UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

In-pit crushing and conveying as an alternative to an all truck system in open pit mines Radlowski, Jacek K. 1988

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1988_A7 R32.pdf [ 13.46MB ]
Metadata
JSON: 831-1.0081088.json
JSON-LD: 831-1.0081088-ld.json
RDF/XML (Pretty): 831-1.0081088-rdf.xml
RDF/JSON: 831-1.0081088-rdf.json
Turtle: 831-1.0081088-turtle.txt
N-Triples: 831-1.0081088-rdf-ntriples.txt
Original Record: 831-1.0081088-source.json
Full Text
831-1.0081088-fulltext.txt
Citation
831-1.0081088.ris

Full Text

IN-PIT CRUSHING AND CONVEYING AS AN ALTERNATIVE TO AN ALL TRUCK SYSTEM IN OPEN PIT MINES by JACEK K. RADLOWSKI M.Sc, The U n i v e r s i t y o f Mining and M e t a l l u r g y , 1965 Cracow, Poland A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE i n THE FACULTY OF GRADUATE STUDIES Department of Mining and M i n e r a l Process E n g i n e e r i n g We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA A p r i l , 1988 © Jacek K. Radlowski, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of MlNMJCr * W\KJ\ PfeOCSSS ^MG-KJcS The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 i i A B S T R A C T The m a t e r i a l t r a n s p o r t system i n an open p i t mine s i g n i f i c a n t l y a f f e c t s the c a p i t a l and o p e r a t i n g c o s t s . A l l t r u c k haulage i s the most common and i s a r e l i a b l e and f l e x i b l e t r a n s p o r t system. On the oth e r hand, t h i s system i s v e r y expensive and can c o s t up t o 50% of t o t a l mining c o s t s . I t s c o s t i s c o n t i n u o u s l y i n c r e a s i n g due t o the i n f l a t i o n o f the f u e l , t i r e , and labour e x p e n d i t u r e s . I n - p i t c r u s h i n g and conveying i s an a l t e r n a t i v e t r a n s p o r t system which r e g u i r e s a h i g h e r i n i t i a l investment but g i v e s s u b s t a n t i a l savings i n o p e r a t i n g c o s t s . An e v a l u a t i o n of the a l l t r u c k system versus the i n - p i t c r u s h i n g and conveying system has been performed by means of a s i m u l a t i o n of both t r a n s p o r t systems i n the same mine model. R e s u l t s o f the s i m u l a t i o n and the data o b t a i n e d from the f e a s i b i l i t y s t u d i e s p r o v i d e d i n p u t f o r an economic comparison of the a l t e r n a t i v e t r a n s p o r t systems. i i i A cash flow analysis showed that the i n - p i t crushing and conveying system was competitive with the a l l truck system, giving a payback within four years and r e s u l t i n g i n t o t a l costs over 30% lower than those of an a l l truck system. Three computer programs, written by the author, have been used to analyse the mine model: (1) Open P i t Simulation Program - to model a hypothetical mine and simulate i t s haulage operation over the mine l i f e , (2) Off-Highway Truck Simulation Program - to simulate the truck haulage on average annual routes i n terms of the operating time and fuel consumption for the estimation of the truck f l e e t size and the fuel cost, (3) Cash Flow Analysis Calculation Program - to compare costs of the alternative transport systems over the whole period of a mine l i f e . i v TABLE OF CONTENTS Page 1. INTRODUCTION , 1 2. LITERATURE REVIEW 3 3. ALL TRUCK TRANSPORT SYSTEM 11 3.1 Rear Dump Off-Highway Trucks 12 3.2 New Developments i n Off-Highway Trucks 12 3.3 D i r e c t i o n s of Improvement of Truck E f f i c i e n c y . 14 3.3.1 Improvements i n Weight t o Power R a t i o 14 3.3.2 A l t e r n a t i v e F u e l 15 3.3.3 Increase i n Truck S i z e 16 3.3.4 T r o l l e y Power A s s i s t 17 3.3.5 Automatic Truck C o n t r o l 2 0 3.3.6 Weather C o n d i t i o n s 21 3.3.7 Ramp Grade . . . . ; 21 4. IN-PIT CRUSHING AND CONVEYING SYSTEM 22 4.1 Advantages o f the Conveyor System 24 4.2 Disadvantages of the Conveyor System 2 5 4.3. I n f l u e n c e o f Weather C o n d i t i o n s 2 6 V TABLE OF CONTENTS (cont) Page 5. CASE STUDIES - IN-PIT CRUSHING AND CONVEYING SYSTEM 2 7 5.1 Twin Buttes 27 5.2 Duval C o r p o r a t i o n - S i e r r i t a Copper Mine 27 5.3 Bingham Canyon Copper Mine 2 9 5.4 G i b r a l t a r Mines 3 0 5.5 I s l a n d Copper Mines 31 5.6 Highland V a l l e y Copper 3 3 6. IDLER SUPPORTED BELT CONVEYOR 3 4 6.1 B e l t 3 5 6.2 P u l l e y s 37 6.3 I d l e r s 37 6.4 D r i v e U n i t s 3 9 6.5 A c c e s s o r i e s 41 7. CABLE SUPPORTED BELT CONVEYOR 4 2 7.1 B e l t 42 7.2 Cable P u l l e y s 4 3 7.3 D r i v e U n i t s 44 7.4 S p e c i a l Features of the System 45 7.5 Hard Rock I n s t a l l a t i o n s 4 6 v i TABLE OF CONTENTS (cont) Page 8. HIGH ANGLE CONVEYORS 4 7 8.1 Pocket Belt Conveyor 47 8.2 Sandwich Belt Conveyor 4 8 9. COMPARISON OF CONVEYORS 51 10. IN-PIT CRUSHING PLANT 56 10.1 Crusher I n s t a l l a t i o n s 56 10.2 Hopper/Feeder Configurations 61 10.3 A u x i l i a r y Equipment 64 11. HYPOTHETICAL OPEN PIT MINE 66 11.1 General Description : 66 11.2 Excavation Procedure 68 11.3 A l l Truck System 70 11.4 In-Pit Crushing and Conveying System 72 11.4.1 Conveying across Benches 77 11.4.2 Conveying with Incline 8 0 12. OPEN PIT SIMULATION PROGRAM 8 3 12.1 Model Algorithm 84 12.2 Production Algorithm 89 12.3 Truck Schedule Algorithm 92 v i i TABLE OF CONTENTS (cont) Page 13. SIMULATION OF THE MINE OPERATION 96 13.1 Results and Interpretation 98 13.2 Truck Demands 105 14. EQUIPMENT COST ESTIMATION 114 14.1 A l l Truck System 122 14.2 In-Pit Crushing and Conveying System 124 14.2.1 Conveying across Benches 128 14.2.2 Conveying with Incline 130 15. CASH FLOW CALCULATION PROGRAM 133 15.1 Main Algorithms 13 3 15.2 Formulae 137 16. DISCOUNTED CASH FLOW ANALYSIS 14 0 17 CONCLUSIONS 162 18. BIBLIOGRAPHY 166 v i i i TABLE OF CONTENTS (cont) APPENDIX A Open P i t Opera t i o n S i m u l a t i o n Program Program L i s t i n g and Output T a b l e s APPENDIX B Off-Highway Truck S i m u l a t i o n Program Program L i s t i n g and Output Examples APPENDIX C Cash Flow C a l c u l a t i o n Program Program L i s t i n g ix LIST OF TABLES Page Table 1 Off-Highway Trucks - Basic Features 13 Table 2 Capital Costs of the Conveying System Island Copper Mines 3 2 Table 3 Sandwich Belt Conveyor - Technical Data Majdanpek, Yugoslavia 50 Table 4 Idl e r Belt Conveyor vs. Cable Belt Conveyor 52 Table 5 Sandwich Belt Conveyor vs. Pocket Belt Conveyor 54 Table 6 Crusher Plant Requirements 57 Table 7 Fixed Operating Delays 69 Table 8 Charact e r i s t i c s of Conveyors 76 Table 9 Computer Model - P i t Characteristics Input Data Required 88 Table 10 Computer Model - Production Ch a r a c t e r i s t i c s Input Data Required 94 X LIST OF TABLES (cont) Page Table 11 Open P i t Simulation Program Input Parameters 9 6 Table 12 Open P i t Simulation Program Reserves Table 99 Table 13 Open P i t Simulation Program - A l l Truck System Ore Truck Haulage Schedule 102 Table 14 Open P i t Simulation Program - Conveying System Ore Truck Haulage Schedule 103 Table 15 Open P i t Simulation Program -Waste Truck Haulage Schedule 104 Table 16 Off-Highway Truck Simulation Program Input - Truck Characteristics 107 Table 17 Off-Highway Truck Simulation Program A l l Truck System - Ore Truck Demands 108 x i LIST OF TABLES (cont) Page Tabl e 18 Off-Highway Truck S i m u l a t i o n Program Conveying System - Ore Truck Demands 110 Table 19 Off-Highway Truck S i m u l a t i o n Program Waste Truck Demands I l l Tabl e 2 0 Comparison of Truck F l e e t Requirements A l l Truck System v s . Conveying System 113 Tabl e 21 Equipment Requirements f o r A l l Truck System 115 Tabl e 22 Equipment Requirements f o r Conveying System 116 Tabl e 23 Cash Flow Program - Input Requirements .. 134 Tabl e 24 A l l Truck System - Cash Flow A n a l y s i s Trucks, 154 tonne c a p a c i t y 141 Tabl e 25 A l l Truck System - Cash Flow A n a l y s i s Crusher, S t a t i o n a r y G yratory 14 2 x i i LIST OF TABLES (cont) Page Tabl e 26 A l l Truck System Cumulative Cash Flow A n a l y s i s 14 3 Table 27 Conveying ac r o s s Benches - Cash Flow A n a l y s i s Trucks, 154 tonne c a p a c i t y 14 4 Tabl e 28 Conveying a c r o s s Benches - Cash Flow A n a l y s i s Crusher, S t a t i o n a r y Gyratory 145 Table'29 Conveying a c r o s s Benches - Cash Flow A n a l y s i s Crusher, P o r t a b l e G y r a t o r y 146 Tabl e 3 0 Conveying a c r o s s Benches - Cash Flow A n a l y s i s Main Conveyor, 700 m 147 Tabl e 31 Conveying ac r o s s Benches - Cash Flow A n a l y s i s S u r f a c e Conveyor, 2200 m 148 x i i i LIST OF TABLES (cont) Page Tabl e 32 Conveying a c r o s s Benches - Cash Flow A n a l y s i s E x t e n s i o n Conveyor, 300 m 149 Table 3 3 Conveying a c r o s s Benches - Cash Flow A n a l y s i s Cumulative Cash Flow A n a l y s i s 150 Tab l e 34 Conveying i n I n c l i n e - Cash Flow A n a l y s i s Trucks, 154 tonne c a p a c i t y 151 Tab l e 35 Conveying i n I n c l i n e - Cash Flow A n a l y s i s Crusher, S t a t i o n a r y Gyratory 152 Table 36 Conveying i n I n c l i n e - Cash Flow A n a l y s i s Crusher, P o r t a b l e Gyratory 153 Tab l e 3 7 Conveying i n I n c l i n e - Cash Flow A n a l y s i s Main Conveyor, 700 m 154 x i v LIST OF TABLES (cont) Page Tabl e 38 Conveying i n I n c l i n e - Cash Flow A n a l y s i s S u r f a c e Conveyor, 1800 m 155 Tab l e 39 Conveying i n I n c l i n e - Cash Flow A n a l y s i s E x t e n s i o n of Main Conveyor, 240 m 156 Tab l e 40 Conveying i n I n c l i n e - Cash Flow A n a l y s i s D r i f t Conveyor, 80 m 157 Tab l e 41 Conveying i n I n c l i n e - Cash Flow A n a l y s i s Cumulative Cash Flow A n a l y s i s 158 X V LIST OF FIGURES Page Fig. 1 Conventional Conveyors 53 Fig. 2 High Angle Conveyors 55 Fig. 3 A l l Truck System - S i t e Plan 71 Fig. 4 In-Pit Crushing & Conveying - Site Plan .... 73 Fig. 5 In-Pit Crushing and Conveying across Benches Plan View 78 Fig. 6 In-Pit Crushing and Conveying across Benches Side View 79 Fi g . 7 In-Pit Crushing and Conveying with Incline Plan View 81 Fi g . 8 In-Pit Crushing and Conveying with Incline Side View 8 2 Fig . 9 Computer Model - P i t Geometry 85 Fig. 10 Computer Model - Mining Sequence 9 3 F i g . 11 Cumulative Costs vs. Time i n Years 161 x v i ACKNOWLEDGEMENT I wish t o acknowledge P r o f e s s o r A.E. H a l l f o r h i s v a l u a b l e a d v i c e and time t h a t he c o n t r i b u t e d . I wish a l s o t o acknowledge Dr. H.D.S. M i l l e r who i n s p i r e d t h i s t h e s i s and P r o f e s s o r s A.L. Mular, G.W. P o l i n g and A.J. Reed f o r p r o v i d i n g me wit h i n f o r m a t i o n I needed. My s p e c i a l thanks t o my w i f e Z o f i a f o r her p a t i e n c e , encouragement and s u b s t a n t i a l h e l p i n e d i t i n g t h i s t h e s i s - 1 -1. INTRODUCTION The c a p i t a l and o p e r a t i n g c o s t s of an open p i t mine are s i g n i f i c a n t l y i n f l u e n c e d by the c o s t of m a t e r i a l haulage. The u s u a l means of m a t e r i a l haulage at p r e s e n t i s off-highway t r u c k s , although i t i s o f t e n the most expensive system due t o h i g h f u e l consumption, wear, and l a b o u r c o s t s . Costs of the t r u c k haulage can be as much as a h a l f of the t o t a l mining c o s t s , with the major expenditures a t t r i b u t e d t o f u e l , l u b r i c a t i o n , t i r e s and maintenance. There i s a need t o examine a l t e r n a t i v e t r a n s p o r t systems. The b e s t s o l u t i o n seems t o be conveyor t r a n s p o r t , as i t i s e f f i c i e n t and economical i n power consumption. The conveyor system r e s u l t s i n a s i g n i f i c a n t r e d u c t i o n i n the number of t r u c k s , but i t r e q u i r e s the rock t o be crushed b e f o r e t r a n s p o r t a t i o n . T h i s i s achieved by the p r o v i s i o n of an i n - p i t c r u s h i n g p l a n t , which can be more expensive per tonne than the s t a t i o n a r y out of p i t c r u s h e r n ormally used w i t h a l l t r u c k haulage. The d i f f e r e n c e i n c r u s h i n g c o s t s i s a t t r i b u t a b l e t o the c o s t s of u s i n g a conveyor t r a n s p o r t system. - 2 -A comparison of o p e r a t i n g c o s t s f o r these two systems f a v o u r s the conveyor t r a n s p o r t i n most cases, although the mine c o n f i g u r a t i o n i n some cases may make a conveyor t r a n s p o r t system u n a t t r a c t i v e e c o n o m i c a l l y . The i n i t i a l investment i s lower f o r the a l l - t r u c k system, because of the lower c a p i t a l c o s t of i t s s t a t i o n a r y c r u s h e r compared t o the mobile one used w i t h conveyors. The h i g h e r investment w i l l be amortized q u i c k l y however by sav i n g s i n the lower o p e r a t i n g expenses of the conveyor system. In a d d i t i o n , the c o s t s of t r u c k t r a n s p o r t i n c r e a s e r a p i d l y each year, as a r e s u l t o f i n f l a t i o n of working c o s t s and the i n c r e a s e d haulage d i s t a n c e s from the deeper p i t . The e v a l u a t i o n o f an a l l - t r u c k t r a n s p o r t system v e r s u s a conveyor t r a n s p o r t system i s a v e r y complex problem. To perform t h i s t a sk, a d e t a i l e d c o s t a n a l y s i s i s r e q u i r e d , over the whole p e r i o d of a mine l i f e . T h i s t h e s i s p r e s e n t s the r e s u l t s of such a c o s t a n a l y s i s and compares the r e l a t i v e c o s t s , advantages and disadvantages of the two systems. - 3 -2. LITERATURE REVIEW In the p e r i o d 1980 - 1987 many t e c h n i c a l p u b l i c a t i o n s r a i s e d the concerns o f the h i g h o p e r a t i n g c o s t s o f t r u c k haulage i n open p i t mines, of low m i n e r a l p r i c e s , and r a p i d e s c a l a t i o n o f f u e l c o s t s . E f f o r t s t o improve t r u c k e f f i c i e n c y are l o g i c a l l y d i r e c t e d t o improvements i n the engine i t s e l f , improvements i n the power t o weight r a t i o and v a r i o u s schemes aimed a t o p t i m i z i n g t r u c k u t i l i z a t i o n and m i n i m i z i n g c o s t s . T h i s a c t i v i t y r e s u l t s i n marginal improvements and no s e r i o u s breakthrough can be expected (A.K. Burton, 1980). I n c r e a s i n g the t r u c k s i z e r e s u l t s i n onl y a s m a l l r e d u c t i o n o f o p e r a t i n g c o s t s per tonne a t a much h i g h e r c a p i t a l c o s t f o r the l a r g e r u n i t . For example, the c o s t o f a 2 00 tonne t r u c k i s over 50% h i g h e r than t h a t o f a 154 tonne model (L.S. Lyon, 1980) . Larger t r u c k s a l s o use tandem r e a r a x l e s which i n c r e a s e t i r e c o s t s . V e r t i c a l t r u c k haulage i n excess of 150 m c r e a t e s t r a f f i c and maintenance problems, these reduce e f f i c i e n c y and c o s t s r i s e ( C E . Huss e t a l . , 1983). - 4 -There i s a trend towards the use of high speed, large capacity conveyor systems, and these i n s t a l l a t i o n s have been highly productive. Current l i m i t s of technology are a b e l t width maximum of 3.05 m and b e l t speeds of 6.2 m/s for coarse crushed material (T.W. Martin et a l . , 1981). Higher speeds are limited to fine materials. Several studies performed on e x i s t i n g i n p i t crushing i n s t a l l a t i o n s (R.W. Utley, 1983) and on hypothetical models (T.W. Martin et a l . , 1981) showed cost savings ranging from 2 6 to 50%. Run of mine material has to be crushed to a conveyable si z e before loading onto a conveyor. Crushing has to be done i n the p i t . There are i n p i t crusher configurations, such as mobile, semi-mobile, movable, modular, semi-fixed, and fixed (E.M. F r i z z e l l , 1983) . Design of mobile crushers has advanced to the point where they are as rugged and r e l i a b l e as stationary crushers. In Europe, owners who have operated both mobile and stationary crushers prefer the mobile units as they are more economical (H.G. Kok, 1982). Crusher elevation should be conveniently close to the centroid of the materials being mined. Preferably, the i n p i t crusher should be located on a s i t e - 5 -that w i l l not require mining for one or more years to avoid frequent relocations. In-pit crusher throughput i s up to 2 0% higher than the throughput achieved through the same crusher located at the p i t rim and supplied by haul trucks ( C E . Huss et a l . , 1983). This r e s u l t s from better u t i l i z a t i o n of the crusher by trucks operating only within the p i t and continous feed to the crusher by apron feeder. Conventional large-capacity conveyors are widely used around the world. One of the largest operations i s at Fortuna, West Germany, where over 14,000 tonnes of l i g n i t e per hour are handled by conveyor b e l t s . In North America, there are six s i g n i f i c a n t rock moving operations which use conveyors for haulage i n open p i t mines. At the Twin Buttes i n Arizona where conveyors have been used since 1965. At the S e r r i t a open p i t copper mine, also i n Arizona, conveyors moved over 58 m i l l i o n tonnes of ore and waste i n 1979 (T.M. Brady et a l . , 1982). The Bingham Canyon Copper Mine produces 70,000 tonnes of ore a day using a semi-mobile 1.5x2.7m (60-109 in.) gyratory crusher and six conveyor f l i g h t s of a t o t a l length of about 8.5 km. The capacity of t h i s system i s 9,000 tonnes - 6 -per hour (D. Kaerst, 1987). In Canada so f a r t h r e e open p i t mines use i n - p i t c r u s h i n g and conveying system. These are G i b r a l t a r Mines, I s l a n d Copper Mines, and Highland V a l l e y Copper, a l l l o c a t e d i n B r i t i s h Columbia. B a s i c conveyor d e s i g n procedure i s g i v e n i n the CEMA book (1979). For a b e l t c a r r y i n g coarse crushed m a t e r i a l i t i s d e s i r a b l e t o keep the c r o s s s e c t i o n a l l o a d t o l e s s than 80% of the CEMA standards, when c a r r y i n g the designed tonnage t o a v o i d s p i l l a g e . For coarse ore conveyors, the recommended speed i s 4 t o 5 m/s whereas f o r overburden conveyors i t i s 5 t o 8 m/s (A.D. F e r n i e , 1985). The a l t e r n a t i v e Cable B e l t conveyor has a maximum c a p a c i t y of 4,600 tonnes per hour, which l i m i t s i t s a p p l i c a t i o n t o medium s i z e open p i t mines. T h i s type of conveyor has found a p p l i c a t i o n i n s e v e r a l hard rock o p e r a t i o n s around the world, mostly as o v e r l a n d i n s t a l l a t i o n s (D.E. Brown, 1983 & 1986). Conventional b e l t conveyors can t r a n s p o r t m a t e r i a l s a t angles approaching 18°. High angle b e l t conveyors, l i k e the sandwich conveyor and pocket conveyor, can t r a n s p o r t m a t e r i a l a t h i g h angles up t o 90°, w h i l e m a i n t a i n i n g the most p o s i t i v e f e a t u r e s of c o n v e n t i o n a l conveyors - 7 -(J.A. dos Santos & E.M. F r i z z e l l , 1983). Sandwich b e l t conveyors o f f e r : h i g h c a p a c i t y up t o 9,000 tonnes/h, l i f t s t o 300 m, and angles i n excess of 45°. The conveyor can be i n s t a l l e d a c r o s s the benches w i t h r e l a t i v e l y s m a l l p r e p a r a t i o n . I t can a l s o be e a s i l y r e l o c a t e d t o another area of the mine. The a p p l i c a t i o n of the sandwich b e l t conveyor does not r e q u i r e a change i n mine p l a n n i n g (J.A. Dos Santos, 1983) which i s an important c o n s i d e r a t i o n . Another h i g h angle conveying method i s the F l e x o w a l l pocket conveyor. T h i s type of conveyor can be o f v a r i o u s c o n f i g u r a t i o n s : s t r a i g h t , i n c l i n e d , "L", "S", and 1 1C" shapes (J.W. Paelke, 1982) . B a s i c f e a t u r e s of the F l e x o w a l l conveyor and c u r r e n t i n s t a l l a t i o n s have been d e s c r i b e d by U. Kunstmann & J.W. Paelke (1984), and J.W. Paelke e t a l . , (1986). C a p a c i t y of the pocket b e l t conveyor i s l i m i t e d by the lump s i z e of the conveyed m a t e r i a l . The maximum o p e r a t i n g angle, t h e r e f o r e , i s determined by a m a t e r i a l s i z e and t h i s must always be c o n s i d e r e d i n the d e s i g n of such i n s t a l l a t i o n s . S e l e c t i o n of the most economical o p e r a t i o n r e q u i r e s e v a l u a t i o n of s e v e r a l mining schemes s i n c e a l l open p i t mines are d i f f e r e n t , and p l a n n i n g a m u l t i - s y s t e m method of ore and waste e x t r a c t i o n i s g e n e r a l l y more - 8 -complex than following the t r a d i t i o n a l shovel/truck method with i t s f l e x i b i l i t y . An operating mine, that i s planning to use i n - p i t crushing and conveying as a replacement for the shovel/truck system, must develop concepts that can be worked into the e x i s t i n g p i t without i n t e r f e r i n g with d a i l y production. Such planning may require developing several d i f f e r e n t schemes to f i n d the most p r a c t i c a l and cost e f f e c t i v e method of transporting the ore from p i t to plant. For example: I t may be desirable to s t r i p overburden to the f i n a l p i t perimeter before i n s t a l l i n g the a l t e r n a t i v e system. Pushing back p i t walls requires relocation of the main conveying system and would be very d i f f i c u l t during the p i t operation. When se l e c t i v e mining i s required, multiple working faces may be needed, using smaller loading and haul equipment. Operating layout can change with increased i n - p i t horizontal haulage. - 9 -The c r u s h i n g p l a n t bench area must be adequate f o r the c r u s h i n g p l a n t , a u x i l i a r i e s , t r a n s p o r t and s e r v i c e equipment, t r u c k dump hopper and c r u s h e r feeder, d i s c h a r g e conveyor and main conveyor t a i l s e c t i o n . The dumping area o f the cr u s h e r must have adequate space f o r t r u c k manoeuvers. When the cru s h e r or conveyor are t e m p o r a r i l y down, t h e r e must be adequate space t o accumulate a surge p i l e . P r e f e r a b l y t r u c k s should be switched t o waste haulage t o prevent rehandle. The s t a b i l i t y o f the dumping bench may r e q u i r e a s p e c i a l reinforcement o r e l s e a dumping hopper may be necessary. Adequate d i s t a n c e should be p r o v i d e d t o prevent f l y r o c k damaging the i n - p i t c r u s h i n g p l a n t and conveyors d u r i n g b l a s t i n g . In hard rock mining t h i s d i s t a n c e u s u a l l y v a r i e s from 150 t o 300 m, although 120 m i s co n s i d e r e d s a f e . - 10 -The o p e r a t i o n a l l a y o u t must p r o v i d e f o r moving the c r u s h e r p l a n t , r e l a t e d equipment and extending the conveyor, thus the l a y o u t must p r o v i d e ramps of 7 t o 10% grade, haul roads approximately 30 m wide, and the new s i t e f o r r e l o c a t i o n on a deeper bench must be prepared. For a b e l t conveying system a more d e t a i l e d d e s i g n i s r e q u i r e d than f o r c o n v e n t i o n a l t r u c k haulage. I t i s t h e o r e t i c a l l y p o s s i b l e t o use j u s t one b e l t or add a d d i t i o n a l s e c t i o n s (R.M. Hays, 1983) The c r u s h e r s i t e s must be pre-planned t o minimize the lock-up of tonnage by the c r u s h e r . T h i s a f f e c t s the c r u s h e r moving schedule and r e l o c a t i o n c o s t s . Conveyor t r a n s p o r t systems reduce the t r u c k maintenance personnel and i n f r a s t r u c t u r e s i g n i f i c a n t l y . - 11 -3. ALL TRUCK TRANSPORT SYSTEM The a l l t r u c k t r a n s p o r t system i s the most common t r a n s p o r t a t i o n method and i s w e l l e s t a b l i s h e d i n open p i t mining. I t p r o v i d e s h i g h r e l i a b i l i t y , e x c e l l e n t f l e x i b i l i t y and f u l l y s a t i s f i e s needs f o r m a t e r i a l s b l e n d i n g . I t s disadvantage i s t h a t i t i s a l s o v e r y expensive i n terms of o p e r a t i n g c o s t s and t r u c k s e r v i c e f a c i l i t i e s . In remote areas d r i v e r s and mechanics may r e q u i r e housing and t r a n s p o r t . In the a l l t r u c k system, the m a t e r i a l i s e n t i r e l y hauled out of the p i t t o the s u r f a c e f a c i l i t i e s . With i n c r e a s e d p i t depth, long u p h i l l h a u l s cause e x c e s s i v e maintenance problems and decrease t r u c k a v a i l a b i l i t y . In t h i s chapter the t r u c k haulage system i s b r i e f l y d e s c r i b e d , and the d i r e c t i o n of p o s s i b l e improvements i s d i s c u s s e d f u r t h e r . - 12 -3 .1 Rear Dump Off-Highway Trucks The r e a r dump t r u c k i s the most po p u l a r type o f r u b b e r - t i r e d haulage v e h i c l e used i n open p i t s and can ha u l almost any type o f m a t e r i a l . I t s body i s mounted on the t r u c k c h a s s i s and can be r a i s e d by a h y d r a u l i c h o i s t system. The dump t r u c k i s equipped w i t h an e l e c t r i c wheel or mechanical d r i v e , and can be d r i v e n by two a x l e s or r e a r a x l e o n l y . B a s i c f e a t u r e s of t h i s type o f t r u c k are g i v e n i n Tabl e 1. 3.2 New Developments i n Off-Highway Trucks In the p a s t 25 years many changes have been made t o haulage t r u c k s and they have had s i g n i f i c a n t impact i n the mining i n d u s t r y . In the 1960's payload c a p a c i t i e s i n c r e a s e d from 60 t o 90 tonnes. The most important t e c h n o l o g i c a l achievement was the e l e c t r i c d r i v e system i n t r o d u c e d by General E l e c t r i c and U n i t R i g Equipment Company. The b i g g e s t improvement i n the 1970's was the development of a 154-tonne d i e s e l e l e c t r i c t r u c k . - 13 -TABLE 1 OFF-HIGHWAY TRUCKS - BASIC FEATURES C a p a c i t y 45 t o 320 tonnes Power 300 t o 2,250 kW V e h i c l e weight 26,000 t o 236,000 kg D r i v e Mechanical d r i v e system, up t o 118 tonnes c a p a c i t y E l e c t r i c a l wheel system, 77 t o 180 tonnes E l e c t r i c a l a x l e d r i v e system, 210 t o 320 tonnes Top speed 48 t o 72 km/h Average a v a i l a b i l i t y 75% Payload/EVW approx. 1.5 Power/Payload approx. 8.2 kWh/tonne - 14 -Over 1400 of these u n i t s have been b u i l t and they a re i n o p e r a t i o n i n every area of the world. T h i s t r u c k i s c o n s i d e r e d t o be the most p r o d u c t i v e , e f f i c i e n t and economical, and i t s r e l i a b i l i t y and ease o f maintenance have been proven over many y e a r s . 3.3 D i r e c t i o n s of Improvement of Truck E f f i c i e n c y E f f o r t s t o improve t r u c k e f f i c i e n c y are d i r e c t e d t o improving the weight t o power r a t i o , the engine i t s e l f , and v a r i o u s schemes aimed a t o p t i m i z i n g t r u c k u t i l i z a t i o n and mi n i m i z i n g c o s t s . 3.3.1 Improvements i n Weight t o Power R a t i o The weight t o power r a t i o i s be i n g improved by b o o s t i n g the power of e x i s t i n g engines. There are p o t e n t i a l a p p l i c a t i o n s o f twin h i g h speed d i e s e l s i n h i g h e r power ranges, t o compete wi t h the h e a v i e r low-speed locomotive type d i e s e l engines, c u r r e n t l y i n use. F u r t h e r improvements are a l s o b e i n g made i n t u r b o c h a r g i n g and h i g h p r e s s u r e f u e l i n j e c t i o n . - 1 5 -3.3.2 A l t e r n a t i v e F u e l The c o n v e r s i o n of d i e s e l engines t o a n a t u r a l g a s / d i e s e l d u a l f u e l mode i s an attempt t o reduce t r u c k o p e r a t i n g c o s t s . I t i s expected, t h a t d u a l - f u e l o p e r a t i o n would r e p l a c e up t o 80% of d i e s e l f u e l consumption w i t h n a t u r a l gas which c o s t s h a l f as much as the d i e s e l . N a t u r a l gas would normally o n l y be used f o r haulage up the ramp t o minimize c o n v e r s i o n problems of low l o a d o p e r a t i o n s . To make the n a t u r a l gas o p e r a t i o n f e a s i b l e , the f o l l o w i n g problems need t o be s o l v e d : A c o n v e r s i o n k i t needs t o be developed t o operate the engine i n n a t u r a l g a s / d i e s e l d u a l f u e l mode - Storage o f n a t u r a l gas on board the t r u c k . - 16 -3.3.3 Increase i n Truck S i z e Many mining companies are l o o k i n g f o r l a r g e r t r u c k s t o reduce t h e i r haulage c o s t s . An i n c r e a s e i n the t r u c k s i z e lowers the o p e r a t i n g c o s t per tonne, because: Truck d r i v e r c o s t per tonne decreases, - R e p a i r c o s t s g r a d u a l l y decrease, w i t h a f a i r l y l a r g e drop between a 68-tonne t r u c k and a 109-tonne t r u c k , T i r e , f u e l and l u b r i c a t i o n c o s t s decrease per tonne hauled. The i n t r o d u c t i o n of heavy t r u c k s exceeding 180 tonne c a p a c i t y s i g n i f i c a n t l y i n c r e a s e s c a p i t a l c o s t s , because of the p r o v i s i o n of twin a x l e systems. The i n c r e a s e d t i r e wear a l s o experienced w i t h these models has l i m i t e d t h e i r use by mine o p e r a t o r s . - 17 -3.3.4 T r o l l e y Power A s s i s t The t r o l l e y a s s i s t system c o n s i s t s of an overhead power l i n e , c u r r e n t c o l l e c t o r (pantograph) mounted on the t r u c k , and add-on c o n t r o l equipment. The e x t e r n a l e l e c t r i c power i s routed through the c o n t r o l equipment t o the m o t o r i z e d wheels. The d i e s e l engine i s used t o p r o p e l the t r u c k on l e v e l s e c t i o n s of the road. On i n c l i n e s , the wheel motors of the t r u c k are coupled by the c u r r e n t c o l l e c t o r t o the overhead power l i n e . The c o n v e n t i o n a l d i e s e l e l e c t r i c t r u c k i s equipped w i t h two d.c. motors mounted on the r e a r a x l e . They d r i v e the r e a r wheels through p l a n e t a r y gearboxes. Normally the d i e s e l engine and an a l t e r n a t o r i s used t o power the wheel motors. The d i e s e l engine has lower output than the wheel motors which l i m i t s the t r u c k performance. When the t r o l l e y power a s s i s t i s a p p l i e d , the t r u c k performance i s s i g n i f i c a n t l y enhanced: t r u c k speed can be i n c r e a s e d by approximately 45%, and f u e l consumption reduced by 75%. In the 1960's, the t r o l l e y power a s s i s t was u t i l i z e d by Quebec C a r t i e r Mining Co. u n t i l the mine - 18 -was c l o s e d . P r e s e n t l y , t h i s system i s used i n t h r e e South A f r i c a n mines, Phalaborwa Mining Co., ISCOR Sishen and Rossing Uranium. The Si s h e n i r o n ore mine, of 60 m i l l i o n tonnes annual p r o d u c t i o n , c l a i m s savings on d i e s e l f u e l of 20%, i n c r e a s e i n d i e s e l engine l i f e by 45%, and e x t e n s i o n of wheel motor l i f e by 88%. The t r u c k speed on 8% grade was i n c r e a s e d by 4 6% when u s i n g t r o l l e y a s s i s t . Siemens are c u r r e n t l y extending the Rossing system a t a c o s t of $750,000 by i n s t a l l i n g a 3 MW r e c t i f i e r t o c o n v e r t the 11 kV a.c. supply t o 1200 V d.c. and i n s t a l l i n g a f u r t h e r 1 km overhead e l e c t r i c l i n e system comprising double c o n t a c t wire supported by f r e e s t a n d i n g s t e e l m a s t / c a n t i l e v e r s t r u c t u r e s . A r e d u c t i o n of f u e l consumption from 24 1/km t o l e s s than 4 1/km i s claimed when the t r u c k s operate on a 1200 V d.c. supply on a g r a d i e n t of 8% and 1050 V d.c. f o r 10% grade. Speeds are almost doubled r e s u l t i n g i n b e t t e r f l e e t u t i l i z a t i o n and i n c r e a s e d p r o d u c t i v i t y (S.A. Mining World, Nov. 1987). The t r o l l e y a s s i s t i s a v e r y p r o m i s i n g approach t o lower mine o p e r a t i n g c o s t s , and i n c r e a s e p r o d u c t i v i t y . U n f o r t u n a t e l y , the c a p i t a l c o s t of t h i s system i s v e r y high, and i t s a p p l i c a t i o n i s o n l y p r o f i t a b l e where f u e l i s very expensive compared to e l e c t r i c energy. Moreover, i t reduces the f l e x i b i l i t y of the t r u c k f l e e t and imposes t r a f f i c - 19 -problems and l i m i t a t i o n s . The c l e a r a n c e between the t r u c k and the t r o l l e y wire i s c r i t i c a l and the pantograph can u s u a l l y o n l y c a t e r f o r 0.3 m change. The pantograph then l o s e s c o n t a c t and the t r u c k l o s e s power. T h i s slows the t r u c k and d e l a y s a l l o t h e r t r u c k s behind i t on the h a u l road. The heavy r a i n f a l l and f r o s t heave experienced i n Western Canadian Mines make the c o n t r o l of c l e a r a n c e t o t h i s t o l e r a n c e i m p o s s i b l e u n l e s s the haul road i s paved. These f a c t o r s have r e s u l t e d i n the t r o l l e y a s s i s t system not b e i n g adopted by any Western Canadian open p i t o p e r a t i o n s . - 20 -3.3.5 Automatic Truck C o n t r o l The concept of Automatic Truck C o n t r o l (ATC) i s the remote c o n t r o l and d i s p a t c h o f the t r u c k . A d r i v e r ' s a s s i s t a n c e i s o n l y needed t o ent e r or e x i t the system. The b a s i c system c o n s i s t s o f the on-board c o n t r o l equipment and the wayside c o n t r o l equipment. The wayside equipment c o n s i s t s of a b u r i e d guidewire, b l o c k c o n t r o l u n i t s , and a c e n t r a l c o n t r o l l e r which p r o v i d e s predetermined s i g n a l s t o the on-board equipment f o r speed c o n t r o l , s t e e r i n g , and f o r a u x i l i a r y f u n c t i o n s through the guidewire l o c a t e d i n the t r u c k path. The Automatic Truck C o n t r o l system i s s t i l l under development, but an economic a n a l y s i s showed t h a t the use of ATC c o u l d reduce d r i v e r s ' l a b o u r by 50%. A d d i t i o n a l l y , the shovel u t i l i z a t i o n would improve as the sho v e l would continue t o work a t s h i f t changes, lunch time and o t h e r breaks p r e s e n t l y r e q u i r e d by d r i v e r s . The a p p l i c a t i o n of ATC may a l s o r e s u l t i n a s a f e r mining o p e r a t i o n , by redu c i n g human e r r o r s and human exposure t o l a r g e equipment. - .21 -3.3.6 Weather C o n d i t i o n s Truck o p e r a t i o n s are a d v e r s e l y a f f e c t e d by wet c o n d i t i o n s , low temperatures and p a r t i c u l a r l y by fogs. A l l these c o n d i t i o n s occur i n Western Canadian open p i t o p e r a t i o n s . 3 . 3 . 7 . Ramp Grade W h i l s t grades of 10 t o 12% are more economic f o r t r u c k o p e r a t i o n i n shallow p i t s , o v e r h e a t i n g of wheel motors on l o n g ramps of t h i s grade l i m i t s deep p i t o p e r a t o r s t o u s i n g 8% maximum grades. - 22 -4. IN-PIT CRUSHING AND CONVEYING SYSTEM I n - p i t c r u s h i n g and conveying i s an a l t e r n a t i v e system f o r t r a n s p o r t i n open p i t mines. The b i g g e s t advantage of t h i s system i s a s i g n i f i c a n t r e d u c t i o n o f the t r u c k haulage by i n t r o d u c i n g the i n - p i t conveyor. I f a mine p r o v i d e s two conveyors, both ore and waste are conveyed out of the p i t . T h i s way, the t r u c k t r a n s p o r t on l o n g u p h i l l d i s t a n c e s i s e l i m i n a t e d . When the mine s u p p l i e s o n l y one conveyor, i t conveys ore and waste on d i f f e r e n t s h i f t s , o r a l l the waste i s t r a n s p o r t e d by t r u c k s t o the s u r f a c e . The i n - p i t c r u s h e r i s moved down every one or two y e a r s , t o keep the t r u c k haulage t o a minimum. The r e l o c a t i o n takes 2-3 days. For s h o r t moving times the p r o c e s s i n g p l a n t can be f e d from a s t o c k p i l e . In l o n g e r stoppages, u s u a l l y i n European o p e r a t i o n s , the move c o i n c i d e s w i t h a g e n e r a l mine h o l i d a y p e r i o d . The c r u s h e r i s l o c a t e d next t o an embankment, so t h a t t r u c k s are a b l e t o dump the m a t e r i a l d i r e c t l y from the embankment i n t o the hopper/feeder above the c r u s h e r . Under an a l t e r n a t i v e arrangement, the c r u s h e r i s l o c a t e d c l o s e r t o the p i t c e n t r e and has a separate feeder w i t h - 23 -the f e e d e r t a i l - e n d l o c a t e d i n the r e c e s s i n the p i t f l o o r . The t r u c k s dump the m a t e r i a l from the p i t f l o o r i n t o the hopper on the feeder. B e l t conveyors can be one of the most e f f i c i e n t means of t r a n s p o r t i n g m a t e r i a l out of the p i t . They have been s u c c e s s f u l l y proven i n c o a l mining, but they are not so p o p u l a r i n metal mining. There are t h r e e types of b e l t conveyors t h a t can be used i n hard rock mining: i d l e r supported conveyor, c a b l e supported conveyor and h i g h angle conveyor. These are d e s c r i b e d i n d e t a i l i n c h a p t e r s 5, 6 and 7. - 24 -4.1 Advantages of the Conveyor System The i n - p i t t r a n s p o r t system i s more economical than a l l t r u c k t r a n s p o r t , and can s i g n i f i c a n t l y lower mining c o s t s . The f o l l o w i n g a s p e c t s of the system c o n t r i b u t e t o the s a v i n g s : Reduction of the t r u c k f l e e t , and consequent r e d u c t i o n o f the d r i v i n g and maintenance pers o n n e l , maintenance f a c i l i t i e s and f u e l storage, - Reduction of the t r a n s p o r t d i s t a n c e from the p i t s i n c e conveyors can operate s a f e l y up t o a 25% grade c a r r y i n g lumps of 2 50 mm i n s i z e versus 12% maximum economic grade f o r t r u c k s , Throughput c a p a c i t y of the i n - p i t mobile c r u s h e r i s approximately 20% h i g h e r than t h a t of a s t a t i o n a r y c r u s h e r , because of improved u t i l i z a t i o n , Less f u e l and l u b r i c a n t consumption, l e s s t i r e wear, Cost of e l e c t r i c energy i s more s t a b l e than t h a t of d i e s e l f u e l , Dependence on world a v a i l a b i l i t y of f u e l i s g r e a t l y reduced. - 25 -4.2 Disadvantages of the Conveyor System The i n - p i t conveyor system a l s o has some drawbacks. These disadvantages are as f o l l o w s : The i n i t i a l c o s t of the system i s normally h i g h e r than t h a t of the t r u c k haulage system, because the complete conveyor and c r u s h e r are bought t o s t a r t p r o d u c t i o n whereas the t r u c k f l e e t can be bought i n stages t o step up p r o d u c t i o n , The mining o p e r a t i o n i s completely dependent on a v a i l a b i l i t y o f the conveyors; t h i s a v a i l a b i l i t y i s over 95% but a shutdown of one b e l t can stop the e n t i r e p r o d u c t i o n , R e l o c a t i o n of the c r u s h e r and e x t e n s i o n of the conveyor i s expensive and r e q u i r e s a shutdown of the mining o p e r a t i o n f o r a p e r i o d from 2-3 days, M a t e r i a l must be crushed t o a s i z e of minus 2 50 mm b e f o r e l o a d i n g onto the conveyor. - 26 -4.3 Influence of Weather Conditions In low temperatures of less than -4 5°C, some operational problems are created: The conveyor system must operate without interruption; otherwise, belts freeze to pulleys and i d l e r s , which leads to b e l t damage during the r e - s t a r t , Maintenance has to be reduced to a minimum. Repair welding i s hardly possible and cleaning work i s impossible unless automated, The power rating increases with decrease of temperature. Gear reducers have to be heated by heater rods inside gear housings, or heating plates at the bottom of the gears of conveyors, Belt c r y s t a l i z a t i o n occurs at -55°C. - 27 -5. CASE STUDIES - IN-PIT CRUSHING AND CONVEYING SYSTEM 5.1 Twin Buttes T h i s open p i t o p e r a t i o n i n Pima County, A r i z o n a uses an overburden h a n d l i n g system, c o n s i s t i n g of t h r e e 1.5 m wide b e l t conveyors, w i t h a c a p a c i t y of 7,2 00 tonnes/h each. The mine a l s o employs a few k i l o m e t r e s of conveyors t o move crushed ore from two i n - p i t c r u s h e r s t o s t o c k p i l e s on the s u r f a c e (C.R. StJohn & J.W. Kronke, 1975). 