A NON-DIVISORIAL VARIETY by Robert Joseph Fraga B.A., Pomona C o l l e g e , 1961 M.A., U n i v e r s i t y o f B r i t i s h Columbia, 1963 A t h e s i s submitted i n p a r t i a l f u l f i l m e n t o f the requirements f o r the degree o f DOCTOR OF PHILOSOPHY i n the Department of Mathematics We accept t h i s t h e s i s as conforming to the required THE standard UNIVERSITY OF BRITISH COLUMBIA June, 1965 In p r e s e n t i n g the r e q u i r e m e n t s f o r an British Columbia, available for mission representatives,, cation of w i t h o u t my this study. by the Department The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a Columbia of University of s h a l l make i t thesis Head o f my permission. fulfilment I f u r t h e r agree that this for financial the Library It i s understood thesis written the copying of granted in p a r t i a l advanced degree at r e f e r e n c e and be thesis I agree that for extensive p u r p o s e s may his this copying or shall not per- scholarly Department o r that gain for freely be by publi- allowed i Advisors Dr. Mario B o r e l l i ABSTRACT When d i v i s o r i a l v a r i e t i e s were f i r s t introduced, the question immediately arose whether there are any v a r i e t i e s which are not divisorial. T h i s work answers the question i n the a f f i r m a t i v e . We prove here that the n o n - p r o j e c t i v e v a r i e t y M defined by Nagata i n Memoirs o f the College o f Science, U n i v e r s i t y of Kyoto, S e r i e s A, V o l . XXX, Mathematics No. 3, 1957, pp. 231235 i s , i n f a c t , n o n - d i v i s o r i a l . The work i s organized as f o l l o w s * We f i r s t discuss briefly the concepts r e l a t i n g to the notion of d i v i s o r i a l v a r i e t y . Next there i s a d e s c r i p t i o n o f Nagata's v a r i e t y i n which we i n c l u d e the proofs of statements which we s h a l l need f o r the subsequent theorems. The p r e l i m i n a r y r e s u l t s are of two types: prove s e v e r a l lemmas concerning o f p o i n t s on the v a r i e t y M. First we the dominance of l o c a l r i n g s 5econd we prove that d i v i s o r s whose v a r i e t i e s c o n t a i n the vertex o f the a f f i n e cone V used i n Nagata's example must i n t e r s e c t the l i n e at i n f i n i t y o f the cone at a p o i n t ( s ) whose l o c a l r i n g dominates the l o c a l r i n g of t h e vertex of the cone under the transformation cr defined by Nsgata. This r e s u l t i n d i c a t e s s t r o n g l y that the v a r i e t y M • VU V°~ i s ii not divisorial. For the proof t h a t t h i s i s , i n f a c t , the case, we prove i n d e t a i l a s t r i c t l y a l g e b r a i c r e s u l t to the e f f e c t that the (prime) i d e a l s a s s o c i a t e d with the i r r e d u c i b l e com- ponents o f a d i v i s o r which do not c o n t a i n the vertex P o f the cone V are p r i n c i p a l . contradiction With t h i s r e s u l t , we f i n a l l y that M i s not d i v i s o r i a l . show by iii ACKNOWLEDGEMENTS I would l i k e t o take t h i s o p p o r t u n i t y to express my thanks to Dr. Mario B o r e l l i , who was my t h e s i s a d v i s o r and whose encouragement and d i r e c t i o n a l i n s i g h t f a c i l i t a t e d tion of t h i s thesis. I would l i k e the produc- to thank Dr. W i l l i a m who k i n d l y consented to read t h i s paper. Hoyt Also my thanks are due to the U n i v e r s i t y o f B r i t i s h Columbia, the N a t i o n a l Research C o u n c i l o f Canada, and Indiana U n i v e r s i t y without whose generous f i n a n c i a l support t h i s work would not have been p o s s i b l e * iv TABLE OF CONTENTS SECTION PAGE Introduction 1 Natation 2 and Terminology Nagata's C o n s t r u c t i o n 7 P r e l i m i n a r y Results 12 Main Theorem 27 Conclusion 30 Bibliography 31 1 1 INTRODUCTION In 1963, B o r e l l i defined the concept o f d i v i s o r i a l proved some of i t s p r o p e r t i e s i n L"5] . v a r i e t y and The question arose whether there were v a r i e t i e s which were not d i v i s o r i a l . purpose o f t h i s t h e s i s i s to e x h i b i t an a l g e b r a i c i s not d i v i s o r i a l , Since B o r e l l i v a r i e t y which thus answering the question i n the a f f i r m a t i v e . proved that a l l non-singular and a l l q u a s i - p r o j e c - t i v e v a r i e t i e s were d i v i s o r i a l , for The i t was c l e a r that the search a n o n - d i v i s o r i