UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Prediction of acid rock drainage Red mountain project Frostad, Scott 1999

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1999-0192.pdf [ 25.38MB ]
Metadata
JSON: 831-1.0078651.json
JSON-LD: 831-1.0078651-ld.json
RDF/XML (Pretty): 831-1.0078651-rdf.xml
RDF/JSON: 831-1.0078651-rdf.json
Turtle: 831-1.0078651-turtle.txt
N-Triples: 831-1.0078651-rdf-ntriples.txt
Original Record: 831-1.0078651-source.json
Full Text
831-1.0078651-fulltext.txt
Citation
831-1.0078651.ris

Full Text

PREDICTION OF ACID ROCK DRAINAGE RED MOUNTAIN PROJECT by S C O T T F R O S T A D B . S c , University of Western Ontario, 1984 A THESIS S U B M I T T E D I N P A R T I A L F U L F I L L M E N T OF T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF M A S T E R S OF A P P L I E D S C I E N C E in T H E F A C U L T Y OF G R A D U A T E S T U D I E S (Department of Mining and Mineral Process Engineering) We accept this thesis as conforming to the required standard T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A Apri l , 1999 © Scott Frostad, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study, i further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) 11 ABSTRACT Mine waste planning and management is essential to minimize the environmental impacts resulting from the deposition of mine and milling wastes, particularly with respect to acid rock drainage ( A R D ) . Kinetic tests such as humidity cells are widely used in an attempt to predict the rates of acid generation and neutralization, water quality and time to onset of acidity. Results from a kinetic prediction program to assist in the development of a waste management plan for the Red Mountain project in North-western British Columbia have been used to evaluate the effects of testing under a variety of controlled conditions and to make long term predictions. Results of laboratory tests conducted on samples with masses of 1 to 50 kg were compared to large scale (20-tonne) test results conducted at the mine site. Non-aerated cells provided rates of weathering that were similar to the standard humidity cells. The advantages of the non-aerated test protocol over the standard humidity cell include: • improved repeatability of results, • less expensive apparatus, • easier to operate, and • require less time to obtain rates of weathering. Increasing the volume of leach water did not influence the sulfate release rate, yet it increased the rate of neutralization potential (NP) depletion. The results indicate that water addition to kinetic tests must be sufficient to remove weathering products but must not be excessive that may artificially inflate N P depletion. The cumulative amount of M g and Ca released at the point of acidity was greater for column Ill tests than for humidity cells, which was attributed to the test protocol. Therefore, predicting time to acidity from estimates of N P depletion are questionable. Based on the testwork, time to acidity seems to relate better to measurements of cumulative sulfate release (acid production). Laboratory oxidation rates, corrected for surface area and temperature, could not be scaled up to predict the field results. Therefore extensive laboratory kinetic test programs that attempt to account for variations in waste pile rock types are considered unwarranted until the models used to scale-up laboratory data are validated. The large scale field tests produced results that were difficult to interpret and inconsistent when compared to the laboratory tests. In addition, field tests are prohibitively expensive and time consuming. Therefore, before conducting field tests, careful consideration of the expected results and test protocols is required. ACKNOWLEDGMENTS iv I would like to thank my advisors, Dr. R. W . Lawrence and Dr. B . Kle in , and my committee members, M r . W . W . White III and Dr. G . Poling for their informative discussions and valuable critique. Financial support from the mining industry was considerable and I would like to thank Lac Minerals Ltd. (Mr. D . Cawood, M r . G . MacVeigh), American Barrick (Mr. J. McDonough) and Royal Oak (Mr. R. Al lan , M r . L . Connell). Financing was also supplied by a Natural Science and Engineering Research Council (NSERC) Grant. I gratefully acknowledge the help provided by Dr. Mory Ghomshi and Harold Bent who both contributed important ideas. I would like to thank Frank Armitage, Janet Wong of Rescan Environmental Services, and staff of Lac Minerals and Royal Oak for contributing time towards the field portion of this thesis. I would also like to thank Ragnar Udd and Mohammad Dadmanesh for their contributions towards the laboratory testwork. The support of Frank Schmidiger, Pius Lo , Larry Wong and Sally Finora, staff of the Department of Mining and Mineral Process Engineering, was tremendous. Discussions with fellow students, namely Paul Dagenais, Elizabeth Sherlock and Valerie Bertrand, helped make getting organized a little easier. I would like to thank Mike Sieb for the considerable time he spent assisting with the final edits. Finally, I want to acknowledge my wife, Katie Langdon, who gave me endless encouragement and provided me with valuable time by attending to our newborn son, Ethan. V T A B L E OF C O N T E N T S A B S T R A C T i i A C K N O W L E D G M E N T S iv T A B L E OF C O N T E N T S v LIST OF T A B L E S v i i i LIST OF F I G U R E S ix D E D I C A T I O N xi i 1.0 I N T R O D U C T I O N 1 1.1 O B J E C T I V E S 4 2.0 R E V I E W OF A C I D R O C K D R A I N A G E 5 2.1 A C I D G E N E R A T I O N 5 2.2 T E S T S F O R P R E D I C T I N G A C I D R O C K D R A I N A G E 9 2.2.1 Static Tests 9 2.2.2 Kinetic Tests 11 2.3 C O M P A R I S O N OF L A R G E S C A L E / F I E L D A N D L A B O R A T O R Y D A T A 14 2.4 P R E D I C T I O N 17 3.0 R E D M O U N T A I N DEPOSIT 21 3.1 L O C A T I O N A N D P H Y S I O G R A P H Y 21 3.2 G E O L O G Y 21 3.3 C L I M A T E 24 4.0 E X P E R I M E N T A L M E T H O D S A N D P R O C E D U R E S 25 4.1 W A S T E R O C K C H A R A C T E R I Z A T I O N 25 4.1.1 Sample Selection 25 4.1.2 Crushing, Screening and Splitting 27 4.1.3 Specific Gravity Determination 28 4.1.4 Grain Size Distribution 28 4.1.5 V o i d Ratio 31 4.1.6 Specific Surface Area 33 4.1.7 Mass and Total Surface Area Estimates of Field Cel l Samples 35 4.1.8 Mineralogy 35 4.1.9 Acid-Base Accounting 37 vi 4.2 K I N E T I C T E S T T Y P E A N D O P E R A T I O N 39 4.2.1 Standard Cells 40 4.2.2 Tall Cells '. 43 4.2.3 Shaken Cells 43 4.2.4 Non-aerated Cel l 45 4.2.5 Simulated Precipitation Cells 45 4.2.6 50-kg Cells 46 4.2.7 N P Columns 48 4.2.8 20-tonne (Field) Cells 50 4.3 L E A C H A T E A N A L Y T I C A L P R O C E D U R E S 53 4.4 D A T A M A N I P U L A T I O N 55 5.0 R E S U L T S A N D DISCUSSION 59 5.1 S T A N D A R D , T A L L A N D S H A K E N C E L L S 59 5.1.1 Results 59 5.1.2 Discussion 68 5.1.2.1 Tall vs. Standard Cells 70 5.1.2.2 Trickle-leach vs. Shaken Cells 71 5.2 N O N - A E R A T E D C E L L 73 5.2.1 Results 73 5.2.2 Discussion 74 5.3 S I M U L A T E D P R E C I P I T A T I O N C E L L S 74 5.3.1 Results 74 5.3.2 Discussion 78 5.4 5 0 - K G C E L L S 81 5.4.1 Results 81 5.4.2 Discussion 87 5.5 N P C O L U M N S 89 5.5.1 Results 89 5.5.2 Discussion 93 5.6 2 0 - T O N N E (FIELD) C E L L S 94 5.6.1 Results 94 5.6.1.1 Water Storage and Discharge 97 5.6.1.2 Estimate of Sulfate Production Rates 98 5.6.1.1 Predicted Time to Acidity for Field Cells 102 5.6.2 Discussion 103 6.0 C O N C L U S I O N S A N D R E C O M M E N D A T I O N S 107 vii 7.0 R E F E R E N C E S 112 Appendix 1 Specific Surface Area Calculations 120 Appendix 2 Sample Analyses 126 Appendix 3 Modified A B A Procedure 132 Appendix 4 Graphic Comparisons - Standard, Non-aerated, Tall, and Shaken Cells 134 Appendix 5 Graphic Comparisons - N P Columns to Standard, Tall, and Shaken Cells 151 Appendix 6 Graphic Comparisons - 20-tonne (Field) Cells 157 Appendix 7 Tabulated Results - Standard Cells 165 Appendix 8 Tabulated Results - Tall Cells 182 Appendix 9 Tabulated Results - Shaken Cells 193 Appendix 10 Tabulated Results - Non-Aerated Cell 204 Appendix 11 Tabulated Results - Simulated Precipitation Cells 207 Appendix 12 Tabulated Results - 50-kg Cells 220 Appendix 13 Tabulated Results - N P Columns 225 Appendix 14 Daily Averages of Water Flow, pH, and Conductivity -20-tonne (Field) Cells 236 Appendix 15 Daily Averages of External Ai r Temperatures and Internal Temperatures -20-tonne (Field) Cells 241 Appendix 16 Water Chemistry - 20-tonne (Field) Cells 246 viii LIST OF T A B L E S Table 1 Maximum, minimum and mean measurements of S.G. for samples HC-1 and H C - 2 28 Table 2 Maximum, minimum and mean measurements of pore volume, and void ratios for the field cell samples 33 Table 3 Estimates of specific surface area 34 Table 4 Estimates of mass and total surface area for field cell samples 35 Table 5 Acid base accounting ( A B A ) results 38 Table 6 Summary of kinetic test program 40 Table 7 Summary of standard, tall and shaken cell results for feldspar porphyry samples 61 Table 8 Summary of standard, tall and shaken cell results for sedimentary samples 67 Table 9 Cumulative sulfate release at five weeks for samples HC-1 and H C - 2 86 Table 10 % sulfide and % N P depleted at the point of acidity for N P columns 91 Table 11 Sulfate production rates from laboratory (average of standard cell rates) corrected for field temperatures and from field for samples HC-1 and H C - 2 102 Table 12 Kinetic test results and predictions of time to acidity 106 ix LIST OF FIGURES Figure 1: Location map of Red Mountain deposit, Northwestern British Columbia 22 Figure 2: Location map of the five waste rock samples 26 Figure 3: Homogenizing 20-tonne (field) cell material for splitting prior to sieve analysis 30 Figure 4: Sieve analysis of 20-tonne (field) cell material 30 Figure 5: Grain size distribution curves for two samples chosen for testing at various scales, HC-1 (porphyry intrusive) and H C - 2 (sediment) 32 Figure 6: Grain size distribution curves for all five samples crushed to 100% passing V 4 inch ..: 32 Figure 7: Standard humidity cells - frontal view 41 Figure 8: Standard and tall cells - side view 41 Figure 9: Tall cells - frontal view 44 Figure 10: 50-kg cells (photograph) 47 Figure 11: N P columns (photograph) 49 Figure 12: 20-tonne (field) cells (photograph) 51 Figure 13: Floor of 20-tonne (field) cell showing drainage control 51 Figure 14: Water pipe manifold, water collection vessel, and tipping bucket for 20-tonne (field) cells 52 Figure 15: p H and conductivity probes attached to water collection vessel lid 52 Figure 16: Sulfate production over time from standard, tall and shaken cells containing sample A B A - 3 (feldspar porphyry with 5% pyrite) 62 Figure 17: Sulfate production over time from standard, non-aerated, tall and shaken cells containing sample HC-1 (feldspar porphyry with 5% pyrite, 3% pyrrhotite) 63 Figure 18: Sulfate production over time from standard, tall and shaken cells containing sample A B A - 2 (feldspar porphyry with 7% pyrrhotite) 64 Figure 19: Sulfate production rates, carbonate molar ratios and average gravimetric water content from standard, non-aerated, tall and shaken cells containing feldspar porphyry samples A B A - 3 , HC-1 and A B A - 2 65 Figure 20: Sulfate release over time from simulated precipitation cells containing sample HC-1 76 Figure 21: Carbonate molar ratio over time from simulated precipitation cells containing sample HC-1 77 Figure 22: pH, conductivity, sulfate production, carbonate molar ratio and recovered leachate volume over time from 50-kg cell containing feldspar porphyry sample HC-1 .' 83 Figure 23: pH, conductivity, sulfate production, carbonate molar ratio and recovered leachate volume over time from 50-kg cell containing sedimentary sample H C - 2 84 Figure 24: N P columns showing oxidation fronts of the samples H C - 1 , H C - 2 , A B A - 1 , A B A - 2 , A B A - 3 from left to right 90 Figure 25: % sulfide depleted, % N P depleted and time to acidity from humidity cells and N P columns for sedimentary samples H C - 2 and A B A - 1 92 Figure 26: pH, conductivity, carbonate molar ratio and outflow from June 13 to September 19, 1996 for the two 20 tonne (field) cells containing samples HC-1 and H C - 2 95 xi Figure 27: Weekly water inflow, outflow and degree of saturation from August 7 to October 31, 1995 and from June 13 to September 19, 1996 for the 20-tonne (field) cells 99 Figure 28: V o i d ratio versus % saturation at field capacity moisture contents (after Dawson and Morgenstern, 1995) with point locations of the 20-tonne (field) cell samples HC-1 and H C - 2 100 Figure 29: Sulfate versus conductivity for 1995 and 1996 water samples collected from 20-tonne (field) cells containing samples HC-1 and H C - 2 100 Xll D E D I C A T I O N This thesis is dedicated to the memory of Mr . David Cawood, Red Mountain project manager for Lac Minerals Ltd. It was due to the initial support of Mr . Cawood that this thesis became possible. Dave was an inspiration and joy to those of us who worked with him. He is missed. 1 1.0 I N T R O D U C T I O N A c i d rock drainage ( A R D ) is an immense environmental liability to the mining industry. A R D results when sulfide minerals (principally pyrite) within mine wastes are oxidized upon exposure to air and water. It typically has a high concentration of dissolved metals and therefore the potential to impact local aquatic life adversely and creates a hazard to public health. The magnitude of the problem in Canada is reflected by the mass estimate of acid-generating wastes being over 2.5 bil l ion tonnes (Feasby and Jones, 1994). The long-term maintenance costs of these materials to ensure protection of the environment is estimated to be between $2 and $5 billion (Geocon, 1995). The primary reason for such a buildup of potentially harmful wastes is due to A R D being a time dependent process that may not occur until years or decades after the mine waste is produced. This acid generating process has been shown through research and field observations to be very difficult to stop once started (Feasby et al., 1997). For this reason, the preferable method of controlling A R D is to prevent it from occurring. Disposing of waste rock underwater before sulfide minerals begin to oxidize is regarded as the best A R D prevention technology and, as a consequence, all new mines in Canada are required to use engineered flooded impoundments where possible (Feasby et al., 1997). Tests have been developed that attempt to accurately determine the acid producing potential of mine wastes. The simplest of these is the acid base accounting ( A B A ) static test and its modifications (Sobek et al., 1978, Lawrence and Wang, 1997) that quantifies the acid-producing and acid-neutralizing minerals contained in a sample of waste. In British Columbia, a rock is presently judged as having no A R D concern i f its neutralizing capability is four times its acid potential (Price et a l , 1997). This safety factor may appear extreme but it exemplifies the low level of confidence placed on A R D prediction techniques. This static test has poor predictive qualities because kinetic processes control the A R D phenomenon. For better predictions, therefore, the reaction rates of the minerals involved must be considered. Even i f an A B A test shows a sample as having more neutralizing potential than acid potential, A R D can occur i f the rate of acid generation is faster than the rate at which it is neutralized. Kinetic tests are conducted for samples deemed as having an uncertain potential to produce A R D or to determine metal leaching characteristics. The tests can provide a measure of the relative rates of acid generation and neutralization. A standard kinetic test is the humidity cell that subjects a sample to artificial weathering. Monitoring the quality of leachate provides mineral reaction rates that are then used to predict (1) waste pile drainage chemistry, (2) i f A R D wi l l occur, and i f so (3) when A R D wi l l occur. Confidence in the A R D predictions is critical to enable mining wastes to be handled in a cost efficient and environmentally acceptable manner. Decisions must be made as to which portion of the waste may be deposited safely and which portion wi l l need to be subjected to oxidation control such as being stored in an expensive engineered impoundment. For some mine waste management plans, predictions of how long a rock pile can be exposed to site conditions before being disposed of underwater may be critical. Unless regulators have confidence in the A R D predictions, they must include a high factor of safety to ensure that land and watercourses are protected. Unfortunately, results can differ for similar samples due to the various kinetic test methodologies used at different laboratories. Predicting the long term behaviour of a waste pile exposed to site-specific conditions requires scaling up of the test results using numerous site-3 specific parameters that must be measured and/or estimated. A n effective kinetic test methodology returns repeatable and precise results that can be interpreted with consistency. Obtaining repeatable results from a kinetic test requires a firm control of the operating conditions, while precision generally improves with test duration. A solid interpretation of the test results needs a thorough knowledge of the processes that occur as a result of the imposed conditions and sample mineralogy. Scaling up the results of kinetic testwork to make predictions of the long term weathering reactions of a waste dump requires the differences between a laboratory kinetic test and an actual waste dump to be considered. The study reported in this thesis involved an extensive kinetic prediction program using samples from the Red Mountain mine development in British Columbia to make long term predictions of waste rock weathering and to evaluate the effects of testing under a variety of controlled conditions. Tests were conducted on samples weighing 1 to 3 kg and under different protocols to evaluate the dependence of the data and the resulting interpretations on the procedures. Kinetic testing was conducted on samples of different sizes using 50 kg samples in the laboratory and 20 tonne samples at the mine site to allow calculation of rate coefficients for scale-up. To assist in scaling up laboratory rates to actual field conditions, the influence of simulated precipitation events of various frequencies, duration and intensity were examined. Tests to determine the effective neutralization potential were also carried out with the purpose of refining predictions of when a waste pile wi l l become an acid generator. 