UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Cylinder measures over vector spaces Millington, Hugh Gladstone Roy 1971

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Notice for Google Chrome users:
If you are having trouble viewing or searching the PDF with Google Chrome, please download it here instead.

Item Metadata

Download

Media
831-UBC_1971_A1 M54.pdf [ 5.35MB ]
Metadata
JSON: 831-1.0080478.json
JSON-LD: 831-1.0080478-ld.json
RDF/XML (Pretty): 831-1.0080478-rdf.xml
RDF/JSON: 831-1.0080478-rdf.json
Turtle: 831-1.0080478-turtle.txt
N-Triples: 831-1.0080478-rdf-ntriples.txt
Original Record: 831-1.0080478-source.json
Full Text
831-1.0080478-fulltext.txt
Citation
831-1.0080478.ris

Full Text

-CYLINDER MEASURES OVER VECTOR SPACES by HUGH GLADSTONE ROY MILLINGTON B.S c , U n i v e r s i t y of West Indies, Jamaica, 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of MATHEMATICS We accept t h i s t h e s i s as conforming to the required standard. The U n i v e r s i t y of B r i t i s h Columbia March 1971 In present ing th i s thes i s in p a r t i a l f u l f i lmen t of the requirements for an advanced degree at the Un iver s i t y of B r i t i s h Columbia, I agree that the L ibrary sha l l make i t f r e e l y ava i l ab le for reference and study. I fu r ther agree that permission for extens ive copying of th i s thes i s fo r s cho la r l y purposes may be granted by the Head of my Department or by his representat ives . It is understood that copying or pub l i ca t i on of th i s thes i s fo r f i nanc i a l gain sha l l not be allowed without my wr i t ten permiss ion. Department of The Un ivers i ty o f B r i t i s h Columbia Vancouver 8, Canada i i . S u p e r v i s o r : P r o f e s s o r M. S i o n ABSTRACT I n t h i s p a p e r we p r e s e n t a t h e o r y o f c y l i n d e r measures f r o m t h e v i e w p o i n t o f i n v e r s e systems o f measure s p a c e s . S p e c i f i c a l l y , we c o n s i d e r t h e p r o b l e m o f f i n d i n g l i m i t s f o r t h e i n v e r s e s y s t e m o f measure s p a c e s d e t e r m i n e d by a c y l i n d e r measure y o v e r a v e c t o r s p a c e X * F o r any su b s p a c e Q o f t h e a l g e b r a i c d u a l X s u c h t h a t ( X , n ) i s a d u a l p a i r , we e s t a b l i s h c o n d i t i o n s on u w h i c h e n s u r e t h e e x i s t e n c e o f a l i m i t measure on Q . F o r any r e g u l a r t o p o l o g y G on £2 , f i n e r t h a n t h e t o p o l o g y o f p o i n t w i s e c o n v e r g e n c e , we g i v e a n e c e s s a r y and s u f f i c i e n t c o n d i t i o n on y f o r i t t o have a l i m i t measure on £2 Radon w i t h r e s p e c t t o G We i n t r o d u c e the c o n c e p t o f a w e i g h t e d s y s t e m i n a l o c a l l y c onvex s p a c e . When X i s a H a u s d o r f f , l o c a l l y convex s p a c e , and . £2 i s t h e t o p o l o g i c a l d u a l o f X , we use t h i s c o n c e p t i n d e r i v i n g f u r t h e r c o n d i t i o n s under w h i c h y w i l l have a l i m i t measure on £2 Radon w i t h r e s p e c t t o G We a p p l y o u r t h e o r y t o t h e s t u d y o f c y l i n d e r measures o v e r H i l b e r t i a n s p a c e s and J l ^ - s p a c e s , o b t a i n i n g s i g n i f i c a n t e x t e n s i o n s and c l a r i f i c a t i o n s o f many p r e v i o u s l y known r e s u l t s . i i i . TABLE OF CONTENTS Pages INTRODUCTION 1 CHAPTER 0: PRELIMINARIES 3 1. S e t - t h e o r e t i c N o t a t i o n 3 2. Outer Measures and I n t e g r a l s 4 3. Radon Measures 6 4. Induced Radon Measures 6 CHAPTER I : CYLINDER MEASURES OVER VECTOR SPACES 9 1. I n v e r s e Systems o f Measure Spaces 9 2. C y l i n d e r Measures o v e r V e c t o r Spaces 16 3. N o n - t o p o l o g i c a l L i m i t Measures 20 4. Radon L i m i t Measures 33 5. F i n i t e C y l i n d e r Measures 45 CHAPTER I I : CYLINDER MEASURES OVER TOPOLOGICAL VECTOR SPACES . 52 1. N o t a t i o n 52 2. E - t i g h t C y l i n d e r Measures 54 3. L i m i t s o f C o n t i n u o u s C y l i n d e r M easures 64 4. Induced C y l i n d e r Measures 74 CHAPTER I I I : APPLICATIONS 77 1. P r e l i m i n a r i e s 77 2. H i l b e r t i a n Spaces 82 3. N u c l e a r Spaces 94 5. £P-spaces. 101 APPENDIX: 114 1. S p e c i a l Measures on F i n i t e - d i m e n s i o n a l s p a c e s 114 2. P o s i t i v e - d e f i n i t e F u n c t i o n s on V e c t o r Spaces 126 3. CM-spaces 133 4. Examples 144 BIBLIOGRAPHY: 153 ACKNOWLEDGEMENTS I w i s h t o thank Dr. S i o n f o r h i s i n v a l u a b l e g u i d a n c e t h r o u g h o u t t h e w r i t i n g o f t h i s t h e s i s . I w i s h t o thank a l s o Dr. Greenwood and Dr. S c h e f f e r f o r t h e i r h e l p f u l s u g g e s t i o n s . F i n a l l y , I w o u l d l i k e t o than k M i s s B a r b a r a K i l b r a y f o r h e r a c c u r a t e t y p i n g o f t h i s t h e s i s . INTRODUCTION C y l i n d e r measures were f i r s t i n t r o d u c e d i n d e p e n d e n t l y by I.M. G e l f a n d ( G e n e r a l i z e d random p r o c e s s e s , [ 1 0 ] ) and K. I t o ( S t a -t i o n a r y random d i s t r i b u t i o n s [ 1 5]) as a more g e n e r a l k i n d o f s t o c h a s t i c p r o c e s s ( J . Doob [ 7 ] ) , and a r i s e n a t u r a l l y i n p r o b a b i l i t y t h e o r y when one d e f i n e s a s t o c h a s t i c i n t e g r a l ( [ 4 ] p. 137, [7] p. 426, [15] p. 2 1 1 ) . On t h e o t h e r hand, t h e demands o f t h e o r e t i c a l p h y s i c s ( i n p a r t i c u l a r , quantum f i e l d t h e o r y and s t a t i s t i c a l m e c h a n i c s ) have l e d t o a c o n s i d e r a b l e i n t e r e s t i n t h e t h e o r y o f i n t e g r a t i o n o v e r f u n c t i o n s paces ( [ 1 3 ] , I.M. G e l f a n d and, A.M. Yaglom [ 1 2 ] , I . S e g a l [ 4 3 ] ) , where t h e i n t e g r a l s c o n s i d e r e d a r e d e f i n e d w i t h r e s p e c t t o some c y l i n d e r measure ( e . g . as i n L. G r o s s [13] p. 5 3 - 5 4 ) . I n t he s t u d y o f c y l i n d e r measures r e s e a r c h e r s have concen-t r a t e d on two main a p p r o a c h e s : i n one, a c y l i n d e r measure i s v i e w e d as a l i n e a r map on a v e c t o r s p a c e i n t o t h e s p a c e o f m e a s u r a b l e f u n c t i o n s on some p r o b a b i l i t y space ( G e l f a n d [ 1 0 ] , I t o [ 1 5 ] , G e l f a n d and V i l e n k i n [11] Ch. IV , F e r n i q u e [ 9 ] ) ; i n t h e o t h e r , i t i s v i e w e d as a s e t f u n c t i o n on a f a m i l y o f c y l i n d e r s e t s o f a v e c t o r space ft ( M i n l o s [ 2 5 ] , G e l f a n d and V i l e n k i n [11] Ch. I V , P r o h o r o v [ 3 3 ] , B a d r i k i a n [ 1 ] , L. S c h w a r t z [ 3 9 ] ) . I n h e r e n t i n b o t h a p p r o a c h e s i s t h e n o t i o n o f an i n v e r s e ( o r p r o j e c t i v e ) s y s t e m o f measure spaces ( [ 2 5 ] p. 293, [11] p. 309, [33] p. 409, [1] p. 2, [3.9] p. 832, [9] p. 3 4 ) . I n t h i s t h e s i s we v i e w a c y l i n d e r measure as an i n v e r s e s y s t e m o f measure spaces i n d e x e d by the f i n i t e d i m e n s i o n a l s u b s p a c e s o f a v e c t o r space X . M o r e o v e r , we do so w i t h o u t any a p r i o r i c h o i c e o f the " t a r g e t " space ft on w h i c h the l i m i t measure i s t o l i v e . The b a s i c p r o b l e m o f f i n d i n g a l i m i t o f the s y s t e m on a space ft o f l i n e a r f u n c t i o n a l s i s t h e n a n a l y z e d w i t h v a r i a b l e ft i n C h a p t e r I . The key i d e a t h e r e i s t o examine t h e measure t h e o r e t i c s i z e o f ft i n r e l a t i o n to t h e a l g e b r a i c d u a l X . To t h i s end the n o t i o n o f " a l m o s t " s e q u e n t i a l m a x i m a l i t y i s i n t r o d u c e d . N e x t , i n C h a p t e r I I , we c o n s i d e r the more s t a n d a r d p r o b l e m o f f i n d i n g a Radon l i m i t measure on ft when X i s a t o p o l o g i c a l v e c t o r s p a c e and ft i s i t s t o p o l o g i c a l d u a l . When X i s H a u s d o r f f and l o c a l l y convex, by i n t r o d u c i n g the c o n c e p t o f a w e i g h t e d s y s t e m i n X , we e s t a b l i s h a c o n d i t i o n f o r t h e e x i s t e n c e o f such a Radon l i m i t i n terms o f the n o t i o n o f c o n t i n u i t y w i t h r e s p e c t to a w e i g h t e d s y s t e m . I n C h a p t e r I I I we a p p l y the t h e o r y o f C h a p t e r I I t o t h e s t u d y o f c y l i n d e r measures o v e r H i l b e r t i a n , n u c l e a r , and £^-spaces, t h e r e b y e x t e n d i n g and c l a r i f y i n g s e v e r a l p r e v i o u s l y known r e s u l t s . I n t he a p p e n d i x we e s t a b l i s h m a i n l y t e c h n i c a l r e s u l t s used i n the p r o o f s of C h a p t e r I I I and p r e s e n t s e v e r a l c o u n t e r - e x a m p l e s . 3. CHAPTER 0 PRELIMINARIES 1. S e t - t h e o r e t i c N o t a t i o n . I n t h i s work we s h a l l use t h e f o l l o w i n g n o t a t i o n . (•1) 0 i s the empty s e t . F o r any s e t s A and B , A ~ B = {x £ A : x i B} . w i s the s e t o f f i n i t e o r d i n a l s . R i s t h e f i e l d o f r e a l numbers. R + = { t e R : t _> 0} . <£ i s the f i e l d o f complex numbers. I n p r o o f s we s h a l l a b b r e v i a t e " s u c h t h a t " t o " s . t . " (2) F o r any s e t X and f a m i l y H o f s u b s e t s o f X , - LJH = u H , ]~\H = n H , HeH HeH P(H) = {H'C. H : H' i s c o u n t a b l e , d i s j o i n t , and = [_|H} . F o r any A c X , H | A = {HA A : H E ff} . (if i s a compact f a m i l y i f f f o r any n" c H , i f A c h " i s f i n i t e => (I H , th e n [\H* ^ 0 . 4. For any topology G on X , K(G) = {K c X : K i s closed and compact i n G} (3) For any set X and A c x > 1, : x e X -> 1 e <E i f x e A , A O e S i f x e X ~ A , For any f : X -> Y , B c Y , f|A : x E A + f(x) e Y , f [A] = {f (x) : x e A} f _ 1 [ B ] = {x e X : f(x) e B} For any sets X and Y , I c X x Y , x e X , y e Y , I x = (Y e Y : (x,y) e 1} , I Y = {x £ X : (x,y) e l } . 2. Outer Measures and Integrals. Our measure-theoretic approach i s e s s e n t i a l l y that of Caratheodory, as given by M. Sion i n [44] and [45]. (1) For any set X and Caratheodory measure n on X , M i s the family of n~measurable sets. n i s an A-outer measure i f f A c. M , and for any A c X , n ^ ( A ) = inf{n(A') : A d A' e rt} n i s an outer measure i f f n i s an M -outer measure. n Throughout this work a l l measures considered w i l l be outer measures, n i s the C a r a t h e o d o r y measure on X g e n e r a t e d by T and A i f f A i s a f a m i l y o f s u b s e t s o f X w i t h 0 e A , + T : A -> R w i t h T(0) = 0 , and f o r any B C X , n(B) = i n f { E T(H) : f / c A i s c o u n t a b l e , B c r | j H } . HeH (X,n) i s a measure space i f f X i s a s e t and n i s an o u t e r measure on X (2) I n t e g r a t i o n . We o b s e r v e t h a t f o r any measure sp a c e (X,n) , P(M ) i s d i r e c t e d by r e f i n e m e n t . I n g e n e r a l , we s h a l l be c o n s i d e r i n g c o m p l e x - v a l u e d f u n c t i o n s on X and t h e r e f o r e a l s o c o m p l e x - v a l u e d i n t e g r a l s . However, we p o i n t o u t t h a t f o r any n-measurable f : X -> R + , ' / f d = l i m I ( i n f f [ B ] ) * n ( B ) n PeP(M ) BeP n l i m E' (sup f [ B ] ) - n ( B ) . PeP(M ) BeP F u r t h e r , f o r . any f : X ->• R + , the o u t e r i n t e g r a l / * f d = l i m Z (sup f [ B ] ) ' n ( B ) n PeP(M ) BeP n i s a w e l l - d e f i n e d p o i n t i n R U {°°} 6. (3) Radon Measures I n t h i s p a p e r , many o f the measures we c o n s i d e r w i l l i n f a c t be Radon measures. We g i v e t h e r e l e v a n t d e f i n i t i o n s b elow. F o r any s e t X and t o p o l o g y G on X , ri i s a G-Radon measure on X i f f ( i ) n i s a G-outer measure on X , ( i i ) K e K(G) => n(K) < ». , and f o r e v e r y G e G , ( i i i ) n(G) = sup'{n(K) : K C G , K e K(G)\ . F o r any G-Radon measure n on X , supp n = s u p p o r t o f n (4) I n d u c e d Radon Measures L e t Y be an a b s t r a c t s pace. F o r any f i n i t e measure space (X,n) and T : X -> Y , T[n] i s the C a r a t h e o d o r y measure on Y g e n e r a t e d by n 0 T - 1 and { A C Y : T _ 1 [ A ] e M^} We s h a l l use the f o l l o w i n g lemmas. Lemmas (1) F o r any A e M ^ - j > T 1 [ A ] e M and t h e r e f o r e T[n](A) = n(T 1 [ A ] ) 7. (2) For any space Z and U : Y -> Z , U[T[ n]] = (U 0 T)[n] (3) If X and Y are t o p o l o g i c a l spaces, T i s continuous, and r\ i s Radon, then T[n] i s Radon. Proof of Lemma 4.1. Let & = ( A c ! : T _ 1 [ A ] E M } . n F i r s t we note that for a l l A e A , T[nJ(A) = n ( T _ 1 [ A ] ) . Let A e Hpj- j • Since A i s a a - f i e l d and T[nJ i s an . A-outer measure, there e x i s t s A' e A s.t. A c A' and T[n](A) = T [ r | ] ( A ' ) . If T[n](A) = 0 then (1) 0 < n ( T _ 1 [ A ] ) <_ n ( T _ 1 [ A ' J ) = T [ n ] ( A ' ) = 0 . In general, since T[n](Y) < 0 0 , T[n](A' ~ A) = 0 and therefore by (1), n(T~ 1[A' ~ A]) = 0 and T _ 1 [ A ' ~ A] e M n Hence, since T ^[A'] e M , T _ 1 J A ] = T _ 1 [ A ' ] - T _ 1 [ A ' ~ A] e M n The second a s s e r t i o n now follows immediately from the f a c t that T[n]|A = n o T " 1 . 1 Proof of Lemma 4.2. We need only observe that, by 4.1 above, ' { B C Z : (U 0 T ) _ 1 [ B ] e M^ } = {B C Z : U _ 1[B] e and for any B CZ Z s.t. (U 0 T ) _ 1 [ B ] e , n((U o T ) _ 1 [ B ] ) = T [ n ] ( U _ 1 [ B ] ) . I Proof of Lemma 4.3. Let A e M T r n ] a n c i £ > 0 . By Lemma 4.1, T _ 1 [ A ] e , and therefore, since n i s a f i n i t e Radon measure, there e x i s t s a compact K c T "*"[A] s .t. n(T_1[A.]) - n(K) < e . ' • Then T[K] c A i s compact and T[n](A) - T[ n ] ( K ) <.n(T _ 1[A]) - n(K) < e Hence, since e > 0 was a r b i t r a r y , (1) T[n](A) = sup{T[ri](C) : C C A i s compact} . Since T[n] i s f i n i t e i t then also follows that T[n](A) = i n f {T[n] (G) : G ^ A i s open} , and since T[n] i s an outer measure we therefore conclude that for a l l B C Y , (2) T[n](B) = i n f {T[n](G) : G O B i s open} . consequently T[n] i s Radon. ® CHAPTER I CYLINDER MEASURES OVER VECTOR SPACES As indicated i n the introduction, we s h a l l treat cylinder measures as being s p e c i a l inverse systems of measure spaces (Choksi [6]). In the following section we introduce the basic notions and r e s u l t s that we s h a l l require about such systems. 1. Inverse Systems of Measure Spaces. Throughout t h i s section, F i s an index set directed by a r e l a t i o n < For any E e F , (Xp,y ) i s a measure space, E For any E and F i n F with E < F r_, „ : X_, X„ i s s u r j e c t i v e , L, r r L with being the i d e n t i t y map. 10. D e f i n i t i o n s (X , p ) E i s an inverse sj'Stem of measure spaces r e l a t i v e r r c £ r to the maps r , E, t i f f , f o r any E,F , and G i n F w i t h E < F < G , rE,G = r E , F ° rF,G ' and, for a l l A e M , r ~ ^ [ A ] £ M F , y F ( r ^ F [ A ] ) = u E ( A ) L e t (XLpjPp)^,^^ be an i n v e r s e s y s t e m o f measure s p a c e s r e l a t i v e t o t h e maps r E, b I f ft i s a s e t , and f o r each F e F , p_ : ft -> X „ i s s u r j e c t i v e , t h e n , we c a l l (ft,0 a r r l i m i t r e l a t i v e t o t h e maps p o f t h e g i v e n i n v e r s e s y s t e m o f F measure s p a c e s , i f f f o r each E and F i n F w i t h E < F P E = r E , F ° P F ' and, F i s an o u t e r measure on ft such t h a t f o r a l l A e M , E p'V] e M , ap'V]) = U E ( A ) . F o r the r e s t o f t h i s s e c t i o n we assume t h a t (X , p ) r r r r £ r i s an i n v e r s e system o f measure s p a c e s r e l a t i v e t o t h e maps r . b,.b 1.2 D e f i n i t i o n s For any set ft , and s u r j e c t i v e maps p : ft ->• X such F F that f o r any E and F i n F with E < F , P E = rE,F ° P F ' '(1) Cyl(ft, P) = {P~V] : F e F, A e Mp} , (2) T(ft,p) : p ' 1 ^ ] e Cyi(n,p) -»• u p(A) e R + , (3) n„ i s the Caratheodory measure on Q generated by ft, p T _ and Cyl(ft,p) . ii, p When there can be no ambiguity we s h a l l omit the subscripts ft and p Remarks The following assertions are r e a d i l y established. (Choksi [6], Mallory and Sion [23]). (1) Cyl(ft,p) i s a f i e l d . (2) T i s well-defined and i s f i n i t e l y a d d i t i v e on Cyl(ft,p) (3) Cyl(ft, P) c M r . (4) (ft,n) i s a l i m i t r e l a t i v e to the maps p of the given r inverse system of measure spaces i f f n|Cyl(ft,p) = x . (5) There e x i s t s an outer measure E, on ft such that (ft,£) i s a l i m i t r e l a t i v e to the maps p of the given inverse system r of measure spaces <=> 12. T i s countably a d d i t i v e , i n which case n i s such a measure. We now suppose that (ft>n— —) i s a l i m i t r e l a t i v e to the maps p , ft,p F ft C ft , and f o r each F e F , Pp = Pp|ft i s s u r j e c t i v e . We s h a l l be interested i n determining when (ft,n n ) i t s e l f " 5 P i s a l i m i t r e l a t i v e to the maps p F 1.3 Lemmas. With the above notation and hypotheses, (1) ) i s a l i m i t r e l a t i v e to the maps p of the given ft, p F inverse system of measure spaces i f f rrr- ( A ) = n— —(A f\ ft) for a l l A e C v l (ft, p) . Si,p ft,P v ' (2) For any F'c F , l e t A(F') be the set of a l l f e ft such that there does not exist g e ft with Pp(g) = P F ( f ) for every F e F' . I f , f o r every {F } C F with F < F for each n e w n new n n+1 then n--(A({F } )) = 0 , ft,p n new n--(A) = rnr-(A O ft) f o r a l l A e Cyl(ft,p) Proofs 1. Let Cyl(fl.p) = Cyl , Cyl(n,p) = Cyl , T Tft,p ' T Tft,p ' ft, p ft,p 1.3.1 Since the maps p are s u r j e c t i v e , f o r each A i n C y l , — — — Q there e x i s t s a unique A e Cyl s.t. A = A A ft • Then, A e C y l -> A e Cyl i s b i j e c t i v e and T(A) = 7 ( A ) f o r a l l A e Cyl . Hence, for any B o fi , n ( B n f i ) = i n f { _ E _ 7(H) : He Cyl i s countable, H e H B n f t c j j H } = inf{ E T(H) : H e Cyl i s countable, B A ft c j j H } HeH = n ( B n n) . Consequently, i f (ft,n) i s a l i m i t , then, by Remark 1.2.4., f o r any A e Cyl , 7(Ac\ ft) = n(A) = T(A) = 7(A) = 7(A) . On the other hand, i f 7(A) = n(A f\ ft) for a l l A e C y l , then, again by Remark 1.2.4., f o r any A e Cyl , n (A) = "7(1 A 0) = 7(A) = 7(A) = x (A) , and therefore (ft,n) i s a l i m i t . 14. 