UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Topics on Dehn surgery Zhang, Xingru 1991

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1991_A1 Z43.pdf [ 3.78MB ]
Metadata
JSON: 831-1.0080356.json
JSON-LD: 831-1.0080356-ld.json
RDF/XML (Pretty): 831-1.0080356-rdf.xml
RDF/JSON: 831-1.0080356-rdf.json
Turtle: 831-1.0080356-turtle.txt
N-Triples: 831-1.0080356-rdf-ntriples.txt
Original Record: 831-1.0080356-source.json
Full Text
831-1.0080356-fulltext.txt
Citation
831-1.0080356.ris

Full Text

TOPICS ON D E H N S U R G E R Y By Xingru Zhang B.Sc. of Mathematics, Nanjing Institute of Posts and Telecommunications  A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF T H E REQUIREMENTS FOR T H E D E G R E E OF D O C T O R OF P H I L O S O P H Y  in T H E F A C U L T Y OF G R A D U A T E STUDIES MATHEMATICS  We accept this thesis as conforming to the required standard  T H E UNIVERSITY OF BRITISH COLUMBIA  January 1991 © Xingru Zhang,  1991  In  presenting this  degree at the  thesis  in  University of  partial  fulfilment  of  of  department  this thesis for or  by  his  or  requirements  British Columbia, I agree that the  freely available for reference and study. I further copying  the  representatives.  an advanced  Library shall make it  agree that permission for extensive  scholarly purposes may be her  for  It  is  granted  by the  understood  that  head of copying  my or  publication of this thesis for financial gain shall not be allowed without my written permission.  Department  of  M.flfjt.l^ri(3t f  The University of British Columbia Vancouver, Canada  Date  DE-6 (2788)  A^-.|  tf?i  Abstract  Cyclic surgery on satellite knots i n S  3  knot i n S  3  is classified and a necessary condition is given for a  to admit a nontrivial cyclic surgery with slope m/l, \m\ > 1. A complete classi-  fication of cyclic group actions on the Poincare sphere with 1-dimensional fixed point sets is obtained. It is proved that the following knots have property I, i.e. the fundamental group of the manifold obtained by Dehn surgery on such a knot cannot be the binary icosahedral group I120, the fundamental group of the Poincare homology 3-sphere: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, certain families of pretzel knots.  Further  the Poincare sphere cannot be obtained by Dehn surgery on slice knots and a certain family of knots formed by band-connect sums. It is proved that if a nonsufficiently large hyperbolic knot i n S  3  admits two nontrivial cychc Dehn surgeries then there is at least one nonintegral  boundary slope for the knot. There are examples of such knots. Thus nonintegral boundary slopes exist.  ii  Table of Contents  Abstract  "  List of Figures  v  Acknowledgements  V  1  Introduction  v  "  1  2  O n C y c l i c Surgery  1  1.1  Introduction  1  1.2  Preliminaries  5  1.2.1  C M . Gordon's Lemma  5  1.2.2  D. Gabai's Results  6  1.3  Proof of Theorem 1.1.4  9  1.4  Proof of Proposition 1.1.1  11  1.5  Examples, Remarks and Open Problems  12  On Property I  18  2.1  Introduction  18  2.2  Prehminaries  20  2.2.1  20  The Casson Invariant and Property I (I)  iii  2.2.2 2.2.3  The Conway Polynomial and the Kauffman Bracket Polynomial  25 26  2.3  Cyclic Actions on the Poincare Homology 3-Sphere  28  2.4  Knots Having Property I or I  35  2.4.1  35  2.4.2  2.5  3  The Rohlin Invariant and the A r f Invariant  Torus knots, Slice Knots and Knots Formed by Band Connect Sums . . . Satellite Knots and Generalized Double Knots  40  2.4.3  Periodic Knots  43  2.4.4  Strongly Invertible Knots  46  2.4.5  Pretzel Knots  48  2.4.6  Knots up to 9 Crossings  50  Concluding Remarks and Open Problems  O n Boundary Slopes  52  55  3.1  Introduction  55  3.2  Proof of Theorem 3.1.1  56  3.3  Proof of Lemma 3.1.1  58  3.4  Properties of <p(K) and Open Problems  62  Bibliography  64  iv  List of Figures  1.1  Fintushel-Stern knots K  13  1.2  Berge-Gabai knots J  14  2.3  several surgery presentations of the Poincare sphere  29  2.4  a band-connect sum of two knots  36  2.5  r-moves  38  2.6  Ki# K  2.7  a generalized double knot  2.8  generalized twisted knot K  2.9  8i8 has 4i as a factor knot  2.10  a pretzel knot of type K(pi, • • • ,p )  2.11  a pretzel knot of type (2m -f 1,2m + 1,2m + 1) and its factor knot  51  2.12  a Montesinos knot of type (px/gi, „ . , p / o )  53  3.13  surgery on (—2,3, 7) pretzel knot and double branched covering  59  n  b  2  n  is r-equivalent to K ^K 1  39  2  41 42  VA  45 49  m  n  n  3.14 branched sets of 18- 19-surgeries on the (—2,3,7) pretzel knot  v  61  Acknowledgements  I wish to express m y gratitude to m y supervisor, Professor E r h a r d L u f t , for his invaluable guidance, encouragement and support. I also would hke to thank the University of British Columbia for its generous financial assistance. F i n a l thanks go to m y family, especially to my wife, Lijuan Zhang, for their emotional support.  vi  Introduction  One of the basic methods to construct closed orientable 3-manifolds is by Dehn surgery on knots or links i n the 3-sphere S , 3  which was introduced by M . Dehn i n 1910 [18].  It is the  process of removing a regular neighborhood of the knot or hnk and sewing it back i n via a homeomorphism on the boundary torus or tori respectively of the regular neighborhood. The fact that every closed orientable 3-manifold can be obtained by Dehn surgery on a link in S  3  was proven by A.Wallace [80] and W . B . B . . Lickorish [49] i n the early sixties.  Thus a good  understanding of Dehn surgery is important for the theory of 3-manifolds. However, even in the case of knots i n 5 , it is i n general not known which manifold can be obtained by which 3  surgery on which knot. There are very few classes of knots on which the manifolds obtained by Dehn surgery are explicitly known (among them are the torus knots [56]). Around the late seventies a general picture of 3-manifolds obtained by surgery on links was described by W . Thurston through his geometric approach [78] [77]. In particular he proved that if a knot in S  3  is neither a satellite knot nor a torus knot then the interior of the knot complement admits  a complete hyperbolic structure of finite volume (such a knot is called a hyperbolic knot) and Dehn surgeries on a hyperbolic knot yield hyperbolic manifolds except for finitely many cases. It is also well known that if the complement of a hyperbolic knot contains no incompressible nonboundary parallel closed surfaces, then again except for finitely many cases Dehn surgeries on the knot yield hyperbolic manifolds that do not contain incompressible closed surfaces. For a satellite knot, nonboundary parallel incompressible tori i n the knot complement will remain incompressible i n manifolds obtained by Dehn surgery on the satellite knot except for finitely many cases, unless the knot is a cabled knot [16]. Naturally questions about those exceptional surgeries i n the sense described above are of considerable interest. In this paper we address three topics concerning Dehn surgery along this line.  vii  Topic 1. W h i c h Dehn surgery on which knot in S which Dehn surgery on which knot in S  3  3  can yield a lens space? More generally  can yield a manifold with cychc fundamental group?  Topic 2. W h i c h Dehn surgery on which knot i n 5  3  can yield the Poincare homology 3-  sphere? More generally which Dehn surgery on which knot i n S  can yield a manifold with  3  fundamental group I\2Q, the binary icosahedral group? Topic 3. Axe there nonintegral boundary slopes for knots i n 5 ? 3  The main results of the thesis are the following. On Topic 1: Cychc surgery on satellite knots i n S is classified and a necessary condition is 3  given for a knot i n S  3  to admit a nontrivial cychc surgery with slope m/Z, |m| > 1. A theorem  of Gabai is proved by using the /3-norm based sutured 3-manifold theory of M . Scharlemann. On Topic 2: A complete classification of cychc group actions on the Poincare sphere with 1-dimensional fixed point sets is obtained. It is proved that the fundamental group of a manifold obtained by Dehn surgery on the following knots cannot be the binary icosahedral group IHQ: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, certain families of pretzel knots. The Poincare sphere cannot be obtained by Dehn surgery on slice knots and a certain family of knots formed by band-connect sums. On Topic 3: It is proved that if a hyperbolic knot i n S  3  admits two nontrivial cychc surgeries  then there exists at least one nonintegral boundary slope. There are examples of such knots. Thus nonintegral boundary slopes exist.  viii  Chapter 1  On Cyclic Surgery  1.1  Introduction  We work in all three chapters in the P L category. A P L homeomorphism we simply call an isomorphism. Our reference for basic terminology is [37] and [65]. We first describe (Dehn) surgery.  This operation can be done along any knot K in any  orientable 3-manifold M. Namely, remove a tubular neighborhood N(K) back in by an isomorphism of tori. Let E = M — intN(K)  of K in M and sew it  and choose two simple closed curves,  fi and A, on dE such that H\(dE) = Z[p] + Z[X]. Then the different surgeries (sewings) can be parametrized by so called surgery slopes mfl 6 Q U {1/0} (m,l)  where m and / are integers with  = 1; namely corresponding to the surgery with slope m/l the simple closed curve (up  to isotopy of torus) on dE with homology class m[p] + l[X] in H\(dE) = Z[p] + Z[X] bounds a meridian disc in the sewn solid torus.  Such a pair of curves p. and A is called a framing  pair. We denote the resulting manifold by M(K,m/l).  If Af is a homology 3-sphere (i.e.  a  3-manifold with the same homology as the 3-sphere), then p and A in dE can be chosen to he a preferred meridian-longitude framing pair so that [p.] — 0 in Hi(N(K)) in H\(E)  = Z[X] and [A] = 0  — Z[p]. Unless otherwise specified all surgeries on knots in homology 3-spheres are  performed with respect to a preferred meridian-longitude framing pair. Note that if K is a knot in a homology 3-sphere then Hi(M(K,m/l))  = Z\ \- Hence M(K,m/l) m  is a homology 3-sphere  iff |m| = 1. Let S (K, 3  m/l) denote the closed orientable 3-manifold obtained by surgery with slope m/l  1  Chapter 1. On Cyclic Surgery  along a knot K in S . If S (K,m/l) 3  3  2  is a manifold with cychc fundamental group (if so the  group is Z| |), then the corresponding m//-surgery is called a cyclic surgery or a Z| | surgery. m  m  In particular if S (K, m/l) is a lens space, then the corresponding m//-surgery is also called a 3  lens space surgery. It is not known whether or not lens spaces are the only closed orientable 3-manifolds with cychc fundamental groups. We call a closed orientable 3-manifold a fake lens space if the manifold has cychc fundamental group but is not homeomorphic to a lens space. Let O denote the trivial knot in 5 then surgeries on O produce all lens spaces (including 3  S and S x S ) and S (0, m/l) = l ( m , /). 3  2  1  3  In [56] L. Moser classified all manifolds obtained by surgery on torus knots. In particular she proved the following (see also [39] Chapter IV)  Theorem 1.1.1 ([56]) Nontrivial surgery with slope m/n on a nontrivial torus knot T(p,q) gives a manifold with cyclic fundamental group iff m = npg ± 1 and the manifold obtained the lens space L(m,nq ). 2  J. Bailey and D. Rolfsen [2] gave the first example of surgery on a nontorus knot that produces a lens space. They showed that —23 surgery on the (ll,2)-cable on the trefoil knot gives the lens space L(23,7). Later R. Fintushel and R. Stern [21] constructed lens spaces by surgery on a variety of nontorus knots (see also [54]). In particular they proved the following (see also [28] Theorem 7.5 )  Theorem 1.1.2 ([21]) Nontrivial surgery with slope m/n on a nontrivial cabled knot C(r,s on a nontrivial torus knot T(p, q) gives a manifold with cyclic fundamental group iffs = 2, r 2pq ± 1, m/n = Apq ± 1 and the manifold is the lens space L(4pq ± l,4g ). 2  Major progress on cychc surgery was made in M . Culler, C M . Gordon, J. Luecke and P.B. Shalen's paper [16]. They showed, in particular, the following  Chapter 1.  On Cyclic Surgery  3  Theorem 1.1.3 ([16]) If a nontorus knot in S admits a cyclic surgery, then the surgery slope 3  is an integer. Any nontorus knot admits at most two nontrivial cyclic surgeries and if that is the case, then the two slopes are successive integers.  Our first result of this chapter gives a complete classification of cychc surgery on satellite knots, that is  Theorem 1.1.4 Nontrivial surgery with slope m/n on a satellite knot K in S gives a manifold 3  with cyclic fundamental group iff K is a knot as in Theorem 1.1.2, i.e. a cabled knot C(r,s) on a torus knot T(p, q) with s = 2, r = 2pq ± 1, m/n = 4pq ± 1 and the manifold is the lens space L(4pq±l,4q ). 2  Theorem 1.1.4 was obtained in the author's paper [83] and was also independently obtained by Y . Wu [82] and by S. Bleiler and R . A . Litherland [10].  Corollary 1.1.1 ([22]) Satellite knots in S have property P. 3  Therefore classification of cychc surgery on knots in S reduces to hyperbolic knots. There 3  do exist hyperbolic knots admitting nontrivial cychc surgery and infinitely many such examples can be found in [21] and [25] (see Examples 1.5.1-2). S. Wang and Q. Zhou showed in [81] that if a nontorus knot in S admits a symmetry (i.e. is invariant under a finite group action on 3  S ) which is not a strong inversion (see section 2.4.4 for the definition), then there exists no 3  nontrivial cychc surgery on the knot. They also showed that no surgery on a symmetric knot can produce a fake lens space. M . Takahashi showed in [74] that any nontorus 2-bridge knot does not admit a cychc surgery. As D . Gabai [24] has given a positive answer to the Poenaru conjecture, 0-surgery on any nontrivial knot in S never give a manifold with infinite cychc 3  fundamental group. Hence if If is a hyperbolic knot which admits a nontrivial cychc surgery then the surgery slope is an integer m with 0 < |m| < oo.  4  Chapter 1. On Cyclic Surgery  Our second result in this chapter gives a necessary condition for a knot in S to admit a 3  nontrivial cyclic surgery with slope m/l, |m| > 1. Proposition 1.1.1  Let M be a homology 3-sphere, let K C M be a knot and let  M(K,m/l)  be the manifold obtained by surgery on M along K with slope m/l, \m\ > 1. Let p : M /i m  —•  M(K, m/l) be the \m\-fold cyclic unbranched regular covering defined by ker(ir(M(K, m/l)) —• Hi(M(K, m/l)) = Z ) and let q : M(m) —• M be the \m\-fold cyclic branched regular covering m  of M with branch set K in M.  