1.1 Objectives The objectives of this research were to: • Develop specific kinetic test protocols that can be used for A R D prediction evaluations for other mine developments in Canada and elsewhere. • Carry out kinetic weathering tests on mine waste rock under various conditions and at different scales within the laboratory and the field to provide more confidence in scaling up laboratory data to predict the weathering characteristics of a waste dump. • Provide the future mine operators of the proposed Red Mountain Mine in British Columbia with more precise prediction data to assist in permit application and to provide more cost effective and confident development of the waste management plan for environmental protection. 5 2.0 R E V I E W OF A C I D R O C K D R A I N A G E 2.1 Acid Generation Mine wastes typically contain a high proportion of sulfide minerals. These minerals are formed at high temperatures and pressure within the earth and become unstable when exposed at the earth's surface. The sulfides are oxidized by a series of chemical and biological reactions with oxygen and ferric iron (Fe 3 + ) being the most important oxidants. The reaction for pyrite oxidation by dissolved oxygen proceeds as follows (Stumm and Morgan, 1981; Ehrlich, 1981): Although reaction (1) occurs abiotically, catalysis of the oxidation by sulfide oxidizing bacteria can accelerate the reaction rate by several orders of magnitude (Stumm and Morgan, 1981; Kleinmann et a l , 1981; McKibben and Barnes, 1986; Nicholson et a l , 1988). This biotic increase of the oxidation rate has been shown to primarily occur when the pH is below 4 (Arkesteyn, 1980). A second reaction associated with the formation of A R D is the oxidation of ferrous iron to the ferric form (Stumm and Morgan, 1981; Ehrlich, 1981) : FeS 2 + H 2 0 + 7/2 0 2 Fe 2 + 2 S 0 4 2 + 2 H + (1) Fe 2 + + 1/4 0 2 + H + Fe 3 + + 1/2H 20 (2) The oxidation of pyrite by ferric iron is expressed as (Stumm and Morgan, 1981): 6 FeS 2 + 14Fe 3 + + 8 H 2 0 -> 15Fe 2 + + 2 S 0 4 2 + 16H (3) Studies by Moses et al. (1987) and Moses and Herman (1991) found ferric iron to be the preferred oxidant of pyrite (reaction 3) in the neutral p H range, and that the major role of oxygen is to oxidize ferrous iron (reaction 2), despite the low solubility of ferric iron in the higher range of p H . At low p H ranges, Moses et al. (1987) reported ferric iron oxidation rates at least 2 orders of magnitude higher than oxidation by dissolved oxygen. The production of ferrous iron by the reactions (1) and (3) provides further substrate for bacterial oxidation and thereby creates more ferric iron for further sulfide oxidation. Ferric iron may also undergo hydrolysis and precipitate as ferric hydroxide which generates three moles of acidity for each mole of iron. When the p H is above 4, the common reaction is: Other ferric iron minerals can precipitate, such as goethite (or - FeOOH), or schwertmannite (Feg0g(0H)6S04) (Bigham et a l , 1990), releasing varying amounts of H + . The orange-brown staining of iron oxides can usually be observed visually. Pyrrhotite (Fe(i_x)S2) is another common iron sulfide mineral and is abundant within the Red Mountain waste rock. The reaction for pyrrhotite oxidation by dissolved oxygen can be written as: Fe 3 + + 3 H 2 0 -> Fe(OH) 3 + 3 H + (4) F e ( l x ) S + (2 - x/2)0 2 + xH 2 0 -> (l -x)Fe 2 + + S 0 4 2 + 2xH + (5) 7 and the oxidation of pyrrhotite by ferric iron as: Fe (,. x )S + (8 - 2x)Fe 3 + + 4H 20 -> (9-3x)Fe2+ + S 0 4 2 + 8 H + (6) A s with pyrite, the oxidation of pyrrhotite by ferric iron is faster than oxidation by oxygen (Janzen et al., 1997). Pyrrhotite has been shown to oxidize at a faster rate than pyrite (Flann and Lucaszewski, 1970; Kakovsky and Kosikov, 1975; Nicholson and Scharer, 1994; Janzen et al., 1997). A recent study by Janzen et al. (1997) found that the specific surface area of pyrrhotite is as much as ten times higher than pyrite. They found fractures along cleavage planes and surface roughness to cause the specific surface area of pyrrhotite to be 6 to 40 times greater than the theoretical specific surface area as calculated from a spherical geometry. Their results also demonstrated that as the particle size of pyrrhotite decreases, the rate of oxidation (corrected for measured surface area) increases. Crushing of pyrrhotite crystals was considered to increase the defect density, and thus the surface area available for oxidation. Furthermore, different size reduction methods produced various specific surface areas reflecting different breakage mechanisms imposed on the pyrrhotite sample used. Other explanations for the higher oxidation rate of pyrrhotite than pyrite include the non-oxidative dissolution of pyrrhotite, which appears to be a significant contributor of ferrous iron release in weathering (Janzen et al., 1997). The ferrous iron would be available for oxidation to ferric iron (reaction 2) thereby promoting pyrrhotite oxidation (reaction 6). N o reason was given by Janzen et al. (1997) as to why the non-oxidative dissolution rates differed for the twelve samples they evaluated. It has also been suggested that the deficiency of iron in the crystal 8 structure of pyrrhotite may create a lower stability of the crystal lattice than that of pyrite (Vaughan and Craig, 1978). It should be noted that pyrrhotite generates less acid per mole than pyrite due to its lower content of iron. However, with oxidation rates that are 20 to 100 times faster, pyrrhotite can produce greater quantities of acid in a given period of time. Neutralization of acidity is primarily from calcium carbonate and magnesium carbonate minerals when present in the waste rocks (Kleinmann et al, 1981; Lapakko, 1994a). Examples of these minerals include calcite (CaCC>3), magnesite ( M g C 0 3 ) and dolomite (CaMg(CC>3)2). The reactions for calcite and magnesite when the p H is above approximately 6.3 are: CaC0 3 + H + -> H C 0 3 +Ca 2 + (7) MgC0 3 + H + -> H C O 3 +Mg 2 + (8) and when the p H is below approximately 6.3: CaC0 3 + 2H + -> H 2 C 0 3 + Ca 2 (9) MgC0 3 + H + -> H 2 C 0 3 + Mg 2+ (10) Calcite is the most important neutralizing mineral as it has been shown to be the most reactive carbonate, dissolving at a faster rate than magnesite and dolomite (Rauch and White, 1977; Busenberg and Plummer, 1986). The dissolution rate of carbonate minerals is primarily determined by p H with the rate of dissolution increasing with a decrease in pH. Other important rate determining factors include the partial pressure of carbon dioxide and equilibrium 9 conditions. If the dissolution of carbonates is occurring in water that is in contact with a gas phase, then carbon dioxide is able to enter the water to maintain equilibrium. The solubility of carbonates within water that is in contact with a gas phase is greater than carbonates within water that does not have gas exchange (Stumm and Morgan, 1981). Silicate minerals may also provide a source of neutralization (Busenberg and Clemency, 1976; Sherlock et a l , 1995; Kwong and Ferguson, 1997) but they are far less effective neutralizers than carbonates due to their slow dissolution rates. The effectiveness of silicate minerals as neutralizers of acidity is optimized by: • a slow rate of acid production, • a high percentage of the mineralogy is comprised of silicate minerals, and • the exposed surface area of the silicate minerals is large (Morin and Hutt, 1994). A recent study by Kwong and Ferguson (1997) demonstrated that mafic silicates like biotite, pyroxene, chlorite, epidote and amphibole are more efficient acid-neutralizing minerals than feldspar, but they are typically less abundant. 2.2 Tests for Predicting Acid Rock Drainage The tests for predicting A R D are referred to as either static or kinetic. 2.2.1 Static Tests A static test is an initial test used to determine the acid producing potential and neutralization 10 potential of a sample. A c i d Base Accounting ( A B A ) is a static test used to determine the acid potential (AP) and the neutralizing potential (NP) of a sample and the difference between the two values provides an indication of the net neutralizing potential (Net NP) which can be negative or positive. The acid potential (AP) of a sample is the theoretical quantity of acid that would be produced i f the total sulfur content or, in some test procedures, the sulfide-sulfur content were converted to sulfuric acid. The determination of total sulfur and sulfur species are simple procedures with repeatable results. The neutralization potential (NP) is a more difficult parameter to measure due to the variety and reactivity of the minerals involved. The N P determination test of Sobek et al. (1978), used widely in the mining industry, involves boiling a finely ground sample in an excess of hydrochloric acid then back-titrating the residual acid with sodium hydroxide to p H 7.0. This procedure has been shown by Lawrence and Wang (1996) to overestimate N P in some cases because the highly acidic conditions of the test allows slow-reacting silicate minerals, which would not contribute alkalinity under field conditions, to contribute to the apparent N P . Lawrence (1990) developed the Modified A c i d Base Accounting Procedure to address this problem of overestimation. The sample digestion stage of the procedure, more recently modified by Lawrence and Wang (1996), is performed at ambient temperatures for a longer time period than the Sobek procedure. In addition, the amount of acid added is controlled so that the p H at the end of the digestion stage remains within a specific range (2.0 to 2.5). Another means of determining N P is by measuring the inorganic carbon content of a sample, thus obtaining a measure of the quantity of carbonate minerals. However, this test has the potential to overestimate N P by including iron and manganese carbonates that provide no net neutralization of acid (Norecol, 1991; Lapakko, 1994a; L i , 1997). 11 A recent study by White et al. (1998) examined the effects of protocol variables and sample mineralogy on static test NP. Static tests showed that NP variability for a given sample was strongly influenced by differences in sample particle size, amount of acid addition, and back-titration endpoint, influenced in one test by digestion duration, and virtually unaffected by acid type and temperature of digestion. It was also shown that the extent to which the protocol variables influenced the NP values was a function of sample mineralogy. 2.2.2 Kinetic Tests Kinetic tests, in which a sample is subjected to periodic leaching cycles to simulate weathering, are carried out to determine the acid generation and metal leaching characteristics of the sample. Such tests are carried out to confirm the acid generating potential of a sample as predicted in static testing and/or to predict water quality of resultant drainage. A kinetic test subjects a sample to weathering to provide predictions of relative rates of sulfide oxidation and neutralizing mineral dissolution and water quality. These rates can be used to determine if a sample will produce acidic drainage more accurately then an A B A test. The rates may also be used to predict when a waste pile will begin producing acidic drainage. This estimation could be critical for mining operations where waste rock is exposed to field conditions before control measures, such as underwater disposal, can be applied. An accelerated-weathering humidity cell apparatus and procedure was developed by Caruccio (1968). The humidity cell has since been modified and the protocol changed by researchers, industry and government. Typically, the test involves placing a crushed sample into a vessel, subjecting it to cycles of dry and humidified air, followed by weekly rinses and collection of weathering products. The resultant rinse water volume and chemistry is then related to the rock 12 weight or surface area to determine rates of sulfate production (sulfide oxidation), neutralization and metal release. A cell procedure, as modified by Lawrence (1990), still uses the 7-day cycle of 3 days of dry air followed by 3 days of humid air but the air is no longer supplied to the upper surface of the sample. Instead, air enters the bottom of a cylindrical cell, passes through a sample (typically 1 kg and crushed to minus 6 mm (-% inch)), and exits through the top. Leaching of the weathering products is conducted on the seventh day with distilled, deionized water and involves trickling water through the sample or flooding the sample then draining. Obtaining repeatable results from laboratory kinetic tests can be difficult due to fluctuations in the operating conditions. The parameters that may vary during a test are airflow, air humidity, temperature and the percentage of water removed during aeration. Humidity cell tests conducted by the U.S . Bureau of Mines ( U S B M ) showed that the precision of humidity cell test data improves with a consistent airflow (Pool and Balderrama, 1994). They also found that the percent of pore water removed and amount of leachate recovered can affect the rate of acid production. The U S B M made several improvements to the design of Lawrence (1990) to ensure more consistent airflow and humidity to the cells and incorporated these into a U.S . A S T M standard (White and Sorini, 1997). One addition is the use of vessels of water through which air exiting the cells must bubble. The bubbling water allows for visual determination of the airflow rate through individual cells which may then be adjusted by screw clamps or valves. Another improvement is the use of a desiccant column to ensure dry air during the dry-air cycle. Column weathering tests and soxhlet reactors are other examples of laboratory kinetic tests. Bradham and Caruccio (1990) carried out a comparative study of these two procedures against the standard humidity cell test. The column tests, much larger than the humidity cells, were also 13 leached on a weekly basis but not supplied with pumped air. The soxhlet reactor method requires a pulverized sample to be kept in a drying oven at 105° C and is leached on a weekly basis in a soxhlet extractor for two hours. The samples (tailings) retained a high volume of water in the column tests due to the fine particle fraction used. This environment of constant saturation was found to favour the dissolution of carbonates and inhibit pyrite oxidation. The humidity cell tests accelerated the rate of pyrite oxidation relative to carbonate dissolution while the soxhlet extractors accelerated the dissolution of calcium carbonate relative to pyrite oxidation. Whether a specific sample would release acidic or alkaline leachate was concluded to be dependent upon the balance of the acidic water and alkaline water produced. The amount of acidic and alkaline water produced was, in turn, considered to be a function of the amount of acid and alkaline producing materials, and of the rates of both reactions. The reaction rates were found dependent upon the leaching method used. Large scale laboratory and field kinetic tests have been performed by a variety of researchers in an attempt to relate small scale results to actual field processes. A large scale laboratory kinetic test is the S R K modified humidity cell (Brodie et a l , 1991). It is constructed with 30-cm diameter P V C pipe and holds 50 to 65 kg of material with a particle size of 100% finer than 10 cm. The weekly water is applied with a trickle leach over 5 days with 50% added on the last day to simulate a rainfall flush. Limited volumes of water are used to approximate field estimated rates and conducted specifically so that not all the oxidation product is removed. Brodie et al. (1991) contend that the standard humidity cell flush, intended to completely remove all oxidation products, significantly alters the chemical environment of the test specimen. Field scale cells were constructed by Rescan (1992) at the Kutcho Creek mine site near Dease 14 Lake, B C . Three wooden cribs, having slatted walls lined with geotextile, were each filled with 20 tonnes of waste rock. The crib floors were sloped and lined with high-density polyethylene to direct water into collection buckets. Pile temperatures and site rainfall were recorded with a datalogger and the collected water was periodically sampled. The total infiltration of these pads was roughly, on a mass basis, a factor of 100 less than the flushing rate used in the laboratory humidity cell tests. A n ongoing study involving five field test piles, ranging from 820 to 1300 tonnes, was initiated by the Minnesota Department of Natural Resources ( M N D N R ) , Division of Minerals in 1978 (Eger and Lapakko, 1981, 1985; Lapakko, 1994b). The piles were constructed on a liner sloped towards a perforated plastic pipe fitted with a cumulative flow meter and a flow-weighted composite sampler. For each pump discharge, a fixed volume of sample was placed into a compositing container and analyzed weekly through 1990 and biweekly afterwards. It was determined that the volume of rinse water per unit mass of rock was roughly three orders of magnitude lower than the laboratory experiments. 