 1 . 0 0 0 - 0 . 4 5 0 1 . 0 0 0 - 0 . 3 4 3 1 .000 0 .191 1 . 0 0 0 0 . 3 0 5 1 .000 - 2 . 0 3 8 1 .000 - 0 . 1 4 9 1 .000 0 . 2 8 0 1 . 0 0 0 0 . 4 3 8 1 .000 0 .211 1 .000 0 .298 1 . 0 0 0 0 .492 1 .000 1 .158 1 .000 0 . 9 8 8 1 .000 - 0 . 3 2 9 1 .000 - 1 . 0 8 7 1 .000 - 1 . 5 8 2 1 . 0 0 0 0 . 2 5 9 1 .000 0 . 8 5 3 1 .000 - 0 . 6 1 0 11*3 C 6 * C7 - 1 7 . 4 1 3 1 5 . 8 6 1 - 0 . 0 7 8 1 . 0 0 0 - 1 . 0 9 8 C 5 * C 6 * C 7 1 1 . 8 4 7 1 5 . 8 6 1 0 . 0 5 3 1 . 0 0 0 0 . 7 4 7 A N A L Y S I S OF V A R I A N C E S O U R C E S U M - O F - S Q U A R E S DF M E A N - S Q U A R E F - R A T I O R E G R E S S I O N 2 9 7 5 9 8 6 . 3 9 9 7 0 4 2 5 1 4 . 0 9 1 2 . 6 4 1 R E S I D U A L 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDi T E S T F O R E F F E C T C A L L E D : C O N S T A N T T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 1 2 8 2 9 . 6 2 0 1 1 1 2 S 2 9 . 6 2 0 7 . 0 0 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD1 T E S T F O R E F F E C T C A L L E D : C l T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 9 S 0 0 9 4 . 1 9 3 1 9 8 0 0 9 4 . 1 9 3 6 0 . 8 7 4 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl T E S T F O R E F F E C T C A L L E D : C2 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 2 9 3 7 6 . 0 0 8 1 3 2 9 3 7 6 . 0 0 8 2 0 . 4 5 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL ikh T E S T F O R E F F E C T C A L L E D : C 3 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 8 0 3 9 . 3 6 4 1 8 0 3 9 . 3 6 4 0 . 4 9 9 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : C 4 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 1 9 6 6 . 3 9 8 1 1 1 9 6 6 . 3 9 8 0 . 7 4 3 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD, T E S T F O R E F F E C T C A L L E D : C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 2 7 9 4 6 . 4 7 4 1 2 2 7 9 4 6 . 4 7 4 1 4 . 1 5 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDi T E S T F O R E F F E C T C A L L E D : C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 5 6 6 . 5 6 6 1 5 6 6 . 5 6 6 0 . 0 3 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl lh5 TEST FOR EFFECT CALLED: C7 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 17252.358 1 17252.358 1.072 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl TEST FOR EFFECT CALLED: BY CI C I TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS S5316.686 1 85316.686 5.299 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD TEST FOR EFFECT CALLED: BY C2 C2 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 20367.865 1 20367.865 1.265 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL TEST FOR EFFECT CALLED: BY C3 C3 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 4312.690 1 4312.690 0.268 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl T E S T F O R E F F E C T C A L L E D : C 4 BY C 4 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 6 1 0 7 . 5 2 0 1 4 6 1 0 7 . 5 2 0 2 . 8 6 4 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY C5 C5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 9 6 6 5 2 . 2 3 5 1 9 6 6 5 2 . 2 3 5 6 . 0 0 3 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY C6 C6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 1 4 . 5 0 0 1 4 1 4 . 5 0 0 0 . 0 2 6 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : C7 BY C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS - F H Y P O T H E S I S 1 7 9 8 6 . 2 9 5 1 1 7 9 8 6 . 2 9 5 1 . 1 1 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl T E S T F O R E F F E C T C A L L E D : C l BY C 2 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 8 0 5 9 9 . 2 1 0 1 8 0 5 9 9 . 2 1 0 5 . 0 0 6 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : C l BY C 3 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 0 6 0 9 . 0 0 0 1 1 0 6 0 9 . 0 0 0 0 . 6 5 9 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD ike T E S T FOR E F F E C T C A L L E D : CI BY C4 T E S T OF H Y P O T H E S I S SOURCE SS DF MS F H Y P O T H E S I S 2 2 9 5 9 . S 2 6 1 2 2 9 5 9 . 8 2 6 1 . 4 2 6 ERROR 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDPDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T FOR E F F E C T C A L L E D : BY CI C5 T E S T OF H Y P O T H E S I S SOURCE SS DF MS F H Y P O T H E S I S 1 4 8 2 . 2 5 0 1 1 4 8 2 . 2 5 0 0 . 0 9 2 ERROR 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T FOR E F F E C T C A L L E D : BY CI C6 T E S T OF H Y P O T H E S I S SOURCE SS DF MS F H Y P O T H E S I S 6 0 2 . 7 0 2 1 6 0 2 . 7 0 2 0 . 0 3 7 ERROR 2 2 5 4 0 6 . 5 S 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 1,1*9 TEST FOR EFFECT CALLED: BY C l C7 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 93406.641 1 93406.641 5.SOI ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl TEST FOR EFFECT CALLED: BY C2 C3 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 136770.531 1 136770.531 8.495 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL TEST FOR EFFECT CALLED: BY C2 C4 TEST OF HYPOTHESIS SOURCE SS DF MS F HYPOTHESIS 237.160 1 237.160 0.015 ERROR 225406.583 14 16100.470 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 150 T E S T F O R E F F E C T C A L L E D : BY C 2 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 1 2 5 4 3 . 4 7 6 1 1 1 2 5 4 3 . 4 7 6 6 . 9 9 0 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY C 2 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 0 5 1 . 3 8 1 1 1 0 5 1 . 3 8 1 0 . 0 6 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD. T E S T F O R E F F E C T C A L L E D : BY C 2 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 1 5 3 5 . 5 6 3 1 2 1 5 3 5 . 5 6 3 1 . 3 3 8 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl 151 T E S T F O R E F F E C T C A L L E D : BY C 3 C 4 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 9 1 2 9 . 8 0 3 1 9 1 2 9 . 8 0 3 0 . 5 6 7 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY C 3 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 2 7 9 7 . 2 6 6 1 1 2 7 9 7 . 2 6 6 0 . 7 9 5 E R R O R 2 2 5 4 0 6 . 5 3 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : B Y C 3 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 6 3 4 . 2 0 6 1 4 6 3 4 . 2 0 6 0 . 2 8 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 152 T E S T F O R E F F E C T C A L L E D : C 3 BY C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 7 6 8 6 7 . 5 6 3 1 7 6 8 6 7 . 5 6 3 4 . 7 7 4 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY C4 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 7 9 4 7 . 7 2 3 1 7 9 4 7 . 7 2 3 0 . 4 9 4 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 , DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY C4 C6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 4 1 2 1 . 0 0 3 1 4 4 1 2 1 . 0 0 3 2 . 7 4 0 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 153 T E S T F O R E F F E C T C A L L E D : BY C4 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 8 5 7 0 . 1 3 1 1 8 5 7 0 . 1 3 1 0 . 5 3 2 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : C5 B Y C6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 4 2 3 6 . 6 0 6 1 4 4 2 3 6 . 6 0 6 2 . 7 4 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDi T E S T F O R E F F E C T C A L L E D : C5 BY C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 3 1 5 6 . 0 9 0 1 1 3 1 5 6 . 0 9 0 0 . 8 1 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD, 15^ T E S T F O R E F F E C T C A L L E D : C6 BY C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 5 2 6 2 . 5 6 3 1 4 5 2 6 2 . 5 6 3 2 . 8 1 1 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : CI BY C2 BY C3 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 0 3 8 3 . 9 5 1 1 4 9 3 8 3 . 9 5 1 3 . 0 6 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : CI BY C2 BY C4 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 6 7 2 4 . 0 0 0 1 6 7 2 4 . 0 0 0 0 . 4 1 8 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 1 5 5 T E S T F O R E F F E C T C A L L E D : C l BY C 2 BY C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 7 S 5 5 . 6 4 1 1 1 7 8 5 5 . 6 4 1 1 . 1 0 9 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C l C 2 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 1 5 8 6 . 9 5 6 1 2 1 5 8 6 . 9 5 6 1 . 3 4 1 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C l C 2 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 6 9 1 3 . 0 0 3 1 1 6 9 1 3 . 0 0 3 1 . 0 5 0 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 156 T E S T F O R E F F E C T C A L L E D : CI BY C 3 C 4 BY T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 6 5 2 0 . 1 2 3 1 2 6 5 2 0 . 1 2 3 1 . 6 4 7 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : C I BY C 3 BY C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 4 1 . 0 1 6 1 1 4 1 . 0 1 6 0 . 0 0 9 E R R O R 2 2 5 4 0 6 . 5 S 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY BY C I C 3 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 2 9 . 5 2 6 1 4 2 9 . 5 2 6 0 . 0 2 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 157 T E S T F O R E F F E C T C A L L E D : B Y B Y C l C 3 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 5 0 9 2 . 1 2 3 1 1 5 0 9 2 . 1 2 3 0 . 9 3 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD. T E S T F O R E F F E C T C A L L E D : B Y BY C l C 4 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 4 3 5 . 5 6 0 1 4 4 3 5 . 5 6 0 0 . 2 7 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY BY C l C 4 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 0 . 3 6 0 1 0 . 3 6 0 0 . 0 0 0 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 158 T E S T F O R E F F E C T C A L L E D : BY BY C I C4 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 9 2 4 9 . 6 3 1 1 9 2 4 9 . 6 3 1 0 . 5 7 4 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C I C5 C6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 7 9 9 7 . 6 5 6 1 2 7 9 9 7 . 6 5 6 1 . 7 3 9 E R R O R 2 2 5 4 0 6 . 5 8 3 .14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD, T E S T F O R E F F E C T C A L L E D : BY BY C I C5 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 2 9 2 4 . 1 0 3 1 3 2 9 2 4 . 1 0 3 2 . 0 4 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD1 159 T E S T F O R E F F E C T C A L L E D : B Y BY C l C 6 C 7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 2 6 0 . 4 1 0 1 3 2 6 0 . 4 1 0 0 . 2 0 3 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY B Y C 2 C 3 C4 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 8 9 0 . 0 7 6 1 1 8 9 0 . 0 7 6 0 . 1 1 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY BY C 2 C 3 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 5 8 8 . 0 6 3 1 5 8 8 . 0 6 3 0 . 0 3 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDi 160 T E S T F O R E F F E C T C A L L E D ; BY BY C 2 C 3 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 5 0 1 . 5 6 3 1 1 5 0 1 . 5 6 3 0 . 0 9 3 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C 2 C 3 C7 T E S T OF H Y P O T H E S I S -S O U R C E S S DF MS F H Y P O T H E S I S 6 6 8 6 1 . 0 3 1 1 6 6 8 6 1 . 0 3 1 4 . 1 5 3 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C 2 C 4 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 5 8 . 1 5 6 1 3 5 8 . 1 5 6 0 . 0 2 2 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 161 T E S T F O R E F F E C T C A L L E D : B Y BY C 2 C 4 C6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 2 6 2 . 0 2 6 1 1 2 6 2 . 0 2 6 0 . 0 7 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY B Y C2 C 4 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 0 8 5 . 3 0 3 1 3 0 8 5 . S 0 3 0 . 1 9 2 E R R O R 2 2 5 4 0 6 . 5 3 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : B Y BY C2 C 5 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 7 1 8 . 2 4 0 1 7 1 8 . 2 4 0 0 . 0 4 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl 162 T E S T F O R E F F E C T C A L L E D : " BY BY C 2 C 5 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 4 3 0 . 7 3 1 1 1 4 3 0 . 7 3 1 0 . 0 8 9 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C2 C6 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 8 9 6 . S 8 1 1 3 8 9 6 . 8 8 1 0 . 2 4 2 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY BY C3 C 4 C 5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 1 5 8 6 . 9 5 6 1 2 1 5 8 6 . 9 5 6 1 . 3 4 1 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODDDDDDDDDDDDDD 163 T E S T F O R E F F E C T C A L L E D : B Y B Y C 3 C 4 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 5 7 0 6 . 3 5 6 1 1 5 7 0 6 . 3 5 6 0 . 9 7 6 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDVDDDDDDDDDDDi T E S T F O R E F F E C T C A L L E D : BY BY C 3 C 4 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 7 3 8 . 8 9 0 1 1 7 3 8 . 8 9 0 0 . 1 0 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD, T E S T F O R E F F E C T C A L L E D : BY B Y C 3 C 5 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 9 0 3 0 . 2 0 3 1 1 9 0 3 0 . 2 0 3 1 . 1 8 2 E R R O R 2 2 5 4 0 6 . 5 8 3 1 4 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD, t 16k T E S T F O R E F F E C T C A L L E D : B Y B Y C 3 C 5 C 7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 0 2 7 0 . 4 5 6 1 4 0 2 7 0 . 4 5 6 2 . 5 0 1 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDIt T E S T F O R E F F E C T C A L L E D : BY BY C 3 C6 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 0 8 0 . 7 6 6 1 1 0 S 0 . 7 6 6 0 . 0 6 7 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : B Y BY C4 C 5 C 6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 1 7 2 3 . 4 7 6 1 1 1 7 2 3 . 