Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A comparison of three techniques for the determination of deformation properties of rock Norrish, Norman Ian 1974

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1974_A7 N67.pdf [ 11.87MB ]
Metadata
JSON: 831-1.0078788.json
JSON-LD: 831-1.0078788-ld.json
RDF/XML (Pretty): 831-1.0078788-rdf.xml
RDF/JSON: 831-1.0078788-rdf.json
Turtle: 831-1.0078788-turtle.txt
N-Triples: 831-1.0078788-rdf-ntriples.txt
Original Record: 831-1.0078788-source.json
Full Text
831-1.0078788-fulltext.txt
Citation
831-1.0078788.ris

Full Text

A COMPARISON OF THREE TECHNIQUES OF DEFORMATION  FOR THE  DETERMINATION  PROPERTIES OF ROCK  by NORMAN IAN B.A.Sc,  University of  A THESIS SUBMITTED  NORRISH British  IN PARTIAL  THE REQUIREMENTS  the  SCIENCE  Department of  Mineral  We a c c e p t t h i s required  thesis  Engineering  as c o n f o r m i n g  to  the  standard  THE UNIVERSITY OF B R I T I S H April,  1974  1971  FULFILMENT OF  FOR THE DEGREE OF  MASTER OF A P P L I E D  in  Columbia,  COLUMBIA  In  presenting  an  advanced  the  Library  I  further  for  this  thesis- in p a r t i a l  fulfilment  o f the requirements  degree  at the University  of British  Columbia,  shall  agree  scholarly  make  that  permission  purposes  by  his representatives.  of  this  written  thesis  it freely  may be g r a n t e d It  for financial  of  ^1jsv^dL  i s understood gain  ApuX ^ ,  Columbia  )°i~>4  copying  by t h e Head  shall  £^joys*ju>Ajs^  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, Canada  f o r reference  for extensive  permission.  Department  Date  available  that  I agree  for that  and study.  of this  thesis  o f my D e p a r t m e n t o r  copying  n o t be a l l o w e d  or  publication  w i t h o u t my  ABSTRACT  Laboratory deformation  and  behaviour  a comparison of  of  three  the  laboratory  are  presented  three  testing  To a i d f u t u r e  rock types  have p r o v i d e d  Goodman J a c k  procedures  t e s t s and p l a t e  loading  modulus.  modulus  for  for  plate  The r a t i o  of  values are 1.3.  show a w i d e r a n g e narrow range.  average  t e s t i n g and 5 . 6  to s c h i s t being  of  Similarly  all  the  results  correlation  t h e need t o q u a n t i f y s t r e s s e s and t o  for  gneiss  rock types,  tests.  the r a t i o o f  and p l a t e  the gneiss  t e s t s do n o t .  a  tests  very the is  concluded  t e s t i n g techniques  f a c t o r s such as r o c k q u a l i t y  these f a c t o r s into  gneiss  loading  It  valid  from  The Goodman  the s c h i s t conform to  between the t h r e e  important  incorporate  for  deformation  to s c h i s t i s 2.0  loading  laboratory  gneiss  and  reflects  in  situ  interpretive  formulae. Anisotropy tests are consistent. parallel  to the  Anisotropy  for  tests  the  on t h e b a s i s o f  values w h i l e the jack t e s t s e x h i b i t  The m o d u l u s  the p a r t i a l  the  similar for  anticipated scale effect while that  loading  t e s t s show t h a t  differentiated  J a c k modulus  an o p p o r t u n i t y  and equipment  t e s t i n g and p l a t e  and s c h i s t r o c k t y p e s a r e w e l l  laboratory  the  detail.  Laboratory  the  to determine  techniques.  standardization,  testing, in  t e s t i n g programmes  in situ  investigations  for  the  laboratory  The s c h i s t i s a p p r o x i m a t e l y  foliation  t h a n when l o a d e d  i n v e s t i g a t i o n s w i t h the  and p l a t e  loading  t w i c e as r i g i d  perpendicular  to  loaded  it.  Goodman J a c k a r e q u a l i t a t i v e  only  iv without  very  detailed  Permanent three as the  information  deformations  t e s t i n g methods rock q u a l i t y  geologic  of  and r e f l e c t  a t the  test  the  the  at  the  rock are  volume  location.  of  test  locations.  consistent rock  for  influenced  the as  well  V  ACKNOWLEDGEMENTS  For p r o v i d i n g to thank the Mineral  equipment  Engineering  and f a c i l i t i e s , Department o f  Columbia.  T h a n k s a r e e s p e c i a l l y due M r .  and D r .  Weir-Jones,  I.  The a u t h o r  programme  a l s o thanks  the author would  the U n i v e r s i t y o f  J . B . Evans,  British  Department Head,  supervisor. the p r o f e s s i o n a l  t h a t c o n t r i b u t e d d a t a and r e v i e w e d t h e d r a f t  engineering  thesis.  like  group  vi  TABLE OF CONTENTS Chapter  I. II. III.  IV.  Page  INTRODUCTION  1  BACKGROUND TO TESTING PROGRAMMES  3  DESCRIPTION  4  A.  Introduction  4  B.  Geology o f  the Test S i t e  4  REVIEW OF TESTING PROGRAMMES  6  A.  L a b o r a t o r y T e s t i n g Programme  6  1.  Sample P r e p a r a t i o n  6  2.  Load Measurement  8  3.  S t r a i n Measurement  11  4.  Test Procedure  17  5.  Summary  18  B.  C.  V.  OF TEST S I T E  .  Goodman J a c k T e s t i n g  18  1.  Description of  18  2.  Procedure  Equipment  23  P l a t e Loading Tests 1.  Description of  2.  Procedure  INTERPRETATION  27 Equipment  27 29  OF TEST DATA  31  A.  L a b o r a t o r y T e s t i n g Programme  31  B.  Goodman J a c k T e s t i n g  31  C.  P l a t e Load T e s t s  35  D.  Definition  of  Modulus  Types  37  vii Chapter  VI.  Page  RESULTS OF TESTING PROGRAMMES  42  A.  L a b o r a t o r y T e s t i n g Programme  42  1.  Quartzite  44  2.  Quartz  3.  Pegmatite  4.  Summary a n d C o m p a r i s o n o f  Gneiss  Feldspar Schist  53 67 Laboratory  Results B.  C. VII.  71  Goodman J a c k T e s t i n g  74  1.  Quartzite  77  2.  Quartz  3.  Pegmatite  4.  Summary a n d C o m p a r i s o n o f Jack Results  Gneiss  Feldspar Schist  84 96 Goodman  ' 96  P l a t e Loading Tests  101  COMPARISON OF TESTING TECHNIQUES  108  A.  Magnitude o f Moduli  108  1.  F a c t o r s Relevent t o Comparison  108  2.  Observations Modulus  3.  on t h e T h r e e  Groups  Results  Discussion of  the Modulus R e s u l t s  of 110 Ill  B.  Anisotropy  114  C.  Elastic  Recovery  114  D.  Ease o f  Performance  115  E.  E v a l u a t i o n of T e s t i n g Techniques  116  1.  Laboratory Testing  117  2.  Goodman J a c k T e s t i n g  118  viii Chapter  Page  3. VIII.  P l a t e Loading Tests  CONCLUSION  1 2 1  1 2 3  BIBLIOGRAPHY  1 2 5  APPENDICES  1 2 8  ix  LIST  OF TABLES  Table  Page  1.  Summary o f  Laboratory  Testing  2.  Summary o f  Laboratory  Results  3.  Summary o f  Goodman J a c k R e s u l t s  4.  Results  P l a t e Loading  of  Tests  Programme  19 78 98 102  X  L I S T OF  FIGURES  Figure  1. 2.  Page  P r e p a r a t i o n o f Core Samples U s i n g "Blohm S i m p l e x " Surface Grinder H y d r a u l i c P r e s s and I n s t r u m e n t a t i o n  for  7  Laboratory  Testing  9  3.  Calibration of  4.  Deployment o f  5.  Types Placement o f Dip  Load C e l l  and R e a d o u t  S t r a i n Gauges f o r  the Three  10 Rock 13  S t r a i n Gauges  Directions for  Quartz  6.  D i s a s s e m b l e d Goodman J a c k  7.  A s s e m b l e d Goodman J a c k , and H y d r a u l i c  Unit  R e l a t i v e to S t r i k e  and  F e l d s p a r S c h i s t Samples  14 20  T r a n s d u c e r Readout  Unit  Pump  22  8.  Orientation Convention  9.  Schematic I l l u s t r a t i o n of a P l a t e Loading Test  10.  . . . .  for  t h e Goodman J a c k  R e l a t i o n s h i p Between C o n s t a n t and P o i s s o n ' s R a t i o  .  11.  Modulus  Definitions  12.  Modulus  Definitions  .  in Equation  25 28  (2)  .  34  for  Plate Loading Tests  39  for  Laboratory  a n d Goodman  Jack Tests  40  13.  S t r e s s - S t r a i n Curve  f o r Aluminum Sample  14.  S t r e s s - S t r a i n Curves  15.  S t r e s s - S t r a i n Curves f o r  Q u a r t z i t e G n e i s s (N23)  47  16.  S t r e s s - S t r a i n Curves  Quartzite  48  17.  Frequency Histograms f o r  18.  Q u a r t z i t e Gneiss A n i s o t r o p y Diagrams  for  for  for  Quartzite  Gneiss  Gneiss  Laboratory Quartzite  Tests  Gneiss  43 (N6)  (N93)  46  of 50 52  xi  Figure  19.  Page  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N40 s t r i k e ) 20.  54  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N40 d i p ) 21.  55  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N70 s t r i k e ) 22.  56  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N70 d i p ) 23.  57  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N202 s t r i k e ) 24.  58  Stress-Strain  Curves  f o r Quartz  Feldspar  Schist  (N202 d i p ) 25.  59  Frequency Quartz  Histograms  Feldspar  Anisotropy  Diagram  27.  Ratio, o f E  28.  Variation of Elastic  S  T  R  .  Tests o f  Schist  26. '  W  f o r Laboratory  K  E  61  f o r Quartz  /E  W  d  1  Feldspar  Schist  vs F o l i a t i o n  p  Recovery  with  Angle  Variation  64  Foliation  Angle 29.  63  66 o f the Ratio  Angle  E /E W  .  with  Foliation  ?  68  30.  Stress-Strain  Curves  f o r Pegmatite  (N31)  69  31.  Stress-Strain  Curves  f o r Pegmatite  (N33)  70  32.  V a r i a t i o n o f Modulus  with  U n i t Weight f o r Various  Rock T y p e s 33.  Goodman J a c k L o a d D e f o r m a t i o n Quartzite  34.  72 Gneiss  78  Goodman J a c k L o a d D e f o r m a t i o n  Q u a r t z i t e G n e i s s (NX-7) 35.  Gneiss  (NX-3)  Curves f o r  . . . . . . .  Goodman J a c k L o a d D e f o r m a t i o n Quartzite  Curves f o r  (NX-2)  79  Curves f o r 80  xi i  Figure  36.  37.  38.  39.  40.  41.  42.  43.  44.  45.  Page  Frequency Histograms Quartzite Gneiss  f o r Goodman J a c k T e s t s i n 81  A n i s o t r o p y of. the Q u a r t z i t e by t h e Goodman J a c k  Gneiss as R e f l e c t e d 83  Goodman J a c k L o a d D e f o r m a t i o n C u r v e s F e l d s p a r S c h i s t (NXrl2,' 70.0 ft)  f o r Quartz  Goodman J a c k L o a d D e f o r m a t i o n C u r v e s F e l d s p a r S c h i s t ( N X - 1 2 , 75.0 ft)  f o r Quartz  Goodman J a c k L o a d D e f o r m a t i o n C u r v e s F e l d s p a r S c h i s t ( N X - 2 0 , 70.0 ft)  f o r Quartz  . . . .  89  90  Frequency D i s t r i b u t i o n o f Second C y c l e Modulus f o r Q u a r t z F e l d s p a r S c h i s t  91  Anisotropy o f the Quartz Feldspar R e f l e c t e d b y t h e Goodman J a c k  Working  S c h i s t as 93  T h r e e P o s s i b l e O r i e n t a t i o n s o f t h e Goodman J a c k w i t h Respect t o t h e D i r e c t i o n o f L o a d i n g and F o l i a t i o n Plane  47.  Load D e f o r m a t i o n Curve f o r Q u a r t z i t e from P l a t e Loading T e s t . .  50.  87  F r e q u e n c y H i s t o g r a m s f o r Goodman J a c k T e s t s i n Quartz Feldspar S c h i s t (Third Cycle)  Goodman J a c k L o a d D e f o r m a t i o n  49.  86  F r e q u e n c y H i s t o g r a m s f o r Goodman J a c k T e s t s i n Quartz F e l d s p a r S c h i s t ( F i r s t and Second C y c l e s )  46.  48.  85  Curve  f o r Pegmatite Gneiss . .. .  94 . . .  97  103  Load D e f o r m a t i o n Curve f o r Q u a r t z F e l d s p a r S c h i s t from P l a t e Loading T e s t . . .  104  Frequency Tests  106  Modulus  Distribution  f o r the Plate  Loading  Range f o r V a r i o u s T e s t i n g M e t h o d s  109  1  CHAPTER  I  INTRODUCTION  A knowledge o f d e f o r m a t i o n i n g p r o j e c t s founded  upon o r  properties  is required  develop f i n i t e element models f o r  under  the p r o j e c t  prototype  loading or  as t h e modulus o f e l a s t i c i t y , i s  isotropic  and e l a s t i c .  elastic.  Thus,  both the e l a s t i c  used as the c h a r a c t e r i s t i c d e f o r m a t i o n  Unfortunately, is  due t o r o c k d e f e c t s .  [Kruse,  v e r y seldom homogeneous,  effect.  has b e e n d e f i n e d t o  due t o  its  deformation  inclusive definition,  i t s d e t e r m i n a t i o n , namely the  That i s , t e s t s w h i c h i n f l u e n c e a s m a l l e r volume o f values.  The r e a s o n b e i n g t h a t s m a l l  do n o t i n f l u e n c e a r e p r e s e n t a t i v e s a m p l e o f  rock defects.  [ S t a g g and Z i e n k i e w i c z , 2 ]  t h e more  3]  scale  rock  tend  scale deformable  D e f o r m a t i o n modulus  c a n v a r y by g r e a t e r t h a n 100% d e p e n d i n g on t h e t e s t i n g m e t h o d . [Bukovansky,  include  1]  an i n t r i n s i c p r o b l e m i n  t o have l a r g e r modulus tests  i s o t r o p i c or  t h e r o c k s u b s t a n c e and t h e  The d e f o r m a t i o n m o d u l u s , suffers  homogeneous,  rock with i t s geologic defects  t h e modulus o f d e f o r m a t i o n deformation of  to  a l s o known  i s a p p l i c a b l e to m a t e r i a l s which are  such as f r a c t u r e s and j o i n t s  properties  site.  F o r most e n g i n e e r i n g m a t e r i a l s Y o u n g ' s M o d u l u s ,  T h i s modulus  engineer-  e x c a v a t e d w i t h i n r o c k . The d e f o r m a t i o n  a r e u s e d e i t h e r t o p r e d i c t r o c k movement  property.  for  values  2 This results ining  due  thesis  examines  the  to t e s t i n g method.  the r e s u l t s  of  three  1.  Laboratory  2.  Goodman J a c k  3.  Plate  testing  behavior  of  d i s t i n c t rock types.  relative  merits  each  The e q u i p m e n t ,  t e s t i n g methods standardized. least  be  specified.  on t h e  modulus  by c r i t i c a l l y  exam-  methods:  rock  core,  any  basis of  how t h e y  Conclusions  are  reflect then  the  deformation  r e a c h e d on  the  method. procedures  presented  i n the Thus  i s accomplished  in  tests.  a r e compared  are  variation  tests,  The m e t h o d s  t e s t i n g method  This  of  t e s t s c a r r i e d o u t on s a m p l e s o f  loading  of  problem  field  and t h e o r e t i c a l  in detail. of  factors  The  for  for  this  is  that  not  been  highly  test results  should  reason  rock mechanics that  formulation  can a f f e c t  have  each  at  3  CHAPTER  II  BACKGROUND TO TESTING  The out at  t e s t i n g programmes  in situ  the s i t e of  a proposed  Due t o t h e c o n s i d e r a b l e variations  programme,  tically  s i z e of  this  in load concentration,  c a r r i e d out  determine  underground  to determine  the  deformation  number  s u p p o s e d l y more  The p l a t e l o a d i n g  of  rock behaviour process. performed  The t h i r d  spite of  this  for  a number  of  is  that  results  reason,  from  the  inherent  reasons.  control  of  of  disadvantage,  rock  test variables from  testing.  behavior.  of  i n the  is  limit  for  [ S t a g g and Z i e n k i e w i c z ,  situ  sampling are  convenient  of t h i s the  in  tests  i s more e a s i l y  the viewpoint  of  firm.  laboratory  the t e s t i n g  hand,  t h e volume  by a n e n g i n e e r i n g  Firstly,  statis-  On t h e o t h e r  in situ  Jack  to  and t h e r e f o r e  fewer s i t e s but  r e s u l t s e s t a b l i s h an u p p e r  in situ  were  The Goodman  rock defects a r e ' l o s t  the most i m p o r t a n t  laboratory  t e s t i n g programmes  representative  due t o t h e f a c t t h a t  Secondly,  the  t e s t s are the l e a s t r e p r e s e n t a t i v e  In  to perform.  and b e c a u s e o f  test locations. at  carried  project.  p a r t i c i p a t e d , was c a r r i e d o u t  t e s t s were c a r r i e d o u t  The l a b o r a t o r y  were  engineering  characteristics at a large,  representative,  tested i t  civil  report  rock behavior.  t h e p l a t e l o a d i n g t e s t s were performed rock  in this  project  several  in situ  i n which the w r i t e r  PROGRAMMES  attained. report,  modulus 2]  4  CHAPTER  III  DESCRIPTION OF TEST  A.  Introduction  As p r e v i o u s l y m e n t i o n e d  t h e in situ  c a r r i e d out a t the s i t e o f a proposed e x c a v a t i o n i s t o be s e v e r a l several  the project  its  normal  provided  B.  t e s t i n g programmes  underground complex.  hundred f e e t  s m a l l e r chambers and t u n n e l s The in situ  at  SITE  in length.  In  The p r i n c i p a l  addition  a r e t o be e x c a v a t e d .  t e s t s were c a r r i e d o u t i n an e x p l o r a t o r y  site.  This d r i f t  had a l e n g t h j u s t o v e r  c r o s s - s e c t i o n was 7 f e e t  sites for portions  Geology o f the Test  by 8 f e e t .  of the testing  Three l a r g e r  chambers  programmes.  Site  sediments dipping  regionally  a t 10 t o 35 d e g r e e s .  The  principal  r o c k t y p e s a r e medium t o c o a r s e c r y s t a l l i n e q u a r t z  schists,  q u a r t z i t e s , q u a r t z i t e g n e i s s e s w i t h some m i c a s c h i s t s  marble varying four  beds.  The p r i n c i p a l  f r o m 15 t o 150 f e e t  rock types,  rock types o c c u r as i n t e r b e d d e d in thickness.  feldspar and minor  units  In a d d i t i o n t o t h e above  l e n s e s and v e i n s o f p e g m a t i t e and q u a r t z  i n t h e l a y e r e d sequence and a r e g e n e r a l l y comformable layering.  drift  2100 f e e t and  The r o c k s e q u e n c e i n t h e p r o j e c t a r e a c o n s i s t s o f f o l d e d metamorphosed  were  a r e common  to the  5 An e x a m i n a t i o n o f percentage mineral  hand s i z e r o c k s p e c i m e n s i n d i c a t e d  c o n s t i t u e n t s as  Quartzite Gneiss  quartz,  55 -  feldspar, biotite, garnet,  quartz,  20-25%  chlorite,  biotite, t o 5%  very  The q u a r t z i t e  quartz,  10-20%  muscovite,  30-40%  muscovite,  gneiss  grains.  was n o t  present,  garnet,  In most samples however,  a small  bands and v e r y  uniform,  preferential number o f  samples d i d  Many g n e i s s  few c o n t a i n e d  healed f r a c t u r e  displayed  no v i s i b l e s t r u c t u r a l  foliation  s p a c i n g i n the s c h i s t measured  s a m p l e s showed some d e v i a t i o n that a representative For t h i s  this  sense as q u a r t z i t e  in mineral  sample o f  t h e s i s rock types  and q u a r t z i t e that  features  gneiss  i s not  grains  contained planes.  The  and m i c a  and  or f a b r i c o r i e n t a t i o n . 1/16  to  content  foliation identified  1/8  inch.  strictly  The  The  schist  but were s e l e c t e d angles in  valid  in  c o u l d be t e s t e d .  the f i e l d  g n e i s s have been g r o u p e d t o g e t h e r .  grouping  of  contain  samples  samples c o n t a i n e d c o a r s e l y c r y s t a l l i n e q u a r t z  recognized  minor  medium s i z e d  orientation  pegmatite  quartzite  10-20%  10-20%  samples were composed o f  f a i n t l y o r i e n t e d micaceous m i n e r a l s .  order  80-90%  minor  mineral  chloritized  Pegmatite  20-30%  feldspar,  5-10% minor  follows:  Quartz Feldspar Schist  65%  the  i n the  as It  is  geologic  i m p l i e s a f o l i a t e d s t r u c t u r e whereas  quartzite  5a does  not.  structure of  Since in  was t h e o r i e n t a t i o n  foliation  division  the rock core a v a i l a b l e ,  was d i f f i c u l t  the s i n g l e  of  fine  grained  to determine.  inclusive  the only  c l u e to  biotite,  the  To a v o i d a r a t h e r  term q u a r t z i t e  foliated  presence arbitrary  g n e i s s was s e l e c t e d .  6  CHAPTER  REVIEW OF TESTING  A.  Laboratory Testing  1.  Sample  IV  PROGRAMMES  Programme  Preparation  The l a b o r a t o r y T h i s c o r e was o b t a i n e d  t e s t i n g programme u t i l i z e d s a m p l e s o f  BX c o r e .  from holes d r i l l e d from the e x p l o r a t o r y  i n c o n j u n c t i o n w i t h a s e p a r a t e t e s t i n g programme. footage of  c o r e a v a i l a b l e , samples were p r e p a r e d  uniformity  o f each rock t y p e .  basic rock types; q u a r t z i t e  From t h e that  drift  large  exhibited  The c o r e s a m p l e s w e r e d i v i d e d  g n e i s s , p e g m a t i t e and q u a r t z  into  three  feldspar  schist. The BX c o r e was c u t w i t h a d i a m o n d having a length to diameter r a t i o of ground p a r a l l e l and f l a t in  Figure  flat  1.  This machine i s c a p a b l e o f  a group o f preparation two w e e k s .  producing  the f i r s t  three times f o r  three  is  end f l a t n e s s both ends  end.  t h e s a m p l e s w e r e d r i e d a t room t e m p e r a t u r e Samples were t h e n measured  shown  a surface which  w i t h i n the r e q u i r e d  samples then r e g r i n d i n g  then  surface grinder  P a r a l l e l i s m o f e n d s was a s s u r e d by g r i n d i n g fourteen  samples  The s a m p l e e n d s w e r e  u s i n g a "Blohm S i m p l e x "  t o w i t h i n 50 u i n c h e s , w e l l  standard.  2:1.  saw t o y i e l d  times f o r  d i a m e t e r and w e i g h e d t o t h e n e a r e s t 0.1  After  for at length gram.  of  least and  7 Figure 1  PREPARATION OF CORE SAMPLES USING S I M P L E X " SURFACE  GRINDER  "BLOHM  8 2.  Load  Measurement  Axial  l o a d s were a p p l i e d  p r e s s a s shown i n pounds l o a d but imately  of  20%  Figure  for  2.  this  capacity.  a "Doric"  digital  out cell  load c e l l .  s t r a i n gauge  a s shown i n  proving  Figure  t o d i s p l a y a number o f  transducer  the  3.  equal  Thus  "Doric"  a l s o showed l i n e a r i t y o v e r  The c a l i b r a t i o n p r o v e d  weekly  of  it  mode s o t h a t ing t h i s  a reading  of  accurately.  u n i t was  range o f  the  loading  carried load  adjusted  proving  10 p o u n d s  fact  the  The  f o r weaker rock  a s l o w a s 40  "Doric"  the c o n t r o l  r a t e c o u l d be a c h i e v e d .  load types  loading  was s e t t o t h e  valves of  For example,  or  pounds.  allowed the  "Doric"  ring.  out  i n 5000 pounds  p r e s s c o n t r o l s and t h e that  and  t h e o n e month  t h e l o a d was s e n s e d a t a p r e c i s e s c a n r a t e .  s c a n r a t e a n d by a d j u s t i n g  of capacity  c a l i b r a t i o n checks c a r r i e d  load increments feature  consisted  The l o a d c e l l  s t a b l e over  the hydraulic  i l l u s t r a t e d by t h e  t o be c o n t r o l l e d q u i t e  desired  Subsequent  The s e n s i t i v i t y o f  An a d d i t i o n a l  transducer  the load  t o be e x t r e m e l y  was p o s s i b l e t o a p p l y  having  read d i r e c t l y i n pounds.  the t e s t i n g .  sensing system i s  unit  unit  pound  t o t h e a c c u r a t e l y known m e c h a n i c a l  i n d i c a t e d a maximum d e v i a t i o n o f  0.2%.  