Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Kinetics of reduction of titaniferous ores with lignite coal Sucre-García, Gustavo A. 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A6_7 S83.pdf [ 12.94MB ]
Metadata
JSON: 831-1.0078874.json
JSON-LD: 831-1.0078874-ld.json
RDF/XML (Pretty): 831-1.0078874-rdf.xml
RDF/JSON: 831-1.0078874-rdf.json
Turtle: 831-1.0078874-turtle.txt
N-Triples: 831-1.0078874-rdf-ntriples.txt
Original Record: 831-1.0078874-source.json
Full Text
831-1.0078874-fulltext.txt
Citation
831-1.0078874.ris

Full Text

KINETICS OF REDUCTION OF TITANIFEROUS ORES WITH LIGNITE COAL  by Gustavo A. S u c r e - G a r c i a B.Sc., U n i v e r s i d a d Simon B o l i v a r , V e n e z u e l a ,  1976  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in -  THE FACULTY OF GRADUATE STUDIES  Department o f M e t a l l u r g i c a l  We accept t h i s t h e s i s as to t h e r e q u i r e d  Engineering  conforming  standard  THE UNIVERSITY OF BRITISH COLUMBIA December 1979  ( c ) G u s t a v o A. S u c r e - G a r c i a , 1979  In p r e s e n t i n g t h i s  thesis  an advanced degree at the L i b r a r y s h a l l I  in p a r t i a l  fulfilment of  the requirements f o r  the U n i v e r s i t y of B r i t i s h Columbia,  make i t  freely available  f u r t h e r agree t h a t p e r m i s s i o n  for  I agree  r e f e r e n c e and  f o r e x t e n s i v e copying o f  this  that  study. thesis  f o r s c h o l a r l y purposes may be granted by the Head of my Department or by h i s of  this  representatives. thesis  It  is understood that  f o r f i n a n c i a l gain shall  written permission.  Department The U n i v e r s i t y o f B r i t i s h  2075 Wesbrook Place Vancouver, Canada V6T 1W5  Columbia  copying or p u b l i c a t i o n  not be allowed without my  ABSTRACT An i n d u c t i v e l y h e a t e d r o t a r y r e a c t o r has been used t o study  the  r e d u c t i o n k i n e t i c s of Westport and F l o r i d a i l m e n i t e s , and Glenbrook i r o n sands w i t h Saskatchewan l i g n i t e c o a l .  The  e f f e c t of speed of r o t a t i o n ,  c h a r t o ore r a t i o , t e m p e r a t u r e , and p r e - o x i d a t i o n on the b e h a v i o u r was and  examined, and  reduction  the r e a c t i o n r a t e f o l l o w e d by gas a n a l y s i s  f l o w measurement. Independent a c t i v a t i o n e n e r g i e s have been d e t e r m i n e d ;  f o r the  r e d u c t i o n of Westport and F l o r i d a i l m e n i t e s the v a l u e s were 25 and K c a l / m o l e r e s p e c t i v e l y , w h i l e Glenbrook i r o n s a n d s p o r t ore showed a change from 25 t o 7.5 r a t e c o n t r o l l i n g step. was  55 K c a l / m o l e .  t o be 4 x 1 0 and 2 x 1 0 ironsands; two  3  Ore r e d u c i b i l i t i e s ( i n cm /g.s) have been c a l c u l a t e d 3  f o r pre-oxidized ore;  and  i n the l a s t two  a c t i v a t i o n energies  The  1 1  2 x  for Florida ilmenite;  3  9 x 10  4  and  8 x 10 for  10  6  Glenbrook  1  cases the two v a l u e s g i v e n c o r r e s p o n d t o  s p e c i f i e d above.  Char r e a c t i v i t y has  the  been  cm /g.s. 3  r e d u c t i o n mechanism has been shown t o be v e r y s e n s i t i v e t o  o r e t y p e and t e m p e r a t u r e . t i o n and  t o a change i n the  For the Boudouard r e a c t i o n the a c t i v a t i o n energy  4 x 10  found t o be 2 x 1 0  and p r e - o x i d i z e d West-  K c a l / m o l e due  f o r Westport o r e ;  s  7.5  the  In g e n e r a l , a mixed c o n t r o l between the r e d u c -  g a s i f i c a t i o n r e a c t i o n s was  observed below 1000°C.  Mixed c o n t r o l  a l s o e x i s t e d d u r i n g the r e d u c t i o n of p r e - o x i d i z e d and F l o r i d a o r e s a t 1050°C u n t i l 75% r e d u c t i o n ;  above t h i s r e d u c t i o n l e v e l the  r e a c t i o n l i m i t e d t h e p r o c e s s w h i c h was G l e n b r o o k ores a t t h i s t e m p e r a t u r e .  reduction  a l s o the case o f Westport The  Boudouard r e a c t i o n was  and found  t o govern the o v e r a l l r a t e o n l y d u r i n g the r e d u c t i o n of F l o r i d a i l m e n i t e a t 950°C below 45%  reduction.  TABLE OF CONTENTS ABSTRACT  i i  LIST OF TABLES . .' LIST OF FIGURES  v  . . . . . . . .  . . . . . vi  ACKNOWLEDGEMENTS . . . . . . . 1.  INTRODUCTION 1.1 1.2  1.3 2.  3.  1  Introduction L i t e r a t u r e review 1.2.1 Thermodynamics 1.2.2 R e a c t i o n sequences d u r i n g i l m e n i t e r e d u c t i o n 1.2.3 K i n e t i c s o f i l m e n i t e r e d u c t i o n 1.2.4 K i n e t i c s o f carbon g a s i f i c a t i o n Objectices  1 3 3 5 8 10 12 13  2.1 2.2 2.3  13 17 20 20 21 21  Apparatus M a t e r i a l s used Experimental procedure . . 2.3.1 R e d u c t i o n experiments 2.3.2 Char p r e p a r a t i o n 2.3.3 Pre-oxidation of ilmenite  RESULTS  22  3.1 3.2  22 22 25 31 35 37 37 38 38 38 42  3.6  5.  •'.  APPARATUS AND EXPERIMENTAL PROCEDURE  3.3 3.4 3.5  4.  viii  Temperature p r o f i l e R e d u c t i o n experiments 3.2.1 Selection of operating variables 3.2.2 E f f e c t o f t e m p e r a t u r e , and o r e type 3.2.3 R e d u c t i o n w i t h carbon monoxide Char p r e p a r a t i o n , P r e - o x i d a t i o n o f Westport i l m e n i t e X-ray a n a l y s i s 3.5.1 Raw m a t e r i a l s 3.5.2 Reduced p r o d u c t s SEM e x a m i n a t i o n  . . . .  DISCUSSION  51  4.1 4.2 4.3 4.4  51 55 65 80  T r a n s p o r t o f argon i n t o t h e bed Temperature dependence o f r e a c t i o n r a t e s R e d u c t i o n mechanism V e r i f i c a t i o n of o v e r a l l rate equation .  SUMMARY AND CONCLUSIONS  82 iii  REFERENCES  8 5  APPENDIX I A  8 7  APPENDIX IB  8 8  APPENDIX I I  1 1 6  iv  LIST OF TABLES  I II Ilia Illb IVa IVb V VI VII VIII IX X  Thermodynamic v a l u e s of hydrogen r e d u c t i o n of ilmenite Thermodynamic v a l u e s f o r carbon monoxide r e d u c t i o n of i l m e n i t e Chemical a n a l y s i s of the ores (dry b a s i s ) Bulk d e n s i t y , and p a r t i c l e s i z e d i s t r i b u t i o n of the ores Chemical a n a l y s i s of the l i g n i t e c o a l Chemical a n a l y s i s of the ash Major d-spacings f o r some compounds of i n t e r e s t (from ASTM) Westport i l m e n i t e , p r e - o x i d i z e d i l m e n i t e , and Glenbrook i r o n s a n d s X-ray d i f f r a c t i o n p a t t e r n . . X-ray d i f f r a c t i o n p a t t e r n of reduced samples . . . . 1^ as f u n c t i o n of % r e d u c t i o n at 1000°C f o r d i f f e r e n t operating conditions Kg as f u n c t i o n of % r e d u c t i o n at 1000°C f o r d i f f e r e n t operating conditions A c t i v a t i o n e n e r g i e s f o r r e d u c t i o n and Boudouard r e a c t i o n s f o r the d i f f e r e n t ores  v  4 4 18 18 19 19 39 40 41 58 60 62  LIST OF FIGURES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.  E q u i l i b r i u m diagram f o r t h e i l m e n i t e - c a r b o n system . . . . Schematic diagram o f t h e equipment used S i d e , p l a n , and f r o n t v i e w o f t h e f u r n a c e Temperature p r o f i l e a l o n g t h e r e a c t o r Gas c o m p o s i t i o n , o u t f l o w r a t e , and temperature f o r a t y p i c a l run E f f e c t o f c h a r / i l m . on t h e r e d u c t i o n k i n e t i c s o f Westport i l m e n i t e v a r y i n g t h e amount o f s o l i d s E f f e c t o f volume o f s o l i d s , and argon f l o w on t h e r e d u c t i o n k i n e t i c s o f Westport i l m e n i t e E f f e c t o f c h a r / i l m . on t h e r e d u c t i o n k i n e t i c s o f Westport i l m e n i t e a t c o n s t a n t volume o f s o l i d s . . . . . . E f f e c t o f r o t a t i o n a l speed on t h e r e d u c t i o n k i n e t i c s of Westport i l m e n i t e a t 250 ml/min argon E f f e c t o f r o t a t i o n a l speed on t h e r e d u c t i o n k i n e t i c s of Westport i l m e n i t e a t 500 ml/min argon E f f e c t o f t e m p e r a t u r e on t h e r e d u c t i o n k i n e t i c s o f Westport i l m e n i t e E f f e c t o f temperature on t h e r e d u c t i o n k i n e t i c s o f p r e - o x i d i z e d and F l o r i d a i l m e n i t e s , and Glenbrook i r o n s a n d s E f f e c t o f t e m p e r a t u r e on t h e r e d u c t i o n b e h a v i o u r o f Westport i l m e n i t e w i t h CO E x t e r n a l aspect of p a r t i c l e s of the d i f f e r e n t ores . . . P o l i s h e d s e c t i o n s of p a r t i c l e s of the d i f f e r e n t ores . . . E f f e c t o f t e m p e r a t u r e and p e r c e n t r e d u c t i o n on t h e topography o f reduced Westport i l m e n i t e . . E f f e c t o f temperature and p e r c e n t r e d u c t i o n on t h e m i c r o s t r u c t u r e o f reduced Westport i l m e n i t e Topography and m i c r o s t r u c t u r e o f reduced p r e - o x i d i z e d Westport i l m e n i t e Topography and m i c r o s t r u c t u r e o f reduced F l o r i d a ilmenite Topography and m i c r o s t r u c t u r e o f reduced Glenbrook ironsands R a t i o o f gas g e n e r a t i o n t o gas i n p u t f o r some t y p i c a l experiments A r r h e n i u s p l o t s f o r r e d u c t i o n o f Westport i l m e n i t e and g a s i f i c a t i o n o f carbon CO2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e a t 954°C CO2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e a t 965°C vi  6 14 15 23 24 27 28 29 30 32 33 34 36 43 44 45 46 48 49 50 53 61 66 67  25. 26. 27. 28. 29. 30. 31a. 31b. 32a. 32b. 33.  C0„ p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e a t 998°C CC>2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e a t 1115°C p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d o r e a t 949°C CC>2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d o r e a t 1049°C CC>2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e a t 950°C CO2 p a r t i a l p r e s s u r e , and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e a t 1048°C . C0„ p a r t i a l p r e s s u r e diagram f o r Glenbrook i r o n s a n d s at 948°C I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook i r o n s a n d s a t 948°C C0„ p a r t i a l p r e s s u r e diagram f o r Glenbrook i r o n s a n d s a t 1057°C I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook i r o n s a n d s at 1057°C C a l c u l a t e d and e x p e r i m e n t a l r e a c t i o n r a t e s  vii  68 69 71 72 73 74 75 76 77 78 81  ACKNOWLEDGEMENT S  I  am t h a n k f u l  guidance  grateful  performing  the  Prof.  R.  designing  Wenman f o r support  fellow  his  interest of  Financial also  and d u r i n g  the  the  students support  the  from  for  the  later  Vivian,  their the  K.  Brimacombe f o r  his  is  this  of  gratefully  for  v i i i  help  in  assistance  as does Mr.  this  work.  a n d my  and d i s c u s s i o n s . through  Pat  The  acknowledged.  Venezuelan Government  appreciated.  his  Engineering staff,  cooperation  I  calculations.  apparatus,  stages  his  work.  valuable  computer  s p e c i a l mention  Metallurgical  for  J .  course of  experimental  during  my w i f e , to  the  Denis A b l i t z e r  deserves  and b u i l d i n g  graduate  is  Dr.  G. B u t t e r s  am i n d e b t e d  FONINVES  to  Prof.  throughout  experiments,  and h e l p  I  my s u p e r v i s o r  and encouragement  am a s w e l l  in  to  1. 1.1  INTRODUCTION  Introduction I l m e n i t e and r u t i l e , n o m i n a l l y f e r r o u s m e t a t i t a n a t e ( F e T i 0 ) and 3  t i t a n i u m d i o x i d e ( T i 0 ) r e s p e c t i v e l y , are t h e p r i n c i p a l ores of t i t a n i u m . 2  Because o f i t s h i g h e r p u r i t y , r u t i l e i s p r e f e r r e d as a raw m a t e r i a l i n t h e p r o d u c t i o n o f b o t h TiO£ pigment and T i m e t a l .  However, i t i s  r e l a t i v e l y s c a r c e when compared t o i l m e n i t e , and not v e r y w e l l buted on a w o r l d w i d e b a s i s ;  distri-  t h e o n l y major d e p o s i t s known t o e x i s t a r e  i n A u s t r a l i a and S i e r r a Leone.  T h i s s i t u a t i o n has promoted e x t e n s i v e  r e s e a r c h f o r t h e use o f i l m e n i t e as an a l t e r n a t e r o u t e t o o b t a i n i n g Ti02 pigment and T i m e t a l . R u t i l e ores a r e u s u a l l y contaminated  by many d i f f e r e n t o x i d e s w h i c h  have t o be removed t o t h e lowest p o s s i b l e l e v e l i f w h i t e pigment and good q u a l i t y m e t a l a r e t o be produced. presence  F l u i d - b e d c h l o r i n a t i o n (1) i n t h e  o f carbon has become t h e main p u r i f i c a t i o n p r o c e s s o f r u t i l e ;  h e r e , c h l o r i d e s o f a l l elements a r e formed and s u b j e c t e d t o s e v e r a l p h y s i c a l and c h e m i c a l o p e r a t i o n s i n o r d e r t o o b t a i n a h i g h l y pure T i C l ^ w h i c h i s then decomposed t o H O 2 o r reduced  to metal.  This process i s  a l s o used i n t r e a t i n g i l m e n i t e , b u t i t s h i g h e r i r o n c o n t e n t poses o p e r a t i o n a l problems because o f t h e d i f f i c u l t y o f FeCl3 s e p a r a t i o n ( 2 ) , and economic and p o l l u t i o n problems due t o t h e d i s p o s a l o f f e r r i c c h l o r i d e (3);  these l a s t two problems can be a l l e v i a t e d by decomposing t h e FeCl3  t o Fe203, and r e c y c l i n g C I 2 •  However, t h e s u i t a b i l i t y o f i l m e n i t e can  be improved c l o s e t o t h a t o f r u t i l e by an u p g r a d i n g 1  (or p r e - p u r i f i c a t i o n )  2  step.  I n t h i s r e s p e c t , a l a r g e number o f so c a l l e d b e n e f i c i a t i o n p r o c e s -  ses have been proposed on w h i c h K o t h a r i ( 1 ) , and Henn and B a r c l a y (4) have conducted e x t e n s i v e l i t e r a t u r e Some o f these p r o c e s s e s but t h e t i t a n i u m o x i d e ;  reviews. include (3):  s e l e c t i v e c h l o r i n a t i o n of a l l  p r e - o x i d a t i o n and r e d u c t i o n a t l e s s than s l a g g i n g  temperatures o f t h e f e r r i c o x i d e e i t h e r t o m e t a l o r t o t h e f e r r o u s s t a t e f o l l o w e d by l e a c h i n g w i t h a e r a t e d water o r h y d r o c h l o r i c a c i d r e s p e c t i v e l y ; s m e l t i n g i n an e l e c t r i c a r c f u r n a c e t o o b t a i n p i g i r o n and a T i 0 2 r i c h slag i s also practiced. o p e r a t i o n (5,6,7).  The t h r e e l a t t e r p r o c e s s e s  a r e i n commercial  I n t h e case o f r e d u c t i o n t o m e t a l , a carbonaceous  m a t e r i a l i s mixed w i t h t h e p r e - o x i d i z e d o r e , and a l l o w e d t o r e a c t i n a r o t a r y k i l n a t about 1150°C. Some t i t a n i u m b e a r i n g ores have a l o w , n o n - r e c o v e r a b l e however, they may be a v a l u a b l e source o f i r o n . New Zealand  ironsands  T102 c o n t e n t ;  T h i s i s t h e case o f t h e  ( o r t i t a n o m a g n e t i t e ) w h i c h a r e reduced t o m e t a l w i t h  sub-bituminous c o a l i n a r o t a r y k i l n , and m e l t e d and r e f i n e d t o s t e e l i n an e l e c t r i c a r c f u r n a c e ( 8 ) . The p r e s e n t  study d e a l s w i t h t h e s o l i d - s t a t e r e d u c t i o n o f i l m e n i t e  and t i t a n o m a g n e t i t e ores u s i n g c o a l as a r e d u c t a n t .  3 1.2  L i t e r a t u r e review 1.2.1  Thermodynamics  A comprehensive  study on t h e thermodynamics o f i l m e n i t e r e d u c t i o n  has been r e p o r t e d by Shomate e t a l . ( 9 ) .  R e d u c t i o n by hydrogen,  and by  carbon monoxide o c c u r s a c c o r d i n g t o t h e f o l l o w i n g r e a c t i o n s FeTi0  3  + H  = Fe + T i 0  2  + H 0(g)  [1]  FeTi0  3  + CO = Fe + T i 0  2  + C0  [2]  2  2  2  Carbon i s another p o s s i b l e r e d u c i n g agent f o r i l m e n i t e . g e n e r a l l y agreed  It is  (10) t h a t when a m i x t u r e o f a m e t a l o x i d e and carbon i s  h e a t e d , t h e r e a c t i o n s o f o x i d e r e d u c t i o n and carbon g a s i f i c a t i o n t a k e p l a c e v i a t h e i n t e r m e d i a t e gaseous p r o d u c t s CO and C 0 . 2  i l m e n i t e t h e r e a c t i o n s a r e r e p r e s e n t e d by E q u a t i o n s C + C0  2  = 2 CO  I n t h e case o f  [2] and [3] [3]  The s t a n d a r d e n t h a l p y and f r e e energy f o r E q u a t i o n s [1] and [2] a r e p r e s e n t e d as a f u n c t i o n o f temperature i n T a b l e s I and I I r e s p e c t i v e l y . For E q u a t i o n [ 3 ] , t h e f o l l o w i n g r e l a t i o n s h i p h o l d s i n t h e temperature range 298 - 2500°K (11) A G " = 40800 - 41.7 T In t h e i r s t u d y , Shomate e t a l . (9) c o n c l u d e d t h a t n e i t h e r hydrogen nor carbon monoxide a r e p r a c t i c a l r e d u c i n g agents f o r i l m e n i t e because the maximum t h e o r e t i c a l u t i l i z a t i o n i s o n l y 20, and 8.5 p e r c e n t r e s p e c t i v e l y a t temperatures j u s t below t h e m e l t i n g p o i n t of i l m e n i t e (1640°K). Carbon however, i s an e f f e c t i v e r e d u c i n g agent due t o i t s c a p a c i t y t o r e g e n e r a t e carbon monoxide ( E q u a t i o n [3]) from t h e carbon d i o x i d e genera t e d by r e d u c t i o n ( E q u a t i o n [ 2 ] ) . The thermodynamic d a t a p r e s e n t e d f o r t h e r e d u c t i o n o f i l m e n i t e w i t h CO, and f o r t h e g a s i f i c a t i o n o f carbon by C 0  2  can be combined t o o b t a i n  TABLE  I  THERMODYNAMIC V A L U E S F O R HYDROGEN R E D U C T I O N OF I L M E N I T E  H  1000 1100 1200 1300 1400 1500 1600  10910 11090 11230 10870 10490 10090 9680  6800 6390 5970 5540 5150 4780 4440  TABLE  2  0.0327 0.0537 0.0818 0.117 0.157 0.201 0.247  II  THERMODYNAMIC V A L U E S F O R CARBON MONOXIDE R E D U C T I O N OF I L M E N I T E  T(°K)  AH°(-^-)  AG°(-^-)  K=  C  °  2  CO  1000 1100 1200 1300 1400 1500 1600  2780 3230 3640 3550 3440 3310 3160  6030 6330 6590 6840 7100 7360 7640  0.0481 0.0552 0.0631 0.0708 0.0778 0.0845 0.0902  5 an e q u i l i b r i u m diagram f o r the i l m e n i t e - c a r b o n system. presented  i n F i g u r e 1.  T h i s diagram i s  I n the r e g i o n at the l e f t of the carbon g a s i f i -  c a t i o n l i n e carbon monoxide w i l l d i s p r o p o r t i o n a t e i n t o carbon and d i o x i d e , whereas i n the a r e a a t the r i g h t carbon w i l l be Analogously,  carbon  gasified.  r e d u c t i o n o f i l m e n i t e w i l l t a k e p l a c e o n l y i n the zone above  the i l m e n i t e r e d u c t i o n l i n e .  Thus, i t can be seen t h a t the minimum  temperature f o r the r e a c t i o n between i l m e n i t e and carbon t o occur i s g i v e n by the i n t e r c e p t of the two e q u i l i b r i u m l i n e s w h i c h a t P i s 1124°K (851°C).  + P„„  = 1  atm.  D u r i n g r e d u c t i o n , t h e i l m e n i t e - c a r b o n system l i e s  between the carbon and the i l m e n i t e l i n e s . CO  n  At a g i v e n t e m p e r a t u r e , the  (as w e l l as the CO2) p a r t i a l p r e s s u r e w i l l be c l o s e s t t o the  equili-  b r i u m v a l u e of t h e r e a c t i o n h a v i n g the f a s t e r r a t e . 1.2.2  R e a c t i o n sequences d u r i n g i l m e n i t e r e d u c t i o n  The phase changes o c c u r r i n g i n i l m e n i t e d u r i n g r e d u c t i o n have been s t u d i e d by s e v e r a l a u t h o r s .  Walsh et a l . (12) used X-ray d i f f r a c t i o n t o  i n v e s t i g a t e the r e d u c t i o n b e h a v i o u r  of New  J e r s e y , F l o r i d a , and  Lake (Quebec) i l m e n i t e s w i t h hydrogen, and coke.  Allard  They found t h a t at  temperatures above 1000°C r e d u c t i o n of a l l t h r e e i l m e n i t e s r e s u l t e d i n the f o r m a t i o n of m e t a l l i c i r o n , and a t i t a n i f e r o u s phase of the RO«2Ti0  2  - R^Og-TiOg (R may  3+ Fe  be Mg  2+  , Fe  2+  , and/or T i  2+  ;  R' may  type be A£  3+  ,  3+ and/or T i  ).  s i m i l a r behaviour; i l m e n i t e s r u t i l e was Hussein  I n the v i c i n i t y of 1000°C, A l l a r d Lake ore e x h i b i t e d however, i n the case of the F l o r i d a and New  Jersey  produced as the t i t a n i f e r o u s phase.  et a l . (13) compared the r e d u c t i o n mechanism of s e v e r a l  s y n t h e t i c a l l y prepared Egypt and Norway.  i r o n t i t a n a t e s w i t h t h a t of n a t u r a l i l m e n i t e s from  R e d u c t i o n was  performed w i t h hydrogen at 600°C, and  the phases e x i s t i n g at d i f f e r e n t r e d u c t i o n l e v e l s were determined by X-ray  6  F i g u r e 1.  E q u i l i b r i u m diagram f o r the i l m e n i t e - c a r b o n  system  diffraction.  They proposed t h e f o l l o w i n g mechanism:  2 Fe Ti0  5  + 2 H  2  = 2 Fe Ti0  2 Fe TiOt  t  + 2 H  2  = 2 FeTi0  2 FeTi0  3  + H  2  2  FeTi 0 2  5  = FeTi 0  2  + H  2  2  2  = FeTi 0 2  5  [ +  3  4  + 2 H 0  [4]  2  + 2 Fe + 2 H 0  [5]  2  + Fe + H 0  [6]  + H 0  [7]  2  2  A l t h o u g h w r i t t e n s e p a r a t e l y some o v e r l a p p i n g between t h e r e a c t i o n s a c t u a l l y occurred. p a r t i a l weathering FeTi 0i 2  The f e r r i c i o n s e x i s t i n g i n F e T i 0 2  of the i l m e n i t e ores.  5  a r e due t o  The f i n a l r e d u c t i o n p r o d u c t  i s v e r y l i k e l y t o c o n t a i n a sub-oxide o f t i t a n i u m .  +  However, i t  must be r e a l i z e d t h a t t h e mechanism proposed i n t h i s work i s s p e c i f i c t o t h e e x p e r i m e n t a l c o n d i t i o n s s i n c e , as r e p o r t e d by Walsh e t a l . ( 1 2 ) , t h e p r o d u c t s formed depend upon t e m p e r a t u r e ,  r e d u c i n g agent, and t y p e o f  ilmenite. Grey, J o n e s , and R e i d (14-17) have r e p o r t e d a v e r y comprehensive work on r e a c t i o n sequences i n t h e r e d u c t i o n o f i l m e n i t e .  Reduction with  carbon monoxide was s t u d i e d between 900°C and 1200°C i n a packed bed r e a c t o r , and t h e r e a c t i o n sequences o c c u r r i n g i n a commercial r o t a r y k i l n were i n v e s t i g a t e d .  X-ray d i f f r a c t i o n s t u d i e s i n d i c a t e d t h a t t h e  same r e a c t i o n p a t h was f o l l o w e d i n t h e l a b o r a t o r y and t h e commercial operation. 1.  Thus, two s t a g e s o f r e d u c t i o n were d e f i n e d :  Reduction of f e r r i c t o f e r r o u s i r o n .  The f e r r i c i o n s may be p r e s e n t  i n t h e form o f p s e u d o r u t i l e ( F e T i 3 0 g ) , p s e u d o b r o o k i t e 2  hematite  (Fe 0 ); 2  3  (Fe TiC>5) , o r 2  however, t h i s f i r s t s t a g e o f r e d u c t i o n l e a d s t o t h e  r e - f o r m a t i o n o f i l m e n i t e i n a l l t h r e e cases as f o l l o w s : Fe Ti 0 2  Fe Ti0 2  Fe 0 2  3  3  9  + CO = 2 F e T i 0  3  + Ti0  2  + C0  2  [8]  + Ti0  2  + CO = 2 F e T i 0  3  + C0  2  [9]  + 2 Ti0  2  + CO = 2 F e T i 0  3  + C0  2  [10]  5  8 2.  Reduction  o f f e r r o u s i r o n t o m e t a l , and r u t i l e t o reduced r u t i l e s .  T h i s s t a g e i s temperature dependent: a)  Below 1150°C, r e a c t i o n [2] w i l l t a k e p l a c e as w e l l as [ 1 1 ] . n Ti0  b)  2  + CO = T i 0„ , + C 0 n 2n-l z  [11]  9  Above 1150°C t h e i l m e n i t e i s f i r s t reduced t o m e t a l l i c i r o n and  ferrous pseudobrookite  (FeTi 0 ). 2  On f u r t h e r r e d u c t i o n m e t a l l i c i r o n  5  p r e c i p i t a t e s from t h e p s e u d o b r o o k i t e  t o g i v e an M3O5 s o l i d s o l u t i o n which  i s p r o g r e s s i v e l y e n r i c h e d i n T i 3 0 , and w h i c h i n c o r p o r a t e s any Mn o r Mg 5  p r e s e n t as i m p u r i t i e s . Grey e t a l . a l s o c o n s t r u c t e d a 1200°C i s o t h e r m a l s e c t i o n o f t h e F e - T i - 0 system from w h i c h they expected i r o n and reduced r u t i l e phases to be p r e s e n t i n t h e r e d u c t i o n p r o d u c t . t i o n products  However, they found t h e r e d u c -  always t o c o n s i s t o f a m i x t u r e  and M3O5 s o l i d s o l u t i o n .  o f i r o n , reduced r u t i l e s ,  The presence o f t h e M3O5 phase was e x p l a i n e d  i n terms o f an Fe-Mn-Ti-0 phase diagram w h i c h showed t h e s t a b i l i z i n g e f f e c t t h a t 1-2 p e r c e n t Mn has on t h e M3O5 s o l i d 1.2.3  solution.  K i n e t i c s of i l m e n i t e r e d u c t i o n  Several i n v e s t i g a t i o n s dealing with the reduction of i l m e n i t e u s i n g e i t h e r gaseous o r s o l i d r e d u c t a n t s have been p u b l i s h e d i n t h e literature  (18-24).  However, o n l y a few o f t h e s t u d i e s p r o v i d e u s e f u l  k i n e t i c i n f o r m a t i o n such as r a t e c o n t r o l l i n g s t e p s , r a t e e q u a t i o n s , and a c t i v a t i o n energy.  I n a k i n e t i c s t u d y , Jones ( 1 8 ) , u s i n g a packed bed  r e a c t o r and CO as r e d u c t a n t , f o l l o w e d t h e r e a c t i o n by c o n t i n u o u s l y a n a l ysing the C0  2  i n t h e e x i t gases.  He concluded  t h a t f o r t h e two Aus-  t r a l i a n ores used t h e r a t e was c o n t r o l l e d by d i f f u s i o n o f CO i n t h e e x t e r n a l gas f i l m , b u t gave no a c t i v a t i o n energy v a l u e .  P o g g i and  co-workers (19) used a thermobalance t o study t h e gaseous r e d u c t i o n o f  9 dense s y n t h e t i c and n a t u r a l A l l a r d Lake i l m e n i t e s .  I n b o t h cases they  determined t h a t c h e m i c a l r e a c t i o n a t t h e phase boundary was l i m i t i n g t h e r e d u c t i o n r a t e , t h e a c t i v a t i o n e n e r g i e s b e i n g 14.1 and 15 K c a l / m o l e f o r s y n t h e t i c and n a t u r a l i l m e n i t e s r e s p e c t i v e l y . (20) r e a c t e d s y n t h e t i c i l m e n i t e and g r a p h i t e  E l Guindy and Davenport i n a thermobalance.  found t h a t d i f f u s i o n o f CO t h r o u g h t h e Fe + T i 0  They  p r o d u c t l a y e r was t h e  2  r a t e c o n t r o l l i n g s t e p , and c a l c u l a t e d an a c t i v a t i o n energy o f 64 K c a l / mole.  However, i t must be s a i d t h a t t h i s v a l u e does not c o r r e s p o n d t o  t h e u s u a l a c t i v a t i o n energy o f about 10 K c a l / m o l e f o r gas d i f f u s i o n t h r o u g h pores ( 1 9 ) . Pre-oxidation  o f i l m e n i t e has been r e p o r t e d  of i l m e n i t e r e d u c t i o n  (21-23).  However, Jones (18) found an a d v e r s e  e f f e c t o f t h e t r e a t m e n t on an A u s t r a l i a n o r e . Jones proposed t h a t p r e - o x i d a t i o n  t o enhance t h e k i n e t i c s  To e x p l a i n h i s r e s u l t s ,  converts the i n i t i a l s i n g l e c r y s t a l  s t r u c t u r e o f t h e i l m e n i t e g r a i n s i n t o a p o l y c r y s t a l l i n e a r r a y so t h a t , upon r e d u c t i o n , i r o n p r e c i p i t a t e s a t t h e s u b - g r a i n become r e g i o n s  o f enhanced p o r o s i t y .  b o u n d a r i e s w h i c h then  C o n s e q u e n t l y , n a t u r a l ores h a v i n g  a h i g h l y porous s t r u c t u r e would not b e n e f i t from  pre-oxidation.  Rao ( 2 5 ) , and Abraham and Ghosh (26) s t u d i e d t h e k i n e t i c s o f r e d u c t i o n of f e r r i c o x i d e p e l l e t s w h i c h c o n t a i n e d  graphite.  They found t h a t  the r a t e of r e a c t i o n was governed by t h e r a t e of carbon g a s i f i c a t i o n , and c a l c u l a t e d an a c t i v a t i o n energy o f 72 K c a l / m o l e . t h a t t h e r e a c t i o n c o u l d be c a t a l y s e d ;  They a l s o p o i n t e d out  Rao used l i t h i u m s a l t s as c a t a l y s t s  w h i l e Abraham and Ghosh proposed t h a t t h e i r o n formed d u r i n g c o u l d a c t as a c a t a l y s t .  In studying  reduction  t h e r e d u c t i o n of s t a n n i c  oxide  w i t h c a r b o n , P a d i l l a and Sohn (27) a l s o found t h e r a t e t o be c o n t r o l l e d by t h e c a r b o n g a s i f i c a t i o n s t e p , and were a b l e t o prove a c a t a l y t i c  10 a c t i o n o f t h e t i n formed d u r i n g r e d u c t i o n on t h e c a r b o n - C 0 2 r e a c t i o n . 1.2.4  K i n e t i c s o f carbon g a s i f i c a t i o n  From t h e p r e v i o u s  s e c t i o n , the importance of the carbon-carbon  d i o x i d e r e a c t i o n i n the o v e r a l l process i s apparent.  Since a l a r g e  number o f works have been p u b l i s h e d  i n t h i s area only those r e l e v a n t t o  t h i s s t u d y w i l l be mentioned h e r e ;  extensive  r e v i e w s have been  reported  e l s e w h e r e (28-29). As s t a t e d by S k i n n e r and Smoot ( 3 0 ) , some i n v e s t i g a t o r s  have  e x p r e s s e d t h e r a t e o f t h e C - C O 2 r e a c t i o n i n t h e form: r = k P^ where k i s t h e r a t e c o n s t a n t ;  [12]  0 2  they a l s o reported  that f o r s e v e r a l types  of c h a r , and t e m p e r a t u r e ranges n was e q u a l t o u n i t y , so t h e r a t e was t h e n l i n e a r l y dependent on t h e CO2 p a r t i a l p r e s s u r e . and  Recently,  Jalan  Rao (31) a l s o found a l i n e a r r e l a t i o n s h i p between t h e r a t e o f r e a c -  t i o n and t h e CO2 p a r t i a l p r e s s u r e when s t u d y i n g  the r a t e of catalysed  g r a p h i t e g a s i f i c a t i o n by C O 2 ; t h e y e s t a b l i s h e d t h a t such l i n e a r i s o n l y v a l i d under c a t a l y t i c c o n d i t i o n s .  relation  The r e p o r t by S k i n n e r and  Smoot can be r e l a t e d t o t h a t o f Rao and J a l a n i f i t i s c o n s i d e r e d ash i n t h e c h a r s ( i n t h e former case) c o n t a i n s  that  compounds t h a t might  c a t a l y s e t h e Boudouard r e a c t i o n . A l s o g i v e n i n t h e p u b l i c a t i o n by S k i n n e r and Smoot (30) i s a r a t e equation s i m i l a r t o that i n Equation [12], but which i n c o r p o r a t e s the w e i g h t of char l e f t u n r e a c t e d (C*) as i n E q u a t i o n [ 1 3 ] , [13]  r = kC* P  C0  2  T h i s e q u a t i o n i s s i m i l a r t o t h a t used by von Bogdandy and E n g e l l (32) r = k where  eq - n  C0  ) 2  [14]  11  k  Mc  is  the  amount  reactivity  factor  Many  (34)  ferent Jalan  energy  (31)  and CO2.  by  et  a l .  H  al.  energy  be  e  x  P (  _  unit  E  /  R  T  )  [15]  volume  of  values  (33),  79.6  for  the  charge,  when w o r k i n g  Kcal/mole which  with  (32).  of  59 K c a l / m o l e f o r  figure  is  closer  the  catalysed  might  then  be  catalysed the  on c a t a l y s i s  a  of  by  the  the  inferred  authors  been  found  with  However,  the  the 86  Dutta  gasification  of  48 K c a l / m o l e r e p o r t e d  gasification  reaction.  other  carbon  to  have  graphite,  agrees well  a value  It  and Hc i s  C-CO2 r e a c t i o n  von Bogdandy and E n g e l l  for  (34)  (35).  c  char.  have been reported  and a r e v i e w et  c  the  by  This  graphite  Walker  to  determined  and Rao  energies  for  reported  chars.  Dutta  M  Rao and J a l a n  activation  al.  =  carbon per  activation  published.  Kcal/mole  of  eff  reaction  that  difby  between  ash i n  the  Relatively  low  when g a s i f y i n g  gasification  et  chars  used  activation  chars  has been p u b l i s h e d  (30), by  12 1.3  Objectives U n t i l p r e s e n t , most s t u d i e s on s o l i d s t a t e r e d u c t i o n of i l m e n i t e  have been performed w i t h the aim of o b t a i n i n g fundamental on the thermodynamics, and k i n e t i c s and mechanism of the  information process.  A l t h o u g h they p r o v i d e v a l u a b l e d a t a , the n a t u r e of the e x p e r i m e n t s (most of them performed i n thermobalances u s i n g s m a l l q u a n t i t i e s of r a t h e r pure s y n t h e t i c m a t e r i a l s , and,  i n the cases of carbon r e d u c t i o n , poor degree  of m i x i n g between the r e a g e n t s ) l i m i t the a p p l i c a b i l i t y of k i n e t i c r e s u l t s t o t h e d e s i g n and  o p t i m i z a t i o n of i n d u s t r i a l o p e r a t i o n s .  Due  to  the development of i l m e n i t e b e n e f i c i a t i o n p r o c e s s e s the procurement of d a t a s u i t a b l e f o r d e s i g n and o p t i m i z a t i o n would be u s e f u l . The main o b j e c t i v e of t h i s work t h e n was r e d u c i b i l i t y parameters f o r d i f f e r e n t o r e s , and reducing  agent.  I n a d d i t i o n , and  to determine e m p i r i c a l r e a c t i v i t y v a l u e s of  the  c o n s i d e r i n g the l i m i t e d time a v a i l -  a b l e , an i d e a of the r e d u c t i o n mechanism was  a l s o t o be o b t a i n e d .  a c h i e v e t h e s e aims, a l a b o r a t o r y s c a l e r o t a r y r e a c t o r was the i n f l u e n c e of r o t a t i o n speed, char t o ore r a t i o ,  built,  To and  t e m p e r a t u r e , type of  o r e , and p r e - o x i d a t i o n of the ore on the r e d u c t i o n k i n e t i c s were then studied.  2. 2.1  APPARATUS AND EXPERIMENTAL PROCEDURE  Apparatus A schematic drawing o f t h e a p p a r a t u s used d u r i n g t h e r e d u c t i o n  e x p e r i m e n t s i s p r e s e n t e d i n F i g u r e 2.  E s s e n t i a l l y , i t c o n s i s t e d of the  following parts: a)  Rotary reactor A l a b o r a t o r y - s c a l e , i n d u c t i o n - h e a t e d r o t a r y f u r n a c e was used as t h e  r e a c t o r ( a diagram o f w h i c h i s shown i n F i g u r e 3 ) .  I t has a 316 s t a i n -  l e s s - s t e e l r e a c t i o n chamber (66.7 mm OD, 63.5 ID, and 305 mm l e n g t h ) w h i c h a l s o s e r v e d as t h e s u s c e p t o r ;  t h e r e a c t o r was c o n t a i n e d i n a t r a n s -  l u c e n t s i l i c a tube (88.9 mm OD, 82.6 ID, and 597 mm l e n g t h ) .  The s t a i n -  l e s s - s t e e l r e a c t o r was t h e r m a l l y i n s u l a t e d by p l a c i n g m u l l i t e w o o l between i t and the s i l i c a tube as w e l l as a t b o t h ends.  The r e s u l t i n g  assembly  was t i g h t enough t o p r e v e n t s l i d i n g of any o f t h e tubes d u r i n g r o t a t i o n . Both ends o f t h e s i l i c a tube were s e a l e d by means o f g a s k e t e d b r a s s d i s c s w i t h c e n t e r h o l e s f o r gas i n f l o w and o u t f l o w .  A l s o , two 304 s t a i n l e s s -  s t e e l s h e a t h e d , c h r o m e l - a l u m e l thermocouples were passed t h r o u g h t h e h o l e s f o r measurement and c o n t r o l o f bed temperature i n t h e r e a c t o r .  The  two b r a s s d i s c s r e s t e d on f o u r s h a f t s one o f w h i c h was r o t a t e d by a d.c. motor. Type 316 s t a i n l e s s - s t e e l t u b i n g (8.0 mm ID, 9.6 mm OD) was used i n making gas i n f l o w and o u t f l o w p i p e s .  The e x i t end o f t h e gas i n f l o w p i p e  was bent t o an a n g l e o f almost 90° so t h a t i t c o u l d touch t h e i n n e r w a l l of  the r e a c t i o n chamber;  t h i s d e s i g n was n e c e s s a r y i n o r d e r t o s c r a p e t h e 13  i nGas  Gas out  in  -1=17  F i g u r e 2.  Schematic diagram of the equipment  used  Legend a b c d e f  Argon s o u r c e I n l e t gas flowmeter Furnace Glasswool carbon t r a p D r i e r i t e water t r a p A s c a r i t e f o r CO^ a b s o r p t i o n  g h i j  By-pass Gas chomatograph E x i t gas flowmeter Exchangeable c a p i l l a r y  Legend  j  j  h""  I  1  I 11  I  a b c d e f g h i j k 1 m  C o n t r o l thermocouple Bed thermocouple Brass e n d - p l a t e s T r a n s l u c e n t s i l i c a tube Removable i n s u l a t i o n Fixed i n s u l a t i o n Reactor Aluminum stand Shafts Chain d r i v e d.c. motor Bolts S l i d i n g rubber hose s e a l s 6  Side  F i g u r e 3.  Side, p l a n , and  f r o n t view of the  furnace  Front  16 w a l l and p r e v e n t t h e b u i l d - u p of a c c r e t i o n s .  I n a d d i t i o n , the l e n g t h of  t h e p i p e a l l o w e d s c r a p i n g a l o n g t h e whole of the r e a c t o r . b)  Gas  flowmeters  The gas flowmeters were of the c a p i l l a r y type w i t h an  exchangeable  c a p i l l a r y which a l l o w e d a wide range o f f l o w r a t e s t o be measured.  They  were c a l i b r a t e d f o r a r g o n , carbon monoxide, and m i x t u r e s of t h e s e gases w i t h an a c c u r a c y of 1%.  The temperature of the i n f l o w i n g and o u t f l o w i n g  gases was measured c l o s e t o the f l o w m e t e r s . c)  Gas p u r i f i c a t i o n , and a n a l y s i s  system  The gases l e a v i n g t h e r e a c t o r were f i r s t passed through a g l a s s w o o l t r a p t o f i l t e r out e n t r a i n e d char p a r t i c l e s ,  then through d r i e r i t e t o  remove m o i s t u r e , and a s c a r i t e t o absorb carbon d i o x i d e .  F i n a l l y , the  gases were sampled w i t h a s y r i n g e , and a n a l y z e d f o r c a r b o n monoxide i n a gas chromatograph.  T h i s s a m p l i n g t e c h n i q u e was  b r i n g i n g the chromatograph  l a t e r d i s c o n t i n u e d by  on l i n e w i t h t h e gas t r a i n .  17 2.2  M a t e r i a l s used The o r e s used i n the p r e s e n t s t u d y were i l m e n i t e s from Westport  (New Z e a l a n d ) , and F l o r i d a (USA); (New Z e a l a n d ) .  and t i t a n o m a g n e t i t e from Glenbrook  Some p r e - o x i d i z e d Westport i l m e n i t e was a l s o s t u d i e d .  Chemical a n a l y s e s p r o v i d e d by the s u p p l i e r s a r e p r e s e n t e d i n T a b l e I l i a . I n a d d i t i o n , b u l k d e n s i t y and p a r t i c l e s i z e d i s t r i b u t i o n were d e t e r m i n e d , and a r e r e p o r t e d i n Table I l l b . X-ray d i f f r a c t o g r a m s were o b t a i n e d f o r the o r e s as w e l l as the reduced p r o d u c t s ;  f i l t e r e d FeKa r a d i a t i o n was used a t 40 kV and 26  mA,  and the s c a n n i n g r a t e was 1° (26) per minute. A s c a n n i n g e l e c t r o n m i c r o s c o p e equipped w i t h an X-ray energy s p e c t r o m e t e r was employed  t o observe b o t h raw and p o l i s h e d (down t o 1 um  diamond p a s t e ) samples of the o r e s and p r o d u c t s ;  the a c c e l e r a t i n g v o l t a g e  was 20 kV. The r e d u c i n g agent was l i g n i t e c o a l from B i e n f a i t ,  Saskatchewan.  I t s c h e m i c a l a n a l y s i s as w e l l as t h a t of the a s h , as g i v e n by the s u p p l i e r , a r e p r e s e n t e d i n T a b l e s IVa and IVb. Carbon monoxide s t a n d a r d s c o n t a i n i n g 1.03%;  9.99%;  20.1%;  50.3%;  and 99.5% CO w i t h t h e b a l a n c e argon were used t o c a l i b r a t e the gas chromatograph.  Argon, w h i c h was used as c a r r i e r gas and f l u s h i n g agent,  was employed w i t h o u t f u r t h e r p u r i f i c a t i o n . t h e a s c a r i t e , and d r i e r i t e employed r e s p e c t i v e l y was from -2.38 mm  The p a r t i c l e s i z e range of  f o r CO2 and H2O a b s o r p t i o n  t o 0.841  mm.  18 TABLE I l i a CHEMICAL ANALYSIS OF THE ORES (DRY BASIS)  Westport Ti0  Glenbrook  Florida  7.72  66.6  45.4  2  37.7  FeO Fe 0 2  28.4  5.18  3  T o t a l Fe  32.8  4.0  49.4  25.5  56.6  21.0  2.50  3.26  1.08  1.04  1.05  0.04  0.04  0.04  0.07  MgO  0.48  3.43  0.23  MnO  1.94  0.53  0.92  Nb 05  0.04  0.006  0.07  P2O5  0.82  2.18  0.21  Si0  3.65  3.10  0.39  V2O5  <0.04  0.49  0.10  Zr0  <0.02  <0.02  0.22  H  0.06  0.07  0.28  S  0.0098  0.0172  0.02  A1 0 2  3  CaO Cr 0 2  3  2  2  2  TABLE 11 l b BULK DENSITY, AND PARTICLE SIZE DISTRIBUTION OF THE ORES Bulk density (g/cm ) 3  Westport 2.32 ± 0.04  F r a c t i o n s i z e (ym) + 149 -149 + 105 -105 + 88 - 88 + 74 -74+63 - 63  4.6 71.2 20.5 2.9 0.8 0.0  O x i d i z e d Westport 2.36 ± 0.04  5.3 76.6 11.7 2.2 1.6 2.6  Glenbrook 2.62 ± 0.04  13.7 57.5 17.9 5.8 1.7 3.3  Florida 2.38 ± 0.04  48.3 42.8 6.0 0.5 1.7 0.7  TABLE IVa CHEMICAL ANALYSIS OF THE LIGNITE COAL  Proximate  analysis  Moisture V o l a t i l e matter F i x e d carbon Ash Ultimate  32% 28% 33% 7%  analysis  Sulphur Ash  0.5% 7%  TABLE IVb CHEMICAL ANALYSIS OF THE ASH Compound  Si0  Content  (wt. %)  31.88  2  A1 0  3  15.47  Fe 0  3  3.56  2  2  Ti0  2  P2O5  1.05 1.81  CaO  18.56  MgO  4.45  Na 0 2  8.14  K 0  0.18  S0  10.13  2  3  Mn0  2  0.57  BaO  2.31  CI  0.2  LOI  1.53  20 2.3  E x p e r i m e n t a l procedure 2.3.1  Reduction  experiments  The ores to be reduced were d r i e d i n an oven a t 120°C, and subsequently stored i n a d e s s i c a t o r .  Predetermined amounts o f o r e and c o a l  char were weighed t o ±0.1g, mixed, and charged i n t o the s t a i n l e s s - s t e e l tube which was then weighed t o ±0.1 g.  A f t e r p l a c i n g the r e a c t o r i n the  s i l i c a c y l i n d e r , t h e b r a s s e n d - p l a t e s were t i g h t l y a f f i x e d , and t h e s y s tem f l u s h e d w i t h argon. comparing  At t h i s s t a g e , a check f o r l e a k s was made by  the argon i n f l o w and o u t f l o w .  When no oxygen c o u l d be d e t e c t e d by chromatography  i n the o u t f l o w i n g  gas, t h e k i l n was preheated t o about 500°C, and a l l o w e d t o c o o l down t o 250°C;  t h i s c y c l e was then r e p e a t e d .  temperature,  t h e argon i n p u t , which a c t e d as a c a r r i e r gas, was s e t a t  the chosen l e v e l .  U s u a l l y , the heating-up p e r i o d was 15 minutes, and  r e d u c t i o n a t the s e t temperature hours.  B e f o r e h e a t i n g t o the d e s i r e d  (± 7°C) was a l l o w e d t o proceed f o r 2  Gas i n f l o w and o u t f l o w , gas c o m p o s i t i o n , and k i l n  temperature,  as w e l l as t h a t o f t h e gases, were i n t e r m i t t e n t l y r e c o r d e d d u r i n g the whole p e r i o d f o l l o w i n g the p r e h e a t i n g c y c l e s u n t i l 10 minutes c u t t i n g the power s u p p l y . 20 minutes  after  The w a l l of the r e a c t o r was s c r a p e d every  t o remove any a c c r e t i o n s .  The r o t a t i o n of the r e a c t o r was s t a r t e d , and s e t a t the d e s i r e d speed b e f o r e p r e h e a t i n g . d i f f e r e n t experiments  I t remained  c o n s t a n t f o r the d u r a t i o n o f the  except f o r those a t a nominal speed o f 30 rpm a t  which maximums of 40 rpm and minimums o f 25 rpm were observed.  