Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Kinetics of reduction of titaniferous ores with lignite coal Sucre-García, Gustavo A. 1979

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A6_7 S83.pdf [ 12.94MB ]
Metadata
JSON: 831-1.0078874.json
JSON-LD: 831-1.0078874-ld.json
RDF/XML (Pretty): 831-1.0078874-rdf.xml
RDF/JSON: 831-1.0078874-rdf.json
Turtle: 831-1.0078874-turtle.txt
N-Triples: 831-1.0078874-rdf-ntriples.txt
Original Record: 831-1.0078874-source.json
Full Text
831-1.0078874-fulltext.txt
Citation
831-1.0078874.ris

Full Text

KINETICS OF REDUCTION OF TITANIFEROUS ORES WITH LIGNITE COAL by Gustavo A. Sucre-Garcia B.Sc., Universidad Simon B o l i v a r , Venezuela, 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE i n - THE FACULTY OF GRADUATE STUDIES Department of M e t a l l u r g i c a l Engineering We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA December 1979 (c)Gustavo A. Sucre-Garcia, 1979 In presenting th i s thes is in pa r t i a l fu l f i lment of the requirements for an advanced degree at the Univers i ty of B r i t i s h Columbia, I agree that the L ibrary sha l l make it f ree ly ava i lab le for reference and study. I further agree that permission for extensive copying of th is thesis for scho lar ly purposes may be granted by the Head of my Department or by his representat ives. It is understood that copying or pub l i ca t ion of th is thes is fo r f inanc ia l gain sha l l not be allowed without my writ ten permission. Department The Univers i ty of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 ABSTRACT An i n d u c t i v e l y heated r o t a r y r e a c t o r has been used to study the r e d u c t i o n k i n e t i c s of Westport and F l o r i d a i l m e n i t e s , and Glenbrook i r o n -sands w i t h Saskatchewan l i g n i t e c o a l . The e f f e c t of speed of r o t a t i o n , char to ore r a t i o , temperature, and p r e - o x i d a t i o n on the r e d u c t i o n behaviour was examined, and the r e a c t i o n r a t e followed by gas a n a l y s i s and flow measurement. Independent a c t i v a t i o n energies have been determined; f o r the r e d u c t i o n of Westport and F l o r i d a i l m e n i t e s the values were 25 and 7.5 Kcal/mole r e s p e c t i v e l y , w h i l e Glenbrook ironsands and p r e - o x i d i z e d West-port ore showed a change from 25 to 7.5 Kcal/mole due to a change i n the r a t e c o n t r o l l i n g step. For the Boudouard r e a c t i o n the a c t i v a t i o n energy was 55 Kcal/mole. Ore r e d u c i b i l i t i e s ( i n cm 3/g.s) have been c a l c u l a t e d to be 4 x 10 s f o r Westport ore; 4 x 10 3 f o r F l o r i d a i l m e n i t e ; 2 x 10 6 and 2 x 10 3 f o r p r e - o x i d i z e d ore; and 9 x 10 4 and 8 x 1 0 1 f o r Glenbrook ironsands; i n the l a s t two cases the two values given correspond to the two a c t i v a t i o n energies s p e c i f i e d above. Char r e a c t i v i t y has been found to be 2 x 1 0 1 1 cm 3/g.s. The r e d u c t i o n mechanism has been shown to be very s e n s i t i v e to the ore type and temperature. In g e n e r a l , a mixed c o n t r o l between the reduc-t i o n and g a s i f i c a t i o n r e a c t i o n s was observed below 1000°C. Mixed c o n t r o l a l s o e x i s t e d during the r e d u c t i o n of p r e - o x i d i z e d and F l o r i d a ores at 1050°C u n t i l 75% r e d u c t i o n ; above t h i s r e d u c t i o n l e v e l the r e d u c t i o n r e a c t i o n l i m i t e d the process which was a l s o the case of Westport and Glenbrook ores at t h i s temperature. The Boudouard r e a c t i o n was found to govern the o v e r a l l r a t e only during the r e d u c t i o n of F l o r i d a i l m e n i t e at 950°C below 45% r e d u c t i o n . TABLE OF CONTENTS ABSTRACT i i LIST OF TABLES . .' v LIST OF FIGURES . . . . . . . . . . . . . v i ACKNOWLEDGEMENTS . . . . . . . v i i i 1. INTRODUCTION •'. 1 1.1 I n t r o d u c t i o n 1 1.2 L i t e r a t u r e review 3 1.2.1 Thermodynamics 3 1.2.2 Reaction sequences during i l m e n i t e r e d u c t i o n 5 1.2.3 K i n e t i c s of i l m e n i t e r e d u c t i o n 8 1.2.4 K i n e t i c s of carbon g a s i f i c a t i o n 10 1.3 Ob j e c t i c e s 12 2. APPARATUS AND EXPERIMENTAL PROCEDURE 13 2.1 Apparatus 13 2.2 M a t e r i a l s used 17 2.3 Experimental procedure . . 20 2.3.1 Reduction experiments 20 2.3.2 Char p r e p a r a t i o n 21 2.3.3 P r e - o x i d a t i o n of i l m e n i t e 21 3. RESULTS 22 3.1 Temperature p r o f i l e 22 3.2 Reduction experiments 22 3.2.1 S e l e c t i o n of operating v a r i a b l e s 25 3.2.2 E f f e c t of temperature, and ore type . . . . 31 3.2.3 Reduction w i t h carbon monoxide 35 3.3 Char p r e p a r a t i o n , 37 3.4 P r e - o x i d a t i o n of Westport i l m e n i t e 37 3.5 X-ray a n a l y s i s 38 3.5.1 Raw m a t e r i a l s 38 3.5.2 Reduced products 38 3.6 SEM examination 42 4. DISCUSSION 51 4.1 Transport of argon i n t o the bed 51 4.2 Temperature dependence of r e a c t i o n r a t e s 55 4.3 Reduction mechanism 65 4.4 V e r i f i c a t i o n of o v e r a l l r a t e equation . 80 5. SUMMARY AND CONCLUSIONS 82 i i i REFERENCES 8 5 APPENDIX IA 8 7 APPENDIX IB 8 8 APPENDIX I I 1 1 6 i v LIST OF TABLES I Thermodynamic values of hydrogen reduction of ilmenite 4 II Thermodynamic values for carbon monoxide reduction of ilmenite 4 I l i a Chemical analysis of the ores (dry basis) 18 I l l b Bulk density, and p a r t i c l e s i z e d i s t r i b u t i o n of the ores 18 IVa Chemical analysis of the l i g n i t e coal 19 IVb Chemical analysis of the ash 19 V Major d-spacings for some compounds of i n t e r e s t (from ASTM) 39 VI Westport ilmenite, pre-oxidized ilmenite, and Glenbrook ironsands X-ray d i f f r a c t i o n pattern . . 40 VII X-ray d i f f r a c t i o n pattern of reduced samples . . . . 41 VIII 1^ as function of % reduction at 1000°C for d i f f e r e n t operating conditions 58 IX Kg as function of % reduction at 1000°C for d i f f e r e n t operating conditions 60 X A c t i v a t i o n energies for reduction and Boudouard reactions for the d i f f e r e n t ores 62 v LIST OF FIGURES 1. E q u i l i b r i u m diagram f o r the ilmenite-carbon system . . . . 6 2. Schematic diagram of the equipment used 14 3. Side, p l a n , and f r o n t view of the furnace 15 4. Temperature p r o f i l e along the r e a c t o r 23 5. Gas composition, outflow r a t e , and temperature f o r a t y p i c a l run 24 6. E f f e c t of c h a r / i l m . on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e v a r y i n g the amount of s o l i d s 27 7. E f f e c t of volume of s o l i d s , and argon flow on the re d u c t i o n k i n e t i c s of Westport i l m e n i t e 28 8. E f f e c t of c h a r / i l m . on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e at constant volume of s o l i d s . . . . . . 29 9. E f f e c t of r o t a t i o n a l speed on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e at 250 ml/min argon 30 10. E f f e c t of r o t a t i o n a l speed on the red u c t i o n k i n e t i c s of Westport i l m e n i t e at 500 ml/min argon 32 11. E f f e c t of temperature on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e 33 12. E f f e c t of temperature on the r e d u c t i o n k i n e t i c s of p r e - o x i d i z e d and F l o r i d a i l m e n i t e s , and Glenbrook ironsands 34 13. E f f e c t of temperature on the r e d u c t i o n behaviour of Westport i l m e n i t e w i t h CO 36 14. E x t e r n a l aspect of p a r t i c l e s of the d i f f e r e n t ores . . . 43 15. P o l i s h e d s e c t i o n s of p a r t i c l e s of the d i f f e r e n t ores . . . 44 16. E f f e c t of temperature and percent r e d u c t i o n on the topography of reduced Westport i l m e n i t e . . 45 17. E f f e c t of temperature and percent r e d u c t i o n on the mi c r o s t r u c t u r e of reduced Westport i l m e n i t e 46 18. Topography and m i c r o s t r u c t u r e of reduced p r e - o x i d i z e d Westport i l m e n i t e 48 19. Topography and m i c r o s t r u c t u r e of reduced F l o r i d a i l m e n i t e 49 20. Topography and m i c r o s t r u c t u r e of reduced Glenbrook ironsands 50 21. R a t i o of gas generation to gas input f o r some t y p i c a l experiments 53 22. Arrhenius p l o t s f o r re d u c t i o n of Westport i l m e n i t e and g a s i f i c a t i o n of carbon 61 23. CO2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 954°C 66 24. CO2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 965°C 67 v i 25. C0„ p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 998°C 68 26. CC>2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 1115°C 69 27. p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d ore at 949°C 71 28. CC>2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d ore at 1049°C 72 29. CC>2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e at 950°C 73 30. CO2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e at 1048°C . 74 31a. C0„ p a r t i a l pressure diagram f o r Glenbrook ironsands at 948°C 75 31b. I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook ironsands at 948°C 76 32a. C0„ p a r t i a l pressure diagram f o r Glenbrook ironsands at 1057°C 77 32b. I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook ironsands at 1057°C 78 33. C a l c u l a t e d and experimental r e a c t i o n r a t e s 81 v i i ACKNOWLEDGEMENT S I am t h a n k f u l t o my s u p e r v i s o r P r o f . J . K . B r i m a c o m b e f o r h i s g u i d a n c e a n d e n c o u r a g e m e n t t h r o u g h o u t t h e c o u r s e o f t h i s w o r k . I am a s w e l l g r a t e f u l t o D r . D e n i s A b l i t z e r f o r h i s v a l u a b l e h e l p i n p e r f o r m i n g t h e e x p e r i m e n t s , a n d d u r i n g t h e c o m p u t e r c a l c u l a t i o n s . P r o f . R . G . B u t t e r s d e s e r v e s s p e c i a l m e n t i o n f o r h i s a s s i s t a n c e i n d e s i g n i n g a n d b u i l d i n g t h e e x p e r i m e n t a l a p p a r a t u s , a s d o e s M r . P a t Wenman f o r h i s i n t e r e s t d u r i n g t h e l a t e r s t a g e s o f t h i s w o r k . T h e s u p p o r t a n d h e l p o f my w i f e , V i v i a n , i s g r a t e f u l l y a c k n o w l e d g e d . I am i n d e b t e d t o t h e M e t a l l u r g i c a l E n g i n e e r i n g s t a f f , a n d my f e l l o w g r a d u a t e s t u d e n t s f o r t h e i r c o o p e r a t i o n a n d d i s c u s s i o n s . F i n a n c i a l s u p p o r t f r o m t h e V e n e z u e l a n G o v e r n m e n t t h r o u g h F O N I N V E S i s a l s o a p p r e c i a t e d . v i i i 1. INTRODUCTION 1.1 I n t r o d u c t i o n Ilmenite and r u t i l e , nominally ferrous metatitanate ( F e T i 0 3 ) and t i t a n i u m d i o x i d e ( T i 0 2 ) r e s p e c t i v e l y , are the p r i n c i p a l ores of t i t a n i u m . Because of i t s higher p u r i t y , r u t i l e i s p r e f e r r e d as a raw m a t e r i a l i n the production of both TiO£ pigment and T i metal. However, i t i s r e l a t i v e l y scarce when compared to i l m e n i t e , and not very w e l l d i s t r i -buted on a worldwide b a s i s ; the only major deposits known to e x i s t are i n A u s t r a l i a and S i e r r a Leone. This s i t u a t i o n has promoted extensive research f o r the use of i l m e n i t e as an a l t e r n a t e route to o b t a i n i n g Ti02 pigment and T i metal. R u t i l e ores are u s u a l l y contaminated by many d i f f e r e n t oxides which have to be removed to the lowest p o s s i b l e l e v e l i f white pigment and good q u a l i t y metal are to be produced. Fluid-bed c h l o r i n a t i o n (1) i n the presence of carbon has become the main p u r i f i c a t i o n process of r u t i l e ; here, c h l o r i d e s of a l l elements are formed and subjected to s e v e r a l p h y s i c a l and chemical operations i n order to o b t a i n a h i g h l y pure T i C l ^ which i s then decomposed to H O 2 or reduced to metal. This process i s al s o used i n t r e a t i n g i l m e n i t e , but i t s higher i r o n content poses opera-t i o n a l problems because of the d i f f i c u l t y of FeCl3 s e p a r a t i o n ( 2 ) , and economic and p o l l u t i o n problems due to the d i s p o s a l of f e r r i c c h l o r i d e (3); these l a s t two problems can be a l l e v i a t e d by decomposing the FeCl3 to Fe203, and r e c y c l i n g C I 2 • However, the s u i t a b i l i t y of i l m e n i t e can be improved cl o s e to that of r u t i l e by an upgrading (or p r e - p u r i f i c a t i o n ) 1 2 step. In t h i s r espect, a la r g e number of so c a l l e d b e n e f i c i a t i o n proces-ses have been proposed on which K o t h a r i ( 1 ) , and Henn and Barclay (4) have conducted extensive l i t e r a t u r e reviews. Some of these processes i n c l u d e ( 3 ) : s e l e c t i v e c h l o r i n a t i o n of a l l but the t i t a n i u m oxide; p r e - o x i d a t i o n and red u c t i o n at l e s s than s l a g g i n g temperatures of the f e r r i c oxide e i t h e r to metal or to the fer r o u s s t a t e followed by l e a c h i n g w i t h aerated water or h y d r o c h l o r i c a c i d r e s p e c t i v e l y ; smelting i n an e l e c t r i c arc furnace to o b t a i n p i g i r o n and a Ti02 r i c h s l a g i s a l s o p r a c t i c e d . The three l a t t e r processes are i n commercial operation (5,6,7). In the case of re d u c t i o n to metal, a carbonaceous m a t e r i a l i s mixed w i t h the p r e - o x i d i z e d ore, and allowed to react i n a ro t a r y k i l n at about 1150°C. Some t i t a n i u m bearing ores have a low, non-recoverable T102 content; however, they may be a v a l u a b l e source of i r o n . This i s the case of the New Zealand ironsands (or titanomagnetite) which are reduced to metal w i t h sub-bituminous c o a l i n a r o t a r y k i l n , and melted and r e f i n e d to s t e e l i n an e l e c t r i c arc furnace ( 8). The present study deals w i t h the s o l i d - s t a t e r e d u c t i o n of i l m e n i t e and titanomagnetite ores using c o a l as a reductant. 3 1.2 L i t e r a t u r e review 1.2.1 Thermodynamics A comprehensive study on the thermodynamics of i l m e n i t e r e d u c t i o n has been reported by Shomate et a l . (9). Reduction by hydrogen, and by carbon monoxide occurs according to the f o l l o w i n g r e a c t i o n s F e T i 0 3 + H 2 = Fe + T i 0 2 + H 20(g) [1] F e T i 0 3 + CO = Fe + T i 0 2 + C0 2 [2] Carbon i s another p o s s i b l e reducing agent f o r i l m e n i t e . I t i s ge n e r a l l y agreed (10) that when a mixture of a metal oxide and carbon i s heated, the r e a c t i o n s of oxide r e d u c t i o n and carbon g a s i f i c a t i o n take place v i a the intermediate gaseous products CO and C0 2. In the case of i l m e n i t e the r e a c t i o n s are represented by Equations [2] and [3] C + C0 2 = 2 CO [3] The standard enthalpy and f r e e energy f o r Equations [1] and [2] are presented as a f u n c t i o n of temperature i n Tables I and I I r e s p e c t i v e l y . For Equation [ 3 ] , the f o l l o w i n g r e l a t i o n s h i p holds i n the temperature range 298 - 2500°K (11) A G " = 40800 - 41.7 T In t h e i r study, Shomate et a l . (9) concluded that n e i t h e r hydrogen nor carbon monoxide are p r a c t i c a l reducing agents f o r i l m e n i t e because the maximum t h e o r e t i c a l u t i l i z a t i o n i s only 20, and 8.5 percent respec-t i v e l y at temperatures j u s t below the melti n g point of i l m e n i t e (1640°K). Carbon however, i s an e f f e c t i v e reducing agent due to i t s c a p a c i t y to regenerate carbon monoxide (Equation [3]) from the carbon d i o x i d e gener-ated by r e d u c t i o n (Equation [ 2 ] ) . The thermodynamic data presented f o r the r e d u c t i o n of i l m e n i t e w i t h CO, and f o r the g a s i f i c a t i o n of carbon by C0 2 can be combined to o b t a i n T A B L E I THERMODYNAMIC V A L U E S F O R HYDROGEN R E D U C T I O N OF I L M E N I T E H 2 1000 10910 6800 0.0327 1100 11090 6390 0.0537 1200 11230 5970 0.0818 1300 10870 5540 0.117 1400 10490 5150 0.157 1500 10090 4780 0.201 1600 9680 4440 0.247 T A B L E I I THERMODYNAMIC V A L U E S F O R CARBON MONOXIDE R E D U C T I O N OF I L M E N I T E T ( ° K ) A H ° ( - ^ - ) A G ° ( - ^ - ) K= C ° 2 CO 1000 2780 6030 0.0481 1100 3230 6330 0.0552 1200 3640 6590 0.0631 1300 3550 6840 0.0708 1400 3440 7100 0.0778 1500 3310 7360 0.0845 1600 3160 7640 0.0902 5 an e q u i l i b r i u m diagram f o r the ilmenite-carbon system. This diagram i s presented i n Figure 1. In the r e g i o n at the l e f t of the carbon g a s i f i -c a t i o n l i n e carbon monoxide w i l l d i s p r o p o r t i o n a t e i n t o carbon and carbon d i o x i d e , whereas i n the area at the r i g h t carbon w i l l be g a s i f i e d . Analogously, r e d u c t i o n of i l m e n i t e w i l l take place only i n the zone above the i l m e n i t e r e d u c t i o n l i n e . Thus, i t can be seen that the minimum temperature f o r the r e a c t i o n between i l m e n i t e and carbon to occur i s given by the i n t e r c e p t of the two e q u i l i b r i u m l i n e s which at P n + P„„ = 1 atm. i s 1124°K (851°C). During r e d u c t i o n , the ilmenite-carbon system l i e s between the carbon and the i l m e n i t e l i n e s . At a given temperature, the CO (as w e l l as the C O 2 ) p a r t i a l pressure w i l l be c l o s e s t to the e q u i l i -brium value of the r e a c t i o n having the f a s t e r r a t e . 1.2.2 Reaction sequences during i l m e n i t e r e d u c t i o n The phase changes o c c u r r i n g i n i l m e n i t e during r e d u c t i o n have been st u d i e d by s e v e r a l authors. Walsh et a l . (12) used X-ray d i f f r a c t i o n to i n v e s t i g a t e the r e d u c t i o n behaviour of New Jersey, F l o r i d a , and A l l a r d Lake (Quebec) i l m e n i t e s w i t h hydrogen, and coke. They found that at temperatures above 1000°C re d u c t i o n of a l l three i l m e n i t e s r e s u l t e d i n the formation of m e t a l l i c i r o n , and a t i t a n i f e r o u s phase of the type 2+ 2+ 2+ 3+ RO«2Ti02 - R^Og-TiOg (R may be Mg , Fe , and/or T i ; R' may be A£ , 3+ 3+ Fe and/or T i ). In the v i c i n i t y of 1000°C, A l l a r d Lake ore e x h i b i t e d s i m i l a r behaviour; however, i n the case of the F l o r i d a and New Jersey i l m e n i t e s r u t i l e was produced as the t i t a n i f e r o u s phase. Hussein et a l . (13) compared the r e d u c t i o n mechanism of s e v e r a l s y n t h e t i c a l l y prepared i r o n t i t a n a t e s w i t h that of n a t u r a l i l m e n i t e s from Egypt and Norway. Reduction was performed w i t h hydrogen at 600°C, and the phases e x i s t i n g at d i f f e r e n t r e d u c t i o n l e v e l s were determined by X-ray 6 Figure 1. Equilibrium diagram for the ilmenite-carbon system d i f f r a c t i o n . They proposed the f o l l o w i n g mechanism: 2 F e 2 T i 0 5 + 2 H 2 = 2 F e 2 T i 0 4 + 2 H 20 [4] 2 Fe 2TiOt t + 2 H 2 = 2 F e T i 0 3 + 2 Fe + 2 H 20 [5] 2 F e T i 0 3 + H 2 = F e T i 2 0 5 + Fe + H 20 [6] F e T i 2 0 5 + H 2 = F e T i 2 0 [ + + H 20 [7] Although w r i t t e n separately some overlapping between the r e a c t i o n s a c t u a l l y occurred. The f e r r i c ions e x i s t i n g i n F e 2 T i 0 5 are due to p a r t i a l weathering of the i l m e n i t e ores. The f i n a l r e d u c t i o n product F e T i 2 0 i + i s very l i k e l y to conta i n a sub-oxide of t i t a n i u m . However, i t must be r e a l i z e d that the mechanism proposed i n t h i s work i s s p e c i f i c to the experimental c o n d i t i o n s s i n c e , as reported by Walsh et a l . (12), the products formed depend upon temperature, reducing agent, and type of i l m e n i t e . Grey, Jones, and Reid (14-17) have reported a very comprehensive work on r e a c t i o n sequences i n the r e d u c t i o n of i l m e n i t e . Reduction w i t h carbon monoxide was studi e d between 900°C and 1200°C i n a packed bed r e a c t o r , and the r e a c t i o n sequences o c c u r r i n g i n a commercial r o t a r y k i l n were i n v e s t i g a t e d . X-ray d i f f r a c t i o n s t u d i e s i n d i c a t e d that the same r e a c t i o n path was followed i n the l a b o r a t o r y and the commercial op e r a t i o n . Thus, two stages of r e d u c t i o n were defined: 1. Reduction of f e r r i c to ferrous i r o n . The f e r r i c ions may be present i n the form of p s e u d o r u t i l e ( F e 2 T i 3 0 g ) , pseudobrookite (Fe2TiC>5) , or hematite ( F e 2 0 3 ) ; however, t h i s f i r s t stage of r e d u c t i o n leads to the re-formation of i l m e n i t e i n a l l three cases as f o l l o w s : F e 2 T i 3 0 9 + CO = 2 F e T i 0 3 + T i 0 2 + C0 2 [8] F e 2 T i 0 5 + T i 0 2 + CO = 2 F e T i 0 3 + C0 2 [9] F e 2 0 3 + 2 T i 0 2 + CO = 2 F e T i 0 3 + C0 2 [10] 8 2. Reduction of ferrous i r o n to metal, and r u t i l e to reduced r u t i l e s . This stage i s temperature dependent: a) Below 1150°C, r e a c t i o n [2] w i l l take place as w e l l as [11]. n T i 0 2 + CO = T i 0„ , + C0 9 [11] n 2 n - l z-b) Above 1150°C the i l m e n i t e i s f i r s t reduced to m e t a l l i c i r o n and ferr o u s pseudobrookite ( F e T i 2 0 5 ) . On f u r t h e r r e d u c t i o n m e t a l l i c i r o n p r e c i p i t a t e s from the pseudobrookite to give an M 3 O 5 s o l i d s o l u t i o n which i s p r o g r e s s i v e l y enriched i n T i 3 0 5 , and which incorporates any Mn or Mg present as i m p u r i t i e s . Grey et a l . a l s o constructed a 1200°C is o t h e r m a l s e c t i o n of the Fe-Ti-0 system from which they expected i r o n and reduced r u t i l e phases to be present i n the re d u c t i o n product. However, they found the reduc-t i o n products always to c o n s i s t of a mixture of i r o n , reduced r u t i l e s , and M3O5 s o l i d s o l u t i o n . The presence of the M3O5 phase was explained i n terms of an Fe-Mn-Ti-0 phase diagram which showed the s t a b i l i z i n g e f f e c t that 1-2 percent Mn has on the M 3 O 5 s o l i d s o l u t i o n . 