approx-  t h e t e s t i n g a s s e m b l y was  The " D o r i c "  units  "Doric"  250,000  r i n g mounted i n s e r i e s w i t h t h e  load.  duration  The r e a d o u t  The c a l i b r a t i o n o f  u s i n g a "Morehouse"  up t o  The l o a d s w e r e m e a s u r e d w i t h a 5 0 , 0 0 0  "Baldwin SR-4,"  20,000 u n i t s .  p r e s s can develop  hydraulic  t e s t i n g programme maximum l o a d s w e r e  capacity,  of  This  to the samples using a  By  rate  track  determin-  the press  the scan r a t e  the of  9 Figure  HYDRAULIC PRESS AND  INSTRUMENTATION  FOR LABORATORY  TESTING  2  Figure  CALIBRATION OF LOAD CELL AND READOUT  UNIT  3  n the  " D o r i c " was 0 . 9 0  corresponded  per  to a s t r e s s rate of  second f o r  t h e BX c o r e  3.  Measurement  Strain  s e c o n d so t h a t  l o a d jumps o f  60 p o u n d s p e r s q u a r e  b r a n d was " K y o w a , " t y p e  o f w h i c h a r e as  type:  gauge  KFC-5-C1-11,  inch  gauge  s t r a i n gauges.  Due t o t h e  5mm  factor:  thermal  the choice of of  120.0  large  1.  All thus  ± 0.3  number o f  gauge  the low c o s t o f  the f o l l o w i n g  The  the s p e c i f i c a t i o n s  2.12  output:  ±  ±1.8  1.5%  micro  degree  resistance:  (psi)/  follows:  foil  length:  pounds  samples.  S t r a i n s w e r e s e n s e d by r e s i s t a n c e t y p e specific  100  strains/  centigrade  ohms  gauges  required,  t y p e were t h e i r these gauges  primary  considerations  a v a i l a b i l i t y and c o s t .  In  in  spite  they were c o n s i d e r e d s a t i s f a c t o r y  for  reasons:  t e s t i n g was c a r r i e d o u t compensation  for  under  temperature  laboratory extremes  conditions, was  unnecessary. 2.  S t r a i n s were o f  3.  Only  2 or  fatigue  relatively  small magnitude  3 l o a d i n g c y c l e s were employed,  life  of  t h e g a u g e was  unimportant.  (less  than  therefore  1%).  the  12 4.  H e a t d i s s i p a t i o n was no p r o b l e m would  be 6 . 2 5  ampere 5.  maximum  The gauge (a)  milli-amperes, for  length  to avoid  (b)  to avoid in  the  the  the  gauge  stability  gauges  samples.  of  the  4 shows gauge  foliation  gauges is  s a m p l e s was t h a t  given  c a n be s u m m a r i z e d  as  After for  with  for  present  in  single  relaxation  [5]  gauges  were  the  with  attached  r o c k t y p e s were respect  on t h e  to  uniform  structural  various  rock  types.  four  movements.  s t r i k e and d i p  The  directions  5. strain  gauges  to  the  some m o d i f i c a t i o n s .  rock This  procedure  follows:  less  than  samples  The s a m p l e s w e r e c l e a n e d o f a l l  3.  Positioning  l i n e s were drawn to  dried  at  room  temperature  two w e e k s .  2.  mid-height  4]  long,  i n the s c h i s t samples  to the  Figure  c u t t i n g and g r i n d i n g ,  not  milli-  Riley,  to detect d i r e c t i o n a l  attaching  by H a r d y  with  installations  respect  illustrated  The p r o c e d u r e  1.  Since these  w e r e u s e d i n an a t t e m p t these  and  to s t r e s s  strain  were not o r i e n t e d  the d i s t i n c t f o l i a t i o n  of  [Dalley  100  attached to a  due  and two c i r c u m f e r e n t i a l  Because o f  position  being  problems  Figure  gauges  the  and  features.  axial  gauges.  than  current  5 mm was c o n s i d e r e d s u f f i c i e n t l y  strain  g n e i s s and p e g m a t i t e  and u n f o l i a t e d  type  less  gauge  adhesive.  Two a x i a l to  of  the  rock g r a i n ,  foil  far  s i n c e the  locate  gauges.  dirt  and  grease.  a x i a l l y and c i r c u m f e r e n t i a l l y  at  DEPLOYMENT OF STRAIN GAUGES FOR THE THREE ROCK TYPES From l e f t  to r i g h t ;  pegmatite,  quartz  quartzite  feldspar  gneiss,  schist  Figure  PLACEMENT OF STRAIN GAUGES RELATIVE TO S T R I K E AND DIRECTIONS FOR QUARTZ FELDSPAR SCHIST SAMPLES  DIP  5  The a r e a s  t o w h i c h g a u g e s w e r e t o be a t t a c h e d w e r e  c l e a n e d as f o l l o w s : a toothbrush, in  (b)  (a)  acetone v i g o r o u s l y  final  cleaning using  disappeared,  (about 2  Two s t r a i n g a u g e s care  being  two o f  the  were removed  taken not  gauge  until  t i s s u e paper  A piece of  to  touch the  using  soaked  positions  its  c o n s i s t i n g o f wooden  gauge  press.  phane r e m o v e d ,  acetone  packages,  side of  on t h e r o c k  had  the  special gauge.  i n the c o r r e c t the  b l o c k s , sponge  orientation.  gauge a n d a n y  by p r e s s i n g w i t h t h e  to set f o r  to  sample.  two a t t a c h e d g a u g e s , w a s  The c e m e n t was a l l o w e d the  under  c e l l o p h a n e was p l a c e d o v e r  sample, with  traces of  P R 9 2 4 4 / 0 4 ) was m i x e d a n d a p p l i e d  i n t h e cement were removed  press  all  from t h e i r  The gauge was p l a c e d on t h e s a m p l e  of  in  minutes)  The c e m e n t ( P h i 1 1 i p s - T y p e  in  brushed  acetone.  The s a m p l e was a l l o w e d t o d r y  The  thoroughly  thumb.  placed in a  rubber  5 minutes  and a  w i t h the  The s a m p l e was t h e n w i t h d r a w n ,  a n d s t e p s 5 t o 10 r e p e a t e d  bubbles  for  the  drying  G-clamp.  sample the  cello-  second  set  gauges.  The s a m p l e was a l l o w e d t o d r y e n s u r e c o m p l e t e cement Terminal  for  an a d d i t i o n a l  24 h o u r s  curing.  tabs were cemented t o the sample t o p r o v i d e  point  for  After  soldering  to  a t t a c h i n g gauge  l e a d w i r e s and c i r c u i t l e a d  l e a d s was c o m p l e t e t h e c o n t i n u i t y  c i r c u i t was c h e c k e d u s i n g an  ohmeter.  of  a  soldering wire.  the  gauge  16 14.  The gauges  and s o l d e r j o i n t s  silicone  rubber.  Firstly,  t o p r o t e c t t h e gauge  the a i r . sample  There were s e v e r a l  Secondly,  to prevent  to prevent  to firmly  any induced  the lead wires  The r e a d o u t  were c o a t e d w i t h a l o w modulus  units  reasons  for this  i n s t a l l a t i o n from  precaution.  moisture"in  attach the lead wires to the strain  from being  to the gauges.  Finally,  pulled off.  f o r s t r a i n s c o n s i s t e d o f two c o m m e r c i a l  bridges  t h a t w e r e c a l i b r a t e d t o r e a d s t r a i n d i r e c t l y i n m»icroinches p e r i n c h . axial Strain  s t r a i n s were r e a d o u t on a "Budd S t r a i n Indicator"  the d i p d i r e c t i o n for  was u s e d f o r c i r c u m f e r e n t i a l  i s i l l u s t r a t e d i n Appendix  the correct s t r a i n ,  Thus,strains  ditions,  fluctuations,  were compensated  f o r i n t h e s t r a i n gauge  t h o s e on t h e t e s t s a m p l e s .  cause equal coefficients positions  strains  o f thermal  o f t h e gauges  The c i r c u i t i n d i c a t e s  circuit.  under  laboratory  circuitry.  con-  Strain  c o n n e c t e d as compen-  A temperature  change  would  i n t h e t e s t a n d "dummy" s a m p l e s a s s u m i n g  expansion  t o be t h e same.  However,  their  due t o t h e  i n the c i r c u i t the e l e c t r i c a l output o f the  t e s t a n d "dummy" s a m p l e s w o u l d electrical  1.  circuit  i n t h e same o r i e n t a t i o n a s  These gauges were t h e n  i n t h e s t r a i n gauge  thermal  T h e s t r a i n gauge  in  microinch/inch.  though minimal  g a u g e s w e r e a t t a c h e d t o a "dummy" r o c k s a m p l e  s a t i n g gauges  strains  t h e p r o o f o f w h i c h i s a l s o shown i n A p p e n d i x 1 .  w e r e d e t e c t e d t o t h e n e a r e s t 0.5  Temperature  w h i l e a "BLH  strains or axial  i n the case o f s c h i s t samples.  each s e t o f gauges  double  Indicator"  The  be i d e n t i c a l  e f f e c t o f t h e thermal  but o f opposite  s t r a i n s was t h e r e b y  sign.  cancelled.  The  17 4.  Test  Procedure  The t e s t p r o c e d u r e i z e d as 1.  The  "Doric"  was a l l o w e d t o warm up u n t i l  A f t e r a warmup p e r i o d  From p r e v i o u s  strength  The s a m p l e was t h e n  the zero  was  incrementally  compressive strength.  The maximum l o a d a n d / o r and subsequent behaviour.  loading  load  then  if  showed t h e  problems  The m o s t i m p o r t a n t  of  be n o n - d e s t r u c t i v e  in order  due m a i n l y  encountered  arose  the c o n t r o l  Out o f  A second problem the  bridge  were  first  the  increments  the  estimated  had 1 5 t o 20  readings.  were m o d i f i e d  on  by t h e f i r s t  cycle  strain  chosen  second cycle  readings  increments  would  cycle.  i t was i m p e r a t i v e  a total  of  testing  that  72 s a m p l e s  the  tested,  the s t r e n g t h or to r a t e s a t sample  involved  press.  taken.  were  that other workers could carry out  to overestimating  valves of  cycle  t o 75% o f  i f warranted  the  when i n i t i a t i n g l o w l o a d i n g  30,000 pounds.  correct  an e s t i m a t e o f  i n c o n j u n c t i o n w i t h the  t h e s e was t h a t  t e s t i n g on t h e s a m p l e s .  readings  t h e maximum l o a d a n d l o a d  be i n c r e a s e d on t h e s e c o n d  Several  loaded  increments  cycles  For example,  showed l i n e a r i t y  in  summar-  made.  The l o a d  such t h a t a complete l o a d - u n l o a d  broken,  it  t e s t i n g programmes  compressive strength  ultimate  5.  r o c k t e s t i n g c a n be  The s a m p l e was s e t i n t h e p r e s s a n d c o n n e c t e d t o t h e  ultimate 4.  laboratory  reading.  circuits. 3.  the  follows:  zero 2.  for  loss of  programme. testing  further 11  were  difficulties loads  l o a d due t o  above leakage  T h i s c o n d i t i o n was m o s t p r e v a l e n t  at  low  18 l o a d s on t h e u n l o a d i n g strain  5.  cycle  a n d was o v e r c o m e by s y n c h r o n i z i n g  readings w i t h the d r i f t i n g  load.  Summary  When c o m p a r i n g t h e r e s u l t s o f  t e s t i n g techniques  it  is  t o make t h e s e c o m p a r i s o n s w i t h r e s p e c t t o t h e t i m e r e q u i r e d t o out  the t e s t i n g .  laboratory  It  this writer. be l e s s .  Appendix 2 presents a time study  i s emphasized t h a t  The t i m e s r e q u i r e d  From A p p e n d i x 2 i t  required  1 3/4  hours  Clarke laboratory  summary o f presented  [6]  per  B.  Goodman J a c k  1.  Description of  hole  deformation  testing  i t e m s w h i c h s h o u l d be s p e c i f i e d  modulus.  Based on t h a t t a b l e , a t e s t programme  is  Equipment  also referred  t o a s t h e NX p l a t e  c h a r a c t e r i s t i c s of  two s t e e l  bearing  i s a h y d r a u l i c jack designed to determine rock.  This  load to a p o r t i o n o f  by f o r c i n g a p a r t  consists of  undoubtably  i s seen t h a t sample p r e p a r a t i o n and  rigid  bearing  The d i s a s s e m b l e d j a c k i s shown i n it  by  Testing  applying a unidirectional NX b o r e  the  1.  bore hole j a c k ,  load-deformation  the  sample.  The Goodman J a c k , device or  received at  by a t e s t i n g l a b o r a t o r y w o u l d  the t e s t items u t i l i z e d i n the w r i t e r ' s in Table  carry  these times are those encountered  presented a table of  tests for  desirable  f o r each phase o f  t e s t i n g programme f r o m t h e t i m e t h e c o r e i s  laboratory.  for  the  the  i s a c c o m p l i s h e d by the c i r c u m f e r e n c e o f  an  plates. Figure  6.  p l a t e s which are forced apart  As c a n be s e e n , by 12 r a c e  track-  19 TABLE 1 SUMMARY OF LABORATORY TESTING  1.  Length  of  Sample:  2.  Diameter  of  3.  Shape o f  Sample:  average  Sample:  3.200  average  PROGRAMME  inches  1.600  inches  Cross-section: circular Vertical section: rectangular Symmetry: t h a t o f a r i g h t c y c l i n d e r 4.  End  Conditions: P l a t e n : hardened s t e e l Specimen: f l a t to w i t h i n L u b r i c a n t : none  5.  Measurement  6.  Rate o f  of  Load:  0.001  load c e l l  inch  coupled  7.  Number  8.  Test to  9.  Sensors:  of  P e g m a t i t e : 60 30 p s i / s e c Cycles:  Failure:  2 (occasionally  3)  no  Lateral  Extension-Poisson's  2 axial,  Ratio:  Coordination  of  R a t i o gauge  Ratio  above w i t h length  sample  size  rock  to g r a i n  to g r a i n  2  measured strain  12.  unit  psi/sec  R e s i s t a n c e s t r a i n gauges Type: f o i l L e n g t h : 5mm Number: 4 Placement: g n e i s s , pegmatite: schist: 4 axial  11.  readout  Loading:  Gneiss, Schist:  10.  to a d i g i t a l  circumferential circumferentially  with  gauges  properties: size:  size:  gneiss 10:1, pegmatite 2 : 1 , s c h i s t 5:1 gneiss 160:1, pegmatite 4 0 : 1 , s c h i s t 80:1  Instrumentation: Accuracy: Overall  l o a d : - 10 l b . i n 5000 l b o r 0 . 2 % s t r a i n : - T e k t r o n i x O s c i l l o s c o p e #549 u s e d a s s y s t e m c h e c k e d u s i n g an a l u m i n u m s a m p l e .  standard  21 shaped p i s t o n s .  Two l i n e a r v a r i a b l e  as LVDTs) measure  the diametral  long p l a t e s .  The j a c k  is  includes a portable hydraulic  equipment  transducer  The h y d r a u l i c  pressure.  readings pump i s  Figure  The o p e r a t i n g maximum h y d r a u l i c against  used i n  on t h i s  linear 3.1  range  of  providing  one-  t h e Goodman  pump,  versus  readout  readout  10,000  unit  and  of  the bore  10,000 hole.  of  psi  the  line  hydraulic  to correspond  psi This  produces  range  from of  stress f i e l d 158,000  2.75 0.2  Under  of  is  This  in  linear extension  conditions  to jack diameters  from  9,300  [Tran,  inches  the jack  normal  ground  advantages. t e s t chambers  t e s t methods,  s u c h as t h e Goodman  The p r i n c i p a l  advantage  n e e d n o t be c o n s t r u c t e d .  is that  Jack,  special  A  uniform  pounds.  to 3.25  inches.  t o any p o r t i o n  t h e LVDTs c o r r e s p o n d s  a stress of  2.9  the to  inches.  several  is  t h e j a c k a r e as f o l l o w s .  to a force of  upon r o c k d e f o r m a b i l i t y .  Bore hole  Jack  pressure  the diameter  to produce  s p e c i f i c a t i o n s of  The LVDTs h a v e a l i n e a r  depending  pistons.  7.  i n c h e x t e n s i o n range  range  the 8 inch  The t r a n s d u c e r  unit  transducer  The j a c k has a 0 . 5  c a n be a d j u s t e d  thereby  hydraulic  cable.  and c o r r e s p o n d s  range  two r e t u r n  conjunction with unit,  and u n i d i r e c t i o n a l  diameter.  end o f  (known  hole.  hand o p e r a t e d  l i n e pressure  the s i d e s o f  transformers  at either  inches,  readout  The a s s e m b l e d j a c k ,  pump a r e shown i n  psi  2 3/4  hose and e l e c t r i c a l  c a l i b r a t e d by p l o t t i n g jack.  is  i n c h c l e a r a n c e i n a n NX b o r e Ancillary  gauge,  deformation  c o l l a p s e d by means o f  The j a c k ' s c o l l a p s e d d i a m e t e r quarter  differential  have under-  7]  23 Most p r o j e c t s appropriate  involve  l a r g e e x p l o r a t o r y d r i l l i n g programs  test locations for  u s i n g bore h o l e methods.  deep  i n v e s t i g a t i o n of  Further advantages  o f t h e s e methods  relatively light  to carry out.  A s a r e s u l t many t e s t s c a n be r u n a n d a  Goodman J a c k  bore  h o l e methods  has two d i s t i n c t a d v a n t a g e s .  dilatometers.  that  statistical  such as d i l a t o m e t e r s ,  Firstly,  in very  t h e j a c k has d i r e c t i o n a l  supply a uniform  internal  r i g i d rock.  2200 p s i maximum  j a c k c a n be p o s i t i o n e d so t h a t provided  good bore  capability  d i r e c t i o n s thereby  rock.  2.  Procedure  The Goodman J a c k recommended modification  it  forces apart  hole data i s a v a i l a b l e .  a l s o means t h a t  the  i s a c c u r a t e l y known.  the deformation providing  by t h e m a n u f a c t u r e r , involved  Slope  i n s e r t the jack i n t o the  bore h o l e .  Thus,  their  For example,  the  joints loading  c a n be d e t e r m i n e d  on t h e a n i s o t r o p y  followed closely  Indicator  the s u b s t i t u t i o n of  assuming  The d i r e c t i o n a l  information  t e s t procedure  hole.  fractures or  modulus  is  dilatometers  pressure to a s e c t i o n o f the bore  t h e j a c k c a n be o r i e n t e d on s p e c i f i c g e o l o g i c f e a t u r e s  for  determin  The s e c o n d a d v a n t a g e  loading c a p a b i l i t i e s while  i n t e r s e c t i o n w i t h the bore h o l e  the  the j a c k can develo  T h i s means t h a t t h e Goodman J a c k c a n be u s e d t o  the d e f o r m a t i o n modulus  to  are  and a r e f a s t and e c o n o m i c a l  much h i g h e r c o m p r e s s i v e s t r e s s e s ; 9300 p s i v e r s u s  several  rock  employed. Compared t o o t h e r  that  provide  undisturbed  they c o n s i s t of  average  equipment  which  Company.  i n s e r t i o n rods  in  of  that The p r i n c i p a l  for  BX c a s i n g  The c a s i n g i s recommended  in  order  to provide  electrical  maximum p r o t e c t i o n f o r  cables.  The d i s a d v a n t a g e o f  weighs approximately casing greater handle  l i g h t aluminum  this  50 pounds p e r 10 f o o t  t h a n 20 f e e t , a d r i l l  the l o a d .  the j a c k ,  In o r d e r  section.  t o f a c i l i t a t e manual  section.  w i n c h c o u l d p l a c e and r e t r i e v e from the e x p l o r a t o r y  system i s  that  Thus,for  placement of  the  greater  2.  The j a c k was i n s e r t e d a s h o r t  hand feet  f o l l o w e d w i t h t h e Goodman J a c k  c a b l e s were c o n n e c t e d . distance into  the bore  hole,  at  depth.  The j a c k was t h e n p o s i t i o n e d a t t h e c o r r e c t d e p t h and respect to  the d r i f t  axis.  (See  Figure  of  1000 p s i was r e a c h e d . T h i s  of  the l o a d deformation  than the zero  the d i f f i c u l t y in determining  jack-bore hole  stress  point point  t h e e x a c t moment  9500 p s i .  Readings  increments of for  both  t r a n s d u c e r s were t a k e n a t each l o a d i n c r e m e n t . during  initial  pressure  of  contact.  The j a c k p r e s s u r e was i n c r e a s e d i n t o a maximum o f  a hydraulic  b a s e l o a d i n g was t h e  data rather  oriented  8)  The j a c k was e x p a n d e d u s i n g t h e h a n d pump u n t i l  point  than  t h a n 100  l o a d e d and r e t r a c t e d to e n s u r e c o r r e c t p e r f o r m a n c e  because o f  to  follows:  H y d r a u l i c hoses and e l e c t r i c a l  with  of  jack,  two men w i t h a s m a l l  the j a c k a t depths  1.  5.  lengths  drift.  c a n be s u m m a r i z e d a s  4.  casing  These rods weighed l e s s  As a r e s u l t ,  The a c t u a l t e s t i n g p r o c e d u r e  3.  the  and  r i g o r s i m i l a r s y s t e m m u s t be u s e d  i n s e r t i o n rods were used.  5 p o u n d s p e r 10 f o o t  h y d r a u l i c hoses  the l o a d i n g c y c l e ,  these readings  1000  psi  deformation If,  at  differed  any by  more t h a n 0 . 0 2 0 i n c h e s t h e j a c k was r e t r a c t e d a n d r e - l o c a t e d .  26 The r e a s o n dicated of  jack  this  p r e c a u t i o n was t h a t  t h e j a c k was t i l t i n g due  the rock.  guide  6.  for  pins to  deformation  or  LVDT a d a p t e r  or,  i n the extreme  case,  The j a c k p r e s s u r e was t h e n d e c r e a s e d i n i n c r e m e n t s the  cycle.  of  1000  For  most  c y c l e s were p e r f o r m e d .  the  d i r e c t i o n of  r a t e was a p p r o x i m a t e l y The t i m e r e q u i r e d  for  10 t o  psi  However,  necessitated 4  t e s t s c a r r i e d o u t a t 90 d e g r e e s  cycles. and  and 45 d e g r e e s  to  the  loading.  by how f a s t  p r e s s u r e w i t h t h e hand pump.  locate the  of  inconsistent results  The l o a d i n g was c o n t r o l l e d  approximately  cause  s t e p 6 was c o m p l e t e d t h e j a c k w o u l d be r o t a t e d  similar first  portion  2 or 3 load-unload  i n some c a s e s , After  jack's  jam.  locations  develop  to n o n - u n i f o r m  in-  E x c e s s i v e t i l t i n g c o u l d c a u s e w e a r on t h e  to complete the unloading  7.  the d i f f e r e n c e  It  100 t o 150 p s i a 2 cycle  20 m i n u t e s  per  test for depending  the operator  is estimated that second  (rock  one o r i e n t a t i o n on t h e  could  the  loading  pressure). o f j a c k i n g was  time necessary  to  jack. The m a i n p r o b l e m  encountered  programme c o n c e r n e d t h e t e n d e n c y o f retract operation.  This  happened  programme w i t h t h e r e s u l t t h a t from the bore lodged 0 - r i n g s and f a i l u r e  hole.  i n t h e Goodman J a c k  the j a c k  on t h e r e t r a c t  to completely  to malfunction  twice during  in  the course of  the j a c k c o u l d not  P o s s i b l e causes f o r  testing  be r e a d i l y  the m a l f u n c t i o n i n g  the the  retrieved include  p i s t o n s , mud a n d r o c k c h i p s e n t e r i n g  tighten  the  self-sealing hydraulic  disthe  jack  couplings.  27 In  both c a s e s ,  after  considerable  l o s t testing time,  r e t r i e v e d w i t h the a i d of a d r i l l  rig.  A second problem e n c o u n t e r e d , ducers.  During the course of  t h e r e was a s m a l l c o n d i t i o n meant  It  between  i n the  the f i r s t pressure  should  being  Goodman  that  u s e d and p r o b a b l y  is  1.  Description of  Plate deformation  This  The unloading  effect  c u r v e s and i t w i l l  initial  is  shown  be d i s c u s s e d  t h i s was a c h a r a c t e r i s t i c o f  the  not an i n h e r e n t  of  all  the  in situ  feature  specific  Tests  Equipment  loading  t e s t s are performed  characteristics of  two w a y s .  One m e t h o d ,  on t h e s u r f a c e .  The l o a d  a rock mass.  is  supplied  provided  by c a b l e s a n c h o r e d  8]  In  t h e s e c o n d method a h y d r a u l i c  walls  of  a tunnel.  l a t t e r method tunnel  The p l a t e as i s  plate  to determine This  is accomplished in  known a s t h e c a b l e j a c k i n g t e s t ,  being  study of  modulus.  