This  problem was p r o b a b l y caused by v a r i a t i o n s i n the o v e r a l l f r i c t i o n o f the system t o g e t h e r w i t h t h e weakness of the motor. The r e a c t i o n was stopped by c u t t i n g the power s u p p l y from t h e  21 induction reached inlet  unit.  Two a n d a h a l f  room t e m p e r a t u r e .  and o u t l e t ,  and the were  steel  and  hours  The f l o w  then  shut  with  the  changed every  2 to  10 m i n u t e s  (measured at procedure a r g o n by  ambient  already the  Lignite Batches under  product  of  gas a f t e r  c o a l was  crushed and  traps, tubes  mg d u r i n g  800 m l  in  the  per  following  change c o n s i s t e d  screened to  100  argon  atmosphere.  At  a heating  to  980°C  perature  was  i n c r e a s e d up  hours.  The  c h a r g e was and was  formed  the  run.  minute  the  general  replacing  cycle.  preparation  approximately  particles  using  second preheating  of  atmosphere,  ± 0.1  carbon monoxide  the  checked at  The a s c a r i t e  to  performed  The o n l y  reactor  g l a s s w o o l and d r i e r i t e  and weighed  conditions)  the  again  were weighed.  were  described.  shut-down  a r g o n was The  experiments  reducing Char  2.3.2  of  off.  tube  Some r e d u c t i o n  after  g ± 0.1  allowed  during  cool and  charring.  charred  rate  ± 5°C,  to  then weighed,  g were  -600  of  149  in  tube  6°C p e r  and h e l d  to  ym +  at  a  The p r o d u c t  this  remove  was  furnace  minute,  the  point  room t e m p e r a t u r e  screened to  ym.  in  in  for  2  inert  -149  stored  tem-  ym a  dessi-  cator. P r e - o x i d a t i o n of  2.3.3  Batches oxidized  in  of  dried  ilmenite  Westport,  a fluidized  New Z e a l a n d ,  bed u s i n g  and a bed temperature  of  weighed  to  ± 0.1  g to  determine  ysis  particle  size  distribution  due  of to  this  treatment,  800°C  and  is  air  ± 10°C the  at  2.7  for  ilmenite & ± 0.05  2 hours.  percent  presented  in  & per  Table  g)  were  minute  The p r o d u c t  oxidation  was p e r f o r m e d  (400  to  achieved.  observe  Illb.  size  (STP),  was Analchanges  3.  3.1  Temperature In  RESULTS  profile  o r d e r to t e s t the s u i t a b i l i t y o f t h e m u l l i t e wool as i n s u l a t i o n ,  a bed temperature p r o f i l e a l o n g the r e a c t o r was o b t a i n e d , and i s p r e s e n t e d i n F i g u r e 4 a t two d i f f e r e n t temperatures. are  acceptably f l a t .  As can be seen, b o t h p r o f i l e s  I t s h o u l d be noted t h a t these r e s u l t s depended n o t  o n l y on t h e q u a l i t y o f the i n s u l a t i o n but on the i n d u c t i o n c o i l c o n f i g u r a t i o n as w e l l .  A l s o shown i n F i g u r e 4 i s t h e normal p o s i t i o n o f the  thermocouple used f o r temperature measurement; the  3.2  i t can be observed t h a t  thermocouple r e g i s t e r s the bed mean temperature.  R e d u c t i o n experiments F i g u r e 5 shows the measured v a l u e s o f percentage CO i n the e x i t gas,  r a t e of CO2 e v o l u t i o n , gas o u t f l o w r a t e and temperature as a f u n c t i o n of time f o r a t y p i c a l run.  Data t a b l e s o f the d i f f e r e n t experiments a r e  p r e s e n t e d i n Appendix IB.  The p e r c e n t r e d u c t i o n as a f u n c t i o n o f time  was c a l c u l a t e d from these data w i t h t h e a i d o f a computer,  using the  following equation: % Red(t) = ° ^ i W  w  t )  x 100  [16]  where Pwl = Wo  (% FeO  1 6 ? 1  8 5  + % Fe 0 2  3  ±  ^ ) ?  [17]  i s t h e maximum p o s s i b l e weight l o s s of the o r e , Wo b e i n g t h e o r e i n i t i a l weight.  The t o t a l oxygen weight l o s s up t o a time t ( 0 w l ( t ) ) i s o b t a i n e d 22  Temperature (°C)  c i-i ro  H ro  I  ( i-D S P3 rt C i-i  S, on o H-  i_i  —  ro —f o p  O  00 rt ro  CD ro Q p > o O rt o I-i t-i  £2  25 w i t h an i n t e g r a t i o n s u b - r o u t i n e i n c o r p o r a t e d i n t h e program;  this  sub-  r o u t i n e i n t e g r a t e s a c u b i c i n t e r p o l a t i o n p o l y n o m i a l based on f o u r p o i n t s (X(I  - 1 ) , X ( I ) , X ( I + 1 ) , and X ( I + 2 ) ) f o r each i n t e r v a l X ( I ) t o  X(I  + 1) ( 3 6 ) .  The f r a c t i o n a l w e i g h t l o s s e s a r e c a l c u l a t e d by means o f  the  following equation: O" ™ 1  = Q C0 22^0 X  +  W  C0  2  t  where Q i s t h e o u t f l o w gas r a t e a t 273°K, X c o n t e n t o f t h e o u t f l o w i n g gas, and W  [ 1 8 ]  i s t h e carbon monoxide  i s the rate of absorption of CO2  carbon d i o x i d e by a s c a r i t e i n g/min.  The w e i g h t l o s s o f carbon from t h e  char i s o b t a i n e d i n t h e same way b u t t h e atomic w e i g h t o f oxygen i s subs t i t u t e d by t h a t o f carbon i n E q u a t i o n [ 1 8 ] .  The t o t a l w e i g h t l o s s i s  o b t a i n e d by a d d i n g t h e t o t a l oxygen and carbon l o s s e s .  Minor c o r r e c -  t i o n s t o account f o r carbon c a r r y o v e r , w a t e r absorbed by t h e d r i e r i t e d u r i n g and b e f o r e t h e r e a c t i o n p e r i o d , and hydrogen r e l e a s e d by t h e c h a r were a l s o i n c o r p o r a t e d .  The c a l c u l a t e d t o t a l w e i g h t l o s s e s compared  w i t h t h o s e determined e x p e r i m e n t a l l y agreed i n a l l cases w i t h i n ±7%, b u t u s u a l l y t h e agreement was w i t h i n ±2%. 3.2.1  S e l e c t i o n of operating v a r i a b l e s  The f i r s t s e t o f experiments was performed t o measure t h e e f f e c t of  t h e w e i g h t r a t i o o f char t o i l m e n i t e , t h e argon f l o w r a t e , and t h e  speed o f r o t a t i o n o f t h e r e a c t o r on t h e r e d u c t i o n k i n e t i c s .  Experimental  c o n d i t i o n s f o r t h e s e runs (1 t h r o u g h 14) a r e p r e s e n t e d i n Appendix I A . I n i t i a l l y , t h e char t o i l m e n i t e r a t i o  ( c h a r / i l m . ) was changed by  s i m p l y i n c r e a s i n g t h e amount o f char f o r a f i x e d q u a n t i t y o f i l m e n i t e . Even a t t h e l o w e s t r a t i o c o n s i d e r e d , a carbon excess o f 30% w i t h r e s p e c t to  t h e s t o i c h i o m e t r i c r e q u i r e m e n t was used.  The c h a r / i l m . was g r a d u a l l y  26 changed from 0.12  t o a maximum of 0.30,  comparing p l o t s of p e r c e n t  and i t s e f f e c t was  s t u d i e d by.  r e d u c t i o n v s . t i m e as shown i n F i g u r e 6.  As  can be seen, a l a r g e i n c r e a s e i n r e d u c t i o n o c c u r s i n g o i n g from 0.24 0.30;  and i t was  r e a c t o r was  f e l t t h a t a change i n the t o t a l amount of s o l i d s i n the  a f f e c t i n g the r e d u c t i o n b e h a v i o u r  t i o n s i n bed d e p t h .  6);  cm  3  t o 140  The  3  r e s u l t i s g i v e n i n F i g u r e 7 (runs 5  and  as can be r e a d i l y n o t i c e d a deeper bed causes a h i g h e r p e r c e n t suspected.  F i g u r e 8; from 0.18  The  reduc-  Consequently, a set of experiments  performed a t d i f f e r e n t char t o i l m e n i t e r a t i o s , but w i t h a  volume of s o l i d s .  constant  r e d u c t i o n p l o t s from t h e s e runs a r e p r e s e n t e d  in  i t i s seen t h a t the d i f f e r e n c e due t o an i n c r e a s e i n c h a r / i l m . t o 0.24  i s very small;  the 0.24  r a t i o was  be adequate f o r the r e d u c t i o n o f i l m e n i t e , and was ing  made a t  but r e d u c i n g the i n i t i a l t o t a l volume of s o l i d s  cm .  t i o n a t a l l times as was was  p r o b a b l y because of v a r i a -  I n o r d e r t o v e r i f y t h i s another run was  the same c h a r / i l m = 0.30, from 170  to  then c o n s i d e r e d  to  chosen f o r the r e m a i n -  experiments. The  e f f e c t of argon was  c o n s i d e r e d at two  flowrates:  250 ml/min.  and 500 ml/min. measured at ambient temperature and p r e s s u r e . shows a d e c r e a s e i n p e r c e n t increased;  Figure 7  r e d u c t i o n when the c a r r i e r gas f l o w r a t e  t h i s f a c t o r w i l l be d i s c u s s e d  later.  The r o t a t i o n a l speed of the r e a c t o r was  i n c r e a s e d from 10 t o 18 t o  30 rpm at the two argon r a t e s , and a g a i n p l o t s of p e r c e n t time were o b t a i n e d f o r each c o n d i t i o n .  was  reduction vs.  At 250 ml/min. of a r g o n , an  i n c r e a s e i n r o t a t i o n a l speed produced a h i g h e r p e r c e n t  reduction for a  g i v e n time as shown i n F i g u r e 9, the d i f f e r e n c e between 18 and  30  rpm  b e i n g s m a l l e r than t h a t between 10 and 18 rpm a f t e r about 60 min. 500 ml/min t h e r e i s l i t t l e d i f f e r e n c e among the t h r e e experiments up  At to  Figure 6.  Effect of char/ilm. on the reduction k i n e t i c s of Westport ilmenite varying the amount of solids  IOOI  28  A  • O  Run 5 6 9 12  Variable 170 cm^ solids 142 " " 250ml/min Ar 500 "  C  o o 13  TJ  cr  60 Time Figure 7 .  (min)  E f f e c t o f volume of s o l i d s , and argon flow on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e  120  F i g u r e 8.  E f f e c t of c h a r / i l m . on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e at constant volume of s o l i d s  30  F i g u r e 9.  E f f e c t of r o t a t i o n a l speed on t h e r e d u c t i o n k i n e t i c s of Westport i l m e n i t e a t 250 ml/min argon  31 60 m i n . , b u t from then on an o p p o s i t e t r e n d can be n o t i c e d as compared t o the  runs a t 250 ml/min, t h a t i s , t h e h i g h e r t h e r o t a t i o n speed t h e lower  the  percent reduction f o r a constant time.  F i g u r e 10;  These r e s u l t s a r e g i v e n i n  here a g a i n t h e d i f f e r e n c e between 18 and 30 rpm i s s m a l l e r  than between 10 and 18 rpm.  T h i s s m a l l change from 18 t o 30 rpm,  t o g e t h e r w i t h t h e d i f f i c u l t i e s o f o p e r a t i n g a t t h e h i g h e r v a l u e were t h e major f a c t o r s i n d e c i d i n g t o work a t 18 rpm i n t h e r e m a i n i n g r u n s .  Also  showi i n F i g u r e 10 i s a r e p e a t experiment t o check r e p r o d u c i b i l i t y .  As  can be seen, r e s u l t s o b t a i n e d under t h e same c o n d i t i o n s (runs 10 and 11) were p r a c t i c a l l y i d e n t i c a l ;  from t h i s i t was c o n c l u d e d t h a t t h e r e p r o d u c -  i b i l i t y o f t h e experiments was adequate. 3.2.2  E f f e c t o f t e m p e r a t u r e , and o r e type  Westport i l m e n i t e was reduced a t f o u r temperatures u s i n g 250 ml/min of a r g o n , and t h e p r e v i o u s l y determined c o n d i t i o n s of c h a r / i l m . and r o t a t i o n speed.  The mean bed temperatures were 954°C, 965°C, 998°C, and  1115°C, and as can be seen i n F i g u r e 11 an i n c r e a s e i n temperature p r o duces an expected i n c r e a s e i n t h e r e d u c t i o n r a t e of t h e o r e . In s t u d y i n g t h e e f f e c t o f type o f m i n e r a l and p r e - o x i d a t i o n on the  r e d u c t i o n b e h a v i o u r , p r e - o x i d i z e d Westport i l m e n i t e , F l o r i d a  ilmenite,  and Glenbrook t i t a n o m a g n e t i t e were reduced a t two t e m p e r a t u r e s , n o m i n a l l y 950°C, and 1050°C.  The r e s u l t s a r e g i v e n i n F i g u r e 12.  I t can be  n o t i c e d t h a t t h e temperature v a r i a t i o n i n a l l t h r e e cases produced i m p o r t a n t changes i n t h e r a t e as was t h e s i t u a t i o n w i t h Westport  ilmenite.  By comparing F i g u r e s 11 and 12 t h e b e n e f i t of p r e - o x i d a t i o n of Westport i l m e n i t e i s e a s i l y seen.  I n a d d i t i o n , i t i s observed t h a t t h e ores a r e  reduced q u i t e d i f f e r e n t l y w h i c h i s an i n d i c a t i o n o f t h e importance t h a t the  m a t e r i a l b e i n g reduced has on t h e o v e r a l l r e d u c t i o n p r o c e s s .  F i g u r e 10.  E f f e c t of r o t a t i o n a l of Westport i l m e n i t e  speed on the r e d u c t i o n at 500 ml/min argon  kinetics  34  100  c  O t> cr 0  s  o O  Temp(°C) Ore 1049 Oxidized 849 Westport_  A  •  21 20  1048 950  Florida Ilmenite  •  23 22  1057 948  Glenbrook Ironsands  o  30  Run 19 18  1  60  90  Time (min) F i g u r e 12.  E f f e c t o f temperature on t h e r e d u c t i o n k i n e t i c s o f p r e - o x i d i z e d and F l o r i d a i l m e n i t e s , and Glenbrook ironsands  120  35 3.2.3  R e d u c t i o n w i t h carbon monoxide  In t r y i n g to c l a r i f y the k i n e t i c s of r e d u c t i o n of the i l m e n i t e , i t was f e l t n e c e s s a r y t o p e r f o r m some r e d u c t i o n t e s t s i n t h e absence o f carbon.  The o b v i o u s a l t e r n a t i v e r e d u c i n g agent was carbon monoxide.  I n a case l i k e t h i s i t i s d e s i r a b l e t o use a CO f l o w r a t e as h i g h as p o s s i b l e i n o r d e r t o p r e v e n t s t a r v a t i o n o f CO i n t h e bed.  However,  when a f l o w o f 2000 ml/min o f CO was used s o o t i n g , and t e c h n i c a l problems w i t h t h e equipment, a r o s e .  Experiments were then done a t a CO f l o w o f  800 ml/min a t f o u r t e m p e r a t u r e s , n o m i n a l l y 1100°C, and t h e r e s u l t s a r e p r e s e n t e d  950°C, 1000°C, 1050°C, and  i n F i g u r e 13.  A n a l y s i s of the  gas e x i t i n g t h e r e a c t o r proved i t t o have a c o m p o s i t i o n thermodynamic e q u i l i b r i u m . of CO a t t h e f l o w r a t e used.  close to that at  Thus, i t i s l i k e l y t h a t t h e bed was s t a r v e d  F i g u r e 13.  E f f e c t of temperature on t h e r e d u c t i o n b e h a v i o u r of Westport i l m e n i t e w i t h CO  3.3  Char The  preparation l o s s i n w e i g h t by the l i g n i t e c o a l due  t o the c h a r r i n g  averaged 59% ± 1% f o r the near 60 char b a t c h e s produced.  operation  This r e f l e c t s  an almost t o t a l d e v o l a t i l i z a t i o n of the c o a l s i n c e i t s m o i s t u r e p l u s v o l a t i l e m a t t e r amounted t o 60%.  The  c h a r r i n g p r o c e s s caused breakdown  of c o a l p a r t i c l e s ; u s u a l l y c l o s e to 10% of the char o b t a i n e d the -149  ym  fraction.  From the c o a l , a n a l y s i s , and  was  lost  considering  the  of 59% of i t s w e i g h t as v o l a t i l e s , the char can be c a l c u l a t e d t o 80%  f i x e d carbon.  3.4  Pre-oxidation  i l m e n i t e g a i n e d 14.7  g, 15.1  g, and  account t h a t the i l m e n i t e c o n t a i n e d  15.2 37.7%  g respectively.  contain  FeO,  can be p r a c t i c a l l y c o n s i d e r e d  g of  Taking i n t o  t h i s w e i g h t change r e p r e -  s e n t s a mean 89% of o x i d a t i o n a c h i e v e d by the t r e a t m e n t .  The  ilmenite  as f u l l y o x i d i z e d s i n c e o x i d a t i o n has  t o be v e r y slow i n the l a t e r s t a g e s (37).  the i n i t i a l l y  loss  of Westport i l m e n i t e  I n each of the t h r e e o x i d a t i o n b a t c h e s the i n i t i a l 400  reported  as  s h i n y i l m e n i t e became d u l l .  Due  to  been  oxidation  B u l k d e n s i t y and p a r t i c l e  s i z e d i s t r i b u t i o n of the p r o d u c t a r e g i v e n i n Table I l l b ; i f compared w i t h the c h a r a c t e r i s t i c s of the n a t u r a l i l m e n i t e no major change can noticed.  be  38 3.5  X-ray  analysis  3.5.1  Raw  materials  The main d - s p a c i n g s of i l m e n i t e , r u t i l e , m a g n e t i t e , h e m a t i t e , and p s e u d o b r o o k i t e a r e p r e s e n t e d i n T a b l e V as g i v e n i n ASTM c a r d s number 3-0781;  4-0551;  11-614;  13-534;  and 9-182  respectively.  These  v a l u e s must be compared w i t h t h o s e o b t a i n e d f o r Westport o r e (both n a t u r a l and p r e - o x i d i z e d ) , and f o r Glenbrook i r o n s a n d s w h i c h a r e p r e s e n t e d i n Table V I .  I t i s c l e a r l y seen t h a t the m i n e r a l from Westport i s a t r u e  i l m e n i t e , and t h e i r o n s a n d s a r e e s s e n t i a l l y m a g n e t i t e .  The p r o d u c t s of  o x i d a t i o n of Westport i l m e n i t e a r e m a i n l y r u t i l e and h e m a t i t e .  This  agrees w i t h p u b l i s h e d i n f o r m a t i o n (38) of o x i d a t i o n o f i l m e n i t e i n t h e temperature range of 500-750°C, but d i s a g r e e s i n the range of 770-890°C w h i c h embraces the temperature (800°C) used i n t h i s s t u d y . The i l m e n i t e from F l o r i d a produced a r a t h e r d i f f u s e pattern.  diffraction  I t has been r e p o r t e d (39) t h a t i l m e n i t e can be n a t u r a l l y  a l t e r e d , and t h a t a t one of t h e s t a g e s of a l t e r a t i o n the e x i s t i n g phase or phases a r e amorphous.  T h i s may  then be the case f o r the F l o r i d a o r e .  F u r t h e r s u p p o r t i s p r o v i d e d by t h e r e l a t i v e l y h i g h HO2  c o n t e n t of t h i s  m i n e r a l w h i c h i s t y p i c a l of a l t e r e d i l m e n i t e s ( 3 ) . 3.5.2  Reduced p r o d u c t s  Q u a l i t a t i v e l y , the d i f f r a c t i o n p a t t e r n s o f a l l the samples  studied  were v e r y s i m i l a r w i t h l i n e s o f i r o n (d(A°): 2.03, and 1.43), r u t i l e , i l m e n i t e a p p e a r i n g i n a l l cases as g i v e n i n T a b l e V.I I .  and  However, i t i s  i m p o r t a n t t o p o i n t out t h a t b o t h p r e - o x i d i z e d W e s t p o r t , and n a t u r a l l y weathered F l o r i d a i l m e n i t e s reformed i l m e n i t e d u r i n g r e d u c t i o n as shown i n runs 18 and 20;  t h i s agrees w i t h the r e d u c t i o n mechanism of o x i d i z e d  i l m e n i t e r e p o r t e d by Jones ( 1 5 ) .  Another f e a t u r e o f the d i f f r a c t i o n  39 TABLE V MAJOR d-SPACINGS FOR SOME COMPOUNDS OF INTEREST (from ASTM) Ilmenite d(A°) I / I l  Rutile d(A°) I / I l  Magnetite d(A°) I / I l  Hematite d(A°) I / I l  Pseudobrookite d(A°) I/Il  3.73  50  3.25  100  4.85  40  2.69  100  4.90  45  2.74  100  2.49  41  2.97  70  2.51  50  3.48  100  2.54  85  2.19  22  2.53  100  2.20  30  2.75  80  2.23  70  1.69  50  2.10  70  1.84  40  2.45  20  1.86  85  1.62  16  1.71  60  1.69  60  2.40  25  1.72  100  1.36  16  1.61  85  1.48  35  1.97  25  1.63  50  1.48  85  1.45  35  1.86  30  1.50  85  1.63  20  1.47  85  1.54  35  1.34  70  40 TABLE  VI  WESTPORT I L M E N I T E , P R E - O X I D I Z E D I L M E N I T E , AND G L E N B R O O K I R O N S A N D S X - R A Y DIFFRACTION PATTERN  Westport d(A°)  Ilmenite Ident  Pre-oxidized d(A°)  ilmenite Ident  Glenbrook d(A°)  ironsands Ident  3.75 .  I  3.70  I  4.86  M  2.76  I  3.25  R  3.24  R  2.55  I  2.71  H,I*  2.97  M  2.24  I  2.52  H,I  2.79  I  1.87  I  2.49  R  2.71  H  1.73  I  2.30  R  2.53  M  1.64  I  2.21  H,I  2.42  M  1.51  I  2.19  R  2.10  M  1.47  I  1.84  H,I  1.71  M  1.70  H,I  1.70  R  1.69  R  1.62  M  1.63  R,I  1.49  M  1.60  H  1.49  H,I  1.46  H  Legend:  I:  Ilmenite;  R:  Rutile:  H:  Hematite:  M:  Magnetite  * T h i s and a l l the d - s p a c i n g s i d e n t i f i e d as h e m a t i t e - i l m e n i t e more l i k e l y to be h e m a t i t e due to the e x t e n s i v e o x i d a t i o n of material.  are the  TABLE V I I X-RAY DIFFRACTION PATTERN OF REDUCED SAMPLES  9 d(A°) Ident 3.25 2.49 2.30 2.24 2.19 2.05 2.03 1.69 1.62  Legend:  R R R I R R Fe R R  I:  17 d(A°) Ident  18 d(A°) Ident  3.52 3.37 3.25 3.21 2.74 2.55 2.47 2.24 2.03 1.72  3.73 3.25 2.75 2.55 2.49 2.24 2.19 2.05 2.03 1.87 1.73 1.69 1.64 1.62 1.51 1.47 1.45 1.43  RR R RR I I RR I Fe I  Ilmenite;  R:  I R I I R I R R Fe I I R I R I I R Fe  Rutile;  Run number 19 d(A°) Ident 3.49 3.41 3.31 3.25 3.18 2.76 2.48 2.24 2.19 2.03 1.69 1.43  RR:  1 RR RR. R RR I? R I R Fe R Fe  20 d(A°) Ident  21 d(A°) Ident  22 d(A°) Ident  3.73 3.25 2.74 2.55 2.49 2.30 2.24 2.19 2.05 2.03 1.87 1.72 1.69 1.62 1.51 1.49 1.45 1.43  3.51 3.34 3.25 3.18 3.11 2.75 2.49 2.20 2.03 1.70 1.69 1.64 1.43  3.22 2.98 2.74 2.47 2.23 2.15 2.11 2.03 1.72 1.62 1.49  Reduced r u t i l e :  I R I I R R I R R Fe I I R R I I R Fe Fe:  Iron:  RR R RR RR I R R? Fe I? R I Fe  ?:  unknown  R RR I R I R? ? Fe I R I  42 p a t t e r n s i s t h e presence of reduced r u t i l e phases i n runs 19, 21, and where h i g h f i n a l r e d u c t i o n (83;  100;  and 110% r e s p e c t i v e l y ) were a c h i e v e d .  As proposed by Grey and R e i d ( 1 6 ) , t h e s e reduced r u t i l e phases may g e n e r a l f o r m u l a T i 0„ n 2n-l 3.6  SEM  have the  w i t h 4 < ri <: 9. — —  examination  Photomicrographs  showing t h e e x t e r n a l appearance o f g r a i n s o f t h e  f o u r m a t e r i a l s a r e g i v e n i n F i g u r e 14.  Comparison of photos a and b  shows a s m a l l change due t o p r e - o x i d a t i o n . for  The rounded shape observed  t h e F l o r i d a o r e i s v e r y l i k e l y due t o n a t u r a l w e a t h e r i n g .  Examina-  t i o n of the c o r r e s p o n d i n g p o l i s h e d samples ( F i g u r e 15) showed t h e of  22  presence  i m p u r i t y i n c l u s i o n s ( d a r k a r e a s w i t h i n t h e g r a i n s ) i n a l l but t h e  Florida ilmenite;  when a n a l y s e d by X-ray energy s p e c t r o m e t r y the i n c l u -  s i o n s proved to c o n s i s t m a i n l y of Ca, A l , and S i .  