UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Hydrocyclone efficiency Solberg, Harald Fredrik 1977

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A7 S64.pdf [ 17.73MB ]
Metadata
JSON: 831-1.0081131.json
JSON-LD: 831-1.0081131-ld.json
RDF/XML (Pretty): 831-1.0081131-rdf.xml
RDF/JSON: 831-1.0081131-rdf.json
Turtle: 831-1.0081131-turtle.txt
N-Triples: 831-1.0081131-rdf-ntriples.txt
Original Record: 831-1.0081131-source.json
Full Text
831-1.0081131-fulltext.txt
Citation
831-1.0081131.ris

Full Text

HYDROCYCLONE EFFICIENCY by HARALD FREDRIK SDLBERG B.Sc.(Eng.), U n i v e r s i t y o f N a t a l , Durban, S. A f r i c a , 1969  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF MINERAL  ENGINEERING  We accept t h i s t h e s i s as conforming to the required  standard  THE UNIVERSITY OF BRITISH COLUMBIA March, 1977 Harald Fredrik Solberg, 1977  In p r e s e n t i n g t h i s t h e s i s in p a r t i a l  f u l f i l m e n t o f the requirements  an advanced degree at the U n i v e r s i t y  of B r i t i s h C o l u m b i a , I agree  the L i b r a r y  s h a l l make i t f r e e l y a v a i l a b l e f o r  for  that  r e f e r e n c e and s t u d y .  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s  thesis  f o r s c h o l a r l y purposes may be g r a n t e d by the Head of my Department or by h i s r e p r e s e n t a t i v e s .  It  i s understood that copying or p u b l i c a t i ion  o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d without my written permission.  Department of  Ki<\»f«i  The U n i v e r s i t y  o f B r i t i s h Columbia  &*v<|ir\efcr»Aj  2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  Date  tAarck  j  \ ° n l  ABSTRACT o  The fine  efficiency  silica  at  manipulated the  feed  pulp.  were and  at  diameter  were the  tal  of  of  up  the  length.  the  was  507o  to  vortex  Slurry  made with  size  instrument  computer.  (154 data  hydrocyclone  studied  solids  finder,  flowrate, was  adjusted  a suspension  by weight.  temperature  spigot  using  to  The  percent  also  give  variables solids  in  measured. the  of  All  same degree  of  underflow.  The product sizing  a 4 inch  densities  cyclone  measurements roping  of  distributions  similar An  points  to  advantage per  were  the of  analysed  "Coulter  this  using  Counter"  method  is  an  but  the  electronic  interfaced  continuous  particle  with  curves  a  digi-  produced  run). V  Equations dict  (I)  were  separating  of  classification,  in  the  underflow,  of  the  feed  gives  The  the  of  was  recognized.  ratio  a high  the  overflow.  depended the  sized  proportion  on  on  this  the  percent  this  particular in  to  sharpness  (6) water  recovery  equation roping  pre-  (4)  including  temperature  were  occurs,  factors  obtained.  whilst  the  and  alpha  by  choosing  the  0.05  level  water  split,  as  not  of  been that  combination  zero  classifica-  significance.  expected,  to  re-  hope  proper  the  found  volume  offers  Interestingly, the  was  the has  concept  the  classification,  parameter  diameter of  including  of  This  variability  at the  and  sharpness  finder  improved  ratio,  several  parameter.  vortex  analyses  roping.  depend  feed  behaviour of  which  avoid  environment.  primarily  particle  to  be a constant  that  constraint at  to  may be  cyclone  suggested  variables  The variability of  an operating to  hydrocyclone  solids  as  (3) bypass size  be a variable such  regression  classification  Moreover,  Acceptance  judged  by  sub-sieve ing  in was  is  to  stepwise  a roping  found  slurry.  of  pressure,  required  was  efficiencies  variables  It  size  to  classification  influenced  size  feed  of  percent  on variables  widely  bypass  underflow  slurry  of  Two forms  the  of  size  a function  spigot  covery  tion  (5) zero  identified  be dependent  of  alpha,  separating  temperature alpha,  (2) inlet  as  the  by means  size,  slurry.  One predicts other  developed  but  The was  also  solids.  study hydrocyclones  advances  the  fed  with  solids.  -  ii  i  understanding slurries  of contain-  TABLE OF CONTENTS  LIST OF TABLES LIST OF FIGURES  v -  vi  NOMENCLATURE  v i i  ACKNOWLEDGEMENTS  ix  INTRODUCTION  1  Objectives  1  D e f i n i t i o n o f Cyclone E f f i c i e n c y  2  L i t e r a t u r e Survey  7  EXPERIMENTAL APPARATUS AND PROCEDURE E x p e r i m e n t a l Apparatus Procedure f o r A c q u i s i t i o n  15 15  o f Data  19  A n a l y s i s o f Samples  25  C o m p u t a t i o n a l Procedure  27  RESULTS AND DISCUSSION  31  CONCLUSIONS AND RECOMMENDATIONS  kZ  BIBLIOGRAPHY  *»3  APPENDICES I . DETAILS OF SIZE ANALYSIS PROCEDURE I I . DATA FILES AND DATA FOR THE PROGRAM "CLTR2" I I I . TAPE MOUNTING AND EDITING  51 60 90  I V . THE PROGRAM "CONVERT"  9U  V. THE PROGRAM "CLTR2"  96  UI. THE PROGRAM "LYN"  112  V I I . THE PROGRAM "GENUT"  122  V I I I . THE PROGRAM "UTFILL"  128  I X . THE PROGRAM "LYNldT"  130  X. THE PROGRAM "MURU"  1VI  X I . THE PLOTTING PROGRAMS  152 - iii  -  APPENDICES - c o n t i n u e d X I I . MULTIPLE LINEAR REGRESSION X I I I . GRAPHS OF RAW EFFICIENCY CURVES  LIST OF TABLES Page I. II. III.  Summary o f E x p e r i m e n t a l R e s u l t s  32  R e s u l t s o f R e g r e s s i o n Using "LYIM"  33  R e s u l t s Using "MURU" w i t h Weighting F a c t o r s  3U  -  v  -  LIST OF FIGURES Page Fig. 1  Sketch o f a T y p i c a l Hydrocyclone  3  Fig. 2  Hydrocyclone E f f i c i e n c y Curves  5  F i g . -3  Photograph  Fig. k  Schematic o f T e s t R i g  17  Fig. 5  Sketch o f Sampling Device  18  Fig. 6  Design M a t r i x f o r t h e E x p e r i m e n t a l Runs  21  16  o f Test R i g  Fig. 7  Types o f S p i g o t D i s c h a r g e R F i g . 8 I E l e c t r o Z o n e C e l l o s c o p e - Computerized  22 Particle  Size Analyzer Fig. 9  Flow Diagram o f a Simplex Search  Fig.10  Comparison o f P r e d i c t e d and Measured Values for log d Comparison o f P r e d i c t e d and Measured Values  29 5 Q C  Fig.11  f o r l o g alpha Fig.12  27  38 *t0 52  B l e n d i n g o f Data  Fig.13  P o o l e d Standard D e v i a t i o n versus S i z e f o r Low P e r c e n t S o l i d s F i g . H * , P o o l e d Standard D e v i a t i o n v e r s u s S i z e f o r C e n t r e P o i n t Runs Fig.15 P o o l e d Standard D e v i a t i o n , v e r s u s S i z e f o r High P e r c e n t S o l i d s  - vi-  12*t 12^ 125  NOMENCLATURE a  = a c o n s t a n t i n Mular and Runnels'  equation  alpha,oCm parameter i n t h e Lynch e q u a t i o n r e l a t e d t o t h e sharpness of separation B,bypass = f r a c t i o n o f f e e d s o l i d s bypassing  classification  b  = a c o n s t a n t i n Mular and R u n n e l s '  d  = diameter  of p a r t i c l e s  o diameter  belaui which p a r t i c l e s a r e not c l a s s i f i e d  d  Q  d  5 Q  equation  (microns) (microns)  = diameter o f p a r t i c l e f o r which t h e c l a s s i f i c a t i o n e f f i c i e n c y i s 50% (microns)  Di  = diameter o f i n l e t o r o f c i r c l e w i t h t h e same a r e a as the i n l e t (inches)  Do  = vortex finder  Du  - s p i g o t (apex) o r i f i c e diameter  F  = t o n s p e r hour o f f e e d  Fe^Q  = 50% passing s i z e o f the c a l c u l a t e d feed  f  = f r a c t i o n o f f e e d i n narrow s i z e f r a c t i o n o f mean s i z e x  x  i n s i d e diameter  (inches) (inches)  solids  h  = l e n g t h o f c y c l o n e expressed as t h e " f r e e v o r t e x h e i g h t " , i . e . d i s t a n c e from bottom o f v o r t e x f i n d e r t o t a p a f spigot c o n s t r i c t i o n (inches)  H  = i n l e t head i n f e e t o f s l u r r y  n  = a c o n s t a n t i n Mular and Runnels'  P  = i n l e t pressure t o hydrocyclone  Q  = hydrocyclone  equation (P.S.I.G.)  f e e d f l o w r a t e (U.S.G.P.M.)  R  f  as f r a c t i o n a l r e c o v e r y o f water t o t h e u n d e r f l o w  R  v  = f r a c t i o n a l r e c o v e r y o f f e e d volume i n t h e underflow  T  = temperature ( C ) Q  - v i i-  U  = t o n s per hour o f s o l i d s i n u n d e r f l o w stream  U  = gm per s e c . o f s o l i d s In u n d e r f l o w stream  j  Q  u x  = f r a c t i o n o f u n d e r f l o w i n narrow s i z e f r a c t i o n o f mean size x  x  = particle size  Y  = raw e f f i c i e n c y at s i z e x  Y &  cx  = c o r r e c t e d e f f i c i e n c y at s i z e x - f e e d p e r c e n t s o l i d s by weight - u n d e r f l o w p e r c e n t s o l i d s by weight = volume f r a c t i o n o f s o l i d s i n t h e f e e d  - viii  -  ACKNOWLEDGEMENTS  The Management o f t h e Messina ( T r a n s v a a l ) Development Company L t d . , Johannesburg A s s i n c e r e l y thanked f a r p r o v i d i n g f i n a n c i a l support f o r t h e a u t h o r .  Thanks a r e due t o o , t o P r o f e s s o r A.L. M u l a r f o r h i s a d v i c e and encouragement throughout t h i s p r o j e c t . Mrs. S. F i n o r a ' s a d v i c e on t h e use o f t h e C e l l o s c o p e and c o n s t a n t i n t e r e s t i n t h i s aspect o f t h e p r o j e c t was a p p r e c i a t e d .  The e f f i c i e n t , f r i e n d l y s e r v i c e rendered  by t h e  t e c h n i c i a n s under Mr. R. Bays was a l s o much a p p r e c i a t e d .  - ix  -  1  INTRODUCTION I n r e c e n t y e a r s t h e r e has been a renewed i n t e r e s t i n t h e hydrocyclone  and a r e a l i z a t i o n t h a t t h i s p i e c e o f equipment  h o l d s t h e key t o f u r t h e r improvements i n t h e e f f i c i e n c y o f closed c i r c u i t grinding f o r f l o t a t i o n .  Although t h e c y c l o n e  l i t e r a t u r e i s voluminous t h e r e i s r a t h e r a wide gap between t h e fundamental s t u d i e s u s i n g d i l u t e s l u r r i e s i n s m a l l c y c l o n e s and t h e r e s u l t s o b t a i n e d i n i n d u s t r i a l equipment on t h i c k non-Newtonian s l u r r i e s .  T h i s gap has been b r i d g e d t o a  c e r t a i n e x t e n t by t h e use o f s e m i - e m p i r i c a l methods o f c y c l o n e modelling.  As shown i n subsequent s e c t i o n s , a d d i t i o n a l work  i s necessary t o r e c o n c i l e s e v e r a l c o n f l i c t i n g p i e c e s o f evidence.  T h i s study c o n t r i b u t e s towards such a g o a l .  Objectives The o b j e c t i v e s o f t h i s study wBre:a) t o e s t a b l i s h a procedure  f o r t h e measurement o f c y c l o n e  e f f i c i e n c y i n a s i z e range i n which s i z i n g c o u l d not be performed u s i n g c o n v e n t i o n a l s i e v i n g  techniques.  b) t o measure t h e s p i g o t c a p a c i t y at an i n c i p i e n t r o p i n g c o n d i t i o n i n order t o e s t a b l i s h a t y p i c a l r e l a t i o n s h i p which c o u l d be used as a c o n s t r a i n t e q u a t i o n i n c y c l o n e m o d e l l i n g , o p t i m i z a t i o n o r c o n t r o l under c o n d i t i o n s s i m i l a r t o those t e s t e d . c) t o f i t a s u i t a b l e e q u a t i o n t o t h e e f f i c i e n c y curves and then t o determine  how t h e parameters i n t h i s  vary w i t h o p e r a t i n g and design  parameters.  equation  2  d) from t h e s e r e s u l t s t o draw c o n c l u s i o n s which would be o f p r a c t i c a l importance  i n m i n e r a l p r o c e s s i n g and which  would h e l p t o r e s o l v e some o f t h e grey areas i n our understanding D e f i n i t i o n o f Cyclone  of the cyclone. Efficiency  A major s t u m b l i n g b l o c k t o p r o g r e s s has been t h e d i f f i c u l t y and c o s t o f o b t a i n i n g a c c u r a t e data f o r t h e e f f i c i e n c y o f t h e cyclone. The h y d r o c y c l o n e  i s u s u a l l y a c y l i n d r i c a l vessel, with a  c o n i c a l bottom i n t o which a s l u r r y i s i n j e c t e d t a n g e n t i a l l y i n o r d e r t o throw t h e l a r g e r , denser p a r t i c l e s towards t h e o u t s i d e w a l l f o r d i s c h a r g e through t h e ' s p i g o t ' ( o r a p e x ) .  The l i g h t e r ,  s m a l l e r p a r t i c l e s s t a y c l o s e r t o t h e a x i s o f t h e c y c l o n e and overflow a typical ,  through t h e v o r t e x f i n d e r .  F i g . 1 shows a s k e t c h o f  hydrocyclone.  P l e a s e note t h a t where t h e more g e n e r a l term,  "cyclone",  i s used i n t h i s work, i t g e n e r a l l y r e f e r s t o t h e h y d r o c y c l o n e . U l h i l s t t h e c y c l o n e has a v a r i e t y o f i n d u s t r i a l i t s use as a s i z e c l a s s i f i e r w i l l be s t u d i e d .  applications,  PLAN SHOWING CURVED INLET  ^—  =>• OVERFLOW  INLET  PARTIALLY SECTIONED ELEVATION  F i g . 1 Sketch o f a T y p i c a l Hydrocyclone  The  e f f i c i e n c y o f t h e cyclDne i s g e n e r a l l y d e f i n e d as t h e  f r a c t i o n ( o r p e r c e n t a g e ) o f t h e feed m a t e r i a l o f a g i v e n which i s r e c o v e r e d  i n t h e u n d e r f l o w stream.  size  Because t h i s  e f f i c i e n c y i s a f u n c t i o n o f p a r t i c l e s i z e i t i s normal t o draw a "raw" e f f i c i e n c y curve showing t h e v a r i a t i o n o f e f f i c i e n c y w i t h p a r t i c l e s i z e as i n f i g . 2 ( a ) . The  raw e f f i c i e n c y curve i s d i s p l a c e d from t h e s i z e a x i s  by a d i s t a n c e which v a r i e s w i t h t h e f r a c t i o n o f t h e f e e d water which i s r e c o v e r e d  i n the underflow.  T h i s dispacement i s e x p l a i n e d  by c o n s i d e r i n g t h a t s o l i d s a r r i v e i n t h e u n d e r f l o w a) as a r e s u l t o f a s i z e s e p a r a t i o n due t o t h e s e p a r a t i n g p r o c e s s r e s u l t o f s h o r t c i r c u i t f l o w i d i r e c t l y i n t o , the  and b) as a  underflow.  For t h i s r e a s o n i t i s common t o c o n s t r u c t a " c o r r e c t e d e f f i c i e n c y c u r v e " i n which o n l y p a r t i c l e s a r r i v i n g i n t h e u n d e r f l o w as a r e s u l t of the c l a s s i f i c a t i o n process  are c o n s i d e r e d .  L e t B be t h e f r a c t i o n o f t h e f e e d which bypasses classification.  Consider  F tons/hour o f feed with  d i s t r i b u t i o n such t h a t a f r a c t i o n f s i z e I n t e r v a l o f mean s i z e x. f o r the underflow.  Y CX  size  o f t h e feed i s i n a narrow  U and u  are s i m i l a r l y d e f i n e d  i s t h e c o r r e c t e d e f f i c i e n c y a t s i z e x and Y ' x  i s t h e raw e f f i c i e n c y a t s i z e x .  Ff  tons p e r hour o f s i z e x  e n t e r t h e c y c l o n e and F f B tons/hour bypass t h e c l a s s i f i c a t i o n X  process. TPH o f narrow s i z e f r a c t i o n a r r i v i n g i n t h e U/F by c l a s s i f i c a t i o n Y cx = TPH o f t h e same s i z e f r a c t i o n o f t h e feed capable o f being c l a s s . Uu  x  - Ff B x  (1-B)Ff  x  Uu - B Ff x 1-B  5  100  -\  1  reduced size  Large a l p h a v a l u e 100  d  50C  s  i  z  e  "  F i g . 2 Hydrocyclone E f f i c i e n c y  f g  Curves  size (log scale)  6 Y so Y  - B  x  cx  What one does i n e f f e c t i s t o s u b t r a c t t h e bypass from t h e bottom o f t h e r a u e f f i c i e n c y curve y - a x i s and r e - s c a l e t h i s a x i s as i n f i g . 2 ( b ) t o g i v e c o r r e c t e d e f f i c i e n c y v a l u e s which r e p r e s e n t the behaviour o f t h a t p o r t i o n - O f  t h e f e e d which e n t e r e d t h e underflow  by t h i s c l a s s i f i c a t i o n p r o c e s s . The reduced, c o r r e c t e d e f f i c i e n c y curve ( f i g . 2 ( c ) ) i s a c o r r e c t e d e f f i c i e n c y curve w i t h t h e s i z e a x i s p l o t t e d  as a reduced  • s i z e e q u a l t o t h e s i z e i n microns d i v i d e d by t h e d^^, s i z e i n microns. F i g . 2 ( d ) shows how t h e shape o f t h e c o r r e c t e d e f f i c i e n c y curve v a r i e s w i t h t h e v a l u e o f t h e parameter,  a l p h a , which d e f i n e s  the sharpness o f c l a s s i f i c a t i o n i n t h e e q u a t i o n s which w i l l be f i t t e d t o the e f f i c i e n c y curve.  The most e f f i c i e n t s e p a r a t i o n  o c c u r s when a l p h a i s h i g h (steep curve) and t h e bypass r a t i o small. The d-n s i z e i s t h a t s i z e at which t h e e f f i c i e n c y i s 50%. There i s , s t r i c t l y s p e a k i n g , a d i s t i n c t i o n between t h e d  size  5 Q  on t h e raw e f f i c i e n c y curve and t h e d,.^ s i z e on t h e c o r r e c t e d e f f i c i e n c y curve and they have d i f f e r e n t numeric v a l u e s .  It is  common, however, t o c a l l t h e d ^ g s i z e t h e "dee f i f t y s i z e " C  and so t h i s r u l e i s not always s t r i c t l y adhered t o . t h e term d  5 Q  I n t h i s study  i s used as an a b b r e v i a t e d r e f e r e n c e t o d  5 Q C  ,  except i n t h i s d i s c u s i o n o f f i g . 2. F i g . 2 ( e ) shows how t h e c o r r e c t e d e f f i c i e n c y curve i s s h i f t e d along t h e s i z e a x i s as t h e constant.  s i z e v a r i e s w i t h a l p h a remaining  7 L i t e r a t u r e Survey For t h e r e a d e r who i s i n t e r e s t e d i n t h e g e n e r a l development o f h y d r o c y c l o n e t h e o r y t h e book by B r a d l e y  g i v e s a good  summary o f t h e h i s t o r y o f t h e e a r l y development o f t h e c y c l o n e in several industries. concerned  The b i b l i o g r a p h y h e r e w i t h i s e s s e n t i a l l y  with recent s t u d i e s o f the e f f i c i e n c y o f hydrocyclones  as c l a s s i f i e r s i n m i n e r a l p r o c e s s i n g .  Mention  i s a l s o made o f  s e v e r a l papers which were not c o n s i d e r e d t o be d i r e c t l y r e l e v a n t t o t h i s study but may be o f use t o t h e r e a d e r i n t e r e s t e d i n a more complete b i b l i o g r a p h y f o r d e t a i l e d study o f r e c e n t developments i n , say t h e use o f t h e h y d r o c y c l o n e  i n coal  processing. a« Developments i n t h e use o f t h e Hydrocyclone Most o f t h e e a r l y r e s e a r c h and development o f t h e h y d r o c y c l o n e was r e l a t e d t o i t s use i n c o a l b e n e f i c i a t i o n i n t h e N e t h e r l a n d s i n t h e 19<*0's.  S i n c e then i t has found i n c r e a s i n g use i n c o a l  p r e p a r a t i o n and m i n e r a l p r o c e s s i n g .  As a c l a s s i f i e r t h e c y c l o n e  has almost c o m p l e t e l y r e p l a c e d t h e s p i r a l c l a s s i f i e r i n wet milling circuits.  The advantages c l a i m e d f o r t h e hydrocyclone  i n c l u d e low c a p i t a l c a s t , more compact d e s i g n and ease w i t h which i t may be i n c o r p o r a t e d i n t o t h e f l o w s h e e t .  Hydrocyclone  c l a s s i f i c a t i o n i s a l s o g e n e r a l l y more e f f i c i e n t and c i r c u l a t i n g loads often lower.  The c h i e f disadvantage  t h a t i t r e q u i r e s a s l u r r y pump t o f e e d i t .  o f the cyclone i s Idith a coarse  c y c l o n e f e e d t h e c o s t and i n c o n v e n i e n c e o f pump maintenance c o u l d be a d i s a d v a n t a g e . Dahlstrom  2  and H e l s a l l and Holmes  3  s t u d i e d t h e use o f  water i n j e c t i o n as a means o f r e d u c i n g t h e bypass o f f i n e m a t e r i a l t o the cyclone underflow.  T h i s development has been  u s e f u l f o r t h e p r o d u c t i o n o f s a n d f i l l but i s not e x t e n s i v e l y used f o r c l o s e d c i r c u i t g r i n d i n g .  U 5 K e l s a l l e t a l * developed t h e c y c l o s i z e r which has s i n c e found wide a p p l i c a t i o n f o r s i z i n g submesh p a r t i c l e s down t o about 10 m i c r o n s ( f o r q u a r t z ) .  6 More r e c e n t l y K e l s a l l et a l  has extended t h e range o f t h e c y c l o s i z e r down t o about 5 microns ( f o r q u a r t z ) by t h e a d d i t i o n o f a d e c a n t a t i o n  step.  b. T h e o r e t i c a l S t u d i e s o f t h e Hydrocyclone Much o f t h e e a r l y work on c y c l o n e s c e n t r e d around t h e measurements o f f l o w p a t t e r n s by Y o s h i o k a and by K e l s a l l (see r e f . 1 ) .  and H o t t a (see r e f . 1 )  Rietema (see r e f . 1 ) p o i n t e d out  t h a t t h e r e s i d e n c e times o f p a r t i c l e s i n h y d r o c y c l o n e s s h o r t t h a t a c c e l e r a t i o n e f f e c t s are more important velocities.  i s so  than t e r m i n a l  He used a c y c l o n e number which s h o u l d be  minimised  t o g i v e a s m a l l d^gg s i z e w i t h a low p r e s s u r e drop through the c y c l o n e .  Bradley  1  g i v e s d e t a i l s o f these e a r l y s t u d i e s  t o g e t h e r w i t h some o f h i s own r e s u l t s . various r e l a t i o n s h i p s f o r  CJ^QQ  a r |  He t a b u l a t e s t h e  d capacity.  f l o w p a t t e r n s t o g i v e h i s "cone f o r c e  Lilgs  studied  equation".  2 8 9 The s e m i - e m p i r i c a l s t u d i e s o f Dahlstrom • , F o n t e i n e t a l , 10 11 12 13 de Kok , Chaston , Peachy , M a r a i s and Hoffman and Wagner and 1** Murphy cyclone  , are amongst t h e mare s i g n i f i c a n t e a r l y s t u d i e s o f behaviour. 15  Fahlstrom experimental  developed h i s "crowding t h e o r y " based on  and p l a n t s t u d i e s .  16 Mizrahi has t r i e d t D u n i f y the v a r i o u s t h e o r i e s and w i t h 17 Cohen e t a l has t r i e d u s i n g r e s i d e n c e time d i s t r i b u t i o n t o p r e d i c t c y c l o n e performance.  The s u p e r i o r i t y o f Rietema's and  M i z r a h i ' s n o n - e q u i l i b r u i m o r b i t t h e o r i e s has been supported  by  measurements o f t h e e f f e c t o f s o l i d p a r t i c l e i n j e c t i o n p o s i t i o n 18 on c y c l o n e performance by Mackenzie and Wood .  R e c e n t l y B l o o r and Ingham in  have s t u d i e d f l o w p a t t e r n s 2^ 25 2G Gupta and Grover and G e r r a r d and L i d d l e *  fciyd y l « rac  c  19-23  onBS  have used Rietema*s concept o f the c y c l o n e number t o o p t i m i s e t h e design of cyclone „  circuits.  U n f o r t u n a t e l y most o f these s t u d i e s were on s m a l l c y c l o n e s  operating with d i l u t e feed p u l p s . industrial  They are t h e r e f o r e o f l i m i t e d  utility. 27  L u c k i e and A u s t i n  g i v e d e t a i l s o f no l e s s than n i n e  d i f f e r e n t e q u a t i o n s used t o d e s c r i b e c l a s s i f i c a t i o n  efficiency  c u r v e s . The most p o p u l a r b a s i c e q u a t i o n s are those o f Lynch 28 29 and Rao and t h e R o s i n Rammler e q u a t i o n d e r i v e d by P l i t t and Reid . 3 0  Mular and Runnels showed t h a t these e q u a t i o n s are through a common e q u a t i o n .  related  They i n t r o d u c e d the concept t h a t t h e r e  was  a f i n i t e s i z e at which the reduced  was  zero.  e f f i c i e n c y of a cyclone  Their equation i s : -  cx  =  ~ Q  _ .• ^ /.._.n+1. - -a * b e x p ( k d " ' ) T  1 - Y cx where a, b, k and n are c o n s t a n t s and d i s the p a r t i c l e  diameter,  The r e c e n t program o f s e m i - e m p i r i c a l m o d e l l i n g s t u d i e s by 32 L y n c h , Rao et a l are summarised i n Lynch's paper  .  T h i s work  has formed the b a s i s o f most subsequent s t u d i e s i n t o the o p t i m i z a t i o n and/or c o n t r o l o f g r i n d i n g c i r c u i t s . T h e i r c o n c l u s i o n was t h a t the shape o f the reduced curve was  c o n s t a n t i r r e s p e c t i v e o f changes i n the  d i a m e t e r , v o r t e x and s p i g o t d i a m e t e r s , t h r o u g h p u t , and f i n e n e s s o f the f e e d .  efficiency  hydrocyclone solids  content  The shape was c o n s i d e r e d t o be  dependent on the nature of the p a r t i c l e s such as t h e i r s s p a e i f i c gravity  and shape.  10 When they s t u d i e d n a t u r a l o r e s i n producing found t h a t the reduced e f f i c i e n c y curve was  p l a n t s they  of a shape which  c o u l d be d e s c r i b e d by c o n s i d e r i n g i t t o be the sura o f the e f f i c i e n c y c u r v e s o f each o f the component m i n e r a l s .  Each  component has a d i f f e r e n t s p e c i f i c g r a v i t y and w i l l , t h e r e f o r e , have a d i f f e r e n t d ^  value.  5 Q  They found t h a t the d  5 Q C  size  v a r i e d i n v e r s e l y w i t h the d e n s i t y d i f f e r e n c e between s o l i d s and water a c c o r d i n g t o the t u r b u l e n t r a t h e r than the Stoke's law r e l a t i o n s h i p most commonly found t o be a p p l i c a b l e i n small  cyclones. Plitt  3 3  c a r r i e d out a s e r i e s o f experiments w i t h  fine  s i l i c a i n s m a l l c y c l o n e s and combined h i s data w i t h t h a t o f Lynch et a l i n an attempt t o d e r i v e a u n i v e r s a l l y a p p l i c a b l e m a t h e m a t i c a l model o f the H i s c o n c l u s i o n was  hydrocyclone.  t h a t the s l o p e o f the reduced  e f f i c i e n c y curve i s not i n f a c t constant  and he c l a i m s t o  be  the f i r s t person t o q u a n t i t a t i v e l y e x p r e s s the sharpness o f c l a s s i f i c a t i o n i n tBrms o f the o p e r a t i n g and design v a r i a b l e s . This expression i s : m - exp(0.58 - 1.5BR ) ( v  n p  2  g  . n  )  0.15  where Dc i s the c y c l o n e diameter i n i n c h e s and m i s the parameter i n Plitt-'.s equation  f o r the c o r r e c t e d e f f i c i e n c y curve which i s  r e l a t e d t o alpha by the approximate r e l a t i o n : ©<.  o  1.3km  - Q.kl  This r e l a t i o n s h i p i s p a r t i a l l y mechanistic  i n that i t considers  the sharpness o f s e p a r a t i o n t o be a f u n c t i o n o f r e t e n t i o n time i n the c y c l o n e .  Because the R^ term i s mainly  c o n t r o l l e d by the  ratio  o f the s p i g o t and v o r t e x f i n d e r d i a m e t e r s i t r e p r e s e n t s the f a c t t h a t the sharpness o f c l a s s i f i c a t i o n i s reduced as the s p i g o t s i z e i s i n c r e a s e d r e l a t i v e t o the v o r t e x f i n d e r d i a m e t e r .  The m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t f o r t h i s e q u a t i o n o f o n l y 0.75  i n d i c a t e d t h a t more work was r e q u i r e d i n t h i s a r e a .  P l i t t g i v e s a good r e v i e w of t h e numerous e q u a t i o n s by v a r i o u s r e s e a r c h e r s f o r t h e d^rjrj pressure  S l Z B  »  *  n B  flow s p l i t  and  drop.  Schubert  and Nesse  s t u d i e d t u r b u l e n c e i n wet  and propose a p u l p p a r t i t i o n model f o r t h e c y c l o n e The  obtained  classification efficiency.  u s e f u l n e s s o f h i s approach has yet t o be e s t a b l i s h e d .  A number o f workers have used d i m e n s i o n a l a n a l y s i s f o r the 35-37 study o f the h y d r o c y c l o n e c a p a c i t y e q u a t i o n c. Uses o f t h e The  Hydrocyclone  c y c l o n e i s a u s e f u l p i e c e o f equipment i n many i n d u s t r i e s  where i t has supplemented s c r e e n s , t h i c k e n e r s and c e n t r i f u g e s f o r the p r o c e s s i n g o f s t a r c h e s , m i n e r a l p a r t i c l e s , m i x t u r e s o f l i q u i d s and so  forth.  C y c l o n e s have been used i n the t h i c k e n i n g and washing of  38-kG coal  w i t h the l a t e s t development being i n t h e e x t e n s i v e  use o f t h e w a t e r - o n l y c y c l o n e f o r c l e a n i n g f i n e c o a l .  Outside  o f the- c o a l i n d u s t r y the major use o f the c y c l o n e would be as a c l a s s i f i e r i n c l o s e d c i r c u i t g r i n d i n g and the d e s l i m i n g o f p u l p s f o r f l o t a t i o n , t a i l i n g s dam  c o n s t r u c t i o n o r underground  sandfill.  I n t h e s e o p e r a t i o n s i t i s being used as a c l a s s i f i e r . kl  kB  C y c l o n e s have a l s o been used f o r the r e c o v e r y o f t i n ' , **9 50 51 diamonds and c l a y . Papacharalambous and Sun showed the u s e f u l n e s s o f c y c l o n e s f o r the s i z i n g o f a b r a s i v e powders. The p o t e n t i a l o f s m a l l c y c l o n e s used f o r t h e desanding  of  52  i n d u s t r i a l water was 53 Uhitjcomb treatment  showed how  s t u d i e d by V/isman and Rozenhart c a l c i u m carbonate  .  s l u d g e from water  c o u l d be p u r i f i e d i n a c y c l o n e p r i o r t o r e - c a l c i n a t i o n .  P l i t t and L U g e " * and V/isman at al"'"' succeeded i n 7  c l a s s i f y i n g m a t e r i a l which was c o n s i d e r e d t o be  f l o c c u l a t e d . T h i s was p r e v i o u s l y  impossible.  The  use o f a hydrocyclone f o r l i q u i d / l i q u i d e x t r a c t i o n was 56 57 s t u d i e d by Molyneux and S h a s t r y et a l , Heavy l i q u i d 53 c o n c e n t r a t i o n u s i n g a c y c l o n e has been c o n s i d e r e d . d. Hydrocyclone Design 59 Bradley  found t h a t the shape o f the v o r t e x f i n d e r o u t s i d e  w a l l m a d e - l i t t l e d i f f e r e n c e t o s h o r t c i r c u i t f l o w from t h e i n l e t t o the v o r t e x .  The  l e n g t h o f the v o r t e x f i n d e r i s however  important. Beverloo et a l  studied flow i n a f l a t vortex h y d r o s i f t e r 61 (a f l a t c y l i n d r i c a l c y c l o n e ) . P o w n a l l d e s c r i b e s c y c l o n e s made 62 6 0  from kO g a l l o n o i l drums w h i l s t Burt low-cost  cyclones without  gives d e t a i l s of small  a c o n i c a l s e c t i o n which were used f o r  cassiterite beneficiation. Hukki^  3  d e s c r i b e s a new  c l a s s i f i e r f o r coarse g r i n d i n g i n  closed c i r c u i t with a rod m i l l . a dry c y c l o n e underflow  was  The  p o s s i b i l i t y of  demonstrated by Uisman  study o f the " s l u g g i n g " c y c l o n e .  producing in his  13 e. S i m u l a t i o n , O p t i m i z a t i o n , Dn-stream S i z e A n a l y s i s and C o n t r o l The c y c l o n e m o d e l l i n g methodology proposed by Lynch and 65 Rao i s a l s o d e s c r i b e d by Mular and B u l l the b a s i s o f much o f the work  .  T h i s work has formed  which has been done i n r e c e n t  years on the s i m u l a t i o n o f c y c l o n e s i n g r i n d i n g c i r c u i t s w i t h a view t o o p t i m i z a t i o n , c o n t r o l o r p r e d i c t i o n o f product  size  analysis. The papers by Draper and Lynch 68 D r a p e r , Dredge and Lynch  66 f  Lynch and Whiten  show how they used t h i s  67 et,al,and  methodology  t o o p t i m i s e the g r i n d i n g c i r c u i t s at Mount I s a Mine i n A u s t r a l i a . 69 Pitts,, e t a l the S i l v e r  d e s c r i b e how they used a s i m i l a r approach at  Bill. 70  Lynch  et a l  have r e c e n t l y used t h i s methodology f o r  c y c l o n e m o d e l l i n g i n an autogenous m i l l i n g c i r c u i t  treating  nickel ores. 71 Mular and Bates d e s c r i b e how they used t h i s methodology i n the m o d e l l i n g o f c y c l o n e s i n p a r a l l e l at S t r a t h c o n a . I n the 72 study o f t h e G i b r a l t a r c i r c u i t by A l l a n , Mular  et a l  the  m o d i f i e d e q u a t i o n o f Mular and Runnels was used. P l i t t ' s e q u a t i o n has been used t o d e s c r i b e the e f f i c i e n c y curve o f a complex ore i n the ..73 circuit .  analysis of a closed grinding  Ik Mular  et a l  g i v e d e t a i l s o f a method f o r t h e adjustment  o f data f o r a m o d e l l i n g program which would use the e q u a t i o n o f Mular and Runnels t o d e s c r i b e the reduced e f f i c i e n c y  curve.  Some workers have used a s i m p l e m u l t i p l e l i n e a r r e g r e s s i o n e q u a t i o n t o r e l a t e c y c l o n e e f f i c i e n c y t o water and s o l i d s f l o w s 75 t o t h e c y c l o n e . Brookes, e t a l and Watson, Crompton and 76 Brookes have used t h i s approach.  Presgrave cyclones.  77  d i s c u s s e s the hardware used i n t h e c o n t r o l o f 78 Bradburn et a l concern themselves w i t h some o f t h e 79  more p r a c t i c a l a s p e c t s o f m i l l and c y c l o n e c o n t r o l .  Hamilton  proposes t h e use o f a g r i n d i n g c i r c u i t w i t h d u a l c y c l o n e classification. The use o f a p a r t i c l e s i z e monitor (PSM) 80 i s d e s c r i b e d by Webber and D i a z and Mokken f . Summary o f t h e L i t e r a t u r e  i n operating plants 81 et a l  Survey  The i m p o r t a n t p o i n t s which emerged from t h e l i t e r a t u r e  survey  ware:i ) The t h e o r e t i c a l s t u d i e s o f h y d r o c y c l o n e e f f i c i e n c y are not y e t comprehensive enough t o be a p p l i c a b l e t o a l l the p r a c t i c a l a p p l i c a t i o n s of the c y c l o n e . i i ) S e m i - e m p i r i c a l c y c l o n e models and p r a c t i c a l e x p e r i e n c e are p r e s e n t l y the b a s i s o f most c y c l o n e s p e c i f i c a t i o n s , m o d e l l i n g , o p t i m i z a t i o n and i i i ) P r e s s u r e drop and C-^QC  control.  s i z e p r e d i c t i o n aquations^are  numerous and r e l a t i v e l y a c c u r a t e but t h e r e i s s t i l l  very  l i t t l e known about t h e maximum c a p a c i t y o f t h e s p i g o t o r t h e f a c t o r s d e t e r m i n i n g t h e sharpness o f s e p a r a t i o n .  15 EXPERIMENTAL APPARATUS AND PROCEDURE E x p e r i m e n t a l Apparatus The  c y c l o n e t e s t r i g i s i l l u s t r a t e d i n f i g . 3.  I t i s also  R e f e r r i n g t o f i g . *t s o l i d s and  shown s c h e m a t i c a l l y i n f i g . k.  water a r e kept suspended i n t h e r u b b e r l i n e d 50 g a l l o n pumpbox (1) by means o f a p r o p e l l e r t y p e Ghemineer mixer ( 2 ) . DkB  - 12° - 827 Krebs c y c l o n e  G a l i g h e r U a c s e a l pump CO  The model  ( 3 ) i s f e d by a 1)4 x 2 i n c h  d r i v e n by a 3HP motor through a  Woods MS - 77 v a r i a b l e speed p u l l e y d r i v e . The  p u l p f l o w r a t e i s measured by a 2 i n c h Faxboro magnetic  flowmeter ( F ) . pressure The  An Ohmart n u c l e a r d e n s i t y gauge (D) and a  gauge (P) a r e a l s o i n s t a l l e d i n t h e c y c l o n e  feed  line.  two v a l v e s (6 and 7) and bypass l i n e ( 8 ) a l l o w t h e  p u l p t o be r e c i r c u l a t e d w i t h o u t f l o w i n g through t h e c y c l o n e . The  whole t e s t r i g was supported on two frames which were  bolted together The overflow  and f i t t e d w i t h c a s t o r s .  sampling d e v i c e  (5) t a k e s s i m u l t a n e o u s c u t s o f t h e  and u n d e r f l o w s t r e a m s .  d e v i c e i s shown i n f i g . 5. sample c o n t a i n e r  A s e c t i o n a l sketch o f t h i s  R e f e r r i n g t o f i g . 5 t h e underflow  ( 6 ) f i t s i n t o a frame (7) which s l i d e s on  guide r a i l s (8) which are f i x e d t o t h e pumpbox ( 1 ) .  When t h e  u n d e r f l o w sample c o n t a i n e r i s s l i d under t h e s p i g o t a pushrod ( 9 ) simultaneously  moves, the f l e x i b l e o v e r f l o w  p o s i t i o n that the overflow  stream i s d i v e r t e d t o t h e o v e r f l o w  bucket (10) by t h e s p l i t t e r ( 1 1 ) . the guide r a i l s  clean.  p i p e i n t o such a  A s p l a s h guard (12) keeps  16  F i g . 3 Photograph o f T e s t R i g  . k Schematic o f T e s t R i g  F i g . 5 Sketch o f Sampling  Device  19  Procedure f o r A c q u i s i t i o n o f Data a. S e l e c t i o n o f t h e Test M a t e r i a l S i l i c a was chosen f o r t h i s study because i t i s c l o s e s t i n d e n s i t y t o t h e gangue t r e a t e d i n most m i l l i n g and t a i l i n g s c l a s s i f i c a t i o n o p e r a t i o n s . The s i z e range used was f i n e r than t h a t used by Lynch and Rao i n most o f t h e i r work and c l o s e to  t h a t used by P l i t t .  Some o f t h e reasons f o r choosing a  f i n e s i z e o f s i l i c a were :a) Problems w i t h s e g r e g a t i o n i n t h e c y c l o n e f e e d pumpbox would be m i n i m i s e d . b) V i s c o s i t y e f f e c t s s h o u l d be more s i g n i f i c a n t w i t h a finer material. c) Coarser f e e d would p r o b a b l y r e q u i r e t h e use o f a combination o f two d i f f e r e n t methods o f s i z e a n a l y s i s . T h i s i s a s e r i o u s problem f o r many i n v e s t i g a t o r s , e s p e c i a l l y when a complex o r e i s being t r e a t e d . d) I n o r d e r t o m a i n t a i n g e o m e t r i c s i m i l a r i t y i t i s g e n e r a l l y n e c e s s a r y t o s c a l e down a l l dimensions proportionately.  20 b. C o n s t r u c t i o n o f t h e E x p e r i m e n t a l P r e l i m i n a r y t e s t s were performed  Design on t h e c y c l o n e t e s t r i g t o  check t h e sampling and s i z i n g t e c h n i q u e s and t o g e t a f e e l f o r t h e best o p e r a t i n g range f o r each o f t h e v a r i a b l e s t e s t e d . Because o f t h e d i f f i c u l t y i n o b t a i n i n g r e s u l t s w i t h sufficient  accuracy t o d e t e c t changes i n t h e sharpness o f  c l a s s i f i c a t i o n i t was d e c i d e d t o i n c l u d e a l a r g e number o f r e p e a t runs i n t o an e x p e r i m e n t a l d e s i g n . A f u l l two l e v e l f a c t o r i a l d e s i g n , as d e s c r i b e d by Mular and B u l l ^ " , was chosen w i t h f o u r c e n t r e p o i n t runs and r e p e a t s o f 5  a l l e i g h t runs f o r t h e l o n g c y c l o n e p l u s one r e p e a t on t h e short cyclone. randomized,  The o r d e r i n which t h e runs were performed was  as much as p a s s i b l e c o n s i s t e n t w i t h t h e e f f i c i e n t  use o f t h e time  available.  The independent  v a r i a b l e s and t h e i r ranges were:-  a) V o r t e x f i n d e r diameter v a r i e d l i n e a r l y from 0.75 i n c h t o 1.25 i n c h d i a m e t e r . b) Flow r a t e v a r i e d from 7.2 U.S.G.P.M. t o 20 U.S.G.P.M. w i t h t h e c e n t r e p o i n t being t h e l o g mean v a l u e o f 12 U.S.G.P.M. c) Feed p e r c e n t s o l i d s by  v a r i e d l i n e a r l y from 10% t o 50%  weight.  d) Length o f t h e c y l i n d r i c a l s e c t i o n was v a r i e d over a l i m i t e d  linearly  range by removing one o f t h e s t a n d a r d  sections t o give a shorter cyclone or r e p l a c i n g i t with a s e c t i o n o f h a l f the standard l e n g t h . The f a c t o r i a l d e s i g n i s shown i n f i g . 6.  "+" i n d i c a t e s t h e  h i g h e r v a l u e and "-" t h e l o w e r - v a l u e o f each v a r i a b l e w h i l s t "CP" r e p r e s e n t s t h e c e n t r e p o i n t .  Run Numbers  Vortex Finder  Flow  Feed % Solids  Cyclone Length  21 22  +  23  -  Zk  +  25  -  -  +  26  +  -  +  27, kl  -  +  +  28  +  +  +  -  -  +  11, 31  +  12, 32  +  -  +  13, 33  -  +  +  +  +  U  t  15,  3k  +-  35  16, 36  +  +  +  +  +  +  +  +  17, 37 18, 38  +  +  +  +  19, 29  CP  CP  CP  CP  39, *»9  CP  CP  CP  CP  f i g . 6 Design m a t r i x f o r the e x p e r i m e n t a l r u n s .  22 Most r e s e a r c h e r s have c o n s i d e r e d the s p i g o t diameter t o be an independent v a r i a b l e . U l h i l s t t h i s approach i s not wrong i t o f t e n l e a d s t o a n a l y s i s o f c y c l o n e performance under c o n d i t i o n s which would not be c o n s i d e r e d  f a r normal o p e r a t i o n .  In p r a c t i c e s p i g o t diameters are u s u a l l y a d j u s t e d , e i t h e r a u t o m a t i c a l l y o r by s e l e c t i o n o f a f i x e d s p i g o t , t o g i v e a d i s c h a r g e which i s not overloaded  but n e i t h e r i s i t f l a r i n g  excessively. F i g . 7a shows a s p i g o t which i s o v e r l o a d e d badly.  F i g . 7c  Although  roping  shows a l a r g e r s p i g o t w i t h a " v o r t e x " o r  f l a r i n g discharge. i s what was  and  The type o f d i s c h a r g e shown i n f i g . 7b  used t o a d j u s t the s p i g o t diameter f o r each r u n .  t h i s type o f d i s c h a r g e may  be a l i t t l e too c l o s e  to the r o p i n g c o d i t i o n f a r , say, a c l o s e d c i r c u i t g r i n d i n g o p e r a t i o n , i t was  a convenient  p o i n t t o a d j u s t t o as i t  c o u l d e a s i l y be checked by o b s e r v i n g the s p i g o t when the f l o w r a t e was  (a)  discharge  i n c r e a s e d or decreased s l i g h t l y .  (b) F i g . 7 Types o f Spigot  (c) Discharge  23 The o n l y r e f e r e n c e t o t h i s type o f approach i n t h e r e c e n t 82 l i t e r a t u r e appears t o he i n t h e work o f D r e l s s e n and F o n t e i n who a d j u s t e d t h e s p i g o t t o g i v e a c o n s t a n t percent s o l i d s i n the  underflow. No l i t e r a t u r e r e f e r e n c e s were found on t h e e f f e c t o f  temperature  on c y c l o n e e f f i c i e n c y w i t h h i g h f e e d p u l p  Although temperature  densities.  was not c o n s i d e r e d as a m a n i p u l a b l e  independent v a r i a b l e , i t d i d v a r y and so i t was necessary t o record i t . b. Sampling The pumpbox was f i l l e d w i t h water and t h e pump used t o c i r c u l a t e water through t h e system. The c y c l o n e s p i g o t was plugged w i t h a s m a l l cork so t h a t water o n l y f l o w e d out o f t h e o v e r f l o w p i p e .  The v a l v e on t h e  pump d i s c h a r g e was c l o s e d w i t h t h e pump s t i l l r u n n i n g t o check the zero adjustment o f t h B flowmeter. The v a l v e was then opened and t h e pump speed a d j u s t e d t o g i v e a flowmeter  r e a d i n g o f 20 U.S.G.P.M.  The sampling  device  was used t o c o l l e c t t h e c y c l o n e o v e r f l o w (which w i l l be t h e same as t h e c y c l o n e feed) over a p e r i o d o f one m i n u t e .  The  water was c o l l e c t e d I n a drum and i t s volume measured w i t h a calibrated  'dipstick*.  I f t h e measured volume d i f f e r e d from  t h e i n s t r u m e n t r e a d i n g then t h e SPAN s e t t i n g i n s i d e t h e f l o w r a t e c o n t r o l p a n e l was a d j u s t e d .  T h i s procedure was then  r e p e a t e d f o r a f l o w r a t e o f 7 U.S.G.P.M. The zero r e a d i n g on t h e gamma r a y d e n s i t y gauge was checked w i t h c l e a r water i n t h e p i p e . The cork was then removed from t h e c y c l o n e s p i g o t and s u f f i c i e n t water and ' S u p e r s i l ' s i l i c a added t o g i v e t h e r e q u i r e d  2k  percent s o l i d s i n the f e e d .  To a d j u s t the percent s o l i d s i n  the f e e d the f l o w through the c y c l o n e was reduced t o the p o i n t where d i s c h a r g e through the o v e r f l o w j u s t ceased. was  The  underflow  c a r e f u l l y c o l l e c t e d i n a d e n s i t y can t o measure the  s o l i d s u s i n g a 'Marcy' pulp d e n s i t y s c a l e . gamma r a y d e n s i t y gauge was  percent  The r e a d i n g on the  noted.  The s l u r r y was r e c i r c u l a t e d f o r a s u f f i c i e n t l e n g t h o f time t o g i v e complete d i s p e r s i o n . F o l l o w i n g t h e ' " i n s t a l l a t i o n o f a v o r t e x f i n d e r o f the d e s i r e d ::size, the f l o w r a t e , as measured by the magnetic flowmeter, a d j u s t e d t o a predetermined The s l u r r y temperature w i t h the sump  level.  was  value. was measured and r e c o r d e d  The apex s i z e was  together  a d j u s t e d t o the i n c i p i e n t  rope c o n d i t i o n . The o v e r f l o w sample bucket was l i n e d w i t h a p l a s t i c bag t o a s s i s t i n the d i s p o s a l o f the o v e r f l o w  solids.  The t a r e weights o f the o v e r f l o w bucket and underflow c o n t a i n e r were measured on a s u i t a b l e  balance.  The sampling d e v i c e was then used t o c o l l e c t o v e r f l o w underflow samples over a c a r e f u l l y timed p e r i o d .  and:  Re-weighing  gave the o v e r f l o w and underflow pulp sample w e i g h t s by  difference.  Samples f o r s i z e a n a l y s i s and f o r percent s o l i d 3 d e t e r m i n a t i o n were c o l l e c t e d from the o v e r f l o w and u n d e r f l o w , i n t h a t o r d e r . Splashed m a t e r i a l was wiped o f f the o u t s i d e o f the c o n t a i n e r and t h e samples f o r percent s o l i d s d e t e r m i n a t i o n were weighed and d r i e d i n the oven t o c o n s t a n t  weight.  Samples f o r s i z e a n a l y s i s were then c o l l e c t e d from the o v e r f l o w then underflow  steams.  25 A n a l y s i s o f Samples a) P u l p D e n s i t y and Flows Samples f o r pulp d e n s i t y d e t e r m i n a t i o n mere d r i e d t o c o n s t a n t weight i n t h e oven.  The p e r c e n t s o l i d s by weight  i n t h e o v e r f l o w and u n d e r f l o w streams c o u l d t h u s be c a l c u l a t e d w i t h a h i g h degree o f a c c u r a c y . The o v e r f l o w and u n d e r f l o w f l o w r a t e sample w e i g h t s were used, t o g e t h e r w i t h t h e p e r c e n t s o l i d s i n each stream, t o c a l c u l a t e t h e f l o w r a t e s o f s o l i d s and p u l p i n t h e v a r i o u s streams. b) S i z e A n a l y s e s The samples f o r s i z e a n a l y s i s were reduced i n bulk u s i n g a wet s p l i t t e r which was c a r e f u l l y washed down w i t h d i s t i l l e d water a f t e r each p a s s .  T h i s ensured t h a t c o a r s e s o l i d s d i d  not remain i n t h e s p l i t t e r . The E l e c t r o Z o n e C e l l o s c o p e ( f i g . 8 ) was chosen f o r s i z e analysis  because:-  a) The s i z e d i s t r i b u t i o n produced  i s almost c o n t i n u o u s  on a l o g s i z e s c a l e , t h u s a v o i d i n g problems w i t h interpolation. b) The d a t a output i s on paper tape and was t h e r e f o r e s u i t a b l e f o r i n p u t back i n t o t h e main UBC computer system for  data a n a l y s i s .  c) One method c o u l d be used f o r t h e complete s i z e  analysis.  d) S i z e a n a l y s e s c o u l d be performed on wet samples.  26 The d i s a d v a n t a g e s a f t h i s method i n c l u d e d a) The p o s s i b i l i t y o f e l e c t r o n i c n o i s e i n f l u e n c i n g  results  and t h e n e c e s s i t y t o reduce t h e sample down t o a s u f f i c i e n t l y s m a l l bulk f o r a n a l y s i s . b) The t i m e t a k e n f o r each  analysis.  The p r i n c i p l e on which t h e G e l l o s c o p e o p e r a t e s i s t h a t t h e sample t o be t e s t e d i s d i s p e r s e d i n an e l e c t r o l y t e sucked through a s m a l l o r i f i c e . conductivity  and  The change i n e l e c t r i c a l  as each p a r t i c l e passes the o r i f i c e i s measured  t o g i v e the e f f e c t i v e volume o f the p a r t i c l e . was c a l i b r a t e d u s i n g ragweed p o l l e n  The i n s t r u m e n t  and l a t e x s p h e r e s .  Pulses  from t h e passage o f p a r t i c l e s are a n a l y s e d by a minicomputer  to  g i v e a s i z e d i s t r i b u t i o n f o r the p a r t i c l e s which i s e s s e n t i a l l y continuous.  F u r t h e r d e t a i l s on the use o f t h e C e l l o s c o p e may  be found i n appendix I .  27  fig.  8 ElectroZone  Computational a.  Celloscope - Computerized P a r t i c l e Analyzer  Procedure  S i z e A n a l y s i s Data  Files  The p a p e r t a p e s f o r t h e and u n d e r f l o w  size  s t r e a m s were mounted  r e a d e r and r e a d  into  an MTS f i l e .  analysis on t h e  o f the  cyclone  data f i l e  f o r the  The p r o g r a m  be " E 1 9 0 F " and t h e For further  details  overflow size  underflow  size  p l e a s e see  analysis  analysis  overflow  h i g h speed paper  "E19U".  and I V .  used  The name  from r u n #19  called  appendices I I I  tape  "CONVERT" was  t o w r i t e t h e s e numbers on a " B a s i c " l a n g u a g e d a t a f i l e . of the  Size  would  28 b. Program "CLTR2" t o C a l c u l a t e E f f i c i e n c i e s These data f i l e s were then used t o g e t h e r w i t h t h e a p p r o p r i a t e data from t h e e x p e r i m e n t a l r u n as i n p u t t o the program "CLTR2" which was used t o produce a d a t a f i l e c a l l e d say "RUN19@D" o f the raw and reduced e f f i c i e n c i e s at each s i z e i n t h e s e l e c t e d range. of  "CLTR2" a l s o p r i n t s t h B t o t a l number o f counts f o r each  the data f i l e s .  These numbers were used t o check f o r e r r o r s  i n the reading of the papertape. may be found i n appendix  More i n f o r m a t i o n o f t h i s program  V.  c. Simplex Search Programs The program "LYN" uses a s i m p l e x s e a r c h method t o g i v e c o n s t a n t s f o r Lynch and Rao's e q u a t i o n f o r t h e e f f i c i e n c y c u r v e . The s i m p l e x s e a r c h method i s d e s c r i b e d by Mular and B u l l ^ , Mular  and N e l d e r and Mead  .  An advantage o f t h e s i m p l e x s e a r c h  method i s t h a t i t i s a n o n - d e r i v i t i v e method ( i . e . necessary t o c a l c u l a t e p a r t i a l  i t i s not  derivities).  The s i m p l e x s e a r c h method was used t o minimise an o b j e c t i v e f u n c t i o n which was e q u a l t o the sum o f squares o f t h e d i f f e r e n c e between t h e c a l c u l a t e d and p r e d i c t e d c y c l o n e e f f i c i e n c i e s a t each data p o i n t . Fig.  9 g i v e s t h e f l o w diagram o f a s i m p l e x s e a r c h .  Initial  e s t i m a t e s o f t h e v a r i a b l e s searched f o r and s t a r t i n g step s i z e s are used t o s e t up a s t a r t i n g s i m p l e x . t r i a n g u l a r i n a two-dimensional  search.  T h i s s i m p l e x would be The s i m p l e x i s r e f l e c t e d  towards t h e minimum o f t h e o b j e c t i v e f u n c t i o n and i s capable o f c o n t r a c t i o n and e x p a n s i o n . The v a l u e s o f the d^g^ s i z e and a l p h a from "LYN" were added to  t h e end o f t h e data f i l e f o r t h e run as t h e best e s t i m a t e s t o  (I)  CALC.  X,  -*» FIND  AN0  (R88),  h , 8, L , X , « (I »«0  FORM  CALCULATE  IS ( R 5 S )  X - oCX. \> h  (RSS)  < (RSS)  r  r  NO  t  IS ( R S S )  f  >(RSSJ  S  YES  V YES  FORM  X  NO  I ! e  » (I + r ) X - T X f  IS (RSS)g< ( R S S )  0  NO  t  FORM  IS ( R S S ) REPLACE h  BY  x  + <l  h  ) x\  1  YE3  X  •  X  X  C  XRSS). n  -»» Y E S  REPLACE X„  e  8Y  X  REPLACE  f  ALL  NO  1/2  X. (X.+  SY X > t  REPLACE HAS SEEN NO  MIN.  X  h  B  Y  X  c  REACHED •YES  »• P R J N T O U T  > STOP  vo  Fig.  9  Floui Diagram o f a S i m p l e x  Search  30 be used as s t a r t i n g v a l u e s f o r t h e o t h e r s i m p l e x s e a r c h programs. Appendix UI g i v e s more d e t a i l s o f the program "LYN". "GENUIT" (see appendix V I I ) and "WTFILL" (see appendix  VIII)  were used t o c a l c u l a t e w e i g h t i n g f a c t o r s from repeat r u n s . "LYNWT" may be used w i t h t h e s e w e i g h t i n g f a c t o r s t o g i v e e s t i m a t e s of d  5 Q C  and a l p h a o b t a i n e d from s t a t i s t i c a l l y weighted d a t a and  Lynch and Rao's e q u a t i o n .  Appendix IX g i v e s more i n f o r m a t i o n  on "LYNWT". "MURU" c a l c u l a t e s t h e c o n s t a n t s o f the c y c l o n e e f f i c i e n c y curve based on Mular and Runnels e q u a t i o n w i t h allowance f o r t h e bypass r a t i o t o be d i f f e r e n t from the water r e c o v e r y i n t h e underflow.  I n o r d e r t o ensure t h a t n e g a t i v e d  Q  v a l u e s were not  a l l o w e d i t was necessary t o i n c l u d e a p e n a l t y f u n c t i o n i n t h e o b j e c t i v e f u n c t i o n f o r "MURU". of  P l e a s e see appendix X f o r d e t a i l s  "MURU".  d. P l o t t i n g Programs For Calcomp p l o t s o f t h e e f f i c i e n c y curves a WATFIV program was used t o format data f o r t h e FORTRAN p l o t t i n g program. programs a r e l i s t e d i n appendix  These  XI.  e. M u l t i p l e L i n e a r R e g r e s s i o n o f Parameters.. The d a t a from the s i m p l e x s e a r c h programs was a n a l y s e d u s i n g t h e new "UBC TRP" program which i s a t r i a n g u l a r r e g r e s s i o n package f o r s t e p w i s e m u l t i p l e l i n e a r r e g r e s s i o n .  Various  t r a n s f o r m a t i o n o f t h e v a r i a b l e s were used t o study a l t e r n a t e relationships.  F u r t h e r d e t a i l s on t h e use o f t h i s computer  program package may be found i n appendix X I I .  31  RESULTS AND DISCUSSION Table I g i v e s a summary o f the data from the  experimental  runs.  The a c t u a l sample weights and sampling time are not l i s t e d  here.  A sample o f the output from the program "CLTR2" which  g i v e s t h i s i n f o r m a t i o n may be found i n the appendix.  I t w i l l be  noted t h a t t h e e x p e r i m e n t a l d e s i g n c o u l d not be f o l l o w e d e x a c t l y , e s p e c i a l l y i n the case o f some o f the f l o w r a t e s e t t i n g s where a f a u l t developed  i n t h e flowmeter  wide v a r i a t i o n i n temperatures  during a s e r i e s o f t e s t s .  s h o u l d be n o t e d .  L  Table I I g i v e s the best f i t v a l u e s D f a l p h a and by the program "LYN". alpha, d £ , d 5 Q  Q  The  obtained  T h i s may be compared w i t h the v a l u e s o f  and the new bypass r a t i o o b t a i n e d from t h e  program "MURU".. These r e s u l t s may be found i n Table I I I . /  •  .  The mean value o f a l p h a i s h i g h e r w i t h "LYN" "MURU".  than w i t h  T h i s i s e x p l a i n e d by the f a c t t h a t t h e curve  from the r e s u l t s . o f "LYN"  calculated  tends t o be f o r c e d c l o s e r t o t h e  s t e e p e r p a r t o f the curve near the d  5 Q C  size.  A study o f t h e  curves i n appendix X I I I w i l l show how t h i s r e s u l t s i n a h i g h e r value f o r alpha. On average t h e v a l u e s o f a l p h a o b t a i n e d tended t o be m a r g i n a l l y 29 h i g h e r than those r e p o r t e d by P l i t t using s i l i c a .  from Lynch's t e s t w o r k  T h i s sharper c l a s s i f i c a t i o n may be due t o t h e f a c t  t h a t t h e t e s t w o r k r e p o r t e d here was a l l done a t t h e near-rope c o n d i t i o n , but i t c o u l d a l s o be due t o o t h e r f a c t o r s .  32 TABLE I Summary o f E x p e r i m e n t a l R e s u l t s  RUN *  l/ORTEX SPIGOT CALC. FEED LENGTH TEMP INLET 0/F B/F FLOW ^SOLIDS _ PRESS %S0LIDS XSOLIUb i n c h e s i n c h e s USGPM by tut. i n c h e s C psig by u t . by wt.  11  0.75  0.23  10.45  11.0  22  19  1.5  6.7  62.3  12  1.25  0.16  18.0  10.3  22  21  2.3  8.6  55.0  13  0.75  0.38  31.65  10.0  22  25  16.0  4.6  66.6  14  1.25  0.39  40.9  11.1  22  29  14.0  5.4  67.3  15  0.75  0.16  8.06  49.3  22  33  1.0  48.1  68.3  16  1.25  0.18  8.23  k9.3  22  31  0.6  48.1  65.4  17  0.75  0.28  18.5  49.6  22  26  6.0  47.2  71.3  18  1.25  0.26  21.9^  k9.&  22  28  5.0  48.6  71.8  19  1.00  0.35  13.3  30.3  19.5  22  1.9  26.8  59.9  21  0.75  0.16  9.9  10.0  17  23  1.6  6.0  62.8  22  1.25  0.16  10.2  10.5  17  21  1.0  7.1  55.1  23  0.75  0.25  22.1  9.k  17  25  11.4  4.1  64.9  24  1.25  0.39  21.9  10.8  17  19  4.7  6.2  64.4  25  0.75  0.12  7.8  50.6  17  32  1.1  49.2  65.1  26  1.25  0.15  7.6  50.7  17  35  0.9  49.6  63.8  27  0.75  0.31  20.6  50.7  17  2k  9.0  48.3  72.4  28  1.25  0.30  20.7  50.7  17  35  5.3  49.2  69.3  29  1.00  0.35  12.9  30.9  19.5  23  1.9  26.7  68.5  31  0.75  0.23  10.9  10.9  22  20  1.5  6.7  62.6  32  1.25  0.19  17.5  11.5  22  2k  2.3  7.8  66.1  33  0.75  0.38  28.2  22  27  16.0  4.4  66.1  3k  1.25  0.39  41.4  11.1  22  31  13.9  5.3  67.5  35  0.75  0.16  8.0  49.2  22  3k  1.0  48.0  67.6  36  1.25  0.18  8.0  49.3  22  32  0.6  48.1  65.6  37  0.75  0.28  18.2  49.4  22  27  6.0  47.1  71.3  38  1.25  0.26  21.7  49.5  22  30  5.0  48.4  71.7  39  1.00  0.35  12.9  30.7  19.5  25  1.9  26.8  63.6  k7  0.75  0.31  21.0  50.7  17  26  9.1  48.3  72.4  49  1.00  0.35  13.1  30.1  19.5  26  1.9  26.1  63.4  9.8  TABLE I I R e s u l t s o f R e g r e s s i o n Using "LVIM" RUN NO.  