1.2.3 K i n e t i c s of i l m e n i t e r e d u c t i o n Several i n v e s t i g a t i o n s d e a l i n g w i t h the r e d u c t i o n of i l m e n i t e using e i t h e r gaseous or s o l i d reductants have been published i n the l i t e r a t u r e (18-24). However, only a few of the stu d i e s provide u s e f u l k i n e t i c i n f o r m a t i o n such as r a t e c o n t r o l l i n g steps, r a t e equations, and a c t i v a t i o n energy. In a k i n e t i c study, Jones (18), using a packed bed re a c t o r and CO as reductant, followed the r e a c t i o n by continuously a n a l -y s i n g the C0 2 i n the e x i t gases. He concluded that f o r the two Aus-t r a l i a n ores used the r a t e was c o n t r o l l e d by d i f f u s i o n of CO i n the e x t e r n a l gas f i l m , but gave no a c t i v a t i o n energy value. Poggi and co-workers (19) used a thermobalance to study the gaseous r e d u c t i o n of 9 dense s y n t h e t i c and n a t u r a l A l l a r d Lake i l m e n i t e s . In both cases they determined that chemical r e a c t i o n at the phase boundary was l i m i t i n g the r e d u c t i o n r a t e , the a c t i v a t i o n energies being 14.1 and 15 Kcal/mole f o r s y n t h e t i c and n a t u r a l i l m e n i t e s r e s p e c t i v e l y . E l Guindy and Davenport (20) reacted s y n t h e t i c i l m e n i t e and graphite i n a thermobalance. They found that d i f f u s i o n of CO through the Fe + T i 0 2 product l a y e r was the r a t e c o n t r o l l i n g step, and c a l c u l a t e d an a c t i v a t i o n energy of 64 K c a l / mole. However, i t must be s a i d that t h i s value does not correspond to the usual a c t i v a t i o n energy of about 10 Kcal/mole f o r gas d i f f u s i o n through pores (19). P r e - o x i d a t i o n of i l m e n i t e has been reported to enhance the k i n e t i c s of i l m e n i t e r e d u c t i o n (21-23). However, Jones (18) found an adverse e f f e c t of the treatment on an A u s t r a l i a n ore. To e x p l a i n h i s r e s u l t s , Jones proposed that p r e - o x i d a t i o n converts the i n i t i a l s i n g l e c r y s t a l s t r u c t u r e of the i l m e n i t e g r a i n s i n t o a p o l y c r y s t a l l i n e array so t h a t , upon r e d u c t i o n , i r o n p r e c i p i t a t e s at the sub-grain boundaries which then become regions of enhanced p o r o s i t y . Consequently, n a t u r a l ores having a h i g h l y porous s t r u c t u r e would not b e n e f i t from p r e - o x i d a t i o n . Rao (25), and Abraham and Ghosh (26) st u d i e d the k i n e t i c s of reduc-t i o n of f e r r i c oxide p e l l e t s which contained g r a p h i t e . They found that the r a t e of r e a c t i o n was governed by the r a t e of carbon g a s i f i c a t i o n , and c a l c u l a t e d an a c t i v a t i o n energy of 72 Kcal/mole. They a l s o pointed out that the r e a c t i o n could be c a t a l y s e d ; Rao used l i t h i u m s a l t s as c a t a l y s t s w h i l e Abraham and Ghosh proposed that the i r o n formed during r e d u c t i o n could act as a c a t a l y s t . In studying the r e d u c t i o n of s t a n n i c oxide w i t h carbon, P a d i l l a and Sohn (27) a l s o found the r a t e to be c o n t r o l l e d by the carbon g a s i f i c a t i o n step, and were able to prove a c a t a l y t i c 10 a c t i o n of the t i n formed during r e d u c t i o n on the carbon - C 0 2 r e a c t i o n . 1.2.4 K i n e t i c s of carbon g a s i f i c a t i o n From the previous s e c t i o n , the importance of the carbon-carbon d i o x i d e r e a c t i o n i n the o v e r a l l process i s apparent. Since a l a r g e number of works have been published i n t h i s area only those r e l e v a n t to t h i s study w i l l be mentioned here; extensive reviews have been reported elsewhere (28-29). As s t a t e d by Skinner and Smoot (30), some i n v e s t i g a t o r s have expressed the r a t e of the C -CO2 r e a c t i o n i n the form: r = k P^ 0 2 [12] where k i s the r a t e constant; they a l s o reported that f o r s e v e r a l types of char, and temperature ranges n was equal to u n i t y , so the r a t e was then l i n e a r l y dependent on the CO2 p a r t i a l pressure. Recently, J a l a n and Rao (31) a l s o found a l i n e a r r e l a t i o n s h i p between the r a t e of reac-t i o n and the CO2 p a r t i a l pressure when studying the r a t e of ca t a l y s e d graphite g a s i f i c a t i o n by C O 2 ; they e s t a b l i s h e d that such l i n e a r r e l a t i o n i s only v a l i d under c a t a l y t i c c o n d i t i o n s . The report by Skinner and Smoot can be r e l a t e d to that of Rao and J a l a n i f i t i s considered that ash i n the chars ( i n the former case) contains compounds that might c a t a l y s e the Boudouard r e a c t i o n . Also given i n the p u b l i c a t i o n by Skinner and Smoot (30) i s a r a t e equation s i m i l a r to that i n Equation [12], but which incorporates the weight of char l e f t unreacted (C*) as i n Equation [13], This equation i s s i m i l a r to that used by von Bogdandy and E n g e l l (32) r = kC* P [13] C 0 2 r = k - n eq C 0 2 ) [14] where 1 1 k e f f = M c H c e x P ( _ E / R T ) [ 1 5 ] Mc i s t h e a m o u n t o f c a r b o n p e r u n i t v o l u m e o f c h a r g e , a n d H c i s a r e a c t i v i t y f a c t o r f o r t h e c h a r . M a n y a c t i v a t i o n e n e r g y v a l u e s f o r t h e C - C O 2 r e a c t i o n h a v e b e e n p u b l i s h e d . R a o a n d J a l a n ( 3 3 ) , w h e n w o r k i n g w i t h g r a p h i t e , f o u n d t h e a c t i v a t i o n e n e r g y t o b e 7 9 . 6 K c a l / m o l e w h i c h a g r e e s w e l l w i t h t h e 86 K c a l / m o l e r e p o r t e d b y v o n B o g d a n d y a n d E n g e l l ( 3 2 ) . H o w e v e r , D u t t a e t a l . ( 3 4 ) d e t e r m i n e d a v a l u e o f 59 K c a l / m o l e f o r t h e g a s i f i c a t i o n o f d i f -f e r e n t c h a r s . T h i s f i g u r e i s c l o s e r t o t h e 4 8 K c a l / m o l e r e p o r t e d b y J a l a n a n d R a o ( 3 1 ) f o r t h e c a t a l y s e d g a s i f i c a t i o n r e a c t i o n b e t w e e n g r a p h i t e a n d C O 2 . I t m i g h t t h e n b e i n f e r r e d t h a t a s h i n t h e c h a r s u s e d b y D u t t a e t a l . ( 3 4 ) c a t a l y s e d t h e r e a c t i o n . R e l a t i v e l y l o w a c t i v a t i o n e n e r g i e s h a v e b e e n r e p o r t e d b y o t h e r a u t h o r s w h e n g a s i f y i n g c h a r s ( 3 0 ) , a n d a r e v i e w o n c a t a l y s i s o f c a r b o n g a s i f i c a t i o n h a s b e e n p u b l i s h e d b y W a l k e r e t a l . ( 3 5 ) . 12 1.3 Objectives U n t i l present, most stu d i e s on s o l i d s t a t e r e d u c t i o n of i l m e n i t e have been performed w i t h the aim of o b t a i n i n g fundamental i n f o r m a t i o n on the thermodynamics, and k i n e t i c s and mechanism of the process. Although they provide v a l u a b l e data, the nature of the experiments (most of them performed i n thermobalances using small q u a n t i t i e s of r a t h e r pure s y n t h e t i c m a t e r i a l s , and, i n the cases of carbon r e d u c t i o n , poor degree of mixing between the reagents) l i m i t the a p p l i c a b i l i t y of k i n e t i c r e s u l t s to the design and o p t i m i z a t i o n of i n d u s t r i a l operations. Due to the development of i l m e n i t e b e n e f i c i a t i o n processes the procurement of data s u i t a b l e f o r design and o p t i m i z a t i o n would be u s e f u l . The main o b j e c t i v e of t h i s work then was to determine e m p i r i c a l r e d u c i b i l i t y parameters f o r d i f f e r e n t ores, and r e a c t i v i t y values of the reducing agent. In a d d i t i o n , and c o n s i d e r i n g the l i m i t e d time a v a i l -a b l e , an idea of the r e d u c t i o n mechanism was a l s o to be obtained. To achieve these aims, a l a b o r a t o r y s c a l e r o t a r y r e a c t o r was b u i l t , and the i n f l u e n c e of r o t a t i o n speed, char to ore r a t i o , temperature, type of ore, and p r e - o x i d a t i o n of the ore on the r e d u c t i o n k i n e t i c s were then s t u d i e d . 2. APPARATUS AND EXPERIMENTAL PROCEDURE 2.1 Apparatus A schematic drawing of the apparatus used during the r e d u c t i o n experiments i s presented i n Figure 2. E s s e n t i a l l y , i t c o n s i s t e d of the f o l l o w i n g p a r t s : a) Rotary r e a c t o r A l a b o r a t o r y - s c a l e , induction-heated r o t a r y furnace was used as the r e a c t o r (a diagram of which i s shown i n Figure 3). I t has a 316 s t a i n -l e s s - s t e e l r e a c t i o n chamber (66.7 mm OD, 63.5 ID, and 305 mm length) which a l s o served as the susceptor; the r e a c t o r was contained i n a t r a n s -lucent s i l i c a tube (88.9 mm OD, 82.6 ID, and 597 mm l e n g t h ) . The s t a i n -l e s s - s t e e l r e a c t o r was thermally i n s u l a t e d by p l a c i n g m u l l i t e wool between i t and the s i l i c a tube as w e l l as at both ends. The r e s u l t i n g assembly was t i g h t enough to prevent s l i d i n g of any of the tubes during r o t a t i o n . Both ends of the s i l i c a tube were sealed by means of gasketed brass d i s c s w i t h centerholes f o r gas i n f l o w and outflow. A l s o , two 304 s t a i n l e s s -s t e e l sheathed, chromel-alumel thermocouples were passed through the holes f o r measurement and c o n t r o l of bed temperature i n the r e a c t o r . The two brass d i s c s rested on four s h a f t s one of which was r o t a t e d by a d.c. motor. Type 316 s t a i n l e s s - s t e e l tubing (8.0 mm ID, 9.6 mm OD) was used i n making gas i n f l o w and outflow pipes. The e x i t end of the gas i n f l o w pipe was bent to an angle of almost 90° so that i t could touch the inner w a l l of the r e a c t i o n chamber; t h i s design was necessary i n order to scrape the 13 Gas out -1=17 in Gas in Figure 2. Schematic diagram of the equipment used Legend a b c d e f Argon source Inl e t gas flowmeter Furnace Glasswool carbon trap D r i e r i t e water trap Asc a r i t e for CO^ absorption g By-pass h Gas chomatograph i E x i t gas flowmeter j Exchangeable c a p i l l a r y Legend a Control thermocouple b Bed thermocouple c Brass end-plates d Translucent s i l i c a tube e Removable i n s u l a t i o n f Fixed i n s u l a t i o n g Reactor h Aluminum stand i Shafts j Chain drive k d.c. motor 1 Bolts h""1 I 11 m S l i d i n g rubber hose seals j j I I 6 S i d e Figure 3. Side, plan, and front view of the furnace Front 16 w a l l and prevent the build-up of a c c r e t i o n s . In a d d i t i o n , the length of the pipe allowed scraping along the whole of the r e a c t o r . b) Gas flowmeters The gas flowmeters were of the c a p i l l a r y type w i t h an exchangeable c a p i l l a r y which allowed a wide range of f l o w r a t e s to be measured. They were c a l i b r a t e d f o r argon, carbon monoxide, and mixtures of these gases w i t h an accuracy of 1%. The temperature of the i n f l o w i n g and o u t f l o w i n g gases was measured c l o s e to the flowmeters. c) Gas p u r i f i c a t i o n , and a n a l y s i s system The gases l e a v i n g the r e a c t o r were f i r s t passed through a glasswool trap to f i l t e r out entrained char p a r t i c l e s , then through d r i e r i t e to remove moisture, and a s c a r i t e to absorb carbon d i o x i d e . F i n a l l y , the gases were sampled w i t h a s y r i n g e , and analyzed f o r carbon monoxide i n a gas chromatograph. This sampling technique was l a t e r d i s c o n t i n u e d by b r i n g i n g the chromatograph on l i n e w i t h the gas t r a i n . 17 2.2 M a t e r i a l s used The ores used i n the present study were i l m e n i t e s from Westport (New Zealand), and F l o r i d a (USA); and titanomagnetite from Glenbrook (New Zealand). Some p r e - o x i d i z e d Westport i l m e n i t e was a l s o s t u d i e d . Chemical analyses provided by the s u p p l i e r s are presented i n Table I l i a . In a d d i t i o n , bulk density and p a r t i c l e s i z e d i s t r i b u t i o n were determined, and are reported i n Table I l l b . X-ray diffractograms were obtained f o r the ores as w e l l as the reduced products; f i l t e r e d FeKa r a d i a t i o n was used at 40 kV and 26 mA, and the scanning r a t e was 1° (26) per minute. A scanning e l e c t r o n microscope equipped w i t h an X-ray energy spectrometer was employed to observe both raw and p o l i s h e d (down to 1 um diamond paste) samples of the ores and products; the a c c e l e r a t i n g v o l t a g e was 20 kV. The reducing agent was l i g n i t e c o a l from B i e n f a i t , Saskatchewan. I t s chemical a n a l y s i s as w e l l as that of the ash, as given by the s u p p l i e r , are presented i n Tables IVa and IVb. Carbon monoxide standards c o n t a i n i n g 1.03%; 9.99%; 20.1%; 50.3%; and 99.5% CO w i t h the balance argon were used to c a l i b r a t e the gas chromatograph. Argon, which was used as c a r r i e r gas and f l u s h i n g agent, was employed without f u r t h e r p u r i f i c a t i o n . The p a r t i c l e s i z e range of the a s c a r i t e , and d r i e r i t e employed f o r CO2 and H2O absorption r e s p e c t i v e l y was from -2.38 mm to 0.841 mm. 18 TABLE I l i a CHEMICAL ANALYSIS OF THE ORES (DRY BASIS) Westport Glenbrook F l o r i d a T i 0 2 45.4 7.72 66.6 FeO 37.7 28.4 4.0 F e 2 0 3 5.18 49.4 25.5 T o t a l Fe 32.8 56.6 21.0 A 1 2 0 3 2.50 3.26 1.08 CaO 1.04 1.05 0.04 C r 2 0 3 0.04 0.04 0.07 MgO 0.48 3.43 0.23 MnO 1.94 0.53 0.92 Nb 205 0.04 0.006 0.07 P 2 O 5 0.82 2.18 0.21 S i 0 2 3.65 3.10 0.39 V 2 O 5 <0.04 0.49 0.10 Z r 0 2 <0.02 <0.02 0.22 H 0.06 0.07 0.28 S 0.0098 0.0172 0.02 TABLE 11 l b BULK DENSITY, AND PARTICLE SIZE DISTRIBUTION OF THE ORES Bulk d e n s i t y Westport Oxidized Westport Glenbrook F l o r i d a (g/cm 3) 2.32 ± 0.04 2.36 ± 0.04 2.62 ± 0.04 2.38 ± 0.04 F r a c t i o n s i z e (ym) + 149 4.6 5.3 13.7 48.3 -149 + 105 71.2 76.6 57.5 42.8 -105 + 88 20.5 11.7 17.9 6.0 - 88 + 74 2.9 2.2 5.8 0.5 - 7 4 + 6 3 0.8 1.6 1.7 1.7 - 63 0.0 2.6 3.3 0.7 TABLE IVa CHEMICAL ANALYSIS OF THE LIGNITE COAL Proximate a n a l y s i s Moisture 32% V o l a t i l e matter 28% Fixed carbon 33% Ash 7% Ultimate a n a l y s i s Sulphur 0.5% Ash 7% TABLE IVb CHEMICAL ANALYSIS OF THE ASH Compound Content (wt. %) S i 0 2 31.88 A 1 2 0 3 15.47 F e 2 0 3 3.56 T i 0 2 1.05 P 2 O 5 1.81 CaO 18.56 MgO 4.45 Na 20 8.14 K 20 0.18 S0 3 10.13 Mn0 2 0.57 BaO 2.31 CI 0.2 LOI 1.53 20 2.3 Experimental procedure 2.3.1 Reduction experiments The ores to be reduced were dried i n an oven at 120°C, and subse-quently stored i n a dessicator. Predetermined amounts of ore and coal char were weighed to ±0.1g, mixed, and charged into the s t a i n l e s s - s t e e l tube which was then weighed to ±0.1 g. Afte r placing the reactor i n the s i l i c a c y l i n d e r , the brass end-plates were t i g h t l y a f f i x e d , and the sys-tem flushed with argon. At t h i s stage, a check for leaks was made by comparing the argon inflow and outflow. When no oxygen could be detected by chromatography i n the outflowing gas, the k i l n was preheated to about 500°C, and allowed to cool down to 250°C; t h i s cycle was then repeated. Before heating to the desired temperature, the argon input, which acted as a c a r r i e r gas, was set at the chosen l e v e l . Usually, the heating-up period was 15 minutes, and reduction at the set temperature (± 7°C) was allowed to proceed for 2 hours. Gas inflow and outflow, gas composition, and k i l n temperature, as w e l l as that of the gases, were i n t e r m i t t e n t l y recorded during the whole period following the preheating cycles u n t i l 10 minutes a f t e r c u t t i n g the power supply. The wa l l of the reactor was scraped every 20 minutes to remove any accretions. The r o t a t i o n of the reactor was started, and set at the desired speed before preheating. It remained constant for the duration of the d i f f e r e n t experiments except for those at a nominal speed of 30 rpm at which maximums of 40 rpm and minimums of 25 rpm were observed. This problem was probably caused by v a r i a t i o n s i n the o v e r a l l f r i c t i o n of the system together with the weakness of the motor. The reaction was stopped by cuttin g the power supply from the 21 i n d u c t i o n u n i t . Two a n d a h a l f h o u r s a f t e r s h u t - d o w n t h e r e a c t o r r e a c h e d r o o m t e m p e r a t u r e . T h e f l o w o f a r g o n w a s a g a i n c h e c k e d a t t h e i n l e t a n d o u t l e t , a n d t h e n s h u t o f f . T h e g l a s s w o o l a n d d r i e r i t e t r a p s , a n d t h e s t e e l t u b e w i t h t h e p r o d u c t w e r e w e i g h e d . T h e a s c a r i t e t u b e s w e r e c h a n g e d e v e r y 2 t o 1 0 m i n u t e s a n d w e i g h e d t o ± 0 . 1 mg d u r i n g t h e r u n . Some r e d u c t i o n e x p e r i m e n t s w e r e p e r f o r m e d u s i n g 8 0 0 m l p e r m i n u t e ( m e a s u r e d a t a m b i e n t c o n d i t i o n s ) o f c a r b o n m o n o x i d e f o l l o w i n g t h e g e n e r a l p r o c e d u r e a l r e a d y d e s c r i b e d . T h e o n l y c h a n g e c o n s i s t e d i n r e p l a c i n g a r g o n b y t h e r e d u c i n g g a s a f t e r t h e s e c o n d p r e h e a t i n g c y c l e . 2.3.2 C h a r p r e p a r a t i o n L i g n i t e c o a l w a s c r u s h e d a n d s c r e e n e d t o - 6 0 0 ym + 1 4 9 y m . B a t c h e s o f a p p r o x i m a t e l y 1 0 0 g ± 0 . 