a l v a r i e t y had to be l i m i t e d to those v a r i e t i e s which were s i n g u l a r and n o n - p r o j e c t i v e . structed in Such a v a r i e t y i e con- by M. Nagata, who proves that i t i s a normal v a r i e t y which cannot be imbedded i n p r o j e c t i v e prove that t h i s v a r i e t y i s not d i v i s o r i a l . space. We shall 2 2 NOTATION AND We s h a l l consider closed field. TERMINOLOGY only v a r i e t i e s defined We give f i r s t the known r e s u l t s without We introduce the over an a l g e b r a i c a l l y f o l l o w i n g d e f i n i t i o n s and proof. f o l l o w i n g "double" n o t a t i o n * i r r e d u c i b l e v a r i e t y , D a d i v i s o r of X, Let X be «m Y c U c X , where U i s an open, n e c e s s a r i l y i r r d u c i b l e subset of X, We denote by the d i v i s o r on U c o n s i s t i n g of those prime component?* of (D)y as they have i n D. p o s s i b l e as w e l l as Y • U 4 X. y D, r e s t r i c t e d on U, which i n t e r s e c t Y non-emptily, taken with 8ante m u l t i p l i c i t i e s well the Note t h a t U • X i s A d i v i s o r D of an i r r e d u c i b l e a l g e b r a i c v a r i e t y X i s l o c a l l y p r i n c i p a l ( C a r t i e r ) i f there exist-;; an open c o v e r i n g f^ , i £ Ij that D v « X , A , of the (f.) X v of X, ^ « jlL , i£-l} , and a subset, f i e l d E of r a t i o n a l f u n c t i o n s of X such f o r a l l x £ U. X , A and i£l. Here ( f . ) denotes 1 the d i v i s o r of the f u n c t i o n f ^ on X. X We remark that i f a v a r i e t y X c o n s i s t s e n t i r e l y of p o i n t s x a l l of whose l o c a l rings X , A are UFD (factorial), then a l l d i v i s o r s D of X are l o c a l l y p r i n - cipal. For the f o l l o w i n g remarks, we drop the c o n d i t i o n t h a t X be 3 irreducible. denote of the sheaf of l o c a l r i n g s o f X and ft^. called An element the sheaf o f u n i t s of the f i r s t cohomology group H*(X, T (U^j, ^J) the set of s e c t i o n s of is f £ H ( X , ^ ' ° ) and l e t 1 U - {U A , It IJ over u\j« u \ 0 represents f. We s h a l l say t h a t CU,b) »^x* *"^ ij U represents f . sheaf F i s s a i d to be a l g e b r a i c over X i f i t i s a shaaf o f O'^ modules. I f F i s an a l g e b r a i c sheaf over X, then there e x i s t an a l g e b r a i c sheaf K and l o c a l isomorphisms u^t such t h a t f o r every x t l l ^ K|IL v F 'u. and a €. F^ , ( u u " ) ( a ) - b(i,J)(x)- e 1 i The U^, be an indexed opsn c o v e r i n g of X f o r which the 1-coeycle bt ( i , j ) The Let a l i n e c l a s s o f X. Denote by Let Hence l e t X be an a r b i t r a r y v a r i e t y . j sheaf K i s uniquely d e f i n e d up to depends only upon F and f . ^^-isomorphisms, and i t The l o c a l isomorphisms u^ depend on the r e p r e s e n t a t i o n C U , b ) . The sheaf K i s denoted by f ( F ) . Since F and f ( F ) are l o c a l l y isomorphic. F i s coherent i f , and only i f , f ( F ) i a coherent. For a more d e t a i l e d d i s c u s s i o n of these matters, the reader may consult 4 Assume now that X i s an irreducible variety. be an open covering of X, and l e t m ideal of 0"^ ^ for every x€ X. Let Zi • [ , i£ denote the unique maximal Then the subset ( f ^ . i € l j of rational functions o f X i a called a coherent *H-system of l o c a l generators ift (1) f (2) f. £ (y A » 0 for every y - n for ©very x €. U, . and a l l f, If « r f i j€X. t and J (3) i€.I, j ' h f for a l l i , j , h £ l . f h f i s the l i n e class represented by J i , j £ l / , we say f. that f ^ i s a system of l o c a l generators of f• Suppose f, generators. a given l i n e c l a s s , h a s s u c h a s y s t e m of local Then we can associate an equivalence c l a n Cartier divisors of X with f. that of l i n e a r equivalence* t h e equivalence r e l a t i o n If we denote by [fj of being the d i v i s o r d a e a with respect to linear equivalence of X associated w i t h •f» is f — - H f l a group homomorphism from H (X,<^ ) into the additive group 5 of the d i v i s o r c l a s s e s under l i n e a r equivalence of X whose d i v i s o r s are l o c a l l y p r i n c i p a l . This homomorphism i e iso- morphism i f X i s normal. f(&^) A l i n e c l a s s f o f X i e s a i d to be r e g u l a r i f the sheaf has a non-zero s e c t i o n over X. an isomorphism between • P I f f i s r e g u l a r , there e x i s t s (X, f ( E ) ) jjf| and notes the non-negative d i v i s o r s i n \f\ . such an