ALPHA  d  5 0 C  microns 11  6.25  28.9  12  7.25  43.6  6.25  20.0  6.8  21.1  15  6.5  83.0  16  k.6  88.65  17  4.5  77.9  18  6.6  84.1  19  6.1  58.5  21  7.3  28.3  22  7.0  36.0  23  6.7  16.5  24  9.2  28.9  25  5.3  89.2  26  5.8  95.0  27  5.0  74.4  28  6.7  82.0  29  6.4  54.7  31  6.7  29.1  32  9.2  35.6  33  6.4,  17.1  3k  6.5  20.5  35  6.6  97.1  36  5.2  87.0  37  6.2  73.1  38  8.0  87.0  39  6.2  53.4  47  6.1  76.8  49  6.6  54.6  13 14  l  34 TABLE I I I R e s u l t s Using "MURU" With Weighting F a c t o r s RUN  ALPHA  BYPASS  50C microns  microns  d  11  4.1  27.2  5.1  0.039  12  7.4  43.4  2.1  0.017  13  5.25  20.5  0.0  0.021  14  5.95  21.3  0.4  0.035  15  5.3  84.7  13.5  0.038  16  3.2  94.4  9.1  0.036  17  4.55  79.15  0.9  0.066  1B  5.2  86.6  19  6.0  58.9  1.1  0.070  21  5.3  27.1  2.3  0.031  22  7.4  35.8  2.3  0.035  23  4.7  19.8  1.9  0.034  24  7.2  28.25  9.7  0.033  25  4.8  93.0  0.0  0.066  26  5.0  98.5  2.55  0.055  27  4.3  75.5  3.9  0.056  28  5.9  83.6  .4.0  0.057  29  6.4  55.7  0.1  0.068  31  4.6  27.8  5.7  0.036  32  9.4  35.5  7.3  0.020  33  5.1  19.7  0.8  0.022  34  5.8  20.6  0.15  0.037  35  9.0  95.1  31.9  0.061  36  4.1  91.6  14.4  0.051  37  5.7  74.6  6.5  0.069  38  6.8  88.55  1.9  0.034  39  6.0  54.0  3.2  0.064  47  4.3  79.6  0.0  0.061  49  6.3  55.0  0.02  0.063  0.026  35 The p r e d i c t i n g e q u a t i o n s For t h e parameters o b t a i n e d from "MURU" were determined by t h e l i n e a r r e g r e s s i o n program t o be:« a)  log d  b)  log P  5 Q C  = 1.358 + 0.191 D  Q  - 0.0064 Q + 0.0128 «i - 0.00505 T  = 2.168 l o g Q - 0.95 l o g h + 0.39 ^  - 0.624 l o g (  D  Z + D U  2 0  )  - 0.913  = 0.973 R  + 0.00028 6 + 0.00166 F e  c)  B  d)  l o g c < = 5.18 (1 - R ) + 0.0302 F e  f  y  - 0.0405  5 Q  + 0.1372 l o g 4  5 Q  + 6.38 l o g D - 2.668 D„ - 2.242 o o 3  e)  log d  Q  = 0.35 8.09D  f)  l o g R„  = -0.933 + 0.688 l o g 6 - 0.703 l o g &-  nr  u  +  - 0.02 h  g)  «5  a 75.58 + 64.9 A  h)  D  « 0.0935 + 0.355 l o g U  u  u  y  + 6.47 l o g U  g  g  - 18.6 l o g d  - 0.007 d  5 Q C  u  where l o g a r i t h m s a r e t o t h e base 10. Appendix X I I g i v e s f u l l d e t a i l s o f t h e v a r i o u s measures o f "goodness o f f i t " t o g e t h e r w i t h a s e t o f p r i n t e r p l o t s f o r each e q u a t i o n .  36 Equation ( a ) : The d  e q u a t i o n s e l e c t e d from those t e s t e d has t h e 50C ^ 22 same f u n c t i o n a l form as t h e e q u a t i o n s used by Lynch except t h a t c n n  an i n c r e a s e i n t h e temperature o f t h e s l u r r y was found t o have a s i g n i f i c a n t e f f e c t i n d e c r e a s i n g t h e d ^ . s i z e and t h e s p i g o t Q r  s i z e was not found t o be s i g n i f i c a n t a t t h e 0.D5 s i g n i f i c a n c e level.  The s t a n d a r d e r r o r o f t h e e q u a t i o n f o r l o g dggrj was  + 0.04 and t h e v a l u e o f R  2  '  was 0.98.  The e f f e c t o f temperature on t h e v i s c o s i t y o f non-Newtonian DC  s l u r r i e s i s not f u l l y understood  but f o r r e l a t i v e l y low s o l i d s  c o n c e n t r a t i o n s v i s c o s i t y w i l l decrease w i t h an i n c r e a s e i n temperature. For Newtonian systems o f low p e r c e n t s o l i d s i n s u c r o s e 86 s o l u t i o n s i t has been found that:-  d  so l o g where K  1  50C " l / *  d  =  5 Q C  = logh  1  + 0.58 l o g jx  i s a c o n s t a n t r e p r e s e n t i n g t h e v a r i a b l e s which are not  o f i n t e r e s t i n t h i s c o n t e x t and^p. i s t h e v i s c o s i t y o f t h e aqueous phase. I f f o r such a system t h e temperature i s i n c r e a s e d from 20°C t o 3 0 C then t h e v i s c o s i t y i s reduced from 1.0 c e n t i p o s e t o a  0.8 c e n t i p a i s e .  T h i s corresponds t o a r e d u c t i o n i n l o g dj-gg  of 0.056. Most o f t h e t h e o r i e s o f c y c l o n e o p e r a t i o n f o r d i l u t e , Newtonian p u l p s p r e d i c t t h a t t h e d  5 Q C  t o t h e square r o o t o f t h e v i s c o s i t y .  size i s proportional They would p r e d i c t a  r e d u c t i o n o f 0.048 i n t h e v a l u e o f l o g d^grj as t h e temperature was i n c r e a s e d from 2Q°C t o 30°C.  37 Thus the r e s u l t o f 0.051  p r e d i c t e d by the r e g r e s s i o n e q u a t i o n  o b t a i n e d i n t h i s study i s i n good agreement w i t h the t h e o r y  and  p r a c t i c e a p p l i c a b l e t o Newtonian s l u r r i e s . In o r d e r t o a p p r e c i a t e the magnitude o f the temperature i t may  be noted t h a t c o n d i t i o n s which g i v e a d^gg  at 20°C w i l l g i v e a d,.^ s i z e o f o n l y hk.5 a d i f f e r e n c e i s s i g n i f i c a n t in  effect  s i z e o f 50  microns  microns at 30°C.  Such  c y c l o n e t e s t i n g and c o u l d be o f  i n d u s t r i a l importance when water temperatures  fluctuate  significantly.  An example of t h i s might be when the source o f c y c l o n e f e e d water i s s w i t c h e d from a warm r e c y c l e s u p p l y t o water from an almost f r o z e n lake. The f a c t t h a t t h e d  c n p  s i z e was not s i g n i f i c a n t l y i n f l u e n c e d 87  by the s p i g o t s i z e would seem t o support the e x p e r i e n c e o f J u l l who  c o n s i d e r s t h a t the d(.gg s i z e i s o n l y decreased by a s p i g o t  s i z e i n excess o f the minimum s i z e r e q u i r e d t o prevent r o p i n g . Fig.  10 shows a p l o t o f the p r e d i c t e d v a l u e s of l o g d,-g  C  v e r s u s the measured v a l u e s . Equation  (b)  The p r e s s u r e r e l a t i o n s h i p o f the form used by P l i t t  was  found t o g i v e a c c u r a t e p r e d i c t i o n s o f t h e c y c l o n e i n l e t p r e s s u r e , 2 the v a l u e o f R  f o r t h i s r e g r e s s i o n being 0.987.  Equation ( c ) : The accepted r e l a t i o n s h i p f o r the bypass r a t i o i s s i m p l y to  assume  t h a t i t i s c o n s t a n t and e q u a l t o the r e c o v e r y o f  water i n the u n d e r f l o w .  T h i s assumption 73  always been found t o be a c c u r a t e  .  has, however, not  The p r e d i c t i n g e q u a t i o n  chosen f o r the f r a c t i o n o f t h e f e e d s o l i d s bypassing  classification  i n d i c a t e d t h a t as the c y c l o n e becomes loaded w i t h a l e s s d i l u t e f e e d an i n c r e a s i n g p o r t i o n o f the f e e d bypasses c l a s s i f i c a t i o n .  V  i  ^ -  S  (V^'TtCiL  4X15)  VHRSUS  OBSESVSD  VALUES  1.350  1.700  1. 550  1.^00  1. 250  Ui CD  Fig.  1 0 Comparison o f  P r e d i c t e d and Observed Values of log  dr.  nr  39 The c a l c u l a t e d 5056 p a s s i n g s i z e o f t h e feed was not d e l i b e r a t e l y manipulated  but i t v a r i e d because o f bag t o bag v a r i a t i o n s i n t h e  s i l i c a , a t t r i t i o n , some unavoidable and e x p e r i m e n t a l e r r o r .  s e g r e g a t i o n i n t h e pumpbox  The e q u a t i o n s i n d i c a t e d t h a t t h i s  v a r i a t i o n i n f e e d s i z e d i d a f f e c t t h e bypass r a t i o . 2 of R  The v a l u e  was 0.89 f o r t h i s e q u a t i o n .  'Equation (d) : The e m p i r i c a l r e l a t i o n p r e s e n t e d f o r a l p h a i n d i c a t e s t h a t i t depends on t h e volume r e c o v e r y f a c t o r O-Ry) (which i s i t s e l f a f u n c t i o n o f c y c l o n e geometry), v o r t e x f i n d e r s i z e and t h e coarseness o f the f e e d .  The f e e d percent s o l i d s term i n d i c a t e s  an i n c r e a s e i n a l p h a w i t h i n c r e a s e i n feed percent s o l i d s - an 15 unexpected c o n c l u s i o n . F a h l s t r o m concluded ! t h e o p p o s i t e 32 33 e f f e c t w h i l s t Lynch and P l i t t c o u l d d e t e c t no e f f e c t o f feed p e r c e n t s o l i d s on t h e s t e e p n e s s o f t h e e f f i c i e n c y c u r v e . I t has 71 p r e v i o u s l y been s p e c u l a t e d t h a t a l p h a may depend on f e e d s i z e P l i t t J ' S r e l a t i o n s h i p was r e j e c t e d a t t h e 0.05 s i g n i f i c a n c e The v a l u e o f R  was 0.80 f o r t h i s e x p r e s s i o n .  .  level.  F i g . 11 shows  the p r e d i c t e d v a l u e s o f l o g a l p h a p l o t t e d a g a i n s t t h e measured values. Equation ( e ) : The v a l u e o f d  Q  r e p r e s e n t s t h e p o i n t at which two almost  parallel lines intersect.  I t i s t h e r e f o r e very s e n s i t i v e t o  the s l i g h t e s t change i n d a t a around t h i s p o i n t . value o f d o f 0.72.  Q  was 2.2 microns w i t h a s t a n d a r d d e v i a t i o n on l o g d  T h i s s m a l l value o f d  i s a f u n c t i o n of cyclone Equation  The l o g mean  Q  may be an i n d i c a t i o n t h a t d  diameter.  (f):-  The e q u a t i o n f o r t h e water r e c o v e r y i n t h e underflow c o n t a i n s a term w i t h t h e s p i g o t diameter i n i t .  Because t h e  Q  Q  PRE C i CT EO V A L U E S  0.9800  {VERTICAL  AXIS)  VERSUS  OBSERVED  VALUES  • 880C  0.7600  C.680C  0 . 5 800  C.4ECC //I/////////I/////////I/////////I/////////I/////////I/////////I/////////|/////////|/////////|/////////i 0.5800 0.6800 0.7800 0.8800  C » 8 G 0 DISTANCE  eETWEEN  SLASHES  ON T H E X - A X I S  IS  0.5000E-02  F i g . 11 Comparison o f P r e d i c t e d and Observed V a l u e s o f l o g a l p h a  0.9800  41 s p i g o t was s m a l l , made o f rubber and not p e r f e c t l y r o u n d , i t 2 was d i f f i c u l t t o measure a c c u r a t e l y . T h i s e x p l a i n s t h e R o f 0.8 and s t a n d a r d e r r o r o f 66 thousandths  value  o f an i n c h .  Equations'- (q) and ( h ) : Two r o p i n g c o n s t r a i n t e q u a t i o n s were o b t a i n e d . g i v e s t h e s p i g o t s i z e at which r o p i n g would o c c u r . 88 same form as t h e graph g i v e n by T a r r  The f i r s t I t i s of the  for larger spigots.  T a r r ' s graph i n d i c a t e s t h a t f i n i t e f l o w r a t e s are p o s s i b l e through s p i g o t s o f zero d i a m e t e r .  O b v i o u s l y t h i s r e s u l t s from u n i n t e n t i o n a l  e x t r a p o l a t i o n o f s t r a i g h t l i n e s i n t o an area where t h e r e i s s i g n i f i c a n t curvature.  The r e s u l t s o b t a i n e d i n t h i s work f a l l  i n t o t h i s area near t h e o r i g i n and cannot, t h e r e f o r e , be m e a n i n g f u l l y compared w i t h h i s g r a p h i c a l e s t i m a t e s . The second r o p i n g c o n s t r a i n t s t u d i e d was t h e underflow percent s o l i d s . T h i s would be expected t o be a f u n c t i o n o f t h e v a r i a b l e s i n f l u e n c i n g t h e s o l i d s t o s l u r r y r a t i o o f an underflow which has T h e o l o g i c a l p r o p e r t i e s r e s u l t i n g i n f r e e d i s c h a r g e from t h e s p i g o t o r i f i c e . 2 The v a l u e o f R  f o r these two e q u a t i o n s were 0.73 and 0.78  respectively. The e q u a t i o n s o b t a i n e d i n t h i s study apply o n l y w i t h i n the l i m i t s over which t h e v a r i a b l e s were t e s t e d .  Outside  this  range t h e user s h o u l d proceed w i t h c a u t i o n and may f i n d Lynch's 32 thoughts on s c a l e up o f t h e hydrocyclone u s e f u l .  kZ  CONCLUSIONS A IMP RECOMMENDATIONS 1. The d temperature  5 Q C  s i z e was found t o decrease w i t h an i n c r e a s e i n  a c c o r d i n g t o t h e r e l a t i o n s h i p p r e d i c t e d f o r Newtonian  flow with d i l u t e s l u r r i e s .  The modern s e m i - e m p i r i c a l e q u a t i o n s  f o r s e p a r a t i o n at .high feed percent s o l i d s i g n o r e t h i s effect.  temperature  F u r t h e r work s h o u l d be c a r r i e d out t o check t h e e f f e c t  o f temperature  on t h e d,-^ s i z e under an even wider range o f  conditions. 2. Ulhen t e s t s were performed w i t h t h e s p i g o t a d j u s t e d so t h a t r o p i n g i s j u s t avoided t h e d^p^ s i z e was found t o be independent of the spigot s i z e . 3. The best f i t v a l u e o f t h e bypass r a t i o was found t o i n c r e a s e s l i g h t l y w i t h an i n c r e a s e i n t h e percent s o l i d s i n t h e c y c l o n e f e e d and w i t h t h e c a l c u l a t e d v a l u e o f t h e 50 percent p a s s i n g s i z e o f t h e feed. k. The r o p i n g c o n s t r a i n t e q u a t i o n s o b t a i n e d show how t h e p o i n t at which a c y c l o n e s t a r t s t o rope may be d e f i n e d m a t h e m a t i c a l l y . T h i s type o f r e l a t i o n s h i p would be u s e f u l i n t h e o p t i m i z a t i o n o r d i r e c t d i g i t a l c o n t r o l of, say, a closed c i r c u i t grinding operation. 5. C o n t r a r y t o evidence by o t h e r i n v e s t i g a t o r s , t h e parameter a l p h a , which d e s c r i b e s t h e steepness o f t h e e f f i c i e n c y c u r v e , was found t o be v a r i a b l e r a t h e r than c o n s t a n t .  An e q u a t i o n which p r e d i c t s  a l p h a as a f u n c t i o n o f o p e r a t i n g v a r i a b l e s was developed.  By making  a l p h a as l a r g e as p o s s i b l e , c l a s s i f i c a t i o n e f f i c i e n c y i n c r e a s e s . Consequently  a g r i n d i n g c i r c u i t which i n c o r p o r a t e s h y d r o c y c l o n e s  would operate more e f f i c i e n t l y t o p r o v i d e an economic b e n e f i t .  43 BIBLIOGRAPHY 1. B r a d l e y D.  The h y d r o c y c l o n e . O x f o r d , Pergaman P r e s s , 1 9 6 5 .  2. Dahlstrom D.A. "Fundamentals and a p p l i c a t i o n s o f t h e l i q u i d c y c l o n e " . Chem. Eng. P r o g . Symposium S e r i e s No. 15, M i n e r a l Engng. Techniques, 50, 1954, p. 4 1 . 3. K e l s a l l , D.F. & Holmes, J.A. "Improvement o f c l a s s i f i c a t i o n e f f i c i e n c y i n h y d r a u l i c c y c l o n e s by water i n j e c t i o n " . 5 t h . I n t e r n a t i o n a l M i n e r a l P r o c e s s i n g Congress, London, 1960. 4. K e l s a l l , D.F. and McAdam, J.C.H. "Design and o p e r a t i n g c h a r a c t e r i s t i c s o f a hydraulic e l u t r i a t o r " . Trans. I n s t n . Chem. E n g r s . London, 41_, no.2. March 1963 pp. 84-95. 5. K e l s a l l , D.F. "Some a p p l i c a t i o n s o f h y d r a u l i c c y c l o n e s i n h y d r o m e t a l l u r g i c a l r p r o c e s s e a " . T r a n s . ( S o c . M i n . Engrs) Amer. I n s t . M i n . E n g r s . N.Y. 226, no. 3, S e p t . 1963, pp. 225-231. 6. K e l s a l l , D.F., R e s t a r i c k , C . J . and S t e w a r t , P.S.B. " T e c h n i c a l note o f an improved c y c l o s i z i n g t e c h n i q u e " . P r o c . A u s t r a l a s . I n s t . M i n . M e t a l l . no.251, P a r k v i l l e , V i c , S e p t . 1974, pp. 9-10. 7. L i l g e , E.O. "Hydrocyclone fundamentals". B u l l . I n s t n . M i n . M e t a l l . no. 664 ( T r a n s . T\_), London, March, 1962, pp. 285-337. 8. D a h l s t r o m , D.A. "Cyclone o p e r a t i n g f a c t o r s and c a p a c i t i e s on c o a l and r e f u s e s l u r r i e s " . T r a n s . A.I.M.E. V o l . 184, S e p t . 1949, pp. 331-344. 9. F o n t e i n , F . J . , Van Kooy, J.G. and L e n i g e r , H.A. "The i n f l u e n c e o f some v a r i a b l e s upon h y d r o c y c l o n e performance". B r i t , chem. Engng.. London, 7, June, 1962, pp. 410-421. 10. de Kok, S.K. "Symposium on r e c e n t developments i n t h e use o f hydrocyclones i n m i l l operation - a review". J r n l . Chem. Met, and M i n . Soc. o f South A f r i c a . V o l . 56, 1956, p.281. 11. Chaston, I.R.M. "A s i m p l e f o r m u l a f o r c a l c u l a t i n g t h e approximate c a p a c i t y o f a h y d r o c y c l o n e " . T r a n s . I.M.M. 67, 1958, p. 203. ' 12. Peachey, C.G. " D i s t r i b u t i o n o f water i n l a r g e diameter c y c l o n e s under o p e r a t i n g c o n d i t i o n s ! ! I n t e r . M i n e r a l P r o c . Congress. London, 1960, p. 147. ' 13. M a r a i s , P. and Hoffman, P.A. "A p l a n t s c a l e study o f h y d r o c y c l o n e v a r i a b l e s " . J . S . AFR. I n s t . M i n . M e t a l l . J'burg 62,497-518.  44 14. Wagner,J. and Murphy, R.S. " M i n i a t u r e l i q u i d c y c l o n e s : e f f e c t s of f l u i d p r o p e r t i e s on performance". I&EG P r o c e s s Design Develop., Wash., D.C. ID, no. 3, J u l y 1971, pp. 346-352. 15. F a h l s t r o m , P.H. " S t u d i e s o f t h e h y d r o c y c l o n e as a c l a s s i f i e r " . 6 t h . I n t . M i n e r a l P r o c e s s i n g Congress, Cannes, 1963, 16. M i z r a h i J . " S e p a r a t i o n mechanisms i n d i l u t e p u l p h y d r o c y c l o n e c l a s s i f i e r s " . B r . chem. Engng, London, 1TJ, O c t . 1965, pp. 686-692. 17. Cohen, E. e t a l . "The r e s i d e n c e time o f m i n e r a l p a r t i c l e s i n hydrocyelones". Trans. I n s t n . Min. M e t a l l . (Sect. C: M i n e r a l P r o c e s s . E x t r . M e t a l l . ) , London, 75, no.2. June, 1966, pp. 129-138. 18. Mackenzie, J.M.W. and Wood, C . J . " E f f e c t o f f e e d i n j e c t i o n p o s i t i o n on h y d r o c y c l o n e performance". T r a n s . ( S o c . M i n . E n q r s . ) Am. I n s t . M i n . E n q r s , IM.Y. 247, no.4 , Dec. 1970, pp. 292-3 19. B l o o r , M.I.G. and Ingham, D.B. "Theoretical investigation of the f l o w i n a c o n i c a l h y d r o c y c l o n e " . T r a n s . I n s t n . chem. E n q r s . , London, 51_, J a n . 1973, pp. 36-41. 20. B l o o r , M.I.G. and Ingham, D.B. "On t h e e f f i c i e n c y o f t h e i n d u s t r i a l c y c l o n e " . T r a n s . I n s t n . chem. E n q r s , London, 51_, no.3. J u l y , 1973, pp. 173-6. 2 1 . B l o o r , M.I.G. and Ingham, D.B. "Turbulent s p i n i n a c y c l o n e " . T r a n s . I n s t n . chem. E n q r s , London, 53, J a n . , 1975 pp. 1-6. 22. B l o o r , M.I.G. and Ingham D.B. "The leakage e f f e c t i n t h e i n d u s t r i a l c y c l o n e " . T r a n s . I n s t n , chem. E n g r s . London, 53, J a n . 1975, pp. 7-11. 23. B l o o r , M i l . G . and Ingham, D.B. "Boundary l a y e r f l o w s on t h e s i d e w a l l s o f c o n i c a l c y c l o n e s " . T r a n s . I n s t n . chem. E n q r s . . London, 54, 1976, pp. 276-280. 24. Gupta, J.P. and G r a v e r , P.D. "Optimum d e s i g n o f h y d r o c y e l o n e s " . Chem. P r o c e s s i n g , London, 20, June 1974, pp. 38-9. 25. G e r r a r d , A.M. and L i d d l e , C . J . "The o p t i m a l s e l e c t i o n , o f m u l t i p l e h y d r o c y c l o n e systems". Chem. Enqr. no. 297, London, May 1975, pp. 295-6. 26. G e r r a r d , A.M. and L i d d l e , C . J . "Wow t o get t h e most out o f your h y d r o c y c l o n e systems". Chem. Enqr.. London, June,1976, pp. 105,107.  45  27. L u c k i e , P.T. and A u s t i n , L.G. "Technique f o r d e r i v a t i o n o f s e l e c t i v i t y f u n c t i o n s from e x p e r i m e n t a l d a t a " . 10th. I.M.P.C, 1973 I.M.M. 28. Rao, T.C. "The c h a r a c t e r i s t i c s o f h y d r o c y c l o n e s and t h e i r a p p l i c a t i o n as c o n t r o l u n i t s i n comminution c i r c u i t s " . Ph. D. T h e s i s , U n i v e r s i t y o f Queensland, 1966, u n p u b l . 29. P l i t t , L.R. "The a n a l y s i s i o f s o l i d - s o l i d s e p a r a t i o n s i n c l a s s i f i e r s " . CIM B u l l , no. 708, M o n t r e a l , A p r i l 1 9 7 1 , pp. 42-47. ;  30. R e i d , K . J . " D e r i v a t i o n o f an e q u a t i o n f o r c l a s s i f i e r reduced performance c u r v e s " . Can. M e t a l l . Q. Ottawa 1FJ, n o . 3 . J u l y - S e p t . 1971, pp. 253-254. 3,1. M u l a r , A.L. and Runnels, D.F. " T e c h n i c a l n o t e : Reduced e f f i c i e n c y e q u a t i o n s f o r c l a s s i f i e r s " . Can. M e t a l l . Q. Ottawa, 11_, no. 3, J u l y - S e p t . 1972, pp. 549-552. 32;, Lynch, A . J . and Rao, T.C. " M o d e l l i n g and s c a l e up o f h y d r o c y c l o n e c l a s s i f i e r s " . Paper p r e s e n t e d at e l e v e n t h I.M.P.C. at C a g l i a r i , I t a l y , 1975. 33. P l i t t , L.R. "A mathematical model o f t h e h y d r o c y c l o n e c l a s s i f i e r " . C.I.M. meeting, Quebec C i t y , A p r i l , 1976. 34. S c h u b e r t , H. and IMesse, T. "The r o l e o f t u r b u l e n c e i n wet c l a s s i f i c a t i o n " . 1 0 t h . I.M.P.C. 1973. 35. P i l g r i m , R.F. and Ingraham, T.R. " R e s o l u t i o n o f t h e o p e r a t i n g v a r i a b l e s o f a s m a l l h y d r o c y c l o n e " . Can. J . chem. E n g r s . . Ottawa, Aug. 1962, pp. 169-172. 36. Mitzmager A. and M i z r a h i , J . " C o r r e l a t i o n o f t h e p r e s s u r e drop through s m a l l c y c l o n e s o p e r a t i n g w i t h d i l u t e p u l p s o f v a r i o u s l i q u i d s " . T r a n s . I n s t n . chem. E n g r s . London, 42, May, 1964, pp. 152-157. 37. Nageswararao, K., Rao, T.C. and Lynch, A . J . "Throughput expressions f o r i n d u s t r i a l hydrocyclones". Technical R e p o r t . J u l i u s K r u t t s c h m i t t M i n e r a l Research C e n t r e , U n i v e r s i t y o f Queesland, July-Dec.1974. 38. Jacobsen, P.S., Sokaski/AM. and Geer, M.R. "Performance o f a screw-type, c l a s s i f i e r - c y c l o n e c o m b i n a t i o n ( i n c o a l p r e p a r a t i o n ) : a l a b o r a t o r y e v a l u a t i o n " . Rep. I n v e s t . U.S. B u r . M i n . 6109, Wash. D.C. 1962.  46 39. D r e i s s e n , H.H. and F o n t e i n , F . J . " A p p l i c a t i o n s o f h y d r o c y c l o n e s and s i e v e bends i n wet treatment o f c o a l , m i n e r a l s and m i n e r a l p r o d u c t s " . T r a n s . ( S o c . M i n . Engrs) Amer. I n s t . M i n . E n g r s . N.Y., 226, no. 1, March, 1963, pp. 101-1Q7. 40. S o k a s k i , M i c h a e l and B e e r , M.R. "Cleaning unsized c o a l i n a dense-medium c y c l o n e p i l o t p l a n t U U.S.B.M. Report o f I n v e s t i g a t i o n no. 6274, 1963. 4 1 ^ Weyher, L . and L o v e l l , H.L. "The response o f parameter v a r i a t i o n i n the hydrocyclone p r o c e s s i n g " . Trans. (Soc.,Mln. Engrs) Am. I n s t . M i n . E n g r s . , N.Y., 235, no. 4, Dec. 1966, pp. 333-340. 42. F a l c o n e r , R.A. and L o v e l l , H.L. "The response o f v a r y i n g h y d r o c y c l o n e cone a n g l e s i n f i n e c o a l c l e a n i n g " . T r a n s . ( S o c . M i n . Engrs.) Am. I n s t . M i n . E n g r s . , N.Y., 238. no. 4., Dec. 1967, pp. 346-354. 43. Sands, P., S o k a s k i , M. and Geer, M.R. "Performance o f t h e h y d r o c y c l o n e as a f i n e - c o a l c l e a r n e r " . Rep. I n v e s t . U.S. B u r . Mines 7067, Wash. D.C., J a n . 1968, 44. S m i t h , E z r a . "Performance o f h y d r o c y c l o n e s on 1#-in. x 0 c o a l ( a t L y n n v i l l e mine, I n d i a n a ) . M i n . Conqr. J . , Wash. D.C., 54, Dec. 1968, pp. 34-37. 45. Weyher, L.H.E. and L o v e l l , H.L. "Hydrocyclone washing o f f i n e c o a l " . T r a n s . ( S o c . M i n . Engrs.) Am. I n s t . M i n . E n g r s . . N.Y. 244, no. 2, June, 1969, pp. 191-203. 46. Deurbrouck, A.W. "Performance c h a r a c t e r i s t i c s o f c o a l washing equipment: h y d r o c y c l o n e s " . Rep. I n v e s t . U.S. Bur. Mines 7891. Wash. D.C., 1974. 47. Chaston, I.R.M. "Developments i n t h e t r e a t m e n t o f Malayan t i n o r e s " . I . M . P . C . 1960, p. 593. 48. P a k i a n a t h a n , S. " A p p l i c a t i o n o f j i g - c y c l o n e p l a n t s t o s m a l l t i n mines i n Malaysia!! T r a n s . I n s t n . M i n . M e t a l l . ( S e c t . A: M i n . I n d u s t r y ) . London, 7 5 , no. 2, A p r i l , 1 9 6 6 , pp. A54-69. 49. Chaston, I.R.M. "Heavy-media c y c l o n e p l a n t d e s i g n and p r a c t i c e f o r diamond r e c o v e r y i n A f r i c a ! ! 1 0 t h . I r i t . M i n e r . Process."-Conqr., London. A p r i l 1973, pp. 257-276. 50. P o w e l l , H.E. and C a l h o u n ; W.A. "The h y d r o c y c l o n e i n c l a y b e n e f i c i a t i o n " . Rep. I n v e s t . U.S. B u r . M i n . 6275, Wash. D.C., 1963.  47 51. Papacharalambous, H.G. and Sun, 5. "Cyclone c l a s s i f i c a t i o n o f a r t i f i c i a l a b r a s i v e powders".- T r a n s . ( S o c . M i n . Engrs) Amer. I n s t . M i n . E n g r s . , N.Y., 226, no. 4., Dec. 1963, pp. 461-467. 52. Visman, J . and Rozenhart, C.F.J. "A l o w - p r e s s u r e c y c l o n e f o r desanding i n d u s t r i a l w a t e r s . Tecti. B u l l . Mines B r c h . Can. TB 86, Ottawa, 1967. 53. Whltcomb, C.F. "Hydrocyclone f o r b e n e f i c i a t i n g c a l c i u m carbonate s l u d g e " . Chem. P r o c e s s Engng., London, 45, A p r i l . 1 9 6 4 , pp. 201-204. 54. P l i t t , L.R. and L i l g a , E.O. "Hydrocyclone t h i c k e n i n g w i t h f l o c c u l a n t s " . T r a n s . ( S o c . M i n . Enqrs)Am. I n s t . M i n . E n q r s . , N.Y., 238, no. 4 D e c . 1967, pp. 435-439. f T  55. Uisman, J . and Hamza, H.A. " A p p l i c a t i o n o f f l o c c u l a n t s i n h y d r o c y c l o n e s e p a r a t i o n " . C.I.M. B u l l , no. 730, M o n t r e a l , F a b . 1973, pp. 78-85. 56. Molyneux, F. " E x t r a c t i o n i n t h e h y d r a u l i c c y c l o n e " . Chem. P r o c e s s Engng, London, 43, O c t . 1962, pp. 502-510. 57. S h a s t r y , A.R. " P r e s s u r e drop s t u d i e s on two-phase f l o w through a h y d r o c y c l o n e " . I n d i a n J r n l . o f Tech. v o l . 14 June, 1976, pp. 261-264. 58. T i p p i n , R.B. and Browning, J . S . " M u l t i s t a g e c y c l o n e s f o r heavy l i q u i d c o n c e n t r a t i o n o f minerals!! T r a n s . ( S o c . M i n . Engrs.) Am. I n s t . M i n . E n q r s . , N.Y. 238, S e p t . 1967, pp. 239-244. 59. B r a d l e y D. "Design and performance o f c y c l o n e t h i c k e n e r s " . I.M.P.C. 1960. 60. B e v e r l o o , U.A., L e n i g e r , H.A. and W e l d r i n g , J.A.G. " P o t e n t i a l i t i e s of the f l a t vortex h y d r o s i f t e r " . B r i t , chem. Engng. London, 8, O c t . 1963, pp. 678-682. 61. P o w n a l l , J.H. ''Cyclones i n t h e c h e m i c a l and p r o c e s s i n d u s t r i e s " . Chem. and I n d . . London, Nov. 1961, p p . 1888-1896. 62. B u r t , R.O. "Small diameter low c o s t h y d r o c y e l o n e s " . M i n . Mag.. London, 120, March,1969, pp. 166-167 63. H u k k i , R.T. "How new g r a v i t a t i o n a l cone c l a s s i f i e r makes i d e a l coarse f l o t a t i o n f e e d by c l o s e d c i r c u i t r o d m i l l grinding". World M i n . . San F r a n c i s c o , 20, May 1967, pp. 50-52.  /  f  •  48 64. l/iaraan, J . " S t r i p p i n g s o l i d s from e f f l u e n t s w i t h a s l u g g i n g c y c l o n e " . Can. M i n . M e t a l l , B u l l , no. 661, M o n t r e a l , May 1967, pp. 533-536. 65. M u l a r , A.L. and B u l l , W.R. "Mineral processes: Their a n a l y s i s , o p t i m i z a t i o n and c o n t r o l " . Summer School T r a i n i n q Manual, 1969, onwards. 66. D r a p e r , N. and L y n c h , fi.J. "An a n a l y s i s o f t h e performance o f m u l t i - s t a g e g r i n d i n g and c y c l o n e c l a s s i f i c a t i o n c i r c u i t s " . P r o c . A u s t r a l a s , I n s t . M i n . M e t a l l , n o . 213, Melbourne, March, 1965, pp. 89-128. 67. L y n c h , A . J . , W h i t e n , W.J. and D r a p e r , N. "Developing t h e optimum performance o f a m u l t i - s t a g e g r i n d i n g c i r c u i t " . T r a n s . I.M.M. 7 6 , 169, 1967. 68. D r a p e r , N., Dredge, K.H. and L y n c h , A . J . "Operating behaviour o f an automatic c o n t r o l system f o r a m i n e r a l g r i n d i n g circuit". 9 t h . Commonwealth I.M.M. Congress, 1969. 69. P i t t s , J.D., H o l s i n g e r , S.R., Johnson, I\!.W. and C r o w e l l , D . F . " D i r e c t d i g i t a l c o n t r o l o f a primary g r a t e - d i s c h a r g e b a l l mill/hydrocyclone c i r c u i t at Ascaro's S i l v e r B e l l Mine!! A.M.I.R.A. Symposium on O p t i m i s a t i o n and C o n t r o l , B r i s b a n e , J u l y 1974. 70. L y n c h , A . J . e t a l . T e c h n i c a l r e p o r t f o r p e r i o d 1 s t . J u l y 3 1 s t . Dec. 1974. Technical Report. J u l i u s K r u t t s c h m i t t , M i n e r a l Research C e n t r e , U n i v e r s i t y o f Queensland, J u l y - D e c . 1974. 7 1 . M u l a r , A.L. and B a t e s , M.W. "Modelling o f p a r a l l e l cyclones i n t h e absence o f f l o w measurement". C.I.M. B u l l , no. 705, M o n t r e a l , J a n . 1971, pp. 51-56. 72. A l l a n , M.J. e t a l . " D i g i t a l s i m u l a t i o n o f the G i b r a l t a r g r i n d i n g c i r c u i t " . Paper p r e s e n t e d a t Annual meeting C.I.M. Vancouver, B.C., A p r i l , 1973. 1  73. F i n c h , J.A. and M a t w i j e n k o , 0. " I n d i v i d u a l m i n e r a l behaviour i n a c l o s e d g r i n d i n g c i r c u i t " . P r e p r i n t o f paper t o be p r e s e n t e d a t 106th. A.I.M.E. Annual meeting i n A t l a n t a , G e o r g i a , March,1977. 74. M u l a r , A.L. e t a l . "Mass balance o f a g r i n d i n g C.I.M. B u l l . Dec. 1976, pp. 124-129.  circuit"  49 7 5 . Brookes, G.F. e t a l . " C o n t r o l and m o d e l l i n g o f a g r i n d i n g / c l a s s i f i c a t i o n c i r c u i t " . 9 t h . Commonuiealth M i n and Met. Congress, 1969. 76. Watson, D., Crompton, R.W.G. and Brookes, G.K. " M o d e l l i n g methods f o r a g r i n d i n g / c l a s s i f i c a t i o n c i r c u i t and t h e problem o f p l a n t c o n t r o l " . T r a n s . I n s t n . M i n . M e t a l l . ( S e c t i o n C) v o l . 79, 1970, pp. 112-119. 77. P r e s g r a v e , D.K. "Development o f t h e c o n t r o l system i n s t a l l e d i n t h e new Broken H i l l C o n s o l i d a t e d L t d . C o n c e n t r a t o r , A u s t r a l i a " . 9 t h . Commonwealth M i n . and M e t a l l . Congress, 1969. 78. Bradburn, R.G. e t a l . " P r a c t i c a l approach t o d i g i t a l c o n t r o l o f a g r i n d i n g c i r c u i t a t Brenda Mines L t d . " . P r e p r i n t from Gaudin Memorial Symposium, L a s Vegas, 1975. 79. H a m i l t o n , R.E. "An approach t o t h e automation o f c o n c e n t r a t o r s " . C.I.M. Seminar, M o n t r e a l , March, 1975. 80. Webber, C B . and D i a z , L.S. "Automatic p a r t i c l e s i z e and r o d m i l l tonnage c o n t r o l a t Craigmont Mines L t d . " . Paper p r e s e n t e d a t Can. M i n . P r o c e s s . Annual m e e t i n g , O n t a r i o , J a n . 1973. 8 1 . Mokken, A.H., B l e n d u l f , G.K.I, and B l e n d u l f , K.A.G. "Study„by c o n t i n u o u s m o n i t o r i n g o f p a r t i c l e s i z e i n c y c l o n e o v e r f l o w , o f f a c t o r s i n f l u e n c i n g run-of-mine m i l l performance". J r n l . S. A f r . I n s t . M i n . M e t a l l . v o l . 7 5 , no. 10, May, 1975, pp. 249-256. 82. D r e i s s e n , H.H. and F o n t e i n , F . J . " A p p l i c a t i o n s o f h y d r o c y e l o n e s and s i e v e bends i n wet t r e a t m e n t o f c o a l , m i n e r a l s and m i n e r a l p r o d u c t s " . T r a n s . A.I.M.E. ( S o c . M i n . Enqrs.) March 1963, pp. 101-107. 83. M u l a r , A.L. " E m p i r i c a l m o d e l l i n g and o p t i m i z a t i o n o f m i n e r a l p r o c e s s e s " . M i n e r a l s 5 c i . Engng. v o l . 4., no.3, J u l y 1972, pp. 30-42. 84. N e l d e r , J.A and Mead, R. "A s i m p l e x method f o r f u n c t i o n m i n i m i z a t i o n " . Computer J r n l . . v o l . 7, 1965, pp. 308-313. 85. H a n s f o r d , G.S., Levy, C D . and deKBtk, J.W. "Rheological measurements on p u l p s from South A f r i c a n g o l d mines". J r n l . S.A.I.M.M.. March, 1976, pp. 363-369.  f  50  86. Agar, G.E. and H e r b s t , J.A. "The e f f e c t o f f l u i d v i s c o s i t y on c y l o n e c l a s s i f i c a t i o n " . T r a n s . ( S o c . M i n , Engrs) Am. I n s t . M i n . E n g r s . , N.Y. 235, no. 2., June 1966. 87. J u l l , N.A. "Parameters f o r c y c l o n e s e l e c t i o n " . Paper p r e s e n t e d at the f o u r t h annual meeting o f the Canadian M i n e r a l P r o c e s s o r s , Ottawa, J a n . 1972. 88. T a r r , D.T. " P r a c t i c a l a p p l i c a t i o n s of l i q u i d cyclones i n m i n e r a l d r e s s i n g problems". Hrebs E n g i n e e r s , Menlo P a r k , C a l i f o r n i a , 1965.  51 APPENDIX I DETAILS OF SIZE ANALYSIS PROCEDURE Introduction The s i z e a n a l y s e s r e p r e s e n t e d a c o n s i d e r a b l e p o r t i o n o f t h e e x p e r i m e n t a l e f f o r t as i t was necessary t o l e a r n t o operate a r a t h e r s o p h i s t i c a t e d p i e c e o f equipment and because s i z e a n a l y s e s were r a t h e r time-consuming.  D u r i n g t h e course o f t h i s work t h e r e  were a number o f advances made which were u s e f u l both f o r t h i s r e s e a r c h and f o r f u t u r e work.  Most o f t h e s e advances c e n t e r e d  around t h e new '8K' program r e c e n t l y s u p p l i e d f o r t h e m i n i computer  system.  There a r e a number o f l i m i t a t i o n s on t h e s i z e range t h a t t h e C e l l o s c o p e can span i n any one "range".  For t t r l s r e a s o n i t was  necessary t o a n a l y s e over t h r e e ranges each o f which-, i n t h i s c a s e , was a s s o c i a t e d w i t h a d i f f e r e n t o r i f i c e  size.  The computer reads t h e f i r s t range (range 3) i n t o t h e raw d a t a area u n t i l t h e maximum number o f counts i n any channel reaches a p r e s e n t v a l u e ( i n o u r case 2000 f o r range 3, 4000 f o r ranges 4 and 5 ) .  The o p e r a t o r then i n s t r u c t s t h e computer t o  save t h e s e v a l u e s i n t h e normal d a t a area and then c l e a r s t h e raw d a t a a r e a . Raw d a t a i s then o b t a i n e d f o r t h e second range (range 4) and t h i s i s added t o t h e d a t a a l r e a d y i n t h e normal d a t a area by s c a l i n g t h e d a t a s e t t o g i v e a good match at t h e common p o i n t . T h i s i s i l l u s t r a t e d i n f i g . 12.  52 BLENDED  RAW DATA AREA  NORMAL DATA AREA  NORMAL DATA AREA  f i g * l g Blending o f Data. ~  Once a l l t h r e e ranges have been a n a l y s e d the data i n t h e  normal area i s c o n v e r t e d t o a volume b a s i s by m u l t i p l y i n g each number o f counts by a f a c t o r which i s p r o p o r t i o n a l t o t h e volume of a sphere o f the s i z e concerned.  The f r a c t i o n o f the  total  volume i n any s i z e "channel" e q u a l s t h e counts i n t h a t "channel" divided  by t h e t o t a l " c o u n t s " f o r a l l s i z e s . I n t h e case o f t h e  o v e r f l o w s i z e a n a l y s i s i t was necessary t o use t h e Gaussian e x t r a p o l a t i o n .feature t o e s t i m a t e counts f o r s i z e s below t h e s m a l l e s t s i z e measured. The C o n t r o l Tape A c o n t r o l tape was punched on p a p e r t a p e .  The f i n a l v e r s i o n  i s the most g e n e r a l - i t i s designed t o be o f use t o f u t u r e u s e r s o f the system who may not r e q u i r e a l l t h e i n s t r u m e n t  ranges  W h i l s t t h e r e a r e advantages t o l e a r n i n g how t o use t h e C e l l o s c a p e w i t h o u t t h e use o f a c o n t r o l t a p e , t h e use o f t h i s c o n t r o l tape had a number o f advantages:a)  The o p e r a t o r i s g i v e n e x p l i c i t  i n s t r u c t i o n s as t o d i a l  s e t t i n g s , o r i f i c e Bizes and d i l u t i o n s t o be used.  b)  The o p e r a t o r i s prompted t o remember t o empty the  liquid  t r a p on the vacuum l i n e and t o a d j u s t the " n o r m a l i z e " potentiometer c)  regularly.  A l l output has p r o v i s i o n f o r t y p i n g t h e sample number and date and time i n a r e g u l a r f o r m a t .  d)  A l l samples are a n a l y s e d i n the same way  and t h e o p e r a t o r  does not have t o remember t h e o r d e r o f computer instructions. e)  The o p e r a t o r has more time t o c o n c e n t r a t e on sample s p l i t t i n g , e l e c t r o l y t e f i l t r a t i o n and o t h e r d u t i e s .  Blockage D e t e c t i o n Because a blockage o f t h e o r i f i c e mould r e s u l t i n d i s r u p t i o n o f t h e a n a l y s i s o r d i s t o r t i o n o f the s i z e d i s t r i b u t i o n , i t i s necessary t o keep a c o n s t a n t watch out f o r b l o c k a g e s .  The  latest  program had a blockage d e t e c t i o n r o u t i n e which d e t e c t e d changes i n t h e p a r t i c l e count r a t e due t o b l o c k a g e s .  T h i s f e a t u r e d i d not  work s u c c e s s f u l l y i n the two coarse s i z e ranges but i t was u s e f u l f o r the s m a l l s i z e  very  range.  Procedure The sample was d i s p e r s e d i n a s o l u t i o n o f 10% Calgon t o 4% w i t h d i s t i l l e d w a t e r . a blender.  diluted  D i s p e r s i o n was a s s i s t e d by m i x i n g i n  E x p e r i e n c e has shown t h a t the m i x i n g time i n t h e  b l e n d e r s h o u l d be as s h o r t as p o s s i b l e t o minimize sample attrition. A scoop was used t o remove samples from t h s b l e n d e r f o r d i l u t i o n w i t h sodium c h l o r i d e - sodium pyrophosphate  electrolyte.  A l l s o l u t i o n s were p r e v i o u s l y f i l t e r e d t w i c e through a 0.45 filter.  micron  54 For each range the c o r r e c t o r i f i c e was  f i t t e d to the  apparatus and t h e c u r r e n t , g a i n , l a g and t i m e r c o n t r o l s were s e t t o the v a l u e s g i v e n by the c o n t r o l t a p e , v i a the t e l e t y p e . The  s t i r r e r was  a d j u s t e d t o i t s maximum speed then slowed down,  i f n e c e s s a r y , t o prevent was  a i r bubble f o r m a t i o n .  emptied from the f l a s k i n the vacuum l i n e .  knob was  The s o l u t i o n The  function  s e t t o 3, and the n o r m a l i z i n g c o n t r o l a d j u s t e d .  c o i n c i d e n c e count was then checked and the d i l u t i o n i f necessary.  The  d i l u t i o n used was  o n l y about 1%.  adjusted  low enough t o ensure t h a t  the p r o b a b i l i t y o f two p a r t i c l e s going through the t o g e t h e r was  The  orifice  A f t e r rechecking the normalizing  s e t t i n g t h e a n a l y s i s was s t a r t e d . With the s m a l l e r o r i f i c e s i z e s i t was  necessary  to  c a r e f u l l y s i e v e out the very coarse m a t e r i a l so as t o reduce the p o s s i b i l i t y  o f blockages  occurring.  Care s h o u l d be taken not t o touch the sample c o n t a i n e r d u r i n g t h e s i z e a n a l y s i s as t h s c o u l d r e s u l t i n one's body a c t i n g as an antena f o r e l e c t r o n i c n o i s e .  55  CONTROL  SAMPLE  T A P E DATED F R I D .  26TH  NO VEMBER> 1 9 7 6  NUMBER:  D A T E AND T I M E : - PR  2000  NR ER MO NA MO NB  NR BA 0 CHANGE TO 3 0 0 M I C R O N O R I F I C E LOG 6 1/16 G2 1/8 6 . 5 SEC• E M P T Y F L A S K . * F L U S H , N O R M A L I S E * C H A N G E TO F U N C T I O N  CHANGE TO F U N C T I O N  CHECK C A L I B R A T I O N  1  3 L 2 3 56 10 3H 97 12550  CA 3 L CA 3 H  RA AN **SWITCH OU MS 8  NR ER  ON P U N C H * * *  3 & D I L . TO 5 6 0  COUNTS  56 RA FU 3  RA  PR 4000  CHANGE TO 150 MICRON ORIFICE LOG 8 1/16 G4 1/4 11.0 S E C EMPTY FLASK, FLUSH, NORMAL I SE,CHANGE TO FUNCTION 3 & DIL. TO 2200 COUI CHECK CALIBRATION 4L 17 1270 4H 118 5610 CA 4L CA AH CHANGE TO FUNCTION 1 AN **SVITCH ON PUNCH*** OU MS 8  RA IF THIS IS THE FIRST RANGE' ANALYSED, TYPE IN FU@4 AND USE READER SWITCH TO SKIP TO NEXT LEADER ON PAPERTAPE-BL 4  RA  ' FRFF' n  N  57  CHANGE TO 6 0 M I C R O N O R I F I C E LOG 8 1/4 G 6 14.5 SEC. EMPTY F L A S K , F L U S H , N O R M A L I S E , C H A N G E B A C K TO F U N C T I O N  CHECK C A L I B R A T I O N  CHANGE TO F U N C T I O N  3 & DIL•  TO 7 0 0 0 COU1  1  5L 20 5H 117  323 1270  CA 5 L CA 5H BA  4095  I F B L O C K A G E D E T E C T I O N I S NOT WANTED T Y P E T H E N T Y P E ' B A @ 0 @ ' AND R E S T A R T R E A D E R  SWITCH  OFF TAPE READER  DURING  ' @' A F T E R  SWITCHING  O F F READEI  ANALYSIS***  AN **START  PUNCH**  OU MS  8  nf  I H  1  L  1  S  ?5PE?™^  Y  °  U  T  A  P  R  E  F  I  B  E  R  S  T  F  0  R  R  E  A  M  G  E  R  E  S  T  ' A  R  S  T  T  I  0  N  DEADER AND MOVE ON T  P  G  -  T  Y  P  E  TO C O N T I N U E N O R M A L L Y S I M P L E P R E S S ' @ ' TO N.B. R E F E R S TO T H E ' A L T . M O D E ' K E Y BL 5 IF  Y O U WANT R A N G E 6 THEN  PUT I T  ™  FREE  0  NEXT  COMPUTER  CONTINUE  IN HERE BEFORE  PROCEEDING  LEADER THEN  58  MS 10 CO  V  MAKE LEADER ON NEW PAPERTAPE, SWITCH OFF AGAIN THEN ON AGAIN AS SOON AS COMPUTER HAS TYPED 'OUTPUT' STOP PUNCH WHILST COMPUTER IS STILL PRODUCING TRAILER ON TAPE. INCREASE TRAILER LENGTH MANUALLY. OU GAUSIAN EXTRAPOLATION TO BE DONE HERE BEFORE RESTARTING TAPE READER  MAKE LEADER ON NEW PAPERTAPE, SWITCH PUNCH OFF AGAIN THEN ON AGAIN AS SOON AS COMPUTER HAS TYPED 'OUTPUT'. STOP PUNCH WHILST COMPUTER IS STILL PRODUCING TRAILER ON TAPE. INCREASE TRAILER LENGTH MANUALLY. . OU CHARACTERISTICS OF CURVE FOLLOW IN THE ORDER- LOG MEAN, MODE, MEDIAN  CH CUMULATIVE PERMIL. ( I . E . % X 10) OVERSIZE FOLLOWS FOR VARIOUS MICRON SIZES CU 105D CU 75D CU 42.7D CU 31.2D CU 22.2D CU 16.2D CU 11.6D  59 CU CU CU CU CU CU CU CU CU CU CU  3.27D 4.62D 6-54D 9.25D 13.08D 18.6D 26.16D 37.0D 52.3D 74D 104.6D  NR. PG NR  STOP READER, PRESS'ALT MODE' THEN RESTART READER FOR LONG ENOUGH FOR IT TO PROMPT THE COMPUTER TO COMPLETE THE WORD 'GRAPH* FINALLY RESTART THE READER. GR A  STOP READER, PRESS ' PROMPT COMPUEER TO C THEN RESTART READER GR C  TIME:--  60  APPENDIX I I DATA FILES & DATA FOR THE PROGRAM  "CLTR2"  What f o l l o w s on t h e next 29 pages i s a l i s t i n g o f t h e d a t a used as i n p u t t o t h e program "CLTR2" w i t h one page devoted t o t h e d a t a a s s o c i a t e d w i t h each e x p e r i m e n t a l r u n .  61  L I S T I N G  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 4.2 23 24 2 5 26 2 7 28 29 30 31 32 33 34 35 36 37 38  O F  F I L E  Rl  C4:07  P . H .  F E B .  24.  1977  I D = R A L U  G E T enoFac 1 3 0 , 0 , 0 , 0 , 0 , 0 , 1, 1 , 1 , 1 , 1 , 3 7 , 1 , 1 , 2 , 2 . 2 , 2 , 2 , 3 . 3 , 3 , 4 7 , 3 . 4 . 4 . 5 , 5 , 6 , 6 , 7 , 7 , 8 , 6 0 , 8 2 9,10,11,12,13,14,15,16,17,75,19,20,22.23,25,27,29,31,33,36,95,39,41.44.47 3 51 , 5 4 , 5 8 ,62 , 6 6 , 7 0 , 119 , 7 5 , 8 0 , 8 5 , 9 0 . 9 6 , 1 0 2 , 1 0 9 , 1 1 6 , 1 2 3 , 1 3 0 , 1 5 1 , 1 3 8 , 1 4 6 , 155 4 1 6 4 , 1 7 4 , 1 8 4 , 1 9 4 , 2 0 5 , 2 1 7 , 2 2 9 , 1 9 0 , 2 4 1 , 2 5 5 , 2 6 8 , 2 8 3 , 2 9 8 , 3 1 3 . 3 3 0 , 3 4 6 .3 6 4 . 3 82 5 239,401,4 21,441,463,485.507,531,555,581,607,301,634,661,690,643,690.739 6 787,834,682,928,379,973,1015,1056,1C95,1133,1171,1210,i250.1289,i323.477 7 1 3 5 3 , 1 3 7 9 , 1 4 0 5 , 1431 , 1 4 6 0 , 1 4 9 0 , 1 5 2 0 , 1 5 4 6 , 1 570-, 1 597 ,601 , 1 6 3 4 , 1677 ,1 718 , 1 7 4 8 8 1768,1785.18 03,1821,1341,1869,756,1906,1944,1977.2003.203 6.2087,2 149,2202 9 222 7 , 2 2 2 7 , 9 5 2 , 2 2 2 4 , 2 2 4 5 , 2 2 9 8 , 2 3 7 1 , 2 4 5 7 , 2 4 7 5 , 2 4 8 2 , 2 4 6 7 , 2 4 5 0 . 2 4 5 7 , 1 1 9 9 , 2 5 0 9 10 2 6 0 8 , 2 7 3 4 , 2 8 5 8 , 2 9 6 4 , 3 0 4 7 , 3 1 1 4 , 3 1 7 4 , 3 2 3 5 , 3 2 9 9 , 1 5 0 9 , 3 3 7 0 , 3 4 4 4 , 3 5 2 1 . 3 5 9 4 11 36 5 7 , 3 7 C 6 , 3 7 4 2 , 3 7 7 C , 3 7 9 3 , 3 8 1 4 , 1 9 0 0 , 3 8 3 9 , 3 8 7 1 , 3 9 1 1 , 3 9 4 9 , 3 9 6 7 , 3 9 5 8 , 3 9 2 0 12 3 8 6 6 , 3 8 1 0 , 3 7 5 2 , 2 3 9 2 , 3 6 7 7 , 3 5 6 6 . 3 4 1 9 , 3 2 6 1 . 3 1 2 1 , 3 0 0 2 . 2 8 7 9 , 2 7 2 2 , 2 5 2 8 . 2 3 1 1 13 3 0 1 2 , 2 C 9 4 , 1 8 8 5 , 1 6 8 6 , 1 4 9 2 , 1 3 1 1 , 1 1 5 5 , 1 0 3 5 , 9 5 1 , 8 8 9 , 8 3 4 , 3 7 9 1 , 7 7 7 , 7 1 8 . 6 6 5 . 6 2 7 14 5 9 S , 5 7 5 . 5 4 9 , 5 2 8 , 5 2 5 , 4 9 1 , 4 7 7 3 , 4 6 3 . 4 7 0 , 4 5 2 .42 2 , 4 0 1 ,3 99 , 4 0 6 , 3 6 5 , 3 4 8 , 3 1 3 15 6 0 0 9 , 2 8 4 , 2 5 2 , 2 2 6 , 2 0 6 , 1 8 6 , 1 6 7 , 1 4 8 , 1 3 0 , 1 1 3 , 9 9 , 7 5 6 5 , 9 0 , 8 5 , 8 0 . 7 3 . 6 3 , 6 2 . 5 6 , 5 0 16 4 7 , 4 0 , 9 5 2 3 , 3 7 , 3 7,4 0 , 4 3 , 4 3 , 3 7 , 2 8 , 3 0 , 4 2 , 4 5 , 1 1 9 3 9 , 3 7 , 2 8 , 2 4 , 1 9 , 2 8 . 4 5 , 4 4 , 4 3 17 3 6 , 4 0 , 1 5 0 9 3 , 4 3 , 4 6 , 4 9 , 2 6 , C . O . C C C C , 2 7 0 0 3 3 , 2 8 GET E 1 1 L 3 D 1 2 3 4 5 6  2 3 9 , 0 , 0 , 0 0,0,1,3,7,9,11,301,12,12.12.13.14,16,21.2 8,36,42,379.45.47,48 5 0 , 5 2 , 5 4 , 56,58,59 , 6 0 , 4 7 7 , 6 1 , 6 2 , 6 3 , 6 5 , 6 7 , 6 9 , 7 1 , 7 2 , 73, 7 4 , 6 0 1 . 7 5 , 7 6 , 7 8 , 8 0 . 3 1 8 2 , 8 3 , 8 5 , 8 8 , 9 0 , 7 5 6 , 9 2 , 9 4 , 9 6 . 9 8 , I O C , 1 0 2 , 1 0 4 , 1 0 8 , 1 1 2 . 1 1 6 , 95 2 . 1 2 0 , 1 2 4 . 1 2 7 130,134,140,14 5,151,156,160,1199,163,166,171,176,183,189,197,20 5.215,224 1509,232,240,250,261,274,290,308,328,351,376,1900,403,431,463,500,544,599 664,738,821,913,2392,1017,1137,1275,1427,1591,1764,1947,2142.2348,Z558 7'3012,2763,2953,3127,3284,3425,3546,3645,3723,3786,3845,3791,3901,3946 8 3 9 6 7 , 3 9 5 9 , 3 9 2 6 , 3 3 8 3 ,3 8 4 1 , 3 8 0 1 , 3 7 6 4 , 3 7 2 7 . 4 7 7 3 . 3 6 8 0 , 3 6 1 1 , 3 5 1 6 , 3 4 0 2 , 3232 9 3 1 6 2 , 3 0 3 7 , 2 9 0 7 , 2 7 7 9 , 2 6 6 e , 6 0 C 9 , 2 5 7 3 , 2 4 6 9 , 2 4 0 8 , 2 3 2 7 , 2 2 3 1 , 2 1 1 2 , 1 9 7 3 , 1324 10 1 6 8 4 , 1 5 6 9 , 7 5 6 5 , 1 4 7 9 , 1 4 0 7 , 1 3 2 9 , 1 2 3 3 , 1 1 2 7 , 1 0 1 4 , 9 1 1 , 8 4 2 , 8 0 2 , 7 6 5 , 9 5 2 3 . 7 2 6 11 6 7 1 , 5 8 6 , 4 8 7 , 3 5 8 , 3 4 5 , 3 1 5 , 2 8 0 , 2 5 0 , 2 4 1 , 1 1 9 8 9 , 2 4 4 , 2 3 0 , 1 6 4 , 8 8 , 5 6 , 8 1 , 8 6 , 9 3 , 9 9 12 8 0 , 1 5 0 9 3 , 5 7 , 6 1 , 3 2 , 3 5 , 3 7 , 0 , 0 , 0 , 0 , 0 GET C L T R 2 lfcC DATA 1 1 , 0 . 7 5 , " C . 2 3 , 1 . 5 , 22.6 17C DATA 2 8 0 , 1 4 7 4 7 , 1 2 3 7 . 7 , 9 8 4 , 771 16C F I L E E l 1 0 F 190 F I L E E11U 195 F I L c RLM1 197 B 7 = C M D ( " * E M P T Y i N C R U N l i a D " )  62  LISTING  1 2  3 4 5 6 7 8 ~9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 7 28 29 30 31 32 33  OF  FILE  C4:07  R2  P.K.  2 4 , 1977  IO=RALU  GET E120FSC 1  23,0,0,1,1,1,1,1,1,1,1,30,1,2,2,2,2,2,3,3,3,3,37.4,4,4,5,5,5,6,6,7,7,47,8  2 9,9,10,11.12.13.13,14,15,60,17.18,IS,20,22,23,25,27,28,30,75,32,34,37,39 3 41 , 4 4 , 4 7 , 5 0,53,56,95,59 ,63,67 ,71 ,75 ,7 5 , 8 4 , 8 9 , 9 4 , 9 9,119,105,111,117, 124 4 130,13 7,145,153,161,i69,151,178.187,197,207,217,228.239,251,263,276,190 5 289,303,317,332,34 7,363,3 79,3 96,413,422,2 39,450,4 70,490.510.531.5 53.5 76 6 599.623,6<i8,301,6 73,6 99,726,667.714,761,806,851,898,944,379,988,1029,1073 7 1119,1167,1212,1248,12 74,12 54,1312,477,1335,1365,1401,1436.1466.1489.1508 8 1531,1562,1556,601,1627,1650,1667,1684,1707,1737.1770,1802.1826,1342,756 9 1857,1878,1510,1545,1986,2025,2060,2050,2114.2134,952.2156.2189.2220,2268 1 0 2291,22 57,2294,2292,2307,2 34 6,1199,2412,2492.2566,2624,2671,2723,2 738 1 1 2856,2 521,297 5,1505,30 26,3082,3142,3197,3241.3275.3305,3337.3374,3413 1 2 1900,3474,3547 ,3628,37C3.376C,3758,5822,3836,3845,3853 ,2392.3872.3905 1 3 3944,3 567,3960,392.",38 81,3869,3394,3923,3012,3909,3335,3738,3668,3626 1 4 3563,3429,3223,2951,2777,3791,2583,2384,2163,1938,1742,1585,1441,1279 1 5 1 1 C 2 , 9 3 6 , 4 7 7 3 , 802,697,608, 532.471,4i5,363,299,235, 185,60C9,153,131,113 1 6 5 8 , S 3 , 7 C , 6 2 , 5 5 , 4 9 , <*3 ,7565,37 ,3 3,29,25. 21 .18, 16,12.9, 3 . 9 5 2 3 . 8 . 6 , 2 . 2 . 2 . 3 . 6 17 6,7,3,H989,0,4,9,10,5,0,C,0,0,0,15053,8,S,9,0,0,0.0.0,0,0,301904,29 GET E12U3D 1 2 3 9 , C , 0 , C , 0 , 0 , 1 , 4 , 1 0 , 16,2 1,301,24,25,26,27,29 , 3 1 , 3 3 . 3 5 , 3 7 . 3 9 , 379,41,42,44 2 4 6 , 4 8 , 4 5 , 51,52, 53,54,477, 5 5 , 5 5 , 56,57. 58,59,61,62,63.64,601.65.66.67,67.69 3 70,71,72,73,75,756,76,78,79,81,82,84,86,88,90,91,552,93,95,57,100,102.104 4 106, 108, 112, 116,1155, 12C, 124, 126,128, 131 , 135,140,145,151 ,157.1509 ,162 ,169 5 175,182,189,15 7,205,213,2 22,2 31,1900,242,256,271,286,301,316.331.343.367 6 385,2392,414,442,4 73,507,544,587,634,686,744,812,3012,851,981,1030,1185 7 1258,1420,1556,1707,1874,2052,3791,2235,2432,2630,2830,3027,3216,3392 8 3553,3651,3 798,4773,3375,3927,3958,39 67,3947,3399,383 5,37 71,3713,3661 S 6005,3601,3 518,3409,3290,3174,30 66,2957,2 834,2696,2 54 7,75 65,2408,22 35 1 0 2160,2036,1515,1608,1707,1605,1509.1395.5523.1265.1135.1018.529.833,707 1 1 559,452,413,35 7,115 89,376,33 3 , 2 82.221,172,138,124,106,113,122,1509 3,98 12 105,75,40,C,0,C,0,0,C,15S5t5,15 G E T CLTR2  34 35  17C OATA 290, 23516, 512.6, 2023, 502.2 16C FILE E12GF  1 6 C DATA  12,  36 J7  15C F I L E 195 FILE  F.12U  36  FEE.  1 . 2 5 , 0.16,  BLM2 157 B7=CMD("£EMPTY2i\IC  2 . 3 ,  20.1  .  RUM23C")  63  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 2 2 3 2 4 2 5 26 2 7 2 8 2 9 30 31 32 33 34 35 36 37  •  CF  FILE  R3  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E13CF3C 1 30,1,1,1,1,1,1,1,2,2,2,37,2.2,3,3,3,4,4,5,5,6,47,6,7,7,8,9,10,10,11,12.13 2 60,15,16.17,19,20,22.24,26,28,2 0,75,3 2,35,37,40,43,46.50,54,5 8.62,95.66 3 71,76,81 ,87,93,59,106 ,113,120,119,128,136,145, 154,164,174,185,156,208,221 4 151,234,247,262,2 77,2 52,309,326,344,3 62,382,190,402,423,445,467,491,516 5 541,56 7,595,622,239,6 52,6 8 2 . 7 1 4 , 7 4 6 , 7 7 9 , 8 1 3 . 8 4 8.8 85,922,960,301.9 59,1040 6 1 0 8 1 , 1 0 1 7 , 1 1 1 1 , 1 2 0 1 , 1 2 7 7 , 13 37 , 1 3 3 5 , 1 4 2 6 , 3 7 9 , 1 4 6 3 , 1 5 0 1 , 1 5 4 5 , 1 5 5 7 , 1 6 5 4 . 1 7 1 1 7 176 5 , 1 8 1 6 , 1 8 6 6 , 1 5 1 8 , 4 7 7 , 1 5 7 3 . 2 0 2 9 . 2 0 6 0 , 2 1 2 0 , 2 1 5 4 , 2 1 8 7 , 2 2 2 7 , 2 2 7 6 , 2 3 2 7 , 2 3 7 7 8 6 0 1 , 2 4 2 2 , 2 4 6 4 , 2 5 0 2 , 2 5 3 4 , 2 5 6 2 , 2 5 8 8 , 2 6 1 5 , 2 6 5 8 , 2 7 0 4 , 2 7 5 3.7 5 6 , 2 8 0 0 , 2 8 4 4 . 2 882 S 2514,2935,2558,2584,3025,3057,3172,952,3227,3243,3229,3214,3230,3289,3374 10 3 4 4 8 , 3 4 8 2 , 3 4 7 9 , 1 1 9 9 , 3 4 7 5 , 3 5 1 0 , 3 5 9 3 , 3 7 0 1 , 3 8 0 4 , 3 8 8 7 , 3 9 4 3 , 3 S 6 8 , 3 9 6 3 , 3 9 4 1 11 1 5 0 9 , 3 5 1 1 , 3 3 7 6 , 3 8 2 9 , 3 7 6 7 , 3 6 9 4 , 3 6 1 6 , 3 5 3 2 , 3 4 3 9 , 3 3 2 5 , 3 1 5 5 , 1 5 0 0 , 3 0 4 5 , 2 8 6 7 12 2 6 7 3 , 2 4 7 1 , 2 2 6 7 , 2 0 6 1 , 1 8 6 6 , 1 6 9 6 , 1 5 6 4 , 1 4 5 8 , 2 3 9 2 , 1 3 5 5 , 1 2 3 8 , 1 1 1 0 , 9 8 9 , 8 8 7 , 8 0 3 13 7 2 9 , 6 5 9 , 5 9 1 , 5 2 6 , 3 0 1 2 , 4 6 3 , 4 0 8 , 3 6 4 , 3 3 6 , 3 1 9 , 3 0 6 , 2 9 0 , 2 6 5 , 2 3 2 . 2 0 3 , 3 7 9 1 , 1 8 9 14 1 £ 5 , I E 7 , 1 7 C , 142 , 1 1 8 , 1 1 2 , 1 2 4 , 1 4 3 , 1 5 3 , 4 7 7 3 , 1 4 3 , 1 1 8 , 9 1 , 6 9 , 5 1 , 3 3 , 1 6 , 4,0,0 1 5 6 0 0 9 , 0 , C , 0 , 0, 0 , C , 0 , 0 , 0 , 0 , 7 5 6 5 , C C O . C , C . C O , 0 , 0 , 0 , 9 5 2 3 . 0 , 0 , 0 . 0 , 0 . 0 . 0,0.0 16 0,11989,0,0,0,0,0,0,0,CO,0,15093,0,0,0,0,0,0,CO,0,0,268716,23 GET E13USD 1 235,oi0,0,0,0,1,4,9,13,16,301,17,17,17,17,18,20.21,22,24,25,379,27,29,31 2 3 2 , 3 4 , 3 5 , 3 6 , 3 8 , 3 9 , 4 1 , 4 7 7 , 4 3 , 4 6 , 4 8 , 5 0 , 5 2 , 5 4 , 5 6 , 5 7 , 5 9 , 6 2 , 6 0 1 . 6 4 , 6 7 , 6 9 , 7 1 . 72 3 7 3 . 7 6 , 7 S , 8 3 , 87, 756, 5 0 , 9 3 , 5 6 , 1 C O , 1 C 4 . 1 C 7 , 1 1 0 , 1 1 2 , 1 1 6 , 1 2 1 , 9 5 2 , 1 2 8 , 1 3 3 , 1 3 8 4 142,14 8,156,166,176,186,157.1199,209.224,241.260,284,311,343,378,420,46 3 5 1 5 0 5 , 5 2 4 , 5 8 5 , 6 5 1 , 7 2 4 , 8 0 5 , 6 5 7 , 5 9 8 , 1 1 0 7 , 1 2 2 1 , 1 3 3 6 , 1 9 0 0 , 1 4 4 9 , 1 5 6 4 . 1 6 35.1816 6 1 9 5 2 , 2 0 8 9 , 2 2 2 5 , 2 3 6 3 . 2 50 2 , 2 6 3 7 , 2 3 9 2 , 2 7 6 1 , 2 8 7 4 , 2 5 8 1 , 3 0 8 3 , 3 1 7 9 , 3 2 6 6 . 3 3 4 6 7 3424,35C1,35 75,2 012,363 7,3686,3722,3752,3786,3829,3875,3915.3942,3959 E 3 7 5 1 , 3 5 £ 8 , 3 5 6 1 , 2 5 2 6,3 6 6 1 , 3 7 3 0 , 3 7 0 7 , 3 6 5 4 , 3 6 1 4 , 3 5 7 6 , 3 5 2 9 , 4 7 7 3 , 3 4 7 2 , 3 4 0 2 9 3311,3155,3066,2941,2 836,2 756,268 5,2607,6 009,250 8,2392,22 63.2151,2045 10 1 9 4 0 , 1 6 3 0 , 1 7 1 8 , 1 6 1 2 , 1 5 1 0 , 7 5 6 5 , 1 4 0 4 , 1 3 0 1 , 1 1 9 4 . 1 0 8 6 , 9 8 2 , 8 9 9 , 8 4 4 , 7 9 3 , 7 3 0 11 6 4 7 , 9 5 2 3 , 5 6 2 , 5 0 5 , 4 72,4 5 1 , 4 1 4 , 3 6 0 , 3 1 7 , 2 6 5 , 1 9 3 . 1 3 4 , 1 1 9 8 9 , 1 0 4 , 1 1 1 , 1 2 0 , 1 1 2 12 86,55,35,42,90,57,15093,52,27,29,64,34,0,0,0,0,0 GET CLTR2 16C CATA 1 3 , 0 . 7 5 , 0 . 3 8 , 1 6 , 10.0 1 7 C DATA 2 8 0 , 1 9 4 5 C , 1 8 3 5 , 9 0 0 . 7 , 1222 180 FILE E130F 150 F I L E E13U 1 5 5 F I L E RUN 1 3 157 67=CMC("2EMPTYSNC RUN13aD")  64  LISTING 1 2 3 4 5 6 7 8 9 i.0 11 x2 13 14 • 15 it 17 18 19 20 21 2 2 23 . 24 2 5 26 27 2 8 29 30 31 32 33 34 35 36 37 38  OF GET  FILE  R4  C4:07  P.M.  FEB.  2 4 , 1977  IO=RALU  E140FSD  1 1 9 , 0 , 0 , 1 , 1 ,1 , 1 , 1 , 1 , 1, 1 , 2 3 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 . 3 , 4 , 3 0 , 4 , 4 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 9 , 3 7 , 9 2 10,11,12,13,14,15,16,17,18,47,19,21,22,24,26,28,29,31,34,36,60,38,41,44 3 47,50,53,56,60,64,6 8,75,72,77,81,86,92,97,103,109,115,122,95,129,15 6,144 4 1 5 2 , 1 6 1 , 1 7 0 , 1 7 9 , 1 8 9 , 1 9 9 , 2 0 9 , 1 1 9 , 2 2 0 , 2 22,2 4 4 , 2 57 , 2 7 0 , 2 8 3 , 2 9 7 , 3 1 2 , 3 2 7 . 3 4 3 5 151,360,377,394,413,432,451,472,453,515,537,190,560,584,609,635,661,688 6 716,744,774,804,239,835,866,859,932,966,1001,1037,1074,1111,1149,301,1188 7 1227,126€,1110,1188,1271,1353,1430,1502,1569,379,1633.1695,1766,1829,1886 8 1 9 3 5 , 1 9 6 1 , 2 02 5 , 2 0 6 6 , 2 1 0 0 , 4 7 7 , 2 1 3 2 , 2 1 6 5 , 2 2 1 2 , 2 2 6 0 , 2 3 0 6 , 2 3 4 6 , 2 3 8 4 , 2 4 1 9 . 2 4 5 2 5 2 4 8 1 , 6 0 1 , 2 5 0 7 , 2 52 9 , 2 5 4 8 , 2 5 6 8 , 2 5 9 9 , 2 6 4 8 , 2 7 0 9 , 2 7 6 6 , 2 8 0 4 . 2 82 2 . 7 5 6 , 2 8 2 9 , 2 8 4 4 IC 2677,2529,2982,3018,3030,3036,3061,3110,952,3165,3208,3236,3263,3299 11 3 3 4 0 , 3 3 8 2 , 3 4 2 1 , 3 4 5 6 , 3 4 8 6 , 1 1 9 5 , 3 5 1 0 , 3 5 3 2 , 3 5 5 8 , 3 5 9 3 , 3 6 3 3 . 3 6 7 6 , 3 7 2 1 . 3 7 7 2 12 3 8 2 5 , 3 8 7 5 , 1 5 0 5 , 3 9 1 6 , 3 9 4 8 , 3 9 6 7 , 3 9 6 5 . 3 9 3 4 , 3 8 8 1 . 3 8 1 4 , 3 7 3 7 , 3 6 4 4 , 3523 . 1 9 C 0 13 3 3 6 6 , 3 1 6 5 , 3 0 0 2 , 2 8 2 4 , 2 6 5 8 , 2 4 9 5 , 2 3 2 8 , 2 1 5 4 , 1 9 7 5 , 1 7 8 5 , 2 3 9 2 , 1 5 8 2 , 1 3 7 8 , 1 1 9 7 14 1 0 5 9 , 9 6 2 , 8 8 3 , 8 0 1 , 7 0 4 , 6 0 0 , 5 0 4 , 3 0 1 2 , 4 3 4 , 3 9 7 , 3 7 8 , 3 4 6 , 2 5 2 , 2 1 9 , 1 5 9 , 1 3 3 , 1 3 7 15 1 4 5 , 3 7 5 1 , 1 4 7 , 1 2 7 , 1 0 1 , 8 2 , 7 4 , 7 1 , 6 5 , 5 2 , 3 6 , 2 5 . 4 7 7 3 . 2 3 , 3 2 . 4 6 . 5 5 . 5 1 , 3 6 . 1 7 , 5 , 0 16 C , 6 C 0 9 , C , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7 5 6 5 , C O , C O , C O . 0 , 0 . 0 , 0 , 9 5 2 3 , 0 . 0 ,0 , 0 , 0 , 0 , 0 . 0 17 0 , 0 , 1 1 5 8 9 , 0 , 0 , C O , C O . C O . 0 , 0 , 1 5 09 3 , C O , 0 , 0 , 0 , C C , 0 , 0 , 0 , 2 3 6 3 3 9 , 3 0 GET E 1 4 U S D . 1 239,0,0,0,0,0,2,6,13,20,24,301,26,27,27,28,30,32,35,37.39,41,379,43,45,47 2 4 8 , 5 0 , 5 1 , 5 2 , 5 4 , 5 5 , 5 7 , 4 7 7 , 5 8 , 6 0 , 6 2 , 6 3 , 6 4 , 6 5 , 6 7 . 6 9 , 7 1 .7 3 .6 0 1 , 7 5 , 7 7 , 7 8 , 8 0 ,82 3 85,67,85,91,93,7 56,96,55,103,106,110,114,117,121,124,127,55 2,130,13 5,140 4 146,152,158,163,168,176,186,1199,196,206,215,223,233,247,263.283,30o,334 5 1505,365,411,455,512,572,641,722,813,515,1023,1900,1137,1258,1385.1518 6 1 6 5 3 , 1 7 9 2 , 1 9 3 7 , 2 0 9 0 , 2 2 5 0 , 2 4 0 8 , 2 3 9 2 , 2 55 5 , 2 6 8 9 , 2 8 1 3 . 2 9 5 4 , 3 05 5 , 3 1 7 7 , 3 2 97 7 3410,3512,3599,3012,3668,3723,3771,3817,3861,3899,3931,3954.3966.3967 8 3791,3958,3941,2518,3686,3851,3816,3785,3750,3692,3605,4773,3497,3398 9 3327,3283,3240,2181,3101,3013,292 8,2855,6009.2791,2724,2638.2528,2396 10 2 2 5 5 , 2 1 2 1 , 2 0 1 2 , 1 9 2 8 , 1 8 6 1 , 7 5 c 5 , 1 7 9 4 , 1 7 1 9 , 1 6 3 2 , 1 5 3 3 . 1 4 1 9 , 1 2 9 6 , 1 1 8 8 . 1 1 0 3 11 1 0 3 5 , 5 7 7 , 9 5 2 3 , 9 2 5 , 8 6 1 , 7 9 1 , 7 3 1 , 6 9 4 . 6 4 8 , 5 7 2 . 4 7 1 , 3 8 7 . 3 2 7 , 1 1 9 8 9 , 2 9 6 , 2 8 8 , 2 4 7 12 1 8 2 . 1 5 5 , 1 7 1 , 1 8 3 , 1 7 4 , 1 6 3 , 1 5 0 , 1 5 0 9 2 , 1 3 4 , 1 1 5 , 9 2 , 6 6 , 0 , 0 . 0 . 0 . 0 . 0 . 2 1 6 8 2 0 . 1 9 GET C L T R 2 1 6 0 CATA 1 4 , 1 . 2 5 , 0 . 3 9 , 1 4 . 5 . 7 1 7 C DATA 3 0 0 , 1 4 3 3 4 , 1 4 5 4 , 7 7 6 . 7 , 977.9 180 FILE E14CF 150 FILE E14U 1 5 5 F I L E RUN 14 1 5 7 B7=CMC( "SSEMPTYSNC R U N 1 4 a C " )  65  LISTING 1 2 3 4 5 6 7 8 9 10 11 j.2 j.3 14 15 A 6 17 18 15 20 21 22 2 3 24 25 26 2 7 28 29 3 0 31 32 3 3 34 35 36 37 38 35 40 41 42 43  .  GF  FILE  R5  '  04:07  P.M.  FEB.  24,  1577  ID=RALU  GET E 1 5 0 F 3 D 1 14,0,0,6,3,3,3,3,3,4,4,18,4,4,5,5,5,6,6,7,7,8,24,8.9,9,10,10,11,11,12,13 2 1 4 , 3 0 , 1 4 , 1 5 , 1 6 , 1 7 , I E , 1 9 , 2 0 , 2 1 , 2 3 , 24 , 3 7 , 2 5 , 2 7 , 2 8 , 2 9 , 3 1 , 3 3 , 3 4 , 3 6 , 3 8 , 4 0 , 4 8 3 42,44,4 7,49,5 2,54,57,60.6 3.66,59,69,72,76,79,83.8 7,91,95,100,104,75,109 4 1 1 4 , 1 1 9 , 1 2 4 , 1 3 0 , 1 3 6 , 1 4 2 , 1 4 8 , 1 5 4 , 1 6 1 , 9 5,168 , 1 7 5 , 1 8 2 . 1 9 0 . 1 9 8 . 2 0 6 . 2 1 4 , 2 2 3 5 2 3 2 , 2 4 1 , 1 1 9 , 2 5 1 , 2 6 1 , 2 7 1 , 2 8 2 , 2 5 3 , 3 0 4 , 3 1 5 , 3 2 7 , 3 4 0 , 3 5 2 , 1 5 1 , 3 6 5 , 3 7 9 , 3 9 3 , 4 07 6 421,436,452,467,484,500,190,517,535,553.571.590.609.629,649,670,691,239 7 712,734,7 57,780,604,828,852,877,902,928,301,955,962,1009,555,595,1006 8 10 5 4 , 1 0 6 2 , 1 1 2 0 , 1 1 7 3 , 3 7 9 , 1 2 3 3 , 1 2 8 9 , 1 3 4 0 , 1 3 8 5 , 1 4 2 9 . 1 4 7 4 , 1 5 1 9 . 