5.2 Duval C o r p o r a t i o n - S i e r r i t a Copper Mine T h i s l a r g e open p i t i n S a h u a r i t a , A r i z o n a , U.S.A. produces 83,000 tonnes d a i l y of copper ore and 150,000 tonnes of waste. During 1982-83, the mine developed an e x i s t i n g haulage system based on s t a t i o n a r y i n - p i t ore c r u s h i n g and conveying i n t o movable i n - p i t c r u s h i n g w i t h extendable conveying f o r ore and waste. The new system c o n s i s t s of t h r e e movable 1.5x2.2 m (60-89 in.) g y r a t o r y - 28 -c r u s h e r s , t r a n s p o r t e r u n i t , movable s t a c k e r , and 7.3 km of conveyors w i t h i n s t a l l e d power of 14,000 kW. The t o t a l c a p i t a l investment was estimated a t 32 m i l l i o n U.S. d o l l a r s . Average c o s t savings are $.32/tonne a t a nominal mining c o s t o f $1.10/tonne. T h i s new system allowed the mine t o reduce the t r u c k f l e e t by 25%. Moreover, average t r u c k requirements were reduced by 37%, which e l i m i n a t e s a l l t r u c k c a p i t a l e x p e n d i t u r e s over the next t e n year p e r i o d . I t i s estimated t h a t a r e d u c t i o n i n a v e r t i c a l t r u c k l i f t of o n l y 30 metres can save one m i l l i o n d o l l a r s of o p e r a t i n g c o s t s per c r u s h e r a n n u a l l y . - 29 -5.3 Bingham Canyon Copper Mine T h i s open p i t i n Utah, U.S.A i s c u r r e n t l y under m o d e r n i z a t i o n t o achieve a p r o d u c t i o n of 70,000 tonnes of ore per day u s i n g i n - p i t c r u s h i n g and conveyor t r a n s p o r t . The system c o n s i s t s of a semi-mobile 1.5x2.7 m (60-109 i n . ) g y r a t o r y c r u s h e r and s i x b e l t conveyors. The c r u s h e r weighs 1,200 tonnes and i s i n s t a l l e d on c o n c r e t e foundations i n a r e c e s s on a bench a t the conveyor t u n n e l p o r t a l e l e v a t i o n . I t i s f e d by 154 tonne t r u c k s from two s i d e s . T o t a l h e i g h t of the i n s t a l l a t i o n i s approximately 30 m. Ore i s crushed t o a s i z e of 250 mm a t a throughput r a t e of 9,000 tonnes per hour. The feed hopper has a c a p a c i t y of 600 m3. The d i s c h a r g e b e l t i s 3 m wide and 26 m long, w i t h i n f i n i t e l y a d j u s t a b l e speed between zero and 0.5 m/s. The p l a n t i s equipped w i t h a h y d r a u l i c crane of 110 tonne l i f t i n g c a p a c i t y and a h y d r a u l i c rock breaker. The mine uses s i x conveyors of a t o t a l l e n g t h of about 8.5 km. The l o n g e s t conveyor, which i s 6 km long, runs through a t u n n e l excavated i n the p i t w a l l t o the s u r f a c e . A l l conveyor b e l t s are 1.8 m wide. T o t a l i n s t a l l e d d r i v e power i s 12,900 kW. - 30 -5.4 G i b r a l t a r Mines T h i s open p i t mine i n McLeese Lake, B.C. produces 37,000 tonnes of copper-molybdenum ore d a i l y from f o u r p i t s . In 1980, an i n - p i t c r u s h i n g and conveying system was i n s t a l l e d i n the East P i t . The system comprises a 1.4x1.9 m (54-74 in.) g y r a t o r y c r u s h e r and t h r e e f l i g h t s of conveyors of a t o t a l l e n g t h of about 10 km and l i f t o f 145 m. Crushed ore i s loaded onto a slow speed 2.13 m wide d i s c h a r g e conveyor, then t r a n s f e r r e d onto a 1.5 m wide t w o - f l i g h t o v e r l a n d conveyor t r a n s p o r t i n g ore t o the p r o c e s s i n g p l a n t . Average c a p a c i t y of the system i s 1,8 00 tonnes per hour, and d u r i n g the l a s t f i v e y e a rs the system handled 45 m i l l i o n tonnes of ore. - 31 -5.5 I s l a n d Copper Mines T h i s open p i t a t P o r t Hardy, B.C., Canada produces 43,000 tonnes of copper ore d a i l y a t a s t r i p p i n g r a t i o o f 2:1. I t i s a mine which converted i t s a l l - t r u c k system i n t o i n - p i t c r u s h i n g and conveying. The new system, i n s t a l l e d i n 1985, employs a p o r t a b l e c r u s h e r s t a t i o n , and o u t - o f - p i t conveyor which t r a n s p o r t s ore through an i n c l i n e d t u n n e l t o the s u r f a c e f a c i l i t i e s . Waste i s s t i l l handled by t r u c k s . T o t a l investment i n the e n t i r e system was 24.3 m i l l i o n CDN d o l l a r s (see Table 2), w i t h expected s a v i n g s of $ 0.19/tonne. The payback p e r i o d i s 4 years and the t r u c k f l e e t was reduced from 25 t o 14 u n i t s . - 32 -TABLE 2 CAPITAL COSTS OF THE CONVEYING SYSTEM I s l a n d Copper Mines $ CDN CRUSHER STATION 7.6 m i l l i o n 1.4x1.9 m (54-74 in.) g y r a t o r y p o r t a b l e c r u s h e r , r a t e d throughput 2,550 tonne/h; equipped w i t h a h y d r a u l i c rock breaker, hopper/feeder, 50 tonne slewing crane, and d i s c h a r g e conveyor 30 m l o n g and 2.1m wide. CONVEYOR TUNNEL 4.2 m i l l i o n l e n g t h 850 m, s i z e 4.25x3.65 m, i n c l i n e d a t 2 5%, l i n e d w i t h f i b r e r e i n f o r c e d c o n c r e t e . CONVEYOR 9.4 m i l l i o n 1.37 m wide b e l t , c a p a c i t y 4,500 tonne/h; equipped w i t h magnetic s e p a r a t o r , v e r t i c a l take-up, and 2980 kW d r i v e . OTHER COSTS: Design E n g i n e e r i n g 0.4 m i l l i o n P r o j e c t Management 0.5 m i l l i o n Contingency 2.2 m i l l i o n TOTAL COSTS: $ 24.3 m i l l i o n - 33 -5.6 Highland V a l l e y Copper T h i s open p i t mine, l o c a t e d i n the Highland V a l l e y , B.C., produces 120,000 tonnes of copper/molybdenum ore per day from two p i t s . R ecently, the Company has i n s t a l l e d two i n - p i t 1.5x2.2 m (60-89 in.) g y r a t o r y c r u s h e r s f o r ore c r u s h i n g , a t a c o s t of $20 m i l l i o n . Each c r u s h e r has a c a p a c i t y of 6,000 tonnes/h and has i t s own conveyor system t r a n s p o r t i n g ore t o the Lornex m i l l over a d i s t a n c e of 2.5 km. - 34 -6. IDLER SUPPORTED BELT CONVEYOR The properties and c h a r a c t e r i s t i c s of materials being conveyed have a major influence on conveyor design. For a better understanding of problems associated with conveyors, the following properties require d e f i n i t i o n : The angle of repose of a material i s the angle which the surface of a normal, f r e e l y formed p i l e makes to the horizontal, The angle of surcharge of a material i s the angle to the horizontal which the surface of the material assumes while the material i s at rest on a moving conveyor b e l t . This angle usually i s 5 to 15° less than the angle of repose, The f l o w a b i l i t y of a material as measured by i t s angle of repose and angle of surcharge, determines the cross-section of the material load which can be carr i e d safe l y on a b e l t . It i s also an index of the safe angle of i n c l i n e of the b e l t conveyor. - 35 -The above p r o p e r t i e s are determined by the c h a r a c t e r i s t i c s o f a m a t e r i a l , such as: b u l k d e n s i t y , maximum lump s i z e , moisture content, a b r a s i v e n e s s , s t i c k i n e s s , temperature, and c o r r o s i v e n e s s . B a s i c components of the conveyor a r e : b e l t , head and t a i l p u l l e y s , c a r r y i n g and r e t u r n i d l e r s , take up, d r i v e s , motors and brakes. 6.1 B e l t A conveyor b e l t c o n s i s t s o f t h r e e elements: c a r r y s i d e cover, c a r c a s s , and back cover. The primary purpose o f the covers i s t o p r o t e c t the b e l t c a r c a s s a g a i n s t damage. Both covers are made from n a t u r a l rubbers or elastomers. The c a r r y s i d e cover, t h a t i s i n c o n t a c t w i t h the m a t e r i a l , i s u s u a l l y t h i c k e r than the bottom cover ( f o r c oarse ore, 14 and 6 mm, r e s p e c t i v e l y ) . The b e l t c a r c a s s c a r r i e s the t e n s i o n f o r c e s when a conveyor s t a r t s and operates, absorbs the impact energy d u r i n g l o a d i n g , and p r o v i d e s the necessary s t a b i l i t y f o r proper alignment and l o a d support over i d l e r s . - 36 -High tension carcasses employ a single layer of s t e e l cables. The st e e l cables run the length of the b e l t and are held i n place by the rubber. The b e l t width should be selected to avoid s p i l l a g e while loading and conveying the material. For coarse ore belt s , i t i s desirable to keep the cross sectional load to less than 80% of the Conveyor Equipment Manufacturers Association (CEMA) standards (Fernie, A.D., 1985). This means that flowsheet tonnage w i l l be 65 to 70% of CEMA. Peak tonnage can be as high as 85% of CEMA. The cross sectional load should then be calculated at a 20 surcharge angle for 35° equal length i d l e r r o l l s . The maximum recommended bel t speed i s 4 - 5 m/s to avoid material s p i l l a g e . - 37 -6.2 Pulleys The pulleys are of various sizes and textures, but should be wider than the width of the b e l t . The pulleys are constructed from s t e e l s h e l l s , either bare or lagged, f i t t e d with hubs and sealed bearings. There are drive pulleys, snub pulleys, and take-up pulleys. For high tension conveyors, the drive pulleys should have a heavy duty diamond lagging, and non-driving pulleys a p l a i n lagging. A l l pulleys for b e l t speed exceeding 5 m/s should be turned, dynamically balanced, and stress relieved. 6.3 Idlers Idler units are c l a s s i f i e d as either carrying, return, or impact. The carrying i d l e r s support a loaded run of the conveyor be l t , and return i d l e r s support the empty return run of the b e l t . The impact i d l e r s support the b e l t during material loading. The i d l e r s may be the second or t h i r d largest investment i n a b e l t conveyor system. A t y p i c a l i d l e r system consists of three r o l l s . One i s placed h o r i z o n t a l l y i n the centre and the other two are on the sides at opposing angles. - 38 -The troughing angles can range from 5° to 4 5°, depending upon the angle of surcharge and the types of material being handled. In North America, a 35° angle i s applied for coarse ore handling. An i d l e r which i s common on the conventional conveyor b e l t system i s the t r a i n i n g i d l e r . This i d l e r i s a troughing i d l e r equipped on both sides with smaller, v e r t i c a l , spring mounted i d l e r s which keep the b e l t aligned. The function of the i d l e r unit determines the spacing of the unit. In general, impact i d l e r units have the closest spacing, whereas return i d l e r units are widely spaced. Spacing of carrying i d l e r s l i m i t s the catenary sag. The suspended (garland) i d l e r system, very popular i n Europe, i s used on long overland conveyors, but on slopes over 20% causes b e l t misalignment and excessive wear, because the i d l e r s have a tendency to change t h e i r p o s i t i o n frequently. I t i s a b a l l bearing, non greasable i d l e r consisting of three or f i v e r o l l p r o f i l e s . The suspended i d l e r i s tolerant of both poor alignment and abuse by lumps because of the f l e x i b l e connections between i d l e r s . I t can be furnished with a quick release type of mounting which permits the entire i d l e r to be replaced while the conveyor i s operating. - 39 -6 . 4 Drive Units The drive equipment b a s i c a l l y consists of a motor, speed reducer and drive with torque control devices. The drive units are usually located i n the region of maximum tension at the discharge end, but i n the case of a steep decline they are placed at the feed point and act as a brake. The tandem drive which comprises two drive pulleys at the head i s the most common arrangement for long, high capacity conveyors. Each pulley i s powered by one or two motors. The tandem drive reduces b e l t stresses and the p o s s i b i l i t y of a b e l t s l i p . Attention must be paid to the ele c t r o n i c synchronization of the tandem drive to prevent damage to the system. I t i s very important to control the motor torque applied to the b e l t while s t a r t i n g the conveyor. An excessive torque adversely a f f e c t s the. material s t a b i l i t y on an i n c l i n e d b e l t , the b e l t i t s e l f , mechanical parts and motor. The wound rotor motor and f l u i d coupling are two most commonly used systems to obtain a soft s t a r t for long conveyors. - 40 -The wound r o t o r motors ensure a m u l t i s t a g e a c c e l e r a t i o n t h a t p r e v e n t s o v e r t e n s i o n i n g of a loaded b e l t when s t a r t i n g the conveyor. Conveyor brakes are used w i t h i n the motor or i n c o n j u n c t i o n w i t h the motor. Dynamic brakes use the motor i t s e l f as a generator or attempt t o r e v e r s e the d i r e c t i o n of the motor movement. Downhill conveyors use motor f o r dynamic b r a k i n g , backed-up by a f u l l mechanical brake f o r emergency use. U p h i l l conveyors use the one-way back-stop and brakes are onl y used i f t h e r e i s a f o l l o w i n g conveyor. - 41 -6.5 A c c e s s o r i e s The a c c e s s o r i e s t h a t can be used w i t h any conveyor b e l t system i n c l u d e b e l t c l e a n e r s , v a r i o u s d e t e c t i o n d e v i c e s , and environmental p r o t e c t i o n c o v e r s . The b e l t c l e a n e r s can be obtained i n v a r i o u s types and s t y l e s . The most common are blade c l e a n e r s and brush c l e a n e r s . A l a r g e s e l e c t i o n o f warning and d e t e c t i o n d e v i c e s i s a v a i l a b l e , such as: break d e t e c t o r s , o v e r t r a v e l d e t e c t o r s , puncture d e t e c t o r s , o v e r l o a d d e t e c t o r s , and numerous types of weighing and random sampling equipment. The covers used on conveyor systems range from windscreens t o f u l l y e n c l o s e d c o n c r e t e s t r u c t u r e s . The type of cover depends on the c l i m a t e and type o f the m a t e r i a l moved. Long d i s t a n c e conveyors are equipped w i t h s a f e t y d e v i c e s which a l l o w the conveyor t o be stopped i n case o f emergency. The most common are p u l l c o r d emergency switches. In the case of power f a i l u r e the conveyor i s stopped by immediate engagement of the b r a k i n g system. - 42 -7. CABLE SUPPORTED BELT CONVEYOR The c a b l e supported b e l t conveyor s e p a r a t e s the d r i v i n g and c a r r y i n g f u n c t i o n s . In the system, the d r i v i n g t e n s i o n s are t r a n s m i t t e d through two p a r a l l e l s t e e l c a b l e s i n the form of endless loops, which c o n t i n u o u s l y support and c a r r y the b e l t near i t s edges. The b e l t , t h e r e f o r e , i s not a f f e c t e d by d r i v e t e n s i o n s and i s o n l y designed t o c a r r y m a t e r i a l . The twin c a b l e s are supported by grooved l i n e p u l l e y s along the l e n g t h of the conveyor, which g i v e s the system a p o s i t i v e t r a c k i n g . 7.1 B e l t The b e l t covers have grooves f o r the c a b l e s . These grooves run the t o t a l l e n g t h of the b e l t and are used as guides f o r the c a b l e . Due t o t h i s f e a t u r e the b e l t needs no e x t r a alignment u n i t s . The b e l t c a r c a s s c o n s i s t s of t r a n s v e r s e s t e e l w i r es and wire mesh. Recently, s t e e l w i res are used i n p l a c e of s t e e l s t r a p s . T h i s arrangement p r o v i d e s the b e l t w i t h c a r r y i n g s t r e n g t h and f l e x i b i l i t y . - 43 -7.2 Cable P u l l e y s The c a b l e p u l l e y assemblies are mounted on l i n e s t a n d s and arranged i n twin c o n f i g u r a t i o n u s i n g r o c k e r b a r s . The r o c k e r bars can p i v o t h o r i z o n t a l l y and v e r t i c a l l y t o f a c i l i t a t e c o r r e c t s e l f alignment w i t h the d r i v e c a b l e s . At e i t h e r end of the conveyor, the b e l t i s t r a n s f e r r e d from c a r r y i n g t o r e t u r n and v i c e v e r s a by a simple d e f l e c t i n g u n i t . At the head and the t a i l , the Cable B e l t conveyor has b e l t p u l l e y s s i m i l a r t o those used w i t h the i d l e r b e l t conveyor. At the t u r n i n g p o i n t the c a b l e s are removed from t h e i r grooves and r e v e r s e d by separate v e r t i c a l d e f l e c t i o n c a b l e p u l l e y s which d e f l e c t the c a b l e s i n t o the grooves on the o p p o s i t e s i d e of the b e l t . For easy maintenance, the p u l l e y assemblies can be q u i c k l y removed and are p r o v i d e d with renewable polyurethane l i n e d rims known as p o l y r i m s . - 44 -7.3 D r i v e U n i t s One of the main f e a t u r e s of c a b l e supported b e l t conveyors i s t h a t t h e r e i s o n l y one d r i v e u n i t f o r each conveyor r e g a r d l e s s o f the l e n g t h . A d r i v e u n i t comprises a t o t a l l y e n c l o s e d r e d u c t i o n gearbox i n c o r p o r a t i n g the d i f f e r e n t i a l gear arrangement t o e q u a l i z e c a b l e speeds and t e n s i o n s . Twin c a b l e d r i v i n g wheels, e i t h e r surge or Koepe wheel type, p r o v i d e the d r i v e t o the c a b l e s . C o n t r o l and b r a k i n g f u n c t i o n s are accomplished by c o n v e n t i o n a l methods. The d r i v i n g c a b l e s are t e n s i o n e d independently t o c a t e r f o r any v a r i a t i o n s i n s t r e t c h . The t e n s i o n i n g arrangement ensures t h a t the t e n s i o n s i n each c a b l e are the same. The b e l t i s t e n s i o n e d s e p a r a t e l y from the c a b l e s . - 45 -7.4 S p e c i a l Features of the System The Cable B e l t conveyor has the a b i l i t y t o n e g o t i a t e sudden changes i n the h o r i z o n t a l d i r e c t i o n , by means of an angle t r a n s f e r s t a t i o n . T h i s s t a t i o n comprises a d i s c h a r g e and feed arrangement combined a t the i n t e r s e c t i o n of two f l i g h t s of the b e l t . M a t e r i a l i s t r a n s f e r r e d from one b e l t t o another but the d r i v i n g c a b l e s remain the same f o r both f l i g h t s and t h e i r d i r e c t i o n i s changed by a s e t of h o r i z o n t a l c a b l e d e f l e c t i o n p u l l e y s mounted on the angle t r a n s f e r s t a t i o n . Only one d r i v e u n i t i s needed f o r the whole conveyor system when t h i s arrangement i s used. - 46 -7.5 Hard Rock I n s t a l l a t i o n s Cable B e l t conveyors operate worldwide, both o v e r l a n d and underground, conveying v a r i o u s m a t e r i a l s i n d i f f e r e n t c l i m a t i c environments. Many a p p l i c a t i o n s have been c o n s i d e r e d f o r extreme low temperature c o n d i t i o n s , down t o -45°C. In Canada, a t Algoma's George McLeod Mine i n Wawa, On t a r i o , a 4570 metre long c a b l e b e l t conveys the crushed i r o n ore from the underground mine t o a p r o c e s s i n g p l a n t on the s u r f a c e . At Newmont Mining Company, Similkameen, a 1980 metre long c a b l e b e l t c r o s s e s a 25% s l o p e down the s i d e o f a canyon, and then takes a r i g h t angle t u r n a c r o s s a 490 m suspension b r i d g e t o the p r o c e s s i n g p l a n t . The b r i d g e was s p e c i f i c a l l y designed t o c a r r y a conveyor of a c a p a c i t y of 153 0 tonne/h of copper ore. - 47 -8. HIGH ANGLE CONVEYORS Over the l a s t f i f t e e n y e a r s , d i f f e r e n t t ypes of steep angle conveying systems have been developed. The pocket b e l t conveyor and sandwich b e l t conveyor have found a p p l i c a t i o n i n open p i t mining. 8.1 Pocket B e l t Conveyor A pocket b e l t conveyor was developed by Konrad S c h o l t z AG Hamburg, West Germany. High angle pocket conveyors use continuous c o r r u g a t e d s i d e s k i r t s and rubber c r o s s c l e a t s v u l c a n i z e d t o a f l a t rubber b e l t t o form box compartments f o r m a t e r i a l along the l e n g t h of the b e l t . The s p e c i a l s k i r t d e s i g n permits continuous bending around p u l l e y s without f a t i g u e of the c o r r u g a t i o n s . The s i d e w a l l s range i n h e i g h t from 40 t o 400 mm. A c r o s s - r i g i d i z i n g o f the f l a t b e l t minimizes d i s h i n g and reduces a g i t a t i o n o f the conveyed m a t e r i a l . The b e l t i s supported by c l o s e l y spaced f l a t i d l e r s . - 48 -So f a r , pocket b e l t i n s t a l l a t i o n s are l i m i t e d t o c a p a c i t i e s l e s s than 1,000 tonne/h. The o n l y e x c e p t i o n i s the Algoma C e n t r a l Railway's s e l f u n l o a d i n g v e s s e l MV "Agava Canyon", w i t h i t s new e l e v a t i n g system. The system c o n s i s t s o f two p a r a l l e l L-shaped F l e x o w a l l conveyor b e l t s w i t h a conveying angle of 54°. The b e l t used i n t h i s i n s t a l l a t i o n i s 1.8 m wide, s t e e l cord, type StlOOO. T h i s i n s t a l l a t i o n can handle b u l k m a t e r i a l w i t h a c a p a c i t y o f 2x2000 m3/h a t a b e l t speed of 2.32 m/s. 8.2 Sandwich B e l t Conveyor The sandwich b e l t conveyor was developed by the C o n t i n e n t a l Conveyor and Equipment Company Inc., U.S.A. The conveyor employs two rubber b e l t s t h a t h o l d the conveyed m a t e r i a l t i g h t l y between them t o prevent i t s l i d i n g back. The c a r r y i n g b e l t i s supported on c l o s e l y spaced t r o u g h i n g i d l e r s . The cover b e l t i s pressed s o f t l y onto the conveyed m a t e r i a l by c l o s e l y spaced, f u l l y e q u a l i z e d standard impact r o l l s i n s t a l l e d on s p r i n g loaded p r e s s i n g modules. - 49 -A c c o r d i n g t o the manufacturer, b a s i c components (such as b e l t s , i d l e r s , p u l l e y s and d r i v e s ) are the same as those used on a common i d l e r b e l t conveyor. The u n i t c o n s i s t s of a r i g i d framework t h a t i n c o r p o r a t e s two b e l t l o o p s , each supported on c l o s e l y spaced i d l e r s . Load s h a r i n g d r i v e s f o r both b e l t s are l o c a t e d a t the head. Automatic take-ups are l o c a t e d a t the t a i l . To date, o n l y one sandwich b e l t conveyor u n i t i s b e i n g i n s t a l l e d i n the Majdanpek, Y u g o s l a v i a open p i t mine t o e l e v a t e the crushed ore from the p i t onto the s u r f a c e conveyor which t r a n s p o r t s ore t o the p l a n t . The t e c h n i c a l data of t h i s i n s t a l l a t i o n are g i v e n i n Table 3. I t i s planned t o i n s t a l l a second u n i t t o e l e v a t e ore from the deeper p i t l o c a t i o n onto the t a i l end of the f i r s t sandwich conveyor. - 50 -TABLE 3 SANDWICH BELT CONVEYOR - TECHNICAL DATA Majdanpek, Y u g o s l a v i a M a t e r i a l conveyed - type copper ore d e n s i t y 2.08 tonne/m 3 - lump s i z e 250 mm Conveying angle 35.5° Conveying r a t e 4,000 tonne/h B e l t width 2.0 m B e l t speed 2.67 m/s E l e v a t i n g h e i g h t 93.5 m D r i v e s top b e l t 450 kW - bottom b e l t 2 x 450 kW - 51 -9. COMPARISON OF CONVEYORS The i d l e r conveyor i s the b e s t proven i n the metal mining i n d u s t r y . The Cable B e l t conveyor i s w e l l proven i n c o a l mining. These conveyors can operate a t an angle l e s s than the i n t e r n a l f r i c t i o n angle of a m a t e r i a l . A comparison of these two types of conveyors i s g i v e n i n T a b l e 4 and i n F i g . 1. The i d l e r conveyor has found g r e a t e r a p p l i c a t i o n i n hard rock mining due t o i t s l a r g e c a p a c i t y and r e l a t i v e ease of r e l o c a t i o n . The c a b l e conveyor i s more economical, uses l e s s energy and r e q u i r e s l e s s maintenance, however, i t has a l i m i t e d c a p a c i t y and i t s c o n s t r u c t i o n r e q u i r e s c o m p l icated t e n s i o n i n g d e v i c e s . T h e r e f o r e , the c a b l e conveyor i s more a p p l i c a b l e as a lo n g d i s t a n c e o v e r l a n d permanent s t r u c t u r e . High angle conveyors are s t i l l under development and not w e l l proven i n the mining i n d u s t r y . S e l e c t i o n o f a sandwich b e l t conveyor or pocket b e l t conveyor would depend on the mine p r e f e r e n c e . These conveyors are compared i n Table 5 and i n F i g . 2. - 52 -TABLE 4 IDLER BELT CONVEYOR V S . CABLE BELT CONVEYOR IDLER BELT CONVEYOR CABLE BELT CONVEYOR BELT & CABLES Extra width required for edge wander. Subject to edge damage. Prone to longitudinal s l i t t i n g . Susceptible to undetectable internal corrosion of the st e e l cord reinforcement. Off centre loading causes b e l t tracking problems. Many s p l i c e s required. Construction precludes longitudinal s l i t t i n g . Easy inspection of drive cables. Off centre loading has no e f f e c t . Width determined so l e l y by capacity. Drive cable a v a i l a b l e i n co n t i -nuous length up to 16 km. ROLLERS 6 bearings and seals at each i d l e r set. Dirty b e l t i n contact with return r o l l e r s causing tracking problems. Reduced number of bearings and seals. Positive l o cation of drive cables prevents misalignment and allows bends to be negotiated. Belt does not contact r o l l e r s . Linestand alicfnment i s c r i t i c a l . POWER Resistance of be l t to troughing and re s u l t i n g constant a g i t a t i o n of material generates high f r i c t i o n power requirements As troughing i s i n b u i l t , material l i e s i n e r t on be l t and f r i c t i o n power requirement i s up to 4 0% lower MAINTE-NANCE Many tension transmitting s p l i c e s , each requiring up to 4 8 hours to make. Multiple r e - s p l i c i n g requirement over l i f e of be l t . Greater number of moving parts requiring maintenance. Few drive cable s p l i c e s , but cable s p l i c i n g can be major task. L i f t - o u t l i n e pulleys f a c i l i t a t e changing. Spares are s p e c i f i c to project. Requires s p e c i a l l y designed drive head and qear box. IDLER S U P P O R T E D B E L T C O N V E Y O R Fig.1 CONVENTIONAL CONVEYORS - 54 -TABLE 5 SANDWICH BELT CONVEYOR vs. POCKET BELT CONVEYOR Sandwich B e l t Conveyor Pocket B e l t Conveyor IDLERS Large number of s u p p o r t i n g & p r e s s i n g i d l e r s r o t a t i n g a t h i g h speed t h a t a f f e c t r e l i a b i l i t y . No p r e s s i n g i d l e r s , l e s s s u p p o r t i n g i d l e r s t h a t r o t a t e a t lower speed BELT Wear on edges due t o p r e s s i n g r o l l e r s a c t i o n . High t e n s i o n i n c a r r y i n g b e l t . No wear due t o s t a b i l i t y o f m a t e r i a l i n pockets. R e l a t i v e l y low speed. CLEAN-ING Easy c l e a n i n g . B e l t c l e a n e r s w e l l proven on standard b e l t conveyors. D i f f i c u l t y i n c l e a n i n g pockets w i t h s t i c k y m a t e r i a l . Requires b e l t thumpers. EFFECT OF INCREAS CONV. ANGLE No l o s s i n c a p a c i t y . Higher b e l t t e n s i o n s & h i g h e r s i d e r o l l e r p r e s s i n g r e q u i r e d . Conveying r a t e f a l l s o f f because the pocket can only be p a r t i a l l y f i l l e d when a t h i g h angle. AVAIL. OF SPARES Easy because the same p a r t s are a v a i l a b l e as f o r standard i d l e r conveyors. More d i f f i c u l t . Employs non-standard hardware, not a v a i l a b l e on s h o r t n o t i c e . L i m i t e d sources of supply. - 55 -POCKET BELT CONVEYOR Fig.2 HIGH A N G L E C O N V E Y O R S - 56 -10. IN-PIT CRUSHING PLANT 10.1 Crusher I n s t a l l a t i o n s In 1956 the f i r s t mobile c r u s h e r was i n s t a l l e d i n a limestone quarry i n Hower, West Germany. S i n c e then, mobile i n - p i t c r u s h i n g u n i t s have i n c r e a s e d t o more than seventy i n s t a l l a t i o n s around the world, mostly of l e s s than 1,000 tonnes/h c a p a c i t y and o p e r a t i n g i n limestone q u a r r i e s . A mine survey and equipment development study t o s e l e c t a mobile c r u s h e r was conducted f o r the hard rock open p i t mining i n d u s t r y i n the U n i t e d S t a t e s (E.M. F r i z z e l l , e t a l . , 1981). The t y p i c a l c r u s h e r system requirements determined i n the study are g i v e n i n Table 6. Other types of c r u s h e r s were a l s o c o n s i d e r e d but o n l y the g y r a t o r y c r u s h e r met a l l of the l i s t e d requirements. - 57 -TABLE 6 CRUSHER PLANT REQUIREMENTS ( a f t e r E.M. F r i z z e l l , 1981) G y r a t o r y type Large c a p a c i t y (2,270-3,630 tonnes/h) Freedom from c l o g g i n g Maximum frequency of moves - one per year Average frequency of moves - once every two years Large feed openings (1.37 m minimum) Crush rock w i t h compressive s t r e n g t h of up t o 32,200 tonne/m 2 High r e l i a b i l i t y o f system (85%+) Freedom from b r i d g i n g Low maintenance c o s t A l l - w e a t h e r o p e r a t i o n (-40 t o +50°C) 22 hr/day o p e r a t i o n , 350 days per year Moderate n o i s e Dust c o n t r o l a t t r a n s f e r p o i n t s Operate 12 t o 15 m ' bench h e i g h t s Move up 10% maximum grades (15 m wide) R e l o c a t i o n w i t h i n two weeks Surge c a p a c i t y of 3 60 tonnes /* Subsequent experience i n d i c a t e s t h a t 12 m bench h e i g h t s are the maximum which can be u t i l i z e d i n p r a c t i c e - 58 -The concept o f i n - p i t c r u s h i n g and conveying r e q u i r e s a h i g h c a p a c i t y crusher, l o c a t e d a t or near a p i t bottom. Crusher systems developed t o date have v a r y i n g m o b i l i t y c a p a b i l i t i e s . These range from f u l l y mobile u n i t s t o f i x e d , permanently l o c a t e d u n i t s w i t h i n a p i t . The c r u s h e r s can be c l a s s i f i e d as f o l l o w s : Mobile Crusher Equipped w i t h a t r a n s p o r t i n g mechanism. The most u s e f u l are: h y d r a u l i c walking mechanism (pads) and c r a w l e r t r a c k e d c h a s s i s . M o b i l i t y : e x c e l l e n t . Can move a t a speed o f 0.9 m/min. Ground p r e p a r a t i o n f o r moving i s c r i t i c a l ; p r e p a r a t i o n time i s e x t e n s i v e and expensive because o f the h i g h ground p r e s s u r e s i n v o l v e d . Ensures on-the-spot r o t a t i o n , can f o l l o w the fa c e d i r e c t l y . Examples: (1) Mobile, g y r a t o r y c r u s h i n g u n i t i n s t a l l e d i n 1981 a t Foskor, Phalaborwa, South A f r i c a t o crush p y r o x e n i t e and f o s k o r i t e ore t o minus 250 mm s i z e a t a r a t e of 2,700 tonne/h. - 59 -(2) Mobile c r u s h i n g u n i t i n s t a l l e d i n 1980 i n Grootgeluk, South A f r i c a open p i t c o a l mine t o c r u s h rock t o minus 3 00 mm s i z e a t a r a t e of 3,000 tonne/h. Movable Crusher s i n g l e u n i t Equipped with c h a s s i s on rubber t i r e d wheels or with c h a s s i s adapted t o be c a r r i e d on a cr a w l e r t r a n s p o r t e r . Can be r e l o c a t e d w i t h i n 48 hours. Normally r e l o c a t e d every one or two ye a r s . Examples: (1) I s l a n d Copper Mines, P o r t Hardy, B.C., Canada. A 1.4-1.9 m (54-74 in.) g y r a t o r y c r u s h e r was i n s t a l l e d i n 1985. (2) Duval C o r p o r a t i o n , S i e r r i t a Mine. A r i z o n a , U.S.A. A g y r a t o r y c r u s h e r of throughput c a p a c i t y 3,600 tonne/h r e l o c a t a b l e by a piggy-back t r a n s p o r t e r . Movable Crusher modular u n i t Can be disassembled i n t o modules of e a s i l y t r a n s p o r t a b l e s i z e and weight. Disassembly and reassembly takes about 30 days. S u i t a b l e when c r u s h e r r e l o c a t i o n i s planned f o r every t h r e e t o f i v e y e a r s . Can be disassembled i n t o modules wi t h a maximum weight of 53.3 tonne and a maximum s i z e o f 12.8x6.7x6.7 m w i t h i n one month. Example: Majdanpek Copper Mine, Y u g o s l a v i a . Movable Crusher Mounted on a s t e e l p l a t f o r m t h a t reduces s e m i - f i x e d the requirement f o r c o n c r e t e f o u n d a t i o n s . Is s u i t a b l e when not moved i n l e s s than te n y e a r s . Example: Twin Buttes Copper Mine, A r i z o n a , U.S.A. Two primary 1.4x1.9 m (54-74 in.) g y r a t o r y c r u s h e r s e r e c t e d on a heavy s t e e l s t r u c t u r e . They w i l l remain i n p l a c e f o r a t l e a s t 10 years and then be moved down the p i t i n a s e r i e s of l e a p - f r o g movements. F i x e d Crusher Never moved. Truck haulage from the mine face g r a d u a l l y i n c r e a s e s . Example: S i e r r i t a Copper Mine, A r i z o n a , U.S.A. Two 1.5x2.2 m (60-89 in.) g y r a t o r y c r u s h e r s having c a p a c i t y of 2,900 tonne/h each, l o c a t e d i n the p i t t o c r u s h waste. - 61 -10.2 Hopper/Feeder C o n f i g u r a t i o n s There are two methods of f e e d i n g c r u s h e r s by t r u c k s : d i r e c t f e e d i n g and i n d i r e c t f e e d i n g . D i r e c t f e e d i n g i s accomplished by dumping m a t e r i a l from t r u c k s t o the hopper s i t u a t e d d i r e c t l y above the c r u s h e r . I n d i r e c t f e e d i n g i s accomplished where m a t e r i a l i s dumped by the t r u c k s t o the hopper s i t u a t e d some s h o r t d i s t a n c e from the c r u s h e r . Then, the m a t e r i a l i s t r a n s p o r t e d from the dumping p o i n t t o the c r u s h e r by means of the apron feeder. One of the major c o n s i d e r a t i o n s i n a hopper/feeder d e s i g n i s the t r u c k t r a f f i c flow p a t t e r n . T h i s d i c t a t e s the t r u c k dumping p o s i t i o n s i n r e l a t i o n t o the hopper, the room f o r the t r u c k s t o maneuver, and the number of dumping p o s i t i o n s . There are b a s i c a l l y t h r e e arrangements of the hopper/feeder u n i t : h i g h bench, low bench, and p i t f l o o r . B a s i c f e a t u r e s of these arrangements are d e s c r i b e d on the f o l l o w i n g pages. - 62 -High Bench Arrangement Smaller surge c a p a c i t y compared t o an i n c l i n e d f e eder. A s t r i k e - o f f p o i n t r e q u i r e d t o l i m i t a v e r t i c a l opening t o c o n t r o l the depth of burden and the feed r a t e . Long f e e d e r due t o bank s l o p e . Moderate d r i v e power. May r e q u i r e e x t e n s i v e bank r e i n f o r c e m e n t . Requires bench h e i g h t of about 23 m. Low Bench Arrangement Large surge c a p a c i t y , s h o r t f e e d e r . Easy t o i n s t a l l , remove and t r a n s p o r t . Moderate bank s t a b i l i z a t i o n r e q u i r e d . Needs bank h e i g h t up t o 12 m. F l o o r Arrangement Long feeder and h i g h power requirements. D i f f i c u l t t o t r a n s p o r t due t o i t s s i z e and s p e c i a l supports. Requires e x c a v a t i o n t o accomodate the t a i l - e n d o f the fe e d e r . Needs bench h e i g h t of about 8 m. - 63 -There are two b a s i c types of f e e d e r s : apron f e e d e r s and b e l t f e e d e r s . Apron fe e d e r s are more popu l a r i n hard rock h a n d l i n g . Apron Feeder Feeds c r u s h e r s a t the r a t e s o f 5,500 tonne/h and over. The c a p a c i t y ranges from 2,000 t o 8,000 tonne/h, width can v a r y from 1.52 t o 3.66 m, and l e n g t h from 6 t o 60 m. Mostl y equipped w i t h v a r i a b l e speed d r i v e s . B e l t Feeder S u c c e s s f u l l y used t o some ext e n t i n West Germany, France, Japan, U n i t e d S t a t e s , and i n the P a c i f i c area. Advantages: simple c o n s t r u c t i o n , i n i t i a l c a p i t a l c o s t r e l a t i v e l y low, reasonable power consumption, easy maintenance, f a i r l y good feed r e g u l a t i o n , much l e s s n o i s e than t h a t o f apron f e e d e r . Disadvantage: a b e l t i s more prone t o damage than apron fe e d e r s , e s p e c i a l l y w h i l e c a r r y i n g l a r g e lumps a t a hig h r a t e . - 64 -10.3. A u x i l i a r y Equipment A u x i l i a r y equipment of i n - p i t c r u s h i n g p l a n t b a s i c a l l y c o n s i s t s of maintenance crane, rock breaker and t r a n s p o r t e r . Maintenance Crane P e d e s t a l crane, f o r both main s h a f t removal and g e n e r a l maintenance i s mounted on the c r u s h e r s t a t i o n , t o perform a l l t a s k s and be r e a d i l y s e r v i c e d . Major i n - p i t c r u s h e r manufacturers p r o v i d e the c r u s h i n g p l a n t w i t h such a crane of s u f f i c i e n t l i f t i n g c a p a b i l i t y . Rock Breaker Permanently mounted on the c r u s h e r the h y d r a u l i c a l l y operated rock breaker i s necessary to e l i m i n a t e b r i d g e s and break o v e r s i z e r o c k s . Major i n - p i t c r u s h e r manufacturers p r o v i d e r e q u i r e d rock b r e a k e r s . Operating r e c o r d s i n d i c a t e t h a t a rock breaker may operate between 2 0 and 3 0% of the c r u s h e r o p e r a t i n g hours. - 65 -T r a n s p o r t e r Equipment f o r t r a n s p o r t i n g c r u s h e r s i n the p i t i s commercially a v a i l a b l e . Pneumatic wheels, c r a w l e r s and walking pads have been i n common use f o r e x i s t i n g mobile c r u s h e r s . Mines o f t e n c o n t r a c t out these moves t o s p e c i a l i z e d c o n t r a c t o r s . - 66 -11. HYPOTHETICAL OPEN PIT MINE A h y p o t h e t i c a l mine has been developed t o compare the a l t e r n a t i v e t r a n s p o r t a t i o n systems. The mine i s l o o s e l y based on the c o n d i t i o n s of the Lornex Mining C o r p o r a t i o n . 11.1 General D e s c r i p t i o n The mine and i t s s u r f a c e f a c i l i t i e s are s i t u a t e d i n r e l a t i v e l y f l a t t e r r a i n . A massive porphyry copper d e p o s i t l i e s under a 100 m t h i c k l a y e r of overburden. The t h i c k n e s s of the d e p o s i t i s 300 m. The orebody has an e l l i p t i c a l shape i n p l a n . The shape i s f o l l o w e d by the open p i t p e r i m e t e r . The e l l i p t i c a l shape remains unchanged wit h depth although the e l l i p s e g r a d u a l l y d i m i n i s h e s . The ore zone c o n t a i n s ore and waste. Waste i s i r r e g u l a r l y d i s p e r s e d and i t s r a t i o t o ore p r o p o r t i o n a l l y decreases w i t h the p i t depth. At the top of the ore zone t h e r e i s 45% of ore and 55% of waste, w h i l e a t the bottom t h e r e i s 100% of ore. - 67 -The f i n a l p i t dimensions on s u r f a c e are 2500x1200 m. The f i n a l p i t s l o p e i s 45°, and the working s l o p e i s 26°. The haulage road ramp grade on s l o p e i s 8%. The h a u l d i s t a n c e s from the p i t rim are 2.2 km t o the p r o c e s s i n g p l a n t , and 4.4 km t o the waste dump, both on l e v e l grade. I t i s assumed t h a t the mine employs e i t h e r the a l l - t r u c k haulage system, or an i n - p i t c r u s h i n g and conveying system as an a l t e r n a t i v e t r a n s p o r t system. The s t r i p p i n g of overburden precedes the mining of the ore zone, and i s performed by a separate f l e e t of e x c a v a t i n g and h a u l i n g equipment. The s t r i p p i n g of overburden i s common t o both systems and i s not c o n s i d e r e d i n the model. The f u r t h e r a n a l y s i s r e l a t e s o n l y t o the ore body. - 68 -11.2 E x c a v a t i o n Procedure E x c a v a t i o n o f the ore body begins when a s u f f i c i e n t p a r t of the overburden has been removed. Benches are t y p i c a l l y 12 m hi g h . The primary b r e a k i n g of the rock i s accomplished by d r i l l i n g and b l a s t i n g . The b l a s t e d rock i s loaded by e l e c t r i c s h o v e l s onto d i e s e l - e l e c t r i c r e a r dump t r u c k s . Trucks are loaded from both s i d e s o f the s h o v e l . Ore and waste are handled by the same sh o v e l s and t r u c k s . The ore zone i s s u b d i v i d e d i n t o f i v e h o r i z o n t a l 60 m t h i c k b l o c k s i n the 3 00 metre t h i c k n e s s . The e x c a v a t i o n o f each b l o c k begins w i t h a boxcut a t the c e n t r e . Then the boxcut i s extended downwards and h o r i z o n t a l l y , m a i n t a i n i n g a c o n s t a n t working s l o p e angle. When the e x c a v a t i o n reaches a bottom bench of the block, the remaining benches are pushed back. The annual ore p r o d u c t i o n i s constant, a t 3 0 m i l l i o n tonnes. The mine operates 365 days/yr , two 12 hour s h i f t s on 4x4 continuous b a s i s , a t a t o t a l d a i l y p r o d u c t i o n of 82,000 tonnes. The f i x e d d e l a y s are 3 hours, as c a l c u l a t e d i n Table 7. The work e f f i c i e n c y i s assumed t o be 50 minutes of o p e r a t i n g time per hour. - 69 -TABLE 7 FIXED OPERATING DELAYS DELAY TIME/SHIFT [min] DELAYS/DAY ["] TOTAL TIME [h] S h i f t change 30 2 1.00 C o f f e e break 2 x 10 2 0. 67 Lunch 2 x 20 2 1.33 TOTAL: 3 . 00 - 70 -11.3 A l l Truck System In t h i s system shown i n F i g . 