Westport  and  Glenbrook  ores a r e seen t o be v e r y dense and homogeneous ( i f i n c l u s i o n s a r e not c o n s i d e r e d ) w h i l e c r a c k s and a m o t t l e d m i c r o s t r u c t u r e , w h i c h was  probably  caused by s e g r e g a t i o n of t h e o x i d a t i o n p r o d u c t s , c h a r a c t e r i z e t h e p r e oxidized ilmenite. porous  The F l o r i d a i l m e n i t e i s the o n l y one t o e x h i b i t a  structure. In examining the reduced p r o d u c t s , the f o l l o w i n g a s p e c t s were  considered:  (a) w h i s k e r f o r m a t i o n and growth i n u n p o l i s h e d  samples;  (b) i r o n a g g l o m e r a t i o n , and p o r o s i t y i n p o l i s h e d samples. F i g u r e s 16 and 17 show t h e e f f e c t of temperature and r e d u c t i o n on t h e topography  percent  and m i c r o s t r u c t u r e of reduced raw and p o l i s h e d  samples r e s p e c t i v e l y of Westport  ilmenite.  I n a l l cases ( F i g u r e 16)  w h i s k e r growth i s observed t o a g r e a t e r o r l e s s e r e x t e n t depending degree of r e d u c t i o n .  on t h e  E x a m i n a t i o n of p o l i s h e d samples ( F i g u r e 17) shows  43  c.  Florida ilmenite  F i g . 14.  X200  d.  Glenbrook i r o n s a n d s  E x t e r n a l aspect of p a r t i c l e s o f the d i f f e r e n t  ores  X200  44  e.  Fig.  F l o r i d a ilmenite  15.  X480  d.  Glenbrook ironsands  Polished sections of p a r t i c l e s of the d i f f e r e n t ores  X800  45  c.  Pig.  1115  16.  C?  30$ r e d u c t i o n  Effect  of  topography  400X  temperature of  d.  and p e r c e n t  reduced Westport  1115  C;  reduction  ilmenite  91$ r e d u c t i o n  on  the  400X  F i g . 17.  E f f e c t of temperature and percent r e d u c t i o n on the m i c r o s t r u c t u r e of reduced Westport i l m e n i t e  47  i r o n ( w h i t e phase) a g g l o m e r a t i o n p r e f e r a b l y i n a r e a s a d j a c e n t t o i m p u r i t y inclusions.  Due t o t h i s a g g l o m e r a t i o n t h e g r a i n s s t a r t t o become porous;  then t h e h i g h e r t h e r e d u c t i o n ( i . e . , a g g l o m e r a t i o n ) t h e h i g h e r t h e porosity of the p a r t i c l e s . When reduced p a r t i c l e s o f o x i d i z e d i l m e n i t e were examined  (Figure  18) no w h i s k e r s c o u l d be observed i n t h e sample reduced a t 950°C; however, a t 1050°C t h e same b e h a v i o u r as w i t h t h e n a t u r a l o r e was n o t i c e d . The absence o f r e l a t i v e l y l a r g e i r o n agglomerates on t h e s u r f a c e o f t h e p a r t i c l e s has been r e p o r t e d f a v o u r a b l e i n d i m i n i s h i n g s i n t e r i n g ( 1 8 ) . P o l i s h e d samples o f t h i s m a t e r i a l show t h e same k i n d o f i r o n as b e f o r e ;  aggregates  however, t h e pores formed a r e much l a r g e r .  In t h e case o f F l o r i d a o r e ( F i g u r e 19) i r o n i s n o t seen t o form whiskers.  A t 950°C no major i r o n a g g l o m e r a t i o n can be n o t i c e d , and t h e  p o r e s have almost d i s a p p e a r e d . observed w h i c h produced  A t 1050°C some a g g r e g a t i o n o f i r o n i s  corresponding porosity.  The r e s u l t s f o r t h e i r o n s a n d s a r e g i v e n i n F i g u r e 20.  A t 950°C  no s i g n o f w h i s k e r f o r m a t i o n o r o f i r o n aggregates w i t h i n t h e p a r t i c l e s i s found;  however, a f i n e porous s t r u c t u r e can be n o t i c e d .  l a r g e i r o n agglomerates w i t h i n t h e g r a i n s a r e observed w h i c h l a r g e pores t o be formed.  A t 1050°C caused  F i g . 18.  Topography and m i c r o s t r u c t u r e Westport i l m e n i t e  of reduced  pre-oxidized  c.  950°C;  F i g . 19.  72% r e d u c t i o n  X440  d.  1048°C;  100% r e d u c t i o n  Topography and m i c r o s t r u c t u r e o f reduced F l o r i d a i l m e n i t e  X400  F i g . 20.  Topography and m i c r o s t r u c t u r e of reduced  Glenbrook  ironsands  4.  DISCUSSION  Some t y p i c a l r a t e e q u a t i o n s carbon d i o x i d e were p r e s e n t e d  be w r i t t e n t o d e s c r i b e the r a t e of  The p a r t i a l p r e s s u r e of C 0  2  i s one o f the v a r i -  a b l e s i n v o l v e d i n the r e l a t i o n s h i p e s t a b l i s h e d by E q u a t i o n i t s c h a r a c t e r i z a t i o n i s an i m p o r t a n t reaction rate constants.  The  [14];  However, the system used i n the p r e s e n t  e f f e c t of t r a n s p o r t of argon i n t o the s o l i d s bed  parameters w i l l be d i s c u s s e d f i r s t i n t h i s  Transport  study  t o the use of argon as a  the r e d u c t i o n k i n e t i c s as w e l l as i t s i m p l i c a t i o n s i n c a l c u l a t i n g  4.1  thus,  s t e p p r i o r t o the c a l c u l a t i o n o f  poses some d i f f i c u l t i e s i n t h i s r e s p e c t due c a r r i e r gas.  and  i n S e c t i o n 1.2.4, and, as w i l l be seen  l a t e r , an analogous e q u a t i o n may r e d u c t i o n of the o r e s .  f o r the r e a c t i o n between carbon  of argon i n t o the  kinetic  chapter.  bed  F i g u r e 7 shows the e f f e c t of argon i n f l o w on the r e d u c t i o n of Westport i l m e n i t e ;  on  behaviour  i t i s observed t h a t a f t e r 35% r e d u c t i o n a h i g h e r  argon f l o w r e s u l t s i n a lower r e a c t i o n r a t e .  T h i s o b s e r v a t i o n can  e x p l a i n e d by d i l u t i o n of the r e a c t i n g gases (CO and C0 ) 2  w i t h i n the  w h i c h w i l l d i m i n i s h the d r i v i n g f o r c e f o r the r e d u c t i o n and r e a c t i o n s thus l o w e r i n g the r e a c t i o n r a t e .  be bed  gasification  Such d i l u t i o n i s e x p e c t e d t o  be more pronounced at h i g h e r i n p u t s of i n e r t gas.  Also presented  in  F i g u r e 7 i s the e f f e c t of t o t a l volume of s o l i d s on the r e d u c t i o n k i n e t ics,  and, as d e s c r i b e d i n S e c t i o n 3.2.1, the deeper the bed  the s o l i d s ) the h i g h e r the r a t e .  (or the more  T h i s r e s u l t i s l o g i c a l as w e l l because 51  52 t h e r e s i s t a n c e t o argon t r a n s p o r t i n t o the bed i s h i g h e r i n a deeper bed. These o b s e r v a t i o n s a r e i n agreement w i t h the f i n d i n g s of T i e n and Turkdogan  (10).  I t was p o i n t e d out i n S e c t i o n 3.2.1  t h a t an o p p o s i t e  t r e n d was observed f o r the e f f e c t of speed o f r o t a t i o n on r e a c t i o n r a t e a t the two argon f l o w s used.  T h i s b e h a v i o u r can be accounted f o r by  c o n s i d e r i n g t h a t an i n c r e a s e i n the r o t a t i o n a l speed enhances b o t h the degree o f m i x i n g of the r e a g e n t s i n t h e s o l i d s bed, and the t r a n s p o r t of argon i n t o the bed.  At 250 ml/min of argon the improvement i n s o l i d s  m i x i n g w i t h i n the bed o v e r r i d e s the improvement i n argon t r a n s p o r t t o the bed, c o n s e q u e n t l y the r e d u c t i o n i s b e t t e r a t h i g h e r r o t a t i o n a l  speeds.  On the o t h e r hand, a t 500 ml/min of argon t h e r e i s a g r e a t e r d r i v i n g f o r c e f o r argon t r a n s p o r t i n t o t h e bed (compared  t o 250 ml/min A r ) w h i c h  t h e n predominates over the m i x i n g o f s o l i d s , and the r a t e drops a t h i g h e r r o t a t i o n a l speeds. Another f e a t u r e of t h e p l o t s p r e s e n t e d i n F i g u r e s 7 and 10 i s t h a t the e f f e c t of d i l u t i o n by argon i s n o t i c e a b l e o n l y a f t e r a c e r t a i n o f r e d u c t i o n has been reached.  level  The most p l a u s i b l e r e a s o n f o r t h i s i s  t h a t t h e r a p i d e v o l u t i o n of gases from the bed i n t h e e a r l y s t a g e s of r e d u c t i o n p r e v e n t s argon p e n e t r a t i o n and d i l u t i o n w i t h i n the bed.  In  F i g u r e 21, the r a t i o of gas e v o l u t i o n from the bed t o argon i n p u t has been p l o t t e d as a f u n c t i o n of p e r c e n t r e d u c t i o n f o r s e v e r a l e x p e r i m e n t s . I n some cases i t i s seen t h a t the g e n e r a t i o n of gases from the bed i s f i v e t i m e s as l a r g e as t h e gas i n p u t ;  under t h e s e c i r c u m s t a n c e s i t i s  u n l i k e l y t h a t a s i g n i f i c a n t q u a n t i t y of argon w i l l p e n e t r a t e i n t o the bed, and d i l u t i o n s h o u l d be u n i m p o r t a n t .  The o p p o s i t e s i t u a t i o n  appears t o e x i s t toward the end of the e x p e r i m e n t s ;  as shown i n F i g u r e  21, the gas g e n e r a t i o n i s as low as a f o u r t h of the gas i n p u t , and i t i s  6J0  3  Q. C  Ore A Westport Pre-oxidized  •  O Westport A Westport  Temperature (°C) 1115 949 998 965  4.5  o  cn  S  3.01  o > D e>  1.5  0 0  100  % Reduction F i g u r e 2 1 . R a t i o o f gas g e n e r a t i o n t o gas i n p u t f o r some t y p i c a l experiments  54 l i k e l y t h a t the argon w i l l be t o t a l l y mixed w i t h the gases i n t h e bed c a u s i n g the maximum p o s s i b l e d i l u t i o n , i . e . , the o u t l e t c o m p o s i t i o n of gas from t h e r e a c t o r w i l l be the same as t h a t of the bed gas. A l t h o u g h argon t r a n s p o r t i n t o the bed i s a f a c t o r i n the e x p e r i ments, an e v a l u a t i o n of the a c t u a l e x t e n t of d i l u t i o n has not been possible.  C o n s e q u e n t l y , t h e c a l c u l a t i o n of k i n e t i c p a r a m e t e r s , i . e . ,  rate  c o n s t a n t s , and a c t i v a t i o n e n e r g i e s , has been done f o r two l i m i t i n g c a s e s : ( 1 ) no argon p e n e t r a t e d i n t o t h e bed (no d i l u t i o n ) ; m i x i n g of argon w i t h the r e a c t i n g gases i n the bed.  and ( 2 ) complete I n terms o f what  i s p r e s e n t e d i n F i g u r e 2 1 i t seems r e a s o n a b l e t h a t the f i r s t  assumption  i s v a l i d d u r i n g the i n i t i a l s t a g e s of r e d u c t i o n when, as e x p l a i n e d b e f o r e , t h e l a r g e amount of gases generated w i t h i n the bed would m i n i m i z e argon p e n e t r a t i o n . of  A n a l o g o u s l y , the second case h o l d s towards the end  the r e a c t i o n when, as a l r e a d y demonstrated ( F i g . 2 1 ) , a v e r y s m a l l  volume of gas i s produced i n t h e bed. the  I n t h e i n t e r m e d i a t e s t a g e s of  r e d u c t i o n sequence the system w i l l l i e between t h e s e extremes.  4.2  Temperature dependence o f r e a c t i o n  rates  The e q u a t i o n proposed by von Bogdandy and E n g e l l (32) ( S e c t i o n 1.2.4) f o r t h e r a t e o f c a r b o n g a s i f i c a t i o n can be r e - w r i t t e n as f o l l o w s : P  r  B  = M H c  c  b  co  exp(- E ^ T )  p  2  —  -  B  C0  2  [19]  G where i s t h e r a t e o f Boudouard r e a c t i o n (moles/cm charge.s) 3  M  i s t h e amount o f carbon (g/cm charge) 3  c  H  i s t h e r e a c t i v i t y o f c a r b o n (cm /g.s) 3  E,, i s t h e a c t i v a t i o n energy f o r g a s i f i c a t i o n  (cal/mole)  Rg i s t h e gas c o n s t a n t (cm atm/K mole) o r ( c a l / K mole) 3  T  i s t h e bed t e m p e r a t u r e (K)  P^  cu  P  i s the b u l k p a r t i a l pressure of C0  i n t h e bed  2  (atm)  2  i s the e q u i l i b r i u m p a r t i a l pressure of C0  n n  2  f o r Boudouard  L.U  2  reaction  (atm)  The r a t e o f oxygen removal from t h e o r e s may be e x p r e s s e d i n a similar  way: P r  R  =  (1 - R) H  F e  e x p ( - E /R T) R  - P  R  C0  Q  2  b  C0  2  —  [20] G  where r  i s t h e r a t e o f r e d u c t i o n r e a c t i o n (moles/cm charge. s) 3  :  i s t h e amount o f i r o n (g/cm charge) w h i c h i s r e l a t e d t o 3  the oxygen c o n t e n t o f t h e o r e R i s the percent  reduction  i s the ore r e d u c i b i l i t y E  (cm /g.ss) 3  i s t h e a c t i v a t i o n energy f o r r e d u c t i o n  (cal/mole)  56 P^g^  i s t h e e q u i l i b r i u m p a r t i a l p r e s s u r e o f CO2 f o r t h e r e d u c t i o n r e a c t i o n (atm)  I n t h e development o f t h e s e e q u a t i o n s a f i r s t o r d e r r e a c t i o n r a t e has been assumed;  i n t h e case o f t h e g a s i f i c a t i o n r e a c t i o n t h i s has been  j u s t i f i e d i n S e c t i o n 1.2.4.  F o r t h e r e d u c t i o n r e a c t i o n t h i s was t h e  approach used by von Bogdandy and E n g e l l (32) ; found i n t h e l i t e r a t u r e on d i r e c t r e d u c t i o n  f u r t h e r support may be  studies  (40-42).  Equations  [19] and [20] may be r e - w r i t t e n as f o l l o w s : P r  B  B  2  P -  -  [  - P  R  co ^  2  —ITT  = B K  r•-R =  - P C0  b  C0  —  9  a  ]  b  co  2  1  2  [20a]  ^  where Kg = M  H  c  Kj^ = Mp  c  exp(- E /R T)  (1 - R) H  e  a r e t h e independent  B  G  [21]  p e  exp (-  [22]  r e a c t i o n r a t e c o n s t a n t s f o r Boudouard and r e d u c t i o n  r e a c t i o n s r e s p e c t i v e l y w h i c h show t h e t y p i c a l A r r h e n i u s t y p e of temperat u r e dependence. Experimentally,  t h e f o l l o w i n g r e l a t i o n s h i p h o l d s t o a v e r y good  approximation, r and E q u a t i o n s  = r  B  [23]  R  [19a] and [20a] can be combined and r e - a r r a n g e d t o g i v e P r  = r B  R  C0  - P C0 B  2  = r = R  R T  2  (— + — ) K kJ  The o v e r a l l r a t e c o n s t a n t (K ) i s then ov  [241 l  j  which by s u b s t i t u t i n g u s i n g E q u a t i o n s  [21] and [ 2 2 ] , r e - a r r a n g i n g , and  t a k i n g l o g a r i t h m s becomes (E  £nK  R  V  +  =  + £n[M  ov  R T - £n[M H c  H c  c  (1-R) H c  Fe  ] Fe  e x p ( - Eg/R^T) + M ^ U - R ) H  exp(- E / G R  p e  T )1  [ 2 6 ]  R  E q u a t i o n [26] shows a n o n - l i n e a r r e l a t i o n s h i p between £nK  and ov  T  ;  c o n s e q u e n t l y , t h e c a l c u l a t i o n o f an o v e r a l l a c t i v a t i o n energy i s  not p o s s i b l e u n l e s s one o f t h e r e a c t i o n s i s t o t a l l y c o n t r o l l i n g t h e reduction process.  I f t h i s i s t h e c a s e , one o f t h e terms i n E q u a t i o n  [25] becomes n e g l i g i b l e compared t o t h e o t h e r , and E q u a t i o n [24] would t a k e t h e form o f e i t h e r E q u a t i o n [19] o r [20] depending  on whether  g a s i f i c a t i o n or r e d u c t i o n i s r e s p e c t i v e l y l i m i t i n g the o v e r a l l r e a c t i o n . Kg and  can be c a l c u l a t e d from E q u a t i o n s [19a] and [20a] a t  d i f f e r e n t p e r c e n t r e d u c t i o n s w i t h i n an e x p e r i m e n t , and a t d i f f e r e n t temperatures  f o r t h e same p e r c e n t r e d u c t i o n i n d i f f e r e n t r u n s .  A  dependence on temperature and p e r c e n t r e d u c t i o n i s then o b t a i n e d f o r Kg and K  R  s e p a r a t e l y from w h i c h a c t i v a t i o n e n e r g i e s can be i n d e p e n d e n t l y  d e f i n e d f o r t h e r e d u c t i o n and g a s i f i c a t i o n r e a c t i o n s a t v a r y i n g r e d u c tion levels.  T h i s i s done a t t h e two l i m i t i n g c o n d i t i o n s s p e c i f i e d  above as shown i n Appendix I I . T a b l e V I I I g i v e s t h e change i n r e d u c t i o n r a t e c o n s t a n t w i t h p e r cent r e d u c t i o n f o r t h e experiments i n w h i c h t h e e f f e c t o f argon f l o w , speed o f r o t a t i o n , and bed depth was s t u d i e d .  At a g i v e n p e r c e n t  r e d u c t i o n , t h e runs p r e s e n t e d i n T a b l e s V i l l a and b produced  fairly  c o n s t a n t v a l u e s o f K^, t h e v a r i a t i o n s b e i n g g e n e r a l l y s m a l l e r when  TABLE V I I I K  a  '  A t  AS FUNCTION OF % REDUCTION AT 1000°C FOR DIFFERENT OPERATING  p  co2  % reduction  +  -  A t P  4.0 2.9 2.9 1.8 1.7  co2  % reduction 5 12 26 42 57 76  co =  1  a  t  m  Run number 4 5a 6 9 11 12 13 14 (10,250) (10,250) (10,250) (18,250) (10,500) (18,500) (30,500) (30,250)  5 12 26 42 57 76  b  p  CONDITIONS  CO  4 8.9 6.7 5.9 4.6 4.3  4.0 3.7 2.7 1.8 0.8  4.4 2.8 2.1 1.4 1.4 —  4.2 3.3 3.2 2.7 1.8 0.9  3.6 2.5 1.9 1.4 1.1  3.7 2.6 2.1 1.2 0.7  3.7 3.0 1.5 0.9 0.7  —  —  —  11  12  13  9.9 8.1 6.6 5.4 5.2  9.8 8.3 6.7 5.3 4.7 -  9.6 8.4 5.9 5.'3 5.0  5.7 3.5 2.2 1.7 0.9  p atm  5  6  Run number 9  7.6 6.5 5.2 4.1 3.1  9.1 6.7 5.0 4.1 4.2 -  7.8 6.9 6.6 5.5 4.5 3.3  -  -  14  8.6 6.6 4.6 4.2 3.6  The number i n p a r e n t h e s i s r e f e r s t o r o t a t i o n a l speed and argon i n f l o w r e s p e c t i v e l y . Runs 5 and 6 a r e a t 0.30 c h a r / i l m , t h e o t h e r s a t 0.24. Bed depth i s 15 mm i n 5 d 12 mm i n 6.  59 P  B  + P  = p atm i s c o n s i d e r e d .  B  Thus one may c o n c l u d e t h a t t h e d i f f e r -  ences i n r a t e observed f o r t h e s e experiments  ( F i g u r e s 7 and 10) a r e m a i n l y  due t o v a r i a t i o n s i n d r i v i n g f o r c e , and t h e k i n e t i c parameters  derived  from t h i s s t u d y a r e n o t s p e c i f i c t o t h e r e a c t o r c o n f i g u r a t i o n used. Table I X shows t h e c a l c u l a t e d v a l u e s o f K^;  and, as can be seen, Kg  v a r i e s c o n s i d e r a b l y from r u n t o r u n a t t h e same p e r c e n t r e d u c t i o n , more so t h a n was seen f o r K^.  The most l i k e l y r e a s o n f o r t h i s i s t h a t P^Q  r e l a t i v e l y c l o s e t o t h e e q u i l i b r i u m CO?  p a r t i a l pressure  is  ) so t h a t  n  L.C>2  t h e d r i v i n g f o r c e used t o c a l c u l a t e K,, from r a t e v a l u e s i s s m a l l ; thus, J5 s m a l l e r r o r s i n measurement of P^ a r e m a g n i f i e d i n K^. As an example, f o r r u n 13 a t 5% r e d u c t i o n P  - P  B  CU2  B  i s 0.006 atm w h i l e P  CU2  - P  R  B  CU  CU2  2  i s 0.019 atm. The e f f e c t o f temperature  on t h e r e d u c t i o n k i n e t i c s of Westport  i l m e n i t e was p r e s e n t e d i n S e c t i o n 3.2.2.  R e a c t i o n r a t e c o n s t a n t s (K^  and Kg) can a l s o be c a l c u l a t e d f o r t h e experiments  involving  temperature  e f f e c t s from w h i c h A r r h e n i u s p l o t s and a c t i v a t i o n e n e r g i e s can be o b t a i n e d . F o r Westport i l m e n i t e , a c t i v a t i o n e n e r g i e s f o r r e d u c t i o n and g a s i f i c a t i o n at 30% and 40% r e d u c t i o n can be d e r i v e d from F i g u r e 22, and a r e g i v e n i n T a b l e X. P + P^ B  CO2  CO  I t can be seen t h a t t h e a c t i v a t i o n e n e r g i e s o b t a i n e d a t = 1 atm a r e between 2 and 3 times l a r g e r t h a n those r e p o r t e d  p r e v i o u s l y i n t h e l i t e r a t u r e ( S e c t i o n 1.2.3) w h i l e t h o s e c a l c u l a t e d a t P  B  CO 2  + P = p atm a r e v e r y c l o s e t o t h e v a l u e s from o t h e r s t u d i e s . *-*o B  A l s o shown i n T a b l e X a r e t h e c o r r e s p o n d i n g a c t i v a t i o n e n e r g i e s d e t e r mined from experiments w i t h Glenbrook o x i d i z e d Westport i l m e n i t e s ;  i r o n s a n d s , and F l o r i d a and p r e -  t h e s e a c t i v a t i o n e n e r g i e s however may n o t  be a c c u r a t e s i n c e each was determined  from o n l y two e x p e r i m e n t s .  can be observed, t h e a c t i v a t i o n e n e r g i e s f o r r e d u c t i o n r e a c t i o n of  As  TABLE I X Kg AS FUNCTION OF % REDUCTION AT 1000°C FOR DIFFERENT OPERATING CONDITIONS  a  '  A t  p  co2  +  p  co  "  1  a t m  Run number % 4 5 6 9 11 12 13 14 r e d u c t i o n (10,250) .(10,250) (10,250) (18,250) (10,500) (18,500) (30,500) (30,250) 5 12 26 42 57 76 b.  A t P_C0  % reduction 5 12 26 42 57 76  5.1 4.2 . 6.5 7.2 7.8  4.7 7.0 6.1 5.7 2.5  6.2 4.3 9.3 8.0 5.0 —  5.8 5.3 4.9 6.7 5.1 3.4  9.3 7.4 12.6 73.8 23.6  9.2 6.9 12.6 52.7  —  —  —  11  12  13  19.0 17.0 24.2 41.1 31.5  19.3 16.5 24.9 43.0 51.2  26.6 23.0 34.2 38.6 33.7  -  14.8 12.0 25.4 42.0 36.9  13.7 6.0 8.8 9.4 3.4  P . = p atm CO b  + 2  4 9.5 8.1 10.8 12.4 13.1  -  5  8.0 10.2 9.7 10.0 7.1  See f o o t n o t e T a b l e V I I I  6 10.8 8.7 15.0 14.0 10.6  -  Run number 9 9.4 9.1 8.5 10.8 9.6 8.5  -  -  -  14  17.6 9.6 13.5 14.7 9.0  Figure  22.  A r r h e n i u s p l o t s f o r r e d u c t i o n of Westport and g a s i f i c a t i o n of carbon  ilmenite  TABLE X ACTIVATION ENERGIES FOR REDUCTION AND BOUDOUARD REACTIONS FOR THE DIFFERENT ORES ORE TYPE Westport i l m e n i t e Glenbrook i r o n s a n d s F l o r i d a i l m e n i t e P r e - o x i d i z e d Percent  reduction  Westport  30%  40%  47%  69%  40%  60%  40%  66%  R e d u c t i o n r e a c t i o n (1)  47  44  34  7  31  43  44  20  R e d u c t i o n r e a c t i o n (p)  28  22  27  9  5  10  24  5  Boudouard r e a c t i o n (1)  69  52  83  46  71  45  78  61  Boudouard r e a c t i o n (p)  58  52  82  44  53  27  66  56  Symbols i n p a r e n t h e s i s r e p r e s e n t whether the a c t i v a t i o n energy was c a l c u l a t e d a t p  co  + 2  p  co  b  =  1  a t m  o r  p  C0  + P = p atm ( p ) . CO b  2  A c t i v a t i o n energy v a l u e s a r e i n K c a l / m o l e . The e x p e r i m e n t a l e r r o r i n a c t i v a t i o n energy v a l u e s i s about 25%.  •  63 Westport i l m e n i t e , i r o n s a n d s (47% r e d u c t i o n ) , and p r e - o x i d i z e d o r e (40% r e d u c t i o n ) a t p atm t o t a l p r e s s u r e a r e s i m i l a r , and a mean v a l u e o f 25 Kcal/mole for  can be c a l c u l a t e d .  I n t h e same way, t h e a c t i v a t i o n  energies  t h e r e d u c t i o n o f F l o r i d a i l m e n i t e , i r o n s a n d s (69% r e d u c t i o n ) , and  p r e - o x i d i z e d o r e ( 6 6 % r e d u c t i o n ) a r e c l o s e t o each o t h e r , and a mean v a l u e of 7.5 Kcal/mole discussed l a t e r . 55 Kcal/mole  can be determined.  T h e i r s i g n i f i c a n c e w i l l be  I n t h e case o f t h e Boudouard r e a c t i o n a mean v a l u e o f  i s o b t a i n e d f o r t h e a c t i v a t i o n energy.  From these a c t i v a t i o n e n e r g i e s t h e f o l l o w i n g mean o r e r e d u c i b i l i t i e s ( H p ) , and char r e a c t i v i t y e  ( H ) were c a l c u l a t e d u s i n g E q u a t i o n s c  [21] and  [22]: Westport i l m e n i t e  4 x 10  5  cm /g.s  P r e - o x i d i z e d Westport  2 x 10  6  and 2 x 1 0  Florida ilmenite  4 x 10  3  cm /g.s  Glenbrook i r o n s a n d s  9 x 10  4  and 8 x 1 0  Char  2 x 10  1 1  3  3  cm /g.s  1  cm /g.s  3  3  3  cm /g.s 3  The s t a n d a r d d e v i a t i o n f o r H_, v a l u e s i s about 20%, w h i l e f o r H Fe c i t i s 40%. g i v e n above;  F o r t h e i r o n s a n d s , and t h e p r e - o x i d i z e d o r e , two v a l u e s were t h e f i r s t r e f e r s t o an a c t i v a t i o n energy o f 25 K c a l / m o l e  w h i l e t h e second r e f e r s t o 7.5 K c a l / m o l e .  The f o l l o w i n g d i s c u s s i o n  d e a l s w i t h t h e f i r s t o f them. The p o s i t i v e e f f e c t o f p r e - o x i d a t i o n shown i n F i g u r e s 11 and 12 i s r e - c o n f i r m e d by comparing t h e r e d u c i b i l i t i e s o f t h e s e m a t e r i a l s , t h e p r e o x i d i z e d o r e b e i n g about f i v e times as r e d u c i b l e as t h e n a t u r a l o r e d u r i n g the f i r s t h a l f of the r e d u c t i o n process.  A l t h o u g h t h e i r o n s a n d s have a  lower r e d u c i b i l i t y c o n s t a n t than Westport i l m e n i t e t h e former m a t e r i a l was reduced  a t a f a s t e r r a t e than t h e l a t t e r , w h i c h may seem t o be  64 inconsistent;  however, t h i s i s c l a r i f i e d when t h e d r i v i n g f o r c e s f o r t h e  r e d u c t i o n r e a c t i o n s o f t h e s e ores a r e compared:  t h e CO2 e q u i l i b r i u m  p a r t i a l p r e s s u r e f o r r e d u c t i o n i s f i v e times l a r g e r f o r t h e i r o n s a n d s as compared t o t h e i l m e n i t e , w h i l e t h e b u l k C 0 about t h e same; (P  R  L.U2  - P  b  CU2  2  p a r t i a l p r e s s u r e remains  R b i n consequence, ( P . - P„,~ ) i r o n s a n d s i s l a r g e r n r  ) ilmenite.  than  The r e d u c i b i l i t y o f t h e F l o r i d a i l m e n i t e i s  s t i l l l o w e r , however, t h i s i s compensated by t h e a l s o lower  activation  energy f o r i t s r e d u c t i o n , which e x p l a i n s t h e r e l a t i v e l y h i g h r e d u c t i o n r a t e s observed  for i t .  65 4.3  R e d u c t i o n mechanism I n E q u a t i o n [24] , t h e o v e r a l l r a t e o f r e a c t i o n i s c a l c u l a t e d from  a d r i v i n g f o r c e term, and a r a t e c o n s t a n t  that incorporates  the i n d i v i d u a l  r e s i s t a n c e s o f each r e a c t i o n , i . e . , Boudouard and r e d u c t i o n ; resistances are the inverse of the rate constants.  these  I n attempting  e l u c i d a t e t h e r e d u c t i o n mechanism o f t h i s p r o c e s s t h e b u l k p a r t i a l 1  to pres-  s u r e o f carbon d i o x i d e can be compared t o t h e e q u i l i b r i u m v a l u e s f o r r e d u c t i o n and g a s i f i c a t i o n . d e t e r m i n e d and a l s o compared.  The r e s i s t a n c e s f o r each r e a c t i o n w i l l be T h i s i s done i n F i g u r e s 23 t h r o u g h 32  where CO2 b u l k and e q u i l i b r i u m p a r t i a l p r e s s u r e s  at both l i m i t i n g  condi-  t i o n s 1 atm, and p atm, and i n d i v i d u a l r e s i s t a n c e s ( a l s o a t 1 atm and p atm) a r e p l o t t e d v s . p e r c e n t r e d u c t i o n .  I n o r d e r t o see t h e change  i n r a t e as t h e r e s i s t a n c e s v a r i e d , t h e r a t e o f r e a c t i o n ( i n moles/cm .s) 3  i s incorporated  i n t h e s e p l o t s as w e l l .  I t was mentioned i n S e c t i o n 1.2.1 t h a t t h e b u l k C 0  2  partial  pressure  would be c l o s e s t t o t h e e q u i l i b r i u m v a l u e o f t h e r e a c t i o n h a v i n g t h e faster rate.  W i t h t h i s i n mind, and l o o k i n g a t F i g u r e s  23 t h r o u g h 32,  the r a t e c o n t r o l l i n g s t e p s can be proposed as f o l l o w s : a)  The r e d u c t i o n o f Westport i l m e n i t e by char i s c o n t r o l l e d by b o t h t h e  r e d u c t i o n and Boudouard r e a c t i o n s a t e a r l y and i n t e r m e d i a t e the t e m p e r a t u r e i s i n t h e range 950-1000°C ( F i g s . 23-25);  s t a g e s when i n the l a t e r  s t a g e s o f r e d u c t i o n t h e system moves towards r e d u c t i o n r e a c t i o n c o n t r o l . At h i g h e r  t e m p e r a t u r e s , i . e . , 1100°C, t h e r e d u c t i o n r e a c t i o n i s l i m i t i n g  the o v e r a l l p r o c e s s p r a c t i c a l l y over t h e e n t i r e range s t u d i e d 30% t o 90% r e d u c t i o n ) ;  ( F i g . 26,  t h i s i s a consequence o f t h e h i g h e r a c t i v a t i o n  energy o f t h e Boudouard r e a c t i o n as compared t o r e d u c t i o n , w h i c h causes the r a t e c o n s t a n t  f o r g a s i f i c a t i o n t o i n c r e a s e f a s t e r than t h a t o f  66  .06h  Red  (I)  E o .04 k.  3 (O (/) <L> Q-.02  CM O  o  O  Rate  A  l/K (l)  •  l/K (p)  CD  •  l/K (l )  'o  r  r  b  l/K (p) b  10.8^  a £  10.6 |  1.21  10.4  0.8  O —  R Q2  0.4  20  40  % Figure  23.  Reduction  CO^ p a r t i a l p r e s s u r e ,  and i n d i v i d u a l  resistances  diagrams f o r Westport i l m e n i t e a t 954°C  o  or  67  .08r-  r Red (I)  E .06 o  Bulk (I )  0)  3 (0 to Q. „ CM  .04  o .02 o  R e d J P L ^ ^ „ '  A  _ A —  - ^ -  A  J  A  Boud(l)  v  - Y —  V  ' --- - ^^Bulk(p) v  v  Boud~(p7  i.oh-  •O  0.8  0.8  co  "fe  ~  0.6  0.6  CO  o to o  0.4  0.4  J  a 0C  0.2  HQ2  50  25  % F i g u r e 24.  Reduction  CG^ p a r t i a l p r e s s u r e ,  and i n d i v i d u a l  resistances  diagrams f o r Westport i l m e n i t e a t 965°C  % F i g u r e 25.  Reduction  CO^ p a r t i a l p r e s s u r e ,  and i n d i v i d u a l  resistances  diagrams f o r Westport i l m e n i t e a t 998°C  20  40  60  % Figure  26.  80  Reduction  CC^ p a r t i a l p r e s s u r e , and i n d i v i d u a l  resistances  diagrams f o r Westport i l m e n i t e . a t 1115°C  70 reduction.  E s s e n t i a l l y t h e same c o n c l u s i o n s  f o r r e s i s t a n c e s were c o n s i d e r e d ; drops as t h e r e s i s t a n c e s b)  c a n be drawn i f t h e p l o t s  from t h e s e i t i s n o t i c e d t h a t t h e r a t e  increase.  When t h e r e s u l t s f o r t h e p r e - o x i d i z e d m a t e r i a l a r e s t u d i e d i t i s  seen t h a t a t 950°C ( F i g . 27) t h e r e a c t i o n r a t e i s governed more by t h e Boudouard r e a c t i o n , b u t r e d u c t i o n a l s o e x e r c i s e s an i n f l u e n c e . higher  At the  t e m p e r a t u r e ( F i g . 28) a g a i n t h e e f f e c t o f t h e Boudouard a c t i v a -  t i o n energy i s n o t i c e a b l e , and a f t e r an i n i t i a l mixed c o n t r o l , a s h i f t o c c u r s a t about 70% r e d u c t i o n , and t h e r e d u c t i o n r e a c t i o n becomes t h e slower step.  Once more, t h e r e s u l t s support t h e p o s i t i v e e f f e c t t h a t  p r e - o x i d a t i o n has i n i n c r e a s i n g t h e r e d u c t i o n r a t e o f Westport i l m e n i t e . c)  F i g u r e 29 shows t h a t f o r t h e r e d u c t i o n o f F l o r i d a i l m e n i t e a t 950°C  the g a s i f i c a t i o n o f carbon i s a c t u a l l y t h e d e t e r m i n i n g 45% r e d u c t i o n .  f a c t o r u n t i l about  The system then p a s s e s t h r o u g h a mixed c o n t r o l zone, and  reaches r e d u c t i o n c o n t r o l o n l y toward t h e end o f t h e e x p e r i m e n t . the t e m p e r a t u r e i s r a i s e d t h e same t r e n d as b e f o r e  i s observed;  When where  the Boudouard r e a c t i o n was l i m i t i n g a t 950°C, mixed c o n t r o l t a k e s over a t 1050°C ( F i g . 3 0 ) ; and t h e p r o c e s s i s governed by r e d u c t i o n a t lower percent r e d u c t i o n than d)  For the ironsands  before. the CO2 p a r t i a l pressure  had t o be p l a c e d on a  l o g a r i t h m i c s c a l e w h i c h makes t h e t r e n d s more d i f f i c u l t t o v i s u a l i z e . At 950°C mixed c o n t r o l e x i s t s u n t i l about 60% r e d u c t i o n , and t h e n t h e p r o c e s s t u r n s i n t o c o n t r o l by r e d u c t i o n  ( F i g . 31a).  F i g u r e 32a shows  t h a t a t 1050°C t h e s i t u a t i o n i s r e d u c t i o n l i m i t e d from t h e v e r y  early  stages. I t i s w o r t h m e n t i o n i n g h e r e t h a t from v a l u e s o f H the l i t e r a t u r e  (32),  c  reported i n  can be c a l c u l a t e d and s i m i l a r comparisons done.  F i g u r e 27.  CC>2 p a r t i a l p r e s s u r e ,  and  i n d i v i d u a l r e s i s t a n c e s diagrams  f o r p r e - o x i d i z e d ore at 949°C  .08.  72  |.06| o  Red (I )  Red (p)  0)  w  .041  CO CD k-  Q_ CM  A-  g.02|  Bulk (p)  Bulk(l)  Boud(l )  O K  Boud (p)  O  Rate  A  l/K (l)  T  l/K (p)  •  l/K (l )  r  CD  r  b  08  l/K (p)  03]  b  x </>  ro _  0.6|  0.6  in  E o CO  o E -  0.4  0.4  a>  o  cr  02  0.2  40  60  80  % F i g u r e 28.  100  Reduction  p a r t i a l pressure,  and i n d i v i d u a l r e s i s t a n c e s diagrams  f o r p r e - o x i d i z e d o r e a t 1049°C  .73  .08  Red (I )  -.06 E o 2.04 — I  N v  'A  B u l k (p)  A  to CO  ^•02  Red(p)  O  \  ^ T r  Bulk(l) A  Boud (I)  o  Boud(p)  2.0  O  Rate  A  l/K (l) r  CO •o 2.0  1.6  X  (0  ro E w  1.5  1.2  ID  0.8  o -— <v o E a> o  or —|Q5  0.4  20  40  60  % F i g u r e 29.  p a r t i a l pressure,  80  Reduction  and i n d i v i d u a l r e s i s t a n c e s diagrams  f o r F l o r i d a i l m e n i t e a t 950°C  % F i g u r e 30.  Reduction  p a r t i a l pressure,  and  i n d i v i d u a l r e s i s t a n c e s diagrams  f o r F l o r i d a i l m e n i t e at 1048°C  75  i  0.4  Red (I)  i  1  r  Red(p)  Ql  Bulk (I )  A-  Bulk(p) s.  N  E  A T  A-J  \  o o  Boud (I)  0.  \  0.01 Boud (p)  N  -I  \ \  \H M  0.001  J  20  L  40  60  % Reduction F i g u r e 31a. CO2 p a r t i a l p r e s s u r e diagram f o r Glenbrook i r o n s a n d s at 948°C  80  % F i g u r e 31b.  Reduction  I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook i r o n s a n d s a t 948°C  77  0.4  Red  (I)  O— Red (p)  \  0.1  O,  Bulk (I) "A T  CM O O  •  Q_  Bulk(p)\  0.01  "A—A-  Boud (I)  Boud (p)*  •  \  0.001  20  40  60  80  % Reduction F i g u r e 32a.  CC^ p a r t i a l p r e s s u r e diagram f o r Glenbrook i r o n s a n d s .at 1057°C  0  20  40  60  80  % Reduction F i g u r e 32b.  I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook i r o n s a n d s at 1057°C  79 Thus when  f o r t h e l o w e s t r e a c t i v e t y p e o f carbon ( p r o b a b l y g r a p h i t e )  was used, t h e v a l u e s o f K^ were d r a s t i c a l l y r e d u c e d , and t h e cases where mixed c o n t r o l e x i s t e d became a r e a s o f Boudouard r e a c t i o n c o n t r o l . By c o n s i d e r i n g t h e a c t i v a t i o n e n e r g i e s g i v e n i n t h e p r e v i o u s s e c t i o n some i d e a s can be proposed w i t h r e s p e c t t o t h e r a t e l i m i t i n g s t e p o f the  reduction reaction i t s e l f .  An a c t i v a t i o n energy o f 25 K c a l / m o l e may  be r e p r e s e n t a t i v e o f e i t h e r a c h e m i c a l o r a s o l i d s t a t e d i f f u s i o n cont r o l l e d p r o c e s s , and as r e p o r t e d by P o g g i e t a l . (19) e x p e r i m e n t s i n w h i c h t h e geometry o f t h e p a r t i c l e s i s changed a r e n e c e s s a r y i n o r d e r t o a r r i v e a t any c o n c l u s i o n i n t h i s r e s p e c t . v a l u e determined e a r l i e r l i m i t i n g step. the  The o t h e r a c t i v a t i o n energy  (7.5 K c a l / m o l e ) i n d i c a t e s a pore gas d i f f u s i o n  The photomicrograph p r e s e n t e d i n F i g u r e 15c shows t h a t  F l o r i d a i l m e n i t e i s q u i t e porous w h i c h i s a j u s t i f i c a t i o n f o r t h e  proposed gas d i f f u s i o n c o n t r o l .  The p r e - o x i d i z e d and i r o n s a n d s o r e s a r e  a l s o porous a f t e r they have reached some degree o f r e d u c t i o n as seen i n F i g u r e s 18c and d, and 20c and d.  The pore development  after a certain  l e v e l o f r e d u c t i o n has been a t t a i n e d i s v e r y l i k e l y t h e r e a s o n why t h e r e i s a change, i n b o t h c a s e s , i n t h e a c t i v a t i o n energy o f t h e r e d u c t i o n r e a c t i o n (Table X). or  The f i r s t v a l u e (25 K c a l / m o l e ) r e p r e s e n t s c h e m i c a l  s o l i d s t a t e d i f f u s i o n c o n t r o l , and t h e second (7.5 K c a l / m o l e )  a c c o u n t s f o r pore gaseous d i f f u s i o n  control.  80 4.4  V e r i f i c a t i o n of o v e r a l l r a t e equation As a f i n a l check on t h e s u i t a b i l i t y  i n t h i s study, Equation  o f t h e r a t e e q u a t i o n s employed  [22] was employed t o c a l c u l a t e t h e r a t e o f r e a c -  t i o n u s i n g v a l u e s o f H , H_ , E„ and E_, d e r i v e d from e x p e r i m e n t a l d a t a . °  c  Fe  B  R  In F i g u r e 33 t h e e x p e r i m e n t a l and c a l c u l a t e d r e d u c t i o n r a t e s a r e p r e sented f o r some t y p i c a l runs i n v o l v i n g Westport i l m e n i t e  A t 965°C t h e  agreement i s good over t h e e n t i r e range o f r e d u c t i o n s t u d i e d , b u t a t 998°C t h e r e i s good agreement o n l y a f t e r 40% r e d u c t i o n has been  reached.  The most l i k e l y r e a s o n f o r t h e d i s p a r i t y a t r e d u c t i o n s below 40% i s t h a t up t o t h i s l e v e l t h e assumed c o n d i t i o n o f complete gas m i x i n g (P  '+• P  b  CU2  and H  re  b  L>U  = p atm) i s n o t v a l i d , and s i n c e t h e k i n e t i c parameters H c  used i n E q u a t i o n  [22] were o b t a i n e d assuming complete m i x i n g ,  t h e i r v a l u e w i l l be h i g h e r than t h e t r u e v a l u e f o r t h e r e g i o n where b P_,_  CO2  + P  b CO  > p atm.  shown i n F i g u r e 33.  Hence t h e r e s u l t i n g c a l c u l a t e d r a t e i s h i g h e r as A t t h e h i g h e s t temperature  o f 1115°C t h e r e i s  r e a s o n a b l e agreement between measured and c a l c u l a t e d r a t e s d u r i n g t h e e a r l y and f i n a l s t a g e s o f r e d u c t i o n .  I t i s l i k e l y that at the beginning  of t h e p r o c e s s t h e r a t e o f gas e v o l u t i o n i s so h i g h (see F i g . 21) t h a t even i f argon i s c o n s i d e r e d t o have p e n e t r a t e d i n t o t h e bed i t s d i l u t i o n e f f e c t i s n e g l i g i b l e , and P  b  + P  b Q  = p - 1 atm.  Thus t h e H_ and H c  F e  parameters o b t a i n e d a t p atm t o t a l p r e s s u r e a r e e q u a l l y v a l i d i n t h i s region.  I n t h e i n t e r m e d i a t e zone, where t h e agreement i s n o t as good,  a s i t u a t i o n s i m i l a r t o t h e e a r l y s t a g e d u r i n g r e d u c t i o n a t 998°C would exist.  5. a.  SUMMARY AND CONCLUSIONS  Lack o f k i n e t i c d a t a s u i t a b l e f o r t h e d e s i g n and o p t i m i z a t i o n  of i n d u s t r i a l r e d u c t i o n p r o c e s s e s was t h e b a s i s f o r t h e e x p e r i m e n t a l program o f t h e p r e s e n t work.  A l a b o r a t o r y s c a l e r o t a r y f u r n a c e was used  as t h e r e a c t o r i n o r d e r t o m a i n t a i n reagents during the experiments.  an adequate degree o f m i x i n g o f t h e I l m e n i t e s from Westport (New Zealand)  b o t h n a t u r a l and p r e - o x i d i z e d , and from F l o r i d a (USA) as w e l l as t i t a n o m a g n e t i t e from Glenbrook (New Zealand) were reduced w i t h c h a r r e d  lignite  c o a l from Saskatchewan w i t h t h e aim o f o b t a i n i n g o r e r e d u c i b i l i t i e s and char r e a c t i v i t y . b.  The carbon g a s i f i c a t i o n r e a c t i o n r a t e was c h a r a c t e r i z e d  using  the approach proposed by von Bogdandy and E n g e l l (32) , and an analogous e q u a t i o n was d e v e l o p e d t o d e s c r i b e t h e r e d u c t i o n r e a c t i o n r a t e .  These  e q u a t i o n s were found t o be adequate t o d e s c r i b e t h e o v e r a l l r a t e o f r e a c t i o n when back m i x i n g was assumed i n t h e r e a c t o r . c.  An a c t i v a t i o n energy o f 25 K c a l / m o l e was found f o r t h e r e d u c -  t i o n r e a c t i o n o f Westport i l m e n i t e , and t h e f i r s t s t a g e o f r e d u c t i o n o f the i r o n s a n d s obtained  and p r e - o x i d i z e d o r e ;  a v a l u e o f 7.5 K c a l / m o l e was  f o r t h e r e d u c t i o n o f F l o r i d a i l m e n i t e , and t h e second s t a g e o f  reduction of the ironsands  and p r e - o x i d i z e d o r e .  r e a c t i o n t h e a c t i v a t i o n energy was 55 K c a l / m o l e .  F o r t h e Boudouard A l l these  values  were c a l c u l a t e d assuming back m i x i n g o f gas i n t h e r e a c t o r , and a r e i n good agreement w i t h p u b l i s h e d  data. 82  The f o l l o w i n g o r e r e d u c i b i l i t i e s ,  83 Hp^,  and  char r e a c t i v i t y , H  c  were then found:  Westport i l m e n i t e  4 x 10  5  cm /g.s  P r e - o x i d i z e d Westport ore  2 x 10  6  and  2 x 10  Florida ilmenite  4 x 10  3  cm /  g.s  Glenbrook ironsands  9 x 10  4  and  8 x 10  Char  2 x 10  1 1  d.  The  r e d u c t i o n mechanism was  o r e type  and  the temperature.  3  3  3  cm /g.s  1  cm /g.s  3  3  cm /g.s 3  found to be v e r y  s e n s i t i v e to  D u r i n g r e d u c t i o n of Westport i l m e n i t e a  mixed c o n t r o l e x i s t s i n the temperature range 950-1000°C w h i l e r e d u c t i o n r e a c t i o n i s l i m i t i n g at 1100°C. there and  the  For the p r e - o x i d i z e d  ilmenite  i s a g a i n mixed c o n t r o l at 950°C, but more on the Boudouard s i d e ;  at 1050°C a s h i f t  imately  70%  governed by  from mixed to r e d u c t i o n c o n t r o l occurs  reduction.  r e d u c t i o n when mixed  an i n c r e a s e i n temperature to 1050°C c o n v e r t s  Boudouard l i m i t e d zone i n t o mixed c o n t r o l , and r a t e i s determined by  a f t e r 80%  the r e d u c t i o n r e a c t i o n .  the r e d u c t i o n of Glenbrook ironsands  up  to about 60%  r e a c t i o n c o n t r o l e x i s t s over the e n t i r e range. the r e d u c t i o n r e a c t i o n been r e p o r t e d  of metal oxides of carbon has published  by  carbon;  the the  limit  r e d u c t i o n at 950°C, at 1050°C r e d u c t i o n  Nowhere i n the as l i m i t i n g the  litera-  reduction  however, i n most cases a l e s s r e a c t i v e form  been used as r e d u c i n g  agent.  A simple  r e a c t i v i t i e s proved t h a t the p r e s e n t  been governed by  reduction  Both r e a c t i o n s  i s r e d u c t i o n governed d u r i n g the l a t e r s t a g e s ;  t u r e has  at approx-  At 950°C the r e d u c t i o n of F l o r i d a ore i s  the Boudouard r e a c t i o n up u n t i l 45%  c o n t r o l takes over;  and  the  c a l c u l a t i o n using  system c o u l d have a l s o  the Boudouard r e a c t i o n i f g r a p h i t e was  used  as  reductant. e.  From the a c t i v a t i o n energy v a l u e s  and  the SEM  observations i t  84 is  proposed that  changed  from  diffusion tion  the  either  rate solid  when r e d u c i n g  reaction  diffusion,  of  controlling state  the  step  diffusion  ironsands  or  F l o r i d a and W e s t p o r t  and e i t h e r  solid  state  for or  the  reduction  reaction  chemical control  pre-oxidized ore.  ilmenites  diffusion  or  was  to  pore  The  limited  by  gas  reduc-  pore  chemical reaction  gas  respec-  tively. f.  Argon transport  characterizing was  partially (1)  tions: gases. stages exist  driving  forces  overcome by  no  in  reduction the  the for  s o l i d s b e d p o s e d some d i f f i c u l t i e s the  performing  argon penetration,  These s i t u a t i o n s of  into  are probably  stages of  reactions;  c a l c u l a t i o n s a t two  and  respectively.  