1 5 6 3 , 1 6 0 6 , 1 6 4 8 9 477,168 8,1720,1741,17 50,1754,1761,177 6,1806,1839,18 73,6 01,19 00,19 21,1940 IC 1555,1580,2004,2031,2059,2C8C,2052,756,2100.2117,2150.2188.2218,2237 1 1 225 5 , 2 28 4 , 2 3 2 4 , 2 3 6 0 , 5 52 , 2 37 8 , 2 3 7 0 , 2 3 4 5 , 2 3 3 9 , 2 3 6 2 , 2 4 1 6 , 2 4 7 9 , 2 5 2 8 , 2 556 12 2 5 7 0 , 1 1 9 9 , 2 5 8 0 . 2 5 8 8 , 2 6 0 5 , 2 6 5 1 , 2 7 4 1 , 2 8 6 4 , 2 9 8 4 , 3 0 6 5 , 3 1 0 2 , 3 1 1 5 , 1 5 0 9 , 3 1 3 6 13 3 1 7 9 , 3 2 3 6 , 3 2 5 0 , 2 3 3 3 , 3 3 7 4 , 3 4 2 3 , 3 4 7 4 , 3 5 1 2 , 3 5 2 9 , 1 9 0 0 , 3 5 3 5 , 3 5 5 0 . 3 5 7 3 , 3 6 0 7 14 3 6 3 1 . 3 6 5 8 , 2 7 0 2 , 3 7 6 1 , 3 8 1 3 , 3 8 3 5 , 2 3 9 2 , 3 6 3 9 , 3 8 3 0 , 3 8 2 4 , 3 8 1 8 , 3 8 1 1 . 3 8 0 5 , 3 8 0 2 15 3 8 0 3 , 3 8 0 8 , 382 5 , 2 0 1 2 , 3 8 6 3 , 3 9 1 6 , 3 9 6 1 , 3 5 6 8 , 3 9 2 3 , 3 8 2 5 . 3 7 0 1 , 3 5 5 5 . 3 4 3 5 , 3 3 5 3 16 3 7 5 1 , 3 2 1 4 , 2 2 8 7 , 3 2 2 5 , 2 1 6 2 , 3 0 8 5 , 3 0 4 1 , 3 0 2 7 , 3 0 0 1 , 2 5 1 6 , 2 7 7 1 , 4 7 7 3 , 2 6 0 9 , 2 4 8 3 17 2 4 2 2 , 2 4 1 8 , 2 1 3 9 , 2 1 7 8 , 2 1 1 4 , 1 9 9 5 , 1 8 7 0 , 1 7 6 1 , 6 0 0 9 , 1 6 8 3 . 1 6 1 4 . 1 5 3 4 , 1 4 3 7 , 1 3 3 5 16 1 2 4 7 , 1 1 5 7 , 1 0 6 0 , 5 6 1 , 8 6 6 , 7 5 6 4 , 7 8 5 , 7 1 7 , 6 4 9 , 5 7 6 , 4 5 8 , 4 2 3 , 3 5 2 , 2 3 5 , 2 2 5 , 1 7 8 , 5 5 2 3 15 1 5 0 , 1 3 5 , 1 1 6 , 8 6 , 5 2 , 2 9 , 2 2 , 1 4 , 9 , 1 0 , 1 1 9 8 5 , 1 1 , 1 2 , 1 3 . 1 4 , 1 6 , 8 , 9 , 9 , 2 0 , 1 0 , 1 5 0 9 3 . 0 2C 1 4 , 1 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 8 1 4 3 2 , 3 1 . 3 GET E 1 5 U S D 1 2 3 9 , 0 , 0 , 0 , 0 , 1 0 , 3 4 , 7 3 , 1 1 6 , 1 5 1 , 1 7 3 , 3 0 1 , 1 6 5 ,1 9 5 , 2 0 6 , 2 2 1 , 2 3 7 , 2 5 4 , 2 7 1 , 2 8 8 , 303 2 217,275,2 32,349,366,382,39 7,408,417,424,431,442,477,456,474,492,507,517 3 521,520,516,514,517,601,52 7,544,5 60,5 72,579,585,555,607.617,621,7 56.618 4 614,616,632,662,658,7 24,733,729,728,552,740,761,774,769,750.736,746,785 5 636,8 80,1195,5 05,516,52 7,545 , 5 7 0 , 9 9 6 , 1 0 2 0 . 1 0 4 1 , 1 0 6 3 . 1 0 8 9 , 1 5 0 9 . 1 1 1 6 , 1 1 4 1 6 1 1 6 1 , 1 1 8 1 , 1 2 0 9 , 1246, 1 2 8 8 , 1 3 2 3 , 1 3 4 6, 1 3 6 6 , 1 5 0 0 , 1 3 8 8 , 1 4 1 8 , 1 4 5 5 , 1 4 9 1 , 1521 7 1544,1566,1597,1643,1700,2392.1754,1751,1812,1832.1866,1918,1973,2021 8 2058,2054,3012,2137,2187,2 238,2278,23 01,2311,2315,234 0,2374,2 413.3791 9 2 4 4 7 , 2 4 8 1 , 2 5 2 5 , 2 6 0 0 , 2 6 7 8 , 2 7 2 7 , 2 718,26 5 8 , 2 591,2 56 7 . 4 7 7 3 , 2 6 0 0 , 2 6 53.2672 10 2 6 4 5 , 2 6 0 7 , 2 6 0 3 , 2 9 0 5 , 2 5 7 8 , 3 0 3 5 , 3 0 8 1 , 6 0 0 9 , 3 1 1 4 , 3 1 5 3 , 3 2 0 9 , 3 2 8 4 , 3 2 5 8 , 3 4 0 3 11 3 4 3 9 , 3 4 7 1 , 2 5 2 6 , 2 6 0 4 , 7 5 6 5 , 3 6 9 2 , 3 78 7 . 3 6 5 5 , 4 0 3 1 , 4 1 6 7 . 4 2 7 5 , 4 3 3 7 . 4 3 6 3 , 4 3 5 5 12 4 3 2 2 , 9 5 2 3 , 4 2 3 1 , 4 0 8 9 , 3 9 1 0 , 3 6 9 8 , 3 - , 5 6 , 3 1 8 3 . 2 8 9 5 , 2 6 2 6 . 2 3 7 2 . 2 1 0 7 . 1 1 9 8 9 , 1 8 0 1 13 1 5 0 5 , 1 2 4 8 , 1 0 7 0 , 9 5 5 , 6 6 2 , 7 £ 2 , 6 2 1 , 5 0 3 , 4 0 4 , i 5 C 9 3 , 3 2 9 , 2 8 7 . 2 1 3 , 1 5 1 , 5 3 , 0 , 0 , 0 . 0 14 0 , 2 8 3 8 5 5 , 1 5 GE1 CLTR2 1 6 0 CATA 1 5 , 0 . 7 5 , C . 1 6 , 1 . 0 , 2 1 . 3 1 7 0 DATA 3 1 0 , 1 4 7 1 0 , ' 9 2 0 . 6 , 7 0 7 7 , 6 2 8 . 3 180 F I L E E150F . 190 F I L E E15U 155 F I L E RLN15 1 5 7 B7 = C M C ( " S S S K P T Y S N C R U N I S S D " )  66  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i.6 17 i.6 15 2C 21 22 23 24 25 26 27 2 8 2 9 3 0 j l j2 33 34 35 36 37 38 39 4C 41  OF GET  .  FILE  R6  04:07  P.P.  FEB. 2 4 .  1977  ID=RALU  E16CF5D  1 3 7 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 4 7 , 2 , 2 . 3 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6 0 , 7 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 . 14 2 16,75,17,19,20,22,24,27,29,32.34,3 7,9 5,41.44,48,52.56,60.65,71,76,82,119 3 8 6 , 9 5 , 1 0 2 , 1 1 0 , 1 1 8 ,127, 1 3 6 ,146, 1 5 6 , 1 6 7 , 1 5 1 , 1 7 9 , 191 , 2 0 4 , 2 1 8 , 2 2 2 , 2 4 7 , 2 6 3 , 2 8 0 4 2 9 8 , 3 1 7 , 1 5 0 , 33 6 , 3 5 7 , 3 78 , 4 0 1 , 4 2 4 , 4 4 9 , 4 7 4 , 5 0 1 , 5 2 9 , 5 5 8 , 2 3 9 , 5 8 8 , 6 2 0 , 6 5 2 , 6 86 5 721,757,795,833,8 74,915,301,9 57,1001,1046,1053,1140,1189,12 39.1290.1343 6 1356,375,1451,1506,1715,1715,1718,1738,1773,1814,1846,1861,477,1866.1876 7 1 9 0 0 , 1 9 4 0 , 1 5 8 7 , 2 C 2 9 , 2 0 6 2 , 2 0 9 3 . 2 1 2 5 , 21 7 8 , 6 0 1 , 2 2 3 3 , 2 2 8 6 , 2 3 2 7 . 2 3 5 8 , 2 3 8 5 , 2 4 1 5 8 2 4 5 5 , 2 5 0 7 , 2 5 7 0 , 2 6 3 5 , 7 56 , 2 6 8 9 , 2 7 2 7 , 2 75 5 , 2 3 0 2 , 2 8 6 4 , 2 9 3 1 , 2 9 8 5 , 3 0 2 2 , 3 C 5 7 , 3 1 0 3 5 552,3160,3212,2247,3266,3285,3323,3381,3444,3504.35 79.I195.3690,3825,3934 10 3 5 6 7 , 3 5 1 6 , 3 8 1 4 , 3 7 0 5 , 3 6 2 6 , 3 5 5 5 , 3 4 7 2 , 1 5 0 5 , 3 3 2 3 , 3 1 0 0 , 2 8 3 2 . 2 5 7 1 , 2 3 6 0 , 2 2 0 7 1 1 2 C 5 1 , 15 9 1 , 1 9 1 2 . 1 3 7 7 , 1 9 0 0 , 1 9 0 3 , 1 9 7 8 , 2 0 5 8 , 2 0 9 7 . 2 0 7 2 . 1 9 9 5 , 1 8 9 8 , 1 8 1 8 , 1 7 7 6 12 1 7 7 2 , 2 3 5 2 , 1 7 8 8 , 1 8 0 2 , 1 8 1 4 , 1 6 4 0 , 1 8 6 5 , 1 5 3 4 , 1 5 6 6 , 1 9 7 6 . 1 9 5 2 . 2 0 1 9 , 3 0 1 2 , 2 0 4 8 13 2 0 6 3 , 2 0 5 6 , 2 0 3 0 , 1 9 8 9 , 1 9 4 1 , 1 9 0 9 , 1 9 1 0 , 1 5 2 8 , 1 9 2 7 , 3 7 9 1 . 1 3 8 9 , 1 8 3 1 , 1 7 9 1 , 1 7 8 3 14 1 7 5 3 , 1 7 5 6 , 1 7 7 6 , 1 7 3 5 , 1 6 6 2 , 1 6 3 1 , 4 7 7 3 , 1 6 0 0 , 1 5 9 8 , 1 6 1 3 , 1 6 1 6 , 1 5 8 6 , 1 5 2 1 , 1 4 3 9 15 1 3 6 0 , 129 8 , 1 2 4 5 , 6 0 0 5 , 1 2 0 3 , 1 1 5 2 , 1 C 5 2 . 1 0 3 4 , 5 8 4 , 5 4 7 , 5 1 C . 8 7 0 . 8 2 6 , 7 7 9 , 7565 . 7 3 1 16 6 8 2 , 6 2 1 , 5 5 3 , 4 5 2 , 4 3 6 , 3 8 0 , 3 3 3 , 2 9 8 , 2 5 5 , 5 5 2 3 , 2 1 2 . 1 7 9 , 1 4 3 , 1 2 1 . 1 0 0 . 8 5 , 8 0 , 6 1 , 2 6 17 0 , 1 1 9 8 5 , 0 , 0 , 0 , 0 , 0 , 0 , C C O , 0 , 1 5 0 9 3 , 0 , C O , 0 , 0 , 0 , 0 , C O , 0 , 3 2 0 0 7 9 , 2 7 GET E 1 6 L S 0 1 1 5 1 , C O . C , 0 , 0 , C C O , 0 , 1 , 1 9 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 3 9 , 2 , 3 , 3 , 3 , 4 , 4 . 4 , 5 , 5 , 501 2 301,49 5,524,456,5 24,520,515,511,507,50 5,508,3 79,512,518,526,535,544,555 3 5 6 4 , 5 7 4 , 5 8 4 , 5 9 2 , 4 7 7 , 5 5 7 ,6 C O , 6 0 6 , 6 1 9 , 6 4 1 , 6 6 5 , 6 8 6 , 6 5 5 , 7 0 7 . 7 1 1 , 6 0 1 , 7 1 3 , 7 1 4 4 7 2 4 , 7 4 3 , 7 6 6 , 7 5 3 , 6 1 2 , e 2 7 , 8 4 1 , 8 5 7 , 7 5 6 , 8 7 4 , 8 6 5 , 8 5 8,912 ,531 ,948,959 ,970,983 5 1017,952,1047,1064,1067,1068,1076,109C1096,1083,1054,1139,1199.1134,1164 ' 6 1 2 2 2 , 1 1 5 5 , 1208, 1 2 4 1 , 1 2 6 1 , 1275 . 1 2 8 5 . 12S7. 1 5 0 9 , 1 3 1 1 . 1 3 3 1 , 1 3 5 4 , 1 3 8 0 , 1401 7 1 4 2 2 , 1 4 4 6 , 1 4 7 6 i 1 5 1 1 , 1 5 4 4 , 1 S C O , 1 5 7 5 , 1 6 0 0 , 1 6 2 5 , 1 6 4 9 , 1 6 7 9 , 1 7 1 4 , 1 7 4 8 , 1779 8 18C6,1822,2392,1660,1885,1903,1916,1932,1961,2013,2080,2150,2203,3012 9 2225,22 2 0,2210,2215,2243,2264,2332.2365.2445,2504,3791,2555,2590,2607 10 2 6 1 3 , 2 6 2 3 , 2 6 5 2 , 2 7 0 8 , 2 7 7 6 , 2 8 3 8 , 2 8 8 3 , 4 7 7 3 , 2 9 0 4 . 2 85 1 . 3 1 1 9 . 3 0 2 3 , 3 1 1 4 . 3 1 7 1 11 3 1 6 3 , 3 1 5 9 , 3 1 8 1 , 3 2 3 2 , 6 0 0 9 , 3 3 0 0 , 3 3 6 9 , 3 4 1 6 , 3 4 4 0 . 3 4 4 8 . 3 4 5 3 , 3 4 6 1 , 3 4 6 1 , 3 4 5 9 12 3 4 6 9 , 7 5 6 5 , 3 5 0 3 , 3 5 6 5 , 3 6 6 9 , 3 7 8 5 , 3 8 6 3 , 3 5 4 6 , 3 5 6 7 , 3 5 6 5 . 3 9 4 9 . 3 5 1 9 , 9 5 2 3 , 3 8 3 9 12 3 7 1 0 , 3 5 5 2 , 3 4 0 3 , 3 2 6 5 , 3 1 4 4 , 3 0 1 0 , 2 3 5 4 , 2 6 4 5 , 2 3 4 7 , 1 1 5 6 5 , 1 9 9 2 , 1 6 7 9 , 1 4 6 2 , 1 3 4 6 14 1 2 9 1 , 1 17 6 , 9 6 3 , 7 1 5 , 5 6 7 , 5 4 7 , 1 5 C 9 3 , 5 2 1 , 4 1 8 , 2 9 9 , 2 8 0 , 3 0 0 , 2 7 6 . 1 4 7 , 5 2 , 0 . 0 15 3 0 6 0 4 3 , 2 1 GET C L T R 2 1 6 C DATA 1 6 , 1 . 2 5 , 0 . 1 6 , 0 . 6 , 2 8 . 5 , 1 7 0 DATA 2 7 0 , 1 9 9 4 2 , 1 3 9 6 . 2 , 9 6 0 5 , 9 1 3 180 F I L E E16GF 190 F I L E E16U 155 F I L E RLN16 157 B7=C,MD("*EMPTYSNC RUN16SC" )  67  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15 20 21 22 23 2 4 2 5 26 2 7 2 8 29 30 31 32 3 3 3 4 35 3 6 37 38 39 40 Hi 42 43 44  ••  CF  FILE  R7  04:07  P.M.  FEB. 2 4 , 1977  I0=RALU  GET E 1 7 U 3 0 1 3 7 ,C O , C O , 0 , 1 , 1 , 1 , 1 , 1 , 4 7 , 1 , 1 , 1 , 1, 1 , 2 . 2 , 2 . 2 , 2 , 6 0 , 3 , 3 , 3 , 3 , 3 , 4, 4 , 4 , 5 , 5 , 75,5 2 6,6,7,7,8,8,9,9,10,55,11,11,12,13,14,15,15,16,17, 19,119,20.21.22. 24,25,27 3 28,30,32,33,151,35,37,39,42.44,47,49,52,55,58,190,61,64,68,71,75,75,82,87 4 92.96.23S,101,106,111,117,123,125,135,141,148,155,301,162,170.178,213.229 5 246,263,280,296 ,213,379,329,342,354,365,377,3SO.402,415.425.437.477,451 6 467,482,452,498,504,514,526,539,551,6 01,563,575,588,601.615.628.640,648 7 656,667,756,682,700,718,734,750,767,7£3 ,797,808,821,952 ,840,867,39 5,915 8 527,93 7,955,984,1017,1043,1199,10 57,1063,1071,108 9,1116,1148,1181,1215 S 1249,12 62,1509,1312,133S,1365,1405.1446,1486,1523.1558,1593.162 9,1900 10 1 6 6 8 , 1 7 0 7 , 1 7 4 6 , 1 7 8 5 , 1 82 4 , 1 8 6 1 , 1 8 5 8 , 1 9 3 8 , 1 9 9 1 , 2 0 5 5 . 2 3 9 2 . 2 1 2 0 . 2 1 6 7 , 2 1 9 2 11 2204,2222,2255,2300,2353,2414,2484,3012,2559,2630,2682,2713.2731,2749 12 2 7 6 4 , 2 8 3 7 , 2 8 5 5 , 2 9 4 1 , 3 7 5 1 , 2 9 6 7 , 2 9 6 0 , 2 9 5 3 , 3 0 0 7 , 3 0 2 2 , 3 0 4 2 , 3 0 8 1 , 3 1 4 7 , 3 2 4 0 13 3 3 5 0 , 4 7 7 3 , 3 4 6 5 , 3 5 5 8 , 3 5 5 1 , 3 5 4 5 , 3 4 4 1 , 5 2 2 5 , 3 2 9 9 , 3 3 4 0 , 3 4 3 8 , 3 5 4 1 , 6 0 0 9 , 3 6 0 2 14 3 6 1 4 , 3 6 1 7 , 3 6 5 5 , 2 7 5 3 , 3 8 £ 7 , 3 5 4 5 , 3 9 6 8 , 3 5 3 3 , 3 8 7 2 , 7 5 6 5 , 3 8 2 4 , 3 7 9 1 . 3 7 5 7 , 3 6 8 5 15 3563,3353, 21S3,2981,2774,2582,9523,2402,2214.2001,1774,1560.1372 ,122 9 16 1 0 8 8 , 5 5 1 , 8 4 4 , 1 1 5 8 9 , 7 4 0 . 6 1 6 , 4 8 5 , 3 7 5 , 3 0 9 , 2 6 5 , 2 3 1 , 2 0 9 , 1 8 3 , 1 7 4 , 1 5 0 9 3 , 1 4 0 , 1 0 0 17 8 0 , 5 7 , 3 0 0 , 0 , 0 , 0 , 0 GET E 1 7 C F S D 1 3 0 , 0 , 0 , 0 0,0,1,1,1,1,1,37,1,1,1,2,2,2,2,2.3,3,47,2,3,4,4,4,5,5,6,6,7,60,7 2 6,9,9,10,11 , 12,13,14,15,75, 16,17,18,IS,21 ,22,24,26,27,29,95.51.34,26,38 3 41,44,46,49,53,56,119,60,63,67,72,76,61,85,91.96,102,151.108,li4,121.127 4 135,142,150,155,167,176,150,166,156,206,217,228,240,252.265.278,252.229 5 307,322,337,353,270,387,405,512,535,433,301,477,504,535,576,624,674,72i 6 7 6 6 , 6 0 7 , 8 4 9 , 3 7 5 , 6 8 9 , 9 3 2 . 9 76 , 1 0 2 4 , 1 0 7 2 , 1 1 2 1 . 1 1 7 1 , 1 2 1 8 , 1 2 6 0 , 1 2 0 C , 4 7 7 , 1 3 4 4 7 1352,1444,1493,1534,1565,1587,1603,1616,1629,601,1641,1655,1671,1676,1666 8 1646,1627,1625,1640,1659,7 56,i670,1675,1679,1696,1721,i750,1774.1783,1794 5 1 7 5 5 , 9 5 2 , 1 8 0 5 , 1633, 1882 , 1 9 3 7 , 1 9 7 9 , 2 0 0 9 , 2 0 3 1 , 2 0 5 8 , 2 0 3 2 , 2 0 9 1 , 1199. 209 1, 2123 10 2 2 6 3 , 2 2 6 6 , 2 3 3 7 , 2 5 6 0 , 2 6 5 0 , 2 7 3 4 , 2 7 4 2 , 2 7 6 1 , 1 5 0 5 , 2 8 0 6 . 2 8 7 6 , 2 5 5 3 , 3 0 2 7 , 3 0 8 6 11 3 1 2 3 , 3 1 4 1 , 2 1 5 3 , 2 1 7 2 , 3 2 0 3 , 1 9 0 0 , 3 2 4 8 , 3 3 0 7 , 3 3 7 8 , 3 4 5 4 , 3 5 1 8 , 3 5 5 8 , 3 5 7 3 , 3 5 65 1 2 3 6 1 5 , 3 6 6 6 , 2 3 5 2 , 3 7 2 0 , 3 7 5 3 , 3 7 5 8 , 3 7 5 5 , 3 7 7 1 . 3 8 1 8 , 3 8 8 4 . 3 9 4 1 , 3 9 6 8 , 3 9 5 3 , 30.1 2 13 3 9 2 3 , 3 8 7 6 , 3 8 3 0 , 2 7 9 6 , 3 7 6 8 , 3 8 1 2 , 3 8 6 2 , 3 9 0 3 , 3 8 9 5 , 3 8 3 8 , 3 7 5 1 , 3 7 3 3 . 2613 , 3 5 0 0 14 3 4 1 3 , 3 3 6 9 , 3 3 7 1 , 2 3 8 9 , 3 3 6 9 , 3 2 7 5 , 3 1 4 2 . 4 7 7 3 , 3 0 0 1 , 2 8 7 4 , 2 7 4 7 , 2 6 1 3 , 2 4 9 2 , 2 4 0 8 15 2 3 4 8 , 2 2 7 4 , 2 1 6 0 , 2 0 1 6 , 6 0 0 5 , 1 8 6 4 , 1 7 1 7 , 1 5 8 1 , 1 4 5 4 , 1 3 2 8 , 1 20 5 . 1 0 7 2 , 9 4 3 , 8 2 5 , 7 3 7 16 7565,672,611,542.468,393,338,297,265,233.195,9522.163,154,157.161,146 17 1 3 8 , 1 4 6 , 1 4 8 , 1 2 5 , 1 0 5 , 1 1 5 8 5 , 1 0 4 , 1 1 1 , 1 3 4 , 1 4 4 , 1 2 0 , 5 2 , 5 9 , 4 2 , 6 8 , 7 2 , 1 5 0 9 3 , 7 8 18 1 1 1 , 8 9 , 3 2 , 0 , 0 , 0 , 0 , 0 , 0 , 3 4 1 0 4 3 , 2 8 GET C L T R 2 1 6 0 DATA 1 7 , 0 . 7 5 , 0 . 2 8 , 6 , 1 1 . 5 1 7 0 DATA 2 8 0 , 1 7 5 4 2 , i 6 9 4 , 8 2 8 3 , 1 3 5 0 180 F I L E E170F 150 FILE E17U 155 FILE RLN17 157 B7=CMDI"%£MPTYSNC RUN17aO">  68  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . 15 16 17 18 19 20 21 22 23 24 25 26 27 2 8 29 30 31 32 33 34 3 5 3 6* 37 3 8 39 40 41 42 43 44 45 46 47  OF  FILE  R8  C4:07  P.K.  FEB. 2 4 .  1977  ID=RALU  GET RUN185C GET E 1 EOF i'C 1 1 5 , 3 0 , 3 1 , 3 2 , 3 4 , 2 5,26,3 8 , 4 0 , 4 1 , 4 2 . 1 9 , 4 5 , 4 7 , 4 9 , 5 1 , 5 3 . 5 5 . 5 7 , 5 9 , 6 2 . 6 4 , 2 3 . 6 7 2 6S,72,75,78,80,84,87,90,93,30,97,101,104,108,112,116,120,125,129,134,37 3 139,143,149,1 =4, 1 5 5 , 1 6 5 , 1 7 0 , 1 7 6 , 1 6 2 , 1 6 6 , 4 7 , 1 5 5 , 2 0 1 , 2 0 8 , 2 1 5 , 2 2 2 , 2 2 9 , 2 3 6 4 244,252,260,60,268,277,285,294,303,313,322,332.342,352,75,363.374,385,396 5 407,419,431,444,456,469,95,482,456,505,523,538,552,567.582,598,613,119 6 6 2 S , 6 4 6 , 6 6 2 , 6 7 5 , 6 9 7 , 7 1 4 , 7 3 2 , 7 5 0 , 7 6 9 , 7 8 8 , 1 5 1 , 8 0 7 , 3 2 6 , , 8 4 6 , 8 6 6 , 8 8 7 , 9C 7 , 9 2 8 7 550,972,5 54,150,1016,1038,1061,1085,1108,1132,1156,1181,1206,1231,239 8 1256,1282,1308,1334,1361,1387,1414,1442,1469,1497,301,1525,1554,i582,1611 5 1 6 4 C 1 6 7 C , 1 6 5 5 , 1725 , 1 7 5 9 , 1 7 8 9 , 3 7 9 , 1 7 7 2 , 1 9 3 5 , 1 9 0 6 . 1 9 0 0 , 1 9 1 7 , 1 9 5 3 , 1 9 9 8 , 2 0 4 0 10 2 0 7 0 , 2 0 8 7 , 4 7 7 , 2 0 5 6 , 2 1 0 6 , 2 1 2 7 , 2 1 6 1 , 2 2 0 4 , 2 2 4 0 , 2 2 4 8 , 2 2 1 7 , 2 1 5 4 , 2 0 8 9 . 6 0 1 . 2 0 5 9 11 2 0 8 4 , 2 1 4 2 , 2 1 7 0 , 2 2 4 3 , 2 2 3 5 , 2 2 2 9 , 2 2 7 5 , 2 3 7 6 , 2 5 0 1 , 7 5 6 , 2 5 9 8 . 2 6 4 1 , 2 6 3 6 , 2 5 5 7 12 2 5 4 3 , 2 4 5 5 , 2 4 7 5 , 2 5 1 7 , 2 6 0 5 , 2 7 3 4 , 5 5 2 , 2 8 5 0 , 2 9 2 2 , 2 9 4 2 , 2 9 2 1 . 2 8 8 6 , 2 8 6 5 , 2 8 7 7 13 2 9 2 9 , 3 0 1 4 , 309 7 , 1 1 9 9 , 3 1 3 7 , 3 3 1 6 , 3 3 2 4 , 3 2 4 5 , 3 1 4 4 , 3 0 6 4 , 2 9 8 5 , 3 1 9 9 , 3 1 1 9 , 3 0 5 7 1 4 1 5 0 9 , 3 0 4 6 , 3 0 6 S , 2 0 5 3 , 3 0 9 6 , 3 08 2 , 3 0 7 3 , 3 0 9 5 , 3 1 5 6 , 3 2 4 9 , 3 3 4 9 , 1 9 0 0 . 3 4 3 0 , 3 4 7 1 15 3 4 7 3 , 3 4 6 1 , 3 4 6 4 , 3 4 S 8 , 3 5 6 0 , 3 6 3 6 , 3 7 1 6 , 3 7 9 1 , 2 3 9 2 , 3 84 8 , 3 8 7 0 , 3 8 4 9 , 3 8 0 7 , 3 7 8 0 16 3 7 9 3 , 3 8 4 0 , 3 8 6 7 , 3 9 0 8 , 3 9 0 6 , 3 0 1 2 , 3 9 0 4 , 3 9 2 0 , 3 9 4 6 , 3 5 6 1 , 3 9 5 0 , 3 9 2 0 . 3 8 8 7 , 3 8 6 2 17 3 8 3 2 , 3 7 6 6 , 3 7 9 1 , 3 6 4 4 , 3 4 8 0 , 3 3 2 7 , 3 2 3 6 , 3 2 2 4 , 3 2 5 8 , 3 2 8 1 , 3 2 4 9 , 3 1 5 2 . 3 0 0 9 . 4 7 7 3 18 2 8 6 2 , 2 7 4 3 , 2 6 4 2 , 2 5 1 5 , 2 3 1 8 , 2 0 5 6 , 1 7 9 5 , 1 7 6 3 , 1 6 5 6 , 1 6 1 5 , 6 0 0 5 , 1 5 9 6 , 1 5 5 4 , 1 4 9 0 IS 1 4 1 8 , 1 3 5 1 , 1 2 8 6 , 1 2 i 5 , 1 1 2 7 , 1 0 2 2 , 9 1 9 , 7 5 6 5 , 8 3 4 , 7 7 6 , 7 2 4 , 6 6 3 , 5 8 9 , 5 1 5 , 4 5 0 , 3 9 1 2C 327,258,5523,193,137,51,54,35,27,20.5,2,0,11989.0,0,CO,0,0,0,0,0,0 21 1 5 0 9 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 4 5 4 1 6 , 3 1 GET E 1 8 U S 0 1 4 7 , C O , C O , 0 , 0 , C O , 0 , 0 , 60 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 7 5 , 1 , 2 , 2 , 2 , 2 , 2 , 3 . 3 . 3 , 3 , 9 5 , 4 2 4,4,4,5,5,6,6,6,7,119,7,3,9,9.10,10,11,12,13,14,151,14,15,16,18,19,20.21 3 22,24,2 5,190,27,29,30,3 2,34,3 6,38,40,43,4 5,2 39,48,51,53,56,60,63,66,70 4 130,136,301,143,145,177,250,247,245,24 5,2 46,245,2 52,379,2 55,260,263,26 7 5 2 7 0 , 2 7 3 , 2 77 , 2 8 1 , 2 8 5 , 2 8 7 , 4 7 7 , 2 8 9 , 2 S 4 , 3 0 1 , 3 0 7 . 3 1 5 , 3 2 0 , 3 2 6 , 3 3 4 , 3 4 2 , 3 4 9 , 6 0 1 6 355,360,366,3 75,388,3 59,410,413,424,426,756,42 5,425,431,443,460,477,492 7 504,512,518,95 2,526,5 40,556,5 71,580,5 86,557,615,6 32,63 7,1199,631.666,640 8 6 6 5 , 6 9 1 , 7 0 6 , 7 1 6 , 72 8 , 7 4 5 , 7 63 , 1 5 0 9 , 7 7 8 , 7 9 4 , 8 1 2 , 8 3 5 , 6 6 0 , 8 8 4 , 9 0 2 . 9 1 6 , 52 9 . ' 9 4 4 9 1900,964,938,1016,1042,1063,1079,1096,1120,1152,1185,2392,1211,1225,1231 10 1 2 4 1 , 1 2 6 5 , 1 3 0 7 , 1 3 5 8 , 1 * 0 6 , 1 4 3 3 , 1 4 5 2 , 3 0 1 2 , 1 4 5 5 , 1 4 6 2 . 1 4 7 5 , 1 4 9 6 , 1 5 2 2 . 1 5 5 0 11 1 5 7 7 , 1 6 C 3 , 1 6 2 3 , 1 6 6 5 , 3 7 5 1 , 1 7 0 8 , 1 74 0 , 1 7 5 4 , 1 7 4 5 , 1 7 3 8 . 1 7 3 9 , 1 7 6 4 , 1 8 0 5 . 1 8 3 7 12 1 8 4 3 , 4 7 7 3 , 1 8 2 3 , 1 9 9 4 , 1 9 7 8 , 1 9 3 6 , 2 0 0 7 , 2 0 3 2 , 2 0 5 9 , 2 0 8 5 , 2 1 1 9 , 2 1 4 7 . 6 0 0 9 , 2 1 7 0 13 2 1 8 9 , 2 2 0 1 , 2 2 0 7 , 2 2 2 0 , 2 2 4 5 , 2 2 8 5 , 2 3 3 2 , 2 3 8 1 , 2 4 3 7 , 7 5 6 4 , 2 5 1 9 , 2 6 3 4 , 2 7 8 2 , 2 9 4 7 14 3 1 1 5 , 2 2 8 7 , 2 4 6 7 , 2 6 4 8 , 2 8 0 9 , 3 9 2 6 , 5 5 2 3 , 3 5 6 8 , 3 9 2 5 , 3 80 7 , 3 6 3 9 , 3 4 4 2 , 3 2 2 4 , 2 9 6 6 15 2 6 7 4 , 2 3 6 7 , 2 1 0 2 , 1 1 9 8 5 , 1 8 9 5 , 1 6 9 9 , 1 4 7 8 , 1 2 3 2 , 9 9 0 , 8 2 5 , 7 3 9 , 6 9 6 , 6 4 2 , 5 7 7 , 1 5 0 9 3 16 5 2 3 , 4 8 4 , 4 3 6 , 3 5 1 , 2 1 9 , 1 3 4 , 1 0 7 , 3 8 , 0 , 0 , 2 1 6 7 9 0 , 2 5 . 8 GET C L T R 2 16C DATA 1 8 , 1 . 2 5 , C . 2 6 , 5 . 0 , 1 1 . 8 1 7 0 DATA 2 1 0 , 2 2 4 4 5 , 1 1 7 6 . 5 , 1 0 9 1 4 , 844.6 180 FILE E180F 190 F I L E E16U 1 9 5 F I L E RUN18 1 5 7 B7 = C M C ( " * E M P T Y S N C R U M 8 3 C " >  69  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . 15 16 17 18 19 20 21 22 23 24 2 5 26 27 28 29 3 0 31 32 33 34 3 5 36 37 38 39 40 41 42 43  OF  FILE  R9  04:07  P.M.  FEB.  24.  1977  ID=RALU  GET E190F3D 1 19,0,0,0,0,0,0,1,1,1,1,23.1,1,1.1.1.2.2,2,2,2,30,2,3.3,3,2.4,4,4.4.5,27,5 2 5 , 6 , 6 , 7 , 7 , 8 , 8 , 9 , 1 0 , 4 7 , i C , 11 , 1 2 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 . 1 8 . 6 0 , 1 9 , 2 0 , 2 2 , 2 3 , 2 4 , 2 6 3 27,29,21,33,75,3 5,37,39,41,43,46,48,51,54,57,95,60,63,67,70,74.78,82,flo 4 SI,55,119,ICO,105,110,116,122,128,134,140.147,154,151,162.169,177,135,194 5 203,212,222,231,242,150,252,263,275,286,255,311,324,338,351,366,239,381 6 396,412,428,444,462,479,497,516,535,301,555,575,556,618,640,662,685,709 7 7 3 3 , 7 5 £ , 3 7 9 , 7 8 3 , 80 9 , 5 8 6 , 1 0 0 0 , 1 0 1 3 , 1 0 2 5 , 1 0 3 9 , 1 0 5 4 , 1 0 7 0 , 1 0 8 4 , 4 7 7 , 1 0 9 7 , 1 1 1 : ; 8 1126,1142,1159,1178,1201,1225,1248,126 5,601,1290,1317,1353,1392,1426,1451 5 1 4 6 6 , 1 4 7 6 , 1 4 9 2 , 1 5 1 2 , 7 5 6 , 1 5 3 9 , 1 5 7 4 , 1 6 1 3 , 1 6 5 3 , 1 6 9 0 , 1 7 2 4 , 1 7 5 4 , 1 7 8 1 , 1 8 0 0 , 1813 10 9 5 2 , 1 8 2 9 , 1 8 5 7 , 1 9 0 2 , 1 9 5 5 , 2 0 2 0 , 2 0 8 3 , 2 1 3 8 , 2 1 7 1 , 2 1 7 0 , 2 1 5 3 , 1 1 9 9 , 2 1 5 4 , 2 1 9 5 11 2 2 5 9 , 2 3 0 8 , 2 3 2 4 , 2 3 2 3 , 2 3 3 1 , 2 3 6 0 , 2 3 9 9 , 2 4 3 2 , 1 5 0 9 , 2 4 5 5 , 2 4 9 0 . 2 5 3 5 , 2 5 9 2 , 2 6 4 4 12 2 6 7 7 , 2 6 9 3 , 2 7 1 4 , 2 7 6 2 , 2 8 4 3 , 1 9 0 0 , 2 9 3 5 , 3 0 1 5 , 3 0 7 5 , 3 1 2 2 , 3 1 6 5 , 3 2 0 9 , 3 2 5 5 , 3 3 0 9 12 3380,3467,2392,3561,3627,3678,3685,3692.3742,3841,3940,3967,3393,3012 1 4 3 7 5 5 , 36 2 8 , 3 6 0 3 , 3 6 5 4 , 3 7 4 2 , 3 8 1 8 , 3 8 6 5 , 3 8 9 0 , 3 8 9 3 , 3 8 6 4 , 3 7 9 1 , 3 8 0 7 , 3 7 5 2 , 3 7 3 2 15 3 7 4 2 , 3 7 2 4 , 3 6 4 8 , 3 4 5 5 , 3 1 8 9 , 2 9 2 2 , 2 7 1 4 , 4 7 7 3 , 2 5 7 0 , 2 4 5 8 , 2 3 6 2 , 2 2 9 6 , 2 2 7 1 , 2 1 7 1 16 2119,1866,1679,1462,6009,1249,1056,888,745,621,515.433.370,316,264.7565 17 217,175,145,120,105,102,59,95,94,94,5523,79,54,41,35,37,40,54,59,37,40 18 1 1 9 8 9 , 5 7 , 6 2 , 3 3 , 3 5 , 7 5 , 8 1 . 6 5 , 4 6 , 5 0 , 5 4 , 1 5 0 9 3 , 5 7 , 6 1 , 6 5 , 7 1 . 7 5 , 4 0 , 4 3 . 0 . 0 , 0 15 3 1 4 0 3 8 , 2 0 GET E15U30 1 75,0,0,0,0,0,0,1,1,1,1, 55,1,1,1,1,2,2,2.2,2,3.115,3.3.3,4,4,5,5,5,6,6,1.51 2 7 , 8 , 8 , 9 , 1 0 , 1 0 , 1 1 , 1 2 , 1 3 , 14,190,15, 17,16,19,21,22 ,24,25,27, 29,239,31. 34,36 3 3 8 , 4 1 , 4 4 , 4 7 , 5 0 , 53 , 5 7 , 3 0 1 , 6 1 , 6 4 , 6 9 , 7 3 , 7 8 , 8 3 , 8 8 , 9 3 . 9 9 , 1 0 5 , 3 7 9 , 1 1 1 , 1 1 6 . 1 7 0 4 173,177,180,181,182,185,189,4 77,152,156,201,203,207,210,216,220,224,225 5 601,227,231,237,244,251,255,258,259,260,261,756,264,270,278,283,283.282 6 284,29 5,311,328,9 52,3 39,343,341,340,3 41,348,3 57,3 67,3 79,3 88,1199,395,392 7 3 7 5 , 2 9 2 , 4 4 9 , 4 1 9 , 4 4 5 , 4 3 5 , 4 3 3 , 4 3 6 , 1 5 0 9 , 4 4 2 . 4 5 2 . 4 6 7 . 4 8 4 . 5 0 1 . 5 1 6 , 52 9 , 5 4 3 , 5 6 0 8 5 8 1 , 1 9 C C , 6 0 3 , 6 1 5 , 6 2 9 , 63 7 . 6 5 1 , 6 7 6 , 7 0 6 , 7 3 4 , 7 5 5 , 7 7 0 , 2 3 9 2 , 7 8 6 , 8 0 4 , 3 2 5 , 8 4 7 , 8 7 1 9 901,936,574,1014,1055,3C12,1099,1148,1201,1256,1307,i349,13 83,1415,1449 IC 1490,3791,1541,1606,1653,1783,1864,1936,2005,2074,2141,2210,4773,2299 11 2 4 2 1 , 2 5 6 7 , 2 7 1 2 , 2 8 4 9 , 2 9 9 2 , 3 1 5 4 , 3 3 3 0 , 3 4 9 6 , 3 6 3 4 , 6 0 0 9 , 3 7 4 7 , 3 8 4 3 , 3 9 2 0 , 3 96 7 12 3 S 6 5 , 3 5 08,3 807,363 5 , 3 5 6 0 , 3 4 3 4 , 7 5 6 5 , 3 3 0 4 , 3 1 7 0 , 3 0 3 4 , 2 8 5 8 . 2 7 6 5 . 2 6 2 3 . 2 4 7 8 1 3 2 3 1 7 , 2 1 3 6 , 1 9 4 8 , 9 5 2 3 , 1 768 , 1 6 0 0 , 1453 , 1 2 3 2 , 1 2 4 0 , 1 1 5 5 , 1 0 4 4 , 9 0 5 , 7 7 0 , 6 6 3 ,3.1939 14 5 9 2 , 5 2 7 , 4 7 0 , 4 2 6 , 3 7 2 , 2 9 6 , 1 9 3 , 1 3 3 . 1 2 6 , 1 1 8 , 1 5 0 9 3 . 1 0 9 . 7 7 , 6 2 . 8 9 , 9 5 . 7 7 , 2 7 , C , 0 15 0,180965,24 GET CLTR2 • 16C DATA 1 5 , 1 , 0 . 3 5 , 1 . 9 , 17.5 1 7 0 DATA 300, 16168, 1871.7, 4 3 4 1 . 2 , 1121.7 180 F I L E E19GF ISC FILE P19L 1 5 5 F I L E RUN19 157 B7=CMC("?EMPTVaNC RUN19aC")  70  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 j.3 1 4 . 15 16 17 18 19 20 21 22 23 24 2 5 2 6 2 7 28 2 9 3 0 31 32 33 34 35 36 37 38 39  OF  FILE  R1C  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E 2 1 0 F 3 D 1 19,0,0,0,0,0,0,0,1,1,1,23,1,1 ,1,1,1,2,2,2,2, 2,30,3,3,3,3,4,4,4,5,5,5,37,6 2 6,7,7,8,9,9,10,11,12,47,12,13,14,15,16,18,19,20,21,2 3,60,25,26.28,30.32 3 34,36,38,41,43,7 5,46,45,52,55,59,62,66,70,74,79,95,83.88,93,99,104,110 4 1 1 6 , 1 2 3 , 1 2 9 , 1 3 6 , 1 1 5 , 1 4 4 , 1 5 1 , 1 5 9 , 1 6 8 , 1 7 7 , 1 8 6 , 19 5 , 2 0 5 , 2 1 6 , 2 2 6 , 1 5 1 . 2 3 3 . 2 4 9 5 261,274,28 7,301,315,3 29,345,3 60,150,377,394,411.429,448,467,487,508,529 6 551,239,573,596,620,645,670,696,723,75 0,778,807,301,83 7,£67,898,8 81,923 7 566,1011,1053,1092,1130,379,1171,1219,1274,1330.1378,1417,1449.1478,1506 8 1531,477,1552,1565,1572,1581,1599,1630,1673,1718,1751.1768,601,1774.1783 9 1803,1826,1838,1837,1340,1868,1921,1982,756,2027.2052.2064,2074,2C84,2098 10 2118,2145,2169,2184,552,2152,2201,2213,2217,2209,2203,2227,2302.2413 1 1 2520,1199,2585,2622,2650,2704,2783,2865,2531,2981,3031,3088,1509.3149 12 3 2 0 4 , 3 2 4 7 , 3 2 7 9 , 3 3 1 2 , 3 3 6 1 , 3 4 3 6 , 3 5 3 3 , 3 6 3 2 , 3 7 0 9 , 1 5 0 0 , 3 7 4 7 , 3 7 5 C , 3 7 4 6 . 3 7 6 5 13 3820,3856,3957,3967,3913,3804,2392,3673,3551,3457,3369,3239,3023,2724 14 2390,2080,1830,3012,1636,1476,1324,1168,1010.864,745,669,612,558,3791 15 5 0 0 , 4 3 9 , 3 8 5 , 3 3 6 , 3 0 0 , 2 7 6 , 2 6 6 , 2 5 9 , 2 3 8 , 1 9 9 , 4 7 7 3 , 1 5 2 , 1 1 3 , 1 0 7 , 1 1 0 , 1 1 3 , 9 9 , 9 5 16 7 4 , 8 1 , 8 1 , 6 0 0 9 , 7 5 , 6 8 , 6 1 , 5 5 , 5 0 , 4 3 , 3 6 , 3 2 , 2 9 , 2 8 , 7 5 6 5 , 2 8 , 2 5 , 2 0 , 1 8 , 1 8 , 1 8 . 1 7 , 1 2 17 5,S,5523,9,10,5,9,14>14,13,8,6,6,11989,6,7,2,3,3,4,4,5,6,6,15093,0,0,0.0 18 0,0,0,0,0,0,265490,30 . GET E 2 1 U 3 C 1 2 3 9 , 0, 0 , 0 , 0 , 0 , 3 , 7 , 1 2 , 1 8 , 2 1 , 3 0 1 , 2 3 , 2 4 , 2 6 , 2 8 , 3 0 . 3 2 , 24, 26, 3 8 , 4 0 . 3 7 9 . 4 2 , 4 4 , 4 6 2 4 8 , 4 5 , 5 1 , 5 2 , 5 3 , 5 5 , 5 6 , 4 7 7 , 5 8 , 5 5 , 6 1 , 6 2 , 63 , 6 4 , 6 6 , 6 8 , 7 0 , 7 1 . 6 0 1 , 7 2 , 7 3 , 7 4 , 7 5 , 7 6 , 3 78,80,82,85,87,756,89,91,93,95,57,100,102,105,108,110.952,112,114.117.121 4 125,129,133,137,141,145,1199,148,152,157,163,170,177,185,192.200,209,1509 5 219,229,240,250,261,2 74,251,310,3 32,3 56,1900,382,411,445.435,534,593,665 6 753,85 6,5 81,235 2 , 1 1 1 5 , 1 2 7 3 , 1 4 4 1 , 1 6 2 1 . 1 8 1 3 , 2 0 1 2 , 2 2 1 4 , 2 4 1 3 . 2 6 0 6,279 3.3012 7 2 9 7 4 , 3 1 4 8 , 3 3 1 3 , 3 4 5 9 , 3 5 6 0 , 3 6 7 3 , 3 7 4 4 , 3 7 58 , 3 8 3 8 , 3 8 6 7 , 3 7 9 1 . 3 8 5 2 , 3 9 1 9 , 3 9 4 7 ' 8 3967,3967,3944,2506,3855,3795,3731,4773,3680,3654,3640.3609,3542.3445 5 3338,323 7,315 7,2097,6005,3046,2580,2860,2749,2622,2518,2436,2346,2226 10 2 0 8 5 , 7 5 6 5 , 1 9 6 1 , 1 8 7 9 , 1 8 3 5 , 1 8 1 4 , 1 7 7 1 , 1 6 8 3 , 1 5 6 8 , 1 4 3 3 , 1 3 1 4 , 1 2 1 5 , 9 5 2 3 , 1 1 4 3 11 1077,956,907,817,720,615,502,383,282,11989,233,250,284,304,271,213.145 12 89,71,76,15053,62,88,62,33.0,0,0,0,0,0 GET CLTR2 16C DATA 2 1 , 0 . 7 5 , C . 1 6 , 1 . 6 , 2 4 . 8 1 7 0 DATA 3 0 0 , 1 5 3 3 7 , 1 1 5 7 . 4 , 5 1 8 . 3 , 727.4 1 8 0 FILE- E21GF 15CFILEE21L' 1 5 5 F I L F RUN21 157 B7=CMC{"SEMPTY2NC RUN2iaC"J  71  LISTING OF FILE R l l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 • 15 16 17 18 19 20 21 22 23 ^4 25 26 27 28 29 30 31 32 33 34  35 36 37 38 39  04:07 P.M. FSB. 24, 1977  ID=RALU  GET E22GF3C 1 19,0,0,0,0,0,0,0,1,1,1,23,1,1,1,1,1,2,2,2,2.2,30,2,3,3,3,4,4,4,4,5,5,37,6 2 6,7,7,8,8,9,10,10,11,47,12,13,14,15,16,17,18,19,2 0,22,60,23,25,27,28.30 3 32,34,36,39,41,7 5,44,46,45,52,55,59,62,66,70,74,95,73,82,87,92,97,103,108 4 114,120,127,119,134,141,148,156,164,172,181,190,2C0,210,151,220.22i,242 5 253,265,278,291,304,318,333,190,343,363,379,396,413,431,449,468,488.508 6 235,529,550,572,595,618,642,667,6S2,718,745,301,772.800,829,744.802,857 7 Sll,966,1023,iC77,379 ,1124,1168,1213, 1261 ,1305,1341 ,1369, 1396, 1429, 1465 8 477,1497,1518,1523,15 54,158 9,163 7,1687,1732,17 71,1802,601,1823,1832.1835 9 1838,1845,18 55,186 5,1882,1910,1945,756,19 79,2010,2044,2086,2121,217 0,2202 10 223 2,22 67,2304,552,2332,2335,232 7,2306,2299,2318,235 5,2402,2432.2446 11 1199,2460,248 5,25 35,2593,2 65 5.2717,2 776,2832,2888,2951,1509,3025,3108 12 319 3,2 270,3 33 8,3400,34 59,3518,35 79,3639,1900,3691,3724,3732,3723,3722 13 3747,3801,3868,2926,3960,2392,3967,3555,3933,3914,3904,3901,3896,3885 14 3861,3806,3012,3696,35 31,3345,3181,3052,2926,275 8,2533,2284,2056,3791 15 18 73,1717,1546,1336,1109,914,781,700,640,575,477 3,503,433,377,335,315 16 310,304,226,2 01,178,6009,162,150,151,147.142,135.128,122,117,113,7565 17 108,103 , 99,99 ,5 5,'-0,83 ,80,73 ,78,9523,72,64,56,45,38. 28,36, 33.27, 19, 11939 18 1 8 , 1 9 , 1 8 , 1 0 , 5 , 0 , 1 , 1 , 2 , 2 , 1 5 0 9 3 , 0 , C O , C O , 0 , 0 , 0 , 0 , 0 , 3 0 2 8 6 0 ,30 GET E22UaD 1 235,0,CO,0,0,2,7,12,17,20,301,22,24,25,27,29,31,33.35,37,39,379,41,43,45 2 46,48,45,51,52,53,54,477,56,57,58,60,61,62,64,65,65,66,601,67,63,70,72.74 3 75, 77,78, 80, 81 , 756,83 ,84 , £ 6 , 8 3 , 9 1 ,93,95 .97,99,101 .952 . 104. 107.110, 111, 113 4 114,116, 119,12 4,129,1195, 134,138,141,145,150,155,162,168,374,179,1509,185 5 192,200,208,216,224,233 ,244,253 ,273,1900, 288,3 03. 318, 333, 349, 265.384.406 6 432,461,2392,452, 52 4, 56 0, 604, £57,718, 78 5, 857, 938, 1034,3012,1145,1271. 14?. 5 7 1576,1756,1552,2158,2372,2595,2831,3751,3074,3307,3513,3676,3795,3374 8 3921,3943,3 552,2959,4 77 3,3967,3966,3941,3885.3 806.3 710,36 04,3492.333 5 5 3301,60C9,3251,2213,3155,3056,290i,2726,2570,2458,2388,2330,7565,2262 10 2172,2066,1954,1829,1691,1545,1423,1235,1275,9523,1214,1119,1005,393,796 11 728,6 5 7,5 72,49 5,442,11985,406,362,29 5,216,160,15 2,163,131,70,-25,1505 3,27 12 2 8 , 3 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 GET CLTR2 160  170 180 190 195 157  DATA  22,  1.25,  0.16,  1,  23.4  DATA 300, 15044, 1126.7, 1072.5, 621 FILE S220F FILE H22U FILE RLN22 B7=CMDl"SEMFTYSNC RUN22aC")  72  I  LISTING 1' 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 i.9 20 21 22 2 3 24 2 5 26 2 7 2 8 29 3 0 31 32 33 34 35 36 37 38 39  OF  FILE  R12  04:07  P . M .  FEB.  24,  1977  ID=RALU  GET E 2 3 C F 3 C 1 3 0 , C O , C O , 1 , 1 , 1 , 1 , 1 , 1 , 3 7 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 7 , 5 , 6 , 6 , 7 , 7 , 8 , 9 , 1 0 , 1 1 , 12 2 60,13, 15,16, 18, 1 9 , 2 1 , 2 3 , 2 5,2 7,3 0 , 7 5 , 3 2 , 3 5 , 3 3 , 4 1 ,4 5,49,52 , 5 7 , 6 2 , 6 7 . 9 5 , 7 2 3 78,84,9C,57,104,112,120,129,i23,119,148.159,170,182.194,207,221,226,251 4 267,151,284,302,221,341,3 61,3 83,405,429,454,480,190,506,534,564,594,625 5 658,692,727,764,801,239,840,880,922,964,1008,1054,1100.1148,1197,1247,301 6 1 2 S 8 , 1 3 5 0 , 1 4 0 4 , 1 3 5 5 , 1 4 9 5 , 1 5 8 2 , 1 6 5 2 , 1 7 1 2 , 1 7 7 0 , 1 8 3 4 , 3 7 5 , 1 9 0 2 , 1 9 7 4 , 2 0 4 7 , 2116 7 2181,2242,2 302,23 66,242 6,2 477,477,2510,2520,2550,2588,2653,2738,2822,2836 8 2921,2936,6 01,29 50,2980,3027,3082,3137,3189,3236,3279,3317,3353,756.3289 5 3 4 2 6 . 3 4 6 4 . 3 5 0 0 , 3 53 7 , 3 5 8 2 . 3 6 4 5 , 3 7 3 0 , 3 8 2 0 , 3 8 9 5 , 9 5 2 . 3 9 3 9 , 3 9 5 3 . 3 9 4 1 , 3 9 1 3 . 3 9 1 2 10 393 5 , 3 5 6 8 , 3 5 6 2 , 3 9 0 3 , 3 8 2 7 , 1 i 9 5 , 3 7 9 1 , 2 8 1 0 , 3 8 5 0 . 3 8 6 9 , 3 8 5 9 , 3 8 3 3 , 3 8 0 1 , 3 7 5 6 11 3 6 8 4 , 3 5 7 4 , 1 5 0 5 , 3 4 2 3 , 3 2 3 4 , 3 0 1 7 , 2 7 9 0 , 2 5 6 7 , 2 3 5 3 , 2 1 4 6 , 1 9 4 3 , 1 7 4 7 , 1 5 6 8 , 1 9 0 0 12 1 4 1 3 , 1 2 6 7 , 1 1 8 5 , 1 1 0 1 , 1 0 2 4 , 9 4 9 , 8 7 2 , 7 9 7 , 7 3 2 , 6 8 7 . 2 3 9 2 . 6 6 1 , 6 4 5 , 6 2 7 , 6 0 2 , 5 7 2 13 546,527,512,455,472,3012,446,425,415,415,418,416,401,371,331,292.3791 14 2 6 0 . 2 3 9 , 2 2 6 , 2 2 0 , 2 1 7 , 2 1 1 . 1 9 8 . 1 7 9 , 1 6 1 , 1 4 6 , 4 7 7 3 , 1 2 7 , 1 0 4 , 8 7 , 8 3 , 9 2 , 1 0 2 , 1 0 2 , 9 0 15 7 2 , 5 6 , 6 C 0 9 . 4 9 . 4 8 , 4 6 , 4 2 , 4 1 , 3 9 , 3 5 , 3 4 , 3 2 . 3 1 , 7 5 6 5 , 2 9 , 2 8 , 2 5 , 2 4 , 2 3 , 2 2 . 1 6 , 1 4 , 1 1 16 1 2 , 9 5 2 3 , 1 7 , 1 4 , 1 0 , 5 , 5 , 6 , 6 , 7 , 0 , 0 , 1 1 9 8 9 , 0 , 0 , 0 , 0 , 0 , 0 , C O , 0 , 0,15053. 0,0,0,0 17 C C O . C C C GET E 2 3 U 3 C 1 239,0,0,0,0,1,6,13,22,28,30,3 01,30,30,31,33,36,39,41,44,47,45,379.52,55 2 57,60,62.65,67,65,71,74,477,76,80,83, 65,88,90.92,95,99,102 ,601 ,105,107 3 110,113,117,121,126,131,126,141,756,145,150,155,160,166,172,179,186,154 4 2 0 4 , 5 5 2 . 2 1 4 , 2 2 4 , 2 3 5 , 2 4 6 , 2 6 0 , 2 7 7 . 2 5 6 , 3 1 6 , 3 3 6 , 3 5 8 , 1 1 9 9 , 3 8 3 , 4 1 4 , 4 5 1 , 4 9 b , 5 50 5 615,693,784,890,1010,1509,11.45,1296,1457,1622,1787,1952,2120,2286,2447 t 2 5 5 8 , 1 9 C C , 2 7 3 7 , 2 665 , 2 9 8 5 , 2 0 9 9 , 3 2 0 9 , 3 3 2 0 , 3 4 2 9 , 3 5 2 1 , 3 6 1 8 , 3 6 8 1 , 2 3 9 2 , 3 7 1 8 7 3733,3747,3774,3816,3652,3867,3861,3859,3887,3012,3935,3967,3950,3332 8 3 8 0 0 , 3 7 4 4 , 3 7 2 3 , 3 7 3 3 , 3 72 5 , 2 6 8 9 , 3 7 9 1 , 3 6 4 5 , 3 6 1 6 , 3 6 0 1 , 3 5 6 9 , 3 4 9 8 , 3 4 0 3 , 3 3 1 6 5 2259,3216,3164,47 73,3097,3023,2945,2870,2784,2695,2616,25 51,2489,2415 10 6005,2330,2249,2188,2146,2105,2052,1557,1838,1722,1625,7565,1549.1482 11 1 4 1 9 , 1 3 5 5 , 1 2 9 1 , 1 2 0 6 , 1 1 1 1 , 1 0 3 2 , 9 7 3 , 5 3 4 . 9 5 2 3 , 8 8 5 , 8 1 8 , 7 4 3 . 6 9 1 , 6 6 0 , 6 1 2 . 5 4 5 12 465.413,386,11989,353,300,237,209,208.189,129,98,127,136,15093,97,52,27 13 2 9 , 0 , 0 , 0 , 0 , 0 , 0 GET C L T R 2 1 6 0 DATA 2 3 , 0 . 7 5 , 0 . 2 5 , 1 1 . 4 , 1 1 . 6 1 7 0 DATA 2 8 0 , 1 5 6 4 8 , 1 4 8 9 , 6 3 7 . 9 , 9 6 6 . 8 180 F I L E E230F 1 5 0 F I L E F.23U 155 F I L E R L M 2 3 157 B7=CMD("IEMPTYiNC RUN222D")  73  04:07  LISTING OF FILE R13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ' 15 16 17 18 19 20 21 22 23 24 2 5 26 27 28 29 30 31 32 33 34 35 36 37  P.M.  F E B . 2 4 , 1977  ID= RALU  GET E24CF3C 12 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 3 7 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , 4 7 , 4 , 5 , 5 , 5 , 6 , 6 , 7 , 8 , 8 , 9 , 6 0 2 10,10,11,12,13,14,15,17,18,19,75,21,22,24,26,23,30,32,34,36,39,95,42,45 2 4 8 , 5 1 , 5 4 , 5 8,62 , 6 6 , 7 0 , 7 5 , 1 1 9 , 7 9 , 8 - , , 9 0 . 5 5 , 1 0 1 , 1 0 7 , 1 1 4 , 121, 128,126, 151, 144 4 1 5 2 , 1 6 1 , 1 7 0 , 1 8 C , 1 5 C , 2 0 0 , 2 1 1 , 2 2 3 , 2 3 5 , 1 5 0 , 2 4 7 , 2 6 0 . 2 74,288.3 0 3 , 3 1 9 . 5 35,3 51 5 3 6 5 , 3 8 7 , 2 3 9 , 4 0 6 , 4 2 5,44 5 . 4 6 6 , 4 8 8 , 5 1 0 , 5 2 3 , 5 5 7 , 5 8 2 . 6 0 7 , 3 0 1 . 6 2 3 , 6 6 0 , 6 8 8 , 6 7 2 6 715,762,812,863,512,560,379,1006,1051,1094,1133.1170,1205,1240,1272,1300 7 1 3 2 6 , 4 7 7,13 5 7 , 1 3 5 4 , 1 4 3 2 , 1 4 6 7 , 1 4 9 5 , 1 5 1 5 , 1 5 4 3 , 1 5 7 2 , 1 6 0 5 , 1 6 4 0 , 6 0 i , 1 6 7 0 , 1 6 9 6 8 1724,175 8,1792,1819,133 8,18 5 6 , 1 8 7 9 , 1 9 1 1 , 7 5 6 , 1 9 5 2 , 2 0 0 1 , 2 0 5 1 , 2 0 9 8 . 2 1 3 5.2160 9 217 5 , 2 1 6 6 , 2 2 0 7 , 2251,9 52.2317,2392 , 2 4 5 C , 2 4 7 6 , 2 4 7 5 . 2 4 7 6 , 2 5 0 6 , 2565. 2617. 2626 1 0 1 1 9 9 , 2 5 5 4 , 2 5 6 5 , 2 5 8 2,26 54,2755,2 8 59,2 960,3060,315 7 , 3 2 4 2 , 1 5 0 9 , 3 3 0 9 , 3 3 6 3 1 1 3415,3474,3541,3612,36 75,3717,3734,3744,1900,3771,3827.3897.3949,3968 1 2 3961,3953,39 5 6,39 6 3, 3 941 ,2 3 92,3 8 6 9 , 3 742,3565 .3344,3051 ,2 82 5,2566 ,2316 1 3 2068,1817,3012,1577,1368,1196,1048,908,775,656,556,472.406,3791,359.328 14 304,276,240,155,156,115,84,68,4773,69,77,79,67.44,20,5,0.0.0,6005,0.0 15 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 7565, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 9 5 23, C O , C O . 0 , 0 , 0 , 0 , 0 . 0 16 1 1 5 8 9 , 0 , 0 , 0 , 0 , C O , C O , 0 , 0 , 1 5 0 9 3 , C O , C O , 0 , 0 , 0 , C C O GET E24US0 1 239,0,0,0,0,0,1,4,7,10,12,301,13,14,15,16,17,18,15,20,22,23,379,24,25,26 227,28,25,30,30,31,32,477,33,34,35,36,36,37,38,38,39,41,601.42,43.44,45,45 3 46,47,48,49,50,756,51,52,52,54,55,57,59,61,62,64,552,65,67.70,73,75,77,78 4 80,82,84,1155,8 7,51,56,101,106,112,118,124,129,135,1505,140,146,154,163 5 1 7 4 , 1 8 5 , 1 5 5 , 2 0 6 , 2 1 9 , 2 3 3 . 1 5 0 0 , 2 5 0 , 2 6 7 , 2 8 6 , 3 0 9 , 3 3 6 , 3 6 9 , 4 1 1 , 4 6 2 , 5 2 3 , 5 9 6,2392 6 681,782.899,1032,1181,1348,1528,1714,15C2,2088,3G12,2270,2444,2604,2753 7 2 8 9 4 , 3 033,3168 , 3 2 9 4 , 3 4 0 2 , 3 4 8 8 , 3 7 9 1 , 3 5 5 4 , 3 6 0 2 , 3 6 4 2 , 3 6 8 4 , 3 7 3 6 , 3 7 9 9 , 3865 8 2 9 2 1 , 3 9 5 6 , 3 9 6 8 , 4 7 7 3 , 3 9 5 S , 3 9 4 0 , 2 9 1 0 , 3 8 7 3 . 3 829,3783 ,3733,3672 ,3596,3510 S 6009,3426,3347,2263,3159,3038,2914,2803,2704,2605,2493,7565,2363,2224 1 0 20 81, 15 56, 1862,1785, 1721,1647, 1554,1447,9523, 1 3 2 4 , l i 9 4 . 1 1 0 3 , 1 0 6 3 , 1 0 6 4 1 1 1049,96 5 , 8 1 1 , 6 3 1 , 4 9 6 , 1 1 9 8 9 , 4 3 5 , 4 1 4 , 4 0 6 , 3 5 6 , 3 8 2 . 3 4 1 , 2 4 3 . 1 5 6 , 8 3 . 5 9 , 1 5 0 5 3 12 6 4 , 3 4 , 3 6 , 0 , C O , C O , 0 , 0 GET CLTR2 160 DATA 24, 1 . 2 5 , 0 . 3 9 , 4 . 7 , 10.5 17C DATA 280, 14333, 1 2 3 1 . 2 , 8 9 0 . 3 , 7 9 2 . 6 180 FILE E24GF 190 FILE E24U 195 FILE RUN24 157 B7=CM0("?£MPTYSNC RUN243C ) M  7k  LISTING 1 2 3  OF  5  8 9  11  10  12  11 12  16 17  13 14 15 16  18  17  19 20  18 19  21 22  GET  41 42 43 44 45 46  FEB. 2 4 , 1977  ID=RALU  6 7  9  31 32 33 34 35 36 37 38 39 40  P.M.  4 c  10  27 28 29 30  04:07  2 3  6 7 8  23 24 z5 26  R14  1  4  j.3 14 15  FILE  GET  '  i  *.-.<., iu^-r,3iu, ;  2 3 ; 4 < 5 6  ; :  7 ; 8 ] 9 ] 10 11 12 13 14 15 16 17 18 GET 160 17C 180 190 195 197  UO3I0I3I  'CJ,OC^,;>J',,5J6,485,431,375,314,241  110,106,100,78,61,57,44,28,11989,30,21,23,24,13.14,0,0,0,0 Icno'S  r> n  rt n n s> n n A  , -',-",-'i,tj,tJ,to,3u,3j,3O,3V,«j^ iiy,65 t,8,72,76,80,a4,83 j  t  t  106,112,117,122,128,124,141.147,154,161,190,168,176,134.192  1358,1352,1355,1374,1408,1443,1199  2275, 2102,1946,1791 ,1602, 1428,1293,1210,11989,1108.941  75  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . 15 16 17 18 19 20 21 22 23 24 25 26 2 7 28 29 3 0 31 32 J3 3 4 35 36 3 7 3 8 39 40 41 42 43 44 45 46  OF  FILE  R15  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E26CF51D 1 19,0,1,1,1,1,1,1,1,1,1,23,2,2,2,2,2,2,3,3,2,3,30,4,4,4,5,5,5,6,6,7,7,37,8 2 8,9,9,10,11,11,12,13,14,4 7,15,16,17,18,19,20,21.22.24,26.60,27,29,31,33 3 3 4 , 3 6 f 3 S , 4 1 , 4 3 , 46, 75, 4 8 , 5 1 , 5 4 , 5 7 , 6 0 , 6 3 , 6 7 , 7 0 , 7 4 , 7 8 , 9 5 . 8 2 , 87,91,96.101 .106 4 112,117,123,129,119,126,142,149,156,164,172,180,168,197,2 06,151,215,225 5 2 3 5 , 2 4 6 , 2 5 7 , 2 6 6 , 2 80 , 2 9 2 , 3 0 4 , 3 1 7 , 1 9 0 , 3 3 0 . 3 4 4 . 3 5 9 , 3 7 3 . 3 3 8 , 4 0 4 , 4 2 0 . 4 3 7 . 4 5 4 6 472,239,490,505,52 8,548,568,589,611,6 23,6 55,6 79,3 01,702,727,7 52,66],713 7 765,814,860,903,945,3 79,985,1026,1067,110 8,114 7,1181,1210.1239,12 71,1305 8 4 7 7 , 1 3 4 1 , 13 7 3 , 1 4 0 4 , 14 3 4 , 1 4 6 4 , 1 4 5 4 , 1 5 1 5 , 1 5 3 8 , 1 5 5 3 , 1 5 6 8 , 6 0 1 , 1 5 8 8 , 1 6 1 7 , 1 6 5 3 5 1651,172 7,1763,1801,183 7,1864,1880,75 6,13 88,1900,1923.195 5.1988,2011,2026 10 2046,2051,2151.952,2208,2244,2261,2277,2305,2344,2386,2422.2446,2454 11 1199,2 453,245 7,2 477,2 517,25 72,2634,2652,2741,278 5,283 6 , 1 5 0 5 , 2 9 0 0 , 2 9 7 4 12 3043,3055,3130,2155,3182,3219,3266,3314,1900,3257.3395,3433.3476,3526 12 3564,3646,3700,3736,3757,2392,3768,3784,3814,3853,3885,3896,3891,3388 14 3 9 0 4 , 3 9 2 7 , 3 0 1 2 , 3 9 6 4 , 3 9 6 8 , 3 9 4 4 , 3 5 0 6 , 3 6 6 7 , 3 8 3 9 , 3 8 3 1 , 3 8 4 7 , 3 8 7 6 , 3 9 0 6 , 3 7 9 1 1 5 2 9 2 5 , 3 9 4 6 , 3 9 4 8 , 3 5 1 5 , 3 8 3 9 , 3 7 3 4 , 3 6 1 6 , 3 4 7 8 , 2 29 6 , 3 0 7 0 , 4 7 7 3 , 2 8 4 0 , 2 6 7 0 , 2 5 9 2 16 2 5 8 2 , 2 5 7 5 , 2 5 3 3 , 2 4 3 7 , 2 3 2 0 , 2 2 0 8 , 2 1 0 2 , 6 0 0 9 , 1 9 9 4 . 1 8 8 6 , 1 7 9 2 , 1 7 1 5 , 1 6 4 1 , 1 5 5 7 17 1 4 4 9 , 1 2 2 7 , 1 2 0 3 , 1 0 8 7 , 7 5 6 5 , 9 8 3 , 8 8 2 , 7 8 4 , 6 9 6 , 6 2 7 , 5 7 7 , 5 2 1 , 4 4 9 , 3 7 0 , 3 0 2 , 9 5 2 2 18 2 5 1 , 2 0 5 , 1 7 3 , 1 4 4 ,12 5 , 1 0 2 , 7 6 , 5 4 , 4 8 , 4 1 , 1 1 9 8 9 , 4 4 , 3 5 , 3 8 , 2 7 , 2 9 , 1 5 , 16, 3 6 , 3 8 , 2 0 15 15093,22,0,0,0,CCO,0,0,0 GET E26L.JD I 3 0 , 0 , 0 , 0 , 0 , C O , C O , 1, 1 , 3 7 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 4 7 , 2 . 2 , 2 , 3 , 3 , 3 , 4 . 4 , 4 , 4 , 6 0 , 5 2 5 , 6 , 6 , 7 , 7 , 8 , 3 , 5 , 1 0 , 75, 10, 11, 12, 13,14. 1 5 , 1 6 , 1 7 , 1 8 , 1 9 . 9 5 , 2 0 . 2 2 , 2 3 , 2 5 , 2 6 ,23 3 20,32,24,36,115,36,41,43,46,45,51,55,58,61,65,151,69.73,77.81.36,91,96 4 101,107,112,190,118,125,131,138,146,152,161,169,178,187,239,196,206,216 5 226,237,249,260,273,285 ,259,301,312,326.341, 355.422.448.473 ,497r520,545 6 3 7 5 , 5 7 0 , 5 5 7 , 6 2 3 , 6 4 7 , 6 6 5 , 6 8 7 , 7 0 1 , 7 1 4 , 7 2 8 , 7 4 9 , 4 7 7 , 7 7 3 , 7 9 7 , 8 1 5 . 8 2 8 , 3 3 7 , 8 50 7 868,888,908,921 ,601 ,530 ,539,952,973,1001,1029,1054, 1071,1081,1087,756 8 1 0 9 6 , 1 1 1 1 , 1 1 3 4 , 1 1 6 1 , 1 1 8 7 , 1 2 1 2 , i 2 3 8 , 1 2 6 2 , 1 2 8 7 , 1303 , 9 5 2 , 1 3 1 4 . 1 3 3 1 , 1 3 6 2 , 1405 9 1445,1471,1483,1450,1500,i510,1195,1521,1539,1570,1614,1662,1705,1746 10 1 7 9 0 , 1 6 4 0 , 1 8 9 2 , 1 5 0 9 , 1 9 4 0 , 1 9 8 5 , 2 0 2 7 , 2 0 6 7 , 2 1 0 2 , 2 1 2 5 , 2 1 7 0 , 2 2 1 2 , 2 2 6 3 , 2 3 1 5 1 1 1 9 0 0 , 227 5 , 2 4 2 5 , 2 4 7 1 , 2 5 1 7 , 2 5 7 1 , 2 6 3 5 , 2 7 0 6 , 2 7 7 5 , 2 83 5 , 2 8 8 8 , 2 3 9 2 , 2 9 3 3 , 2 9 8 5 1 2 3 0 2 6 , 3 05 7 , 2 0 8 5 , 2 1 2 3 , 3 1 7 7 , 3 2 4 0 , 2 2 5 7 , 3 3 4 0 , 3 0 1 2 , 3 3 7 1 , 3 3 9 1 , 3 4 0 0 . 3 4 0 8 , 3 4 3 2 13 3 4 8 1 , 3 5 4 3 , 3 5 9 7 , 3 6 3 5 , 3 6 7 5 , 3 7 9 1 , 3 7 3 4 , 3 6 0 9 , 3 8 8 0 , 3 9 2 7 , 3 9 3 9 , 3 9 1 5 , 3 8 6 7 , 3 8 3 1 14 3841,3856,4773,3955,3567,3518,3825,3719,3618,3531,3469,3441,3448,6009 15 3 4 7 3 , 3 4 9 3 , 3 4 9 1 , 3 4 6 7 , 3 4 3 2 , 3 4 0 6 , 3 3 9 3 , 3 4 0 2 , 3 4 1 9 , 3 4 3 3 , 7 5 6 5 , 3 4 3 8 , 3 4 3 0 , 3 4 0 2 1 6 3 3 6 1 , ,3 3 0 0 , 3 2 3 2 . 3 1 7 4 , 3 1 4 3 , 3 1 2 9 , 3 1 0 8 , 9 5 2 3 , 3 0 7 4 , 3 0 3 4 , 2 9 7 1 , 2 8 6 2 , 2 6 9 6 , 2 5 1 0 17 2 3 4 1 , ' 2 1 5 4 , 2 0 7 0 , 1 9 2 7 , 1 1 5 8 5 , 1 7 2 5 , 1 4 9 2 , 1 2 5 7 , 1 0 8 6 , 5 8 4 , 9 3 1 , 8 8 5 , 7 8 6 , 6 4 8 , 5 5 6 18 15053,456,452,370,244,58,0,0,0,0,0 GET CLTR2 1 6 0 DATA 2 6 , 1 . 2 5 , 0 . 1 5 , 0 . 9 , 24.5 17C DATA 3 C C , 1 5 8 1 3 , 1 2 6 9 , 7 8 4 4 , 810.2 180 FILE E260F 150 F I L E E26U 195 F I L E RUN26 157 B7=CMC{"?cMPTYSNC RUN263D")  76  1 2 3 4 5 6 7 8 S 10 11 12 13 1 4 •• 15 16 17 18 19 20 21 22 23 2 4 2 5 2 6 27 28 29 3 0 31 32 33 34 35 36 37 38 39 40 41 42  GET 1 2 . 3 4 5 6 7 8 9 IC 11 12 13 14 15 16 17 18 GET 1 .2 3 4 5 o 7 8 5 10 11 ' 12 13 14 15 GET 16C 170 180 150 155 157  E270F3D 23,0,0,CO,0,0,0,0,1,1,30,1,1,1,1,1,1,2,2.2,2,37,2,3.3.3,3,4,4,4,5,5,47,6 6,7,7,8,8,9,10,11,11,60,12.13,14,15,17,18.19,20,22,23,75,25,27,29,31,33 35,37,40,43,45,95,48, 52, 55,58,62 ,66,70,74,79,84,119,39,94 .100,105, 112,118 125,13 2 , 1 3 9 , 1 4 7 , 1 5 1 , 1 5 5 , 1 6 4 , 1 7 3 , 1 8 2 , 1 5 2 , 2 0 2 , 2 1 3 , 2 2 4 , 2 3 5 , 2 4 7 , 1 9 0 , 2 6 0 . 2 7 3 286,300,215 ,330,346,362 ,379,357,239 , 4 1 5 , 4 3 4 , 4 5 4 , 4 7 4 , 4 5 5 , 5 16,539,562.429 527,301,584,618,651,652,737,781,821,855,900,944,379,987,1027,1062,1092 1 1 2 2 , 1 1 5 0 , 1 1 8 0 , 1 2 1 3 , 1 2 4 7 , 1 2 7 8 , 4 7 7 , 1 2 0 2 , 1 3 2 1 , 1 3 3 9 , 1 3 6 3 , 1 3 9 1 , 1 4 2 0 , i 4 4 7 , 14 7 1 1493,1513,601,15 34,15 57,1581,1602,1617,1625,162 8,1632,1645,1670,756.1705 1 7 4 1 , 1 7 6 9 , 1 7 8 9 , 1 8 0 3 , 1 8 2 0 , 1851 , 1 8 9 5 , 1 9 5 8 , 2 0 1 2 , 9 5 2 , 2 C 4 4 , 2 0 5 3 . 2 0 4 7 , 2 0 4 6 , 2062 2054,2128,2147,2143,2126,1195,2116,2133,2176,2 244,2 315,2 284,2445,2512 2 5 7 5 , 2 6 3 8 , 1 5 0 5 , 2 7 0 1 , 2 7 6 3 , 2 82 6 , 2 3 5 1 , 2 5 5 6 , 3 0 1 9 , 3 0 7 6 , 3 1 3 2 , 3 1 9 1 , 3 2 5 6 , 1 9 0 0 3329,3407,3489,3568,3638,3698,3754,3811,3869,3921,2352,3555,3967,3926 3 8 2 4 , 3 6 8 0 , 3 5 4 5 , 3 4 7 0 , 3 4 6 7 , 3 4 9 8 , 3 5 0 3 , 3 0 1 2 , 3 4 5 5 , 3 3 7 8 , 3 3 0 8 , 3 2 6 0 , 3218 , 3 1 7 6 3 1 4 5 , 3 1 5 7 , 2 1 8 7 , 2 1 5 2 , 2 751 , 3 1 2 4 , 2 9 8 6 , 2 6 4 0 , 2 7 5 8 , 2 7 6 1 , 2 8 0 5 , 2 8 2 6 , 2 7 9 3 , 2 7 3 6 2671 , 4 7 7 3 , 2 6 2 2 , 2 5 5 8 , 2 5 9 8 , 2 5 9 4 , 2 5 4 3 , 2 4 2 2 , 2 2 4 8 , 2 0 6 7 , 1916, 1 7 9 5 , 6 0 0 5 , 1 6 9 7 1592,1481,1365,125 8,1148,1040,935,837,744,7565,651,568,498,427,355,297 258,2 26,194,155,95 23,126,139,13 5 , 1 1 4 , 8 1 , 6 1 , 4 6 , 4 0 , 4 3 , 4 6 , 1 1 9 8 9 , 4 9 , 3 9 , 5 6,75 65,52,37,40,42.45,15093,49,75,84,60,0,0.0,0,0.0 E27USD 75,0,0,0,0,CO,0,1,1,1,95,1,1,1,1.2.2.2.2.2.3.119.3.3.3.4.4.5.5.6.6.7,151 7,8,8,9,10,15,17,18,19,20,190,21,25,29,31,34,37.40,43,47,51.239,54,58,63 69,73,76,83,90,97,102,301,109,117,125,135,142,151,162,170.182.195,379,204 219,23 2 , 2 4 6 , 2 5 9 ,2 74,328 , 3 3 7 , 3 4 6 , 3 5 5 , 4 7 7 , 3 6 4 , 3 7 3 , 3 6 3 , 3 5 3 , 4 0 3 , 4 1 3 , 4 2 2 . 4 3 0 439,450,601,461,471,4 78,485,454,505,517,529,541,5 55,756.563,579,506,592 600,613,6 3 2 , 6 5 1 , 6 6 7 , 6 7 9 , 9 5 2 , 6 9 3 , 7 0 9 , 7 2 6 , 7 4 2 , 7 5 7 , 7 7 3 , 7 9 0 , 8 0 7 , 3 2 4 , 8 4 0 , 1 1 9 9 854,664,869,873,681,695,513,931,543,964,1509,983,1008,1037,1066,1093.1118 1143,1171,1201,122 2,1900,1263,1294,1330,1371,1415,1456.1497.1534.1572 1 6 1 2 , 2 2 5 2 , 1 6 5 5 , 1 7 0 1 , 1 7 4 6 , 1 7 8 9 , 1 8 2 5 , 1 8 5 6 , 1 8 8 5 , 1 9 1 7 , 1 9 5 9 , 2 0 1 4 , 3 0 1 2 . 2 086 2 1 7 1 , 2 24 5 , 2 5 0 6 , 2 3 4 4 , 2 3 8 6 , 2 4 5 4 , 2 5 4 8 , 2 6 4 2 , 2 7 0 5 , 3 7 9 1 , 2 7 2 5 , 2 72 0 , 2 7 2 2 , 2 7 5 3 2 8 0 9 , 2 6 7 1 , 2 9 2 1 , 2 9 5 5 , 2 9 7 4 , 2 9 7 8 , 4 7 7 3 , 2 5 6 0 , 3 0 0 0 , 3 0 5 8 , 3 1 4 5 , 3 2 4 9 , 3 3 3 2 , 3 38 8 3429,3467,35C6,6CCS,3540,3566,3586,3597,3607,3623,3654,3692,3730,3768 7565,3827,2903,3964,3968,3916,3837,3756,3681,3558,3383,9523,3153,2897 2 6 4 3 , 2 3 67, 2 1 3 6 , 1 8 5 3 ,16£4-, 1 5 2 1 , 1 3 7 7 , 1 2 5 8 , 1 1 9 8 9 . 1 1 7 4 , 1 0 7 1 , 9 4 7 , 8 1 5 , 7 0 5 . 6 2 4 563,505,444,411,15093,440,472,395,228,61.0,0,0,0,0 CLTR2 DATA 2 7 , 0 . 7 5 , 0 . 2 1 , 9 , 1 2 DATA 2 9 0 , 2 0 4 7 5 , 2 2 5 7 . 3 , 9 8 8 6 , 1663.5 FILE E270F F R O E27U F I L E RUN27 B7=CMD("%EKPTY5NC RUN273C">  77  LISTING 1 2 3 4 . 5 6 7 8 9 10 11 12 13 14 . 15 16 17 18 19 20 21 22 23 24 25 26 2 7 28 2 9 30 31 32 33 34 3 5 36 3 7 3 8 39 40 41 42 43 44 45 46 47  OF  FILE  R17  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E28CF3C 1 1 5 , C O , C O , 0 , 0 , 0 , 0 , 1 , 1 , 1 9 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 23,. 2 , 2 , 2 . 3 , 3 , 3 , 3 , 3 , 4 . 4 , 3 0 , 4 2 5, 5 , 5 , 6 , £ , 7 , 7 , 8 , 8 , 3 7 , 9 , 9 , 10, i l , 1 1 , 1 2 , 13,14,15,16,47,17,18,19,20,21.23,24 3 25,27,29,60,30,22,34,36,38,40,42,45,47,50,75,53,56,59,62,65,69,72,76,80 4 8 4 , 5 5 , 8 5 , 5 3 , 9 8 , 1 0 3 , 1 0 8 , 1 1 4 , 1 1 9 , 1 2 5 , 1 3 1 , 13 8 , 1 1 9 , 1 4 4 , 1 5 1 , 1 5 8 , 1 6 6 , 1 7 3 , 1 8 1 5 1 9 0 , 1 9 8 , 2 0 7 , 2 1 7 , 1 5 1 , 2 2 6 , 2 2 6 , 2 4 7 , 2 5 7 , 2 6 8 , 2 8 0 , 2 9 2 . 3 0 4 , 3 1 6 , 3 3 0 , 1 9 0 , 3 4 3 , 3 57 6 3 7 1 , 3 8 6 , 4 C 1 , 4 1 7 , 4 3 3 , 4 5 0 , 4 6 7 , 4 8 5 , 239 , 5 0 3 , 5 2 1 , 5 4 1 , 5 6 0 , 5 8 0 , 6 C 1 , 6 2 2 , 6 4 4 , 6 6 6 7 6 8 9 , 3 0 1 , 7 1 3 , 7 3 6 , 7 6 1 , 6 5 9 , 7 0 7 , 7 5 6 , 8 0 5 , 8 5 5 , 9 0 4 , 9 5 3 . 3 7 9 . 9 9 9 , 1 0 4 2 , 1 0 8 1 ,1117 8 1151,1185,12 20,1256,129 2,1324,477,1350,13 71,1393,1418,1446,1472.1496,1518 9 1 5 4 3 , 1 5 7 2 , 6 0 1 , 1 6 0 4 , 1 6 3 5 , 1 6 6 3 , 16 82 . 1 6 9 3 , 1 7 0 3 , 1 7 2 5 , 1 7 6 8 , 1 8 2 6 , 18 7 9 , 7 5 6 , 1 9 0 9 10 1 9 1 2 , 1 9 0 2 , 1 9 0 1 , 1 5 2 0 , 1953,1986,2007,2019,2042.952,2089.2155,2219,2260.2274 11 2 2 7 4 , 2 2 7 8 , 2 2 9 7 , 2 3 2 6 , 2 3 5 1 , 1 1 9 9 , 2 3 6 0 , 2 3 6 0 , 2 3 7 1 , 2 4 1 2 . 2 4 7 8 , 2 5 5 4 , 2 6 2 4 , 2 6 3 5 12 2 7 5 2 , 2 8 1 3 , 1 5 0 5 , 2 8 6 8 , 2 5 1 2 , 2 9 4 7 , 2 5 7 3 , 3 0 1 5 . 3 0 6 0 , 3 1 0 7 , 3 1 4 7 . 3 1 7 8 , 3 2 1 0 , 1 9 0 0 13 3252,3201,3346,3376,3356,3415,3441,3480,3530,3584,2352.3631,3661,3672 14 3 6 7 1 , 3 6 7 0 , 3 6 8 0 , 3 7 0 0 , 3 7 1 8 , 3 7 1 4 , 3 6 8 2 , 3 0 1 2 , 3 6 4 0 , 3 6 2 1 , 3 6 4 7 , 3 7 2 3 , 3 8 2 6 , 3 9 2 2 1 5 3 5 6 8 , 3 5 3 6 , 3 8 2 6 , 3 6 6 4 , 3 7 5 1 , 3 4 9 5 , 3 3 6 3 , 3 2 9 6 , 3 2 9 7 , 3 3 3 6 , 3 3 6 5 , 3 33 8 , 3 2 4 9 , 3 1 2 2 16 2 9 9 6 , 4 7 7 3 , 2 8 7 4 , 2 7 3 7 , 2 5 7 0 , 2 3 9 5 , 2 2 7 0 , 2 2 3 7 , 2 2 7 0 , 2 0 7 6 , 2 0 5 7 , 1 5 8 1 , 6 0 0 9 , 1 3 7 8 1 7 1 7 7 6 , 16 8 2 , 1 5 8 5 , 1 4 P G , 1 3 7 0 , 1 2 6 3 , 1 1 6 4 , 1 0 7 1 , 9 7 4 , 7 5 6 5 . 8 6 3 , 7 4 9 , 6 4 4 , 5 4 3 . 4 6 0 . 3 7 4 18 285,214,166,141,9523,123,96,63,41,21,23,25,18,9,5,11989,21,23,25,27,14,0 19 1 6 , 1 8 , 1 8 , 2 0 , 1 5 0 9 3 , 2 1 , 2 3 . 2 5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 5 0 7 7 8 , 3 1 GET E28U3D 1 15,0,0,0,0,0,0,0,0,0,1,19,1,1,1,1,1,1,1,1,1,1,23,2,2,2,2,2,2,2.3,3,3,30.3 2 3,4,4,4,4,5,5,5,5,37,6,6,7,7,7,8,8,9,9,10.47,10,11,11,12.13,13,14.15.16 3 17,60,17,18,19,20,21,22,24,25,26,27,75.29,30,32,33,35.36,38,40.42.44.95 4 4 6 , 4 8 , 5 0 , 5 3 , 5 5 , 5 8 , 6 0 , 63 , 6 6 , 6 9 , 1 1 9 , 7 2 , 7 5 , 7 8 , 8 2 , 8 5 . 8 9 , 5 3 . 9 7 , 1 0 1 . 1 0 5 . 1 5 1 . 1 0 9 5 114,118, 1 2 3 , 1 2 6 , 1 3 4 , 1 2 9 , 1 4 5 , 1 5 0 . 1 5 6 . 1 9 0 . 1 6 2 , 1 6 9 . 1 7 5 . 1 8 2 .189 .196,204,211 6 219,228,239,236,245,2 54,263,272,282.252,302,313,3 24.301,335,346.305.321 7 339,357, 381,402,421,438 ,379,457,478 ,498,512,529,545,560,577,598,618,477 8 6 2 2 , 6 4 6 , 6 6 1 , 6 7 9 , 7 0 2 , 7 2 7 , 7 4 6 , 764,772 ,7£2 ,601 , 7 5 4 . 8 0 8 . 8 2 0 , 8 2 9 , 3 3 3 , 8 4 3 . 8 5 4 5 £ 6 3 , 8 6 6 , 8 6 7 , 7 5 6 , £ 7 3 , 886 , 9 0 3 , 9 1 7 , 9 2 8 , 9 2 4 , 9 4 5 , 9 6 5 , 9 9 5 , 1 0 2 4 , 9 5 2 , 1041 , 1047 10 1 0 4 8 , 1 C 6 0 , 1 0 8 2 , 1 1 0 7 , 1 1 2 9 , 1 1 4 6 , 1 1 7 0 , 1 2 0 1 , 1 1 9 9 , 1 2 2 8 , 1 2 4 4 , 1 2 5 3 , 1 2 6 4 , 1 2 8 4 11 1 3 1 0 , 1 3 3 6 , 1 3 6 3 , 1 3 9 2 , 1 4 2 1 , 1 5 0 5 , 1 4 5 3 , 1 4 5 0 , 1 5 0 6 , 1 5 2 6 , 1 5 4 2 , 1 5 5 5 , 1 5 7 4 , 1 6 0 2 12 1 6 4 7 , 1 6 5 8 , 1 9 0 0 , 1 7 4 6 , 1 7 8 6 , 1 8 1 8 , 1 8 4 6 , 1 8 7 2 , 1 9 0 1 , 1 9 3 5 , 1 9 8 7 , 2 0 2 2 , 2 0 7 3 , 2 3 9 2 1 3 2 1 3 2 , 2 1 7 0 , 2 2 0 5 , 2 24 5 , 2 2 5 6 , 2 3 3 2 , 2 3 5 3 , 2 2 6 2 , 2 5 7 5 . 2 4 1 3 , 3 0 1 2 . 2 4 8 1 , 2 5 6 6 . 2 6 4 3 14 2 6 5 9 , 2 7 4 1 , 2 7 7 5 , 2 8 1 1 , 2 8 4 7 , 2 8 6 6 , 2 8 7 2 , 3 7 9 1 , 2 8 7 3 , 2 8 8 5 . 2 9 1 8 , 2 5 6 8 , 2 0 2 7 , 3 0 5 0 15 3 1 5 5 , 3 2 0 9 , 3 2 3 5 , 2 2 3 1 , 4 7 7 3 , 3 2 1 6 , 3 2 2 1 , 3 2 5 7 , 3 2 9 9 , 3 3 2 4 . 3 3 2 5 , 3 3 2 5 , 3 3 4 8 , 3 4 9 4 16 3 5 3 4 , 6 0 0 9 , 3 5 4 9 , 3 5 4 3 , 35 2 7 , 3 5 2 1 , 3 5 2 8 , 3 5 4 6 , 3 5 7 2 , 3 6 1 . 2 , 3 6 6 1 , 3 7 0 7 , 7 5 6 5 , 3 7 4 5 17 3 7 8 2 , 3 8 1 6 , 3 8 3 9 , 3 8 5 8 , 3 3 9 2 , 3 9 3 9 , 3 9 6 3 , 3 9 3 1 . 3 8 0 6 , 9 5 2 3 , 3 5 8 6 , 3 3 1 5 , 3 0 2 3 , 2 75 7 18 2536,2374,2205,1995,1741,1472,11585,1242,1078,555,855,753,684,601,503 19 388,277,15093,223,212,199,152,65,0,0,0,0,0,322547,31 GET CLTR2 1 6 0 DATA 2 8 , 1 . 2 5 , 0 . 3 , 5 . 3 , 10.6 17C DATA 3 1 0 , 1 8 6 4 1 , 1 5 4 7 , 9 1 6 8 . 5 , 1072.4 180 F I L E E280F 190 FILE E28U 155 F I L E RUN28 157 B7=CMC("?EMPTY'aNC RUN283D")  78  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 2 7 28 29 30 31 32 33 34 35 36 37 38 39 40  OF  FILE  FU8  04:07  P.M.  F E B . 24.  1577  ID=RALU  GET E2S0F3D 1 19,0,0,0,0,1,1,1,1,1,1,23,1.1,1,2,2,2,2,2,2,3,30.3,3,3,4,4.4,4,5,5,6,37,6 2 6,7,7,8,8,9,10,10.il,47,12,12,13,14,15,16,17,18,19.20,60,22,23.25,26,28 2 2 9 , 3 1 , 3 3 , 3 5 , 3 7 , 7 5 , 3 5 , 4 1 , 4 3 , 4 6 , 4 8 , 5 1 , 5 4 , 5 7 , 6 0 , 6 3 , 9 5 , 6 7 . 7 0 , 7 4 , 7 8 , 8 2 . 8 6 . 9.1 4 55,100,105,119,111,116,122,12 6,134,140,147,154,16 2,169,151,177.185,194 5 2 0 3 , 2 1 2 , 2 2 1 , 2 3 1 , 2 4 1 , 2 5 2 , 2 6 3 , 1 5 0 , 2 74 , 2 8 6 , 2 9 8 , 2 1 1 , 3 2 4 , 3 3 7 , 3 5 1 , 3 6 5 , 3 3 0 . 3 9 5 6 235,411,427,442,461,4 78,4 56.515,534,554,574,301,555,616,638,661,684,707 7 731,756,781,807,375,987,1001,1015,1031,1047,1060,1073,1088,1110,1138.477 8 1 1 6 8 , 1 1 5 6 , 1 2 2 2 , 1 2 4 5 , 1 2 6 4 , 12 8 2 , 1 3 0 0 , 1 3 2 1 , 1 3 4 3 , 1 3 6 3 , 6 0 1 , 1 3 8 7 , 1 4 1 3 , 1 4 4 6 , I 4 8 6 9 1527,1561,15 78,1587,1605,1646,756,1704,1756,1784,1796,1818,1872,1952.2035 I C 2 0 9 5 , 2 1 2 5 , 9 52 . 2 1 2 8 , 2 1 1 7 , 2 1 1 3 , 2 1 3 6 , 2 1 9 1 , 2 2 6 6 , 2 3 4 C , 2 4 0 1 , 2 4 5 8 , 2 5 1 5 , 1 1 5 5 11 2 5 7 4 , 2 5 5 2 , 2 5 5 5 , 2 6 C 2 , 2 6 7 2 , 2 6 2 7 , 2 6 2 6 , 2 6 5 0 , 2 6 7 0 , 2 6 7 4 , 1 5 0 9 , 2 6 6 7 , 2 6 6 1 , 2 6 6 7 12 2687,2722,2769,2825,2861,2927,2961,1500,2990,3023,3066,3120,3183,3248 13 3312,3368,3413,3443,2352,3460,3475,3503,3544,3585,3620,3656,3699,3738 14 3 7 6 0 , 3 0 1 2 , 2 7 7 3 , 2 8 0 1 , 2 3 5 8 , 3 9 2 1 , 3 9 6 1 , 3 9 6 7 , 3 9 5 9 , 3 9 5 2 , 3 9 3 9 . 3 8 9 9 , 3 7 9 1 , 3 3 3 5 I E 3 7 6 6 , 3 7 8 5 , 3 7 9 5 , 3 7 3 9 , 35 6 9 , 3 3 3 8 , 3 1 5 6 , 3 0 8 0 , 3 0 5 3 , 4 7 7 2 , 2 5 6 5 , 2 7 7 5 , 2 5 2 2 , 2 26 7 16 2 0 4 6 , 1 8 4 5 , 1 6 4 5 , 1 4 4 6 , 1261 , 1 0 8 6 , 6 0 0 9 , 9 1 9 , 7 6 0 , 6 2 1 , 5 0 9 , 4 1 6 , 3 3 9 , 2 6 9 , 2 1 3 , 1 7 2 17 144,7565,117,52,71,53,40,35,37,30,21,17,S523,18,15,14,15,16,8,0,0,10.22 ie 1 1 S 8 9 , 2 4 , 1 3 , 1 4 , C O , 0 , 0 , 0 , 0 , 0 , 1 5 0 9 3 , 0 , 0 , 0 . 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 2 2 0 9 3 , 3 0 GET E29U3C 1 2 3 5 , C O , 5 , 2 3 , 5 0 , 8 7 , 1 0 6 , 1 3 5 , 1 3 9 , 1 3 5 , 3 0 1 , 1 3 3 . 1 3 2 , 134, 135, 137, 1 3 7 , 1 3 6 , 135 2 1 3 5 , 1 3 6 , 3 7 9 , 1 3 6 , 1 4 2 , 1 4 4 , 1 4 7 , 1 4 9 , 1 5 0 , 1 5 2 , 1 5 3 , 1 5 6 , 1 5 8 , 4 7 7 , 1 6 1 , 1 6 4 , 1 6 8 , 1 71 3 17 5 , 1 7 9 , 1 8 3 , 1 8 5 , 1 9 5 , 2 0 0 , 6 0 1 , 2 0 2 , 2 0 3 . 2 0 4 , 2 0 7 , 2 1 2 , 2 1 9 , 2 2 6 . 2 3 2 , 2 3 6 , 2 3 9 , 7 5 6 4 2 4 1 , 2 4 3 , 2 4 4 , 2 4 7 , 2 5 2 , 2 60 , 2 7 0 , 2 7 9 , 2 8 8 , 2 9 3 , 9 5 2 , 2 9 5 , 2 5 6 , 2 5 3 . 3 0 6 , 3 2 0 , 3 3 7 , 3 4 9 5 2 5 4 , 3 5 3 , 3 5 6 , 1 1 5 5 , 3 6 6 , 3 8 3 , 4 0 1 , 4 1 4 , 4 1 5 , 4 4 5 , 4 7 3 , 4 3 0 , 4 9 0 , 4 5 8 , 1 5 0 9 ,503,507.51 2 6 5 1 9 , 5 2 7 , 535 , 542 , 5 5 3 , 5 6 9 , 5 8 9 , 1 9 0 0 , 6 0 8 , 6 2 2 , 6 3 4 , 6 4 7 , 6 6 6 , 6 3 9 . 7 1 4 , 7 3 9 , 7 5 9 , 7 7 9 7 2 3 5 2 , 8 0 C , 6 2 7 , 6 5 6 , 6 5 0 , 5 1 6 , 5 3 2 , 5 4 1 , 5 5 2 , 5 7 4 , 1 0 0 8 , 3 0 1 2 , 1 0 4 7 . 1 0 8 2 , 1 1 0 9 . 1 12 £ 8 1 1 4 6 , 1 1 7 0 , 1 2 0 7 , 1 2 6 4 , 134 3 , 1441 , 3 7 9 1 , 1 5 4 1 , 1 6 2 3 , 1 6 8 1 , 1 7 2 3 , 1 7 6 5 , 1 8 1 2 , 1 3 5 5 S 1 8 5 9 , 1 9 6 7 , 2 085 , 4 7 7 3 , 2 2 6 0 , 2 4 6 6 , 2 6 7 3 , 2 8 6 5 , 3 0 4 3 , 3 2 1 9 , 3 4 0 4 , 3 5 5 0 , 3 7 5 2 , 3 8 6 3 IC 6 0 0 9 , 3 5 1 5 , 2542 , 3 9 5 6 , 3 9 6 8 , 3 9 6 2 , 3 9 1 9 , 3 6 3 8 , 3 7 2 6 , 3 5 5 8 , 3 4 7 0 , 7 5 6 5 , 3 3 5 4 , 3 2 4 5 11 3 1 3 0 , 2 5 6 7 , 2 8 0 9 , 2 6 1 0 , 2 4 2 4 , 2 2 6 6 , 2 1 4 2 , 2 0 2 9 , 9 5 2 3 , 1 8 9 5 , 1 7 2 5 , 1 5 1 0 , 1 2 8 6 , 1 1 0 0 12 9 6 3 , 8 9 1 , 8 2 6 , 7 5 C , 6 5 8 , 1 1 9 3 9 , 5 8 7 , 5 3 5 , 4 8 3 , 4 0 9 , 3 3 5 , 2 7 6 , 2 2 2 , 1 7 4 , 1 5 3 , 1 4 5 , 1 5 0 9 3 12 1 5 6 , 1 4 6 , 1 5 7 , 1 6 8 , 1 5 4 , 1 1 C , 5 9 , 0 , 0 , 0 , 1 3 1 2 4 1 , 1 5 GET C L T R 2 1 6 0 CATA 2 5 , 1 , 0 . 3 5 , 1 . 5 , 1 8 . 2 1 7 C CATA 3 0 0 , 1 6 5 0 5 , 1 6 6 7 , 4 4 0 1 , 1 2 7 5 . 8 18C F I L E E250F 1 9 0 F I L E E25U 1 5 5 F I L E RUN29 1 5 7 B7 = C M C ( " ? E M P T Y S N C RL)N2SaC")  79  LISTING 1 2 3 4 5 6 7 8 9 IC 11 12 13 14 1 5-. 16 17 18 15 2 0 21 22 23 24 2 5 26 27 28 £.<) 30 31 32 n » 33 34 35 36 37 38  OF GET  FILE  R19  04:07  P.K.  FEB.  24,  1577  ID=RALU  E31CF3C  1 3C,0,0,1,1,1,1,1,1,1,1,37,2,2,2.2,3,3,3,3,4,4,47,4,5.5,6,6,7,7,0,9,10,60 2 10,11,12,13,14,15,16,13,19,21,75,22,24,26,28,30,3 2,34,3 6,39,42,9 5,45,43 3 5 1 , 5 4 , 5 8 , 6 2 , 6 6 , 7 0 , 7 5 , 8 0 , 1 1 9 , 8 5 , 9 0 , 9 6 , 1 C 2 , 1 0 8 ,1 1 5 , 122 . 1 2 9 , 1 3 7 , 1 4 5 , 1 5 1 , 1 5 3 4 1 6 2 , 1 7 2 , 1 8 2 , 1 9 2 , 2 0 2 , 2 1 4 , 2 2 5 , 2 3 8 , 2 5 0 , 1 9 0 , 2 6 4 , 2 7 3 , 2 52 . 3 0 7 . 3 2 3 , 3 3 9 , 3 5 6 , 3 7 4 5 3 9 3 , 4 1 2 , 2 2 9 , 4 3 1 , 4 5 2 , 4 7 3 , 4 5 5 , 5 1 8 , 5 4 2 , 5 6 6 , 5 5 1 , 6 1 7 , 6 4 4 , 3 0 1 , 6 7 1 , 7 0 0 , 7 2 9 . 6 80 6 7 3 1 , 7 8 3 , 8 3 3 , 8 8 0 , 9 2 8 , 9 78 , 3 7 9 , 1 0 2 7 , 1 0 7 2 , 1 1 1 3 , 1 1 5 2 , 1 1 9 1 , 1 2 2 1 , 1 2 7 2 , 1 3 1 2 . 1 3 5 0 7 1384,47 7,1416, 1447,14 80.1512,1539,1561,1582,1606,1635,1663 ,601 ,1687,1710 8 1739,1777,1823,1868,190 2,1930,1955,1985,756,2020,2055,2032,2097,2107.2127 5 2 1 6 6 , 2 2 2 4 , 2 2 8 6 , 2 3 3 4 , 9 5 2 , 2 35 7 , 2 3 6 5 , 2 37 5 , 2 4 1 8 , 2 4 8 7 , 2 5 7 7 , 2 6 6 8 , 2 7 3 5 , 2 7 5 6 , 2 72 7 10 1 1 9 9 , 2 6 7 8 , 2 6 6 0 , 2 7 1 7 , 2 8 4 4 , 2 5 9 3 , 3 1 1 4 , 3 1 5 2 , 3 2 4 6 , 3 3 0 3 , 3 3 7 6 , 1 5 0 9 , 3 4 5 8 , 3 53 5 11 3 6 0 3 , 3 6 6 5 , 3 7 3 3 , 3 7 9 0 , 3 8 2 9 , 3 8 4 3 , 3 3 4 2 , 3 8 4 0 , 1 9 0 0 , 3 8 5 5 , 3 8 8 9 , 3 9 3 0 , 2 9 5 9 , 3 5 6 7 12 3 9 6 2 , 3954, 3 S 4 C , 3 5 0 1 , 3 8 1 2 , 2 3 9 2 , 3 6 6 7 , 3 4 8 7 , 3 3 0 9 , 3 1 5 5 , 3 0 1 9 , 2 3 7 5 , 2 7 0 2 ,2501 13 2 2 8 8 , 2 0 8 1 , 3 0 1 2 , 1 8 8 9 , 1 7 0 7 , 1 5 3 2 , 1 3 7 1 , 1 2 3 9 , 1 1 4 0 , 1 0 5 7 , 9 6 a , 8 6 2 , 7 5 4 , 3 7 9 i , 6 6 5 14 6 1 1 , 5 6 6 , 5 71 , 5 4 2 , 4 5 3 , 4 3 8 , 3 9 8 , 3 7 S , 3 7 0 , 4 7 7 3 , 3 6 1 , 3 5 4 , 3 6 0 , 3 7 4 , 3 7 1 , 3 2 8 , 2 5 0 , 1 6 9 15 113,89,6009,83,81,75,66,57,50,44,39,34,28,7565,24,21,17,14.12.12.9,8.7,4 16 9523,2,2,5,5,5,3,0,0,0,0,11989,0,0,0,0,0,0,0,0.0,0,15093,0,0,0,0,0,0,0,0 17 0 , 0 , 2 7 0 3 2 9 , 2 8 GET E 3 1 U 3 0 1 239,0,0,0,0,0,0,2,6,10,14,301,17.19,21,22,23,24,26.28.29,31,379,32,34,35 2 37,3 6,4 0 , 4 1 , 4 2 , 4 3 , 4 5 , 4 7 7 , 4 6 , 4 7 , 4 8 , 4 9 , 5 0 , 5 2 , 5 3 , 5 4 , 5 5 , 5 7 , 6 0 1 , 5 9 , 6 0 , 6 2 . 6 4 . 6 5 3 66,68,65,70,71,756,73,75,79,81,83,84,66.89,92.94,S52.57,99,101.104,107 4 110,113,115,118,122,1199,127,132.138,143,150,158,166,174.182,190,1509,200 5 2 1 1 , 2 2 4 , 2 3 8 , 2 5 2 , 2 6 7 , 2 8 2 , 3 0 1 , 3 2 3 , 3 51 , 1 5 0 0 , 3 8 2 , 4 1 5 , 4 5 2 . 4 9 3 . 5 4 3 , 6 0 2 , 6 7 2 . 7 5 0 6 836,934.2 392,1046,1173.1316,147 3.1643,1821.2003.2 134,22 63,2535.3012,2714 7 2 8 8 1 , 3 0 3 7 , 3 1 7 8 , 2 3 0 7 , 3 4 3 0 , 3 5 4 3 ,3 6 3 9,3 7 1 0 , 3 7 6 0 , 3 7 9 1 , 3 7 9 8 , 3 8 3 6 , 3 8 7 6 , 3 9 0 8 3 3927,3940,3555,3967,3954,2900,4773,2813,3733,3688,3673,3639,3541,3372 9 2 1 7 C 3 C C C , 2 8 9 6 , 6 0 0 9 , 2 84 5 , 2 8 02 , 2 7 3 2 . 2 6 3 1 , 2 516 , 2 4 0 3 , 2 3 1 1 , 2 2 3 7 , 2 1 7 4 , 2 1 0 1 1 0 7 5 6 5 , 1 5 5 8 , 1 8 7 4 , 1 7 4 3 , 1 6 1 7 , 1 5 1 1 , 1 4 21 , 1 2 3 7 , 1 2 6 8 , 1 2 1 2 . 1 1 4 9 , 9 52 2 , 1 0 6 3 , 9 4 4 , 3 1 1 11 7 0 5 , 6 3 6 , 6 1 2 , 6 0 3 , 5 7 8 , 5 2 2 , 4 2 9 , 1 1 9 3 9 , 3 2 1 . 2 5 4 , 2 5 6 , 2 9 1 , 2 7 5 , 1 9 7 , 1 2 6 , 1 1 3 , 9 7 , 7 7 12 1 5 0 9 3 , 5 5 , 8 9 , 9 5 , 6 8 , 0 , 0 , 0 , 0 , 0 , 0 , 1 3 7 4 6 2 , 1 9 GET C L T R 2 /- r- T r~ i v- < N - ~ 1 6 C DATA 3 1 , 0 . 7 5 , 0 . 2 3 , 1 . 5 , 2 0 1 7 C CATA 2 8 0 , 1 3 6 4 4 , 1 1 1 3 , 9 1 0 , 6 9 6 180 FILE E310F 150 F I L E E31U 1 5 5 F I L E RUN31 157 B7=CMD("*E«FTY£NC RUN3iaC»)  80  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14' 15 16 17 18 19 20 21 22 23 24 2 5 26 2 7 28 29 30 31 32 33 34 35 36 37 38 39  OF  FILE  R2C  04:07  P.M.  FEB.  24.  1977  ID=RALU  GET E320F3D 1 I S , 0 , 0 , C O , C O . 0 , 1 , 1 , 1 , 2 3 , 1 , 1 .1,1 , 1 , 1 . 2 . 2 , 2 , 2 , 3 0 . 2 . 3 , 3 . 3 . 3 , 4 . 4 , 4 , 5 . 5 . 3 7 , 5 2 6,6, 7 , 7 , 8 , 8 , 9 , 1 0 , 1 0 , 4 7 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 . 1 7 , 1 8 , 1 9 , 2 0 , 6 0 , 2 2 , 2 2 , 2 5 , 2 6 , 2 8 , 3 0 3 3 2 , 3 4 , 3 6 , 3 8 , 7 5 , 4 0 , 4 3 , 4 5 , 4 8 , 5 1 ,54, 5 7 , 6 1 , 6 4 . 6 8 , 9 5 , 7 2 . 76,80, 65. 8 5 , 9 4 , 5 9 , 1 0 5 4 111, 116, 1 1 9 , 1 2 3 , 1 2 9 , 1 3 6 , 1 4 3 , 1 5 0 , 1 5 8 , 1 6 6 , 1 7 4 , 1 8 3 , 1 9 2 , 1 5 1 , 2 0 2 , 2 1 1 , 2 2 2 , 2 3 2 5 243,25 5 , 2 6 7 , 2 7 5 , 2 5 2 , 3 0 5 , 1 9 0 , 3 1 9 , 3 2 3 , 3 4 8 , 3 6 3 , 3 7 9 , 3 5 5 , 4 1 2 , 4 2 9 , 4 4 7 , 4 6 6 , 2 3 9 . 6 485,505,525,546,568,590,613,636,660,665,301,710,726.763.746.792.837,878 7 513,94 8 , 5 8 3 , 3 7 5 , 1 0 2 0 , 1 0 5 6 , 1 0 9 0 , 1 1 2 4 , 1 1 6 1 , 1 2 0 0 , 1 2 3 6,12 7 0 , 1 2 9 3 , 1 3 0 9 , 4 7 7 8 1325,1350,1385,1427,1467,1497,1514,15 23,1535,1559,601,1593,1627,1649,1663 9 1 6 8 0 , 1 7 1 1 , 1 7 5 5 , 1 7 9 9 , 1 8 3 1 , 1 8 5 2 , 7 5 6 , 1 8 7 0 . 1 8 9 0 , 1 9 1 2 , 1 9 3 2 , 1 9 4 8 , 1 9 6 2 , 19 7 8 , 2 0 0 3 10 2 0 3 7 , 2 0 7 2 , 9 5 2 , 20 9 1 , 2 0 8 1 , 2 0 5 0 , 2 0 2 6 , 2 0 3 4 , 2 0 7 9 , 2 1 3 6 , 2 1 8 2 , 2 2 1 3 . 2 2 4 3 , 1 1 9 9 11 2 2 8 8 , 2 3 5 C , 2 4 2 3 , 2 4 9 7 , 2 5 6 5 , 2 6 2 8 , 2 6 9 0 , 2 7 5 2 , 2 8 1 4 , 2 8 7 2 , 1 5 0 9 , 2 9 2 6 , 2 9 7 4 , 3 0 1 8 12 3 0 5 6 , 3 C 8 9 , 2 1 2 1 , 3 1 5 3 . 3 1 9 0 , 3 2 3 5 , 3 2 8 6 , 1 5 0 0 , 3 3 4 1 , 3 3 9 1 , 3 4 3 5 , 3 4 7 6 , 3 5 2 4 , 3 5 6 5 13 36 5 1 , 3 7 0 3 , 3 7 2 4 , 3 7 1 5 , 2 3 9 2 , 3 6 9 7 , 3 6 9 6 , 3 7 3 5 , 3 8 1 3 , 3 9 0 5 , 3 9 6 7 , 3 5 6 6 , 3 9 0 0 , 3 7 9 7 14 3 6 8 0 , 3 C 1 2 , 3 5 4 5 , 3 3 8 6 , 3 1 5 0 , 2 9 3 6 , 2 3 0 5 , 2 6 4 2 , 2 4 6 0 , 2 2 2 4 , 1 9 3 8 , 1 6 4 1 , 3 7 9 1 , 13 74 15 1153,972,816,678,555,450,367,312,263,4772,265,247,220,189,159,137,126 16 1 2 3 , 1 2 C l l i , 6 C C 9 , 9 6 , 8 2 , 7 0 , 5 9 , 5 0 , 4 3 , 3 7 , 3 0 , 2 3 , 2 0 , 7 5 6 5 , 1 8 , 1 7 , 1 4 , 1 0 , 8 , 6 , 7 . 