Then M /i m  is a homology 3-sphere iff M(m) is a homology  3-sphere.  Corollary 1.1.2  If a knot K in S  admits a nontrivial cyclic surgery with slope m/l, \m\ > 1  3  then the \m\-fold cyclic branched cover of S lni=i ' Ax(e m  2,r,J  '/l l)| = 1 where A (t) m  K  3  branched over K is a homology 3-sphere and t  is the Alexander polynomial of K (see [19]). •  It was shown by S. Bleiler and R. Litherland in [7] that the projective space RP cannot be 3  obtained by surgery on any nontrivial symmetric knot in S . This result has been generalized 3  by S. Wang and Q. Zhou in [81] to : No nontrivial symmetric knot in S admits /^-surgery. 3  As a special case of Corollary 1.1.2 we have that if some knot K in S admits Z2-surgery, then 3  A K ( - 1 ) ) the determinant of ii!", is 1 or -1. This criterion is quite effective; in fact among all 249 nontrivial knots of 10 or less crossings only two of them, IO124 and IO153, have determinants ± 1 . But these two knots are symmetric [12] Corollary 1.1.3  (IO124  is the (3,5) torus knot), hence we have  Surgery on any nontrivial knot of 10 or less crossings cannot give a manifold  M with ir (M) = Z . • x  2  The rest of this chapter is organized as follows. In the next section, we recall some known results about surgery on knots in a solid torus, which are needed to prove Theorem 1.1.4. A theorem of D. Gabai is reproved by using M. Scharlemann's /3-norm based sutured 3-manifold theory. In section 1.3 we give a proof of Theorem 1.1.4 which is basically a delicate consequence  Chapter 1. On Cyclic Surgery  5  of Theorems 1.1.1-3, Lemma 1.2.1 and Theorems 1.2.1-2. A proof of Proposition 1.1.1 is given in section 1.4. Section 1.5 consists of examples, remarks and open problems. 1.2  Preliminaries  Since a satellite knot is contained in a nontrivial solid torus of S nontrivially (i.e. not isotopic 3  to the core of the solid torus and is not contained in a 3-ball of the solid torus), one may obtain some information by first considering surgery on the solid torus along the knot. Explicit homological information about surgery on knots in a solid torus was given by C M . Gordon in [28], which are to be recorded in section 1.2.1 (Lemma 1.2.1). D. Gabai proved fundamental theorems concerning surgery on knots in a solid torus [22] [25]. In section 1.2.2 two main results from [22] and [25], Theorems 1.2.1-2 below, are introduced.  1.2.1  G . M . Gordon's Lemma  Let K C S be a satellite knot and let K* be a nontrival companion knot of K. Let N* = K* x 3  D C S be a solid torus neighborhood of K* in S with K C intN* and let E" = S - intN*. 2  3  3  3  Let p*, A* be apreferred meridian-longitude pair of ON* = dE*, that is, Hi(dN*) = Hi(dE') = Z[p*] + Z[X*], p* = 0 in H^N*) = Z[X*] and [A*] = 0 in H^E*) = Z[p*}.  Suppose [A'] = u>[\*] in H\(N*). We may assume that u > 0 by choosing a proper orientation for K. Then w > 0 is the winding number of K in N*. Let N = K x D C tniiV* be a solid torus neighborhood of K in N* and let E = S - intN 2  3  and EQ — N* — intN. Let p, A be a preferred meridian-longitude pair of dN = dE, that is, HiidN) = H\(dE) = Z[p] + Z[X], u = 0 in Hi(N) = Z[X] and [A] = 0 in H (E) = Z[u]. Then X  tfi^o) = Z\p](BZ[\*] [A] = u[X*] in H^EQ) and [fi*] = u[p] in # i ( £ ) (by choosing proper t  0  orientation for p and A). Let N*(K,m/l) denote the manifold obtained by surgery along K in N*. As S (K,m/l) = 3  6  Chapter 1. On Cyclic Surgery  E*UN*(K, m/l), we may obtain some information about S (K, m/l) by first considering surgery 3  in N* along K. The following lemma proved in [28] by C M . Gordon gives precise homological information about  N*(K,m/l).  Lemma 1.2.1 ([28]) Lemma 3.3) (i). Hi(N (K,m/l))* m  (ii). ker(Hi(6N*(K, m/l)) —> HriN^K,  Z© Z  .  (WyTn)  m/l))) is the cyclic subgroup ofHi(dN'{K,  m/l))  generated by  [/*•], 1.2.2  ifu = 0.  D . Gabai's Results  Theorem 1.2.1 and Theorem 1.2.2 below are main results from [22] and [25] proved by D. Gabai. These theorems are not only applied in this chapter hut also in chapter 2. Recall that a knot in a solid torus is called an n-bridge braid if the knot can be isotoped in the solid torus to a braid which lies in the boundary of the solid torus except for n bridges. We first restate D. Gabai's main result in [22] as follows with more information added in case 2) due to M. Scharlemann [67]. Theorem 1.2.1 ([22]) Let K be a knot in a solid torus N* with nonzero wrapping number. Perform m/l-surgery along K in N* and let K' be the core of the sewn solid torus. Then one of the following must hold: 1) . N*(K,m/l)  is a solid torus. In this case both K and K' are 0 or 1-bridge braids in N*  and N (K, m/l) respectively. m  2) . N*(K,m/l)  = D x 5 #I(s,r) where L(s,r) is a nontrivial lens space (\s\ > \), K is 2  1  a cabled knot and m/l = rs. 3) . N*(K,m/l)  is irreducible and dN*(K,m/l)  is incompressible.  7  Chapter 1. On Cyclic Surgery  D . Gabai's proof of the above theorem uses sutured 3-manifold theory based on foliations and introduced in [23] [24]. In [66] M . Scharlemann developed the /3-norm based sutured manifold theory and reproved several important results on 3-dimensional topology due to D . Gabai. We give a proof of Theorem 1.2.1 using M . Scharlemann's theory. We refer to [66] for terminology. Proof. Obviously N* is a if-taut manifold with empty suture on ON*. Step (i). If N*(K,m/l)  is irreducible and dN*(K,m/l)  is compressible, then it is easy to  see that N*(K, m/l) is a solid torus. Note that N* can also be obtained by performing surgery on K' with K as the core of the sewn in sohd torus. C l a i m 1. i f , i f ' are braids. Proof of Claim 1. Take a if-taut surface P in N* whose boundary is a meridian of N* (of course now the geometric intersection of P with K is their algebraic intersection). By [67] Theorem 9.1, P is taut in the Thurston norm. Hence P is a meridian disk in N*. A boundary compressing disk in N*(K, m/l) having minimal intersection with i f ' provides a parameterizing surface in EQ — N* - intN(K) = N*(K,m/l)  - intN(K').  Performing if-taut decomposition  along P with respect to the parameterizing surface, we obtain a if-taut hierarchy of length 1  (N*, i f )  (N* - intN{P), K - intN(P)).  B y [67] Main lemma 9.7, K — intN(P) is a set of boundary parallel and mutually parallel arcs in N* — intN(P). Hence i f is a braid in N*. Analogously, K' is a braid in  N*(K,m/l).  C l a i m 2. K, K' are 0 or 1-bridge braids. Proof of Claim 2.  Let P  x  = PC]E . 0  Then (Pi,dPi)  C (E ,dE ) 0  0  is a planar surface  whose u> (winding number of K) inner boundaries (fat vertices), P\ f)dN(K), orientation induced from Pi and K.  all have the same  Note that the inner boundaries of P\ are meridians of  8  Chapter 1. On Cyclic Surgery  K and P\ has only one boundary component on dN*. Analogously, there is a planar surface (QudQi) C (N*(K,m/l) - intN(K')),d(N*(K,m/l)  - intN(K'))) with exact one outer  boundary component on d(N*(K,m/l) and with all inner boundaries (fat vertices) having the same orientation induced from Q\ and K'. Note that Eo = N*(K,m/l) — intN(K') and thus Qi can be viewed as a proper surface embedded in Eo with all inner boundaries having the surgery slope. Now the proof of Claim 2 proceeds exactly as in [22] Lemma 2.3, using only elementary combinatorial analysis of the intersection of the two planar surfaces, Pi and Qi. This proves !)• Step (ii). If N*(K, m/l) is reducible, then, by [66] Theorem 4.3, K is cabled and the surgery slope is that of the cabling annulus, i.e. K = C(r, s), a cabled knot of type (r, s)(\r\ > 1, \s\ > 1 and (r,s) = 1) and m/l = rs. By [28] Lemma 7.2, N*(C(r,s),rs)  = D x S^ftL^^). 2  This  proves 2). Step (iii). If N*(K,m/l) is irreducible and dN*(K,m/l) is incompressible, we have 3).D To prove Theorem 1.1.4 we need another result of D. Gabai concerning surgery on knots in a solid torus, namely Theorem 1.2.2 ([25] Lemma 3.2)  Let K be a knot in a solid torus N*. If K is a 1-bridge  braid, then only the surgery with slope ±(t+jw)u>±b  or ±(t+ju>)u;±b±l  on K can possibly yield  a solid torus, where u is the winding number of K in the solid torus, t + ju is the twist numbe of K with 0 < t < u> — 1 (j being an integer), b is the bridge width of K with 0 < b < u> — 1.  See [25] for the definitions of twist number and bridge width of a 1-bridge braid in a sohd torus.  Chapter 1.  1.3  On Cyclic Surgery  P r o o f of Theorem  9  1.1.4  By Theorem 1.1.3, we may assume that / = 1  L e m m a 1.3.1  N*(K,m)  is a solid torus.  Proof. We first show that N*(K,  m) is irreducible. Suppose that, on the contrary, N*(K,  is reducible.  Then by Theorem 1.2.1.  and m = rs.  By [28] Corollary 7.3, S (K,rs)  *i(S (K , 3  2), K is a cabled knot C(r,s) on K* with \s\ > 1  3  * S (K\r/s)#L(s,r).  Hence *i(S*(K,rs))  3  r / s ) ) * 7 r ( I ( 5 , r)). If K* is a torus knot, then Ttx(S\K*, r/s))  m  m)  1  S  ± 1 by Theorem 1.1.1;  if K* is a nontorus knot, then by Theorem 1.1.3, wi(S*(K r/s)) ^ 1. Hence ni(S*(K, m)) is a t  free product of two nontrivial groups, contradicting the assumption that 7 T i ( 5 ( i i ' , m)) is cychc. 3  Hence N*(K,m) is irreducible. Since iri(S*(K,m)) is cychc, dN*(K,m) is a compressible torus in S (K,m). S  S (K,m)  be a compressing 2-cell for dN*(K,m).  3  Since K* is nontrivial, B  2  C  Let B  2  C  N*(K,m).  Performing 2-surgery on dN*(K, m) using 5 , we get a 2-sphere which must bound a 3-ball in 2  N*(K,  m). Hence N*(K,  m) is a solid torus.  •  By Lemma 1.3.1 and Theorem 1.2.1. 1), i f is a 0 or 1-bridge braid in N*. Note that u> ^ 0 and u> ^ 1 by the definition of satellite knot. Let B  2  be a proper meridian 2-cell of N*(K,  HxidN'iK^m))  and [dB ] 2  in . H i ( £ # • ( # , m)). Hence  e keriH^dN'iK,™))  m).  Then [dB ] 2  is a primitive element of  —* Hi(N*(K,m))).  By Lemma 1.2.1 (ii),  Chapter 1. On Cyclic Surgery  10  Since w ^ 0,  S (K,m)=S (K\^) 3  = S i(if*,  3  3  and thus m  Z^ =  H (S\K m))=H (S\K\ 1  >  1  )) = Z | | . m  Hence (w ,m) = 1. 2  Lemma 1.3.2 if* is a torus knot. Proof. Suppose that K* is not a torus knot. Then, by Theorem 1.1.3, u> = 1 and thus 2  u — 1, contradicting u> ^ 1. • Lemma 1.3.3 if is a cabled knot on if*. Proof. By Lemma 1.3.2, if* = T(p,q), a torus knot. By Theorem 1.1.1, 7Ti(5 (A',m)) = 3  7ri(5 (if*,m/u> )) can possibly be cychc only when m is equal to 3  2  (*)  u pq±l. 2  Suppose that K is not a cabled knot. Then if is a 1-bridge braid in N*. By Theorem 1.2.2, JV*(if,m) can possibly be a sohd torus only when m is equal to (**)  ±(t +  ±6  or  ±(t + ju)u±b±  1.  Now it is enough to show that any number from (*) can not be equal to any number from (**). That is to show that \u pq + 1 ± (t + 2  \u pq + 1 ± (z + 2  JU>)OJ  ± b\ > 0, \u pq - 1 ± (t +  ± 6 ± 1| > 0 and \u pq - 1 ± (t + 2  inequality. The rest of inequalities can be similarly verified.  2  ± b\ > 0  ± b ± 1| > 0. We verify the first  Chapter 1. On Cyclic Surgery  11  If \pq±j\ ± O.then \u pq+l±(t+ju)u±b\  = \(pq±j)u ±tu±b+l\  2  > \pq±j\u; -tu-b-l  2  >  2  u - (u - 2)w - (w - 2) - 1 = u> + 1 > 0; 2  If \pq ± j\ = 0, then \u pq + 1 ± (t +  ± b\ = | ± tu ± b + 1| > tu> + b - 1 > 0. •  2  Now Theorem 1.1.4 follows from Lemma 1.3.2, Lemma 1.3.3 and Theorem 1.1.2. •  1.4  Proof of Proposition 1.1.1  We may assume that m is positive. Let JV be a tubular neighborhood of K in M and let N = q~ (N). 3  tntJV  Then E - M(m) -  l  E = M — intN is the m-fold cychc regular unbranched covering associated with the  kernel of the composition iti{E) —• Hi(E) = Z —> Z . Let p,, X C BE = ON be a preferred m  meridian-longitude pair. Then fi = q (p) is a meridian curve ofdE = dN. 9 (A) C dE = dN _1  _1  is a set of m disjoint 1-spheres each of which bounds a Seifert surface in E. Let A be one of these 1-spheres. Then p,, X give a framing pair on dE. Let K' be the core of the solid torus sewn in when performing the m/l surgery on M along K and let JV' be a tubular neighborhood of K' in M(K,m/l). M(K,m/l)  - intN' = E. Since p, C dN' is a generator of H {M(K,m/l))  Claim. (p\U*i(E')) =  and let E' = M  m/l  M{K,m/l).  m  - intN'.  n(E).  Proof of Claim. Let a e *i(E'). Then p»(a) = 0 in Hi(M(K,m/l)) m/l  = Z , p-\N') is a  x  solid torus. Let JV' =  of p : M  Then we may assume  = Z  m  by the definition  Therefore (p|).(>i(.E')) C ker(*i(E) —•* i7 (J5) = Z —• Z ) = x  7ri(J3). On the other hand both  index m. Hence (p|)»(7Ti(J3')) =  (p|)*(7r (J5'))  7Ti(i5).  1  and  7r (£') 1  ra  are normal subgroups of it\(E) of  •  So we may assume E' = E by basic covering space theory. Let ^* C dE be a 1-sphere with slope m/l, i.e. [/z*] = m[p] + l[X] in i?i(J5) = Z[p] + Z[A].  12  Chapter 1. On Cyclic Surgery  Then p ( M * ) consists of m disjoint 1-spheres p.*, j = l , . . . , m . \fi ] = [p.] + l[X] in iri(dE) = _1  m  = (PI).([M] + TO in T r ^ d E ) = H^OE). Hence [A] = hx*]  HiidE) = Z[fi] + Z[\] since  in H\(E). If M ( m ) (M /i) is a homology sphere, then E\{E) = Z and [/2] = [p") is a generator m  of R~i(E). Consequently M /i (M ) is a homology 3-sphere. • m  m  Remark. As pointed out earlier, Corollary 1.1.2 gives, in particular, the result that if a knot in S admits Z -surgery, then the determinant of the knot is 1 or - 1 . The following proposition 3  2  which is a consequence of a result of [10] also provides a necessary condition for a knot in S  3  to admit a i?P -surgery. 