3, t r u c k s haul both ore and waste out of the p i t t o the p r o c e s s i n g p l a n t or the waste dump on s u r f a c e . The t r u c k s haul m a t e r i a l on the l e v e l from the face t o the p i t w a l l , then on 8% grade t o s u r f a c e , and f i n a l l y from the p i t rim t o the d e s t i n a t i o n p o i n t s . The ore i s d e l i v e r e d t o the hopper of two s t a t i o n a r y c r u s h e r s a t the p r o c e s s i n g p l a n t . The system a v a i l a b i l i t y i s 83%. The ore and waste t r u c k s are of the same type: 154 tonne c a p a c i t y , d i e s e l - e l e c t r i c , r e a r dump, U n i t R i g Mark 36. - 72 -11.4 I n - P i t Crushing and Conveying System In t h i s system, shown i n F i g u r e 4, t r u c k s h a u l ore t o the i n - p i t c r u s h e r . The waste, however, i s hauled by t r u c k s out of p i t t o the dump. The ore and waste t r u c k s are of the same type as those which operate the a l l t r u c k t r a n s p o r t system. The system c o n s i s t s of two p o r t a b l e c r u s h e r s and b e l t conveyors. In the beginning both c r u s h e r s are i n s t a l l e d on the -156 m l e v e l . As the p i t deepens one c r u s h e r i s r e l o c a t e d t o the -216 m l e v e l , then t o the -336 m l e v e l , the second c r u s h e r i s r e l o c a t e d t o the ^2 7 6 m and then t o the -396 m l e v e l . Each c r u s h e r s i s 1.4x1.9 m (54-74 in.) g y r a t o r y , w i t h an estimated c a p a c i t y of 2,800 tonne/h, a t 229 mm d i s c h a r g e s e t t i n g . The a v a i l a b i l i t y of the c r u s h e r p l a n t i s 95%. The a v a i l a b i l i t y of a s i n g l e conveyor f l i g h t i s 97.5% (as per S. Kutschera, 1984). The o v e r a l l system a v a i l a b i l i t y i s 69.5%. Because of the r e l a t i v e l y low number of i n d i v i d u a l conveyor f l i g h t s , i t i s not p o s s i b l e i n p r a c t i c e t o assume t h a t f a i l u r e s w i l l occur s i m u l t a n e o u s l y . The down times of the conveyor f l i g h t s are a d d i t i v e and ORE STOCKPILES HAUL ROAD Fig.4 IN-PIT CRUSHING & CONVEYING - Site Plan - 74 -t h e r e f o r e they have an impact on the e f f e c t i v e o p e r a t i n g time of the e n t i r e system, each time an e x t r a conveyor i s added. T h i s should r e s u l t i n a c o n s e r v a t i v e e s t i m a t e of a v a i l a b i l i t y . I t i s assumed t h a t a l l conveyors are the i d l e r troughed b e l t type. The b e l t width was assumed as 1.52 m f o r a l l conveyors. A b e l t speed was c a l c u l a t e d i n accordance w i t h the Standards o f the Equipment Manufacturers A s s o c i a t i o n (CEMA) and recommendations of A.D. F e r n i e (1985). The design c a p a c i t y a t the annual p r o d u c t i o n o f 30 m i l l i o n tonnes i s 5,63 4 tonnes/h. The c r o s s s e c t i o n a l area of the l o a d i s assumed as 7 0% of CEMA standards a t a 2 0° angle of surcharge. The c a l c u l a t e d b e l t speed i s 3.3 m/s. The brake power (BP) was c a l c u l a t e d a t a 92% working e f f i c i e n c y as a f u n c t i o n of the e f f e c t i v e t e n s i o n (Te) r e q u i r e d a t the d r i v e p u l l e y , u s i n g CEMA formulae co n v e r t e d from i m p e r i a l t o m e t r i c u n i t s : BP where Te S Te X S 146.79 r 1 TT_ 33,000 X O T ^ - [ k W ] - e f f e c t i v e t e n s i o n , tonnes - b e l t speed, m/s. - 75 -and where Te = 1.0123 X {C X (L+L 0) X ( Q + where C - composite f r i c t i o n f a c t o r ; equal 0.022 f o r r i g i d , permanent systems and 0.030 f o r temporary s t r u c t u r e s L - h o r i z o n t a l d i s t a n c e of conveyor, m L Q - l e n g t h f a c t o r ; equal 61 m when C = 0.022 Q - weight f a c t o r ; 171.14 f o r 1.52 m b e l t T - average c a p a c i t y , tonnes/h S - b e l t speed, m/s H - net change i n e l e v a t i o n between l o a d i n g and d i s c h a r g e p o i n t s , m. lOOxT . lOOxTxH 180xS ' 180xS ' ' ' There are two p o s s i b l e arrangements of conveyors: e i t h e r a c r o s s the benches or w i t h an i n c l i n e and t h e i r c h a r a c t e r i s t i c s are g i v e n i n Table 8. - 76 -TABLE 8 CHARACTERISTICS OF CONVEYORS General Parameters M a t e r i a l : copper ore M a t e r i a l b u l k d e n s i t y : 1.922 tonne/m Lump s i z e : -229 mm Design angle of surcharge: 20° Troughing angle: 35°. B e l t width: 1.52 m B e l t Speed: 3.3 m/s Main Conveyor (624m on 25% grade) Length 700 m Average L i f t 156 m Ca p a c i t y 3,914 tonnes/h H o r i z . d i s t a n c e 681 m Power 1,879 kW CONVEYING ACROSS BENCHES Surfa c e E x t e n s i o n Conveyor Conveyor Length 2,200 m 300 m (240m on 25% gr.) L i f t - 60 m H o r i z . D i s t a n c e 2,200 m 293 m Aver. C a p a c i t y 3,914 tonnes/h 3,914 tonnes/h Power 667 kW 74 3 kW CONVEYING WITH INCLINE Surf a c e E x t e n s i o n o f D r i f t Conveyor Main Conveyor Conveyor  Length 1,800 m 240 m 80 m L i f t - 60 m H o r i z . D i s t a n c e 1,800 m 233 m 80 m Av e r . C a p a c i t y 3,914 tonne/h 3,914 tonne/h 1,957 tonne/h Power 549 kW 725 kW 44 kW - 77 -11.4.1 Conveying a c r o s s Benches The main conveyor t r a n s p o r t s ore t o the s u r f a c e , where the m a t e r i a l i s t r a n s f e r r e d t o a h o r i z o n t a l (surface) conveyor connected t o the p r o c e s s i n g p l a n t . In the beginning, the main conveyor r e c e i v e s ore d i r e c t l y from the c r u s h e r i n s t a l l e d a t the t a i l e l e v a t i o n . A f t e r c r u s h e r r e l o c a t i o n , an e x t e n s i o n conveyor i s i n s t a l l e d as a t r a n s f e r f l i g h t as shown i n F i g . 5 and 6. Each time when the c r u s h e r i s moved down the p i t another e x t e n s i o n f l i g h t i s added t o the conveying system. Fig.5 IN-PIT CRUSHING & C O N V E Y I N G (Across Benches) P L A N VIEW T R A N S F E R POINT ON S U R F A C E Each 300m long T R A N S F E R POINT ( T Y P ) Fig.6 IN-PIT CRUSHING & CONVEYING (Across Benches) SIDE VIEW - 80 -11.4.2 Conveying w i t h I n c l i n e A conveyor t u n n e l i n c l i n e d a t 25% runs along the l o n g e r s i d e of the p i t a t a con s t a n t d i s t a n c e o f 60 m from the p i t w a l l . T h i s t u n n e l connects s u r f a c e w i t h the working l e v e l by means of h o r i z o n t a l d r i f t s . Cross s e c t i o n a l dimensions of the t u n n e l and d r i f t s are 4.5 x 3.5 m. Crushers are s i t u a t e d c l o s e t o the d r i f t p o r t a l and ore i s excavated from benches above or below the c r u s h e r benches. Crushed ore i s d i s c h a r g e d on the d i s c h a r g e conveyor and then i s t r a n s f e r r e d onto a conveyor s i t u a t e d i n the h o r i z o n t a l d r i f t . Next, the ore i s t r a n s f e r r e d onto a main conveyor l o c a t e d i n the i n c l i n e d t u n n e l . At the s u r f a c e p o r t a l the ore i s t r a n s f e r r e d onto another conveyor which d i s c h a r g e s a t the p r o c e s s i n g p l a n t . A new h o r i z o n t a l d r i f t i s excavated every 60 m as the p i t deepens and the c r u s h i n g p l a n t i s moved c l o s e t o t he new d r i f t p o r t a l . The d r i f t conveyor i s r e l o c a t e d t o the c u r r e n t working l e v e l and the main conveyor i s extended. The l a y o u t i s shown i n F i g . 7 and 8. MAIN C O N V E Y O R C R U S H E R S l> > "0 - 3 9 6 m T R A N S F E R P O I N T ( T Y P ) F I N A L PIT B O T T O M iS_ - 3 3 6 m -156 m 1 HAUL R O A D _ _ _ — " ™ " -216 m - 2 7 6 m ^ 4 U i U i i U U i i F i g .7 IN-PIT CRUSHING & C O N V E Y I N G (With Incline) P L A N VIEW T R A N S F E R POINT ON S U R F A C E MAIN C O N V E Y O R Fig.8 IN-PIT CRUSHING & CONVEYING (With Incline) SIDE VIEW - 83 -1 2 . OPEN PIT SIMULATION PROGRAM A computer program has been designed t o model an open p i t mine and s i m u l a t e i t s o p e r a t i o n over the mine l i f e . T h i s program, w r i t t e n i n MS B a s i c , a l l o w s an i n t e r a c t i v e i n p u t of a l l data, and produces t h r e e groups of output: r e s e r v e t a b l e s , p r o d u c t i o n t a b l e s , and t r u c k haulage t a b l e s . The program s e t s s e v e r a l l i m i t a t i o n s when t r a n s l a t i n g the h y p o t h e t i c a l mine model, d e s c r i b e d i n Chapter 1 1 , i n t o the mathematical model. However, the program i s f u l l y p r o t e c t e d by w arning/error messages when the u s e r v i o l a t e s the r u l e s of a l g o r i t h m s . The program l i s t i n g i s i n c l u d e d i n Appendix A. - 84 -12.1 Model A l g o r i t h m The f i n a l s l o p e o f the p i t i s a r e g u l a r i n v e r t e d f r u s t r u m cone as shown i n F i g . 9 . The g e o m e t r i c a l parameters entered by the us e r a re: f i n a l l e n g t h and width on the s u r f a c e , f i n a l depth, and f i n a l s l o p e . - Dimension of the f i n a l bottom i s a f u n c t i o n o f the i n p u t data, but i t s minimum s i z e i s l i m i t e d t o 100x100 m.' - A h o r i z o n t a l c r o s s - s e c t i o n of the p i t i s a r e c t a n g l e , w i t h c o r n e r s rounded over a r a d i u s which decreases t o zero on the f i n a l depth l e v e l . The r a d i u s i s generated by the program as a f u n c t i o n o f depth and f i n a l s l o p e . On the p l a n view, the top of the p i t approximates an e l l i p s e , and the bottom i s a r e c t a n g l e . - 85 -- 86 -A v e r t i c a l c r o s s - s e c t i o n of the p i t i s an i n v e r t e d t r a p e z o i d , s u b d i v i d e d i n t o benches. The bench h e i g h t i s c onstant f o r the whole p i t , and the t o t a l number of benches i s a l s o a constant v a l u e a s s o c i a t e d w i t h the f i n a l depth. The open p i t c o n s i s t s of two zones: overburden zone and ore zone. The overburden i s s i m p l i f i e d t o a f l a t t a b u l a r l a y e r and forms the top p a r t of the p i t . I f the t h i c k n e s s of the overburden becomes zero, the whole p i t i s assi g n e d t o the ore zone. The f i n a l depth and the depth of overburden are the i n t e g e r m u l t i p l e of the bench h e i g h t , and the program a d j u s t s the u s e r ' s i n p u t , i f needed. - The m a t e r i a l d e n s i t y i s assumed t o be the same f o r the overburden and ore zone. I f d i f f e r e n t d e n s i t y v a l u e s are t o be modelled, the program r e q u i r e s two independent runs. - 8 7 -- The ore zone comprises ore and waste. The ore r a t i o v a r i e s from an i n i t i a l percentage v a l u e a t the top of the d e p o s i t t o a f i n a l percentage v a l u e a t the f i n a l bottom of the p i t . The percentage r a t i o i s a s t r a i g h t l i n e f u n c t i o n of the c u r r e n t depth. The i n i t i a l percentage r a t i o can be e i t h e r h i g h e r o r lower than the f i n a l , depending on the shape of the d e p o s i t . I n - p i t t r u c k roads are p r o v i d e d f o r a l l p i t l e v e l s . The road grade on s l o p e i s constant and can be i n p u t as any v a l u e i n the 1 t o 12% range. Roads on the s u r f a c e have a constant l e n g t h and s l o p e . - The a l g o r i t h m c a l c u l a t e s ore, waste and t o t a l r e s e r v e s , produces r e l a t e d cumulative r e s e r v e s , and p r i n t s the r e s e r v e t a b l e along w i t h the i n p u t c h a r a c t e r i s t i c s . The i n p u t data r e q u i r e d i s s e t out i n T a b l e 9. - 88 -TABLE 9 COMPUTER MODEL - PIT CHARACTERISTICS INPUT DATA REQUIRED INPUT SYMBOL UNIT LIMITATIONS Mine Name up t o 10 char. o p t i o n a l F i n a l Depth LO metres 600 >= LO > 0 Overburden L9 metres LO >= L9 >= 0 F i n a l Slope FO degrees 90 >= FO >= 0 Bench Height L metres LO >= L >= 1 Mat. D e n s i t y DEN tonnes/m 10 >= DEN >= 1 I n i t . % Ore ORE % 100 >= ORE >= 1 F i n a l % Ore OREF % 100 >= OREF >= 1 Road Grade on Slope GRAD % 12 >= GRAD >= 1 F i n a l , L e n g t h AO metres AO >= 100+(A0-B0) F i n a l Width BO metres A0>=B0>=100+(A0-B0) Di s t a n c e on S u r f a c e SURF metres SURF >= 100 Grade on S u r f a c e GRSURF % GRSURF >= 100 - 89 -12.2 P r o d u c t i o n A l g o r i t h m The s t r i p p i n g of the overburden ( l a t e r c a l l e d " s t r i p p i n g " ) and mining of the d e p o s i t ( l a t e r c a l l e d "mining") are two independent p r o d u c t i o n a c t i v i t i e s . The mining e x c a v a t i o n procedure i s the same f o r s t r i p p i n g and mining, but the s t r i p p i n g must be completed b e f o r e mining s t a r t s . The program p r o v i d e s an o p t i o n t o process s t r i p p i n g or t o s k i p i t and go d i r e c t l y t o the mining o p e r a t i o n . The p r o d u c t i o n zone ( s t r i p p i n g o r mining) can be processed as a whole or s l i c e d h o r i z o n t a l l y i n t o b l o c k s i d e n t i f i e d by the depth range. Each b l o c k r e p r e s e n t s the complete c y c l e of o p e r a t i o n and i t has t o be f u l l y excavated b e f o r e b e g i n n i n g the next b l o c k . - 90 -- The b l o c k i s processed i n two phases, a working phase and push back phase. The working phase s t a r t s from the c e n t r e o f the top bench of the c u r r e n t b l o c k . At f i r s t , a boxcut i s c u t out and then i t i s expanded i n a l l h o r i z o n t a l d i r e c t i o n s t o a l l o w f o r the same s i z e boxcut i n the u n d e r l y i n g bench. While the boxcut moves down the depth, a l l o v e r l a y i n g benches are mined s t e p by st e p t o the working s l o p e . When mining reaches the lowest bench of the block, the working phase has been completed. F u r t h e r mining t o the f i n a l p i t p e r i m e t e r s l o p e i s accomplished by pushing back the remainders of benches from the top of the b l o c k downwards. - The i n p u t c h a r a c t e r i s t i c s are p r o v i d e d f o r each b l o c k and can d i f f e r i n any d e t a i l s , s u b j e c t t o the f o l l o w i n g c o n d i t i o n s : (1) working s l o p e cannot exceed the f i n a l s l o p e , and the working phase depth cannot be g r e a t e r than the t h i c k n e s s of a zone, (2) the boxcut dimensions are l i m i t e d by a minimum of 100x100 m, and by a maximum equal t o the dimensions of the l a s t bench of the p i t . - 91 -The t r u c k s used w i t h i n the b l o c k are the same type and have the same payload. The annual p r o d u c t i v i t y i s f i x e d f o r the e n t i r e b l o c k . In the s t r i p p i n g p r o d u c t i o n zone the annual p r o d u c t i v i t y stands f o r the t o t a l output, and i n the mining p r o d u c t i o n zone i t r e l a t e s t o the ore p r o d u c t i o n per year. T h i s a l g o r i t h m i n v o l v e s two types o f r o u t i n e s : r e s e r v e t a b l e and p r o d u c t i o n steps t a b l e . Both r o u t i n e s are a p p l i e d t o each p r o d u c t i o n b l o c k , s e p a r a t e l y f o r the working phase and push back phase. The r e s e r v e s r o u t i n e g i v e s s i m i l a r output t o t h a t from the model a l g o r i t h m , but c a l c u l a t e d f o r the p a r t i c u l a r p r o d u c t i o n phase w i t h i n the p a r t i c u l a r b l o c k . The s t e p r o u t i n e a s s i g n s the step p r o d u c t i o n and haulage c h a r a c t e r i s t i c s w i t h i n a b l o c k as a f u n c t i o n of time, i n terms of the year and mine l i f e . The r o u t i n e p r o v i d e s f o r a c o n t r o l break a t the end of each year, and outputs the p r o d u c t i o n s t e p s t a b l e over the whole mine l i f e . - 92 -The mining sequence i s shown i n F i g . 10 and the input data required to run the model i s set out i n Table 10. 12.3 Truck Schedule Algorithm In each run of the program, two types of material transport are considered: the a l l truck system and an i n - p i t crushing and conveying system. The major difference between these systems i s the truck haulage destination. The f i r s t system uses trucks to transport both ore and waste, out of the p i t to the processing plant or the dump on the surface. In the i n - p i t crushing and conveying system, trucks d e l i v e r the material to the crusher(s) located on the top or the bottom of the block. In the a l l truck system, each truck route consists of three distances: horizontal distance on bench, u p h i l l distance on slope to the surface, and the distance on the surface, under an optional grade. The distance on slope varies s i g n i f i c a n t l y as a function of the p i t depth and age. PRODUCTION BLOCK Working Phase Steps 1-10 Push Back Steps 11-14 Fig.10 COMPUTER MODEL - Mining Sequence - 94 -TABLE 10 COMPUTER MODEL - PRODUCTION CHARACTERISTICS INPUT DATA REQUIRED INPUT SYMBOL UNIT LIMITATIONS Working Slope F l degrees FO >= F l >= 1 Working Phase Depth LI metres LO >= LI >= L Boxcut Length ACUT metres BO >= ACUT >=100 Boxcut Width BCUT metres 2B0-A0 >= BCUT >=100 Truck Payload PLOAD tonnes 350 >= PLOAD >= 50 Annual P r o d u c t i o n YEAR m i l l i o n tonnes YEAR >= 1 - 95 -In the i n - p i t c r u s h i n g and conveying system the t r u c k r o u t e c o n s i s t s of two, s i m i l a r d i s t a n c e s : the d i s t a n c e on the bench and the d i s t a n c e u p h i l l o r d o w n h i l l t o the i n - p i t c r u s h e r s . I t i s assumed t h a t t r u c k s haul u p h i l l from benches over the median bench of the b l o c k , and d o w n h i l l from the median downwards. The a l g o r i t h m i n v o l v e s two computing r o u t i n e s , and produces two independent t r u c k haulage annual schedules, f o r both types of m a t e r i a l t r a n s p o r t . - 96 -13. SIMULATION OF THE MINE OPERATION The computer program has been executed t o c r e a t e the h y p o t h e t i c a l open p i t mine d e s c r i b e d i n Chapter 11. The open p i t has f i n a l dimensions 2500 x 1200 m on the s u r f a c e , and 396 m i n depth, at a f i n a l s l o p e of 4 5°. The haulage road c o n s i s t s of a h o r i z o n t a l d i s t a n c e on bench, an u p h i l l d i s t a n c e a t 8% s l o p e , and 2,200 m or 4,400 m d i s t a n c e on the f l a t s u r f a c e , f o r the ore or waste t r a n s p o r t , r e s p e c t i v e l y . The haul road grade was l i m i t e d t o a maximum of 8% t o prevent o v e r h e a t i n g of t r u c k wheel motors. A l l t r u c k s have the same c a p a c i t y of 154 tonnes . The mining o p e r a t i o n was processed i n one run, t o s i m u l a t e p r o d u c t i o n w i t h i n f i v e h o r i z o n t a l b l o c k s . The annual ore p r o d u c t i o n i s 30 m i l l i o n tonnes and remains constant over the mine l i f e . The waste annual p r o d u c t i o n d i f f e r s because the percentage of ore v a r i e s from 45% a t the top of the ore zone t o 100% a t the f i n a l bottom of the p i t . However, the bank d e n s i t y of ore and waste i s 2.6 tonne/m 3, unchanged throughout the p i t . A l l i n p u t parameters and ranges of b l o c k s are g i v e n i n Table 11. - 97 -TABLE 11 OPEN PIT SIMULATION PROGRAM INPUT PARAMETERS PIT GEOMETRY: F i n a l depth 396 m F i n a l l e n g t h 2,500 m F i n a l width 1,200 m F i n a l s l o p e 45° Overburden 0 - 96 m ORE ZONE: Depth range 96 - 396 m I n i t i a l % ore 45 % F i n a l % ore 100 % HAULAGE ROADS: Grade on s l o p e 8 % Distance on s u r f a c e 2,200 m Grade on s u r f a c e 0 % MINE OPERATION: Ore p r o d u c t i o n 3 0 m i l l i o n tonne/yr Truck payload 154 tonnes Working s l o p e 2 6° PRODUCTION BLOCKS: Block # 1 Block # 2 Block # 3 Block # 4 Block # 5 96-156 m 156-216 m 216-276 m 276-336 m 336-396 m - 98 -13.1 R e s u l t s and I n t e r p r e t a t i o n The program produced t h r e e types of t a b l e s : r e s e r v e t a b l e s , p r o d u c t i o n t a b l e s , and t r u c k schedule t a b l e s . A l l output t a b l e s are i n c l u d e d i n Appendix A, and t h e i r r e s u l t s are d i s c u s s e d below. The open p i t i s mined i n 3 3 benches, each 12 m h i g h . The f i r s t e i g h t benches (0 t o 96 m) r e p r e s e n t the overburden and t h e i r t o t a l r e s e r v e s are about 637 m i l l i o n tonnes. The ore zone extends from 96 m t o 396 m (benches # 9 t o # 33). The ore r e s e r v e s range from 31.1 m i l l i o n tonnes on bench # 9 t o 22.5 m i l l i o n tonnes on bench # 33, and the t o t a l ore r e s e r v e i s 748.6 m i l l i o n tonnes. The waste r e s e r v e s decrease w i t h depth from 3 8.0 m i l l i o n tonnes a t the top of the ore zone t o zero a t the bottom o f p i t , and the cumulative tonnage i s o n l y 363.6 m i l l i o n tonnes. The mine l i f e i s 25 years e x c l u d i n g s t r i p p i n g of the overburden. The mine l i f e i s s u b d i v i d e d i n t o f i v e year p e r i o d s r e l a t e d t o the p r o d u c t i o n b l o c k s . The r e s e r v e s and p r o d u c t i o n t a b l e s are summarized i n Table 12. - 99 -TABLE 12 OPEN PIT SIMULATION PROGRAM RESERVES TABLE Block # Depth Years Block Reserves [ x 1000 tonnes] L l L L j ORE WASTE TOTAL 1 96 - 156 5. 32 159,562 163,269 322,831 2 156 - 216 5.46 163,790 105,315 269,105 3 216 - 276 5.27 158,264 60,644 218,908 4 276 - 336 4.81 144,197 28,041 172,238 5 336 - 396 4.09 122,803 6,297 129,100 TOTALS 24.95 748,616 363,566 1,112,182 - 100 -The t r u c k schedule t a b l e s are c a l c u l a t e d s e p a r a t e l y f o r the a l l t r u c k t r a n s p o r t and f o r the conveying t r a n s p o r t system and t h e r e f o r e two haulage t a b l e s are produced by each run of the program. The haulage p r o f i l e s are shown as weighted averages f o r each year, and appear i n the t a b l e a l o n g w i t h the number of ore and waste t r u c k t r i p s , r e q u i r e d i n the r e l a t e d y ear. The number of ore t r i p s i s 194,805 per year due t o the con s t a n t ore p r o d u c t i o n . The number of waste t r i p s v a r i e s from 220,604 i n the f i r s t year, t o 6,156 i n the l a s t y ear The major d i f f e r e n c e between the systems i s i n the haulage d i s t a n c e and grade on s l o p e . For the a l l t r u c k system, the grade has a constant +8% v a l u e and the d i s t a n c e v a r i e s from 1,483 m i n year 1 t o 4,770 i n year 25. For the i n - p i t c r u s h i n g the grade i s e i t h e r +8% or -8% and the d i s t a n c e on s l o p e ranges from zero t o 301 m. The haulage on bench i s i d e n t i c a l i n both systems, and v a r i e s from 588 t o 1,187 m. The 2,200 m and 4,400 m d i s t a n c e s on the s u r f a c e apply, of course, o n l y t o an o u t - o f - p i t haulage, f o r ore and waste t r a n s p o r t , r e s p e c t i v e l y . - 101 -The p r o f i l e output obtained r e q u i r e s some m o d i f i c a t i o n s when r e f e r r e d t o the h y p o t h e t i c a l mine model d e s c r i b e d i n Chapter 11. For the a l l t r u c k system, however, the ore and waste t r u c k haulage c h a r a c t e r i s t i c s can be e x t r a c t e d d i r e c t l y from the o u t - o f - p i t t r a n s p o r t t a b l e . The i n - p i t c r u s h i n g and conveying system i n v o l v e s more complex c o m p i l a t i o n . I t i s assumed, t h a t the i n - p i t c r u s h e r s are i n s t a l l e d a f t e r the f i r s t p r o d u c t i o n b l o c k has been completed, and u n t i l then, both ore and waste are t r a n s p o r t e d out of the p i t . A f t e r the end of the f i f t h y ear of a p r o d u c t i o n , the ore i s hauled t o the i n - p i t c r u s h e r , but waste i s s t i l l t r a n s p o r t e d t o the o u t - o f - p i t dump. The compiled t r u c k ore haulage schedules f o r the a l l t r u c k system and the i n - p i t c r u s h i n g and conveying system are shown i n T a b l e s 13 and 14, r e s p e c t i v e l y . T a b l e 15 g i v e s the waste t r u c k haulage schedule which i s common t o both systems. - 102 -TABLE 13 OPEN PIT SIMULATION PROGRAM ALL TRUCK SYSTEM - ORE TRUCK HAULAGE SCHEDULE Truck payload: 154 tonnes Year D i s t a n c e D i s t a n c e Grade D i s t a n c e Number on bench on s l o p e on s l o p e on s u r f a c e of t r i p s [m] [m] [%] [m] O u t - o f - p i t ore t r a n s p o r t 1 595 1,483 194,805 2 620 1,731 194,805 3 1,113 1,488 194,805 4 1, 174 1, 629 194,805 5 1,146 1,868 194,805 6 591 2,162 194,805 7 609 2 , 353 194,805 8 636 2,545 194,805 9 1,196 2,200 194,805 10 1,162 2,481 constant c o n s t a n t 194,805 11 1,138 2 , 685 +8 % 2 ,200 m 194,805 a t 12 599 2,968 0% grade 194,805 13 605 3,184 194,805 14 665 3,279 194,805 15 1,187 3 , 027 194,805 16 1,146 3,372 194,805 17 591 3 , 666 194,805 18 607 3,819 194,805 19 628 3,940 194,805 20 776 , 4,036 194,805 21 1,151 4,076 194,805 22 526 4,453 194,805 23 534 4, 672 194,805 24 588 4,770 194,805 24.95 1,160 4,761 185,817 - 103 -TABLE 14 OPEN PIT SIMULATION PROGRAM CONVEYING SYSTEM - ORE TRUCK HAULAGE SCHEDULE Truck payload: 154 tonnes Year D i s t a n c e D i s t a n c e Grade D i s t a n c e Number on bench on s l o p e on s l o p e on s u r f a c e of t r i p s [m] [m] [%] [m] O u t - o f - p i t ore t r a n s p o r t 1 595 1,483 co n s t a n t 194,805 2 620 1,731 constant 2,200 m 194,805 3 1,113 1, 488 +8 % a t 194,805 4 1,174 1,629 0% grade 194,805 5 1,146 1,868 194,805 I n - p i t ore t r a n s p o r t 6 591 150 +8 194,805 7 609 301 -8 194,805 8 636 150 -8 194,805 9 1,196 301 +8 194,805 10 1,162 301 -8 194,805 11 1,138 0 — 194,805 12 599 301 +8 194,805 13 605 301 -8 194,805 14 665 150 -8 No 194,805 15 1,187 301 + 8 t r a n s p o r t 194,805 16 1,146 150 -8 on s u r f a c e 194,805 17 591 150 +8 194,805 18 607 301 +8 194,805 19 628 301 -8 194,805 20 776 150 -8 194,805 21 1,151 150 -8 194,805 22 526 301 +8 194,805 23 534 301 -8 194,805 24 588 150 -8 194,805 24.95 1,160 150 -8 185,817 - 104 -TABLE 15 OPEN PIT SIMULATION PROGRAM WASTE TRUCK HAULAGE SCHEDULE Truck payload: 154 tonnes Year D i s t a n c e D i s t a n c e Grade Di s t a n c e Number on bench on s l o p e on s l o p e on s u r f a c e of t r i p s [m] [m] [%] [m] O u t - o f - p i t ore t r a n s p o r t 1 595 1,483 220,604 2 620 1,731 190,410 3 1,113 1,488 220,967 4 1,174 1,629 201,514 5 1,146 1,868 174,158 6 591 2 ,162 151,498 7 609 2 , 353 129,120 8 636 2,545 114,467 9 1,196 2,200 141,923 10 1, 062 2,481 cons t a n t c o n s t a n t 118,672 11 1,138 2 , 685 +8 % 4,400 in 101,116 a t 12 599 2,968 0% grade 85,278 13 605 3,184 72,767 14 665 3,279 67,919 15 1,187 3 , 027 81,804 16 1,146 3 , 372 62,508 17 591 3 , 666 48,653 18 607 3 ,819 41,346 19 628 3,940 36,272 20 776 4,036 32,561 21 1,151 4,076 29,121 22 526 4,453 16,538 23 534 4,672 9,210 24 588 4,770 6,238 24.95 1,160 4,761 6,156 - 105 -13.2 Truck Demands The next step of the t r a n s p o r t a n a l y s i s i s t o d e f i n e t r u c k demands i n the c o n s e c u t i v e y e a r s of the mine l i f e , and t o estimate the t r u c k f l e e t r e q u i r e d f o r each p r o d u c t i o n b l o c k . The number of o p e r a t i n g t r u c k s can be found from the formula: . . c y c l e s r e q u i r e d . No.of o p e r . t r u c k s = T—T ; ; /3/ c oper.h/year x c y c l e s / h / t r u c k ' ' I t was assumed i n Chapter 11.2 t h a t the mine operates 365 days/yr and a t r u c k operates 21 h/day at a work e f f i c i e n c y of 83%. Thus a s i n g l e o p e r a t i n g t r u c k works 7,665 hours per year a t the e f f i c i e n c y 50 min/h. The number of haulage c y c l e s r e q u i r e d over the l i f e of the mine are as determined i n Tables 13 t o 15. In order t o determine t r u c k demands i t i s o n l y necessary t o estimate a s i n g l e haulage c y c l e on the average annual r o u t e s . The "Off-Highway Truck S i m u l a t i o n Program" (J.K. Radlowski, 1985) has been used t o s o l v e t h i s problem. - 106 -The program was run f o r the U n i t R i g Mark 3 6 t r u c k , which has the c h a r a c t e r i s t i c s l i s t e d i n Table 16. The "Off-Highway Truck S i m u l a t i o n Program" i s not the s u b j e c t o f t h i s t h e s i s and i t s performance w i l l not be d i s c u s s e d f u r t h e r . However, the program a l g o r i t h m d e f i n i t i o n s and the program l i s t i n g are g i v e n i n Appendix B, alo n g w i t h the output t a b l e examples. The program produced the d e t a i l c h a r a c t e r i s t i c s of the t r u c k o p e r a t i o n on the average annual haulage r o u t e s . For each route, the program c a l c u l a t e d the h a u l , r e t u r n and load/unload o p e r a t i n g times, the t o t a l c y c l e time and f u e l consumption per c y c l e . In a d d i t i o n , the program c a l c u l a t e d a s i n g l e t r u c k p r o d u c t i o n per o p e r a t i n g hour a t the assumed work e f f i c i e n c y (83%, e.g. 50 min/h). The h o u r l y f u e l consumption was c a l c u l a t e d under assumptions t h a t the t r u c k engine operates e f f e c t i v e l y f o r 50 minutes, and runs i d l e f o r the remaining 10 minutes. The c h o i c e o f t r a n s p o r t system s i g n i f i c a n t l y a f f e c t s the ore t r u c k demands which are shown i n Tab l e 17. S i m u l a t i o n was performed f o r a constant annual ore p r o d u c t i o n o f 30 m i l l i o n tonnes. In the a l l t r u c k system, ore i s t r a n s p o r t e d out of p i t , and the ore t r u c k demands i n c r e a s e from 11.971 o p e r a t i n g t r u c k s i n the f i r s t y ear t o - 107 -TABLE 16 OFF-HIGHWAY TRUCK SIMULATION PROGRAM INPUT - TRUCK CHARACTERISTICS T e c h n i c a l Data: Truck Type U n i t R i g Mark 36 Engine Type DDAD 16V149T1B E l e c t r i c Wheel GE 776 T i r e 36.00-51 Power 1,190 kW Empty V e h i c l e Weight 115,253 kg Ca p a c i t y 154 tonnes F i n a l Reduction 28.8 Maximum V e l o c i t y 56.8 km/h Oper a t i o n Parameters: Hourly Work E f f i c i e n c y 50 min/h min/cycl e l i t r e s / h Load 2.5 15.0 Dump 1.6 73.0 Spot 0.85 55.0 I d l e 12 . 0 - 108 -TABLE 17 OFF-HIGHWAY TRUCK SIMULATION PROGRAM ALL TRUCK SYSTEM - ORE TRUCK DEMANDS Yr S i n g l e Truck O p e r a t i o n Number of Oper. Trucks Annual F u e l Consum. 1000X l i t r e s H o u r l y A n n u a 1 C y c l e s /h F u e l 1/h Cy c l e s / y r F u e l 1/vr 1 2 3 4 5 2 .123 1.972 2.009 1.920 1. 808 153.80 159.88 152.78 156.12 161.46 16,273 15,116 15,399 14,717 13,858 1,178,877 1, 225,480 1,171,059 1,196,660 1,237,591 11.971 12.887 12.650 13 .237 14.057 14,112 15,792 14,814 15,840 17,397 6 7 8 9 10 11 1.764 1. 681 1. 605 1. 659 1.561 1.496 168.88 172.17 175.15 167.69 172.43 175.54 13,521 12,885 12,302 12,716 11,965 11,467 1,294,465 1,319,683 1,342,525 1,285,344 1,321,676 1,345,514 14.408 15.119 15.835 15.320 16.281 16.988 18,651 19,952 21,259 19,691 21,518 22,858 12 13 14 15 16 1.468 1.405 1. 373 1.391 1. 306 181.22 183.83 184.70 179.92 184.05 11,252 10,769 10,524 10,662 10,010 1,389,051 1,409,057 1,415,726 1,379,087 1,410,743 17.313 18.089 18.511 18.271 19.461 24,049 25,488 26,207 25,197 27,454 17 18 19 20 21 1.283 1.273 1.219 1.189 1.155 189.03 194.58 191.44 191.72 190.78 9,834 9,758 8, 344 9,114 8,853 1,448,915 1,491,456 1,467,388 1,469,534 1,462,329 19.809 19.964 20.848 v 21.374 22.004 28,702 29,775 30,592 31,410 32,177 22 23 24 25 1.127 1.088 1.069 1.039 196.00 197.55 198.02 195.98 8,638 8, 340 8,194 7,964 1,502,340 1,514,221 1,517,823 1,502,187 22.552 23.358 23.774 23.332 33,881 35,369 36,087 35,049 - 109 -23.332 o p e r a t i n g t r u c k s i n the l a s t year. For the conveying system the ore from the f i r s t p r o d u c t i o n b l o c k i s t r u c k e d out o f the p i t , and the ore t r u c k demands are the same as those f o r the a l l t r u c k system. T h i s i s shown i n T a b l e 18. The i n - p i t c r u s h e r s are i n s t a l l e d a f t e r the f i r s t b l o c k has been completed, and then, the ore t r u c k s perform o n l y i n - p i t haulage on s h o r t routes w i t h i n a s i n g l e b l o c k . T h i s can be handled by f i v e o p e r a t i n g t r u c k s . The waste t r u c k performance i s the same i n the a l l t r u c k system and i n the conveying system, s i n c e waste i s always t r a n s p o r t e d out of p i t t o the same dump. The waste t r u c k demands, g i v e n i n Table 19, decrease from 16.782 o p e r a t i n g t r u c k s a t the b e g i n n i n g of p r o d u c t i o n t o 0.864 a t the bottom of the p i t because the waste percentage d e c l i n e s w i t h a depth from 55% t o zero. The f l e e t s i z e , however, must be l a r g e r than the t o t a l number of o p e r a t i n g t r u c k s t o m a i n t a i n p r o d u c t i o n . As a g e n e r a l r u l e , the number of spare u n i t s i s 10% of the t r u c k requirements, a t the assumed mechanical a v a i l a b i l i t y . The f l e e t s i z e i n the c o n s e c u t i v e y e a r s was then estimated f o r the mechanical a v a i l a b i l i t y of 80% u s i n g a formula: - 110 -TABLE 18 OFF-HIGHWAY TRUCK SIMULATION PROGRAM CONVEYING SYSTEM - ORE TRUCK DEMANDS Yr S i n g l e Truck Operation Number of Oper. Trucks Annual F u e l Consum. 1000X l i t r e s H o u r l y A n n u a 1 C y c l e s /h F u e l 1/h C y c l e s / y r F u e l 1/yr 1 2 3 4 5 2.123 1.972 2.009 1.920 1.808 153.80 159.88 152.78 156.12 161.46 16,273 15,116 15,399 14,717 13,858 1,178,877 1,225,480 1,171,059 1,196,660 1,237,591 11.971 12.887 12.650 13 .237 14.057 14,112 15,732 14,814 15,840 17,397 6 7 8 9 10 11 6. 697 6. O i l 6.440 5.018 5.136 5.953 74 .30 75.89 72.10 99.30 84.52 77.19 51,333 46,074 49,363 38,463 39,367 45,630 569,510 581,698 552,647 761,135 647,846 591,661 3 . 795 4.228 3.946 5. 065 4.948 4.269 2, 161 2,459 2, 181 3,855 3 ,206 3,048 12 13 14 15 16 5. 391 5.486 5.779 4. 653 5. 062 84.36 68.05 64.89 90.86 73.60 41,322 42,050 44,296 35,665 38,800 646,619 521,603 497,382 696,442 564,144 4.714 4 . 633 4 .398 5.462 5.021 3 , 048 2 ,417 2 , 187 3,804 2,833 17 18 19 20 21 6.042 5.381 5.449 5.597 5.054 65.94 84.46 68.52 67.09 73.70 46,312 41,245 41,767 42,901 38,739 505,430 647,386 525,206 514,245 564,911 4.206 4.723 4.664 4.541 5.029 2 ,126 3 , 058 2,450 2 ,335 2 , 841 22 23 24 25 5.499 5.598 5.920 5. 041 83.47 66.68 63.14 73.88 42,150 42,909 45,377 38,639 639,798 511,102 483,968 566,290 4.622 4 . 540 4 . 293 5.042 2,957 2 , 320 2 , 078 2,855 - I l l -TABLE 19 OFF-HIGHWAY TRUCK SIMULATION PROGRAM WASTE TRUCK DEMANDS Yr S i n g l e Truck Operation Number of Oper. Trucks Annual F u e l Consum. 1000X l i t r e s H o u r l y A n n u a 1 Cy c l e s /h F u e l 1/h Cy c l e s / v r F u e l 1/vr l 2 3 4 5 1.715 1. 615 1. 640 1. 580 1. 503 150.19 155.38 149.52 152.38 157.01 13,145 12,379 12,571 12,111 11,520 1,151,206 1,190,988 1,146,071 1,167,993 1,203,482 16.782 15.382 17.578 16.639 15.118 19,319 18,320 20,146 19,434 18,194 6 7 8 9 10 11 1.473 1.415 1. 360 1.399 1.328 1.281 163.29 166.28 169.04 162.57 166.87 169.72 11,291 10,846 10,424 10,723 10,179 9,819 1,251,618 1,274,536 1,295,692 1,246,099 1,279,059 1,300,304 13.418 11.905 10.981 13.235 11.659 10.298 16,794 15,173 14,228 16,492 14,913 13,391 12 13 14 15 16 1.261 1. 213 1.190 1.203 1.139 174.69 177.19 178.07 173.86 177.79 9, 666 9,298 9, 121 9,221 8,730 1,338,999 1,358,161 1,364,907 1,332,637 1,362,684 8 . 822 7 . 826 7 . 446 8.871 7. 160 11,813 10,629 10,163 11,822 9,757 17 18 19 20 21 1.122 1.095 1.073 1.049 1.023 182.24 183.69 184.65 185.05 184.39 8,600 8,393 8,225 8, 041 7,841 1,396,870 1,407,984 1,415,342 1,418,408 1,413,349 5.657 4.926 4.410 4. 049 3.714 7,902 6,936 6,242 5,743 5,249 22 23 24 25 1. 000 0.970 0.955 0.930 189.16 190.75 191.28 189.63 7,665 7,435 7,320 7,128 1,449,911 1,462,099 1,466,161 1,453,514 2 .158 1. 239 0.852 0.864 3, 129 1, 812 1,249 1,256 - 112 -F l e e t s i z e = (Ore Trucks + Waste Trucks) Mechanical A v a i l i b i l i t y x 1.1 / V hence, under the p r e v i o u s assumptions, an average f l e e t t r u c k i n the system works: 7,665 h/yr x (Mechanical A v a i l a b i l i t y / 1 . 1 ) = 5,575 h/yr and the average annual f u e l consumption can be c a l c u l a t e d as f o l l o w s : a l t e r n a t i v e t r a n s p o r t systems have been c a l c u l a t e d from T a b l e s 17 t o 19 and compiled i n Table 20. I t i s important t o remember t h a t the conveying system i s implemented from the -156 m l e v e l or a f t e r 5 years i n terms of the mine l i f e . Thus, the m a t e r i a l of the f i r s t p r o d u c t i o n b l o c k (-9 6 m t o -156 m) i s hauled o n l y by t r u c k s , and the average annual f u e l consumption i n both systems i s 858,280 l i t r e s per f l e e t t r u c k . In the range of depth from -156 m t o -396 m, the average f u e l consumption per f l e e t t r u c k i n the conveying system i s about 20% lower than t h a t i n the a l l t r u c k system. F u e l / y r / f l e e t t r u c k = T o t a l Annual F u e l Consumption F l e e t S i z e /5/ The f l e e t s i z e and f u e l consumption f o r the - 113 -TABLE 20 COMPARISON OF TRUCK FLEET REQUIREMENTS ALL TRUCK SYSTEM v s . CONVEYING SYSTEM 5,575 h / y r / f l e e t t r u c k A l l Truck System Conveying System X i F u e l / F u e l / F l e e t f l e e t t r u c k / F l e e t f l e e t t r u c k / S i z e year S i z e year [ l i t r e s ] [ l i t r e s ] 1 40 835,775 40 835,775 2 39 873,128 39 873,128 3 42 832,381 42 832,381 4 41 860,341 41 860,341 5 40 889.775 40 889.775 6 38 932,763 24 789,792 7 37 949,324 22 801,455 8 37 959,108 21 781,381 9 39 927,769 25 813,880 10 38 958,711 23 787,780 11 38 953.921 20 821.950 12 36 996,167 19 782,160 13 36 1,003,250 17 767,410 14 36 1,010,278 16 771,880 15 37 1,000,513 20 781,550 16 37 1.005.703 17 740.588 17 35 1,045,829 14 716,286 18 34 1,082,677 13 768,769 19 35 1,052,400 12 724,333 20 35 1,067,514 12 673,167 21 35 1.069.314 12 674.167 22 34 1,088,530 9 676,222 23 34 1,093,559 8 516,500 24 34 1,098,118 7 457,463 25 33 1,102,120 8 513,875 - 114 -14. EQUIPMENT COST ESTIMATION The r e s u l t s of the open p i t s i m u l a t i o n programs allowed the equipment requirements t o be determined f o r the a l t e r n a t i v e t r a n s p o r t systems. These data, compiled i n Tables 21 & 22, are a s t a r t i n g p o i n t f o r the e v a l u a t i o n of the a l l t r u c k system v s . the conveying system. The o b j e c t i v e of the t h e s i s i s t o e s t i m a t e the comparative c o s t s of the a l t e r n a t i v e t r a n s p o r t systems i n terms o f d o l l a r s avings per tonne of ore p r o d u c t i o n . The i n s t a l l a t i o n s which are common t o both methods have the same c o s t s , and do not a f f e c t the f i n a l e v a l u a t i o n , e.g. e l e c t r i c s h o v e l s . Costs common t o both systems t h e r e f o r e are excluded from the cash flow a n a l y s i s t o s i m p l i f y the p r e s e n t a t i o n . I t i s assumed t h a t the c o s t s of adapting the open p i t t o the conveying system are covered by s a v i n g s r e s u l t i n g from a s i g n i f i c a n t maintenance f a c i l i t y r e d u c t i o n and f u e l s t orage s a v i n g s . - 115 -TABLE 21 EQUIPMENT REQUIREMENTS FOR ALL TRUCK SYSTEM EQUIPMENT PRODUCTION BLOCK # 1 1-5 y r # 2 6-11 y r # 3 12-16 y r # 4 17-21 y r # 5 22-25 y r Trucks 154 tonne 41 38 37 35 34 E l e c t r i c Shovels 5 5 5 5 5 S t a t i o n a r y Crusher 1.4x1.9 m (54-74 i n . ) Gyra t o r y 2 2 2 2 2 - 116 -TABLE 22 EQUIPMENT REQUIREMENTS FOR CONVEYING SYSTEM EQUIPMENT PRODUCTION BLOCK # 1 1-5 y r # 2 6-11 y r # 3 12-16 y r # 4 17-21 y r # 5 22-25 y r Trucks 154 tonne 41 23 18 12 8 E l e c t r i c Shovels 5 5 5 5 5 S t a t . Crusher 1.5x2.1 m (54-74 in.) Gyra t o r y 2 P o r t . Crusher 1.4x1.9 m (54-74 i n . ) Gvr a t o r v 2 2 2 2 CONVEYING ACROSS BENCHES Su r f a c e Conveyor 2200 m 1 1 1 1 Main Conveyor Conveyor 700 m 1 1 1 1 E x t e n s i o n Conveyors 300 m each 1 1 2 3 CONVEYING WITH INCLINE Su r f a c e Conveyor 1800 m 1 1 1 1 Main Conveyor Conveyor 700 m 1 1 1 1 E x t e n s i o n o f Main Conveyor 240 m each 1 1 2 3 D r i f t Conveyor 240 m each 2 2 2 2 - 117 -Capital and operating costs of major equipment have been obtained from mine operators, equipment dealers, manufacturers, and technical l i t e r a t u r e . According to information obtained from Island Copper Mines, the cost of e l e c t r i c energy was assumed to be 3c/kWh. A l l wages were calculated based on current d r i v e r wages of $19.35 hourly rate including fringe benefits, for two 12-hour s h i f t s d a i l y . 