isomorphism always e x i s t s ; The reader may consult jjfjj de- remark here that the requirement that f be r e g u l a r guarantees that the isomorphism sets. We where i s not between empty \A~\ , § 5 , f o r the p r o o f s o f these statements. The a t a l k o f fifty) over any p o i n t x C X has a unique maximal submodule, which i s denoted by n^ , corresponding to the unique maximal i d e a l n» of Given a s e c t i o n mC X, A X we . v A define \ »{*€X(s(K)4n } x We remark here that X i s an open set i n X. 8 Let dj (X) denote the c o l l e c t i o n of open sets o f X. B k - (UC^(X) \ U • X B , e c H x , f ( ^ ) ), x Then we fCH^X^jjJ define 6 Definition An algebraic constitutes The significance the preceding remarks* variety a base f o r the of X, X, whoee v a r i e t y a closed subset Y of X such, t h a t d i v i s o r of X which i s l o c a l l y c o n t a i n s Y but i n e f f e c t , i s determined by are l o c a l l y p r i n c i p a l * of I f X i s an i r r e d u c i b l e d i v i s o r i a l v a r i e t y , there e x i s t s a p o s i t i v e p r i n c i p a l and topology of of t h i s d e f i n i t i o n becomes c l e a r i n view then given a p o i n t x £ X and x^Y, X i s called d i v i s o r i a l i f not -x. the p e i i t i v i The topology d i v i s o r s which 7 3 NAGATA*S CONSTRUCTION 3 3 Let V be the cone defined by X Y 3 • Z over the f i e l d o f V may be regarded as the r e p r e s e n t a t i v e r a t i o n a l numbers R. cone o f the p r o j e c t i v e curve V* with where a and b are transcendental generic p o i n t D* « i a , b l ) 3 3 p numbers such that a + b *> I . Let L e tKk*beR C s ^ f e ) • an a D l g ebe b r athe i c a lgenerator l y c l o s e d o ffi eVl dwhich c o n t agoea i n i n gthrough a and D*. k, 4*»». Consider the image o f V under the by the f o l l o w i n g affine transformation defined equations! mx X + az Y « y + bz m Z Z We denote t h i s image aa V without f e a r o f c o n f u s i o n . Vis thus d e f i n e d by x 3 + y Let & «> k [ x , y , z j 3 . d + 3(ax 2 • by )* * 3(» x • b y ) z 2 2 2 2 - 0. The d i v i s o r 0 i s defined by the id«al "a x 0" y & Let F be the d i v i s o r d e f i n e d by (j/ bifihe * mA a iipjSiri§ f •» b y 2 b x 2 2 - xO i + (y kinii?i*)&2z=£=& 2 + 3byz + M%»U*v) u » [ t x - (**/b) ]t 2 3b z )0 2 2 mm foM'Stii'i v » Ctx (g/b) ] 2 3b 2. 2 3 + 1 B It i a easily v e r i f i e d x - + °M y - [tx - ( a / b ) ] x 2 b t 2 that z - 2 - (-;/ -) J ; 2 3 t X 3b y 2 2 °" d e f i n e s an i n v o l u t i o n of k(x,y,z) which gives a b i r a t i o n a l transformation of V i n t o V. The of t h i s mapping can nature more c l e a r l y understood by observing that, i n vector notation, y- l ( t , u , v ) c(x,y,z) be Q^cek. c Let V 'denote the surface i n ( t , u , v ) - s p « c 9 which i s biration<?.lly 0 e q u i v a l e n t to V, i . e . V t 3 + u 3 cr + 3(at 2 i s defined by + bu )v + 3(a t + b u)v* » 2 2 2 0. cr Similarly D and F are obtained by r e p l a c i n g x,y,z r e s p e c t i v e l y i n the d e f i n i n g equations f o r D and F. by P t,u,v i s th© vertex of the cone V . We s h a l l need the f o l l o w i n g p r o p e r t i e s of V which Nagwta proves in [7]. F i r s t we Proposition 1 give a general p r o p o e i t l o n , Let 0 be the d i v i s o r on a normal a f f i n e cone \J d e f i n e d by a hettelSftfitffi J>tUai& id * ^wA«cipal on V i f , and tfifrii § &• only i f , i t As. l o c a l l y p r i n c i p a l at the vertex P of V . 9 Proofs Neceaaity i s obvious. For s u f f i c i e n c y , assume that i s l o c a l l y principal at P . element f C Op such that the l e a d i n g form o f f . ie a unit i n Since f . 3 Then there e x i s t s an < ^ m * Then f £c£ * . % L 8 * °e Therefore f ' / f Hence i s homogeneous, f g e n e r a t e s ^ , and ^ is p r i n c i p a l on V . We apply P r o p o s i t i o n 1 to the f o l l o w i n g lemma which p e r t a i n s s p e c i f i c a l l y t o the cone V ( V ) as defined Lemma 1 For any n a t u r a l number n, nD i s not p r i n c i p a l l o c a l l y at the vertex Proofs above. P of V . L e t E* be the p o i n t (1,-1,0) on V * . Now assume t h a t f o r some n a t u r a l number n, nD i s p r i n c i p a l l o c a l l y at P. Then by P r o p o s i t i o n 1, nD i s p r i n c i p a l on V . L e t f be the homogeneous form which d e f i n e s nD. the degree o f f . L e t m be Then f / ( x + y ) i s a f u n c t i o n on V * m whose zero and pole are nD* and 3mE* r e s p e c t i v e l y , and