2. F o r any s u b f a m i l y F' o f F ; l e t , — 1 . C y l ( F ' ) = { P p [B] : F e F' , B e M p} We s h a l l show t h a t f o r any A e C y l t h e r e e x i s t s A'c ft s . t . rf(A') = 0 and rf(A ~ A') = rf (A (\ ft) . I n w h i c h c a s e , rf(A) = rf(A ~ A') + rf(A a A') = Tf(A ~ A') = rf(A f\ ft) and t h e lemma f o l l o w s . F o r each n e w , l e t C y l be c o u n t a b l e w i t h A r\ ft C I lH and £ 7(H) < 7f(A f\ ft) + 1/n . n Heff F o r each n e w , choose c o u n t a b l e F c F w i t h n (1) {A} u H c Cyl(F ) . n n S i n c e (X^ ^ p ) p e p ^ s a n i n v e r s e s y s t e m o f measure s p a c e s r e l a t i v e t o t h e maps r , we may f u r t h e r assume t h a t (2) F i s a sequence {F .}. i n F w i t h F . < F . n n , j jew n , j n , j + l f o r each j e w L e t A = A(F ) n n and A' = U A n new S i n c e Tl(A ) = 0 f o r e v e r y n e w , then (3) n(A') = 0 .' L e t n e w . F o r each f e A ~ t h e r e e x i s t s g e ft s . t . 7 (g) = ? ( f ) f o r a l l F e F . 15, In p a r t i c u l a r , by (1),. g e A . Hence, for some H e H , with H = p [p-''"[H] ] n (J " G for some G e F , n g e H , and consequently, f e p ^ t p g C f ) ] = P G 1 [ p G ( g ) ] c p / t P g t H ] ] = H . It follows that A ~ A n c U H n , and therefore (4) 7(A ~ A ) < n ( A a ft) + 1/n . n — Since A c ft ~ ft for each n e w , n A' C ft ~ ft • Hence A <A ft c A ~ A' , and therefore, by (4), for each n e w , "n(A r\ ft) <_ n"(A ~ A') <_ n(A ~ A ) <_ n"(A r\ ft) + 1/n Consequently, ~r\(A n ft) = ri(A ~ A') . 16. 2. Cylinder Measures over Vector Spaces.-We s h a l l view a cylinder measure over a vector space X as being.an inverse system of measure spaces whose indexing, set i s the family of f i n i t e dimensional subspaces of X In t h i s paper we s h a l l consider only complex vector spaces, and we s h a l l hereafter r e f e r to them simply as vector spaces. By the term subspace we s h a l l always mean vector subspace. We note that i f F i s a f i n i t e - d i m e n s i o n a l vector space, then there i s a unique Hausdorff topology on F under which i t i s l o c a l l y convex (the Euclidean topology). Since t h i s i s the only topology on F that we s h a l l ever consider, e x p l i c i t reference to i t i s hereafter omitted. Throughout the remainder of t h i s work, we s h a l l use the following notation. For any vector space X , X i s the set of l i n e a r f unctionals on X to § , w i s the topology on X of pointwise convergence, For any A c X , A° = {f e X^ : | f ( x ) | <_ 1 for a l l x e A} . F v i s the family of f i n i t e - d i m e n s i o n a l subspaces of X A directed by C . When there can be no ambiguity we s h a l l omit the subscript X For any subspaces E and F of X with E C F > r : F -*• E i s the r e s t r i c t i o n map, E, F i . e . for a l l f e F , r E j F ( f ) = f|E . 17 In what follows, E and F w i l l always denote finite-dimen s i o n a l vector spaces. For any subspace ft of X , (X,ft) i s a dual pair i f f r Ift i s s u r j e c t i v e for every F e F Remark. With the viewpoint of inverse systems discussed i n the preceeding section, taking F v as our index set and l e t t i n g A X„ = F" for each F E F v , a A we note that, for any E , F and G i n F v with E c. F C G , A the r e s t r i c t i o n map r i s s u r j e c t i v e and continuous, E , l and rE,G rE,F ° rF,G Thus, we s h a l l make the following d e f i n i t i o n . 2.1 D e f i n i t i o n . (1) Let X be a vector space. u i s a cyl i n d e r measure over X i f f y : F e F •+ y , a Radon measure on F , F i s such that (F ,y„)„ r i s an inverse system of measure spaces r e l a t i v e F r E r to the r e s t r i c t i o n maps r . (2) p i s a c y l i n d e r measure i f f p • i s a c y l i n d e r measure over some vector space X Remark. Let X be a vector space. I f r -» * u : F e r ->• u , a f i n i t e Radon measure on' F , r then, by §0.4, p i s a c y l i n d e r measure over X i f f f o r any E and F i n F with E C F , y E = r E , F [ l J F ] • Let ft be any subspace of X . For any E and F i n with E c F , Hence, when (X,ft) i s a dual p a i r , the viewpoint of D e f i n i t i o n 1.1.2 applies, with P E = r E X ^ f ° r e a c l 1 , E e F • We s h a l l therefore make the following d e f i n i t i o n . 2.2 D e f i n i t i o n . | ft = r E,F Let X be a vector space, jn, a c y l i n d e r measure over X and ft be a subspace of X such that (X,ft) i s a dual p a i r . 19. For any outer measure £ on ft' , ^ i s a l i m i t measure of u on ft i f f (ft,5) i s a l i m i t r e l a t i v e to the r e s t r i c t i o n maps r ft of the inverse system of measure spaces (F ~, y_)_ r r ,A F Fer Remarks. From the theory of inverse systems of measure spaces we know several conditions under which we can put a l i m i t measure on the pro-j e c t i v e l i m i t set L , where L = U e n E" : £ = r w ^ ( O , E c FV . EeF E E ) F F Since there e x i s t s a set isomorphism r : X* -> L such that r _ v ( f ) = ( r ( f ) ) _ f o r a l l f E x" and F E F , r , A r i t follows that L i s seq u e n t i a l l y maximal (Defn. 3.4). Hence, by a theorem of Bochner ([4] p. 120), we deduce that JA/ always has a l i m i t measure on X . However, l i t t l e has been said about the properties such a l i m i t measure can have. Therefore, i n the next sec t i o n , we s h a l l construct one having s p e c i a l approximation properties. v'c Unfortunately, f o r most p r a c t i c a l purposes X i s f a r too unwieldy. We s h a l l therefore be studying the problem of putting l i m i t measures on subspaces of X 20. 3. Non-topological Limit Measures. Given any c y l i n d e r measure y over a vector space X , and subspace ft of X such that ( X , f t ) i s a dual p a i r , we s h a l l determine s u f f i c i e n t conditions on y for i t to have a l i m i t measure on ft . Throughout t h i s section we s h a l l use the following notation. X i s a vector space. For any cyl i n d e r measure y over X , and subspace Q of X C y l (n) = {fi o r ^ A ] : F e F, A e Mp} , T : ftfNr"1 [A] £ Cyl (ft) -> y (A) e R + , y, ft r, A y s y^ i s the Caratheodory measure on ft generated by T n and Cyl (ft) . y ,ft y y y>x-and y = y x * • In what follows, ft w i l l denote a subspace of X such that ( X , f t ) i s a dual p a i r . From D e f i n i t i o n 1.1.2 and Remarks 1.2 we get the following assertions. 21. 3.1 Propositions. Let u be a cyl i n d e r measure over X (1) For any outer measure E, on ft, E, i s a l i m i t measure of y i f f Cyl (ft) c. M r and E, I Cyl (ft) = T 0 . y C y y,ft (2) I f there e x i s t s any l i m i t measure of y on ft , then y^ . i s a l i m i t measure of y In view of Proposition 3.1.2, when looking for a l i m i t measure , of y on ft , we s h a l l concentrate on y^ When ft = X , we have the following r e s u l t . 3.2 Theorem For any c y l i n d e r measure y over X , y i s a l i m i t measure of y If C = { r ' ^ j K ] : F e F, K c i s compact} F,X then C i s a compact: family, and for any A e M , , y* V(A) = sup{y X(C) : C C A , C e C } . (We note that C^  i s also a compact family.) 22. Proof For each F e F (1) y_ i s Radon and c r - f i n i t e . r Hence, for any A e Cyl^(X ) , (2) T*(A) = S U P { T * ( C ) : C C A , C e C} Since M X(A) 1 T*(A) for a l l A e Cyl^x*) , v?e also deduce from (1) that (3) y i s o - f i n i t e . Hence, by Thm II.2.5 of [23], the assertions of the theorem w i l l follow once we show that C i s a compact family. (Also see [24]). For any C. = r " 1 V [ K . ] £ C, j = 1,2, l e t F be the l i n e a r soan of F U F , and K = A r ^ „[K.] 1 2 j=l,2 F j ' F 1 Then K i s compact and C. <% C„ = r \ j K ] 1 2 F,X Hence, (4) C i s closed under f i n i t e i n t e r s e c t i o n s . For any C'^ C s . t . ] [ot =|= <f> for every f i n i t e a CZ C , l e t A = { f l ct : a C C* i s f i n i t e ) We note that A i s a f i l t e r b a s e ( [ 8 ] p. 211). In view of (4), for each f i n i t e a C C , l e t o P| a = r ^ ^[K ] for some F & e F and compact K c F" , and Y = U(F : a C C i s f i n i t e ) . a 23. From the remarks preceding (4),' we see that for any f i n i t e subfamilies a and 3 of C , a C 3 = > F a C F 3 ' and therefore Y i s a subspace of X n Let U be a maximal f i l t e r b a s e i n X ([8] p. 218) which i s a s u b f i l t e r b a s e of A ([8] p. 219, Thm. 7.3). Then, for each f i n i t e a C C , (r„ [U]) _T i s a maximal f i l t e r b a s e i n F ' and F ueJ ' a there e x i s t s u e U s.t. r [u] c K F a a * Since K i s compact and F i s Hausdorff, t h i s u l t r a f i l t e r a a -converges to a unique point f e K a a' We note that i f F = F„ , then f = fn . Also, f o r any f i n i t e a 3 a 3 • . subfamilies a and 3 of C with a C 3 , , r ^ ( f j = f • F ,F v 3 a ' a 3 since the r e s t r i c t i o n map i s continuous and r F ,X = r F ,F f l ° rF.,X ' a a 3 3 A Consequently, there e x i s t s a unique g e Y s.t. g i F = f for each f i n i t e a C C' 1 a a •k If f e X i s any l i n e a r extension of g , then, for each f i n i t e f e r ; \ x t r F , x ( f ) ] = ^ \ A ] C ^ \ X [ V = ^ a C C . " I r " I r r n _ " I ? , X [ f a ] C r F , a a Hence, f l ' c + • . It follows that C i s a compact family. Next, we consider the problem of fi n d i n g a l i m i t measure of y on an a r b i t r a r y ft Since y i s always a l i m i t measure of y , a p p l i c a t i o n of Lemma 1.3.1 y i e l d s the following basic r e s u l t . 3.3 Lemma. For any cyli n d e r measure y over X , y has a l i m i t measure on ft i f f (1) y*(A) = y"(Ar \ f t ) for a l l A e Cyl (x") . y However, we are int e r e s t e d i n f i n d i n g i n t r i n s i c conditions on our systems which w i l l guarantee the existence of a l i m i t measure on ft One such condition i s the following, which i s of considerabl importance i n the general theory of inverse systems of measure spaces (Bochner [4], p. 120, Choksi [6], Mallory and Sion [23]). 3.4 D e f i n i t i o n ft i s sequentially maximal i f f for any sequence {F } i n F with F c F ,- for each n neco n n+1 •k n e w , and f e F such that r_, _, (f ,-) = f , there ' n n F ,F , 1 n+1 n n n+1 ex i s t s g E ft such that r„ = f for each n e w F ,X n n 25. Remark. We note trial: X i s sequentially maximal. Consequently, A the f a c t that p i s a l i m i t measure of p follows also from a theorem of Bochner ([4], p. 120). Since p i s always a l i m i t measure of yj, , a p p l i c a t i o n of Lemmas 1.3.2 and 3.3 y i e l d s the following. 3.5 Proposition If ft i s sequentially maximal, then every cylinder measure over X has a l i m i t measure' on ft However we have the following. 3.6 Observation. If X i s a t o p o l o g i c a l vector space containing a bounded, countable, l i n e a r l y independent subset, and ft i s i t s continuous dual, then ft i s not seq u e n t i a l l y maximal, (e.g. whenever X i s an in f i n i t e - d i m e n s i o n a l , metrizable, l o c a l l y convex space). Proof Let {a : n e w} be a bounded, countable, l i n e a r l y n independent subset of X , and for each n e w l e t F n be the li n e a r span of {a ,...,an} . Then, f o r any f e X with f ( a ) = n for every n e w . 26. (1) f[{a ; n e w}] c £ i s unbounded. n Hence, there cannot e x i s t g e ft s.t. e l F = f F for 0 1 n 1 n every n e w . For i f so, then g U F i s continuous, and therefore § [ { a n : 1 1 £ ^ s bounded, which contradicts (1). "Si Since, i n the theory of c y l i n d e r measure, ft i s often the continuous dual of metrizable I.e. space ([11], [39]), i t follows that the condition of sequential maximality does not apply i n many important s i t u a t i o n s . In order that we might take f u l l e r advantage of Lemma 3.3, we therefore weaken the notion of sequential maximality. 3.7 D e f i n i t i o n Let y be a c y l i n d e r measure over X U i s y-sequentially maximal i f f for any sequence {F } i n F with F r F ,-, for every n new n n+1 n e w , and e > 0 there exxsts A e M_ for each n e w , such that n F n Z y p (A n) < e new n ' and f o r any sequence {f } with ^ n new f e F" ~ A , r (f ) = f , n n n F ,F n+1 n n there e x i s t s g e ft such that r (g) = f for each. n e w . n' . 27. The following key theorem of t h i s section i s now an immediate consequence of Lemma 1.5.2 and the above d e f i n i t i o n . 3.8 Theorem Let y be a c y l i n d e r measure over X If ft i s y-s e q u e n t i a l l y maximal, then y has a l i m i t measure on ft . We now e s t a b l i s h a condition on y which ensures that ft i s y-sequentially maximal. 3.9 D e f i n i t i o n Let y be a cylinder measure over X •k For any family H of subsets of X , y i s H-sequentially tight i f f for any sequence {F } i n F with F c. F , -, r o r each n miii n n+1 n E (a , A E M with y (A) < « t and e > 0 , 0 0 • there exists H £ H such that y p ( r ^ 1 F [A]) ~ r p X [ H ] ) < e for a l l n £ GO . n 0' n n' 3.10 Theorem Let y be a cylinder measure over X If y i s H-sequentially t i g h t for some family H of w -compact subsets of ft , then ft i s y-sequentially maximal, and therefore y has a l i m i t measure on ft 28. We point out that under c e r t a i n conditions y-sequential maximality of ft i s also a necessary condition for y to have a l i m i t measure on ft 3.11 Proposition Suppose that the Mackey topology on X induced by ft ([47] p. 369) r e s t r i c t e d to any subspace of countable dimension i s metrizable. For any c y l i n d e r measure y over X , i f y has a l i m i t measure on ft , then ft i s y-seq.uentially maximal. Proofs 3. Lemma. Let {F } be a sequence i n F with F o F for 1 n new n n+1 each n e w , * A K be a w -compact subset of X For any sequence {f } with J n n new f e r_, [K] and r (f ,,) = f . n F ,X F ,F n+i n n n n+1 there e x i s t s g e K s.t r (g) = f for a l l n e w . r , A n n Proof For each n e w , (1) r ^ 1 [ f J n K - H • n Since r F [ f n + 1 ] = f n . n n-rl 2 9 , ( 2 ) r " 1 [f ] o r 1 [f ] . F , X n F ,. n + 1 n n + 1 •k * Also, since r i s w -continuous and K i s w -compact, n - 1 * ( 3 ) K n r [f ] i s w -compact. r , A n n Since w i s a Hausdorff topology, i t follows from ( 1 ) , ( 2 ) and ( 3 ) , that rS (K r\ r " 1 x [ f n ] ) > $ , new n' and the lemma follows. Let { F } C F with F c. F f o r each n e w , n new n n + 1 {B}. C M_, , with u_ (B.) < oo for each j e w , je-w F Q F q j and Fn = U B. ,. 0 • J jew Since u i s H-sequentially t i g h t f o r some family H of k w -compact subsets of Q , given e > 0 , for each j e w choose a w -compact K c 9, s.t 8 U W F ( ^ , F [ B j ] ~ r F , X [ K j ] ) < . n 0', n J n J Let C n = . U ( I V [ B j ] ~ R F , x £ K j ] ) jew 0 ' n J n' J Ao = co V i = V i -n n - r l 30. Then, f o r any k e w , n=0 n k and k k 1+1 n=0 n j = l Hence E p„ (A ) < e F n new n I f i s a sequence s . t . f o r each n e w , f e F* ~ A , r _ _, ( f ) = f n n n F ,F n+1 n n n+1 t h e n , f o r some j e w , and hence f o r e v e r y n e w , C o n s e q u e n t l y , by the Lemma, t h e r e e x i s t s g e ft s . t . r „(g) = f f o r a l l n e w , and i t f o l l o w s t h a t ft i s / A . -r , A n n s e q u e n t i a l l y m a x i m a l . The l a s t a s s e r t i o n i s immediate f r o m Thm. 3.8. P r o o f o f 3.11 F o r any {F } c F w i t h F c F ,, f o r each n e w , l e t n new n n+1 Y = U F w i t h t h e r e s t r i c t e d t o p o l o g y , new A = { f e X : t h e r e does n o t e x i s t g e ft s . t . r F = r F X ^ f ° r a 1 1 n E ^ ' n' n' 3 1 , 8 = {r^1 X[A] : n e to, A E M } n' n be the o - f i e l d generated by B , and n' the Caratheodory measure on X generated by |B and B i Since the topology of X r e s t r i c t e d to Y i s metrizable, choose a sequence {V, }, of absolutely convex neighbourhoods k keco of the o r i g i n i n X s.t. {V, n Y}, i s a base for the neigh-K KEU) bourhoods of the o r i g i n i n Y . Using the Hahn-Banach extension theorem, one readily checks that keo) new n n I t then follows that ( 1 ) . A E © , and, since Cyl^(X ) c M , ( 2 ) A £ M , y* We note that (3) A c X* ~ fi . >v k k Since y i s o - f i n i t e and y (A) = y (A O ft) for a l l A E Cyl (X*) , from ( 2 ) and ( 3 ) i t follows that (4) y*(A) = 0 * * Since B i s a f i e l d and T i s countably additive on Cyl (X ) (Thm. 3 . 2 , Remark 1 . 2 . 5 ) , we have that n|B = T*|B and y"|8 = x*|B 1 y 1 1 y 1 •k . However, |B has a unique countably additive extension to V5 . Hence, since C M n M n y T , | $ = y * | < & , and therefore, by ( 1 ) and (4), n(A) = 0 . Consequently, given any e > 0 , there e x i s t s {B . } . C 8 -s. t. 3 JEW ' * A C U B. and Z T (B.) < e . i y i ' '• jew jew For each j e to , l e t B = r F X [B'] , B^ £ M F , J n. J n. } 3 and B. 4= r " 1 , r[B'] for any n. < n. and B' e M J n n For each n e w , l e t An = UtB* : 3 £ a), n j = n} Then, (5) E y ( A ) < e . r n new n Further, i f {f } i s any sequence s . t . for n new each n e w , f e F ~ A , r _ _, (f ..) = f n n n F , F n+1 n n n+1 then, there e x i s t s f e x " ~ U r [A ] s . t . r , A n new n r„ „(f) = f for each n e w . F ,X n n Since A C U B. = U r " 1 V[A ] , from the d e f i n i t i o n of A 3 F ,X n jew new n follows that . (6) there e x i s t s g e Q s.t. r ? (g) = f f o r a l l n e w . n' Since the sequence {F } i n F with F tg. F f o r each n n new n n+1 n e w was a r b i t r a r y , we conclude that 0. i s y-sequentially maximal. 33. 4. Radon Limit Measures In this section we s h a l l consider the problem of f i n d i n g Radon l i m i t measures. The technique we use was communicated to us by C. Scheffer. In t h i s section we s h a l l use the following notation. X i s a vector space, ft i s a subspace of X such that (X,ft) i s a dual p a i r . For any topology G on ft and c y l i n d e r measure y over X. , • g : A C X % i n f W ( r F , X [ A ] ) : F z F } ' g A : G e G + sup {g(K) : K e K(G) , K c G} , y i s the Caratheodory measure on ft generated by g.,„ and G We s h a l l hereafter assume that y i s a fi x e d cylinder measure over X , G i s a regular Hausdorff topology on ft which i s f i n e r than w r e s t r i c t e d to ft. We have the following important assertions, 4.1 Propositions (1) y_ i s a G-Radon measure on ft , and y |G = g., b G (2) Cyl (ft) a M y y G (3) If there e x i s t s any G-Radon l i m i t measure of y on ft , then \in i s a l i m i t measure of y (7 34, In view of the above propositions, when searching f o r a' G-Radon l i m i t measure of y , we s h a l l r e s t r i c t our att e n t i o n to \in b Following Scheffer [37] we make the following d e f i n i t i o n . Our terminology i s s l i g h t l y d i f f e r e n t . 4.2 D e f i n i t i o n For any family H of subsets of X , u i s H-tight i f f for any E e F, A e with ^^.(A) < <*> , and e > 0 , there e x i s t s H e H such that u^Cr" 1 „[A] - r _ [H]) < e for a l l F e F with E C F . r Jti, r r , A We point out that the above d e f i n i t i o n i s a "uniform" version of the d e f i n i t i o n of H-sequential tightness (Defn. 3.9). We now have the following key theorem concerning the existence of a G-Radon l i m i t measure of y 4.3 Theorem u has a G-Radon l i m i t measure on 0, <=> y i s K(G)-tight. Remark The above theorem extends a r e s u l t due to Mourier [26], and Prohorov [33] (§5 Lemma 3). However, our approach i s somewhat d i f f e r e n t from t h e i r s . Theorem 4.3 has a useful c o r o l l a r y . 