1 g w e r e c h a r r e d i n a t u b e f u r n a c e u n d e r a r g o n a t m o s p h e r e . A t a h e a t i n g r a t e o f 6 ° C p e r m i n u t e , t h e t e m -p e r a t u r e w a s i n c r e a s e d u p t o 9 8 0 ° C ± 5 ° C , a n d h e l d a t t h i s p o i n t f o r 2 h o u r s . T h e c h a r g e w a s a l l o w e d t o c o o l t o r o o m t e m p e r a t u r e i n i n e r t a t m o s p h e r e , a n d w a s t h e n w e i g h e d , a n d s c r e e n e d t o r e m o v e - 1 4 9 ym p a r t i c l e s f o r m e d d u r i n g c h a r r i n g . T h e p r o d u c t w a s s t o r e d i n a d e s s i -c a t o r . 2.3.3 P r e - o x i d a t i o n o f i l m e n i t e B a t c h e s o f d r i e d W e s t p o r t , New Z e a l a n d , i l m e n i t e ( 4 0 0 g ) w e r e o x i d i z e d i n a f l u i d i z e d b e d u s i n g a i r a t 2.7 & ± 0 . 0 5 & p e r m i n u t e ( S T P ) , a n d a b e d t e m p e r a t u r e o f 8 0 0 ° C ± 1 0 ° C f o r 2 h o u r s . T h e p r o d u c t w a s w e i g h e d t o ± 0 . 1 g t o d e t e r m i n e t h e p e r c e n t o x i d a t i o n a c h i e v e d . A n a l -y s i s o f p a r t i c l e s i z e d i s t r i b u t i o n w a s p e r f o r m e d t o o b s e r v e s i z e c h a n g e s d u e t o t h i s t r e a t m e n t , a n d i s p r e s e n t e d i n T a b l e I l l b . 3. RESULTS 3.1 Temperature p r o f i l e In order to test the s u i t a b i l i t y of the m u l l i t e wool as i n s u l a t i o n , a bed temperature p r o f i l e along the reactor was obtained, and i s presented i n Figure 4 at two d i f f e r e n t temperatures. As can be seen, both p r o f i l e s are acceptably f l a t . I t should be noted that these r e s u l t s depended not only on the q u a l i t y of the i n s u l a t i o n but on the induction c o i l configura-t i o n as w e l l . Also shown i n Figure 4 i s the normal p o s i t i o n of the thermocouple used for temperature measurement; i t can be observed that the thermocouple r e g i s t e r s the bed mean temperature. 3.2 Reduction experiments Figure 5 shows the measured values of percentage CO i n the e x i t gas, rate of CO2 evolution, gas outflow rate and temperature as a function of time f o r a t y p i c a l run. Data tables of the d i f f e r e n t experiments are presented i n Appendix IB. The percent reduction as a function of time was calculated from these data with the a i d of a computer, using the following equation: % Red(t) = ° W ^ w i t ) x 100 [16] where Pwl = Wo (% FeO ? 1 1 6 8 5 + % F e 2 0 3 ± ^ ?) [17] i s the maximum possible weight loss of the ore, Wo being the ore i n i t i a l weight. The t o t a l oxygen weight loss up to a time t (0wl(t)) i s obtained 22 Temperature (°C) c i-i ro H ro I (D i-S P3 rt C i-i S, o H- on i_i — ro —f o p 00 rt ro t-i ro p> o rt o I-i O CD Q O £2 25 w i t h an i n t e g r a t i o n sub-routine incorporated i n the program; t h i s sub-r o u t i n e i n t e g r a t e s a cubic i n t e r p o l a t i o n polynomial based on four p o i n t s (X(I - 1 ) , X ( I ) , X ( I + 1 ) , and X ( I + 2)) f o r each i n t e r v a l X(I) to X(I + 1) (36). The f r a c t i o n a l weight lo s s e s are c a l c u l a t e d by means of the f o l l o w i n g equation: O"1™ = Q XC0 2 2 ^ 0 + W C 0 2 t [ 1 8 ] where Q i s the outflow gas r a t e at 273°K, X i s the carbon monoxide content of the ou t f l o w i n g gas, and W i s the r a t e of absorption of CO2 carbon d i o x i d e by a s c a r i t e i n g/min. The weight l o s s of carbon from the char i s obtained i n the same way but the atomic weight of oxygen i s sub-s t i t u t e d by that of carbon i n Equation [18]. The t o t a l weight l o s s i s obtained by adding the t o t a l oxygen and carbon l o s s e s . Minor c o r r e c -t i o n s to account f o r carbon c a r r y over, water absorbed by the d r i e r i t e d uring and before the r e a c t i o n p e r i o d , and hydrogen released by the char were a l s o incorporated. The c a l c u l a t e d t o t a l weight l o s s e s compared w i t h those determined experimentally agreed i n a l l cases w i t h i n ±7%, but u s u a l l y the agreement was w i t h i n ±2%. 3.2.1 S e l e c t i o n of operating v a r i a b l e s The f i r s t set of experiments was performed to measure the e f f e c t of the weight r a t i o of char to i l m e n i t e , the argon f l o w r a t e , and the speed of r o t a t i o n of the re a c t o r on the re d u c t i o n k i n e t i c s . Experimental c o n d i t i o n s f o r these runs (1 through 14) are presented i n Appendix IA. I n i t i a l l y , the char to i l m e n i t e r a t i o (char/ilm.) was changed by simply i n c r e a s i n g the amount of char f o r a f i x e d q u a n t i t y of i l m e n i t e . Even at the lowest r a t i o considered, a carbon excess of 30% w i t h respect to the s t o i c h i o m e t r i c requirement was used. The c h a r / i l m . was gr a d u a l l y 26 changed from 0.12 to a maximum of 0.30, and i t s e f f e c t was s t u d i e d by. comparing p l o t s of percent r e d u c t i o n vs. time as shown i n Figure 6. As can be seen, a l a r g e increase i n r e d u c t i o n occurs i n going from 0.24 to 0.30; and i t was f e l t that a change i n the t o t a l amount of s o l i d s i n the r e a c t o r was a f f e c t i n g the r e d u c t i o n behaviour probably because of v a r i a -t i o n s i n bed depth. In order to v e r i f y t h i s another run was made at the same c h a r / i l m = 0.30, but reducing the i n i t i a l t o t a l volume of s o l i d s from 170 cm3 to 140 cm 3. The r e s u l t i s given i n F i g u r e 7 (runs 5 and 6); as can be r e a d i l y n o t i c e d a deeper bed causes a higher percent reduc-t i o n at a l l times as was suspected. Consequently, a set of experiments was performed at d i f f e r e n t char to i l m e n i t e r a t i o s , but w i t h a constant volume of s o l i d s . The r e d u c t i o n p l o t s from these runs are presented i n Figure 8; i t i s seen that the d i f f e r e n c e due to an increase i n c h a r / i l m . from 0.18 to 0.24 i s very s m a l l ; the 0.24 r a t i o was then considered to be adequate f o r the r e d u c t i o n of i l m e n i t e , and was chosen f o r the remain-i n g experiments. The e f f e c t of argon was considered at two f l o w r a t e s : 250 ml/min. and 500 ml/min. measured at ambient temperature and pressure. Figure 7 shows a decrease i n percent r e d u c t i o n when the c a r r i e r gas f l o w r a t e was i n c r e a s e d ; t h i s f a c t o r w i l l be discussed l a t e r . The r o t a t i o n a l speed of the r e a c t o r was increased from 10 to 18 to 30 rpm at the two argon r a t e s , and again p l o t s of percent r e d u c t i o n vs. time were obtained f o r each c o n d i t i o n . At 250 ml/min. of argon, an increase i n r o t a t i o n a l speed produced a higher percent r e d u c t i o n f o r a given time as shown i n Figure 9, the d i f f e r e n c e between 18 and 30 rpm being smaller than that between 10 and 18 rpm a f t e r about 60 min. At 500 ml/min there i s l i t t l e d i f f e r e n c e among the three experiments up to Figure 6. Effect of char/ilm. on the reduction kinetics of Westport ilmenite varying the amount of solids IOOI 28 C o o 13 T J cr Run Variable A 5 170 cm^ solids • 6 142 " " 9 250ml/min Ar O 12 500 " 60 Time (min) 120 Figure 7 . E f f e c t of volume of s o l i d s , and argon flow on the reduction k i n e t i c s of Westport ilmenite Figure 8. E f f e c t of char/ilm. on the reduction k i n e t i c s of Westport ilmenite at constant volume of s o l i d s 30 Figure 9. E f f e c t of r o t a t i o n a l speed on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e at 250 ml/min argon 31 60 min., but from then on an opposite trend can be n o t i c e d as compared to the runs at 250 ml/min, that i s , the higher the r o t a t i o n speed the lower the percent r e d u c t i o n f o r a constant time. These r e s u l t s are given i n Figure 10; here again the d i f f e r e n c e between 18 and 30 rpm i s smaller than between 10 and 18 rpm. This small change from 18 to 30 rpm, together w i t h the d i f f i c u l t i e s of operating at the higher value were the major f a c t o r s i n d e c i d i n g to work at 18 rpm i n the remaining runs. Also showi i n Figure 10 i s a repeat experiment to check r e p r o d u c i b i l i t y . As can be seen, r e s u l t s obtained under the same c o n d i t i o n s (runs 10 and 11) were p r a c t i c a l l y i d e n t i c a l ; from t h i s i t was concluded that the reproduc-i b i l i t y of the experiments was adequate. 3.2.2 E f f e c t of temperature, and ore type Westport i l m e n i t e was reduced at four temperatures using 250 ml/min of argon, and the p r e v i o u s l y determined c o n d i t i o n s of c h a r / i l m . and r o t a t i o n speed. The mean bed temperatures were 954°C, 965°C, 998°C, and 1115°C, and as can be seen i n Figure 11 an increase i n temperature pro-duces an expected increase i n the r e d u c t i o n r a t e of the ore. In studying the e f f e c t of type of mineral and p r e - o x i d a t i o n on the r e d u c t i o n behaviour, p r e - o x i d i z e d Westport i l m e n i t e , F l o r i d a i l m e n i t e , and Glenbrook titanomagnetite were reduced at two temperatures, nominally 950°C, and 1050°C. The r e s u l t s are given i n Figure 12. I t can be n o t i c e d that the temperature v a r i a t i o n i n a l l three cases produced important changes i n the r a t e as was the s i t u a t i o n w i t h Westport i l m e n i t e . By comparing Figures 11 and 12 the b e n e f i t of p r e - o x i d a t i o n of Westport i l m e n i t e i s e a s i l y seen. In a d d i t i o n , i t i s observed that the ores are reduced q u i t e d i f f e r e n t l y which i s an i n d i c a t i o n of the importance that the m a t e r i a l being reduced has on the o v e r a l l r e d u c t i o n process. Figure 10. E f f e c t of r o t a t i o n a l speed on the reduction k i n e t i c s of Westport ilmenite at 500 ml/min argon 34 100 c O t> cr 0 s Run Temp(°C) Ore o 19 1049 Oxidized O 18 849 Westport_ A 21 1048 Florida • 20 950 Ilmenite • 23 1057 Glenbrook o 22 9 4 8 Ironsands 1 30 60 Time (min) 90 120 Figure 12. E f f e c t of temperature on the re d u c t i o n k i n e t i c s of pr e - o x i d i z e d and F l o r i d a i l m e n i t e s , and Glenbrook ironsands 35 3.2.3 Reduction w i t h carbon monoxide In t r y i n g to c l a r i f y the k i n e t i c s of r e d u c t i o n of the i l m e n i t e , i t was f e l t necessary to perform some re d u c t i o n t e s t s i n the absence of carbon. The obvious a l t e r n a t i v e reducing agent was carbon monoxide. In a case l i k e t h i s i t i s d e s i r a b l e to use a CO f l o w r a t e as high as p o s s i b l e i n order to prevent s t a r v a t i o n of CO i n the bed. However, when a flow of 2000 ml/min of CO was used s o o t i n g , and t e c h n i c a l problems w i t h the equipment, arose. Experiments were then done at a CO flow of 800 ml/min at four temperatures, nominally 950°C, 1000°C, 1050°C, and 1100°C, and the r e s u l t s are presented i n Figure 13. A n a l y s i s of the gas e x i t i n g the r e a c t o r proved i t to have a composition c l o s e to that at thermodynamic e q u i l i b r i u m . Thus, i t i s l i k e l y that the bed was starved of CO at the flow r a t e used. Figure 13. E f f e c t of temperature on the r e d u c t i o n behaviour of Westport i l m e n i t e w i t h CO 3.3 Char p r e p a r a t i o n The l o s s i n weight by the l i g n i t e c o a l due to the c h a r r i n g operation averaged 59% ± 1% f o r the near 60 char batches produced. This r e f l e c t s an almost t o t a l d e v o l a t i l i z a t i o n of the c o a l s i n c e i t s moisture plus v o l a t i l e matter amounted to 60%. The c h a r r i n g process caused breakdown of c o a l p a r t i c l e s ; u s u a l l y c l o s e to 10% of the char obtained was l o s t as the -149 ym f r a c t i o n . From the coal, a n a l y s i s , and c o n s i d e r i n g the l o s s of 59% of i t s weight as v o l a t i l e s , the char can be c a l c u l a t e d to c o n t a i n 80% f i x e d carbon. 3.4 P r e - o x i d a t i o n of Westport i l m e n i t e In each of the three o x i d a t i o n batches the i n i t i a l 400 g of i l m e n i t e gained 14.7 g, 15.1 g, and 15.2 g r e s p e c t i v e l y . Taking i n t o account that the i l m e n i t e contained 37.7% FeO, t h i s weight change repre-sents a mean 89% of o x i d a t i o n achieved by the treatment. The i l m e n i t e can be p r a c t i c a l l y considered as f u l l y o x i d i z e d s i n c e o x i d a t i o n has been reported to be very slow i n the l a t e r stages (37). Due to o x i d a t i o n the i n i t i a l l y shiny i l m e n i t e became d u l l . Bulk d e n s i t y and p a r t i c l e s i z e d i s t r i b u t i o n of the product are given i n Table I l l b ; i f compared w i t h the c h a r a c t e r i s t i c s of the n a t u r a l i l m e n i t e no major change can be n o t i c e d . 38 3.5 X-ray a n a l y s i s 3.5.1 Raw m a t e r i a l s The main d-spacings of i l m e n i t e , r u t i l e , magnetite, hematite, and pseudobrookite are presented i n Table V as given i n ASTM cards number 3-0781; 4-0551; 11-614; 13-534; and 9-182 r e s p e c t i v e l y . These values must be compared w i t h those obtained f o r Westport ore (both n a t u r a l and p r e - o x i d i z e d ) , and f o r Glenbrook ironsands which are presented i n Table VI. I t i s c l e a r l y seen that the mineral from Westport i s a t r u e i l m e n i t e , and the ironsands are e s s e n t i a l l y magnetite. The products of o x i d a t i o n of Westport i l m e n i t e are mainly r u t i l e and hematite. This agrees w i t h published i n f o r m a t i o n (38) of o x i d a t i o n of i l m e n i t e i n the temperature range of 500-750°C, but disagrees i n the range of 770-890°C which embraces the temperature (800°C) used i n t h i s study. The i l m e n i t e from F l o r i d a produced a r a t h e r d i f f u s e d i f f r a c t i o n p a t t e r n . I t has been reported (39) that i l m e n i t e can be n a t u r a l l y a l t e r e d , and that at one of the stages of a l t e r a t i o n the e x i s t i n g phase or phases are amorphous. This may then be the case f o r the F l o r i d a ore. Further support i s provided by the r e l a t i v e l y high HO2 content of t h i s m i n e r a l which i s t y p i c a l of a l t e r e d i l m e n i t e s (3). 3.5.2 Reduced products Q u a l i t a t i v e l y , the d i f f r a c t i o n p atterns of a l l the samples s t u d i e d were very s i m i l a r w i t h l i n e s of i r o n (d(A°): 2.03, and 1.43), r u t i l e , and i l m e n i t e appearing i n a l l cases as given i n Table V.I I . However, i t i s important to point out that both p r e - o x i d i z e d Westport, and n a t u r a l l y weathered F l o r i d a i l m e n i t e s reformed i l m e n i t e during r e d u c t i o n as shown i n runs 18 and 20; t h i s agrees w i t h the r e d u c t i o n mechanism of o x i d i z e d i l m e n i t e reported by Jones (15). Another fe a t u r e of the d i f f r a c t i o n 39 TABLE V MAJOR d-SPACINGS FOR SOME COMPOUNDS OF INTEREST (from ASTM) Ilme n i t e R u t i l e Magnetite Hematite Pseudobrookite d(A°) I / I l d(A°) I / I l d(A°) I / I l d(A°) I / I l d(A°) I / I l 3.73 50 3.25 100 4.85 40 2.69 100 4.90 45 2.74 100 2.49 41 2.97 70 2.51 50 3.48 100 2.54 85 2.19 22 2.53 100 2.20 30 2.75 80 2.23 70 1.69 50 2.10 70 1.84 40 2.45 20 1.86 85 1.62 16 1.71 60 1.69 60 2.40 25 1.72 100 1.36 16 1.61 85 1.48 35 1.97 25 1.63 50 1.48 85 1.45 35 1.86 30 1.50 85 1.63 20 1.47 85 1.54 35 1.34 70 40 T A B L E V I WESTPORT I L M E N I T E , P R E - O X I D I Z E D I L M E N I T E , AND GLENBROOK IRONSANDS X - R A Y D I F F R A C T I O N P A T T E R N W e s t p o r t I l m e n i t e P r e - o x i d i z e d i l m e n i t e G l e n b r o o k i r o n s a n d s d ( A ° ) I d e n t d ( A ° ) I d e n t d ( A ° ) I d e n t 3 . 7 5 . I 3 . 7 0 I 4 . 8 6 M 2 . 7 6 I 3 . 2 5 R 3 . 2 4 R 2 . 5 5 I 2 . 7 1 H , I * 2 . 9 7 M 2 . 2 4 I 2 . 5 2 H , I 2 . 7 9 I 1 . 8 7 I 2 . 4 9 R 2 . 7 1 H 1 . 7 3 I 2 . 3 0 R 2 . 5 3 M 1 . 6 4 I 2 . 2 1 H , I 2 . 4 2 M 1 . 5 1 I 2 . 1 9 R 2 . 1 0 M 1 . 4 7 I 1 . 8 4 H , I 1 . 7 1 M 1 . 7 0 H , I 1 . 7 0 R 1 . 6 9 R 1 . 6 2 M 1 . 6 3 R , I 1 . 4 9 M 1 . 6 0 H 1 . 4 9 H , I 1 . 4 6 H L e g e n d : I : I l m e n i t e ; R : R u t i l e : H : H e m a t i t e : M : M a g n e t i t e * T h i s a n d a l l t h e d - s p a c i n g s i d e n t i f i e d a s h e m a t i t e - i l m e n i t e a r e m o r e l i k e l y t o b e h e m a t i t e d u e t o t h e e x t e n s i v e o x i d a t i o n o f t h e m a t e r i a l . TABLE VII X-RAY DIFFRACTION PATTERN OF REDUCED SAMPLES Run number 9 17 18 19 20 21 22 d(A°) Ident d(A°) Ident d(A°) Ident d(A°) Ident d(A°) Ident d(A°) Ident d(A°) Ident 3.25 R 3.52 3.73 I 3.49 1 3.73 I 3.51 3.22 R 2.49 R 3.37 RR 3.25 R 3.41 RR 3.25 R 3.34 RR 2.98 RR 2.30 R 3.25 R 2.75 I 3.31 RR. 2.74 I 3.25 R 2.74 I 2.24 I 3.21 RR 2.55 I 3.25 R 2.55 I 3.18 RR 2.47 R 2.19 R 2.74 I 2.49 R 3.18 RR 2.49 R 3.11 RR 2.23 I 2.05 R 2.55 I 2.24 I 2.76 I? 2.30 R 2.75 I 2.15 R? 2.03 Fe 2.47 RR 2.19 R 2.48 R 2.24 I 2.49 R 2.11 ? 1.69 R 2.24 I 2.05 R 2.24 I 2.19 R 2.20 R? 2.03 Fe 1.62 R 2.03 Fe 2.03 Fe 2.19 R 2.05 R 2.03 Fe 1.72 I 1.72 I 1.87 I 2.03 Fe 2.03 Fe 1.70 I? 1.62 R 1.73 I 1.69 R 1.87 I 1.69 R 1.49 I 1.69 R 1.43 Fe 1.72 I 1.64 I 1.64 I 1.69 R 1.43 Fe 1.62 R 1.62 R 1.51 I 1.51 I 1.47 I 1.49 I 1.45 R 1.45 R 1.43 Fe 1.43 Fe Legend: I: I l m e n i t e ; R: R u t i l e ; RR: Reduced r u t i l e : Fe: Iron: ?: unknown 42 patterns i s the presence of reduced r u t i l e phases i n runs 19, 21, and 22 where high f i n a l r e d u c t i o n (83; 100; and 110% r e s p e c t i v e l y ) were achieved. As proposed by Grey and Reid (16), these reduced r u t i l e phases may have the general formula T i 0„ w i t h 4 < ri <: 9. n 2 n - l — — 3.6 SEM examination Photomicrographs showing the e x t e r n a l appearance of g r a i n s of the four m a t e r i a l s are given i n Figure 14. Comparison of photos a and b shows a small change due to p r e - o x i d a t i o n . The rounded shape observed f o r the F l o r i d a ore i s very l i k e l y due to n a t u r a l weathering. Examina-t i o n of the corresponding p o l i s h e d samples (Figure 15) showed the presence of i m p u r i t y i n c l u s i o n s (dark areas w i t h i n the grains) i n a l l but the F l o r i d a i l m e n i t e ; when analysed by X-ray energy spectrometry the i n c l u -s i ons proved to c o n s i s t mainly of Ca, A l , and S i . Westport and Glenbrook ores are seen to be very dense and homogeneous ( i f i n c l u s i o n s are not considered) w h i l e cracks and a mottled m i c r o s t r u c t u r e , which was probably caused by segregation of the o x i d a t i o n products, c h a r a c t e r i z e the pre-o x i d i z e d i l m e n i t e . The F l o r i d a i l m e n i t e i s the only one to e x h i b i t a porous s t r u c t u r e . In examining the reduced products, the f o l l o w i n g aspects were considered: (a) whisker formation and growth i n unpolished samples; (b) i r o n agglomeration, and p o r o s i t y i n p o l i s h e d samples. Figures 16 and 17 show the e f f e c t of temperature and percent r e d u c t i o n on the topography and m i c r o s t r u c t u r e of reduced raw and p o l i s h e d samples r e s p e c t i v e l y of Westport i l m e n i t e . In a l l cases (Figure 16) whisker growth i s observed to a greater or l e s s e r extent depending on the degree of r e d u c t i o n . Examination of p o l i s h e d samples (Figure 17) shows 43 c. F l o r i d a ilmenite X200 d. Glenbrook ironsands X200 F i g . 14. External aspect of p a r t i c l e s of the d i f f e r e n t ores 44 e. Florida ilmenite X480 d. Glenbrook ironsands X800 Fig. 15. Polished sections of particles of the different ores 45 c . 1 1 1 5 C ? 3 0 $ r e d u c t i o n 4 0 0 X d . 1 1 1 5 C ; 9 1 $ r e d u c t i o n 4 0 0 X P i g . 1 6 . E f f e c t o f t e m p e r a t u r e a n d p e r c e n t r e d u c t i o n o n t h e t o p o g r a p h y o f r e d u c e d W e s t p o r t i l m e n i t e F i g . 