we have nD* - 3mE* ^-0, hence n(D* - E * ) ^ 0 (3m » n ) , which i s a c o n t r a d i c t i o n because E* i s r a t i o n a l over R and D* i s a generic p o i n t o f V* over R. 10 We remark here that the r e s t r i c t i o n i s not necessary. that n be a p o s i t i v e i n t e g e r An obvious m o d i f i c a t i o n o f the proof us t h s r e s u l t f o r any non-zero i n t e g e r n. Lemma % k [ x,y,z,t,u,v] a k[x,z,t,v] gives F i n a l l y we show d e f i n e s the a f f i n e model V - F. Prooft L e t A be the a f f i n e v a r i e t y d e f i n e d by k[x,y,z,t} and l e t A* be the a f f i n e v a r i e t y d e f i n e d Since a x + 2 b y€.d t£0(" , i.e. 2 and 2 and s i n c e x ^ * 0[ \ ^0', 2 < Since dn^ , Ct0-[t\ 2 3 - I f (y/x) 3 - -3 [ b y z + a x z + ( a x + b y ) z 2 2 2 2 we see t h a t x v € O" and o b v i o u s l y f f o r A* the same property, good. - (x + y )/x 3 2 ]/x 3 3 zv € 0~[t\ . 3 , Therefore as s t a t e d above f o r A, holds F i n a l l y the d e f i n i t i o n o f v shows t h a t x^[tf l v Proofs i s generated by x Since 1 • (tx - ( a / b ) ) Corollary we see t h a t z , A - ( d i v i s o r d e f i n e d by x « z • 0 ) c o i n c i d e s with V - F. and by k [ x , y , z , t , v ] . ' + z^[t,v] contains 1. Therefore A* « V - F„ the a s s e r t i o n i s proved. V - F » V Sincev - F i s an i n v o l u t i o n , Lemma 2 gives us the r e s u l t . 11 Lemma 3 ^ p H ^ . k We s t a t e Lemma 3 without proof p a r t l y because the proof i s rather involved and p a r t l y because the f i r s t h a l f o f the proof of Theorem 2 i n § 4 can be adapted t o a proof o f Lemma 3. Nagata proves that M • V U V i s normal but not p r o j e c t i v e . contend that M a l s o i s not d i v i s o r i a l . some f u r t h e r p r o p e r t i e s of i t . but f i r s t we s h a l l We prove 12 4 PRELIMINARY RESULTS V i s d e f i n e d by x + y 3 + 3(ax 3 + by )z + 3(a x + b y ) z 2 2 2 2 We i n t r o d u c e homogeneous c o o r d i n a t e s x^ x • ] / 4 » y " 2^ 4 x x x » x " 3^ 4 2 x ' x a n ^ w - 0 2 ,x^ (I) where °btain a r e p r e s e n t a - e t i o n o f V i n terms o f homogeneous c o o r d i n a t e s * x 3 x + x + 3(ax + b x 3 2 2 x 2 2 )x + 3(a x + b x )x 2 3 2 x 2 2 3 « 0 S i m i l a r l y i f we i n t r o d u c e homogeneous c o o r d i n a t e s y^ , y y 4 where t • Y j / y ^ • » ^2^A u * ™ 3^ 4 v y » y w o O D ' t a i n D O * (IN »y » 2 3 h non-homogeneous and homogeneous r e p r e s e n t a t i o n s o f v"" i t' + u y 3 x + y + 3(at 3 3 2 + 3(a + bu )v + 3(a t + b u ) v 2 2 2 yjL + by We s h a l l study more deeply 2 2 2 )y 2 + 3(a y 2 3 - 0 2 + b y )y 2 x 2 2 3 (II) - 0 (II») the b i r a t i o n a l t r a n s f o r m a t i o n between the two p r o j e c t i v e cones, V and V , the c l o s u r e s o f V and V r r being taken i n x and y space r e s p e c t i v e l y where x • ( x ^ , x , x , x ^ ) 2 and y « (yj^y^y-j.y^)» Let ^ i f denote the l o c a l r i n g i n k ( x , y z ) o f the l i n e at i n f i n i t y o f V , p H m (y^,y ,y 0), l e t d e n o t e 2 3 > Similarly l e t ^ p 3 If ^ £ L^ , i.e. i f i t s l o c a l ring i n k(t.u.v). denote the l o c a l r i n g i n k(x,y,z) o f P. 13 <^ Lemma 1 Prooft <^_<r c p for a l l % We f i r s t show that L ^ where c { x,y,zj «n^ ^VF^. , the maximal i d e a l c r of ^ L i f . x - a t + b u » a (y /y ) + b (y /y ) - a y y 2 2 2 2 1 b t 2 2 4 2 b ( 2 2 /y J y i 4 x b 2 4 + b y y 2 4 2 2 4 2 y j L Similarly y • (y /yi)x 2 " L*x - (a/b) ] -.- 1 - ( y / y ^ Z 2 3 3b v 3 by 2 2 )y 3b y a y l 2 + by 2 > ( < y 3 y i 2"" u2 3 l 2 + 3(a 3 > 2 y 2 y i + 2 4 + b y )y 2 y i 3b y 2 - - y ^ U y ^ * 3 4 3b (y /y ) 2 " 4[ + 1 - y ( 3 2 2 3 3 x y y 3 2 ) 3 ] 3 l * b 2 y 2 ) y 3^ by Hence since y^ + 0 and y k Cx»y» 1 z c 6fr 1 1 , [ x , y , z ) c m ^ and ^° complete the proof, i t s u f f i c e s to show that * € _ i _ € . ^ r V r g(x,y,z) Since • Q for ^ 4 g(x,y,z) T ^ p g(0,0,0) <^ 0} Q hence g(x,y,z) • f(x,y„z) • e where every term i n f c o n t a i n s e i t h e r x or y o r z« 1 m g(x,y,z) where 1 c • f(x,y»z) V (y > - ( b y 2 A a 1 2 ) B , (b y 2 1 3 1 c ^(y ) + x ) (b y n 2 3 1 ) p Ffy^y^y^y^ and F - f • £ y k[y] , 4 14 i . e . we have c l e a r e d denominators i n f . Since - _1_, c ^(y ) + ny^yg.yg.Q) c 1 1 ' c & % g(x,y,z) We r e s t a t e t h i s r e s u l t aa Apart from F n L Corollary 1 <r c.tr f €. Corollary 2 Proofs ^ Take ^ Lemma 2 $« % The ' i s not fundamental. generic a , the l o c a l r i n g o f any p o i n t ^ <r c p p M f o r L^>. f o r a l