35. C o r o l l a r y I f X i s a metrizable, l o c a l l y convex space, a i s i t s continuous dual, and {V } i s a base for the neighbourhoods of the n new o r i g i n i n X , with v n + 1 v n f°r every n e w , then, y has a w -Radon l i m i t measure on ft <=> y has a l i m i t measure on ft <=> y i s {V°} - t i g h t , n new Proofs 4. Notation Let H = (Cyl 'CO)). A (w"|ft) , y = v G , and T = T y,ft We s h a l l need the fo l lowing lemmas. L . l For any A e'Cyl^(ft) , (1) T(A) = i n f {T(H) : A C H e H} ( 2 ) Y C A ) < I ( A ) . 1^2 For any K c K (G) , (1) r [KJ i s compact for every E e f , V t W t -wv^ oW U^*. (2) g(K) = y (K) = inf' (T (H ) : K C H e H} (3) For any E and F i n F with E c F , and A e , K E ( R E , X [ K ] ) > ^ F C r F , X [ K ] ) • 36, Proof of L . l . l For any E e F v and B e M , since r ' i s X E E, X k w -continuous and y i s Radon, T(ft C\ r ' ^ t B ] ) = y E ( B ) = i n f {y^,(G) : B c G C E " , G i s open} > i n f ( T(H) : ft f\ ^ " ^ [ B ] c H e H} > x(fi A r ' ^ t B ] ) . Ji, A Ji , A Proof of. L.1.2 We note that H C G , and for every H e H , g F T(H) <_ T ( H ) . Hence, y(A) = i n f { I g.,.(H) : H'c'H i s countable and A c |JH'} HeH' <_ i n f { E T(H) : H'C H i s countable and A c {JH1} HeH' < i n f {x(H) : A c H e H} = T(A) , by L . l . l . Proof of L.2.1 We only observe that for every E e F, y^ , i s Radon, * k K(G) C f((w ) , and r„ v i s w -continuous. b, A Proof of L.2.2 For every E e F, y„ i s Radon and r i s w -continuous. ii L , X Therefore, g(K) = i n f {y w(G) : E e F, r_. V [ K ] C G <=. E " , G i s open} Ji Ji, A = i n f ( T(H) : K c H e H} . ' On the other hand, by L . l . l , y (K) = i n f { E T(H) : H'c H i s countable, K c UH'} HeH' = i n f {x(H) : K C H e H}, since, K i s G-compact, H<z G,M i s closed under f i n i t e unions, and x i s f i n i t e l y subadditive on Cyl (ft) bv 37. Proof of L.2.3 We have that [K] C r E,F E,X [K]] Hence, ^E ( rE,X [ K ] ) = ^F ( r E V r E,X [ K ] ] ) l ^ F ( r F 5 X [ K ] ) 4.1.1 To show that y i s a G-Radon measure, by Sion [44] Ch. V, Thm. 2.2, we need only show that (1) g(<j>) = 0 , g i s p o s i t i v e , monotone, subadditive and a d d i t i v e on K(G) , (2) Y ( K ) < ro f o r a 1 1 K e K(G) , Except for a d d i t i v i t y , the properties of g are immediate from L.2.2. We s h a l l now e s t a b l i s h the a d d i t i v i t y of g on K(G) Let K and K be i n K(G) with K n K = | . Since K(G) c K(w"|ft) , and • w ft i s regular and Hausdorff, there e x i s t s G. e w"|X, K.C G., i = 1,2 , with -G l f N G2 = * " However, H i s a base for w ft , and i s closed under f i n i t e unions. Consequently, since K ,K„ are w ft-compact, there e x i s t s H. e H K.C H. » 3 i = 1,2 with H n H 2 = <f> 3 8 , Then, by L.2.2, g(V + g(K 2) = y f l ( K l ) + u Q(K 2) I i n f {y-CA^) : K. c A. e M \ 3=1,2 ° ^ 2 I i n f {y„(A j) : A e M , K. c A3 <z H.} ' 3 = 1,2 " ^ J J T O * " = in f . {y (A (j A ) : A J e M , K. C A2 c H. ; j = 1,2,} , y f t 2 2 <_ y ^ f t ^ u K 2) = gC^U K 2 ) . Hence, by the s u b a d d i t i v i t y of g , gd^u K 2 ) = gO^) + g ( K 2 ) , Since and K 2 were a r b i t r a r y i t follows that g i s a d d i t i v e on K(G) . I t remains for us to prove (2). Let K e H(G) . For any F e F, since y i s Radon and r [K] r r ,X i s compact (L.2.1), •ft r\ r ~ * x [ r [ K ] ] e Cyl^(ft) and by L.1.2, Y(K) <_ y ( 0 r i . r ^ x [ r F ) X [ K ] ] ) £ T ( n ri r ^ E r [ K ] ] ) = y F ( r F ) X [ K ] ) < oo . , Hence, y(K) < oo for a l l K e K(G) . 4.1.2 Let F e F and A z V If y (A) = 0 , then, by L.1.2, Y ( f t A r ^ l A j ) = 0 . and therefore ft A r " 1 [A] e M F,X y 39, / 5 Otherwise, since u„ i s Radon, choose a Borel subset B of F r with A C B and n (B ~ A) = 0 r By the preceding observation, ft 0 r " 1 [B ~ A] e M . a, A y However, r ft i s ( j-continuous since w ft C G , F, X and'by Prop. 4.1.1, y i s G-Radon. Hence, ft f\ r"" 1 „[B] E M , F,X y and therefore, ft f\ r p ^ x [ A ] = ft ri r ^ x [ B ] ~ ft r» r ~ ^ [ B ~ A] e M . We s h a l l now e s t a b l i s h another useful lemma. L.3 For every K e K(G) , g(K) <_ Y(K) . If y i s a l i m i t measure of u , then, for every K E K(G) , . g(K) = y(K) . Proof of L.3 Let K E K(G) .. By Prop. 4.1.1, y(K) = inf',{g A(G) : K C G e G} >. g(K) . If y i s a l i m i t measure of u , then, by L.2.2 and Prop. 3.1, g(K) = i n f (T(H) : K c H e HI = i n f {y(H) : K c H e H} > y(K) , since y i s G-Rado'n and H C G 40. 4.1.3 Let £ be any G-Radon l i m i t measure of y on ft • For any K e K(G) , ?(K) = i n f U(G) : K C G e G} <_ i n f U(H) : K C H E H } since H C G , = i n f {T(H) : K c II e H} by Prop. 3.1.1 = g(K) by L.2.2 <_ Y(K) by L.3. Hence, as E, and y a r e both G-Radon measures on ft , £ (A) <_ Y (A) f o r a l l A c ft . In p a r t i c u l a r , by Prop. 3.1.1, for any A e Cyl^(fi) , T ( A ) = 5(A) < Y ( A ) , and-therefore, by L.1.2, y(A) = T ( A ) • From Props. 3.1.1 and 4.1.2 i t now follows that y i s a l i m i t measure of y 4.3 By Prop. 4.1.3, i f y has any G-Radon l i m i t measure on ft , then y i s a G-Radon l i m i t measure of y . Hence, for any E e F and A. e with P E(A) < <*> , -1 M . ..-1 Y and therefore ft n r E X [ A ] e M , y(ft r\ r ^ t A ] ) < » , y(ft O r ^ t A ] ) = sup {y(K) : K e K(G) , K c ft A r ^ t A ] : ? . Hence, for any e > 0 , there e x i s t s K e H(G) with K c ft ftr [A] £j , A and y(ft A r E 1 x [ A ] ~ K) < e In which case, for any F e F with E C F , y F ( r ^ F [ A ] - r p ) X [ K ] ) . = Y ( n ^  r ^ x [ r ^ F [ A ] ) ~ « " r ^ r ^ K ] ]) <_ Y ( f i n r ' ^ f A ] ~ K) < e . I t follows that y i s K(G)-tight. . We now show that /<(G)-tightness of y i s a s u f f i c i e n t condition for y to have a G-Radon l i m i t measure on ft . IN view of Props. 4.1 and 3.1.1, we need only show that (1) y i s K(G)-tight => y|Cyl (ft) = T . ' I f , f o r every A e Cyl (ft) , (2) T(A) = sup (g(K) : K e K(G) , K C A} , then, f o r every A e Cyl (ft) , since y i s a - f i n i t e (L.1.2), Y(A) = sup {Y(K) :K e K(G) , K C A} >_ sup {g(K) : K e K(G) , K C A.} by L.3, = T(A) by (1). Hence, by L.1.2, Y(A) = T(A) for a l l A e Cyl (ft) , y Consequently, (1) w i l l have established when we show that, (3) y i s K(G)-tight => (2) holds for a l l A e Cyl (ft) . Suppose y i s K(G)-tight. Let E e F and B G Mg with y E ( B ) < 0 3 • Given e > 0 , since u,., i s Radon, there e x i s t s a closed C c B s y E(B ~ C) < e/2 . Since y i s «(G)-tight, there e x i s t s e K(G) s.t. for every F E F with E C F , y F ( r E y B ] - r F j X [ K ] L J ) < e/2 . Let K = K i ^ r E ! x [ c ] • Since C i s closed and r [ ft i s G-continuous, (4) K e K(G) . Further, (5) . K C ft r\ r'1 [B] . Now, for any F e F with E C F ,' ( 6 ) r F , X [ K ] = r F , X [ K l ] * r E ! F [ C ] • Hence, V r E ! F [ B ] " r F , X [ K ] ) = V ( r E > ] ~ r F , X [ K l ] ) U < F [ B ] ~*1]Y™» l V F ( r ^ p [ B ] - r ^ f ^ ] ) + v E(B - C) < e . Consequently, by L.2.3 and L.2.1, g(K) = i n f { y p ( r F X [ K ] ) : E c F e F} >, i n f { y ^ r " 1 ^ ] ) - e : E C F e F} = y E(B) - e . Since e was a r b i t r a r y i t follows that (2) holds for a l l A e Cyl («) with T ( A ) < » . However, since y i s a - f i n i t e for a l l F e F , T(A) = sup {T (A'): A ' c A , A e Cyl (ft) , x(A') < » } , Hence, (2) holds for a l l A e Cyl (ft) . Proof of Cor. 4.3. Let K = {V° : n e w } . We note that (1) ft = \JK , and (2) K c K(w*|ft) By (2) and Thm. 4.3 we need only show that (3) y i s ,.:?. /(-tight whenever y has a l i m i t measure on ft Suppose.that y has a l i m i t measure on ft . Let E e F and A e M with Vu(A) < °° * Since y i s Radon, choose a closed C C E s.t. Ji C C A and y E(C) > y^(A) - e/2 , and for each n e w , l e t * Since C i s closed and r i s w -continuous, then, by (2), h i , X (4) K e K(w"|ft) for each n e w . Further, by (1) (5) ft rs r ' ^ C ] = U K n . new Since y„ i s an outer measure, and K c K ,, for each n e w ft n n+1 we deduce from (5) that (6) y^(ft t\ r ^ t C ] ) = sup y (K ) . ' new n By Prop. 3.1.2, C7) y^ i s a l i m i t measure of y , Hence, (8) y^(ftn r ^ x [ C ] ) = y E(C) < y E(A) < » . Let e > 0 . By (6) and (8), there e x i s t s n e w s.t. 44. Then, by (7), W > V C ) ' £ / 2 > V.A ) " £ • Hence, by (4) and L.2.2, (10) g(K ) > y (A) - e . We have that, for any F e F with E e F , r F , X [ K n 1 C r ; > C l E " ! F [ A l • and therefore, = y (A) - y ( r [K ]) < y (A) - g(K ) b r r , A n — & n < e , by (10). However, K c , and therefore, for every F e F with E F , n n V ^ F ^ " r F , X ^ n ] ) < E • Since e > 0 , E e F , and A e with Vg(A) < 0 0 , xrere a l l a r b i t r a r y , i t follows that y i s K-tight. 45. 5. F i n i t e Cylinder Measures We s h a l l s p e c i a l i z e the r e s u l t s of the foregoing sections to the case of f i n i t e c y l i n d e r measures. By introducing the notion of a f i n i t e section of an a r b i t r a r y c y l i n d e r measure, we s h a l l show that, with regard to the problem of f i n d i n g l i m i t s , we can concentrate on f i n i t e cylinder measures. 5.1 D e f i n i t i o n . u i s a f i n i t e c y l i n d e r measure i f f u i s a c y l i n d e r measure over a vector space X and for some F E F v ,' X y p(F") < « . (We note that u (F ) i s independent of F E F ) r A For the rest of t h i s section we assume that X i s a vector space, ft i s a subspace of X such that (X,ft) i s a dual p a i r , 6 i s a regular, Hausdorff topology on ft which i s f i n e r than the w -topology r e s t r i c t e d to ft , p i s a c y l i n d e r measure over X r e s u l t s The following lemmas i n d i c a t e that the hypotheses of e a r l i e r can be s i m p l i f i e d when considering f i n i t e c y l i n d e r measures. 46. 5.2 Lemmas. If y i s a f i n i t e c y l i n d e r measure over X , then (1) • y X(A) = y / V(A r\ ft) for every A e Cyl (X*) <=> y'?(ft) = y"(x") . For any family fl of subsets of X , (2) y i s H-sequentially tight <=> for any sequence {F } i n F with F c F ,, for each n new n n+1 n e w , and e > 0 , there e x i s t s H e H such that y (F ~ r v[H])-< e for a l l n e w . r n r , A n n (3) If r V[H] e M for every F e F and H e H , then, r , A c y i s H-tight <=> for any e > 0 there e x i s t s H e H such that y p ( F " ~ r p X[H]) < e for a l l F e F . Proof of 5.2.1 C e r t a i n l y , i f y"(ft n A) = y"(A) for a l l A e Cyl (x") , then y*(ft) = y"(x') . On the other hand i f y (ft) = y (X ) , then, for any A e Cyyx*) , y*(X X) = y X(ft) = y" (ft A A) + y " (ft ~ A) <_ y * ( A ) + y * <x" ~ A) = y * ( X * ) -k ' * Hence y (ft r\ A) = y (A) 47. Proof of 5.2.2 We observe only that for any F e F, A e and H e H , P F(A ~ r F j X [ H ] ) < y F * ~ r [H]) . Proof of 5.2.3 Together with the observation of Proof 5.2.2 above, we note that for any E and G i n F with E c G , and H e H , V E* ~ r E , X [ H ] ) ^ G ( G * ~ r G , X [ H ] ) The assertion i s now immediate. The following theorems are now immediate consequences of, re s p e c t i v e l y , Lemma 3.3, Theorem 3.10, and Theorem 4.3 5.3 Theorems If y i s a f i n i t e c y l i n e r measure over X , then :L^ ..>\ ] - . '! . (1) y has a l i m i t measure on ft <=> y"(ft) = y"(x") . (S i l o v [46]). (2) y has a l i m i t measure on ft i f , for any sequence (F ) i n F with F c F ,.. for each n £ 43, J H n new n . n+1 ' and e > 0 , there e x i s t s a w -compact K c ft such that y r ( F * - r [K]) < e for a l l n e w . r n r , A n n . • . 48. (3) (Mourier-Prohorov, [3 ] ^ 5 Lemma 3) • u has a G-Radon l i m i t measure on ft <=> for any e > 0 there e x i s t s K e K(G) such that U _ ( F " ~ r V [ K ] < e for a l l F e F . r r , A Remark. We point out that Theorem 5.3.2 does not seem to have been previously stated i n the l i t e r a t u r e . We s h a l l now show that the problem of f i n d i n g l i m i t s for a r b i t r a r y c y l i n d e r measures can be recuced to that for the f i n i t e case. F i r s t , we make the following d e f i n i t i o n . 5.5 D e f i n i t i o n ^ i s a f i n i t e section of u i f f for some E e F and A e Mg with WgCA) < 0 0 , 5 i s the cylinder measure over X such that for every F e F, ^F = r F , G [ y G l r E , F " 1 [ A ] J ' for some G e F with E c G and F c G Remark. If £' i s a f i n i t e section, of u then | i s well-defined, 5 i s i n fac t a cy l i n d e r measure over X , and = u " ( r E X _ 1 [ A ] A B) for a l l B c X^ . (This remark i s proved below.) The following theorems are then r e a d i l y established. 49. 5 .6 Theorems. (1) y has a l i m i t measure on ft i f f every f i n i t e s e ction of y has a l i m i t measure on ft . (2) u i s K(G)-tight i f f every f i n i t e section of y i s K(G)-tight. Hence, y has a G-Radon l i m i t measure on ft i f f every f i n i t e s e ction of y has a G-Radon l i m i t measure on ft Proof of Remark 5.5 *• • _ i For any F e F and a c F with r [a] t M n , i n view of Remark 2.2.1 and Lemma 0.4.1, ^ G ( r F , G 1 [ a ] " r E , G 1 [ A ] ) i s independent of the choice of G e F with E c G and F C G Hence, so also i s £ F We note that for any F e F with E C F , (1) U F l r E p 1 [ A ] i s Radon. Consequently (2) ? F = y p | r E F 1 [ A ] and i s Radon. Hence, by Lemma 0.4.3, (3) E, i s Radon for every F e F. For any F and F^ i n F with F c F^ •, i f G e F with E U F u F c, G , then by Lemma 0.4.2, h = r F , G [ y G l r E , G l t A ] ] = ^ . F ^ F . F ^ G ^ E . G 1 ^ 1 1 1 50. Hence, by (3) and Lemma 0.4.1 5 i s a c y l i n d e r measure over X-We s h a l l now prove that (4) £*(B) = u*(r_. "V] n B) for a l l B c x ' L, A Let k k H = {H e Cyl (X ) : H i s w -open} , a = r^'V] . We have that H C Cyl (X*) A Cyl (X*) and by (2), T^(H) = T (H A a) f o r every H e H Hence, by Thro.. 3.1, (5) ?"(H) = T"(H A a) for a l l H e H y a Let B c X If y (B) < TO , then, since y i s an H -outer measure, for any e > 0 there e x i s t s H e H s.t. a . a B c H and y*(H) < y*(B) + e . Since a e M , we have that y« A • A A A y (B n a) + y (B ~ a) = y (B) > y (H) - e k k = y (H n a) + y (H ~ a) - e and therefore •A. a . y" ( H A a) < y" (B A a) + e . k Since y i s a - f i n i t e i t follows that f o r any B C X , (6) y*(B n a) = i n f {y"(H A <*.} : B C H e H } . a A A Since £ and y are both H -outer measures, (5) and (6) o together imply that (4) holds. Proof of 5.6.1. By Lemma 3.3 w£ need only show that (1) y X(A) = y * ( A n ft) for a l l A e Cyl (X*) i f f (2) E, (X ) = E, (ft) for every f i n i t e s e c t i o n E, of y From Remark 5.5 i t i s immediate that (1) => (2). However, (2) => y"(A) = y' (A n ft) for a l l A e' Cyl (x") with y (A) < oo . For any A e Cyl^(X ) , since y i s a - f i n i t e , choose an increasing sequence {A } i n Cyl (X ) s.t n new J y y (A ) < 0 0 for a l l n e w and A = U A new n Since y i s an outer measure, we then have that p (AO ft) = lim y * ( A A ft) = li m y (A ) = y (A) . n n new new Hence (2) =3> (1). Proof of 5.6.2. Let E, be a f i n i t e section E e F and A e M with y„(A) < E E Remark 5.5, for any F e F with V ^ F [ A ] - r F , X [ K ] ) = ~ of y determined by some oo . By (2) i n the proof of E C F , and K e K(G) , r F , X ^ } • The assertion now follows from Lemma 5.1.2, and Thm. 4.3. CHAPTER II CYLINDER MEASURES OVER TOPOLOGICAL VECTOR SPACES In t h i s chapter, we are p r i m a r i l y i n t e r e s t e d i n determining when a cylinder measure over a Hausdorff l o c a l l y convex space X w i l l have a l i m i t measure on the t o p o l o g i c a l dual X' which i s Rad^n with respect to some given topology G on X' . Since (X,X') i s a dual p a i r , the theory of the previous chapter applies with 0, = X' A Hence, i f G i s regular and f i n e r than the w -topology r e s t r i c t e d to X' , then, by Theorem 1.4.3, y w i l l have a G-Radon l i m i t measure on X' whenever y i s H-tight for some family H c K(G) . We s h a l l take G to be one of three standard topologies, and these suggest that we take f o r H the p a r t i c u l a r family E defined below. Our main concern i s then directed towards f i n d i n g conditions under which y i s E-t i g h t . 1. Notation , We point out that our t o p o l o g i c a l vector spaces are not • assumed to be n e c e s s a r i l y Hausdorff. In the rest of t h i s paper we s h a l l use the following notation. For any vector space X and V c X , V° = {f e X" : | f ( x ) | <_ 1 for a l l x e V} . 53. For any t o p o l o g i c a l vector space X , nbnd 0 i n X i s the family of'neighbourhoods of the o r i g i n i n X k k E i s the family of a l l sets K c X such that K i s w -closed and K c for some V g. nbnd 0 i n X •k X' = {f e X : f i s continuous} and for every F e F , A. r F = r F l X ' • In addition to the w -topology r e s t r i c t e d to X' , we s h a l l consider the following two topologies: c i s the topology on X' of uniform convergence on the compact subsets of X , s i s the topology on X' of uniform convergence on the bounded subsets of X Remark We note that E c K(w*) and •k | k A W X' C C C S 54. 2. E-tight Cylinder Measures. Throughout t h i s section X i s a t o p o l o g i c a l vector space and y i s a cylinder measure over X When X i s l o c a l l y convex and Hausdorff we notice that E i s nothing else but the family of w -closed equicontinuous subsets of X' Hence, f r oiu TrsvGs [47] , Props* 32.5 and 32.8, W G h.avG t h a t E c K(c*) . Consequently, a p p l i c a t i o n of Theorem 1.4.3 y i e l d s the following a s s e r t i o n . 2.1 Theorem. Let X be Hausdorff and l o c a l l y convex * • y u i s E-tight => p. has a c -Radon l i m i t measure on X' If E = K(c ) , i n p a r t i c u l a r , i f X i s b a r r e l l e d ([47] Thm. 33.1) then, y i s E-tight <=> y has a c -Radon l i m i t measure on X' Sometimes E-tightness of y can also imply the existence of a l i m i t measure on X' which i s Radon with respect to the s -topology. For example, i f X i s a Montel space ([47] p. 356) then E = K(s ) ([47], Prop. 34.5); or, i f X i s a nuclear space ([47] p. 510) then E c K(s") ([47] Prop. 50.2). Hence, on applying Theorem 1.4.3, we obtain the following theorems. 