the  Jacks.  Plate Loading  the  the LVDTs.  loading or  that  mountings.This  l o a d i n g was r e v e r s e d  increment of  trans-  i t was f o u n d  t h e LVDTs a n d t h e i r  backlash of  high deformation  be n o t e d  C.  of  play  c l e a r l y on t h e l o a d - d e f o r m a t i o n  later. jack  d i s a s s e m b l i n g the j a c k  w o u l d be l o s t  e x h i b i t e d an a b n o r m a l l y quite  concerned the deformation  t h a t when t h e d i r e c t i o n o f  jack deformation r e s u l t was t h a t  amount o f  t h e j a c k was  by h y d r a u l i c  at depth.  loading  jack  the  i s used to s e p a r a t e  tests for  this project ;  Figure  9.  t e s t s see W a l l a c e , S l e b i r ,  Stagg,  the  utilized  For a e_t a K  plate  reaction  [See Z i e n k i e w i c z and  s c h e m a t i c a l l y shown i n  loading  jacks,  loads a  one  detailed  [9].  2p Figure 9  SCHEMATIC ILLUSTRATION OF A PLATE LOADING TEST  29 As p r e v i o u s l y formed  by t h i s w r i t e r .  company s p o n s o r i n g during  separate  tests,  diameter  wall  locations  tests at in  ten  so t h a t  the  was s u p p l i e d  refers  this  by  perthe  t o work c a r r i e d  p r o j e c t were c a r r i e d o u t  the e x p l o r a t o r y w e r e made a t  drift  giving  b o t h ends o f  inch square  the pipe  required  i n c h , mounted a g a i n s t  twelve  the  out  bearing  plates.  in different  the  bearing  complete  inch  Loads were  carried  double-extra  lengths  d i s t a n c e a c r o s s the  at  loading  by a 200 t o n ram a c t i n g on 12  D e f l e c t i o n s were sensed w i t h d i a l  c o u l d be  tunnel  gauges,  bolted  could  accurate  heavy  be to  plates.  Procedure  The p l a t e vertically  or  cycles  of  loading  horizontally  l o a d s and r e c o r d i n g  during  each c y c l e o f  30 m i n u t e s  t e s t s were c a r r i e d o u t across the t u n n e l .  l o a d i n g and u n l o a d i n g  higher  for  information  t e s t s were not  by t e s t beams made f r o m 8 i n c h d i a m e t e r Sections of  spanned.  four  loading  r e s e a r c h work and i t  loading  c i r c u l a r or  pads  together  2.  this  Loads were a p p l i e d  pipe.  0.0001  The f o l l o w i n g  s i n c e measurements  assembly.  to the  the p l a t e  1967. Plate  six  mentioned  at  the  loading  the  i n two  orientations,  Each t e s t c o n s i s t e d  bearing  surfaces with  rock d e f l e c t i o n s .  Ten r e a d i n g s  and u n l o a d i n g  w i t h the load  held  t h e maximum a n d minimum l o a d t o a l l o w t h e  of  progressively were  made  constant  rock  to  adjust. The c y c l e s o f increments  of  5 tons;  one  test consisted of:  100 t o n s maximum l o a d  in  50 t o n s maximum l o a d increments  of  10  tons;  in  150 t o n s maximum l o a d  in  load  20 t o n s .  in  eighty  increments of  s t e p s and r e q u i r e d  increments  of  15 t o n s ;  One c o m p l e t e  s i x to eight  hours.  and 200 t o n s  test,  then,  maximum  involved  31  CHAPTER V  INTERPRETATION  A.  Laboratory  Testing  considerations other  words,  are  DATA  Programme  Since laboratory shape and a r e s u b j e c t  OF TEST  t e s t samples  to a uniform  required  to  the deformation  have a c o n s i s t e n t  stress  determine  modulus  field,  no  theoretical  the deformation  follows  geometric  directly  modulus.  from  In  its  definition. Many w r i t e r s modulus  value  O b e r t and  determined  Duvall  Zienkiewicz  have  [10],  [2].  reported  for  a particular  Hawkes a n d M e l l o r  Some o f  these  factors  c o n t e n t and sample end c o n d i t i o n s . thorough study  of  suggests  that  for  this  thesis,  B.  Goodman J a c k  The is  these  to the  force  wall  line of  normal  i s not  to  [11]  See H a r d y  or Stagg  include  is considered  rate,  be  moisture  prevented  other  a  investigators  significance.  to  [5],  and  loading  the work o f minor  the  Hence,  insignificant.  Testing  applied  unidirectional.  except the  comparatively  effect  sample.  Time c o n s i d e r a t i o n s  factors although  they are of their  f a c t o r s which can a f f e c t  Thus  uniform  at a l l  symmetry,  the  bore  by t h e  the  Goodman J a c k t o t h e  points force  hole w a l l .  and t h e  along  the  bore  bore hole  i s d i r e c t e d a t an This  theoretical  means  solution  that for  hole wall,  inclination  pressure the  walls  on  the  deformation  modulus  involves  pressure.  [Goodman, e t a l _ . Tran  solution  a c o n s t a n t displacement problem  for  "1.  [7]  following  hole jack  constant  assumptions  for  the  analytical  problem:  The m a t e r i a l s t u d i e d i s h o m o g e n e o u s , i s o t r o p i c and l i n e a r l y e l a s t i c and t h e b o r e h o l e i s p e r f e c t l y smooth.  2.  The a p p l i e d p r e s s u r e i s u n i a x i a l and u n i f o r m a c r o s s t h e w i d t h o f t h e p l a t e , and a l o n g t h e a x i s o f t h e bore h o l e . I t a c t s a t the w a l l o f the bore h o l e .  3.  E x t e r n a l s h e a r l o a d does is frictionless.  4.  The j a c k  is  infinitely  the deformation  not e x i s t ,  long  U s i n g t h e complex v a r i a b l e method for  than  12]  s t a t e d the  the bore  rather  the  i n the  i.e., third  following  the  jack  dimension."  s o l u t i o n was  presented  modulus:  Qd E  K(v,  =  3) ^  . . .  .(1)  °d where  E  deformation  K  constant which i s a f u n c t i o n of ratio,  the  and t h e  Q  pressure applied  d  diameter  Uj  average  Equation the assumptions  v,  modulus  (1),  of  to the  the bore  diametral  although  plate width,  Poisson's 6  rock  hole  displacement.  mathematically  correct,  s t a t e d above and hence i s n o t s t r i c t l y  field conditions.  Goodman e t a l _ . [ 1 2 ]  is subject  applicable  investigated  the  to  effects  to  33 of  the assumptions  refined findings  1.  equation will  and o t h e r  (1)  briefly  the  be  The c o n s t a n t , width of  2.  for  interpretation  K(v,  t h e Goodman  non-linearity  The e f f e c t o f  elastic  c a n be i n t e r p r e t e d  showed t h a t i s minimal  and t h a t  loading a f i n i t e finite  boundary  programme.  modulus  values  presented  by T r a n Q  =  e K.p  As F i g u r e  K  f  for  the  interpretation  of  The  steel is  condition. with  findings  should  be  dimension. f i e l d d a t a was  [7]:  h  —  .  deformation  .  .  .(2)  modulus  a constant which i s a function hydraulic  pressure  diametral  displacement.  10 shows K ^ ( v )  Poisson's ratio.  the  hole jack  l e n g t h was i n v e s t i g a t e d  element  the deformation  The r e v i s e d e q u a t i o n  in  qualitatively  the bore  d e c r e a s e d by 14% t o t a k e i n t o a c c o u n t t h e t h i r d  5.  behaviour,  the c o u p l i n g e f f e c t of  by t h e c o n s t a n t d i s p l a c e m e n t  dimensional  indicated that  where  plate  quantitatively.  l y approximated  E  Their  3 = 45 d e g r e e s , t h e  s o l u t i o n assumes l i n e a r  F i n i t e element a n a l y s i s  a three  test data.  and  Jack.  p l a t e and r o c k s u r f a c e  4.  field  i s a maximum a t  3),  Since the a n a l y t i c a l  but not  of  solution  summarized:  rock e x h i b i t i n g  3.  f a c t o r s on t h e m a t h e m a t i c a l  is  relatively  Assumptions  for  of  Poisson's  i n s e n s i t i v e to  v thus  introduce  ratio  variation minimal  close-  Poisson's r a t i o  errors 6.  to the c a l c u l a t e d value of  The p o s s i b i l i t y o f ular  element model.  maximum d e p t h beyond  the  15% l e s s  7.  than  investigated with a showed t h a t  be o n e - h a l f  This would r e s u l t  the t r u e  value.  the  t o one  probable  radius  i n an a p p a r e n t  Should  the j a c k i n g  modulus  take  30%.  to the deformation  load  bore  hole  increments  modulus  roughness  providing  is  could reach negligible  complete  after  unloading  the  does  occur. t h e d i s p l a c e m e n t and p r e s s u r e  from the bore by t h e  It  hole  i s apparent  of theoretical  is  from  approximately  the  formulation  V e r i f i c a t i o n of  results with other  decay w i t h  i n d i c a t e d t h e volume  Goodman J a c k  t h e Goodman J a c k .  C.  c r a c k would  perpendic-  correction  Study o f  field  study  plane  the  not  of  This  i n the  modulus.  p l a c e a c r o s s a p r e - e x i s t i n g c r a c k such as a j o i n t  first  amount  of  hole.  The e f f e c t o f  8.  crack formation  t o t h e j a c k l o a d i n g was a l s o  finite  deformation  foregoing has gone  of  rock  one c u b i c  depth  affected foot.  discussion that a into  the development  the j a c k ' s behaviour  t e s t i n g techniques  is  significant  by  of  comparison  therefore  valuable.  P l a t e Load T e s t s  In o r d e r assumptions bearing  to  interpret  m u s t be made a b o u t  pads.  semi-infinite  The u s u a l elastic  the r e s u l t s o f  plate  loading  the s t r e s s d i s t r i b u t i o n  method assumes t h a t  s o l i d under  beneath  the r o c k behaves  the a c t i o n of a p o i n t  tests,  normal  the as a load.  The s t a n d a r d  Boussinesq s o l u t i o n  to o b t a i n  equations  for  the  presented  by R o a r k  [13],  a r e as  E  for  the square  E  plate:  v  Poisson's  r  d i s t a n c e between p o i n t  ( 3  )  ...  2  load  ratio of  l o a d a p p l i c a t i o n and  point  deflection'measurement  w  deflection  p  pressure  b  d i s t a n c e from c e n t e r of  (psi) bearing  in the formulation interpretation  of  of  plate  equations  to  edge.  for  plate loading  and i s o t r o p i c medium,  modulus  test  results.  conditions  rarely  rock.  drifts  the departure  are applied from i d e a l  to p l a t e  fracturing  of  the r o c k i s most  with depth.  isotropic material  T h i s means  excavation  are  intense at that  loading  i s even g r e a t e r .  b l a s t damaged a n d d e s t r e s s e d r o c k s u r r o u n d s  rapidly  as  modulus  c a u s e d by t h e f a c t t h a t due t o t h e of  . . . .  pb(l-v )  c o n c e n t r a t e d normal  When t h e e q u a t i o n s in  1-9  P  The s o l u t i o n a s s u m e s an e l a s t i c  out  2  deformation  i n a c c u r a c i e s i n the  found i n  deflections  These e q u a t i o n s ,  PQ-v ) 2 r w  E  The a s s u m p t i o n s l e a d to  plate  f o l ows:  the c i r c u l a r p l a t e :  of  to the  deforma ;ion modulus.  for  where  i s then a p p l i e d  the  a  the d r i f t .  the assumptions  in considerable error.  This  process  drift  tests  is  zone The  w a l l s and of  carried  microdecreases  an e l a s t i c  Benson e t al_. [14]  and have  37 stated that  "the g r e a t e s t sources of e r r o r w i t h the assumption  isotropy are that e l a s t i c i t y stant with  p r e v a i l s and t h a t  fact  that although  low.  For example,  p r o b l e m w i t h p l a t e l o a d i n g t e s t s i s c a u s e d by the a p p l i e d  loads are  t h e 200 t o n l o a d s o f  high  rock the a c c u r a c y o f  the d i a l  i n the determined In  l i g h t of  deformation  the f o r e g o i n g  T h i s can r e s u l t  modulus  Definition  of  Modulus  Although rock property, results  of  various  several  types of  in  very fraction  considerable  values.  discussion i t  i s obvious of  that  plate  caution.  Types  the term d e f o r m a t i o n  further  the  report  T h i s means t h a t f o r  l o a d i n g t e s t s m u s t be i n t e r p r e t e d w i t h a g r e a t d e a l  D.  con-  induced s t r e s s e s are  g a u g e s c a n be a s i g n i f i c a n t  t h e d e f l e c t i o n c a u s e d by t h e j a c k i n g .  error  the  the t e s t s i n t h i s  c o r r e s p o n d e d t o s t r e s s e s o f o n l y 4000 p s i .  of  remains  depth." A further  rigid  the modulus  of  definition  is required  testing techniques.  deformation  modulus  modulus  refers  in order  The r e a s o n f o r  e x i s t depending  to a s p e c i f i c t o compare this  is  on t h e i r  the  that location  on t h e s t r e s s - s t r a i n c u r v e . For the purpose o f modulus w i l l  be d e f i n e d . :  this  thesis, three  The d e f i n i t i o n s  by t h e company p e r f o r m i n g  types of  correspond to those  the p l a t e l o a d t e s t i n g i n o r d e r  c o m p a r i s o n s may be made b e t w e e n t e s t i n g m e t h o d s . i n t h e modulus in order  to  deformation  that  A further  computer.  valid  consideration  d e f i n i t i o n s was t h e d e s i r e t o h a v e c o m p u t a t i o n s  u t i l i z e the  defined  automated  The company p e r f o r m i n g following  1.  three  deformation  Working modulus,  the p l a t e  load t e s t i n g defined  moduli:  E :  "A t a n g e n t  w  modulus  taken at a  on t h e s t r e s s - s t r a i n c u r v e w h i c h b e s t r e p r e s e n t s of 2.  the  E : g  "The s e c a n t m o d u l u s  maximum s t r e s s a n d s t r a i n v a l u e s . lower than  the w o r k i n g modulus  the m a t e r i a l  material 3.  permitting  modulus  E^:  "The  response  of  are  illustrated  deformation  for  the p l a t e  curve  spite of  increasing cyclic  in  l o a d s whereas  curve.  Figure  loading  fact that  for 12.  the  is equivalent  greatly fractures  is a secant  value  i n c r e a s e s as  decreases."  11, which i s a t y p i c a l  load-  tests.  the p l a t e l o a d i n g  three  to the r a t i o o f  tests  utilized  t e s t s a n d Goodman J a c k s i m i l a r moduli  The d e f i n i t i o n s  Note t h a t t h e p e r c e n t a g e e l a s t i c  loading  Its  the l a b o r a t o r y  l a t t e r two t e s t s .  using  s t r a i n or a p l a s t i c  r e c o v e r y modulus  c y c l e d t o a c o n s t a n t maximum l o a d ,  Figure test  the  i s computed  i n d i c a t e s open  initial  the m a t e r i a l  These d e f i n i t i o n s  defined  behaviour  load."  t a k e n on t h e r e c o v e r y  the e l a s t i c  tests  the  A s e c a n t modulus  usually  high  t h a t c r e e p s under  Recovery modulus,  In  point  material."  Secant modulus,  in  the  are  recovery  c a n be  illustrated for  the  the secant to  in  entire  recovery  modulus. It tests  s h o u l d a l s o be n o t e d  i s a c h o r d modulus  main r e a s o n s  for  this.  rather Firstly,  that  the w o r k i n g modulus  than a tangent it  i s very  modulus.  difficult  for  these  There were  t o programme  two the  MODULUS DEFINITIONS FOR PLATE LOADING TESTS  MODULUS DEFINITIONS FOR LABORATORY AND GOODMAN JACK TESTS E = chord modulus between p o i n t s 1 and 2 w Goodman J a c k T e s t s : p o i n t 1 = 1/3 maximum s t r e s s L a b o r a t o r y T e s t s : p o i n t 1 = 1 / 2 maximum s t r e s s  computer to c a l c u l a t e a tangent readings. easily  On t h e o t h e r  programmed.  modulus  hand,  Secondly,  the shape o f  a c h o r d modulus i t was f e l t  stress-strain  over  curve regardless of  tangent moduli  of  various  practice introduces  s t r a i n curves cant for  into  if  the usual  working  t h i s modulus  was  In o t h e r w o r d s ,  t h e most l i n e a r p o r t i o n  than  very  that comparisons of  stress level.  c o m p a r i s o n i s more m e a n i n g f u l  stress-strain  calculation is  the s t r e s s - s t r a i n curve.  w o r k i n g m o d u l u s was d e t e r m i n e d  latter  from a s e t o f  b e t w e e n r o c k t y p e s w o u l d be more v a l i d  r e l a t e d to  this  modulus  of  the  In t h e a u t h o r ' s p r a c t i c e of  opinion  comparing  rock types a t c o i n c i d e n t s t r e s s l e v e l s . the v a r i a t i o n of  l i n e a r i t y of  .competency.  This  the s t r e s s -  t h e c o m p a r i s o n ; an e f f e c t w h i c h c a n be q u i t e  rock types of d i f f e r i n g  the  signifi-  42  CHAPTER  VI  RESULTS OF TESTING  The d e t a i l e d r e s u l t s o f in  the appendices.  In t h i s  e a c h t e s t i n g programme a r e  section  techniques  a r e compared and a n a l y z e d  in chapter  V.D.  A.  Laboratory  Testing  Seventy-one programme a l t h o u g h three moduli ing.  all  thirds  of  studies  d i d not y i e l d  defined  for  because i t  w o r k i n g modulus  type  of  Prior to check the  included  was t h e n  the s t r e s s - s t r a i n  results.  outlined  deformations  to  the rock  taking place.  was t a k e n o v e r  Analysis of  include only  The  each c y c l e o f  the  load-  behaviour, moduli During  upper  two-  the s t r e s s - s t r a i n curves  significant non-linear  revised  deformation.  the upper  The  one-half  of  curve.  t o i n i t i a t i n g r o c k t e s t i n g an a l u m i n u m  instrumentation.  the aluminum  testing  testing  The s e c a n t a n d r e c o v e r y  t h e w o r k i n g modulus  value  usuable  best represents  comparison.  the  laboratory  were c a l c u l a t e d f o r  the s t r e s s - s t r a i n curve.  showed t h a t t h i s  for  samples  previously  interpret  the various  in accord with d e f i n i t i o n s  samples were t e s t e d i n t h e  was u s e d a s t h e b a s i s  preliminary  the r e s u l t s of  presented  Programme  The w o r k i n g m o d u l u s ,  were used to  PROGRAMMES  sample.  Figure  s a m p l e was  13 shows t h e s t r e s s - s t r a i n  As c a n be s e e n t h e c u r v e  indicates a  tested curve  perfect  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAIN  Aluminum F i r s t cycle  Rock Type Second cycle  20,000  16.000  12,000  8,000  4,000  Strain  ( x 10  )  44 linearly unit  elastic  This  confirms  were c a l i b r a t e d c o r r e c t l y .  moduli  all  Poisson's  have  values of  ratio  modulus  of  are 9.9  -  for  this  elasticity 11.4  These r e s u l t s  x 10  6  10.4  x 10  6  psi  Quartzite  and 0 . 3 2  -  0.34  quartzite  results.  loading  respectively.  homogeneous  healed  as w e l l  as the v a r i o u s only  For the g n e i s s e s ,  15]  sensing state  work.  g n e i s s s a m p l e s were t e s t e d o f  as e i t h e r  This  faint  rock type  A small  foliation,  allowed c a l c u l a t i o n of  deformation  moduli.  to check those values  the values w i l l Poisson's ratio  (approximately)  which  tends  number o f  to samples  chloritization  as the l o a d 0.20.  generally  theoretical  0 . 5 . maximum w e r e r e c o r d e d ,  rock Poisson's r a t i o  Poisson's  assumed f o r  ratio values  t h e Goodman J a c k  with l i t t l e  discussion.  i n c r e a s e d from 0.05  increased.  v a l u e was a b o u t  and two c i r c u m -  The P o i s s o n ' s r a t i o  be r e p o r t e d  the average  for  alloys  fractures.  t e s t i n g and thus  that  for  and  c h e c k i n g the  the experimental  and l a c k i n g f o l i a t i o n .  s t r a i n gauges.  were d e t e r m i n e d  0.35  values  [Smithells,  The g n e i s s s a m p l e s w e r e f i t t e d w i t h two a x i a l ferential  cycles.  s y s t e m and l o a d  a means o f  readout  recovery  pure aluminum  As s t a t e d e a r l i e r t h i s  did exhibit non-uniformity bands o r  for  and  Gneiss  usable  be u n i f o r m ,  both  t h e s t r a i n gauge  c o r r e c t l y and p r o v i d e d  Forty-two 39 y i e l d e d  the load c e l l  The p u b l i s h e d  ratio  the t e s t i n g system i n the course of  1.  for  i s 0.35.  and P o i s s o n ' s psi  that  The s e c a n t , w o r k i n g a n d  sample  indicated that  system operated of  material.  Although  Some v a l u e s  greater  reinforcing  i s meaningless.  quite  Several  variable,  than  Hawkes'  to  the  [16]  reasons  claim for  45 inconsistent Poisson's ratio low s t r e s s l e v e l s the a x i a l  strain.  This  factor  t h a t can i n f l u e n c e  strain  gauges  low P o i s s o n ' s  local  laboratory  are t y p i c a l behaviour. of  of  14,  15,  those  for  A third  curvilinear  for  both  feature  under  load.  a tangent  distribution  shown t h e only  9%  cycles  loops  strain  the  of  the t o t a l  first  coincident,  cycle.  that after This  in-  deformation.  nearly  this  the  that  loading  the g n e i s s  inelastic  i n d i c a t e s small  a l s o means  50% o f  were p r e p a r e d  curves  amount o f  Secondly,  hysteresis the  is  initial a  the  curve  rock  working very  nearly  curve.  t o r e d u c e t h e d a t a t o a f o r m , more e a s i l y  diagrams  curves  characteristics  residual  are very  is  or  representative  of  the  allows accurate prediction of  linearity  for  of  These  the small  become l i n e a r .  the upper  modulus  of  is  these curves  because i t This  calculated for  In o r d e r  of  the curves  behaviour  Another  sample.  deformation  occurs a f t e r  the load-unload  rock property  approaches  graphs  t o an a v e r a g e  desirable  the  gneiss samples.  i l l u s t r a t e several  curves  portion  16]  of  lateral  such as f o l i a t i o n  r o c k t y p e and a r e  For the  amounted  the narrow w i d t h o f  modulus  this  i n e l a s t i c deformation  effects.  [Hawkes,  At  most  little  a n d 16 i l l u s t r a t e s t r e s s v e r s u s  The m o s t s t r i k i n g f e a t u r e  Since the unloading negligible  produces  i s the p o s i t i o n i n g  features  t e s t s on t h e q u a r t z i t e  deformation.  deformation  values.  Poisson's ratio  reported.  closure accounts for  stress concentrations within  These f i g u r e s  the g n e i s s .  elastic  ratio  r e l a t i v e to geologic  Figures for  r o c k h a v e been  i n e l a s t i c deformation  hence t h e  to  for  pore and m i c r o f r a c t u r e  strain  relative  values  for  first  and s e c o n d  analyzed,  cycle  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAIN  N6 F i r s t cycle  Rock Type  quartzite gneiss  Second cycle  20,000  16,000  -  ///'  f * yi **  X''/''  12,000  f s f**- • • — f 4 f + *A jK /y ** A*  -  r  8,000 -  4,000 -s CO  1  1  1 Strain  i  1 -3  ( X 10  )  1  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAIN  N23  F i r s t cycle 20,000  16,000  Rock Type Second cycle  quartzite gneiss  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAIN  N93 F i r s t cycle  Rock Type Second cycle  guartzite gneiss  20,000  16,000  12,000  8,000  4,000 in c -s  CT1  00  Strain  ( x 10  )  49 deformation  moduli.  