5 17 2,2,9 523,4,2,0,0,3,6,7,3,4,4,11589,0,0,0,6,6,6,7,0,0,0,15093,0,0,0,0,0,0 18 0,0,0,0,275114,30 G E T E22U310 1 239,0,0,CO,0,1,2,4,5,6,3C1,6,6,8,10,14,17,20,21,21,22,375,23,24,25,25,26 2 27,27,28,29,30,477,30,31,3 2,3 2,33,34,35,3 5,36,36,601,37,38,39,39,40,41,42 3 «3,43,44, 756, 45, 4 6 , 4 7 , 4 8 , 4 5 , 5 0 , 5 1 , 5 2 , 5 3 , 5 4 , 9 5 2 , 5 5 . 5 7 , 5 9 , 6 1 , 6 3 , 6 4 , 6 5 , 6 7 , 6 9 4 71,1199,73,76,7 8,81,8 5 , 8 8 , 9 1 , 5 4 , 9 7,101,1509,105,109,114,119.124.12 5,135 5 141,148,156,190 0,163,171,179,18 9,199,211,225,240,256,273,2392,292,315.343 6 377,419,470,533,606,654,752,2012,906.1037,1186,1352,1532,1722,1922,2128 7 2334,2536,3791,2731,2918,3096,3262,3413,3547,3665,3767,38 50.3911,4773 8 3 9 4 5 , 3 5 6 6 , 3 5 6 7 , 3 5 5 3 , 3 5 2 7 , 3 8 8 9 , 3 8 3 8 , 3 7 6 2 , 3 6 5 9 , 3 5 3 2 , 6 0 0 9 , 3 4 0 0 , 3 2 8 8 , 3200 9 3112,2591,2 821,26 57,2502,2374,22 65,7565,2171,209i.2020,1937.1814,1663 10 1 5 0 3 , 1 3 6 6 , 1 2 6 1 , 1 1 7 3 , 5 5 2 3 , 1 0 8 6 , 9 8 8 , 8 8 6 , 7 8 1 , 6 8 4 , 5 5 8 , 5 2 7 . 4 8 7 , 4 7 4 , 4 7 C , 1 1 5 8 9 11 449,3 9 4 , 3 2 8 , 2 6 8 , 2 2 3 , 1 9 2 , 1 4 4 , 1 1 0 , 9 4 , 7 6 , 1 5 0 9 3 . 5 4 , 5 8 , 3 1 , 0 , 0 , 0 . 0 , 0 , 0 , 0 12 155674,19 GET CLTR2 1 6 0 CATA 3 2 , 1.25, 0.19, 2.2, 11.5 17C 0ATA 3 0 0 , 1 2 7 9 8 , 8 6 2 . 7 , 9 9 7 . 1 , 570 18C F I L E E 3 2 0 F 190 F I L E E32U 195 F I L E RLN32 157 B7=CMC("?£MPTYSNC RUN322D")  81  LISTING 1 2 3 4 5 6 7 8 9 10 xl 12 13 1415 16 17 A8 1.9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  OF F I L E  R21  04:07  P.M.  F E B . 24.  1977  ID=RALU  SAVE RUN32SO L I S T RUN3230 GET E 3 3 G F S C 1 3 7 , C O , C O , 0 , 1 , 1 , 1 , 1 , 1 , 47 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 4 , 4 . 5 , 6 0 , 5 , 6 , 7 , 7 . 8 , 9 , 1 0 . 1 1 , 1 2 . 1 4 2 75, 15, 1 7 , 1 8 , 2 0 , 2 2 , 2 5 , 2 7 , 3 0 , 3 2 , 3 5 , 9 5 , 3 9 . 4 2 , 4 6 , 5 0 , , 5 5 , 5 9 , 6 5 , 7 0 , 7 6 , 3 2 , 1 1 9 , 8 9 3 97,104,113 , 1 2 2 , 1 2 1 , 142, 152, 164, 176, 151, 189, 2 0 3 , 2 1 6 , 2 3 3 , 2 5 0 , 2 6 7 , 2 8 5 , 3 0 4 4 325,34 6,150,36 9,352,417,443,4 70,4 59,5 29,560,592,626,2 39,661,698,7 36.776 5 816,859,903,54 8 , 5 9 5 , 1 0 4 3 , 3 0 1 , 1 0 9 2 , 1 1 4 2 , 1 1 5 6 . 1 1 2 7 , 1 2 0 6 . 1 2 9 0 . 1 3 7 3 , 1 4 5 5 , 1 5 3 7 6 1 6 1 6 , 3 7 5 , 1 6 5 8 , 17 7 6 , 1 3 5 0 , 1 9 2 0 , 1 9 8 7 , 2 0 5 7 , 2 1 3 4 , 2 2 1 2 , 2 2 8 5 , 2 3 4 4 , 4 7 7 , 2 3 9 4 , 2 4 4 0 7 2 4 9 1 , 2 5 4 e , 2 6 1 1 , 2 6 7 4 , 2 7 3 1 , 2 7 7 8 , 2 6 1 4 , 2 8 4 4 , 6 0 1 , 2 8 7 2 , 2 9 0 1 , 2 9 3 4 , 2 9 7 2 , 3 021,3 079 8 3 1 4 1 , 3 1 9 7 , 3 2 4 3 , 3 2 8 3 , 7 5 6 , 3 3 2 1 , 3 3 5 8 , 3 3 9 9 , 3 4 5 4 , 3 5 3 0 , 2 6 1 8 , 3 6 9 5 . 3 7 3 9 , 3 7 4 9 . 3 746 9 9 5 2 , 3 7 5 2 , 3 7 8 2 , 3 8 3 0 , 2 8 85 , 3 9 3 4 , 3 9 6 3 . 3 9 6 7 , 3 9 5 2 . 3 9 2 6 , 3 8 8 3 , 1 1 9 9 , 3 8 1 0 , 3 6 9 8 , 3 5 6 6 10 3444, 23 5 3 , 3 2 9 6 , 2 2 6 0 , 3 2 2 9 , 3 1 8 5 , 3 1 0 9 , 1 5 0 9 , 2 9 9 7 , 2 85 7 , 2 7 0 8 , 2 5 6 5 . 2 4 2 8 . 2 2 9 2 11 2 1 5 2 , 2 0 1 1 , 1 8 6 8 , 1 7 2 0 . 1 9 0 0 , 1 5 6 2 , 1 3 9 7 , 1 2 4 2 , 1 1 1 7 , 1 0 3 0 , 5 7 5 , 9 3 2 . 8 8 5 , 8 2 6 . 7 6 6 12 2 3 9 2 , 7 1 1 , 6 6 6 , 6 3 0 , 5 9 5 , 5 5 5 , 5 1 3 , 4 7 5 , 4 4 8 , 4 3 3 , 4 1 8 . 3 0 1 2 . 3 9 3 , 3 5 7 . 3 1 7 , 2 8 5 , 2 6 4 13 2 4 7 , 2 3 2 , 2 2 1 , 2 1 7 , 2 2 0 . 3 7 9 1 , 2 2 6 , 2 2 9 , 2 2 6 , 2 1 5 , 1 9 4 , 1 6 6 , 1 3 9 , 1 1 9 , 1 0 9 , 1 0 6 , 4 77 3 14 1 0 5 , 1 0 4 , 1 0 1 , 9 3 , 8 0 , 6 4 , 5 0 , 4 3 , 4 1 , 4 1 , 6 0 0 9 , 3 8 , 3 4 . 3 1 , 2 7 , 2 5 , 2 3 . 2 0 , 19, 1 7 , 1 5 . 7 5 6 5 15 1 6 , 1 7 , 1 6 , 1 5 , 1 4 , 1 2 , 8 , 8 , 1 2 , 1 0 , 5 5 2 3 , 7 , 7 , 8 , 1 2 , 1 4 , 1 0 , 1 0 , 1 1 , 6 , 6 , 1 1 9 8 9 . 7 , 7 , 8 . 0 16 0 , 0 , 0 , 0 , 0 , 0 , 1 5 0 9 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 6 2 3 6 3 , 2 7 GET E 3 3 U 3 0 1 23 9 , C O , C O , 0 , 1 , 5 , 1 0 , 1 6 , 2 0 , 3 0 1 , 2 1 , 2 1 , 2 1 , 2 2 , 2 3 , 2 5 , 2 6 , 2 8 , 3 0 , 3 2 , 3 7 9 , 3 4 , 3 6 , 3 8 2 40,42,44,46,49,51, 53,477, 5 4 , 5 6 , 5 8 , 6 0 , 6 3 , 6 6 , 6 8 , 7 0 , 73, 75. 601, 78.81, 84.86.88 3 9 1 , 9 5 , I C C 1 0 4 , 1 0 7 , 7 5 6 , 1 1 1 , 1 1 5 , 1 2 0 , 1 2 6 , 1 2 3 . 1 4 0 , 1 4 7 , 1 5 3 , 1 6 0 , 1 6 6 . 9 5 2 ,174 , 1 3 3 4 194,207,220,23 6,25 5,2 77,303,3 3 2 , 1 1 9 9 , 3 6 3 , 3 9 5 , 4 3 0 , 4 7 0 , 5 1 7 . 5 7 3 . 6 3 8 , 7 1 3 , 7 9 7 5 6 5 C . 1 5 C 5 , 9 8 9 , 1 C 9 3 , 1 2 0 2 , 13 1 6 , 1 4 3 4 . 1 5 5 6 , 1 6 8 4 , 1 8 1 6 , 1 9 5 3 , 2 0 9 3 , 1 9 0 0 , 2 2 3 3 . 2 3 7 0 6 2 5 0 3 , 2 6 3 3 , 2 7 6 3 , 2 8 9 3 , 3 0 1 8 , 3 1 3 4 , 3 2 3 7,33 2 7 , 2 3 9 2 , 3 4 0 9 , 3 4 8 9 , 3 5 7 3 , 3 6 5 3 , 3 7 3 2 7 3 7 8 5 , 3 8 1 8 , 3 8 50,3 8 9 1 , 3 9 3 2 , 3 0 1 2 , 3 9 5 3 , 3 9 4 8 , 3 9 3 3 , 3 9 3 2 , 3 9 4 6 , 3 9 6 4 , 3 9 6 7 , 3 9 5 7 8 3941,3926,3791,3912,369 0,3857,3815,3762,3702.3643.3594,3555,3511,4773 5 3442,3 3 4 8 , 3 2 4 9 , 2 1 6 1 , 20 8 4 , 2 9 9 1 , 2 8 6 6 , 2 7 2 1 , 2 5 8 5 , 2 4 7 6 , 6 0 0 9 , 2 3 8 1 . 2 2 7 7 , 2 1 6 0 10 2 0 4 1 , 1 5 2 1 , 1 8 2 7 , 1 7 2 0 , 1 6 0 5 , 1 4 8 5 , 1 3 7 8 , 7 5 6 5 , 1 2 7 6 , 1 1 8 3 , 1 0 9 3 . 1 0 2 5 . 9 5 7 , 3 8 6 . 8 1 0 11 7 4 3 , 6 8 4 , 6 2 4 , 9 5 2 3 , 5 52 , 4 73 , 4 0 8 . 3 6 2 . 3 2 3 , 2 6 8 , 2 1 3 , 2 . 6 9 , 1 6 0 , 1 8 2 , 1 1 9 8 9 , 1 8 3 , 1 4 4 12 112,105,80,34,18,39,42,22,15093,24,26,28,30.32,0,0,0,0,0 GET CLTR2 160 D A T A 3 3 , 0 . 7 5 , 0 . 3 8 , 16, 6.6 17C D A T A 2 7 0 , 1 1 3 9 4 , 1 0 9 4 . 4 , 5 0 5 , 7 2 3 . 2 180 F I L E E 2 2 0 F - 190 F I L E H23U 1 9 5 F I L E RUN33 157 B 7 = C « D ( " S E M P T Y 3 N C R U N 3 3 3 C " ) s  82  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 j.3 14. 15 16 17 ' 18 15 20 21 22 23 24 2 5 26 27 28 2 9 30 31 32 33 34 35 36 37 38  OF  FILE  R22  04:07 P.M.  FEB.  24,  1577  ID=BALU  GET E 3 4 0 F 3 D 1 23,0,0,0,lrl,1,1,1,1,1,20,1,2,2,2,2,2,3,3,3,4,37,4,4,5,5,6,6,7,7.8,9,47 2 lOilO, 11,12,13 ,14,16,17 ,18,20,60,21 ,22.24,26,28,30, 33,35, 38,40.75 ,43,46 , 3 50,53, 5 7 , 6 1 , 6 5 , 6 5 , 74, 7 5 , 9 5 , 8 4 , 8 9 , 9 5 ,101 , 1 0 7 , 1 1 4 , 1 2 1 . 1 2 9 , 1 3 7 , 1 4 5 , 1 1 9 , 1 5 4 4 1 6 3 , 1 7 2 , 1 8 2 , 1 9 3 , 2 0 4 , 2 1 6 , 2 2 8 , 2 4 0 , 2 5 4 , 1 5 1 , 2 6 7 , 2 8 2 , 2 5 7 , 3 1 2 , 3 2 9 , 3 4 6 , 3 6 3 , 3 82 5 4 0 1 , 4 2 1 , 1 9 0 , 4 4 1 , 4 6 3 , 4 8 5 , 5 0 8 , 5 3 2 . 5 5 6 , 5 8 2 . 6 0 8 . 6 3 5 . 6 6 3 , 2 3 9 , 6 9 2 . 7 2 1 , 7 5 2 , 7 84 6 616,845,884,519,955,992,301,1029,1068,1108,982.1050,1123.1196,1269,1341 7 1 4 1 4 , 3 7 5 , 1 4 8 7 , 1 5 55,162 8 , 1 6 9 0 , 1 7 4 4 , 1 7 8 5 , 1 8 2 7 , 1 8 6 0 , 1 8 95.1937,4 7 7 , 1 9 88,2042 8 2087,2123, 2154,2189,2229,2271 ,2308,2339 ,601,2372 .2414 .2467.2521.2561,2589 9 2613,2644,26 79,2709,756.2737,2772,2 824,28 83,2931,2950,2S48,2554,3004,3115 IC 5 5 2 , 3 2 5 8 , 3 3 7 3 , 3 4 3 1 , 3 4 2 5 , 3 4 0 2 , 3 3 9 9 , 3 4 1 7 , 3 4 4 3 , 3475 . 3 5 2 4 . 1199 , 3 5 9 3 , 3657 11 3 6 8 9 , 3 6 6 4 , 3 6 7 3 , 3 6 8 9 , 3 7 4 5 , 3 8 2 4 , 3 9 0 0 , 3 5 5 1 , 1 5 0 9 , 3 9 6 7 , 3 9 5 4 , 3 5 2 4 , 3 8 9 0 , 3 3 5 7 12 3 8 1 8 , 3 7 5 8 , 3 6 5 8 , 3 5 1 7 , 3 3 5 1 , 1 9 0 0 , 3 1 8 6 , 3 0 2 7 , 2 8 5 4 , 2 6 4 6 . 2 4 1 2 , 2 1 9 0 . 2 0 1 7 , 1 3 9 3 13 1 7 6 2 , 1 6 4 4 , 2 3 5 2 , 1 4 7 2 , 1 2 8 3 , 1 1 1 8 , 5 7 3 , 8 5 0 , 7 4 3 , 6 5 0 , 5 6 5 , 4 9 8 . 4 3 8 . 3 0 1 2 , 3 8 7 . 3 4 3 14 3 0 2 , 2 6 0 , 2 2 1 , 1 8 8 , 1 6 1 , 1 4 1 , 1 2 7 , 1 1 7 , 3 7 5 1 , 1 0 8 , 9 7 , 8 5 . 7 6 , 6 9 , 6 1 , 5 1 , 3 9 , 2 9 , 2 3 , 4 7 7 3 15 1 8 , 1 5 , 1 3 , 1 2 , 1 0 , 7 , 3 , 0 , 0 . 0 . 6 00 5 , 0 . C O . C O . 0 , 0 . 0 . 0 . 0 . 7 5 6 5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 16 0 , 9 5 2 3 , C O , C C O , 0 , 0 , 0 , 0 , 0 , 1 1 9 8 9 , C O , C O , 0 , 0 , 0 , 0 , 0 , 0 , 1 5 0 9 3 , 0 , 0 , 0 , 0 , 0 . 0 , 0 17 0 , 0 , 0 , 2 7 1 3 7 0 , 2 5 GET E 3 4 U 3 0 1 23 9, C O , C O , 0 , 1 , 5 , 1 1 , 1 7 , 2 2 , 3 0 i , 2 4 , 2 4 , 2 5 , 2 6 , 2 8 , 3 0 , 3 2 , 3 4 , 3 7 . 3 9 , 3 7 9 , 4 1 , 4 3 . 4 5 2 4 7 , 4 9 , 5 1 , 5 3 , 5 5 , 5 7 , 5 9 , 4 7 7 , 61 , 6 2 , 6 5 , 6 7 , 6 9 , 7 1 , 7 3 , 7 5 , 7 7 , 8 C 6 0 1 , 8 2 , 8 3 , 6 5 , 8 6 . 3 3 3 S I , 9 4 , 9 7 , I O C , 1 0 3 , 7 5 6 , 10 7 , 1 1 0 , 1 1 3 , 1 1 6 , 1 1 9 , 1 2 2 , 1 2 7 , 1 3 3 , 1 4 0 , 1 4 6 , 9 5 2 . 1 5 1 . 1 5 6 4 160,166,174,182,190,197,2 02,2 08.1199,217,229,245,262,230,200,323,345,377 5 409,1509,446,494,553,622,700,785,877.974,1075,1181,1900,1295.1422,1560 6 1 7 0 4 , 1 8 4 6 , 1 9 8 8 , 2 1 3 2 , 2 2 8 C , 2427 , 2 5 6 6 , 2 3 9 2 , 2 6 5 5 , 2 8 1 5 , 2 9 2 4 , 3 0 4 9 , 3 1 5 4 , 3 2 4 6 7 3327,3407,3492,3579,3012,3660,3727,3780,3822,3359,3897,3935,3962,3567 8 3 9 5 3 , 3 7 5 1 , 3 9 3 1 , 35 1 2 , 3 6 9 6 , 3 8 7 1 , 3 8 2 6 , 3 7 6 2 , 3 6 9 2 , 3 6 3 2 . 3 5 3 6 , 3 5 3 3 . 4 7 7 3 . 3 4 6 7 9 2 3 6 7 , 3 2 5 8 , 3 1 6 7 , 3 1 0 1 , 3 0 4 4 , 2 9 7 3 , 2 8 9 6 , 2 7 5 7 , 2 6 8 1 , 6 00 9 , 2 5 5 3 . 2 4 2 3 , 2 3 0 9 , 2 2 1 5 10 2 1 3 7 , 2 C 5 7 , 1 9 6 7 , 1 8 6 0 , 1 7 4 5 , 1 6 3 7 , 7 5 6 5 , 1 5 3 6 , 1 4 4 1 , 1 3 4 1 , 1 2 2 4 , 1 C 9 7 , 9 3 9 , 9 1 3 . 8 6 0 11 8 0 7 , 7 3 6 , 9 5 2 3 , 6 5 7 , 5 7 8 , 5 C 8 , 4 5 9 , 4 1 0 , 3 8 1 , 3 5 6 , 3 4 7 , 3 1 2 ,2 4 4 , 1 1 5 8 9 , 1 6 5 , 1 1 3 , 1 2 6 12 152,145,116,104,111,95,51,15093,27,59,63,33,36,0,0,0,0.0.211564,15 GET C L T R 2 1 6 0 DATA 3 4 , 1 . 2 5 , C . 3 9 , 1 3 . 5 , 6 . 5 1 7 C DATA 2 5 0 , 1 6 5 4 5 , 1 7 C 6 , 8 7 3 . 0 , 1151.4 180 F I L E E240F 190 FILE E34U 195 F I L E RLN34 157 B7=CMD("^EMPTYSNC RUN343D")  83  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14. A5 16 17 18 19 20 21 22 23 24 2 5 26 27 2 8 2 5 30 31 32 33 34 i5 36 37 38 35 40 41  OF  FILE  R23  04:07  P.M.  FEB.  24.  1577  ID=RALU  GET E350F30 1 23,0,1,1,1,1,1,1,1,1,1,30,1,2,2.2,2,2,2,3,3,3,37,3,4,4,4,5,5,5,6,6,6,47,7 2 7 , 8 , 8 , 5 , 1 0 , 1 0 , 1 1 , 1 2 , 1 3 , 6 0 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 18, 1 5 . 2 1 , 2 2 , 2 3 , 7 5 , 2 5 , 2 6 . 2 8 , 2 5 , 3 1 3 3 3 , 3 5 , 3 7 , 3 9 , 4 1 , 55,4 3,4 6,48 ,51 , 5 4 , 5 7 , 6 C , 6 3 , 6 6 , 7 0 , 1 1 9 , 7 4 . 7 7 , 8 2 , 8 6 , 9 0 , 5 5 , 1 0 0 4 105,110,il5,151,121,127,133,139,146,153,160,168,176.184,150,152.201.210 5 2 1 5 , 2 2 5 , 2 3 9 , 2 5 0 , 2 6 0 , 2 72 . 2 8 3 , 2 3 9 , 2 9 5 , 3 0 8 , 3 2 0 , 3 3 4 , 3 4 7 , 3 6 1 , 3 7 6 , 3 9 1 , 4 0 6 , 4 2 2 6 3 0 1 , 4 3 9 , 4 5 6 , 4 7 3 , 4 3 4 , 4 6 2 , 4 5 5 , 5 2 8 , 5 5 8 , 5 E 7 , 6 1 7 , 3 7 9 . 6 4 7 , 6 7 9 . 7 1 2 , 7 4 4 , 7 7 2 , 796 7 617,837 ,858 , 3 7 6 , 4 7 7 , 8 S I , 9 0 6 , 9 2 3 , 9 4 3 , 9 6 7 , 9 9 3 , 1 0 1 8 , 1 0 4 1 , i 0 6 0 , 1 0 7 6 , 6 C l , 1 0 9 2 8 1110,1131,1153,1176,1155,1220,1236,1247,i259,756,1281,1317,1362,1403,1431 9 1443,1441,1429,1418,1422,552,1451,1500,1551,1593,1624,1654,1683,1705,17i8 10 1 7 2 5 , 1 1 9 9 , 1 7 3 8 , 1 7 6 3 , 1 7 9 9 , 1 8 4 0 , 1 8 8 1 , 1 9 2 0 , 1 9 5 8 , 1 9 9 5 , 2 0 4 3 , 2 0 8 8 , 1 5 0 9 , 2 1 3 1 11 2 1 7 1 , 2 2 1 1 , 2 2 5 4 , 2 3 0 3 , 2 3 6 i , 2 4 2 6 , 2 4 9 2 , 2 5 5 1 , 2 6 0 0 , 1 9 0 0 , 2 6 4 2 ,2682 , 2 7 2 4 , 2 7 6 0 12 2783,2799,2823,2870,2936,3004,2392,3058,3089,3108,3133,3180,3251,3331 13 3405,3474,3547,3012,3626,3693,3725,3716,3691,3683.3709.3757,3806,3837 14 3 7 9 1 , 3 8 4 6 , 3 8 4 0 , 3 8 3 6 , 3 8 5 2 , 3 8 9 5 , 3 5 4 7 , 3 5 6 8 , 3 5 2 2 , 3 8 1 5 , 3 7 0 5 . 4 7 7 3 , 3 6 1 9 , 3 5 6 6 15 352 7 , 3 4 8 7 , 3 4 4 1 , 3 3 7 6 , 3 2 6 8 , 3 1 1 8 , 2 9 5 9 , 2 6 3 3 . 6 0 0 9 , 2 7 4 2 , 2 6 4 5 , 2 5 1 4 , 2 3 5 3 , 2 2 0 9 16 20 8 8 , 1 9 7 0 , 1 8 4 0 , 1 6 8 4 , 1 5 2 4 , 7 5 6 5 , 1 3 7 6 , 1 2 4 4 , 1 1 2 2 , 1 0 0 2 , 8 9 8 , 8 1 7 , 7 3 9 . 6 3 9 , 5 2 1 17 3 9 9 , 9 5 2 3 , 3 0 7 , 2 6 5 , 2 4 5 , 2 1 0 , 1 5 7 , 1 2 0 , 7 7 . 5 5 . 2 9 , 0 , 1 1 9 8 5 , 0 , 1 3 . 3 9 , 4 1 , 2 2 , 2 4 . 2 5 . 2 7 18 0 , 0 , 1 5 0 5 3 , C O , C O , C O , C C . O , 0,318356,29 GET E35UaD 1 2 3 9 , 0 , 0 , 2 4 , 9 4 , 2 1 3 , 3 5 3 ,378 , 4 7 4 , 4 8 3 , 4 7 1 ,301 ,461,460 ,465 ,469 , 4 7 4 , 4 8 0 . 4 8 7 . 4 9 6 2 505, 5 1 6 , 3 7 9 , 5 2 6 , 5 2 5 , 5 4 3 , 5 5 0 , 560, 5 7 1 , 5 8 2 , 5 8 9 , 595,601 ,477,613 ,630 ,648,662 3 6 6 5 , 6 7 3 , 6 7 7 , 6 8 2 , 6 8 9 , 6 95 , 6 0 1 , 7 0 4 , 7 1 7 , 7 2 5 , 7 5 7 , 7 7 7 . 7 5 6 , 8 1 1 . 8 2 0 , 8 2 5 , 8 2 9 , 7 5 6 4 6 3 4 , 8 4 3 , £ 5 0 , 8 5 1 , 6 4 6 , 6 4 4 , 8 5 4 , 8 7 5 , 9 1 5 , 9 5 4 , 9 5 2 , 9 8 7 , 1 0 1 2 , 1 0 3 0 , 1 0 4 7 , 10 6 5 , 1 0 8 2 5 1 0 8 9 , 1 0 8 4 , 1 0 7 4 , 1 0 7 1 , 1 1 9 5 , 1 0 8 8 , 1 1 2 6 , 1177, 1 2 2 7 , 1 2 6 0 ,1273 ,1274 , 1 2 7 3 , 1279 6 1 2 8 5 , 1 5 C S , 1 3 0 3 , 12 2 0 , 1 3 3 7 , 13 54 , 1 3 6 8 , 1 3 7 4 , 1 3 7 4 , 1 3 7 5 , 1 3 8 6 , 1 4 1 3 , 1 5 0 0 , 14 5 3 7 1 4 9 2 , 15 2 0 , 1 5 3 2 , 1 5 3 6 , 1 5 4 3 , 1 5 5 8 , 1 5 8 0 , 1 6 0 4 , 1 6 3 2 , 2 3 9 2 , 1 6 6 2 . 1 6 9 3 , 1 7 2 1 . 1 7 4 6 8 1775,1811 ,1851 ,1688 , i 9 2 2. 1 9 6 0 , 3 0 1 2 , 2 0 0 5 . 2 0 6 1 , 2 1 2 2 ,2186 , 2 2 4 6 , 2 2 8 8 . 2 2 9 9 9 2278,225 0,2 253,3791,2312,2416,2 519,25 74,2850,2 794,2 749,2762,2841,2935 10 4 7 7 3 , 2 9 6 7 , 2 8 9 9 , 2 7 7 5 , 2 7 0 3 , 2 7 6 4 , 2 9 4 5 , 3 1 5 3 , 3 3 0 2 , 3 3 7 2 , 3 40 0 , 6 0 0 9 , 3 4 2 7 , 3 4 6 7 11 3 5 1 3 , 3 5 5 5 , 3 5 8 9 , 3 6 1 9 , 3 6 5 2 , 3 6 9 0 , 3 7 3 1 , 3 7 7 4 , 7 5 6 5 , 3 8 1 7 , 3 8 5 3 . 3 8 8 6 , 3 9 2 4 , 3 5 6 0 12 3 9 6 8 , 3 9 3 6 , 3 8 5 5 , 3 7 3 6 , 3 5 5 8 , 9 5 2 3 , 3 4 4 0 , 3 2 6 2 , 3 0 9 2 . 2 5 2 1 , 2 7 3 4 , 2 5 1 5 , 2 2 5 1 , 1 9 7 7 13 1 7 4 1 , 1 5 4 5 , 1 1 9 8 9 , 1 3 8 8 , 1 2 . 2 8 , 1 0 6 7 , 9 2 4 , 7 6 9 , 6 4 7 , 5 0 1 , 4 1 3 , 3 7 6 , 3 0 8 , 1 5 0 9 3 , 2 2 8 , 2 1 7 14 233,250,234,175,115,41,0,0,294113,19 GET CLTR2 160 DATA 3 5 , . 0 . 7 5 , 0 . 1 6 , 1.0, 17.4 1 7 C DATA 2 9 0 , 1 1 8 5 0 , 7 5 5 . 4 , 5 6 5 1 , 5 1 3 . 1 180 FILE E353F ISC F I L E =35U 195 F I L E RUN35 • • ,197 B7=CMC("*EMPTY3NC RUN353C") >  84  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15' 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 42 44 45 46 47 48  OF F I L E  R24  04:07 P.M..  F E B . 24,  1977  IO=RALU  GET E 3 6 0 F 3 D 1 15,3,3,3,3,4,4,4,5,5,5,19,6,6,7,7,8,8,9,10,10,11,23,12,13,14,15,16,17,18 2 19,20,22,3 0,23,2 5 , 2 6 , 2 8 , 3 0 , 3 2 , 3 4 , 3 6 , 3 8 , 4 0 , 3 7 , 4 3 , 4 5 , 4 8 , 5 1 , 5 4 , 5 7 , 6 0 , 6 4 , 6 7 3 7 1 , 4 7 , 7 5 , 7 9 , 8 4 , £ 8 , 9 3 , 5 8 , 1 0 4 , 1 0 9 , 1 1 5 , 1 2 1 , 6 0 , 1 2 8 , 1 3 4 , 1 4 1 , 1 4 8 , 1 5 6 , 1 6 4 ,172 4 1 8 0 , 1 8 9 , 1 5 9 , 7 5 , 2 C 8 , 2 1 8 , 2 2 6 , 2 3 9 , 2 5 0 , 2 6 2 , 2 7 4 , 2 8 6 , 2 9 9 , 3 1 3 , 5 5 , 3 2 7 , 3 4 1 , 3 5 6 , 2 71 5 3 8 7 , 4 0 3 , 4 2 0 , 4 3 7 , 45 5 , 47 4 , 1 1 9 , 4 9 3 , 5 1 3 , 5 2 3 , 5 5 4 , 5 7 5 , 5 5 7 , 6 2 0 , 6 4 3 . 6 6 7 , 6 9 1 , 1 5 1 6 7 1 6 , 7 4 2 , 768 , 7 5 5 , £ 2 3 , 8 5 1 , 8£0,9 10,940 , 9 7 1, 1 9 0 , 1 0 0 2 , 1034, 1 0 6 7 . 1100,1 1 3 4 , 1168 7 1203,1239,1275,1212,2 39,13 49,12 87,1425,1464,1503,1543,1583,1624,1665,1706 8 3 0 1 , 1 7 4 8 , 1 7 9 0 , 1 8 3 2 , 1 8 75 , 1 9 1 3 , 1 9 3 5 , 1 9 9 2 , 2 0 4 7 , 2 1 0 4 , 2 1 6 6 , 3 7 9 , 2 2 3 6 , 2 3 1 5 , 2 4 0 0 9 2 4 7 9 , 2 5 3 4 , 2 5 5 0 , 2 5 2 6 , 2 47 5 , 2 4 2 2 . 2 3 8 3 , 4 7 7 , 2 3 6 4 , 2 3 5 9 , 2 3 5 8 . 2 3 6 1 . 2 3 7 4 , 2 4 0 9 , 2 4 7 0 10 2 5 4 6 , 2 6 1 2 , 2 . 6 4 8 , 6 0 1 , 2 6 4 8 , 2 6 2 3 , 2 5 9 2 , 2 5 7 4 , 2 5 7 4 , 2 5 5 0 , 2 6 2 0 , 2 6 6 7 , 2 7 3 6 , 2 3 2 4 , 7 5 6 11 2 9 1 2 , 2 5 7 6 , 3 0 0 1 , 2 9 9 5 , 2 9 9 0 , 3 0 2 8 , 3 1 2 8 . 3 2 7 5 , 3 4 1 8 , 3 5 0 7 , 9 5 2 , 3 5 2 4 , 3 4 9 9 , 3 4 8 1 12 3500,3549,3601,2626,3657,3676,3703,1199,3735,3760.3762,3724.3641,3522 13 3 3 9 5 , 3 2 9 6 , 3 2 4 7 , 2 2 4 5 , 1 5 0 9 , 3 2 6 6 i 3 2 8 7 , 3 2 9 3 , 3 2 8 9 , 3 2 8 7 , 3 2 5 7 , 3 3 1 8 , 3 3 4 1 , 3 3 £ 4 14 3350,15CC,3426,3475,3532,3582,3629,3675,3716,3737,3727.3700.2592.3683 15 3 7 0 4 , 3 7 6 0 , 3 8 2 8 , 3 8 7 3 , 3 8 7 5 , 3 8 3 4 , 3 7 6 3 , 3 6 6 8 , 3 6 3 1 , 3 0 1 2 , 3 6 0 5 , 3 6 1 1 , 3 6 4 9 , 3 7 2 2 16 3 8 2 1 , 3 9 0 8 , 3 5 3 0 , 3 8 5 5 , 3 7 0 6 , 3 5 5 5 , 3 7 5 1 , 3 4 7 9 . 3 4 7 2 , 3 4 8 6 , 3 4 6 4 , 3 4 0 6 , 3 3 5 4 , 3 3 3 6 17 3 3 1 3 , 3 2 1 1 , 3 0 0 8 , 4 7 7 3 , 2 7 7 3 , 2 6 1 9 , 2 6 0 1 , 2 6 6 7 , 2 7 0 1 , 2 6 1 7 . 2 4 1 5 , 2 1 6 6 . 1 9 4 9 , 1 3 0 3 18 6009,1716,1656,1594,1518,1430,1338,1248,1163,1081.998.7565.911,322,742 15 6 8 3 , 6 4 1 , 5 9 5 , 5 3 8 , 4 5 4 , 3 6 2 , 2 8 6 , 5 5 2 3 , 2 4 1 , 2 2 0 . 2 0 1 , 1 6 7 , 1 2 1 . 7 4 , 4 0 , 2 6 . 3 0 , 4 1 20 1 1 9 8 9 , 4 5 , 3 9 , 3 0 , 2 1 , 1 4 , 7 , 2 , 0 , 0 , 0 , 1 5 0 9 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 4 7 1 6 8 9 , 3 1 GET E 3 6 L 3 D 1 19, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 3 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 0 , 3 , 3 . 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 3 7 , 5 2 6 , 6 , 6 , 7 , 7 , 8 , 8 , 9 , 9 , 4 7', 1 0 , 1 0 , 1 1 , 1 1 , 1 2 . 1 2 . 1 3 , 1 4 , 1 5 , 1 6 , 6 0 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 . 21 3 22,23,24,26,75,27,28,30.31,33,34.36,37,39,41,95,43,45.47,49,52,54,56.59 4 62,64,115,67,70,73,76,80, 83,87,50,94,58,151,102 ,106,111,115,120,125,130 5 135,141 ,146,150 ,152,158,164,1 70.177,184,151,198,205,213.229,221,229.227 6 246,2 55,264,27 2,2 83,253,3 03,301,314.324,33 5,645,645,639,631.623.619,618 7 2 7 9 , 6 1 7 , 6 1 5 , 6 1 3 , 6 1 3 ,619 , 6 2 8 , 6 3 9 , 6 4 9 , 6 5 8 , 6 6 7 , 47 7 , 67 8 , 689,701 , 7 1 3 , 7 2 5 , 7 3 7 8 749,763,7 79,79 8 ,601,816,832,847 ,363 .880,897,909,914,915,918,756,927,948 9 97 6 , 1 0 0 4 , 10 25 , 1 0 4 4 , 1071 , 1 1 0 7 , 1 1 4 4 , 1 1 6 7 , 9 5 2 , 1 1 7 6 , 1 1 8 1 ,1191 , 1 2 0 9 , 1 2 2 9 , 1 2 5 0 10 1 2 7 4 , 1 2 5 9 , 1 3 2 8 , 1 3 5 8 , 1 1 9 9 , 1 3 9 1 , 1 4 1 9 , 1 4 3 7 , 1 4 4 3 , 1 4 4 3 , 1 4 4 9 , 1 4 6 4 , 1 4 8 4 , 1 5 0 0 11 1511, 1 5 0 5 , 1 5 1 5 , 1 5 3 0 , 1 5 4 8 , 1 5 7 4 , 1 6 0 2 , 1 6 3 3 , 1 6 6 6 , 1 7 0 3 , 1 7 4 1 , 1 7 7 0 , 1 9 0 0 , 1 . 7 8 8 12 1805,1834,1878,1928,1972,2005,2049,2100,2155,2392,2199,2230,2260,2303 12 2 3 6 1 , 2 4 2 5 , 2 4 8 6 , 2 5 3 7 , 2 5 7 8 , 2 6 i 0 , 3 0 1 2 , 2 6 4 3 . 2 6 8 3 . 2 7 2 2 . 2 7 4 1 , 2 7 3 2 . 2 7 0 9 . 2 7 0 2 ' 14 2 7 3 4 , 2 6 0 6 , 2 9 0 0 , 3 7 5 1 , 2 5 5 1 , 3 0 5 7 , 3 0 8 4 , 3 0 7 8 , 3 0 6 4 , 3 0 7 4 , 3 1 2 2 , 2 1 9 4 , 3 2 5 3 , 3 2 7 1 15 4773,3243,3192,2152,3144,3167,3202,3238,3262.3282,3298,6005,3321,5353 16 3 3 7 5 , 3 4 0 3 , 3 4 2 6 , 3 4 5 5 , 3 4 5 3 , 3 5 3 3 , 3 5 6 1 , 3 5 6 8 , 7 5 6 5 , 3 5 5 4 , 3 5 5 6 , 3 6 1 0 , 3 7 0 5 , 3 8 2 0 17 3 9 C 6 , 3 S 5 5 , 2 9 6 7 , 3 9 5 5 , 3 9 1 3 , 9 5 2 3 , 3 8 5 2 , 3 7 7 0 , 3 6 6 6 , 3 5 4 7 , 3 4 0 2 , 3 2 2 8 , 3 0 2 3 , 2 3 2 2 18 26 5 6 , 2 4 5 4 , 1 1 9 8 9 , 2 2 5 5 , 2 0 5 4 , 1 7 8 5 , 1 5 2 3 , 1 2 3 4 , 9 8 1 . 7 7 6 , 6 3 6 , 5 7 7 , 5 6 2 . 1 5 0 5 3 . 5 7 2 15 5 8 1 , 5 1 £ , 4 0 7 , 3 5 7 , 3 4 0 , 2 2 7 , 5 7 , 0 , 0 , 3 4 4 0 3 5 , 3 0 GET C L T R 2 1 6 C DATA 3 6 , 1 . 2 5 , C . 1 E , 0 . 6 , 2 1 . 0 1 7 0 DATA 3 1 0 , 1 4 2 5 4 , 1 0 3 1 . 2 , 6 8 5 5 , 676.6 18C F I L E E36uF 150 FIL& E26U 155 F I L E R U N 3 6 157 B7=CMD("?EMPTYSNC RUN363D")  )  85 ^  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14• 15 16 17 18 19 20 21 2 2 2 3 24 2 5 2 6 27 2 8 29 3 0 31 32 33 34 3 5 36 37 38 39 40 41 42  OF  FILE  R25  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E 3 7 0 F 5 C 1 3 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 3 7 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 7 . 5 , 5 , 5 , 6 , 6 , 7 , 7 , 8 , 8 , 5 , 6 0 2 10, 10,11,12, 13, 14,15, 1 6 , 1 7 , 1 8 , 7 5 , 2 0 , 2 1 , 2 2 . 2 4 , 2 5,2 7,29,31,33 ,35,95,37,40 3 42,45,48,51,54,57,60,64,119,6£.72,76,80,8 5,90,95,100,106,112,151,118,124 4 1 2 1 , 1 3 8 , 1 4 5 , 1 5 3 , 1 6 1, 169 , 1 7 8 , 1 £ 7 , 1 5 0 , 1 5 7 , 2 0 7 , 2 1 7 , 2 2 7 , 2 3 9 , 2 5 0 , 2 6 2 , 2 7 5 , 2 8 8 5 3 0 1 , 2 3 9 , 3 1 5 , 3 2 9 , 2 4 4 , 3 6 0 , 3 7 6 , 3 5 2 , 4 1 0 , 4 2 7 , 3 1 5 , 3 5 0 , 3 0 1 , 4 3 3 . 4 6 3 , 4 9 4 , 5 3 2 . 5 72 6 610,644,674,704,734,379,763,753,821,850,875,909,941,970,955,1014,477,1027 7 1 0 4 1 , 1 0 5 5 , 1 0 8 3 , 110 6 , 1 1 2 5 , 1 1 4 2 , 1 1 5 3 , 1 1 7 0 , 1 1 9 6 , 6 0 1 , 1 2 2 7 , 1 2 5 4 , 1 2 7 0 , 1 2 7 8 . 1 2 8 6 8 1302,1329,1366,1404,143 5,756,14 57,1478,1504,1535,1562,157 6,1585.1592.1607 9 1633,9 52,1668,17 07,1744,1782,1827,187 8,1920,1940,1944,1955.1199,1986,2032 10 2 0 7 2 , 2 1 0 2 , 2 1 3 5 , 2 1 6 5 , 2 25 3 , 2 3 2 7 , 2 3 5 7 , 2 4 5 6 , 1 5 0 5 , 2 5 0 4 , 2 5 4 8 , 2 5 9 9 , 2 6 6 6 . 2 7 5 2 1 1 2 8 4 7 , 2 5 3 7 , 3 0 1 0 , 3 0 6 5 , 3 1 1 1 , 1 9 0 0 , 3 1 6 0 , 3 2 1 9 , 3 2 9 0 , 3 36 8 , 3 4 4 4 , 3 5 0 8 , 3 5 5 2 , 3 5 7 5 12 3 5 9 7 , 3 6 0 5 , 2 3 5 2 , 3 6 1 5 , 3 6 3 5 , 3 6 6 2 , 3 6 9 9 , 3 7 3 4 , 3 7 5 4 , 3 7 5 6 , 3 7 4 3 , 3 7 2 9 , 3 7 3 1 , 3 0 1 2 13 3 7 6 2 , 3 8 2 2 , 3 8 9 0 , 3 9 4 2 , 3 9 6 7 , 3 9 6 7 , 3 9 3 9 , 3 6 7 9 , 3 7 9 4 , 3 7 1 6 , 3 7 9 1 , 3 6 8 2 , 3 7 1 1 , 3 7 8 2 14 38 5 6 , 3 8 5 7 , 3 8 8 8 , 2 8 2 6 , 3 7 2 4 , 3 5 9 9 , 3 46 9 , 4 7 7 3 , 3 3 3 7 , 3 20 4 , 3 0 8 0 , 2 9 8 4 , 2 9 0 3 , 2 8 1 5 1 5 2 6 6 4 , 2 4 5 7 , 2 2 3 6 , 2 0 4 3 , 6 0 C 9 , 1 8 7 9 , 1 7 2 0 , 1 5 5 2 , 1 3 9 4 , 1 2 5 2 , 1 1 2 2 , 9 9 7 , 8 5 6 , 7 1 1 , 5 81 1 6 7 5 6 5 , 4 8 3 , 4 2 1 , 37 5 , 3 2 5 , 2 6 5 , 2 0 1 , 1 4 7 , 1 1 2 . 5 6 , 5 0 . 5 5 2 3 . 8 3 . 6 6 , 5 5 , 5 9 , 5 4 , 4 9 , 4 2 . 4 5 1 7 3 6 , 12,11585,0, 14,31,17,18,19,20,22,24,25, 15093,0,0,0,0,0,0,0,0,0,0 GET E 3 7 U 3 D 1 4 7 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 6 0 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 . 3 , 3 , 7 5 , 4 , 4 , 4 , 5 , 5 , 5 . 6 , 6 . 7 . 7 , 5 5 , 8 2 8 , 9 , 1 0 , 1 0 , 1 1 , 1 2 , 1 2 , 1 3 , 1 4 , 1 1 5 ,1 5 , 1 6 , 1 7 , 1 3 , 1 9 , 2 1 , 2 2 . 2 3 , 2 5 , 2 6 , 1 5 1 , 2 8 , 3 0 , 3 1 3 33,35,37,40,42,44,4 7,190,49,5 2,55,58,62,6 5,68,72.76,80,239.84,89,54,9 8 4 1 0 4 , 1 0 9 , 1 1 4 , 1 2 0 , 1 2 6 , 1 3 2 , 3 0 1 , 1 3 9 , 1 4 6 , 1 5 3 , 1 6 0 , 1 6 3 , 1 7 6 , 1 8 4 , 1 9 3 . 2 0 2 , 2 1 1 , 3 79 5 221, 258,268, 278,288,297,308,319,320,228,477,346,354,363,372 .381 ,390.4CO 6 409,418,427,601,4 38,4 50,462,473,484,495,509,5 22,534,546,756,560,5 78,555 '7 6 0 8 , 6 1 4 , 6 1 8 , £ 2 5 , 6 3 5 , 6 4 8 , 6 5 9 , 9 5 2 , 6 7 3 , 6 8 9 , 7 1 0 , 7 3 1 , 7 4 8 , 7 5 7 , 7 6 3 . 7 7 4 , 7 9 3 , 8 1 7 8 1199,841,862,878,893,906,926,949,975,1000,1025,1509,1047,1065,1083,1108 9 1140,1181,12 24,1262,1294,1324,1900,13 56,1398,1445,149 5,15 41,1579.1613 10 16 5 2 , 1 7 0 3 , 1 7 6 3 , 2 3 9 2 , 1 8 2 4 , 1 8 7 3 , 1 9 0 1 , 1 9 1 6 , 1 9 3 3 , 1 9 6 7 , 2 0 1 5 , 2 0 6 4 , 2 0 9 7 , 2 1 1 6 1 1 3 0 1 2 , 2 1 3 3 , 2 1 6 7 , 2 2 2 5 , 2 3 0 2 , 2 38 2 , 2 4 5 4 , 2 5 0 6 , 2 5 4 4 , 2 5 7 3 , 2 6 0 3 , 3 7 9 1 , 2 6 3 3 , 2 6 6 5 12 2 7 0 5 , 2 7 5 7 , 2 8 1 6 , 2 8 6 4 , 2 8 8 5 , 2 8 9 2 , 2 9 0 7 , 2 9 3 8 , 4 7 7 3 , 2 9 7 7 , 3 0 2 2 , 3 0 8 0 , 3 1 5 4 , 3 2 1 4 1 3 3 1 8 0 , 3 3 3 0 , 3 3 0 3 , 3 3 4 2 , 3 3 5 8 , 6 0 0 9 , 3 3 3 1 , 3 3 9 5 , 3 5 1 7 , 3 6 4 2 , 3 7 3 3 , 3 7 7 1 , 3 7 7 7 , 3 7 77 14 3 7 S 5 , 3 8 3 1 , 7 5 6 5 , 3 8 3 9 , 3 7 9 4 , 3 6 9 7 , 3 5 7 4 , 3 4 5 4 , 3 3 3 0 . 3 1 9 2 , 3 0 2 1 , 2 8 2 4 . 2 6 0 4 , 9 5 2 3 1 5 2 3 7 1 , 2 1 £ 3 , 1 9 9 4 , 1 8 5 2 , 1 7 0 8 , 1 5 4 2 , 1 3 6 8 , 1 1 9 8 , 1 0 2 5 , 8 8 3 , 1 1 9 8 9 , 7 8 1 , 7 1 9 , 6 5 6 , 5 82 1 6 4 9 3 , 4 3 5 , 4 3 3 , 4 6 3 , 4 9 7 , 4 7 1 , 1 5 0 S 3 , 3 9 5 , 2 8 ' 2 , 1 7 6 , 1 0 8 , 2 8 . 0 , 0 , 0 , 0 , 0 . 2 6 2 1 4 8 , 26 GET C L T R 2 1 6 0 DATA 3 7 , 0 . 7 5 , C . 2 8 , 6 , 9 . 9 1 7 0 DATA 2 8 0 , 1 4 8 6 2 , 1 5 7 5 , 7 0 0 2 , 1123.6 180 FILE E370F 190 FILE E37U 155 F I L E RLN37 157 B7=CM0("?EMPTYSNC RUN37aD")  86  LISTING 1  OF GET  FILE  R26  04:07  P.M.  FEB.  24,  1977  ID=RALU  E38CF5D  2 3 4 5 6 7 8 9 10 11 12 13 14. 15 16 17 18 19 20 2? 11 22  1 15,2,2,3,3,2,3,4,4,4,4,19,5,5,5,6,6,6,7,7,8,8,23,5,9,10,10,11,12,12,13,14 2 15,30,16,17,18,15,20,21,22,23,24,26,37,27.29,30,32,33,35.37,35,41,43.47 3 4 5 , 4 8 , 50, 5 2 , 5 5 , 5 8, 6 1 , 6 4 , 6 7 , 7 0 , 6 0 , 7 3 , 7 7 , 8 0 , 8 4 , 8 3 , 9 2 , 9 7 . 1 0 1 . 1 0 6 , 1 1 0 , 7 5. 115 4 121»126,132,137,143,150,156,163,170,95, 177,184,192.200,208.216,225.234 5 243,25 3.119,26 3,2 73,284,2 55,306,318,330,342,355,368,151,381,395,409,423 6 438,454,470,486,502,519,150,537,555,573,552,611,631,651,672,653,714,229 7 736,759,782,80 5,829,853,8 73,903,929,9 55,3 01,9 82,1009,1037.106 5,1094,1123 8 1 1 5 3 , 11£3, 1 2 1 3 , 1 2 4 4 , 3 7 9 , 1 2 7 5 , 1 3 0 7 , 1 3 3 9 , 1 4 6 6 , 1 4 9 8 , 1516 . 1 5 4 0 , 1 5 6 5 , 1 5 8 2 . 1 5 9 5 9 4 7 7 , 1 6 1 1 , 1 6 3 2 , 1 6 5 6 , 1 6 7 6 , 1 6 9 3 , 1711 . 1 7 3 6 , 1 7 7 0 , 1 8 0 1 , 1818 . 6 0 1 , 1 8 1 8 , 1 8 1 7 , 1 8 3 9 IC 1 8 5 4 , 1 5 6 8 , 2 0 2 5 , 2 0 4 4 , 2 0 3 3 , 2 0 2 6 , 2 0 4 6 , 7 5 6 , 2 0 8 8 , 2 1 2 5 , 2 1 5 2 . 2 1 6 5 , 2 1 8 7 . 2 2 3 2 11 2 2 8 5 , 2 2 2 6 , 2 3 4 8 , 2 2 6 8 , 5 5 2 , 2 4 0 1 , 2 4 4 7 , 2 4 5 4 , 2 5 2 3 , 2 5 2 5 . 2 5 0 5 , 2 4 7 9 , 2 4 7 1 , 2 5 0 4 12 2 5 8 3 , 1 1 9 9 , 2 6 8 1 , 2 7 5 6 , 2 7 7 2 , 2 7 2 8 , 2 6 4 1 , 2 8 2 0 , 2 7 0 5 , 2 5 0 4 , 2 8 1 0 , 3 0 3 6 . 1 5 0 9 , 2 9 7 0 13 2 9 2 6 , 2 5 0 1 . 2 £ 5 5 , 2 9 0 6 , 2 9 3 3 , 2 9 7 5 , 3 0 2 9 , 3 0 8 6 , 3 1 3 9 , 1 9 0 0 , 3 1 7 7 , 3 2 0 2 , 3 2 2 5 , 3 2 5 7 14 3 2 0 3 , 3 3 5 4 , 3 3 9 9 , 2 4 3 2 , 3 4 6 1 , 3 4 9 3 , 2 3 5 2 , 3 5 2 6 , 3 5 4 8 . 3 5 5 5 . 3 5 5 8 . 3 5 7 7 . 3 6 3 0 , 3 7 2 0 15 28 2 5 , 3 5 1 4 , 3 5 6 2 , 3 0 1 2 , 3 9 6 5 , 3 9 3 3 , 3 8 8 4 , 3 8 2 9 , 3 7 7 3 , 3 7 4 0 , 3 7 3 4 , 3 7 7 0 . 3 3 3 3 , 3 9 0 2 16 3751,3513,3836,3673,3466,3286,3200.3231,3340,3437,3449,4773.3277,3289 17 3 2 4 0 , 31 S 3 , 3043 , 27.31, 23 1 8 , 23 5 5 , 20 8 2 , I S 7 5 , 6 0 0 5 , 1 5 3 S , 1 8 5 0 , 1 6 4 5 . 1 7 3 2 , 1 6 5 2 1 8 1 5 6 6 , 146 2 . 1 3 5 4 , 1 2 5 3 , 1 1 6 7 . 7 5 6 5 , 1 0 7 5 , 9 6 9 , 7 6 8 , 7 2 4 , 6 2 2 . 5 3 7 , 4 6 7 , 4 0 9 , 3 5 3 , 2 6 9 19 9523,221,150,54,58,37,25,14,5,i,C,ll585,0,0,0,0,0,0,0,0.0.0,15093.0.0.0 ?c, n ,. 0 n ,. 0n ,. Cr ., rC ., rC. ,r C., 53 c ( .9c 0r ,. 35 1i 2 0 0 8n 86 GET E 3 8 U 5 0  23 2 4 25 2 6 <!7 28 2 9 30 31 32 33 34 35 3 6 37 3 8 39 40 41 42 43 44 **5 46  1 3 0 , 0 , 0 . C . O . i , 1 , 1 , 1,1, 1, 3 7 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 4 7 , 2 , 3 , 3 , 3 . 3 , 2 . 4 . 4 , 4 , 5 , 6 0 . 5 2 5 , 6 , 6 , 6 , 7 , 7 . 8 , 8 , 9 , 7 5 . 9 , 1 0 , 1 0 , 11 , 1 2 , 1 2 , 1 3 , 1 4 , 1 5 , 1 5 , 9 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 2 , 2 3 3 24,25,27,115,28,30,31,22,25,36,38,40,42,45,151,47 ,49,52 .54,57 ,60,63,66,69 4 73,190, 7 6 , 8 0 , 8 3 , 8 7 , 9 1 , 9 6 , 100, 105, 110, 114,239, 120, 125, 131, 136. 142,148,155 5 1 6 2 , 1 6 8 , 1 7 6 , 3 0 1 , 1 8 3 , 191 , 1 5 9 , 3 2 2 , 3 2 0 , 3 1 8 , 3 1 7 . 3 1 9 , 3 2 3 , 3 2 7 , 3 7 9 , 3 3 2 . 2 3 3 , 2 4 4 6 352,359. 367, 373,378,385,392.477, 4CO,408,414,419,424,430.436 ,445,455,466 7 601,477,485,493 ,501 ,507 ,510.5i1,514,524,543.756,567,590,608 .621 .62 7,628 8 627,629,638,657,952,662,705,720,726,726,725.725,725,722.722 .1199,733.759 9 7 3 4 , 7 4 0 , 7 5 4 , 7 5 6 , 7 5 5 , 7 5 7 , 7 6 3 . 7 6 9 , 1 5 0 5 , 7 7 4 , 7 7 6 , 7 8 3 , 7 9 4 , 8 0 8 . 6 2 4 , 8 4 4 , 8 6 6 , 894 10 9 2 6 , 1 5 C C , 5 5 8 , 9 6 8 , I O C S , 1 0 2 0 , 1 0 2 5 , 1 0 4 3 , 1 0 6 9 . 1 1 0 2 , 1 1 3 5 , 1 1 6 1 , 2 3 9 2 . 1 1 7 9 , 1 1 9 1 11 1 2 0 4 , 1 2 1 9 , 1 2 4 3 , 1 2 7 8, 1 3 2 3 , 1 3 6 8 , 1 4 0 5 , 1 4 3 4 , 3 0 1 2 , 1 4 6 4 , 1 5 0 5 , 1 5 4 8 , 1581 , 1 5 9 4 12 1589,1581,1588,1623,1692,3791,1783,1865,1921,1922,1919,1911,1922.1939 13 1 9 4 1 . 1 5 1 5 , 4 7 7 2 , 1 8 6 5 , 1 8 1 7 , 1 7 8 5 . 1 7 6 2 , 1 £ 0 8 , 1 8 4 7 , 1 8 7 5 , 1 8 7 6 , 1 5 0 3 , 2 0 2 0 . 6 0 0 5 14 2 0 7 2 , 2 1 4 5 , 2 1 4 6 , 2 1 5 3 , 2 1 8 4 , 2 2 4 2 . 2 3 2 6 , 2 4 1 3 , 2 4 9 2 , 2 5 5 5 , 7 5 6 5 , 2 6 2 8 . 2 7 2 4 . 2 8 6 7 15 3 0 5 1 . 3 2 4 9 , 3 4 4 5 , 3 6 1 6 , 3 7 6 3 , 3 87 5 , 3 5 4 7 , 9 5 2 3 , 3 9 6 8 , 3 9 2 9 , 3 8 1 5 , 3 6 2 2 , 3 3 7 1 , 3 0 9 0 16 2 8 1 7 , 2 5 6 5 , 2 3 5 2 , 2 1 4 5 . 1 1 5 3 9 , 1 9 1 2 , 1 6 6 3 , 1 4 2 7 , 1 2 4 5 . 1 1 C 7 , 9 8 1 , 8 3 0 , 6 8 1 , 5 6 6 , 4 7 9 1 7 1 5 C S 3 , 4 2 7 , 4 2 1 , 4 3 2 , 3 7 8 , 2 7 C , 1 9 3 , 1 2 S , 5 5 , 0 , 0 , 2 2 6 3 2 0 , 28 GET C L T R 2 1 6 0 DATA 3 8 , 1 . 2 5 , 0 . 2 6 , 5 . 0 , 1 0 . 6 1 7 C DATA 3 1 0 , 1 9 9 5 5 , 1 C 4 2 , 9 6 5 0 , 747.5 180 FILc E36CF 190 F I L E E38U 195 F I L S RUN38 157 B7=CMD("SEMPTYSNC RUN38aD")  87  LISTING 1 2 3 4 5 6 7 8 5 10 11 12 13 1415 16 17 18 19 20 21 2 2 23 2 4 25 26 27 2 8 2 5 30 31 32 3 3 34 35 36 37 38 35 40 41  GF  FILE  R27  C4:07  P.M.  FEB.  2 4 , 1977  ID=RALU  GET E3S0F30 1 15,1,1,2,2,2,2,2,2,3,3,19,3,3,3,4,4,4,5,5,5,6,23,6,6,7,7,8,8,9,9,10.11.30 2 11,12,13,13,14,15,16,17,18,19.37,20,21,22,24,25,26,28,29.21,32.47,34.36 3 38,40,42,44,47,45,52,54,60,5 7,60,63,66,69,73,76,80,84,88,75,92,96,101,106 4 111,116,121,126,132,138,95,144,151,157,164,171,176,186,194,202,211,119 5 219,22 8,238,247,25 7,268,278,289,301,312,151,324,337,350,363,376,390,405 6 419,435,450,190,466,483,500,517,535,553,572.591,611,631,239,651,672.694 7 716,738,761,7 85,809,834,859,301,884,910,937,964,951,1019.1048,1077,1106 8 1136,3 75,1167,115 8,1323,1353,1387,1418,1436,1443,1445,1450,477,1462,1480 9 1500,1527,1560,1596,162 7,164 8,166 3,1683,601,1715,17 59,1807,18 54,1897,1937 10 1973,20 06,2 034,2057 ,756,2076 ,2099,2134 , 2183,2231 , 2270, 2315,2388.2486 11 2 5 6 6 , 952 , 2 5 8 6 , 2 5 4 7 , 2 4 9 6 , 2 4 8 0 , 2 5 1 2 , 2 5 6 8 , 2 6 1 7 , 2 6 4 7 , 2 6 6 9 , 2 7 0 2 , 1 1 9 9 , 2 7 5 3 12 2 8 1 0 , 2 8 5 1 , 2 8 6 5 , 2 8 6 3 , 2 8 6 4 , 2 8 8 0 , 2 9 1 0 , 2 5 4 3 , 2 9 7 2 , 1 5 0 5 , 3 0 0 1 , 3 0 3 6 , 3 0 7 7 , 3 1 1 4 1 2 3 1 4 5 , 3 1 8 0 , 3 2 2 6 , 3 2 7 8 . 3 3 1 5 . 3 3 2 5 . 19CO , 3 3 2 0 , 3 3 3 1 , 3 3 8 0 , 3 4 6 6 . 3 5 6 8 , 3 6 5 7 , 3 7 1 5 14 3738,3743,3750,2392,3773,3812,3858,3899,3925.3925,3508.3871,3840,3837 1 5 3 0 1 2 , 3 6 6 5 , 3 5 2 1 , 3 5 6 2 , 3 5 6 8 , 3 9 3 0 , 3 8 6 7 , 3 8 0 4 , 3 7 5 8 , 3 7 3 7 , 3 7 3 5 , 3 7 9 1 , 2 7 4 9 , 3 73 8 16 3 6 7 4 , 3 5 4 5 , 3 3 7 5 , 3 2 C 4 , 3 0 5 7 , 2 9 3 5 , 2 8 3 7 ,2741 , 4773 , 2 6 3 3 , 2 4 9 1 , 2 2 9 8 , 2 0 6 3 , i 8 2 2 17 1 6 1 5 , 1 4 5 8 , 1336 , 1 2 1 4 , 1 0 7 4 , 6 0 0 5 , 9 1 9 , 7 6 7 , 6 3 7 , 5 3 0 , 4 4 1 ; 3 6 1 , 2 9 1 , 2 3 1 , 1 8 5 , 1 5 0 1 8 7 5 6 5 , 1 1 7 , 8 6 , 6 3 , 4 9 , 4 0 , 3 4 , 2 8 , 2 0 , 1 0 , 1 1 , 9 5 2 3 , 1 2 , 1 3 , 1 4 , 15 , 1 6 , 1 7 , 1 8 , 2 0 , 1 0 , 11 15 119 8 9 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 5 0 9 3 , 0 , 0 , C , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 6 0 3 7 3 , 3 1 GET E39U3C 1 2 3 9 , 0 , 0 , 3 , 1 4 , 3 6 , 6 9 , 10 4 , 1 3 3 , 1 4 5 , 1 5 4 , 3 0 1 , 1 5 1 , 1 4 8 , 1 4 6 , 14 6 , 1 4 7 , 1 4 9 , 1 5 0 , 1 5 0 2 1 5 1 , 1 5 3 . 3 7 9 , 1 5 5 ,1 5 7 , 1 5 8 , 1 6 0 , 1 6 2 , 1 6 4 .1 6 6 , 1 6 8 , 1 7 0 , 1 7 2 , 4 7 7 , 174 , 1 7 6 , 1 7 9 , 1 8 2 3 1 8 6 ,1 9 0 , 1 9 4 , 1 9 5 , 1 9 6 , 1 9 8 , 6 0 1,2C2 , 2 0 7 , 2 1 4 , 2 1 9 . 2 2 4 , 2 2 8 , 2 3 1 . 2 3 3 , 2 3 4 . 2 3 5 . 7 5 6 4 2 4 0 , 2 4 8 , 2 5 7 , 2 6 5 , 2 7 3 , 2 6 0 , 2 8 7 , 2 5 1 , 2 5 2 , 2 5 2 , 5 5 2 , 2 9 3 , 2 5 9 , 3 1 0 , 3 2 4 , 2 3 9 , 2 5 3 . 3 61 5 366,370,375,1199,332,391,298,401,402,402,406,413,423,434,1509,441,446,449 6 456,465,487,5C6,521,531,538,1500,546,558,577,602,630,656,677,694.710,725 7 2 3 9 2 , 7 4 0 , 7 5 5 , 7 72 , 7 95 , 8 25 , 6 6 0 , 6 5 9 , 9 3 5 , 5 7 9 , 1 0 1 9 , 3 0 1 2 , 1 0 5 4 . 1 0 8 5 , 1 1 1 3 , 1 1 4 2 8 1 1 7 9 , 1 2 2 6 , 1 2 84 , 1 3 4 5 , 1 4 0 6 , 1 4 6 3 , 3 7 9 1 , 1 5 2 3 , 1 5 6 6 , 1 6 5 2 , 1 7 1 5 , 1 7 6 0 , 1 8 5 8 . 1 9 6 3 5 209 2 , 2 22 1 , 2 3 6 5 , 4 7 7 3 , 2 49 5 , 2 62 9 , 2 7 8 5 , 2 9 6 . 7 , 3 1 7 3 , 3 3 7 8 , 3 5 5 6 , 3 6 8 9 , 3 7 8 2 , 3 8 4 9 1 0 6 0 0 5 , 3 9 0 5 , 3 9 4 6 , 3 9 6 8 , 3 9 5 7 , 3 9 0 8 , 3 8 2 9 , 3 7 1 8 , 3 5 7 8 , 3 4 2 5 . 3 2 7 1 . 7 56 5 , 3 1 2 6 , 2 9 8 5 1 1 2 8 4 9 , 2 7 1 9 , 2 59 9 , 2 4 8 1 . 2 3 5 3 , 2 2 0 3 , 2 0 3 3 , 1 8 5 8 , 9 5 2 3 , 1 6 9 4 , 1 5 4 8 , 1 4 0 4 , 1 2 5 0 , 1 0 9 5 12 9 4 5 , 8 0 1 , 6 6 1 , £ 5 2 , 4 9 2 , 1 1 9 8 5 , 4 85 , 4 7 5 , 4 2 4 , 3 5 0 , 2 7 8 , 2 2 3 , 1 9 1 , 1 5 4 . 1 4 6 , 1 5 7 , 1 5 093 13 1 6 8 , 1 5 8 , 1 2 0 , 1 0 3 , 1 1 1 . 8 9 , 6 3 , 0 , 0 , 0 , 1 7 8 0 7 0 , 1 9 GET C L T R 2 1 6 0 DATA 3 9 , 1 , 0 . 3 5 , 1 . 9 , 1 7 . 8 5 1 7 C DATA 3 1 0 , 1 6 0 1 8 , 1 8 9 2 . 7 , 4 2 9 9 , 1204.2 180 FILE E390F 150 F I L E E39U 1 9 5 F I L E RUN39 157 B7=CMC("$tMPTY3NC RUN3930")  88  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i5' 16 17 18 19 20 21 22 23 24 25 26 2 7 2 8 25 30 31 32 33 34 35 36 3 7 38 35 40 41 42 43 44 45  OF  FILE  R28  04S07  P.M.  FEB.  2 4 , 1977  10=RALU  GET E 4 7 0 F 3 D 1 19,0,0,0,0,0,0,0,1,1,1,23,1,1,1,1,1,1,2,2,2,2,30,2,2,3,3,3.3.4,4.4,4,37,5 2 5,6,6,6,7,7,8,8,9,47,10,10,11,12,13,13,14,15,16,17,60,18,19,21,22.22,25 3 2 6 , 2 8 , 3 0 , 3 1 , 7 5 , 3 3 , 3 5 , 37,3 9,42 , 4 4 , 4 7 , 4 9 , 5 2 . 5 5 , 9 5 , 5 8,61 ,64.68,71.7 5.79.84 4 8 8 , 9 2 , 1 1 9 , 9 7 , 1 0 2 , 1 0 7 , 1 1 3 , 118,124,131, 1 2 7 , 1 4 4 , 1 5 1 , 1 5 1 , 1 5 8 , 165,173.181,190 5 198,207,217,227,237,190.247,258,270,281,293,306,319,332,346,360,239,375 6 3 9 0 , 4 0 6 , 4 2 2 , 4 3 8 , 4 5 5 , 4 73 , 4 5 1 , 5 1 0 , 4 7 7 , 3 0 1 , 4 8 6 , 5 2 1 , 5 5 4 , 5 9 5 , 5 8 2 , 6 2 6 , 6 6 8 , 7 0 9 7 7 4 7 , 7 8 4 , 3 7 9 , 821, 8 59 , 8 5 7 , 9 3 4 , 9 6 6 , 9 9 3 , 1 0 1 8 , 1 0 4 2 , 1 0 6 8 , 1 0 9 4 , 4 7 7 , 1 1 2 1 , 1150 8 1179,12C6,1233,1253,1272,1295,1323,1350,601,1368,1378,1386,1403,1429,1457 9 1484,1507,1526,1543,756,1558,1576,1601,1633,1673.1716,1754,178i,1794,1803 IC S52,1820,1848,1£80,1908,1930,1945,1955,1967,1954,2047,1159,2116,2181 11 2223,224 9, 2 2 7 8 , 2 3 2 3 , 2 3 7 7 , 2 4 2 7 , 2 4 6 3 , 2 4 9 1 , 1 5 0 9 , 2 5 2 3 , 2 5 6 7 , 2 6 2 0 , 2 6 7 3 ,2720 12 2 7 6 3 , 2 8 0 8 , 2 8 5 3 , 2 8 9 1 , 2 9 1 7 , 1 9 0 0 , 2 9 3 9 , 2 9 7 6 , 3 0 3 9 , 3 1 2 4 , 3 2 1 3 , 3 2 9 0 , 3 3 4 7 , 3 3 8 S 1 3 3 4 2 5 , 3 4 6 3 , 2 39 2 , 2 5 0 6 , 25 5 4 , 3 6 0 2 , 3 6 4 0 , 3 6 7 2 , 3 7 0 4 , 3 7 4 1 , 3 7 7 7 , 3 7 9 5 , 3 7 8 9 , 3 0 1 2 14 37 7 4 , 3 7 6 9 , 3 7 8 9 , 3 8 3 4 , 3 8 9 2 , 3 9 4 2 , 3 9 6 7 , 3 5 6 1 , 3 9 2 7 , 3 6 3 4 , 3 7 5 1 , 3 8 4 5 , 3 8 1 0 , 3 7 7 0 1 5 3 7 2 5 , 3 7 0 7 , 3 7 1 5 , 3 7 2 5 , 2 6 8 6 , 3 5 6 4 , 3 3 78 , 4 7 7 3 , 3 1 7 4 , 2 9 9 6 , 2 8 7 5 , 2 8 1 4 , 2 8 0 4 , 2 8 1 7 16 2 7 0 3 , 2 4 5 3 , 2 4 1 2 , 2 3 0 8 , 6 0 0 9 , 2 1 9 1 , 2 06 1 , 1 5 2 3 , 1 7 8 8 , 1 6 6 5 , 1 5 5 6 , 1 4 3 9 , 1 3 1 2 . 1 1 7 4 17 1 0 4 0 , 7 5 6 5 , 9 1 1 , 7 9 0 , 6 6 5 , 5 4 1 . 4 2 5 , 3 4 8 , 2 9 7 , 2 4 5 , 1 8 6 . 1 1 7 . 9 5 2 3 , 6 9 , 5 4 . 5 7 . 6 2 , 5 7 , 4 4 . 18 37,40,43,46,11589,37,27,28,30,49,71,56,40,43,46,15093,49,53,57,30,32,0,0 15 0 , 0 , 0 , 3 2 5 6 5 0 , 3 0 GET E 4 7 U 3 D 1 3 7 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 4 7 , 1 , 1 , 1 , 2 ,2 , 2 , 2 , 2 . 2 , 3 , 6 0 , 3 , 3 , 3 , 3 . 4 , 4 , 4 , 5 , , 5 . 5 ,7 5 . 6 2 6 , 6 , 7 , 7 , 8 , 8 , 9 , 1 0 , 1 0 , 9 5 , 11 , 1 2 , 1 2 . 1 3 , 1 4 , 1 5 , 1 6 , 1 7 . 1 8 , 1 9 , 1 1 9 , 2 0 , 2 1 , 2 2 , 2 4 , 2 5 3 27,30,32,34,36 ,151,38,37,42 ,45,48 ,54,57,61,59,68, 190,71,75,86,5, 12,15.5 4 61,85,90,239,94,55,104,105,113,120,126,131,137.158,301,166,173.145.139 ,5 1 9 8 , 2 0 7 , 1 9 4 , 2 2 6 , 2 3 4 , 2 5 8 , 3 7 9 , 2 6 9 , 2 8 1 , 2 9 4 , 3 0 6 , 3 1 7 , 2 2 6 , 3 3 4 , 3 4 2 . 3 5 0 , 3 5 7 , 4 7 7 6 3 6 3 , 3 6 8 , 3 7 3 , 3 80 , 2 85 , 3 6 1 , 4 1 3 , 4 2 2 , 4 3 0 , 4 3 7 , 6 0 1 , 4 4 4 , 4 5 3 , 4 6 3 , 4 7 3 , 4 8 2 , 4 8 9 . 4 5 5 7 5 1 2 . 5 2 7 , 5 4 1 , 7 5 6 , 5 5 1 , 5 6 0 , 5 68 , 5 7 7 , 5 8 4 , 5 5 0 , 5 5 7 , 6 0 7 , 6 2 0 , 6 3 4 , 9 5 2 . 6 5 0 , 6 6 8 , 6 50 8 717,74 5,764,775 ,783,759,825 , 1 199,853.676 , 8 9 2 . 9 0 5 . 5 2 2 . 5 4 6 . 575. 1007,1041 5 1076,1509,1113,1150,1186,1218,12 50,12 82,1318,1355,1405,14 52,190 0,1496 10 1 5 3 4 , 1 5 6 4 , 1 5 8 6 , 1 6 0 5 , 1 6 2 7 , 1 6 6 0 , 1 7 0 2 , 1 7 5 3 , 1 6 0 7 , 2 3 9 2 , 1 8 6 3 , 1 9 1 9 , 1975 , 2 0 2 4 1 1 2064, 2095,2128 , 2 1 7 2 , 2 2 2 6 , 2 2 7 3 , 3012 ,2306,2333 , 2 3 7 5 , 2 4 3 6 , 2 4 9 2 , 2 5 2 3 . 2 5 3 1 12 2 5 4 4 , 2 5 8 4 , 2 6 5 0 , 2 7 9 1 , 2 7 1 1 , 2 7 4 1 , 2 7 4 0 , 2 7 2 0 , 2 7 3 7 , 2 7 6 6 , 2 8 0 4 , 2 8 3 1 , 2 8 3 5 , 2 8 1 9 13 4 7 7 3 , 2 7 9 0 , 2 7 5 5 , 2 8 5 9 , 2 8 6 1 , 2 8 5 6 , 2 9 1 6 , 2 5 7 6 , 2 5 3 0 , 3 1 6 6 , 3 2 4 4 , 6 0 0 9 , 3 2 5 4 , 3 2 6 0 14 3 2 6 1 , 2 2 7 2 , 3 3 0 6 , 3 3 6 8 , 3 4 3 8 , 3 5 0 0 , 3 5 5 4 , 3 6 0 3 , 7 5 6 5 , 3 6 5 5 , 3 7 1 7 , 3 7 9 3 , 3 8 7 0 , 3 9 4 0 15 3 5 6 8 , 3 5 1 4 , 3 7 5 8 , 3 5 1 0 , 3 2 2 4 , 9 5 2 2 , 2 9 4 2 , 2 6 8 8 , 2 4 6 1 , 2 2 3 0 , 1 9 9 9 , 1 7 7 1 , 1 5 6 1 , 1 3 5 9 16 1 1 6 9 , 1 C C 8 , 1 1 9 8 5 , 8 5 3 , 7 3 1 , 6 1 3 , 4 8 9 , 4 0 4 . 3 5 3 , 3 0 9 , 2 3 9 , 1 7 7 , 1 6 9 , 1 5 0 9 3 , 1 5 8 . 1 4 5 17 1 3 0 , 8 3 , 2 9 , 0 , 0 , 0 , 0 , 0 , 2 6 6 4 5 0 , 2 7 GET C L T R 2 1 6 0 OATA 4 7 , 0 . 7 5 , C . 3 1 , 9 . 1 , 1 2 . 7 1 7 0 CATA 3 0 0 , 2 2 0 3 0 , 2 5 1 3 , 1 0 6 3 5 , 1819.4 18C F I L E E470F 190 F I L E E47U 1 9 5 F I L E RUN47 157 B7=CMD(»?EMPTY5NC RUN47aC")  89  LISTING 1 2 3 4 5 6 7 8 9 10 11 12 13 x4 • 15 16 17 18 19 20 21 22 23 24 2 5 26 27 2 8 2 9 3 0 31 3 2 33 34 35 36 37 38 39 40 41 EXECUTION  $SIG  CF  FILE  R29  04:07  P.M.  FEB.  24,  1977  ID=RALU  GET E490F3D 1 1 9 , 0 , 0 , C O , C O , 0 , 0 , 0 , 1 , 2 3 , 1 , 1 , 1 , 1 , 1 ,1 , 1 , 1 , 2 , 2 , 3 0 , 2 , 2 , 2 , 3 , 2 , 2 , 3 , 4 , 4 , 4 , 3 7 , 5 2 £,5,6,6,7,7,8,8,9,47,10,10,11,12,13,13,14,15,16,17,60,19,20.21,23.24,26 3 27,29,31,33,75,3 5,37,39,41,44,4 7,49,52,55,58,55,6 2.65,69,73.77.81,86.90 4 5 5 , 1 0 0 , 119 , 1 0 6 , 1 1 1 , 1 1 7 , 123 . 1 3 0 , 1 3 6 , 1 4 3 , 1 5 0 , 1 5 8 , 1 6 6 , 1 5 1 , 1 7 4 , 1 8 3 , 1 9 1 . 2 0 1 5 210,220,231,241,253,264,150,276,289,301,315,329,343,358,373,389,405,239 6 422,439,457,4 76,455,514,535,555,577,559,301,621,645,668,693,718,744,770 7 797,825,8 53,37 9 , 8 8 2 , 9 1 1 , 1 0 1 4 , 1 0 3 0 , 1 0 4 5 . 1 0 6 0 , 1 0 7 6 , 1 0 9 2 , 1 1 1 3 , 1 1 3 8 , 4 7 7 , 1 1 6 8 8 1198,1227,1252,1272,1286,1296,1303,1313,1333,601,1364,1404,1444,1431.1514 5 1 5 4 7 , 1 5 6 1 , 1 6 1 6 , 1 6 5 0 , 1 6 8 2 , 7 5 6 , 1 7 1 3 , 1 7 5 1 , 1 7 9 7 , 1 8 4 3 , 1 8 7 2 . 1 8 7 4 , 1 8 6 1 , 1 8 6 3 , 1917 10 1 5 9 9 , 9 5 2 , 2 C 8 1 , 2 1 4 0 , 2 1 8 4 , 2 2 2 7 , 2 2 7 C 2 2 S 5 , 2 2 9 8 , 2 3 0 1 , 2 3 3 7 , 2 4 0 8 , 1 1 9 9 , 2 4 8 4 11 2 5 3 0 , 2 5 3 9 , 2 5 3 3 , 2 5 3 3 , 2 5 4 4 , 2 5 6 2 , 2 5 8 1 , 2 6 0 6 , 2 6 4 4 , 1 5 0 5 , 2 6 9 5 , 2 7 5 2 , 2 8 0 4 , 2 8 4 4 12 2 8 7 3 , 2 9 0 2 , 2 9 4 5 , 3 0 0 8 , 3 0 8 4 , 3 1 5 5 , 1 9 0 0 . 3 2 2 3 . 3 2 7 5 , 3 3 2 1 . 3 3 7 1 , 3 4 2 8 . 3 4 8 7 . 3 5 4 0 13 3583,3618,3652,2392,3695,3745,3794,3834,3863,3886,3919,3951,3967,3956 14 3 0 1 2 , 3 5 2 1 , 3 8 8 6 , 2 8 6 6 , 3 3 6 4 , 3 8 7 2 , 3 8 5 4 , 3 9 2 2 , 3 9 4 4 . 3 9 3 2 . 3 3 6 9 . 3 7 9 1 , 3 7 6 9 . 3 6 6 7 1 5 3 5 9 3 , 3 5 5 6 , 3 5 4 2 , 2 52 5 , 3 4 5 0 , 3 4 1 3 , 3 2 9 6 , 3 1 4 8 , 4 7 7 3 , 2 9 7 1 , 2 7 6 9 , 2 55 7 , 2 3 5 3 , 2 1 6 3 16 1 9 7 1 , 1 7 5 7 , 1 5 2 8 , 1 3 1 0 , 1 1 1 9 , 6 0 0 9 , 9 5 5 , 8 0 5 , 6 7 0 , 5 5 4 , 4 5 5 , 3 7 4 , 3 0 6 , 2 5 0 . 2 0 8 . 1 7 2 17 7565,139,108,£3,65,55,48,43,37,29,21,9523,18,20,21,18,20,16,17,18,19,14 18 1 1 9 8 9 , 7 , 8 , 8 , 1 8 , 2 9 , 3 2 , 2 2 , 2 4 , 1 3 , 0 , 1 5 0 9 2,15,32,34,37,39,21,22,0,0,0,328490 1 5 3C GET E49U3D 1 239,0,0,3,18,48,8 7,123,117,122,121,301.119,120,122,126,127,127,127,127 2 1 2 6 , 1 2 7 , 3 7 9 , 127 , 129 , 1 3 0 , 1 3 4 , 1 3 5 , 1 3 6 , 1 3 5 , 1 3 6 , 1 3 8 , 1 4 2 , 4 7 7 , 1 4 5 , 1 4 8 , 1 4 9 , 1 4 9 3 152,154,160,163,167,168,601,169,170,172,178,185,150,155,198,198,196,756 4 194,19 5,199,20 5,211,218,226,2 24,2 40,243,952,245,2 51,260,270,2 75,273,266 5 2 6 7 , 2 7 6 , 2 9 1 , 119 9 , 3 0 3 , 3 0 5 , 2 9 5 , 3 1 1 , 3 3 1 , 3 2 5 . 3 2 8 , 3 3 4 , 3 4 0 , 3 4 7 , 1 5 0 9 , 3 5 6 , 3 6 6 , 3 7 5 6 383,391,399,411,425,442,459,1500, 474, 486,494,502,£13, 530, 552,577,603,623 7 2 3 9 2 , 6 5 2 , 6 7 6 , 7 01 , 7 2 6 , 7 5 0 , 7 7 4 , 7 9 9 , 3 2 8 , 8 5 9 , 8 8 6 , 3 0 1 2 , 9 1 0 . 9 3 5 , 9 7 0 , 1 0 2 0 , 10 8 0 8 1142,1204,1265,12 27,138 6,2 791,1444,15 0 6 , 1 5 8 1 , 1 6 6 7 , 1 7 5 4 , 1 8 2 6 , 1 8 8 1 , 1 9 3 4 9 2 0 1 4 , 2 1 4 7 , 4 7 7 3 , 2 2 3 5 , 2 5 5 6 , 2 7 7 3 , 2 9 7 7 , 31 S 3 , 3 3 1 5 , 3 4 7 9 , 3 6 4 C . 3 7 8 2 . 3 8 8 4 , 6 0 0 9 10 3 9 4 3 , 3 9 6 7 , 3 9 6 6 , 3 5 4 1 , 3 3 7 7 , 3 7 7 0 , 3 6 3 8 , 3 5 0 8 , 3 3 9 9 , 3 2 9 6 , 7 5 £ 5 , 3 1 6 8 , 3 0 1 3 , 2 8 5 7 11 2 7 1 5 , 2 5 8 6 , 2 4 5 5 , 2 3 0 7 , 2 1 5 2 , 1 9 9 5 , 1 8 5 8 , 9 52 3 , 1 7 1 8 , 1 5 7 0 , 1 4 3 5 , 1 3 1 2 , 1 1 9 1 , 1 0 6 1 12 9 1 4 , 7 6 6 , 6 5 7 , 5 6 7 , 1 1 9 8 9 , 5 2 4 , 4 7 1 , 4 0 9 , 3 3 5 , 2 7 6 , 2 3 6 , 1 9 0 , 1 5 3 , 1 2 7 , 9 7 . 1 5 0 9 3 , 1 0 4 13 8 9 , 7 2 , 5 1 , 5 5 , 2 5 , 0 , 0 , 0 , 0 , 1 6 5 4 5 0 , 1 5 GET CLTR2 1 6 0 DATA 4 5 , 1 , 0 . 3 5 , 1 . 5 , 1 7 . 4 1 7 0 DATA 3 0 0 , 1 5 7 3 7 , 1 8 9 3 . 3 , 4 1 1 1 , 1 2 0 1 160 F I L E E45GF 150 F I L E E49U . 1 9 5 F I L E RUN49 157 B7=CH0("SIEHPTYSNC R U N 4 9 2 D " ! TERMINATED  APPENDIX I I I TAPE MOUNTING AND EDITING TD mount t h e papertapes on a r e a d e r i t was necessary t o t a k e them t o t h e r e c e p t i o n area o f t h e Computer Centre where they were a s s i g n e d a r a c k number. h e r e w i t h t h i s number was PT0151.  I n t h e example  The i n s t r u c t i o n f o r mounting  the papertape  a l s o s t a t e s t h a t t h e r e i s no p a r i t y check on  the papertape  and t h a t t h e hexadecimal  r e c o r d " i s 28D8A.  code f o r t h e "end o f  T h i s means t h a t each l i n e o f i n p u t i s  t e r m i n a t e d by two c h a r a c t e r s , a " c a r r i a g e r e t u r n " c h a r a c t e r (80) f o l l o w e d by a " l i n e f e e d " c h a r a c t e r ( 8 A ) .  The l a s t  p i e c e o f i n f o r m a t i o n r e q u i r e d f o r t h e mount command i s t h e name o f t h e p a p e r t a p e .  T h i s enables t h e o p e r a t o r t o check t h a t  the c o r r e c t tape i s mounted.  I t a l s o guards a g a i n s t t h e  unauthorized reading o f tapes. The output from t h e C e l l o s c o p e i s thus r e a d from t h e r e a d e r which has t h e pseudo d e v i c e name *R* t o an MTS f i l e f o r e d i t i n g and then as i n p u t t o t h e program "CONVERT" which c o n v e r t s i t i n t o a B a s i c language d a t a f i l e .  Use o f t h e MTS  l i n e f i l e e d i t o r i s n e c e s s a r y both t o remove t h e "*" from l i n e k and t o erase t h e headings i n l i n e 3.  91  tSIG  CMLU  C = 100  r f l K M = IJL ANK  •^qPH^pr. pqR.q 4AAA\«AAAA q p p p* p p p p 3 fi ft A A A A A A A A A RR AA AA 7R RR AA AA RR RP AA AA RRRRitRR RPRRP. AAAAAAA AAAAA RRRRRRRORRR AAAAAAAAAAAA PR BR AA AA RR RR AA AA RR RR AA 4A RR RR AA AA RR RP AA AA  P  LL A, LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  uu uu uu uu uu uu uu uu uu uu  UU UU . UU UU  uu uu uu uu uu uu  UUUUUUUUUUUU UUUUUUUUUU  * * L « $ T SIGNON WAS: 00:54:18 U S r < " P A L U " S I G N F D ON AT 1 6 : 1 9 : 0 7 ON T U E F E B 08/77 SCR^AT ^ JKL F I L c . " J K L " HAS B E F N CREATED. t^MPTV JKL 00*1 . S M O U ^ T P T 0 1 5 1 P T P R * R * PA R I T Y = N O N E E 0 R = 2 8 D 8 A • N 5 W 3 8 0 F P L E A S E * P T 0 1 5 1 P P R * R * P A R I T Y = NONE ? 0 R = 2 8 D 8 A • N E W 3 8 0 F P L E A S E ' c  1  c  T  *R*: M O U N T E D ON H S P 1 SCOP * « * J K L tLIST JKL 3 FZ NR 4 33869C* 5 15 6 19 7 23 8 20 9 37 10 47 11 60 1 2 75 13 95  0 1024 2 5 9 16 27 45 73 11 5 177  1  2  3  4  5  6  7  8  9  2 5 9 17 29 48 77 121 184  3 5 10 18 30 50 80 126 192  3 6 10 19 32 52 84 132 200  3 6 11 20 33 55 88 137 208  3 6 12 21 35 58 92 143 216  4 7 12 22 37 61 97 150 225  4 7 13 23 39 64 101 156 234  4 8 14 24 41 67 106 163 243  4 8 15 26 43 70 110 170 253  92  14 1 5 1 6 i 7 i 8 19 20 21  3 9S 555 7 SO 1.009 1307 1632 1817 2129 2447 2756 2926 3202 3548 3933 3836 3289 1890 969 150  :»si 409 573 782 103 7 1339 1656 1 839 215 2 2494 2772 2901 3225 3555 3884 3673 3240 1649 768 94  29 5 . 706 423 438 611 592 829 805 106 5 1 094 146 6 149 8 1676 1693 1894 156 8 2165 2137 2523 2 52 5 2641 2728 2895 2906 3257 3303 3558 3577 3829 3778 3466 3286 3193 3 043 1732 1652 724 622 58 37  310 454 631 85 3 1123 1516 1711 2025 2232 2505 2820 2933 3354 3630 3 74 0 3200 2731 1566 537 25  330 470 651 878 1153 1540 173 6 2 044 2285 2479 2709 2975 3399 3720 3734 3231 2318 1462 467 14  342 4 a6 672 903 1133 1565 1770 2033 2326 2471 2904 3029 3432 3825 3770 3340 2355 1354 409 5  31>5 502 693 929 1213 1582 1801 2026 2348 2 504 2810 3 086' 3461 3914 3 83 8 3437 2082 1253 353 1  36 0 519 714 955 1244 1 595 1318 2 046 2368 2583 3036 3139 3493 3962 3902 3449 1975 1167 289 0  38869C  1024  338690 15 19 23 30 37 47 60 75 95 119 151 190 239 301 379 477 601 756 952 11 9 9 1509 1900 2392 3012 3791  1024 2 2 5 5 9 9 17 16 27 29 45 48 73 77 115 121 177 184 273 263 381 395 537 555 759 736 982 ' 1009 1275 1307 1632 161 1 1813 1817 2129 203 3 2 40 1 2447 26^1 2756 2970 2926 3177 3202 3526 3543 3965 3933 3836 3913  3 5 10 18 30 50 80 126 192 284 409 573 782 1037 1 339 1656 1839 2152 2494 2772 2901 3225 3555 3884 3673  3 6 10 19 32 52 84 132 200 295 423 592 80 5 106 5 1466 1676 1894 2165 2523 2728 2895 3257 3558 3829 3466  3 6 12 21 35 58 92 . 143 216 318 454 631 853 1123 1516 1711 2025 2232 2505 2820 2933 3354 3630 3740 3200  4 7 12 22 37 61 97 150 225 330 470 651 878 1153 1540 1736 2044 2285 2479 2709 2975 3399 3720 3734 3231  4 7 13 23 39 64 101 156 234 342 486 672 903 1183 1565 1770 2033 2326 2471 2904 3029 3432 3825 3770 3340  4 8 14 24 41 67 106 163 243 355 502 693 929 1213 1502 1301 2026 2 348 2504 2810 3036 3461 3914 3838 3437  4 8 15 26 43 70 110 170 253 368 519 714 955 1244 1595 1818 2 04 6 2368 2583 3036 3139 3493 3962 3902 3449  "3 p  23 24 25 26 27 28 29 30 31 32 33 <=N0 OF  ..' i :•  1.1'I 151 190 239 301 379 477 601 75 6 952 1199 1509 1900 2392 3012 3791 4773 6009 7565 9523  2 40 1 2681 2970 3177 3526 3965 3913 3377 1939 1075 22 1  3H 1 537 7^6  9 8,? 1275 1611 181*  PILE  tF.OIT J K L 03 1 LINE  ALTEri 4 •*• • 4 STOP  tLISr J K L 4 5 6 7 8 9 10 11 12 13 14 1 5 16 1 7 18  i  9 20 2 1 22 23 24 2 5 26 27 2 8 29  3 6 11 20 33 55 88 137 208 306 438 611 829 1094 1498 1693 1 568 2187 2 52 5 2641 2906 3303 3577 3778 3286  93  3 (1 3 I 32 33 OF F I L P  4/7J 600'.) 7565 9523  31'7 7 193 ) 1075 221  3 2MO 1 8 JO 969 150  IRON *aAS!C SXGCOTIPN BEGINS GET C r } M V « : R 15 FIL - F3B0F Gf=T £ 3 3 n F a o T  r  • « 3 3 0 ( 0 ) " HAS B E N PUN CONVERT c  C  c  L O C A T I O N ON  c  PTP8 ( C E L L O S C O P E ) LINES  31 PTGPA4  C ATCO.  ENDS  tCOPY - F I L E *PUNCH* SSIG HSR1 H E L E A S E O .  1024  3240 1649 768 94  3193 1732 724 58  3043 1652 622 37  2731 1566 53 7 25  2318 1462 467 14  2355 1354 409 5  2C02 1253 353 1  1975 1167 289 0  3k  APPENDIX IV THE  PROGRAM "CONVERT"  The B a s i c language program "CONVERT" reads t h e t o t a l (T) and the address i n t h e PDPB minicomputer o f the d a t a f i l e  (F).  counts  o f the b e g i n n i n g  I t then reads one l i n e at a time o f  the s i z i n g d a t a and w r i t e s t h i s on a B a s i c d a t a f i l e .  I f the  s i z e a n a l y s i s does not go : up t o 15093 c e n t i m i c r o n s then l i n e s are added w i t h z e r o counts i n each s i z e c h a n n e l . F i n a l l y t h e t o t a l counts and the number o f l i n e s o f d a t a i n t h e o r i g i n a l f i l e , extended  down t o 15093 c e n t i m i c r o n s  i f n e c e s s a r y , are w r i t t e n on the B a s i c d a t a f i l e .  Because  "CONVERT" has been r e v i s e d a number o f t i m e s not a l l the B a s i c d a t a f i l e s have t h e s e l a s t two numbers p r i n t e d at t h e end o f t h e  file.  Data i s r e a d i n v i a t h e "INPUT" statements so i t i s n e c e s s a r y t o use t h e  statement:-  $ CONTINUE WITH f i l e n a m e RETURN when i n p u t t o t h e program i s s t o r e d on an MTS  file.  term " f i l e n a m e " above r e p r e s e n t s t h e name o f t h e MTS concerned.  T e r m i n a t i o n may  The  file  be achieved by r e a d i n g i n a row  e l e v e n z e r o s s t o r e d i n the MTS  f i l e "TERMINATION".  of  95  LISTING OF FILE B. CONVERT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48  08:37 P.M.  MAE,  14, 1977  2 DIM A (11) ,S(1,12) ,C(10) ,B (11) 3 DIM L(11) 4 DATA 1199,1509,1900,2392,3012,3791,4773,6009,7565,95 23,11989,15093 6 MAT S=ZER(1,12) 10 MAT READ S 12 FOR J=1 TO 10 13 LET C(J)=0 14 NEXT J 15 FILE TEST 18 INPUT T,F 19 IF ( F-10*INT (F/10)-4) =4 THEN 300 20 INPUT A(1) ,A(2) ,A(3) ,A(4) ,A{5) ,A(6),A(7) ,A(8) ,A(9) , A{10) ,A{11) 25 IF A{1)=0 THEN50 30 MAT WRITE FILE1,A 32 LET L(1)=A(1) 40 GOTO 20 50 LET A (1)=L (1) 60 IF A(1)<S(1,1) THEN 200 80 FOR J=1 TO 12 90 IF A(1)>=S(1,J) THEN 130 100 WRITE *1,S(1,J) 110 MAT WRITE #1,C 130 NEXT J 150 WRITE #1,T 160 PRINT 170 PRINT "LOCATION ON PDP8 (CELLOSCOPE)";F 175 PRINT 180 PRINT 82- ( (F-4)/20) ,"LINES" 185 WRITE #1, 82-( (F-4)/20) 198 GO TO 210 200 PHINT"**************SIZE RANGE TOO SMALL OR OFFSET FROM USUAL" 210 PRINT 290 GO TO 500 300 B(10)=0 301 B(11)=0 303 INPUT A (1) , A (2) , A (3) , A (4) ,A (5) , A(6) , A (7) , A (8) , A (9) ,A(10) ,A(11) 320 IF A(1)=0 THEN 50 330 WRITE# 1,1 NT (A (1) / ( ( (10) **0. 01) **2) + 0. 5) 340 WRITE#1 ,B (10) ,B(11) 350 FOR 1=2 TO 9 360 WRITE#1,A(I) 370 NEXT I 380 LET B(10)=A(10) 390 LET B(11) =A(11) 410 LET L (1) = A (1) 430 GO TO 303 500 END END-OF-FILE  96  APPENDIX V THE PROGRAM "GLTR2" The program "CLTR2" uses t h e s i z e a n a l y s i s data  files  t o g e t h e r w i t h measured data t o c a l c u l a t e t h e e f f i c i e n c y o f the c y c l o n e f o r each s i z e t o g e t h e r w i t h t h e f l o w r a t e and o t h e r mass b a l a n c e s .  O r i g i n a l l y a s i m p l e method f o r  e s t i m a t i n g a l p h a and d  5 Q C  was i n c o r p o r a t e d but t h i s was  bypassed as i t converged t o a f a l s e optimum. The d a t a r e q u i r e d i s as f o l l o w s : 160 DATA r u n number, v o r t e x i n i n c h e s , s p i g o t , p r e s s u r e , sampling  time.  170 DATA l e n g t h o f o v e r f l o w s i z e a n a l y s i s v e c t o r (= 10 t i m e s the number o f l i n e s g i v e n by "CONVERT"), gm 0/F p u l p , gm U/F p u l p , c a l c . gm 0/F s o l i d s , c a l c . gm U/F s o l i d s . 180 FILE EnnOP 190 FILE EnnU 195 FILE RUNnn 197 B7=CMD ("%EMPTY@NC RUNnn@D") where nn i s t h e l a s t k l i n e s r e p r e s e n t s t h e r u n number. Appendix I I l i s t s t h i s i n f o r m a t i o n f o r a l l r u n s .  LISTING OF F I L E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 51 52 53 54  B.CLTB2  08:37  P. H.  MAS. 14,  1977  100 DIM B (390) ,M (390) ,W (390) ,U(390) , F (390) , E (390) , V (39 0) , S (390) 101 DIM P(390) 102 DIM A (390) 110 PBINT 120 PBINT 130 PBINT 140 PBINT "PROG. . TO 'CALC. E F F . S COBB. E F F . OF CYC. FB OM PBODS." 150 DATA 2.65 160 DATA 19, 1, 0 . 3 5 , 1 . 9 , 17.5 170 DATA 3 0 0 , 16168, 1 8 7 1 . 7 , 4 3 4 1 . 2 , 1121.7 180 F I L E E190F 190 F I L E E19U 195 F I L E BON19 197 B7=CMD(««%EMPTYa)NC B U N 1 9 3 D » ) 200 BEAD D 1 , N 2 , V 1 , S 1 , P 2 , T 5 210 B E A D N , V 4 , S 4 , V 3 , S 3 220 LET F3=S3+V3 230 L E T F4=S4+V4 240 L E T F2=F4-F3 250 L E T S2=S4-S3 260 L E T V2=V4-V3 270 FOB 1=1 TO N - 9 STEP 10 280 BEAD#1,M<I) , V ( I ) , V ( I + 1 ) , V ( I + 2 ) , V ( I + 3 ) , V ( I + 4 ) ,7(1+5  )  290 BEAD#1 , V (1+6) , V (1+7) , V(I+8) , V (1+9) 310 FOE J=1 TO 9 320 L E T M (I+J) =INT (M (1 +J-1) * ( (1 0) * * 0 . 01)+0. 5) 330 NEXT J 340 NEXT I 342 FOB 1=1 TO N 344 LET S ( I ) = 0 346 NEXT I 348 BEAD#2, C9 354 FOB K1=0 TO 20 355 I F C9=M(1+Kl*10) THEN 358 356 NEXT K1 357 GO TO 2000 358 FOB J=1+K1*10 TO 10+K1*10 359 BEAD#2, S ( J ) 360 NEXT J 362 FOB 1=11 + K1 + 10 TO N-9 STEP 10 365 BEAD#2,C9 370 I F A B S ( C 9 - M{I))>2 THEN 414 380 FOB K=1 TO 10 390 BEAD#2,S(I+K-1) 410 NEXT K 412 GO TO 420 414 I F ( N - 9 - I ) > 1 0 THEN 2000 416 FOB K=1 TO 10 417 L E T S (I+K-1) =0 418 NEXT K 418 NEXT K 419 PBINT « * * * * * Z E B O S ADDED TO TOP OF OVEBFLOB S I Z E AN ALYSIS*****" 420 NEXTI 421 LET C7=0 422 LET C8=0  98 LISTING OF FILE B.CLTE2 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108  08:37 P.B.  WAR. 14, 1977  424 FOR J=1 TO N 425 LET C7=C7 + V(J) 426 LET C8=C8 + S(J) 428 NEXT J 429 PRINT "COUNTS ON OVERFLOW AND UNDERFLOW SIZING ARE : ";C7,C8 430 PRINT 432 FOR J=1 TO N 4 34 LET V (J) =V(J) *V3/100/C7 436 LET S (J) = S(J) *S3/100/C8 438 NEXT J 440 PRINT 450 PRINT 460 LET B6=S2/F2 470 PRINT "TEST NUMBER:«;N2 480 PRINT w************* « 490 PRINT 500 PRINT 510 PRINT"SIZE","EFFICIENCY","CORRECTED EFF.","CALC. F EED" 520 PRINT 529 LET C5=0 530 FOR J=1 TO N 540 LET F (J) = V(J) +S(J) 550 LET B(J)=B6*F(J) 560 LET W (J) =F(J) -B(J) 570 LET U (J) = S(J)-B(J) 580 IF W (J)>0 THEN 620 590 LET E(J) = 1. 5 600 PRINT M(J), " «,» »,F (J)/F3*100 610 GO TO 640 620 LET E (J)=U(J) /W (J) 622 LET E8=INT(10000*E(J) + 0.5)/10000 628 LET C5=C5 • (F(J)/F3*100) 630 LET F8=INT (1000000* F(J)/F3 +0.5)/1 0000 631 LET F9= INT(10000*C5 +0.5)/100 635 PRINT M (J) , S (J) /F (J) , E8 ,F8, F9 640 NEXT J 642 PRINT 644 PRINT "TEST NUMBER:";N2 646 PRINT "**************" 650 PRINT 660 PRINT" ","INCHES","MM" 670 PRINT "VORTEX" , V1, INT ( (V1 *25. 4) + 0. 5) 680 PRINT "SPIGOT", S1 ,INT (S1 *2 5. 4+0. 5) 690 PRINT 700 PRINT "PRESSURE=";P2;" PSIG (";INT(P2*6.89 +0.5); n KILOPASCALS) '» 710 PRINT 720 PRINT "SAMPLING TIME (SECONDS) ="; T5 730 LET L1=60*(F2+F3/D1)/ (1000*T5) 731 LET L1=0.01*INT(L1*100 +0.5) 740 LET Gl=L1/3.785 741 LET G1=0.01*INT(G1*100 +0.5) 750 PRINT 760 PRINT"FLOWRATE=";L1;» LITRES/MIN. (";G1;" USGPM ) n 770 PRINT  99  LISTING OF FILE B.CLTR2 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134  780 788 790 800 805 810 820 824 825 826 830 832 833 834 835 836 838 839 840 842 844 846 847 850 860 870 880 890 900 910 920 922 924 925 926 928 929 930 940 950 I....  149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164  MAE. 14, 1977  PRINT " '*, "OVERFLOW" , "UNDERFLOW" ,"CALC. FEED" PRINT "PULP (C. C. ) " , V2+V3/D1, S2+S3/D1, F2+F3/D1 PRINT "POLP(GM.)",V4,S4,F4 PRINT "SOLIDS (GM.)«,V3,S3,F3 PRINT "WATER (GM.)",V2,S2,F2 PRINT "* SOLIDS",V3/V4*100,S3/S4*100,F3/F4*100 PRINT PRINT PRINT "BYPASS RATIO = ";B6 PRINT PRINT FOR J=1 TO N IF M(J)>300 THEN 836 LET N3=J GO TO 839 IF M(J)>10000 THEN 839 LET N4=J NEXT J PRINT PRINT "LIMITS OF 'GOOD DATA«",N3,N4 PRINT PRINT PRINT " ";TAB (7) ;"CORRECTED EFFICIENCY" PRINT PRINT TAB (5) ;"0"; TAB (30) ; "50";TAB (54) ; " 100" PRINT TAB(5) ;«|...,|.... |....|.... | .... |.... | ...  | • * • • ) • • • • |••• • J  135 136 137 138 139 140 141 142 143 144 145 146 147 148  08:37 P. M.  "  PRINT TAB (5) ;">" PRINT TAB(5);">" FOR I=N3 TO N4 STEP3 LET J=I LET P8=INT (E (J) *50+. 5)+5 I F E(J)>0 THEN 926 PRINT"EFFICIENCY=";INT(1000*E(J) +0.5)/1000 GO TO 940 IF E(J)<1.01 THEN 9 30 PRINT M(J); TAB(5);">" GO TO 940 PRINT M (J) ;TAB (5) ;">" ;TAB (P8) ; "+" NEXT I PRINT TAB (5) ; " | . . . . | . . . . | . . . . I . . . . I . . . . | . . . . I . . . I. .. . | . . . . J  955 PRINT TAB (5) ;"0"; TAB (30) ; "50";TAB (54) ; " 100" 960 FOR J=1 TO 5 961 PRINT 964 NEXT J 965 REM BRITE ON FILE 966 WRITE#3,N2,N3,N4,B6,D1,V1,S1,P2 976 FOR I=N3 TO N4 978 HRITE# 3, M (I) ,E (I) *100, 100*S (I)/F (I) 980 NEXT I 985 GO TO 1990 990 FOR J=N3 TO N4 1000 LET P (J) = (E (J) *100) / (1-E (J) *100) 1010 NEXT J 1015 LET N6=0 1020 LET A1=0.001 1025 LET A2= 0.003  LISTING  165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 20 0 201 20 2 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 22 0 221 222  OF F I L E  1030 1040 1050 1070 1080 1090 1100 1105 1110 1120 1130 1140 1150 1160 1165 1167 1169 1170 1175 1179 1180 1185 1186 1190 1199 1200 1205 1210 1215 1220 1225 1230 1240 1245 1250 1255 1260 1265 1270 1275 1290 1294 1295 1300 1310 1320 1322 1340 1350 1355 1360 1370 1380 1382 1384 1385 1390 1395  B.C1TR2  100 08:37 P . M .  LET A4=A1 GOSUB 1200 LET C1=C4 LET A4=A2 GOSUB 1200 LET C2=C4 LET A3=A1 - C 1 * ( ( A 2 - A 1 ) / ( C 2 - C 1 ) ) LET N6=N6 +1 LET A4=A3 GOSUB 1200, LET C3=C4 IF A B S ( C 3 / B 1 ) < 0 . 0 0 1 THEN 1190 I F N6>40 THEN 1180 I F A B S ( A 2 - A 3 ) > ABS (A1-A3) THEN 1170 LET A1=A3 LET C1=C3 GO TO 1100 LET A2=A3 LET C2=C3 GO TO 1100 PRINT PRINT " F A I L E D TO C O N V E R G E " ; A 3 , B 1 , B 2 GO TO 1990 PRINT GO TO 1350 LET 81=0 LET 82=0 LET 83=0 LET  W4=0  LET  85=0  LET  W6=0  LET 87=0 FOR J=N3 TO N4 LET 81 = 81 + P ( J ) *M (J) *EXP(A4*M (J) ) LET 82=82 +M (J) *EXP(2*A4*M (J) ) LET 83=83 + M(J) *EXP(A4*M(J) ) LET 84=84 + P (J) *EXP (A4*M (J) ) LET 85=85 +P(J) LET 86=86 +2*EXP<A4*H(J)) LET 87=87 +EXP(2*A4*M(J)) NEXT J I F ABS(82-81)>0 THEN 1300 PRINT " D I V . BY ZERO » ; J , 8 1 , 8 2 , 8 3 LET B 1 = 8 1 / ( 8 2 - 8 3 ) LET B2= (84-85)/{N4-N3-86+w7) LET C4=B1-B2 PRINT A 4 , B 1 , B 2 RETURN PRINT "ESTIMATES BY REGRESSION" PRINT PRINT "A V A L U E S " , A 1 , A 2 , A 3 PBINT "B VALUES AT LAST POINT", " " PRINT PRINT N 6 ; « CYCLES" PRINT LET X5=LOG ( (1+B2) / B 2 ) / A 3 LET A9=A3*X5 PRINT  HAH. 1 4 ,  1977  LISTING OF FILE B.CLTR2 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239  08:37 P.M.  