intermediate  independent  (2)  total  valid  Partial  mixing  during  the  extreme of  problem  condi-  argon with  early  argon penetration  reduction.  this  in  and  bed  final  should  85  REFERENCES 1.  K o t h a r i , N. C.  I n t . J . M i n . P r o c e s s . , 1, 1974, 287-305.  2.  D o o l e y , G. J . J . M e t a l s , 27_, ( 3 ) , 1975, 8-16.  3.  B a l l , D. M.  4.  Henn, J . J . , and B a r c l a y , J . A.  5.  H o c k i n , H. W.  6.  Iammartino, N. R.  7.  Noda, T.  8.  B o l d , D. A., and Evans, N. T.  9.  Shomate, C. H.,et a l .  Chem. and I n d . , 16 J u l y 1977, 547-549. U.S.B.M., I.C. 8450, May 1970, 1-27.  U n p u b l i s h e d work. Chem. Eng., 8_3, ( 1 2 ) , 1976, 100-101.  J . M e t a l s , 17, ( 1 ) , 1965, 25-32. I r o n S t e e l I n t . , 50, 1977, 146-152.  U.S.B.M., R . I . 3864, May 1946, 1-19.  10.  T i e n , R. H., and Turkdogan, E. T.  11.  Ward, R. G.  Met. T r a n s . B, 8B, 1977, 305-313.  "An I n t r o d u c t i o n t o t h e P h y s i c a l C h e m i s t r y o f I r o n and  S t e e l Making."  A r n o l d , London, 1962, p. 212.  12.  Walsh, R. H., e t a l .  13.  H u s s e i n , M. K. , e t a l .  14.  Grey, I . E., e t a l .  Trans. I n s t . M i n . M e t a l l . , 82, 1973, C151-152.  15.  J o n e s , D. G.  C186-192.  16.  Grey, I . E., e t a l .  I b i d , 83, 1974, C39-46.  17.  Grey, I . E., e t a l .  I b i d , C105-111.  18.  J o n e s , D. G.  19.  P o g g i , D., e t a l . , i n " T i t a n i u m S c i e n c e and T e c h n o l o g y , " Ed. R. I . J a f f e and H. M. B u r t e . Plenum P r e s s , 1973, v o l . 1, 247-259. E l Guindy, M. I . , and Davenport, W. G. Met. T r a n s . , 1, 1970, 1729-  20.  Ibid.,  Trans. Met. Soc. AIME, 218, 1960, 994-1003. I n d i a n J . T e c h n o l . , 5_, 1967, 369-377.  J . A p p l . Chem. B i o t e c h n o l . , _25, 1975, 561-582.  1734. 21.  D o n n e l l y , R. P., e t a l .  22.  F e t i s o v , V. B., e t a l .  A u s t . M i n . , 62, ( 3 ) , 1970, 58-65. Russ. Met., No. 2, 1968, 35-37.  86 23.  Gokarn, A. N., and A l t e k a r , V. A.  Trans. I n d i a n I n s t . Met., 22,  ( 1 ) , 1969, 8-16. 24.  D o n n e l l y , R. P., e t a l .  A u s t . Min., 62, ( 4 ) , 1970, 52-59.  25.  Rao, Y. K.  26.  Abraham, M. C. , and Ghosh, A.  Met. T r a n s . , 2, 1971, 1439-1447. Ironmaking  and Steelmaking, 6_,  (1),  1979, 14-23. 27.  P a d i l l a , R., and Sohn, H. Y.  28.  Walker, P. L., e t a l . , i n "Advances i n C a t a l y s i s , " Ed. D. D. E l e y et a l . , Academic P r e s s , 1959, v o l . X I , 133-221. von F r e d e r s d o r f f , C. G., and E l l i o t , M. A-, i n "Chemistry o f C o a l U t i l i z a t i o n , " Ed. H. H. Lowry, W i l e y , 1963, 892-1022.  29.  Met. T r a n s . B, 10B, 1979, 109-115.  30.  S k i n n e r , F. D., and Smoot, L. D., i n " P u l v e r i z e d - c o a l combustion and g a s i f i c a t i o n : t h e o r y and a p p l i c a t i o n s f o r continuous flow p r o c e s s e s , " Ed. L. D. Smoot and D. T. P r a t t . Plenum P r e s s , 1979, pp. 154-160.  31.  J a l a n , B. P., and Rao, Y. K.  32.  von Bogdandy, L., and E n g e l l , H. J .  Carbon,  16, 1978, 175-184. "The R e d u c t i o n o f I r o n Ores,"  S p r i n g e r - V e r l a g , 1971, 286-313. 33.  Rao, Y. K., and J a l a n , B. P.  Met. Trans, 3_, 1972, 2465-2477.  34.  D u t t a , S., et a l . 1977, 20-30.  35.  Walker, P. L. e t a l . , i n "Chemistry and P h y s i c s o f Carbon," Ed. P. L. Walker, M a r c e l Dekker, 1968, v o l . 4, 287-383.  36.  Madderom, P. "UBC I n t e g r a t i o n : integration routines." Centre, UBC, Sept. 1978, p. 26.  37.  Karkhanavala, M. D. , and Momim, A. C. 1095-1102.  38.  Rao, D. B., and Rigaud, M.  39.  B a i l e y , S. W.,  40.  Venkateswaran, V., and Brimacombe, J . K.  Ind. Eng. Chem. (Process Des. Dev.), 16_  et a l .  y  (1),  Comp.  Econ. G e o l . , j54_, 1959,  Oxid. Met., 9_, ( 1 ) , 1975, 99-116.  Econ. G e o l . , 51, 1956, 263-279. Met. T r a n s . , 8_B_, 1977,  387-398. 41.  Barner, H. E., e t a l .  42.  Doheim, M. A.  T r a n s . Met. Soc. AIME, 227, 1963, 897-903.  J . A p p l . Chem. B i o t e c h n o l . , 2 3 , 1973, 375-387.  87 APPENDIX I A EXPERIMENTAL CONDITIONS FOR THE RUNS Run  Ore  Char  M  M_ Fe  c No. Ore type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Westport Preoxidized Preoxidized Florida Florida Glenbrook Glenbrook Westport Westport Westport Westport  weight (g)  Rot.  weight (g) (g/cm ) (g/cm ) 3  3  speed (r.p.m.)  Gas inflow (ml/min)  Temperature (°C)  200. 0 200. 0 200. 0 200. 0 200. 0 166. 7 256. 3 224. 7 200. 0 200. 0 200. 0 200. 0 200. 0 200. 0 200. 0 200. 0 200. 0  24.0 36.0 42.0 48.0 60.0 50.0 30.8 40.4 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0  0.16 0.21 0.23 0.25 0.28 0.28 0.16 0.21 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25  0.55 0.48 0.45 0.43 0.38 0.38 0.55 0.48 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43  10 10 10 10 10 10 18 18 18 10 10 18 ^30 ^30 18 18 18  250 250 250 250 250 250 250 250 250 500 500 500 500 250 250 250 250  994 994 995 996 997 998 999 999 998 998 993 1006 998 997 954 965 1115  200.0  48.0  0.25  0.42  18  250  949  200. 0 200. 0 200. 0 200..0 200..0 200. 0 200.0 200..0 200.,0  48.0 48.0 48.0 48.0 48.0  0.25 0.25 0.25 0.27 0.27  0.42 0.28 0.28 0.79 0.79 0.76 0.76 0.76 0.76  18 18 18 18 18 18 18 18 18  250 250 250 250 250 800-CO 800-CO 800-CO 800-CO  1049 950 1048 948 1057 950 1000 1051 1101  -  -  -  -  APPENDIX IB E x p e r i m e n t a l d a t a f o r runs 1-27. Legend f o r Appendix IB xco  e x i t gas CO molar f r a c t i o n  XC0  2  e x i t gas C 0  2  molar f r a c t i o n  QOI  gas i n f l o w a t ambient  Qi  gas o u t f l o w a t SPT  conditions  WC0 I  r a t e of C 0  QCOS  r a t e o f CO g e n e r a t i o n i n t h e bed  W0 S  r a t e o f w e i g h t l o s s as oxygen  wcs  r a t e o f weight l o s s as carbon  ws  t o t a l r a t e of weight l o s s  2  2  2  a b s o r p t i o n on a s c a r i t e  RUN NUMBER  TIME (MIN)  - 9 . 5 -7. 5 - 5 . 5 -4. 5 - 3 . 5 - 1 . 5 -0. 5 0. 0 1. 5 3. 6. 8. 12. 16.  5 5 5 0 1 18. 8 21. 5 28. 5 34. 5 40. 5 50. 5 61. 5 70. 8 80. 5 91. 5 103. 8 119. 3  XCO  XC02  0. 003 0. 030 0. 088 0. 206 0. 250  0. 0513 0. 0524  250. 250.  0. 0. 0. 0.  250. 250. 250.  0439 0379 0327  291. 296. 336. 379. 427.  0. 0265 0. 0268  250. 250. 250.  495. 485. 472.  0. 0273 0. 0248  250. 250.  0. 0. 0. 0.  0199 0181 0172 0161  250.  438. 416. 397.  249. 249. 249.  386. 378. 376.  0 . 388 0. 386  0. 0161 0. 0159 0. 0144  249. 249. 249.  373. 371.  0 . 371 0. 336 0. 392  0. 0131 0. 0124 0. 0105  249. 249. 248.  0. 368  0. 0093 0. 0081  248.  363. 336.  248.  328.  249.  315. 304.  0. 386 0. 400 0. 403 0. 406 0. 387 0. 403 0 . 354 0. 349 0. 359 0 . 414  0. 321 0. 269 0. 242 0. 223 0. 182  0267  QOI QI (CM3/MIN)  0. 0075 0. 0064 0. 0052 0. 0032  249. 249. 250.  378. 374. 356.  302. 282.  WC02I (G/MIN)  0. 0294 0. 0305 0. 0290 0. 0282 o. 0275 0. 0260 0. 0252 0. 0248 0. 0235 0. 0203 0. 0156 0. 0137 0. 0128 0. 0119 0. 0118 0. 0116 0. 0107 0. 0096 0. 0086  1  QCOS W02S (CM3/MIN)(G/MIN)  1. 9. 30. 78. 107. 191. 194. 190. 178. 161 . 160. 137. 132. 135. 154. 144. 146. 139. 120.  0. 0075  142.  0. 0061 0. 0052  124.  0. 0046 0. 0038 0. 0031  85. 74.  0. 0018  0. 0. 0. 0. 0.  WCS (G/MIN)  022  0. 008  029 042 076 096  0. 0. 0. 0.  013 024 050 065  WS (G/MIN)  0. 0. 0. 0. 0.  030 042 066 126 161  0. 155 0. 157 0. 154 0. 144  0. 109 0. 111 0. 109 0. 102  0. 265 0. 267  0. 130  0. 0. 0. 0.  092 090 077 074 0. 076 0. 086 0. 080 0. 081 0. 077 0. 066  0. 222 0. 216 0. 184 0. 177  0. 078  0. 185 0. 161  0. 126 0. 107 0. 103 0. 105 0. 119 0. 111 0. 112 0. 106 0. 092 0. 107  0. 263 0. 246  0. 181 0. 204 0. 191 0. 193 0. 183 0. 158  0. 093 0. 079 0. 064  0. 068 0. 058 0. 047  67.  0. 055 0. 050  0. 040 0. 037  0. 137 0. 111 0. 096 0. 087  51.  0. 038  0. 028  0. 066  105.  00  RUN  TIME (MIN)  -7. 0 -5. 0 -3. 0 -2. 0 0. 0 1. 5 2. 5 3. 0 4. 0 6. 5 8. 5 11. 5 13. 5 16. 0 18. 5 21. 5 23. 0 28. 0 34. 0 40. 5 51. 5 61. 0 71. 5 80. 5 92. 5 101. 0 107. 3 119. 5  XCO  XC02  0. 012 0. 082 0. 270 0. 370 0. 484 0. 438 0. 455 0. 438 0. 429 0. 422 0. 415 0. 436 0. 440 0. 437 0. 427 0. 420 0. 412 0. 406 0. 399 0. 379 0. 350 0. 317 0. 309 0. 302 0. 250 0. 240 0. 214 0. 177  0. 0510 0. 0402 0. 0249 0. 0201 0. 0195 0. 0180 0. 0172 0. 0170 0. 0164 0. 0143 0. 0131 0. 0125 0. 0121 0. 0118 0. 0117 0. 0113 0. 0111 ' 0.0108 0. 0103 0. 0098 0. 0086 0. 0081 0. 0067 0. 0060 0. 0048 0. 0040 0. 0036 0. 0024  QOI QI (CM3/MIN)  250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 249. 249. 249. 249. 249. 249. 249. 249. 249. 248. 248. 247. 247. 246. 246. 245. 245.  306. 349. 502. 583. 52 0. 497. 484. 477. 464. 448. 447. 447. 445. 442. 430. 424. 421. 405. 397. 381. 352. 323. 329. 321. 303. 295. 284. 262.  NUMBER  WC02I (G/MIN)  0. 0307 0. 0276 0. 0245 0. 0230 0. 0199 0. 0176 0. 0164 0. 0159 0. 0150 0. 0126 0. 0115 0. 0110 0. 0106 0. 0102 0. 0098 0. 0094 0. 0092 0. 0086 0. 0080 0. 0073 0. 0059 0. 0051 0. 0043 0. 0038 0. 0029 0. 0023 0. 0020 0. 0012  2  QCOS W02S (CM3/MIN) (G/MIN)  4. 29. 136. 216. 252. 218. 220. 209. 199. 189. 186. 195. 196. 193. 184. 178. 174. 165. 158. 145. 123. 102. 102. 97. 76. 71. 61. 46.  0. 025 0. 041 0. 115 0. 171 0. 194 0. 168 0. 169 0. 161 0. 153 0. 144 0. 141 0. 147 0. 148 0. 145 0. 138 0. 134 0. 131 0. 124 0. 119 0. 109 0. 092 0. 077 0. 076 0. 072 0. 056 0. 052 0. 045 0. 034  WCS (G/MIN)  WS (G/MIN)  0. 010 0. 023 0. 079 0. 122 0. 140 0. 121 0. 122 0. 116 0. 111 0. 105 0. 103 0. 107 0. 108 0. 106 0. 101 0. 098 0. 095 0. 090 0. 087 0. 079 0. 068 0. 056 0. 056 0. 053 0. 041 0. 039 0. 033 0. 025  0. 035 0. 063 0. 194 0. 293 0. 334 0. 290 0. 291 0. 277 0. 264 0. 249 0. 243 0. 254 0. 255 0. 251 0. 239 0. 232 0. 226 0. 214 0. 206 0. 188 0. 160 0. 133 0. 131 0. 125 0. 098 0. 091 0. 078 0. 059 O  RUN NUMBER  TIME (MIN) -10. 0 -8. 0 -6. 5 -5. 0 -4. 0 -3. 0 -2. 0 -1. 0 0. 0 i. 0 3. 0 7. 0 11. 0 15. 0 19. 5 23. 0 27. 5 31. 5 35. 0 39. 0 44. 0 48. 5 52. 0 56. 5 60. 0 64. 0 69. 5 73. 5 77. 0 81. 0 86. 5 90. 0 94. 5 99. 0 103. 5 108. 0 112. 0 116. 0 120. 0  XCO  XC02  0. 0 0. 015 0. 072 0. 175 0. 263 0. 339 0. 362 0. 402 0. 415 0. 430 0. 444 0. 454 0. 464 0. 444 0. 444 0. 457 0. 431 0. 431 0. 425 0. 435 0. 415 0. 408 0. 388 0. 399 0. 392 0. 399 0. 388 0. 408 0. 454 0. 451 0. 379 0. 369 0. 322 0. 316 0. 306 0. 309 0. 296 0. 289 0. 286  0. 0375 0. 0402 0. 0387 0. 0360 0. 0343 0. 0330 0. 0339 0. 0355 0. 0373 0. 0369 0. 0319 0. 0211 0. 0179 0. 0153 0. 0150 0. 0146 0. 0140 0. 0145 0. 0140 0. 0134 0. 0135 0. 0133 0. 0130 0. 0124 0. 0117 0. 0111 0. 0113 0. 0114 0. 0112 0. 0123 0. 0124 0. 0115 0. 0105 0. 0097 0. 0094 0. 0090 0. 0087 0. 0072 0. 0054  QOI QI (CM3/MIN) 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 249. 250. 251. 253. 253. 255. 256. 257. 258. 259. 260. 260. 260. 260. 260. 260. 260. 260. 260.  297. 304. 336. 384. 418. 451. 455. 449. 442. 428. 427. 435. 425. 418. 419. 421. 427. 395. 395. 395. 382. 376. 375. 375. 378. 374. 352. 360. 374. 350. 327. 326. 322. 318. 316. 317. 316. 315. 315.  3  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) 0. 0219 0. 0240 0. 0256 0. 0271 0. 0282 0. 0292 0. 0303 0. 0313 0. 0324 0. 0310 0. 0267 0. 0180 0. 0149 0.0126 0. 0123 0. 0121 0. 0117 0. 0112 0. 0108 0. 0104 0. 0101 0. 0098 0. 0096 0.0091 0. 0087 0. 0082 0. 0078 0. 0080 0. 0082 0. 0085 0. 0080 0. 0074 0. 0066 0. 0061 0. 0058 0. 0056 0. 0054 0. 0044 0. 0034  0. 5. 24. 67. 110. 153. 165. 180. 184. 184. 189. 197. 197. 186. 186. 193. 184. 170. 168. 172. 159. 153. 146. 150. 148. 149. 136. 147. 170. 158. 124. 120. 104. 100. 97. 98. 93. 91. 90.  0. 016 0. 021 0. 036 0. 068 0. 099 0. 131 0. 140 0. 152 0. 155 0. 154 0. 155 0. 154 0. 152 0. 142 0. 142 0. 146 0. 140 0. 130 0. 128 0. 130 0. 121 0. 117 0. 111 0. 113 0. 112 0. 112 0. 103 0. 111 0. 127 0. 119 0. 094 0. 091 0. 079 0. 076 0. 073 0. 074 0. 071 0. 068 0. 067  0. 006 0. 009 0. 020 0. 043 0. 067 0. 090 0. 096 0. 105 0. 107 • 0.107 0. 109 0. 111 0. 110 0. 103 0. 103 0. 106 0. 102 0. 094 0. 093 0. 095 0. 088 0. 085 0. 081 0. 083 0. 082 0. 082 0. 075 0. 081 0. 093 0. 087 0. 068 0. 066 0. 057 0. 055 0. 053 0. 054 0. 052 0. 050 0. 049  0. 022 0. 030 0. 056 0. 111 0. 165 0. 220 0. 236 0. 257 0. 262 0. 261 0. 263 0. 265 0. 261 0. 245 0. 245 0. 253 0. 242 0. 224 0. 221 0. 225 0. 208 0. 201 0. 191 0. 196 0. 194 0.195 0. 178 0. 191 0. 220 0. 206 0. 163 0. 158 0. 136 0. 131 0. 127 0. 128 0. 122 0. 118 0. 116  RUN  TIME (MIN)  -7. 0 -6. 0 -3. 5 -2. 5 -1. 5 -0. 5 1. 0 3. 0 4. 0 6. 0 8. 5 11. 3 14. 5 17. 5 21. 5 27. 5 35. 0 41. 5 47. 3 57. 5 65. 5 72. 5 82. 0 92. 5 100. 5 108. 8 119. 5  XCO  XC02  0. 022 0. 049 0. 247 0. 331 0. 377 0. 459 0. 449 0. 415 0. 404 0. 405 0. 419 0. 428 0. 433 0. 446 0. 457 0. 475 0. 401 0. 437 0. 408 0. 392 0. 391 0. 389 0. 394 0. 317 0. 290 0. 250 0. 261  0. 0421 0. 0349 0. 0231 0. 0197 0. 0167 0. 0148 0. 0152 0. 0160 0. 0160 0. 0147 0. 0136 0. 0137 0. 0137 0. 0135 0. 0135 0. 0123 0. 0106 0. 0087 0. 0083 0. 0078 0. 0077 0. 0077 0. 0073 0. 0073 0. 0061 0. 0036 0. 0019  QOI QI (CM3/MIN)  248. 247. 247. 246. 246. 246. 245. 245. 244. 244. 243. 242. 241. 240. 241. 241. 242. 243. 244. 246. 247. 248. 249. 251. 252. 253. 254.  280. 308. 422. 475. 540. 581. 527. 454. 432. 427. 427. 428. 431. 436. 440. 447. 403. 420. 407. 397. 396. 389. 386. 348. 338. 314. 313.  NUMBER  WC02I (G/MIN) 0. 0232 0. 0211 0. 0192 0. 0184 0. 0177 0. 0169 0. 0157 0. 0142 0. 0136 0. 0124 0. 0114 0. 0115 0. 0116 0. 0116 0. 0116 0. 0108 0. 0084 0. 0072 0. 0066 0. 0061 0. 0060 0. 0058 0. 0056 0. 0050 0. 0040 0. 0022 0. 0012  4  QCOS W02S (CM3/MIN)(G/MIN) 6. 15. 104. 157. 204. 267. 236. 188. 175. 173. 179. 183. 187. 195. 201. 212. 161. 184. 166. 156. 155. 151. 152. 110. 98. 78. 82.  0. 021 0. 026 0. 088 0. 126 0. 158 0. 203 0. 180 0. 145 0. 135 0. 132 ' 0. 136 0. 139 0. 142 0. 147 0. 152 0. 159 0. 121 0. 136 0. 123 0. 116 0. 115 0. 112 0. 113 0. 082 0. 073 0. 058 0. 059  WCS (G/MIN)  WS (G/MIN)  0. 010 0. 014 0. 061 0. 089 0. 114 0. 147 0. 131 0. 105 0. 097 0. 096 0. 099 0. 101 0. 103 0. 107 0. 111 0. 116 0. 089 0. 100 0. 091 0. 085 0. 084 0. 083 0. 083 0. 060 0. 054 0. 043 0. 044  0. 031 0. 040 0. 150 0. 215 0. 272 0. 350 0. 311 0. 249 0. 232 0. 228 0. 235 0. 240 0. 245 0. 255 0. 263 0. 276 0. 210 0. 237 0. 214 0. 201 0. 199 0. 195 0. 196 0. 143 0. 127 0. 100 0. 103  RUN  TIME (MIN)  -8. 5 -6. 5 -3. 5 -2. 5 -1. 5 0. 0 1. 0 2. 0 3. 0 4. 0 5. 5 8. 0 10. 5 13. 0 16. 0 19. 3 23. 0 29. 0 34. 0 42. 0 46. 3 54. 0 59. 0 76. 0 82. 0 87. 0 101. 0 110. 0 114. 0 120. 0  XCO  XC02  0. 041 0. 154 0. 363 0. 424 0. 482 0. 565 0. 541 0. 528 0. 521 0. 515 0. 498 0. 512 0. 516 0. 555 0. 541 0. 555 0. 531 0. 498 0. 499 0. 465 0. 434 0. 434 0. 415 0. 350 0. 346 0. 343 0. 238 0. 218 0. 228 0. 218  0. 0209 0. 0176 0. 0143 0. 0135 0. 0125 0. 0125 0. 0131 0. 0145 0. 0155 0. 0164 0. 0173 0. 0183 0. 0176 0. 0170 0. 0168 0. 0158 0. 0151 0. 0141 0. 0129 0. 0118 0. 0112 0. 0096 0. 0090 0. 0073 0. 0066 0. 0061 0. 0051 0. 0043 0. 0038 0. 0031  QOI QI (CM3/MIN)  244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244 . 244. 244. 245. 245. 246. 247. 247. 248.  311. 386. 505. 549. 603. 622. 604. 558. 535. 518. 507. 507. 519. 531. 521. 520. 497. 464. 446. 408. 397. 395. 385. 348. 346. 334. 295. 293. 294. 257.  NUMBER  WC02I (G/MIN) 0. 0128 0. 0134 0. 0143 0. 0145 0. 0148 0. 0153 0. 0156 0. 0159 0. 0163 0. 0167 0. 0172 0. 0182 0. 0180 0. 0177 0. 0172 0. 0161 0. 0148 0. 0129 0. 0113 0. 0095 0. 0087 0. 0075 0. 0068 0. 0050 0. 0045 0. 0040 0. 0030 0. 0025 0. 0022 0. 0016  5  QCOS W02S (CM3/MIN)(G/MIN)  13. 59. 183. 233. 291. 351. 327. ~ 295. 279. 267. 252. 260. 268. 295. 282. 288. 264. 231. 222. 190. 172. 171. 160. 122. 120. 115. 70. 64. 67. 56.  0. 018 0. 052 0. 141 0. 177 0. 218 0. 262 0. 244 0. 222 0. 211 0. 203 0. 193 0. 199 0. 204 0. 223 0. 214 0. 218 0. 199 0. 174 0. 167 0. 142 0. 129 0. 128 0. 119 0. 091 0. 089 0. 085 0. 052 0. 047 0. 049 0. 041  WCS WS (G/MIN) (G/MIN) 0. 010 0. 035 0. 102 0. 129 0. 160 0. 192 0. 179 0. 162 0. 154 0. 147 0. 140 0. 144 0. 148 0. 163 0. 156 0. 159 0. 145 0. 127 0. 122 0. 104 0. 095 0. 094 0. 087 0. 067 0. 065 0. 062 0. 038 0. 035 0. 036 0. 030  0. 029 0. 088 0. 243 0. 305 0. 378 0. 454 0. 424 0. 384 0. 364 0. 350 0. 333 0. 342 0. 352 0. 386 0. 369 0. 376 0. 344 0. 301 0. 289 0. 246 0. 224 0. 222 0. 206 0. 157 0. 154 0. 147 0. 091 0. 082 0. 086 0. 071  RUN NUMBER  TIME >  XCO  XC02  0.0 0. 012 0. 044 0. 093 0. 174 0. 236 0. 334 0. 394 0. 462 0. 464 0.448 0.430 0.413 0.410 0. 400 0. 408 0. 403 0. 392 0. 400 0. 441 0. 456 0. 422 0. 421 0.435 0. 389 0. 388 0. 338 0 332 0. 353 0. 350 0. 359 0. 356 0. 362 0. 337 0. 330 0. 327 0. 324 0. 308 0. 285 0. 277 0. 266 0. 242 0. 239 0. 245 0. 220 0. 233  0.0036 0.0175 0.0240 0.0312 0.0310 0.0270 0.0192 0.0166 0.0154 0.0151 0.0152 0.0152 0.0145 0.0132 0. 0123 0. 0117 0. 0112 0. 0104 0. 0099 0. 0093 0.0086 0.0079 0. 0074 0.0073 0.0069 0.0063 0.0064 0.0062 0.0060 0.0061 0.0062 0.0063 0.0063 0.0069 0.0069 0.0067 0.0065 0.0062 0.0055 0.0050 0.0050 0.0050 0.0050 0.0049 0.0045 0.0034  ( M I N  -10 -8, -7, -6. -5. -4. -2. -1. 0.0 1.0 2.5 3.5 5. 6. 7, 10. 12.0 14. 5 16.0 18.5 22.0 26.0 29.0 30.0 34.0 38.5 46.0 49. 5 53.0 56.5 60.0 62.0 63. 5 72.5 77.0 80.5 84. 5 88. 0 93.0 96. 5 100.0 104.0 107.0 111.0 114.5 120. 0  QOI QI (CM3/MIN) 240. 240. 240. 240. 240. 240. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 242. 242. 242. 242. 242. 242. 243. 243. 243. 243. 244. 244. 244. 244. 244. 245. 245. 245. 246. 246. 246. 246. 247. 247. 247. 247. 248. 248.  302. 315. 321. 353. 382. 416. 524. 570. 576. 546. 494. 462. 437. 424. 415. 403. 403. 402. 407. 416. 415. 413. 409. 403. 376. 362. 341. 34 3. 349. 352. 354. 356. 358. 333. 333. 335. 330. 321. 316. 313. 307. 304. 302. 303. 300. 290.  6  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) 0.0022 0.0108 0.0152 0. 0217 0.0232 0.0221 0.0197 0. 0185 0.0174 0.0162 0.0148 0.0138 0.0124 0.0110 0.0100 0.0093 0.0089 0.0082 0.0079 0.0076 0.0070 0.0064 0.0059 0.0058 0.0051 0.0045 0.0043 0.0042 0.0041 0.0042 0.0043 0.0044 0.0045 0.0045 0.0045 0.0044 0.0042 0.0039 0.0034 0. 0031 0.0030 0.0030 0.0030 0.0029 0.0027 0.0019 %  0. 0.002 4. 0. Oil 14. 0.021 33. 0. 039 66. 0.064 98. 0.086 0.139 175. 0.174 224. 0. 203 266. 0. 193 253. 0.169 221. 0.152 199. 0.138 180. 0.132 174. 0.126 166. 0.124 164. 0.122 162. 0.118 158. 0.122 163. 0.136 183. 0.140 189. 0.129 174. 0.127 172. 0.129 175. 0.108 146. 0.104 141. 0.085 115. 0. 084 114. 0.091 123. 0. 091 123. 0.094 127. 0. 094 127. 0.096 130. 0.084 112. 0.082 110. 0. 081 109. 0.079 107. 0.073 99. 0. 067 90. 0.064 87. 0. 060 82. 0.055 74. 0. 054 72. ' 0.055 74. 0. 049 66. 0.050 68.  0. 001 0. 005 0. 012 0.023 0. 042 0.059 0. 099 0.125 0.147 ' 0.140 0.122 0.110 0.100 0. 096 0. 092 0. 091 0. 089 0. 087 0. 089 0. 100 0.103 0.095 0. 094 0.096 0. 080 0.077 0. 063 0.062 0. 067 0.067 0. 069 0.069 0. 071 0.061 0.060 0. 060 0.058 0. 054 0.049 0.047 0.044 0.040 0.039 0. 041 0.036 0. 037  0.002 0.016 0.033 0. 063 0.106 0.145 0. 238 0. 299 0. 350 0. 333 0. 291 0. 262 0. 238 0. 228 0. 217 0. 215 0. 211 0. 205 0. 211 0. 237 0. 243 0. 224 0. 221 0. 225 0. 188 0.180 0.148 0.147 0. 158 0.158 0.163 0.163 0. 166 0.145 0.142 0.141 0.138 127 0 0.116 0.111 0.105 0. 095 0.093 0. 096 0.085 0. 086  RUN NUMBER  TIME (MIN) -13. 0 -9. 0 -7. 5 -5. 5 -4. 5 -3. 5 -2. 0 -1. 0 0. 0 2. 0 5. 0 6. 0 10. 0 14. 0 17. 5 21. 0 24. 5 27. 5 31. 5 35. 0 38. 5 42. 0 45. 5 51. 0 54. 5 57. 5 61. 0 64. 0 70. 5 74. 0 77. 0 80. 0 84. 0 87. 5 91. 0 95. 5 99. 0 102. 5 108. 5 112. 5 116. 0 120. 0  XCO  XC02  0.0 0.009 0. 039 0. 178 0. 236 0. 305 0. 382 0.410 0. 475 0. 563 0. 537 0. 584 0.625 0.604 0. 595 0. 547 0. 554 0. 512 0. 450 0.434 0.434 0. 420 0. 415 0. 401 0. 386 0. 370 0. 379 0. 374 0. 350 0. 349 0. 344 0. 337 0.324 0. 320 0. 312 0. 307 0. 302 0. 288 0.272 0.252 0.241 0. 228  0. 0073 0. 0334 0. 0388 0. 0306 0. 0271 0. 0250 0. 0234 0. 0224 0. 0220 0. 0222 0. 0209 0. 0200 0. 0182 0. 0169 0. 0161 0. 0151 0. 0138 0.0135 0.0129 0. 0114 0. 0101 0. 0095 0. 0091 0. 0085 0. 0082 0. 0079 0. 0075 0. 0072 0. 0067 0. 0065 0. 0063 0. 0062 0. 0059 0. 0058 0. 0056 0. 0052 0. 0050 0. 0048 0.0043 0.0040 0. 0035 0. 0032  7  QOI QI (CM3/MIN)  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN)  248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248.  0.0041 0.0205 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252 0.0251 0.0243 0.0240 0.0223 0.0196 0.0173 0.0151 0.0129 0.0116 0.0100 0.0086 0.0075 0.0071 0.0068 0.0062 0.0058 0.0056 0.0053 0.0050 0.0046 0.0044 0.0043 0.0041 0.0039 0.0038 0.0036 0.0034 0.0032 0.0030 0.0026 0.0024 0.0021 0.0017  286. 313. 330. 419. 474. 512. 548. 572. 585. 574. 592. 611. 624. 591. 546. 508. 475. 437. 394. 386. 380. 382. 380. 369. 361. 358. 358. 356. 350. 346. 343. 340. 338. 333. 329. 326. 323. 319. 308. 302. 298. 265.  0. 3. 13. 75. 112. 156. 209. 234. 278. 323. 318. 357. 390. 357. 325. 278. 263. 224. 178. 168. 165. 160. 158. 148. 139. 132. 136. 133. 122. 121. 118. 115. 109. 106. 103. 100. 97. 92. 84. 76. 72. 60.  0.003 0.017 0.027 0.072 0.098 0.130 0.168 0.186 0. 217 0.249 0.245 0.272 0.295 0. 269 0. 244 0.209 0.197 0.168 0.134 0.126 0.123 0.120 0.117 0.110 0.104 0.098 0.101 0.099 0.091 0.089 0.087 0.085 0.081 0. 079 0.076 0.074 0.072 0.068 0. 062 0.056 0.053 0.044  0.001 0.007 0. 014 0.047 0.067 0.090 0.119 0.132 0.156 0.180 0.177 0.198 0.215 0.196 0.179 0.153 0.144 0.123 0.098 0. 092 0.090 0.088 0. 086 0.081 0.076 0.072 0.074 0.073 0.067 0. 066 0. 064 0.062 0.060 0.058 0.056 0.054 0.053 0.050 0.046 0.041 0.039 0.033  0. 