17. E f f e c t of temperature and percent reduction on the microstructure of reduced Westport ilmenite 47 i r o n (white phase) agglomeration p r e f e r a b l y i n areas adjacent to im p u r i t y i n c l u s i o n s . Due to t h i s agglomeration the grains s t a r t to become porous; then the higher the r e d u c t i o n ( i . e . , agglomeration) the higher the p o r o s i t y of the p a r t i c l e s . When reduced p a r t i c l e s of o x i d i z e d i l m e n i t e were examined (Figure 18) no whiskers could be observed i n the sample reduced at 950°C; however, at 1050°C the same behaviour as w i t h the n a t u r a l ore was n o t i c e d . The absence of r e l a t i v e l y l a r g e i r o n agglomerates on the surface of the p a r t i c l e s has been reported favourable i n d i m i n i s h i n g s i n t e r i n g (18). P o l i s h e d samples of t h i s m a t e r i a l show the same k i n d of i r o n aggregates as before; however, the pores formed are much l a r g e r . In the case of F l o r i d a ore (Figure 19) i r o n i s not seen to form whiskers. At 950°C no major i r o n agglomeration can be n o t i c e d , and the pores have almost disappeared. At 1050°C some aggregation of i r o n i s observed which produced corresponding p o r o s i t y . The r e s u l t s f o r the ironsands are given i n Figure 20. At 950°C no s i g n of whisker formation or of i r o n aggregates w i t h i n the p a r t i c l e s i s found; however, a f i n e porous s t r u c t u r e can be n o t i c e d . At 1050°C l a r g e i r o n agglomerates w i t h i n the grains are observed which caused l a r g e pores to be formed. F i g . 18. Topography and microstructure of reduced pre-oxidized Westport ilmenite c. 950°C; 72% re d u c t i o n X440 d. 1048°C; 100% reduction X400 F i g . 19. Topography and m i c r o s t r u c t u r e of reduced F l o r i d a i l m e n i t e F i g . 20. Topography and microstructure of reduced Glenbrook ironsands 4. DISCUSSION Some t y p i c a l r a t e equations f o r the r e a c t i o n between carbon and carbon d i o x i d e were presented i n S e c t i o n 1.2.4, and, as w i l l be seen l a t e r , an analogous equation may be w r i t t e n to describe the r a t e of r e d u c t i o n of the ores. The p a r t i a l pressure of C0 2 i s one of the v a r i -ables i n v o l v e d i n the r e l a t i o n s h i p e s t a b l i s h e d by Equation [14]; thus, i t s c h a r a c t e r i z a t i o n i s an important step p r i o r to the c a l c u l a t i o n of r e a c t i o n r a t e constants. However, the system used i n the present study poses some d i f f i c u l t i e s i n t h i s respect due to the use of argon as a c a r r i e r gas. The e f f e c t of t r a n s p o r t of argon i n t o the s o l i d s bed on the r e d u c t i o n k i n e t i c s as w e l l as i t s i m p l i c a t i o n s i n c a l c u l a t i n g k i n e t i c parameters w i l l be discussed f i r s t i n t h i s chapter. 4.1 Transport of argon i n t o the bed Figure 7 shows the e f f e c t of argon i n f l o w on the r e d u c t i o n behaviour of Westport i l m e n i t e ; i t i s observed that a f t e r 35% r e d u c t i o n a higher argon flow r e s u l t s i n a lower r e a c t i o n r a t e . This observation can be explained by d i l u t i o n of the r e a c t i n g gases (CO and C0 2) w i t h i n the bed which w i l l d i m i n i s h the d r i v i n g f o r c e f o r the r e d u c t i o n and g a s i f i c a t i o n r e a c t i o n s thus lowering the r e a c t i o n r a t e . Such d i l u t i o n i s expected to be more pronounced at higher inputs of i n e r t gas. Also presented i n Figure 7 i s the e f f e c t of t o t a l volume of s o l i d s on the r e d u c t i o n k i n e t -i c s , and, as described i n Section 3.2.1, the deeper the bed (or the more the s o l i d s ) the higher the r a t e . This r e s u l t i s l o g i c a l as w e l l because 51 52 the r e s i s t a n c e to argon t r a n s p o r t i n t o the bed i s higher i n a deeper bed. These observations are i n agreement w i t h the f i n d i n g s of Tien and Turkdogan (10). I t was pointed out i n Sect i o n 3.2.1 that an opposite trend was observed f o r the e f f e c t of speed of r o t a t i o n on r e a c t i o n r a t e at the two argon flows used. This behaviour can be accounted f o r by c o n s i d e r i n g that an increase i n the r o t a t i o n a l speed enhances both the degree of mixing of the reagents i n the s o l i d s bed, and the transport of argon i n t o the bed. At 250 ml/min of argon the improvement i n s o l i d s mixing w i t h i n the bed o v e r r i d e s the improvement i n argon t r a n s p o r t to the bed, consequently the r e d u c t i o n i s b e t t e r at higher r o t a t i o n a l speeds. On the other hand, at 500 ml/min of argon there i s a greater d r i v i n g f o r c e f o r argon t r a n s p o r t i n t o the bed (compared to 250 ml/min Ar) which then predominates over the mixing of s o l i d s , and the r a t e drops at higher r o t a t i o n a l speeds. Another f e a t u r e of the p l o t s presented i n Figures 7 and 10 i s that the e f f e c t of d i l u t i o n by argon i s n o t i c e a b l e only a f t e r a c e r t a i n l e v e l of r e d u c t i o n has been reached. The most p l a u s i b l e reason f o r t h i s i s that the r a p i d e v o l u t i o n of gases from the bed i n the e a r l y stages of r e d u c t i o n prevents argon p e n e t r a t i o n and d i l u t i o n w i t h i n the bed. In Figure 21, the r a t i o of gas e v o l u t i o n from the bed to argon input has been p l o t t e d as a f u n c t i o n of percent r e d u c t i o n f o r s e v e r a l experiments. In some cases i t i s seen that the generation of gases from the bed i s f i v e times as l a r g e as the gas i n p u t ; under these circumstances i t i s u n l i k e l y that a s i g n i f i c a n t q u a n t i t y of argon w i l l penetrate i n t o the bed, and d i l u t i o n should be unimportant. The opposite s i t u a t i o n appears to e x i s t toward the end of the experiments; as shown i n Figure 21, the gas generation i s as low as a f o u r t h of the gas i n p u t , and i t i s 3 Q. C D e> 6J0 4.5 o cn S 3.01 o > 1.5 0 0 Ore Temperature (°C) A Westport 1115 • Pre-oxidized 949 O Westport 998 A Westport 965 % 100 Reduction Figure 2 1 . Ratio of gas generation to gas input f o r some t y p i c a l experiments 54 l i k e l y that the argon w i l l be t o t a l l y mixed w i t h the gases i n the bed causing the maximum p o s s i b l e d i l u t i o n , i . e . , the o u t l e t composition of gas from the r e a c t o r w i l l be the same as that of the bed gas. Although argon t r a n s p o r t i n t o the bed i s a f a c t o r i n the e x p e r i -ments, an e v a l u a t i o n of the a c t u a l extent of d i l u t i o n has not been pos-s i b l e . Consequently, the c a l c u l a t i o n of k i n e t i c parameters, i . e . , r a t e constants, and a c t i v a t i o n energies, has been done f o r two l i m i t i n g cases: ( 1 ) no argon penetrated i n t o the bed (no d i l u t i o n ) ; and ( 2 ) complete mixing of argon w i t h the r e a c t i n g gases i n the bed. In terms of what i s presented i n Figure 2 1 i t seems reasonable that the f i r s t assumption i s v a l i d during the i n i t i a l stages of r e d u c t i o n when, as explained before, the l a r g e amount of gases generated w i t h i n the bed would minimize argon p e n e t r a t i o n . Analogously, the second case holds towards the end of the r e a c t i o n when, as already demonstrated ( F i g . 2 1 ) , a very s m a l l volume of gas i s produced i n the bed. In the intermediate stages of the r e d u c t i o n sequence the system w i l l l i e between these extremes. 4.2 Temperature dependence of r e a c t i o n r a t e s The equation proposed by von Bogdandy and E n g e l l (32) (Se c t i o n 1.2.4) f o r the r a t e of carbon g a s i f i c a t i o n can be r e - w r i t t e n as f o l l o w s : P b pB co 2 - C0 2 r B = M cH c exp(- E ^ T ) — [19] G where i s the r a t e of Boudouard r e a c t i o n (moles/cm 3charge.s) M c i s the amount of carbon (g/cm 3charge) H i s the r e a c t i v i t y of carbon (cm 3/g.s) E,, i s the a c t i v a t i o n energy f o r g a s i f i c a t i o n (cal/mole) Rg i s the gas constant (cm3atm/K mole) or (cal/K mole) T i s the bed temperature (K) P^ i s the bulk p a r t i a l pressure of C0 2 i n the bed (atm) c u 2 P n n i s the e q u i l i b r i u m p a r t i a l pressure of C0 2 f o r Boudouard L.U2 r e a c t i o n (atm) The r a t e of oxygen removal from the ores may be expressed i n a s i m i l a r way: P R - P b C0 2 C0 2 r R = (1 - R) H F e exp(- ER/RQT) — [20] G where r i s the r a t e of r e d u c t i o n r e a c t i o n (moles/cm 3charge. :s) i s the amount of i r o n (g/cm 3charge) which i s r e l a t e d to the oxygen content of the ore R i s the percent r e d u c t i o n i s the ore r e d u c i b i l i t y (cm3/g.ss) E i s the a c t i v a t i o n energy f o r red u c t i o n (cal/mole) 56 P^g^ i s the e q u i l i b r i u m p a r t i a l pressure of CO2 f o r the red u c t i o n r e a c t i o n (atm) In the development of these equations a f i r s t order r e a c t i o n r a t e has been assumed; i n the case of the g a s i f i c a t i o n r e a c t i o n t h i s has been j u s t i f i e d i n Section 1.2.4. For the re d u c t i o n r e a c t i o n t h i s was the approach used by von Bogdandy and E n g e l l (32) ; f u r t h e r support may be found i n the l i t e r a t u r e on d i r e c t r e d u c t i o n s t u d i e s (40-42). Equations [19] and [20] may be r e - w r i t t e n as f o l l o w s : P b - P B C0 2 C0 2 rB = K B — I T T [ 1 9 a ] P R - P b co 2 co 2 r - = ^ - — [20a] •R - ^ where Kg = M c H c exp(- E B/R GT) [21] Kj^ = Mp e (1 - R) H p e exp (- [22] are the independent r e a c t i o n r a t e constants f o r Boudouard and r e d u c t i o n r e a c t i o n s r e s p e c t i v e l y which show the t y p i c a l Arrhenius type of tempera-tur e dependence. Experimentally, the f o l l o w i n g r e l a t i o n s h i p holds to a very good approximation, r B = r R [23] and Equations [19a] and [20a] can be combined and re-arranged to give P R - P B C0 2 C0 2 r = r = r = (— + — ) [241 B R R T K kJ l j The o v e r a l l r a t e constant (K ) i s then ov which by s u b s t i t u t i n g using Equations [21] and [22], r e - a r r a n g i n g , and t a k i n g logarithms becomes ( ER + V £nK = + £n[M H (1-R) H ] ov R T c c Fe Fe - £n[Mc H c exp(- Eg/R^T) + M^U-R) H p e exp(- E R / R G T ) 1 [ 2 6 ] Equation [26] shows a n o n - l i n e a r r e l a t i o n s h i p between £nK and ov T ; consequently, the c a l c u l a t i o n of an o v e r a l l a c t i v a t i o n energy i s not p o s s i b l e unless one of the r e a c t i o n s i s t o t a l l y c o n t r o l l i n g the r e d u c t i o n process. I f t h i s i s the case, one of the terms i n Equation [25] becomes n e g l i g i b l e compared to the other, and Equation [24] would take the form of e i t h e r Equation [19] or [20] depending on whether g a s i f i c a t i o n or r e d u c t i o n i s r e s p e c t i v e l y l i m i t i n g the o v e r a l l r e a c t i o n . Kg and can be c a l c u l a t e d from Equations [19a] and [20a] at d i f f e r e n t percent reductions w i t h i n an experiment, and at d i f f e r e n t temperatures f o r the same percent r e d u c t i o n i n d i f f e r e n t runs. A dependence on temperature and percent r e d u c t i o n i s then obtained f o r Kg and K R s e p a r a t e l y from which a c t i v a t i o n energies can be independently defined f o r the r e d u c t i o n and g a s i f i c a t i o n r e a c t i o n s at v a r y i n g reduc-t i o n l e v e l s . This i s done at the two l i m i t i n g c o n d i t i o n s s p e c i f i e d above as shown i n Appendix I I . Table V I I I gives the change i n r e d u c t i o n r a t e constant w i t h per-cent r e d u c t i o n f o r the experiments i n which the e f f e c t of argon flow, speed of r o t a t i o n , and bed depth was s t u d i e d . At a given percent r e d u c t i o n , the runs presented i n Tables V i l l a and b produced f a i r l y constant values of K^, the v a r i a t i o n s being g e n e r a l l y s m aller when TABLE V I I I K AS FUNCTION OF % REDUCTION AT 1000°C FOR DIFFERENT OPERATING CONDITIONS a ' A t p c o 2 + p co = 1 a t m Run number % 4 5a 6 9 11 12 13 14 redu c t i o n (10,250) (10,250) (10,250) (18,250) (10,500) (18,500) (30,500) (30,250) 5 4.0 4.4 4.2 3.6 3.7 3.7 12 2.9 4.0 2.8 3.3 2.5 2.6 3.0 5.7 26 2.9 3.7 2.1 3.2 1.9 2.1 1.5 3.5 42 1.8 2.7 1.4 2.7 1.4 1.2 0.9 2.2 57 1.7 1.8 1.4 1.8 1.1 0.7 0.7 1.7 76 0.8 — 0.9 — — — 0.9 b - A t P c o 2 CO p atm % Run number redu c t i o n 4 5 6 9 11 12 13 14 5 8.9 9.1 7.8 9.9 9.8 9.6 12 6.7 7.6 6.7 6.9 8.1 8.3 8.4 8.6 26 5.9 6.5 5.0 6.6 6.6 6.7 5.9 6.6 42 4.6 5.2 4.1 5.5 5.4 5.3 5.'3 4.6 57 4.3 4.1 4.2 4.5 5.2 4.7 5.0 4.2 76 3.1 - 3.3 - - - 3.6 The number i n parenthesis r e f e r s to r o t a t i o n a l speed and argon i n f l o w r e s p e c t i v e l y . Runs 5 and 6 are at 0.30 c h a r / i l m , the others at 0.24. Bed depth i s 15 mm i n 5 d 12 mm i n 6. 59 PB + PB = p atm i s considered. Thus one may conclude that the d i f f e r -ences i n r a t e observed f o r these experiments (Figures 7 and 10) are mainly due to v a r i a t i o n s i n d r i v i n g f o r c e , and the k i n e t i c parameters derived from t h i s study are not s p e c i f i c to the r e a c t o r c o n f i g u r a t i o n used. Table IX shows the c a l c u l a t e d values of K^; and, as can be seen, Kg v a r i e s c o n s i d e r a b l y from run to run at the same percent r e d u c t i o n , more so than was seen f o r K^. The most l i k e l y reason f o r t h i s i s t h a t P^Q i s r e l a t i v e l y c l o s e to the e q u i l i b r i u m CO? p a r t i a l pressure n ) so that L.C>2 the d r i v i n g f o r c e used to c a l c u l a t e K,, from r a t e values i s s m a l l ; thus, J5 small e r r o r s i n measurement of P^ are magnified i n K^. As an example, f o r run 13 at 5% r e d u c t i o n PB - PB i s 0.006 atm w h i l e PR - PB CU2 CU2 CU2 CU2 i s 0.019 atm. The e f f e c t of temperature on the r e d u c t i o n k i n e t i c s of Westport i l m e n i t e was presented i n Section 3.2.2. Reaction r a t e constants (K^ and Kg) can a l s o be c a l c u l a t e d f o r the experiments i n v o l v i n g temperature e f f e c t s from which Arrhenius p l o t s and a c t i v a t i o n energies can be obtained. For Westport i l m e n i t e , a c t i v a t i o n energies f o r r e d u c t i o n and g a s i f i c a t i o n at 30% and 40% r e d u c t i o n can be derived from Figure 22, and are given i n Table X. I t can be seen that the a c t i v a t i o n energies obtained at PB + P^  = 1 atm are between 2 and 3 times l a r g e r than those reported CO2 CO p r e v i o u s l y i n the l i t e r a t u r e ( Section 1.2.3) w h i l e those c a l c u l a t e d at PB + PB = p atm are very c l o s e to the values from other s t u d i e s . CO 2 *-*o Also shown i n Table X are the corresponding a c t i v a t i o n energies deter-mined from experiments w i t h Glenbrook ironsands, and F l o r i d a and pre-o x i d i z e d Westport i l m e n i t e s ; these a c t i v a t i o n energies however may not be accurate s i n c e each was determined from only two experiments. As can be observed, the a c t i v a t i o n energies f o r r e d u c t i o n r e a c t i o n of TABLE IX Kg AS FUNCTION OF % REDUCTION AT 1000°C FOR DIFFERENT OPERATING CONDITIONS a ' A t p c o 2 + p co " 1 a t m Run number % 4 5 6 9 11 12 13 14 red u c t i o n (10,250) . (10,250) (10,250) (18,250) (10,500) (18,500) (30,500) (30,250) 5 5.1 6.2 5.8 9.3 9.2 14.8 12 4.2 . 4.7 4.3 5.3 7.4 6.9 12.0 13.7 26 6.5 7.0 9.3 4.9 12.6 12.6 25.4 6.0 42 7.2 6.1 8.0 6.7 73.8 52.7 42.0 8.8 57 7.8 5.7 5.0 5.1 23.6 - 36.9 9.4 76 2.5 — 3.4 — — — 3.4 b. At P_- + P b. = p atm C0 2 CO % Run number red u c t i o n 4 5 6 9 11 12 13 14 5 9.5 10.8 9.4 19.0 19.3 26.6 12 8.1 8.0 8.7 9.1 17.0 16.5 23.0 17.6 26 10.8 10.2 15.0 8.5 24.2 24.9 34.2 9.6 42 12.4 9.7 14.0 10.8 41.1 43.0 38.6 13.5 57 13.1 10.0 10.6 9.6 31.5 51.2 33.7 14.7 76 - 7.1 - 8.5 - - - 9.0 See footnote Table V I I I Figure 22. Arrhenius p l o t s for reduction of Westport ilmenite and g a s i f i c a t i o n of carbon TABLE X ACTIVATION ENERGIES FOR REDUCTION AND BOUDOUARD REACTIONS FOR THE DIFFERENT ORES ORE TYPE Westport i l m e n i t e Glenbrook ironsands F l o r i d a i l m e n i t e P r e - o x i d i z e d Westport Percent r e d u c t i o n 30% 40% 47% 69% 40% 60% 40% 66% Reduction r e a c t i o n (1) 47 44 34 7 31 43 44 20 Reduction r e a c t i o n (p) 28 22 27 9 5 10 24 5 Boudouard r e a c t i o n (1) 69 52 83 46 71 45 78 61 Boudouard r e a c t i o n (p) 58 52 82 44 53 27 66 56 Symbols i n parenthesis p c o 2 + p c o = 1 a t m o r p represent b + P b C0 2 CO whether = p atm the a c t i v a t i o n energy was (p). c a l c u l a t e d at • A c t i v a t i o n energy values are i n K cal/mole. The experimental e r r o r i n a c t i v a t i o n energy values i s about 25%. 63 Westport i l m e n i t e , ironsands (47% r e d u c t i o n ) , and p r e - o x i d i z e d ore (40% reduction) at p atm t o t a l pressure are s i m i l a r , and a mean value of 25 Kcal/mole can be c a l c u l a t e d . In the same way, the a c t i v a t i o n energies f o r the r e d u c t i o n of F l o r i d a i l m e n i t e , ironsands (69% r e d u c t i o n ) , and p r e - o x i d i z e d ore (66% reduction) are c l o s e to each other, and a mean value of 7.5 Kcal/mole can be determined. Their s i g n i f i c a n c e w i l l be discussed l a t e r . In the case of the Boudouard r e a c t i o n a mean value of 55 Kcal/mole i s obtained f o r the a c t i v a t i o n energy. From these a c t i v a t i o n energies the f o l l o w i n g mean ore r e d u c i b i l i t i e s ( Hp e), and char r e a c t i v i t y (H c) were c a l c u l a t e d using Equations [21] and [22]: Westport i l m e n i t e 4 x 10 5 cm3/g.s Pr e - o x i d i z e d Westport 2 x 10 6 and 2 x 10 3 cm3/g.s F l o r i d a i l m e n i t e 4 x 10 3 cm3/g.s Glenbrook ironsands 9 x 10 4 and 8 x 10 1 cm3/g.s Char 2 x 1 0 1 1 cm3/g.s The standard d e v i a t i o n f o r H_, values i s about 20%, w h i l e f o r H Fe c i t i s 40%. For the ironsands, and the p r e - o x i d i z e d ore, two values were given above; the f i r s t r e f e r s to an a c t i v a t i o n energy of 25 Kcal/mole w h i l e the second r e f e r s to 7.5 Kcal/mole. The f o l l o w i n g d i s c u s s i o n deals w i t h the f i r s t of them. The p o s i t i v e e f f e c t of p r e - o x i d a t i o n shown i n Figur e s 11 and 12 i s re-confirmed by comparing the r e d u c i b i l i t i e s of these m a t e r i a l s , the pre-o x i d i z e d ore being about f i v e times as r e d u c i b l e as the n a t u r a l ore during the f i r s t h a l f of the re d u c t i o n process. Although the ironsands have a lower r e d u c i b i l i t y constant than Westport i l m e n i t e the former m a t e r i a l was reduced at a f a s t e r r a t e than the l a t t e r , which may seem to be 64 i n c o n s i s t e n t ; however, t h i s i s c l a r i f i e d when the d r i v i n g forces f o r the re d u c t i o n r e a c t i o n s of these ores are compared: the CO2 e q u i l i b r i u m p a r t i a l pressure f o r r e d u c t i o n i s f i v e times l a r g e r f o r the ironsands as compared to the i l m e n i t e , w h i l e the bulk C0 2 p a r t i a l pressure remains R b about the same; i n consequence, (P n r. - P„,~ ) ironsands i s l a r g e r than ( P R - P b ) i l m e n i t e . The r e d u c i b i l i t y of the F l o r i d a i l m e n i t e i s L.U2 CU2 s t i l l lower, however, t h i s i s compensated by the a l s o lower a c t i v a t i o n energy f o r i t s r e d u c t i o n , which e x p l a i n s the r e l a t i v e l y high r e d u c t i o n r a t e s observed f o r i t . 