2.2 Theorem (1) If X i s a Montel space, then, y i s E-tight <=> y has an s -Radon l i m i t measure on X' (2) I f X i s a nuclear space, then, y i s E-tight => y has an s -Radon l i m i t measure on X' Even i f E £ K(s ) , E-tightness of y can s t i l l imply that y has an s -Radon l i m i t measure on X1 2.3 Theorem. Let X be Hausdorff and l o c a l l y convex. For any V e nbnd 0 i n X l e t X^ = nV® with the topology induced by the norm |* : f e X^ + s u p | f ( x ) | e R + x«=V If there i s a base \l for nbnd 0 i n X such that for each V £ 1/ , X^ i s separable. then, (1) y i s E-tight => y has an s -Radon l i m i t measure on X' (2) If X' i s a separable Banach space under s , then indee * „ k < every f i n i t e c -Radon measure on X' i s s -Radon. Proof of Theorem 2.3 We f i r s t e s t a b l i s h the following lemma. Lemma. For any V e nbnd 0 i n X s.t. X^ i s separable, i f G i s the family of a l l open subsets of X^ , then Gc cr-field generated by (c |x^ ) 56. Proof Let ff =' { f + E V ° : e > 0 , f e X^} . For any e > 0 and f e X' , g e X' -y eg e X 1 and g e X' -> f + g e X' are homeomorphisms with respect to c , since X ! i s a t o p o l o g i c a l vector space under c 0 * * * . Hence, since V i s w -closed and w c c , H consists of c -closed subsets and therefore f/ c c r - f i e l d generated by (c |X^) However, X^ i s separable and metrizable. Consequently, G c C a - f i e l d generated by (c |X^) We now prove the theorem. (1) By Thm. 1.5.6.2, we may assume that u i s normalized. In that case, by Lemma 1.5.1.2, we need to prove that for any e > 0 ., there e x i s t s K e K(s ) s.t. u„(F ~ r_[K]) < e for every F e F . r r With the notation of 1.4, since u i s E - t i g h t , then, by Thm. 2.1 and Props. 1.4.1, ]i' ^  i s c -Radon l i m i t measure on X' of , and by L.3 of Proofs 1.4, . (1) u c*(K) = g(K) for a l l K e K(c*) . Since u i s E-tight, for any e > 0 , there e x i s t s V e nbnd 0 i n X s.t. X^ i s separable, and for a l l F e F , y p ( F * ~ r F[V°]) < e/2 . » 57. Hence, by L.2.1 of Proofs 1.4, 1 - g(V°) < e/2 , and therefore, by (1), (2) y c > v(X' - X^) < 1 " V C*(V°) < e/2 . If 5 : A c X^ + u^(A) e R + ,. then 5 i s a c |X^-outer measure on X^ * i By the lemmas, and the f a c t that c [X^ c 6 , i t follows that £ i s a G-outer measure on X^ However, X^ i s complete ([47], Lemma 36.1, see also p. 477)-X^ i s also separable and metrizable. Hence, by Prohorov L32] Thm. 1.4, there e x i s t s K e K(G) s.t. (3) 5(X^ ~ K) < E/2 However, s |x^  c G , hence K E K(s*) • Then, c e r t a i n l y , K E K(C ) , and by (1), (2) and (3), g(K) = u^CK) > 1 - e . From the d e f i n i t i o n of g , and L.2.1 of Proofs 1.4, u„(F" ~ r_,[K]) < s for a l l F e F . r r (2) From the lemma we have any c -Radon measure on X' i s an s -outer measure (G = s ) . The assertion now follows from Prohorov [32] Thm. 1.4 We are led by the above theorems to study conditions under which w i l l be E-tight. In view of Theorem 1.5.6.2 we s h a l l concentrate on the case when u i s f i n i t e . Conditions for u " to be E-tight w i l l then be given i n terms of the one-dimensional subspaces of X . We begin by i n d i c a t i n g a necessary such condition. 2.4 Proposition Let X be a t o p o l o g i c a l vector space, r > and p a f i n i t e c y l i n d e r measure over X If p i s E-tight, then, for any e > 0 , there * , k e x i s t s a w -Radon measure n on X with, supp n e E , such that x e X , J | f ( x ) | r d n ( f ) <_ 1 => y„ '({f e F* : | f ( x ) | >_ 1}) < F X. x where F^ i s the space spanned by x Proof. We assume that p i s normalized. With the notation of I.4, by Th. I.4.3, u , i s a w -Radon l i m i t measure on X for p ' W " Since p i s E-tight, by L.2.1. of Proofs 1.4, for any e > 0 there e x i s t s V £ nbnd 0 i n X s.t. 1 - g(V°) < E/2 , and therefore, by L.3 of Proofs 1.4, p",(X* ~ V°) < e/2 . For any x e•X , l e t I = {f e XW : |f(x)j > 1} . If r) : A C x" - y" , (A A V°) e R + , then, k £ W " k n i s a w -Radon measure on X with supp n e E and for any x e X s.t. J ] f (x) {r dn <_ 1 , P F ({f e F* : | f ( x ) | > 1}) = V**(I X> x = V ( I x ^ ° ) + V ( I x ~ - 2 N ( I -} + 2 2 $ 1 I d r' + e / 2 < f / | f ( x ) | r d n ( f ) + f i f + f = e • m The above proposition suggests the following d e f i n i t i o n s . 2-4 Notation. For any vector space X , x e X and c y l i n d e r measure y over X , F^ = space spanned by x,. D =' {f e F* : If (x) I > 1} x x 1 1 — and \ = y F 2.5 D e f i n i t i o n s . Let X be a vector space, and U be a family of subsets U of X with 0 e U (1) For any f i n i t e c y linder measure y over X , y i s U-continuous i f f for any e > 0 there e x i s t s U £ U such that x £ U = > y ( D ) < £ x x (2) For any c y l i n d e r measure y over X , y i s U-continuous i f f every f i n i t e s e ction of U i s U-continuous. (3) For any t o p o l o g i c a l space Y and T : X -> Y , T i s U-continuous i f f for every neighbourhoods V of T(0) there e x i s t s U e U such that T[U] c V . (4) When X i s a t o p o l o g i c a l space, for any f i n i t e c y l i n d e r measure y over X , y i s continuous i f f y i s f-continuous for some family V of neighbourhoods of the o r i g i n i n X only the standard The discussion of l i m i t s i n the re s t of the chapter requires above concepts. However, to explain t h e i r r e l a t i o n to notions of continuity we introduce the following d e f i n i t i o n s . 60. Let X be a vector space. For any n e w and x = -(x^,. . . ,x _^) - e X n , F = l i n e a r span of {x„,...,x , x U n-1 • Cf x J f e F* -y ( f ( x Q ) , . . . , f ( x n _ 1 ) ) e <En , and for any f i n i t e c ylinder measure y over X , X For any n e w , M(|]n) i s the family of f i n i t e Radon measures on ^ n endowed with the vague topology; i . e . for any net (n.) . , i n M((j;n) and n E M(f]n) , Tij + n i n M(fpn) i f f J fdn.. -»- / fdn for every bounded continuous f : <£n -> We note that y e M(£ n) for a l l n e OJ and x e X n X We now have the following well-known proposi t i o n (Gelfand, V i l e n k i n [11] P. 310, Fernique [9] p. 37, which shows that one can n a t u r a l l y associate c e r t a i n continuous maps with a continuous c y l i n d e r measure. (see also Appendix 1.7). 2.6 Proposition Let X be a t o p o l o g i c a l vector space. (1) y i s continuous i f f (2) y : x e X -> y^ e M($) i s continuous at 0 i f f (3) for each n e w , y 1 1 : x E X n y e M((£n) i s continuous with respect to the product topology on X 61. Remark From the proof of the above proposition one r e a d i l y checks that the following a s s e r t i o n also holds. If U i s a family of balanced, absorbent subsets of X , with tU e (J 'for every U e U and t > 0 , then, u i s (J-continuous i f f u : x e X -> u e M(C) i s (J-continuous. Hx Proof of Proposition 2.6. We show that (3) => (2) => (1) => (3) (3) => (2) take n = 1 . (2) => (1) l e t % : £ -> C be bounded and continuous, %(z) = 1 i f j i l > 1 0 i f |*| < | Let e > 0 . Choose V e nbnd 0 i n X s.t. x e V => 1/ %d~^ - / 5Cdu~| < e . Since y^ i s concentrated at the o r i g i n i n t , and has f i n i t e mass, then J = o • . Hence, for any x £ V , y (D ) = y v({z e £' : |z| L 1» 1 / *dy v < e • A . A . A . A . (1) => (3) For any F e F , and u > 0 , l e t I(u) = {(w,f) E F x F* : |f (w) | >_ u} Let n e OJ , X • ^ n ->• £ be hounded and continuous, and x e X n We s h a l l show that for any £ > 0 there e x i s t s V e nbnd 0 i n X s.t. 62, y e x + V n => |/ %dy x - / %dy^| '< e . (Note: V n e nbnd 0 i n x " ) . We assume that u i s normalized. For any z E £ n. , l e t [z| = sup {|z | : k = 0,...,n - 1} Let (i) M = sup (|%(z)| : z E £ N } , ( i i ) W be an open nbnd of the o r i g i n i n X s.t. w e W => u (D ) < e/16nM • , w w ( i i i ) t > 0 be s.t. x e tW for each k = 0 n - 1 , (iv) and l e t 6 > 0 be s.t. z j e £ U |z j | <_ t , j = 0,1 , and |z° - z 1] < 6 => \%(z°) - X i z 1 ) | < e/4 . ' Since £ - WN i s an open nbnd of 0 i n X N , there e x i s t s V e nbnd 0 i n X s.t. (v) -| V e W , (vi) x + V U c t W n . For any y e x + V n 'and F e F with F^ u F^ c F , l e t y > y F x 1 x F y • x A (5) = {f E F* : \v (f) - V (f) I > 5} y y x 1 -and Then, k=n-l B (t) = U I (t) v v * k=0 "k . y F ( A (6)) = y F ( k U 1 I (6)) J k=0 k k k=n-l. k=n-l " k=o y F ( V 6 ) ( x k - y k ) ( 1 ) ) - k ^ 0 ^ i / ^ k - y k ) ( 1 l i / 6 X x k - y k ) > < e/16M by ( i i ) and (v). From ( v i ) , we have that y e tW Hence, — v, e W f o r each k e n , and therefore, t k by reasoning as above, y (B ( t ) ) < e/I6M . b y In p a r t i c u l a r , y F ( B x ( t ) ) < e/16M . Consequently, i f B = B (t) U B (t) V A (5) , x y y then, y (B) < 3 e/16M < e/4M , and, by ( i v ) , f e F* ~ B => \X(V (f)) - ( f ) ) | < e/4 y x 1 Hence, 1/ X d y y - / X d y J = 1/ % 0 y y F - / % 0 ^d,^} < /| X , V - % 0 ¥ d y + / |X o ¥ - X 0 ¥ |d,i ~~ B y X F F*~B Y X F < 2M.e/4M + -f . U(F" ~ B) < e . — 4 F i . e . y e x + V n => | J X d y ^ - / % d y j < e . 3. Limits of Continuous Cylinder Measures Let X be a Hausdorff, l o c a l l y convex space, and y be a f i n i t e c ylinder measure .over X . In the previous section we have seen that conditions under which y i s E-tight are important for determining when y has a c - or an s -Radon l i m i t measure" on X In terms of the one-dimensional subspaces of X Proposition 2.4 gives a necessary such condition. In seeking some kind of converse to that proposition, we are l e d to introduce the concept of a weighted system i n X , which i s defined below. We s h a l l use the following notation. 3.1 Notation For any vector space X , absorbent absolutely convex V c X , and F E F , ker V = { x e X : x e t V f or every t > 0} , F v = F cv ker V , (V c\ F)° = {f e F'C : |f (x) | <_ 1 for a l l x e V f\ F} = {f E F" : f(x) = 0 for a l l x c 7^} For any t > 0 , I ( t ) = {(x,f) E F x F* : | f (x) | i.t} , I = K D • So for any x e F , f e F , I f = {x e F : |f (x) | >_ 1} , I = {f E F* : I f ( x ) | > 1} . • •v 1 — Remarks We note that (1) F v e F ; and since (x,f) e F x F f(x) e C the product topology on F x F , (2) for any t > 0 , I(t) i s closed. 3.2 D e f i n i t i o n s i s continuous with respect to c Let X be a l o c a l l y convex space. (1) (v,F»f) i s a system of S-weights i n X i f 6 > 0 ; [/ i s a family of absolutely convex neighbourhoods of the o r i g i n i n X , F c F i s directed, by C and Li F i s dense i n X and v : V e l / , F e F - > V y p , a p r o b a b i l i t y Radon measure measure on F for which f e F* ~ (V n F)° => v V j F ( I f ) >• 6 . When f i s a singleton {V} , we s h a l l write (v,F,V) instead of (v,F,l/) • (2) W i s weighted by such a system (v,F,f) i f f W i s a family of neighbourhoods of the o r i g i n i n X , for each W e W there e x i s t s V c V such that ker V c W , and v„ „(F ~ tW C\ F) -* 0 as t -> » , uniformly f o r F e F, 66. (3) (!) i s a weighted system i n X i f f W i s weighted by some system of 6-weights i n X We s h a l l now state and prove the fundamental r e s u l t s of th i s section. 3.3 Theorem Let X be a Hausdorff, l o c a l l y convex space, and fx be a f i n i t e c y l i n d e r measure over X If y i s W-continuous for some weighted system i n X , then y i s E-t i g h t . C o r o l l a r y Let X be a Hausdorff, l o c a l l y convex space, and y be an a r b i t r a r y c y l i n d e r measure over X If y i s W-continuous f o r some weighted system i n X , then y i s E-ti g h t , and therefore, y has a c -Radon l i m i t measure on X' Proof of C o r o l l a r y By Thms. 3.3, I. 5.6.2, and 2.1. We s h a l l need the following lemmas i n the proof of Theorem 3.3. They are proved at the end of the section. Lemmas (1) Let F be a f i n i t e dimensional space, and z• > 0 If £ i s a f i n i t e Radon measure on F such that x e F => ^ ( I ) < e x then £(F* ~' {0}) ±e . (2) Let X be a l o c a l l y convex space and p a continuous f i n i t e c ylinder measure over X For any dense subspace Y of X , and e > 0 , i f V i s an absolutely convex neighbourhood of. the o r i g i n i n X such that y p ( p " ~ (V A F)°) <_ e for every F e F r , then p„(F~ ~ ( V f \ F)°) < e for a l l F e F v r — A Proof of Theorem 3.3 By the Hahn-Banach extension theorem, we see that for any F e F . , and absolutely convex V e nbnd 0 i n X , (1) r p [ V 0 ] = (V A F)° . Hence, by Lemma 1.5.1.2, we need only prove that, for any e > 0 , there e x i s t s V e nbnd 0 i n X s.t. (2) y_(F* ~ ( ¥ A F)°) < e for a l l F e F . r — We assume that p i s normalized. Let W be a weighted system i n X with respect to which p i s W-continuous, and l e t (v,F,l/) be a system of 6-weights i n X by which W i s weighted. For any e > 0 , l e t 0 < e' < min(<5e,e) , W e W s.t. x e w => y (D ) < e'/4 , x x — V e V and t > 0 s.t. ker V C W and v v F ( F ~ tW r\ F) < e'/4 for every F e F Let U = V/t . Suppose that * 0 y (F ~ (U c\ F) ) <_ E for every F e F Since F i s directed by c , then U F i s a subspace of. X , and for any f i n i t e dimensional subspace E of U F there e x i s t s F e F with E c F . Hence, by (1) , (3), and L.2.3 of Proofs 1.4, y E ( E * - (U r% E)°) < £ . Since W i s a family of neighbourhoods of the o r i g i n i n y i s n e c e s s a r i l y continuous, and by hypothesis, U F i s dense i n X . Hence, from Lemma (2) and the foregoing remarks we conclude that (2) holds. It remains for us to e s t a b l i s h (3). For any F e F , y F ( F * ~ (UAF)°) = y p ( F * . ~ t ( V n F)°) • = y p ( F a ~ t(V n F)°) + y p ( F * ~ F^) since (V A F) ° c F?T . We show that each of the l a s t two terms given i n (4) i s les s than e/2 We estimate the f i r s t term. Since (v ,F,l/) i s a system of 6-weights i n X , the f £ ~ t . (V ft. F)° => f e F* ~ (Vft F)° => v V j F ( I f ( t ) ) = v y j F ( I f / t ) > 6 . Consequently, 6.u F(F^ ~ t.(V f\ F)°) f { v v > F ( I f ( t ) ) : f £ F J ~ t.(V A F)°}.p F(F^ ~ t . ( V f t F ) 0 ) <. Vy F * v F ( K t ) ) by Sion [44] Ch. I l l , Thm. 1.2.6, = J F / F ; V 1 I ^ d U p d V y F by Fubini's theorem, = / p F ( I x ( t ) ) d v V j F ( x ) = / S F ( I x ( t ) ) d v V j F = ^ F ( I x ) d \ , F ( x ) = / y ° x ) d V V , F ( x ) t t t XtW F - y _ x ( D x ) d v V , F ( x ) + f V t W F ' y x ( D x ) d V V , F ( x ) t t t t - f ~ " v V , F ( t W A F ) + 1 , V V F ( F ~ t W A F ) < f . l + l . f < 6.f . Hence, y p ( F * ~ (U ft. F)°) < e/2 . We now estimate y„(F " F ) F V We have that x e F T => x E ker V => x E W => y (D ) < e'/4 V x x => y_ (I ) < e'/4 since F c F 1 T e F . Fy x x V Hence, by Lemma (1), y (F* ~ {0}) < e'/4 . V 70. Since r p [F* ~ F J ] C F* ~{0}' , F V,F V i t therefore follows that U f ( F " ' ? - ?p < u^r'^fF* ~'{0}]j = Uv (F" ~ {0}) < e'/4 < e/4 . Then, c e r t a i n l y , (6) u F ( F * ~ F*) < £/2 . From (4), (5), and (6) we see that (3) holds. Remark. We point out that the theorem s t i l l holds when we use a somewhat weaker notion of system of 6-weights, i n which F : V e l / - > F c F d i r e c t e d by C and [J F v i s dense i n X The other d e f i n i t i o n s remain unchanged. Proofs 3. Proof of Lemma (1). For any x e F and n e w , and Consequently, f o r any x e F , . x =)= 0 , 5({f e F* : f (x) f 0}) = U I .(-)) new = lim 5(1 (-)) < e x n — new 71. Hence i f (1) there e x i s t s y e F s.t. •£({f e F* : f (y) = 0} ~ {0})- = 0 , then 5(F~ ~' {0}) = C({f e F* : f (y) ={= 0}) + ?({-f E F* : f (y) = 0} ~ {0}) We s h a l l e s t a b l i s h (1) by induction. For any subspace E of F , l e t E a = {f e F" : f(x) = 0 for a l l x e E} Let dim F = n . If n = 1 then (1) holds. We therefore assume that n >^  2 . For any k-dimensional subspace G of F with 2 <_ k <_ n , (2) {H 3^G A : H i s a (k - 1)-dimensional subspace of G} i s an uncountable, d i s j o i n t subfamily of M Let GQ = F . Then, by (2) and the f i n i t e n e s s of F, , there e x i s t s an (n - 1)-dimensional subspace G^ of F s.t. 5(G A -' {0}') = 5(G A ~ G A) = 0 . For any 0 <_ k <_ n - 2 , i f there e x i s t s an (n - k)-dimensional subspace G^ . of F s.t. 5(G A - {0}) - 0 , Then, by (2) and the f i n i t e n e s s of E, , there ex i s t s an (n - k - 1)-dimensional subspace G of G1 s.t. ^ G k + i * GV =0 • Consequently, aG a + 1 - {0}) = 5 ( G A + 1 - G A) + C ( G A ~ {0}) = 0- . Hence, there e x i s t s a one-dimensional subspace G ., of F s.t. n-1 5(G A . ~ {0}) = 0 . n-1 i . e . (1) holds. 72. Proof of Lemma (2) For any F e F v , n e w, X e F n , and t > 0 , l e t A k=n-l A* (t) = A { f e F" : | f (x ) | < t} . • X k=0 k We s h a l l assume that u i s normalized. Since (V A F ) ^ = (VQ r\ F ) ^ , where i s the i n t e r i o r of V , we s h a l l further assume that V i s open. Let E e F v . A Since E i s separable there e x i s t s a countable, dense subset {x } of V A E . Then, n new (V r\ E)° = A {£ e E* : | f (x^) | £ 1} . kew Now, for any n e w , tv1^1* : |£°vi ^ Acx n.....x • k=0 mew 0 n-1 Consequently, for any 6 > 0 , there e x i s t s n e w and m e w s.t. P E ( ( V ^ E ) V V A * ( 1 + 1 ) ) < V E ( ( V A E ) ° ) + { . 0 n-1 Since y i s continuous, there e x i s t s U e nbnd 0 i n X s.t. (1) u e U => y u ( D u ) < 5/2n , and since Y i s dense i n X and V i s open there e x i s t s { y 0 ' " ' " ' y n - l } i n V S - t " (2) x, - y, e - U for a l l k = 0, . . . ,n - 1 . k k m Let F e F,, be such that E U {y„,...,y ,} C F and X 0 n-1 l e t x = ( X Q , . . . ^ ^ ) , y = (yQ.-.-.y^) Then, V F* " Ax-y(™)} = U 6 F* : |f(Xk " V 1 k=0 k=n-l - E yx,-y (Dm(x -y )} < 6 / 2 b y ( 1 ) a n d ( 2 ) * k=0 *k y k n H x k V Further, • A Y ( 1 ) C - A X ( 1 + 7 > • Hence, J , , , , . ,,F ,1s . , F „ , , , ,.F,„ N „ , F ,1 -y W 1 } ) = W y t t * A Y ( 1 ) ) + W 1 ' ~ Vy? 5 < u E((V r\ E)°) + 6 . i . e . (3) y F ( A | ( l ) ) < y E ( ( V r N E)°) + <5 . However, i f F denotes the l i n e a r soan of {y„,...,y , } y J0 Jn-1 we observe that A F(1) 3 r " 1 [ ( V A F )°] . y „ > y y Since F e F , and (V r\ F ) i s closed, we have that y Y y (V (\ F ) £ Kp and y V A y ( 1 ) ) > y F ( r F X F [ ( V A F )°]) = y p ((V A F )°) > 1 - e y' y Hence, by (3), u E((V A E)°) > 1 - £ - 6 . Since 6 was a r b i t r a r y , i t follows that u E((V A E)°) >_ 1 - £ . Consequently, since (V A E ) ^ £ M^ , , u E(E' f ~ (VA E)°) < e . 74. 4. Induced Cylinder Measures. I t can happen that a f i n i t e c y l i n d e r measure over a Hausdorff, l o c a l l y convex space X i s given i n d i r e c t l y . For example, i t may have been induced by a f i n i t e c y l i n d e r measure u over a vector space Y and a l i n e a r map T on X to Y ([11] p. 311). In such a s i t u a t i o n we s h a l l be i n t e r e s t e d i n obtaining conditions on ]-~ and T which w i l l ensure that the induced c y l i n d e r measure over X w i l l have a l i m i t measure on X1 , Radon with respect to some given topology on X* . This kind of problem seems to have been f i r s t mentioned i n [H] Ch. IV. I t has been studied extensively, by L. Schwartz, 5. Kwapien, and others, i n a s e r i e s of papers ([19], [20], [39] - [42]). In view of the previous theory, our emphasis w i l l be on determining conditions under which the induced c y l i n d e r measure w i l l be E-tight, Using the notions of c o n t i n u i t y and weighted system we r e a d i l y obtain such conditions. 