MAR. 14, 1977  101  1400 PRINT "D50C:";X5;" CENTIMICRONS" 1405 PRINT 1410 PRINT "ALPHA= "; A9 1420 PRINT 1430 PRINT "CALCULATED CORRECTED EFFICIENCIES" 1435 PRINT 1440 PRINT "SIZE","CALC. EFF.","MEASURED","D/D50" 1450 FOR J=N3 TO N4 STEP 3 1460 LET A (J) = (EXP (A9*M (J) /X5) -1) / (EXP ( A9*M (J) / X5) + EXP (A9)-2) 1470 PRINT M (J) , A (J) , E (J) ,M (J) /X5 1480 NEXT J 1990 GO TO 2010 2000 PRINT "**EREOR IN SIZING TERMINATED PROGRAM******  n  2001 PRINT "SIZING ON O/F 6 U/F »; M(1+K1*10), C9 ; "C ENTIMICRONS" 2002 PRINT "K1= ";K1 2010 END END-OF-FILE  102  tST  r,  of. i n  prpM-fM  » R R R A 5 ; P P R ! >  » R" Rt\ RS RSRDO RR Re RR RR RR PR RR.RRRPRPRP.RR DRRRkRFRRRR RR RR RR RR RR RR RR RR RR  PP  A'IK  A ft A •* A A ft A A A  A AA AA AA A A A A A AA AA AA AA AA AA A A A A A A A !, A A A A AAAAA&AAAA*A AA AA AA AA A* 4A A4 AA AA AA  LL LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  **L A j T S I G M O N W A S : 16:19:07 US^* " ' A L U " S I G N E D ON AT 16:22:22 t R U N *^*-SIC :XECUm?J BEGINS  ON  TUE  UU UU UU . UU UU UU UU UU UU UU UU UUUUUUUUUUUU UUUUUUUUUU  uu uu uu uu uu uu uu uu uu  FEB  08/77  r  LIES.  QA£IL  GET RIJN193P " R U ^ 1 9 ( D ) " HAS GET P190F3D " E I S O M D ) " HAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14  B EN  CREATED.  B^SrN  C° AT^r).  C  C  1 9 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 3 3 , 1 , 1 , 1 , 1 , 1 , - 2 , 2 , 2 , 2 , 2 . 30,2,3,3,3,3,4,4,4,4,5,37.5 5 , 6 , 6 , 7 , 7 , 8 , 3 , 9 , 1 0 , ' , 7 , 1 0 , 1 1 , 1 2 , 1 2 , 1 3 , 1 4 , 15 , 1 6 , 17 , 1 8 , 6 0 , 1 9 , 2 0 , 2 2 , 2 3 , 2 4 , 2 6 27,29,31,33,75,35,37,39,41,43,46,48,51,54,57,95,60,63,67,70,74,78,82.86 91,95,119,100,105,110,116,122,128,134,'140,147,154,151,162, 169,177, 185,194 203,212,222,231,242,190,252,263,275,236,299,311,3 2 4,333,351,366,239,331 3 9 6 , 4 1 2 , 4 2 8 , 4 4 4 , 4 6 2 , 4 7 5 , 4 9 7 , 5 1 6 , 5 3 5 , 3 0 1 , 5 5 5 , 5 7 5 , 5 9 6 , 6 1 8 , 6 4 0 , 66 2 , 6 8 5 , 7 0 9 73 3 , 7 5 8 , 3 7 9 , 7 8 3 , 9 0 9 , 9 8 6 , 1 0 0 0 , 1 0 1 3 , 1 0 2 5 , 1 0 3 9 , 1 0 5 4 , 1 0 7 0 , 1 0 8 4 , 4 7 7 , 1 0 9 7 , 1 1 1 1 1126 , 1 1 4 2 , 1 1 5 9 , 1 1 7 8 , 1 2 0 1 , 1 2 2 5 , 1 2 4 8 , 1 2 6 9 , 6 0 1 , 1 2 9 0 , 1 3 1 7 , 1 3 5 3 , 1 3 9 2 , 1 4 2 6 , 1 4 5 1 14 6 6 , 1 4 7 8 , 1 4 9 2 , 1 5 1 2 , 7 5 6 , 1 5 3 9 , 1 5 7 4 , 1 6 1 3 , 1 6 5 3 , 1 6 9 0 , 1 7 2 4 , 1 7 5 4 , 1 7 8 1 , 1 8 0 0 , 1 8 1 3 952,1829,18 57,1902,1959,2020,2083,2138,2171,2170,2153,1199,2154,2195 2 259,2308,2324,23 23,2331,23 60,2 399,2432,1505,24 59,2490,25 35,2 592,2644 2 67 7 , 2 6 9 3 , 2 7 1 4 , 2 7 6 2 , 2 8 4 3 , 1 9 0 0 , 2 93 5 , 3 0 1 5 , 3 0 7 5 , 3 1 2 2 , 3 1 6 5 , 3 2 0 9 , 3 2 5 5 , 3 3 09 3 33 0 , 3 4 6 7 , 2 3 9 2 , 3 5 6 1 , 3 6 3 7 , 3 6 7 8 , 3 6 8 5 , 2 6 9 2 , 3 7 4 2 , 3 8 4 1 , 3 5 4 0 , 3 9 6 7 , 3 8 9 3 , 3 0 1 2 3 75 5 , 36 3 8 , 3 6 0 3 , 3 6 5 4 , 3 7 4 2 , 3 3 1 8 , 3 86 5 , 3 8 9 0 , 3 8 9 3 , 3 8 6 4 , 3 7 9 1 , 3 8 0 7 , 3 7 5 2 , 3 7 3 2  103  l> i 1 3 73 4 , 3 6 4 a , i 1 >'•), 2 9 2 3 , 2 7 1 4 , 4 7 7 3 , 2 5 7 0 , 2 4 5 8 , 2 3 6 2 , 2 2 9 6 , 2 2 7 1 , 2 1 7 1 16 2 119,1966,1679,1462,6009,1240,1056,888,745,621,515,433,370,316,264,7565 17 217,175,145,120,105,10?,59,99,94,94,9523,79,54,41,35,37,40,54,58,37,40 18 1 1 ^ 8 9 , 5 7 , 6 2 , 3 3 , 3 5 , 7 5 , 8 1 , 6 5 , 4 6 , 5 0 , 5 4 , 1 5 0 9 3 , 5 7 , 6 1 , 6 5 , 7 1 , 7 5 , 4 0 , 4 3 , 0 , 0 , 0 19 3 1 4 0 3 8 , 3 0 GET PI9USD " » m j ( l ? ) » HIS 9 rN C? A--'). c  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GET 160  r  7 5 , 0 , C , C C O , 0 , 1 , 1 , 1 , 1 , 9 5 , 1 , 1, 1, 1 , 2 , 2 , 2 , 2 , 2 , 3 , 1 1 9 , 3 , 3 , 3 , 4 , 4 , 5 . , 5 , 5 , 6 , 6 , 151 7, 3 , 8 , 9 , 1 0 , 1 0 , 1 1 , 12,?. 3 , 1 4 , 1 9 0 , 1 5 , 1 7 , 1 8 , 1 5 , 21 , 2 2 , 2 4 , 2 5 , 2 7 , 2 9 , 2 3 9 , 3 1 , 3 4 , 3 6 33 , 4 1 , 4 4 , 4 7 , 5 0 , 5 3 , 5 7 , 3 0 ? , 61 , 6 4 , 6 9 , 7 3 , 7 8 , 8 3 , 8 8 , 93 , 9 9 , 1 0 5 , 3 7 9 , 1 1 1 , 1 1 6 , 1 7 0 1 7 3 , 1 7 7 , 1 8 0 , 1 8 1 , 1 8 2 , 1 8 5 , 1 8 9 , 4 7 7 , 1 9 2 , 196 , 2 0 1 , 2 0 3 , 2 0 7 , 2 1 0 , 2 1 6 , 2 2 0 , 2 2 4 , 2 2 5 601,22 7,231,237,2 44,251,255,258,259,260,261,756,264,270,278,283,283,232 2 d 4 , 2 9 5 , 3 1 1 ,328 ,952 ,33 9 , 3 4 3 , 3 4 1 , 3 4 0 , 3 4 1 , 348, 357, 367, 3 7 9 , 3 8 8 , 1199,395,392 37 9 , 2 9 2 , 4 4 9 , 4 1 9 , 4 4 5 , 4 3 5 , 4 3 3 , 4 3 6 , 1 5 0 9 , 4 4 2 , 4 5 2 , 4 6 7 , 4 8 4 , 5 0 1 , 5 1 6 , 5 2 9 , 5 4 3 , 5 6 0 531,1900,603,619,629,637,651,676,706,734,755,770,2392,786,804,825,847,871 90 1 , 9 3 6 , 9 7 4 , 1 0 1 4 , 1 0 5 5 , 3 0 1 2 , 1 0 9 9 , 1 1 4 8 , 1 2 0 1 , 1 2 5 6 , 1 3 0 7 , 1 3 4 9 , 1 3 8 3 , 1 4 1 5 , 1 4 4 9 1490,3791,1541,160 8,1693,1783,1864,19 36,2005,2074,2141,2210,4773,2299 2 421,2 567,2 712,2 849,2 992,3154,3330,3496,363 4,6009,3 747,3843,3920,3967 3 9 6 5 , 3 9 0 3 , 3 8 0 7 , 3 6 3 5 , 3 5 6 0 , 3 4 3 4 , 7 5 6 5 , 3 3 0 4 , 3 1 7 0 , 3 0 3 4 , 2 8 9 8 , 2 7 6 5 , 2 62 3 , 2 4 78 2 317,2136 ,1943,9523,1763,1600,1453, 1332,1240,1155,1044,903,770,663,11989 592,5 27,4 70,426, 372,256, 193,133,126,118,15093,109,77,62189,95 ,77,27,0,0 0,180965,24 CL R2 DATA 1 9 , 1, 0 . 3 5 , 1.9, 17.5 T  170 DATA 300. 16163, 180 F I L F1SQF 190 F I L E E19U 1 9 5 F TL 7 R U N 1 9 197 b7=CM0("?"MPTYaNC SAVF CLTO? OC!N~ RUN ZL .2 '  1871.7,  4341.2,  112.1.7  '  C  RUN 1 9 3 0 " )  .  Tr!  3RQG. TI CALC. EFF. T F ^ PT Y7;*4C P U N 1 9 3 0 COUNTS  ON  -IV^FLOW  £  CO .R. c  ANC  i  EPF.  UNOrRFLTW  OF  CYC.  SIZING  FROM  PRODS.  ARE:  314038  180965  T E S T Nil MB P . : 19 ***** ******** c  SIZE  19 19 19 19 19 19 19 19 19 19 23 24  F F F ! C T  0 0 0 0 0 0  C  N C Y  CORRECTED  -0.06 -0.06 -0.06 -0.06 -0.06 -0.06  3 3 3 3 3 3  3 3 3 3 3 3  E F F . CALC.  0 0 0 0 0 0 0 0 0 0 0 0  FEEO  0 0 0 0 0 0  25 26 27 •2 8 29 30 31 32 30 31 32 33 34 35 36 37 38 39 37 38 39 40 41 42 43 44 45 46 4 7 48 49 50 51 52 53 54 55 56 60 61 62 63 64 65 67 69 71 73 75 77 79 81 83 35 67 39 . 91 93 95 97  0 0 0 0 0 0 0 0 0 0 0 0  0 0  0 c  0 0 0 0 0  0 0 0 0  0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 9.254974:- 3 8.715308=- 3 8 . 2 3 5 U 2 - 3 7.805068' - 3 7.417709^- 3 7. 066981'=- 3 r  :  -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.C633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0633 -0.0535 -0.054 -0.0546 -0.055 -0.0554 -0.0558  0 0 0 0 0 0  0 0  0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002  0 0 0 0 0 0 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.09 0.1 0.11 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.22 0.23 0.25 0.26 0.28  )9 ' 101 1 03 105 107 109 112 115 119 122 125 128 131 134 137 140 143 146 151 155 159 163 167 171 175 179 183 187 190 194 199 204 2 09 214 219 224 229 2 34 239 245 251 257 263 269 275 281 288 295 301 303 315 322 3 30 333 346 354 362 370 3 79 388  6 . 6 4 rat r -i 6.3 64 7 8 1 " - 3. 1.197351 -2 1. 1 3664f,r- 2 0.010318 1. 0 3 2 C 0 3 ' - 2 9.759527 -3 1.396194^-2 1. 3273 1 l'=-2 1.264905^-2 1.208104r--2 1.5226255-2 1.448027' -2 1.721368 -2 0.0164556 1. 576143'->2 1.797265P-2 1.716974H-2 1.9006575-2 2.078434' -2 I. 9 8 6 3 5 9 ' = - 2 2. 1 3 4 7 8 3 5 - 2 2.259068 -2 2.161077 -2 2.2736475-2 2 . 366 3 6 8 - 2 2.46125l -2 2. 5233975-2 2.5995575-2 2.816652 -2 2.651226--2 2. 8 9 2 6 3 5 - 2 0.0305207 3.074365^-2 3.2146265-2 3.2100245-2 3.3341445-2 3.430912 -2 0.0351989 3.7070865-2 3.770242 -2 3.828502^-2 3.975902--2 4.095476 -2 4.2142275-2 4.316243 -2 0.0^40277 4.5594115-2 4.696767 -2 4.753523 -2 4.934901 -2 5.0300815-2 5.1815765-2 5 . 322 5 6 7 5 - 2 0.0544658 5.55483? -2 0.0571019 0.0504796 5.976568^-2 6.C40916 -2 r  :  c  ;  c  : :  r  c  c  c  c  c  c  c  c  c  c  c  r :  r  c  -'). 0062 -0.0565 -0.0506 -0.0512 -0.0518 -0.0523 -0.0529 -0.0485 -0.0492 -0.0499 -0.0505 -0.0471 -0.0479 -0.045 , -0.0453 -0.0466 -0.0442 -0.0451 -0.0431 -0.0412 -0.0422 -0.0406 -0.0393 -0.0403 -0.0391 -0.0382 -0.0371 -0.0364 -0.0357 -0.0334 -0.033 -0.0326 -0.0300 -0.0306 -0.0291 -0.0292 -0.0279 -0.0268 -0.0259 -0.0239 -0.0232 - 0 . 0 2 26 -0.021 -0.0198 -0.0185 -0.0174 -0.0165 -0.0148 -0.0134 -0.0128 -0.0103 -0.0098 -0.0032 -0.0067 -0.0054 -0.0042 -0.0026 -0.0011 0.0001 0.0008  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0^.0005 0.0006 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0008 0.0003 0.0008 0.0009 0.0009 0.001 0.001 0.001 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 0.002 0.002 0.0021 0.0022  0.29 0.31 0.33 0.35 0.37 0.3 9 0.42 0.44 0.47 0.45 0.52 0.55 0.58 0.62 0.65 0.69 0.72 0.76 0.8 1 0.85 0.9 0.94 0.99 1.05 1.1 1.16 1.22 1.28 1.35 1.41 1.49 1 .56 1.64 1.72 1.8 1.89 1.99 2.08 2.18 2.29 2.39 2-51 2-62 2.74 2.87 3 3.14 3.28 3.43 3.58 3 . 74 3.9 4.08 4.25 4.44 4.63 4.82 5.03 5.24 5.45  106  i97  4 06 4 15  425 435 445 455 466 4 77 483 499 511 523 535 547 560 573 586 601 *15 629 644 659 674 690 706 722 739 756 774 792 810 929 34 8 868  / . 1 H>i)l; r  -.:  0.0719971  0.0726541 7.299378—2 7.245255--? 7. l>JM7fl -2 0.0719474 7.250975^-2 7. 27'j755'"-2 7.330496 -2 7.410918^-2 7. 382092 -2 0.07'+1454 7.401701H-2 7.462479!>2 7.452561F-2 7.443541^-2 7.364651 -2 7.313218 -2 7.291242 -2 7.2822e7~2 7.286953^-2 0.0731506 t:  c  c  c c c  7.304429^-2  7.333992F-2 7.2850C5 -2 7.247445—2 7.183997^-2 7.142295^-2 7.142199'=-2 0.C717359 7. 129299= -2 6.984115 -2 0.0632325 c  ,  c  6.768697^-2  0.012 9 0.0131 0.0138 0.0142 0.0136 0.0)3 0.0131 0.0137 0.014 0.0145 0.0154 0.0151 0.0154 0.0153 0.0159 0.0158 0.0158 0.0149 0.0144 0.0141 0.014 0.0141 0.0144 0.0143 0.0144 0.0141 0.0137 0.013 0.0125 0.0125 0.0129 0.0124 0.0109 0.0093 0.00S6 0.0101 0.013 0.0164 0.0182 0.0179 0.0157 0.0134 0.0114 C.0107 0.0107 0.0115 0.0138 0.0161 0.0174 0.0154 0.011  388 909 930 952 974 997 102 0 1044 1 068 1093 1118 1144 1171 1199 1227 1256 128 5 1315  0.0691352 7. 190128 -2 7.503372^-2 7.673066 -2 7.648572F-2 7.440774^-2 0.0722025 7.0367Cl -2 6.969026^-2  7.48244V--2  0-0162  1377 1409 144 2 1476 1509 1 544  7. 885016^-2  C.0204  1346  r  c  c  6.965601^-2  7.045792^-2 0.0726255 7.476436"-? 7.597806H-2  7. 413981 -2 ,:  0.0699644  7. 076679 :-2 r  7. 572295"2-2 7.623866^-2 7.487114^-2  7.440442^-2 7.458553"!-2 7.526786^-2  0.0118  0.0214  0.0178 0.0162 0.0157 0.0159 0.0166  ' 0.00 2 7 0.0027 0.0028 0.0028 0.0028 0.0029 0.0029 0. 003 0. 003 ' 0.003 0.0031 0.0031 0.0032 0.0032 0.00 33 0.0033 0.0034 0.0035 0.0035 0.0036 0.0037 0.0038 0.0039 0.004 0.004 0.004 0.0041 0.0041 0.0042 0.0043 0.0044 0.0045 0.0046 0.0047 0.0048 0.0048 0.0049 0.005 0.005 0.0051 0.0052 0.0053 0.0055 0.0057 0.0058 0.0059 0.0059 0.0059 0.0059 0. 006 0.0061 0.0063 0.0064 0.0064  0.0064 0.0065 0.0066 0.0066 0.0067 0.0068  5.72 6  6.27 6.55 6.84  7.12 7.42 7.71 8.01 8.31 8.62 8.93 9.25 9.57 9.9 10.24 10. 58 10.92 11. 28 11. 64 12 12.33 12.77 13. 17 13. 57 13.57 14.38 14. 79 15.21 15.64 16. C8 16.53 16.59 17.46 17. 54 18.42 18.91 19. 41 19.51 20. 42 20. 54 21.47 22. 02 22. 59 23. 17 23. 76 24.35 24.94 25. 53 26. 13 26. 74 27.37 28.01 28.65 29.29 29.93 30. 59 31.26 31.93 32.61  1 50 0 1617 1655 169 4 1733 1773 1814 1856 1900 1944 1989 2035 2082 2130 2180 2231 2283 2336 2392 2448 2505 2563 2623 2684 2747 2811 2876 2943 3012 3082 3154 3227 3302 3379 3450 3 53 5 3621 3705 3791 T879 3969 406 1 4156 4253 4352 4453 4557 4663 4773 4884 4998 5114 5233 5355 5480 5608 5739 5873 6009 6149  7 . 6?9958 - 2 r  7.725820--2 7. 8 3 0 9 7 5 - - - 2 7.955?60 '-? 8.0949?4 -2 8.232529--2 8.333537'"-2 8.304155 — 2 r  c  3.435145P-2 8.429707' -2 8.401351 -2 8.301098 -2 8.444007 -2 0.63O44?<"-2 8.063413 -2 9.046361H-2 9.103949 -2 9.056551 -2 9.005 734^-2 9.018237F-2 9.130533F-2 9.343301F-2 9.566246^-2 9.744291F-2 9.850319F-2 9.S78464--2 0.1020269 C . 1 0 3 3 4 74 0.1160086 0.123954 0.1300284 0.1335434 0.1254062 0.1367609 0.1282619 0.1402308 0.1430235 0.1474149 0.1536176 0.161191 0.1690272 0.176035 0.1028957 0.1922159 0.2064303 0.225775 0.2472215 0.2674643 0.2062787 0. 306345 1 0.3276428 0.346247 0.3600C35 0.3819355 0.4002634 0.4444997 0.4028382 0.5270819 0.57359C9 C.6200287 :  c  c  r  c  r  c  0.0177 0.0107 0.CI99  0.0212 C.0227 0.0241 0.0252 0.0258 0.0263 0.0262 0.C259 0.0257 0.0264 0.0284 0.0308 0.0328 0.0334 0.0329 0.0324 0.0325 0.0338 0.0359 0.0383 0.0402 0.0413 0.0427 0.0459 0.0518 0.06 0.0604 0.0749 0.0706 0.0306 0 . 002 0.0836 0.0857 0.0037 0.0933 0.C999 0.108 0.1163 0.1238 0.1311 0.141 0.1562 0.1767 0.1995 0 . 221 0.241 0.2624 0.285 0.3048 0.3194 0.3427 0.3622 0.4093 0.45 0.4971 0.5466 0.5959  0.0069 0.0071 0.0073 0.0074 0.0074 0.0075 0.0076 0.0079 0.0081 0.0083 0.0085 0.0086 0.0087 0.0089 0.009 0.0092 0.0094 0.0096 0.0059 0.0101 0.0102 0.0103 0.0103 0.0105 0.0108 0.0111 0.0112 0.011 0.0107 0.0105 0.0105 0. 0 1 0 7 0.011 0.0112 0.0113 0.0114 0.0115 0.0115 0.0114 0.0113 0.0114 0.0115 0.0116 0.0114 0. O i l 0.0104 0.0098 0.0094 0.0091 0.009 0.0089 0.0089 0 . C09 0.0089 0.0089 0.0085 0.0082 0.0078 0.0074 0.007  33.3 3 4 . 01 3 4 . 74 3 5 . 43 36.22 3 6 . 97 3 7 . 73 38.51 39.33 40.16 4 1 . 01 4 1 . 87 42.75 4 3 . 63 4 4 . 54 45.46 46.4 4 7.36 48.35 49.37 50.39 51.42 52.45 53.5 5 4 . 58 55.69 56.81 57.91 58.59 6 0 . 04 61.08 62.15 63.25 6 4 . 37 65. 5 66.65 67.8 68.54 70.08 71.21 7 2 . 35 73. 5 74.65 75.8 76.5 7 7 . S4 78.92 7 9 . 86 8 0 . 77 8 1 . 67 8 2 . 56 83.45 8 4 . 34 85.23 8 6 . 13 8 6 . 93 87.8 88.58 89.32 90.03  0.66'+?'.>(! 9 0.7048C52 0 . 741 1271 0 . 7 7 ' n ' . 7 Ii C . 7 916 bb 0.8170411 0 . 8 3 4 750H 0.8536356 0.8722334 0.8503778 0.9036808 0.915459 0 . 9 2 1 9 2.1? 0.9201955 0.913189 0.9125539 0.9106258 C.9028335 0.9093773 0.9299994 0.940755 0.9446425 0.9376056 0.5233011 0.895575 0. 87WC16 0.903207 0.8314047 0.8232262 0.7921561 0.8646113 0.845142 0.639827 0.621C048 0.5710675 0 . 564 5 4 1 1 0.5305C3 0.4949016 0.461626 0.3614259 0.2995697 0.3598216 0.3622282 0.463274 0.2196527  6439 6589 f\ 74 -> 6 89 9 7060 722 4 7392 7565 7741 7921 8106 8295 848 8 8686 8888 9095 9307 9523 9745 9972 10204 10442 1 0 6 35 10934 1 1 1fly 1 1 4 5a 11717 11939 12263 125 5t 12346 13143 13451 13764 14085 14413 14749 15093 15445 158C5 16173 1655J 16933 17329 17733 18146 18569 TEST  NUMBER:  TMCHFS 1 0.35 c  SAMPLING  1 . 9 PSIG TIM  r  19  VORT^ X SPIGOT PRESiU -=  0.6431 0.6351 C.7247 0 . 7 » fl 5 0. 7348 0 . H O 54 0.3243 0.R444 0.8 641 0.8334 0.8576 0.9101 0.917 0.9151 , 0.913 0.9075 0.905 C.8967 0.9036 0.9256 0.937 0.9411 0.9336 0.9238 0.89 0.8668 0.8971 0.8739 0. 312 0.779 0.856 0.8353 0.6702 0. 597 0.5439 0.5369 0.5007 0.4629 0.4275 0.3209 0.2552 0.3192 0.3218 0.4292 0.1702  C  (  MM 25 9 1? KILO PASCALS)  (SECONDS)= 1 7 . 5  0.0067 0.0064 0.0061 0.0057 0.0054 0.0051 0.0048 0.0046 0.0043 0.004 0.0038 0.0036 0.0034 0.0032 0.0031 0.0029 0.0027 0 . 0 0 24 0.0022 0.002 0.0018 0.0016 0.0015 0.0014 0.0013' 0.0012 0.001 0.0009 0.0008 0.0008 0.0006 0.0006 0.0006 0.0005 0.0004 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0003 0.0003 0.0002 0.0001 0 0 0  90. 7 91.33 9 1 . 94 9 2 . 51 93.06 9 3 . 57 94.05 9 4 . 51 9 4 . 54 9 5 . 34 95.72 9 6 . C8 96.42 9 6 . 75 97.05 9 7 . 34 97.61 97.85 9 8 . 07 9 8 . 27 98.44 98.6 9 8 . 75 9 8 . 89 99.03 99.14 9 9 . 24 9 9 . 32 99.41 9 9 . 48 99.54 99.6 99.65 99.72 9 9 . 75 9 9 . 78 99.81 9 9 . 83 99.86 99.89 99.91 9 9 . 94 9 9 . 57 99.59 100  C  L O W . < A T  =  r  50.19  L I T O P S / M I N .  0V PULP  ( C O  I»ULP( S C L  r.w.)  ( GM . )  I D S  W A T F * ( G « . ) ?  S O L I D S  8 Y P A i S • AT 1 0  OF  L I M I T S  =  RFLOW 1 3 4 6 4 . -59 16168 4341.2 IIP?6.8 26.85057  • G C O D  I  5 F F IC I E N C Y= FFICI NCY= 5 F F I C TENCY= FFICI MCY= 3 8 8 *• 415 > + 4 4 5 >* 477 > + 5 1 1 >* 5 4 7 >* 5 8 6 >* 629 > + c  r r  DATA•  1 2 0  c  r  7 3  C  I  I  I  I  I  100  I..--  I  •  -  •  +  1346^* 1442>* 1544> • 5 > *  1773>* 1900>+ 2035>+ 2 I S O «• 2 3 3 6 > <2505> + 2684> + 2 8 7 6> + ?082> + 3 3 0 2 >  •  3539>  «•  I  .014 0 1 .006 .002  +  7 2 2 >* 774 > + 9 2 9 >* 8 83 > + 9 5 2 >* 1020>* 1093>* 1171>*  1 6 5  2  FFFICI NCY  I -0 0 . -C -0  )  CALC. FEED 14638.27 18039.7 5462.5 12576.8 30.28265  1. 1 7 3 . 2 8 3 1871.7 1121.7 750 59.92948  50  I > >  1 2 5 6 >  U S G P M  UNTiFRFLOW  r  0  >  13.26  5.963361F-2  CORRECTED  6 7 4  (  110  3791> 4061> 4352> 4663> 4999> 5 3 5 5> 5739> 6149> 6585> 7060> 7565> 8106> 8686> 9307>  9972>  I  + + t + ,  «• + + + +• • • + + •  I  I  I  |  0  | 50  |  |  |  |  +  1 100  PR flj RA M E N D S SAVT PUM1930 OBN" L I S T RUM193D 1 1 9 , 1 2 0 , 2 7 3 , 5 . 9 6 3 3 6 1 " - 2 , Z . 6 5 , 1 , 0 . 3 5 , 1 . 9 , 2 9 5 , - 1 . 4 9 2 9 8 2 , 4 . 5 5 9 4 1 1 , 3 01 2 -1.346515,4.65676 7,303,-I.28656,4.753523,315,-1.09368,4.934901,322 "> - 0 . 9 9 2 4 6 4 2 , 5 . 0 3 0 0 R } , 2 0 , - O . P 3 1 3 6 1 9 , 5 . 1 8 1 5 7 6 , 3 3 8 , - 0 . 6 3 1 4 3 0 5 , 5 . 3 2 2 5 6 7 , 3 4 6 4 - 0 . 5 4 9 5 5 3 , 5 . ' , 4 6 5 8 , 3 5 4 , - 0 . 4 3 4 4 3 5 2 , 5 . 55 4 8 33 , 3 6 2 , - 0 . 2 6 9 2 2 6 5 , 5 . 7 1 C 1 9 , 3 7 0 5 - 0 . 1? 2 7 1 9 6 , 5 . 8 4 7 5 6 , 3 7 5 , 0 . 0 1 4 0 4 4 3 , 5 . 9 7 6 5 6 8 , 3 8 8 , 8 . 2 4 7 2 8 7 F - 2 , 6 . 0 4 0 9 1 6 , 3 9 7 6 1 . 2 89A1 , 7 . 1 7 6 0 6 7 , 4 0 6 , 1 . 3 ! 3 6 8 5 , 7 . 1 9 3 7 1 , 4 1 5 , 1 . 3 8 4 6 1 9 , 7 . 2 6 5 4 1 , 4 2 5 , 1. 4 2 0 7 4 7 7 . 2 9 5 3 7 8 , 4 3 5 , 1 . 3 6 3 1 8 6 , 7 . 2 4 5 2 5 5 , 4 4 5 , 1 . 3 0 0 3 6 2 , 7 . 1 8 6 1 7 8 , 4 5 5, 1 . 3 0 94 6 7 , 7 . 1 9 4 7 4 8 466,1 .369268, 7.250975,477, 1.396683, 7. 276755,488,1.453 833, 7.33C496,499 9 1 .539354, 7 . 4 1 0 9 1 R , 5 1 1 , 1 . 5 0 3 7 , 7 . 3 32 0 9 2 , 5 2 3 , 1 . 5 4 3 2 0 6 , 7 . 41454, 535, 1 . 529553 10 7 . 4 0 1 7 0 1 , 5 4 7 , 1 . 5 9 4 1 8 5 , 7 . 4 6 2 4 7 9 , 5 6 0 , 1 . 5 8 3 6 3 8 , 7 . 4 5 2 5 6 1 , 5 7 3 , 1 . 5 7 9 3 6 4 11 7 . 4 435 4 1 , 5 8 6 , 1 . 4 9 0 1 5 3 , 7 . 3 6 4 6 5 1 , 6 0 1 , 1 . 4 3 5 4 5 8 , 7 . 3 1 3 2 1 3 , 6 1 5 , 1 . 4 1 2 0 8 9 12 7 . 2 91 2 4 2 , 6 2 5 , 1 . 4 0 2 5 6 6 , 7 . 2 022 3 7 , 6 4 4 , 1 . 4 0 7 5 2 8 , 7 . 2 8 6 9 5 3 , 6 5 9 , 1 . 4 3 7 4 1 8 13 7 . 31 5 0 6 , 6 7 4 , 1 . 4 2 6 1 1 2 , 7 . ^ 0 4 4 2 9 , 6 9 0 , 1 . 4 3 6 2 8 1 , 7 . 3 1 3 5 9 2 , 7 0 6 , 1 . 4 0 5 4 5 6 14 7 . 2 05 0 0 5 , 7 2 2 , 1 . 3 6 5 5 1 5 , 7 . 2 4 7 4 4 5 , 7 3 9 , 1 . 2 9 8 0 4 3 . 7 . 1 8 3 9 9 7 . 7 5 6 , 1 . 2 53696 1 5 7 . 14 2 2 9 5 , 7 7 4 , 1 . 2 5 3 5 5 5, 7 . 1 4 2 1 5 5 . 7 9 2 , 1 . 2 8 6 5 7 5 , 7 . 1 7 3 5 9 , 8 1 0 , 1 . 2 3 9 8 7 6 16 7. 1 2 9 2 9 9 , 8 2 9 , 1 . 0 8 5 4 8 6 , 6 . 9 8 4 1 1 5 , 9 4 8 , 0 . 9 2 5 0 5 3 5 , 6 . 8 3 3 2 5 , 8 6 8 , 0 . 8 5 6 4 0 6 1 1 7 6 . 76 86 9 7 , 8 8 8 , 1 . 0 1 0 4 1 4 , 6 . 9 1 3 5 2 , 9 0 9 , 1 . 3 0 4 5 6 2 , 7 . 1 9 0 1 2 8 , 9 3 0 , 1 . 6 3 7 6 7 1 18 7 . 5033 7 2 , 9 5 2 , 1 . 8 1 8 1 2 7 , 7 . 6 7 3 0 6 6 , 9 7 4 , 1 . 7 9 2 0 7 9 , 7 . 6 4 8 5 7 2 , 9 9 7 , 1 . 5 7 1 1 0 4 19 7 . 4 4 07 7 4 , 1 0 2 0 , 1 . 3 36 5 9 5 , 7 . 2 2 0 2 5 , 1 0 4 4 , 1 . 1 4 1 4 0 6 , 7 . 0 3 6 7 0 1 , 1 0 6 3 , 1 . 0 6 9 4 3 9 20 6. 9 6 5 0 2 6 , 1 0 9 3 , 1 . 0 6 5 7 9 8 , 6 . 9 6 5 6 0 1 , 1 1 1 8 , 1 . 1 5 1 0 7 4 , 7 . C 4 5 7 9 2 , 1 1 4 4 , 1.381578 21 7 . 2 6 2 55 , 1 ! 7 1 , 1 . 6 0 902 6 , 7 . 4 7 6 4 3 6 , 1 1 9 9 , 1 . 7 3 8 0 9 4 , 7 . 5 9 7 8 0 6 , 1 2 2 7 , 1 . 5 4 2 6 1 2 22 7 . 4 1 3 9 8 1 , 3 256,1.059592,6.99644,1285,1.18292,7.076679,1315,2.136331 23 7 . 9 7 2 2 9 5 , 1 3 4 6 , 1 . 6 1 5 4 1 7 , 7 . 4 8 2 4 4 4 , 1 3 7 7 , 2 . 0 4 3 5 1 7 , 7 . 8 8 5 0 1 6 , 1 4 0 9 , 1 . 7 7 6 4 4 1 2 4 7 . 6 3 3 8 6 6 , 1 4 4 2 , 1 . 6 2 0 3 3 2 , 7 . 4 9 7 1 1 4 , 1 4 7 6 , 1 . 5 707 5 , 7 . 4 4 0 4 4 2 , 1 5 0 9 , 1 . 5 9 0 0 1 2 5 7 . 4585 5 3 , 1 5 4 4 , 1 . 6 6 2 5 7 , 7 . 5 2 6 7 9 6 , 1 5 8 0 , 1 . 7 7 2 3 2 7 , 7 . 6 2 9 9 9 8 , 1 6 1 7 , 1 . 3 7 4 2 3 5 2 6 7 . 72 58 2 9 , 1 6 5 5 , 1 . 9 3 6 0 4 9 , 7 . 3 3 0 9 7 5 , 1 6 9 4 , 2 . 1 1 3 22 4 , 7 . 55 5 2 6 8 , 1 7 3 3 , 2 . 2 6 6 7 4 7 2 7 8 . 0 9 4 9 3 4 , 1 7 7 3 , 2 . 4 1 3 0 6 8 , 8 . 2 325 2 9 , 1 8 1 4 , 2 . 5 2 0 4 8 1 , 8 . 3 3 3 5 3 7 , 185 6 , 2 . 5 8 4 9 4 4 28 8. 3 9 4 1 5 5 , 1900, 2 . 6 2 8 5 3 3 , 8 . 4 3 5 1 4 5 , 1 9 4 4 , 2 . 6 2 2 7 5 , 8 . 4 2 9 7 0 7 , 1 9 8 9 , 2 . 5 9 2 5 9 6 . 2 9 8.4013 51,203 5,2.571909,8.3 31898,2032,2.637957,8.444007,2130,2.836215 30 8.63C442,218 0 , 3 . 0 9 3 9 6 , 8 . 8 6 3 4 1 3 , 2 2 3 1 , 3 . 2 7 8 5 0 9 , 9 . 0 4 6 3 6 1 , 2 2 83.3.339749 3 1 9. 1 0 3 9 4 9 , ? ? 3 6 , 3 . 2 8 9 ? 4 6 , 9 . 0 56551 , 2 3 9 2 , 3 . 2 3 5 3 0 6 , 9 . 0 0 5 7 3 4 , 2 4 4 8 , 3 . 2 4 8 6 0 2 32 9 . 0 1 8 2 3 7 , 2 5 0 5 , 3 . 3 7 6 5 2 7 , 9 . 1 3 3 5 3 3 , 2 5 6 3 , 3 . 5 9 4 2 8 , 9 . 3 4 3 3 0 1 , 2 6 2 3 , 3 . 8 3 1 3 6 3 33 5 . 5 6 6 2 4 6 , 2 6 8 4 , 4 . 0 2 0 6 9 8 , 9 . 7 4 4 2 9 1 , 2 7 4 7 , 4 . 1 3 3 4 5 , 9 . 8 5 0 3 1 9 , 2 8 1 1 , 4 . 2 6 9 7 2 2 3 4 9 . 9 7 8 4 6 4 , 2 8 7 6 , 4 . 5 9 3 2 3 6 , 1 0 . 2 826 9 , 2 9 4 3 , 5 . 1 8 0 2 9 4 , 1 0 . 8 3 4 7 4 , 3 0 1 2 , 5 . 9 9 5 0 0 6 r ,  111  3 5 11 .6 00 86 , 3 Cf.2, 6. 8.3 V? 31 , 1 2 . 39 5'i ,3 154, 7. 4 8 5 8 9 3 , 1 3 . 0 0 2 3 4 , 3 2 2 7 , 7 . 0 5 9 6 8 1 . 36 1 3 . 3 5 4 3 4 , 3 3 0 2 , 8 . 0 5 7 7 7 , 1 3 . 5 4 0 6 2 , 3 3 7 9 , 8 . 2 0 1 8 2 6 , 1 3 . 6 7 6 0 8 , 3 4 5 8 , 8 . 3 6 1 4 5 2 37 1 3 . 0 2 6 1 9 , 3 5 3 5 , e . 5 7 C 0 2 4 , 1 4 . 0 2 3 0 0 , 3 6 2 1 , 8 . 8 6 7 8 0 9 , 1 4 . 3 0 2 3 5 , 3 7 0 5 , 9 . 3 3 4 7 9 8 33 14.74149,3791,9.9944,15.36176,3879,10.79977,16.1191,3969,11.63308 39  16.902 72.4C61,12.3 7*72,17.6039,4156,13.107 88,18.2895 7,4253,14.09942  4 0 l v . 2 2 1 9 9 , 4 3 52,1 5. 6 1 5 9 , 2 0 . 6 4 0 0 3 , 4 4 5 3 , 1 7 . 6 6 7 7 3 , 2 2 . 5775 , 4 5 5 7 , 1 9 . 9 4 9 4 5 41 2 4 . 7 2 3 1 5 , 4 6 6 3 , 2 2 . 1 0 1 0 ? , 2 6 . 7 4 6 4 3 , 4 7 7 3 , 2 4 . 1 0 1 7 9 , 2 8 . 6 2 7 8 7 , 4 8 8 4 , 2 6 . 2 3 5 6 8 42 3 0 . 6 3 4 5 1 , 4 9 9 8 , 2 3 . 5 0 0 5 , 32. 76 + 2 3 , 5 1 1 4 , 3 0 . 4 7 8 9 1 , 3 4 . 6 2 4 7 , 5 2 3 3 , 3 1 . 9 4 1 8 3 43 3 O . 0 0 0 3 9 , 535 5,34. 2 7403,3 3. 1 9 3 5 5 , 5 4 8 0 , 3 6 . 2 2 3 0 9 , 4 0 . 0 2 6 3 4 , 5 6 0 8 , 4 0 . 9 2 7 2 5 44 4 4 . 4 4 9 9 7 , 5 7 39,4 5 . 0 0 4 2 3 , 4 0 . 2 0 30 2,58 7 3 , 4 9 . 7 0 9 1 6 , 5 2 . 7 0 8 1 9 , 6 0 0 9 , 5 4 . 6 5 5 4 5 57.35909,6149,55.55227,62. 00237,6292 ,64.30741,66.43589,6439, 68.60854 46 70.480 52,6 5 8 9 , 7 2 . 4 7 1 0 6 , 7 4 . 1 1 2 7 1 , 6 7 4 2 , 7 5 . 8 4 5 3 6 , 7 7 . 2 8 5 7 8 , 6 8 9 9 , 7 3 . 4 8 3 3 9 4 7 79.7 66 5 , 7 0 6 0 , 8 0 . 5 4 3 0 7 , 8 1 . 7 0 4 1 1 , 7 2 2 4 , 8 2 . 4 2 7 1 5 , 8 3 . 4 7 5 0 8 , 7 3 9 2 , 8 4 . 4 3 5 8 1 4 8 85.36396,7565,86.41364,87.22334,7741,88.34261,89.03778,7921,89.75727 49 90.3 6 8 0 8 , 8 1 0 6 , 9 1 . 0 0 9 7 8 . 9 1 . 5 4 5 9 , 8 2 9 5 , 9 1 . 6 9 6 9 8 , 9 2 . 1 9 2 1 2 , 8 4 8 3 , 9 1 . 5 1 3 4 7 5 0 9 2 . 0 1 9 5 5 , 8 6 8 6 , 9 1 . 3 0 0 1 , 9 1 . 8 1 3 9 , 0 8 8 8 , 9 0 . 7 4 8 1 7 , 9 1 . 2 9 9 8 9 , 9 0 9 5 , 9 0 . 4 9 5 81 51 9 1 . 0 62 5 8 , 9 3 0 7 , 8 9 . 6 6 7 6 9 , 9 0 . 2 8 3 8 5 , 5 5 2 3 , 9 0 . 3 6 3 1 , 9 0 . 5 3 7 7 8 , 9 7 4 5 , 9 2 . 5 5 6 0 3 52 9 2 . 9 9 9 9 4 , 9 9 7 2 , 9 3 . 7 0 4 0 5 , 9 4 . 0 7 9 5 PNQ-/F-FILF LOGCFF 0 F F « - 1 6 : 2 2 : 3 1 ZN 0 2 - 0 8 - 7 7 EXECUTION T-3MINATF0  run  vYYYYYYyYYyYYYYYYYYYYYYYYYYYYYYYYYYYYYYXYYYYYXxxxxYYYXXYXXXYXYXxxyxyxxxYYXxxxxxy>  112 APPENDIX VI THE PROGRAM "LYN" The program "LYN" uses t h e s i m p l e x s e a r c h method d e s c r i b e d by Mular and Bull*'"' t o s e a r c h f o r t h e best v a l u e s f o r t h e dggrj and a l p h a i n t h e Lynch e q u a t i o n : e^^SOC  Corrected e f f i c i e n c y , Y  J  The s t a r t i n g v a l u e f o r d  5 Q C  50  - 1 + e^- 2  i s found by t h e program s i m p l y  by scanning t h e data f o r t h e s i z e at which t h e c o r r e c t e d efficiency i sclosest  t o 50%. The s t a r t i n g v a l u e f o r a l p h a i s  e s t i m a t e d from an approximate r e l a t i o n s h i p e f f i c i e n c y a t a s i z e o f 1.5  between a l p h a and t h e  C^grj)*  The c h o i c e o f step s i z e s has a l s o been programmed i n t o  this  program based on v a r i o u s s t e p s i z e s d u r i n g de-bugging o f t h e program. To r u n t h i s program i t i s o n l y necessary t o a l t e r l i n e 17 to  read:17 FILE RUNnn where "nn" i s t h e r u n number. The v a l u e s o f a l p h a and d,-g£ c a l c u l a t e d  from t h i s program  were added t o t h e f i l e RUNnn@D t o serve as s t a r t i n g v a l u e s f o r the l a t e r s e a r c h programs.  LISTING OF FILE B. LYN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  113 08:37 P. £1.  MAR.  14, 1977  1 *THIS IS A SIMPLEX PROGRAM METHOD WRITTEN IN BASIC. IT MAY BE USED 2 *TO ESTIMATE CONSTANTS FOR THE CYCLONE EFF. CURVES 3 *BASIS IS LYNCH EQUATION 4 *X50, ALPHA SEARCHED FOR 11 DIM A (190) 12 DIM D (1,4) ,C (1, 4) , Q (5, 4) ,X(5,4) 13 DIM M (190) ,E(190) ,G{190) 15 DATA 2 16 DATA 1, 2, 0.5 17 FILE RUN5P2 20 READ N,A,V,B 25 READ#1,N6,N3,N4,B6,D1,V1,S1,P2 28 LET N2=N4-N3+1 30 FOR J=1 TO N2 32 READ#1,N(J) ,E(J) ,G(J) 34 NEXT J 36 MAT Q=ZER(N + 1,N) 37 MAT X=ZER(N+1,N) 38 MAT Y=ZER(N+1, 1) 39 MAT Z=ZER (1,N) 40 FOR J= N2 TO 1 STEP-1 41 I F E(J)<0.001 THEN 43 42 NEXT J 43 LET N1=J-INT (N2/29)-((J-INT (N2/29) )-1-ABS (J-INT (N2/ 29)-1))/2 46 LET B7=1 47 LET B5=1 48 FOR J=1 TO N2 49 IF ABS (50-E (J) ) > (45-35*INT (N2/100) ) THEN 52 50 IF ABS (50-E (J) )>ABS (50-E (B5) ) THEN 54 52 LET B5=J 53 NEXT J 54 PRINT"ROUGH ESTIMATE OF D50 IS ";M(B5) 55 LET C(1,1)=M(B5) 56 LET D <1,1) =C (1 , 1) *0. 002 57 FOR J=1 TO N2 58 IF ABS (M (J) -M (B5) * 1. 5) >ABS (M (B7) -M (B5) *1. 5) THEN 6 0 59 LET B7=J 60 NEXT J 61 LET C<1,2)=2*LOG(E(B7)/(100-E(B7)) ) 62 LET D(1,2)=C(1,2)*0.01 63 PRINT"ROUGH EST. OF ALPHA IS"; C (1,2) 64 PRINT 67 * SET UP STARTING SIMPLEX 68 FOR J=1 TO N 69 FOR 1=1 TO N+1 70 LET X (I, J) =C (1,J) - (2/(J+1) )*D(1,J) 75 IF I=J+1 THEN 85 80 GO TO 88 85 LET X (I,J) =C (1, J) + ((2/(J+1)) *D (1 ,J)) * J 88 NEXT I 90 FOR I=J+2 TO N+1 95 LET X (I,J) =C(1,J) 100 NEXT I 105 NEXT J 106 PRINT  114 LISTING OF FILE B.LYN 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109  08:37 P.M.  MAR.  14, 1977  107 PRINT "MATRIX X FOLLOWS. STARTING SIMPLEX: " 108 MAT PRINT X 109 PRINT"CYCLE",»O.F.STD.ERROR","O.F.LOW VALUE","O.F. HIGH" 110 * CALC STND ERROR OF OBJECTIVE FUNCTION 114 LET Z7=0 115 LET Z8=0 116 LET Z9=0 120 LET T3=1.E70 125 FOR 1=1 TO N+1 130 LET H=I 135 GOSUB 560 140 LET Y(I,1) = Y1 145 NEXT I 150 GOSUB 600 155 T1=0 156 T2=0 160 FOR 1=1 TO N+1 165 LET T1=T1+Y(I,1) 170 NEXT I 172 LET T1=T1/(N + 1) 175 FOR 1=1 TO N+1 176 LET T2=T2+ (Y (I, 1) -T1) **2 178 NEXT I 180 LET T= SQR(T2/N) 185 IF T> 1E-7 THEN 270 190 GO TO 205 195 PRINT 200 PRINT "CYCLE LIMIT.,STOP CRITERION =";T3,T 201 PRINT "FAILED TO CONVERGE AFTER ";Z9;" ITERATIONS * X MATRIX FOLLOWS " 202 PRINT 203 MAT PRINT X 204 GO TO 265 205 PRINT 210 PRINT "CONVERGENCE AFTER »; Z9 ;" CYCLES. T3, T = " ; T3 T 212 PRINT 214 PRINT "RUN NUMBER: ";N6 216 PRINT "*************** »» 218 PRINT 222 PRINT 224 LET X5=X(L,1) 226 PRINT "D50C= ";X5;" CENTIMICRONS " 227 PRINT 228 LET A9=X(L,2) 230 PRINT "ALPHA= ";A9 231 PRINT 232 PRINT "SIZE","CALC. EFF. ","MEASURED" , "D/D50C"," CALC. - MEAS.» 234 FOR J=N1 TO N2 235 LET A(J)=100*(EXP(A9*M(J) /X5)-1) 236 LET A (J) = A (J) / (EXP (A9*M (J)/X5) + EXP(A9) -2) 240 PRINT M (J) , A (J) , E (J) , M (J)/X5, A (J)-E (J) 245 NEXT J 246 *CALC. SUM OF SQUARES DUE TO ERROR 247 LET Z7=0 248 FOR J=N1 TO N2 f  LISTING OF FILE B.LYN 110 11.1  112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167  *  115 08:37 P. M.  249 LET Z7=Z7+ (E(J)-A(J) )**2 250 NEXT J 252 PRINT "SUM OF SQUARES=";Z7 254 PRINT "VARIANCE=";Z7/(N2-N1 + 1-N) 263 PRINT 264 PRINT 265 STOP 270 IF Z9=300 THEN 273 271 IF Z9>700 THEN 195 272 GO TO 275 273 MAT PRINT X 274 GO TO 271 275 IF T>T3 THEN 295 280 LET T3=T 285 PRINT Z9,T ,Y(L,1) ,Y{H,1) 290 * REFLECTION 295 MAT Q= (1) *X 300 FOR J=1 TO N 305 LET P=0 310 FOR 1=1 TO N+1 315 IF I=H THEN 325 320 LET P=P+X (I,J)/N 325 NEXT I 330 LET Z (1,J) = (1 + A) *P-A*X (H, J) 335 LET X (H,J)=Z (1,J) 340 LET D(1,J) = P 345 NEXT J 350 GOSUB 560 355 MAT X= (1) *Q 360 LET Y=Y1 365 IF Y>=Y(L,1) THEN 410 370 * EXPANSION 375 FOR J=1 TO N 380 LET X (H,J) = (1+V) *Z ( 1> J) -V*D (1,J) 385 NEXT J 390 GOSUB 560 395 IF Y 1>Y (L, 1) THEN 415 400 LET Y(H,1) = Y1 405 GO TO 150 410 IF Y>Y (S, 1) THEN 440 415 LET Y (H,1)=Y 420 FOR J=1 TO N 425 LET X(H,J)=Z (1,J) 430 NEXT J 435 GO TO 150 440 IF Y>Y (H, 1) THEN 465 445 FOR J=1 TO N 450 LET X (H,J)=Z (1,J) 455 NEXT J 457 LET Y(H 1)=Y 460 * CONTRACTION 465 FOR J=1 TO N 470 LET X(H,J)=B*X (H,J) + (1-B) *D (1,J) 475 NEXT J 480GOSUB 560 485 IF ¥1>Y(H,1) THEN505 490 LET Y (H, 1)=Y1 495 GO TO 150 f  MAR. .-1ft, 1977  LISTING OF FILE B.LYN 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210  116 08:37 P. M.  MAR.  14, 1977  500 * REDUCE SIZE OF SIMPLEX 505 FOR J=1 TO N 510 FOR 1=1 TO N+1 515 LET X(I,J)=(Q{I,J)+Q(L,J})/2 520 NEXT I 525 NEXT J 530 LET Z8=Z8+1 535 PRINT 540 PRINT "STEP CHANGE";Z8 545 PRINT 550 GO TO 125 555 •OBJECTIVE FUNCTION CALCULATION 560 LET S8=0 561 FOR K=N1 TO N 2 562 LET Y7=100* (EXP (X (H, 2) *M (K) /X (H , 1) ) -1) 563 LET Y7=Y7/(EXP(X(H,2) *M(K)/X(H,1) ) + EXP (X (H , 2) )-2) 565 LET S8=S8 + (E(K)-Y7)**2 566 NEXT K 567 LET Z9=Z9+1 568 LET Y1=S8 570 RETURN 598 * CALC HIGH, 2ND HIGH, LOW, (SERCH2) 600 IF Y (1,1) >Y (2,1) THEN 615 605 S=1 606 L=1 607 H=2 610 GO TO 620 615 S=2 616 L=2 617 H=1 620 FOR 1=3 TO N+1 625 IF Y (1,1) >Y(L,1) THEN 635 630 L=I 635 IF Y (1,1) <Y (S,1) THEN 665 640 IF Y (1,1) <Y (H,1) THEN 660 645 S=H 650 H=I 655 GO TO 665 660 S=I 665 NEXT I 670 RETURN 675 END END-•OF-FILE  tSIG  PALI)  FHRP-RLANK  . RP.RRrt.RB R^ RR RR RR »R RR RR RR RRRRRRRRRRRR O R R P R R P RRRR PR RR RR RR RR RR RR RR RP RR  AAA f-AAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AAAAAAAAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AA AA AA AA  LL LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  uu uu uu uu uu uu uu •uu uu uu uu uu uu uu uu uu uu uu uuuuuuuuuuuu uuuuuuuuuu UU UU  * *L AS T S T G N O N W A S : 1 6 : 2 5 : 4 2 TUE F E B 0 8 / 7 7 1 7 : 2 9 : 1 0 ON WED F E B US7r< " R A L U " S I G N E D C N AT *RUN * ? A S I C EXECUTION BPGINS  09/77  GET L Y N 17 F I L P RUN19 R U N L YN 5372 ROUGH E S T I M A T E OF D 5 0 IS ROUGH F ST . OF A L P H A I S 4.566534  M A T R I X  X  5861.254 5884.746 5873 CYCLE 3 10 17 19 23 25  F G L L C W S .  S T A R T I N G  S I ^ P L ^ X :  4.53609 4.53605 4.627421 O.F.STO."ERROR 106.5053 96.68654 23.50324 15.66976 6.C66354 2.71675  O.F.LOW VALUE 1687.737 508.1919 561.4425 537.3732 525.3348 525.3348  O.F.HIGH 1875.971 1050.906 605.2579 566.7896 537.3732 530.0463  118  27 31 33 35 39 41 42 48 50 54 55 57 59 61 63 6 5 67 69 71 73 75 77  C.5880751 0.433457? 0.22267(14 0. 1339521 3 . 7 8 7 2 5 7 = - •2 2.5P9348 -•2 7.013475=- 3 3 . 0 2 4 6 0 5 = - •3 l.C263Cl=- 3 6.623956=- 4 3.094728=- 4 1.210537=- 4 8.7532=-5 2.512079=- 5 2.322356=- 5 1.467035=- 5 3.353963=- 6 2.485058=- 6 1.926631E- 6 1.156964=- 6 5.239531=- 7 1.574889=- 7 r  CONVERGENCE  AFTFR  OUN i g i J M P . E R :  15  050C= A L P HA = SIZE 330 338 346 354 362 370 379 388 397 406 415 425 435 445 455 466 477 488 4 99 511 523 535 547 560 5 73 5 86  5849.765  79 CYCLES.  523.6294 522.765 522.7447 522.5237 522.448 52? . 4 3 4 3 522.4343 522.4112 522.4102 522.4089 522.4089 522.4088 522.4087 522 . 4 0 8 7 522.4087 522.4087 522.4087 522.4087 522.4087 522.4087 522.4087 522.4087 T3,  T  525. 3467 523. 6254 5 2 3 . 1401 5 2 2 . 76 5 5 2 2 . 5237 522. 4844 522. 448 5 2 2 . 4169 522. 4123 5 2 2 . 4102 522. 4095 522- 409 5 2 2 . 4089 522. 4088 522. 4087 522. 4087 522. 4087 522. 4087 4087 522. 4087 522. 4087 522. 4087 522. 1.574889E-7  7.603665E-8  C=NTIYICRCNS  6.08C744 CALC. FFF. 9.369163E-2 9.638333^-2 5.909735=-2 0.1018339 0.1045931 0.1073753 0.1105327 0.1137197 0 . 1 169364 0. 1201831 0. 1234602 0. 1271372 0. 1303524 C. 1346061 0.1383598 0.1426161 0.146P816 0.1511558 0.1555553 0.1603762 0.1652531 0 . 1701507 0.1751858 C.18C6757 0 . 1862357 0.1918707  MEASURED -0.8313615 -0.6314305 -0.549553 -0.4344352 -0.2692265 - 0 . 1227196 0.0140443 8.247287E-2 1.28561 1.313689 1.384615 1.42074 1.363186 1.300362 1.309467 1.365268 1.356683 1.453833 1.539354 1.5087 1.543206 1.529553 1.594185 1.583638 1.579364 1.490153  D/050C 5.641252E-2 0.C577801 5.914767^-2 6.0515255-2 6.188282F-2 0.0632504 6.478892E-2 6.632745F-2 6.786557E-2 6.940449E-2 7. C94302H-2 7.265245E-2 7.436156E-2 7.607143E-2 0 . 07778C5 7.966132E-2 8.154173E-2 8.342215F-2 8. 530257E-2 8. 735353E-2 0.0894053 9. 145666E-2 9.350803E-2 9.573034E-2 9. 795265F-2 0.100175  CALC. MEAS. 0.9250535 0.7778138 0.6486504 0.5362691 0 . 3 738196 0.2300949 S.649844S-2 3.124683?.-2 -1.172674 -1.193506 -1.261159 -1.293603 -1.232334 -1.165756 -1.171068 -1.226652 -1.249801 -1.302637 -1.383795 -1.348324 -1.377953 -1.359362 -1.418955 -1.402962 -1.393128 -1.298282  601 615 62 9 6 44 659 6 74 690 706 722 739 756 7 74 792 810 829 34 8 868 888 9 09 930 952 9 74 997 1020 1044 1 068 1093 1118 1144 1171 1199 1227 1256 1285 1315 1346 1377 1409 1442 1476 1509 1 544 1580 1617 I 655 1694 1 733 1773 1814 1856 190 0 1944 1989 2035 2082 2130 2180 2231 2293 2336  0. 1934671 0.2047165 0.2110566 0.2!79519 0.2249546 0.2320663 0.2397742 C.24761C1 0.2555762 0.2641852 0.2729462 0.282391 0.2920125 0.3019137 0.3123582 0.3231107 0.3346533 0.3464458  0.3590e61 0.3720021 0.3859252 0.3959844 0.4151223 C.4306217 0.4471397 C.4641705 0.4823C87 0.5009176 C.520783 0.54198 0.5645896 0.5873562 0.6126663 C.6382228 0.6654655 0.6945148 0.7244536 0.7564496 0.7905141 0.8263288 0.8632975 C.9033373 0.5460336 0.9915725 1.040155 1.092 1-145922 1.2035 1.264971 1.330633 1.402467 1.47755 1.557849 1.643763 1.735726 1.834208 1.941929 2.057463 2.181438 2.314535  1 .. 4 3 5 4 5 8 1 ., 4 1 2 0 3 9 1 ., "t02566 1 .. 4 0 7 5 2 8 1 .. 4 3 7 4 1 8 1. 4 2 6 1 1 2 1. 426281 1. 4G5456 1. 365515 1. 298043 1. 2 5 3 6 9 6 1. 253595 1. 286975 1. 239876: 1 .,085486 C. 9 2 5 0 5 3 5 0. 8564061 1. 010414. 1. 304562 1. 637671 1. 913127 1. 752075 1. 571104 1. 336555 1. !41406 1. 065435 1. 065798 1. 151074 1- 381578 1. 609026 1. 738094 1. 542612 1. 098592 1. 18392 2 . 136331 1. 615417 2. 043517 1. 776441 1. 620382 1. 57075 1. 59001 1. 66257 1. 772327 1. 874235 1. 986045 2. 118224 2. 266747 2. 413068 2. 520481 2. 584944 2. 628533 2. 62275 2. 592596 2. 571909 2. 637957 2. 826215 3. 08396 3. 273505 3. 339749 2 . 289346  0. 1027392 0. 1051224 0. 1075257 0.11C0899 0 . 1126541 0. 1152183 0 . 1179535 0.1206886 0.1224238 0.1263299 0.129236 0.132313 0.13539 0. 1384671 0.1417151 0 . 1449631 0.148382 0.151801 0. 1553908 0.1589807 0 . 1627416 0.1665024 0.1704242 0 . 174366 0.1784687 0 . 1 3 25 7 1 4 0 . 1868451 0 . 1911188 0. 1955634 0.200179 0.2049655 0.209752 0.2147095 0.2196669 0.2247553 0.2300947 0.2353541 0.2408644 0.2465056 0.2523178 0.2579591 0.2639422 0.27C0963 0.2764213 0.2829173 0.2855843 0.2962512 0.3030891 0.3100979 0.3172777 0.3247554 0.332321 0.3400136 0.3478772 0.3559117 0.3641172 0.3726645 0.3813828 0.39C2721 0.3993323  - 1 . 236991 -1.207373 - 1 . 1 9 150? -1.189576 -1.212463 -1.194046 -1.196507 -1.157846 -1.109939 -1.033858 -0.5807498 -0.571204 -0.5949625 - C . 5380623 -C.7731278 -0.6019428 - 0 . 5217478 -0.6639682 -0.5454759 - 1 . 265669 -1.432252 -1.392055 - 1 . 155582 -0.9059733 -0.6942163 -0.6052685 -0.5834893 -C.6501564 -0.860795 -1.C67C46 - 1 . 173504 -0.5547558 -0.4859257 -0.5456972 -1.470862 -0.5205022 -1.319023 -1.019991 -0.8298679 -0.7439212 -0.7267125 -0.7592327 -C.E262934 -0.8826625 -0.9458938 -1.026224 - 1 . 120815 -1.209568 -1.25551 -1-254311 -1.226066 - 1 . 1452 - 1 . 0 3 4747 -0.9281461 -0.5022314 -1.C02007 - 1 . 142031 -1.221046 -1.158311 -0.9748109  2 39 2 2505 256? 2623 2684 2747 2811 2076 2943 3012 300 2 3154 3227 3202 3379 3458 3535 3621 3705 3 791 3879 3965 4061 4156 4253 4352 4453 4557 4663 4773 4 88 4 4598 5114 5233 5355 5400 5608 5735 5873 6009 6149 6292 6435 6539 6742 6899 7060 7224 7392 7565 7741 7921 0106 3295 0480 8666 3888 9C95 9307  2.46293 J 2.619742 2.703437 2.970011 3. 168946 3.303408 3.610552 3.072435 4.146664 4.447592 4.773015 5.135747 5.520766 5.954727 6.422084 6.937607 7.503694 8.126355 8.802883 9.546649 10.36424 11.26267 12.24939 13.33228 14.53258 15.84748 17.28557 18.85527 20.58172 22.45722 24.52664 26.73971 29.13052 31.70304 34.45281 37.38247 40.48155 43.73396 47.11773 50.60514 54.13731 57.7251 61.31424 64.875C1 68.34456 71.68417 74.87929 77.89676 80.69383 83.27103 85.62966 87.73832 89.61389 91.27268 92.71623 93 . 9 6 0 4 7 95.02821 95.93162 96.69327 97.32985  3.235306 3.248602 3.376527 3.59428 3.831363 4.020698 4.13345 4.265722 4.593236 5. 100294 5.995006 6.839931 7.485893 7.855681 8.05777 8.201826 8.361452 8.570824 3.867805 9.334798 9.9544 10.79977 11.63308 12.37872 13.10788 14.C9942 15.6159 17.66773 19.54945 22.10103 2 4 . 10179 26.23568 28.5005 30.47891 21.54183 34.27408 36.22305 40.92725 45.00423 49.70916 54.655 59.59327 64.30741 68.60854 72.47106 75.84536 78.48335 80.54387 82.42715 84.43581 86.41364 8 8 . 34261 89.75727 91.00978 91.69698 91.51347 91.3001 50.74817 90.49581 89.66769  0. 0. 0. 0. 0. 0. 0.  C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.  c.  0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.  1. 1. 1. 1.  1. 1. 1. 1.  1. 1. 1. 1. 1.  1. 1.  1. 1. 1. 1. 1. 1.  4009C53 4184783 42 8 2 2 2 3 4301372 4483941 4580218 4695915 40C5321 4916437 5030971 5148525 5268587 5351669 5516461 5644671 57762 5911248 6049815 6189592 6333587 6480602 6631035 6784888 6942155 71C4559 7270377 7439615 7612271 7790C56 797126 8159302 8349053 8543533 8742231 8945658 9154213 9367897 55 8 6 7 0 9 581065 003972 027221 C51153 075559 100728 12637 152525 179364 206886 234921 26364 293214 323301 354071 385657 418006 45C958 484846 515377 554763 591004  -C.7723694 - 0 . 6288604 -0.5880098 -0.6242694 -0.6624171 -0.6372899 -0.5148975 -0.3972832 -0.4465721 -0.7327021 -1.216591 -1.704184 -1.957127 -1.904954 -1.634886 -1.264219 -C.8577582 -0.4444294 -6.492552F.0.2118514 0.3698381. 0.4628959 0.6163133 0.9535572 1.424695 1.743056 1.669666 1.187539 0.6322675 0.3561867 0.4248513 0.5040348 0.6280189 1.224126 2.510978 3.1C8388 4.250456 2.8C6705 2 . 1 13505 0.895981 -0.5176901 -1-86417 -2.993168 -3-733526 -4.126505 -4.161188 -3.604104 -2.647111 -1.733317 - 1 . 164777 -0.7839762 -0.6042547 -0.1433767 0.2628952 1.019246 2.446995 3.728107 5.183455 6.15746 7.662159  9523 97.85535 9745 98.28976 9972 98.64438 SUM J F S Q U A R = S = 522.4087 V A R I A N C F= 3 . 5 5 3 8 0 1  90. 1 g?. 55603 9 3 . 70405 3  STOPAT L I N E PRQiGRAV MTS  $SIG  265" ENCS  M  IN  P?8G"»AM  "LYN"  6  3  1.627929 1.665879 1.704684  7.452246 5.733733 4.940326  122 APPENDIX Mil THE  PROGRAM "GENUT"  The accuracy o f t h e c y c l o n e e f f i c i e n c y curve i s i n f l u e n c e d by t h e accuracy o f measurement o f a l l o f t h e data from which t h e curve i s c a l c u l a t e d .  A study o f r e p e a t runs w i l l show:-  a) The d i f f e r e n c e i n e f f i c i e n c y f o r r e p e a t r u n s i s h i g h e s t near t h e d  5 0 C  s i z e where t h e curve i s s t e e p e s t .  b) The accuracy o f t h e e f f i c i e n c y curve i s l e s s a t t h e t o p end o f t h e s i z e range p r o b a b l y due t o t h e d i f f i c u l t y o f e n s u r i n g t h a t t h e C e l l o s c o p e sample c o n t a i n e r i s s t i r r e d efficiently. c) I n t h e case o f t h e c e n t r e p o i n t runs t h e r e i s an upward k i n k i n t h e e f f i c i e n c y curve a t t h e bottom end o f t h e s i z e range due t o i n c r e a s e d e l e c t r o n i c n o i s e i n t h i s s i z e range when t h e C e l l o s c o p e a m p l i f i e r was m o d i f i e d near t h e end o f t h e e x p e r i m e n t a l phase.  Normally t h e  l i m i t s o f t h e s i z e range s h o u l d be changed when t h e i n s t r u m e n t i s r e - c a l i b r a t e d but t h i s was n o t done then j u s t t o be c o n s i s t e n t w i t h t h e s i z e ranges f o r t h e o t h e r runs. I t i s s t a n d a r d s t a t i s t i c a l procedure  t o weight data i n  r e g r e s s i o n by a w e i g h t i n g f a c t o r which i n v e r s e l y p r o p o r t i o n a l t o t h e e r r o r v a r i a n c e when t h i s i s known.  This r e s u l t s i n a f i t  where t h e most a c c u r a t e v a l u e s a r e more h e a v i l y weighted. Graphs o f t h e s t a n d a r d d e v i a t i o n s f o r r e p e a t e d runs showed t h a t t h e square r o o t o f the e r r o r v a r i a n c e was p r o b a b l y  best  r e p r e s e n t e d by a f u n c t i o n which was f a i r l y c o n s t a n t except f o r an i n c r e a s e a t t h e t o p ( and sometimes t h e bottom) o f t h e s i z e scale.  On t h i s was superimposed a b e l l - s h a p e d curve which peaked  around t h e d  5 Q C  size.  The h e i g h t o f t h i s b e l l - s h a p e d peak was w e l l  c o r r e l a t e d w i t h t h e d i f f e r e n c e between t h e d two  repeats.  c n r  , values f o r the  123 Because s u f f i c i e n t time was not a v a i l a b l e t o o b t a i n a g e n e r a l w e i g h t i n g f a c t o r f u n c t i o n i t was d e c i d e d t o use t h e f o l l o w i n g  0  approach :The dj. , s i z e i s r e l a t e d p r i m a r i l y t o t h e precent s o l i d s i n Q[  the c y c l o n e f e e d s l u r r y so i t was d e c i d e d t o c a l c u l a t e a s e t o f w e i g h t i n g f a c t o r s f o r each o f t h e t h r e e v a l u e s o f t h e f e e d percent solids.  F i g s . 13 t o 15 shows graphs o f t h e square r o o t o f t h e  e r r o r v a r i a n c e v e r s u s s i z e f o r each c l a s s .  The r e c i p r o c a l  of  t h i s number squared i s t h e w e i g h t i n g f a c t o r . 'GEIMwT i s t h e program used t o c a l c u l a t e t h e v a l u e s o f t h e 1  e r r o r v a r i a n c e f o r a l l r e p e a t s and t h e w e i g h t i n g f a c t o r s f o r a l l repeats.  The w e i g h t i n g f a c t o r s f o r a l l r e p e a t s was c a l c u l a t e d  i n case i t would be u s e f u l but i n f a c t i t was not used f o r t h e reasons mentioned... The output from t h i s program i s not l i s t e d because o f i t s length.  124  SET NO: 3  OJ (M o co to o o u  rr—  •co—•  CM  cn cn  1— O _l Q.  CD  — » —*  CO  CX  —?  _l  cr cr SUE  (HICRtMS)  F i g . 1 3 P o o l e d S t a n d a r d D e v i a t i o n v e r s u s S i z e f o r Lou P e r c e n t S o l i d s  SET NO: 1  OH  ^—  r~ r~ O)  in ai  CO CM o CO CO o o  u >—  —• a.o_J co  o  i a . . ->  ID  cc  cr.  SI?E  INlCfWNS)  F i g . 1 4 P o o l e d Standard D e v i a t i o n v e r s u s S i z e f o r C e n t r e P o i n t Runs  125  F i g . 15  S t a n d a r d D e v i a t i o n v e r s u s S i z e f o r High P e r c e n t S o l i d s  126 LISTING OF FILE B.GENWT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57  08:37 P.M.  MAE. 14, 1977  10* GENEBAL WEIGHTING FACTOR CALC. FOB ALL REPEAT RONS 20 * 30 DIM E (29,154) ,M (154) ,S (12, 154) , T (154) ,W (154) 50 FILE R0N19 52 FILE RUN29 53 FILE RUN39 54 FILE BUN49 70 FILE BUN11 75 FILE RUN31 80 FILE RUN12 85 FILE RUN32 90 FILE RUN13 95 FILE RUN33 100 FILE RUN14 110 FILE RUN34 120 FILE RUN15 130 FILE RUN35 140 FILE RUN16 150 FILE RUN36 160 FILE RUN17 170 FILE RUN37 180 FILE RUN18 190 FILE RUN38 200 FILE RUN27 210 FILE RUN47 300 FOR L=1 TO 22 310 READ #L,N6,N3,N4,B6,D1,V1,S1,P2 330 LET N2=N4-N3+1 350 FOB J=1 TO N2 360 BEAD#L,M(J) , E (L, J) ,G 370 NEXT J 380 NEXT L 400 FOB J=1 TO N2 410 LET T(J)=0 420 NEXT J 430 FOR J=1 TO N2 435 FOB 1=1 TO 4 440 LET T (J) = T (J)+E ( I , J) 450 NEXT I 452 NEXT J 453 FOR J=1 TO N2 455 LET T(J) = T(J)/4 460 NEXT J 475 FOR 1=1 TO 3 4 80 FOB J=1 TO N2 482 LET S(I,J)=0 484 NEXT J 4 86 NEXT I 500 FOB J=1 TO N2 510 FOB 1=1 TO 4 520 LET S (1,J) = (T (J) - E {I, J) ) **2 +S(1,J) 522 NEXT I 524 LET S (1 ,J) = S (1, J) /3 526 LET S (2,J) = S (1, J) 528 LET S (3,J)=S (1,J) 5 30 NEXT J 600 FOB L=5 TO 21 STEP 2  127 LISTING OF FILE B.GENWT 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85  08:37 P.M.  MAR. .14, 1977  610 FOR J=1 TO N2 612 LET M1=(L/2)*1.5 614 LET M2=L+1 620 LET S(M1,J)= 2*(((E(L,J)-E(M2,J))/2)**2) 630 NEXT J 640 NEXT L 642 FOR L=3 TO 12 STEP 3 643 PRINT " ",L-2,L-1,L 644 PRINT "154" 645 FOR J=1 TO N2 647 PRINT M(J) ,S (L-2,J) ,S <L-1,J) ,S(1,J) 648 NEXT J 649 NEXT L. 650 FOR J=1 TO N2 660 LET W(J)=0 670 NEXT J 672 PRINT "1234" 674 PRINT "154" 680 FOR J=1 TO N2 690 FOR 1=1 TO 12 700 LET W (J) = W (J)+S (I , J) 710 NEXT I 720 LET W(J) = W(J)/12 730 LET W(J) = 1/(W(J)) 740 PRINT M (J) , 1/W (J) , W (J) 750 NEXT J 1000 END END-OF-FILE  128  APPENDIX V I I I THE PROGRAM "UITFILL" The program  "UTFILL" was used t o c a l c u l a t e t h e w e i g h t i n g  f a c t o r s f o r each c l a s s o f  v a l u e s and punch t h i s i n f o r m a t i o n  on c a r d s as a B a s i c language d a t a f i l e f o r use i n t h e s i m p l e x searches which i n c l u d e d w e i g h t i n g f a c t o r s , namely "LYWUIT" and "MURU".  LISTING OF FILE B.WTFILL 1 2 3 4 5 6 7 8 9 10 11  08:37 P.M.  MAE. 14, 1977  10 * PROGRAM TO CREATE FILE OF WEIGHT FACTORS WEIGHTSD 20 DIM M(300),W (300) 50 FILE WEIGHT 80 INPUT R 90 INPUT N 100 FOR J=1 TO N 120 INPUT M(J),S2,W(J) 150 WRITE#1,M(J) ,W(J) 210 NEXT J 500 END END-OF-FILE  130  APPENDIX IX THE PROGRAM "LYNMT" "LYNUIT" i s i d e n t i c a l t o "LYN" except t h a t u i e i g h t i n g f a c t o r s are r e a d i n from t h e data f i l e UEIGHT@D. I n t h e l a t e s t v e r s i o n t h e s t a r t i n g v a l u e s f o r a l p h a and 5QC studied. d  a r B  r  e  a  d  f  r  o  m  t  h  B  B  n  d  o  f  t  h  e  d  a  t  a  f  i  l  B  f  o  r  t  n  B  r  u  n  D B i n  9  Care s h o u l d be t a k e n t o ensure t h a t t h e d a t a f i l e c o n t a i n i n g > t h e u i e i g h t i n g f a c t o r s i s t h e c o r r e c t one.  131  LISTING OF F I L E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  B.LYNST  08:37 P . M .  MAR..14,  1977  1 *THIS IS A SIMPLEX PROGRAM METHOD WRITTEN IN BASIC. IT MAY BE OSED . 2 *TO ESTIMATE CONSTANTS FOR THE CYCLONE E F F . CORVES 3 * B A S I S IS LYNCH EQUATION 4 * X 5 0 , ALPHA SEARCHED FOR 5 *A WEIGHTING FACTOR IS USED AND ESTIMATES OF D50C A ND ALPHA 6 *ARE READ FROM THE F I L E GIVING THE E F F I C I E N C I E S FOR THE RUN. 7 PRINT "THIS IS LYNWT" 10 DIM W (190) , S (190) 11 DIM A(190) 12 DIM D ( 1 , 4 ) , C ( 1 , 4 ) , Q ( 5 , 4 ) , X ( 5 , 4 ) 13 DIM M (190) , E (190) , G (190) 15 DATA 2 16 DATA 1, 2 , 0.5 17 F I L E STD3 18 F I L E WEIGHT 19 F I L E HTRES 20 READ N , A , V , B 25 R E A D # 1 , N 6 , N 3 , N 4 , B 6 , D 1 , V 1 , S 1 , P 2 28 LET N2=N4-N3+1 30 FOR J=1 TO N2 32 READ#1,M (J) , E ( J ) , G ( J ) 34 NEXT J 36 MAT Q=ZER(N+1,N) 37 MAT X=ZER (N + 1,N) 38 MAT Y=ZER(N+1,1) 39 MAT Z=ZER (1,N) 40 FOR J= N2 TO 1 STEP-1 41 I F E ( J ) < 0 . 0 0 1 THEN 43 42 NEXT J 43 L E T N1=J-INT (N2/29) - ( ( J - I N T (N2/29) ) - 1 - A B S ( J - I N T (N2 / 2 9 ) - 1 ) )/2 46 LET B7=1 47 LET B5=1 48 FOR J=1 TO N2 49 I F ABS (50-E (J) ) > (45-35*INT (N2/1 00) ) THEN 52 50 I F ABS ( 5 0 - E (J) ) >ABS ( 5 0 - E (B5) ) THEN 54 52 LET B5=J 53 NEXT J 54 READ#1,C(1,1) 55 LET C (1,1) =C (1, 1) *1 00 56 L E T D ( 1 , 1 ) = C ( 1 , 1 ) *0.002 57 FOR J=1 TO N2 58 I F A B S ( M ( J ) - M ( B 5 ) * 1 . 5 ) > A B S ( M ( B 7 ) - M ( B 5 ) * 1 . 5 ) THEN 60 59 L E T B7=J 60 NEXT J 61 L E T C ( 1 , 2 ) = 2 * L O G ( E ( B 7 ) / ( 1 0 0 - E ( B 7 ) ) ) 62 L E T D (1 , 2 ) - C (1, 2) * 0 . 01 63 R E A D # 1 , C ( 1 , 2 ) 64 FOR J=1 TO N2 65 READ#2,S(J) ,W(J) 66 I F S (J) <>M (J) THEN 674 67 NEXT J 68 FOR J=1 TO N 69 FOR 1=1 TO N+1  LISTING OF FILE B.LYNWT 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108  132 08:37 P.M.  MAR.  14, 1977  70 LET X(I,J)=C(1,J)-{2/(J + 1)) *D(1,J) 75 IF I=J + 1 THEN 85 80 GO TO 88 85 LET X (I, J) =C (1, J) + ( (2/ (J+ 1) ) *D (1, J) ) * J 88 NEXT I 90 FOR I=J + 2 TO N+1 95 LET X(I,J)=C{1,J) 100 NEXT I 105 NEXT J 106 PRINT 107 PRINT "MATRIX X FOLLOWS. STARTING SIMPLEX: " 108 MAT PRINT X 109 PRINT"CYCLE","O.F.STD.ERROR","0.F« LOW VALUE","O.F .HIGH" 110 * CALC STND ERROR OF OBJECTIVE FUNCTION 114 LET Z7=0 115 LET Z8=0 116 LET Z9=0 120 LET T3=1.E70 125 FOR 1=1 TO N+1 130 LET H=I 135 GOSUB 560 140 LET Y(I,1)=Y1 145 NEXT I 150 GOSUB 600 155 T1=0 156 T2=0 160 FOR 1=1 TO N+1 165 LET T1=T1 + Y (1,1) 170 NEXT I 172 LET T1=T1/(N + 1) 175 FOR 1=1 TO N+1 176 LET T2=T2+(Y (I,1)-T1)**2 178 NEXT I 180 LET T= SQR(T2/N) 185 IF T> 1E-7 THEN 270 190 GO TO 205 195 PRINT 200 PRINT "CYCLE LIMIT. STOP CRITERION =";T3,T 201 PRINT "FAILED TO CONVERGE AFTER ";Z9;" ITERATIONS . X MATRIX FOLLOWS " 20 2 PRINT 203 MAT PRINT X 204 GO TO 265 20 5 PRINT 210 PRINT "CONVERGENCE AFTER "; Z9 ;" CYCLES. T3, T = " • T3, T 212 PRINT 214 PRINT "RUN NUMBER: ";N6 216 PRINT ***************** " 218 PRINT 222 PRINT 224 LET X5=X(L,1) 226 PRINT "D50C= ";0.01*ABS(X5*1 +0.5);" MICRONS" 227 PRINT 228 LET A9=X (1,2) 230 PRINT "ALPHA= ";A9 231 PRINT  133  LISTING OF FILE B.LYNWT 109 110 11 1 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 13 2 133 13 4 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165  08:37 P.M.  MAR.  14, 1977  232 PRINT "SIZE","CALC. EPF. ","MEASURED" , "D/D50C", " CALC. - MEAS." 234 FOR J=N1 TO N2 235 LET A (J) =100* (EXP (A9*M (J) /X5) - 1) 236 LET A (J) = A (J) / (EXP <A9*M (J)/X5) •• EXP (A9) -2) 240 PRINT M(J) ,A(J) ,E(J) ,M (J)/X5,A (J)-E(J) 245 NEXT J 246 *CALC. SUM OF SQUARES DUE TO ERROR 247 LET Z7=0 248 FOR J=N1 TO N2 249 LET Z7=Z7+ (E (J)-A (J)) **2 250 NEXT J 252 PRINT "SUM OF SQUARES=";Z7 254 PRINT "VARIANCE=";Z7/(N2-N1+1-N) 260 WRITE#3,N6,X5/100,A9,Z7/(N2-N1+1-N) 263 PRINT 264 PRINT 265 STOP 270 IF Z9=300 THEN 273 271 I F Z9>700 THEN 195 272 GO TO 275 273 MAT PRINT X 274 GO TO 271 275 I F T>T3 THEN 295 280 LET T3=T 285 PRINT Z9,T Y(L,1) ,Y(H,1) 290 * REFLECTION 295 MAT Q=(1)*X 300 FOR J=1°TO N 305 LET P=0 310 FOR 1=1 TO N+1 315 I F I=H THEN 325 320 LET P=P+X ( I , J) /N 325 NEXT I 330 LET Z (1,J)= (1 + A) *P-A*X(H,J) 335 LET X (H, J) =Z (1, J) 340 LET D(1,J)=P 345 NEXT J 350 GOSUB 560 355 MAT X= (1)*Q 360 LET Y=Y1 365 I F Y>=Y(L,1) THEN 410 370 * EXPANSION 375 FOR J=1 TO N 380 LET X (H, J)= (1 + V) *Z (1 ,J)-V*D (1, J) 385 NEXT J 390 GOSUB 560 395 IF Y1>Y(L,1) THEN 415 400 LET Y (H, 1) =Y1 405 GO TO 150 410 I F Y>Y(S,1) THEN 440 415 LET Y (H, 1) = Y 420 FOR J=1 TO N 425 LET X (H, J) =Z (1, J) 430 NEXTJ 435 GO TO 150 440 I F Y>Y(H,1) THEN 465 445 FOR J=1 TO N r  134 LISTING OF FILE B,LYNWT 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221  450 455 457 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 561 562 563  08:37 P.M.  MAR.,14, 1977  LET X(H,J)=Z(1,J) NEXT J LET Y(H,1)=Y * CONTRACTION FOR J=1 TO N LET X (H , J) = B*X (H , J) *• (1-B) *D (1 , J) NEXT J GOSUB 560 IF Y1>Y(H,1) THEN505 LET Y(H,1)=Y1 GO TO 150 * REDUCE SIZE OF SIMPLEX FOR J=1 TO N FOR 1=1 TO N+1 LET X(I, J)= <Q(I,J) +Q (L.3))/2 NEXT I NEXT J LET Z8=Z8+1 PRINT PRINT "STEP CHANGE";Z8 PRINT GO TO 125 •OBJECTIVE FUNCTION CALCULATION LET S8=0 FOR K=N1 TO N2 LET Y7=100*(EXP(X(H,2) *M(K)/X(H,1) LET Y7=Y7/(EXP(X(H,2)*M(K) /X (H,1) ) +EXP (X(H,2)) -2)  565 LET S8=S8 + W(K)*((E(K)-Y7)**2) 566 NEXT K 567 LET Z9=Z9+1 568 LET Y1=S8 570 RETURN 598 * CALC HIGH, 2ND HIGH, LOW, (SERCH2) 600 IF Y(1,1) >Y (2,1) THEN 615 605 S=1 606 L=1 607 H=2 610 GO TO 620 615 S=2 616 L=2 617 H=1 620 FOR 1=3 TO N+1 625 IF Y (1,1) >Y (1,1) THEN 635 630 L=I 635 IF Y (I, 1) <¥ (S, 1) THEN 665 640 IF Y (1,1) <Y(H,1) THEN 660 645 S=H 650 H=I 655 GO TO 66 5 660 S=I 665 NEXT I 670 RETURN 673 GO TO 675 674 PRINT "ERROR IN SIZE RUNNSD, WEIGHTSD GIVE ",M(J) ,S(J) 675 END END-OF-FILE  • / 8 0 * 7 8 6 S * 0 0 0 6 T 9 £ V S * / S 9 *0 9 S 8 1 * 8 T - ^ S U ' 0 7 IS 1 9 1 9 V 6 1 i *0 £ i i 1 £ 6 0 9 2 9 9 * 0 91 £ £ i I 8 8 5 S S i S * 0 / 6 9 T T £ i S S Z 5 * 0 5 5 9 1 Z 6 0 £ 8 6 7 * 0 i T 9 T Z £ 9 5 7 6 / * 0 0 8 5 T 5T T 91 296*/ *0 '*/*;S T £ 5 0015 " 0 6 0S 1 2 0 0 * ? 9 £ S * Q 9L*> X 5 Z 0 i 0 B 5 ' 0 Z v 7 l ' i I 5 £ * ? £ 9 * 0 */I 6 0 7 T * 6 l 7 2 I 9 9 * 0 i i £ t 7 5 I 8 i 0 6 0 9 7 E I I I I £ O T ' Z S T E I i S i £ / 0 ' l S B Z I 9 8 6 0 £ 6 8 * 0 ET 9 S Z 7 . 8 8 £ 6 7 8 * I i Z Z T £ Z i 7 0 8 * c 6 6 I T 6 8 7 T 6 9 ' Z T i T T £ 5657.6 ' T 7 7 1 T 5 8 0 0 5 £ * T Z l 811I IZ£05 2 M £ 6 0 T Z 8 7 l l 7 M 8 9 0 I S i 6 8 & 8 M 7 7 0 i ' 7 8 1 9 5 7 * Z 0 2 0 I 7 £ 8 c 9 c * Z TT i 6 6 S I / £ 7 9 n , 1 6 £ Z 0 E 8 7 - I Z 5 6 Z Z Z 6 Z 6 M 0 £ t . i 8 5 5 Z 6 - Z ' 6 0 6 £ 6 0 8 7 7 * £ 01 00 8 ' 6 9 9 £ 7 9 - 2 ' 8 9 8 ' £ 9 921 *2 ' 8 V 8 ' i Z C 6 9 8 "I ' 6 2 0 i V 7 i I B *T 'OT 8 6 6 1 9 0 8 * 1 Z 6 i 6 i S 9 6 7 9 - T 7 i i £ Z v 2 £ 7 * I 9 S i ' l O Z 7 9 Z M 6 £ i 5 7 i £ 6 Z * 1 2 c i 1 8 8 I 6*/ * 1 90A X £ 8 I 9 S *t 8 06 9 £ Z 0 8 5 Z * Z 7 i 9 i O i 6 9 7 - Z 6 5 9 Z T 7 6 t Z * Z 7 7 9 7 b B 6 7 6 * I 6 Z 9 i 8 •/•/Vi ' I 9 T9 i £68I69'I I09 66 59*T 985'67lZ98*T £i5 Z005v0*Z 095 £5£5Z£'Z i * / 5 6 9 i 5 i l *Z 9 4 5 £ S 6 I Z 9 I £ * Z £ Z 5 e6Z i 7 7 * Z TI 5 8 £ Z £ 0 i * Z 66*/ 9 £ 0 0 7 0 * £ 6 8 7 i i 8 7 6 6 ' Z i Z V 5 Z £ £ i 8 i Z ' 9 9 + / i i t l 0 £ * Z 5 9 ' 7 i 6 C Z 6 f c 5 / * / 90 86 00 ' Z S £ 7 I O T * / Z T Z & Z / £ Z i 8 i I ' Z 7 Sl7 Z£61Z£"Z 907 i957lS"Z i6£ iiil90M 83E 5ZGOOOM 6i£ 58ISiZ7*0 £ Oi£ EI£5£5£'0 Z9£ 65ZEZ8Z'0 75E Z870IEZ'0 9 7 £ 8 Z 9 £ 0 61 * 0 8 t £ 6 8 6 Z 0 91 " 0 0 F£ Z T 0 8 T I 7 I * 0 Z Z £ 9 0 5 Z 8 Z T ' 0 S I £ 1 0 8 5E T1 *0 80 £ Z-a ? 56 596 * 6 10 £ Z — Z 7 0 Z 6 Z *8 5 62 T 4  4  4  4  4 4  4  4  4  ,  4  4  4  4  4  4  +  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  ,  4  4  4  4  4  ,  4  4  4  4  4  4  4  4  4  4  4  4  ,  4  4  4  4  S 3 d Ib=l NO i £ " . S v : X T  nnnnnnnnnn nnnnnnnnnnnn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn nn  m i i n i n n " m i n - m i n n  4  4  •QaiVJti'J  ii/TT  4  4  4  NddQ  SVH •• (G ) i H ' J I3Mu  DlbVS* Nflbi IV NO GdN'JIS ..riTVbn ^ S S f l ST:i£:0T :SVM N O N O i S i ^ V l - n  T T  v vvvvv v w w v vvvvvvvvvv  ii ii ii ii  4  4  n  T T  4  4  VV VV VV VV VV VV VV VV VV VV VVVVVVVVVVVV VVVVVVVVVVVV VV VV vv VV VV VV  T T  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  c  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4 4  4  4  4  4  4  1  4  4  4  4  4  4  4  4  4  4  4  4  4  4  be) bh bb eb ba bb aa bb bb ba bbbdbb^bbbb a'cbdbbbttbbba bb bb bb da ab bb bbbad dbbbbo a bad'adbbbbba  XNVTtl-WaUd  mVb 9 1 S 4  136  18 17 19 20 21 2?. 23 24 25 26 27 28 29 30 31 32 33 G T C  0 . 0 ? 2 3 9 2 4 t 21. 8 0 , 0 . 5 5 9 9 4 7 4 , 2 2 3 ? . 0 - 5 8 7 7 6 7 4 , 2 2 3 3 , Q . 61.1 7 2 59 , 2 3 3 6 ,0 - 5 822.39?. i ? 4 4 , 0 . 5 7 1 9 7 6 6 , 1 9 8 9 , 0 . 5 5 3 0 0 4 1 , 2 0 3 5 , 0 . 5 3 3 3 9 5 ,-2 08.? , 0 . 5 2 3 4 2 3 4 , 2 1 3 0 2 39 ?, 0 - 5 2 4 0 8 0 3 , 2 4 4 ! ! , 0 . 4 5 9 5 1 0 1 . , 2 5 0 5 , 0 . 42 298 7 1 , 2 5 6 3 , 0 . 4 1 2 5 2 5 6 ,2623 0 . 4 24 39 71 , 2 6 34 , 0 . 4 5 0 8 761 , 2 747 , 0 . 4 6691 41 , 2 8 1 . 1 , 0 . 4 6 2 7 0 4 2 , 2 8 76 , 0 . 4 6 3 4 1 31 2 9 4 3 , 0 . 5 C 6 5 9 0 3 , 3 0 1 2 , 0 . 65 80650 ,3 0 8 2 , 0 . 98 3992 3, 31 5 4 , 1 . 6 5 5 3 3 5, 3 2 2 7 , 2 . 8 7 2 0 5 6 3 3 0 2 , 2 . 6 7 1 8 7 3 , 3 3 7 9 , 1. 4 0 4 1 6 4 , 3 4 5 3 , 0 . 7 6 7 3 7 2 , 3 5 3 9 , 0 . 51 0 3 5 4 6 , 3 6 2 1 , 0 - 3 9 3 6 9 8 3 3 705,0.3569294,3791,0. 3228987,3879,0.3221394,3969,0.3049064,4061 0 . 2 4 3 9 3 3 1 , 4 1 5 6 , 0 . 1 0 5 0 6 3 2 . 4 2 5 3 , 0 . 1 4 9 6 4 8 2 , 4 3 5 2 , 0 . 1 3 03 63 4 , 4 4 5 3 , 0 . 1 1 8 6 0 8 5 -,55 7 , 0 . 1 0 7 8 4 0 5 , 4 6 6 3 , 0 . 1 0 0 7 7 79 , 4 7 7 3 , 9 . 96 38 93 - 2 , 4 084 , 9 . 5 32 1 4 4'.: - 2 , 4 99 3 0.0736723,5114,0.0454934,5233,2.630974^-2,5355,1.929748c-?,5480 1 - 4 8 7 1 7 4 - 2 ,.5603 , 1. 66 35? 8 E - 2 , 5 7 3 9 , 1 . 7 1 5 6 5 9 1 - 2 , 5 8 7 3 , 1. 8 9 6 7 3 2 F - 2 , 6 0 0 9 2 . 1 7 1 4 0 6 r - 2 , 6 1 4 9 , 2 . 5 0 1 8 4 4 = 1 - 2 , 62 9 2 , 2 . 9 2 7 4 0 7*=-2,6 43 9 , 3 . 4 9 59 14 F - 2 , 6 5 8 9 4 . 2 3 3 8 2 6 - 2 , 6 7 4 2 , 0 . 0 5 0 8 0 4 4 , 6 3 9 9 , 5 . 4 6 8 9 4 6 P - 2 , 7 06 0 , 5 - 5 3 4 0 9 8 R - 2 . 7 2 24 5 - 9 5 6 9 2 9= - 2 , 73 9 2 , 7. 27 236 3 5 - 2 , 7 5 6 5 , 8 . 3 54 578 - - 2 , 7 7 4 1 , 0 . 10 7 0 4 8 . 5 , 7 9 21. 0 . 1 1 8 5 1 8 6 , 8 1 0 6 , 0 . 1 3 79 6 4 5 , 82 9 5 , 0 . 1 4 5 3 3 2 9 , 8 4 8 8 , 0 . 1 2 9 4 8 6 , 0 6 3 6 , 0 . 1 1 3 . 4 8 2 5 8 88 8 , 0 . 0 3 4 ? - 0 5 2 , 9 0 9 5 , 6 . 5 7 5 5 9 2 P - 2 , 9 3 0 7, 5. 21 75 04'.- - 2 , 95 23 , 6 . 32 8 03 8 . - 2 , 9 7 4 5 0.1339139,5972,0.2211506 RUN 19,10 c  c  r  c  1 19 ,!. 20 , 2 7 ? , 5. 9 6 3 ? 6 1 7 - 2 , ? . 6 5 , 1, 0 . 35 ,1 . 9 , 2 95 , - I. 4 9 29 82 , 4 . 5 5 941 1, 30 1 2 - 1 . 3 4 6 9 1 5 , 4 . 6 9 6 7 6 7 , 3 0 8 , - 1 . 2 8 6 5 6 , 4 . 7 5 3 5 2 3 , 3 1 5 , - 1 . 0 9 36 8 , 4 . 9 3 4 9 0 1 , 3 2 2 3 -0.9924642,5.030081,330,-0-031?619,5.181576,338,-0.6814205,5.322567,346 4 - 0 . 5 4 9 5 5 3 , 5 . 4 4 6 5 8 , 3 5 4 , - 0 . 4 3 4 4 3 5 2 , 5 . 5 5 4 8 3 3, 3 6 2 , - 0 . 2 6 9 2 2 6 5 , 5. 7 1 0 1 9 , 3 70 5 - 0 . 1 2271 9 6 , 5 . 8 4 7 9 6 , 3 7 9 , 0 . 0 140443 , 5 . 9 7 6 5 6 0 , 3 0 8, 8 . 2472 8 7 ~ 2 , 6 - 0 4 0 9 1 6 , 3 9 7 6 1. 28 9 6 1 , 7.1 7 6 0 6 7 , 40 6, 5. .? 13 6 3 9 , 7. 19 3 7 1 , 4 1 . 5 , 1. 38 461 9 , 7 . 26 5 4 1 , 4 25 , 1 . 4 2 0 74 7 7. 29 9 378 , 4 3 5 , 1. 3 6 3 1 8 6 , 7. 2 4 5 2 5 5 , 4 4 5 ,1 . 3 0 0 3 6 2 , 7 . 1 8 6 1 7 8 , 4 5 5 , 1 . 3 0 9 4 6 7 , 7 . 1 9 4 7 4 8 46 6 , 1 . 3 6 9 2 6 0 , 7 . 2 5 0 5 7 5 , 4 7 7 , I . 3 9 6 6 3 3 , 7 . 2 7 6 7 5 5 . 4 8 8 , 1 . 4 5 3 8 3 3 , 7 . 3 3 0 4 9 6 , 4 9 9 . 9 1.539354,7.410918,511,I.5087,7.302092,523,1. 5 4 3 2 0 6 , 7 . 4 1 4 5 4 , 5 3 5 , 1 .529553 10 1 .'+ 01 7 0 1 , 54 7, 1. 5 9 4 1 8 5 , 7 . 4 6 2 4 7 9 , 5 6 0 , 1 . 58 363 8 , 7 . 4 52 56 1, 5 7 3 , 1 . 57 93 64 11 7 . 4 4 8 5 4 1 . , 5 8 6 , 1 . 4 9 0 1 5 ? , 7. 364651., 6 0 1 , 1. 4 3 5 4 5 8 , 7 - 3 1321.8, 67. 5, 1.