2.3 Comparison of Large Scale/Field and Laboratory Data To address the difficulty of scaling up laboratory results, the S R K modified humidity cells and the two field tests previously described were complimented with standard humidity cell testwork. The S R K cell, when charged with a sample having a high A R D potential (Net N P of -499), showed a change in pH from 7.4 to 3.6 during the initial twelve weeks of testing, while the standard humidity cell changed from pH 7.3 to 6.0 during the same period of testing (Brodie et al., 1991). Lapakko (1994b) noted that of the five waste piles studied, the two piles with the highest sulfur content had lower pH drainage in the field (by 1 to 1.5 units) than returned from 15 the laboratory. Rescan (1992) considered one of their Kutcho field tests (blended sample with a ti l l cap) to be more reactive then expected having a p H drop to between 3 and 4 during the second year. The laboratory humidity cell having the same blended sample maintained a neutral p H but was only conducted for a 20 week period. The following explanations were offered: • the low flushing rate of large scale tests creates a high production of acid water due to a large quantity of unflushed acid products, enough to overwhelm the neutralization potential (Rescan, 1992; Lapakko, 1994b), and • a high flushing rate in a humidity cell creates a high production of alkaline water since the minus %" material used has a high exposure of neutralizing minerals (Brodie et a l , 1991). These explanations, that leach volume influences the balance of acid and alkaline water production and thus the drainage quality, are supported by the previously discussed findings of Bradham and Caruccio (1990). The proportion of exposed (available) sulfides, on a surface area basis, may be higher within waste rock dumps than laboratory samples. Studies by Lapakko (1994b) and Price and Kwong (1997) have shown an increase of sulfide content with decreasing particle size. Price and Kwong (1997) considered the differences in sulfide content between particle size fractions to result from variation in the strength, cohesion and distribution of the primary minerals in the primary rock. They suggest that i f rock particles were preferentially breaking along sulfidic seams as the particle size of a sample is reduced, then fine sulfide particles would accumulate. Lapakko (1994b) suggested that an elevated sulfide content within the fine fraction might produce different results for a sample within the field than would be measured within the laboratory. He contends that since the fine fraction of the field rock is responsible for most of the specific surface area, there would be a higher proportion of sulfide minerals exposed in the field than in 16 the laboratory when compared on a surface area basis. The surface area of exposed sulfide minerals has been reported to be directly proportional to the oxidation rate (Sato, 1960a, 1960b; Nelson, 1978; Lapakko, 1980). A study that successfully used unit-surface-area to correlate laboratory humidity cell sulfate production rates with those obtained from an exposed minewall was carried out by Mor in and Hurt (1995). The field procedure involved isolating a specific area of minewall with silicon caulking then periodically rinsing these areas and analyzing the water. They reported a sulfate production rate within 4% of the average laboratory sulfate rate obtained from humidity cells and columns. The influence of variable precipitation events on leachate chemistry has been noted in field tests (Rescan, 1992; Bethune and Lockington, 1997) and in the laboratory (Day et al., 1997; Soregaroli and Lawrence, 1998). Chemical trends of drainage from the Rescan (1992) field scale cells were reported as being most affected by the rate of flushing from precipitation events. They concluded that the amount of sulfate released was proportional to water flow and the quantity of precipitated sulfate minerals that were easily soluble. These findings are supported by Bethune and Lockington (1997) who contend that drainage chemistry from their four 80 tonne waste rock test piles in Brisbane, Australia was dependent upon the frequency, intensity and duration of storm events. They measured low pH values of field drainage when long periods between storm events were followed by high rainfall volume. Results of reduced flushing frequency in the laboratory by Day et al. (1997) indicated that as the time between flushing increases, the average sulfate release rate decreases. Day et al. (1997) considered this to be caused by blinding of reaction products and/or chemical saturation of pore 17 water. Rinse water was applied at various frequencies, as well as different volumes, during a humidity cell test program by Soregaroli and Lawrence (1998). They concluded that standard humidity cells do not account for site specific, physical and geochemical controls such as wetting and mineral solubility, and may therefore significantly over-estimate waste pile release rates. 2.4 Prediction Prediction of the time before a waste pile produces A R D (lag time) is typically done by using static A B A tests combined with kinetic humidity cell tests. B y knowing the total N P of a sample and determining the rate of N P depletion from humidity cell tests, the lag time may be estimated. Predicting the lag time from N P depletion rates requires the assumption that A R D is produced once the available neutralizing minerals are depleted and sulfide minerals are continuing to oxidize. However, as discussed in Section 2.2, a measurement of N P is dependent upon the static test procedure used and the N P depletion rate upon the kinetic test procedure used. Another consideration is that the total N P is not available for neutralizing acidity since a portion of the neutralizing minerals is encapsulated within rock particles. Predicting the lag time is routinely done by using various methods that can provide a range of values. One method is to consider a percentage of the N P as being unavailable. Rescan (1992) considered 50% of the N P determined by a static test as being unavailable at the Kutcho Creek project. Ferguson and Mor in (1991) estimated an average unavailable N P of 73% from an A R D database. Another method is to use a specific amount of N P as being unavailable such as the 10-15 kg CaC03/tonne recently advocated by Mor in and Hutt (1997). For the Red Mountain site, Mor in and Hutt (1996) used humidity cell testwork to obtain a site-specific amount of 8 kg CaCOs/tonne N P as being unavailable. Predictions based on these methods are difficult to use 18 with confidence because the factor of safety is difficult to discern. This point is exemplified by the kinetic field test program of Lapakko (1994b) finding that only 0.5% to 8% of A B A N P was depleted when drainage p H dropped below 6.0. What needs to be considered in a lag time prediction method is how the site-specific conditions wi l l affect the balance of acid and alkaline water production. This point can be demonstrated by the humidity cell test program of Day et al. (1997) that used samples having low sulfur and an N P ratio greater than 2. These samples returned low sulfate release rates and the rate of N P release was considered to be controlled by simple dissolution of carbonate minerals rather than acid production. A lag time prediction based on the carbonate dissolution rate, as controlled by the leaching conditions of the humidity cell test, would be in error i f acid generation controlled the rate of carbonate dissolution in the field. L i (1997) has recognized the importance of considering relative rates of acid and alkaline water production on lag time prediction. L i conducted humidity cell tests on materials that contained a high proportion of sulfides and slow-reacting neutralizing minerals. He found that the onset of acidity occurred before the depletion of N P as determined by static tests. L i contends the leachate became acidic because the rate of neutralization was slower than the rate of acid generation. He considers that available N P must be determined by conducting a humidity cell test past the onset of A R D or roughly estimated by applying mineral reactivity factors to mineralogical compositions. Scaling up laboratory humidity cell reaction rates to the field must account for differences in temperature. Arrhenius suggested, in 1889, that temperature could be linked to reaction rates with an activation energy as described by: k = A exp \-Ea IRT\ 19 (11) where k is the reaction rate constant, A is the Arrhenius factor (units of k), Ea is the activation energy (J • mol" 1), R is the gas constant, 8.31 J • mof 'K" 1 , and Tis the temperature (K). Humidity cell reaction rates may be related to the field by using temperature measurements from the site and the activation energy values for pyrite and pyrrhotite, provided by tables for specific p H ranges. Understanding the hydrology of a waste pile is important since it directly influences air movement and temperature (Nicholson et a l , 1989; Ritchie, 1994) and the long-term prediction of contaminant loading to the environment (Lopez et a l , 1997). A recent study by Newman et al. (1997) has shown that in unsaturated, layered systems such as waste rock piles, water may flow preferentially through the fine-grained material rather than the coarse-grained material. This is supported by observations of highly oxidized, fine-grained material surrounded by fresh waste rock by Robertson and Barton-Bridges (1990) who interpreted this as evidence of preferential oxidation within fine-grained layers. Since the fine particles contain most of the reactive surface area, preferential flow through the fines would facilitate efficient flushing of the weathering products. A thorough flushing of the fine material would explain the results of a recent study by Garvie et al. (1997) in which oxygen and temperature profiles of a 40 year old waste dump in Tasmania were measured. They found that the overall oxidation rate of the dump, as determined by oxygen and temperature measurements from nine probe holes, to be consistent with the sulfate load in the drainage. It was concluded that water infiltrating the dump must be interacting with all the oxidation sites and not with only a fraction of the total volume. 20 A n accurate prediction of how a waste pile and its water quality w i l l evolve with time requires some degree of modeling. A n example is the long-term decrease in oxidation rate for a sulfide particle which is typically handled with a "shrinking core" model (Wen, 1968; Levenspiel, 1972; L i n et al., 1997). The rate of sulfide oxidation is considered to decrease as the reacted portion of the sulfide particle forms a barrier between a fresh surface and reactants (Jaynes et al., 1984; Davis and Ritchie, 1986). This model can also be used to account for a sulfide surface barrier created by a buildup of precipitated secondary minerals. The long-term influences of mineral precipitation and dissolution on waste pile water chemistry are typically accounted for using aqueous equilibrium models (Allison et al., 1990; see Jambor and Blowes, 1994). It is suggested by Mor in et al. (1995) that a waste pile can accumulate weathering products as precipitated secondary minerals and that the dissolution rate of these minerals control waste dump sulfate and metal release rates. A critical review of models applicable to A R D (Perkins et al., 1997) was recently completed for the Canadian M E N D program. It was concluded that the geochemical models, such as the equilibrium approach, are useful for understanding the geochemical processes involved and comparing different decommissioning scenarios. They recommended that long-term predictions of water chemistry from waste piles be made using empirical/engineering models that are based on laboratory and field tests. 21 3.0 R E D M O U N T A I N DEPOSIT 3.1 Location and Physiography The Red Mountain gold-silver deposit is located 18 kilometers east of the port town of Stewart, British Columbia (Figure 1). It is bounded by the Cambria Icefield to the east and Bromley Glacier and its tributaries to the west. The area is characterized by steep terrain ranging from 550 m at the bottom of the Bitter Creek access road to 2129 m at the Red Mountain peak. Access is by helicopter from Stewart. 3.2 Geology Red Mountain is underlain by Middle to Upper Triassic and Early Jurassic sedimentary and volcanic rocks (Anderson, 1993; Greig et a l , 1994). Rhys et al. (1995) described the geology of the Red Mountain deposit in detail. The sedimentary rocks are dark grey to black, commonly carbonaceous, massive to thinly bedded mudstone and siltstone. When proximal to intrusions they are tan to pale green in colour from carbon leaching and sericite alteration. These stratigraphic packages are seen to range from 1 to 200 metres in thickness. Early Jurassic plutons, sills, and dykes have intruded the sedimentary-volcanic package. The largest intrusion, the Goldslide hornblende-feldspar porphyry, lies below the mountain peak. The orebody is proximal to the Goldslide intrusion, dips approximately 60° to the southwest, and occurs within both feldspar porphyry intrusive and sediments. The feldspar porphyry is fine to medium grained and contains 25 to 50%, 1 to 3 mm feldspar phenocrysts. The original 22 Figure 1: Location map of Red Mountain deposit, Northwestern British Columbia. 23 hornblende phenocrysts in these rocks have been almost completely altered to chlorite and muscovite. Distinct zones of alteration were recognized at Red Mountain and are subparallel to the upper contact of the Goldslide porphyry (Thompson, 1994d; Rhys et a l , 1997). Pyrite-dominant alteration occurs in the footwall rocks of the orebody and varies in thickness from 70 to 200 metres. This alteration zone is characterized by > 2% disseminated and veinlet pyrite within a cream to pale grey, sericite + quartz + K-feldspar + calcite-altered matrix. The pyrite + quartz + calcite + sericite + chlorite veins are 1 to 15 mm wide and locally up to 60 cm. The gold and silver is hosted by zones of pyrite veins, veinlets, breccia veins and pervasively disseminated pyrite. The pyrite veins commonly have dark green chlorite envelopes, contain up to 15% quartz with minor amounts of chlorite, calcite and muscovite, and are typically 0.5 to 3.0 cm in width but up to 1 metre wide. This mineralization is typically hosted by pale grey, strongly sericite-altered feldspar porphyry or, less commonly, by tan to pale green, sericite altered mudstone and siltstone. A common feature of the gold and silver zones is an aureole of disseminated and vein sphalerite + pyrrhotite that is developed in both the footwall and hanging-wall rocks and varies in thickness from 2 to 50 metres. Pyrrhotite-dominant alteration occurs in the hanging-wall and is typically 100 to 200 metres thick. The pyrrhotite mineralization is > 0.5% and occurs as fine to medium grained disseminations and fracture fill. Mineralogy of this pervasive alteration, grey to brown grey in colour, is K-feldspar + chlorite + titanite + pyrrhotite + pyrite + carbonates + albite. The veins of pyrrhotite + pyrite + chalcopyrite + chlorite + calcite + quartz + sphalerite + galena veins are 0.3 to 2 cm in width and locally > 15 cm. 24 3.3 Climate A high altitude and close proximity to the Pacific Ocean directly influences the Red Mountain climate. Significant precipitation falls in all months, with the Stewart Airport recording a mean annual precipitation of 1880 mm for the years 1974 to 1992. The average annual snowfall at the Airport is 7 meters. Stewart, at sea level, only receives one third of its precipitation by snow whereas the Red Mountain camp can receive snow at any time. Precipitation at the project site (altitude 1,500 metres) was found to be similar to that received at the Stewart Airport (Rescan, 1994). A precipitation gauge, which utilizes antifreeze and a pressure transducer for measurement over all four seasons, was operated near the Red Mountain camp beginning in August 1993. A tipping bucket rain gauge was added to the weather station in Apr i l 1994 to measure summer rainfall. The air temperature at this station from July 1993 to June 1994 averaged 0°C compared to 5.6 °C in Stewart over the same time period. The mean annual air temperature at Stewart is 5.9 °C. 4.0 E X P E R I M E N T A L M E T H O D S A N D P R O C E D U R E S 25 4.1 Waste Rock Characterization 4.1.1 Sample Selection According to the preliminary mine development plans for the Red Mountain project, the waste rock pile w i l l contain 60 to 70% feldspar porphyritic intrusive and 30 to 40% bedded tuffaceous sediment. These proportions were considered when sampling was conducted for testwork. Five samples were selected: three of feldspar porphyry and two of sedimentary rock. Since the orebody wi l l most likely be mined from the footwall side, the same side as the exploration drift development, all but one of the selected samples was footwall rock. Figure 2 shows the location of the five waste rock samples. Two of the samples, HC-1 and H C - 2 , were obtained from underground slashes and were used to fill the large-scale field humidity cells. HC-1 is feldspar porphyry intrusive material while HC-2 is sedimentary with minor feldspar porphyry dyke material. The slashes were hand sampled and then shipped to the University of British Columbia for further preparation, analysis and testing. The feldspar porphyry and sediment samples weighed 230 kg and 110 kg, respectively. Both of these samples had approximately 10% minus 2 inch material. The other three samples, A B A - 1 , 2 and 3, were compiled from Lac Mineral 's A B A sample stockpile. Lac Minerals collected samples for A B A analysis from each round blasted during development of the exploration drift. The A B A - 1 sample is sediment material and samples A B A - 2 and 3 are feldspar porphyry intrusive material. These samples were crushed to 80% minus 2 inch then quartered on site using a Gilson splitter. One quarter of each sample was sent 26 Green to grey siltstone, greywacke, and conglomerate Dark grey to black locally graphitic mudstone, siltstone, and chert Hillside porphyry ^\f*\ Goldslide porphyry Ore zone 5 Geological Contact Fault Underground workings 20-tonne (field) cell sample location Composite sample area Modified from Rhys etal., 1995. Figure 2: Location map of the five waste rock samples. 27 to Eco-Tech Laboratories in Kamloops, B C for A B A analysis and the remainder was stockpiled. From these stockpiled samples, three 77 to 91 kg composite samples were created, each representing approximately 25 metres of drift length. 