Figure  17 shows d i s t r i b u t i o n  and s e c o n d c y c l e w o r k i n g modulus  for  l o a d i n g c y c l e s were c o m p l e t e d .  The s i g n i f i c a n t f e a t u r e s  bution  diagrams  1.  a r e as  The mean a n d modulus  are  those gneiss  diagrams  standard deviation of 7.86  x 10  fi  psi  The mean a n d s t a n d a r d a r e 8.41  x 10  The c o e f f i c i e n t o f 3.  Although  that  able statement  that of  psi  first  the normal  cycle  is  psi  respectively.  are  is  the  x 10  mean,  13%.  psi  6  working  respectively.  11%. s l i g h t l y skewed, there  and s e c o n d c y c l e distribution. number o f  i s o c c u r r i n g on t h e  resulting  c y c l e working moduli no r e l a t i o n s h i p size,  hypothesis  and p o r o s i t y  This  is a  test  results.  question-  i s 7% g r e a t e r  takes place during  in a lower modulus.  i s obvious  between modulus  or c h l o r i t i z a t i o n .  t h a t t h e modulus  values  is  distributions  second c y c l e .  That the  By l i s t i n g t h e  along w i t h the corresponding  foliation,  distri-  working  the second c y c l e  and 0 . 9 4  due t o t h e s m a l l  closure of microfractures  grain  ft  t h e s e c o n d c y c l e mean w o r k i n g m o d u l u s  deformation  both  these  t h e f i r s t c y c l e m u s t be r e l a t e d t o t h e f a c t t h a t v e r y  inelastic  loading  deviation of 6  x 10  variation,  variation  both  are approaching  The f a c t t h a t  of  cycle  e x p r e s s e d as a p e r c e n t o f  the d i s t r i b u t i o n s  suggestion  samples where  the f i r s t  and 1.04  known as t h e c o e f f i c i e n t o f  modulus  first  follow:  The s t a n d a r d d e v i a t i o n  2.  for  sample  and a n y o f This fact  s h o u l d be n o r m a l l y  the  than  little is,  the  first  second  descriptions following:  supports  the  distributed.  Figure  F i r s t C y c l e Working Modulus 15  mode = 8.50.x 10 mean = 7.86 x 10  10  Frequency 36 v a l u e s  0  J  1  I  2  I  3  L  4  5  6  7  8  9  10  11  12  Modulus ( p s i x 10 )  Second C y c l e Working Modulus 15  •6  mode = 7.50 x 10  mean = 8.41 x 10  10  36 v a l u e s Frequency 5  h  0  1  2  3  4  5  6  7  8  9  10  Modulus ( p s i x 10 )  FREQUENCY HISTOGRAMS FOR .LABORATORY TESTS OF QUARTZITE GNEISS  11  12  51 Although anisotropy versus  of t h i s  very  as the a c u t e a n g l e  The f o l i a t i o n a n g l e  between the a x i s o f  the  foliation.  second c y c l e w o r k i n g modulus data a v a i l a b l e  inelastic cyclic  to  loading.  1.  ing that  for  t o 99.8% w i t h an a v e r a g e gneiss  rock,  defined  of  direction) first  From t h e and  and  limited  orientation  from a design v i e w p o i n t ,  the  rock samples  using  recovery  gneiss  the of  upon l o a d i n g .  in rock s t r u c t u r e s  t h e w o r k i n g modulus  test loading.  recovery  is  loading  18 shows t h e p l o t s  for  the second c y c l e of  the g n e i s s samples  The e l a s t i c  studied  elastic  and f o r  The r a t i o o f  the e n t i r e  of  important  was q u a n t i t a t i v e l y  The q u a r t z i t e for  (i.e.  f o l i a t i o n angle.  i n e l a s t i c i t y of  The p e r c e n t a g e  2.  modulus  this report  between w o r k i n g modulus  property  becomes  The  loading  for  sample  undergo permanent d e f o r m a t i o n  behaviour  laboratory  versus  by p l o t t i n g  the  uncertain.  An i m p o r t a n t ability  the  Figure  the r e l a t i o n s h i p  of mica p a r t i c l e s i s  its  samples e x h i b i t e d f o l i a t i o n ,  r o c k t y p e c a n be i n v e s t i g a t e d  f o l i a t i o n angle.  and t h e p l a n e o f  few g n e i s s  two  undergo s m a l l  99.3%.  subject  to  tested in  the complete  the  test  loading.  to the  ranged amounts  second c y c l e o f  This  parameters:  secant  s a m p l e s had a n a v e r a g e  This value  modulus.  93% e l a s t i c  f r o m 84% t o 96% of  loading  permanent ranged  the f i r s t  loading  recovery  indicat-  deformation.  f r o m 98%  T h i s c o n c l u s i v e l y shows t h a t  i s almost p e r f e c t l y e l a s t i c a f t e r  is  cycle.  the  52 ANISOTROPY DIAGRAMS FOR QUARTZITE GNEISS (Laboratory  Testing)  F  i  9  u  r  e  10.0  9.0  •  F i r s t Cycle Working 8.0 Modulus , ( p s i x 10 )  •  •  •  7.0  •  6.0 5.0 4.0  0  10  20  30  40  50  60  70  80  90  F o l i a t i o n A n g l e (degrees)  10.0 9.0 Second C y c l e Working Modulus , ' ( p s i x 10 )  • •  u  »  >  •  7.0  6.0 5.0  0  10  20  30  40  50  60  F o l i a t i o n A n g l e (degrees)  70  80  90  1  8  53  than  As p r e v i o u s l y  s t a t e d a w o r k i n g modulus  significantly  the s e c a n t modulus  i s an i n d i c a t i o n o f o p e n  fractures  sample.  A ratio  likewise. to 1.47  of  E  to E  w  For the g n e i s s  and a v e r a g e d  relatively  free  conclusion that  samples,  1.22.  o f open  s i g n i f i c a n t l y greater  g  This  the r a t i o ,  E /E w  than s  fractures  thereby  the g n e i s s samples  have  ranged  reinforcing elastic  in a  1.0  i n d i c a t e s the l a b o r a t o r y  greater rock  would from  indicate 1.09  samples  the  are  above  deformation  characteristics.  2.  Quartz  Feldspar  Schist  Twenty-three which y i e l d e d so t h a t a l l  quartz  usable r e s u l t s .  modulus  feldspar This  s c h i s t samples were t e s t e d a l l  rock type  v a l u e s m u s t be r e l a t e d  exhibits distinct  to t h i s  axial  These gauges were l o c a t e d w i t h r e s p e c t t o t h e f o l i a t i o n  s e c o n d s e t was l o c a t e d p a r a l l e l these sets of which would  gauges  to  the  strain  i l l u s t r a t e the deformation  strain (Figure  strike direction while  to the d i p d i r e c t i o n .  on i n d i v i d u a l  boxes,  foliation  feature.  The s c h i s t s a m p l e s w e r e f i t t e d w i t h f o u r  t h a t one s e t was l o c a t e d p a r a l l e l  of  By  gauges. 5)  so  the  monitoring  r e s u l t s were  obtained  c h a r a c t e r i s t i c s in these  two  19 t h r o u g h 24 i l l u s t r a t e s t r e s s - s t r a i n c u r v e s  for  directions. Figures strike of  and d i p d i r e c t i o n o f  deformation  20 show t h e degrees).  behaviour  behaviour  of  three  samples.  figures  show t h e  e x h i b i t e d by t h e s c h i s t s a m p l e s .  Figures  samples w i t h a high  These samples a r e  These  f o l i a t i o n angle  c h a r a c t e r i z e d by l a r g e  (70  deformations,  to  the range 19 90  and  Sample No, F o l i a t i o n Angle  N40 s t r i k e  LABORATORY TESTING AXIAL STRESS vs. AXIAL STRAIN  70 First  cycle  Rock Type  quartz-feldspa r schist  Second cycle  4,000  3,200  2,400 t/1  o  1 ,600  O)  800  IX) c_n  0.0 Strain  ( X 10  )  Sample No, F o l i a t i o n Angle  N40  dip  AXIAL STRESS vs. AXIAL STRAIN F i r s t cycle  4,000 |  Rock Type  LABORATORY TESTING  70 o  1  1  .  _.  1  Second cycle  1  1  1  guartz-feldspa schist  Sample No, F o l i a t i o n Angle  N70 s t r i k e  Rock Type  LABORATORY TESTING  0°  AXIAL STRESS vs. AXIAL STRAIN First  cycle  quartz-feldsparschist  Second cycle  4,000  3,200  2,400 <D  S_ •M OO  c QJ  y QJ Ok on  1,600  800  ia c: -s ro  ro  0.0  0.5  1.5  2.0 Strai n  2.5  ( X 10" ) 3  3.0  3.5  4.0  on CT|  Sample No, F o l i a t i o n Angle  N70  dip  LABORATORY TESTING AXIAL STRESS vs. AXIAL STRAIN  01  First  cycle  Second cycle  4,000  3,200  Strain  ( X 10  )  Rock Type  quartz-feldspa r schi st  Sample No, F o l i a t i o n Angle  N202 s t r i k e  LABORATORY TESTING  35°  AXIAL STRESS vs. AXIAL STRAIN First  4,000  3,200  cycle  Second cycle  Rock Type  quartz-feldspa r schist  Sample No, F o l i a t i o n Angle  N202  d i  P  LABORATORY TESTING  35°  AXIAL STRESS vs. AXIAL STRAIN First  cycle  Rock Type  quartz-feldspar schist  Second cycle  4,000  3,200  l/l l/l l/l  2,400  QJ  C 0)  u OJ  1,600  Cl  CO  800 LO  -s re  ro -p.  0.0  4.0 Strain  ( X 10  )  on ID  non-linear  stress-strain curves,  significant  hysteresis  Figures foliation  angles  curves.  representative  t o 20 d e g r e e s ) .  samples are the small  deformations  hysteresis  Figures samples w i t h Although  angles.  is  of  samples w i t h  and t h e a l m o s t l i n e a r small  of  f o l i a t i o n angles.  tend  intermediate  to have the  (30  stress-strain and  the  t o 60  behaviour  h i g h and low  properties  of  degrees).  l o w e s t modulus v a l u e s ,  to the samples w i t h  analysis of  s t r e s s - s t r a i n curves w i l l  their  foliation  e x h i b i t e d by  gauges,  the modulus v a l u e s  average  of  diagrams  for  for  25.  a r e as  follows:  a p a r t i c u l a r sample were t a k e n as  t h e s t r i k e and d i p  The s i g n i f i c a n t f e a t u r e s  F i r s t cycle working mean  directions.  =  3.64  coefficient of  x 10  =  4.32  these d i s t r i b u t i o n  psi =  2.12  variation  Second c y c l e w o r k i n g mean  of  modulus:  standard deviation  2.  strain  x 10  modulus 6  psi  =  x 10 58%  psi  the  Distribution  t h e f i r s t a n d s e c o n d c y c l e w o r k i n g m o d u l u s a r e shown  Figure  1.  for  the  follow.  S i n c e t h e s c h i s t s a m p l e s w e r e f i t t e d w i t h two s e t s o f  the values  thes  effects.  intermediate  A quantitative  low  permanent d e f o r m a t i o n s  23 a n d 24 i l l u s t r a t e t h e d e f o r m a t i o n  these samples  behaviour  and  The m o s t s t r i k i n g f e a t u r e s  These samples a l s o e x h i b i t  insignificant  permanent d e f o r m a t i o n s  losses.  21 and 22 a r e (0  notable  in  diagrams  61 First  Cycle Working  Figure  Modulus  15  10 mode = 2 . 5 0 x 10 Frequency mean = 3 . 6 4  x  10  6  22 v a l u e s  P  1  J  L  i  2  3 • >4  jm  5  Modulus  6  MM  7  (psi  8  x 10  Second C y c l e Working  9  10  11  12  )  Modulus  15  10  mode = 3 . 5 0  Frequency  x 10  22 v a l u e s  mean = 4.3.2 x 10  0 1  2  3  4  5  Modulus  FREQUENCY HISTOGRAMS  6  7  8  9  (psi  x  10 )  10  11  6  FOR LABORATORY TESTS OF  QUARTZ FELDSPAR  SCHIST  12  25  62 standard  deviation  coefficient  3.  The m o d u l u s  The l a r g e  of  values  illustrated in  constant w i t h i n the modulus quartz  for  parallel  percentage of  the  psi  60%  range.  o f modulus  upon t h e f o l i a t i o n the quartz 26.  in other  the f o l i a t i o n .  values  reflect  angle.  feldspar  Note t h a t  isotropic,  plane of  x 10°  and w i d e range  low f o l i a t i o n a n g l e s  and f e l d s p a r  loading  of  Figure  the s c h i s t i s t r a n s v e r s l y  =  have a w i d e  t h e modulus  The a n i s o t r o p y clearly  2.58  of v a r i a t i o n  standard deviations  the dependence  =  s c h i s t samples  this  d i a g r a m assumes  words,  the modulus  The v e r y  high  values  result  of  If  t h e s c h i s t a r e a s s u m e d t o be  to these l a y e r s would  that  is  c a n be e x p l a i n e d as f o l l o w s .  layers within  is  the  continuous,  in a disproportionately  l o a d b e i n g c a r r i e d by t h e s e l a y e r s .  the  quartz  and f e l d s p a r  layers  deformations  and h i g h m o d u l u s  values.  The l o w m o d u l u s  values  of  intermediate  f o l i a t i o n angles  a r e most e a s i l y e x p l a i n e d  by t h e  fact  that at layer  these angles  slippage.  values. is  deformation  the f o l i a t i o n  T h i s would r e s u l t  The s l i g h t  probably  a r e a c t i n g as h i g h m o d u l u s  Thus  due t o t h e f a c t t h a t i s due m a i n l y  i n c l u s i o n s causing  favourably  in  high  i n c r e a s e i n modulus little  oriented  values  for  high  low  inter-  modulus  foliation  angles  i n t e r - l a y e r movement o c c u r s  characteristics of  i n t h e s t r i k e and d i p  for  s t r a i n s and low  to the compression of micaceous  The d e f o r m a t i o n monitored  is  d i r e c t i o n s are  high  and  layers.  the s c h i s t samples  as  i l l u s t r a t e d by F i g u r e  27.  ANISOTROPY  DIAGRAM FOR QUARTZ FELDSPAR Laboratory  Testing  inter-layer  deformation of competent l a y e r s  SCHIST  movement  compression of micaceous l a y e r s  12.0  10.0  Second C y c l e Working Modulus (psi x 10 )  8.0  \ • \ \ •  6  6.0  4.0  \  >  •  \  •  >  i  -  \  <  \  •  » ' <  2.0  -  —"•"  •  F o l i a t i o n Angle  (degrees)  R  A  T  I  °  0 F  E  w strike  / E  w dip  v s  -  FOLIATION  ANGLE  1.5  1.3  1.1 w strike E  w  d  i  P  0.9  0.7  0.5  0.3  to d -s 0  TO  20  30  40 Foliation  50 Angle  60  70  80  90  CD  ro  65 This  figure  shows a p l o t o f  3  angle.  The g r a p h  approaches  unity  u i s h a b l e and t h e  to the These  E  w  of  ratio  and thus  <jip '  all  four  n  This  o  w  s  on t h i s p l a n e .  t h e s t r i k e and d i p  movement.  angles  i s probably  a c c o u n t f o r most o f  the  t h e w o r k i n g modulus  be u n i t y  gauges.  Note t h a t  if  same i n c l i n e d f o l i a t i o n  assuming  the  T h i s means t h a t a x i a l  to determine  foliation  one s e t o f  ratio.  due  deformation.  l o c a l i z e a l o n g one o r more  d i r e c t i o n s cannot  They a r e u s e f u l  This  at  indisting-  For low f o l i a t i o n  s t r a i n gauges were mounted a c r o s s t h e  was u n i f o r m  ratio  d i r e c t i o n s are  may be d e t e c t e d by o n l y  r a t i o would  the  foliation  t o be e x p e c t e d s i n c e ,  much v a r i a t i o n .  probably  of  is  be u n i t y .  movements  t h e movements  the w o r k i n g modulus  in  f o l i a t i o n angles  s t r i k e and d i p  thus s  inter-layer  This would cause v a r i a t i o n  E . ., / E ,. versus w s t r i k e w dip  scatter.  should  i n t e r - l a y e r movements  planes  high  90 d e g r e e s  s^-jkg/E  fact that  ratio  shows t h a t a t with l i t t l e  a f o l i a t i o n angle  the r a t i o ,  the  r  inter-layer  s t r a i n gauges  be u s e d t o d e t e c t an a v e r a g e  modulus  plane  movement  mounted  inter-layer for  the  rock  sample. The e l a s t i c for  the e n t i r e  recovery  loading  of  averaged  the quartz  84%.  This  feldspar  value  ranged  92% i n d i c a t i n g t h a t s i g n i f i c a n t p e r m a n e n t d e f o r m a t i o n rock type. shows t h a t  The e l a s t i c  for  Figure  f o l i a t i o n angle.  the deformation  out.  second c y c l e averaged  28 shows t h e v a r i a t i o n o f The s c a t t e r o f  mechanisms  the  has v a r i a b l e  some d o u b t on t h e m e c h a n i s m s shown i n them  the  f r o m 78% t o  occurs in  the s c h i s t samples deform e l a s t i c a l l y a f t e r  loading cycle. with  recovery  s c h i s t samples  plot  elastic  Figure  the  the e l a s t i c  this 99% a n d  first recovery  i n d i c a t e s t h a t each recoveries.  26 b u t d o e s  not  This rule  of places  VARIATION  OF E L A S T I C RECOVERY WITH F O L I A T I O N ANGLE  Laboratory  Testing of  Quartz  Feldspar  Schist  98  94  90 Percent Elastic Recovery (entire test loading)  86  82  78  74  10  20  30  -  • 40  Foliation  50 Angle  60  70  80  90  Figure  29 i l l u s t r a t e s t h e v a r i a t i o n o f  w i t h the f o l i a t i o n angle. fractures  in  This  the sample or o f  t h a t a t low f o l i a t i o n angles to deform.  Thus  layering.  At high  few open f r a c t u r e s  f o l i a t i o n angles  to confirm the deformation  large  ratio  mechanisms o f  indicates  are s u i t a b l y  oriented  compression of  fractures  values. Figure  open  The g r a p h  by l o n g i t u d i n a l many open  E,,/E . w s  are  the  available  These r e s u l t s  tend  26.  Pegmatite  Only programme. five  s i x pegmatite  Of t h e s e ,  samples y i e l d e d  samples were t e s t e d  one s a m p l e f a i l e d a t a b o u t results.  for  representative  s t r e s s - s t r a i n curves  indicate that  the  this  Obviously  be c a r r i e d o u t  rock type.  are highly  cycles  that hysteresis  means  for  elastic.  were 5 . 4 0  x 10  psi  and 6 . 2 7  c y c l e w o r k i n g modulus  is  illustrates  little  first  cycle.  recovery  for  averaged  1  that  very  This  x 10  16% g r e a t e r  than  the  first  These  and t h a t the  figures  the  load-unload  psi.  and s e c o n d  loading  The f a c t t h a t  that of  the  first  89% w h i l e f o r  the  the  cycle  occurs a f t e r  by t h e f a c t t h a t  loading averaged  not  small.  i n e l a s t i c deformation  i s a l s o emphasized  the e n t i r e 99%.  for  only  illustrate  samples.  are n o n - l i n e a r  very  so t h a t  studies could  30 and 31  pegmatite  losses are  laboratory  11,000 p s i  The n a r r o w w i d t h o f  The a v e r a g e w o r k i n g m o d u l i cycles  i n the  statistical  Figures  s t r e s s - s t r a i n curves  deformations  it  i s an i n d i c a t i o n o f  a plastic material.  the sample deforms  t o d e f o r m a s i n d i c a t e d by t h e  C.  ratio  the r a t i o ,  second again  the  elastic  the second  cycle  VARIATION OF THE RATIO E / E w  Laboratory  s  Testing of Quartz  WITH F O L I A T I O N ANGLE Feldspar Schist  3.0  11 1»  -  1»  2.6 1> 1(  2.2 E  4>  •  w s  (second  I  1>  1.8  cycle) 1 » 1.4  (  •  (1  •  1.0  ~n to  0.6  10 C  20  30  40  50  60  70  80  90  ro ro  F o l i a t i o n Angle  1X3  cr> . CO  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAIN  N31 First  cycle  Rock Type  pegmatite  Second cycle  20,000  16,000  12,000  8,000  4,000 -5  ro o CO  cn  LABORATORY TESTING Sample No.  AXIAL STRESS vs. AXIAL STRAII  N33 First  cycle  Rock Type  pegmatite  Second cycle  20,000  16,000  Ul  CL  12,000  LO ul  0)  i-  CO  c  QJ  8,000  E •rU  a> o.  OO  4,000 LQ C  OJ  TT6 Strain  ( X 10  O " 3  )  7 T  "372  o  71 4.  Summary a n d C o m p a r i s o n  of  The r e l a t i o n s h i p for  conclusions  c a n be d r a w n  are  c l a s s i f i e d on t h e  Secondly, inverse  the l a b o r a t o r y  micaceous minerals  from t h i s  This  2 for  c y c l e w o r k i n g modulus  for  2 it  rock is  s c h i s t and 1 . 3  by t h e  standard  d e v i a t i o n and range  schist  samples e x h i b i t e d f a r  Comparison types  shows t h a t  linear  the  the  samples  except high angle condition  in  However,  engineering  rock  types  weight. approximate  t h e more  that of  the average is  the  1.9  deformable  summarized  o f w o r k i n g modulus variability.  second  times that of  pegmatite.  s t r e s s - s t r a i n curves  The h i g h  exhibit  As  values,  the  indicated the  As p r e v i o u s l y  elastic purposes;  for  angle  the three  shown,  curves.  negligible  rock  s c h i s t samples  f o l i a t i o n angle  s c h i s t probably  the micaceous  The a v e r a g e for  gneiss  t e n d t o have n o n - l i n e a r  high angle  the compression of  times  that  g n e i s s and low f o l i a t i o n  schists  three  foliation.  s t r e s s - s t r a i n curves.  pegmatite  high  of  Two  types.  noted  greater  i s due t o t h e  h a v e an  32.  t e s t i n g programme a r e  the q u a r t z i t e  feldspar  variation  and u n i t  and  heaviest.  quartz  this  the  the f a c t t h a t  laboratory  to Table  Figure  Firstly,  and u n i t w e i g h t  easy comparison of  Referring  graph.  i s due t o  the  i s shown i n  b a s i s o f modulus  are a l s o the  The r e s u l t s o f in Table  samples  the w o r k i n g modulus  relationship.  Results  between second c y c l e w o r k i n g modulus  unit weight  readily  Laboratory  All  have  s c h i s t and rock  types  hysteresis effects.  reflects frictional  losses  This in  layers.  recovery  for  85% b e i n g  the s c h i s t samples are q u i t e  all  rock types  considered  variable,  is  suitably  satisfactory.  ranging  f r o m 75 t o  90%  VARIATION OF MODULUS WITH UNIT WEIGHT (Laboratory • = quartzite gneiss,  FOR VARIOUS ROCK TYPES  Testing)  ' + = quartz  feldspar schist,  # = pegmatite  12  10  •••  -  x  •  +  • •• 4  • ^  Second C y c l e Working Modulus (psi  +  +  +  *  •• • •* .  •  10 ) 6  •  * + + +  -  T60  i  i  i  1  165  1  1  1  1  +  +  + i  1  1  1  170 U n i t Weight  +  +  l  175 (lb/fr)  1  1  1  1  180  1  1  I  185  73 TABLE 2 SUMMARY OF Note:  All  LABORATORY RESULTS  modulus  values in  a.  Number o f  b.  Mean s e c o n d c y c l e  c.  Mean s e c o n d c y c l e  d.  Mean f i r s t c y c l e w o r k i n g  e.  Standard  f.  C o e f f i c i e n t of  •g.  Mean s e c o n d c y c l e w o r k i n g  h.  Standard  i.  C o e f f i c i e n t of  j.  Range o f  k.  % E , second c y c l e w cycle Average  Average second  n.  Average 3  s e c a n t modulus  6.40  3.06  3.86  recovery  6.88  3.68  4.32  7.86  3.64  1.04  2.12  1.08  13%  58%  20%  8.41  4.32  6.27  0.94  2.61  1.13  11%  60%  18%  of  modulus  modulus  d  variation  deviation of  modulus  g  variation.  second c y c l e working greater  3  recovery  recovery  cycle ratio,  Pegmatite 6  deviation  % elastic  Quartz Feldspar Schist 23  E w  modulus first  for  test m.  6  42  samples  % elastic  x 10  Quartzite Gneiss  Property  1.  psi  E /E w' s  6.26 10.1  to  1.32 10.7  •  to  5.40  4.64 7.55  7%  19%  16%  93%  84%  89%  99%  99%  99%  1.22  1.78  1.66  total  for  to  The g n e i s s s a m p l e s a r e t h e m o s t e l a s t i c the s c h i s t samples. may be r e l a t e d  This  to mica  Comparison correlation  indicates  properties  between the p e r c e n t a g e  over  results  indicate that  that  the  by t h e p e g m a t i t e  inelastic  deformations  the f i r s t  numbered k and n i n T a b l e increase of  c y c l e and t h e a v e r a g e the  ratio,  g n e i s s samples are  E /E . w s  relatively samples.  reasonable  for  but  the pegmatite.  the pegmatite  connected thereby  individual  c a r e was t a k e n t o d i v i d e comparing  these  i n the  rock types  and  pegmatite. In  determined  rock.  portion  results of  of  testing  of  hole  a rock type  this  thesis.  