4.1 D e f i n i t i o n For any vector spaces X and Y , l i n e a r map T : X -> Y , and f i n i t e c ylinder measure y over Y , the cylinder measure £ over X induced by y and T i s defined as follows: for each F e F v > A where T p i s the adjoint of T[F , i . e . T* : f e CT[FJ)* -> f 0 (T | F) e F* . We s h a l l denote t h i s induced c y l i n d e r measure K by u D T . We prove below that 5 i s indeed a cyl i n d e r measure over X Proof For each E e F„ , T i s continuous. X E Hence, by §0.4, £ i s a f i n i t e Radon measure on E E Since a l l . the maps considered are continuous, then, by §0.4 and R.emark 1.2.1, for any E and F i n F with E c F , " X rE,F C r'F ] = r E , F t T F [ u T [ F ] ] ] = r E , F 0 V y T [ F ] ] T E 0 r T [ E ] , T [ F ] [ y T [ F ] ] = V r T [E] ,T[F] [ y T [ F ] ] ] V y T [ E ] ] = ? E ' and therefore, again by Remark 1.2.1, 5 i s a cyl i n d e r measure over X . B We now prove the following important lemma. 4.2 Lemma For any vector space X , family U of subsets U of X with 0 e U , t o p o l o g i c a l vector space Y , and l i n e a r T : X i f T i s U-continuous, then u a T i s U-continuous for every continuous f i n i t e c ylinder measure over Y 76. Proof. Let y be a continuous f i n i t e c y l i n d e r measure over Y For any x e X , by Lemma 0.4.2, <U a T ) X ( D X ) = T F [y ] ( D X ) = . T x ( T ; - 1 [ D x ] ) = y: (D ) . x :-. r, x K For any e > 0 , there e x i s t s V e nbnd 0 i n Y s.t. y e V => y (D ) < e , y y and there e x i s t s U e U s.t. T[U] C V . Then, by the f i r s t a s s e r t i o n , x e U => TJC e V => (y Q T ) X ( D X ) = P T X ( D T X ) < e • I t follows that y -,3 T i s (i-continuous. ©• Our key theorem on induced c y l i n d e r measures i s now an immediate consequence of Theorems 3.3, 2.1, and the above lemma. 4.3 Theorem. Let X be a Hausdorff, l o c a l l y convex space, Y be a top o l o g i c a l vector space, and T be a l i n e a r map on X to Y If T i s (^-continuous for some weighted system W i n X , then for every continuous f i n i t e c y l i n d e r measure over Y , y cs T i s E-tight are therefore •k y C\ T has a, c -Radon l i m i t measure over X Remark. I t i s clear that this theorem reduces to the f i n i t e case of Corollary 3.3 when X = Y and T i s the i d e n t i t y map. 77. CHAPTER III APPLICATIONS We s h a l l apply the theory of the previous chapter to a study of c y l i n d e r measures over H i l b e r t i a n and 5,^-spaces. Our r e s u l t s on c y l i n d e r measures over a r b i t r a r y Hausdorff, H i l b e r t i a n spaces generalize and c l a r i f y many known theorems (Minlos [25], Sazonov [35], Badrikian [1], Fernique [9]). In the case of £^-spaces we obtain s i g n i f i c a n t extensions of formerly known r e s u l t s (L. Schwartz [39], Kwapien [19]). Our main t o o l i s C o r o l l a r y II.3.3, which requires us to construct weighted systems i n the above spaces. In view of Proposition II.2.4, i t i s the search f o r such systems which leads us to consider the f a m i l i e s S , for r > 0 , defined below. 1. Preliminaries For any vector spaces X and Y , L[X,Y] i s the set of l i n e a r maps on X to Y For any t o p o l o g i c a l vector space X , CM(X) i s . t h e family of continuous f i n i t e c y l i n d e r measures over X 78. Remarks. From Appendix 3 . 1 . 1 and 3 . 2 . 1 , we have that for any family C of f i n i t e c y l i n d e r measures over a vector space X , there e x i s t s a coarsest topology on X under which i t i s a t o p o l o g i c a l vector space, and such that p e C => u i s continuous. This topology i s c a l l e d the C~topology. For any t o p o l o g i c a l vector space X , i f the topology of X i s the CM(X)-topology, then we c a l l X a CM-space (Appendix 3 . 1 . 2 ) . For any t o p o l o g i c a l vector space X , 0 < r < ra , and w -Radon measure n on X with supp .n e E , S = {x e X : / | f ( x ) | r d n ( f ) <1} . For each r > 0 , S r i s the family of a l l sets S c X . r, n 1 . 1 Remarks Let X be a t o p o l o g i c a l vector space. (1) For each r > 0 , there i s a unique topology on X under which X i s a t o p o l o g i c a l vector space having S as a base for i t s neighbourhoods of the o r i g i n . When r >_1 , t h i s topology i s l o c a l l y convex. We s h a l l c a l l t h i s topology the S r-topology. t r (2) If 0 < r < t , then S i s f i n e r than S , i . e . for every a e S3" there e x i s t s 3 e S*" with 3 c a (3) I f X i s l o c a l l y convex, then, for each r > 0 S*" i s a family of neighbourhoods of the o r i g i n i n X 79. We prove only 1.1.2. ' Proof of 1.1.2. For -any f i n i t e measure space (£2,n) and integrable f : 0 -> £ , i f 1 1 p = t / r and • 1- — = 1 ,' P q then, by >.L;>;H«AJ&#'s i n e q u a l i t y , /|f|rdn 1 (/;|f|r)?dn)1/p nCn> 1 / q - . Hence, ( l ) ( J|f| r d n ) 1 / r K / l f l ' d T , ) 1 7 ' n ( a ) ( t " r ) / r t • r For any S e S , r ,n n(x x) < <» , since supp n e E C K(w ') and n i s w -Radon. Consequently, by (1), i f K - n ( x A ) ( t - r ) / r t . n then S ,- C s t,5 r , n The assertion follows. To point the s i g n i f i c a n c e of the f a m i l i e s 5 we note that Proposition II.2.4 can be restated as follows. 80. 1.2 Proposition Let X be a top o l o g i c a l vector space. For any f i n i t e c y l i n d e r measure u over X , u i s E-tight => u i s S 1-continuous for every r > 0 . @ Mien X i s Hausdorff and l o c a l l y convex, the above proposi-t i o n and Theorem II.3.3 y i e l d the following a s s e r t i o n : i f u i s W-continuous for some weighted system W i n X , r then u i s S -continuous f o r each r > 0 In view of t h i s , when searching f o r weighted systems i n X we s h a l l look f o r s u i t a b l e subfamilies of S In general, S r - c o n t i n u i t y f o r some r > 0 does not imply E-tightness. (Example 1, Appendix 4). We s h a l l need the following r e s u l t on induced c y l i n d e r measures. 1.3. Proposition. Let X be a t o p o l o g i c a l vector space, Y be a vector space, and T e L[X,YJ . For any family C of f i n i t e c y l i n d e r measures over Y , i f u a. T i s E-tight for every u e C , then, for each r > 0 , T i s S -continuous with respect to the C-topology on Y 81. Proof. Let r > 0 . By Prop. 1.2, IT y e C => y a T i s S -continuous. Hence, by Appendix 3.2,1, the S -topology i s f i n e r than the (C o T)-topology on X . By Appendix 3.2.2, th i s says exactly that T i s S r-continuous with respect to the C-topology on Y . Q 2. H i l b e r t i a n Spaces. Throughout t h i s s e c t i o n , X i s a Hausdorff, H i l b e r t i a n space ([1]). i . e . X i s a Hausdorff, l o c a l l y convex space, for which there e x i s t s a family F of pseudo-inner products on X , such that nbnd 0 i n X has as a base the family of a l l sets {x e X : [x,x] <_ 1} , [.,.] e r . The fundamental theorem of t h i s section i s the following. 2.1 Theorem For each 0 < r < 0 0 , S i s a weighted system i n X The proofs of this and other assertions w i l l be given at the end of the section. Now, we concentrate on the consequences of the above theorem. 2.2 Theorems. Let y be a cy l i n d e r measure over X and .0 < r < 0 0 Then, (1) y i s E-tight <=> y i s S -continuous. (2) y i s S -continuous => y lias a c -Radon l i m i t measure on X V ' ' (3) I f K(c ) = E , i n p a r t i c u l a r , i f X i s b a r r e l l e d , then u i s 5 -continuous <=> u i s E-tight <=> \x has a c -Radon l i m i t measure on X' Using Theorems 2.2, we can now characterize c e r t a i n p o s i t i v e -d e f i n i t e functions on X (Appendix 2). 2.3 Theorem. Let i> be a p o s i t i v e - d e f i n i t e function on X and 0 < r < «> Then, i> i s ^-continuous => there e x i s t s some f i n i t e c -Radon measure E, on X' such that ij;(x) = J exp i Re f (x)dg(f) for every x e X If K(c ) = E , i n p a r t i c u l a r , i f X i s b a r r e l l e d , then ^ i s S -continuous <=> there e x i s t s some f i n i t e c -Radon measure E, on X' such that i> (x) = /exp i Re f(x)d£(f) for every x e X Remarks We note that Theorem 2.2.2 generalizes a r e s u l t of Minlos ([25] p. 303 Thm. 1). Theorem 2.3 generalizes r e s u l t s due to Minlos ([25] P. 310), and Badrilcian ([1] p. 16 Cor. 1). The s p e c i a l case when X i s a H i l b e r t space w i l l be discussed below (§2.7). 84. We point out that, with the viewpoint of §1.4,- the assertions of Theorems 2.2.2 and 2.3 for the case r = 2 can be established by using the technique of c h a r a c t e r i s t i c functionals ([1], p. 9, 2 Lemma 1, Prohorov [33]). Also, i t can be shown that the S -topology i s nothing else but the Gross-Sazonov topology on X ([35], [1], [13] p. 65). By means of Proposition 1.2 and Remark 1.1.2 we can deduce the assertions above for 0 < r < 2 from the case r = 2 . We have been unable to give a s i m i l a r deduction for the case r > 2 . However, i n t h i s context, we draw attention to §2.6 below. As consequences of Theorems 2.1, II 4.3, and Proposition 1.3, we have the following assertion concerning induced c y l i n d e r measures over X 2.4 Theorem Let Y be a vector space, T e L[X 3Y] , and 0 < r < 0 0 For any family C of f i n i t e c y l i n d e r measures over Y , y n T i s E-tight for every u e C <=> T i s S -continuous with respect to the C-topology on Y The above theorem y i e l d s immediately the c o r o l l a r i e s given below,. Corollary (2) s i g n i f i c a n t l y generalizes a r e s u l t i n [11] (p. 349).. 85. C o r o l l a r i e s Let Y be a t o p o l o g i c a l vector space, T e L[X,Y] , and r > 0 (1) If Y i s a CM-space, then y D T i s E - t i g h t for every u e CM(Y) <=> T i s S -continuous. (2) I f T i s S"-continuous, then, f o r every y e CM(Y) , y a T i s E - t i g h t , and therefore has a c -Radon l i m i t measure on . X 2.5 Remarks Under c e r t a i n circumstances one can r e a d i l y strengthen the assertions of Theorems 2.2 - 2.4. Let y be a c y l i n d e r measure over X (1) (Theorem I I . 2.3) If there e x i s t s a base (J for nbnd 0 i n X such that f o r each U e U , the Banach space X^ i s separable, then, y i s E-tight => p.-has aiv ' 5 -Radon l i m i t measure on X * y Hence, i n those theorems in v o l v i n g the existence of a c -Radon /*c k l i m i t measure on X' , we may replace _c by S (2) Let G be a regular topology on X' with w |x ' c G If E c K(G) , or E = K(G) , then the foregoing theorems may be modified as indicated by Theorem 1.4.3. 86. In p a r i t u c l a r , we note that when X i s a Montel space, E = K(s*) . (cf. Thm. II.2.2.1) The theorems above allow us to make some i n t e r e s t i n g assertions about the S -topologies. 2.6 Theorems. (1) For a l l 0 < r < oo } the fa m i l i e s of 5 -continuous c y l i n d e r measures coincide. (2) For a l l 0 < r <_ 2 , the S -topologies coincide. (3) Let Y be a to p o l o g i c a l vector space, and for each r > 0 , = {T z L[X,Y] : T i s ^-continuous} . If Y i s a CM-space, then, for a l l . 0 < r < oo , the f a m i l i e s T coincide, r Remark. In general, the S "-topologies do not coincide f o r r > 2 (Example 3, Appendix 4). S Cl e a r l y , we may i n t e r p r e t a l l of our r e s u l t s f o r the s p e c i a l case when X i s a H i l b e r t space. In p a r t i c u l a r , we have the following theorems. Theorems. Let X be a Hilbe r t space, Let 0 < r < oo . For any cylinder measure y over X , n r u i s o -continuous <=> y i s E-tight <=> y has a c -Radon l i m i t measure on X ' Let 0 < r < oo y and \p be a p o s i t i v e - d e f i n i t e function on X I/J i s S -continuous <=> * for some f i n i t e c -Radon measure £ on X ' , iKx) = / exp i Re f(x)d£(f) for a l l x e X . Let Y be a Hilbe r t space, and T e L [ X,Y] •k , y a T has a c -Radon l i m i t measure on X ' for every y e CM(Y) <=> T i s a Hilbert-Schmidt map ([36] p. 177). ([42] V I I I , Pietsch [31], Petcynski [28]). Let Y be a Hilbert space. For a l l 0 < r < 03 , {T'.E L [ X,Y] : T i s r-summable} = {T e L [ X,Y] : T i s Hilbert-Schmidt} . (For the d e f i n i t i o n of r-summability, see [31], and [42] p. VII. 3). 88. Remark By Theorem II.2.3.2, when X i s a separable H i l b e r t space, every c -Radon measure on X' i s s -Radon. Hence, i n Theorems 2.7, we can replace c by s x<rhen X i s separable. We point out that Theorems 2.7.1 and 2.7.2 are equivalent (Cor. 1.4.3, Thm. 1.5.6.2, Appendix 2.5 and 2.6). We observe that even when X i s a H i l b e r t space our work extends previously knoxm r e s u l t s . Sazonov i n [35] discusses the case xtfhen X i s separable, obtaining Theorem 2.7.2 for the case r = 2 Waldenfels i n [48] extends Sazonov's theorem to the non-separable case. Theorem 2.7.3 extends a r e s u l t given i n [11] (p. 349), where X i s assumed to be separable and r = 2 s i g n i f i c a n t l y generalizes the Pietsch-Peieynski theorem given above (Theorem 2.7.4). Proofs 2. From Appendix 3.5 and Proof 2,7.4 we see that theorem 2.6.3 We s h a l l need the following lemma. Lemma Let X be a l o c a l l y convex space, r > 0 and S = S Let P = P(M jsupp n) directed by refinement, and for each P £ P S' = {x £ X : P I i n f |f(x)|r.n(B) > 1} BeP f e B 89. Then, for any F e , Radon measure E, on F and t > 0 , £(F ~ tS) = lira £(F A tS'j . PsP Proof of Lemma We f i r s t make the following observations. (1) If P E P, Q e P, with Q f i n e r than -P , then P Q * (2) For any u > 0 , X ~ uS = U u S' P EP (3) For every P E P , Sp i s open i n X . We prove only (3). Let P E P . We have that (4) S' = U {x £ X : E i n f | f ( x ) | r . n ( B ) > 1} , B BeB feB where the union i s taken over a l l f i n i t e B c P . Hence, since supp n e E i s equicontinuous, for every B e P , x £ X •> i n f | f (x) | £ R i s continuous. feB Hence, for any f i n i t e B Q P , (5) x £ X -> E (inf | f (x) | ) r . n(B) i s continuous, B e8 feB and therefore, by (4), (3) holds. From (3) we deduce that tF A i s open for every P E P . Consequently, as P i s directed by refinement, from (2) i t follows that for any compact C i n F with C c F ~ tS , there exists P E P s.t. 90. C c tF ft. S p ' . . Hence, since £ i s Radon and F ~ tS i s open i n F , £(F ~ tS) = sup {5(G) : C C F ~ tS i s compact} = sup U ( t F ft. S p : P e P } = lim 5(tF A S ' ) . PeP 2.1 Let f be a base for nbnd 0 i n X s.t. for each V e 1/ there e x i s t s a pseudo-inner-product [.,.] on X for which V = {x e X : [ x , x ] v £ 1} . Let 2^ r k £ a s § i v e n i n Appendix i . l . For each V'e V , l e t F = F . For each V. e f and F e F , l e t p be a p r o b a b i l i t y Radon measure on F rel a t e d to [.,.] |F x F as i n Appendix 1.3. Then, from Appendix 1.3 we see that (v,F,lO i s a system of 62~weights i n X By Remark 1.1.3, (1) S r c nbnd 0 i n X . Let S = S e S r . Since \l i s a base for nbnd 0 i n X and supp n e E , there e x i s t s V e 1/ with supp ri C " 91. Then, • x e k e r V => sup | f ( x ) | = 0 = > J |f>(x)| rdri = 0 => x e S feV° i . e . (2) k e r V c S . L e t t > 0 . F o r any B c X' , l e t f B e B and § B = p r, ( B ) 1 / r . f g . U s i n g the n o t a t i o n o f t h e above Lemma, f o r any P e P , F o t S ' C t x e F : E | f (x) | r . n(B) > t r } BeP Hence, v (F o t S l ) < v _ ( { x e F : E | g ( x ) | r > l } ) V ' V ' BeP a <_ C E sup |g ( x ) | r by A p p e n d i x 1.3.2, ' BeP xeV F < C E sup | g R ( x ) | r i ^ - C Z sup |f ( x ) | r . n ( B ) ' BeP xeV ° t ' BeP xeV < — C„ n(X') s i n c e f e f o r e v e r y B e P — r 2,r B 3 From the above lemma i t now f o l l o w s t h a t v V j p ( F ~ t S ) l ^ C 2 > r r , ( X ' ) . S i n c e C. n(X') < 0 0 , we c o n c l u d e t h a t (3) v„ _ ( F ~ t S ) -> 0 as t -* °° u n i f o r m l y f o r F e F. V ,h From ( 1 ) , ( 2 ) , and (3) we see t h a t S i s w e i g h t e d by (v,F,l/) 2.2.1 By Cor. I I . 3 . 3 , Thm. 1.5.6.2 and P r o p . 1.2 92. 2.2,2 and 2.2.3 By Thms. II.2.1 and 2.2.1. 2.3 By Remark 1.1.3 and Appendix 2.2.5, r i/j i s 5 -continuous => i s continuous at 0 = > ijj i s continuous =>(jjJF i s continuous for a l l F E p. Hence, by 2.4 and 2.5 of the Appendix, there e x i s t s a f i n i t e S -continuous c y l i n d e r measure y over X s.t. i|>(x) = J exp i Re f(x)dy (f) for a l l x e X . By Thm. 2.2.2, y has a c-.Radon l i m i t measure E, on X' Then, for every x e X , <Kx) = /F exp i Re f(x)dy (f) = J , exp i Re f(x)d£(f) . Suppose now that E = K(c ) , and for some f i n i t e Rad<5n measure E, on X' , i>(x) = / exp i Re f(x)d£(f) for a l l x e X . We note that f o r every F e F and Borel subset H of F , r F X t H ] E M . I f , for each .F £ F , ' yF = r p m > then, by Lemmas 0.4 and Remark 1.2.1, y i s a f i n i t e c y l i n d e r measure over X Further, by Lemma 0.4.2, g i s a l i m i t measure of y , and therefore i t follows that \p i s the c h a r a c t e r i s t i c f u n c t i o n a l of y 93 7S y 7\ Since E, i s c -Radon and K(c ) = E , then, from Lemma 1.5.1.2 and the d e f i n i t i o n of y we see that y i s E-tight. Hence, by Prop. 1.2, y i s S -continuous, and therefore, by Appendix 2.5, r \p i s S -continuous . 1. By Thm. 2.2.1. 2. By Thm. 2.6.1, Cor. 2 of Appendix 3.5, and Appendix 3.2.1. 3. By Cor. 1 of Thm. 2.4. 1 and 2.7.2. are consequences r e s p e c t i v e l y of Thms. 2.2.3 and 2.3, since H i l b e r t spaces are b a r r e l l e d . 3. Since X and Y are Banach spaces, by [31] p. 339, Thm. 1, 2 T i s S -continuous <=> T i s Hilbert-Schmidt. The assertion i s now a consequence of Cor. 1 of 2.4, and Cor. 3 of Appendix 3.5. 4. Since X and Y are Banach spaces, by [42] p. VII. 3, § 2 , for any r > 0 , T i s S -continuous <=> T i s r-absolutely summable. The assertion now follows from Thm. 2.6.3 and Cor. 3 of Appen dix 3.5. 94. 3. Nuclear Spaces. Nuclear spaces comprise one p a r t i c u l a r l y important family of Hausdorff, H i l b e r t i a n spaces (Grothendieck [14], see also [36] and [47]). We s h a l l therefore i n t e r p r e t the r e s u l t s of the previous s e c t i o n for the case when X i s a nuclear space. As a consequence of the s p e c i a l structure of nuclear spaces, we s h a l l be able to strengthen considerably the theorems concerning c y l i n d e r measures over a r b i t r a r y Hausdorff, H i l b e r t i a n spaces. We point out that many of the common spaces of d i s t r i b u t i o n s are i n fac t nuclear (Treves [47] Ch. 51). For our d e f i n i t i o n of a nuclear space we s h a l l use a c h a r a c t e r i -zation due to Pietsch ([29], [36] p. 178). 3.1 D e f i n i t i o n . X i s a nuclear space i f f X i s a Hausdorff, l o c a l l y convex space with the following property: for any neighbourhood U of 0 i n X , there e x i s t s another neighbourhood V of 0 i n X , and a w -Radon measure n on X with supp n C , such that {x e X : J|f (x) |dn(f) <_ 1} C U . 