4.1.2 Crushing, Screening and Splitting A l l the laboratory samples were initially passed through a 1.5 inch screen and the oversize material then fed to a laboratory jaw crusher with a discharge opening of 1.5 inches. Since the crusher feed opening (gape) was 3 inches, a sledgehammer was first required for initial size reduction of the two slash samples, HC-1 and HC-2 . The samples were quartered to permit storage of splits prior to further size reduction. The quartering of the samples was conducted by first agitating each sample for 3 minutes within a 3-screen vibrating sieve shaker. The -1.5 +1 inch size material was placed on a concrete floor and the outer edges of the pile shoveled to the top while working around the pile about 20 times. This ensured thorough mixing before the pile was quartered. The -1 +I/2 inch material was quartered with a Gilson Splitter whereas the -V2 +LA inch and -VA inch fractions were split with a Jones Riffle. A l l splits were then weighed and bagged. Splits from each of the five samples were then selected and crushed to minus !4 inch to create 1, 3 and 5 kg samples for the humidity cell and column tests. Multiple splits of this material were obtained using a Jones Riffle. If the mass of a split was over the desired mass by less than 10%, the excess was arbitrarily removed with a scoop. If two samples were combined to create a single sample, the mass ratios were used to determine the amount of reduction required for each sample. 28 The two 50-kg tests were charged with -1.5 inch material. The samples used for these tests, H C -1 and HC-2 , had the required masses of each size fraction calculated. This was done by determining the mass percent of the four size fractions, -1.5 +1 inch, -1 +'/2 inch, -V2 +VA inch and -VA inch, for each sample after being crushed to minus 1.5 inches. These proportions were then used to create the 50 kg samples using the splits from each size fraction. 4.1.3 Specific Gravity Determination The S.G.s were determined so that sample masses could be estimated from their volume. The procedure involved adding 15 m L of water to a 25 m L graduated cylinder, weighing, adding sufficient -VA inch sample to bring the water line to 25 mL, and then re-weighing. The results are presented in Table 1. The average S.G.s for the feldspar porphyry (HC-1) and sediment (HC-2) were calculated to be 2.71 and 2.72, respectively. Table 1: Maximum, minimum and mean measurements of S.G. for samples HC-1 and HC-2 . S.G. Sample N max. min mean HC-1 6 2.65 2.74 2.71 HC-2 6 2.66 2.76 2.72 4.1.4 Grain Size Distribution The grain size distributions of all five samples were determined. This included the various sized HC-1 and HC-2 samples to facilitate the scaling up of results from the typical 1-kg tests (minus VA inch) to the 50-kg tests (minus 1.5 inch) to the field cell tests. Sieve analyses were performed on two 1-kilogram splits of the minus VA inch fraction of each sample using the British Standard 29 sieve series 410-62. The screens from 4 mesh to 35 mesh were combined as one set of screens. These sieves were then placed on a vibrating sieve shaker for 3 minutes. The remaining sieves, from 48 to 400 mesh, were stacked and the fines agitated for 5 minutes on the shaker. The mass of each size fraction was recorded and the weight percent passing each sieve size determined. The minus 1.5 inch material of samples HC-1 and HC-2 was previously divided into four size fractions with the mass percent of each fraction determined (Section 4.1.2). The minus % inch size fraction was assigned the grain size distribution as determined for the HC-1 and HC-2 samples. A sieve analysis was conducted on large portions of the two slash samples that were set aside in 1994. Two scoop buckets of each sample (approx. 5-7 tonnes) were placed onto a bermed palate measuring 8 feet square and lined with 40 mi l polyethylene plastic. During the summer of 1996, over a period of 3 days, Royal Oak employees disassembled and screened these piles. A l l oversized fragments, those not passing the 3 inch screen, had their individual length, width and height measurements recorded. The remaining material was passed through a 2-inch and 1-inch screen with their respective masses determined from a hanging weight scale. The minus 1 -inch material was placed at the centre of the palate and the outer edges shoveled to the top while working around the pile about 20 times (Figure 3). The pile was then quartered and a split was passed through 3A, Vi, ' A , and VA inch screens and each fraction was weighed (Figure 4). A n estimate of the mass of the oversize fragments was obtained from the fragment measurements. The 3 dimensions of each oversize fragment were multiplied together to estimate the fragment volume, then the volumes summed to obtain the total oversize volume. Figure 4: Sieve analysis of 20-tonne (field) cell material. The total oversize mass was calculated using the equation: 31 M s = V s * S.G. (14) where M s is the mass of the solids and V s is the volume of the solids. The minus % inch fraction was assigned a grain size distribution equal to the laboratory measurements. The particle mass finer than 2 mm for the HC-1 and HC-2 samples is estimated at 3.3% and 3.1%, respectively. These estimates compare favourably with measurements made for the Kitsault Mine, B . C . where 3% of the waste pile mass was determined to be finer than 2 mm (McLaren, 1986). The grain size distribution curves for the HC-1 and HC-2 samples of various crush size are shown in Figure 5. The grain size distribution curves for all five samples crushed to 100% passing lA inch are plotted on a semilogarithmic graph in Figure 6. 4.1.5 Void Ratio The void ratio is an index of the pore volume of a sample (volume of sample not occupied by solid particles) relative to the volume of solids. V o i d ratio e is defined as: where V f is the volume of pores, V s is the volume of solids and V t is the total volume of the representative sample. <? = Vr/V8 = Vf/(V,-Vf) (15) V o i d ratio measurements of the two underground slash samples were conducted to facilitate mass estimates and allow for calculations of the degree of saturation. The method of determining the 1000 100 10 1 0.1 0.01 Grain Size Diameter (mm) Figure 5: Grain size distribution curves for two samples chosen for testing at various scales, HC-1 (porphyry intrusive) and HC-2 (sediment). 100 1.01 33 void ratios involved measuring the rate of water flow from an underground pipe, conducted by measuring the time required to f i l l a 200-litre barrel. A scoop bucket, having steel plates welded over the drainage holes, was then driven under the overhead pipe. By measuring the time required to fi l l the bucket with water, the volume of the scoop bucket was estimated. The bucket was then filled with rock from the slash sample, driven back under the water pipe, and the time for it to top up with water was recorded. The scoop volume is the sample volume, V t , and the volume of water required to fill the sample air voids is the pore volume, V f . This procedure was conducted five times for each sample and the results were averaged. The time taken to fill the 200-litre barrel was measured repeatedly throughout the test to determine fluctuations in the water flow rate. The results of these tests are presented in Table 2. The average void ratio of the HC-1 feldspar porphyry slash sample of 0.74 was significantly higher than that for the HC-2 sediment sample of 0.53. Table 2: Maximum, minimum and mean measurements of pore volume, and void ratios for the field cell samples. Particle v f Sample size v t (m3) (u/g slash) (inches) (m3) N max. min mean e HC-1 - 15.7 1.36 5 0.66 0.51 0.58 0.74 HC-2 - 12.6 1.36 5 0.52 0.43 0.47 0.53 4.1.6 Specific Surface Area Specific surface areas for the samples were determined using a calculation based on the sizes and shapes of the particles. A s discussed by Hi l le l (1982), the specific surface area of a sphere or cube can be expressed as: am - 6 / pd 34 (16) where am is the total surface area per unit mass, p is density and d is the particle diameter. The approximate specific surface area of granular material, per unit mass of particles, is calculated from knowledge of the particle size distribution by the summation equation: am = (6/pd)^ (ci Idi ) (17) where c, is the mass fraction of particles of average diameter dt. For this study, the average particle diameter of each size fraction was assigned the size fraction's mid range diameter. The specific surface areas calculated for the five samples are listed in Table 3. The detailed specific surface area calculations from the sieve analysis results are found in Appendix 1. Table 3: Estimates of specific surface area. Sample Test size Sieve size with 100% passing (inches) (mm) Mass of sample screened (kg) Specific surface area (m2/kg) HC-1 1 kg 0.25 6.4 1.0 2.92 50 kg 1.50 38.1 50 0.50 20 tonne 15.7 400 7,100 0.35 HC-2 1 kg 0.25 6.4 1.0 2.60 50 kg 1.50 38.1 50.0 0.44 20 tonne 12.6 320 5,200 0.38 ABA-1 1 kg 0.25 6.4 1.0 3.58 ABA-2 1 kg 0.25 6.4 1.0 3.14 ABA-3 1 kg 0.25 6.4 1.0 2.83 35 4.1.7 Mass and Total Surface Area Estimates of Field Cell Samples The total volume of each field cell sample (solids + pores) was estimated by multiplying the cell dimensions together and adding a volume estimate of rock exposed above the cell. The total volume of solids was then estimated from the void ratios using V s = V t / (1 + e). The sample mass M s was then calculated from the V s and the measured S.G. With the masses estimated, the total surface areas of these samples were determined using their specific surface areas. The results are found in Table 4. Table 4: Estimates of mass and total surface area for field cell samples. v, V s M s Total surface area Sample (m3) (m3) (tonnes) (m2) HC-1 20 tonne 11.1 6.39 17.4 6080 HC-2 20 tonne 11.1 7.26 19.8 7500 4.1.8 Mineralogy The mineralogy of the five samples was assessed through hand samples and petrographic analysis. For each sample, 10 to 12 hand samples were selected and described with an emphasis on alteration style, and sulfide percentages and mode of occurrence. During the exploration phase of the Red Mountain deposit, numerous samples (131) were examined petrographically (Barnett, 1991; Ford, 1993; Vancouver Petrographies, 1994; Thompson, 1994a, 1994b, and 1994c). Petrographic descriptions were chosen from these reports as being representative of the five samples selected for testing based on rock type, alteration and location. The feldspar porphyry samples H C - 1 , A B A - 2 and A B A - 3 , varied in sulfide types and percentages but were relatively similar in degree and style of alteration. Sample HC-1 contained 36 approximately 4-5% pyrite (3-4% as disseminations, remainder as fine fracture fill), 2-3% disseminated pyrrhotite (<1% as fine fracture fill) and 0.5% wispy sphalerite. O f the feldspar porphyry composite samples, A B A - 2 was pyrrhotite-rich (5-7% as disseminations) while the other, A B A - 3 , was pyrite-rich (4-5% as disseminations). In hand specimen, the feldspar porphyry samples show 40-50% white phenocrysts (<2mm, generally <lmm) within a pale green-grey, aphanitic groundmass. In thin section, the feldspar phenocrysts are replaced by K-feldspar and minor chlorite. The former mafic phenocrysts (hornblende?) are replaced by K-feldspar + chlorite + sericite + carbonate + titanite + clinozoisite + apatite. The matrix consists of fine-grained quartz, K-feldspar, chlorite and sericite. Irregular veinlets and microfractures of quartz, chlorite and carbonate are common. Estimated mineral percentages for the feldspar porphyry samples are: 30-35% K-feldspar, 15-20% quartz, 10-15% chlorite, 5-10% sericite, 5-10% albitic feldspar, 5-10% actinolite, 5-7% sulfides, 3-5% titanite, 1-3% carbonate/calcite, 1% clinozoisite and trace amounts of apatite. The sediment samples H C - 2 and A B A - 1 , varied in type of sulfide mineralization but, as with the feldspar porphyry samples, were relatively similar in the degree and style of alteration. Sample HC-2 contained an estimated 2-3% disseminated pyrrhotite, 1-2% disseminated pyrite and 1-2% wispy sphalerite. The sediment sample A B A - 1 was visually estimated as containing 5-7% disseminated pyrrhotite. In hand sample, the sediment samples were pale green to light grey, medium to fine grained and locally banded. In thin section, the sediment consists of K-feldspar grains that are variably replaced by sericite, carbonate minerals and clinozoisite. Chlorite, pyrrhotite and carbonate form irregular clusters that may represent pseudomorphed hornblende (?) crystals. Estimated mineral 37 percentages for the two sediment samples are: 35-40% K-feldspar, 20-25% sericite, 15-20% quartz, 5-7% sulfides, 3-5% chlorite, 3-5% clinozoisite, 1-3% carbonate and 1-2% titanite + T i O x . 4.1.9 Acid-Base Accounting Acid-Base Accounting ( A B A ) determines the balance between the acid producing minerals of a sample and the minerals that can neutralize acidity. The acid potential (AP) of the samples used were determined from sulfide and sulfate assays conducted by Chemex Laboratories, Vancouver, B . C . A sulfide-sulfur content of each sample was obtained by subtracting the sulfate-sulfur content from the total sulfur. The A P is calculated by multiplying the sulfide-sulfur content of the sample by 31.25 to convert to units of kg of calcium carbonate equivalent per tonne of material. Sample assays performed by Chemex Labs, North Vancouver, are found in Appendix 2. The neutralization potential (NP) was determined using a method based on the Modified A B A procedure as outlined by Lawrence (1990). The test allows for a gradual addition of acid to the pulverized sample solution and is carried out at room temperature over a 24-hour period. This is a modification of the Sobek et al. (1978) N P determination that is conducted under highly acidic conditions and which has the potential to overestimate the N P of the sample (Lawrence and Wang, 1996). The N P values of each of the five samples were determined three times and the results were averaged. The details of the Modified A B A test procedure used to determine the N P is found in Appendix 3. The carbonate N P method was also used to determine N P values for each sample. This method 38 assumes that all the inorganic carbon present occurs within carbonate minerals capable of neutralizing acid. A l l five samples were assumed free of organic-C. This was considered a safe assumption for the sediment samples due to their high degree of alteration. The total carbon value was obtained using a Coulimetrics Model 5030 Carbonate Carbon apparatus linked to a Coulimetrics Model 5010 C 0 2 Coulometer. The carbonate N P was calculated from the carbon content as follows: Carbonate N P (kg CaC0 3 / t ) = mg C in sample * molecular weight of CaCCh weight in sample (g) atomic weight of C The reported paste p H values are averages of underground samples that represent the same portion of drift as the five samples used. These samples, taken for A B A analysis while advancing the exploration drift, were processed by Eco-Tech Laboratories, Kamloops, B . C . The values of paste p H and the results of the A B A tests are listed in Table 5. Table 5: A c i d base accounting ( A B A ) results Paste AP NP C 0 3 N P NetNP Sample pH (kg CaCCytonne) (kg CaCCytonne) (kg CaCOj/tonne) (kg CaCCytonne) NPR HC-1 8.35 182 44.6 27 -137 0.25 HC-2 8.35 123 11.9 9.4 -112 0.10 ABA-1 8.06 140 36.3 32 -104 0.26 ABA-2 8.22 148 33.1 28 -115 0.22 ABA-3 8.01 97 25.0 12 -72 0.26 Comparing the Carbonate N P values to the Modified N P values indicates that neutralizing minerals besides the carbonates are present and that they provide a substantial amount of N P for the feldspar porphyry samples HC-1 and A B A - 3 . Based on the mineralogical examinations, non-carbonate minerals that could be providing a source of N P in the feldspar porphyry samples are 39 chlorite and actinolite (Kwong and Ferguson, 1997) and to a lesser degree silicate minerals such as sericite and albitic feldspar (Busenberg and Clemency, 1976). Since the samples were not examined for the presence of Fe and M n carbonates that do not contribute to N P , the Carbonate N P values and, to a lesser extent, Modified N P values may be overestimated (Price, 1997; White etal., 1998). A l l samples returned negative N P R values indicating that all samples would be expected to produce acidic drainage at some point in time. The lowest N P R was obtained for the HC-2 sample indicating that it has the greatest potential to generate acidic drainage. 4.2 Kinetic Test Type and Operation Thirty-four kinetic tests were performed, with two of these being conducted in large-scale field cells. The laboratory tests included twenty-five cylindrical bench-top humidity cells, five leach columns and two 50-kg cells. Construction of laboratory cells, columns and field cell components, as well as operation of the laboratory tests, took place within the Department of Mining and Mineral Process Engineering. A summary of the kinetic testwork conducted is listed in Table 6. Table 6: Summary of kinetic test program. 40 Kinetic test Particle Start Finish No. of No. of tests by sample type size Date Date tests HC-1 HC-2 ABA-1 ABA-2 ABA-3 Standard - 6.4 mm Jan 96 Dec 96 8 1 1 2 2 2 Tall - 6.4 mm Jan 96 Dec 96 5 1 1 1 1 1 Shaken - 6.4 mm Jan 96 Dec 96 5 1 1 1 1 1 Non-aerated - 6.4 mm Feb 96 Dec 96 1 1 Simulated - 6.4 mm Feb 96 Dec 96 6 6 precipitation 50-kg - 38.1 mm Jan 96 Dec 96 2 1 1 NP column - 6.4 mm Dec 95 Dec 96 5 1 1 1 1 1 20-tonne - 400 mm Oct 94 Sept 96 2 1 1 Totals 34 13 6 5 5 5 4.2.1 Standard Ce l l s The standard cells (Figure 7) were made of clear, Plexiglas pipe measuring 10 cm in diameter. They were made 20 cm in height and held 1-kg charges of minus lA inch material. Inside the cells was a perforated acrylic plate to support the sample above the air feed. These plates were covered with 3 layers of fine mesh screen before the samples were loaded. Each cell had three hose nipples (Figure 8): • one hose nipple located on the side wall 1 cm from the cell bottom allowed dry/wet air to be supplied to the cells via, • a second nipple located on the centre of the cell lid permitted air to exit and rinse water was applied through, and • a third nipple located on the centre of the cell bottom allowed water to drain through. The 1 -kg charges were rolled within sealed plastic bags prior to being placed in the cells to ensure thorough mixing. 