004 0.024 0.041 0.118 0.165 0. 220 0. 287 0. 318 0. 372 0.429 0. 421 0. 470 0. 510 0.465 0.423 0. 362 0. 342 0.291 0. 232 0.218 0. 214 0. 207 0. 204 0.191 0.180 0.171 0.175 0.171 0.157 0.155 0.152 0.147 0.141 0.137 0. 132 0.128 0.125 0.118 0.107 0. 097 0.092 0. 077  RUN NUMBER  TIME < )  XCO  XC02  0. 004 0. 067 0. 238 0.431 0. 526 0. 561 0. 563 0. 564 0. 535 0. 497 0.481 0. 474 0. 481 0. 490 0. 487 0. 500 0. 476 0.453 0. 426 0. 406 0. 404 0. 398 0. 378 0. 403 0. 384 0. 386 0. 365 0. 364 0. 336 0. 345 0. 342 0. 330 0. 313 0. 300 0. 288 0. 280 0. 272  0.0158 0.0358 0.0278 0.0209 0.0180 0.0173 0.0157 0.0134 0.0125 0.0119 0.0110 0.0102 0.0093 0.0089 0.0086 0.0080 0.0074 0.0069 0.0064 0.0063 0.0060 0.0058 0.0055 0.0052 0.0051 0.0050 0.0049 0.0048 0.0047 0.0045 0.0044 0.0041 0.0040 0.0037 0.0035 0.0030 0.0025  MIN  -11.5 -8.0 -5.0 -1.5 2.5 6.0 9.5 13.5 17.0 20.5 24.0 27. 5 32.0 35. 5 39.0 42.5 46.0 49. 5 53.0 56.0 59.5 63.0 66.0 69.5 72.5 76.5 80.0 83.5 87.0 90. 0 94.0 101. 5 104. 5 108. 0 111.5 115.0 120.0  QOI QI (CM3/MIN) 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 253. 253. 253. 253. 254. 254. 254. 254. 255. 255.  298. 347. 434. 559. 618. 615. 589. 531. 468. 436. 429. 436. 445. 442. 440. 435. 421. 405. 391. 378. 376. 372. 373. 375. 374. 368. 361. 350. 346. 351. 348. 336. 327. 322. 319. 319. 285.  8  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) 0.0092 0.0244 0.0237 0.0230 0.0219 0.0209 0.0181 0.0140 0.0115 0.0102 0.0093 0.0087 0.0081 0.0077 0.0074 0.0068 0.0062 0.0055 0.0049 0.0047 0.0045 0.0042 0.0040 0.0039 0.0037 0.0036 0.0034 0.0033 0.0032 0.0031 0.0030 0. 0027 0.0025 0.0024 0.0022 0.0019 0.0014  1. 23. 103. 241. 325. 345. 331. 300. 250. 217. 206. 207. 214. 217. 214. 217. 200. 184. 167. 153. 152. 148. 141. 151. 144. 142. 132. 127. 116. 121. 119. 111. 102. 97. 92. 89. 77.  0.008 0.034 0. 091 0.189 0.248 0. 261 0. 250 0. 224 0.187 0.162. 0.154 0.154 0.159 0.160 0.158 0.160 0.147 0.135 0.123 0.113 0.112 0.109 0.104 0.111 0.105 0.104 0.097 0. 093 0.085 0. 089 0.087 0.081 0.075 0.071 0. 067 0.065 0. 056  0.003 0.019 0.062 0.135 0.180 0.190 0.182 0.164 0.137 0.119 0.113 0.113 0.117 0.118 0.117 0.118 0.109 0.100 0. 091 0.083 0.082 0.080 0. 077 0.082 0. 078 0.077 0.071 0.069 0.063 0. 066 0.064 0. 060 0.055 0.052 0. 050 0. 048 0. 042  0. Oil 0. 053 0.153 0.324 0.428 0.452 0.432 0. 388 0.324 0. 281 0. 267 0. 267 0. 275 0. 278 0. 275 0. 278 0. 256 0. 235 0.213 0.196 0.194 0.189 0.180 0.193 0.183 0.181 0.168 0.163 0.148 0.154 0.152 0.141 0.130 0.123 0.117 0.114 0.098  ON  RUN NUMBER  TIME (MIN)  -5. 5 -4. 0 -2. 5 -0. 5 0. 6 3. 5 6. 0 9. 0 11. 5 14. 5 18. 5 22. 5 26. 5 27. 5 33. 5 38. 5 47. 5 52. 5 61. 5 69. 0 77. 5 88. 0 97. 5 107. 5 118. 5  XCO  XC02  0. 134 0. 234 0. 378 0. 528 0. 523 0. 465 0. 479 0. 472 0. 479 0. 462 0. 464 0. 473 0. 477 0. 467 0. 494 0. 474 0. 481 0. 486 0. 460 0. 391 0. 364 0. 362 0. 285 0. 273 0. 256  0. 0293 0. 0228 0. 0174 0. 0166 0. 0171 0. 0158 0. 0146 0. 0145 0. 0146 0. 0144 0. 0147 0. 0148 0. 0146 0. 0145 0. 0140 0. 0136 0. 0119 0. 0116 0. 0102 0. 0091 0. 0083 0. 0081 0. 0069 0. 0060 0. 0050  QOI QI (CM3/MIN)  252. 251. 250. 250. 250. 250. 250. 250. 251. 251 . 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252.  366. 447. 550. 532. 493. 462. 459. 458. 450. 448. 438. 431. 434. 437. 453. 438. 431. 418. 393. 367. 345. 332. 297. 294. 289.  WC02I (G/MIN) 0. 0211 0. 0200 0. 0189 0. 0174 0. 0165 0. 0144 0. 0132 0. 0130 0. 0129 0. 0127 0. 0126 0. 0125 0. 0125 0. 0125 0. 0124 0. 0117 0. 0101 0. 0095 0. 0079 0. 0066 0. 0056 0. 0053 0. 0040 0. 0035 0. 0029  9  QCOS W02S WCS (CM3/MIN)(G/MIN) (G/MIN)  WS (G/MIN)  0. 050 0. 089 0. 162 0. 213 0. 196 0. 164 0. 166 0. 164 0. 163 0. 157 0. 154 0. 155 0. 157 0. 155 0. 169 0. 157 0. 155 . 0.152 0. 135 0. 107 0. 094 0. 090 0. 063 0. 060 0. 055  0. 082 0. 151 0. 279 0. 368 0. 339 0. 282 0. 288 0. 283 0. 282 0. 272 0. 266 0. 267 0. 271 0. 268 0. 292 0. 271 0. 269 0. 263 0. 234 0. 186 0. 162 0. 156 0. 110 0. 104 0. 095  49. 105. 208. 281. 2 58. 215. 220. 216. 216. 207. 203. 204. 207. 204. 224. 208. 207. 203. 181. 143. 125. 120. 85. 80. 74.  0. 032 0. 061 0. 117 0. 155 0. 143 0. 119 0. 121 0. 119 0. 119 0. 115 0. 112 0. 113 0. 114 0. 113 0. 123 0. 114 0. 114 0. 111 0. 099 0. 079 0. 069 0. 066 0. 046 0. 044 0. 040  RUN NUMBER  TIME (MIN)  XCO  XC02  -8. 0 -6. 0 -4. 0 -3. 0 -2. 0 -1. 0 0. 0 1. 5 3. 5 5. 5 7. 5 9. 5 12. 5 15. 5 18. 5 21. 5 24. 5 28. 5 33. 5 39. 5 46. 0 54. 5 62. 5  0. 008 0. 067 0. 201 0. 257 0. 285 0. 373 0. 382 0. 338 0. 289 0. 275 0. 278 0. 285 0. 288 0. 286 0. 290 0. 284 0. 295 0. 271 0. 274 0. 277 0. 503 0. 308 0. 294  0. 0080 0. 0085 0. 0069 0. 0061 0. 0054 0. 0055 0. 0055 0. 0056 0. 0057 0. 0055 0. 0052 0. 0049 0. 0045 0. 0042 0. 0041 0. 0040 0. 0040 0. 0044 0. 0048 0. 0051 0. 0052 0. 0045 0. 0040  QOI QI (CM3/MIN) 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530. 530.  529. 592. 696. 770. 843. 812. 781. 734. 681. 660. 662. 666. 675. 669. 665. 663. 659. 632. 629. 650. 674. 668. 652.  WC02I (G/MIN) 0. 0083 0. 0099 0. 0094 0. 0092 0. 0090 0. 0087 0. 0085 0. 0081 0. 0076 0. 0071 0. 0067 0. 0064 0. 0059 0. 0055 0. 0054 0. 0053 0. 0051 0. 0055 0. 0060 0. 0065 0. 0069 0. 0059 0. 0051  10  QCOS W02S (CM3/MIN) (G/MIN)  4. 40. 140. 198. 240. 303. 298. 248. 197. 182. 184. 190. 194. 192. 193. 188. 195. 171. 172. 180. 339. 206. 191.  0. 009 0. 036 0. 107 0. 148 0. 178 0. 223 0. 219 0. 183 0. 146 0. 135 0. 136 0. 140 0. 143 0. 141 0. 142 0. 138 0. 143 0. 126 0. 127 0. 133 0. 247 0. 151 0. 140  WCS (G/MIN)  WS (G/MIN)  0. 005 0. 024 0. 078 0. 108 0. 131 0. 165 0. 162 0. 135 0. 108 0. 099 0. 100 0. 104 0. 105 0. 104 0. 105 0. 102 0. 106 0. 093 0. 094 0. 098 0. 183 0. 112 0. 104  0. 014 0. 059 0. 184 0. 256 0. 309 0. 387 0. 381 0. 318 0. 254 0. 234 0. 237 0. 244 0. 248 0. 245 0. 246 0. 241 0. 249 0. 219 0. 221 0. 231 0. 430 0. 263 0. 244  VO 00  RUN  TIME (MIN) -8. 5 -6. 5 -5. 0 -3. 0 -1. 5 -0. 5 0. 5 1. 5 2. 5 3. 5 5. 5 8. 5 12. 0 15. 5 18. 0 21. 5 27. 5 34. 5 44. 5 48. 5 56. 5 65. 5 73. 5 84. 5 92. 5 106. 5 119. 5  XCO  XC02  0. 008 0. 062 0. 142 0. 250 0. 347 0. 369 0. 353 0. 328 0. 306 0. 294 0. 303 0. 302 0. 300 0. 293 0. 295 0. 284 0. 275 0. 294 0. 260 0. 256 0. 248 0. 210 0. 221 0. 211 0. 201 0. 150 0. 165  0. 0074 0. 0164 0. 0138 0. 0104 0. 0089 0. 0086 0. 0087 0. 0089 0. 0089 0. 0085 0. 0076 0. 0069 0. 0062 0. 0055 0. 0052 0. 0047 0. 0044 0. 0045 0. 0015 0. 0017 0. 0024 0. 0023 0. 0023 0. 0024 0. 0022 0. 0020 0. 0014  QOI QI (CM3/MIN) 498. 490. 487. 484. 482. 480. 479. 478. 478. 479. 479. 480. 481. 482. 483. 485. 488. 488. 487. 487. 486. 485. 485. 486. 487. 488. 490.  523. 563. 628. 771. 841. 832. 782. 729. 689. 677. 671. 665. 656. 646. 643. 641. 631. 633. 595. 587. 583. 573. 574. 557. 550. 522. 531.  NUMBER  WC02I (G/MIN) 0. 0076 0. 0181 0. 0171 0. 0157 0. 0147 0. 0140 0. 0134 0. 0127 0. 0120 0. 0113 0. 0100 0. 0091 0. 0079 0. 0069 0. 0065 0. 0059 0. 0054 0. 0055 0. 0018 0. 0020 0. 0027 0. 0026 0. 0026 0. 0027 0. 0024 0. 0020 0. 0014  11  QCOS W02S (CM3/MIN)(G/MIN) 4. 35. 89. 193. 292. 307. 276. 239. 211. 199. 203. 200. 197. 189. 190. 182. 174. 186. 154. 150. 145. 120. 127. 118. 111. 78. 88.  0. 008 0. 038 0. 076 0. 149 0. 219 0. 229 0. 207 0. 180 0. 159 . 0. 150 0. 152 0. 150 0. 146 0. 140 0. 140 0. 134 0. 128 0. 137 0. 112 0. 109 0. 105 0. 088 0. 093 0. 086 0. 081 0. 057 0. 064  WCS (G/MIN)  WS (G/MIN)  0. 004 0. 024 0. 052 0. 107 0. 160 0. 168 0. 151 0. 131 0. 116 0. 110 0. 112 0. 110 0. 108 0. 103 0. 104 0. 099 0. 094 0. 101 0. 083 0. 081 0. 078 0. 065 0. 069 0. 064 0. 060 0. 042 0. 047  0. 013 0. 062" 0. 128 0. 256 0. 379 0. 397 0. 358 0. 311 0. 276 0. 260 0. 264 0. 259 0. 254 0. 243 0. 244 0. 233 0. 222 0. 238 0. 195 0. 190 0. 184 0. 153 0. 161 0. 150 0. 141 0. 100 0. 111 VO  RUN NUMBER  TIME (MIN) -6. 0 -5. 0 -3. 5 -2. 5 -1. 0 0. 0 0. 5 1. 5 2. 5 4. 0 6. 5 9. 0 11. 5 14. 5 18. 3 21. 5 27. 5 35. 0 41. 5 48. 5 56. 5 65. 0 72. 5 85. 5 93. 5 105. 0 119. 5  XCO  XC02  0. 097 0. 147 0. 215 0. 251 0. 374 0. 360 0. 362 0. 329 0. 304 0. 294 0. 300 0. 308 0. 339 0. 324 0. 316 0. 328 0. 308 0. 288 0. 238 0. 215 0. 229 0. 195 0. 170 0. 156 0. 149 0. 132 0. 127  0. 0092 0. 0088 0. 0082 0. 0078 0. 0077 0. 0083 0. 0088 0. 0099 0. 0099 0. 0094 0. 0081 0. 0073 0. 0069 0. 0065 0. 0060 0. 0056 0. 0049 0. 0037 0. 0032 0. 0026 0. 0020 0. 0013 0. 0011 0. 0010 0. 0010 0. 0009 0. 0005  QOI QI (CM3/MIN) 494. 494. 494. 494. 495. 495. 495. 495. 495. 495. 495. 495. 496. 496. 496. 496. 497. 497. 498. 498. 499. 499. 500. 501. 502. 502. 503.  542. 600. 699. 771. 841. 819. 787. 731. 695. 672. 671. 674. 677. 678. 674. 669. 655. 640. 592. 575. 584. 565. 560. 544. 537. 526. 523.  WC02I (G/MIN) 0. 0098 0. 0104 0. 0113 0. 0118 0. 0127 0. 0133 0. C136 0. 0142 0. 0135 0. 0124 0. 0106 0. 0096 0. 0092 0. 0086 0. 0080 0. 0074 0. 0063 0. 0047 0. 0037 0. 0029 0. 0023 0. 0015 0. 0012 0. 0011 0. 0010 0. 0009 0. 0005  12  QCOS W02S (CM3/MIN) (G/MIN) 53. 88. 150. 194. 315. 295. 285. 240. 211 . 197. 201. 208. 229. 220. 213. 219. 202. 184. 141. 123. 133. 110. 95. 85. 80. 69. 67.  0. 045 0. 071 0. 115 0. 147 0. 234 0. 220 0. 213 0. 182 0. 161 0. 150 . 0. 151 0. 155 0. 170 0. 163 0. 157 0. 162 0. 149 0. 135 0. 103 0. 090 0. 097 0. 080 0. 069 0. 061 0. 058 0. 050 0. 048  WCS (G/MIN)  WS (G/MIN)  0. 031 0. 050 0. 084 0. 107 0. 172 0. 161 0. 156 0. 133 0. 117 0. 109 0. 111 0. 114 0. 125 0. 120 0. 116 0. 119 0. 110 0. 100 0. 076 0. 067 0. 072 0. 059 0. 051 0. 046 0. 043 0. 037 0. 036  0. 075 0. 121 0. 199 0. 254 0. 406 0. 382 0. 369 0. 314 0. 277 0. 259 0. 262 0. 269 0. 296 0. 283 0. 273 0. 281 0. 259 0. 234 0. 179 0. 157 0. 169 0. 139 0. 120 0. 107 0. 101 0. 087 0. 084 o o  RUN NUMBER  TIME (MIN) -12.0 -9.0 -7.5 -6.0 -5.0 -3.5 -2.0 -0.5 0.0 1.0 2.0 3.0 4.0 5.0 6.5 7.5 9.0 10.0 12.0 13.0 14.5 16.0 17.5 19. 0 21.0 22. 0 24. 5 26. 5 28.5 32.5 36. 5 40.5 44.0 48.0 52.5 56.5 61.0 62.5 64.5 68. 0 72.0 75.5 80.0 83.5 87.5 91.0 95.0 99. 0 103.0 107. 0 110.5 114.0 120. 0  XCO  XC02  0. 0 0 .030 0 .074 0 .111 0 .138 0 . 183 0 . 257 0 325 0 365 0 373 0 367 0 353 0 375 0 340 0 344 0 347 0 347 0 331 0 325 0 353 0 311 0 302 0 304 0. 291 0 . 289 0 . 263 0 . 274 0 . 248 0 . 242 0 . 245 0 . 234 0 . 245 0 . 235 0 . 205 0 . 196 0 . 183 0 . 174 0 . 161 0 . 165 0 . 168 0 . 156 0 . 154 0 . 171 0 . 168 0 . 154 0 . 150 0 . 145 0 . 147 0 . 150 0 . 136 0 . 133 0 . 142 0 . 138  0 . 0101 0 . 0172 0 . 0157 0 .0141 0 . 0129 0 . 0111 0 . 0095 0 . 0082 0 .0079 0 . 0073 0 . 0074 0 . 0074 0 0072 0 0070 0 0067 0 0065 0 0061 0 0058 0 0054 0 0051 0 0047 0 0044 0 0042 0 0040 0 0036 0 0035 0 0031 0 0028 0 0025 0 0020 0 0015 0. 0014 0. 0016 0 . 0017 0 . 0019 0 . 0018 0 . 0016 0 . 0016 0 . 0015 0 . 0013 0 . 0013 0 . 0013 0 . 0014 0 . 0014 0 . 001] 0 . 0009 0 . 0006 0 . 0005 0 . 0008 0 . 0010 0 . 0012 0 . 0012 0 . 0008  QOI 01 (CM3/MIN)  490. 491. 491. 491. 491. 492. 492. 492. 492. 492. 492. 493. 493. 493. 493. 493. 494. 494. 494. 494. 495. 495. 495. 495. 496. 496. 496. 496. 497. 497. 498. 499. 499. 500. 501. 501. 502. 503. 503. 504. 505. 506. 507. 507. 508. 509. 510. 511. 512. 513. 514. 515. 516.  510. 542. 564. 593. 623. 683. 743. 802. 817. 846. 806. 781. 770. 760. 745. 737. 730. 726. 709. 699. 685. 670. 662. 654. 643. 638. 627. 619. 613. 602. 597. 600. 599. 588. 588. 576. 567. 564. 562. 563. 561. 561. 573. 569. 562. 557. 552. 550. 548. 544. 543. 549. 525.  WC02I (G/MIN)  0.0101 0.0183 0.0173 0.0164 0.0158 0.0148 0.0139 0.0130 0.0127 0.0121 0.0117 0.0113 0.0109 0.0105 0.0098 0.0094 0.0088 0.0083 0.0075 0.0070 0.0064 0.0058 0.0054 0.0051 0.0046 0.0044 0.0038 0.0034 0.0031 0.0024 0.0017 0.0017 0.0018 0.0020 0.0022 0.0020 0.0018 0.0017 0.0016 0.0014 0.0014 0.0015 0.0015 0.0015 0. 0012 0.0010 0.0007 0.0006 0.0008 0.0011 0. 0013 0.0013 0.0009  13  QCOS W02S (CM3/MIN) (G/MIN)  0. 16\ 42. 66. 86. 125. 191. 261. 298. 316. 296. 276. 289. 258. 256. 256. 253. 240. 230. 247. 213. 202. 201. 190. 186. 168. 172. 153. 148. 147. 140. 147. 141. 120. 115. 105. 99. 91. 93. 95. 88. 86. 98. 96. 87. 84. 80. 81. 82. 74. 72. 78. 72.  0.007 0.025 0.042 0.059 0.073 0.100 0.146 0.196 0 . 222 . 0.234 0 . 220 0 . 205 0 . 214 0.192 0.190 0.189 0.187 0.178 0.170 0.181 0.157 0.149 0.148 0.140 0.136 0.123 0.125 0.112 0.108 0.107 0.101 0.106 0.102 0.087 0 . 084 0.077 0.072 0.066 0.067 0 . 069 0.064 0.063 0.071 0.069 0.063 0 . 060 0.058 0.058 0.059 0.054 0 . 052 0 . 057 0.052  WCS (G/MIN)  WS (G/MIN  0.003 0 . 014 0.027 0.040 0.050 0.071 0.106 0.143 0.163 0.172 0.162 0.151 0.158 0.141 0.140 0 . 140 0.138 0.131 0.125 0.134 0.116 0.110 0.109 0.103 0.101 0.091 0 . 093 0 . 083 0.080 0.080 0 . 075 0 . 079 0 . 076 0.065 0.062 0.057 0.053 0.049 0.050 0.051 0.047 0 . 047 0 . 053 0.052 0.047 0.045 0 . 043 0 . 043 0.044 0.040 0.039 0.042 0 . 039  0.010 0.039 0.069 0.099 0.123 0.171 0.252 0.339 0 . 385 0.406 0.381 0.356 0 . 372 0 . 333 0.330 0 . 329 0 . 325 0 . 308 0 . 295 0.315 0 . 272 0 . 259 0.257 0 . 243 0.237 0.214 0.218 0.195 0.188 0.187 0.176 0.185 0.178 0.152 0.146 0.134 0.125 0.115 0.117 0. 120 0.111 0.109 0.124 0.121 0.109 0.105 0.101 0.102 0.104 0.094 0 . 091 0. 099 0 . 091  o  RUN NUMBER  TIME (MIN) -13.5 -8.5 -4.0 -0.5 3.0 7.0 11.0 14.0 18.5 22. 0 25.5 29.0 33.0 36.5 40.0 44.5 48.0 51. 5 55.0 59. 0 62.5 67.0 71.0 75.0 79.0 84.0 88. 0 92.0 96. 0 100. 0 104. 0 109.0 112.5 116.0 120. 0  XCO  XC02  0. 0 0. 043 0. 255 0. 506 0. 511 0. 644 0. 580 0. 550 0. 510 0. 500 0. 487 0. 452 0. 456 0. 464 0. 426 0. 464 0. 387 0. 401 0. 397 0. 408 0. 406 0. 367 0. 343 0. 331 0. 312 0. 308 0. 289 0. 284 0. 291 0. 278 0. 271 0. 269 0. 242 0. 239 0. 252  0.. 0040 0. 0386 0. 0263 0. 0186 0. 0181 0. 0162 0.0168 0. 0171 0.0151 0.0134 0. 0118 0. 0112 0. 0098 0. 0091 0. 0088 0.0086 0. 0083 0.0079 0. 0075 0. 0072 0. 0069 0. 0069 0. 0067 0. 0063 0.0059 0. 0056 0. 0053 0. 0051 0.0048 0. 0048 0. 0047 0. 0047 0.0049 0. 0041 0. 0033  14  QOI QI (CM3/MIN)  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN)  248. 248. 248. 248. 248. 249. 249. 249. 249. 249. 249. 249. 249. 249. 249. 250. 250. 250. 250. 250. 250. 251. 251. 251. 252. 252. 253. 253. 254. 254. 254. 255. 255. 256. 256.  0.0023 0.0256 0.0241 0.0207 0.0204 0.0211 0.0192 0.0167 0.0136 0.0117 0.0099 0.0091 0.0081 0.0073 0.0068 0.0065 0.0062 0.0059 0.0057 0.0055 0.0052 0.0050 0.0046 0.0043 0.0040 0.0036 0.0035 0.0033 0.0032 0.0031 0.0031 0.0030 0.0030 0.0025 0.0020  298. 338. 466. 568. 574. 664. 582. 495. 458. 446. 428. 414. 422. 409. 395. 382. 378. 384. 387. 388. 386. 367. 353. 350. 346. 335. 333. 334. 332. 330. 329. 328. 314. 317. 301.  0. 15. 119. 287. 293. 427. 337. 272. 234. 223. 208. 187. 192. 190. 168. 177. 146. 154. 154. 158. 157. 135. 121. 116. 108. 103. 96. 95. 97. 92. 89. 88. 76. 76. 76.  0.002 0.029 0.102 0.220 0. 224 0. 320 0.255 0.207 0.177 0.168. 0.156 0.140 0.143 0.141 0.125 0.131 0.109 0.114 0.114 0.117 0.116 0.100 0.090 0.086 0.080 0.076 0.071 0.070 0.071 0.068 0.066 0.065 0.056 0.056 0.056  0.001 0. 015 0.070 0.159 0.163 0.235 0.186 0. 150 0.129 0.123 0.114 0.103 0.105 0.104 0.092 0. 097 0. 080 0.084 0.084 0. 086 0.085 0.073 0.066 0.063 0.059 0.056 0.052 0.052 0.053 0.050 0.049 0.048 0.041 0.041 0. 041  0.002 0. 044 0.173 0. 380 0. 387 0. 555 0.441 0. 357 0. 305 0. 290 0.270 0.243 0. 248 0. 244 0. 217 0.228 0.189 0.198 0.197 0.203 0. 201 0.173 0.156 0.149 0.139 0.132 0.124 0.122 0.124 0.118 0.114 0.113 0.098 0.097 0.097  o  RUN NUMBER  TIME (MIN)  -11. 5 -9. 5 -7. 5 -5. 5 0. 0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 75. 0 80. 0 85. 0 90. 0 95. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 120 0. 241 0. 361 0. 404 0. 313 0. 294 0. 285 0. 278 0. 237 0. 250 0. 240 0. 246 0. 243 0. 240 0. 240 0. 240 0. 243 0. 232 0. 220 0. 220 0. 205 0. 205 0. 198 0. 211 0. 208 0. 166 0. 192 0. 195  0. 0042 0. 0169 0. 0254 0. 0216 0. 0174 0. 0131 0. 0107 0. 0082 0. 0077 0. 0071 0. 0064 0. 0061 0. 0057 0. 0053 0. 0051 0. 0050 0. 0059 0. 0078 0. 0077 0. 0059 0. 0049 0. 0049 0. 0048 0. 0047 0. 0045 0. 0042 0. 0039 0. 0038 0. 0038  QOI QI (CM3/MIN)  244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244. 244.  308. 383. 459. 481. 391. 343. 327. 322. 310. 301. 304. 299. 299. 299. 299. 299. 296. 292. 293. 290. 290. 284. 284. 286. 284. 284. 282. 284. 284.  WC02I (G/MIN)  0. 0025 0. 0127 0. 0229 0. 0204 0. 0134 0. 0088 0. 0069 0. 0052 0. 0047 0. 0042 0. 0038 0. 0036 0. 0034 0. 0031 0. 0030 0. 0029 0. 0034 0. 0045 0. 0044 0. 0033 0. 0028 0. 0027 0. 0027 0. 0026 0. 0025 0. 0023 0. 0022 0. 0021 0. 0021  15  QCOS W02S (CM3/MIN) (G/MIN) 0. 46. 111. 174. 158. 108. 96. 92. 86. 71. 76. 72. 74. 73. 72. 72. 71. 71. 68. 64. 64. 58. 58. 57. 60. 59. 47. 55. 55.  0. 002 0. 042 0. 096 0. 139 0. 122 0. 083 0. 074 0. 069 0. 065 0. 054 0. 057 0. 054 0. 055 0. 054 0. 053 0. 053 0. 053 0. 054 0. 052 0. 048 0. 048 0. 043 0. 043 0. 042 0. 045 0. 044 0. 035 0. 040 0. 041  WCS (G/MIN)  WS (G/MIN)  0. 001 0. 028 0. 066 0. 098 0. 088 0. 060 0. 053 0. 050 0. 047 0. 039 0. 042 0. 039 0. 040 0. 040 0. 039 0. 039 0. 039 0. 039 0. 038 0. 035 0. 035 0. 032 0. 032 0. 031 0. 033 0. 032 0. 026 0. 030 0. 030  0. 003 0. 070 0. 161 0. 237 0. 211 0. 143 0. 127 0. 120 0. 112 0. 093 0. 099 0. 093 0. 095 0. 094 0. 093 0. 093 0. 092 0. 093 0. 089 0. 083 0. 082 0. 075 0. 075 0. 073 0. 077 0. 076 0. 061 0. 070 0. 071  o  RUN NUMBER  TIME (MIN) -8. 5 -7. 5 -4. 0 1. 0 4. 5 8. 0 12. 0 15. 5 19. 0 23. 0 27. 0 31. 0 34. 5 38. 0 41. 5 45. 0 49. 0 52. 5 56. 5 61. 5 65. 0 68. 5 72. 0 75. 5 81. 0 85. 0 89. 0 92. 5 97. 0 100. 5 104. 5 112. 0 117. 0 120. 0  XCO  XC02  0. 001 0. 015 0. 252 0. 324 0. 292 0. 272 0. 259 0. 276 0. 286 0. 297 0. 327 0. 309 0. 324 0. 319 0. 307 0. 321 0. 321 0. 279 0. 309 0. 312 0. 319 0. 329 0. 291 0. 300 0. 299 0. 307 0. 267 0. 279 0. 292 0. 287 0. 286 0. 255 0. 255 0. 260  0. 0173 0. 0213 0. 0306 0. 0188 0. 0132 0. 0118 0. 0103 0. 0095 0. 0090 0. 0086 0. 0073 0. 0071 0. 0070 0. 0069 0. 0069 0. 0068 0. 0067 0. 0071 0. 0069 0. 0069 0. 0069 0. 0070 0. 0071 0. 0070 0. 0069 0. 0069 0. 0070 0. 0068 0. 0068 0. 0068 0. 0069 0. 0072 0. 0056 0. 0049  QOI QI (CM3/MIN) 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 251. 251. 251. 251. 252. 252. 252. 252. 253. 253. 253. 254. 254.  344. 358. 443. 393. 350. 333. 329. 331. 337. 345. 340. 340. 343. 341. 339. 342. 345. 328. 338. 341. 343. 338. 332. 333. 337. 337. 331. 339. 339. 337. 334. 321. 321. 304.  16  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) 0. 0116 0. 0150 0. 0266 0. 0145 0. 0091 0. 0077 0. 0067 0. 0062 0. 0059 0. 0058 0. 0049 0. 0047 0. 0047 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0046 0. 0045 0. 0045 0. 0045 0. 0045 0. 0045 0. 0036 0. 0029  0. 5. 112. 127. 102. 90. 85. 91. 96. 102. 111. 105. 111. 109. 104. 110. 111. 91. 104. 106. 109. 111. 97. 100. 101. 103. 88. 95. 99. 97. 95. 82. 82. 79.  0. 009 0. 015 0. 099 0. 101 0. 080 0. 070 0. 066 0. 070 0. 073 0. 077 0. 083 0. 078 0. 083 0. 081 0. 078 0. 082 0. 082 0. 069 0. 078 0. 079 0. 081 0. 083 0. 072 0. 075 0. 075 0. 077 0. 066 0. 071 0. 074 0. 072 0. 071 0. 062 0. 061 0. 059  0. 003 0. 007 0. 067 0. 072 0. 057 0. 051 0. 047 0. 051 0. 053 0. 056 0. 061 0. 057 0. 061 0. 059 0. 057 0. 060 0. 061 0. 050 0. 057 0. 058 0. 060 0. 061 0. 053 0. 055 0. 055 0. 057 0. 049 0. 052 0. 054 0. 053 0. 052 0. 045 0. 045 0. 043  0. 012 0. 022 0. 166 0. 173 0. 137 0. 121 0. 113 0. 120 0. 126 0. 134 0. 144 0. 136 0. 144 0. 140 0. 135 0. 142 0. 143 0. 119 0. 135 0. 138 0. 141 0. 144 0. 125 0. 130 0. 131 0. 134 0. 115 0. 123 0. 128 0. 125 0. 124 0. 107 0. 106 0. 102  o  RUN NUMBER  TIME (MIN) -13. 5 -11. 0 -8. 5 -5. 0 -3. 5 -2. 5 -1. 5 -0. 5 0. 5 2. 0 4. 0 6. 0 9. 0 13. 0 16. 5 19. 5 22. 5 25. 5 29. 0 32. 0 35. 5 39. 0 42. 0 45.5 49. 0 52. 0 55. 0 58. 0 61. 5 65. 0 68. 5 72. 0 75. 5 79. 0 83. 0 86. 5 90. 0 93. 0 96. 0 99. 5 102. 5 106. 0 109. 0 112. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 103 0. 206 0. 651 0. 784 0. 810 0. 814 0. 821 0. 835 0. 786 0. 715 0. 666 0. 596 0. 465 0. 436 0. 397 0. 365 0. 328 0. 334 0. 368 0. 360 0. 338 0. 315 0. 360 0. 352 0. 334 0. 324 0. 305 0. 283 0. 273 0. 268 0. 244 0. 234 0. 225 0. 212 0. 198 0. 185 0. 174 0. 167 0. 157 0. 149 0. 136 0. 132 0. 127 0. 120 0. 114  0. 0061 0. 0273 0. 0304 0. 0136 0. 0096 0. 0078 0. 0075 0. 0072 0. 0067 0. 0062 0. 0064 0. 0048 0. 0021 0. 0015 0. 0018 0. 0020 0. 0018 0. 0015 0. 0013 0. 0011 0. 0009 0. 0009 0. 0009 0. 0009 0. 0010 0. 0010 0. 0010 0. 0010 0. 0010 0. 0009 0. 0009 0. 0008 0. 0007 0. 0006 0. 0006 0. 0005 0. 0005 0. 0005 0. 0005 0. 0004 0. 0004 0. 0003 0. 0003 0. 0002 0. 0003 0. 0003  17  QOI QI (CM3/MIN)  WC02I QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN)  252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 252. 253. 253. 253. 253. 253. 253. 253. 253. 253. 253. 253. 254. 254. 254. 254. 254. 254. 254. 254. 255. 255. 255. 255. 256. 256. 256. 256. 256. 257. 257. 257. 257. 257. 258. 258.  0. 0036 0. 021 4 0. 0370 0. 0307 0. 0280 0. 0262 0. 0244 0. 0226 0. 0205 0. 0169 0. 0121 0. 0074 0. 0024 0. 0013 0. 0015 0. 0015 0. 0013 0. 0011 0. 0009 0. 0008 0. 0007 0. 0006 0. 0006 0. 0006 0. 0007 .0.0007 0. 0007 0. 0006 0. 0006 0. 0006 0. 0005 0. 0005 0. 0004 0. 0004 0. 0003 0. 0003 0. 0003 0. 0003 0. 0003 0. 0002 0. 0002 0. 0002 0. 0001 0. 0001 0. 0001 0. 0002  298. 399. 619. 1146. 1477. 1697. 1647. 1597. 1547. 1391. 964. 775. 578. 459. 409. 377. 365. 365. 368. 370. 355. 341. 343. 363. 350. 339. 330. 321. 316. 312. 310. 307. 302. 298. 292. 290. 286. 282. 278. 273. 271. 268. 265. 263. 262. 250.  0. 41. 128. 746. 1158. 1374. 1341. 1311. 1292. 1093. 689. 516. 345. 213. 178. 150. 133. 120. 123. 136. 128. 115. 108. 131. 123. 113. 107. 98. 89. 85. 83. 