4 7 6 0 . 7 2 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 165 T E S T F O R E F F E C T C A L L E D : BY BY C 4 C 5 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 5 9 9 0 . 7 6 0 1 5 9 9 0 . 7 6 0 0 . 3 7 2 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : BY B Y C4 C6 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 9 4 0 4 . 4 9 0 1 1 9 4 0 4 . 4 9 0 1 . 2 0 5 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD. T E S T F O R E F F E C T C A L L E D : BY BY C 5 C6 C7 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 8 9 8 2 . 3 0 1 1 8 9 S 2 . 3 0 1 0 . 5 5 8 E R R O R 2 2 5 4 0 6 . 5 8 3 14 1 6 1 0 0 . 4 7 0 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDt 166 Appendix 9: Results of Mechanical C e l l Screening Design Run# mi r r i 2 m 3 m< mo* m 6 * E Y A c A r A f 1 -1 -1 -1 -1 -1 -1 351.9 86.0 11.5 47.05 16.47 2 1 -1 -1 -1 1 -1 133.6 58.4 10.8 24.80 16.64 3 -1 1 -1 -1 1 1 415.2 74.0 7.8 43.83 17.18 4 1 1 -1 -1 -1 1 78 . 5 38.4 10.01 20.49 16 . 47 5 -1 -1 1 -1 1 1 539.0 78.6 7 . 30 50 . 03 16 .45 6 1 -1 1 -1 -1 1 215.6 73.0 10.8 32.03 16.57 7 -1 1 1 -1 -1 -1 148.9 29.8 4.6 22.88 17 . 43 8 1 1 1 -1 1 -1 152.2 57.2 10.0 26.56 17.07 9 -1 -1 -1 1 -1 1 469.5 77 . 8 7.90 47.61 16 . 70 10 1 -1 -1 1 1 1 214.1 76.1 12.3 34 . 54 17 . 60 11 -1 1 -1 1 1 -1 167 . 2 45.3 6 . 6 24.24 16 . 24 12 1 1 -1 1 -1 -1 146.0 58.7 9.83 24.55 15.94 13 -1 -1 1 1 1 -1 442.0 82 . 5 9 . 40 50 .20 16 . 52 14 1 -1 1 1 -1 -1 162.9 67.7 11.9 28.63 17.31 15 -1 1 1 1 -1 1 184.1 51.8 7.5 26.72 16 . 77 16 1 1 1 1 1 1 253.9 78.3 11.7 38.02 17.44 17 0 0 0 0 0 0 213.5 67.6 10.1 32.03 17.23 18 0 0 0 0 0 0 261.0 71. 8 9.6 35.07 16.81 ** m» = mi niz ms, ms = m 2 n i 3 nu 167 Appendix 10: Central Composite Design for Mechanical C e l l a) Cube Portion Run ft mi ftl2 R>3 nts me - E Y Ac Ar Af 1 -1 -1 -1 -1 1 435.3 82.7 9.5 50.0 16.5 2 1 -1 -1 -1 -1 296.5 81.2 12.4 45.3 18.6 3 -1 1 -1 -1 -1 277.4 67.2 9.1 37.4 18.3 4 1 1 -1 -1 1 335.9 85.1 11.8 46.6 17.0 5 -1 -1 1 -1 -1 324.2 76.3 9.6 40.8 17.0 6 1 -1 1 -1 1 377.0 84.8 11.6 51.6 17.7 7 -1 1 1 -1 1 364 .1 74.3 8 . 8 43 .1 17.6 8 1 1 1 -1 -1 295.1 79 . 4 11.4 42.4 17.8 9 -1 -1 -1 1 -1 278 . 4 72.5 10. 1 38 . 8 18.0 10 1 -1 -1 1 1 395.1 85.6 11.5 53.1 17.5 11 -1 1 -1 1 1 277.2 86.9 13.3 42 . 4 17.1 12 1 1 -1 1 -1 214.0 68.9 10.4 32.3 17.2 13 -1 -1 1 1 1 407.1 82.1 10.0 49 .6 17.1 14 1 -1 1 1 -1 320.0 79.5 11.1 44.7 18.0 15 -1 1 1 1 -1 313.8 73.2 10 .1 43 . 3 19 . 0 16 1 1 1 1 1 419.0 87.0 11.2 53.5 16.4 *ms =mi m 2 ms ms 168 Appendix 10 continued b) Star Portion Run » tni n i 2 m3 mo me E Y Ac Ar Af 17 -2" 0 0 0 0 221.2 57.8 8.2 31.4 18.0 18 2 0 0 0 0 218.8 80.3 13.5 36.8 18.1 19 0 -2 0 0 0 287.8 80.8 11.4 40.6 17.0 20 0 2 0 0 0 199.1 56.2 9.8 34.7 20.7 21 0 0 -2 0 0 227 .0 71.9 10 . 9 34 . 4 17.5 22 0 0 2 0 0 261.3 71.4 10.9 39.9 19.2 23 0 0 0 -2 0 289 .6 7 2.9 10 . 8 42.9 19 . 5 24 0 0 0 2 0 264.4 77.6 10.6 36.1 16.3 25 0 0 0 0 -2 242 .0 72 . 5 10 . 7 35.8 17.6 26 0 0 0 0 2 448.5 86.0 11.2 58.4 17.8 27 0 0 0 0 0 303.6 80 . 4 11.4 42 . 3 17.3 28 0 0 0 0 0 313.5 81.0 10.7 39.1 16.1 * « = 2 169 Appendix 11: SYSTAT program p r i n t out for mechanical c e l l central composite design with star portion removed. D E P V A R : E N . i 8 M U L T I P L E R : . 9 9 0 S Q U A R E D M U L T I P L E R : . 9 8 1 A D J # S Q U A R E D M U L T I P L E R : . 8 3 5 S T A N D A R D E R R O R OF E S T I M A T E : 2 3 . 6 9 8 V A R I A B L E C O E F F I C I E N T S T D E R R O R S T D C O E F T O L E R A N C E T O N S T A N T 3 3 0 . 4 0 0 5 . 5 8 6 0 . 0 0 0 5 9 . 1 5 1 M l - 1 . 5 5 6 5 . 9 2 5 - 0 . 0 2 6 1 . 0 0 0 - 0 . 2 6 3 M2 - 2 1 . 0 6 9 5 . 9 2 5 - 0 . 3 5 0 1 . 0 0 0 - 3 . 5 5 6 M3 1 9 . 4 0 6 5 . 9 2 5 0 . 3 2 2 1 . 0 0 0 3 . 2 7 6 M5 - 5 . 0 5 6 5 . 9 2 5 - 0 . 0 8 4 1 . 0 0 0 - 0 . 8 5 3 M6 4 3 . 2 0 6 5 . 9 2 5 0 . 7 1 8 1 . 0 0 0 7 . 2 9 3 M l * M2 5 . 4 9 4 5 . 9 2 5 0 . 0 9 1 1 . 0 0 0 0 . 9 2 7 M l * M3 1 . 7 9 4 5 . 9 2 5 0 . 0 3 0 1 . 0 0 0 0 . 3 0 3 M l * M5 1 0 . 5 0 6 5 . 9 2 5 0 . 1 7 5 1 . 0 0 0 1 . 7 7 3 M l * M6 6 . 9 6 9 5 . 9 2 5 0 . 1 1 6 1 . 0 0 0 1 . 1 7 6 M 2 * M3 1 6 . 5 31 5 . 9 2 5 0 . 2 7 5 1 . 0 0 0 2 . 7 9 0 M 2 * M5 - 1 . 0 0 6 5 . 9 2 5 - 0 . 0 1 7 1 . 0 0 0 - 0 . 1 7 0 M 2 * M6 - 6 . 2 1 9 5 . 9 2 5 - 0 . 1 0 3 1 . 0 0 0 - 1 . 0 5 0 M 3 * M5 1 7 . 4 9 4 5 . 9 2 5 0 . 2 9 1 1 . 0 0 0 2 . 9 5 3 M 3 * M6 - 3 . 9 4 4 5 . 9 2 5 - 0 . 0 6 6 1 . 0 0 0 - 0 . 6 6 6 M 5 * M6 3 . 3 1 9 5 . 9 2 5 0 . 0 5 5 1 . 0 0 0 0 . 5 6 0 A N A L Y S I S OF V A R I A N C E S O U R C E S U M - O F - S Q U A R E S DF M E A N - S Q U A R E F - R A T I O R E G R E S S I O N 5 6 8 5 0 . 7 5 4 15 3 7 9 0 . 0 5 0 6 . 7 4 9 R E S I D U A L 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 171 T E S T F O R E F F E C T C A L L E D : C O N S T A N T T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 9 6 4 9 5 4 . 8 8 0 1 1 9 6 4 9 5 4 . 8 8 0 3 4 9 8 . 8 3 4 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : M l T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 3 8 . 7 5 1 1 3 8 . 7 5 1 0 . 0 6 9 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : M2 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 7 1 0 2 . 2 7 6 1 7 1 0 2 . 2 7 6 1 2 . 6 4 6 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : M3 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 6 0 2 5 . 6 4 1 1 6 0 2 5 . 6 4 1 1 0 . 7 2 9 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL 172 T E S T F O R E F F E C T C A L L E D : M5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 0 9 . 0 5 1 1 4 0 9 . 0 5 1 0 . 7 2 8 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD T E S T F O R E F F E C T C A L L E D : M6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 9 8 6 8 . 4 8 1 1 2 9 S 6 S . 4 S 1 5 3 . 1 S 4 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD. T E S T F O R E F F E C T C A L L E D : M l BY M2 T E S T OF H Y P O T H E S I S -S O U R C E S S DF MS F H Y P O T H E S I S 4 8 2 . 9 0 1 1 4 8 2 . 9 0 1 0 . 8 6 0 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY M l M3 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 5 1 . 4 8 1 1 5 1 . 4 8 1 0 . 0 9 2 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 173 T E S T F O R E F F E C T C A L L E D : M l BY M5 E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 7 6 6 . 1 0 1 1 1 7 6 6 . 1 0 1 3 . 1 4 5 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDl T E S T F O R E F F E C T C A L L E D : M l BY M6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 7 7 7 . 0 1 6 1 7 7 7 . 0 1 6 1 . 3 S 4 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : M2 B Y M3 T E S T OF H Y P O T H E S I S -S O U R C E S S DF MS F H Y P O T H E S I S 4 3 7 2 . 5 1 6 1 4 3 7 2 . 5 1 6 7 . 7 8 6 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY Ijk M2 M5 ' E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 6 . 2 0 1 1 1 6 . 2 0 1 0 . 0 2 9 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : M2 BY M6 o T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 6 1 3 . 7 6 6 1 6 1 8 . 7 6 6 1 . 1 0 2 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY M3 M5 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 4 8 9 6 . 5 0 1 1 4 8 9 6 . 5 0 1 8 . 7 1 9 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY 175 M3 M6 E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 2 4 S . S 5 1 1 2 4 8 . 8 5 1 0 . 4 4 3 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDL T E S T F O R E F F E C T C A L L E D : BY M5 M6 T E S T OF H Y P O T H E S I S S O U R C E S S DF MS F H Y P O T H E S I S 1 7 6 . 2 2 6 1 1 7 6 . 2 2 6 0 . 3 1 4 E R R O R 1 1 2 3 . 2 0 6 2 5 6 1 . 6 0 3 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 176 Appendix 12: Test Procedures a) F l o t a t i o n Column The feed to the f l o t a t i o n column was crushed and ground in accordance with the flowsheet shown on page 47. Rod m i l l grinding was performed at 40 percent s o l i d s . The volumetric feed rate to the column was estimated using water in the absence of s o l i d s . The feed rate was measured by recording the time i t took to f i l l a certain volume of the column using a wrist watch. Feed rate adjustments were made by means of a r e c i r c u l a t i n g l i n e back to the conditioning tank (Figure 5, page 42). After the feed rate specified from the experimental designs had been estimated, the rod m i l l discharge ( f l o t a t i o n feed) was added to the conditioning tank. Make up water was added to the conditioning tank in order to adjust the feed percent s o l i d s to the value sp e c i f i e d from the experimental designs. The f l o t a t i o n feed was mixed for 5 minutes, after which the necessary amounts of c o l l e c t o r and kerosene were added to the conditioning tank. Feed conditioning was carried out for 5 minutes, after which the feed pump was started. The feed conditioning procedure employed has been recommended by Osborne (65), and has been employed by Rastogi and Apian (56) for batch mechanical testing. 177 The a i r was turned on prior to feeding the column. The washwater was turned on as soon as concentrate started overflowing into the concentrate launder. A period of about 3 minutes from the time concentrate started overflowing the overflow l i p was allowed for so that the f l o t a t i o n column could attain steady state conditions. After steady state had been reached, sampling was carried out in accordance with the f l o t a t i o n column data sheet shown on Table 2 (page 50). The flowrates of t a i l i n g s and concentrate were measured by taking timed samples of each stream using a graduated cylinder and a wrist watch. The t a i l i n g and concentrate samples collected were f i l t e r e d ; the masses of f i l t r a t e , wet f i l t e r cake and dry f i l t e r cake were recorded, from which the pulp densities of the two streams were estimated. Sample of the feed, t a i l i n g s and concentrate s o l i d s were sent to the UBC assay laboratory for ash analyses. b) Batch Mechanical C e l l Size reduction to produce s i m i l a r l y to the f l o t a t i o n carried out s i m i l a r l y to the the f l o t a t i o n feed was conducted column. Feed conditioning was also f l o t a t i o n column; that i s , the feed r 178 was mixed for a period of 5 minutes prior to reagent addition. Reagents were then added to the batch f l o t a t i o n c e l l and the feed was conditioned for 5 minutes. A feed sample for assay was withdrawn from the c e l l using a siphon. At the end of the f l o t a t i o n period the concentrate collected and t a i l i n g s remaining in the c e l l were f i l t e r e d and dried. Samples were prepared for ash analyses. As already stated in Section 4 . 3 . 3 , batch mechanical data was not adjusted. 179 Appendix 13: F l o t a t i o n Column Data Sheets 180 TABLE 2: COLUMN FLOTATION DATA SHEET a) S c r e e n i n g Design RUN NUMBER: 1 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 5 . 0 Feed r a t e ( l / m i n ) = 2 . 0 A i r F l o w r a t e ( l / m i n ) = 6 .0 Washwater F l o w r a t e ( l / m i n ) = 0. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 40 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 00 F r o t h Depth, f t = 0. 5 Sampling Time, t (min) = 1 .0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.44 (2) Mass of wet f i l t e r cake (g) = 108.26 (3) Mass of d r y f i l t e r cake (g) = 72.1 (4) % s o l i d s i n c o n c e n t r a t e = 13.20 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 2.415 (2) Mass of wet f i l t e r cake (g) = 61.54 (3) Mass of dry f i l t e r cake (g) = 38. 6 (4) % s o l i d s i n t a i l i n g s = 1 . 56 C. ASH ANALYSES (1) Feed % ash = 19. 97 (2) C o n c e n t r a t e % ash = 6. 04 (3) T a i l i n g s % ash = 44. 94 181 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET a ) S c r e e n i n g D e s i g n RUN NUMBER: 2 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s Feed r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min ) F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Vo lume of f i l t r a t e (1) (2) Mass of wet f i l t e r c a k e (g) (3) Mass of d r y f i l t e r c a k e (g) (4) % s o l i d s i n c o n c e n t r a t e B . T A I L I N G S STREAM (1) Vo lume of f i l t r a t e (1 ) (2) Mass of wet f i l t e r c a k e (g) (3) Mass of d r y f i l t e r c a k e (g) (4) % s o l i d s i n t a i l i n g s C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i 1 i hgs % a s h N o t e : No c o n c e n t r a t e o v e r f l o w 1S2 TABLE 2: COLUMN FLOTATION DATA SHEET a) S c r e e n i n g Design RUN NUMBER: 3 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 30 . 0 Feed r a t e ( l / m i n ) = 2 . 0 A i r F l o w r a t e ( l / m i n ) = 6 . 0 Washwater F l o w r a t e ( l / m i n ) = 0. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 80 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1200 F r o t h Depth, f t = 1_._5 Sampling Time, t (min) = 1 . 0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) - 2.345 (2) Mass of wet f i l t e r cake (g) = 1101.4 (3) Mass of dry f i l t e r cake (g) = 708.6 (4) % s o l i d s i n c o n c e n t r a t e = 20.56 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 2.26 (2) Mass of wet f i l t e r cake (g) = 1743.2 (3) Mass of dry f i l t e r cake (g) = 12 6 6. S (4) % s o l i d s i n t a i l i n g s = 31.64 C. ASH ANALYSES (1) Feed % ash = 22 . 81 (2) C o n c e n t r a t e % ash = 10.12 (3) T a i l i n g s % ash = 28 . 7 1S3 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET a ) S c r e e n i n g D e s i g n RUN NUMBER: 4 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min ) F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) 1. 