4 1 Figure 8: Standard and tall cells - side view. 42 The initial two leaches of these cells were carried out by completely flooding the sample with distilled de-ionized water, soaking for an hour, draining, flooding again, and then soaking for a day before draining. This procedure was conducted to remove any weathering products that had accumulated prior to the start of the tests. A weekly cycle consisted of passing dry air through the cell for three days, then moist air from a humidifier for three days, followed by a distilled de-ionized water leach during the seventh day. The airflow through each cell was maintained at approximately 0.5 litres per minute. During the humid air cycles, water in the humidifiers was maintained at a temperature between 28 and 30°C. A 500-mL standard volume of water was dripped into each cell using a separatory flask and was applied over a period of approximately one hour. The volume of the leachate collected after one day was determined by a mass measurement using a digital readout balance. Individual cell weights were measured three times a week; at the end of the dry air period, the end of the wet air period and at the end of the leachate day. Difficulties were encountered in maintaining similar operating conditions, primarily with respect to keeping the airflow through each cell equal and uniform. Similar operating conditions were deemed necessary for the repeatability of results. Two airflow regulators were used to control the air supply to the four benches of humidity cells. During the dry cycle, two air hoses ran from each airflow regulator. Each air hose supplied air to one bench supporting six humidity cells. The humidity cells were attached to the air hoses by T-connectors. It was found that the cells connected closest to the airflow regulators dried faster than the cells connected to the end of the air hose. To remedy this, the air inlet hose to each cell was fitted with a screw clamp to allow adjustment of individual cell airflow. 43 A further refinement involved the addition of "bubblers" to each cell, as recommended by White and Sorini (1993). The bubblers were glued to the cell lids and consisted of 100 m L glass vessels half-filled with water and fitted with a rubber stopper holding two glass tubes. A i r then flowed from the top of the humidity cell into a hose connected one of the glass tubes. This glass tube extended to the vessel bottom and allowed the air to bubble through water before exiting via a short glass tube that allowed for airflow measurement. The bubbling water allowed for a visual assessment of the airflow rate. O-ring seals were installed to the lids of each humidity cell to prevent leaks and to ensure good control of airflow. 4.2.2 Tall Cells The tall cells (Figure 9) were 40 cm in height, 10 cm in diameter and held 3-kg charges of minus % inch material. Since the diameter was the same as the standard cell, the flowpath length for rinse water and supplied air was three times greater for the tall cells than the standard cells. The operating methodology used was similar to that for the standard cells, as previously outlined, which included the use of "bubblers" for better air control. For each tall cell, three 1-kg charges were rolled individually within sealed plastic bags and placed within the cells. The 500 m L volume of water dripped into each tall cell resulted in a lower water to solid ratio than the standard cells due to the greater sample mass used. 4.2.3 Shaken Cells Five shaken cells were setup with a similar design as the standard cells but the leach procedure was different. These cells were flooded with 500 m L of distilled de-ionized water for an hour. The cell was then physically lifted and gently moved in a circular motion along a horizontal Figure 9: Tall cells - frontal view. 45 • plane to cause swirling of the rinse water. The swirling motion was done for approximately 30 seconds before draining to promote the removal of all the weathering products. The fines that drained from the cell were returned at the start of the next leach cycle. Two initial leaches were conducted within a 24-hour period by flooding the cells. The flooding procedure was done to remove weathering products accumulated prior to the test. The shaken cells were operated in a similar manner to that used for the standard and tall cells with respect to the rate of airflow, humid air temperatures, and the weekly cycle of dry/moist air. "Bubblers" were added to the shaken cells at the same time as the standard and tall cells. 4.2.4 Non-aerated Cell One non-aerated cell was set-up and differed from the standard cell in that it was not subjected to weekly cycles of dry and wet air. The cell was trickle-leached weekly with 500-mL of distilled de-ionized water. It was of similar size and design as the standard cells and held a 1 -kg charge of sample HC-1 crushed to minus lA inch. Like the standard cells, this cell was flooded twice within the first 24 hours of operation to remove weathering products that had accumulated prior to the test. Weighing of the cell was done three times per week on a similar schedule to that for the standard cells. 4.2.5 Simulated Precipitation Cells Six simulated precipitation cells were operated with variations of leach duration, volume and frequency. These cells were of similar design as the standard cell and were each filled with a 1-kg charge of sample HC-1 crushed to minus % inch. 46 For the first 29 cycles of operation, they were operated in the same manner as the standard cells with dry/wet air cycles and 500 m L trickle leaches. After 29 cycles (200 days), air was no longer supplied to the cells, and the simulated precipitation procedures began after 31 cycles. Two cells received 50-mL of distilled water per leach, two received 100-mL per leach and the remaining two received 500-mL per leach. One of the 500-mL leach cells was used as a control by maintaining a weekly trickle leach while the leach frequency varied for the other five cells. Water was initially applied at a frequency of once every 3 to 4 days for a total of 3 weeks. The leach frequency was decreased to once a week for 4 weeks then once every two weeks for a month. Water was applied to a 50-mL and 100-mL leach cell over a 1-hour period, while the other two 50-mL and 100-mL leach cells received water over a 24-hour period. The two 500-mL cells retained a 1-hour leach period. Separatory flasks were used to provide the 1-hour trickle leaches, while a peristaltic pump was used to control the slow application rates during the 24-hour trickle leaches. 4.2.6 50-kg Cells The two 50-kg cells (Figure 10) were made with 30-cm diameter P V C pipe. They were 75 cm in height, had an airtight polyethylene bottom and a sealed Plexiglas l id. They were similar in design to the standard humidity cells in that the sample was elevated above the air supply by means of a perforated polyethylene plate. The airflow exiting the cells was maintained at approximately 0.5 L/min. For the moist air cycle, air was routed through a plastic bucket containing water maintained at a temperature of 28-30°C using an aquarium heater. A specially designed cart allowed for easy moving of the cells and provided room underneath for leachate collection vessels. The cells were trickle leached with 500 m L of water supplied from a 47 Figure 10: 50-kg cells. 48 peristaltic pump supplying six hoses placed in a radial pattern in the l id to ensure a slow and even distribution of the rinse water. These two cells contained samples HC-1 and HC-2 that were crushed to minus 1.5 inches. The material was thoroughly mixed with a shovel on a concrete floor, manually split then shoveled into clean plastic sacks of plastic material. Prior to dumping the material into the cell, each sack was tied-off and rolled length-wise on the floor to promote a random grain size distribution. The initial leach was conducted by filling the two cells with distilled water, then allowing them to rest for two days before draining. Dry and wet air cycles, 3 days each, were applied to the cells for 31 cycles (221 days). 500-mL trickle leaches were conducted weekly over a 1-hour period. After 31 cycles, the cells were no longer aerated. 4.2.7 NP Columns The objective of the leach column testwork was to determine the available N P of the five samples. The experiment was designed to accelerate the process of N P depletion by supplying the columns with a continuous feed of acidified rinse water. The N P columns (Figure 11) measured 5 cm in diameter and 180 cm in length. They were loaded with 5 kg of minus % inch material. Trickle leaches of the columns were conducted with the use of a peristaltic pump. Two months after startup, the columns were fitted with hoses to accommodate the hookup of a compressed nitrogen gas cylinder. Trickle leaching with acidic water (pH of 3) was maintained continuously for 360 days. Approximately 3.6 litres of water, acidified by adding 0.55 g/L H2SO4, was pumped through each Figure 11: N P columns. 50 column weekly. The column leachate was collected every week for the initial 14 weeks then every two weeks. Nitrogen was routinely blown through the columns to purge the closed system of oxygen. This was done to minimize the amount of acidity produced by sulfide oxidization. 4.2.8 20-tonne (Field) Cells Two wooden cribs (Figure 12), measuring 2.5 by 2.5 metres at the base and 1.5 metres in height, were constructed near the Red Mountain exploration portal during October 1994. The cribs were based on designs by Rescan Environmental Services Ltd. (1990) for the Kutcho Creek Property near Dease Lake, British Columbia and held approximately 20 tons of waste rock each. The walls of these cribs were slatted and lined with geotextile to permit limited oxygen entry as would exist in an actual waste rock pile. Rock was blasted and removed from within the exploration adit to obtain fresh samples of the feldspar porphyry (HC-1) and sediment (HC-2) material used to f i l l these field cells. The floor of each crib, lined with 40-mil high-density polyethylene, was sloped inwards and towards the front. Infiltrating water was collected from each crib by two P V C pipes that lay along the floor centre (Figure 13) and two short P V C pipes at the front of the crib. The four pipes were joined by a manifold that directed water into a 7.5 litre vessel made from P V C piping (Figure 14). The vessel l id was tight fitting and had water entry and overflow hoses, attached pH and conductivity probes, and a dividing plate (Figure 15). The plate ensured that the water entering the vessel flowed to the bottom, and thus contacted the probes before exiting. Overflowing water entered a tipping bucket that allowed for measurement of outflow water volume and rate of flow. Temperature probes were buried within each pile, a temperature / humidity probe was installed on the top of the intrusive crib and a precipitation tipping bucket 51 Figure 12: 20-tonne (field) cells. Figure 13: Floor of 20-tonne (field) cell showing drainage control. Figure 15: pH and conductivity probes attached to water collection vessel lid. 53 gauge placed on top of the crib containing the sedimentary rock sample. Readings from all these instruments were recorded by a Campbell Scientific CR10 datalogger powered by a solar panel. The datalogger was programmed to take readings from each probe every 5 seconds. The water probe readings were averaged every 10 minutes and the internal crib temperature and external air temperature averaged every hour and the averaged values were stored in the datalogger. The total number of tips recorded by each tipping bucket in a ten-minute period was also recorded. When access was possible, the datalogger was downloaded to a portable computer or the data storage module was exchanged with a new one. One water sample was taken from each crib in October 1995 and seven more samples were taken during the summer of 1996. These samples were forwarded to Chemex Laboratories in Vancouver for the analysis of the standard parameters and total metals. The data collected during the summer of 1995 is not complete due to difficulties. The incomplete data resulted from either poor weather conditions or lack of personnel on site during the period in which property ownership was changing. Complete water data were obtained in 1996; it was recorded from the time when the internal crib temperatures rose above 0°C on June 10 t h, to the freeze-up of the water collection containers on September 20 t h . 4.3 Leachate Analytical Procedures The p H and conductivity of leachates were recorded on a weekly basis. The alkalinity and sulfate concentrations were typically recorded every two weeks. The Ca, M g , K and N a concentrations were also measured on a bi-weekly basis by atomic absorption spectrophotometry. 54 Alkalinity for samples with a p H greater than 4.5 were measured using the method outlined by the Standard Methods for the Examination of Water and Wastewater (1989). Typically, 50 m L of leachate was stirred using a magnetic stirrer while titrating with 0.02 N HC1 to a pH 4.5 endpoint. The normality and volume of HC1 used was recorded for calculating alkalinity using: Alkalinity (mg C a C 0 3 / L ) = 50,000 N * V V s where: N = normality of HC1 V = volume (mL) of HC1 required to reach p H 4.5 V s = sample volume (mL) Sulfate concentrations were determined by a turbidimetric method, based on the procedure outlined by the Standard Methods for the Examination of Water and Wastewater (1989). Reagents were prepared as follows: 1. A n acetate buffering solution was prepared by dissolving 30 g of magnesium chloride (MgCl3 • 6 H 2 0 ) , 5 g of sodium acetate ( C H 3 C O O N a • 3 H 2 0 ) , 1 g of potassium nitrate ( K N 0 3 ) and 20 m L of acetic acid (99% C H 3 C O O H ) in 500 m L of distilled water and making up to 1000 mL. 2. A stock sulfate solution (1000 mg/L) was prepared by dissolving 1.253 g MnSC»4 (anhydrous) in distilled water and diluting to 1 litre. The stock solution was then used to prepare working sulfate standard solutions of 10, 20, 30 and 40 mg/L. The procedure used for this study to determine sulfate concentrations was as follows: 1. The leachate was diluted with distilled water to a final volume of 100 m L to adjust the 55 estimated sulfate concentration to between 20 and 40 ppm. If the sulfate reading was outside of the 20 to 40 ppm range, the test would be repeated using an appropriate dilution. 2. 20 m L of the acetate buffer solution was added to the 100 m L aliquot, stirred briefly and one level spoonful of barium chloride was stirred into the solution for exactly one minute using a magnetic stirrer. 3. The sample was transferred to a 1 cm spectrophotometer cell that was then placed in a Perkin-Elmer Lambda 8 U V / V I S Spectrophotometer set at a wavelength of 420 nm. 4. After five minutes, the sample absorbence was recorded with respect to a distilled water reference solution. 5. A set of standards and distilled water blanks were run through the procedure. Solutions prepared for sulfate readings were run in batches of four in the spectrophotometer using a continuously running stopwatch. The calculations were conducted with the aid of a Microsoft Excel spreadsheet. A calibration curve of absorbence against sulfate (ppm) was drawn each week using the readings obtained from the standard solutions. The sample readings were then entered into the resultant equation and multiplied by the dilution factor. 4.4 Data Manipulation Initially an Excel file was setup for each of the 32 experiments but updating this number of files on a weekly basis was found to be too time consuming. A n Excel template was then created to permit all of the data collected over a week to be input. The format of the Excel template was similar to the format in which the weekly cell data was recorded. The template calculated: • leachate volume by subtracting the flask mass from the total leachate plus flask mass, • gravimetric water content, 56 • sulfate concentration, and • alkalinity. One record was generated for each cell; this represented the leachate quality and operating conditions for the cell for that particular week. Each week, the 32 newly created records were appended to a single Microsoft Access database table. The database table allowed sorting by cell number and then by date. These data were linked to an Excel spreadsheet where the remaining calculations were done. Since analyses were not done every cycle, missing data was calculated through interpolation of the preceding and subsequent measured values. The primary calculations performed were as follows: Cumulative SO4 Flux (mg/kg) = cumulative total of: SO4 concentration per cycle (mg/L) * leachate volume (L) sample weight (kg) Remaining Sulfide-S (% of original) = Initial Sulfide-S (%) - ((Cumulative Sulfate Flux (mg/kg) * atomic weight of S / molecular weight of SQ 4 ) / 10000) * 100% . Initial Sulfide-S (%) Sulfate Production Rate (mg/kg/wk) = Cumulative SO4 Flux from one cycle (mg/kg) - Cumulative SO4 Flux from earlier cycle (mg/kg) time difference between cycles (days) * (1 wk/ 7 days) Sulfate Production Rate by Surface Area (mg/m 2/wk) = Sulfate Production Rate (mg/kg/wk) Specific Surface Area (m /kg) Carbonate Molar Ratio = ((Ca (mg/L)/ atomic weight of Ca) + (Mg (mg/L) / atomic weight of Mg)) SO4 (mg/L) / molecular weight of SO4 Cumulative N P Depletion = cumulative total o f : Carbonate Molar Ratio per cycle * SO4 concentration (mg/L) * leachate volume (L) * (molecular weight of CaCCh / molecular weight of SCV) . sample weight (kg) N P Depleted (%) = (Initial N P - Cumulative NP) * 100 Initial N P N P Depletion Rate (mg CaC0 3 /kg/wk) = Carbonate Molar Ratio * Sulfate Production Rate * molecular weight of CaCCh molecular weight of SO4 = ((Ca (mg/L)/40.08) + (Mg (mg/L)/24.3D) * SQd-ffflg/U * leachate volume (L) * 100.09 S 0 4 (mg/L) / 96.06 sample weight (kg) 9&06 = ((Ca (mg/LV40.08) + (Mg (mg/LV24.31V) * volume of leachate out (L) * 100.09 sample weight (kg) • Note that the calculation of N P Depletion Rate does not require a sulfate concentration. 58 Cumulative Metal Flux (mg/kg) = cumulative total of: metal concentration per cycle (mg/L) * leachate volume (L) sample weight (kg) Metal Extraction Rate (mg/kg/wk) = Cumulative Metal Flux from cycle (mg/kg) - Cumulative Metal Flux from earlier cycle (mg/kg) time difference between cycles (days) * (1 wk / 7 days) Gravimetric Water Content = mass of sample moisture mass of sample = total mass - mass of apparatus - mass of sample mass of sample Arrhenius Equation: effect of temperature on reaction rate constants In (k2 I k{) = (Ea IR) * ((1 / T,) - (1 / T2)) where T2 and 7/ are two temperatures (K), k2 and ki are the rate constants at these temperatures, Ea is the activation energy (J • mol"1) and R is the gas constant, 8.31 J • mof 'K" ' . 