95. Remarks If X i s a Hausdorff, l o c a l l y convex space, then, from Remark 1.1.3 and the above d e f i n i t i o n , we see that (1) X i s nuclear i f f i s a base for nbnd 0 i n X For any nuclear space X , from (1) above, Remarks 1.1.2 and 1.1.3, i t follows that r (2) the S -topologies on X coincide f o r r >_ 1 2 In p a r t i c u l a r , taking 5 as a base f o r nbnd 0 i n X , we deduce that (3) X i s a H i l b e r t i a n space ([36] p. 102). As i n Treves [47], p. 519, we can prove that (4) E c K(s*) . Hence, i f X i s b a r r e l l e d , then (5) E = K(s*) • We point out that coincidence of a l l the S -topologies f o r r > 0 i s a consequence of ( 2 ) , ( 3 ) , and Theorem 2.6.2. The theorems given below i n 3.2 are d i r e c t consequences of the above remarks, and assertions from the previous section } s p e c i f i c a l l y , Theorems 2.2, Theorem 2.3, and Remark 2.5.2. 3.2 Theorems. Let X be a nuclear space, and u be a c y l i n d e r measure over (1) u i s continuous <=> p i s E - t i g h t . 96. (2) y i s continuous => y has an s -Radon l i m i t measure on X' k (3) I f K(s ) = E , i n p a r t i c u l a r , i f X i s b a r r e l l e d , then, y i s continuous <=> y i s E-tight <=> y has an s -Radon l i m i t measure on X' (4) Let -ty be a p o s i t i v e - d e f i n i t e function on X i> i s continuous => there e x i s t s an s -Radon measure E, on X' such that i>(x) = / exp i Re f(x)d£(f) . f or a l l x e X . If E = /((s ) , i n p a r t i c u l a r , i f X i s b a r r e l l e d , then >jj i s continuous <=> there exists a f i n i t e s -Radon measure 5 on X such that ifj(x) = / exp 1 Re f (x)d£(f) for a l l x e X . Theorem 3.2.2 extends a r e s u l t of Minlos ([25], p. 303, Thm. 1), who considered f i n i t e c y l i n d e r measures over countably normed nuclear spaces ([11] p. 56). V i l e h k i n extended that r e s u l t to the case of countable s t r i c t inductive l i m i t s of such spaces ([11] Ch. IV 2.4). Theorem 3.2.4 extends r e s u l t s due to Minlos ([25] p. 310) and Badrikian ([1] p. 17). We note that the theorems of 3.2 completely resolve a conjecture of I. Gelfand ([25] p. 310, [18], p. 222), that every f i n i t e continuous cylinder measure over a nuclear space X has a l i m i t measure on the continuous dual X' Theorem 3.2.1 has a p a r t i a l converse which extends a r e s u l t of Minlos ([25]. Thm. 4). 97. 3.3 Theorem Let X be a Hausdorff, l o c a l l y convex space. If X i s a CM-space and y E CM(X) => y i s E - t i g h t , . then X i s nuclear. Proof By Prop. 1.2, y e CM(X) => y i s S^-continuous. Hence, by Appendix 3.2.1, the S^-topology i s f i n e r than the CM(X)-topology. On the other hand, by Cor. 2 of Appendix 3.5, and Remark 1.1.3, the CM(X)-topology i s f i n e r than the S^-topology. Consequently, the CM(X)-topology = the S^-topology. Since X i s a CM-space, i t follows from Remark 3.1.1 that X i s nuclear. © Remark. . We note that a Hausdorff, l o c a l l y convex space i s not neces-s a r i l y a CM-space (Example 4.3, Appendix 4). When X i s not a CM-space we see from the above proof that the best a s s e r t i o n possible i s the following. If y e CM(X) => y i s E - t i g h t , then, the S^-topology and CM(X)-topoIogy coincide. 98. Theorems 3.3 and 3.2.1 lead to the following new c h a r a c t e r i -zation of nuclear spaces (Remark 3.1.3, Cor. 3 of Appendix 3.5). 3.4 Theorem Let X be a Hausdorff, l o c a l l y convex space. X i s nuclear i f f X i s a CM-space and y e CM(X) => y i s E - t i g h t . Concerning induced cy l i n d e r measures, Remark 3.1.4 enables us to strengthen C o r o l l a r y (2) of Theorem 2.4. In view of Remark 2.5.2, the following a s s e r t i o n i s immediate. 3.5 Theorem Let X be a nuclear space, Y be a t o p o l o g i c a l vector space, and T e L[X,Y] . If T i s continuous, then, for every y e CM(Y) , y a T i s E - t i g h t , and therefore has an s -Radon l i m i t measure on X We observe that an i n f i n i t e - d i m e n s i o n a l normed space cannot be nuclear ([47J, p. 520). As a consequence of t h i s f a c t we can assert that c e r t a i n cylinder measures over such a space X cannot have a l i m i t measure on X' 3.6 Proposition Let. X be an i n f i n i t e - d i m e n s i o n a l normed space I f u i s a f i n i t e c y l i n d e r measure over X such that the topology of X i s the {y}-topology, then y does not have a l i m i t measure on X' Proof. By Cor. 1.4.3, Prop. 1.2, and Appendix 3.2.1, y has a l i m i t measure on X* => y i s E-tight 1 => y i s 5 -continuous 1 => {y}-topology i s coarser than the S -topology => X i s nuclear, by Remarks 1.1.3 and 3.1.1. Since X i s an i n f i n i t e - d i m e n s i o n a l normed space the l a s t a s s e r t i o n cannot hold, and therefore y cannot have a l i m i t measure on X' Corol l a r y Let A be an index set. For any 1 < p < 2 , i f i s the f i n i t e cylinder measure over (A) with c h a r a c t e r i s t i c f u n c t i o n a l (Remark, Appendix 2.4) exp - ( l\ x \\ P x e £ P(A) ->  It  ) P e £ , then y does not have a l i m i t measure on (£ P(A))' 100. Proof See (1) i n Proof of Example 4.2, Appendix 4, and Proof 3.1.1 of Appendix 3. Remark For p = 2 the above c o r o l l a r y i s well known (Gross [13]). We have not seen a treatment of the case 1 <_ p < 2 i n the l i t e r a t u r e . 101. 4. & -spaces. Applied to j^-spaces, 1 <_ p <_ °° , the theory of the previous chapter y i e l d s r e s u l t s analagous to those for H i l b e r t i a n spaces. Since 2 I - i s a H i l b e r t space t h i s case has already been discussed i n §2.5. The r e s u l t s given there are stronger than those we s h a l l obtain here for an a r b i t r a r y £^-space. Notation Let A be an index set. For any 0 < r <_ °° , {x'e <?• : E |x(c0 | < °°} when r <_ a e A i £ r(A) = \ A i <• {x E C : sup lx(a) | < °°} when r = 0 0 asA We give £ (A) the usual topology, i . e . , when r < 1 , the topology generated by the quasi-norm (Appendix 3.3) b : x E £ r(A) -> E |x(a) | r e R + ; aeA when r >^  1 , the topology generated by the norm : x e £ r(A) + (• E |x(a ) I r ) 1 / r e R + , ' aeA where we ( E | x ( a ) | r ) 1 / / r = sup |x(a) | i f r = °° . aeA. a£A For any 1 < p < 2 , U = {x E £ P(A) : .E |x(a)| 2 < 1} . P . aeA 102. For any outer measure n on a space ft £v(n) = lim I n ( B ) | l n n ( B ) | PeP(M ) B £P n where t o t C<x. ulnu = 0 when u = 0 The heart of t h i s section i s the following group of r e s u l t s , which p assert that c e r t a i n f a m i l i e s of subsets of £" (A) , 1 <_ p <_ « , are weighted systems i n £ P(A) 4.1" Theorem. Let 1 <_ p <_ oo and 1/p + 1/q = 1 For any r > 0 , l e t — r r r 5 C S consist of those sets S e S for which r ,n s a t i s f i e s the added condition £v(n) < •» , • and when 1 <_ p j<_ 2 , l e t ~ r r r S S> consist of those sets S e S for which T\ s a t i s -r,n 1 f i e s the added condition / (sup | f (x) | rdn (f) < «> . xeU P (1) If 2 < p <_ oo and 0 < r < q then S r i s a weighted system, i n £ P(A) (2) I f 2 < p < _ o o and r = q then — r p S i s a weighted system i n £ (A) (3) If 1 < p < 2 and 0 < r < oo , then S r i s a weighted system i n £ P(A) (We note that S r = S r when p = 2 .) 103. The proof of the above theorem w i l l be given at the end of the section. Now, we point out i t s immediate consequences when taken together with C o r o l l a r y II.3.3. 4.2 Theorems Let 1 < p < oo and — + — = 1 - - p q (1) If 2 < p <_ oo and 0 < r < q , then, for any c y l i n d e r measure y over £ P(A) , „r . p i s • i -continuous s=> p is E-tight •k . L\»vX p has a c -Radonimeasure on (£ P(A))' (Here, we also use Prop. 1.2. and Thm. II.2.1, noting that £ P(A) i s a Banach space and i s therefore b a r r e l l e d . ) (2) If 2 < p <_ « and r = q , then, for any cy l i n d e r measure p over £ P(A) , —x p i s S -continuous => p i s E-tight => •k _ Liy*>'^  p p has a c -Radonimeasure on (£ (A))' (3) If 1 <_ p <_ 2 and r > 0 , then, for any c y l i n d e r measure p over £ P(A) , p i s S -continuous => p i s E-tight => •k _ p p has a c -Radonimeasure on (£ (A))' 104. Using Theorems 4.2 we can represent c e r t a i n p o s i t i v e - d e f i n i t e functions on £ P(A) as Fourier transforms of measures on (£ P(A))' The proofs of the assertions given below are s i m i l a r to the proof of Theorem 2.3, and are therefore omitted. 4.3 Theorems Let l < p < ° ° , - - + — = 1 , and \j> be a no s i t i v e - d e f i n i t e — — p q function on £ P(A) (1) _ If 2 < p <_ «> and 0 < r < q ', then, r * < i s S -continuous <=> for some f i n i t e c -Radon measure E, on (£ P(A))' , U>(x) = / exp i Re f(x) d£(f) for a l l x e £ P (A) . (2) I f '2 < p < » and r = q , then, — r * /• ^ i s S -continuous => for some f i n i t e c -Radon measure E, on (£ P(A)) ! , iKx) = / exp i Re f (x)d£(f) f or a l l x e £ P(A) . (3) If 1 <_ p <_ 2 and r > 0 , then, ~ r ^ f ^ i s 5 -continuous => for some f i n i t e c -Radon measure E, on (£ P(A))' , ip(x) = / exp i Re f(x)d£(f) for a l l x e £ P(A) . Concerning induced cylinder measures, Theorem 4.1 y i e l d s the following r e s u l t s when taken together with Theorem II.4.3. 105. 4.4 Theorems. Let 1 < p < 0 0 , — + — = 1 , Y be a vector space, C be - - P q a family of f i n i t e c y l i n d e r measures over Y , and .T e [£ P(A),Y] (1) If 2 < p <_ <*> and 0 < r < q , then, T i s S r-continuous with respect to the C-topology on Y <=> for every y e C , y u T has a c -Radon l i m i t measure on (£ P(A))' (Here, as for Thm. 4.2, we also use Prop. 1.3 and Thm. II.2.1.) (2) I f 2 < p <_ 0 0 and r = q , then, T i s ^ - c o n t i n u o u s with respect to the C-topology on Y => for every y e C , y • T i s E-tight => for every y e C , y p T has a c -Radon l i m i t measure on (I (A))' (3) I f 1 <_ p <_ 2 and r > 0 , then, T i s S 1-continuous with respect to the C-topology on Y => for every y e C , y D T i s E-tight => for every y e C , p a T has a c -Radon l i m i t measure on (& P(A))' As consequences of Theorems 4.4 we have the following extensions of r e s u l t s due L. Schwartz 139] and Kwapien [19]. They consider only the case when r = q and A i s countable. 106. C o r o l l a r i e s . (1) If 2 < p <_ «>, 0 < r < q , y e £ r (A) and T : x e £ P(A) •+ (x(a)y(a)) . e / ( A ) , aeA then, for every y £ CM(£ (A)) , u a T has a c -Radon l i m i t measure on a " (A))* (2) I f 2 < p < c o , r = q , y e £ r(A) with £ | y(ct) |11 l n | y(a) [ | < co , aeA and T : x e £ P(A) (x(a)y(a)) e £ r(A) , - x then, for every y e CM(£ (A)) , y n T has a c -Radon l i m i t measure on (£ F(A))' (3) I f 1 £ p <_ 2 , r > 0 , y e £ r(A) , and T : x e £ P(A) -»• ( x ( a ) y ( a ) ) A e £ r(A) , aeA then, for every y e CM(£ (A)) , * P y a T has a c -Radon l i m i t measure on (£ (A)) We give here the proof of onl\ T C o r o l l a r y (1) . The other proofs are s i m i l a r . Proof of Coro l l a r y (1). For each a e A , l e t e e (£ P(A)) ? : x e £ P (A) ->• x(a) e C , a and n D e the d i s c r e t e measure on (£ p(A)) r with i i r n({e )) = v(a) for each a e A a 107. Then, supp n e E , and for any x e £ P(A) , £ I (T.*)Jr = J|f 00 | rdn(f) • I t follows that T i s S -continuous, and the c o r o l l a r y i s now an immediate consequence of Thm. 4.4.1. # 4.5 Remarks. (1) " If A i s countable, then (£ P(A))' i s separable. Consequently, by Theorem II.2.3.2, every c -Radon measure on (£ ( A ) ) ! i s i n f a c t s -Radon. The foregoing theorems may then be s u i t a b l y modified. (2) We point out that C o r o l l a r y 4.4.2 i s the best r e s u l t p o s s i b l e when 2 < p <_ <» and r = q . If \ y e £ q(A) with T, | y (a) | q | In | y (a) | | = » aeA and T i s as given i n the c o r o l l a r y , then by Example 4.2 of Appendix 4, there e x i s t s p e CM(i>5(A)) such that p Q T f a i l s to be E-tight. (3) With the notation of (2) above, as i n the proof of C o r o l l a r y 4.4.1, we see that T i s S^-continuous, • and therefore, by Lemma II.4.2, p p T i s S q"-continuous. From Remark (2) above, and Theorem II.3.3, i t now follows that 1 1 for any 2 < p < ° ° , i f 1 = 1 , then - p q S q i s not a weighted system i n £ P(A) 108. However, Proposition 1.2 suggests that when searching for a weighted system i n £ P(A) we ought to look for a subfamily of S q Remark (2) then indicates that i s i n f a c t an appropriate subfamily of S q for us to consider. When 2 <_ p < °= , the construction which we use for producing a system of 5-weights i n £ P(A) depends on the f a c t that for any f i n i t e set K , x z (EK -> exp - Z |x(a) | q e ® aeK K 1 1 i s a D o s i t i v e - d e f i n i t e function on <p , where — + — = 1 p q (Remark (1) of Proofs (4), and Proof 2.2 of Appendix 2.) If 1 <_ p < 2 , then, q > 2 and the function given above i s no longer p o s i t i v e - d e f i n i t e (Schoenberg [38J p. 532). The construc-t i o n therefore breaks down when 1 < p < 2 . We can show that construction of a system of 5-weights i n £ P(A) , 1 < p < 2 , would be possible i f there were a X : R + -> £ such that for any f i n i t e set K , x e ? K X ( I |x(a) | q) e € aeK K was p o s i t i v e - d e f i n i t e on (J . If such a function X existed, then, by Appendix 2.2.4, (i) x e £ q(A) X ( Z |x(«) | q) e C aeA would be a p o s i t i v e - d e f i n i t e function on £ q(A) . However, when q > 2 , one can show as i n [5] that there does not e x i s t X : R + -> <E such that (i) holds. Nonetheless, we can s t i l l obtain a system of 6-weights i n £ P(A) , 1 <_ p < 2 , i f we use the system of 5 —weights induced by the canonical imbedding x E i P ( A ) x £ £ 2(A) . (Remark (2) of Proofs 4.) 109. (5) Remarks ( 4 ) , P r o p o s i t i o n 1.2, and t h e p r o o f of Theorem 4.1.1, ~ r r l e d us t o b e l i e v e t h a t S C S , r > 0 , would be a s u i t a b l e f a m i l y t o s t u d y when s e a r c h i n g f o r a w e i g h t e d system i n £ P(A) , 1 < p < 2 1 1 (6) We p o i n t out t h a t f o r p >_ 1 and — + — = 1 , t h e a p p e a r a n c e of q i n t h e h y p o t h e s e s a r i s e s a t t h e f i n i t e - d i m e n s i o n a l l e v e l (Remarks (4) and A p p e n d i x 1 ) . Thus, a l t h o u g h (£ P(A))' may be i d e n t i f i e d w i t h £ q(A) , we have a v o i d e d d o i n g t h i s , as c a r r y i n g out s u c h an i d e n t i f i c a t i o n m i g h t have s u g g e s t e d t h a t t h e r e l a t i o n s h i p between £ P(A) and £^(A) was c r u c i a l t o our argument. P r o o f s 4. T o g e t h e r w i t h the n o t a t i o n s o f A p p e n d i x 1.1 and P r o o f s 2, f o r any p >_ 1 , l e t p q X = £ P(A) , V =' {x e X : Ixl < 1} P P 1 'p -I . I : f e X* -> sup If(x)} . q P x e V P F o r any f i n i t e K c A , l e t | . | „ : f e (f,V + sup {|f ( x ) | : x e V ft <CK} , q ,K p r = r K c K,x P L e t ^ K F = {€ : K c A i s f i n i t e } d i r e c t e d by i n c l u s i o n , 110. For any 2 <_ p <^  » and f i n i t e K c A , l e t K • K Yp be the product measure on £ generated by y on C , D K K and v : £ e F -> Y ? which i s Radon. Remarks (1) By Appendix 1.2, for each 2 < p < «> } (v P , F,V ) i s a system of 6 -weights i n X P P P (2) For each 1 p < 2 , since (V 2 f\ C K ) ° c (V A C K)° for every f i n i t e K c A , then, by Appendix 1.2, for every 1 <_ p < 2 , 2 (v ,F,V ) i s a system of 6 -weights i n X p 2 p 4.1. We observe that for any p 1 and r > 0 , (1) S r c nbnd 0 i n X (Remark 1.1.3). P and (2) ker V = {0} e S for every S e . V r Now, for any S =' S e S , and each B c X' , l e t ' r,n p f B e B , g B = _ n 1 / r ( B ) . f B and s = sup { | f | : f e supp n } . Then, as i n Proof 2.2.1, for any P e P , f i n i t e K c A ., and t > 0 , we have that (5) v P ( C K ^ tS') < v P({x e C K : Z \~ ZnM\V > D) , K , P ~ K BeP and, by the lemma of Proofs 2, (6) v P ( £ K ~ tS) = lim V P « E K A tS') . ' PeP(S) p I l l , Case 1. (2 < p <_ °°, 0 < r < q) . Since supp r\ z E , 0 < s < ro Then, for any t > - r/^CX') , s p B c supp n => |1 g j < 1 . Hence, by Appendix 1.2.3, the right-hand-side of (5) i s majorized by 1- r /vM j . ±- n^r ,q-r+l, eq^q/r , v, < C i n(X') + — 2^C P - ^ s V ' (x') .r p,r p fcq p v q-r p y (Since q/r > 1 , then E n q / r ( B ) = n q / r ( x ' ) E [ p ( B ) / n ( x ' ) ] q / r BeP p BeP P < n q / r ( x ' ) E n(B)/r,(x') = n q / r ( x ' ) . ) _ BeP P • P ' Whence, by (5) and (6), (7) Y K « E K ~ tS) < ± - C S rn(X')'+ i - 2TTC ( 4 ^ ± I ) S V / r ( X ' ) . P - fcr p,r p t q p q-r p Since the c o e f f i c i e n t s of 1/t and 1/t are f i n i t e and independent of K i t follows that K K (8) Y P ( C ~ tS) -> 0 as t ->• °° uniformly for a l l f i n i t e K c A . By (1), (2), and (8), 5 i s wei ghted by (v P,F,V ) . 112. —V Case 2 (2 < p < », r = q, S e 5 ) . • If c = sup u In u 0<u<s then 0 < C < oo 1 1/r For any t > — n (X') ., by Appendix 1.2.3, the right-hand-side s p of (5) i s majorized by (9) C E |r, r(f g ) | q „ + 2TTC E | r_,£ g) | q' | In | r ( i g ) | P ' q B £P q ' p BeP q ' q ' The f i r s t term of (9) i s majorized by • — C s qri(X') . t q p sq p The second term of (9) i s majorized by 2^Cp ^ E ^ ( ! f B | q ) q n ( B ) [ | l n t | + l | l n n ( B ) | + | In | f B | q | ] l i n t ! 2TTC S q n(X') + — 2TTC S q - E n ( B ) | l n n ( B ) | t q . P P t q P q BeP ' + — 2irC c n(X') . t q P P Hence, by (5), (6) and (9), Y (C tS) P 2TTC < — [c s qn(x') + — E q£v(n) + 2,TC C n ( X ' ) ] - t q p.q P q P P + J i ^ l [ 2 n C q t q p P By the hypotheses, the c o e f f i c i e n t s of l / t q and | l n t | / t q are f i n i t e and independent of K . Hence, (10) v P ( C K ~ tS) -> 0 as t -> oo uniformly for a l l f i n i t e K C A K By (1), (2) and (10) S r i s weighted by (v P,F,V ) P 113. Case 3 (1 <_ p <_ 2 , r > 0 , S e S r) By Appendix 1.2.3, for any t > 0 , the right-hand-side of (5) i s majorized by °2,r BE£p lrK(K>l2,K ' Hence, by (5) and (6), v 2 ( £ K ~ tS) = lim Y o ( C K ^ t S ' ) K ' PeP(S) 2 P = C . l i m E sup „ |f (x)|) r.r,(B) t PeP BeP xeUr\C P 1 ~ c 2 r l i m 1 ( s u p ( s u p I f ( x ) l ) 1 ) n(B) • t 5 PeP BeP feB xeU p = 7 C / * ( s u p | f ( x ) | ) r d n ( f ) • t Z ' r xeU P By hypothesis, the c o e f f i c i e n t .of 1/t i s f i n i t e and independent of K . Hence 2 K (11) v„(C 1 ~ tS) -> 0 as t -> °° uniformly for a l l f i n i t e K C A .' K By (1), (2) and (11), ~r 2 " S i s weighted by (v ,F,V ) 114. APPENDIX • In t h i s Appendix we e s t a b l i s h a number of r e s u l t s and construc-tions which are necessary for the discussions of Chapter I I I . In the l a s t section we give some counterexamples which complement the considera-tions of Chapter I I I . 1. "Special Measures, on Finite-Dimensional Spaces. In t h i s section we s h a l l construct s p e c i a l measures on finite-d i m e n s i o n a l spaces. The existence of these measures enables us to produce systems of <5-Weights i n H i l b e r t i a n spaces and i n & P-spaces, P L 1 . Notation K i s a f i n i t e set. For any 1 5 . p l 0 3 , p q (x e c K : z n r v l x ( a ) l P 5 l ) when p < °°, P (x e C : sup |x(a)| < 1} when p = » aeK For any f e ( C K ) " , q xeV sup |f(x) P (We note that V° = {f e (t K )" : If.l < 1}) p ' 'q ~ 115. A i s the Lebesque measure on <C ' . For any f i n i t e dimensional space F , I = {(x,f) e F x F* : |f ( x) | >_ 1} . The constructions of t h i s s ection w i l l be based on the asser-tions given below. 