5 (2 ) Mass of wet f i l t e r cake (g) = 465 . 9 (3) Mass of d r y f i l t e r c a k e (g) = 329 . S (4) % s o l i d s i n c o n c e n t r a t e = 1 6 . 8 0 (1) B . T A I L I N G S STREAM Volume o f f i l t r a t e (1) 3 . 5 6 5 (2) Mass of wet f i l t e r c a k e ( g ) = 2 2 3 1 . 5 (3) Mass o f d r y f i l t e r cake (g) = 17 2 4 . 4 (4 ) 96 s o l i d s i n t a i l i n g s = 29 . 7 C . ASH ANALYSES (1 ) F e e d 96 a s h _ 1 7 . 2 (2 ) C o n c e n t r a t e 96 a s h 11 . 0 (3) T a i l i n g s 96 as h = 1 8 . 1 4 30 . 0 1 0 . 0  6". 0  0 . 5  40  1200  0 . 5 1 . 0 184 TABLE 2: COLUMN FLOTATION DATA SHEET a) S c r e e n i n g Design RUN NUMBER: 5  FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed 96 S o l i d s = 5 . 0 Feed r a t e ( l / m i n ) = 2 . 0 A i r F l o w r a t e ( l / m i n ) = S . 0 Washwater F l o w r a t e ( l / m i n ) = 0. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 80 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1200 F r o t h Depth, f t = 0. 5 Sampling Time, t (min) = 1. 0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) 2 . 32 (2) Mass of wet f i l t e r cake (g) = 426 . 4 3 (3) Mass of dry f i l t e r cake (g) = 278 . 4 (4) % s o l i d s i n c o n c e n t r a t e = 10. 2 B. TAILINGS STREAM (1 ) Volume of f i l t r a t e (1) 2 . 16 (2) Mass of wet f i l t e r cake (g) = 42 . 8 9 (3) Mass of dry f i l t e r cake (g) = 21 . 5 (4) 96 s o l i d s i n t a i l i n g s = 0. 98 C. ASH ANALYSES (1) Feed 96 ash (2) C o n c e n t r a t e 96 ash (3) Tai l i n g s 96 ash 17.92 7 . 2 55 . 5 1 8 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 5 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 5 . 0 F e e d r a t e ( l / m i n ) = 2 . 0 A i r F l o w r a t e ( l / m i n ) = 8 . 0 W a s h w a t e r F l o w r a t e ( l / m i n ) = 0 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 8 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 2 0 0 F r o t h D e p t h , f t = 0 . 5 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 1 2 ( 2 ) M a s s . o f w e t f i l t e r c a k e ( g ) = 4 3 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 5 . 1 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 2 2 . 5 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 8 . 96 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 7 8 . 2 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 0 . 1 ( 4 ) % s o l i d s i n t a i l i n g s = 1 . 3 1 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 9 . 9 1 ( 2 ) C o n c e n t r a t e % a s h = 6 . 1 2 ( 3 ) T a i l i n g s % a s h = 5 3 . 7 185 T A B L E 2: COLUMN F L O T A T I O N DATA S H E E T a ) S c r e e n i n g D e s i g n RUN NUMBER: 6 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 5. 0 F e e d r a t e ( l / m i n ) = 1 0 . 0 A i r F l o w r a t e ( l / m i n ) = 8 .0 Washwater F l o w r a t e ( l / m i n ) = 0. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 40 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1200 F r o t h D e p t h , f t •= 1 . 5 S a m p l i n g T i m e , t (min ) = 1 .0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) V o l u m e of f i l t r a t e (1) (2 ) Mass o f wet f i l t e r c a k e (g) (3 ) Mass o f d r y f i l t e r c a k e (g) (4) % s o l i d s i n c o n c e n t r a t e B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) (2 ) Mass of wet f i l t e r c a k e (g) (3 ) Mass o f d r y f i l t e r c a k e (g) (4 ) % s o l i d s i n t a i l i n g s C . ASH ANALYSES (1 ) F e e d % a s h (2 ) C o n c e n t r a t e % a s h (3 ) T a i l i n g s % a s h Note: No concentrate overflow 1 8 6 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 7 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 3 0 . 0 F e e d r a t e ( l / m i n ) = 2 . 0 A i r F l o w r a t e ( l / m i n ) = 8 . 0 W a s h w a t e r F l o w r a t e ( l / m i n ) = 0 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 4 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 0 0 F r o t h D e p t h , f t = 1 . 5 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 5 3 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 4 8 4 . 8 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 6 5 . 2 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 S . 17 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 3 9 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 0 7 9 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 9 5 7 . 4 ( 4 ) % s o l i d s i n t a i l i n g s = 27 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h - 18 . 5 ( 2 ) C o n c e n t r a t e 96 a s h = 1 1 . 6 ( 3 ) T a i l i n g s 96 a s h = 2 6 . 37 1 8 7 T A B L E 2 : C O L U M N F L O T A T I O N DATA S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 8 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 3 0 . 0 F e e d r a t e ( l / m i n ) = 1 0 . 0 A i r F l o w r a t e ( l / m i n ) = 8 , " 0 ~ W a s h w a t e r F l o w r a t e ( l / m i n ) = 0 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 8 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 0 0 F r o t h D e p t h , f t = 0 . 5 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 1 9 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 7 3 3 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 4 8 9 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 16 . S B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 8 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 5 7 7 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 0 6 9 . 2 ( 4 ) % s o l i d s i n t a i l i n g s = 3 2 . 3 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 2 . 6 ( 2 ) C o n c e n t r a t e % a s h = 9 . 1 6 ( 3 ) T a i l i n g s % a s h = 2 1 . 5 3 1 8 8 T A B L E 2 : COLUMN F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 9 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 2 2 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 6 7 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 4 4 . 1 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 5 . 4 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 5 . 4 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 2 8 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 8 4 . 5 ( 4 ) % s o l i d s i n t a i l i n g s = 1 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h - 1 7 . 3 ( 2 ) C o n c e n t r a t e % a s h = 6 . 3 ( 3 ) T a i l i n g s % a s h =' 4 8 . 8 _ 5 5 . 0  2 . 0 6 . 0 " 2 . 0 4 0  1 2 0 0  1 . 5  1 . 0 1S9 TABLE 2: COLUMN FLOTATION DATA SHEET a) Screening Design RUN NUMBER: 10 FLOTATION CONDITIONS Condit ioning Time (min) Feed % Solids Feed rate ( l /min) Air Flowrate (l /min) Washwater Flowrate (l /min) Frother Concentration (g/t) Col lector Concentration (g/t) Froth Depth, ft Sampling Time, t (min) FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 5.705 (2) Mass of wet f i l t e r cake (g) = 325.S3 (3) Mass of dry f i l t e r cake (g) = 215.4 (4) % sol ids inconcentrate = 3.57 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 1 .82 (2) Mass of wet f i l t e r cake (g) = 45.47 (3) Mass of dry f i l t e r cake (g) = 28.1 (4) % so l ids in t a i l i n g s = 1 . 5 C. ASH ANALYSES (1) Feed % ash = 16.6 (2) Concentrate 96 ash = 9.94 (3) Ta i l ings 96 ash = 40. 45 5 . 0  10.0 6 . 0  2 . 0 80  1200  0.5 1 . 0 190 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET a ) S c r e e n i n g D e s i g n RUN NUMBER: 11 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) (2 ) Mass of wet f i l t e r c a k e (g) (3) Mass of d r y f i l t e r c a k e (g) (4) 96 s o l i d s i n c o n c e n t r a t e B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1 ) (2 ) Mass of wet f i l t e r c a k e (g) (3 ) Mass of d r y f i l t e r c a k e (g) (4 ) 96 s o l i d s i n t a i l i n g s C . ASH ANALYSES (1 ) F e e d 96 a s h (2) C o n c e n t r a t e 96 a s h (3) T a i l i n g s 96 a s h 191 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET a ) S c r e e n i n g D e s i g n RUN NUMBER: 12 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time ( m i n ) = 5 F e e d % S o l i d s = 3 0 . 0 F e e d r a t e ( l / m i n ) - 1 0 . 0 A i r F l o w r a t e ( l / m i n ) = 6 . 0 Washwater F l o w r a t e ( l / m i n ) = 2 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 40 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 00 F r o t h D e p t h , f t = 1 . 5 S a m p l i n g T i m e , t (min ) = 1 . 0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Vo lume of f i l t r a t e (1) = 1 . 79 (2) Mass of wet f i l t e r c a k e (g) = 203 . 2 (3) Mass of d r y f i l t e r c a k e (g) = 1 2 5 . 2 (4 ) % s o l i d s i n c o n c e n t r a t e = 6 . 2 8 B . T A I L I N G S STREAM (1) Volume o f f i l t r a t e (1) = 5 . 0 9 (2 ) Mass of wet f i l t e r c a k e (g) = 4231 . 6 (3) Mass of d r y f i l t e r c a k e (g) = 2 9 7 2 . 9 (4 ) % s o l i d s i n t a i l i n g s = 31 . 89 C . ASH ANALYSES (1 ) F e e d % a s h = 1 8 . 5 8 (2) C o n c e n t r a t e % a s h = 5 . 53 (3) T a i l i n g s % a s h = 18 . 66 192 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET a) S c r e e n i n g D e s i g n RUN NUMBER: 13 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0 . 0 7 (2) Mass of wet f i l t e r c a k e (g) = 3 4 . 4 (3) Mass of d r y f i l t e r c a k e (g) = 2 9 . 9 (4) 96 s o l i d s i n c o n c e n t r a t e = 3 0 . 0 B . T A I L I N G S STREAM (1) Volume of f i l t r a t e (1) = 3 . 8 1 (2) Mass of wet f i l t e r c a k e (g) = 4 7 . 7 (3) Mass of d r y f i l t e r c a k e (g ) = 3 7 . 6 (4) 96 s o l i d s i n t a i l i n g s = 0 .97 C . ASH ANALYSES (1) F e e d 96 a s h = 1 7 . 9 (2) C o n c e n t r a t e 96 a s h = 7 . 1 7 (3) T a i l i n g s 96 a s h = 41 . 95 5 . 0 2 .,0 8 . Q 2 . 0  80 800  1 . 5 1 . 0 1 9 3 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n RUN N U M B E R : 1 4 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 5 . 0 F e e d r a t e ( l / m i n ) = 1 0 . 0 A i r F l o w r a t e ( l / m i n ) = S . 0 W a s h w a t e r F l o w r a t e ( l / m i n ) = 2 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 4 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 0 0 F r o t h D e p t h , f t - 0 . 5 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 2 1 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 6 5 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 0 1 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 3 . 0 2 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 4 . 9 6 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 2 7 7 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 9 0 . 1 ( 4 ) SS s o l i d s i n t a i l i n g s = 3 . 6 3 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 7 . 21 ( 2 ) C o n c e n t r a t e % a s h = 8 . 1 ( 3 ) T a i l i n g s % a s h = 2 8 . 08 194 TABLE 2: COLUMN FLOTATION DATA SHEET a) S c r e e n i n g Design RUN NUMBER: 15 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed 96 S o l i d s = 30.0 Feed r a t e ( l / m i n ) = 2.0 A i r F l o w r a t e ( l / m i n ) = S . 0 Washwater F l o w r a t e ( l / m i n ) = 2 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 40 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1200 F r o t h Depth, f t = 0. 5 Sampling Time, t (min) = 1 . 0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 1.76 (2) Mass of wet f i l t e r cake (g) = 530.9 (3) Mass of dry f i l t e r cake (g) = 3 6 4.1 (4) 96 s o l i d s i n c o n c e n t r a t e = 15.9 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 1 . 03 (2) Mass of wet f i l t e r cake (g) = 467 . 7 (3) Mass of dry f i l t e r cake (g) = 3 7 5.2 (4) % s o l i d s i n t a i l i n g s = 25.04 C. ASH ANALYSES (1) Feed 96 ash = 18.8 (2) C o n c e n t r a t e 96 ash = 10. 04 (3) T a i l i n g s % ash = 40.6 1 9 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n RUN N U M B E R : 16 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 3 0 . 0 F e e d r a t e ( l / m i n ) = 1 0 . 0 A i r F l o w r a t e ( l / m i n ) = 8 . 0 W a s h w a t e r F l o w r a t e ( l / m i n ) = 2 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 8 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 2 0 0 F r o t h D e p t h , f t = 1 . 5 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 9 8 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 41 . 5 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 3 . 7 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 0 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 6 . 3 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 3 2 3 2 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 8 4 6 . 2 ( 4 ) % s o l i d s i n t a i l i n g s = 3 1 . 2 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 2 0 . 5 ( 2 ) C o n c e n t r a t e % a s h = 8 . 7 2 ( 3 ) T a i l i n g s % a s h = 2 2 . 8 1 9 6 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 17 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 91 . 4 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 7 . 7 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 4 . 8 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = , 4 . 3 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 9 7 8 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 5 9 . 3 ( 4 ) .96 s o l i d s i n t a i l i n g s = 1 4 . 3 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 8 . 2 5 ( 2 ) C o n c e n t r a t e 96 a s h = 5 . 3 6 ( 3 ) T a i l i n g s 96 a s h = 2 2 . 2 17 . 5 6 . 0 7 . 0 1 . 2 5  6 0  1 0 0 0  1 . 0 1 . 