THE EFFECT OF EXHAUST GAS RECIRCULATION ON PARTICULATE MATTER EMISSIONS FROM A COMPRESSION-IGNITION, NATURAL GAS FUELLED ENGINE B y Thomas W i l l e m Brakel B.Sc (Eng), Queen's University, 2000 A THESIS S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F M A S T E R O F A P P L I E D S C I E N C E in T H E F A C U L T Y O F G R A D U A T E S T U D I E S D E P A R T M E N T O F M E C H A N I C A L E N G I N E E R I N G We accept this thesis as conforming to the required standard T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A A p r i l 2002 © Thomas W . Brakel, 2002 In p resen t ing th is thesis in partial fu l f i lment of t h e requ i rements fo r an advanced degree at the Univers i ty o f British C o l u m b i a , I agree that the Library shall make it f reely available f o r re ference and s tudy. I fu r ther agree that permiss ion f o r extens ive c o p y i n g o f th is thesis f o r scholar ly purposes may b e g ran ted by the head o f my d e p a r t m e n t or by his o r her representat ives. It is u n d e r s t o o d that c o p y i n g o r pub l i ca t i on of this thesis fo r f inancial gain shall n o t be a l l o w e d w i t h o u t m y w r i t t e n permiss ion . D e p a r t m e n t of The Univers i ty o f Brit ish C o l u m b i a Vancouver , Canada DE-6 (2/88) Abstract A mini-dilution tunnel was designed and built to measure particulate matter (PM) emissions from a single-cylinder research engine (SCRE) based on the Cummins I S X 400 series. The S C R E relies on the high-pressure direct injection of natural gas, pilot ignited with diesel fuel for combustion. Two methods were used for P M measurements: pre-weighed filters and a tapered element oscillating microbalance ( T E O M ) . A repeatability study was conducted to determine the experimental error associated with P M measurements and to compare results from pre-weighed filters with those taken using a T E O M . The P M emission rate uncertainty was determined to be at maximum 29%, with 10-12% due to measurement uncertainty and the remainder due to poor engine repeatability. P M emission rates from the T E O M showed excellent correlation with measurements using pre-weighed filters by applying a correction factor of 1.43. The second part of this work was to examine the effect of replacement exhaust gas recirculation (EGR) on particulate emissions. E G R is primarily used in engines to reduce the formation of oxides of nitrogen (NO x ) . The drawback of using high E G R flow rates is a deterioration in combustion and an increase in the amount of unburned species (HC, C O , P M ) that are formed. The results show the P M penalty is negligible for E G R rates up to 15% and that increasing the exhaust pressure significantly affects P M and C O emissions. It was also found that increasing the amount of diesel pilot at 800 R P M 75% load with 17% E G R significantly increases P M and C O emissions. Table of Contents Abstract ii Table of Contents iii List of Figures : vi List of Tables ix Nomenclature xi Acknowledgments xii Chapter 1: Introduction 1 1.1 Particulate Matter 1 1.2 Dilution Systems 3 1.3 Exhaust-Gas Recirculation (EGR) 4 1.4 Project goals and objectives 5 Chapter 2: Experimental Apparatus 6 2.1 Dilution System 6 2.2 Single-Cylinder Research Engine (SCRE) 8 2.2.1 HPDI Injector 10 2.2.2 Engine Operation 12 2.2.3 EGR Operation 14 2.2.4 Diesel Flow Measurement 15 2.3 Measurement Techniques 16 2.3.1 Dilution Ratio Determination 17 2.3.2 Pre-Weighed Filters 18 2.3.3 T E O M 19 2.3.4 Measurement Uncertainty 22 i i i Chapter 3: Results and Discussion 25 3.1 Overview 25 3.2 T E O M Validation 27 3.3 Repeatability Study 28 3.4 Comparison with Six Cylinder ISX 400 31 3.5 Sources of Variability 32 3.5.1 Diesel Pulse Width Tests (no EGR) 35 3.5.2 Diesel Pulse Width Tests (with EGR) 38 3.5.3 Back Pressure Tests (no EGR) 40 3.5.4 Effects on In-Cylinder Pressure 42 3.5.5 Exclusion of Data Points (Outliers) 43 3.6 The Effect of Exhaust Gas Recirculation 44 3.6.1 Particulate and N O x Emissions 44 3.6.2 In-Cylinder Pressure 47 Chapter 4: Conclusions and Future Work 51 4.1 Conclusions 51 4.2 Recommendations for Future Work 52 References 54 Appendix A: Description of Apparatus 57 Appendix B: Experimental Results 59 Appendix C: Analysis of T E O M Output 79 Appendix D: Derivation of Dilution Ratio Calculation 80 Appendix E : Sampling Procedure - Filters with T E O M 82 Appendix F: Operating Procedure - T E O M 84 iv Appendix G: List of Electronic Files 86 Appendix H: Engine Warm-up and Operating Procedure 87 Appendix I: Diesel Flow Measurement 89 Appendix J: High-Speed Data Summaries 92 v List of Figures Figure 1-1: Typical composition of heavy-duty diesel engine P M 2 Figure 2-1: Schematic of dilution system 7 Figure 2-2: S C R E and test cell 9 Figure 2-3: Schematic of Westport H P D I injector 10 Figure 2-4: Summary of H P D I Injection Process 11 Figure 2-5: Engine map of S C R E 13 Figure 2-6: Simplified schematic of the T E O M 20 Figure 3-1: Correlation of T E O M Data with Filters 27 Figure 3-2: Repetability Results at low-speed low-load 29 Figure 3-3: Repetability Results at low-speed high-load 29 Figure 3-4: Repeatability Results at high-speed low-load 30 Figure 3-5: Repeatability Results at mid-speed high-load 30 Figure 3-6: P M / C O correlation at low-speed low-load 33 Figure 3-7: P M / C O correlation at low-speed high-load 34 Figure 3-8 : P M / C O correlation at high-speed low-load 34 Figure 3-9: P M / C O correlation at mid-speed high-load 34 Figure 3-10: The effect of diesel pulse width at low-speed low-load 36 Figure 3-11: The effect of diesel pulse width at low-speed high-load 36 Figure 3-12: The effect of diesel pulse width at high-speed low-load 37 Figure 3-13: The effect of diesel pulse width at mid-speed high-load 37 Figure 3-14: The effect of diesel pulse width at low-speed low-load with E G R 38 Figure 3-15: The effect of diesel pulse width at low-speed high-load with E G R 38 v i Figure 3-16: The effect of diesel pulse width at high-speed low-load with E G R 39 Figure 3-17: The effect of diesel pulse width at mid-speed high-load with E G R 39 Figure 3-18: The effect of back pressure at low-speed low-load 40 Figure 3-19: The effect of back pressure at low-speed high-load 41 Figure 3-20: The effect of back pressure at high-speed low-load 41 Figure 3-21: The effect of back pressure at mid-speed high-load 42 Figure 3-22: The effect of E G R at low-speed low-load 45 Figure 3-23: The effect of E G R at low-speed high-load 45 Figure 3-24: The effect of E G R at high-speed low-load 46 Figure 3-25: The effect of E G R at mid-speed high-load 47 Figure 3-26: I M E P variation with E G R 47 Figure 3-27: Peak cylinder pressure variation with E G R 48 Figure 3-28: Peak cylinder pressure location variation with E G R 48 Figure 3-29: The effect of E G R on heat release at low-speed low-load 49 Figure 3-30: The effect of E G R on heat release at low-speed high-load 49 Figure 3-31: The effect of E G R on heat release at high-speed low-load 50 Figure 3-32: The effect of E G R on heat release at mid-speed high-load 50 Figure 4-1: Detailed Schematic of Dilution System 58 Figure 4-2: Sample T E O M Output 79 Figure 4-3: Sample Diesel flow data - high accuracy 89 Figure 4-4: Sample diesel flow data - low accuracy 89 Figure 4-5: Diesel Flow Measurements 800 R P M 25% Load 90 Figure 4-6: Diesel Flow Measurements 800 R P M 75% Load 90 v i i Figure 4-7: Diesel F low Measurements 1600 R P M 40% Load 91 Figure 4-8: Diesel Flow Measurements 1400 R P M 85% Load 91 v i i i List of Tables Table 2-1: Cummins ISX S C R E specifications 9 Table 2-2: H P D I injector specifications 12 Table 2-3: Experimental uncertainties in P M calculations 24 Table 3 -1: Summary of experiments 26 Table 3-2: Engine parameters for operating conditions 26 Table 3-3: Summary of relative humidity 30 Table 3-4: P M and gaseous baseline emissions of the S C R E 31 Table 3-5: Comparison of S C R E and six-cylinder I S X 400 32 Table 3-6: Summary of variability test parameters 33 Table 3-7: Location of variability emissions 35 Table 4-1: Detailed description of dilution tunnel components 57 Table 4-2: 800 R P M 25% load baseline emissions 59 Table 4-3: 800 R P M 25% load - B P / D P W data summaries (I) 60 Table 4-4: 800 R P M 25% load - B P / D P W data summaries (II) 61 Table 4-5: Data summaries for 800 R P M 25% load tests (I) 62 Table 4-6: Data summaries for 800 R P M 25% load tests (II) 63 Table 4-7: 800 R P M 75% load baseline emissions 64 Table 4-8: 800 R P M 75% load - B P / D P W emissions (I) 65 Table 4-9: 800 R P M 75% load - B P / D P W emissions (II) 66 Table 4-10: Data Summaries for 800 R P M 75% load tests 67 Table 4-11: 1600 R P M 40% load baseline emissions 68 Table 4-12: 1600 R P M 40% load - B P / D P W test emissions (I) 69 ix Table 4-13: 1600 R P M 40% load - B P / D P W test emissions (IT) 70 Table 4-14: Data Summaries for 1600 R P M 40% load tests 71 Table 4-15: 1400 R P M 85% load baseline emissions 72 Table 4-16: 1400 R P M 85% load - B P / D P W test emissions (I) 73 Table 4-17: 1400 R P M 85% load - B P / D P W test emissions (II) 74 Table 4-18: Data summaries for 1400 R P M 85% load tests 75 Table 4-19: Excess diesel tests with filter emission rates (I) 76 Table 4-20: Excess diesel tests with filter emission rates (II) 77 Table 4-21: Excess diesel tests with filter emission rates (III) 78 x Nomenclature A / F = Overall air-to-fuel ratio A V G = Average value (mean) B P = Back pressure (exhaust) C N G = Compressed natural gas C O = Carbon monoxide CO2 = Carbon dioxide C O V = Coefficient of variation (standard deviation/mean) D P W = Diesel (pilot) pulse width E G R = Exhaust gas recirculation G R I T = Gas relative injection timing (between pilot and natural gas injection) H P D I = High pressure direct injection I M E P = Indicated mean effective pressure G S O I = (Natural) gas start of injection N O x = Oxides of nitrogen (NO, N 0 2 , . . . ) P M = Particulate matter PS 01 = Pilot start of injection (diesel) Q = Mass flow rate of indicated species S C R E = Single cylinder research engine T E O M = Tapered element oscillating microbalance T H C = Total hydrocarbons U B C = University of British Columbia p = Density of the indicated species x i Acknowledgments I am grateful to Dr. Philip H i l l and Westport Innovations for giving me the opportunity to become involved in this project. I would like to thank Gord McTaggart-Cowan for his hard work setting up the U B C research engine. Also , Rick van Dolder for his enthusiasm and technical support, Sandeep Munshi for his patience and leadership. Financial contributions from Westport Innovations and N S E R C are also greatly appreciated. The assistance of Victor Leung and the use of the filter weighing facilities at the School of Occupational and Environmental Hygiene were crucial to this work. Finally, I would like to express gratitude to my supervisors Steven Rogak and Kendal Bushe for their commitment to this research. Without their knowledge and guidance none of this would be possible. x i i Chapter 1: Introduction The diesel engine is widely used in the power generation and transportation industries. The advantages of this engine over its spark-ignited counterpart are mainly greater efficiency and higher torque at low speeds. These benefits do not come without cost; diesel engines emit significantly higher amounts of particulate matter (PM) and oxides of nitrogen (NO x ) . One system that preserves the performance benefits of the Diesel cycle while reducing these harmful emissions is the high-pressure direct injection (HPDI) of natural gas with a diesel pilot [1]. This injection process is being developed by Westport Innovations. The H P D I system is a retrofit for a diesel engine that replaces the fuel injection system. Instead of using entirely diesel, only a small amount (~5% of fuel energy) is initially injected at high pressure into the cylinder. The pilot spray of diesel autoignites and is followed by the injection of high-pressure natural gas, which subsequently undergoes combustion and performs expansion work on the piston. The natural gas uses the diesel pilot as an ignition source. Initial results [2] have shown a significant reduction of N Q X , CO2, and P M while maintaining high thermal efficiency. 1.1 Particulate Mat te r Diesel exhaust particulate matter (PM) consists of: highly agglomerated solid carbonaceous material, ash, volatile organic and sulphur compounds [3]. Solid carbon is formed in locally fuel-rich regions inside the cylinder, but subsequently much of it is oxidized. The remainder is exhausted in the form of particle agglomerates. These 1 particles vary i n size, shape and chemica l compos i t ion . The typica l compos i t ion o f P M from a heavy-duty diesel engine is g iven in F igure 1-1. T h e H P D I system wi th natural gas is expected to have a m u c h lower sulphate fraction since the m a i n source o f sulphur is diesel fuel . F u e l and o i l contributions are l i k e l y to be different, as w e l l as the variat ion w i t h speed and load. Unburned Fuel 7% Sulphate and Ash and Other Figure 1-1: Typical composition of heavy-duty diesel engine PM from Kittlelson [3] Part ic le growth is a dynamic process [4] , in i t ia ted by the formation o f smal l nucle i i n the cy l inder immedia te ly after combus t ion has occurred. A s these particles travel out the exhaust l ine they grow as hydrocarbon molecules condense. Th i s process is dr iven by the fact that the exhaust is being c o o l e d by heat loss and m i x i n g w i t h ambient air. C l ea r ly , the measurement w i l l be affected by the p rox imi ty to the exhaust man i fo ld , w h i c h motivates the use o f a d i lu t ion system to simulate the process o f particles l eav ing the exhaust man i fo ld and being emit ted into the atmosphere. 2 1.2 Di lu t ion Systems In 1972 the U S Environmental Protection Agency (EPA) defined a full-flow constant volume sampling process required for P M measurements of heavy-duty diesel engines. This apparatus dilutes the entire exhaust coming out of the vehicle engine, and a portion of diluted exhaust is drawn through a pair of Teflon filters. The E P A defines P M as the mass collected on a filter from exhaust that has been diluted and cooled to 52°C or below [5]. The systems necessary for these E P A tests are extremely large, cumbersome, expensive and are limited to a range of engine sizes. This led to the use of mini or micro dilution systems, which are more compact but sample only a small amount of the total exhaust stream. A significant amount of work was done on their validation in the 1980s. O f significant importance, MacDonald et al. [6] looked at the effects of different dilution ratios and filter temperatures on P M measurements using a mini-dilution tunnel. This effect was within their experimental error over relatively large dilution ratio ranges, approximately a 10% reduction in P M mass for a change in dilution ratio from 10 to 30. This was also later confirmed by Lapuerta et al. [7] who reported a decrease in P M mass of 25% when changing the dilution ratio from 5 to 25. Kayes and Hochgreb [8] suggest using a dilution ration between 13-18 to obtain the maximum P M emission while minimizing variability. The other important parameter is the temperature of the diluted exhaust as it reaches the primary filter ("filter temperature")- Again, E P A test procedures require this temperature not to exceed 52°C [5]. The sensitivity of mass measurements to temperature was investigated initially by MacDonald et al. [6] and subsequently by Khalek et al. [9]. MacDonald et al. found a 35% decrease in filter mass when the filter 3 temperature was changed from 35°C to 100°C. Khalek et al. reported a similar decrease in mass measurements. Previous research at UBC/Westport by Baribeau [10] has already been performed on a six-cylinder version of the same engine used in the present study. However, the dilution tunnel was a commercial system built by Sierra Instruments, which may contribute to differences in measurements. A literature search on P M emissions from natural gas engines was performed. Information was available on spark-ignited engines with negligible P M emissions. There was no other data available on compression-ignition natural gas engine particulate matter at the time of this study. 1.3 Exhaust-Gas Recirculat ion ( E G R ) One method of reducing the N O x emissions from an internal combustion engine is to recirculate a portion of the exhaust gas into the inlet air charge. The most recent comprehensive work involving E G R on diesel engines was completed by Ladommatos et al. [11]. They determined the principal mechanism in N O x reduction was lowering the flame temperature inside the cylinder by replacing O2 with (primarily) CO2 and H2O. They clearly showed the effectiveness of E G R in reducing N O x emissions from the engine they tested. They also showed that high amounts of E G R lead to a favourable environment for the formation of unburned hydrocarbons and particulate matter. Since the overall flame temperature is being lowered by the dilution of oxygen, there is less heat available to oxidize hydrocarbon particles. This " N O x - P M tradeoff for diesel engines is well known [11] and similar behaviour is expected for the H P D I system with E G R . Previous 4 research at U B C by McTaggart-Cowan [12] has already investigated the capabilities of E G R to reduce N O x emissions. The P M emission results described here complement the earlier results on N O x for the H P D I engine with E G R . 1.4 Project goals and objectives The objectives of this work were: 1) To design and construct a mini-dilution tunnel to measure PMfrom the UBC SCRE. 2) To determine the repeatability ofPM measurements using TEOM and filter sampling methods. 3) To perform a baseline study of the PM emission rate from the SCRE using a "four corners" approach. 4) To examine the effects of EGR on PM emission rates from the SCRE. 5 Chapter 2: Experimental Apparatus 2.1 Di lu t ion System The mini-dilution tunnel in Figure 2.1 was the system used for all P M measurements described in this document. Appendix A has detailed information for each device (mass flow controller, pressure sensor, etc.) as well as dimensions for all piping used. This system was developed since the S C R E required a dilution tunnel for particulate measurements. The main design issues were filter loading, stable flow rates and accurate flow control. A n iterative process was used to optimize each of these criteria. The sample flow rate was set to approximately 20 S L P M to keep the pressure difference across the filters below 1 psid. In the experiments performed, dilution ratios between 9-15 were used, which produced an appropriate mass of particulate on the filters. If the mass deposition rate is very high, the pressure drop across the filters w i l l increase rapidly, changing the pressure within the dilution system. If the rate is very low, sampling times have to be longer. Mass flow controllers were installed to compensate for pressure fluctuations in the dilution tunnel. The sample tube was heated keeping the filter temperature between 43-50°C but never exceeding the upper limit of 52°C. The sampling period varied, depending on whether or not pre-weighed Teflon filters were used, but were typically 5 or 10 minutes in duration. 6 I Air Intake Supercharger EGR Valve Intake Surge Tank Exhaust Surge Tank Exhaust Back Pressure Valve • I X I Heated Sample Line -j Single Cylinder Cummins ISX 400 O ( A I R ! T TEOM .ft. .*—• o 13 Q 03 XI X UJ Filters i=dMFC LEGEND T - K type Thermocouple DP - Differential Pressure M F C - M ass Flow Controller TEOM PUMP Figure 2-1: Schematic of dilution system IT Oj CD CO o co co ft OJ M >> 03 d < CN O o cu £31 PUMP The dilution system inlet is connected to the main exhaust line approximately 75 cm from the manifold. This inlet is also connected to the main exhaust duct, past the back pressure valve, to maintain the sampled exhaust close to atmospheric pressure. During sampling, the pump draws exhaust into the mixing region. It is then combined with approximately 10-15 times (by mass) the amount of dilution air, controlled by a mass flow controller. The exhaust and dilution air have one meter to travel with a Reynold's number of 2000. The resulting mixture either passes through the filter holders or is drawn into the tapered element oscillating microbalance ( T E O M ) . Proper 7 mixing was confirmed by taking CO2 measurements at the T E O M and filter outlets. The diluted exhaust (sampled air) is filtered and passes through a second mass flow controller to measure the total sample flow. This air stream then passes through the pump. On the pressure side of the pump, there is a line that leads to the CO2 analyzer to measure the diluted sample CO2 concentration in order to calculate the dilution ratio. The outlet of the pump is reconnected to the exhaust duct that expels the gases to the outside of the building. 2.2 Single-Cylinder Research Engine ( S C R E ) The engine used in these tests is a modified Cummins ISX 400 series heavy-duty diesel engine. Figure 2-2 shows the engine and test cell before the emissions and dilution system were installed. The engine was modified by Cummins Inc. to operate with one cylinder. The alterations included installing dummy injectors, blocking the intake and exhaust ports, and removing the piston rings from the non-firing pistons. These pistons were also drilled through to reduce compression in the unused cylinders, with the removed mass being replaced by lead in the wrist pin to maintain the engine balance. The modifications did not include any other changes to the internal workings of the engine - the fuel rails, internal air intake manifold, cam shafts and timing, firing cylinder piston, etc. are all the same as for a production engine. The actual specifications for the S C R E are given in Table 2-1. 8 Figure 2-2: SCRE and test cell Engine Type four-stroke, inline, supercharged, aftercooled Displacement/cylinder 2.5 L Compression ratio 19:1 Bore 137 mm Stroke 169 mm Connecting rod Length 261.5 mm Rated power 300 k W @ 1800 R P M Rated torque 1966 N m @ 1200 R P M Table 2-1: Cummins ISX SCRE specifications 9 2.2.1 HPDI Injector The injector used in this work was designed by Westport Innovations. The details of its operation and design are presented in the patents by Touchette [13] and Ouellette [14]. Two internal fueling rails are used to supply the fuels (diesel and natural gas) to the injector, while the hydraulic/mechanical control of the diesel injector is replaced by electronic control for the H P D I system. A detailed schematic can not be presented since it is proprietary information. The diagram in Figure 2-3 shows a cam actuated injector, similar to the Westport H P D I injector. The H P D I injection is a two-stage process through separate fuel ports. Diesel fuel is initially injected at high pressure, followed by the injection of high-pressure natural gas. The absolute and relative timing of the two injections affect the efficiency and emissions of the engine. The injection timing is controlled via a proprietary controller with software developed by Westport Innovations. Diesel Pilot Figure 2-3: Schematic of Westport HPDI injector 10 The injection of diesel begins precisely at the time specified by the pilot start of injection (PSOI), relative to top dead center (TDC) . However, the reservoir beneath the lower intensifier is filled with diesel for the duration of the pilot pulse width (DPW) prior to the PSOI. The D P W refers to the time the reservoir beneath the lower intensifier has to f i l l with diesel. The timing specified by the PSOI corresponds to the lifting of the pilot needle and thereby injecting diesel. Setting the gas relative injection timing (GRIT) controls the delay until natural gas injection. The G R I T specifies the time lapse after the PSOI to the beginning of natural gas injection. The duration of the natural gas injection lasts for the time specified by the gas pulse width (GPW). Here the G P W corresponds to the duration the gas needle is lifted and C N G is being injected into the cylinder. A l l of these parameters are set in values of milliseconds. The sequence of events during injection is summarized in Figure 2-4. The timing used in the performed experiments is given on page 26. The specifications of the injector used in this work are given in Table 2-2. •DPW-H GRIT • T D C • PSOI • A l l timings are in milliseconds Figure 2-4: Summary of HPDI Injection Process 11 Model Number J31 Body Number 053 Number of Gas holes 8 Gas hole size 0.72mm Gas Injection Angle 18° from firedeck Number of Pilot Holes 7 Pilot Hole Size 0.12mm Pilot Injection Angle 18° from firedeck Table 2-2: HPDI injector specifications 2.2.2 Engine Operation Since the S C R E operates with only one cylinder firing the torque output can be insufficient to overcome internal friction. A 30 k W electric motor was also connected to provide additional power. This arrangement still does not enable operation over the entire I S X 400 range. Figure 2-5 is an engine map that shows the test conditions the S C R E can operate at compared to the six-cylinder version. A t high speed and load, the supercharger limits the operating time due to overheating. This limitation was the reason for selecting 1400 R P M 85 % load as the high-speed high-load condition. 12 ISX 400 Operating Range and SCRE Operating Range ISX400 «««»»SCRE __ . • • • / • f • • i • 400 600 800 1000 1200 1400 1600 1800 2000 Engine Speed (RPM) Figure 2-5: Engine map of SCRE The procedure for setting the engine at a given speed/load combination was performed as follows. Before engine operation, the supply pressure of natural gas was set at 19 MPa. After 30 minutes of warm-up, the specific injection timing was entered, followed by ensuring enough torque is being supplied by the vector drive to overcome friction. The gas pulse width (GPW) was then entered into the controller. The natural gas flow rate is constantly measured and displayed on the data acquisition system. The GPW was set to ensure the CNG flow rate is as close as possible to the target. The diesel pressure was approximately 0.5 MPa greater than the CNG pressure. The airflow rate was obtained by setting the speed of a motor attached to a Lysholm screw compressor. Once a desired operating condition was set, a period of 7-10 minutes was allowed for the engine to stabilize before sampling. McTaggart-Cowan [15] provides a detailed discussion of the SCRE operation and instrumentation. 13 2.2.3 EGR Operation For E G R operation the exhaust pressure was set approximately 10-20 kPa greater than the intake manifold pressure by closing the back pressure valve. Opening the E G R valve allowed a portion of the exhaust gas to recirculate into the intake. Obtaining the same back pressure and E G R combination proved to be challenging for the two following reasons. The back pressure would begin to increase only when the back pressure valve was approximately 80% closed, and also opening the E G R valve lowered the exhaust back pressure. A detailed discussion of E G R operation is presented in Appendix H . In most cases, intake CO2 measurements were taken before and after each E G R sampling period to confirm a consistent E G R rate. The experiments performed were based on replacement E G R only. A portion of the intake air was replaced with exhaust gas, and thus lowering the oxygen concentration in the cylinder. The E G R flow rate was calculated using the following relations: { [CQ2]lnlake-0.030 \MWexhauslgas ^ m ( 2 i ) % E G R = -«L xjQO = 1 1 2 J , m a k e 1 7 1 freshair + m e g r MW 1 V 1 " manifoldair [C02]Exhaust -0.030 Here [CO2] represents the C 0 2 concentrations, MW is the molecular weight of the intake and exhaust gases. The ambient air CO2 concentration was assumed to be 300 ppm. The actual value is slightly higher (380 ppm), however the effect on the calculated E G R rate is only slight decrease of 0.1-0.2%. Recalculating all E G R rates was not performed for this reason. 14 2.2.4 Diesel Flow Measurement The diesel mass flow rate accounts for approximately 5% of the total fuel energy. The method used for measuring the diesel flow rate was based on the "pail and scale" technique, whereby a scale measures the mass of diesel in a small reservoir and the decrease over time is recorded. A linear regression of the mass was used to calculate the diesel fuel consumption. Appendix I gives a detailed description of the calculation procedure and difficulties that arise when calculating the diesel mass flow rate. Fluctuations occur when the diesel was warming up during engine start-up or when the engine cell door was opened, which skewed the diesel mass data. Also , a period of at least 7-8 minutes is required for sufficient accuracy. If the diesel mass data had high variability for that period, additional test data was pooled. This provided data for a longer time span, but the diesel flow rate was assumed constant over this period. The uncertainty in diesel flow measurements is approximately 5-10% at 1400 and 1600 R P M . For tests performed at 800 R P M the error can be as high as 20%, but may be even higher. 15 2.3 Measurement Techniques There were two methods used for measuring P M emitted from the S C R E . They are both based on gravimetric analysis - i.e., measurement of the mass of P M deposited on a filter. In either case the following formula was used to calculate the emission rate of P M : Q PM m PM m EXHAUST ENGINE (2.2) QPM is the emission rate of P M in g/hr, given by the concentration of P M in the sampled air stream multiplied by the engine exhaust flow rate (QENGINE)- The engine exhaust flow rate is given by the sum of the natural gas, diesel and inlet air mass flows. The mass of particulate is either taken from a linear regression from the T E O M output data (see Appendix C) or the difference in Teflon filter weights before and after being exposed to diluted exhaust. The mass of exhaust being sampled, is given by: VSAMPLE Pt (2.3) DR The volumetric flow rate of diluted exhaust (VSAMPLE) is set by a mass flow controller. For measurements taken with the T E O M , this flow rate is constant at 3.0 S L P M . The dilution ratio was calculated by measuring the sample CO2 concentration and comparing it to the engine exhaust CO2 level, as explained in section 2.3.1. The density of air (p) used in the above calculation was 1.293g/L (air @ latm, 0°C) as specified in the Omega operating manual for the mass flow controllers. Since the exhaust is diluted by at least 10 times and is primarily composed of N2 (-70%), no 16 correction factor was deemed necessary since the mixture closely resembles air. The sampling time (t) was recorded with the T E O M and data acquisition computers. 2.3.1 Dilution Ratio Determination The P M emission rate was measured from diluted exhaust. In order to calculate the actual emission rate, the amount the exhaust was diluted needs to be determined. The dilution ratio (DR) is defined as: DR = Q S A M P L E D (2.4) QEXHAUST This is simply the mass flow rate of the sampled air through the f i l ters /TEOM (QSAMPLED) divided by the mass flow rate of exhaust into the dilution tunnel (QEXHAUST)-There are two methods for performing this calculation. It is possible to measure these flow rates and/or use conservation of mass to calculate the unknown quantities directly. However, the flow rate of raw exhaust coming from the engine is generally difficult to measure. This is due to the fact it is at high-temperature, contains particulates and is pulsating since it is driven by a single-cylinder engine. To obtain the exhaust flow rate one might simply subtract the dilution air flow rate from the sampled flow rate, except these two values are typically 10 times greater than the exhaust flow. Hence, this method would lead to an unacceptably high experimental error (~25%). Obtaining the dilution ratio from mass flow rates was calculated but was used for verification purposes only. 17 It is shown in Appendix D that the dilution ratio can be related by measuring the gas composition before and after dilution. The relationship in terms of wet CO2 concentrations is given by: _ (l CO2 ] EXHAUST ~~ [ CO2 ]DILUTI0N ) ^2 ^ (j CO2 ] SAMPLED ~ [ CO2 ]DILUTION ) Here, [CO2]EXHAUST is the concentration of the raw engine exhaust, [CO2]DILUTION is the bottled air which is known (500 ppm), and [CO2]SAMPLED is the diluted exhaust. The C 0 2 measurements were performed by non-dispersive infrared (NDIR) analyzers which operate on a dry basis only. The calculation needs to be corrected for water loss and this is presented in Appendix D . The use of exhaust gas analysis enables a direct comparison between the raw exhaust and diluted exhaust streams, reducing the uncertainty of the dilution ratio measurement. 