154 tonne Truck: C a p i t a l c o s t i s $1,230,000 including custom duties, freight, and assembly, according to the Unit Rig Equipment Co. of Canada. The l i f e of a truck, according to d i f f e r e n t sources varies from 5 years (R. G. Chopiuk et a l . , 1983) to 10 years (J.T. Crawford, 1979). The Island Copper Mines, Port Hardy, B.C., estimate average truck l i f e at 7.5 years. In the i n t e r i o r of the Province, however, the truck l i f e should be longer because of good c l i m a t i c conditions. Moreover, improved - 118 -maintenance and b e t t e r t r u c k c o n s t r u c t i o n m a t e r i a l s can a l s o extend the t r u c k l i f e . T h e r e f o r e , f o r the c a l c u l a t i o n s , nine years has been assumed as the t r u c k d e p r e c i a t i o n p e r i o d . O p e r a t i n g c o s t s comprise f u e l , l u b r i c a n t s and f i l t e r s , t i r e s , r e p a i r s , s p e c i a l items and l a b o u r . The average f u e l consumption i n y e a rs 6 t o 25 i s 1,019,878 1/yr and 718,030 1/yr f o r the a l l t r u c k system and the conveying system, r e s p e c t i v e l y . However, the i n i t i a l consumption i n years 1 t o 5 i s assumed 858,280 1/yr as d i s c u s s e d i n Chapter 13.2. B a s i c f u e l c o s t , a c c o r d i n g t o ESSO Canada, averages 2 7 c / l i t r e . A f t e r f e d e r a l and p r o v i n c i a l taxes are a p p l i e d t o g e t h e r w i t h the c o s t of d e l i v e r y on s i t e , f u e l c o s t ranges from 32 c t o 3 9 c per l i t r e . The c o s t used f o r the c a l c u l a t i o n i s 3 6 c / l i t r e . Costs of l u b r i c a n t s and f i l t e r s were assumed t o be $3.25/h/truck. The c o s t of t i r e s i s $60,000 per s e t . However most mines l e a s e the t i r e s , hence, t h i s c o s t i s i n e f f e c t much lower. For example, I s l a n d Copper Mines c l a i m s h o u r l y t i r e c o s t per t r u c k of $2.15 a t the average - 119 -t i r e l i f e of 3,700 hours. The l i f e a t I s l a n d Copper s i g n i f i c a n t l y exceeds the average t i r e l i f e e s timated a t 2,500 hours by Lornex Mining C o r p o r a t i o n , and 2,000 hours by the Mountain S t a t e s Engineers ( C E . Huss, e t a l . , 1983). For the c a l c u l a t i o n s the t i r e l i f e was assumed t o be 2,500 hours and the h o u r l y c o s t o f t i r e s per t r u c k was a d j u s t e d t o $3.80/h. Repair c o s t and s p e c i a l items were estimated a c c o r d i n g t o R.G. Chopiuk, e t a l . (1983) and updated t o $52.87/h/truck. S t a t i o n a r y Crusher: C a p i t a l c o s t of a 1.4x1.9 m (54-74 in.) g y r a t o r y crusher, a c c o r d i n g t o the "Mining & M i n e r a l P r o c e s s i n g Equipment Costs and P r e l i m i n a r y C a p i t a l Costs E s t i m a t i o n " (A.L. Mular, 1982), i s $1,769,328 a t the M a r s c h a l l & S w i f t Cost Index (Mine & M i l l ) of 836.8 i n October, 1987. The c o s t of a feeder i s estimated a t $ 1,073,526 (T.W. M a r t i n e t a l . , 1981). The purchase p r i c e of the c r u s h e r p l a n t i s $2,842,854 and the i n s t a l l a t i o n c o s t i s assumed t o be 25% of the purchase p r i c e - 120 -(A.L. Mular, 1982) g i v i n g a t o t a l c o s t of $3,553,568. T h i s f i g u r e i s i n a c o s t range ob t a i n e d from the Krupp Canada, Edmonton O f f i c e . O p e r a t i n g c o s t i s estimated a t $170 per o p e r a t i n g hour a c c o r d i n g t o i n f o r m a t i o n o b t a i n e d from the I s l a n d Copper Mines. I n - P i t Crusher: C a p i t a l c o s t of a 1.4x1.9 m (54-74 in.) p o r t a b l e c r u s h e r i s approximately 2.5 times h i g h e r than t h a t of the s t a t i o n a r y c r u s h e r (personal communication, Krupp Canada, Edmonton O f f i c e , 1988, and T.W. M a r t i n e t a l . , 1981). Hence, the purchase c o s t of the c r u s h e r i s estimated t o be $7,100,000. Assuming an i n s t a l l a t i o n c o s t of 2 5% of the purchase p r i c e the t o t a l p r i c e of the c r u s h i n g p l a n t w i l l be $8,875,000. O p e r a t i n g c o s t i s estimated the same as f o r the s t a t i o n a r y crusher, $170 per o p e r a t i n g hour, f o l l o w i n g suggestions of A.D. F e r n i e and i n f o r m a t i o n from the I s l a n d Copper Mines. - 121 -Conveyors: Conveyors have been s e l e c t e d by f o l l o w i n g the C o n t i n e n t a l Conveyor Brochure, the Conveyor Equipment Manufacturers A s s o c i a t i o n Standards, and recommendations g i v e n by A.D. F e r n i e (1985). C a p i t a l c o s t per l i n e a r metre was estimated a c c o r d i n g t o D.S. N i l l s s o n & A. E t t l i n g e r (1983). For the 1.52 m wide b e l t conveyors, the purchase p r i c e i s $3,000 per metre and the c a p i t a l c o s t comes t o $3,750 i n c l u d i n g the 25% i n s t a l l a t i o n c o s t ( i f without d r i v e s , c o s t s are $2,460 and $3,075, r e s p e c t i v e l y ) . O p e r a t i n g c o s t i n c l u d e s e l e c t r i c power c o s t , maintenance and r e p a i r s . I t i s assumed t h a t the conveyor system i s automated, and i t does not r e q u i r e a s p e c i a l o p e r a t o r because i t can be operated from the c r u s h e r c o n s o l e . The power consumption i s g i v e n i n Table 8. The annual c o s t of r e p a i r s was estimated a t 6% of the hardware and cover cost,and t h e r e f o r e i s $180 per metre. I t i s assumed t h a t the system w i l l r e q u i r e two maintenance persons working 4 0% of o p e r a t i n g time. - 122 -14.1 A l l Truck System 154 TONNE TRUCK D i e s e l e l e c t r i c , r e a r dump F l e e t s i z e v a r i e s from 41 t o 34, see Tab l e 21 D e p r e c i a t i o n p e r i o d : 9 years C a p i t a l Cost: $1,230,000 Annual O p e r a t i n g Cost: F u e l : $367,156 ($0.36 x 1,019,878 1/yr) L u b r i c a n t s & F i l t e r s : 18,119 ($3.25 x 5,575 h) T i r e s : 21,185 ($3.80 x 5,575 h) Re p a i r s & S p e c i a l Items: 294,750 ($52.87 x 5,575 h) D r i v e r Wages: 169,506 ($19.35 x 24 h x 365 days) T o t a l Operating Cost: $870.716 - 123 -STATIONARY CRUSHER 1.4x1.9 m (54-74 in.) Gyratory 2 u n i t s , w i t h f e e d e r s D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Crusher: $1,769,328 Feeder: 1,073,526 Purchase Cost: $2,842,854 I n s t a l l a t i o n : 710,714 ($2,842,854 X 25%) T o t a l C a p i t a l Cost: $3.553,568 Annual O p e r a t i n g Cost: $1.303.050 ($170 X 7,665 h) - 124 -14.2 I n - P i t Crushing and Conveying System 154 TONNE TRUCK D i e s e l e l e c t r i c , r e a r dump F l e e t s i z e v a r i e s from 41 t o 8, see Table 22 D e p r e c i a t i o n p e r i o d : 9 years C a p i t a l Cost: $1,230,000 Annual O p e r a t i n g Cost: F u e l : $258,491 ($0.36 X 718,030 1/yr) L u b r i c a n t s & F i l t e r s : 18,119 ($3.25 X 5,575 h) T i r e s : 21,185 ($3.80 x 5,575 h) 365 days x 0.8/1.1) R e p a i r s & S p e c i a l Items: 294,750 ($52.87 x 5,575 h) D r i v e r Wages: 169,506 ($19.35 x 24 h x 365 days) T o t a l O p e rating Cost: $762.051 - 125 -STATIONARY CRUSHER 1.4x1.9 m (54-74 in.) Gyratory 2 u n i t s , w i t h f e e d e r s D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Crusher: $1,769,328 Feeder: 1,073,526 Purchase Cost: $2,842,854 I n s t a l l a t i o n : 710,714 ($2,842,854 X 25%) T o t a l C a p i t a l Cost: $3,553,568 Annual Operating Cost: $1.303.050 ($170 x 7,665 h) - 126 -PORTABLE CRUSHER 1.4x1.9 m (54-74) Gyratory 2 u n i t s , w i t h f e e d e r s D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Crusher & Feeder: $7,100,000 Purchase Cost: $7,100,000 I n s t a l l a t i o n : 1,775,000 ($7,100,000 X 25%) T o t a l C a p i t a l Cost: $8.875,000 Annual Operating Cost: $1.303.050 ($170 x 7,665 h) - 127 -MAIN CONVEYOR Average C a p a c i t y : 3,914 tonnes/h Length: 700 m D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Hardware & cover: $2,100,000 ($3,000 x 700 m) Purchase Cost: $2,100,000 I n s t a l l a t i o n : 525,000 ($2,100,000 x 25%) T o t a l C a p i t a l Cost: $2,625,000 Annual Operating Cost: Maintenance & Rep a i r s $126,000 ($2,100,000 x 6%) Power: $432,076 ($0.03 x 1,879 kWh x 7,665 h) Maintenance Crew: $135,605 ($19.35 x 24 h x 365 days x 2 workers x 4 0%) T o t a l O p e r ating Cost: $693,681 - 128 -14.2.1 Conveying a c r o s s Benches SURFACE CONVEYOR Average C a p a c i t y : 3,914 tonnes/h Length: 2,200 m D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Hardware & cover: $8,382,000 ($3,000 x 2,200 m) Purchase Cost: $6,600,000 I n s t a l l a t i o n : 1,650,000 ($8,382,000 X 25%) T o t a l C a p i t a l Cost: $8,250,000 Annual O p e r a t i n g Cost: Maintenance & R e p a i r s ($6,600 X 6%) $396,000 Power: 153,377 ($0.03 x 667 kWh x 7,665) T o t a l O p e r ating Cost: $549,377 - 129 -EXTENSION CONVEYOR Average C a p a c i t y : 3,914 tonnes/h Length: 300 m D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Hardware & cover: $900,000 ($3,000 x 300 m) Purchase Cost: $900,000 I n s t a l l a t i o n : 225,000 ($900,000 x 25%) T o t a l C a p i t a l Cost: $1,125,490 Annual Operating Cost: Maintenance & Rep a i r s $54,000 ($900,000 X 6%) Power: 170,853 ($0.03 X 743 kWh X 7,665 h) T o t a l O p e r ating Cost: $224,853 - 130 -14.2.2 Conveying w i t h I n c l i n e SURFACE CONVEYOR Average C a p a c i t y : 3,914 tonnes/h Length: 1,800 m D e p r e c i a t i o n p e r i o d : 2 0 years C a p i t a l Cost: Hardware & cover: $5,400,000 ($3,000 X 1,800 m) Purchase Cost: $5,400,000 I n s t a l l a t i o n : 1,350,000 ($5,400,000 X 25%) T o t a l C a p i t a l Cost: $6,750,000 Annual Operating Cost: Maintenance & R e p a i r s $324,000 ($5,400,000 x 6%) Power 126,243 ($0.03 X 549 kWh X 7,665) T o t a l Operating Cost: $450,243 - 131 -EXTENSION OF MAIN CONVEYOR Average Capacity: 3,914 tonnes/h Length: 240 m Depreciation period: 2 0 years Capital Cost: Hardware & cover (without d r i v e ) : $590,400 ($2,460 X 240 m) Purchase Cost: $590,400 I n s t a l l a t i o n : 147,500 ($590,000 x 25%) Total Capital Cost: $737,900 Annual Operating Cost: Maintenance & Repairs $35,424 ($590,400 x 6%) Power 166,714 ($0.03 x 725 kWh X 7,665 h) Total Operating Cost: $202,138 - 132 -DRIFT CONVEYOR Average C a p a c i t y : 1,957 tonnes/h Length: 80 m D e p r e c i a t i o n p e r i o d : 20 years C a p i t a l Cost: Hardware & cover: $240,000 ($3,000 x 80 m) Purchase Cost: $240,000 I n s t a l l a t i o n : 60,000 ($240,000 X 43%) T o t a l C a p i t a l Cost: $300,000 Annual Operating Cost: Maintenance & Rep a i r s $14,400 ($240,000 x 6%) Power: 10,118 ($0.03 X 44 kWh X 7,665 h) T o t a l Operating Cost: $24,518 - 133 -15. CASH FLOW CALCULATION PROGRAM The computer program has been designed t o perform cash flow a n a l y s i s f o r the a l t e r n a t i v e t r a n s p o r t systems. T h i s program, w r i t t e n i n MS B a s i c , p r o c e s s e s the c o s t data d i s c u s s e d i n Chapter 14. The i n p u t data format i s d i s p l a y e d i n Tabl e 22. The program l i s t i n g i s i n c l u d e d i n Appendix C. 15.1 Main Al g o r i t h m s A l l c o s t s are updated on the f i r s t day of mining o p e r a t i o n . The i n f l a t i o n on investment, bank r a t e , and taxes are c o n s t a n t f o r a l l types o f equipment and over the mine l i f e . The i n f l a t i o n on o p e r a t i n g c o s t i s s p e c i f i c f o r each type o f equipment and remains unchanged over the mine l i f e . - 134 -TABLE 23 CASH FLOW PROGRAM - INPUT REQUIREMENTS Mine l i f e (MLIFE) years I n f l a t i o n on investment (INFL1) % c o n s t a n t over the mine l i f e I n f l a t i o n on o p e r a t i n g c o s t (INFL2) Bank r a t e (CM) Taxes (TAX) Minimum a t t r a c t i v e r a t e of r e t u r n (MARR) Type of equipment (TYPE$) up t o 30 char Repeated f o r each type of equipment D e s c r i p t i o n (DESC$) D e p r e c i a t i o n p e r i o d (DP) years Equipment c o s t / u n i t (C0ST1) 1000 d o l l a r s O p e r a t i n g c o s t / u n i t (0PER1) I n f l a t i o n on o p e r a t i n g c o s t (INFL2) % Number of u n i t s r e q u i r e d i n the seq. years (NUMBER) End of equipment data 999 End of data i n d i c a t o r END L a s t data statement - 135 -The cash flow a n a l y s i s i s performed f o r each type of equipment s e p a r a t e l y . The equipment u n i t s are of the same type i f they have the same p r i c e , o p e r a t i n g c o s t , and d e p r e c i a t i o n p e r i o d . For the s e q u e n t i a l p r o d u c t i o n years, the program Checks equipment requirements, read from the i n p u t data, a g a i n s t the number of u n i t s p r e s e n t l y working i n the mine. I f the requirements are h i g h e r , an investment r o u t i n e i s executed and the purchased equipment i s added t o the mine a s s e t s f o r the p e r i o d of the d e p r e c i a t i o n . I f the requirements are lower than the number of u n i t s owned by the mine, i t i s assumed t h a t o n l y the r e q u i r e d u n i t s operate and t h a t the o t h e r s are unused i n the c u r r e n t year. The annual o p e r a t i n g c o s t s are always a p p l i e d t o the number o f u n i t s r e q u i r e d t h a t can be equal or s m a l l e r than those f o r a whole e x i s t i n g f l e e t . - 136 -For the t r u c k o p e r a t i n g c o s t the program prompts f o r an adjustment due t o an i n c r e a s e of the f u e l consumption f o r the a l l t r u c k system and a l o w e r i n g of the f u e l consumption f o r the conveying system. An investment i s made on the 1st of January of the c u r r e n t year, whereas t o t a l f i x e d and o p e r a t i n g c o s t s are r ecorded on the 31st of December of the c u r r e n t year. For each type of equipment the program produces the c o s t a n a l y s i s t a b l e s u s i n g the formulae g i v e n i n Chapter 15.2. At the end, the cumulative c o s t a n a l y s i s t a b l e i s output f o r a whole t r a n s p o r t system. - 137 -15.2 Formulae CAPITAL RECOVERY FACTOR: CRF = where: CM DP CM f l + CM/100) (1 + CM/100) DP DP - 1 - bank rate, % - depreciation period, yrs /5/ INVESTMENT: INVEST = n l x C0ST1 x (1 + INFL1/100) where: n l COST1 INFL1 YR YR-1 - number of units to purchase - i n i t i a l cost/unit, i n $$ - i n f l a t i o n on investment, % - current year / 6 / INTEREST&DEPRECIATION: INT&DEP = INVEST X CRF where: INVEST CRF - investment, i n $$ - c a p i t a l recovery factor /7/ INSURANCE & TAXES: INS&TAX = INVEST X TAX/100 where: INVEST TAX - investment, i n $$ - taxes, % / 8 / - 138 -FIXED COSTS: FIXCOST = INT&DEP + INS&TAX where: INT&DEP - interests & depreciation, $$ INS&TAX - insurance & tax, $$ OPERATING COST: OPERCOST n2 X COST2 X (1 + INFL2/100) YR-1 where: n2 C0ST2 INFL2 YR - number of operating units - i n i t i a l operating cost/unit, i n $$ - i n f l a t i o n on operating cost, % - current year TOTAL COSTS: TOTCOST = FIXCOST + OPERCOST where: FIXCOST - fixed cost, $$ OPERCOST - operating cost $$ PRESENT VALUE FACTOR: PVF = (1 + MARR/100)Yr ~ 1 where: MARR - minimum a t t r a c t i v e rate of return, yr - year of mine production PRESENT VALUE: PRVALUE = TOTCOST X PVF where: TOTCOST - t o t a l c o s t s , $$ PVF - prese n t v a l u e f a c t o r PRESENT EQUIVALENT: YR EQVALUE = PRVALUE y r = l where: PRVALUE - presen t v a l u e , $$ YR - c u r r e n t year - 140 -16. DISCOUNTED CASH FLOW ANALYSIS The computer c a l c u l a t i o n program has been executed t o compare the cash flow a n a l y s i s of the a l t e r n a t i v e t r a n s p o r t systems d e s c r i b e d i n Chapters 11.3 and 11.4. The program performed the c o s t a n a l y s i s of the equipment d i s c u s s e d i n Chapter 15, under the f o l l o w i n g assumptions: i n f l a t i o n on investment 10% i n f l a t i o n on o p e r a t i n g c o s t Trucks: 12% Other Equipment: 10% bank r a t e 14% taxes 2% - minimum a t t r a c t i v e r a t e of r e t u r n 15%. The program output d e t a i l and cumulative cash flow a n a l y s i s f o r the a l l t r u c k system as shown i n T a b l e s 24 t o 26, and f o r the conveying system a c r o s s benches and w i t h i n c l i n e i n Tables 27 t o 33 and 34 t o 41, r e s p e c t i v e l y . 141 TABLE 24 ALL TRUCK SYSTEM CASH FLOW ANALYSIS ( in thousands **) TRUCKS, 154 tonne c a p a c i t y YEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 151 PV PRESENT PRESENT & DEPREC. t TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 49,200.0 9,946.7 984.0 10,930.7 32,500.5 43,431.2 1.0000 43,431.2 43,431.2 2 0.0 9,946.7 984.0 10,930.7 35,490.6 46,421.3 0.8696 41,157.6 84,589.8 3 2,976.6 10,548.5 1,043.5 11,592.0 42,807.1 54,399.1 0.7561 41,133.5 125,722.4 4 0.0 10,548.5 1,043.5 11,592.0 46,802.4 58,394.4 0.6575 39,145.8 164,868.2 5 0.0 10,548.5 1,043.5 11,592.0 51,140.2 62,732.2 0.5718 37,329.3 202,197.5 6 0.0 10,548.5 1,043.5 11,592.0 54,413.2 66,005.2 0.4972 32,673.8 234,871.4 7 0,0 10,548.5 1,043.5 11,592.0 59,339.0 70,931.0 0.4323 31,220.1 266,091.5 e 0.0 10,548.5 1,043.5 11,592.0 66,459.7 78,051.7 0.3759 29,882.7 295,974.2 9 0.0 10,548.5 1,043.5 11,592.0 78,458.3 90,050.3 0.3269 28,648.4 324,622.6 10 104,409.9 21,710.2 2,147.7 23,857.9 77,058.2 100,916.1 0.2843 28,686.6 353,309.3 It 0.0 21,710.2 2,147.7 23,857.9 86,305.1 110,163.0 0.2472 27,230.6 380,539.9 12 0.0 21,108.4 2,088.2 23,196.6 91,574.3 114,770.9 0.2149 24,669.2 405,209.1 13 0.0 21,108.4 2,088.2 23,196.6 102,563.2 125,759.8 0.1869 23,505.4 428,714.5 14 0.0 21,108.4 2,088.2 23,196.6 114,870.8 138,067.4 0.1625 22,439.8 451,154.3 15 4,670.9 22,052.7 2,181.6 24,234.3 132,229.0 156,463.4 0.1413 22,112.8 473,267.1 16 0.0 22,052.7 2,181.6 24,234.3 148,096.5 172,330.9 0.1229 21,178.5 494,445.6 17 0.0 22,052.7. 2,181.6 24,234.3 174,335.9 198,570.2 0.1069 20,315.3 514,760.8 18 0.0 22,052.7 2,181.6 24,234.3 189,677.4 213,911.7 0.0929 19,515.1 534,275.9 19 232,515.8 47,951.7 4,743.7 52,695.4 196,818.2 249,513.6 0.0808 20,162.0 554,437.9 20 0.0 47,951.7 4,743.7 52,695.4 220,436.4 273,131.8 0.0703 19,191.7 573,629.6 21 0.0 47,951.7 4,743.7 52,695.4 246,888.8 299,584.1 0.0611 18,304.7 591,934.3 22 0.0 47,951.7 4,743.7 52,695.4 298,461.1 351,156.5 0.0531 17,491.2 609,425.5 23 0.0 47,951.7 4,743.7 52,695.4 334,276.4 386,971.8 0.0462 16,742.8 626,168.2 24 0.0 47,007.3 4,650.3 51,657.7 336,950.6 388,608.3 0.0402 15,612.1 641,780.3 25 0.0 47,007.3 4,650.3 51,657.7 406,983.5 458,641.2 0.0349 14,988.3 656,768.6 - 142 -TABLE 25 ALL TRUCK SYSTEM CASH FLOW ANALYSIS ( in thousands **) STATIONARY CRUSHER, G y r a t o r y YEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 151 PV PRESENT PRESENT t DEPREC. * TAX COSTS COSTS COSTS FACTOR VALUE EQUIVAL 1 7,107.1 1,073.1 142.1 1,215.2 2,606.1 3,821.3 1.0000 3,821.3 3,821.3 2 0.0 1,073.1 142.1 1,215.2 2,866.7 4,081.9 0.8696 3,549.5 7,370.8 3 0.0 1,073.1 142.1 1,215.2 3,153.4 4,368.6 0.7561 3,303.3 10,674.1 4 0.0 1,073.1 142.1 1,215.2 3,468.7 4,683.9 0.6575 3,079.8 13,753.9 5 0.0 1,073.1 142.1 1,215.2 3,815.6 5,030.8 0.5718 2,876.4 16,630.3 6 0.0 1,073.1 142.1 1,215.2 4,197.2 5,412.4 0.4972 2,690.9 19,321.2 7 0.0 1,073.1 142.1 1,215.2 4,616.9 5,832.1 0.4323 2,521.4 21,842;5 8 0.0 1,073.1 142.1 1,215.2 5,078.6 6,293.8 0.3759 2,366.1 24,208.6 9 0.0 1,073.1 142.1 1,215.2 5,586.4 6,801.6 0.3269 2,223.5 26,432.1 10 0.0 1,073.1 142.1 1,215.2 6,145.0 7,360.3 0.2843 2,092.2 28,524.3 11 0.0 1,073.1 142.1 1,215.2 6,759.6 7,974.8 0.2472 1,971.2 30,495.6 12 0.0 1,073.1 142.1 1,215.2 7,435.5 8,650.7 0.2149 1,859.4 32,355.0 13 0.0 1,073.1 142.1 1,215.2 8,179.1 9,394.3 0.1869 1,755.9 34,110.8 14 0.0 1,073.1 142.1 1,215.2 8,997.0 10,212.2 0.1625 1,659.8 35,770.6 15 0.0 1,073.1 142.1 1,215.2 9,896.7 11,111.9 0.1413 1,570.4 37,341.0 16 0.0 1,073.1 142.1 1,215.2 10,886.3 12,101.6 0.1229 1,487.2 38,828.2 17 0.0 1,073.1 142.1 1,215.2 11,975.0 13,190.2 0.1069 1,409.6 40,237.8 18 0.0 1,073.1 142.1 1,215.2 13,172.5 14,387.7 0.0929 1,337.0 41,574.8 19 0.0 1,073.1 142.1 1,215.2 14,489.7 15,704.9 0.0808 1,269.0 42,843.8 20 0.0 1,073.1 142.1 1,215.2 15,938.7 17,153.9 0.0703 1,205.3 44,049.2 21 47,813.3 7,219.1 956.3 8,175.4 17,532.5 25,707.9 0.0611 1,570.8 45,619.9 22 0.0 7,219.1 956.3 8,175.4 19,285.8 27,461.2 0.0531 1,459.0 47,079.0 23 0.0 7,219.1 956.3 8,175.4 21,214.4 29,389.8 0.0462 1,357.8 48,436.8 24 0.0 7,219.1 956.3 8,175.4 23,335.8 31,511.2 0.0402 1,265.9 49,702.7 25 0.0 7,219.1 956.3 8,175.4 25,669,4 33,844.8 0.0349 1,182.3 50,885.1 - 143 -TABLE 26 CUMULATIVE CASH FLOW ANALYSIS ( in thousands **) ALL TRUCK SYSTEM YEAR INVESTMENT INTEREST INSUR. FIXED 0PERAT1N6 TOTAL 15X PV PRESENT PRESENT Ii DEPREC. t TAX COSTS COSTS COSTS FACTOR VALUE EQUIVAL 1 56,307.1 11,019.8 1,126.1 12,145.9 35,106.6 47,252.5 1.0000 47,252.5 47,252.5 2 0.0 11,019.8 1,126.1 12,145.9 38,357.3 50,503.2 0.8696 44,707.1 91,959.7 3 2,976.6 11,621.5 1,185.7 12,807.2 45,960.5 58,767.7 0.7561 44,436.8 136,396.5 4 0.0 11,621.5 1,185.7 12,807.2 50,271.1 63,078.3 0.6575 42,225.6 178,622.1 5 0.0 11,621.5 1,185.7 12,807.2 54,955.8 67,763.0 0.5718 40,205.7 21B,827.8* 6 0.0 11,621.5 1.185.7 12,807.2 58,610.3 71,417.5 0.4972 35,364.8 254,19275 7 0.0 11,621.5 1,185.7 12,807.2 63,955.9 76,763.1 0.4323 33,741.5 287,934.0 8 0.0 11,621.5 1,185.7 12,807.2 71,538.2 84,345.4 0.3759 32,248.8 320,182.8 9 0.0 11,621.5 1,185.7 12,807.2 84,044.7 96,852.0 0.3269 30,871.9 351,054.7 10 104,409.9 22,783.2 2,289.9 25,073.1 83,203.2 108,276.3 0.2843 30,778.9 381,833.6 11 0.0 22,783.2 2.289.9 25,073.1 93,064.7 118,137.8 0.2472 29,201.9 411,035.5 12 0.0 22,181.5 2,230.3 24,411.8 99,009,8 123,421.6 0.2149 26,528.6 437,564.1 13 0.0 22,181.5 2,230.3 24,411.8 110,742.3 135,154.1 0.1869 25,261.3 462,825.4 14 0.0 22,181.5 2,230.3 24,411.8 123,867.8 148,279.6 0.1625 24,099.6 486,924.9 15 4,670.9 23,125.8 2,323.8 25,449.5 142,125.7 167,575.3 0.1413 23,683.2 510,608.1 16 0.0 23,125.8 2,323.8 25,449.5 158,982.9 184,432.4 0.1229 22,665.7 533,273.8 17 0.0 23,125.8 2,323.8 25,449.5 186,310.8 211,760.4 0.1069 21,724.8 554,998.6 18 0.0 23,125.8 2,323,8 25,449.5 202,849.9 228,299.4 0.0929 20,852.0 575,850.7 19 232,515.8 49,024.7 4,885.9 53,910.6 211,307.9 265,218.5 0.0808 21,431.0 597,281.7 20 0.0 49,024.7 4,885.9 53,910.6 236,375.1 290,285.7 0.0703 20,397.0 617,678.8 21 47,813.3 55,170.8 5,700.0 60,870.8 264,421.3 325,292.1 0.0611 19,875.4 637,554.2 22 0.0 55,170.8 5,700.0 60,870.8 317,746.9 378,617.6 0.0531 18,950.2 656,504.4 23 0.0 55,170.8 5,700.0 60,870.8 355,490.8 416,361.5 0.0462 18,100.6 674,605.0 24 0.0 54,226.5 5,606.6 59,833.1 360,286.4 420,119.5 0.0402 16,878.1 691,483.1 25 0.0 54,226.5 5,606.6 59,833.1 432,652.9 492,486.0 0.0349 16,170.6 707,653.7 - 144 -TABLE 27 CONVEYING ACROSS BENCHES CASH FLOW ANALYSIS ( in thousands **>' TRUCKS, 154 tonne c a p a c i t y VEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 15X PV PRESENT PRESENT Si OEPREC. * TAX COSTS COSTS COSTS FACTOR VALUE EQU1VAL 1 49,200.0 9,946.7 984.0 10,930.7 32,500.5 43,431.2 1.0000 43,431.2 43,431.2 2 0.0 9,946.7 984.0 10,930.7 35,490.6 46,421.3 0,8696 41,157.6 84,588.8 3 2,976.6 10,548.5 1,043.5 11,592.0 42,807.1 54,399.1 0.7561 41,133.5 125,722.4 4 0.0 10,548.5 1.043.5 11,592.0 46,802.4 58,394.4 0.6575 39,145.B 164,868.2 5 0,0 10,548.5 1,043.5 11,592.0 51,140.2 62,732.2 0.5718 37,329.3 202,197.5 6 0.0 10,548.5 1,043.5 11,592.0 34,366.2 45,958.2 0.4972 32,673.8 234,871.4 7 0.0 10,548.5 1,043.5 11,592.0 35,282.6 46,874.6 0.4323 31,220.1 266,091.5 9 0.0 10,548.5 1,043.5 11,592.0 37,720.4 49,312.3 0.3759 29,882.7 295,974.2 9 0.0 10,548,5 1,043.5 11,592.0 50,293.8 61,885.8 0.3269 28,648.4 324,622.6 10 60,905.8 12,915.0 1,277.6 14,192.6 46,640.5 60,833.1 0.2843 17,292.6 341,915.2 11 0.0 12,915.0 1,277.6 14,192.6 50,470.8 64,663.5 0.2472 16,420.5 358,335.6 12 0.0 12,313.2 1,218.1 13.531.3 53,701.0 67,232.3 0.2149 14,390.4 372,726.0 13 0.0 12,313.2 1,218.1 13,531.3 53,814.0 67,345.4 0.1869 13,711.5 386,437.5 14 0.0 12,313.2 1,218.1 13,531.3 56,726.3 70,257.7 0.1625 13,089.9 399,527.4 15 ' 0.0 12,313,2 1,218.1 13,531.3 79,416.8 92,948.2 0.1413 12,518.9 412,046.3 16 0.0 12,313.2 1,218.1 13,531.3 75,604.8 89,136.2 0.1229 11,992.8 424,039.2 17 0.0 12,313.2 . 1,218.1 13,531.3 69,734.3 83,265,7 0.1069 11,506.4 435,545.6 18 0.0 12,313.2 1,218.1 13,531.3 72,523.7 86,055.1 0.0929 11,055.4 446,600.9 19 82,064.4 16,590.8 1,641.3 18,232.1 67,480.5 85,712.7 0.0808 6,926.0 453,527.0 20 0.0 16,590.6 1,641.3 18,232.1 75,578.2 93,810.3 0.0703 6,591.6 460,118.6 21 0.0 16,590.8 1,641.3 18,232.1 84,647.6 102,879.7 0.0611 6,286.0 466,404.6 22 0.0 16,590.8 1,641.3 18,232.1 79,004.4 97,236.5 0.0531 6,005.8 472,410.3 23 0.0 16,590.8 1,641.3 18,232.1 78,653.3 96,885.4 0.0462 5,748.0 478,158.3 24 0.0 16,590.8 1,641.3 18,232.1 77,080.2 95,312.3 0.0402 5,510.2 483,668.5 25 0.0 16,590,8 1,641.3 18,232.1 98,662.7 116,894.8 0.0349 5,290.0 488,958.5 - 145 -TABLE 28 CONVEYING ACROSS BENCHES CASH FLOW ANALYSIS ( in thousands **) STATIONARY CRUSHER, G y r a t o r y YEAR INVESTNENT INTEREST INSUR. FIXED 0PERATIN8 TOTAL 15Z PV PRESENT PRESENT l DEPREC. t> TAX COSTS COSTS COSTS FACTOR VALUE EQUIVAL 1 7,107.1 1,073.1 142.1 1,215.2 2,606.1 3,821.3 1.0000 3,821.3 3,821.3 2 0.0 1,073.1 142.1 1,215.2 2,866.7 4,081.9 0.8696 3,549.5 7,370.8 3 0,0 1,073.1 142.1 1,215.2 3,153.4 4,368.6 0.7561 3,303.3 10,674.1 4 0.0 1,073.1 142.1 1,215.2 3,468.7 4,683.9 0.6575 3,079.8 13,753.9 5 0.0 1,073.1 142.1 1,215.2 3,815.6 5,030.8 0.5718 2,876.4 16,630.3 6 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.4972 2,690.9 19,321.2 7 0.0 1,073,1 142.1 1,215.2 0.0 1,215.2 0.4323 2,521.4 21,842.5 8 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.3759 2,366.1 24,208.6 9 0,0 1,073,1 142.1 1,215.2 0.0 1,215.2 0.3269 2,223.5 26,432.1 10 0.0 1,073.1 142.1 1,215,2 0.0 1,215.2 0.2843 2,092.2 28,524.3 11 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.2472 1,971.2 30,495.6 12. 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.2149 1,859.4 32,355.0 13 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1869 1,755.9 34,110.8 14 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1625 1,659.8 35,770.6 15 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1413 1,570.4 37,341.0 16 0.0 1.073.1 142.1 1,215.2 0.0 1,215.2 0.1229 1,487.2 38,828.2 17 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1069 1,409.6 40,237.8 ia 0,0 1,073.1 142.1 1,215,2 0.0 1,215.2 0.0929 1,337.0 41,574.8 19 0,0 1,073,1 142.1 1,215.2 0.0 1,215.2 0.0808 1,269.0 42,843.8 20 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.0703 1,205.3 44,049.2 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0611 0.0 44,049.2 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0531 0.0 44,049.2 23 0,0 0,0 0.0 0.0 0.0 0.0 0.0462 0.0 44,049.2 24 0.0 0,0 0.0 0.0 0.0 0.0 0.0402 0.0 44,049.2 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0349 0.0 44,049.2 146 -TABLE 29 CONVEYING ACROSS BENCHES CASH FLOW ANALYSIS ( in thousands **) PORTABLE CRUSHER, G y r a t o r y VEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 151 PV PRESENT PRESENT 1 0EPREC. t, TAX COSTS COSTS COSTS FACTOR VALUE EOUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 oU 0.0 2 0.0 0,0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 28,586.6 4,316.2 571.7 4,887.9 4,197.2 9,085.1 0.4972 4,516.9 4,516.9 7 0.0 4,316.2 571.7 4,887.9 4,616.9 9,504.8 0.4323 4,109.2 8,626.0 8 0.0 4,316.2 571.7 4,887.9 5,078.6 9,966.5 0.3759 3,746.8 12,372.8 9 0.0 4,316.2 571.7 4,887.9 5,586.4 10,474.3 0.3269 3,424.1 15,796.9 10 0.0 4,316.2 571.7 4,887.9 6,145.0 11,032.9 0.2843 3,136.3 18,933.1 11 0.0 4,316.2 571.7 4,887.9 6,759.6 11,647.5 0.2472 2,879.1 21,812.2 12 0.0 4,316.2 571.7 4,887.9 7,435.5 12,323.4 0.2149 2,648.8 24,461.0 13 0.0 4,316.2 571,7 4,887.9 8,179.1 13,067.0 0.1869 2,442.3 26,903.3 14 0.0 4,316.2 571.7 4,887.9 8,997.0 13,884.9 0.1625 2,256.7 29,160.0 15 0.0 4,316.2 571.7 4,887.9 9,896.7 14,784.6 0.1413 2,089.5 31,249.5 16 0.0 4,316.2 571,7 4,887,9 10,886.3 15,774.2 0.1229 1,938.6 33,188.1 17 0.0 4,316.2 571.7 4,887.9 11,975.0 16,862.9 0.1069 1,802.0 34,990.1 18 0.0 4,316.2 571.7 4,887.9 13,172.5 18,060.4 0.0929 1,678.3 36,668.4 19 0.0 4,316.2 571.7 4,887.9 14,489.7 19,377.6 0.0808 1,565.8 38,234.2 20 0.0 4,316.2 571.7 4,887.9 15,938.7 20,826.6 0.0703 1,463.4 39,697.6 21 0.0 4,316.2 571.7 4,887.9 17,532.5 22,420.4 0.0611 1,369.9 41,067.5 22 0.0 4,316.2 571.7 4,887.9 19,285.8 24,173.7 0.0531 1,284.4 42,351.9 23 0.0 4,316.2 571.7 4,887.9 21,214.4 26,102.3 0.0462 1,205.9 43,557.8 24 0.0 4,316.2 571.7 4,887.9 23,335.8 28,223.7 0.0402 1,133.9 44,691.7 25 0.0 4,316.2 571.7 4,887.9 25,669.4 30,557.3 0.0349 1,067.5 45,759.2 - 1 4 7 -T A B L E 3 0 C O N V E Y I N G A C R O S S B E N C H E S C A S H F L O W A N A L Y S I S < i n t h o u s a n d s * * ) M A I N C O N V E Y O R , 7 0 0 m YEAR INVESTMENT INTEREST INSUR. FIXED 0PERATINS TOTAL 15X PV PRESENT PRESENT t DEPREC. t TAX COSTS COSTS COSTS FACTOR VALUE EQUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0,0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 4,227.6 638.3 84.6 722.9 1,117.2 1,840.0 0.4972 914.8 914.8 7 0.0 638.3 84.6 722.9 1,228.9 1,951.8 0.4323 843.8 1,758.6 9 0.0 638.3 84.6 722.9 1,351.8 2,074.6 0.3759 779.9 2,538.6 9 0.0 638.3 84.6 722.9 1,487.0 2,209,8 0.3269 722.4 3,261.0 10 0.0 638.3 84.6 722.9 1,635.7 2,358.5 0.2843 670.4 3,931.4 11 0.0 638.3 84.6 722.9 1,799.2 2,522.1 0.2472 623.4 4,554.8 12 0,0 638.3 84.6 722.9 1,979.2 27702.0 0.2149 580.8 5,135.6 13 0.0 638.3 84.6, 722.9 2,177.1 2,899.9 0.1869 542.0 5,677.6 14 0,0 638.3 84.6 722.9 2,394.8 3,117.6 0.1625 506.7 6,184.3 15 0.0 638.3 84.6 722.9 2,634.3 3,357.1 0.1413 474.5 6,658.8 16 0.0 638.3 84.6 722.9 2,897.7 3,620.5 0.1229 444.9 7,103.7 17 0,0 638.3 84.6 722.9 3,187.4 3,910.3 0.1069 417.9 7,521.6 18 0.0 638.3 84.6 722.9 3,506.2 4,229.0 0.0929 393.0 7,914.6 19 0.0 638.3 84.6 722.9 3,856.8 4,579.7 0.0808 370.1 8,284.6 20 0.0 638.3 84.6 722.9 4,242.5 4,965.3 0.0703 348.9 8,633.5 21 0.0 638.3 84.6 722.9 4,666.7 5,389.6 0.0611 329.3 8,962.8 22 0.0 638.3 84.6 722.9 ' 5,133.4 5,856.3 0.0531 311.1 9,274.0 23 0.0 638.3 84.6 722.9 5,646.8 6,369.6 0.0462 294.3 9,568.3 24 0.0 638.3 84.6 722.9 6,211.4 6,934.3 0.0402 278.6 9,846.8 25' 0.0 638.3 84.6 722.9 6,832.6 7,555.4 0.0349 263.9 10,110.8 148 -TABLE 31 CONVEYING ACROSS BENCHES CASH FLOW ANALYSIS ( in thousands **) SURFACE CONVEYOR, 2200m YEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 15X PV PRESENT PRESENT t> OEPREC. t TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 13,286.7 2,006.1 265.7 2,271.8 884.8 3,156.6 0.4972 1,569.4 1,569.4 7 0.0 2,006.1 265.7 2,271.8 973.3 3,245.1 0.4323 1,402.9 2,972.3 9 . 0.0 2,006.1 265.7 2,271.8 1,070.6 3,342.4 0.3759 1,256.5 4,228.9 9 0.0 2,006.1 265.7 "2,271.8 1,177.6 3,449.5 0.3269 1,127.6 5,356.5 10 0.0 2,006.1 265.7 2,271,8 1,295.4 3,567.2 0.2843 1,014.0 6,370.6 11 0.0 2,006.1 265.7 2,271.8 1,424.9 3,696.8 0.2472 913.8 7,284.3 12 0.0 2,006.1 265.7 2,271.8 1,567.4 3,839.3 0.2149 825.2 8,109.6 13 0.0 2,006.1 265.7 2,271.8 1,724.2 3,996.0 0.1869 746.9 8,856.5 14 0.0 2,006.1 265.7 2,271.B 1,896.6 4,168.4 0.1625 677.5 9,533.9 15 0.0 2,006.1 265.7 2,271.8 2,086.3 4,358.1 0.1413 615.9 10,149.9 16 0.0 2,006.1 265.7 2,271.8 2,294.9 4,566.7 0.1229 561.2 10,711.1 17 0.0 2,006.1 - 265.7 2,271.8 2,524.4 4,796.2 0.1069 512.5 11,223.6 18 0.0 2,006.1 265.7 2,271.8 2,776.8 5,048.7 0.0929 469.2 11,692.8 19 0.0 2,006.1 265.7 2,271.8 3,054.5 5,326.3 0.0808 430.4 12,123.2 20 0,0 2,006.1 265.7 2,271.8 3,359.9 5,631.8 0.0703 395.7 12,518.9 21 0.0 2,006.1 265.7 2,271.8 3,695.9 5,967.B 0.0611 364.6 12,883.5 22 0.0 2,006.1 265.7 2,271.8 4,065.5 6,337.4 0.0531 336.7 13,220.2 23 0.0 2,006.1 265.7 2,271.8 4,472.1 6,743.9 0.0462 311.6 13,531.8 24 0.0 2,006.1 265.7 2,271.8 4,919.3 7,191.1 0.0402 288.9 13,820.7 25 0.0 2,006.1 265.7 2,271.8 5,411.2 7,683.1 0.0349 268.4 14,089.1 149 -TABLE 32 CONVEYING ACROSS BENCHES CASH FLOW ANALYSIS ( in thousands **) EXTENSION CONVEYOR, 300m fEAft INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL i s : PV PRESENT PRESENT & DEPREC. it TAX COSTS COSTS COSTS FACTOR VALUE E0UIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.8696 6.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.4972 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.4323 0.0 0.0 9 0.0 0.0 0.0 0.0 0.0 0.0 0.3759 0.0 0.0 9 2,412.6 364.3 48.3 412,5 482.0 894.5 0.3269 292.4 292.4 10 0.0 364.3 48.3 412.5 530.2 942.7 0.2843 266.0 560.4 11 0.0 364.3 48.3 412.5 583.2 995.7 0.2472 246.1 806.5 12 0.0 364.3 48.3 412.5 641.5 1,054.1 0.2149 226.6 1,033.1 13 0.0 364.3 48.3 412.5 705.7 1,118.2 0.1869 209.0 1,242.1 14 0.0 364.3 48,3 412.5 776.3 1,188.8 0.1625 193.2 1,435.3 15 0.0 364.3 48.3 412.5 853.9 1,266.4 0.1413 179.0 1,614.3 16 0.0 364.3 48.3 412.5 939.3 1,351.8 0.1229 166.1 1,7B0.4 17 5,171.6 1,145.1 151.7 1,296.8 2,066.4 3,363.2 0.1069 359.4 2,139.8 18 0.0 1,145.1 151.7 1,296.8 2,273.0 3,569.8 0.0929 331,7 2,471.5 19 0.0 1,145.1 151.7 1,296.8 2,500.3 3,797.1 0.0808 306.8 2,778.4 20 0.0 1,145.1 151.7 1,296.8 2,750.4 4,047.2 0.0703 284.4 3,062.7 21 0.0 1,145.1 > 151.7 1,296.8 3,025.4 4,322.2 0.0611 264.1 3,326.8 22 8,328.9 2,402.7 318.3 2,720.9 4,991.9 7,712.8 0.0531 409.8 3,736.6 23 0.0 2,402.7 318.3 2,720.9 5,491.1 8,212.0 0.0462 379.4 4,116.0 24 0.0' 2,402.7 318.3 2,720.9 6,040.2 8,761.1 0.0402 352.0 4,468.0 25 0.0 2,402.7 318.3 2,720.9 6,644.2 9,365.1 0.0349 327.2 4,795.1 150 TABLE 33 CUMULATIVE CASH FLOW ANALYSIS <in thousands **> CONVEYING ACROSS BENCHES YEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 15X PV PRESENT PRESENT ti DEPREC. 1 TAX COSTS COSTS COSTS FACTOR VALUE EQUIVAL 1 56,307.1 11,019.8 1,126.1 12,145.9 35,106.6 47,252.5 1.0000 47,252.5 47,252.5 2 0.0 11,019.8 1,126.1 12,145.9 38,357.3 50,503.2 0.8696 44,707.1 91,959.7 3 2,976.6 11,621.5 1,185.7 12,807.2 45,960.5 58,767.7 0.7561 44,436.8 136,396.5 4 0.0 11,621.5 1,185.7 12,807.2 50,271.1 63,078.3 0.6575 42,225.6 178,622.1 5 0.0 11,621.5 1,185.7 12,807.2 54,955.8 67,763.0 0.5718 40,205.7 218,827.8 6 46,100.9 18,582.1 2,107.7 20,689.8 40,565.3 61,255.1 0.4972 42,365.9 261,193.6 7 0.0 18,582.1 2,107.7 20,689.8 42,101.7 62,791.5 0.4323 40,097.4 301,291.0 8 0.0 18,582.1 2,107.7 20,689.8 45,221.3 65,911.1 0.3759 38,032.0 339,323.0 9 2,412.6 18,946.4 2,155.9 21,102.3 59,026.8 80,129.1 0.3269 . 36,438.4 375,761.5 10 60,905.8 21,312.9 2,390.1 23,703.0 56,246.8 79,949.8 0.2843 24,473.5 400,235.0 11 0.0 21,312.9 2,390.1 23,703.0 61,037.8 84,740.8 0.2472 23,054.1 423,289.1 12 0.0 20,711.2 2,330.5 23,041.7 65,324.6 88,366.3 0.2149 20,531.2 443,820.3 13 0.0 20,711,2 2,330.5 23,041.7 66,600.0 89,641.7 0.1869 19,407,6 463,227.9 14 0.0 20,711,2 2,330.5 23,041.7 70,790.9 93,832.6 0.1625 18,383.7 481,611.6 15 0.0 20,711.2 2,330.5 23,041.7 94,887.9 117,929.6 0.1413 17,448.2 499,059.8 16 0.0 20,711,2 2,330.5 23,041.7 92,623.0 115,664.7 0.1229 16,590.9 515,650.7 17 5,171.6 21,492.0 2,434,0 23,926.0 89,487.5 113,413.5 0.1069 16,007.9 531,658.5 18 0.0 21,492.0 2,434.0 23,926.0 94,252.2 118,178.2 0.0929 15,264.5 546,923.1 19 82,064.4 25,769.6 2,857.1 28,626.7 91,381.9 120,008.6 0.0808 10,868.2 557,791,2 20 0.0 25,769.6 2,857.1 28,626.7 101,869.7 130,496.4 0.0703 10,289.3 568,080.5 21 0.0 24,696.5 2,715.0 27,411.5 113,568.2 140,979.7 0.0611 8,613.9 576,694.4 22 8,328.9 25,954.1 2,981.6 28,835.6 112,481.1 141,316.7 0.0531 8,347.9 585,042.2 23 0.0 25,954.1 2,881.6 28,835.6 115,477.6 144,313.2 0.0462 7,939.2 592,981.3 24 0.0 25,954.1 2,B81.6 28,835.6 117,587.0 146,422.6 0.0402 7,563.5 600,544.9 25 0.0 25,954,1 2,981.6 28,835.6 143,220.1 172,055.7 0.0349 7,217.0 607,761.9 151 TABLE 34 CONVEYING WITH INCLINE CASH FLOW ANALYSIS ( in thousands •*•*) TRUCKS, 154 tonne c a p a c i t y YEAR INVESTMENT INTEREST INSUR. FIXED OPERATING TOTAL 151 PV PRESENT PRESENT It DEPREC. if TAX COSTS COSTS COSTS FACTOR VALUE E0UIVAL 1 49,200.0 9,946.7 984.0 10,930.7 32,500.5 43,431.2 1.0000 43,431/2 43,431.2 2 0,0 9,946.7 984.0 10,930.7 35,490.6 46,421.3 0.8696 41,157.6 84,586.8 3 2,976.6 10,548.5 1,043.5 11,592.0 42,807.1 54,399.1 0.7561 41,133.5 125,722.4 4 0.0 10,548.5 1,043.5 11,592.0 46,802.4 58,394.4 0.6575 39,145.8 164,868.2 5 0.0 10,548.5 1,043.5 11,592.0 51,140.2 62,732.2 0.5718 37,329.3 202,197.5 6 0.0 10,548.5 1,043.5 11,592.0 34,366.2 45,958.2 0.4972 32,673.8 234,871.4 7 0.0 10,548.5 1,043.5 11,592,0 35,282.6 46,874.6 0.4323 31,220.1 266,091.5 a 0.0 10,548.5 1,043.5 11,592.0 37,720.4 49,312.3 0.3759 29,882.7 295,974.2 9 0.0 10,548.5 1,043.5 11,592.0 50,293.8 61,885.8 0.3269 28,648.4 324,622.6 10 60,905.8 12,915.0 1,277.6 14,192.6 46,640.5 60,833.1 0.2843 17,292.6 341,915.2 11 0.0 12,915.0 1,277.6 14,192.6 50,470.8 64,663.5 0.2472 16,420.5 358,335.6 12 0.0 12,313.2 1,218.1 13,531.3 53,701.0 67,232.3 0.2149 14,390.4 372,726.0 13 0.0 12,313.2 1,218.1 13,531.3 53,814.0 67,345.4 0.1869 13,711.5 386,437.5 14 0.0 12,313.2 1,218.1 13,531.3 56,726.3 70,257.7 0.1625 13,089.9 399,527,4 15 0.0 12,313.2 1,218.1 13,531.3 79,416.8 92,948.2 0.1413 12,518.9 412,046.3 16 0.0 12,313.2 1,218.1 13,531.3 75,604.8 89,136.2 0.1229 11,992.8 424,039.2 17 0.0 12,313.2 1,218.1 13,531.3 69,734.3 83,265.7 0.1069 11,506.4 435,545.6 18 0.0 12,313.2 1,218.1 13,531.3 72,523.7 86,055.1 0.0929 11,055.4 446,600.9 19 82,064.4 16,590.8 1,641.3 18,232.1 67,480.5 85,712.7 0.0808 6,926.0 453,527.0 20 0.0 16,590.8 1,641.3 18,232.1 75,578.2 93,810.3 0.0703 6,591.6 460,118.6 21 0.0 16,590.8 1,641.3 18,232.1 84,647.6 102,879.7 0.0611 6,286.0 466,404.6 22 0.0 16,590.8 1,641.3 18,232.1 79,004.4 97,236.5 0.0531 6,005.8 472,410.3 23 0.0 16,590.8 1,641.3 18,232.1 78,653.3 96,885.4 0.0462 . 5,748.0 478,158.3 24 0.0 16,590.8 1,641.3 18,232.1 77,080.2 95,312.3 0.0402 5,510.2 483,668.5 25 0.0 16,590.8 1,641.3 18,232.1 98,662.7 116,894.8 0.0349 5,290.0 488,958.5 152 -TABLE 35 CONVEYING WITH INCLINE CASH FLOW ANALYSIS ( in thousands **> STATIONARY CRUSHER, G y r a t o r y 'EAR INVESTMENT INTEREST INSUR. FIXED 0PERATIN6 TOTAL 15X PV PRESENT PRESENT t> DEPREC. Ii TAX COSTS COSTS COSTS FACTOR VALUE EflUIVAL 1 7,107.1 1,073.1 142.1 1,215.2 2,606.1 3,821.3 1.0000 3,821.3 3,821.3 2 0.0 1,073.1 142.1 1,215.2 2,866.7 4,081.9 0.8696 3,549.5 7,370.8 3 0.0 1,073.1 142.1 1,215.2 3,153.4 4,368.6 0.7561 3,303.3 10,674.1 4 0.0 1.073.1 142.1 1,215.2 3,468.7 4,683.9 0.6575 3,079.8 13,753.9 5 0.0 1,073.1 142.1 1,215.2 3,815.6 5,030.8 0.5718 2,876.4 16,630.3 6 0.0 1.073.1 142.1 1,215.2 0.0 1,215.2 0.4972 2,690.9 19,321.2 7 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.4323 2,521.4 21,842.5 8 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.3759 2,366.1 24,208.6 9 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.3269 2,223.5 26,432.1 10 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.2843 2,092.2 28,524.3 11 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.2472 1,971.2 30,495.6 12 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.2149 1,859.4 32,355.0 13 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1869 1,755.9 34,110.8 14 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1625 1,659.8 35,770.6 15 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1413 1,570.4 37,341.0 16 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1229 1,487.2 38,828.2 17 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.1069 1,409.6 40,237.8 18 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.0929 1,337.0 41,574.8 19 0.0 1,073.1 142.1 1,215.2 0.0 1,215.2 0.0808 1,269.0 42,843.8 20 0.0 1,073.1 ' 142.1 1,215.2 0.0 1,215.2 0.0703 1,205.3 44,049.2 21 0.0 0.0 0,0 0.0 0.0 0.0 0.0611 0.0 44,049.2 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0531 0.0 44,049.2 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0462 0.0 44,049.2 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0402 0.0 44,049.2 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0349 0.0 44,049.2 153 -TABLE 36 CONVEYING WITH INCLINE CASH FLOW ANALYSIS ( in thousands **) PORTABLE CRUSHER, G y r a t o r y VEAR INVESTMENT INTEREST INSUR. FIXED 0PERATIN6 TOTAL 151 PV PRESENT PRESENT i OEPREC. & TAX COSTS COSTS COSTS FACTOR VALUE EBU1VAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 • 0.0 0.0 0,0 0,0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 ' 0.0 0.7561 0.0 0.0 4 0.0 0.0 0 . 0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0 . 0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 28,586.6 4,316.2 571.7 4,887.9 4,197.2 9,085.1 0.4972 4,516.9 4,516.9 7 0.0 4,316.2 571.7 4,887.9 4,616.9 9,504.8 0.4323 4,109.2 8,626.0 8 0 , 0 4,316.2 571.7 4,887.9 5,078.6 9,966.5 0.3759 3,746.8 12,372.8 9 0 . 0 4,316.2 571.7 4,887.9 5,586.4 10,474.3 0.3269 3,424.1 15,796.9 10 0 . 0 4,316.2 571.7 4,887.9 6,145.0 11,032.9 0.2843 3,136.3 18,933.1 11 0.0 4,316.2 571.7 4,887.9 6,759.6 11,647.5 0.2472 2,879.1 21,812.2 12 0.0 4,316.2 571.7 4,887.9 7,435.5 12,323.4 0.2149 2,648.8 24,461.0 13 0.0 4,316.2 571.7 4,887.9 8,179.1 13,067.0 0.1869 2,442.3 26,903.3 14 0.0 4,316.2 571.7 4,887.9 8,997.0 13,884.9 0.1625 2,256.7 29,160.0 15 0.0 4,316.2 571.7 4,887.9 9,896.7 14,784.6 0.1413 2,089.5 31,249.5 lb 0.0 4,316.2 571.7 4,887.9 10,886.3 15,774.2 0.1229 1,938.6 33,188.1 17 0 . 0 4,316.2 571.7 4,887.9 11,975.0 16,862.9 0.1069 1,802.0 34,990.1 18 0.0 4,316.2 571.7 4,887.9 13,172.5 18,060.4 0.0929 1,678.3 36,668.4 19 0.0 4,316.2 571.7 4,887.9 14,489.7 19,377.6 0.0808 1,565.8 38,234.2 20 0 . 0 4.316.2 571.7 4,887.9 15,938.7 20,826.6 0.0703 1,463.4 39,697.6 21 0 . 0 4,316.2 571.7 4,887.9 17,532.5 22,420.4 0.0611 1,369.9 41,067.5 22 0 . 0 4,316.2 571.7 4,887.9 19,285.8 24,173.7 0.0531 1,284.4 42,351.9 23 0 . 0 4,316.2 571.7 4,887.9 21,214.4 26,102.3 0.0462 1,205.9 43,557.8 24 0.0 4,316.2 571.7 4,887.9 23,335.8 28,223.7 0.0402 1,133.9 44,691.7 25 0.0 4,316.2 571.7 4,887.9 25,669.4 30,557.3 0.0349 1,067.5 45,759.2 - 154 -T A B L E 3 7 C O N V E Y I N G W I T H I N C L I N E C A S H F L O W A N A L Y S I S < i n t h o u s a n d s * * ) M A I N C O N V E Y O R , 7 0 0 m YEAR INVESTMENT INTEREST INSUR. FIXED 0PERATINB TOTAL 151 PV PRESENT PRESENT & DEPREC. Ii TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 4,227.6 638.3 84.6 722.9 1,117.2 1,840.0 0.4972 914.8 914.8 7 0.0 638.3 84.6 722.9 1,228.9 1,951.8 0.4323 843.8 1,759.6 8 0.0 638.3 84.6 722.9 1,351.8 2,074.6 0.3759 779.9 2,538.6 9 0.0 638.3 84.6 722.9 1,487.0 2,209.8 0.3269 722.4 3,261.0 10 0.0 638.3 84.6 722.9 1,635.7 2,358.5 0.2843 670.4 3,931.4 11 0.0 638.3 84.6 722.9 1,799.2 2,522.1 0.2472 623.4 4,554.8 12 0.0 638.3 84.6 722.9 1,979.2 2,702.0 0.2149 580.8 5,135.6 13 0.0 638.3 84.6 722.9 2,177.1 2,899.9 0.1869 542.0 5,677.6 14 0.0 638.3 84.6 722.9 2,394.8 3,117.6 0.1625 506.7 6,184.3 15 0.0 638.3 84.6 722.9 2,634.3 3,357.1 0.1413 474.5 6,658.8 16 0.0 638.3 84.6 722.9 2,897.7 3,620.5 0.1229 444.9 7,103.7 17 0.0 638.3 84.6 722.9 3,187.4 3,910.3 0.1069 417.9 7,521.6 18 0.0 638.3 84.6 722.9 3,506.2 4,229.0 0.0929 393.0 7,914.6 19 0.0 638.3 84.6 722.9 3,856.8 4,579.7 O.0808 370.1 8,284.6 20 0.0 638.3 84.6 722.9 4,242.5 4,965.3 0.0703 348.9 8,633.5 21 0.0 638.3 84.6 722.9 4,666.7 5,389.6 0.0611 329.3 8,962.8 22 0.0 638.3 84.6 722.9 5,133.4 5,856.3 0.0531 311.1 9,274.0 23 0.0 638.3 84.6 722.9 5,646.8 6,369.6 0.0462 294.3 9,568.3 24 0,0 638.3 84.6 722.9 6,211.4 6,934.3 0.0402 278.6 9,846.8 25 0.0 638.3 84.6 722.9 6,932.6 7,555.4 0.0349 263.9 10,110.8 1 5 5 TABLE 38 CONVEYING WITH INCLINE CASH FLOW ANALYSIS <in thousands $*) SURFACE CONVEYOR, 1800m YEAR INVESTMENT INTEREST INSUR. FIXED 0PERATIN6 TOTAL 15X PV PRESENT PRESENT i DEPREC. ti TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 0.0 0.0 0 . 0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 10.870.9 1,641.4 217.4 1,858.8 725.1 2,583.9 0.4972 1,284.7 1,284.7 7 0 . 0 1,641.4 217.4 1,858.8 797.6 2,656.4 0.4323 1,148.4 2,433.1 8 0 . 0 1,641.4 217.4 1,858.8 877.4 2,736.2 0.3759 1,028.6 3,461.7 9 0.0 1,641.4 217.4 1,858.8 965.1 2,823.9 0.3269 923.1 4,384.9 10 0 . 0 1,641.4 217.4 1,858.8 1,061.6 2,920.4 0.2843 830.2 3,215.0 11 0.0 1,641.4 217.4 1,858.8 1,167.8 3,026.6 0.2472 748.1 5,963.2 12 0.0 1,641.4 217.4 1,858.8 1,284.6 3,143.4 0.2149 675.6 6,638.8 13 0.0 1,641.4 217.4 1,858.8 1,413.1 3,271.8 0.1869 611.5 7,250.3 14 0 . 0 1.641.4 217.4 1,858.8 1,554.4 3,413.1 0.1625 554.7 7,805.1 15 0.0 1,641.4 217.4 1,858.8 1,709.8 3,568.6 0.1413 504.3 8,309.4 16 0.0 1,641.4 217.4 1,858.8 1,880.8 3,739.6 0.1229 459.6 8,769.0 17 0 . 0 1,641.4 217.4 1,858.8 2,068.9 3,927.6 0.1069 419.7 9,188.7 18 0.0 1,641.4 217.4 1,S5B.8 2,275.7 4,134.5 0.0929 384.2 9,572.9 19 0 . 0 1,641.4 217.4 1,858.8 2,503.3 4,362.1 0.0808 352.5 9,925.4 20 0 . 0 1,641.4 217.4 1,858.8 2,753.6 4,612.4 0.0703 324.1 10,249.5 21 0 . 0 1,641,4 217.4 1,858.8 3,029.0 4,887.8 0.0611 298.6 10,548.1 22 0 . 0 1,641.4 217.4 1,858.8 3,331.9 5,190.7 0.0531 275.8 10,823.9 23 0 . 0 1,641.4 217,4 1,858.8 3,665.1 5,523.9 0.0462 255.2 11,079.1 24 0.0 1,641.4 217.4 1,858.8 4,031.6 5,890.4 0.0402 236.6 11,315.8 25 0.0 1,641.4 217.4 1,858.8 4,434.8 6,293.6 0.0349 219.9 11,535.6 - 156 -TABLE 39 CONVEYING WITH INCLINE CASH FLOW ANALYSIS ( in thousands **) EXTENSION OF MAIN CONVEYOR , 240m INVESTMENT INTEREST INSUR. FIXED QPERATIN6 TOTAL 151 PV PRESENT PRESENT d OEPREC. k TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0/ 0.0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 0.0 0.0 0.0 0.0 0.0 0.0 0.4972 0.0 0.0 7 0.0 0.0 0.0 0.0 0.0 0.0 0.4323 0.0 0.0 9 0.0 0.0 0.0 0.0 0.0 0.0 0.3759 0.0 0.0 9 1,581.8 238.9 31.6 270.5 433.3 703.8 0.3269 230.1 230.1 10 0.0 238.8 31.6 270.5 476.6 747.1 0.2843 212.4 442.4 11 0.0 238.8 31.6 270.5 524.3 794.8 0,2472 196.5 638.9 12 0.0 238.8 31.6 270.5 576.7 947.2 0.2149 182.1 821.0 13 0.0 238.8 31.6 270.5 634.4 904.9 0.1869 169.1 990.1 14 0.0 238.8 31.6 270.5 697.8 969.3 0.1625 157.4 . 