0 1 9 7 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T a ) S c r e e n i n g D e s i g n R U N N U M B E R : 18 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 1 7 . 5 F e e d r a t e ( l / m i n ) = 6 . 0 A i r F l o w r a t e ( l / m i n ) = 7 . 0 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 2 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 F r o t h D e p t h , f t = . 1 . 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 4 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 0 2 . 7 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 7 . 1 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 2 . 6 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 4 . 5 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 1 3 7 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 8 3 9 . 1 ( 4 ) % s o l i d s i n t a i l i n g s = 1 4 . 9 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 78 ( 2 ) C o n c e n t r a t e % a s h = 5 . 3 6 ( 3 ) T a i l i n g s % a s h = 2 2 . 2 1 9 8 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) S t e e p e s t A s c e n t R U N N U M B E R : 1 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 1 1 . 0 F e e d r a t e ( l / m i n ) = 4 . 0 A i r F l o w r a t e ( l / m i n ) = 7 . 1 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 4 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 6 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 2 8 F r o t h D e p t h , f t = 0 . 7 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 0 5 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 9 7 . 1 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 8 9 . 4 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 8 . 07 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 4 4 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 9 4 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 0 . 2 ( 4 ) 96 s o l i d s i n t a i l i n g s = 2 . 7 7 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 8 . 4 ( 2 ) C o n c e n t r a t e 96 a s h = 7 . 7 3 ( 3 ) T a i l i n g s 96 a s h = 5 3 . 1 1 9 9 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) S t e e p e s t A s c e n t R U N N U M B E R : 2 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 9 . 6 F e e d r a t e ( l / m i n ) = 3 . 4 A i r F l o w r a t e ( l / m i n ) = 7 . 2 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 4 7 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . S C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 3 6 F r o t h D e p t h , f t = 0 . 6 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 1 6 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 9 1 . 8 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 7 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 5 . 4 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 64 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 9 8 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 61 . 0 ( 4 ) % s o l i d s i n t a i l i n g s = 2 . 2 2 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 7 . 7 ( 2 ) C o n c e n t r a t e % a s h = 8 . 0 5 ( 3 ) T a i l i n g s % a s h = 4 9 . 7 2 0 0 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) S t e e p e s t A s c e n t R U N N U M B E R : 3 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5. F e e d % S o l i d s = S . 1 F e e d r a t e ( l / m i n ) = 2 . 8 8 A i r F l o w r a t e ( l / m i n ) = 7 . 2 W a s h w a t e r F l o w r a t e ( l / m i n ) .= 1 . 5 1 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 1 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 4 2 F r o t h D e p t h , f t = 0 . 5 4 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 1 6 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 9 4 . 9 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 3 2 . 0 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 5 . 6 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 6 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 9 0 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 6 . 2 ( 4 ) 96 s o l i d s i n t a i l i n g s = 2 . 4 5 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 6 ( 2 ) C o n c e n t r a t e % a s h = 8 . 0 0 ( 3 ) T a i l i n g s % a s h = 4 5 . 9 2 0 1 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) S t e e p e s t A s c e n t RUN N U M B E R : 3 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 1 2 5 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 2 4 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 14 . 7 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 9 . S ( 1 ) B . T A I L I N G S S T R E A M V o l u m e o f f i l t r a t e ( 1 ) 2 . 3 8 ( 2 ) M a s s o f we t f i 1 1 e r c a k e ( g ) = 5 0 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 9 . 7 ( 4 ) % s o l i d s i n t a i l i n g s = 1 . 6 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 9 . 2 ( 2 ) C o n c e n t r a t e % a s h 6 . 8 ( 3 ) T a i l i n g s % a s h = 39 . 4 5 3 6 1 . 0 55 . 0  9 5 0 . 0  0 . 5 0 1 . 0 2 0 2 T A B L E 2 : COLUMN F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 2 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 1 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 4 0 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 4 . 0 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 14 . 9 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 6 ( 2 ) M a s s o f wet f i 1 1 e r c a k e ( g ) = 1 6 6 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 2 . 4 ( 4 ) 96 s o l i d s i n t a i 1 i n g s = 3 . 2 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h — 1 4 . 4 ( 2 ) C o n c e n t r a t e 96 a s h 5 . 4 ( 3 ) T a i l i n g s 96 a s h = 2 5 . 6 b 6 1 . 0  5 5 . 0 9 5 0 . 0  0 . 5 0 1 . 0 2 0 3 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 3 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 1 . 78 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 4 2 8 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 6 4 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e 12 . 0 ( 1 ) B . T A I L I N G S S T R E A M V o l u m e o f f i l t r a t e ( 1 ) 1 . 0 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 6 1 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 6 . 8 ( 4 ) % s o l i d s i n t a i 1 i n g s = 1 0 . 7 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h _ 2 0 . 0 ( 2 ) C o n c e n t r a t e % a s h 8 . 0 ( 3 ) T a i l i n g s % a s h = 4 2 . 3 1 • 0  5 5 . 0 9 5 0 . 0  0 . 5 0 1 . 0 2 0 4 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 4 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i me ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) % s o l i d s i n c o n c e n t r a t e B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n t a i l i n g s C . A S H A N A L Y S E S (1) ( 2 ) ( 3 ) 2 0 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 5 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) % s o l i d s i n c o n c e n t r a t e B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) % s o l i d s i n t a i l i n g s C . A S H A N A L Y S E S ( 1 ) F e e d % a s h ( 2 ) C o n c e n t r a t e % a s h ( 3 ) T a i l i n g s % a s h 2 0 6 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 6 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 4 2 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 37 . 8 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 2 . 7 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 5 . 0 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 4 . 96 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 3 4 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 5 3 . 6 ( 4 ) % s o l i d s i n t a i l i n g s 3 . 0 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 9 . 0 ( 2 ) C o n c e n t r a t e 96 a s h = 6 . 2 ( 3 ) T a i l i n g s 96 a s h = 26 . 5 1 . 0  55 . 0 9 5 0 . 0  0 . 7 0 1 . 0 2 0 7 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 7 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 1 . 0 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 1 8 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 4 5 . 1 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 1 . 7 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 7 5 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 0 4 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 5 . 2 (4) X s o l i d s i n t a i l i n g s = 4 . 1 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 6 . 8 ( 2 ) C o n c e n t r a t e % a s h = 7 . 6 ( 3 ) T a i l i n g s % a s h = 5 2 . 3 2 0 8 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 8 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 15 F e e d r a t e ( l / m i n ) = j) A i r F l o w r a t e ( l / m i n ) = 52 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 8 8 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 5 0 6 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 2 9 9 . 4 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 8 . 8 B . T A I L I N G S ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n t a i l i n g s S T R E A M = 1 . 7 5 = 1 8 3 . 4 1 3 8 . 4 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e % a s h ( 3 ) T a i l i n g s 96 a s h 1 7 . 2 9 . 2 3 9 . 5 2 0 9 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 9 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 7 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 9 1 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 2 . 1 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 3 . 5 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 9 2 ( 2 ) M a s s o f wet f i l t e r c a k e ( g ) = 9 6 . 5 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 9 . 1 ( 4 ) % s o l i d s i n t a i l i n g s = 2 . 0 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 2 0 . 0 ( 2 ) C o n c e n t r a t e 96 a s h = 6 . 7 ( 3 ) T a i l i n g s 96 a s h = 39 . 7 6 1 . 5  5 5 . 0 9 5 0 . 0  0 . 5 0 1 . 0 2 1 0 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 1 0 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I ON R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 0 . 6 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 3 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 . 2 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 2 . 0 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 4 . 38 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 3 4 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 7 0 . 2 ( 4 ) % s o l i d s i n t a i l i n g s = 3 . 7 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 2 ( 2 ) C o n c e n t r a t e % a s h = 4 . 9 6 1 . 5  5 5 . 0 9 5 0 . 0  0 . 7 0  1 . 0 21.1 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 11 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 9 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 9 3 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 3 5 . 7 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 2 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 76 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 7 9 . 5 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 2 . 1 ( 4 ) 96 s o l i d s i n t a i l i n g s = 3 . 4 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 9 . 1 ( 2 ) C o n c e n t r a t e 96 a s h = 6 ^ 6 ( 3 ) T a i l i n g s 96 a s h = 5 9 . 6 2 1 2 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 12 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 6 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i on ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 2 . 4 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 3 5 5 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e <g> = 2 2 3 . 6 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 8 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 8 8 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 3 8 0 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 7 5 . 1 ( 4 ) % s o l i d s i n t a i l i n g s = 8 . 4 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 1 5 . 6 7 . 9 37 . 5 2 1 3 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 13 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 56 S o l i d s = 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = IS W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e (1 ) = 0 . 38 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 7 7 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 0 . 0 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 0 . 9 B . T A I L I N G S ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n t a i l i n g s S T R E A M 3 . 46 7 2 . 0 5 2 . 1 1 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 2 1 . 3 5 . 8 4 4 . 0 2 1 4 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 14 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e (1 ) = 2 . 1 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 2 8 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 78 . 3 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 3 . 5 B . T A I L I N G S ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n t a i l i n g s S T R E A M = 3 . 5 = 1 9 2 . 8 = 1 1 1 . 0 = 3 . 0 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 1 7 . 1 8 . 4 28 . 8 2 1 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 15 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 3 . 2 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 4 1 3 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 51 . 8 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 6 . 9 B. T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 1 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 2 7 2 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 1 5 . 