2.3.2 Pre-Weighed Filters This method involves the use of pre-weighed Teflon membrane filters of 47mm diameter and 2pm mesh size to collect P M . The filters were pre-weighed using a Sartorius M 3 P scale that measures the weight with an accuracy of 0.001 mg, although actual weight measurements varied over approximately 0.010 mg. The P M weights that were measured were at least 0.2 mg, implying the mass measurements should be accurate within 5%. Filters were conditioned for at least 48 hours in the weighing room to match the humidity conditions prior to being weighed. The weighing room is a controlled environment at 20°C and 50% relative humidity. After the filters were weighed they were numbered and placed in a clear case ready for use. 18 The pre-weighed, numbered filters were then loaded into a Pall-Gelman stainless steel filter holder and inserted into the diluted exhaust air stream for a known time period. The complete sampling procedure is presented in Appendix E . Once the sampling period was over, the filters were removed and placed in the same filter cases. They were later brought to the weighing room to be conditioned again, prior to final weighing. The filters were reweighed at least 48 hours after being left in the weighing room. The difference of the initial and final mass gives the amount of P M deposited over the sampling period. Steady state tests were performed to give average emission rates. 2.3.3 TEOM The other method to obtain P M measurements involved the use of a tapered element oscillating microbalance ( T E O M ) built by Rupprecht and Patashnick, which automates the weighing procedure. Figure 2-6 is a schematic is of the T E O M . A filter cartridge is attached to the end of a mass transducer that outputs the total accumulated P M mass in real time. The mass transducer operates on a slightly different principle than most other weighing devices. The heart of the device consists of a hollow tapered element that is clamped at one end and free to vibrate at the other end. For a more detailed discussion of operation and optimization of use of this device for particulate measurements see Okrent [16]. 19 External Pump < Purge Air Inlet (10psig) Diluted Exhaust (< 7 psig) Solenoid Valve Heated Chamber. (50°C) Filter Cartridge Mass Flow Controller (3.0 SLPM) M a s s Transducer Figure 2-6: Simplified schematic of the T E O M A n exchangeable filter cartridge is placed on the tip of the free end of the tapered element. The sample stream of diluted exhaust is drawn through this filter and down the tapered element. The chamber leading to the mass transducer is held at a constant temperature of 50°C. The mass flow is held constant at 3.0 S L P M by a mass flow controller. The tapered element vibrates precisely at its natural frequency. A n electronic control sensor detects this vibration and using a positive feedback loop adds electrical energy to the system to overcome friction. A gain control circuit maintains the vibration at constant amplitude, while a precision counter measures the frequency of oscillations with 0.42 second sampling period. A s more particulate is collected on the filter, the 20 mass of the element increases, which in turn lowers the natural frequency of vibration. This change in frequency can be related to the total mass of P M collected on the filter. The tapered element is in essence a hollow cantilever beam with an associated spring constant and mass. In a spring mass system it can be shown the frequency is given by: Here f is the frequency of oscillations, K is the spring constant and M is the mass of the cantilever. In actual operation, the T E O M monitor always measures the entire mass of the system using: The output from the T E O M was loaded into a spreadsheet and a linear regression was used to calculate the average emission rate. Appendix C presents actual data obtained with the T E O M and the method used to calculate the accumulated P M mass. Measurements were taken simultaneously using the T E O M and Teflon filters to compare emission rates. When only the T E O M was used for measurements, blank filters were inserted into the filter holders. The same operating procedure was used with flows adjusted to account for the additional T E O M flow. Appendix F presents the operating procedure when the only the T E O M was used. (2.6) (2.7) 21 2.3.4 Measurement Uncertainty The error for these experiments is defined in terms of two separate effects. First, there is the uncertainty related to the calculation and measurement of the P M emission rate. The second source is the variability of the emission rate due to the engine itself. Under proper operating conditions, McTaggart-Cowan [12] showed repeatability in gaseous emissions to 5%, except C O and total hydrocarbons that were repeatable to within 10%. The calculation for the P M emission rate was given by: QpM with m PM m EXHAUST ENGINE m EXHAUST fV ^ 1 Y SAMPLE DR \pt and the D R given by: DR = {[C02] EXHAUST -[C02] 2 J DILUTION Qco2] SAMPLE -[CO,] 2 J DILUTION The uncertainty for QENGINE comes from the uncertainty of the flow meters used to obtain the sum of the intake air, C N G and diesel flow rates. A turbine flow meter was used to measure the airflow rate, which is accurate to 3%. The airflow is around 40 - 50 times the total inlet fuel flow rate. Hence, the C N G and diesel flow rates do not significantly contribute to the measurement uncertainty, but they do affect the engine repeatability. 22 The mass of P M accumulated (JTIPM) was taken from either Teflon filter weights or a regression analysis of the T E O M output. Both of these processes are assumed to have a maximum uncertainty of 5%. The mass of sampled exhaust (JUEXHAUST) has two components. The dilution ratio (DR) contributes uncertainty from the CO2 measurements. The analyzers are accurate to 1.5% of full-scale. In the experiments performed, this becomes at maximum 6% for the sampled CO2 concentration {[CO2]SAMPLE) and 4% for the engine CO2 concentration ([C02]EXHAUST)- The dilution ratio is believed to be accurate within 10% since it is not unlikely for bias to be present in both analyzers. The other parameters in the MEXHAUST equation are the sampled volume flow rate (V'SAMPLE), the density (p) and the sampling time (t). The data acquisition computer keeps track of the sampling time with high accuracy and the density of the mixture is assumed to be the same as air; both of these uncertainties are negligible. The mass flow controllers ensure sampled air (V'SAMPLE) is accurate within 3% of the set flow rate, according to the operating manual. A l l uncertainties are summarized in Table 2-3. If the error is assumed to be random and all of these values are combined, the experimental error due to measurement w i l l be at maximum 12%. The actual uncertainty was calculated based on experimental results presented in Section 3.3. 23 V A R I A B L E D E S C R I P T I O N M E T H O D O F M E A S U R E M E N T M A X E R R O R QENGINE Total engine exhaust flow rate Intake air - turbine flow meter; C N G , Diesel negligible. 3% nipM P M mass obtained from TEOM/filters Total error from balance (filters) or linear regression from T E O M data. 5% m EXHAUST mass of exhaust sampled via parameters (V, p, t, DR) below 11% ^SAMPLE volumetric flow rate at STP for sampled stream Omega mass flow controller 3% P diluted exhaust density (air) Specified by Omega operating manual <1% t sample duration Computer / Stopwatch <1% [CO2] EXHAUST exhaust CO2 concentration Beckman NDIR C 0 2 Analyzer (0-20%) 4% [CO 2] SAMPLE diluted exhaust (sampled) air California Analytical NDIR C 0 2 Analyzer (0-2%) 6% [CO2]DILUTION dilution air CO2 concentration Praxair Medical Air, certified 500 ppm < 1% Table 2-3: Experimental uncertainties in P M calculations 24 Chapter 3: Results and Discussion 3.1 Overview The results show four important features of this work. First, it was necessary to validate the calculated emission rates by taking P M measurements simultaneously using the T E O M and pre-weighed filters. The calculated emission rates from both methods were then compared. Second, the repeatability of the P M emission rate of the S C R E at various speed and load conditions was determined using a "four corners" approach. Third, it was intended to identify sources of variability of the P M emission rate. The final objective was to show the effects of E G R rates up to 20% on P M emissions. A summary of all experiments performed is given in Table 3-1. The operating conditions for these experiments are given in Table 3-2. The timing was selected based on previous experiments done by McTaggart-Cowan [12] that were optimized for N O x reduction. The same timing was used to obtain corresponding P M measurements. P M , C O , C O 2 , N O x , O2 and T H C emissions are summarized in Appendix B for all experiments. Significant variability existed in preliminary results, particularly with E G R , which motivated the experiments performed in section 3.5. 25 Test Description Method of Analysis Operating Points T E O M validation -HPDI with excess pilot fuel T E O M and Teflon filter at all operating points 800RPM/25% Load - 0, 10, 20 % EGR 800RPM/75% Load - 0, 10, 20 % EGR 1600RPM/40% Load - 0, 10, 20 % EGR Repeatability and EGR Tests -HPDI with - 5 % pilot fuel T E O M at all operating points. Filter measurements taken at (vi) for verification. 800RPM/25% Load - 0, 10, 20 % EGR 800RPM/75% Load - 0, 10, 20 % EGR 1600RPM/40% Load - 0, 10, 20 % EGR 1400RPM/85% Load - 0, 10, 20 % EGR Back pressure and diesel pulse width tests - HPDI with - 5 % pilot fuel T E O M at all operating points 800RPM/25% Load - DPW = 0.7, 1.1, 0.6, 1.0 (Oand 15% EGR); BP = 11,31,10, 39 kPa 800RPM/75% Load - DPW = 0.7, 1.1, 0.6, 1.0 (0 and 17% EGR); BP = 11, 70, 10, 59 kPa 1600RPM/40% Load - DPW = 0.7, 1.1, 0.6, 1.0 (0 and 17% EGR); BP = 12, 106, 12, 104 kPa 1400RPM/85% Load - DPW = 0.7, 1.1, 0.6, 1.0 (0 and 13% EGR); BP = 11, 152, 14, 158 kPa Table 3-1: Summary of experiments Operating CNG CNG Pilot Air PSOI DPW GRIT IMEP BP Point Flow (kg/hr) Pressure (MPa) Flow (kg/hr) Flow (kg/hr) (ms) (ms) (ms) (bar) (kPa) 800RPM 1.2 19.0 0.80 72 -2.0 0.65 1.8 5.5 10 25% load (excess pilot) 800RPM 2.9 19.0 0.60 90 -2.0 0.65 1.8 11.4 10 75% load (excess pilot) 1600RPM 3.6 19.0 0.60 215 -2.2 0.65 1.8 8.5 10 40% load (excess pilot) 800RPM 1.2 19.0 0.15 72 -2.0 0.7 1.8 5.5 10 25% load 800RPM 2.9 19.0 0.15 90 -2.0 0.7 1.8 . 11.4 10 75% load 1600RPM 3.6 19.0 0.31 215 -2.2 0.7 1.8 8.5 10 40% load 1400RPM 6.3 19.0 0.30 275 -2.7 0.7 1.8 14.8 10 85% load Table 3-2: Engine parameters for operating conditions 26 3.2 T E O M Validation The first set of experiments was performed with leaking injector seals. This caused excess diesel to be forced into the natural gas line, resulting in over-fueling the engine. The measurements taken with excess diesel being injected were used only to compare T E O M and pre-weighed filter measurements. A l l emissions were constant during each testing period. The T E O M gives an online, real time measurement of P M mass. This device requires less sampling time and is more convenient to use than weighing filters. T E O M measurements were compared with the results from pre-weighed filters taken at the same time. The results are shown in Figure 3 -1. A l l emission data for the excess diesel tests is presented in Appendix B starting on page 76. 9.0 to 8.0 <D 7.0 IT • <b 6.0 <5 DC 5.0 c o 4.0 'in in 3.0 I 2.0 S 1.0 CL 0.0 Comparison of Filter and TEOM Measurements y = 1.43x R2 = 0.94 0.0 1.0 2.0 3.0 4.0 PM Emission Rate - TEOM(g/hr) 5.0 6.0 Figure 3-1: Correlation of T E O M Data with Filters The comparison shows a significant offset between filter and T E O M measurements. This gives excellent agreement, with a R value of 0.94, but the 43% correction is relatively high for measurements that are supposed to be the same quantity. 27 This is not unexpected since Green et al. [17] showed T E O M measurements underestimated PMio measurements by 15-30% versus other gravimetric techniques. Ayers et al. [18] also found their T E O M under measured PM 2 .5 results by at least 30%. In both cases the authors reported the cause of this bias due to the volatilization of P M in the heated sampling environment of the T E O M . 3.3 Repeatability Study A preliminary repeatability study was conducted to obtain baseline measurements from the S C R E . A l l results show noticeable day to day variation but provide a reasonable estimate of the emission rate at each test point. In most cases the emission rate was repeatable within 15% on the same day. The results are shown in Figure 3-2 through Figure 3-5. The emission rates have been normalized by the total fuel flow rate to account for variations in fuel flow. A t higher load conditions (Figure 3-3 and Figure 3-5) there is higher day to day variability in P M . The error bars are calculated using the uncertainty from section 2.3.4, with an additional 10% for engine variation. A l l results at 1400 R P M 85% load have insufficient airflow. A pressure relief valve located after the supercharger was set at a value lower than the boost pressure the engine required. Hence, approximately 20% of the airflow was diverted and did not enter the intake manifold. This was the only condition where the boost pressure exceeded the pressure relief valve setting, all other operating conditions were not affected. 28 PM Emission Rate at 800RPM 25% Load 0.40 0.35 a> 0.30 a 0.25 c o m at 0.20 i S 0.15 2 a. 0.10 0.05 0.00 x Mar 6 • Mar 7 ) : :: L T I 1 1 3 Trial no. Figure 3-2: Repetability Results at low-speed low-load PM Emission Rate at 800RPM 75%Load 0.30 0.25 a) & „ 0.20 0 3 g a 0.15 1 s g 0.10 CL 0.05 0.00 x Mar 6 • Mar 7 • Apr 9 X ' 1 J i J i 3 Trial no. Figure 3-3: Repetability Results at low-speed high-load The normalized emission rate at 1400 R P M 85% load is approximately three times the emission rate at 1600 R P M 40% load. This is due to the fact that only 80% of the intended airflow was being supplied to the engine as described earlier. 2 9 0.35 0.30 £ 0.25 o S 0.20 PM Bnission Rate at 1600RPM 40% Load i§ 3 s O. 0.15 0.10 0.05 0.00 i : I 1 1 1 • Mar 7 A Mar 8 XApr8 3 4 Trial no. Figure 3-4: Repeatability Results at high-speed low-load PM Emission Rate at 1400RPM 85%Load 1.50 1.25 o § _ 1.00 5 *® 2 3 S » 0-75 0.50 0.25 I I 1 j L I —1 • Mar 7 A Mar 8 + Apr 10 3 4 Trial no. Figure 3-5: Repeatability Results at mid-speed high-load One factor that may affect the P M emission rate is the variation in the relative humidity (RH) that changes the water content of the intake air. Table 3-3 summarizes the R H for the various test days. R H was not recorded prior to March 6. Date: Mar 6 Mar 7 Mar 8 A p r 8 Apr 9 Apr 10 R H (%): 32% 33% 35% 45% 50% 55% Table 3-3: Summary of relative humidity 30 P M and all gaseous emissions are summarized in Table 3-4 with the average ( A V G ) and coefficient of variation ( C O V ) . The C O V represents a measure of experimental error since it is the standard deviation normalized by the mean. These values are considered the actual experimental error associated with P M measurements from the S C R E . Results were included from tests were included under operating conditions specified in Table 3-2, without E G R . 800 R P M 25% Load 800 R P M 75% Load 1600 R P M 40% Load 1400 R P M 85% Load A V G C O V A V G C O V A V G C O V A V G C O V Diesel Flow(kg/hr) 0.16 0.051 0.17 0.060 0.30 0.080 0.3 0.048 C N G Flow(kg/hr) 1.20 0.041 2.92 0.005 3.77 0.024 6.24 0.015 Air Flow(kg/hr) 72.6 0.010 91.6 0.017 213.2 0.012 275.9 0.007 Exhaust Flow(kg/hr) 74.0 0.010 94.7 0.017 217.3 0.012 282.5 0.007 CO (g/hr) 4.9 0.359 72.8 0.104 26.4 0.082 187.4 0.156 C 0 2 (kg/hr) 3.7 0.039 8.8 0.014 11.3 0.032 23.3 0.015 N O x (g/hr) 140.1 0.076 199.5 0.042 120.0 0.044 264.7 0.031 0 2 (kg/hr) 11.6 0.026 8.9 0.033 33.6 0.030 32.1 0.021 tHC (g/hr,Cl) 14.7 0.084 14.0 0.131 67.7 0.070 57.2 0.056 P M (g/hr) - T E O M 0.24 0.202 0.35 0.294 0.8 0.205 5.2 0.252 CO (g/kg fuel) 3.6 0.361 23.5 0.103 6.4 0.077 29.1 0.164 C 0 2 (kg/kg fuel) 2.7 0.052 2.8 0.011 2.7 0.025 3.6 0.018 N O x (g/kg fuel) 103.5 0.083 64.4 0.039 29.0 0.040 41.0 0.023 0 2 (g/kg fuel) 8.6 0.042 2.9 0.034 8.1 0.033 5.0 0.026 tHC (g/kgfuel,Cl) 10.8 0.065 4.5 0.133 16.4 0.072 8.9 0.060 P M (g/kg fuel) - T E O M 0.18 0.208 0.11 0.290 0.20 0.207 0.8 0.253 Table 3-4: P M and gaseous baseline emissions of the SCRE 3.4 Compar ison wi th Six Cyl inder I S X 400 The following data is presented with results by Baribeau [10] from the six cylinder I S X 400. The conditions are slightly different but all results have been normalized by total fuel flow. This comparison is intended to be an order of magnitude 31 analysis only. The results from both engines are presented in Table 3-5. The operating conditions are slightly different, but there is reasonable agreement with the P M emission rate at low-speed high-load ( S C R E 800 R P M 75% load / ISX 984 R P M 84%) and high-speed low-load ( S C R E 1600 R P M 40% load / I S X 1800 R P M 18%), which are the most similar conditions. The only large discrepancy is the N O x emissions from the S C R E , which are significantly higher at all points. Engine Parameters S C R E ISX 400 Speed 800 800 1600 1400 600 984 1800 1668 Load (%) 25 75 40 85 0 84 18 95 PSOI(ms) -2 -2 -2.2 -2.7 -0.55 -1 -2.1 -1.7 Diesel F low (kg/hr) 0.16 0.17 0.30 0.29 0.47 1.09 •1.82 1.88 C N G F l o w (kg/hr) 1.20 2.91 3.77 6.24 1.56 28.7 12.65 60.26 A i r F low (kg/hr) 72.6 91.6 213.2 275.9 N / A N / A N / A N / A C O (g/kg fuel) 3.6 23.5 6.4 29.1 14.4 9.0 11.3 4.0 C 0 2 (kg/kg fuel) 2.7 2.8 2.7 3.6 3.1 2.7 2.7 2.7 N O x (g/kg fuel) 103.5 64.4 29.0 41.0 44.2 21.1 19.3 8.9 O z (g/kg fuel) 8.6 2.9 8.1 5.0 30.0 3.0 13.9 3.3 t H C (g/kg fuel) 10.8 4.5 16.4 8.9 22.4 2.3 17.1 2.6 P M (g/kg fuel) 0.18 0.11 0.20 0.80 0.81 0.12 0.60 0.09 Table 3-5: Comparison of SCRE and six-cylinder ISX 400 3.5 Sources of Var iab i l i ty Tests were performed in order to account for some of the variability in the measured P M emissions. The effects of changing the diesel pulse width (with and without E G R ) and the exhaust back pressure were investigated. The tests are summarized in Table 3-6. 32 Operating Point (speed/load) DPW - no E G R BP =10kPa (ms [kg/hr]) Back Pressure DPW = 0.7ms (kPa) DPW with EGR BP = variable (ms [kg/hr]) EGR for DPW test (%) 800RPM 25% load 0.7 [0.15], 1.1 [0.22], 0.6 [0.14], 1.0 [0.18] 11,31, 10, 39 0.7 [0.15], 1.1 [0.22], 0.6 [0.14], 1.0 [0.18] 15 800RPM 75% load 0.7 [0.16], 1.1 [0.20], 0.6 [0.15], 1.0 [0.18] 11,70, 10, 59 0.7 [0.16], 1.1 [0.20], 0.6 [0.15], 1.0 [0.18] 17 1600RPM 40% load 0.7 [0.28], 1.1 [0.37], 0.6 [0.25], 1.0 [0.33] 12, 106,12, 104 0.7 [0.28], 1.1 [0.37], 0.6 [0.25],1.0 [0.33] 17 1400RPM 85% load 0.7 [0.29], 1.1 [0.34], 0.6 [0.28],1.0 [0.32] 11, 152, 14, 158 0.7 [0.29], 1.1 [0.34], 0.6 [0.28],1.0 [0.32] 13 Table 3-6: Summary of variability test parameters In order to confirm if back pressure effects were due to the dilution system, as opposed to changing engine conditions, the normalized C O emission rates have been plotted as well since both emissions are products of incomplete combustion. The correlation between P M and C O emissions is high only at 800 R P M 75% load as shown in Figure 3-7. In some cases, the correlation depends on which day the data was collected. The correlations between C O and P M along with the correlation coefficients are given in Figure 3-6 through Figure 3-9. It should be noted the C O analyzer used has a range of 0 to 1% (0-10000 ppm) and C O levels at low load were under 200 ppm. 8.0 7.0 _ 6.0 jj 5.0 j? 4.0 3 3.0 8 2.0 1.0 0.0 PM and CO correlation at 800 RPM 25% Load Correlation Coefficient = -0.18 • • • • ).00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80( PM (g/kg fuel) Figure 3-6: P M / C O correlation at low-speed low-load 33 70.0 60.0 = . 50.0 40.0 30.0 O o 20.0 10.0 0.0 0.00 PM and CO correlation at 800 RPM 75% Load Correlation Coefficient = 0.75 0.10 0.20 0.30 0.40 PM (g/kg fuel) 0.50 0.60 0.7fJ Figure 3-7: PM/CO correlation at low-speed high-load 14.0 12.0 | =• 10.0 ^ 8.0 | 6.0 8 4.0 2.0 0.0 0.00 PM and CO correlation at 1600 RPM 40% Load Correlation Coefficient = 0.12 • 4_ 0.10 0.20 0.30 0.40 PM (g/kg fuel) 0.50 0.60 0.7CJ Figure 3-8 : PM/CO correlation at high-speed low-load PM and CO correlation at 1400 RPM 85% Load Correlation Coefficient = 0.38 • • • \ 1 i 1 • 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 PM (g/kg fuel) Figure 3-9: PM/CO correlation at mid-speed high-load 34 The tests at 800 R P M 25% load were performed with excessive engine cooling causing the engine oi l to be 40°C lower than usual. The absolute values of these tests were not considered, they are only used for relative comparison. Tests performed at other conditions were not significantly affected and were included in other sections. The location of all corresponding emission data can be found in Table 3-7. The relationship between diesel flow and pulse width is presented in Appendix I. Since significant error is associated with the diesel flow rate measurement itself, the results are presented with the corresponding diesel pulse width setting. Speed/ Load Table Page No. 8 0 0 R P M / 2 5 % Table 4-3 .. 60 800 R P M / 7 5 % Table 4-8 65 1600 R P M / 4 0 % Table 4-12 69 1400 R P M / 8 5 % Table 4-16 73 Table 3-7: Location of variability emissions Data in Appendix B 3.5.1 Diesel Pulse Width Tests (no EGR) The following tests were performed by starting at a typical D P W setting (0.7), then changing to a high value (1.1), then changing down to a low value (0.6) and finally to a high value (1.0). The emission rates are plotted in the order they were measured in. A t 800 R P M 25% load, there is a lower total exhaust flow at a lower temperature than the other test points. This means there is less flow past the sample tube. Also, the CO2 emission rate is the lowest concentration compared to other operating conditions, which means the uncertainty in the dilution ratio wi l l be higher. Both of these factors 35 make it difficult to determine any significant effects at low-speed low-load. Figure 3-10 shows a slight decrease with increasing D P W , although this is may be due to fluctuations in the C O analyzer. DPW Tests at 800RPM 25% Load (BP = 11 kPa) 0.25 0.20 IV £ 0.15 0.10 s a. 0.05 0.00 DPW =1.1 i-T P P W = I n T DPW =0.7 DPW = 0.6 • P M O C O 1.6 1.4 1.2 ._. i.o 5 0.8 0.6 | 0 . 4 ° 0.2 0.0 Dl 2 3 4 Trial No. Figure 3-10: The effect of diesel pulse width at low-speed low-load Slight effects of D P W on P M and C O are found at 800 R P M high load as shown in Figure 3-11. However, the change in emission rates is within experimental error so no conclusion can be drawn. DPW Tests at 800RPM 75% Load (BP =11kPa) 0.12 0.10 3} 0.08 | o .06 D) S0.04 Q. 0.02 0.00 DPW = 1 .0 DPW =0.7 DPW = 0.6 DPW =0.7 • P M OCO 35.0 30.0 25.0 = 20.0 I 15.0 |) 10.0 8 5.0 0.0 3 Trial No. Figure 3-11: The effect of diesel pulse width at low-speed high-load The tests performed at 1600 R P M 40% load were biased due to water found in the sampling tube upstream of the T E O M . This is believed to be the cause of the 36 decaying trend in the P M emission rate shown in Figure 3-12. The emission rate at trial 5 corresponds to the mean value obtained in previous experiments. Since the C O remains constant it is likely there was little change in the P M emission rate. DPW Tests at 1600RPM 40% Load (BP =12kPa) 0.7 0.6 oj0.3 io.2 0.1 0.0 DPW =0.7 i-DPW =0.6 ^ 3 DPW = 0.7 DPW = 1 .1 ,.o i • P M OCO 0.8 0.7 0.6 „ 0.5 S Li. 0.4 ^ 0.3 S 0.2 0.1 0.0 O 2 3 Trial No. Figure 3-12: The effect of diesel pulse width at high-speed low-load Figure 3-13 shows an increase in P M and C O when the D P W was changed from 0.7 to 1.1 ms at 1400 R P M 85% load. However, the emissions remain constant afterwards. The D P W may affect both P M and C O as shown at 800 R P M high load but it is not definite since the variation is around the same magnitude as the uncertainty. 0.8 0.7 = • 0 6 a> £ 0.5 2 0.4 I 0.3 °- 0.2 0.1 0.0 DPW Tests at 1400RPM 85% Load (BP =12kPa) • D PW = 1.1 DPW = 1 .0 DPW =0.7 DPW = 0.6 • P M o C O 30 25 20 a> 3 LL 15 j? 1 0 O 2 3 4 5 Trial No. Figure 3-13: The effect of diesel pulse width at mid-speed high-load 37 3.5.2 Diesel Pulse Width Tests (with EGR) Tests were performed in the same manner as described in the previous section, except with approximately 15% E G R . Slight fluctuations in C O and P M are shown at 800 R P M 25% load in Figure 3-14, but are within experimental uncertainty. DPW Tests with 14%EGR at 800RPM 25% Load 0.12 0.10 » 0 . 0 8 LL i ? 0 . 0 6 2 S 0 . 0 4 0.02 0.00 DPW = 0.7 DPW = 0.6 £ j i i -DPW = 1. , DPW = 1.0 • P M OCO 1.6 1.4 1.0 S 0.8 0.6§ 0 .4° 0.2 0.0 2 3 4 Trial No. Figure 3-14: The effect of diesel pulse width at low-speed low-load with EGR A t higher load, increasing the D P W produces higher amounts of C O and P M . The diesel flow rate changes from 0.15 to 0.20 kg/hr, which is a difference of 30% of the pilot fuel flow rate. The C O and P M emission rates are increased by approximately the same amount. 0.35 0.30 |0 .25 %0.20 ra0.15 a 0.10 0.05 0.00 DPW Tests with 17%EGRat 800RPM 75% Load DPW =1.1 DPW = 1 .0 DPW = 0.7 DPW = 0.6 • P M OCO 70 60 50=-<D 40 £ Ol 30 "Si O 20 O 10 0 2 Trial No. 3 Figure 3-15: The effect of diesel pulse width at low-speed high-load with EGR 38 No significant change can be found at either 1600 R P M 40% load or 1400 R P M 85% load with E G R , as shown in Figure 3-16 and Figure 3-17. 0.8 0.7 __0.6 l 0 . 5 u. j?0.4 f 0 . 3 °- 0.2 0.1 0.0 DPW Tests with 17%BGR at 1600RPM 40% Load DPW = 0.7 DPW = 0.6 I 2 3 Trial No. DPW = 1 .0 • P M OCO 1.0 0.9 0.8 0.7: 0.6, 0.5 . 0.4 2 0.3 0.2 0.1 0.0 siO o Figure 3-16: The effect of diesel pulse width at high-speed low-load with EGR DPW Tests with 13%EGRat 1400RPM 85% Load 1.2 1.0 <u 0.8 0.6 0.4 0.2 0.0 DPW = 1.0 DPW =0.7 DPW = 1.1 D P W = 0 < s • P M OCO 30 25 20 » U. O) 15 10O 2 3 Trial No. Figure 3-17: The effect of diesel pulse width at mid-speed high-load with EGR 39 3.5.3 Back Pressure Tests (no EGR) The effect of back pressure was examined since a significant back pressure is required for E G R operation. It is imperative to differentiate between the effects of back pressure alone versus E G R . A t low-speed low-load there is an increase in P M and C O emissions with increasing back pressure as shown in Figure 3-18. BP Tests at 800RPM 25% Load (DPW = 0.7ms) 0.18 0.16 ^0.14 f^ O.12 m 0.10 f 0.08 S 0.06 0.04 0.02 0.00 < > BP = 1 1 T BP =10 J I I I ! i BP=38 <£ BP = 31 2. • P M o c o 3.0 2.5 2.0 aT £ 1.5 j? 1.0 O o 0.5 0.0 2 3 Trial No. Figure 3-18: The effect of back pressure at low-speed low-load A t 800 R P M 75% load and 1600 R P M 40% load the C O and P M emission rates diverge with increasing back pressure, as shown in Figure 3-19 and Figure 3-20. The normalized C O rates are reduced by approximately half when the engine is operating with a higher back pressure. These figures also clearly show an increase in P M with back pressure. A t 800 R P M 75% load it appears there may be a transition region that the back pressure must exceed (~65kPa) to affect the P M emission rate. 40 0.18 0.16 ^0.14 |^0.12 •feo.io 1,0.08 5 0.06 a. 0.04 0.02 0.00 BP Tes ts at 800RPM 75% Load (DPW = 0.7ms) i 1 B P=6 0 BP = 11 • P M o co 35.0 30.0 25.0=-20.0 £ rj) 15.01 10.o8 5.0 0.0 2 3 Trial No. Figure 3-19: The effect of back pressure at low-speed high-load BP Tes ts at 1600RPM 40% Load (DPW =0.7ms) 0.60 0.50 ® 0.40 I 0.30 CT) 5 0.20 0.10 0.00 T 5" BP J-1 06 I 1-1 I 1 1 I i B P = 1 04 B P = 1 1 B P =1 2 • P M O C O 0.9 0.8 0 .7^ 0.6 a> 0.5 £ 0-4-3, 0.3O 0.2 0.1 0.6 2 3 Trial No. Figure 3-20: The effect of back pressure at high-speed low-load Figure 3-21 shows at 1400 R P M 85% load the opposite trend in P M occurs compared to the previous two cases. Increasing back pressure tends to suppress the formation of C O and P M at this operating condition. It is possible the reversal in the P M trend is due to higher exhaust temperatures caused by increasing the exhaust pressure. Appendix B shows the exhaust temperatures for all experiments. It is possible that having the exhaust temperature higher allows more hydrocarbons to oxidize or inhibits condensation reactions from occurring. For example, at 1400 R P M 85% load the 41 temperature increased from 380°C (10 kPa) up to a value of approximately 470°C at (150 kPa). 0.9 0.8 0.7 of 0.6 •a, 0.5 10.4 2 0.3 a. 0.2 0.1 0.0 BP Tests at 1400RPM 85% Load (DPW =0.7ms) r < - T BP = 13 BP = 12 BP = 150 BP =130 I I T 0" • P M OCO 1 2 Trial No. 3 4 i T 30 35 25=. 20 15 5 o i O + 1 0 O ^5 0 Figure 3-21: The effect of back pressure at mid-speed high-load Heywood [4] states the oxidation rate of C O can be considered negligible below 600°C, which implies the engine conditions must have been changing since the C O concentration w i l l be constant after the gas passes the exhaust valve. 3.5.4 Effects on In-Cylinder Pressure The diesel pulse width or exhaust back pressure did not significantly (at least 10% change) affect the I M E P , heat release rate, peak cylinder pressure or peak cylinder pressure location. A l l high speed data is presented in Appendix J. There are small differences in the heat release curves but it is difficult to discern i f these are due to noise in the high speed data or actual changes in combustion. Increasing the back pressure caused an increase in the work required during the exhaust stroke (pumping loop). 42 3.5.5 Exclusion of Data Points (Outliers) From the previous results it was determined that the exhaust back pressure definitely affects the P M emission rate and the amount of diesel injected has more subtle effects. It was also found that moisture in the sampling apparatus can lead to an overestimate of the P M emission rate. Data was excluded from the baseline and E G R results i f it was significantly different than the expected value due to any of the following reasons: > The back pressure for non-EGR tests was outside of 8-15kPa. > The diesel pulse width was set outside of 0.6 - 0.7 ms. > The tests performed were within 30 sampling minutes since the first test on that day and the emission rate was exaggerated due to condensation in the dilution system piping. > The emission rate recorded by the T E O M was not constant within 5%. Data points that were excluded were shaded in light gray in Appendix B to show they were deemed outliers. 43 3.6 The Effect of Exhaust Gas Recircula t ion Experiments were performed to show the change in P M emissions when using exhaust gas recirculation to reduce N O x levels from the engine. The same operating points were tested as in section 3.3, with E G R rates up to approximately 22%. The emission summaries are located in Appendix B . 3.6.1 Particulate and NOx Emissions Results were compared over different sampling days to show the effect of E G R on N O x and P M emissions. The emission rates (normalized by total fuel flow) for N O x and P M are plotted in Figure 3-22 through Figure 3-25. In all cases a linear decrease in N O x was observed as previously shown by McTaggart-Cowan [12]. N O x emissions were not affected by higher back pressure, but as shown in section 3.5.3, P M emissions showed a large sensitivity to changes in back pressure. A t 800 R P M 25% load there is little effect of E G R on particulate emissions, as shown in Figure 3-22. However, a slight increase in P M is observed at 10% E G R , followed by a slight decrease at E G R levels of 20%. 