1,147.5 15 0.0 238.8 31.6 270.5 767.6 1,038.1 0.1413 146.7 1,294.2 16 0.0 238.8 31.6 270.5 844.4 1,114.8 0.1229 137.0 1,431.2 17 3,390.6 750.8 99.4 850.2 .1,857.6 2,707.8 0.1069 289.4 1,720.6 18 0.0 750.8 99.4 850.2 2,043.4 2,893.6 0.0929 268.9 1,989.5 19 0.0 750.8 99.4 850.2 2,247.7 3,098.0 0.0808 250.3 2,239.8 20 0.0 750.9 99.4 850.2 2,472.5 3,322.7 0.0703 233.5 2,473.3 21 0.0 750.8 99.4 850.2 2,719.8 3,570.0 0.0611 218.1 2,691.4 22 5,460.6 1,575.2 208.7 1,783.9 4,487.6 6,271.5 0.0531 333.2 3,024.6 23 0.0 1,575.2 208.7 1,783.9 4,936.4 6,720.3 0.0462 310.5 3,335.1 24 0.0 1,575.2 208.7 1,783.9 5,430.0 7,213.9 0.0402 289.8 3,624.9 25 0,0 1,575.2 208.7 1,783.9 5,973.0 7,756.9 0.0349 271.0 3,895.9 - 157 -T A B L E 4 0 C O N V E Y I N G W I T H I N C L I N E C A S H F L O W A N A L Y S I S ( i n t h o u s a n d s **> D R I F T C O N V E Y O R , SOm YEAR INVESTMENT INTEREST INSUR. FIXED 0PERATIN8 TOTAL 15X PV PRESENT PRESENT I DEPREC. It TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 0.0 0.0 0.0 0.0 0.0 0.0 1.0000 0.0 0.0 2 0.0 0.0 0.0 0,0 0.0 0.0 0.8696 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.7561 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.6575 0.0 0.0 5 0.0 0.0 0.0 0.0 0.0 0.0 0.5718 0.0 0.0 6 966.3 145.9 19.3 165.2 79.0 244.2 0.4972 121.4 121.4 7 0.0 145.9 19.3 165.2 86.9 252.1 0.4323 109.0 230.4 8 0.0 145.9 19.3 165.2 95.6 260.9 0.3759 98.0 328.4 ? 0.0 145.9 19.3 165.2 105.1 270.3 0.3269 88.4 416.8 10 0.0 145.9 19.3 165.2 115.6 280.8 0.2843 79.8 496.6 11 0.0 145.9 19.3 165.2 127.2 292.4 0.2472 72.3 568.9 12 0.0 145.9 19.3 165.2 139.9 305.1 0.2149 65.6 634.5 13 0.0 145.9 19.3 165.2 153.9 319.1 0.1869 59.6 694.2 14 0.0 145.9 19.3 165.2 169.3 334.5 0.1625 54.4 748.5 15 0.0 145.9 19.3 165.2 186.2 351.4 0.1413 49.7 798.2 16 0.0 145.9 19.3 165.2 204.8 370.1 0.1229 45.5 843.7 17 0.0 145.9 19.3 165.2 225.3 390.5 0.1069 41.7 883.4 18 0.0 145.9 19.3 165.2 247.9 413.1 0.0929 38.4 923.8 19 0.0 145.9 19.3 165.2 272.6 437.9 0.0808 35.4 959.2 20 0.0 145.9 19.3 165.2 299.9 465.1 0.0703 32.7 991.9 21 0.0 145.9 19.3 165.2 329.9 495.1 0.0611 30.3 1,022.1 22 0.0 145.9 19.3 165.2 362.9 528.1 0.0531 28.1 1,050.2 23 0.0 145.9 19.3 165.2 399.2 564.4 0.0462 26.1 1,076.2 24 0.0 145.9 19.3 165.2 439.1 604.3 0.0402 24.3 1,100.5 25 0.0 145.9 19.3 165.2 483.0 648.2 0.0349 22.6 1,123.2 - 158 -TABLE 41 CUMULATIVE CASH FLOW ANALYSIS ( in thousands **> CONVEYING WITH INCLINE YEAR INVESTMENT INTEREST INSUR. FIXED 0PERATIN8 TOTAL 151 PV PRESENT PRESENT I DEPREC. 1 TAX COSTS COSTS COSTS FACTOR VALUE EBUIVAL 1 56,307.1 11,019.8 1,126.1 12,145.9 35,106.6 47,252.5 1.0000 47,252.5 47,252.5 2 0.0 11,019.8 1,126.1 12,145.9 38,357.3 50,503.2 0.8696 44,707.1 91,959.7 3 2,976.6 11,621.5 1,185.7 12,807.2 45,960.5 58,767.7 0.7561 44,436.8 136,396.5 4 0.0 11,621.5 1,185.7 12,807.2 50,271.1 63,078.3 0.6575 42,225.6 178,622.1 5 0.0 11,621.5 1,185.7 12,807.2 54,955.8 67,763.0 0.5718 40,205.7 218,827.8 6 44,651.4 18,363.3 2,078.7 20,442.0 40,484.6 60,926.6 0.4972 42,202.5 261,030.3 7 0.0 18,363.3 2,078.7 20,442.0 42,012.9 62,454.9 0.4323 39,951.9 300,982.2 8 0.0 18,363.3 2,078.7 20,442.0 45,123.7 65,565.6 0.3759 37,902.1 338,884.3 9 1,581.8 18,602.1 2,110.3 20,712.4 58,870.7 79,583.2 0.3269 36,260.0 375,144.3 SO 60,905.8 20,968.6 2,344.5 23,313.1 56,075.1 79,388.2 0.2843 24,313.9 399,458.1 11 0.0 20,968.6 2,344.5 23,313.1 60,848.9 84,162.0 0.2472 22,911.1 422,369.2 12 0.0 20,366.9 2,284.9 22,651.8 65,116.9 87,768.6 0.2149 20,402.7 442,771.9 13 0.0 20,366.9 2,284.9 22,651.B 66,371.5 89,023.3 0.1869 19,292.0 462,063.9 14 0.0 20,366.9 2,284.9 22,651.8 70,539.5 93,191.3 0.1625 18,279.5 480,343.4 15 0.0 20,366.9 2,284.9 22,651.8 94,611.4 117,263.2 0.1413 17,354.0 497,697.4 16 0.0 20,366.9 2,284.9 22,651.8 92,318.8 114,970.6 0.1229 16,505.6 514,203.0 17 3,390.6 20,878.8 2,352.7 23,231.5 89,048.6 112,280.1 0.1069 15,886.7 330,089.7 18 0.0 20,878.8 2,352.7 23,231.5 93,769.4 117,000.9 0.0929 15,155.1 545,244.9 19 82,064.4 25,156.4 2,775.9 27,932.3 90,850.7 118,783.1 0.0808 10,769.1 556,014.0 20 0.0 25,156.4 2,775.9 27,932.3 101,285.4 129,217.7 0.0703 10,199.5 566,213.5 21 0.0 24,083.3 2,633.8 26,717.1 112,925.5 139,642.6 0.0611 8,532.2 574,745.6 22 5,460.6 24,907.8 2,743.0 27,650.8 111,606.0 139,256.8 0.0531 8,238.3 582,984.1 23 0.0 24,907.8 2,743.0 27,650.8 114,515.0 142,165.8 0.0462 7,840.0 590,824.0 24 0.0 24,907.8 2,743.0 27,650.8 116,528.2 144,179.0 0.0402 7,473.3 598,297.3 25 0.0 24,907.8 2,743.0 27,650.8 142,055.4 169,706.2 0.0349 7,134.9 605,432.3 - 159 -I t i s important t o remember t h a t the conveying system has been implemented i n the 6th year of mine l i f e , and t h a t a comparison of t r a n s p o r t systems should s t a r t a t t h a t p o i n t . The f i r s t f i v e years of p r o d u c t i o n have a p r e s e n t v a l u e of $210,950,100 r e g a r d l e s s of the t r a n s p o r t system used and t h i s v a l u e i s s u b t r a c t e d from the f i n a l p r e s e n t v a l u e t o g i v e the r e l a t i v e c o s t s of the a l t e r n a t i v e systems. The a l l t r u c k system a n a l y s i s of years 6 t o 25 has a p r e s e n t v a l u e of $572,901,100, wit h about 93% of t h i s v a l u e a t t r i b u t e d t o t r u c k s . However the f l e e t s i z e decreases from 38 t o 34 (see Table 21), the annual o p e r a t i n g c o s t s are growing r a p i d l y from 82% of t o t a l c o s t s i n the s i x t h year t o 88.5% i n the l a s t year of p r o d u c t i o n . The i n - p i t c r u s h i n g and conveying system a n a l y s i s of years 6 t o 25 has a prese n t v a l u e of $388,934,100 f o r conveying a c r o s s benches and of $386,604,500 f o r conveying w i t h i n c l i n e . T h i s minor d i f f e r e n c e i s caused by a r e d u c t i o n of a l e n g t h of the s u r f a c e conveyor. A comparison of the cash flow a n a l y s i s of the a l l t r u c k system and the conveying system shows about $185 m i l l i o n (32%) savings i n f a v o r of conveying i n terms of the f i n a l p r e s e n t v a l u e . The payback p e r i o d occurs - 160 -between the 9th and 10th year of the mine l i f e , e.g. f o u r y e a r s a f t e r the i n i t i a l investment i n the conveying system, as shown i n F i g . 11. Assuming a constant annual mine p r o d u c t i o n of 30 m i l l i o n tonnes, the p r e s e n t e q u i v a l e n t 20 year average s a v i n g i s 3 0 c per tonne of ore. These savi n g s were gained by the c o n v e r s i o n of the ore t r a n s p o r t from the a l l t r u c k t o the conveying system, w h i l s t the waste was s t i l l t r a n s p o r t e d by t r u c k s t o a s u r f a c e dump. A s i m i l a r c o n v e r s i o n of waste t r a n s p o r t c o u l d b r i n g a d d i t i o n a l s a v i n g s . The waste hauled between year 6 and 2 5 i s one t h i r d of the ore t r a n s p o r t e d i n the same p e r i o d (see Table 12). Hence, the r e l a t e d savings can be estimated as $62,000,000 i n terms of the p r e s e n t e q u i v a l e n t . The s u r f a c e d i s t a n c e t o the dump, however, i s 4,400 m, w h i l s t a d i s t a n c e t o the p r o c e s s i n g p l a n t i s o n l y 2,2 00 m. T h e r e f o r e the c a p i t a l and o p e r a t i n g c o s t s of an o v e r l a n d conveyor are twice as much as those f o r the ore, which decreases expected savings by about $14,000,000 (see T a b l e 31). Thus the estimated savings on the waste t r a n s p o r t c o n v e r s i o n are $48,000,000 or average 8 C per tonne o f ore over the 20 year p e r i o d . 0 5 11 16 21 25 Mine Life ( y e a r s ) Fig. 11 CUMULATIVE COSTS vs. TIME IN YEARS - 162 -17. CONCLUSIONS The m a t e r i a l t r a n s p o r t i n an open p i t mine c o n t r i b u t e s up t o 50% of the t o t a l mining c o s t s , and t h e r e f o r e t h e r e i s a need t o improve and/or modify the t r a n s p o r t system. A l l t r u c k t r a n s p o r t i s p r e s e n t l y the most popul a r system i n the mining i n d u s t r y and w e l l proven, but the i n - p i t c r u s h i n g and conveying system r e p r e s e n t s an a t t r a c t i v e a l t e r n a t i v e . A l l t r u c k t r a n s p o r t i s a r e l i a b l e and f l e x i b l e system. I t i s a l s o , however, h i g h l y expensive i n terms o f the o p e r a t i n g c o s t s due t o hig h f u e l , t i r e , and la b o u r c o s t s . These c o s t s can be reduced by improving t r u c k e f f i c i e n c y , but such improvements have many l i m i t a t i o n s and are expensive. Conveying i s a m a t e r i a l t r a n s p o r t system wit h o p e r a t i n g c o s t s comparatively much lower than those o f the a l l t r u c k system. Implementation of the i n - p i t c r u s h i n g and conveying system s i g n i f i c a n t l y reduces the number of t r u c k s . T h i s i n t u r n reduces o p e r a t i n g c o s t s o f the t r u c k f l e e t due t o savings on f u e l , t i r e s , l u b r i c a n t s and - 163 -manpower. Conveyors use e l e c t r i c energy which i s cheaper than d i e s e l f u e l , and r e q u i r e l e s s s k i l l e d l a b o u r f o r maintenance than t r u c k s . Conventional conveyors can t r a n s p o r t m a t e r i a l on a 25% grade whereas t r u c k s can n e g o t i a t e o n l y 8% on a long d i s t a n c e h a u l , and up t o 10% on s h o r t d i s t a n c e s . On the other hand, the conveying system r e q u i r e s a h i g h i n i t i a l investment which should be p a i d b a c k i n a reasonably s h o r t p e r i o d of time. The t r a n s p o r t o p e r a t i o n depends on the conveyor a v a i l a b i l i t y . R e l o c a t i o n of the c r u s h e r and e x t e n s i o n o f the conveyor slow down or shut down the e n t i r e p r o d u c t i o n . A l l m a t e r i a l must be crushed t o conveyable s i z e s . The u s u a l conveyor a p p l i c a t i o n i s a combined system of conveyor and t r u c k t r a n s p o r t . In t h i s case, waste i s hauled out of p i t by t r u c k s t o a dump on the s u r f a c e , w h i l e ore i s d e l i v e r e d t o the i n - p i t c r u s h e r and then conveyed t o the p r o c e s s i n g p l a n t . T h i s t r a n s p o r t system c o n f i g u r a t i o n has been simulated i n the computer mine model ver s u s the a l l t r u c k o p e r a t i o n . The h y p o t h e t i c a l model r e p r e s e n t s a l a r g e s i z e mine wit h a f i x e d annual p r o d u c t i o n o f 30 m i l l i o n tonnes of ore. The conveying system r e q u i r e s two i n - p i t c r u s h e r s o p e r a t i n g f o r the ore alone and implements f o u r - 164 -f l i g h t s of conveyors w i t h i n the p i t and a l o n g d i s t a n c e s u r f a c e conveyor. The r e s u l t s of the s i m u l a t i o n and a di s c o u n t e d cash flow a n a l y s i s showed t h a t the i n i t i a l investment i n the conveying system i s p a i d back w i t h i n f o u r y e a r s . The c o n v e r s i o n of ore t r a n s p o r t showed a 3 0% r e d u c t i o n i n presen t e q u i v a l e n t v a l u e o f t o t a l c o s t s , and savin g s o f 3 0 c per tonne of ore over a p e r i o d o f 2 0 y e a r s . A s i m i l a r c o n v e r s i o n of the waste t r a n s p o r t c o u l d g i v e a d d i t i o n a l savings o f 8 C per tonne of ore over the same mine l i f e p e r i o d . The conveying system i s seen t o be a good t r a n s p o r t a l t e r n a t i v e f o r medium and l a r g e s i z e open p i t mines, 200 m or more i n depth, and f o r a long term o p e r a t i o n . The mine model c o n s i d e r e d conveying a c r o s s benches and conveying with an i n c l i n e arrangement. Conveying wi t h an i n c l i n e c o u l d be used by mines e x p e r i e n c i n g poor w a l l s t a b i l i t y and unfavourable weather c o n d i t i o n s . Conversion of the a l l t r u c k system t o i n - p i t c r u s h i n g and conveying system i s h i g h l y mine s p e c i f i c and i t s t e c h n o l o g i c a l and economic e f f e c t s can be f a v o r a b l e or un f a v o r a b l e . A f a v o r a b l e s i t u a t i o n i s when mine has an o b s o l e t e t r u c k f l e e t , when major expansion of a mine i s planned, or when e x i s t i n g long u p h i l l h a u l s cause e x c e s s i v e - 165 -maintenance problems i n t r u c k s . An i n a p p r o p r i a t e s i t u a t i o n can be i n u n s t a b l e ground c o n d i t i o n s , i n a h i g h r a i n f a l l a r ea or i n an extreme c o l d c l i m a t e t h a t a f f e c t s m a t e r i a l c h a r a c t e r i s t i c s and equipment performance. A l s o , a l a r g e i n i t i a l investment which i s r e q u i r e d may not be j u s t i f i e d when commodity p r i c e s and markets are u n s t a b l e or depressed. The c o n f i g u r a t i o n of the i n - p i t c r u s h i n g and conveying system i s h i g h l y mine s p e c i f i c . The implementation of t h i s system r e q u i r e s e x t e n s i v e study on the mine s i t e focused on g e o t e c h n i c a l problems and the equipment s e l e c t i o n . - 166 -16. BIBLIOGRAPHY A l l e s , R., 1982. S t r e s s i n g of Rubber Conveyor B e l t s and i t s Mathematical Treatment. Bulk S o l i d s Handling, March 1982, V o l . 2, No. l,pp. 39-46. A l l i s - C h a l m e r s , 1982. S u p e r i o r Gyratory Crushers. Manufacturer's Catalogue. A l t h o f f , H., and C l a r k , R.D., 1985. I n - P i t C rushing and Conveying Reduces Haulage Costs. Paper presented a t the 87th Annual General Meeting CIM, 21-25 A p r i l 1985, Vancouver, B.C. Anon., 1987. S.A. Mining World. November, 1987. Anon., 1985. C u t t i n g Haul-Truck F u e l Consumption a t U.S. Borax. EM/J Dec. 1985, V o l . 186, No. 12, p.31. Anon., 1985. I n - P i t Conveyors and Crushers Cut S u r f a c e Mining Costs. Coal Age, J u l y 1985, pp. 61-65. Anon., 1985. Y u g o s l a v i a n Mine t o I n s t a l l High-Angle Conveyor t o e l e v a t e crushed Pit-Run Ore. Eng. and Min. Jour., Oct. 1985, p. 47. Anon., 1984. I s l a n d Copper: I n - P i t Crusher and Conveyor System under c o n s t r u c t i o n . I s l a n d Miner, V o l . 11, No.l, Winter 1984, pp. 1-2. Anon., 1979. Open P i t Conveyors O f f e r P o t e n t i a l Saving. EM/J, O p e r a t i n g Handbook of S u r f a c e Mining, p. 221. Anon., 1979. P i t Crushers and Conveyors move S i e r r i t a Ore and Waste, pp. 279-280. Anthony, J . J . , 1983. High Angle I n - P i t Conveying System. M i n i Symposium: I n - P i t Crushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 1-6. Anthony, J . J . , 1982. Innovative Conveyor Design S o l v e s H o i s t i n g Problem f o r I l l i n o i s Coal Mine. Bulk S o l i d s Handling, September 1982, V o l . 2, No. 3, pp. 549-550. - 167 -A r g a l l , J.G.O., 1976. Twin Buttes P i t Gets Bigger; 550,000 Tones Moved out of P i t Each Day. World Mining, May 197 6, pp. 72-75. Bahke, T., 1982. Dimensioning and A p p l i c a t i o n of B e l t Conveyors w i t h Intermediate B e l t D r i v e (T-T System). Bulk S o l i d s Handling, March 1982, Vol.2, No. 1, pp. 47-51. Bandopadhyay, S., Ramani, R.V., and Manula, C.B., 1981. A Computer S i m u l a t i o n Model f o r a S u r f a c e Coal Mine. Bulk S o l i d s Handling, Feb. 1981, V o l . 1, No. 1, pp. 129. Barden, K.L., 1981. C r o s s - P i t Conveyor and End-Around Conveyor Continuous Mining Systems. Mining Congress J o u r n a l , Sept. 1981, V o l . 67, No. 9, pp. 40-52. Benavides, F.M., and Schuster, R.M., 1982. Economic Comparison and E v a l u a t i o n of an Overland Conveyor vs. A l t e r n a t e T r a n s p o r t a t i o n Methods. Min. Eng., Feb. 1982, pp. 176-181. Boulton, C.B., and B l a i r , J.R., 1980. A Performance S i m u l a t o r f o r Heavy Dump Trucks. Automation i n Mining, M i n e r a l and Metal P r o c e s s i n g , Proceedings of the 3rd IFAC Symposium, Montreal, Canada, 18-20 Aug., 1980, pp. 65-77. Bowman, E.D., and l i e s , CD., 1983. Duval's P o r t a b l e I n - P i t C r ushing System. The AIME 44th Mining Symposium, 56th Annual Meeting of the Minnesota S e c t i o n , 12-13 Jan. 1983, pp. 14-1 t o 14-10. Brady, T.M., G o r i s , J.M., M a r t i n , T.W., and F r i z z e l l , E.M., 1982. Continuous S u r f a c e Mine M a t e r i a l s Handling Systems. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp. 67-73. Brown, D.E., 1983. Cable B e l t Conveyors i n Mine Haulage. The AIME 44th Annual Mining Symposium, 56th Annual Meeting of the Minnesota S e c t i o n , 12-13 January 1983, Duluth, Minna., pp. 12/1-12/11. Brown, D.E., 1986. Unpublished, correspondence. - 168 -Bruce, D.E., and M i l l e r , J.H.L., 1983. E q u i t y S i l v e r Mines -A Success S t o r y . Paper presented a t The Northwest Mining A s s o c i a t i o n Short Course, 28-30 Nov. 1983, Spokane, WA. Bu c y r u s - E r i e Company, 1979. Surf a c e Mining S u p e r v i s o r y T r a i n i n g Programme Shovel/Truck. Burton, A.K., 1980. E f f e c t s o f O i l Economics on Open P i t Mine Haulage Trends. M i n i Symposium: Open P i t Haulage Systems i n the 80's, SME AIME Annual Meeting, Chicago, 111., pp. 1-6. Burton, A.K., 1976. C a p i t a l and Operating Parameters f o r Off-Highway Trucks. Min. Eng., Jan. 1976, V o l . 27, No. 1, pp. 38-41. Campbell, P.S. e t a l . , 1985. Computer Aided Mine Layout and Ramp Design f o r Microcomputers. Paper presented a t The 87th Annual General Meeting o f CIM, 21-25 A p r i l 1985, Vancouver, B.C. Canadian Mining J o u r n a l , 1984. Reference Manual & Buyers Guide.93rd E d i t i o n , Southam Business P u b l i c a t i o n . C h a t t e r j e e , P.K., and Brake, D.J., 1981. Truck D i s p a t c h i n g and S i m u l a t i o n Methods i n Open P i t Operations. CIM B u l l . , Nov. 1981, V o l . 74, No. 835, pp. 102-107. Chopiuk, R.G., Chekerda, K.J., and Thrornton, S.E., 1983. A n a l y s i s o f Overland Conveyors f o r Coal T r a n s p o r t . CMRC Report # 83/15-T, March 1983. Coal Mining Research Centre, Edmonton, A l t a , pp. 105. C l a r k , R.A., 1978. Conveying 150,000 tonnes p e r Day M u l t i Motor D r i v e U s i n g V a r i a b l e Frequency S t a r t - u p . North Queensland Conference, Sept. 1978, p u b l i s h e d by The A u s t r a l i a n I n s t i t u t e of Mining and M e t a l l u r g y , pp. 219-233. Clement, G.K., J r . e t a l . , 1978. C a p i t a l and Ope r a t i n g Cost ' E s t i m a t i n g System Manual f o r Mining and B e n e f i c i a t i o n of M e t a l l i c and N o n - M e t a l l i c M i n e r a l s Except F o s s i l F u e l s i n the U n i t e d S t a t e s and Canada. C l i f t o n , D.S., J r . , and F y f f e , D.E., 1977. P r o j e c t F e a s i b i l i t y A n a l y s i s . Georgia I n s t i t u t e o f Technology, p u b l i s h e d by John Wiley & Sons. - 169 -C o i l e , J . J . , 1974. I n - P i t Crushing and Conveying v s . Truck Haulage. Mining Congress J o u r n a l , Jan. 1974, V o l . 60, No. 1, pp. 23-29. C o n t i n e n t a l , 197?. S t a h l c o r d Conveyor B e l t s . Manufacturer's Catalogue, Hannover, West Germany. Conveyor Equipment Manufacturers A s s o s c i a t i o n (CEMA), 1979. B e l t Conveyors f o r Bulk M a t e r i a l s . CBI P u b l i s h i n g Co., Inc., Boston, 2nd e d i t i o n . Craighead, D.C, 1982. Overland Conveyor Systems. CIM B u l l . , Sept. 1982, V o l . 75, No. 845. Crawford, G., 1981. Bulk S o l i d s Conveying f o r Heavy In d u s t r y . Bulk S o l i d s Handling, May 1981, V o l . 1, No. 2, pp. 265-266. Crawford, J.T., 1979. Shovel and Haulage Truck E v a l u a t i o n . E/MJ O p e r a t i n g Handbook of Surf a c e Mining, pp. 259-270. C r i c k e n b e r g e r J.R., and U t l e y , R.W., 1983. Design C o n s i d e r a t i o n f o r I n - P i t Movable Primary Crushing Equipment. M i n i Symposium: I n - P i t C rushing and G r i n d i n g I I . SME-AIME F a l l Meeting, October 1983, S a l t Lake C i t y , Utah, pp. 17-28. Di e b o l d , W.H., 1984. Steep-Angle I n - P i t Conveying. Bulk S o l i d s Handling, March 1984, V o l . 4, No. 1, pp. 79-80. Engel, L.A., and Broman, G., 1983. Apron Feeders - T h e i r A p p l i c a t i o n t o Primary Crushing. M i n i Symposium: I n - P i t Crushing and G r i n d i n g I I . SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 1-8. Fauerbach, R., and Bar t s c h , D., 1982. 15 Years O i l s a n d T r a n s p o r t a t i o n by B e l t Conveyor System from a Manufacturer's Viewpoint. Bulk S o l i d s Handling, Dec. 1982, V o l . 2, No. 4, pp. 733-736. F e r n i e , A.D., 1985. P i t t o P l a n t - Current Trends. Mining E n g i n e e r i n g , Jan. 1985, V o l . 37, No. 1. Franke, R., 1982. Combined Mining Systems f o r Open P i t Mines. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp. 75-80. - 170 -F r i z z e l l , E.M., 1985. Mobile I n - P i t C rushing - Product o f E v o l u t i o n a r y change. T e c h n i c a l Note. Min. Eng., June 1985, pp. 578-580. F r i z z e l l , E.M., 1983. Conveying a t High Angles i n Open P i t s . M i n i Symposium: I n - P i t Crushing and G r i n d i n g I. SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake, Utah, pp. 37-50. F r i z z e l l , E.M., 1983. Mobile I n - P i t Crushing - Product of E v o l u t i o n a r y Change. M i n i Symposium: I n - P i t Crushing and G r i n d i n g I. SME-AIME F a l l Meeting, October 1983, S a l t Lake, Utah, pp. 1-14. F r i z z e l l , E.M., and U t l e y , R.W., 1983. USBM Designs: I n - P i t Movable Crusher Based on Mine P e r s o n a l Survey. Min. Eng., A p r i l 1983, V o l . 35, No. 4, pp. 317-321. F r i z z e l l , E.M., e t a l . , 1981. Trucks v s . High-Angle Conveyor Haulage i n Open P i t Mines, Oct. 1981, V o l . 67, No. 10, pp. 19-26. Gieseke, L.O., and Begley, J.B., 1980. S e l e c t i n g a Conveyor System. Min. Eng., Dec. 1980, pp. 1699-1701. Glanz, W., and W e i s s f l o g g J . , 1982. Continuous Conveying i n Open P i t Mines. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1. Goodfellow, H.D., and Bender, M., 1982. Environmental Design C o n s i d e r a t i o n s f o r B e l t Conveyors. CIM B u l l . , Sept. 1982, V o l . 75, No. 845. Guderley, W., 1983. I n - P i t Crushing and Conveying. Paper p r e s e n t e d a t the 2nd I n t e r n a t i o n a l Symposium: S u r f a c e Mining and Quarrying, 4-6 Oct. 1983, or g a n i z e d by the I n s t i t u t i o n o f Mining and M e t a l l u r g y i n a s s o c i a t i o n w i t h the I n s t i t u t e of Quarrying, B r i s t o l , England. Guderley, W., 1982. I n - P i t Crushing and Conveying. Bulk S o l i d s Handling, Sept. 1982, V o l . 2, No. 3, pp. 471-474. H a l l s , J.L., 1970. B a s i c Economics of Open P i t Mining. Open P i t Mining Symposium, 29 Aug. - 4 Sept. 1970, Johannesburg, RSA. A.A. Balkema/Cape Town/Amsterdam, pp. 125-131. - 171 -H a r r i s o n , A., and Roberts, A.W., 1984. T e c h n i c a l Requirements f o r Operating Conveyor B e l t s a t High Speed. Bulk S o l i d s Handling, March 1984, V o l . 4, No. 1, pp. 99-104. Hays, R.M., 1983. Mine P l a n n i n g C o n s i d e r a t i o n s f o r I n - P i t Crushing and Conveyor Systems. M i n i Symposium: I n - P i t C rushing and G r i n d i n g I. SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 33-42. Hodges, P.A., 1970. P r i n c i p l e s U n d e r l y i n g Equipment S e l e c t i o n . Open P i t Mining Symposium, 29 Aug. t o 4 Sept. 1970, Johannesburg, RSA. A.A. Balkema/Cape Town/Amsterdam, pp. 121-123. Hoskins, J.R., 1982. M i n e r a l I n d u s t r y C o s t s . Northwest Mining A s s o c i a t i o n , 633 Peyton Bldg., Spokane, Wa., 99201. Huss, C.E., 1982. Cost C o n s i d e r a t i o n s f o r I n - P i t Crushing/Conveying Systems. Bulk S o l i d s Handling, Dec. 1982, V o l . 2, No. 4. Huss, C.E., R e i s l e r N.G., and Almond R.M., 1983. P r a c t i c a l and Economic Aspects o f I n - P i t C rushing Conveyor Systems. M i n i Symposium: I n - P i t C rushing and G r i n d i n g I. SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 15-32. H u s t r u l i d , W.A., S e e g m i l l e r , B. and O. Stephanson, 1987. Min. Eng., Feb. 1987. J o l l e y , D.R., 1970. The Nature and U s e f u l n e s s o f S i m u l a t i o n A p p l i d t o Equipment S e l e c t i o n i n an Open P i t Mine. CIM B u l l . , Oct. 1970, V o l . 63, No. 702, pp.1176-1180. John S t . , C.R. & J.W. Kronke, 1975. Use of b e l t conveyors i n open p i t mining. Mining Congress J o u r n a l , A p r i l 1975, p.56. Kaer s t , D., 1987. Modern Equipment f o r Kennecott's Bingham Canyon Copper Mine, Bulk S o l i d Handling, V o l . 7, No. 2, Apr., 1987. K a s t u r i , T.S., 1984. Important C r i t e r i a f o r S e l e c t i n g S t e e l Cord B e l t i n g f o r Conveyors. Bulk S o l i d s Handling, Sept. 1984, V o l . 4, No. 3, pp. 631-634. - 172 -K a s t u r i , T.S., 1983. Continuous Mining Technology -I t s Impact on the L a r g e s t Opencast L i g n i t e Mines i n I n d i a , N e y v e l i . Bulk S o l i d s Handling, Sept. 1983, V o l . 3, No. 3, pp. 481-488. Kim, Y.C., and I b a r r a , M.A., 1981. Truck D i s p a t c h i n g by Computer S i m u l a t i o n . Bulk S o l i d s Handling, Feb. 1981, V o l . 1, No. 1, pp. 137-147. Knezowich, E.D., and Richardson, J.R., 1983. Similkameen Cable B e l t System, Newmont Mines L t d . , Princetown, B.C.. M i n i Symposium: I n - P i t Crushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 37-52. Kochanowsky, B., 1970. Conveyors and Mobile Crushers. Mining Congress J o u r n a l , June 1970, V o l . 56, No. 6, pp. 70-73. Kogan, J . , 1983. Movable Suspended B e l t Conveyors f o r Overburden T r a n s p o r t i n Open P i t Mines. Bulk S o l i d s Handling, Sept. 1983, V o l . 3, No. 3, pp. 491-493. Kok, H.G., 1982. Use of Mobile Crushers i n the M i n e r a l I n d u s t r y . Min. Eng., Nov. 1982, pp. 1584-1588. Kok, H.G., and Abrams, R.M., 1983. Open P i t Haulage by B e l t Conveyors. M i n i Symposium: I n - P i t C rushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 27-36. K o n i a r i s E., and Calder, P.N., 1985. The Q P i t Computerized Open P i t Mine Design Package. Paper presented a t The 87th Annual General Meeting of CIM, 21-25 A p r i l 1985, Vancouver, B.C. Krupp Canada L t d . , 1982. Mobile Crushing P l a n t s . Manufacturer's Catalogue, West Germany. Kunstmann, U., and Paelke, J.W., 1984. New Dimensions i n C a p a c i t y and E l e v a t i o n w i t h the FLEXOFAST Conveyor System. Bulk S o l i d Handling, March 1984, V o l . 4, No. 1, pp. 105-112. Kutschera, S., 1984. Pla n n i n g Aspects f o r the A p p l i c a t i o n of Continuous T r a n s p o r t Systems i n Hard Rock Open P i t Mines. Bulk S o l i d Handling, Sept. 1984, V o l . 4, No. 3, pp. 609-613. - 173 -Lachmann, H.P., 1982. On the Investment f o r Conveyor B e l t i n g . Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp. 27-37. Long, W.H., and Dunkel, W.H., 1983. Duval's P o r t a b l e Crushing System Design and Operating A s p e c t s . M i n i Symposium: I n - P i t Crushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 53-58. L u b r i c h , W., 1982. T r a n s p o r t w i t h Large Conveyors i n Surface Mines. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp. 17-25. Lyon, L.S., 1980. New Developments i n Large Haulage Trucks f o r the 80's, SME AIME Annual Meeting, Chicago, 111., pp.67-81. M a r l a t t , W.K., 1977. High C a p a c i t y B e l t Conveyors. Mining Congress J o u r n a l , Jan. 1977, V o l . 63, No. 1, pp. 24-28. M a r t i n , T.W., 1983. Design and T e s t i n g of a Prototype Mine -Run - Rock Conveying System. The AIME 44th Annual Mining Symposium, 56th Annual Meeting of the Minnesota S e c t i o n , 12-13 Jan. 1983, Duluth, Minna., pp. 13/1-13/11. M a r t i n e t a l . , 1981. Large Rock Conveying Systems and t h e i r A p p l i c a t i o n i n Open P i t Mines. M i n i Symposium: Open P i t Haulage Systems i n the 80's, SME AIME Annual Meeting, Chcicago, 111., pp.37-50. M i l l e r R., 1984. Mining Conveyor Developments. I n t e r n a t i o n a l Mining, J u l y 1984, pp. 35-48. M i t c h e l l J . J . , 1983. S p e c i a l I n - P i t B e l t Feeders f o r I n d i r e c t Feeding of Crushers. M i n i Symposium: I n - P i t C r ushing and G r i n d i n g I I . SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 9-16. Morgan, W.C., Peterson, L.L., 1968. Determining Shovel-Truck P r o d u c t i v i t y . Min. Eng., Dec. 1968, V o l . 20, No. 12, pp. 76-80. Mular, A.L., 1982. Mining and M i n e r a l P r o c e s s i n g Equipment Costs and P r e l i m i n a r y C a p i t a l Costs E s t i m a t i o n s . S p e c i a l Volume # 25, Publ. by The Can. I n s t , of Mining & Metal1. - 174 -Musschoot, A., 1983. New Development of V i b r a t o r y Feeders f o r Large Bulk M a t e r i a l Reclaim Systems. Bulk S o l i d s Handling, Sept. 1983, V o l . 3, No. 3, pp. 545-549. Neagle, J.R., 1983. Some Design Aspects of Movable Open Cut Face Conveyor. Bulk S o l i d s Handling, Nov. 1983, V o l . 3, No. 4, pp. 747-756. N i l s s o n , D.S., and E t t l i n g e r A., 1983. Energy Consumption and Cost f o r D i f f e r e n t Haulage Systems i n a Large H y p o t h e t i c a l Open P i t Copper Mine. M i n i Symposium: I n - P i t Crushing and G r i n d i n g I. SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 43-57. Oszt e r , Z.F., Behrends, W.K., and V i n c e n t , D., 1980. Large C a p a c i t y B e l t Conveyors - Motion R e s i s t a n c e E v a l u a t i o n . Min. E n g i . , Dec. 1980, Vol.3, pp. 1715-1721. Orenstern & Koppel, 1985. Mobile Crushing P l a n t s from O&K, Manufacturer's Catalogue. Paelke, J.W., 1986. V e r t i c a l F l e x o w e l l Conveyors. Bulk S o l i d s Handling, V o l . 6, No.2, A p r i l 1986. Paelke, J.W., 1982. New Developments i n V e r t i c a l Conveying w i t h S p e c i a l Emphasis on the Transshipment of Bulk M a t e r i a l s . Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp. 133-139. Paelke, J.W., and Vaughan, W.R., 1982. S e l f - U n l o a d i n g V e s s e l Equipped w i t h Sholtz-EFS FLEXOWELL Conveyor System. Bulk S o l i d s Handling, Sept. 1982, V o l . 2, No. 3, pp. 405-410. Paelke, J.W., Germany, R.C. and J.A. W i l l i a m s , 1986. Bulks S o l i d Mining, V o l . 6, No. 2, A p r i l 1986. Pearse, G., 1987. Haulage Trucks. Mining Magazine, Feb. 1987. P e l l e y , M.H., 1985. Q u i n t e t t e Coal L i m i t e d ' s E n t e r p r i z e s t o Date w i t h I t s Computerized Truck D i s p a t c h System. Paper pr e s e n t e d a t The 87th Annual General Meeting of CIM, 21-25 A p r i l 1985, Vancouver. P e l z e r , H.K., 1984. Long Distan c e Conveyors: Economics and Operating Eperience with the Sahara Phosphate Conveyor. F r i e c h Krupp GmbH, Duisburg-Reinhausen. - 175 -Peterson, A.N., 1983. Conveyorized A p p l i c a t i o n s t o S u r f a c e Mining. The AIME 44th Annual Mining Symposium, 56th Annual Meeting of the Minnesota S e c t i o n , 12-13 Jan. 1983, Duluth, Minna., pp. 11/1-11/10. Peterson, A.N., 1983. Using Conveyors t o c u t C o s t s . Min. Eng., June 1983, pp. 589-591. P i t t s , C.E., 1980. B e l t Conveyors vs. Trucks f o r Coal T r a n s p o r t a t i o n . Plewman, R.P., 1970. The B a s i c Economics of Open P i t Mining. Open P i t Mining Symposium, 29 Aug.-4 Sept. 1970, Johannesburg, RSA. A.A. Balkema/Cape Town/Amsterdam, pp.1-8. P r o f e s s i o n a l Eng. R e g i s t r a t i o n Program, 1985. P.O.Box 911, San C a r l o s , Ca., 94070, Chap. 2, Eng. Econ. A n a l y s i s , pp. 1-37. Radlowski, J.K., 1985. Off-Highway Truck S i m u l a t i o n Program. (Program development). Documentation, U n i v e r s i t y of B r i t i s h Columbia, Dept. of Mining and Min. Process. Eng., Vancouver, B.C. Rappen, A., 1984. Systematic C l e a n i n g of B e l t Conveyors. Bulk S o l i d s Handling, March 1984, V o l . 4, No. 1, pp. 115-124. R e i s l e r , N., and Huss, C., 1979. A Comparison of Handling Systems f o r Overburden of Coal Seams. Renner, E . J . , 1980. B e l t Conveyors - a Need f o r a change. U n i t and Bulk M a t e r i a l s Handling, ASME Century 2, Emerging Technology Conferences, 19-21 Aug. 1980, San F r a n c i s c o , Ca., pp. 29-35. Rixem, W., 1982. New Developments i n Continuous Mining and M a t e r i a l s Handling. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp.91-95. Roberts, A.W., Hayes, J.W., and S c o t t , 0.J., 1981. Optimal Design of Continuous Conveyors. Bulk S o l i d s Handling, May 1981, V o l . 1, No. 2, pp. 255-264. Santos dos, J.A., 1987. Sandwich B e l t High Angle Conveyors. Broad H o r i z o n s . Bulk S o l i d s Handling, V o l . 7, No. 2, Apr. 1987. - 176 -Santos dos, J.A., 1983. Sandwich B e l t High Angle Conveyors -A p p l i c a t i o n s i n Open P i t Mining. M i n i Symposium: I n - P i t Crushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , pp. 7-26. Santos, dos, J.A., and E.M. F r i z z e l , 1983. E v o l u t i o n of Sandwich B e l t High-Angle Conveyors. CIM B u l l . , J u l y 1983, V o l . 76, No. 855, pp. 51-66. Simon, CA., Welborn, L.E., 1983. A Conceptual Shovel/ /Crusher/Conveyor Mining System i n the Powder R i v e r B a s i n , Wyoming. M i n i Symposium: I n - P i t C rushing and Conveying I I I and Open P i t Mining, SME-AIME F a l l Meeting, Oct. 1983, S a l t Lake C i t y , Utah, pp. 51-58. S i n g h a l , R.K. and R. Kolada, 1987. S u r f a c e Mining of O i l Sands i n Canada: Developments i n P r o d u c t i v i t y Improvement. S p i l k e r , E.C., A l b e r s , T.J., and L o r d i , A.C., 1983. T e c h n i c a l Aspects of Overland B e l t Conveyors. Bulk S o l i d s Handling, June 1983, V o l . 3, No. 2, pp. 311-322. S t e f f e n , O.K., H o l t , W., and Symons, V.R., 1970. O p t i m i z i n g Open P i t Geometry and O p e r a t i o n a l Procedure. Open P i t Mining Symposium, 29 Aug.-4 Sept. 1970, Johannesburg, RSA. A.A. Balkema Cape Town/Amsterdam, pp. 9-31. Stewart, J.A., 1982. B e l t Conveyor Booster D r i v e s . CIM B u l l . , Sept. 1982, V o l . 75, No. 845. Stucke, H.J., 1970. Some General Formulae f o r the Geometry of Open Cast Mines. Open P i t Mining Symposium, 29 Aug. t o 4 Sept. 1970, Johannesburg, RSA. A.A. Balkema/Cape Town/Amsterdam, pp. 133-142. S z a j , A.P., 1973. Mobile Crushing i n Open P i t s . Mining Congress J o u r n a l , May 1973, V o l . 59, No. 5, pp. 64-67. Szonyi e t a l . , 1982. P r i n c i p l e s of E n g i n e e r i n g Economic A n a l y s i s . John Wiley & Sons Canada L t d . , Toronto. U t l e y , R.W., 1983. Component Analyses f o r Movable I n - P i t Crushers. AIME 44th Annual Mining Symposium, 56th Annual Meeting of the Minnesota S e c t i o n , 12-13 Jan. 1983, D u l l u t h , Minna, pp. 10/1-10/17. - 177 -V a l l e y Copper Mines L t d . , Vancouver, B.C., 1980. V a l l e y Copper P r o j e c t , Stage I I Study, V o l . 1, Mining P l a n . V a l l e y Copper Mines L t d . , Vancouver, B.C., 1980. V a l l e y Copper P r o j e c t , Stage I I Study, V o l . 2, Environmental Report. Veenhof, W.D., 1984. A New Approach t o Conveyor B e l t C l e a n i n g : the Bear Whip H e l i x Design B e l t Scraper. Bulk S o l i d s Handling, Sept. 1984, V o l . 4, No. 3, pp. 647-650. V o r s t e r , B.J., 1986. I s c o r ' s Sishen Iron Mine i n South A f r i c a . Min. Eng., A p r i l 1986. Weigel, Th., 1982. The Use of Intermediate D r i v e U n i t s f o r B e l t Conveyor Systems. Bulk S o l i d s Handling, March 1982, V o l . 2, No. 1, pp.53-57. Wingrove, P.E., 1982. Steep-Angle Conveying of Coal Refuse. Bulk S o l i d s Handling, Sept. 1982, V o l . 2, No. 3. Winkelmann, H.J., 1983. The T e c h n i c a l and Economical Importance of M a i n t a i n i n g Conveyor B e l t s . Bulk S o l i d s Handling, June 1983, V o l . 3, No. 2, pp. 325-329. Yeomans, L.H., 1983. Design Innovations i n Conveyor Systems. CIM B u l l e t i n , Nov. 1983, V o l . 76, No. 859, pp. 39-48. Z e i n d l e r , R.W., and Fawcett, D.A., 1981. Bridge Conveyor System i n Mining. CIM B u l l . , A p r i l 1981, V o l . 