2 ( 4 ) 96 s o l i d s i n t a i l i n g s = 9 . 1 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 5 . 2 ( 2 ) C o n c e n t r a t e % a s h = 1 0 . 3 ( 3 ) T a i l i n g s 96 a s h = 3 0 . 9 15 _ 3 _S 1 . 5 55 . 0 9 5 0 . 0  0 . 5 0 1 . 0 2 1 6 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 16 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 4 5 ( 2 ) M a s s o f wet f i l t e r c a k e ( g ) = 9 4 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 3 . 3 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 1 . 6 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 34 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 8 3 5 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 8 7 . 1 ( 4 ) 96 s o l i d s i n t a i l i n g s = 1 4 . 1 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 8 . 8 ( 2 ) C o n c e n t r a t e 96 a s h = 5 . 6 ( 3 ) T a i l i n g s 96 a s h = 2 1 . 2 2 1 7 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 17 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) - 3 A i r F l o w r a t e ( l / m i n ) = (3 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t - 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 1 9 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 5 9 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 37 . 4 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 5 . 0 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 4 . 0 8 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 4 3 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 0 4 . 2 ( 4 ) % s o l i d s i n t a i l i n g s = 2 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 6 . 3 ( 2 ) C o n c e n t r a t e % a s h = 6 . 1 ( 3 ) T a i l i n g s % a s h = 4 1 . 4 2 1 8 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 18 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 0 5 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 7 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 8 . 4 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e 1 2 . 5 ( 1 ) B . T A I L I N G S S T R E A M V o l u m e o f f i l t r a t e ( 1 ) 4 . 0 2 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 8 1 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 3 1 . 9 ( 4 ) 96 s o l i d s i n t a i 1 i n g s 3 . 1 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h _ 1 3 . 6 ( 2 ) C o n c e n t r a t e 96 a s h 5 . 3 ( 3 ) T a i l i n g s 96 a s h = 2 5 . 4 1 . 0 6 5 . 0  9 5 0 . 0 0 . 7 0 1 . 0 2 1 9 T A B L E 2 : C O L U M N F L O T A T I O N DATA S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 19 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 8 9 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 3 2 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 7 3 . 5 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 5 . 5 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 6 3 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 8 2 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 0 . 9 ( 4 ) 96 s o l i d s i n t a i l i n g s = 3 . 6 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 9 . 0 ( 2 ) C o n c e n t r a t e 96 a s h = 6 . 7 ( 3 ) T a i l i n g s 96 a s h = 56 . 9 1 5 _ J _ 6 1 . 0 6 5 . 0  9 5 0 . 0  0 . 7 0 1 . 0 2 2 0 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 2 0 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s 15 F e e d r a t e ( l / m i n ) 5 A i r F l o w r a t e ( l / m i n ) = 6 W a s h w a t e r F l o w r a t e ( l / m i n ) 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 1 . 1 0 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) 2 5 3 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 1 6 6 . 4 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e 1 2 . 3 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 1 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) 3 2 1 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 2 2 4 . 0 ( 4 ) 96 s o l i d s i n t a i l i n g s = 6 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 1 7 . 5 6 . 3 3 4 . 9 2 2 1 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 21 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M (1.) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 3 0 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 9 3 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 7 . 9 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 4 . 7 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 8 2 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 6 9 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 1 . 5 ( 4 ) % s o l i d s i n t a i l i n g s = 17 . S C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 21 . 3 ( 2 ) C o n c e n t r a t e 96 a s h = 5 . 8 ( 3 ) T a i l i n g s % a s h = 4 2 . 0 2 2 2 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 22 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) 5 F e e d 96 S o l i d s 5 F e e d r a t e ( l / m i n ) 5 A i r F l o w r a t e ( l / m i n ) 8 W a s h w a t e r F l o w r a t e ( l / m i n ) 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) 9 5 0 . 0 F r o t h D e p t h , f t 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 2 . 4 8 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 6 6 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 0 2 . 5 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 3 . 9 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 2 . 5 0 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 9 5 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 1 . 8 ( 4 ) 96 s o l i d s i n t a i l i n g s 2 . 8 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 1 6 . 8 9 . 1 3 3 . 1 2 2 3 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 2 3 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . Q F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 5 0 S a m p l i n g T i me , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 5 2 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 4 9 0 . 8 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 0 0 . 9 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 1 . 7 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 1 . 2 4 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 7JLA ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 5 0 . 9 ( 4 ) 9 6 s o l i d s i n t a i l i n g s = 3 . 9 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 2 0 . 4 ( 2 ) C o n c e n t r a t e 96 a s h = 9 . 1 ( 3 ) T a i l i n g s 96 a s h = 6 1 . 9 2 2 4 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 2 4 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = S W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 52 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 4 5 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 9 4 . 1 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 14 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 2 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) 6 5 9 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e <g> 4 8 5 . 9 ( 4 ) % s o l i d s i n t a i l i n g s 1 2 . 6 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 9 ( 2 ) C o n c e n t r a t e % a s h ( 3 ) T a i l i n g s % a s h 6 . , 2 2 2 . , S 2 2 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 2 5 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) 5 F e e d % S o l i d s 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 65 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 2 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) 2 3 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 1 . 0 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 4 . 9 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 78 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 1 8 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 87 . 7 ( 4 ) 96 s o l i d s i n t a i l i n g s = 2 . 2 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 2 1 . 5 ( 2 ) C o n c e n t r a t e 96 a s h = 5 . 2 ( 3 ) T a i l i n g s 96 a s h = 4 6 . 0 2 2 7 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 2 7 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d % S o l i d s = __15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 5 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 9 8 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 2 5 0 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 6 9 . 7 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 3 . 8 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 0 1 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 3 4 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 0 7 . 1 ( 4 ) % s o l i d s i n t a i l i n g s = 3 . 4 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 8 ( 2 ) C o n c e n t r a t e % a s h = 7 . 3 ( 3 ) T a i l i n g s % a s h = 6 0 . 2 2 2 8 T A B L E 2 : COLUMN F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 28 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f wet f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n c o n c e n t r a t e B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) ( 4 ) 96 s o l i d s i n t a i l i n g s C . A S H A N A L Y S E S (1 ) F e e d 96 a s h ( 2 ) C o n c e n t r a t e 96 a s h ( 3 ) T a i l i n g s 96 a s h 2 2 9 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 29 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 4 9 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 3 4 3 . 9 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 2 08 . S ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 5 . 4 (1 ) B . T A I L I N G S S T R E A M V o l u m e o f f i l t r a t e ( 1 ) 1 . 2 ( 2 ) M a s s o f we t f 1 1 1 e r c a k e ( g ) 1 2 9 . 8 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 1 0 4 . 4 ( 4 ) 96 s o l i d s i n t a i l i n g s = 7 . 9 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h _ 21 . 0 ( 2 ) C o n c e n t r a t e 96 a s h 8 . 0 ( 3 ) T a i l i n g s 96 a s h 47 . 9 5 3 8 1 . 5 6 5 . 0  9 5 0 . 0  0 . 5 0 1 . 0 2 3 0 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 3 0 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) = 5 F e e d 96 S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 9 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t ( m i n ) = 1 . 0 F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e (1 ) = 0 . 3 2 ( 2 ) M a s s o f wet f i l t e r c a k e ( g ) = 3 3 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) - 19 . 8 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 5 . 6 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 4 . 2 ( 2 ) M a s s o f wet f i l t e r c a k e ( g ) = 2 0 5 . 4 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 5 9 . 7 ( 4 ) 96 s o l i d s i n t a i l i n g s = 3 . 6 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 3 . 1 ( 2 ) C o n c e n t r a t e 96 a s h = 6 . 2 ( 3 ) T a i l i n g s 96 a s h = 2 5 . 6 2 3 1 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 31 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 1 . 5 0 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 1 S 6 , 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 2 2 . S ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 7 . 3 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 4 4 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 5 1 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 1 6 . S ( 4 ) 96 s o l i d s i n t a i l i n g s = 4 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 2 1 . 6 ( 2 ) C o n c e n t r a t e 96 a s h = 6 . 6 ( 3 ) T a i l i n g s % a s h = 3 1 . 1 65 . 0  9 5 0 . 0  0 . 7 0  1 . 0 2 3 2 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 32 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 4 . 7 6 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 7 2 7 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 4 4 6 . 3 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e 8 . 1 ( 1 ) B . T A I L I N G S S T R E A M V o l u m e o f f i l t r a t e ( 1 ) 0 . 56 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) 8 4 . 5 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 6 3 . 0 ( 4 ) 96 s o l i d s i n t a i l i n g s 9 . 8 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 6 . 9 ( 2 ) C o n c e n t r a t e 96 a s h 11 . 4 ( 3 ) T a i l i n g s 96 a s h = 58 . 1 15 _ 5 _S 1 . 5 6 5 . 0 " 9 5 0 . 0 " 0 . 5 0 1 . 0 2 3 3 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 3 3 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 2 5 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 32 . 2 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 7 . 9 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 6 . 3 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 1 7 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 8 7 . 5 ( 3 ) M a s s o f d r y f i I t e r c a k e ( g ) = 6 2 . 8 ( 4 ) % s o l i d s i n t a i 1 i n g s = 1 . 9 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 2 3 . 3 ( 2 ) C o n c e n t r a t e 96 a s h 5 . 5 ( 3 ) T a i l i n g s 96 a s h = 4 2 . 0 1 . 0 5 5 . 0  1 0 5 0 . 0 0 . 5 0 1 . 0 2 3 4 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n R U N N U M B E R : 34 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d 96 S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 0 . 4 6 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) 57 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 6 . 8 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 7 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) 3 . 