44 0.40 0.35 a> 0.30 § f 0 2 5 I f 0.20 I I S 0.15 S °- 0.10 0.05 0.00 -5.0 PM and NOx Emissions at 800RPM 25% Load "I" x -•-- x -X 0.0 x PM - Mar 6 • PM - Mar 7 • NOx ft 5.0 10.0 EGR rate (%) 15.0 100 80 Rate Rate 60 UOjS fuel] O) 40 £ 2 20 20.0 25.0 Figure 3-22: The effect of EGR at low-speed low-load A t 800 R P M 75% load the P M emission rate increases with higher E G R rates as shown in Figure 3-23. This is partly due to the fact that the back pressure has increased from approximately 10 kPa to 50 kPa, which increases the particulate emission (0.13 g/kg fuel) without E G R as shown in Figure 3-19 from the previous section. Hence, it is believed the P M emission rate is not significantly increasing due to E G R itself until operating at rates greater than 15%. 0.35 0.30 0.25 6 5 0.20 a> c a) in g> E =S 0.15 W 0.10 0.05 0.00 -5.0 PM and NOx Emissions at 800RPM 75% Load X PM - Mar 6 • PM - Mar 7| • PM - Apr 9 • NOx I 0.0 5.0 10.0 EGR rate (%) 15.0 70 60 50 40 S • Si 3 in — in o> 3 0 £ | x 20 g 10 20.0 Figure 3-23: The effect of EGR at low-speed high-load 45 A t 1600 R P M 40% load and 1400 R P M 85% load an increase in P M with E G R is visible, but again a major portion is due to applying back pressure. Emission rates of 0.5 g/kg fuel were found at 1600 R P M 40% load with 105 kPa of back pressure without E G R . This implies only a slight increase even at E G R rates of 20%. 1.00 0.90 -0.80 £ 0.70 C Q Ol 0.60 -"« CO at 0.50 -ii at 0.40 -5 0.30 Q_ 0.20 0.10 0.00 --5.0 PM and NOx Emiss ions at 1600RPM 40% Load 0.0 • PM - Mar 7 A PM - Mar 8 X PM - Apr 8 • NOx < i : J L r - - . i J -L • " , -p J 35 30 2 5 | = . 20.| § 1 5 i i s >< 10Q + 5 5.0 10.0 EGR rate (%) 15.0 20.0 25. Figure 3-24: The effect of EGR at high-speed low-load A t 1400 R P M 85% load there appears to be a more pronounced increase in P M emissions with increasing E G R . There is insufficient air in the cylinder due to the pressure relief valve opening. This explains the high C O emissions were measured at this condition. The increase in P M with E G R is visible but is not excessive as shown in Figure 3-25. 46 PM Emissions at 1400RPM 85% Load 3.0 2.5 0) S. _ 2.0 1.5 1.0 0.5 0.0 O 3 .2 ^ 2 a. « • • PM + PM - Mar 7 A PM - Mar 8 - Apr 10 • NOx i 1 i P I u H s k h e 1 + + -5.0 0.0 5.0 10.0 EGR rate (%) 15.0 50 45 40 < 35 20, 3° o * " e n D) 2 0 l l S 15o z 10 5 0 ,0 Figure 3-25: The effect of EGR at mid-speed high-load 3.6.2 In-Cylinder Pressure One of the concerns when operating at higher E G R rates is reducing engine performance. Figure 3-26 through Figure 3-28 show no significant changes in I M E P , peak cylinder pressure and peak cylinder pressure location. The results were taken from the same day but similar trends exist in other trials. A summary of high-speed data is presented in Appendix J , for each sampling period. The Effect of EGR on IMEP 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 X 1 4 0 0 R P M 85% load • 8 0 0 R P M 75% load • 1600R P M 40% load • 8 0 0 R P M 25% load X i£ ' ^ 7 \ A A A -5.0 0.0 5.0 10.0 15.0 EGR Fraction (%) 20.0 25.0 30.0 Figure 3-26: IMEP variation with EGR 47 The Effect of EGR on Maximum Cylinder Pressure 160.0 £ 150.0 j» 140.0 £ 130.0 £ _120.0 "D n £ CL 110.0 31 ""100.0 I 90.0 I 80.0 § 70.0 60.0 X1400RPM 85% load • 800R P M 75% load A1600RPM 40% load • 800RPM 25% load -5.0 0.0 5.0 10.0 15.0 EGR Fraction (%) 20.0 25.0 30.0 Figure 3-27: Peak cylinder pressure variation with EGR The Effect of EGR on Maximum Pressure Location 370.0 369.0 368.0 367.0 366.0 365.0 364.0 363.0 362.0 361.0 360.0 X X _X_ X1400RPM 85% load • 800R P M 75% load A1600RPM 40% load • 800RPM 25% load -5.0 0.0 5.0 10.0 15.0 EGR Fraction (%) 20.0 25.0 30.0 Figure 3-28: Peak cylinder pressure location variation with EGR The only measurement that showed a significant change due to E G R was the rate of heat release. Increasing the amount of E G R delays the heat release within the cylinder, which results in later burning with less time to oxidize particulates. A t 800 R P M 25% load the heat release occurs later and within a shorter time interval as shown in Figure 3-29. It should be pointed out that the integrated heat release is lower for 22% E G R , but the maximum rate is higher. This may explain the decrease in P M at E G R rates of 20%. 48 Compar i son of Net Heat Re lease Rate at 800RPM 25%Load 20000 15000 <?10000 CO < 5000 -5000 EGR = 22% No EGR H J * -20 -15 -10 -5 0 5 crank angle [deg] 10 15 20 Figure 3-29: The effect of EGR on heat release at low-speed low-load A t 800 R P M 75% load a two-stage process is observed without E G R , as shown in Figure 3-30. E G R delays the heat release rate and occurs at a higher rate in a shorter time, but the effect is not as pronounced as at 25% load. Compar i son of Net Heat Release Rate at 800RPM 75% Load 20000 15000 Jg 10000 < 5000 -5000 -20 -15 -10 -5 0 5 crank angle [deg] EGR =18% No EGR V cf\ fi 10 15 20 Figure 3-30: The effect of EGR on heat release at low-speed high-load 49 A t 1600 R P M 40% load and 1400 85% load there is only a slight effect of E G R , the heat release rate is only slightly delayed as shown in Figure 3-31 and Figure 3-32. Figure 3-31: The effect of EGR on heat release at high-speed low-load Figure 3-32: The effect of EGR on heat release at mid-speed high-load 50 Chapter 4: Conclusions and Future Work 4.1 Conclusions The primary goal of this work was to design and construct a suitable mini-dilution system capable of measuring particulate emissions. This was successfully completed and it was shown the overall accuracy of P M emission rates is between 20 and 29%, depending on the operating condition. The measurement uncertainty was calculated to be at maximum 12%, implying the remainder of variability is attributed to the engine itself. The T E O M can be used to reduce sampling time and provide a real-time P M measurement. The P M emission rate from the T E O M can be corrected by multiplying values by 1.43 to correspond with those taken using pre-weighed Teflon filters. A t 800 R P M 75% load with E G R it was shown that there was a definite correlation between D P W and C O / P M emissions. These effects of the D P W are likely present, although to a much lesser extent, when operating at other conditions. Increasing the back pressure alone tends to increase P M emissions, except at 1400 R P M high load. More experiments are needed to quantify these effects. However, the H P D I system with E G R does not show a large increase in P M emissions, even at E G R rates of 15% if the back pressure effects are considered. 51 4.2 Recommendations for Future W o r k The addition of the mini-dilution tunnel was the first stage for further P M research endeavours. The most important recommendation is to determine an appropriate exhaust back pressure for all test points. The values from the turbocharger inlet (of the I S X 400) need to be measured and recorded. The back pressure needs to be specified precisely, so it can be set at a given value during operation of the S C R E . There are still numerous other parameters that can be tested with the current equipment. For example, the P M emission rate at various timings could be explored, especially at different E G R rates. The other interesting parameter to investigate is changing the duration of the diesel pulse width, at different conditions. For optimizing an E G R engine it would be desirable to know when the P M penalty appears. In section 3.6, P M emission rates increased with E G R at every condition except low-speed low-load. There is l ikely a transition region where these effects change from negligible to fairly significant. Knowing where this transition occurs would be invaluable to minimize emissions. To improve the accuracy of measurements there are several improvements that would be worthwhile. A more accurate measurement of the diesel flow rate would be valuable, particularly for lower speeds. The correlation between the T E O M data and pre-weighed filters should be verified. This may be important since the comparison tests were performed with excess diesel leaking into the engine. The correction factor may be different i f running at normal H P D I conditions. Finally, there are some more technical additions that would be worthwhile. One is the addition of a Scanning Mobil i ty Particle Sizer. There has been a lot of concern that 52 the P M emitted from the natural gas engine may be significantly higher in the ultra-fine size range. These ultra-fine particles are believed to be more hazardous to human health due to their ability to penetrate the lungs and enter the pulmonary system. Knowing the particle size distribution would be interesting from an academic standpoint but may be a genuine concern should the emission rate of ultra-fine particles be relatively high. 53 References [1] Douvil le, B . , Ouellette, P., Touchette, A . and Ursu, B . (1998) Performance and Emissions of a Two-Stroke Engine Fueled Using High-Pressure Direct Injection of Natural Gas. S A E Paper 981400. [2] Hodgins, K . B . , H i l l , P .G. , Ouellette, P. and Hung, P. (1994) Directly Injected Natural Gas Fueling of Diesel Engines. S A E paper 941692. [3] Kittelson, D . B . (1998) Engines and Nanoparticles: A Review. / . Aerosol Sci. V o l 29, N o . 5/6, 575-588. [4] Heywood, J .B. (1998) Internal Combustion Engine Fundamentals. McGraw H i l l . [5] S A E (1993) Chemical Methods for the Measurements of nonregulated diesel emissions. 1993 SAE Handbook, Vol 3, Engines, Fuels, Lubricants, Emissions and Noise, Society of Automotive Engineers, Warrendale, P A , 25-38. [6] MacDonald, J.S., Plee S.L., D ' A r c y J .B. and Schreck R . M . (1980) Experimental Measurements of the Independent Effects of Dilution Ratio and Filter Temperature on Diesel Exhaust Particulate Samples. S A E Transactions vol 89, 800185, 1045-1056. [7] Lapuerta, M . , Armas, O., Ballesteros, R. and Duran, A . (1999) Influence of M i n i -Dilution Tunnel Operating Paprameters and Ambient Conditions on Diesel Particulate Measurement and Analysis. S A E paper 1999-01-3531. [8] Kayes, D . , Hochgreb, S. (1998) Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines, S A E Paper 982601. 54 [9] Abdul-Khalek, I.S., Kittelson, D . B . and Brear, F. (1999) The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements. S A E paper 1999-01-1142. [10] Baribeau, A . M . (2000) Master's Thesis: P M Emissions from a Cummins ISX 400 Engine Operating on High-Pressure Direct Injection of Natural Gas with Diesel Pilot. University of British Columbia, Vancouver, B C . [11] Ladommatos, N . , Abdelhalim, S. and Zhao H . (2000) The Effects of Exhaust Gas Recirculation on Diesel Combustion and Emissions. International Journal of Engine Research, V o l 1, No. 1. 107-126. [12] McTaggart-Cowan, G . (2001) Master's Thesis: N O x Reduction from a Natural Gas Fuelled H P D I Engine using E G R . University of British Columbia, Vancouver, B C . [13] Touchette, A . et al. (2000) Gaseous and Liquid Fuel Injector. U S patent number 6 073 862. [14] Ouellette, P. et al. (1999) Hydraulically Actuated Gaseous or Dual Fuel Injector. U S Patent no. 5 996 558. [15] McTaggart-Cowan, G . (2001) Master's Thesis: Commissioning a Single Cylinder Research Engine for High Pressure Direct Injection of Natural Gas Testing. University of British Columbia. [16] Okrent, D . A . , (1998) Optimization of a third-generation T E O M ® monitor for measuring diesel particulate in real time. S A E Paper 980409. 55 [17] Green, D . , Fuller, G . , Barratt, B . (2001) Evaluation of T E O M 'correction factors' for assessing the E U Stage 1 limit values for PMio . Atmospheric Environment vol 35, 2589-2593. [18] Ayers, G.P. , Keywood, M . D . , Gras, J .L. (1999) T E O M vs. manual gravimetric methods for determination of PM2.5 aerosol mass concentrations. Atmospheric Environment vo l 33, 3717 - 3721. 56 Appendix A: Description of Apparatus Device Manufacturer Descript ion / M o d e l Comments/Other Thermocouple Omega Inc. K - t y p e KMQSS-125-U-6 (0-1000K) Mass Flow Omega Inc. F M A - 1 9 2 8 0 - 5 0 S L P M Controller (±1.5% full scale) Pressure Autotran Inc 6 0 1 D - 0 1 5 0-lpsid Sensor (D = differential) 0 -5VDC output Filter Holder Pall-Gelman 2220 Stainless steel 47mm filter holder Teflon Filters Pall Teflo 47mm, 2 urn mesh - RJP2047 99.99% Aerosol retention ( A S T M D2986-71) T E O M Rupprecht and Patashnick 1105 T E O M filters Rupprecht and exchangeable Pallflex T X 4 0 T E O M Patashnick filter cartridges filters Scale Sartorius G m b H Mode l no. M 3 P range = 0 - 3000mg Pump Thomas Industries Diaphragm Pump: 2737BM370 rated flow: 1 8 0 L P M A i r Supply Praxair Inc. Medical A i r 0 2 = 19.5 -23.5% C 0 2 = 500ppm C O < lOppm N O x < 2.5 ppm SO2 < 5ppm Balance N 2 and certified: H C (condensed): none H 2 0 (condensed): none Table 4-1: Detailed description of dilution tunnel components 57 ft 2.5" OD (63.5mmKJ Exhaust Surge Tank — 1500mm • 3/8" OD. (9.5mm) |75oLm L Single Cylinder Cummins ISX 400 o Variac (Heat Taps) AIR LEGEND T - K type Thermocouple DP - Differential Pressure MFC - Mass Flow Controller Exhaust BackPressure Valve 3/8" OD (9.5mm)" AI2" cross (12.7mm) 1" OD (25.4mm) 1000mm • 1/4" ODy (6.4mm)v MFC •800mm 19.0 SLPM 1/4" O D ^ (6.4mm) • 150mm 1/2" OD (12.7mm) DP Filters ft 8 o • S3 3/8" OD (9.5mm) 350mm ISOmm - 1 TEOM TEOM PUMP 3.0 SLPM MFC 18.0 SLPM PUMP \5/S" OD Rubber Hose (15.9mm) ft l-i f CN O o .3 Figure 4-1: Detailed Schematic of Dilution System 58 Appendix B: Experimental Results Note: (i) Negative n m H C indicates malfunction of the CH4 analyzer, (ii) Air to fuel ratio = Air Flow I (CNG Flow + Diesel Flow) Label: A5 A8 A10 A25 A28 Date: 6-Mar-02 6-Mar- 6-Mar- 7-Mar- 7-Mar- 7-M.ir-02 02 02 02 02 Time: 12:24:34 15:16:05 15:59:31 14:06:02 14:47:30 14:55:26 A V G cov Engine Parameters Speed(RPM) 799.4 790.8 797.5 805.0 799.7 M)0.2 798.5 0.006 Load(%) 25 25 25 25 25 25 25.0 0.000 Indicated Power (kW) 8.4 8.0 8.4 8.8 8.0 8.6 8.3 0.041 IMEP (bar) 5.1 4.8 5.1 5.2 4.8 5.2 5.0 0.036 Pmax(bar) 96.1 96.0 97.1 96.4 94.2 96.2 96.0 0.011 Pmax location (degrees) 365.9 365.5 365.7 365.8 365.9 365.9 365.7 0.000 Diesel Flow(kg/hr) 0.16 0.17 0.17 0.15 0.15 0.21 0.16 0.051 CNG Flow(kg/hr) 1.24 1.16 1.22 1.23 1.13 I.I 1 1.20 0.041 Air Flow(kg/hr) 71.8 71.9 72.7 73.4 73.3 7v4 72.6 0.010 Exhaust Flow(kg/hr) 73.2 73.2 74.1 74.8 74.6 74.7 74.0 0.010 Exhaust Back Pressure (kPa) 14.3 14.2 10.2 9.6 10.7 IO.S 11.8 0.192 EGR Fraction(%) 0.0 0.0 0.0 0.0 . 0.0 an 0.0 N/A Exhaust Emission Flows CO (g/hr) 4.54 3.36 3.17 6.51 6.98 6.74 4.9 0.359 C 0 2 (kg/hr) 3.78 3.59 3.73 3.78 3.45 3.73 3.7 0.039 NO x (g/hr) 147.8 142.4 148.9 138.9 122.4 137.8 140.1 0.076 0 2 (kg/hr) 11.2 11.6 11.6 11.6 12.1 11.8 11.6 0.026 C H 4 (g/hr) 5.97 6.75 6.51 54.50 41.90 S ! . M 23.1 1.008 nmHC (g/hr,Cl) 10.23 7.06 6.86 -40.25 -26.15 -38.98 -8.4 -2.743 tHC(g/hr,Cl) 16.20 13.82 13.37 14.25 15.74 ^1-4:7 r 14.7 0.084 PM (g/hr) - TEOM 0.27 0.23 0.31 0.19 0.20 0.15 0.24 0.202 Exhaust Emission Flows/Fuel CO (g/kg fuel) 3.24 2.46 2.41 4.92 5.11 4 .Mi 3.6 0.361 C 0 2 (kg/kg fuel) 2.69 2.63 2.83 2.86 2.52 2.M 2.7 0.052 NO x (g/kg fuel) 105.4 104.3 113.2 105.0 89.6 W.4 103.5 0.083 0 2 (g/kg fuel) 8.00 8.49 8.83 8.80 8.83 ' 8.53 8.6 0.042 C H 4 (g/kg fuel) 4.26 4.94 4.95 41.18 30.65 •38.73 17.2 1.017 nmHC (g/kgfuel,Cl) 7.30 5.17 5.21 -30.41 -19.13 -28.12 -6.4 -2.712 tHC(g/kgfuel,Cl) 11.55 10.11 10.16 10.77 11.52 10.61 10.8 0.065 PM (g/kg fuel) - TEOM 0.19 0.17 0.23 0.15 0.15 • 0.11 0.18 0.208 Table 4-2: 800 RPM 25% load baseline emissions 59 Label: E l E2 E3 E4 E5 E6 Date: 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 Time: 12:29:19 12:35:02 12:42:23 12:49:00 12:56:29 13:04:01 Engine Parameters Speed(RPM) 809.0 808.3 805.2 805.3 802.9 797.5 Load(%) 25.0 25.0 25.0 25.0 25.0 25.0 Indicated Power (kW) 8.8 8.7 8.1 8.4 8.2 8.4 IMEP (bar) 5.25 5.20 4.80 4.98 4.88 5.04 Pmax(bar) 97.11 96.90 95.30 95.72 95.34 97.12 Pmax location (degrees) 366.0 365.9 365.7 365.9 366.0 365.8 Diesel Flow(kg/hr) 0.155 0.241 0.136 0.170 0.146 0.147 CNG Flow(kg/hr) 1.23 1.21 1.20 1.19 1.17 1.16 Air Flow(kg/hr) 73.4 73.5 73.5 73.7 73.8 73.2 Exhaust Flow(kg/hr) 74.7 74.9 74.9 75.1 75.1 74.5 Exhaust Back Pressure (kPa) 11.9 11.3 11.5 11.2 11.1 31.1 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 Exhaust Emission Flows CO (g/hr) 6.1 5.5 5.6 4.8 5.3 7.0 C 0 2 (kg/hr) 3.9 4.0 3.7 3.8 3.6 3.4 NO x (g/hr) 139.7 142.0 129.1 132.7 125.2 118.3 0 2 (kg/hr) 11.5 11.5 11.8 11.7 12.0 12.1 C H 4 (g/hr) 4.7 4.5 4.8 4.4 4.7 7.6 nmHC (g/hr,Cl) 8.5 8.1 8.4 7.7 8.4 13.5 tHC(g/hr,Cl) 13.2 12.6 13.2 12.0 13.1 21.1 PM (g/hr) - TEOM [corrected] 0.818 1.093 0.658 0.626 0.499 0.539 Exhaust Emission Flows/Fuel CO (g/kg fuel) 4.42 3.77 4.17 3.54 3.99 5.35 C 0 2 (kg/kg fuel) 2.78 2.74 2.75 2.83 2.76 2.61 NO x (g/kg fuel) 100.80 97.65 96.44 97.78 95.14 90.52 0 2 (g/kg fuel) 8.32 7.90 8.82 8.63 9.09 9.27 C H 4 (g/kg fuel) 3.40 3.08 3.58 3.20 3.58 5.84 nmHC (g/kg fuel.Cl) 6.10 5.57 6.30 5.66 6.38 10.30 tHC (g/kg fuel.Cl) 9.50 8.65 9.88 8.87 9.96 16.13 PM (g/kg fuel) - TEOM [corrected] 0.59 0.75 0.49 0.46 0.38 0.41 Dilution System Parameters Exhaust Temp - manifold (C) 228.3 230.0 219.5 220.6 212.9 227.3 Exhaust Temp - sample inlet (C) 167.5 162.4 158.5 155.0 153.2 168.0 Dilution Air Temp (C) 14.6 16.2 16.2 16.3 16.6 16.4 Filter Temp (C) 43.9 42.5 41.3 40.4 39.8 39.2 Sample C 0 2 (%) 0.33 0.33 0.29 0.29 0.28 0.27 Dilution Ratio - C 0 2 11.7 12.3 13.0 13.4 13.5 13.4 Table 4-3: 800 RPM 25% load - BP/DPW data summaries (I) 60 Label: E7 E8 E9 E10 E l l E12 E13 Date: 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 10-Apr-02 Time: 13:11:28 13:18:54 13:33:57 13:41:19 13:48:22 13:55:41 14:08:14 Engine Parameters Speed(RPM) 797.0 793.4 800.1 798.9 798.6 799.7 801.4 Load(%) 25.0 25.0 25.0 25.0 25.0 25.0 25.0 Indicated Power (kW) 8.3 7.8 10.0 10.2 9.8 10.2 10.0 IMEP (bar) 4.99 4.75 5.99 6.11 5.91 6.13 6.00 Pmax(bar) 96.47 95.29 99.98 100.52 99.83 100.07 99.41 Pmax location (degrees) 365.8 365.9 366.2 366.4 366.3 366.4 366.2 Diesel Flow(kg/hr) 0.158 0.142 0.129 0.205 0.145 0.178 0.137 CNG Flow(kg/hr) 1.15 1.13 1.40 1.41 1.42 1.42 1.43 Air Flow(kg/hr) 73.7 73.1 60.4 60.0 59.9 59.8 72.8 Exhaust Flow(kg/hr) 75.0 74.4 61.9 61.6 61.4 61.4 74.4 Exhaust Back Pressure (kPa) 10.1 38.8 26.9 27.2 27.3 27.4 12.3 EGR Fraction(%) 0.0 0.0 14.9 14.2 14.9 14.3 0.0 Exhaust Emission Flows CO (g/hr) 5.4 6.9 7.5 7.0 7.4 7.2 4.9 C 0 2 (kg/hr) 3.6 3.2 4.3 4.5 4.2 4.4 4.4 NO x (g/hr) 124.4 108.2 84.1 86.9 80.5 78.9 151.2 0 2 (kg/hr) 12.1 12.3 8.2 7.9 8.1 7.9 10.8 C H 4 (g/hr) 5.2 8.0 9.5 9.3 9.9 11.0 4.0 nmHC(g/hr,Cl) 9.2 13.5 15.6 14.8 15.9 17.2 7.1 tHC (g/hr,Cl) 14.4 21.5 25.1 24.1 25.8 28.3 11.1 PM (g/hr) - TEOM [corrected] 0.484 0.610 0.631 0.625 0.600 0.612 0.633 Exhaust Emission Flows/Fuel CO (g/kg fuel) 4.15 5.40 4.90 4.35 4.76 4.47 3.11 C 0 2 (kg/kg fuel) 2.73 2.53 2.79 2.77 2.72 2.76 2.82 NO x (g/kg fuel) 95.05 84.74 54.96 53.95 51.60 49.26 96.51 0 2 (g/kg fuel) 9.22 9.66 5.35 4.91 5.19 4.94 6.91 C H 4 (g/kg fuel) 3.95 6.24 6.19 5.74 6.37 6.89 2.57 nmHC (g/kgfuel,Cl) 7.04 10.59 10.20 9.21 10.19 10.76 4.50 tHC (g/kg fuel,Cl) 10.99 16.84 16.40 14.95 16.56 17.65 7.07 PM (g/kg fuel) - TEOM [corrected] 0.37 0.48 0.41 0.39 0.38 0.38 0.40 Dilution System Parameters Exhaust Temp - manifold (C) 212.4 229.5 258.9 265.6 259.0 266.6 250.9 Exhaust Temp - sample inlet (C) 159.8 168.9 183.9 194.5 196.6 197.0 178.2 Dilution Air Temp (C) 16.5 16.6 16.8 17.5 17.5 17.4 17.2 Filter Temp (C) 38.9 38.6 38.1 38.4 38.7 39.0 39.3 Sample C 0 2 (%) 0.27 0.25 0.40 0.41 0.38 0.40 0.34 Dilution Ratio - C 0 2 13.6 14.1 12.7 13.1 13.3 13.1 13.2 Table 4-4: 800 RPM 25% load - BP/DPW data summaries (II) 61 Label: A5 A6 A7 A8 A9 Date: 6-Mar-02 6-Mar-02 6-Mar-02 6-Mar-02 6-Mar-02 Time: 12:24:34 12:47:31 15:07:01 15:16:05 15:45:07 Engine Parameters Speed(RPM) 799.4 795.5 785.3 790.8 791.7 Load(%) 25.0 25.0 25.0 25.0 25.0 Indicated Power (kW) 8.4 8.3 8.0 8.0 8.4 IMEP (bar) 5.1 5.0 4.9 4.8 5.1 Pmax(bar) 96.1 95.4 95.2 96.0 96.8 Pmax location (degrees) 365.9 365.6 365.9 365.5 365.7 Diesel Flow(kg/hr) 0.158 0.158 0.165 0.165 0.165 CNG Flow(kg/hr) 1.24 1.21 1.15 1.16 1.20 Air Flow(kg/hr) 71.8 64.1 56.4 71.9 63.1 Exhaust Flow(kg/hr) 73.2 65.5 57.7 73.2 64.5 Exhaust Back Pressure (kPa) 14.3 23.1 27.2 14.2 23.2 EGR Fraction(%) 0.0 9.2 23.8 0.0 11.3 Exhaust Emission Flows CO (g/hr) 4.54 5.56 6.11 3.36 4.48 C 0 2 (kg/hr) 3.8 3.6 3.5 3.6 3.7 NO x (g/hr) 147.77 100.79 68.61 142.41 105.32 0 2 (kg/hr) 11.21 9.72 8.19 11.59 9.50 C H 4 (g/hr) 5.97 8.96 13.13 6.75 9.19 nmHC (g/hr,Cl) 10.23 15.02 8.69 7.06 10.79 tHC (g/hr.Cl) 16.20 23.98 21.82 13.82 19.98 PM (g/hr) - TEOM [corrected] 0.27 0.35 0.14 0.23 0.29 Exhaust Emission Flows/Fuel CO (g/kg fuel) 3.24 4.07 4.64 2.54 3.28 C 0 2 (kg/kg fuel) 2.69 2.64 2.67 2.71 2.69 NO x (g/kg fuel) 105.37 73.79 52.14 107.59 77.04 0 2 (g/kg fuel) 8.00 7.11 6.22 8.76 6.95 C H 4 (g/kg fuel) 4.26 6.56 9.98 5.10 6.72 nmHC (g/kg fuel.Cl) 7.30 11.00 6.60 5.34 7.89 tHC (g/kg fuel,Cl) 11.55 17.55 16.58 10.44 14.62 PM (g/kg fuel) - TEOM [corrected] 0.19 0.25 0.11 0.17 0.21 Dilution System Parameters Exhaust Temp - manifold (C) 239.5 245.6 243.4 231.6 246.4 Exhaust Temp - sample inlet (C) 194.2 182.2 182.0 166.2 181.2 Dilution Air Temp (C) 10.3 12.7 13.4 13.0 12.7 Filter Temp (C) 37.8 37.0 43.1 41.3 37.0 Sample C 0 2 (%) 0.31 0.32 0.39 0.31 0.35 Dilution Ratio - C 0 2 12.9 12.9 11.4 12.0 12.2 Table 4-5: Data summaries for 800 RPM 25% load tests (I) 62 Label: A10 A25 A26 All A28 A29 Date: 6-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 Time: 15:59:31 14:06:02 14:23:31 14:35:00 14:47:30 14:55:26 Engine Parameters Speed(RPM) 797.5 805.0 797.1 795.2 799.7 800.2 Load(%) 25.0 25.0 25.0 25.0 25.0 25.0 Indicated Power (kW) 8.4 8.8 8.3 34.1 8.0 8.6 IMEP (bar) 5.1 5.2 4.99 20.6 4.8 5.2 Pmax(bar) 97.1 96.4 96.33 95.5 94.2 96.2 Pmax location (degrees) 365.7 365.8 366.0 390.5 365.9 365.9 Diesel Flow(kg/hr) 0.165 0.149 0.166 0.149 0.149 0.208 CNG Flow(kg/hr) 1.22 1.23 1.15 1.14 1.13 1.11 Air Flow(kg/hr) 72.7 73.4 57.1 65.5 73.3 73.4 Exhaust Flow(kg/hr) 74.1 74.8 58.4 66.8 74.6 74.7 Exhaust Back Pressure (kPa) 10.2 9.6 27.0 36.1 10.7 10.8 EGR Fraction(%) 0.0 0.0 22.1 9.8 0.0 0.0 Exhaust Emission Flows CO (g/hr) 3.17 6.51 9.3 8.91 6.98 6.74 C 0 2 (kg/hr) 3.7 3.8 3.5 3.4 3.4 3.7 NO x (g/hr) 148.94 138.91 60.2 93.07 122.44 137.76 0 2 (kg/hr) 11.62 11.65 8.3 10.40 12.07 11.82 C H 4 (g/hr) 6.51 54.50 5.4 24.80 41.90 53.69 nmHC (g/hr,Cl) 6.86 -40.25 26.2 1.14 -26.15 -38.98 tHC (g/hr,Cl) 13.37 14.25 31.6 25.94 15.74 14.71 PM (g/hr) - TEOM [corrected] 0.31 0.19 0.164 0.22 0.20 0.15 Exhaust Emission Flows/Fuel CO (g/kg fuel) 2.29 4.72 7.03 6.89 5.45 5.11 C 0 2 (kg/kg fuel) 2.69 2.74 2.68 2.60 2.69 2.83 NO x (g/kg fuel) 107.44 100.66 45.71 71.97 95.49 104.55 0 2 (g/kg fuel) 8.38 8.44 6.29 8.04 9.41 8.97 C H 4 (g/kg fuel) 4.70 39.49 4.10 19.18 32.67 40.75 nmHC (g/kg fuel.Cl) 4.95 -29.16 19.93 0.88 -20.40 -29.59 tHC (g/kg fuel.Cl) 9.64 10.33 24.03 20.06 12.28 11.16 PM (g/kg fuel) - TEOM [corrected] 0.22 0.14 0.12 0.17 0.16 0.12 Dilution System Parameters Exhaust Temp - manifold (C) 236.7 233.3 230.7 239.5 219.0 225.0 Exhaust Temp - sample inlet (C) 163.2 193.1 181.0 182.5 165.9 158.8 Dilution Air Temp (C) 13.1 12.4 13.7 14.2 14.6 14.2 Filter Temp (C) 37.1 38.5 36.8 36.8 37.0 36.9 Sample C 0 2 (%) 0.31 0.33 0.57 0.33 0.30 0.31 Dilution Ratio - C 0 2 12.2 11.7 7.5 11.6 11.7 12.2 Table 4-6: Data summaries for 800 RPM 25% load tests (II) 63 Al A4 A20 A24 C3 C13 A23 Date: O-M.ir- 6-Mar- 7-Mar- 7-Mar- 9-Apr- 9-Apr- 7-Mar-D : 02 02 02 02 02 o: Time: 11:18:17 12:10:02 12:53:49 13:51:00 10:23:5 1 12:02:1 8 13:42:00 AVG COV Engine Parameters Speed(RPM) ,'802.5 801.5 810.5 810.1 805.9 805.4 808.1 ' 806.7 0.005 Load(%) , 75.0 ' 75.0 75.0 75.0 75.0 75.0 ' 75.0 75.0 0.000 Indicated Power (kW) fe'24?l#;- 19.0 19.0 19.2 19.1 18.9 ,'19.1 19.1 0.006 IMEP (bar) 11.4 11.3 11.4 11.4 11.3 &11.4 11.4 0.006 Pmax(bar) 130.8 129.9 131.1 129.6 129.7 1 5(1 S 130.2 0.005 Pmax location (degrees) 371.5- 368.4 368.7 368.5 368.5 368.5 f-368.5 368.5 0.000 Diesel Flow(kg/hr) :*o.i7; 0.17 0.18 0.18 0.16 0.16 O.IS 0.17 0.060 CNG Flow(kg/hr) -'••2'.94 2.91 2.89 2.92 2.92 2.93 2.90 2.9 0.005 Air Flow(kg/hr) 91.3 91.0 92.1 93.4 89.2 92.3 •"'92.8 91.6 0.017 Exhaust Flow(kg/hr) 91,1 94.1 95.2 96.6 92.3 95.3 95.') 94.7 0.017 Exhaust Back Pressure (kPa) 10.9 11.5 11.3 12.7 10.4 13.1 48.2 11.8 0.092 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A Exhaust Emission Flows CO (g/hr) S2.9 77.4 70.2 76.7 67.0 62.3 40.28 72.8 0.104 C 0 2 (kg/hr) 8.83 8.75 8.84 8.91 8.57 8.75 S.90 8.8 0.014 NO x (g/hr) 208.06 203.89 205.82 200.72 191.13 187.24 I9V2I 199.5 0.042 0 2 (kg/hr) V-.8.-59- , 8.65 9.00 9.16 8.88 9.37 9.09 8.9 0.033 C H 4 (g/hr) ^5r78 5.90 92.95 88.25 3.80 4.32 ^86.55". 33.5 1.321 nmHC (g/hr.Cl) ii9>3it'3 10.83 -81.46 -73.81 9.35 8.71 :£,7.0?42-' -19.5 -2.312 tHC (g/hr,Cl) is i : 16.73 11.49 14.44 13.15 13.03 16.13 14.0 0.131 PM (g/hr) - TEOM 0 70 0.46 0.47 0.30 0.26 0.27 0.34 0.35 0.294 Exhaust Emission Flows/Fuel CO (g/kg fuel) '26.62?'< 25.08 22.49 24.86 21.84 20.11 12.93 23.5 0.103 C 0 2 (kg/kg fuel) ' 2.83 '•' - 2.84 2.83 2.89 2.79 2.82 2.86 2.8 0.011 NO x (g/kg fuel) 66.77 66.08 65.88 65.04 62.26 60.41 03.65 64.4 0.039 0 2 (g/kg fuel) 2 "0 2.80 2.88 2.97 2.89 3.02 2.92 2.9 0.034 C H 4 (g/kg fuel) '•'1.86 1.91 29.75 28.60 1.24 1.39 2"9 10.8 1.320 nmHC (g/kg fuel.Cl) <.()<) 3.51 -26.07 -23.92 3.05 2.81 -22.61 -6.3 -2.316 tHC (g/kg fuel.Cl) 4.S5 5.42 3.68 4.68 4.28 4.20 5.18 4.5 0.133 PM (g/kg fuel) - TEOM 0.21 0.15 0.15 0.10 0.08 0.09 o.l 1 0.11 0.290 Table 4-7: 800 RPM 75% load baseline emissions 64 Label: C l C2 C3 C4 C5 C6 C7 Date: 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 Time: 10:23:51 10:34:31 10:42:28 10:49:30 10:55:53 11:03:18 11:10:07 Engine Parameters Speed(RPM) 805.9 805.1 804.5 804.9 804.7 800.8 806.5 Load(%) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 Indicated Power (kW) 19.1 19.2 18.9 19.2 19.1 19.1 19.1 IMEP (bar) 11.4 11.4 11.3 11.4 11.4 11.4 11.4 Pmax(bar) 129.6 129.9 129.0 129.7 129.4 130.6 129.6 Pmax location (degrees) 368.5 368.5 368.5 368.3 368.5 368.5 368.5 Diesel Flow(kg/hr) 0.164 0.176 0.150 0.157 0.163 0.158 0.176 CNG Flow(kg/hr) 2.92 2.92 2.93 2.91 2.93 2.91 2.93 Air Flow(kg/hr) 89.2 89.5 89.4 89.5 89.4 87.9 89.4 Exhaust Flow(kg/hr) 92.3 92.5 92.5 92.6 92.5 91.0 92.5 Exhaust Back Pressure (kPa) 10.4 10.7 10.7 10.8 10.8 69.9 10.1 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Exhaust Emission Flows CO (g/hr) 67.04 74.66 63.98 80.80 76.43 33.74 79.23 C 0 2 (kg/hr) 8.57 8.62 8.53 8.62 8.62 8.46 8.65 NOx(g/hr) . 191.13 190.64 191.31 188.29 187.34 185.35 188.47 0 2 (kg/hr) 8.88 8.89 8.99 8.92 8.87 8.81 8.84 C H 4 (g/hr) 3.80 3.99 3.87 3.95 3.98 6.06 3.91 nmHC (g/hr,Cl) 9.35 9.91 9.45 9.68 9.00 11.88 8.46 tHC (g/hr,Cl) 13.15 13.90 13.32 13.63 12.98 17.94 12.37 PM (g/hr) - TEOM [corrected] 0.26 0.28 0.24 0.23 0.22 0.40 0.19 Exhaust Emission Flows/Fuel CO (g/kg fuel) 21.76 24.15 20.75 26.34 24.71 11.01 25.47 C 0 2 (kg/kg fuel) 2.78 2.79 2.77 2.81 2.79 2.76 2.78 NO x (g/kg fuel) 62.02 61.65 62.06 61.38 60.57 60.47 60.58 0 2 (g/kg fuel) 2.88 2.88 2.92 2.91 2.87 2.87 2.84 C H 4 (g/kg fuel) 1.23 1.29 1.26 1.29 1.29 1.98 1.26 nmHC (g/kg fuel.Cl) 3.03 3.21 3.06 3.15 2.91 3.88 2.72 tHC (g/kg fuel.Cl) 4.27 4.50 4.32 4.44 4.20 5.85 3.98 PM (g/kg fuel) - TEOM [corrected] 0.08 0.09 0.08 0.07 0.07 0.13 0.06 Dilution System Parameters Exhaust Temp - manifold (C) 372.7 375.2 371.2 374.5 374.4 420.2 376.2 Exhaust Temp - sample inlet (C) 181.8 226.8 236.2 238.9 241.0 304.3 278.2 Dilution Air Temp (C) 21.5 20.6 19.2 17.5 16.0 15.1 13.6 Filter Temp (C) 46.0 44.3 42.1 40.6 39.3 38.0 37.5 Sample C 0 2 (%) 0.51 0.47 0.43 0.49 0.47 0.30 0.52 Dilution Ratio - C 0 2 12.9 14.1 15.3 13.5 14.0 23.6 12.8 Table 4-8: 800 RPM 75% load - BP/DPW emissions (I) 65 Label: C8 C9 C10 C l l C12 C13 Date: 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 9-Apr-02 Time: 11:18:58 11:33:09 11:39:35 11:46:33 11:53:43 12:02:18 Engine Parameters Speed (RPM) 804.2 802.1 802.2 800.8 800.8 805.4 Load(%) 75.0 75.0 75.0 75.0 75.0 75.0 Indicated Power (kW) 19.1 18.8 18.7 18.6 18.8 18.9 IMEP (bar) 11.4 11.3 11.2 11.1 11.2 11.3 Pmax(bar) 130.0 128.4 127.8 128.7 128.4 129.7 Pmax location (degrees) 368.6 368.5 368.5 368.4 368.4 368.5 Diesel Flow(kg/hr) 0.170 0.181 0.210 0.172 0.189 0.157 CNG Flow(kg/hr) 2.92 2.91 2.89 2.92 2.91 2.93 Air Flow(kg/hr) 88.3 73.6 73.4 73.5 73.6 92.3 Exhaust Flow(kg/hr) 91.4 76.6 76.5 76.6 76.7 95.3 Exhaust Back Pressure (kPa) 58.5 72.0 72.7 72.5 72.6 13.1 EGR Fraction(%) 0.0 16.9 16.7 16.9 16.8 0.0 Exhaust Emission Flows CO (g/hr) 38.45 116.12 154.91 113.94 127.07 62.35 C 0 2 (kg/hr) 8.56 8.29 8.38 8.26 8.32 8.75 NO x (g/hr) 186.30 59.01 54.75 55.40 56.79 187.24 0 2 (kg/hr) 8.78 5.63 5.47 5.64 5.59 9.37 C H 4 (g/hr) 5.40 9.76 10.22 9.95 9.77 4.32 nmHC (g/hr,Cl) 10.42 15.77 17.03 16.47 16.00 8.71 tHC (g/hr,Cl) 15.82 25.53 27.25 26.42 25.77 13.03 PM (g/hr) - TEOM [corrected] 0.21 0.53 0.84 0.56 0.68 0.27 Exhaust Emission Flows/Fuel CO (g/kg fuel) 12.42 37.62 49.92 36.90 41.04 20.21 C 0 2 (kg/kg fuel) 2.77 2.68 2.70 2.68 2.69 2.83 NO x (g/kg fuel) 60.20 19.12 17.64 17.94 18.34 60.69 0 2 (g/kg fuel) 2.84 1.82 1.76 1.83 1.80 3.04 C H 4 (g/kg fuel) 1.75 3.16 3.29 3.22 3.16 1.40 nmHC (g/kg fuel.Cl) 3.37 5.11 5.49 5.33 5.17 2.82 tHC (g/kg fuel.Cl) 5.11 8.27 8.78 8.56 8.32 4.22 PM (g/kg fuel) - TEOM [corrected] 0.07 0.17 0.27 0.18 0.22 0.09 Dilution System Parameters Exhaust Temp - manifold (C) 414.2 423.0 427.8 423.0 425.7 370.5 Exhaust Temp - sample inlet (C) 302.8 328.7 334.3 334.4 334.2 281.4 Dilution Air Temp (C) 12.7 11.2 12.1 12.5 12.5 11.9 Filter Temp (C) 37.3 37.2 38.1 39.0 40.1 40.6 Sample C 0 2 (%) 0.51 0.62 0.62 0.62 0.63 0.55 Dilution Ratio - C 0 2 13.1 12.2 12.2 12.0 11.9 11.7 Table 4-9: 800 RPM 75% load - BP/DPW emissions (II) 6 6 Label: Al A2 A3 A4 A20 A21 A22 A23 A24 Date: 6-Mar-02 6-Mar-02 6-Mar-02 6-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 Time: 11:18:17 11:36:30 11:52:09 12:10:02 12:53:49 13:16:59 13:30:30 13:42:00 13:51:00 Engine Parameters Speed(RPM) 802.5 798.7 798.8 801.5 810.5 806.6 806.4 808.1 810.1 Load(%) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 Indicated Power (kW) 24.1 18.5 18.8 19.0 19.0 18.7 18.9 19.1 19.2 IMEP (bar) 14.4 11.1 11.3 11.4 11.3 11.1 11.3 11.4 11.4 Pmax(bar) 131.7 127.2 128.3 130.8 129.9 128.8 131.1 130.8 131.1 Pmax location (degrees) 371.5 368.4 368.4 368.4 368.7 368.5 368.4 368.5 368.5 Diesel Flow(kg/hr) 0.17 0.17 0.17 0.17 0.21 0.21 0.21 0.21 0.21 CNG Flow(kg/hr) 2.94 2.91 2.95 2.91 2.89 2.88 2.90 2.90 2.92 Air Flow(kg/hr) 91.3 74.0 80.3 91.0 92.1 82.0 76.7 92.8 93.4 Exhaust Flow(kg/hr) 94.4 77.1 83.4 94.1 95.2 85.1 79.8 95.9 96.6 Exhaust Back Pressure (kPa) 10.9 53.6 51.5 11.5 11.3 77.6 66.9 48.2 12.7 EGR Fraction(%) 0.0 16.5 8.8 0.0 0.0 8.7 17.5 0.0 0.0 Exhaust Emission Flows CO (g/hr) 82.94 187.10 92.44 77.38 70.25 62.48 112.70 40.28 76.71 C 0 2 (kg/hr) 8.83 8.59 8.59 8.75 8.84 8.57 8.60 8.90 8.91 NO x (g/hr) 208.06 59.97 117.49 203.89 205.82 118.10 59.57 198.21 200.72 0 2 (kg/hr) 8.59 4.80 6.36 8.65 9.00 7.01 5.67 9.09 9.16 C H 4 (g/hr) 5.78 10.70 8.62 5.90 92.95 31.84 -10.25 86.55 88.25 nmHC (g/hr,Cl) 9.34 16.66 14.29 10.83 -81.46 -7.91 37.50 -70.42 -73.81 tHC (g/hr,Cl) 15.12 27.36 22.91 16.73 11.49 23.93 27.25 16.13 14.44 PM (g/hr) - TEOM [corrected] 0.76 1.97 1.34 0.46 0.47 0.40 0.74 0.34 0.30 Exhaust Emission Flows/Fuel CO (g/kg fuel) 26.62 60.64 29.59 25.07 22.65 20.19 36.19 12.93 24.50 C 0 2 (kg/kg fuel) 2.83 2.78 2.75 2.84 2.85 2.77 2.76 2.86 2.85 NO x (g/kg fuel) 66.77 19.44 37.61 66.07 66.37 38.17 19.13 63.64 64.12 0 2 (g/kg fuel) 2.76 1.55 2.04 2.80 2.90 2.27 1.82 2.92 2.93 C H 4 (g/kg fuel) 1.86 3.47 2.76 1.91 29.97 10.29 -3.29 27.79 28.19 nmHC (g/kgfuel,Cl) 3.00 5.40 4.57 3.51 -26.27 -2.56 12.04 -22.61 -23.58 tHC (g/kg fuel,Cl) 4.85 8.87 7.33 5.42 3.71 7.73 8.75 5.18 4.61 PM (g/kg fuel) - TEOM [corrected] 0.24 0.64 0.43 0.15 0.15 0.13 0.24 0.11 0.10 Dilution System Parameters Exhaust Temp -manifold (C) 388.7 431.1 431.0 388.3 381.7 440.4 417.5 411.0 384.2 Exhaust Temp - sample inlet (C) 266.8 328.5 328.9 270.3 223.5 345.3 333.5 322.0 281.9 Dilution Air Temp (C) 11.8 9.3 9.4 9.9 11.7 9.8 10.3 10.5 11.1 Filter Temp (C) 37.5 35.8 36.2 37.7 40.5 36.9 36.4 37.0 38.2 Sample C 0 2 (%) 0.57 0.64 0.58 0.53 0.46 0.53 0.57 0.50 0.57 Dilution Ratio - C 0 2 11.4 12.1 12.4 12.5 14.6 13.3 13.3 13.3 11.4 Table 4-10: Data Summaries for 800 RPM 75% load tests 67 Label: A l l A14 A127 A133 B5 B7 :,A135 Date: 7-Mar-02 7-Mar-02 8-Mar-02 8-Mar-02 8-Apr-02 8-Apr-02 s-\l.ir-02 Time: 10:17:27 11:03:01 14:16:44 15:14:31 14:03:47 14:23:24 15:27:46 AVG COV Engine Parameters Speed(RPM) 1613.7 1610.3 1611.0 1599.7 1611.8 1613.5 1605.6 1610.0 0.003 Load(%) 40.0 40.0 40.0 40.0 40.0 40.0 ^40.0 40.0 0.000 Indicated Power (kW) 28.2 28.4 28.7 28.4 27.4 27.2 28.7 28.1 0.021 IMEP (bar) 8.4 8.5 8.6 8.5 8.17 8.10 8.59 8.37 0.023 Pmax(bar) 106.6 105.7 109.8 108.6 106.48 106.26 108.77 107.2 0.015 Pmax location (degrees) 368.3 368.1 368.4 368.7 367.9 367.6 ';-3'67-.l 368.2 0.001 Diesel Flow(kg/hr) 0.32 0.32 0.26 0.32 0.30 0.31 0 . 