3  Proposition 1.4.1  Let K be a knot in S  mial of K, i.e. A (l) K  and let Ax(t) be the normalized Alexander polyno-  3  = 1,  Aif(r') = A (t). K  If K admits RP -surgery, then A £ ( l ) = 0 3  where " denotes the second derivative.  Proof. A surgery formula for calculating the generalized Casson invariant, as defined in [10], of the oriented manifold S (K,m/l) 3  \(S (K,m/l)) 3  where s(Z, m) = TJ^iJlm  is given in [10], namely = ( / / 2 m ) A £ ( l ) - (sgn(m)/2)s(l, m),  - [j/m] - l / 2 ) ( ; 7 / m - [jl/m] - 1/2) is the Dedekind sum of / and  m. As RP  3  can be obtained by 2-surgery on the trivial knot O , it follows that X(RP ) 3  =  ± A ( 5 ( 0 , 2 ) ) = - 5 ( 1 , 2 ) = 0. Now suppose that S ( A ' , ± 2 ) = RP . Then 0 = A ( 5 ( A ' , ± 2 ) ) = 3  3  (±1/4)A£(1).  1.5  3  3  •  Examples, Remarks and Open Problems  Example 1.5.1. Fintushel-Stern knots  K. n  R. Fintushel and R . Stern [21] showed, using the Kirby-Rolfsen calculus, that 9n surgery on the knot K  n  shown in Figure 1.1 yields the lens space Z,(9n,3n + 1). They also showed  Chapter 1. On Cyclic Surgery  13  \  j i i full twists •  L_  I  Figure 1.1: Fintushel-Stern knots K  n  of S branched over K-^n can be obtained by -1/n surgery on the figure eight knot. By W. 3  Thurston's work [77] the cover is a hyperbolic non-Haken manifold. Hence the knot K is 7n  hyperbolic nonsufficiently large knot by [3] (recall that a knot is sufficiently large if there is an incompressible nonboundary parallel closed surface in the knot complement, otherwise the knot is not sufficiently large). Ki is the (-2,3, 7) pretzel knot (see section 2.4.5 for the definition) which is also hyperbolic and not sufficiently large (see section 3.3). R. Fintushel and R. Stern have shown (unpublished) that 19 surgery on K also yields a lens space (see section 3.3 for an amusing verification of 2  this result). Question 1.5.1. Is there any other K , \n\ > 2, which admits two nontrivial successive integral n  cyclic surgeries? Example 1.5.2. Berge-Gabai knots J .° n  It is a remarkable result shown in [25] that -30 and -31 surgeries on the 1-bridge braid in a solid torus V with presentation data of winding number 7, bridge width 2 and twist number 4 yield solid tori (D. Gabai mentioned in his paper that J. Berge has also independently obtained this result).  Chapter 1. On Cyclic Surgery  14  Figure 1.2: Berge-Gabai knots J  n  Embedding V into S as a trivial solid torus, we obtain infinitely many knots J 3  n  (Figure  1.2) in S such that each of J admits two nontrivial successive integral surgeries with slopes 3  n  -30 + 49n and -31 4- 49n. Note that every J  n  is a hyperbolic knot by Theorem 1.1.1 and  Theorem 1.1.4. Recall that a knot K in S has free period n if there is a periodic transformation T of S 3  3  with order n such that {T} acts on S fixed point freely and leaves Ii setwise invariant. In 3  [35] R. Hartley determined free periods for torus knots and for most of knots of ten or less crossings. From the proof of Proposition 1.1.1,we see that if aknot K C S admits a nontrivial 3  lens space surgery with slope m/l, |m| > 1, then there is a knot K' C S of free period \m\ such 3  that the knot exterior E of K' is an |m|-fold unbranched cychc cover of the knot exterior E of K. Further we show P r o p o s i t i o n 1.5.1 There art infinitely many hyperbolic knots in S  3  of free periods.  15  Chapter 1. On Cyclic Surgery  Proof. .Since there are infinitely many hyperbolic knots admitting lens space surgery (Examples 1.5.1-2), the knot exterior of each of these knots is covered by a knot exterior of a knot in S with free period. Each of these free periodic knots is hyperbolic. This follows from the 3  following Lemma 1.5.1 If E  E is a finite sheeted regular covering between two knot exteriors E and  E, of two knots, K' and i f , in S , then K' is a torus knot or a hyperbolic knot or a satellite 3  knot iff if is a torus knot or a hyperbolic knot or a satellite knot respectively.  Proof. First note that the finite covering is actually a cyclic covering [27]. Claim 1. if' is torus knot iff if is. This is equivalent to say that E is Seifert fibered iff E is. But the later statement is true by [39] Lemma V I 2.9. Claim 2. if' is a hyperbolic knot iff if is. In fact, if i f is a hyperbolic knot, i.e. the interior of E admits a hyperbolic structure, then the interior of E inherits a hyperbolic structure from E through the finite regular covering and thus i f ' is a hyperbolic knot. Conversely assume that K' is a hyperbolic knot. If K is not a hyperbolic knot, then K is either a torus knot or a satellite knot. In the case that K is torus knot, then by Claim 1, if' is a torus knot, contradicting with the assumption. In the case that i f is a satellite knot i.e. E contains an essential torus T, then p (T) is a set of essential tori -1  in E', again a contradiction. Claim 3. if' is a satellite knot iff K is. This follows from Claim 1 and Claim 2. • Finally since the exterior of a nontrivial knot covers only finitely many distinct knot exteriors by [27] Corollary 1.5, of the above free periodic knots infinitely many are distinct. • A n immediate consequence is  16  Chapter 1. On Cyclic Surgery  Corollary 1.5.1 There are infinitely many hyperbolic knots in S  3  whose knot groups can  imbedded into knot groups of hyperbolic knots as normal subgroups withfinitecyclic quoti •  Example 1.5.3. Let T(2,3) be the right hand trefoil knot. By Theorem 1.1.1 the surgery on T(2,3) with slope 5 yields the lens space L(5,9). By the preceding discussion, there is periodic knot K' in S whose exterior 5-sheeted covers the exterior of T(2,3) and the 5-sheeted cover 3  of S  branched over T(2,3) is a homology 3-sphere Q. Actually K' is the left hand trefoil  3  knot and Q is the Poincare homology 3-sphere [65]. Similarly the surgery on T(2,3) with slope 7 yields the lens space L(7,9), the periodic knot whose exterior 7-sheeted covers the exterior of T(2,3) is the right hand trefoil, and the 7-sheeted cover of S branched over T(2,3) is the 3  Seifert homology 3-sphere obtained by -1-surgery on T(2,3) [65]. In fact more can be proved using D . Rolfsen's surgery description of branched coverings, namely corresponding to each cychc surgery on T(2,3) with slope (6/ ± 1)//, the free periodic knot whose exterior | 6 / ± 1| sheeted covers the exterior of T(2,3) is the left or right hand trefoil knot and the |6Z ± 1| sheeted cover of S branched over T(2,3) is the Seifert fiberred manifold 3  obtained by l/l or —1/1 surgery on the right or left hand trefoil knot. Problem 1.5.1. Find the corresponding periodic knots whose exteriors cover the exteriors of the knots K  n  and J . n  The following conjecture was raised in [81]. Cyclic Surgery Conjecture. ([81]) For a nontrivial knot K in S and a nontrivial slope m/l, 3  \ir S (K, m/l)\>4. t  3  As a consequence of Theorem 1.1.1 and Theorem 1.1.4 we see that the conjecture is true for torus knots and satellite knots. Question 1.5.2. The knots IO155 and IO157 are knots with free period 2 (see [35]). Does the exterior of IO155 (or IO157) 2-sheeted cover a knot exterior?  Chapter 1. On Cyclic Surgery  17  If the answer is yes, then there is a counterexample to the cychc surgery conjecture by [27] Theorem 1.3.1. Suppose that a knot i f i n S admits a nontrivial cychc surgery of integral slope m . If i f 3  can be isotoped nontrivially into a sohd torus V i n S (i.e. K is not isotopic to the core of V 3  and i f is not contained in a 3-ball of V) such that m-surgery on V along i f yields a solid torus again, then by Theorem 1.2.1, i f is a 0- or 1-bridge braid in V. If i f is a 0-bridge braid, then i f is a torus knot or cabled knot i n S . If i f is a 1-bridge braid, then by Theorem 1.2.2 and by 3  presentation of 1-bridge braid i n a solid torus, it can be shown that |m| > 4. Q u e s t i o n 1.5.3. Let i f C S be a hyperbolic knot which admits a nontrivial cychc surgery 3  with slope m . Can i f be isotoped nontrivially into a solid torus V i n 5 such that m-surgery 3  on V along i f yields a solid torus again? (all known knots in S that admit cychc surgery have 3  this property.) If the answer is yes, then the cychc surgery conjecture has a positive answer.  Chapter 2  On Property I  2.1  Introduction  Problem 3.6 (D) in [44] asks whether there is a homology 3-sphere which can be obtained by surgery on an infinite number of distinct knots in S . 3  Examples of homology 3-spheres which  can be obtained by surgery on two or finitely many distinct knots in S [65] [13] [52] [53].  3  have been given [47]  In a remark to Problem 3.6 (D), R . C . Kirby points out that the Poincare  homology 3-sphere seems only obtainable from -|-l-surgery on the right hand trefoil knot (or, reversing orientation, from —1-surgery on the left hand trefoil knot). This chapter is devoted to provide evidence to support this observation. Note that the fundamental group of the Poincare homology sphere is the binary icosahedral group, denoted by Ji2o- It has order 120 and its abehanization is trivial. So far it is not known if the Poincare sphere is the only closed 3-manifold with fundamental group i i o - We call a 2  closed 3-manifold M a fake Poincare sphere if ix\(M) = 7i2o and M is not isomorphic to the Poincare sphere. Definition. A knot K in S has property I if every surgery along K does not yield a manifold 3  M with  7Ti(M)  =  ii2o- A knot K in S has property I if every surgery along i f does not yield 3  the Poincare sphere. Of course the trefoil knot does not satisfy property I.  Conjecture I (I). Every nontrefoil knot in S has property I (I). 3  18  Chapter 2. On Property I  19  Recall that the property P (P) conjecture states that every nontrivial surgery along a nontrivial knot in 5  3  does not yield a homotopy 3-sphere (the 3-sphere). The property P conjecture  was proved recently in [30]. It is known that if the fundamental group of a homology 3-sphere is finite then it is either the trivial group or else the group J120 [43]. Therefore property I and property P together are equivalent to the property PI defined as follows. Definition.  A knot K in 5  3  has property PI if every homology 3-sphere obtained by a  nontrivial surgery along K has infinite fundamental group. C o n j e c t u r e PI. Every nontrivial nontrefoil knot in 5  3  has property PI.  We wiU prove that the following classes of knots have property I: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, families of pretzel knots; and that the following classes of knots have property I: slice knots and a certain families of knots formed by band-connect sums. Much research has been carried out to prove property P (a list of papers is given in [44] for research done before 1978, papers thereafter are [61] [50] [51] [74] [63] [20] [8] [9] [62] [1] [16] [75] [76] [14] [22] [30]). No literature, however, has been found dealing specifically with the generalized problem we just raised above. As we will see, property P and property I (I) have certain connections and common features; some techniques which work for property P can also be generalized to work for the case of property I (I). However in general the two properties do not imply each other. Certain knots (e.g. slice knots) are found to have property I but are not known whether or not to have property P. In many cases property I seems a harder problem. We mainly deal with property I (I) but also include property P when brief arguments apply. The rest of this chapter is organized as follows. In the next section we briefly introduce some 3-manifold invariants and link invariants namely the Casson invariant, the Rohlin invariant, the A r f invaxiant, the Conway polynomial and the Kauffman bracket polynomial. These invariants have apphcations to the property PI problem. In section 2.3 we give, besides a list of known  Chapter 2.  20  On Property I  facts about the Poincare sphere, a complete classification of cyclic group actions on the Poincare sphere with 1-dimensional fixed point sets. In section 2.4, we prove property I or I for the classes of knots listed above. The last section consists of remarks and open problems.  2.2  Preliminaries  2.2.1  The Casson Invariant and Property I (I)  In 1985, A . Casson introduced an integral invariant for oriented homology 3-spheres. We briefly review the representation space construction of the Casson invariant for an oriented homology 3-sphere. For details we refer to [1]. Let M be an oriented homology 3-sphere and let M = V\ U  V i fl V% = dV\ = dV = F 2  be a Heegard splitting, where V i and V2 are handlebodies of the same genus g and F is their common boundary surface. Let F* be F punctured once. Then the diagram of inclusions:  Vi  \  / F*  —>• F  M  \  / V  2  induces the following diagram of surjections on their fundamental groups:  / H\F*  •  \  7r F  TTiAf.  X  /  \ *iV  2  21  Chapter 2. On Property I  For any group G, call R(G) = Hom(G,SU(2,C))  the representation space from G to  SU(2, C), the 2 x 2 special unitary group. Then the above diagram i n turn induces the following diagram of injections on representation spaces:  s  \  \  / R(*iV ) 2  Let R(TTiF) d C R(ir\F) be the set of reducible representations, i.e. the set of homomorre  phisms from iriF to SU(2,C) with abelian images. Similarly define R{TC\Vi) d and R(-K\M) dTe  re  Let Q = image of RfaM)  i n R* =  RfaF*),  Qi — image of R(iriVi) i n R*, R = image of R(it\F) i n R", A =image of R(ir\M) d i n R*, Te  Ai = image of R(^iVi) d i n R*, re  B = image of R(it\F) d in i i * . Te  Then i i — 5, Qi - Ai are open manifolds on which SU(2, C)/center acts freely by conjugation. Let Q = Q — A modulo action by conjugation, Qi = Qi — Ai modulo action by conjugation, R = R — B modulo action by conjugation. Then Qi, i = 1,2, embed properly in R and their intersection is compact. Furthermore Q  2  can be moved by an isotopy in R to Q such that Q i and Q intersect transversally at finitely 2  2  Chapter 2.  