8 9 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 5 2 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) 1 6 7 . 2 ( 4 ) 96 s o l i d s i n t a i 1 i n g s = 4 . 0 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h 1 4 . 4 ( 2 ) C o n c e n t r a t e 96 a s h 6 . 4 ( 3 ) T a i l i n g s 96 a s h 2 4 . 7 1 . 0 5 5 . 0  1 0 5 0 . 0 0 . 7 0 1 . 0 2 3 5 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 3 5 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 8 7 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 2 0 0 . 1 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 1 4 6 . 5 ( 4 ) 96 s o l i d s i n c o n c e n t r a t e = 1 3 . 7 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) - 0 . 5 7 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 4 3 . 7 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 1 . 3 ( 4 ) 96 s o l i d s i n t a i l i n g s = 3 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d 96 a s h = 1 9 . 0 ( 2 ) C o n c e n t r a t e % a s h = 7 . 3 ( 3 ) T a i l i n g s 96 a s h = 5 1 . 9 15 _ 3 _ 6 1 . 0  55 . 0 1 0 5 0 . 0 0 . 7 0 1 . 0 2 3 6 T A B L E 2 : COLUMN F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 36 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 8 9 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 3 5 6 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 1 5 . 5 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 6 . 6 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 6 1 ( 2 ) M a s s o f we t f i l t e r c a k e ( g ) = 66 3 . 3 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 4 6 4 . 9 ( 4 ) % s o l i d s i n t a i l i n g s = 1 4 . 2 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 1 8 . 4 ( 2 ) C o n c e n t r a t e % a s h = 1 0 . 3 ( 3 ) T a i l i n g s % a s h = 28 . 3 5 15 1 . 0 5 5 . 0  1 0 5 0 . 0 0 . 5 0 1 . 0 2 3 7 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T b ) C e n t r a l C o m p o s i t e D e s i g n RUN N U M B E R : 3 7 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 26 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 0 7 . 0 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 7 3 . 9 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 2 0 . 1 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 2 . 4 9 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 48 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 3 6 . 7 ( 4 ) % s o l i d s i n t a i l i n g s = 1 . 4 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 2 2 . 7 ( 2 ) C o n c e n t r a t e % a s h = 6 . 1 ( 3 ) T a i l i n g s % a s h = 5 0 . 8 5 3 8 1 . 0 5 5 . 0  1 0 5 0 . 0 0 . 7 0 1 . 0 238 T A B L E .2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 38 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5. F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = 1. 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 10 5 0 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Volume o f f i l t r a t e (1) = 1 . 9 7 (2) Mass o f wet f i l t e r c a k e (g) = 1 5 7 . 6 (3) Mass o f d r y f i l t e r c a k e (g) = 9 8 . 7 (4) % s o l i d s i n c o n c e n t r a t e = 4 . 6 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 . 8 9 (2) Mass o f wet f i l t e r c a k e (g) = 1 1 0 . 7 (3) Mass o f d r y f i l t e r c a k e (g) = 7 8 . 9 (4) % s o l i d s i n t a i l i n g s = 2 .6 C . ASH ANALYSES (1) F e e d % a s h = 16 . 6 (2) C o n c e n t r a t e % a s h = 8 . 7 (3) T a i l i n g s % a s h = 3 4 . 7 239 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 39 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) - 2 . 8 8 (2) Mass o f wet f i l t e r c a k e (g) 466 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 288 . 4 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 8 . 6 B . T A I L I N G S STREAM (1 ) Volume o f f i l t r a t e (1) = 1 . 7 (2) Mass o f wet f i l t e r c a k e (g) 1 7 1 . 7 (3) Mass o f d r y f i l t e r c a k e (g) 1 3 1 . 8 ( 4 ) % s o l i d s i n t a i l i n g s = 7 . 0 C . ASH ANALYSES (1) F e e d % a s h = 18 . 0 (2) C o n c e n t r a t e % a s h = 10 . 5 (3) T a i l i n g s % a s h = 42 . 7 _5 15 _3 _8 1 . 0  55 . 0 1050 . 0 0 . 50 1 . 0 240 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 0 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time ( m i n ) ' = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = 1. 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 .70 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 .44 (2) Mass o f wet f i l t e r c a k e (g) = 1 4 3 . 9 6 (3) Mass o f d r y f i l t e r c a k e (g) = 8 7 . 8 (4) % s o l i d s i n c o n c e n t r a t e = 1 5 . 0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 6 0 (2) Mass o f wet f i l t e r c a k e (g) = 1 0 1 9 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 7 6 8 . 9 (4) % s o l i d s i n t a i l i n g s = 1 6 . 6 C . ASH ANALYSES (1) F e e d % a s h = 20 . 2 (2) C o n c e n t r a t e % a s h = 5 . 9 (3) T a i l i n g s % a s h = 22 . 8 241 TABLE 2: COLUMN FLOTATION DATA SHEET b) C e n t r a l Composite Design RUN NUMBER: 41 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 5 Feed r a t e (l/min) = 3 A i r Flowrate (l/min) = 6 Washwater Flowrate (l/min) = 1. 5 Fr o t h e r C o n c e n t r a t i o n (g/t) = 55.0 C o l l e c t o r Concentration (g/t) = 1050.0 F r o t h Depth, f t = 0 . 70 Sampling Time, t (min) = 1. 0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.1 (2) Mass of wet f i l t e r cake (g) = 15.7 (3) Mass of dry f i l t e r cake (g) = 4 . 0 (4) % s o l i d s i n concentrate = 3.4 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 4.02 (2) Mass of wet f i l t e r cake (g) = 120.8 (3) Mass of dry f i l t e r cake (g) = 90.4 (4) % s o l i d s i n t a i l i n g s = 2 . 2 C. ASH ANALYSES (1) Feed % ash = 18 . 7 (2) Concentrate % ash = 8 . 6 (3) T a i l i n g s % ash = 42.5 0 242 TABLE 2: COLUMN FLOTATION DATA SHEET b) C e n t r a l Composite Design RUN NUMBER: 4 2 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 5 Feed r a t e (l/min) = 5 A i r Flowrate (l/min) = 6 Washwater Flowrate (l/min) = 1. 5 Fro t h e r Concentration (g/t) = 55.0 C o l l e c t o r Concentration (g/t) = 1050.0 F r o t h Depth, f t = 0 . 50 Sampling Time, t (min) = 1. 0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.38 (2) Mass of wet f i l t e r cake (g) = 35.0 (3) Mass of dry f i l t e r cake (g) = 19 .8 (4) % s o l i d s i n concentrate = 4.8 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 5.1 (2) Mass of wet f i l t e r cake (g) = 281.6 (3) Mass of dry f i l t e r cake (g) = 216.5 (4) % s o l i d s i n t a i l i n g s = 4 . 0 C. ASH ANALYSES (1) Feed % ash = 14.6 (2) Concentrate % ash = 6 . 0 (3) T a i l i n g s % ash = 25. 3 243 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 3 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1 • 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1050 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 1 . 8 6 (2) Mass o f wet f i l t e r c a k e (g) = 2 9 2 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 1 7 7 . 4 (4) % s o l i d s i n c o n c e n t r a t e = 8 . 2 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 . 6 5 (2) Mass o f wet f i l t e r c a k e (g) = 2 1 7 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 1 6 0 . 3 (4) % s o l i d s i n t a i l i n g s = 8 . 6 C . ASH ANALYSES (1) F e e d % a s h = 2 1 . 9 (2) C o n c e n t r a t e % a s h = 8~7~4 (3) T a i l i n g s % a s h = 28 8 2 4 4 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 4 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1 .5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t ' = 0 . 7 0 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 0 . 5 2 (2) Mass o f wet f i l t e r c a k e (g) = 8 6 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 5 4 . 7 (4) % s o l i d s i n c o n c e n t r a t e = 9 . 0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 1 6 (2) Mass o f wet f i l t e r c a k e (g) = 9 4 4 .9 (3) Mass o f d r y f i l t e r c a k e (g) = 6 4 9 . 0 (4) % s o l i d s i n t a i l i n g s = 1 5 . 8 C . ASH ANALYSES (1) F e e d % a s h = 18 . 4 (2) C o n c e n t r a t e % a s h = 5 . 9 (3) T a i l i n g s % a s h = 2 1 . 5 245 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 5 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = Washwater F l o w r a t e ( l / m i n ) = 1 .5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = Q . 50 S a m p l i n g T i m e , t (min) = 1 . 0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 0 . 29 (2) Mass o f wet f i l t e r c a k e (g) = 36 . 8 (3) Mass o f d r y f i l t e r c a k e (g) - 19 . 2 (4) % s o l i d s i n c o n c e n t r a t e = 5.9 B . T A I L I N G S (1) Volume o f f i l t r a t e (1) (2) Mass o f wet f i l t e r c a k e (g) (3) Mass o f d r y f i l t e r c a k e (g) (4) % s o l i d s i n t a i l i n g s STREAM = 3 .02 = 99 . 3 70 . 5 C . ASH ANALYSES (1) F e e d % a s h ( 2 ) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 19 . 0 5 . 8 37 . 1 246 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 6 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) 0 . 38 ( 2 ) Mass o f wet f i l t e r c a k e (g) 3 1 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 1 8 . 3 (4) % s o l i d s i n c o n c e n t r a t e = A . 5 (1 ) B . T A I L I N G S STREAM Volume o f f i l t r a t e (1) 4 . 22 (2) Mass o f wet f i l t e r c a k e (g) = 2 2 5 . 4 ( 3 ) Mass o f d r y f i l t e r c a k e (g) = 162 . 4 ( 4 ) % s o l i d s i n t a i l i n g s 3 . 7 C . ASH ANALYSES (1) F e e d % a s h 1 4 . 1 (2) C o n c e n t r a t e % a s h 5 . 9 (3) T a i l i n g s % a s h 26 .9 5 5 8 1 . 5 55 . 0 1 0 5 0 . 0 0 . 70 1 . 0 247 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 7 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = {J Washwater F l o w r a t e ( l / m i n ) = 1 . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 5 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t (min) = l . Q F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 9 6 (2) Mass o f wet f i l t e r c a k e (g) = 1 6 4 . 7 (3) Mass o f d r y f i l t e r c a k e (g) = 1 1 6 . 9 (4) % s o l i d s i n c o n c e n t r a t e = 1 0 . 4 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 1 .92 (2) Mass o f wet f i l t e r c a k e (g) = 2 1 6 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 1 7 2 . 2 (4) % s o l i d s i n t a i l i n g s = 8 . 1 C . ASH ANALYSES (1) F e e d % a s h = 19 .1 (2) C o n c e n t r a t e % a s h = 7 . 2 (3) T a i l i n g s % a s h = 3 6 . 4 248 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 8 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 1 8 (2) Mass o f wet f i l t e r c a k e (g) 4 3 5 . 8 (3) Mass o f d r y f i I t e r c a k e (g) 254 . 9 (4 ) % s o l i d s i n c o n c e n t r a t e = 7 . 0 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 1 . 70 (2) Mass o f wet f i l t e r c a k e (g) = 360 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 2 6 4 . 4 (4) % s o l i d s i n t a i l i n g s 1 2 . 8 C . ASH ANALYSES (1) F e e d % a s h 1 7 . 9 (2) C o n c e n t r a t e % a s h = 9 . 7 (3) T a i l i n g s % a s h = 33 . 2 15 5  _8 1 . 5 55 . 0  1050 . 0 0 . 50 1 . 0 249 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 4 9 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) - 6 Washwater F l o w r a t e ( l / m i n ) = 1. 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) - 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = ~ 10 5 0 . 0 F r o t h D e p t h , f t = 0 .70 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 3 0 (2) Mass o f wet f i l t e r c a k e (g) = : 7 1 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 4 7 . 9 (4) % s o l i d s i n c o n c e n t r a t e = 1 2 . 9 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 8 0 (2) Mass o f wet f i l t e r c a k e (g) = 89 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 59 .0 (4) % s o l i d s i n t a i l i n g s = 1. 5 C . ASH ANALYSES (1) F e e d % a s h = 20 . 2 (2) C o n c e n t r a t e % a s h = 5 . 9 (3) T a i l i n g s % a s h = 40 . 8 250 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 50 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1 .0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = l . 0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 0 . 4 0 (2) Mass o f wet f i l t e r c a k e (g) = 55 .4 (3) Mass o f d r y f i l t e r c a k e (g) = 3 3 . 9 (4) % s o l i d s i n c o n c e n t r a t e = 7 .4 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 2. 74 (2) Mass o f wet f i l t e r c a k e (g) = 7 7 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 5 2 . 9 (4) % s o l i d s i n t a i l i n g s = 1.9 C . ASH ANALYSES (1) F e e d % a s h = 14 . 8 (2) C o n c e n t r a t e % a s h = 6 .1 (3) T a i l i n g s % a s h = 29 . 1 251 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 51 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1. 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Volume o f f i l t r a t e (1) = 1 .47 (2) . Mass o f wet f i l t e r c a k e (g) = 3 8 6 . 9 (3) Mass o f d r y f i l t e r c a k e (g) = 2 5 2 . 3 (4) % s o l i d s i n c o n c e n t r a t e = 1 3 . 6 B . T A I L I N G S STREAM (1) Volume o f f i l t r a t e (1) = 2 .4 (2) Mass o f wet f i l t e r c a k e (g) = 1 1 0 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 8 6 . 7 (4) % s o l i d s i n t a i l i n g s = 3 . 5 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 18 . 2  8 . 4 6 4 . 1 252 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 5 2 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) ,Feed % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Volume o f f i l t r a t e (1) = 0 . 