4 6 0.30 0.080 CNG Flow(kg/hr) 3.83 3.84 3.84 3.82 3.67 3.64 '"3.77 3.8 0.024 Air Flow(kg/hr) 212.1 210.0 217.5 214.9 212.4 212.4 215.5 213.2 0.012 Exhaust Flow(kg/hr) 216.3 214.2 221.6 219.1 216.4 216.4 0219.5 217.3 0.012 Exhaust Back Pressure (kPa) 11.1 11.3 10.9 11.7 11.8 11.8 1 1 0 11.4 0.035 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 0 . 0 0.0 N/A Exhaust Emission Flows •ii-CO (g/hr) 26.98 26.52 25.40 30.33 24.8 24.4 31.7 26.4 0.082 C 0 2 (kg/hr) 11.32 11.72 11.43 11.60 10.9 10.9 f ; 1-2.0 11.3 0.032 NO x (g/hr) 129.20 123.00 118.78 117.29 115.7 115.9 11') 120.0 0.044 0 2 (kg/hr) 32.83 32.01 34.79 34.26 33.8 33.9 7;'1;25.4 33.6 0.030 CH4(g/hr) 18.34 -56.02 29.98 30.34 20.2 19.6 34.1 10.4 3.169 nmHC(g/hr,Cl) 47.07 116.91 40.17 44.56 48.8 46.4 30.0 57.3 0.512 tHC (g/hr,Cl) 65.41 60.89 70.15 74.90 68.9 66.0 '45.5 67.7 0.070 PM (g/hr) - TEOM 0.82 0.82 1.11 0.57 0.891 0.876 w 76.1 0.8 0.205 Exhaust Emission Flows/Fuel CO (g/kg fuel) 6.49 6.36 6.13 7.29 6.06 5.93 ^7.75 6.4 0.077 C 0 2 (kg/kg fuel) 2.72 2.81 2.76 2.79 2.65 2.65 1»1 2.7 0.025 NO x (g/kg fuel) 31.09 29.49 28.66 28.20 28.25 28.17 2 91 29.0 0.040 0 2 (g/kg fuel) 7.90 7.68 8.40 8.24 8.26 8.23 130.61 8.1 0.033 C H 4 (g/kg fuel) 4.41 -13.43 7.24 7.30 4.93 4.77 #8)32 2.5 3.127 nmHC (g/kg fuel.Cl) 11.33 28.04 9.69 10.71 11.91 11.28 ":'7:48 13.8 0.506 tHC (g/kg fuel.Cl) 15.74 14.60 16.93 18.01 16.83 16.04 11.10 16.4 0.072 PM (g/kg fuel) - TEOM 0.20 0.20 0.27 0.14 0.22 0.21 0.20 0.207 Table 4-11: 1600 RPM 40% load baseline emissions 68 Label: Bl B2 B3 B4 B5 B6 Date: 4/8/02 4/8/02 4/8/02 4/8/02 4/8/02 4/8/02 Time: 13:27:23 13:31:39 13:41:56 13:53:09 14:03:47 14:15:04 Engine Parameters Speed(RPM) 1608.6 1618.1 1620.0 1614.8 1611.8 1562.1 Load(%) 40.0 40.0 40.0 40.0 40.0 Indicated Power (kW) 28.1 27.6 27.6 27.7 27.4 34.8 IMEP (bar) 8.39 8.18 8.18 8.22 8.17 10.68 Pmax(bar) 107.19 106.62 106.62 107.10 106.48 110.77 Pmax location (degrees) 368.0 368.0 368.0 367.9 367.9 370.1 Diesel Flow(kg/hr) 0.27 0.32 0.25 0.36 0.30 0.28 CNG Flow(kg/hr) 3.67 3.67 3.65 3.64 3.67 3.57 Air Flow(kg/hr) 213.1 212.7 212.8 212.5 212.4 210.6 Exhaust Flow(kg/hr) 217.0 216.7 216.7 216.5 216.4 214.4 Exhaust Back Pressure (kPa) 11.9 11.7 11.8 11.8 11.8 106.3 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 Exhaust Emission Flows CO (g/hr) 25.7 26.5 26.3 24.8 24.8 20.3 C 0 2 (kg/hr) 10.8 10.9 10.7 11.0 10.9 10.7 NOx(g/hr) 114.8 115.6 112.0 118.0 115.7 125.8 0 2 (kg/hr) 33.9 33.8 34.1 33.7 33.8 33.7 C H 4 (g/hr) 21.3 21.5 21.3 20.1 20.2 13.1 nmHC(g/hr,Cl) 47.1 48.6 50.8 49.0 48.8 36.4 tHC (g/hr,Cl) 68.3 70.0 72.1 69.1 68.9 49.5 PM (g/hr) - TEOM [corrected] 2.161 1.510 1.093 1.032 0.891 1.800 Exhaust Emission Flows/Fuel CO (g/kg fuel) 6.53 6.66 6.76 6.19 6.26 5.27 C 0 2 (kg/kg fuel) 2.74 2.73 2.74 2.76 2.74 2.78 NO x (g/kg fuel) 29.15 29.01 28.72 29.51 29.17 32.69 0 2 (g/kg fuel) 8.62 8.49 8.73 8.42 8.54 8.75 C H 4 (g/kg fuel) 5.39 5.39 5.46 5.03 5.09 3.42 nmHC (g/kg fuel.Cl) 11.95 12.19 13.03 12.24 12.30 9.45 tHC (g/kg fuel.Cl) 17.34 17.58 18.49 17.27 17.39 12.87 PM (g/kg fuel) - TEOM [corrected] 0.55 0.38 0.28 0.26 0.22 0.47 Dilution System Parameters Exhaust Temp - manifold (C) 275.0 277.5 273.6 277.6 274.1 315.4 Exhaust Temp - sample inlet (C) 178.5 194.8 200.4 201.2 201.9 260.4 Dilution Air Temp (C) 15.5 16.2 14.9 12.2 11.2 9.0 Filter Temp (C) 42.2 40.8 39.7 39.2 39.1 38.5 Sample C 0 2 (%) 0.43 0.31 0.28 0.32 0.31 0.29 Dilution Ratio - C 0 2 8.5 12.3 13.4 12.0 12.2 13.3 Table 4-12: 1600 RPM 40% load - BP/DPW test emissions (I) 69 Label: B7 B8 B9 B10 B l l B12 B13 Date: 4/8/02 4/8/02 4/8/02 4/8/02 4/8/02 4/8/02 4/8/02 Time: 14:23:24 14:32:56 15:06:44 15:17:18 15:25:42 15:34:43 15:51:09 Engine Parameters Speed(RPM) 1613.5 1578.9 1573.5 1595.3 1597.2 1595.9 1606.8 Load(%) 40.0 40.0 40.0 40.0 40.0 40.0 40.0 Indicated Power (kW) 27.2 27.1 26.6 27.5 27.6 27.6 29.5 IMEP (bar) 8.10 8.23 8.11 8.26 8.29 8.29 8.80 Pmax(bar) 106.26 109.92 107.34 108.33 106.49 106.75 95.64 Pmax location (degrees) 367.6 367.8 369.4 368.1 369.1 368.8 370.0 Diesel Flow(kg/hr) 0.31 0.27 0.27 0.38 0.32 0.36 0.30 CNG Flow(kg/hr) 3.64 3.63 3.58 3.64 3.70 3.65 3.61 Air Flow(kg/hr) 212.4 210.9 166.7 166.3 166.2 166.2 185.3 Exhaust Flow(kg/hr) 216.4 214.8 170.5 170.4 170.3 170.2 189.2 Exhaust Back Pressure (kPa) 11.8 103.9 131.7 132.7 133.1 133.1 11.0 EGR Fraction(%) 0.0 0.0 17.7 16.7 16.9 16.6 0.0 Exhaust Emission Flows CO (g/hr) 24.4 20.2 29.3 25.6 27.8 25.7 22.1 C 0 2 (kg/hr) 10.9 10.9 10.4 11.0 10.9 11.0 11.0 NO x (g/hr) 115.9 126.3 54.0 53.3 51.2 52.1 119.4 0 2 (kg/hr) 33.9 33.5 24.3 23.6 23.7 23.6 28.0 C H 4 (g/hr) 19.6 13.2 37.7 36.5 38.6 37.1 14.4 nmHC (g/hr,Cl) 46.4 37.6 73.6 70.7 75.4 71.9 37.7 tHC(g/hr,Cl) 66.0 50.9 111.4 107.2 114.0 109.1 52.1 PM (g/hr) - TEOM [corrected] 0.876 1.524 2.163 2.385 2.022 1.970 0.852 Exhaust Emission Flows/Fuel CO (g/kg fuel) 6.18 5.20 7.62 6.37 6.91 6.40 5.63 C 0 2 (kg/kg fuel) 2.75 2.81 2.70 2.74 2.70 2.74 2.80 NO x (g/kg fuel) 29.33 32.45 14.04 13.27 12.71 13.00 30.50 0 2 (g/kg fuel) 8.57 8.62 6.33 5.89 5.89 5.90 7.14 C H 4 (g/kg fuel) 4.96 3.40 9.82 9.08 9.58 9.27 3.68 nmHC (g/kgfuel,Cl) 11.74 9.66 19.16 17.60 18.74 17.94 9.62 tHC (g/kg fueLCl) 16.70 13.07 28.98 26.67 28.32 27.21 13.31 PM (g/kg fuel) - TEOM [corrected] 0.22 0.39 0.56 0.59 0.50 0.49 0.22 Dilution System Parameters Exhaust Temp - manifold (C) 273.4 320.0 331.1 342.4 341.2 341.4 305.3 Exhaust Temp - sample inlet (C) 232.0 267.1 283.5 291.6 293.5 293.7 240.4 Dilution Air Temp (C) 10.4 8.2 4.2 4.9 4.9 4.4 5.2 Filter Temp (C) 38.9 38.8 35.8 36.9 37.6 38.2 39.3 Sample C 0 2 (%) 0.31 0.30 0.35 0.36 0.36 0.36 0.34 Dilution Ratio - C 0 2 12.1 12.9 13.2 13.1 13.3 13.2 12.7 Table 4-13:1600 RPM 40% load - BP/DPW test emissions (II) 70 Label: A l l A12 A13 A14 A127 A129 A131 A133 Date: 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 Time: 10:17:27 10:33:02 10:47:06 11:03:01 14:16:44 14:33:59 14:56:22 15:14:31 Engine Parameters Speed(RPM) 1613.7 1598.6 1602.6 1610.3 1611.0 1599.4 1600.8 1599.7 Load(%) 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 Indicated Power (kW) 28.2 28.4 28.1 28.4 28.7 28.2 27.7 28.4 IMEP (bar) 8.4 8.5 8.4 8.5 8.6 8.5 8.3 8.5 Pmax(bar) 106.6 107.4 105.6 105.7 109.8 111.0 105.9 108.6 Pmax location (degrees) 368.3 369.2 369.5 368.1 368.4 368.7 367.8 368.7 Diesel Flow(kg/hr) 0.32 0.32 0.32 0.32 0.26 0.31 0.31 0.32 CNG Flow(kg/hr) 3.83 3.85 3.82 3.84 3.84 3.80 3.79 3.82 Air Flow(kg/hr) 212.1 178.8 157.4 210.0 217.5 189.3 157.9 214.9 Exhaust Flow(kg/hr) 216.3 182.9 161.5 214.2 221.6 193.4 162.0 219.1 Exhaust Back Pressure (kPa) 11.1 119.5 124.7 11.3 10.9 125.2 130.5 11.7 EGR Fraction(%) 0.0 12.8 22.6 0.0 0.0 10.1 22.7 0.0 Exhaust Emission Flows CO (g/hr) 26.98 29.29 42.65 26.52 25.40 25.01 50.51 30.33 C 0 2 (kg/hr) 11.32 11.17 11.22 11.72 11.43 11.17 11.11 11.60 NO x (g/hr) 129.20 70.01 37.24 123.00 118.78 77.26 34.75 117.29 0 2 (kg/hr) 32.83 25.54 20.68 32.01 34.79 28.81 22.07 34.26 C H 4 (g/hr) 18.34 15.69 -81.26 -56.02 29.98 26.33 22.58 30.34 nmHC (g/hr,Cl) 47.07 78.93 235.59 116.91 40.17 59.49 171.83 44.56 tHC (g/hr,Cl) 65.41 94.62 154.32 60.89 70.15 85.82 194.40 74.90 PM (g/hr) - TEOM [corrected] 0.82 1.80 2.72 0.82 1.11 2.19 1.11 0.57 Exhaust Emission Flows/Fuel CO (g/kg fuel) 6.49 7.02 10.29 6.38 6.20 6.08 12.33 7.33 NO x (g/kg fuel) 31.09 16.79 8.99 29.58 29.01 18.78 8.48 28.35 0 2 (g/kg fuel) 7.90 6.12 4.99 7.70 8.50 7.01 5.39 8.28 C H 4 (g/kg fuel) 4.41 3.76 -19.61 -13.47 7.32 6.40 5.51 7.33 nmHC (g/kg fuel.Cl) 11.33 18.93 56.85 28.11 9.81 14.46 41.94 10.77 tHC (g/kg fuel.Cl) 15.74 22.69 37.24 14.64 17.13 20.86 47.45 18.10 PM (g/kg fuel) - TEOM [corrected] 0.20 0.43 0.66 0.20 0.27 0.53 0.27 0.14 Dilution System Parameters Exhaust Temp - manifold (C) 292.4 355.1 355.1 299.5 285.2 344.9 347.2 286.2 Exhaust Temp - sample inlet (C) 224.9 302.4 303.5 247.8 220.5 295.5 297.9 239.5 Dilution Air Temp (C) 15.6 12.0 11.3 11.4 14.4 11.5 7.8 10.4 Filter Temp (C) 45.8 41.5 39.6 39.8 43.7 41.5 39.6 39.9 Sample C 0 2 (%) 0.44 0.44 0.48 0.42 0.42 0.36 0.40 0.34 Dilution Ratio - C 0 2 8.6 10.0 10.5 9.4 9.0 11.9 12.4 11.5 Table 4-14: Data Summaries for 1600 RPM 40% load tests 71 Label: A15 A19 A136 A139 D3 D13 A18 A140 Date: 7-Mar-02 7-Mar-02 8-Mar-02 8-Mar-02 10-Apr-02 10-Apr-02 • 7-Mar-02 S Mar-02 Time: 11:41:03 12:30:31 15:46:38 16:28:29 10:25:15 11:53:41 12:24:01 16:34:37 A V G COV Engine Parameters Speed(RPM) 1406.3 1433.3 1397.7 1409.4 1405.7 1407.6 •1415.6, 1407.3 1410.0 0.009 Load(%) 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 0.000 Indicated Power (kW) 42.3 43.0 42.3 42.6 42.0 42.4 42.1 42.3 42.4 0.008 IMEP (bar) 14.4 14.4 14.5 14.5 14.33 14.46 1 1 > 14.4 14.4 0.005 Pmax(bar) 146.5 145.0 148.4 147.6 147.19 144.44 145.0 -~ 147.7- 146.5 0.010 Pmax location (degrees) 366.9 367.1 367.6 366.8 367.2 367.2 306.9 367.2 367.1 0.001 Diesel Flow(kg/hr) 0.28 0.28 0.30 0.31 0.29 0.30 o : s 0.41 0.3 0.048 CNG Flow(kg/hr) 6.26 6.39 6.11 6.19 6.21 6.30 ()<)"> 0 1)6 6.2 0.015 Air Flow(kg/hr) 273.4 278.8 275.4 275.1 275.8 277.1 278.7 2"" . | 275.9 0.007 Exhaust Flow(kg/hr) 279.9 285.4 281.8 281.6 282.3 283.7 .285.0V 2M.0 V 282.5 0.007 Exhaust Back Pressure (kPa) 10.6 11.7 11.0 12.4 11.4 5.2 123.2 ^12.3 10.4 0.254 Exhaust Emission Flows CO (g/hr) 172.66 198.73 155.88 208.17 159.8 229.3 48;00 "•: 1 87.90 187.4 0.156 C 0 2 (kg/hr) 23.05 23.78 23.02 23.64 23.2 23.0 24.29 23.04 23.3 0.015 NO x (g/hr) 261.24 267.49 259.89 255.36 279.3 265.1 290.79' "265.38 264.7 0.031 0 2 (kg/hr) 31.41 31.73 33.24 32.36 31.6 32.1 31.39 32.SI 32.1 0.021 C H 4 (g/hr) 5.34 6.31 39.76 41.37 21.3 23.7 24.70 41.56 23.0 0.678 nmHC (g/hr,Cl) 54.99 52.52 18.81 17.44 30.8 30.9 S.90 15.14 34.2 0.472 tHC (g/hr,Cl) 60.32 58.83 58.57 58.81 52.0 54.6 33.73 56.70 57.2 0.056 PM (g/hr) - TEOM 6.55 6.60 3.93 5.76 3.700 4.479 7.81 5.03 5.2 0.252 Exhaust Emission Flows/Fuel CO (g/kg fuel) 26.76 30.54 24.14 32.67 24.39 35.87 7.36 2S.49 29.1 0.164 C 0 2 (kg/kg fuel) 3.57 3.66 3.57 3.71 3.53 3.60 3.73 3.58 3.6 0.018 NO x (g/kg fuel) 40.48 41.11 40.25 40.08 42.63 41.46 44.61 40.24 41.0 0.023 0 2 (g/kg fuel) 4.87 4.88 5.15 5.08 4.82 5.02 4.82 4.93 5.0 0.026 C H 4 (g/kg fuel) 0.83 0.97 6.16 6.49 3.25 3.70 3.80 0.30 3.6 0.683 nmHC (g/kg fuel.Cl) 8.52 8.07 2.91 2.74 4.69 4.83 1.38 2.30 5.3 0.470 tHC (g/kg fuel.Cl) 9.35 9.04 9.07 9.23 7.94 8.54 5.17 8.60 8.9 0.060 PM (g/kg fuel) - TEOM 1.02 1.01 0.61 0.90 0.56 0.70 1.20 0.76 0.8 0.253 Table 4-15: 1400 RPM 85% load baseline emissions 72 Label: Dl D2 D3 D4 D5 D6 Date: 4/10/02 4/10/02 4/10/02 4/10/02 4/10/02 4/10/02 Time: 10:06:30 10:19:52 10:25:15 10:32:11 10:41:12 10:47:38 Engine Parameters Speed(RPM) 1408.5 1406.1 1405.7 1404.5 1386.9 1405.1 Load(%) 85.0 85.0 85.0 85.0 85.0 85.0 Indicated Power (kW) 42.2 41.9 42.0 41.9 41.0 42.3 IMEP (bar) 14.39 14.31 14.33 14.31 14.20 14.44 Pmax(bar) 147.62 146.80 147.19 147.03 147.33 146.80 Pmax location (degrees) 367.0 367.0 367.2 366.9 366.9 367.1 Diesel Flow(kg/hr) 0.28 0.34 0.29 0.33 0.30 0.30 CNG Flow(kg/hr) 6.18 6.18 6.21 6.13 6.07 6.25 Air Flow(kg/hr) 276.2 275.9 275.8 277.8 277.8 278.1 Exhaust Flow(kg/hr) 282.6 282.5 282.3 284.3 284.2 284.7 Exhaust Back Pressure (kPa) 11.1 11.4 11.4 11.4 151.6 13.7 EGR Fraction(%) 0.0 0.0 0.0 0.0 0.0 0.0 Exhaust Emission Flows CO (g/hr) 140.8 166.1 159.8 156.7 49.5 183.4 C 0 2 (kg/hr) 22.6 23.2 23.2 23.4 24.3 23.8 NO x (g/hr) 255.9 276.0 279.3 284.0 303.2 285.8 0 2 (kg/hr) 32.4 31.7 31.6 31.8 30.9 31.2 C H 4 (g/hr) 23.7 22.0 21.3 20.9 13.6 18.8 nmHC(g/hr,Cl) 38.8 33.2 30.8 30.1 21.7 26.7 tHC (g/hr,Cl) 62.5 55.2 52.0 51.0 35.4 45.5 PM (g/hr) - TEOM [corrected] 2.930 3.991 3.700 3.773 2.155 4.401 Exhaust Emission Flows/Fuel CO (g/kg fuel) 21.83 25.49 24.56 24.27 7.78 27.99 C 0 2 (kg/kg fuel) 3.50 3.56 3.56 3.63 3.82 3.64 NO x (g/kg fuel) 39.66 42.34 42.93 43.98 47.59 43.61 0 2 (g/kg fuel) 5.03 4.86 4.86 4.93 4.85 4.76 C H 4 (g/kg fuel) 3.67 3.38 3.27 3.24 2.14 2.87 nmHC (g/kg fueLCl) 6.02 5.09 4.73 4.66 3.41 4.08 tHC (g/kg fueLCl) 9.69 8.47 8.00 7.90 5.55 6.94 PM (g/kg fuel) - TEOM [corrected] 0.45 0.61 0.57 0.58 0.34 0.67 Dilution System Parameters Exhaust Temp - manifold (C) 376.0 388.1 387.8 388.2 468.2 398.6 Exhaust Temp - sample inlet (C) 241.5 270.1 274.7 275.9 383.1 343.3 Dilution Air Temp (C) 17.4 14.5 13.5 12.4 10.4 9.2 Filter Temp (C) 45.4 42.5 41.8 41.3 39.3 39.3 Diff Pressure - filters (psid) 0.9 0.9 0.9 0.9 1.0 1.0 Sample C 0 2 (%) 0.45 0.43 0.41 0.40 0.36 0.38 Dilution Ratio - C 0 2 12.9 14.0 14.6 14.9 18.0 16.4 Table 4-16: 1400 RPM 85% load - BP/DPW test emissions (I) 73 Label: D7 D8 D9 D10 D l l D12 D13 Date: 4/10/02 4/10/02 4/10/02 4/10/02 4/10/02 4/10/02 4/10/02 Time: 10:54:57 11:03:00 11:23:31 11:28:43 11:34:34 11:41:08 11:53:41 Engine Parameters Speed(RPM) 1393.3 1404.2 1386.2 1387.3 1387.0 1388.2 1407.6 Load(%) 85.0 85.0 85.0 85.0 85.0 85.0 85.0 Indicated Power (kW) 41.2 42.1 40.5 40.5 40.4 40.8 42.4 IMEP (bar) 14.21 14.37 14.04 14.00 13.98 14.10 14.46 Pmax(bar) 146.77 146.21 143.26 143.89 143.13 143.02 144.44 Pmax location (degrees) 366.6 367.2 367.2 366.9 367.2 367.2 367.2 Diesel Flow(kg/hr) 0.28 0.31 0.28 0.34 0.27 0.32 0.30 CNG Flow(kg/hr) 6.11 6.21 6.09 6.06 6.11 6.10 6.30 Air Flow(kg/hr) 278.0 278.0 231.9 232.0 232.2 232.6 277.1 Exhaust Flow(kg/hr) 284.3 284.5 238.3 238.4 238.6 239.0 283.7 Exhaust Back Pressure (kPa) 127.8 12.4 143.0 142.5 142.2 141.6 5.2 EGR Fraction(%) 0.0 0.0 13.2 13.0 13.1 13.0 0.0 Exhaust Emission Flows CO (g/hr) 53.6 177.1 146.7 158.6 153.4 160.9 229.3 C 0 2 (kg/hr) 24.7 23.8 24.1 24.3 24.2 24.4 23.0 NO x (g/hr) 303.1 285.0 116.2 115.0 113.6 113.3 265.1 0 2 (kg/hr) 30.4 31.3 20.7 20.4 20.6 20.5 32.1 C H 4 (g/hr) 12.2 19.5 19.7 19.7 19.9 19.7 23.7 nmHC (g/hr,Cl) 18.4 28.4 29.1 27.9 29.0 28.2 30.9 tHC(g/hr,Cl) 30.5 47.9 48.8 47.5 48.9 47.9 54.6 PM (g/hr) - TEOM [corrected] 2.265 4.958 6.487 6.612 6.070 6.429 4.479 Exhaust Emission Flows/Fuel CO (g/kg fuel) 8.38 27.19 23.00 24.79 24.04 25.09 34.77 C 0 2 (kg/kg fuel) 3.86 3.66 3.78 3.80 3.80 3.80 3.49 NO x (g/kg fuel) 47.41 43.74 18.23 17.97 17.81 17.66 40.19 0 2 (g/kg fuel) 4.76 4.80 3.24 3.20 3.22 3.19 4.86 C H 4 (g/kg fuel) 1.90 2.99 3.09 3.08 3.11 3.07 3.59 nmHC (g/kg fuel.Cl) 2.87 4.36 4.56 4.36 4.55 4.40 4.69 tHC (g/kg fueLCl) 4.78 7.36 7.65 7.43 7.66 7.47 8.27 PM (g/kg fuel) - TEOM [corrected] 0.35 0.76 1.02 1.03 0.95 1.00 0.68 Dilution System Parameters Exhaust Temp - manifold (C) 457.0 395.5 473.6 476.4 474.0 476.6 399.4 Exhaust Temp - sample inlet (C) 376.6 331.7 401.2 403.8 403.2 404.1 318.2 Dilution Air Temp (C) 8.7 8.4 7.9 6.6 6.0 6.2 7.0 Filter Temp (C) 39.1 40.5 44.2 43.2 42.3 41.7 46.7 Diff Pressure - filters (psid) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Sample C 0 2 (%) 0.47 0.50 0.54 0.54 0.54 0.54 0.56 Dilution Ratio - C 0 2 13.2 12.1 13.4 13.4 13.5 13.4 10.3 Table 4-17: 1400 RPM 85% load - BP/DPW test emissions (II) 74 Label: A15 A16 A17 A18 A19 A136 A137 A138 A139 A140 Date: 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 7-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 8-Mar-02 Time: 11:41:03 11:57:57 12:14:00 12:24:01 12:30:31 15:46:38 16:05:51 16:18:01 16:28:29 16:34:37 Engine Parameters Speed(RPM) 1406.3 1409.0 1407.9 1415.6 1433.3 1397.7 1390.5 1390.5 1409.4 1407.3 Load(%) 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 Indicated Power (kW) 42.3 41.7 41.4 42.1 43.0 42.3 40.8 41.1 42.6 42.3 IMEP (bar) 14.4 14.2 14.1 14.3 14.4 14.5 14.1 14.2 14.5 14.4 Pmax(bar) 146.5 144.6 142.9 145.0 145.0 148.4 141.9 144.5 147.6 147.7 Pmax location (degrees) 366.9 366.9 367.0 366.9 367.1 367.6 367.0 367.4 366.8 367.2 Diesel Flow(kg/hr) 0.28 0.28 0.28 0.28 0.28 0.30 0.32 0.31 0.31 0.41 CNG Flow(kg/hr) 6.26 6.19 6.23 6.08 6.39 6.11 6.16 6.11 6.19 6.06 Air Flow(kg/hr) 273.4 258.0 229.3 278.7 278.8 275.4 213.2 248.9 275.1 275.1 Exhaust Flow(kg/hr) 279.9 264.5 235.8 285.0 285.4 281.8 219.7 255.3 281.6 281.6 Exhaust Back Pressure (kPa) 10.6 144.2 142.5 123.2 11.7 11.0 142.2 145.6 12.4 12.3 EGR Fraction(%) 0.0 8.5 16.5 0.0 0.0 0.0 14.5 11.5 0.0 0.0 Exhaust Emission Flows CO (g/hr) 172.66 92.88 258.89 48.00 198.73 155.88 183.33 140.30 208.17 187.90 C 0 2 (kg/hr) 23.05 25.16 24.95 24.29 23.78 23.02 22.54 25.41 23.64 23.64 NO x (g/hr) 261.24 168.62 82.95 290.79 267.49 259.89 88.22 121.43 255.36 265.38 0 2 (kg/hr) 31.41 25.39 18.77 31.39 31.73 33.24 19.26 24.08 32.36 32.51 C H 4 (g/hr) 5.34 -55.29 -101.78 24.76 6.31 39.76 31.80 37.17 41.37 41.56 nmHC (g/hr,Cl) 54.99 103.26 171.56 8.96 52.52 18.81 30.51 22.19 17.44 15.14 tHC (g/hr,Cl) 60.32 47.97 69.78 33.73 58.83 58.57 62.30 59.36 58.81 56.70 PM (g/hr) - TEOM [corrected] 6.55 6.45 12.13 7.81 6.60 3.93 8.56 8.87 5.76 5.03 Exhaust Emission Flows/Fuel CO (g/kg fuel) 26.42 14.35 39.79 7.55 29.80 24.30 28.27 21.87 31.99 29.04 C 0 2 (kg/kg fuel) 3.53 3.89 3.83 3.82 3.57 3.59 3.48 3.96 3.63 3.65 NO x (g/kg fuel) 39.98 26.06 12.75 45.71 40.11 40.51 13.61 18.93 39.24 41.01 0 2 (g/kg fuel) 4.81 3.92 2.89 4.93 4.76 5.18 2.97 3.75 4.97 5.02 C H 4 (g/kg fuel) 0.82 -8.55 -15.64 3.89 0.95 6.20 4.90 5.79 6.36 6.42 nmHC (g/kg fuel,Cl) 8.42 15.96 26.37 1.41 7.88 2.93 4.70 3.46 2.68 2.34 tHC (g/kg fuel.Cl) 9.23 7.41 10.73 5.30 8.82 9.13 9.61 9.25 9.04 8.76 PM (g/kg fuel) -TEOM [corrected] 1.00 1.00 1.86 1.23 0.99 0.61 1.32 1.38 0.88 0.78 Dilution System Parameters Exhaust Temp -manifold (C) 397.4 481.6 487.9 463.9 406.3 385.7 483.1 480.3 400.4 397.1 Exhaust Temp -sample inlet (C) 267.4 405.5 416.5 400.0 338.4 243.2 409.9 408.6 341.5 306.5 Dilution Air Temp (C) 14.8 9.7 8.1 8.1 9.0 9.7 5.8 6.1 6.5 7.1 Filter Temp (C) 42.9 41.8 36.9 36.7 38.8 44.0 38.0 36.0 39.2 41.5 Sample C 0 2 (%) 0.67 0.42 0.57 0.49 0.51 0.61 0.67 0.65 0.61 0.61 Dilution Ratio - C 0 2 8.6 16.4 13.2 12.5 11.6 9.4 10.7 10.8 9.7 9.7 Table 4-18: Data summaries for 1400 RPM 85% load tests 75 Label: 071 073 075 077 079 081 083 087 Date: 16-Jan-02 16-Jan-02 16-Jan-02 16-Jan-02 18-Jan-02 18-Jan-02 18-Jan-02 18-Jan-02 Time: 9:37:25 10:03:19 10:19:51 10:39:10 13:57:38 14:30:36 14:51:15 15:07:59 Engine Parameters Speed(RPM) 1607.5 1598.9 1601.7 1603.4 821.0 815.1 813.3 822.6 Load(%) 40.0 40.0 40.0 40.0 75.0 75.0 75.0 75.0 Indicated Power (kW) 26.9 27.2 26.8 27.5 19.6 18.7 18.1 19.1 IMEP (bar) 8.0 8.2 8.0 8.2 11.5 11.0 10.7 11.1 Pmax(bar) 107.4 106.0 102.1 106.3 130.0 126.9 125.9 129.4 Pmax location (degrees) 368.4 368.7 366.0 368.2 368.7 368.1 368.3 368.4 Diesel Flow(kg/hr) 0.54 0.61 0.62 0.63 0.58 0.63 0.62 0.61 CNG Flow(kg/hr) 3.60 3.65 3.68 3.69 2.84 2.74 2.69 2.74 Air Flow(kg/hr) 209.8 176.9 149.4 210.8 91.6 78.0 67.5 91.7 Exhaust Flow(kg/hr) 214.0 181.2 153.7 215.1 95.0 81.4 70.8 95.1 Exhaust Back Pressure (kPa) 11.8 115.0 123.8 10.3 11.7 51.6 55.7 10.9 EGR Fraction(%) 0.0 11.6 24.8 0.0 0.0 12.2 23.3 0.0 Exhaust Emission Flows CO (g/hr) 34.57 41.04 74.93 38.41 147.05 153.98 310.94 106.47 C 0 2 (kg/hr) 11.59 11.28 11.15 11.89 9.78 9.37 8.92 9.63 NO x (g/hr) 112.18 66.77 26.62 108.96 195.71 84.62 24.08 198.43 0 2 (kg/hr) 34.13 26.49 19.96 33.80 8.59 5.72 3.49 8.79 C H 4 (g/hr) -150.6 -128.0 -108.9 -151.5 4.10 7.77 12.50 3.87 nmHC (g/hr,Cl) 215.66 214.31 288.10 217.03 15.00 17.93 21.99 13.35 tHC(g/hr,Cl) 64.97 86.28 179.17 65.44 19.10 25.70 34.50 17.21 PM (g/hr) - TEOM 2.31 3.51 2.74 1.57 0.41 0.96 2.74 0.23 PM(g/hr) - filters 3.91 5.43 3.32 2.69 0.49 1.00 3.46 0.44 PM mass(mg) - filters 0.52 0.86 0.61 0.36 0.15 0.24 0.39 0.15 Dilution System Parameters Exhaust Temp -manifold (C) 294.4 359.5 357.3 296.3 406.7 440.9 427.1 398.0 Exhaust Temp -sample inlet (C) 213.0 304.4 304.9 226.2 245.5 337.3 333.1 258.1 Dilution Air Temp (C) 16.5 13.1 13.7 14.4 18.9 14.4 13.6 13.8 Filter Temp (C) 44.3 47.2 46.9 47.6 47.4 31.7 36.7 39.8 Dilution Flow Rate (SLPM) 18.3 18.3 18.3 18.3 17.8 17.8 17.8 17.6 Total Flow Rate (SLPM) 17.8 17.9 17.8 17.8 17.8 17.8 17.8 17.9 Diff Pressure - filters (psid) 0.5 0.4 0.4 0.4 0.4 0.5 0.7 0.4 Sample C 0 2 (%) 0.39 0.44 0.50 0.40 0.72 0.80 0.72 0.78 Dilution Ratio - C 0 2 10.2 10.2 10.2 10.1 9.9 9.9 12.1 9.0 Dilution Ratio - MFC 8.3 8.0 8.2 8.3 6.9 7.0 6.9 6.4 Duration (mins) 15 15 15 15 15 10 5 15 Table 4-19: Excess diesel tests with filter emission rates (I) 76 Label: 089 091 093 095 099 101 103 105 107 Date: 21-Jan-02 21-Jan-02 21-Jan-02 21-Jan-02 22-Jan-02 22-Jan-02 22-Jan-02 22-Jan-02 22-Jan-02 Time: 13:20:32 13:42:34 14:09:28 14:28:04 9:42:08 10:17:44 10:38:32 10:54:16 11:09:04 Engine Parameters Speed(RPM) 803.8 803.2 805.2 810.1 1594.7 1595.8 1614.9 1609.9 1600.6 Load(%) 25.0 25.0 25.0 25.0 75.0 40.0 40.0 40.0 40.0 Indicated Power (kW) 10.9 11.0 11.0 11.0 40.9 27.2 27.3 27.7 27.3 IMEP (bar) 6.5 6.6 6.6 6.5 12.3 8.2 8.1 8.3 8.2 Pmax(bar) 101.8 100.4 97.0 101.5 124.0 110.1 104.9 107.8 109.2 Pmax location (degrees) 366.3 366.2 366.4 366.4 367.2 368.2 369.4 368.4 368.2 Diesel Flow(kg/hr) 0.73 0.78 0.85 0.87 0.36 1.15 0.85 0.76 0.77 CNG Flow(kg/hr) 1.22 1.18 1.21 1.20 5.92 3.54 3.59 3.66 3.56 Air Flow(kg/hr) 72.1 61.3 53.6 73.1 298.6 214.4 156.0 181.1 214.1 Exhaust Flow(kg/hr) 74.0 63.3 55.7 75.1 304.9 219.1 160.5 185.5 218.4 Exhaust Back Pressure (kPa) 12.6 25.8 23.7 10.5 12.6 11.3 116.6 114.2 11.2 EGR Fraction(%) 0.0 12.6 19.8 0.0 0.0 0.0 19.6 10.1 0.0 Exhaust Emission Flows CO (g/hr) 6.07 7.52 10.45 5.77 120.48 28.14 42.65 29.46 28.45 C 0 2 (kg/hr) 5.62 5.44 5.51 5.65 25.06 12.32 12.05 12.36 12.50 NOK (g/hr) 175.34 94.40 44.39 168.38 187.68 126.07 42.74 79.71 125.21 0 2 (kg/hr) 10.33 7.97 5.99 10.69 38.68 35.61 21.74 27.50 35.37 C H , (g/hr) 4.20 7.57 10.59 4.16 25.91 21.29 44.56 27.40 20.32 nmHC(g/hr,Cl) 9.71 14.98 19.49 10.08 59.21 45.40 82.51 54.32 42.77 tHC (g/hr,Cl) 13.91 22.55 30.08 14.25 85.12 66.69 127.07 81.72 63.09 PM (g/hr) - TEOM 0.80 0.89 0.56 0.72 5.54 1.37 1.75 1.26 0.77 PM(g/hr) - filters 1.30 1.23 0.81 1.10 7.46 2.31 2.78 2.28 2.31 PM mass(mg) - filters 0.52 0.58 0.44 0.43 0.43 0.28 0.27 0.21 0.27 Dilution System Parameters Exhaust Temp -manifold (C) 293.1 303.6 315.7 290.4 401.8 285.3 364.0 365.2 288.3 Exhaust Temp -sample inlet (C) 184.3 224.7 228.2 199.8 282.5 210.7 308.2 309.7 236.0 Dilution Air Temp (C) 19.9 18.5 18.3 18.2 17.0 13.7 13.1 12.4 12.0 Filter Temp (C) 41.1 41.7 41.6 42.5 47.0 29.4 40.4 44.0 47.3 Dilution Flow Rate (SLPM) 17.6 17.6 17.6 17.6 18.2 18.2 18.3 18.3 18.2 Total Flow Rate (SLPM) 17.8 17.8 17.8 17.8 17.8 17.8 17.9 17.9 17.8 Diff Pressure - filters (psid) 0.3 0.3 0.4 0.4 0.5 0.4 0.4 0.4 0.4 Sample C 0 2 (%) 0.55 0.62 0.71 0.54 0.53 0.38 0.46 0.42 0.37 Dilution Ratio - C 0 2 9.8 9.8 9.7 10.0 11.0 11.0 11.7 11.6 11.6 Dilution Ratio - MFC 6.5 6.5 6.5 6.5 8.0 8.0 8.2 8.0 8.0 Duration (mins) 15 15 15 15 10 15 9.5 10 15 Table 4-20: Excess diesel tests wi th filter emission rates (II) 77 Label: 109 111 113 115 119 121 123 125 Date: 23-Jan-02 23-Jan-02 23-Jan-02 23-Jan-02 24-Jan-02 24-Jan-02 24-Jan-02 24-Jan-02 Time: 10:22:31 10:49:50 11:15:46 11:32:34 10:03:58 10:25:05 10:42:57 10:54:05 Engine Parameters Speed(RPM) 809.9 807.0 806.1 809.4 810.0 805.5 804.0 808.9 Load(%) 25.0 25.0 25.0 25.0 75.0 75.0 75.0 75.0 Indicated Power (kW) 11.0 11.3 11.3 11.2 20.1 19.4 19.0 20.1 IMEP (bar) 6.5 6.7 6.7 6.6 11.9 11.6 11.3 11.9 Pmax(bar) 101.5 99.1 100.9 102.6 136.8 131.7 132.1 134.9 Pmax location (degrees) 366.3 366.4 366.7 366.8 368.1 368.0 367.9 368.0 Diesel Flow(kg/hr) 0.75 0.85 0.89 0.89 0.60 0.59 0.61 0.63 CNG Flow(kg/hr) 1.19 1.21 1.20 1.19 2.91 2.89 2.87 2.91 Air Flow(kg/hr) 72.1 53.6 61.1 72.4 93.9 76.4 69.1 92.8 Exhaust Flow(kg/hr) 74.1 55.6 63.2 74.5 97.4 79.9 72.6 96.3 Exhaust Back Pressure (kPa) 10.5 24.0 25.5 10.5 11.8 55.6 59.1 9.7 EGR Fraction(%) 0.0 20.4 12.8 0.0 0.0 12.7 22.0 0.0 Exhaust Emission Flows CO (g/hr) 7.89 12.06 9.67 8.69 172.70 273.18 489.52 209.42 C 0 2 (kg/hr) 5.61 5.53 5.50 5.55 10.09 9.57 9.23 10.13 NO x (g/hr) 172.46 46.55 87.57 172.05 205.87 69.87 24.21 190.40 0 2 (kg/hr) 10.21 5.71 7.54 10.20 8.74 4.93 3.26 8.32 C H , (g/hr) 3.81 10.47 7.21 3.93 6.06 10.04 15.53 5.31 nmHC (g/hr,Cl) 11.23 20.01 15.67 11.48 12.14 17.97 24.15 11.77 tHC (g/hr ,C1) 15.03 30.48 22.88 15.41 18.21 28.01 39.68 17.07 PM (g/hr) - TEOM 0.91 0.62 0.50 0.75 0.52 1.58 7.03 0.85 PM(g/hr) - filters 1.24 0.84 0.78 0.98 0.67 2.18 6.60 0.78 PM mass(mg) - filters 0.41 0.38 0.30 0.36 0.15 0.45 0.41 0.23 Dilution System Parameters Exhaust Temp -manifold (C) 292.0 317.1 309.4 291.6 406.2 452.1 437.3 409.8 Exhaust Temp -sample inlet (C) 187.7 229.5 228.9 198.9 262.0 348.2 342.4 273.9 Dilution Air Temp (C) 20.1 19.4 18.9 18.8 15.5 13.2 13.4 14.8 Filter Temp (C) 45.2 45.1 45.5 45.7 44.6 45.7 42.4 48.0 Dilution Flow Rate (SLPM) 18.2 18.2 18.2 18.1 19.0 18.9 19.0 18.1 Total Flow Rate (SLPM) 17.8 17.8 17.8 17.8 17.8 17.9 17.9 17.8 Diff Pressure - filters (psid) 0.4 0.3 0.3 0.4 0.4 0.6 0.4 0.5 Sample C 0 2 (%) 0.46 0.59 0.53 0.50 0.79 0.87 0.47 0.70 Dilution Ratio - C 0 2 11.9 11.8 11.8 10.7 9.0 9.4 19.5 10.4 Dilution Ratio - MFC 8.0 8.0 8.0 7.6 11.2 10.5 14.0 7.7 Duration (mins) 15 15 15 15 10 8 4.5 15 Table 4-21: Excess diesel tests with filter emission rates (III) 78 Appendix C: Analysis of TEOM Output A typical T E O M plot is shown below, showing the total mass and mass rate. A constant emission rate and increasing total mass line is expected. -2E-06 -3E-06 -4E-06 TEOM Data Plotted with Time 200 300 Time(s) Figure 4-2: Sample TEOM Output In all cases a linear regression was performed on the total mass data series. There is an initial period of approximately 60 seconds, where the output is unsteady, due to the adjustment of the T E O M to the different pressure source and the filter face to the exhaust humidity. This part of the data is omitted from the regression calculation. Once the regression is performed, the R 2 value is verified and expected to be greater than 0.98. This average rate is compared to the P M rate as measured on the graph for verification purposes. Once the P M emission rate is known, it can be multiplied by the duration of the sampling period to give the total mass collected. 79 Appendix D: Derivation of Dilution Ratio Calculation The flow of CO2 through the dilution system is shown below: [C02]exNe. Dilution System [C02]to,Ntot [C02]mNdil Here, ex denotes exhaust (from engine), di l denotes dilution air and tot denotes the total sampled diluted exhaust. [C02] is the CO2 concentration in molar percent and ./V represents the specified molar flow. B y conservation of mass, the CO2 into the system must equal the CO2 out: [C02]exNex + [C02]dilNdil = [CO2]tolNt0t (D- l ) If we assume no chemical reactions are taking place the number of moles into the dilution system must be equal to the number out: Nex + Ndil = Nm (D-2) We define the dilution ratio as the total exhaustflow divided by the raw exhaust flow into the dilution system: DR = Nt0,INex (D-3) Combining equations D - l and D-2 into D-3 yield the following: [C02] ex,wet -[C02]dil ,wet DR = [CO2]l0LW-[CO2] (D-4) 2 J dil. et Since the CO2 concentrations are measured on a dry basis, the water loss must be accounted for, which is accomplished by using the following relations. [CO 2]ex.wet = [C02]ex,dry(l-[H20]) (D-5) 80 [C02]dil,wet = [C02]dildry (D-6) (there is no water in the dilution air) Water in the diluted exhaust originates from the engine exhaust only. Since the dilution air contains no water the CO2 concentration in the sampled air stream can be corrected by using the following approximation: [ C 0 2 ] tot.wet [CO2 ] miiry 1-[ H 2 0 ] e x DR dry (D-7) Note equation D-7 is essentially the same as D-5, however the water content has been diluted by an amount close to the dry dilution ratio (D-4 using dry values). The actual dilution ratio is found by substituting D-5, D-6, D-7 into D-4. [ C 0 2 ] e x 4 r y ( l - [H20]ex ) - [ C 0 2 ] d i l 4 r y DR [ C 0 2 ] 2 J Wt4ry \ _ [ H 2 0 ] e x ^ (D-8) DR dry [ c o 2 ] d h 2 J dildry 81 Appendix E: Sampling Procedure - Filters with TEOM 1. Before engine operation: • T E O M is turned on (with computer) to allow heating element to reach 50°C at least an hour before sampling. Ensure to start "teom-1105" program so warm-up procedure is initiated. • Purge air supply ( T E O M ) should be connected and set to 10 psig at bottle regulator. • Plug in mass flow controllers at least 30 minutes prior to operation. • Turn on heating tape at Variac to a value of 20 to heat up sample tube. 2. After engine has reached desired operating point: • Insert pre-weighed filters into filter holder, record number and engine conditions in logbook • Open T E O M purge air valve and plug in T E O M sample pump. Ensure flow rate is 3 . 0 S L P M . • Open dilution air flow valve at sample line, ensure pressure is set to 10 psig at regulator 3. Rename low speed label field in data acquisition program to match the primary filter number with E G R rate i f applicable. Begin low speed data collection, ensure sampling rate has been adjusted to record every 5-15 seconds. 4. Start T E O M sampling mode (ensure dilution air is on first), this should be sampling clean air with very little exhaust. T E O M pump must be plugged in. 5. Connect filter holder to bottom quick-connect joint only (to pump). 6. Turn on sample flow by opening large ball valve to exhaust duct and switching on sample pump. The filter holder should be drawing ambient air through the filters. Wait until mass flow controller connected to pump approaches setpoint value. 82 7. Open small ball valve (from dilution region) and allow any moisture to blow out (hold your breath). Connect other quick connect region and begin timing experiment at this point. This commences the sampling period for both the T E O M and filters. 8. Change CO2 line source to P M (vs intake) and ensure CO2 analyzer is receiving sufficient flow (check valves, pump, etc). Ensure dilution ratio is between 10 and 15, i f it is not adjust dilution air mass flow controller, record adjustment in logbook. 9. A t mid-point of sampling time • Make note of all data in logbook ( " P M Tunnel Data"): • Capture high-speed data, change name to "Fast-xxx" where xxx is filter no. • Record any comments or concerns in lab book • Ensure low-speed data acquisition continues for remainder of sampling period 10. A s soon as the sampling period expires: • Turn off sample pump • Close ball valve to exhaust duct • Close ball valve to filter holders • Remove filters • Return T E O M to "Initialization Mode" • Make note of stop time ( T E O M and D A Q PCs) • Turn off dilution air • Place filters in appropriate cases and replace filters with unused pre-weighed filters for next point, return to step 2 when ready to begin sampling. 11. Otherwise shut down T E O M , unplug mass flow controller, proceed to engine shut down procedure. 83 Appendix F: Operating Procedure - TEOM 1. Before engine operation: • T E O M is turned on (with computer) to allow heating element to reach 50°C at least an hour before sampling. Ensure to start "teom-1105" program so warm-up procedure is initiated. • Purge air supply (TEOM) should be connected and set to 10 psig at bottle regulator. • Plug in mass flow controllers at least 30 minutes prior to operation. • Turn on heating tape at Variac to a value of 20 to heat up sample tube. • Insert glass fiber filters into filter holder, these may need to be changed i f heavy particulate emission are measured or used for an extended period. • Insert filter holder into quick connect joint at both ends 2. After engine has reached desired operating point: • Open T E O M purge air valve and plug in T E O M sample pump. Ensure flow rate is 3 . 