- 4 1 2 0 8 9 12 7.291242,629,1.402566,7.282237,644,1.407523,7-286953.659,1.437418 13 7 . 3 1 5 0 6 , 6 7 4 , 1.42 6 1 1 2 , 7 . 3 0 4 4 2 9 , 6 9 0 , 1 . 4 3 6 2 8 1 , 7. 31 3 992 , 7 0 6 ,1 . 4 0 5 4 5 6 14 7.2 8 5 0 0 5 , 7 2 2 , 1 . 3 6 5 5 1 5 , 7 . 2 4 7 4 4 5 , 7 3 9 , 1- 2 9 8 0 4 3 , 7 . I 8 3 9 9 7 , 7 5 6 , 1. 2 5 3 6 9 6 15 7. 1 4 2 2 9 % 7 7 4 , 1 . 2 5 3 5 9 5 , 7 . 1421 9 9 , 7 9 2 , 1.28 69 75 , 7 . 1 73 5 9 , 8 1 0 , L . 2 3 9 8 7 6 1 6 7- 1 2 9 2 9 9 , 8 2 9 , 1 . 0 8 5 4 9 6 ,6..5841 1 5 , 8 4 8 , 0 . 9 2 5 0 53 5, 6 . 8332 5 , 3 6 8 , 0 . 8 5 6 4 0 6 1 1 7 6 . 7 6 9 6 5 7 , 8 3 8 , 1 - 0 1 0 4 1 4 , 6 . 9 1 3 5 2 , 9 0 9 , 1 . 3 0 4 5 6 2 , 7. 19 0 1 2 3 , 9 3 0 , 1 . 6 3 7 6 7 1 13 7 . 5 0 3 3 7 2 , 9 5 2 , 1 . 8 1 8 I 2 7 , 7 . 6 7 3 0 6 6 , 9 7 4 , I . 7 9 2 0 7 9 , 7 . 6 4 3 5 7 2 , 9 9 7 , 1 - 57 1 104 1 9 7.4 4 0 7 7 4 , 1 0 2 0 , ! . 3 3 6 5 9 5 , 7 . 2 2 0 2 5 , 1044 ,1 . 1 4 1 4 0 6 , 7 . 0 3 6 7 0 1 , 1 0 6 8 , 1- 0 6 9 4 3 9 20 6 . 9 6 5 C 2 6 , 1 C 9 3 , 1 . 0 6 5 7 9 8 , 6 . 9 6 5 6 0 1 , 1 1 1 8 , 1 . 1 5 1 0 7 4 , 7 . 0 4 5 7 9 2 , 1 1 4 4 , L . 3 3 1 5 7 8 21 7 . 2 6 2 5 5 , 1 1 7 1 , 1 . 6 0 9 0 2 6 , 7 . 47643 6 , 1 1 9 9 , 1. 7 3 8 0 9 4 , 7. 5 9 7 8 0 6 , 1 2 2 7 , 1 - 5 4 2 6 1 2 22 7 . 4 1 3 5 8 1 , 12 5 6 ,1 . 093 59.2 , 6 . 9 9 6 4 4 , 1 2 9 5 , 1 . 1 8 3 9 2 , 7 . 0 7 6 6 7 9 , 1 3 1 5 , 2 . 1 3 6 331 2 3 7 . 9 7 2 2 9 5 , 1 3 4 6 , I . 6 1 5 4 1 7 , 7 . 4 8 2 4 4 4 , 137 7 , 2 . 0 4 3 5 1 7 , 7 - 0 0 5 0 1 6 , 1409 ,1 - 7 7 6 4 4 1 24 - 7 . 6 3 3 8 6 6 , 1 4 4 2 , 1 . 6 2 0 3 8 2, 7 . 4 8 7 1 1 4 , J . 4 7 6 , 1 . 5 7 0 7 5 , 7. 4 4 0 4 4 2 , 1 5 0 9 , 1- 5 9 0 0 1 25 7 . 4 5 8 5 5 3 , 1 5 4 4 , 1 . 6 6 2 5 7 , 7 . 5 2 6 7 8 6 , 1 5 8 0 , 1 . 7 7 2 3 2 7 , 7 . 6 2 9 9 9 3 , 1 6 1 7 , 1 . 8 7 4 2 3 5 26 7 . 7 2 5 8 2 8 , 1 6 5 5 , 1. 9 3 6 0 4 9 , 7 . 93 0 9 7 5 , 1 6 9 4 , 2 - 1182 24 , 7 - 955 2 6 8 , 1 7 3 3 , 2 . 2 6 6 7 4 7 2 7 8 . 0 9 4 9 3 4 , 1 7 7 3 , 2 . 4 1 3 0 6 8 , 8 . 2 3 2 5 2 9 ,I 8 1 4 , 2. 5 2 0 4 8 1 , 3 - 3 3 3 5 3 7 , 1856 , 2 . 5 8 4 9 4 4 23 8 . 3 9 ^ 1 5 5 , 1 9 C O , 2 . 6 2 0 5 3 3 , 8 . 4 3 5 1 4 5 , 1 9 4 4 , 2 . 6 2 2 7 5 , 8. 4 2 9 7 0 7 , 1 9 9 9 , 2 - 5 9 2 5 9 6 29 3.401. 3 51 , 203 5 , 2 . 5 71.909, 8 . 3 3 1 . 3 9 8 , 2 0 8 2 , 2 . 63 7 9 5 7 , 8 - 4 4 4 0 0 7 , 21 3 0 , 2 - 8 3 6 2 1 5 30 8 . 6 3 0 4 4 2 , ? 1 8 0 , 3 . 0 8 3 9 6 , 3 . 8 6 3 4 1 3 , 22 31 , 3 . 2 7 8 5 0 9, 9 . 0 4 6 3 61 , 2 2 8 3 , 3. 3 3 9 7 4 9 31 9 . 1 0 3 9 4 9 , 2 3 3 6 , 3 . 2 8 9 3 4 6 , 9 . 0 5 6 5 5 1 , 2 3 9 2 , 3 - 2 3 5 3 C6 , 9 . 0 0 5 7 3 4 , 2 4 4 8 , 3 - 2 4 3 6 0 2 32 9 - 0 1 0 2 3 7 , . " . ' 5 0 5 , 3 . 3 7 6 5 2 7 , 9 . 1 3 8 5 3 3 , 2 56 3 , 3 . 5942 8, 9 . 34 3301 , 262 3 , 3. 8 3 13 63 3 3 - y - 5 6 6 24 6 , 2 6 8 4 , 0 2 0 6 9 •), 9 . 744 2 91 ,2 7 4 7 , 4 . 13 34 5 , 9 . 85 03 19 , 28 I 1 , 4 - 2 6 9 7 2 2 34 9 . 9 7 8 4 5 4 , 2 8 7 6 , 4 . 5 9 3 2 3 6 , 1 0 . 2 8 2 6 9 , 2 5 4 3 , 5 . 1 8 0 2 5 4 , 1 0 . 8 3 4 7 4 , 3 0 1 2 , 5 . 9 9 5 0 0 6 3 5 1 1 - 6 0 0 8 6 , 3 0 8 2 , 6 . 9 3 9 9 3 1 , 1 2 . 3 9 5 4 , 3 1 5 4 , 7 . 4 8 5 3 9 3 , 1 3 . 0 0 2 8 4 , 3 2 2 7 , 7 . 059631 3 6 1 3 . 3 5 4 3 4 , 3302 , 8. 0 5 7 7 7 , 1 3 . 5 4 0 6 2 , 3 . 3 79 , 0 . 2 0 1 0 2 6 , 13 . 6 7 6 0 3 , 3 4 5 3 , 8. 3 6 1 4 5 2 37 1 ? - 82 6 1 9 , 3 5 3 9 , 8. 5 7 0 8 2 4 , 1 4 - 0 2 ? 0 8 , 3 6 2 1 , 8 . 9 6 7 8 0 9 , 1 4. 30 23 5 , 3 7 05 , 9 . 334 798 33 14.74145,3791,9-9944,15.36176,3079,10.79977,16.1191,3969,11.63300 39 1 6 . 9 0 2 7 2 , 4 0 6 . 1 , 1 2 . 3 7 8 7 2 , 1 7 . 6 0 3 9 , 4 1 56 , 1 3 . 1 0 7 8 8 , 1 0 - 2 8 9 5 7 , 4 2 5 2 , 1 4 - 0 9 9 4 2 4 0 1 9 . 22 199 , 4 3 5 2 , 1.5-6159 , 2 0 - 6 4 3 0 3 , 4 4 5 3 , 1 7 . 6 6 7 7 3 , 22 . 5 7 7 5 , 4 5 5 7 , 1 9 . 9 4 9 4 5 41 2 4- 7231 5 , 4 6 6 3 , 22 - 1010 3,2 6. 74643 , 4 7 7 3 , 2 4 - 1 0 1 7 9 , 2 8 . 6 2 7 8 7 , 4 8 8 4 , 2 6 . 2 3 5 6 8 42 3 0 . 6 3 4 5 1 , 4 9 9 0 , 2 3- 5 0 0 5 , 3 2 . 7 6 4 2 8 , 5 1 1 4 , 3 0 . 47 8 9 1 , 3 4 . 6 2 4 7 , 5 2 3 3 , 3 1 . 9 4 1 8 3 c  137  4 3 3 6 . 0 0 C3 5 , 5 3 5 5 , 3 ' t . 2 7 4 0 8 , 3 8 . 1 9 3 5 5 , 5 4 8 0 , 3 6 . 2 2 3 0 9 , 4 0 . 0 2 6 3 4 , 5 6 C8 , 4 0 . 9 2 7 2 5 V , i^c,. 4 4 9 9 7 , 5 7 3 9 , 4 5 . 0 0 4 2 3 , 4 8 . 2 8 - 8 2 , 5 8 7 3 , 4 9 . 7 0 9 1 6 , 5 2 . 7 0 8 1 9 , 6 0 0 9 , 5 4 . 6 5 5 45 5 7 . 3 5 90n,6149,59.59327,62.00287,6292,64.30741,66.43589,6439,68.60854 46 7 0 . 4805 2 , 6 5 8 9 , 7 2 . 4 7 1 0 6 , 7 4 . 1 1 2 7 1 , 6 7 4 2 , 7 5 . 8 4 5 3 6 , 7 7 . 2 8 5 7 8 , 6 8 9 9 , 7 8 . 4 8 3 3 9 4 7 7 9 . 7 6 6 % 7 0 6 0 , 8 0 . 5 4 3 8 7 , 8 1 . 7 0 4 1 1 , 7 2 2 4 , 8 2 . 4 2 7 1 5 , 0 3 . 4 75 0 8 , 7 3 9 2 , 8 4 . 4 3 5 8 1 48 8 5 . 3 6 3 9 6 , 7 5 6 5 , 8 6 . 4 1 3 6 4 , 8 7 . 2 2 3 8 4 , 7 7 4 1 , 8 8 . 3 4 2 6 1 , 8 9 . 0 3 7 7 8 , 7 9 2 1 , 8 9 - 7 5 7 2 7 49 9 0 . ? 6 8 0 8 , 8 1 0 6 , 9 1 . 0 0 9 7 8 , 9 1 . 5 4 5 9 , 8 2 9 5 , 9 1 . 6 9 6 9 8 , 5 2 . 1 9 2 1 2 , 8 4 8 8 , 9 1 . 5 1 3 4 7 50 9 2. 0195 5 , 8 6 8 6 , 9 1 . 3 001 , 9 1 . 8 1 8 9 , 8 8 8 8 , 9 0 . 7 4 8 1 7 , 9 1 . 2 9 9 8 9 , 9 0 9 5 , 9 0 . 4 9 5 8 1 51 9 1 . 0 6 2 5 8 , 9 3 0 7 , 8 9 . 6 6 76 5 , 9 0 - 2 8 3 8 5 , 9 5 2 3 , 9 0 . 3 6 3 1 , 9 0 . 9 3 7 7 8 , 9 7 4 5 , 9 2 . 5 5 6 0 3 52 92.99994,9972,93.70405,94.0795 80 58.5 81 6.08 GET WTR S3D " W T R E S I O I " HAS B E E N C R E A T E D . GET LYNWT 17 F I L RUN19 RUN T H I S IS LYNWT C  r  MATRIX 5839. 3 5861. 7 5850 CYCLE 3 9 11 13 1 5 19 21 25 27 29 31 33 3 5 41 54 58 60 62 64 65  X  FOLLOWS. STARTING SIMPLFX: 6.049556 6.049556 6.140887 O.F.STO.'P.ROR O.F.LOW VALUE 8.797616 214.1055 3.10409 175.5683 2.162836 172-3653 2.002965 171.8832 1.213292 170.0647 0.7231571 168.7351 0.2848779 169.3505 0.1932525 167.9662 8.264563F-2 167.9662 1.873843 — 2 167.9662 1.695531 -2 167.9375 1.601757 — 2 167.9375 1.905401 -3 167.9357 1.844827 -5 167.93 8.909434 -6 167.929 2.02955—6 167.9289 1.997035E-6 167.9289 1.467361^-6 167.9289 3.795479 -7 167.9289 1.3448316-7 167.9289 c  c  c  c  c  CONVERGENCE ?UN  NUMBER:  *****  050C= »LPHA= SUC330 339 346 354  AFTER  71  CYCLES.  T3,  T  =  0-F.HIGH 230.5791 181.344 176.4846 175. 5683 172.3653 17C.0647 168.9069 168.3505 168.123 167.9993 167.9675 167.9662 167.9395 167.93 167. 925 167.929 167.929 167.9289 167.9289 1 6 7 . 92 89  1.344831E-7  8.002416E-8  19  58.91951  MICRONS  5.470541 C&LC. EFc. 0.1513238 0.1555921 0.159892 0.1642235  MEASURED -0.8313619 -0.6814305 -0.549553 -0.4344352  0/C50C 5.601337E-2 5.737127E-2 5.872917E-2 6.C08707E-2  CALC - MEAS. 0.9826857 0.8370226 0.709445 0.5986587  138  3 62 *70 379 383 397 406 415 425 435 445 4 55 466 477 488 499 511 523 535 547 560 573 5 36 601 615 629 6 44 659 674 690 706' 72? 739 756 7 74 792 310 829 343 863 380 909 930 952 974 997 1020 1044 1063 1093 1118 1144 1171 1 199 122 7 12 56 1235 1315 134 6 1377 1409  0.1685S69 0.1729825 0.1779662 0.1829913 0.183058 0.1931667 0.1983!78 0.2040913 0.209918 0.2157983 0.2217328 0.2283239 0.2349817 0.241707 0.2485005 0.25599 0.2635623 0.2712132 0.2789533 0.2874409 0.2960246 0.304711 0.314863 0.3244648 0.3341903 0.3447496 0.3554547 0 . 3 6 6 3 076 0.378G492 0.3899637 0.4020536 0.4150942 0.4283338 0.4425833 0.4570738 0.4717992 0.4876C7 0.5036911 0.5209254 0.5384765 0.5572525 0.576391 0.596837 0.6176962 0.6399545 0.6626329 0.6369112 0.7116734 0.7380473 0.7650261 0.7937403 0.8242835 0.8567566 0.890063 0.9254595 0.9617958 1.0004 1.041404 1.083569 1.128348  -0.2692265 - 0 . 1227196 0.0140443 0.247287^-2 1.20961 1.313609 1.384619 1.42074 I.363186 1.300362 1.309467 1.369268 1.396603 1.453833 1.539354 1.5087 1.543206 1.529553 1.594105 J.583638 1.579364 1.490 153 1.435458 1.412089 1.402566 1.407528 1.437418 1.4 26112 1.436281 1.405456 1.365515 1.290043 1.253696 1.253595 1.236975 1.239376 1.085486 0.9250535 0.3564061 1.010414 1.304562 1.637671 1.818127 1.792079 1.571104 1.336595 1.141406 1.069439 1.065798 1.151074 1.301578 1.609026 1.738094 1.542612 1.093592 1.18392 2.136331 1.615417 2.043517 1.776441  6.144497F- 2 6.200287F- 2 0.0643305 6.585014^- 2 6.738578F- 2 6.891342^- 2 7. C441C5F-2 7.213043E- 2 0.0738358 7.553310F- 2 7.723055F- 2 7.505766 - 2 8.096478F- 2 8.283189S- 2 0.084699 8.673585F- 2 0.0887727 9.030955E- 2 0.0920464 9. 505299?.- 2 9.725957C- 2 9.946616E- 2 0 . 1020122 0.1043885 0.1067649 0.1093109 0.111857 0.1144031 0.1171189 0.1198347 0.1225505 0 . 12 5 4 3 6 0. 1202 215 0.1313768 0 . 1344321 0 . 1374874 0. 1407124 0.1439374 0.1473321 0. 1507269 0.1542914 0.1578559 0.1615901 0. 1653243 0. 1692283 0.1731322 0.1772059 0.1012796 0. 1055231 0.1897665 0.1941797 0.1987626 0.2035152 0.2002679 0.2131903 0.2101127 0.2232048 0.2284666 0.2337285 0.2391601 r  0.4378134 0.2957021 0.1639219 0.1005184 - 1 . 101552 - 1 . 120522 -1.136301 -1.216649 -1.153268 -1.004564 -1.087734 -1.140944 -1.161701 -1.212126 -1.290354 -1.25271 - 1 . 2 79644 -1.253335 -1.315226 -1.296197 -1.233339 -1.185442 -1.120595 -1.037624 -1.060376 -1.062770 -1.001963 -1.059004 -1.058232 -1.015492 -0.9634614 -0.0829488 -0.8253572 -0.8110067 -0.8299012 -0.7630768 -0.597879 -0.4213624 -0.3354807 -0.4719375 -0.7473095 -1.06128 -1.22129 - 1 . 174383 -0.9311495 -0.6739121 -0.4544948 -0.3577656 -0.3277507 -0.3860479 -0.5073377 -0.7347425 -0.8813374 -0.652549 -0.1731325 -0.2221242 - 1 . 135931 -0.5740134 -0.9599476 -0.648093  139  144 2 1476 1 505 1544 150 0 1617 1655 1694 173? 1773 1814 1856 1900 1944 1989 2035 2082 2130 2 180 2231 2283 2336 2392 2448 2505 2563 2623 2684 2 74 7 2811 2 87 6 2943 3 012 3032 3 15 4 3227 330 2 3379 3458 3539 3621 3705 3791 3879 3969 4061 4156 4253 4352 4453 4557 4 66 3 4773 4834 4993 5114 5233 53 5 5 5430 5 60 3  1.175096  1.226334  .  1.276082 1.332101 1.390732 1.452994 1.519113 1.589355 1.662077 1.739332 1.32142 1.900663 2.003608 2. 102317 2.20731 2.319021 2.437915 2.564497 2. 7 0 2 U 7 2.040001 3.005150 3.17201 3.356744 3.550577 3.757636 3.970397 4.21952 4.476947 4.756953 5.056931 5.37025 5.727903 6.100508 6.516922 6.561562 7.439017 7 . 9 5 3 3 19 8.524791 9.141069 9.812105 10.5336 1 1 . 3 1 8 59 12.17235 13.10045 14.1087 15.2031 16.4023 17.70251 19.10838 20.62633 22.27011 24.05395 25.99335 28.04383 30.25685 32.59374 35.09245 37.73352 40.51563 43.42644  1.620382 1.57075 1.59001 1.66257 1.772327 1.8 7423 5 1.906049 2 . 1 10224 2.266747 2.413068 2.520481 2.584944 2.628533 2.62275 2.592596 2.571909 2.637957 2.036215 3.08396 3.273509 3 . 3 3 9 749 3.209346 3.235306 3.243602 3 . 3 76 52 7 3.59428 3.031363 4 . 0 20 6 9 3 4.13345 4.269722 4.593236 5.100294 5.995006 6.039931 7.405093 7.059631 8.05777 8.201826 8.361452 8.570824 8.067009 9.334793 9.9944 10.79977 11.63308 12.37872 13.10788 14.09942 15.6159 17.66773 19.94945 22.10103 24.10179 26.23568 28.5005 30.47891 31.94183 34.27408 36.22309 40.92725  0.24 47614 0.2505325 0.2561339 0.2620747 0.2681052 0.2744655 0.2009155 0.2875353 0.294155 0.3009445 0.3079038 0.3150328 0.3225012 0.2299697 0.3376078 0.3454158 0.3533934 0.3615408 0.3700277 0.3706843 0.3375107 0.3965067 0.406012 0.4155173 0.4251524 0.4350372 0.4452214 0.4555754 0.4662608 0.4771.32 0.488165 0 . 4 9 9 5 374 0.5112493 0.5231309 0 . 53 5 3 5 2 > 0.5477428 0. 5604731 0.5725429 0.5069522 0. 6007009 0.6146194 0.6288773 0.6434748 0.6584117 0.673688 0.6893039 0.7054289 0.7218935 0.7386975 0.755841 0.7734937 0.7914859 0. 810157 0.8289978 0.8403479 0.8680375 0.8882362 0.9009442 0.5301614 0.9518878  - 0 . 4 4 4 4 056 -0.344366C -0.3131277 -0.3304694 -0.3315947 -0.4212411 -0.466931 -0.5288639 - 0 . 6 0 4 6 704 -0.6737364 -0.6990615 -0.6762811 -0.624925 -0.5204327 -0.3352055 -0.2528801 -0.2000415 -0.2717103 -0.3018427 -0.4297083 -0.3345511 -0.117336 0.1214376 0.3019746 0.3811092 0.3046174 0.3 801566 0.4562493 0.6235428 0.7872094 0.7050144 0.5476095 0.1135015 -0.3230038 -0.524331 -0.4206637 -9.095148E0.3229649 0.7796169 1.241281 1.665795 1 .903791 2.177948 2.300677 2.475616 2.824383 3.294919 3.603087 3.492483 2.950598 2.320659 1.952916 1.892061 1.313153 1.756346 2.119834 3.150619 3.459844 4.29259 2.499188  5739 5873 6009  46.45095 49.56987 52.73656 5 5 . 9 7 •> 5 1 6292 59.2242 7 A 4 HO f,?,',IPJl 6589 65.69490 67'*? 6 3 . 02794 6 89 9 71.37219 706C 74.79701 7224 77.56235 7 39 2 3 0 . 1 6 3 04 7565 02.59672 7741 84.0241 7921 86.85419 3106 80.69553 0295 90."'4000 8480 91.7955 8606 93-07842 0809 94.19376 9C^5 95.16015 9307 95.99045 9523 96.69514 9745 97.29410 9972 97.79714 SUM j r SQUAT^5= 7C5.6593 V»«UNC!;= 4.000675  STOP' A-r T\,T » 2 6 5 ' i P " Z J " A M FNCS LIST WTRCSSin. L  1  TNJ  PROGRAM  45.00423 49.70916 5 4.655 -0. 5'0 27 6 4.30741 M l . 6 0 0 54 7 2 . 4 7106 75. 04536 70. 48339 8 0 . 54 30 7 02.. 4 2 7 1 5 8 4 .. 4 3 5 8 1 06.41364 08.34261 89.75727 91..00978 91.. 69698 91. 51347 51.. 3001 90.74817 90.49531 8 9 .. 6 6 7 6 9 9 0 .. 3 6 3 1 92..55603 93.. 70405 r  "LYNWT"  19,50.91451,5.470541,4.800675  ^NT-^F-FILF ••ITS  tSIG  0.9741234 0.996S682 I . 0 1 9 9 52 1.043716 . 067983 09 2 94 .113 4 14437 171019 1. 198347 1.226184 1.254699 1.204064 1.31392 8 1.344491 1.375892 1.407972 1.440732 1.47434 1.508627 I.543762 1.579747 1.61641 1-654092 1.692622  1.446696 - 0 . 139292 -1.913041 - 3 . 6 2 0 7 33 -5.C33145 -6. )? >?41 -6.77610 -7.017410 -6.611201 -5.74606 - 4 . 064796 -4.272765 -3.816919 - 3 . 5 1 0 5 05 - 2 . 903078 -2.314246 -1.356904 0.2820323 1.77332 3.445508 4.664337 6.322758 6.332041 4. 738154 4.053093 r  141  APPENDIX X THE  PROGRAM "MURU"  The program "MURU" uses t h e s i m p l e x search method t o f i n d t h e values o f alpha, d  5  Q  C  ,  d  Q  and bypass which g i v e t h e best f i t t o  the e f f i c i e n c y curve proposed by Mular and Runnels:-  Raw  efficiency, Y  x  =  ( e.<* ~-  -^dn/cLnN o . /d e ~ 0 5 0 ) B + e ^ d /5d 0 - e*^ c<d "0'"50 _____ u  / a J  u , u  c n  n  n  c  Only l i n e 17 needs t o be a l t e r e d t o g i v e t h e f i l e o f r u n number under c o n s i d e r a t i o n . Again c a r e s h o u l d be taken t o ensure t h a t t h e d a t a f i l e ulEIGHTSD c o n t a i n s t h e c o r r e c t s e t o f weighting  factors.  142 LISTING OF FILE B.MURU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56  08:37 P.M.  MAR.  14, 1977  1 *THIS IS A SIMPLEX PROGRAM METHOD WRITTEN IN BASIC. IT MAY BE USED 2 *TO ESTIMATE CONSTANTS FOR THE CYCLONE EFF. CURVES 3 *BASIS IS GENERAL EQUATION OF MULAR AND RUNNELS 4 *D50,ALPHA,D ZERO,S NEW BYPASS SEARCHED FOR 5 ^WEIGHTING FACTORS ARE USED 6 ESTIMATES OF D50C S A LPHA 6 *ARE READ FROM THE MAIN FILE 7 PRINT "THIS IS MURU" 8 PRINT *************** 11 DIM A (190) 12 DIM D (1,4) ,C (1,4) ,Q(5,4) ,X (5,4) 13 DIM M (190) ,E (190) ,G (190) 14 DIM W (190) ,S (190) 15 DATA 4 16 DATA 1, 2, 0. 5 17 FILE STD3 18 FILE WEIGHT 19 FILE WTRES 25 READ N,A,V,B 30 READ#1 ,N6,N3,N4,B6,D1,V1,S1,P2 32 LET N2=N4-N3+1 34 FOR J=1 TO N2 36 READ #1, M (J) , E (J) ,G (J) 38 NEXT J 40 HAT X- ZER(N + 1,N) 41 MAT Z= ZER (1 ,N) 42 MAT Y= ZER<N+1,1) 43 MAT Q=ZER(N+1,N) 44 LET C (1,3)=B6 45 LET D (1,3) =C (1, 3) *0. 002 +0. 0002 46 LET N1=1 54 READ#1,C(1,1) 55 LET C (1,1) =C (1, 1) *100 56 LET D (1,1) =C (1, 1) *0. 002 57 LET C(1,4)=10 58 LET D(1,4)=50 61 READ#1,C (1,2) 62 LET D (1,2) =C (1, 2) *0. 0 1 63 PRINT 64 FOR J=1 TO N2 65 READ#2,S (J) ,« (J) 66 IF S ( J ) O M ( J ) THEN 674 67 NEXT J 68 FOR J=1 TO N 69 FOR 1=1 TO N+1 70 LET X (I, J) = C (1, J) -* (2/ (J • 1) ) *D (1 , J) 75 IF I=J+1 THEN 85 80 GO TO 88 85 LET X (I, J) =C (1, J) + ( (2/(J+1) ) *D (1, J) ) * J 88 NEXT I 90 FOR I=J+2 TO N+1 95 LET X (I,J)=C (1,J) 100 NEXT I 105 NEXT J 106 PRINT 107 PRINT "MATRIX X FOLLOWS. STARTING SIMPLEX: " 108 MAT PRINT X  TO  LISTING OF FILE B.MUBU 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106  08:37 P.M.  MAR.  14, 1977  109 PRINT"CYCLE","O.F. STD. ERROR", "0. F. LOW VALUE", "O.F .HIGH" 110 *CALC STND ERROR OF OBJECTIVE FUNCTION 114 LET Z7=0 115 LET Z8=0 116 LET Z9=0 120 LET T3=1.E70 125 FOR 1=1 TO N+1 130 LET H=I 135 GOSUB 560 140 LET Y(I,1)=Y1 145 NEXT I 150 GOSUB 600 155 T1=0 156 T2=0 160 FOR 1=1 TO N+1 165 LET T1=T1 + Y (1,1) 170 NEXT I 172 LET T1=T1/(N + 1) 175 FOR 1=1 TO N+1 176 LET T2=T2+(Y (1,1)-T1)**2 178 NEXT I 180 LET T= SQR(T2/N) 185 IF T> 1E-3 THEN 270 190 GO'TO 205 195 PRINT 200 PRINT "CYCLE LIMIT. STOP CRITERION =";T3,T 201 PBINT "FAILED TO CONVERGE AFTER ";Z9;" ITERATIONS . X MATRIX FOLLOWS " 202 PRINT 203 MAT PRINT X 204 GO TO 265 205 PRINT 210 PBINT "CONVERGENCE AFTER "; Z9 ;" CYCLES. T3, T = ";T3, ,T 212 PRINT 214 PBINT "RUN NUMBER: ";N6 »» 216 PBINT "*************** 218 PRINT 220 PRINT"X ZERO= ";INT(X(L,4) +.5)/100;" MICRONS. NE W BYPASS=";X(L,3) 222 PRINT 224 LET X5=X(L,1) 226 PRINT "X50C= ";INT(X5+.5)/100;" MICRONS " 227 PRINT 228 LET A9=X (1,2) 230 PRINT "ALPHA= ";A9 231 PRINT 232 PBINT "SIZE","CALC. EFF. ","MEASUSED" , "D/D50C", " GALC. - MEAS.'! 234 FOB J=1 TO N2 235 LET A (J)= <EXP{X (L,2) ) -EXP (X (L, 2) *X (L, 4) /X (L, 1) ) ) *X <L,3) 236 LET A (J) =A(J) +EXP(X(L,2) *M (J) /X (L, 1) )-EXP (X(L,2) * X(L,4)/X(L,1) ) 237 LET A(J) =100*A(J)/(EXP (X (L,2) ) +EXP (X (L,2) *M(J) /X ( L,1))-•2*EXP(X (L,2) *X(L,4)/X(L,1) )) 240 PBINT M(J) ,A(J) ,G{J) ,M(J)/X5,A (J)-G(J)  LISTING OF FILE B.MURU 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162  08:37 P.M.  MAR.  14, 1977  245 NEXT J 246 *CALC. SUM OF SQUARES DUE TO ERROR 247 LET Z7=0 248 FOR J=1 TO N2 249 LET Z7-Z7+ (G (J) -A (J) ) **2 250 NEXT J 252 PRINT "SUM OF SQ0ARES=";Z7 254 PRINT "VARIANCE=«;Z7/(N2-N1 + 1-N) 255 PRINT"N1=";N1 256 PRINT 260 WRITE#3,N6,INT(X5 + .5)/100, A9,INT(X (L,4)+.5)/100,I NT (X (L,3) *10000 +.5) /10000 261 PRINT 263 PRINT "FILE HAS: RUN#,D50C,ALPHA,D ZERO, NEW BYPAS S,OLD,•VARIANCE" 264 PRINT 265 STOP 270 IF Z9=300 THEN 273 271 IF Z9>700 THEN 195 272 GO TO 275 273 MAT PRINT X 274 GO TO 271 275 IF T>T3 THEN 295 280 LET T3=T 285 PRINT Z9,T ,Y(L,1) ,Y(H,1) 290 * REFLECTION 295 MAT Q=(1)*X 300 FOR J=1 TO N 305 LET P=0 310 FOR 1=1 TO N+1 315 IF I=H THEN 325 320 LET P=P+X(I,J)/N 325 NEXT I 330 LET Z (1, J)= (1 + A) *P-A*X (H,J) 335 LET X (H , J) =Z (1, J) 340 LET D (1, J) =P 345 NEXT J 350 GOSUB 560 355 MAT X=(1)*Q 360 LET Y=Y1 365 IF Y>=Y (L,1) THEN 410 370 * EXPANSION 375 FOR J=1 TO N 380 LET X(H,J)= (1 + V) *Z(1,J)-V*D<1,J) 385 NEXT J 390 GOSUB 560 395 IF Y1>Y (L,1) THEN 415 400 LET Y(H,1)=Y1 405 GO TO 150 410 IF Y>Y(S,1) THEN 440 415 LET Y(H,1)=Y 420 FOR J=1 TO N 425 LET X (H, J) =Z (1, J) 430 NEXTJ 435 GO TO 150 440 IF Y>Y(H,1) THEN 465 445 FOR J=1 TO N 450 LET X (H, J) =Z {1,J)  LISTING OF FILE B.MURU 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 20 2 203 204 205 206 207 208 209 210 211 212 213 214 215 216  08:37 P. M.  MAR.  145 14, 1977  455 NEXT J 457 LET Y(H,1) = Y 460 +CONTRACTION 465 FOR J=1 TO N 470 LET X (H, J) = B*X (H ,J) + (1-B) *D (1, J) 475 NEXT J 480 GOSUB 560 485 I F Y1>Y(H,1) THEN505 490 LET Y (H, 1) = Y1 495 GO TO 150 500 * REDUCE SIZE OF SIMPLEX 505 FOR J=1 TO N 510 FOR 1=1 TO N+1 515 LET X (I, J) = (Q (I, J)+Q (L, J) )/2 520 NEXT I 525 NEXT J 530 LET Z8=Z8+1 535 PRINT 540 PRINT "STEP CHANGE";Z8 545 PRINT 550 GO TO 125 555 *OBJECTIVE FUNCTION CALCULATION 560 LET S8=0 561 FOR K=1 TO N2 562 LET Y7= (EXP (X (H, 2) )-EXP (X (H,2) *X (H ,4)/X (H , 1) )) *X ( H,3) 563 LET Y7=Y7 + EXP(X (H, 2) *M (K)/X (H, 1) )-EXP (X (H, 2) *X ( H,4)/X(H,1)) 564 LET Y7=100*Y7/(EXP (X (H , 2) )+EXP (X (H , 2) * M (K)/X (H , 1) ) -2*EXP(X (H,2) *X (H,4) /X(H, 1) )•) 565 LET S8=S8+W (K) * ( (G (K) - Y7) **2) *EXP (SQR {ABS (X (H, 4) ) -X(H,4))) 566 NEXT K 567 LET Z9=Z9+1 568 LET Y1=S8 570 RETURN 598 * CALC HIGH, 2ND HIGH, LOB, (SERCH2) 600 I F Y (1,1)>Y (2,1) THEN 615 605 S=1 606 L=1 607 H=2 610 GO TO 620 615 S=2 616 L=2 617 H=1 620 FOR 1=3 TO N+1 625 I F Y (1,1) >Y (1,1) THEN 635 630 L=I 635 I F Y (1,1) <Y (S, 1) THEN 665 640 IF Y (1,1) <Y (H,1) THEN 660 645 S=H 650 H=I 655 GO TO 665 660 S=I 665 NEXT I 670 RETURN 674 PRINT "ERROR IN SIZING BETWEEN FILES" 675 END  146  RFS  $SIG  NO.  129678  RALU  FORM=ELANK  RRRRRRRRRRR RRRRRRRRP.RRR RR RR RR PR RR RR RRRRRRRRRRR P. RRRRRRRRRRR RP RR RR RR RR RR RR RR  UNIVERSITY  RR RR  C = 400  AAAAAAAAAA AAAA AAA AAAA A AA 4A AA AA AA AA A AA AAA A AAAA 4 AAAAAAAAAAAA AA AA AA AA AA AA AA AA AA AA  8 C COMPUTING CENTRE  MTS(EP256)  T=60SEC  LL LL LL LL LL LL LL LL i LL LL LLLLLLLLLLLL LLLLLLLLLLLL  * * L A S T SIGNON WAS: 1 2 : 2 1 : 2 9 USER "RALU" SIGNED CM AT 12:23:07 $RUN * 8 A S I C E X E C U T I O N BEGINS GET  OF  ON  WED  uu uu uu uu uu uu uu uu uu uu  UU UU UU UU UU UU UU  uu uu uu  UUUUUUUUUUUU UUUUUUUUUU  MAR  09/77  WEIGHT3D  1 295, 8. 2920 42=.-2 ,301 ,9. 96 595 4 E - 2 , 3 0 3 , 0 . 1 1 3 5 801,315,.0.128 2 5 0 6 , 3 2 2 , 0 . 1 4 1 1 8 01 2 330,0.16029 88,338,0.19C3628,346,0.2310482,354,0.2823259,362.0.3535313,370 3 0.4275185,379,1.000325,388,1.061777,397,2.5145 67,406,2.321932,415 4 2. 1 7 8 7 2 3 , 4 2 5 , 2.124101 , 4 3 5 , 2 . 0 0 9 8 0 6 , 4 4 5 , 2 . 1 9 2 1 9 7 , 4 5 5 , 2 . 3 0 7 3 7 7 , 4 6 6 , 2 . 7 8 7 3 3 2 5 4 7 7,2.9948 77,4 8 8 , 3 . 0 4 0 0 36,49 9 , 2 . 7 0 3 2 3 3 , 5 1 1 , 2 . 4 4 7 2 9 3 , 5 2 3 , 2 . 3 1 6 2 1 9 , 5 3 5 6 2.175769,547,2.325353,560,2.045002,573,1.862145,586,1.65995,601,1.691393 7 615, 1. 7 4 4 4 8 7 , 6 2 9 , 1.949834 ,644 , 2 . 2 3 9 4 1 2 , 6 5 9 , 2 . 4 6 9 7 0 7 , 6 7 4 , 2 . 2 5 3 0 2 3 , 6 9 0 8 1. 861831 , 706, 1 . 4 9 1 8 8 7 , 7 2 2 , 1. 2 9 3 7 4 5 , 7 3 9 , 1. 2 6 4 2 0 1 , 756, 1 . 4 3 2 4 2 3 , 7 7 4 , 1 . 6 4 9 6 5 7 9 792,1.806199,810,1.317447,829,1.369327,843,2.12663,863,2.643669,838 10 3 . 4 4 8 0 9 3 , 9 0 9 , 2 . 9 2 5 5 8 7 , 9 3 0 , 1 . 9 2 9 2 2 2 , 5 5 2 , 1 . 4 3 3 0 2 3 , 9 7 4 , 1 . 6 4 3 4 1 9 , 9 9 7 11 2 . 2 6 2 8 3 4 , 1 0 2 0 , 2 . 4 5 6 1 8 4 , 1 0 4 4 , 1 . 8 9 3 9 7 5 , 1 0 6 8 , 1 . 4 1 1 4 8 2 , 1 0 9 3 , 1 . 2 5 0 3 2 1 , 1 1 1 8 12 1 . 3 5 0 0 8 5 , 11 4 4,1. 9 1 5 9 5 3 , 1 1 7 1 ,2. 6 91 4 8 9 , 1 1 9 9 , 2.8 04 723, 1 2 2 7 , 1 .849.383, 1256 13 0 . 8 9 3 0 9 8 6 , 3.295, 1 . 0 4 3 7 5 7 , 1 2 1 5 , 2 . 1 0 3 1 1 1 , 1 3 4 6 , C . 9 0 7 8 1 5 4 , 1 3 7 7 , 0 . 6 6 1 2 4 1 9 , 1 4 0 9 14 0.6 3 4 3 5 1 7 , 1 4 4 2,0.5 307 02 5 , 1 4 7 6 , 0 . 5 3 6 4 0 0 2 , 1 5 0 9, 0.-5100 53,15 4 4 , 0 . 4 9 8 2 1 6 1 '15 1 5 8 0 , 0. 4 9 4 5 6 3 2 , 1 6 1 7 , 0 . 4 9 8 3 C 9 2 , I 655, 0. 5255 731, 1 6 9 4 , 0 . 5 7 5 5 5 8 8 , 1 7 3 3 16 0 . 6 6 2 6 0 9 3 , 1 7 7 3 , 0 . 7 1 9 4 6 1 6 , 1 8 1 4 , 0 . 7 1 5 6 4 1 8 , 1 9 5 6 , 0. 65 45 4 7 6 , 1 9 0 0 ,0. 5 9 8 4 0 84 18 0 . 5 3 2 3 9 2 4 , 2 1 8 0 , 0 . 5 5 9 9 4 7 4 , 2 2 3 1 , 0 . 5 8 7 7 6 7 4 , 2 2 8 3 , 0 . 6 1 1 7 2 5 9 , 2 3 3 6 , 0 . 5 8 2 2 3 9 2  147  17 1 9 4 4 , 0.5 7192 66,-19 89,0.-3 5 3 0 0 4 ! ,20? 5, 0. 53 83 95,2 C8 2,0. 5 2 3 4 2 3 4 . 2130 19 2 3 9 2 , 0 . 5 2 4 0 3 0 3 , 2 4 4 8 , 0 . 4 5 9 5 1 0 1 , 2 5 0 5 , 0 . 4 2 2 9 8 7 1 , 2 5 6 3 , 0 . 4 1 2 5 ? 5 6 . 2 6 2 3 20 0 . 4 2 4 3 9 7 1 , 2 6 3 4 , 0 . 4 5 0 8 7 6 1 , 2 7 4 7 , 0 . 4 6 6 9 1 4 1 , 2 3 1 1 , 0 . 4 6 27 0 4 2 , 2 8 7 6 , 0 . 4 6 3 4 1 3 1 21 2 9 4 3 , 0 . 5 06 5 9 0 3 , 3 0 1 2 , 0 . 6 5 3 0 6 5 3 , 3 03 2,0.98 2992 3 , 3 1 5 4 , 1 . 6 5 5 3 3 5 , 3 2 2 7 , 2 . 8 7 2 0 5 6 22 3 3 0 2 , 2. 6 7 1 3 7 3 , 3 3 7 9 , 1.4 04 1 6 4 , 3 4 5 8 , 0 . 767372 ,3539, 0 . 5 1 0 3 5 4 6 , 3 6 2 1 , 0 . 3 9 8 6 9 3 8 23 3 705, 0 . 3 5 6 9 2 9 4 , 3 7 9 1 , 0 . 3 3 2 8 5 8 7 , ? 8 7 9 , 0 . 3 2 2 1 3 9 4 , 3 9 6 9 , 0 . 3 0 4 9 0 6 4 .4061 24 0 . 2 4 S 9 3 3 1 , 4 1 5 6 , 0 . 1 8 5 3 6 3 2 , 4 2 5 3 , 0 . 1 4 9 6 4 3 2 , 4 2 5 2 , C . 1 3 0 3 6 3 4 , 4 4 5 3 , 0 . 1 1 0 6 8 8 5 25 4 55 7, 0. 1078 40 5, 4 6 6 3 , 0 . 1007 7 79,4 773, 9. 9 6 3 8 9 3 P - 2 , 4 3 8 4 , 9 . 5 2 2 1 4 4 = - 2 , 4 9 9 8 26 0.0 7 3 6 7 2 3 , 511 4,0. 045 4 9 3 4 , 5 2 3 3 , 2. 6 30974-"- 2, 535 5, 1. 92 9 74 8"-2, 54 80 27 1. 4 8 7 1 7 4 = - 2 , 5603 , 1. 6 6 3 6 3 9F.-2 , 5739 ,1 . 7 1 5 6 5 9 E - 2 , 5 B73 , 1 . 8 9 6 7 3 2 c-2 , 6009 23 2.1 7 1 4 0 6 C - 2 , 6 1 4 9 , 2. 5018 4 4 5 - 2 , 62 52 , 2. 927 40 7C--2 , 64? 9, 3. 4 9 5 9 1 4 c - 2 ,6509 29 4. 2 338 2 6f=-2 ,6 742 , 0.05 0 8 0 4 4 , 6 8 99 , 5.46 3946P-2 ,706 0, 5. 534093'-:- 2, 7 2 24 30 5. 9 5 6 9 2 9 - - 2 , 7 392, 7. 272368-. - 2, 7 5 6 5 , 8 . 35457 8 £ - 2 , 7 7 4 1 , 0 . 1 0 7 0 4 8 5,7921 31 0 . 1 1 8 5 1 3 6 , 8 1 0 6 , 0 . 1 3 7 9 6 4 5 , 3 2 9 5 , 0 . 1 4 5 3 0 2 9 , 0 4 8 8 , 0 . 1 2 94 8 6 , 8 6 8 6 , 0 . 1 1 3 6 8 2 5 32 8 83 8 , C . C 0 4 3 0 5 2 , 9 0 5 5 , 6 . 5 7 5 6 9 2 P - 2 , 9 3 0 7 , 5 . 2 i . 7 5 0 4 F - 2 , 9 5 2 3 . 6 . 3 2 8 03 8 - 2 , 9 7 4 5 33 0 . 1 3 3 9 1 3 9 , 9 9 7 2 , 0 . 2 2 1 1 5 0 6 G T P.UN193D 1 1 9 , 1 2 0 , 2 7 3 , 5. 9633 6 1 5 - 2 , 2 . 6 5, 1, 0.35 ,1 .9,295 ,- 1.492902 ,4.55941 1,301 2 - i . 3 4691 5, 4.69676 7 , 3 0 8 , - 1 . 2 3 6 5 6 , 4. 7 5 3 5 2 3 . 3 1 5 , - 1. 0 9 3 6 8 , 4 . 9349 01 ,322 3 -0.9924642,5.03C081,330,-0.0313619,5.181576,338,-0.6814305,5.322567,346 4 - 0 . 5 4 9 5 5 3 , 5 . 4 4 6 5 8 , 3 5 4 , - 0 . 4 3 4 4 3 5 2 , 5. 5 5 4 3 ? 3 , 2 6 2 , - 0 . 2 6 9 2 2 6 5 , 5 . 7 1 0 1 9 , 3 7 0 5 -0.1227196,5.84796,379,0.0140443,5.976568,383,8.247207"-2,6.040916,397 6 1.28 961, 7. 1 7 6 0 6 7 , 4 05, 1. 3 1 3 6 0 9 , 7. I 9 87 1 , 41 5 , 1. 3846.19 ,7 . 2 6 5 4 1 ,425 , 1.420 74 7 7.299?73,435,1.363186,7.245255,445,1.300262,7.186178,455,1.309467,7.19474 8 46 6, 1 . 26 92 60, 7 . 2 5 0 9 7 5 , 4 7 7 , 1 . 3 9 66 0 3 , 7 . 2 76 7 5 5 , 43 8, 1.45383.3, 7 . 3 3 0 4 9 6 , 499 9 1.539354, 7 . 4 1 0 9 1 3 , 511, 1 . 5 0 8 7 , 7 . 382092,52.3,1. 5 4 3 2 0 6 , 7 . 4 ! 4 5 4 , 5 3 5 , 1 . 529553 10 7.401701,547,1.594185,7.462479,560,1.583633,7.452561,573,1.579364 11 7 . 4 4 8 5 4 1 , 5 3 6 , 1 . 4 9 0 1 5 3 , 7 . 3 6 4 6 5 1 , 6 0 1 , 1 . 4 3 5 4 5 0 , 7 . 3 1 3 2 1 8 , 6 1 5 , 1 . 4 1 2 0 8 9 12 7 . 2 9 1 2 4 2 , 6 2 9 , 1 . 4 0 2 5 6 6 , 7 . 2 8 2 2 0 7 , 6 4 4 , 1 . 4 0 7 5 2 8 , 7 . 2 8 6 5 5 3 , 6 5 9 , 1 . 4 3 7 4 1 0 13 7 . 3 1 5 0 6 , 6 7 4 , 1 . 4 2 6 1 1 2 , 7 . 3 0 4 4 2 9 , 6 9 0 , 1 . 4 3 6 2 8 1 , 7 . 3 1 3 9 9 2 , 7 0 6 , 1 . 4 0 5 4 5 6 14 7.2 3 5 0 0 5 , 722, 1.365515, 7. 2 4 7 4 4 5 , 739, 1 . 2 9 8 0 4 3 , 7. 1 8 3 9 9 7 , 7 5 6 , 1 . 2 5 3 6 9 6 15 7 . 1 4 2 2 9 5 , 7 7 4 , 1 . 2 5 3 5 9 5 , 7 . 1 4 2 1 9 9 , 7 9 2 , 1 . 2 8 6 9 7 5 , 7 . 1 7 3 5 9 , 8 1 0 , 1 . 2 3 9 8 7 6 16 7 . 1 2 9 2 5 5 , 8 2 9 , 1 . 0 3 5 4 8 6 , 6 . 5 3 4 1 1 5 , 3 4 8 , 0 . 9 2 5 0 5 3 5 , 6 . 8 3 3 2 5 , - 3 6 8 , 0 . 8 5 6 4 0 6 1 1.7 6. 768 69 7, 08 8, 1.0 10414, 6. 5 1 3 5 2 , 9 0 9 , 1 . 304 562. 7. 1 9 0 1 2 0 , 93 0,1. 63 76 7! 18 7 . 5 0 3 3 7 2 , 9 5 2 , 1 . 2 1 8 1 2 7 , 7 . 6 7 3 0 6 6 , . 9 7 4 . 1 . 7 9 2 0 7 9 , 7 . 6 4 8 5 7 2 , 9 9 7 , 1 . 5 7 1 1 0 4 19 7 . 4 4 0 7 7 4 , 1 0 2 0 , 1 . 3 3 6 5 9 5 , 7 . 2 2 0 2 5 , 1 0 4 4 , 1 . 1 4 1 4 0 6 , 7 . 0 3 6 7 0 1 , 1068, i . 0 6 9 4 3 9 20 6 . 9 6 9 02 6,1093 , 3. . 0 6 5 7 9 3 , 6 . 9 6 5 6 0 1 , 1 1 1 8 , 1 . 1 5 1 0 74, 7. 045 792, 1 1 4 4 , 1 . 3 81 578 21 7. 2 62 55, 1171, 1 . 6 0 9 0 ? 6 , 7 . 4 7 6 4 3 6 , 1 1 9 9 , 1 . 7 3 8 0 9 4 , 7 . 5973 06, 1227, 1. 542612 22 7.41353 1 , 1 2 5 6 , 3 . 0 5 8 5 9 2 , 6 . 5 5 6 4 4 , 1 2 8 5 , 1 . 1 8 3 9 2 , 7 . 0 7 6 6 7 9 , 1 3 1 5 , 2 . 1 3 6 3 3 1 23 7.9 7 2 2 9 5 , 1 3 4 6 , 1 . 6 1 5 4 1 7 , 7 . 4 3 2 4 4 4 , 1 3 7 7 , 2 . 0 4 3 5 1 7 , 7 . 3 8 5 0 1 6 , 1 4 0 9 , 1 . 7 7 6 4 4 1 24 7.633 066, 1442, 1. 6 2 0 3 8 2 , 7.4371 14, 1 4 7 6 , 1 . 5 7 0 7 5 , 7. 4 404 42 , 1 5 0 9 , 1.59001 25 7.45 0553, 3. 544, 1.6 62 57 , 7. 5.26 7 86, 15 0 0 , 1 . 7 7 2 3 2 7 , 7. 6 2 9 9 9 8 , 161 7, 1. 074235 26 7. 7 2 5 8 2 8 , 1 6 5 5 , 1. 9 6 604 9, 7. 83 09 7 5 , 1 6 9 4, 2. 1 1 8 2 2 4 , 7. 955 26 8-, 1 7 3 3 , 2. 2 66 74 7 2 7 8.0 9 4 9 3 4, 1 7 7 3 , 2 . 4 1 3 0 6 0 , 3 . 2 3 2 5 2 9 , 1 8 1 4 , 2 . 520401 , 8 . 3 3 3 5 3 7 , 1 3 5 6 , 2 . 5 8 4 9 4 4 28 8 . 3 9 4 1 5 5 , 1 9 0 0 , 2 . 6 2 3 5 3 3 , 0 . 4 3 5 1 4 5 , 1 9 4 4 , 2 . 6 2 2 7 5 , 8 . 4 2 9 7 0 7 , 1 9 3 9 , 2 . 5 9 2 5 9 6 29 3.4013 5 1 , 2 0 3 5 , 2 . 5 7 1 9 0 5 , 8 . 3 S 1 8 9 8 , 2 0 8 2 , 2 . 6 3 7 9 5 7 , 8 . 4 4 4 0 0 7 , 2 1 3 0 , 2 . 8 3 6 2 1 5 30 8 . 6 3 0 4 4 2 , 2 1 0 0 , 3.08 396, 0 . 8 6 3 4 1 3 , 2231 ,3.2 78505, 9.0463 6 1 , 2 233 ,3. 3 3 9 7 4 9 31 9 . 1 0 3 9 4 9 , 2 3 3 6 , 3 . 2 3 9 3 4 6 , 9 . 0 5 6 5 5 1 , 2 3 9 2 , 3 . 2 3 5 3 C 6 , 9 . 0 0 5 7 3 4 , 2 4 4 8 , 3 . 2 4 8 6 0 2 32 9.0 18 237, 2505, 3. 3 7 6 5 2 7 , 9. 1 3 8 5 3 3 , 256.3, 3. 59428, 9. 343303. ,2623 , 3. 031363 3 3 9.5 66 2 4 6 , 2 6 84,4.0 2069 8 , 9 . 7 4 4 2 9 1 , 2 7 4 7 , 4 . 1 3 3 4 5 , 9 . 0 5 0 3 1 9 , 2 0 1 1 , 4 . 2 6 9 7 2 2 34 9 . 9 7 8 4 6 4 , 2 8 7 6 , 4 . 5 9 3 2 3 6 , I C . 2 8 2 6 9 , 2 9 4 3 , 5 . 1 8 0 2 9 4 , 1 0 . 0 3 4 7 4 . 3 0 1 2 . 5 . 9 9 5 0 0 6 35 1 1 . 6 0 0 3 6 , 3 0 8 2 , 6. 8 3 9 9 3 1 , 1 2 . 3 9 5 4, 31 54, 7.4 85 892, 1 3 . 0 0 2 8 4 , 3 2 2 7 , 7. 85 96 81 36 13.354 3 4 , 3 3 0 2 , 0 . 0 5 7 7 7 , 1 3 . 5 4 0 6 2,33 7 9 , 0 . 2 0 1 8 2 6 , 1 3 . 6 7 6 0 3 , 3 4 5 8 , 8 . 3 6 1 4 5 2 37 13. 8 2 6 1 9 , 353 9, 6. 5 7 0 8 2 4 , 1 4 . 0 2 3 0 8 , 3 6 2 1 . 8. 3 6 7 8 0 9 , 1 4 , 3 0 235 ,37 05 .9.334 79 8 38 1 4 . 7 4 1 4 9 , 3 7 9 1 , 9 . 9 9 4 4 , 1 5 . 3 6 1 7 6 , 3 0 7 9 , 1 0 . 7 9 9 7 7 , 1 6 . 1 1 9 1 , 3 9 6 9 , 1 1 . 6 3 3 0 3 39 16. 9 02 72,4 061 , 12.370 72,17.6039,41. 56 , 1 3 . 1 0 7 0 3 , 1 3 . 2 0 9 5 7 , 4 2 5 3 . 14.09942 40 19. 22 199, 4 3 5 2 , 15. 6 1 5 9 , 2 0 . 6 4 3 0 3 , 4 4 5 3 ,1 7. 6 6 7 7 3 , 22. 5 7 7 5 , 4 5 5 7 , 1 9 . 9 4 945 41 24. 7 2 3 1 5 , 4 6 6 3 , 2 2 . 1 0 1 0 3 , 26. 74643 , 4 7 7 3 , 2 4 . 1 0 1 7 9 , 2 8 . 62 7 8 7 , 4 0 84, 26. 23568 42 30. 63451 , 4 9 5 8 , 2 3. 5005 , 22. 7642 0, 51 14 ,30. 4789 I , 34 .6247 ,5233 3 1.94183 43 36. 0 0 0 3 9 , 53 5 5,34. 2 7 4 0 3 , 3 8 . 1 9 ? 5 5 , 5 4 0 0 , 3 6 . 2 2 3 0 9 , 4 0 . 0 2 6 3 4 , 5 6 C O , 4 0 . 9 2 7 2 5 c  C  44 4 4 . 44 5 5 7 , 5 7 3 9 , 4 5 . C 0 4 2 3 , 4 8 . 2 8 3 R 2 , 5 8 7 3 , 4 9 . 7 0 9 1 6 , 5 2 . 7 0 8 1 9 , 6 0 0 9 , 5 4 . 6 5 5 45 5 7 . 3 5 9 0 9 , 63 4 9 , 5 9 . 5 9 3 2 7 , 6 2 . 0 0 2 8 7 , 6 2 9 2 , 6 4 . 3 0 7 4 1 , 6 6 . 4 3 5 8 9 , 6 4 3 9 , 6 8 . 6 0 0 5 4 46 7 0 . 4 0 052 , 6 5 8 9 , 7 2 . 4 7 1 0 6 , 7 4 . 11271 , 6 7 4 2 , 7 5 . 3 4 5 3 6 , 7 7 . 2 8 5 7 3 , 6 3 9 9 , 7 8 . 4 3 3 3 9 47 7 9 . 7 6 6 5 , 7 0 6 0 , 8 0 . 5 4 3 8 7 , 8 1 . 7 C 4 U , 7 2 2 4 , 8 2 . 4 2 7 1 5 , 8 3 . 4 75 OS, 73 9 2 , 8 4 . 4 3 5 8 1 48 8 5 . 3 6 3 9 6 , 7 5 6 5 , 8 6 . 4 1 3 6 4 , 3 7. 2 2 3 8 4 , 7 7 4 1 , 8.8. 34 2 6 1 , 8 5. 03 7 7 3 , 79 2 1 , 8 9 . 75 72 7 49 9 0. 3 6 8 0 8 , 8 1 06 , 9 1 . 00 97 9 , 9 1 . 5 4 5 9 , 8 2 9 5 , 9 1 . 6 9 6 9 8 , 5 2 . 1 9 2 1 2 , 8 4 8 8 , 9 1 . 5 1 3 4 7 50 9 2. 03.55 5, 3686 , 9 1 . 3001 , 9 1 . 8 1 8 9 , 8 8 8 8 , 90 . 74 81 7 , 5 1 . 29 58 9 , 9 0 9 5 , 9 0 . 49581 51 9 1 . 0 6 2 5 8 , 9 3 0 7 , 8 9 . 6 6 7 6 9 , 9 0 . 2 0 3 6 5 , 9 5 2 3 , 9 0 . 3 6 3 1, 9 0 . 9 3 7 7 8 , 9 7 4 5 . 9 2 . 5 5 6 0 3 52 92.99994,9972,93.70405,94.0795 80 50.5 81 6.08 GET WIRES 3D " W I R E S ( D ) " HAS BEEN C R E A T E D . G T MURU 17 F I L E RUN19 R UN T H I S IS MijRU -  p  * * A  * * * * * *  MATRIX X 583 8. 3 5861.7 5850 5 85 0 5850 CYCLE 5 9 10 12 13 16 17 38 40 42 44 46 48 49 57 66 68 70 72 73 77 78 30 31 87 89 91 93 95 97 99  c  OLLOWS. STARTING SIMPLEX: 6.039467 5.947398E -2 6.0394 6 7 5.947398E -2 6.161067 5.547398E - 2 6.08 6.011251E -2 6. 08 5.963361E -2 O.F.STO.ERROR O . F . L O W VALUE 7620.065 201.6545 7039.068 151.4008 20.15549 151.4008 11.25957 135.5007 9.324518 12 5 . 9 0 0 7 3.300127 129.0285 5.714441 129.0285 5.615161 5 5.58821 2.862014 55.58821 1.071445 55.58821 0.8166523 55.58821 0.6107038 55.58821 0.522921 55.58821 0.4243126 55.53821 0 . 26582 12 53.81211 0.2275553 52.92332 0.2112718 52.92332 0.170338 52.92332 0.1122291 52.92332 4.356468E- 2 52.52332 4.162653E- 2 52.90949 2.765721E- 2 52.90949 1.543664F- 2 52.88455 0.0138243 52.88455 1.1710S7E- 2 52.07503 4.069025E- 3 52.87456 2.880425E- 3 52.87371 2.601567E- 3 52.87249 1.496411F- 3 52.37143 1.465473E- 3 52.87113 1.123561E- 3 52.8711  CONVERGENCE  AFTER  101  CYCLES.  T3,  T =  -10 -10 -10 -10 90 O.F.HIGH 13565.04 15908.39 201.6545 165.69 159.7962 151.4008 142.1449 69.36869 63.14399 58.4512 57.81402 57.13022 56.98332 56.62084 54.44055 53 . 4 9 7 7 53.44283 53.32758 53 . 2 1 8 7 2 53.03589 53.00431 52.97793 52.92332 52.92012 52 . 9 0 4 8 1 5 2 . 8 84 55 5 2.8 79 89 52.87935 52.87508 52.87456 52.87371  1.123561E-3  6.04 7 6 5 1 E - 4  RUN  NUMBER:  19  $ + * + $ * *. it * * * it * A * X  ZERO=  X50C= AL PHA = SIZE 295 301 308 315 322 330 338 346 354 362 3 70 379 383 397 406 415 425 435 445 455 466 477 488 499 511 523 535 5 47 5 60 573 5 86 601 615 629 644 659 674 690 706 722 739 756 774 792 810 829 843 868 883  1.09 58.92  MICRONS.  NEW B Y P A S S =  6.985402E-2  MICRONS  6.039038 CALC. EFF. 7.037687 7.039541 7.C41718 7.043911 7.046119 7.048662 7.051226 7.053311 7.056417 7.059044 7.061693 7.064699 7.067732 7.070794 7.073833 7.077001 7.080499 7.084033 7.087603 7.091209 7.095215 7.099274 7.103374 7.107521 7.112058 7.116731 7.12142 7.126163 7.131377 7.136655 7.142003 7.148262 7.154191 7.160205 7.166744 7.173333 7.180124 7.187429 7.194353 7.202399 7.210552 7.218846 7.227786 7.236891 7.246163 7.256136 7.2663C3 7.277218 7.288357  MEASURED 4.559411 4.696767 4.753523 4.934901 5 . 0 3 0081 5.181576 5.322567 5.44658 5.554833 5.71019 5.84796 5.976563 6.040916 7.176067 7.19871 7.26541 7.299378 7.245255 7.186178 7.19474 7.250975 7.276755 7.330496 7.410918 7.382092 7.41454 7.401701 7.462479 7.452561 7.448541 7.364651 7.313218 7.291242 7.282237 7.286953 7.31506 7.304429 7.313992 7.285005 7.247445 7.183997 7.142295 7.142199 7.17359 7.129295 6.984115 6.83325 6.768697 6.91352  D/D50C 5. 0 0 7 1 6 4 E - 2 5. 109005E-2 5. 2278 1 9 5 - 2 5.346633F- 2 5.46 5447E- 2 5.601234E- 2 5.737022E- 2 5.872809E- 2 6.C08557E- 2 6.144384E- 2 6.280172E- 2 6.432933*- 2 6. 585694E- 2 6.738455=- 2 6.391216E- 2 7.043976E- 2 7.213711 - 2 7.333445"- 2 0.0755313 7.722914E- 2 7.909622E- 2 0. 0809633 8.233037E- 2 8.469745E- 2 8.673426E- 2 8 . 8 7 7 1 0 3 E - •2 9.C80789E- 2 0.0928447 9.505125E- 2 0.0972578 9.946434E- ? 0. 1020104 0. 1043866 0.1067625 0. 1093C89 0.111855 0.114401 0 . 11 7 1 1 6 7 0.1198325 0 . 1225482 0 . 12 5 4 3 3 7 0 . 1283 192 0. 1313744 0. 1344296 0. 1374848 0. 1407098 0.1439347 0. 1473294 0. 1507241 t :  C A L C . - MEAS 2.473276 2.342774 2.283195 2.10901 2.016038 1.067086 ).723659 1.607231 1.501584 1.348854 1.213733 1.083131 1.026816 -0.1052734 - 0 . 1248268 - 0 . 1834089 -0.2188788 - 0 . 161222 -9.B57504E- 2 -0.1035306 - 0 . 1557559 -0.177481 -0.2271216 -0.303397 -0.2699943 -0.2978093 -0.2802805 -0.3363112 -0.3211844 -0.3118864 -0.2226432 -0.1649558 -0.1370509 -0.1220322 -0.1202093 -0.141677 - 0 . 1243048 -0.1265631 -9.015185E- 2 -4.504603E- 2 0.0265548 7.655146E-2 8.553736E-2 6.330097E-2 0 . 1 168643 0.272021 0.4330527 0.5005211 0.3748369  909 930 952 974 997 102 0 1044 1068 1093 1118 1144 1171 1199 1227 1256 1285 1315 1346 1377 1409 1442 1476 1 509 1 544 1530 1617 1655 1694 173 3 1773 1814 1 856 1900 1944 1989 2035 2082 2130 2180 223 1 2283 2336 2392 2448 2505 2563 2623 2684 2747 281 1 2876 2943 3012 3082 3154 3227 3302 3379 3458 3539  7.300298 7.312496 7. 325556 7.33891 7.353192 7. 3 6 7 3 1 1 7. 383432 7. 3 9 9 4 3 6 7.416525 7.434052 7. 452755 7.472703 7. 493973 7. 515S52 7. 539172 7. 563184 7.588773 7.616033 7.644168 7.674138 7.706071 7.740097 7.774251 7.81173 7.851675 7.894257 7.93966 7.988084 8.03843 8.092139 8.149456 8. 2 10643 8.277539 8.347418 8.422102 8.501957 8.587376 8.678789 8. 778706 8.885794 9.000621 9.123804. 9.261047 9.405946 9.56171 9.72923 9.912618 10.11015 10.32656 10.560C1 10.81194 11.08816 1 1.39119 11.71857 12.07876 12.46835 12.39615 13.36607 13.83243 14.44992  7.190128 7.503372 7.673066 7.648572 7.440774 7.22025 7.036701 6.969026 6.965601 7.045792 7.26255 7 . 4 76 4 3 6 7.597806 7.413981 6.99644 7.076679 7.972295 7.482444 7. 8 8 5 0 1 6 7. 633866 7.487114 7.440442 7.458553 7. 526786 7.629998 7.725823 7. 0 3 0 9 7 5 7.955268 8. 094934 0. 232529 0. 333537 8.394155 8.435145 0.429707 8.401351 0.301090 0.444007 8.630442 0.863413 9.046361 9. 103949 9.056551 9.005734 9.010237 9. 138533 9.343301 9.566246 9.744291 9.050319 9.970464 10.20269 10.03474 11. 60086 12.3954 13.00204 •13. 3 5 4 3 4 13.54062 13.67608 13.82619 14.02308  0. 1542805 0. 157853 0 . 1615871 0. 1652213 0 . 1692252 0. 1731291 0. 1772027 0. 1312763 0. 1055197 0.139763 0. 1941761 0. 198759 0.203511 5 0.2002641 0.2131864 0.2181067 0 . 2 2 32 0 0 7 0.2284625 0.2337242 0.2391557 0.244757 0. 2505279 0.2561292 0.2620699 0.2601003 0.2744605 0.2809104 0.20753 0.2941497 0.300939 0 . 3078982 0.315027 0.3224953 0.3299636 0 . 3 3 76C17 0 . 3 4 54 0 94 0 . 3 5 3 3 87 0.3615342 0.3700209 0.3706774 0.3875036 0.3964995 0.4060C46 0.4155097 0.4251846 0.4350292 0.4452133 0 . 4 5 55 6 71 0.4662603 0.4771233 0.4881561 0.4995203 0 . 5 1 1 2 399 0 . 52 3 1 2 1 3 0.5353422 0.5477323 0 . 56 0 4 6 2 9 0.5735324 0.5069415 0.6006899  0.1101701 - 0 . 1908761 -0.3475103 -0.3096624 - 8 . 75 8 1 9 7 C 0.1475606 0.3467306 0.4304101 0.4509245 0.3032599 0 . 1902047 - 3 . 732568E -0.103833 0 . 1 018707 0.5427321 0.4 065049 - 0 . 3035224 0.1235945 -0.2408403 0.0402725 0.2189575 0 . 2 9 9 6 5 53 0.3156977 0.2849433 0.221677 0 . 1684280 0.1036049 3.201641F-5.650415E -0.1403890 - 0 . 1040013 - 0 . 1035121 - 0 . 1576056 -3.2289166 2.075118E-; 0.1200536 0. 1433689 4. 83466?':-: -0.0847067 -0.160567 - 0 . 1033232 6.725339F.-; 0.2553127 0.3077093 0.423177 0.385928S 0.3463716 0.3658631 0.4762373 0.5015428 0.5292502 0 . 2 53424 -0.2096686 -0.6764302 -0.9240845 -0.0859932 -0.6444748 -0.3100084 5.623791F-2 0.4268392  15.06589 3621 3705 15.74255 3791 16.48577 3879 17.30183 3969 18. 19743 4061 19.3 7963 4156 20.26766 4253 21.45892 4352 22.7612 24.18218 4453 4557 25.74473 4663 27.442C8 4773 29.31514 4884 31.31882 4998 33.49179 5114 35.81664 5233 38.31198 5355 40.97405 5480 43.79463 5608 46.76053 5739 49.85329 5873 53.04916 6009 56.29565 6149 59.6078 6292 62.92573 66.234C9 6 43 9 6589 69.47109 6742 72.60054 6899 75.60822 706 0 78.46204 7224 81.12006 83.58095 7 39 2 7565 85.84403 7 741 87.87699 7921 89.69383 8106 91.30316 8295 92.71947 8488 93.94137 8686 94.99453 8888 95.88942 96.64704 9095 9307 97.28235 9523 97.80983 9 74 5 98.2472 93.6056? 9972 SUM OF S Q U A R H S = 4 4 6 . 4 5 6 3 VARIANCE 2.976375 NJ.= 1  FILE  HAS:  RUND50C,ALPHA,D  14.30235 14.74149 15.36176 16.1191 16.90272 17.6039 18.28957 19.22195 20.64803 22.5775 24.72315 26.74643 2 3 . 62 7 3 7 30.63451 32.76423 34.6247 36.0003 9 38. 19355 40.02634 44.44997 48.28382 52.70819 57.35909 62.00287 66.43589 70.43052 7 4 . 11 273. 77.28578 79.7665 81.70411 8.3. 47 50 8 85.36396 87.22334 89.03773 90.36803 91.5459 9 2 . 1923. 2 92.01955 91.8189 91.29939 91.06258 90.28385 90.93778 92.99994 94.0795  ZcRO.NHW  STOP! AT L I N F " 2 6 5 " I N PROGRAM " M U R U " PRflGPAH FNCS L I S T WTRFS3D I 19,5e.92,6.039038,1.C9,0.0699 END-2F-FILE MTS  0.6146082 0.6288659 0.643463 0.6583996 0.6736757 0 . 689253.3 0.7054161 0 . 723.0303 0.738684 0. 7550272 0 . 7734 795 0.7914714 0.8101422 0.8209827 0.0403324 0.0600216 0.00022 0.9089276 0 . 93 0 1 4 4 4 0.9513704 0.5741056 0.99605 1.019934 1.043697 1 . 0 6 79 6 9 1.09292 1. 11038 1.144345 1.170997 1. 190325 1.226161 1.254676 1.204041 1 . 3 1 3 9 14 1.344466 1.375067 1.407947 1.440705 1 . 4 7 4 3 13 1.500599 1 . 5 4 3 7 34 1.579718 1.61638 1.654061 1.692551  B Y P A S S , O L D , V A R IANCE  0.7635433 1.001064 1.124008 1.182728 1.294709 1.575733 1.973088 2.236928 2.113168 1.604682 1.021583 0.6956504 0.6872672 0.684311 0.7275113 1.19194 2.311588 2.780496 3.760286 2.31056 1.569473 0.3409744 -1.063441 -2.395067 -.3. 510113 -4.246432 -4.641615 -4.635241 -4.153279 -3.242072 -2.355016 -1.783013 -1.379812 -1.160785 -0.6742546 -0.2377432 0.5273481 1.921821 3.175620 4.589532 5.504459 6.998999 6.872048 5.247262 4.526133  152  APPENDIX XI THE PLOTTING PROGRAMS I n o r d e r t o format t h e data f o r t h e p l o t t i n g i t was d e c i d e d t o use a tJATFIV language program t o r e a d i n t h e unformatted d a t a t o produce f o r m a t t e d data i n an MTS f i l e o r on punched cards.  The program used f o r t h e punching o f f o r m a t t e d d a t a onto  cards i s l i s t e d . T h i s f o r m a t t e d d a t a was then used as t h e d a t a f o r t h e FORTRAN language p l o t t i n g programs.  T h i s program p l o t s a s o l i d  line  through e v e r y second measured e f f i c i e n c y v a l u e and then draws a dashed curve r e p r e s e n t i n g t h e f i t e q u a t i o n . values of the alpha, d j . , d Q C  Q  The r u n number and  and bypass are a l s o r e c o r d e d by t h e  plotter. The p l o t t i n g program i s a c o n s i d e r a b l y m o d i f i e d v e r s i o n o f an example g i v e n i n t h s manual f o r t h e UBC p l o t r o u t i n e s . Because t h e s i z e a x i s i s on a l o g s c a l e i t was d e c i d e d t o modify the program t o g i v e uneven t i c s on t h e X - a x i s . The p l o t f i l e produced  by t h e p l o t t i n g r o u t i n e s was d i r e c t e d  t o t h e permanent d i s c f i l e RUNPLQT.  T h i s was u s e f u l f o r p r e v i e w i n g  the p l o t s u s i n g t h e T e k t r o n i x s t o r a g e scope p l o t p r e v i e w i n g  facility.  153  SSIG  RALU  FCRM=HLANK  pppp^ppRPpp pppp*pRppRPR RR RR RR RR RR RR RRRrlRRRRRRR RRRRRRRRRRR RR PR RR RR RR PR RR RR RR RR 0  CARDS=200  <\AAMA/\AAA AAAAAAAACftAA AA A A AA AA AA 4A AAAAAAAAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AA AA AA 4A  LL LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  **LAST SIGNCN WAS: 1 7 : 4 3 : 4 7 U S E R " R A L U " S I G N E D ON AT 17:50:54 t RUN * B A S I C EXECUTION BEGINS  UU uu UU uu UU uu UU uu •UU uu uu uu uu uu uu uu uu uu uu uu UUUUUUUUUUUU UUUUUUUUUU  ON H E D F E B  09/77  GET RUN2920 "RU.M29( 0 > " HAS BEEN CR ATFQ. 1 29,120,273,C.C462537,2.65,1.0.35,1.9,295,6-513179,10.83729,301,6.008086 2 10.35556,303,5.603347,9.970013,315,5.416627,9.791453,322,5.160395 3 9 . 5 4 70 7 8 , 3 3 0 , 4 . 9 0 5 2 4 , 9 . 3 8 0 0 2 5 , 3 3 8 , 4 . 6 9 4 4 1 6 , 9 . 1 0 2 6 5 2 , 3 4 6 , 4 . 3 4 7 0 8 4 , 8 . 7 7 1 3 8 5 4 35 4 , 4 . 0 0 0 7 9 , 0 . 4 4 0 7 3 9 , 3 6 2 , 3 - 7 4 0 4 0 1 , 8 . 2 0 0 4 7 , 3 7 0 , 3 . 5 5 0 3 5 8 , 8 . 0 1 1 5 1 1 , 3 7 9 5 2 . 2 1 5 0 6 3 , 6 . 7 3 8 7 4 1 , 3 8 0 , 2 . 3 1 1 9 3 5 , 6 . 0 3 0 3 7 , 3 5 7 , 2 . 3 1 2 5 8 3 , 6 . 8 3 0 9 8 8 , 4 0 6 , 2 . 3 4 5 87 8 6 6 . 8 6 2 7 4 2 , 4 1 5 , 2 . 3 3 3 24 8 , 6 . 0 5 0 6 9 7 , 4 2 5 , 2 . 2 95 5 3 , 6 . 8 1 4 7 2 4 , 4 3 5 , 2 . 3 0 2 5 6 3 , 6 . 8 2 1 4 3 1 7 445,2.25?858,6.775017,455,2.249921,6.771224,466,2.16977,6.69478,477 8 2. 1 2 2 6 3 7 , 6 . 6 4 9 8 7 5 , 4 0 0 , 2 . 0 8 0 7 3 9 , 6 . 6 1 7 4 9 7 , 499, 2 . 1 0 5 5 4 8 , 6 . 6 3 3 5 2 8 , 5 1 1 , 2 . 0994 9 6 . 6 2 766 5 , 5 2 3 , 2 . 1 5 1 3 3 6 , 6 . 6 7 7 1 9 9 , 5 3 5 , 2 . 2 0 6 8 1 1 , 6 . 7 3 0 1 0 8 , 5 4 7 , 2 . 2 6 0 6 9 , 6 . 7 8 1 4 9 5 10 560,2.369064,6.884356,573,2.468745,6.975927,586,2.540793.7.048642.601 11 2 . 4 0 9 4 0 5 , 6 . 9 9 9 6 3 1 , 6 1 5 , 2 . 3 96 0 9 4 , 6 . 9 1 1 3 9 9 , 6 2 9 , 2 . 2 7 5 2 6 6 , 6 . 7 9 5 3 9 7 , 6 4 4 12 2 - 1 9 1 4 6 0 , 6 . 7 1 5 4 7 5 , 6 5 9 , 2 . 1 6 9 4 9 9 , 6 . 6 9 4 5 2 2 , 6 7 4 , 2 . 2 3 8 3 4 1 , 6 . 7 6 0 1 79 , 6 9 0 13 2 . 3 7 5 9 1 5 , 6 . 8 9 1 3 9 , 7 0 6 , 2 . 5 1 5 1 6 1 , 7 . 0 2 4 1 9 5 , 7 2 2 , 2 . 5 5 5 0 8 6 , 7 . 0 6 2 2 7 4 , 7 3 9 14 2 . 4 68 8 9 3 , 6 . 9 8 0 0 6 . 8 , 7 5 6 , 2 . 2 5 1 8 8 3 , 6 . 8 1 1 2 4 5 . 7 7 4 , 2 . 1 4 8 1 8 9 , 6 . 6 7 4 1 5 8 , 7 9 2 15 2 . 0 720 8 2 , 6 . 6 0 1 6 1 1 , 8 1 0 , 2 . 1 0 7 8 2 9 , 6 . 6 3 5 7 0 4 , 8 2 9 , 2 - 1 5 9 0 9 8 , 6 . 6 8 4 6 0 2 , 8 4 8 16 2 - 1 7 2 0 7 3 , 6 . 6 9 6 9 7 7 , 8 6 8 , 2 - 1 4 5 2 1 5 , 6 . 6 7 1 3 6 1 , 8 8 8 , 2 . 0 8 7 6 5 1 , 6 . 6 1 6 4 6 , 9 0 9 r  154  17 2 . 1 0 5 1 0 5 , 6 . 6 3 3 1 0 6 , 9 3 0 , 2 . 1 2 4 5 7 1 , 6 . 6 5 1 6 7 2 , 9 5 2 , 2 . 1 5 9 7 5 7 , 6 . 6 3 5 2 3 , 9 74 18 2 . 2 1 5 5 9 8 , 6 . 73 8 8 7 , 9 9 7 , 2 . 2 7 3 0 4 7 , 6 . 7 9 3 2 8 1 , 1 0 2 0 , 2 . 3 7 7 7 5 5 , 6 . 8 9 3 1 4 5 , 1 0 4 4 19 2 . 5 0 8 8 0 2 , 7 . 0 1 8 1 3 1 , 1 0 6 8 , 2 . 6 3 3 6 3 7 , 7 . 1 3 7 1 9 2 , 1 0 9 3 , 2 . 6 5 3 4 5 6 , 7 . 1 5 6 1 3 2 , 1 1 1 8 20 2 . 5 73 7 1 3 , 7 . 0 8 0 0 4 , 1 1 4 4 , 2 . 3 94 39 3 , 6 . 9 0 9 0 1 3 , 1 1 7 1 , 2 . 2 8 6 8 9 5 , 6 . 8 0 6 4 8 8 , 1 1 9 9 21 2 . 3 2 7 5 5 6 , 6 . 8 4 5 3 0 6 , 1 2 2 7 , 2 . 5 f 3 8 5 9 , 7 . 0 9 4 4 8 5 , 1 2 5 6 , 3 . 0 1 6 5 4 5 , 7 . 5 0 2 3 8 9 , 1 2 8 5 22 3.116635,7.59785,1315,3.010245,7.496384,1346,3.590202,8.049512,1377 23 4 . 0 7 9 1 5 3 , 3 . 5 1 5 84 7 , 1 4 0 9 , 4 . 1 2 4 9 4 4 , 3 . 5 5 9 5 2 , 1 4 4 2 , 4 . 2 3 3 0 3 8 , 8 . 6 6 2 6 1 4 , 1 4 76 24 4 . 3 5 5 7 1 2 , 8 . 7796 1 4 , 1 5 0 9 , 4 . 4 6 2 1 6 3 , 8 . 8 8 1 1 4 2 , 1544 , 4 . 5 4 8 8 4 2 , 8 . 9 6 3 8 1 2 , 1 5 8 0 2 5 4 . 6 1 3 7 3 9 , 5 . 0 2 5 7 0 7 , 1 6 1 7 , 4 . 6 6 6 4 5 8 , 9 . 0 7598 7 , 1 6 5 5 , 4 . 6 8 6 8 5 5 , 9 . 0 9 5 4 4 , 1 6 9 4 2 6 4 . 6 6 5 0 7 1 , 9 . 0 7 84 7 9 , 1 7 3 3 , 4 . 6 0 3 4 6 5 , 9 . 0 2 0 6 7 7 , 1 7 7 3 , 4 . 6 1 2 4 4 9 , 9 . 0 2 4 4 7 6 , 1 8 1 4 2 7 -+.722186,5.129138,1856,4.924102,9.321714,1900,5.120855,9.505367,1944 2 8 5 . 2 2 7 7 2 8 , 9 . 6 1 1 2 9 6 , 1 9 8 9 , 5 . 2 73 2 2 5 , 9 . 6 5 4 6 8 9 , 2 0 3 5 , 5 . 2 9 9 2 1 1 , 9 . 6 7 9 4 7 3 , 2 0 8 2 29 5 . 3 8 1 5 6 5 , 9 . 7 5 8 0 2 2 , 2 1 3 0 , 5 . 5 0 9 0 9 8 , 5 . 8 7 9 6 5 2 , 2 1 8 0 , 5 . 6 6 0 6 4 4 , 1 0 . 0 2 4 1 9 , 2 2 3 1 30 5 . 8 2 8 7 1 9 , 1 0 . 1 8 4 4 9 , 2 2 3 3 , 5 . 9 5 3 2 2 8 , 1 0 . 3 0 8 0 1 , 2 3 3 6 , 6 . 1 2 6 6 7 1 , 1 0 . 4 6 8 6 6 , 2 3 9 2 3 1 6 . 3 4 1 5 1 2 , I C . 6 7 3 5 6 , 2 4 4 8 , 6 . 6 3 3 3 81 , 1 0 . 9 5 1 9 3 , 2 5 0 5 , 6 . 9 3 0 9 3 2 , 1 1 . 2 3 5 7 2 , 2 5 6 3 32 7 . 1 9 4 6 9 9 , 1 1 . 4 8 7 2 9 , 2 6 2 3 , 7 . 3 3 0 2 8 2 , 1 1 . 6 6 4 2 5 , 2 6 8 4 , 7 . 4 6 2 6 3 8 , 1 1 . 7 4 2 8 3 , 2 7 4 7 33 7 . 4 5953 8, 1 1 . 7 3 9 8 8 , 2 3 1 1 , 7 . 458767 , 1 1 . 7 3 9 1 4 , 2 8 7 6 , 7 . 5 9 3 6 5 5 , 1 1 . 8 6 7 7 9 , 2 9 4 3 34 7 . 9 0 8 9 8 7 , 1 2 . 1 6 8 5 4 , 3 0 1 2 , 8 . 3 C 0 7 7 9 , 1 2 . 5 4 2 2 1 , 3 0 8 2 , 8 . 5 9 6 7 3 4 , 1 2 . 8 2 4 4 7 , 3 1 5 4 3 5 3 . 7 1 1 5 8 9 , 1 2 . 9 3 4 0 2 , 3 22 7 , 8 . 7 2 0 9 1 6 , 1 2 . 9 4 2 9 1 , 3 3 0 2 , 8 . 7 8 8 1 8 1 , 1 3 . 0 0 7 0 7 , 3 3 7 9 36 9 . 0 1 7 7 4 3 , 1 3 . 2 2 6 0 1 , 3 4 5 8 , 9 . 4 2 1 5 6 3 , 1 3 . 6 1 1 1 6 , 3 5 3 9 , 1 0 . 0 2 2 6 4 , 1 4 . 1 8 4 4 3 , 3 6 2 1 37 1 0 . 8 5 72 5 , 1 4 . 9 8 0 4 4 , 3 7 0 5 , 1 1 . 9 6 4 7 7 , 1 6 . 0 3 6 7 3 , 3 7 9 1 , 1 3 . 1 7 9 4 7 , 1 7 . 1 9 5 2 4 , 3 879 3 8 1 4 . 1 5 7 8 1 , 1 8 . 1 2 83 3 , 3 9 6 5 , 1 4 . 7 2 2 9 6 , 1 8 . 6 6 7 3 4 , 4 0 6 1 , 1 5 . 0 7 6 2 3 , 1 9 . 0 C 4 2 7 , 4 1 5 6 39 i 5 . 7 1 2 4 5 , 1 5 . 6 1 1 0 6 , 4 2 5 3 , 1 6 . 9 4 2 7 1 , 2 0 . 7 8 4 4 2 , 4 3 5 2 , 1 8 . 5 4 3 9 , 2 2 . 3 1 1 5 4 , 4 4 5 3 40. 2 0 . 0 2 0 6 4 , 2 3 . 7 1 9 9 8 , 4 5 5 7 , 2 1 . 1 6 8 1 4 , 2 4 . 8 1 4 4 , 4 6 6 3 , 2 2 . 5 0 2 C 6 , 2 6 . 0 8 6 6 2 , 4 7 7 3 41 I 4 . 7 5 1 6 2 , 2 G . 2 3 2 1 4 , 4 8 8 4 , 2 8 . 1 1 5 4 9 , 3 1 . 4 4 0 4 2 , 4 9 9 8 , 3 2 . 2 5 5 9 9 , 3 5 . 3 8 9 4 , 5114 4 2 3 6 . 5 7 4 4 2 , 3 9 . 5 0 8 0 9 , 5 2 3 3 , 4 0 . 7 1 6 6 8 , 4 3 . 4 5 87 5 , 5 3 5 5 , 4 4 . 8 6 3 9 7 , 4 7 . 4 1 4 2 1 , 5 4 8 0 . 43 4 9 . 3 3 3 2 3 , 5 1 . 6 7 6 7 6 , 5 6 0 8 , 5 4 . 0 3 8 9 4 , 5 6 . 1 6 4 8 1 , 5 7 3 9 , 5 8 . 6 8 2 7 , 6 0 . 5 9 3 7 8 , 5 8 7 3 44 63.05866,64.76733,6009,67.2735,68.78722,6149,71.51224,72.82991,6292 45 7 5 . 5 7 1 7 8 , 7 6 . 7 0 1 6 8 , 6 4 3 9 , 7 5 . 1 4 5 9 2 , 8 0 . 1 1 4 3 1 , 6 5 8 9 , 8 2 . 2 9 4 7 2 , 8 3 . 1 1 3 6 5 , 6 7 4 2 46 3 4 . 9 6 6 4 , 3 5 . 6 6 1 7 6 , 6 8 9 9 , 8 7 . 4 7 8 2 5 , 8 8 . 0 5 7 4 3 , 7 0 6 0 , 8 9 . 5 5 7 0 3 , 9 0 . 0 4 0 0 6 , 7224 47 91.12233,91.533,7392,92.20637,92.56685,7565,93.37011,93.67677,7741 48 9 4 . 5 4 7 0 7 , 9 4 . 7 9 9 2 9 , 7 9 2 1 , 9 5 . 5 9 1 3 1 , 9 5 . 7 9 5 2 3 , 8 1 0 6 , 9 6 . 5 1 5 5 8 , 5 6 . 6 8 0 5 6 , 8 2 9 5 49 9 7 . 1 8 8 3 9 , 9 7 . 3 1 8 4 4 , 8 4 3 8 , 9 7 . 0 5 3 5 7 , 9 7 . 1 8 9 8 5 , 8 6 8 6 , 9 6 . 9 9 1 9 9 , 9 7 . 1 3 1 1 2 , 8 8 8 8 50 9 7 . 2 810 5 , 9 7 . 5 0 2 1 9 , 9 0 9 5 , 9 8 . 0 4 7 9 6 , 9 8 . 1 3 8 2 4 , 9 3 0 7 , 9 8 . 3 2 7 2 4 , 5 8 . 4 0 4 6 1 , 9 5 2 3 51 9 8 . 1 1 1 5 5 , 5 8 . 1 9 8 9 , 9 7 4 5 , 9 7 . 8 1 1 9 5 , 9 7 . 9 1 3 1 6 , 9 9 7 2 , 9 8 . 1 5 2 0 9 , 9 8 . 2 3 7 5 7 30 54.7 81 6.43 GET JUTPUT 5 01* M i l ) 1 0 F l \SRUN29 20 F I L E RUN25 3 0 F I L E RUN3 7 40 F I L E RUN38 50 F l L F RUN47 2 0 0 F O R L = l TO 9 2 1 0 FOR J = l TO 8 220 REACflL, M J I 230 NEXT J 2 2 1 L FT N 3 = A { 2 ) 232 LET N4=A<3> 240 L E N2=N4-N3+1 2 5 0 P R I N T N2 2 6 0 FOR J = l TO N2 27C * E A O * L , B , C , D 280 PRINT B,C,C 3 C 0 N^XT J 320 RFAC#L,05 330 READ¥L,A9 340 PRINT 05,A9.AI41 36.0 P R I N T M l ) T  5 C C Ijrxr L 9 0 0 ^ND SAVE EXECUTION NFXT CAPO  TERMINATED IS  MTS  tEDIT -FILE 01 1 LINE STOP  $RUN *WATFIV EXECUTION BEGINS 1 INTEGER B,E 2 00 300 K K = 1 , 9 3 READ,NL'MB 4 PUNCH 19,NUMB 5 19 FORMAT (16) 6 29 F0RMAT(I6,2F8.4,I6,2F8.4) 7 59 FORMAT (3-F8.4) 8 NUMB=NUM8/2 " 9 DO 2 0 0 1 = 1 , N U M B 10 RFAD.B.CD 11 REAC,E,F,G 12 PUNCH 2 9 , B , C , D , E , F , G 13 200 CCNTINLE i4 READ,D5C,ALPHA,BYPASS i5 PUNCH 5 9 , D 5 C , A L P H A . , B Y P A S S 16 RF A D, NRUN 1 7 PUNCH 1 5 , N R U N 18 300 CONTINUE 19 STOP 20 END tDATA  tSIG  RALU  FQRM = BL ANK  RRRRr<PP RRRR D P ^ R R R g OPRRR RR PR RR RR RR RR P RRRRRRRRRRR RRRRRRRRRRR RR RR RR PR RR RR RR P.R RR RR  AAAAAAAAAA A A A A A A A A A AftA AA i AA AA AA AA AA AAAAAAAAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AA AA AA AA  LL LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  **LAST SIGNON WAS: 10:33:58 U S F R " R A L U " S I G N E D ON AT 10:37:15 t C R E A T ~ P. U N P L O F TL F ALREADY F x T S T S tTMPTY RUNPLOT ION". $RUN * F TN EXECUTION BEGINS T  ON  FRI  UU UU  UU UU  uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uuuuuuuuuuuu uuuuuuuuuu  FEB  11/77  MICHIGAN-TERMINAL  0001 00 0? 0003 00 04 00 0 5 0006 00 0 7 0J03 00 09 0010 00 1 1 0012 0 0 13  NO  SYSTEM  FORTRAN  MAIN  G<41336)  C C S A M P L E PLOT PROGRAM C C*** D E C L A R E ARRAY TO HOLD T H E DIMENSION X!300)tY(3001 COMMON A L P H A , 0 5 C COMM. CM N'RUN C * * * R E A D IN THE DATA 1 N=0  10:37:18 1. 0 0 0 2.000 3.000 4. 000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000 22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000 30.000  DATA  READ 1 9 . N U M FQR AT116) FORMAT ( F 6 . 0 , 2 F 8 . 4 ) IF ( N U M . E Q . O ) GO TO 3 0 0 N'JM=NLiM/2 DO 1 0 0 1 = 1 , N U M READ 2 9 , X ( I ) , Z , Y < I ) X(I)=ftL0G10(X(I3/100.) N=! 100 I F E Q U A L TO Z E R O T E R M I N A T E P R O G R A M 0014 200 IF ( N . E Q . 0 ) GO TO 3 0 0 C A L L S U B R O U T I N E TO DO T H E PLOTTING 0015 C A L L S Uf-'FIJN ( X , Y , N) AND R E T U R N F O R MORE D A T A GOTH 1 0016 P R O G R A M COMES H E R E WHEN F I N I S H E D . 300 0 0 17 CONTINUr c*** T E R M I N A T E P L O T T I N G T H E N S T O P 0018 CALL PLCTND 0 0 19 STOP END 0J20 •OPTIONS IN E F F E C T * I D , E B C D I C , S O U R C E , N O L I S T , N O D E C K , L O A D , N O MAP *nt>TIONS IN E F F E C T * NAME = M A I N , LINECNT = . . 60 'STATISTICS* SOURCE S T A T E M E N T S = 20,PROGRAM SIZE = -STATISTICS* NO D I A G N O S T I C S GENERATED i RO R S I N M A I N 19 29  02-11-77  M  3000  PAGF P 0 0 1  MI D U G AN  TERMINAL  $YS FM  e m R A M  T  SUPontjTTN":-  0001 C***  0(41336)  00 0? 0003  OfM'-NSTC-N  DRAWS  THROUGH  SIZE  X  AXIS  X(N)  ,Y(N)  35.000 36.  MODEL  000  37.000  F0R«A (4F3.4) T  38.000  19,NRUN  RH4D  000  32.000 33.000  r  69  POINTS-LOG  34.000  ;  00 0 6  N  XX(2),YY(Z)  OIM^ISITN  0007  10:37:10 31.  LINE  C*LCULATi PP IC I F N C Y F R O M L Y N C H ' S RF4[? 6 9 , D 5 C , A L P H A , D Z E R O . B Y P S  00 05  02-11-77  SUMFUNU.Y.N)  Mnciri^P  SUBROUTINE D I ^ N M C N 7(3001  0JO4  SUMFUN  39.000  00 08  19  FORMAT  (16)  40.000  00 09 .  49  FPRMA  (2F8.4)  41.000  J = 1,N  42.000  T  00 10 .  00  0011  X ^ M  0012  XZ=DZ RC/05C  00 13  Z(J)=PYPS*(FXP(4LPHA)-EXP{ALPHA*XZ>)+EXP<ALPHA*XR)-EXPIALPHA*XZ)  45.000  00 14  Z ( J ! --H J ) / < F X P < A L P H A ) « - E X P U L P H A * X R ) - 2 * E X P < Z1 J ) - l O O + Z C J )  47.COO  (10.)**(  X<J)))/05C  43.000 44.000  C  0 0 15 0016  1000  1000 C***  0 0 17  ALPHA*XZJ)  C O N * I.NUT FIRST YMT,| =  SCAL  C  46.000 48.000  TH=  POINTS.  49.  o.  000  50.000  0 3 18  Z^IN=0.  C019  DY = 1 0 .  52.000  00 20  DZ=10. 00 700  53.000  0 0 21 0 0 22 00 2?  700  51.000  1=1,N  54.000  x(n  =5 *x ( i j CONTINUE  55. ,  000  56.000  00 24  00  00 25  Y( J ) = ( Y ( J ) - Y M ! N ) / O Y  58.000  Z(J!= <I(JJ-ZMINl/OZ COMTIHUF  59.000  00 2 6 00 27  1200 C*t*  NOW  1 200  PLOT  J'1,N  TH*  57.000  60.000  AXES  61.000  0o28 0029  XX(1)=0. YY(1)=0.  63.000  00 3 0  XX(2)=10.  64.000  0 0 31  YYI2)=0. CALL I INF(  00 32 00 33 00 34  CAUL C*LL  62.000  SYMB0LI3.5,-0.45,0.140,'SIZE (MICRONS)',0.0,14) S Y M B O L I O . , - 0 . 2 7 , 0 . 1 0 , « 1 ' , 0 . , t )  00 35 00 36  00  00 37  XT!C = (ALOG10(4I)  0038 0039  C U L SYMBOL (XT I C O . , 0 . 1 0 0 , CONTTNUF  300  1=1,9  800  00 42  11 = 1 X H C M  00 44  Cf>LL SYt-'BOL CO-NT I \ ' ( j c  0047  1*5  71.000 14,0.,-1)  C«LL  72.000 73.  C6LL SYMBOL (4.9,-0.27,0.10, DO 9 0 0 1=10,100,10  900  68.000 70.000  00 43  0O46  67.000 69.000  AI=I  00 40 00 41  00 45  65. 000 66.000  XX,YY,2,1)  '10»  ,0.,2)  000  74.000 75.000 76.000  ALQGIO(AI)  SYMBOL  1*5  77.000  (XTIC, 0. ,0.100,14,  0..-1)  C4LL A x I S ( 0 • , 0 . , ' P E R C F N T PLOT TH? PUN NUMBFR  EFFICIENCY•,18,10.,90.,YMIN,DY)  CALL  4RUN=NRUN  00 5 0 0 0 51  C1LL  NUM3F.R  (2.3,9.0,0.28,ARUN,0.,-1)  C4LL  SYMBOL  ( 0 . 5 , 8 . 5 , 0 . 1 4 , ' D 5 0 C ( M I C R O N S ) J « , 0 . , 1 4 )  00 52  CALL  00 53  CALL  SYW,BOL(0.5,9.,0.28,'RUN  80.000 81.000 82.000  0048 00 49  N 0 : « , 0 . , 7 )  83.000 84.000  NUMBER(2.40,8.50,0.14,D5C,0.,2) SYMBOL  78.000 79.000  ( 9 . 8 , - 0 . 2 7 , 0 . 1 0 , ' 1 0 0 ' , 0 . , 3 )  ( 0 . 5 , 8 . 0 , 0 . 1 4 , * A L P HA l * , 0 « , 6 }  85.000 86.000 87.000 36.000  MICHIGAN  TERMINAL  SYS  0 0 54 0055 0 0 56 0J57 0058  T  r  M  I" MKT!', AN  C,( 4 1 3 3 6 )  02-11-77  SUMFUN  C A L L N U M B E R (1 . 4 0 , 8 . 0 , 0 . 1 4 , A L P H A , 0 . , 2 ) CALL SYMBOL(0.5,7.5,0.14,'BYPASS:',0«,7) CALL M U M B = R ( 1 . 5 , 7 . 5 , 0 . 1 4 , B Y P S , 0 . , 3 ) CALL SYM80K0.5,7.0,0.14,'DO(MICRONS):»,0.,12) CALL N U M B R ( 2 . 0 , 7 . 0 , 0 . 1 4 , 0 Z E R O , 0 . , 2 ) FINALLY PLOT THE LINES  0J59 00 60 CO 61 00 6 2 00 63 CO 6 4  1100 C.*+*  00 6 5 0066 0067  CALL LTNF(X,Y,N,I) CALL 0 A S H L N ( 0 . 2 , 0 . 1 , 0 . 2 , 0 . 1 ) CALL PLCT ( X ( l ) , Z ( 1 ) , 3 ) DO 1 1 0 0 J = 2 , N CALL PLCT <X(J),Z(J),4) CONTINUE MOVE THE O R I G I N A N D R E T U R N CALL °L0T(12.0,0.,-3) RETURN  NO  ••OPTIONS I N E F F E C T * !D,EBCDIC,SOURCE»NOL1ST,NODECK,LOAD,NOMAP • O P T I O N S IN E F F E C T * NAME = S U M F U N , LINF.CNT = 60 •STATISTICS* SOURCE STATFM=NTS = 67,PROGRAM SIZE = •STATISTICS* NO D I A G N O S T I C S GENERATED ERRORS IN SUMFUN  NO  STATEMENTS  NAME  FLAGGED  NUMBER  ^ AT N ' SUMFUN EXECUTION  OF  TN  THE  ABOVE  ERRORS/WARNINGS  "  SEVERITY 0 0  TERMINATED  C  2 MIN. I S E C . A NO 15 I N C H E S 10 INCHES. T O T A L PLOT T I M E IS W I T H PEN U P .  c  $'UN PLO :Q PAR=RUNPLOT EXECUTION BEGINS 00652023 Q U E U E D FOR S M A L L TOTAL PLOT T I « E 1 MIN. X E C U T I 0 N TERMINATED T  tSIG  3788  COMPILATIONS.  0 0  $RUN - L O A D 9=RUNPL0T EXECUTION 3EGINS P L O T T I N G WILL TAKE A P P R O X . MAXIMUM Y V A L U E IS A P P R O X . 0 MIN 4 6 S C , OR 3 8 ? OF SUCCESSFUL PLOT. X E C U T ! O M TERMINATED  c  89. 90, 91 . 92. 93. 94. 95, 96. 97. 98. 99, 100. 101. 102. 103. 104.  C  C***  BLANK 56 S E C .  PAPER  OF  10:37:18  PAPFR.  000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000  160 APPENDIX X I I MULTIPLE LINEAR REGRESSION The  relevant  e x p e r i m e n t a l d a t a and  v a l u e s of dgggf a l p h a , e t c .  uiere punched onto c a r d s and m a n i p u l a t e d i n t o a f o r m a t t e d d a t a m a t r i x s u i t a b l e f o r a wide range o f c o m b i n a t i o n s of l o g ^ g or l i n e a r forms o f the independent and  dependent v a r i a b l e s .  s p e c i a l f u n c t i o n a l forms o f the v a r i a b l e s mere a l s o  A  feu  included  because o f t h e i r p o t e n t i a l u s e f u l n e s s based on the l i t e r a t u r e survey or The UBC  TRP.  intuition. r e l a t i o n s h i p between t h e s e v a r i a b l e s was T h i s i s a new  studied  v e r s i o n o f the t r i a n g u l a r r e g r e s s i o n  of UBC  TRIP which i s s t i l l being developed by the computer  I t may  be o f i n t e r e s t t o note t h a t UBC  t i m e s a day The  at UBC,  on  using program centre.  TRIP i s c u r r e n t l y used 23  average.  STRREG c o n t r o l c a r d i s the key t o u s i n g t h i s program f o r  v a r i o u s c o m b i n a t i o n s o f dependent and  independent v a r i a b l e s .  Columns 31 t o 80 on t h i s c a r d w i l l be punched a) blank or "0"  with:-  ( z e r o ) i f a v a r i a b l e i s t o be  b) "1" i f a v a r i a b l e i s t o be i n c l u d e d  ignored.  as an independent  v a r i a b l e i f i t i s s i g n i f i c a n t at the s i g n i f i c a n c e s l e v e l s p e c i f i e d i n columns 19-21  ( d e f a u l t v a l u e 0.05).  c) "2" i f the v a r i a b l e i s t o be a dependent v a r i a b l e . d) "3" i f the v a r i a b l e i s t o be i n c l u d e d equation regardless F u l l d e t a i l s o f the TRP UBC  computing  centre.  