61 (2) Mass o f wet f i l t e r c a k e (g) = 1 3 7 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 9 8 . 8 (4) % s o l i d s i n c o n c e n t r a t e 1 3 . 2 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 3 .74 (2) Mass o f wet f i l t e r c a k e (g) = 1 1 6 . 8 (3) Mass o f d r y f i l t e r c a k e (g) 86 . 9 (4) % s o l i d s i n t a i l i n g s = 2 . 3 C . ASH ANALYSES (1) F e e d % a s h 2 0 . 2 (2) C o n c e n t r a t e % a s h 6 . 5 (3) T a i l i n g s % a s h = 5 1 . 0 _5 15 _5 _6 1 . 0  6 5 . 0 1 0 5 0 . 0 0 .70 1 . 0 253 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 5 3 F L O T A T I O N CO C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 1 7 (2) Mass o f wet f i l t e r c a k e (g) = 70 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 4 7 . 9 (4 ) % s o l i d s i n c o n c e n t r a t e - 20 . 0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 .4 (2) Mass o f wet f i l t e r c a k e (g) = 66 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 4 4 . 5 (4) % s o l i d s i n t a i l i n g s = 1 . 8 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h NDITIONS 1 . 0 6 5 . 0  1 0 5 0 . 0 0 . 50 1 . 0 20 . 2 6 . 1 30 . 2 254 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 54 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = 1 .0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r ' C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 70 S a m p l i n g T i m e , t (min) = 1. 0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 .44 (2) Mass o f wet f i l t e r c a k e (g') = 51 .9 (3) Mass o f d r y f i l t e r c a k e (g) = 3 4 . 6 (4) % s o l i d s i n c o n c e n t r a t e = 7 .0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 7 8 (2) Mass o f wet f i l t e r c a k e (g) = 1 5 7 . 0 (3) Mass o f : d r y f i l t e r c a k e (g) = 1 2 1 . 1 (4) % s o l i d s i n t a i l i n g s = 3 . 1 C . ASH ANALYSES (1) F e e d % a s h = 14.2 (2) C o n c e n t r a t e % a s h = 6 . 4 (3) T a i l i n g s % a s h = 29 . 0 255 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 55 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = 1. 0 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 .70 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 1 .30 (2) Mass o f wet f i l t e r c a k e (g) = 328 . 3 ( 3 ) Mass o f d r y f i l t e r c a k e (g) 208 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e - 1 2 ^ 8 „ B . T A I L I N G S STREAM (1 ) Volume o f f i l t r a t e (1) = 3 . 24 (2) Mass o f wet f i l t e r c a k e (g) = 1 4 1 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 116 . 6 ( 4 ) % s o l i d s i n t a i l i n g s = 3 . 4 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 2 1 . 2 8 . 0 7 1 . 3 256 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 56 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 36 (2) Mass o f wet f i l t e r c a k e (g) = 5 8 4 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 3 5 0 . 6 (4) % s o l i d s i n c o n c e n t r a t e = 8 .9 B . T A I L I N G S STREAM (1) Volume o f f i l t r a t e (1) = 0 . 9 8 (2) Mass o f wet f i l t e r c a k e (g) = 2 1 5 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 1 6 4 . 9 (4) % s o l i d s i n t a i l i n g s = 1 3 . 8 C . ASH ANALYSES (1) F e e d % a s h = 19 . 6 (2) C o n c e n t r a t e % a s h = 1 0 . 4 (3) T a i l i n g s % a s h = 3 4 . 0 _5 15 _5 _8 1 . 0  6 5 . 0 1 0 5 0 . 0 0 . 50 1 . 0 257 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 57 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 .34 (2) Mass o f wet f i l t e r c a k e (g) = 7 7 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 4 8 . 2  (4) % s o l i d s i n c o n c e n t r a t e = 1 1 . 5 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 0 9 (2) Mass o f wet f i l t e r c a k e (g) = 9 6 . 7 (3) Mass o f d r y f i l t e r c a k e (g) = 6 0 . 2 (4) % s o l i d s i n t a i l i n g s = 1.9 C . ASH ANALYSES 5 3 6 [ 1 . 5 65 . 0  1050 . 0 0 . 50 1 . 0 (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 1 6 . 4 5 . 9 39 . 6 258 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 58 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0. 10 (2) Mass o f wet f i l t e r c a k e (g) = 38 . 8 (3) Mass o f d r y f i l t e r c a k e (g) 22 . 2 (4) % s o l i d s i n c o n c e n t r a t e = 9 . 3 (1 ) B . T A I L I N G S STREAM V o l u m e o f f i l t r a t e (1) 5 . 1 (2) Mass o f wet f i l t e r c a k e (g) = 234 . 9 (3) Mass o f d r y f i l t e r c a k e (g) = 164 . 2 (4) % s o l i d s i n t a i l i n g s = 3 . 1 C . ASH ANALYSES (1 ) F e e d % a s h 1 4 . 7 (2) C o n c e n t r a t e % a s h 5 . 5 (3) T a i l i n g s % a s h = 23 . 1 5 5 6 1 . 5 6 5 . 0  1 0 5 0 . 0 0 . 70 1 . 0 259 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 59 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 70 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 8 3 (2) Mass o f wet f i l t e r c a k e (g) = 1 8 6 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 13 6 . 5 (4) % s o l i d s i n c o n c e n t r a t e = 1 3 . 4 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 .51 (2) Mass o f wet f i l t e r c a k e (g) = 3 4 .4 (3) Mass o f d r y f i l t e r c a k e (g) = 1 8 . 7 (4) % s o l i d s i n t a i l i n g s = 1 . 2 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h . 1 8 . 8 6 . . 9 64 . 0 260 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 60 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 6 Washwater F l o w r a t e ( l / m i n ) = 1. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) " = *" 1 . 56 (2) Mass o f wet f i l t e r c a k e (g) = 1 9 3 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 1 2 4 . 8 (4) % s o l i d s i n c o n c e n t r a t e - 7 . 1 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 2 2 (2) Mass o f wet f i l t e r c a k e (g) = 3 3 1 1 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 2 0 7 . 8 ( 4 ) % s o l i d s i n t a i l i n g s = 5 .9 C . ASH ANALYSES (1) F e e d % a s h = 1 8 . 4 (2) C o n c e n t r a t e % a s h = 7 . 4 (3) T a i l i n g s % a s h = 2 1 . 1 261 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 61 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 3 A i r F l o w r a t e ( l / m i n ) = £1 Washwater F l o w r a t e ( l / m i n ) = 1 .5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) - 1050 .0 F r o t h D e p t h , f t = 0 . 70 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 5 2 (2) Mass o f wet f i l t e r c a k e (g) = 47 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 2 7 . 6 (4) % s o l i d s i n c o n c e n t r a t e = 4 .9 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 • 1 (2) Mass o f wet f i l t e r c a k e (g) = 1 0 1 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 6 4 .1 (4) % s o l i d s i n t a i l i n g s = 2 .0 C . ASH ANALYSES (1) F e e d % a s h = 19 . 5 (2) C o n c e n t r a t e % a s h = 6 . 0 (3) T a i l i n g s % a s h = 4 1 • Q 262 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 61 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 5 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 .5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 10 5 0 . 0 F r o t h D e p t h , f t = 0 . 50 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 . 6 5 (2) Mass o f wet f i l t e r c a k e (g) = 1 1 7 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 7 0 . 8  (4) % s o l i d s i n c o n c e n t r a t e = 4 . 0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 02 (2) Mass o f wet f i l t e r c a k e (g) = 9 8 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 7 1 . 6 (4) % s o l i d s i n t a i l i n g s ' = 2 . 3 C . ASH ANALYSES (1) F e e d % a s h = 1 5 . 2 (2) C o n c e n t r a t e % a s h = 8 . 1 (3) T a i l i n g s % a s h = 4 0 . 5 263 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 6 3 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) .= 3 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = l . 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 5 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = Q . 50 S a m p l i n g T i m e , t (min) = 1. 0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 2 9 (2) Mass o f wet f i l t e r c a k e (g) = 4 7 2 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 2 8 4 . 8 (4) % s o l i d s i n c o n c e n t r a t e = 7 .6 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 1 .3 (2) Mass o f wet f i l t e r c a k e (g) = 9 5 . 4 (3) Mass o f d r y f i l t e r c a k e (g) = 7 1 . 2 (4) % s o l i d s i n t a i l i n g s = 5. 1 C . ASH ANALYSES (1) F e e d % a s h = 20 . 5 (2) C o n c e n t r a t e % a s h = 9 / 7 (3) T a i l i n g s % a s h = 59 . 6 264 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 6 4 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 15 F e e d r a t e ( l / m i n ) = 5 A i r F l o w r a t e ( l / m i n ) = 8 Washwater F l o w r a t e ( l / m i n ) = 1. 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) - 6 5 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 5 0 . 0 F r o t h D e p t h , f t = 0 . 7 0 S a m p l i n g T i m e , t (min) = 1.0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) = 1 .72 (2) Mass of wet f i l t e r c a k e (g) = 226 .9 (3) Mass o f d r y f i l t e r c a k e (g) = 1 5 3 . 9 (4) % s o l i d s i n c o n c e n t r a t e = ' 7 .9 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 .3 (2) Mass o f wet f i l t e r c a k e (g) = 6 0 7 . 4 (3) Mass o f d r y f i l t e r c a k e (g) = 4 5 3 . 7 (4) % s o l i d s i n t a i l i n g s = 1 5 . 6 C . ASH ANALYSES (1) F e e d % a s h = 1 8 . 5 (2) C o n c e n t r a t e % a s h = 6 . 5 (3) T a i l i n g s % a s h = 2 3 . 9 265 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 6 5 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) - 1 A i r F l o w r a t e ( l / m i n ) = 7 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 6 0 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 9 8 (2) Mass o f wet f i l t e r c a k e (g) = 2 3 0 . 4 (3) Mass o f d r y f i l t e r c a k e (g) = 1 4 8 . 5 (4) % s o l i d s i n c o n c e n t r a t e = 1 2 . 3 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1. 84 (2) Mass o f wet f i l t e r c a k e (g) - 7 6 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 5 0 . 8 (4) % s o l i d s i n t a i l i n g s = 2 . 7 C . ASH ANALYSES (1) F e e d % a s h = 17 -6 (2) C o n c e n t r a t e % a s h = 6 . 6 (3) T a i l i n g s % a s h = 6 1 . 6 266 TABLE 2: COLUMN FLOTATION DATA SHEET b) C e n t r a l Composite Design RUN NUMBER: 6 6 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 10 Feed r a t e (l/min) = 7 A i r Flowrate (l/min) = 7 Washwater Flowrate (l/min) = 1.25 Froth e r C o n c e n t r a t i o n (g/t) = 60.0 C o l l e c t o r Concentration (g/t) = 1000.0 Froth Depth, f t = Q . 60 Sampling Time, t (min) = 1.Q FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.90 (2) Mass of wet f i l t e r cake (g) = 137.2 (3) Mass of dry f i l t e r cake (g) = 9 0.7 (4) % s o l i d s in concentrate = 8 . 7 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 5.92 (2) Mass of wet f i l t e r cake (g) = 1161.0 (3) Mass of dry f i l t e r cake (g) = 780. 1 (4) % s o l i d s i n t a i l i n g s = 11.0 C. ASH ANALYSES (1) Feed % ash = 18.6 (2) Concentrate % ash = 7 . 2 (3) T a i l i n g s % ash = 24.0 267 TABLE 2: COLUMN FLOTATION DATA SHEET b) C e n t r a l Composite Design RUN NUMBER: 6 6 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) Feed % S o l i d s Feed r a t e (l/min) A i r Flowrate (l/min) Washwater Flowrate (l/min) Frother C o n c e n t r a t i o n (g/t) C o l l e c t o r C o n c e n t r a t i o n (g/t) Fro t h Depth, f t Sampling Time, t (min) FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.84 (2) Mass of wet f i l t e r cake (g) = 66.1 (3) Mass of dry f i l t e r cake (g) = 41.6 (4) % s o l i d s i n concentrate = 4.6 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 3. 02 (2) Mass of wet f i l t e r cake (g) = 90.4 (3) Mass of dry f i l t e r cake (g) = 53.6 (4) % s o l i d s i n t a i l i n g s = 1.7 C. ASH ANALYSES (1) Feed % ash = 18 . 4 (2) Concentrate % ash = 5_JL (3) T a i l i n g s % ash = 33.6 3 4 7 1 . 25 60.0  1000 . 0 0 . 60 1 . 0 268 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 6 8 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 17 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 7 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 60 S a m p l i n g T i m e , t (min) = 1.Q F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 . 1 8 (2) Mass o f wet f i l t e r c a k e (g) = 3 8 4 . 1  (3) Mass o f d r y f i l t e r c a k e (g) = 2 4 8 . 5 (4) % s o l i d s i n c o n c e n t r a t e = 9 . 7 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 .90 (2) Mass o f wet f i l t e r c a k e (g) = 3 5 1 . 6 (3) Mass o f d r y f i l t e r c a k e (g) = 2 7 1 . 7 6 (4) % s o l i d s i n t a i l i n g s = 1 2 . 1 C . ASH ANALYSES (1) F e e d % a s h = 1 9 . 9 (2) C o n c e n t r a t e % a s h = 8 . 0 (3) T a i l i n g s % a s h = 3 4 . 5 269 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 6 9 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 4 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 6 0 S a m p l i n g T i m e , t (min) = 1.0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 3 2 (2) Mass o f wet f i l t e r c a k e (g) = 1 3 4 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 8 6 . 0 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 8 . 9 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 4 . 