0 S L P M on T E O M data screen. • Open dilution air flow valve at sample line, ensure pressure is set to 10 psig at regulator 3. Rename low speed label field in data acquisition program to match the primary filter number with E G R rate i f applicable. Begin low speed data collection, ensure sampling rate has been adjusted to record every 5-15 seconds. 4. Turn on sample flow by opening large ball valve to exhaust duct and switching on sample pump. 5. Change CO2 line source to P M (vs intake) and ensure CO2 analyzer is receiving sufficient flow (check valves, pump, etc). Ensure dilution ratio is between 10 and 84 15, i f it is not adjust dilution air mass flow controller, note dilution ratio w i l l be affected by T E O M flow as wel l (test run can be performed). 6. Start T E O M sampling mode (ensure dilution air is on first) by pressing F I and entering a filename. A solenoid valve wi l l click open, this starts the sampling period. 7. A t mid-point of sampling time • Make note of all data in logbook ( " P M Tunnel Data"): • Take high-speed data file • Record any comments or concerns in lab book • Ensure low-speed data acquisition continues for remainder of sampling period 8. A s soon as the sampling period expires: • Stop T E O M sampling by pressing F2. • Press F3 and enter ' y ' to return to initialization mode, this is necessary before starting to sample again. • Sample pump and dilution air can be left on i f continuing to collect data 9. Set next operating point and return to step 2 10. Otherwise shut down T E O M , unplug mass flow controller, proceed to engine shut down procedure. 85 Appendix G: List of Electronic Files Location/Filename(s) Description /Data/fas tout.xls template file required by high speed data processing routine /Data/fil ter_weights.xls data file containing filter weights, mass flow rates and experiment duration data. /Data/High Speed Data Processing Routine.xls self explanatory - author: G . McTaggart-Cowan /Data/SCRE Emissions Spreadsheet.xls self explanatory - author: S. Munshi /Data/summary.xls Excel file used to generate report from multiple data files. /Data/template.xls template file incorporating " S C R E Emission Sheet.xls" and "High Speed Data Processing Routine"used to calculate all P M emission rates. /Data//Analyzed/071 - 125.xls Results from experiments performed after Jan 1, 2002 until Feb 1, 2002 with excess diesel. Results used for T E O M vs Filters comparison /Data//Analyzed/A1 - A30.xls Baseline with T E O M and 5% diesel flow Mar 6-8 /Data//Analyzed/Bl - B13.xls B P and D P W study 1600RPM 40% load /Data//Analyzed/Cl - C 1 3 . x l s B P and D P W study 8 0 0 R P M 75% load /Data//Analyzed/El - E 1 3 . x l s B P and D P W study 1400RPM 85% load /Data//Analyzed/El - E 1 3 . x l s B P and D P W study 8 0 0 R P M 25% load /Data//Analyzed/A131 - A139.xls Baseline points performed with T E O M and filters, Mar 8 (1600RPM 40% load) /Data/raw/TEOM/"label".prn T E O M output data fields /Data/raw/ Files "label"-fast.csv unprocessed high-speed data /Data/raw/ Files "label"-slow.csv unprocessed low-speed data (emissions, temperatures, pressures, etc.) /Data/raw/015-125/ all old raw data files for all experiments with corresponding label /Data//Analyzed/Reports reports/summaries generated on dates as labeled. 86 Appendix H: Engine Warm-up and Operating Procedure The following list outlines the procedures used to achieve stable, repeatable operation of the S C R E with E G R over a range of operating conditions and E G R fractions. The following list refers to replacement E G R operation at fixed intake manifold temperature. Testing of other parameters w i l l require some changes to these operating instructions. For non-EGR conditions the same procedure was used with low-range C 0 2 connected to P M sampling outlet. 1) Let the engine reach full temperature by running at moderate speed and load (at least 95°C). 2) Set up the low-range CO2 sensor for E G R operation. Turn the low-range selector valve (on the North outside wall of the test cell) to ' E G R ' . Turn both handles on the CO2 selector valves (inside the emissions bench, Cabinet 1, L H S ) to Tow range'. Ensure that sample flow rate is 1 1pm (flow meter on R H S at back of cabinet) and that the drier flow rate (flow meter attached to back door of cabinet) is 2 1pm. 3) Determine the desired air and fuel flow rates and injection timing for the test point. 4) Adjust the supercharger speed, engine speed, engine load, and fuelling so that the engine is running under the desired conditions. 5) Adjust the back-pressure valve (using the control knob on the CP) until the B P reads 5-10 kPa above the intake manifold pressure. 6) Let the engine run for 5-10 minutes or until all the temperatures stop changing. Carefully monitor the intake air temperature. 87 7) Open the manual E G R valve (black handle, above the supercharger) so that E G R can flow to either the supercharger exhaust (handle to the left) or to the supercharger intake (handle to the right). 8) Open the remote E G R valve slowly. Watch the low-range CO2 analyser output to detect when E G R flow starts. Adjust the E G R valve, supercharger speed and back-pressure valve to hold the manifold air pressure constant while adjusting the E G R fraction (displayed on the D A Q screen). Adjustments need to be made slowly, as the intake CO2 sensor has a time delay of approximately 30 seconds. 9) During all adjustments, monitor the pressure trace and T H C emissions. 10) Fine-tuning of the E G R flow rate is best achieved through stepwise adjustments of the supercharger (50 R P M ) and the B P valve. 11) Once at the operating condition, let the engine run for about 5 minutes to allow all the readings to stabilise. Once low and high speed readings are taken, repeat steps 9-11 to get to the next desired operating condition. 12) To shut off the E G R system, reduce the opening of the E G R valve to 15-20%. Simultaneously (in stages) increase the supercharger speed and open the back-pressure valve so that the intake and exhaust manifold pressures are held approximately constant. Close the E G R valve the rest of the way, increase supercharger speed to reach the desired intake pressure, and adjust the back-pressure valve for the desired pressure. 13) Fol low the standard procedures for adjusting the engine speed and load to reach the next desired operating condition. It is strongly recommended that the engine be run at a fixed (repeatability) point for at least 10 minutes between E G R test runs to purge all exhaust gases from the intake system and to ensure that the engine is operating in the expected manner. 88 Appendix I: Diesel Flow Measurement The mass of diesel in a reservoir was recorded with time to calculate diesel consumption. A linear regression was used to give the rate of decrease of fuel. Notice for even in the best case there is a large amount of noise in the data as shown in Figure 4-3. A regression analysis gives a range of 0.28 - 0.31 kg/hr for the slope at 95% confidence. The uncertainty of the diesel flow rate in this case would be within 10%. Sample Diesel How Data (high accuracy) 16.180 16.175 — 16.170 o> — 16.165 § 16.160 S 16.155 ° 16.150 16.145 16.140 10:40:48 • y= -7.18X +19.37 • m R* = 0.90 • t • t 10:42:14 1 0:43:41 10:45:07 Time (hour/min/sec) 10:46:34 10:48:00 Figure 4-3: Sample Diesel flow data - high accuracy A less ideal case is presented in Figure 4-4. The variability in this data is obviously higher. Sample Diesel Row Data (low accuracy) 12:23:02 12:24:29 12:25:55 1227:22 12:28:48 12:30:14 12:31:41 12:33:07 Time(hour/min/sec) Figure 4-4: Sample diesel flow data - low accuracy 89 A regression analysis gives a range of 0.062 - 0.081 kg/hr for the slope at 95% confidence. The uncertainty of the diesel flow rate in this case would be 24%, however the true value should be around 0.15 kg/hr. In this situation, data from other sampling periods would be pooled and the diesel flow rate would be assumed constant over the entire interval. The error for this data set is likely to be 25% but could be even larger. Figure 4-5 and Figure 4-6 the difficulty in discerning whether the actual diesel flow rate changes with pulse width or i f it is purely excessive error in the calculation. At 800 R P M the diesel flow rate is unreliable with high variability. Hence, there is high scatter at various D P W values. Diesel Flow Variation at 800 RPM 25% Load 0.26 0.24 3 o C 0.22 ssel „0.20 a f.0-18 a. 0.16 CO » 0.14 S 0.12 0.10 • 0.5 0.6 0.7 0.8 0.9 DPW(ms) 1.1 1.2 Figure 4-5: Diesel Flow Measurements 800 RPM 25% Load 0.22 0.20 E 0.18 o f . 0 . 1 6 0.14 0.12 0.10 Diesel Flow Var iat ion at 800 RPM 75% Load • • • • • • • 0.5 0.6 0.7 0.8 0.9 DPW (ms) 1.1 1.2 Figure 4-6: Diesel Flow Measurements 800 RPM 75% Load 90 A t higher speeds, the same amount of scatter is present but represents less as a percentage of the total diesel flow rate, as shown in Figure 4-7 and Figure 4-8. For the following cases there is more confidence in the calculated diesel flow rate. 0.40 0.38 0.36 0.34 •C-0.32 1,0-30 —0.28 0.26 0.24 0.22 0.20 Diesel Row Variation at 1600 RPM 40% Load 0.5 0.6 0.7 0.8 0.9 DPW (ms) 1.1 1.2 Figure 4-7: Diesel Flow Measurements 1600 RPM 40% Load 0.34 0.33 0.32 0.31 f0.30 i;o.29 0.28 0.27 0.26 0.25 Diesel Flow Variation at 1400 RPM 85% Load 0.5 0.6 0.7 0.8 0.9 DPW (ms) 1.1 1.2 Figure 4-8: Diesel Flow Measurements 1400 RPM 85% Load It is concluded the error in diesel flow measurements is around 20% at 800 R P M and 10% at the higher speeds. 91 Appendix J: High-Speed Data Summaries Attached is the high-speed data calculations for all samples. The pressure vs volume diagrams have been presented in log p vs V to emphasize the pumping loop. Graphs of the following in-cylinder pressure measurements are presented: >• pressure vs crank angle > pressure vs volume > heat release rate vs crank angle A l l data is available with electronic submission on C D . 92 Speed [RPM] Comments ' Torque [N-mj Load [%] Data Summary for filter: -:. 071 P max [deg] 10660.71 Date: 1/16/02 CA @ P max [deq] 8.0 Time: 9:37:25 dP/dCA max [bar/deg] 398.067 CA @ dP/dCA max [deq] -12.0 Endine Parameters Averaoe IMEP [bar] 801.67 Speed(RPM) 1607.5 HHR max[kj /m"3/deq] 9364.2 Load-approx. (%) 40.0 IHR max p a m M ] 142128.0 Power (kW) 26.9 5 MFB [deq w.r.t TDC] -5.0 IMEP (bar) 8.03 10'oMFB [deq w.r.t TDC] 2.5 Pmax(bar) 107.40 50% MFB [deq w.r.t TDC] 10.0 Pmax location (degrees) 368.4 90% MFB [deq w.r.t TDC] 23.5 Diesel Flow(kg/hr) 0.54237 Assumed poly-n during ccmprn 1.37 CNG Flow(kg/hr) 3.60 zero-level.ipr. offset [bar] 0.000 Air Flow(kg/hr) 209.8 poly-n;compressioniuncorrcctf>d 1.35 Exhaust Flow(kg/hr) 214.0 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 11.8 poly-nexpansioniuncorrectcd 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 •j; 10000 a •JT 8000 » 6000 o o a. 4000 g" 2000 0 I 1 1 1 1 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] Net Heat Release Rate 10000 -2000 ' ' 1 1 • • 1 1 1 -20 -15 -10 -5 0 5 10 15 20 crank angle [deg] Log Pressure vs Volume 1-1 i , i . 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 93 Speed! [RPM] Comments Torque [N-m] Load [%] Data Summary tor filter: 073 . | P max [dog] 10532.12 Date: 1/16/02 CA (. P max [deq] 9.5 Time: 10:03:19 dP/dCA max [bar/deg] 382.558 CA@dP.dCA max [deg] -11.5 Ermine Parameters™ * Average IMEP [bar] 816.40 Speed(RPM) 1598.9 HHR max [kJ/m"3/doq] 8717.3 Load - approx(%) 40.0 IHR max [ k j m"3] 145650.7 Power (kW) 27.2 m MFB [doq w.r.t TDC] -1.0 IMEP (bar) 8.17 10'oMFB [deg w.r.t TDC] 3.0 Pmax(bar) 106.03 50% MFB [deg w.r.t TDC] 11.0 Pmax location (degrees) 368.7 90% MFB! [deg w.r.t TDC] 25.5 Diesel Flow(kg/hr) 0.61279 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 3.65 zero-level.1: pr.:offset[bar] 0.000 Air Flow(kgZhr) 176.9 poly-n compression uncorrected 1.36 Exhaust Flow(kg/hr) 181.2 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 115.0 poly-n expansion uncorrected 1.29 EGR Fraction(%) 11.6 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 12000 10000 V 8000 5 6000 tn o a. 4000 g1 2000 I 1 1 1 i 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 » -2000 -4000 I 1 J 1 ! 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 10- 1 * ' 1 -I 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 94 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 075 P max [deg] 10108.53 Date: 1/16/02 CA @ P max [deg] 1.5 Time: 10:19:51 dP/dCA max [bar/deg] 379.112 CA @ dP/dCA max [deg] -11.5 Enalne Parameters Averaae IMEP [bar] 801.04 Speed(RPM) 1601.7 HHR max [kj/m"3/deg] 9292.0 Load - approx(%) 40.0 IHR max[kJ/m»3] 146236.4 Power (kW) 26.8 5% MFB [deg w.r.t TDC] 0.5 IMEP (bar) 8.02 10% MFB [deg w.r.t TDC] 4.5 Pmax(bar) 102.08 50% MFB [deg w.r.t TDC] 12.5 Pmax location (degrees) 366.0 90% MFB [deg w.r.t TDC] 28.0 Diesel Flow(kg/hr) 0.61991 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.68 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 149.4 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 153.7 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 123.8 poly-n expansion uncorrected 1.29 EGR Fraction(%) 24.8 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 12000 10000 a ~Z 8000 j» 6000 to a) a. 4000 & 2000 0 I . 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 95 Speed [RPM] ' " * Comments Torque [N-m] Load [%] Data Summary for filter: 077 P max [deq] 10553.73 Date: 1/16/02 CA @ P max [deg] 8.0 Time: 10:39:10 dP/dCA max [bar/deq] 396.344 CA @ dP/dCA max [deq] -12.0 Enalne Parameters Average IMEP [bar] 821.63 Speed(RPM) 1603.4 HHR max [kJ/m«3/deg] 8225.0 Load(%) 40.0 IHR max [kJ/m"3] 148785.5 Power (kW) 27.5 5% MFB [deq w.r.t TDC] 0.0 IMEP (bar) 8.23 10% MFB: [deg w.r.t TDC] 2.5 Pmax(bar) 106.31 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 368.2 90% MFB [deq w.r.t TDC] 26.0 Diesel Flow(kg/hr) 0.63 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 3.69 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 210.8 poly-n compression uncorrected 1.33 Exhaust Flow(kgZhr) 215.1 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 10.3 poly-mexpansion uncorrected 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 12000 Is 10000 .O ^ 8000 3> 6000 in 0) Q. 4000 J 2000 0 1 1 I 1 1 1 1 i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 £ -2000 -4000 ' 1 J 1 '• 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume a. 10 1 A i i 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 9 6 Speed [RPM] - Comments Torque [N-m] Load [•.] Data Summary for filter: 079 P max [deg] 12931.37 Date: 1/18/02 CA @ P max [deq] 8.0 Time: 13:57:38 dP/dCAi max [bar/deg] 877.127 C A @ d P dCA max [deg] 0.5 Engine Parameters SfAVeraoe'S IMEP [bar] 1143.64 Speed(RPM) 821.0 HHR max[kJm»3deq] 16945.0 Load(%) 75.0 IHR max [ k j m " 3 ] 201930.9 Power (kW) 19.6 5°/ MFB [deg w r t TDC] -1.5 IMEP (bar) 11.45 10% MFB [deg w.r tTDC] -0.5 Pmax(bar) 129.99 50% MFB [dog w r t TDC] 5.0 Pmax location (degrees) 368.7 9 0 ^ M F B [ d e q w r t T D C ] 21.5 Diesel Flow(kg/hr) 0.58 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.84 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 91.6 poly-n compression uncorrected 1.38 Exhaust Flow(kg/hr) 95.0 poly-n compression corrected 1.38 Exhaust Back Pressure (kPa) 11.7 poly-n expansion uncorret ted 1.35 EGR Fraction(%) 0.0 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] 50 Net Heat Release Rate 2 ^15000 to a> g 310000 £ -I 5000 Ii. <5 0 C -5000 1 1 -10 0 10 crank angle [deg] 20 40 Log Pressure vs Volume 10000 0.0000 0.0025 97 Spood [RPM] Comments Torque [N-m] Load [cc] Data Summary for filter: if081 P max [deq] 12642.40 Date: 1/18/02 CA @P max [deq] 7.5 Time: 14:30:36 dP'dCA max [bar deq] 947.779 CA @ dP/dCA max Idcq] 2.0 Eridihe Parameters Averaqe IMEP [bar] 1099.33 Speed(RPM) 815.1 HHR max[kJ/m"3 deq] 19461.5 Load(%) 75.0 IHR max [kj/m»3] 194264.4 Power (kW) 18.7 5% MFB [deq w.r.t TDC] -1.0 IMEP (bar) 11.01 10% MFB [deq w.r.t TDC] 0.0 Pmax(bar) 126.85 50% MFB [deq w.r.t TDC] 5.0 Pmax location (degrees) 368.1 90% MFB [deq w.r.t TDC] 22.5 Diesel Flow(kg/hr) 0.63 Assumed poly-n during comprn. 1.37 CNG Ftow(kg/hr) 2.74 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 78.0 poly-n compression uncorrected 1.35 Exhaust Flow(kg/hr) 81.4 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 51.6 poly-n expansion uncorrected 1.35 EGR Fraction(%) 12.2 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace 14000 T 12000 to & 10000 o 3 8000 8 6000 ^ 4000 o 2000 0 I i 1 1 i 1 1 i 1 . 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 I 1 1 1 -5000 I 1 J 1 1 1 1 -20 -10 0 10 20 30 40 crank angle [deg] 98 Speed [RPM] Comments Torque|N-m] Load ["J Data Summary for filter: 083 P max [deq] 12524.71 Date: 1/18/02 CA (.!• P max [deg] 7.5 Time: 14:51:15 dP/dCA max [bar/deq] 966.735 CA @ dP/dCA max [dog] 4.5 Engine Parameters ?> Averaael i IMEP [bar] 1064.31 Speed(RPM) 813.3 HHR max [ k j m»3.doq] 22878.0 Load(%) 75.0 IHR m a x [ k j m " 3 ] 187628.5 Power (kW) 18.1 5% MFB [dog w.r.t TDC] -0.5 IMEP (bar) 10.66 10% MFB [deg w.r.t TDC] 1.0 Pmax(bar) 125.92 50% MFB [deq w.r.t TDC] 5.5 Pmax location (degrees) 368.3 90%;MFB [deg w.r.t TDC] 23.5 Diesel Flow(kg/hr) 0.62 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.69 zero :leveLprSbffset [bar] 0.000 Air Flow(kg/hr) 67.5 poly-nicompression:unco! reeled 1.37 Exhaust Flow(kg/hr) 70.8 poly-n compression corrected 1.37 Exhaust Back Pressure (kPa) 55.7 poly-n expansion uncorrected 1.31 EGR Fraction(%) 23.3 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 •zr 12000 n fi 1OO00 o 3 8000 £ 6000 ° ; 4000 o 2000 0 I i 1 1 i 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Log Pressure vs Volume a. 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 0.0000 99 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 087 P max [deq] 12887.84 Date: 1/18/02 CA (» P max [deq] 7.5 Time: 15:07:59 dP/dCA max [bar/deq] 944.333 CA @ dP/dCA max [deq] 0.0 Engine Parameters Average IMEP [bar] 1112.81 Speed(RPM) 822.6 HHR max [kJ/m»3/deq] 17487.6 Load(%) 75.0 IHR max [kJm"3 ] 196396.8 Power (kW) 19.1 5%: MFB [deq w.r.t TDC] -1.5 IMEP (bar) 11.14 10% MFB [deq w.r.t TDC] -0.5 Pmax(bar) 129.45 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.4 90% MFB [dec; w.rtTDC] 21.5 Diesel Flow(kg/hr) 0.61 Assumed poly-n during comprn. 1.37 CNG Flow(kgZhr) • 2.74 zero-level, pr.ioffset [bar] 0.000 Air Fk>w(kg/hr) 91.7 poly-n compression uncoirertpd 1.36 Exhaust Flow(kg/hr) 95.1 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 10.9 poly-n expansion uncorrected 1.36 EGR Fraction(%) 0.0 poly-n expansion cc rrectod 1.36 In-Cylinder Pressure Trace 14000 & 10000 5 8000 8 6000 ^ 4000 0 I J 1 1 1 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 100 Speed [RPM] Comments Torque [N-m] Load [<•,] Data Summary for filter: .089 -P max [deq] 10130.87 Date: 1/21/02 CA @ p max [deg] 6.5 Time: 13:20:32 dP/dCA max [bar/deg] 940.886 CA @ dP/dCA N max [dog] 0.0 Engine Parameters '--Ave'raoeB IMEP [bar] 652.08 Speed(RPM) 803.8 HHR max [kJ m"3deg] 17423.8 Load(%) IHR max[kJ/m"3] 113304.3 Power (kW) 10.9 5% MFB [deg w.r.t TDC] -2.0 IMEP (bar) 6.53 10%MFBi[degw:r.tTDC] -1.0 Pmax(bar) 101.81 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.3 90% MFB [deg w.r.t TDC] 11.5 Diesel Flow(kg/hr) 0.73 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.22 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 72.1 poly-n icom pression; uncor reclPd 1.32 Exhaust Flow(kg/hr) 74.0 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 12.6 poly-n expansion uncorrected 1.37 EGR Fraction(%) 0.0 poly-n expansion corrected 1.37 In-Cylinder Pressure Trace 12000 10000 n V 8000 a 6ooo tD a. 4000 g1 2000 0 I i 1 1 i 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 20000 ! J 5 0 0 0 i 510000 co > < : E 5000 , J£ " 0 -5000 10 c rank angle [deg] 20 30 10000 1000 100 10 1 Log Pressure vs Volume — — _ ^ — , 0.0010 0.0015 vo lume [rr>3] 0.0020 0.0025 0.0030 101 Speed [RPM] si Comments Torque [N-m] Load [%] Data Summary for filter: 091 P max [deq] 9971.47 Date: 1/21/02 CA @ P max [deq] 6.0 Time: 13:42:34 dP/dCA max [bar deq] 894.359 CA <3 dP/dCA max [deq] 0.0 Engine Parameters Averaqe IMEP [bar] 655.76 Speed(RPM) 803.2 HHR max [ k j m»3deg] 16562.2 Load(%) 25.0 IHR max [kj /m"3] 113960.4 Power (kW) 11.0 5%MFB;[deq w.r.t TDC] -1.5 IMEP (bar) 6.57 10%MFB[deqwr. tTDC] -1.0 Pmax(bar) 100.42 50%MFB[deq w.r.t TDC] 2.5 Pmax location (degrees) 366.2 90% MFB [deq w.r.t TDC] 13.5 Diesel Flow(kg/hr) 0.78 Assumed poly-n during ccmprn 1.37 CNG Flow(kg/hr) 1.18 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 61.3 poly-n compression uncorrected 1.29 Exhaust Flow(kg/hr) 63.3 poly-n compression corrected 1.29 Exhaust Back Pressure (kPa) 25.8 poly-n expansion uncorrected 1.31 EGR Fraction(%) 12.6 poly-n expansion corrected 1.31 In-Cyllnder Pressure Trace 12000 "JS 10000 x i V 8000 3 6000 o> a. 4000 & 2000 0 I 1 1 1 1 1 i i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 20000 2 15000 o "3 to 0) 2 510000 A - v y / — A A -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 10000 10 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 102 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 093 P; max [deg] 9627.79 Date: 1/21/02 CA @ P max [deg] 6.0 Time: 14:09:28 dP/dCA max [bar/deg] 827.153 CA @ dP/dCA max [deg] 0.5 Er io lheWarameters l i l f S S ^ M v e r a d e l i IMEP [bar] 655.75 Speed(RPM) 805.2 HHR max [kJ/m»3/deq] 15646.2 Load(%) 25.0 IHR max [k j m"3] 113727.2 Power (kW) 11.0 5% MFB [deg w.r t TDC] -1.0 IMEP (bar) 6.57 10% MFB [dog w.r.t TDC] -0.5 Pmax(bar) 97.02 50% MFB [dog w.r.t TDC] 3.0 Pmax location (degrees) 366.4 90% MFB [deg w.r.t TDC] 15.5 Diesel Flow(kg/hr) 0.85 Assumed: poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.21 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 53.6 poly-n compression uncorrected 1.34 Exhaust Flow(kgZhr) 55.7 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 23.7 poly-n expansion uncorrec led 1.32 EGR Fraction!0/.) 19.8 poly-n expansion corrected 1.32 In-Cyllnder Pressure Trace 12000 " j ; 10000 n o. 4000 g1 2000 0 I i 1 1 1 1 1 1 i 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 103 Speed:[RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 095 .. P max [deg] 10092.62 Date: 1/21/02 CA @ P max [deg] 5.5 Time: 14:28:04 dP'dCA max [bar/deg] 746.161 CA @ dP/dCA max [deg] -0.5 Enqlne Parameters Averaqe IMEP [bar] 648.20 Speed(RPM) 810.1 HHR max [ k J m ^ d e g ] 13505.9 Load(%) 25.0 IHR max [kj/m»3] 113328.7 Power (kW) 11.0 5% MFB [deg w.r.t TDC] -2.0 IMEP (bar) 6.49 10%MFB [ d e g w r t T D C ] -1.0 Pmax(bar) 101.49 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.4 90 MFB [deg w r t TDC] 13.0 Diesel Flow(kg/hr) 0.87 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.20 zero-level, pr. of (set [bar] 0.000 Air Flow(kgZhr) 73.1 poly-n compression uncorrected 1.27 Exhaust Flow(kg/hr) 75.1 poly-n compression corrected 1.27 Exhaust Back Pressure (kPa) 10.5 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 12000 • j ; 10000 -Q ^ 8000 3 6000 O o a. 4000 g- 2000 o i 1 ; 1 1 i 1 ; i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 16000 14000 12000 gioooo 3 8000 ? 6000 ! 4000 3 2000 " 0 -2000 -4000 - /• — — - -/ -20 10 crank angle [deg] 20 40 104 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 101. P max [deq] 10930.08 Date: 1/22/02 CA @ P max [deq] 8.0 Time: 10:17:44 dP/dCA max [bar/deq] 418.746 CA @ dP/dCA max [deq] -11.5 Enaine Parameters Averaaei i IMEP [bar] 816.47 Speed(RPM) 1595.8 HHR max [kJ7mA3/deq] 9244.7 Load(%) 40.0 IHR max[kJ/m»3] 147306.1 Power (kW) 27.2 5% MFB [deq w.r.t TDC] -8.0 IMEP (bar) 8.18 10%:MFB[dogwrtTDC] 2.0 Pmax(bar) 110.11 50%MFB [deg w.r.t TDC] 10.0 Pmax location (degrees) 368.2 90% MFB [deg w.r.t TDC] 24.0 Diesel Flow(kg/hr) 1.15 Assumed poly-n durinq comprn 1.37 CNG Flow(kg/hr) 3.54 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 214.4 poly-n compression uncorrected 1.31 Exhaust F!ow(kg/hr) 219.1 poly-n compression corrected 1.31 Exhaust Back Pressure (kPa) 11.3 poly-n expansion uncorrected 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 12000 • j ; 10000 .C! S. 4000 g- 2000 0 1 1 1 I 1 1 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 : 8000 ' „ 6 0 0 0 j 0 4000 : 1 2000 ! ! ° i 3-2000 ; "-4000 -6000 -8000 ~X TV^ v'—y\ 1—v A-r-^ \JT\I 1 v v w \ N -20 -10 10 crank angle [deg] 30 40 Log Pressure vs Volume 1 -i i 1 \ 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 105 Speed [RPM] • Comments Torque [N-m] Load [%] Data Summary for filter: 103 P max (deq] 10413.07 Date: 1/22/02 CA @ P max [deq] 10.0 Time: 10:38:32 dP'dCA max [bar deq] 408.407 CA@dP/dCA max [deq] -11.5 EridihePararhfMors Averaqe IMEP [bar] 810.18 Speed(RPM) 1614.9 HHR max [kj/m»3/d«q] 9109.8 Load(%) 40.0 IHR max [kJ m A 3] 148646.3 Power (kW) 27.3 5°i MFB [deq w.r t TDC] -1.0 IMEP (bar) 8.11 10%MEB [deq w.r.t TDC] 3.0 Pmax(bar) 104.85 50% MFB [deg w.r.t TDC] 11.0 Pmax location (degrees) 369.4 90% MFB [deq w.r.t TDC] 29.0 Diesel Flow(kg/hr) 0.85 Assumed poly-n durinqcomprn. 1.37 CNG Flow(kg/hr) 3.59 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 156.0 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 160.5 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 116.6 poly-n expansion uncorrected 1.29 EGR Fraction(%) 19.6 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 12000 •=• 10000 n V 8000 » 6000 o Q. 4000 S" 2000 0 I i 1 1 1 1 1 i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 I 8000 « fieooo S § 4000 <D < £ E 2000 re =5 2.1. ° | -2000 ^1000 A - — ^ V W l \ y ^ — i \r\rsr\j\j -20 -10 10 crank angle [deg] 20 30 40 Log Pressure vs Volume a> CL _: 10 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 106 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 105 P max [deg] 10688.65 Date: 1/22/02 CA @ p max [deg] 7.5 Time: 10:54:16 dP/dCAn max [bar/deg] 406.683 CA i j - dP dCA max [deg] -11.5 Enaine Parameters gAveraqe l l IMEP [bar] 825.69 Speed(RPM) 1609.9 HHR max [ k J / m ^ deg] 8744.5 Load(%) 40.0 IHR max [kJ m"3] 151805.9 Power (kW) 27.7 5% MFB [deg w.r.t TDC] -0.5 IMEP (bar) 8.27 10% MFB: [deg w.r.t TDC] 2.5 Pmax(bar) 107.78 50% MFB: [deg w.r.t TDC] 11.0 Pmax location (degrees) 368.4 90% MFB [dog w.r.t TDC] 28.0 Diesel Flow(kg/hr) 0.76 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.66 zero-level.:pr.:offset [bar] 0.000 Air Flow(kg/hr) 181.1 poly-n compression uncorrected 1.27 Exhaust Flow(kg/hr) 185.5 poly-n compression corrected 1.27 Exhaust Back Pressure (kPa) 114.2 poly-n expansion uncorrected 1.19 EGR Fraction(%) 10.1 poly-n expansion corrected 1.19 In-Cylinder Pressure Trace 12000 •=• 10000 V 8000 w 6000 in o a. 4000 g- 2000 o i , 1 1 i 1 ; i i 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 I 1 1 1 2 ^-2000 f " -4000 c -6000 -8000 1 > ' 1 1 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 107 Speed [RPM] Comments Torque [N-m] Load p/ol Data Summary for filter: • ' .107 P max [doq] 10842.38 Date: 1/22/02 CA <H> p max [deg] 7.0 Time: 11:09:04 dP/dCA max [bar/deg] 384.281 CA@dP/dCA max [deg] -11.0 Engine Parameters Averaqe IMEP [bar] 818.64 Speed(RPM) 1600.6 HHR;;;max [kJ/m f t3.deq] 8176.1 Load(%) 40.0 IHR max [kJ.'mA3] 148707.6 Power (kW) 27.3 5% MFB Tdeq w.r.t TDC] -9.5 IMEP (bar) 8.20 10% MFB [deg w.r.t TDC] 1.5 Pmax(bar) 109.22 50% MFB [dec. w.r.t TDC] 10.0 Pmax location (degrees) 368.2 90'-o MFB [deg w.r.t TDC] 25.5 Diesel Flow(kg/hr) 0.77 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) - 3.56 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 214.1 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 218.4 poly-n compression corrected m 1.33 Exhaust Back Pressure (kPa) 11.2 poly-n expansion uncorrected 1.32 EGR Fraction(%) 0.0 poly-n expansion corrected 1.32 In-Cyllnder Pressure Trace 12000 I5 10000 •Q "Z 8000 | 6000 a. 4000 S1 2000 o i i i 1 i I 1 1 i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 108 Speed! [RPM] Comments Torque [N-m] Load [==] Data Summary for filter: ; -109 P max [doq] 10116.31 Date: 1/23/02 CA (Ti P max [deq] 5.5 Time: 10:22:31 dP/dCA max [bar/deg] 887.466 CA @ dP/dCA max [deq] 0.0 Enalne Parameters •',' • AveraoeB IMEP [bar] 648.94 Speed(RPM) 809.9 HHR max [ k J / m ^ d e q ] 16434.6 Load(%) 25.0 IHR max [kJ/m"3] 111722.5 Power (kW) 11.0 5% MFB [deq w.r tTDC] -1.5 IMEP (bar) 6.50 10%MFB[deg w.r.t TDC] -1.0 Pmax(bar) 101.47 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.3 90% MFB [deq w.r.t TDC] 11.5 Diesel Flow(kg/hr) 0.75 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 1.19 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 72.1 poly-n compression uncorrected 1.32 Exhaust Flow(kg/hr) 74.1 poly-n compression corre< ted 1.32 Exhaust Back Pressure (kPa) 10.5 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 12000 | 1 , 1 1 1 ^ 10000 | T 8000 » 6000 to u Q. 4000 & 2000 0 I i 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 18000 | 1 1 1 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 109 Speed [RPM] Comments Torque [N-m] L r 6ad i [ % ] l l l i i i i i i i i l i i l Data Summary for filter: 111 P max [deq] 9896.74 Date: 1/23/02 CA @ P max [deq] 6.0 Time: 10:49:50 dp dCA max [bar dug] 877.127 CA @ dP/dCA max [deg] 1.0 EhqinelParametors Averages IMEP [bar] 669.35 Speed(RPM) 807.0 HHR max [kj/m"3/deg] 16956.3 Load(%) 25.0 IHR max [kj /m"3] 115792.6 Power (kW) 11.3 5% MFB [deg w.r.t TDC] -1.0 IMEP (bar) 6.70 10%MFBi [degwrtTDC] -0.5 Pmax(bar) 99.09 50% MFB [deg w.r.t TDC] 3.0 Pmax location (degrees) 366.4 90%MFB [degwlr.tTDC] 14.0 Diesel Flow(kg/hr) 0.85 Assumed poly-n during ccmprn. 1.37 CNG Flow(kg/hr) 1.21 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 53.6 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 55.6 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 24.0 poly-n expansion uncorrected 1.33 EGR Fraction(%) 20.4 poly-n expansion corrected 1.33 In-Cyllnder Pressure Trace 12000 " j ; 10000 -O 8000 3 6000 tn a> 5. 4000 & 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Log Pressure vs Volume 0) a. 10 -• • - - - -1 I i 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 110 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 113 P max [deq] 10078.11 Date: 1/23/02 CA @ P max [deq] 6.0 Time: 11:15:46 dP'dCA max [bandog] 758.223 CA @ dP/dCA max [deq] 0.0 Enolne Parameters Averaqe IMEP [bar] 669.12 Speed(RPM) 806.1 HHR max [kJ/m»3/deq] 14041.2 Load(%) 25.0 IHR max [kj /m"3] 115986.9 Power (kW) 11.3 5% MFB [deq w r t TDC] -1.5 IMEP (bar) 6.70 10%MFB[deqwr tTDC] -1.0 Pmax(bar) 100.90 50% MFB [deq w.r.t TDC] 3.0 Pmax location (degrees) 366.7 90%MFB [deq w.r.t TDC] 13.5 Diesel Flow(kg/hr) 0.89 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 1.20 zero-level.:pr.:offset:[bdr] 0.000 Air Fiow(kg/hr) 61.1 poly-nxompressidniuncorrocted 1.34 Exhaust Flow(kg/hr) 63.2 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 25.5 poty-n expansion uncorrected 1.33 EGR Fraction(%) 12.8 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 12000 10000 n V 8000 » 6000 8 Q. 4000 5 2000 o i 1 ; 1 i 1 \ 1 i 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 16000 14000 12000 §10000 5 8000 ? 