59 5.0 R E S U L T S A N D DISCUSSION 5.1 Standard, Tall and Shaken Cells 5.1.1 Results Results from the standard, tall and shaken cells are graphically compared in Appendix 4 and tabulated in Appendixes 8 to 10. For each sample, Appendix 4 has nine stacked graphs with each graph representing a different parameter and having profiles of the three cell types, four in the case of sample H C - 1 . The plotted parameters include p H , conductivity, alkalinity, sulfate, average gravimetric water content, carbonate molar ratio, sulfur depletion (%), sulfate production rate and calcium depletion rate. Alkalinity is a measure of the acid neutralizing capacity. The gravimetric water content (moisture retention) is the average of the two measurements taken during the week. This was considered appropriate after examination of the data revealed considerably lower cell moisture following the dry cycle then a minor moisture change after the wet cycle. The molar ratio of calcium and magnesium to sulfate indicates the amount of excess alkalinity in the leachate and thus the effectiveness of the neutralizing minerals. The rates for all graphs at any time are the average for the previous 5 cycles (see Section 4.4). Results from the non-aerated cell (sample HC-1) are included in the comparative graphs but are reviewed separately in Section 5.2. The final pH, rates and carbonate molar ratios for the humidity cells, discussed below and presented in Table 12, are averages of the last five available cycles. Visual observations of the shaken cells during the course of the experiment revealed that particle segregation was occurring. The accumulation of fine material within the cell bottom was pronounced during the initial 1 to 2 months of testing. Another visual observation was that only the bottom portion the tall cells was drying during the 3 day portion of the dry air cycle. 60 In general, the patterns of leachate conductivity for all the cells closely matched the patterns of sulfate production for the respective cells. The conductivity of the tall cell leachate was typically 2 to 3 times greater than the standard and shaken cells due to its lower water to solid ratio. A l l the feldspar porphyry samples produced neutral leachate throughout almost 50 weeks of kinetic testing. A summary of standard, tall and shaken cell results for the three feldspar porphyry samples are presented in Table 7. Stacked profiles of the weekly sulfate production rate for the feldspar porphyry samples are shown in Figures 16 to 18. The profiles for each sample have a horizontal line representing the average sulfate production rate from the last five available cycles of the standard cells. This line has been included to assist in comparing the standard cells to the tall, shaken and non-aerated cells. To simplify the comparison between cell types, only comments on the sulfate production rates are provided in Table 7. Limiting specific comments to sulfate production is considered appropriate since the patterns of calcium release are very similar to those of sulfate production for these cells (Appendix 4). A general observation is that all three feldspar porphyry samples exhibit increasing rates of sulfate production from day 100 to day 350. Another general observation is that the carbonate molar ratios (Appendix 4) fluctuated above 1.0 for the initial 200 days before beginning to stabilize at values less than 1.0 (with the exception of the shaken cell containing sample A B A - 2 ) . The histograms of sulfate production rate, molar ratio and gravimetric moisture content (Figure 19) show the three feldspar porphyry samples in order of increasing pyrrhotite content from left to right. The standard and tall cells have increasing sulfate production rates with an increase of contained pyrrhotite. The shaken cells returned the highest sulfate production rates for the pyrite-61 Table 7: Summary of standard, tall and shaken cell results for feldspar porphyry samples. S0 4 NP Carb. Pyrite Pyrrh. Cell prod'n depl'n molar Sample (%) (%) Type (mg/kg/wk) (mg/kg/wk) ratio Comments on S0 4 production rate ABA-3 5 - standard-1 53.2 53.9 0.97 • not stable when test terminated at 343 days. standard-2 44.5 45.4 0.97 • relatively stable after approximately 200 days. tall 48.1 42.3 0.84 • relatively stable after approximately 200 days. shaken 57.8 42.8 0.87 • decreased until day 103 (26 mg/kg/wk), then slowly increased until test terminated at 328 days. • test not conducted long enough to determine whether sulfate rate stable. HC-1 5 3 standard 58.3 58.0 0.95 • relatively stable after approximately 200 days. tall 49.9 42.3 0.81 • relatively stable after approximately 75 days. shaken 68.5 70.2 0.98 • decreased until day 103, slowly increased until day 207, relatively stable until day 250 (@ 55 mg/kg/wk), then increased to higher rate. • test not conducted long enough to determine whether sulfate rate stabilized (345 days). ABA-2 - 7 standard-1 84.1 73.9 0.84 • broad fluctuations throughout test period. • not stable when test terminated at 343 days. standard-2 68.1 60.0 0.85 • relatively stable when test terminated at 328 days. tall 57.9 53.1 0.88 • relatively stable after approximately 250 days. shaken 34.9 41.7 1.15 • decreased until day 145 (17 mg/kg/wk), increased until day 207, then stabilized after approximately 250 days. 62 Figure 16: Sulfate production overtime from standard, tall and shaken cells containing sample ABA-3 (feldspar porphyry with 5% pyrite). 0 0 50 100 150 200 250 300 350 100 T 90 • 80 -a 70 -E 60 -m 50 -a. 40 -30 -1 20 -10 -0 -c 100 i 350 350 50 100 150 200 Time (days) 250 300 350 Figure 17: Sulfate production overtime from standard, non-aerated, tall and shaken cells containing sample HC-1 (feldspar porphyry with 5% pyrite, 3% pyrrhotite). Figure 18: Sulfate production overtime from standard, tall and shaken cells containing sample ABA-2 (feldspar porphyry with 7% pyrrhotite). 65 100 Ostandard-1 • standard-2 ABA-3 5% pyrite 2.0 3 w S 1.5 O ) S + p • standard-1 • standard-2 •tall • shaken Sulfate Production Rates HC-1 5% pyrite, 3% pyrrhotite Molar Ratios rCa+Mg]/[SOJ ABA-3 HC-1 ABA-2 7% pyrrhotite ABA-2 16 i 1 2 - H c o o i— V •a 3 o • standard-1 • standard-2 III tali shaken Average Gravimetric Water Content ABA-3 HC-1 ABA-2 Figure 19: Sulfate production rate, molar ratio and gravimetric water content from standard, non-aerated, tall and shaken cells containing feldspar porphyry samples ABA-3, HC-1 and ABA-2. 66 rich samples, A B A - 3 and H C - 1 , and the lowest sulfate production rate for the pyrrhotite-rich sample, A B A - 2 . The trickle-leach cells containing feldspar porphyry returned the lowest carbonate molar ratios from the most reactive sample, A B A - 2 . The tall cell returned a carbonate molar ratio slightly lower than the standard cells for samples A B A - 3 and HC-1 but a similar ratio for sample A B A - 2 . The average gravimetric water content is an average of all moisture measurements taken at the end of each dry cycle and wet cycle. There does not appear to be a consistent correlation between reaction rates and overall moisture content for the three feldspar porphyry samples. Examination of the weekly moisture data (Appendix 4) shows that extreme moisture loss during a cycle does not invoke an immediate increase in sulfate production. However, the highly reactive sample A B A - 2 does indicate an increase of sulfate production with increasing moisture loss. The tall cells were found to retain a greater amount of moisture than the standard and shaken cells on a week-to week basis. The moisture content of all the standard and shaken cells fluctuated throughout the testing while for the tall cells it remained comparatively steady. A l l the sediment samples produced acidic leachate during testing. A leachate p H consistently below 6.5 has been chosen as the point of acidity for this study since the sediment samples recorded sharp p H decreases at about this value. Reaction rates of the sediment samples were determined using two methods. One method involved averaging the rates from week 6 to the week at which p H < 6.5 was reached. This method eliminated the results from the initial five weeks, which released high concentrations of sulfate, calcium and magnesium due to the dissolution of highly reactive grains (Price et al., 1997) and/or the storage of oxidation products created prior to testing. The second method involved averaging the rates for the five cycles 67 previous to the week at which p H < 6.5 was reached. Examination of the sulfate production rates for the trickle-leach cells revealed that they differed early in the testing but were relatively similar just before p H < 6.5. For this reason, the latter method was deemed most appropriate for providing long-term reaction rates that could be used for scaling up the results. Since the reaction rates of the sediment samples prior to p H < 6.5 are dependent upon the method used to determine the rates, only general observations are made from these tests. A summary of reaction rates and carbonate molar ratios of the sedimentary samples, averaged for the last five available cycles prior to the point of acidity, are presented in Table 8. Table 8: Summary of standard, tall and shaken cell results for sedimentary samples. NP s o 4 NP Pyrite Pyrrh. Sulfide (kg CaCCV Cell Days to prod'n depl'n Molar Sample (%) (%) (%) tonne) type pH <6.5 (mg/kg/wk) ratio HC-2 2 3 3.95 11.9 standard 201 47.7 54.5 1.08 tall 208 67.2 59.0 0.85 shaken 292 52.5 47.9 0.87 ABA-1 0 7 4.48 36.3 standard-1 194 114 132 1.12 standard-2 138 123 142 1.10 tall 181 132 154 1.18 shaken 250 86.8 78.3 0.87 The shaken cells had the longest time to acidity for both sedimentary samples and returned low sulfate and N P rates. For the pyrrhotite-rich sample A B A - 1 , the shaken cell returned the lowest sulfate production rate and became acidic after 250 days while the trickle-leach cells only required 138 to 194 days. For sample H C - 2 , the shaken cell became acidic after 292 days while the trickle-leach cells only required 201 to 208 days. The patterns of sulfate production for the shaken cells containing sedimentary samples are similar to the shaken cells with feldspar 68 porphyry since they slowly decreased then slowly. The rates of weathering for the sedimentary samples do not appear to have a clear correlation with the time to acidity. Although the shaken cell containing sample A B A - 1 had the lowest sulfate production rate and longest time to acidity, the two standard cells had relatively similar sulfate production rates and differed in time to acidity by two months. It should be noted that the sulfate production rate is dependant upon the method used to calculate the rate prior to acidity, and that the time to acidity is dependant upon the p H used to represent acidic leachate. 5.1.2 Discussion The standard, tall and shaken humidity cells returned weathering rates that were dependent upon the operating conditions and test protocol. The rate of calcium release for all the samples at any time correlates to the rate of sulfate production. It is considered that the volume of acid produced directly influenced the dissolution rate of the carbonate and Ca-bearing silicates. Since the rate of N P depletion is dependent on the rate of sulfide oxidation for the samples tested, only the influence of test protocol on the rate of sulfide oxidation is discussed. The amount of sulfate released from humidity cells on a weekly basis can vary due to changes in the rate of sulfide oxidation and the influence of precipitation. The rate of sulfide oxidation within humidity cells may fluctuate due to changes in oxygen diffusion, ionic concentrations, bacteria-catalyzed oxidation, and the formation of micro-environments. The oxygen diffusion rate may increase during the dry air portion of the cycle in comparison to the wet air portion of the cycle. The rate of oxygen diffusion in water is 2.5 x 10"5 cm 2/s at 25°C (Perry and Chilton, 1973), which is five orders of magnitude less than in air. For this reason, 69 moisture content and tortuosity of air-filled pore spaces is an important factor in the rate of oxygen diffusion (Nicholson et a l , 1989). Variations in the supply of oxygen, to the exposed sulfide surfaces during the course of a cycle, may alter the abiotic rate of sulfide oxidation. The ionic concentration of pore water during the dry air portion of the cycle wi l l increase as water evaporates and thereby increase the rate of precipitation. The rate of sulfide oxidation may be influenced by precipitation since a buildup of precipitate can slow the rate at which reactants reach sulfide surfaces (Nicholson et a l , 1990). Bacteria-catalyzed oxidation of the sulfides may also vary during the course of a humidity cell cycle due to changes in the moisture content and pore water acidity. Moisture enhances the biotic oxidation of sulfides by promoting the diffusion of weathering products (e.g. resolubilized precipitation products) and metabolic byproducts (e.g. ferric iron) between the microbes and the substrate (White and Sorini, 1997). The biotic oxidation rate wi l l accelerate with an increase of the pore water acidity (Arkesteyn, 1980). Micro-environments can form, in part, by the non-uniform distribution of sulfide and neutralizing minerals. Locations having a high concentration of sulfide minerals and low concentration of neutralizing minerals w i l l generate acid that is not readily neutralized. The increased acidity w i l l promote biotic oxidation of the sulfides. Micro-environments promoting biotic sulfide oxidation are also theorized to develop within fractures and cleavage planes of sulfide minerals (Robertson, 1999). Acidity may be shielded from neutralization within these narrow sulfide locations due to a chemical gradient. Precipitation can create apparent fluctuations in the rate of sulfide oxidation. The retention of 70 sulfate as a secondary mineral precipitate wi l l decrease the rate of sulfate release. Re-release of sulfate and iron would require minor changes to the water chemistry since the common hydrated iron-sulfate minerals are highly soluble (Nordstrom, 1982; Cravotta, 1994). Pratt et al. (1994) suggested that precipitation could also spall from a particle surface during the dry air cycle i f allowed to dehydrate. The irregular supply of moisture to a humidity cell during a weekly cycle would be conducive to the formation and release of precipitation. 5.1.2.1 Tall vs. Standard Cells The patterns of sulfate production as a function of time for the tall cells were relatively smooth and approached stabilization early in comparison to the standard cells. This smooth pattern is attributed to the moisture content in the tall cells being higher than the standard cells for all three samples. The high percentage of moisture retained by the tall cells may have controlled the rate of oxygen diffusion to the dissolved ferrous iron and exposed sulfide surfaces thereby smoothing the patterns of oxidation. A consistently high moisture content would also dampen changes to biotic sulfide oxidation and ionic concentration. A steady rate of biotic sulfide oxidation, in conjunction with a steady ionic concentration that could influence the amount of precipitate formed and dissolved, may have resulted in the relatively stable sulfide oxidation rates that were achieved early in the test period. The tall cell was supplied with 500 m L of rinse water, the same rinse water volume of the standard cell, but contained 3 kg of sample in comparison to the 1 kg mass of the standard cell sample. This difference in the water to solid ratio resulted in leachate conductivity 2 to 3 times greater than the standard cell and suggests that the pore water may have had a higher ionic concentration following each leach. A higher concentration of ions may have caused the tall 71 cells to operate with a greater mass of precipitation than the standard cells. If precipitation controls the rate at which reactants are reaching sulfide surfaces, a consistent rate of sulfide oxidation may result. The increase of sulfide oxidation rates with moisture loss for pyrrhotite-rich A B A - 2 suggests that highly reactive samples are more sensitive to the operating conditions of kinetic tests. A high moisture loss for this sample may have increased the rate of oxygen diffusion to sulfide surfaces thereby increasing sulfide oxidation. The pore water concentration of ferrous iron for this sample, already high in comparison to the other feldspar porphyry samples, would be increased by a high moisture loss. A high ferrous iron concentration would increase the amount of ferrous iron at the water-air interface and possibly increase the rate at which it oxidized to the ferric form. 5.1.2.2 Trickle-leach vs. Shaken Cells The sulfide oxidation rate initially fluctuated for the trickle-leach cells but slowly decreased then increased for the shaken cells. The smooth changes to the rate of sulfide oxidation from the shaken cells relative to the trickle-leach cells may be due to a reduced influence of precipitation on sulfate release. The shaken cell methodology ensured that sulfate and other reaction products created during a cycle were thoroughly rinsed. However, the trickle-leach cells released a greater cumulative amount of sulfate than the shaken cells suggesting that the rates of sulfide oxidation were different for the two cell types. The variation in oxidation rates is attributed to the formation of micro-environments. The establishment of micro-environments is considered to occur early within trickle-leach cells 72 and to be hindered by the continuous particle disturbance of the shaken method. In addition to the delayed formation of micro-environments, the diffusion of oxygen may have been a factor in the patterns of oxidation. The fine material on the bottom of the shaken cells would hold water tenaciously and thereby decrease the rate of oxygen diffusion to a high percentage of the dissolved ferrous iron and exposed sulfide surfaces. The oxidizing environment within the accumulated fines of the shaken cells would be conceivably quite different from the well-mixed samples of the trickle-leach cells. Due to the high surface area of the segregated fine fraction, a minor change in the oxidation environment here may be capable of significantly influencing the rate of sulfide oxidation. The fine material of the shaken cells may have a concentration of liberated sulfide minerals (Lapakko, 1994b, Price and Kwong, 1997). The oxidation of fine material that is high in sulfides may affect the oxidizing environment by generating high concentrations of H + and F e 3 + that, in turn, affects the bacterial catalysis of sulfide oxidation. For the two pyritic samples, the shaken cells may have eventually formed oxidation conditions in the fine material that resulted in greater oxidation rates than those of the trickle-leach cells. For the pyrrhotite sample, the low oxidation rate of the shaken cell suggests that pyrrhotite oxidation is more sensitive than pyrite to the retention of reaction products ( H + and Fe 3 + ) and/or the supply of oxygen. The shaken cells containing sedimentary samples required a longer period of time to reach acidity (pH < 6.5) than the trickle-leach cells and returned low rates of oxidation and neutralization. If the onset of acidity for the sedimentary samples occurs when an increasing rate of acid generation exceeds the dissolution rate of N P minerals, the slow sulfide oxidation rate of the shaken cells may have delayed acidity. Another possibility is that acidity occurred for these 73 samples when the neutralization rate decreased, possibly due to a buildup of precipitated secondary minerals on the exposed surfaces of neutralizing minerals. In this instance, the slower creation of reaction products by the shaken method and their continuous removal would also delay the onset of acidity. The trickle-leach and shaken cell results show that an attempt to measure weathering rates more precisely can, in some cases, drastically influence the processes being measured. The shaken cell dramatically altered the distribution of fine material by allowing it to accumulate on the cell bottom and produced results that are difficult to interpret. Simply flooding and draining a sample without agitation can also alter the distribution of fines unless the rinse water is added and drained extremely slowly (White, 1997). Trickle leaching allows the rate of weathering to be influenced to a greater degree by the micro-environments that become established. 