22  On Property I  many points i n R. The orientation of M can be used to determine an orientation of Qi, R", Qi and R. Therefore an algebraic intersection number < Q\,Q Also note that R* is a manifold isomorphic to ( S ) * 3  5  2  >fi  Q11Q2 >ft  =<  c a n  and Qi C R*, i = 1,2,  submanifolds of middle dimension, both being isomorphic to (S ) . Let < Qi,Q 3  3  denned.  D e  are compact > « • be the  2  homological intersection number of Q\ and Q i n R*. Then Casson invariant of M, denoted by 2  A, is given by  A . Casson proves that this number is an integer and is independent of the Heegard decomposition of M. Note that | < Q\,Q  2  >R* \ - \R\(M)\ = 1, therefore < Qi,Q  2  >R is an even  integer. A n immediate consequence of the construction is Theorem 2.2.1  ( A . Casson) (i). A ( - M ) = - A ( M ) , where -M  denotes opposite orientation  ofM. (ii). \{M) = 0 i/iri(Af) = 1. The Casson invariant can also be computed very effectively by a surgery formula. Theorem 2.2.2 M(K,\[l)  ( A . Casson) Let K be a knot in an oriented homlogy 3-sphere M and let  be the homology 3-sphere obtained from M by performing 1/l-surgery on K.  AA-(t) be the normalized Alexander polynomial of K, i.e. A j f ( l ) = 1 and A j c ( t ) = A t f ( f ) . -1  Then A(M(/f,l/0)=A(M) + /(l/2)A^(l). where A ^ - ( l ) ts the second derivative of Ax(t)  valued at 1.  For a knot K in S we shall call X'(K) = (1/2)A'£(1) the Casson invariant of K. 3  Let  23  Chapter 2. On Property I  Let T denote the right hand trefoil knot and D the Poincare homology sphere. Since D can 3  3  be obtained by 1-surgery along T and A (t) = - 1 +1 + r " , we have A(I> ) = ( 1 / 2 ) A £ ( 1 ) = 1. 1  T  Now suppose that S (K,l/l)  is the Poincare 3-sphere obtained by 1/i-surgery along a knot  3  K in S . 3  3  Then by Theorem 2.2.2, X(S {K,l/l))  = / ( 1 / 2 ) A £ ( 1 ) = 1 or - 1 . It is known  3  that the normahzed Alexander polynomial of any knot K in S can be expressed as A.R-(*) = 3  Ei=i  a + 0  + *"*') € Z[t,t~ ). B y a simple calculation we get ( 1 / 2 ) A £ ( 1 ) = £ J = J i l  a  {2  € Z.  Therefore / = 1 or - 1 and ( 1 / 2 ) A £ ( 1 ) = 1 or - 1 . This simple observation gives  Lemma 2.2.1 LetK be a knot in S . IfS (K, l/l) is the Poincare sphere, then X(S (K/l/l) 3  3  =  3  1 or - 1 , / = 1 or - 1 and X'(K) = (1/2)A^(1) = 1 or - 1 .  Proposition 2.2.1 There are exactly two irreducible representations from 7j2o to SU(2,C) up to conjugation in 517(2, C).  Proof. 7i2o has the group presentation {x,y;x = (xy) = y ,x 2  3  s  Let p : 7i2o —> SU(2,C) be an irreducible representation.  4  = 1}.  Note then p(/i o) must be a 2  non-abelian subgroup of 517(2, C). (  1). Claim. p{x) = 2  Proof of Claim. (p(x) ) 2  2  = p(x) = p(x ) = A  4  , 1 0 , | v0 1  |. Thus the eigenvalues of p(x)  2  1  are either 1 or - 1 . Consequently p(x) — j 2  1  1  0  ] or p(x) = j 1 / V 0 /  P(y)  5  =  2  /  0 . , then p(x)  0  0 \ | or p(x) = 0 1  and thus p(y) =  o  1 p(Zi2o) is non-abelian.  1  0 .  0  1  |. Therefore p(xy) = ±p(y) 3  3  =  -1  But this contradicts the assumption that  Chapter 2. On Property I  24  0 1  2). Note that  -1 0 p(y) = | h  0  e&  0  A"  0 -1 1  1  L - l  0  0  /  -1  I  0  or |  A 0  |, p(y) is conjugates to  0 -» /  ,  j and p(xy) is conjugates to  e~*f~  0  Since p(x) = p(xy)3 _ 2  I i I, it follows that p(x) is conjugate to |  0 0  0  0 \  , -1  e?  A  0  e-""'/  3  In particular the trace of p(xy) is tr(p(x)p(y)) = e " / + e " * / = 1. 3  -  e  3). After a conjugation, we may assume that p(y) =  (x) e {B  \  I IB^-B 6 SU{2,C)} = {[  ° 0 -i  P  j  V  **  ^  -1 2 * t n5 2 I  and |6|2 = 1 — t = 1 — . • 2  solution set b =  C2e «, e  \„,.  s  0  0  e~~  , n = 1 or 3. Then  | ; i e 7 2 , 5 e C , t + |&| = l}. 2  \ - 6 -rz  From 2) we conclude that 1 = tr(p(x)p(y)) = tie^  3  2  — tie "s^" = —2tsin~- and thus t = A s c > 0, |6|2 = c has  Let c — c(n) = 1 — .  0 G [0,27r).  Hence we may further assume that / {p(x),p(y)} = {  h~6i C2e  -ck e  PI  cT  _  £  ~2^f  0  0  s  e~~  0  0i  2sm  e  0 2  2st'n^  e  nm  e~T  s  0  e  s  0  0 e£  0 may e~finally assume that Thus we and p(y) = _ C 2  217^ /  e ~  n  0 -0X1.  , n = 1 or 3.  0 e s Consequently, there are, up to conjugation, at most two irreducible representations p : 7  120  —*SU(2,C).  25  Chapter 2. On Property I  for  It is easy to check that the preceding p(x) and p(y) satisfy (p(x)p(y)) = 3  0  -1  n = 1 and 3, and they define two representations p '• /120 — • SU(2,C), n = 1,3. pi and />3 n  are not equivalent since |  ei  0  I / e s | and |  0 , 1  have different traces. •  If M is a closed 3-manifold with fundamental group I\2o, then Q — Q\ n Q in the con2  struction of the Casson invariant given at the beginning of this section consists exactly of two points by the above proposition. We do not know if Q\ and Q intersect transversally at these 2  two points. But after an isotopy we can only have < Q i , Q2 >= 0  o  r  i l - Hence we have, using  Casson's surgery formula again,  Lemma 2.2.2 If^S ^, 3  1//) = I , then X(S (K, 1//)) = 0 or ± 1 . Therefore X'(K) = 0 or 120  3  ±1.  2.2.2  T h e Rohlin Invariant and the A r f Invariant  Here we consider the relation of the Casson invariant with the Rohlin invariant and the A r f invariant and its consequences for property I and property P. Recall that the Rohlin invariant p of a homology 3-sphere M is defined by p(M) = o~(W)/8 mod 2, where W is a simply connected 4-manifold with even quadratic form and with M as boundary, and cr(W) is the signature (index) of W . Also recall that the Z2-valued Arf invariant 4  a of a knot K in S is defined by a(K) = ]£»=i V2t-i,2i-i«2i,2t 3  m o c  * ^'  w  n  e  r  e  is  a  2n X 2n  Seifert matrix for K [46] [58] [64] [40]. In [26] F . Gonzalez-Acuna established a surgery formula for calculating the Rohlin invariant of homology 3-sphere obtained by 1//-surgery on any knot K in S , that is 3  Theorem 2.2.3 ([26]) p(S (K, 1//)) = la(K) mod 2. 3  The Casson invariant and the Rohlin invariant are related as follows.  26  Chapter 2. On Property 1  Theorem .2.2.4 ( A . Casson) Let M be a homology 3-sphere. Then p(M) = A ( M ) mod 2.  Corollary 2.2.1 Any knot K in S  3  of Arf invariant 0 has property I.  Proof. By Theorem 2.2.4 and Theorem 2.2.3, \{S (K, If I)) s p(S (K, 1//)) = la{K) = 0 3  3  mod 2. Hence S (K, 1//) cannot be the Poincare homology sphere by Lemma 2.1. • 3  Similarly the following corollary follows from Theorem 2.2.4, Theorem 2.2.3 and Theorem 2.2.1 (ii).  Corollary 2.2.2 Any knot K in S  3  of Arf invariant 1 has property P.  Note that for a knot K e 5 , A'(Ji') = a(K) mod 2 by Theorems 2.2.2-4. 3  2.2.3  T h e Conway Polynomial and the Kauffman Bracket Polynomial  These two polynomial invariants of links shall be used in section 2.4.2 and section 2.4.4. Here we only give their definitions and some properties which we will use. The Conway polynomial invariant [15] is defined by the following three axioms. Axiom 1). To each oriented link L in S there is an associated polynomial ^L(Z) G Z[Z]. 3  Ambient isotopic links have identical polynomial. Axiom 2). Vv = 1 where U denotes the unknot. Axiom 3). V s ^ ( r ) - V-^(z)- zV^z) = 0, where >£, X and X s t a n d for oriented links which look like that in a neighborhood of a point and identical elsewhere. Remarks: (i) . I f L is a knot, then  is independent of the choices of orientations for L.  (ii) . Let L* denote the mirror image of L. Then Vjf(z) = (iii) . Let V i ( z ) = ao + a z + x  h az n  n  Vi(-z).  be the Conway polynomial of a link L. Then  27  Chapter 2. On Property I  lk(L)  di = 0  if L has two components, otherwise.  where lk(L) denotes the linking number of L. (iv). If £ is a knot, then VL(< ' -I" ' ) = AL(I), where Ar,(t) is the normalized Alexander 1/ 2  1/ 2  polynomial of I, i.e. AL(1) = 1 and A L ( I ) = AL(I)-1  In [41] L. Kauffman reconstructed the Jones polynomial through his bracket polynomial. The Kauffman bracket polynomial < L > (A) G Z [ A , A ] is denned for unoriented link diagrams _ 1  L, with the following defining relations. 1) . < X >=  A  <~>  <)(>» <><>= A " <x> +A <)(>, 1  where >< , X , ~ , )( stand for links which look like that in a neighborhood of a point and identical elsewhere. 2) . < O >= 1, < O U L >= ( - A - A" ) < L >, 2  2  where O is the unknot diagram with no crossing points and U is the disjoint union. < L > (A) is not a link invariant but it can be adjusted to be one for oriented links under ambient isotopy. Given an oriented link diagram L. Let w(L) be the algebraic sum of the crossings of L, counting X, and X as +1 and —1 respectively. Then f (A) = (-A)- ^ 3  L  <L>(A)  is a desired invariant of oriented links under ambient isotopy. We shall call /L(A) the oriented Kauffman bracket polynomial. .Remark: (a) . If L is a knot then /L(A) is independent of choices of orientations. (b) . Let X* denote the mirror image of L. Then fa* (A) = / L ( A ) . - 1  (c) . /L(* ^ ) is the Jones polynomial. -1  4  28  Chapter 2. On Property I  We leave the well definedness of the Conway polynomial and the Kauffman bracket polynomial and proofs of the remarks to the reference [15] [41] [42]. 2.3  Cyclic Actions on the Poincare Homology 3-Sphere  In this section we give a complete description of orientation preserving isometric cychc actions on the Poincare sphere D . Combining with a result of Thurston's, we give a classification of 3  cychc actions on D withfixedpoint sets of dimension 1. 3  The Poincare sphere,firstconstructed by Poincare, is a very special manifold. It seems to be the first known example of a nonsimply connected closed 3-manifold with trivialfirsthomology group. So far it is the only known homology 3-sphere with nontrivialfinitefundamental group. Let D denote the Poincare sphere. Several descriptions of D can be given as follows, 3  3  1) . the manifold with the surgery presentations shown in Figure 2.3; 2) . the Seifert manifold with 3 exceptionalfibersof type (5,1) (3,1) and (2,1), and crosssection obstruction —1; 3) . the Brieskorn manifold {(z z , z ) G C ; z\ + z\ + z\ = 0, |*i| + |z | + N u  2  3  3  2  2  2  2  = 1};  4) . the quotient space of S under the free action of the binary icosahedral group, J120 = 3  {x,y;x = (xyj = y , x = 1}. Hence the universal cover of D is S and the fundamental 2  3  5  4  3  3  group of D is J120; 3  5) . the space constructed from a regular dodecahedron by identifying each boundary point with the point on the opposite face rotated 36° about the axis perpendicular to the faces, in a clockwise sense; 6) . the 2-fold (3-fold, 5-fold) cychc branched cover of S branched over the (2,3) ((2,5), 3  (3,5)) torus knot. 7) . the boundary of the 4-manifold obtained by plumbing on the Es weighted tree.  30  Chapter 2, On Property I  For more details see [65] [45]. The following lemma will be applied.  Lemma 2.3.1 Let X be a path connected, locally path connected and semilocally simply co nected space and let p : X —• X be a universal covering projection. Let G be a group of  isomorphisms of X and let T be the group of covering transformations of p. Define G = {g g : X —• X a map with pg = gp for some g £ G}. Then 1) . G is a group of isomorphisms of X; 2) . if N C G is a normal subgroup, then N C G is a normal subgroup. In particular, T = {1} C G is a normal subgroup;  3) . for each g £ G the element g £ G with pg = gp is unique, the map p. : G —-»• G define by p*(g) ~ g is an epimorphism, and the sequence  r —-» G  1 —>  G —• 1  is exact.  Proof. First note that for each element g £ G there exists an element g £ G such that pg = gp. In fact, let g £ G, x £ X, x £ p (x) and y £ p~ (g(x)). By basic covering space -1  1  theory, there is a map g : (X,x) —• (X,y) such that the following diagram commutes.  (X,x)  -L>  (X,y)  Pi  Pi  (X,x)  (X,g(x))  i.e. pg - gp. 1). Let § 52 6 G. Then pg^ = g pg = gigiP, i.e. g\h 6 G. u  x  2  Chapter 2.  31  On Property I  Let g G G, i.e. pg = gp for some g G G. Let x G X, x = p(x), y = g(x) and y = g{x) = p(y). Then by the note above there exists an element g' G G with pg' = g~ p l  But pgg' = gg p -1  and with g'(y) = x.  = p and gg'(y) = y. Hence gg' = 1. Similarly, g'g = 1. Therefore 5 ' =  We hence proved that each element of G is an isomorphism of X and G is a group. 2 ) . Let h G N and let 5 G G . Then pghg' = ghg~ p, i.e. p ^ 1  l  -  1  G iV.  3) . For the uniqueness, note that if pg = gp and pg = fp for g,f  £ G> then 47) = / p and  then <7 = / since p is an onto map. B y the preceding remark, p» is an onto map. It is easy to check that p , is a homomorphism. Obviously fcer(p«) = T. Therefore the sequence  1 —• T — * G  G —• 1  is exact. • In the following theorem we present D  3  orthogonal action of 50(4) on 5  3  as 3-dimensional space form, i.e. consider the  and let D = 5 / / o where /120 is a subgroup of 5 0 ( 4 ) . If 3  3  12  (-Ti2o)i> (^120)2 C 5 0 ( 4 ) are subgroups isomorphic to 7i o, it follows from [68] Theorem 4.10 2  and Theorem 4.11 that they are conjugate in 0(4).  Consequently 5 /(/i2o)i and 5 /(/i2o)2 3  3  are isometric. Thus D = 5 /7i2o is independent of the choice of the subgroup /120 C 5 0 ( 4 ) . 3  T h e o r e m 2.3.1  3  (i). For each integer n > 1 there is an orientation preserving isometric Z  n  action on the Poincare 3-sphere 5 //i203  (ii) . Up to conjugation by an isometry, such a Z  n  action is unique for each n.  (iii) . If n is relative prime to 2,3 and 5, then the Z  n  2,3, or 5, then exactly those elements of Z  n  action is free; if n is not prime to  which have orders 2, 3 or 5 have fixed point se  of dimension 1. Proof. The basic reference for the facts stated in the proof is [68].  Chapter 2. On Property I  32  Consider the following exact sequence ([68] p.453)  1 —• Z —» 5 0 ( 4 ) -1+ 5 0 ( 3 ) x 5 0 ( 3 ) —• 1. 