Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of exhaust gas recirculation on particulate matter emissions from a compression-ignition,… Brakel, Thomas Willem 2002

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_2002-0346.pdf [ 11.73MB ]
Metadata
JSON: 831-1.0080957.json
JSON-LD: 831-1.0080957-ld.json
RDF/XML (Pretty): 831-1.0080957-rdf.xml
RDF/JSON: 831-1.0080957-rdf.json
Turtle: 831-1.0080957-turtle.txt
N-Triples: 831-1.0080957-rdf-ntriples.txt
Original Record: 831-1.0080957-source.json
Full Text
831-1.0080957-fulltext.txt
Citation
831-1.0080957.ris

Full Text

THE EFFECT OF EXHAUST GAS RECIRCULATION ON PARTICULATE MATTER EMISSIONS FROM A COMPRESSIONIGNITION, NATURAL GAS FUELLED ENGINE By  Thomas W i l l e m Brakel  B.Sc (Eng), Queen's University, 2000  A THESIS S U B M I T T E D I N P A R T I A L F U L F I L L M E N T OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in T H E F A C U L T Y O F G R A D U A T E STUDIES DEPARTMENT OF M E C H A N I C A L ENGINEERING W e accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH C O L U M B I A A p r i l 2002 © Thomas W . Brakel, 2002  In  presenting  degree freely  at  this  the  available  copying  of  department publication  of  in  partial  fulfilment  of  the  University  of  British  Columbia,  I  agree  for  this or  thesis  reference  thesis by  this  for  his thesis  and  scholarly  or for  her  of  T h e U n i v e r s i t y o f British Vancouver, Canada  DE-6  (2/88)  Columbia  I  further  purposes  gain  that  agree  may  be  It  is  representatives.  financial  permission.  Department  study.  requirements  shall  not  that  the  Library  an  granted  by  allowed  advanced  shall  permission  understood be  for  the that  without  for head  make  it  extensive of  my  copying  or  my  written  Abstract A mini-dilution tunnel was designed and built to measure particulate matter ( P M ) emissions from a single-cylinder research engine ( S C R E ) based on the Cummins I S X 400 series. The S C R E relies on the high-pressure direct injection of natural gas, pilot ignited with diesel fuel for combustion. T w o methods were used for P M measurements: pre-weighed filters and a tapered element oscillating microbalance ( T E O M ) . A  repeatability study was conducted to determine  the experimental error  associated with P M measurements and to compare results from pre-weighed filters with those taken using a T E O M . The P M emission rate uncertainty was determined to be at maximum 29%, with 10-12% due to measurement uncertainty and the remainder due to poor engine repeatability.  P M emission rates from the T E O M showed excellent  correlation with measurements using pre-weighed filters by applying a correction factor of 1.43. The second part of this work was to examine the effect of replacement exhaust gas recirculation ( E G R ) on particulate emissions. E G R is primarily used in engines to reduce the formation of oxides of nitrogen ( N O ) . x  The drawback of using high E G R  flow rates is a deterioration i n combustion and an increase in the amount of unburned species ( H C , C O , P M ) that are formed. The results show the P M penalty is negligible for E G R rates up to 15% and that increasing the exhaust pressure significantly affects P M and C O emissions. It was also found that increasing the amount of diesel pilot at 800 R P M 75% load with 17% E G R significantly increases P M and C O emissions.  Table of Contents Abstract  ii  Table of Contents List of Figures  iii :  vi  List of Tables  ix  Nomenclature  xi  Acknowledgments  xii  Chapter 1: Introduction  1  1.1  Particulate Matter  1  1.2  Dilution Systems  3  1.3  Exhaust-Gas Recirculation (EGR)  4  1.4  Project goals and objectives  5  Chapter 2: Experimental Apparatus  6  2.1  Dilution System  6  2.2  Single-Cylinder Research Engine (SCRE)  8  2.2.1  HPDI Injector  10  2.2.2  Engine Operation  12  2.2.3  EGR Operation  14  2.2.4  Diesel Flow Measurement  15  2.3  Measurement Techniques  16  2.3.1  Dilution Ratio Determination  17  2.3.2  Pre-Weighed Filters  18  2.3.3  TEOM  19  2.3.4  Measurement Uncertainty  22  iii  Chapter 3: Results and Discussion 3.1  25  Overview  25  3.2 T E O M Validation  27  3.3  Repeatability Study  28  3.4  Comparison with Six Cylinder ISX 400  31  3.5  Sources of Variability  32  3.5.1  Diesel Pulse Width Tests (no EGR)  35  3.5.2  Diesel Pulse Width Tests (with EGR)  38  3.5.3  Back Pressure Tests (no EGR)  40  3.5.4  Effects on In-Cylinder Pressure  42  3.5.5  Exclusion of Data Points (Outliers)  43  3.6 The Effect of Exhaust Gas Recirculation  44  3.6.1  Particulate and N O Emissions  44  3.6.2  In-Cylinder Pressure  47  x  Chapter 4: Conclusions and Future Work  51  4.1  Conclusions  51  4.2  Recommendations for Future Work  52  References  54  Appendix A : Description of Apparatus  57  Appendix B: Experimental Results  59  Appendix C : Analysis of T E O M Output  79  Appendix D: Derivation of Dilution Ratio Calculation  80  Appendix E : Sampling Procedure - Filters with T E O M  82  Appendix F: Operating Procedure - T E O M  84  iv  Appendix G: List of Electronic Files  86  Appendix H : Engine Warm-up and Operating Procedure  87  Appendix I: Diesel Flow Measurement  89  Appendix J: High-Speed Data Summaries  92  v  List of Figures Figure 1-1: Typical composition of heavy-duty diesel engine P M  2  Figure 2-1: Schematic of dilution system  7  Figure 2-2: S C R E and test cell  9  Figure 2-3: Schematic of Westport H P D I injector  10  Figure 2-4: Summary of H P D I Injection Process  11  Figure 2-5: Engine map of S C R E  13  Figure 2-6: Simplified schematic of the T E O M  20  Figure 3-1: Correlation of T E O M Data with Filters  27  Figure 3-2: Repetability Results at low-speed low-load  29  Figure 3-3: Repetability Results at low-speed high-load  29  Figure 3-4: Repeatability Results at high-speed low-load  30  Figure 3-5: Repeatability Results at mid-speed high-load  30  Figure 3-6: P M / C O correlation at low-speed low-load  33  Figure 3-7: P M / C O correlation at low-speed high-load  34  Figure 3-8 : P M / C O correlation at high-speed low-load  34  Figure 3-9: P M / C O correlation at mid-speed high-load  34  Figure 3-10: The effect of diesel pulse width at low-speed low-load  36  Figure 3-11: The effect of diesel pulse width at low-speed high-load  36  Figure 3-12: The effect of diesel pulse width at high-speed low-load  37  Figure 3-13: The effect of diesel pulse width at mid-speed high-load  37  Figure 3-14: The effect of diesel pulse width at low-speed low-load with E G R  38  Figure 3-15: The effect of diesel pulse width at low-speed high-load with E G R  38  vi  Figure 3-16: The effect of diesel pulse width at high-speed low-load with E G R  39  Figure 3-17: The effect of diesel pulse width at mid-speed high-load with E G R  39  Figure 3-18: The effect of back pressure at low-speed low-load  40  Figure 3-19: The effect of back pressure at low-speed high-load  41  Figure 3-20: The effect of back pressure at high-speed low-load  41  Figure 3-21: The effect of back pressure at mid-speed high-load  42  Figure 3-22: The effect of E G R at low-speed low-load  45  Figure 3-23: The effect of E G R at low-speed high-load  45  Figure 3-24: The effect of E G R at high-speed low-load  46  Figure 3-25: The effect of E G R at mid-speed high-load  47  Figure 3-26: I M E P variation with E G R  47  Figure 3-27: Peak cylinder pressure variation with E G R  48  Figure 3-28: Peak cylinder pressure location variation with E G R  48  Figure 3-29: The effect of E G R on heat release at low-speed low-load  49  Figure 3-30: The effect of E G R on heat release at low-speed high-load  49  Figure 3-31: The effect of E G R on heat release at high-speed low-load  50  Figure 3-32: The effect of E G R on heat release at mid-speed high-load  50  Figure 4-1: Detailed Schematic of Dilution System  58  Figure 4-2: Sample T E O M Output  79  Figure 4-3: Sample Diesel flow data - high accuracy  89  Figure 4-4: Sample diesel flow data - low accuracy  89  Figure 4-5: Diesel F l o w Measurements 800 R P M 25% Load  90  Figure 4-6: Diesel F l o w Measurements 800 R P M 75% Load  90  vii  Figure 4-7: Diesel F l o w Measurements 1600 R P M 40% Load  91  Figure 4-8: Diesel F l o w Measurements 1400 R P M 8 5 % Load  91  viii  List of Tables Table 2-1: Cummins I S X S C R E specifications  9  Table 2-2: H P D I injector specifications  12  Table 2-3: Experimental uncertainties in P M calculations  24  Table 3 -1: Summary of experiments  26  Table 3-2: Engine parameters for operating conditions  26  Table 3-3: Summary of relative humidity  30  Table 3-4: P M and gaseous baseline emissions of the S C R E  31  Table 3-5: Comparison of S C R E and six-cylinder I S X 400  32  Table 3-6: Summary of variability test parameters  33  Table 3-7: Location of variability emissions  35  Table 4-1: Detailed description of dilution tunnel components  57  Table 4-2: 800 R P M 25% load baseline emissions  59  Table 4-3: 800 R P M 25% load - B P / D P W data summaries (I)  60  Table 4-4: 800 R P M 25% load - B P / D P W data summaries (II)  61  Table 4-5: Data summaries for 800 R P M 25% load tests (I)  62  Table 4-6: Data summaries for 800 R P M 25% load tests (II)  63  Table 4-7: 800 R P M 75% load baseline emissions  64  Table 4-8: 800 R P M 75% load - B P / D P W emissions (I)  65  Table 4-9: 800 R P M 75% load - B P / D P W emissions (II)  66  Table 4-10: Data Summaries for 800 R P M 75% load tests  67  Table 4-11: 1600 R P M 40% load baseline emissions  68  Table 4-12: 1600 R P M 40% load - B P / D P W test emissions (I)  69  ix  Table 4-13: 1600 R P M 40% load - B P / D P W test emissions (IT)  70  Table 4-14: Data Summaries for 1600 R P M 40% load tests  71  Table 4-15: 1400 R P M 85% load baseline emissions  72  Table 4-16: 1400 R P M 85% load - B P / D P W test emissions (I)  73  Table 4-17: 1400 R P M 85% load - B P / D P W test emissions (II)  74  Table 4-18: Data summaries for 1400 R P M 85% load tests  75  Table 4-19: Excess diesel tests with filter emission rates (I)  76  Table 4-20: Excess diesel tests with filter emission rates (II)  77  Table 4-21: Excess diesel tests with filter emission rates (III)  78  x  Nomenclature A/F  =  Overall air-to-fuel ratio  AVG  =  Average value (mean)  BP  =  Back pressure (exhaust)  CNG  =  Compressed natural gas  CO  =  Carbon monoxide  CO2  =  Carbon dioxide  COV  =  Coefficient of variation (standard deviation/mean)  DPW  =  Diesel (pilot) pulse width  EGR  =  Exhaust gas recirculation  GRIT =  Gas relative injection timing (between pilot and natural gas injection)  HPDI =  H i g h pressure direct injection  IMEP =  Indicated mean effective pressure  GSOI =  (Natural) gas start of injection  NO  =  Oxides of nitrogen ( N O , N 0 , . . . )  PM  =  Particulate matter  PS 01  =  Pilot start of injection (diesel)  Q  =  Mass flow rate of indicated species  x  2  SCRE =  Single cylinder research engine  TEOM =  Tapered element oscillating microbalance  THC  =  Total hydrocarbons  UBC  =  University of British Columbia  p  =  Density of the indicated species  xi  Acknowledgments I am grateful to D r . Philip H i l l and Westport Innovations for giving me the opportunity to become involved i n this project. I would like to thank Gord McTaggartCowan for his hard work setting up the U B C research engine. A l s o , R i c k van Dolder for his enthusiasm and technical support, Sandeep Munshi for his patience and leadership. Financial contributions from  Westport Innovations and N S E R C  are also greatly  appreciated. The assistance of Victor Leung and the use of the filter weighing facilities at the School of Occupational and Environmental Hygiene were crucial to this work. Finally, I would like to express gratitude to my supervisors Steven Rogak and Kendal Bushe for their commitment to this research.  Without their knowledge and guidance  none of this would be possible.  xii  Chapter 1: Introduction The diesel engine is widely used in the power generation and transportation industries. The advantages of this engine over its spark-ignited counterpart are mainly greater efficiency and higher torque at low speeds. These benefits do not come without cost; diesel engines emit significantly higher amounts of particulate matter ( P M ) and oxides of nitrogen ( N O ) . x  One system that preserves the performance benefits of the Diesel cycle while reducing these harmful emissions is the high-pressure direct injection (HPDI) of natural gas with a diesel pilot [1]. Innovations.  This injection process is being developed by Westport  The H P D I system is a retrofit for a diesel engine that replaces the fuel  injection system.  Instead of using entirely diesel, only a small amount (~5% of fuel  energy) is initially injected at high pressure into the cylinder. The pilot spray of diesel autoignites and is followed by the injection of high-pressure natural gas, which subsequently undergoes combustion and performs expansion work on the piston. The natural gas uses the diesel pilot as an ignition source. Initial results [2] have shown a significant reduction of N Q , CO2, and P M while maintaining high thermal efficiency. X  1.1  Particulate M a t t e r Diesel exhaust particulate matter ( P M ) consists of: highly agglomerated solid  carbonaceous material, ash, volatile organic and sulphur compounds [3]. Solid carbon is formed in locally fuel-rich regions inside the cylinder, but subsequently much of it is oxidized.  The remainder is exhausted in the form of particle agglomerates.  1  These  particles v a r y i n size, shape and c h e m i c a l c o m p o s i t i o n . T h e t y p i c a l c o m p o s i t i o n o f P M from a h e a v y - d u t y d i e s e l engine is g i v e n i n F i g u r e 1-1. T h e H P D I system w i t h natural gas is e x p e c t e d to have a m u c h l o w e r sulphate fraction since the m a i n source o f sulphur is diesel f u e l . F u e l and o i l contributions are l i k e l y to b e different, as w e l l as the v a r i a t i o n w i t h speed and l o a d .  Unburned Fuel  7%  Sulphate and  Ash and Other  Figure 1-1: Typical composition of heavy-duty diesel engine PM from Kittlelson [3]  P a r t i c l e g r o w t h is a d y n a m i c process [ 4 ] , i n i t i a t e d b y the formation o f s m a l l n u c l e i i n the c y l i n d e r i m m e d i a t e l y after c o m b u s t i o n has o c c u r r e d .  A s these particles  travel out the exhaust l i n e they g r o w as h y d r o c a r b o n m o l e c u l e s condense.  T h i s process  is d r i v e n b y the fact that the exhaust is b e i n g c o o l e d b y heat loss and m i x i n g w i t h ambient air. C l e a r l y , the m e a s u r e m e n t w i l l be affected b y the p r o x i m i t y to the exhaust m a n i f o l d , w h i c h motivates  the use o f a d i l u t i o n s y s t e m to simulate the process o f  particles l e a v i n g the exhaust m a n i f o l d and b e i n g e m i t t e d into the atmosphere.  2  1.2  D i l u t i o n Systems In 1972 the U S Environmental Protection Agency ( E P A ) defined a full-flow  constant volume sampling process required for P M measurements of heavy-duty diesel engines. This apparatus dilutes the entire exhaust coming out of the vehicle engine, and a portion of diluted exhaust is drawn through a pair of Teflon filters. The E P A defines P M as the mass collected on a filter from exhaust that has been diluted and cooled to 52°C or below [5].  The systems necessary for these E P A tests are extremely large,  cumbersome, expensive and are limited to a range of engine sizes. This led to the use of mini or micro dilution systems, which are more compact but sample only a small amount of the total exhaust stream. A significant amount of work was done on their validation in the 1980s. O f significant importance, M a c D o n a l d et al. [6] looked at the effects of different dilution ratios and filter temperatures on P M measurements using a minidilution tunnel.  This effect was within their experimental error over relatively large  dilution ratio ranges, approximately a 10% reduction i n P M mass for a change i n dilution ratio from 10 to 30. This was also later confirmed by Lapuerta et al. [7] who reported a decrease in P M mass of 25% when changing the dilution ratio from 5 to 25. Kayes and Hochgreb [8] suggest using a dilution ration between 13-18 to obtain the maximum P M emission while minimizing variability. The other important parameter is the temperature of the diluted exhaust as it reaches the primary filter ("filter temperature")- Again, E P A test procedures require this temperature  not to exceed 52°C [5].  The sensitivity of mass measurements  to  temperature was investigated initially by M a c D o n a l d et al. [6] and subsequently by Khalek et al. [9]. MacDonald et al. found a 35% decrease in filter mass when the filter  3  temperature was changed from 35°C to 100°C. Khalek et al. reported a similar decrease in mass measurements. Previous research at UBC/Westport by Baribeau [10] has already been performed on a six-cylinder version of the same engine used in the present study. However, the dilution tunnel was a commercial system built by Sierra Instruments, which may contribute to differences in measurements.  A literature search on P M emissions from  natural gas engines was performed. Information was available on spark-ignited engines with negligible P M emissions.  There was no other data available on compression-  ignition natural gas engine particulate matter at the time of this study.  1.3  Exhaust-Gas Recirculation ( E G R ) One method of reducing the N O emissions from an internal combustion engine x  is to recirculate a portion of the exhaust gas into the inlet air charge. The most recent comprehensive work involving E G R on diesel engines was completed by Ladommatos et al. [11]. They determined the principal mechanism in N O reduction was lowering x  the flame temperature inside the cylinder by replacing O2 with (primarily) CO2 and H2O. They clearly showed the effectiveness of E G R i n reducing N O emissions from the x  engine they tested. They also showed that high amounts of E G R lead to a favourable environment for the formation of unburned hydrocarbons and particulate matter.  Since the overall  flame temperature is being lowered by the dilution of oxygen, there is less heat available to oxidize hydrocarbon particles. This " N O - P M tradeoff for diesel engines is well x  known [11] and similar behaviour is expected for the H P D I system with E G R . Previous 4  research at U B C by McTaggart-Cowan [12] has already investigated the capabilities of E G R to reduce N O emissions. The P M emission results described here complement the x  earlier results on N O for the H P D I engine with E G R . x  1.4  Project goals a n d objectives The objectives of this work were: 1) To design and construct a mini-dilution  tunnel to measure PMfrom  the UBC  SCRE. 2) To determine the repeatability ofPM  measurements using TEOM and filter  sampling methods. 3) To perform a baseline study of the PM emission rate from the SCRE using a "four corners"  approach.  4) To examine the effects of EGR on PM emission rates from the SCRE.  5  Chapter 2: Experimental Apparatus 2.1  D i l u t i o n System The  mini-dilution tunnel in Figure 2.1 was the system used for all P M  measurements described in this document.  Appendix A has detailed information for  each device (mass flow controller, pressure sensor, etc.) as well as dimensions for all piping used. This system was developed since the S C R E required a dilution tunnel for particulate measurements. and accurate flow control.  The main design issues were filter loading, stable flow rates A n iterative process was used to optimize each of these  criteria. The sample flow rate was set to approximately 20 S L P M to keep the pressure difference across the filters below 1 psid. In the experiments performed, dilution ratios between 9-15 were used, which produced an appropriate mass of particulate on the filters. If the mass deposition rate is very high, the pressure drop across the filters w i l l increase rapidly, changing the pressure within the dilution system. If the rate is very low,  sampling times have to be longer.  Mass flow controllers were installed to  compensate for pressure fluctuations i n the dilution tunnel. The sample tube was heated keeping the filter temperature between 43-50°C but never exceeding the upper limit of 52°C.  The sampling period varied, depending on whether or not pre-weighed Teflon  filters were used, but were typically 5 or 10 minutes in duration.  6  I  Air Intake  Supercharger EGR Valve  Exhaust Surge Tank  Intake Surge Tank  Exhaust Back Pressure Valve  • I X I  *.ft. — .• o13 Q  03 XI  X  UJ  IT Oj  CD  CO o co co  ft OJ  M >> 03 d  < CN O  o  cu  £31  Heated Sample Line -j  Single Cylinder Cummins ISX 400  T  Filters  ( AIR! TEOM  O LEGEND T - K type Thermocouple DP - Differential Pressure M F C - M ass Flow Controller  i=dMFC PUMP  TEOM PUMP  Figure 2-1: Schematic of dilution system The dilution system inlet is connected to the main exhaust line approximately 75 cm from the manifold.  This inlet is also connected to the main exhaust duct, past the  back pressure valve, to maintain the sampled exhaust close to atmospheric pressure. During sampling, the pump draws exhaust into the mixing region. It is then combined with approximately 10-15 times (by mass) the amount of dilution air, controlled by a mass flow controller.  The exhaust and dilution air have one meter to travel with a  Reynold's number of 2000.  The resulting mixture either passes through the filter  holders or is drawn into the tapered element oscillating microbalance ( T E O M ) . Proper  7  mixing was confirmed by taking CO2 measurements at the T E O M and filter outlets. The diluted exhaust (sampled air) is filtered and passes through a second mass flow controller to measure the total sample flow.  This air stream then passes through the  pump. O n the pressure side of the pump, there is a line that leads to the CO2 analyzer to measure the diluted sample CO2 concentration i n order to calculate the dilution ratio. The outlet of the pump is reconnected to the exhaust duct that expels the gases to the outside of the building.  2.2  S i n g l e - C y l i n d e r Research E n g i n e ( S C R E ) The engine used in these tests is a modified Cummins I S X 400 series heavy-duty  diesel engine.  Figure 2-2 shows the engine and test cell before the emissions and  dilution system were installed. The engine was modified by Cummins Inc. to operate with one cylinder. The alterations included installing dummy injectors, blocking the intake and exhaust ports, and removing the piston rings from the non-firing pistons. These pistons were also drilled through to reduce compression in the unused cylinders, with the removed mass being replaced by lead i n the wrist pin to maintain the engine balance. The modifications did not include any other changes to the internal workings of the engine - the fuel rails, internal air intake manifold, cam shafts and timing, firing cylinder piston, etc. are all the same as for a production engine. specifications for the S C R E are given in Table 2-1.  8  The actual  Figure 2-2: SCRE and test cell  Engine Type  four-stroke, inline, supercharged, aftercooled  Displacement/cylinder  2.5 L  Compression ratio  19:1  Bore  137 mm  Stroke  169 mm  Connecting rod Length  261.5 mm  Rated power  300 k W @ 1800 R P M  Rated torque  1966 N m @ 1200 R P M  Table 2-1: Cummins ISX SCRE specifications  9  2.2.1  HPDI  Injector  The injector used in this work was designed by Westport Innovations.  The  details o f its operation and design are presented i n the patents by Touchette [13] and Ouellette [14]. T w o internal fueling rails are used to supply the fuels (diesel and natural gas) to the injector, while the hydraulic/mechanical control of the diesel injector is replaced by electronic control for the H P D I system.  A detailed schematic can not be  presented since it is proprietary information. The diagram in Figure 2-3 shows a cam actuated injector, similar to the Westport H P D I injector. The H P D I injection is a twostage process through separate fuel ports.  Diesel fuel is initially injected at high  pressure, followed by the injection of high-pressure natural gas.  The absolute and  relative timing of the two injections affect the efficiency and emissions of the engine. The injection timing is controlled v i a a proprietary controller with software developed by Westport Innovations.  Diesel Pilot  Figure 2-3: Schematic of Westport HPDI injector 10  The injection of diesel begins precisely at the time specified by the pilot start of injection (PSOI), relative to top dead center ( T D C ) .  However, the reservoir beneath the  lower intensifier is filled with diesel for the duration of the pilot pulse width ( D P W ) prior to the PSOI. The D P W refers to the time the reservoir beneath the lower intensifier has to fill with diesel. The timing specified by the P S O I corresponds to the lifting of the pilot needle and thereby injecting diesel.  Setting the gas relative injection timing  (GRIT) controls the delay until natural gas injection. The G R I T specifies the time lapse after the P S O I to the beginning of natural gas injection. The duration of the natural gas injection lasts for the time specified by the gas pulse width ( G P W ) .  Here the G P W  corresponds to the duration the gas needle is lifted and C N G is being injected into the cylinder. A l l of these parameters are set in values of milliseconds. The sequence of events during injection is summarized i n Figure 2-4. The timing used in the performed experiments is given on page 26. The specifications of the injector used in this work are given in Table 2-2. GRIT •  TDC  •DPW-H  • PSOI • A l l timings are in milliseconds  Figure 2-4: Summary of HPDI Injection Process  11  M o d e l Number  J31  Body Number  053 8  Number of Gas holes  0.72mm  Gas hole size Gas Injection Angle  18° from firedeck  Number of Pilot Holes  0.12mm  Pilot Hole Size Pilot Injection Angle Table 2-2:  2.2.2  7  18° from firedeck  HPDI injector specifications  Engine Operation Since the S C R E operates with only one cylinder firing the torque output can be  insufficient to overcome internal friction.  A 30 k W electric motor was also connected  to provide additional power. This arrangement still does not enable operation over the entire I S X 400 range. Figure 2-5 is an engine map that shows the test conditions the S C R E can operate at compared to the six-cylinder version.  A t high speed and load, the  supercharger limits the operating time due to overheating.  This limitation was the  reason for selecting 1400 R P M 85 % load as the high-speed high-load condition.  12  ISX 400 Operating Range and SCRE Operating Range ISX400  «««»»SCRE  __ . • • •  /  •  f •  400  600  800  1000  1200  1400  1600  •i •  1800  2000  Engine Speed (RPM) Figure 2-5: Engine map of SCRE  The procedure for setting the engine at a given speed/load combination was performed as follows. Before engine operation, the supply pressure of natural gas was set at 19 MPa. After 30 minutes of warm-up, the specific injection timing was entered, followed by ensuring enough torque is being supplied by the vector drive to overcome friction. The gas pulse width (GPW) was then entered into the controller. The natural gas flow rate is constantly measured and displayed on the data acquisition system. The GPW was set to ensure the CNG flow rate is as close as possible to the target. The diesel pressure was approximately 0.5 MPa greater than the CNG pressure. The airflow rate was obtained by setting the speed of a motor attached to a Lysholm screw compressor. Once a desired operating condition was set, a period of 7-10 minutes was allowed for the engine to stabilize before sampling. McTaggart-Cowan [15] provides a detailed discussion of the SCRE operation and instrumentation.  13  2.2.3  EGR Operation For E G R operation the exhaust pressure was set approximately 10-20 k P a greater  than the intake manifold pressure by closing the back pressure valve. Opening the E G R valve allowed a portion of the exhaust gas to recirculate into the intake. Obtaining the same back pressure and E G R combination proved to be challenging for the two following reasons.  The back pressure would begin to increase only when the back  pressure valve was approximately 80% closed, and also opening the E G R valve lowered the exhaust back pressure.  A detailed discussion of E G R operation is presented in  Appendix H . In most cases, intake CO2 measurements were taken before and after each E G R sampling period to confirm a consistent E G R rate.  The experiments performed were  based on replacement E G R only. A portion of the intake air was replaced with exhaust gas, and thus lowering the oxygen concentration in the cylinder. The E G R flow rate was calculated using the following relations:  %  E  G  R  =  -«L 1 7 1  freshair  +  xjQO = m  e  { [CQ ] -0.030  1  22  1  [C0 ]  gr  2  \MW  lnlake J , m a k e  Exhaust  exhauslgas  -0.030  ^  m  (  2  i  )  MW 1 V 1  " manifoldair  Here [CO2] represents the C 0 concentrations, MW is the molecular weight of 2  the intake and exhaust gases. The ambient air CO2 concentration was assumed to be 300 ppm. The actual value is slightly higher (380 ppm), however the effect on the calculated E G R rate is only slight decrease of 0.1-0.2%. performed for this reason.  14  Recalculating all E G R rates was not  2.2.4  Diesel Flow  Measurement  The diesel mass flow rate accounts for approximately 5% of the total fuel energy. The method used for measuring the diesel flow rate was based on the "pail and scale" technique, whereby a scale measures the mass of diesel in a small reservoir and the decrease over time is recorded. A linear regression of the mass was used to calculate the diesel fuel consumption.  Appendix I gives a detailed description of the calculation  procedure and difficulties that arise when calculating the diesel mass flow rate. Fluctuations occur when the diesel was warming up during engine start-up or when the engine cell door was opened, which skewed the diesel mass data. A l s o , a period of at least 7-8 minutes is required for sufficient accuracy. If the diesel mass data had high variability for that period, additional test data was pooled.  This provided data for a  longer time span, but the diesel flow rate was assumed constant over this period. The uncertainty in diesel flow measurements is approximately 5-10% at 1400 and 1600 R P M . For tests performed at 800 R P M the error can be as high as 20%, but may be even higher.  15  2.3  Measurement Techniques There were two methods used for measuring P M emitted from the S C R E .  