65 4.3 Reduction mechanism In Equation [24] , the o v e r a l l r a t e of r e a c t i o n i s c a l c u l a t e d from a d r i v i n g f o r c e term, and a r a t e constant that incorporates the i n d i v i d u a l r e s i s t a n c e s of each r e a c t i o n , i . e . , Boudouard and r e d u c t i o n ; these r e s i s t a n c e s are the inv e r s e of the r a t e constants. In attempting to e l u c i d a t e the r e d u c t i o n mechanism of t h i s process the bulk 1 p a r t i a l pres-sure of carbon d i o x i d e can be compared to the e q u i l i b r i u m values f o r re d u c t i o n and g a s i f i c a t i o n . The r e s i s t a n c e s f o r each r e a c t i o n w i l l be determined and a l s o compared. This i s done i n Figures 23 through 32 where CO2 bulk and e q u i l i b r i u m p a r t i a l pressures at both l i m i t i n g condi-t i o n s 1 atm, and p atm, and i n d i v i d u a l r e s i s t a n c e s ( a l s o at 1 atm and p atm) are p l o t t e d vs. percent r e d u c t i o n . In order to see the change i n r a t e as the r e s i s t a n c e s v a r i e d , the r a t e of r e a c t i o n ( i n moles/cm 3.s) i s incorporated i n these p l o t s as w e l l . I t was mentioned i n Sectio n 1.2.1 that the bulk C0 2 p a r t i a l pressure would be c l o s e s t to the e q u i l i b r i u m value of the r e a c t i o n having the f a s t e r r a t e . With t h i s i n mind, and l o o k i n g at Figures 23 through 32, the r a t e c o n t r o l l i n g steps can be proposed as f o l l o w s : a) The re d u c t i o n of Westport i l m e n i t e by char i s c o n t r o l l e d by both the red u c t i o n and Boudouard r e a c t i o n s at e a r l y and intermediate stages when the temperature i s i n the range 950-1000°C ( F i g s . 23-25); i n the l a t e r stages of r e d u c t i o n the system moves towards r e d u c t i o n r e a c t i o n c o n t r o l . At higher temperatures, i . e . , 1100°C, the r e d u c t i o n r e a c t i o n i s l i m i t i n g the o v e r a l l process p r a c t i c a l l y over the e n t i r e range s t u d i e d ( F i g . 26, 30% to 90% r e d u c t i o n ) ; t h i s i s a consequence of the higher a c t i v a t i o n energy of the Boudouard r e a c t i o n as compared to r e d u c t i o n , which causes the r a t e constant f o r g a s i f i c a t i o n to increase f a s t e r than that of 66 . 0 6 h . 0 4 E o k. 3 (O (/) <L> Q-.02 CM O o £ 1.21 0.8 0.4 Red (I) O A • • Rate l / K r ( l ) l/K r(p) l / K b ( l ) l / K b ( p ) O — 2 0 4 0 % Reduction R CD 'o 1 0 . 8 ^ a 10.6 | 10.4 o or Q2 Figure 23. CO^  p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 954°C .08r-E .06 o 0) 3 (0 .04 to Q. „ CM o o .02 i . o h -0.8 ~ 0.6 CO 0.4 0.2 r Red (I) 67 Bulk (I ) R e d J P L ^ ^ „ A _ A — A - ^ - A J ' v Boud(l) ' - Y — V - - - v - v ^ ^ B u l k ( p ) Boud~(p7 0.8 0.6 0.4 •O co "fe o to o J a 0C H Q 2 2 5 % Reduction 50 Figure 24. CG^ p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 965°C % Reduction Figure 25. CO^ p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e at 998°C 2 0 4 0 6 0 8 0 % Reduction Figure 26. CC^ p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r Westport i l m e n i t e . a t 1115°C 70 r e d u c t i o n . E s s e n t i a l l y the same conclusions can be drawn i f the p l o t s f o r r e s i s t a n c e s were considered; from these i t i s n o t i c e d that the r a t e drops as the r e s i s t a n c e s i n c r e a s e . b) When the r e s u l t s f o r the p r e - o x i d i z e d m a t e r i a l are studi e d i t i s seen that at 950°C ( F i g . 27) the r e a c t i o n r a t e i s governed more by the Boudouard r e a c t i o n , but re d u c t i o n a l s o e x e r c i s e s an i n f l u e n c e . At the higher temperature ( F i g . 28) again the e f f e c t of the Boudouard a c t i v a -t i o n energy i s n o t i c e a b l e , and a f t e r an i n i t i a l mixed c o n t r o l , a s h i f t occurs at about 70% r e d u c t i o n , and the re d u c t i o n r e a c t i o n becomes the slower step. Once more, the r e s u l t s support the p o s i t i v e e f f e c t that p r e - o x i d a t i o n has i n i n c r e a s i n g the r e d u c t i o n r a t e of Westport i l m e n i t e . c) Figure 29 shows that f o r the r e d u c t i o n of F l o r i d a i l m e n i t e at 950°C the g a s i f i c a t i o n of carbon i s a c t u a l l y the determining f a c t o r u n t i l about 45% r e d u c t i o n . The system then passes through a mixed c o n t r o l zone, and reaches r e d u c t i o n c o n t r o l only toward the end of the experiment. When the temperature i s r a i s e d the same trend as before i s observed; where the Boudouard r e a c t i o n was l i m i t i n g at 950°C, mixed c o n t r o l takes over at 1050°C ( F i g . 30); and the process i s governed by re d u c t i o n at lower percent r e d u c t i o n than before. d) For the ironsands the CO2 p a r t i a l pressure had t o be placed on a l o g a r i t h m i c s c a l e which makes the trends more d i f f i c u l t to v i s u a l i z e . At 950°C mixed c o n t r o l e x i s t s u n t i l about 60% r e d u c t i o n , and then the process turns i n t o c o n t r o l by r e d u c t i o n ( F i g . 31a). Figure 32a shows that at 1050°C the s i t u a t i o n i s r e d u c t i o n l i m i t e d from the very e a r l y stages. I t i s worth mentioning here that from values of H c reported i n the l i t e r a t u r e (32), can be c a l c u l a t e d and s i m i l a r comparisons done. Figure 27. CC>2 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d ore at 949°C . 0 8 . | . 0 6 | o 0) w .041 CO CD k-Q_ CM g . 0 2 | Red (p) Red (I ) A-Bulk (p) Boud(l ) O K Bulk(l) Boud (p) 03] _ 0.6| in - 0.4 O A T • Rate l / K r ( l ) l/K r(p) l / K b ( l ) l / K b ( p ) 0.2 72 CD 08 x 0.6 0.4 02 </> ro E o CO o E a> o cr 4 0 Figure 28. 6 0 8 0 % Reduction 100 p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r p r e - o x i d i z e d ore at 1049°C .08 - . 0 6 E o 2 . 0 4 to CO ^ • 0 2 O o I— N v B u l k (p) Red(p) ^ T r 2.0 1.6 w 1.2 0.8 0.4 .73 Red (I ) 'A A \ Bulk(l) A Boud (I) Boud(p) O Rate A l / K r ( l ) 2 0 4 0 6 0 % Reduction CO •o 2.0 X (0 ro E o 1.5 -— <v o E ID a> o or — | Q 5 8 0 Figure 29. p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e at 950°C % Reduction Figure 30. p a r t i a l pressure, and i n d i v i d u a l r e s i s t a n c e s diagrams f o r F l o r i d a i l m e n i t e at 1048°C 75 0.4 Q l A -E o o 0. 0.01 0.001 Red (I) i i 1 r Red(p) Bulk (I ) Bulk(p) s. N A T \ Boud (I) A - J \ Boud (p) N -I \ \ \ H M J L 20 60 40 % Reduction Figure 31a. CO2 p a r t i a l pressure diagram f o r Glenbrook ironsands at 948°C 80 % Reduction Figure 31b. I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook ironsands at 948°C 77 0.4 0.1 CM O O Q_ 0.01 0.001 20 Red (I) O — Red (p) \ O, Bulk (I) "A T • Bulk(p)\ "A—A-Boud (I) Boud (p)* • \ 40 60 % Reduction 80 Figure 32a. CC^ p a r t i a l pressure diagram f o r Glenbrook ironsands .at 1057°C 0 2 0 4 0 6 0 8 0 % Reduction Figure 32b. I n d i v i d u a l r e s i s t a n c e s diagram f o r Glenbrook ironsands at 1057°C 79 Thus when f o r the lowest r e a c t i v e type of carbon (probably graphite) was used, the values of K^ were d r a s t i c a l l y reduced, and the cases where mixed c o n t r o l e x i s t e d became areas of Boudouard r e a c t i o n c o n t r o l . By c o n s i d e r i n g the a c t i v a t i o n energies given i n the previous sec-t i o n some ideas can be proposed w i t h respect to the r a t e l i m i t i n g step of the r e d u c t i o n r e a c t i o n i t s e l f . An a c t i v a t i o n energy of 25 Kcal/mole may be r e p r e s e n t a t i v e of e i t h e r a chemical or a s o l i d s t a t e d i f f u s i o n con-t r o l l e d process, and as reported by Poggi et a l . (19) experiments i n which the geometry of the p a r t i c l e s i s changed are necessary i n order to a r r i v e at any conc l u s i o n i n t h i s respect. The other a c t i v a t i o n energy value determined e a r l i e r (7.5 Kcal/mole) i n d i c a t e s a pore gas d i f f u s i o n l i m i t i n g step. The photomicrograph presented i n Figure 15c shows that the F l o r i d a i l m e n i t e i s q u i t e porous which i s a j u s t i f i c a t i o n f o r the proposed gas d i f f u s i o n c o n t r o l . The p r e - o x i d i z e d and ironsands ores are a l s o porous a f t e r they have reached some degree of re d u c t i o n as seen i n Figures 18c and d, and 20c and d. The pore development a f t e r a c e r t a i n l e v e l of r e d u c t i o n has been a t t a i n e d i s very l i k e l y the reason why there i s a change, i n both cases, i n the a c t i v a t i o n energy of the r e d u c t i o n r e a c t i o n (Table X). The f i r s t v alue (25 Kcal/mole) represents chemical or s o l i d s t a t e d i f f u s i o n c o n t r o l , and the second (7.5 Kcal/mole) accounts f o r pore gaseous d i f f u s i o n c o n t r o l . 80 4.4 V e r i f i c a t i o n of o v e r a l l r a t e equation As a f i n a l check on the s u i t a b i l i t y of the r a t e equations employed i n t h i s study, Equation [22] was employed to c a l c u l a t e the r a t e of reac-t i o n using values of H , H_ , E„ and E_, derived from experimental data. ° c Fe B R In Figure 33 the experimental and c a l c u l a t e d r e d u c t i o n r a t e s are pre-sented f o r some t y p i c a l runs i n v o l v i n g Westport i l m e n i t e At 965°C the agreement i s good over the e n t i r e range of r e d u c t i o n s t u d i e d , but at 998°C there i s good agreement only a f t e r 40% r e d u c t i o n has been reached. The most l i k e l y reason f o r the d i s p a r i t y at reductions below 40% i s that up to t h i s l e v e l the assumed c o n d i t i o n of complete gas mixing ( P b '+• P b = p atm) i s not v a l i d , and s i n c e the k i n e t i c parameters H CU2 L>U c and H used i n Equation [22] were obtained assuming complete mixing, r e t h e i r value w i l l be higher than the tr u e value f o r the region where b b P_,_ + P > p atm. Hence the r e s u l t i n g c a l c u l a t e d r a t e i s higher as CO2 CO shown i n Figure 33. At the highest temperature of 1115°C there i s reasonable agreement between measured and c a l c u l a t e d r a t e s during the e a r l y and f i n a l stages of r e d u c t i o n . I t i s l i k e l y that at the beginning of the process the r a t e of gas e v o l u t i o n i s so high (see F i g . 21) that even i f argon i s considered to have penetrated i n t o the bed i t s d i l u t i o n e f f e c t i s n e g l i g i b l e , and P b + P b Q = p - 1 atm. Thus the H_c and H F e parameters obtained at p atm t o t a l pressure are e q u a l l y v a l i d i n t h i s r e g i o n . In the intermediate zone, where the agreement i s not as good, a s i t u a t i o n s i m i l a r to the e a r l y stage during r e d u c t i o n at 998°C would e x i s t . 5. SUMMARY AND CONCLUSIONS a. Lack of k i n e t i c data s u i t a b l e f o r the design and o p t i m i z a t i o n of i n d u s t r i a l r e d u c t i o n processes was the b a s i s f o r the experimental program of the present work. A la b o r a t o r y s c a l e r o t a r y furnace was used as the r e a c t o r i n order to maintain an adequate degree of mixing of the reagents during the experiments. Ilmenites from Westport (New Zealand) both n a t u r a l and p r e - o x i d i z e d , and from F l o r i d a (USA) as w e l l as t i t a n o -magnetite from Glenbrook (New Zealand) were reduced w i t h charred l i g n i t e c o a l from Saskatchewan w i t h the aim of o b t a i n i n g ore r e d u c i b i l i t i e s and char r e a c t i v i t y . b. The carbon g a s i f i c a t i o n r e a c t i o n r a t e was c h a r a c t e r i z e d using the approach proposed by von Bogdandy and E n g e l l (32) , and an analogous equation was developed to describe the re d u c t i o n r e a c t i o n r a t e . These equations were found to be adequate to describe the o v e r a l l r a t e of r e a c t i o n when back mixing was assumed i n the r e a c t o r . c. An a c t i v a t i o n energy of 25 Kcal/mole was found f o r the reduc-t i o n r e a c t i o n of Westport i l m e n i t e , and the f i r s t stage of re d u c t i o n of the ironsands and p r e - o x i d i z e d ore; a value of 7.5 Kcal/mole was obtained f o r the re d u c t i o n of F l o r i d a i l m e n i t e , and the second stage of red u c t i o n of the ironsands and p r e - o x i d i z e d ore. For the Boudouard r e a c t i o n the a c t i v a t i o n energy was 55 Kcal/mole. A l l these values were c a l c u l a t e d assuming back mixing of gas i n the r e a c t o r , and are i n good agreement w i t h published data. The f o l l o w i n g ore r e d u c i b i l i t i e s , 82 83 Hp^, and char r e a c t i v i t y , H c were then found: Westport ilmenite 4 x 10 5 cm3/g.s Pre-oxidized Westport ore 2 x 10 6 and 2 x 10 3 cm3/g.s F l o r i d a ilmenite 4 x 10 3 cm3/ g.s Glenbrook ironsands 9 x 10 4 and 8 x 10 1 cm3/g.s Char 2 x 1 0 1 1 cm3/g.s d. The reduction mechanism was found to be very s e n s i t i v e to the ore type and the temperature. During reduction of Westport ilmenite a mixed control e x i s t s i n the temperature range 950-1000°C while the reduction reaction i s l i m i t i n g at 1100°C. For the pre-oxidized ilmenite there i s again mixed co n t r o l at 950°C, but more on the Boudouard side; and at 1050°C a s h i f t from mixed to reduction c o n t r o l occurs at approx-imately 70% reduction. At 950°C the reduction of F l o r i d a ore i s governed by the Boudouard reaction up u n t i l 45% reduction when mixed cont r o l takes over; an increase i n temperature to 1050°C converts the Boudouard l i m i t e d zone into mixed co n t r o l , and a f t e r 80% reduction the rate i s determined by the reduction r e a c t i o n . Both reactions l i m i t the reduction of Glenbrook ironsands up to about 60% reduction at 950°C, and i s reduction governed during the l a t e r stages; at 1050°C reduction reaction control e x i s t s over the e n t i r e range. Nowhere i n the l i t e r a -ture has the reduction reaction been reported as l i m i t i n g the reduction of metal oxides by carbon; however, i n most cases a l e s s r e a c t i v e form of carbon has been used as reducing agent. A simple c a l c u l a t i o n using published r e a c t i v i t i e s proved that the present system could have also been governed by the Boudouard reaction i f graphite was used as reductant. e. From the a c t i v a t i o n energy values and the SEM observations i t 84 i s p r o p o s e d t h a t t h e r a t e c o n t r o l l i n g s t e p f o r t h e r e d u c t i o n r e a c t i o n c h a n g e d f r o m e i t h e r s o l i d s t a t e d i f f u s i o n o r c h e m i c a l c o n t r o l t o p o r e g a s d i f f u s i o n w h e n r e d u c i n g t h e i r o n s a n d s o r p r e - o x i d i z e d o r e . T h e r e d u c -t i o n r e a c t i o n o f F l o r i d a a n d W e s t p o r t i l m e n i t e s w a s l i m i t e d b y p o r e g a s d i f f u s i o n , a n d e i t h e r s o l i d s t a t e d i f f u s i o n o r c h e m i c a l r e a c t i o n r e s p e c -t i v e l y . f . A r g o n t r a n s p o r t i n t o t h e s o l i d s b e d p o s e d s o m e d i f f i c u l t i e s i n c h a r a c t e r i z i n g d r i v i n g f o r c e s f o r t h e i n d e p e n d e n t r e a c t i o n s ; t h i s p r o b l e m w a s p a r t i a l l y o v e r c o m e b y p e r f o r m i n g c a l c u l a t i o n s a t t w o e x t r e m e c o n d i -t i o n s : (1) n o a r g o n p e n e t r a t i o n , a n d (2) t o t a l m i x i n g o f a r g o n w i t h b e d g a s e s . T h e s e s i t u a t i o n s a r e p r o b a b l y v a l i d d u r i n g t h e e a r l y a n d f i n a l s t a g e s o f r e d u c t i o n r e s p e c t i v e l y . P a r t i a l a r g o n p e n e t r a t i o n s h o u l d e x i s t i n t h e i n t e r m e d i a t e s t a g e s o f r e d u c t i o n . 85 REFERENCES 1. K o t h a r i , N. C. I n t . J . Min. Process., 1, 1974, 287-305. 2. Dooley, G. J . J . Metals, 27_, ( 3 ) , 1975, 8-16. 3. B a l l , D. M. Chem. and Ind., 16 J u l y 1977, 547-549. 4. Henn, J . J . , and Ba r c l a y , J . A. U.S.B.M., I.C. 8450, May 1970, 1-27. 5. Hockin, H. W. Unpublished work. 6. Iammartino, N. R. Chem. Eng., 8_3, (12), 1976, 100-101. 7. Noda, T. J . Met a l s , 17, ( 1 ) , 1965, 25-32. 8. Bold, D. A., and Evans, N. T. Iron S t e e l I n t . , 50, 1977, 146-152. 9. Shomate, C. H.,et a l . U.S.B.M., R.I. 3864, May 1946, 1-19. 10. Tien, R. H., and Turkdogan, E. T. Met. Trans. B, 8B, 1977, 305-313. 11. Ward, R. G. "An I n t r o d u c t i o n to the P h y s i c a l Chemistry of Iron and S t e e l Making." Ar n o l d , London, 1962, p. 212. 12. Walsh, R. H., et a l . Trans. Met. Soc. AIME, 218, 1960, 994-1003. 13. Hussein, M. K. , et a l . Indian J . Technol. , 5_, 1967, 369-377. 14. Grey, I . E., et a l . Trans. I n s t . Min. M e t a l l . , 82, 1973, C151-152. 15. Jones, D. G. I b i d . , C186-192. 16. Grey, I . E., et a l . I b i d , 83, 1974, C39-46. 17. Grey, I. E., et a l . I b i d , C105-111. 18. Jones, D. G. J . Appl. Chem. B i o t e c h n o l . , _25, 1975, 561-582. 19. Poggi, D., et a l . , i n "Titanium Science and Technology," Ed. R. I . J a f f e and H. M. Burte. Plenum Press, 1973, v o l . 1, 247-259. 20. E l Guindy, M. I . , and Davenport, W. G. Met. Trans., 1, 1970, 1729-1734. 21. Donnelly, R. P., et a l . Aust. Min., 62, ( 3 ) , 1970, 58-65. 22. F e t i s o v , V. B., et a l . Russ. Met., No. 2, 1968, 35-37. 86 23. Gokarn, A. N., and Altekar, V. A. Trans. Indian Inst. Met., 22, (1), 1969, 8-16. 24. Donnelly, R. P., et a l . Aust. Min., 62, (4), 1970, 52-59. 25. Rao, Y. K. Met. Trans., 2, 1971, 1439-1447. 26. Abraham, M. C. , and Ghosh, A. Ironmaking and Steelmaking, 6_, (1), 1979, 14-23. 27. P a d i l l a , R., and Sohn, H. Y. Met. Trans. B, 10B, 1979, 109-115. 28. Walker, P. L., et a l . , i n "Advances i n C a t a l y s i s , " Ed. D. D. Eley et a l . , Academic Press, 1959, v o l . XI, 133-221. 29. von Fredersdorff, C. G., and E l l i o t , M. A-, i n "Chemistry of Coal U t i l i z a t i o n , " Ed. H. H. Lowry, Wiley, 1963, 892-1022. 30. Skinner, F. D., and Smoot, L. D., i n "Pulverized-coal combustion and g a s i f i c a t i o n : theory and applications f o r continuous flow processes," Ed. L. D. Smoot and D. T. Pra t t . Plenum Press, 1979, pp. 154-160. 31. Jalan, B. P., and Rao, Y. K. Carbon, 16, 1978, 175-184. 32. von Bogdandy, L., and Enge l l , H. J . "The Reduction of Iron Ores," Springer-Verlag, 1971, 286-313. 33. Rao, Y. K., and Jalan, B. P. Met. Trans, 3_, 1972, 2465-2477. 34. Dutta, S., et a l . Ind. Eng. Chem. (Process Des. Dev.), 16_y (1), 1977, 20-30. 35. Walker, P. L. et a l . , i n "Chemistry and Physics of Carbon," Ed. P. L. Walker, Marcel Dekker, 1968, v o l . 4, 287-383. 36. Madderom, P. "UBC Integration: i n t e g r a t i o n routines." Comp. Centre, UBC, Sept. 1978, p. 26. 37. Karkhanavala, M. D. , and Momim, A. C. Econ. Geol., j54_, 1959, 1095-1102. 38. Rao, D. B., and Rigaud, M. Oxid. Met., 9_, (1), 1975, 99-116. 39. Bailey, S. W., et a l . Econ. Geol., 51, 1956, 263-279. 40. Venkateswaran, V., and Brimacombe, J. K. Met. Trans., 8_B_, 1977, 387-398. 41. Barner, H. E., et a l . Trans. Met. Soc. AIME, 227, 1963, 897-903. 42. Doheim, M. A. J. Appl. Chem. Biotechnol.,23, 1973, 375-387. 87 APPENDIX IA EXPERIMENTAL CONDITIONS FOR THE RUNS Run Ore Char M M_ Rot. Gas Temper-c Fe No. weight weight speed i n f l o w ature Ore type (g) (g) (g/cm 3) (g/cm 3) (r.p.m.) (ml/min) (°C) 1 Westport 200. 0 2 Westport 200. 0 3 Westport 200. 0 4 Westport 200. 0 5 Westport 200. 0 6 Westport 166. 7 7 Westport 256. 3 8 Westport 224. 7 9 Westport 200. 0 10 Westport 200. 0 11 Westport 200. 0 12 Westport 200. 0 13 Westport 200. 0 14 Westport 200. 0 15 Westport 200. 0 16 Westport 200. 0 17 Westport 200. 0 18 Pre-o x i d i z e d 200.0 19 Pre-o x i d i z e d 200. 0 20 F l o r i d a 200. 0 21 F l o r i d a 200. 