74, No. 828, pp. 114-121. A P P E N D I X A OPEN PIT OPERATION SIMULATION PROGRAM Program L i s t i n g and Output Tables 10 REH H H t m m t t m H i m m m t m t m t m H H m m t m t 15 REH 20 REH T I T L E i OPEN PIT OPERATION SIMULATION PROGRAM 25 REH AUTHORi JACEK K. RADLONSKI 30 REH DATEi JANUARY, 1988 35 REH LANGUAGE! IBH BASIC 40 REH 45 REH USERt UNIVERSITY OF BRITISH COLUHBIA 50 REH DEPARTMENT OF MINING it HINERAL 55 REH PROCESS ENGINEERING 60 REH 65 REH 75 REH l*l«tit«*«»f«mfillftt{HHi«IHif*l«Hftl«llt«HI«Ht 80 REH I N I T I A L I Z E 85 REH ltttl*f*»»»(ff*tttHttlttttfttlftttltftflfftl*tlt<tttf* 90 REH 100 BUFFERS-3 105 CLEAR 110 OPTION BASE 1 115 REH 120 PI = 3.141593 125 Z = 100 130 Q$ = "NANT TO MODIFY Y/N ( y e s / n o ) ? ' 135 L I H IT=33 140 LSTEP « 51 145 ENDBL = 999 150 FLTRUCK * 1 155 REH 160 DEFDBL T,H 165 DEFINT I,K,N 170 DIH T ( 1 5 ) , T 9 ( 2 , 3 , L I H I T )1T B ( 2 , L I H I T ) 175 DIH T S T E P ( 1 4 , L S T E P ) , S T I 1 4 ) 180 DIH H ( 5 ) , H 9 ( 2 , 2 , L I M I T ) 185 REH 200 REN t * t * t t * § M t t H t m * t m t » m m m H t m * m * » H m m t 205 REM ft I H L 0 8 1 C 210 REN t * t * t H t * * t f H t i * « l t H t « H t « H H » t » t H t l t t t t t t » i t t » * » * * 215 REN 220 REN OPEN PIT ROUTINE 225 REH 230 REH 235 LUSED=OiNUSED=0 240 OPT$=" OPEN PIT'iNOPT=0 245 REN 250 SOSUB 2595 ' I n p u t open p i t p a r a i e t e r s 252 GOSUB 8400 255 REN 260 N=N0sD=D0 265 LSTART=Os LDEPTH=L0:LSL0PEeF0 270 A=AOsB=BOsR=RO 275 I N D = 0 » W R K = 0 : I 1 = 1 » I 2 = N : K = 1 280 REN 285 OPT* = "OPEN P I T RESERVES" 287 WIDTH " l p t l s ' . B O 290 BOSUB 1300 ' C a l c u l a t e , o u t p u t and s a v e r e s e r v e s 295 SOSUB 2400 ' A s s i g n h a u l c h a r a c t e r i s t i c s 298 60SUB 8400 300 REN 305 I F L9=0 THEN SOTO 450 310 REH 315 PRINT C H R * ( 1 2 h P R I N T i P R I N T 320 PRINT • « * * WANT TO PROCESS STRIPPINB Y/N ( y e s / n o ) ? * » » ' 325 SOSUB 7800 330 I F K9=2 THEN LUSED=L9:NUSED=H9:SOTO 450 335 REH 340 REH 345 REH S T R I P P I N G 350 REN 355 PHCOUNT = 0:AVBNCH=0:AVSLOP=0:LASTYR=0:TONORE=Oi TONHAST=0 360 OPEN "asSTRIP.DAT" FOR OUTPUT AS *1 365 PRINT ii,SURF)6RSURF)SRADjENDBL 370 PRINT II,DHAUL|L 375 NFIRSTs1J L A S T ' O t S T C U H » O i S O C U H ' O i S « C U H = 0 380 * NQPT=9:0PT*="STRIPPIN6"iPRINT II,OPT* 385 PHCDUNT=PHCOUNT+ii 390 - SOSUB 2595 ' I n p u t 395 OPT* ' ' S T R I P P I N 6" 400 LSTART=LUSED:LDEPTHsLUSED+L1 405 60SUB 605 ' - W o r k i n g p h a s e 410 I F ( F l - F O AND A=AO AND L1+LUSED=L0) THEN SOSUB 6300:CLOSE t i t OPEN " A i S T R I P . D A T1 FOR INPUT AS I l i S O S U B 6500:CLOSE #1:6DT0 565 ELSE ST(6)=0:60SUB 805 ' - Push- b a c k p h a s e 415 LUSED--LUSED+L1: NUSED-NUSED+N1 420 SOSUB 6300 ' End of b l o c k r o u t i n e 425 I F NUSED<N9 THEN GOTO 385 430 CLOSE t l 435 FLPR0FILE=9}B0SUB 6500 440 I F L9=L0 THEN SOTO 565 445 REH 450 REH H I N I N 6 455 REH 460 PHCOUNT = 0 ! A V B N C H = O i A V S L O P = 0 : L A S T Y R = 0 : T O N Q R E = O i T O N » A S T = 0 465 OPEN "asHINES.DAT" FOR OUTPUT AS I I 470 REH 475 PRINT II,SURF)GRSURF;GRADjENDBL 480 PRINT #1,DHAUL;L 485 NFIRST=1:LAST=0iSTCUH=Oi SOCUH=OJSHCUH=0 490 REH 495 N O P T ' l i Q P T J s ' H I N I N B ' i P R I N T ll.OPT* 500 PHCOUNT=PHCOUNT+liNLINE*0 505 60SUB 2595 ' I n p u t 510 OPT* • • H I N I N 6 " 515 LSTART=LUSEDiLDEPTH=LUSED+Ll 520 60SUB 605 ' W o r k i n g p h a s e 525 I F (N9=0 AND F1=F0 AND A - ( A O - N U S E D « D O ) AND L1+LUSED=L0) THEN SOSUB 6300: CLOSE H i SOTO 555 ELSE SOSUB 805 ' - Push- b a c k p h a s e 530 REH 535 LUSEDSLUSED+L1tNUSED=NUSED+Nl 540 SOSUB 6300 ' End of b l o c k r o u t i n e 545 I F NUSED<N0 THEN GOTO 500 550 CLOSE II:SOSUB 8400 555 FLPR0FILE=1JSOSUB 6500 560 REH 565 END 570 REH 600 REM H H H m t i m H m m m m m f m m m m m t m m t m 60S REH NDRKINB PHASE ROUTINE 610 REH **«itiHf*»«m*tl»lttlfll«(l«»ftfHHIfHHHI*»l*t»*»«li 615 REH 620 REH 625 PRINT t1,PHCOUNTjLSTART)LDEPTH 630 PRINT tl,PLOAD,YEAR 635 N=NliD=Di 640 Df » " W o r k i n g P h a s e ' 645 LSLOPE = F l 650 REN 655 A = ACUT M N - 1) * D 660 B = BCUT + (N - 1) » D 665 R = RCUT • (N - 1) i D/2 670 REH 675 I N D = 0 i J H R K = l ! l l = l i I 2 = N 680 REH 6B5 BOSUB 1300 ' C a l c u l a t e r e s e r v e s 687 60SUB 8400 690 GOSUB 2400 ' A s s i g n h a u l c h a r a c t e r i s t i c s 695 REH 700 GOSUB 1800 ' A s s i g n p r o d , s t e p s c h a r a c t e r i s t i c s 702 WIDTH " l p t l i ' , 8 0 705 GOSUB 5200 ' P r i n t s t e p s c h a r a c t e r i s t i c s 707 GOSUB 8400 710 NFIRST=NFIRST+NSTEPiLAST=TSTEP(14,NSTEP)jSTCUH=TSTEPI10,NSTEP) s SOCUH=TSTEP(11,NSTEP))SNCUH=TSTEP <12.NSTEP) 715 RETURN 800 REH *4tl«»*lfHlfll*l*lllflHt*«fHHII*tlf*iHIIHfmt«f*fft 805 REH PUSH-BACK PHASE ROUTINE 810 REH t m m t * * m i m m m t m t t m m m m # m m m m « m 815 REH 820 NSTEP=Nl:D$="Push-Back P h a s e " 825 LSTART=LUSEDiLDEPTH=LUSED+L1 830 IND=3iIHRK=0iI1=1JI2=N1 835 REH 840 BOSUB 1300 ' C a l c u l a t e r e s e r v e s 842 60SUB 8400 845 GOSUB 2400 ' A s s i g n h a u l c h a r a c t e r i s t i c 850 REH 855 60SUB 1800 ' A s s i g n p r o d , s t e p s c h a r a c t e r i s t i c s 860 60SUB 5200 ' P r i n t s t e p t a b l e 862 60SUB B400 865 NFIRST=NFIRST+NSTEP: L A S W S T E P ( 1 4 , NSTEP) i STCUH=TSTEP ( 1 0 , NSTEP) tSOCUH=TSTEP(11,NSTEP):SNCUH=TSTEP <12,NSTEP) 870 GOSUB 2400 ' A s s i g n a n n u a l a v e r a g e h a u l s 875 REH B80 RETURN 885 REH 890 REH 900 REM * * « * * M * t m * * * H m m * m t m m i » m * m m m m t H » * 90S REH CALCULATE CONSTANTS SUBROUTINE 910 REH m m m m m t m H m m m t m f H H H m f H t m i t t m 915 REH 920 REH OPEN P I T CONSTANTS 925 REH 930 I F K O O THEN 60T0 1055 935 REH 940 FORAD = FO « P I / 1 8 0 ' S l o p e i n r a d i a n s 945 REH 950 C6RAD - 6RAD/100 ' Road g r a d e 955 DHAUL = I LA2 • U 0 O « L / 6 R A D )A2 ) \ 5 ' Haul on s l o p e 960 NO CINTILO/L) ' T o t a l n u i b e r of b e n c h e s 965 REH 970 IF N0>LIHIT THEN BEEP:PRIMT:PRINT "TABLE DIHENSIONS TOO SHALL." PRINT "CHANGE NLIHIT VALUE IN INITIALIZATION ROUTINE."i STOP 975 I F N0*L <> LO THEN L 0 = N 0 « L 980 REH 985 N9 « C I N T I L 9 / L ) ' Benches i n o v e r b u r d e n 990 I F N9*L <> L9 THEN L9=N9iL 995 REH 1000 FACTORE * (ABSIORE - 0REF ) ) / ( < N 0 -N91-1) 1005 REH 1010 DO = 2 * L/TAN(FORAD) ' D i t e n s i o n d e c r e s e n t / b e n c h 1015 ZO = CINTIZ + DOtNO) ' H i n i e u t p i t l e n g t h / w i d t h 1020 REH 1025 RO = CINT(NO * DO/2) ' R a d i u s on s u r f a c e 1030 REH 1035 REH 1040 REH WORKING PHASE CONSTANTS 1045 REH 1050 REH 1055 I F K O I THEN 60T0 1090 1060 REH 1065 F1RAD - FI » P I / 1 8 0 ' W o r k i n g s l o p e i n r a d i a n s 1070 DI = 2 * L/TANIF1RAD) ' D i i e n s i o n d e e r e i e n t / b e n c h 1075 REH 1080 Z l = INT((BO-NUSEDtDO-Z)/Dl) * L 1085 I F NOPT - 9 AND ZDL9-LUSED THEN Z1=L9-LUSED ELSE I F K0PT=1 AND Z1>L0-LUSED THEN Z K O - L U S E D 1090 REH 1095 REH 1100 I F K O l l THEN 60T0 1155 1105 N l = C I N T ( L 1 / L ) ' No.of b e n c h e s i n w o r k i n g ph, 1110 I F N i « L <> L I THEN L1=N1*L 1115 REH 1120 ZOACUT CINT(Z+Dl> ' H i n i m i i b o x c u t l e n g t h 1125 ZOBCUT = C I N T U + D i ) ' H i n i a u i b o x c u t w i d t h 1130 Z1ACUT = C1NT(A0-2*R0) ' H a x i e u e b o x c u t l e n g t h 1135 Z1BCUT = CINT<B0-2*R0> ' H a x i i u i b o x c u t w i d t h 1140 DELTA = CINT(D0*(N0-NUSED)-D1*(N1-D) 1145 I F DELTA<0 THEN Z1ACUT=Z1ACUT-ABS(DELTA)> Z1BCUT=Z1BCUT-ABS(DELTA) 1150 REH 1155 I F K<>12 THEN GOTO 1190 1160 REH 1165 RCUT « D l / 2 1170 REH 1175 REH 1180 REH PRODUCTION CONSTANTS 1185 REH 1190 I F K<>13 THEN 60T0 1210 1195 YEAR = YEAR * 1 0A6 1200 HUSED - NUSED « DHAUL 1205 REH 1210 RETURN 1215 REH 1300 REH 1305 REH 1310 REH 1315 REH 1320 1325 REH 1330 1335 1340 1345 REH 1350 1355 1360 REH 1365 1370 REH 1375 1380 REH 1385 1390 1395 1400 REH 1405 1410 1415 1420 REH 1425 REH 1430 1435 REH 1440 1445 REH 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 REH 1520 1525 1528 1530 REH 1535 tmmtm*ttt*ttmt»Ht»fttmttmtttmtt»mtm» CALCULATE RESERVES SUBROUTINE m m t i m m m m t H m t m t i t t m m t m t t t m m t f HAULFLA6=0iHEADFLA6=1 FOR J=l TO 15 T(J> = 0 NEXT J CT * 0 IF ORE>OREF THEN FACTORE = -FACTORE I F INDOO THEN BOTO 1430 NSHIFT=0sNC0L=129 FOR 1=11 TO 12 BOSUB 1550 BOSUB 4700 I F N O P M THEN K=l ELSE K=2 BOSUB 7400 NEXT I IF IN0O3 THEN 60T0 1535 NSHIFT=15JNCQL=105ICUHSAV=0ICUH0RE=0 FOR 1=11 TO 12 TU)=I + NUSED T<6)=T9(1,2,I+NUSED)-T9(2,2,I) T<5)=T9<1,1,I+NUSED)-T9(2,1,I> T(7) = T9(1,3,I+NUSED)-T9(2,3,I) IF (N9>0 AND I+NUSED>N9) THEN TU2) = T(7) « (I0RE+FACT0REKI-1))/100) ELSE T(12)=0 T(13> = T(7) - TU21 T(8)=T(1HL CUHSAV ' CUHSAV + T<7> TUO) = CUHSAV CUHORE = CUHORE + T(12) T<14) = CUHORE T(15) = T(10) - TIM) SOSUB 4700 NEXT I SOSUB 8400 RETURN 1550 REH 1555 REH SUPPORT CALCULATIONS 1 1560 REH 1565 REH 1570 T ( 2 ) = A - D * I 1575 T ( 3 ) = B - D * I " 1580 T ( 4 ) • R - ( D / 2 ) * I 1585 REH 1590 T ( l l ) = T < 2 ) « T ( 3 ) - T ( 4 )A2 « ( 4 - P I ) 1595 TI51 » ( T ( 2 ) • D / 2 ) * I T ( 3 ) t D/2) - ( T I 4 ) • D / 4 P 2 M 4 - P I ) 1600 T ( 6 ) = T ( 5 ) * L 1605 T ( 7 ) = T ( 6 ) • DEN 1610 REH 1615 60SUB 1650 1620 REH 1625 T<9) = T(9) t T I 6 ) 1630 RETURN 1635 REH 1650 REH 1655 REH SUPPORT CALCULATIONS 2 1660 REH 1665 REH 1670 T ( l ) = I + NUSED 1675 T ( 8 ) = L * (I+NUSED) 1680 REH 1685 I F (NOPTM OR I>N9) THEN T U 2 ) = T ( 7 ) « ( < 0 R E + F A C T Q R E « C T ) / 1 0 0 h T<13)=T(7)-T(12):CT=CT+1 ELSE T ( 1 2 ) = 0 ! T ( 1 3 ) = T ( 7 ) 1690 REH 1695 T(10)=T(10)TT(7):TI14)=TI14)+TI12)ITI15)=TI15)+T(13) 1700 REH 1705 RETURN 1710 REH 1715 REH 1800 REH 1805 REH 1810 REH 1815 REH 1820 1825 REH 1830 1835 1840 1845 1850 1855 REH I 8 6 0 1865 1870 1875 1880 1885 REH 1890 REH 1895 1900 REH 1905 1910 1915 REH 1920 1925 1930 1935 1940 REH 1945 1950 REH 1955 1960 1965 1970 1975 REH 1980 1985 REH 1990 1995 2000 2005 2010 2015 REH 2020 2025 2030 REH 2035 REH 2040 2045 »*«Hm«fH»tMt«tmmmt*mt»mtftmitmtm*im» CALCULATE STEPS TABLE * m t m m m m m H m t m t t f m t t f t t t * m m m « t t t t m NCDL = 131 FOR 1=1 TO LSTEP FOR J = l TO 14 T S T E P ( J , 1 ) = 0 NEXT J NEXT I FOR 1=1 TO L I M I T FOR J = l TO 2 T B I J , I ) = 0 NEXT J NEXT I I F I N DOO THEN SOTO 2155 T 8 ( l , l ) = T9(2,3,N1) TB(2,1) = H9(2,1,N1) FOR 1=2 TO N l T B ( 1 , I ) = A B S ( T 9 ( 2 , 3 , N l - I I - 2 > ) - T9(2,3,N1-<1-1))> T 8 ( 2 , I ) = H 9 I 2 , 1 , N 1 - ( I - D ) NEXT I K1=1>K2=1 FOR J = l TO LIMIT K = K2 TSTEP(3,K) = TB(1,K1> TSTEP<8,K> = T8(2,K1> I F K1>=N1 THEN SOTO 2040 FOR I=IK1+1) TO N l K = K • I TSTEP(3,K> = T8(1,K1) TSTEP(8,K) = T8I2.K1) NEXT I K i = K l + l i K 2 = K 2 + J NEXT J K = 2 TSTEPI2,!) = 1 • NUSED 2055 I F N0PT=1 THEN QSTEP=TSTEP <2,1)-<N9+1)> HELP=ORE+FACTQREtQSTEPJ TSTEP<6,1)=HELPJTSTEP(4,1)»TBTEPI3,1>«(TSTEP<6,1)/100)I TSTEP(5,1)=TSTEP < 3,1)-TSTEP(4,1)!SOTO 2070 2060 TSTEP(4,1>*0:TSTEP(5,1)=TSTEP(3,1) 2065 REH 2070 T S T E P ( 9 , 1 ) = DHAUL * (1 • NUSED) 2075 REH 2080 1 = 1 2085 FOR J=l TO K 2090 1 = 1 + 1 2095 T S T E P ( 2 , I ) = J • NUSED 2100 REH 2105 I F N0PT=1 THEN QSTEP=TSTEPI2,I)-IN9+ l)i HELP=ORE+FACTQRE*QSTEPj TSTEP(6,1)"HELP* T S T E P I 4 , I ) = T S T E P ( 3 , I ) « H E L P / 1 0 0 : ELSE T S T E P ( 4 , I ) = 0 2110 T S T E P ( 5 , I ) = T S T E P ( 3 , I ) - T S T E P ( 4 , I ) 2115 REH 2120 T S T E P ( 9 , I ) = DHAUL t ( J t NUSED) 2125 NEXT J 2130 REH 2135 I F K<N1 THEN K=KM:SOTO 2085 2140 NSTEP = I 2145 REN 2150 REH 2155 I F IND<>3 THEN 60T0 2220 2160 REH 2165 FOR 1=1 TO NSTEP 2170 TSTEP(2,1) = NUSED • I 2175 T S T E P ( 3 , I ) = T9(1,3,I+NUSED) - T 9 ( 2 , 3 , I ) 2180 BSTEP=TSTEP(2,1)-(N9+1) iHELP3<QRE+FACTORE*QSTEP)J 2185 TSTEP(6,I)=HELP 2190 I F N0PT=1 THEN QSTEP=TSTEP(2,1)-(N9+1)J T S T E P ( 4 , I ) = T S T E P ( 3 , I ) * ( H E L P / 1 0 0 ) ELSE T S T E P ( 4 , I ) = 0 2195 T S T E P ( 5 , I ) = T S T E P ( 3 , I ) - T S T E P ( 4 , I ) 2200 T S T E P ( 8 , I ) = H 9 ( 1 , 1 , I ) 2205 T S T E P ( 9 , I ) = (I+NUSED) * DHAUL 2210 NEXT I 221 5 REH 2220 T S T E P ( 1 , 1 ) = NFIRST 2225 T S T E P ( 7 , 1 ) = TSTEP(3,1)/PL0AD 2230 TSTEP(10,1) = TSTEP(3,1) + STCUH 2235 TSTEP(11,1) = TSTEP(4,1) • SOCUH 2240 T8TEPI12,13 = TSTEP(5,1) + SNCUH 2245 I F N0PT=1 THEN TSTEP(13,1) » TSTEP(4,1)/YEAR ELSE TSTEP!13,1)=TSTE P ( 3 , 1 ) / Y E A R 2250 TSTEP(14,1) = LAST + TSTEP(13,1) 2255 REH APPENDIX A 2260 FOR 1=2 TO NSTEP 2265 TSTEPd.I) s TSTEP(1,I-1) + 1 2270 TSTEP(7,I) * TSTEP(3,I)/PL0AD 2275 TSTEP(10,I) = TSTEP(10,I-1) • TSTEP(3,1) 2280 TSTEPHl.I) = TSTEP(11,I-1) • TSTEP<4,I> 2285 TSTEPU2,I) = TSTEPU2,I-1) • TSTEP<5,I) 2290 IF N0PT=1 THEN TSTEP(13,I) = TSTEPI4,I)/YEAR ELSE TSTEPI13,I)=TSTEPI3,IWYEAR 2295 TSTEP<14,I) = TSTEP(14,I-1) * TSTEP(13,I) 2300 NEXT I 2305 REH 2310 RETURN 2315 REH 2320 REH 5 2400 REH m m m m H m t H m m H t t t m t t t m m m H m t t t H 2405 REH HAUL SUBROUTINE 2410 REH m m » m i f m m H m « m f H m t m m t * m t t m t » t t t t 2415 REH 2420 HAULFLA6 = 1 2425 HEADFLA6 * 1 2430 REH 2435 FOR J = l TO 5 2440 H ( J ) = 0 2445 NEXT J 2450 I F I N D OO THEN 60T0 2530 2455 FOR 1=11 TO 12 2460 60SUB 1570 2465 H U ) = T ( l ) 2470 H(2) = T(8) 2475 H(4) = I T I 2 J / 2 + T(3)> 2480 H(3) = H ( 4 ) / 2 2485 H(5) = I « DHAUL • HUSED 2490 REH 2495 HEADFLAS=0 2500 REH 2505 60SUB 7400 2510 NEXT I 2515 REH 2520 REH 2525 REH 2530 IF IND<>3 THEN SOTO 2585 2535 REH 2540 REH 2545 FOR 1=11 TO 12 2550 H < 1) = I • NUSED 2555 H(2) * L*I + LUSED 2560 H(4) = H 9 ( 1 , 2 , I ) 2565 H(3) = ( A 0 + B 0 - 2 « D 0 t ( I + N U S E D ) + 2 * D 1 « ( H I - 1 ) ) / 2 2570 H(5) = I • DHAUL * DHUSED 2575 HEADFLA6=0 2580 NEXT I 2585 RETURN 2590 REH APPENDIX A 2600 REH t m t t * m H m * f f m t * t H m * t m H H m t m m « t T « t t » 2605 REH INPUT DATA SUBROUTINE 2610 REH H t t « m m m m m t t t t H i m t t t f * f » t » * t m t t m * » m » 2615 REH 2620 NLINE=0:NC0L=48iR*=CHR*(13)!B*=CHR*(7) 2625 PRINT CHR*(12) 2630 REH 2635 IF NOPTOO THEN PRINT " • » « » « * * * « * INPUT "|DPT*| " PARAHETERS m t u m t -JPRINTI GOTO 3165 2640 PRINT:PRINT:PRINT:PRINT 2645 PRINT S P C U 5 ) ' • 2650 PRINT S P C U 5 ) ' i» > 2655 PRINT S P C I 1 5 ) ' OPEN P I T SIMULATION PR06RAH 1" 2660 PRINT S P C I 1 5 ) ' * 2665 PRINT S P C I 1 5 ) 1 by J a c e k K. R a d l o w s k i t 2670 PRINT S P C I 1 5 ) " i» i 2675 PRINT S P C ( I S ) ' 1988 i • i 26B0 PRINT S P C I 1 5 ) ' a 26B5 P R I N T s P R I N T t P R I N T s P R I N T i P R I N T j PRINT SPC(23) " s t r i k e any key t o c o n t i n u e . . . " 2690 A*=INKEY*:IF At-="' THEN GOTO 2690 2695 CLSI PRINTJ PR1HTiPR1NTs PR1NT:PR1NTiPR1NT 2700 PRINT S P C I 1 5 ) " • 2705 PRINT SPCI15) • i» t 2710 PRINT S P C I 1 5 ) 1 INSERT A DISKETTE INTO DRIVE A: i • i 2715 PRINT S P C I 1 5 ) " i • i 2720 PRINT SPCI15) 1 140 CHARACTER LINE NEEDED FOR OUTPUT! ! ' 2725 PRINT S P C I 1 5 ) " • • t 2730 PRINT S P C U 5 ) " • 2735 P R I N T i P R I N T t P R I N T s P R I N T s P R I N T 2740 PRINT SPCI23) " s t r i k e any key t o c o n t i n u e . . . " 2745 A * = I N K E Y * i I F A$= • " THEN GOTO 2745 2750 CLS 2755 PRINT ' H H i x H H INPUT "lOPT*:" PARAHETERS m t t t t m ".•PRINT 2760 60SUB 7700 2765 PRINT "ENTER NAHE OF OPEN P I T i " 2770 INPUT N l 2775 REH 27B0 60SUB 7700 2785 PRINT 'ENTER FINAL DEPTH [ • e t r e s h " 2790 K=0:H0=1 2795 PRINT "LO = " j i B O S U B 7500 2800 LO = CINTIH) 2805 REH 2810 6DSUB 7700 2815 PRINT "ENTER THICKNESS OF OVERBURDEN [ l e t r e s h ' 2820 K =9:1*0=0 2825 N l = LO 2B30 PRINT "L9 = ";:GOSUB 7500 2835 L9 = CINTIH) 2840 REH APPENDIX A 2845 GOSUB 7700 2850 PRINT 'ENTER FINAL SLOPE [ d e g r e e s } ) ' 2855 K = 9 i H 0 = l i N l = 9 0 2860 PRINT 'FO = 'pGOSUB 7500 2865 FO = CINTIN) 2870 REH 2875 GOSUB 7700 2880 PRINT 'ENTER BENCH HEIGHT [ a e t r e s l i ' 2885 K = 9 t » 0 = l s W l = L 0 2B90 PRINT *L * " j i S O S U B 7500 2895 L * CINT(N) 2900 REH 2905 PRINT CHR*(12):GOSUB 7700 2910 PRINT "ENTER HATERIAL DEHSITV t t o n n e s / c i 2915 K = 9 » N 0 = 1 : N 1 = 1 0 2920 PRINT "DEN = "i:60SUB 7500 2925 DEN = N 2930 REH 2935 GOSUB 7700 29*0 PRINT "ENTER I N I T I A L I OREi* 2945 K=9:H0=1:N1=100 2950 PRINT "ORE = "j:GOSUB 7500 2955 ORE = N 2960 REH 2965 60SUB 7700 2970 PRINT 'ENTER FINAL X ORE)' 2975 K = 9 ! H 0 = l i M = 1 0 0 2980 PRINT 'OREF = '}8GOSUB 7500 2985 OREF = N 2990 REH 2995 6DSUB 7700 3000 PRINT "ENTER ROAD 6RADE ON SLOPE m>' 3005 K=9iH0=l8Wl=12 3010 PRINT "6RAD = 'jsBOSUB 7500 3015 SRAD = CINTIH) 3020 REH 3025 K = 0 3030 60SUB 900 3035 REH 3040 60SUB 7700 3045 PRINT 'ENTER P I T DIMENSIONS [ i e t r e s 3 i ' 3050 REH 3055 K=0:W0=20 3060 PRINT 'FINAL LEN6TH AO » 'JJBOSUB 7500 3065 AO = N 3070 REH 3075 K = 9 t H 0 = Z 0 » M l = A 0 3080 PRINTsPRINT "FINAL WIDTH BO « " j 3085 60SUB 7500 3090 BO = H 3095 REH APPENDIX A 3100 PRINT CHR$(12):SOSUB 7700 3105 PRINT "ENTER DISTANCE ON SURFACE [ l e t r e s h ' 3110 K=0:H0=1 3115 PRINT "SURF = " j i S O S U B 7500 3120 SURF = C I N T W 3125 REH 3130 SOSUB 7700 3135 PRINT "ENTER GRADE ON SURFACE llh' 3140 K>9:N0=0:H1=12 3145 PRINT "SRSURF = " j i S O S U B 7500 3150 6RSURF = CINTIN) 3155 REH 3160 REH 3165 I F N 0 P T O 1 AND N 0 P T O 9 THEN SOTO 3435 3170 REH 3175 SOSUB 7700 3180 PRINT "ENTER WORKINS SLOPE [ d e g r e e s ] : " 3185 K=9:W0=1JM1=F0 3190 PRINT "FI = " j i S O S U B 7500 3195 F I = CINT(N) 3200 REH 3205 K = 1 3210 60SUB 900 3215 REH 3220 SOSUB 7700 3225 PRINT "ENTER WORKING PHASE DEPTH I i e t r e s J i " 3230 K=9:H0=L:W1=Z1 3235 PRINT "LI = " j i S O S U B 7500 3240 L I = CINT(N) 3245 REH 3250 REH 3255 K = 11 3260 SOSUB 900 3265 REH 3270 60SUB 7700 3275 PRINT "ENTER BOXCUT LENGTH t « t r e s ] i " 3280 K>9:N0=Z0ACUTiNl=ZlACUT 3285 PRINT "ACUT = "jiGOSUB 7500 3290 ACUT = INT(H) 3295 REH 3300 GOSUB 7700 3305 PRINT 'ENTER BOXCUT WIDTH U e t r e s l i " 3310 K=9:W0=Z0BCUTsWl=ZlBCUT 3315 PRINT "BCUT = " j i 6 0 S U B 7500 3320 BCUT = INT(H) 3325 REH APPENDIX 3330 K = 12 3335 BOSUB 900 33*0 REH 3345 PRINT CHR*U2> 3350 60SUB 7700 3355 PRINT "ENTER TRUCK PAYLOAD [ t o n n e s ] : ' 3360 K=9:H0=50:H1=350 3365 PRINT "PLOAD = "j:60SUB 7500 3370 PLOAD = CINT(N) 3375 REH 3380 REH 3385 60SUB 7700 3390 I F NDPT=1 THEN PRINT "ENTER ANNUAL PRODUCTIVITY [ » l n . t o n n e s 3 i " ELSE PRINT "ENTER ANNUAL OUTPUT [ i l n . t o n n e s l i " 3395 K = 0 ; « 0 = 1 3400 PRINT "YEAR = a;:60SUB 7500 3405 YEAR = CINT(N) 3410 REN 3415 K = 13 3420 60SUB 900 3425 REH 3430 REH 3435 SOSUB 4400 ' P r i n t i n p u t 3440 PRINT:PRINT 9$ 3445 SOSUB 7800 ' M o d i f y i n p u t 3450 I F K9<>2 THEN SOSUB 3500:BOTO 3435 ELSE NLINE=1 3455 REH 3460 RETURN 3465 REH 3470 REH 3500 REH mimmtmmtttm«tfm«HmttttmttttmmHt 3505 REH MODIFY SUBROUTINE 3510 REH m*mmmmm*tm*mMmim«H«mH*ttmH«t 3515 REH 3520 NLINE=0:NC0L=4B 3525 PRINT CHR*(12) 3530 PRINT ' m m m t HODIFY "jDPT*;" PARAHETERS * * * * * * * * * * 3535 REH 3540 I F N 0 P T O 0 THEN SOTO 4170 3545 REH 3550 60SUB 7700 3555 PRINT 'OPEN PIT NAHE I S : *;N*>PRINT Q« 3560 6DSUB 7800 3565 I F K?=2 THEN SOTO 3580 3570 INPUT N$ 3575 REH 3580 6DSUB 7700 3585 PRINT 'FINAL DEPTH I S LO = " } L 0 , " [ l e t r e s I ' s P R I N T B* 3590 SOSUB 7800 3595 REN 3600 I F K9=2 THEN SOTO 3630 3605 K=0:H0=1 3610 PRINT 'LO = "jjGOSUB 7500:LO=CINT(N) 3615 REH 3620 I F L9M.0 THEN K=9:N0=0:N1=L0: R1*="THICKNESS OF OVERBURDEN":R2*=" t M t r e s ] ' : R 3 * = " L 9 SOSUB 8000iL9=CINT<H):BQT0 3665 3625 REH 3630 SOSUB 7700 3635 PRINT "OVERBURDEN I S L9 = " | L 9 j " [ l e t r e s l ' i P R I N T Of 3640 60SUB 7800 3645 I F K9=2 THEN 60T0 3665 3650 K=9:N0=0:N1=L0 3655 PRINT "L9 = "JJ60SUB 7500IL9=CINT(H) 3660 REH 3665 SOSUB 7700 3670 PRINT "FINAL SLOPE I S FO = " | F O j * I d e g r e e s l ' i P R I N T 0$ 3675 SOSUB 7800 36B0 I F K9=2 THEN BOTO 3700 3685 K = 9 : N 0 = 1 » N 1 = 9 0 3690 PRINT "FO = 'JJBOSUB 7500:F0=CINT(N) 3695 REH 3700 I F F L A 6al THEN IF L>LO THEN K«9:W«1JN1"L0J R1*="BENCH H E I 6 H T ' ; R 2 « = ' [ K t r e s J ' s R S I ^ L * "« BOSUB 8000:L:C1NT(N):BOTO 3745 APPENDIX A 3705 REH 3710 BOSUB 7700 3715 PRINT "BENCH HEIGHT I S L = " | L j " [ n t r i i l ' i P R I M T 01 3720 SOSUB 7800 3725 I F K9=2 THEN GOTO 3745 3730 K = 9 : H 0 - l s H l - L 0 3735 PRINT "L = "j:BOSUB 7 5 0 0 » L = C I N T ( H > 3740 REH 3745 SOSUB 7700 3750 PRINT "HATERIAL DENSITY DEN = *;DEM;" [ H T / c u b . i e t r e s 3 " : P R I N T 8$ 3755 GOSUB 7800 3760 I F K9=2 THEN GOTO 3780 3765 K=9;H0=hNl=10 3770 PRINT "DENi '}.BOSUB 7500:DEN=H 3775 REH 3780 GOSUB 7700 3785 PRINT " I N I T I A L I ORE ORE = "|OREj" [ I l ' i P R I M T 0* 3790 60SUB 7800 3795 I F K9=2 THEH GOTO 3850 3800 K = 9 s N 0 = l i N l = 1 0 0 3805 PRINT "ORE = •;:BDSUB 7500:0RE=N 3810 REH 3815 BOSUB 7700 3820 PRINT "FINAL I ORE OREF = "(OREF;" m*! PRINT B$ 3825 BOSUB 7800 3830 I F K9=2 THEN 60T0 3850 3835 K = 9 : M 0 = 1 » « 1 = 1 0 0 3840 PRINT "OREF = "; iBOSUB 7500:0REF=H 3845 REH 3850 60SUB 7700 3855 PRIHT "ROAD SLOPE BRAD = " j B R A D j " CX3":PRINT Q$ 3860 60SUB 7800 3B65 I F K9=2 THEN 60T0 3885 3870 K=9:N0=lsNl=12 3875 PRINT "SRAD = "JI60SUB 7500s6RAD=CINT(H) 3880 REH 3885 K=0:BOSUB 900 3890 BOSUB 7700 3895 REH 3900 I F A0<20 THEN F D £ N = h K = 0 : W O = Z O : R1*="FINAL L E N B T H " « R 2 * = " [•etrBBriR3*""A0 » "J 60SUB 8000iA0=CINT<W)tB0TD 3940 3905 REH 3910 PRINT:PRINT "FINAL LENGTH AO = "JAOJ" t i e t r e s l ' s P R I N T B* 3915 GOSUB 7800 3920 IF K9=2 THEN 60T0 3940 3925 K=0:H0=ZD 3930 PRINT " AO = ";3GOSUB 7500sA0=CINT<H) 3935 REH 3940 IF BO<ZO OR B0>A0 THEN FDEN=11K=9:HO=IOiWl=A0: R1*="FINAL *HDTH"jR2*=" CMtresl'»R3$="B0 = "J SOSUB BOOOtBO=CINT(H>:SOTO 3980 3945 REH 3950 PRINTJPRINT "FINAL WIDTH BO = "|BOj" [Mtres]":PRINT Q* 3955 GOSUB 7800 3960 IF K9=2 THEN SOTO 3980 3965 K=9:W0=Z0:W1-A0 3970 ' PRINT "BO = "jsGOSUB 7500:B0=CINT(N) 3975 REH 3980 PRINTJPRINT "DISTANCE ON SURFACE SURF = "|SURF;" C i e t r e s I ' i P R I N T B* 3985 GOSUB 7800 3990 IF K9=2 THEN GOTO 4010 3995 K=O:N0=100 4000 PRINT "SURF = 'pBOSUB 7500iSURF=CINT(N) 4005 REH 4010 PRINT:PRINT "GRADE ON SURFACE SRSURF «= •;BRSURF)" [ X ] , i P R I N T B$ 4015 BOSUB 7800 4020 IF K9=2 THEN 60T0 4045 4025 K=9:N0=0.'N1=12 4030 PRINT "SRSURF = "JJGOSUB 7500i6RSURF=CINT(N> 4035 REH 4040 REH 4045 IF ( N 0 P T O 1 AND N 0 P T O 9 ) THEN GOTO 4355 4050 IF FLAS=1 THEN IF F1>F0 THEN K=9*W0=1*Wl=FOt R1$="W0RKJNG SL0PE":R2*=" [ d e g r e e s ] " : R 3 * = " F 1 = ": 60SUB 8000:F1=CINT(H):60T0 4095 4055 REH 4060 60SUB 7700 4065 PRINT "WORKING SLOPE F l = " j F l j " [ d e g r e e s ] " : P R l N T Of 4070 60SUB 7800 4075 I F K9=2 THEN BOTO 4095 4080 K=9:W0=1:W1=F0 4085 PRINT " F l = "pBOSUB 7500:F1=CINT(W) 4090 REH 4095 K=liSOSUB 9 00 4100 REH 4105 REH 4110 IF L1>Z1 THEN K = l i W l = Z l s Rlfs'WORKINB DEPTH":R2*=" lMtres]"!R3f='Ll = " t SOSUB 8 0 0 0 : L l = C I N T ( W h B 0 T 0 4160 4115 REH 4120 REH 4125 4130 4135 4140 4145 4150 4155 REH 4160 4165 REH 4170 4175 REH 4180 REH 4185 4190 4195 4200 4205 4210 4215 4220 REH 4225 4230 4235 4240 4245 4250 4255 REH 4260 4265 REH 4270 4275 4280 4285 4290 4295 4300 REH 4305 4310 4315 4320 4325 4330 4335 4340 REH 4345 4350 REH 4355 BOSUB 7700 PRINT "WORKING DEPTH L I = "5LI1" [ » e t r e s J ' : P R I N T Qt 60SUB 7800 IF K9=2 THEN BOTO 4160 K=9:H0=1:W1=Z1 PRINT ' L I = * } i 6 0 S U B 7 5 0 0 i L l = C I N T ( N > K=ll:SOSUB 900 I F ACUKZOACUT OR ACUT>Z1ACUT THEN K=9iN0=Z0ACUTi W1=Z1ACUT-.R1*="B0XCUT L E N 6 T H " « R 2 * = ' [ M t r e s ] ' : R 3 $ = ' A C U T = " SOSUB 8000:ACUT=CINT(N)sB0T0 4215 BOSUB 7700 PRINT "BOXCUT LENBTH ACUT = "5ACUT;" f i e t r e s I ' s P R I N T 0$ 60SUB 7800 I F K9=2 THEN 60T0 4225 K=9:W0=ZOACUT:W1=ZIACUT PRINT "ACUT = "jl B O S U B 7500iACUT=CINT(N) I F BCUT<ZOBCUT OR BCUT>Z1BCUT OR BCUT>ACUT THEN K=9SW0=Z0ACUTJ W1=Z1ACUT:R1*="B0XCUT LEN6TH":R2$=" [ M t r B B l ' i R S I ^ A C U T = * 60SUB 8000iACUT=CINTfN):60T0 4260 BOSUB 7700 PRINT "BOXCUT WIDTH BCUT = "|BCUTj" [ M t r e s I ' i P R I N T 01 SOSUB 7800 I F K9=2 THEN SOTO 4260 K=9sWO=Z0BCUT:Wl=ZlBCUT PRINT "BCUT = "}iBOSUB 7500:BCUT=CINT(W) K=12:60SUB 900 BOSUB 7700 PRINT "TRUCK PAYLOAD PLOAD = ")PLOADj" [HT]":PRINT S I SOSUB 7800 I F K9=2 THEN 60T0 4305 K=9:N0=50:W1=350 PRINT 'PLOAD = "pBOSUB 7500:PL0AD=CINT(N) SOSUB 7700 I F N0PT=1 THEN PRINT 'ANNUAL PRODUCTIVITY YEAR = "; ELSE PRINT "ANNUAL OUTPUT YEAR = ' j PRINT Y E A R ) ' [ t l n . t o n n e s l ' i P R I N T Bl 60SUB 7800 I F K9=2 THEN BOTO 4345 K=OsWO=l PRINT "YEAR » ' j l S O S U B 7500:YEAR=CINTIW) 13:SOSUB 900 RETURN 4400 REH >ltH<HtlHH<«HHiilH<lili(l(IHIl<IHH»llilli> 4405 REH PRINT INPUT SUBROUTINE 4410 REH H H H H H H H I H H H I H i f H H H H H H H H I H H I H H t 4415 REH 4420 PRINT CHR*I12) 4425 PRINT ' I N P U T D A T A : '; 4430 REH 4435 IF N0PTO0 THEN BOTO 4580 4440 PRINT ' « ' j O P T I j ' PARAMETERS H'JPRINT 4445 PRINT 'Open P i t Na«:";SPCU5);"N* = '-N* 4450 PRINT " D e p t h " | S P C ( 2 4 ) } " L O * "} 4455 PRINT USING ' i l t t l';LO|iPRINT ' t e e t e r s ] ' 4460 PRINT " O v e r b u r d e n " ; S P C I 1 9 ) ; " L 9 * '; 4465 PRINT USING •#!###•;L9,jPRINT ' t e e t e r s ! ' 4470 PRINT ' F i n a l S l o p e ' j S P C I l B l j ' F O • '; 4475 PRINT USINS " #t";FO;sPRIMT * [ d e g r e e s ! " 4480 PRINT "Bench Height"}SPCU7))"L = "; 4485 PRINT USIN6 " i#";L;:PRINT " t e e t e r s ] ' 4 4 9 0 PRINT " H a t . D e n s i t y ' i S P C < 1 7 ) ) ' D E N = '; 4495 PRINT USINS ' I.I";DEN;:PRINT • [ t o n n e s / c u b . e e t r e l ' 4500 PRINT " I n i t i a l I o r e ' , S P C ( 1 5 ) ; ' 0 R E * '; 4505 PRINT USINB •III.I'JOREJIPRIHT ' [ « ' 4510 PRINT " F i n a l I or e " , S P C ( 1 5 ) } " O R E F = '; 4515 PRINT USINB " I f l . i ' i O R E F i i P R I N T ' H I " 4520 PRINT ' B r a d i e n t on S l o p e ' ; S P C ( 1 2 ) } " 6 R A D = "| 4525 PRINT USINB ' i#";6RAD;:PRINT " I I ) ' 4530 PRINT " F i n a l L e ngth";SPC<17)}'A0 = '; 4535 PRINT USIN6 " i l f l l"|A0):PRINT " t i e t r e s J ' 4540 PRINT " F i n a l N i d t h ' j S P C I l B M ' B O = '; 4545 PRINT USINB "#i###-;BO;:PRINT ' t s e t r e s ] " 4550 PRINT " D i s t . on surf a c e ' } ' S P C ( 1 3 ) | " S U R F = "| 4555 PRINT USIN6 " H H I'iSURFjiPRINT " [ l e t r n ]1 4560 PRINT " B r a d , on s u r f a c e ' j S P C < 1 3 ) ; " 6 R S U R F = " j 4565 PRINT USINB " H'jBRSURF;: PRINT " « ] • 4570 REH 4575 REH 4580 I F ( N 0 P T O 1 AND N 0 P T O 9 ) THEN 60T0 4660 4585 REN 4590 PRINT " « " j O P T I j " - BLOCK " j i P R l N T USING "11"; PHCOUNT'.PRINT 4595 PRINT ' W o r k i n g S l o p e " j S P C « 1 5 ) ; " F i = '} 4600 PRINT USINB " l i ' j F l j - P R I N T ' [ d e g r e e s ] " 4605 PRINT ' W o r k i n g p h a s e d e p t h " ; S P C ( 9 ) | ' L l = "; 4610 PRINT USIN6 ' l l t ! i " ; L l ) i P R I N T ' [ e e t r e s ] ' 4615 PRINT " B o x c u t L e n g t h " j S P C ( 1 5 ) j " A C U T = "; 4620 PRINT USINB " H l t ' j A C U T p P R I N T " [ l e t r e s ] ' 4625 PRINT ' B o x c u t W i d t h " } S P C ( 1 6 ) } " B C U T = '; 4630 PRINT USINS " ####"jBCUTpPRINT " t e e t e r s ] " 4635 PRINT " T r u c k P a y l o a d " ; S P C t 1 5 ) ; " P L O A D = "; 4640 PRINT USINS ' i l l";PLOAD;:PRINT ' [ t o n n e s ] ' 4645 I F N0PT=1 THEN PRINT "Annual P r o d u c t i v i t y " ; S P C 1 9 ) ; "YEAR ELSE PRINT "Annual O u t p u t " ; SPCI14);"YEAR <= "; 4650 PRINT USING " • i l l . l";YEAR/10A6;:PRINT " [ • l n . t o n n e s l * 4655 REH 4660 RETURN 4700 REH m m t m t m m t m t H m m t m m m H t i t t m t m i * 4705 REH PRIHT RESERVES 4710 REH H H * m H « m m * * m t H t H H H » m m m m m m t m 4715 REH 4720 I F HEADFLA6S0 THEN SOTO 5075 4725 REH 4730 HEADFLA6=0 4735 LPRINT CHR*<12)iLPRINT:LPRINT 4737 LPRINT S P C I 6 4 ) 'APPENDIX A" 4750 I F NOPT=0 THEN LPRINT:LPRINT: LPRINT SPC(30> " " j N $ j , " " $ Q P T * | s 6 D T 0 4775 4755 LPRINT S P C I 5 ) " B l o c k I ";PHC0UNT 4760 LPRINT SPCI5) • " ; « ; " Open P i t " 4765 LPRINT SPCI30) O P T * » L P R I N T 4770 LPRINT S P C I 2 5 ) " = « ";D*;' R e s e r v e s ===" 4775 WIDTH ' l p t l s ' , 2 0 0 4780 SOSUB 8200 4785 LPRINT 4790 LPRINT 4795 REH 4800 I F I H R K O l THEN SOTO 4840 4805 REH 4810 LPRINT S P C I 5 1 ) "BOXCUT LENBTHt "; 4815 LPRINT USIN6 "Mil,";ACUT;:LPRINT " [ i e t r e s l " 4B20 REH 4825 LPRINT SPC(51) "BOXCUT WIDTH: "5 4830 LPRIHT USIN6 "ittt,' j BCUT; :LPRINT ' [ M t r e 5 ] " : L P R I N T : L P R I N T 4835 REH 4840 LPRINT SPACE$(9) " DEPTH RANGE: "; 4845 LPRINT USINS " f i l l , ' 5 L S T A R T ; : L P R I N T " - " ; 4B50 LPRINT USINB 'III!,';LDEPTH|.LPRIHT ' [ e e t r e s ] " S P C ( 7 ) ; 4855 REH 4860 LPRIHT "OVERBURDEN: "5 4865 LPRINT USIN6 ' l i l t ,"}L9;-.LPRINT ' t t e t r e s l ' SPC<8); 4870 REH 4875 LPRINT 'HAT. DENSITY: '; 4880 LPRINT USIN6 " I t . I ' ; D E N ; » L P R I N T • [ t o n n e s / c u b . a e t r e ] ' 4885 REH 4890 I F IND=0 THEN LPRIHT S P C I 9 ) ; ' S LOPE:"jsLPRINT S P C ( 1 5 > ; » LPRINT USINB ' t#";LSLOPE;1LPRINT ' [ d e g r e e s ] ' ; ELSE LPRINT S P C M 5 ) ; 4895 REH 4900 LPRINT SPCI6) "BENCH HEI6HT1 '; 4905 LPRINT USINB "M##,• ;L;:LPRINT ' I i e t r e s ] ' ; 4910 REH 4915 I F N0PT=9 THEH LPRIHT ELSE LPRINT SPC(B) "ORE CONTEHTi LPRIHT USIH8 •1I#"}0RE|:LPRINT " - ';: LPRINT USINB "###•;OREF;sLPRINT ' [ I ] ' 4920 LPRINT:LPRINT:LPRINT 4925 REH 4930 I F I N D O 0 THEN SOTO 49BS 4935 LPR1 NT SPC(B);'BENCH . . . . DIMENSIONS . . . . A R E A " ! 4940 - LPRINT " VOLUME BENCH RESERVES "| 4945 LPRINT "DEPTH CUMULATIVE RESERVES " 4950 LPRINT S P C ( 8 ) j " I [METRES) xlOOO 4955 LPRINT "xlOOO [xlOOO TONNES] M E T R E S ) "| 4960 LPRINT " [xlOOO TONNES]" 4965 LPRINT S P C I B ) } ' LEN6TH WIDTH RADIUS [SB.HETRESJ ": 4970 LPRINT "CCUB.HETRESJ'j 4975 I F N D P K 9 THEN LPRINT " ORE HASTE TOTAL LPRINT " ORE HASTE TOTAL" ELSE LPRINT 4978 LPRINT S P C ( 8 ) j 4980 REH 4985 I F I N 0 O 3 AND IND<>4 THEN SOTO 5060 4990 LPRINT SPCINSHIFT)) 4995 LPRINT "BENCH A R E A " j 5000 L P R I N T " VOLUHE . . . . BENCH RESERVES DEPTH" 5005 LPRINT " CUHULATIVE RESERVES " 5010 LPRINT SPC(NSHIFT)| 5015 LPRINT " I xlOOO " j 5020 LPRINT "xlOOO [xlOOO TONNES) CMETRES3"; 5025 LPRINT " CxlOOO TONNES]" 5030 LPRINT SPC(NSHIFT)} 5035 LPRINT • [SB.METRES] " j 5040 LPRINT "tCUB.METRES]") 5045 I F N0PT<9 THEN LPRINT " ORE HASTE TOTAL LPRINT " ORE HASTE TOTAL" ELSE LPRINT 5050 LPRINT S P C i N S H I F T ) ; 5060 SOSUB 7700 5065 LPRINT 5075 I F IND=3 THEH LPRIHT S P A C E * ( N S H I F T ) j ELSE LPRINT S P C ( 8 ) j 5080 LPRINT USIN6 " t # i " ; T ( l > J 5085 LPRINT " '» 5095 I F IND=0 THEN LPRINT USIN6 " l H I , " } T ( 2 ) j » LPRINT USING ' IMI,")T<3) , T U ) » 5105 LPRINT USING ' l l l l i l , . l " j T ( 5 ) / i 0 0 0 } 5110 LPRIHT USIH6 ' t l i t t l l i , . l " ; T ( 6 ) / 1 0 0 0 ; 5115 LPRINT S P C ( l ) j 5120 REH 5125 I F N0PT<9 THEN LPRINT USIN6 " l t l t l l , . l ' | T ( 1 2 ) / 1 0 0 0 | T ( 1 3 ) / 1 0 0 0 | 5135 LPRINT USING " l t i f t i , . t " } T I 7 > / 1 0 0 0 i 5140 I F N0PT=9 THEN LPRINT S P C I I O ) ; 5145 LPRINT USIN6 " t i l l , " j T ( 8 ) > 5155 I F N0PT<9 THEN LPRIHT USIN6 ' t f i i i i i t i t , . f " ; T ( 1 4 ) / 1 0 0 0 ; T t l 5 ) / 1 0 0 0 | ELSE LPRINT S P C I 1 5 ) ; 5160 REH 5165 LPRINT USING " l l l i l l t i i l , . t ' ; T ( 1 0 ) / 1 0 0 0 5175 RETURN 5200 REH * # * m m « * * « # t m m « * * M m m m m t * t * * * t m « m 5205 REH OPERATION SCHEDULE 1 5210 REH mm*ttmmm***tm»ft*m*t<t*HHHHHfftmt 5215 REH 5217 WIDTH M p t l i " , B O 5220 NC0L=129:NLINE=1:SF=0 5225 REH 5230 LPRINT CHR$(12):LPRINT C H R K 1 0 ) 5245 LPRINT S P C ( 5 ) " B l o c k I "jPHCOUNT; 5247 LPRINT S P C I 5 0 ) "APPENDIX A" 5250 LPRINT SPC(5) » ' " ; N * i " O p B n P i t " 5255 LPRINT S P C I 3 3 ) 0PT*:LPRINT 5260 LPRINT S P C I 2 8 ) " « » S t e p s C h a r a c t e r i s t i c s « » " 5265 LPRINT S P C ( 3 6 ) D* 5270 WIDTH " l p t l i ' , 2 0 0 5275 SOSUB 8200 5280 LPRINT 5285 REH 5290 LPRINT SPC(8)}'DEPTH RAN6E: "; 5295 LPRINT USIN6 •####,"jLSTART;sLPRINT ' -') 5300 LPRINT USINS "ttlt,";LDEPTH;sLPRINT ' [ e e t r e s ] " SPCU4); 5305 REH 5310 I F N0PT=1 THEN LPRINT "ORE: " | S P C I 1 5 ) j ELSE LPRINT SPC<21); 5315 LPRINT USINB "Htf,";ORE|iLPRINT" - ";:LPRINT USINB " l « ' | O R E F j i LPRINT " [ X I " S P C I 1 5 ) ; 5320 REH 5325 LPRINT "TRUCK PAYLOADs "; 5330 LPRINT USINB "W5PLOAD5.'LPRINT " [ t o n n e s ] " 5335 REH 5340 LPRINT SPC(8)i"OVERBURDEN: "5 5345 LPRINT USIN6 " « # # " } L 9 ; : L P R I N T " [ e e t r e s ] " ; 5350 REH 5355 I F N0PT=1 THEN LPRINT SPC(14) "ANNUAL PRODUCTION: " j ELSE LPRINT SPCI14) "ANNUAL OUTPUT: "5 5360 LPRINT USINB " l l « . l l,";YEAR/10A6;:LPRINT " [ a l n . t o n n e s ] " ; 5365 REH 5370 LPRINT S P C I 9 ) "ROAD SLOPE: "; 5375 LPRINT USINB * i i.#")BRAD;:LPRINT " 111' 5380 REH 5385 I F 1WRK*1 THEN LPRINT SPC(8);"BOXCUT LENBTH: ';: LPRINT USINB ' l f!!';ACUT;:LPRINT ' [ e e t r e s ] ' ; ELSE LPRINT S P C ( 4 3 ) ; 5390 REH 5395 LPRINT S P C I 1 4 ) 'HAT.DENSITY: '; 5400 LPRINT USINB " l l . l';DENj:LPRINT " [ t o n n e s / c u b . e e t r e ] " 5405 REH 5410 REH 5415 I F IWRK=1 THEN LPRINT SPC(8);"BOXCUT WIDTH: ";: LPRINT USIN6 "Mil";BCUT;:LPRINT " [ e e t r e s ] " ; ELSE LPRINT S P C ( 4 3 ) ; 5420 REH 5425 REH 5430 LPRINTs LPRIHT 5435 REH 5440 LPRINT SPC 18) j "STEP BENCH . . . . H A U L TRUCK " j STEPS RESERVES "} CUHULATIVE RESERVES . . . . " j 5445 LPRINT " ORE YEARS NINE" 5450 LPRINT S P C i 8 ) j " I I [METRES] TRIPS "| [ X 1000 TONNES] "| [ X 1000 TONNES]'! 5455 LPRINT S P C 1 7 ) | " I N STEP /STEP L I F E " 5460 LPRINT SPC 1 8 ) j " ON BENCH ON SLOPE " j 5465 I F N O P M THEN LPRINT " ORE HASTE TOTAL'j ORE HASTE TOTAL') ELSE LPRINT S P C ( 6 5 ) ; 5470 LPRINT S P C ( 3 ) 5475 LPRINT " t X ] [YRS] [ Y R S ] " 5480 REH 5485 LPRINT SPC(B);16QSUB 7700 5490 LPRINT 5495 REH 5500 J = 1IP«0 5505 REM 5510 I F I N T ( T S T E P ( 1 4 , J ) ) = I N T ( L A S T ) THEN 60SUB 5800 ELSE BOSUB 5600 5515 REN 5520 FOR J=2 TO NSTEP 5525 I F ( I N T ( T S T E P ( 1 4 , J ) ) - I N T ( T S T E P ( 1 4 , J - 1 ) ) = 0 ) OR < ( T S T E P ( 1 4 , J ) -I N T ( T S T E P I 1 4 , J ) ) = 0 ) AND ( I N T ( T S T E P ( 1 4 , J ) - T S T E P U 4 , J - 1 ) ) = 1 ) ) THEN SOSUB 5800 ELSE BOSUB 5600 5530 P=P+1 5535 I F P>30 THEN LPRINT C H R * l l 2 ) s P = 0 5540 NEXT J 5545 REH 5550 RETURN 5555 REH 5560 REH 5600 REH mtm*mmmmmmmmmmm*t*t***«**m 5605 REH OPERATION SCHEDULE 2 5610 REH M * H H m m m t H H t*H » t T t m t» « « t m « » « m * m m » 5615 REH 5620 S T U ) = T S T E P I 1 , J ) 5625 S T ( 2 ) = T S T E P I 2 . J ) 5630 I F NQPT=1 THEN S T I 6 ) = T S T E P ( 6 , J ) ELSE ST<6)=0 5635 ST(B) = T S T E P I 8 , J ) 5640 S T W = TSTEP<9,J> 5645 0 S T E P = S T ( 2 1 - « N 9 t l ) } H E L P = U0RE+FACT0RE*9STEP)/10A2) 5650 REH 5655 FOR 1=10 TO 14 5660 I F 1=13 THEH DELTIH=TSTEP<I,J) ELSE I F M THEH S T ( I ) = T S T E P 1 I , M ) ELSE B T I I ) - L A S T 5665 NEXT I 5670 REH 5675 S T U 3 ) = 1 - (ST( 1 4 ) - I H T I S T U 4 ) ) ) 56B0 I F N0PT=1 THEH S T ( 4 ) = S T I 1 3 ) * Y E A R ; S T I 3 ) = S T ( 4 ) / H E L P ELSE S T I 3 ) = S T ( 1 3 ) t Y E A R : S T ( 4 ) = 0 5665 REH 5690 S T ( 5 ) = S T I 3 ) - S T U ) 5695 ST 17) = ST(3)/PLOAD 5700 REH 5705 FOR 1=10 TO 12 5710 S T ( I ) = S T I I ) + S T ( I - 7 ) 5715 HEXT I 5720 REH 5725 S T U 4 ) = S T I 1 4 ) t S T I 1 3 ) 5730 GOSUB 6000 ' P r i n t a l i n e 5735 REH 5740 DELTIH = DELTIH - ST 113) . 5745 SF = 1 5750 REH 5755 I F DELTIH=0 THEN L P R I N T » S F = 0 i 6 0 T 0 5765 ELSE I F DELTIH>1 THEN 60T0 5675 ELSE ST(13)=DELTIH:G0T0 5680 5760 REH 5765 RETURH 5770 REH 5800 REH t m i i t H « * t m t f m t H H H H m m H t t H H H t m t m t 5805 REH OPERATION SCHEDULE 3 5810 REH * H » « H t t t m t m H t « H t * m * H H t * m m » m » m m f » 5815 REH 5820 FOR 1=1 TO 14 5825 I F (N0PT=1 OR I<>6) THEN S T ( I ) = T S T E P I I . J ) ELSE S T ( 6 ) = 0 5830 NEXT I 5835 REH 5900 SOSUB 6000:LPRINT 5905 REH 5910 RETURN 5915 REH 5920 REH 6000 REH m m t m t m t m m » f m * t * m t t t m t H t i m t t m t t t 6005 REH PRINT STEP SUBROUTINE 6010 REH m m m t f m t m m t H f m t m m t f t m t m m m H t 6015 REH 6017 LPRINT SPC(8)5 6020 IF SF=0 THEN LPRINT USING ' l i t ";ST(1>jST(2)s» LPRINT USINS ' - i l l ! " j S T 18)|:LPRINT S P C ( 2 ) ? : LPRINT USINS ' I I I H,; S T ( 9 ) j E L S E LPRINT SPC<27); 6025 REH 6030 LPRINT USIN6 1 t l i t t i t , a; S T < 7 ) : 6035 IF N0PT=1 THEN LPRINT USINS • l l l l l l , . ! "}ST(4)/IOOOJST<5>/1000| ELSE LPRINT SPC(12)j 6040 LPRINT USING ' l!iftl,.t";ST(3)/1000; 6045 IF N0PT=1 THEN LPRINT USINB " «#t###,.f;STUl>/1000;STU2)/1000 ELSE LPRINT SPC(22)j 6050 LPRINT USINS " Itltilll,.r;ST(10>/1000; 6055 IF N0PT=9 THEN LPRINT SPCI12)} 6060 LPRINT USIN6 ' t l l . t t A;ST(6)| ST(13){ ST(14)| 6065 SOSUB 6200 6070 IF ST(14)=INT(ST(14>) THEN LPRINT " «,:60SUB 6100 ELSE LPRINT 6075 REN 6080 RETURN 6085 REH 6090 REH 6095 REH 6100 REH H m m m t t m m m m m t m H t m t i m m m m m t t m m 6105 REH TRANSPORT SYSTEH CTL BREAK SUBROUTINE 6110 REH H i m m m m t m i t m H t m m t m m m * » m m * i t t m m t » 6115 REH 6120 AVBNCH = AVBNCH/ISTU4) - LASTYR) 6125 AVSLOP = A V S L O P / I S T U 4 ) - LASTYR) 6130 PRINT il,ST(14)|AVBNCH;AVSL0P|T0N0RE|TDNHAST 6135 LASTYR = ST(14)!AVBNCH=0:AVSLOP=0>TONQRE=0:TONNAST=0 6140 REH 6145 RETURN 6150 REH 6155 REH 6200 REH m m t m m m * t t * * * m m m i * m t t m m « m t m « 6205 REH TRANSPORT SYSTEH ACCUHULATION SUBROUTINE 6210 REN H t m t m t m t t t H H H m t m m m t t t m m H i m t * 6215 REH 6220 AVBNCH = AVBNCH + ST(B) « ST(13) 6225 AVSLOP = AVSLOP • S T ( ? ) * ST(13) 6230 REN 6235 I F N0PT=1 THEN TQNQRE=T0N0RE*STI4)iT0NNAST=TQNNAST+STI5) ELSE T0N0RE=0sT0NHAST=T0NNAST+ST(3) 6240 REH 6245 RETURN 6250 REH 6255 REH Hit) 0Z99 H3H S999 NMISH 0999 I f 3S013 .5599 szs9 Oiogi t=Hsnyouni asaio N3Hi o=Hsn«3id u 0S99 oot-8 gnsoe zw H3U 5*99 iOf 1X3N 0*99 ooo£ enso9 9:99 H3H 0299 H M A ' u W l d ' l t IRdNI SZ99 Hie«3fll * Idtf 1ST' iHn03Hd' 11 ifldNI 0399 W3H SI99 0599 0109 N3H1 (J)d03 31 0199 MQ18N 01 I=13f HOd S099 H3H 0099 0089 SnSOS S6S9 l l d O ' l l i l M N I 06S9 I ' l I W H f l ' l t ifldNI 58S9 i8QN3laya9'3ansH9'dHns'i» mdNi oes9 |££££808Z'S=133dH>0£^3018N:0 = H3N8H9 SZS9 0=M1SV1 . 0ZS9 m £959 I 1X3N 09S9 f 1X3N SSS9 0 = (Ilf)d31Sl 0SS9 H 01 l=f HOd StS9 1IHI1 01 1=1 HOd 0*59 U3U S£S9 J+=9tndH9 0 £ S 9 I t Stf mdNI dOd .M'S3NIU:e. N3d0 3S13 I I SW IRdNI MOd .iya*dIHJLS*e, N3d0 N3H1 6=3HdOHd1d dl SZS9 0=HSn«31d 0359 I t 3S013 SI59 I H H H H I H I i t H i H H t H H H H H H i l H t H l t l H i l H W3U 0159 BNiinouans 3ievi s3Hdoad HWH «3H 5059 m m m m m H m i m * m m m m » * m t m m » i H3U 0059 N3H SSt9 W3H 0£*9 Ndni3a SZfr9 H3d 0ZV9 18QN3M* lNIUd N3H1 £=0NI dl 51*9 0019 ansos NSHI ( ( ( tu i s i iN io i f r i i i s m imu di o w H3H 50*9 mmmim»«m»t***tti*mtm*mmtmm*tfm H3N 0009 SNimoaans SNiNiu/SNiddims aN3 waa 50£9 «ttHl«>f»«ltHI«*44«f«»*t*l«»**l»«llllltttHI4Hi*t*i N3H 00£9 6700 REH tt»»Hi*il»«lttlt«tf>*»tt«HfltlH»H*l«HIHIH»»tlltt»(«t 6705 REH IN-PIT TRANSPORT SUBROUTINE 6710 REN H m t M m m m i m m H m i m m m t m m m m * * m » * 6715 REH 6720 AVL = CINT(TSTEP<4,I)/DHAUL) - LSTART/L 6725 NHALF = CIHTIH1/2) 6730 REH 6735 I F A V K N H A L F THEM TSTEP<4,1> =AVL*DHAULIBRFLA6=* 1 ELSE TSTEP(4,I)>(Nl-AVL)*DHAULsSRFLAG=-l 6740 REH 6745 I F TSTEPI4,I)<=0 THEN TSTEP(4,I)=0:GRFLA6=0 6750 REH 6755 REH 6760 RETURH 6765 REH 6770 REH 6800 REH m H m m * m t m m m m t m t * m m * m t m t * m 6805 REH PRINT HEADINGS - TRUCK PROFILES 6810 REH (*tf*«*tiftfttt«Hi*t**tHH{ti««*itHt«tmm<t<Ht 6815 REH 6817 GOSUB 8400 6820 NCOL=128:NLINE=1:CURCT=1i N S H I F T » 7 6825 REH 6830 LPRINT C H R » l l 2 ) i L P R J N T l L P R I N T 6835 LPRINT SPC<60)j"APPENDIX A ' i L P R I N T i L P R I N T 6855 LPRINT S P C U 0 ) j " ' " ; N * j " * " j • OPEN PIT" iLPRINT:LPRINT 6860 LPRINT S P C ( 3 2 ) " « « "(OPT*}" * * » • 6870 LPRINT SPC(30)}"TRUCK HAUL PROFILES" 6875 I F FLCRUSH=0 THEH LPRINT S P C < 2 8 ) | " f o r O u t - o f - P i t T r a n s p o r t " ELSE LPRINT S P C ( 3 0 ) ; " f o r I n - P i t T r a n s p o r t "sNC0L=108:NSHIFT=20 6890 REH 6895 WIDTH " l p t l : ' , 2 0 0 : 6 0 S U B 8200 6897 LPRINTsLPRINT:LPRINT SPC(NSHIFT)}:60SUB 7700 6900 LPRINT SPC(NSHIFT+15)j"TRANSPORT ON BENCH TRANSPORT ON SLOPE 6905 I F FLCRUSH=0 THEH LPRIHT " TRANSPORT ON SURFACE " j 6910 LPRINT " 0 R E HASTE " 6913 LPRINT S P C ( N S H I F T ) j 6915 LPRINT ' YEAR DISTANCE GRADE DISTANCE GRADE 6920 I F FLCRUSH=0 THEH LPRINT " DISTANCE GRADE • ') 6925 LPRINT "TONNAGE TRIPS TONNAGE T R I P S ' 6930'LPRINT SPC(16*NSHIFT> ' t i l [ f e e t ] C H t » ) [ f e e t ] [ X I 6935 I F FLCRUSH=0 THEN LPRINT ' [•} [ f e e t ] [ X ] '; 6940 LPRINT " [lOOOx t ] [-] ClOOOx t ] [ - 3 ' 6945 LPRINT SPC(NSHIFT);:GOSUB 7700:LPRINT 6950 REH 6955 RETURN APPENDIX A 7000 REH m m t m f H t m t m m m m t H t m t m H H H t i t m 7005 REH SET TRUCK HAULA6E TABLE 7010 REH ( H H H H H H I i H H H l H H H I H H H I I H H H H H H i l H 7015 FOR 1=1 TO L I B I T 7020 INPUT l l , T S T E P ( l , I ) 7025 I F TSTEP<1,I)=ENDBL THEN BOTO 7060 7030 INPUT #1,TSTEP(2,I) 7035 TSTEP(3,I)=6RBNCH 7040 INPUT i l , T S T E P ( 4 , I ) 7045 TSTEP(5,I)=BRAD 7050 INPUT # lfT S T E P ( 6 , I ) , T S T E P ( 7 , I ) 7055 NEXT I 7060 IREC=I-1 7065 IF T S T E P ( 1 , I R E C ) < > I N T ( T S T E P ( 1 , ) THEN TST E P ( 1 0 , I R E C ) = I N T ( T S T E P ( 1 , I R E C ) ) 7070 I F FLCRUSH=0 THEN BOSUB 7100 ELSE BOSUB 7300 7075 RETURN 7080 REH 7100 REH t t * m * t m m t t « m t m * t t t f t m t t t t t « t « t « ( t t f t t * m 7105 REH PRINT HAULAGE TABLE - OUT-OF-PIT TRANSPORT 7110 REH m t m t t m m t m t t t m t t H t m m t m t t t t t m m t t 7115 BRFLA6=+1 7120 FOR 1=1 TO IREC 7125 REH I F CURCT<PHCOUNT THEN LPRINTsLPRINTsLPRINT S P C ( 2 0 ) J " « = = = = BLOCK • "| LPRINT PHCOUNTiLPRINT 1 =======•:LPRINT 7127 LPRINT SPC(NSHIFT)} 7130 I F T S T E P I 1 0 , I ) = 0 THEN LPRINT USINB " # # I I ' ? T S T E P ( 1 , I ) } J LPRINT S P C ( 7 ) j E L S E LPRINT USINB " t t t i " j T S T E P ( 1 0 , I ) } x LPRINT " -';:LPRINT USINB " l l . l f j T S T E P d , ! ) } 7135 LPRINT USIN6 • l l ! H , " 5 T S T E P I 2 , I ) j 7140 LPRINT USINS • i l l l f , " i T S T E P ( 2 , I ) t H F E E T | : L P R I N T S P C ( 2 ) j 7145 LPRINT USIN6 " i t , " J TSTEP < 3,1> j ILPRINT S P C ( 3 ) | 7150 LPRINT USIN6 ' H l t V | T S T E P ( 4 , I ) j 7155 LPRINT USINS • • « l l ,,) T S T E P ( 4 , I ) * H F E E T j 7160 LPRINT USIN6 ' l i , ' ; T S T E P ( 5 , I ) * 6 R F L A 6 p L P R I N T S P C ( 6 ) | 7165 LPRINT USINB " t i l l V j S U R F } 7170 LPRINT USIN6 • ! « « , • } S U R F « H F E E T j 7175 LPRINT USINB ' ll,";6RSURF',:LPRINT S P C ( 4 ) j 7180 LPRINT USINB ' i t i l i l , . i ' | T S T E P ( 6 , I ) / 1 0 0 0 } i LPRINT USINB ' l l t t l l , ' | T S T E P ( 6 , I ) / P L 0 A D | 7185 LPRINT USINB • l f l l l l , . i " i T S T E P ( 7 , I ) / 1 0 0 0 } 7190 LPRINT USIN6 ' l t i t t t * V ; T S T E P < 7 , I ) / P L 0 A D | 7195 LPRINT 7200 NEXT I 7205 REH 7206 LPRINT 7210 RETURN 7300 REH m t t H m t H m m » t H m t m t m m » m m * * t m * H 7305 REH PRINT HAULAGE TABLE - IN-PIT TRANSPORT 7310 REH m H H H m m * m m « t m » « t m » m t m t * t * t t t i H t t 7315 REH 7320 FOR 1=1 TO IREC 7322 LPRINT SPC(NSHIFT)} 7325 I F T S T E P I 1 0 , I ) = 0 THEN LPRINT USINB , M H,| T S T E P ( l , J ) i » L P R I M T S P C I 6 ) } ELSE LPRINT USINS •#St#"iTSTEP(10,1);sLPRINT ' - "JJ LPRINT USINB , M . l i, ,| T S T E P U , I ) | 7330 60SUB 6700 7335 LPRINT USING ' l l i l i l1' ; T S T E P ( 2<I ) ; i LPRINT USING ' l l l l l l , , ; T S T E P ( 2 , I ) * H F E E T j 7340 LPRINT USINB • ##, ' ; T S T E P ( 3 , I ) j 7345 LPRINT USINS " ti«tli,'}TSTEP<4,l>si LPRINT USINB ' I f l l l / j TSTEPC4,1)*HFEET| 7350 LPRINT USINB " i t " ; T S T E P ( 5 , 1 > * 6 R F L A 6 ; 7355 I F N0PT=1 THEN LPRINT USINB ' t l i t i i l , . i i , ; T S T E P ( 6 , I ) / 1 0 0 0 ; i LPRINT USINS ' *###*###,"j TSTEP(6,1)/PLOADj ELSE LPRINT SPC(10)} 7358 LPRINT S P C ( 2 ) ) 7360 LPRINT USINB • l l l l « , . l l , } T S T E P ( 7 , I ) / 1 0 0 0 ; 7365 LPRINT USINB * tt##t#,';TSTEP(7,I>/PLOADj 7370 LPRINT 7375 NEXT I 7380 LPRINT 7385 RETURN 7400 REH m m i * t t t * H t m t m m m t m t * m « t f t m t * t m t m t f 7405 REH SAVE TABLES SUBROUTINE 7410 REH t * t t t < * t H * * m t t « H * t f t H l f H H i t i l t t f * H H t f t « H t t l t ( t 7415 REH 7420 FOR J=l TO 3 7425 I F HAULFLA6=0 THEN T 9 ( K , J , I ) = T(J+4) 7430 I F (HAULFLAB=1 AND J<3) THEN H 9 ( K , J , I ) = HIJ+2) 7435 NEXT J 7440 REH 7445 RETURN 7450 REH 7455 REH 7500 REN 7505 REH 7510 REH 7515 REH 7520 7525 REH 7530 7535 7540 7545 REH 7550 7555 7560 7565 7570 REH 7575 7580 7585 REH 7590 7595 REH 7600 REH 7700 REH 7705 REH 7710 REH 7715 REH 7720 7725 7730 7735 REH 7740 7745 REH 7750 7755 REH 7760 REH m t f t m H H H H H t m m m m m H m m H t m t m * RAN8E SUBROUTINE m m m m m m t m m * t m t m m * m t m m * t t t t t INPUT H I F IK=0 AND » > = « > THEN SOTO 7590 I F IK=1 AND H<=H1) THEN 60T0 7590 I F (K=9 AND H>-NO AND H<=H1> THEH SOTO 7590 PRINTsBEEP IF K=0 THEN PRINT "VALUE HUST BE >= " j i P R I H T USIHS " # « H ' j H O I F K=i THEN PRINT "VALUE HUST BE <= " p P R I N T USINB " M i l ' i N l I F K=9 THEN PRINT "VALUE HUST BE IN " p P R I N T USIN6 " O I I I ' j H O j j PRINT " - • j i P R I H T USIN6 ' t « l t t ' ; H i ; : P R I N T " RAN6E" PRINT "PLEASE, RE-ENTER" 60T0 7520 RETURN m m m * H t m H H m m t m t * t m t m t m * f i t m t H t UNDERLINE SUBROUTINE ««tf*«l*t*lttfitttHtt*fttHI*H*t*«**ttHHIft«««f«tti FOR 3=1 TO NCOL IF NLINE-'O THEH PRINT C H R K 4 6 ) ) ELSE LPRIHT CHR*<45)| NEXT J I F NLINE=0 THEN PRINT CHR$(46) ELSE LPRINT CHR*I45) RETURN 7800 REH M m m t m m i m m m m m t m t H H t t m m n m H 7805 REH VERIFY ANSWER SUBROUTINE 7810 REH m m H m m m m H m H M t t * m t H H m t » t m m m » 7815 REH 7820 K9 = 9 7825 INPUT Wf 7830 REH 7835 I F 0PTFLAS=0 OR REPFLAS=1 THEN I F W*=CHR*(7B) OR W$=CHR$(U0) THEN K9 = 2 ELSE I F H*=CHR*<89) OR W$=CHR$(121) THEN K9=l: FLAS=1 7840 I F QPTFLABM AND REPFLASsO THEN I F W$=CHR*I491 OR W$=CHR$(57) THEN K9=3;QPTFLA6=0 7845 I F W*=CHR*I78> OR W*=CHRt(110) THEN K9=2 ELSE I F N$=CHR$(B9) OR W*=CHRt(121) THEN K9=l 7850 REH 7855 I F K9<=3 THEN 60T0 7895 7860 REH 7865 I F 0PTFLAB=1 THEN DA$="1 or 9 . ' ELSE DA*="Y/N ( y e s / n o ) 7870 REH 7875 BEEP:PRINT 7880 PRINT "ANSWER HUST BE "}DA$:PRINT " r e - e n t e r " 7885 GOTO 7825 7890 REH 7895 RETURN 7900 REH 7905 REH 8000 REH 8005 REH 8010 REH 8015 REH 8020 8025 REH 8030 8035 8040 B045 REH B050 B055 8060 8065 REH 8070 8075 8080 B085 REH 8090 8200 REH 8205 REH 8210 REH 8215 REH 8220 8225 8230 REH 8235 REH 8400 REH 8405 REH 8410 REH B415 REH 8420 8425 8430 8435 REH 8440 REH m i m m i m t m m m t m m H m t t m m t t m m m t VERIFY INPUT SUBROUTINE m m m t H H H i m t m H m t H t t H i m m i t m t m t m BEEP BOSUB 7700 PRINT R l * i ' I S OUT OF RAN6E." PRINT "ENTER NED "JRIJJ I F K--0 THEN PRINT " >= "; i P R I N T USINB ' I l i l ' i H O p P R I N T R2$ i 6 0 S U B 8070 ELSE I F K=l THEN PRINT " <= PRINT USIN6 " # # * # " ; « ! ; s P R I N T R2*s BOSUB 8070 PRINT USINB , l l l i,5 N 0 ; : P R I N T ' -") PRINT USINB • I M ' j N l j P R I N T R 2 f ; * i " PRINT R3$| BOSUB 7500 L9 = CINT(W) RETURN m t m m t m i m H t m H m t t m t m t t t m m m t m t * COHPRESSED PRINT m f t m t m m m t m H m m m m m m m t m t m t t t LPRINT CHR*(15) RETURN iHIIHHHHH«KIH<HHHHHItHHHHHHHHHH« NORHAL PRINT mmtftttmtmmtttmtHmmitttmtttttmmM WIDTH " l p t l : " , 8 0 LPRINT CHR$(18) RETURN APPENDIX A ' B I G BOWL'OPEN PIT RESERVES DEPTH MUSE: 0 - 396 CutrMl QVEPJUMEsH 94 UrtrtsJ MAT. VOSSTti 2.6 ttonnts/cub.Mtri] SLOPE: 43 [deysss] 8EICH KEISJT: 12 ttatrnl OK CONTENT) 45 - 100 CI] BENCH . . . . DDIEMSIOKS . . . . A R E A VOLUME DEPTH 1 [METRES] 11000 xlOOO U1000 TONNES] [1ETRE5] CxlOOO T0NHES1 LESSTH KIOTO RADIUS tSB.SE.RE51 [CUB.I1ETRES1 ORE HASTE TOTAL ORE HASTE TOTAL 2,474 1 ,174 384 2,825.2 33,902.2 0.0 88,143.4 88,143.6 12 0.0 88,145.6 B8,145.6 2 2.152 1 ,152 372 2,745.4 32,943.3 0.0 83,457.8 83,437.8 24 0.0 173,803.5 173,303.5 3 2,423 1,128 340 2,444.4 31,999.3 0.0 83,198.3 83,198.3 36 0.0 257,001.7 257,001.7 4 2,404 1,104 349 2,338.7 31,044.2 0.0 80,744.9 80,764.9 48 0.0 337,748.7 337,768.7 3 2,320 1,080 334 2,311.7 30,139.9 0.0 78,363.8 78,343.8 60 0.0 416,132.5 416,132.3 6 2,354 1,056 324 2,433.3 29,224.3 0.0 73,989.0 75,989.0 72 0.0 492,121.4 492,121.4 7 2,332 1 ,032 312 2,340.3 28,324.0 0.0 73,442.3 73,642.3 84 0.0 565,763.7 365,763.7 2,308 1,008 300 2,234.0 27,432.3 0.0 71,323.9 71,323.9 96 0.0 637,087.6 637,087.6 9 2,234 984 2S8 2,212.4 24,351.4 31,045.2 37,948.5 49,033.7 108 31,045.2 675,056.2 706,121.3 10 2,240 940 274 2,140.1 25,481.4 31,377.5 33,194.3 44,771.7 120 42,442.4 710,250.4 772,893.1 11 2,234 934 244 2,048.3 24,822 .3 32,000.1 32,337.9 44,538.0 132 94,442.7 742,788.4 837,431.1 12 2,212 912 252 1,997.9 23,974.0 32,335.0 29,997.5 42,332.5 144 126,977.7 772,785.9 899,763.6 13 2,168 888 2«0 1,928.1 23,134.4 32,534.1 27,371.2 40,155.2 154 159,561.8 800,357.0 959,918.8 14 2,144 844 223 1,859.2 22,310.1 32,749.3 23,234.9 38,004.2 148 192,311.2 825,613.9 1,017,925.0 15 2,140 840 214 1,791.2 21,494 .4 32,832.7 23,032.7 53,893.4 180 225,143.8 348,444.6 1,073,310.4 n 2,114 814 204 1,724.1 20 ,459 .5 32,834.0 20,934.3 33,792.8 192 257,979.8 869,623.4 1,127,603.2 17 2,092 792 192 1,458.0 19,555.4 32,741.3 18,947.1 31,729.4 2C4 290,741.2 888,590.5 1,179,331.7 19 2 , J4S 7*e ISO 1,592.7 19.112.4 32,410.4 17,081.7 49,492.3 214 323,351.8 905,672.2 1,229,024.0 I s 2.044 744 1S3 1,529.3 . 