1.1 Lemmas Let 2 <_ p <_ «> and r > 0 (1) There e x i s t s a s t r i c t l y - p o s i t i v e , continuous (9 : £ + R + P such that exp - |w|q = J (exp i Rewz)(9 (z)dw(z) for a l l w e £ (2) When 2 < p <_ <»• , there e x i s t s (i) 0 < C < co P such that ( i i ) 0 (z) < C / | z l 2 + q for a l l z e t . p p 1 Hence, when r < q , for any u > 0 , 2TTC 2 f l + l / u q r ] i f r < q , ( m ) q-r n z| r Q (z)dA(z) < <u ? 1< z 2TTC lnu i f r = q , and (iv) f Q (z)dX(z) < 2TTC Jul q u<|z| P - P1 1 (3) When p = 2 , 1 I z i 2 0n(z) = -— exp L T j — for every z e £ 2 4T( 4 1 1 6 . Notation and Remarks For each 2 <_ p <_ m , l e t Y : B c C + f 1 J dA £ R + , 'p ' B u ' 6 = Y ({z e € : Izl > 1 } ) . P P i i -For any r > 0 , l e t C 9 r = H Z | r <M Z) <*X(z) • For each 2 < p <_ °o > and any 0 < r < q , l e t C be the constant of Lemma 1 . 1 . 2 , P and 2TTC + J i ' |z| ^ ( z ) d A ( z ) if r < q q-r C  |z|<l P P>r 2TTC + / | z | r 0 (z)dA(z) i f r = q P |z|<l ' P We note that i n view of Lemmas 1 . 1 . 1 and 1 . 1 . 2 , Y i s a p r o b a b i l i t y Radon measure on € , 5 > 0 p 0 < C < co, p 0 < C < CO . 117, 1.2 Lemmas Let 2 <_ p <_ oo and K K Yp be the product measure on € generated by the measure y on € , P K K (1) Yp i s a p r o b a b i l i t y Radon measure on C K « 0 K f (2) f e («T) ~ V => Y (I ) > <5 P P - P (3) For any sequence {f } C (<C^ ) , and r > 0 , l e t n new B = {x e C K : -E If (x) 1 r > 1} 1 n 1 new (i) I f p = 2 , then q = 2 and new ( i i ) If p > 2 , r <_ q , and l ^ n l q — ^ ^ o r e v e r y n e w , then, C E If | r + 2^C ( q " r + 1 ) E If I2 i f r < q , p,r 1 n'q p q-r 'n'q new new C E If l q + 2TTC E If | q | l n | f I I if r = q p,q 'n'q p '.n 1q 1 1 n 1q 1 new ^ r new n n 1.3. Lemma. Let F be a fin i t e - d i m e n s i o n a l vector space. I f [.,.] i s a pseudo-inner product on F and V = {x e F : [x,x] <_ 1} , then, there ex i s t s a p r o b a b i l i t y Radon measure £ on F such that (1) f e (ker V) 3' ~ V° => £(I £) 1 6 2 • 118. (2) For any sequence {f } i n F , n neoo £({x e F : E | f ( x ) | r > 1}) < C. E ( s u p | f ( x ) | ) r nea) new xeV Proofs 1. 2 1.1 Let \ be the Lebesque measure on R From Blumenthal and S e t o o r [3] p. 263, we have the following facts, (See also Levy [21] Ch. VII.) For any 0 < q <_ 2 , there e x i s t s a s t r i c t l y p o s i t i v e continuous 2 + 9 : R R P s.t, ( i ) exp - | t | = /[exp i ( t . u ) ] 0 (u)dA(u) f or a l l t e R 2 , 2 2 where, for any t e R , u z R , t.u = t Q u 0 + and | t | = / ( t 2 + t 2 ) . If q < 2 , there e x i s t s 0 < c < <» s.t. q l i m | t | 2 + q 9 (t) = c i • i P q Hence, i f ( i i ) C = sup |t| 2 + q0 (t) , P xeR P then, ( i i i ) 0 < C < P and (iv) 6 (t) < C / | t | 2 + q for a l l & P — P 119. Consequently, f o r any 0 < r <_ q , and u > 0 , / | t | r 6i (t)dx(t) < c / ! t | r . — 1 — d x e t ) p • ~ p i< t!<u • |t! 2 + q = 2TTC j • ( p ^ + q ~) ''"dp using polar coordinates. P l£p£u By i n t e g r a t i n g the l a s t term i t follox-Js that (v) 2TTC 2TTC £ [ l - l / u q r ] < ^[l+l/uq r ] , i f r < q , 1< t q-r - q-r T\Q (t)dA(t) < <U P ~ | | — 2TTC lnu i f r = q P For q = 2 , using the fa c t that 2 , 2 ( l / / 2 r r ) | R (exp i xy)exp - — dx = exp - ~ - , a d i r e c t computation shows that (vi) <92<t) = ^ e x p Hence, for any r > 0 , •r" ( v i i ) / | t | 0 2(t)dA(t) < » . Let 2 T : z e <C -> (Re z, Im z) e R , and for each 0 < q <_ 2 •, & = 6 o T . P P The assertions of Lemmas 1.1 now follow from (i) - ( v i i ) above, and the properties of the map T , namely, for any z and w i n (C , Re wz = (Tw).(Tz) ' , and T i s an isometric, measure preserving, homeomorphism. 120. 1.2. K * N o t a t i o n F o r any f e (<S ) , l e t - f / | f | q > <?f : x e ffK -> f (x) e £ "K,f f r K and l e t Y p - f [Y p] ~ f — ~K f T : w e £ -> (exp i Re wz)dy ' ( z ) e £ 1 .'2.1 ' T h i s f o l l o w s from t h e f a c t t h a t Yp l s a p r o b a b i l i t y Radon measure on £ 1.2.2 F o r each a e K , l e t e = 1 r , e £ a {a} K * Then, f o r any f e (£ ) > and w e £ , - ^  " K f (1) \p (w) = J e x p i Re wz dy ' ( z ) = /exp i Re f ( w x ) d y (x) = II [/(exp i Re w f ( e ) x ( a ) ) d y ( x ( a ) ) ] aeK a P = exp - 1 Iw f ( e ) | q by Lemma 1.1.1, ' aeK a = exp - l w ! q | f | q . 1 q S i n c e a Radon measure on a f i n i t e - d i m e n s i o n a l space i s u n i q u e l y d e t e r m i n e d by i t s F o u r i e r t r a n s f o r m ( B o c h n e r ' s Theorem, A p p e n d i x 2. 3 ) , i t f o l l o w s t h a t (2) I f l = 1 => Y K ' f = Y 121. However, and f = 1 . K * 0 I I f e (C ) - V U => f > 1 P 1 'q -Hence, = 6 , by (2) above. P 1.2.3. (I) Since E f (x) i s a s e r i e s of p o s i t i v e Y o ~ m e a s u r a D l e • n ' - 2 new K functions on C , ^(B) = / l B . d Y ^ < / ( Z | f n ( x ) r ) d Y ^ ( x ) new = E l f n i 2 /|f;W| rdY|(x) new = E \ f j z 2 j\z\X d Y 2 n ( . Z ) new = C„ E If I* by (2) of Proof 1.2.2. 2, r 1 n '2 new ( i i ) Let and H = {x e C K : |f (x)I < 1} f o r each n e w , n 1 n — H = C\ H n new K K h :' x e € -> 1 i f x e C ~ H E |f ( x ) | r i f x e H . n 1 new 122. We have that = I Y„({x e £ : |f'(x)| > l/.|f I }) new P n n q -K,f = Z Y_ n'({z e C : |z| > 1 / I f n I a > > new (2) < 2TTC £ If | q by (2) of Proof 1.2.2. — p 1 n'q J new and Lemma 1.1.2.(iv). f'(x) I i s a series of p o s i t i v e v -measurable n 1 • 'p new r functions on , we also have that / i H h d Y p w i H [ £ igx«r^>> new = £ new < I |£ i „ / 1„ | f ' ( x ) | r d T (x) — ' n ' q ' H 1 n 1 p new n ~K,f' = Z |f | r / | z | r d Y n ( z ) Hence n'q ' ' ' 'p ,'z|<l/|f j ' 1 — 1 n'q Z I f | r / | z | r 6 (z)dA(z) 'n'q ' i i p v ' M - ^ ^ J q by (2) of Proof 1.2.2. new new / l 1 7 h d Y < I If T [ / | z | r 6 (z)dA(z) + / | z | r 9 (z)dA(z)] ' H p — ' n ' q - ' p / I I p X J z <1 1< z <1/ f n'q L e t t i n g a = J | z | r 6 (z)dA(z) , from P > r p | z| <1 Lemma 1.1.2 ( i i i ) , we have that 2TTC Z |f | r ( a + P-[l + If i q r ] ) i f r < 1 n 1q p,r q-r 'n'q neoj (3) / < E If | r ( a + 2TTC | l n | f I I) i f r = q 'n'q p,r p 1 'n'q' new ^ Consequently, i f r < q , then, from (1), (2) and (3), 2TTC Y ( B ) < 2TTC Z | f | q + Z If | r ( a + P - [ l + | f | q 1 ] ) P - P new n q new n q P ' r q " r n q = C Z |f | r + 2TTC (~ q^) Z |f | r , p,r 'n'q p q-r 'n'q new new since a l l terms are p o s i t i v e . The case r = q i s established from (1), (2) and (3) s i m i l a r l y . 1.3 We f i r s t suppose that [.,.] i s non-degenerate. If so choose a [.,.]-orthonormal basis K f o r F . Let T : z e ( C -> Z z . a e F . „ a aeK and .Then, * , K * f e F •+ f = f o T" e (C ) T i s a homeomorphism. K K ^ Further, f or any x' e C , y' e C , and f e F , (1) [Tx'jTy'] = <x',y'> , where <.,.> denotes the inner product in C , and (2) sup | f ( x ) | = |f| x eV Whence, i f h ~ Y2 ° T 124. then and 5 l ( I f ) = Y 2 < L F ) C(B) = y^ax 1 E C K : Z | f n ( x ' ) | r > 1}) new The assertions now follow from (3) and Lemmas 1.2. When [.,.] i s degenerate, l e t F^ be any subspace of F s.t. F i s the direct sum of F^ and ker V (Possibly, F = {0}) . We have that [.,.]|F x F^ i s non-degenerate, since F^ /TN ker V = {0} Let £ be the probability Radon measure on F^ determined as above, and E : H c F + 5 ( H / > F 1 ) e R + . Then, (3) ^ i s a prob a b i l i t y Radon measure on F Since F i s the direct sum of F^ and ker V , for any x e X there exists a unique representation x = x^ + , with x^ e F^ and x^ E ker V Consequently, (4) f e (ker V ) 3 => sup |f ( x ) | = sup | f ( x ) | xeV xeVKF and therefore, from the non-degenerate case above, (5) f e (ker V ) a ~ V° => r p (f) e F* ~ (V A F^)^ r F (f) f => e;(i r) = ^ ( I ) > 5 2 . » a I f f e F (ker V) f o r any n e w , then n sup If (x) | • = » xeV and therefore (2) of the lemma holds. If f e (ker V) f o r every n e w , then from the non-degenerate case above, 5(B) = £ '({x e F. : Z | f ( x ) | r > 1}) 1 1 n 1 new < C 2 r Z sup | f n ( * ) | r ' new XEVAF^ = C Z sup • | f ( x ) | r by (4). new xeV 126. 2. • P o s i t i v e - d e f i n i t e Functions on Vector Spaces. In this section we give a number of useful r e s u l t s concerning p o s i t i v e - d e f i n i t e functions on vector spaces. 2.1 D e f i n i t i o n Let X be a commutative group. ip i s a p o s i t i v e - d e f i n i t e function on X i f f if) : X -> C , and f or any n e to, {x^,. . . >xn_^} £ X , {z , . . ., <Z C , n-1 _ E Zk Z£ ^ ( xk ~ X £ } - ° • k,£=0 We s h a l l need the following elementary assertions about p o s i t i v e -d e f i n i t e functions on groups. 2.2 Propositions Let X be a commutative group. (1) If if; i s a p o s i t i v e - d e f i n i t e function on X , then 0 <_ CO) < °° . (2) Let if) be a p o s i t i v e - d e f i n i t e function on X , and Y be a commutative group. If T : Y -> X i s a homomorphism, then if) 0 T i s a p o s i t i v e -definite function on X (3) I f cf and if) are p o s i t i v e - d e f i n i t e functions on X , then q»ip i s a p o s i t i v e - d e f i n i t e function on X (4) If (ilO. , i s a net of p o s i t i v e d e f i n i t e functions on J Jed X , and ip : X C i s such that 4(x) = lira I|J . (x) f o r a l l x e X , j e J 3 then, i s a p o s i t i v e - d e f i n i t e function on X (5) If X i s a t o p o l o g i c a l group, and i s p o s i t i v e - d e f i n i t e function on X , then \p i s continuous on X <=> \p i s continuous at 0 e X For f i n i t e - d i m e n s i o n a l spaces we have the following version of a w e l l known, representation theorem (Rudin [34] p. 19 1.4.3, Bochner [4] p. 58). 2.3 Theorem Let F be a f i n i t e - d i m e n s i o n a l vector space. i s a continuous p o s i t i v e - d e f i n i t e function on F i f f there e x i s t s a unique f i n i t e Radon measure £ on F such that 4<(x) = / exp i Re f(x)d£(f) f o r a l l x'e F Using the above theorem, as i n [11] (p. 349) one r e a d i l y establishes i t s following i n f i n i t e - d i m e n s i o n a l analogue. We omit the proof. (The theorem given i n [11] i s formulated only f o r r e a l vector spaces. See also [48]). 128. 2.4 Theorem Let X be a vector space. ij) i s a p o s i t i v e - d e f i n i t e function on X with I^|F continuous f o r every F e F , i f f there e x i s t s a unique f i n i t e c y l i n d e r measure u over X such that I|J(X) = / exp i Re f(x)du (f) f o r a l l x £ X . Remark When u and i|; are re l a t e d as i n the foregoing theorem, we c a l l i|; the c h a r a c t e r i s t i c f u n c t i o n a l of u (Prohorov [33]). The f i n a l theorem of th i s s e c t i o n i s useful f o r determining continuity properties of cy l i n d e r measures. As an adjurxctto Proposition II.2.6, i t further motivates the terminology "continuous cyl i n d e r measure", introduced i n D e f i n i t i o n s II.2.5.1. 2.5 Theorem Let X be a vector space, u be a f i n i t e c y l i n d e r measure over X , and V be a family of balanced, absorbent subsets V of X with uV e V f o r every u > 0 If i|) i s the c h a r a c t e r i s t i c f u n c t i o n a l of u , then u i s l/-continuous <=> <jJ 1 S ^-continuous. C o r o l l a r y Let X be a t o p o l o g i c a l space, and p be a f i n i t e c y l i n d e r measure over X If ii) i s the c h a r a c t e r i s t i c f u n c t i o n a l of p. , then p i s continuous <=> iji i s continuous. Proofs 2 2.2.1 Taking n = 1, x^ = 0 , and = 1 , the assertion follows immediately from Defn. 2.1, 2.2.2 For any n e w , {x^,...,xn_^}C X , and {z^,..., z n_ n} ^ ® > n-1 _ n-1 1 Z k Z £ * 0 T ( X1< " V = E Z k Z £ * ( T x " T x } -^ ° • k,£=0 k 1 l< £ k,£=0 k * X k X £ 2.2.3 From [48] we have that Cf(x) = Cp (-x) f o r a l l x e X Hence, by Defn. 2.1, f o r any ne u>, {x A,...,x . } c X , and 0 n-1 { V \ ' Z n - l } C S ' M = (cpCx, - x ) ) " }_n i s a p o s i t i v e - d e f i n i t e * k £ k, £—U Hermitian matrix. Hence, there ex i s t s an n x n-matrix T s . t . M = TT* , where T = (t ) , T* = ( t * ) , and t * = I , • 130. Consequently, n-1 _ . I n V ^ k " V ^ k ~ V . n-1 _ n-1 1 V * ( E \ sK ?H'(xk _X£} k,£=0 * s=0 ' b'y' 1 n-1 n-1 E 1 {W s)(zkt£ s^ ( xk " V -° > s=0 k,£=0 K K ' S K l , S K 1 and therefore \p i s p o s i t i v e - d e f i n i t e . 2.2.4 For any n e w , {x^, . . . ,x , } c X , and {z r t..... z , } C u n-1 U n-1 n-1 _ n-1 _ . E n V * * ( xk " X£ } = ^ ^ ^  r ZkZ£ V X k " V - ° k,£=0 . j e J k,£=0 J 2.2.5 From Rudin [34], p. 18, 1.4.1 (4), we have that for any x and y i n X , | * ( x ) - i K y ) | 1 2<JJ(0) Re (^(0) - if»(x - y)) . The assertion follows. 2•3 This theorem i s a s p e c i a l case of a general theorem i n Harmonic Analysis ([34], p. 19 1.4.3). However, i t i s r e a d i l y derived from the r e a l case treated by Bochner ([4] p. 58). 2.5 Together with the notations of II.2.4 and II.2.6, for each x e X , l e t ijj (w) = f exp i Re wzdu (z) for every z e € We note that (1) i|> (w) = IJJ(WX) for every z e (C Suppose that u i s (/-continuous. Since z e £ -> exp i Re z e (C i s bounded and continuous, by (1) and Prop. II.2.6 we have that (2) <|) i s [/-continuous Suppose that I}J i s (/-continuous. Since ip/c i s p o s i t i v e -d e f i n i t e ' f o r every c > 0 , by Prop. 2.2.1 we may assume that * ( 0 ) = 1 • Given any e > 0 , choose o < e« < f<^=h , t > 2//e* , and V e f s.t. x e V => 1 - Re IJJ(X) < e' . By (1) and the fac t that V i s balanced, (3) x e V , z e <C , |z| <_ 1 => 1 - ^ (z) < e T . i 12 2 2 If z = u^ + i u 2 e ' <C ., then |z| = + u 2 , and therefore, by (3), for any x e V , (4) u 2 + u 2 <_ 1 => 1 - i|> (V) < e' . Hence, by the lemma given by Kolmogorov i n [17], for any x e V (5) U ( D ) = y ({z e « : |z| > 1}) < (e' + ~ ) X X ~ ^ - l t2 < e Since e was a r b i t r a r y , i t follows that u i s (/-continuous Proof of Cor o l l a r y 2.5 We note that nbnd 0 i n X has a base balanced, absorbent sets V , with e.V £ V Hence, by the above theorem and Prop. 2.2.5, /A i s continuous <=> u i s (/-continuous <=> iff i s (/-continuous <=> ij> i s continuous. 132. V c o n s i s t i n g of for every E > 0 3. CM-spaces. For any family C of f i n i t e c y l i n d e r measures over a vector-space X , we s h a l l define the C-topology on X and give some of i t properties. We s h a l l e s t a b l i s h examples of t o p o l o g i c a l vector spaces whose topologies are exactly those determined by the f a m i l i e s of continuous f i n i t e c y l i n d e r measures. We note that' for sets X and Y , topology G on Y , and T : X -> Y , '.{T _ 1[G] : G e G} i s a topology on X . We s h a l l r e f e r to i t as the-topology on X induced by G and T 3.1 D e f i n i t i o n Let X be a vector space. (1) . For any family C of f i n i t e c ylinder measures over X , the C-topology i s the topology on X having for a base a l l subsets V of X with V = x + e A {y e X : y (D ) < e} yeH y y for some x e X , f i n i t e H C C , and e > 0 (2) X i s a CM-space i f f X i s a t o p o l o g i c a l vector space whose topology i s the CM(X)-topology. Concerning C-topologies we have the following assertions. 134. 3 • 2 Propositions Let Y be a vector space, and C be a family of f i n i t e cylinder measures over Y (1) Y i s a topological vector space under the C-topology, which i s the coarsest such topology with respect to which C i s a family of continuous cylinder measures. In p a r t i c u l a r , when Y i s a topological vector space, and C = CM(Y) , the C-topology i s coarser than the o r i g i n a l topology of Y (2) For any vector space X and T e L[X,Y] i f C o T = {y a T : y e C> • , then, the C Q T-topology i s the topology on X induced by the C-topology and T We s h a l l now show that the class of CM-spaces contains many interesting topological vector spaces. However, not a l l topological vector spaces are CM-spaces. In Appendix 4 we give an example of a Banach space which i s not a CM-space (Example 4.2). 135. 3.3 D e f i n i t i o n s (1) Let X be a vector space b : X -> R"*~ i s a pseudo-quasi-norm on X i f f b(0) = 0 , for any x and y i n X , b(-x) = b(x) , b(x + y) < b(x) + b(y) , and z e € -»- b(zx) e R~*~ i s continuous at 0 E. (D (For any family {b.}. T of pseudo-quasi-norm on X , as i n Yosida [49] p. 31, one can show that X i s a t o p o l o g i c a l vector space under the coarsest topology on X making b^ continuous f o r every j e J ). (2) For any measure space (A,n) , and r > 0 , r,. „A „ . , , r i ,-1 r L (A,n) — {f G £ '• f i s n -measurable, / |f| dr\ < 00}' , b r : f e i r(A, n) ^ / | f ! r d n e R + , and when r >_ 1 , | - I : f e Lr(A,n) - (/ | f . | r d n ) 1 / r e R + . Remarks When 0 < r < 1 , b^ i s a pseudo-quasi-norm on L 1(A,n) , which i s therefore a t o p o l o g i c a l vector space under the coarsest topology making b^ continuous. 136. When r >_ 1 , |•| i s a pseudo-norm on L~(A,n) > which i s therefore a l o c a l l y convex space under the coarsest topology making |'| continuous. We s h a l l hereafter assume that L (A,n) , r > 0 , car r i e s . t h e appropriate topology indicated by the foregoing observations. We s h a l l need the following lemmas, which are. of independent i n t e r e s t . 3.4 Lemmas (1) Let X be a vector space, and b be a pseudo-quasi-norm on X . If \p is a p o s i t i v e - d e f i n i t e function on X such that the coarsest topology on X making IIJ continuous coincides with the coarsest topology making b continuous, then, there e x i s t s a f i n i t e c y l i n d e r measure y over X whose c h a r a c t e r i s t i c function i s , and, the {y}-topology on X i s the coarsest topology on X with respect to which b i s continuous. (2) Let X be a vector space. If {bv,}T7 .. i s a family of V Vey pseudo-quasi-norms on X such that f or each V e I/, there e x i s t s a p o s i t i v e - d e f i n i t e function I|J on X s a t i s f y i n g the hypothesis given i n (1) above, then, X i s a CM-space under the coarsest topology making b^ continuous for each V c V (3) Let (A,n) be a measure space. For any 0 < r <_ 2 , f e L r(A,n) exp - b (f) e £ i s a p o s i t i v e - d e f i n i t e function on Lr(A,n) 137. The following theorem and i t s c o r o l l a r i e s i n d i c a t e that many of the t o p o l o g i c a l vector spaces considered i n this paper are i n f a c t CM-spaces. 3.5 Theorem X i s a CM-space whenever X i s a t o p o l o g i c a l vector space having a family f of neighbourhoods of 0 which s a t i s f i e s the following conditions: ( i ) {eV : V e V, c > 0} i s a base for nbnd 0 i n X . ( i i ) For each V e C , there ex i s t s a measure space (A^,!"