c o n s i d e r e d were q u a r t z i t e  the case of  over  This  hard  is  to  the l a r g e  allowing  explain  grains  of  inter-granular  the  upper  129. t e s t w e r e  3 or 4 loading  t e s t s by r o c k t y p e .  the t e s t depth w i t h the bore  the  this  the jack  tests consisted of  c a r r i e d o u t w i t h i n one f o o t included  that  micro-  Testing  During the course of these  is  is  These  load.  Goodman J a c k  Many o f  s c h i s t samples  A possible explanation  are not w e l l  movement u n d e r  B.  foliated  working  free of  compared t o t h e s c h i s t and p e g m a t i t e the w e l l  2 shows a  the second c y c l e  fracturing  for  and  content.  of  modulus  followed  logs.  cycles.  of  Great  T h i s was done Any t e s t t h a t  by was  b o u n d a r y was r e j e c t e d and  As f o r gneiss,  the l a b o r a t o r y quartz  the s t r e s s - d e f o r m a t i o n  not  testing,  feldspar  the j a c k i n g t e s t s the w o r k i n g modulus 2/3  performed..  schist  was  curve.  t h e c u r v e was l i n e a r a n d e x p r e s s e d t h e b e h a v i o u r  Generally, of  the  75 It  is again  stress-deformation this  is that  increment. mation  As a r e s u l t  indication  of  is  less  inelastic  rather  the  ratio  than  readings  deformation  The r e a s o n  will  first  hydraulic  to secant modulus, hole wall  a large load  load  portion  an rough-  of  i n c r e m e n t and  the will  modulus.  The  gneiss:  interpretation  upon P o i s s o n ' s  following  values  ratio  for  is  necessary  Poisson's  ratio  feldspar  0.20  schist:  pegmatite:  0.20  In o r d e r  investigate  the  to  0.35  the a n i s o t r o p y  know t h e o r i e n t a t i o n  of  it  the  t e s t s are  of  r o c k mass  defined,  is  provide  the orien-  Ideally,oriented this  it  respect  the rock f o l i a t i o n at  performed.  h o l e camera t e c h n i q u e would these techniques  the  i s n e c e s s a r y t o know t h e  h o l e and the a t t i t u d e  where  of  the j a c k l o a d i n g w i t h  w h i c h , as p r e v i o u s l y  In o t h e r w o r d s ,  bore  exact positions  utilized.  first  The r e a s o n  approxi-  a t 1000 p s i  s e c t i o n d e a l i n g w i t h the  values.  f o l i a t i o n planes,  of  i s an  rock o r bore  occur in the  a c o n s t a n t dependent  f o l i a t i o n angle.  neither  deformation  the  yielded  assumed:  necessary to  or a bore  recovery  being that  quartz  tation of  c o u l d be t a k e n f o r  valuable.  quartzite  to the  s t r e s s - s t r a i n curves.  the  test data,  were t h u s  Goodman J a c k t e s t s  o f w o r k i n g modulus  be r e f l e c t e d by t h e s e c a n t  the  the  open f r a c t u r e s w i t h i n  to c a l c u l a t e modulus  is  that  the percent e l a s t i c  As s t a t e d i n t h e of  out  c a l c u l a t e d from the r e s i d u a l Also,  not  curves  no d e f o r m a t i o n  pressure.  ness,  pointed  information.  the core Since  w e r e a v a i l a b l e an a l t e r n a t i v e method was  for  76 The n e c e s s a r y d a t a f o r 1.  Orientation of  2.  Angle  between a x i s o f  location 3.  (obtained  4.  analysis. insertion  hole  of  the  Goodman J a c k  i n the bore  3 i n t r o d u c e d most o f  drift  (see  than p o i n t  These f o u r to determine planes.  the  hole.  In  spite of  local  the e r r o r  points of  irregularinto  the  i n t h e b o r e h o l e by r o t a t i n g  Figure 8). 4 but  Thus an e r r o r i n the m a j o r i t y  of  the  maintained about  of cases  d a t a w e r e a n a l y z e d by s t e r o g r a p h i c  the s p a t i a l arrangement  T h i s method  the  3.  is  The c o m p l e t e r e s u l t s o f  type.  appropriate  i n s u c h a way t h a t an o r i e n t a t i o n c o n v e n t i o n was  w o u l d be much l e s s  Appendix 5.  test  from mapping o f  quite accurately.  5 d e g r e e s c o u l d be i n t r o d u c e d by p o i n t  foliation  the  drift).  Thus p o i n t  with the e x p l o r a t o r y  rock  (extrapolated  The Goodman J a c k was o r i e n t e d rods  length);.  log).  c o n s i s t e n t s t r i k e d i r e c t i o n a t the t e s t s i t e ,  did occur.  jection  (assumed c o n s t a n t a l o n g  t h e f o l i a t i o n p l a n e s w h i c h was  1 a n d 2 c o u l d be d e t e r m i n e d  overall ities  Orientation  of:  c o r e and f o l i a t i o n p l a n e a t  the p a r t i c u l a r bore  exploratory  hole  from d r i l l  A n assumed s t r i k e f o r for  Points  the bore  t h e method c o n s i s t e d  of  pro-  loading directions  and  i l l u s t r a t e d by e x a m p l e i n A p p e n d i x the j a c k t e s t i n g are presented  T h e s e r e s u l t s a r e now a n a l y z e d  i n terms o f s p e c i f i c  in  4.  77 1.  Quartzite  Gneiss  Thirty quartzite that  gneiss.  Figures  istics  of  the g n e i s s .  increments,  loading.  indicates  effects  transducer  backlash is  quartzite  significant,  are g e n e r a l l y  m o d u l u s a r e shown  in  the  features  diagrams  Figure  first  loading  40% f o r  cycles.  the  total  loading  cycle.  of  F i r s t cycle working 1.95  x  than  loops  Actual of  standard deviation coefficient of  graph are  6  0.38  variation  =  deviates  that  cycles  t h e f i r s t and s e c o n d c y c l e  The s i g n i f i c a n t f e a t u r e s  '=  which  and  that  normal.  modulus: 10  this  behaviour  o c c u r s on b o t h l o a d i n g  for  36.  gneiss  follows:  =  first  the  character-  eliminated.  The n o t e w o r t h y  Distribution  mean  deformation  i n s i g n i f i c a n t when t h e e f f e c t  losses are greater  a r e as  after  curves  behavior.  s e c o n d and s u b s e q u e n t  is elastic  i n e l a s t i c deformation  the h y s t e r e s i s  gneiss  approaching  35 i l l u s t r a t e s q u a r t z i t e  from the normal.  1.  the  The c o i n c i d e n c e o f  hysteresis  diagrams  are  the  34 and 35 a r e s t r e s s - d e f o r m a t i o n  p a r t i c u l a r l y o n s e c o n d and s u b s e q u e n t  Figure  in  The c u r v e s e x h i b i t l i n e a r i t y a f t e r  the deformation  significant  out  33 a n d 34 i l l u s t r a t e t h e a v e r a g e  Permanent d e f o r m a t i o n s test  33,  i l l u s t r a t e the range o f Figures  load  Goodman J a c k t e s t s w e r e c a r r i e d  x 10^ 19%  of  working  these  85.0  Depth  Orientation  Goodman J a c k T e s t i n g  _NX  H o l e No.  ft.  A P P L I E D LOAD v s . First  Rock T y p e  DIAMETRAL BORE HOLE DEFORMATION  cycle  Second  cycle  Third  90J guar gneiss  cycle  10,000  9,000 1 / '/1• / // r / /  8,000  to  Z2  s-  3  CO •a  /  /  5,000  4,000  \  /  1  XJ  X  '/ '/If  / i  i  i  t  li l*i hi hi inhi hil*\ lil ill til Mi If If  j  ht h*  //  2,000  If  */  If  / ;'l 1  /  /  ff  *  /  '/  /  /  / *i *M XX */ / ft X Tf*/ r XX it*/  3,000  0  It  *i  */  /  -  1,000  pi hi  m  Ml M  6,000  to CD  *r  '/ '*  •>  -  CO  /  'f  An /  7,000  O-  s_  -  /  /  /  y  i  LO  c -5 ro  i  5.0  i  i  i  10.0  1 1 11  1  15.0 Total  I  1  1  1 1 1 1  20.0  D e f l e c t i o n ( i n c h x 10  1 1 11  25.0 -3,  )  30.0  CO CO  1 1 11  1 1 1 1 35.0  40.0  Goodman J a c k T e s t i n g  H o l e No.  NX -  7  Depth  5£LQ f t .  A P P L I E D LOAD v s . First  10,000  .Second  // ///  6,000  5,000 f  4,000  W M  M  / /  3,000  III fr • !/  '/  '/  0  /  / *t / */ */'/  / */  s*y  */  if  TTJ  /  If  2,000  // '/'/ // '/'/*/ / fi  '/ */  */ */ 1 / */  If  /  III i ii I'/ /'/  '/ i/ */ / t/  / '} / //  -  1,000  1 II  9  -  "D  MSA  /I  -  s-  gneiss  cycle  //nil  7,000  to CD S-  quar  Ml  -  CO  Rock T y p e Third  cycle  c  -  9,000  8,000  DIAMETRAL BORE HOLE DEFORMATION  cycle  90  Orientation  x *X  >/  SsX  A>  CO  i  g  ro i  i  i  i  i  5.0  >  I  i  1  10.0  i  i  i  15.0  1 1 11  1 1 1 1  1 1 11 20.0  25.0 _3  Total  D e f l e c t i o n ( i n c h x 10  )  CO  1 1 1 1 30.0  i  35.0  i  i  i  40.0  CO  Hole Depth  No.  NX -  3  QD.n  ft.  Goodman J a c k A P P L I E D LOAD v s . First  DIAMETRAL  cycle  _Second  Testing BORE HOLE  DEFORMATION  cycle  Orientation  ,  Rock Type  qui gneiss  Third cycle  CO  Q. CD  s-  =3 CO oo CD S_ O-  3  -a  >>  •j CD CO  cn 5.0  10.0  15.0 Total  Deflection  20.0 (inch  25.0 x  10" ) 3  30.0  35.0  40.0  co o  Figure First  C y c l e Working  36  Modulus  15  7mode = 2 . 2 0  x 10  mean 10  1.95  x  10  6  Frequency 30 R v a l u e s )  J  0 0.0  0.4  Q.8  1.2  1.6  2.0  Modulus  (psi  2.4  2.8  x 10  Second C y c l e Working  3.2  I 3.6  I  _L  4.0  4.4  4.8  )  Modulus  15 mode = 2 . 2 0 x 10  Frequency  10 mean = 2.49  x  10  3.6  4.0  (  30; v a l ues ;  0 0.0  0.4  0.8  1.2  li'6 2.0  Modulus  2.4  (psi  FREQUENCY'HISTOGRAMS  2.8 x 10  3.2  4.4  )  FOR GOODMAN J A C K TESTS  IN QUARTZITE  GNEISS  4.8  81  82 2.  Second c y c l e working mean  =  2.49  standard  x  The d i s t r i b u t i o n s  The l o w e r f i r s t flects of  10  probably  c y c l e modulus  a reflection  low modulus  the  first  values  second c y c l e . c y c l e modulus  of  0.47  the  is  =  19%  to  be e x p e c t e d s i n c e i t closing of  in  the  shape  fact  loading  of  cycle. the  Thus  first  the  the p o s i t i v e  negative  cracks or  diagrams  proportion  skewness o f the  is  deformation  than occur f o r  skewness o f  re-  seating  inelastic  a greater  cycle  directions.  probably  distribution  t h a t most o f  This accounts f o r and t h e  skewed i n o p p o s i t e  s u c h as t h e  occur during  values  x 10  are d e f i n i t e l y  The d i f f e r e n c e  occurs during  =  variation  i n e l a s t i c deformation  the j a c k .  6  deviation  c o e f f i c i e n t of 3.  modulus:  the  the  second  of  first  cycle  values. The a n i s o t r o p y gneiss of  i s shown  this  small  in  discontinuous angle  specifically  to  thus  Figure  of  the anisotropy  quartzite  of  refers  little  to  diagram  anisotropy. foliation  angle  conducted  However,  of  gneiss.  the  has two p o s s i b l e  A second p o s s i b l e imprecise.  reason  The  r o c k complex and  not  layering  there  regression  situ  in the  the  line  correlation  Firstly,  i s no  is that  The in  field,  the g n e i s s .  explanations.  Thus,  samples  The l a c k o f  representative  Goodman J a c k .  quartzite  in the  The f i t t e d  coefficient.  in  hand  occurred within  layering  w i t h i n the  i s too  tests  foliation. often  the  g n e i s s may n o t c o n t a i n by t h e  the  As p r e v i o u s l y , d e s c r i b e d ,  37 has a l o w c o r r e l a t i o n  rock a f f e c t e d  the  for  schist layers  foliation  in  defined  37.  rock type e x h i b i t e d  foliation  of  Figure  diagram  the volume  clearly determination  anisotropy  is  ANISOTROPY OF THE QUARTZITE GNEISS AS REFLECTED BY THE GOODMAN J A C K  3.8  •  3.4  Second C y c l e Working Modulus (psi  x 10 )  1  3.0  •• •  6  2.6  • • • •• •  2.2  • • •  •  •  ****  •  •  •  •  — ~~—Regr ession 1 ine, ^ CO r r e l a t i o i c o e f f i  •  1.8  •  —  1.4  •  *******  0  10  20  30 Foliation  40 Angle  50 (degrees)  60  70  80  90  84 a n a l y z e d more t h o r o u g h l y The in  c y c l e averaged elastic ation  recovery,  cycles  after  these r e s u l t s are s i g n i f i c a n t . quartzite  situ  the f i r s t  is  t o 2.54  quite  to other  2.  variable. rock  Quartz  elastic  results  This  after  the f i r s t  38 i s t h e normal  latter  figure  loading  averages  the  gneiss  compared  curves  i n quartz  This  curves  i n Figure 40.  feldspar  schist.  a r e t h e l i n e a r i t y and  loading  cycle.  while that  The  o f Figure  small  hysteresis  39 i s a  loop  feature  i s changed.  indicating greater  The  play free  hysteresis  i s n o t i c e d i n most o f t h e  t o an e x t e n t dependent  c h a r a c t e r i s t i c s o f the i n the  representative of  i l l u s t r a t e s the e f f e c t o f the free  i n a trapezoidal-shaped  An e x t r e m e shown  deform-  However,  h a v e m o r e s i g n i f i c a n c e when  o f t h e 61 t e s t s c a r r i e d o u t  Goodman J a c k d e f o r m a t i o n  is  The p e r m a n e n t  Schist  than a c t u a l l y occur.  deformation  second  c a l c u l a t i o n o f the  large.  i n t h e t r a n s d u c e r s when t h e d i r e c t i o n o f l o a d i n g  losses  on the  t o s e c a n t modulus  3 8 a n d 39 show d e f o r m a t i o n  by F i g u r e  play results  averaged  deformation.  c h a r a c t e r i s t i c s o f these curves  deviation.  recovery  the presence o f d i s c o n t i n u i t i e s w i t h i n  permanent d e f o r m a t i o n s exhibited  i s quite  gneiss  types.  Figures  The n o t a b l e  have n e a r  These  Feldspar  the behaviour  gneiss  o f the w o r k i n g modulus  so that  schist to follow.  The e l a s t i c  In s p i t e o f the approximate  The r a t i o 1.48  feldspar  recovery o f the q u a r t z i t e  two l o a d i n g c y c l e s .  96%.  f o r t h e in  elastic  situ  60% f o r t h e f i r s t  f o r the quartz  on t h e  rock.  behaviour  o f the quartz  The r o c k a t t h i s  feldspar  schist  location exhibits a fairly  H o l e No.  NX -  12  Depth  70.0  ft.  Goodman J a c k T e s t i n g A P P L I E D LOAD v s . DIAMETRAL BORE HOLE DEFORMATION First  10,000 9,000  8,000  oo  s~ CD  3 00 oo  7,000  6,000  CD  s-  u 3 ca £-  5,000  4,000  >>  ft f » f i f l f» f t  / *  -  / t /f t* ft  ..  Type  14s p a r schist  Third cycle  m  -  x *  M  /  /  /  -  /  i  A fm m £  £  f  f 1 f 1 rJ r* / t f * f » 1  f  f  L  g r  m m  t  M  -  i  /' /•  *  f t M * f t It f t ff fttt t i t  '1  m IIt  /•' /''  -  t  i  i  t t  / J  *  f §0  *  t  i  gr  / i  2,000 —  Rock  c  A>-,  -  0  Second c y c l e  -  3,000  1,000  cycle  90  Orientation  f  1  Jr M  jf  f  fS  I  f  Jr J  ' t  M7  ft  1  U3 -s  I  1  1  1  1  5.0  1  1  1  I  10.0  1  11  1  15.0 Total  1  1  1  1  20.0  1  1  1  1  25.0  D e f l e c t i o n ( i n c h x 10"  )  1  1  1  I  30.0  1  1  1  1  35.0  1  1  co  1  40.0  2n  H o l e No.  NX -  12  Depth  75.0 f t .  Goodman J a c k T e s t i n g  Orientation  A P P L I E D LOAD v s . DIAMETRAL BORE HOLE DEFORMATION First  cycle  Rock T y p e  Second c y c l e  Third  0  C  quartz  feldspar  schist  cycle  10,000  9,000  fl M  -  ///  8,000  -3  in cn CD  JO-  ro S-a  \ 1 1I  Ss  //  6,000  /  5,000  f  /  1  / #  4,000  <  -  •  1*1 1*1  /  /  /  /  /  1  /// ///  r  X  1  *  */  t /  g f  * * *' X  */  /  J  1 1  f  I  2,000  - /  /  1mil *  1  1 1  1 /  1  ill 1*1 mil mil  1  3,000  ///  /  1 V /  1  I *  * /  //  i  '  f  / 1'l  <*'/  r  -  / /  Syr  1,000  0  tr  */ */  ' /  7,000  QJ  s-  y  / / /  cn Q.  *  */  CO  ro 1  1  1  1  1  5.0  1  1  1  1  10.0  1  1  1  1  15.0  1  1  1  1  20.0  1  1  1  1  25.0 _o  Total  D e f l e c t i o n ( i n c h x 10  )  1  1  1  1  30.0  1  1  i i i >  1  35.0  40.0  GO CO  oo cn  H o l e No.  NX -  0  20  Goodman J a c k T e s t i n g  5.0  10.0  15.0 Total  Orientation  20.0 Deflection  25.0 (inch  x  30.0  10" ) 3  35.0  01  40.0  23  linear  stress-deformation  deformations.  curve yet  undergoes  A possible explanation  is  that  c a u s i n g r o c k movement a l o n g a p r e - e x i s t i n g behaviour one t e s t  of  this  t y p e was f o u n d f o r  s e c o n d and t h i r d  1.  are  diagrams  cycles  are  for  F i r s t cycle working =  1.46  coefficient  x  10  =  of  1.92  standard  Rock  three orientations  of  only  Third  =  2.00  standard  All  three  cycle,  this  10  x  10  =  22%  0.45  x 10  6  6  =  =  but  p a r t i c u l a r l y that  probability  distribution  gneiss,  significantly larger  23%  distribution.  on n o r m a l  paper a normal  is  0.43  variation  the t e s t s i n q u a r t z i t e  second c y c l e  =  t h e normal  shown by t h e p l o t  22%  6  distributions,  approach  following  modulus:  deviation  c o e f f i c i e n t of  The  first,  x 10^  =  variation  x  41 and 4 2 .  the  modulus:  10  cycle working  mean  0.32  variation  x  of  Figures  of  6  deviation  coefficient  As f o r  plane.  diagrams:  =  Second c y c l e w o r k i n g mean  4.  fracture  is  modulus:  standard deviation  3.  permanent  the jack l o a d i n g  t h e w o r k i n g modulus  shown i n  i l l u s t r a t e d by t h e s e  mean  2.  the  large  location. Distribution  points  very  plots  This paper,  for is  the  second  graphically  Figure  as a s t r a i g h t  43. line.  t h e a v e r a g e w o r k i n g modulus than  that of  the  first  On  cycle.  for  the  How-  89 Figure First 30  mode: 1.40  C y c l e Working  Modulus  mean =  :  x 10'  1.46  x 10*  20  Frequency  61  values  10  0 0.0  0.4  J  i  0.8  1.2  J  L  1.6  2.0  Modulus  2.4  (psi  2.8 x 10  Second C y c l e Working  3.2  3.6  L  4.0  4.4  4.8  4.4  4.8  )  Modulus  30 mode = 1.80  mean = 1 . 9 2  LI  x 10*  x 10  20 Frequency  59  10  0"  0.0  L 0.4 0.8  values  mm 1.2  1.6  2.0  Modulus  FREQUENCY HISTOGRAMS  2.4 (psi  2.8 x 10  3.2  i  L  3.6  4.0  )  FOR GOODMAN J A C K TESTS  QUARTZ FELDSPAR  SCHIST  IN  41  90 Figure  T h i r d C y c l e Working  Modulus  20  mean = 2.0q x  15  ,  mode = 2 . 2 0 x 10  W  10 46  Frequency  0  0.0  0.4  J 0 . 8 1.2  i 1.6  I 2.0  Modulus  2.4 (psi  J  2.8  L  3.2  x 10  values  3.6  J  4:0  )  FREQUENCY HISTOGRAM FOR GOODMAN JACK TESTS QUARTZ FELDSPAR  SCHIST  L  4.4  IN  4.8  42  91 Figure FREQUENCY  D I S T R I B U T I O N OF SECOND CYCLE  MODULUS  FOR QUARTZ FELDSPAR  43  WORKING  SCHIST  99 98  95  90  /•  80 Cumulative * 70 Percent D  60 50 40 30  / //  20  10 K  •  2 1  i  1 .0  I  i  I  i  i  i  i  i  2. 0 Modulus  3. 0 (psi  x 10  c  )  i  i  i  4. 0  92 ever, This in  the values f o r points out  the n e c e s s i t y o f  t h i s rock type.  normal  t h e second and t h i r d c y c l e s only  are almost i d e n t i c a l .  performing  two l o a d i n g  cycles  The f a c t t h a t t h e d i s t r i b u t i o n s a r e v e r y  nearly  must i n d i c a t e t h a t a r e p r e s e n t a t i v e sample o f  t h e s c h i s t was  tested. F i g u r e 44 shows t h e a n i s o t r o p y schist.  As c a n be s e e n a g r e a t d e a l  the c o r r e l a t i o n c o e f f i c i e n t f o r The o n l y  information  1.  in this plot  from t h i s diagram  The s c a t t e r o f  is  values tend to anisotropy  0.44.  the  correspond  d i a g r a m c o u l d be  following:  As shown i n F i g u r e 45 d i f f e r e n t  orientations of  the  c a n h a v e t h e same l o a d i n g d i r e c t i o n - f o l i a t i o n p l a n e ship.  For example, the  l o a d i n g c a n be p a r a l l e l  to  jack relationthe  f o l i a t i o n w h i l e the j a c k i t s e l f i s e i t h e r p a r a l l e l or pendicular to the f o l i a t i o n .  Thus  by t h e j a c k c o u l d be d e p e n d e n t  not o n l y  a n g l e b u t a l s o on t h e j a c k 2.  feldspar  the f i t t e d r e g r e s s i o n l i n e i s o n l y  the h i g h e s t modulus  to the low f o l i a t i o n a n g l e s .  quartz  situ  s c a t t e r i s present  t h a t c a n be o b t a i n e d  vague g e n e r a l i z a t i o n t h a t  due t o t h e  of  o f t h e in  the modulus on t h e  per-  determined foliation  orientation.  In  situ  features  such as s t r u c t u r a l d i s c o n t i n u i t i e s or  in  situ  s t r e s s e s which cause inhomogeneity  and t h u s d i s t o r t i o n o f  i n the  the m o d u l u s - f o l i a t i o n  schist  angle  relationship. 3.  Inaccuracy in the determination of Point  the angle  the f o l i a t i o n  1 was i n v e s t i g a t e d by d i v i d i n g  between t h e l o n g a x i s o f  the jack  angle.  the t e s t s according  (i.e.  the bore  hole)  and  to  and  ANISOTROPY OF THE QUARTZ FELDSPAR S C H I S T AS REFLECTED BY THE GOODMAN J A C K A n g l e b e t w e e n b o r e h o i fe; a n d f o l i a t i o n :  •=0°  t o 30°,  *=  30°  t o 60°,  +=  60°  to  90°  3.0  ***  2.6  Second C y c l e Working Modulus (psi  x  +  2.2  +  +  +  >  10 ) 6  r  1.8  +  ,.  •  •  T •  i •  •  • \  •  +  -  «  •  +  1.4  •  ~Regress i o n l i n e , c o r r e l a t i o n cc  1.0  r  =  .44  0.6  to  0  10  20  30  40  F o l i a t i o n Angle  50  60  (degrees)  70  80  90  -s CO  Figure THREE P O S S I B L E ORIENTATIONS  45  OF THE  GOODMAN J A C K WITH REGARD TO THE DIRECTION  OF LOADING AND  FOLIATION  PLANE  Jack  parallel  loading  Jack  =  Jack  =  to  foliation  90°)  to  parallel  foliation, angle  (i.e.  parallel  loading  foliation,  perpendicular  foliation, angle  to  foliation, to  (i.e.  foliation  0°)  perpendicular  foliation,  loading  to f o l i a t i o n , angle =J0°)  to parallel  (ice.  foliation  94  95 the rock s c h i s t o s i t y . h a s been d i v i d e d i n t o well  grouped there  m a t i o n modulus  the symbols are  The d e p e n d e n c e o f  the j a c k thus  remains  2 was i n v e s t i g a t e d by d e t e r m i n i n g  e x p r e s s e d as a p e r c e n t a g e o f t h e  this  angle  fairly  foliation i n d i c a t e d rock  obscure.  the v a r i a t i o n of  lowest determined  inhomogeneity  i n the s c h i s t .  t h r e e modulus  values for  the e f f e c t of  I t was f o u n d t h a t  large  the  scale  the v a r i a t i o n i n  a p a r t i c u l a r t e s t depth ranged  defor-  value  T h i s v a r i a t i o n w o u l d more c l o s e l y r e p r e s e n t  f o l i a t i o n angle while negating  and a v e r a g e d  44 shows t h a t  t e s t s w i t h t h e same  jack orientations.  each t e s t l o c a t i o n .  effect of  Figure  Although  overlap of  upon o r i e n t a t i o n o f Point  for  three groups.  is l i t t l e  a n g l e and d i f f e r e n t anisotropy  Re-examination of  the  f r o m 6% t o 40%  20%.  In anisotropic.  summary,  t h e Goodman J a c k  However,  t h e e x a c t r e l a t i o n s h i p between modulus  f o l i a t i o n angle  i n d i c a t e s that the s c h i s t  is  and  i s o b s c u r e w i t h o u t more a c c u r a t e g e o l o g i c c o n t r o l  at  the t e s t l o c a t i o n s . The e l a s t i c 56% f o r  t h e f i r s t two l o a d i n g c y c l e s .  permanent d e f o r m a t i o n only, is  recovery of the quartz  91% o f  occurs in t h i s rock type.  r e s t r i c t e d to the f i r s t  loading  The a v e r a g e r a t i o o f  demonstrated  T h i s means t h a t  t h e d e f o r m a t i o n was r e c o v e r a b l e .  