0 22 Glenbrook 200. .0 23 Glenbrook 200. .0 24 Westport 200. 0 25 Westport 200.0 26 Westport 200. .0 27 Westport 200. ,0 24.0 0.16 0.55 36.0 0.21 0.48 42.0 0.23 0.45 48.0 0.25 0.43 60.0 0.28 0.38 50.0 0.28 0.38 30.8 0.16 0.55 40.4 0.21 0.48 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.43 48.0 0.25 0.42 48.0 0.25 0.42 48.0 0.25 0.28 48.0 0.25 0.28 48.0 0.27 0.79 48.0 0.27 0.79 - - 0.76 - - 0.76 - - 0.76 - - 0.76 10 250 994 10 250 994 10 250 995 10 250 996 10 250 997 10 250 998 18 250 999 18 250 999 18 250 998 10 500 998 10 500 993 18 500 1006 ^30 500 998 ^30 250 997 18 250 954 18 250 965 18 250 1115 18 250 949 18 250 1049 18 250 950 18 250 1048 18 250 948 18 250 1057 18 800-CO 950 18 800-CO 1000 18 800-CO 1051 18 800-CO 1101 APPENDIX IB Experimental data f o r runs 1-27. Legend f o r Appendix IB xco e x i t gas CO molar f r a c t i o n XC0 2 e x i t gas C0 2 molar f r a c t i o n QOI gas i n f l o w at ambient c o n d i t i o n s Qi gas outflow at SPT WC0 2I ra t e of C0 2 absorption on a s c a r i t e QCOS r a t e of CO generation i n the bed W02S ra t e of weight l o s s as oxygen wcs r a t e of weight l o s s as carbon ws t o t a l r a t e of weight l o s s RUN NUMBER 1 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) - 9 . 5 0 . 0 0 3 0 . 0 5 1 3 2 5 0 . 2 9 1 . 0 . 0 2 9 4 1 . 0 . 0 2 2 0 . 0 0 8 0 . 0 3 0 - 7 . 5 0 . 0 3 0 0 . 0 5 2 4 2 5 0 . 2 9 6 . 0 . 0 3 0 5 9 . 0 . 0 2 9 0 . 0 1 3 0 . 0 4 2 - 5 . 5 0 . 0 8 8 0 . 0 4 3 9 2 5 0 . 3 3 6 . 0 . 0 2 9 0 3 0 . 0 . 0 4 2 0 . 0 2 4 0 . 0 6 6 - 4 . 5 0 . 2 0 6 0 . 0 3 7 9 2 5 0 . 3 7 9 . 0 . 0 2 8 2 7 8 . 0 . 0 7 6 0 . 0 5 0 0 . 1 2 6 - 3 . 5 0 . 2 5 0 0 . 0 3 2 7 2 5 0 . 4 2 7 . o . 0 2 7 5 1 0 7 . 0 . 0 9 6 0 . 0 6 5 0 . 1 6 1 - 1 . 5 0 . 3 8 6 0 . 0 2 6 7 2 5 0 . 4 9 5 . 0 . 0 2 6 0 1 9 1 . 0 . 1 5 5 0 . 1 0 9 0 . 2 6 5 - 0 . 5 0 . 4 0 0 0 . 0 2 6 5 2 5 0 . 4 8 5 . 0 . 0 2 5 2 1 9 4 . 0 . 1 5 7 0 . 1 1 1 0 . 2 6 7 0 . 0 0 . 4 0 3 0 . 0 2 6 8 2 5 0 . 4 7 2 . 0 . 0 2 4 8 1 9 0 . 0 . 1 5 4 0 . 1 0 9 0 . 2 6 3 1 . 5 0 . 4 0 6 0 . 0 2 7 3 2 5 0 . 4 3 8 . 0 . 0 2 3 5 1 7 8 . 0 . 1 4 4 0 . 1 0 2 0 . 2 4 6 3 . 5 0 . 3 8 7 0 . 0 2 4 8 2 5 0 . 4 1 6 . 0 . 0 2 0 3 1 6 1 . 0 . 1 3 0 0 . 0 9 2 0 . 2 2 2 6 . 5 0 . 4 0 3 0 . 0 1 9 9 2 5 0 . 3 9 7 . 0 . 0 1 5 6 1 6 0 . 0 . 1 2 6 0 . 0 9 0 0 . 2 1 6 8 . 5 0 . 3 5 4 0 . 0 1 8 1 2 4 9 . 3 8 6 . 0 . 0 1 3 7 1 3 7 . 0 . 1 0 7 0 . 0 7 7 0 . 1 8 4 1 2 . 0 0 . 3 4 9 0 . 0 1 7 2 2 4 9 . 3 7 8 . 0 . 0 1 2 8 1 3 2 . 0 . 1 0 3 0 . 0 7 4 0 . 1 7 7 1 6 . 1 0 . 3 5 9 0 . 0 1 6 1 2 4 9 . 3 7 6 . 0 . 0 1 1 9 1 3 5 . 0 . 1 0 5 0 . 0 7 6 0 . 1 8 1 1 8 . 8 0 . 4 1 4 0 . 0 1 6 1 2 4 9 . 3 7 3 . 0 . 0 1 1 8 1 5 4 . 0 . 1 1 9 0 . 0 8 6 0 . 2 0 4 2 1 . 5 0 . 3 8 8 0 . 0 1 5 9 2 4 9 . 3 7 1 . 0 . 0 1 1 6 1 4 4 . 0 . 1 1 1 0 . 0 8 0 0 . 1 9 1 2 8 . 5 0 . 3 8 6 0 . 0 1 4 4 2 4 9 . 3 7 8 . 0 . 0 1 0 7 1 4 6 . 0 . 1 1 2 0 . 0 8 1 0 . 1 9 3 3 4 . 5 0 . 3 7 1 0 . 0 1 3 1 2 4 9 . 3 7 4 . 0 . 0 0 9 6 1 3 9 . 0 . 1 0 6 0 . 0 7 7 0 . 1 8 3 4 0 . 5 0 . 3 3 6 0 . 0 1 2 4 2 4 9 . 3 5 6 . 0 . 0 0 8 6 1 2 0 . 0 . 0 9 2 0 . 0 6 6 0 . 1 5 8 5 0 . 5 0 . 3 9 2 0 . 0 1 0 5 2 4 8 . 3 6 3 . 0 . 0 0 7 5 1 4 2 . 0 . 1 0 7 0 . 0 7 8 0 . 1 8 5 6 1 . 5 0 . 3 6 8 0 . 0 0 9 3 2 4 8 . 3 3 6 . 0 . 0 0 6 1 1 2 4 . 0 . 0 9 3 0 . 0 6 8 0 . 1 6 1 7 0 . 8 0 . 3 2 1 0 . 0 0 8 1 2 4 8 . 3 2 8 . 0 . 0 0 5 2 1 0 5 . 0 . 0 7 9 0 . 0 5 8 0 . 1 3 7 8 0 . 5 0 . 2 6 9 0 . 0 0 7 5 2 4 9 . 3 1 5 . 0 . 0 0 4 6 8 5 . 0 . 0 6 4 0 . 0 4 7 0 . 1 1 1 9 1 . 5 0 . 2 4 2 0 . 0 0 6 4 2 4 9 . 3 0 4 . 0 . 0 0 3 8 7 4 . 0 . 0 5 5 0 . 0 4 0 0 . 0 9 6 1 0 3 . 8 0 . 2 2 3 0 . 0 0 5 2 2 4 9 . 3 0 2 . 0 . 0 0 3 1 6 7 . 0 . 0 5 0 0 . 0 3 7 0 . 0 8 7 1 1 9 . 3 0 . 1 8 2 0 . 0 0 3 2 2 5 0 . 2 8 2 . 0 . 0 0 1 8 5 1 . 0 . 0 3 8 0 . 0 2 8 0 . 0 6 6 00 RUN NUMBER 2 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -7. 0 0. 012 0. 0510 250. 306. 0. 0307 4. 0. 025 0. 010 0. 035 -5. 0 0. 082 0. 0402 250. 349. 0. 0276 29. 0. 041 0. 023 0. 063 -3. 0 0. 270 0. 0249 250. 502. 0. 0245 136. 0. 115 0. 079 0. 194 -2. 0 0. 370 0. 0201 250. 583. 0. 0230 216. 0. 171 0. 122 0. 293 0. 0 0. 484 0. 0195 250. 52 0. 0. 0199 252. 0. 194 0. 140 0. 334 1. 5 0. 438 0. 0180 250. 497. 0. 0176 218. 0. 168 0. 121 0. 290 2. 5 0. 455 0. 0172 250. 484. 0. 0164 220. 0. 169 0. 122 0. 291 3. 0 0. 438 0. 0170 250. 477. 0. 0159 209. 0. 161 0. 116 0. 277 4. 0 0. 429 0. 0164 250. 464. 0. 0150 199. 0. 153 0. 111 0. 264 6. 5 0. 422 0. 0143 250. 448. 0. 0126 189. 0. 144 0. 105 0. 249 8. 5 0. 415 0. 0131 250. 447. 0. 0115 186. 0. 141 0. 103 0. 243 11. 5 0. 436 0. 0125 249. 447. 0. 0110 195. 0. 147 0. 107 0. 254 13. 5 0. 440 0. 0121 249. 445. 0. 0106 196. 0. 148 0. 108 0. 255 16. 0 0. 437 0. 0118 249. 442. 0. 0102 193. 0. 145 0. 106 0. 251 18. 5 0. 427 0. 0117 249. 430. 0. 0098 184. 0. 138 0. 101 0. 239 21. 5 0. 420 0. 0113 249. 424. 0. 0094 178. 0. 134 0. 098 0. 232 23. 0 0. 412 0. 0111 249. 421. 0. 0092 174. 0. 131 0. 095 0. 226 28. 0 0. 406 ' 0. 0108 249. 405. 0. 0086 165. 0. 124 0. 090 0. 214 34. 0 0. 399 0. 0103 249. 397. 0. 0080 158. 0. 119 0. 087 0. 206 40. 5 0. 379 0. 0098 249. 381. 0. 0073 145. 0. 109 0. 079 0. 188 51. 5 0. 350 0. 0086 248. 352. 0. 0059 123. 0. 092 0. 068 0. 160 61. 0 0. 317 0. 0081 248. 323. 0. 0051 102. 0. 077 0. 056 0. 133 71. 5 0. 309 0. 0067 247. 329. 0. 0043 102. 0. 076 0. 056 0. 131 80. 5 0. 302 0. 0060 247. 321. 0. 0038 97. 0. 072 0. 053 0. 125 92. 5 0. 250 0. 0048 246. 303. 0. 0029 76. 0. 056 0. 041 0. 098 101. 0 0. 240 0. 0040 246. 295. 0. 0023 71. 0. 052 0. 039 0. 091 107. 3 0. 214 0. 0036 245. 284. 0. 0020 61. 0. 045 0. 033 0. 078 119. 5 0. 177 0. 0024 245. 262. 0. 0012 46. 0. 034 0. 025 0. 059 O RUN NUMBER 3 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -10. 0 0. 0 0. 0375 248. 297. 0. 0219 0. 0. 016 0. 006 0. 022 -8. 0 0. 015 0. 0402 248. 304. 0. 0240 5. 0. 021 0. 009 0. 030 -6. 5 0. 072 0. 0387 248. 336. 0. 0256 24. 0. 036 0. 020 0. 056 -5. 0 0. 175 0. 0360 248. 384. 0. 0271 67. 0. 068 0. 043 0. 111 -4. 0 0. 263 0. 0343 248. 418. 0. 0282 110. 0. 099 0. 067 0. 165 -3. 0 0. 339 0. 0330 248. 451. 0. 0292 153. 0. 131 0. 090 0. 220 -2. 0 0. 362 0. 0339 248. 455. 0. 0303 165. 0. 140 0. 096 0. 236 -1. 0 0. 402 0. 0355 248. 449. 0. 0313 180. 0. 152 0. 105 0. 257 0. 0 0. 415 0. 0373 248. 442. 0. 0324 184. 0. 155 0. 107 0. 262 i . 0 0. 430 0. 0369 248. 428. 0. 0310 184. 0. 154 • 0. 107 0. 261 3. 0 0. 444 0. 0319 248. 427. 0. 0267 189. 0. 155 0. 109 0. 263 7. 0 0. 454 0. 0211 248. 435. 0. 0180 197. 0. 154 0. 111 0. 265 11. 0 0. 464 0. 0179 248. 425. 0. 0149 197. 0. 152 0. 110 0. 261 15. 0 0. 444 0. 0153 248. 418. 0. 0126 186. 0. 142 0. 103 0. 245 19. 5 0. 444 0. 0150 248. 419. 0. 0123 186. 0. 142 0. 103 0. 245 23. 0 0. 457 0. 0146 248. 421. 0. 0121 193. 0. 146 0. 106 0. 253 27. 5 0. 431 0. 0140 248. 427. 0. 0117 184. 0. 140 0. 102 0. 242 31. 5 0. 431 0. 0145 248. 395. 0. 0112 170. 0. 130 0. 094 0. 224 35. 0 0. 425 0. 0140 248. 395. 0. 0108 168. 0. 128 0. 093 0. 221 39. 0 0. 435 0. 0134 248. 395. 0. 0104 172. 0. 130 0. 095 0. 225 44. 0 0. 415 0. 0135 249. 382. 0. 0101 159. 0. 121 0. 088 0. 208 48. 5 0. 408 0. 0133 250. 376. 0. 0098 153. 0. 117 0. 085 0. 201 52. 0 0. 388 0. 0130 251. 375. 0. 0096 146. 0. 111 0. 081 0. 191 56. 5 0. 399 0. 0124 253. 375. 0. 0091 150. 0. 113 0. 083 0. 196 60. 0 0. 392 0. 0117 253. 378. 0. 0087 148. 0. 112 0. 082 0. 194 64. 0 0. 399 0. 0111 255. 374. 0. 0082 149. 0. 112 0. 082 0.195 69. 5 0. 388 0. 0113 256. 352. 0. 0078 136. 0. 103 0. 075 0. 178 73. 5 0. 408 0. 0114 257. 360. 0. 0080 147. 0. 111 0. 081 0. 191 77. 0 0. 454 0. 0112 258. 374. 0. 0082 170. 0. 127 0. 093 0. 220 81. 0 0. 451 0. 0123 259. 350. 0. 0085 158. 0. 119 0. 087 0. 206 86. 5 0. 379 0. 0124 260. 327. 0. 0080 124. 0. 094 0. 068 0. 163 90. 0 0. 369 0. 0115 260. 326. 0. 0074 120. 0. 091 0. 066 0. 158 94. 5 0. 322 0. 0105 260. 322. 0. 0066 104. 0. 079 0. 057 0. 136 99. 0 0. 316 0. 0097 260. 318. 0. 0061 100. 0. 076 0. 055 0. 131 103. 5 0. 306 0. 0094 260. 316. 0. 0058 97. 0. 073 0. 053 0. 127 108. 0 0. 309 0. 0090 260. 317. 0. 0056 98. 0. 074 0. 054 0. 128 112. 0 0. 296 0. 0087 260. 316. 0. 0054 93. 0. 071 0. 052 0. 122 116. 0 0. 289 0. 0072 260. 315. 0. 0044 91. 0. 068 0. 050 0. 118 120. 0 0. 286 0. 0054 260. 315. 0. 0034 90. 0. 067 0. 049 0. 116 RUN NUMBER 4 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -7. 0 0. 022 0. 0421 248. 280. 0. 0232 6. 0. 021 0. 010 0. 031 -6. 0 0. 049 0. 0349 247. 308. 0. 0211 15. 0. 026 0. 014 0. 040 -3. 5 0. 247 0. 0231 247. 422. 0. 0192 104. 0. 088 0. 061 0. 150 -2. 5 0. 331 0. 0197 246. 475. 0. 0184 157. 0. 126 0. 089 0. 215 -1. 5 0. 377 0. 0167 246. 540. 0. 0177 204. 0. 158 0. 114 0. 272 -0. 5 0. 459 0. 0148 246. 581. 0. 0169 267. 0. 203 0. 147 0. 350 1. 0 0. 449 0. 0152 245. 527. 0. 0157 236. 0. 180 0. 131 0. 311 3. 0 0. 415 0. 0160 245. 454. 0. 0142 188. 0. 145 0. 105 0. 249 4. 0 0. 404 0. 0160 244. 432. 0. 0136 175. 0. 135 0. 097 0. 232 6. 0 0. 405 0. 0147 244. 427. 0. 0124 173. 0. 132 ' 0. 096 0. 228 8. 5 0. 419 0. 0136 243. 427. 0. 0114 179. 0. 136 0. 099 0. 235 11. 3 0. 428 0. 0137 242. 428. 0. 0115 183. 0. 139 0. 101 0. 240 14. 5 0. 433 0. 0137 241. 431. 0. 0116 187. 0. 142 0. 103 0. 245 17. 5 0. 446 0. 0135 240. 436. 0. 0116 195. 0. 147 0. 107 0. 255 21. 5 0. 457 0. 0135 241. 440. 0. 0116 201. 0. 152 0. 111 0. 263 27. 5 0. 475 0. 0123 241. 447. 0. 0108 212. 0. 159 0. 116 0. 276 35. 0 0. 401 0. 0106 242. 403. 0. 0084 161. 0. 121 0. 089 0. 210 41. 5 0. 437 0. 0087 243. 420. 0. 0072 184. 0. 136 0. 100 0. 237 47. 3 0. 408 0. 0083 244. 407. 0. 0066 166. 0. 123 0. 091 0. 214 57. 5 0. 392 0. 0078 246. 397. 0. 0061 156. 0. 116 0. 085 0. 201 65. 5 0. 391 0. 0077 247. 396. 0. 0060 155. 0. 115 0. 084 0. 199 72. 5 0. 389 0. 0077 248. 389. 0. 0058 151. 0. 112 0. 083 0. 195 82. 0 0. 394 0. 0073 249. 386. 0. 0056 152. 0. 113 0. 083 0. 196 92. 5 0. 317 0. 0073 251. 348. 0. 0050 110. 0. 082 0. 060 0. 143 100. 5 0. 290 0. 0061 252. 338. 0. 0040 98. 0. 073 0. 054 0. 127 108. 8 0. 250 0. 0036 253. 314. 0. 0022 78. 0. 058 0. 043 0. 100 119. 5 0. 261 0. 0019 254. 313. 0. 0012 82. 0. 059 0. 044 0. 103 RUN NUMBER 5 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -8. 5 0. 041 0. 0209 244. 311. 0. 0128 13. 0. 018 0. 010 0. 029 -6. 5 0. 154 0. 0176 244. 386. 0. 0134 59. 0. 052 0. 035 0. 088 -3. 5 0. 363 0. 0143 244. 505. 0. 0143 183. 0. 141 0. 102 0. 243 -2. 5 0. 424 0. 0135 244. 549. 0. 0145 233. 0. 177 0. 129 0. 305 -1. 5 0. 482 0. 0125 244. 603. 0. 0148 291. 0. 218 0. 160 0. 378 0. 0 0. 565 0. 0125 244. 622. 0. 0153 351. 0. 262 0. 192 0. 454 1. 0 0. 541 0. 0131 244. 604. 0. 0156 327. 0. 244 0. 179 0. 424 2. 0 0. 528 0. 0145 244. 558. 0. 0159 ~ 295. 0. 222 0. 162 0. 384 3. 0 0. 521 0. 0155 244. 535. 0. 0163 279. 0. 211 0. 154 0. 364 4. 0 0. 515 0. 0164 244. 518. 0. 0167 267. 0. 203 0. 147 0. 350 5. 5 0. 498 0. 0173 244. 507. 0. 0172 252. 0. 193 0. 140 0. 333 8. 0 0. 512 0. 0183 244. 507. 0. 0182 260. 0. 199 0. 144 0. 342 10. 5 0. 516 0. 0176 244. 519. 0. 0180 268. 0. 204 0. 148 0. 352 13. 0 0. 555 0. 0170 244. 531. 0. 0177 295. 0. 223 0. 163 0. 386 16. 0 0. 541 0. 0168 244. 521. 0. 0172 282. 0. 214 0. 156 0. 369 19. 3 0. 555 0. 0158 244. 520. 0. 0161 288. 0. 218 0. 159 0. 376 23. 0 0. 531 0. 0151 244. 497. 0. 0148 264. 0. 199 0. 145 0. 344 29. 0 0. 498 0. 0141 244. 464. 0. 0129 231. 0. 174 0. 127 0. 301 34. 0 0. 499 0. 0129 244. 446. 0. 0113 222. 0. 167 0. 122 0. 289 42. 0 0. 465 0. 0118 244. 408. 0. 0095 190. 0. 142 0. 104 0. 246 46. 3 0. 434 0. 0112 244. 397. 0. 0087 172. 0. 129 0. 095 0. 224 54. 0 0. 434 0. 0096 244 . 395. 0. 0075 171. 0. 128 0. 094 0. 222 59. 0 0. 415 0. 0090 244. 385. 0. 0068 160. 0. 119 0. 087 0. 206 76. 0 0. 350 0. 0073 244. 348. 0. 0050 122. 0. 091 0. 067 0. 157 82. 0 0. 346 0. 0066 245. 346. 0. 0045 120. 0. 089 0. 065 0. 154 87. 0 0. 343 0. 0061 245. 334. 0. 0040 115. 0. 085 0. 062 0. 147 101. 0 0. 238 0. 0051 246. 295. 0. 0030 70. 0. 052 0. 038 0. 091 110. 0 0. 218 0. 0043 247. 293. 0. 0025 64. 0. 047 0. 035 0. 082 114. 0 0. 228 0. 0038 247. 294. 0. 0022 67. 0. 049 0. 036 0. 086 120. 0 0. 218 0. 0031 248. 257. 0. 0016 56. 0. 041 0. 030 0. 071 RUN NUMBER 6 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS ( M I N> (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -10 -8, -7, -6. -5. -4. -2. -1. 0.0 1.0 2.5 3.5 5. 6. 7, 10. 12.0 14. 5 16.0 18.5 22.0 26.0 29.0 30.0 34.0 38.5 46.0 49. 5 53.0 56.5 60.0 62.0 63. 5 72.5 77.0 80.5 84. 5 88. 0 93.0 96. 5 100.0 104.0 107.0 111.0 114.5 120. 0 0.0 0. 012 0. 044 0. 093 0. 174 0. 236 0. 334 0. 394 0. 462 0. 464 0.448 0.430 0.413 0.410 0. 400 0. 408 0. 403 0. 392 0. 400 0. 441 0. 456 0. 422 0. 421 0.435 0. 389 0. 388 0. 338 332 0. 353 0. 350 0. 359 0. 356 0. 362 0. 337 0. 330 0. 327 0. 324 0. 308 0. 285 0. 277 0. 266 0. 242 0. 239 0. 245 0. 220 0. 233 0 0.0036 0.0175 0.0240 0.0312 0.0310 0.0270 0.0192 0.0166 0.0154 0.0151 0.0152 0.0152 0.0145 0.0132 0. 0123 0. 0117 0. 0112 0. 0104 0. 0099 0. 0093 0.0086 0.0079 0. 0074 0.0073 0.0069 0.0063 0.0064 0.0062 0.0060 0.0061 0.0062 0.0063 0.0063 0.0069 0.0069 0.0067 0.0065 0.0062 0.0055 0.0050 0.0050 0.0050 0.0050 0.0049 0.0045 0.0034 240. 240. 240. 240. 240. 240. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 241. 242. 242. 242. 242. 242. 242. 243. 243. 243. 243. 244. 244. 244. 244. 244. 245. 245. 245. 246. 246. 246. 246. 247. 247. 247. 247. 248. 248. 302. 315. 321. 353. 382. 416. 524. 570. 576. 546. 494. 462. 437. 424. 415. 403. 403. 402. 407. 416. 415. 413. 409. 403. 376. 362. 341. 34 3. 349. 352. 354. 356. 358. 333. 333. 335. 330. 321. 316. 313. 307. 304. 302. 303. 300. 290. 0.0022 0.0108 0.0152 0. 0217 0.0232 0.0221 0.0197 0. 0185 0.0174 0.0162 0.0148 0.0138 0.0124 0.0110 0.0100 0.0093 0.0089 0.0082 0.0079 0.0076 0.0070 0.0064 0.0059 0.0058 0.0051 0.0045 0.0043 0.0042 0.0041 0.0042 0.0043 0.0044 0.0045 0.0045 0.0045 0.0044 0.0042 0.0039 0.0034% 0. 0031 0.0030 0.0030 0.0030 0.0029 0.0027 0.0019 0. 4. 14. 33. 66. 98. 175. 224. 266. 253. 221. 199. 180. 174. 166. 164. 162. 158. 163. 183. 189. 174. 172. 175. 146. 141. 115. 114. 123. 123. 127. 127. 130. 112. 110. 109. 107. 99. 90. 87. 82. 74. 72. 74. 66. 68. 0.002 0. Oil 0.021 0. 039 0.064 0.086 0.139 0.174 0. 203 0. 193 0.169 0.152 0.138 0.132 0.126 0.124 0.122 0.118 0.122 0.136 0.140 0.129 0.127 0.129 0.108 0.104 0.085 0. 084 0.091 0. 091 0.094 0. 094 0.096 0.084 0.082 0. 081 0.079 0.073 0. 067 0.064 0. 060 0.055 0. 054 ' 0.055 0. 049 0.050 0. 001 0. 005 0. 012 0.023 0. 042 0.059 0. 099 0.125 0.147 ' 0.140 0.122 0.110 0.100 0. 096 0. 092 0. 091 0. 089 0. 087 0. 089 0. 100 0.103 0.095 0. 094 0.096 0. 080 0.077 0. 063 0.062 0. 067 0.067 0. 069 0.069 0. 071 0.061 0.060 0. 060 0.058 0. 054 0.049 0.047 0.044 0.040 0.039 0. 041 0.036 0. 037 0.002 0.016 0.033 0. 063 0.106 0.145 0. 238 0. 299 0. 350 0. 333 0. 291 0. 262 0. 238 0. 228 0. 217 0. 215 0. 211 0. 205 0. 211 0. 237 0. 243 0. 224 0. 221 0. 225 0. 188 0.180 0.148 0.147 0. 158 0.158 0.163 0.163 0. 166 0.145 0.142 0.141 0.138 127 0.116 0.111 0.105 0. 095 0.093 0. 096 0.085 0. 086 0 RUN NUMBER 7 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -13. 0 0. 0 0. 0073 248. 286. 0.0041 0. 0.003 0.001 0. 004 -9. 0 0. 009 0. 0334 248. 313. 0.0205 3. 0.017 0.007 0.024 -7. 5 0. 039 0. 0388 248. 330. 0.0252 13. 0.027 0. 014 0.041 -5. 5 0. 178 0. 0306 248. 419. 0.0252 75. 0.072 0.047 0.118 -4. 5 0. 236 0. 0271 248. 474. 0.0252 112. 0.098 0.067 0.165 -3. 5 0. 305 0. 0250 248. 512. 0.0252 156. 0.130 0.090 0. 220 -2. 0 0. 382 0. 0234 248. 548. 0.0252 209. 0.168 0.119 0. 287 -1. 0 0. 410 0. 0224 248. 572. 0.0252 234. 0.186 0.132 0. 318 0. 0 0. 475 0. 0220 248. 585. 0.0252 278. 0. 217 0.156 0. 372 2. 0 0. 563 0. 0222 248. 574. 0.0251 323. 0.249 0.180 0.429 5. 0 0. 537 0. 0209 248. 592. 0.0243 318. 0.245 0.177 0. 421 6. 0 0. 584 0. 0200 248. 611. 0.0240 357. 0.272 0.198 0. 470 10. 0 0. 625 0. 0182 248. 624. 0.0223 390. 0.295 0.215 0. 510 14. 0 0. 604 0. 0169 248. 591. 0.0196 357. 0. 269 0.196 0.465 17. 5 0. 595 0. 0161 248. 546. 0.0173 325. 0. 244 0.179 0.423 21. 0 0. 547 0. 0151 248. 508. 0.0151 278. 0.209 0.153 0. 362 24. 5 0. 554 0. 0138 248. 475. 0.0129 263. 0.197 0.144 0. 342 27. 5 0. 512 0. 0135 248. 437. 0.0116 224. 0.168 0.123 0.291 31. 5 0. 450 0. 0129 248. 394. 0.0100 178. 0.134 0.098 0. 232 35. 0 0. 434 0. 0114 248. 386. 0.0086 168. 0.126 0. 092 0.218 38. 5 0. 434 0. 0101 248. 380. 0.0075 165. 0.123 0.090 0. 214 42. 0 0. 420 0. 0095 248. 382. 0.0071 160. 0.120 0.088 0. 207 45. 5 0. 415 0. 0091 248. 380. 0.0068 158. 0.117 0. 086 0. 204 51. 0 0. 401 0. 0085 248. 369. 0.0062 148. 0.110 0.081 0.191 54. 5 0. 386 0. 0082 248. 361. 0.0058 139. 0.104 0.076 0.180 57. 5 0. 370 0. 0079 248. 358. 0.0056 132. 0.098 0.072 0.171 61. 0 0. 379 0. 0075 248. 358. 0.0053 136. 0.101 0.074 0.175 64. 0 0. 374 0. 0072 248. 356. 0.0050 133. 0.099 0.073 0.171 70. 5 0. 350 0. 0067 248. 350. 0.0046 122. 0.091 0.067 0.157 74. 0 0. 349 0. 0065 248. 346. 0.0044 121. 0.089 0. 066 0.155 77. 0 0. 344 0. 0063 248. 343. 0.0043 118. 0.087 0. 064 0.152 80. 0 0. 337 0. 0062 248. 340. 0.0041 115. 0.085 0.062 0.147 84. 0 0. 324 0. 0059 248. 338. 0.0039 109. 0.081 0.060 0.141 87. 5 0. 320 0. 0058 248. 333. 0.0038 106. 0. 079 0.058 0.137 91. 0 0. 312 0. 0056 248. 329. 0.0036 103. 0.076 0.056 0. 132 95. 5 0. 307 0. 0052 248. 326. 0.0034 100. 0.074 0.054 0.128 99. 0 0. 302 0. 0050 248. 323. 0.0032 97. 0.072 0.053 0.125 102. 5 0. 288 0. 0048 248. 319. 0.0030 92. 0.068 0.050 0.118 108. 5 0. 272 0. 0043 248. 308. 0.0026 84. 0. 062 0.046 0.107 112. 5 0. 252 0. 0040 248. 302. 0.0024 76. 0.056 0.041 0. 097 116. 0 0. 241 0. 0035 248. 298. 0.0021 72. 0.053 0.039 0.092 120. 0 0. 228 0. 0032 248. 265. 0.0017 60. 0.044 0.033 0. 077 RUN NUMBER 8 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS < M I N) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -11.5 0. 004 0.0158 252. 298. -8.0 0. 067 0.0358 252. 347. -5.0 0. 238 0.0278 252. 434. -1.5 0.431 0.0209 252. 559. 2.5 0. 526 0.0180 252. 618. 6.0 0. 561 0.0173 252. 615. 9.5 0. 563 0.0157 252. 589. 13.5 0. 564 0.0134 252. 531. 17.0 0. 535 0.0125 252. 468. 20.5 0. 497 0.0119 252. 436. 24.0 0.481 0.0110 252. 429. 27. 5 0. 474 0.0102 252. 436. 32.0 0. 481 0.0093 252. 445. 35. 5 0. 490 0.0089 252. 442. 39.0 0. 487 0.0086 252. 440. 42.5 0. 500 0.0080 252. 435. 46.0 0. 476 0.0074 252. 421. 49. 5 0.453 0.0069 252. 405. 53.0 0. 426 0.0064 252. 391. 56.0 0. 406 0.0063 252. 378. 59.5 0. 404 0.0060 252. 376. 63.0 0. 398 0.0058 252. 372. 66.0 0. 378 0.0055 252. 373. 69.5 0. 403 0.0052 252. 375. 72.5 0. 384 0.0051 252. 374. 76.5 0. 386 0.0050 252. 368. 80.0 0. 365 0.0049 252. 361. 83.5 0. 364 0.0048 253. 350. 87.0 0. 336 0.0047 253. 346. 90. 0 0. 345 0.0045 253. 351. 94.0 0. 342 0.0044 253. 348. 101. 5 0. 330 0.0041 254. 336. 104. 5 0. 313 0.0040 254. 327. 108. 0 0. 300 0.0037 254. 322. 111.5 0. 288 0.0035 254. 319. 115.0 0. 280 0.0030 255. 319. 120.0 0. 272 0.0025 255. 285. 0.0092 1. 0.008 0.003 0. Oil 0.0244 23. 0.034 0.019 0. 053 0.0237 103. 0. 091 0.062 0.153 0.0230 241. 0.189 0.135 0.324 0.0219 325. 0.248 0.180 0.428 0.0209 345. 0. 261 0.190 0.452 0.0181 331. 0. 250 0.182 0.432 0.0140 300. 0. 224 0.164 0. 388 0.0115 250. 0.187 0.137 0.324 0.0102 217. 0.162. 0.119 0. 281 0.0093 206. 0.154 0.113 0. 267 0.0087 207. 0.154 0.113 0. 267 0.0081 214. 0.159 0.117 0. 275 0.0077 217. 0.160 0.118 0. 278 0.0074 214. 0.158 0.117 0. 275 0.0068 217. 0.160 0.118 0. 278 0.0062 200. 0.147 0.109 0. 256 0.0055 184. 0.135 0.100 0. 235 0.0049 167. 0.123 0. 091 0.213 0.0047 153. 0.113 0.083 0.196 0.0045 152. 0.112 0.082 0.194 0.0042 148. 0.109 0.080 0.189 0.0040 141. 0.104 0. 077 0.180 0.0039 151. 0.111 0.082 0.193 0.0037 144. 0.105 0. 078 0.183 0.0036 142. 0.104 0.077 0.181 0.0034 132. 0.097 0.071 0.168 0.0033 127. 0. 093 0.069 0.163 0.0032 116. 0.085 0.063 0.148 0.0031 121. 0. 089 0. 066 0.154 0.0030 119. 0.087 0.064 0.152 0. 0027 111. 0.081 0. 060 0.141 0.0025 102. 0.075 0.055 0.130 0.0024 97. 0.071 0.052 0.123 0.0022 92. 0. 067 0. 050 0.117 0.0019 89. 0.065 0. 048 0.114 0.0014 77. 0. 056 0. 042 0.098 ON RUN NUMBER 9 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -5. 5 0. 134 0. 0293 252. 366. 0. 0211 49. 0. 050 0. 032 0. 082 -4. 0 0. 234 0. 0228 251. 447. 0. 0200 105. 0. 089 0. 061 0. 151 -2. 5 0. 378 0. 0174 250. 550. 0. 0189 208. 0. 162 0. 