i n the  regression  of i t s s i g n i f i c a n c e . program package are a v a i l a b l e from  the  161 The names o f t h e v a r i a b l e s used i n t h e program TRP a r e : RUN  = r u n number  ALPHA  = alpha  L0Q05Q - l o g LOGDZ  1 Q  = LOG  1 0  (d  5 Q C  )  (d ) g  BYPASS «= f r a c t i o n o f f e e d s o l i d s which bypasses c l a s s i f i c a t i o n UATUF  - f r a c t i o n o f feedwater r e c o v e r e d i n t h e underflow  VORTEX = v o r t e x f i n d e r diameter i n i n c h e s SPIGOT = s p i g o t diameter USGPM  i n inches  = f e e d s l u r r y f l o w r a t e i n US g a l l o n s per^minute  FE%S0L = p e r c e n t by weight o f s o l i d s i n t h e f e e d s l u r r y HEIGHT = f r e e v o r t e x h e i g h t i n t h e c y c l o n e FE50  = s i z e i n : microns through: which 50$ o f t h e c a l c u l a t e d cyclone feed  passes.  l/SPLIT = r a t i o o f s l u r r y volume i n t h e underflow t o t h a t i n the o v e r f l o w TEMP  = s l u r r y temperature  LGALPH = l o g LGBPS  = log  LOGWUF  sc  log  LOGVTX = l o g LGSPIG = l o g LUSGPM  iog  LGFEPS  log  LGHT  = log  LGFE50 = l o g LGS  -  10 10 10 10 10 1 Q  10 10  in C D  (ALPHA) (BYPASS) (UIATUF) (VORTEX) (SPIGOT) (USGPM) (FEfcSQL) (HEIGHT)  (FE50) 10 (VSPLIT) log (TEMP) log 1 Q  LGTEMP = FEFVOL = volume f r a c t i o n o f s o l i d s i n t h e f e e d LGS/V = l o g (SPIGOT/VORTEX) 1 Q  1 Q  LGV/SAR » l o g (SPIGOT + UORTEX ) 1-RV = orie minus volume r e c o v e r y t o t h e underflow LOGHFT = l o g ( i n l e t p r e s s u r e head i n f e e t o f s l u r r y ) LGPSIG = l°9 , ( c y c l o n e i n l e t p r e s s u r e i n p . s . i . g . ) 2  1 Q  1 Q  in  2  LGHT/Q = l o g  1 Q  (HEIGHT/USGPM)  SUFG/S = underflow s o l i d s f l o w i n grams p e r second. UF%S  = u n d e r f l o w p e r c e n t s o l i d s by weight  OF%S  = o v e r f l o w p e r c e n t s o l i d s by weight  LUSGPS = l o g  1 Q  (SUFG/S)  CQNRFN = 1/((1-FEFVOI_) USGPM) COIMRFS = CONRFN * SPIGOT  tSIG  RALU  PAGES=3CC  RRRRRRRRRRR RRRRRRRRRRRR RR RR RR RR RR RR RRRRRRRRRRRR RRRRiiPRRRRR RR RR RR RR RR RR RR RR  RR  RR  T!fE=60  AAAAAAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AAAAAAAAAAAA AAAAAAAAAAAA AA AA AA AA AA AA AA AA AA AA  FCRM*eL«NK  LL LL LL LL LL LL LL LL LL LL LLLLLLLLLLLL LLLLLLLLLLLL  ••LAST S I G N C N k.4S: 10:07:00 USER " R A L U " S I G N E D ON AT 1C:07:1S JRUN »TPP <.-f;Aii  ON F R I  UU  UU  uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uu uuuuuuuuuuuu uuuuuuuuuu  FEB 25/77  A FTLE EXISTS CONTAINING T H E » F M T S G U R C E OF T H E DDC L'F E N T A T I ON FOR U B C T R P . ! T IS NOT A F I N A L T E X T INDENO, I T IS I N T H S PROCESS C F BEING F O I T E O FOP FUTURE P U B L I C A T I O N . HOWFVFR, I F YOU ARE INTERESTFCC IN O B T A I N I N G INFORMATION ON T H I S F I L E . PLEASE C A L L T H E PROOFS? LIBRARIAN A T <TS66. • « * N . B . * * » I T W I L L B E NECESSARY T O R U N T H I S F I L E W I T H « F « T U N D E R YOUR 1 0 . S0URCE=83 PAGES, EXECUTION BEGINS •»**» A T T E N T I C N T P P USER T H E R E 4RE I N C O N S I S T E N C I E S R E G A R D I N G PLOT C P T I C N S IN S I P P F G AND S T P P . E G R O U T I N E S BETWEEN T E C H N I C A L NOTE T N 6 AND T H E TRP MANUAL « H I C H I S T H E MCST U P - T O - C A T E DOCUM E N T A T I O N FOR T H E T R P PROGRAM. T H I S MANUAL IS A F I R S T D R A F T ANC DOES NCT C O N T A I N F O R M U L A E AND GRAPHS B U T I S U S E F U L N F V E P . T HF.L E S S F O R S E T T I N G U P T R P C O N T R O L CARDS. FOR A CCPY O F T H I S M A N U A L , P L E A S E S U B M I T T H E FOLLOWING JOB: JSIGNON YOURIO P » 2 0 0 F0P.M-8X11 P R I N T - T N YCLRP* *RUN *FMT SCAROS-VOLC-.TRP 1SIGNCFF  T - 1 M PRIO»L  164  i m  J  m  I<I  ifl i r i  i i i i/i i n O O C  ST O  O  i*i  ii  in O  m O  a" <-*> i n i n ir\ IT. m i n ir>  1  */*  ti  O  l' a a. ' t ~ »_ • V- l / i  - LJ  J-  .-J  (M r i  O u <v a IVI  O u1 iv ft r~ l/l  -j-  o o  u u u. D CL ft. »- t~ l/l V)  if> -C  u.' et' cv. h l/l  O u' re a. o i- ;l/! U1  O"'  c? o 1  CONTKOL FORPAT  CARC  NO  CAPCS  1  **  INMSDC  *•**  INMSDC  ****  INMSDC  • * . *  INMSDC  ****  INMSOC  ****  INMSDC  * * * .  INMSDC  **  CONTROL  CARD  NO.  (7F8.4/7F8.4/7F8.4/7F8.4/7F8.4/3F8 RUN HE I C U T L GFEPS LGPSIG 11.00 22.00 1. C41 0.1761 1 2 . CC 22.00 1.014 0.3617 1 3 . CC 22.00  •INPUT  ALPHA  LGD50  FE5C LGHT  VSPIIT LGFE50  LGHT/O 4.110 24.40 1.342  UFSG/S 1. 4 3 5 0.5360E-01  LGS  LGTEMP  UFSSOL 0.7084 19.00  0.3233  -1.271 62.25  7.44C  1.637  0.3201  0.2700E-01 1.316 2 4 . 99  1.2C4  5.25C 23.20 1.342 - C . 158C  1. 3 1 2 0.5690E-01 1.365 122.2  14.00 22.CC 1.04c 1.146  5. 95C 23.20 1.342 -0.2690  1.328 0.6100E-01  15.CC 22 . CO 1.693 0.0  5.346 19.00 1.342 0.4361  1. 9 2 8 0.5140E-01 1.275  6  16.00  6 6 6  22.CO 1.693 -0.2218  3.210 13.10 1. 3 4 2 0.4270  0.5930E-01 1.117 32.04  7 7 7  17.CC 22.00 1.655  7  0.7782  4. 550 22.90 1. 3 4 2 0. 7450E-C1  L. 8 9 5 0.3500E-O1 1.360 117.4  8  18.CC  8  22.00  15.60  8  1.697  1.342  C.5587  BYPASS LGALPh  1.387 34.12  2 0 . 70 1.342 0.8t4CE-0i  5.160  8  C.655C  9  19.00  6.040  C.200CE-C2  1. 3 6 5 171.6  21.00 -1.565 55.03  25.00 - 1 . 245 66.59 -0.4318 29.00 - 1 . 215 67.26 1. 1 3 2 33.00 -1.289  29.50  68.25  1.575  0.9576  1.937 0.416CE-01 1.193 71.55  DATA  LOGDZ TEMP  31.00 -1.227 65.35 -0.3150E-01 26.00 -1.071 71.28 0.5911 28.00  OFSSOL 0. 3920E-01 0. 6138 1 . 2 79 6.670 0.1630E-01 0.8716 1.322 8. 600 0.2140E-01 0.7202 1.398 4.630 0.350OE-01 0.7745  47.22 0.2610E-01 0.7126  71.81  48.63  0.3110E-01 0.7251 1.362  1.342 26.85  0.1600 0.9690E-01 0.2009  USG.->M  FFfSOL LUSGPM. LOGHFT  LGSPIG 1-RV 10.45 -0.6383 0.9451  •  18.03 -0.7959 0.9737  10.34 1.256 0.6964  10.98 1.019 0.5089  0.9300E-02  0.7500  0.3800  31.65  •0.1249  -0.4202  - 0 . 2953  -0.1506  0.9462  9.970 1.500 1.540  40.87 -0.4089 0.9425  11.11 1.611 1.479  0.3290E-01  0.7500 -1.256 -0.4279 0.7400E-01  0.2800E-01 -1.583 0.2722 1.855  1.250 -1.553 -0.6819 0.6270E-01  0.5960E-01 -I.156 0.1408 1.807  1. 0 0 0 -1.225 -0.4559 0.878OE-01  0.2900E-01 -1.507 0.4020E-01  SPIGOT LOGVTX LGV3AR CONP.FS 0.2300 -0.1249 -0.2108 0.2300E-01  -1.495  0.5550E-01 -1.179 0.2705 2.070  1.447  23.00  0.5790E-01  0.6630E-01 0.6580 1.415  -1.381  -1.321  -0.8528  1.250 -1.350 -0.8416 0.1661  0.3560  21.00 1 7 . CC C.5551  0.32O0E-O1 -1.670 0.4010E-01 2.087  1.250 - 1 . 728  0.4470E-01 -1.442 0.2684 1.506  48.11  1.433 0.4770E-01 1.365  C.2788  0.1870S-01 -1.775 0.4170E-01 1.398  0.1001  0.3610E-01 0.5065 1.491 48.16  5.310 23.40 1.230  « 10 iO IC  1.53 3  0.7500 -1.433 -0.6709 0.1696  0.1675  1.29C  0.4450E-01  0.7500 -1.484 -0.5133  0.3690E-01 -1.417 0.2684 1.470  0.3830E-01 0.7280 1 .518  0.6580E-01 0.7810 •  24.90  1.481  LUSG/S 0.3280E-01 -1.407  VGRTEX LOGHUF LGS/V CONRFN  1.250 -1.470 -0.5058 0.2560E-01  1.462 5.420  0.3740E-01 22.00 -1.060 59.93  15.5C  LOGBPS FEFVOL  C.339CE-01 -1.456 0.4500E-01 2. 234  1.770 0.871CE-01 1.356 64.10  9 9  WATUF  0.7500 -1.538 •- 0 . 6 7 0 9  0.1250E-01 0.3900 0.9690E-01 0.2342 0.1000E-01 0.1600 -0.1249 -0.2305 0.2710E-01 0.1800  8.060 -0.7959 0.9511  4 9 . 30 0.9063 0.2044  8.230  49.25  0.9690E-01  -0.7447  0.9154  0.2027 0.2990E-01  0.9440  0.2800 -0.1249 - 0 . 1932  -0.1740E-01  18.53 -0.5528 0.9217  0.5815  21.90 -0.5850 0.9601  49.78 1.340 0.9015  13.26  30.28 1. 1 2 3 0.5516  4 9 . 56 1.268  0.2070E-01 0.2600 0.9690E-01 0.2122 0.16306-01 0.3500 0.0 0.5020E-01  -0.4559 0.9199  0.3070E-01 0.1600 -0.1249 -0.2305  9.890 -0.7959 0.9545  9.980 0.9952 0.5399  i.C  C.2C41  C.2353  29.33  62.85  11 11 11 11  22.00  1. 5 5 4  0.3636  1 7 . CC 1.02C O.C  7.370 24.50  12 12 12 12  21.00  5.990 0.3500E -01 0.8675  1.230 0.2201  0.5150E -01 1.389 26.5-4  -1.288 55.12  23.00 17.CO C.9713 1.057  4.660 21.30 1.230 -0.1130  1.296 0.5820E -01 1.328 8 3 . 34  0 . 2 833 25.00 -1.235 64.93  0.3410E -01 0.6684 1.398  13 13 .3 1 3  24.00 17.00 1.C34 0.6721  7.190 25.20 1.230 -0.1104  1.451 0.5350E-01 1.401 75.49  0.9854 19.00  0.3320E-01 0.8567  14 14 14 14  25.CC 17.CO 1.704 C.414CE-01  4. e40 21.10 1.230 0.3378  1.969 0.8060E-01 1.324 40.23  i5 15 15 15  26.CO 17.CC 1.7C5 -C.458CE-01  4.990 21.40 1.230 0.3514  1.994 0.7000E-01 1.33C 33.07  -1.272 64.38  1.322 7.130  4.080  1.279 6.210  0.1053  0.1690E -01  0.3490E -01 -1.456  1.250 -1.457  0.4230E -01 1.424  -0.8928 ' 0.1020  0.1600 0.9690E -01 0.2009 0.1630E -01  0.3360E -01 -1.467 0.3 750E- 0 1 1.921  0.7500 -1.474 -0.4771  1.467  10.24  10.47  -0.7959 0.9510  0.3343  I.010  22.05 -0.6021 0.9450  9.360 1.343 1. 3 9 4  0.4710E-01  0.2500 -0.1249 -0.2041 0.1180E -01  0.3160E-01 -1.479 0.4370E-01 1.878  1.250 -1.500 -0.5058 0.4770E-01  0.3900 0.9690E-01 0.2342 0.1860E-01  21.92 -0.4089 0.9492  10.31 1.341 1.005  32.00 -1.094 65.09  0.66COE-01 0.6848 1 .505 49.21  0.6070E-01 -1.1R1 0.2785 1.604  0.7500 -1.217 -0.7959 0.1775  0.1200 -0.1249 -0.2389 0.2130E-01  7. 810 -0.9203 0.9254  50.57 0.8927 0.2408  0.4065 35.00  0.5520E-01 0.6981  0.5430E-01 -1.258 0.2793 1.519  1. 2 5 0 -1.265 -0.9208 0.1833  0.1500 0.9690E-01 0.2000 0.2750E-01  7.570 •0.8239 0.9346  50.66 0.8791 0.1533  0.5650E-01 -1.250 0.2798 2 . 142  0.7500 - 1 . 248 -0.3837 0.6750S-01  20.58 -0. 5086 0.9190  50.73 1.313 1. 1 5 3  -1.155 63.05 0.5888 24.00  1. 5 4 4 49.60 0.5620E-01 0.6355  0.3100 - 0 . 1249' -0.1814  16 16 It 16  27.00 17.CC 1.705 0.9542  4.320 22.00 1. 2 3 0 -0.83O0E-01  1.878 0.8810E-01 1.342 138.6  -1.C55 72.41  17 i.7 17 17  23.00 17.CO 1.705 0.7243  5.900 21.00 1.230 -0.847CE-01  1.922 0.6800E-01 1. 3 2 2 101.2  0.6010 35.00 -1.167 69.32  0.5750E-01 0.7709 1.544 49.16  0.4770E-01 -1.240 0.2798 2.005  1.250 -1.321 -0.6198 0.6720E-01  0.3000 C . 9 6 9 0 E -- 0 1 0.2181 0.2020E-01  20.66 -0.5229 0.9363  50.73 1.315 0.9230  18 18 18  29.00 19.50 1.4SC  -1.097 23.00 -1.110 68.55  0.4630E-01 -1.164 0.1444 1. 84 7  1.000 -1.334 -0.4559 0.905OE-01  0.3500 0.0 0.5020E-01 0.3170E-01  12.92 -0.4559 0.9279  30.91 1.111 0.5495  0.2708  1. 746 0.7770E-01 1.382 70.32  0.6850E-01 0.8062  18  6.400 2 4 . 10 1.29C 0.1788  19 19 i9 19  31.CC 22.00 1.037 0.1761  4 . 590 23.70 1. 3 4 2 0.3C5C  1.444 0. 5190E-01 1.375 34.33  0.7574 20.00 -1.285 62.58  0.3600E-01 0.6618 1.301 6.670  0.3170E-01 -1.444 0.441CE-01 1.542  0.7500 -1.499 -0.5133 0.9600E-01  0.2300 -0.1249 -0.2108 0.2210E-01  10.90 -0.6383 0.9507  10.89 1.037 0.5092  <!0 20 20 20  32.00 22.00 1.C6C 0.3617  9.370 24.60 1.342 O.S99CE-01  1.550 0.417CE-01 1.391 49.57  0.8615 24.00 -1.380 66.07  0 . 1 9 6 0 E -01 0.9717 1.380 7. 790  0.2420E-01 -1.708 0.4660E-01 1.695  1.250 -1.616 -0.8182 0.6000E-01  C.1900 0.9690E-01 0.2037 0.1140E-01  17.48 -0.7212 0.9600  11.47 1.242 0.6932  21 i l 21 21  33.00 22.CC 0.9926 1.204  5.100 21.50 1.342 -0.1072  1.294 0.5810E-01 1.332 1C9.6  - 0 . 1135 27.00 -1.236 66.08  0.2180E-01 0.7076 1.431 4.430  0.3300E-01 -1.661 0.3950E-01 2.040  0.7500 -1.482 -0.2953 0.3700E-C1  0.3800 -0.1249 -0.1506 0.1400E-01  28.16 -0.4202 0.9451  9.830 1.450 1.540  22 22 22  34.00 22.OC 1.045  5.810 22.90 1.342  1.215 0.6180E-01 1.360  -0.823S 31.00 -1.20S  0.37406-01 0.7642 1.491  0.3420E-01 -1.427 0.4500E-01  1.250 -1.466 -0.5058  0.3900 0.9690E-01 0.2342  41 . 4 4 -0.4089 0.9418  11.09 1.617 1.476  1. 3 8 0 48.29  1.362 26.66  0.2090E-01  cn  22  1.143  -0.275C  23 23 23  35.00 22.CO 1.692 C C  8.970 26.90 1.342 0.4410  1.57E 0.5300E-01 1. 4 3 C 29.45  1. 5 0 4 34.OC -1.276 67.57  0.6150E -01 0.9528  36.CO 22.CC 1.653 -0.2218  4.060  1.562 0.6110E-01 1. 1 7 3 32.22  1.159 32.00 -1.214 6 5.61  0.5140E -01 0.6C85 1.505 48.05  0.4570E -01 -1.289 0.2682 1.508  1.250 -1.340 -0.8416 0.1708  1. 8 7 3 0.8340E-01 1.337 113.5  0.8102 27.00 -1.079 71.49  0.6900E--01 0.7551 1.431 47.11  0.5430E -01 -1.161 0.2695 2.055  -1.265 -0.4279  0.2718 30.00 -1.384 71.74  0.3410E-C1 0.8331 1.477 48.36  0.278CE-01 -1.467 0.270.2 1.84 3  1.250 -1.556 -C.6819 0.6310E-01  0.9690E-01 0.2122 0. 1640E-01 0.3500 0.0 0.5020E-01 0.3130E-01  23  i<< i<t 24 <:4 25  14.90 1.342 0.4393  85.32  67.49  5.230  1.532 48.03  1.S31 0.3840E -01 -1.211 0.2677 1.470  0.2530E -01 0.7500 -1.416 -0.6709 0.1713  25 25  27.CC 22.00 1.654 0.7782  26 26 26 26  3 8 . CC 22.00 1.655 G.655C  1.342 0 . 560CE-  1.547 0.4130E-01 1.292 70.52  27 27 27  il  39.CO 19.5C 1.468 C . 2 768  5.960 2 1 . 70 1.290 0.1808  1.732 0.857CE-01 1.337 67.46  0. 5C92 25.00 -1.067 63.62  0.6380E-01 0.7752 1 . 398 26.34  0.5550E-01 -1.195 0.1434 1.829  1. 0 0 0 -1.256 -0.4559 0.9C80S-01  23 28 28 28  47.CO 17.CC 1. 7 0 5 C.9550  4.31C 24.40 1.23C  -0.9090E-  1.901 0.8560E-01 1.387 143.3  26.00 -1.C48 72.40  0.6130E-01 0.6345 1.415 48.28  0.5740E-01 -1.212 0.2800 2.156  0.7500 -1.241 -0.3837 0.6630E-01  25 29  49.CO 19.50 1.475  6.330 24.60 1.29C 0.1744  1.740 0.8690E-01 1. 3 9 1 65.02  0.6310E-01 0.8014 1.415 26.12  0.5620E-01 -1.200 0.1400 1.839  1.000 -1.250 -0.4559 0.8910E-01  i5  it  29  NUM3£R RUN ALPr-A LG0 5j LOGOZ BYPASS MATLF VORTcX SPIGJT USCPM FESSJL HEIGHT FE5C VSPLiT TEMP LGALPH LOGa? s LOGWF LGGVIX LGSPIG LUSGPM  0.2788  OF  5.690 24.40 1.342 0 . E19CE6.810 19.60  .  PAIRED OBSERVATIONS RUN ALPHA 25. 25. 25. 29. 29. 26. 26. 29. 25. 29. 29. 25. 29. 29. 29. 25. 25. 29. 25. 29. '29. 29. 29. 29. 29. 29. 29. 25. 29. 29. 29. 25. 29. 29. 29. 29. 29. 29. 25.  LG050  -1.695 26.00 -1.061 63.43  LOGOZ  29. 26. 29. 29.  26. 26. 26.  29. 29. 29. 29.  26. 26. 26. 26.  25. 25. 25. 25.  26. 26. 26. 26. 26. 26. 26. 26. 26. 26.  25. 25. 25. 25. 29. 29.  BYPASS  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 2 9. 29. 29. 29. 29. 29.  WATUF  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  0.7500  0 . 7 5 1 0 E --01  C.9900E -02 0.1600 -0.1249 -0.2305 0.2740E -01 0.1800 0.9690E -01 0.2027  7.970 -0.7959 0.9497  49.20 0.9015 0.2048  8.000 -0.7447 0.9424  0.9031  49.27 -0.1740E-01  0.3070E -01 0.2800 -0.1249 -0.1932 0 . 2 1 0 0 E '-01 0.2600  0.3100 -0.1249 •0.1814  18.22 -0.5523 0.9230  49.43 1.260 0.982C  2 1 . 72 -0.5850 C.9603  49.52 1.337 0.9025  12.86 -0.4559 0.9211  30.73 1.105 0.5501  20.96 -0.5086 0.9178  50.75 1.321 1. 1 5 8  0.2050E-01 0.3500 0. 0 0.5020E-01 0.3120E-01  VORTEX  SPIGOT  29. 29. 29. 29. 29. 29. 29. 25. 29. 29. 29. 29. 25. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  13.05' -0.4559 0.9200  USGPM  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  30.13 1.116 0.5521  FEJSOL  HEIGHT  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 2<:. 25. 29. 25. 25. 25. 25. 29. 25.  cn  LGFEP S LGHT LGFE50 LGS LGTE.iP. FEFVJL  LGS/J LGVS*R 1-RV LOGHFT LGRSIG LGHT/ £ UFSG/S UFTSuL OFSSJL LUSG/S CONPF N CONRFS NUMBiR  OF  VSPLi T TfMP LGALPH L O G BPS LOGKJF LOGVf X LGSPiG LUSGPM L GF E»* S LGHT LGFE30 LGS  29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 2S. 29. 29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29.  29. 29.  29. 29. 29 . 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. OF  29. 29. 29. 29.  PAIRED CESERVATIONS FF 5 C VSPLIT 29.  29. 29.  L G T E if FEFVJL LGS/V LGVSAR i-RV LOGrFT LGPSi G LGHT/ 0 UFSG/S UF*SJL OF*S-iL LUSG/ S CONRFN CG.NRFS  LGFE50 LGS LGTEMP FEFVJL LGS/V LGVSAR 1-RV LOGHFT LGPSIG  29. 29. 29. 29.  29. 29. 29.  FFSC  NUMBcR  29. 29. 29. 29. 29. 29. 29. 29.  PAIREC CESERVATIONS LGFE50 LGS 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29.  26. 26. 26. 26. 26. 26. 26. 26.  29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  26. 26. 26. 26. 26. 26. 26. 26. 26. 26.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  TEMP  LGALPH  LOGEPS  29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  LGTE.MP  29. 29. 29. 29. 29. 29. 29.  FEFVCL  .  LGS/V  29. 29. 29. 29.  29. 29. 29.  29. 29.  29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. . 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  29. 29. 29.  LOGWUF  .  LOGVTX  LGSPIG  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 25. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  LGVSAR  29. 29. 29. 29.  1-RV  29. 29. 29.  LOGHFT  29. 29.  LUSGPM  LGFEPS  LGHT  29. 29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29. 29. 29-  29. 29. 29. 29. 29. 29. 29. 29. 29.  LGPSIG  29.  LGHT/O  UFSG/S  LGHT/C  25. 25. 29. 2S. 29. 25. 25.  UFSG/S UFXSOL OFISJL LUSG/ S CONRFN CCNSFS NUPSiR O F UF*SJl O F S S J L  LUSG/ S CONRFN CONRrS  25. 29. 29. 25. 25. 29. 25.  PAIPEC CESERVATIONS UFSSOL GFXSCL 25. 25. 25. 25. 25. 25. 29. 29. 25.  C OR Rc L A T I C N RUN ALPHA LGD5J LCGCi BVPAiS WATUr VORTiX SPIGJT USGP.-t FESSuL HE I G H T FE50 VSPLIT TEMP LC-ALPH LOG EPS LOG'.JF LOGVIX LGSPIG LUSCt-M LGFEPS LGFT LGFE50 LGS LGTEXP FEFVJL LGS/V LGVSAR 1-RV LOGHrT LGPSi G LGHT/ 0 UFSG/S UFiSjL CFSSOL LUSG/S CCNPFN CONRF S  C O R R E L A T I O N  MATRIX RUN l.OOOC 0.1656 C.2245 -C.2346 C.4119 C.3554  1 .OOCO -0.0945 -O.0004 -0.1441 -0.364C  -C.0309  0.316  C.1586 -0.0423 0.2566 -0.1411 0.2011 C.3531 0.1894 0.1746 C.4C48 C.3607 -0.0171 0.2136 0.0040 C . 2 536 -0.1341  ALPHA  7 -0.0270 0.C493 -0.2557 0.C745 0.5022 -0.3494 -0.1026 0.9870 -0.2122 -0.3968 0.3248 -0.05C3 0.0871  29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29.  LUSG/S  CONRFN  CCNRFS  29. 29.  29.  29. 29.  LGD50  1.0000 0.3071 0.5816 0.5537 0.C531 -C.4082 -C.5441 0.5505 - 0 . 0702 -C.3772 0.3159 C.5356 -0.1275 0. 5670 0.5237 0.C967 -C.3814  -0.  o.ooao 0.042e  0.3536 -0.0180 -C.0545  -0.0355 C.1258 C. 2557 0.2416  -0.0653 -0.1835 -0.2295 -0.2425  0. 2075 -C.0C03 0.2722  -0.1537 -0.1684 -0.2145  -C.1751 0.6280 0.6003  0.1944 C.3865 0.2116 C.24C2 0.1636 C.0018 -C.3569  MATRIX  0.0782 0.4907 - 0 . 3846 -0.1122 -0.2661 -0.2243 0.3127  29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 25. 29.  29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29.  29. 29. 29. 29. 29. 29. 29.  25. 25. 25. 25. 29. 25.  25.  5129 C.9564 - 0 . C683 -0.3905 C.2653 0.5330 C.5432 -C.3740 0.0515 -C.2120 -0.5745 -C.4678 C.5006 -0.1837 0.3645 0.5559  -0.2245  29. 29.  29. 25. 29. 29. 25. 29. 29.  LOGDZ  1.0000 -0.1791 -0.1923  -o.oe43 -0.5814 -0.4131 0.2725 0.0823 -0.2457 -0.3671 0.1343 -0.0812 -0.146 5  -0.1733 -0.1115 -0.5614  -0.4102 0.1979 0.0675  -0.2683  -0.3298 0.0563 0.3027 -0.3574 -0.1654 0.3648 -0.3655 -0.3605 0.4229 -0.3612 0.0411 0.2565 -0.4114 0.448C 0.0563  BYPASS  1.0000 0.9041 -0.2641 0.0371 -0.3506 0.6107 -0.3069 0.2318 0.8571 0.2365 -0.1186 0.9330 0.5010 -0.2400 0.0890 -0.33C6 0.6714 -0.2951 0.2200 0.8361 0.2385 0.5821 0.2091 -0.2422 -0.8565 -0.2839 -0.2133 0.2636 0.1361 0.2696 0.5917 0.1770 0.3646 0.6996  •  WATUF  1.0000 -0.2615 0.1227 -0.2879 0.6157 -0.3901 0.0652 0.9450 0.2630 -0.3434  VORTEX  1.0000 C.01C3  0.8875 0.9898 -0.2405  0.1653 -0.0307 0.0515 -0.3499 -0.3461 0.1707 0.3026 -0.2468 • -0.2746 C. 5 9 8 9  0.1118 -0.2766 0.6631 -0.3801  0.0001 0.1255 -0.0157 0.0519  0.0599 0.9250 0.2758 0.5527 0.2285 -0.2280  - 0 . 36C2 -0.3532 0.1532 -O.034O -C.5601 C.9912 0.3461 -0.1352 -0.1455  -0.9447 -0.2113 -0.1365 0.1891 0.2395 0.2557 0.5945 0.2667 0.3491 0.6498  -0.1183 -0.1658 -0.2081 -0.0159 - 0 . 1427 -0.0766 -0.1138  SPIGOT  USGPM  FEJSOL  HEIGHT  1.0000 0.7098 -0.2598 0.0490 0.2901 0.3799 -0.2316 0.0448 0.0737 0.1500 0.0287 0.9904 0.7408 -0.2069 0.0589 0.2979 0.3900 -0.2012 -0.2804 0.8140 0.1306 -0.3812 0.7250 0.7187 -0.7405 0.7346 0.2897 -0.2946 0.8091 -0.7331 -0.1174  1.0000 -0.3670 0.2037 0.1199 - 0 . 0 6 44 -0.0093 0.1028 -0.3528 -0.2740 0.1559 0.6896 0.964B -0.3891 0.1993 0.1476 -0.0527 0.0237 -0.3546 0.4906 0.2306  1.0000 -0.0622 -0.3983 0.4221 0.6460 -0.2748 0 . 6 159 0.6095 -0.0310 -0.2312 -0.3529 0.9910 -0.0626 -0.4047 0.4014 0.6486 0.5584 -0.1765 -0,0599  l.OOCO -0.2243  -0.3655 0.CE50 0.0368 -0.3365 - 0 . 38C4 0.0463 C.C768  0.1511  -0.0589 0.9557 -0.2435 -0.36S4 0.0557 -0.0636 0.0264 0.0555  0.C631 0.9076 0.8965 -0.9250 0.7467 0.3092 -0.3886  -0.4206 -0.3765 -0.2541 0.3409  C.37C1 0.0372 C.0301  0.0381 0.5862 0.9990  -C.04C4 0.1265 -0.0582  0.7390 -0.8319 -0.7027  0.0470 C.5330 0.5359  -0.0532 -0.0S59 -0.0532  o.ceso  FE5C VSPL1T TEMF LGALPH LGG8PS LCGkUF LCGVTX LGSP1G LUSGPM LGFEPS LGHT LGFE50 LGS LGTEMP FEFVJL LGS/v LGVSAR 1-RV LOGHFT LGFSiG LGHT/G UFSG/ S . (JFJSSJL OF*SJL LUSG/ S CONRFN CONRFS  COFPbLA TICN L GFE30 LGS LGTEMP FEFVJL LCS/X LGVSAR 1-RV LCGHFT LGPSIG LGHT/ C  FE50 l.CCCC 0.22SC -C.4339 C.5356 0.1911 0.0571 -0.33E7 0.2686 C.1611 -0.2636  VSPLIT l.OOCC 0.C936 -0.3122 0.e371 0.9430 - 0 . 3 2 19 0.3714 -0.0376 0.4751  -0.2193  -0.3579 0.2277  0.2186 -C.4429 -0.4095 0.4151 -C.3147 -0.2275 C.26C3 0.2154 -C.2138 C.1964 -0.1510 -C.4111  0.9842 0.1196 0.3961 0.4917 -0.2827 -0.9999 0.0471 0.1058 -0.0464 C.45C 1 0.3173 0.39C8 0.4672 0.0802 0.5202  0.1956 -0.3043 -C.1167  MATRIX LGFE5C l.OfiOO 0.2132 -C.4331 -0.4144 C.4264  LGS 1 .0000 0.1661 0.3776 0.5031  O F J S J L  -0.2243 -0.2259 C.2S77 C.2536 -0.2493 C.2182 -0.1435 -C.4172  -0.2915 -0.9869 0.04 5 8 0.1018 -0.0340 0.445 1 0.3447 0.3676  LUSG/S CON PEN CONRFS  C.2188 - 0 . 3321 -C.1536  0.4847 0.1105 0.5304  CCRRcLATICK  MATRIX UFSSCL l.OOCO 0.5623 C.6258 -0.1432 0.0140  UFSG/S U F * S J L  UF*SUL CFfSJL LUSG/S CCNPrN CONRF S NAME RUN  MEAN 26.5861  QFJSOL l.OOCO 0.0115 0.5458 0.5305  TFMP  l.OOCO - 0 . 1126 0.27C8 0.2986 0.1559 -0.2570 -0.1431 0.6112  LGALPH  1.0000 -0.1874 -0.3769  0.6440 -0.C072 0.4522 0. 1808  0.3108 0.0164 0 . 1426 -0.2292 0.0415 0.5351 -0.3499 -0.1207 -0.2871 -0.1606 0.3049 0.3165 0.0455 0.0085 -0.1339 -0.1323 -0.2261 -0.2641 -0.0554 -0.2253 -0.2333  LGTEMP  FEFVOL  1.COOO C.6535 -0.2692 C.1159 -0.1249 - 0 . 1491 -0.C649  1.0000 -0.1502 -0.0673 -0.3548 -0.3631 -0.2401  0.0796 - 0 . 4251 0.1440 0.9960 0.6570 -0.3051 0.1321 -0.C953 - 0 . 1887 -0.1064 0.1630 0.C073 0.4351  0.1285 0.C531 0.4677 C.6448 C.C406 0.4163 . 0.1645  LUSG/S  1.COCO -0.7C39 -0.2823  STANOARO DEVIATION 10.2940  0.3304 0.0428 0.5552 0.9982 0.0454 0.5305 0.5000  CONRFN  1.0000 0.6788  L0G8PS  1.0000 0.9040 -0.2252 0.C786 -0.3535 0.6699 -0.3261 0.1777 0.8386 0.2674 0.59C2 0.1922 -0.2321 -0.8386 -0.3039 -0.2333 0.2794 0.1200 0.2907 0.5957 0.1552 0.4004 0.7143  LGS/V  1.0000 -0.4574 -0.4926 0.6891 0.6533 -0.5532 0.7150 0.3987 -0.2131 0.7657 -0.5685 -0.0411  LOGWUF  LOGVTX  LGSPIG  LUSGPM  1.0000 0.7501 -0.1796 0.0866 0.2749  - 0 . 3698  LGFEPS  LGHT  l.OCOO -0.2546 0.1401 -0.2790 0.6545  1.0000 0.0181 0.1229 -0.0100  -0.3709 0.0478 0.9476 0.3C93 0.5874 0.2601  C.0480 -0.3455 -0.3311 0.1434 -0.0370 - 0 . 5456 0.9938 0.3220 -0.1425  -0.2402 -0.9449 -0.2054 -0.1312 0.1537 0 . 2 50 3 0.2938  0.5856 0.2783 0.3642  0.6729  LGVSAR  1.0000 0.2829 -0.0603 -0.0717 -0.1918 -0.0844 -0.1891 -C.0494  -0.0507 -0.1557 -0.1049  0.3788 -0.2252 -0:2516  1. 0 0 0 0 0. 0. -0. -0.  -0.  1481 1917 0499 1054 3432 5598 2039 0388 5531 9458  1.0000 -0.0560 -0.3719 0.4531 0.6157 0.9818 -0.1450  0. 0. 0. 0. 0. - 0 . 9725 0. 7840 0. 3358 - 0 . 3737  -0.0766 -0.0858  0. 8280 0.1193 -0.3723 0.7265 0.7243 -0.7353 0.7412 0.3310 -0.2656 0.8207 -0.7534  0. 8023 - 0 . 9292  C.9880 0.0510 0.5308  -0.1065  - 0 . 7036  0.6119  1-RV  LOGHFT  LGPSIG  LGHT/O  1.0000 0.9917 -0.9524 0 . 8 161 0.3546 -0.4009 0.8294 -0.9010  1. 0 0 0 0 - 0 . 9468 0. 8568 0. 4518 - 0 . 2796 0. 8 7 1 5 - 0 . 8659  1.0000 -0.7995 -0.3095 0.3626 -0.8203 0.9158  -0.6S56  - 0 . 6536  0.6903  -0.1538 -0.1126 -0.1672 -0.2164 -0.0171 -0.1389  1.0000 -0.0467 -0.1053 0 . 0 4 53 -0.4500 -0.3153 -0.3851 -0.4872 .  -0.0835 -0.5219  -0.0352 -0.4772 -0.4042 -0.2347 0.3594 0.0279 0.5532  l.OOCO - 0 . 2387 -0.3579 0.0549 -0.0653 0.0457 0.0575 0 . 3536 0 . 0 3 31 0.0256 0.0861 -0.0414 0.1222 -0.0550 -0.0514 -0.0862 -0.0767  UFSG/S  l.OCCO 0.55C7 O.C057 0.9654 -0.6656 -0.3328  CONRFS  l.OOCO  a  AL PHA  1.41268 0.255776 0.723740  BYPASS W&TUF  5.69139 1 . 6 9 6 51 0 . 3 4 6 4 54 0 . 4 4 3 9 3 1 = - 01 0 . 4 1 2 ! 0 3 " - •01  VORTFX  0.901379  0.236064  S^IGCT  0.264!38  0 . 3 3 6 6 1 3 6 - •01 9.21271 18.6018  LG050 LOGDZ  USGP.'I  17.4268 3 0 . 9 ? 58  F F 2 SQL H-IGHT  0 . 1 7 1 5 7 9 6 - •01 0 . I 2 2 7 9 6 C - •01  20.1033  FE 5 0  2.28105  22. 0758  VS^LIT TFM? L G S L PH L D G f l PS LOGWUF  3.18105  0 . 6 3 ! 9 6 5 6 - 01 26.6551 0 . 742 941  0 . 1 7 1 0 4 7 6 - 01 4.79789  -1.38148  0 . 1 8 3 2 36  - 1.40452 - 0 . 1 5 3 9 3 1 = - 01 -0.60*134  LOGVTX L GSP !G LUSOPM  0.104151 0.135204 0.104906 C. 156540  1. 1 B 7 4 4  0.218157  LGFFPS LGH  1.33066  0.322267  1.3  0041  0 . 5 0 9 7 5 3 6 - •01  LGFE50  l.?3?77 -1 . 2 1 5 9 0  0 - 7 1 1 2 8 1 6 - 01 0.125579  1.41891  C . 7 3 9 0 7 1 6 - 01 0.109227 0.187110  T  LGS LG"TMP  0 . ! 5T700  F=FVOL LGS/V LGVSAR  -0.58'*224 0 . 5 13275=- 02 C.940796  1-»V LOGHFT  0.747899  L C ^ S !G LGHT/O UF S G / S  0.4M555 0.112996  0.216567  UFSSOL O TSOL LUSG/S c  COMPFN CONRFS 29 26 28  0.197134 0.151255s- Cl 0.46<?966 0.450599  71. 3934  41.0320  65.9451 27.8495  4.5073B  1.70209  0.257761  19.9773  0 . 3 9 9 8 5 7 6 - 01  0 . 4 8 4 2 0 4 6 - 01  0 . 2 0 7 2 7 6 6 - Cl 0 . 7 3 0 5 0 3 6 - 02 16 S 6 R V & T ! 0 N S T O T A L oes=°v« i^s CQMPLCTF ARF  r  T  DEGREES  OF  FREEDOM RESULTS  CONTROL  C6R0  POTENTIAL  NO.  3  * *  INDEPENDENT PARTIAL  STPR6G  i N O OTHER C3RR.  WITH  * * * *  MURU  STPREG  v a ° H 3 L F S TOLERANCE 1.0000 1.0000  •  WEIGHTING  **** IN  THE  STPR6G  FACTOR  « * * *  REGRESSION  F-RATIO H . 94  STPREG  ANALYSIS  0.5537 0.0T3 1 0.4082  1.0000  0 . 2 3 62 5.400  USGPM  0.5441 0.1505  1.0000 1.0000 1. 0 0 0 0  11.35 252 . 7 0 . 1337  1.0000  4.473  0.0416  l.oooo  2.993 11.09  0.0915 0.0026  FE50 VSPLIT T E M P  0. 0702 0.3772 0.3159 0.5396  1.0000  FOP  STPREG  * * * *  STPREG  * * * *  STPREG  * *  CONTROL  CARD  NO.  LGD50  F-PROB 0.0019 0 . 6 3 57  WATIJF VORTEX SP!GOT FFXSOL HEIGHT  * * « *  0.0266 0.0024 0. 0000 0.7162  -J  > » » > S T " P  NUMBER 1 EGP E S S R-SQUARED = C.9034753 S T A N D A R D ERROR L G 0 5 0 F-PR0B43ILITY = .90000000 VARIABLE CQE^ICIENT FETSOL 0.13069626F-01 CONSTANT 1.2921944 0  POTENTIAL  I N D E P E N D E N T ANO TH<=R PARTIAL CORR WATUE 0.1295 VORTEX 0.393 7 S PIGOT 0.5377 0.6754 usr.oM 0.0356 HEIGHT 0. 0067 F E50 0.3028 VSPLIT 0.3140 TEMP 0  ION  FOLIATION  FOR  LC050  F - P R O B A BI L I T Y 0.8092E-01 STD.  ER9.  LEVEL  F - R A T 10  =  0.0500  F-PROB  0.8221E-03  NORM  252.7  0. 0 0 0 0  0.2954E-C1  0.9505  1913.  C. 0  VARIABLES  IN  TOLERANCE 0.6209 0. 9991 0.9325 0.8653 0. 9961 0.8409 0.8219 0.5826  THF  REGRESSION  F-P. AT 10 0.4365 4.769 10.57 21.81 0.3251E-01 0.1151E-C2 2.624 2.845  NUMBER 2 R E G R E S S I O N E Q U A T I O N FOR L C D 5 0 R-SQUARFO = 0.9475116 F-PR08AEILITY LEVEL S T A N C A ^ D ER-.O" LG050 = 0.6081E-01 F-PROESBILITY = .00000000 VARIABLE COE !C!ENT STD. ERR. F-RATIO USGPM -0.62632131E-02 0. 1341E-02 21.81 FESSOL 0.11931121E-01 0.6642E-03 322.7 CONSTANT 1.4365627 0.-3806C-01 1425.  ANALYSIS  COEF F  5.052 FOR  LG050  F-PROB 0 . 5 2 15 0 . 0 3 63 0.0032 0.0001 0. 8350 0.9235 0.1136 0 . 10C0  > » > > > S T F p  0.0500  c c  POTENTIAL  INDEPENDENT AND O T H E R PARTIAL CT"> 0.2526 VORTFX 0.6952 0 . 1406 SPIGO HEIGHT 0.1327 EE5C 0.0195 VS?LI 0.3140 TEMP 0.1393  WATL'F  T  T  VARIABLES TOLERANCE 0.6165 0.9716 0.4961 0.9583 0.8401 0.8124 0.5226  IN  THE  REGRESSION  F-RATIO 1.703 2 3 . 38 0.5042 0.4485 0.94 76E-02 2.735 0.4948  P NUMflFp 3 R E G R E S S I O N E Q U A T I O N FOR LGD50 R-SOUJRED = C.9728797 F-PROBABILITY LEVEL S T A N D A R D PP.'OR LGD50 0.4458E-01 F-P003ABILITY = .OOOCOOOO VARIABLE COEFFICIENT S D. CRP• F-RATIO VORTFX 0.17507323 0.3620E-01 23.38 USC.PM -0.70617476=-02 0.9968E-03 5 0 . 19 FE*SOL 0 . 11 3 5 4 0 6 4 E - 0 1 0. 4871F-C3 592.2 CONSTANT 1.2 7 9 2 9 8 4 0.4285E-01 891.5  > » » > S T  F-PR03 0.0001 0.0000 0.0 ANALYSIS  NOPM C O E F F -0.2256 0.8677 5.616 FOR  LGD50  F-PROB 0.2012 0.0001 0.4907 0 . 51 60 0.8857 0. 1070 0.4949  C  T  POTENTIAL  I N D E P E N D E N T AND O T H E R PARTIAL COR". 0.C650 SPIGOT 0.0471 HEIGHT 0.1673 FE50 0.3370 WA UF T  0.0500  F-PR09 0.0001 0.0000 C. 0 0 0 0 0.0  V AR I <\ BL E S • I N T H E R E G R E S S I O N A N A L Y S I S TOLERANCE F - R A T 10 F-PROB 0.5613 0.1017 0 . 7 4 72 0.4844 0. 5328E-01 0.8042 0.9580 0.6911 0.4183 0. 7087 4.228 0 . 0 4 84  NO°M COEFF 0.1616 -0.2544 0.8621 5.002 FOR  LGD50  VS"L!T  0.0ft 17 0.4064  TEMP  > » » > S T 6 P  NUMBER  0.6869  REGRESSION  P-SOUARFQ = 0.9773594 S T A N T A P O ERROO L G 0 5 0 F - P R O B A B I L I T Y = .COCOCOOO V A R I A BL E V0 = T 6 X USGPM F = ? S CI-  COEFFICIENT 0.1OC90917 -0.64416?496-02 0. 12S14194E-01  TE"?  -0.504861076-02 1 . 3 5 7 6 6 10  CONSTANT POTENTIAL  INDEPENDENT  AMD  SPIGOT Mr I G H T F650 VSPLIT  OTHER  PARTIAL .0R 0.1424 0.2658 0.2326 0.3446 R  W A T I J F  ;  0.1368  0.9163F-01  0.4995  4.749  EQUATION  FOR  LG050  F-PROBABILITY 0.4157E-01 STO. FRR. 0.34536-01 0.9721F-03 0.63236-03 0.2317E-02 0.  53756-01  VARIABLES T 0 L 6 R AMCE 0.5476 0.3968 0.9468 0.6S26 0.6424  IN  THE  0.7579 0.0375  LEVEL  0.0500  F-P.ATIO 3 0 . 56 4 3 . 91 410.0  F-PR03 0.0000 0.0000 0.0000  0.1762 -0.2320 0.9319  4.749 627.9  0.0375 C.0000  -0.94706-01 5.308  REGRESSION  F - R A T 10 0.4757 1.748 1.316 3.100 0.8317  ANALYSIS F-PROB 0.5039 0.1965 0.2625 0 . 0 3 82 0.3746  NORM  FOR  LGD50  COEFF  OeSFRV D c  1 2 3 4 5 6 7  a 9  lu  u  12 13 14 15 16  I! 15 19  20 21 22 23 24 25  1.4347 1.6374 1.3122 1.3276 1.52 30 1 .9751 1.3935 1.9374 1.7702 I. 4 3 3 C 1.5539 1.2560 1.451 C 1 . 5 6 36 1.9936 1.3780 1.9220 1. 74 5 F. 1.4437 1.5502 1.2543 1.3147 1.97S3 1 . 9 6 1!! 1.S723  2o 27 23  29  1.5472 1. 7 3 2 5 1.5007 1.7400  RESIDUAL -0.4360E-01 0.1308 0. 1 3 6 9 — 0 I - 0 . 1 38 2 E - 0 2 0.1394E-01 -0.4325^-01 0.1322E-O1 - 0 . 143 5 E - C 1 0.3010^-01  -o.isgo^-oi -0.4577E-02 -0.5A53E-01 -0.4S69--01 0.31A1"-01 -0.2640=-01 - 0 . 1917 = - 0 1 - 0 . 1457E-01 0.4883E-C3 -0.2550E-01 0.4069E-01 -0.1490E-01 -0.2565E-03 0.6999E-01 - 0 . I-.Z76E-01 -0.776 7P-C2 0.7716=-02 - 0 . 7935E-03 0. 1582E-01 0.206 7 -C1 C  PREDICTED  . 0 (100S1C0NFIDENCE INTERVALS S C A L E FOR R E S I D U A L S MEAN OBSERVATION - 0 . 7000 -0.4200 -0.1400 0.1400 0.4200 PLUS-MINUS PLUS-MINUS 1 ///////////I///////////!///////////I///////////I///////////]  / / / / / / / / / / / / / / / / / / / / / / / / / / /  1.4783 1.5066 1.2985 1.3250 1.9141 2.0134 1 . 3 3 53 1.9518 1.7401 1.4489 1.5585 1.3525 1.4977 1.97,70 2.0200 1.8972 1.9366 1.7453 1.4692 1. 5 0 5 5 1.3091 1.3150 1 .9083 2.0146 1.83C6 1.9395 1.7333 1.3349  E  -0.4200  AUTO  CORR  COSEF=  -0.2312  / / / / / /  .=  /  S. E E . E . -E E. E. E. E E. . E E. E . E E . E E E -E . E  / / / / / / / / / / / / / / / / / / / /  -0.1400 SCALE  COMPLETE OBSERVATIONS  .£ E .E E . -E E.  •  I///////////I///////////I///////////I///////////I///////////I  -0.7000  29  / /  E  /  /  1.7193  .  DURBIN  WATSON O - S T A T I S T I C  0.1400  0.4200  FOR R E S I D U A L S =  2.401  >0 •F-  PREDICTED 2.000  VALUES  (VERTICAL  AXIS)  VERSUS  OBSERVED  VALUES •  / / / / / / / / / 1 . 3 5 0  1.7C0  1 I  1 1  • *  2.000 1.98 5 j .970 i.955 1.940 1.925  1 1  1.910 1.895 1.830 1.865 1 . 350 1.S35 1 . 52 0 1. 8 0 5 1 . 750 1. 7 7 5 1. 7 6 0 1 . 74 5 1 . 73 0 1.715 1 . 700 1. 6 3 5 •1.670 1.655 1 . 64 0 1.625 1.610 1. 595 1 . 530 1. 56 5 1 . 550 1 . 53 5 1 . 52 0 1.505 1.490 1. 4 7 5 I . 460 1.445 1 . 430 1.415 1 .400 1.335 1.370 1. 355 1.340 1. 3 2 5 1.310 1. 2 9 5 1. 2 3 0 1.265 1.250  1 1  11  I I I I I f I I I I I I I I / / I I  1. 5 5 0 / / / / / / / / /  11  1.400 / / / / / / / / / 1.250  //1///////// 1-250 OIST'NCE  1.400 BETWEEN  SLASHES  ON  THE  X-AXIS  IS  1. 5 5 0 0. 7500E-02  /////////I/////////I/////////| 1.850  2.000  PROBABILITY OF RESIDUALS VS R E S I D U A L S (PLOT T O V E R I F Y T H F NORMALITY OF T H E DIST  THE •  AND REPH; SENTS A :  2. 200  _  ARE POINT  USED  TO PLOT  OUTSIDE  OF  RESIDUALS)  PREDIC TED  VALUES;  " * " IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  GRAPH. 2. 200 2.110  1  / /  2. 020 1 . 53 0 1.340 1 . 75 0  / / / /  *  1. 660 1.57C  /  1.430  /  1.390  1  /  1. 300 1.210  1.300 1  /  1.120  /  1 .030 0. -400  1  / / /  O.S500 0.7600  1.  / / / /  0.6700  1 1  0 . 5 30 0 0.4900  *  0.4000  0.4000  *  / /  0.3100 0.2200 0 . 1 30 0  1. 2  / / /  * *  0.4000E-01 -0. 5C00E-C1 -0.1400  1.  / /  *  -0.2300 - 0 . 3 200  / /  -0.4100 -0.5000  -0.5000 1  -0.5900 - 0 . 6 30 0  /  1  /  1 '  -0.7700 -0.3600  / /  -0.9500  / /  -1.  / /  -1.130 -1.220 - 1 . 310 -1.400  /  -I.400  _  040  .1  -1.490  /  -1.530 -1.670  / 1  / / / /  -1.  760  -1.350 -1.940 -2.  / /  030  -2.120  1  -2.210  /  -2.  -2.300  //I/////////1/////////1/////////I/////////1/////////1/////////I/////////1/////////1/////////1/////////1 -16.84 OISTANCE  BETWEEN  -10.10 SLASHES ON T H E X - A X I S  IS  -3.363 0.3368  3.368  10.10  It  300  -o  cn  PLOT  THE  Of  <  t  ».",•••" REPRE 2.000  YHAT  AND  VS  ••*»  VORTFX  .VERTICAL  A R E US = D T O  s A POINT O U T S I D E  -/  PLOT  AXIS  IS  Y-AXIS.  PREDICTEO  VALUES;  "*••  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  1  »  .  1. 86 5 1 . 350 1. 8 3 5  -/  1. 8 2 0 1 .803 1 . 790  1  1 . 7 7 5" 1. 7 6 0 1 . 74 5 1.730 1.715  * *  -/ / / / / /  1. 6 2 5  .  -1  2  1 1  /  1 1  1.400  r i i  1.250  .  .  1 2  1.610 1 . 505 1 . 580 1.565 1 . 550 1.53 5 1. 5 2 0 1.505 1 . 4'30 1 .475 1.460 1 . 445 1 .430 1. 41  -i / / / / / / / /  1. 7 0 0 1.635 1.670 1.655 1.640  I  1 1 1  1.550  1. 9 4 0 i . 92 5 1.910 1.895 1 . 850  1  / / / / / / /. 1.700  2. 0 0 0 1.935 1.970 1. <".55  1 1 1  / / / / 1 / / / * / 1 . 85 0  POINTS  GRAPH.  5  1. 4 0 0 1. 3 S 5 1.370  *  *  -  *  0.7500 DISTANCE  1. 1. 1. 1.  355 340 32 5 310  1.295 1.230 1. 2 6 5 1.250  BETVEEN  0.8500 S L A S H E S ON T H E  X-AXIS  IS  0.9500 0.5000E-02  1.050  1.150  1.250  ,j  PLOT  THE  OF  Y £ YHAT  V S USGPM  .VERTICIL  AXIS  IS  " . » , » + « AND » * » A R E U S E D T O P L O T P R E D I C T E D R E P R E S E N T S A POINT O U T S I D E GRAPH. 2.000 I  -/ / / / /  / / /  Y-AXIS.  VALUES;  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS 2.000 1 . 935 1. 9 7 0 1 .955 1.940 1.92 5 1.910 1 . 395 1 . 33 0 1.S65 1.850 1. 3 3 5 1 . 32 0 1 . 305 1. 7 9 0 1.77 5 1. 7 6 0 1. 7 4 5 1. 7 3 0 1. 71 5 1. 7 0 0 1.635 1 . 670 1.655 1. 6 4 0 1.625 1.610 1. 59 5 1. 5 3 0 1. 5 6 5 1 . 550 . 53 5 1.520 1. 50 5 1. A 9 0 1.475 1 . 460 1. 4 4 5 1.430 1.415 1. 4 0 0 1. 33 5 1.370 1.255 1. 3 4 0 1.325 1.310 1.29 5 1.280 1.265 1.250  1 1  I 1 1 w  . 1 1.  / / / / / / / / / / 1.700 / / / / / / / / / 1.550 / / / / /  1  / / / /  1  1  1.400 / / / / / / / / / 1.250 7.000 DISTANCE  14.00 BETWEEN  SLASHES  ON T H E  X-AXIS  IS  21.00 0.3500  I/////////I/////////I/////////| 28.00  35.00  i,z.  -O CO  "LIT  OF Y  C YHAT  VS F E J S O L  .VERTICAL  AXIS  Ill IWIVF/A\T01H?OU^ 2.000  IS  Y-AXIS.  V  A  L  U  E  S  :  " * "  I  S  U  S  E  °  W  H  E  R  E  P  R  E  0  I  C  T  E  O  VALOSS  COVER  DATA  /  POINTS  I  I  I I I / I I I /  2.000 1.535 1.970 1.555 1.540 1.92 5 1.910  I 1.  *  1  it  . i  1. 3 9 5 I . 380  *  1 . E65 1. R50 1.635 1. 3 2 0 1.S05 1. 7 9 0 1.775 1. 7 6 0 1 .74 5 1 . 730  1.850  I I I I I / / I /  1.715 1. 7 0 0  1.700 / / / /  1.635 1 .670 1.655 1. 64 0 1.625 1.610 1. 5 9 5 1 . 530 ! . 56 5 1.550 1.535 1. 5 2 0 1. 50 5  1  / /  /  I / 1  I  /  I I I I I / / /  . 2 1 1  1.400 / / /  I / I  " * *  /  1 *  I I 1.250  //1 III m n 11/////////1/////////i DISTANCE 6  0  0  0  1  BETWEEN  SLASHES  5  / / / / / / / / / 1 1 n ii/in  ON T H E X - A X I S 0  0  IS  24.00 0.4500  i/i/nii/\iiiitiiii\iiiiiiiii\iiiuiiu\.  I/////////i 33.00  42.00  1.490 1.475 1.460 1 . 44 5 1. 43 0 1.415 1.400 1.3S5 1.370 1.355 1.340 1.32 5 1.310 1.295 1.2S0 1.265 1. 2 5 0  51 0 0  ^ ^  PLOT  THE  OP  IS  Y-AXIS.  » . » , ••«•» A'lO " * " A R E U S E D T O P L O T P R E D I C T E D ESENTS A PCINT O U T S I D E G R A P h . 2 . COO / / / / / / /  VALUES;  Y  £  YHAT  VS  TEMP  .VERTICAL  AXIS  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS 2 . 00 0 1.535 1.970 1.555 1.940 1.92 5 1 . o 10 1.S95 1.830 1.865 1 . 350 1.335 1 .320 1 . 30 5 1. 7 9 0 1.775 1 . 76 0 1.745 1 .730 1.71 5 1. 7 0 0 1.68 5 1.670 1.655 1 . 640 1. 62 5 1.610 1.595 1. 5 3 0 1. 5 6 5 1 . 550 1. 5 3 5 1.520 1 . 505 1. 4 9 0 1.47 5 1. 4 6 0 1 . 44 5 1.430 1.415 1.400 1.335 1.370 1.355 1. 3 4 0 1.32 5 1.310 1. 29 5 1.230 1.265 1. 3 5 0  ;  1.850  / / / / / / / / / 1.700 / / / / / / / / / 1.550 / /  / . /  1.400  / . / / ; / i / / / / / / / / / /  1.250  ''{^' ''''"'''"''''l»^ 0  DISTANCE  BETWEEN  SLASHES  ON T H E  X-AXIS  IS  0.1600  2  8  '  6  °  3  1  -  8  0  3  5  .00  PREDICTED  2.00  -  VALUES VERSUS 21.  / / /  /  .  1 1 21  / / 1.S5  / / / / / / / / /  .  / / / /  / / / / / / / / / /  11 1 1  .  —  / / / / / / / / /  1  / / /  / / / / / / / / / 1.40  1.25  / / / / / / / / / 1.05 / / / / / / / / /  1  !  11  1  1  / / / /  I 1  1  0.R50 / /  / / / / / / /  /  .  1 1 1 1  1 11 1  .  /  1  / ! / / / / / / / / / 1 / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | 0 . 7 CC -0.420 - 0 . 140 0.140 0.420 0.700 DISTANCE  BETWEEN  SLASHES  0.750  ON T H E  / / / / / / / / / / / / / / / / / / / / /  I I I  / / / / / / / / /  1 1  1  VERSUS RESIDUALS 3341 1  / / / / / / /  0.950  /  1  —  / / / / / / / / /  1.15  / / /  .  1 .55  / / / / / / / / /  / /  1  •  / / / / /  VORTEX 1.25  / / / /  1 111  / / / /  . 70  RESIDUALS  -  / / / / / / / / / / / / / / / / / / /  2442 1 / I / / / / / / / / / I / / / / / / / / / | / / / / / / / / / | / / / / / / / / / I///////// ! -0.700 -0.420 -0.140 0.140 0 .4 2 0 X-AXES IS 0.1400E-01  CD  USGPM  42.0  VERSUS  1 1 1 1 1 1  RESIDUALS / /  1 1  /  .  -/ 1  / /  28.0  1 1 1 1 1  -1  1.  / / / /  1  .  / / / 21.0  1 . Ill 1.1 1  / / /  .  1  2  / / /  •  1 1  1  / 14.0  •  -/  1  1 1 / / / / / / 7.00  1  2  1. 1 1.  1 1 11 1  1  - i \ m i m i i \ i i i m m \ i i i .m n i \ 0.700  -0.420  -0.140  II II ii i U\II  0.140  m m  0.420 D I S T A N C E BETWEEN  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i\ 0.700 SLASHES  VERSUS  RESIDUALS 3.2 1 2 4 I  / /  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 I 1  /  1  FE?S0L  -/ / /  / / / / /  / / 3 5.0  51.0  42.0  -/ / / / /  33.0  1 1 1 1  -/ / / / / / / / /  24.0  1 2 _  •  -/ / / / / / / / /  15.0  -  / / / / / / / / / 6.00  ON  THE  1 U l 121  21 1  — -0.700 X-AXES  03 IS  -0.420 -0.140 0.1400E-01  0.140  0.420  TEMP  VERSUS  35.0  RESIDUALS  2.  31.£  28.6  25.4  22.2  19.0  i\ i ii 11 ii ii I ii i ii 11 ii I ii im -0.700  -0.420  -0.140  ui\  CD L>l  n II II / / / l II i II/II 11  0.140 0.420 D I S T A N C E BETWEEN  0.700 SLASHES  ON  THE  X-AXSS  IS  0.1400E-01  CONTROL  CARD  NO.  4  *"  STPREG  * * * *  POTENTIAL  INDEPENDENT AND O T H E R PARTIAL CORR. LUSGPM 0.9458 LGHT 0.0256 EFVOL 0.2401 LGVSAR 0.0717 c  STPREG  VARIABLES TOLERANCE 1.0000 1.0000 1.0000 1.0000  **** IN  STPREG  ****  THE REGRESSION F-RATIO 229.0 0.1777E-01 1.651 0.1394  R E G R E S S I O N E Q U A T I O N FOR L G P S I G > » » > S T E P NUMBER F-PROBABILITY LEVEL R-SQUARED = 0 . 8 9 4 5 4 5 2 S T A N D A R D ERROR L G P S I G = 0.1490 F - P R 0 3 A B I L I T Y = .OOOCCOOG VAPI ABLE CO = F ! C I E N T S T D . FP.R. F-RATIO 0 . 1251 LUSGPM 1 . 9 5 3 5 4 34 229.0 0.1558 CONSTANT -j.9381517 139.3  STPREG  =  INDEPENDENT AND O T H E R PARTIAL CO°R. 0.3564 0.2771 0.3320  LGHT FEFVOL LGVSAO  VARIABLES TOLERANCE 0.5781 0.8822 0 . 5584  IN  *  ****  STPREG  ****  STPREG  * » CONTROL  CARD  NO.  4  LGPSIG  0.0500  THE REGRESSION ANALYSIS F-RATIO F-PROB 3.782 0.0559 2.162 0.1499 58.46 0.0000  » > » > S T " = P NU' ° E G R E S S I O N C O N A T I O N FOP. L G P S I G "'ROBA KI L I T Y L E V E L P.-SOUAREC = 0.9675361 STANDARD FRRCR L G P S I G = 0.8425E-01 F-PROB-"-BIL! Y = .00000000 VA'- I A B L E COEFFICIENT STD. ERR. F-RATIO LUSGPM 2 . 0 6 9 7 4 57 0. 7455E-C1 770.8 LGVSAR -0.63062633 0.8248E-01 58.46 CONSTANT -1.9728707 0.8981F-01 482.5  STPREG  FOR  NORM C O E F F 0.9458 -41079  F-PROB 0.0000 0. 0 0 0 0  c  POTENTIAL  ****  ANALYSIS F-PROB 0.0000 0.8642 0.2073 0.7110  FOR L G P S I G  0.0500  T  POTENTIAL  INDEPENDENT PARTIAL  AND O T H E * CO R. D  VARIABLES TOLERANCE  IN  THE REGRESSION F-RATIO  F-PROB 0.0 0.0000 0.0000 ANALYSIS F-PROB  LGHT  0 . 5 0 9 6  0 . 1 7 7 3  1 4 . 0 4  0 . 0 0 1 0  FEFVOL  0.5037  0.8822  8.499  0.0072  R E G R E S S I O N E Q U A T I O N FOR L G P S I G » > » > S T E P NUMBER F-PROBABILITY LEVEL R-SOUAREO = 0 . 9 7 9 2 0 8 5 0.6376E-01 S T A N D A R D ERROR L G P S I G » F-PRCeABILITY = .00000000 VARIABLE COEFFICIENT F-RATIO STD. ERR. LUSGPM 2.1018552 ! 170. 0. 6144E-01 LGHT -0.966C6620 14.04 0.2579 LGVSAR -0.62340723 85.70 0. 6 7 3 4 E - 0 1 CONSTANT -0.75475168 5.128 0.3333 POTENTIAL  INDEPENDENT PARTIAL  FEFVOL  AND O T H E R CORP.  0.6177  VARIABLES TOLERANCE 0.3820  IN  THE REGRESSION F-RATIO 14.81  =  NORM C O E F F 1.002 -0.2760 -4.373 FOR  LGPSIG  0.0500  F-PROB 0.0 0. 0 0 1 0 0.0000 0.0309 ANALYSIS F-PROB 0.0008  NORM C O E F F 1.010 -0.1093 -0.2728 -1.675 FOR L G P S I G  GO  -F-  » > » > S T E P  NU-RFP R E G R E S S I O N . E Q U A T I O N FOR LGPSIG R-SQUAREO = 0.9871423 F-PROBABILITY LEVEL S T A M C A R C -RROR LG"SIG 0.5519F-01 F - PROR A RI L I T Y . = . 0  VARIABLE LUSOPM LGHT FFFVOL LGVSAR CONSTANT  COEFFICIENT 2. 1 6 8 7 7 4 2 -0.95356612 0.39122172 -0.62410101 -0.91294309  STO. ERR. 0.5229E-01 0. 2 0 7 0 0.1017 0.5405E-01 0.2707  F-RATIO 1720. 21.22 14.81 133.3 11.38  0.0500  F-PROB 0. 0 0.0001 0.0008 0.0000 0.0026  NORM C O E F F 1.050 -0 .1079 0.9484E-01 -0.2731 -2.026  1 2  3  .0 (100%)C3NFIDFNCE INTERVALS S C A L E FOR R E S I D U A L S ME AN OBSERVATION -1 .500 -0.9000 -0.3000 0.3000 P L U S - MINUS PLUS-MINUS I ///////////I n u n II m\ iiiiiiiiiiI\Iiiiiiiiiii / F  OBSERVED  RESIDUAL  PREDICTED  0.!7610 0. 36170 1.2041  0.9O43 -02 -0.6020E-C1 0.3240E-01 -C.2709F-01 -0.2141E-01 0.7416E-02 -0.4930E-C2 0.1093F-01 -0.2636F-01 -0.2754E-01 0.313J -02 0.3753 -C1 - 0 . 205 1 E - 0 1 -0.6651 -01 0. 1494 -0.?073=-01 -0.14995-01 - 0 . 1348E-C1 -0.?959 -01 -0.3109F-01 0.1433 -0.43205-01 - 0 . 1O72F-01 0.34I7E-01 0. 1146E-01 0.1930F-01 -0.8531E-02 -0.4336E-01 -0.210SE-01  0.1661b 0.42150 1.1707 1.1732 0.214C8E-01 -0.22922 0.73318 0.68B07 0 . 31516 0.23174 -0.39324E-02 0.96937 0 . 6 92 61 0.10791 -0.19519 0.93493 0.73929 0.29228 0.20569 0 .39279 1.C6C3 1.1862 0.10725E-01 -0.25557 0.76674 0.67970 0.28733 1.0024 0.29988  r  4 1.1461 0. 0 5 6 - 0 . 221S0 7 0.7782C 0.60900 9 0.273B0 10 0. 20410 0.0 li 1.0569 12 0.67210 13 \ 0 . 4 1 4 C 0 E - 01 1 5 - 0 . 4 5 t C C E - 01 16 0. 95420 17 0. 72430 13 0 . 2 7 ?. 3 0 0 .17610 19 20 0. 2617C 1.2041 21 22 1.1430 C. C 2i -0.22130 25 0.77320 0. 6 9 9 0 0 26 0.27330 2 7 C. 5 5 5 C 0 2a 29 0.27830  a  c  C  I : :  r  / / / / /  5. E . E  COMPLETE  OBSERVATIONS  A U T O CORR  /  / / / / / / /  / / /  C0EFF=  -0.3328  /  / / / / / / / / / /  E  ~. . E. E E E. E. . E. E .E E F c E. 5  / E  5  111 II II III /1\ 11111111111111111111111111 III II ti//i  OURBIN  WATSON  -0.9000  -0.3000 0.3000 S C A L E FOR R E S I D U A L S  D-STATISTIC  =  u\ / 1  •E t. E E E E E.  -1.500  29  I i n i n/II  e.  / / / / / / / / / /  / /  .0.9000  III i II  / / / / / / / / / / / / / / /  m m  0.9000  2.654  03  cn  PREDICTED 1.210  VALUES  (VERTICAL  AXIS)  VERSUS  OBSERVED  VALUES 210 1B0 150 J.2 0 090  / / / / / /  060 C3C 00 0 .9700 .9 400  / / / 0.9100  .9100 . B800 . 8 500 .3200 . 7500  / / / / / / / / /  1  .7600 .7300 . 7000 6 70C 6400  1 1  0.6100  6100 5800 5 500 520C 4 900  / / / / / / / /  4 600 4300 .4,000 3 700 3 40 0 3 IJ 0 2300  / 0.3100 / / / / /  1  2500 r:'0;i  1  1900 1600 1 300  1  / /  1  / /  000  7000E-01 4000E-01 100CE-C1 2000F-C1  0.1000E-01 / / / / / /  5C00E-01 3030H-C1 1 10 0 1 400 1700  / / /  2 000  -0.2500  n\i  11 ii n i /\i i ni i  -0.2900 DISTANCE  BETWEEN  ii ii fi  ii n ii I\I 11//III  0.1000E-01 S L A S H E S ON T H E X - A X I S  IS  0.3100 0.1500E-01  11 in n\/i 1111 unu/t C.6100  11  u u i m \ i III ii ii n 0.9'00  1  2300 2600 2900  CD  PROBABILITY OF RESIDUALS VS R E S I D U A L S ( P L C T T O V E R I F Y T H N O R M A L I T Y O F T H E 01 S T O F C  THE "•"  RESIDUALS)  » . " , « + •• A N D • « " A R E U S E D T O P L O T P R E D I C T E D REPRESENTS A POINT OUTSIDE GRAPH. 2.200  VALUES:  IS  USED  WHERE  / / / / / / / / /  PRFDICTED  VALUES  COVER  DATA  POINTS 2.200 2. 110 2 . 02 0 1.530 1.340 1.750 I . 660 1.570 1.430  1  1  . 1  1.300 / / / / / / / / /  1  / / /  ..  1. ?50 1.300 1.210 1. 120 1.030 0.9400 0.8500 0.7600 O.O700 0.5300 0.4500 0.4000 0.3100 0 . 2 20 0 0 . 1300 0.4000 -01 5000E-01 1400 -0.2330 - 0 . 3200 -0.4100 -0.5000 -0.5900 -0.bSOC -0.7700 -0.3600 -0.9500 -!.040  1 1  0.4000  I  R  /  I I -0.5000  I  1  /  *  / /  *  / / /  .1 1  / / / /  1  V  130 220  -1.400  1  400 490  /  I  / / / / /  1  / /  1  -2.300  //I i n n n i i\ n u n i n i / / / / / / t i n /run -27.13 DISTANCE  BETWEEN  -16.31 SLASHES ON T H E X - A X I S  tin//////tin IS  -5.437 0.5437  i i m i n i  I / / / / / / / / / 1 /////////1/////////1 5.437  16.3'  i/iii/in  - 1 . 580 -1.670 -1.76 0 -1.850 -1.940 -2.030 - 2 . 120 -2.210 -2.300 27.13  CD CP  PLOT  THE  OF  Y  £  YHAT  VS  LUSGPM  .VERTICAL  AXIS  IS  Y-AXIS.  AND ' * " ARE USED TO PLOT P R E O I C T E O R P R c SENTS A POINT O U T S I D E GRAPH. 1.210  VALUES;  " * "  IS  USED  WHERE  PREDICTED  VALUES  COVFR  DAT A  POINTS  C  I I / / I I I I I  11  0.9100  I I I I I I / I I  1*  1* .1  0.6100  I I / I / /  I I I 0.3100  I / I I I I I / I  0.100CE-01 / / / / / / / / / -0.2900  11  *11  1  1  1  .210 . 130 . 150 1.. 1 2 0 1. C90 1.06 0 1.C30 1. 0 0 0 0.9700 0.9400 0.9100 O.SROO 0 . 3 500 .3200 .7500 .7600 '300 .7 0 0 0 b700 0 - 6 4CC 0 . 6 100 . 5P00 .5500 .5 2 0 0 .4500 .4600 .4300 0.4000 0 . 3 700 0.3400 0.3 100 0.2800 0.2 500 0. 2 200 1500 160 0 1 300 1000 700C.E-01 iOOOF-Ol 1OOOE-OI 2000F-01 5000E-C1 0.300QE-01 0.1100 1400 I 700 2000 2300 2600  // I/////////I/////////I/////////I/////////I/////////I/////////I/////////|/////////I/////////|/////////| 0 -8700 1.020 1.170 1.320 1.470 1.620 O I S T A N C E B E T W E E N S L A S H E S ON T H E X - A X I S IS 0.7500E-02  CD  PLOT  THE  OF Y  £  YHAT  IS  Y-AXIS.  •» 4MD " * » A R E U S E D T O P L O T P R E D I C T E D R E P R E SENTS A POINT O U T S I C E GRAPH. 1.210 / / / /  VALUES;  / /  VS  LGHT  .VERTICAL  AXIS  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS 1. 2 1 0 1.13 0 1. 1 5 0 1. 1 2 0 1. C 9 C 1.060 1.030 1 . 00 0 0.9700 0.9400 0.9130 O.SSOO 0.3500 0.3200 0 . 7 90 0 0.7600 0.7300 0 . 7 00 0 0.6 700 0.t>400 0.6100 O.5SO0 0.5500 0.5200 0.4900 0.4600 0.4200 0.4000 0.3 7J0 0.3400 0.3100 0.2HUU 0.2500 2 200 1 '100 1600 1300 1 00 0 7COC=-01  I  / / /  * 1  C.9100 / /  . I I / I I I  • 1  / 0.6100 / / / / / / / / / O.ilOO  / /  *  /  I I I I I I  -  0.40CG<:-G1 1000E-01 2000-:-Cl 5000E-01 3000H-01 1100 1400 -0.1700 -0.2000 -0.2300 -0.2600 -0.2900  0.1000E-01 / / / / / / / / / -0.2900  / / I/////////I/////////I/////////I/////////|/////////|/////////|/////////| /////////| / / / / / / / / / I / / / / / / / / / ] 1-223 DISTANCE  BETWEEN  1.247 S L A S H E S ON T H E X - A X I S  IS  1.271 0.1200 -02 c  1.295  1.319  1.343  •  PLOT  •  OF Y E Y H A T  RFPRE; 1.210  IMC ) •c 4  / / / / / / / / /  0.9100  VS F c F V O L  .VERTICAL  AXIS  IS  Y-AXIS.  ARE U S E D T O P L O T P R E D I C T E D POINT O U T S I O E G R A P H .  VALUES;  '•*'*  I S USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  2  1.  / / / / /  *  / /  0.7600 0.7300 0.7000 0;6700 0.6400 0.6100 0 . 5 30 0 0.5500 0. 5200 0.4900 0.460C 0.4300 0.4000 0.2700 0.3^00 0. 3100 0.2300 0 . 2 500  *  / /  0.6100  1.210 1. 1 3 0 1. 1 5 0 1.12 0 1.090 1.. 0 6 0 1 .030 1.000 0.9700 0.9400 0.9100 0.3300 0.3500 0 . 3 200 0 . 7 900  . .2  1* 1  / /  / / / / / / / 0.3100  1 1  -  2*«  /  / / / / / / / / O.i.OOOE-01  -/  .1 .2 •  *  *  /  c  / / / / / / / -0.2900  -  0.2200 0. 1900 0. 1 600 0.130C 0.1000 0.7000E-01 0.400CE-C1 0.1000F-01 -0.30005-0! 1 -0.5000 -01 -0.30005-01 - 0 . 1 100 -0.1400 -0.1700  *  -0.2000 -0.2300 - 0 . 2 600 -0.2900  //I/ / / / / / / / / I / / / / / / / / / 1 / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / 1 / / / / / / / / / I / / / / / / / / / I 0. 3000E-01 0.3000E-01 0.1300 0.1800 0.2300 o.; D I S T A N C E BETWEEN S L A S H E S ON THE X - A X I S I S O.25O0E-O2  VO  PLOT  *  nr  y  REPP. E  £  YHiT  VS  LGVSAR  .VERTICAL  AXIS  IS  Y-AXIS.  S E N T s Y ^ I N T ^ o r  1  1.210  5  U  S  E  °  W  H  E  R  E  PREDICTED  VALUES  COVER  DATA  POINTS  2 / / / / ' /  / /  1  . *  .  '  0.9100  1  I / /  /  *  / / / / /  .1  0.6100 / / / / / / / / /  11  0.3100 / / / / / / / / / 0.1000E-01 / / / / / / / / /  1.210 1. 1 8 0 1.150 1.120 1.090 1.060 I . C3 0 1.000 0.9700 0.5400 0.9100 0.S800 0.3500 0 . 3 200 0.7900 0 . 7 600 0 . 7 300 0 . 7 000 0.6700 0.6400 0.6100 0.5900 0.5500 0 . •>? 3 0 0.4500 0.4 600 0.4 ?00 0.4000 0.3700 0.3400 0.3100 0.2S00 0.2500 0.7200 0.1900 0. 1600 0.1300 0.1000 0. 7CO0E-01 0.4000F-01 0.1000E-01 -0.20005-01 -0.500CE-01 -0.3000 -01 -0.1100 -0.1400 -0.1700 - 0 . 2000 - 0 . 2 300 -0.2600 -0.2-3JO c  -0.2900 ,  OISTANCE  BETWEEN  /  SLASHES  VO  ro  ''o\"£''''' '' ^ ON  THE  X-AXIS  IS  O^OOOE-02  °.*000E-01  0.1400  C.2400  PREDICTS!)  -/ / / / / / / / / 0.910  VALUES  VERSUS *  111  1 1 1.  1  1 1 1 2  /  /  / / / 0.610  0.310  1  -/ 1 1 1  1. 1  • 11  11 •  / / / / / 0.1J0E- 01/  1 1 1 1 / / /  -0.290  1  .  / / /  ?  /  .1  / / / / / / / /  /  -/.  1  / / / / / / 1.32  .  -/  /  / / / / / / / /  1 11 1  / / / / / 1.17  /  . 1 3 21  / / /  1 1 1 1 I 1 1  -/ / / / / / / / /  1.02  / / / 1 1 / 0.870 . /I/ ////////I/////////I/////////I/////////I/////////I -1.50 -0.900 -0.300 0.300 0.900 1. 50 DISTANCE B E T W E E N S L A S H E S ON T H E  -  / / /  /  / 1  RESIDUALS  /  1.47  1  I 1 1 1 1 1  VERSUS 1. 1  / / / / / / /  / / /  1  -/  1  / / / / / / / / / / / / / / /  .  1.62  / / / /  -/ / / / / / / / /  1 1 1 1 1 1 1 / / / / / / / / / /  / / / /  LUSGPM  RESIDUALS  3  •  / / /  / / /  1  -/ / /  1 1 1  / / /  1 121  / / / /  1 1 1 1  / / / / / /  - /I  1  ii II III 11 \ II ii n u n iniiinix  - 1 . 50 X-AXES  IS  -0.900 - 0 .300 0.3000E-01  m 0.300  i i i n n 0.900  //////m\  vJD  LGHT 1.34  1.32 / / / / / / / / / 1.29 / / / / / / / / /  13  1.27 / / / / / / / / / / / / / / / / / / / 11 ii - I .50  11  n ii 111 ii III i III 1 1 / i i / i III i ii ii ii i in II u u -0.900  -0.300  0.300 0.900 D I S T A N C E BETWEEN  RESIDUALS 31 1  '  0.23 0  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  71  / / / / / / / /  -/ / / / / / / / /  -  0.180  / / / / / / / / /  -/  0.130  / / / / / / / / / / / / / / / / / / /  1.25  ERSUS  -/  0.280 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  / / / / / / / / /  1.22  FEFVOL  VERSUS RFS IDUALS 492 1  / / / / / / / / 0.800E - 0 1 / / / / / / / / / 0.300E - 0 1 -  m\ 1. 50 SLASHES  U l  i ii ii III n 11111111 n ii 1111111 \ 11111111 n n 11111 II  -1.50 ON  THE  X-AXES  -0.900 IS  -0.300  0.3000E-01  0.300  0.900  I I I I I I I I I I I I I I in  LO  LGVSAR 0.240  VERSUS  -  1  .  / / / / /  12 1  /  2 221  1 1 1 1  •  -  •  0 . 1-.0  RESIDUALS  1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  1  / /  1 1 /  1 1  /  13  0 . 4 0 0 E - 0 11/ / /  •  / /  1 / / / / / / /  1 1 1 1 /  1 1 1  1 •0.600E-  0 . 16G  L/ / / / / / / / /  /  1 /  1 1 1 1 1  -  .  /  1 1 1 1 1  2. . 11  1  .  / /  1 1 1 1 1  1.  1 0.260  / / / / / / / /  1  - i\iiriiiiii\i/in//ii\/iii/iiii\iiiiiiiii\/iiiniii\  -1.50  -0.900  -0.300  0.300  0.900  DISTANCE  BETWEEN  VO  1 . 50 SLASHES  ON  THE  X-AXES  IS  0.3000E-01  CONTROL  CARD  POTENTIAL  NO.  5  »*  STPREG  INDEPENDENT.AND OTHER PARTIAL CORR. 0.9041  WATUF  FESSSOL FF50  > » » > S T E P  ****  VARIABLES TOLERANCE 1.0000  0.6107 0.231S  NUMB R =  **** IN  1.0000 1.0000  REGRESSION 0.B174635  C  R-SO'JARED  STPREG  STANCARO R R C ° BYPASS = F - ? 0 R A B I L I T Y = .OOOCCOOO VARIABLE COEFFICIENT WATIJF 1. 2 6 3 3 1 3 1 CONSTANT -0.70636661E-02 r  STPREG  ****  STPREG  ****  THE " E G R E S S I O N A N A L Y S I S F-RATIO F-PROB 120.9 0.0000 16.06 1.532  E Q U A T I O N FOR B Y P A S S F-PROBABILITY LEVEL  FOR  STPREG  * * * *  STPREG  * * * *  STPREG  **  CONTROL  CARD  NO.  5  BYPASS  0.0005 0.2245  =  0.0500  0.74655-02  D  POTENTIAL  INDEPENDENT AND O J H F B PARTIAL CORP. FEISOL 0.1606 FF5C 0.4054  > » » > S T F P  NUMBER  S D. ERR.' 0. 1149 0.4923E-02 T  VARIABLES TOLERANCE 0.6209 0.9953  REGRESSION  o-SO'IA'.FO  0 . 3 4 74432 S T A N C A R C ERROR B Y P A S S = F - P R O B A B I L I T Y = .OOCCCOOO VARIABLE COEFFICIENT HATIJF 1 . 2 4 7 5 1 39 FF50 0.93621037=-C3 CONSTANT -0.27084937.E-01 POTENTIAL  INDEPENDENT PARTIAL  FFTSOL  AND O T H F R CORR.  jTFP NUMB" 3 "EGRESS R - S C U & R O = 0 . 88 7 1 6 0 7 STANDARD FRRQF B Y P A S S = F-PROBABILI T Y = .COCCCOOO VA"IABLE COEFFICIENT WATU F 0.97312452 FEXSOL O. 2810.38 1 8 E - 0 3 FE50 0.16607654F-02 -0.40468139E-01 CONSTANT c  F-PROB 0.0000 0.1599  T H E P F G R E S S I ON A N A L Y S I S F-RATIO F-PROB 0.6886 0.4151 5.113 0.0308  E Q U A T I O N FOR B Y P A S S F-PROBABILITY LEVEL  =  NORM C O E F F 0.9041 -0.4120 FOR  BYPASS  0.0500  0.6954F-02 STD. ERR. 0. 1073 0.4140F-03 0.9974E-02  VARIABLES TOLERANCE  0 . 5101  IN  F-RATIO 120.9 2.053  IN  0.4275  ION  F-RATIO 135.3 5.113 7.375 THE R E G R E S S I O N F-RATIO 8.795  EOU A I ON FOR B Y P A S S F-PROBABILITY LEVEL 0. 6 1 0 0 F - Q 2 '  F-PROB 0.0000 0.0303 0.0112 ANALYSIS F-PROB  NORM C O E F F 0.8923 0.1736 -1.579 FOR  BYPASS  0.0065  T  STD. F R R . 0. 1319 0.S478E-04 0.4377E-03 0.9843E-02  F-RATIO 54.39 8.795 14.40 16.90  =  0.0500  F-PROB 0.0000 0.0065 0. 0 0 0 9 0.0004  NORM C O E F F 0.6965 0.3047 0.3079 -2.359  VO  cn  J  OBSERVFp  0.29200E-01 0'.4141E-02 0 . 168007-01 0 . 1786 — C2 0 . 214007-01 - 0 . 1 0 6 0 E - 0 1 C . 35CCC=-C1 0. 8 2 6 5 - 0 3 0.2S3O0E-O1 - 0 . 2 5 5 2 7 - 0 2  1 I 3  r  4  5  0.361OCE-01  6  -0.  254  IE-,12  0.£63007-01 0.7974=-C3 0.26!00 -01 -0.5795^-03 0.65SCC--C1 0.24057-02 0.3!lOOr-C! 0.16307-02 0 . 35000<--Ql - 0 . 2 l 2 6 - = - 0 2 0. 341 CCC—01 0 . 3 8 6 6 7 - C 2 0.232CQF-01 - 0 . 1 9 7 3 E - 0 2 0.66CCCF-01 - 0 . I B 5 7 F - C 2 0.552CCE-01 - 0 . 6 9 5 3 7 - C 2 0.5620C -01 - 0 . 9 l l O - 0 2 0.575CC7-01 0 . 2 4.1 4 E - 0 2 0. 685007-03. 0 . 1 5 2 0 F - C 1 0.360007-01 0.31097-02 0 . 19600 -01 - 0 . 7 5 6 0 F - 0 2 0.21800 -01 -0.83157-02 0 . 374CC—G1 0. 34387-02 0.615007-01 0.6096^-02 0.51400^-01 0 . ?.B02 -02 0.69C00 -01 0.22107-02 0.341007-01 0.10457-02 0 . 63SCC=-C1 0 . 5 5 8 3 7 - C 2 0 . 6 1 3 C 0 7 - 0 1 - 0 . 8877E-02 0.63100F-01 -0.4455E-03  7 a  c  10 li  12 13 14 15 16 17 16 19 20 21 22 23  C  c  t:  c  24  c  C  25  26 27 2a 29  29  . 0 (10031C0NFIDENCE INTERVALS SCALE FOR RESIDUALS MEAN 0.11007 - 0 1 0.33OOE-O1 OBSERVATION - 0 . 5500E-O1 - 0 . 3 3 0 0 7 - 0 1 - O . l l O O F - 0 1 PLUS-MINUS PLUS-MINUS 1 / / / / / / / / / / / I / / / / / / / / / / / I / / / / / / / / / / / I / / / / / / / / / / / I 1 III 11111111 . 7 / .0.35C59F-01 / / .7 0. 150147-01 / E / / 0.32004"=-01 . / / 0.34174F-01 E 7. 0.408527-01 / . / 7. / 0 .3864!7-01 / / 0.655C37-01 / E / 0.26660F-01 / E . F / 0.673557-01 / _ c / / 0.294207-01 / c • 0.371267-01 / / 0.302347-01 / . E / / 0.35I73E-01 E. / / 0.678577-01 E. 0.62153 -01 E / . / • 0.653107-01 / E /  PREDICTED  RFSIOUAL  COMPLETE OBSERVATIONS  r  0.55086E-0I  /  0.533017-01 0.328CIE-01 0.27160 -01 0.30115F-01 0.339627-01 0.554C47-01 0.4259BE-01 0.667397-01 0.330557-01 0.532177-01 0.701777-01 0.63546E-01  / / / / /  c  AUTO CORR COEFF=  c  / E  c E E  /  . E  / / / / / / /  c  .6 .7 . E E  E  E 111111111111\ 1111 II 111 u \ / u m III in i i m i 11nn i n in/////i - 0 . 5 5 0 0 E - 0 1 - 0 . 3 3 0 0 E - 0 1 - 0 . 1 1 0 0 E - 0 1 O . l l O O E - 0 1 0.330OE-O1 SCALE FOR RESIDUALS 0.1879  DURBIN WATSCN D-STATISTIC  =  / / /  1.606  / / / / / / / /  ORECICTED VALUES O . 7 D 0 0 E - •01 / / /  (VERTICAL  AXIS)  VERSUS  OBSERVEO  VALUES 1  1  1  1  1  / / / / / 0.5900E-01  1 1  1 1  C  1 r"  -/  \  1  / / / / /  c  - 1  /  0.5570P-C1 0.5460E-01 0.5350E-C1 0.5240E-01 0.513'jr--Cl 0.5020E-C1  / / /  0.4910E-01 0.4SCCE-C1 0.46«CF-G1 0.4530E-C1  1 1  1  0.4800E-01  /  0.447CE-C1 0.4360E-01  1 /  1  / / / 0.3700E-01  0.1500E-01  0. 4 2 5 0 E - C 1 0.4 140E-01 0.4030=-0l 0.3920E-C1 O.38IOE-01 O.370OE-O! 0.3590E-01 0.3480E-C1 0.3 2 70E-C1 0.326GE-01 0.3150E-01 0.304C -C1 0.2930 -01 0.2S20F_ [  1  / /  1 1  / / / / / /  0.2600E-01  0.7000E-01 C.6S9CE-C1 0.673GE-C1 0.6670=-01 0.6E60=-C1 0.6450E-CI 0.634 0 -C1 0.6230E-01 0.612OE-O1 0.6010E-C1 0.5900F-01 0.5790 -01 0.56SCE-C1  1  1 1  1 1  1 1  1  1  C  1  1 1  c  0  1  / / / / /  1  -  i i i i  0.2710E-01 O.260CE-01 0.249CF-C1 0.23SOF-GI 0.2270E-01 0.2160F-C1 O.2050 -01 0.1940E-01 0.1830E-01 0.1723E-01 0.161CE-C1 0.1500E-01 c  i  // \m mi in/ i/n/m\  0.1500E-01 D I S T A N C E BETWEEN  //////nn  / / / / / / / / / i / / / / / / / / / i 0.2600E-01 0.3700E-01 S L A S H E S ON T H E X - A X I S I S 0.5500E-03  IIII/I11  m  111111 n1  0.4800E-01  ii mn  in iitiiinn  0.5900E-01  in mn  i\  0. 7000E-01  PRO B A 8 ! L I T Y O F R E S I D U A L S VS R E S I D U A L S 1 P L C T T O V E R I F Y T H E N O R M A L I T Y OF T H E C I S T  T HE  « . " , • " AND REPRE SENTS A H  ARE POINT  USED  TO  OUTSIDE  PLOT  OF  RESIDUALS)  PREDICTED  VALUES;  IS  "*'•  USED  WHERE' P R E D I C T E D  VALUES  COVER  DATA  POINTS  GRAPH.  2. 200 2.110 2. 020 1.930 1. E 4 0 1.750 1.660 1 . 570 1. 4 S 0 1.390 1. 3 0 0 1.210 1. ! 2 0 1. C 3 0 0.9400 O.B500 0.7600 0.6 700 C.5900 0.490C 0 . 4 COO 0.3100 0.2300 0.1300 0.4C00E-01 -0.5000E-01 -0.1400 - • J . 