s e c a n t modulus  is  f e l d s p a r s c h i s t averaged  1.59.  significant  For the second Thus  inelastic  behaviour  cycle.  the second c y c l e w o r k i n g modulus  The s i g n i f i c a n c e o f  i n the comparison of  cycle  rock  types.  this result will  be  to  96 3.  Pegmatite T w e l v e Goodman J a c k t e s t s w e r e c a r r i e d o u t  As f o r for  the  this  laboratory  rock  elastic  histograms  46 shows a r e p r e s e n t a t i v e  The m a t e r i a l  response a f t e r  generally  frequency  pegmatite.  c o u l d not  be  prepared  type.  Figure pegmatite.  testing,  in  displays  the  first  deformation  curve f o r  the  a l i n e a r deformation  c u r v e and  an  loading  i n s i g n i f i c a n t as e x e m p l i f i e d  cycle.  Hysteresis effects  by t h e n a r r o w  are  load-unload  loops. The a v e r a g e that of  the second c y c l e  indicating  that  load cycle. loading  large  the  is  2.06  x 10^ p s i .  percent e l a s t i c  59%.  For the  indication  Theiresults of  is  1.57  x 10^ p s i  The d i f f e r e n c e  i n e l a s t i c deformations  are occurring  recovery  for  second c y c l e o n l y ,  is  in  31%,  the  the f i r s t  this  value  while  first  two is  96%  above.  Summary a n d C o m p a r i s o n  Table  c y c l e w o r k i n g modulus  is  The a v e r a g e  cycles  reinforcing  4.  first  of  the  Goodman  Goodman  Jack  Results  Jack t e s t i n g are  summarized  in  3. Examination of  p a r t i c u l a r modulus For example, gneiss that of  type  very  the  summarized  little  results  difference  exists  t h e mean s e c o n d c y c l e w o r k i n g m o d u l u s  i s only  1.3  pegmatite.  times that o f Further,  c y c l e w o r k i n g modulus  are  the quartz  the standard  similar for  all  reveals  for  that  for  between r o c k  rock  and r a n g e  types.  types.  quartzite  f e l d s p a r s c h i s t and 1.2  deviation  a  of  times  second  H o l e No.  NX -  15  Depth  60.0  ft.._  Goodman J a c k T e s t i n g A P P L I E D LOAD v s .  DIAMETRAL  First cycle 10,000  i  r —  0  5.0  Orientation  BORE HOLE DEFORMATION  Rock T y p e  Second c y c l e  Third  n  n  ~T~  ~T~  10.0  15.0  20.0  25.0  Total  Deflection  (inch  90° J^maiite.  cycle  ~T~  30.0 x  10" ) 3  35.0  40.0  98 TABLE 3 SUMMARY OF GOODMAN JACK RESULTS Note:  All  modulus  values  Property  in psi  x 10^  Quartzite Gneiss  Quartz Feldspar Schist  30  61  12  1.71  1.25  1.41  2.86  2.24  2.38  1.95  1.46  1.57  0.38  0.32  0.33  19%  22%  21%  2.49  1.92  2.06  0.47  0.43  0.42  19%  22%  20%  a.  Number o f  b.  Mean s e c o n d c y c l e  secant  c.  Mean s e c o n d c y c l e  recovery  d.  Mean f i r s t  e.  Standard  f.  C o e f f i c i e n t of  g-  Mean s e c o n d c y c l e w o r k i n g  h.  Standard  i.  C o e f f i c i e n t of  j.  Range, o f  k.  "x"*  2.77  2.11  2.37  1.  " y »**  2.23  1.76  1.81  m.  Anisotropy  22%  19%  27%  n.  % E  28%  31%  31%  60%  56%  59%  96%  91%  96%  1.48  1.59  1.48  w  cycle working  deviation of  modulus modulus  modulus  d  variation  deviation  of  modulus  g  variation  second c y c l e working  Index,  modulus  A.I.  (second c y c l e )  (first  greater  % elastic  recovery  for  Average % e l a s t i c  recovery  for  Average  *  3  x  mean o f test  **  y  ratio,  w  /E„ s  t h e maximum s e c o n d c y c l e w o r k i n g  location regardless  mean o f test  E  of  to  of  modulus v a l u e s  a t each  modulus v a l u e s  a t each  orientation  t h e minimum s e c o n d c y c l e w o r k i n g  location regardless  0.87 3.16  1.32 2.80  second  cycle q.  to  two  cycles P-  1.64 3.70  E  cycle)  Average  0.  tests  Pegmatite  orientation  to  99 To r e d u c e t h e e f f e c t o f mean m o d u l u s values  values,  represent  w o r k i n g modulus Note 1.3  that for  both  pegmatite values  the  properties  t h e mean o f values  ratio  of  both  that d i f f e r  k and 1 o f  t h e maximum  behaviour  rock types  behaviour  follows  but are n o t i c e a b l y  is  quartzite  gneiss  to  k and 1 . It  is  than  to quartz  The r a t i o s  of  linear  during  very  response a f t e r  subsequent  larger  for  been  little  the  loading.  the s c h i s t s  r e f l e c t s the deformation  anisotropy  the v a r i o u s  have  modulus  30%.  for  p o s s i b l e r e a s o n s were p r e s e n t e d . of  rock types  variation  first  a r e s i g n i f i c a n t on t h e f i r s t  r e f l e c t the modulus  anisotropy  for  concluded that a l l  rock types  than  loading  Hysteresis the o t h e r  All cycle.  but  elastic  l o s s e s are two r o c k  Goodman J a c k  the s c h i s t or  gneiss.  t o compare  an a n i s o t r o p y  defor-  types.  index,  the  did  A number relative  A.I.,  has  defined:  A.I.  where  =  x  *=Xm  (100%)  v  mean o f values  1  t h e maximum s e c o n d c y c l e w o r k i n g at each t e s t l o c a t i o n r e g a r d l e s s  orientation  low  minerals.  and 2 t h e  However,  in  curves.  loading  of micaceous  As d e s c r i b e d i n s e c t i o n s V I . B . l not  cycle  schist  gneiss  i s e x h i b i t e d by t h e s t r e s s - d e f o r m a t i o n  deformations  second  feldspar  by l e s s  show f a i r l y  probably  o r minimum ( 1 )  These  quartzite  1.2.  Permanent  This  (k)  3 were computed.  of  orientation.  D i s c o u n t i n g extreme examples, mation  Table  in the comparison  a t each t e s t l o c a t i o n r e g a r d l e s s ^ o f  properties  are  rock anisotropy  modulus of  100 y  mean o f  t h e minimum s e c o n d c y c l e w o r k i n g m o d u l u s  a t each t e s t l o c a t i o n r e g a r d l e s s m  mean o f rock  Referring gneiss,  to Table  quartz  represent ness o f  represent that  an a p p a r e n t  the apparent  Elastic 60%.  For the all  slightly  pegmatite  ratio,  w  for  rock  properties  the  first  The  each rock type.  s  is  slightly  for  the  two l o a d i n g  for  cases,  that  cycles  the s c h i s t s  w h i c h c o u l d be c a u s e d  for  valu  rough-  values is  concluded  absolute,  feldspar  3 reveals  cycle is  averages  fairly  recovery  is for  in  However  the  schist is  is  felt  about than  rock  and  record  observed  that  inelastic  to  is  type.  the gneiss  failure  cycle  30%.  the s c h i s t  significant.  amount o f  little  greater  can reduce the it  low,  this  the s c h i s t w h i l e  explained,  undergo a g r e a t e r by:  index  t h e mean s e c o n d  the recovery  increment  between r o c k t y p e s . the quartz  index  though not  first  the e l a s t i c  larger  load  These  Hence i t  n through q of Table  As p r e v i o u s l y  the f i r s t  quartzite  types.  that of  both  the  rock but a l s o p r e f e r e n t i a l  The p e r c e n t a g e  than  In  a r e t h e same.  s  the  respectively.  i n d i c a t i n g more p e r m a n e n t d e f o r m a t i o n  E /E ,  E /E >  indicates  three  rock types.  difference w  of  for  a particular  19% a n d 27% f o r  in situ s t r e s s f i e l d .  anisotropy  is greater  the deformation ratio  of  second c y c l e o n l y ,  less,  The r a t i o ,  and t h e  between r o c k t y p e s .  recovery  90% f o r  s c h i s t and p e g m a t i t e  the  Comparison  w o r k i n g modulus  a r e 22%,  a n i s o t r o p i c s are s i g n i f i c a n t ,  and a r e s i m i l a r f o r  difference  values  the a n i s o t r o p y  hole  for  type  feldspar  bore  orientation  second c y c l e working moduli  3 the A . I .  not o n l y  the  all  of  values  the  greater  This deformation  101 (a)  The c l o s u r e o f immediately  (b)  around the  The d e f o r m a t i o n the  holes  assumption  In  in  that  summary,  Plate Loading  the  the mortar were  in  the  assuming  other  rock cores confirm  this  diameter  nature  depending  on  orientation.  has shown t h a t  the  three  rock  types  properties.  the p l a t e  performing  programmes.  loading  them, w i l l  Measurements  six test locations yielding  tests,  b a s e d on t h e  be p r e s e n t e d  in  less  conclusions detail  w e r e t a k e n on o p p o s i t e w a l l s twelve sets of  c a p f a i l e d a t one l o c a t i o n s o t h a t  eleven  results.  sets of  than at  However,  usable  data  obtained. The c o m p l e t e s e t o f  the quartz not  zone  Tests  r e a c h e d by company  each o f  of  those  as a rough p i t t e d  t h e Goodman J a c k  The r e s u l t s o f  the previous  than  hole walls  t h e c o r e e x h i b i t e d marked  deformation  situ  i n the d e s t r e s s e d  hole.  examination  as w e l l  foliation  h a v e s i m i l a r in  bore  foliation  o f a s p e r i t i e s on t h e b o r e  Visual  fluctuations the  or  i n s c h i s t were r o u g h e r  rock types.  C.  fractures  feldspar  indicative of  mapping referred  schist is  referred  any c o m p o s i t i o n a l  by d i f f e r e n t  geologists.  t o as g r a n i t i c Figures  r e s u l t s a r e shown  i n Table 4.  t o as b i o t i t e  difference  Similarly,  but  s c h i s t which  rather  that is  represents  the q u a r t z i t e  gneiss  is  gneiss.  47 a n d 4 8 show l o a d d e f o r m a t i o n  and s c h i s t r e s p e c t i v e l y .  Itote  These c u r v e s a r e  curves  representative  for  the  gneiss  of  the  rock  102 TABLE 4 RESULTS OF PLATE LOADING TESTS * VHV = v e r y **  Test Number  Orientation  For g r a n i t i c  value  T h i s v a l u e not used A l l modulus v a l u e s x 1 0  Moduli E  high  s  of  Elasticity w  psi  Percent E l a s t i c  r  Complete Test  Last Cycle  E  E  6  Recovery E  w  /E  s  gneiss:  P L - 3 Ram  horizontal  2 . 20  3.85  12.40  17  58  1.75  PL-3 Butt  horizontal  2 . 20  3.87  12.40  17  45  1.76  P L - 4 Ram  vertical  2 . 25  2.65  4.54  41  67  1.18  P L - 5 Ram  vertical  2 . 61  2.97  9.12  29  62  1.14  PL-5 Butt  vertical  1 . 09  1.25  2.21  47  90  1.15  P L - 6 Ram  horizontal  5 . 62  6.95  VHV*  31  100  1 .23  PL-6 Butt  h o r i z o n t a l 1 2 . 18  7.08  VHV  -  -  -  4 . 02  4.09  8.13  30  70  1.37  Gneiss  Averages:  For b i o t i t e  schist:  PL-1  Ram  horizontal  0 . 90  1.29  2.53  35  93  1.43  PL-1  Butt  horizontal  0 . 79  0.71  3.78  20  53  0.89**  P L - 2 Ram  vertical  0 . 23  0.30  0.62  36  66  1.30  PL-4 Butt  vertical  0. 46  0.60  2.21  23  49  1.30  Averages:  0 . 60  0.73  2.28  29  65  1.34  Schist  Plate Deflection  (inch)  105 behaviour  during  the  plate  load  g n e i s s and s c h i s t r o c k t y p e s is  that  the s c h i s t s  modulus.  The g n e i s s e s  Also, the  linear  the  t o be n o t e d .  of  the l o a d - u n l o a d  deformation  for  been w e l l  Examining  differentiated  the averaged  alone, by t h e  values  the s c h i s t .  The a v e r a g e w o r k i n g m o d u l u s  very  the s c h i s t .  the gneiss are  This  indicates  d i s t i n c t i v e deformation  large  range  and t h e  gneiss  these ranges  from 1.25  is  very  pp.  222-223)  Figure  distributions  are  Since and v e r t i c a l  of  for  the  gneiss  lower  types the  cycles.  high.  On  schist  tests. that  than  all  those  i s 5.6  to  However,  of  times  rock types  situ  Both rock types  x 10^ p s i .  the  probability  indicated for  the p l a t e  of  load  s c h i s t from 0.30  results of  i n an a p p r o x i m a t e  the  of  the  parallel  to the  loaded nearly  perpendicular  to  (see  loading  have  exhibit a  1.29  x 10^  the o v e r l a p  two r o c k  psi of  Guttman  r e s u l t s are  and  tests Wilks,  shown  in normal  types.  t e s t s were c a r r i e d out  the e x p l o r a t o r y  tunnel,  in  horizontal  a rough check  The h o r i z o n t a l  rock l a y e r i n g while it.  loading  D i s t i n c t and a p p r o x i m a t e l y  rock i s p o s s i b l e .  approximately  the p l a t e  manner,  plate  paper.  loading  directions within  on t h e a n i s t r o p y  of  is quite  plate  difference  small.  The d i s t r i b u t i o n  49 on n o r m a l  the  to 7.08  The d i s t r i b u t i o n c a n be i n v e s t i g a t e d  portion  the  as  t h e g n e i s s and  t h e in  properties.  i n working modulus;  loss  Both rock  v e r y much h i g h e r  that  between  their  r e s u l t s of Table 4 reveals  t h r e e modulus  that of  for  loops.  each rock type  curves  thus  hysteresis  c u r v e s on t h e l o a d i n g  the l o a d - d e f o r m a t i o n  have  differences  The m o s t o b v i o u s  show s i g n i f i c a n t l y l e s s  permanent d e f o r m a t i o n  basis of  behaviour  are  Several  u n d e r g o much l a r g e r , d e f o r m a t i o n s ,  e x p r e s s e d by t i g h t n e s s exhibit  testing.  tests  the v e r t i c a l  loaded tests  106 Figure FREQUENCY DISTRIBUTIONS  FOR THE PLATE LOADING  49  TESTS  99 98  95  Cumulative Percent  i t  90  •  i  i  /•  f  ;  80  • •  70  1  (  +;  60  •  1  i  50  t  40  >  •  30  •  t  i i  20  •  1  f  :*  10  • 5  2 1  0  1.0  2.0  3.0 Working  quartzite  gneiss,  4.0 Modulus  5.0 (psi  x  6.0  7.0  8.0  10 ) 6  quartz  feldspar  schist  107 The a v e r a g e w o r k i n g m o d u l u s the l a y e r i n g  i s 5.44  the f o l i a t i o n  x 1 0 psi while that  i s 2.27  x 10 t o the  ft  interpreted  surrounds  the drift.  The r a t h e r significant is felt  greater  t o t h e in that  than  being that  situ  situ  recoveries.  alone.  importance  elastic  response loading  o f the sulphur  have v e r y  loading  However,  The  reason  the response o f  b l a s t induced This  elastic  m u s t be c o n s i d e r e d  situ  rock  behaviour.  t e s t s , i t c a n be s a i d  d i s t i n c t i v e in  situ  micro-  i s s u p p o r t e d by  identical  permanent d e f o r m a t i o n s  the p l a t e  factors  i s significantly  pad.  t h e t e s t i n g m e t h o d a n d t h e in  To s u m m a r i z e t h e two r o c k t y p e s  o f these  tests.  o f the  t h e g n e i s s and s c h i s t have n e a r l y  a f u n c t i o n o f both  Due t o t h e e x c a v a -  gauge s y s t e m i s r e f l e c t i n g n o t o n l y  t h elarge  c a n n o t be  o f t h e two r o c k t y p e s .  b u t a l s o the deformation  Thus  results  r e c o v e r i e s shown i n T a b l e 4 a r e  behaviour  f r a c t u r e s and t h e d e f o r m a t i o n the f a c t t h a t  when  to predict.  i n d i c a t e d by the p l a t e  the d i a l  the rock f a b r i c  The r e l a t i v e  elastic  t h e t r u e in  that  2 . 2 times as r i g i d  i n b l a s t damage a n d s t r e s s c o n c e n -  is difficult  small  values  p a r a l l e l and  i n d i c a t e d by the p r e c e d i n g  results  2 . 4 times as r i g i d  layering.  as a r e f l e c t i o n o f rock properties  on t h e a n i s o t r o p y  it  The s c h i s t i s t h u s  p r o c e s s a zone o f r o c k v a r i a b l e  tration  perpendicular to  For the s c h i s t the  fi  t o the rock  The a n i s o t r o p y  i s thus  x 10 p s i f o r l o a d i n g  respectively.  loaded p a r a l l e l  The g n e i s s  rock l a y e r i n g .  x 1 0 p s i and 0 . 4 5  perpendicular  tion  psi.  loaded p a r a l l e l t o  f o rloading  6  when l o a d e d p a r a l l e l a r e 1.00  f o r the gneiss  deformation  that moduli.  108  CHAPTER  VII  COMPARISON OF TESTING  A.  Magnitude  of  1.  Factors Relevent to  Figure  Moduli  Comparison  50 i l l u s t r a t e s b o t h t h e r a n g e a n d mean o f  c y c l e w o r k i n g modulus  for  the three  be k e p t i n m i n d when i n t e r p r e t i n g the s i z e of  TECHNIQUES  t h e zone o f  t e s t i n g programmes.  this  influence of  figure,  the  t h e modulus  t e s t i n g programme  1.  tests:  2.  each  follows:  drilling,  be h i g h e r a n d h a v e a l o w  features  for  range  T h e s e t e s t s a r e c a r r i e d o u t on s o u n d p i e c e s  Goodman J a c k t e s t s : geologic  and  a f f e c t both the  have n o t been a b l e t o d e s t r o y .  should tend to  must  test.  rock core which the processes o f  preparation  Two p o i n t s  The e x p e c t e d r o c k q u a l i t y  c a n be s u m m a r i z e d a s  Laboratory of  values.  second  the rock q u a l i t y  The r o c k q u a l i t y a n d i t s v a r i a b i l i t y w i l l a n d mean o f  the  The random  should r e s u l t  handling  The m o d u l u s  and values  range.  location of  tests relative  i n a wide range o f  modulus  results. 3.  Plate loading tests:  These t e s t s a r e performed  i n a zone  r o c k s u s c e p t i b l e t o d e s t r e s s i n g and b l a s t damage.  of  Modulus  v a l u e s s h o u l d e x h i b i t a w i d e r a n g e a n d c o u l d t e n d t o be c o n sistently  lower than o t h e r  testing  methods.  to  109 .  Figure  50  MODULUS RANGE FOR VARIOUS TESTING METHODS  -  q u a r t z i t e gneiss  -  quartz  -  'C'$&  pegmatite mean  feldspar schist  — r - — i —  T Laboratory  value  42 t e s t s  Tests  6 tests  23 tests Goodman Jack Tests  30 t e s t s  \ —J  —  /  12 t e s t s  61  tests  Plate L o a d i n g TestsI  7 tests  4 tests  8  Working Modulus  (psi  x 10  )  10  11  no The s e c o n d p o i n t  t o c o n s i d e r i s t h e volume o f  by a p a r t i c u l a r t e s t i n g m e t h o d .  For the t h r e e  t h e f o l l o w i n g r o c k v o l u m e s w o u l d be  1.  Laboratory  2.  Goodman J a c k t e s t s :  3.  Plate loading tests:  The d e g r e e  tests:  influenced  methods  influenced:  fraction of a cubic  foot.  a p p r o x i m a t e l y one c u b i c  foot.  a p p r o x i m a t e l y two c u b i c  feet.  t o w h i c h a r e p r e s e n t a t i v e volume o f t h e r o c k i s t e s t e d  known a s t h e s c a l e e f f e c t .  to determine  it.  is  Many w r i t e r s i n c l u d i n g B u k o v a n s k y [ 3 ]  r e p o r t e d on t h e v a r i a t i o n o f d e f o r m a t i o n  of  testing  rock  The g e n e r a l  have  modulus w i t h the t e c h n i q u e  conclusion is  t h a t the g r e a t e r the  r o c k t e s t e d t h e l o w e r and more r e p r e s e n t a t i v e t h e m o d u l u s  used  volume  tends  to  be.  2.  Observations  on t h e T h r e e  The m o d u l u s in  Figure  outlined  50 a r e  Groups o f  results for  interpreted  Modulus  Results  the t h r e e t e s t i n g methods  bearing  i n the p r e c e d i n g s e c t i o n .  i n mind the r e l e v e n t On t h i s b a s i s s e v e r a l  illustrated  factors observations  c a n be made:  1.  As a n t i c i p a t e d t h e l a b o r a t o r y mean m o d u l u s  values.  the g r e a t e s t range o f 2.  The o r d e r o f quartzite  r e s u l t s showithe  Unexpectedly these r e s u l t s also  show  values.  rock types  from h i g h e s t t o l o w e s t modulus  gneiss, pegmatite,  quartz  feldspar schist,  c o n s i s t e n t w i t h i n each t e s t i n g method. the d i f f e r e n t i a t i o n o f  highest  On t h e o t h e r  r o c k t y p e b a s e d on m o d u l u s  v a r i a b l e d e p e n d i n g on t h e t e s t i n g m e t h o d .  is  is  and  is  hand highly  Ill 3.  The q u a r t z  feldspar  s c h i s t modulus  c r e a s i n g t e s t volume effect while  On t h e  basis of  section provided  the q u a r t z i t e  the observed  VII.A.1.  it  and t h u s  is  inferred  the  Discussion of  the Modulus  The l a r g e testing at  i s assumed  range  for  o f modulus the  values  core specimens.  quartz  feldspar  s c h i s t i n w h i c h the modulus  range  i n view of testing  of the  of  greater.  a joint-rock  mass  Compared  modulus.  but  is  These  or  not  results  in other  to e i t h e r of  in  have  following  discrepancies.  is  by t h e  nature  pointedly  thus  of  laboratory  the  rock  demonstrated  highly  by  dependent  could contribute  significant Compared  tests  upper  limit  the  to a  in these  to the  types  on  results  other are  e s t a b l i s h t h e modulus  the  the other  rock types  possible explanations  Goodman J a c k r e s u l t s  the  rock mass.  structural  outlined  of  the  for  the  modulus  t e s t i n g methods,  the  Goodman  system.  the  that  The  the l a b o r a t o r y  words  high  of  reported  checks. for  that  modulus  is  considered  assumption then  not.  the observed  instrumentation  calibration  indicated three  Several  This  t h e mean v a l u e s  rock material  Jack r e s u l t s  Faulty  frequent  techniques  significantly intact  values  scale  t e s t i n g programmes  heterogeneous  scale of  large  in-  Results  to r e f l e c t  orientation.  do  compatible.  the  foliation  the envisaged  values  three  partially  section discusses possible explanations  3.  decrease with  and t h e e x p e c t e d t r e n d s  that  r e s u l t s which are only  reflect  gneiss  results  values  the p l a t e  features  loading  This control  of  l o w e r a n d more  c a n be c o n j e c t u r e d .  results  for  gneiss  are  c o u l d be r e f l e c t i n g  explanation equally  consistent  of  the  anomolously the  a l s o makes t h e  t h e modulus  On  all  true  in  situ  assumption rock  types.  112 In  view o f the d i s t i n c t d i f f e r e n c e  schist  this  explanation  i s based on r e c e n t f i n i t e  t h e Goodman J a c k c a r r i e d o u t b y H e u z e a n d D e s s e n n e  work the e f f e c t o f j o i n t deformation  modulus  as f o l l o w s .  s p a c i n g a n d in  was s t u d i e d .  system the  from t h e a s s i g n e d r o c k and j o i n t hole  were e x p r e s s e d i n the forms  o f stress patterns  o f deformation  behaviour  p r e d i c t e d by e l a s t i c  used f o r a l l  computations  was f r o m 0 . 7 5  t o 3.13  depending  the  i n test results  also advised that  of  This  K value  theory  i n this  The i n v e s t i g a t o r s  information  modulus  apparent  could  Several The  results hole,  modulus  could  s y s t e m by a d j u s t i n g  and  thesis.  i s 1.25.  situ  The r a n g e  "there  the rock y i e l d i n g  value  o f adjusted a n d in  situ  exist critical introduce  K values  joint  significant  i s accounted f o r . "  o f the substance,  stresses i s necessary.  additional  f a c t o r s such as d i l a t a n c y o f the j o i n t s  anisotropy  w h i c h may i n f l u e n c e  investigated.  