117 0. 279 -0. 5 0. 528 0. 0166 250. 532. 0. 0174 281. 0. 213 0. 155 0. 368 0. 6 0. 523 0. 0171 250. 493. 0. 0165 2 58. 0. 196 0. 143 0. 339 3. 5 0. 465 0. 0158 250. 462. 0. 0144 215. 0. 164 0. 119 0. 282 6. 0 0. 479 0. 0146 250. 459. 0. 0132 220. 0. 166 0. 121 0. 288 9. 0 0. 472 0. 0145 250. 458. 0. 0130 216. 0. 164 0. 119 0. 283 11. 5 0. 479 0. 0146 251. 450. 0. 0129 216. 0. 163 0. 119 0. 282 14. 5 0. 462 0. 0144 251 . 448. 0. 0127 207. 0. 157 0. 115 0. 272 18. 5 0. 464 0. 0147 252. 438. 0. 0126 203. 0. 154 0. 112 0. 266 22. 5 0. 473 0. 0148 252. 431. 0. 0125 204. 0. 155 0. 113 0. 267 26. 5 0. 477 0. 0146 252. 434. 0. 0125 207. 0. 157 0. 114 0. 271 27. 5 0. 467 0. 0145 252. 437. 0. 0125 204. 0. 155 0. 113 0. 268 33. 5 0. 494 0. 0140 252. 453. 0. 0124 224. 0. 169 0. 123 0. 292 38. 5 0. 474 0. 0136 252. 438. 0. 0117 208. 0. 157 0. 114 0. 271 47. 5 0. 481 0. 0119 252. 431. 0. 0101 207. 0. 155 0. 114 0. 269 52. 5 0. 486 0. 0116 252. 418. 0. 0095 203. . 0. 152 0. 111 0. 263 61. 5 0. 460 0. 0102 252. 393. 0. 0079 181. 0. 135 0. 099 0. 234 69. 0 0. 391 0. 0091 252. 367. 0. 0066 143. 0. 107 0. 079 0. 186 77. 5 0. 364 0. 0083 252. 345. 0. 0056 125. 0. 094 0. 069 0. 162 88. 0 0. 362 0. 0081 252. 332. 0. 0053 120. 0. 090 0. 066 0. 156 97. 5 0. 285 0. 0069 252. 297. 0. 0040 85. 0. 063 0. 046 0. 110 107. 5 0. 273 0. 0060 252. 294. 0. 0035 80. 0. 060 0. 044 0. 104 118. 5 0. 256 0. 0050 252. 289. 0. 0029 74. 0. 055 0. 040 0. 095 RUN NUMBER 10 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -8. 0 0. 008 0. 0080 530. 529. 0. 0083 4. 0. 009 0. 005 0. 014 -6. 0 0. 067 0. 0085 530. 592. 0. 0099 40. 0. 036 0. 024 0. 059 -4. 0 0. 201 0. 0069 530. 696. 0. 0094 140. 0. 107 0. 078 0. 184 -3. 0 0. 257 0. 0061 530. 770. 0. 0092 198. 0. 148 0. 108 0. 256 -2. 0 0. 285 0. 0054 530. 843. 0. 0090 240. 0. 178 0. 131 0. 309 -1. 0 0. 373 0. 0055 530. 812. 0. 0087 303. 0. 223 0. 165 0. 387 0. 0 0. 382 0. 0055 530. 781. 0. 0085 298. 0. 219 0. 162 0. 381 1. 5 0. 338 0. 0056 530. 734. 0. 0081 248. 0. 183 0. 135 0. 318 3. 5 0. 289 0. 0057 530. 681. 0. 0076 197. 0. 146 0. 108 0. 254 5. 5 0. 275 0. 0055 530. 660. 0. 0071 182. 0. 135 0. 099 0. 234 7. 5 0. 278 0. 0052 530. 662. 0. 0067 184. 0. 136 0. 100 0. 237 9. 5 0. 285 0. 0049 530. 666. 0. 0064 190. 0. 140 0. 104 0. 244 12. 5 0. 288 0. 0045 530. 675. 0. 0059 194. 0. 143 0. 105 0. 248 15. 5 0. 286 0. 0042 530. 669. 0. 0055 192. 0. 141 0. 104 0. 245 18. 5 0. 290 0. 0041 530. 665. 0. 0054 193. 0. 142 0. 105 0. 246 21. 5 0. 284 0. 0040 530. 663. 0. 0053 188. 0. 138 0. 102 0. 241 24. 5 0. 295 0. 0040 530. 659. 0. 0051 195. 0. 143 0. 106 0. 249 28. 5 0. 271 0. 0044 530. 632. 0. 0055 171. 0. 126 0. 093 0. 219 33. 5 0. 274 0. 0048 530. 629. 0. 0060 172. 0. 127 0. 094 0. 221 39. 5 0. 277 0. 0051 530. 650. 0. 0065 180. 0. 133 0. 098 0. 231 46. 0 0. 503 0. 0052 530. 674. 0. 0069 339. 0. 247 0. 183 0. 430 54. 5 0. 308 0. 0045 530. 668. 0. 0059 206. 0. 151 0. 112 0. 263 62. 5 0. 294 0. 0040 530. 652. 0. 0051 191. 0. 140 0. 104 0. 244 VO 00 RUN NUMBER 11 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -8. 5 0. 008 0. 0074 498. 523. 0. 0076 4. 0. 008 0. 004 0. 013 -6. 5 0. 062 0. 0164 490. 563. 0. 0181 35. 0. 038 0. 024 0. 062" -5. 0 0. 142 0. 0138 487. 628. 0. 0171 89. 0. 076 0. 052 0. 128 -3. 0 0. 250 0. 0104 484. 771. 0. 0157 193. 0. 149 0. 107 0. 256 -1. 5 0. 347 0. 0089 482. 841. 0. 0147 292. 0. 219 0. 160 0. 379 -0. 5 0. 369 0. 0086 480. 832. 0. 0140 307. 0. 229 0. 168 0. 397 0. 5 0. 353 0. 0087 479. 782. 0. 0134 276. 0. 207 0. 151 0. 358 1. 5 0. 328 0. 0089 478. 729. 0. 0127 239. 0. 180 0. 131 0. 311 2. 5 0. 306 0. 0089 478. 689. 0. 0120 211. 0. 159 . 0. 116 0. 276 3. 5 0. 294 0. 0085 479. 677. 0. 0113 199. 0. 150 0. 110 0. 260 5. 5 0. 303 0. 0076 479. 671. 0. 0100 203. 0. 152 0. 112 0. 264 8. 5 0. 302 0. 0069 480. 665. 0. 0091 200. 0. 150 0. 110 0. 259 12. 0 0. 300 0. 0062 481. 656. 0. 0079 197. 0. 146 0. 108 0. 254 15. 5 0. 293 0. 0055 482. 646. 0. 0069 189. 0. 140 0. 103 0. 243 18. 0 0. 295 0. 0052 483. 643. 0. 0065 190. 0. 140 0. 104 0. 244 21. 5 0. 284 0. 0047 485. 641. 0. 0059 182. 0. 134 0. 099 0. 233 27. 5 0. 275 0. 0044 488. 631. 0. 0054 174. 0. 128 0. 094 0. 222 34. 5 0. 294 0. 0045 488. 633. 0. 0055 186. 0. 137 0. 101 0. 238 44. 5 0. 260 0. 0015 487. 595. 0. 0018 154. 0. 112 0. 083 0. 195 48. 5 0. 256 0. 0017 487. 587. 0. 0020 150. 0. 109 0. 081 0. 190 56. 5 0. 248 0. 0024 486. 583. 0. 0027 145. 0. 105 0. 078 0. 184 65. 5 0. 210 0. 0023 485. 573. 0. 0026 120. 0. 088 0. 065 0. 153 73. 5 0. 221 0. 0023 485. 574. 0. 0026 127. 0. 093 0. 069 0. 161 84. 5 0. 211 0. 0024 486. 557. 0. 0027 118. 0. 086 0. 064 0. 150 92. 5 0. 201 0. 0022 487. 550. 0. 0024 111. 0. 081 0. 060 0. 141 106. 5 0. 150 0. 0020 488. 522. 0. 0020 78. 0. 057 0. 042 0. 100 119. 5 0. 165 0. 0014 490. 531. 0. 0014 88. 0. 064 0. 047 0. 111 VO RUN NUMBER 12 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -6. 0 0. 097 0. 0092 494. 542. 0. 0098 53. 0. 045 0. 031 0. 075 -5. 0 0. 147 0. 0088 494. 600. 0. 0104 88. 0. 071 0. 050 0. 121 -3. 5 0. 215 0. 0082 494. 699. 0. 0113 150. 0. 115 0. 084 0. 199 -2. 5 0. 251 0. 0078 494. 771. 0. 0118 194. 0. 147 0. 107 0. 254 -1. 0 0. 374 0. 0077 495. 841. 0. 0127 315. 0. 234 0. 172 0. 406 0. 0 0. 360 0. 0083 495. 819. 0. 0133 295. 0. 220 0. 161 0. 382 0. 5 0. 362 0. 0088 495. 787. 0. C136 285. 0. 213 0. 156 0. 369 1. 5 0. 329 0. 0099 495. 731. 0. 0142 240. 0. 182 0. 133 0. 314 2. 5 0. 304 0. 0099 495. 695. 0. 0135 211 . 0. 161 0. 117 0. 277 4. 0 0. 294 0. 0094 495. 672. 0. 0124 197. 0. 150 . 0. 109 0. 259 6. 5 0. 300 0. 0081 495. 671. 0. 0106 201. 0. 151 0. 111 0. 262 9. 0 0. 308 0. 0073 495. 674. 0. 0096 208. 0. 155 0. 114 0. 269 11. 5 0. 339 0. 0069 496. 677. 0. 0092 229. 0. 170 0. 125 0. 296 14. 5 0. 324 0. 0065 496. 678. 0. 0086 220. 0. 163 0. 120 0. 283 18. 3 0. 316 0. 0060 496. 674. 0. 0080 213. 0. 157 0. 116 0. 273 21. 5 0. 328 0. 0056 496. 669. 0. 0074 219. 0. 162 0. 119 0. 281 27. 5 0. 308 0. 0049 497. 655. 0. 0063 202. 0. 149 0. 110 0. 259 35. 0 0. 288 0. 0037 497. 640. 0. 0047 184. 0. 135 0. 100 0. 234 41. 5 0. 238 0. 0032 498. 592. 0. 0037 141. 0. 103 0. 076 0. 179 48. 5 0. 215 0. 0026 498. 575. 0. 0029 123. 0. 090 0. 067 0. 157 56. 5 0. 229 0. 0020 499. 584. 0. 0023 133. 0. 097 0. 072 0. 169 65. 0 0. 195 0. 0013 499. 565. 0. 0015 110. 0. 080 0. 059 0. 139 72. 5 0. 170 0. 0011 500. 560. 0. 0012 95. 0. 069 0. 051 0. 120 85. 5 0. 156 0. 0010 501. 544. 0. 0011 85. 0. 061 0. 046 0. 107 93. 5 0. 149 0. 0010 502. 537. 0. 0010 80. 0. 058 0. 043 0. 101 105. 0 0. 132 0. 0009 502. 526. 0. 0009 69. 0. 050 0. 037 0. 087 119. 5 0. 127 0. 0005 503. 523. 0. 0005 67. 0. 048 0. 036 0. 084 o o RUN NUMBER 13 TIME XCO XC02 QOI 01 WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN - 1 2 . 0 0 . 0 0 . 0101 490 . 510. 0 .0101 0. 0 .007 0 .003 0 .010 - 9 . 0 0 .030 0 . 0172 491 . 542. 0 .0183 16\ 0 .025 0. 014 0 .039 - 7 . 5 0 .074 0 . 0157 4 9 1 . 564. 0 .0173 42 . 0 .042 0 .027 0 .069 - 6 . 0 0 .111 0 .0141 491 . 593. 0 .0164 66 . 0 .059 0 .040 0 .099 - 5 . 0 0 .138 0 . 0129 4 9 1 . 623. 0 .0158 8 6 . 0 .073 0 .050 0 .123 - 3 . 5 0 . 183 0 . 0111 492. 683 . 0 .0148 125 . 0 .100 0.071 0.171 - 2 . 0 0 . 257 0 . 0095 492 . 743. 0 .0139 191 . 0 .146 0 .106 0 .252 - 0 . 5 0 325 0 . 0082 492 . 802. 0 .0130 261. 0 .196 0 .143 0 .339 0 . 0 0 365 0 .0079 492 . 817 . 0 .0127 298. 0. 222 . 0 .163 0. 385 1.0 0 373 0 . 0073 492 . 846 . 0 .0121 316. 0 .234 0 .172 0 .406 2 . 0 0 367 0 . 0074 492 . 806 . 0 .0117 296. 0. 220 0 .162 0.381 3 .0 0 353 0 . 0074 493 . 781 . 0 .0113 276. 0. 205 0.151 0 .356 4 . 0 0 375 0 0072 493 . 770. 0 .0109 289 . 0 . 214 0 .158 0 . 372 5 . 0 0 340 0 0070 493 . 760. 0 .0105 258. 0 .192 0.141 0. 333 6 . 5 0 344 0 0067 493 . 745 . 0 .0098 256. 0 .190 0 .140 0 .330 7 . 5 0 347 0 0065 4 9 3 . 737 . 0 .0094 256. 0 .189 0 . 140 0. 329 9 . 0 0 347 0 0061 494 . 730 . 0 .0088 253 . 0 .187 0 .138 0 . 325 1 0 . 0 0 331 0 0058 494 . 726. 0 .0083 240. 0 .178 0.131 0. 308 1 2 . 0 0 325 0 0054 494 . 709 . 0 .0075 230 . 0 .170 0 .125 0 . 295 1 3 . 0 0 353 0 0051 494. 699 . 0 .0070 247. 0 .181 0 .134 0 .315 1 4 . 5 0 311 0 0047 4 9 5 . 685 . 0 .0064 213 . 0 .157 0 .116 0 . 272 1 6 . 0 0 302 0 0044 495 . 670 . 0 .0058 202 . 0 .149 0 .110 0 . 259 1 7 . 5 0 304 0 0042 495 . 662. 0 .0054 201. 0 .148 0 .109 0 .257 19 . 0 0. 291 0 0040 495 . 654. 0 .0051 190. 0 .140 0 .103 0 . 243 2 1 . 0 0. 289 0 0036 496 . 643 . 0 .0046 186. 0 .136 0 .101 0 .237 22 . 0 0. 263 0 0035 496 . 638 . 0 .0044 168. 0 .123 0.091 0 .214 24 . 5 0. 274 0 0031 496. 627 . 0 .0038 172. 0 .125 0. 093 0 .218 26 . 5 0. 248 0 0028 4 9 6 . 619. 0 .0034 153 . 0 .112 0. 083 0 .195 2 8 . 5 0. 242 0 0025 4 9 7 . 613 . 0 .0031 148. 0 .108 0 .080 0 .188 3 2 . 5 0 . 245 0 0020 497 . 602 . 0 .0024 147 . 0 .107 0 .080 0 .187 36 . 5 0 . 234 0 0015 498 . 597. 0 .0017 140. 0 .101 0. 075 0 .176 4 0 . 5 0 . 245 0. 0014 499 . 600. 0 .0017 147. 0 .106 0 . 079 0 .185 4 4 . 0 0 . 235 0. 0016 4 9 9 . 599. 0 .0018 141 . 0 .102 0. 076 0 .178 4 8 . 0 0 . 205 0. 0017 500 . 588. 0 .0020 120 . 0 .087 0 . 0 6 5 0 .152 5 2 . 5 0 . 196 0. 0019 501 . 588. 0 .0022 115. 0. 084 0 .062 0 .146 5 6 . 5 0 . 183 0. 0018 5 0 1 . 576. 0 .0020 105 . 0 .077 0 .057 0 .134 6 1 . 0 0 . 174 0. 0016 502. 567. 0 .0018 99 . 0 .072 0 .053 0 .125 6 2 . 5 0 . 161 0. 0016 503 . 564. 0 .0017 9 1 . 0 .066 0 .049 0 .115 6 4 . 5 0 . 165 0. 0015 503 . 562. 0 .0016 93 . 0 .067 0 .050 0 .117 68 . 0 0 . 168 0 . 0013 504. 563. 0 .0014 95 . 0. 069 0 .051 0. 120 7 2 . 0 0 . 156 0 . 0013 505 . 561 . 0 .0014 88. 0 .064 0 .047 0 .111 7 5 . 5 0 . 154 0 . 0013 506 . 561 . 0 .0015 86 . 0 .063 0. 047 0 .109 8 0 . 0 0 . 171 0 . 0014 507 . 573. 0 .0015 98 . 0 .071 0. 053 0 .124 8 3 . 5 0 . 168 0 . 0014 507 . 569. 0 .0015 96 . 0 .069 0 .052 0.121 8 7 . 5 0 . 154 0 . 001] 508. 562. 0. 0012 87 . 0 .063 0 .047 0 .109 9 1 . 0 0 . 150 0 . 0009 509 . 557. 0 .0010 84. 0. 060 0 .045 0 .105 9 5 . 0 0 . 145 0 . 0006 510 . 552. 0 .0007 8 0 . 0 .058 0 . 043 0.101 9 9 . 0 0. 147 0 . 0005 511 . 550. 0 .0006 8 1 . 0 .058 0 . 043 0 .102 1 0 3 . 0 0 . 150 0 . 0008 512. 548. 0 .0008 82 . 0 .059 0 .044 0 .104 107 . 0 0 . 136 0 . 0010 513 . 544. 0 .0011 74. 0 .054 0 .040 0.094 1 1 0 . 5 0 . 133 0. 0012 514. 543. 0. 0013 72. 0. 052 0 .039 0. 091 1 1 4 . 0 0 . 142 0. 0012 515. 549. 0 .0013 78. 0. 057 0 .042 0. 099 120. 0 0 . 138 0 . 0008 516. 525. 0 .0009 72 . 0 .052 0. 039 0. 091 o RUN NUMBER 14 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -13.5 0. 0 0. . 0040 248. 298. 0.0023 0. 0.002 0.001 0.002 -8.5 0. 043 0. 0386 248. 338. 0.0256 15. 0.029 0. 015 0. 044 -4.0 0. 255 0. 0263 248. 466. 0.0241 119. 0.102 0.070 0.173 -0.5 0. 506 0. 0186 248. 568. 0.0207 287. 0.220 0.159 0. 380 3.0 0. 511 0. 0181 248. 574. 0.0204 293. 0. 224 0.163 0. 387 7.0 0. 644 0. 0162 249. 664. 0.0211 427. 0. 320 0.235 0. 555 11.0 0. 580 0. 0168 249. 582. 0.0192 337. 0.255 0.186 0.441 14.0 0. 550 0. 0171 249. 495. 0.0167 272. 0.207 0. 150 0. 357 18.5 0. 510 0. 0151 249. 458. 0.0136 234. 0.177 0.129 0. 305 22. 0 0. 500 0. 0134 249. 446. 0.0117 223. 0.168. 0.123 0. 290 25.5 0. 487 0. 0118 249. 428. 0.0099 208. 0.156 0.114 0.270 29.0 0. 452 0. 0112 249. 414. 0.0091 187. 0.140 0.103 0.243 33.0 0. 456 0. 0098 249. 422. 0.0081 192. 0.143 0.105 0. 248 36.5 0. 464 0. 0091 249. 409. 0.0073 190. 0.141 0.104 0. 244 40.0 0. 426 0. 0088 249. 395. 0.0068 168. 0.125 0.092 0. 217 44.5 0. 464 0. 0086 250. 382. 0.0065 177. 0.131 0. 097 0.228 48.0 0. 387 0. 0083 250. 378. 0.0062 146. 0.109 0. 080 0.189 51. 5 0. 401 0. 0079 250. 384. 0.0059 154. 0.114 0.084 0.198 55.0 0. 397 0. 0075 250. 387. 0.0057 154. 0.114 0.084 0.197 59. 0 0. 408 0. 0072 250. 388. 0.0055 158. 0.117 0. 086 0.203 62.5 0. 406 0. 0069 250. 386. 0.0052 157. 0.116 0.085 0. 201 67.0 0. 367 0. 0069 251. 367. 0.0050 135. 0.100 0.073 0.173 71.0 0. 343 0. 0067 251. 353. 0.0046 121. 0.090 0.066 0.156 75.0 0. 331 0. 0063 251. 350. 0.0043 116. 0.086 0.063 0.149 79.0 0. 312 0. 0059 252. 346. 0.0040 108. 0.080 0.059 0.139 84.0 0. 308 0. 0056 252. 335. 0.0036 103. 0.076 0.056 0.132 88. 0 0. 289 0. 0053 253. 333. 0.0035 96. 0.071 0.052 0.124 92.0 0. 284 0. 0051 253. 334. 0.0033 95. 0.070 0.052 0.122 96. 0 0. 291 0. 0048 254. 332. 0.0032 97. 0.071 0.053 0.124 100. 0 0. 278 0. 0048 254. 330. 0.0031 92. 0.068 0.050 0.118 104. 0 0. 271 0. 0047 254. 329. 0.0031 89. 0.066 0.049 0.114 109.0 0. 269 0. 0047 255. 328. 0.0030 88. 0.065 0.048 0.113 112.5 0. 242 0. 0049 255. 314. 0.0030 76. 0.056 0.041 0.098 116.0 0. 239 0. 0041 256. 317. 0.0025 76. 0.056 0.041 0.097 120. 0 0. 252 0. 0033 256. 301. 0.0020 76. 0.056 0. 041 0.097 o RUN NUMBER 15 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -11. 5 0. 0 0. 0042 244. 308. 0. 0025 0. 0. 002 0. 001 0. 003 -9. 5 0. 120 0. 0169 244. 383. 0. 0127 46. 0. 042 0. 028 0. 070 -7. 5 0. 241 0. 0254 244. 459. 0. 0229 111. 0. 096 0. 066 0. 161 -5. 5 0. 361 0. 0216 244. 481. 0. 0204 174. 0. 139 0. 098 0. 237 0. 0 0. 404 0. 0174 244. 391. 0. 0134 158. 0. 122 0. 088 0. 211 5. 0 0. 313 0. 0131 244. 343. 0. 0088 108. 0. 083 0. 060 0. 143 10. 0 0. 294 0. 0107 244. 327. 0. 0069 96. 0. 074 0. 053 0. 127 15. 0 0. 285 0. 0082 244. 322. 0. 0052 92. 0. 069 0. 050 0. 120 20. 0 0. 278 0. 0077 244. 310. 0. 0047 86. 0. 065 0. 047 0. 112 25. 0 0. 237 0. 0071 244. 301. 0. 0042 71. 0. 054 0. 039 0. 093 30. 0 0. 250 0. 0064 244. 304. 0. 0038 76. 0. 057 0. 042 0. 099 35. 0 0. 240 0. 0061 244. 299. 0. 0036 72. 0. 054 0. 039 0. 093 40. 0 0. 246 0. 0057 244. 299. 0. 0034 74. 0. 055 0. 040 0. 095 45. 0 0. 243 0. 0053 244. 299. 0. 0031 73. 0. 054 0. 040 0. 094 50. 0 0. 240 0. 0051 244. 299. 0. 0030 72. 0. 053 0. 039 0. 093 55. 0 0. 240 0. 0050 244. 299. 0. 0029 72. 0. 053 0. 039 0. 093 60. 0 0. 240 0. 0059 244. 296. 0. 0034 71. 0. 053 0. 039 0. 092 65. 0 0. 243 0. 0078 244. 292. 0. 0045 71. 0. 054 0. 039 0. 093 70. 0 0. 232 0. 0077 244. 293. 0. 0044 68. 0. 052 0. 038 0. 089 75. 0 0. 220 0. 0059 244. 290. 0. 0033 64. 0. 048 0. 035 0. 083 80. 0 0. 220 0. 0049 244. 290. 0. 0028 64. 0. 048 0. 035 0. 082 85. 0 0. 205 0. 0049 244. 284. 0. 0027 58. 0. 043 0. 032 0. 075 90. 0 0. 205 0. 0048 244. 284. 0. 0027 58. 0. 043 0. 032 0. 075 95. 0 0. 198 0. 0047 244. 286. 0. 0026 57. 0. 042 0. 031 0. 073 100. 0 0. 211 0. 0045 244. 284. 0. 0025 60. 0. 045 0. 033 0. 077 105. 0 0. 208 0. 0042 244. 284. 0. 0023 59. 0. 044 0. 032 0. 076 110. 0 0. 166 0. 0039 244. 282. 0. 0022 47. 0. 035 0. 026 0. 061 115. 0 0. 192 0. 0038 244. 284. 0. 0021 55. 0. 040 0. 030 0. 070 120. 0 0. 195 0. 0038 244. 284. 0. 0021 55. 0. 041 0. 030 0. 071 o RUN NUMBER 16 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -8. 5 0. 001 0. 0173 250. 344. 0. 0116 0. 0. 009 0. 003 0. 012 -7. 5 0. 015 0. 0213 250. 358. 0. 0150 5. 0. 015 0. 007 0. 022 -4. 0 0. 252 0. 0306 250. 443. 0. 0266 112. 0. 099 0. 067 0. 166 1. 0 0. 324 0. 0188 250. 393. 0. 0145 127. 0. 101 0. 072 0. 173 4. 5 0. 292 0. 0132 250. 350. 0. 0091 102. 0. 080 0. 057 0. 137 8. 0 0. 272 0. 0118 250. 333. 0. 0077 90. 0. 070 0. 051 0. 121 12. 0 0. 259 0. 0103 250. 329. 0. 0067 85. 0. 066 0. 047 0. 113 15. 5 0. 276 0. 0095 250. 331. 0. 0062 91. 0. 070 0. 051 0. 120 19. 0 0. 286 0. 0090 250. 337. 0. 0059 96. 0. 073 0. 053 0. 126 23. 0 0. 297 0. 0086 250. 345. 0. 0058 102. 0. 077 0. 056 0. 134 27. 0 0. 327 0. 0073 250. 340. 0. 0049 111. 0. 083 0. 061 0. 144 31. 0 0. 309 0. 0071 250. 340. 0. 0047 105. 0. 078 0. 057 0. 136 34. 5 0. 324 0. 0070 250. 343. 0. 0047 111. 0. 083 0. 061 0. 144 38. 0 0. 319 0. 0069 250. 341. 0. 0046 109. 0. 081 0. 059 0. 140 41. 5 0. 307 0. 0069 250. 339. 0. 0046 104. 0. 078 0. 057 0. 135 45. 0 0. 321 0. 0068 250. 342. 0. 0046 110. 0. 082 0. 060 0. 142 49. 0 0. 321 0. 0067 250. 345. 0. 0046 111. 0. 082 0. 061 0. 143 52. 5 0. 279 0. 0071 250. 328. 0. 0046 91. 0. 069 0. 050 0. 119 56. 5 0. 309 0. 0069 250. 338. 0. 0046 104. 0. 078 0. 057 0. 135 61. 5 0. 312 0. 0069 250. 341. 0. 0046 106. 0. 079 0. 058 0. 138 65. 0 0. 319 0. 0069 250. 343. 0. 0046 109. 0. 081 0. 060 0. 141 68. 5 0. 329 0. 0070 251. 338. 0. 0046 111. 0. 083 0. 061 0. 144 72. 0 0. 291 0. 0071 251. 332. 0. 0046 97. 0. 072 0. 053 0. 125 75. 5 0. 300 0. 0070 251. 333. 0. 0046 100. 0. 075 0. 055 0. 130 81. 0 0. 299 0. 0069 251. 337. 0. 0046 101. 0. 075 0. 055 0. 131 85. 0 0. 307 0. 0069 252. 337. 0. 0046 103. 0. 077 0. 057 0. 134 89. 0 0. 267 0. 0070 252. 331. 0. 0046 88. 0. 066 0. 049 0. 115 92. 5 0. 279 0. 0068 252. 339. 0. 0045 95. 0. 071 0. 052 0. 123 97. 0 0. 292 0. 0068 252. 339. 0. 0045 99. 0. 074 0. 054 0. 128 100. 5 0. 287 0. 0068 253. 337. 0. 0045 97. 0. 072 0. 053 0. 125 104. 5 0. 286 0. 0069 253. 334. 0. 0045 95. 0. 071 0. 052 0. 124 112. 0 0. 255 0. 0072 253. 321. 0. 0045 82. 0. 062 0. 045 0. 107 117. 0 0. 255 0. 0056 254. 321. 0. 0036 82. 0. 061 0. 045 0. 106 120. 0 0. 260 0. 0049 254. 304. 0. 0029 79. 0. 059 0. 043 0. 102 o RUN NUMBER 17 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -13. 5 0. 0 0. 0061 252. 298. 0. 0036 0. 0. 003 0. 001 0. 004 -11. 0 0. 103 0. 0273 252. 399. 0. 021 4 41. 0. 045 0. 028 0. 073 -8. 5 0. 206 0. 0304 252. 619. 0. 0370 128. 0.118 0. 078 0. 196 -5. 0 0. 651 0. 0136 252. 1146. 0. 0307 746. 0.555 0. 408 0. 963 -3. 5 0. 784 0. 0096 252. 1477. 0. 0280 1158. 0.847 0. 627 1. 474 -2. 5 0. 810 0. 0078 252. 1697. 0. 0262 1374. 1. 000 0. 743 1. 743 -1. 5 0. 814 0. 0075 252. 1647. 0. 0244 1341. 0.975 0. 724 1. 699 -0. 5 0. 821 0. 0072 252. 1597. 0. 0226 1311. 0.952 0. 708 1. 661 0. 5 0. 835 0. 0067 252. 1547. 0. 0205 1292. 0.937 0. 697 1. 635 2. 0 0. 786 0. 0062 252. 1391. 0. 0169 1093. 0.793' 0. 590 1. 383 4. 0 0. 715 0. 0064 252. 964. 0. 0121 689. 0. 501 0. 372 0. 873 6. 0 0. 666 0. 0048 253. 775. 0. 0074 516. 0.374 0. 278 0. 652 9. 0 0. 596 0. 0021 253. 578. 0. 0024 345. 0. 248 0. 185 0. 433 13. 0 0. 465 0. 0015 253. 459. 0. 0013 213. 0.153 0. 115 0. 268 16. 5 0. 436 0. 0018 253. 409. 0. 0015 178. 0.128 0. 096 0. 224 19. 5 0. 397 0. 0020 253. 377. 0. 0015 150. 0.108 0. 081 0. 189 22. 5 0. 365 0. 0018 253. 365. 0. 0013 133. 0.096 0. 072 0. 168 25. 5 0. 328 0. 0015 253. 365. 0. 0011 120. 0.086 0. 064 0. 151 29. 0 0. 334 0. 0013 253. 368. 0. 0009 123. 0.088 0. 066 0. 154 32. 0 0. 368 0. 0011 253. 370. 0. 0008 136. 0.098 0. 073 0. 171 35. 5 0. 360 0. 0009 253. 355. 0. 0007 128. 0.092 0. 069 0. 160 39. 0 0. 338 0. 0009 253. 341. 0. 0006 115. 0.083 0. 062 0. 144 42. 0 0. 315 0. 0009 254. 343. 0. 0006 108. 0.078 0. 058 0. 136 45.5 0. 360 0. 0009 254. 363. 0. 0006 131. 0.094 0. 070 0. 164 49. 0 0. 352 0. 0010 254. 350. 0. 0007 123. 0.088 0. 066 0. 155 52. 0 0. 334 0. 0010 254. 339. .0. 0007 113. 0.081 0. 061 0. 142 55. 0 0. 324 0. 0010 254. 330. 0. 0007 107. 0.077 0. 057 0. 134 58. 0 0. 305 0. 0010 254. 321. 0. 0006 98. 0.070 0. 053 0. 123 61. 5 0. 283 0. 0010 254. 316. 0. 0006 89. 0. 064 0. 048 0. 112 65. 0 0. 273 0. 0009 254. 312. 0. 0006 85. 0.061 0. 046 0. 107 68. 5 0. 268 0. 0009 255. 310. 0. 0005 83. 0.060 0. 045 0. 104 72. 0 0. 244 0. 0008 255. 307. 0. 0005 75. 0.054 0. 040 0. 094 75. 5 0. 234 0. 0007 255. 302. 0. 0004 71. 0.051 0. 038 0. 089 79. 0 0. 225 0. 0006 255. 298. 0. 0004 67. 0.048 0. 036 0. 084 83. 0 0. 212 0. 0006 256. 292. 0. 0003 62. 0.044 0. 033 0. 078 86. 5 0. 198 0. 0005 256. 290. 0. 0003 57. 0.041 0. 031 0. 072 90. 0 0. 185 0. 0005 256. 286. 0. 0003 53. 0.038 0. 028 0. 066 93. 0 0. 174 0. 0005 256. 282. 0. 0003 49. 0.035 0. 026 0. 062 96. 0 0. 167 0. 0005 256. 278. 0. 0003 46. 0.033 0. 025 0. 058 99. 5 0. 157 0. 0004 257. 273. 0. 0002 43. 0.031 0. 023 0. 054 102. 5 0. 149 0. 0004 257. 271. 0. 0002 40. 0.029 0. 022 0. 051 106. 0 0. 136 0. 0003 257. 268. 0. 0002 36. 0.026 0. 020 0. 046 109. 0 0. 132 0. 0003 257. 265. 0. 0001 35. 0.025 0. 019 0. 044 112. 0 0. 127 0. 0002 257. 263. 0. 0001 33. 0.024 0. 018 0. 042 115. 0 0. 120 0. 0003 258. 262. 0. 0001 31. 0.023 0. 017 0. 039 120. 0 0. 114 0. 0003 258. 250. 0. 0002 29. 0. 020 0. 015 0. 036 RUN NUMBER 18 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -9. 0 0. 0 0. 1155 248. 554. 0. 1257 0. 0. 091 0. 034 0. 126 -7. 0 0. 189 0. 1022 248. 764. 0. 1534 144. 0. 215 0. 119 0. 334 -5. 0 0. 378 0. 0707 248. 996. 0. 1384 377. 0. 370 - 0. 239 0. 609 -1. 0 0. 756 0. 0623 248. 886. 0. 1084 669. 0. 557 0. 388 0. 945 0. 0 0. 686 0. 0607 248. 847. 0. 1010 581. 0. 488 0. 339 0. 827 5. 