They  are both based on gravimetric analysis - i.e., measurement of the mass of P M deposited on a filter. In either case the following formula was used to calculate the emission rate of P M :  Q PM  m PM m EXHAUST  ENGINE  (2.2)  QPM is the emission rate of P M i n g/hr, given by the concentration of P M in the sampled air stream multiplied by the engine exhaust flow rate (QENGINE)- The engine exhaust flow rate is given by the sum of the natural gas, diesel and inlet air mass flows. The mass of particulate is either taken from a linear regression from the T E O M output data (see Appendix C ) or the difference i n Teflon filter weights before and after being exposed to diluted exhaust. The mass of exhaust being sampled, is given by: VSAMPLE Pt  DR  (2.3)  The volumetric flow rate of diluted exhaust (VSAMPLE) is set by a mass flow controller. SLPM.  For measurements taken with the T E O M , this flow rate is constant at 3.0  The dilution ratio was calculated by measuring the sample CO2 concentration  and comparing it to the engine exhaust CO2 level, as explained in section 2.3.1. The density of air (p) used in the above calculation was 1.293g/L (air @ latm, 0°C) as specified i n the Omega operating manual for the mass flow controllers.  Since the  exhaust is diluted by at least 10 times and is primarily composed of N2 (-70%), no 16  correction factor was deemed necessary since the mixture closely resembles air. The sampling time (t) was recorded with the T E O M and data acquisition computers.  2.3.1  Dilution Ratio  Determination  The P M emission rate was measured from diluted exhaust. In order to calculate the actual emission rate, the amount the exhaust was diluted needs to be determined. The dilution ratio (DR) is defined as:  DR =  (2.4)  Q S A M P L E D  QEXHAUST  This is simply the mass flow rate of the sampled air through the filters/TEOM (QSAMPLED) divided by the mass flow rate of exhaust into the dilution tunnel (QEXHAUST)There are two methods for performing this calculation. It is possible to measure these flow rates and/or use conservation of mass to calculate the unknown quantities directly.  However, the flow rate of raw exhaust coming from the engine is generally  difficult to measure.  This is due to the fact it is at high-temperature, contains  particulates and is pulsating since it is driven by a single-cylinder engine. T o obtain the exhaust flow rate one might simply subtract the dilution air flow rate from the sampled flow rate, except these two values are typically 10 times greater than the exhaust flow. Hence, this method would lead to an unacceptably high experimental error (~25%). Obtaining the dilution ratio from mass flow rates was calculated but was used for verification purposes only.  17  It is shown in Appendix D that the dilution ratio can be related by measuring the gas composition before and after dilution.  The relationship in terms of wet CO2  concentrations is given by: _ (l CO ] EXHAUST ~~ [ CO ] 2  2  (j CO2 ] SAMPLED ~ [ CO  2  DILUTI0N  )  ^2 ^  ]DILUTION )  Here, [CO2]EXHAUST is the concentration of the raw engine exhaust, [CO2]DILUTION is the bottled air which is known (500 ppm), and [CO2]SAMPLED is the diluted exhaust. The C 0  2  measurements were performed by non-dispersive infrared (NDIR) analyzers  which operate on a dry basis only. The calculation needs to be corrected for water loss and this is presented i n Appendix D . The use of exhaust gas analysis enables a direct comparison between  the raw exhaust  and diluted exhaust  streams, reducing  the  uncertainty of the dilution ratio measurement.  2.3.2  Pre-Weighed  Filters  This method involves the use of pre-weighed Teflon membrane filters of 47mm diameter and 2 p m mesh size to collect P M . The filters were pre-weighed using a Sartorius M 3 P scale that measures the weight with an accuracy of 0.001 mg, although actual weight measurements varied over approximately 0.010 mg. The P M weights that were measured were at least 0.2 mg, implying the mass measurements should be accurate within 5%. Filters were conditioned for at least 48 hours in the weighing room to match the humidity conditions prior to being weighed.  The weighing room is a  controlled environment at 20°C and 50% relative humidity.  After the filters were  weighed they were numbered and placed in a clear case ready for use.  18  The pre-weighed, numbered filters were then loaded into a Pall-Gelman stainless steel filter holder and inserted into the diluted exhaust air stream for a known time period.  The complete sampling procedure is presented in Appendix E .  Once the  sampling period was over, the filters were removed and placed in the same filter cases. They were later brought to the weighing room to be conditioned again, prior to final weighing. The filters were reweighed at least 48 hours after being left in the weighing room. The difference of the initial and final mass gives the amount of P M deposited over the sampling period. Steady state tests were performed to give average emission rates.  2.3.3  TEOM The other method to obtain P M measurements involved the use of a tapered  element oscillating microbalance ( T E O M ) built by Rupprecht and Patashnick, which automates the weighing procedure. Figure 2-6 is a schematic is of the T E O M . A filter cartridge is attached to the end of a mass transducer that outputs the total accumulated P M mass in real time.  The mass transducer operates on a slightly different principle  than most other weighing devices. The heart of the device consists of a hollow tapered element that is clamped at one end and free to vibrate at the other end.  For a more  detailed discussion of operation and optimization of use of this device for particulate measurements see Okrent [16].  19  Diluted Exhaust (< 7 psig)  Purge Air Inlet (10psig)  Solenoid Valve  Heated Chamber. (50°C)  Filter Cartridge Mass  Mass Flow Controller (3.0 SLPM)  External Pump <  Transducer  Figure 2-6: Simplified schematic of the T E O M  A n exchangeable filter cartridge is placed on the tip of the free end of the tapered element. The sample stream of diluted exhaust is drawn through this filter and down the tapered element.  The chamber leading to the mass transducer is held at a constant  temperature of 5 0 ° C .  The mass flow is held constant at 3.0 S L P M by a mass flow  controller. The tapered element vibrates precisely at its natural frequency. A n electronic control sensor detects this vibration and using a positive feedback loop adds electrical energy to the system to overcome friction. A gain control circuit maintains the vibration at constant amplitude, while a precision counter measures the frequency of oscillations with 0.42 second sampling period. A s more particulate is collected on the filter, the  20  mass of the element increases, which in turn lowers the natural frequency of vibration. This change in frequency can be related to the total mass of P M collected on the filter. The tapered element is in essence a hollow cantilever beam with an associated spring constant and mass.  In a spring mass system it can be shown the frequency is  given by:  (2.6)  Here f is the frequency of oscillations, K is the spring constant and M is the mass of the cantilever. In actual operation, the T E O M monitor always measures the entire mass of the system using: (2.7)  The output from the T E O M was loaded into a spreadsheet and a linear regression was used to calculate the average emission rate.  Appendix C presents actual data  obtained with the T E O M and the method used to calculate the accumulated P M mass. Measurements were taken simultaneously using the T E O M and Teflon filters to compare emission rates. When only the T E O M was used for measurements, blank filters were inserted into the filter holders.  The same operating procedure was used with flows  adjusted to account for the additional T E O M flow. procedure when the only the T E O M was used.  21  Appendix F presents the operating  2.3.4  Measurement  Uncertainty  The error for these experiments is defined in terms of two separate effects. First, there is the uncertainty related to the calculation and measurement of the P M emission rate. The second source is the variability of the emission rate due to the engine itself. Under proper operating conditions, McTaggart-Cowan [12] showed repeatability in gaseous emissions to 5%, except C O and total hydrocarbons that were repeatable to within 10%. The calculation for the P M emission rate was given by: m PM QpM  ENGINE  m EXHAUST  with fV SAMPLE ^ \pt DR 1  m EXHAUST  Y  and the D R given by:  DR =  {[C0 ]  EXHAUST  Qco ]  SAMPLE  2  2  -[C0 ] 2 J 2  -[CO,]2 J  DILUTION DILUTION  The uncertainty for QENGINE comes from the uncertainty of the flow meters used to obtain the sum of the intake air, C N G and diesel flow rates. A turbine flow meter was used to measure the airflow rate, which is accurate to 3%. The airflow is around 40 - 50 times the total inlet fuel flow rate.  Hence, the C N G and diesel flow rates do not  significantly contribute to the measurement uncertainty, but they do affect the engine repeatability.  22  The mass of P M accumulated (JTIPM) was taken from either Teflon filter weights or a regression analysis of the T E O M output.  Both of these processes are assumed to  have a maximum uncertainty of 5%. The mass of sampled exhaust (JUEXHAUST) has two components. The dilution ratio (DR) contributes uncertainty from the CO2 measurements. The analyzers are accurate to 1.5% of full-scale. In the experiments performed, this becomes at maximum 6% for the sampled CO2 concentration {[CO2]SAMPLE) and 4% for the engine CO2 concentration ([C0 ]EXHAUST)- The dilution ratio is believed to be accurate within 10% since it is not 2  unlikely for bias to be present in both analyzers. The other parameters in the MEXHAUST equation are the sampled volume flow rate (V'SAMPLE), the density (p) and the sampling time (t).  The data acquisition computer keeps track of the sampling time with high  accuracy and the density of the mixture is assumed to be the same as air; both of these uncertainties are negligible. The mass flow controllers ensure sampled air (V'SAMPLE) is accurate within 3% of the set flow rate, according to the operating manual. A l l uncertainties are summarized in Table 2-3. If the error is assumed to be random and all of these values are combined, the experimental error due to measurement  w i l l be at maximum 12%.  The actual  uncertainty was calculated based on experimental results presented in Section 3.3.  23  VARIABLE  DESCRIPTION  METHOD OF MEASUREMENT  MAX ERROR  QENGINE  Total engine exhaust flow rate  Intake air - turbine flow meter; C N G , Diesel negligible.  3%  nipM  P M mass obtained TEOM/filters  Total error from balance (filters) or linear regression from T E O M data.  5%  m EXHAUST  mass of exhaust sampled  via parameters (V, p, t, D R ) below  11%  ^SAMPLE  volumetric flow rate at STP for sampled stream  Omega mass flow controller  P  diluted exhaust density (air)  Specified by Omega operating manual  <1%  t  sample duration  Computer / Stopwatch  <1%  [CO2] EXHAUST  exhaust CO2 concentration  Beckman NDIR C 0 (0-20%)  [CO 2] SAMPLE  diluted exhaust (sampled) air  California Analytical NDIR C 0 Analyzer (0-2%)  [CO2]DILUTION  dilution air CO2 concentration  Praxair Medical Air, certified 500 ppm  from  Table 2-3: Experimental uncertainties in P M calculations  24  2  3%  Analyzer  2  4% 6% < 1%  Chapter 3: Results and Discussion 3.1  Overview The results show four important features of this work. First, it was necessary to  validate the calculated emission rates by taking P M measurements simultaneously using the T E O M and pre-weighed filters. The calculated emission rates from both methods were then compared. Second, the repeatability of the P M emission rate of the S C R E at various speed and load conditions was determined using a "four corners" approach. Third, it was intended to identify sources of variability of the P M emission rate. The final objective was to show the effects of E G R rates up to 20% on P M emissions. A summary of all experiments performed is given in Table 3-1. The operating conditions for these experiments are given in Table 3-2. The timing was selected based on previous experiments done by McTaggart-Cowan [12] that were optimized for N O  x  reduction. The same timing was used to obtain corresponding P M measurements. P M , C O , C O 2 , N O , O 2 and T H C emissions are summarized in Appendix B for all x  experiments.  Significant variability existed i n preliminary results, particularly with  E G R , which motivated the experiments performed in section 3.5.  25  Test Description  M e t h o d of Analysis  O p e r a t i n g Points  T E O M validation -  T E O M and Teflon  800RPM/25% Load - 0, 10, 20 % E G R  HPDI with excess  filter at all operating  800RPM/75% Load - 0, 10, 20 % E G R  pilot fuel  points  1600RPM/40% Load - 0, 10, 20 % E G R  Repeatability and  T E O M at all operating  800RPM/25% Load - 0, 10, 20 % E G R  E G R Tests -  points. Filter  800RPM/75% Load - 0, 10, 20 % E G R  HPDI with - 5 %  measurements taken at  1600RPM/40% Load - 0, 10, 20 % E G R  pilot fuel  (vi) for verification.  1400RPM/85% Load - 0, 10, 20 % E G R  Back pressure and  T E O M at all operating  800RPM/25% Load - D P W = 0.7, 1.1, 0.6, 1.0  diesel pulse width  points  (Oand 15% EGR); BP = 11,31,10, 39 kPa  tests - HPDI with  800RPM/75% Load - D P W = 0.7, 1.1, 0.6, 1.0  - 5 % pilot fuel  (0 and 17% EGR); BP = 11, 70, 10, 59 kPa 1600RPM/40% Load - D P W = 0.7, 1.1, 0.6, 1.0 (0 and 17% EGR); BP = 12, 106, 12, 104 kPa 1400RPM/85% Load - D P W = 0.7, 1.1, 0.6, 1.0 (0 and 13% EGR); BP = 11, 152, 14, 158 kPa Table 3-1: Summary of experiments  Operating Point 800RPM 25% load (excess pilot) 800RPM 75% load (excess pilot) 1600RPM 40% load (excess pilot) 800RPM 25% load 800RPM 75% load 1600RPM 40% load 1400RPM 85% load  CNG Flow (kg/hr) 1.2  CNG Pressure (MPa) 19.0  Pilot Flow (kg/hr) 0.80  Air Flow (kg/hr) 72  PSOI (ms)  DPW (ms)  GRIT (ms)  IMEP (bar)  BP (kPa)  -2.0  0.65  1.8  5.5  10  2.9  19.0  0.60  90  -2.0  0.65  1.8  11.4  10  3.6  19.0  0.60  215  -2.2  0.65  1.8  8.5  10  1.2  19.0  0.15  72  -2.0  0.7  1.8  5.5  10  2.9  19.0  0.15  90  -2.0  0.7  1.8 .  11.4  10  3.6  19.0  0.31  215  -2.2  0.7  1.8  8.5  10  6.3  19.0  0.30  275  -2.7  0.7  1.8  14.8  10  Table 3-2: Engine parameters for operating conditions  26  3.2  T E O M Validation The first set of experiments was performed with leaking injector seals.  This  caused excess diesel to be forced into the natural gas line, resulting in over-fueling the engine. The measurements taken with excess diesel being injected were used only to compare T E O M and pre-weighed filter measurements.  A l l emissions were constant  during each testing period. The T E O M gives an online, real time measurement of P M mass.  This device  requires less sampling time and is more convenient to use than weighing filters.  TEOM  measurements were compared with the results from pre-weighed filters taken at the same time. The results are shown in Figure 3-1. A l l emission data for the excess diesel tests is presented in Appendix B starting on page 76. Comparison of Filter a n d TEOM Measurements  9.0 8.0  to <D  7.0  IT <b  6.0  <5  5.0  •  DC c  o  4.0  I  3.0 2.0  'in in  S CL  y = 1.43x R = 0.94 2  1.0 0.0 0.0  1.0  2.0 3.0 4.0 PM Emission Rate - TEOM(g/hr)  5.0  6.0  Figure 3-1: Correlation of T E O M Data with Filters  The  comparison shows  measurements.  a  significant offset  between  filter  and  TEOM  This gives excellent agreement, with a R value of 0.94, but the 43%  correction is relatively high for measurements that are supposed to be the same quantity.  27  This is not unexpected since Green et al.  [17]  showed T E O M  measurements  underestimated P M i o measurements by 15-30% versus other gravimetric techniques. Ayers et al. [18] also found their T E O M under measured PM .5 results by at least 30%. 2  In both cases the authors reported the cause of this bias due to the volatilization of P M in the heated sampling environment of the T E O M .  3.3  Repeatability S t u d y A  preliminary  repeatability  measurements from the S C R E .  study  was  conducted  to  obtain  baseline  A l l results show noticeable day to day variation but  provide a reasonable estimate of the emission rate at each test point. In most cases the emission rate was repeatable within 15% on the same day. The results are shown in Figure 3-2 through Figure 3-5. The emission rates have been normalized by the total fuel flow rate to account for variations in fuel flow.  A t higher load conditions (Figure  3-3 and Figure 3-5) there is higher day to day variability in P M .  The error bars are  calculated using the uncertainty from section 2.3.4, with an additional 10% for engine variation. A l l results at 1400 R P M 85% load have insufficient airflow.  A pressure relief  valve located after the supercharger was set at a value lower than the boost pressure the engine required. Hence, approximately 20% of the airflow was diverted and did not enter the intake manifold.  This was the only condition where the boost pressure  exceeded the pressure relief valve setting, all other operating conditions were not affected.  28  PM Emission Rate at 800RPM 25% Load 0.40  x Mar 6  0.35 a>  0.30  a  0.25  m at  0.20  S  0.15  c o  i  2 a.  • Mar 7  ) :  ::  L  T  1  0.10  I  1  0.05 0.00 3 Trial no. Figure 3-2: Repetability Results at low-speed low-load  PM Emission Rate at 800RPM 75%Load 0.30  x Mar 6 • Mar 7  0.25  • Apr 9  a)  & „ 0.20 0  3  g a 0.15  1s g  0.10  CL  0.05  X 1  ' J  i  J  i  0.00 3 Trial no.  Figure 3-3: Repetability Results at low-speed high-load  The normalized emission rate at 1400 R P M 85% load is approximately three times the emission rate at 1600 R P M 40% load. This is due to the fact that only 80% of the intended airflow was being supplied to the engine as described earlier.  29  PM Bnission Rate at 1600RPM 40% Load  0.35 0.30  i  £  0.25  oS  :  0.20  I  11  i§ 3 0.15 s 0.10 O.  1  • Mar 7 A Mar 8 XApr8  0.05 0.00  3  Trial no.  4  Figure 3-4: Repeatability Results at high-speed low-load  PM Emission Rate at 1400RPM 85%Load 1.50 1.25 o  I  § _ 1.00  1  j  I  L  —1  5 *® 2 3  I  S » 0-75 0.50  • Mar 7  0.25  A Mar 8 + Apr 10 3  4 Trial no.  Figure 3-5: Repeatability Results at mid-speed high-load One factor that may affect the P M emission rate is the variation i n the relative humidity (RH) that changes the water content of the intake air. Table 3-3 summarizes the R H for the various test days. R H was not recorded prior to March 6. Date: R H (%):  Mar 6  Mar 7  Mar 8  Apr 8  Apr 9  A p r 10  32%  33%  35%  45%  50%  55%  Table 3-3: Summary of relative humidity  30  P M and all gaseous emissions are summarized in Table 3-4 with the average ( A V G ) and coefficient o f variation ( C O V ) .  The C O V represents a measure of  experimental error since it is the standard deviation normalized by the mean.  These  values are considered the actual experimental error associated with P M measurements from the S C R E .  Results were included from tests were included under operating  conditions specified in Table 3-2, without E G R .  1600 R P M 40% Load COV AVG 0.30 0.080 3.77 0.024 213.2 0.012 0.012 217.3  1400 R P M 85% Load COV AVG 0.3 0.048 6.24 0.015 0.007 275.9 0.007 282.5  Diesel Flow(kg/hr) C N G Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr)  800 R P M 25% Load AVG COV 0.051 0.16 1.20 0.041 72.6 0.010 74.0 0.010  800 R P M 75% Load COV AVG 0.060 0.17 2.92 0.005 0.017 91.6 94.7 0.017  CO (g/hr) C 0 (kg/hr) N O (g/hr) 0 (kg/hr) tHC (g/hr,Cl) P M (g/hr) - T E O M  4.9 3.7 140.1 11.6 14.7 0.24  0.359 0.039 0.076 0.026 0.084 0.202  72.8 8.8 199.5 8.9 14.0 0.35  0.104 0.014 0.042 0.033 0.131 0.294  26.4 11.3 120.0 33.6 67.7 0.8  0.082 0.032 0.044 0.030 0.070 0.205  187.4 23.3 264.7 32.1 57.2 5.2  0.156 0.015 0.031 0.021 0.056 0.252  CO (g/kg fuel) C 0 (kg/kg fuel) N O (g/kg fuel) 0 (g/kg fuel) tHC (g/kgfuel,Cl) P M (g/kg fuel) - T E O M  3.6 2.7 103.5 8.6 10.8 0.18  0.361 0.052 0.083 0.042 0.065 0.208  23.5 2.8 64.4 2.9 4.5 0.11  0.103 0.011 0.039 0.034 0.133 0.290  6.4 2.7 29.0 8.1 16.4 0.20  0.077 0.025 0.040 0.033 0.072 0.207  29.1 3.6 41.0 5.0 8.9 0.8  0.164 0.018 0.023 0.026 0.060 0.253  2  x  2  2  x  2  Table 3-4: P M and gaseous baseline emissions of the SCRE  3.4  C o m p a r i s o n w i t h S i x C y l i n d e r I S X 400 The following data is presented with results by Baribeau [10] from the six  cylinder I S X 400.  The conditions are slightly different but all results have been  normalized by total fuel flow. This comparison is intended to be an order of magnitude  31  analysis only. The results from both engines are presented in Table 3-5. The operating conditions are slightly different, but there is reasonable agreement with the P M emission rate at low-speed high-load ( S C R E 800 R P M 75% load / I S X 984 R P M 84%) and highspeed low-load ( S C R E 1600 R P M 40% load / I S X 1800 R P M 18%), which are the most similar conditions.  The only large discrepancy is the N O emissions from the S C R E , x  which are significantly higher at all points.  Engine Parameters Speed L o a d (%) PSOI(ms) Diesel F l o w (kg/hr) C N G F l o w (kg/hr) A i r F l o w (kg/hr) C O (g/kg fuel) C 0 (kg/kg fuel) N O (g/kg fuel) O (g/kg fuel) t H C (g/kg fuel) P M (g/kg fuel) 2  x  z  I S X 400  SCRE 800 25 -2 0.16 1.20 72.6 3.6 2.7 103.5 8.6 10.8 0.18  800 75 -2 0.17 2.91 91.6 23.5 2.8 64.4 2.9 4.5 0.11  1600 40 -2.2 0.30 3.77 213.2 6.4 2.7 29.0 8.1 16.4 0.20  1400 85 -2.7 0.29 6.24 275.9 29.1 3.6 41.0 5.0 8.9 0.80  600 0 -0.55 0.47 1.56 N/A 14.4 3.1 44.2 30.0 22.4 0.81  984 84 -1 1.09 28.7 N/A 9.0 2.7 21.1 3.0 2.3 0.12  1800 18 -2.1 •1.82 12.65 N/A 11.3 2.7 19.3 13.9 17.1 0.60  1668 95 -1.7 1.88 60.26 N/A 4.0 2.7 8.9 3.3 2.6 0.09  Table 3-5: Comparison of SCRE and six-cylinder ISX 400  3.5  Sources o f V a r i a b i l i t y Tests were performed in order to account for some of the variability in the  measured P M emissions.  The effects of changing the diesel pulse width (with and  without E G R ) and the exhaust back pressure were investigated. summarized in Table 3-6.  32  The tests are  Operating Point (speed/load) 800RPM 25% load 800RPM 75% load 1600RPM 40% load 1400RPM 85% load  DPW - no E G R BP =10kPa (ms [kg/hr]) 0.7 [0.15], 1.1 [0.22], 0.6 [0.14], 1.0 [0.18] 0.7 [0.16], 1.1 [0.20], 0.6 [0.15], 1.0 [0.18] 0.7 [0.28], 1.1 [0.37], 0.6 [0.25], 1.0 [0.33] 0.7 [0.29], 1.1 [0.34], 0.6 [0.28],1.0 [0.32]  Back Pressure D P W = 0.7ms (kPa) 11,31, 10, 39 11,70, 10, 59 12, 106,12, 104 11, 152, 14, 158  DPW with E G R BP = variable (ms [kg/hr]) 0.7 [0.15], 1.1 [0.22], 0.6 [0.14], 1.0 [0.18] 0.7 [0.16], 1.1 [0.20], 0.6 [0.15], 1.0 [0.18] 0.7 [0.28], 1.1 [0.37], 0.6 [0.25],1.0 [0.33] 0.7 [0.29], 1.1 [0.34], 0.6 [0.28],1.0 [0.32]  EGR for DPW test (%) 15 17 17 13  Table 3-6: Summary of variability test parameters  In order to confirm i f back pressure effects were due to the dilution system, as opposed to changing engine conditions, the normalized C O emission rates have been plotted as well since both emissions are products of incomplete combustion.  The  correlation between P M and C O emissions is high only at 800 R P M 75% load as shown in Figure 3-7. In some cases, the correlation depends on which day the data was collected. The correlations between C O and P M along with the correlation coefficients are given in Figure 3-6 through Figure 3-9. It should be noted the C O analyzer used has a range of 0 to 1% (0-10000 ppm) and C O levels at low load were under 200 ppm. PM and CO correlation at 800 RPM 25% Load Correlation Coefficient = -0.18 8.0 7.0 _ 6.0 jj 5.0 j? 4.0 3 3.0 2.0 1.0 0.0 ).00  •  •  •  •  8  0.10  0.20  0.30 0.40 0.50 PM (g/kg fuel)  0.60  0.70  Figure 3-6: P M / C O correlation at low-speed low-load  33  0.80(  PM and CO correlation at 800 RPM 75% Load Correlation Coefficient = 0.75  70.0 60.0 =  .  50.0 40.0  30.0 O 20.0 o 10.0 0.0 0.00  0.10  0.20  0.30 0.40 PM (g/kg fuel)  0.50  0.60  0.7fJ  Figure 3-7: PM/CO correlation at low-speed high-load  PM and CO correlation at 1600 RPM 40% Load Correlation Coefficient = 0.12  14.0 12.0 | =• 10.0 ^  8.0  |  6.0  8  •  4_  4.0 2.0 0.0 0.00  0.10  0.20  0.30 0.40 PM (g/kg fuel)  0.50  0.60  0.7CJ  Figure 3-8 : PM/CO correlation at high-speed low-load  PM and CO correlation at 1400 RPM 85% Load Correlation Coefficient = 0.38  • • • • \  0.00  0.25  1  0.50  i  1  0.75 1.00 1.25 PM (g/kg fuel)  1.50  1.75  Figure 3-9: PM/CO correlation at mid-speed high-load  34  2.00  The tests at 800 R P M 25% load were performed with excessive engine cooling causing the engine o i l to be 40°C lower than usual. The absolute values of these tests were not considered, they are only used for relative comparison. Tests performed at other conditions were not significantly affected and were included in other sections. The location o f all corresponding emission data can be found in Table 3-7. The relationship between diesel flow and pulse width is presented in Appendix I. Since significant error is associated with the diesel flow rate measurement itself, the results are presented with the corresponding diesel pulse width setting. Speed/ Load  Table  Page N o .  800RPM/25%  Table 4-3  .. 60  800 R P M / 7 5 %  Table 4-8  65  1600 R P M / 4 0 %  Table 4-12  69  1400 R P M / 8 5 %  Table 4-16  73  Table 3-7: Location of variability emissions Data in Appendix B  3.5.1  Diesel Pulse Width Tests (no EGR) The following tests were performed by starting at a typical D P W setting (0.7),  then changing to a high value (1.1), then changing down to a low value (0.6) and finally to a high value (1.0). The emission rates are plotted in the order they were measured in. A t 800 R P M 25% load, there is a lower total exhaust flow at a lower temperature than the other test points. This means there is less flow past the sample tube. Also, the CO2 emission rate is the lowest concentration compared to other operating conditions, which means the uncertainty in the dilution ratio w i l l be higher. Both of these factors 35  make it difficult to determine any significant effects at low-speed low-load. Figure 3-10 shows a slight decrease with increasing D P W , although this is may be due to fluctuations in the C O analyzer. DPW T e s t s at 800RPM 25% L o a d (BP = 11 kPa) 1.6  0.25 DPW  =1.1  IV  £  s a.  1.4  T  0.20  P P W = I  n  T  1.2 ._.  i.o  i-  0.15  DPW  0.10  5  0.8  =0.7  Dl  0.6  DPW = 0.6  |  0.4°  0.05  • P M  OCO  0.00 2  3 Trial No.  0.2 0.0  4  Figure 3-10: The effect of diesel pulse width at low-speed low-load  Slight effects of D P W on P M and C O are found at 800 R P M high load as shown in Figure 3-11. However, the change in emission rates is within experimental error so no conclusion can be drawn. DPW T e s t s at 800RPM 75% L o a d (BP =11kPa) 0.12  35.0  DPW = 1 .0  30.0  0.10  25.0  3} 0.08  |o.06 D) S0.04  20.0 DPW  =0.7  DPW  DPW = 0.6  =0.7  • P M  0.02 0.00  15.0 |) 10.0  Q.  OCO  I =  8  5.0 0.0  3 Trial No.  Figure 3-11: The effect of diesel pulse width at low-speed high-load  The tests performed at 1600 R P M 40% load were biased due to water found in the sampling tube upstream of the T E O M .  This is believed to be the cause of the 36  decaying trend i n the P M emission rate shown in Figure 3-12. The emission rate at trial 5 corresponds to the mean value obtained in previous experiments.  Since the C O  remains constant it is likely there was little change i n the P M emission rate. DPW T e s t s at 1600RPM 40% Load (BP =12kPa) 0.7  0.8  0.6  0.7  DPW =0.7  ^ 3  DPW =0.6  i-  0.6 „ 0.5  DPW = 0.7  S Li.  0.4 ^  oj0.3  DPW = 1 .1  io.2  ,.o  i  0.3 S 0.2 O • P M  0.1  OCO  0.0 2  0.1 0.0  3 Trial No.  Figure 3-12: The effect of diesel pulse width at high-speed low-load  Figure 3-13 shows an increase i n P M and C O when the D P W was changed from 0.7 to 1.1 ms at 1400 R P M 85% load.  However, the emissions remain constant  afterwards. The D P W may affect both P M and C O as shown at 800 R P M high load but it is not definite since the variation is around the same magnitude as the uncertainty. DPW T e s t s at 1400RPM 85% Load (BP =12kPa) 30  0.8 0.7  =• a>  £ 0.5  2 0.4  I  25  0 6  •  D PW = 1.1  20 a> 3 LL 15 j ?  DPW = 1 .0 DPW = 0.6  DPW =0.7  10O  0.3 • PM  °- 0.2  oC  0.1 0.0  2  Trial No.  3  4  O  5  Figure 3-13: The effect of diesel pulse width at mid-speed high-load  37  3.5.2  Diesel Pulse Width Tests (with EGR) Tests were performed in the same manner as described in the previous section,  except with approximately 15% E G R . Slight fluctuations in C O and P M are shown at 800 R P M 25% load in Figure 3-14, but are within experimental uncertainty. DPW T e s t s with 14%EGR at 800RPM 25% Load 0.12  1.6  DPW = 0.7  DPW = 0.6  i  0.10 »0.08 LL i?0.06 2 S0.04  £  1.4  j DPW = 1. ,  i  -  DPW = 1.0  1.0  S  0.8 0.6§ 0.4°  0.02  • PM OCO  0.00 2  3  0.2 0.0  4  Trial No.  Figure 3-14: The effect of diesel pulse width at low-speed low-load with E G R  A t higher load, increasing the D P W produces higher amounts of C O and P M . The diesel flow rate changes from 0.15 to 0.20 kg/hr, which is a difference of 30% of the pilot fuel flow rate. The C O and P M emission rates are increased by approximately the same amount. DPW T e s t s with 17%EGRat 800RPM 75% Load 0.35  70  0.30  60 50=-  |0.25 %0.20 ra0.15 a 0.10  <D  DPW =1.1  40 £ DPW = 1 .0  DPW = 0.7  DPW = 0.6 • P M  0.05  OCO  0.00 2  Trial No.  Ol  30 "Si O 20 O 10 0  3  Figure 3-15: The effect of diesel pulse width at low-speed high-load with EGR  38  N o significant change can be found at either 1600 R P M 40% load or 1400 R P M 85% load with E G R , as shown i n Figure 3-16 and Figure 3-17.  0.8 0.7  DPW T e s t s with 17%BGR at 1600RPM 40% Load DPW = 0.6  DPW = 0.7  0.8  I  __0.6  l0.5 u.  1.0 0.9 0.7: 0.6,  j?0.4  0.5 .  DPW = 1 .0  0.4  f0.3  0.3  °- 0.2  • PM  0.1  OCO  0.0 2  Trial No.  2 si o O  0.2 0.1 0.0  3  Figure 3-16: The effect of diesel pulse width at high-speed low-load with EGR  DPW T e s t s with 13%EGRat 1400RPM 85% Load 1.2  30  1.0  25 DPW = 1.0  0.6  20 » U. 15 O)  0.4  10O  <u 0.8  DPW =0.7  DPW = 1.1  D  P  =  W  0 < s  • P M  0.2  OCO  0.0 2  Trial No.  3  Figure 3-17: The effect of diesel pulse width at mid-speed high-load with EGR  39  3.5.3  Back Pressure Tests (no EGR) The effect of back pressure was examined since a significant back pressure is  required for E G R operation. It is imperative to differentiate between the effects of back pressure alone versus E G R . A t low-speed low-load there is an increase in P M and C O emissions with increasing back pressure as shown in Figure 3-18. BP T e s t s at 800RPM 25% L o a d (DPW = 0.7ms) 3.0  0.18 0.16 ^0.14  f^O.12 m 0.10  f  0.08  S 0.06  2.5  <>  T  BP = 1 1  I <£  I  BP =10  I  BP = 31  i  !  