i s the  i n c i d e n t a l l y i s the  rock breakage,  c o n s i s t i n g o f the s t r e n g t h  medium  This  on t h e p r e s e n c e o f j o i n t s  concluded that  unless  isotropic  f o r a complete a n a l y s i s o f t e s t r e s u l t s  f r a c t u r e s a n d t h e in  n o t been  described  around the bore  f o r an u n j o i n t e d ,  s p a c i n g s w h i c h by a l l o w i n g i m p o r t a n t errors  measured  (see e q u a t i o n 1)  which e x h i b i t e d e l a s t i c  stresses.  In t h i s  properties.  o f the r o c k - j o i n t  The r e s u l t s showed t h a t  exact value  true  modeling  t h e j a c k p l a t e s and t h e  measured.  be c o r r e c t e d t o t h e t r u e m o d u l u s K value,  [18].  i n t e r a c t i o n were s t u d i e d .  e x t e n t o f r o c k b r e a k a g e a r o u n d and under modulus  element  m e t h o d c a n be b r i e f l y  p o s s i b l e modes o f j a c k - b o r e  apparent  and  s t r e s s e s upon t h e  situ  Their  For each rock m a s s - j o i n t  be d e t e r m i n e d  the  between g n e i s s  i s unlikely.  A second e x p l a n a t i o n of  in foliation  They  additional the  spacing  They a l s o and degree  mentioned o f rock  Goodman J a c k t e s t s b u t w h i c h t o d a t e  have  113 In of  the  view o f  Goodman  range  low values  of of  for  Goodman  load results  gneiss  compared  could result  variation  the  of  the  to  that  rock q u a l i t y  c a r r i e d out  sensing  unload  less  system.  when c h a n g i n g  for  This  from  curves,  is  modulus In  values without  -40%  to  the  low range  This  and  i n view of from  i n the  load  tests  interpretated  for  the  Jack  in  following  the  formulae  i s dubious thus  loading  (i.e.  in  is  by t h e  advisable  test  similar  to unloading  and  47 and 4 8 )  r o c k modulus  the accuracy of  lack of is  A lack of a n d i s more  [18].  the  deformation  reflected  view  be  J a c k by H e u z e a n d D e s s e n n e  factor  Jack.  Goodman  I t would plate  large  Goodman  using  application  tunnel.  the  the  deformation  response  by v e r y  steep  deformation pronounced  sensitivity for  rocks.  summary,the  from d i f f e r e n t detailed  interpretation  study  indicated  can i n c r e a s e the apparent higher  the  Goodman  Figures  for  that obtained  This  significant  loading  (see  to  theory.  the  from  results  a t each t e s t l o c a t i o n .  are s u r p r i s i n g  t e s t s are  element  the  results.  from p l a t e  surrounding  a finite  A second though  or  loading  from e l a s t i c i t y  to c a r r y out  be m o d i f i e d  from d i s c r e p a n c i e s  K factor)  The p l a t e  developed  K factor  J a c k modulus  T h i s anomaly  manner.  3 could  and Dessenne  c o r r e c t i o n could e a s i l y account  the  of  in Table  on t h e a p p l i c a b l e  The p l a t e modulus  r e c e n t w o r k by Heuze  Jack t e s t i n g  + 165% d e p e n d i n g large  the  results  testing  knowledge  formulae.  of  d i s c u s s e d above  techniques  t e s t i n g programmes  important  factors  reflects  such as r o c k q u a l i t y  that  and w i t h o u t  the l a c k of  situ  compared valid  correlation  the need t o c o n v e n i e n t l y a n d in  modulus  be r e a l i s t i c a l l y  each t e s t environment  In o t h e r w o r d s ,  the t h r e e  cannot  indicate  s t r e s s e s and  between  quantify to  incorporate topic will of  B.  these  these  factors  be e x p a n d e d  interpretive  in Section V I L E ,  formulae.  This  on t h e  practical  application  laboratory  and p l a t e  loading  Anisotropy  fairly  results  consistent. for  indicated  ratio  foliation  i s about  2.5  i s 2.4  times  the g n e i s s  the  times.  inconclusive. the s c h i s t , geologic  a t the  where a s u p p l e m e n t a r y is  loading  parallel  the s c h i s t .  The  investigations the j a c k  result  for  the  loading  parallel for  the  to  very  programme o f  schist.  tests the  layering  Goodman J a c k r e s u l t s  are  behaviour  oriented  for  accurate  Thus a n i s o t r o p y geologic  the  indicate  2.2  uniform  The  to  schist is  impossible without  test locations. under  inconclusive  indicates anisotropic is  tests  and p e r p e n d i c u l a r  The p l a t e  on t h e  analysis  with the jack  camera l o g g i n g  t e s t i n g shows  a s r i g i d when l o a d e d  quantitative  investigated  Elastic  for  Although  control  for  perpendicular.  Anisotropy  the  g n e i s s and e x c e l l e n t a n i s o t r o p y  o f moduli  t h a n when l o a d e d  for  The l a b o r a t o r y  anisotropy  C.  valid  results.  Anisotropy are  into  can o n l y  be  conditions  or  core d r i l l i n g  or  bore  hole  employed.  Recovery  The e l a s t i c  recoveries  an i n t e r e s t i n g  trend.  recoveries  complete  for  i n d i c a t e d by t h e  For easy comparison t e s t s are  three  the average  summarized:  programmes elastic  show  115 Laboratory gneiss:  testing: 93%  pegmatite: schist:  84%  Goodman J a c k gneiss:  89%  testing:  60%  pegmatite: schist: Plate  The o b v i o u s volume tests  of  other  loading 30%  schist:  29%  trend  is  after  hand,  tests:  that e l a s t i c  rock t e s t e d .  incorporate  elastic  59%  gneiss:  the l a b o r a t o r y  56%  This  a greater  is  recovery  to  be e x p e c t e d s i n c e t h e  number o f  the f i r s t  loading  showed an a v e r a g e  The d i s c r e p a n c y  r o c k a f f e c t e d by t h e p l a t e  cycle.  of  The p l a t e  is probably  loading  comparison,  For  essentially  loading  tests,  on  on t h e  due t o t h e l a r g e r  the  final  volume  of  micro-  drift.  b a s e d on t h e t i m e r e q u i r e d  d a t a , c a n be made b e t w e e n  t o reduce the d a t a t o modulus  is  for  preparation  is  t e s t as w e l l as the zone o f  required equal  volume  Performance  A final deformation  larger  30% p e r m a n e n t d e f o r m a t i o n  f r a c t u r e d and d e - s t r e s s e d r o c k around the  Ease o f  increasing  geologic discontinuities.  a n d Goodman J a c k t e s t s t h e d e f o r m a t i o n  loading cycle.  D.  decreased with  all  methods.  For  the  and t e s t i n g , t h e t o t a l  to o b t a i n  testing techniques. values  laboratory time  i s not  time  included since  samples,  i s 1 3/4  The  load-  hours  including per  two  it  sample  cycle  116 test. is  The t i m e r e q u i r e d  for  f r o m 10 t o 20 m i n u t e s  T h i s t i m e assumes t h a t  an e a r l i e r e x p l o r a t i o n phase o f t h e p r o j e c t .  ing the p l a t e l o a d i n g t e s t s reports 6 to 8 hours e x c l u s i v e o f is  t e s t w i t h t h e Goodman J a c k  d e p e n d i n g on t h e t i m e n e c e s s a r y t o p o s i t i o n  j a c k a t the t e s t l o c a t i o n . for  a two c y c l e  that a four  preparation  time.  bore holes are The company  cycle  test  Obviously  E.  Evaluation of Testing  In  view o f  the  inconsistencies provided  t h e t h r e e t e s t i n g t e c h n i q u e s some o b s e r v a t i o n s  of  the r e s u l t s as w e l l as p o s s i b l e improvements  be  relevent. Before performing  For example,  different  modulus  On t h e o t h e r  surrounding  the deformation  Following this  modulus  r e f l e c t trends.  A design value very  would  property  property significantly  t h e modulus of  the  the t e s t e d  Obviously  is  convenient  to the true  values.  v a l u e and  r e f l e c t s the  thus  true  medium.  Consider the deformation s y s t e m as t h e p r o p e r t y  may  rock  index values or design  nearly  value  i n t h e s e two c a s e s  reasoning i t  An i n d e x v a l u e i s o n e w h i c h i s p r o p o r t i o n a l  of  the  to d e l i n e a t e zones o f  to d i s t i n g u i s h t e s t s as r e p o r t i n g e i t h e r  behaviour  physical rock  the t e s t i n g technique r e q u i r e d  w o u l d be q u i t e d i f f e r e n t .  will  on t h e p r a c t i c a l  the required accuracy of  hand,  comparison  a p r e s s u r e c o n d u i t may h a y e t o be known w i t h i n 25%.  the s o p h i s t i c a t i o n of  test  perform.  by t h e  the required accuracy of  s h o u l d be e v a l u a t e d .  be ± 100%.  required  to the techniques  a t e s t to determine a  modulus,  deformation  perform-  Techniques  of  such as d e f o r m a t i o n  required  this latter  t h e most t i m e consuming and hence most e x p e n s i v e t o  the  behaviour  o f a j o i n t - r o c k mass  w h i c h m u s t be d e t e r m i n e d .  Each o f  the  three  117 testing design  1.  techniques  i n t h i s t h e s i s c a n be e v a l u a t e d a c c o r d i n g t o  value versus  Laboratory  index value  criteria.  Testing  Since the rock d i s c o n t i n u i t i e s are l o s t laboratory  testing provides  only  o f a j o i n t - r o c k mass s y s t e m . determines  an upper  was shown i n laboratory  Figure  The t e s t  is valuable  bound t o t h e d e f o r m a t i o n 50.  Attempts  for  rock q u a l i t y  The f r a c t u r e  2.  The R o c k Q u a l i t y  sound,  it  o f a r o c k mass a s improve  the value  The r a t i o o f t h e in  Investigations rock q u a l i t y [20],  relationships  of  of the  the rock mass.  rock  Several  proposed:  Designation or  unweathered  obtained  of  conveniently  frequency.  interval  RQD.  l e a s t four  as  i n t h e c o r e box inches in  the by  length.  2] compressional  situ  from l a b o r a t o r y  wave v e l o c i t y t o  that  specimens.  into the p o s s i b i l i t y of  c o r r e l a t i n g deformation  i n d i c e s have been c a r r i e d o u t  by D e e r e ,  a n d Coon a n d M e r r i t t  [21].  have been d e f i n e d  is unlikely  it  be f o u n d t o r e d u c e t h e m o d u l u s  j o i n t - r o c k mass s y s t e m u s i n g  The RQD i s d e f i n e d  represented  cylinders at  [ S t a g g and Z i e n k i e w i c z ,  will  modulus  h a v e been made t o  have been  percent of the coring  Onodera  in that  process  behaviour  t e s t i n g a s a n i n d e x t e s t by c o r r e l a t i n g t h e m o d u l u s  1.  3.  i n the sampling  an i n d e x t o t h e d e f o r m a t i o n  sample w i t h i n d i c e s r e l a t e d to the q u a l i t y indices  the  Although  indices.  et al_.  with [19],  approximate  that a r e l i a b l e  of a laboratory  rock q u a l i t y  Hendron,  modulus  method  sample t o t h a t o f The r e a s o n b e i n g  a that  118 these  i n d i c e s r e f l e c t the p o p u l a t i o n o f  their  deformation  the rock d i s c o n t i n u i t i e s but  behaviour.  F i n i t e e l e m e n t m o d e l l i n g o f a j o i n t - r o c k mass s y s t e m c a n porate the deformation separately. provide  It  properties of  is therefore  data for  r o c k mass s y s t e m .  not  conceivable that  the d e t e r m i n a t i o n of At present  t h e r o c k s u b s t a n c e and laboratory  d e s i g n modulus  t h e r e a r e two o b s t a c l e s t o  joints  testing  values  incor-  could  for a  joint-  this  procedure:  1.  A convenient sampling technique for including joints  2.  i s needed.  [Bukovansky,  A s i m p l e method o f d e t e r m i n i n g is  required.  I n summary, mation p r o p e r t i e s  [Bukovansky,  laboratory  obtaining  joint  3]  deformation  properties  3]  t e s t i n g provides  o f a j o i n t - r o c k mass s y s t e m .  by c o r r e l a t i o n w i t h r o c k q u a l i t y  rock samples  indices.  an i n d e x t o t h e  This  i n d e x c a n be  In t h e f u t u r e ,  deforimproved  laboratory  t e s t i n g c o u p l e d w i t h f i n i t e e l e m e n t a n a l y s i s may p r o v i d e d e s i g n  modulus  values.  2.  Goodman J a c k  Testing  The r e s u l t s i n t h i s t h e s i s i l l u s t r a t e two m a i n p o i n t s o f Goodman J a c k t e s t i n g  1.  the  technique:  The j a c k p r o v i d e s  an e x t r e m e l y e f f i c i e n t method f o r  a l a r g e amount o f  load-deformation  number o f in  test locations.  situ  data for  obtaining  an e x t e n s i v e  119 2.  The l a c k o f probably i n the  rock type d i f f e r e n t i a t i o n  r e f l e c t s the  interpretive  The s u p p l e m e n t a r y appropriate of  K value  the method.  modulus as f o r  values this  interpreted  for  provide  the K value  opinion  necessary to determine  each t e s t l o c a t i o n would o f f s e t  the  Goodman J a c k t e c h n i q u e s Firstly,  for  an " a v e r a g e "  programmes  rock mass. of  the  efficiency  to provide  index  t h e t e s t i n g c a n be c a r r i e d and t h e  an e l a s t i c medium o r  a rough i n d e x t o the modulus  the a u t h o r ' s as  t e s t i n g programmes  t h e s i s w i t h no s u p p l e m e n t a r y  for  K values  formula.  f o l l o w from t h i s .  a value appropriate  modulus  need t o u t i l i z e a p p r o p r i a t e  Two a l t e r n a t i v e  using  b a s e d on  results  alternatively,  As s u c h t h e t e s t  a joint-rock  out  would  mass s y s t e m .  a s e c o n d more d e s i r a b l e m e t h o d c o u l d be  In  devised  follows:  1.  Further  finite  element modelling  by Heuze a n d D e s s e n n e investigate all  [18]  of  t h e j a c k as  recommended  s h o u l d be c a r r i e d o u t  rock parameters  w h i c h can a f f e c t  to the K  value. 2.  Knowing the r e l e v e n t  parameters  w i t h o n e o r more s i m p l e s h o u l d be o b t a i n e d  Franklin  indices.  These  f r o m t h e NX c o r e c o r r e s p o n d i n g Suitable  [22].  to  rock q u a l i t y  be RQD a n d P o i n t L o a d S t r e n g t h .  extensive description of B r o c h and  K v a l u e c o u l d be  rock q u a l i t y  Goodman J a c k t e s t l o c a t i o n . c o r r e l a t i o n would  the  the P o i n t Load S t r e n g t h  correlated indices the  indices For  Test  an see  for  3.  The a p p r o p r i a t e  K v a l u e f o r e a c h Goodman J a c k t e s t l o c a t i o n  w o u l d be d e r i v e d rock  The p r o p o s e d well  from c o r r e l a t i o n s between K and t h e  indices.  t e s t procedure would r e q u i r e  t h e o r e t i c a l v e r i f i c a t i o n as  a s e x t e n s i v e f i e l d e v a l u a t i o n and i f s u c c e s s f u l s h o u l d  i n d e x modulus  values reported  indicate that  d e s i g n modulus further  theoretical  ways o f d e t e r m i n i n g joint  i n v e s t i g a t i o n s by Heuze and  i n closely jointed  values.  Dessenne  rock the j a c k c o u l d a l s o  This a p p l i c a t i o n o f the j a c k would  require  the a d d i t i o n a l  test data,  to further  i n c l u d i n g in  additional  and by Heuze,  laboratory  et al.  factors.  v a l i d a t e the design values  [23],  r e p o r t e d by  rock. to  Tests c a r r i e d out  i n NX b o r e h o l e s  hole roughness external  non-composite  parameters to vary  relationship.  volume  By u t i l i z i n g s p e c i a l d r i l l  bits  and e c c e n t r i c i t y c o u l d be s t u d i e d . l o a d s c o u l d be a p p l i e d  Obviously  not a l l  c o u l d be d u p l i c a t e d i n t h e l a b o r a t o r y  s e l e c t e d parameters  block o f  i n t h e b l o c k w o u l d be c o m p a r e d  r o c k b l o c k t o i n v e s t i g a t e t h e dependence o f modulus direction-stress  This  t e s t s c a r r i e d out on l a r g e  c o r e s a m p l e s f r o m t h e same r o c k b l o c k .  With s p e c i a l i z e d equipment  investigations.  homogeneous,  uniaxial o r t r i a x i a l deformation  the e f f e c t s o f bore  by T r a n  t h i s a u t h o r w o u l d recommend a t h o r o u g h  study t o confirm the t h e o r e t i c a l  programme w o u l d u t i l i z e a l a r g e  stress,  situ  t h e j a c k and i n v i e w o f t h e l e s s than adequate t e s t s r e p o r t e d [7]  provide  investigation as well as consideration to practical  s p a c i n g , r o c k s t r e n g t h and p e r h a p s In o r d e r  improve t h e  b y t h e Goodman J a c k .  Recent f i n i t e element [18]  various  should provide  on the  t h e in b u t the  valuable  to the loading situ ability  information.  121 I n summary, Goodman J a c k p r o v i d e s t h e in  behaviour  P l a t e Loading  values  loading  c o n s i d e r e d an i n d e x t e s t . deformation  This  plate than  loading  In o r d e r additional  1.  the  drift  is  values.  values  conditions.  for  this  thesis  are  The r e a s o n b e i n g plate  loading  the  b l a s t damaged,  unreliable.  In  that  than  and  the  author's  design the  utiliza-  t e s t s to provide to  values  index  rapid,  s u c h a s t h e Goodman J a c k . to obtain  d e s i g n modulus  The f o l l o w i n g a d d i t i o n a l  The l i n e a r d i m e n s i o n  [Stagg  i n d e x modulus  be u t i l i z e d t o p r o v i d e  c o s t s w o u l d be i n c u r r e d ,  compared  to  With  specific site  to the zone o f  e x p e n s e w o u l d be w a r r a n t e d when c o m p a r e d method.  the  mass s y s t e m .  i s n o t e c o n o m i c a l l y j u s t i f i e d when c o m p a r e d  i n e x p e n s i v e methods  tests  improved  an i n d e x  b a s e d on t h e f a c t t h a t a l e s s  tests should  i n d e x modulus  values  indicated that  s y s t e m was u t i l i z e d a n d b e c a u s e  t i o n o f e x p e n s i v e a n d cumbersome modulus  under  is  theory  destressed rock surrounding  rather  a joint-rock  t e s t s as c a r r i e d out  measuring  application of e l a s t i c i t y  opinion  t h e s i s have  Tests  The p l a t e  ideal  of  research the j a c k should provide  and p o s s i b l y d e s i g n modulus  3.  this  an e x c e l l e n t method o f d e t e r m i n i n g  deformation  situ  further  the r e s u l t s o f  of  however  the  2]  from the p l a t e the  to the t o t a l  requirements  to the spacing o f  and Z i e n k i e w i c z ,  values  loading  additional cost of  the  w o u l d h a v e t o be m e t :  loaded area should  be  large  d i s c o n t i n u i t i e s i n the  rock.  122 2.  The s t r e s s l e v e l s c r e a t e d by t h e t e s t s h o u l d be to those generated compliance of obviously  3.  of  loading  should  location for  the bore  beneath  5.  and t h u s loading  values  and 2 in  design  joint  provide  logging  Secondly, position  the holes bore  hole  to geologic  such a system see Benson, total  deformation  should  s p a c i n g , in a valid  pads a t the  detailed structural  p a d s s h o u l d be m o n i t o r e d  of  the bearing  Firstly,  to r e l a t e deformation  core geology  could  be  extensometers  structure. et a l . ,  (For  14].  the d i s t a n c e between  using a rod  be u s e d t o  type  interpretive  investigate  formula  for  the  extensometer.  s t r e s s e s and r o c k  situ  each  the strength  plate  tests.  I n summary, modulus  pads.  A f i n i t e e l e m e n t model effects  1  geologic environments  under  two r e a s o n s .  with multiple  As a c h e c k on t h e bearing  The  t e s t s c a n be u t i l i z e d t o p r o v i d e  be d r i l l e d  the bearing  a description of 4.  load t e s t s to p o i n t s  holes would provide  instrumented in order  loading.  values.  Bore holes test  the p l a t e  r e s t r i c t s the s t r u c t u r a l  which p l a t e modulus  by t h e p r o t o t y p e  comparable  the performing  of  i s considered unwarranted  design values at s l i g h t additional  plate  load  i n view of  expense.  t e s t s to provide the p o t e n t i a l  of  index  123  CHAPTER  VIII  CONCLUSION  The r e s u l t s o f three groupings behaviour  t h e t h r e e t e s t i n g programmes  in order  to reach c o n c l u s i o n s ; a n i s o t r o p y ,  and d e f o r m a t i o n  different  elastic  Although  r e s u l t s were p r o v i d e d the s c a l e o f  by t h e  t h e d e g r e e o f a n i s o t r o p y was c o m p a r a b l e f o r  for  i s concluded t h a t each o f  t h e t e s t i n g methods  i n v e s t i g a t i n g the dependence o f modulus  Laboratory  tests provide  have  results  t h e b e a r i n g pad p r e p a r a t i o n . that very  The e l a s t i c t e s t i n g methods  of a  Goodman J a c k t e s t s s u f f e r in order  rock  jointanisotropy  from the  to  fact  obtain  behaviour  of  t h e r o c k a s r e f l e c t e d by t h e  i l l u s t r a t e d the s c a l e e f f e c t .  The e l a s t i c  i n f l u e n c e d by t h e t e s t m e t h o d .  three  recovery  to the  rock  A l s o , s i n c e an u n j o i n t e d  rock  mass b e h a v e much more e l a s t i c a l l y t h a n a j o i n t - r o c k mass s y s t e m t h e elastic  r e c o v e r i e s a l s o r e f l e c t the rock q u a l i t y o f  environment.  by  results.  a c o m p l e t e t e s t l o a d i n g was d i r e c t l y p r o p o r t i o n a l  volume  the  e x c a v a t i o n p r o c e s s as w e l l as  d e t a i l e d bore h o l e data i s r e q u i r e d  quantitative anisotropy  for  drift  limitations  on l o a d i n g d i r e c t i o n .  excellent directional properties of  by t h e  The  behaviour.  inherent  P l a t e loading t e s t s are r e s t r i c t e d i n that  c a n be m o d i f i e d  quite  both methods.  s u b s t a n c e b u t have l i m i t e d a p p l i c a t i o n t o t h e a n i s o t r o p y r o c k mass s y s t e m .  laboratory  these t e s t s i s  Goodman J a c k p r o v i d e d o n l y a n i n d i c a t i o n o f a n i s o t r o p i c r o c k It  into  modulus.  Quantitative anisotropy and p l a t e l o a d i n g t e s t s .  are subdivided  the  test  124 From t h e c o m p a r i s o n o f m o d u l u s t e s t i n g methods formed  to the expected r e s u l t s .  external the  i t was shown t h a t  f a c t o r s such as j o i n t  interpretive  that without variables,  defining,  terms.  modulus  values  convenient plate tests.  In e x p l a n a t i o n , s p a c i n g , in  were p r e s e n t e d .  for  loading  It  is  The  index value  versus  con-  possible  therefore the  design  of  concluded important  can o n l y value  test  be made classifi-  comparison.  