5.2 Non-aerated Cell 5.2.1 Results Sulfate production rates for the non-aerated cell (sample HC-1) and the other trickle-leach cells are presented in Figure 17. Results of the non-aerated cell are plotted in Appendix 4 and are tabulated in Appendix 11. The non-aerated cell returned a final sulfate production rate very similar to the standard cell at 56 and 58 mg/kg/wk, respectively. The sulfate production rate decreased relatively smoothly for the first 100 days then stabilized after only 200 days. The cumulative sulfate production of the non-aerated cell at 260 days was 1960 mg/kg, which is significantly lower than the production for the standard, tall and shaken cells that ranged from 2500 to 2570 mg/kg. 74 5.2.2 Discussion The rate of sulfide oxidation for the non-aerated cell slowly decreased and then increased in a manner very similar to the rate for the shaken cell. The low amount of cumulative sulfate production by the non-aerated cell in comparison to the other trickle-leach cells suggests that the rate of sulfide oxidation was initially retarded. The slow oxidation rate is attributed to the high moisture content of the non-aerated cell that would hinder the transfer of oxygen to the dissolved ferrous iron and sulfide surfaces for oxidation. Since the final oxidation rate is similar to the trickle-leach cells, any influence of high moisture on the availability of oxygen for ferrous iron and sulfide oxidation was only temporary. A s suggested for the tall cells, the high moisture content may have decreased the influence of precipitation on sulfate release and resulted in the relatively stable sulfide oxidation rates that were achieved early in the test period. The non-aerated test results suggest that keeping the moisture content high and constant wi l l quickly lead to a stable oxidation rate not different from a rate determined over long periods using dry/wet cycles. This finding indicates that eliminating the dry and wet air flow of a trickle-leach cell may result in more reliable reaction rates being returned in a shorter period of time. Verification of this test result is required, especially with highly reactive pyrrhotite-rich samples. 5.3 Simulated Precipitation Cells 5.3.1 Results Graphic comparisons of the simulated precipitation cell results are presented in Appendix 5. The results of these six cells that contained sample HC-1 are tabulated in Appendix 12. Since low 75 volumes of flush water were used for these tests, the term sulfate release rate is used rather than sulfate production rate. The air supply to the cells was turned off two weeks prior to the simulated precipitation leaching. Sulfate release over time from the simulated precipitation cells are shown in Figure 20 and the molar ratio over time from these cells are shown in Figure 21. The average sulfate production rate of the HC-1 standard humidity cell using the last five available cycles is shown on the plots to assist with comparison of the results. The first leach of the simulated precipitation, starting with a 0.5 week leach frequency, produced low rates of sulfate release for the 50-mL and 100-mL cells was seen to decrease while the trend for the 500-mL cell increased. Eight leaches in total were applied during the 0.5-week leach frequency. The sulfate release for the 50-mL and 100-mL cells slowly moved towards stabilization during this period with the 50-mL cells having the least dramatic fluctuations. Although the sulfate release rates appeared to be stabilizing about the standard humidity cell sulfate production rate of 58 mg/kg/wk, the 0.5-week leach frequency was not maintained long enough to confirm this. The carbonate molar ratio for the 50-mL and 100-mL cells during the 0.5-week leach frequency appeared to be unchanged from previous weeks whereas it steadily increased for the 500-mL cell. The final carbonate molar ratio recorded for the 500-mL cell at the 0.5-week leach frequency was 1.5. 76 0 50 100 150 200 250 300 0 | 1 1 1 1 h — 1 0 50 100 150 200 250 300 Time (days) Figure 20: Sulfate release overtime from simulated precipitation cells containing sample HC-1. 77 50ml/1 hr SO ml/24 hrs 0.5 wk 2 wk decreasing leach frequency 250 300 2.0 standard cells 3 and 4 500 ml /1 hr 100 ml /1 hr -100 ml/24 hrs 300 2.0 Q.O standard cells 5 and 6 500 ml /1 hr Note: all cells were supplied with 3 days dry air and 3 days wet air between weekly leaches for initial 215 days. 50 100 150 Time (days) -O— 500 ml M hr -•—control decreasing leach frequency 200 250 300 Figure 21: Molar ratio over time from simulated precipitation cells containing sample HC-1. 78 The 1-week leach frequency used for the 50-mL and 100-mL cells caused the sulfate release to decrease sharply for the initial leach then it steadily increased. It is unclear whether the rate of sulfate release would have stabilized at a similar value for these cells i f this frequency were maintained. For the 50-mL cells, the 24-hour leach increased the rate of sulfate release in comparison to the 1-hour leach. The carbonate molar ratio for the 50-mL and 100-mL cells became relatively stable at 1.0. The 24-hr leach created greater fluctuations in the carbonate molar ratio than was seen with the 1 -hr leach. Switching to a 2-week leach frequency elicited a sharp decrease in sulfate release for the 50, 100 and 500-mL cells. The 50 and 100-mL cells had two leaches at the 2-week frequency while the 500-mL cell had four. The four 50 and 100-mL cells all increased their sulfate release by the second leach with the 24-hour leaches releasing the highest amount of sulfate. The leachate conductivity of the 100-mL cells became greater than 1000 pS/cm during this leach frequency, the same conductivity as the 50-mL cells when leach duration began influencing sulfate release rates. The 500-mL cell appears to have a relatively stable sulfate release rate at 40 mg/kg/wk. The carbonate molar ratios for all the cells are relatively stable at 1.0 for this leach frequency. The control cell, which was maintained with a weekly 500-mL trickle leach, had a relatively stable sulfate release rate at 61 mg/kg/wk when terminated. This rate is comparable to the standard humidity cell sulfate production rate for sample HC-1 at 58 mg/kg/wk. The carbonate molar ratio of the control cell was relatively stable at 1.0. 5.3.2 Discussion The sulfate release rates for the simulated precipitation cells did not become stable at any time, 79 except during the 2-week leach frequency for the 500-mL cell. The carbonate molar ratios were relatively stable with repeated leaches at each leach frequency except for the 500-mL cell during the 0.5-week leach frequency. Despite the lack of steady sulfate release rates, certain patterns are apparent and provide insights into the influences of leach volume, duration and frequency. The sharp decrease in sulfate release for the 50 and 100-mL cells when the rinse water volume was initially decreased is explained by the influence of rinse water volume on pore water sulfate concentrations. The volume of pore water within the simulated precipitation cells between leaches was approximately 100 mL. Assuming the pore water completely mixes with the applied rinse water, a 50-mL leach would only remove one third of the solutes while a 100-mL leach would remove one half. A smaller dilution of pore water may also explain the initial decrease in sulfate release from all the simulated precipitation cells when the leach frequency was reduced. A decrease in leach frequency translates to a lower weekly volume of rinse water being applied and therefore a smaller dilution of the pore water. Despite the volume of rinse water used during the 0.5 and 1-week leach frequency, all the cells appear to eventually return a sulfate release rate similar to the rate for the standard trickle-leach humidity cells. It is considered that maintaining a constant pore water volume, using a consistent volume of rinse water, and leaching with a regular frequency wi l l establish a constant oxidizing environment within the cell. For all the cells, changing the leach volume and/or frequency may have influenced the pore water chemistry and precipitation thus disrupting the established oxidizing environment. The results suggest that regular leaching of the HC-1 sample, at least once a week, w i l l release an amount of sulfate approximately equal to the amount of sulfate produced for a wide range of leach volumes. 80 The 2-week leach frequency affected the sulfate release rate of the 500-mL cell in that it became lower than the average sulfate production rates for the HC-1 trickle-leach humidity cells. Previous studies (Day et a l , 1997; Soregaroli and Lawrence, 1998) have also shown that the release of reaction products w i l l decrease as the time between leaches increases. Saturation of the 500-mL of rinse water is not considered to have caused excessive precipitation to occur since the 50-mL and 100-mL cells removed an equal amount of sulfate during the same leach frequency of two weeks. A possible factor in the low sulfate release rates may be slow precipitation kinetics that may benefit from the longer time between flushes and enhance precipitation. Another factor may be a decrease in the solubility of secondary mineral precipitates with time. For example, freshly precipitated amorphous Fe(OH)3 wi l l recrystallize with time towards more stable phases (see review by Murray (1979)) and become more resistant to removal (Langmuir and Whittemore, 1971; Whittemore and Langmuir, 1975). A n increase in retained precipitation from either of these factors could also decrease the oxidation rate by removing ferrous and ferric iron from solution and by acting as a barrier between reactants. A n extended leach duration apparently aids the dissolution of precipitates since the 24-hour leaches removed more sulfate than the 1-hour leaches during the 2-week leach frequency. There was a minor increase of sulfate removal with increased leach duration for the 50-mL cells that was not seen for the 100-mL cells during the 1-week leach frequency. The 24-hr leach may have prolonged convection at the mineral surfaces thereby enhancing the transport of ions from the secondary minerals. It is noteworthy that leach duration began influencing the rate of sulfate release for the 50 and 100-mL cells only once the leachate water conductivity reached ~ 1000 pS/cm. It is uncertain whether this conductivity marks the occurrence of significant precipitation or i f the ionic concentration of the pore water influenced the rate of secondary mineral 81 dissolution. The application of a mineral-equilibrium model such as M I N T E Q (Allison et al., 1990) may help resolve this. The leach frequencies of 1 and 2-weeks were discontinued too early to determine i f the 1 and 24-hr duration would have returned different release rates in the long-term. The influence of leach volume on the neutralization of generated acid was quite apparent with the 500-mL cell during the 0.5-week leach frequency. The high volume of water (1 litre a week) increased the rate of neutralization depletion past the rate of all the other trickle-leach cells. It was previously concluded for this sample that the rate of N P depletion was controlled by the rate of acid generation (similarity of sulfate and N P depletion patterns). The high carbonate molar ratio of 1.5 suggests that a high flush volume can dissolve a greater amount of carbonate minerals than the acid from sulfide oxidation, and therefore control the rate of N P depletion. The non-aerated method that was used for the simulated precipitation cells was successful in returning similar rate patterns from cells having a similar leach volume and frequency. The patterns of sulfate release for the two 50-mL cells were virtually identical for the 0.5-week leach frequency, as were the two 100-mL cells for the 0.5 and 1-week leach frequencies. These comparative patterns show that a non-aerated cell can provide results that are easier to reproduce than the standard humidity cell. 5.4 50-kg Cells 5.4.1 Results Stacked profiles of pH, conductivity, sulfate production, carbonate molar ratio and leachate volume over time is shown for the HC-1 50-kg cell in Figure 22 and for the HC-2 50-kg cell in 82 Figure 23. The results of the HC-1 and HC-2 50-kg cells are tabulated in Appendix 13. To compare the weathering rates of the 50-kg samples to the 1-kg samples, units are reported on a surface area basis (mg/m /wk). Conversion to the surface area units was calculated using the specific surface areas reported in Table 3, and the formula presented in Section 4.4. The sample size and grain size distribution of the 50-kg cells prevented them from being operated under similar conditions as the smaller humidity cells. The airflow from the 50-kg cells was maintained at approximately 0.5 L/min, the same rate as the smaller humidity cells. Due to the volume of rock and the high amount of moisture contained, the air pressure had to be high to maintain this airflow rate throughout the week. Since changes to moisture content were not measured, the typical amount of moisture lost during the dry cycle is unknown. The volume of rinse water applied weekly was 500 m L and the typical volume of leachate recovered was greater than 500 mL. The humid air cycle was therefore adding excessive moisture to the cells, an operating condition that never occurred with the standard humidity cells. The typical leachate volume became less than the rinse water volume once the dry/wet air cycle was discontinued at 221 days. Leachate drained from the cells throughout the week with approximately 70 to 75% of the total volume being released in the first 24 hours. The feldspar porphyry (HC-1) drained the fastest with approximately 95% of the total leachate volume being released by day 5 in comparison to the sedimentary sample (HC-2) releasing approximately 90%. The sulfate production rates of the two 50-kg samples were very similar throughout the test period. These two samples also returned comparable sulfate production rates to the standard humidity cells suggesting that the operating conditions of the two 50-kg cells were similar. 83 p H a n d C o n d u c t i v i t y 2500 S u l f a t e P r o d u c t i o n R a t e 50 j" 20 mg/m2/wk is the average sulfate rate from last 5 cycles of standard HC-1 cell. non-aerated 100 150 200 250 300 M o l a r R a t i o 300 R e c o v e r e d L e a c h a t e V o l u m e weekly dry/Wet air cycle 50 100 150 Time (days) 200 250 300 Figure 22: pH, conductivity, sulfate production, molar ratio, and recovered leachate volume overtime from 50-kg cell containing feldspar porphyry sample HC-1. 3 60 I 50 -40 --2 30 re t 20 % 10 0 50 p H a n d C o n d u c t i v i t y 100 150 200 S u l f a t e P r o d u c t i o n R a t e 250 18 mg/nrr/wk is the average sulfate rate from the two standard HC-2 cells (5 cycles prior to acidity). 50 non-aerated 100 150 200 250 300 M o l a r R a t i o 300 R e c o v e r e d L e a c h V o l u m e 300 Figure 23: pH, conductivity, sulfate production, molar ratio, and recovered leachate volume overtime from 50-kg cell containing sedimentary sample HC-2. 