6000 E 4000 3 2000 " 0 -2000 -4000 - = : • -= = f n y V VAA / \ A / \ / " "A—--10 10 crank angle [deg] 30 Log Pressure vs Volume 10000 -i r ^ r 1 1 1 CL _: 10 1 4 • 1 1 i i 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 111 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: : , . '115 P max [deq] 10230.76 Date: 1/23/02 CA <3> P max [deg] 7.0 Time: 11:32:34 dP/dCA max [bar/deq] 761.670 CA@dP dCA max [duq] -0.5 Engine Parameters Average's! IMEP [bar] 662.79 Speed(RPM) 809.4 HHR max [kJ/nT*3/deg] 15420.0 Load(%) IHR max [kJm"3] 114507.7 Power (kW) 11.2 5% MFB [doq w.r.t TDC] -1.5 IMEP (bar) 6.64 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 102.64 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.8 90% MFB [deg w.r.t TDC] 12.0 Diesel Flow(kg/hr) 0.89 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.19 zero-lovel. pr. offset [bar] 0.000 Air Flow(kg/hr) 72.4 poly-n compressioniuncorrectAd 1.35 Exhaust Flow(kg/hr) 74.5 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 10.5 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 12000 Is 10000 .a V 8000 M 6000 w a a. 4000 g- 2000 0 I 1 i 1 1 1 1 I 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 18000 o 16000 ra 14000 O) oJ2000 S -glOOOO £ ft 8000 2 c 6000 (5 5 4000 5 iii 2000 % 0 c -2000 -4000 A A -\ /\A -\; v \ « v\ / \A A A | / v V A A i V A A A / V A A A / \f\ A /v f\ t\ A A / V V v V V v v -20 -10 10 crank angle [deg] 30 10000 1000 4 _: 10 0.0000 Log Pressure vs Volume 0.0005 0.0010 0.0015 vo lume [m3] 0.0025 0.0030 112 Speed! [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: *&:1<19»S Pi:max [deq] 13638.64 Date: 1/24/02 CA @ P max [deq] 8.0 Time: 10:03:58 dP/dCA max [bar/deq] 865.064 CA @ dP/dCA max [deq] -0.5 Engine Parameters Average IMEP [bar] 1190.23 Speed(RPM) 810.0 HHR max[kJm"3'deq] 16406.6 Load(%) 75.0 IHR max [kJ7m«3] 210962.7 Power (kW) 20.1 5%i MFB [deq w.r.t TDC] -2.0 IMEP (bar) 11.92 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 136.80 50% MFB [deq w.r.t TDC] 4.5 Pmax location (degrees) 368.1 90% MFB [deq w.r.t TDC] 23.0 Diesel Flow(kg/hr) 0.60 Assumed poly-n durlnq ccmprn 1.37 CNG Flow(kgmr) 2.91 zero-level.:pr.:offset [bar] 0.000 Air Flow(kgZhr) 93.9 poly-ncompression:uncorrected 1.34 Exhaust Flow(kg/hr) 97.4 poly-n:compressioncorrected 1.34 Exhaust Back Pressure (kPa) 11.8 poly-n expansion uncorrected 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 16000 ^ 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Log Pressure vs Volume Q. _: 10 1-1 1 i ; i i 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 113 Speed [RPM] ' Comments Torque [N-m] Load [%1 P_max [deg] 13109.55 CA @ P max [deq] Data Summary (or filter: Date: Time: 121 1/24/02 10:25:05 dP/dCA_max [barfdeg] CA@dP/dCA max [ d e q f 954.672 0.5 |IMEP[bar] HHR_max [KJ/m rt3/deg] 1154.07 IHR_max[kJ/m"3] 203218.9J 5% MFB [deg w.r.t TDC] 10% MFB [deg w.r.t TDC] -0.5 50% MFB [deg w r t TDC] 4.5 90% MFB [deg w.r.t TDC] 23.0! Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression uncorrected 1.33 poly-n compression correctedis 1.33 poly-n expansion uncorrected 1.31 Engine Parameters' •.Averaged Speed(RPM) 805.5 Load(%) 75.0 Power (kW) 19.4 IMEP (bar) 11.56 Pmax(bar) 131.66 Pmax location (degrees) 368.0 Diesel Flow(kg/hr) 0.59 CNG Flow(kg/hr) 2.89 Air Flow(kgZhr) 76.4 Exhaust Flow(kg/hr) 79.9 Exhaust Back Pressure (kPa) 55.6 EGR Fraction(%) 12.7 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] 50 Net Heat Release Rate 20000 c rank angle [deg] Log Pressure vs Volume Q. _: 10 • • — \ >< o 1 -I 1 1 1 1 — I 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 114 Speed [RPM] Comments Torque [N-m] Load [ c i ] Data Summary for filter: 123 ; P max [deq] 13122.32 Date: 1/24/02 CA e_i> P max [deg] 7.5 Time: 10:42:57 dP/dCA max [bar/deg] 1132.165 CA @ dP/dCA max [deg] 3.5 Enqine Parameters Averaae IMEP [bar] 1131.28 Speed(RPM) 804.0 HHR max [kJ/mM/deg] 24926.2 Load(%) 75.0 IHR max [kj/m"3] 199664.2 Power (kW) 19.0 5% MFB [deg w r.t TDC] -1.0 IMEP (bar) 11.33 10% MFB [deg w.r.t TDC] 0.5 Pmax(bar) 132.05 50% MFB [deg w.r.t TDC] 4.5 Pmax location (degrees) 367.9 90% MFB [deg w.r.t TDC] 25.0 Diesel Flow(kg/hr) 0.61 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 2.87 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 69.1 poly-nxompressioniuncorrected 1.36 Exhaust Flow(kgZhr) 72.6 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 59.1 poly-n expansion uncorrected 1.32 EGR Fraction(%) 22.0 poly-n expansion corrected 1.32 In-Cyllnder Pressure Trace 14000 -10 0 10 crank angle [deg] Net Heat Release Rate 30000 { ; 25000 a eSOOOO W CD 8 §15000 to < i El 0000 re =3 ^ £ 5 0 0 0 | 0 -5000 -20 -10 0 10 c rank angle [deg] 30 Log Pressure vs Volume 1000 0.0000 0.0025 0.0030 115 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: ., 125 P. max (deq] 13438.79 Date: 1/24/02 CA @> P max [deq] 8.0 Time: 10:54:05 dP/dCA max [bar/deq] 839.215 CA @ <fPrdCA max [deq] 0.0 Enoine Parameters Averadelll IMEP [bar] 1188.61 Speed(RPM) 808.9 HHR max [kJ/mA3/deq] 16453.2 Load(%) 75.0 IHRiimax[kJ.m"3] 208946.7 Power (kW) 20.1 5% MFB [deq w.r.t TDC] -2.0 IMEP (bar) 11.90 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 134.89 50% MFB [deq w:r.t TDC] 4.5 Pmax location (degrees) 368.0 90% MFB [deq w.r.t TDC] 21.5 Diesel Flow(kg/hr) 0.63 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 92.8 poly-n compression uncorrected 1.40 Exhaust Flow(kg/hr) 96.3 poly-n compression corrected 1.40 Exhaust Back Pressure (kPa) 9.7 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion correct€d 1.33 In-Cylinder Pressure Trace 16000 ^ 14000 5 12000 2! 1OO00 co 8000 £ 6000 _: 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 2O0O0 I 1 1 1 -5000 I 1 J 1 ! 1 ' -20 -10 0 10 20 30 40 crank angle [deg] 116 Spued [RPM] Comment' Torque[N-m] Load [%] Data Summary for filter: A1 P max [deg] 13143.63 Date: 3/6/02 CA @ P max [deg] 11.0 Time: 11:18:17 dP/dCA max [bar.deg] 865.064 CA (ffi dP/dCA max [deg] 3.5 Enaine Parameters Average IMEP [bar] 1438.73 Speed(RPM) 802.5 HHR max [ k J / m ^ d e g ] 20314.2 Load(%) 75.0 IHR max [kj/m»3] 265458.0 Power (kW) 24.1 5% MFB [deg w.r.t TDC] -5.0 IMEP (bar) 14.41 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 131.68 50% MFB [deg w.r.t TDC] 7.0 Pmax location (degrees) 371.5 90-:., MFB [deg w.r.t TDC] 17.5 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.94 zero-leveLpr. offset [bar] 0.000 Air Flow{kg/hr) 91.3 poly-n compression uncorrected 1.26 Exhaust Flow(kg/hr) 94.4 poly-n compression corrected 1.26 Exhaust Back Pressure (kPa) 10.9 poly-n expansion uncorrected 1.37 EGR Fraction(%) 0.0 poly-n expansion corrected 1.37 In-Cylinder Pressure Trace 14000 T 12000 (0 &. 10000 v a 8000 8 6000 ° ; 4000 o 2000 0 I i 1 1 i 1 i i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 25000 o -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 117 Speed! [RPM] Comments Torque [N-m] Load [" ] Data Summary for filter: A2 P max [deq] 12707.67 Date: 3/6/02 CA P max [deq] 8.0 Time: 11:36:30 dP/dCA max [bar.deq] 877.127 CA @ dP/dCA max :[dcg] 2.5 Engine Parameters Averaqe IMEP [bar] 1112.91 Speed(RPM) 798.7 HHR max [ k j mA3 doq] 19188.0 Load(%) 75.0 IHR max [kJ/m"3] 196126.4 Power (kW) 18.5 5% MFB [deq w.r.t TDC] -1.0 IMEP (bar) 11.14 10%MFB[deqwr tTDC] 0.0 Pmax(bar) 127.20 50% MFB [deq w.r.t TDC] 5.0 Pmax location (degrees) 368.4 90% MFB [dog w.r.t TDC] 21.0 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn. 1.37 CNG Flowfkg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kgZhr) 74.0 polyrHiCompressloniUncorrected 1.34 Exhaust Flow(kg/hr) 77.1 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 53.6 poly-n expansion uncorrec ted 1.31 EGR Fraction(%) 16.5 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 12000 £ . 10000 * 4000 0 I i 1 1 i 1 I i i 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Log Pressure vs Volume 10000 -i e--=_- 1 1 1 CL _j 10 1-1 i 1 i i 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 118 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A3 P max [doq] 12823.35 Date: 3/6/02 CA @ P max [deq] 8.0 Time: 11:52:09 dP/dCA max [bar/deq] 906.422 CA @ dP/dCA max [deg] 1.0 Engine Parameters Averaqe IMEP [bar] 1127.32 Speed(RPM) 798.8 HHR max [kJ/m r t3/deg] 18423.7 Load(%) 75.0 IHR max[k j /m"3] 197818.7 Power (kW) 18.8 5%MFB[degw.r.t TDC] -1.5 IMEP (bar) 11.29 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 128.32 50% :MFB [deq w r t TDC] 5.0 Pmax location (degrees) 368.4 90-. MFB [deq w.r.t TDC] 20.0 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.95 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 80.3 poly-n compression uncorrected 1.36 Exhaust Flow(kg/hr) 83.4 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 51.5 poly-n expansion uncorrected 1.33 EGR Fraction(%) 8.8 poly-n expansion corrected 1.33 In-Cyllnder Pressure Trace 14000 a 10000 o 3 8000 8 6000 ^ 4000 0 I i 1 1 1 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] 119 Speed![RPM] Comments Torque [N-m] Load M Data Summary for filter: • ; - ;A4 , , P max [deq] 13051.66 Date: 3/6/02 CA n, p max [deq] 8.0 Time: 12:10:02 dP/dCA max [bar/deq] 927.100 CA i j . dP.dCA max [deq] 1.0 Enaine Parameters AveraqeYH IMEP [bar] 1138.87 Speed(RPM) 801.5 HHR max [kj/m' l3/deg] 18065.5 Load(%) 75.0 IHR max [k j m»3] 200423.8 Power (kW) 19.0 5% MFB [deq w.r.t TDC] -2.0 IMEP (bar) 11.40 10- MFB [dog w.r t TDC] -0.5 Pmax(bar) 130.79 50% MFB [doq w.r.t TDC] 5.0 Pmax location (degrees) 368.4 90%MFB [doq w r t TDC] 19.5 Diesel Flow(kg/fir) 0.17 Assumed poly-n during comprn 1.37 CNG Flow(kgmr) 2.91 zero-level, pr. of f set i [bar] 0.000 Air Flow(kg/hr) 91.0 poly-n compresslon uncoi rerted 1.35 Exhaust Flow(kg/hr) 94.1 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 11.5 poly-n expansion uncorrected 1.32 EGR Fraction(%) 0.0 poly-n expansion corrected 1.32 In-Cylinder Pressure Trace 14000 T 12000 ra &. 10000 o> 3 8000 0 I i I 1 i 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 120 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A5 P max [deg] 9571.13 Date: 3/6/02 CA @ P max [deg] 5.5 Time: 12:24:34 dP/dCA max [bar/deg] 918.484 CA @ dP/dCA max [dog] 1.5 Endfne Pararrii Averaoe IMEP [bar] 505.24 Speed(RPM) 799.4 HHR max [kJ m»3doq] 18160.8 Load(%) 25.0 IHR max [kj/m"3] 89835.8 Power (kW) 8.4 5% MFB [dog w r t TDC] -5.0 IMEP (bar) 5.06 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 96.14 50% MFB [deg w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.16 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.24 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 71.8 poly-n compression uncorrected 1.29 Exhaust Flow(kg/hr) 73.2 poly-ncompressloni corrected 1.29 Exhaust Back Pressure (kPa) 14.3 poly-n expansion uncorrected 1.34 EGR Fraction(%) 0.0 poly-n expansion corrected 1.34 In-Cylinder Pressure Trace 12000 i 1 1 1 1 1 0 I i 1 1 i 1 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 20000 c -5000 I '• J 1 i 1 1 -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume a. 10- * — * - — -1 -I 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 121 Speed [RPM] Comment! Torque [N-m] Load ["-] Data Summary for filter: •\6. •< R max [deq] 9519.50 Date: 3/6/02 CA @ P max [deg] 5.0 Time: 12:47:31 dP/dCA max [bar/deq] 932.270 CA (3 dP/dCA max [deq] 1.0 Enoine Parameters Averaqe IMEP [bar] 497.88 Speed(RPM) 795.5 HHR max [kJ/m»3/deg] 17972.4 Load - approx(%) 25.0 IHR max[kJ/m»3] 88180.6 Power (kW) 8.3 5% MFB [deg w.r.t TDC] -5.0 IMEP (bar) 4.99 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 95.40 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.6 90% MFB [deq w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.16 Assumed poly-n durlnq comprn. 1.37 CNG Flow(kg/hr) 1.21 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 64.1 poly-nTcompressioniuncorrected 1.30 Exhaust Flow(kg/hr) 65.5 poly-n compression corrected 1.30 Exhaust Back Pressure (kPa) 23.1 poly-n expansion uncorrected 1.36 EGR Fraction(%) 9.2 poly-n expansion corrected 1.36 In-Cylinder Pressure Trace -50 ^10 -30 -10 0 10 crank angle [deg] 20 Net Heat Release Rate S i= 5000 to — j ~ „ -I - „ x \ v ~ -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 122 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A7 P max [deq] 9480.36 Date: 3/6/02 CA @ P max [deq] 5.5 Time: 15:07:01 dP/dCA max [bar/deg] 863.341 CA <a dP/dCA max [deg] 1.5 Engine Parameters Averaqe IMEP [bar] 488.97 Speed(RPM) 785.3 HHR max[kj/m»3/deg] 17094.7 Load - approx(%) 25.0 IHR max [kJ/m*3] 87227.9 Power (kW) 8.0 5%MFB[degw.r. tTDC] -5.0 IMEP (bar) 4.90 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 95.18 50% MFB [deg w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.15 zerorlevel. pr. offset [bar] 0.000 Air Flow(kg/hr) 56.4 poly-n compression uncorrected 1.28 Exhaust Flow(kg/hr) 57.7 poly-n compression corrected 1.28 Exhaust Back Pressure (kPa) 27.2 poly-n expansion uncorrected 1.35 EGR Fraction(%) 23.8 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace -10 0 10 c rank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 123 Speed [RPM] Comments Torque [N-m] Load[%! Data Summary for filter: A8 P max [deq] MM 9583.31 Date: 3/6/02 CA @ P max [deq] 5.0 Time: 15:16:05 dPIdCA max [bar/deg] 1011.539 CA @ dP/dCA max [deg] 1.0 Enqihe Parameters " A v e r a g e s IMEP [bar] 482.89 Speed(RPM) 790.8 HHR max [kj/m«3/deg] 19463.9 Load - approx(%) 25.0 WR max[kj /m*3] 86284.2 Power (kW) 8.0 5% MFB [deg w.r.t TDC] -6.0 IMEP (bar) 4.84 10% MFB[deq w.r.t TDC] -1.5 Pmax(bar) 95.95 S0%MFB [deg w.r.t TDC] 1.0 Pmax location (degrees) 365.5 90% MFB [deg w.r.t TDC] ! 7.0 Diesel Flow(kg/hr) 0.17 Assumed poly-n durinq comprn 1.37 CNG Flow(kg/hr) 1.16 " zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 71.9 poly-n compression uncoi rectcd 1.29 Exhaust Flow(kg/hr) 73.2 poly-n compression corrected 1.29 Exhaust Back Pressure (kPa) 14.2 poly-n expansion uncorrected 1.36 EGR Fraction(%) 0.0 poly-n expansion cc rrcctcd 1.36 In-Cylinder Pressure Trace 12000 10000 V 8000 3 6000 <o 4) a. 4000 J 2000 0 I 1 1 1 i 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 25000 •g 20000 M 515000 8 3 "5 ?10000 1 E 2 =3 5000 J: £ «5 o c -5000 J -20 -10 10 c rank angle [deg] 20 30 10000 100 10 Log Pressure vs Volume 0.0005 0.0010 0.0015 vo lume [m3] 0.0020 0.0030 124 Speed [RPM] I; Comments Torque [N-m] Load [%] P max [deq] CA @ P max [deq] 5.0 Data Summary for filter: Date: Time: • ,'A9 3/6/02 15:45:07 dP/dCA max[bar/deq] 921.931 CA;@ dP/dCA_max [deg] IMEP [bar! 510.66 HHR max [kj/m"3/deg] 17773.4 IHR max[kJ/m"3] 5% MFB [deq w.r.t TDC] ~ 110% MFB [deg w.r.t TDC]~ 90191.6 -4.5 -1.0 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] Assumed poly-n during comprn. zero-level, pr. offset [bar] poly-n compression J uncorrected poly-n compression correi led poly-n expansion uncorrer led 1.37 0.000 I poly-n expansion corrected 1.32 Engine Parameters Average 1.32 ;Speed(RPM) 7917 Load - approx(%) 25.0 Power (kW) 8.4 IMEP (bar) 5.11 Pmax(bar) 96.81 Pmax location (degrees) 365.7 Diesel Flow(kgZhr) 0.17 |CNG Flow(kg/hr) 1.20 |Air Flow(kg/hr) 63.1 Exhaust Flow(kgZhr) 64.5 Exhaust Back Pressure (kPa) 23.2 EGR Fraction(%) 11.3 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] Net Heat Release Rate 2 15000 8 ¥ g 510000 -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 125 Speed [RPM] Comments Torque :|N-m] L o j d f ] Data Summary for filter: A10 " P max [deq];;;;; 9692.32 Date: 3/6/02 CA (5> P max [deq] 5.5 Time: 15:59:31 dP'dCA max [bar deq] 937.440 CA @ dP/dCA max [deq] 0.5 Engine Parameters Averaoe IMEP [bar] 505.99 Speed(RPM) 797.5 HHR max [kj/m*3/deg] 17696.5 Load - approx(%) 25.0 IHR max [kJ/m"3] 89622.6 Power (kW) 8.4 5% MFB [deq w.r.t TOC] -4.5 IMEP (bar) 5.07 10% MFB [degw.r tTDC] -1.5 Pmax(bar) 97.15 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.7 90% MFB [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.17 Assumed poly-n durinq comprn 1.37 CNG Flow(kg/hr) 1.22 zero-level..pr. offset [bar] 0.000 Air Flow(kg/hr) 72.7 poly-nfcompressionluncorrected 1.28 Exhaust Flow(kg/hr) 74.1 poly-n compression corrected 1.28 Exhaust Back Pressure (kPa) 10.2 poly-n expansion uncorrected 1.34 EGR Fraction(%) 0.0 poly-n expansion corrected 1.34 In-Cyllnder Pressure Trace 12000 " j ; 10000 Si V 8000 w 6000 M O a. 4000 g- 2000 o i 1 1 1 i 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 -5000 I ! J 1 ! 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 10000 a 10 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 126 ! Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: E3B!i!lliI P max [deq] 10596.23 Date: 3/7/02 CA @ P max [deq] 8.0 Time: 10:17:27 dP/dCA max [bar/deg] 422.193 CA @ dP/dCA max [deg] -10.5 Engine Parameters Average IMEP [bar] 838.81 Speed(RPM) 1613.7 HHR max [kJ/m*3/deg] 8436.7 Load - approx(%) 40.0 IHR max [kj/m«3] 152283.0 Power (kW) 28.2 5% MFB [deg w.r.t TDC] -10.5 IMEP (bar) 8.40 10% MFB [deg w.r.t TDC] 0.5 Pmax(bar) 106.57 50% MFB [deg w.r.t TDC] 10.0 Pmax location (degrees) 368.3 90% MFB [deg w.r.t TDC] 23.5 Diesel Flow(kg/hr) 0.32 Assumed: poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.83 zero-level. : pr. offset [bar] 0.000 Air Flow(kg/hr) 212.1 poly-n compression:uncoirocted 1.36 Exhaust Flow(kg/hr) 216.3 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 11.1 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cyllnder Pressure Trace 12000 ! ; 10000 n 8000 H 6000 tn to a. 4000 S" 2000 0 I i 1 1 i 1 i i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Log Pressure vs Volume a. 10 • - - - - - — •••• j - — 1 A 1 1 1 1 I 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 127 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: •!> A 1 2 P max [deq] 10701.11 Date: 3/7/02 CA:@:P max [deq] 8.5 Time: 10:33:02 dP'dCA max [bandeq] 417.023 CA (5> dP/dCA max [deq] -10.0 Endine Parameters Averaoe IMEP [bar] 850.45 Speed(RPM) 1598.6 HHR max [kJ/m"3/deq] 8491.1 Load - approx(%) 40.0 IHR max[kj,m«3] 152640.8 Power (kW) 28.4 5% MFB [deq w.r.t TDC] -6.0 IMEP (bar) 8.52 ' 10"oMFB[deq w.r.t TDC] 2.0 Pmax(bar) 107.39 50% MFB [deq w.r.t TDC] 10.5 Pmax location (degrees) 369.2 90% MFB [deq w.r.t TDC] 24.0 Diesel Flow(kg/hr) 0.32 Assumed poly-n durlnq comprn. 1.37 CNG Flow(kg/hr) 3.85 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 178.8 poly-n compression uncorrected 1.36 Exhaust Flow(kg/hr) 182.9 poly-n compressiomcorrected 1.36 Exhaust Back Pressure (kPa) 119.5 poly-n expansion uncorrec ted 1.30 EGR Fraction(%) 12.8 poly-n expansion corrected 1.30 In-Cyllnder Pressure Trace 12000 •=• 10000 n 8000 3 6000 to a. 4000 S1 2000 o i ; 1 1 1 1 1 i i * • -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 I 1 T 1 JS -2000 — • - - • - - 1 -4000 I J ' ' ' -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 128 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A13 P max [deg] 10509.33 Date: 3/7/02 CA @P max [deg] 8.5 Time: 10:47:06 dP/dCA max [bar/degl 434.255 CA (5> dP/dCA max [deg] -10.0 Enoine Parameters Average M IMEP [bar] 839.08 Speed(RPM) 1602.6 HHR max[kJ/m"3/deg] 8439.0 Load - approx(%) 40.0 IHR max [kj/m»3] 152566.0 Power (kW) 28.1 5% MFB [deg w.r.t TDC] -9.5 IMEP (bar) 8.40 10% MFB [dog w.r.t TDC] 1.0 Pmax(bar) 105.56 50% MFB [deg w.r.t TDC] 11.0 Pmax location (degrees) 369.5 90% MFB [dog w.r.t TDC] 25.0 Diesel Flow(kg/hr) 0.32 Assumed poly-n durlnq comprn 1.37 CNG Flow(kg/hr) 3.82 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 157.4 poly-n compression uncorrected 1.36 Exhaust Flow(kg/hr) 161.5 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 124.7 poly-n expansion uncorrec ted 1.32 EGR Fraction(%) 22.6 poly-n expansion corrected 1.32 In-Cylinder Pressure Trace 12000 10000 co .o "JT 8000 » 6000 W o a. 4000 S1 2000 0 I 1 1 1 i 1 1 i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 I 1 T 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume Q. 10 • t - •, 1 A 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 129 Speed [RPM] Comments Torque ]N-m] Load [%] Data Summary for filter: - B1, R max [deq] 10676.23 Date: 4/8/02 CA <5> P max [deq] 6.5 Time: 13:27:23 dP/dCA max [bar/deq] 415.300 CA @ dP/dCA max [deq] -10.5 Enoine Parameters Averaqe IMEP [bar] 338.05 Speed(RPM) 1608.6 HHR max [kj/m"3ldeq] 8566.2 Load - approx(%) 40.0 IHR max![kj/m"3] 151603.4 Power (kW) 28.1 5% MFB [doq w.r.t TDC] -8.0 IMEP (bar) 8.39 10% MFB [deq w.r.t TDC] 1.5 Pmax(bar) 107.19 50% MFB [deq w r t TDC] 10.5 Pmax location (degrees) 368.0 90% MFB [deg w.r.t TDC] 24.0 Diesel Flow(kg/hr) 0.27 Assumed poly-n during ccmprn 1.37 CNG Flow(kg/hr) 3.67 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 213.1 poly-n:compression uncorrented 1.31 Exhaust Flow(kg/hr) 217.0 poly-n compression corrected 1.31 Exhaust Back Pressure (kPa) 11.9 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 12000 £ 10000 V 8000 » 6000 a. 4000 5 2000 0 I 1 1 1 1 1 1 1 i > 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 10000 i 1 1 1 » -2000 - r —• - — - - - " - --4000 I 1 1 ' -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume a. 10 - - — • - t — " 1 -I 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 130 Speed [RPM] •Comments Torque [N-m] Load [%] Data Summary for filter: B2 P max [deq] 10632.76 Date: 4/8/02 CA C P max [doq] 8.0 Time: 13:31:39 dP/dCA max [bar/dcq] 418.746 CA @ dP/dCA max [deq] -11.0 Engine Parameters AvefaqelS IMEP [bar] 816.89 Speed(RPM) 1618.1 HHR max [kj/m"3/deg] 8058.0 Load - approx(%) 40.0 IHR max [k j m"3] 146438.5 Power (kW) 27.6 5% MFB [deg w.r.t TDC] -7.5 IMEP (bar) 8.18 10%MFB[deqw.r tTDC] 1.5 Pmax(bar) 106.62 50% MFB [deq w r t TDC] 10.5 Pmax location (degrees) 368.0 90'. J MFB [deg w.r.t TDC] 24.0 Diesel Flow(kg/hr) 0.32 Assumed poly-n during comprn: 1.37 CNG Flow(kg/hr) 3.67 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 212.7 poly-n compression uncorrected : 1.33 Exhaust Flow(kg/hr) 216.7 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.7 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cyllnder Pressure Trace 12000 10000 Si ^ 8000 a 6000 tn a a. 4000 S1 2000 o i ; 1 1 • 1 1 i * i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 <5 -2000 - - t - - - — -t - — " ' ' -4000 I J 1 ' ' -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 131 Speed [RPM] Comments Torque [N-m] Load M Data Summary for filter: B3 f f l P max [deq] 10632.80 Date: 4/8/02 CA @ P max [deq] 8.0 Time: 13:41:56 dP/dCA max [bar/deq] 418.746 CA @ dP/dCA max [deq] -11.0 Enqlne Parameters Averaqetll IMEP [bar] 816.89 Speed(RPM) 1620.0 HHR max [kJ/m»3 doq] 8058.1 Load - approx(%) 40.0 IHR max [kJm«3] 146442.4 Power (kW) 27.6 5% MFB [deg w r t TDC] -7.5 IMEP (bar) 8.18 10%MEB[degwr tTDC] 1.5 Pmax(bar) 106.62 50% MFB [deq w.r.t TDC] 10.5 Pmax location (degrees) 368.0 90% MFB [deq w.r.t TDC] 24.0 Diesel Flow(kg/hr) 0.25 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 3.65 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 212.8 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 216.7 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.8 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 12000 "{j 10000 n V 8000 jo 6000 CO o a 4000 g- 2000 0 I i 1 1 I 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 <S -2000 — - - - - - - • - - - - - - - - — - " - - --4000 I J > ' ' -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 132 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: B4 P max [deg] 10691.37 Date: 4/8/02 CA @ P max [deg] 7.5 Time: 13:53:09 dP/dCA max [bar/deg] 429.086 CA @ dP/dCA max [dog] -11.0 Enqlne Parameters ; Averaqe IMEP [bar] 821.27 Speed(RPM) 1614.8 HHR max[kJ/m"3/deg] 7941.5 Load - approx(%) 40.0 IHR max[kJ/m"3] 148012.3 Power (kW) 27.7 5%:MFB [ d e g w r t T D C ] -9.5 IMEP (bar) 8.22 10%;MFB [deg w.r.t TDC] 0.5 Pmax(bar) 107.10 50% MFB [deq w.r.t TDC] 10.5 Pmax location (degrees) 367.9 90-w MFB [deg w.r.t TDC] 24.0 Diesel Flow(kg/hr) 0.36 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 3.64 zero-level.pr.otfset [bar] 0.000 Air Flow(kg/hr) 212.5 poly-ncompresslon uncorrected 1.34 Exhaust Flow(kg/hr) 216.5 poly-n compressionicorrected 1.34 Exhaust Back Pressure (kPa) 11.8 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 • j ; 10000 n V 8000 3 6000 co v O. 4000 S" 2000 0 I 1 1 1 1 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 133 Speed [RPM] Comments Torque [N-m] Load p'-] Data Summary for filter: B5 P max [deg] 10615.56 Date: 4/8/02 CA @ p max [deg] 7.5 Time: 14:03:47 dP/dCA max [bar/deg] 398.067 CA <g> dP/dCA max [deg] -11.0 Enaine Paramoters Averaoe IMEP [bar] 815.60 Speed(RPM) 1611.8 HHRfmax [kj/m"3/deg] 7650.8 Load - approx(%) 40.0 IHR max[kJ7m"3] 149512.2 Power (kW) 27.4 5% MFB [deq w.r t TDC] -10.5 IMEP (bar) 8.17 10% MFB [deq w.r.t TDC] 0.5 Pmax(bar) 106.48 50% MFB [deq w.r.t TDC] 10.5 Pmax location (degrees) 367.9 90%iMFB [doq w r.t TDC] 24.5 Diesel Flow(kg/hr) 0.30 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 3.67 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 212.4 poly-nicompressloniuncoirected 1.33 Exhaust Flow(kg/hr) 216.4 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.8 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion ccrrected 1.30 In-Cylinder Pressure Trace 12000 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.O015 0.0020 0.0025 0.0030 v o l u m e [m3] 134 Speed [RPM] Comments Torque [N-m] Load [%] P max [deg] 11044.34 CA @ P_max [deg] 9.5 Data Summary for filter: Date: Time: B6 4/8/02 14:15:04 dP/dCA max [bar/deg] CA <5» dP/dCA max [deg] -8.5 IMEP [bar] 1067.05 HHR_max [kJ/m"3/deg] IHR_max [kj7m"3] 201939.6 5% MFB [deg w.r.t TDC] -8.0 10% MFB [deg w.r.t TDC] -3.5 50% MFB [deg w.r.t TDC] 90% MFB [deg w.r.t TDC] 21.5 Assumed poly-n during comprn. 1.37 zero-level, pr. offset [bar] 0.000 poly-nicompressloniuncorrected.:.. poly-n compression corrected poly-n expansion uncorrected Engine Parameters Average Speed(RPM) 1562.1 Load - approx(%) Power (kW) 34.8 IMEP (bar) 10.68 Pmax(bar) 110.77 Pmax location (degrees) 370.1 Diesel Flow(kg/hr) 0.28 CNG Flow(kg/hr) 3.57 Air Flow(kg/hr) 210.6 Exhaust Flow(kg/hr) 214.4 Exhaust Back Pressure (kPa) 106.3 EGR Fraction(%) 0,0 poly-n expansion corrected 1.38 In-Cylinder Pressure Trace 12000 -50 -40 -30 -10 0 10 crank ang le [deg] 20 Log Pressure vs Volume Q. 10 - - — ( — - - -- - —- • - -J 1 . . . r 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 v o l u m e [m3] 135 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: B7 P max [deg] 10575.64 Date: 4/8/02 CA @ P max [deg] 6.5 Time: 14:23:24 dP/dCA max [bar/deg] 404.960 CA @ dP/dCA max [deg] -10.5 Engine Parameters Averaqe IMEP [bar] 809.37 Speed(RPM) 1613.5 HHR max [kJ/m«3/deg] 8006.1 Load - approx(%) 40.0 IHRi' max [kJ/mA3] 146670.0 Power (kW) 27.2 5% MFB [deg w.r.t TDC] -9.0 IMEP (bar) 8.10 10". MFB [deg w.r.t TDC] 1.5 Pmax(bar) 106.26 50% MFB [deg w.r.t TDC] 10.5 Pmax location (degrees) 367.6 90% MFB [deg w.r.t TDC] 24.5 Diesel Flow(kg/hr) 0.31 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.64 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 212.4 poly-nxompression:uncoirect(;d 1.33 Exhaust Flow(kg/hr) 216.4 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.8 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 12000 10000 co a ^ 8000 JS 6000 CD a. 4000 S" 2000 0 I . 1 1 . 1 1 . 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 S 8000 co 0 "5)6000 CO CD S S 4000 CD < ; £ 2000 CO =S 1 -2000 -4000 - - r\ J\JV\J\J\J -20 -10 10 crank angle [deg] 20 30 40 Log Pressure vs Volume 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 136 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 88 P max [deg] 10960.93 Date: 4/8/02 CA @:P max [deg] 7.5 Time: 14:32:56 dP/dCA max [bar/deg] 418.746 CA @ dP/dCA max [deg] -11.0 Enfiine Parameters Averaqe IMEP [bar] 821.69 Speed(RPM) 1578.9 HHR max [kj/m"3/deg] 8234.3 Load - approx(%) 40.0 IHR max[k j /m"3] 147950.0 Power (kW) 27.1 5% MFB [deg w.r.t TDC] -6.0 IMEP (bar) 8.23 10%MFB[defl w.r.t TDC] 1.5 Pmax(bar) 109.92 50% MFB [deg w.r.t TDC] 10.5 Pmax location (degrees) 367.8 90% MFB [deq w.r.t TDC] 23.5 Diesel Flow(kg/hr) 0.27 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.63 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 210.9 poly-n compression uncorrected 1.32 Exhaust Flow(kg/hr) 214.8 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 103.9 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cyllnder Pressure Trace 12000 •=• 10000 S1 2000 0 I , 1 1 . 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 i 1 1 1 -4000 1 1 J 1 1 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 0.0000 1 3 7 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: : s ; : " B 9 l i l P max [deq] 10689.62 Date: 4/8/02 CA @ P max [deq] 9.0 Time: 15:06:44 dP/dCA max [bar/deq] 418.746 CA @ dP/dCA max [doq] -10.5 EndiriePafamoters Averaqe IMEP [bar] 809.83 Speed(RPM) 1573.5 HHR max [kJ/m'3deq] 9002.7 Load - approx(%) 40.0 IHR max [kJ/m«3] 147222.2 Power (kW) 26.6 5% MFB [deq w.r.t TDC] -8.0 IMEP (bar) 8.11 10"r MFB [dog w.r.t TDC] 2.0 Pmax(bar) 107.34 50% MFB [deg w r.t TDC] 10.5 Pmax location (degrees) 369.4 90% MFB [deq w r t TDC] 24.0 Diesel Flow(kg/hr) 0.27 Assumed poly-n during ccmprn 1.37 CNG Flow(kg/hr) 3.58 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 166.7 poly-n compressloniuncorrected 1.33 Exhaust Flow(kg/hr) 170.5 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 131.7 poly-n expansion uncorrected 1.30 EGR Fraction(%) 17.7 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 12000 10000 n ^ 8000 « 6000 o o o. 4000 S" 2000 0 I 1 1 1 i 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Log Pressure vs Volume 10- — - - } — | 1 -I 1 1 1 - r 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [ m 3 ] 138 Speed! [RPM] Comments Torque[N-m] Load M Data Summary for filter: B10 P max [deg] 10800.41 Date: 4/8/02 CA @ P max [deg] 7.5 Time: 15:17:18 dP/dCA max [bar/deg] 418.746 CA <g> dP/dCA max |dcg] -11.0 Engine Parameters Averages IMEP [bar] 825.43 Speed(RPM) 1595.3 HHR max [kj/m"3/deg] 8521.6 Load - approx(%) 40.0 IHR max [k j m"3] 150258.3 Power (kW) 27.5 5% MFB [deq w.r tTDC] -9.0 IMEP (bar) 8.26 10c=MFB[dcgwr.t TDC] 1.0 Pmax(bar) 108.33 50% MFB [dog w.r.t TDC] 11.0 Pmax location (degrees) 368.1 90-.. MFB [deg w r.t TDC] 25.0 Diesel Flow(kg/hr) 0.38 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr)" 3.64 zero-level.:pr::Of1set:[bar] 0.000 Air Flow(kg/hr) 166.3 poly-n;com essioniuncorrected 1.33 Exhaust Flow(kg/hr) 170.4 poly-nxompresslonxorrected 1.33 Exhaust Back Pressure (kPa) 132.7 poly-n expansion uncorrected 1.28 EGR Fraction(%) 16.7 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 12000 "JS 10000 ro a ^ 8000 w 6000 in o 5. 4000 g1 2000 0 I i 1 i i 1 1 i * * ' -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 139 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: B11 P max [deq] 10602.66 Date: 4/8/02 CA •." P max [deq] 9.0 Time: 15:25:42 dP/dCA max [bar/deq] 417.023 CA @ dP/dCA i max [deq] -11.0 Enqine Parameters Averaoe IMEP [bar] 828.33 Speed(RPM) 1597.2 HHRiimax:[kJ/m»3/deq] 8788.5 Load - approx(%) 40.0 IHR max [kJm"3] 149638.8 Power (kW) 27.6 5% MFB [deq w.r.t TDC] -6.5 IMEP (bar) 8.29 10% MFB [deq w.r.t TDC] 2.5 Pmax(bar) 106.49 50% MFB [doq w.r.t TDC] 11.0 Pmax location (degrees) 369.1 90%:MFBi [deqiwiMITDC] ! I ! i ! ! i l ! ! | H i » 25.5 Diesel Flow(kg/hr) 0.32 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 3.70 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 166.2 poly-n compression uncorrected 1.33 Exhaust Flow(kgZhr) 170.3 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 133.1 poly-n expansion uncorrected 1.31 EGR Fraction(%) 16.9 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 10000 to A ^ 8000 to 6000 to tu o. 4000 2000 0 I 1 1 1 1 1 i . < i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate - y \ J \ / V \ u r V \ J -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 140 Speed [RPM] Comments Torque] N-m] Load [%] Data Summary for filter: , B12 R max [deq] 10635.55 Date: 4/8/02 CA @ P max [deg] 7.5 Time: 15:34:43 dP/dCA max [bar deq] 422.193 CA @ dP/dCA max [deq] -11.0 Enaine Parameters Averaqe IMEP [bar] 828.21 S p e e d (RPM) 1595.9 HHR max [kj ,m«3deq] 8478.2 Load - approx(%) 40.0 IHR max [kJym»3] 151825.2 Power (kW) 27.6 5% MFB [dog w.r.t TDC] -9.5 IMEP (bar) 8.29 10 C°MFB [deq w.r.t TDC] 1.0 Pmax(bar) 106.75 50%:MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 368.8 90% MFB [deq w r 1 TDC] 26.0 Diesel Flow(kg/hr) 0.36 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 3.65 zerorlevel. pr: offset [bar] 0.000 Air Flow(kg/hr) 166.2 poly-n compression uncoi rerted 1.33 Exhaust Flow(kg/hr) 170.2 poly-n compressionicorrected 1.33 Exhaust Back Pressure (kPa) 133.1 poly-n expansion uncorrected 1.31 EGR Fraction(%) 16.6 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 1; 10000 CO S1 2000 0 I i 1 1 1 1 1 i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] 141 Speed [RPM] Comments Torque [N-m] Load [°=] Data Summary for filter: B13 P max [deg] 9531.03 Date: 4/8/02 CA @ P max [deg] 9.5 Time: 15:51:09 dP/dCA max [bar/deg] 361.879 CA @ dP/dCA max [deg] -9.5 Engine Parameters i Average IMEP [bar] 878.76 Speed(RPM) 1606.8 HHR m a x I k J m r j d i j g ] 9031.4 Load - approx(%) 40.0 IHR max [k j m A 3] 161135.0 Power (kW) 29.5 5°/. MFB [deg w.r.t TDC] -9.5 IMEP (bar) 8.80 10%:MFB [deg w.r.t TDC] -2.5 Pmax(bar) 95.64 50% MFB: [dep. w.r.t TDC] 10.0 Pmax location (degrees) 370.0 90% MFB [deg wir.t TDC] 22.5 Diesel Flow(kg/hr) 0.30 Assumed poly-n during ccmprn 1.37 CNG Flow(kg/hr) 3.61 zero7level.:pr.:0ffset:[bar] 0.000 Air Flow(kg/hr) 185.3 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 189.2 poly-n compression corrected 1.33 ) Exhaust Back Pressure (kPa) 11.0 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 •=" 10000 Xi ^ 8000 jo 6000 to o a. 4000 S1 2000 0 I 1 1 1 1 1 1 i i . 