18,340.2 32,333.7 13,298.7 47,434.4 228 353,737.4 920,971.0 1,276,708.4 2v 720 15» 1,444.9 17,579.6 32,083.5 13,414.2 43,704.8 240 387,826.0 934,537.2 1,322,413.2 21 1,99s. 494 1*4 1,402.4 IS,828 .2 31,721.2 12,032.2 43,753.3 252 419,547.2 946,619.4 1,346,166.5 22 1,972 472 132 1,340.7 16,099.5 31,293.4 10,344.7 41,830.1 244 450,832.6 957,164.0 1,407,996.6 23 1,9*8 448 120 1,250.0 15,359.7 30,793.3 9,151.8 39,935.1 274 481,615.9 966,315.3 1,447,931.8 24 1,92* 424 10S 1,220.1 14,441.7 30,214.3 7,851.4 38,048.4 288 511,332.7 974,167.4 1,486,000.1 25 1,900 400 94 1,141.2 13,934.4 29,537.7 4,442.1 34,229.9 300 541,420.4 980,809.6 1,522,230.0 1 *2 1,574 574 84 1,103.2 13,238.3 23,993.1 3,321.5 34,419.6 312 570,318.5 986,331.0 1,556,649.6 27 1,852 532 72 1,044.1 12,532.9 26,149.3 4,487.7 32,437.3 324 598,448.4 990,818.7 1,589,287.1 23 1,325 526 40 989.9 11,878.3 27,344.9 3,333.8 30,883.7 334 425,913.3 994,357.4 1,620,170.7 2? 1,804 504 48 934.4 11,214.4 24,485.2 2,472.8 29,158.1 348 452,298.5 997,030.3 1,449,328.8 30 1,750 490 34 B80.2 10,541.8 23,572.8 1,887.9 27,440.7 340 477,871.3 998,918.2 1,676,789.5 31 1,754 454 24 824.7 9 ,919.8 24,409.4 1,182.1 23,791.5 372 702,480.7 1,000,100.3 1,702,581.0 32 1,732 432 12 774.1 9,289.7 23,397.2 553.5 24,150.4 384 724,077.8 1,000,453.8 1,726,731.6 33 1,708 408 0 722.4 8,449.4 22,537.9 0.0 22,537.9 394 748,413.8 1,000,653.3 1,749,249.5 B l o c k « 1 ' B I G BOWL' Open P i t APPENDIX A M I N I N G Working Phase R e s e r v e s == BOXCUT LENGTH: 1,700 tattrti] B O O T HIDTH: 400 t w t m ] DEPTH RAISE: SLOPE: 94 - 154 C a e t r e i : 24 [ d t y m ] OVERBIDDEN: BENCH HEIGHT] 94 [ M t r t f ] 12 ( H t r i s l HAT. DENSITY: ORE CONTEXT: 2.4 ttoMM/cuk.iftr*] 49 - 100 (11 BENCH I DIXESS10NS METRES] A R E A ilOCO V0U3IE ilOOC BOtffl RESERVES DEPTH CilOOO TONICS] [METRES! OIHULATIVE RESERVES tilOOO TOMES] LENGTH HIDTH RADIUS ISB.HETRESJ [CUB.KETRES] ORE HASTE TOTAL ORE HASTE TOTAL 9 1,848 543 98 1,040.8 12,729.8 14,893.8 18,203.3 33,097.4 108 14,893.8 18,203.3 33,097.4 14 1,793 498 74 947.1 11,:-43.J 13,974.4 13,573.2 29,349.7 120 28,848.4 33,778.7 42,447.1 11 1,7*9 449 49 837.2 10,044.4 12,951.5 13,149.2 24,120.7 132 41,819.9 44,947.9 88,747.8 12 1,700 40* 25 731.1 8,773.2 11,832.9 10,977.3 22,810.4 144 53,452.8 37,923.4 111,378.2 13 1,451 351 0 629.9 7,545.7 10,424.9 8,992.0 19,418.8 154 44,279.7 44,917.4 131,197.0 B l o c k # 1 ' B I G BOWL'Open P i t M I N I N G APPENDIX A S t e p s C h a r a c t e r i s t i c s Working Phase DEPTH RANEE: OVERBURDEN: 94 so: STEP BENCH t CUT LENGTH) CUT VlDTHl 114 [ i l t r e s l 94 [ M t r t s l 1700 t i t t r i s ] 400 [Mtrif] ORE: ANNUAL PRODUCTION: HAT.DENSITY) 43 • 100 (XI 30.00, [ilo. tonuM] 2.4 [towiM/cuh.ittrtl TRUCK PAYLOMi 134 Itnnts] ROAD SLOPE: B.O [I] . H A U L . . [NETRES1 TRUCK TRIPS . STEPS RESERVES . [ I 1000 TONNES] . CUMULATIVE RESERVES . . . . ORE YEARS NINE [ I 1000 TONNES] IN STEP /STEP LIFE CN BENCH ON SLOPE ORE HASTE TOTAL ORE HASTE TOTAL [I] [YRS] [YRS] 9 338 1334 127,393 8,328.3 13,790.3 19,418.8 8,828.3 10,790.3 19,418.8 43.00 0.29 0.29 9 423 1354 20,723 1,434.2 1,733.4 3,191.4 10,244.7 12,343.7 22,810.4 43.00 0.03 0.34 10 sea 1505 127,395 9,278.1 10,340.7 19,418.8 19,542.8 22,886.5 42,429.2 47.29 0.31 0.43 9 442 1354 21,493 1,489.4 1,820.7 3,310.3 21,032.4 24,707.2 43,739.3 45.00 0.03 0.70 10 423 1505 20,725 1,509.4 1,682.3 3,191.4 22,541.8 24,389.4 48,931.2 47.29 0.03 0.75 11 588 1655 97,674 29,721 7,458.2 2,269.4 7,583.4 2,307.4 15,041.8 4,377.0 30,000.0 32,249.4 33,973.0 34,280.4 43,973.0 48,350.0 49.38 49.38 0.23 0.08 1.00 1 1.08 9 499 1354 22,264 1,543.0 1,383.9 3,429.0 33,812.3 38,144.5 71,979.0 45.00 0.03 1.13 10 442 1505 21,495 1,565.5 1,744.8 3,310.3 35,378.0 39,911.3 73,289.3 47.29 0.03 1.18 11 425 1655 20,725 1,582.5 1,609.1 3,191.6 34,940.3 41,520.4 78,480.9 49.58 0.05 1.23 12 538 1806 127,395 10,177.3 9,441.3 19,418.8 47,137.7 30,942.0 98,099.7 51.88 0.34 1.37 9 734 1354 23,037 1,596.4 1,951.2 3,547.4 48,734.2 52,913.2 101,447.3 45.00 0.05 1.62 10 499 1505 22,246 1,421.4 1,307.4 3,429.0 50,355.8 54,720.3 103,074.3 47.29 0.03 1.6B 11 442 1655 21,495 1,641.4 1,648.9 3,310.3 51,997.2 54,589.3 108,384.4 49.58 0.03 1.73 12 425 1804 20,725 1,655.7 1,536.0 3,191.4 53,452.8 57,923.4 111,378.3 51.88 0.04 1.79 13 588 1954 74,090 51,305 4,347.2 4,279.7 3,370.7 3,621.3 11,717.9 7,900.9 40,000.0 44,279.7 43,294.1 44,917.4 123,294.1 131,197.1 54.17 54.17 0.21 0.14 2.00 t 2.14 B l o c k * 1 ' B I S BOWL' Open P i t APPENDIX A M I N I N G === P u s h - B a c k Phase R e s e r v e s === DEPTH RANSE: f i - IIS tutresl OVERBURDEN: 94 CMtres] RAT. DENSITY! 2.4 Ctonnes/cub.Mtrc] BENCH HEIGHT! 12 (utrnl ORE CONTENTS 43 - 100 CI] BENCH AREA VOLUME . . . . BENCH RESERVES DEPTH . . . . . CUMULATIVE RESERVES I ilOOO slOOO CilOOO TGNNES] CKETRES1 CilOOO TONNES] CSS.ttTRES] CCUB.KETRES] ORE HASTE TOTAL ORE HASTE TOTAL 9 1,151.8 13,821.7 14,171.4 19,745.0 35,936.5 108 16,171.4 19,765.0 . 35,936.3 10 1,193.0 14,316.2 17,602.9 19,619.1 37,222.0 120 33,774.3 39,384.1 73,158.4 11 1,231.3 14,775.9 19,048.6 19,343.7 38,417.3 132 52,822.8 58,752.8 111,575.6 12 1,264.7 13,200.8 20,502.1 19,020.0 39,522.1 144 73,324.9 77,772.8 151,097.7 13 1.299.2 15,590.9 21,957.2 13,579.2 40,334.4 154 95,282.2 96,352.0 191,634.2 B l o c k * 1 ' B I S BOWL'Open P i t M I N I N G A P P E N D I X A ==>= Steps C h a r a c t e r i s t i c s »=•= Push-Back Phase DEPTH RANGE: 94 - 154 t i e t r e s ] ORE: 43 - 100 I I I TRUCK PAYLQABi 134 It o w n ] OVERBURDEN: 94 t i e t r t s ] ANNUAL PRODUCTION: 30.00, I a i n , C O M M ] ROAD SLOPE: 8 .0 ( U HAT.DENSITY: 2.4 [ t o n w i / c u b . u t r i l STEP BENCH . . . . H A U L . . . . TRUCK STEPS 3ESERVES CUMULATIVE RESERVES . . . . ORE YEARS NINE 4 t tHETRESl TRIPS C I 1000 TOMES] C X 1000 TONNES] IN STEP /STEP LIFE ON 9EHCH CN SLOPE ORE HASTE TOTAL ORE HASTE TOTAL I I ] IYRS] [YRS] 16 9 1207 1334 233,333 14,171.4 19,743.0 33,934.3 80,451.0 86,682.4 167,133.4 43.00 0.54 2.68 17 10 1139 1303 131,115 110,587 9,549.0 9,053.9 10,442.7 8,974.4 20,191.7 17,030.4 90,000.0 93,053.9 97,323.1 106,301.5 187,325.1 204,359.4 47.29 47.29 0.32 0.27 3.00 I 3.27 13 11 1171 1655 249,443 19,043.4 19,348.7 38,417.3 117,102.5 125,670.2 242,772.7 49.58 0.63 3.90 19 12 1153 1304 36,270 220,347 2,397.3 17,404.4 2,683.0 14,332.0 5,585.5 33,936.5 120,000.0 137,404.4 128,338.2 144,690.2 248,358.2 282,294.3 51.88 51.88 0.10 0.39 4.00 t 4.39 20 13 1135 1954 148,597 114,427 12,393.4 9,541.8 10.489.4 8,090.8 22,883.9 ' 17,452.6 150,000.0 159,541.8 155,178.6 163,269.4 303,178.7 322,831.2 54.17 54.17 0.41 0.32 3:00 t 3.32 B l o c k * 2 ' B I G B O W L ' O p e n P i t M I N I N G A P P E N D I X A = = * W o r k i n g P h a s e R e s e r v e s === BOICUT LENSTHi 1,700 U t t r w ) B0IOJT HIDTH: 400 C t o t r n l DEPTH R A K E ; SLOPE: 154 216 Cse t r s s l 26 C d e q r t n l B E K H HEIGHT: 94 t M t r t f ] 12 ( M t r n l HAT. DENSITY: ORE CONTENT: 2.4 I t o n a t s / c u b . M t f t l 45 - 100 [ I ] BENCH I DIKHSIOXS CHETRES] A R E A ilOOO VOLISIE zlOOO BENCH RESERVES DEPTH U1000 TONNES] t lETRESl CUHUtATIVE RESERVES 1x1000 TONNES] LENGTH HIDTH RADIUS [SQ.XETRES1 [CUB.IETRES] ORE HASTE TOTAL ORE HASTE 14 1,348 343 98 1,060.8 12,729.8 14,893.8 18,203.3 33,097.4 148 14,893.8 18,203.3 15 1,798 498 74 947.1 11,345.3 13,974.4 15,375.2 29,549.7 180 28,868.4 33,778.7 14 1,749 449 49 837.2 10,044.4 12,951.3 13,149.2 24,120.7 192 41,819.9 44,947.9 17 1,700 400 25 731.1 8,773.2 11,832.9 10,977.5 22,810.4 204 53,452.8 37,923.4 13 1,451 351 0 428.3 7,545.7 10,424.9 8,992.0 19,418.3 214 44,279.7 44,917.4 TOTAL 33,097.4 42,447.1 88,747.8 111,378.2 131,197.0 B l o c k * 2 •B IS BOWL'Open P i t M I N I N 6 APPENDIX A Steps C h a r a c t e r i s t i c s Working Phase DEPTH RANSE: 154 - 2 U t t e t n s ] OVERBURDEN: 94 C u t r t s l BOXCUT LEX6TH: 1704 t i e t r e s ] BfiXOn UIDTH: 400 t * t r » s ] 8RE: AMUAL PR0DOCT1IM: NAT.DENSITY: 43 • 100 » ] 30.00, t a i n , t o n o t s l 2.4 I t i w i M / c u b . M t r i ] TRUCK PAYLDAD: 154 [ t a i n t s ] ROAD SLOPE; 8.0 IV STEP BENCH . . . . H A U L . . . . TRUCK I I [METRES] TRIPS GN 8EBCH CN SLOPE STEPS RESERVES ( I 1000 TONNES! ORE HASTE TOTAL . . . . CUMULATIVE RESERVES . . . . ORE YEARS NINE C X 1000 TONNES] IN STEP /STEP LIFE ORE HASTE TOTAL I I ] IYRS] IYRS] 21 14 588 2107 127,395 11,076.4 3,542.4 19,618.8 170,638.3 171,311.8 342,450.1 56.46 0.37 3.69 22 14 425 2107 20,725 1,801.9 1,389.7 3,191.6 172,440.2 173,201.4 345,641.7 56.46 0.06 5.73 15 533 2257 83,557 43,833 7,539.8 3,946.3 5,307.9 2,784.8 12,367.7 6,751.1 180,000.0 133,944.3 178,309.4 181,294.2 358,509.4 363,260.5 58.75 58.75 0.25 0.13 6.00 1 6.13 24 14 642 2107 21,493 1,348.9 1,441.4 3,310.3 165,835.2 182,735.6 368,570.8 56.46 0.06 6.19 25 13 425 2257 20,725 1,873.1 1,314.5 3,191.4 187,710.3 134,052.1 371,762.4 58.75 0.06 6.26 24 14 538 24«3 127,393 11,973.4 7,643.2 19,418.8 199,485.9 191,695.3 391,381.2 61.04 0.40 ' 6 .66 27 14 499 2107 22,244 1,933.9 1,493.0 3,429.0 201,421.9 193,188.3 394,310.2 56.46 0.04 6.72 29 15 462 2257 21,495 1,944.8 1,363.3 3,310.3 203,366.7 194,553.8 398,120.5 58.75 0.06 6.79 29 16 425 2409 20,725 1,948.2 1,243.4 3,191.6 203,514.9 195,797.2 401,312.1 61.04 0.06 6.85 3J 17 538 2553 45,985 81,410 4,485.1 7,940.1 2,596.6 4,594.9 7,081.7 12,537.1 210,000.0 217,940.2 198,393.9 202.990.8 408.393.9 420,930.9 63.33 63.33 0.13 0.26 7.00 I 7.26 31 14 734 2107 23,037 2,002.9 1,544.7 3,347.4 219,943.1 204,533.3 424,478.6 36.46 0.07 7.33 32 15 699 2257 22,264 2,014.5 1,414.5 3,429.0 221,957.6 205,949.9 427,907.6 38.75 0.07 7.40 33 16 662 2408 2>) K 3 2,020.7 1,289.4 3,310.3 223,978.3 207,239.6 431,217.9 61.04 0.07 7.47 34 17 425 2553 20,725 2,021.4 1,170.3 3,19t .4 225,999.7 208,409.8 434,409.3 63.33 0.07 7.53 35 IB 588 2709 127,393 12,874.8 6,744.0 19,413.8 238,874.5 213,153.8 454,028.3 65.63 0.43 7.96 APPENDIX A B l o c k * 2 ' B I G BOWL' Open P i t M I N I N G === Push-Back Phase R e s e r v e s === DEPTH RAN6E: 154 - 214 ti«trts] OVERBURDEN! 94 [«ttm] HAT. DENSITY: 2 .4 [ t o t t M / c u h . M t r t l BENCH HEIGHT: 12 httra] ORE CONTENT: 43 • 100 t i l BENCH A R E A VOLUME . . . . BENCH RESERVES DEPTH CUHULATIVE RESERVES t i1000 (1000 CilOOO TONNES] METRES] t i l 0 0 0 TONNES] IS0.HETRES1 1CUB.HETRES1 ORE HASTE TOTAL ORE HASTE TOTAL 14 793.4 9,530.3 11,209.0 13,499.9 24,908.3 148 11,209.0 13,499.9 24,908.8 15 844.1 10,129.1 12,454.4 13,881.1 24,333.7 180 23,443.4 27,381.0 31,244.3 14 994.9 10,443.1 13,720.7 13,951.3 27,472.1 192 37,3B4.3 41,332.3 78,914.4 17 924.9 11,122.3 15,001.2 13,914.8 28,918.0 204 32,383.5 33,449.1 107,834.6 15 963.9 11,544.7 16,789.8 13,793.7 30,073.5 214 48,475.3 49,232.8 137,908.1 B l a c k ft 2 • B I G BOWL'Open P i t M I N I N G APPENDIX A S t e p s C h a r a c t e r i s t i c s === P u s h - B a c k Phase DEPTH RANGE: OVERBURDEN: 156 - 216 ( H i r e s ! 96 ( H t r t s l ORE: ANNUAL PRODUCTION: HAT.DENSITY: 43 - 100 CU 30.00, [flo. tonnes] 2.6 [tonnes/cub.«»tr«] TRUCK PAYUJAO: ROAD SLOPE: 134 [tomes] 8.0 III STEP BENCH . . . . HAUL . . . . TRUCK • I METRES] TRIPS ON BENCH ON SLOPE ORE . STEPS RESERVES . t I 1000 TONNES] HASTE TOTAL . . . . CUMULATIVE RESERVES . . . . ORE YEARS NINE C I 1000 TONNES] IN STEP /STEP LIFE ORE HASTE TOTAL II] [YRS] [YRS] 36 14 1207 2107 12,945 143,801 1,125.5 12,937.4 868.0 9,977.7 1,993.3 22,915.3 1,125.5 14,043.1 868.0 10,845.7 1,993.5 24,908.9 56.46 56.46 0.04 0.43 8.00 t 8.43 37 15 1139 2257 171,011 15,472.2 10,863.5 24,335.7 268,409.8 236,863.0 503,272.8 58.73 0.52 8.95 38 16 1171 2408 16,916 162,773 1,590.2 15,301.3 1,014.9 9,765.7 2,605.1 25,067.0 270,000.0 235,301.3 237,877.9 247,643.6 307,877.9 532,944.9 61.04 61.04 0.03 0.51 9.00 t 9.51 39 17 1153 2558 150,704 17,075 14,698.7 3,616.0 8,509.8 2,093.5 23,208.5 5,709.5 300,000.0 303,616.1 256,153.3 253,246.8 556,153.4 561,862.9 63.33 63.33 0.4? 0.12 10.00 1 10.12 40 ia 1135 2709 195,283 19,735.7 10,337.8 30,073.5 323,351.8 268,584.6 591,936.4 63.63 0.66 10.78 B l o c k # 3 •BIB BOWL* Open P i t M I N I N G Working Phase Reserves === APPENDIX A MICUT LEXSTHi 1,700 I i t t r t i l BOICUT HUTU: 400 U e t r a l DEPTH RAXSE: SLOPE: 214 - 274 (MtrMl 24 [degrees] OVERBURDEN: BENCH HEIBKT: 94 tMtrnl 12 C t s t r n ) HAT. DENSITY: ORE CONTENT: 2 .4 t t onn t s / cub . i e t r e ] 43 - 100 C U BENCH I DIXEfSIONS . . . [METRES! A R E A (1000 VOLUME llOOO BENCH RESERVES DEPTH [xlOCO TONNES] IHETRES1 C U M U T I V E RESERVES , U1000 TONNES) LEN5TH HIDTH RADIUS CS0..1ETRE51 [CUB.HETRES] ORE HASTE TOTAL ORE HASTE TOTAL 19 1,949 343 98 1,040.8 12,729.8 14,393.9 18,203.5 33,097.4 228 14,393.3 18,203.3 33,097.4 20 1,7=2 499 74 947.1 11,365.3 13,974.4 15,575.2 29,549.7 240 28,848.4 33,778.7 42,447.1 21 1,749 449 49 837.2 10,044.4 12,951.5 13,149.2 24,120.7 252 41,819.9 44,947.9 88,767.8 22 1,700 400 25 731.1 9,773.2 11,832.9 10,977.5 22,310.4 244 33,432.8 37,923.4 111,578.2 23 1,631 331 0 423.3 7,543.7 10,424.9 8,992.0 19,418.8 274 44,279.7 44,917.4 131,197.0 • B I G BOWL* Open P i t APPENDIX A B l o c k » 3 • B I G BOWL' Open P i t M I N I N G === P u s h - B a c k P h a s e R e s e r v e s === DEPTH RANGE: 216 - 276 Eietresl OVERBURDEN: 96 tietresl HAT. DENSITY: 2.6 ttonnss/cub.wtrt] BENCH HEIGHT: 12 [Mtrn] ORE CONTENT: 45 - 100 (11 BENCH AREA VOLUHE . . . . BENCH RESERVES DEPTH CUHULAT1VE RESERVES I xlOOO xlOOO ExlOOO TONNES] [METRES] CilOOO TONNES] CSB.METRES] CCUB.METRES] ORE HASTE TOTAL ORE HASTE TOTAL 19 467.5 5,610.4 6,564.2 8,022.9 14,587.1 228 6,564.2 8,022.9 14,587.1 20 517.8 6,213.5 7,640.0 8,515.1 16,155.0 240 14,204.2 16,537.9 30,742.1 21 565.1 6,781.8 8,742.8 8,889.8 17,632.6 232 22,947.0 25,427.7 48,374.7 22 609.6 7,315.3 9,866.5 9,153.2 19,019.7 264 32,813.4 34,580.9 67,394.4 23 651.2 7,814.0 11,004.7 9,311.7 20,316.3 276 43,818.1 43,892.6 87,710.7 B l o c k « 3 ' B I S BOWL*Open P i t APPENDIX A M I N I N G S t e p s C h a r a c t e r i s t i c s === Working P h a s e DEPTH RAN6E: OVERBURDEN: BOXCUT LEH6TH: BOXCUT HIDTH: 214 274 Clitres! f i [Mtl-H] 1700 [Html 400 [tttresl ORE: ANNUAL PRODUCTION: HAT.DENSITY: 45 - 100 CU 30.00, [sin. tonnes] 2.6 [toDMi/cas.Mtrtl TRUCK PAYLQAO: ROAD SLOPE: 154 [tonnes] B.0 (X) STEP t BENCH 1 . . . . HAUL . . . . TRUCK [METRES] TRIPS ON BENCH ON SLOPE ORE C I 1000 TONNES] HASTE TOTAL . . . . CUM t ORE UUTIVE RESERVES . . . . ORE I 1000 TOWESI IN STEP HASTE TOTAL IX] YEARS /STEP [YRS] NINE LIFE [YRS1 41 19 588 283? 63,564 63,831 4,448.2 4,474.2 3,140.6 3,153.8 9,788.8 9,830.0 4,448.2 13,324.4 3,140.6 6,294.4 9,788.8 19,618.8 67.92 67.92 0.22 0.22 11.00 t 11.22 42 .19 625 2859 20,725 2,147.7 1,024.0 3,191.6 338,843.9 275,902.9 614,746.8 67.92 0.07 11.29 43 20 588 3010 127,395 13,774.0 5,844.8 19,618.8 352,417.9 281,747.7 634,363.6 70.21 0.46 11.73 44 19 662 2859 21,495 2,248.2 1,062.1 3,310.3 354,866.1 282,809.8 637,673.9 67.92 0.07 11.83 45 20 425 3010 20,725 2,240.8 950.8 3,191.6 357,107.0 283,760.6 640,867.6 70.21 0.07 J1.90 44 21 . D O 3160 25,912 191,483 2,893.0 11,330.6 1,097.4 4,297.8 3,990.4 15,628.4 360,000.0 371,330.6 284,857.9 289,155.8 644,858.0 660,486.4 72.30 72.50 0.10 0.38 12.00 t 12.38 47 19 699 2859 22,264 2,323.8 1,100.1 3,429.0 373,659.5 290,255.9 663,913.3 67.92 O.OB 12.46 49 20 442 3010 21,495 2,324.1 934.2 3,310.3 375,983.5 291,242.1 667,223.6 70.21 0.08 12.33 4? 21 625 3160 20,725 2,313.9 377.7 3,191.6 378,297.5 292,119.8 670,417.3 72.50 0.08 12.61 50 22 588 nn' 101,403 25,792 11,702.5 2,970.7 3,944.3 1,001.3 15,646.8 3,972.0 390,000.0 392,970.7 296,064.1 297,065.4 686,064.1 690,036.1 74.79 74.79 0.39 0.10 13.00 t 13.10 51 19 734 2S59 23,037 2,409.4 1,139.2 3,547.6 395,380.1 298,203.6 693,383.8 67.92 0.08 13.18 52 20 699 3010 22,264 2,407.4 1,021.3 3,429.0 397,787.6 299,225.1 697,012.7 70.21 0.08 13.26 53 21 462 3140 21,495 2,400.0 910.3 3,310.3 400,197.3 300,133.5 700,323.0 72.50 0.08 13.34 54 22 625 3311 20,725 2,387.1 804.6 3,191.6 402,574.4 300,940.0 703,514.6 74.79 0.08 13.42 55 23 588 3461 127,395 15,122.8 4,496.0 19,618.8 417,497.5 305,436.0 723,133.5 77.08 0.50 13.92 APPENDIX A B l o c k * 3 ' B I G BOWL' Open P i t M I N I N G ===• P u s h - B a c k P h a s e R e s e r v e s === DEPTH HANGS: 216 - 276 tietresJ OVERBURDEN: 96 [«ttrei] HAT. DENSITY: 2.6 Itoniws/cub.Mtrt] BENCH KEI6HT: 12 (Mtrts] ORE CONTENT: 45 - 100 CI] BENCH AREA VXUNE . . . . BENCH RESERVES DEPTH CUOJLATIVE RESERVES t xlOOO xlOOO CilOOO TONES! CNETRES1 tit000 TONNES] [SB.HETRES1 tCUI.NETRES] ORE HASTE TOTAL ORE HASTE TOTAL 1? 467.5 5,610.4 6,564.2 8,022.9 14,587.1 228 6,564.2 8,022.? 14,587.1 20 517.B 6,213.5 7,640.0 8,515.1 16,155.0 240 14,204.2 16,537.9 30,742.1 21 565.1 6,781.8 8,742.8 B,889.B 17,632.6 252 22,947.0 25,427.7 48,374.7 22 609.6 7,315.3 9,866.5 9,153.2 19,019.7 264 32,813.4 34,580.9 67,394.4 23 651.2 7,814.0 11,004.7 9,311.7 24,316.3 276 43.B1B.1 43,892.6 87,710.7 B l o c k v« 3 • B I B B f i W L ' O p e n P i t M I N I N G A P P E N D I X A S t e p s C h a r a c t e r i s t i c s = = = P u s h - B a c k P h a s e BERTH R t t i E : OVERBURBMl 216 - 276 [ u t r s s l 94 [ M t r c s ] ORE: ANNUAL PROBUCTIW: NAT.DENSITY: 45 - 100 [I] 34.04, Ills. towtts] 2.6 ttannts/cub.Htrcl TRUCK PAYLOABi 154 ttoMttl ROAB SLOPES 8.4 t i l STEP Bf CH t I . H A U L . . . . TRUCK IMETRES! TRIPS . STEPS RESERVES . t I 1000 TONES] CUMULATIVE RESERVES . . [ X 1004 TOMES] ORE YEARS IM STEP /STEP HIRE LIFE OH 6ESCH OR SLOPE ORE HASTE TOTAL ORE HASTE TOTAL m IYRS] [YRS3 56 19 1207 235? 22,015 72,707 2,302.6 7,604.5 1,087.7 3,392.3 3,390.3 11,196.8 2,302.6 9,907.1 1,087.7 4,684.4 3,390.3 14,587.1 67.92 67.92 4.48 4.23 14.00 t 14.23 57 20 113? 3010 104,903 11,342.2 4,312.9 16,135.0 438,946.7 314,928.8 753,875.6 74.21 0.38 14.63 SB 21 1171 3160 99,000 15,493 11,053.3 1,730.3 4,192.6 656.3 13,245.9 2,336.6 450,040.0 431,730.3 319,121.5 319,777.8 769,121.5 771,508.1 72.54 72.54 4.37 4.06 13.00 t 15.06 5 r ; 22 1153 3311 123,504 14,225.1 4,794.3 19,019.7 465,955.5 324,572.4 790,527.8 74.79 4.47 13.53 fi 23 1135 3461 119,311 13,613 14,044.6 1,615.9 4,173.4 480.4 18,220.0 2,096.4 480,000.0 481,616.0 328,747.8 329,228.2 808,747.8 814,844.1 77.08 77.08 0.47 4.45 16.00 t 16.05 APPENDIX A B l a c k # 4 ' B I G BOWL* Open P i t M I N I N G === Work ing Phase R e s e r v e s === BOICUT LENGTH: 1,700 [ictresl BOXCUT HIDTHi 400 [letresl DEPTH RANGE: 274 - 336 [wtres] OVERBURDEN: 94 C«trt«] HAT. DENSITY: 2.6 [tonMs/cub.ittre] SLOPE: 26 [d^ms] BENCH HEIGHT: 12 [ittrnl ORE CONTENT: 43 - 100 (II BENCH . . . . DIXENSI0NS . . . . AREA VOLURE BENCH RESERVES DEPTH CUMULATIVE RESERVES I [METRES] xlOOO xlOOO CilOOO TONNES] CMETRES] CxlOOO TONNES] LENGTH MIDTH RADIUS CSQ.NETRES] CCUB.METRES] ORE HASTE TOTAL ORE HASTE TOTAL 24 1,848 548 98 1,060.8 12,729.8 14,893.8 18,203.3 33,097.4 288 14,893.8 18,203.3 33,097.4 25 1,793 498 74 947.1 11,365.3 13,974.6 15,575.2 29,549.7 300 28,868.4 33,778.7 62,647.1 26 1,749 449 49 837.2 10,046.4 12,951.5 13,169.2 26,120.7 312 41,819.9 46,947.9 88,767.8 27 1,700 4C0 25 731.1 8,773.2 11,832.9 10,977.5 22,810.4 324 53,652.8 57,925.4 111,578.2 28 1,651 351 0 628.8 7,545.7 10,626.9 8,992.0 19,618.8 336 64,279.7 66,917.4 131,197.0 B l o c k # 4 APPENDIX A ' B I G BOWL'Open P i t M I N I N G ===• S t e p s C h a r a c t e r i s t i c s === Work ing Phase DEPTH RANEE: 274 - 334 [ntrnl ORE: 43 - 100 ti] TRUCK PAYLOAD: 134 [tonnes] OVERBURDEN: BOXCUT LENGTH: BOXCUT HIDTH: 96 [ H t m ] 1700 [utm] 400 [ t e t m ] ANNUAL PRODUCTION) HAT.DENSITY: 30.00, Iiln. tonnes] 2.6 [tonan/cub.ittri) ROAD SLOPE: 8.0 IX) STEP BENCH . . . . H A U L . . . . TRUCK STEPS RESERVES . . . . CUMULATIVE RESERVES . . . . ORE YEARS /STEP [YRS] NINE LIFE IYRS) i t ON METRES] TRIPS BENCH ON SLOPE ORE ( X 1000 TONNES) HASTE TOTAL [ X 1000 TONNES) IN STEP ORE HASTE TOTAL £1) 41 24 338 3612 127,395 15,572.4 4,046.4 19,618.8 497,188.4 333,274.5 830,463.0 7fl38 0.52 16.37 62 24 625 3612 20,725 2,533.4 638.3 3,191.6 499,721.7 333,932.8 833,654.6 79.38 0.08 16.66 63 23 588 3762 81,725 45,470 10,278.2 5,743.8 2,307.4 1,289.4 12,585.6 7,033.2 510,000.0 515,743.8 336,240.2 337,529.6 846,240.2 833,273.4 81.67 81.67 0.34 0.19 17.00 t 17.19 64 24 662 3612 21,495 2,427.6 682.8 3,310.3 518,371.3 338,212.4 856,383.7 79.38 0.09 17.28 63 23 625 3762 20,725 2,606.5 585.1 3,191.6 520,977.8 338,797.3 839,775.4 B1.67 0.09 17.17 64 26 539 3912 127,395 16,471.6 3,147.2 19,618.8 537,449.4 341,944.7 879,394.1 83.96 0.53 17.91 47 24 699 3612 20,865 1,401 2,550.5 171.2 442.7 44.3 3,213.3 215.7 540,000.0 540,171.1 342,607.5 342,631.9 882,607.4 882,823.1 79.38 79.38 0.09 0.01 18.00 t 18.01 43 23 642 3742 21,495 2,703.4 404.9 3,310.3 542,874.6 343,258.8 886,133.4 81.67 0.09 18.10 69 26 625 3912 20,725 2,479.4 512.0 3,191.6 545,554.3 343,770.8 889,325.1 93.96 0.09 18.19 70 27 588 4063 127,395 16,921.2 2,497.4 19,618.8 562,473.5 346,468.4 908,943.9 86.25 0.56 18.73 71 24 734 3412 23,037 2,315.9 731.7 3,547.6 565,291.4 347,200.1 912,491.5 79.38 0.09 18.84 72 23 499 3742 22,244 2,800.3 628.4 3,429.0 568,091.7 347,828.7 915,920.4 81.67 0.09 18.94 73 26 442 3912 14,759 4,737 1,908.2 871.0 344.6 166.4 2,272.8 1,037.5 570,000.0 570,871.0 348,193.3 348,359.8 918,193.2 919,230.8 83.96 83.96 0.06 0.03 19.00 t 19.03 74 27 623 4043 20,725 2,752.8 438.8 .3,191.4 573,423.8 48,798.6 922,422.4 86.23 0.09 19.12 73 28 388 4213 127,393 17,370.9 2,248.0 19,618.8 590,994.6 351,046.6 942,041.2 88.54 0.38 19.70 B l o c k * 4 ' B I G BOWL' Open P i t APPENDIX A M I N I N G === P u s h - B a c k Phase R e s e r v e s === DEPTH HAWSE: 274 - 336 Uetrts] QVERBURDEM: 96 [ M L T H ) HAT. DENSITY: 2.6 [toom/cub.Mtrt] BENCH HEIGHT: 12 [letrtsl ORE CONTENT: 43 - 100 (11 BENCH AREA VOLUKE . . . . BENCH RESERVES DEPTH CUKULAT1VE RESERVES I xlOOO 11000 UIOOO TONNES) METRES) tilOOO TONNES] [S0.HETRES1 [CUB.HETRES1 ORE HASTE TOTAL ORE HASTE TOTAL 24 159.3 1,911.9 2,237.0 2,734.1 4,971.0 288 2,237.0 2,734.1 4,971.0 25 214.1 2.369.3 3,159.2 3,521.0 6,680.1 300 5,396.1 6,233.1 11,631.2 26 266.0 3,191.9 4,114.8 4,184.0 8,298.8 312 9,510.9 10,439.0 19,930.0 27 315.0 3,779.6 5,097.8 4,729.3 9,827.1 324 14,608.7 15,168.3 29,777.1 28 361.1 4,332.6 6,101.8 5,163.1 11,264.9 336 20,710.5 20,331.4 41,041.9 B l o c k * 4 •B IB BOWL'Open P i t M I N I N G APPENDIX A ===> Steps C h a r a c t e r i s t i c s === Push-Back Phase DEPTH R A N K : 276 - 134 [se t i s ) ORE: « • 104 CI] TRUX PAYL0A9: 154 f t a n t s 3 0VER1UMEK! 94 teot i s ] AMHML PRODUCTION: 30.04, t a i n , t u r n s ] ROAD SLOPE: B .4 (XI I t A T . l E X S m : 2.4 [ t a o M s / c n g . M t r t ] STEP BENCH . . . . H A U L . . . . RUCK STEPS RESERVES CUMULATIVE RESERVES . . . . ORE YEARS HIKE I 1 CHETRES1 ffllPS ( I 1040 TONNES! ( X 1000 TONNES! IN STEP /STEP LIFE OK BENCH CN SLOPE ORE HASTE TOTAL ORE HASTE TOTAL t i l [YRS] [YRS] 76 24 1207 3612 12,279 3,945.8 1,025.3 4,971.0 594,940.3 352,071.9 947,412.2 79.38 0.13 19.63 77 25 1189 3762 40,231 3,147 5,059.7 395.8 1,135.8 88.7 6,195.5 484.6 604,040.0 600,395.7 153,207.7 353,296.5 953,207.8 953,692.4 81.67 81.67 0.17 0.41 20.40 t 20.01 78 26 1171 3912 53,333 6,967.6 1,331.3 8,29B.3 607,363.3 354,627.8 961,991.2 83.96 4.23 20.23 79 27 1153 4063 63,812 8,475.8 1,351.2 9,827.1 615,839.2 355,979.0 971,318.3 86.25 4.28 20.53 80 23 1135 4213 73,143 9,974.1 1,290.8 11,264.9 625,813.3 357,269.8 983,033.1 88.54 4.33 20.86 APPENDIX A Block tt 3 ' B I G BOWL' Open P i t M I N I N G === W o r k i n g P h a s e R e s e r v e s === BOXCUT LElSTHi 1,600 lutrtil BCICUT HIDTH: 300 (ntresl DEPTH RAISE) 336 - 394 [Mtrttl OVERBURDEN: 94 t M t r t i l HAT. DENSITY: 2.4 [ t o M M 7 c u B . M t r » ] SLOPE: 24 Utqrml BENCH HEIGHT: 12 ttetrtsl ORE CONTENT: 43 - 100 £11 BENCH . . . . DIMENSIONS . . . . AREA VOLUME BENCH RESERVES DEPTH CIBJULATIVE RESERVES I CMETRES] 11000 ilOOO CilOOO TONNES] [METRES] III000 TONNES] LENGTH HIDTH RADIUS (S0.KETRES1 ICUB.HETRES] ORE HASTE TOTAL ORE HASTE TOTAL 29 1,748 448 98 824.4 9,916.4 11,602.2 14,180.3 23,782.7 348 11,602.2 14,180.3 23,782.7 36 1,698 398 74 722.5 8,470.0 10,460.5 11,881.6 22,342.1 360 22,262.7 26,062.0 48,324.7 31 1,649 349 49 622.4 7,469.3 9,629.2 9,791.0 19,420.2 372 31,891.9 35,833.0 67,744.9 32 1,600 300 25 526.2 4,314.2 8,514.3 7,900.6 16,416.9 384 40,408.2 43,733.7 84,161.8 33 1,351 251 0 433.7 5,204.7 7,330.0 6,202.3 13,532.3 396 47,738.2 49,956.0 97,694.2 B l o c k # 5 ' B I G BOWL'Open P i t M I N I N G APPENDIX A S t e p s C h a r a c t e r i s t i c s W o r k i n g P h a s e DEPTH RANGE: OVERBURDEN: BOICUT LEN6TH: BOXCUT NIDTH: 336 394 [ u t r e s ] 96 ( M t r i s l 1400 C M t r e s l 300 [ t e t r e s l ORE: ANNUAL PRODUCTION: NAT.DENSITY: 43 - 100 (11 30.00, l i l n . t a n n t t l 2.6 [ t o n n t s / c u b . M t r i J TRUCK PAYLQAD: 134 [toanw] ROAD SLOPE: 8 .0 IV STEP BENCH t t . . . . HAUL . . . . [METRES] ON BENCH ON SLOPE TRUCK TRIPS ORE STEPS RESERVES [ I 1000 TONNES] HASTE TOTAL . . . . CUMULATIVE RESERVES . . . . ORE [ I 1000 TONNES] IN STEP ORE HASTE TOTAL [I] YEARS /STEP [YRS] MINE LIFE [YRS] 81 29 513 43:4 29,930 4,126.7 422.5 4,609.2 4,186.7 422.5 4,609.2 90.33 0.14 21.00 1 57,942 8,105.2 818.0 8,923.1 12,291.9 1,240.5 13,532.4 90.83 0.27 21.27 s : 29 350 4364 18,731 2,620.2 264.4 2,884.6 640,725.3 358,774.7 999,500.0 90.83 0.09 21.36 83 30 313 4514 87,372 12,602.0 530.3 13,532.3 653,327.3 359,705.0 1,013,032.0 93.13 0.42 21.78 84 25 537 4344 15,502 2,728.0 275.3 3 ,003.3 656,055.3 359,980.3 1,016,036.0 90.83 0.09 21.97 85 30 550 4514 19,731 2,486.3 198.3 2,884.6 633,741.5 360,178.6 1,018,920.0 93.13 0.09 21.96 as 31 513 4665 8,364 1,258.4 60.4 1,318.9 660,000.0 360,239.1 1,020,239.0 95.42 0.04 22.00 I 79,308 11,653.6 559.8 12,213.4 671,653.6 360,798.9 1,032,453.0 95 .42 0 .39 22 .39 e? 29 424 4364 20.272 2,535.7 296.2 3,121.9 674,489.4 361,065.1 1,035,574.0 90 .83 0.09 22.48 3E 30 587 4514 19,502 2 ,796.8 206.3 3 ,003.3 677,286.1 361,291.5 1,038,578.0 93.13 0.09 22.58 E? 31 350 4665 18,731 2,752.4 132.2 2 ,884.6 680,038.5 361,423.7 1,041,462.0 95.42 0.09 22.67 90 32 513 4915 66,202 9,961.5 233.6 10,155.1 690,000.0 361,657.4 1,051,657.0 97.71 0.33 23.00 I 21,670 3,240.7 76.5 3 ,337.2 693,260.8 361,733.8 1,054,995.0 97.71 0.11 23.11 91 29 441 4364 21,043 2,943.5 297.1 3,240.6 696,204.3 362,030.9 1 ,058,235.0 90.83 0.10 23.21 92 30 424 4514 20,272 2,907.3 214.6 3,121.9 699,111.5 362,245.3 1,061,357.0 93.13 0.10 23.30 93 31 587 4665 19,502 2,365.6 137.6 3,003.3 701,977.1 362,383.2 1,064,360.0 95 .42 0.10 23.40 94 32 350 4815 18,731 2,818.5 66.1 2,834.6 704,795.6 362,449.3 1,067,245.0 97.71 0.09 23.49 95 33 513 4966 87,872 13,532.3 0.0 13,532.3 718,329.0 362,449.3 1,080,777.0 100.00 0.45 23.94 B l o c k :tt 5 ' B I G BOWL' Open P i t M I N I N G APPENDIX A === P u s h - B a c k Phase R e s e r v e s = = DEPTH RANGE: 334 - 394 [attrMl OVERBURDEN: 94 [**trn] HAT. DENSITY: 2.6 [toonts/cub.Mtril BENCH KEI6HT: 12 twtris] ORE CONTEXT: 43 • 100 CU BENCH AREA VOLUKE . . . . BENCH RESERVES DEPTH . . . . . CUKULATIVE RESERVES 1 zlOOO (1000 tilOOO TONNES] [EETRES] [ilOOO TONNES! [S8.METRES) tCUB.METRES] ORE HASTE TOTAL ORE HASTE TOTAL 29 108.2 1,298.2 1,518.9 1,836.5 3,373.4 348 1,518.9 1,856.5 3^ 373.4 30 137.6 1,891.8 2,326.1 2,592.3 4,918.6 360 3,845.0 4,449.0 8,294.0 31 204.2 2,430.3 3,159.1 3,212.2 6,371.4 372 7,004.2 7,661.2 14,465.4 32 247.9 2,974.5 4,011.9 3,721.8 7,733.7 384 11,016.0 11,383.1 22,399.1 33 233.6 3,443.7 4,878.0 4,127.6 9,005.6 396 15,894.0 15,310.6 31,404.7 B l o c k » 5 ' B I G BOWL*Open P i t M I N I N G APPENDIX A m s a S t e p s C h a r a c t e r i s t i c s === P u s h - B a c k P h a s e DEPTH MM6E: 336 - 396 tietrnl OREi 43 - 106 [XI TRUCK PAYUMDs 154 [tonnes] OVERBURDEN: 94 Inetres) AHXUAL PRODUCT IO*! 30.00, tain, tonnes) ROAD SLOPEi B.O 1X1 BAT.DENSITY: 2.6 [tanus/ciib.ietri] STEP BENCH I 1 • • • • H A U L • • • • [METRES) ON BEKCH ON SLOPE TRUCK TRIPS •IRE ( I 1000 TONNES) HASTE TOTAL . . . . CUMULATIVE RESERVES . . . . ORE C I 1000 TONNES] IN STEP ORE HASTE TOTAL (X) YEARS /STEP CYRS) HIXE LIFE (YRS) 96 29 1207 4364 11,953 l,i72.0 168.7 1,840.8 1,672.1 168.8 1,840.8 90.83 0.06 24.00 I 9,965 1,393.9 140.7 1,334.6 3,066.0 309.4 3,375.4 90.83 0.05 24.03 97 30 1189 4514 31,939 4,580.4 338.2 4,918.6 723,974.3 363,096.8 1,089,071.0 93.13 0.15 24.20 98 31 1171 4645 41,373 6,079.3 292.0 6,371.4 732,053.7 343,388.9 1,095,443.0 95.42 0.20 24.40 99 32 1133 4815 50,219 7,536.5 177.2 7,733.7 739,610.2 363,566.1 1,103,177.0 97.71 0.25 24.65 100 33 1135 4966 58,478 9,005.6 0.0 9,003.6 748,615.8 343,566.1 1,112,182.0 100.00 0.30 24.93 APPENDIX A ' B I G BOWL' OPEN P I T t t * MINING * * * TRUCK HAUL PROFILES for O u t - o f - P i t T r a n s p o r t TRANSPORT ON BENCH TRANSPORT ON SLOPE TRANSPORT ON SURFACE ORE HASTE VEAfi DISTANCE 6RADE DISTANCE SRADE DISTANCE SRADE T0NNA8E TRIPS TONNASE TRIPS III [feet! III 111 [fMtl [11 It] [feat] C) IlOOOx t] 1-1 ClOOOx t] H J 593 1,953 0 1,483 4,866 8 2,200 7,218 0 30,000.0 194,803 33,973.0 220,604 2 620 2,032 0 1,731 5,679 8 2,200 . 7,218 0 30,000.0 194,803 29,323.1 190,410 3 1,113 3,652 0 1,488 4,882 8 2,200 7,218 0 30,000.0 194,905 34,028.9 220,967 4 1,174 3,852 0 1,629 5,346 8 2,200 7,218 0 30,000.0 194,803 31,033.2 201,314 5 1,146 3,758 0 1,849 6,129 9 2,200 7,218 0 30,000.0 194,803 26,920.4 174,158 5 - 3.32 1,135 3,724 0 1,956 6,418 3 2,200 7,218 0 9,561.8 62,090 8,090.8 52,337 i 391 1,940 0 2,162 7,094 8 2,200 7,218 0 20,438.2 132,715 15,240.0 98,961 7 609 1,999 0 2,353 7,720 8 2,200 7,218 0 30,000.0 194,803 19,884.5 129{120 a 636 2,087 0 2,545 8,351 8 2,200 7,218 0 30,000.0 194,805 17,628.0 114,467 9 1,194 3,923 0 2,200 7,219 8 2,200 7,218 0 30,000.0 194,803 21,856.1 141,923 10 1,142 3,813 0 2,481 8,141 8 2,200 7,218 0 30,000.0 194,805 18,275.5 118,672 10 -10.78 1,138 3,733 0 2,685 8,810 8 2,200 7,213 0 23,331.8 151,633 12,431.3 84,723 11 588 1,929 0 2,859 9,380 a 2,200 7,213 0 6,648.2 43,170 3,140.6 20,393 12 599 1,965 0 2,968 9,739 8 2,200 7,213 0 30,000.0 194,803 13,132.8 83,278 13 605 1,986 0 3,184 10,443 8 2,200 7,213 0 30,000.0 194,803 11,206.1 72,767 14 665 2,182 0 3,279 10,739 8 2,200 7,213 0 30,000.0 194,803 10,459.6 67,919 15 1,187 3,894 0 3,027 9,931 8 2,200 7,219 0 30,000.0 194,805 12,597.8 81,804 U 1,146 3,739 0 3,372 11,064 8 2,200 7,213 0 30,000.0 194,805 9,626.3 62,508 16 -16.05 1,135 3,724 0 3,461 11,355 9 2,200 7,218 0 1,615.9 10,493 480.4 3,120 17 591 1,9*0 0 3,666 12,027 a 2,200 7,213 0 28,384.0 184,312 7,012.0 45,533 19 607 1,992 0 3,319 12,528 8 2,200 7,218 0 30,000.0 194,805 6,367.2 41,346 19 623 2,059 0 3,940 12,926 a 2,200 7,218 0 30,000.0 194,805 5,583.9 36,272 20 774 2,547 0 4,036 13,240 8 2,200 7,213 0 30,000.0 194,805 5,014.4 32,561 20 -20.86 1,151 3,778 0 4,076 13,372 9 2,200 7,213 0 25,813.3 167,619 4,062.1 26,3)7 21 513 1,683 0 4,364 14,317 8 2,200 7,219 0 4,186.7 27,186 422.5 2,744 22 326 1,727 0 4,453 14,610 8 2,200 7,213 0 30,000.0 194,805 2,546.8 16,538 23 334 1,751 0 4,672 15,329 8 2,200 7,218 0 30,000.1 194,806 1,418.3 9,210 24 588 1,927 0 4,770 15,650 8 2,200 7,213 0 30,000.0 194,805 960.7 6,238 24 -24.93 1,160 3,804 0 4,761 15,619 8 2,200 7,213 0 23,615.8 185,817 948.1 6,156 APPENDIX A • B I G BOWL* OPEN P I T t** MINING * « * TRUCK HAUL PROFILES •for I n - P i t T r a n s p o r t TRANSPORT OR BENCH TRANSPORT ON SLOPE ORE HASTE YEAR DISTANCE 6RABE DISTANCE SHADE TONNAGE TRIPS T0NNA6E TRIPS Itl [feet] [I] [•1 [feet! III [|000i tJ C-l [lOOOx t) l-l 1 595 1,953 0 301 987 8 30,000.00 194,805 33,972.99 220,604 2 620 2,032 0 150 494 -8 30,000.00 194,805 29,323.15 190,410 3 1,113 3,652 0 301 987 8 30,000.00 194,B05 34,028.94 220,967 4 1,174 3,852 0 301 987 -8 30,000.00 194,805 31,033.17 201,514 5 1,146 3,758 0 150 494 -8 30,000.00 194,805 26,820.39 174,158 5- 5.32 1,135 3,724 0 0 0 0 9,561.82 62,090 8,090.77 52,537 6 591 1,940 0 150 494 8 20,438.17 132,715 15,239.98 98,961 7 609 1,999 0 301 987 -8 30,000.01 194,805 19,884.47 129,120 3 636 2,087 0 150 494 -8 29,999.99 194,805 17,627.96 114,467 9 1,196 3,923 0 301 987 8 30,000.00 194,805 21,856.07 141,923 10 1,162 3,813 0 301 987 -8 30,000.01 194,BOS 18,275.46 118,672 10-10.78 1,138 3,733 0 0 0 0 23,351.78 151,635 12,431.27 80,723 11 588 1,929 0 150 494 8 6,648.22 43,170 3,140.57 20,393 12 599 1,965 0 301 987 8 29,999.99 194,805 13,132.80 85,278 13 605 1,986 0 301 987 -8 30,000.01 194,805 11,206.14 72,767 14 665 2,182 0 150 494 -8 29,999.99 194,805 10,459.59 67,919 15 1,187 3,894 0 301 987 8 29,999.99 194,805 12,597.80 81,804 14 1,146 3,759 0 150 494 -8 30,000.01 194,805 9,626.28 62,508 16-14.05 1,135 3,724 0 0 0 0 1,615.95 10,493 480.42 3,120 17 591 1,940 0 150 494 8 28,384.01 184,312 7,012.01 43,533 18 607 1,992 0 301 987 a 30,000.02 194,805 6,367.23 41,346 19 628 2,059 0 301 987 -8 29,999.99 194,805 5,585.90 36,272 20 776 2,547 0 150 494 -8 30,000.05 194,805 5,014.38 32,561 20-20.86 1,151 3,778 0 150 494 -8 25,813.28 167,619 4,062.11 24,377 21 513 1,683 0 ISO 494 8 4,186.71 27,186 422.51 2,744 22 526 1,727 0 301 987 8 29,999.97 194,805 2,546.78 16,538 23 534 1,751 0 301 987 -8 30,000.05 194,806 1,418.28 9,210 24 588 1,927 0 150 494 -8 29,999.97 194,805 960.65 4,238 24-24.95 1,160 3,804 0 150 494 -8 28,615.B0 185,817 948.08 4,156 A P P E N D I X B OFF-HIGHWAY TRUCK SIMULATION PROGRAM Program L i s t i n g and Output Examples APPENDIX B L i s t i n g of MINE a t 09:44:13 on AUG 30. 1985 f o r CC1d»JKRA Page 1 C 11 C • 21 c • 31 c • PROGRAM TITLE: OFF-HIGHWAY TRUCK SIMULATION 41 c * PROGRAM 51 c * PROGRAM NAME: MINE 61 c - PROGRAMMER: JACEK RADLOWSKI 71 c - DATE: AUGUST 31. 1985 81 c • 91 c * LANGUAGE: FORTRAN IV 101 c * 1 1 1 c * USER: UNIVERSITY OF BRITISH COLUMBIA 121 c « Department of M i n i n g and M i n e r a l 131 c • Process E n g i n e e r i n g 141 c * 151 c * 161 c 171 c 181 c * 191 c P R 0 G R A M O B J E C T I V E 201 c « 211 c * To s i m u l a t e the o p e r a t i o n of t r u c k s i n 221 c * open p i t mine 231 c * T r u c k s c a n be of the d i f f e r e n t t y pe, h a v i n g 241 c * d i f f e r e n t c h a r a c t e r i s t i c s , and wo r k i n g on 251 c * d i f f e r e n t r o u t e s . 261 c * For a s i n g l e truck of each type the program 271 c * d e t e r m i n e s time, f u e l consumption and 281 c * p r o d u c t i o n . In terms of an o p e r a t i n g c y c l e . 291 c * as w e l l as h o u r l y . 301 c * The s i m u l a t i o n can be p r o c e s s e d a t the f u l l 311 c * t r u c k c a p a c i t y , or a t any p a y l o a d i n q u i r e d 321 c * from the u s e r 331 c * O p t i o n a l l y , the program c a l c u l a t e s the t o t a l 341 c * d a l l y p r o d u c t i o n In the mine. 351 c * 361 c * 371 c 381 c • 391 c • 401 c • S O U R C E S 41 1 c * 421 c • Wabco v e h i c l e s i m u l a t i o n program. 431 c * Wabco C o n s t r u c t i o n and Min i n g Equipment Group 44 1 c P e o r i a . USA. J u l y . 1980 451 c « 461 r • * A summary of the Lornex f u e l consumption t e s t 471 * r e s u l t s f o r 170 Ton and 235 Ton c a p a c i t y 481 J * mine h a u l a g e t r u c k s . 491 c " Lornex M i n i n g C o r p o r a t i o n L t d . 501 c * Logan Lake. 8 .C. October. 1984 511 c • 52 1 c * Sample r o u t e prof i 1 e s 531 c * Lornex M i n i n g C o r p o r a t i o n L t d . 54 1 c * Logan Lake. B .C. A p r i l , 1985 551 c « 561 S7 1 c r. APPENDIX B L i s t i n g o f MINE a t 15:48:47 o n APR 1 1 , 1988 f o r CC1d=JKRA o n G 581 C ****************************************************** 591 C * * 601 C * A L G O R I T H M * 61 1 C * * 621 C * 1. G i v e n i n i t i a l s p e e d . * 631 C * * 641 C » 2. T h e v e h i c l e 1s u n d e r t h e i n f l u e n c e o f two * 651 C * o p p o s i t e f o r c e s : r l m p u l l a n d t o t a l r e s i s t a n c e * 661 C * * 671 C * T h e r i m p u l l a t t h e p a r t i c u l a r s p e e d v a l u e * 681 C * c a n b e f o u n d f r o m t h e p e r f o r m a n c e d e c k * 691 C * ( S p e e d v s . R l m p u l l c u r v e ) . * 701 C * T h e t o t a l r e s i s t a n c e i s a sum o f r o l l i n g * 711 C * r e s i s t a n c e a n d g r a d e r e s i s t a n c e . * 721 C * ' * 731 C * 3 . A c c e l e r a t i o n p r o d u c e d b y t h e r e s u l t a n t f o r c e * 74 1 c c a n b e c a l c u l a t e d f r o m t h e N e w t o n ' s s e c o n d l a w : * 751 c * • 761 c * A c c e l . = @ ( R l m p u l l - T o t . R e s . ) * S p e c . G r a v " * 771 c * / ( V e h i c l e W e i g h t + E q u i v . W e i g h t o f R o t . P a r t s ) * 781 c * * 791 c * I f a c c e l e r a t i o n b e c o m e s z e r o ( w h e n r i m p u l l * 801 c e q u a l s t o t a l r e s i s t a n c e ) , a n u n i f o r m v e l o c i t y * 811 c * i s r e a c h e d , a n d t i m e I s c a l c u l a t e d d i v i d i n g * 821 c * t h e r a m a i n e d d i s t a n c e b y t h e c o n s t a n t s p e e d . * 831 c * * 841 c 4 . T h e i n c r e a s e o f s p e e d c a n b e c a l c u l a t e d u s i n g * 851 c * t h e a c c e l e r a t i o n a t t h e t i m e i n c r e m e n t s m a l l * 861 c * e n o u g h t o s i m u l a t e I n t e g r a t i o n : * 871 c * * 881 c * D - s p e e d = A c c e l e r a t i o n * D - t l m e * 891 c * * 901 c * 5 . The d i s t a n c e t r a v e l l e d d u r i n g t h e t i m e * 911 c * i n c r e m e n t i s : * 921 c * * 931 c * D - d i s t a n c e = A v e r . S p e e d * D - t i m e * 941 c * w h e r e : * 951 c * A v e r . S p e e d e q u a l s a n a r i t h m e t i c mean * 961 c * o f t h e s p e e d a t t h e s t a r t a n d e n d o f t h e * 971 c * t i m e i n c r e m e n t . * 981 c * * 991 c # 6 . F u e l c o n s u m p t i o n c a n b e c a l c u l a t e d o n a n y * 1001 c * d i s t a n c e a t t h e c o n s t a n t g r a d i e n t . * 101 1 c * a s m u l t i p l i c a t i o n o f t h e f u e l f a c t o r , w e i g h t . * 1021 c * a n d t i m e t r a v e l l e d . * 1031 c * * 1041 c * F u e l f a c t o r i s t o b e f o u n d f r o m t h e f u e l * 1051 c * c o n s u m p t i o n c h a r a c t e r i s t i c s ( F u e l F a c t o r * 1061 c * v s . % G r a d i e n t c u r v e ) , a s a n h o u r l y f u e l * 1071 c * c o n s u m p t i o n p e r 1 s h o r t t o n o f v e h i c l e * 1081 c * w e i g h t . * 1091 c * * 1 101 c * 7 . V e l o c i t y , t i m e , d i s t a n c e , a n d f u e l c o n s u m p t i o n * 1111 c * a r e c u m u l a t e d a t t h i s p o i n t . * 1121 c * * 1 131 c * 8 . Go b a c k t o s t e p 2. * 1141 c * * 1 151 c ****************************************************** APPENDIX B s t i n g o f MINE a t 1 3:05 .22 o n OCT 2 9 . 1987 f o r CC1d=MIND 1 17 C 1 18 C ***************************** 1 19 C ***************************** 120 C ** , ** 121 C * * I N P U T F I L E * * 122 C ** ** 123 C ***************************** 124 C ***************************** 125 . C 126 C 127 C = = ================================ 128 C = = 129 C ..• = D A I L Y PROCESS OPTION 130 C = = " 131 C 132 C 133 C CARD tt 1 134 C 135 C NDAY P r o c e s s d a l l y i n d i c a t o r ( 0 - d o n o t p r o c e s s 136 C d a i l y p r o d u c t i o n , 1 - p r o c e s s d a i l y p r o d u c t i o n ) 137 C U T I l U t i l i z a t i o n f a c t o r h o u r s p e r d a y . [%] 138 C NFROST S e a s o n i d e n t i f i e r (0/1 f o r s u m m e r / w i n t e r ) 139 C c o n t r o l l i n g t h e u t i l i z a t i o n f a c t o r 140 c 141 c 142 c 143 c = = 144 c = V E H I C L E DATA BLOCK 145 c = = 146 c 147 c 148 c 149 c 150 c TRUCK C H A R A C T E R I S T I C S CARDS 151 c 152 c 153 c CARD tt 1 154 c 155 c XMNPH W o r k i n g e f f i c i e n c y , [ m i n / h r ] 156 c ALOAD L o a d t i m e , [ m i n ] 157 c DUMP Dump t i m e , [ m i n ] 158 c SPOT S p o t t i m e , [ m i n ] 159 c LCDE L o a d u n i t c o n t r o l l e r (1 f o r s h o r t t o n s . 160 c 2 f o r l o n g t o n s , 3 f o r m e t r i c t o n s . 161 c 4 f o r c u b . y a r d s , a n d 5 f o r c u b . m e t e r s ) 162 c 163 c 164 c 165 c CARD tt 2 166 c 167 c LBKG V e h i c l e w e i g h t u n i t c o n t r o l l e r 168 c ( 1 f o r l b s , 2 f o r k g ) 169 c EVW Empty v e h i c l e w e i g h t ( u n i t a s LBKG s a y s ) 170 c CAPAC V e h i c l e c a p a c i t y ( u n i t a s LCDE s a y s ) 171 c WPYD M a t e r i a l d e n s i t y ; e n t e r e d o n l y i f l o a d u n i t 172 c c o d e i s 4 o r 5 ( i n l b s / c u b . y a r d o r k g / c u b . m e t e r 173 c r e s p e c t i v e l y ) 174 c APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 175 C 176 C 177 C CARD if 3 178 C 179 C AMOD V e h i c l e model 180 C ENG E n g i n e s y m b o l 181 C WHL E l e c t r i c w h e e l s 182 C T I R E T i r e s 183 C 184 C 185 C 186 C CARD « 4 187 C 188 C NHP H o r s e p o w e r , [ H P ] 189 C FGR F i n a l r e d u c t i o n , [-] 190 C VMAX Maximum v e l o c i t y ( c o n t r o l l e d b y MCDE) 191 C NO, NS D e c k p e r f o r m a n c e r e c o r d c o u n t e r s 192 C IDT D r i v e i d e n t i f i e r (1 f o r e l e c t r . w h e e l . 