9 0 (2) Mass o f wet f i l t e r c a k e (g) = 7 1 1 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 4 8 3 . 4 6 (4) % s o l i d s i n t a i l i n g s = 8. 6~ C . ASH ANALYSES (1) F e e d % a s h = 1 8 . 2 (2) C o n c e n t r a t e % a s h = 5 . 7 (3) T a i l i n g s % a s h = 2 2 . 2 270 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 0 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = Q . 60 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 . 54 (2) Mass o f wet f i l t e r c a k e (g) = 3 7 2 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 233 .4 (4) % s o l i d s i n c o n c e n t r a t e = 8 .0 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 .90 (2) Mass o f wet f i l t e r c a k e (g) = 1 7 5 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 1 1 9 . 2 6 (4) % s o l i d s i n t a i l i n g s = 5. 7 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 19 . 2 8 . 3 34 . 1 271 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 71 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 0 .5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 10 0 0 .0 F r o t h D e p t h , f t = 0 .60 S a m p l i n g T i m e , t (min) = 1.0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 5 2 (2) Mass o f wet f i l t e r c a k e (g) = 1 7 2 . 5 (3) Mass o f d r y f i l t e r c a k e (g) = 126.^4 (4) % s o l i d s i n c o n c e n t r a t e = 1 8 . 3 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) - 3 .14 (2) Mass o f wet f i l t e r c a k e (g) = 3 5 7 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 2 5 2 . 2 6 (4) % s o l i d s i n t a i l i n g s = 7 . 2 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 20 . 9  6 . 7 30 . 4 272 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 2 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) 1 .18 (2) Mass o f wet f i l t e r c a k e (g) = 184 . 6 (3) Mass o f d r y f i l t e r c a k e (g) 1 2 0 . 2 (4) % s o l i d s i n c o n c e n t r a t e = 8 . 8 (1 ) B . T A I L I N G S STREAM Volume o f f i l t r a t e (1) = 2 . 64 (2) Mass o f wet f i l t e r c a k e (g) = 124 . 6 (3) Mass o f d r y f i l t e r c a k e (g) 9 4 . 1 6 ( 4 ) % s o l i d s i n t a i l i n g s 3 . 4 C . ASH ANALYSES (1) F e e d % a s h = 19 . 3 (2) C o n c e n t r a t e % a s h 6 . 4 (3) T a i l i n g s % a s h = 51 . 1 __5 10 _4 10 2 . 0  60 . 0 1000 . 0 0 . 60 1 . 0 273 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 3 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 4 6 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 6 0 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 8 0 (2) Mass o f wet f i l t e r c a k e (g) = 1 6 1 . 0 (3) Mass o f d r y f i l t e r c a k e (g) = 1 1 2 . 6 (4) % s o l i d s i n c o n c e n t r a t e = 1 1 . 7 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 8 4 (2) Mass o f wet f i l t e r c a k e (g) = 5 6 6 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 4 1 0 . 9 6 (4) % s o l i d s i n t a i l i n g s = 9 . 3 C . ASH ANALYSES (1) F e e d % a s h = 1 8 - 5 (2) C o n c e n t r a t e % a s h = 6 .1 (3) T a i l i n g s % a s h = 2 2 . 8 274 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 4 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 1. 00 (2) Mass o f wet f i l t e r c a k e (g) 205 . 2 (3) Mass o f d r y f i l t e r c a k e (g) = 1 3 9 . 0 (4) % s o l i d s i n c o n c e n t r a t e = 1 1 . 5 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 2 . 50 (2) Mass o f wet f i l t e r c a k e (g) = 61 . 4 (3) Mass o f d r y f i l t e r c a k e (g) = 4 6 . 0 6 ( 4 ) % s o l i d s i n t a i l i n g s = 1 . 8 C . ASH ANALYSES (1) F e e d % a s h 18 . 3 (2) C o n c e n t r a t e % a s h 6 . 1 (3) T a i l i n g s % a s h = 50 . 2 _5 10 _4 10 1 .25  7 4 . 0 1 0 0 0 . 0 0 . 60 1 . 0 275 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 5 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 8 5 9 . 0 F r o t h D e p t h , f t = 0 .60 S a m p l i n g T i m e , t (min) = 1.0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 .68 (2) Mass o f wet f i l t e r c a k e (g) = 1 6 0 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 1 0 8 . 2 (4) % s o l i d s i n c o n c e n t r a t e = 1 2 . 9 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 7 0 (2) Mass o f wet f i l t e r c a k e (g) = 532 . 4 (3) Mass o f d r y f i l t e r c a k e (g) = 391 .86 (4) % s o l i d s i n t a i l i n g s = 9 . 3 C . ASH ANALYSES (1) F e e d % a s h = 20 . 4 (2) C o n c e n t r a t e % a s h = 5 . 8 (3) T a i l i n g s % a s h = 3 0 . 1 276 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 6 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e (1/mi.n) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 . 2 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 1 5 1 . 0 F r o t h D e p t h , f t = 0 . 60 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N R E S U L T S A . CONCENTRATE STREAM (1) Volume o f f i l t r a t e (1) = 1 .08 (2) Mass o f wet f i l t e r c a k e (g) = 1 9 4 . 3 (3) Mass o f d r y f i l t e r c a k e (g) = 1 3 8 . 1 (4) % s o l i d s i n c o n c e n t r a t e = 1 0 . 8 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 3 . 1 8 (2) Mass o f wet f i l t e r c a k e (g) = 3 6 3 . 6 (3) Mass o f d r y f i l t e r c a k e (g) = 236 .96 (4) % s o l i d s i n t a i l i n g s = 6 . 7 C . ASH ANALYSES (1) F e e d % a s h = 1 7 . 8 (2) C o n c e n t r a t e % a s h = 1 1 . 0 (3) T a i l i n g s % a s h = 29 . 9 277 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 7 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 W a s h w a t e r F l o w r a t e ( l / m i n ) = 1 . 2 5 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 30 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 3 3 (2) Mass o f wet f i l t e r c a k e (g) = 6 6 7 . 2 (3) Mass o f d r y f i l t e r c a k e (g) = 4 2 7 . 8 (4) % s o l i d s i n c o n c e n t r a t e = 1 0 . 7 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 1 .18 (2) Mass o f wet f i l t e r c a k e (g) = 7 2 .2 (3) Mass o f d r y f i l t e r c a k e (g) = 5 2 . 9 (4) % s o l i d s i n t a i l i n g s = 4 . 2 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 1 2 . 7 11 . 0 4 0 . 9 278 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET b) C e n t r a l C o m p o s i t e D e s i g n RUN NUMBER: 7 8 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) Vo lume o f f i l t r a t e (1) - 0 .28 (2) Mass o f wet f i l t e r c a k e (g) = 1 0 1 . 0 (3) Mass o f d r y f i l t e r c a k e (g) 6 0 . 8 ( 4 ) % s o l i d s i n c o n c e n t r a t e - 16 . 0 B . T A I L I N G S STREAM (1 ) Vo lume o f f i l t r a t e (1) = 3 . 78 (2) Mass o f wet f i l t e r c a k e (g) 301 . 0 (3) Mass o f d r y f i l t e r c a k e (g) — 217.4 ( 4 ) % s o l i d s i n t a i l i n g s = 5 . 4 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h _5 10 _4 10 1 . 25  60 . 0 1000 . 0 0 .90 1 . 0 19 . 2 5 . 2 31 . 2 279 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET c ) C e n t r e P o i n t Runs RUN NUMBER: 7 9 F L O T A T I O N CONDITIONS C o n d i t i o n i n g Time (min) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) Washwater F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t (min) F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) (2) Mass o f wet f i l t e r c a k e (g) (3) Mass o f d r y f i l t e r c a k e (g) (4) % s o l i d s i n c o n c e n t r a t e B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) (2) Mass o f wet f i l t e r c a k e (g) (3) Mass o f d r y f i l t e r c a k e (g) (4) % s o l i d s i n t a i l i n g s C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 2 8 0 T A B L E 2 : C O L U M N F L O T A T I O N D A T A S H E E T c ) C e n t r e P o i n t R u n s RUN N U M B E R : 80 F L O T A T I O N C O N D I T I O N S C o n d i t i o n i n g T i m e ( m i n ) F e e d % S o l i d s F e e d r a t e ( l / m i n ) A i r F l o w r a t e ( l / m i n ) W a s h w a t e r F l o w r a t e ( l / m i n ) F r o t h e r C o n c e n t r a t i o n ( g / t ) C o l l e c t o r C o n c e n t r a t i o n ( g / t ) F r o t h D e p t h , f t S a m p l i n g T i m e , t ( m i n ) F L O T A T I O N R E S U L T S A . C O N C E N T R A T E S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 0 . 7 4 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 1 4 0 . 6 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 9 1 . 6 ( 4 ) % s o l i d s i n c o n c e n t r a t e = 1 0 . 4 B . T A I L I N G S S T R E A M ( 1 ) V o l u m e o f f i l t r a t e ( 1 ) = 3 . 3 ( 2 ) M a s s o f w e t f i l t e r c a k e ( g ) = 3 7 3 . 5 ( 3 ) M a s s o f d r y f i l t e r c a k e ( g ) = 2 7 4 . 7 ( 4 ) % s o l i d s i n t a i l i n g s = 7 . 5 C . A S H A N A L Y S E S ( 1 ) F e e d % a s h = 19 . 8 ( 2 ) C o n c e n t r a t e % a s h = 6 . 3 ( 3 ) T a i l i n g s % a s h = 30 . 9 10 _ 4 10 1 . 2 5  6 0 . 0 1 0 0 0 . 0 0 . 6 0 1 . 0 281 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET c ) C e n t r e P o i n t Runs RUN NUMBER: 81 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T i m e (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 .0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1 0 0 0 . 0 F r o t h D e p t h , f t = 0 . 6 0 S a m p l i n g T i m e , t (min) = 1 . 0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 5 2 (2) Mass o f wet f i l t e r c a k e (g) = 1 2 5 . 7 (3) Mass o f d r y f i l t e r c a k e (g) = 7 8 . 3 (4) % s o l i d s i n c o n c e n t r a t e = 1 2 . 1 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) = 3 . 0 2 (2) Mass o f wet f i l t e r c a k e (g) = 3 1 7 . 1 (3) Mass o f d r y f i l t e r c a k e (g) = 2 2 3 . 9 (4) % s o l i d s i n t a i l i n g s = 6 . 7 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 282 TABLE 2: COLUMN FLOTATION DATA SHEET c) Centre P o i n t Runs RUN NUMBER: 8 2 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = _5 Feed % S o l i d s = 10 Feed r a t e (l/min) = 4 A i r Flowrate (l/min) = 10 Washwater Flowrate (l/min) = 1.25 Froth e r C o n c e n t r a t i o n (g/t) = 60.0 C o l l e c t o r C o n c e n t r a t i o n (g/t) ' = 1000.0 Fr o t h Depth, f t = 0.60 Sampling Time, t (min) = 1 .0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0. 70 (2) Mass of wet f i l t e r cake (g) = 120.3 (3) Mass of dry f i l t e r cake (g) = 81.7  (4) % s o l i d s i n concentrate = 10.0 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 3.10 (2) Mass of wet f i l t e r cake (g) = 260.0 (3) Mass of dry f i l t e r cake (g) = 18 3.2 (4) % s o l i d s i n t a i l i n g s = 5. 5 C. ASH ANALYSES (1) Feed % ash = 20. 5 (2) Concentrate % ash = 6 . 3 (3) T a i l i n g s % ash = 33 . 3 283 TABLE 2: COLUMN FLOTATION DATA SHEET c) Centre P o i n t Runs RUN NUMBER: 8 3 FLOTATION CONDITIONS C o n d i t i o n i n g Time (min) = 5 Feed % S o l i d s = 10 Feed r a t e (l/min) = 4 Ai r Flowrate (l/min) = 10 Washwater Flowrate (l/min) = 1.25 Frother C o n c e n t r a t i o n (g/t) = 60.0 C o l l e c t o r C o n c e n t r a t i o n (g/t) = 1000.0 Froth Depth/ f t = 0.60 Sampling Time, t (min) = 1 .0 FLOTATION RESULTS A. CONCENTRATE STREAM (1) Volume of f i l t r a t e (1) = 0.96 (2) Mass of wet f i l t e r cake (g) = 210.0 (3) Mass of dry f i l t e r cake (g) = 133.2 (4) % s o l i d s i n concentrate = 11.4 B. TAILINGS STREAM (1) Volume of f i l t r a t e (1) = 3.40 (2) Mass of wet f i l t e r cake (g) = 582.6 (3) Mass of dry f i l t e r cake (g) = 379.2 (4) % s o l i d s i n t a i l i n g s = 9 . 5 C. ASH ANALYSES (1) Feed % ash = 18 . 3 (2) Concentrate % ash = 6 . 8 (3) T a i l i n g s % ash = 23.9 284 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET c ) C e n t r e P o i n t Runs RUN NUMBER: 8 4 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10. Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1000 .0 F r o t h D e p t h , f t = 0 . 60 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) = 0 . 5 0 (2) Mass o f wet f i l t e r c a k e (g) = 1 0 8 . 8 (3) Mass o f d r y f i l t e r c a k e (g) = 6 3 . 5 (4) % s o l i d s i n c o n c e n t r a t e = 1 0 . 4 B . T A I L I N G S STREAM (1) Vo lume o f f i l t r a t e (1) = 4 . 0 2 (2) Mass o f wet f i l t e r c a k e (g) = 5 5 7 . 2 (3) Mass o f d r y f i l t e r c a k e (g) = 3 8 2 . 0 (4) % s o l i d s i n t a i l i n g s = 8 . 3 C . ASH ANALYSES (1) F e e d % a s h = 1 8 . 3 (2) C o n c e n t r a t e % a s h = 6 . 3 (3) T a i l i n g s % a s h = 2 7 . 5 285 T A B L E 2: COLUMN F L O T A T I O N DATA SHEET c ) C e n t r e P o i n t Runs RUN NUMBER: 8 5 F L O T A T I O N CONDITIONS C o n d i t i o n i n g T ime (min) = 5 F e e d % S o l i d s = 10 F e e d r a t e ( l / m i n ) = 4 A i r F l o w r a t e ( l / m i n ) = 10 Washwater F l o w r a t e ( l / m i n ) = 1 .25 F r o t h e r C o n c e n t r a t i o n ( g / t ) = 6 0 . 0 C o l l e c t o r C o n c e n t r a t i o n ( g / t ) = 1000 . 0 F r o t h D e p t h , f t = Q . 60 S a m p l i n g T i m e , t (min) = 1 .0 F L O T A T I O N RESULTS A . CONCENTRATE STREAM (1) V o l u m e o f f i l t r a t e (1) 3 . 340 (2) Mass o f wet f i l t e r c a k e (g) 335 . 5 (3) Mass o f d r y f i l t e r c a k e (g) 205 . 0 (4) % s o l i d s i n c o n c e n t r a t e = 5 .6 B . T A I L I N G S STREAM (1) V o l u m e o f f i l t r a t e (1) 2 . 02 (2) Mass o f wet f i l t e r c a k e (g) 309 . 2 (3) Mass o f d r y f i l t e r c a k e (g) 223 . 8 (4) % s o l i d s i n t a i l i n g s = 9 .6 C . ASH ANALYSES (1) F e e d % a s h (2) C o n c e n t r a t e % a s h (3) T a i l i n g s % a s h 18 . 8 12 . 1 = 31 . 8 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0081137/manifest

Comment

Related Items