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 10000 8000 D>6000 S 4000 E 2000 3 0 -2000 -4000 r A A / - N / / " N v V -20 20 30 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 142 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: - C1 P max [deq] 1 12947.39 Date: 4/9/02 CA (!• P max [doq] 8.0 Time: 10:23:51 dP/dCA max [bar/deg] 906.422 CA @ dP/dCA max [deq] 1.0 Enqine Parameters Average IMEP [bar] 1137.49 Speed(RPM) 805.9 HHR max [kj/m"3/dcq] 17653.9 Load - approx(%) 75.0 IHR max[kJ/m"3] 199383.6 Power (kW) 19.1 5% MFB [deg w r.t TDC] -1.0 IMEP (bar) 11.39 10% MFB [deq w.r.t TDC] 0.0 Pmax(bar) 129.63 50% MFB [doq w r t TDC] 5.0 Pmax location (degrees) 368.5 90- • MFB [deq w r.t TDC] 20.5 Diesel Flow(kgmr) 0.16 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.92 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 89.2 poly-mcompressioniuncoi reeled 1.34 Exhaust Flow(kg/hr) 92.3 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 10.4 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 •Z? 12000 ra £. 10000 o 3 8000 8 6000 ^ 4000 0 I 1 1 1 i 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 I 1 1 1 -5000 ' 1 1 1 1 1 ' -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 143 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: • C2 P max [deq] 12962.57 Date: 4/9/02 CA @ P max [deg] 8.0 Time: 10:34:31 dP/dCA max [bar/deq] 904.698 CAi@idP/dCA max [deq]iii 1.0 Engine Parameters Averages IMEP [bar] 1140.73 Speed(RPM) 805.1 HHR max [kJ/m"3/deg] 17621.2 Load - approx(%) 75.0 IHR max[kJ/m"3] 200728.6 Power (kW) 19.2 5% MFB [deg w.r.t TDC] -1.0 IMEP (bar) 11.42 10% MFBi [deg wir.t TDC] 0.0 Pmax(bar) 129.90 50% MFB [deg w;r.t TDC] 5.0 Pmax location (degrees) 368.5 90% MFB [deg w.r.t TDC] 20.5 Diesel Flow(kg/hr) 0.18 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 2.92 zero-level: pr. offset [bar] 0.000 Air Flow(kg/hr) 89.5 poly-n compression uncorrected 1.32 Exhaust Flow(kg/hr) 92.5 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 10.7 poly-n expansion uncorrec ted 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 -10 0 10 crank angle [deg] Net Heat Release Rate 2 15000 o *3 tn o S 510000 £ " •S •§ 5000 3 ~ 0 C -5000 7 ^ A A — y ~ K — " " \ -20 -10 20 30 c rank angle [deg] Log Pressure vs Volume 10000 0.0000 0.0025 144 Speed [RPM] Comments Torgue[N-m] Load [%] Data Summary for filter: >.\ C3 P max [deq] 12886.52 Date: 4/9/02 CA @ P max [dog] 8.0 Time: 10:42:28 dP 'dCA max [bar deq] 890.912 CA@dP/dCA max [deq] 0.5 Enqine Parameters Average's IMEP [bar] 1125.30 Speed(RPM) 804.5 HHR max [kJ/m«3/deq] 16982.2 Load - approx(%) 75.0 IHR max [k j /m"3] 197075.7 Power (kW) 18.9 5% MFB [deg w.r.t TDC] -1.0 IMEP (bar) 11.27 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 129.04 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.5 90% MFB [deq w.r.t TDC] 19.5 Diesel Flow(kg/hr) 0.15 Assumed poty-n during ccmprn 1.37 CNG Flow(kg/hr) 2.93 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 89.4 poly-n compression uncot rccted 1.33 Exhaust Ftow(kg/hr) 92.5 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 10.7 poly-n expansion uncorrected 1.32 EGR Fraction(%) 0.0 poly-n expansion corrected 1.32 In-Cylinder Pressure Trace 14000 12000 to a 10000 3 8000 8 6000 ^ 4000 o 2000 0 I 1 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 o 2 15000 a) o> in a) <8 510000 I? S 5000 CO —; « 0 C -5000 / ^^^^^ -20 -10 10 crank angle [deg] 20 30 40 10000 1000 100 _: 10 0.0000 Log Pressure vs Volume 0.0010 0.0015 vo lume [m3] 0.0020 0.0025 0.0030 145 Speed [RPM] Comments Torque [N-m] Load [°.] Data Summary for filter: C4 P max [deg] 12939.99 Date: 4/9/02 CA @ P max [deg] 8.0 Time: 10:49:30 dP/dCA max [bar/deg] 796.135 CA <a dP/dCA max [deg] 1.0 Engine Parameters AverageMi IMEP [bar] 1141.04 Speed(RPM) 804.9 HHR max[kJ/m A3/deg] 15735.3 Load - approx(%) 75.0 IHR max[kj/m»3] 199633.0 Power (kW) 19.2 5% MFB [deg w.r.t TDC] -1.5 IMEP (bar) 11.43 10% MFB [deg w.r.t TDC] -0.5 Pmax(bar) 129.66 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.3 90% MFB [deg w.r.t TDC] 20.0 Diesel Flow(kg/hr) 0.16 Assumed: poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 89.5 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 92.6 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 10.8 poly-n expansion uncorrected 1.35 EGR Fraction(%) 0.0 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace 14000 T 12000 ra fi 10000 ^ 4000 0 I , 1 1 1 1 1 . 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 18000 i 1 1 1 crank angle [deg] Log Pressure vs Volume o . 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] _ 1 U 0.0000 146 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: :- , C5 P max [deq] 12910.55 Date: 4/9/02 CA (3 P max [deq] 8.0 Time: 10:55:53 dP dCA max [bar deq] 827.153 CA @ dP/dCA max [deq] 1.0 Enoine Parameters Averaoe IMEP [bar] 1139.71 Speed(RPM) 804.7 HHR max[kJ7m"3/deg] 16407.6 Load - approx(%) 75.0 IHR max[k j /m"3] 200893.2 Power (kW) 19.1 5% MFB [deq w.r.t TDC] -1.5 IMEP (bar) 11.41 10% MFB [deg w.r.t TDC] -0.5 Pmax(bar) 129.43 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.5 90% MFB [deg w r t TDC] 21.0 Diesel Flow(kg/hr) 0.16 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.93 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 89.4 poly-n compression uncorrected 1.32 Exhaust Flow(kg/hr) 92.5 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 10.8 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 fi 10000 5 8000 $ 6000 0 I i 1 1 i I 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 15000 5 1 0 0 0 0 E 5000 2 " 0 -5000 J / V -20 -10 10 c rank angle [deg] 20 40 10000 1000 100 10 1 Log Pressure vs Volume . • 0.0005 0.0010 0.0015 vo lume [m3] 0.0020 0.0025 147 Speed [RPM] Comments Torque [N-m] Load[ ] Data Summary for filter: -C6- , v Pi max [deq] 13031.34 Date: 4/9/02 CA @ P max [deq] 8.0 Time: 11:03:18 dP/dCA max [bar/deg] 1002.923 CA @ dP/dCA max [deq] 1.0 Engine Parameters Averaqe IMEP [bar] 1143.00 Speed(RPM) 800.8 HHR max [kJ m«3deg] 19449.6 Load - approx(%) 75.0 IHR max [ k j m»3] 199415.4 Power (kW) 19.1 5°/ MFB [deg w.r.t TDC] -1.0 IMEP (bar) 11.44 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 130.64 50% MFB [deg w.r.t TOC] 5.0 Pmax location (degrees) 368.5 90% MFB [deg w r.t TDC] 19.5 Diesel Flow(kg/hr) 0.16 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 87.9 poly-n compression uncorrected 1.35 Exhaust Flow(kg/hr) 91.0 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 69.9 poly-n expansion uncorrec tod 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] Net Heat Release Rate 25000 | 20000 2) §15000 to u 5000 0 •5000 J ^ --10 0 10 crank angle [deg] 20 40 Log Pressure vs Volume 10000 1000 0.0000 0.0025 0.0030 148 Speed [RPM] Comments Torque [N-m] Load [=-] Data Summary for filter: C7 P max [deq] 12941.43 Date: 4/9/02 CA @ P max [deg] 8.0 Time: 11:10:07 dP/dCA max [bar/deq] 951.226 CA @! dP/dCA max [dug] 1.5 Eridirie Parameters Averaoe IMEP [bar] 1137.06 Speed(RPM) 806.5 HHR max [kJ/m»adoq] 18987.3 Load - approx(%) 75.0 IHR; max [kJ mN3] 199581.9 Power (kW) 19.1 5% MFB [deq w.r.t TDC] -1.0 IMEP (bar) 11.39 10% MFB [deq w.r.t TDC] 0.0 Pmax(bar) 129.59 50%MFB[dcq w.r.t TDC] 5.0 Pmax location (degrees) 368.5 90=o MFB [deq w.r.t TDC] 20.0 Diesel Flow(kg/hr) 0.18 Assumed poly-mdurinq comprn. 1.37 CNG Flow(kg/hr) 2.93 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 89.4 poly-mcompressioniuncorrected 1.32 Exhaust Flow(kg/hr) 92.5 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 10.1 poly-n expansion uncorrected 1.29 EGR Fraction(%) 0.0 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 14000 a 10000 o 5 8000 S 6000 °: 4000 o I 1 1 1 1 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 20000 SI 5000 s\ a <10000 ~ E 8 =5 5000 a> 0 c -5000 -10 10 c rank angle [deg] 20 30 40 10000 _: 10 1 • 0.0000 Log Pressure vs Volume 0.0015 vo lume [m3] 0.0020 0.0025 149 Speed:[RPM] Comments Torque [N-m] Load [%] Data Summary for filter: C8 P max [deq] 12967.01 Date: 4/9/02 CA <gs P max Ideq] 8.0 Time: 11:18:58 dP/dCA max [bar deq] 1009.816 CA <3 dP/dCA max [deq] 1.0 Engine Parameters Average IMEP [bar] 1139.51 Speed(RPM) 804.2 HHR max [kj/m"3/deg] 19572.1 Load - approx(%) 75.0 IHR max [kJ/m"3] 198843.6 Power (kW) 19.1 S% MFB [deg w.r.t TDC] -1.0 IMEP (bar) 11.41 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 130.05 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.6 90% MFB [deg w.r.t TDC] 19.5 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.92 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 88.3 poly-n compression uncorrected 1.35 Exhaust Flow(kg/hr) 91.4 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 58.5 poly-n expansion uncorrec ted 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 Irt-Cylinder Pressure Trace 14000 12000 re fi 10000 <D 5 8000 8 6000 °; 4000 o 2000 I 1 1 1 1 1 1 i i i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 -5000 1 1 1 1 '• 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume a. _: 10 1 A • i 1 i i 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 150 Speed [RPM] Comments Torque[N-m] Load [%] Data Summary for filter: LISSSJII P; max [deq] 12820.58 Date: 4/9/02 CA (_• P max [doq] 8.0 Time: 11:33:09 dP/dCA max [bar/deq] 792.688 CA@dP/dCA max [deg] 3.5 Enqine Parameters Averaqe IMEP [bar] 1125.69 Speed(RPM) 802.1 HHR max [kj/m"3/deq] 18728.4 Load - approx(%) 75.0 IHR max [kJ/m A3] 199511.1 Power (kW) 18.8 5% MFB [deq w.r.t TDC] -1.0 IMEP (bar) 11.27 10%:MFB[deq w.r.t TDC] 0.5 Pmax(bar) 128.45 50% MFB [deq w.r.t TDC] 5.5 Pmax location (degrees) 368.5 90% MFB [deg w.r.t TDC] 22.5 Diesel Flow(kg/hr) 0.18 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.6 poly-n compression uncoi reeled 1.33 Exhaust Flow(kg/hr) 76.6 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 72.0 poly-n expansion uncorrected 1.32 EGR Fraction(%) 16.9 poly-n expansion ccrroctod 1.32 In-Cylinder Pressure Trace 14000 12000 8 6000 0 I i 1 1 J 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 1 0 20 30 40 50 c rank angle [deg] 151 Speed: [RPM] Comments Torque [N-m] Lbadi[%]§£: i:; Data Summary for filter: C10. , P max [deq] 12758.70 Date: 4/9/02 CA <H> P max [deq] 8.0 Time: 11:39:35 dP/dCA max [bar/deq] 744.438 CA (3 dP/dCA max [deq] 2.5 Engine Parami • Average IMEP [bar] 1117.28 Speed(RPM) 802.2 HHR max[kj/m"3/deg] 17150.5 Load - approx(%) 75.0 IHR max [kJ m»3] 197220.6 Power (kW) 18.7 5% MFB [deq w.r.t TDC] -1.5 IMEP (bar) 11.19 10-oMFB [deq w.r.t TDC] 0.0 Pmax(bar) 127.76 50% MFB [deg w.r.t TDC] 5.5 Pmax location (degrees) 368.5 90% MFB [deq w r.t TDC] 22.0 Diesel Flow(kg/hr) 0.21 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.89 zero-level: pr. offset [bar] 0.000 Air Flow(kgZhr) 73.4 poly-n compression uncorrected 1.30 Exhaust Flow(kg/hr) 76.5 poly-n:compression corrected 1.30 Exhaust Back Pressure (kPa) 72.7 poly-n expansion uncorrected 1.29 EGR Fraction(%) 16.7 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 14000 12000 co fi 10000 o 3 8000 8 6000 ^ 4000 o 2000 0 I 1 1 1 i 1 1 1 i 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 20000 -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume 14 , i 1 i 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 152 Speed [RPM] Comments Torque [N-m] Load [° 0 ] Data Summary for filter: S&5&1.VJ P max [doq] 12846.54 Date: 4/9/02 CA @ P max [deq] 8.0 Time: 11:46:33 dP/dCA max [bar/deq] 901.252 CA @ dP dCA max [doq] 4.0 Engine Parameters Average IMEP [bar] 1113.07 Speed(RPM) 800.8 HHR maxfkJ/m"3/deg] 21104.5 Load - approx(%) 75.0 IHRi max[kJ/m"3] 196465.8 Power (kW) 18.6 5% MFB [deq w.r.t TDC] -1.0 IMEP (bar) 11.15 1 0 % M F B [ d e q w r t T D C ] 0.5 Pmax(bar) 128.67 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.4 90% MFB [deq w.r.t TDC] 21.5 Diesel Flow(kg/hr) 0.17 Assumed poly-n during comprn 1.37 CNG Flow(kgmr) 2.92 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.5 poly-n compressloniuncorrerted 1.31 Exhaust Flow(kg/hr) 76.6 poly-n compression corrected 1.31 Exhaust Back Pressure (kPa) 72.5 poly-n expansion uncorrected 1.31 EGR Fraction(%) 16.9 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 -10 0 10 crank angle [deg] 50 Net Heat Release Rate 25000 f 20000 8 Si 5000 Z E j 5000 0 -5000 V --10 10 crank angle [deg] 20 40 Log Pressure vs Volume 10000 0.0025 153 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: C12 - •'-P max [deq] 12825.77 Date: 4/9/02 CA @ P max [deg] 8.0 Time: 11:53:43 dP/dCA max [bar/deg] 901.252 CA@ dP/dCA max [deg] 2.5 EnginesParametors Averaqe IMEP [bar] 1122.46 Speed(RPM) 800.8 HHR max [kj/m»3deg] 19436.4 Load - approx(%) 75.0 IHR max [kJ 171*3] 198361.7 Power (kW) 18.8 5% MFB [dog w.r t TDC] -1.0 IMEP (bar) 11.24 10% MFB [deg w.r.t TDC] 0.5 Pmax(bar) 128.43 50% MFB;[deg w.r.t TDC] 5.0 Pmax location (degrees) 368.4 90% MFB [deg w.r.t TDC] 22.0 Diesel Flow(kg/hr) 0.19 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.91 zero-level, pr. offset [bar] 0.000 Air Flow(kgZhr) 73.6 poly-n compression uncorrected 1.31 Exhaust Flow(kg/hr) 76.7 poly-n compression correi tod 1.31 Exhaust Back Pressure (kPa) 72.6 poly-n expansion uncorrected 1.29 EGR Fraction(%) 16.8 poly-n expansion corrected 1.29 In-Cylinder Pressure Trace 14000 12000 & 10000 3 8000 8 6000 °- 4000 o 2000 o i i ; 1 > 1 1 * 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 20000 SI 5000 ^10000 5000 0 •5000 s\ — -Z E -20 -10 10 crank angle [deg] 20 30 40 Log Pressure vs Volume 10000 T I ^ - 1 1 1 a. - 10 1-1 1 i 1 i 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 154 Speed [RPM] Comment: Torque [N-m] Load [%1 Data Summary for filter: C13 -P max [deq] 12961.26 Date: 4/9/02 CA <5> P max [deg] 8.0 Time: 12:02:18 dP/dCA max [bar/deg] 813.367 CA @dP/dCA max [deg] 1.5 Engine Parameters Average IMEP [bar] 1127.58 Speed(RPM) 805.4 HHR max [k j m«3'dog] 16728.2 Load - approx(%) 75.0 IHR max [k j m"3] 198785.8 Power (kW) 18.9 5%MFB[degwr . tTDC] -1.0 IMEP (bar) 11.29 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 129.73 50% MFB [deg w.r.t TDC] 5.0 Pmax location (degrees) 368.5 90% MFB [deg w.r.t TDC] 20.0 Diesel Flow(kg/hr) 0.16 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.93 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 92.3 poly-n compression uncorrected 1.32 Exhaust Flow(kgZhr) 95.3 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 13.1 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 & . 10000 o 3 8000 g 6000 * 4000 0 I i 1 1 i 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 155 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: D1 P max [deq] 14746.47 Date: 4/10/02 CA @ P max [deg] 6.5 Time: 10:06:30 dP/dCA max [bar/deg] 516.970 CA @ dP/dCA max [deg] -1.0 Enolne Parameters Averaqe IMEP [bar] 1437.21 Speed(RPM) 1408.5 HHR max [kJ/m"3/dcgl 9560.6 Load - approx(%) 85.0 IHR max [kj.m»3] 261827.4 Power (kW) 42.2 5% MFB [dog w.r.t TDC] -5.0 IMEP (bar) 14.39 10-J MFB [deg w.r.t TDC] -2.0 Pmax(bar) 147.62 50% MFB [dog w.r.t TDC] 11.0 Pmax location (degrees) 367.0 90- jMFBfdeq w.r.t TDC] 30.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 6.18 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 276.2 poly-n compression uncorrected 1.37 Exhaust Flow(kg/hr) 282.6 poly-n compression corrected 1.37 Exhaust Back Pressure (kPa) 11.1 poly-n expansion uricorrei ted 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 16000 T 14000 JS 12000 £ 10000 » 8000 £ 6000 ^ 4000 ° 2000 0 I i 1 • . 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 156 Speed [RPM] Comments Torque [N-m] Load r«] Data Summary for filter: r :UD2 i i I I P max [deq] 14657.64 Date: 4/10/02 CA @ P max [deg] 6.5 Time: 10:19:52 dP/dCA max [bar/deq] 484.229 CA @ dP/dCA max [deg] -1.5 Engine Parameters Average IMEP [bar] 1429.24 Speed(RPM) • 1406.1 HHR max [kJm»3dog] 9402.5 Load - approx(%) 85.0 IHR max[kJ/m\3] 262041.9 Power (kW) 41.9 5%: MFB [doq w r.t TDC] -6.5 IMEP (bar) 14.31 10 ' . MFB [deg w.r.t TDC] -2.0 Pmax(bar) 146.80 50% MFB [deq w r t TDC] 11.0 Pmax location (degrees) 367.0 90% MFB [deq w.r.t TDC] 30.5 Diesel Flow(kg/hr) 0.34 Assumed poly-n idur ing c o m p r n 1.37 CNG Flow(kg/hr) 6.18 zerorlevel.iprr:offset [bar] 0.000 Air Flow(kg/hr) 275.9 po ly -n [Compress ion :unco i rec ted 1.36 Exhaust Flow(kg/hr) 282.5 poly-n c o m p r e s s i o n c o r r e c t e d 1.36 Exhaust Back Pressure (kPa) 11.4 poly-n expansion uncorrected 1.28 EGR Fraction(%) 0.0 poly-n expansion cc rrected 1.28 In-Cyllnder Pressure Trace -10 0 crank angle [deg] 12000 10000 •=8000 Net Heat Release Rate - f=~-A LXAUJ. n | 2000 1 -2000 -4000 -20 20 30 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 157 Speed [RPM] Comments Torque [N-m] Iii:;:;! jk.; Load [%] Data Summary lor filter: . D3. • P max [deq] 14691.74 Date: 4/10/02 CA (s> P max |deq] 6.5 Time: 10:25:15 dP'dCA max [bar deg] 584.177 CA @ dP/dCA i max [deq] -2.0 Engine Parameters Average IMEP [bar] 1431.31 Speed(RPM) 1405.7 HHR max [kj/m»3/deg] 9689.4 Load - approx(%) IHR;:;max][kJ/mM]Niji!!i!l!N» 262169.7 Power (kW) 42.0 5% MFB [deg w.r.t TDC] -5.0 IMEP (bar) 14.33 10% MFB [deq w.r.t TDC] -2.0 Pmax(bar) 147.19 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 367.2 90% MFB [deg w.r.t TDC] 31.0 Diesel Flow(kg/hr) 0.29 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 6.21 zero-lovel. pr. offset [bar] 0.000 Air Flow(kg/hr) 275.8 poly-n compression;uncorrected 1.35 Exhaust Flow(kgmr) 282.3 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 11.4 poly-n expansion uncorrec ted 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 16000 ~ 14000 J5 12000 J> 10000 m 8000 £ 6000 _• 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 12000 <B -2000 ' • ' -4000 I 1 ' ' ' -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 158 Speed [RPM] Comments Torque[N-m] Load [%] Data Summary for filter: D4 , P max [deq] 14682.71 Date: 4/10/02 CA @ P max [deq] 6.5 Time: 10:32:11 dP/dCA max [bar dog] 522.140 CA (3 dP/dCA max [deq] -1.5 EndiheParameters Average IMEP [bar] 1429.61 Speed(RPM) 1404.5 HHR max [kj/m»3/deg] 9214.5 Load - approx(%) IHR max[kJ/m"3] 261545.7 Power (kW) 41.9 5% MFB [deg w.r.t TDC] -6.5 IMEP (bar) 14.31 10% MFB [deq w.r.t TDC] -2.0 Pmax(bar) 147.03 50% MFB [deg w.r.t TDC] 10.5 Pmax location (degrees) 366.9 90% MFB [deq W:r.tTDC] 30.5 Diesel Flow(kg/hr) 0.33 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 6.13 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 277.8 poly-ncompressidniuncorrected 1.37 Exhaust Flow(kg/hr) 284.3 poly-n compression corrected 1.37 Exhaust Back Pressure (kPa) 11.4 poly-n expansion uncorrected 1.29 EGR Fraction(%) 0.0 poly-n expansion corrected 1.29 In-Cyllnder Pressure Trace 16000 T 14000 JS, 12000 £ 10000 | 8000 £ 6000 _: 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Log Pressure vs Volume a. 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 159 Speed [RPM] Comments Torque [N-m] Load [ .] Data Summary for filter: D5 P max [deq] 14712.44 Date: 4/10/02 CA @ P. max [deq] 7.0 Time: 10:41:12 dP/dCA max [bar deq] 635.874 CA @ dP/dCA max;[deg] -2.0 Engine Parameters Average IMEP [bar] 1418.21 Speed(RPM) 1386.9 HHR max [kJ/m»3 deq] 9671.0 Load - approx(%) IHR max [kj/m»3] 262138.5 Power (kW) 41.0 5% MFB [deg w.r t TDC] -5.5 IMEP (bar) 14.20 10== MFB [deq w r t T D C ] -2.0 Pmax(bar) 147.33 50% MFB [deq w r.t TDC] 11.0 Pmax location (degrees) 366.9 90 ' .MFB [deg w.r t TDC] 32.0 Diesel Flow(kg/hr) 0.30 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 6.07 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 277.8 poly-n compression uncorrected 1.35 Exhaust Flow(kgZhr) 284.2 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 151.6 poly-n expansion uncorrected 1.27 EGR Fraction(%) 0.0 poly-n expansion corrected 1.27 In-Cyllnder Pressure Trace 16000 ^ 14000 E 12000 £ 10000 » 8000 £ 6000 _: 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 12000 10000 •=•8000 cn |i 6000 ^ 4000 2000 • 0 -2000 -4000 A = = A A A (\ y\i — Z £ -10 10 c rank angle [deg] 20 30 40 Log Pressure vs Volume a _: 10 1-1 . , . 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 160 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: D6 R max [deq] 14652.51 Date: 4/10/02 CA @ P max [deq] 6.0 Time: 10:47:38 dP/dCA max [bar/deq] 577.284 CA <3> dPtdCA max [deq] -2.0 Enoino Parameters . . . Average IMEP [bar] 1441.77 Speed(RPM) 1405.1 HHR max [kJm"3 deq] 9375.3 Load - approx(%) 85.0 IHR max [kj/m*3] 264839.9 Power (kW) 42.3 5°/. MFB [deq w.r.t TDC] -5.0 IMEP (bar) 14.44 10%;MFB [deq w.r.t TDC] -2.0 Pmax(bar) 146.80 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 367.1 90% MFB [deq w.r.t TDC] 32.0 Diesel Flow(kg/hr) 0.30 Assumed poly-mdurinq comprn. 1.37 CNG Flow(kgmr) 6.25 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 278.1 poly-n compression uncorrected 1.35 Exhaust Flow(kgZhr) 284.7 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 13.7 poly-n expansion uncorrec ted 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace 16000 ,_, 14000 12000 £ 10000 3 8000 £ 6000 4000 ° 2000 0 I 1 1 1 1 I 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 12000 -4000 1 1 I 1 1 1 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 161 Speed! [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: D7 R max [deg] 14665.01 Date: 4/10/02 CA <a p max [deg] 6.0 Time: 10:54:57 dP/dCA; max [bar/deq] 508.354 CA @ dP/dCA max [deg] -2.0 Enolno Parameters Average IMEP [bar] 1418.88 Speed(RPM) 1393.3 HHR max[kj/m"3/deg] 9822.6 Load - approx(%) 85.0 IHR max [kj/m"3] 258117.8 Power (kW) 41.2 5% MFB [deg w.r t TDC] -4.0 IMEP (bar) 14.21 10% MFB [dog w.r.t TDC] -2.0 Pmax(bar) 146.77 50% MFB [deq w r t TDC] 11.0 Pmax location (degrees) 366.6 90% MFB [deq w r t TDC] 32.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 6.11 zero-level, pr. off set [bar] 0.000 Air Flow(kg/hr) 278.0 poly-ncompression:uncorrected 1.35 Exhaust Flow(kgmr) 284.3 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 127.8 poly-n expansion uncorrec ted 1.26 EGR Fraction(%) 0.0 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace 16000 ^ 4000 ° 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 12000 10000 „ 8 0 0 0 0 6000 § 4000 E 2000 2 0 —-2000 ^1000 -6000 -10 10 c rank angle [deg] 20 30 40 Log Pressure vs Volume o. I _: 10 • - - - • •— - -- - f - t - - ~ ~ * J . . I . 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 162 Speed [RPM] Comments Torque [N-m] Load [°=] Data Summary for filter: D8 P max [deg] 14596.87 Date: 4/10/02 CA (S> P max [deg] 7.5 Time: 11:03:00 dP/dCA max [bar/deq] 587.623 CA@dP/dCA max [deg] -2.0 Engine: Parameters Average IMEP [bar] 1435.68 Speed(RPM) 1404.2 HHR max [kJ7m"3/deg] 9533.6 Load - approx(%) 85.0 IHR max [kj/m«3] 263881.6 Power (kW) 42.1 5% MFB [deg w r.t TDC] -5.5 IMEP (bar) 14.37 10%MFB [dog w.r.t TDC] -2.0 Pmax(bar) 146.21 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 367.2 90% MFB [deg w.r.t TDC] 31.5 Diesel Flow(kg/hr) 0.31 Assumed poly-n during comprn 1.37 CNG Flow(kgmr) 6.21 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 278.0 poly-n compression;uncorreeled 1.36 Exhaust Flow(kg/hr) 284.5 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 12.4 poly-n expansion uncorrected 1.26 EGR Fraction(%) 0.0 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace 16000 ^ . 14000 J| 12000 £ 10000 | 8000 £ 6000 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 163 Speed [RPM] Comment! Torque [N-m] Load [=-] Data Summary for filter: . -.09 P max [deg] 14308.29 Date: 4/10/02 CA (3> P max [deq] 6.0 Time: 11:23:31 dP.'dCA max [bar deg] 479.059 CA <5> dP/dCA max:[deg] -10.5 Engine Parameters Average IMEP [bar] 1401.80 Speed(RPM) 1386.2 HHR max[kJ/m»3/deg] 10035.1 Load - approx(%) 85.0 IHRWmax [kJ/m«3] 257640.4 Power (kW) 40.5 5% MFB [deg w.r.t TDC] -4.0 IMEP (bar) 14.04 10== MFB [deg w.r.t TDC] -1.5 Pmax(bar) 143.26 50% MFB [deg w.r.t TDC] 11.5 Pmax location (degrees) 367.2 90% MF3 [deg w.r.t TDC] 33.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n during comprn 1.37 CNG Flow(kg/tir) 6.09 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 231.9 poly-n compression uncotroctcd 1.35 Exhaust Flow(kg/hr) 238.3 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 143.0 poly-n expansion uncorrected 1.27 EGR Fraction(%) 13.5 poly-n expansion corrected 1.27 In-Cylinder Pressure Trace -50 ^10 -30 -20 -10 0 10 c rank angle [deg] Net Heat Release Rate 12000 10000 •55 8000 5 6000 ~ 4000 2000 0 -2000 -4000 A K V l ^ Z E -20 10 c rank angle [deg] 20 30 40 Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 164 Speed [RPM] Comments Torque FN-m] Load[%] Data Summary for filter: L-^ Dioai P max [deql 14366.46 Date: 4/10/02 CA @ P max [deq] 6.0 Time: 11:28:43 dP/dCA max [bar/deq] 530.756 CA <3> dP/dCA max [deq] -9.5 Enqine Parameters Avefadel i IMEP [barl 1398.29 Speed(RPM) 1387.3 HHR max [kj/m»3/deq] 8839.6 Load - approx(%) 85.0 IHR max [kJm"3 ] 256158.5 Power (kW) 40.5 5% MFB [deq w.r.t TDC] -5.0 IMEP (bar) 14.00 10% MFB rdeq w.r.t TDC] -1.5 Pmax(bar) 143.89 50% MFB [deq w.r.t TDC] 11.5 Pmax location (degrees) 366.9 90%MFB [deqwir.tTDC] 33.5 Diesel Flow(kgmr) 0.34 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 6.06 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 232.0 poly-n compression uncoi rcctcd 1.34 Exhaust Flow(kgZhr) 238.4 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 142.5 poly-n expansion uncorrected 1.26 EGR Fraction(%) 13.4 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace -30 • -20 -10 0 10 crank angle [deg] Net Heat Release Rate 10000 -woo I 1 J 1 1 1 1 -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 165 Speed [RPM] . Comments Torque [N-m] Load [%] Data Summary for filter: D11 P max [deq] 14304.18 Date: 4/10/02 CA f . P max [deg] 6.5 Time: 11:34:34 dP/dCA max [bar/deq] 516.970 CA @ dP/dCA max [deq] 0.0 Engine Parameters Average IMEP [bar] 1396.67 Speed(RPM) 1387.0 HHR max [kJ/m«3/deg] 9573.5 Load - approx(%) 85.0 IHR max[k j /m"3] 256997.2 Power (kW) 40.4 5% MFB [deq w.r.t TDC] -4.0 IMEP (bar) 13.98 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 143.13 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 367.2 90%1MFB [deg w r.t TDC] 33.0 Diesel Flow(kg/hr) 0.27 Assumed poly-n during: comprn 1.37 CNG Flow(kg/hr) 6.11 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 232.2 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 238.6 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 142.2 poly-n expansion uncorrected i i 1.26 EGR Fraction(%) 13.4 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace -30 -20 -10 0 10 c rank angle [deg] 20 Net Heat Release Rate 12000 | 1 1 1 -4000 I '• 1 1 ' 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 166 Speed [RPM] Comments Torque[N-m] Load p = ] Data Summary for filter: mmmn P max [deq] 14281.23 Date: 4/10/02 CA CjB P max Ideg] 6.5 Time: 11:41:08 dP/dCA max [bar/deq] 508.354 CA@dP/dCA max[doq] -7.5 EriqlheiParametersmCf' •*,> Average IMEP [bar] 1408.28 Speed(RPM) 1388.2 HHR max [kj/m»a'deq] 10004.3 Load - approx(%) 85.0 IHR max [k j m"3] 259179.3 Power (kW) 40.8 5% MFB [doq w.r.t TDC] -5.0 IMEP (bar) 14.10 10%iMFB [doq w.r.t TDC] -1.5 Pmax(bar) 143.02 50% MFB [deg w.r.t TDC] 11.5 Pmax location (degrees) 367.2 90% MFB [deq w.r.t TDC] 34.0 Diesel Flow(kg/hr) 0.32 Assumed poly-n durlnq comprn. 1.37 CNG Flow(kg/hr) 6.10 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 232.6 poly-n i com pressioni uncorrected 1.34 Exhaust Flow(kg/hr) 239.0 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 141.6 poly-n expansion uncorrec led 1.25 EGR Fraction(%) 13.3 poly-n expansion corrected 1.25 In-Cyllnder Pressure Trace 16000 ^ 4000 " 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate Z E 12000 10000 8000 6000 4000 2000 0 -2000 -4000 -6000 f V — -20 -10 10 c rank angle [deg] 20 30 40 Log Pressure vs Volume a. s. 10 o 1 -I 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 167 Speed:[RPM] Comments Torque [N-m] Load [%] Data Summary for filter: D13 P max [deq] 14431.90 Date: 4/10/02 CA (S> P max [deq] 7.5 Time: 11:53:41 dP dCA max [bar deq] 527.310 CA @ dP dCA max [deq] -1.5 Enaine Parameters Averaoe IMEP [bar] 1444.58 Speed(RPM) 1407.6 HHR m a x [ k j m " 3 d e g ] 9468.2 Load - approx(%) 85.0 IHR max [k j m A 3] 265858.9 Power (kW) 42.4 5% MFB [deq w r t TDC] -5.5 IMEP (bar) 14.46 10%MFB[degwr lTDC] -2.0 Pmax(bar) 144.44 50% MFB [deq w.r.t "DC] 11.0 Pmax location (degrees) 367.2 90' . MFB [dog w r t TDC] 32.0 Diesel Flow(kg/hr) 0.30 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 6.30 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 277.1 poly-n icompression:uncorrected 1.35 Exhaust Flow(kg/hr) 283.7 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 5.2 poly-n expansion uncorrected 1.25 EGR Fraction(%) 0.0 poly-n expansion corrected 1.25 In-Cylinder Pressure Trace 16000 14000 12000 10000 8000 6000 4000 2000 0 -40 -30 -20 -10 0 10 c rank angle [deg] 40 50 Net Heat Release Rate 12000 S 10000 o -38000 | j j 6000 0 < 4000 1 I 2 0 0 0 f =• o 1 -2000 -4000 - ~ A A A -10 10 c rank angle [deg] 20 40 Log Pressure vs Volume 1000 - 10 0.0000 0.0005 0.0010 0.0015 vo lume [m3] 0.0020 0.0025 0.0030 168 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: ; • ' E 1 • P max [deq] 9695.77 Date: 4/10/02 CA @;P max [doq] 5.5 Time: 12:29:19 dP/dCA max [bar/deq] 854.725 CA@dP/dCA max [deq] 1.0 Enqine Parameters Average IMEP [bar] 523.92 Speed(RPM) 809.0 HHR max [k j m"3 deq] 16540.4 Load - approx(%) 25.0 IHR max [k j m"3] 91875.2 Power (kW) 8.8 5% MFB [deq w.r.t TDC] -3.5 IMEP (bar) 5.25 10% MFB; [deg w.r.t TDC] -1.0 Pmax(bar) 97.11 50% MFB [deq w.r.t TDC] 2.0 Pmax location (degrees) 366.0 9 0 s , MFB [deg w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.15 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 1.23 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.4 poly-nicompressioniuncoirected 1.35 Exhaust Flow(kg/hr) 74.7 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 11.9 poly-n expansion uncorrected 1.35 EGR Fraction(%) 0.0 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace 12000 •=• 10000 n 8000 3 6000 in « Q. 4000 S" 2000 0 I i 1 1 i 1 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 18000 i 1 1 1 crank angle [deg] Log Pressure vs Volume o> Q. 'o- - j - - ~ — - ' - — 1 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 169 Speed [RPM] Comments Torque[N-m] Load [%] Data Summary for filter: E2 ., P max [deg] 9656.02 Date: 4/10/02 CA i @ p max [deg] 6.0 Time: 12:35:02 dP/dCA max [bar/deg] 830.599 CA@idP/dCA max [deg] 1.0 Engine Parameters Average IMEP [bar] 518.82 Speed(RPM) 808.3 HHR max [kj/m»3/deg] 16104.3 Load - approx(%) 25.0 IHR max [kj/m»3] 90390.0 Power (kW) 8.7 5%MFB![deg w.r.t TDC] -4.0 IMEP (bar) 5.20 10% MFB; [deg w.r t TDC] -1.5 Pmax(bar) 96.90 50% MFB [deg w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90= 3 MFB[deg w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.24 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.21 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.5 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 74.9 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.3 poly-n expansion uncorrected 1.32 EGR Fraction(%) 0.0 poly-n expansion corrected 1.32 In-Cyllnder Pressure Trace 12000 | 1 , , , 1 10000 a V 8000 5> 6000 CO a. 4000 t 2000 0 I 1 1 I 1 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 2 15000 - - - - - --20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume Q. _: 10 1 -I 1 i 1 i \ 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 170 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: E3 P max [deq] 9504.36 Date: 4/10/02 CA <a P max [deq] 5.5 Time: 12:42:23 dP/dCA max [bar/deq] 884.020 CA @ dP/dCA max [deq] 1.5 Er io ine 'Parameters l IS I l l i i Average IMEP [bar] 479.78 Speed(RPM) 805.2 HHR max[kj/m"3/deq] 17513.9 Load - approx(%) 25.0 IHR max [ k j m"3] 84655.4 Power (kW) 8.1 5% MFB [deq w.r.t TDC] -4.5 IMEP (bar) 4.80 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 95.30 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.7 90% MFB [deq w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.14 Assumed poly-n durlnq co mprn 1.37 CNG Flow(kg/hr) 1.20 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.5 poly-n comprosslon uncorrected 1.33 Exhaust Flow(kg/hr) 74.9 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.5 poly-n expansion uncorrected 1.35 EGR Fraction(%) 0.0 poly-n expansion corrected 1.35 In-Cyllnder Pressure Trace -50 -10 0 crank angle [deg] Net Heat Release Rate 20000 2 ^15000 in o <S 510000 I " - E 5000 re s 2 3, •5 0 c -5000 -20 10 crank angle [deg] 20 40 Log Pressure vs Volume 10000 1000 + 100 0.0000 0.0025 0.0030 171 Speed: [RPM] • Comments Torque [N-m] Load [%] Data Summary for filter: E4 P max [deq] 9545.69 Date: 4/10/02 CA P max [doq] 5.5 Time: 12:49:00 dP/dCA max [bar/deq] 813.367 CA @ dP/dCA max ;deq] 1.0 Enalne Parameters : : : :AveraqeB IMEP [bar] 497.31 Speed(RPM) 805.3 HHR max [ k j m " 3 deg] 15777.1 Load - approx(%) 25.0 IHR max[k j /m"3] 87537.0 Power (kW) 8.4 5% MFB [deq w.r.t TDC] -5.0 IMEP (bar) 4.98 10% MFB [deq w r.t TDC] -1.5 Pmax(bar) 95.72 50% MFB [dog w r t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deq w r t TDC] 8.0 Diesel Flow(kgmr) 0.17 Assumed poly-n durinq comprn 1.37 CNG Flow(kg/hr) 1.19 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.7 poly-n:compression:uncoi rectcd 1.35 Exhaust Flow(kg/hr) 75.1 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 11.2 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion cc rrectcd 1.33 In-Cylinder Pressure Trace 12000 1; 10000 A 0) Q. 4000 S1 2000 0 I 1 1 1 i I 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 18000 16000 14000 •5)2000 .gioooo S 8000 c 6000 ^ 4000 £ 2 0 0 0 0 -2000 -4000 7 /v-- J V — 1 / \^ / -20 -10 10 crank angle [deg] 20 30 40 172 Speed [RPM] Comments Torque [N-m] Load f/o] Data Summary for filter: E5 P max [deg] 9525.04 Date: 4/10/02 CA @ P max [deg] 5.5 Time: 12:56:29 dP/dCA max [bar/deg] 882 .296 CA @ dP/dCA max [deg] 1.5 Enqine Parameters Average IMEP [bar] 487.07 Speed(RPM) 802.9 HHR max[kJ7m"3deg] 1 7 4 7 a 5 Load - approx(%) 25.0 IHR max[kJ/m' 13] 85457.3 Power (kW) 8.2 5% MFB [deg w.r.t TDC] -3 .5 IMEP (bar) 4.88 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 95.34 5 0 % MFB [deg w.r.t TDC] 1.5 Pmax location (degrees) 366.0 9 0 % MFB; [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.15 Assumed poly-n during comprn. 