J  2.0 BP=38  1.5 j ?  2.  0.04  • P M  0.02  oco  0.00 2  3 Trial No.  aT £  1.0 O  o 0.5 0.0  Figure 3-18: The effect of back pressure at low-speed low-load  A t 800 R P M 75% load and 1600 R P M 40% load the C O and P M emission rates diverge with increasing back pressure, as shown i n Figure 3-19 and Figure 3-20.  The  normalized C O rates are reduced by approximately half when the engine is operating with a higher back pressure.  These figures also clearly show an increase in P M with  back pressure. A t 800 R P M 75% load it appears there may be a transition region that the back pressure must exceed (~65kPa) to affect the P M emission rate.  40  0.18  BP T e s t s at 800RPM 75% Load (DPW = 0.7ms)  i  0.16 ^0.14 |^0.12  30.0  1  •feo.io 1,0.08 5 0.06  a.  25.0=20.0 £ rj)  B P=6 0  15.01  BP = 11  0.04  • P M  0.02  o  0.00  35.0  2  co  10.o8 5.0 0.0  3 Trial No.  Figure 3-19: The effect of back pressure at low-speed high-load  BP T e s t s at 1600RPM 40% L o a d (DPW =0.7ms) 0.9  0.60 0.50 ® 0.40  I  0.30  CT) 5 0.20  T  5"  0.8  I 1  BP J-1 06  1  I  I  i  BP=1 1  0.6 a> 1  0.5 £  B P =1 04  0-4-3, 0.3O  B P =1 2 • P M OCO  0.10 0.00  0.7^  1-  2  Trial No.  0.2 0.1  0.6  3  Figure 3-20: The effect of back pressure at high-speed low-load  Figure 3-21 shows at 1400 R P M 85% load the opposite trend in P M occurs compared to the previous two cases.  Increasing back pressure tends to suppress the  formation of C O and P M at this operating condition. It is possible the reversal in the P M trend is due to higher exhaust temperatures caused by increasing the exhaust pressure. Appendix B shows the exhaust temperatures for all experiments.  It is possible that  having the exhaust temperature higher allows more hydrocarbons to oxidize or inhibits condensation reactions from occurring.  For example, at 1400 R P M 85% load the  41  temperature increased from 380°C (10 kPa) up to a value of approximately 470°C at (150 kPa).  0.9  BP T e s t s at 1400RPM 85% Load (DPW =0.7ms)  35  0.8 <  of 0.6  10.4 2 0.3 a. 0.2  -  T  25=.  BP = 12  BP = 13  •a, 0.5  30  T  r  0.7  20  BP =130  BP = 150  15 o i 5  I  O +  0"  IT  • PM  0.1  ^5  OCO  0  0.0 1  2  Trial No.  3  4  1 0 O  i  Figure 3-21: The effect of back pressure at mid-speed high-load Heywood [4] states the oxidation rate of C O can be considered negligible below 600°C, which implies the engine conditions must have been changing since the C O concentration w i l l be constant after the gas passes the exhaust valve.  3.5.4  Effects on In-Cylinder Pressure The diesel pulse width or exhaust back pressure did not significantly (at least  10% change) affect the I M E P , heat release rate, peak cylinder pressure or peak cylinder pressure location. A l l high speed data is presented in Appendix J.  There are small  differences in the heat release curves but it is difficult to discern i f these are due to noise in the high speed data or actual changes in combustion. Increasing the back pressure caused an increase in the work required during the exhaust stroke (pumping loop).  42  3.5.5  Exclusion  of Data Points  (Outliers)  From the previous results it was determined that the exhaust back pressure definitely affects the P M emission rate and the amount of diesel injected has more subtle effects.  It was also found that moisture i n the sampling apparatus can lead to an  overestimate of the P M emission rate. Data was excluded from the baseline and E G R results i f it was significantly different than the expected value due to any of the following reasons:  >  The back pressure for n o n - E G R tests was outside of 8-15kPa.  >  The diesel pulse width was set outside of 0.6 - 0.7 ms.  >  The tests performed were within 30 sampling minutes since the first test on that day and the emission rate was exaggerated due to condensation in the dilution system piping.  >  The emission rate recorded by the T E O M was not constant within 5%.  Data points that were excluded were shaded in light gray in Appendix B to show they were deemed outliers.  43  3.6  T h e Effect o f E x h a u s t G a s R e c i r c u l a t i o n Experiments were performed to show the change in P M emissions when using  exhaust gas recirculation to reduce N O levels from the engine. x  The same operating  points were tested as i n section 3.3, with E G R rates up to approximately 22%.  The  emission summaries are located in Appendix B .  3.6.1  Particulate and NO Emissions x  Results were compared over different sampling days to show the effect of E G R on N O and P M emissions. The emission rates (normalized by total fuel flow) for N O x  x  and P M are plotted in Figure 3-22 through Figure 3-25. In all cases a linear decrease in N O was observed as previously shown by McTaggart-Cowan [12]. N O emissions were x  x  not affected by higher back pressure, but as shown in section 3.5.3, P M emissions showed a large sensitivity to changes i n back pressure. A t 800 R P M 25% load there is little effect of E G R on particulate emissions, as shown in Figure 3-22.  However, a slight increase in P M is observed at 10% E G R ,  followed by a slight decrease at E G R levels of 20%.  44  PM and NOx Emissions at 800RPM 25% Load  0.30  §f  0 2 5  If  0.20 I I S 0.15  "I" x -•-x-  ft  X  S  °-  0.10  100 80 60  UOjS  a>  • NOx  Rate  x PM - Mar 6 • PM - Mar 7  0.35  40  £2  fuel]  0.40  O)  20  0.05 0.00-5.0  0.0  5.0  10.0 EGR rate (%)  15.0  25.0  20.0  Figure 3-22: The effect of EGR at low-speed low-load  A t 800 R P M 75% load the P M emission rate increases with higher E G R rates as shown in Figure 3-23. This is partly due to the fact that the back pressure has increased from approximately 10 k P a to 50 kPa, which increases the particulate emission (0.13 g/kg fuel) without E G R as shown in Figure 3-19 from the previous section. Hence, it is believed the P M emission rate is not significantly increasing due to E G R itself until operating at rates greater than 15%.  PM and NOx Emissions at 800RPM 75% Load 0.35  X PM - Mar 6 • PM - Mar 7| • PM - Apr 9 • NOx  0.30 a>  60 50  0.25  c6 a) 5 0.20  I  in g> E =S 0.15  W  70  0.10  40 S Si in in £ x 3  0  20 0.05 10 0.00 -5.0  0.0  5.0 10.0 EGR rate (%)  15.0  Figure 3-23: The effect of EGR at low-speed high-load  45  20.0  g  •  3  —  o> |  A t 1600 R P M 40% load and 1400 R P M 85% load an increase in P M with E G R is visible, but again a major portion is due to applying back pressure.  Emission rates of  0.5 g/kg fuel were found at 1600 R P M 40% load with 105 k P a of back pressure without E G R . This implies only a slight increase even at E G R rates of 20%. PM and NOx E m i s s i o n s at 1600RPM 40% Load 1.00 0.90 0.80  A PM - Mar 8  X PM - Apr 8  • NOx  0.70  £  C Ol Q "« CO at  ii  • PM - Mar 7  at  5 Q_  :  i  0.50 -  L  0.40 -  0.20  30 2 5  <  0.60 -  0.30  35  -p  |  =  .  20.| §  J  r--.i -L • " , J  1 5  ii s ><  10Q  J  + 5  0.10 0.00 -5.0  0.0  5.0  10.0  15.0  20.0  25.  EGR rate (%)  Figure 3-24: The effect of E G R at high-speed low-load  A t 1400 R P M 85% load there appears to be a more pronounced increase in P M emissions with increasing E G R . pressure relief valve opening. this condition.  There is insufficient air in the cylinder due to the  This explains the high C O emissions were measured at  The increase i n P M with E G R is visible but is not excessive as shown in  Figure 3-25.  46  PM Emissions at 1400RPM 85% Load 3.0  • PM - Mar 7 A PM - Mar 8 + PM - Apr 10 • NOx  « •  2.5  45 40 <  0)  S.  50  _  3  .2  ^ 1.5  2  a.  u  2.0  O  i  I  P  1.0  1  k  35  i1  3° o *  0.0 -5.0  0.0  ll  S  15o z  Hh  + +  D)  2 0  se  0.5  " e n  10 5 5.0 10.0 EGR rate (%)  0  15.0  20,,0  Figure 3-25: The effect of E G R at mid-speed high-load  3.6.2  In-Cylinder Pressure One of the concerns when operating at higher E G R rates is reducing engine  performance.  Figure 3-26 through Figure 3-28 show no significant changes in I M E P ,  peak cylinder pressure and peak cylinder pressure location. The results were taken from the same day but similar trends exist in other trials. A summary of high-speed data is presented i n Appendix J , for each sampling period. The Effect of EGR on IMEP 20.0  X 1 4 0 0 R P M 85% l o a d  18.0  • 8 0 0 R P M 75% l o a d  16.0  • 1600R P M 40% l o a d  X  14.0  i£ ' ^  • 8 0 0 R P M 25% l o a d 7\  12.0 10.0 A  8.0  A  A  6.0 4.0 2.0 0.0 -5.0  0.0  5.0  10.0 15.0 EGR Fraction (%)  20.0  Figure 3-26: IMEP variation with EGR  47  25.0  30.0  The Effect of EGR on Maximum Cylinder Pressure 160.0 £ 150.0 j» 140.0 £ 130.0 £ _120.0 "D  X1400RPM 85% load • 800R P M 75% load A1600RPM 40% load • 800RPM 25% load  n  110.0 3 ""100.0 90.0 I 80.0 § 70.0 60.0 -5.0 £  CL  1  I  0.0  5.0  10.0 15.0 EGR Fraction (%)  20.0  25.0  30.0  Figure 3-27: Peak cylinder pressure variation with EGR  The Effect of EGR on Maximum Pressure Location 370.0 369.0 368.0 367.0 366.0 365.0 364.0 363.0 362.0 361.0 360.0 -5.0  X X  _X_  X1400RPM 85% load • 800R P M 75% load A1600RPM 40% load • 800RPM 25% load  0.0  5.0  10.0 15.0 EGR Fraction (%)  20.0  25.0  30.0  Figure 3-28: Peak cylinder pressure location variation with EGR  The only measurement that showed a significant change due to E G R was the rate of heat release.  Increasing the amount of E G R delays the heat release within the  cylinder, which results i n later burning with less time to oxidize particulates. A t 800 R P M 25% load the heat release occurs later and within a shorter time interval as shown i n Figure 3-29. It should be pointed out that the integrated heat release is lower for 22% E G R , but the maximum rate is higher. This may explain the decrease in P M at E G R rates of 20%.  48  C o m p a r i s o n of N e t Heat R e l e a s e Rate at 8 0 0 R P M 2 5 % L o a d 20000  EGR = 22%  H  15000  <?10000 CO <  No EGR  5000 J*  -5000 -20  -15  -10  -5  0  5  10  15  20  c r a n k a n g l e [deg]  Figure 3-29: The effect of E G R on heat release at low-speed low-load  A t 800 R P M 75% load a two-stage process is observed without E G R , as shown in Figure 3-30. E G R delays the heat release rate and occurs at a higher rate i n a shorter time, but the effect is not as pronounced as at 25% load.  C o m p a r i s o n of Net Heat R e l e a s e Rate at 8 0 0 R P M 75% L o a d 20000  EGR = 1 8 % No EGR  15000  Jg  10000  <  V 5000  cf\ fi -5000 -20  -15  -10  -5  0  5  10  15  c r a n k angle [deg]  Figure 3-30: The effect of E G R on heat release at low-speed high-load  49  20  A t 1600 R P M 40% load and 1400 85% load there is only a slight effect of E G R , the heat release rate is only slightly delayed as shown i n Figure 3-31 and Figure 3-32.  Figure 3-31: The effect of E G R on heat release at high-speed low-load  Figure 3-32: The effect of E G R on heat release at mid-speed high-load  50  Chapter 4: Conclusions and Future Work  4.1  Conclusions The primary goal of this work was to design and construct a suitable mini-dilution  system capable of measuring particulate emissions.  This was successfully completed  and it was shown the overall accuracy of P M emission rates is between 20 and 29%, depending on the operating condition. The measurement uncertainty was calculated to be at maximum 12%, implying the remainder of variability is attributed to the engine itself. The T E O M can be used to reduce sampling time and provide a real-time P M measurement.  The P M emission rate from the T E O M can be corrected by multiplying  values by 1.43 to correspond with those taken using pre-weighed Teflon filters. A t 800 R P M 75% load with E G R it was shown that there was a definite correlation between D P W and C O / P M emissions.  These effects of the D P W are likely present,  although to a much lesser extent, when operating at other conditions. Increasing the back pressure alone tends to increase P M emissions, except at 1400 R P M high load. More experiments are needed to quantify these effects. However, the H P D I system with E G R does not show a large increase in P M emissions, even at E G R rates of 15% i f the back pressure effects are considered.  51  4.2  Recommendations for F u t u r e W o r k The addition of the mini-dilution tunnel was the first stage for further P M research  endeavours. The most important recommendation is to determine an appropriate exhaust back pressure for all test points. The values from the turbocharger inlet (of the I S X 400) need to be measured and recorded. The back pressure needs to be specified precisely, so it can be set at a given value during operation of the S C R E . There are still numerous other parameters that can be tested with the current equipment.  For example, the P M emission rate at various timings could be explored,  especially at different E G R rates.  The other interesting parameter to investigate is  changing the duration of the diesel pulse width, at different conditions. For optimizing an E G R engine it would be desirable to know when the P M penalty appears. In section 3.6, P M emission rates increased with E G R at every condition except low-speed lowload. There is likely a transition region where these effects change from negligible to fairly significant.  K n o w i n g where this transition occurs would be invaluable to  minimize emissions. To improve the accuracy of measurements there are several improvements that would be worthwhile. A more accurate measurement of the diesel flow rate would be valuable, particularly for lower speeds. The correlation between the T E O M data and pre-weighed filters should be verified. This may be important since the comparison tests were performed with excess diesel leaking into the engine. The correction factor may be different i f running at normal H P D I conditions. Finally, there are some more technical additions that would be worthwhile. One is the addition of a Scanning Mobility Particle Sizer. There has been a lot of concern that  52  the P M emitted from the natural gas engine may be significantly higher in the ultra-fine size range. These ultra-fine particles are believed to be more hazardous to human health due to their ability to penetrate the lungs and enter the pulmonary system. K n o w i n g the particle size distribution would be interesting from an academic standpoint but may be a genuine concern should the emission rate of ultra-fine particles be relatively high.  53  References [1] Douville, B . , Ouellette, P., Touchette, A . and Ursu, B . (1998) Performance and Emissions of a Two-Stroke Engine Fueled Using High-Pressure Direct Injection of Natural Gas. S A E Paper 981400. [2] Hodgins, K . B . , H i l l , P . G . , Ouellette, P. and Hung, P. (1994) Directly Injected Natural Gas Fueling of Diesel Engines. S A E paper 941692. [3] Kittelson, D . B . (1998) Engines and Nanoparticles: A Review. / . Aerosol Sci. V o l 29, N o . 5/6, 575-588. [4] Heywood, J . B . (1998) Internal Combustion Engine Fundamentals. [5] S A E (1993) Chemical Methods for the Measurements emissions.  1993 SAE Handbook,  McGraw Hill.  of nonregulated  Vol 3, Engines, Fuels, Lubricants,  diesel  Emissions  and  Noise, Society of Automotive Engineers, Warrendale, P A , 25-38. [6] MacDonald, J.S., Plee S.L., D ' A r c y J . B . and Schreck R . M . (1980) Experimental Measurements of the Independent Effects of Dilution Ratio and Filter Temperature on Diesel Exhaust Particulate Samples.  S A E Transactions v o l 89, 800185, 1045-  1056. [7] Lapuerta, M . , Armas, O., Ballesteros, R . and Duran, A . (1999) Influence of M i n i Dilution  Tunnel Operating  Paprameters  and  Ambient Conditions on  Diesel  Particulate Measurement and Analysis. S A E paper 1999-01-3531. [8] Kayes, D . , Hochgreb, S.  (1998)  Investigation  of the  Dilution  Process  for  Measurement of Particulate Matter from Spark-Ignition Engines, S A E Paper 982601.  54  [9] Abdul-Khalek, I.S., Kittelson, D . B . and Brear, F. (1999) The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements.  S A E paper  1999-01-1142. [10] Baribeau, A . M . (2000) Master's Thesis: P M Emissions from a Cummins I S X 400 Engine Operating on High-Pressure Direct Injection of Natural Gas with Diesel Pilot. University of British Columbia, Vancouver, B C . [11] Ladommatos, N . , Abdelhalim, S. and Zhao H . (2000) The Effects of Exhaust Gas Recirculation on Diesel Combustion and Emissions.  International  Journal  of  Engine Research, V o l 1, N o . 1. 107-126. [12] McTaggart-Cowan, G . (2001) Master's Thesis: N O Reduction from a Natural Gas x  Fuelled H P D I Engine using E G R . University of British Columbia, Vancouver, BC. [13] Touchette, A . et al. (2000) Gaseous and L i q u i d Fuel Injector.  U S patent number  6 073 862. [14] Ouellette, P. et al. (1999) Hydraulically Actuated Gaseous or Dual Fuel Injector. U S Patent no. 5 996 558. [15] McTaggart-Cowan, G . (2001) Master's Thesis: Commissioning a Single Cylinder Research Engine for High Pressure Direct Injection of Natural Gas Testing. University of British Columbia. [16] Okrent, D . A . , (1998) Optimization of a third-generation T E O M ® monitor for measuring diesel particulate in real time. S A E Paper 980409.  55  [17] Green, D . , Fuller, G . , Barratt, B . (2001) Evaluation of T E O M 'correction factors' for assessing the E U Stage 1 limit values for P M i o . Atmospheric Environment v o l 35, 2589-2593. [18] Ayers, G . P . , Keywood, M . D . , Gras, J . L . (1999) T E O M vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Environment vol 33, 3717 - 3721.  56  Atmospheric  Appendix A: Description of Apparatus Device Thermocouple  Manufacturer Omega Inc.  Description / Model K-type  Comments/Other KMQSS-125-U-6 (0-1000K)  Mass F l o w  Omega Inc.  FMA-1928  Controller Pressure  ( ± 1 . 5 % full scale) Autotran Inc  Sensor Filter Holder  0 - 50SLPM  Pall-Gelman  601D-015  0-lpsid  (D = differential)  0 - 5 V D C output  2220  Stainless steel 47mm filter holder  Teflon Filters  Pall  Teflo 47mm, 2 urn  99.99% Aerosol  mesh - RJP2047  retention ( A S T M D2986-71)  TEOM  Rupprecht and  1105  Patashnick T E O M filters  Rupprecht and  exchangeable  Pallflex T X 4 0 T E O M  Patashnick  filter cartridges  filters  Scale  Sartorius G m b H  M o d e l no. M 3 P  range = 0 - 3000mg  Pump  Thomas Industries  Diaphragm Pump:  rated flow: 1 8 0 L P M  2737BM370 A i r Supply  Praxair Inc.  Medical A i r  Balance N and  0 = 19.5 - 2 3 . 5 %  certified:  C0  H C (condensed): none  2  2  = 500ppm  C O < lOppm  2  H 0 (condensed): none 2  N O < 2.5 ppm x  SO2 < 5ppm  Table 4-1: Detailed description of dilution tunnel components  57  ft  Exhaust BackPressure Valve  Exhaust Surge Tank  8  2.5" OD (63.5mmKJ  o  3/8" OD (9.5mm)" — 1500mm •  3/8" OD. (9.5mm)  AI2" cross (12.7mm)  3/8" OD (9.5mm) 1" OD (25.4mm)  ft  1/2" OD (12.7mm)  1000mm •  L  Single Cylinder Cummins ISX 400  • S3  l-i  |75oLm  o  ft  f CN  O  Variac (Heat Taps)  •800mm  1/4" OD (6.4mm)  y v  • 150mm  MFC AIR  350mm  .3  Filters DP  19.0 SLPM 1/4" O D ^ (6.4mm)  ISOmm -  1  TEOM MFC  LEGEND T - K type Thermocouple DP - Differential Pressure MFC - Mass Flow Controller  3.0 SLPM  TEOM PUMP  18.0 SLPM  PUMP  \5/S" OD Rubber Hose (15.9mm)  Figure 4-1: Detailed Schematic of Dilution System  58  o  Appendix B: Experimental Results Note:  (i) Negative n m H C indicates malfunction of the CH4 analyzer, (ii) Air to fuel ratio = Air Flow I (CNG Flow + Diesel Flow)  Label: Date:  A5 A28 A8 A10 A25 6-Mar-02 6-Mar- 6-Mar- 7-Mar- 7-Mar- 7-M.ir02 02 02 02 02 12:24:34 15:16:05 15:59:31 14:06:02 14:47:30 14:55:26 A V G  Time:  cov  Engine Parameters  Speed(RPM) Load(%) Indicated Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  799.4 25 8.4 5.1 96.1 365.9 0.16 1.24 71.8 73.2 14.3 0.0  790.8 25 8.0 4.8 96.0 365.5 0.17 1.16 71.9 73.2 14.2 0.0  797.5 25 8.4 5.1 97.1 365.7 0.17 1.22 72.7 74.1 10.2 0.0  805.0 25 8.8 5.2 96.4 365.8 0.15 1.23 73.4 74.8 9.6 0.0 .  799.7 25 8.0 4.8 94.2 365.9 0.15 1.13 73.3 74.6 10.7 0.0  4.54 3.78 147.8 11.2 5.97 10.23 16.20 0.27  3.36 3.59 142.4 11.6 6.75 7.06 13.82 0.23  3.17 3.73 148.9 11.6 6.51 6.86 13.37 0.31  3.24 2.69 105.4 8.00 4.26 7.30 11.55 0.19  2.46 2.63 104.3 8.49 4.94 5.17 10.11 0.17  2.41 2.83 113.2 8.83 4.95 5.21 10.16 0.23  M)0.2 25 8.6 5.2 96.2 365.9 I.I 1 7v4 74.7 IO.S an  798.5 25.0 8.3 5.0 96.0 365.7 0.16 1.20 72.6 74.0 11.8 0.0  0.006 0.000 0.041 0.036 0.011 0.000 0.051 0.041 0.010 0.010 0.192 N/A  6.51 3.78 138.9 11.6 54.50 -40.25 14.25 0.19  6.74 6.98 3.45 3.73 122.4 137.8 12.1 11.8 S !.M 41.90 -26.15 -38.98 15.74 ^1-4:7 r 0.20 0.15  4.9 3.7 140.1 11.6 23.1 -8.4 14.7 0.24  0.359 0.039 0.076 0.026 1.008 -2.743 0.084 0.202  4.92 2.86 105.0 8.80 41.18 -30.41 10.77 0.15  5.11 2.52 89.6 8.83 30.65 -19.13 11.52 0.15  3.6 2.7 103.5 8.6 17.2 -6.4 10.8 0.18  0.361 0.052 0.083 0.042 1.017 -2.712 0.065 0.208  0.21  Exhaust Emission Flows  CO (g/hr) C 0 (kg/hr) NO (g/hr) 0 (kg/hr) C H (g/hr) nmHC (g/hr,Cl) tHC(g/hr,Cl) PM (g/hr) - TEOM 2  x  2  4  Exhaust Emission Flows/Fuel  CO (g/kg fuel) C 0 (kg/kg fuel) NO (g/kg fuel) 0 (g/kg fuel) C H (g/kg fuel) nmHC (g/kgfuel,Cl) tHC(g/kgfuel,Cl) PM (g/kg fuel) - TEOM 2  x  2  4  Table 4-2: 800 R P M 25% load baseline emissions  59  4.Mi  2.M W.4 ' 8.53 •38.73 -28.12 10.61 • 0.11  El  Label:  E2  E3  E4  E5  E6  10-Apr- 10-Apr- 10-Apr- 10-Apr- 10-Apr- 10-Apr02 02 02 02 02 02 12:29:19 12:35:02 12:42:23 12:49:00 12:56:29 13:04:01  Date: Time: Engine Parameters Speed(RPM)  809.0  808.3  805.2  805.3  802.9  797.5  Load(%)  25.0  25.0  25.0  25.0  25.0  25.0  8.8  8.7  8.1  8.4  8.2  8.4  IMEP (bar)  5.25  5.20  4.80  4.98  4.88  5.04  Pmax(bar)  97.11  96.90  95.30  95.72  95.34  97.12  Pmax location (degrees)  366.0  365.9  365.7  365.9  366.0  365.8  Diesel Flow(kg/hr)  0.155  0.241  0.136  0.170  0.146  0.147  CNG Flow(kg/hr)  1.23  1.21  1.20  1.19  1.17  1.16  Air Flow(kg/hr)  73.4  73.5  73.5  73.7  73.8  73.2  Exhaust Flow(kg/hr)  74.7  74.9  74.9  75.1  75.1  74.5  Exhaust Back Pressure (kPa)  11.9  11.3  11.5  11.2  11.1  31.1  0.0  0.0  0.0  0.0  0.0  0.0  CO (g/hr)  6.1  5.5  5.6  4.8  5.3  7.0  C 0 (kg/hr)  3.9  4.0  3.7  3.8  3.6  3.4  N O (g/hr)  139.7  142.0  129.1  132.7  125.2  118.3  0 (kg/hr)  11.5  11.5  11.8  11.7  12.0  12.1  C H (g/hr)  4.7  4.5  4.8  4.4  4.7  7.6  8.4  13.5  Indicated Power (kW)  EGR Fraction(%) Exhaust Emission Flows  2  x  2  4  nmHC (g/hr,Cl)  8.5  8.1  8.4  7.7  tHC(g/hr,Cl)  13.2  12.6  13.2  12.0  13.1  21.1  0.818  1.093  0.658  0.626  0.499  0.539  CO (g/kg fuel)  4.42  3.77  4.17  3.54  3.99  5.35  C 0 (kg/kg fuel)  2.78  2.74  2.75  2.83  2.76  2.61 90.52 9.27  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel  2  100.80  97.65  96.44  97.78  95.14  0 (g/kg fuel)  8.32  7.90  8.82  8.63  9.09  C H (g/kg fuel)  3.40  3.08  3.58  3.20  3.58  5.84  nmHC (g/kg fuel.Cl)  6.10  5.57  6.30  5.66  6.38  10.30  tHC (g/kg fuel.Cl)  N O (g/kg fuel) x  2  4  9.50  8.65  9.88  8.87  9.96  16.13  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters  0.59  0.75  0.49  0.46  0.38  0.41  Exhaust Temp - manifold (C)  228.3  230.0  219.5  220.6  212.9  227.3  Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  167.5  162.4  158.5  155.0  153.2  168.0  14.6  16.2  16.2  16.3  16.6  16.4  Filter Temp (C)  43.9  42.5  41.3  40.4  39.8  39.2  Sample C 0 (%)  0.33  0.33  0.29  0.29  0.28  0.27  11.7  12.3  13.0  13.4  13.5  13.4  2  Dilution Ratio - C 0  2  Table 4-3: 800 R P M 25% load - BP/DPW data summaries (I)  60  E7  Label:  E8  E9  E10  Ell  E12  E13  10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 13:11:28 13:18:54 13:33:57 13:41:19 13:48:22 13:55:41 14:08:14  Date: Time: Engine Parameters Speed(RPM)  797.0 25.0  Load(%)  793.4 25.0  800.1 25.0  798.9 25.0  798.6  799.7  801.4  25.0  25.0  25.0  8.3  7.8  10.0  10.2  9.8  10.2  10.0  IMEP (bar)  4.99  4.75  5.99  6.11  5.91  6.13  6.00  Indicated Power (kW) Pmax(bar)  96.47  95.29  99.98  100.52  99.83  100.07  99.41  Pmax location (degrees)  365.8  365.9  366.2  366.4  366.3  366.4  366.2  Diesel Flow(kg/hr)  0.158  0.142  0.129  0.205  0.145  0.178  0.137  1.42  1.43  CNG Flow(kg/hr)  1.15  1.13  1.40  1.41  1.42  Air Flow(kg/hr)  73.7  73.1  60.4  60.0  59.9  59.8  72.8  Exhaust Flow(kg/hr)  75.0  74.4  61.9  61.6  61.4  61.4  74.4  Exhaust Back Pressure (kPa) EGR Fraction(%)  10.1  38.8  26.9  27.2  27.3  27.4  12.3  0.0  0.0  14.9  14.2  14.9  14.3  0.0  CO (g/hr)  5.4  6.9  7.5  7.0  7.4  7.2  4.9  C 0 (kg/hr)  3.6  3.2  4.3  4.5  4.2  4.4  4.4  NO (g/hr)  124.4  108.2  84.1  86.9  80.5  78.9  151.2  0 (kg/hr)  12.1  12.3  8.2  7.9  8.1  7.9  10.8  C H (g/hr)  5.2  8.0  9.5  9.3  9.9  11.0  4.0  nmHC(g/hr,Cl)  9.2  13.5  15.6  14.8  15.9  17.2  7.1  tHC (g/hr,Cl)  14.4  21.5  25.1  24.1  25.8  28.3  11.1  0.484  0.610  0.631  0.625  0.600  0.612  0.633  Exhaust Emission Flows  2  x  2  4  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  4.15  5.40  4.90  4.35  4.76  4.47  3.11  C 0 (kg/kg fuel)  2.73  2.53  2.79  2.77  2.72  2.76  2.82  NO (g/kg fuel)  95.05  84.74  54.96  53.95  51.60  49.26  96.51  0 (g/kg fuel)  9.22  9.66  5.35  4.91  5.19  4.94  6.91  C H (g/kg fuel)  3.95  6.24  6.19  5.74  6.37  6.89  2.57  nmHC (g/kgfuel,Cl)  7.04  10.59  10.20  9.21  10.19  10.76  4.50  tHC (g/kg fuel,Cl)  10.99  16.84  16.40  14.95  16.56  17.65  7.07  0.38  0.40  2  x  2  4  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.37  0.48  0.41  0.39  0.38  212.4  229.5  258.9  265.6  259.0  266.6  250.9  159.8  168.9  183.9  194.5  196.6  197.0  178.2  16.5  16.6  16.8  17.5  17.5  17.4  17.2  Filter Temp (C)  38.9  38.6  38.1  38.4  38.7  39.0  39.3  Sample C 0 (%)  0.27  0.25  0.40  0.41  0.38  0.40  0.34  Dilution Ratio - C 0  13.6  14.1  12.7  13.1  13.3  13.1  13.2  2  2  Table 4-4: 800 R P M 25% load - BP/DPW data summaries (II)  61  Label:  A5  A6  A7  A8  A9  Date:  6-Mar-02 6-Mar-02 6-Mar-02 6-Mar-02 6-Mar-02  Time:  12:24:34  12:47:31  15:07:01  15:16:05  15:45:07  Speed(RPM)  799.4  795.5  785.3  790.8  791.7  Load(%)  25.0  Engine Parameters 25.0  25.0  25.0  25.0  Indicated Power (kW)  8.4  8.3  8.0  8.0  8.4  IMEP (bar)  5.1  5.0  4.9  4.8  5.1  Pmax(bar)  96.1  95.4  95.2  96.0  96.8  Pmax location (degrees)  365.9  365.6  365.9  365.5  365.7  Diesel Flow(kg/hr)  0.158  0.158  0.165  0.165  0.165  CNG Flow(kg/hr)  1.24  1.21  1.15  1.16  1.20  Air Flow(kg/hr)  71.8  64.1  56.4  71.9  63.1  Exhaust Flow(kg/hr)  73.2  65.5  57.7  73.2  64.5  Exhaust Back Pressure (kPa) EGR Fraction(%)  14.3  23.1  27.2  14.2  23.2  0.0  9.2  23.8  0.0  11.3  4.54  5.56  6.11  3.36  4.48  3.8  3.6  3.5  3.6  3.7  NO (g/hr)  147.77  100.79  68.61  142.41  105.32  0 (kg/hr)  11.21  9.72  8.19  11.59  9.50  C H (g/hr)  5.97  8.96  13.13  6.75  9.19  nmHC (g/hr,Cl)  10.23  15.02  8.69  7.06  10.79  tHC (g/hr.Cl) PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  16.20  23.98  21.82  13.82  19.98  0.27  0.35  0.14  0.23  0.29  3.24  4.07  4.64  2.54  3.28  C 0 (kg/kg fuel)  2.69  2.64  2.67  2.71  2.69  NO (g/kg fuel)  Exhaust Emission Flows CO (g/hr) C0  (kg/hr)  2  x  2  4  2  105.37  73.79  52.14  107.59  77.04  0 (g/kg fuel)  8.00  7.11  6.22  8.76  6.95  C H (g/kg fuel)  4.26  6.56  9.98  5.10  6.72  nmHC (g/kg fuel.Cl)  7.30  11.00  6.60  5.34  7.89  tHC (g/kg fuel,Cl)  11.55  17.55  16.58  10.44  14.62  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.19  0.25  0.11  0.17  0.21  239.5  245.6  243.4  231.6  246.4  194.2  182.2  182.0  166.2  181.2  10.3  12.7  13.4  13.0  12.7  Filter Temp (C)  37.8  37.0  43.1  41.3  37.0  Sample C 0 (%)  0.31  0.32  0.39  0.31  0.35  12.9  12.9  11.4  12.0  12.2  x  2  4  2  Dilution Ratio - C 0  2  Table 4-5: Data summaries for 800 R P M 25% load tests (I)  62  Label:  A10  A25  A26  All  A28  A29  Date:  6-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02  Time:  15:59:31  14:06:02 14:23:31  14:35:00 14:47:30 14:55:26  Engine Parameters Speed(RPM)  797.5  805.0  797.1  795.2  799.7  800.2  Load(%)  25.0  25.0  25.0  25.0  25.0  25.0  Indicated Power (kW)  8.4  8.8  8.3  34.1  8.0  8.6  IMEP (bar)  5.1  5.2  4.99  20.6  4.8  5.2  Pmax(bar)  97.1  96.4  96.33  95.5  94.2  96.2  Pmax location (degrees)  365.7  365.8  366.0  390.5  365.9  365.9  Diesel Flow(kg/hr)  0.165  0.149  0.166  0.149  0.149  0.208  CNG Flow(kg/hr)  1.22  1.23  1.15  1.14  1.13  1.11  Air Flow(kg/hr)  72.7  73.4  57.1  65.5  73.3  73.4  Exhaust Flow(kg/hr)  74.1  74.8  58.4  66.8  74.6  74.7  Exhaust Back Pressure (kPa)  10.2  9.6  27.0  36.1  10.7  10.8  EGR Fraction(%)  0.0  0.0  22.1  9.8  0.0  0.0  CO (g/hr)  3.17  6.51  9.3  8.91  6.98  6.74  C0  3.7  3.8  3.5  3.4  3.4  3.7  NO (g/hr)  148.94  138.91  60.2  93.07  122.44  137.76  0 (kg/hr)  11.62  11.65  8.3  10.40  12.07  11.82  C H (g/hr)  6.51  54.50  5.4  24.80  41.90  53.69  nmHC (g/hr,Cl)  6.86  -40.25  26.2  1.14  -26.15  -38.98  tHC (g/hr,Cl)  13.37  14.25  31.6  25.94  15.74  14.71  PM (g/hr) - TEOM [corrected]  0.31  0.19  0.164  0.22  0.20  0.15  CO (g/kg fuel)  2.29  4.72  7.03  6.89  5.45  5.11  C 0 (kg/kg fuel)  2.69  2.74  2.68  2.60  2.69  2.83  NO (g/kg fuel)  107.44  100.66  45.71  71.97  95.49  104.55  0 (g/kg fuel)  8.38  8.44  6.29  8.04  9.41  8.97  C H (g/kg fuel)  4.70  39.49  4.10  19.18  32.67  40.75  nmHC (g/kg fuel.Cl)  4.95  -29.16  19.93  0.88  -20.40  -29.59  Exhaust Emission Flows (kg/hr)  2  x  2  4  Exhaust Emission Flows/Fuel  2  x  2  4  tHC (g/kg fuel.Cl)  9.64  10.33  24.03  20.06  12.28  11.16  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters  0.22  0.14  0.12  0.17  0.16  0.12  Exhaust Temp - manifold (C)  236.7  233.3  230.7  239.5  219.0  225.0  Exhaust Temp - sample inlet (C)  163.2  193.1  181.0  182.5  165.9  158.8  Dilution Air Temp (C)  13.1  12.4  13.7  14.2  14.6  14.2  Filter Temp (C)  37.1  38.5  36.8  36.8  37.0  36.9  0.31  0.33  0.57  0.33  0.30  0.31  12.2  11.7  7.5  11.6  11.7  12.2  Sample C 0 (%) 2  Dilution Ratio - C 0  2  Table 4-6: Data summaries for 800 R P M 25% load tests (II)  63  Al  Date: Time:  A4 A24 C13 A23 A20 C3 6-Mar- 7-Mar- 7-Mar- 9-Apr- 9-Apr- 7-Mar02 o: 02 02 02 02 11:18:17 12:10:02 12:53:49 13:51:00 10:23:5 12:02:1 13:42:00 1 8 O-M.irD:  Engine Parameters Speed(RPM) ,'802.5 801.5 Load(%) , 75.0 ' 75.0 Indicated Power (kW) fe'24?l#;- 19.0 IMEP (bar) 11.4 Pmax(bar) 130.8 Pmax location (degrees) 371.5368.4 Diesel Flow(kg/hr) :*o.i7; 0.17 CNG Flow(kg/hr) -'••2'.94 2.91 Air Flow(kg/hr) 91.3 91.0 Exhaust Flow(kg/hr) 91,1 94.1 Exhaust Back Pressure (kPa) 10.9 11.5 EGR Fraction(%) 0.0 0.0 Exhaust Emission Flows S2.9 CO (g/hr) 77.4 C 0 (kg/hr) 8.83 8.75 NO (g/hr) 208.06 203.89 0 (kg/hr) V-.8.-59- , 8.65 C H (g/hr) ^5r78 5.90 nmHC (g/hr.Cl) ii9>3it'3 10.83 is i : tHC (g/hr,Cl) 16.73 0 70 PM (g/hr) - TEOM 0.46 Exhaust Emission Flows/Fuel '26.62?'< 25.08 CO (g/kg fuel) C 0 (kg/kg fuel) ' 2.83 '•' - 2.84 N O (g/kg fuel) 66.77 66.08 2 "0 0 (g/kg fuel) 2.80 C H (g/kg fuel) '•'1.86 1.91 <.