2 300 -0.3200 -0.4103 -0.5000 -0.5900 -0.6300 -0.7700 -0.8600 -0.9500  2.200 / / / / / / / / / 1.300 / / / / / / / / /  1 1 1 1.  / / / / / / / / /  .1 1  -0.5000 / / / / / / / /  I  •  /  -1.400  _  -1.310 -1 . 4 0 0 -1 . 4 9 0 , 580 -1.670 -1 . 7 6 0 -1 . 85C -1 . 9 4 0 -2.030 -2.120 -2.210 -2.300  *  / /  -r  1  / /  .  / / / / / -2.300  C40 1 30 320  1 1.  1  i n i u i u u i\i i iitiiinu -9.017 DISTANCE  u u iiixini  i n i n i u i u i t n t i i i iuii\uiiiii/i\iuiiiin\iuii/iii\tiii  -5.410 BETWEEN  SLASHES  ON  -1.803 THE  X-AXIS  IS  0.1803  1.803  n n 5. 4 1 0  i\ 9. 0 1 7  LO LO  I  PLOT  Of  V  I  YHAT  VS  WflTUF  .VERTICAL  AXIS  IS  THE ».","*•" AND •*•' A R E U S E D T O P L O T P R E D I C T E D « + « REPRESENTS A POINT OUTSIDE GRAPH. 0.7000F.-01 / / / / / / / / / 0.59007-01  Y-AXIS.  ••*'•  VALUES i  IS  USED  WHERE  PREDICTEO  VALUES  COVER  DATA  POINTS  0.68907-0! 0.673C = -C1 0.66707-01  1  1  1  / / / / / /  m  1  0.534C7-C1 0.62307-01 0.6120F-01 0.601C7-C1 0.59007-01 0.57907-01 0. 5 6 8 0 7 - 0 1 0.55707-01 0.5460F-C1 0.52507-C1 0. 52'.07-0 1 0.5130--C1 0.50207-01 0 . 4 9 ! 0 = -01  0.4800E-01  / / / / / / / / /  0.370C--01  / /  0.48007-01 0.46907-C1 0.45P07-C1 0.447C=-0! 0.43607-01 0.42507-Cl 0.41407-01 0 . 4 0 3 0=-01 0.3920=-Cl 0.381OF-Oi 0.370C=-C1 0.2 550 -C1 0.34307-01 0.33707-C1 0.32507-01 0.31507-01 C  1  1  I I I I I I I  0.1500E-01  0.67607-01 0.6450 -01 r  1*  I I I  0.26007-01  0.7000E-01  1  0.3040--Q1 0.2 9307-C1  / / / / / / / / / -  1  0. 282 0 7 - 0 1 0.27107-01 0.2600=-01 0.2490=-Gl 0.22S0=-C1 0.22707-01 0.2160=-0! O.2O50=-01 0.19407-Ct 0.18307-C1 0.17207-01 0.1610F-C1 0.15007-01  1  1  ii\iiiiiiiii\iii/iiiii\nniiiii\ii/iiiiii\iiiiiiiii\iiuiiiii\iiiiiiiii\//iiiii/i\ii!iiiin\iiiiiiiii\ 0.1600E-01  DISTANCE  BETWEEN  0.2500E-01 SLASHES  ON  THE  0.3400E-01 X-AXIS  IS  0.4500E-03  0.43007-01  0.5200E-01  C.6100E-01  ro D a  PLOT  H,E "•" R  OF Y £  YHAT  A MO REPR.FSENTS A  0.7COCE-01  -  VS F F S S O L  .VERTICAL  AXIS  IS  Y-AXIS.  ARE USEO TO PLOT PREDICTED POINT OUTSIOE GRAPH.  VALUES:  "V  is  USED  WHERE  PREDICTEO  VALUES  COVER  DATA  POINTS. 0.7000E-01  / /  1  •  1 1 1 1  0.667CE-01 0.6560F-01 0.6450E-C1  *1  0.6340E-C1 G.5?30 -01 0.6120E-C1 r  1  / C  0.6730E-01  *  t1  0.5900 -01  0.6S9BE-C1  1  0.601QF-01  /  0. 0.  1  / /  .  0.5570E-01  2  0.5460F-C1 0.5350E-C1  /  0.5240E-01  1  1  / /  0.5130E-01 0.5070E-CI 0.49I0E-C1  -  0.4S00E-C1 0.46':UE-0!  / / /  0.4580E-C1 0.4470E-01  1 1  0. A ^ b O F - O l 0.425CF-C!  /  0.4140E-01 0.40?O -01  /  r  /  1  1  0.3700E-0I  -  1 1 1 1  1  C  1  0.3480E-C1 0.3370E-C1 0.3260E-G1 0.31503-C1 0.30'.0F-01  1  .  *  0.3920E-G1 0.331OE-01 0. 3 7 0 C - C 1 0.3590E-01  *  .1 1 1* *  / / /  0.253CE-C! 0. ' ?C -C1 0.271CE-01  /  7  1  0.2600=-01  -1  1  / /  1  0.15GOE-01  P  0.23SOE-C1 0.2270E-C1 0.2160E-01 0.2050E-C1  2  0.1940E-C1 0.1S30E-01  1  0.1720E-01 0. 1610E-01  - //I/ 6.000 DISTANCE  5  0.2600E-G1 0.2490r-C!  / / / / /  C  O.56S0F-C1  / /  0.4800E-01  5«00E-0i 579C -C1  BETWEEN  15.00 SLASHES ON T H E X - A X I S  IS  24.00 0.4500  I /////////I 33.  00  42.  00  O.15OOE-01  51.  ro a  PLOT  OF  Y  £  YHAT  VS  FE50  .VERTICAL  AXJS  IS  PREDICTED THE A NO ' *•• ARE U S E O T O P L O T GRAPH. *** REPRESENTS A PCINT OUTSIDE O.7O00E-O1 / / / / / / / / / 0.5900E-01  Y-AXIS.  VALUES;  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  1  1  -  I I I I I / /  I I 0.4800E-01  / / / / / / / / /  POINTS 0 . 7 C 0 0 E - 01 0. 635CE- Cl 0. 6730=- 0! 0 . 6 6 7 0 E - 01 0 . O 5 6 0 E - Cl 0 . 6 4 5 0 E - Cl .0. 6 2 4 0 ? - C1 0 . 6 2 3 0 = - 01 0. 6I20F.- Cl 0 . 6 C 1 0 E - CI 0 . 5 9 0 0 = - 01 0 . 5 7 9 0 = - •Cl 0 . 5 6 3 0 E -• C l 0 . 5 5 7 0 E - •C1 0 . 5 4 6 C E - •Cl 0 . 5 3 . 5 0 = - •01 0 . 5 2 4 0 E - • f* * 0 . 5 1 3 Q E - •01 0 . . 5 0 2 0 = -•01 0 . 4 9 1 G E - •Cl 0 . 4 3 0 0 E -•CI 0 . . 4 6 9 0 E - •0! 0. 4 5 3 0 ? - •Cl 0. 4 4 7 0 E - •Cl 0 . 4 3 6 0 E - •01 0. 4 2 5 0 = - •Cl 0.. 4 1 4 0 = - •Cl 0 . , 4 0 3 0 c - •01 0.. 3 9 2 C E 0 , i in o r 0. • 37CCE0. .3590 = 0. .3 43 0 = - 01 0. .3370=- Cl 0 .226CE- 0! 0 . 3 1 5 0 = - 01 0 .3040F- Cl 0 . 2 9 3 0 E - C1 0 .2S20E- Cl 0 . 2 7 1 Q E - 01 0 . 2 6 0 0 5 - 01 0 . 2 4 9 C E - 01 0 .2 3 8 0 F - C l 0 .2270= Cl . 2 1 6 0 E - •0! •Cl 0 .2050?' 0 .1 '14 O F • C l 0 . 1 8 3 0 = - •Cl 0 . 1 7 2 0 ; •01 0 • 1 6 1 0 E - •Cl 0 .1 5 0 0 E - •01  C.370GE-C1  0.2600E-01  a  O.150OE-01  -  ii\niiiii/i\nniuii\iiiiiini\niniiii\iiiii/ui\iiiiiiiii\iiiiiiui\i/iiniii\iiiiiiii/\iiinii/i\ 12.90  DISTANCE  1 5 . 70 BETWEEN  SLASHFS  ON  18.50 THE  X-AXIS  IS  0.1400  21.30  24.10  2 6 . 90  f  PREDICTED 0.700S-01-  I I I I I I  VALUES i  VERSUS  RESIDUALS  1  '  / / / / / / / / / / . / / / /  1  I I 0.59CE-01/ / /  I 1 I I / / 0.430E-01/  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  I /  I I / / I /  1  0.370E-01/  I I I I I I I  1  I  1  0.260E-01/ /  I I I I / i t  0. 1 5 0 E - C 1 -  /I/III I I I / I I -0.5  WATUF / / / / / /  till  5 0 E - 0 1 - 0 . 3 3 0 S - 0 1 - 0 . U O E - 01  0.110F-01  0.330E-01  DISTANCE  BETWEEN  0.610E-01/ / / /  .1 1 1  1 1 1 1 1  1 1  1  0.520E-01/ / / / / / / /  / / / 1  I I I J I I  / 0.430E-01-  1 1 1 1 1 1 1 1 1 0.340E-01/ / / /  / / / / / / / / / / / / / / / / /  1 V  1 1  2 1  1 1  1  1 1 I I 1  0.250E-01/ / / / /' / /  /  / / 1  / / 0.160S-01-  0.550E-01 SLASHES  1 .  ON T H E  -0.550E-01-0.330E-01-0.110E-01 X - A X E S IS 0.1100E-02  O.UO =-oi  0  \ i i i i i i i m 3305-01  I I I I I I I I I I  no a  FESSOL  51.0  / /  1  VERSUS RESIDUALS 2 1 1-1 1 2 2 1 11  / / /  FE50 / / / / / / / / / / / / /  m  / / /  m  42.0  *  / / / / / /  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  1 / /  33.0  •  / / /  11  1 /  1 / / /  m  24.C  *  / / / / /  1 / / /  15.0 / / / / / / /  1  1 2  11  2 11 • 11  1 / 6.00  l\/ II1111 / l\l 11U1111\ 11111II U\ II11II11 l\ll -0.550E-01-0.330E-01-0.110E-01  1111111 i  0.110E-01 0.330E-01 DISTANCE BETWEEN  26.  1  VERSUS  RES I DUALS 1  / / / / / / / / / /  24.1  /  /'  J I I I I I I I I I I I I I I I I  21.3  18.5  15. 7  12.9  O.550E-01 S L A S H E S ON  THE  I I I I I I I I I I I I I I I I I I I I I n 11111111 n 11111111 n 11111111 n 111 II 111 n 11111111 n -0. 550E-01-0.330E-01-0.110E-O1 X - A X E S IS O.UOOE-02  0.110E-01  0.330E-01  ro a  CONTROL  CARO  POTENTIAL  NO.  6  »*  INDEPENDENT PARTIAL  WATUF VORTEX FF*SCL FF50 VSPLIT  STPREG  AND O T H E R COPR.  0. 3434 0 . 302 6 0.2743 0.5356 0.3122 0.3769 0.3103 0.2392  LOGWUF LOGVTX LGFEPS LGFE5C  1-RV UF35SOL  0.535! 0.2971 0.3049 0.316 5 0.2261  QFSSOL  0.2641  FFFVOL LGVSAR  ****  STPREG  VARIABLES TOLERANCE  »*** IN  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  STPREG  ««**  1.0000 1.0000  T  THE R E G R E S S I O N F-RATIO 3.611 2.721 2.206 1 0 . 86  1.0000 1.0000 1.0000  S PREG  ****  ANALYSIS  FOR  STPREG  ****  STPREG  * « * *  STPREG  * *  CONTROL  CARD  LGALPH  F-PR08 0. 0651 0.1069 0. 1455 0.0028 0.0956  2.516 4.469 2.888 1.638  0 . 0 4 18 0.0971  10.83 2.426 2.768 3.006 1.455 2.025  0.1273 0.1040 0.0908 0.2365  0. 2051 0.0028  0.1628  » > » > S T E p  NUMBF" 1 R E G R E S S I O N E Q U A T I O N FOR L G A L P H P-SOUARED = 0 . 2 8 6 3 8 5 6 F-PROBABILITY LEVEL S T A N C A O O SRPQR L G A L P H = 0.8957E-01 •=-PP.OF,ABILI Y = . 0 0 2 8 1 6 3 5 VARIABLE COEFFICIENT STD. ERR. F-RATIO FE50 0.17536697F-01 0.5321E-02 10.86 CONSTANT 0.355S0465 0. 1186 8 .995  0.0500  T  POTENTIAL  I N D E P E N D E N T AND O T H E R PARTIAL CORR. WATMF O.4490 VORTEX 0.6194 F F X SOL 0.0790 VSPLIT 0.5290 L O G wye 0.4333 I.OOVTX 0 . '. 1 91, LGFEPS 0.056 4 LGFF5C 0.0260  FEFVQL LGVSAR l-RV UFSSCL OFSSOL  0.0880 0.5907 0.5331 0.1740 0.0571  VARIABLES TCLFRflNCE C.5958  IN  THE REGRESSION F-=> AT 10 6.565  0.8776 0 . 84 0 9 0 . 94 75 0.9967  1 6 . 18 0. 1634 10.11 7 .922 16.20  0 . nrif.3  0.3678 0.0103 0.3323 0.9010 C. 9 4 3 2 '  0.83O8F-01 0.1765E-01 0.2029 1 3 . 94 10.32 0.8115 0.8500F-01  0.9772 0.8310  NUMfiU 2 R C G R F S S I O N E Q U A T I O N FOR L G A L P H " - S Q U A R E D =• C . 5 6 0 6 2 7 6 F-PROBABILITY LEVEL S T A N D A R D ERROR L G A L P H = 0.7164E-01 F-pcoBARIlITY = .00002962 V £ P I ABL F CIL'EFi c I F N T STD. FOR. F-RATIO  > » » > S T F P  ANALYSIS  NORM C O E F F 0.5356 3.416 FOR  LGALPH  F-PROB 0. 0159 0. 00C5 0.6905 0.0033 0.0089  0 . OOO'j . 0 . 76 72 0.8645 0.6556 0.0010 0.0035 0.3755 0 . 76 50  0  FF50 LOGVTX CONSTANT POTENTIAL  F-PROB C.0020 0.0057  0.23704022E-01 0.552C7555 0.22343035  INDEPENDENT AND O T H E R PARTIAL CORP. 0.3993  *4TUF  0. 4524E-02 0 . 1372 0.1000  VARIABLES TOLERANCE 0.9418  IN  27.46 16.20 5.214  =  0.0500  F-PR08 0.0000 0.0005 0. 0 2 9 3  THE REGRESSION ANALYSIS F-RATIO F-PROB 4.742 0.0372  NORM C O E F F 0.7240 0.5561 2.193 FOR  LGALPH  ro a  Ul  VORTEX FE*SOL V5PL!T LOGWUF 1_ r, F n 5 c  0.0137 0.0523 0.4809  0.0020 0.8098 0.8301  0 . 4 6 6 1 E - 02 0 . 6 8 4 5 F - 01 7.520  0.9029 0.7844 0.0108  0.4317  0.5342 0.8477  5.728 0 . 5 9 1 1 E - 01 0.4824  0 . 0 2 34 0.7963 0.5004  0 . 6 4 0 7 E - 01 2.05B , 7.72?  C.7859 0.16C4 0.0099  0 . 8 0 3 5 E - 03 0. 1316  0.9271  0.0486 0.1376  LGFE50 FEFVOL LGVSAR 1-=V  0.0102 0. 7974 0.0118 0.8804  0.0506 0.2758 0.4858 0.0057  UF?SOL OFTSOL ILE VS»LIT  IS  0.0724 A LINEAR  0.8963 0. 8034 COMBINATION  OF  VARIABLE S  0.7182 INCLUDED IN  > » » > S T E » NUMBER P.-SOUAPED STANCAPO r F-PRCB.'.elL VARI ABLE FE 50 LOGVTX 1-RV CONSTANT  R E G R E S S I O N E Q U A T I O N FOR L G A L P H 0.6643214 F-PROBABILITY LEVEL R LGALPH = 0.6386E-CI = .00000539 COEFFICIENT STD. ERR. F-RATIO O. 2 5 2 O 7 5 7 1 E - 0 1 0. 4 0 6 8 E - 0 2 38.39 0 . 4 5 7 7 9 4 79 0.1269 13.02 2.3630959 0. 3503 7.723 -2.0294515 0.8174 6.165  POTENTIAL  INDEPENDENT AND 0 T H = R V A R I A 3 L E S PARTIAL CO°R. TOL E R A N C E ViATUF 0.2431 G.0834 VO=TF X 0.3372 0.0014  IN  THE  =  0.0500  F-PROB C.0014  0.4611 0.3432  ANALYSIS  F-RATIO 1 .574 3.078  F-PROB 0.2157 0.0387  0.4338 0.1267 0.4927  0.5638  5.723  0. 0238  0.0308 0.5369  0.5443 0 . 01 02  LGFf50  0.0101  FEFVOL LGVSAP UESSOL  0.1342 0.4102 0.1367 0.1911  0.3915 7.695 0 . 44 05  0.5782 0.0105 0. 3075  4.355  0.5200 0.0356  0 . 4 5 71 0.9099  0.5122 0.3522  OEtS'U  0.4376  0.5841  5.685  0.0242  STANCARO  =  REGRESSION 0.7458138  ERROR  LGALPH  »  F-PR0843ILITY = .00CC0102 COEEFICIENT VARI ABLE 0.3 1510326E-01 FF5 0 LOGVTX LGFEPS 1-RV  0.45237132  CONSTANT  -3.8432233  POTENTIAL  0.12591420 3.9571662  I N D E P E N D E N T A NO O T H E R PAOTIAL COPR. 0.1035 VOR EX 0. 4534 FE*3DL 0.3887 LOGWUF 0.2417 0.2308 LGFF50 0.4050 FEFVOL 0 . 1361 LGVSAR KATIJE T  E Q U A T I O N FOR  0. 4539E-C1 0 . 5 4 90 0.9770 VARIABLES TOLERANCE 0.0482 0.0014 0.0117 0.0518 0.0100 0.0242 0.0080  IN  F-PR03 0.0000 C.0006 C.0102 0.0004 0.0007  THE REGRESSION F-RATIO 0.2738 5.951 1.427 1.2 94 4.513 0.4342  LGALPH  LEVEL  F-RATIO 54.50 16.11 7.695 17.39 15.47  4.094  FOR  LGALPH  F-PROBABILITY 0.5672E-01 STO. ERR. 0.4268E-02 0.1127  -19.49  C. 0192  REGRESSION  COEFF  0.7699  0.0099  FE'«SOL LOGWUF LGFFPS  » » > > S T F P NUMBER R-SOUARFC  NORM  o.oooo  ANALYSIS F-PROB 0.6115 0.0213 0.0523 0.2431 0.2665 0.0425 0.5233  NORM  COEFF  0.9624 0.4557 0.3896 0.5747 -36.90 FOR  LGALPH  ro a cn  UF*SCL  0.0399  0FSS0L VARIABLE  > » » > S T E P  0.6434  0.3903  FE3S0L  15  A  NUMBER  S-SODAREa STANDASO  COMBINATION  REGRESSION  = 0.7980694 r*o.f)»  LGALPH  =  F-PR08A8ILITV = .0C0C0035 VSR!A3LE COEFFICIENT  va  c T r  x  -2.6675551 0.30195990E-01  F C 5 0  LOOVTX  6.3 784758  LGFEPS  0.13722239  1-RV  5.1006013  CONSTANT P O T FJ-JT I AL  -2.2421715  INDEPENDENT PARTIAL  0.3675E-01  0.0125  LINEAR  AND O T H E R Cgp.R  0.0513  VARIABLES  EQUATION  FOR  ERR.  INCLUOED  LEVEL  F - R A T 10  1.093 2.431  =  REGRESSION  0.0500  F-PROB  NORM  -6.046  59.24  0.0000  0.9223  6.882  COEFF  0.0146  6.425  0. 4159E-C1  10.89  0.0032  0.4246  0.9990  26.89  0.0000  0.7524  4.114  0. 0513  -21.53  1 . 105 VARIABLES TOLERANCE  IN  THE  "EGRESSION  F-RATIO  ANALYSIS F-PPOS  WA U F  0.100 8  0.C482  LOGWUF  0 . 22 5 8  0 .2070 0 . 2373  0.0510  LGFF50  0.9853  0.3336  0. 0059  FEFVCL  1.979  0.1703  0.1327  0.0012  LGVSAR  0 . 7 6 00  0.3969  0.1374  0. 0080  0.4235  UFJSSOL  0.5287  0.1447  0.5627  0.47C7  OFtSOL  0.5065  0.0859  0.0018  0.1637  0.6907  T  THIS  0. 0 2 1 8  5.951  0. 3923E-02  IN  LGALPH  •PROBABILITY , 5164E-Q1 STO.  0.8287  4.133 OF  0.6436  FOR  LGALPH  1  z 1  OHSE»VEO  "ESIOUAL  0.6133C 0.87160  -0.1432 0.2152--01 0.2023E-01 0.62P?z-02 0."422F-C1 -0.533• -01 -0. 1547E-C2 -0.6694=-02 -0.3004--C1 -0,2396 -01 • O.1953E-01 0.3573E-G1 -0.493 7E-02 0.5923E-01  0 . 72020  4 5 6  C. 77450 0 . 72PO0 0.5065C 0.65800 0 . 71260 0.7310C 0.72510 0.86750 0. 65R4C 0 . 8567C 0. 6 3 4 8 0 0.69810 0.62550 0. 77 C5C 0.60620 0 . 661 P.O C . 5 7 1 7C 0.70760 0.76420 0. 95280 0.60850 0 . 7551 0 0.33310 0.77520 0.63450 0.80140  7 3 5 IJ  11 12 13 14 15 16 17 13 19 20  2i 22  23 24 25 26 27  23 29  c  c  -0.652 7E-C1 C. 1 5725-01 0.1072E-C1 -0.2335E-01 -0.3134F-01 0.6364F-01 0.6550F-01 0.3777E-02 0.2784E-01 0.2657E-C2 0.4367F-C1 -0. 7693E-02 0.5369E-01  PREDICTED 0.75598 0.e50C8 0.69997 0.76822 0.65378 0.55981 C.65555 0.71929 0.81104 0.74906 0.84797 0.63262 0.86169 0.62557 0.76337 0.61578 0.76018 0.82955 0.74364 0.90306 0.64210  0.75542 0 . 9 2 4 56 0.60584 0.71143 0.84030  -0.5155E-01  0.72151 0.68605  -0.R012F-03  0.80220  .0 (lOOtlCONFIOENCE I N T E R V A 15 MEAN OBSERVATION - 0 . 5 0 0 0 PLUS-MINUS P.LUS-MINUS / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  SCALE -0.3000  FOR R E S I O U A L S -0.1000 0.1000  0.3000  E  / / / / / / / / / / / / /  • E  -E E  o  .  E  c  ,  c  E •  c  E  „  /  E  / / / / /  E E  E E  9 m  / /  . E . E  / / / /  E  c  1  E  /  I / / / / / / / / / / / i i u 1111 u i /1 //1 /1111111 \ 11111 /111111  -0.5000  -0.3000  -0.1000 SCALE  29  COHPLETc  OBSERVATIONS  AUTO  CORR  COEFF=  -0.1631  OURBI.N  WATSON  O-STATISTIC  0.1000  m i n i u m  / /  0.3000  FOR RES I DUAL 5 =  1.992  ro o CP  PREDICTED  VALUES  (VERTICAL  AXIS)  VERSUS  OBSERVED  VALUES  0.9800  0.9 300  /  0.9700  /  0.9600  /  0.9500  /  0.9400  /  0.9300  /  0.9200  I I I  .0.9100 0.9000 0.3 900  0.3800  0.3800  /  0. 3700  /  0.S600  /  O.S500  /  0.3400  /  0.8300  /  0.3200  /  0.3100  /  0.3000  /  0.7900  /  0.7700  0.7600 /  0.7600  /  0 . 7 50 0  /  0.7400  /  0.7300  /  0 . 7 20 0  /  0.7100  /  0.7000  /  0.6500 0.6S00 0.670C  / /  0.660C  /  0 . 0 5 0 0  /  0. 6400  /  0.6300  /  0.6200  /  0.6100  /  0.6000 0. 5 9 0 0  /  0 . 5 300  0.5300 /  0.5700  /  0 . 5 60 0  /  0 . 5 500  /  0.5400  /  0.5300  /  0.5200  /  0.5100  /  0.5000 0.4900  /  0.4300  0.4800  / / I / / / / / / / / / ) / / / / / / / / / 1 it ii ii ii 11 / / / / / / / / / 1 / / / / / i n / 1 i n nm/1 „ 0 ; * DISTANCE 8  0  0  BETWEEN  0.58C0 S L A S H E S ON T H E X - A X I S  I"  0.6800 0.5000E-02  ii i/i i i n  0.7800  i/////////!/////////1/////////i 0.3300  0 9300 0.9300  roo  P R O B A B I L I T Y O F R E S I D U A L S VS R E S I D U A L S ( P L O T T O V E R I F Y T H E N O R M A L I T Y OF- T H E O I S T  THE "•"  " , " » • * AND REPRESENTS A 2.200  OF  RESIDUALS)  A F USED T O PLOT P R E D I C T E D PCINT O U T S I C E GRAPH. 0  VALUES;  •'«"  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  2. 200 2.110 2.020  / / / / / / / / /  93 0  e40  1.303 / / / / / / / / /  1. 1. 1 1. 1. 1  / / / / / / / / /  4000F-C1 5C00E-C1 1 400 2300 - o . 3 ro 0 -O.'.lOO -0.5C00 -0.5900 -0.6300 -0.7700 -0.3600 - 0 . 9 500  . 1 1 1 1 1  / / / / / / / / /  750 660 570 430 390 300 i . 21 0 1. 1 2 0 1.030 0.9400 0.8500 0.7600 0. 6 700 0.5800 0.4900 0.4000 0.3100 0.2200 1300  -1.C40 -1.130 -1.220 - 1 . 210 -1.400 -1.450 -1.590 -1.670 -1.76C -1.350 -1.940 -2.030 -2.120  -1.400 / / / / / / / / /  - 2 . 210 -2.300  -2.300 -9.679 DISTANCE  -5.807 BF WEEN T  SLASHES  ON T H E X - A X I S  -1.936 IS  0.1936  I/////////I/////////I/////////^/////////I/////////^  ro o  PLOT  THE  O  C  Y s  YHAT  VS  VORTEX  .VERTICAL  AXIS  * SEPpr S E N T S V P C , N T ^ U T S ? O E \ ^  IS  Y-AXIS.  V  A  L  U  E  S  !  "*"  1  3  U  S  " °  W  H  ?  R  E  P  R  " ! C T E D  VALUES  COVER  DATA  POINTS  0.930C 0.5300 0.9700 0.9600 0.9500 0.9400 0.9300 0.5200 0.9100 0.9000 0.3500  / / / / /  1  / . / / /  0.3800 / /  •  I I I /  0.7800  '  *  ; / * /. /. /  2  2  / i  0.8300 0.3700 0.360C 0.3500 0.3400 0.8300 0.8200 0.8100 0.8000 0.7900 0.7800 0.770C 0.7600 0.7500 0.7400 0.7300 0.7200 0.7100 0.7C00  / «  / .  / .  0.6500 0.6!'. 00 0.670C 0.6600 0 . 6 ^00 0.6400 0.6300  0.6800  0.6 200 0. 6100 0.6000  0.5800  0.5900 0.5800 0 . 5 70 0 0.5600  0.4800 0.7500 DISTANCE  0.3500 BETWEEN  SLASHES  ON T H E X - A X I S  IS  0.9500 0.5000E-02  I / / / / / / / / / I / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | / / / / / / / / / I 1.050 1.150 1  0.5500 0.5400 0.5300 0.5200 0.5100 0.5000 0.4500 0.4800 ,2 5 0  PLOT  THE  O?  Y f. Y H A T  VSEE50  .VERTICAL  AXIS  IS Y-AXIS.  AND ARE USED TO PLOT P R E O I C T E D REPRESENTS A POINT OUTSIDE GRAPH.  0.9800  0.3800  0-7800  0.6800  0.5800  0.4800  VALUES:  -  " * " •  / / I / ' / / / / / I I /  I S USED  PREDICTED  VALUES  COVER  DATA  POINTS 0.9800  v  1 .  1  . .  '  1  1 *  .  . '  .  * t / ' / -  1  . 1 « 1 1 .  I / / / / / I / / I / / / / / / / / / / / / / I I / / -  WHERE  1 *  .  * .  * . .  1  1 .  1  1  1 1 •  .  •  . 1 1 * .  1  1  .  .  1  . *  1 •  • .  1  //I/////////I/////////I/////////I / / / / / / / , 12.90 1 5 . 70 D I S T A N C E BETWEEN S L A S H E S ON T H E X - A X I S I S  C.Q700 0.9 500 0.9500 0 . 9 400 0,9300 0.9200 0.9100 0.9000 0. 8500 0.8300 0.3700 0.3600 0.3500 0.3400 0.3 300 0.8200 O.SIOO O.SOOO 0.7900 0.7800 0.7700 0.7600 0.7500 0.7400 0 . 7 300 0.7200 0.7100 0.7000 0.6500 0.5300 0.6700 0.66CC 0.6300 0.6400 0.5300 0.6200 0.6100 0.6000 0.5 900 0.5S00 0.5700 0.5600 0.5500 0.5400 0.5300 0.5200 0.5100 0 . 5 000 0.4500 0.4800  /I/////////I/////////I/////////I/////////I/////////|/////////| 1 8 . 5 0 2 1 . 3 0 2 4 . 1 0 26.90 0.1400  PLOT  THE  OF  V £  YHAT  VS  LOGVTX  .VERTICAL  AXIS  IS  A N D • * * " A R E ( I S = D T O P L O T P R E O I C T ED R E P R E S E N T S A POINT O U T S I D E G R A P H .  0.9800  0.8800  0.7800  0.6300  0.5800  0.4800  / / / / / /  VALUES ;  " * "  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS 0.9E00 0.9700 0.960C 0.9500 0.9400 0 . 9 300 0.9700  I " i ' .  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / -  Y-AXIS.  '  0.9100 0.9000 0.8900 0.3800 0. 3700 0.36C0 0 . 3 500 0.3400 O.S30G 0.8200 0.8100 0. 3000 0.7 900 0.7800 0.7700 0.7600 0. 7500 0.7400 0.7300  .  2 * . . 1  . . * * 2  * *  * . \ 2 .  I  . 1 1  *  0.7200 0.7100 0.7C0Q 0.6900 0.6800 0.6700 0.650C 0.6500 0.6430 0 . 5 30 0 0.6200 0.6100 0.5000 0.5900 0.5300 0.5700 0. 560C 0.5500 0. 5400 0.5200 0 . 5 200 0.5100 0.5000 0.4900 0.4300  * 1 t  if '  '  •  A * ' l  *  .  1  ^0  in III ii in 11 i i i i i m n II II II II I\II 11 II II I\I 111 II II I\II 11 II II i\i 11 II 111 I\I i II 1111 m i II 1111 IMII i II un -0.1500 DISTANCE  BETWEEN  -0.1000 S L A S H E S ON T H E  X-AXIS  IS  -O.50O0E-0L 0.25C0E-02  -0.2980E-07  0. 5000E-01  0.1000  r* ***  PLOT  OP  Y £  YHAT  VS  LGF6PS  .VERTICAL  AXIS  IS  Y-AXIS.  -<E " . " , • • + » AND • * " A R E U S E D T O P L O T P R E D I C T E D • " REPRESENTS A PCINT OUTSIDE GRAPH. 0.980C  VALUES;  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  I / / / / /  I / / 0.3800 11'  .  1  0.7800 I 1.  0.68O0  0.5800  0.9S0C 0.9700 0.9600 0.9500 0. 9400 0.9-00 0.9200 0.9100 0.9000 0.3900 0.3300 0.S700 0. 3 6 0 0 0.8500 0.3 400 0. 3300 O.S200 0 . 3100 0.9000 0.7900 0.7S0C 0.7700 0.7600 0.7500 0.7400 0.7300 0.7200 0.7100 0. 7000 0.6900 0.6300 0.6700 0 . 6 60 0 0.6500 0.6400 0.6 300 0.6200 0.6100 0.6000 0. 5500 0.5800 0.6700 0.560C 0.5500 0.5400  o. r>">oo  0.4800  in i ii  11 ii 11\ i  0-5600 DISTANCE  nn mi  BETWEEN  I II  i ii nn  I /////////1/////////1  1.110 SLASHES ON THE X-AXIS  IS  1.260 0.7500E-02  / / / / / / u n uiiuui 1.410  0.5200 0.5100 0.5000 0.4 900 0.4300  I ///////in/////////1/////////1 1.560  1, 7 1 0  co m •  WON H • — > vO "N. Z v. i"» J- N  rn o  O  \  •v. N  o • — l> W N O C D S O O V  m  o  o  •o -t-  o  Ul CO J j o o o o o o  SU2  o  o  o  o  Ul U l U l H l\) 111 o o o o o o  o  o  o  Ul Ul J> Ul o o O o o o  o  o  o  o  ? ^' ^ 9 n  o  H  o  o  f J  w  O  O  O  O  O  O  O  o  o  o  o  o  o  o  o  o  o  -f" ^ ^ C  o  J  o  O  o  o  O  o  >fl  O  o  o  O  o  o  o  O O O  o  o  o  ^ O  o  O  o  o  o  o  o  |J ^ vn  f>  O  O  O  O  o  o  o  o  o  -g O  o  o  o  I D <i O O  o  o  o  o  ci  O  o  o  o  o  Ut  o  o  o  o  o  0 3 O J CO '•JD CD C D C D >VJ J> ui O O o o o o c O O o o o o o o O O O  H.  ca o  o .  c ( (  o  o  o  o  o  i o  o  o  o  >o c  ' J l/l f> ~ J > o o o o i o o o o 1  >n  ft) o o  PREDICTED  0.93 0  VALUES  VERSUS  RESIDUALS. / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / . / / / / / / / / / / / / / / / / / /  / / / / / / / / / 0.830 / / / / / / / / / 0.730 / / / / / / / / /  1 11  .1  C.630 / / / / / / / / /  U . 1 I  0.580 / / / / / / / / / 0.480  -0.500  -0.300  -0.100  0.100  /////  o'300  DISTANCE  /////  V E R ! -US R E S I D U A L S 11 63 1  / / / / / / / / / / 1.15 / / / / / / / / / / / / / / / / / / / / 1.05 / / / / / / / / / / U l / / / / / / / / / 0.950 / / / / / / / / / / / / / / / / / / / 0.850 / / / / / / / / / / / / / / / V / / / 0.75 0 1 11 113311 , /I/////////I/////////I/////////I/////////|///////,,| -0.500 -0.300 -0.100 0.100 0.300 S L A S H E S O N T H EX - A X E S IS 0.1000E-01  o'500  BETWEEN  VORTEX 1.25  / / / / / / / / /  ro cn  FE50 26.9  VERSUS . 1  / / / / / / / / /  RESIDUALS /  1 1  /  I  1 / /  11  1  / / / / / / / / /  / /  /  1 1  / -0.500E -01-  1  1  /  21.3  1  / / / / / / / / /  1 1  11  1 1  1  / / / / / /  1  18.5 / / / / / / / / /  /  • 1  15.7 / / / / / / / / / 12.9 -0.300  -0.100  0.100  0.300  DISTANCE  BETWEEN  RESIDUALS / / / / / / / / / / /' / / / / / / / /  11  111  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  / / / /  1 1 1 1 1 1 1 1 1 1 1  VERSUS  / / / 0.500E - 0 1 / / / / / / / / / -0.298E -07/ / / / / / / /  1 1 1 1  LOGVTX  / / / / / /  / /  24.1  / - 0 . 500  0.100  / / / / /  -0.100  / / / / / / / -0.150 //1 0.500 S L A S H E S ON T H E  -  / / / / /  11  113311  / / / /  -  / -0. X-AXES  IS  -0.300 -0.100 0.1000E-01  0.100  0 . 3 0 0  LGFEPS 1.71  VERSUS RESIDUALS 2 1 11 1 412  1.56  11  1.41  1.26  0.960  /I/////////I/I -0.500  -0.300  I  1-RV / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / • / / / / / / / / / / / / / / / / / /  III/II[/////////III11II///I/////////I -0.100  0.100 0 . 3 00 D I S T A N C E BETWEEN  VERSUS  RESIDUALS  0.974  0.500 SLASHES  0.950  1  1  0.926  /I III IIIIII I //1///1111 -0. 500 ON T H E X - A X E S  -0.300 IS  /11///u  -0.100  0.1000E-01  11 in////in 0.100  11 ii ii ii i\ 0.300  ro CD  CONTROL  CARD  NO.  7  *»  STPREG  POTENTIAL  I N D E P E N D E N T A Nn O T H E R PARTIAL CO 'R. 0.3968 0.5237 LGD50 0.3304 HFIGH 0.6545 LGFEPS 0 .3093 LGTEMP 0.3642 CON°FN 0.6729 CONRFS ;  ALPHA  T  ****  STPREG  VARIABLES TOLERANCE 1.0000 1.0000 1.0000 1. 0 0 0 0 1.0000 1.0000 I. 0 0 0 0  **** IN  STPREG  *»**  STPREG  ****  THE REGRESSION ANALYSIS F-RATIO F-PROB 5.045 0.0315 10. 20 0.0036 4.567 0.0358 20.23 0.0001 2.357 0.0988 4.129 0 . 0496 2 2 . 35 0.0001  NUMBER 1 R E G R E S S I O N E Q U A T I O N FOR LOGWUF R-SOUARED = 0 . 4 5 2 8 4 5 5 F-PROBABILITY LEVEL S T A N D A R D FRRO*. L C T . W U F » 0.1018 F-PROBABILITY = .000C8524 VARIABLE COEFFICIENT STD. ERR. F-RA.TIO COJIOFS. 12. 454097 2 2.35 2.635 827.3 CONSTANT -1.6627666 0. 5 7 7 9 E - 0 1  STPREG  ****  STPREG  * » * *  STPREG  **  CONTROL  CARD  NO.  7  F O R LOGWUF  » » > > S T F P  POTENTIAL  INDEPENDENT PARTIAL  A L P HA LGD50  HFIGHT LGFEPS L O T EVP CONPFN  AND O T H E R CORR. 3494 2024 4313 0.4143 2723 I 704  VARIABLES TOLERANCE 0.9540 0. 6356 n.9913 0.6256 0.5730 0.5393  IN  =  0.0500  F-PROB 0.0001 C. 0  THE REGRESSION ANALYSIS F-RATIO F-PPOB 3.617 0.0653 1.1 10 0.3025 5.942 0.0209 5.405 0.0268 2.082 0.1575 0.7776 0.3859  NUMBER R E C R E S S I O . N E Q U A T I O N F O P LOGWUF P-SOUAREO = 0 . 5 5 4 6 3 2 6 F-PROBABILITY LEVEL 0.5364E-01 S T A N D A R D ERR 0 ° LOGWUF = F-P30BABTLITY = .00003496 VARIABLE C1' F!C!ENT STD. ERR. F-R4TI0 HEIGHT - 0 . 18993184E-01 0. 7752E-C2 5.942 23.93 CON°FS 11.502303 2.433 55.86 CONSTANT -1.2655040 0.1659  NORM C O E F F 0.6729 -12.30 FOR LOGWUF  > » » > S T F P  C  POTENT IAL  I N D E P E N D E N T AND O T H E R PARTIAL CORR. 0. 3611 2153 45S7 LGTFMP 2603 CONRFN 2038  ALPHA LGD50 LGFFos  VARIABLES TOLERANCE C.5510 0.6394 0. 6256 0.9596 0. 5387  IN  THE REGRESSION F-RATIO 3.748 1.221 6.662 3.729 1.083  > » » > S T E P NicaER R E G R E S S I O N E Q U A T I O N F C R LOGWUF P-SOUAREO = 0.6483412 F-PROBABILITY LEVEL STA.NCARD ERROR LOGWUF = 0 ,8485E-C1 F-PROB A B I L I T Y = . 0 0 0 C 0 9 2 6 VARIABLE COEFFICIENT STD. ERR. F-RATIO HEIGHT -0.I89508C9E-01 0. 7061E-02 7.204 LGFEPS 0.16236369 0.6251E-01 6.662  =  0.0500  F-PROB 0.0209 C.0001 0.0000 ANALYSIS F-PROB 0.0614 0.2796 0.0155 0.0620 0.3089  NORM C O E F F -0.3204 0.6431 -9.390 F O R LOGWUF  0.0500  ro F-PROS 0.0123 0.0155  NORM C O E F F -0.3197 0.2870  CONRFS CONS iNT T  7.5203109 -1.4050136  POTENTIAL  INDEPENDENT AND O T H E R PARTIAL COP". ALPHA 0.3465 LG050 0.6533 LGTEMP 0.0832 CONOFN 0.2387  2.783 0.1626 VARIABLES TOLERANCE 0.9371 0.0348 0 . 5351 0.5175  7.305 74.64 THE REGRESSION F-RATIO 3.275 17.87 0 . 1672 3.111  ANALYSIS F-PROB 0.0756 0.0003 0.6876 0.0871  > » » > S T E P NUMBER R E G R E S S I O N E Q U A T I O N F O R LOGWUF R-SQUARED = C . 7 9 8 4 4 1 9 F-PROBABI LITY LEVEL S T A N D A R D FJ c o Q p l O G W D F = 0.6556E-01  0.0500  F-PROBABILITY •- . 0 0 0 0 0 0 0 8 VARI ABLE Cn=FFICT 5NT -0.70327569 LCD50 -0.19946303E-01 H= I GHT 0.48750267 LGFEPS 8.03503 47 COMSFS -0.93345138 CONSTANT POTENTIAL  INDEPENDENT AND O T H E R P A R T \ AL CORR. 0. C923 0.0922 0.0143  ALPHA LGTEMP CONRFN  IN  0.0118 0.0000  STD. ERR. 0.1664 0.5461E-02 0.1335 2.154 0.1680  VARIABLES TOLERANCE 0.7606 0.5065 0.3707  IN  F-RATIO 1 7 . 87 13.34 26.56 14.10 30.86  0.4063 -10.39 FOR  NORM C O E F F -1.23 0 -0.3365 1.640 0.4370 -6.904  F-PROS 0.0003 0.0013 0.0000 0.0011 0.0000  THE R E G R E S S I O N A N A L Y S I S F - R A T 10 F-PROB 0.1977 0.6633 0.1973 0.6641 0.4716E-02 0.9027  LOGWUF  FOR  LOGWUF  ro ro o  1  z i  •*  5 6 7 a 9 u u 12 li 14 15 16  1/  Id IV 2J 21 2^ 23 24 25 26 27 28 24  OBSERVEO  RESIDUAL  -1.4841 -1.7282 -1.4548 -1 .4658 -1.433C -1.3457 -1.2557 -1.552E -1.224e -1.5376  -C.4722E-02 -1.4754 0.2251E-01 -1.7507 0. 1219E-01 -1.5070 0 .3591E-01 -1.5057 -0.8851E-C1 -1.3445 0.5264E-02 -1.3550 0.1182 -1.3739 -0.1173 -1.4355 0.7525E-C1 -1.30C1 -O.8126E-01 -1.4563 C.7471E-C1 -1.5319 -0.5333E-C1 -1.4204 -C.6892E-01 . -1.4314 C.5575E-01 -1.2126 0.1427E-01 -1.2755 -1.2511 0. 3 146E-C2 -0.3375E-C1 -1.2378 -C.6565E-C1 -1.2667 -0.3436E-C2 -1.4555 0.2517E-01 -1.6414 C.4U89E-C2 - 1. 4 664 0.3195E-C1 - 1. 4 5 6 0 -0.2771E-C1 -1.3760 -0.R23CE-C3 -1.3353 C.8899E-01 -1.3542 -0.1128 -1.4432 0.4573E-C2 -1.Z6C3 0.2918E-01 -1.2703 0.2602E-C1 - 1 . 2763  - 1.4572 -1.4737 -1.5CC3 -1.216E -1.2652 -1.2 4 3 C -1.3215  -1.2 3 44 -1.4565 -1.6162 -1.4615 -1.4660 -1.4157 -1.2401 -1.2652 -1.556C -1.2557 -1.2411 -1.2503  PREDICTED  . 0 (1003JC0NFIDENCE INTERVALS MEAN OBSERVATION - 0 . 5500 PLUS-MINUS PLUS-MINUS I ii n / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  SCALE -0.3300  i l ii ii  11 II/IIIIIIII  AUTO CORR  11  / / / / / / / / / / / 1  E E E  -0.330C SCALE  OBSERVATIONS  0.3300  l / / / / / / / / / / / i n n i II i n  1/1iiiin11I\Iii11111 ii ill 111111111 Hi11II11/11 i\n i in in /i\  -0.5500  29 C C f P L E T E  FOR RESIDUALS -0.1100 0.1100  COEFF-  -0.4994  OURBIN HATSON D - S T A T I S T I C  -0.1100 0.1100 FOR RESIDUALS •  0.3300  2.985  ro ro  PRECICTEC -1.2CC  -1.310  -1.420  -1.530  -1.64C  - 1 . 750  VALUES (VERTICAL A X I S ) VERSUS OBSERVED VALUES -1.200 / -1.211 / -1.222 / -1.233 / -1.24 4 / 11 -1.255 / 1 1 -1.266 / 1 1 -1.277 / 1 -1.283 / 1 -1.299 1 -1.310 / ^-1.321 / -1.332 / 1 1 -1.343 / 1 1 -1.354 / -1.36 5 / 1 1 -1.376 / -1.33 7 / -1.398 / -1.409 1 -1.420 / 1 1 -1.431 / 1 -1.442 / 1 -1.453 / -1.464 / 1 -1.475 / 1 -1.436 / 1 1 -1.457 / 1 1 -1.50 8 / -1.519 1 -1.530 / -1.541 / -1.552 / -1.563 / -1.574 / -1.58 5 / -1.596 / -1.60 7 / -1.618 / -1.629 I -1.640 / -1.651 / -1.662 / -1.673 / -1.684 / -1.695 / -1.706 / -1.717 / -1.728 / -1.735 1 - 1 . 750 //I/////////I/////////I/////////I/////////I/////////I/////////I /////////I/////////I /////////I/////////I -1.750 -1.640 -1.530 -1.420 -1.310 -1.200 DISTANCE eETkEEN SLASHES ON THE X - A X I S IS 0.550OE-02  ro ro  PROBABILITY  OF R E S I D U A L S  VS  RESICUALS  (PLOT TO VERIFY THE NORMALITY OF THE DIST OF RESIDUALS) ThE ».","*" AND -*" ARE USED TC PLCT PREDICTED VALUES; "*" IS USED WHERE PREDICTED VALUES COVER DATA POINTS "•" REPRESENTS A PCINT OUTSIDE GRAPH. .20C  2.200 2. 110 2.020 1.530 1.840 1.750 1.460 • 1.570 1.480 1.290 1. 3 0 0 1.210 1. 1 2 0 1 . 030 0.5400 0.8500 0.7600 0.6700 0.5900 0.4900 0.4000 0.3100 0.2200 0.1300 0.400CE-C1 -0.5C0CE-C1 -0.1400 -C.2300 -0.3200 -0.4100 -0.5000 -0.5900 -0.6500 -0.7700 -0.8600 -0.9500 -1.C40 -1.130 -1.220 -1.310 -1.400 -1.490 -1.580 -1.670 - 1 . 760 -1 .850 -1.940 -2.030 -2.120 -2.210  1.300  0.4000  -C.5C0C  -1.400  -2.300  I/////////| / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | / / / / / / / / / | "  8  -  3  8  S  - 5 . 0 3 3  DISTANCE EETWEEN SLASHES ON THE X-AXIS IS  - 1 . 6 7 8 0 . 1 6 7 8  1 . 6 7 8  5 . 0 3 3  8  R B 9  ro ro Ul  PLOT CF Y S YHAT VS LGC50  .VERTICAL  AXIS IS  Y-AXIS.  THE  AND ARE USED TC PLOT PREDICTED VALUES; REPRESENTS A FCINT OUTSICE GRAPH. -1.20C .  " * " IS  USEC  WHERE  PREOICTEO  ' /  DATA  POINTS  1 1 . 1 1 .  *1 .  1  "1-310  VALUES COVER  1 .  .  I I / / /  . . . 1 1  I  "  * .  I ' I  « .  1  -1.420  I / ' I I I / / / /  .  i •  1 . .  •  1  I l  l *  . 1 «1  1. . .  -  1  "1-530  I I  . 1 11  1  I ' /  ' I  1  1  -1-640  I '  .  I 1  /  "1-75C  I / I -  1  //I/////////1/////////I/////////I/////////I/////////|/////////I/////////|/////////1/////////1/////////1  1-250 DISTANCE  1.400 BETWEEN SLASHES ON THE X-AXIS  IS  1.550 0.7500E-02  1.700  1.850  -1.200 -1.211 -1.222 -1.232 -1.244 -1.255 -1.266 -1.27? -1.29S -1.299 -1.310 -1.321 -1.33 2 -1.34 3 -1.354 -1.36 5 -1.376 -1.337 -1.393 -1.409 -1.420 -1.431 -1.442 -1.453 -1.464 -1.475 -1.436 -1.497 -1.509 -1.51S - 1 . 530 -1.541 -1.552 -1.563 -1.574 -1.535 -1.596 -1.607 -1.618 -1.629 -1.64C -1.651 -1.652 -1.673 -1.684 -1.69" -1.706 -1.717 -1.728 -1.739 -L750  2.000  OF  Y  £ YFAT  VS  HEIGHT  * £ * 1 1 ™ ™ * T  - 1 . 200  C  .VERTICAL  ^  AXIS  IS  Y-  W  L  U  E  S  i  «  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS -1.200 -1.211  I  * 1 1 . -1.310 / .  i  -1.321 -1.332 -1.343 -1.354 -1.365 -1.376 1.337 -1.399  /  -1.420 / / / / / / / / /  1 * .  -1.409 "li420 -1.431 -1.442  1  -1.453 -1.464  * * * .  -1.53C / / / / / / / / /  -1.475 -1.436 -1.497 -1.508 -1.515 -1.530 - 1 . 541 -1.552 -1.563 -1.574 -1.585 - 1 . 596 -1.607  2  1  - 1 . 640 / / / / / / / / /  -1.618 -1.629 -1.640 -1.651 -1.662 -1.673 -1.684 -1.695 -1.706 -1.717 -1.728 -1.735  .  I  -1.750  DISTANCE  - 1 . 222 -1.233 -1.244 -1.255 -1.266 -1.277 -1.288 -1.299 -1.210  BETWEEN SLASHES  ON THE X - A X I S  IS  0.5C00E-01  2  1  - ° °  2  2  - ° °  PLOT  OF  V £  Yt-AT  VS  LCFEPS  .VERTICAL  AXIS  IS  T H E • . • , * * " ANC » » " ARE U S E D T O P L O T P R E D I C T E D " • " REPRESENIS A POINT OUTSICE G R A P H . -1.2CC  Y-AXIS.  VALUES;  "*«  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS -1.20C -1.211  /  '  1  1  / /  I I I I I  2 1.  1»  1*  -1.310 1  * * •  - 1 . 420  1  *  -1.222 -1.233 -1.244 -1.255 - 1 . 26 6 -1.277 -1.288 -1.299 -1.310 -1.321 -1.332 -1.343 -1.354 -1.36 5 -1.376 -1.38 7 -1.399 -1.409 -1.420 -1.431 -1.442 -1.453 - 1 . 464 -1.475 -1.486 - 1 . 49 7 -1.508 - 1 . 515 -1.530 - 1 . 54 1  -1.530 2  -1.640  -1.552 -1.563 -I.574 -1.585 -1.596 -1.607 -1.618 -1.625 -1.640 -1.651 -1.662 -1.673 -1.634 -1.695 -1.706 -1.717 - 1 . 728 -1.739 -1.750  - 1 . 75C C.9600 OISTANCE  1.110 BETWEEN SLASHES  ON  THE  X-JXIS  IS  1.260 0.7500E-02  1.410  1.560  1.710  ro ro cn  PLOT  C  M  THE  £  » • «  YHAT  VS  AND '•*'•  REPR ESENTS  A  CCNRFS  -VERTICAL  A R E USED  T C  POINT  O U T S I D E  PLOT  AXIS  IS  P R E D I C T E D  Y-AXIS.  V A L U E S ;  " * "  IS  USED  WHERE  P R E D I C T E D  V A L U E S  C O V E R  OATA  P O I N T S  G R A P H .  - 1 . 2 0 0  /  I  1  / /  1  /  1 1 .  /  .  1  *  1  / / / - 1 . 3 1 0  •1.  420  - 1 .  530  -1.200 -1.211 - 1 . 222 -1.233 -1.244 -1.255 -1.266 -1.27? -1.283 -1.299 - 1 . 310 -1.321 -I.332 -1.242 - I . 354 - 1 . 365 -1.376 -1.387 -1 398 -1 405 4 20 -1 -1.431 -1 .41,2 ' -1.453 -1.464 -1.475 -1.486 -1.497 -1.508 -1.515 -1.5J0 -1.541 -1.552 -1.563 -1.574 -1.585 -1.596 -1 . 6 0 7 -1.618 -1.625 -1.640 -1.651 -1 .662 -1.673 -1.684 -1.695 -1 . 7 0 6 -1.71 7 -1.728 -1.735 -1.75C  11  - 1 . 6 4 0  - 1 . 7 5 0 / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / I / / / / / / / / / | / / / / / / / / / | C . 7 C 0 0 E - 0 2 O I S T A N C E  BETWEEN  0 . 1 2 C 0 E - 0 1 SLASHES  ON  T H E X - A X I S  0 . 1 7 0 0 E - 0 1 I S  C . 2 5 0 0 E - O 3  0 . 2 2 0 0 E - 0 1  0 . 2 7 0 0 E - 0 1  C . 3 2 0 0 E - 0 1  ro ro  PREDICTED VALUES  VERSUS  RESICUALS  LGD50 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  / / / / / / / / / -1.31 / / / / / / / / /  -1 . 4 2 / / / / / / / / / -1.53 / / / / / / / / /  -l.o4 / / / / / / / / /  -1.75  /i m i n / m ii III i//i i ii u n in i / / / / / / / / / i 11111 /1 / /1 -C.550  -0.330  -0.110  2.00  VERSUS RESIDUALS .1 1 1 1 1  / / / / / / /  2 1 1 1  1.85  / / / / / / / / /  1.70  1 1  . 1  -  / / / / / / / / /  1.40  .1  1 1  / / / / /  / / / /  1.25  1  -  / / / / / / / / /  1.55  1 1  / /  -  1 .11 1  1  / /  1 1 1 1 1 1 1 / / / / / / / / / / / / / / /  1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  / / / /  /I/////////I/////////I/////////I/////////I/////////I -0.550 -0.330 -0.110 0.110 0.330 0.110 0.330 0.550 DISTANCE BETWEEN SLASHES ON THE X-AXES I S O.UOOE-Ol  ro ro CD  HEIGHT 22.0  / / / / / / /  VERSUS RESIDUALS 2 1 1 532 1 1 .  .  / /  .  / / /  21-C /  20.0  / / / / / / / / -  •  .  / / / / / / / / /  . . . . . 1  . 11 .  / / / / / / / / I  1  . .  /  /  / / / / / / / /  / /  .  / / / / / /  .  /  11/////////1  m i III i n -0.550 -0.330  •  VERSUS  RESIDUALS 1 12 1 2 1 1 2 1 1  /  / /  /  / /  .  /  .  /  /  /  .  /  /  /  /  .  /  /  1.56  /  / / / / /  . . 1  /  . 11  .  . 1  /  / / /  / /  /  .  /  .  /  .  /  /  /  /  .  /  .  /  / /  / .  /  / 1.26  /  .  /  /  / / / /  /  .  / / /  . .  /  .  /  /  /  /  /  /  /  .  /  11/////////1  I I / / / / / / / -  '  /  / 1.41  / / / / / /  / 1  /  I I / / 1 / . / . 2 / / 1 2 / . / . 1 1 / / 1 1 / . / 1 / / 1 / 121 12 11 / 0.960 / n n n n i n / m i l i /I i i 11 u u 11 ii n u n 11 i n IIIIII i u u i i i u i i i i i i i u i i -0.110 0.110 0.330 0.550 -0.550 -0.330 -0.110 0.110 0.330 . DISTANCE BETWEEN SLASHES ON THE X-AXES IS O.UOOE-01 i i  .  /  17.0  .  .  i i / / / / / / -  /  /  / / / / / / / / -  LGFEPS  1.71  /  /  19.0  / I / / / / / /  .  fO  ro  CONRFS Q.32 0 E - 0 1 / / /  VERSl'S RESIDUALS 1  I I I I I I  C.27CE-01/ / / / /  I  / / / C.22CE-01/ / / / /  I /  I / C.17CE-CI/ / /  I / / / / /  0.12CE- 0 1 / / / / / / / / /  C.7UCE 0 2 -  / I III uu ii l /////////1//II -C.550  -0.330  -0.110  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  it in l n 11 II II 11 mn in 11 0.1 DISTANCE 10 0.330 BETWEEN SLASHES 0.550  ON THE X-AXES  IS  0.1100E-01  ro a  CONTROL  CARD  P O T E N T I AL  NO.  8  **  STPREG  ****  INDEPENDENT AND O T H E R PARTIAL C O » R . 0.3645 0.4577 0. 5952 0.6258  LG050 LGTFMP FEFVOL LUSG/S  STPREG  VA°IAELES TOLERANCE 1.0000 1.0000 1. 0 0 0 0 1.0000  *•>** IN  STPREG  ****  THE REGRESSION F-RATIO 4.136 ' 7.559 1 4 . 81 17.38  » > » > S T F P NUMBER i R E G R E S S I O N E O U A T I O N FOR U F X S O L •p-SOUARFD = 0.3916415 F-PROBAeiLITY LEVEL S T A N C A R O EP = n o 1 J F T S 0 L » 3.580 F-PFOR ABILITY = .00033602 VARIABLE COEFFICIENT STD. ERR. F-RATIO LUSG/S 10.942383 2.625 17.38 CONSTANT 46.443072 4.725 96.63 POTENTIAL  INDEPFNOFNT AND O T H E PARTIAL CORP. LGD5C C . 6 I 74 LGTEMP 0.5675 FEFVOL  Q  0.7274  VARIABLES TOLERANCE 0.9693 0.5984  IN  0.9979  INDEPENDENT AND O T H E R PARTIAL CO^R. LG050 0.4934 LGTEMP 0.1722  VARIABLES TOLERANCE 0.0627 0 . 5663  29.22  !N  INDEPENDENT AND O T H E R PARTIAL CORR. LGTEMP 0.0675  VARIABLES TOLERANCE 0.4492  IN  ANALYSIS F-PR'.ID 0.0454 0.0102 0.0007 0.00C3  =  STPREG  FOR  * « * *  STPREG  * * * *  STPREG  **  CONTROL  CARD  NG.  S  UFSSOL  0.0500  NORM C O E F F 0.6258 10.30  F-PROB 0.0003 0.0000 FOR  UFZSOL  0.0000  =  0.0500  NORM C O E F F 0.5680 0.6000 9.652  F-PROB 0.0000 0.0000 0.0000  THE REGRESSION ANALYSIS F-RATIO F-PROB 8.047 0.0087 0.7636 0.3946  > » » > S T = P NUMBER j R E S S I O N E Q U A T I O N FOR U F S S O L F-PROBABILITY LEVEL R.-SOUAPFD = 0 . 7 8 3 3 0 8 4 S T A N D A R D FRROR U F ' f S C L 2.221 F—PRORA 8 1 L I T Y = . G C C C 0 0 0 3 F-RATIO VAR I A B L E CQFFFICIENT STD. ERR. 8.047 -18.579495 6.550 LG05C 18.44 64.900317 1 5 . 11 FEFVOL 8.952 6.4661834 2.161 LUSG/S 4 1.80 75. 577606 11. 69 CONSTANT POTENTIAL  ****  THE REGRESSION ANALYSIS F-RATIO F-PR08 1 6 . 01 0.0005 12.35 0.0017  > » » > S T F P NU" R E G R E S S I O N E O U A T I O N FOR U F ' S S O L F-PROBABILITY LEVEL R - SO L A P ED = 0 . 7 1 3 5 6 3 2 STANDARD F R R C ° UF'SSOL = 2.503 F-PPCBARIL!TY = .00000017 STD. ERR, VAPIABLE COEFFICIENT F-RATIO 4.335 FEFVOL 2 3 . 42 5 7 1 7 29.22 1.837 32.61 LUSG/S 10.492520 3.348 168.8 CONSTANT 4 3 . 5 0 3 8 71 POTENTIAL  STPREG  =  FOR  UFSSOL  0.0500  F-PROB 0.0087 G. 0 0 0 3 0.0061 0.0000  THE R E G R E S S I O N A N A L Y S I S F—R AT 10 F-PROB 0. 1097 0 . 7 3 52  NORM C O E F F -1.054 1.573 0.3698 16.77 FOR  UFSSOL  ro  L>J  OBSERVED 1 2 3 4 5  62.25C 55.030 66.590 67.260 63.250 t5.35C 71.230 71.810 55.93C 62.850  & 7  •8 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 2S 29  .  55.120 64.930 6 4 . 3 30 6 5 . C5C 6 3. 9 5 0 72.410 65.32 C 69.550 62.53C 66.C70 66.030 67.450 6 7 . 5 70 65.610 71.4T0 71.740 63.620 72.400 63.430  REST DUAL 0.5577 -1.870 -0.7056 -1.02 1 1 .570 -0.5466 0 . 3 7 6 6 E - 01 2.568 -3.560 1.800 -3.53 9 - 1. 42 I 0 . 732 3 - 2 . 362 - 2 . 1,3 9 -0.2343 -1.672 4.09 2 0.9927 5. 3 0 9 -1.205 0.9315 1.371 -0.6762 - 0 . 7 0 5 4 F - 01 2. 3 5 3 -0.9020 0 . 2 2 6 4 E - 01 -0.7966  PREDICTED  .0 (100*)CONFIOENCE INTERVALS MEAN OBSERVATION 18.00 PLUS-MINUS PLUS-MINUS  SCALE  FOR  RESIDUALS  \U II ItiUI l\tl II11IIII l\ll IIIIII11 t\U IIIII1IIIMIUIIIII  61.722 56.9C0  -10.80  -3.600  3.600  / / / / / / / / / / / / / / / / / / / / / / / / / / /  67.296 68.281 6 6 . 6 80 66.037 71.242 6 9 . 2 42 63.510 61.050 58.659 66.353 63.558 67.452 6 h.439 72.694 70.992 64.457 61.597 60.761 67.235 6&.55B 65.699 6 6 . 3 86 71.561 63.887 64.522 72.377 64.227  E.  I///////////1///////////i///////////i -18.00  -10.80 SCALE  29  COMPLETE  OBSERVATIONS  10.80  AUTO  CORR  COEFF=  -0.1742  OURBIN  WATSON  O-STATISTIC  inn////ii  -3.600 3.600 FCR RESIOUALS =  111 tut  10.80  II  in /  i  2.339  ro ro  PREDICTED  72.50  VALUES  (VERTICAL  AXIS)  VERSUS  OBSERVED  VALUES  -  1+  / / / / / / / / /  63.90  11 1  1  -  1  I / / / / /  1 - 1 1 .  6  7  .  1 1  1  1 1  1  66.33 66.02 65.66  1  -  " . 3 0  / / / / / / / / /  61.70  6&.90 68.54 63.18 6 7.32 67.45 1 0 66.74  1  / / /  65.30  72.50 72.14 71.78 71.42 71.05 70.7C 70.34 69.53 69.62 69.26  1 1 1  -  54.50  / / / / / / / -  1 '  1 1  / / / / / / / / /  53.10  64.94 64.58 64.22 63.86 63.50 63.14 62.78 62.42 62.06  1  61.70 61.34 60.98 60.62 60.26 59.90 59.54 59.18 5S.82 58.46  i 1  x  50-10 5 7.74 57.33  / /  1  57.02 56 .(,6 56.30 55.94 55.53 55.22 54.86 54.50  •  //1  /////////i i m n  DISTANCE 54.50  BETWEEN  i n i /////////I ii i i i i ii i \ i n m  S L A S H E S ON T H E X - A X I S 58.10  IS  0.1800 61.70  i m III i i n i i I / / / / / / / / / 1 1 1 it /111 n i //mi/i\ 65.30  68.90  m i II II t\ 72t50  P R O B A B I L I T Y O F R E S I D U A L S VS R E S I D U A L S (PLOT TO V E R I Y THE NORMALITY OF T H E D I S T C  THE "•"  OF  RESIDUALS)  •'.","»" AND ARE USED TO PLOT PREOICTED REPRESENTS A POINT O U T S I D E GRAPH. 2.200 / /  VALUES;  I S USED  WHERE  PREDICTED  -0.5000  -1.400  POINTS 2.200 2 . 1 1 0 2.020 1.530 1.840 1.750 • 1.660 1.57C  1 '  1.430 1.390  1  / / / / / / /  • ,  .  .  1.300 1.210 1.120  1 . 1  1.030  * 1 1 .  C.94C0 0.S500 0 . 7 600 0.670C  /  1  0.5800  /  1.  0^4900  / / / / / / / / /  .  C.4C00 0.3100 0.2 700 0.1300 0.4000F-C1 -O.5C0CE-C1 -0.1400 -0.2300 -0.3200 -0.4100  * 1 . 2 1. 1 . 1. 1 * *  / / / / / / / /  .  -0.5000 -0.5500 -0.6300 -0.770C -0.8600 -0.9500 -1.C40 -1.130 -1.220  . .1 .1 . , '. 1 1 .  / / / / / / / /  -1.310 -1.4G0 -1.490 -1.5S0 -1.670 -1.760 -1.850 -1.940 -2.030  1 . 1 •  / / -2.'00  DATA  .  / /  0.4000  COVER  1  / / / / /  1.300  VALUES  1  -2.120 -2.210  ( \ 3 U l  -2.300  jr-  -  //1 i n IIIIII 11 n m n /I /////////I / / / / / / n n iiiinii/1 -8.106 DISTANCE  BETWEEN  -4.864 S L A S H E S ON T H E X - A X I S  IS  -1.621 0.1621  /////////I II m i i n I / / / / / / / / / 1 1 n n n n 1.621  4.864  '  i/////////1 3 . 1 0 6  PLOT  OF Y  £  HI R c ; ^ ; ;  YHAT  NT  VS  L0D5O  ;'^''; ^ cl  72.50  F T  .VERTICAL  [; 3^ S  n  T  -  0  P GR  L A  °j;  P  *  AXIS  E  O  IS  ' C T E O  Y-AXIS.  VALUES;  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  -  1  POINTS .  72 . 5 0 72 . 1 4 71 . 7 8  ;  71 . 4 2 71 . 0 5 70 . 7 0  / /  70  /  69 .98 69 . 5 2  / 63.90  -  1  I  68 . 1 8 67 . 3 2 67 . 4 6 67 . 1 0  '  / / / /  .  .1  . 1  -  l  1 .  / -  65.30  65 . 2 6 63 . 9 0 63 . 5 4  "  66 . 7 4 66 . 3 3 66 .02  .  1  1 1  65 . 6 5 65 . 3 0 64 . 9 4 64 . 5 8 64 . 2 2  •  ;  o3 . 8 6 63 . 50  11 /  6 3 . . 14 62 .78 62. . 4 2  1  I  11  /  62 .06 6 1 .. 7 0 61 .. 3 4 60. .98  / / / / / / / / /  60. .62 60. .26 59. .90 59. .54 5 9 . . 18 5 3 . .32 5 S . ,46  53.10  5 3 . ,10 5 7 . ,74 57. 38  / / / / / / / / / 54.50  57.02 5 5 . 66 56. 30  I  -  1  5  1  -  2  5  0  BSTUFEN  1.400 SLASHES ON T H E X - A X I S  IS  1.550 0.7500E-02  3  6  54. 50  mn.'iiiiii\//iiiHii\iiinini\iiiiiiiii\iin/i/ii\/iiiiiui\iiiiuin\iiiitjnniiiiiiiii\iniiii/i\ DISTANCE  5 5 . 94 5 5 . 53 5 5 . 22 5^4 .- 3 6  1.700  1 *  850  ?  ro  Ui Ul  PLOT  THE "•"  OF  V £ YHAT  VS F E F V O L  .VERTICAL  AXIS  IS  » . " , " • » AND " * " A P E U S E D T O P L O T P R E D I C T E D R E P R E S E N T S A POINT O U T S I D E G R A P H . 72.50  Y-AXIS.  VALUES;  "*'•  I S USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  -  »  / / / / / /  63.90  65.30  61.70  56.10  54.50  / / / / / / / / / / / / / / / / / / / / / / / / / / / / I / / /  II *  . . 1 •  . .  -  1  1 1  1  I  .  l  . . * 1  l  1 . . I  . *1  •  1 2  . . 1  . .  .  / -  1  69.98 69.62 69.26 63.90 63.54 6 3 . 1 3 67.32 67.46 6 7 . 1 0 6 . 7 4  1  .  66.38 66.02 65.66 65.30 1 64.94 64.5S 64.22 1 63.86 6?.50 6 2 . 1 4 62.73 62.42 62.06 61.70 6 1 . 3 4 60.98 60.62 60.26 59.90 59.54 5 9 . 1 8 58.82 58.46 5 3.10 57.74 57.38  '  / / / / / /  6  72.50  7 2 . 1 4 7 1 . 7 8 7 1 . 4 2 . 71.06 70.7C 70.34  57.02 5<*.66 56.30 55.94 55.5 8 55.22  ,  1  54.86 54.50  /I/////////I 0.3000E-01 D I S T A N C E BETWEEN  0.8000E-01 S L A S H E S ON T H E X - A X I S  IS  0.1300 0.2500E-02  0.1300  0.2300  0.2800  PLOT  THE  OF  Y  t.  YHAT  VS  LUSG/S  .VERTICAL  AXIS  IS  . " , " « - • • AND " * " A ° E U S E D T O P L O T P R E D I C T E D RE E SENTS A POINT OUTSIDE GRAPH.  u  Y-AXIS.  VALUES:  "*'•  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  D f t  72.50  /  1 *  72-50 72.14 71.79  11  / /  *  *  71. 71 . 0 6 70.  70  70.34 69.98  68.90  /  69.62  /  69.26  -  •  t'S-' 63.54  5 0  63.18 67.82 /  1  .  1  .  .  .  67.46 6 7 . 1C 66.74 66.38  / / /  66.02 65.66  /  /  .  65.30  I 1  65.30 64.94 64.5 3 64.22 63 . 3 6  /  .  I I I  11  -  . .  11  63.50 63.14 62 . 7 8 62.42  ,  61.70  62.OG 1 61 . 3 4 60.93 60.62  6  7  0  60.26 59.90 55.54 /  59.19 58.32 53.46  / / 53.10  -  53.10 57.74  / / / /  57.38 .  57.02 56.66  .  / /  55.30 55.94  /  55.58  / / 5V.50  -  !  55.22 54.86  i  / / I / / / / / / / / / i / m u n i I / / / / / / t i n ii mini 1.390  DISTANCE  1.560 BETWEEN  SLASHES  ON  I/////////1//////nil i/it II III I/////////111 mi 1.730  THE  X-AXi'S  IS  0.8500E-02  1.900  2.070  II 11 /////////1  54.50  2.240  {JJ ,j  72.5  PREDICTED  -  2  VALUES  VERSUS  1  RESIDUALS  LGD50 2.00  /  68.9  .  1 1  / / / / / / / / /  .  1 1  I. 111.  1  / /  •  . 1 11 1 1.  I  1.  I  / / / / /  / / /  1  .  -  .  2  1  / / /  1  .  /  /  / I I I I 1 I  I  . . .  '  / 54.5  -  /  .  -18.0  -10.8  -3.60  /  II11II11l\ll1111II11  3.60 10.8 D I S T A N C E BETWEEN  18.0 SLASHES  .  / /  .  / / /  /  /  /  / / / /  1  .  /  /  / /  .  /  /  .  / /  2 . 1 1  I  -  •  / /  /  /  / /  I I /  . .  /  /  1 I  / /  1 1.1  2  / /  .  /  /  / /  n it 11 II 11 n 11111111 n 11111111 n II 111111 I\I 11111 /1 n ON  THE  -18.0 X-AXES  IS  -10.8 0.3600  -3.60  •  /  .  / /  1.25  / / /  .  .  /  / I I I I I I  /  / 1  / /  /  ' 1  .  /  /  /  .  /  /  l\lII11111l\l11II111l\l111II111\  1  l  I I I I I I I  . 1 1.  I  /  . 1  /  1.40  -  .  / / /  /  .  I I I I I  /  / / /  l  2  2  /  1.55  /  I  .  1.70  /  I  . 1  RESIDUALS  2  /  /  1  1  / / /  /  .  / / / /  1.85  / / /  . 1  /  /  1 I  / / / / /  .  1 1 .  /  I /  1  /I /  I  . 1  / / / / / / / / / / / / / / /  .  I I  53.1  .  .  /  61.7  /  1  .  / / / / 65.3  / I  /  / 1 I  VERSUS 1 .  3.60  10.8  ro CD  FEFVOL 0.280  VFRSUS 111 2  / /  22  / I  LUSG/S / / /  112  / /  . .  / /  / /  /  .  /  /  /  / -  .  / /  /  / /  • .  .  /  i I I / /  /  0.130  /  .  1  .  / /  . .  /  /  .  / 0.800F-01-  .  / I  /  1  1  / 1  1 4 121.  i.?3  1  1  .  -10.8  -3.60  3.60 10.8 D I S T A N C E BETWEEN  /  /  1  /  /  /  1  / /  /  / /  .  I  I /  .  / / .' /  .1 .  I  .  I I 1  2.  1  .  /  I / / .  1  / /  .  /  /  . 1  / /  .  /  / 1.56  1  1  / /  /  /  /  / /  / / / -  1.39  ON  THE  -13.0 X-AXES  / /  1  1  /  .1 2  /  / /  / /  / /  .  /  /  18.0 SLASHES  /  /  /  I\I 1111111 I\I 111111 n\/ /1 / if /11 \ 1111 ii 11 n n 111111 n  -18.0'  l  / /  / 1  .  2  1  / /  .  / /  I  / /  .  /  I  /  .  /  / 0.300E-01-  .  / /  /  -  /  / /  l  I  /  •  /  1.90  / .  I /  1 1  I .  1  /  / /  / /  .  I  /  /  /  I  1  /  /  .  .  / / /  1  / /  /  1 1  '  1 /  .  / /  I  I I I I I  .  .  / / /  .  •  2.07  /  / /  RESIDUALS 1.  /  / /  .  VERSUS  I I  /  I I /  / I I / I  O.liO  2.24  I I  / /  0.230  RESIDUALS  / /  . .  / 12  /  / / /  1 1  IS  -10.8 0.3600  -3.60  .  / /  i\iiiiiiiii\iiiiiiiii\iiiiiiiiniii///i/i\i/////ni\ 3.60  10.3  I  CONTROL  CARD  NO.  9  **  STPREG  POTENTIAL  INDEPENDENT AND O T H E R P AP T I AL C O R R . UF3SOL 0.2997 LUSG/S O.S091  >>>»>STEP NUMB" P-SOUARFO  =  ««**  VARIABLES TOLERANCE 1.0000 1.0000  REGRESSION 0.6546862  STANDARD ERROR S P I G O T = F-PRCBABILIT Y = .00000027 VARIABLE LUSG/S CONSTANT POTENTIAL  STPREG  COEFFICIENT 0.27831302 -0.23183841  INDEPENDENT AN0 O T H E R PARTIAL CORR. 0.4727  UFISOL  «*** IN  STPREG  EOUATION  VARIABLES TOLERANCE 0.6084  IN  FOR  0.35456742 0.93478333S-01  0.4479E-C1 0.1345  **** FOR  STPREG  ****  STPREG  * * * *  STPREG  * *  CONTROL  CARD  NO.  9  SPIGOT  SPIGOT LEVEL  =  F-RATIO 51.19 10.96  0.0500  F-PROB 0.0000 0.0027  THE R E G R E S S I O N A N A L Y S I S F-RATIO F-PROB 7.480 0.0107  > » > > > S T E P Ntr'.RFo 2 RFGPESSION F Q U A T T ON FOR SPIGOT P.-SOUARED = 0 . 7 3 1 8 3 1 8 F-PROBABILITY LEVEL STANDARD FRRCR SPIGOT 0.4765E-01 F-PR0BA81LITY = .00CCC007 VARIABLE COEFFICIENT STO. ERR. F-RATIO UF5SS0L - 0 . 7C046345E-C2 0.2561E-02 7.480 LUSG/S CONSTANT  STPREG  THE REGRESSION A N A L Y S I S F-RATIO F-PROB 2.474 0.1236 51.19 0.0000  F-PR0BA8ILITY 0.5306E-C1  STO. ERR. 0. 3890E-01 0.7002E-01  ****  62.82 0.4827  =  NORN C O E F F 0.8091 -2.615 FOR  SPIGOT  0.0500  F-PROB 0.0107 0.0000 0. 5 0 0 0  NORM C O E F F -0.3561 1.032 1.054  •  1 2 3 4  5 6 7 ii 9 10 11 12 13 14 15 16 17 15 19 20 2l 22 23 24 25 26 27 2a 29  29  OBSERVED  RESIOUAL  0.23CC0 0.160C0 0.33000 0. 390CO 0. 16000 0.18000 0.28000 0.26000 0.350CC 0.16000 0. 16000 0.250CC 0.39000 0.120C0 0 . 1500 0 0 . 31.000 0. 3000G 0.35000 0.23000 C.15CCC 0.330C0 0.39000 0.16000 0.13000 C.23000 0.26000 0.35000 0.31COC 0.35000  0.28685-01 -0.4419E-01 0.1211E-01 -0.2552E-C1 0.2286 -01 0.1003E-01  COMPLETE  PREDICTED  c  4 8 8 3 F - 0 1  - O .  0. 1110E-01 0.?492' -Cl - 0 . I 409E-01 :  -0.5282F-01 -0.7052E-01 0.808 9E-01 -0.9709C-01 -0.3557F-CI -0.265a -Cl c  -0.  1  9 6 6 F - Q 1  0.3103 -01 0.2751E-01 -0.42425-01 C  0 . 2 5 3 6 F - 0 1  '  0.3379=-01 0.1813=-01 0.1077F-01 -0.4218E-01 0. 1295E-01 0.5292F-01 -0.4169E-01 0.4S045-C1  OBSERVATIONS  0.20132 0.2C419 0.36789 0.41552 0.13714 0.16992 0.32083 0.24990 0 . 3 1 5 08 0.17403 0.212U2 0.32052 0.30911 0.20709 0 . 18557 0.24658 0 . 3 1 9 6 6  0.26897 0.20249 0.23242 0.35464 0.30621 0.14187 0.16923 0.322,18 0.24705 0.29708 0.35169 0.30196  AUTO CORR  .0 (lOOS)CONFIDENCE INTERVALS S C A L E FOR R E S I D U A L S • MEAN OBSERVATION - 0 . 3 0 0 0 0.6000E-01 0.1800 -0.1800 - 0 . 6 0 0 0 E - 01 PLUS-MINUS PLUS-MINUS 1///////////I///////////I///////////I///////////I///////////I / . E / / / E / -E / / E / / . £ / / .E / / E / / . E / / E / F / / / E / / E / / F / / E / / 6 / / E / / / E / F / / . E / / / E / . E / / E • / / . E / / •E / E / / / . E / / F / r / / E / / !///////////I///////////I///////////I///////////I///////////I -0.3000 -0.1800 -0.6OOOE-01 0.6000E-01 o.ieoo S C A L E FOR R E S I D U A L S COEFF=  -0.1597  DUR8IN  WATSON  D-STATISTIC  =  2.254  NJ -P-  2U2  C O C3 0 0 Q O O O O O O O O O O O O O O C J o c m rj o - T 17; N J o -f cc N v) o .JM o C o cn r - r- o »o m *r rn r<i rj -1 —* o o rj* a; rj rm m (O m rn m rn ro m m r*i m ro ri ci tvj r; m rvj n:  o o o o c o o o o o o o o o o o o o o o o o o o o o O O O O •; m rj o s f C ^ o O - f c. ivj ^] O -T T j o ^ n f J ^1 o TJ N O O i« in u^i 4 .j- f> O J -« o U " cr* cr; m r - *o in in .f ci o r-j tsj «-<o o -o o rj r-vj r-J n; rv; r«j f*i r»j r»j r J -< Jit ^ ,-4 —* -< —< *H .-4 _ * F-4 —I U C  M  1  c o o o o o o o o o o c o o o o o o o o o o o o o o o o o o o c o o o o o o o o o o c o o o o o o o o  v. o o \ o o N H " 1  t/) LU  _J > a  LU  > or u> 1/) CD  O  s o z  </)  Z> CO ct LL'  > l/l X  < -J  •a  \—  cr >  "— Ul  3  *v —  . tO  t N *v N •S.  "V V "S. *N.  |  < > UJ  O  *s. i/>  O  t~  O O «« m 0 • LU O a a 1  0  O O m ro  C>  PROBABILITY OF RESIDUALS VS RESIDUALS (PLOT TO V E P I Y THE NORMALITY OF THE DIST OF RESIDUALS) C  THE "•"  " . " , " • • « AND ' A°E USED TO PLOT PREDICTED REPRESENTS A POINT OUTSIDE GRAPH. 2.200  VALUES)  "*"  IS  USED WHERE PREDICTED  VALUES COVER OATA  POINTS 2. 200 2 . 110 2 . 020 1 . 530 1.840 1 . 750 1. 660 1.570 1.480 1 . 390 1 . 300 1.210 1 . 120 1.030 C.9400 0 . 8 500 0.7600 C.670C 0.5300 0.4900 0.4000 0.3100 0.2200 0.13J0 0.40005-01 - 0 . 5CC0E-C1 -0.1400 -0.2300 -0.3200 -0.4100 -0.5C0O - 0 . 5 90 0 - 0 . 6 30 0 -0.77C0 -0.3600 -0.9500 -1.040 -1.130 - 1 . 220 -1.310 -1.400 -1.490 -1.580 -1.67C -1.760 -1.350 -1.540 -2.030 -2.120 -2.210 -2.300  / / / /  1 1 1 1 1 1 1 1 1  I  1 1 1 1 0.4000  -0.5000  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1  .1 .1  / /  -1.400  -/  1  / /  1  1 1 1 1 1 1  1  ro  -F-  Ul n \ i II II , , 11 \ /11111111\ DISTANCE  1111111 u\  111 /1 / /11 \i 1111 n 11 \ 1111 /1  -3.778 BETWEEN SLASHES ON THE X - A X I S  IS  - 1 . 259 0.1259  i i m i i i i u i / \ u i m i i i \ i n i i n t i \ i t i i i i i i n 1.259  3 77r,  i  ,  Q  A  PLOT  THE  OF  Y £ YHAT  VS  UF5!SOL  .VERTICAL  AXIS  IS Y-AXIS.  • » . " , " • " AND " * " A R E U S E D T O P L O T P R E D I C T E D REPRESENTS APOINT OUTSIDE GRAPH.  0.3900  0.3300  0.2700  0.2100  0.1500  C.9COOE-01  / / / / / / / / / / / / / / / / / / / / / / I / / / / -  I  / / / / / / / / / I / / / / / / / -  VALUES;  ••*"  I S USED  WHERE  PREDICTED  VALUES  1  COVER  DATA  POINTS  11 1  1 .  . 1  '  11  .  1  .  . . .  ..  •  .  . 1  1 .  .  .  1  11 . 2 1 .  .  .  .  1 1  .  .  .  . . . 1 . 11 .  2  . . .  1  1  1  1 . .  '  1  0.3900 0.3840 0.3730 0.3720 0.3660 0.3 600 0.3540 0.3450 G . 342 C 0.3360 0.3300 0.3240 0.31.90 0.3120 0.3C50 0.3000 0 . 2 940 0.2880 0.2820 0.2760 0.2700 0.2640 0.2530 0.2520 0.2460 0.2400 0.2340 0.2230 0.2220 0.2160 0 . 2 100 0.2 040 0.19SO 0.1920 0.186C 0.130 0 0.1740 0.16S0 0.1620 0.i560 0.1500 0.1440 0.139C 0.1320 0.1260 0.1200 0.1140 0.10:10 0.1C20 0.9600 -01 0.9000E-01  //I/////////I/////////I/////////I/////////I/////////I/////////I/////////I/////////I/////////I//////// /I 54.50 5 8 . 1 0 6 1 . 7 0 65.30 68.90 72.50 D I S T A N C E B E T W E E N S L A S H E S ON T H E X - A X I S I S 0.1800  c  PLOT  OF  V  t  YHAT  «•" AND SENT S A  CHE  VS  LL'SG/S  .VERTICAL  AXIS  IS  Y-AXIS.  ARE U S E O TO PLOT P R E D I C T E D POINT O U T S I D E GRAPH.  VALUES;  '•*"  IS  USED  WHERE  PREDICTED  VALUES  COVER  DATA  POINTS  0.3900  0.3930 0.3340 0.3730 0.3720 0.3650 0 . 7 600 0.3540 0.3430 0.3420 0.3260 C . 3 300 0.3240 0.3180 G.3I20 0.3060 0.3000 0 . 2 54 0 0.2330 0.2320 0.276C 0.2700 0.2640 C . 2 53 0 0.2520 0.2460 0.2400 0 . 2 340 0.2230 0.2220 0.2160 0.2100 0.2040 0.1930 0.1920 0.1S60 0.1800 0.1740 0.1630 0.1620 0.1560 0.1500 0.1440 0.1330 1320 1 260 1200 1140 10SO 1020 0.9600E-01 0.9000E-01  / /  I / / / / / /  111  0.3300 / / / / /  I I I I  1  1  0.2700  I / / / / / / / /  11  11  C.2100 / / / /  I  / /  I I 0.1500  0.9000E-01  I I I I I I I I I -  //1 in/iiii/1 '•390 DISTANCE  II/II III 11 ii ii ii ii i\ ii i ui in  BETWEEN  1.560 S L A S H E S ON T H E  X-A>:IS  IS  ii n m m 1.730 0.3500F-02  l /////////1/////////1/////////1/////////i/////////1 1.900  2.070  2. 2 4 0  ro  PREDICTED  VALUES  VERSUS  UF3SS0L  RESIDUALS  0.390  VERSUS 11  72.5 / I / I I / I I /  / / /  / /  '  /  /  /  -  / / / / / / / / /  .  0.270  / /  / /  .  /  /  .  l  l  .  1 1 .1  1 1  .  .  / / /  1 .  / -  / I I I I I I / /  /  .  I / /  /  / / / 54. 5  -0.300  -0.180  -0.600E-01  0.600E-01  0.180  DISTANCE  BETWEEN  0.300 SLASHES  ON  /  /  /  /  III/IIl/lI  2  /  /  I/////////I  /  .  .  /  / I / / / / / / / / / I / / / / / / / / / 1 1 1 1 / I I III  / / /  .  / /  0.900F-01-  11  / / / / I /  l  /  I / / /" / / / / / /  / /  .  /  58. 1  1  .1 1  I I  0.150  1  1  /  l I /  /  /  61.7 I I I I I I / / /  /  I  / / /  0.210  . .  . 1  65.3 / / / / / / / / I  .2  1  / I / / / / / / /  11  / / / /  11  /  0.330  RESIDUALS  /  1  /  .  /  .  /  .  /  /  / / /  1  / / /I IIIIIII11\IIIIIIIIl\ ll///////\/////l/ll\/////////\ -0.300 -0.180 -0.600E-01 0.600E-01 0.130 THE X-AXES I S 0.6000E-02  ro tn  VERSUS 1  2.24  RESIOUALS / / / / / / / / / / / / / /  / / / / /  ,1 I I I 2.U7  II I / / / / / /  / / / / / / / / / /  1.90 / / / / / / / / /  J  11  I I / / / / / / / / / / / / / / / / / / / / / / / /  / / / / / / / / / 1.56 / / / / / / / / / 1.39  1 /I/////////I/////////I/////////I/////////|/////////| -0.300  -0.180  -0.600E-01  0.600E-01  0.180  DISTANCE  BETWEEN  0.3C0 SLASHES  ON T H E  X-AXES  IS  0.6000E-02  ro •co  CONTROL  CARD  EXECUTION  ' t O - 10  **  END  ****  END  ****  END  * * « *  END  ****  END  ***>•  END  * * * *  END  * *  CONTROL  CARD  NO.  10  TERMINATED  tSIG  ro 03  APPENDIX X I I I GRAPHS OF RAU EFFICIENCY CURVES The next 29 pages show t h e c a l c u l a t e d raw e f f i c i e n c y c u r v e s f o r each o f t h e r u n s as an unbroken l i n e .  The dashed l i n e i s t h e  c u r v e c a l c u l a t e d from t h e parameters g i v e n by t h e program "MURU". These parameters a r e l i s t e d on each g r a p h .  10.0 _J  20.0  30.•  PERCENT EFFICIENCY 10.0  50.0  60.0  80.0 _ J  70.0 _ J  a o n  —<;  -o ro cn CO  no  o  CO  o  '—'  o  ro  cn  Q CO  r ~5 3 TJ  X ro  90.0  a cn  o n  3  100  _J  XI  cz 2 :  i—.  »J  Ss  &  O XI a  CM bN  0.0  o  O D  ft CU LD  ro  m o  X)  a  \  9S2  65E  SIZE (MICRONS)  RUN  NOs  24  D50C(MICRONS): 28.25 ALPHA: 7.19 BYPASS: 0.033 DO(MICRONS): 9.67  z  UJ  ceo  ro cn ro i  I I I — i  i  SIZE (MICRONS)  -i  1—r—i 10U  263  10.0  0.0  _l  20.0 i  30.0  PERCENT EFFICIENCY  43.0 _1  50.0 I  60.0 I  a o  ,—»  PIN  1—« n XJ cn  *_*  *•  4  rvi  m o  XI  a z cnS  <79Z  ro cn cn  90.0 _J  80.0 _J  70.0 _J CO —<  XI  X) CO CO  X X)  o  o cn in  r~ TJ  fO  co  o cn o o o xi a z  X)  d  CO  Q  CO CO  ro cn  cn co  100 _J  B92  270  10.0 I  0.0  20.0 I  30.0 1  PERCENT EFFICIENCY  40.0 I  50.0 1  60.0 I  10.0  a o ,—, i—i  n  Q  LO **  •  00  •£>  rvi  rn o Q  2£2  100. _l  I  CD  03  "D  -TJ  -<  XI (SI  in JI  33  90.0  BO.O  I  o a cn »~  r-  tc  a cn o  Tl i* CO  cz  c.  (D  Q D  ID  *  CO Ul  0.0  10.0 I  20.0 I  30.0 I  PERCENT EFFICIENCY  -Cl.0 I  SO.D I  60.0 1  70.0 1  a o  80.0 I  CO -i  ,—.  -o  O 50 a  «•  rr  LO  ro CO CO  o o cn  D  r~  TJ  X ro  90.0 1  a cn a O  *•  x. o cn  o 50 a  to cn  rvi m n re a W o  O O D  •—•  !c ro  TO CZ  CO CD  100. 1  9LZ  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0081131/manifest

Comment

Related Items