2  Let ieo be a subgroup of 5 0 ( 3 ) isomorphic to the icosahedral group. Let 7i2o = »? (^60 X !)• -1  Then ii o C 5 0 ( 4 ) is isomorphic to the binary icosahedral group and acts on 5 fixed point 3  2  freely by isometries. We shall take p : 5 —• D = 5 /7i o as a standard universal covering of 3  3  3  2  the Poincare sphere D . 3  (i) . We first prove the existence. Let {/") / € n  - 1  C 5 0 ( 3 ) be a cychc group of order n. Let  ( l X /") and let F be the subgroup of 5 0 ( 4 ) generated by 7i o and / . Note that / 2  has order n , / 7 i o /  - 1  2  = A20 and F is a group of isometries having 7i o as a normal subgroup 2  of index n . Let 7i o act on 5 2  3  first and thus get the quotient space D . There is an induced 3  orientation preserving isometric cychc action on D of order n as follows: Let p : S —• D 3  3  be the covering projection corresponding to the 7i o action and define / : D 2  f(x) = pf(x) where i G D  3  3  —• D by 3  and x £ p ( x ) . Then / is well defined; i n fact, let x' £ p~ (x), - 1  3  l  then there is a 6 7 o such that ot(x) = x ' and thus pf(x') = pf(a(x)) — p@f(x) = pf(x) where l2  (3 = faf-  1  £ I . 120  Similarly, using / - * , define / ' : D —* D by f'(x) = p / ( * ) - I t 3  3  _ 1  i s  easy  to check / ' / = 1 and / / ' = 1, and thus / is an isometry of D . As fp = pf, the order of / is n . 3  (ii) . We now pTove the uniqueness (up to conjugation by an isometry). Let g : D —• D 3  3  be an orientation preserving isometry of order n . We may assume that the geometric structure on D is induced from the universal covering p : 5 —• D given at the beginning of the proof. 3  3  3  We shall prove that, up to a conjugation by an isometry of D , the {g} action is equivalent to 3  the {/} action given in (i). Let G ={g;g : 5  3  —• 5  3  a map with pg = g p for some integer k}. Then G C 5 0 ( 4 ) by k  our construction. B y Lemma 2.3.1, 7i o C G is a normal subgroup of index n . More explicitly, 2  G = Ufc~i 9 A20 for some g £G with pg = gp. Claim 1 . There is an element h £ 5 0 ( 4 ) such that hGh'  1  = F.  Chapter 2.  33  On Property I  Proof Of Claim 1. Still consider the exact sequence 1  Z  — >  2  — •  50(4)  50(3) x 50(3) —+ 1.  Let p,, i = 1,2, be the natural projections from 50(3) X 50(3) to its left and right 50(3) factors respectively. Then we must have p\n(G) = Ieo since 50(3) has no finite group containing /so as a proper subgroup. Let n(g) = g' x g" G 50(3) X 5 0 ( 3 ) . Then g" £ 1 since otherwise the kernel of n would be larger than Z . As g' G Ieo, 2  (ff'  _ 1  x \){g' x g") = 1 x g" G r/(G). Suppose  5" has order m in 5 0 ( 3 ) . Then we see n(G) = ho X {g") and thus m = n by Lemma 2.3.1. Since isomorphic subgroups of 5 0 ( 3 ) are conjugate, there are h" G 5 0 ( 3 ) such that  h"{g"Yh"- = {/"}. So n(G) is conjugate to Ieo x {/"} i n 50(3) x 5 0 ( 3 ) by the element 1  1 X h". Let h G r / ( l x h"). Then since the kernel of n is Z which is contained in both G and - 1  2  F, hGh.- = F. Note that hl^oh' 1  = Iuo-  1  C l a i m 2. There is an isometry h : D —• D such that /i{<7}/i = {/}. 3  _1  3  Proof of Claim 2. Define h : D —• D by /i(x) = ph{x) where x G p~ (x). Then / i is 3  3  l  weU defined. In fact, let x . G p ( x ) , then there is a G /120 such that a ( x ) = x» and thus _1  ph(x»)  — ph(a(x)) = p/3h(x) = ph(x) where (3 = / m / i  h' : D — * D by /i'(x) = p h 3  3  - 1  ^ ) where x G p  - 1  ^)-  - 1  G 7i o- Similarly, using h' , define 1  2  I<; i s e a s  y  t o c h e c k  =  1  a  n  d h h >  =  and thus / i is an isometry and h~ = h'. x  Now let x G £ , hgh-*(x) = hgph,- ^) = hpghr (x) = p / ^ - ^ x ) = p / . ( x ) = / * p ( * ) = 3  1  l  / ( x ) where / , = hgh' G F has order n . Hence / fc  1  f c  has order n and thus  = {/}.  (iii). Note that 50(3) x 50(3) is the orientation preserving isometry group of 50(3) and the following diagram  50(4) x 5  50(3) x 50(3) x 50(3)  3  1  I S  3  9  50(3)  34  Chapter 2. On Property I  commutes, where the two vertical arrows denote the actions on 5 and 50(3) respectively and 3  q is the quotient map defined by the standard Z action on S ., 3  2  Note that an element g' x g" 6 50(3) X 50(3) acts on 50(3)fixedpoint freely iff g' is not conjugate to g" in 50(3). Also note that two elements in 50(3) withfiniteorders can possibly be conjugate only when they have the same order. Hence if n is relative prime to 2,3,5, then any element in J o x {g"} acts on 50(3) freely since orders of elements in 7 o can only be 2,3 6  6  and 5. Hence we have a free induced Z action on D . n  3  If n is not relative prime to 2,3 or 5, then exactly those elements c' X c" 6 I&o x {g"} with c' and c" having orders 2,3, or 5 and being conjugate to each other have fixed point sets in 50(3). Such elements exist. Hence in these cases, we obtain ^60 X Zk,k = 2,3 or 5, actions on 50(3) withfixedpoint sets. This in turn induces orientation preserving Zk actions on D  3  with fixed point sets. By Smith theory [11] thefixedpoint set of each such cychc action is a 1-sphere in D . • 3  Corollary 2.3.1 Let g : D —• D be an isomorphism of order n. If thefixedpoint set of 3  3  g has dimension 1, then n = 2,3 or 5 and such action is unique up to a conjugation by an isomorphism of D . 3  The proof of Corollary 2.3.1 is based on the following W. Thurston's result which will also be applied later on. Theorem 2.3.2 ( W . Thurston) Let M be an irreducible closed 3-manifold which admits a finite group action withfixedpoint set of dimension 1. Then M has a geometric decomposition.  Furthermore if M is also atoroidal, then M admits a geometric structure such that the grou action is by isometries.  Proof of Corollary 2.3.1. By Theorem 2.3.2, we may assume that / is an isometry. Note that / is necessarily orientation preserving since it has 1-dimensionalfixedpoint set. Now apply Theorem 2.3.1. •  35  Chapter 2. On Property I  Results in this section will be applied in sections 2.4.3-4.  2.4  Knots Having Property I or i  2.4.1  Torus knots, Slice Knots and Knots Formed by Band Connect Sums  In this section we show property I for nontrefoil torus knots and property I for slice knots and a family of knots formed by band-connect sums. Proposition 2.4.1 Nontrefoil torus knots have property I. Proof. This proposition is implicitly contained in [56]. Here we give a proof using the Casson invariant. Let T(p, q) denote the torus knot which wrapps around the boundary of an unknotted solid torus p times meridianly and q times longitudely. Note that (p, q) = 1 and we may assume that p > q > 0. If q = 1, then T(p, 1) is the trivial knot which obviously has property I. So we may assume p > q > 1. Note also that T(3,2) is the trefoil knot and hence to be nontrefoil, p ^ 3 or q ^ 2. It is known that the Alexander polynomial of T(p,q) is A(t) = Ait- ) = 1  I-(P- )(9- )A(I), 1  1  G Z[t]. Since  we have to normalize A(r) to A{t) = f ~ ( p "V ( ''" 1 ) A(t). Pure calcula-  tion of the second derivative of A(t) gives (1/2)A"(1) = (p - l)(c - l)/24. Since p > q > 1 2  2  and p ^ 3 or q ^ 2, (1/2)A"(1) > (3 - 1)(2 - l)/24 = 1. Now apply Lemma 2.2.2 • 2  2  Corollary 2.4.1 ([37]) Nontrivial torus knots T(p,q) have property P. Proof. As ( l / 2 ) A £  (pij)  ( l ) = (p - l)(g - l)/24 ^ 0 for p > q > 1, Theorem 2.2.1 (ii) 2  2  applies. • Proposition 2.4.1 and Corollary 2.4.1 together give Corollary 2.4.2 Nontrivial nontrefoil torus knots have property PI. •  36  Chapter 2. On Property I  Figure 2.4: a band-connect sum of two knots Proposition 2.4.2  Slice knots (and hence ribbon knots) have property 7.  Proof. It is known that A r f invariant is an invariant of concordance [64]. Since any slice knot is concordant with the trivial knot and the A r f invariant of the trivial knot is 0, Proposition 2.4.2 follows from Corollary  2.2.1. •  Now we show that if two knots have the same (different) A r f invariant (invariants), then the knot formed by band-connect sum of the two knots has property I (P). The argument is based on Kauffman's geometric version of A r f invariant as well as results in section 2.2. Let Ki and K  2  be knots in S .  follows. Separate Ki and K imbedding such that  The band-connect sum of K\ and K  3  2  2  by an imbedded 2-sphere S  2  6 (7i' ) = 7 x 0 , _1  1  6 (ijf ) = 7 x 1 . _1  C S. 3  is a knot denned as  Let 6 : 7 x 7 — • S  Then join the arcs K  x  2  3  be an  - 6(7 x 0) to  K2 — 6(7 x 7) by the arcs 6(97 x 7). The resulting knot is the band-connected sum of K\ and K, 2  denoted by Ki#bK  2  imbedded in S and  3  (Figure 2.4). 6 is called a trivial band if there exists some 2-sphere S  2  such that 6(7 x 7) D S  2  is a single arc, S fl (K\ U K ) 2  Note that if 6 is trivial, then Ki# K  Proposition 2.4.3 7/ TiTi and K K = K\#\,K2 has property I.  b  2  2  =  2  — 9 and S  2  separates Ki  K #K . X  are two knots in S  2  3  having the same Arf invariant, then  37  Chapter 2. On Property I  Note that if b is trivial and K\, K are both nontrivial then K = Ki#K 2  and thus has property I by Proposition  2  2.4.6.  is a satellite knot  Note also that if b is trivial and one of two knots,  say Ki, is trivial, then K = K has property I by Corollary 2  2.2.1.  To prove Proposition 2.4.3 several lemmas are needed.  Lemma 2.4.1 Let K = Ki#K  be a composite knot in S . Then A*:(0 = A*r (t) • A (t)3  2  2  K2  Proof. Let F, be a Seifert surface of Ki with genus g,, i = 1,2. Then F = Fi\F (the 2  boundary connect sum) is a Seifert surface of genus g + g of K. The normalized Alexander x  polynomial of K is A K ( « ) = t-^ Uet(V  - tV ) where V is a Seifert matrix of F. Obviously  1+3i  V =  V i  ° j where V,- is a Seifert  T  matrix of Ki for i =  tV ) = t~^det(Vi - tVi ) • t~ *det{V - tV ) = A (t) T  r  3  2  T 2  2  Kl  1,2.  Hence A (t) = K  t~toi +92)det(V-  • Ajr (<). • 2  For any knot K i n S , its normalized Alexander polynomial can be expressed as A;r(t) = 3  ao + £*.•(< - t- )-  Thus A' (t) = £ a , ( l - i ~ ) and A f c ( l ) = 0. If K = Ki#K ,  1  by Lemma  2.4.1,  2  K  then  2  Afc(<) = A ^ ( i ) • A * ( * ) + 2A' (t) • A' (t) + A (t) a  Kl  K2  Kl  • A'^t)  and thus  A £ ( l ) = A ^ ( l ) + A £ ( l ) . Therefore we have 2  Lemma 2.4.2 For a composite knot K = Ki#K  2  By the note given at the end of section  2.2.3,  in S , X'(K) = \'{Ki) + \'{K ). • 3  2  we see  Lemma 2.4.3 If Ki and K are knots in S having the same (different) Arf invariant (invari3  2  ants), then a(Ki#K ) 2  is 0 (I). •  Now we apply Kauffman's geometric interpretation of the A r f invariant of a classical knot [40] to prove Proposition 2.4.4 Let Ki and K  2  be knots in S . Then a(Ki# K ) 3  b  2  =  a(Ki#K ). 2  38  Ch&pter 2. On Property I  r IJ Figure 2.5: T-moves Proof. In [40], L.H. Kauffman denned a Inequivalence relation for knots in S and showed 3  that two knots in S are r-equivalent if and only if they have the same Arf invariant. The 3  T-equivalence is denned as follows. Let A" be a knot in S . Take an oriented knot diagram 3  K (orientation is arbitrarily given). The types of strand-switch of K shown in Figure 2.5 are called T-moves. Now two knots in S is T-equivalent iff one knot can be deformed to the other 3  by finitely many T-moves as well as knot isotopies. See [40] for more details. Take a knot diagram oiKi#\>Ki such that K\ and Ki have induced disjoint diagrams which can be separated by a 1-sphere of the projection plane and such that the band b is thin and intersects K\ and Ki transversally. Then there are finitely many crossings where the band b crosses under the knot K\. Performing T-moves on these crossings, we obtain a knot which is isotopic to the composite knot Ki#K . 2  This process is best illustrated by the example shown  in Figure 2.6. Hence Ki#bKi is T-equivalent to Ki#Ki  and thus they have the same Arf  invariant. O Proof of Proposition 2.4.3. It follows from Proposition 2.4.4, Lemma 2.4.3 and Corollary 2.2.1. • Similarly we can prove Proposition 2.4.5  If K\ andKi are knots in S having different Arf invariants, then Ki#bKi 3  has property P. •  Note that property P for nontrivial band connected sum has been proved by A. Thompson [75]. Of course property P for an arbitrary knot in S has been proved recently in [30]. 3  Chapter 2. On Property I  Figure 2.6: ff,#bffa « r-equivalent to  Chapter 2. On Property I  2.4.2  40  Satellite Knots and Generalized Double Knots  In this section we show property I for satellite knots and generalized double knots. Proposition 2.4.6 Satellite knots have property I.  Proof. The argument is similar to that of Theorem 1.1.4. We need one more result from [28], that is Lemma 2.4.4 ([28]) Let i f = C(p,q) be a cabled knot in a solid torus N*. Then N*(K,m/l) is a solid torus iff m = Ipq ± 1.  Let i f be a satellite knot in S with if* as a nontrivial companion knot. Let N and 3  N* be tubular neighborhoods of if and if* in S with N C intN*. Let E = S - intN, 3  3  E* = S - intN* and E = N* - intN. Then E = E* U E . Let p, X C dE and p*, X* C dE* 3  0  0  be preferred meridian-longitude pairs of if and if* respectively. Let u> be the winding number of i f in N*. Suppose that S (K,l/l) 3  compressible in S (K,l/l) 3  is a manifold with fundamental group I\20- Then dN* must be by Dehn's lemma. Let (D ,dD ) 2  C (S (K,l/l),dN*)  2  3  pressing 2-disc. Since dN* is incompressible in E*, (D ,dD ) 2  2  C (N*(K,l/l),dN*).  be a comHence  case 3) of Theorem 1.2.1 is ruled out. Case 2) of Theorem 1.2.1 cannot hold either by our assumption. Therefore N*(K,lfl)  is a sohd torus and if is a 0 or 1-bridge braid in N*. Hence  w > 1 by the definition of a satellite knot. But by Lemma 2.4.4, i f cannot be a 0-bridge braid and by Theorem 1.2.2, i f cannot be a 1—bridge braid. A contradiction is thus obtained. • Proposition 2.4.6 and Corollary 1.1.1 together give Corollary 2.4.3 Satellite knots have property PI. •  Recall that a generalized double knot is defined as follows. Let V be an unknotted sohd torus and let if o be the knot contained in V as shown in Figure 2.7 (a). Let if* be any knot Pi  Chapter  2.  