()<) nmHC (g/kg fuel.Cl) 3.51 4.S5 5.42 tHC (g/kg fuel.Cl) PM (g/kg fuel) - TEOM 0.21 0.15 2  x  2  4  2  x  2  4  AVG  COV  810.5 75.0 19.0 11.3 129.9 368.7 0.18 2.89 92.1 95.2 11.3 0.0  810.1 75.0 19.2 11.4 131.1 368.5 0.18 2.92 93.4 96.6 12.7 0.0  805.9 75.0 19.1 11.4 129.6 368.5 0.16 2.92 89.2 92.3 10.4 0.0  805.4 808.1 ' 75.0 ' 75.0 18.9 ,'19.1 11.3 &11.4 1 5(1 S 129.7 368.5 f-368.5 O.IS 0.16 2.93 2.90 92.3 •"'92.8 95.') 95.3 13.1 48.2 0.0 0.0  806.7 75.0 19.1 11.4 130.2 368.5 0.17 2.9 91.6 94.7 11.8 0.0  0.005 0.000 0.006 0.006 0.005 0.000 0.060 0.005 0.017 0.017 0.092 N/A  70.2 8.84 205.82 9.00 92.95 -81.46 11.49 0.47  76.7 8.91 200.72 9.16 88.25 -73.81 14.44 0.30  67.0 8.57 191.13 8.88 3.80 9.35 13.15 0.26  62.3 40.28 S.90 8.75 187.24 I9V2I 9.09 9.37 4.32 ^86.55". 8.71 :£,7.0?42-' 13.03 16.13 0.34 0.27  72.8 8.8 199.5 8.9 33.5 -19.5 14.0 0.35  0.104 0.014 0.042 0.033 1.321 -2.312 0.131 0.294  22.49 2.83 65.88 2.88 29.75 -26.07 3.68 0.15  24.86 2.89 65.04 2.97 28.60 -23.92 4.68 0.10  21.84 2.79 62.26 2.89 1.24 3.05 4.28 0.08  20.11 2.82 60.41 3.02 1.39 2.81 4.20 0.09  23.5 2.8 64.4 2.9 10.8 -6.3 4.5 0.11  0.103 0.011 0.039 0.034 1.320 -2.316 0.133 0.290  Table 4-7: 800 R P M 75% load baseline emissions  64  12.93 2.86 03.65 2.92 2"9 -22.61 5.18 o.l 1  Label:  Cl  C2  C4  C3  C6  C5  C7  9-Apr- 9-Apr- 9-Apr- 9-Apr- 9-Apr- 9-Apr- 9-Apr02 02 02 02 02 02 02 10:23:51 10:34:31 10:42:28 10:49:30 10:55:53 11:03:18 11:10:07  Date: Time: Engine Parameters Speed(RPM)  805.9  805.1  804.5  804.9  804.7  800.8  806.5  Load(%)  75.0  75.0  75.0  75.0  75.0  75.0  75.0  Indicated Power (kW)  19.1  19.2  18.9  19.2  19.1  19.1  19.1  IMEP (bar)  11.4  11.4  11.3  11.4  11.4  11.4  11.4  Pmax(bar)  129.6  129.9  129.0  129.7  129.4  130.6  129.6  Pmax location (degrees)  368.5  368.5  368.5  368.3  368.5  368.5  368.5  Diesel Flow(kg/hr)  0.164  0.176  0.150  0.157  0.163  0.158  0.176  CNG Flow(kg/hr)  2.92  2.92  2.93  2.91  2.93  2.91  2.93  Air Flow(kg/hr)  89.2  89.5  89.4  89.5  89.4  87.9  89.4  Exhaust Flow(kg/hr)  92.3  92.5  92.5  92.6  92.5  91.0  92.5  Exhaust Back Pressure (kPa) EGR Fraction(%)  10.4  10.7  10.7  10.8  10.8  69.9  10.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  67.04  74.66  63.98  80.80  76.43  33.74  79.23  8.57  8.62  8.53  8.62  8.62  8.46  8.65  Exhaust Emission Flows CO (g/hr) C0  (kg/hr)  2  191.13  190.64  191.31  188.29  187.34  185.35  188.47  0 (kg/hr)  8.88  8.89  8.99  8.92  8.87  8.81  8.84  C H (g/hr)  3.80  3.99  3.87  3.95  3.98  6.06  3.91  nmHC (g/hr,Cl)  9.35  9.91  9.45  9.68  9.00  11.88  8.46  NO (g/hr) . x  2  4  tHC (g/hr,Cl)  13.15  13.90  13.32  13.63  12.98  17.94  12.37  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  0.26  0.28  0.24  0.23  0.22  0.40  0.19  21.76  24.15  20.75  26.34  24.71  11.01  25.47  C 0 (kg/kg fuel)  2.78  2.79  2.77  2.81  2.79  2.76  2.78  NO (g/kg fuel)  62.02  61.65  62.06  61.38  60.57  60.47  60.58  0 (g/kg fuel)  2.88  2.88  2.92  2.91  2.87  2.87  2.84  C H (g/kg fuel)  1.23  1.29  1.26  1.29  1.29  1.98  1.26 2.72  2  x  2  4  nmHC (g/kg fuel.Cl)  3.03  3.21  3.06  3.15  2.91  3.88  tHC (g/kg fuel.Cl)  4.27  4.50  4.32  4.44  4.20  5.85  3.98  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.08  0.09  0.08  0.07  0.07  0.13  0.06  372.7  375.2  371.2  374.5  374.4  420.2  376.2  181.8  226.8  236.2  238.9  241.0  304.3  278.2  21.5  20.6  19.2  17.5  16.0  15.1  13.6  Filter Temp (C)  46.0  44.3  42.1  40.6  39.3  38.0  37.5  Sample C 0 (%)  0.51  0.47  0.43  0.49  0.47  0.30  0.52  13.5  14.0  23.6  12.8  2  Dilution Ratio - C 0  2  12.9  14.1  15.3  Table 4-8: 800 RPM 75% load - BP/DPW emissions (I)  65  Label:  C8  C9  C10  Cll  C12  C13  Date:  9-Apr-02  9-Apr-02  9-Apr-02  9-Apr-02  9-Apr-02  9-Apr-02  Time:  11:18:58  11:33:09  11:39:35  11:46:33  11:53:43  12:02:18  Engine Parameters Speed (RPM)  804.2  802.1  802.2  800.8  800.8  805.4  Load(%)  75.0  75.0  75.0  75.0  75.0  75.0  Indicated Power (kW)  19.1  18.8  18.7  18.6  18.8  18.9  11.1  11.2  11.3  IMEP (bar)  11.4  11.2  11.3  Pmax(bar)  130.0  128.4  127.8  128.7  128.4  129.7  Pmax location (degrees)  368.6  368.5  368.5  368.4  368.4  368.5  Diesel Flow(kg/hr)  0.170  0.181  0.210  0.172  0.189  0.157  CNG Flow(kg/hr)  2.92  2.91  2.89  2.92  2.91  2.93  Air Flow(kg/hr)  88.3  73.6  73.4  73.5  73.6  92.3  Exhaust Flow(kg/hr)  91.4  76.6  76.5  76.6  76.7  95.3  Exhaust Back Pressure (kPa)  58.5  72.0  72.7  72.5  72.6  13.1  EGR Fraction(%)  0.0  16.9  16.7  16.9  16.8  0.0  38.45  116.12  154.91  113.94  127.07  62.35  8.56  8.29  8.38  8.26  8.32  8.75  Exhaust Emission Flows CO (g/hr) C 0 (kg/hr) 2  N O (g/hr)  186.30  59.01  54.75  55.40  56.79  187.24  0 (kg/hr)  8.78  5.63  5.47  5.64  5.59  9.37  C H (g/hr)  5.40  9.76  10.22  9.95  9.77  4.32  nmHC (g/hr,Cl)  10.42  15.77  17.03  16.47  16.00  8.71  tHC (g/hr,Cl)  15.82  25.53  27.25  26.42  25.77  13.03  PM (g/hr) - TEOM [corrected]  0.21  0.53  0.84  0.56  0.68  0.27  12.42  37.62  49.92  36.90  41.04  20.21  2.68  2.69  2.83  x  2  4  Exhaust Emission Flows/Fuel CO (g/kg fuel) C 0 (kg/kg fuel)  2.77  2.68  2.70  NO (g/kg fuel)  60.20  19.12  17.64  17.94  18.34  60.69  0 (g/kg fuel)  2.84  1.82  1.76  1.83  1.80  3.04  C H (g/kg fuel)  1.75  3.16  3.29  3.22  3.16  1.40  5.49  5.33  5.17  2.82  2  x  2  4  nmHC (g/kg fuel.Cl)  3.37  5.11  tHC (g/kg fuel.Cl)  5.11  8.27  8.78  8.56  8.32  4.22  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters  0.07  0.17  0.27  0.18  0.22  0.09  Exhaust Temp - manifold (C)  414.2  423.0  427.8  423.0  425.7  370.5  Exhaust Temp - sample inlet (C)  302.8  328.7  334.3  334.4  334.2  281.4  12.7  11.2  12.1  12.5  12.5  11.9  Dilution Air Temp (C) Filter Temp (C)  37.3  37.2  38.1  39.0  40.1  40.6  Sample C 0 (%)  0.51  0.62  0.62  0.62  0.63  0.55  13.1  12.2  12.2  12.0  11.9  11.7  2  Dilution Ratio - C 0  2  Table 4-9: 800 R P M 75% load - BP/DPW emissions ( I I )  66  Label:  Al  A2  A3  A4  A20  A21  A22  A23  A24  6-Mar- 6-Mar- 6-Mar- 6-Mar- 7-Mar- 7-Mar- 7-Mar- 7-Mar- 7-Mar02 02 02 02 02 02 02 02 02 11:18:17 11:36:30 11:52:09 12:10:02 12:53:49 13:16:59 13:30:30 13:42:00 13:51:00  Date: Time: Engine Parameters Speed(RPM)  802.5  798.7  798.8  801.5  810.5  806.6  806.4  808.1  810.1  Load(%)  75.0  75.0  75.0  75.0  75.0  75.0  75.0  75.0  75.0  Indicated Power (kW)  24.1  18.5  18.8  19.0  19.0  18.7  18.9  19.1  19.2  14.4  11.1  11.3  11.4  11.3  11.1  11.3  11.4  11.4  Pmax(bar)  131.7  127.2  128.3  130.8  129.9  128.8  131.1  130.8  131.1  Pmax location (degrees)  371.5  368.4  368.4  368.4  368.7  368.5  368.4  368.5  368.5  Diesel Flow(kg/hr)  0.17  0.17  0.17  0.17  0.21  0.21  0.21  0.21  0.21  CNG Flow(kg/hr)  2.94  2.91  2.95  2.91  2.89  2.88  2.90  2.90  2.92  Air Flow(kg/hr)  91.3  74.0  80.3  91.0  92.1  82.0  76.7  92.8  93.4  Exhaust Flow(kg/hr)  94.4  77.1  83.4  94.1  95.2  85.1  79.8  95.9  96.6  10.9  53.6  51.5  11.5  11.3  77.6  66.9  48.2  12.7  IMEP (bar)  Exhaust Back Pressure (kPa) EGR Fraction(%)  0.0  16.5  8.8  0.0  0.0  8.7  17.5  0.0  0.0  Exhaust Emission Flows CO (g/hr)  82.94  187.10  92.44  77.38  70.25  62.48  112.70  40.28  76.71  C 0 (kg/hr)  8.83  8.59  8.59  8.75  8.84  8.57  8.60  8.90  8.91  NO (g/hr)  208.06  59.97  117.49  203.89  205.82  118.10  59.57  198.21  200.72  0 (kg/hr)  8.59  4.80  6.36  8.65  9.00  7.01  5.67  9.09  9.16  C H (g/hr)  5.78  10.70  8.62  5.90  92.95  31.84  -10.25  86.55  88.25  nmHC (g/hr,Cl)  9.34  16.66  14.29  10.83  -81.46  -7.91  37.50  -70.42  -73.81  tHC (g/hr,Cl)  15.12  27.36  22.91  16.73  11.49  23.93  27.25  16.13  14.44  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  0.76  1.97  1.34  0.46  0.47  0.40  0.74  0.34  0.30  26.62  60.64  29.59  25.07  22.65  20.19  36.19  12.93  24.50  2  x  2  4  C 0 (kg/kg fuel)  2.83  2.78  2.75  2.84  2.85  2.77  2.76  2.86  2.85  NO (g/kg fuel)  66.77  19.44  37.61  66.07  66.37  38.17  19.13  63.64  64.12  0 (g/kg fuel)  2.76  1.55  2.04  2.80  2.90  2.27  1.82  2.92  2.93  C H (g/kg fuel)  1.86  3.47  2.76  1.91  29.97  10.29  -3.29  27.79  28.19  nmHC (g/kgfuel,Cl)  3.00  5.40  4.57  3.51  -26.27  -2.56  12.04  -22.61  -23.58  tHC (g/kg fuel,Cl)  4.85  8.87  7.33  5.42  3.71  7.73  8.75  5.18  4.61  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.24  0.64  0.43  0.15  0.15  0.13  0.24  0.11  0.10  388.7  431.1  431.0  388.3  381.7  440.4  417.5  411.0  384.2  266.8  328.5  328.9  270.3  223.5  345.3  333.5  322.0  281.9  11.8  9.3  9.4  9.9  11.7  9.8  10.3  10.5  11.1  Filter Temp (C)  37.5  35.8  36.2  37.7  40.5  36.9  36.4  37.0  38.2  Sample C 0 (%)  0.57  0.64  0.58  0.53  0.46  0.53  0.57  0.50  0.57  12.1  12.4  13.3  13.3  13.3  11.4  2  x  2  4  2  Dilution Ratio - C 0  2  11.4  12.5  14.6  Table 4-10: Data Summaries for 800 R P M 75% load tests  67  Label: Date: Time: Engine Parameters Speed(RPM) Load(%) Indicated Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%) Exhaust Emission Flows CO (g/hr) C 0 (kg/hr) NO (g/hr) 0 (kg/hr) CH (g/hr) nmHC(g/hr,Cl) tHC (g/hr,Cl) PM (g/hr) - TEOM Exhaust Emission Flows/Fuel CO (g/kg fuel) C 0 (kg/kg fuel) NO (g/kg fuel) 0 (g/kg fuel) C H (g/kg fuel) nmHC (g/kg fuel.Cl) tHC (g/kg fuel.Cl) PM (g/kg fuel) - TEOM 2  x  2  4  2  x  2  4  All A14 B7 ,A135 A127 A133 B5 7-Mar- 7-Mar- 8-Mar- 8-Mar- 8-Apr8-Apr- s-\l.ir02 02 02 02 02 02 02 10:17:27 11:03:01 14:16:44 15:14:31 14:03:47 14:23:24 15:27:46 :  1613.5 1605.6 40.0 ^40.0 28.7 27.2 8.10 8.59 106.26 108.77 367.6 ';-3'67-.l 0.31 0 . 4 6 3.64 '"3.77 215.5 212.4 216.4 0219.5 1 1 0 11.8  1613.7 40.0 28.2 8.4 106.6 368.3 0.32 3.83 212.1 216.3 11.1  1610.3 40.0 28.4 8.5 105.7 368.1 0.32 3.84 210.0 214.2 11.3  1611.0 40.0 28.7 8.6 109.8 368.4 0.26 3.84 217.5 221.6 10.9  1599.7 40.0 28.4 8.5 108.6 368.7 0.32 3.82 214.9 219.1 11.7  1611.8 40.0 27.4 8.17 106.48 367.9 0.30 3.67 212.4 216.4 11.8  0.0  0.0  0.0  0.0  0.0  0.0  26.98 11.32 129.20 32.83 18.34 47.07 65.41 0.82  26.52 11.72 123.00 32.01 -56.02 116.91 60.89 0.82  25.40 11.43 118.78 34.79 29.98 40.17 70.15 1.11  30.33 11.60 117.29 34.26 30.34 44.56 74.90 0.57  24.8 10.9 115.7 33.8 20.2 48.8 68.9 0.891  24.4 10.9 115.9 33.9 19.6 46.4 66.0 0.876  6.49 2.72 31.09 7.90 4.41 11.33 15.74 0.20  6.36 2.81 29.49 7.68 -13.43 28.04 14.60 0.20  6.13 2.76 28.66 8.40 7.24 9.69 16.93 0.27  7.29 2.79 28.20 8.24 7.30 10.71 18.01 0.14  6.06 2.65 28.25 8.26 4.93 11.91 16.83 0.22  5.93 2.65 28.17 8.23 4.77 11.28 16.04 0.21  Table 4-11: 1600 R P M 40% load baseline emissions  68  0.0  •ii31.7 f ; 1-2.0 11') '1 25.4 34.1 7;  ;  30.0 w  '45.5 76.1  ^7.75  1»1 2 91 130.61 #8)32 ":'7:48 11.10  AVG  COV  1610.0 40.0 28.1 8.37 107.2 368.2 0.30 3.8 213.2 217.3 11.4  0.003 0.000 0.021 0.023 0.015 0.001 0.080 0.024 0.012 0.012 0.035  0.0  N/A  26.4 11.3 120.0 33.6 10.4 57.3 67.7 0.8  0.082 0.032 0.044 0.030 3.169 0.512 0.070 0.205  6.4 2.7 29.0 8.1 2.5 13.8 16.4 0.20  0.077 0.025 0.040 0.033 3.127 0.506 0.072 0.207  Label:  Bl  B2  B3  B4  B5  B6  Date:  4/8/02  4/8/02  4/8/02  4/8/02  4/8/02  4/8/02  13:27:23 13:31:39 13:41:56 13:53:09 14:03:47 14:15:04  Time: Engine Parameters Speed(RPM)  1562.1  1608.6  1618.1  1620.0  1614.8  1611.8  Load(%)  40.0  40.0  40.0  40.0  40.0  Indicated Power (kW)  28.1  27.6  27.6  27.7  27.4  34.8  IMEP (bar)  8.39  8.18  8.18  8.22  8.17  10.68  Pmax(bar)  107.19  106.62  106.62  107.10  106.48  110.77  Pmax location (degrees)  368.0  368.0  368.0  367.9  367.9  370.1  Diesel Flow(kg/hr)  0.27  0.32  0.25  0.36  0.30  0.28  CNG Flow(kg/hr)  3.67  3.67  3.65  3.64  3.67  3.57  Air Flow(kg/hr)  213.1  212.7  212.8  212.5  212.4  210.6  Exhaust Flow(kg/hr)  217.0  216.7  216.7  216.5  216.4  214.4  11.9  11.7  11.8  11.8  11.8  106.3  0.0  0.0  0.0  0.0  0.0  0.0  CO (g/hr)  25.7  26.5  26.3  24.8  24.8  20.3  C0  10.8  10.9  10.7  11.0  10.9  10.7  115.7  125.8 33.7  Exhaust Back Pressure (kPa) EGR Fraction(%) Exhaust Emission Flows (kg/hr)  2  NO (g/hr)  114.8  115.6  112.0  118.0  0 (kg/hr)  33.9  33.8  34.1  33.7  33.8  C H (g/hr)  21.3  21.5  21.3  20.1  20.2  13.1  nmHC(g/hr,Cl)  47.1  48.6  50.8  49.0  48.8  36.4  tHC (g/hr,Cl)  68.3  70.0  72.1  69.1  68.9  49.5  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  2.161  1.510  1.093  1.032  0.891  1.800  6.53  6.66  6.76  6.19  6.26  5.27  C0  2.74  2.73  2.74  2.76  2.74  2.78  29.51  29.17  32.69 8.75  x  2  4  (kg/kg fuel)  2  29.15  29.01  28.72  0 (g/kg fuel)  8.62  8.49  8.73  8.42  8.54  C H (g/kg fuel)  5.39  5.39  5.46  5.03  5.09  3.42  nmHC (g/kg fuel.Cl)  11.95  12.19  13.03  12.24  12.30  9.45  tHC (g/kg fuel.Cl)  17.34  17.58  18.49  17.27  17.39  12.87  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.55  0.38  0.28  0.26  0.22  0.47  275.0  277.5  273.6  277.6  274.1  315.4  178.5  194.8  200.4  201.2  201.9  260.4  15.5  16.2  14.9  12.2  11.2  9.0  Filter Temp (C)  42.2  40.8  39.7  39.2  39.1  38.5  0.43  0.31  0.28  0.32  0.31  0.29  8.5  12.3  13.4  12.0  12.2  13.3  NO (g/kg fuel) x  2  4  Sample C 0 (%) 2  Dilution Ratio - C 0  2  Table 4-12: 1600 R P M 40% load - BP/DPW test emissions (I)  69  Label:  B7  B8  B9  B10  Bll  B12  B13  Date:  4/8/02  4/8/02  4/8/02  4/8/02  4/8/02  4/8/02  4/8/02  Time:  14:23:24  14:32:56  15:06:44  15:17:18  15:25:42  15:34:43  15:51:09 1606.8  Engine Parameters 1613.5  1578.9  1573.5  1595.3  1597.2  1595.9  Load(%)  40.0  40.0  40.0  40.0  40.0  40.0  40.0  Indicated Power (kW)  27.2  27.1  26.6  27.5  27.6  27.6  29.5  IMEP (bar)  8.10  8.23  8.11  8.26  8.29  8.29  8.80  Pmax(bar)  106.26  109.92  107.34  108.33  106.49  106.75  95.64  Pmax location (degrees)  367.6  367.8  369.4  368.1  369.1  368.8  370.0  Diesel Flow(kg/hr)  0.31  0.27  0.27  0.38  0.32  0.36  0.30  CNG Flow(kg/hr)  3.64  3.63  3.58  3.64  3.70  3.65  3.61 185.3  Speed(RPM)  Air Flow(kg/hr)  212.4  210.9  166.7  166.3  166.2  166.2  Exhaust Flow(kg/hr)  216.4  214.8  170.5  170.4  170.3  170.2  189.2  11.8  103.9  131.7  132.7  133.1  133.1  11.0  0.0  0.0  17.7  16.7  16.9  16.6  0.0  24.4  20.2  29.3  25.6  27.8  25.7  22.1  Exhaust Back Pressure (kPa) EGR Fraction(%) Exhaust Emission Flows CO (g/hr)  10.9  10.9  10.4  11.0  10.9  11.0  11.0  NO (g/hr)  115.9  126.3  54.0  53.3  51.2  52.1  119.4  0 (kg/hr)  33.9  33.5  24.3  23.6  23.7  23.6  28.0  C H (g/hr)  19.6  13.2  37.7  36.5  38.6  37.1  14.4  nmHC (g/hr,Cl)  46.4  37.6  73.6  70.7  75.4  71.9  37.7  tHC(g/hr,Cl)  66.0  50.9  111.4  107.2  114.0  109.1  52.1  0.876  1.524  2.163  2.385  2.022  1.970  0.852  6.18  5.20  7.62  6.37  6.91  6.40  5.63  C0  (kg/hr)  2  x  2  4  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel) C 0 (kg/kg fuel)  2.75  2.81  2.70  2.74  2.70  2.74  2.80  NO (g/kg fuel)  29.33  32.45  14.04  13.27  12.71  13.00  30.50  0 (g/kg fuel)  8.57  8.62  6.33  5.89  5.89  5.90  7.14  C H (g/kg fuel)  4.96  3.40  9.82  9.08  9.58  9.27  3.68  nmHC (g/kgfuel,Cl)  11.74  9.66  19.16  17.60  18.74  17.94  9.62  tHC (g/kg fueLCl)  16.70  13.07  28.98  26.67  28.32  27.21  13.31  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.22  0.39  0.56  0.59  0.50  0.49  0.22  273.4  320.0  331.1  342.4  341.2  341.4  305.3  232.0  267.1  283.5  291.6  293.5  293.7  240.4  10.4  8.2  4.2  4.9  4.9  4.4  5.2  2  x  2  4  Filter Temp (C)  38.9  38.8  35.8  36.9  37.6  38.2  39.3  Sample C 0 (%)  0.31  0.30  0.35  0.36  0.36  0.36  0.34  12.1  12.9  13.2  13.1  13.3  13.2  12.7  2  Dilution Ratio - C 0  2  Table 4-13:1600 R P M 40% load - BP/DPW test emissions (II)  70  All  Label:  A12  A13  A14  A127  A129  A131  A133  Date:  7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02  Time:  10:17:27  10:33:02 10:47:06  11:03:01  14:16:44  14:33:59  14:56:22 15:14:31  Engine Parameters 1613.7  1598.6  1602.6  1610.3  1611.0  1599.4  1600.8  1599.7  Load(%)  40.0  40.0  40.0  40.0  40.0  40.0  40.0  40.0  Indicated Power (kW)  28.2  28.4  28.1  28.4  28.7  28.2  27.7  28.4  8.4  8.5  8.4  8.5  8.6  8.5  8.3  8.5  Speed(RPM)  IMEP (bar) Pmax(bar)  106.6  107.4  105.6  105.7  109.8  111.0  105.9  108.6  Pmax location (degrees)  368.3  369.2  369.5  368.1  368.4  368.7  367.8  368.7  Diesel Flow(kg/hr)  0.32  0.32  0.32  0.32  0.26  0.31  0.31  0.32  CNG Flow(kg/hr)  3.83  3.85  3.82  3.84  3.84  3.80  3.79  3.82  Air Flow(kg/hr)  212.1  178.8  157.4  210.0  217.5  189.3  157.9  214.9  Exhaust Flow(kg/hr)  216.3  182.9  161.5  214.2  221.6  193.4  162.0  219.1  Exhaust Back Pressure (kPa)  11.1  119.5  124.7  11.3  10.9  125.2  130.5  11.7  EGR Fraction(%)  0.0  12.8  22.6  0.0  0.0  10.1  22.7  0.0  26.98  29.29  42.65  26.52  25.40  25.01  50.51  30.33  Exhaust Emission Flows CO (g/hr) C 0 (kg/hr)  11.32  11.17  11.22  11.72  11.43  11.17  11.11  11.60  NO (g/hr)  129.20  70.01  37.24  123.00  118.78  77.26  34.75  117.29  0 (kg/hr)  32.83  25.54  20.68  32.01  34.79  28.81  22.07  34.26  C H (g/hr)  18.34  15.69  -81.26  -56.02  29.98  26.33  22.58  30.34  nmHC (g/hr,Cl)  47.07  78.93  235.59  116.91  40.17  59.49  171.83  44.56  tHC (g/hr,Cl)  65.41  94.62  154.32  60.89  70.15  85.82  194.40  74.90  PM (g/hr) - TEOM [corrected]  0.82  1.80  2.72  0.82  1.11  2.19  1.11  0.57  6.49  7.02  10.29  6.38  6.20  6.08  12.33  7.33  18.78  8.48  28.35 8.28  2  x  2  4  Exhaust Emission Flows/Fuel CO (g/kg fuel) NO (g/kg fuel)  31.09  16.79  8.99  29.58  29.01  0 (g/kg fuel)  7.90  6.12  4.99  7.70  8.50  7.01  5.39  C H (g/kg fuel)  4.41  3.76  -19.61  -13.47  7.32  6.40  5.51  7.33  nmHC (g/kg fuel.Cl)  11.33  18.93  56.85  28.11  9.81  14.46  41.94  10.77  tHC (g/kg fuel.Cl)  15.74  22.69  37.24  14.64  17.13  20.86  47.45  18.10  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters  0.20  0.43  0.66  0.20  0.27  0.53  0.27  0.14  Exhaust Temp - manifold (C)  292.4  355.1  355.1  299.5  285.2  344.9  347.2  286.2  224.9  302.4  303.5  247.8  220.5  295.5  297.9  239.5  x  2  4  Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  15.6  12.0  11.3  11.4  14.4  11.5  7.8  10.4  Filter Temp (C)  45.8  41.5  39.6  39.8  43.7  41.5  39.6  39.9  Sample C 0 (%)  0.44  0.44  0.48  0.42  0.42  0.36  0.40  0.34  8.6  10.0  10.5  9.4  9.0  11.9  12.4  11.5  2  Dilution Ratio - C 0  2  Table 4-14: Data Summaries for 1600 R P M 40% load tests  71  Label: Date: Time:  A15  A19  A136  A139  D3  D13  A140  A18  7-Mar- 7-Mar- 8-Mar- 8-Mar- 10-Apr- 10-Apr- • 7-Mar- S Mar02 02 02 02 02 02 02 02 11:41:03 12:30:31 15:46:38 16:28:29 10:25:15 11:53:41 12:24:01 16:34:37 A V G  COV  Engine Parameters Speed(RPM) Load(%) Indicated Power (kW)  1406.3  1433.3  1397.7  1409.4  1405.7  1407.6  •1415.6,  85.0  85.0  85.0  85.0  85.0  85.0  85.0  42.0  42.4  42.1  42.3  43.0  42.3  42.6  1 1 >  1407.3 1410.0 0.009 85.0  0.000  42.3  42.4  0.008  14.4  14.4  0.005  -~ 147.7- 146.5  0.010  IMEP (bar)  14.4  14.4  14.5  14.5  14.33  14.46  Pmax(bar)  146.5  145.0  148.4  147.6  147.19  144.44  145.0  Pmax location (degrees) Diesel Flow(kg/hr)  366.9  367.1  367.6  366.8  367.2  367.2  306.9  367.2  367.1  0.001  0.28  0.28  0.30  0.31  0.29  0.30  o:s  0.41  0.3  0.048  CNG Flow(kg/hr)  6.26  6.39  6.11  6.19  6.21  6.30  ()<)">  0 1)6  6.2  0.015  Air Flow(kg/hr)  273.4  278.8  275.4  275.1  275.8  277.1  278.7  2"".|  275.9  0.007  Exhaust Flow(kg/hr)  279.9  285.4  281.8  281.6  282.3  283.7  .285.0  282.5  0.007  10.6  11.7  11.0  12.4  11.4  5.2  123.2  10.4  0.254  172.66  198.73  155.88  208.17  159.8  229.3  Exhaust Back Pressure (kPa) Exhaust Emission Flows CO (g/hr)  V  2M.0 ^12.3  V  48;00 "•: 1 87.90 187.4 0.156  C 0 (kg/hr)  23.05  23.78  23.02  23.64  23.2  23.0  24.29  23.04  23.3  0.015  NO (g/hr)  261.24  267.49  259.89  255.36  279.3  265.1  290.79' "265.38  264.7  0.031  0 (kg/hr)  31.41  31.73  33.24  32.36  31.6  32.1  31.39  32.SI  32.1  0.021  C H (g/hr)  5.34  6.31  39.76  41.37  21.3  23.7  24.70  41.56  23.0  0.678  nmHC (g/hr,Cl)  54.99  52.52  18.81  17.44  30.8  30.9  S.90  15.14  34.2  0.472  tHC (g/hr,Cl)  60.32  58.83  58.57  58.81  52.0  54.6  33.73  56.70  57.2  0.056  PM (g/hr) - TEOM  6.55  6.60  3.93  5.76  3.700  4.479  7.81  5.03  5.2  0.252  Exhaust Emission Flows/Fuel CO (g/kg fuel)  26.76  30.54  24.14  32.67  24.39  35.87  7.36  2S.49  29.1  0.164  C 0 (kg/kg fuel)  3.57  3.66  3.57  3.71  3.53  3.60  3.73  3.58  3.6  0.018  NO (g/kg fuel)  40.48  41.11  40.25  40.08  42.63  41.46  44.61  40.24  41.0  0.023  0 (g/kg fuel)  4.87  4.88  5.15  5.08  4.82  5.02  4.82  4.93  5.0  0.026  C H (g/kg fuel)  0.83  0.97  6.16  6.49  3.25  3.70  3.80  0.30  3.6  0.683  2  x  2  4  2  x  2  4  nmHC (g/kg fuel.Cl)  8.52  8.07  2.91  2.74  4.69  4.83  1.38  2.30  5.3  0.470  tHC (g/kg fuel.Cl)  9.35  9.04  9.07  9.23  7.94  8.54  5.17  8.60  8.9  0.060  PM (g/kg fuel) - TEOM  1.02  1.01  0.61  0.90  0.56  0.70  1.20  0.76  0.8  0.253  Table 4-15: 1400 R P M 85% load baseline emissions  72  Label:  Dl  D2  D3  D4  D5  D6  Date:  4/10/02  4/10/02  4/10/02  4/10/02  4/10/02  4/10/02  Time:  10:06:30  10:19:52 10:25:15  10:32:11  10:41:12 10:47:38  Engine Parameters Speed(RPM) Load(%)  1408.5  1406.1  1405.7  1404.5  1386.9  1405.1  85.0  85.0  85.0  85.0  85.0  85.0  Indicated Power (kW)  42.2  41.9  42.0  41.9  41.0  42.3  IMEP (bar)  14.39  14.31  14.33  14.31  14.20  14.44  Pmax(bar)  147.62  146.80  147.19  147.03  147.33  146.80  Pmax location (degrees)  367.0  367.0  367.2  366.9  366.9  367.1  Diesel Flow(kg/hr)  0.28  0.34  0.29  0.33  0.30  0.30  CNG Flow(kg/hr)  6.18  6.18  6.21  6.13  6.07  6.25  Air Flow(kg/hr)  276.2  275.9  275.8  277.8  277.8  278.1  Exhaust Flow(kg/hr)  282.6  282.5  282.3  284.3  284.2  284.7  11.1  11.4  11.4  11.4  151.6  13.7  0.0  0.0  0.0  0.0  0.0  0.0  CO (g/hr)  140.8  166.1  159.8  156.7  49.5  183.4  C 0 (kg/hr)  22.6  23.2  23.2  23.4  24.3  23.8  NO (g/hr)  255.9  276.0  279.3  284.0  303.2  285.8  0 (kg/hr)  32.4  31.7  31.6  31.8  30.9  31.2  C H (g/hr)  23.7  22.0  21.3  20.9  13.6  18.8  nmHC(g/hr,Cl)  38.8  33.2  30.8  30.1  21.7  26.7  Exhaust Back Pressure (kPa) EGR Fraction(%) Exhaust Emission Flows  2  x  2  4  tHC (g/hr,Cl) PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  62.5  55.2  52.0  51.0  35.4  45.5  2.930  3.991  3.700  3.773  2.155  4.401  21.83  25.49  24.56  24.27  7.78  27.99  C 0 (kg/kg fuel)  3.50  3.56  3.56  3.63  3.82  3.64  NO (g/kg fuel)  39.66  42.34  42.93  43.98  47.59  43.61  0 (g/kg fuel)  5.03  4.86  4.86  4.93  4.85  4.76  C H (g/kg fuel)  3.67  3.38  3.27  3.24  2.14  2.87  nmHC (g/kg fueLCl)  6.02  5.09  4.73  4.66  3.41  4.08 6.94  2  x  2  4  tHC (g/kg fueLCl)  9.69  8.47  8.00  7.90  5.55  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters Exhaust Temp - manifold (C) Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  0.45  0.61  0.57  0.58  0.34  0.67  376.0  388.1  387.8  388.2  468.2  398.6  241.5  270.1  274.7  275.9  383.1  343.3  17.4  14.5  13.5  12.4  10.4  9.2  Filter Temp (C)  45.4  42.5  41.8  41.3  39.3  39.3  Diff Pressure - filters (psid) Sample C 0 (%)  0.9  0.9  0.9  0.9  1.0  1.0  0.45  0.43  0.41  0.40  0.36  0.38  Dilution Ratio - C 0  12.9  14.0  14.6  14.9  18.0  16.4  2  2  Table 4-16: 1400 R P M 85% load - BP/DPW test emissions (I)  73  Label:  D7  D8  D9  D10  Dll  D12  D13  Date:  4/10/02  4/10/02  4/10/02  4/10/02  4/10/02  4/10/02  4/10/02  Time:  10:54:57  11:03:00 11:23:31  11:28:43  11:34:34 11:41:08  11:53:41  Engine Parameters 1393.3  1404.2  1386.2  1387.3  1387.0  1388.2  Load(%)  85.0  85.0  85.0  85.0  85.0  85.0  85.0  Indicated Power (kW)  41.2  42.1  40.5  40.5  40.4  40.8  42.4  Speed(RPM)  1407.6  IMEP (bar)  14.21  14.37  14.04  14.00  13.98  14.10  14.46  Pmax(bar)  146.77  146.21  143.26  143.89  143.13  143.02  144.44  Pmax location (degrees)  366.6  367.2  367.2  366.9  367.2  367.2  367.2  Diesel Flow(kg/hr)  0.28  0.31  0.28  0.34  0.27  0.32  0.30  CNG Flow(kg/hr)  6.11  6.21  6.09  6.06  6.11  6.10  6.30  Air Flow(kg/hr)  278.0  278.0  231.9  232.0  232.2  232.6  277.1  Exhaust Flow(kg/hr)  284.3  284.5  238.3  238.4  238.6  239.0  283.7  127.8  12.4  143.0  142.5  142.2  141.6  5.2  0.0  0.0  13.2  13.0  13.1  13.0  0.0  CO (g/hr)  53.6  177.1  146.7  158.6  153.4  160.9  229.3  C0  24.7  23.8  24.1  24.3  24.2  24.4  23.0  NO (g/hr)  303.1  285.0  116.2  115.0  113.6  113.3  265.1  0 (kg/hr)  30.4  31.3  20.7  20.4  20.6  20.5  32.1  C H (g/hr)  12.2  19.5  19.7  19.7  19.9  19.7  23.7  nmHC (g/hr,Cl)  18.4  28.4  29.1  27.9  29.0  28.2  30.9  tHC(g/hr,Cl)  30.5  47.9  48.8  47.5  48.9  47.9  54.6  2.265  4.958  6.487  6.612  6.070  6.429  4.479  8.38  27.19  23.00  24.79  24.04  25.09  34.77  Exhaust Back Pressure (kPa) EGR Fraction(%) Exhaust Emission Flows (kg/hr)  2  x  2  4  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel) C 0 (kg/kg fuel)  3.86  3.66  3.78  3.80  3.80  3.80  3.49  NO (g/kg fuel)  47.41  43.74  18.23  17.97  17.81  17.66  40.19  0 (g/kg fuel)  4.76  4.80  3.24  3.20  3.22  3.19  4.86  C H (g/kg fuel)  1.90  2.99  3.09  3.08  3.11  3.07  3.59  nmHC (g/kg fuel.Cl)  2.87  4.36  4.56  4.36  4.55  4.40  4.69  2  x  2  4  tHC (g/kg fueLCl)  4.78  7.36  7.65  7.43  7.66  7.47  8.27  PM (g/kg fuel) - TEOM [corrected] Dilution System Parameters  0.35  0.76  1.02  1.03  0.95  1.00  0.68  Exhaust Temp - manifold (C)  457.0  395.5  473.6  476.4  474.0  476.6  399.4  Exhaust Temp - sample inlet (C) Dilution Air Temp (C)  376.6  331.7  401.2  403.8  403.2  404.1  318.2  8.7  8.4  7.9  6.6  6.0  6.2  7.0  Filter Temp (C)  39.1  40.5  44.2  43.2  42.3  41.7  46.7  1.0  1.0  1.0  1.0  1.0  1.0  1.0  0.47  0.50  0.54  0.54  0.54  0.54  0.56  13.2  12.1  13.4  13.4  13.5  13.4  10.3  Diff Pressure -filters(psid) Sample C 0 (%) 2  Dilution Ratio - C 0  2  Table 4-17: 1400 R P M 85% load - BP/DPW test emissions (II)  74  Label:  A15  A16  A17  A18  A19  A136  A137  A138  A139  A140  7-Mar-02 7-Mar- 7-Mar- 7-Mar- 7-Mar- 8-Mar- 8-Mar- 8-Mar- 8-Mar- 8-Mar02 02 02 02 02 02 02 02 02 11:41:03 11:57:57 12:14:00 12:24:01 12:30:31 15:46:38 16:05:51 16:18:01 16:28:29 16:34:37  Date: Time: Engine Parameters  1390.5  1390.5  1409.4  85.0  85.0  85.0  85.0  85.0  42.3  40.8  41.1  42.6  42.3  1406.3  1409.0  1407.9  1415.6  1433.3  1397.7  Load(%)  85.0  85.0  85.0  85.0  85.0  Indicated Power (kW)  42.3  41.7  41.4  42.1  43.0  Speed(RPM)  1407.3  IMEP (bar)  14.4  14.2  14.1  14.3  14.4  14.5  14.1  14.2  14.5  14.4  Pmax(bar)  146.5  144.6  142.9  145.0  145.0  148.4  141.9  144.5  147.6  147.7  Pmax location (degrees) Diesel Flow(kg/hr)  366.9  366.9  367.0  366.9  367.1  367.6  367.0  367.4  366.8  367.2  0.28  0.28  0.28  0.28  0.28  0.30  0.32  0.31  0.31  0.41  CNG Flow(kg/hr)  6.26  6.19  6.23  6.08  6.39  6.11  6.16  6.11  6.19  6.06  Air Flow(kg/hr)  273.4  258.0  229.3  278.7  278.8  275.4  213.2  248.9  275.1  275.1  Exhaust Flow(kg/hr)  279.9  264.5  235.8  285.0  285.4  281.8  219.7  255.3  281.6  281.6  11.7  11.0  142.2  145.6  12.4  12.3  10.6  144.2  142.5  123.2  0.0  8.5  16.5  0.0  0.0  0.0  14.5  11.5  0.0  0.0  Exhaust Emission Flows CO (g/hr)  172.66  92.88  258.89  48.00  198.73  155.88  183.33  140.30  208.17  187.90  C0  23.05  25.16  24.95  24.29  23.78  23.02  22.54  25.41  23.64  23.64  NO (g/hr)  261.24  168.62  82.95  290.79  267.49  259.89  88.22  121.43  255.36  265.38  0 (kg/hr)  31.41  25.39  18.77  31.39  31.73  33.24  19.26  24.08  32.36  32.51 41.56  Exhaust Back Pressure (kPa) EGR Fraction(%)  (kg/hr)  2  x  2  5.34  -55.29  -101.78  24.76  6.31  39.76  31.80  37.17  41.37  nmHC (g/hr,Cl)  54.99  103.26  171.56  8.96  52.52  18.81  30.51  22.19  17.44  15.14  tHC (g/hr,Cl)  60.32  47.97  69.78  33.73  58.83  58.57  62.30  59.36  58.81  56.70  PM (g/hr) - TEOM [corrected] Exhaust Emission Flows/Fuel CO (g/kg fuel)  6.55  6.45  12.13  7.81  6.60  3.93  8.56  8.87  5.76  5.03  29.04  C H (g/hr) 4  26.42  14.35  39.79  7.55  29.80  24.30  28.27  21.87  31.99  C 0 (kg/kg fuel)  3.53  3.89  3.83  3.82  3.57  3.59  3.48  3.96  3.63  3.65  NO (g/kg fuel)  39.98  26.06  12.75  45.71  40.11  40.51  13.61  18.93  39.24  41.01  0 (g/kg fuel)  4.81  3.92  2.89  4.93  4.76  5.18  2.97  3.75  4.97  5.02  4.90  5.79  6.36  6.42 2.34  2  x  2  C H (g/kg fuel) 4  0.82  -8.55  -15.64  3.89  0.95  6.20  nmHC (g/kg fuel,Cl)  8.42  15.96  26.37  1.41  7.88  2.93  4.70  3.46  2.68  tHC (g/kg fuel.Cl)  9.23  7.41  10.73  5.30  8.82  9.13  9.61  9.25  9.04  8.76  PM (g/kg fuel) TEOM [corrected] Dilution System Parameters Exhaust Temp manifold (C) Exhaust Temp sample inlet (C) Dilution Air Temp (C)  1.00  1.00  1.86  1.23  0.99  0.61  1.32  1.38  0.88  0.78  397.4  481.6  487.9  463.9  406.3  385.7  483.1  480.3  400.4  397.1  267.4  405.5  416.5  400.0  338.4  243.2  409.9  408.6  341.5  306.5  14.8  9.7  8.1  8.1  9.0  9.7  5.8  6.1  6.5  7.1  Filter Temp (C)  42.9  41.8  36.9  36.7  38.8  44.0  38.0  36.0  39.2  41.5  Sample C 0 (%)  0.67  0.42  0.57  0.49  0.51  0.61  0.67  0.65  0.61  0.61  Dilution Ratio - C 0  8.6  16.4  13.2  12.5  11.6  9.4  10.7  10.8  9.7  9.7  2  2  Table 4-18: Data summaries for 1400 RPM 85% load tests  75  Label:  071  073  075  077  079  081  083  087  16-Jan- 16-Jan- 16-Jan- 16-Jan- 18-Jan- 18-Jan- 18-Jan- 18-Jan02 02 02 02 02 02 02 02 9:37:25 10:03:19 10:19:51 10:39:10 13:57:38 14:30:36 14:51:15 15:07:59  Date: Time: Engine Parameters  1607.5  1598.9  1601.7  1603.4  821.0  815.1  813.3  822.6  Load(%)  40.0  40.0  40.0  40.0  75.0  75.0  75.0  75.0  Indicated Power (kW)  26.9  27.2  26.8  27.5  19.6  18.7  18.1  19.1  8.0  8.2  8.0  8.2  11.5  11.0  10.7  11.1  Speed(RPM)  IMEP (bar) Pmax(bar)  107.4  106.0  102.1  106.3  130.0  126.9  125.9  129.4  Pmax location (degrees) Diesel Flow(kg/hr)  368.4  368.7  366.0  368.2  368.7  368.1  368.3  368.4  0.54  0.61  0.62  0.63  0.58  0.63  0.62  0.61  CNG Flow(kg/hr)  3.60  3.65  3.68  3.69  2.84  2.74  2.69  2.74  Air Flow(kg/hr)  209.8  176.9  149.4  210.8  91.6  78.0  67.5  91.7  Exhaust Flow(kg/hr)  214.0  181.2  153.7  215.1  95.0  81.4  70.8  95.1  11.8  115.0  123.8  10.3  11.7  51.6  55.7  10.9  0.0  11.6  24.8  0.0  0.0  12.2  23.3  0.0  Exhaust Emission Flows CO (g/hr)  34.57  41.04  74.93  38.41  147.05  153.98  310.94  106.47  C 0 (kg/hr)  11.59  11.28  11.15  11.89  9.78  9.37  8.92  9.63  NO (g/hr)  112.18  66.77  26.62  108.96  195.71  84.62  24.08  198.43  0 (kg/hr)  34.13  26.49  19.96  33.80  8.59  5.72  3.49  8.79  Exhaust Back Pressure (kPa) EGR Fraction(%)  2  x  2  C H (g/hr)  -150.6  -128.0  -108.9  -151.5  4.10  7.77  12.50  3.87  nmHC (g/hr,Cl)  215.66  214.31  288.10  217.03  15.00  17.93  21.99  13.35  4  tHC(g/hr,Cl)  64.97  86.28  179.17  65.44  19.10  25.70  34.50  17.21  PM (g/hr) - TEOM  2.31  3.51  2.74  1.57  0.41  0.96  2.74  0.23  PM(g/hr) - filters  3.91  5.43  3.32  2.69  0.49  1.00  3.46  0.44  PM mass(mg) - filters  0.52  0.86  0.61  0.36  0.15  0.24  0.39  0.15  294.4  359.5  357.3  296.3  406.7  440.9  427.1  398.0  213.0  304.4  304.9  226.2  245.5  337.3  333.1  258.1  Dilution System Parameters Exhaust