1 .37 CNG Flow(kg/hr) 1.17 zero-level, pr. offset [bat] 0 .000 Air Flow(kg/hr) 73.8 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 75.1 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 11.1 poly-n expansion uncorrected 1.31 EGR Fraction(%) 0.0 poly-h expansion corrected 1.31 In-Cylinder Pressure Trace 12000 | i 1 1 1 T 10000 8000 3 6000 tn o> a. 4000 t 2000 0 I 1 1 1 i 1 1 i i > 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 -5000 1 1 1 1 1 1 — 1 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume £ a _: 10 i-l 1 1 1 i • 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 173 Speed [RPM] Comments Torque |N-m] Load [°,] Data Summary for filter: WIE6..5 P.max [deq] 9687.47 Date: 4/10/02 CA @ P max [deq] 5.0 Time: 13:04:01 dP/dCA max [bar/deg] 890.912 CA @ dP/dCA max [deg] 1.0 Engine Parameters Averaqe IMEP [bar] 503.20 Speed(RPM) 797.5 HHR max [kJ/m»3/doq] 17213.8 Load - approx(%) 25.0 IHR max [kJ/m n3] 88546.6 Power (kW) 8.4 5% MFB [doq w.r.t TDC] -3.5 IMEP (bar) 5.04 10%:MFB[deq w.r.t TDC] -1.0 Pmax(bar) 97.12 50% MFB: [deg w.r.t TDC] 1.5 Pmax location (degrees) 365.8 90% MFB [deg w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.15 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.16 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.2 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 74.5 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 31.1 poly-n expansion uncorrected 1.36 EGR Fraction(%) 0.0 poly-n expansion corrected 1.36 In-Cylinder Pressure Trace 12000 •=• 10000 V 8000 3 6000 tn o o. 4000 & 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] 174 Speed RPM] Comments Torque [N-m] Load [%] Data Summary for filter: 'E7 . ', P max [deq] 9621.54 Date: 4/10/02 CA @ P max [deg] 5.0 Time: 13:11:28 dP/dCA max [bar/deq] 866.787 CA @ dP/dCA max [dog]i! 1.0 Engine Parameters Averaoe IMEP [bar] 498.56 Speed(RPM) 797.0 HHR max[kJ/m"3/deg] 16774.5 Load - approx(%) 25.0 IHR max[kJ/m"3] 87565.4 Power (kW) 8.3 5%:MFB :[deq w.r.t TDC] -3.5 IMEP (bar) 4.99 10% MFB [doq w.r.t TDC] -1.0 Pmax(bar) 96.47 50% MFB [deg w.r.t TDC] 1.5 Pmax location (degrees) 365.8 90== MFB [deq w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.16 Assumed poly-n durinq comprn 1.37 CNG Flow(kg/hr) 1.15 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.7 poly-n compression uncoi reeled 1.35 Exhaust Flow(kg/hr) 75.0 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 10.1 poly-n expansion uncorrected 1.34 EGR Fraction(%) 0.0 poly-n expansion corrected 1.34 In-Cylinder Pressure Trace 12000 10000 ^ 8000 « 6000 CO o. 4000 S~ 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] Net Heat Release Rate 20000 I 1 1 1 -5000 I 1 1 1 1 1 1 -20 -10 0 10 20 30 40 crank angle [deg] 175 Speed |RPM] Comments Torque [N-m] Load [" J Data Summary for filter: E8. P max [dog] 9517.12 Date: 4/10/02 CA @ P max [deg] 5.5 Time: 13:18:54 dP/dCA max [bar/deq] 866.787 CA @ dP/dCA max .dog] 1.0 Enqine Parameters Average IMEP [bar] 474.25 Speed(RPM) 793.4 HHR max [ W m ' 3 doq] 16765.6 Load - approx(%) 25.0 IHR max [kj/m»3] 83937.2 Power (kW) 7.8 5% MFB [deq w.r.t TDC] -3.5 IMEP (bar) 4.75 10% MFB [deg w.r.t TDC] -1.5 Pmax(bar) 95.29 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deq w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.14 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.13 zero-levelipr. offset [bar] 0.000 Air Flow(kg/hr) 73.1 poly-nxompression uncorrected 1.33 Exhaust Flow(kg/hr) 74.4 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 38.8 poly-n expansion uncorrected 1.39 EGR Fraction(%) 0.0 poly-n expansion corrected 1.39 In-Cylinder Pressure Trace -10 0 10 crank ang le [deg] Net Heat Release Rate J -20 -10 0 10 20 30 40 crank ang le [deg] 176 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: E9 P max [deq] 9958.69 Date: 4/10/02 CA r P max [deq] 6.0 Time: 13:33:57 dP/dCA max [bar/deg] 949.502 CA (3 dP'dCA max [deq] 2.0 Enqlne Parameters Averaoe IMEP [bar] 597.87 Speed(RPM) 800.1 HHR m d x [ k j m ' 3 d < q ] 19125.3 Load - approx(%) 25.0 IHR max [KJ,m"3] 104273.9 Power (kW) 10.0 5% MFB [deg w.r.t TDC] -2.0 IMEP (bar) 5.99 10% MFB [deq w.r.t TDC] 0.0 Pmax(bar) 99.98 50% MFB [deq w.r.t TDC] 2.5 Pmax location (degrees) 366.2 90% MFB [deq w.r.t TDC] 10.0 Diesel Flow(kg/hr) 0.13 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.40 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 60.4 poly-n:compression;uncoi rocted 1.32 Exhaust Flow(kgThr) 61.9 poly-n compression corrected 1.32 Exhaust Back Pressure (kPa) 26.9 poly-n expansion uncorrected 1.31 EGR Fraction(%) 14.9 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 12000 i 10000 £1 V 8000 » 6000 In 0} Q. 4000 J 2000 -0 I -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 2500O 1 i 1 i -5000 I 1 J 1 ! 1 ' -20 -10 0 10 20 30 40 c rank angle [deg] Log Pressure vs Volume 10- - ' i- - i * — - — 1 A 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 177 Speed [RPM1 Comments Torque [N-m] Lbadi[%]!:liiNl!iffiII::i™ Data Summary for filter: i l >E10 j ;£ j P max [deg] • • ' 10029.73 Date: 4/10/02 CA @ P max [deq] 6.0 Time: 13:41:19 dP/dCA max [bar/deq] 866.787 CA @ dP/dCA max [deq] 1.5 Enqine Parameters Avefarieill IMEP [bar] 610.42 Speed(RPM) 798.9 HHR max[kJ/m»3/deq] 17483.8 Load - approx(%) 25.0 IHR max[k j /m"3] 106150.1 Power (kW) 10.2 5% MFB [deq w.r.t TDC] -4.0 IMEP (bar) 6.11 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 100.52 50% MFB [deq w.r.t TDC] 2.5 Pmax location (degrees) 366.4 90=-MFB [deq w.r.t TDC] 10.0 Diesel Flow(kg/hr) 0.20 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.41 zero-level, pr. offset [bar] 0.000 Air FIow(kg/hr) 60.0 poly-n compression uncorrected 1.35 Exhaust Flow(kg/hr) 61.6 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 27.2 poly-n expansion uncorrected 1.34 EGR Fraction(%) 14.2 poly-n expansion corrected 1.34 In-Cylinder Pressure Trace 120OO £ 1000O 800O 3 600O CO o o. 400O g1 2000 0 I J 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 20000 I 1 1 1 c rank angle [deg] 178 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: E11 P max [deg] 9948.80 Date: 4/10/02 CA @ P max [deg] 6.0 Time: 13:48:22 dP/dCA max [bar/deg] 940.886 CA @ dP/dCA max [deq] 2.5 Enqine Parameters Average IMEP [bar] 589.99 Speed(RPM) 798.6 HHR:: max [kj/m A3/deg] 19493.5 Load - approx(%) 25.0 IHR max[kJ/m»3] 102549.7 Power (kW) 9.8 5% MFB [deg w.r.t TDC] -2.0 IMEP (bar) 5.91 10% MFB [deg w.r.t TDC] 0.0 Pmax(bar) 99.83 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.3 90% MFB [deg w.r.t TDC] 9.5 Diesel Flow(kg/hr) 0.15 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.42 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 59.9 poly-nicompression; uncorrected 1.33 Exhaust Flow(kg/hr) 61.4 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 27.3 poly-n expansion uncorrected 1.33 EGR Fraction(%) 14.9 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 12000 I 1 1 1 1 1 10000 co £1 V 8000 S 6000 to o Q. 4000 g- 2000 I , 1 1 i 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 | 20000 CD '3 to CD15000 S 3 "3 ?10000 Z E S =5 5000 -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume CD Q. 1 -I 1 1 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 179 Speed [RPM1 Comments Torque [N-m] Load [%] Data Summary for filter: E12'-P max [deq] 9983.36 Date: 4/10/02 CA P max [deg] 5.5 Time: 13:55:41 dP/dCA max [bar/deq] 815.090 CA @ dP/dCA max [deq] 1.5 Engine: Parameters Average IMEP [bar] 612.55 Speed(RPM) 799.7 HHR max [kJ/mA3/deq] 16202.0 Load - approx(%) 25.0 IHR max [ k j m " 3 ] 106578.3 Power (kW) 10.2 5% MFB [deg w.r.t TDC] -3.5 IMEP (bar) 6.13 10%:MFB [deg w.r tTDC] -1.0 Pmax(bar) 100.07 50% MFB [deq w r.t TDC] 2.5 Pmax location (degrees) 366.4 90% MFB [deq w.r.t TDC] 10.5 Diesel Flow(kgZhr) 0.18 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.42 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 59.8 poly-n compression uncorrected 1.35 Exhaust F!ow(kg/hr) 61.4 polyrn:compression:correctcd 1.35 Exhaust Back Pressure (kPa) 27.4 poly-n expansion uncorrected 1.35 EGR Fraction(%) 14.3 poly-n expansion corrected 1.35 In-Cylinder Pressure Trace 12000 | , 1 1 1 1 "Is 10000 re n ~Z 8000 » 6000 Q. 4000 S1 2000 0 I 1 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 20000 2 15000 • -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume CL 1 -I i i i 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 180 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: E13 P max [deg] 9911.32 Date: 4/10/02 CA @ P max [deg] 5.5 Time: 14:08:14 dP/dCA max [bar/deg] 816.813 CA@ldP.dCA max [deg] 1.0 Enqine Parameters Averaqe IMEP [bar] 598.92 Speed(RPM) 801.4 HHR max [kJ/m»3/dog] 16094.6 Load - approx(%) 25.0 IHR max [kj/m«3] 103844.1 Power (kW) 10.0 5% MFB [deg w.r.t TDC] -2.5 IMEP (bar) 6.00 10%MFB[degwr tTDC] -1.0 Pmax(bar) 99.41 50% MFB [deg w.r.t TDC] 2.5 Pmax location (degrees) 366.2 90== MFB [deg w.r.t TDC] 10.0 Diesel Flow(kg/hr) 0.14 Assumed; poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.43 zero-level.;:pr. olfset [bar] 0.000 Air Flow(kgZhr) 72.8 poly-n:compression uncorrected 1.34 Exhaust Flow(kg/hr) 74.4 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 12.3 poly-n expansion uncorrected 1.34 EGR Fraction(%) 0.0 poly-n expansion corrected 1.34 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] Net Heat Release Rate 18000 o 16000 ra 14000 o 012000 g £10000 S 8000 6000 o < Z £ 8 4000 i 2000 0 -2000 -4000 1 ~ \ ^ -/ J:. • -10 10 c rank angle [deg] 20 30 Log Pressure vs Volume 10000 1000 0.0000 0.0005 0.0010 0.0015 vo lume [m3] 0.0020 0.0025 0.0030 181 Speed! [RPM] Comments Torque[N-m] Load [%] Data Summary for filter: A14 P max [dog] 10536.77 Date: 3/7/02 CA @ P max [deg] 8.0 Time: 11:03:01 dPfdCA max [bar'deg] 422.193 CA @: dP/dCA i max [deg] -10.0 Engine* Parameters AveragelB IMEP [bar] 845.22 Speed(RPM) 1610.3 HHRmaxi[kJ/m"3/deq] 8192.6 Load - approx(%) 40.0 IHRi!!maxi[kJ/m"3] 151758.2 Power (kW) 28.4 5 % M F B [ d o q w r t T D C ] -10.5 IMEP (bar) 8.46 10= jMFB[degwr tTDC] 0.5 Pmax(bar) 105.73 50% MFB [deg w.r.t TDC] 10.0 Pmax location (degrees) 368.1 MFB [deg w r.t TDC] 23.0 Diesel Flow(kg/hr) 0.32 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) '3.84 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 210.0 poly-nicompressioniuncoirected 1.38 Exhaust Flow(kg/hr) 214.2 poly-n compression corrected 1.38 Exhaust Back Pressure (kPa) 11.3 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 12000 10000 V 8000 3 6000 o. 4000 S1 2000 0 I 1 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] 182 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A15 P max [deq] 14630.38 Date: 3/7/02 CA @ p max [deq] 6.0 Time: 11:41:03 dP/dCA max [bar/deq] 504.908 CA@dP/dCA max [deg] -14.0 Eriqine Parameters AveraqeiS IMEP [bar] 1441.93 Speed(RPM) 1406.3 HHR max[kj/m"3/deg] 9750.7 Load - approx(%) 85.0 IHR max [k j m»3] 264933.1 Power (kW) 42.3 5% MFB [deq w.r.t TDC] -5.0 IMEP (bar) 14.44 10% MFB [deg w.r.t TDC] -2.0 Pmax(bar) 146.55 50% MFB [deq w.r.t TDC] 11.0 Pmax location (degrees) 366.9 90%!MFB [deg w r t TDC] 31.5 Diesel Flow(kg/hr) 0.28 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 6.26 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 273.4 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 279.9 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 10.6 poly-n expansion uncorrec ted 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace -10 0 10 crank ang le [deg] 50 Net Heat Release Rate crank ang le [deg] Log Pressure vs Volume 10000 1000 0.0000 0.0015 v o l u m e [m3] 0.0020 0.0025 0.0030 183 Speed [RPM] Comments Torque [N-m] Load ['.] Data Summary for filter: A 1 6 H P max [deg] 14445.84 Date: 3/7/02 CA @ P max [deg] 6.0 Time: 11:57:57 dP/dCA max [bar/deg] 541.096 CA@:dP/dCA max [deg] -1.5 Engine Parameters ^Average's IMEP [bar] 1418.34 Speed(RPM) 1409.0 HHR max:[kJ/m»3/dog] 9014.6 Load - approx(%) 85.0 IHR max [kJm"3 ] 263196.7 Power (kW) 41.7 5% MFB [deg w.r.t TDC] -8.5 IMEP (bar) 14.20 10% MFB [dog w r t TDC] -2.0 Pmax(bar) 144.63 5 0 % M F B [ d e g w r t T D C ] 11.5 Pmax location (degrees) 366.9 90% MFB [deg w r t TDC] 33.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 6.19 zero-level.pr.ioffset [bar] 0.000 Air Flow(kgZhr) 258.0 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 264.5 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 144.2 poly-n expansion uncorrected 1.26 EGR Fraction(%) 8.5 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] Net Heat Release Rate 10000 8000 g)6000 R 4000 E 2000 I 0 -2000 -4000 / \ ^ / M A -20 30 40 c rank angle [deg] Log Pressure vs Volume 10000 1000 0.0000 0.0030 184 Speed [RPM] Comments Torque. [Nf m] i ; ! i i i ; i p i ; p H p l M Load[%] Data Summary for filter: A17 P max [deq] 14269.67 Date: 3/7/02 CA-@ P max [deq] 6.5 Time: 12:14:00 dP/dCA max [bar/deq] 510.078 CA@dP/dCA max [deg] -13.0 Engine Parameters Averaqe IMEP [bar] 1410.32 Speed(RPM) 1407.9 HHRSmax [Mm"3/deq] 9536.9 Load - approx(%) 85.0 IHR max [ k j . m \ i ] 261141.3 Power (kW) 41.4 5% MFB [deg w.r.t IDC) -6.0 IMEP (bar) 14.12 10% MFB: [deg w.r.t TDC] -1.0 Pmax(bar) 142.90 50%. MFB [dog w.r.t TDC] 11.5 Pmax location (degrees) 367.0 90% MFB [deg w.r.t TDC] 34.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 6.23 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 229.3 poly-n compression uncorrected 1.34 Exhaust Flow(kgZhr) 235.8 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 142.5 poly-n expansion uncorrected 1.25 EGR Fraction(%) 16.5 poly-n expansion corrected 1.25 In-Cyllnder Pressure Trace -20 -10 0 10 crank angle [deg] 185 Speed r R P M ] Comments Torque [N-m] Load [%] Data Summary for filter: A18 P max [deq] 14482.80 Date: 3/7/02 CA <S) p max [deq] 6.0 Time: 12:24:01 dP/dCA max [bar/deq] 537.649 CA @ dP/dCA max [deq] -1.5 Engine Parameters Averaqe IMEP[bar] 1425.50 Speed(RPM) 1415.6 HHR max [kj7m»3/deq] 9276.4 Load - approx(%) 85.0 IHR max rkj/m"3] 266563.1 Power (kW) 42.1 5% MFB [deq w.r.t TDC] -9.5 IMEP (bar) 14.27 10% MFB: [deq w.r.t TDC] -2.5 Pmax(bar) 145.02 50% MFB Tdoq w.r.t TDC] 11.0 Pmax location (degrees) 366.9 90% MFB [deg w.r.t TDC] 33.0 Diesel Flow(kg/hr) 0.28 Assumed poly-n durinq comprn. 1.37 CNG Flow(kg/hr) 6.08 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 278.7 polyrnTcompressioniuhcoi net d 1.34 Exhaust Flow(kg/hr) 285.0 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 123.2 poly-n expansion uncorrected 1.28 EGR Fraction(%) 0.0 poly-n expansion corrected 1.28 In-Cylinder Pressure Trace -20 -10 0 c rank angle [deg] 10 20 30 Log Pressure vs Volume 10000 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 186 Speed: [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: [ M i l l P max [deq] 14490.41 Date: 3/7/02 CA @ P max [deq] 6.5 Time: 12:30:31 dP/dCA max [bar/dcq] 489.399 CA @ dP/dCA max [deg] -14.0 Engine Parameters Averaqe IMEP [bar] 1437.03 Speed(RPM) 1433.3 HHR max[kJm»3deg] 9543.8 Load - approx(%) 85.0 IHR max [kJ,m"3] 268859.7 Power (kW) 43.0 5% MFB [deq w.r.t TDC] -6.5 IMEP (bar) 14.39 10% MFB [deg w.r.t TDC] -2.0 Pmax(bar) 145.01 50% MFB [deg w.r.t TDC] 11.5 Pmax location (degrees) 367.1 90% MFB [deg w r t TDC] 34.5 Diesel Flow(kg/hr) 0.28 Assumed:poly-n during comprn 1.37 CNG Flow(kg/hr) 6.39 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 278.8 poly-n compression uncorrected 1.33 Exhaust Flow(kg/hr) 285.4 poly-n compression corrected 1.33 Exhaust Back Pressure (kPa) 11.7 poly-n expansion uncorrected 1.26 EGR Fraction(%) 0.0 poly-n expansion corrected 1.26 In-Cylinder Pressure Trace -10 0 10 crank angle [deg] 30 40 50 Net Heat Release Rate o at tn o H 7 3 Z E 12000 10000 8000 6000 4000 2000 0 -2000 -4000 - / V A jM^y. 40 crank angle [deg] Log Pressure vs Volume 10000 187 Speed [RPM] Comments Torque [N-m] Load[ .] Data Summary for filter: RSCA20JH P max [deq] 12973.86 Date: """"'3/7/02 CA @ P max [deq] 8.0 Time: 12:53:49 dP/dCA max [bar/deq] 859.894 CA@dP/dCA max [deq] 0.5 Enqlne Parameters Averaqe IMEP [bar] 1125.81 Speed(RPM) 810.5 HHR max [kJ7m"3/deq] 16619.4 Load - approx(%) 75.0 IHR max[kJ/m«3] 196610.4 Power (kW) 19.0 5% MFB [deq w.r.t TDC] -2.0 IMEP (bar) 11.27 10% MFB [deg w.r.t TDC] -0.5 Pmax(bar) 129.91 50%;MFB [deq w.r tTDC] 5.0 Pmax location (degrees) 368.7 90% MFB [deg w.r.t TDC] 18.5 Diesel Flow(kg/hr) 0.21 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.89 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 92.1 poly-n compression uncorrected 1.38 Exhaust Flow(kg/hr) 95.2 poly-n compression corrected 1.38 Exhaust Back Pressure (kPa) 11.3 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 14000 C 12000 fi 10000 3 8000 8 6000 ^ 4000 o 2000 0 I i 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] 188 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: U- A 2 1 P max [deq] 12879.13 Date: ' 3/7/02 CA;@ P max [deg] 8.0 Time: 13:16:59 dP/dCA max [bar/deq] 801.304 CA (3 dP/dCA max [deq] 1.0 Enqino Parameters Averaqe IMEP [bar] 1113.13 Speed(RPM) 806.6 HHR max [kJ7m"3/deg] 16308.3 Load - approx(%) 85.0 IHR max [kj/m»3] 195292.2 Power (kW) 18.7 5% MFB [deg w.r.t TDC] -1.5 IMEP (bar) 11.15 10%MFB [ d e g w r t T D C ] 0.0 Pmax(bar) 128.84 50%MFB [deg w.r.t TDC] i 5.0 Pmax location (degrees) 368.5 90 MFB [ d e g w r t T D C ] 20.0 Diesel Flow(kg/hr) 0.21 Assumed: poly-ndurinq comprn 1.37 CNG Flow(kg/hr) 2.88 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 82.0 poly-n compression uncorrected 1.34 Exhaust Flow(kg/hr) 85.1 poly-n compression corrected 1.34 Exhaust Back Pressure (kPa) 77.6 poly-n expansion uncorrec f d 1.31 EGR Fraction(%) 8.7 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 •Z" 12000 n £. 10000 o 5 8000 8 6000 ^ 4000 0 I i 1 1 i 1 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 18000 c rank angle [deg] Log Pressure vs Volume Q. 10- — I - I - I - - " I I 1 -I 1 i 1 1 1 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 189 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: A22 P max [deq] 13092.36 Date: 3/7/02 CA @ P max [deq] 8.0 Time: 13:30:30 dP/dCA max [bar/deq] 892.636 CA @ dPfdCA max [deg] 2.5 Ehqine'Pararnl'tors Averaqe IMEP [bar] 1125.01 Speed(RPM) 806.4 HHR max [kJ/m"3/dog] 19440.1 Load - approx{%) 75.0 IHR max [kJ/m'3] 198010.1 Power (kW) 18.9 5% MFB [deg w.r.t TDC] -1.5 IMEP (bar) 11.26 10%iMFBi[degwr.tTDC] 0.5 Pmax(bar) 131.10 50%MFB [deg w r.tTDC] 5.0 Pmax location (degrees) 368.4 90== MFB [deg w.r t TDC] 20.5 Diesel Flow(kg/hr) 0.21 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 2.90 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 76.7 poly-n compression uncorrected 1.35 Exhaust Flow(kg/hr) 79.8 poly-n compression corrected 1.35 Exhaust Back Pressure (kPa) 66.9 poly-n expansion uncorrected 1.31 EGR Fraction(%) 17.5 poly-n expansion corrected 1.31 In-Cylinder Pressure Trace 14000 ^ 12000 & 10000 o 5 8000 [8 6000 °: 4000 « 2000 o i 1 1 . 1 1 1 1 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 • | 20000 4) *3 m v 15000 ffl < 10000 Z E S 5000 a 0 c -5000 -20 -10 10 crank angle [deg] 20 30 40 190 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: • ' • ' •A2311 P max |deq] 13051.33 Date: 3/7/02 CA @ P max [deq] 8.0 Time: 13:42:00 dP/dCA max [bar/deq] 887.466 CA (ip dP/dCA max [deq] 0.5 Engine Parameters Average IMEP [bar] 1134.27 Speed(RPM) 808.1 HHR max [kJ7m"3/deg] 17304.9 Load - approx(%) 75.0 IHR max [k j m"3] 198429.3 Power (kW) 19.1 5°,: MFB [deq w.r 1 TDC] -2.0 IMEP (bar) 11.36 10% MFB [deq w r.t TDC] -0.5 Pmax(bar) 130.75 50% MFB [deg w r.t TDC] 5.0 Pmax location (degrees) 368.5 90% MFB [deg w.r.t TDC] 19.0 Diesel Flow(kg/hr) 0.21 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 2.90 zero-level, pr. off set i [bar] 0.000 Air Flow(kg/hr) 92.8 poly-n compression uncorrected 1.37 Exhaust Flow(kg/hr) 95.9 poly-n compression corrected 1.37 Exhaust Back Pressure (kPa) 48.2 poly-n expansion uncorrected 1.33 EGR Fraction(%) 0.0 poly-n expansion corrected 1.33 In-Cylinder Pressure Trace 14000 •LT 12000 to £ . 10000 CD 3 8000 8 6000 4000 o 2000 0 1 i 1 1 1 1 1 I 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] 191 Speed [RPM] Comments Torque ;[N-m] Load [%] Data Summary for filter: A24 P max [doq] 13086.51 Date: 3/7/02 CA @ p max [deq] 8.0 Time: 13:51:00 dP'dCA max [bar doq] 901.252 CA @ dP/dCA max [deq] 0.5 Engine Parameters Average IMEP [bar] 1138.34 Speed(RPM) 810.1 HHR max [k j m»3deq] 17330.9 Load - approx(%) 75.0 IHR max [kJ m»31 200837.7 Power (kW) 19.2 5% MFB [dog w.r.t TDC] -1.5 IMEP (bar) 11.40 10%MFB[deqwr . t TDC] -0.5 Pmax(bar) 131.09 50%;MFB Tdoq w.r.t TDC] 5.0 Pmax location (degrees) 368.5 90".« MFB [deq w.r.t TDC] 20.0 Diesel Flow(kg/hr) 0.21 Assumed poly-mdurinq ccmprn. 1.37 CNG Flow(kg/hr) 2.92 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 93.4 poly-n:compressioniuncorrected 1.36 Exhaust Flow(kg/hr) 96.6 poly-n compression corrected 1.36 Exhaust Back Pressure (kPa) 12.7 poly-n expansion uncorrected 1.30 EGR Fraction(%) 0.0 poly-n expansion corrected 1.30 In-Cylinder Pressure Trace 14000 12000 nj fi 10000 o> 5 8000 0 I 1 1 1 I I 1 i 1 1 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] Net Heat Release Rate 20000 -5000 I 1 1 ' 1 1 1 -20 -10 0 10 20 30 40 crank ang le [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 192 Speed [RPM] Comments Torque [N-m] Load [%] Data Summary for filter: . , A25J1H P max |deg] 9624.92 Date: 3/7/02 CA @ P max [deq] 5.0 Time: 14:06:02 dP/dCA max [bar/dog] 839.215 CA @ dP/dCA max [deq] 1.0 Engine Parameters • Average IMEP [bar] 521.33 Speed(RPM) 805.0 HHR max [k j m»3rdcq] 16249.7 Load - approx(%) 25.0 IHR max [kj /m"3] 91757.0 Power (kW) 8.8 5%i MFB [deq w.r.t TDC] -4.5 IMEP (bar) 5.22 10% MFB [deq w.r.t TDC] -1.0 Pmax(bar) 96.42 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.8 90%!MFB [deq w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.15 Assumed poly-n durlnq comprn. 1.37 CNG Flow(kg/hr) 1.23 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.4 poly-n compression uncorrected 1.30 Exhaust Flow(kg/hr) 74.8 poly-n compression corrected 1.30 Exhaust Back Pressure (kPa) 9.6 poly-n expansion uncorrected 1.37 EGR Fraction(%) 0.0 poly-n expansion corrected 1.37 In-Cyllnder Pressure Trace 12000 •jj 10000 a a. 4000 S" 2000 0 I i 1 1 i 1 1 i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank ang le [deg] Net Heat Release Rate 18000 l> 16000 5 14000 » o!2000 \ -§10000 I ft 8000 - % 6000 5 ^ 4000 : ££,2000 5 0 : -2000 -4000 crank ang le [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 193 Speed [RPM] Comments Torque [N-m] Load F.-] Data Summary for filter: , A 2 6 P max [deq] 9598.05 Date: 3/7/02 CA @ P max [deq] 5.5 Time: 14:23:31 dP/dCA max [bar/deg] 940.886 CA @ dP/dCA max [deq] 2.0 Enqlne Parameters Average IMEP [bar] 498.55 Speed(RPM) 797.1 HHR max [kj/m"3'deq] 18964.2 Load - approx(%) 25.0 IHR max [kJ/m*3] 88420.2 Power (kW) 8.3 5% MFB [deg w.r.t TDC] -4.5 IMEP (bar) 4.99 10% MFB [deq w.r.t TDC] -0.5 Pmax(bar) 96.33 50% MFB [deg w.r.t TDC] 2.0 Pmax location (degrees) 366.0 90% MFB [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.17 Assumed; poly-n;during; comprn. 1.37 CNG Flow(kg/hr) 1.15 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 57.1 poly-n compression uncorrected 1.30 Exhaust Flow(kg/hr) 58.4 poly-n compression corrected 1.30 Exhaust Back Pressure (kPa) 27.0 poly-n expansion uncorrected 1.36 EGR Fraction(%) 22.1 poly-n expansion corrected 1.36 In-Cylinder Pressure Trace 12000 I 1 1 1 1 1 C 10000 0> a. 4000 0 I 1 1 1 1 1 1 1 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 i 1 T 1 -5000 I 1 1 ' 1 1 ' -20 -10 0 10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 volume [m3] 194 Speed [RPM] Comments Torque f N-m] Load [%] Data Summary for filter: fci, A27 P max [deq] 9545.47 Date: 3/7/02 CA (•? P max [doq] 30.0 Time: 14:35:00 dP/dCA max [bar/deq] 952.949 CA @ dP/dCA max [deq] 26.5 Enqlne Parameters Averaoe IMEP [bar] 2057.71 Speed(RPM) 795.2 HHR max [kj/m*3/deq] 57066.3 Load - approx(%) 25.0 IHR max [k j m"3] 555233.2 Power (kW) 34.1 5% MFB [doq w.r.t TDC] 5.5 IMEP (bar) 20.61 10%!MFB[deqwr.tTDC] 9.5 Pmax(bar) 95.49 50% MFB [deq w.r.t TDC] 25.0 Pmax location (degrees) 390.5 90% MFB [deq w.r.t TDC] 31.0 Diesel Flow(kg/hr) 0.15 Assumed poly-n during comprn 1.37 CNG Flow(kg/hr) 1.14 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 65.5 poly-n compression uncoi reeled 0.85 Exhaust Flow(kg/hr) 66.8 poly-n compression corrected 0.85 Exhaust Back Pressure (kPa) 36.1 poly-n expansion uncorrected 2.09 EGR Fraction(%) 9.8 poly-n expansion corrected 2.09 In-Cylinder Pressure Trace 12000 • j ; 10000 Q. 4000 g- 2000 0 I • • 1 i 1 i i 1 i 1 -50 -40 -30 -20 -10 0 10 20 30 40 50 c rank angle [deg] Net Heat Release Rate 70000 60000 „50000 8*40000 ft 30000 120000 2 10000 " 0 -10000 -20000 -20 10 c rank angle [deg] 20 30 40 195 Speed [RPM] Comments Torque[N-m] Load [%] Data Summary for filter: A28 P max [deg] 9383.38 Date: 3/7/02 CA @ P max [deg] 5.0 Time: 14:47:30 dP/dCA max [bar/deg] 818.537 CA@ dP/dCA max [deg] 1.0 Engine Parameters Average IMEP [bar] 477.30 Speed(RPM) 799.7 HHR max[kJ7m"3/deg] 15860.5 Load - approx(%) 25.0 IHR max [kJ/m«3] 84792.1 Power (kW) 8.0 5% MFB [deg w.r.t TDC] -5.0 IMEP (bar) 4.78 10% MFB [deg w.r.t TDC] -1.0 Pmax(bar) 94.23 50% MFB [dec w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deg w.r.t TDC] 7.5 Diesel Flow(kg/hr) 0.15 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.13 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.3 poly-ncompression:uncoi reeled 1.28 Exhaust Flow(kgZhr) 74.6 poly-n compression corrected 1.28 Exhaust Back Pressure (kPa) 10.7 poly-n expansion uncorrected 1.36 EGR Fraction(%) 0.0 poly-n expansion corrected 1.36 In-Cylinder Pressure Trace -20 -10 0 10 crank angle [deg] 30 40 50 Net Heat Release Rate 18000 0) 16000 ra 14000 di o)2000 £ # 0 0 0 0 £ S 8000 £ g 6000 <5 ^ 4000 l= i . 2000 - 0 -2000 -4000 _ ; - / J. -10 20 30 40 crank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 196 Speed [RPM] Commonts Torque [N-m] Load [•• ] Data Summary for filter: , A29 ' P max [deq] 9605.48 Date: 3/7/02 CA=@P max [deq] 5.5 Time: 14:55:26 dP/dCA max [bar/deq] 985.690 CA@dP/dCA max [deq] 1.0 Enaine Parameters Averaqe IMEP [bar] 514.85 Speed(RPM) 800.2 HHR max [ k j m»3'deq] 18985.6 Load - approx(%) 25.0 IHR max[kJ/m"3] 91376.2 Power (kW) 8.6 5°.,. MFB [deq w.r.t TDC] -5.5 IMEP (bar) 5.16 10% MFB [deq w.r.t TDC] -2.0 Pmax(bar) 96.24 50% MFB [deq w.r.t TDC] 1.5 Pmax location (degrees) 365.9 90% MFB [deg w.r.t TDC] 8.0 Diesel Flow(kg/hr) 0.21 Assumed poly-n during comprn. 1.37 CNG Flow(kg/hr) 1.11 zero-level, pr. offset [bar] 0.000 Air Flow(kg/hr) 73.4 poly-n compression uncorrected 1.29 Exhaust Flow(kgmr) 74.7 poly-n compression corrected 1.29 Exhaust Back Pressure (kPa) 10.8 poly-n expansion uncorrected 1.39 EGR Fraction(%) 0.0 poly-n expansion corrected 1.39 In-Cylinder Pressure Trace 12000 1 1 1 1 , 1 10000 xt ' 'Z 8000 3 6000 tn o a. 4000 S1 2000 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 crank angle [deg] Net Heat Release Rate 25000 i ; 1 1 c rank angle [deg] Log Pressure vs Volume 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 vo lume [m3] 197
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The effect of exhaust gas recirculation on particulate...
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
The effect of exhaust gas recirculation on particulate matter emissions from a compression-ignition,… Brakel, Thomas Willem 2002
pdf
Page Metadata
Item Metadata
Title | The effect of exhaust gas recirculation on particulate matter emissions from a compression-ignition, natural gas fuelled engine |
Creator |
Brakel, Thomas Willem |
Date Issued | 2002 |
Description | A mini-dilution tunnel was designed and built to measure particulate matter (PM) emissions from a single-cylinder research engine (SCRE) based on the Cummins ISX 400 series. The SCRE relies on the high-pressure direct injection of natural gas, pilot ignited with diesel fuel for combustion. Two methods were used for PM measurements: pre-weighed filters and a tapered element oscillating microbalance (TEOM). A repeatability study was conducted to determine the experimental error associated with PM measurements and to compare results from pre-weighed filters with those taken using a TEOM. The PM emission rate uncertainty was determined to be at maximum 29%, with 10-12% due to measurement uncertainty and the remainder due to poor engine repeatability. PM emission rates from the TEOM showed excellent correlation with measurements using pre-weighed filters by applying a correction factor of 1.43. The second part of this work was to examine the effect of replacement exhaust gas recirculation (EGR) on particulate emissions. EGR is primarily used in engines to reduce the formation of oxides of nitrogen (NOx). The drawback of using high EGR flow rates is a deterioration in combustion and an increase in the amount of unburned species (HC, CO, PM) that are formed. The results show the PM penalty is negligible for EGR rates up to 15% and that increasing the exhaust pressure significantly affects PM and CO emissions. It was also found that increasing the amount of diesel pilot at 800 RPM 75% load with 17% EGR significantly increases PM and CO emissions. |
Extent | 12301591 bytes |
Genre |
Thesis/Dissertation |
Type |
Text |
FileFormat | application/pdf |
Language | eng |
Date Available | 2009-08-20 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
DOI | 10.14288/1.0080957 |
URI | http://hdl.handle.net/2429/12409 |
Degree |
Master of Applied Science - MASc |
Program |
Mechanical Engineering |
Affiliation |
Applied Science, Faculty of Mechanical Engineering, Department of |
Degree Grantor | University of British Columbia |
GraduationDate | 2002-11 |
Campus |
UBCV |
Scholarly Level | Graduate |
AggregatedSourceRepository | DSpace |
Download
- Media
- 831-ubc_2002-0346.pdf [ 11.73MB ]
- Metadata
- JSON: 831-1.0080957.json
- JSON-LD: 831-1.0080957-ld.json
- RDF/XML (Pretty): 831-1.0080957-rdf.xml
- RDF/JSON: 831-1.0080957-rdf.json
- Turtle: 831-1.0080957-turtle.txt
- N-Triples: 831-1.0080957-rdf-ntriples.txt
- Original Record: 831-1.0080957-source.json
- Full Text
- 831-1.0080957-fulltext.txt
- Citation
- 831-1.0080957.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>
Our image viewer uses the IIIF 2.0 standard.
To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0080957/manifest