l | £ L ^ where % 4- F. proof i s e x a c t l y s i m i l a r t o that o f Lemma 1. Analogous c o r o l l a r i e s may be s t a t e d . F i s defined by the equations t « 0 2 2 2 I u + 3buv • 3b v - 0 * We a s s e r t that F aa L^ and L 2 • c o n s i s t s o f two l i n e s which we s h a l l denote T h i s may be Been as f o l l o w s . Dehomogeniza * 15 at v to obtain (u/v) + 3b(u/v) + 3 b - 0 2 2 I t f o l l o w s that m -3b + / 9 b - 1 2 b = • u 2 v Habca F.or « L^U l> 2 where 2 b (-3 ± 1 ^ / 3 ) 2 i s d e f i n e d by the equations t - 0 u - (b/2) (-3 - i sl~3)v m 0 and L i s defined by 2 ( t - 0 u - (b/2)(-3 +i 4 3)v - 0 ( 0 , l , 3 _ + 4 i 3 ,0) and L ^ L ^ - P 6b c (0.1.-3 -i>/3 , 0 ) . I f we dehomogenize a t y , so t h a t 6b Y2 ^2^3 m * ^3 " 4 ^ 3 y y * w e 0 D * * a n non-homogeneous m ^1/^3 » coordinates f o r these p o i n t s . (0, - b (3 +ivf3), 0) and P 2 A s i m i l a r d i s c u s s i o n holds L 0 L^ . 2 X f o r F « L^U i - , 2 - (0, - b (3 -i,/3). 0) 2 - L^O L ^ , P j • I f we dehomogenize ( I * ) at Xg and denote 2 " 2^*3 ' 3 " *4^*3 ' ° K 2 X W o b t a i - j /. 3 > x x L n U - | ( X , X , X ) j X + X + 3(aX + bXj ) + 3 ( 8 ^ • b X ) 3 1 2 3 x 3 2 2 x 2 2 2 16 Let p Jf(x x x ) 1> 2t 3 i " I g(x X2,x ) lf *?2 ' 2 € If L w h e r 3 ^2 * e 9 l B ^ to- - 1 g(t,u,v) g(Q, - b(3 + i / 3 ) , 0 ) + 0 2 t g(0,u,v) f 0 where u • b (-3 +i/3)v 2 We may now s t a t e Lemma 3 Proof 1 ^ c p ^ | f for a l l We show f i r s t L^ x 3 x 2 x Similarly X + t 3 u - 3uv(a t + b u) u 2 + t 3 2 + l)/3b > 2 2 \ 2 2 3 2 3tv(a t + b u) 2 3 P 2 ( (u/t) 3^ 4 2 2 * ' 2 (a t + b u)/b t x 3v(a t + b u) t /u % that { X ^ X j , X ^ c k(t,u,v) X^ • X j ^ » j / 4 x where 2 3^.3 + t and X - 3b t v 2 3 u 3 3 Hence 3 +t 3 f X , X , X } c k(t,u,v) and " [ X j ^ X ^ X ^ e k ( t , u , v ) . 1 2 to show that 1 g(X.,X-,X,) 'i»"2 "3 P 9 Let I t suffices 3 l > 1 S^fc: o(X X ,X ) l 9 2 3 Then g(X ,X ,X ) JL 2 3 gU^X^Xg) « (X + _ | J 3 2 + i^3) ) h ( X ) + f ( X X , X ) * 2 l f 2 3 17 where c + 0 and a l l terms i n f U ^ X ^ X ^ 9 ( X 1' 2» 3 X X contain either * 3 (^3uv(a t+b u) + b (3+i\l3)\htX.,) + f(X.,X-,X,) V 3 3 2 J ) 2 2 1 2 3 + t (u [3uv(a t+b u) + c 2 2 u 2 or X « x 3 + t 3 ) m (.lAtVf + |(3+iV3)(u +t )][u +t ] " h(X ) + 3 3 3 3 m 1 2 ( X ^ X ^ ) + c(u +t )" 3 where m i s s e l e c t e d l a r g e enough ao t h a t [ u + 3 and (u + t ) f ( X , X , X ) € k [ t u , v ] . 1 2 3 t J " * h ( X 2 ) £ k[t,u,v] 3 m To s i m p l i f y the r o f 3 notation, let » 1 G(t,u,v) 9 v i»^2 3^ x ,X Let t • 0 and u - b (-3 + iv/3)v, i . e . v - -1 (3 + i / 3 ) u . 2 6b 6(0,u,v) - u 3 m [3u( sJL-fa+iJa^ u ) b u + 6b 2 L b (3+iJ3)u 1u 2 J 3 3 ( , , " h + 1 ) 3ns u f-b -2 (34-i 3 ) u 3 • b (3+i 3 ) u l u 2 J 3 L m i c Hence G(t,u,v) « • 1 g(X ,X ,X ) 1 2 3 Then ^2 • 3 ( m - 1 ) h + cu * 3 eu 3 m is Corollary 1 Apart from P , f o r a l l L- , to- i s not fundamental. Corollary 2 ^ Lemma 4 ^ p 0 ^, ^ 2 C p r l u ^ particular, for a l l ^ ^ .,C€LL, ^ where where ? ^ p r 2 1 44PP, , and i n ^ $''.a" L l The proof i s e x a c t l y s i m i l a r t o that o f Lemma 3. The preceding lemmas e s t a b l i s h some o f the p r o p e r t i e s o f the b i r a t i o n a l correspondence "~. We now turn our a t t e n t i o n to the behavior o f C a r t i e r d i v i s o r s on V. Since V i s a b s o l u t e l y d u e i b l e , we s h a l l work now over k « R(a,b) r a t h e r than It. aim irre Wa t o prove Theorem 1 Suppose f(x,y,z}£ k[x,y,z] i s such that f ( P ) «• 0. Then i t cannot happen that ( f ) y f*\ v f P^,P |. The proof o f Theorem 1 w i l l r e q u i r e two lemmas. we develop a convenient 2 First notation. Let tTi be the unique maximal i d e a l o f &~ 0 k[x,y,z]» and l e t p 1? f&7TI. W r i t e f as a homogeneous polynomial I n x , x , x , x, I and dehomogenize a t x . ' The r e s u l t w i l l be a r a t i o n a l f u n c t i o n 3 i n X,, X^, X^ w i t h only X Let 3 2. i n the denominator. 3 L be d e f i n e d by ) z = 0 L x + y = 0 Let C be d e f i n e d b y f z = 0 - xy + y " = 0 2 Lemma 5 3L i s l o c a l l y p r i n c i p a l a t P. 3 3 Proof: We prove t h i s on the o r i g i n a l cone X L + Y 3 = Z . i s then d e f i n e d by f Z = 0 X + Y = X + Y = Z 2. • X-XY -. 3 + Y 2. 