Temp manifold (C) Exhaust Temp sample inlet (C) Dilution Air Temp (C)  16.5  13.1  13.7  14.4  18.9  14.4  13.6  13.8  Filter Temp (C)  44.3  47.2  46.9  47.6  47.4  31.7  36.7  39.8  Dilution Flow Rate (SLPM) Total Flow Rate (SLPM) Diff Pressure - filters (psid) Sample C 0 (%)  18.3  18.3  18.3  18.3  17.8  17.8  17.8  17.6  17.8  17.9  17.8  17.8  17.8  17.8  17.8  17.9  0.5  0.4  0.4  0.4  0.4  0.5  0.7  0.4  0.39  0.44  0.50  0.40  0.72  0.80  0.72  0.78  10.2  10.2  10.2  10.1  9.9  9.9  12.1  9.0  Dilution Ratio - MFC  8.3  8.0  8.2  8.3  6.9  7.0  6.9  6.4  Duration (mins)  15  15  15  15  15  10  5  15  2  Dilution Ratio - C 0  2  Table 4-19: Excess diesel tests with filter emission rates (I)  76  103 105 107 093 095 101 089 091 099 21-Jan- 21-Jan- 21-Jan- 21-Jan- 22-Jan- 22-Jan- 22-Jan- 22-Jan- 22-Jan02 02 02 02 02 02 02 02 02 13:20:32 13:42:34 14:09:28 14:28:04 9:42:08 10:17:44 10:38:32 10:54:16 11:09:04  Label: Date: Time: Engine Parameters  Speed(RPM) Load(%) Indicated Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  803.8 25.0 10.9  803.2 25.0 11.0  805.2 25.0 11.0  810.1 25.0 11.0  1594.7 75.0 40.9  1595.8 40.0 27.2  1614.9 40.0 27.3  1609.9 40.0 27.7  1600.6 40.0 27.3  6.5 101.8 366.3  6.6 100.4 366.2  6.6 97.0 366.4  6.5 101.5 366.4  12.3 124.0 367.2  8.2 110.1 368.2  8.1 104.9 369.4  8.3 107.8 368.4  8.2 109.2 368.2  0.73 1.22 72.1 74.0 12.6  0.78 1.18 61.3 63.3 25.8  0.85 1.21 53.6 55.7 23.7  0.87 1.20 73.1 75.1 10.5  0.36 5.92 298.6 304.9 12.6  1.15 3.54 214.4 219.1 11.3  0.85 3.59 156.0 160.5 116.6  0.76 3.66 181.1 185.5 114.2  0.77 3.56 214.1 218.4 11.2  0.0  12.6  19.8  0.0  0.0  0.0  19.6  10.1  0.0  6.07 5.62 175.34 10.33 4.20 9.71 13.91 0.80 1.30 0.52  7.52 5.44 94.40 7.97 7.57 14.98 22.55 0.89 1.23 0.58  10.45 5.51 44.39 5.99 10.59 19.49 30.08 0.56 0.81 0.44  5.77 5.65 168.38 10.69 4.16 10.08 14.25 0.72 1.10 0.43  120.48 25.06 187.68 38.68 25.91 59.21 85.12 5.54 7.46 0.43  28.14 12.32 126.07 35.61 21.29 45.40 66.69 1.37 2.31 0.28  42.65 12.05 42.74 21.74 44.56 82.51 127.07 1.75 2.78 0.27  29.46 12.36 79.71 27.50 27.40 54.32 81.72 1.26 2.28 0.21  28.45 12.50 125.21 35.37 20.32 42.77 63.09 0.77 2.31 0.27  293.1  303.6  315.7  290.4  401.8  285.3  364.0  365.2  288.3  184.3  224.7  228.2  199.8  282.5  210.7  308.2  309.7  236.0  19.9  18.5  18.3  18.2  17.0  13.7  13.1  12.4  12.0  41.1 17.6  41.7 17.6  41.6 17.6  42.5 17.6  47.0 18.2  29.4 18.2  40.4 18.3  44.0 18.3  47.3 18.2  17.8  17.8  17.8  17.8  17.8  17.8  17.9  17.9  17.8  0.3  0.3  0.4  0.4  0.5  0.4  0.4  0.4  0.4  0.55 9.8 6.5 15  0.62 9.8 6.5 15  0.71 9.7 6.5 15  0.54 10.0 6.5 15  0.53 11.0 8.0 10  0.38 11.0 8.0 15  0.46 11.7 8.2 9.5  0.42 11.6 8.0 10  0.37 11.6 8.0 15  Exhaust Emission Flows  CO (g/hr) C 0 (kg/hr) NO (g/hr) 0 (kg/hr) C H , (g/hr) nmHC(g/hr,Cl) tHC (g/hr,Cl) PM (g/hr) - TEOM PM(g/hr) - filters PM mass(mg) - filters Dilution System Parameters Exhaust Temp manifold (C) Exhaust Temp sample inlet (C) Dilution Air Temp (C) Filter Temp (C) Dilution Flow Rate (SLPM) Total Flow Rate (SLPM) Diff Pressure - filters (psid) Sample C 0 (%) Dilution Ratio - C 0 Dilution Ratio - MFC Duration (mins) 2  K  2  2  2  Table 4-20: Excess diesel tests w i t h filter emission rates (II)  77  Label:  109  111  113  115  119  121  123  125  23-Jan-02 23-Jan-02 23-Jan-02 23-Jan-02 24-Jan-02 24-Jan-02 24-Jan-02 24-Jan-02  Date: Time:  10:22:31  10:49:50  11:15:46 11:32:34 10:03:58  10:25:05  10:42:57  10:54:05  Engine Parameters Speed(RPM)  809.9  807.0  806.1  809.4  810.0  805.5  804.0  808.9  Load(%)  25.0  25.0  25.0  25.0  75.0  75.0  75.0  75.0  Indicated Power (kW) IMEP (bar)  11.0  11.3  11.3  11.2  20.1  19.4  19.0  20.1  6.5  6.7  6.7  6.6  11.9  11.6  11.3  11.9  Pmax(bar)  101.5  99.1  100.9  102.6  136.8  131.7  132.1  134.9  Pmax location (degrees) Diesel Flow(kg/hr)  366.3  366.4  366.7  366.8  368.1  368.0  367.9  368.0  0.75  0.85  0.89  0.89  0.60  0.59  0.61  0.63 2.91  CNG Flow(kg/hr)  1.19  1.21  1.20  1.19  2.91  2.89  2.87  Air Flow(kg/hr)  72.1  53.6  61.1  72.4  93.9  76.4  69.1  92.8  Exhaust Flow(kg/hr)  74.1  55.6  63.2  74.5  97.4  79.9  72.6  96.3  Exhaust Back Pressure (kPa) EGR Fraction(%)  10.5  24.0  25.5  10.5  11.8  55.6  59.1  9.7  0.0  20.4  12.8  0.0  0.0  12.7  22.0  0.0  CO (g/hr)  7.89  12.06  9.67  8.69  172.70  273.18  489.52  209.42  C 0 (kg/hr)  5.61  5.53  5.50  5.55  10.09  9.57  9.23  10.13  N O (g/hr)  172.46  46.55  87.57  172.05  205.87  69.87  24.21  190.40  0 (kg/hr)  10.21  5.71  7.54  10.20  8.74  4.93  3.26  8.32  C H , (g/hr)  3.81  10.47  7.21  3.93  6.06  10.04  15.53  5.31  nmHC (g/hr,Cl)  11.23  20.01  15.67  11.48  12.14  17.97  24.15  11.77  tHC (g/hr ,C1)  15.03  30.48  22.88  15.41  18.21  28.01  39.68  17.07  0.91  0.62  0.50  0.75  0.52  1.58  7.03  0.85  PM(g/hr) - filters  1.24  0.84  0.78  0.98  0.67  2.18  6.60  0.78  PM mass(mg) - filters  0.41  0.38  0.30  0.36  0.15  0.45  0.41  0.23  292.0  317.1  309.4  291.6  406.2  452.1  437.3  409.8  187.7  229.5  228.9  198.9  262.0  348.2  342.4  273.9  20.1  19.4  18.9  18.8  15.5  13.2  13.4  14.8  45.2  45.1  45.5  45.7  44.6  45.7  42.4  48.0  18.2  18.2  18.2  18.1  19.0  18.9  19.0  18.1  17.8  17.8  17.8  17.8  17.8  17.9  17.9  17.8  Exhaust Emission Flows 2  x  2  PM (g/hr) - TEOM  Dilution System Parameters Exhaust Temp manifold (C) Exhaust Temp sample inlet (C) Dilution Air Temp (C) Filter Temp (C) Dilution Flow Rate (SLPM) Total Flow Rate (SLPM) Diff Pressure - filters (psid) Sample C 0 (%)  0.4  0.3  0.3  0.4  0.4  0.6  0.4  0.5  0.46  0.59  0.53  0.50  0.79  0.87  0.47  0.70  Dilution Ratio - C 0  2  11.9  11.8  11.8  10.7  9.0  9.4  19.5  10.4  Dilution Ratio - MFC  8.0  8.0  8.0  7.6  11.2  10.5  14.0  7.7  Duration (mins)  15  15  15  15  10  8  4.5  15  2  Table 4-21: Excess diesel tests with filter emission rates (III)  78  Appendix C: Analysis of TEOM Output A typical T E O M plot is shown below, showing the total mass and mass rate. A constant emission rate and increasing total mass line is expected.  TEOM Data Plotted with Time  -2E-06 -3E-06 -4E-06 200  Time(s)  300  Figure 4-2: Sample TEOM Output In all cases a linear regression was performed on the total mass data series. There is an initial period of approximately 60 seconds, where the output is unsteady, due to the adjustment of the T E O M to the different pressure source and the filter face to the exhaust humidity. This part of the data is omitted from the regression calculation. Once the regression is performed, the R value is verified and expected to be greater than 0.98. 2  This average rate is compared to the P M rate as measured on the graph for verification purposes. Once the P M emission rate is known, it can be multiplied by the duration of the sampling period to give the total mass collected.  79  Appendix D: Derivation of Dilution Ratio Calculation The flow of CO2 through the dilution system is shown below:  Dilution  [C0 ] N . 2  ex  [C0 ]to,N 2  e  tot  System  [C0 ] N 2  m  dil  Here, ex denotes exhaust (from engine), d i l denotes dilution air and tot denotes the total sampled diluted exhaust. [C0 ] is the CO2 concentration in molar percent and 2  ./V represents the specified molar flow. B y conservation of mass, the CO2 into the system must equal the CO2 out: [C0 ] N 2  ex  + [C0 ] N  ex  2  dil  = [CO ] N  dil  2  tol  t0t  (D-l)  If we assume no chemical reactions are taking place the number of moles into the dilution system must be equal to the number out: N  +N  ex  =N  dil  (D-2)  m  W e define the dilution ratio as the total exhaustflow divided by the raw exhaust flow into the dilution system:  DR = N ,IN t0  (D-3)  ex  Combining equations D - l and D-2 into D-3 yield the following:  DR =  [C0 ] 2  (D-4)  ex,wet  [CO ] -[CO ]-[C0 ] 2  l0LW  2  2  dil  2 J dil.wet ,wet  Since the CO2 concentrations are measured on a dry basis, the water loss must be accounted for, which is accomplished by using the following relations. [CO  2]ex.wet  =  [C0 ] , (l-[H 0]) 2  80  ex dry  2  (D-5)  [C0 ]dil,wet  =  2  [C0 ]dildry  (D-6)  2  (there is no water in the dilution air) Water in the diluted exhaust originates from the engine exhaust only. Since the dilution air contains no water the CO2 concentration i n the sampled air stream can be corrected by using the following approximation:  [C0 ] 2  tot.wet  1[CO  ]  2  [H 0] 2  (D-7)  DR dry  iy  mi  e x  r  Note equation D-7 is essentially the same as D - 5 , however the water content has been diluted by an amount close to the dry dilution ratio (D-4 using dry values). The actual dilution ratio is found by substituting D - 5 , D-6, D-7 into D-4. [C02]  e x 4 r y  (l  - [H20]  ) - [ C 0  ex  ]  2  d i l 4 r y  DR \ _ [ H  [ C 0 2]J Wt4ry  2  0 ]  e  x  ^ [ c o 2] J dildry  2  2  DR dry  81  d  h  (D-8)  Appendix E : Sampling Procedure - Filters with T E O M 1. Before engine operation: •  T E O M is turned on (with computer) to allow heating element to reach 50°C at least an hour before sampling. Ensure to start "teom-1105" program so warm-up procedure is initiated.  •  Purge air supply ( T E O M ) should be connected and set to 10 psig at bottle regulator.  •  Plug in mass flow controllers at least 30 minutes prior to operation.  •  Turn on heating tape at Variac to a value of 20 to heat up sample tube.  2. After engine has reached desired operating point: •  Insert pre-weighed filters into filter holder, record number and engine conditions i n logbook  •  Open T E O M purge air valve and plug in T E O M sample pump. Ensure flow rate is 3 . 0 S L P M .  •  Open dilution air flow valve at sample line, ensure pressure is set to 10 psig at regulator  3.  Rename low speed label field in data acquisition program to match the primary filter number with E G R rate i f applicable.  Begin low speed data collection, ensure  sampling rate has been adjusted to record every 5-15 seconds.  4. Start T E O M sampling mode (ensure dilution air is on first), this should be sampling clean air with very little exhaust. T E O M pump must be plugged in.  5.  Connect filter holder to bottom quick-connect joint only (to pump).  6. Turn on sample flow by opening large ball valve to exhaust duct and switching on sample pump. The filter holder should be drawing ambient air through the filters. Wait until mass flow controller connected to pump approaches setpoint value. 82  7.  Open small ball valve (from dilution region) and allow any moisture to blow out (hold your breath).  Connect other quick connect region and begin timing  experiment at this point. This commences the sampling period for both the T E O M and filters.  8.  Change CO2 line source to P M (vs intake) and ensure CO2 analyzer is receiving sufficient flow (check valves, pump, etc).  Ensure dilution ratio is between 10 and  15, i f it is not adjust dilution air mass flow controller, record adjustment i n logbook.  9. A t mid-point of sampling time •  Make note of all data in logbook ( " P M Tunnel Data"):  •  Capture high-speed data, change name to "Fast-xxx" where xxx is filter no.  •  Record any comments or concerns i n lab book  •  Ensure low-speed data acquisition continues  for remainder  of sampling  period  10. A s soon as the sampling period expires: •  Turn off sample pump  •  Close ball valve to exhaust duct  •  Close ball valve to filter holders  •  Remove filters  •  Return T E O M to "Initialization M o d e "  •  Make note of stop time ( T E O M and D A Q PCs)  •  Turn off dilution air  •  Place filters i n appropriate cases and replace filters with unused pre-weighed filters for next point, return to step 2 when ready to begin sampling.  11.  Otherwise shut down T E O M , unplug mass flow controller, proceed to engine shut down procedure.  83  Appendix F: Operating Procedure - T E O M 1. Before engine operation: •  T E O M is turned on (with computer) to allow heating element to reach 50°C at least an hour before sampling. Ensure to start "teom-1105" program so warm-up procedure is initiated.  •  Purge air supply ( T E O M ) should be connected and set to 10 psig at bottle regulator.  •  Plug in mass flow controllers at least 30 minutes prior to operation.  •  Turn on heating tape at Variac to a value of 20 to heat up sample tube.  •  Insert glass fiber filters into filter holder, these may need to be changed i f heavy particulate emission are measured or used for an extended period.  •  Insert filter holder into quick connect joint at both ends  2. After engine has reached desired operating point: •  Open T E O M purge air valve and plug in T E O M sample pump. Ensure flow rate is 3 . 0 S L P M on T E O M data screen.  •  Open dilution air flow valve at sample line, ensure pressure is set to 10 psig at regulator  3. Rename low speed label field in data acquisition program to match the primary filter number with E G R rate i f applicable.  Begin low speed data collection, ensure  sampling rate has been adjusted to record every 5-15 seconds.  4.  Turn on sample flow by opening large ball valve to exhaust duct and switching on sample pump.  5.  Change CO2 line source to P M (vs intake) and ensure CO2 analyzer is receiving sufficient flow (check valves, pump, etc).  Ensure dilution ratio is between 10 and  84  15, i f it is not adjust dilution air mass flow controller, note dilution ratio w i l l be affected by T E O M flow as w e l l (test run can be performed).  6.  Start T E O M sampling mode (ensure dilution air is on first) by pressing F I and entering a filename.  A solenoid valve w i l l click open, this starts the sampling  period.  7. A t mid-point of sampling time •  Make note of all data i n logbook ( " P M Tunnel Data"):  •  Take high-speed data file  •  Record any comments or concerns in lab book  •  Ensure low-speed data acquisition continues for remainder of sampling period  8. A s soon as the sampling period expires: •  Stop T E O M sampling by pressing F 2 .  •  Press F3 and enter ' y ' to return to initialization mode, this is necessary before starting to sample again.  •  Sample pump and dilution air can be left on i f continuing to collect data  9. Set next operating point and return to step 2  10.  Otherwise shut down T E O M , unplug mass flow controller, proceed to engine shut  down procedure.  85  Appendix G: List of Electronic Files Location/Filename(s)  Description  /Data/fas tout.xls  template file required by high speed data processing routine data file containing filter weights, mass flow rates and experiment duration data. self explanatory - author: G . McTaggartCowan self explanatory - author: S. Munshi E x c e l file used to generate report from multiple data files. template file incorporating " S C R E Emission Sheet.xls" and " H i g h Speed Data Processing Routine"used to calculate all P M emission rates. Results from experiments performed after Jan 1, 2002 until Feb 1, 2002 with excess diesel. Results used for T E O M vs Filters comparison Baseline with T E O M and 5% diesel flow Mar 6-8 B P and D P W study 1 6 0 0 R P M 40% load B P and D P W study 8 0 0 R P M 75% load B P and D P W study 1 4 0 0 R P M 85% load B P and D P W study 8 0 0 R P M 25% load Baseline points performed with T E O M and filters, M a r 8 ( 1 6 0 0 R P M 40% load) T E O M output data fields unprocessed high-speed data unprocessed low-speed data (emissions, temperatures, pressures, etc.) all old raw data files for all experiments with corresponding label reports/summaries generated on dates as labeled.  /Data/fil ter_weights.xls /Data/High Speed Data Processing Routine.xls / D a t a / S C R E Emissions Spreadsheet.xls /Data/summary.xls /Data/template.xls  /Data//Analyzed/071 - 125.xls  /Data//Analyzed/A1 - A30.xls /Data//Analyzed/Bl - B13.xls /Data//Analyzed/Cl - C 1 3 . x l s /Data//Analyzed/El - E 1 3 . x l s /Data//Analyzed/El - E 1 3 . x l s /Data//Analyzed/A131 - A139.xls /Data/raw/TEOM/"label".prn /Data/raw/ Files "label"-fast.csv /Data/raw/ Files "label"-slow.csv /Data/raw/015-125/ /Data//Analyzed/Reports  86  Appendix H: Engine Warm-up and Operating Procedure The following list outlines the procedures used to achieve stable, repeatable operation of the S C R E with E G R over a range of operating conditions and E G R fractions.  The following list refers to replacement E G R operation at fixed intake  manifold temperature.  Testing of other parameters w i l l require some changes to these  operating instructions. For n o n - E G R conditions the same procedure was used with lowrange C 0 connected to P M sampling outlet. 2  1) Let the engine reach full temperature by running at moderate speed and load (at least 95°C).  2) Set up the low-range CO2 sensor for E G R operation. Turn the low-range selector valve (on the North outside wall o f the test cell) to ' E G R ' . Turn both handles on the CO2 selector valves (inside the emissions bench, Cabinet 1, L H S ) to Tow range'. Ensure that sample flow rate is 1 1pm (flow meter on R H S at back of cabinet) and that the drier flow rate (flow meter attached to back door of cabinet) is 2 1pm.  3) Determine the desired air and fuel flow rates and injection timing for the test point.  4) Adjust the supercharger speed, engine speed, engine load, and fuelling so that the engine is running under the desired conditions.  5) Adjust the back-pressure valve (using the control knob on the C P ) until the B P reads 5-10 k P a above the intake manifold pressure.  6) Let the engine run for 5-10 minutes or until all the temperatures stop changing. Carefully monitor the intake air temperature.  87  7) Open the manual E G R valve (black handle, above the supercharger) so that E G R can flow to either the supercharger exhaust (handle to the left) or to the supercharger intake (handle to the right).  8) Open the remote E G R valve slowly. Watch the low-range CO2 analyser output to detect when E G R flow starts.  Adjust the E G R valve, supercharger speed and  back-pressure valve to hold the manifold air pressure constant while adjusting the E G R fraction (displayed on the D A Q screen). Adjustments need to be made slowly, as the intake CO2 sensor has a time delay of approximately 30 seconds.  9) During all adjustments, monitor the pressure trace and T H C emissions.  10) Fine-tuning of the E G R flow rate is best achieved through stepwise adjustments of the supercharger (50 R P M ) and the B P valve.  11) Once at the operating condition, let the engine run for about 5 minutes to allow all the readings to stabilise. Once low and high speed readings are taken, repeat steps 911 to get to the next desired operating condition.  12) T o shut off the E G R system, reduce the opening of the E G R valve to 15-20%. Simultaneously (in stages) increase the supercharger speed and open the backpressure  valve so that the intake and exhaust manifold  approximately constant.  pressures  are held  Close the E G R valve the rest of the way, increase  supercharger speed to reach the desired intake pressure, and adjust the back-pressure valve for the desired pressure.  13) Follow the standard procedures for adjusting the engine speed and load to reach the next desired operating condition. It is strongly recommended that the engine be run at a fixed (repeatability) point for at least 10 minutes between E G R test runs to purge all exhaust gases from the intake system and to ensure that the engine is operating in the expected manner. 88  Appendix I: Diesel Flow Measurement The mass of diesel in a reservoir was recorded with time to calculate diesel consumption. A linear regression was used to give the rate of decrease of fuel.  Notice  for even in the best case there is a large amount of noise in the data as shown in Figure 4-3.  A regression analysis gives a range of 0.28 - 0.31 kg/hr for the slope at 95%  confidence. The uncertainty of the diesel flow rate in this case would be within 10%. Sample Diesel How Data (high accuracy)  16.180 16.175  •  — 16.170 o> — 16.165  •  y= -7.18X +19.37 R* = 0.90  m  § 16.160  •  S 16.155  t• t  ° 16.150 16.145 16.140 10:40:48  10:42:14  1 0:43:41 10:45:07 Time (hour/min/sec)  10:46:34  10:48:00  Figure 4-3: Sample Dieselflowdata - high accuracy  A less ideal case is presented i n Figure 4-4.  The variability in this data is  obviously higher. Sample Diesel Row Data (low accuracy)  12:23:02  12:24:29  12:25:55  1227:22  12:28:48  12:30:14  12:31:41  Time(hour/min/sec)  Figure 4-4: Sample diesel flow data - low accuracy  89  12:33:07  A regression analysis gives a range of 0.062 - 0.081 kg/hr for the slope at 95% confidence. The uncertainty of the diesel flow rate in this case would be 24%, however the true value should be around 0.15 kg/hr. In this situation, data from other sampling periods would be pooled and the diesel flow rate would be assumed constant over the entire interval. The error for this data set is likely to be 25% but could be even larger. Figure 4-5 and Figure 4-6 the difficulty in discerning whether the actual diesel flow rate changes with pulse width or i f it is purely excessive error in the calculation. A t 800 R P M the diesel flow rate is unreliable with high variability.  Hence, there is high  scatter at various D P W values. Diesel Flow Variation at 800 RPM 25% Load 0.26 0.24  ssel  3 o C  0.22 „0.20  a f.0-18 a.  CO  S»  •  0.16 0.14 0.12 0.10 0.5  0.6  0.7  0.8  0.9  1.2  1.1  DPW(ms) Figure 4-5: Diesel Flow Measurements 800 R P M 25% Load  Diesel Flow V a r i a t i o n at 800 RPM 7 5 % L o a d 0.22 • 0.20  E  • 0.18  • of.0.16  •  0.14  • •  •  0.12 0.10 0.5  0.6  0.7  0.8  0.9  1.1  1.2  DPW ( m s )  Figure 4-6: Diesel Flow Measurements 800 R P M 75% Load  90  A t higher speeds, the same amount of scatter is present but represents less as a percentage of the total diesel flow rate, as shown in Figure 4-7 and Figure 4-8. For the following cases there is more confidence in the calculated diesel flow rate. Diesel Row Variation at 1600 RPM 40% Load 0.40 0.38 0.36 0.34 •C-0.32  1,0-30 —0.28 0.26 0.24 0.22 0.20 0.5  0.6  0.7  0.8 0.9 DPW (ms)  1.1  1.2  Figure 4-7: Diesel Flow Measurements 1600 R P M 40% Load  0.34 0.33 0.32 0.31 f0.30 i;o.29 0.28 0.27 0.26 0.25  Diesel Flow Variation at 1400 RPM 85% Load  0.5  0.6  0.7  0.8  0.9  1.1  1.2  DPW (ms)  Figure 4-8: Diesel Flow Measurements 1400 R P M 85% Load  It is concluded the error in diesel flow measurements is around 20% at 800 R P M and 10% at the higher speeds.  91  Appendix J: High-Speed Data Summaries Attached is the high-speed data calculations for all samples. The pressure vs volume diagrams have been presented in log p vs V to emphasize the pumping loop. Graphs of the following in-cylinder pressure measurements are presented: >• pressure vs crank angle >  pressure vs volume  >  heat release rate vs crank angle  A l l data is available with electronic submission on C D .  92  Speed [RPM] Torque [N-mj Load [%] P max [deg] CA @ P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR max[kj/m"3/deq] IHR max p a m M ] 5 MFB [deq w.r.t TDC] 10'oMFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during ccmprn zero-level.ipr. offset [bar] poly-n;compressioniuncorrcctf>d poly-n compression corrected poly-nexpansioniuncorrectcd poly-n expansion corrected  Comments  10660.71 8.0 398.067 -12.0 801.67 9364.2 142128.0 -5.0 2.5 10.0 23.5 1.37 0.000 1.35 1.35 1.31 1.31  Data Summary for filter: Date: Time:  -:. 071 1/16/02 9:37:25  Endine Parameters Speed(RPM) Load-approx. (%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 1607.5 40.0 26.9 8.03 107.40 368.4 0.54237 3.60 209.8 214.0 11.8 0.0  '  In-Cylinder Pressure Trace 12000 •j; 10000 a •JT 8000 » o o  6000  a.  4000  g"  2000 0  I  1  1  1  1  1  1  i  1  i  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate 10000  -2000 ' -20  ' -15  1  • 0  1  -10  -5  • 5  1  1  10  1  15  20  c r a n k a n g l e [deg]  Log Pressure vs Volume  1-1  0.0000  i  ,  i  .  1  1  0.0005  0.0010  0.0015  0.0020  0.0025  0.0030  v o l u m e [m3]  93  Speed! [RPM] Torque [N-m] Load [%] P max [dog] CA (. P max [deq] dP/dCA max [bar/deg] CA@dP.dCA max [deg] IMEP [bar] HHR max [kJ/m"3/doq] IHR max [ k j m"3] m MFB [doq w.r.t TDC] 10'oMFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB! [deg w.r.t TDC] Assumed poly-n during comprn zero-level. : pr.:offset[bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary tor filter: Date: Time:  10532.12 9.5 382.558 -11.5 816.40 8717.3 145650.7 -1.0 3.0 11.0 25.5 1.37 0.000 1.36 1.36 1.29 1.29  1  073 . | 1/16/02 10:03:19  Ermine Parameters™ * Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1598.9 40.0 27.2 8.17 106.03 368.7 0.61279 3.65 176.9 181.2 115.0 11.6  In-Cylinder Pressure Trace 12000 10000 V  8000  5 tn  6000  a.  4000  g  0 2000  o  1  I  1  1  1  -50  -40  -30  -20  i -10  1 0  1  1  1  1  1  10  20  30  40  50  crank angle [deg] Net Heat Release Rate 10000  »  -2000 -4000 I -20  1 -10  J 0  1 10  ! 20  1 30  1  40  crank angle [deg] Log Pressure vs Volume  10-  -I  1 0.0000  1 0.0005  1  *  '  1 0.0010  1 0.0015  1 0.0020  volume [m3]  94  1 0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kj/m"3/deg] IHR max[kJ/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10108.53 1.5 379.112 -11.5 801.04 9292.0 146236.4 0.5 4.5 12.5 28.0 1.37 0.000 1.34 1.34 1.29 1.29  075 1/16/02 10:19:51  Enalne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaae 1601.7 40.0 26.8 8.02 102.08 366.0 0.61991 3.68 149.4 153.7 123.8 24.8  In-Cylinder Pressure Trace 12000  a  10000  ~Z 8000 jto » 6000 a)  a. 4000 & 2000 0 I -50  .  1  1  1  -40  -30  -20  -10  1 0  1  1  1  i  1  10  20  30  40  50  crank angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015  volume [m3]  95  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m«3/deg] IHR max [kJ/m"3] 5% MFB [deq w.r.t TDC] 10% MFB: [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-mexpansion uncorrected poly-n expansion corrected  '  Comments  "*  077 1/16/02 10:39:10  Data Summary for filter: Date: Time:  10553.73 8.0 396.344 -12.0 821.63 8225.0 148785.5 0.0 2.5 11.0 26.0 1.37 0.000 1.33 1.33 1.28 1.28  Enalne Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1603.4 40.0 27.5 8.23 106.31 368.2 0.63 3.69 210.8 215.1 10.3 0.0  In-Cylinder Pressure Trace 12000 Is  10000  .O ^ 3 in> 0)  8000 6000  Q.  4000  J  2000 0  1  1  I  1  1  1  1  i  i  i  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  crank angle [deg] Net Heat Release Rate 10000  £  -2000 -4000 ' -20  1 -10  J 0  1  10  •' 20  30  40  1 0.0020  1 0.0025  0.0030  1  1  crank angle [deg] Log Pressure vs Volume  a.  10 1A 0.0000  i  i  0.0005  0.0010  1 0.0015  volume [m3]  96  1  Speed [RPM] Torque [N-m] Load [•.] P max [deg] CA @ P max [deq] dP/dCAi max [bar/deg] C A @ d P dCA max [deg] IMEP [bar] HHR m a x [ k J m » 3 d e q ] IHR max [ k j m " 3 ] 5°/ MFB [deg w r t TDC] 10% MFB [deg w . r t T D C ] 50% MFB [dog w r t TDC] 90^MFB[deqwrtTDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorret ted poly-n expansion corrected  - Comments Data Summary for filter: Date: Time:  12931.37 8.0 877.127 0.5 1143.64 16945.0 201930.9 -1.5 -0.5 5.0 21.5 1.37 0.000 1.38 1.38 1.35 1.35  079 1/18/02 13:57:38  SfAVeraoe'S Engine Parameters Speed(RPM) 821.0 75.0 Load(%) Power (kW) 19.6 IMEP (bar) 11.45 Pmax(bar) 129.99 368.7 Pmax location (degrees) Diesel Flow(kg/hr) 0.58 2.84 CNG Flow(kg/hr) Air Flow(kg/hr) 91.6 Exhaust Flow(kg/hr) 95.0 11.7 Exhaust Back Pressure (kPa) EGR Fraction(%) 0.0 In-Cylinder Pressure Trace  -10  0  50  10  c r a n k a n g l e [deg]  Net Heat Release Rate  2 ^15000  1 1  to a>  g 310000 £ -I 5000  Ii. <5  0  -10  C  0  10  -5000  40  20  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000  0.0025  0.0000  97  Comments  Spood [RPM] Torque [N-m] Load [ c] P max [deq] CA @P max [deq] dP'dCA max [bar deq] CA @ dP/dCA max Idcq] IMEP [bar] HHR max[kJ/m"3 deq] IHR max [kj/m»3] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  c  12642.40 7.5 947.779 2.0 1099.33 19461.5 194264.4 -1.0 0.0 5.0 22.5 1.37 0.000 1.35 1.35 1.35 1.35  if081 1/18/02 14:30:36  Eridihe Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Ftow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 815.1 75.0 18.7 11.01 126.85 368.1 0.63 2.74 78.0 81.4 51.6 12.2  In-Cylinder Pressure Trace 14000 T  12000  & o  10000  3  8000  to  8  6000  ^  4000  o  2000 0  I  i  1  1  i  1  1  i  1  .  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  crank angle [deg] Net Heat Release Rate 25000 I  -5000 I -20  1  1  1  1 -10  J 0  1 10  crank angle [deg]  98  1 20  1 30  1  40  Comments  Speed [RPM] Torque|N-m] Load ["J P max [deq] CA (.!• P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [dog] IMEP [bar] HHR max [ k j m»3.doq] IHR m a x [ k j m " 3 ] 5% MFB [dog w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%;MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero leveLprSbffset [bar] poly-nicompression:unco! reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  12524.71 7.5 966.735 4.5 1064.31 22878.0 187628.5 -0.5 1.0 5.5 23.5 1.37 0.000 1.37 1.37 1.31 1.31  :  083 1/18/02 14:51:15  Engine Parameters ?> Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaaeli 813.3 75.0 18.1 10.66 125.92 368.3 0.62 2.69 67.5 70.8 55.7 23.3  In-Cylinder Pressure Trace 14000 •zr 12000 n fi 1OO00 o 3  8000  £  6000  °;  4000  o  2000 0 I -50  i  1  1  -40  -30  -20  i  1  1  i  1  -10  0 c r a n k angle [deg]  10  20  30  i  40  1 50  Log Pressure vs Volume  a.  