41  On Property J  p full  p>0  ^  twists  x  p<0  (b)  (8)  Figure 2.7: a generalized double knot in S and let A " be a tubular neighborhood of K" in 5 . Let / be an isomorphism from V to 3  N*.  7  3  Then the image K = f(K ,o) of K o under / is called a generalized double knot and K* p  is called a companion  Py  knot of K = f(K o) (Figure 2.7). Note when p = 1 this is just the usual p>  definition of a double knot.  P r o p o s i t i o n 2 A.7  Proof.  Nontrefoil generalized  double knots have property I.  Let K be a generalized double knot in S and let K* be its companion knot. If 3  K* is a nontrivial knot, then K is a satellite knot and Proposition 2.4.6 applies. If K' is the trivial knot, then K is a generalized twisted knot (Figure 2.8). So we assume that A' = A'p.ji a generalized twisted knot with q twists (Figure 2.8 (a)). Note that K  Pi0  is the trivial knot,  K\-\ is the right hand trefoil knot, A ' _ i , i is the left hand trefoil knot, A " _ i , _ i and A'j,i are the figure eight knot and /i'o, is the trivial knot. 9  C l a i m . The normahzed Alexander polynomial of K Proof of the Claim.  Pt9  is  AAy,(0 = 2pg + 1 -  First we calculate the Conway polynomial ^K , (t) p q  on the number of twists. Orient K  Pi9  of  iv  P l ?  pq(t +  I ). -1  by induction  arbitrarily. Then by Conway recursion formula, V A ' , , _ I P  Chapter  2. On Property  42  1  P,0  q  full  P,Q-1  p  L  twists  -XT >^CK- XT  XXX  q>0  q<0 ( )  (b)  8  <c)  Figure 2.8: generalized twisted knot Ji' V^-  P i ?  = z V . ^ , where L  p  Pi9  is the link of two components shown in Figure 2.8 (c). The Conway  polynomial of L with the orientation given in Figure 2.8 (c) is pz (again using Conway recursion p  formula inductively). ^Kp,o  Therefore we get ^K ,  P 9  - qp* = 1 - pqz - Hence 2  2pq -I- 1 - pq(t + i  7  - 1  = VA' ,_  = V^,., - pz  7  |(I  the Alexander polynomial A A ,(r) = 1 p  2  - 2pz = • • • = 2  pq{t ^ - t~^l ) = 1  2  2  2  ) and the claim is proved.  Simple calculation gives ( l / 2 ) A £ ^(1) = pq. Hence by Lemma 2.2.2 only when p = ± 1 and P  q = ± 1 or p = 0 or q = 0 could K  p<q  have chance to ruin property I. But then  K,  p g  is either a  trefoil knot or a figure eight knot or the trivial knot. It is well known that 1 and —1 surgeries on the figure eight knot produce the same manifold (the figure eight knot is amphicheiral) whose fundamental group is the triangle group with presentation  {x,y;x  2  = y = 3  (xy) } 7  and thus  is of infinite order. Therefore the figure eight knot has property I. This completes the whole proof. •  Corollary 2.4.4 Nontrivial generalized double knots have property P. • Proof. Similar as the proof of Proposition 2.4.7 and use Corollary 1.1.1, the fact that (1/2)A&  (1) = pq i- 0 for p / 0 and q ± 0 and Theorem 2.2.1 (ii). O  Chapter 2.  43  On Property I  Corollary 2.4.5  ([4]  [26])  Nontrivial double knots have property P. •  Proposition 2.4.7 and Corollary 2.4.4 together give  Corollary 2.4.6  2.4.3  Nontrivial nontrefoil generalized double knots have property PI.  Periodic Knots  In this section we show property I for a few families of periodic knots.  The proof involves  branched covering arguments and applications of results in section 2.2 and section 2.3. Recall that a knot K in S is called a periodic knot if there is an orientation preserving 3  automorphism / of S with the following properties: 3  1) / has period n > 1, that is, f  n  is the identity map and / ' is not the identity map for  1 < i < n. 2) K is invariant under / , that is, f(K) = K. 3) the fixed point set of / is not empty and is disjoint from K. Remarks. 1). The action on S by the cychc transformation group {/} generated by / 3  induces a n-fold cychc branched covering p : S —• S /{f}. Due to the positive answer to the 3  3  Smith conjecture [3], the map / is a rotation of S , S /{f} is isomorphic to S , the fixed point 3  set of / is a trivial knot in S  3  3  3  and the image of the fixed point set under p is also a trivial knot  in S . 3  2). The restriction of p on K gives a regular covering p : K —• p(K)  and thus p(K) is also  a knot in p(S )  = 5 . p(K)  Lemma 2.4.5  Let K be a periodic knot in S with period n. If (m,nl) = 1, then S (K,m/l)  3  3  is called a factor knot of K.  3  3  admits a Z action withfixedpoint set a 1-sphere. n  Proof. Let N be a tubular neighborhood of the factor knot p(K)  in S downstairs disjoint 3  Chapter 2.  44  On Property I  from the fixed point set and let E = S - intN. Then N = p (N) 3  of K in 5  3  is a tubular neighborhood  -1  upstairs and N is invariant under the cychc action of {/}.  Let E = S — intN. 3  Let p, A C dE be a preferred meridian-longitude pair of p(K). Then p ( / j ) C 9/5 is a set of n -1  copies of meridians and p ( A ) C dE is a preferred longitude of K. Let p. be one of components - 1  of p~ {p) and X = p ( A ) . Obviously p»[/i] = [/x], p,[A] = n[A] in H\(dE). Let c be a 1-sphere x  in  _1  with slope m/nl. Then p ( c ) is a set of n copies of 1-spheres in dE with slope m/l. _1  Attaching n copies of 2-disks to each element of p ( c ) and then filling the n holes with n -1  3-balls, we extend the cyclic action f\ : dE —• dE onto the solid torus sewn in with the slope m/l without introducing new fixed points and thus we obtain a Z action on S (K,m/l) 3  n  with  fixed point set a 1-sphere. •  Proposition 2.4.8 Surgery on a periodic knot K in S  3  Proof. B y Lemma 2.4.5, S (K,l/l) 3  admits a Z  n  Suppose that for some slope 1//, S (K,l/l) 3  cannot give a fake Poincare sphere.  action with fixed point set a 1-sphere.  has fundamental group ii2o-  Then  S (K,l/l) 3  is atoroidal by Dehn's lemma. Gordon and Luecke have shown that any homology 3-sphere obtained by surgery on a knot in 5  3  is irreducible [30]. Now Theorem 2.3.2 implies that  S (K, l/l) is the honest Poincare sphere. • 3  A n immediate consequence of Corollary 2.3.1 and Lemma 2.4.5 is  Proposition 2.4.9 A periodic knot in S  3  with period n ^ 2,3,5 has property I.  So we only need to pay attention to periodic knots with period 2,3 or 5.  Proposition 2.4.10 A periodic knot K with a nontrivial factor knot has property I. Proof. From the proof of Lemma 2.4.5 we see that S (K,l/l) 3  is a n-fold cychc branched  cover of S (p(K), l/nl) with branch set a 1-sphere. Since niS (p(K), l/nl) is not trivial by 3  3  Chapter 2. On Property I  45  As periodic knots have property P [16], we obtain  Corollary 2.4.7  Example 2.4.1  Periodic knots given in Proposition 2.4-9 and 2-4-10 have property PI. •  Figure 2.9 shows that the knot 8]g is a periodic knot of period 2 with the  figure-eight knot A\ as a factor knot. Hence 8is has property I by Proposition 2.4.10.  Remark. Results preceding this section fail to prove property I for 8is, because 1) the Alexander polynomial of 8  J8  is 13 - 10(i + i  _ 1  ) + 5 ( i + r ) - ( i + r ) and hence 2  a  3  3  get A ' ( 8 ) = 1. 18  2) 8is is not a satellite knot. In fact 8js is an alternating knot (i.e. with a knot diagram where crossings alternate under-over-under- over  as one travels along the knot) and hence  is a hyperbolic knot by ([55] Corollary 1) which asserts that any nontorus alternating knots is a hyperbolic knot.  46  Chapter 2. On Property I  2.4.4  Strongly Invertible Knots  In this section we investigate property I for strongly invertible knots. The main result of this section is Proposition 2.4.12 which is a refinement of Lemma 2.2.1 and Lemma 2.2.2 when specializing to strongly invertible knots. One feature of the argument is that the Kauffman bracket polynomial, an invariant of links, is used. A knot K in S is strongly invertible if there is an orientation preserving involution of S 3  3  which carries K onto itself and reverses its orientation. Note that Waldhausen [79] showed that such an involution is equivalent to a 180°-rotation of R whose axis meets K in exactly two points. 3  Proofs of the following statements can be found in [15] [5] [57]. Let K be a strongly invertible knot in S . Then the restriction of the involution to the knot complement can be extended to 3  an involution of the manifold S (K,m/l) 3  S (K,m/l) 3  obtained by performing m//-surgery on K. For each  the quotient under this involution is the 3-sphere S and S (K,m/l) 3  3  is a double  branched cover of S . Moreover the branch set downstairs of this covering can be obtained by 3  removing a trivial tangle from the unknot (i.e. the image of the fixed point set of the original involution) and replacing it by the m//-rational tangle. In particular if the surgery slope is an integer m , then the removal and replacement of the trivial tangle corresponding to the surgery is in fact the attachment of a band with m half twists to the unknot. By the above discussion, S (K,l/l) 3  admits a  action with fixed point set a 1-sphere.  Hence by the same reasons as given in the proof of Proposition 2.4.8, we obtain  Proposition 2.4.11 Surgery on a strongly invertible knot K cannot give a fake Poincar'e sphere. •  Proposition 2.4.12 At most one surgery on a strongly invertible knot K can give a manifold with fundamental group 7i2o-  47  Chapter 2. On Property 1  Proof. By Proposition 2.4.11 and Lemma 2.2.1, we only need to show that S (K, 1) and 3  S (K,-1) 3  cannot both be Poincare spheres. Suppose, on the contrary, that both are Poincare  spheres. By Corollary 2.3.1, there is, up to a conjugation by an isomorphism, a unique involution on the Poincare sphere with fixed point set a 1-sphere. Hence the associated double branched covering is the one mentioned in section 2.3 (6). The branched set in the base space S is the 3  (3,5) torus knot up to unoriented automorphisms of S and thus is either the right hand or the 3  left hand (3,5) torus knot. The branched sets corresponding to S (K, 1) and S (K, - 1 ) , denoted by K\ and K-\, can 3  3  be obtained by band attachments with 1 and - 1 half twist to the unknot respectively. Let U denote the unknot and let LQ denote the link (of two components) obtained by band attachment with no twist to the unknot. Then K , K-\, U and LQ have diagrams differing only at the site x  shown below.  X We can orient K\, K-\ and LQ in a consistent way such that we can apply the Conway recursion formula and get V^-j - V / c _ , — zVi  = 0. Since K\ and K.\ are right hand or left  0  hand (3,5) torus knot, it is easy to show, by section 2.2.3 (i) (ii) (iii), that lk(Lo) = 0. Now we try to get a contradiction by calculating Kauffman bracket polynomials. For unoriented Ki, K-i, U and LQ, we have  {  < Ki > = < K-i  A <  >=  A '  Lo > 1  <  L  +A-  1  Q  <  > +A <  U >, U > .  Now consider the oriented K\, K-\, LQ and U (the first three have consistent orientations and the orientation of U is arbitrarily given). Let w(Lo) = n. Then w(U) = n since lk(Lo) = 0. Also w{Ki) = n + 1 and tf(A'_i) = n - 1. Hence f {A) Lo  = (-A)"  3 n  < LQ >, f {A) v  =  Ch&pter 2. On Property I  (-A)~  3n  < U >=  1, f (A) Kl  48  =  ( - A ) "  ^  3  )  1  <  Ki > and / « • _ , ( A )  =  ( - A ) ~  3  (  N  -  1  )  <  K-i  >.  Substituting them into (*) above, we have -A*f (A)  J  =  Kl  (**)<  -A-'f _ (A) K  Eliminating / L , we get 0  (i) . / R - J = (ii) . A fx {A) 2  l  A  2  / K J ( A )  -  A  -  Lo  r  = fL (A) + A  1  2  0  / * - ^ - ^ )  2  f (A)- A->,  =  A  -  2  A  -  Hence we have either  .  2  = 1 if i f i is ambient isotopic to i f _ i ; or - A^fKiiA' ) 1  = A - A' 2  2  if i f i is the mirror image of K-\.  But both cases contradict the fact that the oriented Kauffman bracket polynomials of right hand and left hand (3,5) torus knots are / ( A ) = A "  1  6  + A "  2  4  - A  4  0  and f(A~ ) l  neither of  which fit (i) or (ii). • For an amphicheiral knot K in S , 5 ( i f , m/l) = S (K, 3  Corollary 2.4.8  3  3  —m/l). Hence we obtain  Amphicheiral strongly invertible knots have property I •  As strongly invertible knots have property P [9], we obtain Corollary 2.4.0  Amphicheiral strongly invertible knots have property PI. •  Example 2.4.2. The knot 63 is an amphicheiral strongly invertible knot and hence has property I. From the discussion in this section we see that basically there is an algorithm for deciding if a strongly invertible knot K has property I. Namely find the branched knot i n S  3  corresponding  to 1 or —1 suTgery on K and check if the branched knot is a torus knot of type (3,5) or its mirror image.  2.4.5  Pretzel Knots  In this section we give two infinite families of pretzel knots which have property I.  Ch&pter 2.  49  On Property I  FiguTe 2.10: a pretzel knot of type K(pi,- •••,p ) m  A pretzel knot of type (j>\,P2, • • ••,Pm) in S Figure 2.10 where each box B  Pi  3  is a knot having a knot diagram as shown in  denotes a two-strand braid with pi half-twists.  First we show  P r o p o s i t i o n 2.4.13 Let K be a pretzel knot of type (p,q,r) such that r is an even number,p + q  0, p, q are not relative prime. Then K has property PI.  Proof. Since these pretzel knots are strongly invertible, we only need worry about ± 1 surgeries by Proposition 2.4.11 and Lemmas 2.2.1. A method used by J. Simon in proving property P for such knots (71] can be generalized to •work for property I as well. Let S be the boundary of a regular neighborhood of the interior of the obvious nonorientable (since r is even) surface spanned by K. Then 5 is a closed orientable surface in S , K C S and S- K is connected. Let A, B be the closure of the two complements of 3  S in S . 3  Then both A and B are standard handbodies of genus two. By homological arguments  it can be 6hown that E\(A, S-K)  = Z , Ei(B, 2  S - K) = Z4 where d is the greatest common  divisor of> and q ([71] [72]). Let N be a tubular neighborhood of K in S be a meridian and a preferred longitude of K.  3  and let E = S  3  - tni(JV). Let /z,A C dE  Then E\(dE) = Z[p] + Z[X] and [A] = 0 in  50  Chapter 2. On Property I  Let X be a boundary component of an annular neighborhood of K in S. ± 2 ( P + «)[M] in ffiPO =  Then [X] =  and [X] = ± 2 ( p + g)[/x] + [A] in Hx(dX) = Z[/*] + Z[A] ([71] [72]).  