0 i s a u n i t e f t L. 1 z X - X Y + Y 2 3 Hence ord X + Y = 3. L . The equation X 3 + Y 3 = Z shows that X + Y has no other zeros on the cone. Hence 3L i s l o c a l l y p r i n c i p a l a t P. 20, Lemma 6 The 3C i s l o c a l l y p r i n c i p a l a t P. proof i s e x a c t l y analogous t o that of Lemma $, We r e t u r n t o the proof of Theorem 1 and proceed by c o n t r a diction. L e t g ( X , , X , X ) be the numerator of the r a t i o n a l £ function i n X, , X , X a 3 3 obtained from f . Our assumption t h a t g(X, ,X£,0) i s a polynomial w i t h only P, and P Since g(X ( ,X ,0) does not depend on X a 3 a implies as roots. and the o r i g i n a l equation of the cone i n these v a r i a b l e s becomes a c y l i n d e r independent of X 3 and g i s a r e g u l a r f u n c t i o n on U, we have (g) _ = nF - mL - pC V,V n,m,p€-2- Therefore (g ) 3 By _ = 3nF - m3L - p3C . V,V Lemmas $ and 6 , 3 L a n d 3C a r e l o c a l l y p r i n c i p a l , a n d t h i s leads t o a c o n t r a d i c t i o n of Lemma T i n § 3 , 21 This result, together w i t h the f a c t that i n d i c a t e s s t r o n g l y that M = Vu V r 2), (lemma i s not d i v i s o r i a l . U n f o r t u n a t e l y Theorem 1 does not preclude the p o s s i b i l i t y t h a t ( f ) _ L = { P | ,P } P,V and t h a t an i r r e d u c i b l e r | 0 o E of ( f ) V,V ? which does not pass through P, a p o i n t P# d i f f e r e n t from P, and component intersects at ? . z To overcome t h i s d i f f i c u l t y , we must develop an a l g e b r a i c tool of some power. we quote two by ZarIski-Samuel. B e f o r e we attempt the a c t u a l development, lemmas, the f i r s t by Seidenb erg -Cohen, tke Seidenb erg's Lemma L e t R be integrally closed quotient r i n g F. in i t s total I f f ( X ) and g ( X ) a r e monic polynomials i n F[x]and is i n R[x], R [ X ] . second h(X) = f then f ( X ) and g ( X ) a r e i n (X)g(X) 22 For the proof, see [6~\, Z a r i s k i a Lemma 1 page 256. Let T\ be a noetheriah domain and l e t Yi ' • TlCTf] where T i s a l g e b r a i c over Vl be a domain which c o n t a i n s h i s a simple r i n g extension of Yl . 71', Let 1 For the proof, see [ 2 ] , V o l . I I , page Theorem 2 Then h{ i h( p j . , 323. Let £ be en i r r e d u c i b l e s u b v a r i e t y of V auch t h a t P^E. Let tff be the (prime) i d e a l of k [ x , z , t , v ] . which d e f i n e s E on V - F. by one Proofs be a prime i d e a l i n and l e t fl » p , 0 Vl . different f r o m V and Then Of i s generated element q, and Var(q)y • E. Since P^-E, Gf c o n t a i n s an element f ( x , y , z ) such that f(P) « 1, i . e . f ( x , y , z ) • g(x,y,z) no constant term. + 1 where g c o n t a i n s Let § be the i n t e g r a l c l o s u r e of k£tx,tz^ i n k ( t x , t z ) . Since tx and t z are f u n c t i o n s on the cubic curve V*, we 1 over k and see that § i s o f dimension hence t i s t r a n s c e n d e n t a l over S . It i s e a s i l y seen t h a t f o r a s u f f i c i e n t l y l a r g e i n t e g e r n, t f n i s a monic polynomial i n t with c o e f f i c i e n t s i n k[tx,tz~\s hence a f o r t i o r i t " f i s monic i n t with in S. t f£ n coefficients <n J\>3. Since ,1[t] i s n o e t h e r i a n , there e x i s t s at l e a s t one 23 prime may f a c t o r i z a t i o n o f t f » q^. . ^ * m< be chosen monic i n t . One m which a l l the f a c t o r s n of these f a c t o r s , say q, must be an element of.61 , otherwise 0? would not be Let TQ be the q u o t i e n t f i e l d of ^ . We assert that q i s i r - r e d u c i b l e i n I ^ L t ] , f o r otherwise l e t q • <? (t) f a c t o r i z a t i o n of q i n t o polynomials i n ^ [ t l * polynomials, of course, may Lemma, cf(t) and *(t)€J[t], b i l i t y of q i n ^ [ t l . be taken monic. be a By Seidenberg'a the i r r e d u c i - i s f a c t o r i a l , the i d e a l generated by q i n vfgLt~\, ( q ) * , i s prime. i s a prime i d e a l . Clearly ( q ) c O l n J[t], Consider the diagram *Mt) Both these thus c o n t r a d i c t i n g Since vT^t^ prime. ( f o l l o w i n g page)t Hence (q) • (q)*r\i[tl 24 0 r We note f i r s t that k [ x , z , t , v , l / t , l / x l - j[t,l/t,l/tx] . This f o l l o w s from the c o n s i d e r a t i o n s ! k[x,z,t,v,l/t,l/xl £ k[tx,tz,t,l/t,l/tx] The only d i f f i c u l t y i n proving t h i s i n e q u a l i t y i s to show vck[tx»tz t l/t»l/txl B " 9 and t h i s may 9 C t x - (a/b) 3 2 3 be seen from the f o l l o w i n g ! + 1 . (v/x) 3 2 3b z 3b z 2 + 1 - ^2 3 b x z r 2 2 2 2 i - Lby + i x + (a x + b y ) z J b x 2 3 3 + v 3b x z - [ b y * z + ax*z + (a*x + b y ) z ] 2 x 2 3 25 Hence k [ x z , t , v , l / t , l / x 1 £ ( f [ t , l / t , l / t x l . f k [ t x t z ] S k[x,z,t,v,l/t,l/x3 f k [ x , z , t , v , l / t 3 i s the coordinate variety