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  99  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA (» P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m»3/deq] IHR m a x [ k J m " 3 ] 5%: MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [dec; w.rtTDC] Assumed poly-n during comprn. zero-level, pr.ioffset [bar] poly-n compression uncoirertpd poly-n compression corrected poly-n expansion uncorrected poly-n expansion cc rrectod  087 1/18/02 15:07:59  Data Summary for filter: Date: Time:  12887.84  7.5 944.333  0.0  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kgZhr) • Air Fk>w(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  1112.81 17487.6 196396.8 -1.5  -0.5 5.0 21.5 1.37  0.000 1.36 1.36 1.36 1.36  Average  822.6 75.0 19.1 11.14 129.45 368.4 0.61 2.74 91.7 95.1 10.9 0.0  In-Cylinder Pressure Trace  14000 & 10000 5  8000  8  6000  ^  4000 0 I -50  J  1  -40  -30  1 -20  1 -10  1 0  crank angle [deg]  100  1  1  1  1  1  10  20  30  40  50  Speed [RPM] Torque [N-m] Load [<•,] P max [deq] CA @ p max [deg] dP/dCA max [bar/deg]  Comments Data Summary for filter: Date: Time:  10130.87 6.5 940.886 0.0 652.08 17423.8 113304.3 -2.0 -1.0 2.5 11.5 1.37 0.000 1.32 1.32 1.37 1.37  CA @ dP/dCA N max [dog] IMEP [bar] HHR max [kJ m"3deg] IHR max[kJ/m"3] 5% MFB [deg w.r.t TDC] 10%MFBi[degw:r.tTDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n icom pression; uncor reclPd poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  .089 1/21/02 13:20:32  Engine Parameters '--Ave'raoeB Speed(RPM) 803.8 Load(%) 10.9 Power (kW) IMEP (bar) 6.53 Pmax(bar) 101.81 Pmax location (degrees) 366.3 Diesel Flow(kg/hr) 0.73 1.22 CNG Flow(kg/hr) 72.1 Air Flow(kg/hr) Exhaust Flow(kg/hr) 74.0 12.6 Exhaust Back Pressure (kPa) EGR Fraction(%) 0.0  In-Cylinder Pressure Trace 12000 10000  n V  8000  a  6ooo  tD  a.  4000  g  2000  1  I  i  -50  -40  0  1  1  -30  -20  i  1  1  1  1  i  1  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate  20000 ! J5000  i co510000 > <  : E 5000 , J£ "  0  -5000 10  20  30  0.0020  0.0025  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000 1000 — — _ ^ — , 100 10 1 0.0010  0.0015 v o l u m e [rr>3]  101  0.0030  si Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar deq] CA <3 dP/dCA max [deq] IMEP [bar] HHR max [ k j m»3deg] IHR max [kj/m"3] 5%MFB;[deq w.r.t TDC] 10%MFB[deqwr.tTDC] 50%MFB[deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during ccmprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9971.47 6.0 894.359 0.0 655.76 16562.2 113960.4 -1.5 -1.0 2.5 13.5 1.37 0.000 1.29 1.29 1.31 1.31  091 1/21/02 13:42:34  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 803.2 25.0 11.0 6.57 100.42 366.2 0.78 1.18 61.3 63.3 25.8 12.6  In-Cyllnder Pressure Trace 12000 "JS 10000 xi V 8000 3  6000  a.  4000  &  2000  o>  0 I -50  1  1  1  1  -40  -30  -20  -10  1 0 c r a n k angle [deg]  i  i  1  i  1  10  20  30  40  50  Net Heat Release Rate  20000 2 15000 o "3 to 0)  2 510000 A - v  -20  -10  y  —  /  0  10  20  30  A  A  40  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000  10  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  102  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P; max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m»3/deq] IHR max [ k j m"3] 5% MFB [deg w.r t TDC] 10% MFB [dog w.r.t TDC] 50% MFB [dog w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed: poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec led poly-n expansion corrected  093 1/21/02 14:09:28  Data Summary for filter: Date: Time:  9627.79 6.0 827.153 0.5 655.75 15646.2 113727.2 -1.0 -0.5 3.0 15.5 1.37 0.000 1.34 1.34 1.32 1.32  EriolheWarameterslilf S S ^ M v e r a d e l i Speed(RPM) 805.2 25.0 Load(%) 11.0 Power (kW) 6.57 IMEP (bar) 97.02 Pmax(bar) 366.4 Pmax location (degrees) 0.85 Diesel Flow(kg/hr) 1.21 CNG Flow(kg/hr) 53.6 Air Flow(kg/hr) 55.7 Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) 23.7 19.8 EGR Fraction! /.) 0  In-Cyllnder Pressure Trace 12000 " j ; 10000  n  o.  4000  g  2000  1  0  I  -50  i  -40  1  -30  1  -20  1  1  -10  0  c r a n k angle [deg]  103  1 10  1  20  i  30  1  40  1  50  Comments  Speed:[RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP'dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [ k J m ^ d e g ] IHR max [kj/m»3] 5% MFB [deg w.r.t TDC] 10%MFB [ d e g w r t T D C ] 50% MFB [deg w.r.t TDC] 90 MFB [deg w r t TDC] Assumed poly-n during comprn zero-level, pr. of (set [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10092.62 5.5 746.161 -0.5 648.20 13505.9 113328.7 -2.0 -1.0 2.5 13.0 1.37 0.000 1.27 1.27 1.30 1.30  095 .. 1/21/02 14:28:04  Enqlne Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 810.1 25.0 11.0 6.49 101.49 366.4 0.87 1.20 73.1 75.1 10.5 0.0  In-Cylinder Pressure Trace 12000 • j ; 10000 -Q ^  8000  3  6000  O o a.  4000  g-  2000 -50  o i  1  -40  ;  -30  1  -20  1  -10  i  1  ;  i  i  0  10  20  30  40  1  50  crank angle [deg] Net Heat Release Rate 16000 14000 12000  gioooo 3 8000 ? 6000  ! 4000  -  —  /•  —  - -  /  3 2000 " 0 -2000 -4000 -20  10 crank angle [deg]  104  20  40  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ7m 3/deq] IHR max[kJ/m»3] 5% MFB [deq w.r.t TDC] 10%:MFB[dogwrtTDC] 50%MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  A  101.  Data Summary for filter: Date: Time:  10930.08 8.0 418.746 -11.5 816.47 9244.7 147306.1 -8.0 2.0 10.0 24.0 1.37 0.000 1.31 1.31 1.28 1.28  1/22/02 10:17:44  Enaine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust F!ow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaaeii 1595.8 40.0 27.2 8.18 110.11 368.2 1.15 3.54 214.4 219.1 11.3 0.0  In-Cylinder Pressure Trace 12000 • j ; 10000 .C!  S. 4000 g-  2000 0  1  -50  1  1  -40  -30  I  1  1  -20  -10  0  i  1  10  20  1  1  30  40  1  50  crank angle [deg] Net Heat Release Rate 10000 : 8000 ' „6000 j 0 4000  : 1 2000 ~X ! ! ° i 3-2000 ; "-4000  v'—y\ 1—v Ar-^ \JT\I 1 v v w \  TV^  -6000 -8000  -20  -10  30  10  N  40  crank angle [deg] Log Pressure vs Volume  1 -i  0.0000  i 0.0005  1  \  0.0010  0.0015 v o l u m e [m3]  105  1  1  0.0020  0.0025  1 0.0030  Speed [RPM] Torque [N-m] Load [%] P max (deq] CA @ P max [deq] dP'dCA max [bar deq] CA@dP/dCA max [deq] IMEP [bar] HHR max [kj/m»3/d«q] IHR max [kJ m 3] 5°i MFB [deq w.r t TDC] 10%MEB [deq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durinqcomprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  •  Comments Data Summary for filter: Date: Time:  10413.07 10.0 408.407 -11.5 810.18 9109.8 148646.3 -1.0 3.0 11.0 29.0 1.37 0.000 1.33 1.33 1.29 1.29  A  103 1/22/02 10:38:32  EridihePararhfMors Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1614.9 40.0 27.3 8.11 104.85 369.4 0.85 3.59 156.0 160.5 116.6 19.6  In-Cylinder Pressure Trace 12000 •=• 10000 n V 8000 » o  6000  Q.  4000  S"  2000 0  I  -50  i  1  -40  -30  1  -20  1  1  -10  i  1  0  10  20  i  i  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 10000 8000  I  A  « fieooo S § 4000  - — ^ V W l \^ y— i  <D <  £  E 2000  re =5  2.1. |  °  \r\rsr\j\j  -2000 ^1000 -20  10  -10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  a>  CL  _:  10  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  106  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ p max [deg] dP/dCAn max [bar/deg] CA i j - dP dCA max [deg] IMEP [bar] HHR max [ k J / m ^ deg] IHR max [kJ m"3] 5% MFB [deg w.r.t TDC] 10% MFB: [deg w.r.t TDC] 50% MFB: [deg w.r.t TDC] 90% MFB [dog w.r.t TDC] Assumed poly-n during comprn. zero-level.:pr.:offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments 105 1/22/02 10:54:16  Data Summary for filter: Date: Time:  10688.65 7.5 406.683 -11.5 825.69 8744.5 151805.9 -0.5 2.5 11.0 28.0 1.37 0.000 1.27 1.27 1.19 1.19  Enaine Parameters gAveraqell 1609.9 Speed(RPM) 40.0 Load(%) 27.7 Power (kW) 8.27 IMEP (bar) Pmax(bar) 107.78 368.4 Pmax location (degrees) Diesel Flow(kg/hr) 0.76 CNG Flow(kg/hr) 3.66 Air Flow(kg/hr) 181.1 185.5 Exhaust Flow(kg/hr) 114.2 Exhaust Back Pressure (kPa) EGR Fraction(%) 10.1 In-Cylinder Pressure Trace  12000 •=• 10000 V  8000  w  6000  in o  a.  4000  g-  oi 2000 -50  1  , -40  -30  1  i  -20  1  -10  0  ;  i  10  20  i  1  30  40  1  50  crank angle [deg] Net Heat Release Rate 10000 I  2 ^-2000 f "-4000 c -6000 -8000  1  -20  1  1  1  > -10  ' 0  1  1  10  20  30  40  0.0020  0.0025  0.0030  1  1  crank angle [deg] Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015  volume [m3]  107  Comments  Speed [RPM] Torque [N-m] Load p/ol P max [doq] CA <H> p max [deg] dP/dCA max [bar/deg] CA@dP/dCA max [deg] IMEP [bar] HHR;;;max [kJ/m 3.deq] IHR max [kJ.'m 3] 5% MFB Tdeq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [dec. w.r.t TDC] 90'-o MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected m poly-n expansion uncorrected poly-n expansion corrected  10842.38 7.0 384.281 -11.0 818.64 8176.1 148707.6  ft  A  -9.5  1.5 10.0 25.5 1.37 0.000 1.33 1.33 1.32 1.32  Data Summary for filter: Date: Time:  • ' .107 1/22/02 11:09:04  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1600.6 40.0 27.3 8.20 109.22 368.2 0.77 3.56 214.1 218.4 11.2 0.0  In-Cyllnder Pressure Trace 12000 I5 10000  •Q "Z  8000  |  6000  a.  4000  S  2000  1  oi  -50  i  -40  i  -30  1  -20  i  I  -10  0 c r a n k angle [deg]  108  1  10  1  20  i  30  i  40  1  50  Comments  Speed! [RPM] Torque [N-m] Load [==] P max [doq] CA (Ti P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR max [ k J / m ^ d e q ] IHR max [kJ/m"3] 5% MFB [deq w.rtTDC] 10%MFB[deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corre< ted poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10116.31 5.5 887.466 0.0 648.94 16434.6 111722.5 -1.5 -1.0 2.5  ;  -109 1/23/02 10:22:31  Enalne Parameters •',' • AveraoeB Speed(RPM) 809.9 25.0 Load(%) 11.0 Power (kW) IMEP (bar) 6.50 101.47 Pmax(bar) 366.3 Pmax location (degrees) Diesel Flow(kg/hr) 0.75 CNG Flow(kg/hr) 1.19 72.1 Air Flow(kg/hr) Exhaust Flow(kg/hr) 74.1 10.5 Exhaust Back Pressure (kPa) 0.0 EGR Fraction(%)  11.5 1.37 0.000 1.32 1.32 1.33 1.33  In-Cylinder Pressure Trace 12000 | ^  1  ,  1  1  1  10000  |T  8000  »  6000  to u Q. &  4000 0 I 2000-50  i  1  -40  -30  1  1  -20  1  -10  0  1  1  10  20  1  i  30  40  1  50  c r a n k a n g l e [deg]  Net Heat Release Rate 18000 |  1  1  1  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  109  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] L 6adi[%]llliiiiiiiiliil P max [deq] CA @ P max [deq] dp dCA max [bar dug] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kj/m"3/deg] IHR max [kj/m"3] 5% MFB [deg w.r.t TDC] 10%MFBi[degwrtTDC] 50% MFB [deg w.r.t TDC] 90%MFB [degwlr.tTDC] Assumed poly-n during ccmprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  r  9896.74 6.0 877.127 1.0 669.35 16956.3 115792.6 -1.0 -0.5 3.0 14.0 1.37 0.000 1.33 1.33 1.33 1.33  111 1/23/02 10:49:50  EhqinelParametors Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averages 807.0 25.0 11.3 6.70 99.09 366.4 0.85 1.21 53.6 55.6 24.0 20.4  In-Cyllnder Pressure Trace 12000 " j ; 10000 -O 8000  a>  6000  &  2000  3 tn  5. 4000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  Log Pressure vs Volume  0) a.  10  -•  I  1 0.0000  •  i  1  0.0005  0.0010  -  -  1 0.0015 v o l u m e [m3]  110  -  -  1 0.0020  1 0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP'dCA max [bandog] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m»3/deq] IHR max [kj/m"3] 5% MFB [deq w r t TDC] 10%MFB[deqwrtTDC] 50% MFB [deq w.r.t TDC] 90%MFB [deq w.r.t TDC] Assumed poly-n durinq comprn. zero-level.:pr.:offset:[bdr] poly-nxompressidniuncorrocted poly-n compression corrected poty-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10078.11 6.0 758.223 0.0 669.12 14041.2 115986.9 -1.5 -1.0 3.0 13.5 1.37 0.000 1.34 1.34 1.33 1.33  113 1/23/02 11:15:46  Enolne Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Fiow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 806.1 25.0 11.3 6.70 100.90 366.7 0.89 1.20 61.1 63.2 25.5 12.8  In-Cylinder Pressure Trace 12000  n  10000  V  8000  »  6000  8 Q.  4000  5  2000 o i -50  1  ;  1  i  1  -40  -30  -20  -10  0 c r a n k a n g l e [deg]  1  \  10  20  i  1  1  30  40  50  Net Heat Release Rate 16000 14000 12000 §10000 5 8000 ? 6000 E 4000 3 2000 " 0 -2000 -4000  = n  ""A—-  = : =f  •  -  y  V VAA / \ A / \ /  30  10  -10  c r a n k angle [deg]  Log Pressure vs Volume 10000 -i  CL  _:  r^r  1  1  1  10 14 0.0000  • 0.0005  1  1  0.0010  0.0015 v o l u m e [m3]  111  i  i  1  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA <3> P max [deg] dP/dCA max [bar/deq] C A @ d P dCA max [duq] IMEP [bar] HHR max [kJ/nT*3/deg] IHR max [ k J m " 3 ] 5% MFB [doq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn  10230.76 7.0 761.670 -0.5 662.79 15420.0 114507.7 -1.5 -1.0 2.5 12.0 1.37 0.000 1.35 1.35 1.33 1.33  zero-lovel. pr. offset [bar]  poly-n compressioniuncorrectAd poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  :,.'115 1/23/02 11:32:34  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average's! 809.4  11.2 6.64 102.64 366.8 0.89 1.19 72.4 74.5 10.5 0.0  In-Cylinder Pressure Trace 12000 Is 10000 .a V 8000 M w a  6000  a.  4000  g-  2000 0  I  -50  1  i  -40  -30  1  1  -20  1  -10  0  1 10  I  1  20  i  30  1  40  50  c r a n k angle [deg]  Net Heat Release Rate 18000 o 16000 ra 14000 O) oJ2000 S -glOOOO £ ft 8000 2 c 6000 (5 5 4000 5 iii 2000 % 0 -2000  A  A  -\ /\A \; \ « v  v\  /  /  \A A A | VAAi v  V  c  A A A / VV  A A A / \f\ V V v  / V  v  v  A  /v f\  t\  A  A  -4000 -20  10  -10  30  c r a n k angle [deg]  Log Pressure vs Volume 10000 1000  _:  4  10  0.0000  0.0005  0.0015  0.0010  v o l u m e [m3]  112  0.0025  0.0030  Comments  Speed! [RPM] Torque [N-m] Load [%] Pi:max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR m a x [ k J m " 3 ' d e q ] IHR max [kJ7m«3] 5%i MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durlnq ccmprn zero-level.:pr.:offset [bar] poly-ncompression:uncorrected poly-n:compressioncorrected poly-n expansion uncorrected poly-n expansion corrected  13638.64 8.0 865.064 -0.5 1190.23 16406.6 210962.7 -2.0 -1.0 4.5 23.0 1.37 0.000 1.34 1.34 1.28 1.28  Data Summary for filter: Date: Time:  *&:1<19»S 1/24/02 10:03:58  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kgmr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 810.0 75.0 20.1 11.92 136.80 368.1 0.60 2.91 93.9 97.4 11.8 0.0  In-Cylinder Pressure Trace 16000  ^  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Log Pressure vs Volume  Q.  _:  10  1-1 0.0000  1 0.0005  i  ;  0.0010  i  i  0.0015  0.0020  v o l u m e [m3]  113  1 0.0025  1 0.0030  ' Comments  Speed [RPM] Torque [N-m] Load [%1 P_max [deg] CA @ P max [deq] dP/dCA_max [barfdeg] CA@dP/dCA max [ d e q f |IMEP[bar] HHR_max [KJ/m 3/deg] IHR_max[kJ/m"3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w r t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression correctedis poly-n expansion uncorrected poly-n expansion corrected  Data Summary (or filter: Date: Time:  13109.55 954.672 0.5 1154.07  121 1/24/02 10:25:05  Engine Parameters' Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  rt  203218.9J -0.5 4.5 23.0!  1.33 1.33 1.31 1.31  •.Averaged 805.5 75.0 19.4 11.56 131.66 368.0 0.59 2.89 76.4 79.9 55.6 12.7  In-Cylinder Pressure Trace  -10  0  50  10  c r a n k angle [deg]  Net Heat Release Rate 20000  c r a n k angle [deg]  Log Pressure vs Volume  Q.  _: >< o  10 •  -I  1 0.0000  • 1 0.0005  — 1 0.0010  \ 1 0.0015 v o l u m e [m3]  114  1 0.0020  — I 0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load[ i] P max [deq] CA e_i> P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/mM/deg] IHR max [kj/m"3] 5% MFB [deg w r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] poly-nxompressioniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  c  13122.32 7.5 1132.165 3.5 1131.28 24926.2 199664.2 -1.0 0.5 4.5 25.0 1.37 0.000 1.36 1.36 1.32 1.32  123 ; 1/24/02 10:42:57  Enqine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaae 804.0 75.0 19.0 11.33 132.05 367.9 0.61 2.87 69.1 72.6 59.1 22.0  In-Cyllnder Pressure Trace 14000  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate 30000 {;  25000  a eSOOOO W CD  8 §15000  to <  i El 0000 re =3 ^ |  £5000 0 -5000  -20  -10  0  10  30  c r a n k angle [deg]  Log Pressure vs Volume  1000  0.0025  0.0000  115  0.0030  Speed [RPM] Torque [N-m] Load [%] P. max (deq] CA @> P max [deq] dP/dCA max [bar/deq] CA @ <fPrdCA max [deq] IMEP [bar] HHR max [kJ/m 3/deq] IHRiimax[kJ.m"3] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w:r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion correct€d  Comments Data Summary for filter: Date: Time:  13438.79 8.0 839.215 0.0 1188.61 16453.2 208946.7 -2.0 -1.0 4.5 21.5 1.37 0.000 1.40 1.40 1.33 1.33  A  ., 125 1/24/02 10:54:05  Enoine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averadelll 808.9 75.0 20.1 11.90 134.89 368.0 0.63 2.91 92.8 96.3 9.7 0.0  In-Cylinder Pressure Trace 16000 ^  14000  5  12000  2! 1OO00 co  8000  £  6000  _:  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 2O0O0 I  -5000 I -20  1  1  1  1 -10  J 0  1 10 c r a n k angle [deg]  116  ! 20  1 30  ' 40  Comment'  Spued [RPM] Torque[N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar.deg] CA (ffi dP/dCA max [deg] IMEP [bar] HHR max [ k J / m ^ d e g ] IHR max [kj/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90-:., MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-leveLpr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  A1 3/6/02 11:18:17  Data Summary for filter: Date: Time:  13143.63 11.0 865.064 3.5 1438.73 20314.2 265458.0 -5.0 0.0 7.0 17.5 1.37 0.000 1.26 1.26 1.37 1.37  Enaine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow{kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 802.5 75.0 24.1 14.41 131.68 371.5 0.17 2.94 91.3 94.4 10.9 0.0  In-Cylinder Pressure Trace 14000 T 12000 (0 & . 10000 v a  8000  8  6000  °;  4000  o  2000 0  I  i  1  1  -50  -40  -30  -20  i  1  -10  0  i 10  i 20  1  i  1  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 25000  o  -20  -10  0  10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  117  Comments  Speed! [RPM] Torque [N-m] Load [" ] P max [deq] CA P max [deq] dP/dCA max [bar.deq] CA @ dP/dCA max :[dcg] IMEP [bar] A HHR max [ k j m 3 doq] IHR max [kJ/m"3] 5% MFB [deq w.r.t TDC] 10%MFB[deqwrtTDC] 50% MFB [deq w.r.t TDC] 90% MFB [dog w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar]  polyrHiCompressloniUncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  A2 3/6/02 11:36:30  Data Summary for filter: Date: Time:  12707.67 8.0 877.127 2.5 1112.91 19188.0 196126.4 -1.0 0.0 5.0 21.0 1.37 0.000 1.34 1.34 1.31 1.31  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flowfkg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 798.7 75.0 18.5 11.14 127.20 368.4 0.17 2.91 74.0 77.1 53.6 16.5  In-Cylinder Pressure Trace 14000  12000 £ . 10000  *  4000  0  I  -50  i  1  -40  -30  1  i  -20  1  -10  0  I  i  10  20  i  1  30  40  1  50  c r a n k angle [deg]  Log Pressure vs Volume  10000 -i  e--=_-  1  1  1  CL  _j  10  1-1 0.0000  i  0.0005  1  i  0.0010  0.0015 v o l u m e [m3]  118  i  0.0020  1  0.0025  1  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [doq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m 3/deg] IHR m a x [ k j / m " 3 ] 5%MFB[degw.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deq w r t TDC] 90-. MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  12823.35 8.0 906.422 1.0 1127.32 18423.7 197818.7 -1.5 0.0 5.0 20.0 1.37 0.000 1.36 1.36 1.33 1.33  rt  :  A3 3/6/02 11:52:09  Engine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 798.8 75.0 18.8 11.29 128.32 368.4 0.17 2.95 80.3 83.4 51.5 8.8  In-Cyllnder Pressure Trace 14000  a 10000 o 3  8000  8  6000  ^  4000 0  I  i  1  1  1  1  1  i  1  i  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  119  Speed![RPM] Torque [N-m] Load M P max [deq] CA n, p max [deq] dP/dCA max [bar/deq] CA i j . dP.dCA max [deq] IMEP [bar] HHR max [kj/m' 3/deg] IHR max [ k j m»3] 5% MFB [deq w.r.t TDC] 10- MFB [dog w.r t TDC] 50% MFB [doq w.r.t TDC] 90%MFB [doq w r t TDC] Assumed poly-n during comprn zero-level, pr. of f set i [bar] poly-n compresslon uncoi rerted poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  13051.66 8.0 927.100 1.0 1138.87 18065.5 200423.8 -2.0 -0.5 5.0 19.5 1.37 0.000 1.35 1.35 1.32 1.32  l  Data Summary for filter: Date: Time:  •;-;A4 , , 3/6/02 12:10:02  Enaine Parameters Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/fir) CNG Flow(kgmr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  AveraqeYH 801.5 75.0 19.0 11.40 130.79 368.4 0.17 2.91 91.0 94.1 11.5 0.0  In-Cylinder Pressure Trace 14000 T 12000 ra & . 10000 o> 3 8000  0  I  -50  i  I  -40  -30  1  -20  i  1  -10  0  1  1  10  20  1  i  30  40  1  50  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 volume [m3]  120  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [dog] IMEP [bar] HHR max [kJ m»3doq] IHR max [kj/m"3] 5% MFB [dog w r t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-ncompressloni corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9571.13 5.5 918.484 1.5 505.24 18160.8 89835.8 -5.0 -1.0 1.5 7.5 1.37 0.000 1.29 1.29 1.34 1.34  A5 3/6/02 12:24:34  Endfne Pararrii Speed(RPM) Load(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 799.4 25.0 8.4 5.06 96.14 365.9 0.16 1.24 71.8 73.2 14.3 0.0  In-Cylinder Pressure Trace 12000 i  1  1  1  1  1  I  i  1  1  i  1  1  i  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  0  c r a n k angle [ d e g ]  Net Heat Release Rate 20000  c  -5000 I -20  '• -10  J 0  i 20  1 10  1 30  1  40  c r a n k angle [ d e g ]  Log Pressure vs Volume  a.  10-  1  *  -I  0.0000  — 1  0.0005  *  -  —  -  1  1  0.0010  0.0015 volume [m3]  121  1  0.0020  1 0.0025  0.0030  Comment!  Speed [RPM] Torque [N-m] Load ["-] R max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CA (3 dP/dCA max [deq] IMEP [bar] HHR max [kJ/m»3/deg] IHR max[kJ/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durlnq comprn. zero-level, pr. offset [bar] poly-nTcompressioniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9519.50 5.0 932.270 1.0 497.88 17972.4 88180.6 -5.0 -1.0 1.5 7.5 1.37 0.000 1.30 1.30 1.36 1.36  •\6. •< 3/6/02 12:47:31  Enoine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 795.5 25.0 8.3 4.99 95.40 365.6 0.16 1.21 64.1 65.5 23.1 9.2  In-Cylinder Pressure Trace  -50  ^10  -10  -30  0  20  10  c r a n k angle [deg]  Net Heat Release Rate  S i= 5000 to —  j  -20  -10  ~ 0  10  „ -I  -  v  „  ~  x\  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  122  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/deg] CA <a dP/dCA max [deg] IMEP [bar] HHR max[kj/m»3/deg] IHR max [kJ/m*3] 5%MFB[degw.r.tTDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zerorlevel. pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9480.36 5.5 863.341 1.5 488.97 17094.7 87227.9 -5.0 -1.0 1.5 7.5 1.37 0.000 1.28 1.28 1.35 1.35  A7 3/6/02 15:07:01  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 785.3 25.0 8.0 4.90 95.18 365.9 0.17 1.15 56.4 57.7 27.2 23.8  In-Cylinder Pressure Trace  -10  0  10  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  123  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load[%! P max [deq] MM CA @ P max [deq] dPIdCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kj/m«3/deg] WR max[kj/m*3] 5% MFB [deg w.r.t TDC] 10% MFB[deq w.r.t TDC] S0%MFB [deg w.r.t TDC] 9 0 % MFB [deg w.r.t TDC] ! Assumed poly-n durinq comprn zero-level, pr. offset [bar] poly-n compression uncoi rectcd poly-n compression corrected poly-n expansion uncorrected poly-n expansion cc rrcctcd  Data Summary for filter: Date: Time:  9583.31 5.0 1011.539 1.0 482.89 19463.9 86284.2 -6.0 -1.5 1.0 7.0 1.37 0.000 1.29 1.29 1.36 1.36  A8 3/6/02 15:16:05  Enqihe Parameters "Averages 790.8 Speed(RPM) Load - approx(%) 25.0 8.0 Power (kW) 4.84 IMEP (bar) 95.95 Pmax(bar) 365.5 Pmax location (degrees) 0.17 Diesel Flow(kg/hr) CNG Flow(kg/hr) 1.16 " 71.9 Air Flow(kg/hr) 73.2 Exhaust Flow(kg/hr) 14.2 Exhaust Back Pressure (kPa) EGR Fraction(%) 0.0 In-Cylinder Pressure Trace  12000 10000 V  8000  3  6000  <o 4) a.  4000  J  0 2000  I  -50  1  1  -40  -30  1  i  -20  1  -10  0  1  1  10  20  1  i  30  40  1  50  c r a n k a n g l e [deg]  Net Heat Release Rate 25000 •g  20000  M 515000  8 3  "5 ?10000 1 E 2 =3 5000  J: £  «c5  J  o  -5000 -20  10  -10  20  30  c r a n k angle [deg]  Log Pressure vs Volume 10000  100 10  0.0005  0.0010  0.0015 v o l u m e [m3]  124  0.0020  0.0030  Comments  Speed [RPM] I; Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max[bar/deq] CA;@ dP/dCA_max [deg] IMEP [bar! HHR max [kj/m"3/deg] IHR max[kJ/m"3] 5% MFB [deq w.r.t TDC] ~ 110% MFB [deg w.r.t TDC]~ 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression J uncorrected poly-n compression correi led poly-n expansion uncorrer led I poly-n expansion corrected  Data Summary for filter: Date: Time:  5.0 921.931  • ,'A9 3/6/02 15:45:07  Engine Parameters ;Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kgZhr) |CNG Flow(kg/hr) |Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  510.66 17773.4 90191.6 -4.5 -1.0  1.37 0.000  1.32 1.32  Average 7917 25.0 8.4 5.11 96.81 365.7 0.17 1.20 63.1 64.5 23.2 11.3  In-Cylinder Pressure Trace  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate  2  15000  8 ¥ g 510000  -20  -10  0  10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  125  Speed [RPM] Torque :|N-m] Lojdf ] P max [deq];;;;; CA (5> P max [deq] dP'dCA max [bar deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m*3/deg] IHR max [kJ/m"3] 5% MFB [deq w.r.t TOC] 10% MFB [ d e g w . r t T D C ] 50% MFB [deq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn zero-level..pr. offset [bar] poly-nfcompressionluncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9692.32 5.5 937.440 0.5 505.99 17696.5 89622.6 -4.5 -1.5 1.5 7.5 1.37 0.000 1.28 1.28 1.34 1.34  A10 " 3/6/02 15:59:31  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 797.5 25.0 8.4 5.07 97.15 365.7 0.17 1.22 72.7 74.1 10.2 0.0  In-Cyllnder Pressure Trace 12000 "j; 10000 Si  V  8000  w  6000  M O  a.  4000  g-  2000  o i  -50  1  1  -40  -30  1  i  -20  1  -10  0  1  1  10  20  1  1  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 20000  -5000 I -20  ! -10  J 0  1 10  ! 20  1 30  40  0.0020  0.0025  0.0030  1  c r a n k angle [deg]  Log Pressure vs Volume 10000  a  10  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  126  !  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m*3/deg] IHR max [kj/m«3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed: poly-n during comprn. zero-level. pr. offset [bar] poly-n compression:uncoirocted poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  10596.23 8.0 422.193 -10.5 838.81 8436.7 152283.0 -10.5 0.5 10.0 23.5 1.37 0.000 1.36 1.36 1.30 1.30  :  Data Summary for filter: Date: Time:  E3B!i!lliI  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1613.7 40.0 28.2 8.40 106.57 368.3 0.32 3.83 212.1 216.3 11.1 0.0  3/7/02 10:17:27  In-Cyllnder Pressure Trace 12000 ! ; 10000  n  8000  H  6000  a.  4000  S"  2000  tn  to  0  I  -50  i  1  -40  -30  1  i  -20  1  -10  0  i  i  10  20  i  i  30  1  40  50  c r a n k angle [deg]  Log Pressure vs Volume  a.  10 • -  1A 0.0000  -  1 0.0005  --  1 0.0010  -  —  1 0.0015 volume [m3]  127  ••••  j  -  1 0.0020  —  I 0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA:@:P max [deq] dP'dCA max [bandeq] CA (5> dP/dCA max [deq] IMEP [bar] HHR max [kJ/m"3/deq] IHR max[kj,m«3] 5% MFB [deq w.r.t TDC] 10"oMFB[deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durlnq comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compressiomcorrected poly-n expansion uncorrec ted poly-n expansion corrected  Data Summary for filter: Date: Time:  10701.11 8.5 417.023 -10.0 850.45 8491.1 152640.8 -6.0 2.0 10.5 24.0 1.37 0.000 1.36 1.36 1.30 1.30  •!>  Endine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  A  1  2  3/7/02 10:33:02  Averaoe 1598.6 40.0 28.4 8.52 ' 107.39 369.2 0.32 3.85 178.8 182.9 119.5 12.8  In-Cyllnder Pressure Trace 12000 •=• 10000  n  8000  3 to  6000  a.  4000  S  2000  1  oi  -50  1  ; -40  1  -30  1  -20  1  -10  0  1  i  10  20  i  *  •  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 10000 I  JS  1  -2000 — • -4000 I -20  T  -10  -  1  •  - -  J 0  ' 10  1 20  ' 30  ' 40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  128  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/degl CA (5> dP/dCA max [deg] IMEP [bar] HHR max[kJ/m"3/deg] IHR max [kj/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [dog w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [dog w.r.t TDC] Assumed poly-n durlnq comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  Data Summary for filter: Date: Time:  10509.33 8.5 434.255 -10.0 839.08 8439.0 152566.0 -9.5 1.0 11.0 25.0 1.37 0.000 1.36 1.36 1.32 1.32  A13 3/7/02 10:47:06  Enoine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average M 1602.6 40.0 28.1 8.40 105.56 369.5 0.32 3.82 157.4 161.5 124.7 22.6  In-Cylinder Pressure Trace 12000 10000  co .o  "JT 8000 »  6000  W  o a.  4000  S  0 I 2000 -50  1  1  1  -40  1  -30  i  -20  1  -10  0  1  i  10  20  i  i  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 10000 I  -20  1  T  -10  0  1  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume  Q.  10 • 1A 0.0000  t 1 0.0005  -  •, 1 0.0010  1 0.0015 v o l u m e [m3]  129  1 0.0020  1 0.0025  0.0030  Comments  Speed [RPM] Torque ]N-m] Load [%] R max [deq] CA <5> P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m"3ldeq] IHR max![kj/m"3] 5% MFB [doq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w r t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during ccmprn zero-level, pr. offset [bar] poly-n:compression uncorrented poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  10676.23 6.5 415.300 -10.5 338.05 8566.2 151603.4 -8.0 1.5 10.5 24.0 1.37 0.000 1.31 1.31 1.30 1.30  Data Summary for filter: Date: Time:  -  Enoine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1608.6 40.0 28.1 8.39 107.19 368.0 0.27 3.67 213.1 217.0 11.9 0.0  B1, 4/8/02 13:27:23  In-Cylinder Pressure Trace 12000 £  10000  V  8000  »  6000  a.  4000  5  2000  I  1  1  1  1  1  -50  -40  -30  -20  -10  0  0  1  1 10  i 30  20  >  1  40  50  c r a n k angle [deg]  Net Heat Release Rate 10000 i  »  1  1  -2000  -  -4000 I -20  r  1  —•  - —  1 0  -10  1 10  -  -  -  " - -  ' 30  20  40  c r a n k angle [deg]  Log Pressure vs Volume  a.  10  -  -I  1 0.0000  - — 1 0.0005  •  - t  1 0.0010  1 0.0015 v o l u m e [m3]  130  — 1 0.0020  "  1 0.0025  0.0030  •Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA C P max [doq] dP/dCA max [bar/dcq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m"3/deg] IHR max [ k j m"3] 5% MFB [deg w.r.t TDC] 10%MFB[deqw.rtTDC] 50% MFB [deq w r t TDC] 90'. J MFB [deg w.r.t TDC] Assumed poly-n during comprn: zero-level, pr. offset [bar] poly-n compression uncorrected : poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  B2 4/8/02 13:31:39  Data Summary for filter: Date: Time:  10632.76 8.0 418.746 -11.0 816.89 8058.0 146438.5 -7.5 1.5 10.5 24.0 1.37 0.000 1.33 1.33 1.30 1.30  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  AvefaqelS 1618.1 40.0 27.6 8.18 106.62 368.0 0.32 3.67 212.7 216.7 11.7 0.0  In-Cyllnder Pressure Trace 12000 10000 Si  ^  8000  a 6000 tn a a.  4000  S  2000  1  oi  ;  -50  -40  1  1  -30  -20  •  1  -10  0  1 10  i  *  i  1  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate 10000  <5  -2000  -  -4000 I -20  -  t -10  -  -  -  —  -t 1 10  J 0  -  —  "  '  '  20  ' 30  ' 40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  131  Comments  Speed [RPM] Torque [N-m] Load M P max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m»3 doq] IHR max [kJm«3] 5% MFB [deg w r t TDC] 10%MEB[degwrtTDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10632.80 8.0 418.746 -11.0 816.89 8058.1 146442.4 -7.5 1.5 10.5 24.0 1.37 0.000 1.33 1.33 1.30 1.30  B3 f f l 4/8/02 13:41:56  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqetll 1620.0 40.0 27.6 8.18 106.62 368.0 0.25 3.65 212.8 216.7 11.8 0.0  In-Cylinder Pressure Trace 12000 "{j 10000  n  V  8000  jo  6000  CO  o a g-  4000 0 I 2000 -50  1  i -40  -30  1  I  -20  1  -10  1  0  1  10  1  20  i  30  1 50  40  c r a n k a n g l e [deg]  Net Heat Release Rate 10000  <S  -2000  —  -4000 I -20  --  -- -10  -  •  -  - -  J 0  > 10  -  -  -  -  —  -  "  -  -  -  20  ' 30  ' 40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  132  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [dog] IMEP [bar] HHR max[kJ/m"3/deg] IHR max[kJ/m"3] 5%:MFB [ d e g w r t T D C ] 10%;MFB [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90-w MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level.pr.otfset [bar] poly-ncompresslon uncorrected poly-n compressionicorrected poly-n expansion uncorrected poly-n expansion corrected  Comments B4 4/8/02 13:53:09  Data Summary for filter: Date: Time:  10691.37 7.5 429.086 -11.0 821.27 7941.5 148012.3 -9.5 0.5 10.5 24.0 1.37 0.000 1.34 1.34 1.31 1.31  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  ;  Averaqe 1614.8 40.0 27.7 8.22 107.10 367.9 0.36 3.64 212.5 216.5 11.8 0.0  In-Cylinder Pressure Trace 12000 • j ; 10000  n  V  8000  3  6000  co  v O.  4000  S"  2000 0  I  -50  1  -40  1  -30  1  -20  1  1  -10  0  c r a n k angle [deg]  133  1  10  i  20  1  30  i  40  1  50  Comments  Speed [RPM] Torque [N-m] Load p'-] P max [deg] CA @ p max [deg] dP/dCA max [bar/deg] CA <g> dP/dCA max [deg] IMEP [bar] HHRfmax [kj/m"3/deg] IHR max[kJ7m"3] 5% MFB [deq w.r t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%iMFB [doq w r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] poly-nicompressloniuncoirected poly-n compression corrected poly-n expansion uncorrected poly-n expansion ccrrected  Data Summary for filter: Date: Time:  10615.56 7.5 398.067 -11.0 815.60 7650.8 149512.2 -10.5 0.5 10.5 24.5 1.37 0.000 1.33 1.33 1.30 1.30  B5 4/8/02 14:03:47  Enaine Paramoters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 1611.8 40.0 27.4 8.17 106.48 367.9 0.30 3.67 212.4 216.4 11.8 0.0  In-Cylinder Pressure Trace 12000  -40  -30  -20  -10  0  10  20  30  40  50  crank a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.O015 v o l u m e [m3]  134  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P_max [deg] dP/dCA max [bar/deg] CA <5» dP/dCA max [deg] IMEP [bar] HHR_max [kJ/m"3/deg] IHR_max [kj7m"3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-nicompressloniuncorrected.:.. poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  B6 4/8/02 14:15:04  Data Summary for filter: Date: Time:  11044.34 9.5  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  -8.5 1067.05 201939.6 -8.0 -3.5 21.5 1.37 0.000  Average 1562.1 34.8 10.68 110.77 370.1 0.28 3.57 210.6 214.4 106.3 0,0  1.38 In-Cylinder Pressure Trace  12000  -10  -30  -40  -50  0  20  10  c r a n k a n g l e [deg]  Log Pressure vs Volume  Q.  10 J 0.0000  -  -  — ( —  1 0.0005  -  - --  -  —-  • -  -  .  .  .  r  0.0010  0.0015  0.0020  0.0025  v o l u m e [m3]  135  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m«3/deg] IHRi' max [kJ/mA3] 5% MFB [deg w.r.t TDC] 10". MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-nxompression:uncoirect(;d poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  10575.64 6.5 404.960 -10.5 809.37 8006.1 146670.0 -9.0 1.5 10.5 24.5 1.37 0.000 1.33 1.33 1.30 1.30  B7 4/8/02 14:23:24  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1613.5 40.0 27.2 8.10 106.26 367.6 0.31 3.64 212.4 216.4 11.8 0.0  In-Cylinder Pressure Trace 12000 10000  aco ^  8000  JS  6000  CD  a. 4000 S"  2000 0  I  .  1  -50  -40  -30  1 -20  .  1  -10  0  1  . 20  10  1 30  1  1  40  50  crank angle [deg] Net Heat Release Rate 10000 Sco  8000  0 "5)6000 CO CD  S S 4000 CD <  ;  £ 2000  CO =S  1  -  -2000  - r\  J\JV\J\J\J  -4000 -20  10  -10  20  30  0.0020  0.0025  40  crank angle [deg] Log Pressure vs Volume  0.0005  0.0010  0.0015  volume [m3]  136  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @:P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kj/m"3/deg] IHR m a x [ k j / m " 3 ] 5% MFB [deg w.r.t TDC] 10%MFB[defl w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  88 4/8/02 14:32:56  Data Summary for filter: Date: Time:  10960.93 7.5 418.746 -11.0 821.69 8234.3 147950.0 -6.0 1.5 10.5 23.5 1.37 0.000 1.32 1.32 1.30 1.30  Enfiine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1578.9 40.0 27.1 8.23 109.92 367.8 0.27 3.63 210.9 214.8 103.9 0.0  In-Cyllnder Pressure Trace 12000 •=• 10000  S  1  2000  I  ,  1  1  .  1  -50  -40  -30  -20  -10  0  0  1  1  1  1  10  20  30  40  1 50  crank angle [deg] Net Heat Release Rate 10000 i  -4000  1  -20  1  1  -10  1  1  J  1  0  1  10  1  1  20  30  40  0.0020  0.0025  0.0030  crank angle [deg] Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015  volume [m3]  137  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [doq] IMEP [bar] HHR max [kJ/m'3deq] IHR max [kJ/m«3] 5% MFB [deq w.r.t TDC] 10"r MFB [dog w.r.t TDC] 50% MFB [deg w r.t TDC] 90% MFB [deq w r t TDC] Assumed poly-n during ccmprn zero-level, pr. offset [bar] poly-n compressloniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  10689.62 9.0 418.746 -10.5 809.83 9002.7 147222.2 -8.0 2.0 10.5 24.0 1.37 0.000 1.33 1.33 1.30 1.30  Data Summary for filter: Date: Time:  : s; "B9lil 4/8/02 15:06:44  EndiriePafamoters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1573.5 40.0 26.6 8.11 107.34 369.4 0.27 3.58 166.7 170.5 131.7 17.7  :  In-Cylinder Pressure Trace 12000 n ^ « o o  10000 8000 6000  o.  4000  S"  2000 0 I -50  1  1  1  i  1  1  -40  -30  -20  -10  0 crank angle [deg]  10  1 20  1  i  1  30  40  50  Log Pressure vs Volume  101 -I 0.0000  —  -  1  1  0.0005  0.0010  -  }  —  1  0.0015 volume [ m 3 ]  138  |  -r 0.0020  1  0.0025  0.0030  Comments  Speed! [RPM] Torque[N-m] Load M P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA <g> dP/dCA max |dcg]  IMEP [bar]  HHR max [kj/m"3/deg] IHR max [ k j m"3] 5% MFB [deq w . r t T D C ] 10 =MFB[dcgwr.t TDC] 50% MFB [dog w.r.t TDC] 90-.. MFB [deg w r.t TDC] Assumed poly-n during comprn. c  poly-n;compressioniuncorrected zero-level.:pr::Of1set:[bar] poly-nxompresslonxorrected poly-n expansion uncorrected poly-n expansion corrected  B10 4/8/02 15:17:18  Data Summary for filter: Date: Time:  10800.41 7.5 418.746 -11.0 825.43 8521.6 150258.3 -9.0 1.0 11.0 25.0 1.37 0.000 1.33 1.33 1.28 1.28  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr)" Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averages 1595.3 40.0 27.5 8.26 108.33 368.1 0.38 3.64 166.3 170.4 132.7 16.7  In-Cylinder Pressure Trace 12000  "JS 10000 ro a  ^ w in  o  8000 6000  5. 4000 g 2000 1  0  I  -50  i  -40  1  -30  i  -20  i  1  -10  0  c r a n k a n g l e [deg]  139  1  10  i 20  * 30  * 40  ' 50  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA •." P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA i max [deq] IMEP [bar] HHRiimax:[kJ/m»3/deq] IHR max [ k J m " 3 ] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [doq w.r.t TDC] 90%:MFBi [deqiwiMITDC] ! I ! i ! ! i l ! ! | H i » Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  B11  Data Summary for filter: Date: Time:  10602.66 9.0 417.023 -11.0 828.33 8788.5 149638.8 -6.5 2.5 11.0 25.5 1.37 0.000 1.33 1.33 1.31 1.31  4/8/02  15:25:42  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe  1597.2 40.0 27.6 8.29 106.49 369.1 0.32 3.70 166.2 170.3 133.1  16.9  In-Cylinder Pressure Trace  12000 to  10000  A  ^ 8000 to to 6000 tu o. 4000 2000 0 I -50  1  1  1  1  -40  -30  -20  -10  1  0  i  .  <  i  10  20  30  40  1 50  c r a n k angle [deg]  Net Heat Release Rate  -  -20  y\  J \ / V \  -10  u  r V \ J  0  10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  140  Speed [RPM] Torque] N-m] Load [%] R max [deq] CA @ P max [deg] dP/dCA max [bar deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj,m«3deq] IHR max [kJym»3] 5% MFB [dog w.r.t TDC] 10 °MFB [deq w.r.t TDC] 50%:MFB [deq w.r.t TDC] 90% MFB [deq w r 1 TDC] Assumed poly-n during comprn zerorlevel. pr: offset [bar] poly-n compression uncoi rerted poly-n compressionicorrected poly-n expansion uncorrected poly-n expansion corrected  Comments  10635.55 7.5 422.193 -11.0 828.21 8478.2 151825.2 -9.5 1.0 11.0 26.0 1.37 0.000 1.33 1.33 1.31 1.31  C  Data Summary for filter: Date: Time:  ,  Enaine Parameters  Averaqe 1595.9 40.0 27.6 8.29 106.75 368.8 0.36 3.65 166.2 170.2 133.1 16.6  Speed(RPM)  Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  B12 4/8/02 15:34:43  In-Cylinder Pressure Trace 12000 10000  1; CO  S  1  2000 0  I  i  -50  -40  1  1  1  -30  -20  -10  1  1  i  i  i  0  10  20  30  40  c r a n k angle [deg]  141  1  50  Speed [RPM] Torque [N-m] Load [°=] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR m a x I k J m r j d i j g ] IHR max [ k j m 3] 5°/. MFB [deg w.r.t TDC] 10%:MFB [deg w.r.t TDC] 50% MFB: [dep. w.r.t TDC] 90% MFB [deg wir.t TDC] Assumed poly-n during ccmprn zero7level.:pr.:0ffset:[bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  A  B13 4/8/02 15:51:09  Data Summary for filter: Date: Time:  9531.03 9.5 361.879 -9.5 878.76 9031.4 161135.0 -9.5 -2.5 10.0 22.5 1.37 0.000 1.33 1.33 1.31 1.31  )  Engine Parameters i Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1606.8 40.0 29.5 8.80 95.64 370.0 0.30 3.61 185.3 189.2 11.0 0.0  In-Cylinder Pressure Trace 12000 •=" 10000 Xi  ^  8000  jo too  6000  a.  4000  S  2000  1  0  1  I -50  1  -40  1  -30  -20  1  1  -10  0  1  10  i  i  .  1  20  30  40  50  crank angle [deg]  Net Heat Release Rate 10000 8000 D>6000 S 4000 E 2000  3  /-N  0  /  /"N  r  A  A  v V  -2000 -4000 -20  20  30  0.0020  0.0025  c r a n k angle [ d e g ]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  142  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deq] 1 CA (!• P max [doq] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m"3/dcq] IHR max[kJ/m"3] 5% MFB [deg w r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [doq w r t TDC] 90- • MFB [deq w r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-mcompressioniuncoi reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  12947.39 8.0 906.422 1.0 1137.49 17653.9 199383.6 -1.0 0.0 5.0 20.5 1.37 0.000 1.34 1.34 1.31 1.31  - C1 4/9/02 10:23:51  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kgmr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 805.9 75.0 19.1 11.39 129.63 368.5 0.16 2.92 89.2 92.3 10.4 0.0  In-Cylinder Pressure Trace 14000 •Z? 12000 ra £. 10000 o 3  8000  8  6000  ^  4000 0 I -50  1  1  1  i  -40  -30  -20  -10  1 0  1  i  1  i  1  10  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate 20000 I  -5000 ' -20  1  1  1  1 -10  1 0  1 10  1 20  1 30  ' 40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  143  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CAi@idP/dCA max [deq]iii IMEP [bar] HHR max [kJ/m"3/deg] IHR max[kJ/m"3] 5% MFB [deg w.r.t TDC] 10% MFBi [deg wir.t TDC] 50% MFB [deg w;r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn. zero-level: pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  12962.57 8.0 904.698 1.0 1140.73 17621.2 200728.6 -1.0 0.0 5.0 20.5 1.37 0.000 1.32 1.32 1.31 1.31  •  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  C2 4/9/02 10:34:31  Averages 805.1 75.0 19.2 11.42 129.90 368.5 0.18 2.92 89.5 92.5 10.7 0.0  In-Cylinder Pressure Trace 14000  -10  0  10  c r a n k a n g l e [deg]  Net Heat Release Rate  2 15000 o *3 tn o  7  S 510000  £  "  •S •§ 5000  3~  ^  A  —  A  y  ~  K  — " " \  0  C -5000 -20  20  -10  30  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000  0.0025  0.0000  144  Comments  Speed [RPM] Torgue[N-m] Load [%] P max [deq] CA @ P max [dog] dP 'dCA max [bar deq] CA@dP/dCA max [deq] IMEP [bar] HHR max [kJ/m«3/deq] IHR max [ k j / m " 3 ] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poty-n during ccmprn zero-level, pr. offset [bar] poly-n compression uncot rccted poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  12886.52 8.0 890.912 0.5 1125.30 16982.2 197075.7 -1.0 0.0 5.0 19.5 1.37 0.000 1.33 1.33 1.32 1.32  Data Summary for filter: Date: Time:  >.\ C3 4/9/02 10:42:28  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Ftow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average's 804.5 75.0 18.9 11.27 129.04 368.5 0.15 2.93 89.4 92.5 10.7 0.0  In-Cylinder Pressure Trace 14000 12000  to  a 10000 8000  3 8  6000  ^  4000  o  2000 0 I -50  1  1  1  1  1  1  1  1  i  1  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [ d e g ]  Net Heat Release Rate  20000 o 2  15000 o>  a)  in a) <8 510000  I? S  /  5000  CO —;  «  ^^^^^  0  C -5000  -20  10  -10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [ d e g ]  Log Pressure vs Volume 10000 1000 100 _:  10  0.0000  0.0015  0.0010  v o l u m e [m3]  145  Comments  Speed [RPM] Torque [N-m] Load [°.] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA <a dP/dCA max [deg] IMEP [bar] HHR max[kJ/m 3/deg] IHR max[kj/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed: poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected A  C4 4/9/02 10:49:30  Data Summary for filter: Date: Time:  12939.99 8.0 796.135 1.0 1141.04 15735.3 199633.0 -1.5 -0.5 5.0 20.0 1.37 0.000 1.34 1.34 1.35 1.35  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  AverageMi 804.9 75.0 19.2 11.43 129.66 368.3 0.16 2.91 89.5 92.6 10.8 0.0  In-Cylinder Pressure Trace 14000  T 12000 ra fi 10000  ^  4000  0  I  -50  ,  1  -40  -30  1  1  -20  -10  1  0  1  10  .  20  i  1  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 18000 i  1  1  1  c r a n k angle [deg]  Log Pressure vs Volume  o. _  1U  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  146  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA (3 P max [deq] dP dCA max [bar deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max[kJ7m"3/deg] IHR m a x [ k j / m " 3 ] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w r t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  12910.55 8.0 827.153 1.0 1139.71 16407.6 200893.2 -1.5 -0.5 5.0 21.0 1.37 0.000 1.32 1.32 1.31 1.31  :- , C5 4/9/02 10:55:53  Enoine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 804.7 75.0 19.1 11.41 129.43 368.5 0.16 2.93 89.4 92.5 10.8 0.0  In-Cylinder Pressure Trace 14000 fi  10000  5  8000  $  6000  0  I  i  1  1  i  -50  -40  -30  -20  -10  I  0  1  i  1  i  1  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 20000 15000 J  510000  /  E 5000  2 "  0  V  -5000 -20  10  -10  40  20  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000 1000 100  .  •  10 1 0.0005  0.0010  0.0015 v o l u m e [m3]  147  0.0020  0.0025  Comments  Speed [RPM] Torque [N-m] Load[ ] P i max [deq] CA @ P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ m«3deg] IHR max [ k j m»3] 5°/ MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TOC] 90% MFB [deg w r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec tod poly-n expansion corrected  Data Summary for filter: Date: Time:  13031.34 8.0 1002.923 1.0 1143.00 19449.6 199415.4 -1.0 0.0 5.0 19.5 1.37 0.000 1.35 1.35 1.31 1.31  -C6- , 4/9/02 11:03:18  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  v  Averaqe 800.8 75.0 19.1 11.44 130.64 368.5 0.16 2.91 87.9 91.0 69.9 0.0  In-Cylinder Pressure Trace  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate 25000 |  20000  2) §15000 u to  J  5000 0  ^  -  •5000 -10  0  10  40  20  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000 1000  0.0025  0.0000  148  0.0030  Comments  Speed [RPM] Torque [N-m] Load [=-] P max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CA @! dP/dCA max [dug] IMEP [bar] HHR max [kJ/m»adoq] IHR; max [kJ mN3] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50%MFB[dcq w.r.t TDC] 90=o MFB [deq w.r.t TDC] Assumed poly-mdurinq comprn. zero-level, pr. offset [bar] poly-mcompressioniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  C7 4/9/02 11:10:07  Data Summary for filter: Date: Time:  12941.43 8.0 951.226 1.5 1137.06 18987.3 199581.9 -1.0 0.0 5.0 20.0 1.37 0.000 1.32 1.32 1.29 1.29  Eridirie Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 806.5 75.0 19.1 11.39 129.59 368.5 0.18 2.93 89.4 92.5 10.1 0.0  In-Cylinder Pressure Trace 14000  a 10000  o 5  8000  S  6000  °: 4000  o I  -50  1  1  -40  -30  1  -20  1  1  -10  0  1  i  10  20  1  i  30  1  40  50  crank angle [deg]  Net Heat Release Rate 25000 20000 SI 5000  a <10000 ~ E  8 =5 5000 a>  c  s\  0 -5000 10  -10  20  30  0.0020  0.0025  crank angle [deg]  Log Pressure vs Volume 10000  _:  10  1•  0.0015  0.0000  volume [m3]  149  40  Comments  Speed:[RPM] Torque [N-m] Load [%] P max [deq] CA <gs P max Ideq] dP/dCA max [bar deq] CA <3 dP/dCA max [deq] IMEP [bar] HHR max [kj/m"3/deg] IHR max [kJ/m"3] S% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  C8 4/9/02 11:18:58  Data Summary for filter: Date: Time:  12967.01 8.0 1009.816 1.0 1139.51 19572.1 198843.6 -1.0 0.0 5.0 19.5 1.37 0.000 1.35 1.35 1.31 1.31  Average  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  804.2 75.0 19.1 11.41 130.05 368.6 0.17 2.92 88.3 91.4 58.5 0.0  Irt-Cylinder Pressure Trace  14000 12000  re  fi 10000 <D  5 8 °; o  8000 6000 4000 20000 I -50  1 -40  1 -30  1 -20  1 0  1 -10  i 20  1 10  i  i  30  40  1 50  c r a n k angle [deg]  Net Heat Release Rate  25000  -5000 -20 1  1  -10  1  1  0  10  '• 20  1  1  30  40  i 0.0025  1 0.0030  c r a n k angle [deg]  Log Pressure vs Volume  a.  _:  10 1 A 0.0000  • 0.0005  i 0.0010  1 0.0015 v o l u m e [m3]  150  i 0.0020  Speed [RPM] Torque[N-m] Load [%] P; max [deq] CA (_• P max [doq] dP/dCA max [bar/deq] CA@dP/dCA max [deg] IMEP [bar] HHR max [kj/m"3/deq] IHR max [kJ/m 3] 5% MFB [deq w.r.t TDC] 10%:MFB[deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncoi reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion ccrroctod  Comments  12820.58 8.0 792.688 3.5 1125.69 18728.4 199511.1 -1.0 0.5 5.5 22.5 1.37 0.000 1.33 1.33 1.32 1.32  A  Data Summary for filter: Date: Time:  LISSSJII  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 802.1 75.0 18.8 11.27 128.45 368.5 0.18 2.91 73.6 76.6 72.0 16.9  4/9/02 11:33:09  In-Cylinder Pressure Trace 14000 12000  8  6000  0  I  -50  i  -40  1  -30  1  -20  J  -10  1  0  c r a n k angle [deg]  151  1  10  1  20  1  30  1  40  1  50  Comments  Speed: [RPM] Torque [N-m] Lbadi[%]§£: i ; P max [deq] CA <H> P max [deq] dP/dCA max [bar/deq] CA (3 dP/dCA max [deq] IMEP [bar] HHR max[kj/m"3/deg] IHR max [kJ m»3] 5% MFB [deq w.r.t TDC] 10-oMFB [deq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w r.t TDC] Assumed poly-n during comprn zero-level: pr. offset [bar] poly-n compression uncorrected poly-n:compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  :  12758.70 8.0 744.438 2.5 1117.28 17150.5 197220.6 -1.5 0.0 5.5 22.0 1.37 0.000 1.30 1.30 1.29 1.29  C10. , 4/9/02 11:39:35  Engine Parami • Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 802.2 75.0 18.7 11.19 127.76 368.5 0.21 2.89 73.4 76.5 72.7 16.7  In-Cylinder Pressure Trace 14000 12000  co  fi 10000 o 3  8000  8  6000  ^  4000  o  2000 0  I  -50  1  1  -40  -30  1  i  -20  1  -10  0  1  1  10  20  i  1  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 20000  -20  -10  0  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume  14 0.0000  ,  i  0.0005  0.0010  1 0.0015 v o l u m e [m3]  152  i 0.0020  1 0.0025  1 0.0030  Comments  Speed [RPM] Torque [N-m] Load [° ] P max [doq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP dCA max [doq] IMEP [bar] HHR maxfkJ/m"3/deg] IHRi max[kJ/m"3] 5% MFB [deq w.r.t TDC] 10%MFB[deqwrtTDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compressloniuncorrerted poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected 0  12846.54 8.0 901.252 4.0 1113.07 21104.5 196465.8 -1.0 0.5 5.0 21.5 1.37 0.000 1.31 1.31 1.31 1.31  Data Summary for filter: Date: Time:  S&5&1.VJ 4/9/02 11:46:33  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kgmr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 800.8 75.0 18.6 11.15 128.67 368.4 0.17 2.92 73.5 76.6 72.5 16.9  In-Cylinder Pressure Trace 14000  -10  0  50  10  c r a n k angle [deg]  Net Heat Release Rate 25000 f  20000  8 Si 5000  Z E  j 5000 0  V  -  -5000 -10  10  40  20  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000  0.0025  153  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deg] dP/dCA max [bar/deg] C A @ dP/dCA max [deg] IMEP [bar] HHR max [kj/m»3deg] IHR max [kJ 171*3] 5% MFB [dog w.r t TDC] 10% MFB [deg w.r.t TDC] 50% MFB;[deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression correi tod poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  12825.77 8.0 901.252 2.5 1122.46 19436.4 198361.7 -1.0 0.5 5.0 22.0 1.37 0.000 1.31 1.31 1.29 1.29  C12 - •'4/9/02 11:53:43  EnginesParametors Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 800.8 75.0 18.8 11.24 128.43 368.4 0.19 2.91 73.6 76.7 72.6 16.8  In-Cylinder Pressure Trace 14000 12000 &  10000  3  8000  8  6000  °-  4000  o  2000  o i -50  i  ;  1  >  -40  -30  -20  -10  1  1  *  1  1  1  0  10  20  30  40  50  c r a n k angle [ d e g ]  Net Heat Release Rate 25000 20000 SI 5000 ^10000  Z E  5000  —  s\  0  -  •5000 -20  -10  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume 10000 T  a.  -  I ^ -  1  1  1  10  1-1 0.0000  1 0.0005  i  1  0.0010  0.0015 v o l u m e [m3]  154  i 0.0020  1 0.0025  1 0.0030  Speed [RPM] Torque [N-m] Load [%1 P max [deq] CA <5> P max [deg] dP/dCA max [bar/deg] CA @dP/dCA max [deg] IMEP [bar] HHR max [ k j m«3'dog] IHR max [ k j m"3] 5%MFB[degwr.tTDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comment: Data Summary for filter: Date: Time:  12961.26 8.0 813.367 1.5 1127.58 16728.2 198785.8 -1.0 0.0 5.0 20.0 1.37 0.000 1.32 1.32 1.31 1.31  C13 4/9/02 12:02:18  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 805.4 75.0 18.9 11.29 129.73 368.5 0.16 2.93 92.3 95.3 13.1 0.0  In-Cylinder Pressure Trace 14000 & . 10000 o 3  8000  g  6000  *  4000 0  I  -50  i -40  1  -30  1  -20  i -10  1  0  c r a n k angle [deg]  155  1  10  1  20  1  30  i 40  1  50  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m"3/dcgl IHR max [kj.m»3] 5% MFB [dog w.r.t TDC] 10-J MFB [deg w.r.t TDC] 50% MFB [dog w.r.t TDC] 9 0 - j M F B f d e q w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uricorrei ted poly-n expansion corrected  Comments D1 4/10/02 10:06:30  Data Summary for filter: Date: Time:  14746.47 6.5 516.970 -1.0 1437.21 9560.6 261827.4 -5.0 -2.0 11.0 30.0 1.37 0.000 1.37 1.37 1.28 1.28  Enolne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1408.5 85.0 42.2 14.39 147.62 367.0 0.28 6.18 276.2 282.6 11.1 0.0  In-Cylinder Pressure Trace 16000 T 14000 JS 12000 £ 10000 » 8000 £ 6000 ^ 4000 ° 2000 0  I  i  1  •  .  1  1  -50  -40  -30  -20  -10  0  10  1  20  1  i  1  30  40  50  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  156  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m]  Comments  Load r«] P max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [deg] IMEP [bar] HHR max [ k J m » 3 d o g ] IHR max[kJ/m\3] 5%: MFB [doq w r.t TDC] 1 0 ' . MFB [deg w.r.t TDC] 50% MFB [deq w r t TDC] 90% MFB [deq w.r.t TDC] Assumed p o l y - n i d u r i n g c o m p r n zerorlevel.iprr:offset [bar]  14657.64 6.5 484.229 -1.5 1429.24 9402.5 262041.9 -6.5 -2.0 11.0 30.5 1.37 0.000 1.36 1.36 1.28 1.28  poly-n[Compression:uncoi rected  poly-n c o m p r e s s i o n c o r r e c t e d poly-n expansion uncorrected poly-n expansion cc rrected  Data Summary for filter: Date: Time:  r : U4/10/02 D2iiII  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average • 1406.1 85.0 41.9 14.31 146.80 367.0 0.34 6.18 275.9 282.5 11.4 0.0  10:19:52  In-Cyllnder Pressure Trace  -10  0 c r a n k a n g l e [deg]  Net Heat Release Rate 12000 10000 •=8000  n |  2000 A  1  f=~-  -2000  LXAUJ.  -4000 -20  20  30  0.0020  0.0025  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  157  0.0030  Comments  Speed [RPM] Torque [N-m] Iii:;:;! jk.; Load [%] P max [deq] CA (s> P max |deq] dP'dCA max [bar deg] CA @ dP/dCA i max [deq] IMEP [bar] HHR max [kj/m»3/deg] IHR;:;max][kJ/mM]Niji!!i!l!N» 5% MFB [deg w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn. zero-lovel. pr. offset [bar] poly-n compression;uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  .  Data Summary lor filter: Date: Time:  14691.74 6.5 584.177 -2.0 1431.31 9689.4 262169.7 -5.0 -2.0 11.0 31.0 1.37 0.000 1.35 1.35 1.28 1.28  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgmr) Exhaust Back Pressure (kPa) EGR Fraction(%)  D3. • 4/10/02 10:25:15  Average 1405.7 42.0 14.33 147.19 367.2 0.29 6.21 275.8 282.3 11.4 0.0  In-Cylinder Pressure Trace 16000 ~  14000  J5 12000 J> 10000 m  8000  £  6000  _•  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 12000  <B  -2000 -4000 I -20  '  •  -10  1 0  ' ' 10  20  ' 30  ' 40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0005  0.0010  0.0015 v o l u m e [m3]  158  Comments  Speed [RPM] Torque[N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar dog] CA (3 dP/dCA max [deq] IMEP [bar] HHR max [kj/m»3/deg] IHR max[kJ/m"3] 5% MFB [deg w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq W:r.tTDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-ncompressidniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  D4 , 4/10/02 10:32:11  Data Summary for filter: Date: Time:  14682.71 6.5 522.140 -1.5 1429.61 9214.5 261545.7 -6.5 -2.0 10.5 30.5 1.37 0.000 1.37 1.37 1.29 1.29  EndiheParameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1404.5 41.9 14.31 147.03 366.9 0.33 6.13 277.8 284.3 11.4 0.0  In-Cyllnder Pressure Trace 16000 T  14000  JS, 12000 £  10000  |  8000  £  6000  _:  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  Log Pressure vs Volume  a.  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  159  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [ .] P max [deq] CA @ P. max [deq] dP/dCA max [bar deq] CA @ dP/dCA max;[deg] IMEP [bar] HHR max [kJ/m»3 deq] IHR max [kj/m»3] 5% MFB [deg w.r t TDC] 10== MFB [deq w r t T D C ] 50% MFB [deq w r.t TDC] 90 ' . M F B [deg w.r t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  14712.44 7.0 635.874 -2.0 1418.21 9671.0 262138.5 -5.5 -2.0 11.0 32.0 1.37 0.000 1.35 1.35 1.27 1.27  D5 4/10/02 10:41:12  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1386.9 41.0 14.20 147.33 366.9 0.30 6.07 277.8 284.2 151.6 0.0  In-Cyllnder Pressure Trace 16000 ^  14000  E  12000  £ 10000 »  8000  £  6000  _:  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 12000 10000  A  •=•8000 cn |i 6000 ^ 4000 Z £ 2000 •  0  -2000  = = A A  A  (\ y\i  —  -4000 10  -10  20  30  40  c r a n k a n g l e [deg]  Log Pressure vs Volume  a  _:  10  1-1 0.0000  .  ,  .  0.0005  0.0010  0.0015 v o l u m e [m3]  160  1  0.0020  1  0.0025  1  0.0030  Speed [RPM] Torque [N-m] Load [%] R max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA <3> dPtdCA max [deq] IMEP [bar] HHR max [ k J m " 3 deq] IHR max [kj/m*3] 5°/. MFB [deq w.r.t TDC] 10%;MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-mdurinq comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  14652.51 6.0 577.284 -2.0 1441.77 9375.3 264839.9 -5.0 -2.0 11.0 32.0 1.37 0.000 1.35 1.35 1.28 1.28  D6 4/10/02 10:47:38  Enoino Parameters ... Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kgmr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1405.1 85.0 42.3 14.44 146.80 367.1 0.30 6.25 278.1 284.7 13.7 0.0  In-Cylinder Pressure Trace 16000 ,_, 14000 12000 £  10000  3  8000  £  6000 4000  °  2000 0  I  1  -50  -40  1  -30  1  I  1  -20  -10  0  1  1  10  20  1  i  30  40  1  50  c r a n k angle [deg]  Net Heat Release Rate 12000  -4000  1  -20  1 -10  I 0  1 10  1 20  1 30  1  40  c r a n k angle [ d e g ]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 volume [m3]  161  0.0020  0.0025  0.0030  Comments  Speed! [RPM] Torque [N-m] Load [%] R max [deg] CA <a p max [deg] dP/dCA; max [bar/deq] CA @ dP/dCA max [deg] IMEP [bar] HHR max[kj/m"3/deg] IHR max [kj/m"3] 5% MFB [deg w.r t TDC] 10% MFB [dog w.r.t TDC] 50% MFB [deq w r t TDC] 90% MFB [deq w r t TDC] Assumed poly-n durinq comprn. zero-level, pr. off set [bar] poly-ncompression:uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  D7 4/10/02 10:54:57  Data Summary for filter: Date: Time:  14665.01 6.0 508.354 -2.0 1418.88 9822.6 258117.8 -4.0 -2.0 11.0 32.0 1.37 0.000 1.35 1.35 1.26 1.26  Enolno Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgmr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1393.3 85.0 41.2 14.21 146.77 366.6 0.28 6.11 278.0 284.3 127.8 0.0  In-Cylinder Pressure Trace 16000  ^  4000  °  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [ d e g ]  Net Heat Release Rate 12000 10000 „8000 0 6000 § 4000 E 2000  2  0  —-2000 ^1000 -6000  30  20  10  -10  40  c r a n k angle [ d e g ]  Log Pressure vs Volume  o. _:  *  10 • - - -  J 0.0000  •  .  0.0005  •—  -  .  --  -  0.0010  I f  I  0.0015 v o l u m e [m3]  162  -  t  -  .  0.0020  -  ~  ~  1  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [°=] P max [deg] CA (S> P max [deg] dP/dCA max [bar/deq] CA@dP/dCA max [deg] IMEP [bar] HHR max [kJ7m"3/deg] IHR max [kj/m«3] 5% MFB [deg w r.t TDC] 10%MFB [dog w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression;uncorreeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  14596.87 7.5 587.623 -2.0 1435.68 9533.6 263881.6 -5.5 -2.0 11.0 31.5 1.37 0.000 1.36 1.36 1.26 1.26  D8 4/10/02 11:03:00  Engine: Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kgmr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1404.2 85.0 42.1 14.37 146.21 367.2 0.31 6.21 278.0 284.5 12.4 0.0  In-Cylinder Pressure Trace 16000 ^ . 14000 J| 12000 £  10000  |  8000  £  6000  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 volume [m3]  163  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m] Load [=-] P max [deg] CA (3> P max [deq] dP.'dCA max [bar deg] CA <5> dP/dCA max:[deg] IMEP [bar] HHR max[kJ/m»3/deg] IHRWmax [kJ/m«3] 5% MFB [deg w.r.t TDC] 10== MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MF3 [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncotroctcd poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comment! Data Summary for filter: Date: Time:  14308.29 6.0 479.059 -10.5 1401.80 10035.1 257640.4 -4.0 -1.5 11.5 33.0 1.37 0.000 1.35 1.35 1.27 1.27  . -.09 4/10/02 11:23:31  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/tir) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1386.2 85.0 40.5 14.04 143.26 367.2 0.28 6.09 231.9 238.3 143.0 13.5  In-Cylinder Pressure Trace  -50  ^10  -30  -20  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate 12000 10000 •55 8000 5 6000  Z  ~ 4000 E 2000 0 -2000  A  KVl^  -4000 -20  10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  164  Comments  Speed [RPM] Torque FN-m] Load[%]  P max [deql  14366.46 6.0 530.756 -9.5 1398.29 8839.6 256158.5 -5.0 -1.5 11.5 33.5 1.37 0.000 1.34 1.34 1.26 1.26  CA @ P max [deq] dP/dCA max [bar/deq] CA <3> dP/dCA max [deq] IMEP [barl HHR max [kj/m»3/deq] IHR m a x [ k J m " 3 ] 5% MFB [deq w.r.t TDC]  10% MFB rdeq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%MFB [deqwir.tTDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncoi rcctcd poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  L-^Dioai  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kgmr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Avefadeli 1387.3 85.0 40.5 14.00 143.89 366.9 0.34 6.06 232.0 238.4 142.5 13.4  4/10/02 11:28:43  In-Cylinder Pressure Trace  -30 •  -20  -10  0  10  c r a n k a n g l e [deg]  Net Heat Release Rate 10000  -woo I  -20  1 -10  J 0  1 10  1  1  1  20  30  40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  165  Comments  .  