We are now going to show that S (K, 1) has infinite fundamental group (the case of —1 3  surgery can be proved in exactly the same way).  It follows from Van Kampen's theorem  that ir\S (K,l) is isomorphic to the free product of *i(A) and iti(B) amalgamated along 3  ITI{S - K) with additional relation X ( a & ) ( ± 1  ± 2  p +  »)  = 1, where a 6 *\(A\ b 6 JTI(B). By first  : k l  annihilating iri(S—K) and then abelianizing it\(A) and it\(B), we obtain a homomorphism from  TnS (K, 1)onto H^A,S-K)*HiiBiS-K)/  < (ab) ^)  3  ±2  >= Z *Z /  ±1  2  d  < (ab)* ^^ 2  1  >.  By the conditions given in Proposition 2.4.13, ±2(p + q)±l cannot be ± 1 , ± 2 , ± 3 , ± 4 , ± 5 and d is an odd number. Hence the group Z * Zdj < ( o 6 ) ( ±2  2  p+  ')  ±1  > is not a finite group. Therefore  ic\S (K, 1) cannot be finite. • 3  E x a m p l e 2.4.3 The knot 85 is a pretzet knot of type (3,3,2) and thus has property PI by Proposition 2.4.13. Next we point out, as an easy consequence of Proposition 2.4.10,  P r o p o s i t i o n 2.4.14 Pretzel knots of type (2m + 1,2m + 1,2m 4-1), m ^ 0, have property I.  Proof. K(2m + 1,2m + 1,2m + 1) is a knot of period 3 with T ( 2 , 2 m + 1) torus knot as a factor knot (Figure 2.11). Now apply Proposition 2.4.10. • Note that W . Ortmeyer showed in [62] that R  3  is the universal cover of each manifold  obtained by nontrivial surgery on pretzel knot of type (4 + 2p, 3 + 2q, — 5 — 2r) with p, q, r positive. Hence this family of pretzel knots have property PI.  2.4.6  K n o t s u p t o 9 Crossings  Computing A' = ^ A ^ - ( l ) for the classical knots up to 9 crossings, we obtain the following table of their Casson invariants (we use the knot table given in [65]).  Ch&pter 2. On Property 1  51  Figure 2.11: a pretzel knot of type (2m + 1,2m + l , 2 m + 1) and its factor knot  knot  3i  4,  5,  5  A'  1  -1  3  knot  8i  8  8  A'  -3  0  -4  knot  8»  8l6  A'  4  1  knot  9  A'  0  knot  9  A'  -1  5  knot  9  9 7  9  A'  3  -3  6  8  9  2  9  8 2 2  3 6  9  2 3  3  61  6  -2  -2  1  8  85  8  -3  -1  817  8is  1  7  63  7i  7  1  6  3  5  4  4  1  1  87  8  89  810  811  812  8l3  814  -2  2  2  -2  3  -1  -3  1  0  819  820  821  9i  9  9  9  9  9  1  5  2  0  10  4  9  7  6  7  9io  9n  9l2  9l3  9u  9l5  9l6  9l7  9l8  9l9  9  8  4  1  7  -1  2  6  -2  6  -2  2  924  9s  9  9 7  9  9 9  9o  931  9  9  9  1  0  0  0  -1  -1  -1  2  1  9«  9  9  9  9  0  -2  3  3 8  2  4  2  9  9  3 9  2 6  4 0  -1  2  2  6  2  2 8  4 2  8  2  4 3  -1  2  2  3  0  4 4  2  3  3  4 5  7  9  4  4  3 2  7  5  5  3 3  1 4 6  -2  7  6  6  7  9  7  5 2 0  921 3  3 4  9  -1  7  9 7  9  9  -1  3  4  7  4 8  3 5  4 9  6  This calculation gives immediately that 59 out of the 84 knots have property I (A' ^ ± 1 ) . But these 59 knots are strongly invertible [36], hence they have property I. Property I for the knots 4j, 6 , 8s, 8 i has been shown in section 2.4.2, 2.4.4, 2.4.5, 2.4.3 3  respectively. Except for the knots 817, 9  8  3 2  and 9  3 3  , the rest of the knots are strongly invertible  [36]. By the remark given at the end of section 2.4.4 we could decide property 1 for these knots.  52  Chapter 2. On Property I  A l l nontrivial knots with 9 or less crossings have property P since 75 of them have A' ^ 0 and the rest are strongly invertible.  2.5  Concluding Remarks and Open Problems  Let i f be a knot in 5  3  and let E = S — intN(K) be its knot complement. Let F be a closed 3  connected incompressible surface in E. Note that F is necessarily oritentable and it separates E into two components, say E\ and E , that is, E = E\ U E , E\ fl E 2  Assume that E  2  2  is the component which contains dE.  if there is an annulus A properly embedded in E  2  2  = dE\ fl dE  2  =  F.  The surface F is called a m-surface  with dA consisting of a 1-sphere in F and  a meridian curve in dE. F is called a Im-surjact if there are two disjoint annuli A\ and A  2  properly embedded in E  2  with dA\ — s U m x  x  and dA  2  = s \J m 2  2  such that si and s are 2  nonisotopic simple closed curves in F and that m j and m2 are meridian curves in dE.  Note  that a m-surface is necessarily nonperipheral and of genus greater than one. In [55] W . Menasco proved that if K is a knot with a 2m-surface F, then F remains incompressible in each manifold S (K, m/l) obtained by a nontrivial surgery on K. 3  Hence  knots with 2m-surfaces have property PI by Dehn's lemma. Q u e s t i o n 2.5.1.  Let K C S  3  be a knot with a m-surface F.  incompressible in each manifold S (K,m/l) 3  Is it true that F remains  with m/l ^ 1/0?  Recall that a Montesinos knot of type (pi/qi,...,p /<7n) is a knot having a knot diagram n  as shown in Figure 2.12 where each Tp /  i qi  denotes the rational tangle of type pi/qt.  In [60] U . Oertel showed that a Montesinos knot of type ( p i / g i , . . -,p /<ln) with n > 4, n  qi > 3, i = 1 , . . . , n, is a knot with 2m-surface. Therefore this family of Montesinos knots have property PI. Q u e s t i o n 2.5.2. It can be shown that the knots 8 , 6 and 8 1 7 have m-surfaces. Do they have 2m-surfa.ces?  53  Chapter 2. On Property I  Figure 2.12: a Montesinos knot of type ( p i / g \ , p / 9 n ) n  In [74] M . Takahashi proved that no nontrivial surgery on a nontorus 2-bridge knot K can produce a manifold with cyclic fundamental group. His idea is to show that corresponding to a nontrivial surgery on K there is a homomorphism from the fundamental group of the resulting manifold to the group GL(2,C) with noncyclic image. Q u e s t i o n 2.5.3. For a nontrivial surgery on a nontorus 2-bridge knot, is there a homomorphism from the fundamental group of the resulting manifold to the group GL(2, C) with infinite image? Of course the positive answer implies property I for nontorus 2-bridge knots. Lemma 2.2.1 and Lemma 2.2.2 are quite effective criterions to tell property I for a knot in S . 3  If there is no fake Poincare sphere, then property I is identical with property I and  things become much simpler by Lemma 2.2.1. For fake Poincare sphere there is also a control on surgery slopes. knot in S  3  Recently S. Bleiler and C . Hodgson have shown [6] that if a hyperbolic  admits two finite surgeries then the distance between the two slopes is less than  21(the distance between two slopes m i / / i and m / J 2  2  is | m i / - rn /i|). Hence if 1// surgery 2  2  on a hyperbolic knot produces a fake Poincare sphere, then \l\ < 21. To further eliminate the possibilities of obtaining fake Poincare sphere by surgery on a knot in S , i l might be helpful 3  to consider the approach suggested by the following two questions. Q u e s t i o n 2.5.4. If S (K, 1 //) is a fake Poincare sphere, is it homotopy equivalent to the honest 3  Poincare sphere?  Chapter 2. On Property I  54  Question 2.5.5. Is the Casson invariant a homotopy type invariant? From the discussion in section 2.4.3, we see that to solve property I for periodic knots, it is equivalent to solve the following Problem 2.5.1. Let A" be a periodic knot with period 2 or 3 or 5 and with a trivial factor knot p(K). Determine when the branch set, a trivial knot, i n S downstairs of the covering 3  p : S —•* S /{f) becomes a torus knot of type ( ± 3 , 5 ) or ( ± 2 , 5 ) or ( ± 2 , 3 ) respectively after 3  3  performing 1 or —1 surgery on p(K) in S . 3  From the discussion in section 2.4.4, we see that to solve property I for strongly invertible knots in 5 , it is enough to solve the following 3  Problem 2.5.2 Determine precisely when a trivial knot can be changed to a torus knot of type (3,5) or (—3,5) by a band attachment with a half twist to the trivial knot. We may also raise Problem 2.5.3. Solve property I for the knots 817, 932 and 933. Problem 2.5.4. Solve property I for symmetric knots. Question 2.5.6. Is there a nonsymmetric knot K C S such that some nontrivial surgery on 3  K gives a manifold with finite fundamental group?  Chapter 3  O n B o u n d a r y Slopes  3.1  Introduction  Let K in S  3  S  3  be a nontrivial knot, let N(K)  be a tubular neighborhood of K in S , and let E — 3  — intN(K) with the preferred meridian-longitude framing pair on dE.  If (F, dF) C (E,  dE)  is an orientable, incompressible and ^-incompressible surface (with dF nonempty), then the components of dF all have the same slope on dE and such a slope is called a boundary slope. Consider (p(K)  C Q U {1/0}, the set of boundary slopes of K.  Questions about (f(K)  are  closely related to understanding the 3-manifolds obtained by Dehn surgery on K (very possibly a Haken manifold is produced by surgery with a boundary slope [16]). In [33] A . Hatcher and W . Thurston completely described <p(K) for 2-bridge knots. In particular they found that <p{K) C Z U {1/0}  for every 2-bridge knot. The following natural question was thus raised in  [33]. Q u e s t i o n . ([33]) Is it true that <p(K) C Z U {1/0}  for every knot K in S  3  ?  In this chapter we give the question a negative answer by showing that for the (—2,3,7) pretzel knot there exists a nonintegral boundary slope. The proof is given in the next two sections. In Section 3.2 we prove  T h e o r e m 3.1.1 If K C S  3  is hyperbolic and not sufficiently large and if K admits two non-  trivial cyclic surgeries, then there exists at least one nonintegral boundary slope for K.  The set of knots satisfying the conditions given in the above theorem is not empty. In  55  Chapter 3.  On Boundary Slopes  56  Section 3.3 we prove  L e m m a 3.1.1 The pretzel knot of type (—2,3,7) ts hyperbolic and not sufficiently large and admits Z\& and Z\$ surgeries. Section 3.4 concludes with remarks and open problems. This chapter was essentially contained in the author's paper [84]. Infinitely many nonintegral boundary slopes have been found by A . Hatcher and U . Oertel by a different approach [34].  3.2  P r o o f o f T h e o r e m 3.1.1  We apply main results of [16]. By Theorem 1.1.3, the two nontrivial cychc surgery slopes that K admits are successive integers, say, m and m + 1. Claim. Neither m nor m + 1 is a boundary slope. Proof of Claim.  Suppose that one of the two slopes, say m , is a boundary slope. Let  (F, dF) C (E, dE) be an orientable essential surface such that dF is a nonempty set of boundary curves in dE of slope m and such that the number of components of dF is minimal subject to these conditions. Note that in any knot complement all orientable essential surfaces except those with 0 boundary slope are separable surfaces. Now applying [16] Proposition 2.2.1 if F is nonplanar or applying [16] Proposition 2.3.1 if F is planar, we arrive at a contradiction either with the condition that irxS (K,m) 3  is cychc or with the condition that K is not sufficiently  large. • Since i f is a hyperbolic knot, the interior of E has a complete hyperbolic metric of finite volume. We can now apply results of [16] Chapter 1. It follows that there exists a norm || • || on the 2 dimensional real vector space Hi(dE,R) (1).  such that  || • || is positive integer valued for each (m,Z) £ Hi(dE,Z)  - {(0,0)} C  Hi(dE,R).  Chapter 3.  On Boundary Slopes  57  Note that every slope m/l G Q U {1/0} is corresponding to the pair of primitive elements (±m,±/)€  H {dE,Z). x  (2) . Define n = min{\\(m,l)\\;(m,l) G Hi(dE,Z)-(0,0)} n i n Hi(dE,R).  and consider the ball J5 of radius  Then i? is a compact, convex, finite sided polygon which is symmetric about  the origin (i.e. -B = B). Note that intB fl H (dE,Z) x  = (0,0).  (3) . For any vertex of B, there is a primitive element (m,/) G H (dE, Z) such that (m,/) x  lies on the semi-line starting at (0,0) and passing through the vertex and moreover m/l is a boundary slope. (4) . If m/l is not a boundary slope and S (K,m/l) 3  has cyclic fundamental group, then  ( ± m , ± / ) G dB (of course they are not vertices of B by (3)). (5) . Assume that the area of a parallelogram spanned by any pair of generators of H (dE, Z) x  is 1. Then AreaB < 4. Now to prove Theorem 3.1.1 it suffices to show that there exists a vertex of B which provides a nonintegral boundary slope i n the way described in (3). B y the Claim and (4) above, points ( ± m , ±1) and ( ± m ± 1, ±1) are all on the boundary of B and none of them are vertices of B. Let T be the closed edge segment of dB on which point (m + 1,1) lies ( as an interior point) and let v — (si,s ) and v = ( i i , t ) be the two vertices of T. Let L be the line i n H\(dE,R) x  2  2  2  passing through points {(m, 1); m G Z}. C a s e 1. T is not parallel to L. Then one of the vertices of T, say v = (si,s ) must lie above the line L i n the sense that x  2  s > 1. Such a vertex certainly determines a nonintegral boundary slope i n the way described 2  in (3). C a s e 2. T is parallel to L. Then m G T (as an interior point) and v = ( « i , l ) , v = ( r j , l ) . We may assume that x  2  si < m < m + 1 < t . We must have m — l < s i < * i < m + 2 since otherwise the area of x  Chapter 3.  On Boundary Slopes  58  B would be large than 4, violating (5). Now both v\ and v determine nonintegral boundary 2  slopes as required. •  3.3  P r o o f o f L e m m a 3.1.1  Throughout this section let K denote the pretzel knot of type (—2,3,7). Fintushel and Stern have shown (unpublished)  L e m m a 3.3.1 ( R . F i n t u s h e l a n d R . Stern) 18 and 19 Dehn surgery on K yield lens spaces.  For the sake of the completeness of the paper we give the following verification of their result. Proof. The idea is to show that 18 and 19 surgeries on K yield manifolds that double branched cover 5  3  with branched set in S  3  a 2-bridge link and a 2-bridge knot respectively.  