V - Itjy*' - Clearly . r i n g o f the non-singular hence i t i s i n t e g r a l l y c l o s e d . <r v Thus f £ k[x,z,t,v,l/t]. and t h i s e s t a b l i s h e s the e q u a l i t y k [ x , z , t , v , l / t , l / x ] » i f [ t , l / t , l / t x 3 . C l e a r l y \f [t, l / t , 1/tx 3 ^ k [x,z, t, v , l / t , l / x 3 , t and x are prime elements i n k [ x , z , t , v ] s i n c e d e f i n e s the d i v i s o r D and t « x . element i n "7 • is Also n e i t h e r t nor x i s an Hence <rf , the extension 8 a prime i d e a l . xk[x,z,t,v] of to k [x,z, t , v , l / t , l / x l , S i m i l a r l y ( q ) , the extension 8 I[ t , l / t , l / t x l , i s prime. f » ^ n B kTx,z,t,v3. o f (q) i n Hence a double a p p l i c a t i o n o f Z a r i s k i ' s Lemma gives us that h ( < ^ ) ^ h("7)f 8 however, f i s a minimal i d e a l , i . e . h(<f ) « 1. s i n c e E i s o f codimension 1. (q) e Therefore h ( 8 ) • 1. i e prime, we see t h a t ( q ) « e by one element q & ^ o Since ( q ) e <tf Hence f 8 8 B and i s generated follows that * f i s l i k e w i s e . p r i n c i p a l . To complete the proof o f Theorem 2, we observe, using our double notation f o r d i v i s o r s , that we have ^V-F,M " Hence E ' 26 (q)y ^ • E + mF P<£E=^- (q) p M where m €. Z « roF ; however, Lemma 1 i n that m • 0, otherwise mF fore f o l l o w s that (q)w We M i s l o c a l l y p r i n c i p a l at P . •. Corollary 1 q€k[x y z] Corollary 2 q(P) t t + 0 . us I t there- • E. d e r i v e from the f a c t that (q)y ^ - corollariest f 3 then gives E the f o l l o w i n g immediate 27 5 MAIN THEOREM With Theorem 2, we are i n the p o s i t i o n to proves Theorem 3 Proofs / M «• V U V ^ i s not d i v i s o r i a l . Assume to the contrary that i t i s . Then there exists a p o s i t i v e C a r t i e r d i v i s o r D o f M such that P €. VarD and P°V Var D. that 0 P,M - ( f )P,M * f£ k[x,y,z]. P^E i L e t f be the r a t i o n a l f u n c t i o n We may assume, i n f a c t , f o r a l l i , where the E^ are i r r e d u c i b l e . g(P) t The </ i n kCV-F] which d e f i n e the E. are r ± p r i n c i p a l by Theorem 2. L e t q. generate 0 Consider now < /a>V-F.M f that Let (prima) i d e a l s (ii) such if) V-F,M - (g)V-F,M *f, and d e f i n e 28 - (f) p,M + " P,M D + n -nF E " p (f/g) _ v » F > M I t then f o l l o w s (f/g) <J" V m E + n F T does not appear i n + nF, the purpose o f the nF being component i n Dp ^ . H i i here only the non-empty i n t e r s e c - ( f / g ) ^ with V - F t i o n o f the d i v i s o r M m F Note t h a t s i n c e we c o n s i d e r Dp 2I i i to c a n c e l a p o s s i b l e By Lemma 2 i n $ 3, (tVg) <r_ <r v F > M that M • Dp p| • nF + m F r wherera€. i f , By assumption, P j- Var D, hence a f o r t i o r i P <f Dp ^ . We have ( f / g ) p ^ p , » raF^ T h i s , however, c o n t r a d i c t s Lemma 1 i n $ 3 unless m • 0. i f m - 0, we have that f / g ^ p * ' , but s i n c e g(P) f/g^^p • Then M 0 (ii), Hence whence i t f o l l o w s from Lemma 3 i n § 3 that f / g i s a constant. T h i s constant must be zero a contradiction. since f (P) • 0, and t h i s i s c l e a r l y g 29 Note that Theorem 3 provides i n independent proof of Nagata's contention, i . e . Corollary Proofs M cannot be imbedded i n p r o j e c t i v e Assume to the contrary that i t can. d i v i s o r i a l , contradicting M i s not p r o j e c t i v e . space. Then M must be the previous theorem* Hence 30 6 CONCLUSION We o f f e r an o b s e r v a t i o n concerning the polynomial theorem of Snapper which B o r e l l i as extended i n [5] to d i v i s o r i a l v a r i e t i e s followss v a r i e t y and "X an a d d i t i v e sheaf f u n c t i o n , Let X be a d i v i s o r i a l i.e, a f u n c t i o n defined on the category of sheaves with valuaa i n an a r b i t r a r y a b e l i a n group, say H , and such that f o r every exact sequence 0 /UF) V F• m A(F') v F % (F ). M F•• — — y 0 Then f o r every aheaf F over X and every f i n i t e sat of l i n e c l a s s e s f ^ , . . . , f m« aion A Tf^ degree of X. the expres- m . . .f n n ( F ) J i s a polynomial i n m^, . . ..m^ of ^ dim(Supp F ) . Although M i s not d i v i s o r i a l , satisfies the question asises whether i t t h i s extension of Snapper a 8 Theorem. I t has r e c e n t l y been brought to our a t t e n t i o n that t h i s question has been answered i n the a f f i r m a t i v e by Kleinman f o r the case where J « X, the E u l e r c h a r a c t e r i s t i c , and h i s proof extends to the case o f an a r b i t r a r y a d d i t i v e sheaf f u n c t i o n . 