^) , rV 0 < r v <_ 2 , and T y e L[X,L (^,r\ )] ,.such that r V = {x e X : J | T v ( x ) | d n v < 1) . C o r o l l a r i e s . (1) Let (A,n) be a measure space. For any 0 < r <_ 2 , IT L (A,ri) i s a CM-space. In p a r t i c u l a r , (A) i s a CM-space. (2) Let X be a t o p o l o g i c a l vector space. For any 0 < r <_ 2 , X with the S -topology i s a CM-space. (3) Every H i l b e r t i a n space i s ' a CM-space. 138. Proofs 3 Notation For any vector space X , e > 0 , y e X , K e ) = {(x,f) e X x x* : |f( x ) | >_ e } , D y > c = (f e F j = | f ( y ) | > , and f o r any family C of f i n i t e c y l i n d e r measures over X V ( C , E ) = H {X e X : p ( D ) < e } UEC X X , £ Remark Since D = D for a l l x e X and e > 0 , x, e x e i t follows that V(C,e) = E A {x e X : y (D ) < e} yeC x x 3.2,1 We s h a l l only prove the f i r s t a s s e r t i o n . The second then follows immediately from the d e f i n i t i o n . Let V = {V(H,E) : H c C i s f i n i t e , e > 0} . In view of the remark above, i t w i l l be s u f f i c i e n t i f we show that 1/ has the following properties. (i) 0 e V for every V e 1/ ( i i ) \J i s a f i l t e r b a s e . For each V e t / , ( i i i ) there e x i s t s U e l' s . t . U + U c V . (iv) V i s absorbent, (v) V i s balanced. (Treves [47] p. 21) 139. Proofs of ( i ) - (v) (i) For any e > 0 , and therefore 0 e V for every V e V ( i i ) For any 0 < 6 < E , y e C , and y e X , y (D J > y (D ) . y y>o - y y,e Hence, i f V(e_.,C'J e V , j = 0,1 , and e = min {e^e.^ ' then. V ( e,C„U C\) C H V(e.,C.) . 0 1 j-0,1 2 2 ( i i i ) Let V = V(e,fO , and U = V(e/2,H) . For any x e X , y e Y , and f e F , , (II.2.6), (x,y) |f(x) + f ( y ) | < | f ( x ) | + | f ( y ) | , and therefore, I x + y ( e ) C I x(e/2) U I t(e/2) . Consequently, for any x e U , y e U , and y e H , y (D ) = y^ (I (e)) x+y x+y,e F, . x+y (x,y) < y F ( I x ( e / 2 ) ) + y p (I (e/2)) (x,y) (x,y) = y (D , ) + y (D . ) < e . x x,e/2 y y,e/2 i . e . . U + U C V . (iv) For any x e X , e > 0 , t > 0 , and y e C , and 0 < u < t => D , C B , x,e/u x,e/t 140. Consequently, since y^ i s f i n i t e , lim y , (D . ) = l i m y (D ) x/n x/n,e x x,ne rv-K° n-x" = y ( A D ) = y (0) = 0 . new x,ne x Hence, for any V e 1/ , there ex i s t s n e w s.t. x/n e V i . e . V i s absorbent. (v) For any y e C , x e X , e > 0 and z e C . with | z | <_ 1 , y (D ) = y (D, , ) = y (D , .,) z x- zx,e x |z|x,e x x,e/|z| < y (D ) since D , > . C D — x x,e x,e/|z| x,e Hence, for any V e 1/ , zV C V . 3.2.2. As i n Lemma II.4.2, for any x e X , e > 0 , and . y e C , Hence, for any e > 0 and f i n i t e subfamily H of C , T _ 1 [ A ' (y e Y : y (D ) < e}] yeH y y ' £ = C\ {x e X : y (D T ) < e) yeh x » = A {x e X : (y a T) (D ) < e} . yeH x X ' C I t follows that '{T - 1[V] : V e V} i s a base f o r the C a T-topology neighbourhoods of 0 i n X , where V i s as defined i n Proof 3.2.1. However, from Proof 3.2.1 we see that \J i s a base for the C-topology neighbourhoods of 0 i n Y The as s e r t i o n now follows from Prop. 3.2.. 1 and the l i n e a r i t y of T Lemma Let F be a fini t e - d i m e n s i o n a l space. If b i s a pseudo-quasi-norm on F , then b i s continuous on F Proof of Lemma. Let K be a basis of F Every x e F has a unique representation £ z (x)a , aeK a and the norm x e F -> E I z (x) I e R + „ a • aeK generates the topology of F For any net (x.). _ i n F , J J £ J x. -> 0 => E I z (x.) I -> 0 => 3 aeK a 3 z (x.) -> 0 for each a e K => a J b(z (x.)a) -> 0 for each a e K => a 3 E b(z (x.)a) -> 0 => b(x.) -> 0 , since aeK a 3 3 b(x.) < E b(z (x.)a) . J aeK J Hence b i s continuous at 0 e F . However, for any x and y i n F , |b(x) - b (y) | £ b ( x - y) , and therefore c o n t i n u i t y of b at 0 e F implies continuity of b on F 142. 3.4.1 By the above Lemma, 4)|F i s continuous f o r every F e F , and therefore, by Thm. 2.4, there i s a cyli n d e r measure y over X whose c h a r a c t e r i s t i c f u n c t i o n a l i s ip . From the hypothesis, X i s a to p o l o g i c a l vector space under the coarsest topology making continuous. Hence, by Cor. 2.5 and Prop. 3.1.1, the {y}-topology = coarsest topology making y continuous = coarsest topology making \p continuous = coarsest topology making b continuous. 3.4.2 By Prop. 3.1.1 and Lemma 3.4.1. 3.4.3 Let a : B E M •> a E B . n • B For any P e P(M ) , l e t d(P) be the family of f i n i t e subsets of P directed by i n c l u s i o n . Then, f o r any f E L (A,n) , b (f) = lim lim E |f(a )| r * n C B ) . r PeP(M ) Ked(P) BeK n Consequently, since t E R exp - t £ R i s continuous, we have that i 1/r , r exp - b (f) = lim lim II exp - |n(B) f (ct ) | r PeP(M ) Q£d(P) BEQ r n 1/r Since f E L (A,n) -> n(B) f ( a j j ) i s l i n e a r for every B £ M , we deduce from Lemma 1.1.1 and Props. 2.2.2 - 2.2.4 that f E L 1(A,n) exp - b (f) E £ i s p o s i t i v e - d e f i n i t e . 143, 3.5 For each V e f , l e t = 1 when r ^ < 1 1/r^ when r ^ > 1 b v : x e X ->• (/|T v(x) | d ^ and \J> : x e X exp - b (x) e C For each V e 1/ , we have that by i s a pseudo-quasi-norm on X , and for every t > 0 , r v e V tV = {x e X : b (x) <_ t } Since the topology of X i s completely determined by i t s neighbourhoods of 0 , i t follows that the topology of X i s the coarsest topology making b^ continuous f o r every V e V . However, by Lemma 3.4.3, ifj i s p o s i t i v e - d e f i n i t e , and since t e R + •+ exp - t e (0,1] i s a homeomorphism, i t follows that the coarsest topology on X making ^ continuous = the coarsest topology on X making b^ continuous. The theorem i s now a consequence of Lemma 3.4.2. C o r o l l a r i e s (1) and (2) are. immediate consequences of the theorem. Proof of Corollary (3) Re c a l l i n g the d e f i n i t i o n of a H i l b e r t i a n space (§111.2), we need only make the following observation. Let X be a vector space. For any pseudo-inner-product [.,.] on X , there exists a measure space (A,n) (A i s an 2 index set and n i s counting measure on A ), and T e L[X,L (A,n) ] , such that 0 [x,x] =/ |T(x)| idn f o r a l l x e X . (Treves [47], p. 115 - 116.) 144. 4. Examples 4.1 Example There ex i s t s a Banach space X and f i n i t e c y l i n d e r measure u over X such that y i s S^-continuous but i s not E-tight. Proof Let A be a set. Together with Notation 1.1, l e t X = £^~(A) with the usual topology (Notation I I I . 4 ) , [•',.] : ( x , y ) e X x X + Z x(a)y(a) e £ aeA 4 : x e X -»- exp - [x,x] e C For any f i n i t e K C A , K K * T ; w e £ -> f e (C ) , where K. w K f (x) = Z x(a)w(a) for a l l x e C aeK Since [x,x] = Z |x(a) | 2 f o r a l l x e £ 1(A) , aeA as i n the proof of Lemma 3.4.3, we deduce that \p i s a p o s i t i v e - d e f i n i t e function on £~^(A) . Since x e X ->- /[x,x] i s a norm on £^(A) , we furt h e r deduce that \{J|F i s continuous for every F e r By Thm. 2.4, there e x i s t s a cylinder measure y over £^~(A) whose c h a r a c t e r i s t i c function i s \> . Then, for any f i n i t e K K C A , and x e C , as i n Proof 1.2.2, / exp i Re f ( x ) d ( Y 2 o T^) (f) .= <Kx) / exp i Re f ( x ) d u ( f ) = / exp i Re f(x)dy (f) . (Note that T i s a homeomorphism, and therefore y 0 r i s Radon.) Hence, by Thm. 2.3, (1) V-Y^,!- 1 • Consequently, f o r any t > 0 , with the notation of Proofs III.4, y c K ( r R [ t v J ] ) = y ^ K C t O ^ n £ K ) ° ) ' = Y^Qw e c K : S U P ! w ( a ) | £ t}) aeK = n / e 2 (w(a))dX(w(a)) aeK | / \ i |w(a) I<t However, / 6 2(z)dX(z) < 1 , | z|<t ' since / 6 2(z)dA(z) = 1 and i s s t r i c t l y p o s i t i v e (Lemmas 1.1). I t follows that i n f y £ K ( r K [ t v J ] ) = 0 , f i n i t e K c A and therefore, by Lemma 1.5.1.2, . y cannot be E - t i g h t . On the other hand, by Pietsch [30] p. 82, Prop. 4, there e x i s t s S_ e- s.t. 1, u [x,x] <_/| f(x)|d n ( f ) f o r a l l x e X , and therefore x e X ->- [x,x] e R + i s .^-continuous. Hence <JJ i s S^-continuous. Consequently, by Thm. 2.5, y i s S^~-continuous. 4.2 Example Let A be a set, 2 < p < 0 0 , and 1 = 1 - P q I f y e £ q(A) i s such that E | y ( a ) | q | l n | y ( a ) | | = -aeA and T : x e £ P(A) ( x ( a ) y ( o ) ) e £ q(A) , then there exists y e CM(£ q(A)) such that y p T i s not E-tig h t . Notation. Together with the notations of §2.1 and Proofs III.4, f o r any t _> 0, , l e t b(t) = t q | l n t | , t > 0 , and b(0) = 0 . We s h a l l need the following lemma ([41] Lemma2].) Lemma. Let w : A -> <L with |w(a)| 1 f o r a l l a e A There exists a constant 0 < C < <» such that fo r every f i n i t e K A , YK ( { z e £ K : E |z ( a ) w ( a ) | q > 1}) >_ e" 1 - exp - E b(|w(a)|) P aeK aeK Proof of Lemma Let 6 be the function of Lemma 1.1.1. p From [3] p. 263, 0 < lim | v | q + 2 6 (v) < |v|-*° p 147. Hence, there e x i s t s 0 < C' <; «> s . t . (1) 0 (v) > C 7 | v | ^ + 2 f o r a l l v E C with Ivl > 1 . By Taylor's theorem, for any 0 < t < 1 , 1 - exp - t = t exp - t' f o r some 0 <_ t' < 1 , and therefore (2) 1 - exp - t >_ t e 1 f o r a l l 0 £ t <_ 1 . Let (3) C = 27re _ 1C' . Then, f o r each a e A , (4) f(l - exp -- | v w ( a ) | q ) 0 ( v ) d A ( v ) >_ e" 1 /|vw( a) | q6 ( v ) d A ( v ) by (2), 0<_| w(a) | <1 i e ' V /|w( a)| q • 1 q + 2 dA(v) by (1) l£|v|<_ l/|w(a) | ' V' = 27re~1C ,K*»lfy 1/p dp l<p<_l/|w(a) | = C b(|w( a)|) by (3). For any f i n i t e K C A , i f B R = {z e C K : Z | z ( a ) w ( a ) | q > 1} , aeK then, Y D ( V l / 1P ( z ) ( 1 " 6 X P " S l z ( a ) w ( a ) | q ) d Y ^ ( z ) P K aeK P = / ( l - exp - Z | z ( a ) w ( a ) | q ) d Y K ( z ) aeK P - / l ( z ) ( l - exp - Z | z ( a ) w ( a ) | q ) d Y K ( z ) £ ~B aeK P > / ( I - exp - Z |z(a)w(a)| q)d Y K(.z) - (1 - e" 1) aeK P = e 1 - II f exp - | z(a)w(a) | q d Y (z(a)) . aeK P 148. However, for each a e K , / exp - | z ( a ) w ( a ) | q d Y p ( z ( a ) ) = 1 - / ( l - exp - | z ( a ) w ( a ) | q ) d Y ? ( z ( a ) ) <_ 1 - Cb(w( a)) by (4) above. Hence, YK 0 O > e" 1 - n [1 - Cb(w(a))] P K _ aeK > e ^ II exp - Cb(w(a)) since 1 - u < e U f o r a l l u > 0 . , aeK -1 exp - C E b(w(a)) aeK Proof of Example 4.2 If h : x e £.q(A) -> exp - £ | x ( a ) | q e £ , aeA then h i s continuous. By Lemma 3.4.3 and the lemma of Proofs 3., h i s p o s i t i v e d e f i n i t e and h|F i s continuous for every f i n i t e dimensional subspace F of £ q(A) . Hence, by Thms. 2.4 and 2.5, (1) there e x i s t s a continuous f i n i t e c y l i n d e r measure y over £ q(A) with c h a r a c t e r i s t i c f u n c t i o n a l h Clear l y , (2) y e CM(£ q(A)) . Choose (3) t > 0 s.t. |y(a)|/t <_ 1 for a l l a e A . Let 0 < 6 < e" 1 . For any f i n i t e subfamily K of A , l e t K K * h : z e € h (z) e (€ ) , with K K K l i K ( z ) ( x ) = E x(a)z(a) f o r a l l x e C aeK 149, then, as i n e a r l i e r proofs (Proof 1.2.2 (1), Proof 4.1(1), (4) u - Yp o \ • Hence, for any f i n i t e K c A s . t . a e K => y(a) ^  0 , (y a I) K ( ( ( C K ) * - t(V rv £ K)°) £ K . P = y „ ( ( £ K ) A ~ tT*"" 1^. r\ C K)°) by Lemma 0.4.2, and the fact £ K <EK P that £ K = T[£ K] ; = yh{z e £ K : Z | ^ z ( a ) | q > 1}) P aeK >_ e ^  - exp - C E b(|y(a)|/t) by the Lemma. aeK Now, £ b(|y(a)|/t) = °° f o r any t > 0 , aeA Therefore there e x i s t s f i n i t e J c A s . t . a e J = > y(a) =j= 0, and e" 1 - exp - C E b(|y(a)|/t) > 6 . ae J Hence, (y G T) T ( ( £ J ) A - t(V A C J)°) > 6 . • £ J P Since t > sup |y(a)[ , and 0 < <5 < e ^ were a r b i t r a r y , aeA and with the notation of Proofs 111,4, r j (tV p°) = t ( V p A £ J)° , i t follows from Lemma 1.5.1.2 that y • T i s not E- t i g h t . 4.3 Example There e x i s t s a Banach space which i s not a C M-space. Proof. Let and CQ = {x e € : lira x(n) = 0} , I I | . . , + * : x e c„ -> sup x(n) e R , £ = £ (CO) 2 T : £ CQ be the canonical imbedding As i s w e l l known, c^ i s a Banach space under the topology generated by the norm | "| From Pietsch [30] p. 83, Remark 2.2, (1) T i s not S^-continuous. From Kwapien [19] we have that 2 u e O I ( C Q ) => y D T has a l i m i t measure on (£ )' , and therefore, by Cor. 1.4.3, u e CM(c Q) => y Q T i s E - t i g h t . Hence, by Prop. I I I . 1 . 3 , (2) T i s S"*"-continuous with respect to the CM(cQ)-topology on c Q . From ( 1 ) and (2) i t follows that the CM(CQ)-topology does not coincide with the norm topology, i . e . CQ i s not a CM-space. 4.4 Example r 2 For any r >_ 4 , the S -topology on £ (w) does not 2 coincide with the S -topology. 2 2 oof We s h a l l construct a T : £ (to) -> £ («#) which, w i l l be r 2 S -continuous but not S -continuous, from which i t follows r 2 that the S -and S -topologies do not coincide. For each n e w , l e t n {n} -2/r a = n , n 2 r T : x e £ (w) -> (a x ) e £ (w) . n n new As i n the proof of Cor. III.4.4.1, we conclude that (1) T i s S -continuous. 2 I f T were also S -continuous, then, there would exist a * 2 * w -Radon measure n on (£ (w)) with supp n e E , s.t. ( / | f ( x ) | 2 d n ( x ) ) 1 / 2 < 1 => |Tx|r < 1 . Hence, l T x l r 1 / | f ( x ) | 2 d n for a l l x e £2(w) . Consequently, for any k e w I a 2 = E | T e J 2 </ E | f ( e ^ | 2 d n ( f ) n<k n<k n<k <_ f ( sup |f( x ) | ) 2 d n ( f ) , | x | 2 l l since {e } i s a orthonormal basis of the Hil b e r t space n new £ (w) . Since supp n e E , and k e w was a r b i t r a r y , i t follows that v 2 L a < 0 0 n new 152, However, this i s impossible, since 2 -4/r ^ -1 , a = n > n , and Y, 1/n n — new Hence m • c2 . T i s not o -continuous, Remark. In view of Theorem I I I . 2.6.3, from the above example we see that f o r every r >_ 4 , I (to) i s not a CM-space. 153. BIBLIOGRAPHY 1. A. Badrikian: Remarques sur l e s theoremes de Bochner et P. Levy. Symp. on Prob. Methods i n Anal. Lect. notes (31) Springer (1967). 2. : Seminaire sur l e s fonctions a l e a t o i r e s l i n e a i r e s . Lecture notes i n Math. 139 Springer-Verlag. 3. R.M. Blumenthal and R.K. Getoor: Some theorems on stable processes. Trans. AMS 95 (1960) p. 263. 4. S. Bochner: Harmonic analysis and the theory of p r o b a b i l i t y . Univ. of C a l i f o r n i a Press, Berkeley, C a l i f . (1965). 5. J . Bretagnole, D. Dacunha C a s t e l l e , and J. K r i v i n e : Lois stables et espaces L? . Ann. Inst. Poincare II No. 3 (1966) p. 231-259. 6. J . Choksi: Inverse Limits of measure spaces. Proc. Lond. Math. Soc. 8 (1958) p. 321-342. 7. J.L. Doob: Stochastic processes. Wiley, New York, 1953. 8. J . Dugundji: Topology. Boston (1966). 9. X. Fernique: Processus Lin e a i r e s , processus generalises. Ann. Inst. Fourier 17 (1967) p. 1-92. 10. I.M. Gelfand: Generalized random processes. Dokl. Akad. Nauk SSSR 100 (1955) p. 853-856 (Russian). 11. I.M. Gelfand and N.Y. V i l e n k i n : Generalized functions, Vol. 4. Academic Press, N.Y. (1964). 12. I.M. Gelfand and A.M. Yaglom: Integration i n f u n c t i o n a l spaces and i t s a pplications i n quantum physics. Jour. Math. Phys. 1 (1960) p. 48-69. 13. L. Gross: C l a s s i c a l analysis on a H i l b e r t space. Analysis i n Function space. MIT (1963). 14. A. Grothendieck: Produits t e n s o r i e l s topologiques et espaces nucleaires. Mem. AMS 16 (1955). 15. K. Ito: Stationary random d i s t r i b u t i o n s . Mem. C o l l . S c i . Univ. Kyoto 28 (1954) p. 209-223. 16. J. K e l l y : General Topology, van Nostrand (1955). 154. 17. A.N. Kolmogorev: Foundations of the theory of p r o b a b i l i t y . Chelsea, New York (1956). 18. : A note on the papers of R.A. Minlos and V. Sazonov. Theory of Prob. 4 (1959) p. 221-223 (SLAM, Engl, t r a n s l . ) 19. S. Kwapien: Complement an theoreme de Sazonov-Minlos. C.R. Acad. Sc. Paris A. 267 (4 Nov. 1968) p. 698-700 20. : Sur les ap p l i c a t i o n s radonifiantes ... C.R. Acad. S c i . Paris A 269 (6 Oct. 1969) p. 590-592. 21. P. Levy: L'Addition des va r i a b l e s a l e a t o i r e s . G a u t h i e r - V i l l a r s (1937) 22. D. Mallory: Limits of inverse systems of measures. Thesis. Univ. of B r i t i s h Columbia, Br. Col. (1968). 23. D. Mallory and M. Sion: Limits of inverse systems of measures. Ann. Inst. Fourier (to appear). 24. E. Marczewski: On compact measures. Fund. Math. 40 (1953) p. 113-124. 25. R.A. Minlos: Generalized random processes. Inst. of Math. Stats., Selected t r a n s l . i n Math. Stats, and Prob. 3 (1962) p. 291-313. 26. E. Mourier: Elements a l e a t o i r e s dans un espace de Banach. Ann. Inst. Henri Poincare 13 (1953) p. 161-244. 27. : Random elements i n l i n e a r spaces. Proc. 5th. Berk. Symp. Math. Stats, and Prob. 2 Pt I (1965) p. 43-63. 28. A. Pelcynski: A c h a r a c t e r i z a t i o n of Hilbert-Schmidt operators. Studia Math. 28 (196 7) p. 355-360. 29. A. Pietsch: Eine neue Characterisierung der nukleare lokalkonvexen Raume. Math. Nachr. 25 (1963) p. 31-36. 30. : Absolut summierende Abbildungen. Math. Nachr. '27 (1964) p. 77-103. 31. ___ : Absolut p~summierende Abbildungen. Studia Math. 28 (1967) p. 333-354. 32. Yu. Prohorov: Convergence of random processes ... Theory of Prob. 1 (1956) p. 157-214 (SIAM, Engl, t r a n s l . ) 33. : The method of c h a r a c t e r i s t i c f u n c t i o n a l s . Proc. 4th. Berk. Symp. Math. Stats, and Prob. 2(1960) p. 403-419. 155. 34. W. Rudin: Fourier analysis on groups. Interscience (1962). 35. V. Sazonov: A remark on C h a r a c t e r i s t i c f u n c t i o n a l s . Theory of Prob. 3 (1958) p. 188-192 (SIAM, Engl, t r a n s l . ) . 36. H. Schaeffer: Topological vector spaces. Macmillan (1966). 37. C. Scheffer: Sur 1'existence de l a l i r n i t e p r o j e c t i v e ... C.R. Acad. S c i . Par i s , A. 269 (28 July 1969) p. 205-207. 38. I.J. Schoenberg: Metric spaces and p o s i t i v e - d e f i n i t e functions. Trans. AMS 44 (1938) p. 522-536. 39. L. Schwartz: Extension du theoreme de Sazonov-Minlos. C.R. Acad. S c i . P a r i s , A. 265 (18 Dec. 1967) p. 832-834. 40. : Reciproque du theoreme de Sazonov-Minlos. C.R. Acad. S c i . Par i s , A. 266 (3 Jan. 1968) p. 7-9. 41. : Demonstration de deux lemmes ... C.R. Acad. S c i . Par i s , A. 266 (8 Jan. 1968) p. 50-52. 42. L. Schwartz: Seminaire: Applications Radonifiantes. Seminaire L. Schwartz 1969-70. Ecole Polytechnique. P a r i s . 43. I. Segal: Algebraic i n t e g r a t i o n theory. B u l l AMS 71 (1965) p. 419-489. 44. M. Sion: Lecture notes on measure theory. B i e n n i a l Seminar of the Can. Math. Congress (1965). 45. : An introduction to the methods of r e a l a n a l y s i s . Holt (1968). 46. G. S i l o v : On measures i n l i n e a r spaces. Sov. Math. Dokl. 7 (1966) No. 4. p. 884-887. 47. F. Treves: Topological vector spaces, D i s t r i b u t i o n s and Kernels. Academic Press (1967). 48. W. Waldenfels: P o s i t i v - d e f i n i t e Funktionen ... Studia Math. 30 (1968) p. 153-161. 49. K. Yosida: Functional a n a l y s i s . Springer-Verlag (1968). 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.831.1-0080478/manifest

Comment

Related Items