The manifolds are therefore lens spaces. Actually we will see that they are £ ( 1 8 , 5 ) and £ ( 1 9 , 8 ) . We provide below an explicit pictorial illustration. Note that i f is a strongly invertible knot (Figure 3.13 (a)). The quotient under the involution shown in Figure 3.13 (a) is S  3  and hence S  3  double branched covers S  3  with branched set  downstairs the unknot as shown in Figure 3.13 (d) (the process is shown through Figure 3.13 (a)-(d)). As noted in section 2.4.4, the strong inversion on K can be extended to an involution on each of the manifolds S (K,m/l)  and the quotient under the corresponding involution is  3  S . Moreover the branched set in S of the corresponding double covering can be obtained by 3  3  removing the trivial 1/0-tangle (ball B shown in Figure 3.13 (d)) from the unknot and replacing it by the rational m//-tangle (beware that the sign of a rational tangle given here is opposite to that given in [15]). In particular the branched sets in S corresponding to 18 and 19 surgeries 3  are shown in Figure 3.14 (a) and (b) respectively. They turn out to be (by isotopy) the 18/5  Chapter 3. On boundary Slopes  59  Chapter 3.  60  On boundary Slopes  isocopy  21  preferred  laccitude  Figure 3.13: surgery on (-2,3,7) pretzel knot and double branched covering  Chapter 3.  On Boundary Slopes  61  18/5 2-bridge link  (B) branch set corresponding to 1 8 - s u r g e r y  19/8  2-bridge knot  (b)  branch set corresponding to 1 9 - s u r g e r y  Figure 3.14: branched sets of 18- 19-surgeries on the ( - 2 , 3 , 7 ) pretzel knot 2-bridge link and the 19/8 2-bridge knot. Therefore the manifolds upstairs are lens spaces 1 ( 1 8 , 5 ) and 1 ( 1 9 , 8 ) .  •  Reference for the argument above is [5] [15] [57] and [65]. Lemma 3.3.2 Ji is hyperbolic and not sufficiently large. Proof. Note that K is the K{-l/2,1/3,1/7)  star knot (notation as in [60]) and hence by  [60] Corollary 4 (a), K is not sufficiently large. K cannot be a torus knot either since there is no nontrivial torus knot which could admit 18 and 19 cychc surgeries by Theorem 1.1.1. • Lemma 3.1.1 follows Lemma 3.3.1 and Lemma 3.3.2. O  Chapter 3.  3.4  62  On Boundary Slopes  P r o p e r t i e s o f <p(K) a n d O p e n P r o b l e m s  In this section we list known properties of f(K) and point out some open problems.  T h e o r e m 3.4.1 ([17]) \<p(K)\ > 2 for any nontrivial knot K in S . 3  Theorem 3.4.1 is sharp as a torus knot T(p, q) has exactly two boundary slopes, namely  <p(T(p,q))={0,pq}. Q u e s t i o n 3.4.1. Is it true that for a nontorus knot K in 5 , Iv^-SQI > 2? 3  T h e o r e m 3.4.2 ([32]) <p(K) is afiniteset for any knot in S . 3  In spite of Theorem 3.4.2, there is no up bound restriction on the distance among boundary slopes in <p{K) when K varies over all knot types.  This is easily seen to be true when K  varies in the set of cabled knots of a fixed knot, namely the distance between the boundary slopes 0 (0 E <p(K) for all knots K C S ) and pq (the slope of the cabling annulus) can be 3  arbitrarily large.  This is also true when K varies over the set of hyperbolic knots. In fact,  by Examples 1.4.1, Fintushel-Stern knots K  2n  are hyperbolic knots admitting cychc surgeries.  Then a similar argument as that given in Theorem 3.1.1 will give a boundary slope m/l of K  2n  with |m| > |18n|. Recently A . Hatcher and U . Oertel investigated <p(K) for Montesinos knots and they found infinitely many Montesinos knots having nonintegral boundary slopes. By their results \l\,m/l £ <p(K) has no universal bound when K varies over knot types. In the proof of Theorem 3.1.1 one of properties of the fundamental domain B is that each vertex of B corresponds to a boundary slope. Let m/l  0, be a boundary slope of a hyperbolic  knot K in S and let L C H\{dM, R) be the semi-line which starts from (0,0) and passes (m, /). 3  Q u e s t i o n 3.4.2. Does L intersect £ at a vertex of Bl If the answer is yes, then some interesting information about cychc surgery and boundary slopes can be obtained. In particular Theorem 3.4.2 follows for hyperbolic knots.  Chapter 3.  On Boundary Slopes  63  Question 3.4.3. Is Theorem 3.1.1 still true if in Theorem 3.1.1, the condition ' i f admits two nontrivial cyclic surgeries' is reduced to ' i f admits one nontrivial cyclic surgery'? If the answer is yes, then all if2 (M > 1) have nonintegral boundary slopes. n  Example 1.4.2 shows that each Berge-Gabai knots J  n  admits two nontrivial integral surg-  eries. Question 3.4.4. Is J  n  not sufficiently large?  If the answer is no, then J  n  has at least one nonintegral boundary slope by Theorem 3.1.1.  Let p<p(K) be the set of boundary slopes of essential planar surfaces i n S — intN(K). 3  Theorem 3.4.3 ([29]) \p<p(K)| < 6 for any knot i f .  Theorem 3.4.4 ([31]) p<p(K) C Z U {1/0} for any knot i f .  It is well known that for any torus knot i f = T(p,q) or any cabled knot i f — C(p,q), pq G p(p(K). It is also known that for certain prime knots, e.g., those which have prime tangle decompositions [48], and even for certain hyperbolic knots, e.g. those which have simple tangle decompositions [73], 1/0 G pip(K) (the proof is not too hard and is omitted). However Question 3.4.5. Is it true that pip(K) — {1/0} = 0 for any nontorus noncabled knot Kl Note that a positive answer to this question proves the cabling conjecture which states: i f S (K, m/l) is a reducible manifold then i f is a torus knot or a cabled knot. 3  Bibliography  [1] S. Akbulut and J . McCarthy, Casson's invariant for homology 3-sphere - a n exposition, to appear. [2] J . Bailey and D . Rolfsen, A n unexpected surgery construction of a lens space, Pacific J. Math. 71 (1977) 295-298. [3] H . Bass and J . W . Morgan, The Smith conjecture, Academic Press, 1984. [4] R . Bing and J. Martin, Cubes with knotted holes, T . A . M . S. 155 (1971) 217-231. [5] S. Bleiler, Prime tangles and composite knots, Springer Lecture Notes in Math. 1144, 1-13. [6] S. Bleiler and C . Hodgson, Spherical space forms and Dehn surgery, preprint. [7] S. Bleiler and R. Litherland, Lens spaces and Dehn surgery, P. A . M . S. 107 (1989) 1091-1094. [8] S. Bleiler and M . Scharlemann, Tangles, property P and a problem of J . Martin, Math. A n n . 273 (1986) 215-225. [9]  , A projective plane in R with three critical points is standard. Strongly 4  invertible knots have property P, Topology 27 (1988) 519-540. [10] S. Boyer and D . Lines, Surgery formulae for Casson's invariant and extensions to homology lens spaces, preprint [11] G . Bredon, Introduction to compact transformation groups, Academic Press, 1972. [12] G . Burde and H . Zieschang, Knots, de Gruyter studies in Mathematics 5, de Gruyter, 1985. [13] W . Brakes, Manifolds with multiple knot surgery descriptions, Math. Proc. Cambridge Phil. Soc. 87 (1980) 443-448. [14] T . D . Cochran and R. E . Gompf, Applications of Donaldson's theorems to classical knot concordance, homology 3-spheres and property P, Topology 27 (1988) 495-512. [15] J . H . Conway, A n enumeration of knots and links and some of their algebraic properties, Computational problems in abstract algebra, Pergamon Press, New York (1970) 329-358. [16] M . Culler, C . M . Gordon, J . Luecke and P.B. Shalen, Dehn surgery on knots, A n n . of Math. 125 (1987) 237-300. 64  65  Bibliography  [17] M . Culler and P.B. Shalen, Bounded, separating surfaces in knot manifolds, Invent. Math. 75 (1984) 537-545. [18] M . Dehn, Uber die Topologie dreidimensionalen Raumes, Math. A n n . 69 (1910) 137-168. [19] R. Fox, Free differential calculus III, subgroups, A n n . Math. 64 (1956) 407-419. [20] S. Furusawa and M . Sakuma, Dehn surgery on symmetric knots, Mathematics Seminar Notes 11 (1983) 179-198. [21] R . Fintushel and R. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980) 33-51. [22] D . Gabai, Surgery on knots in solid tori, Topology 28 (1989) 1-6. [23]  , Foliations and the topology of 3-manifolds, J . Diff. Geom. 18 (1983) 445-503.  [24]  , Foliatuons and the topology of 3-manifolds II and III, J . Diff. Geom. (1987)  [25]  , 1-bridge braids in solid tori, preprint.  [26] F . Gonzalez-Acuna, Dehn's construction on knots, Bol. Soc. Mat. Mex. 15 (1970 58-79. [27] F . Gonzales-Acuiia and W . Whitten, Imbeddings of knot groups in knot groups, Geometry and topology (1985) 147-155. [28] C M . Gordon, Dehn surgery and satellite knots, T . A . M . S. 275 (1983) 687-708. [29] C M . Gordon and R . A . Litherland, Incompressible planar surface in 3-manifolds, Top. and its appli. 18 (1984) 121-144. [30] C M . Gordon and J. Luecke, Knots are determined by their complements, J . A . M . S. 2 (1989) 371-415. [31]  , Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Camb. Phil. Soc. 102 (1987) 97-101.  [32] A . Hatcher, On the boundary curves of incompressible surfaces, Pacific J . Math. 99 (1982) 373-377. [33] A . Hatcher and W . Thurston, Incopressible surfaces in 2-bridge knot complements, Invent. Math. 79 (1985) 225-246. [34] A . Hatcher and U . Oertel, Boundary slopes for Montesinos knots, Topology 28 (1989) 453-480. [35] R. Hartley, Konts with free period, Can. J . Math. 33 (1981) 91-102. [36]  , Identifying non-invertible knots, Topology 22 (1983) 137-145.  66  Bibliogr&phy  [37] J . Hempel, A 6imply connected 3-manifold is 5  3  if it is the sum of a solid torus and the  complement of a torus knot, P. A . M . S. 15 (1964) 154-158. [38]  , 3-manifolds, A n n . of Math. Studies 86, Princeton Univ. Press, Princeton, New Jersy, 1976.  [39] W . Jaco, Lectures on three-manifold topology, Regional conf. ser. in Math. 43 (1977). [40] L . H . Kauffman, The A r f invariant of classical knots, Conteporary Math. Vol 44 (1985) 103-116. [41]  -, State models and the Jones polynomial, Topology 26 (1987) 395-407.  [42]  , On knots, Annals of Math. Studies 115 (1987).  [43] M . A . Kervaire, Smooth homology spheres and their fundamental groups, T . A . M . S. 144 (1969) 67-72. [44] R . C. Kirby, Problems in low dimentional manifold theory, Algebraic and geometric topology, Proc. Symp. Pure Math. X X X I I , Amer. Math. Soc. 1978. [45] R. C . Kirby and M . Scharlemann, Eight faces of the Poincare homology 3-sphere, Geometric Topology, ed. J. C . Cantrell, Academic Press, New Tork, (1979) 113-146. [46] J . Levine, Polynomial invariants of knots of codimension two, A n n . of Math. 84 (1966) 537-554. [47] W . B . R. Lickorish, Surgery on knots, P. A . M . S. 60 (1977) 296[48]  , Prime knots and tangles, T . A . M . S. 267 (1981) 321-332.  [49]  , A representation of orientable combinatorial 3-manifolds, A n n . of Math. 76 (1962) 531-540.  [50] R . A . Litherland, Surgery on knots in solid tori, Proc. London Math. Soc. 39(1979) 130146. [51]  , Surgery on knots in solid tori II, J . London Math. Soc. 22 (1980) 559-569.  [52] C . Livingston, More 3-manifolds with multiple knot-surgery and branched-cover descpritions, Math. Proc. Cambridge Phil. Soc. 91 (1982) 473-475. [53] N . Maruyama, Knot surgery descriptions of some closed orientable 3-manifolds, J . of Tsuda College, Vol 16 (1984) 1-14. [54] —  -, On Dehn surgery along a certain family of knots, J . Tsuda College 19 (1987)  261-280. [55] W . Menasco, Closed incompressible surfaces in alternating knot and link complement, Topology 23 (1984) 37-44.  67  Bibliography  [56] L . Moser, Elementary surgery along a torus knot, Pacific J . of Math. 38 (1971) 737-745. [57] J . M . Montesinos, Surgery on finks and double branched coverings of 5 , A n n . of Math. 3  Studies 84 (1977) 227-259. [58] K . Murasugi, The A r f invariant for knot types, P. A . M . S. 21 (1969) 69-72. [59]  , On symmetry of knots, Tsukuba J . Math. 4 (1980) 331-347.  [60] U . Oertel, Closed incompressible surfaces in complements of star links, Pacific J . Math. 38 (1981) 737-745. [61] M . Ochiai, Dehn's surgery along 2-bridge knots, Yokohama Math. J . 26 (1978) 69-75. [62] W . Ortmeyer, Surgery on pretzel knots, Pacific J . of Math. 127 (1987) 155-171. [63] R. P. Osborn, A n algorithm for checking property P for knots with complements of Heegaard genus 2, P. A . M . S. 88 (1983) 357-362. [64] R. Robertello, A n invariant of knot cobordism, Commu. pure appl. Math., 18 (1965) 543-555. [65] D . Rolfsen, Knots and links, Math. lec. ser. 7, Pubhsh or Perish, Berkeley, California 1976. [66] M . Scharlemann, Sutured manifolds and generalized Thurston norm, J . Diff. Geom. (1989) [67]  —, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990) 481-500.  [68] G . P . Scott, The geometry of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487. [69] H . Seifert, Topologie dreidimensionaler gefaserte Raume, Acta Math. 60 (1933) 147-238. [70] H . Short, Some closed incompressible surfaces in knot complements which survive surgery, L . M . S. Lecture Notes 95 (1985) 179-194. [71] J . Simon, Some classes of knots with property P, Topology of manifolds, Markham, Chicago, 1970. [72]  , Methods for proving that certain classes of knots have property P, P h . D . thesis, Univ. of Wisconsin 1969.  [73] T . Soma, Simple links and tangles, Tokyo J . Math. 6 (1983) 65-73. [74] M . Takahashi, Two bridge knots have property P, Memoirs, A . M . S. 29 (1981). [75] A . Thompson, Property P for the band-connect sum of two knots, Topology 26 (1987) 205-207.  Bibliography  [76]  68  , Knots with unknotting number one are determined by their complements, Topology 28 (1989) 225-230.  [77] W . Thurston, Geometry of 3-manifolds, preprint. [78]  , Three dimensional manifolds, Kleinian groups and hyperbolic geometry, B . A . M . S. 6 (1982) 357-381.  [79] F . Waldhausen, tier Involutionen der 3-sphare, Topology 8 (1969) 81-91. [80] A . Wallace, Modifications and cobounding manifolds, Can. J . M a t h . 12 (1960) 503-528. [81] S. Wang and Q . Zhou, Symmetry of knots and cyclic surgery, to appear. [82] Y . W u , Cyclic surgery and satellite knots, Top. and its A p p l . 36 (1990) 205-208. [83] X . Zhang, Cyclic surgery on satellite knots, to appear i n Glasgow J . M a t h . . [84]  , Nonintegral boundary slopes exist, to appear in Fundamenta Mathematicae.  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0080356/manifest

Comment

Related Items