31 BIBLIOGRAPHY Serge Lang. I n t r o d u c t i o n to A l g e b r a i c Geometry. science P u b l i s h e r s , Inc., New Ys»»k. Inter- Oscar Z a r i s k i and P i e r r e Samuel. Commutative Algebra,. V o l s . I&.II, Van Nostrand, P r i n c e t o n . New J e r s e y . Jean-Pierre Serre. "Faisceaux Algebriquep Coherent^", Annals o f Mathematica, v.61, 1955, pp.197-278. Ernst Snapper. " M u l t i p l e s o f d i v i s o r s " , J o u r n a l o f Mathematics and Mechanics, t.8 (1959), pp.967-992. Mario B o r e l l i . " D i v i a o r i a l V a r i e t i e s " , P a c i f i c Journal of Mathematics, Vol,13, No.a, 1963, pp. 375*386. i S. Ssidenberg and 1.5. Cohan. "Prime Ideals emd I n t e g r a l Dependence", B u l l e t i n of American Mathematical 5ociety 52, 1946, pp. 252-261, Masayoahi Nagata. "On the i m b e d d i n g of a b s t r a c t s u r faces i n p r o j e c t i v e v a r i e t i e s " . Memoirs of College of Science, U n i v e r s i t y o f Kyoto, S e r i e s A , Vol.XXX, Mathematica No.3, 1957, pp. 231-235.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A non-divisorial variety
Open Collections
UBC Theses and Dissertations
Featured Collection
UBC Theses and Dissertations
A non-divisorial variety Fraga, Robert Joseph 1965
pdf
Page Metadata
Item Metadata
Title | A non-divisorial variety |
Creator |
Fraga, Robert Joseph |
Publisher | University of British Columbia |
Date Issued | 1965 |
Description | When divisorial varieties were first introduced, the question immediately arose whether there are any varieties which are not divisorial. This work answers the question in the affirmative. We prove here that the non-projective variety M defined by Nagata in Memoirs of the College of Science, University of Kyoto, Series A, Vol. XXX, Mathematics No. 3, 1957, pp. 231-235 is, in fact, non-divisorial. The work is organized as follows: We first discuss briefly the concepts relating to the notion of divisorial variety. Next there is a description of Nagata's variety in which we include the proofs of statements which we shall need for the subsequent theorems. The preliminary results are of two types: first we prove several lemmas concerning the dominance of local rings of points on the variety M. Second we prove that divisors whose varieties contain the vertex of the affine cone V used in Nagata's example must intersect the line at infinity of the cone at a point(s) whose local ring dominates the local ring of the vertex of the cone Vσ under the transformation σ defined by Nsgata. This result indicates strongly that the variety M = VU Vσ is not divisorial. For the proof that this is, in fact, the case, we prove in detail a strictly algebraic result to the effect that the (prime) ideals associated with the irreducible components of a divisor which do not contain the vertex P of the cone V are principal. With this result, we finally show by contradiction that M is not divisorial. |
Subject |
Algebra |
Genre |
Thesis/Dissertation |
Type |
Text |
Language | eng |
Date Available | 2011-10-28 |
Provider | Vancouver : University of British Columbia Library |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
IsShownAt | 10.14288/1.0080548 |
URI | http://hdl.handle.net/2429/38374 |
Degree |
Doctor of Philosophy - PhD |
Program |
Mathematics |
Affiliation |
Science, Faculty of Mathematics, Department of |
Degree Grantor | University of British Columbia |
Campus |
UBCV |
Scholarly Level | Graduate |
AggregatedSourceRepository | DSpace |
Download
- Media
- 831-UBC_1965_A1 F6.pdf [ 1.84MB ]
- Metadata
- JSON: 831-1.0080548.json
- JSON-LD: 831-1.0080548-ld.json
- RDF/XML (Pretty): 831-1.0080548-rdf.xml
- RDF/JSON: 831-1.0080548-rdf.json
- Turtle: 831-1.0080548-turtle.txt
- N-Triples: 831-1.0080548-rdf-ntriples.txt
- Original Record: 831-1.0080548-source.json
- Full Text
- 831-1.0080548-fulltext.txt
- Citation
- 831-1.0080548.ris
Full Text
Cite
Citation Scheme:
Usage Statistics
Share
Embed
Customize your widget with the following options, then copy and paste the code below into the HTML
of your page to embed this item in your website.
<div id="ubcOpenCollectionsWidgetDisplay">
<script id="ubcOpenCollectionsWidget"
src="{[{embed.src}]}"
data-item="{[{embed.item}]}"
data-collection="{[{embed.collection}]}"
data-metadata="{[{embed.showMetadata}]}"
data-width="{[{embed.width}]}"
async >
</script>
</div>

http://iiif.library.ubc.ca/presentation/dsp.831.1-0080548/manifest