0 0. 558 0. 0475 248. 680. 0. 0635 380. 0. 317 0. 221 0. 538 10. 0 0. 528 0. 0284 248. 582. 0. 0324 307. 0. 243 0. 173 0. 416 15. 0 0. 492 0. 0243 248. 556. 0. 0266 274. 0. 215 0. 154 0. 369 20. 0 0. 475 0. 0213 248. 533. 0. 0223 253. 0. 197 0. 142 0. 338 25. 0 0. 444 0. 0201 248. 515. 0. 0203 228. 0. 178 0. 128 0. 306 30. 0 0. 441 0. 0188 248. 500. 0. 0185 220. 0. 171 0. 123 0. 294 35. 0 0. 424 0. 0180 248. 489. 0. 0173 207. 0. 160 0. 116 0. 276 40. 0 0. 416 0. 0168 248. 483. 0. 0160 201. 0. 155 0. 112 0. 267 45. 0 0. 405 0. 0155 249. 472. 0. 0144 191. 0. 147 0. 106 0. 253 50. 0 0. 386 0. 0144 249. 457. 0. 0129 176. 0. 135 0. 098 0. 233 55. 0 0. 363 0. 0136 249. 441. 0. 0118 160. 0. 123 0. 089 0. 212 60. 0 0. 307 0. 0129 249. 423. 0. 0107 130. 0. 100 0. 072 0. 173 65. 0 0. 332 0. 0120 250. 408. 0. 0096 136. 0. 104 0. 075 0. 179 70. 0 0. 302 0. 0113 250. 397. 0. 0088 120. 0. 092 0. 067 0. 159 75. 0 0. 250 0. 0116 250. 394. 0. 0090 99. 0. 077 0. 055 0. 132 80. 0 *0. 273 0. 0120 250. 386. 0. 0091 105. 0. 082 0. 059 0. 141 85. 0 0. 247 0. 0122 251. 375. 0. 0089 93. 0. 073 0. 052 0. 125 90. 0 0. 217 0. 0107 251. 365. 0. 0077 79. 0. 062 0. 044 0. 107 95. 0 0. 212 0. 0091 251. 359. 0. 0065 76. 0. 059 0. 043 0. 102 100. 0 0. 206 0. 0075 251. 354. 0. 0052 73. 0. 056 0. 040 0. 096 105. 0 0. 201 0. 0065 251. 350. 0. 0045 70. 0. 053 0. 039 0. 092 110. 0 0. 190 0. 0060 251. 348. 0. 0041 66. 0. 050 0. 037 0. 087 115. 0 0. 196 0. 0055 251. 347. 0. 0037 68. 0. 051 0. 037 0. 089 120. 0 0. 190 0. 0051 252. 347. 0. 0035 66. 0. 050 0. 036 0. 086 RUN NUMBER 19 TIME XCO XC02 QOI QI WC02I . QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) - 8 . 5 0. 0 0. 3051 241. 370. 0. 2221 0. 0. 161 0. 061 0. 222 - 8 . 0 0. 050 0. 3735 241. 404. 0. 2961 20. 0. 230 0. 092 0. 321 - 7 . 5 0. 119 0. 4315 241. 437. 0. 3701 52. 0. 306 0. 129 0. 435 - 7 . 0 0. 179 0. 4814 241. 470. 0. 4441 84. 0. 383 0. 166 0. 549 - 6 . 5 0. 239 0. 5247 241. 503. 0. 5181 120. 0. 463 0. 206 0. 668 - 6 . 0 0. 299 0. 3047 241. 989. 0. 5922 296. 0. 642 0. 320 0. 962 - 5 . 5 0. 358 0. 2298 241. 1476. 0. 6662 528. 0. 862 0. 464 1. 326 - 5 . 0 0. 460 0. 1920 241. 1962. 0. 7402 903. 1. 183 0. 685 1. 868 - 1 . 5 0. 835 0. 0848 240. 2622. 0. 4370 2190. 1. 881 • 1. 291 3. 172 0. 0 0. 825 0. 0789 240. 1979. 0. 3070 1633. 1. 389 0. 958 2. 347 5. 0 0. 793 0. 0185 240. 1076. 0. 0391 853. 0. 637 0. 467 1. 105 10. 0 0. 685 0. 0135 239. 728. 0. 0193 499. 0. 370 0. 272 0. 642 15. 0 0. 635 0. 0087 247. 603. 0. 0103 383. 0. 281 0. 208 0. 489 20. 0 0. 555 0. 0089 250. 494. 0. 0087 274. 0. 202 0. 149 0. 351 25. 0 0. 587 0. 0066 250. 541. 0. 0070 318. 0. 232 0. 172 0. 404 31. 0 0. 590 0. 0053 250. 534. 0. 0056 315. 0. 229 0. 170 0. 399 35. 0 0. 562 0. 0049 250. 503. 0. 0048 282. 0. 205 0. 153 0. 358 41. 0 0. 520 0. 0047 250. 442. 0. 0040 230. 0. 167 0. 124 0. 291 45. 0 0. 463 0. 0047 250. 404. 0. 0037 187. 0. 136 0. 101 0. 237 50. 0 0. 445 0. 0042 250. 391. 0. 0032 174. 0. 126 0. 094 0. 220 55. 0 0. 400 0. 0036 250. 357. 0. 0025 143. 0. 104 0. 077 0. 181 60. 0 0. 300 0. 0031 250. 312. 0. 0019 94. 0. 068 0. 051 0. 119 65. 0 0. 260 0. 0025 250. 294. 0. 0015 76. 0. 056 0. 041 0. 097 70. 0 0. 240 0. 0022 250. 291. 0. 0012 70. 0. 051 0. 038 0. 089 75. 0 Oi 216 0. 0024 250. 287. 0. 0013 62. 0. 045 0. 034 0. 079 80. 0 0. 197 0. 0021 250. 280. 0. 0011 55. 0. 040 0. 030 0. 070 85. 0 0. 167 0. 0009 250. 270. 0. 0005 45. 0. 033 0. 024 0. 057 90. 0 0. 150 0. 0005 250. 266. 0. 0002 40. 0. 029 0. 021 0. 050 95. 0 0. 134 0. 0011 250. 263. 0. 0006 35. 0. 026 0. 019 0. 045 100. 0 0. 126 0. 0013 250. 263. 0. 0007 33. 0. 024 0. 018 0. 042 105. 0 0. 113 0. 0007 250. 259. 0. 0004 29. 0. 021 0. 016 0. 037 110. 0 0. 105 0. 0004 250. 255. 0. 0002 27. 0. 019 0. 014 0. 034 115. 0 0. 100 0. 0004 250. 253. 0. 0002 25. 0. 018 0. 014 0. 032 120. 0 0. 090 0. 0004 250. 255. 0. 0002 23. 0. 017 0. 012 0. 029 o RUN NUMBER 20 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -10. 0 0. 0 0. 0256 250. 347. 0. 0174 0. 0. 013 0. 005 0. 017 -6. 5 0. 090 0. 1211 250. 586. 0. 1395 53. 0. 139 0. 066 0. 205 -3. 5 0. 326 0. 1720 250. 722. 0. 2441 235. 0. 346 0. 193 0. 538 -0. 5 0. 562 0. 2081 250. 653. 0. 2670 367. 0. 456 0. 269 0. 726 0. 0 0. 562 0. 1932 250. 642. 0. 2436 361. 0. 435 0. 260 0. 694 5. 0 0. 438 0. 0353 251. 457. 0. 0317 200. 0. 166 0. 116 0. 282 10. 0 0. 362 0. 0299 251. 392. 0. 0230 142. 0. 118 0. 082 0. 200 15. 0 0. 354 0. 0234 251. 383. 0. 0176 136. 0. 110 0. 077 0. 187 20. 0 0. 354 0. 0226 251. 383. 0. 0170 136. 0. 109 0. 077 0. 187 25. 0 0. 368 0. 0218 252. 382. 0. 0163 140. 0. 112 0. 080 0. 192 30. 0 0. 344 0. 0203 252. 374. 0. 0149 129. 0. 103 0. 073 0. 176 35. 0 0. 338 0. 0191 252. 361. 0. 0135 122. 0. 097 0. 069 0. 166 40. 0 0. 330 0. 0172 252. 359. 0. 0122 118. 0. 093 0. 067 0. 160 45. 0 0. 305 0. 0157 252. 349. 0. 0108 106. 0. 084 0. 060 0. 144 50. 0 0. 297 0. 0141 253. 336. 0. 0093 100. 0. 078 0. 056 0. 134 55. 0 0. 281 0. 0129 253. 323. 0. 0082 91. 0. 071 0. 051 0. 122 60. 0 0. 250 0. 0143 253. 315. 0. 0088 79. 0. 063 0. 045 0. 107 65. 0 0. 237 0. 0139 253. 308. 0. 0084 73. 0. 058 0. 041 0. 100 70. 0 0. 232 0. 0107 253. 307. 0. 0065 71. 0. 055 0. 040 0. 095 75. 0 0. 220 0. 0084 254. 303. 0. 0050 67. 0. 051 0. 037 0. 088 80. 0 0. 210 0. 0079 254. 296. 0. 0046 62. 0. 048 0. 035 0. 082 85. 0 0. 210 0. 0073 254. 296. 0. 0042 62. 0. 047 0. 034 0. 082 90. 0 0. 204 0. 0068 254. 293. 0. 0039 60. 0. 046 0. 033 0. 079 94. 0 0. 190 0. 0064 254. 291. 0. 0037 55. 0. 042 0. 031 0. 073 100. 0 0. 188 0. 0055 254. 293. 0. 0032 55. 0. 042 0. 030 0. 072 105. 0 0. 182 0. 0048 255. 292. 0. 0027 53. 0. 040 0. 029 0. 069 110. 0 0. 176 0. 0042 255. 288. 0. 0024 51. 0. 038 0. 028 0. 066 115. 0 0. 168 0. 0038 255. 288. 0. 0021 48. 0. 036 0. 026 0. 063 120. 0 0. 168 0. 0034 257. 288. 0. 0019 48. 0. 036 0. 026 0. 062 RUN NUMBER 21 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM 3/MIN) (G/MIN) (CM 3/MIN) (G/MIN) (G/MIN) (G/MIN) -9. 0 0. 0 0. 0144 258. 369. 0. 0104 0. 0. 008 0. 003 0. 010 -8. 5 0. 052 0. 0216 257. 369. 0. 0156 19. 0. 025 0. 015 0. 040 -8. 0 0. 104 0. 0288 257. 369. 0. 0209 38. 0. 043 0. 026 0. 069 -7. 0 0. 208 0. 0431 257. 369. 0. 0313 77. 0. 078 0. 050 0. 127 -6. 0 0. 322 0. 0314 256. 838. 0. 0517 270. 0. 230 0. 159 0. 389 -5. 0 0. 435 0. 0281 256. 1307. 0. 0721 568. 0. 458 0. 324 0. 782 -4. 0 0. 544 0. 0265 255. 1775. 0. 0926 966. 0. 757 0. 542 1. 299 -3. 0 0. 653 0. 0337 255. 1706. 0. 1130 1114. 0. 877 0. 627 1. 505 0. 0 0. 767 0. 0395 253. 1498. 0. 1162 1149. 0. 904 0. 647 1. 551 5. 0 0. 665 0. 0191 254. 958. 0. 0360 637. 0. 481 0. 351 0. 831 10. 0 0. 575 0. 0171 257. 531. 0. 0179 306. 0. 231 0. 168 0. 400 15. 0 0. 490 0. 0075 260. 454. 0. 0067 222. 0. 164 0. 121 0. 284 20. 0 0. 445 0. 0082 259. 363. 0. 0058 162. 0. 120 0. 088 0. 208 25. 0 0. 465 0. 0070 257. 367. 0. 0050 171. 0. 125 0. 093 0. 218 30. 0 0. 447 0. 0060 256. 365. 0. 0043 163. 0. 120 0. 089 0. 208 35. 0 0. 370 0. 0052 250. 360. 0. 0037 133. 0. 098 0. 072 0. 170 40. 0 0. 345 0. 0049 250. 328. 0. 0031 113. 0. 083 0. 061 0. 144 45. 0 0. 307 0. 0040 250. 326. 0. 0026 100. 0. 073 0. 054 0. 128 50. 0 0. 290 0. 0036 250. 309. 0. 0022 90. 0. 066 0. 049 0. 114 55. 0 0. 255 0. 0047 250. 301. 0. 0028 77. 0. 057 0. 042 0. 099 60. 0 0. 235 0. 0047 250. 293. 0. 0027 69. 0. 051 0. 038 0. 089 65. 0 0. 215 0. 0030 250. 290. 0. 0017 62. 0. 046 0. 034 0. 080 70. 0 0. 200 0. 0017 250. 280. 0. 0010 56. 0. 041 0. 030 0. 071 80. 0 0. 167 0. 0013 250. 272. 0. 0007 45. 0. 033 0. 025 0. 058 85. 0 0. 155 0. 0028 250. 272. 0. 0015 42. 0. 031 0. 023 0. 054 90. 0 0. 14 3 0. 0032 250. 269. 0. 0017 38. 0. 029 0. 021 0. 050 95. 0 0. 138 0. 0018 250. 265. 0. 0010 37. 0. 027 0. 020 0. 047 100. 0 0. 133 0. 0009 250. 262. 0. 0005 35. 0. 025 0. 019 0. 044 105. 0 0. 120 0. 0007 250. 262. 0. 0004 31'. 0. 023 0. 017 0. 040 110. 0 0. 108 0. 0006 250. 258. 0. 0003 28. 0. 020 0. 015 0. 035 115. 0 0. 105 0. 0006 250. 258. 0. 0003 27. 0. 020 0. 015 0. 034 120. 0 0. 105 0. 0006 250. 258. 0. 0003 27. 0. 020 0. 015 0. 034 RUN NUMBER 22 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN) (G/MIN) (G/MIN) (G/MIN) -8. 0 0. 0 0. 0228 252. 353. 0. 0158 0. 0. O i l 0. 004 0. 016 -7. 0 0. 008 0. 0289 252. 417. 0. 0237 3. 0. 020 0. 008 0. 028 -5. 0 0. 193 0. 0369 252. 54 5. 0. 0395 105. 0. 104 0. 067 0. 171 -3. 0 0. 378 0. 0604 252. 674. 0. 0799 2 55. 0. 240 0. 158 0. 398 0. 0 0. 655 0. 0733 253. 1231. 0. 1773 807. 0. 705 0. 480 1. 185 5. 0 0. 713 0. 0825 253. 1587. 0. 2571 1131. 0. 995 0. 676 1. 671 17. 0 0. 714 0. 0711 254. 1081. 0. 1510 772. 0. 661 0. 454 1. 115 21. 0 0. 720 0. 0656 254. 911. 0. 1174- 656. 0. 554 0. 383 0. 937 25. 0 0. 650 0. 0563 255. 804. 0. 0890 523. 0. 438 0. 304 0. 742 30. 0 0. 647 0. 0473 255. 671. 0. 0624 434. 0. 355 0. 249 0. 605 35. 0 0. 600 0. 0413 255. 606. 0. 0492 363. 0. 295 0. 208 0. 503 40. 0 0. 565 0. 0343 256. 556. 0. 0375 314. 0. 251 0. 178 0. 430 45. 0 0. 515 0. 0285 256. 503. 0. 0282 259. 0. 205 0. 146 0. 352 50. 0 0. 518 0. 0223 256. 490. 0. 0214 254. 0. 197 0. 142 0. 338 55. 0 0. 492 0. 0204 257. 462. 0. 0185 227. 0. 176 0. 127 0. 302 60. 0 0. 463 0. 0180 257. 435. 0. 0154 201. 0. 155 0. 112 0. 267 65. 0 0. 420 0. 0153 258. 409. 0. 0123 172. 0. 132 0. 095 0. 227 70. 0 0. 405 0. 0129 258. 389. 0. 0098 157. 0. 120 0. 087 0. 207 75. 0 0. 380 0. 0113 257. 365. 0. 0082 139. 0. 105 0. 077 0. 182 80. 0 0. 343 0. 0110 255. 331. 0. 0072 114. 0. 086 0. 063 0. 149 85. 0 0. 307 0. 0112 254. 315. 0. 0069 97. 0. 074 0. 054 0. 128 90. 0 0. 292 0. 0100 252. 313. 0. 0061 91. 0. 070 0. 051 0. 120 95. 0 0. 274 0. 0079 251. 306. 0. 0048 84. 0. 063 0. 046 0. 110 100. 0 0. 270 0. 0067 250. 300. 0. 0039 81. 0. 061 0. 044 0. 105 105. 0 0. 252 0. 0061 248. 299. 0. 0036 75. 0. 056 0. 041 0. 098 110. 0 0. 242 0. 0058 247. 293. 0. 0033 71. 0. 053 0. 039 0. 092 115. 0 0. 230 0. 0057 245. 287. 0. 0032 66. 0. 049 0. 036 0. 086 120. 0 0. 200 0. 0056 244. 284. 0. 0031 57. 0. 043 0. 031 0. 074 RUN NUMBER 23 TIME XCO XC02 QOI QI WC02I QCOS W02S WCS WS (MIN) (CM3/MIN) (G/MIN) (CM3/MIN)(G/MIN) (G/MIN) (G/MIN) -15. 0 0. 0 0. 0283 250. 342. 0. 0190 0. 0.014 0. 005 0. 019 -11. 0 0. 058 0. 1075 246. 707. 0. 1493 41. 0.138 0. 063 0. 200 -10. 5 0. 145 0. 0837 246. 889. 0. 1462 129. 0.198 0. 109 0. 307 -10. 0 0. 231 0. 0680 246. 1072. 0. 1432 248. 0. 281 0. 172 0. 453 -9. 0 0. 404 0. 0486 245. 1437. 0. 1371 580. 0. 514 0. 348 0. 862 -8. 0 0. 577 0. 0370 244. 1802. 0. 1310 1040. 0.837 0. 592 1. 430 -7. 0 0. 750 0. 0294 243. 2166. 0. 1250 1625. 1. 251 0. 904 2. 155 -1. 0 0. 859 0. 0126 240. 3573. 0. 0885 3070. 2. 256 1. 668 3. 923 1. 7 0. 859 0. 0148 244. 2485. 0. 0721 2135. 1. 576 1. 162 2. 739 5. 0 0. 785 0. 0222 249. 1211. 0. 0529 950. 0.717 0. 523 1. 240 10. 0 0. 612 0. 0204 250. 594. 0. 0238 364. 0. 277 0. 201 0. 478 15. 0 0. 486 0. 0080 250. 419. 0. 0066 204. 0.150 0. 111 0. 261 20. 0 0. 430 0. 0076 250. 466. 0. 0070 200. 0.148 0. 109 0. 257 25. 0 0. 644 0. 0065 250. 540. 0. 0069 348. 0. 253 0. 188 0. 442 30. 0 0. 557 0. 0050 250. 522. 0. 0051 291. 0.211 0. 157 0. 368 35. 0 0. 512 0. 0041 250. 453. 0. 0036 232. 0.168 0. 125 0. 293 40. 0 0. 472 0. 0036 250. 423. 0. 0030 200. 0.145 0. 108 0. 252 45. 0 0. 436 0. 0031 250. 387. 0. 0023 169. 0. 122 0. 091 0. 213 50. 0 0. 365 0. 0025 250. 358. 0. 0018 131. 0.095 0. 070 0. 165 55. 0 0. 332 0. 0021 250. 332. 0. 0014 110. 0. 080 0. 059 0. 139 60. 0 0. 279 0. 0017 250. 317. 0. 0010 88. 0. 064 0. 048 0. 111 70. 0 0. 243 0. 0011 250. 318. 0. 0007 77. 0. 056 0. 042 0. 097 75. 0 0. 279 0. 0012 250. 329. 0. 0007 92. 0. 066 0. 049 0. 115 80. 0 0. 284 0. 0012 250. 325. 0. 0008 92. 0.067 0. 050 0. 116 85. 0 0. 274 0. 0013 250. 317. 0. 0008 87. 0. 063 0. 047 0. 109 90. 0 0. 248 0. 0014 250. 307. 0. 0009 76. 0. 055 0. 041 0. 096 95. 0 0. 228 0. 0014 250. 316. 0. 0009 72. 0. 052 0. 039 0. 091 100. 0 0. 238 0. 0013 250. 317. 0. 0008 75. 0. 054 0. 041 0. 095 105. 0 0. 225 0. 0013 250. 306. 0. 0008 69. 0. 050 0. 037 0. 087 110. 0 0. 201 0. 0012 250. 300. 0. 0007 60. 0.044 0. 032 0. 076 115. 0 0. 210 0. 0011 250. 300. 0. 0007 63. 0. 045 0. 034 0. 079 120. 0 0. 181 0. 0011 250. 285. 0. 0006 52. 0. 037 0. 028 0. 065 RUN NUMBER 24 TIME XCO XC02 QOI QI WC02I WS (MIN) (CM3/MIN) (G/MIN) (G/MIN) -9. 0 0. 995 0. 0801 806. 723. 0. 1238 0. 045 -7. 5 0. 995 0. 1158 806. 722. 0. 1857 0. 068 -5. 0 0. 995 0. 1117 805. 718. 0. 1773 0. 064 -2. 5 0. 995 0. 1077 801. 713. 0. 1690 0. 061 0. 0 0. 995 0. 0864 803. 731. 0. 1357 0. 049 2. 0 0. 995 0. 0726 804. 709. 0. 1090 0. 040 5. 0 0. 995 0. 0608 803. 708. 0. 0900 0. 033 8. 0 0. 995 0. 0485 801. 709. 0. 0710 0. 026 11. 0 0. 995 0. 0472 800. 709. 0. 0690 0. 025 14. 0 0. 995 0. 0460 800. 708. 0. 0671 0. 024 17. 0 0. 995 0. 0452 800. 708. 0. 0658 0. 024 20. 0 0. 995 0. 0445 800. 707. 0. 0646 0. 023 23. 0 0. 995 0. 0441 800. 706. 0. 0640 0. 023 27. 5 0. 995 0. 0436 800. 706. 0. 0632 0. 023 30. 0 0. 995 0. 0437 800. 706. 0. 063 4 0. 023 33. 0 0. 995 0. 0440 799. 704. 0. 0636 0. 023 37. 0 0. 995 0. 0437 799. 701. 0. 0630 0. 023 39. 5 0. 995 0. 0435 798. 700. 0. 0626 ' 0. 023 43. 0 0. 995 0. 0432 798. 699. 0. 0620 0. 023 47. 0 0. 995 0. 0425 798. 699. 0. 0609 0. 022 52. 5 0. 995 0. 0415 796. 699. 0. 0595 0. 022 56. 5 0. 995 0. 0408 796. 699. 0. 0585 0. 021 60. 0 0. 995 0. 0402 796. 699. 0. 0576 0. 021 65. 0 0. 995 0. 0399 796. 700. 0. 0571 0. 021 70. 0 0. 995 0. 0394 796. 701. 0. 0565 0. 021 75. 0 0. 995 0. 0389 796. 701. 0. 0557 0. 020 78. 0 0. 995 0. 0385 796. 700. 0. 0551 0. 020 81. 0 0. 995 0. 0380 796. 700. 0. 0544 0. 020 84. 0 0. 995 0. 0374 797. 700. 0. 0535 0. 019 88. 0 0. 995 0. 0366 798. 700. 0. 0523 0. 019 92. 0 0. 995 0. 0366 798. 701. 0. 0522 0. 019 96. 0 0. 995 0. 0365 797. 701. 0. 0522 0. 019 100. 0 0. 995 0. 0347 796. 701. 0. 0496 0. 018 104. 0 0. 995 0. 0346 796. 702. 0. 0494 0. 018 109. 0 0. 995 0. 0344 796. 703. 0. 0492 0. 018 115. 0 0. 995 0. 0342 796. 702. 0. 0488 0. 018 120. 0 0. 995 0. 0340 796. 701. 0. 0485 0. 018 113 RUN NUMBER 25 TIME XCO XC02 QOI QI WC02I WS (MIN) (CM3/MIN) (G/MIN) (G/MIN) -10. 5 0. 995 0. 1027 798. 710. 0. 1597 0. 058 -5. 5 0. 995 0. 0848 792. 732. 0. 1331 0. 048 -0. 5 0. 995 0. 0671 790. 728. 0. 1029 0. 037 2. 0 0. 995 0. 0588 787. 715. 0. 0878 0. 032 7. 0 0. 995 0. 0523 789. 706. 0. 0764 0. 028 12. 0 0.. 995 0. 0493 795. 706. 0. 0719 0. 026 18. 0 0. 995 0. 0448 1 796. 703. 0. 0647 0. 024 23. 0 0. 995 0. 0439 795. 701. 0. 0632 0. 023 29. 0 0. 995 0. 0426 785. 691. 0. 0604 0. 022 35. 0 0. 995 0. 0460 808. 702. 0. 0666 0. 024 40. 0 0. 995 0. 0449 806. 701. 0. 0648 0. 024 46. 0 0. 995 0. 0429 801. 699. 0. 0616 0. 022 52. 0 0. 995 0. 0424 805. 702. 0. 0610 0. 022 58. 0 0. 995 0. 0421 802. 700. 0. 0604 0. 022 63. 0 0. 995 0. 0403 799. 697. 0. 0575 0. 021 68. 0 0. 995 0. 0407 797. 695. 0. 0580 0. 021 74. 0 0. 995 0. 0406 797. 697. 0. 0579 0. 021 79. 5 0. 995 0. 0394 798. 699. 0. 0563 0. 020 84. 0 0. 995 0. 0402 793. 693. 0. 0570 0. 021 90. 0 0. 995 0. 0406 792. 693. 0. 0575 0. 021 96. 0 0. 995 0. 0407 792. 691. 0. 0576 0. 021 101. 0 0. 995 0. 0413 791. 690. 0. 0584 0. 021 106. 0 0. 995 0. 0392 785. 688. 0. 0552 0. 020 111. 0 0. 995 0. 0399 785. 686. 0. 0561 0. 020 116. 0 0. 995 0. 0401 787. 686. 0. 0563 0. 020 RUN NUMBER 26 TIME XCO XC02 (MIN) -7. 0 0. 995 0. 1451 -3. 0 0. 995 0. 1292 -0. 5 0. 995 0. 1155 4. 0 0. 995 0. 0671 9. 0 0. 995 0. 0601 14. 0 0. 995 0. 0572 18. 0 0. 995 0. 0548 21. 0 0. 995 0. 0540 26. 0 0. 995 0. 0535 31. 0 0. 995 0. 0539 36. 0 0. 995 0. 0524 39. 0 0. 995 0. 0523 42. 0 0. 995 0. 0518 45. 0 0. 995 0. 0507 48. 0 0. 995 0. 0502 53. 0 0. 995 0. 0500 58. 0 0. 995 0. 0500 61. 0 0. 995 0. 0495 64. 0 0. 995 0. 0486 69. 0 0. 995 0. 0486 74. 0 0. 995 0. 0489 79. 0 0. 995 0. 0503 82. 0 0. 995 0. 0492 86. 0 0. 995 0. 0479 89. 0 0. 995 0. 0484 91. 0 0. 995 0. 0487 96. 0 0. 995 0. 0497 101. 0 0. 995 0. 0503 105. 0 0. 995 0. 0497 109. 0 0. 995 0. 0491 114. 0 0. 995 0. 0491 117. 0 0. 995 0. 0489 120. 0 0. 995 0. 0487 QOI QI WC02I WS (CM3/MIN) (G/MIN) (G/MIN) 800. 694. 0. 2315 0. 084 796. 690. 0. 2010 0. 073 794. 709. 0. 1819 0. 066 788. 700. 0. 0988 0. 036 795. 688. 0. 0863 0. 031 783. 674. 0. 0804 0. 029 812. 705. 0. 0804 0. 029 825. 717. 0. 0804 0. 029 828. 717. 0. 0796 0. 029 820. 704. 0. 0788 0. 029 814. 693. 0. 0753 0. 027 814. 690. 0. 0748 0. 027 814. 692. 0. 0744 0. 027 814. 697. 0. 0731 0. 027 812. 692. 0. 0719 0. 026 810. 689. 0. 0713 0. 026 805. 687. 0. 0711 0. 026 803. 688. 0. 0703 0. 026 805. 693. 0. 0695 0. 025 804. 692. 0. 0694 0. 025 802. 689. 0. 0697 0. 025 799. 687. 0. 0714 0. 026 798. 687. 0. 0699 0. 025 798. 689. 0. 0680 0. 025 798. 685. 0. 068 5 0. 025 797. 683. 0. 0688 0. 025 793. 680. 0. 0699 0. 025 790. 680. 0. 0708 0. 026 789. 680. 0. 0699 0. 025 788. 680. 0. 0690 0. 025 786. 678. 0. 0687 0. 025 785. 677. 0. 0684 0. 025 785. 677. 0. 0681 0. 025 RUN NUMBER 27 TIME XCO XC02 QOI QI WC02I WS <"MIN) (CM3/MIN) (G/MIN) (G/MIN) -9. . 0 0. 995 0. , 1184 794. 716. 0. , 1890 0. . 069 -8. , 5 0. 995 0. ,1355 794. 716. 0. , 2205 0. . 080 -2. , 5 0.995 0. , 1180 800. 716. 0. . 1881 0. . 068 1. 0 0.995 0. , 0696 790. 715. 0. 1051 0. 038 6. 0 0. 995 0. 0607 780. 700. 0. 0888 0. 032 12. 0 0.995 0. 0577 789. 696. 0. 0837 0. 030 18. 0 0. 995 0. 0536 800. 701. 0. 0780 0. 028 24. 0 0. 995 0. 0644 798. 701. 0. 0948 0. 034 29. 0 0. 995 0. 0531 802. 701. 0. 0773 0. 028 34. 0 0. 995 0. 0519 795. 693. 0. 0746 0. 027 39. 0 0.995 0. 0513 780. 682. 0. 0725 0. 026 45. 0 0. 995 0. 0514 798. 700. 0. 0745 0. 027 50. 0 0.995 0. 0491 794. 693. 0. 0703 0. 026 55. 0 0.995 0. 0486 800. 696. 0. 0698 0. 025 60. 0 0.995 0. 0481 794. 693. 0. 0688 0. 025 65. 0 0.995 0. 0503 781. 686. 0. 0714 0. 026 70. 0 0. 995 0. 0492 798. 693. 0. 0705 0. 026 75. 0 0. 995 0. 0473 810. 706. 0. 0688 0. 025 80. 0 0. 995 0. 0483 802. 699. 0. 0697 0. 025 84. 0 0.995 0. 0487 800. 699. 0. 0704 0. 026 90. 0 0.995 0. 0492 781. 680. 0. 0691 0. 025 95. 0 0.995 0. 0472 806. 704. 0. 0686 0. 025 99. 0 0.995 0. 0477 800. 698. 0. 0686 0. 025 104. 0 0.995 0. 0487 784. 687. 0. 0690 0. 025 108. 0 0. 995 0. 0487 791. 691. 0. 0694 0. 025 114. 5 0.995 0. 0477 794. 695. 0. 0684 0. 025 120. 0 0.995 0. 0472 806. 706. 0. 0688 0. 025 116 APPENDIX I I 1. C a l c u l a t i o n of r e d u c t i o n and g a s i f i c a t i o n r a t e constants a) Assuming no argon p e n e t r a t i o n i n t o the bed In t h i s case the f o l l o w i n g equation must hold p c o + p c o 2 - 1 a t m W The p a r t i a l pressure of C0 2 i n the bed i s defined by P m b C ° 2 P c o 2 = ( P + P ) m ™ K CO co2J where P™ and P™ are the measured p a r t i a l pressures i n the e x i t gas. L U 2 CU b) Assuming t o t a l argon mixing w i t h the gases i n the bed For t h i s c o n d i t i o n the f o l l o w i n g r e l a t i o n i s v a l i d PC0 + P C 0 2 + P A r " 1 a t m W However, s i n c e the amount of gases generated i n the bed changes w i t h time so does the q u a n t i t y of argon going i n . Then PC0 + P C 0 2 = 1 - P A r = P a t m W and i n t h i s case P b = P m [31] C0 2 C0 2 L J R B The e q u i l i b r i u m values P and P are obtained as f o l l o w s (_>U2 c u 2 R = p A C ° 2 1 + K l q L B _ 2.p + KJq - A p K§q +(KJq) 2 R B where Keq and Keq are the e q u i l i b r i u m constants f o r r e d u c t i o n and Boudouard r e a c t i o n s r e s p e c t i v e l y , and are c a l c u l a t e d from the thermodynamic data given by Shomate et a t . (19), and Ward (11). In the s i t u a t i o n 117 represented by Equation [27] p equals u n i t y and the e q u i l i b r i u m pressures are constant. On the other hand, i f t o t a l mixing w i t h argon i s co n s i d -ered p w i l l be given by Equation [30], and the e q u i l i b r i u m values w i l l change w i t h time. Once the d r i v i n g forces have been d e f i n e d , the r a t e constants are obtained by means of Equations [19a] and [20a]. 2. C a l c u l a t i o n of a c t i v a t i o n energies, and char r e a c t i v i t y and ore r e d u c i b i l i t y Using Equations [23] and [24], the a c t i v a t i o n energies (E,,, E_) can be obtained from the slopes of Jin (Kg or K^j) vs T p l o t s . These same equations are then employed i n o b t a i n i n g H and H . 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0078874/manifest

Comment

Related Items