193 C 2 f o r t r a n s m i s s i o n ) 194 C MCDE V e l o c i t y a n d r i m p u l l u n i t s c o n t r o l l e r : 195 C MC0E=0 . MCDE=1 196 C VMAX ••• [ m i l e s / h r ] [ k m / h r ] 197 C V E L X [ m 1 1 e s / h r ] [ k m / h r ] 198 C RIMF [ l b s ] [ k g ] 199 C VSPT [ f e e t / s e c ] [ m e t r e s / s e c ] 2 0 0 C 201 C : . . . 202 C 203 C CARDS 5 . . . . /NO r e c o r d s / . 204 C 205 C V E L X V e l o c i t y ( c o n t r o l l e d b y MCDE) 206 C RIMF R i m p u l l ( c o n t r o l l e d b y MCDE) 207 C 208 C 209 C 2 1 0 C CARDS (5+N0) . . . . /NS r e c o r d s / 211 C 212 C CGAMMA C o e f f i c i e n t o f w e i g h t o f r o t a t i n g p a r t s , [ - ] 213 C VSPT V e l o c i t y ( c o n t r o l l e d b y L C D E ) 214 C 215 C 216 C 217 C 218 C 219 C FUEL CONSUMPTION CARDS . 22 0 C 221 C 222 C CARD H 1 223 C 224 C F L L O A D F u e l c o n s u m p t i o n o n l o a d , [ l i t r e s / h r ] 2 2 5 C FLDUMP F u e l c o n s u m p t i o n o n dump, [ l i t r e s / h r ] 226 C F L S P O T F u e l c o n s u m p t i o n o n s p o t , [ l i t r e s / h r ] 227 C F I D L E F u e l c o n s u m p t i o n o n i d l e [ l i t r e s / h r ] 228 C NBLOW B l o w e r i n d i c a t o r ( 0/1 - w i t h o u t / w i t h b l o w e r ) 229 C 2 3 0 C 231 C 232 C APPENDIX L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 233 C CARD H 2 234 C 2 3 5 C N L 1 , N L 2 P o i n t c o u n t e r s 2 3 6 C NR1,NR2 2 3 7 C NPOW E n g i n e HP I n d i c a t o r ( o p t i o n 1 o r 2 ) 238 C 239 C 2 4 0 C 24 1 C CARD » 3 242 C 2 4 3 C GRFL A c t u a l g r a d i e n t , [%] 244 c FF F u e l f a c t o r , [ 1 1 t r e s / h r / G V W i n s h o r t t o n s ] 2 4 5 c 246 c .. 247 c 2 4 8 c 2 4 9 c 2 5 0 c D E S I G N A T I O N CARD 251 c 2 5 2 c 253 c CARD 0 1 254 c 2 5 5 c HNO D e s i g n a t i o n ( o n e c h a r a c t e r n a m e ) : 2 5 6 c P ( p r o f l l e ) - r o u t e c h a r a c t e r i s t i c s f o l l o w i n g . 2 5 7 c N ( r i e x t ) - n e x t v e h i c l e t y p e d a t a b l o c k 258 c f o l 1 o w i n g 259 c E ( e n d ) - e n d o f d a t a f i l e 2 6 0 c 261 c 262 c 2 6 3 c 264 c 2 6 5 c ROUTE C H A R A C T E R I S T I C S 2 6 6 c 267 c 2 6 8 c 2 6 9 c CARD # 1 2 7 0 c 27 1 c NHNO R o u t e i d e n t i f i e r 2 7 2 c 273 c 274 c 2 7 5 c CARD H 2 2 7 6 c 277 c METER R o u t e p r o f i l e u n i t c o n t r o l l e r 2 78 c METER=0 METER=1 2 7 9 c V E L I [ m i l e s / h r ] [ k m / h r ] 2 8 0 c V E L T - [ m i l e s / h r ) [ k m / h r ] 281 c SPLM [ m i l e s / h r ] [ k m / h r ] 2 8 2 c SPLMR [ m i l e s / h r ] [ k m / k r ] 2 8 3 c GLTH [ f e e t ] [ m e t r e s ] 284 c DEC [ f t / s q . s e c ] [ m / s q . s e c ] 2 8 5 c 2 8 6 c KRETN R e v e r s e r e t u r n i n d i c a t o r 2 8 7 c ( 0 - n o n r e v e r s e , 1 - r e v e r s e ) 2 8 8 c 2 8 9 c 2 9 0 c APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CCid=MIND 291 C 292 C 293 C CARD H 3 294 C 295 C NTRUCK Number o f t h e same t y p e t r u c k s o n t h e r o u t e 296 C 297 C 298 C 299 C 3 0 0 C P R O F I L E CARDS 301 C 302 C 303 C CARD # 1 304 C 305 C KCODE H a u l / R e t u r n i d e n t i f i e r (H/R) 306 C V E L I I n i t i a l v e l o c i t y ( c o n t r o l l e d b y METER) 307 C V E L T F i n a l v e l o c i t y ( c o n t r o l l e d b y METER) 308 C DEC B r a k i n g d e c e l e r a t i o n ( c o n t r o l l e d b y METER) 309 C 3 10 C 31 1 C CARD D 2 312 C 313 C GRADE G r a d e g r a d i e n t , [%] 314 C RR R o l l i n g r e s i s t a n c e , [%] 315 C G L T H G r a d e l e n g t h ( c o n t r o l l e d b y METER) 316 C SPLM S p e e d l i m i t o n h a u l ( c o n t r o l l e d b y METER) 317 C SPLMR S p e e d l i m i t o n r e t u r n ( c o n t r o l l e d b y METER) 318 c N o t e : I f KRETN=1, t h e n SPLMR must b e b l a n k 319 c a n d no p r o f i l e c a r d s o n r e t u r n . 3 2 0 c 321 c 322 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 323 c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 324 c * * * * 325 c * * O T H E R V A R I A B L E S * * 326 c * * * * 327 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 328 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 329 c 3 3 0 c 33 1 c C A L C U L A T I O N ROUTINES 332 C 3 3 3 C PLOAD P a y l o a d ( c o n t r o l l e d b y L C D E ) 334 C GVWX G r o s s w e i g h t , [ l b s ] 335 C GVW W e i g h t o n h a u l / r e t u r n ( l o a d e d / u n l o a d e d ) , [ l b s ] 3 3 6 C T D I S T T o t a l d i s t a n c e o n h a u l / r e t u r n , [ f e e t ] 3 3 7 C SBF B r a k i n g f o r c e , [ l b s ] 3 3 8 c 339 c 3 4 0 . C S I M U L A T I O N ROUTINE 341 C 342 C TOTR T o t a l r e s i s t a n c e , [ l b s ] 3 4 3 C RFORC R e s u l t a n t f o r c e , [ l b s ] 34 4 C 3 4 5 c A C C I x A c c e l e r a t i o n , [ f e e t / s e c ] 3 46 c V E L x V e l o c i t y , [ f e e t / s e c ] 3 4 7 C T I M x T i m e , [ s e c ] 348 C D I S T x D i s t a n c e , [ f e e t ] APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 3 4 9 C 3 5 0 C FLCONS F u e l c o n s u m p t i o n , [ l i t r e s ] 351 C T O T F L C u m u l a t i v e f u e l c o n s u m p . o n h a u l / r e t u r n , [ l i t r e s ] 3 52 C 353 C I n c r e m e n t o f : 354 C D V EL - v e l o c i t y 3 5 5 C D T I M - t i me 356 C D D I S T - d i s t a n c e 357 C 358 C 359 C C Y C L E ROUTINE 3 6 0 C T i m e a n d f u e l c o n s u m p t i o n : 361 C HAUL,FHAUL - o n h a u l 3 6 2 C R E T N , F R E T N - o n r e t u r n 3 6 3 C C Y C L E , F C Y C L E - p e r c y c l e 364 C 365 C T R I P S T r i p s / o p e r . 1 1 me/hour 366 C TONS P r o d u c t i o n / o p e r . t i m e / h o u r 367 C 368 C 3 6 9 c D A I L Y ROUTINES 37 0 C 371 c DPROD D a i l y p r o d u c t i o n b y a l l t r u c k s o f t h e same t y p e 372 c ( c o n t r o l l e d b y L C D E) 373 c D F U E L D a i l y f u e l c o n s u m p t i o n b y a l l t r u c k s o f t h e 374 c same t y p e , [ l i t r e s ] 3 7 5 c DPRTOT T o t a l d a i l y p r o d u c t i o n , ( c o n t r o l l e d b y L C D E ) 376 c D F L T O T T o t a l d a l l y f u e l c o n s u m p t i o n , [ l i t r e s ] 377 c NTRTOT T o t a l number o f t r u c k s w o r k i n g d u r i n g t h e d a y 378 c 379 c 3 8 0 c F U E L ROUTINES 381 c 382 c F F G F u e l f a c t o r o n g r a d e , [ 1 i t r e s / h r / G V W s h o r t t o n s ] 383 c d 1 , UN R a n g e o f d a t a o f F u e l f a c t o r v s . G r a d e c u r v e 384 c 385 c 386 c * * * * * * * * * * * * * * * * * * * * * * * * * * * * 387 c * * * * * * * * * * * * * * * * * * * * * * * * * * * * 388 c * * * * 389 c ** C O N S T A N T S * * 3 9 0 c * * * * 391 c * * * * * * * * * * * * * * * * * * * * * * * * * * * * 392 c * * * * * * * * * * * * * * * * * * * * * * * * * * * * 393 c 394 c 395 c I/O d e v i c e n u m b e r s : 396 c NRD.NPR - f i l e t o f i l e 3 9 7 c NRDSC.NPRSC - c o n v e r s a t i o n a l mode 398 c 399 c GRAV S p e c i f i c g r a v i t y , [ f e e t / s q . s e c ] 4 0 0 c DTIMO I n i t i a t e t i m e i n c r e m e n t , [ s e c ] 401 c ACCMAX A c c e l e r a t i o n u p p e r l i m i t [ f e e t / s e c ] 4 0 2 c 4 0 3 c GRLMT A b s o l u t e g r a d e l i m i t f o r f u e l f a c t o r c u r v e , [%] 404 c ( A s s i g n GRLMT a c c . t o t h e c u r v e g r a d e r a n g e ) 4 0 5 c 4 0 6 c APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 4 0 7 C C o n v e r t i n g f a c t o r s : 4 0 8 C CLB1 - l b s t o k g 4 0 9 C C L B 2 - s h o r t t o n s t o l b s 4 1 0 C C L B 3 - l o n g t o n s t o l b s 411 C C L B 4 - m e t r i c t o n s t o l b s 412 C C M I L E - m i l e s t o k i l o m e t r e s 4 1 3 C C F T S E C - m e t r e s / s e c t o f e e t / s e c 414 C C F E E T - m e t r e s t o f e e t 4 1 5 C CMIN - h o u r s t o m i n u t e s 4 1 6 C CDAY - d a y t o h o u r s 4 1 7 C 4 18 C 4 1 9 C COUNTERS 4 2 0 C -421 C NGDS D i s t a n c e c o u n t e r 4 2 2 C MVCL V e h i c l e b l o c k c o u n t e r 4 2 3 C NH S e q u e n t i a l r o u t e c o u n t e r 424 C 4 2 5 C I , J , K , L L o o p o r a r r a y i n d e x e s 4 2 6 C 4 2 7 C 4 2 8 C 429 C 4 3 0 C 431 C 432 C ********************************************** 4 3 3 C * * ** 4 3 4 C * * I N I T I A L I Z E * * 4 3 5 c * * ** 436 c ***********: *********************************** 437 c 4 3 8 c 4 3 9 c 4 4 0 c 441 COMMON /NCOMA/ LCDE.EVW,PLOAD,WPYD 44 2 COMMON /NCOMB/ CLB1 , C L B 2 , C L B 3 , C L B 4 4 4 3 COMMON /NCOMC/ V E L X ( 3 0 ) , R I M F ( 3 0 ) , 444 1 C G A M M A ( 2 0 ) . G A M M A ( 2 0 ) , V S P T ( 2 0 ) , N O . NS 4 4 5 COMMON /NCOMD/ MCDE,METER .LBKG 4 4 6 COMMON /NCOME/ G R A D E ( 9 9 ) , R R ( 9 9 ) . G L T H ( 9 9 ) , S P L M ( 9 9 ) . S P L M R ( 9 9 ) 4 4 7 COMMON /NCOMF/ G R D 0 U T ( 9 9 ) , R R 0 U T ( 9 9 ) , G L 0 U T ( 9 9 ) . S P O U T ( 9 9 ) , , S P R 0 T ( 9 9 ) 448 COMMON /NCOMG/ C M I L E . C F E E T , C F T S E C 4 4 9 COMMON /NCOMH/ V E L I , V E L T , D E C 4 5 0 COMMON /NCOMI/ I D T , E N G ( 0 4 ) ,WHL(05) , FGR,T.IRE(04 ) 451 COMMON /NCOMd/ A M 0 D ( 6 , 5 O ) , N H P ( 5 0 ) 4 5 2 COMMON /NCOMK/ A N G L ( 9 9 ) 4 5 3 COMMON /NCOML/ NL1,NL2,NR1.NR2.NPOW 4 5 4 COMMON /NCOMM/ G R F L ( 9 9 ) , F F ( 9 9 ) 4 5 5 COMMON /NCOMN/ EOUT.GVOUT.PLOUT 4 5 6 COMMON /NCOMO/ TONS,FTOT 4 5 7 COMMON /NCOMP/ D P R 0 D ( 5 0 , 5 0 ) , D F U E L ( 5 0 . 5 0 ) 458 COMMON /NCOMO/ N T R U C K ( 5 0 , 5 0 ) , N H A U L ( 5 0 , 5 0 ) 4 5 9 COMMON /NCOMR/ MVCL,NH 4 6 0 COMMON /NCOMS/ DPRTOT,DFLTOT,NTRTOT 461 c 4 6 2 DATA TA / 1 . / 4 6 3 DATA L E T E . L E T H . L E T N , L E T P , L E T R , L E T Y /'E'.'H'.'N'.'P'.'R', , ' Y ' / 46 4 c APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 4 6 5 C 4 6 6 C 4 6 7 C 4 6 8 DIMENSION F F G ( 9 9 ) , N R 0 U T ( 5 O ) 4 6 9 DOUBLE P R E C I S I O N RIMF,TOTR,RFORC 4 7 0 DOUBLE P R E C I S I O N FFG,DPROD,DFUEL,DPRTOT,DFLTOT 471 C 4 7 2 NRD = 10 4 7 3 NPR = 11 47 4 C 4 7 5 NRDSC = 5 4 7 6 NPRSC = 6 4 7 7 C 4 7 8 GRAV = 3 2 . 2 4 7 9 C 4 8 0 DTIMO = 0.5 481 ACCMAX = 4 . 4 4 8 2 BLOWER = 1.05 4 8 3 GRLMT = 8 . 0 48 4 C 4 8 5 C 486 CLB1 = 2.2 0 4 6 2 4 8 7 C L B 2 = 2 0 0 0 . 0 0 4 8 8 C L B 3 = 2 2 4 0 . 0 0 4 8 9 C L B 4 = 2 2 0 4 . 6 2 4 9 0 C M I L E = 1/1.60934 491 C F T S E C = 1.4666667 4 9 2 C F E E T = 3 . 2 8 0 8 3 3 3 3 493 C 494 CMIN = 6 0 . 4 9 5 CDAY = 2 4 . 4 9 6 C 4 9 7 C 498 1002 FORMAT ( 1 1 , 0 9 X , F 1 0 . O , I 1) 4 9 9 1005 FORMAT ( 4 F 1 0 . 0 . I 1 ) 5 0 0 1 0 1 0 FORMAT ( 1 1 , 0 9 X , 3 F 1 0 . O ) 501 1015 FORMAT ( 6 A 4 , 4 A 4 , 5 A 4 , 4 A 4 ) 5 0 2 1 0 2 0 FORMAT ( 1 4 , 06X , 2F 1 0 . 0 . 12 .08X . 12 ,08X . I 1 ,09X . I 1 ) 5 0 3 1025 FORMAT ( 2 F 1 0 . 2 ) 5 0 4 1027 FORMAT ( A 4 ) 5 0 5 1030 FORMAT ( 1 1 , 0 9 X , 1 1 ) 5 0 6 1035 FORMAT (A 1 , 0 9 X , 3 F 1 0 . 0 ) 5 0 7 1 0 4 0 FORMAT ( 1 3 ) 508 2 0 0 5 FORMAT ( 4 F 1 0 . 0 . I 1 ) 5 0 9 2 0 1 0 FORMAT ( 1 2 , 0 8 X , 1 2 , 0 8 X , 1 2 , 0 8 X , 1 2 , 0 8 X , 1 1 ) 5 1 0 2 0 1 5 FORMAT ( 2 F 1 0 . 0 ) 511 2 0 2 0 FORMAT ( A 1 ) 51 2 3 0 2 0 FORMAT (' ',05X, ' V E L ' . 0 6 X , 'TIME',05X, 'DI S T ' , 0 6 X , ' F U E L ' , 0 5 X , 5 1 3 1 'GRADE',03X,'ROL.RES.',02X,'GR . L E N G T H ' , 0 2 X , ' S P . L I M I T ' , 5 1 4 2 02X , ' TOT . RES . ' /.' ' , 04X , ' [MPH] ' , 05X , ' [ MIN] ' , 03X , ' [ F E E T j ' , 5 1 5 3 0 3 X . ' [ L I T R E S ] ' , 0 4 X . ' [ % ] ' , 0 6 X . ' [ % ] ' , 0 6 X , ' [ F E E T ] ' , 0 6 X , 5 1 6 4 ' [ M P H ] ' , 0 4 X , ' [ L B S ] ' / / ) 5 1 7 C 5 1 8 3021 FORMAT (' ' ,05X, 'VEL',06X , ' T I ME',05X, ' D I S T ' , 0 6 X , ' F U E L ' , 0 5 X , 5 1 9 1 'G R A D E ' , O S X , ' R O L . R E S . ' , 0 2 X , ' G R . L E N G T H ' , 0 2 X , ' S P . L I M I T ' , 5 2 0 2 0 2 X , ' T O T . R E S . ' / ' ' , 0 4 X , ' [ K M P H ] ' , 0 4 X , ' [ M I N ] ' , 0 2 X , 521 3 ' [ M E T R E S ] ' , 0 2 X , ' [ L I T R E S ] ' , 0 4 X . ' [ % ] ' , 0 6 X , ' [ % ] ' , 0 5 X , . 5 2 2 4 ' [ M E T R E S ] ' , 0 4 X , ' [ K M P H ] ' , 0 4 X , ' [ K G ] ' / / ) APPENDIX B L i s t i n g o f MINE a t 13:05:22 o n OCT 2 9 , 1987 f o r CC1d=MIND 523 C 524 3 0 2 3 FORMAT ( ' 0 ' , ' I n v a l I d KCODE' ) 525 3 0 2 5 FORMAT ( ' ' , 3 8 X , 2 F 9 . 2 , F 1 2 . 1 , F 1 0 . 2 , F 1 0 . 0 ) 526 3 0 3 0 FORMAT ( ' ' , F 9 . 2 . F 1 0 . 3 , F 9 . 1 . F 9 . 2 ) 527 3 0 3 5 FORMAT ( '0',12X,'HAUL T I M E : ' , F 1 2 . 3 . 0 2 X , 'MINUTES' ) 528 3 0 4 0 FORMAT ( ' 0 ' , 12X, 'RETURN T I M E : ' . F 1 0 . 3 . 0 2 X , 'MINUTES' ) 529 C 5 3 0 3 0 4 5 FORMAT( ',23X, ' L O A D ' . F 1 8 . 3 . F 1 4 . 2 / 531 1 ' . 2 3 X , ' H A U L ' . F 1 8 . 3 . F 1 4 . 2 / 5 3 2 2 ',23X,'TURN AND D UMP',F9.3,F14.2/ 5 3 3 3 ' , 2 3 X , ' R E T U R N ' . F 1 6 . 3 . F 1 4 . 2 / 534 4 ' , 2 3 X , ' S P O T ' , F 1 8 . 3 , F 1 4 . 2 / / 5 3 5 5 '.23X,'TOTAL C Y C L E : ' , F 10. 3 ..F 14 . 2///) / 5 3 6 C 5 3 7 C 538 3 0 5 0 FORMAT ( ' ' , 2 3 X , ' P A Y L O A D / C Y C L E ' , 0 8 X , F 1 0 . 1 , 0 2 X , ' S H O R T TONS'/ 5 3 9 1 ' ' , 23X,'PROD/OPER.TIME/HR',04X,F10.2,02X,'SHORT TONS'/) 5 4 0 C 541 C 542 3 0 5 5 FORMAT ( ' ',23X, ' P A Y L O A D / C Y C L E ' , 0 8 X , F 1 0 . 1 . 0 2 X . 'LONG TONS'/ 5 4 3 1 ' ',23X,'PROD/OPER.HR',09X,F10.2,02X,'LONG TONS'/) 544 C 545 C 546 3 0 6 0 FORMAT ( ' ' ,23X, ' P A Y L O A D / C Y C L E ' , 0 8 X , F 1 0 . 1 , 0 2 X , 'METRIC TONS'/ 547 1 ' ',23X,'PROD/OPER.HR'.09X.F10.2,02X,'METRIC TONS'/) 548 C 5 4 9 C 5 5 0 3 0 6 5 FORMAT ( ' ' ,23X, 'PAYLOAD/CYCLE' , 0 8 X , F 1 0 . 1,02X, 'CUBIC YARDS'/ 551 1 ' ',23X,'PROD/OPER.HR'.09X.F10.2,02X,'CUBIC YARDS'/) 5 5 2 C 553 C 554 3 0 7 0 FORMAT ( ' ',23X, 'PAYLOAD/CYCLE' . 0 8 X . F 1 0 . 1, 'CUBIC METERS'/ 5 5 5 1 ' ' ,23X,'PROD/OPER.HR'.09X.F10.2,02X,'CUBIC METERS'/) 5 5 6 C 557 C 558 3 0 8 0 FORMAT ( ' ' ,12X,'FUEL ON HAUL: ' . 0 2 X . F 7 . 2 , 0 2 X . ' L I T R E S ' / / / / ) 5 5 9 3 0 8 5 FORMAT ( ' ' . 1 2 X , ' F U E L ON R E T U R N : ' . F 7 . 2 , 0 2 X , ' L I T R E S ' / / / / ) 5 6 0 C 561 C 562 3 0 9 0 FORMAT ( ' ',23X,'C Y C L E ' ,08X, ' T I M E ' , 1 1X, ' F U E L ' / 563 1 ' ' , 4 0 X , ' [ M I N ] ' , 0 8 X , ' [ L I T R E S ] ' / ) 5 6 4 C 5 6 5 C 5 6 6 3 0 9 5 FORMAT ( ' ' ,29X, 'OPER.TIME: ' . F 5 . 1 , 0 2 X . 'MIN/HOUR'/ 5 6 7 1 ' 0 ' , 2 3 X , ' T R I P S / O P E R . T I M E / H R ' . 0 7 X , F 6 . 3 . 0 2 X , ' T R I P S ' ) 5 6 8 C 5 6 9 C 5 7 0 3 1 0 0 FORMAT ( ' 0 ' , 3 3 X , ' F U E L C O N S U M P T I O N ' / ' © ' , 2 3 X , ' F U E L / O P E R . T I M E / H R ' , 571 1 F 1 4 . 2 . 0 2 X . ' L I T R E S ' / ' ' , 2 3 X , ' F U E L / I D L E T I M E / H R ' , F 1 4 . 2 . 572 2 0 2 X , ' L I T R E S ' / ' '.23X,'TOTAL F U E L / H R ' , F 1 8 . 2 , 0 2 X . 5 7 3 3 ' L I T R E S ' ) 574 C 575 C 5 7 6 3 1 0 5 FORMAT ( ' 0 ' , ' I n v a l i d d a t a c o d e ' ) 577 C 578 C 5 7 9 C 5 8 0 C APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 581 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 582 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 5 8 3 C * * * * 584 C ** M A I N L O G I C * * 58 5 C * * * * 5 8 6 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 587 C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 5 8 8 C 5 8 9 c o r , C f 591 C READ TRUCK C H A R A C T E R I S T I C S 59 2 P 593 c 5 9 4 6 0 MVCL = 0 59 5 NH = 0 596 C 597 DO 6 0 1 0 J = 1 , 5 0 59 8 N R O U T ( d ) = 0 5 9 9 6 0 1 0 CONTINUE 6 0 0 C 601 DPRTOT = 0 . 0 602 D F L T O T = 0.0 60 3 NTRTOT = 0 6 0 4 C 6 0 5 READ ( N R D , 1 0 0 2 ) NDAY,UTIL,NFROST 6 0 6 C 6 0 7 65 MVCL = MVCL + 1 6 0 8 NSTART = 1 6 0 9 C 6 1 0 READ ( N R D , 1 0 0 5 ) XMNPH,ALOAD,DUMP,SPOT , LCDE 61 1 READ ( N R D , 1 0 1 0 ) LBKG.EVW,CAPAC.WPYD 612 READ ( N R D , 1 0 1 5 ) ( A M O D ( L , M V C L ) , L = 1 . 6 ) , E N G . W H L , T I R E 6 1 3 READ ( N R D , 1 0 2 0 ) NHP(MVCL),FGR,VMAX,NO,NS,IDT,MCDE 614 c 6 1 5 READ ( N R D , 1 0 2 5 ) ( V E L X ( J ) . R I M F ( u ) , d = 1.N0) 616 READ ( N R D , 1 0 2 5 ) ( C G A M M A ( d ) , V S P T ( d ) , d = 1 , N S ) 6 1 7 c 6 1 8 LCAP = LCDE 6 1 9 PLOAD '= CAPAC 6 2 0 WCAP = WPYD 621 c 6 2 2 C A L L TRUCK(GVWX, VMAX) 6 2 3 c 6 2 4 I F (NOAY .EQ. 1) DHR = CDAY * ( U T I L / 1 0 0 . ) 6 2 5 c 6 2 6 c 6 2 7 L. 6 2 8 c READ F U E L C H A R A C T E R I S T I C S 6 2 9 c 6 3 0 c 631 READ ( N R D . 2 0 0 5 ) FLLOAD,FLDUMP,FLSPOT,FIDLE.NBLOW 632 READ ( N R D , 2 0 1 0 ) NL1,NL2,NR1,NR2,NPOW 6 3 3 c 6 3 4 N = NL1 + NL2 + NR1 + NR2 63 5 c 6 3 6 READ ( N R D , 2 0 1 5 ) ( G R F L (<J ) , FF ( J ) , d=1,N) 63 7 c 6 3 8 c APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 6 3 9 C 6 4 0 C 641 C T E S T D E S I G N A T I O N 6 4 2 C 6 4 3 C 644 72 READ ( N R D . 2 0 2 0 ) NDES 6 4 5 C 6 4 6 I F (NDES .EO. L E T E ) GOTO 99 9 9 6 4 7 I F (NDES .EO. L E T N ) GOTO 65 648 I F (NDES .EQ. L E T P ) GOTO 7 2 2 0 6 49 C 6 5 0 WRITE ( N P R S C . 3 1 0 5 ) 651 STOP 652 C 653 C 6 5 4 C ===================================================== 6 5 5 C ASSIGN PAYLOAD 656 C 6 5 7 C 658 7 2 2 0 READ ( N R D . 1 0 2 7 ) NHNO 6 5 9 READ ( N R D . 1 0 3 0 ) METER,KRETN 6 6 0 C 661 C A L L S E T P L D (NRDSC,NPRSC,NHNO,CAPAC,LCAP,WCAP,GVWX) 662 c 6 6 3 c 664 NROUT(MVCL) = NROUT(MVCL) + 1 66 5 NH = NH + 1 66 6 c 667 READ ( N R D . 1 0 4 0 ) NTRUCK(MVCL,NH) 6 6 8 c 6 6 9 I F (NDAY .EO. 1) NHAUL(MVCL,NH) = NHNO 6 7 0 c 671 c 672 c 6 7 3 c A S S I G N GROSS WEIGHT ON HAUL 674 c 6 7 5 c 676 7 7 7 7 GVW = GVWX 677 C 678 C 679 C 6 8 0 c PRINT HEADINGS 681 c 6 8 2 c 683 N T I T L E = 1 684 C A L L HEADPR(NHNO,NTITLE,NPR) 6 8 5 N T I T L E = 0 68 6 c 6 8 7 I F ( M E T E R ) 7 3 1 , 7 3 1 , 7 3 2 6 8 8 731 WRITE ( N P R . 3 0 2 0 ) 6 8 9 GO TO 76 6 9 0 C 691 732 WRITE ( N P R , 3 0 2 1 ) 692 C 6 9 3 C 694 C 6 9 5 C 6 9 6 C APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 . 1987 f o r CC1d=MIND 6 9 7 C ============================================== 6 9 8 C = PROCESS HAUL (OR RETURN) P R O F I L E CARDS 6 9 9 C ============================================== 7 0 0 C 701 76 READ ( N R D . 1 0 3 5 ) K C O D E . V E L I , V E L T . D E C 7 0 2 C 703 V I S A V = V E L I 7 0 4 V F S A V = V E L T 7 0 5 C 70 6 I F ( N S T A R T ) 7 6 1 0 . 7 6 1 0 . 7 6 0 5 707 7 6 0 5 NSTART = 0 70 8 GOTO 7 6 2 5 7 0 9 C 7 1 0 7 6 1 0 I F ( K C O D E - L E T R ) 7 6 2 5 , 7 6 2 1 . 7 6 2 5 711 C 712 7621 I F ( K R E T N ) 7 6 2 9 . 7 6 2 9 , 7 6 2 3 7 1 3 7 6 2 3 C A L L IDRET(KCODE,NGDS) 7 1 4 GOTO 7631 7 1 5 C 7 1 6 7 6 2 5 I F ( K C O D E - L E T H ) 7 6 2 7 , 7 6 2 9 . 7 6 2 7 7 1 7 7 6 2 7 W R I T E ( N P R , 3 0 2 3 ) 7 1 8 STOP 7 19 C 7 2 0 7 6 2 9 C A L L H L R E T 1 ( N R D , N G D S . T D I S T . T D O U T ) 721 7631 C A L L HLRET2(NGDS,VMAX) 7 2 2 C A L L L I M I T ( N P R , K C O D E , J 1 , J N ) 7 2 3 C 724 C 72 6 C = C A L C U L A T E BRAKING FORCE 7 2 7 C ============================================== 72 8 C 7 2 9 SBF = DEC * (GVW / GRAV) 7 3 0 C 731 c ============================================== 7 3 2 C SIMUL A T I O N ROUTINE 7 3 3 C ============================================== 734 C 7 3 5 C 736 C S i m u l a t i o n b e g i n s . . . . 737 C 73 8 C 7 3 9 D I S T I = 0 . 7 4 0 TIMI = O. 741 C 742 F T I M I = 0 . 7 4 3 T O T F L = O. 744 C 7 4 5 I = 1 74 6 C 747 144 TOTR = ( R R ( I ) + A N G L ( I ) ) * GVW 74 8 C 7 4 9 TROUT = TOTR 7 5 0 I F (METER .EO. 1) TROUT = TROUT/CLB1 751 C 752 DT IM = DTIMO 7 5 3 A D I S T = D I S T I + G L T H ( I ) 754 C APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CCid=MIND 7 5 5 WRITE ( N P R , 3 0 2 5 ) G R D O U T ( I ) , R R O U T ( I ) , G L 0 U T ( I ) . S P O U T ( I ) , T R O U T 7 5 6 C A L L F A C T O R ( G R L M T , N G D S , J 1 , J N , F F G ) 7 5 7 C 75 8 C 7 5 9 148 DO 149 MCF=1,NS 7 6 0 I F ( V E L I . L E . V S P T ( M C F ) ) GOTO 150 761 149 CONTINUE 762 MCF = NS 763 C 764 C 7 6 5 150 DO 152 d=2.N0 766 I F ( V E L I . L E . V E L X ( J ) ) GOTO 156 767 152 CONTINUE 768 C 7 6 9 C 7 7 0 156 RFORC = R I M F ( J - 1 ) + ( R I M F ( J ) - R I M F ( J - 1 ) ) 771 1 / ( V E L X ( d ) - V E L X ( J - D ) * ( V E L I - V E L X ( d - 1 ) ) 7 7 2 ACCI = (RFORC - TOTR) * GRAV / (GAMMA(MCF) + GVW) 773 C 774 C 7 7 5 I F ( A B S ( A C C I ) . L T . 0 . 0 0 0 5 ) GOTO 180 776 I F ( A C C I - A C C M A X ) 168,168,164'' 777 164 ACC I = ACCMAX 778 RFORC = TOTR + ACCI *(GAMMA(MCF) +GVW) / GRAV 77 9 C 7 8 0 168 DVEL = ACCI * DTIM 781 V E L = V E L I + OVEL 782 C 783 C 784 C 785 C Do n o t i n c r e a s e v e l o c i t y p a s t s p e e d l i m i t 7 86 C 787 C 78 8 I F ( ( V E L + 0 . 0 0 0 1 ) . L T . ( S P L M ( I ) " C F T S E C ) ) GOTO 208 789. V E L = S P L M ( I ) * C F T S E C 7 9 0 I F ( V E L . L E . V E L I ) GOTO 180 791 C 792 C 793 DTIM = ( V E L - V E L I ) / ACCI 794 DVEL = ACCI * DTIM 795 GOTO 208 796 C 797 c 798 C C o n s t a n t s p e e d r o u t i n e 7 9 9 8 0 0 c C 801 180 LBCDE = 1 8 0 2 CSD A D I S T - D I S T I 8 0 3 GOTO 248 804 C 8 0 5 184 CSD CSD - S D I S T 80 6 DTIM CSD / V E L I 8 0 7 V E L V E L I 8 0 8 D I S T D I S T I + DDIST 8 0 9 RFORC = TOTR 8 1 0 DVEL V E L - V E L I 811 C 81 2 C APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIND 8 1 3 C 8 1 4 C C a l c u l a t e t h e t i m e a n d d i s t a n c e 8 1 5 C r e q u i r e d t o a t t a i n t h e p r e s e n t v e l o c i t y 8 1 6 C 8 1 7 C 818 208 V E L A - ( V E L I + V E L ) / 2.0 8 1 9 ACCI = 0 V E L . 7 DTIM 8 2 0 T I M = T I M I + DTIM 821 DOIST = DTIM * VELA 8 2 2 O I S T = D I S T I + O O I S T 8 2 3 C 8 2 4 C 825 I F ( D I S T - A D I S T ) 2 1 6 , 2 1 6 , 2 1 2 8 2 6 212 D I S T = A D I S T / 827 DDI ST * A D I S T - D I S T I 8 2 8 V E L = S Q R T ( V E L I * * 2 + 2. * ACCI * D D I S T ) 8 2 9 V E L A = ( V E L + V E L I ) / 2. 8 3 0 DTIM = DDIST / V E L A 831 C 8 3 2 216 V E L P » V E L / C F T S E C 8 3 3 TIMP = T I M / CMIN 83 4 V E L I = V E L 8 3 5 TIMI = T I M 8 3 6 D I S T I = D I S T 8 3 7 C 8 3 8 C 8 3 9 C 8 4 0 C 841 C Do n o t d r i v e p a s t e n d o f g r a d e 8 4 2 C 8 4 3 C 8 4 4 C 8 4 5 I F ( ( D I S T + 0 . 1 0 ) . L T . A D I S T ) GOTO 244 8 4 6 D I S T I = A D I S T 8 4 7 C 8 4 8 VOUT = V E L P 8 4 9 DOUT = D I S T I 8 5 0 C 851 I F ( M E T E R ) 2 4 3 , 2 4 3 , 2 4 2 8 5 2 C 8 5 3 2 4 2 VOUT = VOUT / C M I L E 8 5 4 DOUT = DOUT / C F E E T 8 5 5 C 8 5 6 243 FCONS = ( F F G ( I ) * GVW * ( T I M P - F T I M I ) ) / (CMIN * C L B 2 ) 8 5 7 I F (NBLOW .NE. 0 ) FCONS = FCONS * BLOWER 8 5 8 C 8 5 9 T O T F L = T O T F L + FCONS 8 6 0 C 861 C 8 6 2 WRITE ( N P R . 3 0 3 0 ) VOUT,TIMP.DOUT,TOTFL 8 6 3 F T I M I = TIMP 8 6 4 C 8 6 5 C 8 6 6 I = 1 + 1 8 6 7 GOTO 144 8 6 8 C 8 6 9 C 8 7 0 C APPENDIX B • t i n g O f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 , 1987 f o r CC1d=MIN0 n C 8 7 2 C A r e y o u r e a d y t o a p p l y b r a k e s ? 8 7 3 C 8 7 4 C 8 7 5 244 LBCDE = 0 8 7 6 C 8 7 7 248 I F ( ( 1 + 1 ) - N G D S ) 2 5 6 , 2 5 6 , 2 5 2 8 7 8 252 V E L F = V E L T 8 7 9 Y O I S T = T O I S T 8 8 0 GO TO 2 6 0 881 C 882 256 V E L F = S P L M U + 1 ) * C F T S E C 8 8 3 Y D I S T = A D I S T 8 8 4 C 8 8 5 2 6 0 I F ( V E L I - V E L F ) 2 6 4 . 2 6 4 , 2 6 8 8 8 6 264 S D I S T = 0 . 887 IF ( L B C D E - 1 ) 2 9 6 , 1 8 4 , 2 9 6 8 8 8 C 8 8 9 268 TOTR = ( R R ( I ) + A N G L ( I ) ) * GVW 8 9 0 C 891 I F ( T 0 T R ) 2 7 2 , 2 7 6 , 2 7 6 8 9 2 272 ACCY = 0 . 8 9 3 GO TO 2 8 0 8 9 4 C 895 276 ACCY = (-TOTR * GRAV) / (GAMMA(MCF) + GVW) 8 9 6 C 8 9 7 2 8 0 VELY = V E L I + ACCY * TA 8 9 8 V E L A = ( V E L Y + V E L I ) / 2. 8 9 9 X D I S T = V E L A * TA 9 0 0 ACCS = ( ( - S B F - TOTR) * GRAV) / (GAMMA(MCF) + GVW) 901 S D I S T = ( ( V E L Y * * 2 - V E L F * * 2 ) / ( - 2 . * A C C S ) ) + X D I S T 9 0 2 C 9 0 3 I F ( L B C D E - I ) 2 8 4 , 1 8 4 , 2 8 4 9 0 4 284 R D I S T = YDIST - D I S T I 9 0 5 C 9 0 6 I F ( S D I S T + O . 1 - R D I S T ) 2 9 6 , 3 0 0 , 3 0 0 9 0 7 C 9 0 8 2 9 6 I F ( A B S ( A C C I ) - 0 . 0 0 0 5 ) 1 8 0 , 1 4 8 , 1 4 8 9 0 9 C 9 1 0 C 911 C A p p l y b r a k e s a n d s t o p 9 1 2 C 9 1 3 c 9 1 4 3 0 0 S D I S T = RDIST 9 1 5 D I S T I " Y D I S T - S D I S T 9 1 6 ACCI = ACCY 9 1 7 T I M I = TIMI + TA 9 1 8 D I S T I = D I S T I + X D I S T 9 1 9 C 9 2 0 C 921 I F ( T O T R ) 3 0 4 , 3 0 8 , 3 0 8 9 2 2 304 RFORC = TOTR 9 2 3 GO TO 312 9 2 4 C 9 2 5 308 RFORC = 0 . 9 2 6 C 9 2 7 C 9 2 8 APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 . 1987 f o r CC1d=MIND 9 2 9 3 1 2 V E L P = V E L Y / C F T S E C 9 3 0 TIMP = TIMI / CMIN 931 VOUT = V E L P 9 3 2 DOUT = D I S T I 9 3 3 C 9 3 4 I F ( M E T E R ) 3 1 5 , 3 1 5 , 3 1 4 9 3 5 314 VDUT = VOUT / C M I L E 9 3 6 DOUT = DOUT / C F E E T 9 3 7 C 9 3 8 3 1 5 FCONS = ( F F G ( I ) * GVW * (TIMP - F T I M I ) ) / (CMIN * C L B 2 ) 9 3 9 I F (NBLOW .NE. 0 ) FCONS = FCONS * BLOWER 9 4 0 C 941 T O T F L = T O T F L + FCONS 9 4 2 C 9 4 3 WRITE ( N P R , 3 0 3 0 ) VOUT,TIMP,DOUT,TOTFL 9 4 4 F T I M I = TIMP 9 4 5 C 9 4 6 V E L I = V E L Y 9 4 7 ACCI = ACCS 9 4 8 B T I M = ( V E L I - V E L F ) / (-ACCI) 9 4 9 T I M I = T I M I + BTIM 9 5 0 RFORC = -SBF 951 D I S T I = Y D I S T 9 5 2 V E L A = ( V E L F + V E L I ) / 2. 9 5 3 TIMP = TIMI / CMIN 9 5 4 V E L I = V E L F 9 5 5 V E L P = ( V E L I / C F T S E C ) + .003 9 5 6 C 9 5 7 FCONS = ( F F G ( I ) * GVW * (TIMP 9 5 8 I F (NBLOW .NE. 0 ) FCONS = FCONS 9 5 9 C 9 6 0 T O T F L = T O T F L + FCONS 961 C 9 6 2 I F ( D I S T I - T D I S T ) 3 2 4 , 3 2 8 , 3 2 8 9 6 3 C 9 6 4 3 2 4 VOUT = V E L P 9 6 5 DOUT = D I S T I 9 6 6 C 9 6 7 I F ( M E T E R ) 3 2 6 , 3 2 6 , 3 2 5 9 6 8 3 2 5 VOUT = VOUT / CMILE F T I M I ) ) / (CMIN * C L B 2 ) * BLOWER 9 6 9 DOUT = DOUT / C F E E T 9 7 0 C 971 326 WRITE ( N P R . 3 0 3 0 ) VOUT,TIMP,DOUT,TOTFL 9 7 2 F T I M I = TIMP 9 7 3 C 9 7 4 1 = 1 + 1 9 7 5 GOTO 144 9 7 6 C 9 7 7 3 2 8 WRITE ( N P R , 3 0 3 0 ) V F S A V , T I M P , T D O U T , T O T F L 9 7 8 C 9 7 9 I F (KCODE - L E T R ) 3 3 2 , 3 3 6 , 3 3 2 9 8 0 3 3 2 HAUL = TIMP 981 FHAUL = T O T F L 9 8 2 C 9 8 3 WRITE ( N P R , 3 0 3 5 ) HAUL 9 8 4 WRITE ( N P R , 3 0 8 0 ) FHAUL 9 8 5 GVW=EVW 9 8 6 C APPENDIX B L i s t i n g o f MINE a t 1 3 : 0 5 : 22 o n OCT 2 9 , 1987 f o r CC1d=MIND 987 I F ( M ETER) 3 3 3 , 3 3 3 , 3 3 4 9 8 8 333 WRITE ( N P R , 3 0 2 0 ) 9 8 9 GO TO 335 9 9 0 C 991 334 WRITE ( N P R , 3 0 2 1 ) 992 335 GOTO 76 9 9 3 C 994 336 RETN = TIMP 9 9 5 FRETN = T O T F L 9 9 6 C 9 9 7 WRITE ( N P R . 3 0 4 0 ) RETN 9 9 8 WRITE ( N P R . 3 0 8 5 ) FRETN 9 9 9 C 1000 C 1001 c - END OF CYCLE ROUTINE 1002 c 1003 c 1004 C Y C L E = ALOAD + HAUL + DUMP + RETN + SPOT 1005 T R I P S = XMNPH / C Y C L E 1006 TONS PLOUT * T R I P S 1007 c 1008 F LOAD = ( F L L O A D / CMIN) * ALOAD 1009 FDUMP = (FLDUMP / CMIN) * DUMP 1010 FSPOT = ( F L S P O T / CMIN) * SPOT 101 1 c 1012 F C Y C L E = FLOAD + FHAUL + FDUMP + FRETN + FSPOT 1013 FOPHR = T R I P S * F C Y C L E 1014 FNOPHR = (CMIN - XMNPH) * ( F I D L E / CMIN) 1015 FTOT FOPHR + FNOPHR 1016 c 1017 C A L L . H E A D P R ( N H N O , N T I T L E , N P R ) 1018 N T I T L E 1 1019 c 1020 WRITE ( N P R , 3 0 9 0 ) 1021 WRITE ( N P R , 3 0 4 5 ) ALOAD,FLOAD,HAUL,FHAUL,DUMP,FDUMP, 1022 1 R E T N , F R E T N , S P O T , F S P O T , C Y C L E , F C Y C L E 1023 c 1024 WRITE ( N P R , 3 0 9 5 ) XMNPH,TRIPS 1025 c 1026 GO TO ( 3 4 0 , 3 4 4 , 3 4 8 , 3 5 2 . 3 5 6 ) , LCDE 1027 3 4 0 WRITE ( N P R , 3 0 5 0 ) PLOUT,TONS 1028 GO TO 360 1029 C 10 3 0 344 WRITE ( N P R , 3 0 5 5 ) PLOUT,TONS 1031 GO TO 3 6 0 1032 C 1033 348 WRITE ( N P R , 3 0 6 0 ) PLOUT,TONS 1034 GO TO 3 6 0 1035 C 1036 352 WRITE ( N P R , 3 0 6 5 ) PLOUT,TONS 1037 GO TO 3 6 0 1038 C 1039 356 WRITE ( N P R , 3 0 7 0 ) PLOUT,TONS 104 0 C 1041 3 6 0 WRITE ( N P R , 3 1 0 0 ) FOPHR,FNOPHR,FTOT 1042 C 1043 I F (NDAY .EO. 1) C A L L DCALC(DHR) 1044 GOTO 72 APPENDIX B o L i s t i n g o f MINE a t 1 3 : 0 5 : 2 2 o n OCT 2 9 . 1987 f o r CC i d=MIND 1045 C 1046 C 1047 C ===================================================== 1048 C END OF F I L E ROUTINE 1049 C ===================================================== 1050 C 1051 C 1052 9 9 9 9 I F (NDAY .EO. 1) 1053 1 C A L L DPR INT(NPR,CDAY,DHR,UTIL,NFROST,FIDLE,XMNPH,NROUT) 1054 C 1055 C 1056 C A L L R ESET(NRDSC,NPRSC,NAGAIN) 1057 I F ( N A G A I N .EO. 1) GOTO 6 0 1058 C 1059 C 10 6 0 RETURN 1061 END 1062 C 1063 C 1064 C ********************************************** 1065 C ********************************************** 1066 C * * ** 1067 C * * S U B R O U T I N E S * * 1068 C * * * * 1069 C ********************************************** 1 0 7 0 C ********************************************** 1071 C 1072 C 1073 C ********************************************** 1074 C * DCALC SUBROUTINE * 1075 C ********************************************** 1076 C 1077 c T h e p r o g r a m t o c a l c u l a t e t h e d a l l y p r o d u c t i o n a n d 1078 C f u e l c o n s u m p t i o n f o r i d e n t i c a l v e h i c l e s w o r k i n g 1079 c o n t h e same r o u t e , a n d t h e n a c c u m u l a t e g l o b a l 108 0 c t o t a l s . 1081 c 1082 c 1083 SUBROUTINE D C A L C ( D H R ) 1084 c 1085 C 1086 COMMON /NCOMO/ TONS,FTOT 1087 COMMON /NCOMP/ D P R O D ( 5 0 , 5 0 ) , D F U E L ( 5 0 . 5 0 ) 1088 COMMON /NCOMO/ N T R U C K ( 5 0 , 5 0 ) , N H A U L ( 5 0 , 5 0 ) 1089 COMMON /NCOMR/ MVCL,NH 10 9 0 COMMON /NCOMS/ DPRTOT,DFLTOT,NTRTOT 1091 c 1092 DOUBLE P R E C I S I O N DPROD,DFUEL,DPRTOT.DFLTOT 1093 C 1094 DPROD(MVCL,NH) = (TONS * DHR) « NTRUCK(MVCL,NH) 1095 D F U E L ( M V C L , N H ) = ( F T O T * DHR) * NTRUCK(MVCL,NH) 1096 c 1097 NTRTOT = NTRTOT + NTRUCK(MVCL,NH) 1098 DPRTOT = DPRTOT + DPROD(MVCL,NH) 1099 D F L T O T = DFLTOT + DFUEL(MVCL,NH) 1 100 c 1 101 RETURN 1 102 END A P P E N D I X C CASH FLOW CALCULATION PROGRAM Program L i s t i n g APPENDIX C 10 REH t m m m t H H H m m H H m t H H H M H m m t t t t t m 20 REH 30 REH T i t l e i D i s c o u n t e d Cash F l o w A n a l y s i s 40 REH N a t e : TRH1.BAS 50 REH A u t h o r : J a c e k K, R a d l o w s k i 60 REH D a t e : J a n u a r y , 1988 70 REH 80 REH m m m m m H m m m m m m H t m t t m m m m 90 REH 500 REH 502 REH 504 BUFFERS=3:OPTION BASE 1 506 CLEAR 508 KMflX = 20: LENHAX = 10: YRHAX = 50:YRSKIP=0:TABN0=23:PA6E=139 510 CQNVYR=6:ADJC0ST= - .1 512 TITLE**'ALL TRUCK SYSTEH" 514 B1=6:B2=12:B3=17:B4=22 516 REH 518 DIM DTAB(11,YRHAX),TOTAB(KHAX,10,YRHAX),FINALTAB(9,YRHAX) 520 DIM TYPE*(KHAX,2) 522 DATA "TR" 524 DATA 25 526 DATA 10,14,2,15 528 REH 530 DATA "TRUCKS" 532 DATA "154 t o n n e c a p a c i t y " , 9 , 1 534 DATA 1230.0,812.513,12 536 DATA 40,39,42,41,40,38,37,37,39,38,38,36,36,36,37,37 538 DATA 35,34,35,35,35,34,34,34,33,999 540 REH 542 DATA "STATIONARY CRUSHER" 544 DATA " 6 y r a t o r y " , 2 0 , 4 546 DATA 3553.568,1303.050,10 548 DATA 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,999 550 DATA "END" 552 REH 554 REH APPENDIX C 10 REN m t t t m t m m m m m t t t m m m m t t f m m m t t t 20 REH 30 REH T i t l e ) D i s c o u n t e d Cash F l o w A n a l y s i s 40 REH Naaei CVH1.BAS 50 REH A u t h o r s J a c e k K. R a d l o t i s k i 60 REH D a t e : J a n u a r y , 1988 70 REH BO REH i t m t * m m m m t m t m t t m f » m t i t t t m m t ( t f * t t 90 REH 500 REH 502 REH 504 BUFFERS=J:OPTION BASE 1 506 CLEAR 508 KHAX = 10: LENHAX * 10: YRHAX • 50:YRSKIP=0:TABNO=26:PA6E=142 510 C0NVYR=6:ADJCQST= -.1 512 T I T L E * : ' CONVEYIN6 ACROSS BENCHES " 514 B1=6:B2=12:B3=17:B4=22 516 REH 518 D1H D T A B U l , YRHAX), TOTAB (KHAX ,10, YRHAX), FINALT AB ( 9 , YRHAX) 520 DIH TYPE*(KHAX,2) 522 DATA "CV* 524 DATA 25 526 DATA 10,14,2,15 528 REH 530 DATA "TRUCKS' 532 DATA '154 t o n n e c a p a c i t y " , 9 , 1 534 DATA 1230.0,812.513,12 536 DATA 40,39,42,41,40,24,22,21,25,23,20,19,17,16,20,17 538 DATA 14,13,12,12,12,9,8,7,8,999 540 REH 542 DATA 'STATIONARY CRUSHER" 544 DATA " 6 y r a t o r y " , 2 0 , 4 546 DATA 3553.568,1303.050,10 548 DATA 2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,999 550 REH APPENDIX C SS2 DATA "PORTABLE CRUSHER" 554 DATA » G y r a t o r y ' , 2 0t6 556 DATA 8875.0,1303.050,10 558 DATA 0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,999 560 REN 562 DATA MAIN CONVEYOR* 564 DATA " 7 0 0 i * , 2 0 , 5 566 DATA 2625.0,693.681,10 568 DATA 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,999 570 REH 572 DATA " SURFACE CONVEYOR" 574 DATA • 2 2 0 0 i ' , 2 0 , 5 576 DATA 8250.0,549.377,10 578 DATA 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,999 580 REM 582 DATA " EXTENSION CONVEYOR" 584 DATA " 300B",20,7 586 DATA 1125.490,224.853,10 588 DATA 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,999 590 REH 592 DATA "END" -594 REM 596 REM APPENDIX C 10 REH t m m m m m t t m m m t f m m m t m m m m t m 20 REH 30 REH T i t l e ) D i s c o u n t e d Cash F l o w A n a l y s i s 40 REH N a t e : 1NH1.BAS 50 REH A u t h o r : J a c e k K. R a d l o M s k i 60 REH D a t e : J a n u a r y , 1988 70 REH 80 REH f * i t{f« t i » tmt t*t*««t<H**Ht«f«H *mtm»{*t*tt *H t t 90 REH 500 REH 502 REH 504 BUFFERS=3iOPTION BASE 1 506 CLEAR 508 KHAX = 10: LENHAX = 10: YRHAX = 50:YRSKIP=0:TABN0=33:PA6E=149 510 C0NVYR=6:ADJC0ST= - .1 512 T I T L E * * " C0NVEYIN6 WITH INCLINE 514 B1=6:S2-12:B3=17:B4=22 516 REH 518 DIH DTABdl,YRHAX),TOTAB (KHAX,10,YRHAX),FIN AL TAB (9,YRHAX) 520 DIH TYPE*(KHAX,2) 522 DATA " I N " 524 DATA 25 526 DATA 10,14,2,15 528 REN 530 DATA "TRUCKS" 532 DATA '154 t o n n e c a p a c i t y " , 9 , 1 534 DATA 1230.0,812.513,12 536 DATA 40,39,42,41,40,24,22,21,25,23,20,19,17,16,20,17 538 DATA 14,13,12,12,12,9,8,7,8,999 540 REH 542 DATA "STATIONARY CRUSHER" 544 DATA " 6 y r a t o r y " , 2 0 , 4 546 DATA 3553.568,1303.050,10 548 DATA 2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,999 550 REH APPENDIX 552 DATA "PORTABLE CRUSHER* 554 DATA " 8 y r a t o r y " , 2 0 , 6 556 DATA 8875.0,1303.050,10 558 DATA 0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,999 560 REH 562 DATA " HAIN CONVEYOR" 564 DATA " 7 0 0 i \ 2 0 , 5 566 DATA 2625.0,693.681,10 568 DATA 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,999 570 REH 572 DATA " SURFACE CONVEYOR" 574 DATA ' 1800s',20,5 576 DATA 6750.0,450.243,10 578 DATA 0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,999 580 REH 582 DATA "EXTENSION OF HAIN CONVEYOR " 584 DATA " 240ft",20,7 586 DATA 737.9,202.138,10 588 DATA 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,999 590 REH 592 DATA " DRIFT CONVEYOR" 594 DATA " B 0 » " , 2 0 , 7 596 DATA 300.0,24.518,10 598 DATA 0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,999 600 REH 602 DATA "END" 604 REH 606 REH 1000 REN N A I N L 0 6 I C 1005 REH 1010 READ Hi 1015 IF N$=,TR" THEN ADJC0ST= - ADJCOST 1020 READ HL I F E 1025 REH 1030 I F H L I F E O I N T (HLIFE) THEN HLIFE=INT(HLIFE)+1 1035 REH 1040 READ INFL1,CM,TAX,MARR 1045 FACT1=(1*INFL1/100):FACT3=1/(1+HARR/100) 1050 REH 1055 REH 1060 FOR K = 1 TO KHAX 1065 READ N* 1070 I F N$='END" OR HM'end" THEN KEND=K-1:BOTO 1160 ELSE T Y P E $ ( K , 1 ) = « 1075 REH 10B0 READ TYPE$(K,2),DP,FLA6 1085 READ C0ST1,0PER1,INFL2 1090 C R F = ( ( C H / 1 0 0 ) t ( l + ( C H / 1 0 0 ) )AD P ) / ( l l + ( C H / 1 0 0 ) )AD P - l ) 1095 FACT2=U+1NFL2/100) 1100 REH 1105 FOR 1=1 TO YRHAX 1110 READ NUMBER 1115 REH 1120 I F NUNBER=999 THEN GOTO 1140 ELSE I F YR>HLIFE THEN PRINT ' C u r r e n t y e a r e x c e e d s l i n e l i f e ' s B T O P 1125 DTAB<2,I)=NUMBER 1130 NEXT I 1135 REH 1140 60SUB 2000 ' P r o c e s s D e t a i l 1145 NEXT K 1150 REH 1155 REH 1160 1165 REH REH END ROUTINE 1170 F I N A L F L A 6 - 1 1175 BOSUB 4500 A c c u m u l a t e F i n a l T o t a l s 1180 BOSUB 5000 P r i n t F i n a l T o t a l s 1185 REH 1190 END 1195 REH 1200 REH 1205 REH APPENDIX C 2000 REH « m * t » m » m m PROCESS DETAIL m i t # t t # t # m i m m M 2005 REH 2010 REH 2015 FOR 1=1 TO HLIFE 2020 D T A B ( l , I ) = I + Y R S K I P 2025 D T A B I 1 0 , I ) = ( F A C T 3 )A( I - 1 ) 2030 T0TAB(K,10,I)=DTAB(10,I) 2035 F I N A L T A B ( 9 , I ) = D T A B ( 1 0 , I ) 2040 REH 2045 I F DTAB(2,I)>0 AND DTAB(2,I>>TOTAB(K,9,I) THEN 60SUB 2500:REM P r o c e s s I n v e s t m e n t 2050 NEXT I 2055 REH 2060 SOSUB 3000 ' C a l c u l a t e c u s u l a t i v e p r e s e n t v a l u e 2065 GOSUB 3500 ' A d j u s t d e t a i l t a b l e 2070 GOSUB 4000 ' P r i n t D e t a i l T a b l e 2075 REH 20B0 RETURN 2085 REH 2090 REH 2095 REH 2500 REH m f m m t t t m t * PROCESS INVESTHENT m m t m u m m t t 2505 REH 2510 DTAB(3,I) = DTABI2,I) - T0TAB(K,9,I) 2515 DTAB(4,I) = DTAB(3,I) « CQST1 t ( F A C T 1 )A( I - 1 ) 2520 T 0 T A B ( K , 1 , I ) = T0TAB(K,1,I) • DTAB<4,I) 2525 REH 2530 REH 2535 FOR J = l TO DP 2540 DTAB(5,I+J-1) = DTAB(4,I) « CRF 2545 D T A B ( 6 , I + J - l ) = DTAB(4,I) * TAX/100 2550 D T A 8 ( 7 , I + J - l ) = DTAB(5,I+J-1) + DTAB(6,I+J-1) 2555 DTABI8,I+J-1) = DTAB<3,I) « 0PER1 * < F A C T 2 r < I + J - 2 ) 2560 I F <(FLAG=1> AND (I+J - l>=C0NVYR)) THEN DTAB(B,I+J-1)=DTAB(8,I+J-1)*<1+ADJC0ST) 2565 DTAB<9,I+J-i> • DTABI7,1+3-1) + D T A B ( B , 1 + H > 2570 D T A B d l , I + J - l ) • D T A B ( 9 , I + M ) i DTABUO.I) 2575 NEXT i 2580 REH 2585 REH 2590 FOR TO DP 2595 FOR L=2 TO 6 2600 T0TAB(K,L,I+J-1)=T0TAB(K,L,I+J-1)+DTAB(L+3,1+J-1) 2605 NEXT L 2610 REH 2615 T0TAB(K,9,I+J-1)=T0TAB(K,9,I+J-1)+DTAB(3,I) 2620 NEXT J 2625 REN 2630 REH 2635 FOR J » I TO I+DP-1 2640 FOR L=3 TO 11 2645 D T A B ( l , J ) = 0 2650 NEXT L 2655 NEXT J 2660 REH 2665 RETURN 2670 REN 2675 REH 3000 REH * * * * * * * * * * * * * CALCULATE CUHULATIVE TOTALS « m m m m « 3005 REH 3010 T 0 T A B ( K , 7 , l ) = T O T A B ( K , 6 , l ) t T O T A B ( K , 1 0 , l ) 3015 T0TAB<K,8,1)-T0TAB(K,7,1) 3020 REH 3025 FOR 1=2 TO HLIFE 3030 TOTAB < K,7,1)=TOTAB IK,6,1)«TOTAB< K,10,1) 3035 TOTAB(K,8,1)=TOTAB(K,8,1-1)+TOTAB <K,7,1) 3040 NEXT I 3045 REN 3050 RETURN 3055 REH 3500 REH § « « # « « « * « « « « ADJUST DETAIL TABLE m m t m m m m t 3505 REH 3510 FOR 1=1 TO HLIFE-YRSKIP 3515 I F TQTAB(K,9,I)=DTAB(2,I) THEN 60T0 3540 3520 TEHP=T0TABIK,5,I) 3525 T 0 T A B ( K , 5 , I ) * D T A B ( 2 , I ) * 0 P E R 1 * F A C T 2A( I - 1 ) 3530 TEMP=TEHP-T0TAB(K,5,I) 3535 TOTAB(K,6,I)=T0TAB(K,6,I)-TEHP 3540 NEXT I 3545 REH 3550 RETURN 3555 REH 3560 REH 4000 REH * * * * * * * * * * * * * * * * * * PRINT DETAIL TABLE • « « * « * « « « * * « * * * 4005 REH 4010 TABNO=TABNO+1:PABE=PABE+1 4015 HIDTH " l p t l : " , 8 0 : 0 P E N " l p t l s " FOR OUTPUT AS i l 4020 PRINT l l , C H R $ ( 1 2 ) 4025 PRINT l l , C H R * ( 1 0 ) 4030 PRINT l l , S P C ( 4 0 ) •- "JPABEJ" -"sPRINT l l , C H R ( 1 0 ) 4035 PRINT II,CHR(IO).-PRINT #1,CHR*<10)sPRINT II, CHR*(10) 4040 PRINT l l , S P C ( 4 0 ) "TABLE "jTABNOsPRINT i l , C H R * ( 1 0 ) 4045 PRINT l l , S P C ( 3 6 ) T I T L E * 4050 PRINT I1.SPC135) "CASH FLOW ANALYSIS" 4055 PRINT l l , S P C < 3 5 ) " ( i n t h o u s a n d s **>" 4060 PRINT l l , S P C ( 3 0 ) TYPE*(K,1>}", *|TYPE*(K,2)sPRIMT I1,CHR*I10) 4065 CLOSE II 4070 MIDTH " l p t l s " , 2 0 0 s O P E N " l p t l s " FOR OUTPUT AS II 4075 60SUB 6000;60SUB 5500 4080 FOR 1=1 TO HL1FE 4085 I F (I=B1 OR I=B2 OR I=B3 OR 1=B4) THEN PRINT l l , C H R * ( 1 0 ) ; 4090 PRINT l l , S P C ( 1 8 ) j 4095 PRINT I I ,USINB " l l " | I I + Y R S K I P ) } 4100 PRINT l l , U S I N 6 ' l l t l l l l t l , . l " ; T O T A B ( K , l , I ) ; 4105 . PRINT I I ,USINS " l l l l l l l , . r } T 0 T A B ( K , 2 , I ) { 4110 PRINT I I ,USINS ' ###*•#•,.t'}TOTAB(K,3,I)| 4115 PRINT » 1 , U S I N B " i f i t t l l , . i ' j T O T A B ( K , 4 , 1 ) ; 4120 PRINT I I ,USING " • t#l l i# l i,.I1;TOTAB(K,S,I)} 4125 PRINT l l , U S I N B ' l l l l l l l i l l , . l " | T D T A B ( K , 6 , I ) | 4130 PRINT l l , U S I N 6 ' l . l t l l ' ; T 0 T A B ( K , 1 0 , I ) ; 4135 REH 4140 PRINT I I ,USINS ' f i i i f t i i t t , . i ";TOTAB 4145 PRINT 11,USINS " l l l t l l i l l H , . r;TOTAB ( K,B,I) 4150 REH I F 1=4 THEN g o t o 2030 4155 NEXT I 4160 CLOSE l i s S O S U B 6500 4165 REH 4170 RETURN 4175 REH 4180 REH APPENDIX C 4500 REH HHMMtHHM* PROCESS FINAL TOTALS «tmH*mmmm 4505 REH 4510 FOR 1=1 TO HLIFE 4515 FOR L=l TO 8 4520 FOR K=l TO KEND 4525 FINALTAB1L,I)=FINALTAB(L,I)+TOTAB <K,L,I) 4530 NEXT K 4535 NEXT L 4540 NEXT I 4545 REH 4550 RETURN 4555 REH 4560 REH 5000 REH mmm«tmt«t PRINT FINAL TABLE « # « « # « « « « « « # « 5010 REH 5020 TABNO=TABNO+lsPABE=PABE+l 5030 WIDTH " l p t l ! " , 8 0 : 0 P E N " l p t l i " FOR OUTPUT AS 11 5040 PRINT l i , C H R $ ( 1 2 ) 5050 PRINT tl,CHR*(10) 5060 PRINT l l , S P C < 4 0 ) j ' - " i P A B E j * -":PRINT t l,CHR$(10) 5070 PRINT #1 ,CHR*(10)tPRINT t l,CHR*UOI 5080 PRINT 11,SPC(40)j"TABLE "jTABNO:PRINT t l.CHRIUO) 5090 PRINT tl,SPC<30) "CUMULATIVE CASH FLOW ANALYSIS" 5100 PRINT !1,SPC(30) ' ( i n t h o u s a n d s <$) *:PRINT l l,CHR*(10> 5110 PRINT t l,SPC<36)}TITLE*sPRINT t l,CHR$UO) 5120 CLOSE 11 5130 WIDTH " l p t l i " , 2 0 0 : 0 P E N " l p t l i " FDR OUTPUT AS 11 5140 SOSUB 6000:BOSUB 5500 5150 REH 5160 FOR 1=1 TO HLIFE 5170 IF (I=B1 OR I=B2 OR I=B3 OR I=B4) THEN PRINT l l , C H R $ ( 1 0 ) ; 5180 PRINT l l,SPC(16) 5190 PRINT l l,USINS " l l " } ( I + Y R S K I P ) i 5200 PRINT 11,USING " i l t i t f t l t , . i ' ; F l N A L T A B U , I ) ; 5210 PRINT t l,USIN6 ' t t l l t t t l , .1";F1NALTAB(2,I); 5220 PRINT l l.USINS ' t l l t t t i , .1';FINALTAB(3,1); 5230 PRINT t l ,USINB " t t t t t t t , . t1|FINALTAB(4,I); 5240 PRINT » 1 , U S I N G " t##*#tti#,.f)FINALTAB(5,I); 5250 PRINT t l ,USING ' t t t t t t t t t , . l"|FINALTAB(6,I)| 5260 PRINT 11,USING ' t . t t t t";FINALTAB<9,I)j 5270 REH 5280 PRINT t l ,USINB ' t t t t t t t t t , . t'jFINALTAB(7,I)| 5290 PRINT » ! , U S I N G " t t l l H M M , . t';FINftLTAB(B,I) 5300 NEXT I 5310 PRINT l l,CHR*(12) 5320 CLOSE 11 5330 SOSUB 6500 5340 REH 5350 RETURN 5360 REH 5370 REH 5500 REH t f * f * «m**mtmt PRINT HEAD1N6S m H * m t * m * m m * 5505 REH 5510 REH 5515 PRINT t l , S P C ( 1 7 ) 'YEAR INVESTHENT INTEREST INSUR. "| 5520 PRINT 11," FIXED 0PERATIN6 TOTAL'} 552 5 PRINT 11," 151 PV PRESENT PRESENT* 5530 PRINT ll,SPC(37) " i DEPREC. & TAX") 5535 PRINT 11," COSTS COSTS COSTS'} 5540 PRINT t l , " FACTOR VALUE EQUIVAL.' 5545 PRINT ll,CHR*UO) 5550 REH 5555 RETURN 5560 REH 5565 REH 6000 REH Hf«mtf*it«fttt* COHPRESSED PRINT i*««H«»«mm*«Hf« 6005 REH 6010 SI*=CHR*(15) 6015 PRINT 11,SI* 6020 RETURN 6025 REH 6030 REH 6500 REH m«Ht*»tt«tti*t*tt NORHAL PRINT * * * * * * * * * * * * * * * * * * * * * * * * 6505 REH 6510 HIDTH " l p t l s " , 8 0 s Q P E N ' l p t l s ' FOR OUTPUT AS t l 6515 DC2*=CHR*(181 6520 PRINT I1.DC2* 6525 CLOSE t l 6530 RETURN 6535 REH 6540 REH 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0081088/manifest

Comment

Related Items