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA f . P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m«3/deg] IHR m a x [ k j / m " 3 ] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%1MFB [deg w r.t TDC] Assumed poly-n during: comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected i i poly-n expansion corrected  D11 4/10/02 11:34:34  Data Summary for filter: Date: Time:  14304.18 6.5 516.970 0.0 1396.67 9573.5 256997.2 -4.0 -1.0 11.0 33.0 1.37 0.000 1.34 1.34 1.26 1.26  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1387.0 85.0 40.4 13.98 143.13 367.2 0.27 6.11 232.2 238.6 142.2 13.4  In-Cylinder Pressure Trace  -30  -10  -20  0  20  10  c r a n k angle [deg]  Net Heat Release Rate 12000 |  -4000 I -20  1  •' -10  1  1  1  1  0  10  ' 20  30  40  0.0020  0.0025  0.0030  1  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  166  Comments  Speed [RPM] Torque[N-m] Load p ] P max [deq] CA CjB P max Ideg] dP/dCA max [bar/deq] CA@dP/dCA max[doq] IMEP [bar] HHR max [kj/m»a'deq] IHR max [ k j m"3] 5% MFB [doq w.r.t TDC] 10%iMFB [doq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durlnq comprn. zero-level, pr. offset [bar] poly-n i com pressioni uncorrected poly-n compression corrected poly-n expansion uncorrec led poly-n expansion corrected =  14281.23 6.5 508.354 -7.5 1408.28 10004.3 259179.3 -5.0 -1.5 11.5 34.0 1.37 0.000 1.34 1.34 1.25 1.25  Data Summary for filter: Date: Time:  mmmn  EriqlheiParametersmCf' •*,> Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 1388.2 85.0 40.8 14.10 143.02 367.2 0.32 6.10 232.6 239.0 141.6 13.3  4/10/02 11:41:08  In-Cyllnder Pressure Trace 16000  ^  4000  "  2000 0 -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate 12000 10000 8000 6000 4000 Z E 2000 0 -2000 -4000 -6000  f  -20  V — 10  -10  20  30  40  c r a n k a n g l e [deg]  Log Pressure vs Volume  a.  s.  10  o  -I  1 0.0000  1  0.0005  1  1 0.0010  0.0015 v o l u m e [m3]  167  1 0.0020  1  0.0025  0.0030  Comments  Speed:[RPM] Torque [N-m] Load [%] P max [deq] CA (S> P max [deq] dP dCA max [bar deq] CA @ dP dCA max [deq] IMEP [bar] HHR m a x [ k j m " 3 d e g ] IHR max [ k j m 3] 5% MFB [deq w r t TDC] 10%MFB[degwrlTDC] 50% MFB [deq w.r.t "DC] 90'. MFB [dog w r t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n icompression:uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  14431.90 7.5 527.310 -1.5 1444.58 9468.2 265858.9 -5.5 -2.0 11.0 32.0 1.37 0.000 1.35 1.35 1.25 1.25  A  D13 4/10/02 11:53:41  Enaine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 1407.6 85.0 42.4 14.46 144.44 367.2 0.30 6.30 277.1 283.7 5.2 0.0  In-Cylinder Pressure Trace 16000 14000 12000 10000 8000 6000 4000 2000 0  -40  -30  -20  -10  0  40  10  50  c r a n k angle [deg]  Net Heat Release Rate 12000  S  10000  o -38000 |  j j 6000  0 < 4000  1I  2000  f =• o  - ~ AAA  -2000  1  -4000  10  -10  40  20  c r a n k angle [deg]  Log Pressure vs Volume  1000  -  10  0.0000  0.0005  0.0015  0.0010  v o l u m e [m3]  168  0.0020  0.0025  0.0030  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @;P max [doq] dP/dCA max [bar/deq] CA@dP/dCA max [deq] IMEP [bar] HHR max [ k j m"3 deq] IHR max [ k j m"3] 5% MFB [deq w.r.t TDC] 10% MFB; [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 9 0 , MFB [deg w.r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] poly-nicompressioniuncoirected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9695.77 5.5 854.725 1.0 523.92 16540.4 91875.2 -3.5 -1.0 2.0 8.0 1.37 0.000 1.35 1.35 1.35 1.35  s  ;•'  E 1  •  4/10/02 12:29:19  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 809.0 25.0 8.8 5.25 97.11 366.0 0.15 1.23 73.4 74.7 11.9 0.0  In-Cylinder Pressure Trace 12000 •=• 10000  n  8000  3  in «  6000  Q.  4000  S"  2000 0  I  i  -50  1  -40  -30  1  i  -20  1  -10  0  1  i  10  20  1  1  30  1  40  50  c r a n k angle [deg]  Net Heat Release Rate 18000 i  1  1  1  c r a n k angle [deg]  Log Pressure vs Volume  o> Q.  'o1 0.0000  -  j - - ~  1 0.0005  —  -  '  1  -  — 1  0.0010  0.0015 v o l u m e [m3]  169  1  0.0020  1 0.0025  0.0030  Comments  Speed [RPM] Torque[N-m] Load [%] P max [deg] CA i @ p max [deg] dP/dCA max [bar/deg] CA@idP/dCA max [deg] IMEP [bar] HHR max [kj/m»3/deg] IHR max [kj/m»3] 5%MFB![deg w.r.t TDC] 10% MFB; [deg w.r t TDC] 50% MFB [deg w.r.t TDC] 90= MFB[deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9656.02 6.0 830.599 1.0 518.82 16104.3 90390.0 -4.0 -1.5 1.5 8.0 1.37 0.000 1.33 1.33 1.32 1.32  3  E2 ., 4/10/02 12:35:02  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 808.3 25.0 8.7 5.20 96.90 365.9 0.24 1.21 73.5 74.9 11.3 0.0  In-Cyllnder Pressure Trace 12000 |  1  ,  ,  ,  1  10000  a V  8000  5>  6000  CO  a.  4000  t  2000 0 I -50  1  1  -40  -30  I  1  -20  1  -10  i  1  0  10  20  i  1  30  40  1 50  c r a n k angle [deg]  Net Heat Release Rate 20000 2  -  15000  -20  -10  0  -- - - -  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume  Q.  _:  10 1 -I 0.0000  1  0.0005  i  1  0.0010  0.0015 v o l u m e [m3]  170  i  0.0020  \  0.0025  1  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA <a P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max[kj/m"3/deq] IHR max [ k j m"3] 5% MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n durlnq co mprn zero-level, pr. offset [bar] poly-n comprosslon uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9504.36 5.5 884.020 1.5 479.78 17513.9 84655.4 -4.5 -1.0 1.5 7.5 1.37 0.000 1.33 1.33 1.35 1.35  Erioine'ParameterslISIllii Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  E3 4/10/02 12:42:23 Average 805.2 25.0 8.1 4.80 95.30 365.7 0.14 1.20 73.5 74.9 11.5 0.0  In-Cyllnder Pressure Trace  -50  -10  0  crank angle [deg] Net Heat Release Rate  20000 2 ^15000 in o  <S 510000 I " -re E s 5000  2  •5 c  3,  0  -5000  10  -20  40  20  crank angle [deg] Log Pressure vs Volume  10000 1000 + 100  0.0025  0.0000  171  0.0030  Speed: [RPM] Torque [N-m] Load [%] P max [deq] CA P max [doq] dP/dCA max [bar/deq] CA @ dP/dCA max ;deq] IMEP [bar] HHR max [ k j m " 3 deg] IHR m a x [ k j / m " 3 ] 5% MFB [deq w.r.t TDC] 10% MFB [deq w r.t TDC] 50% MFB [dog w r t TDC] 90% MFB [deq w r t TDC] Assumed poly-n durinq comprn zero-level, pr. offset [bar] poly-n:compression:uncoi rectcd poly-n compression corrected poly-n expansion uncorrected poly-n expansion cc rrectcd  Comments  •  E4 4/10/02 12:49:00  Data Summary for filter: Date: Time:  9545.69 5.5 813.367 1.0 497.31 15777.1 87537.0 -5.0 -1.5 1.5 8.0 1.37 0.000 1.35 1.35 1.33 1.33  : AveraqeB Enalne Parameters Speed(RPM) 805.3 25.0 Load - approx(%) 8.4 Power (kW) 4.98 IMEP (bar) Pmax(bar) 95.72 Pmax location (degrees) 365.9 0.17 Diesel Flow(kgmr) 1.19 CNG Flow(kg/hr) 73.7 Air Flow(kg/hr) Exhaust Flow(kg/hr) 75.1 Exhaust Back Pressure (kPa) 11.2 EGR Fraction(%) 0.0 :::  In-Cylinder Pressure Trace 12000 10000  1; A  0) Q.  4000  S  2000 0  1  I  1  1  1  i  I  1  i  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  crank angle [deg] Net Heat Release Rate 18000 16000 14000 •5)2000  .gioooo  S 8000 c 6000 ^ 4000 £2000 0 -2000 -4000 -20  / ^\ /  /v-  -JV—  1  7  -10  10  crank angle [deg]  172  20  30  40  Comments  Speed [RPM] Torque [N-m] Load f/o] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max[kJ7m"3deg] IHR max[kJ/m' 3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 5 0 % MFB [deg w.r.t TDC] 9 0 % MFB; [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bat] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-h expansion corrected  Data Summary for filter: Date: Time:  9525.04 5.5  E5 4/10/02 12:56:29  882.296  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  1.5 487.07 1747a5  85457.3  1  -3.5  -1.0 1.5 7.5 1.37 0.000  1.34 1.34 1.31  Average 802.9 25.0 8.2 4.88 95.34 366.0 0.15 1.17 73.8 75.1 11.1 0.0  1.31  In-Cylinder Pressure Trace 12000 |  i  1  1  1  T  i  1 0  10000 8000 6000  3  tn  o> a.  4000  t  0 2000  I  1  -50  -40  1  -30  1 -20  -10  1 10  i  i  >  1  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate 20000  -5000  1  -20  1  1  -10  1  0  1  10  —  1  20  30  1  40  c r a n k a n g l e [deg]  Log Pressure vs Volume  £ a  _:  10  i-l 0.0000  1  1  1  i  •  1  0.0005  0.0010  0.0015  0.0020  0.0025  0.0030  v o l u m e [m3]  173  Speed [RPM] Torque |N-m] Load [°,] P.max [deq] CA @ P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deg] IMEP [bar] HHR max [kJ/m»3/doq] IHR max [kJ/m 3] 5% MFB [doq w.r.t TDC] 10%:MFB[deq w.r.t TDC] 50% MFB: [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  9687.47 5.0 890.912 1.0 503.20 17213.8 88546.6 -3.5 -1.0 1.5 8.0 1.37 0.000 1.34 1.34 1.36 1.36  n  Data Summary for filter: Date: Time:  WIE6..5  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 797.5 25.0 8.4  4/10/02  13:04:01  5.04 97.12 365.8 0.15 1.16 73.2 74.5 31.1 0.0  In-Cylinder Pressure Trace 12000 •=• 10000 V  8000  3  o  6000  o.  4000  &  2000  tn  0 -50  -40  -30  -20  -10  0 c r a n k a n g l e [deg]  174  10  20  30  40  50  Comments  Speed RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [dog]i! IMEP [bar] HHR max[kJ/m"3/deg] IHR max[kJ/m"3] 5%:MFB :[deq w.r.t TDC] 10% MFB [doq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90== MFB [deq w.r.t TDC] Assumed poly-n durinq comprn zero-level, pr. offset [bar] poly-n compression uncoi reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9621.54 5.0 866.787 1.0 498.56 16774.5 87565.4 -3.5 -1.0 1.5 7.5 1.37 0.000 1.35 1.35 1.34 1.34  'E7 . ', 4/10/02 13:11:28  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 797.0 25.0 8.3 4.99 96.47 365.8 0.16 1.15 73.7 75.0 10.1 0.0  In-Cylinder Pressure Trace 12000 10000 ^  8000  «  6000  CO  o.  4000  S~  2000 0 -50  -40  -30  -20  -10  0 c r a n k a n g l e [deg]  10  20  30  40  50  Net Heat Release Rate 20000 I  -5000 I -20  1  1  1  1 -10  1 0  1 10 c r a n k a n g l e [deg]  175  1 20  1  30  1  40  Comments  Speed |RPM] Torque [N-m] Load [" J P max [dog] CA @ P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max .dog] IMEP [bar] HHR max [ W m ' 3 doq] IHR max [kj/m»3] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-levelipr. offset [bar] poly-nxompression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9517.12 5.5 866.787 1.0 474.25 16765.6 83937.2 -3.5 -1.5 1.5 8.0 1.37 0.000 1.33 1.33 1.39 1.39  E8. 4/10/02 13:18:54  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 793.4 25.0 7.8 4.75 95.29 365.9 0.14 1.13 73.1 74.4 38.8 0.0  In-Cylinder Pressure Trace  -10  0  10  c r a n k a n g l e [deg]  Net Heat Release Rate  J  -20  -10  0  10 c r a n k a n g l e [deg]  176  20  30  40  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA r P max [deq] dP/dCA max [bar/deg] CA (3 dP'dCA max [deq] IMEP [bar] HHR m d x [ k j m ' 3 d < q ] IHR max [KJ,m"3] 5% MFB [deg w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n:compression;uncoi rocted poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments E9 4/10/02 13:33:57  Data Summary for filter: Date: Time:  9958.69 6.0 949.502 2.0 597.87 19125.3 104273.9 -2.0 0.0 2.5 10.0 1.37 0.000 1.32 1.32 1.31 1.31  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgThr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 800.1 25.0 10.0 5.99 99.98 366.2 0.13 1.40 60.4 61.9 26.9 14.9  In-Cylinder Pressure Trace 12000 i  £1  10000  V  8000  » In 0}  6000  Q.  4000  J  2000  -  I  0  -50  -40  -30  -20  -10  0 c r a n k angle [deg]  10  20  30  40  50  Net Heat Release Rate 2500O 1  i  1  i  -5000 I -20  1 -10  J 0  1 10  ! 20  1 30  ' 40  c r a n k angle [deg]  Log Pressure vs Volume  101  -  A  0.0000  '  -  i-  i  *  —  1  1  1  1  1  0.0005  0.0010  0.0015  0.0020  0.0025  v o l u m e [m3]  177  -  — 0.0030  Speed [RPM1 Torque [N-m] Lbadi[%]!:liiNl!iffiII::i™ P max [deg] • • ' CA @ P max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max[kJ/m»3/deq] IHR m a x [ k j / m " 3 ] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90=-MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  10029.73 6.0 866.787 1.5 610.42 17483.8 106150.1 -4.0 -1.0 2.5 10.0 1.37 0.000 1.35 1.35 1.34 1.34  il>E10j;£j 4/10/02 13:41:19  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air FIow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Avefarieill 798.9 25.0 10.2 6.11 100.52 366.4 0.20 1.41 60.0 61.6 27.2 14.2  In-Cylinder Pressure Trace 120OO £  1000O 800O 600O  3 CO  o o.  400O  g  2000 0  1  I  J  1  1  1  1  1  1  1  i  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 20000 I  1  1  1  c r a n k angle [deg]  178  Comments  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR:: max [kj/m 3/deg] IHR max[kJ/m»3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-nicompression; uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Data Summary for filter: Date: Time:  9948.80 6.0 940.886 2.5 589.99 19493.5 102549.7 -2.0 0.0 2.5 9.5 1.37 0.000 1.33 1.33 1.33 1.33  A  E11 4/10/02 13:48:22  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 798.6 25.0 9.8 5.91 99.83 366.3 0.15 1.42 59.9 61.4 27.3 14.9  In-Cylinder Pressure Trace 12000 I  1  1  1  1  1  10000  co  £1 8000 6000  V S to o Q.  4000  g-  2000 0  I  ,  1  1  i  1  1  -50  -40  -30  -20  -10  0  10  1  20  1 30  1  1  40  50  c r a n k angle [deg]  Net Heat Release Rate 25000 |  20000  CD  '3  to  CD15000  S 3  "3 ?10000 Z E S =5 5000  -20  -10  0  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume  CD  Q.  -I  1 0.0000  1  0.0005  1  1  0.0010  0.0015 v o l u m e [m3]  179  1 0.0020  1 0.0025  0.0030  Speed [RPM1 Torque [N-m] Load [%] P max [deq] CA P max [deg] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kJ/m 3/deq] IHR max [ k j m " 3 ] 5% MFB [deg w.r.t TDC] 10%:MFB [deg w.rtTDC] 50% MFB [deq w r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected polyrn:compression:correctcd poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9983.36 5.5 815.090 1.5 612.55 16202.0 106578.3 -3.5 -1.0 2.5 10.5 1.37 0.000 1.35 1.35 1.35 1.35  A  E12'4/10/02 13:55:41  Engine: Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kgZhr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust F!ow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 799.7 25.0 10.2 6.13 100.07 366.4 0.18 1.42 59.8 61.4 27.4 14.3  In-Cylinder Pressure Trace 12000 |  ,  1  1  1  1  "Is 10000  re n ~Z  8000  »  6000  Q.  4000  S  0 2000  1  I  1  1  1  1  1  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  i 40  1 50  c r a n k angle [deg]  Net Heat Release Rate 20000 2  15000  •  -20  -10  0  10  20  30  40  c r a n k a n g l e [deg]  Log Pressure vs Volume  CL  1 -I 0.0000  i 0.0005  i  i 0.0015  0.0010  v o l u m e [m3]  180  1 0.0020  1 0.0025  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA@ldP.dCA max [deg] IMEP [bar] HHR max [kJ/m»3/dog] IHR max [kj/m«3] 5% MFB [deg w.r.t TDC] 10%MFB[degwrtTDC] 50% MFB [deg w.r.t TDC] 90== MFB [deg w.r.t TDC] Assumed; poly-n during comprn. zero-level. :pr. olfset [bar] poly-n:compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9911.32 5.5 816.813 1.0 598.92 16094.6 103844.1 -2.5 -1.0 2.5 10.0 1.37 0.000 1.34 1.34 1.34 1.34  ;  E13 4/10/02 14:08:14  Enqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kgZhr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 801.4 25.0 10.0 6.00 99.41 366.2 0.14 1.43 72.8 74.4 12.3 0.0  In-Cylinder Pressure Trace  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate 18000 o 16000 ra 14000 o 012000  g £10000 o S < 8000 Z £ 6000 8 i 4000 2000 0 -2000 -4000  1  ~  \^  -  / J:.  •  -10  10  20  30  0.0020  0.0025  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000 1000  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  181  0.0030  Speed! [RPM] Torque[N-m] Load [%] P max [dog] CA @ P max [deg] dPfdCA max [bar'deg] CA @: dP/dCA i max [deg] IMEP [bar] HHRmaxi[kJ/m"3/deq] IHRi!!maxi[kJ/m"3] 5%MFB[doqwrtTDC] 1 0 = j M F B [ d e g w r tTDC] 50% MFB [deg w.r.t TDC] MFB [deg w r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-nicompressioniuncoirected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments A14 3/7/02 11:03:01  Data Summary for filter: Date: Time:  10536.77 8.0 422.193 -10.0 845.22 8192.6 151758.2 -10.5 0.5 10.0 23.0 1.37 0.000 1.38 1.38 1.33 1.33  Engine* Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  AveragelB 1610.3 40.0 28.4 8.46 105.73 368.1 0.32 '3.84 210.0 214.2 11.3 0.0  In-Cylinder Pressure Trace 12000 10000 V  8000  3  6000  o.  4000  S  2000  1  0  I  -50  1  -40  1  -30  1  -20  1  1  -10  0  c r a n k a n g l e [deg]  182  1  10  1  20  1  30  i  40  1  50  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ p max [deq] dP/dCA max [bar/deq] CA@dP/dCA max [deg] IMEP [bar] HHR max[kj/m"3/deg] IHR max [ k j m»3] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%!MFB [deg w r t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec ted poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  14630.38 6.0 504.908 -14.0 1441.93 9750.7 264933.1 -5.0 -2.0 11.0 31.5 1.37 0.000 1.34 1.34 1.28 1.28  A15 3/7/02 11:41:03  Eriqine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  AveraqeiS 1406.3 85.0 42.3 14.44 146.55 366.9 0.28 6.26 273.4 279.9 10.6 0.0  In-Cylinder Pressure Trace  -10  0  50  10  c r a n k a n g l e [deg]  Net Heat Release Rate  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000 1000  0.0000  0.0015 v o l u m e [m3]  183  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m] Load ['.] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] CA@:dP/dCA max [deg] IMEP [bar] HHR max:[kJ/m»3/dog] IHR m a x [ k J m " 3 ] 5% MFB [deg w.r.t TDC] 10% MFB [dog w r t TDC] 50%MFB[degwrtTDC] 90% MFB [deg w r t TDC] Assumed poly-n during comprn zero-level.pr.ioffset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  14445.84 6.0 541.096 -1.5 1418.34 9014.6 263196.7 -8.5 -2.0 11.5 33.0 1.37 0.000 1.34 1.34 1.26 1.26  A16H 3/7/02 11:57:57  Engine Parameters ^Average's Speed(RPM) 1409.0 Load - approx(%) 85.0 Power (kW) 41.7 IMEP (bar) 14.20 Pmax(bar) 144.63 Pmax location (degrees) 366.9 Diesel Flow(kg/hr) 0.28 CNG Flow(kg/hr) 6.19 Air Flow(kgZhr) 258.0 Exhaust Flow(kg/hr) 264.5 Exhaust Back Pressure (kPa) 144.2 EGR Fraction(%) 8.5 In-Cylinder Pressure Trace  -10  0  10  c r a n k angle [deg]  Net Heat Release Rate 10000 8000 g)6000 R 4000 E 2000  I  0  /\ ^  /  M A  -2000 -4000 -20  30  40  c r a n k angle [deg]  Log Pressure vs Volume 10000 1000  0.0030  0.0000  184  Speed [RPM] Torque. [Nf m] i ; ! i i i ; i p i ; p H p l M Load[%] P max [deq] CA-@ P max [deq] dP/dCA max [bar/deq] CA@dP/dCA max [deg] IMEP [bar] HHRSmax [ M m " 3 / d e q ] IHR max [ k j . m \ i ] 5% MFB [deg w.r.t IDC) 10% MFB: [deg w.r.t TDC] 50%. MFB [dog w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  14269.67 6.5 510.078 -13.0 1410.32 9536.9 261141.3 -6.0 -1.0 11.5 34.0 1.37 0.000 1.34 1.34 1.25 1.25  A17 3/7/02 12:14:00  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%) In-Cyllnder Pressure Trace  -20  -10  0 c r a n k angle [deg]  185  10  Averaqe 1407.9 85.0 41.4 14.12 142.90 367.0 0.28 6.23 229.3 235.8 142.5 16.5  Speed r R P M ] Torque [N-m] Load [%] P max [deq] CA <S) p max [deq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP[bar] HHR max [kj7m»3/deq] IHR max rkj/m"3] 5% MFB [deq w.r.t TDC] 10% MFB: [deq w.r.t TDC] 50% MFB Tdoq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n durinq comprn. zero-level, pr. offset [bar] polyrnTcompressioniuhcoi net d poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  14482.80 6.0 537.649 -1.5 1425.50 9276.4 266563.1 -9.5 -2.5 11.0 33.0 1.37 0.000 1.34 1.34 1.28 1.28  A18 3/7/02 12:24:01  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1415.6 85.0 42.1 14.27 145.02 366.9 0.28 6.08 278.7 285.0 123.2 0.0  In-Cylinder Pressure Trace  -20  -10  0  10  20  30  c r a n k a n g l e [deg]  Log Pressure vs Volume 10000  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  186  0.0020  0.0025  0.0030  Speed: [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/dcq] CA @ dP/dCA max [deg] IMEP [bar] HHR m a x [ k J m » 3 d e g ] IHR max [kJ,m"3] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w r t TDC] Assumed:poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  14490.41 6.5 489.399 -14.0 1437.03 9543.8 268859.7 -6.5 -2.0 11.5 34.5 1.37 0.000 1.33 1.33 1.26 1.26  Data Summary for filter: Date: Time:  [Mill  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 1433.3 85.0 43.0 14.39 145.01 367.1 0.28 6.39 278.8 285.4 11.7 0.0  3/7/02 12:30:31  In-Cylinder Pressure Trace  -10  0  10  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 12000 10000 o at tn o H 7 3  Z E  8000 6000 4000 2000 0  -  / V  A  jM^y.  -2000 -4000 40 c r a n k angle [deg]  Log Pressure vs Volume 10000  187  Speed [RPM] Torque [N-m] Load[ .] P max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA@dP/dCA max [deq] IMEP [bar] HHR max [kJ7m"3/deq] IHR max[kJ/m«3] 5% MFB [deq w.r.t TDC] 10% MFB [deg w.r.t TDC] 50%;MFB [deq w.rtTDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  RSCA20JH  Data Summary for filter: Date: Time:  12973.86 8.0 859.894 0.5 1125.81 16619.4 196610.4 -2.0 -0.5 5.0 18.5 1.37 0.000 1.38 1.38 1.33 1.33  """"'3/7/02 12:53:49  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 810.5 75.0 19.0 11.27 129.91 368.7 0.21 2.89 92.1 95.2  11.3 0.0  In-Cylinder Pressure Trace 14000 C  12000  fi  10000  3  8000  8  6000  ^  4000  o  2000  0 I -50  i  1  1  1  1  1  1  1  i  1  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  188  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA;@ P max [deg] dP/dCA max [bar/deq] CA (3 dP/dCA max [deq] IMEP [bar] HHR max [kJ7m"3/deg] IHR max [kj/m»3] 5% MFB [deg w.r.t TDC] 10%MFB [ d e g w r t T D C ] 50%MFB [deg w.r.t TDC] i 90 MFB [ d e g w r t T D C ] Assumed: poly-ndurinq comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrec f d poly-n expansion corrected  Comments  12879.13 8.0 801.304 1.0 1113.13 16308.3 195292.2 -1.5 0.0 5.0 20.0 1.37 0.000 1.34 1.34 1.31 1.31  Data Summary for filter: Date: Time:  U- A ' 3/7/02 13:16:59  Enqino Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 806.6 85.0 18.7 11.15 128.84 368.5 0.21 2.88 82.0 85.1 77.6 8.7  2 1  In-Cylinder Pressure Trace 14000 •Z" 12000 n  £. 10000 o  5  8000  8  6000  ^  4000  I  i  1  1  i  1  1  i  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  0  c r a n k angle [deg]  Net Heat Release Rate 18000  c r a n k angle [deg]  Log Pressure vs Volume  Q.  10-  -I  1 0.0000  —  I  I 1  0.0005  -  I  -  I i 0.0010  I  -  1  1  0.0015  0.0020  v o l u m e [m3]  189  -  "  1  0.0025  0.0030  Speed [RPM] Torque [N-m] Load [%] P max [deq] CA @ P max [deq] dP/dCA max [bar/deq] CA @ dPfdCA max [deg] IMEP [bar] HHR max [kJ/m"3/dog] IHR max [kJ/m'3] 5% MFB [deg w.r.t TDC] 10%iMFBi[degwr.tTDC] 50%MFB [deg w r.tTDC] 90== MFB [deg w.r t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  13092.36 8.0 892.636 2.5 1125.01 19440.1 198010.1 -1.5 0.5 5.0 20.5 1.37 0.000 1.35 1.35 1.31 1.31  A22 3/7/02 13:30:30  Ehqine'Pararnl'tors Speed(RPM) Load - approx{%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 806.4 75.0 18.9 11.26 131.10 368.4 0.21 2.90 76.7 79.8 66.9 17.5  In-Cylinder Pressure Trace 14000  ^ 12000 & 10000 o  5  8000  [8  6000  °: 4000 « 2000 oi -50  1  1  .  1  -40  -30  -20  -10  1 0  1  1  1  1  1  10  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 25000 •|  20000  4) * 3  m v 15000 ffl < 10000 Z E S 5000 a  c  0 -5000 -20  -10  10 c r a n k angle [deg]  190  20  30  40  Speed [RPM] Torque [N-m] Load [%] P max |deq] CA @ P max [deq] dP/dCA max [bar/deq] CA (ip dP/dCA max [deq] IMEP [bar] HHR max [kJ7m"3/deg] IHR max [ k j m"3] 5°,: MFB [deq w.r 1 TDC] 10% MFB [deq w r.t TDC] 50% MFB [deg w r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. off set i [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  13051.33 8.0 887.466 0.5 1134.27 17304.9 198429.3 -2.0 -0.5 5.0 19.0 1.37 0.000 1.37 1.37 1.33 1.33  Data Summary for filter: Date: Time:  •'•'•A2311 3/7/02 13:42:00  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 808.1 75.0 19.1 11.36 130.75 368.5 0.21 2.90 92.8 95.9 48.2 0.0  In-Cylinder Pressure Trace 14000 •LT 12000 to £ . 10000 CD  3 8  8000 6000 4000  o  2000 0  1  i  1  1  1  1  1  I  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  c r a n k a n g l e [deg]  191  Speed [RPM] Torque ;[N-m] Load [%] P max [doq] CA @ p max [deq] dP'dCA max [bar doq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [ k j m»3deq] IHR max [kJ m»31 5% MFB [dog w.r.t TDC] 1 0 % M F B [ d e q w r . t TDC] 50%;MFB Tdoq w.r.t TDC] 90".« MFB [deq w.r.t TDC] Assumed poly-mdurinq ccmprn. zero-level, pr. offset [bar] poly-n:compressioniuncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  13086.51 8.0 901.252 0.5 1138.34 17330.9 200837.7 -1.5 -0.5 5.0 20.0 1.37 0.000 1.36 1.36 1.30 1.30  A24 3/7/02 13:51:00  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 810.1 75.0 19.2 11.40 131.09 368.5 0.21 2.92 93.4 96.6 12.7 0.0  In-Cylinder Pressure Trace 14000 12000 nj  fi 10000 o> 5 8000  I  1  1  1  I  I  1  i  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  40  50  0  c r a n k a n g l e [deg]  Net Heat Release Rate 20000  -5000 I -20  1  1  '  1  1  1  -10  0  10  20  30  40  0.0020  0.0025  0.0030  c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  192  Speed [RPM] Torque [N-m] Load [%] P max |deg] CA @ P max [deq] dP/dCA max [bar/dog] CA @ dP/dCA max [deq] IMEP [bar] HHR max [ k j m»3rdcq] IHR max [kj/m"3] 5%i MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90%!MFB [deq w.r.t TDC] Assumed poly-n durlnq comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9624.92 5.0 839.215 1.0 521.33 16249.7 91757.0 -4.5 -1.0 1.5 8.0 1.37 0.000 1.30 1.30 1.37 1.37  . , A25J1H 3/7/02 14:06:02  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  • Average 805.0 25.0 8.8 5.22 96.42 365.8 0.15 1.23 73.4 74.8 9.6 0.0  In-Cyllnder Pressure Trace 12000 •jj 10000  a  a.  4000  S" 2000 0  I  i  1  1  i  -50  -40  -30  -20  -10  1 0  1  i  1  i  1  10  20  30  40  50  c r a n k a n g l e [deg]  Net Heat Release Rate l> 5 » \ I 5 : 5 :  18000 16000 14000 o!2000 -§10000 ft 8000 % 6000 ^ 4000 ££,2000 0 -2000 -4000 c r a n k a n g l e [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  193  0.0020  0.0025  0.0030  Speed [RPM] Torque [N-m] Load F.-] P max [deq] CA @ P max [deq] dP/dCA max [bar/deg] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m"3'deq] IHR max [kJ/m*3] 5% MFB [deg w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed; poly-n;during; comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9598.05 5.5 940.886 2.0 498.55 18964.2 88420.2 -4.5 -0.5 2.0 7.5 1.37 0.000 1.30 1.30 1.36 1.36  ,  A 3/7/02 14:23:31  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  2 6  Average 797.1 25.0 8.3 4.99 96.33 366.0 0.17 1.15 57.1 58.4 27.0 22.1  In-Cylinder Pressure Trace 12000 I C  10000  0> a.  4000  0  1  1  1  1  1  I  1  1  1  1  1  1  1  1  -50  -40  -30  -20  -10  0  10  20  30  i  1  40  50  c r a n k angle [deg]  Net Heat Release Rate 25000 i  -5000 I -20  1  T  1  1  1  '  1  1  '  -10  0  10  20  30  40  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 volume [m3]  194  0.0020  0.0025  0.0030  Speed [RPM] Torque f N-m] Load [%] P max [deq] CA (•? P max [doq] dP/dCA max [bar/deq] CA @ dP/dCA max [deq] IMEP [bar] HHR max [kj/m*3/deq] IHR max [ k j m"3] 5% MFB [doq w.r.t TDC] 10%!MFB[deqwr.tTDC] 50% MFB [deq w.r.t TDC] 90% MFB [deq w.r.t TDC] Assumed poly-n during comprn zero-level, pr. offset [bar] poly-n compression uncoi reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments  9545.47 30.0 952.949 26.5 2057.71 57066.3 555233.2 5.5 9.5 25.0 31.0 1.37 0.000 0.85 0.85 2.09 2.09  Data Summary for filter: Date: Time:  fci, A27 3/7/02 14:35:00  Enqlne Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kg/hr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaoe 795.2 25.0 34.1 20.61 95.49 390.5 0.15 1.14 65.5 66.8 36.1 9.8  In-Cylinder Pressure Trace 12000 • j ; 10000  Q.  4000  g-  2000  I  •  •  1  i  1  -50  -40  -30  -20  -10  0  0  i 10  i  1  i  1  20  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 70000 60000 „50000 8*40000 ft 30000  120000 2 10000 " 0 -10000 -20000 -20  10 c r a n k angle [ d e g ]  195  20  30  40  Speed [RPM] Torque[N-m] Load [%] P max [deg] CA @ P max [deg] dP/dCA max [bar/deg] C A @ dP/dCA max [deg] IMEP [bar] HHR max[kJ7m"3/deg] IHR max [kJ/m«3] 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] 50% MFB [dec w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-ncompression:uncoi reeled poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Comments Data Summary for filter: Date: Time:  9383.38 5.0 818.537 1.0 477.30 15860.5 84792.1 -5.0 -1.0 1.5 7.5 1.37 0.000 1.28 1.28 1.36 1.36  A28 3/7/02 14:47:30  Engine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgZhr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Average 799.7 25.0 8.0 4.78 94.23 365.9 0.15 1.13 73.3 74.6 10.7 0.0  In-Cylinder Pressure Trace  -20  -10  0  10  30  40  50  c r a n k angle [deg]  Net Heat Release Rate 0) ra di £ £ £ <5 l= -  18000 16000 14000 o)2000 #0000 S 8000 g 6000 ^ 4000 i.2000 0 -2000 -4000  _ -  J.  ; /  -10  20  30  40  0.0020  0.0025  0.0030  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  196  Speed [RPM] Torque [N-m] Load [•• ] P max [deq] CA=@P max [deq] dP/dCA max [bar/deq] CA@dP/dCA max [deq] IMEP [bar] HHR max [ k j m»3'deq] IHR max[kJ/m"3] 5°.,. MFB [deq w.r.t TDC] 10% MFB [deq w.r.t TDC] 50% MFB [deq w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected poly-n compression corrected poly-n expansion uncorrected poly-n expansion corrected  Commonts  9605.48 5.5 985.690 1.0 514.85 18985.6 91376.2 -5.5 -2.0 1.5 8.0 1.37 0.000 1.29 1.29 1.39 1.39  Data Summary for filter: Date: Time:  ,  A29 ' 3/7/02 14:55:26  Enaine Parameters Speed(RPM) Load - approx(%) Power (kW) IMEP (bar) Pmax(bar) Pmax location (degrees) Diesel Flow(kg/hr) CNG Flow(kg/hr) Air Flow(kg/hr) Exhaust Flow(kgmr) Exhaust Back Pressure (kPa) EGR Fraction(%)  Averaqe 800.2 25.0 8.6 5.16 96.24 365.9 0.21 1.11 73.4 74.7 10.8 0.0  In-Cylinder Pressure Trace 12000 1  1  1  1  ,  1  -40  -30  -20  -10  0 c r a n k angle [deg]  10000 xt ' 'Z 8000 3 tn o  6000  a.  4000  S  2000  1  0 -50  10  20  30  40  50  Net Heat Release Rate 25000 i  ;  1  1  c r a n k angle [deg]  Log Pressure vs Volume  0.0000  0.0005  0.0010  0.0015 v o l u m e [m3]  197  0.0020  0.0025  0.0030  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0080957/manifest

Comment

Related Items