75. 71. 67. 62. 57. 53. 49. 46. 43. 40. 36. 35. 33. 31. 29.  0. 003 0. 045 0.118 0.555 0.847 1. 000 0.975 0.952 0.937 0.793' 0. 501 0.374 0. 248 0.153 0.128 0.108 0.096 0.086 0.088 0.098 0.092 0.083 0.078 0.094 0.088 0.081 0.077 0.070 0. 064 0.061 0.060 0.054 0.051 0.048 0.044 0.041 0.038 0.035 0.033 0.031 0.029 0.026 0.025 0.024 0.023 0. 020  0. 001 0. 028 0. 078 0. 408 0. 627 0. 743 0. 724 0. 708 0. 697 0. 590 0. 372 0. 278 0. 185 0. 115 0. 096 0. 081 0. 072 0. 064 0. 066 0. 073 0. 069 0. 062 0. 058 0. 070 0. 066 0. 061 0. 057 0. 053 0. 048 0. 046 0. 045 0. 040 0. 038 0. 036 0. 033 0. 031 0. 028 0. 026 0. 025 0. 023 0. 022 0. 020 0. 019 0. 018 0. 017 0. 015  0. 004 0. 073 0. 196 0. 963 1. 474 1. 743 1. 699 1. 661 1. 635 1. 383 0. 873 0. 652 0. 433 0. 268 0. 224 0. 189 0. 168 0. 151 0. 154 0. 171 0. 160 0. 144 0. 136 0. 164 0. 155 0. 142 0. 134 0. 123 0. 112 0. 107 0. 104 0. 094 0. 089 0. 084 0. 078 0. 072 0. 066 0. 062 0. 058 0. 054 0. 051 0. 046 0. 044 0. 042 0. 039 0. 036  RUN NUMBER  TIME (MIN)  -9. 0 -7. 0 -5. 0 -1. 0 0. 0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 75. 0 80. 0 85. 0 90. 0 95. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 189 0. 378 0. 756 0. 686 0. 558 0. 528 0. 492 0. 475 0. 444 0. 441 0. 424 0. 416 0. 405 0. 386 0. 363 0. 307 0. 332 0. 302 0. 250 *0. 273 0. 247 0. 217 0. 212 0. 206 0. 201 0. 190 0. 196 0. 190  0. 1155 0. 1022 0. 0707 0. 0623 0. 0607 0. 0475 0. 0284 0. 0243 0. 0213 0. 0201 0. 0188 0. 0180 0. 0168 0. 0155 0. 0144 0. 0136 0. 0129 0. 0120 0. 0113 0. 0116 0. 0120 0. 0122 0. 0107 0. 0091 0. 0075 0. 0065 0. 0060 0. 0055 0. 0051  QOI QI (CM3/MIN) 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 248. 249. 249. 249. 249. 250. 250. 250. 250. 251. 251. 251. 251. 251. 251. 251. 252.  554. 764. 996. 886. 847. 680. 582. 556. 533. 515. 500. 489. 483. 472. 457. 441. 423. 408. 397. 394. 386. 375. 365. 359. 354. 350. 348. 347. 347.  WC02I (G/MIN) 0. 1257 0. 1534 0. 1384 0. 1084 0. 1010 0. 0635 0. 0324 0. 0266 0. 0223 0. 0203 0. 0185 0. 0173 0. 0160 0. 0144 0. 0129 0. 0118 0. 0107 0. 0096 0. 0088 0. 0090 0. 0091 0. 0089 0. 0077 0. 0065 0. 0052 0. 0045 0. 0041 0. 0037 0. 0035  18  QCOS W02S (CM3/MIN) (G/MIN)  0. 144. 377. 669. 581. 380. 307. 274. 253. 228. 220. 207. 201. 191. 176. 160. 130. 136. 120. 99. 105. 93. 79. 76. 73. 70. 66. 68. 66.  0. 091 0. 215 0. 370 0. 557 0. 488 0. 317 0. 243 0. 215 0. 197 0. 178 0. 171 0. 160 0. 155 0. 147 0. 135 0. 123 0. 100 0. 104 0. 092 0. 077 0. 082 0. 073 0. 062 0. 059 0. 056 0. 053 0. 050 0. 051 0. 050  WCS (G/MIN) 0. 034 0. 119 - 0. 239 0. 388 0. 339 0. 221 0. 173 0. 154 0. 142 0. 128 0. 123 0. 116 0. 112 0. 106 0. 098 0. 089 0. 072 0. 075 0. 067 0. 055 0. 059 0. 052 0. 044 0. 043 0. 040 0. 039 0. 037 0. 037 0. 036  WS (G/MIN) 0. 126 0. 334 0. 609 0. 945 0. 827 0. 538 0. 416 0. 369 0. 338 0. 306 0. 294 0. 276 0. 267 0. 253 0. 233 0. 212 0. 173 0. 179 0. 159 0. 132 0. 141 0. 125 0. 107 0. 102 0. 096 0. 092 0. 087 0. 089 0. 086  RUN NUMBER  TIME (MIN) -8. -8. -7. -7. -6. -6. -5. -5. -1. 0. 5. 10. 15. 20. 25. 31. 35. 41. 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95. 100. 105. 110. 115. 120.  5 0 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  XCO  XC02  0. 0 0. 050 0. 119 0. 179 0. 239 0. 299 0. 358 0. 460 0. 835 0. 825 0. 793 0. 685 0. 635 0. 555 0. 587 0. 590 0. 562 0. 520 0. 463 0. 445 0. 400 0. 300 0. 260 0. 240 Oi 216 0. 197 0. 167 0. 150 0. 134 0. 126 0. 113 0. 105 0. 100 0. 090  0. 3051 0. 3735 0. 4315 0. 4814 0. 5247 0. 3047 0. 2298 0. 1920 0. 0848 0. 0789 0. 0185 0. 0135 0. 0087 0. 0089 0. 0066 0. 0053 0. 0049 0. 0047 0. 0047 0. 0042 0. 0036 0. 0031 0. 0025 0. 0022 0. 0024 0. 0021 0. 0009 0. 0005 0. 0011 0. 0013 0. 0007 0. 0004 0. 0004 0. 0004  QOI QI (CM3/MIN) 241. 241. 241. 241. 241. 241. 241. 241. 240. 240. 240. 239. 247. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250.  370. 404. 437. 470. 503. 989. 1476. 1962. 2622. 1979. 1076. 728. 603. 494. 541. 534. 503. 442. 404. 391. 357. 312. 294. 291. 287. 280. 270. 266. 263. 263. 259. 255. 253. 255.  19  WC02I . QCOS W02S WCS WS (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) 0. 2221 0. 2961 0. 3701 0. 4441 0. 5181 0. 5922 0. 6662 0. 7402 0. 4370 0. 3070 0. 0391 0. 0193 0. 0103 0. 0087 0. 0070 0. 0056 0. 0048 0. 0040 0. 0037 0. 0032 0. 0025 0. 0019 0. 0015 0. 0012 0. 0013 0. 0011 0. 0005 0. 0002 0. 0006 0. 0007 0. 0004 0. 0002 0. 0002 0. 0002  0. 20. 52. 84. 120. 296. 528. 903. 2190. 1633. 853. 499. 383. 274. 318. 315. 282. 230. 187. 174. 143. 94. 76. 70. 62. 55. 45. 40. 35. 33. 29. 27. 25. 23.  0. 161 0. 230 0. 306 0. 383 0. 463 0. 642 0. 862 1. 183 1. 881 • 1. 389 0. 637 0. 370 0. 281 0. 202 0. 232 0. 229 0. 205 0. 167 0. 136 0. 126 0. 104 0. 068 0. 056 0. 051 0. 045 0. 040 0. 033 0. 029 0. 026 0. 024 0. 021 0. 019 0. 018 0. 017  0. 061 0. 092 0. 129 0. 166 0. 206 0. 320 0. 464 0. 685 1. 291 0. 958 0. 467 0. 272 0. 208 0. 149 0. 172 0. 170 0. 153 0. 124 0. 101 0. 094 0. 077 0. 051 0. 041 0. 038 0. 034 0. 030 0. 024 0. 021 0. 019 0. 018 0. 016 0. 014 0. 014 0. 012  0. 222 0. 321 0. 435 0. 549 0. 668 0. 962 1. 326 1. 868 3. 172 2. 347 1. 105 0. 642 0. 489 0. 351 0. 404 0. 399 0. 358 0. 291 0. 237 0. 220 0. 181 0. 119 0. 097 0. 089 0. 079 0. 070 0. 057 0. 050 0. 045 0. 042 0. 037 0. 034 0. 032 0. 029  o  RUN  TIME (MIN) -10. 0 -6. 5 -3. 5 -0. 5 0. 0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 75. 0 80. 0 85. 0 90. 0 94. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 090 0. 326 0. 562 0. 562 0. 438 0. 362 0. 354 0. 354 0. 368 0. 344 0. 338 0. 330 0. 305 0. 297 0. 281 0. 250 0. 237 0. 232 0. 220 0. 210 0. 210 0. 204 0. 190 0. 188 0. 182 0. 176 0. 168 0. 168  0. 0256 0. 1211 0. 1720 0. 2081 0. 1932 0. 0353 0. 0299 0. 0234 0. 0226 0. 0218 0. 0203 0. 0191 0. 0172 0. 0157 0. 0141 0. 0129 0. 0143 0. 0139 0. 0107 0. 0084 0. 0079 0. 0073 0. 0068 0. 0064 0. 0055 0. 0048 0. 0042 0. 0038 0. 0034  QOI QI (CM3/MIN) 250. 250. 250. 250. 250. 251. 251. 251. 251. 252. 252. 252. 252. 252. 253. 253. 253. 253. 253. 254. 254. 254. 254. 254. 254. 255. 255. 255. 257.  347. 586. 722. 653. 642. 457. 392. 383. 383. 382. 374. 361. 359. 349. 336. 323. 315. 308. 307. 303. 296. 296. 293. 291. 293. 292. 288. 288. 288.  NUMBER  WC02I (G/MIN) 0. 0174 0. 1395 0. 2441 0. 2670 0. 2436 0. 0317 0. 0230 0. 0176 0. 0170 0. 0163 0. 0149 0. 0135 0. 0122 0. 0108 0. 0093 0. 0082 0. 0088 0. 0084 0. 0065 0. 0050 0. 0046 0. 0042 0. 0039 0. 0037 0. 0032 0. 0027 0. 0024 0. 0021 0. 0019  20  QCOS W02S (CM3/MIN)(G/MIN) 0. 53. 235. 367. 361. 200. 142. 136. 136. 140. 129. 122. 118. 106. 100. 91. 79. 73. 71. 67. 62. 62. 60. 55. 55. 53. 51. 48. 48.  0. 013 0. 139 0. 346 0. 456 0. 435 0. 166 0. 118 0. 110 0. 109 0. 112 0. 103 0. 097 0. 093 0. 084 0. 078 0. 071 0. 063 0. 058 0. 055 0. 051 0. 048 0. 047 0. 046 0. 042 0. 042 0. 040 0. 038 0. 036 0. 036  WCS WS (G/MIN) (G/MIN)  0. 005 0. 066 0. 193 0. 269 0. 260 0. 116 0. 082 0. 077 0. 077 0. 080 0. 073 0. 069 0. 067 0. 060 0. 056 0. 051 0. 045 0. 041 0. 040 0. 037 0. 035 0. 034 0. 033 0. 031 0. 030 0. 029 0. 028 0. 026 0. 026  0. 017 0. 205 0. 538 0. 726 0. 694 0. 282 0. 200 0. 187 0. 187 0. 192 0. 176 0. 166 0. 160 0. 144 0. 134 0. 122 0. 107 0. 100 0. 095 0. 088 0. 082 0. 082 0. 079 0. 073 0. 072 0. 069 0. 066 0. 063 0. 062  RUN NUMBER  TIME (MIN) -9. 0 -8. 5 -8. 0 -7. 0 -6. 0 -5. 0 -4. 0 -3. 0 0. 0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 80. 0 85. 0 90. 0 95. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 052 0. 104 0. 208 0. 322 0. 435 0. 544 0. 653 0. 767 0. 665 0. 575 0. 490 0. 445 0. 465 0. 447 0. 370 0. 345 0. 307 0. 290 0. 255 0. 235 0. 215 0. 200 0. 167 0. 155 0. 14 3 0. 138 0. 133 0. 120 0. 108 0. 105 0. 105  0. 0144 0. 0216 0. 0288 0. 0431 0. 0314 0. 0281 0. 0265 0. 0337 0. 0395 0. 0191 0. 0171 0. 0075 0. 0082 0. 0070 0. 0060 0. 0052 0. 0049 0. 0040 0. 0036 0. 0047 0. 0047 0. 0030 0. 0017 0. 0013 0. 0028 0. 0032 0. 0018 0. 0009 0. 0007 0. 0006 0. 0006 0. 0006  QOI QI (CM 3/MIN) 258. 257. 257. 257. 256. 256. 255. 255. 253. 254. 257. 260. 259. 257. 256. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250.  369. 369. 369. 369. 838. 1307. 1775. 1706. 1498. 958. 531. 454. 363. 367. 365. 360. 328. 326. 309. 301. 293. 290. 280. 272. 272. 269. 265. 262. 262. 258. 258. 258.  WC02I (G/MIN) 0. 0104 0. 0156 0. 0209 0. 0313 0. 0517 0. 0721 0. 0926 0. 1130 0. 1162 0. 0360 0. 0179 0. 0067 0. 0058 0. 0050 0. 0043 0. 0037 0. 0031 0. 0026 0. 0022 0. 0028 0. 0027 0. 0017 0. 0010 0. 0007 0. 0015 0. 0017 0. 0010 0. 0005 0. 0004 0. 0003 0. 0003 0. 0003  21  QCOS W02S (CM 3/MIN) (G/MIN) 0. 19. 38. 77. 270. 568. 966. 1114. 1149. 637. 306. 222. 162. 171. 163. 133. 113. 100. 90. 77. 69. 62. 56. 45. 42. 38. 37. 35. 31'. 28. 27. 27.  0. 008 0. 025 0. 043 0. 078 0. 230 0. 458 0. 757 0. 877 0. 904 0. 481 0. 231 0. 164 0. 120 0. 125 0. 120 0. 098 0. 083 0. 073 0. 066 0. 057 0. 051 0. 046 0. 041 0. 033 0. 031 0. 029 0. 027 0. 025 0. 023 0. 020 0. 020 0. 020  WCS (G/MIN)  WS (G/MIN)  0. 003 0. 015 0. 026 0. 050 0. 159 0. 324 0. 542 0. 627 0. 647 0. 351 0. 168 0. 121 0. 088 0. 093 0. 089 0. 072 0. 061 0. 054 0. 049 0. 042 0. 038 0. 034 0. 030 0. 025 0. 023 0. 021 0. 020 0. 019 0. 017 0. 015 0. 015 0. 015  0. 010 0. 040 0. 069 0. 127 0. 389 0. 782 1. 299 1. 505 1. 551 0. 831 0. 400 0. 284 0. 208 0. 218 0. 208 0. 170 0. 144 0. 128 0. 114 0. 099 0. 089 0. 080 0. 071 0. 058 0. 054 0. 050 0. 047 0. 044 0. 040 0. 035 0. 034 0. 034  RUN NUMBER  TIME (MIN) -8. 0 -7. 0 -5. 0 -3. 0 0. 0 5. 0 17. 0 21. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 75. 0 80. 0 85. 0 90. 0 95. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 008 0. 193 0. 378 0. 655 0. 713 0. 714 0. 720 0. 650 0. 647 0. 600 0. 565 0. 515 0. 518 0. 492 0. 463 0. 420 0. 405 0. 380 0. 343 0. 307 0. 292 0. 274 0. 270 0. 252 0. 242 0. 230 0. 200  0. 0228 0. 0289 0. 0369 0. 0604 0. 0733 0. 0825 0. 0711 0. 0656 0. 0563 0. 0473 0. 0413 0. 0343 0. 0285 0. 0223 0. 0204 0. 0180 0. 0153 0. 0129 0. 0113 0. 0110 0. 0112 0. 0100 0. 0079 0. 0067 0. 0061 0. 0058 0. 0057 0. 0056  QOI QI (CM3/MIN) 252. 353. 252. 417. 252. 54 5. 252. 674. 253. 1231. 253. 1587. 254. 1081. 254. 911. 255. 804. 671. 255. 255. 606. 256. 556. 256. 503. 256. 490. 257. 462. 257. 435. 258. 409. 258. 389. 257. 365. 255. 331. 254. 315. 252. 313. 251. 306. 250. 300. 248. 299. 247. 293. 245. 287. 244. 284.  WC02I (G/MIN) 0. 0158 0. 0237 0. 0395 0. 0799 0. 1773 0. 2571 0. 1510 0. 11740. 0890 0. 0624 0. 0492 0. 0375 0. 0282 0. 0214 0. 0185 0. 0154 0. 0123 0. 0098 0. 0082 0. 0072 0. 0069 0. 0061 0. 0048 0. 0039 0. 0036 0. 0033 0. 0032 0. 0031  22  QCOS W02S (CM3/MIN) (G/MIN) 0. 3. 105. 2 55. 807. 1131. 772. 656. 523. 434. 363. 314. 259. 254. 227. 201. 172. 157. 139. 114. 97. 91. 84. 81. 75. 71. 66. 57.  0. O i l 0. 020 0. 104 0. 240 0. 705 0. 995 0. 661 0. 554 0. 438 0. 355 0. 295 0. 251 0. 205 0. 197 0. 176 0. 155 0. 132 0. 120 0. 105 0. 086 0. 074 0. 070 0. 063 0. 061 0. 056 0. 053 0. 049 0. 043  WCS (G/MIN)  WS (G/MIN)  0. 004 0. 008 0. 067 0. 158 0. 480 0. 676 0. 454 0. 383 0. 304 0. 249 0. 208 0. 178 0. 146 0. 142 0. 127 0. 112 0. 095 0. 087 0. 077 0. 063 0. 054 0. 051 0. 046 0. 044 0. 041 0. 039 0. 036 0. 031  0. 016 0. 028 0. 171 0. 398 1. 185 1. 671 1. 115 0. 937 0. 742 0. 605 0. 503 0. 430 0. 352 0. 338 0. 302 0. 267 0. 227 0. 207 0. 182 0. 149 0. 128 0. 120 0. 110 0. 105 0. 098 0. 092 0. 086 0. 074  RUN  TIME (MIN) -15. 0 -11. 0 -10. 5 -10. 0 -9. 0 -8. 0 -7. 0 -1. 0 1. 7 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0 35. 0 40. 0 45. 0 50. 0 55. 0 60. 0 70. 0 75. 0 80. 0 85. 0 90. 0 95. 0 100. 0 105. 0 110. 0 115. 0 120. 0  XCO  XC02  0. 0 0. 058 0. 145 0. 231 0. 404 0. 577 0. 750 0. 859 0. 859 0. 785 0. 612 0. 486 0. 430 0. 644 0. 557 0. 512 0. 472 0. 436 0. 365 0. 332 0. 279 0. 243 0. 279 0. 284 0. 274 0. 248 0. 228 0. 238 0. 225 0. 201 0. 210 0. 181  0. 0283 0. 1075 0. 0837 0. 0680 0. 0486 0. 0370 0. 0294 0. 0126 0. 0148 0. 0222 0. 0204 0. 0080 0. 0076 0. 0065 0. 0050 0. 0041 0. 0036 0. 0031 0. 0025 0. 0021 0. 0017 0. 0011 0. 0012 0. 0012 0. 0013 0. 0014 0. 0014 0. 0013 0. 0013 0. 0012 0. 0011 0. 0011  QOI QI (CM3/MIN) 250. 246. 246. 246. 245. 244. 243. 240. 244. 249. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250. 250.  342. 707. 889. 1072. 1437. 1802. 2166. 3573. 2485. 1211. 594. 419. 466. 540. 522. 453. 423. 387. 358. 332. 317. 318. 329. 325. 317. 307. 316. 317. 306. 300. 300. 285.  NUMBER  WC02I (G/MIN) 0. 0190 0. 1493 0. 1462 0. 1432 0. 1371 0. 1310 0. 1250 0. 0885 0. 0721 0. 0529 0. 0238 0. 0066 0. 0070 0. 0069 0. 0051 0. 0036 0. 0030 0. 0023 0. 0018 0. 0014 0. 0010 0. 0007 0. 0007 0. 0008 0. 0008 0. 0009 0. 0009 0. 0008 0. 0008 0. 0007 0. 0007 0. 0006  23  QCOS W02S (CM3/MIN)(G/MIN) 0. 41. 129. 248. 580. 1040. 1625. 3070. 2135. 950. 364. 204. 200. 348. 291. 232. 200. 169. 131. 110. 88. 77. 92. 92. 87. 76. 72. 75. 69. 60. 63. 52.  0.014 0.138 0.198 0. 281 0. 514 0.837 1. 251 2. 256 1. 576 0.717 0. 277 0.150 0.148 0. 253 0.211 0.168 0.145 0. 122 0.095 0. 080 0. 064 0. 056 0. 066 0.067 0. 063 0. 055 0. 052 0. 054 0. 050 0.044 0. 045 0. 037  WCS (G/MIN)  WS (G/MIN)  0. 005 0. 063 0. 109 0. 172 0. 348 0. 592 0. 904 1. 668 1. 162 0. 523 0. 201 0. 111 0. 109 0. 188 0. 157 0. 125 0. 108 0. 091 0. 070 0. 059 0. 048 0. 042 0. 049 0. 050 0. 047 0. 041 0. 039 0. 041 0. 037 0. 032 0. 034 0. 028  0. 019 0. 200 0. 307 0. 453 0. 862 1. 430 2. 155 3. 923 2. 739 1. 240 0. 478 0. 261 0. 257 0. 442 0. 368 0. 293 0. 252 0. 213 0. 165 0. 139 0. 111 0. 097 0. 115 0. 116 0. 109 0. 096 0. 091 0. 095 0. 087 0. 076 0. 079 0. 065  RUN NUMBER  TIME (MIN) -9. 0 -7. 5 -5. 0 -2. 5 0. 0 2. 0 5. 0 8. 0 11. 0 14. 0 17. 0 20. 0 23. 0 27. 5 30. 0 33. 0 37. 0 39. 5 43. 0 47. 0 52. 5 56. 5 60. 0 65. 0 70. 0 75. 0 78. 0 81. 0 84. 0 88. 0 92. 0 96. 0 100. 0 104. 0 109. 0 115. 0 120. 0  XCO  XC02  0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995  0. 0801 0. 1158 0. 1117 0. 1077 0. 0864 0. 0726 0. 0608 0. 0485 0. 0472 0. 0460 0. 0452 0. 0445 0. 0441 0. 0436 0. 0437 0. 0440 0. 0437 0. 0435 0. 0432 0. 0425 0. 0415 0. 0408 0. 0402 0. 0399 0. 0394 0. 0389 0. 0385 0. 0380 0. 0374 0. 0366 0. 0366 0. 0365 0. 0347 0. 0346 0. 0344 0. 0342 0. 0340  24  QOI QI (CM3/MIN)  WC02I (G/MIN)  806. 806. 805. 801. 803. 804. 803. 801. 800. 800. 800. 800. 800. 800. 800. 799. 799. 798. 798. 798. 796. 796. 796. 796. 796. 796. 796. 796. 797. 798. 798. 797. 796. 796. 796. 796. 796.  0. 1238 0. 1857 0. 1773 0. 1690 0. 1357 0. 1090 0. 0900 0. 0710 0. 0690 0. 0671 0. 0658 0. 0646 0. 0640 0. 0632 0. 063 4 0. 0636 0. 0630 0. 0626 0. 0620 0. 0609 0. 0595 0. 0585 0. 0576 0. 0571 0. 0565 0. 0557 0. 0551 0. 0544 0. 0535 0. 0523 0. 0522 0. 0522 0. 0496 0. 0494 0. 0492 0. 0488 0. 0485  723. 722. 718. 713. 731. 709. 708. 709. 709. 708. 708. 707. 706. 706. 706. 704. 701. 700. 699. 699. 699. 699. 699. 700. 701. 701. 700. 700. 700. 700. 701. 701. 701. 702. 703. 702. 701.  WS (G/MIN)  0. 045 0. 068 0. 064 0. 061 0. 049 0. 040 0. 033 0. 026 0. 025 0. 024 0. 024 0. 023 0. 023 0. 023 0. 023 0. 023 0. 023 ' 0.023 0. 023 0. 022 0. 022 0. 021 0. 021 0. 021 0. 021 0. 020 0. 020 0. 020 0. 019 0. 019 0. 019 0. 019 0. 018 0. 018 0. 018 0. 018 0. 018  113 RUN NUMBER  TIME (MIN) -10. 5 -5. 5 -0. 5 2. 0 7. 0 12. 0 18. 0 23. 0 29. 0 35. 0 40. 0 46. 0 52. 0 58. 0 63. 0 68. 0 74. 0 79. 5 84. 0 90. 0 96. 0 101. 0 106. 0 111. 0 116. 0  XCO  XC02  0. 995 0. 995 0. 995 0. 995 0. 995 0..995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995  0. 1027 0. 0848 0. 0671 0. 0588 0. 0523 0. 0493 0. 0448 0. 0439 0. 0426 0. 0460 0. 0449 0. 0429 0. 0424 0. 0421 0. 0403 0. 0407 0. 0406 0. 0394 0. 0402 0. 0406 0. 0407 0. 0413 0. 0392 0. 0399 0. 0401  QOI QI (CM3/MIN)  1  798. 792. 790. 787. 789. 795. 796. 795. 785. 808. 806. 801. 805. 802. 799. 797. 797. 798. 793. 792. 792. 791. 785. 785. 787.  710. 732. 728. 715. 706. 706. 703. 701. 691. 702. 701. 699. 702. 700. 697. 695. 697. 699. 693. 693. 691. 690. 688. 686. 686.  25  WC02I (G/MIN)  WS (G/MIN)  0. 1597 0. 1331 0. 1029 0. 0878 0. 0764 0. 0719 0. 0647 0. 0632 0. 0604 0. 0666 0. 0648 0. 0616 0. 0610 0. 0604 0. 0575 0. 0580 0. 0579 0. 0563 0. 0570 0. 0575 0. 0576 0. 0584 0. 0552 0. 0561 0. 0563  0. 058 0. 048 0. 037 0. 032 0. 028 0. 026 0. 024 0. 023 0. 022 0. 024 0. 024 0. 022 0. 022 0. 022 0. 021 0. 021 0. 021 0. 020 0. 021 0. 021 0. 021 0. 021 0. 020 0. 020 0. 020  RUN NUMBER  TIME (MIN) -7. 0 -3. 0 -0. 5 4. 0 9. 0 14. 0 18. 0 21. 0 26. 0 31. 0 36. 0 39. 0 42. 0 45. 0 48. 0 53. 0 58. 0 61. 0 64. 0 69. 0 74. 0 79. 0 82. 0 86. 0 89. 0 91. 0 96. 0 101. 0 105. 0 109. 0 114. 0 117. 0 120. 0  XCO  XC02  0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995 0. 995  0. 1451 0. 1292 0. 1155 0. 0671 0. 0601 0. 0572 0. 0548 0. 0540 0. 0535 0. 0539 0. 0524 0. 0523 0. 0518 0. 0507 0. 0502 0. 0500 0. 0500 0. 0495 0. 0486 0. 0486 0. 0489 0. 0503 0. 0492 0. 0479 0. 0484 0. 0487 0. 0497 0. 0503 0. 0497 0. 0491 0. 0491 0. 0489 0. 0487  QOI QI (CM3/MIN) 800. 796. 794. 788. 795. 783. 812. 825. 828. 820. 814. 814. 814. 814. 812. 810. 805. 803. 805. 804. 802. 799. 798. 798. 798. 797. 793. 790. 789. 788. 786. 785. 785.  694. 690. 709. 700. 688. 674. 705. 717. 717. 704. 693. 690. 692. 697. 692. 689. 687. 688. 693. 692. 689. 687. 687. 689. 685. 683. 680. 680. 680. 680. 678. 677. 677.  26  WC02I (G/MIN)  WS (G/MIN)  0. 2315 0. 2010 0. 1819 0. 0988 0. 0863 0. 0804 0. 0804 0. 0804 0. 0796 0. 0788 0. 0753 0. 0748 0. 0744 0. 0731 0. 0719 0. 0713 0. 0711 0. 0703 0. 0695 0. 0694 0. 0697 0. 0714 0. 0699 0. 0680 0. 068 5 0. 0688 0. 0699 0. 0708 0. 0699 0. 0690 0. 0687 0. 0684 0. 0681  0. 084 0. 073 0. 066 0. 036 0. 031 0. 029 0. 029 0. 029 0. 029 0. 029 0. 027 0. 027 0. 027 0. 027 0. 026 0. 026 0. 026 0. 026 0. 025 0. 025 0. 025 0. 026 0. 025 0. 025 0. 025 0. 025 0. 025 0. 026 0. 025 0. 025 0. 025 0. 025 0. 025  RUN  TIME <" )  XCO  XC02  0. 995 0. 995 0.995 0.995 0. 995 0.995 0. 995 0. 995 0. 995 0. 995 0.995 0. 995 0.995 0.995 0.995 0.995 0. 995 0. 995 0. 995 0.995 0.995 0.995 0.995 0.995 0. 995 0.995 0.995  0., 1184 0.,1355 0., 1180 0., 0696 0. 0607 0. 0577 0. 0536 0. 0644 0. 0531 0. 0519 0. 0513 0. 0514 0. 0491 0. 0486 0. 0481 0. 0503 0. 0492 0. 0473 0. 0483 0. 0487 0. 0492 0. 0472 0. 0477 0. 0487 0. 0487 0. 0477 0. 0472  MIN  -9.. 0 -8., 5 -2., 5 1. 0 6. 0 12. 0 18. 0 24. 0 29. 0 34. 0 39. 0 45. 0 50. 0 55. 0 60. 0 65. 0 70. 0 75. 0 80. 0 84. 0 90. 0 95. 0 99. 0 104. 0 108. 0 114. 5 120. 0  NUMBER  QOI QI (CM3/MIN) 794. 794. 800. 790. 780. 789. 800. 798. 802. 795. 780. 798. 794. 800. 794. 781. 798. 810. 802. 800. 781. 806. 800. 784. 791. 794. 806.  716. 716. 716. 715. 700. 696. 701. 701. 701. 693. 682. 700. 693. 696. 693. 686. 693. 706. 699. 699. 680. 704. 698. 687. 691. 695. 706.  27  WC02I (G/MIN)  WS (G/MIN)  0., 1890 0., 2205 0.. 1881 0. 1051 0. 0888 0. 0837 0. 0780 0. 0948 0. 0773 0. 0746 0. 0725 0. 0745 0. 0703 0. 0698 0. 0688 0. 0714 0. 0705 0. 0688 0. 0697 0. 0704 0. 0691 0. 0686 0. 0686 0. 0690 0. 0694 0. 0684 0. 0688  0.. 069 0.. 080 0.. 068 0. 038 0. 032 0. 030 0. 028 0. 034 0. 028 0. 027 0. 026 0. 027 0. 026 0. 025 0. 025 0. 026 0. 026 0. 025 0. 025 0. 026 0. 025 0. 025 0. 025 0. 025 0. 025 0. 025 0. 025  116 APPENDIX I I 1.  C a l c u l a t i o n of r e d u c t i o n a)  and  g a s i f i c a t i o n rate constants  Assuming no argon p e n e t r a t i o n  i n t o the  bed  I n t h i s case the f o l l o w i n g e q u a t i o n must h o l d p  The  co  +  p  co  -  2  b  P  co  =  ( P  +  b)  and P™ 2  i s defined  by  °2 P  ™  ) m  CO  K  where P™  i n the bed  2  m  C  2  W  a t m  p a r t i a l p r e s s u r e of C 0 P  LU  1  co  J 2  are the measured p a r t i a l p r e s s u r e s i n the e x i t  CU  Assuming t o t a l argon m i x i n g w i t h the gases i n the  gas.  bed  For t h i s c o n d i t i o n the f o l l o w i n g r e l a t i o n i s v a l i d P  C0  +  P  C0  +  P  2  Ar  "  1  W  a t m  However, s i n c e the amount of gases generated i n the bed w i t h t i m e so does the q u a n t i t y P  and  C0  +  P  C0  2  of argon g o i n g i n .  =  - Ar  1  P  = P  changes  Then W  a t m  i n t h i s case P The  = P  b  C0  2  equilibrium values P  m  C0  R (_>U  L  and  P  2  R C  B  R where Keq  =  1  °2  _  A  p +  2.p  [31] J  2  B cu  are o b t a i n e d as  follows  2  Klq  L  + KJq - A  p K§q  +(KJq)  2  B and  Keq  are the e q u i l i b r i u m c o n s t a n t s f o r r e d u c t i o n  Boudouard r e a c t i o n s  r e s p e c t i v e l y , and  a r e c a l c u l a t e d from the  d a t a g i v e n by Shomate et a t . ( 1 9 ) , and Ward (11).  I n the  and thermodynamic  situation  117 r e p r e s e n t e d by E q u a t i o n are constant.  [27] p e q u a l s u n i t y and t h e e q u i l i b r i u m p r e s s u r e s  On t h e o t h e r hand, i f t o t a l m i x i n g w i t h argon i s c o n s i d -  ered p w i l l be g i v e n by E q u a t i o n  [ 3 0 ] , and t h e e q u i l i b r i u m v a l u e s  will  change w i t h t i m e . Once t h e d r i v i n g f o r c e s have been d e f i n e d , t h e r a t e c o n s t a n t s a r e o b t a i n e d by means o f E q u a t i o n s 2.  [19a] and [20a].  C a l c u l a t i o n o f a c t i v a t i o n e n e r g i e s , and char r e a c t i v i t y  and o r e  reducibility Using Equations  [23] and [ 2 4 ] , t h e a c t i v a t i o n e n e r g i e s (E,,, E_)  can be o b t a i n e d from t h e s l o p e s o f Jin (Kg o r K^j) v s T same e q u a t i o n s a r e then employed i n o b t a i n i n g H  and H  plots. .  These  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0078874/manifest

Comment

Related Items