t h e Goodman J a c k t e s t s p r o v i d e  yield  f r o m and  three  s t r e s s and v a l i d i t y  between t e s t i n g t e c h n i q u e s  a joint-rock  to perform,  situ  by t h e  several  and i n c o r p o r a t i n g  i s an example o f a g e n e r a l i z e d I n summary,  reported  the r e s u l t s d e v i a t e d  quantifying  a comparison  in generalized cation  formula  values  mass s y s t e m ,  index values of  excellent  laboratory  tests,  index though  restricted application  t e s t s a r e most e c o n o m i c a l l y u t i l i z e d as d e s i g n  value  and  125  B I B L I O G R A P H Y  BIBLIOGRAPHY  KRUSE, G . H . , D e f o r m a b i l i t y o f Rock S t r u c t u r e s , C a l i f o r n i a S t a t e W a t e r P r o j e c t , D e t e r m i n a t i o n o f t h e In Situ M o d u l u s o f D e f o r m a t i o n o f R o c k , ASTM STP 4 7 7 , Am. Soc. Testing "Mats., 1970. STAGG, K . G . a n d Z I E N K I E W I C Z , O . C . , Rock M e c h a n i c s i n P r a c t i c e , J o h n W i l e y a n d S o n s , New Y o r k , 1 9 6 8 .  Engineering  BUKOVANSKY, M . , D e t e r m i n a t i o n o f E l a s t i c P r o p e r t i e s o f R o c k s U s i n g V a r i o u s O n - S i t e and L a b o r a t o r y M e t h o d s , P r o c e e d i n g s o f the Second Congress o f the I n t e r n a t i o n a l S o c i e t y f o r Rock M e c h a n i c s 1 , B e l g r a d e , Y u g o s l a v i a , 1970. DALLY, J . W . and R I L E Y , W . F . , H i l l Book C o . , 1 9 6 5 . HARDY,  Experimental  Stress Analysis,McGraw  H.R., Standardized Procedures f o r the Determination o f P h y s i c a l P r o p e r t i e s o f M i n e Rock u n d e r S h o r t - P e r i o d U n i a x i a l C o m p r e s s i o n ; Department o f Mines and T e c h n i c a l S u r v e y s , O t t a w a , M i n e s B r a n c h T e c h n i c a l B u l l e t i n TB 8 , 1959.  the  CLARK, G . B . , D e f o r m a t i o n Modulus o f R o c k s , T e s t i n g T e c h n i q u e s f o r Rock M e c h a n i c s , ASTM STP 4 0 2 , Am. S o c . T e s t i n g M a t s . , 1 9 6 5 . TRAN, V . K . , In Situ D e t e r m i n a t i o n o f Rock D e f o r m a b i l i t y by Borehole Jack T e s t s , unpublished M.Sc. T h e s i s , U n i v e r s i t y o f C a l i f o r n i a , B e r k e l e y , 1967. Z I E N K I E W I C Z , O . C . a n d STAGG, K . G . , C a b l e M e t h o d o f In Situ Rock T e s t i n g , I n t e r n a t i o n a l J o u r n a l o f Rock M e c h a n i c s a n d M i n i n g S c i e n c e s 4 , 1967. WALLACE, G . B . , S L E B I R , E . J . a n d ANDERSON, F . A . , In Situ Methods f o r D e t e r m i n i n g D e f o r m a t i o n M o d u l u s Used by t h e B u r e a u o f Reclamation, Determination of the In Situ Modulus o f D e f o r m a t i o n o f R o c k , ASTM STP 4 7 7 , Am. S o c . T e s t i n g M a t s . , 1970. OBERT,  L . a n d DUVALL, W . I . , Rock M e c h a n i c s a n d t h e D e s i g n S t r u c t u r e s i n R o c k , J o h n W i l e y a n d S o n s , New Y o r k , 1967.  of  127 11.  HAWKES, I. a n d MELLOR, M . , U n i a x i a l T e s t i n g i n Rock M e c h a n i c s L a b o r a t o r i e s , E n g i n e e r i n g Geology, V o l . 4 , 1970.  12.  GOODMAN, R . E . , T R A N , V . K . a n d HEUZE, F . E . , The M e a s u r e m e n t o f D e f o r m a b i l i t y i n Bore H o l e s , Proceedings o f the Tenth S y m p o s i u m on Rock M e c h a n i c s , A I M E , 1 9 6 8 .  13.  ROARK,  14.  BENSON, R . P . , MURPHY, D . K . a n d McCREATH, D . R . , M o d u l u s T e s t i n g o f Rock a t t h e C h u r c h i l l F a l l s U n d e r g r o u n d P o w e r h o u s e , L a b r a d o r , Determination of the In Situ Modulus o f D e f o r m a t i o n o f R o c k , ASTM STP 4 7 7 , Am. S o c . T e s t i n g M a t s . , 1 9 7 0 .  15.  SMITHELLS, C . J . , M e t a l s R e f e r e n c e Book, I n c . , New Y o r k , 1 9 5 5 .  16.  HAWKES, I . , M o d u l i M e a s u r e m e n t s on Rock C o r e s , P r o c e e d i n g s o f F i r s t C o n g r e s s o f t h e I n t e r n a t i o n a l S o c i e t y f o r Rock M e c h a n i c s , L i s b o n , 1966.  17.  GUTTMAN, I. a n d W I L K S , S . S . , Introductory J o h n W i l e y and S o n s , I n c . , 1965.  18.  HEUZE,  F . E . a n d DESSENNE, D . , The I n f l u e n c e o f J o i n t S p a c i n g , and t h e E f f e c t o f Rock B r e a k a g e , on B o r e h o l e D e f o r m a b i l i t y T e s t R e s u l t s , R e p o r t t o U . S . Army C o r p s o f E n g i n e e r s , Omaha, N e b r a s k a , 1972.  19.  DEERE,  D . U . , HENDRON, A . J . , J r . , PATTON, F . D . , a n d CORDING, E . J . , D e s i g n o f S u r f a c e and N e a r - s u r f a c e C o n s t r u c t i o n i n R o c k , P r o c . 8 t h Symposium on Rock M e c h . , A I M E , 1966.  20.  ONODERA, T . F . , D y n a m i c I n v e s t i g a t i o n o f F o u n d a t i o n R o c k s In P r o c e e d i n g s o f t h e F i f t h S y m p o s i u m o n Rock M e c h a n i c s , M i n n e s o t a , Pergamon P r e s s , 1 9 6 3 .  21.  COON,  22.  BROCH, E. a n d F R A N K L I N , J . A . , The P o i n t - L o a d S t r e n g t h T e s t , I n t e r n a t i o n a l J o u r n a l o f Rock M e c h a n i c s a n d M i n i n g S c i e n c e s , V o l . 9 , No. 6 , 1972.  23.  HEUZE,  F.J., F o r m u l a s f o r S t r e s s and S t r a i n , M c G r a w - H i l l Company, I n c . , 1 9 5 4 .  Interscience  Rock  Book  Publishers,  Engineering  the  Statistics,  Situ  R . F . a n d MERRITT, A . H . , P r e d i c t i n g In Situ Modulus o f Def o r m a t i o n U s i n g Rock Q u a l i t y I n d e x e s , D e t e r m i n a t i o n o f t h e In Situ M o d u l u s o f D e f o r m a t i o n o f R o c k , ASTM STP 4 7 7 , Am. Soc. T e s t i n g M a t s . , 1970.  F . E . , O H N I S H I , Y . , a n d GOODMAN, R . E . , B o r e h o l e J a c k D e f o r m a b i l i t y Measurements and S t r e n g t h T e s t i n g o f S e l e c t e d Rocks f r o m t h e A u b u r n Dam S i t e , R e p o r t t o U . S . Army C o r p s o f E n g i n e e r s , Omaha, N e b r a s k a , 1 9 7 1 .  ,  128  A P P E N D I C E S  129 APPENDIX 1 A N A L Y S I S OF STRAIN GAUGE  CIRCUIT  compensating gauge  For the c i r c u i t have p r e s e n t e d t h e  configuration  following  (1+rr where:  1  AR  2  AE  voltage output  V  voltage  r  R /R 2  D a l l y and R i l e y  [4]  equation;  AR,  v  shown a b o v e  applied  AR K  3  from to  AR K  4  circuit circuit  ]  AR  r e s i s t a n c e change o f  R  initial  resistance of  t h e s t r a i n gauges s t r a i n gauges  1 through  1 through  4.  4  130  For the c i r c u i t  above:  R-| = R = l 2 0 o h m s ,  Therefore  2  When a s t r a i n gauges  (R-j,  show no  is  R )  i m p o s e d on t h e will  3  gauges  the  (Rg.R^)  active will  change.  Therefore  equation  AR  (la)  =  2  AR-j = A R  3  i s a l s o known  = R  1  i f '  then  3  (2a)  • • • -< > 2a  becomes:  (3a)  that:  or  f-  where: G.F. hi/I  0  T_ AR 2 R  =  (G.F.) f  f=  =  ' f *  and R  AE V  AR^  becomes:  f - T  It  resistance of  change w h i l e the c o m p e n s a t i n g  Therefore  Assuming  t e s t sample the  r = 1  = e =  gauge  factor  strain  =  (G.F.)  e  ...  .(4a)  131 Combining  (4a)  AE  T In o t h e r  words,  strain,values. of  strain  and  =  (3a)  1 2  the  ,  r  (  G  yields:  c  - ' F  full  x  n  )  e  is  o r  bridge  The a d v a n t a g e  measurement  =  e  of  2  JGT7)  c i r c u i t above this  increased  / AE v (  )  indicates  circuit is  by t h e  T  factor  that of  t w i c e the  the  two.  correct  sensitivity  132  APPENDIX 2 TIME STUDY OF LABORATORY TESTING  PROGRAMME  Operation  1.  C u t t i n g c o r e w i t h diamond  2.  G r i n d i n g c o r e on s u r f a c e 2 1/2  hr./14  Time (min./sample) saw  5  grinder  samples  11  3.  Measuring, weighing,  logging  8  4.  P r e p a r i n g sample f o r  gauges  7  5.  Applying gauges,  6.  Soldering leads  7.  Testing continuity,  8.  Deformation  terminal  tabs  10 10  coating with silicone  t e s t i n g (2 c y c l e s  rubber  per sample)  Total (approximately  2 50  103 m i n . 1 3/4  hr./sample)  APPENDIX  3  RESULTS OF LABORATORY TESTS  134 APPENDIX 3A QUARTZITE GNEISS ( V a l u e s  1st  cycle  2nd c y c l e  1st cycle  in psi x  2nd c y c l e  10 ) 6  1st cycle  2nd  cycle  Nl  7.29  7.26  8.75  9.57  7.70  7.68  N4*  5.05  5.23  5.80  6.50  5.43  5.54  N5  7.63  7.60  9.47  6.94  N6  7.70  7.64  8.97  9.63  8.22  8.23  N7  8.42  8.32  9.52  8.90  9.84  N8  6.45  7.09  N9  5.48  5.60  6.86  7.53  5.83  6.11  N10  5.55  5.51  6.60  7.43  6.11  6.13  Nil  6.69  6.93  8.28  9.09  7.10  7.37  N12  5.54  5.47  8.06  8.81  6.50  6.54  N13  7.08  7.03  8.98  9.56  7.59  7.58  N14  6.85  6.88  8.26  8.67  7.18  7.21  N15  6.22  8.19  N16  6.32  6.24  7.39  8.21  7.01  6.97  N17  7.14  7.01  8.74  9.28  7.58  7.49  N18  6.82  6.76  8.09  8.63  7.14  7.11  N19  7.18  7.13  8.56  8.99  7.48  7.46  N22  6.02  5.99  7.13  7.79  6.46  6.48  N23  5.05  4.98  6.85  7.52  5.61  5.59  N26  4.61  4.58  6.77  7.25  4.94  4.95  N27  5.95  5.77  6.51  7.26  6.46  6.30  N38  5.61  5.71  7.10  7.79  6.15  6.28  N42  5.55  4.98  7.26  6.86  5.88  N56  7.94  7.89  9.33  9.90  8.29  8.26  N57  6.26  6.21  7.19  8.03,  6.71  6.70  N58  5.56  5.51  6.63  7.33  5.96  5.95  Erroneous  values  *  due t o f a u l t y  10.3  gauge.  10.1  APPENDIX 3A Sample Number  *  (continued) E  1st  cycle  2nd  cycle  1st  cycle  2nd  cycle  1st  cycle  2nd  r cycl  N66  6.49  6.42  7.61  8.23  6.92  6.93  N67  4.48  4.49  5.44  6.26  5.02  5.06  N74  7.33  7.28  8.17  8.79  7.67  7.63  N77  3.96  N85  7.15  7.14  8.59  9.24  7.76  7.78  N93  5.89  5.74  7.79  8.22  6.26  6.14  N96  6.41  6.35  7.34  8.00  6.80  6.77  N  6.43  6.34  8.68  9.12  6.80  6.74  14  6.46  6.34  7.29  7.89  6.72  6.63  15  7.37  6.70  9.06  8.88  7.73  16  5.86  6.12  6.95  7.82  6.27  6.55  24  8.42  25  6.04  6.01  7.01  7.51  6.24  6.22  32*  3.57  3.47  4.42  5.22  3.99  3.94  33  7.09  7.02  8.05  8.79  7.56  7.53  39  7.64  7.60  8.68  9.35  7.92  7.91  Erroneous  v a l u e s due t o f a u l t y  5.23  9.56  gauge.  136 APPENDIX 3B QUARTZ FELDSPAR SCHIST (S = s t r i k e  1st  direction,  E  E  Sample Number  s cycle  (Values  s 2nd c y c l e  in psi  D = dip  E w 1st cycle  x  10°)  direction) E  E w 2nd c y c l e  1st  E r cycle  r 2nd eye  N40-S  1.04  1.04  2.27  2.69  1.14  1.17  N40-D  1.31  1.31  2.64  3.05  1.42  1.45  N44-S  2.97  2.96  2.81  3.36  3.38  3.38  N44-D  3.64  3.59  3.27  3.91  4.22  4.21  N52-S  1.09  1.09  2.71  3.19  1.34  1.37  N52-D  1.02  1.02  2.68  3.07  1.24  1.27  N54-S  0.99  1.00  2.42  2.87  1.22  1.25  N54-D  1.15  1.16  2.53  3.01  1.41  1.44  N55-S  1.52  1.49  3.20  3.68  1.91  1.91  N55-D  1.40  1.37  2.92  3.40  1.74  1.73  N61-S  2.62  2.60  2.42  3.33  3.23  3.21  N61-D  2.89  3.34  5.27  6.08  3.31  3.83  N69-S  2.04  2.04  4.03  4.42  2.38  2.40  N69-D  2.16  2.15  4.10  4.52  2.54  2.56  N70-S  10.5  10.5  9.61  11.5  12.1  12.1  11.0  10.8  N70-D  9.27  9.07  8.16  9.97  N71-S  3.41  3.36  3.15  4.01  4.08  4.07  N71-D  2.74  2.68  2.66  3.55  3.48  3.48  N75-S  1.57  1.43  1.83  2.57  2.08  1.96  N75-D  3.88  3.67  4.86  4.91  4.70  4.59  N79-S  7.36  7.26  7.24  8.56  8.38  8.34  N79-D  9.25  8.59  7.66  8.51  N89-S  1.44  1.41  1.79  2.15  1.66  1.64  N89-D  1.07  1.06  1.38  1.72  1.30  1.30  N91-S  8.27  8.20  7.09  9.03  9.94  9.86  N91-D  9.81  9.78  8.55  *  Erroneous  v a l u e s due t o f a u l t y  gauge.  10.5  10.7  11.3  10.0  11.3  APPENDIX 3B Sample Number  (continued) E  1st  c  s cycle  E  E  c  s 2nd c y c l e  1st  E  w cycle  2nd  E  w cycle  1st  r cycle  E  r  2nd c y i  N99-S  2.71  2.70  4.02  4.39  2.93  2.93  N99-D  2.58  2.55  3.47  3.93  2.89  2.89  N100-S  1.19  2.46  N100-D  0.86  1.78  N101-S  1.72  1.72  2.94  3.11  1.86  1.87  N101-D  1.60  1.60  2.82  3.00  1.75  1.76  N102-S  1.25  1.24  2.55  2.77  1.38  1.39  N102-D  0.86  0.85  2.34  2.49  0.95  0.95  N103-S  0.92  0.90  2.67  2.98  1.07  1.07  N103-D  1.36  1.34  3.23  3.45  1.51  1.51  N201-S  0.92  0.81  0.74  1.32  1.27  1.20  N201-D*  1.55  1.56  4.61  4.24  2.11  2.36  N202-S  2.56  2.40  2.84  3.27  2.99  N202-D  2.62  2.38  3.38  3.42  3.04  N203-S  1.97  1.94  2.18  2.74  2.32  2.32  N203-D  4.18  4.09  3.66  4.12  4.60  4.50  N208-S  6.24  6.17  5.45  7.00  7.57  7.56  N208-D  8.49  8.29  7.38  9.92  N209-S  0.72  0.70  1.20  1.49  0.93  0.92  N209-D*  0.27  0.28  0.83  1.64  0.42  0.47  *  Erroneous  v a l u e s due t o f a u l t y  gauge.  10.9  10.8  138 APPENDIX 3C PEGMATITE  Sample Number  E_ s 1st  cycle  E 2nd  (Values  in psi x  E w  s cycle  1st  cycle  10 ) 6  E w 2nd  cycle  E 1st  r cycle  E  r  2nd c y i  40*  8.45  N20  4.39  4.30  5.01  5.91  4.73  4.64  N31  4.89  4.90  6.83  7.55  5.19  5.20  N33  4.32  4.26  5.76  7.09  4.87  4.88  N84  3.43  3.43  5.54  6.17  3.90  3.93  N92  2.43  2.42  3.88  4.64  2.91  2.94  Aluminum  10.4  Premature f a i l u r e ,  12.7  10.4  values  10.4  disregarded.  10.4  10.4  10.4  APPENDIX 4  139  EXAMPLE OF STEREOGRAPHIC PROJECTION METHOD U T I L I Z E D WITH THE GOODMAN JACK The f o l l o w i n g for  data  projection  method  directions  and f o l i a t i o n  is  determining  Orientation  2.  A n g l e between a x i s o f  3. Referring  30  of  i l l u s t r a t e the  the s p a t i a l  stereographic  arrangement  of  loading  planes:  1.  location:  used t o  bore  hole:  s t r i k e 180 d e g r e e s ,  c o r e and f o l i a t i o n  dip  plane at  -4 the  degrees, test  degrees,  Assumed s t r i k e o f to the s t e r e o n e t  f o l i a t i o n a t the below the data  manner:  N  is  t e s t l o c a t i o n : 025 processed in  the  degrees. following  140 APPENDIX 4  1.  (continued)  The h o l e i s not only  p l o t t e d , p o i n t A on t h e s t e r e o n e t .  This  point  represents  the hole but a l s o the pole to the plane c o n t a i n i n g  the  loading direction. 2.  The s t r i k e o f t h e f o l i a t i o n i s t h e n m a r k e d o f f .  A plane  to t h i s  The p o l e t o  strike direction is  foliation  plotted,  (plane r)  perpendicular  p l a n e m u s t be i n p l a n e r and i s d e t e r m i n e d a s f o l l o w s .  known a n g l e b e t w e e n t h e h o l e a n d t h e f o l i a t i o n i s  30 d e g r e e s ,  t h e a n g l e between t h e h o l e and t h e p o l e t o t h e f o l i a t i o n i s degrees.  The s t e r e o n e t  along a great c i r c l e  is  thus  rotated until  the angle  b e t w e e n p o i n t A and t h e p l a n e r  The p o l e t o t h e f o l i a t i o n i s  point,  (point  The f o l i a t i o n p l a n e i s  4.  The p l a n e p e r p e n d i c u l a r t o t h e h o l e i s p l o t t e d . orientation  convention  then  at this  3.  (see  the three t e s t o r i e n t a t i o n s this 5.  plane.  (See p o i n t s  can o n l y  F i g u r e 8) (0,  the  T O , T 4 5 , T90  i s 60  degrees.  B)  By e x a m i n i n g  are p l o t t e d  Thus  great  The d e s i r e d a n g l e s  within  respectively). and p a r t i c u l a r  the plane which i s  circles  loading  perpendicular  foliation  plane.  are p l o t t e d through  (See p l a n e s  are measured i n t h e planes  the loading d i r e c t i o n to the point of The r e s u l t s a r e a s  the for  Also  p e r p e n d i c u l a r t o t h e f o l i a t i o n p l a n e must pass t h r o u g h  p o l e and e a c h l o a d i n g d i r e c t i o n . 6.  60  loading directions  4 5 , 90 d e g r e e s )  be m e a s u r e d i n  pole to that plane.  thus  measured  t o t h e f o l i a t i o n and a l s o c o n t a i n s t h e l o a d i n g d i r e c t i o n . planes  The  plotted.  The t r u e a n g l e b e t w e e n t h e f o l i a t i o n p l a n e s direction  the  pO, p 4 5 ,  p90)  pO,  p90  p45,  intersection with follows:  the  all  the  the  from  Test (Degrees)  Points  0  In  Measured  Between  Angle (Degrees)  TO t o x  22  45  T45 t o y  56  90  T90 t o  55  addition  location  the  inferred  i s 025 d e g r e e s  southeast.  orientation strike with  z of  the f o l i a t i o n  23 d e g r e e s  dip  at the  toward  the  test  APPENDIX  5  GOODMAN J A C K RESULTS  143 APPENDIX 5A GOODMAN J A C K RESULTS (Modulus Hole Number NX-1  ientation )egrees) 90  0 90 45  NX-6  40  0  90  45  NX-6  55  0  90  45  NX-8  40  0  90  45  NX-8  values  50  0  90  QUARTZITE in psi x  E  GNEISS  10 ) 6  s  E w  0.91 0.84 1.22 1.17 1.14 1.07  1.14 2.13 1.28 2.17 1.33 2.03  3.01 2.92 2.64 2.57 2.61 2.30  1.51 1.46 1.43 1.33 1.29 1.27 1.27 1.23 1.21  1.65 2.18 2.16 1.46 1.91 1.97 1.38 1.64 1.65  2.50 2.43 2.39 2.26 2.26 2.26 1.89 1.85 1.85  2.07 2.01 2.00 2.01 1.96 1.96 2.00 1.97 1.95  2.30 3.34 3.59 2.09 2.52 2.57 2.03 2.49 2.74  3.74 3.78 4.07 2.96 2.93 2.96 3.16 3.16 3.10  1.77 1.76 1.73 1.78 1.74 1.72 1.82 1.79 1.78  1.92 2.38 2.40 1.92 2.43 2.40 1.90 2.24 2.28  2.72 2.79 2.67 2.90 2.79 2.75 2.58 2.58 2.54  1.74 1.73 1.76 1.70 1.68 1.66  1.89 2.22 2.05 1.91 2.28 2.26  2.61 2.33 2.69 2.52 2.43 2.48  E  r  APPENDIX Hole Number  NX-9  5A  (continued) Depth (ft.)  45  Orientation (Degrees)  1.73 1.68 1.68 1.87 1.86 1.84 1.72 1.65 1.66 1.65  1.91 2.39 2.47 2.14 2.39 2.47 1.94 2.07 2.28 2.26  2.85 2.78 2.73 2.73 2.85 2.58 2.40 2.50 2.54 2.46  1.65 1.61 1.59 2.00 1.94 1.94 2.01 1.96 1.95 1.80  1.94 2.32 2.39 2.28 2.60 2.60 2.16 2.49 2.49 2.42  2.55 2.52 2.50 3.07 2.98 3.01 2.96 2.83 2.88 2.76  2.48 2.39 2.34 2.02 2.01 1.98 2.01 1.98 2.00  2.74 3.70 3.75 2.30 2.87 2.90 2.24 2.65 2.74  4.40 4.34 4.58 3.01 2.98 3.16 2.83 2.76 2.51  1.76 1.69 1.68 2.07 1.97 1.94 1.69 1.68 1.66  2.24 2.87 3.09 2.18 2.74 2.77 2.03 2.98 3.25  3.35 3.50 3.42 3.35 3.13 3.16 3.29 3.54 3.58  0  0  45  95  r  0  90  NX-12  E  2.55 2.62 2.60  45  85  w  1.94 2.32 2.30  90  NX-12  E  1.90 1.90 1.88  45  30  s  45  90  NX-12  E  0  90  45  APPENDIX 5A  (continued)  Hole Number  Depth (ft.)  Orientation (Degrees)  105  0  NX-13  90'  45  E  2.46 2.32 2.29 1.40 1.35 1.34 1.80 1.72 1.69  2.71 3.59 3.64 1.60 1.92 1.97 2.02 2.71 2.68  r  4.28 4.12 4.02 2.20 2.17 2.17 3.22 2.94 3.07  146 APPENDIX GOODMAN J A C K RESULTS (Modulus  Hole Number  Depth (ft.)  NX-1  70  ;grees) 0 90 45  NX-2  50  0  90  45  NX-2  55  0  90  45  NX-2  75  0  90 45  NX-2  80  0 90 45  QUARTZ FELDSPAR  values  jntation  5B  in psi  E  x 10  c  SCHIST  )  E  s  W  r  1.12 1.06 1.13 1.10 1.00 0.96  1.31 2.41 1.36 1.98 1.34 2.56  2.30 2.27 3.14 3.11  1.33 1.31 1.20 1.06 1.03 1.02 1.50 1.48 1.46  1.55 2.08 2.04 1.15 1.59 1.63 1.65 1.89 1.89  2.09 2.33 2.92 1.97 1.98 1.95 2.01 2.00 1.92  1.30 1.27 1.27 1.10 1.08 1.06 1.21 1.17 1.17  1.51 1.92 1.94 1.24 1.71 1.74 1.40 1.69 1.57  2.08 1.97 2.00 1.91 1.95 1.93 2.04 1.92 2.00  1.24 1.21 1.19 1.08 1.03 1.10 1.09 1.08  1.20 1.70 1.87 1.19 1.72 1.17 1.56 1.51  2.17 2.32 2.31 2.19 2.16 1.72 1.67 1.80  1.71 1.70 1.07 1.27 1.25 1.24  1.83 1.92 1.26 1.37 1.66 1.69  2.01 2.12 1.76 2.01 1.98 2.01  3.10  APPENDIX 5B  (continued)  Hole Number  Depth (ft.)  NX-3  70  Orientation (Degrees)  0 90  45  NX-3  100  0 90 45  NX-4  45  0  90  45  NX-4  50  0  90  45  NX-4  60  0  90  45  E r  1.13 0.83 0.62 0.48 0.39 0.75 0.55  1.31 1.55 0.68 0.93 0.93 0.75 0.87  2.32 2.22 1.50 1.45 1.47 1.44 1.37  1.28 1.23 0.86 0.71 1.05 0.89  1.35 1.67 0.98 1.52 1.27 1.72  1.83 1.80 2.37 2.37 2.16 2.15  1.55 1.49 1.45 1.30 1.27 1.25 1.36 1.32 1.31  1.73 2.65 2.52 1.39 1.98 1.98 1.49 2.04 2.08  3.08 3.02 2.87 2.36 2.30 2.34 2.38 2.34 2.36  1.58 1.51 1.49 1.95 1.89 1.88 1.33 1.29 1.27  1.60 2.33 2.43 1.88 2.70 2.83 1.48 2.06 2.13  2.88 2.85 2.70 3.24 3.32 3.40 2.50 2.57 2.62  1.32 1.24 1.23 1.13 1.07 1.04 1.62 1.55 1.53  1.73 2.16 2.23 1.39 2.03 2.03 1.75 2.15 2.20  2.38 2.28 2.15 2.19 2.15 2.16 2.44 2.40 2.39  148 APPENDIX 5B  (continued)  Hole Number  Depth (ft.)  NX-5  30  Orientation (Degrees)  0  90  45  NX-5  60  0  90  45  NX-5  78  0 90  45  NX-8  60  0  90  45  NX-11  30  0  E r  1.33 1.06 0.87 1.54 1.30 1.07 1.49 1.34 1.13  1.45 1.59 1.58 1.67 1.77 1.76 1.65 1.75 1.75  1.98 1.98 1.96 2.03 2.14 2.09 2.02 2.03 2.06  1.07 1.03 1.01 1.08 1.05 1.03 1.13 1.11 1.10  1.17 1.44 1.45 1.13 1.35 1.39 1.20 1.55 1.56  1.81 1.71 1.70 1.36 1.60 1.56 1.78 1.78 1.75  1.42 1.40 1.38 1.34 1.33 1.22 1.19 1.18  1.43 1.63 1.45 1.75 1.79 1.25 1.61 1.62  1.77 1.91 1.93 1.92 1.89 1.87 1.84 1.85  1.58 1.50 1.48 1.46 1.46 1.41 1.38 1.54 1.51 1.49  1.68 2.02 2.48 2.43 1.61 2.11 2.11 1.66 2.24 2.26  2.57 2.93 2.79 2.72 2.56 2.47 2.42 2.69 2.63 2.67  1.20 1.15 1.14  1.40 1.76 1.76  2.11 2.10 2.13  149 APPENDIX 5B  (continued)  Hole Number  Depth (ft.)  90  45  NX-13  70  0  90  45  NX-13  80  0  90  45  NX-14  60  0  90  45  NX-14  90  E  Orientation (Degrees)  0  r  0.78 0.76 0.75 0.91 0.89 0.88  0.89 1.25 1.30 1.12 1.48 1.52  1.35 1.38 1.23 1.51 1.51 1.50  1.20 1.17 1.15 1.46 1.40 1.38 1.17 1.15 1.14 1.14  1.35 1.97 2.04 1.97 2.42 2.56 1.46 1.68 2.30 2.38  2.19 2.19 2.26 2.56 2.38 2.36 1.87 2.50 2.58 2.58  1.17 1.15 1.15 2.56 2.56 2.52 2.18 2.15 2.12  1.49 1.80 1.83 2.53 3.16 3.34 2.11 2.53 2.48  1.59 1.66 1.66 3.31 3.70 3.49 3.04 3.04 2.98  0.70 0.68 0.68 1.76 1.73 1.72 1.34 1.31 1.30  1.13 2.62 2.95 1.75 2.22 2.26 1.62 2.19 2.33  2.58 2.72 3.TO 2.56 2.60 2.60 2.33 2.44 2.42  1.36 1.31 1.28 1.30  1.55 1.85 1.85 1.77  2.17 2.17 1.57 2.21  APPENDIX 5B  (continued)  Hole Number  Depth (ft.)  Orientation (Degrees)  90  45  NX-15  48  0 90 45  E  s  E w  E  r  1.78 1.73 1.70 1.40 1.37 2.85  1.85 2.22 2.22 1.73 1.97 2.03  2.62 2.60 2.58 2.20 2.26 3.31  1.65 1.55 1.17 1.14 1.26 1.21  2.00 2.66 1.50 2.15 1.53 2.02  2.99 2.86 2.41 2.22 2.31 2.24  151 APPENDIX 5C GOODMAN J A C K RESULTS (Modulus  Hole Number NX-5  Depth (ft.) 45  0  45  30  0  90  45  NX-10  30  0  90  45  NX-15  60  i n p s i x 10  )  Orientation (Degrees)  90  NX-7  values  PEGMATITE  0 90 45  E r 1.45 1.43 1.40 1.76 1.72 1.65 1.57 1.56 1.56  1.61 1.83 1.79 1.88 2.09 2.09 1.76 2.09 2.09  2.00 2.01 2.18 2.32 2.28 2.29 2.43 2.50 2.48  0.84 0.82 0.85 1.53 1.46 1.43 1.04 1.02 1.03  0.90 1.32 1.50 1.48 2.40 2.48 1.03 1.71 1.89  1.52 1.52 1.70 3.02 2.92 2.95 2.12 2.28 2.33  1.30 1.23 1.22 1.60 1.55 1.52 1.89 1.85 1.86  1.37 1.49 1.76 1.53 1.97 1.97 1.73 2.16 2.22  2.20 2.05 2.10 2.56 2.45 2.48 2.53 2.57 2.60  1.56 1.50 1.45 1.39 1.42 1.37  1.71 2.80 1.97 2.41 1.81 2.41  3.29 3.13 2.55 2.44 2.48 2.39  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0078788/manifest

Comment

Related Items