85 The 50-kg cell containing feldspar porphyry sample HC-1 produced neutral leachate throughout the test period. During the dry/wet air cycles, the sulfate production fluctuated between 30 and 40 mg/m /wk while the carbonate molar ratio slowly decreased. Once the air was turned off, the rate of sulfate production decreased and the carbonate molar ratio became steady. The final 5-cycle average of sulfate production was 23 mg/m 2/wk, which is comparable to the standard cell rate of 20 mg/m /wk. The final 5-cycle average of the carbonate molar ratio was 0.97, greater than the average trickle-leach carbonate molar ratio of 0.88. The average sulfate production rate of the HC-2 50-kg cell for the five cycles prior to acidity was 39 mg/m /wk in comparison to the 18 mg/m /wk returned from the standard cell. Despite the higher sulfate production, the H C - 2 50-kg sedimentary sample took 221 days to reach acidity whereas the standard and tall trickle-leach cells required only 201 and 208 days respectively. The carbonate molar ratio steadily decreased during this time to 0.84. Once acidic leachate was produced, the dry/wet air cycles were discontinued and the sulfate production rate decreased. The final (post-acidity) 5-cycle average of sulfate production from the 50-kg cell after 313 days was 19 mg/m /wk and the carbonate molar ratio was 0.87. A concern for the 50-kg cells was that the low volume of flush water applied weekly would extend the time required to remove the initial concentrations of sulfate, calcium and magnesium. High concentrations of these ions are common during the first 3-5 weeks of standard humidity cell testing. Delaying their release would artificially elevate the rates of sulfate production and N P depletion. The initial concentration peak was either due to the high reactivity of newly exposed minerals and/or weathering products formed prior to the test due. Newly exposed minerals can be highly reactive due to irregularities on the crystal faces. Crystal irregularities are 86 favourable sites for mineral dissolution since the ions and atoms are not completely surrounded by other crystal units and have a lower binding energy to the crystal surface (Zhang and Nancollas, 1990). If the concentration peak is due to the high reactivity of fresh mineral surfaces, the released reaction products from the 50-kg cells should be similar to the smaller cells when compared on a surface area basis. The cumulative release of sulfate for the first 5 weeks of testing for all the cells, on a mass and surface area basis, are presented in Table 9. Table 9: Cumulative sulfate release at five weeks for samples HC-1 and HC-2 . Sulfate assay Contained sulfate Cumulative sulfate released at 5 weeks Sample (%) Cell type (mg) (mg/kg) (mg/m2) HC-1 0.02 standard 200 822 282 tall 600 757 259 shaken 200 1039 356 50-kg 10,000 192 384 HC-2 0.02 standard 200 786 302 tall 600 873 336 shaken 200 1142 439 50-kg 10,000 188 427 The 50-kg cells released far less sulfate than the 1 to 3-kg cells despite containing more quantitatively. The contained sulfate is therefore not occurring as readily soluble sulfate salts produced by weathering prior to comminution. The sulfate is most likely present as known Red Mountain minerals such as barite (Morin and Hutt, 1996) and gypsum (Rhys et a l , 1995). These minerals would represent a negligible source of sulfate compared to oxidizing sulfides and would not significantly increase the sulfate production rate. A n examination of the cumulative sulfate released during the initial 5 weeks on a surface area basis reveals that release from the 50-kg cells is comparable to the smaller cells. The similar release of sulfate on a surface area basis 87 suggests that highly reactive fines were responsible for the initial concentration peaks. 5.4.2 Discussion The 50-kg cells were originally supplied with dry/wet air cycles to create an operating condition similar to the standard humidity cells. Conditions were dissimilar however with the 50-kg cells expelling a volume of leachate greater than the volume of rinse water applied. Turning off the air to the 50-kg cells created an operating condition much easier to duplicate on a weekly basis, as was previously shown by the simulated precipitation cells. The HC-1 50-kg cell and non-aerated cell returned comparable sulfide oxidation rates when reported on a surface area basis, which is attributed to the similar operating conditions. It is possible that turning off the air supply did not significantly decrease sulfide oxidation but the decreased flush volume limited the sulfate release. Certainly repeating the experiment with a greater volume of rinse water would help differentiate sulfate production from sulfate release. The rate of sulfide oxidation for each of the 50-kg cells when supplied with dry/wet cycles is almost twice the rate returned from the respective 1-kg humidity cells. If the excess moisture gained during the wet cycle was kept in a state of flux, by capillarity or gravity, precipitation may have been removed as efficiently as a long-duration leach. A kinetic test study by Day et al. (1997) found that humidity cell sulfate release rates were greater from a continuous trickle leach than a weekly flood method. The continuous movement of pore water from the trickle leach method may help remove weathering products and ensure fresh sulfide surfaces for oxidation. The movement of pore water may also increase the rate of sulfide oxidation by continually moving ferrous iron to the water-air interface to be oxidized to the ferric form, then returning the ferric iron to the exposed sulfide surfaces. The non-oxidative dissolution of pyrrhotite, shown by 88 Janzen et al. (1997) to be a significant contributor of ferrous iron release, may also be enhanced by pore water convection. A major influence on the rate of sulfide oxidation for the 50-kg cells is thought to be the distribution of sulfide and neutralizing minerals. The mineral distribution for the 50-kg samples is expected to be much less homogeneous than for the finer grained (-%") samples. Therefore, these coarser samples may have a higher number of micro-environments that are greater in size. Bacterial catalysis of sulfide oxidation within these micro-environments is considered to be increased by dry/wet air cycles. This conclusion is based on the comparison of moisture content and sulfate production rates for the HC-1 standard, tall and shaken humidity cells. For these cells, it appeared unlikely that manipulating the airflow or humidity could have doubled the rate of sulfate production. Solely leaching the 50-kg cells once a week and maintaining a high moisture content apparently negates the influence of micro-environments. Measuring specific surface area by using geometric estimates is not as direct a method as the B E T analysis, which uses an adsorptive gas. The B E T analysis has been shown to return greater specific surface areas than estimated geometrically because of irregularities that occur on the particle surfaces (Parks, 1990; Janzen et a l , 1997). The study of pyrrhotite by Janzen et al. (1997) found that a given grain size has one kind of surface irregularity that dominates and affects the specific surface area. The study also concluded that the specific surface area of pyrrhotite may change with different size reduction methods. The geometric estimates of surface area for the HC-1 sample proved useful in normalizing the sulfate production rates and scaling up the results. A direct surface area measurement may be more critical when scaling up laboratory reaction rates to field conditions since the fine particles wi l l be created by a different method 89 (i.e., blasting versus crushing and grinding). 5.5 NP Columns 5.5.1 Results Results from the N P columns are graphically compared to the standard, tall and shaken cells in Appendix 6. The N P column results are tabulated in Appendix 14. The two sedimentary columns produced acidic leachate (pH < 6.5) during the test period while the leachate from the three feldspar porphyry samples remained neutral. A l l the columns were observed to have precipitation fronts that steadily progressed towards the bottom of the columns as the tests continued (Figure 24). The material above the precipitation front was orange-brown in colour while the material below it had small orange-brown patches occurring locally. For the sedimentary columns, the leachate p H dropped below 6.5 once the precipitation front was observed to reach the bottom of the column. The three feldspar porphyry columns were not operated to the desired endpoint of p H < 6.5. To estimate the results of these column tests had they been operated to a p H < 6.5, observations from the sedimentary columns were considered. It was assumed that the leachate from the feldspar porphyry columns would have a p H of 6.5 once the precipitation front reached the column bottom. To apply this assumption, the distance from the top of the sample to the oxidation front was measured. It was estimated that 42% of sample A B A - 3 , 43% of HC-1 and 25% of A B A - 2 had iron oxide precipitate. The time required for the precipitation front to reach the column bottom was then calculated and the reaction rates, which were all relatively steady, were extrapolated to this point in'time. The resultant estimates of the % sulfide and % N P that would Figure 24: N P columns showing precipitation fronts of the samples HC-1 , HC-2 , A B A - 1 , A B A - 2 , and A B A - 3 from left to right. 91 have been depleted i f the tests were operated until leachate pH < 6.5 are presented in Table 10. Table 10: % sulfide and % N P depleted at the point of leachate p H < 6.5 for N P columns. Depletion at point of pH < 6.5 Sulfide NP Rock type Sample (%) (%) feldspar porphyry ABA-3 5.9* 86* HC-1 3.0* 47* ABA-2 4.3* 71* sedimentary HC-2 2.2 67 ABA-1 4.0 72 * estimated The HC-2 sedimentary sample with 3% pyrrhotite and 2% pyrite took 226 days to produce acidic leachate from a column while the A B A - 1 sedimentary sample with 7% pyrrhotite required 350 days. The percentage of sulfide sulfur and N P depleted at p H < 6.5 for the sedimentary columns as compared to the other cell types are shown in Figure 25. The amount of sulfate produced by the two sedimentary columns at the point of pH < 6.5, is very similar to the average humidity cell sulfate production for these samples. The HC-2 column produced 2,800 mg/kg of sulfate at the point of p H < 6.5, very similar to the average humidity cell sulfate production of 2,460 mg/kg. The total sulfate produced by the HC-2 column at p H < 6.5 is also similar to the sulfate produced by the HC-2 50-kg cell at this p H when reported on a surface area basis. The H C - 2 column produced 1,080 mg/m 2 of sulfate at p H < 6.5 as compared to the 1,200 mg/m of sulfate produced by the HC-2 50-kg cell. The A B A - 1 column produced 5,680 mg/kg of sulfate at the point of p H < 6.5, again similar to the average humidity cell sulfate production for this sample at 6,040 mg/kg. 92 • standard-2 • standard-1 • tall 0 shaken • NP Column % Sulfide Depleted at point pH consistantly below 6.5 3%po, 2%py, 1%sph HC-2 7%po ABA-1 100 80 0) I 60 a i Z 40 • standard-2 B standard-1 • tall B shaken • NP Column % NP Depleted at point pH consistantly below 6.5 3%po, 2%py, 1%sph HC-2 7%po ABA-1 HC-2 llllllllllllllilllllllllllMlililllllllllllllllllllill Time to Acidity at point pH consistantly below 6.5 ABA-1 lllllllllllllllliHIIIIllllllltlllllllllillllll m m m m m m m m m m m m m m m • standard-2 • standard-1 • tall • shaken • NPC 50 100 150 200 Time (days) 250 300 350 400 Figure 25: % sulfide depleted, % NP depleted and time to acidity from humidity cells and NP columns for sedimentary samples HC-2 and ABA-1. 93 The HC-2 column depleted a third as much N P as the A B A - 1 column. The cumulative N P depleted at the point of p H < 6.5 for the HC-2 column was 7,920 mg/kg as compared to the A B A - 1 column with 24,400 mg/kg of N P depleted. The same proportions are seen in the initial N P determinations with the HC-2 sample having a third as much N P as the A B A - 1 sample, at 11.9 kg C a C 0 3 / t and 36.3 kg CaC0 3 / t , respectively. 5.5.2 Discussion The column experiments succeeded in accelerating the N P depletion rates in relation to the humidity cells. Results show that the rate at which N P was depleted from the two sedimentary samples depended upon the amount of contained N P (i.e., the exposed surface area of neutralizing minerals) and the volume of acidified rinse water. It is assumed that the N P minerals were reasonably similar for the two sedimentary samples in respect to type, mode of occurrence and relative abundance. Unlike the humidity cells, the rate of sulfide oxidation did not appear to have an influence on the rate of N P depletion. When a sample contains more acid producing minerals than neutralizing minerals, it is predicted to become acidic once the available N P is depleted. For this reason, an estimate of available N P is typically used to predict when acid drainage wi l l occur for net-acid-containing samples. A s previously discussed (Section 2.4), the available N P has been tied to specific percentages (Ferguson and Morin , 1991; Rescan, 1992), specific amounts (Morin and Hutt, 1996, 1997) and by applying mineral reactivity factors to the contained neutralizing minerals (L i , 1997). However, the column tests containing sedimentary samples have a point of acidity best predicted by a cumulative sulfate production rather than N P depletion. This holds true regardless of the sulfate production rate, as evidenced by the various times taken by the cells to reach acidity. 94 A n explanation for the link between acidity and sulfate production is provided by the findings of Bradham and Caruccio (1990). They found that acidity is determined by the balance of acid and alkalic water production. Therefore, the rate of sulfide oxidation would have to increase or the rate of neutralization decrease for acidity to occur since the N P minerals were not depleted. It is possible that the accumulation of reaction products wi l l increase the rate of oxidation (e.g., standard versus shaken cell for sample A B A - 2 ) to a point where the alkalic water production is insufficient. Alternatively, the rate of oxidation could remain constant and a buildup of reaction products on the exposed surfaces of neutralizing minerals could decrease their rate of dissolution. Both of these scenarios permit the onset of acidity to be related back to a specific amount of oxidized sulfide. The results suggest that measurements of cumulative sulfate production (acid production) may provide a better estimate of time to acidity than N P depletion. 5.6 20-tonne (Field) Cells 5.6.1 Results Graphic comparisons of the two 20-tonne test results on a monthly basis are presented in Appendix 7. For each month of operation, the plotted parameters include daily averages of p H , conductivity, outflow, inflow (mm of precipitation * crib open surface area), internal temperature, and air temperature. The daily averages of water flow, p H , and conductivity are tabulated in Appendix 15 and the daily averages of internal temperature and air temperature are tabulated in Appendix 16. The chemistry of the collected water samples is tabulated in Appendix 17. A summary of the 1996 data showing pH, conductivity, carbonate molar ratio and water outflow is presented in Figure 26. Both of the cribs produced neutral drainage during the seasons that 95 3000 -2000 f 1000 o o C o n d u c t i v i t y • HC-1 (feldspar porphyry) —O—HC-2 (sedimentary) rarrrrrrTrtEa: 2.0 M o l a r R a t i o •HC-1 (feldspar porphyry) •HC-2 (sedimentary) Outflow Figure 26: pH, conductivity, molar ratio and outflow from June 13 to September 19, 1996 from the two 20-tonne (field) cells containing samples HC-1 and HC-2. 96 they were operational. The major increase of conductivity for the cribs in June of 1996 is attributed to the melting of internal ice and the displacement of distilled water used to submerse the probes. The first decrease in conductivity for the cribs occurs during the first week of July 1996 and follows two large storms that produced very little outflow. These decreases in conductivity correspond with an increase of internal temperature above 0°C suggesting that the continued melting of internal ice released blocked rainwater. The conductivity of the feldspar porphyry crib HC-1 is seen to decrease during major storm events. A general observation for this crib is that the conductivity remains unchanged or slightly decreases during the initial 40 to 70 L of outflow from a storm event before showing a noticeable decrease. The overall trend of conductivity for the sedimentary crib HC-2 gradually decreased from early July to September then became relatively stable. The conductivity of crib HC-2 also decreased during storm events but is only evident for the months of June and July and is more subtle than the HC-1 crib. A t the end of August, the conductivity decreased but did not correlate with a large outflow of water. The carbonate molar ratio had a similar pattern for both cribs. The initial water samples, taken on October 31 s t , 1995, returned a carbonate molar ratio of 0.58 for HC-1 and 0.57 for H C - 2 . The carbonate molar ratios of June 1996 are also quite low but increased during a large storm event in August 1996, measuring 1.23 for HC-1 and 1.27 for H C - 2 . The carbonate molar ratios of the final water samples, taken September 19 t h, 1996, are 0.94 for HC-1 and 0.84 for HC-2 . 97 5.6.1.1 Water Storage and Discharge When the tipping buckets were first installed on August 7, 1995, water was trickling from the HC-1 feldspar porphyry crib while the first outflow from the HC-2 sedimentary crib was recorded on September 10, 1995. Since the precipitation at the project site is similar to the Stewart Airport (Rescan, 1994), the rainfall prior to August 7 t h , 1995 was assumed to be equal to the Stewart Airport which corresponds to approximately 640 L of water volume for each crib. The close relationship between rainstorms and crib outflow is readily apparent by examining the daily inflow and outflow of the cribs in Appendix 7. A s the amount of water stored within each cell increased, the lag time between a storm event and the outflow of water became shorter. The feldspar porphyry crib HC-1 reached field capacity (saturation of fine material followed by free drainage that has practically ceased) during mid-July of 1996 since the measured volume of water entering this crib began to equal the volume of water flowing out. The degree of saturation (volume of water stored relative to the volume of voids) for crib HC-1 at field capacity is approximately 17% (Figure 27). This measurement of % saturation at field capacity for the HC-1 sample is in agreement with the data by Dawson and Morgenstern (1995) when plotted against the estimated HC-1 void ratio of 0.74 (Figure 28). The degree of saturation recorded for the H C -1 cell remained relatively constant from mid-July to mid-September suggesting that the amount of water lost to runoff, evaporation and/or leakage is insignificant. The sedimentary crib HC-2 was still storing water at the end of the test period with a final degree of saturation of 28%. Using the data by Dawson and Morgenstern (1995), and the estimated HC-2 void ratio of 0.53, field capacity should be reached for this crib when the degree of saturation reaches approximately 42%. 98 The measured amount of water entering the cribs from August 7 t h , 1995 to September 19 t h, 1996, is 2940 L . The stored water estimate for the HC-1 crib is 1620 litres and for the HC-2 crib is 2650 litres. From June 13 t h to September 19 t h, 1996, water was released from the HC-1 crib 77% of the days and from the HC-2 crib 62% of the days. 5.6.1.2 Estimate of Sulfate Production Rates The amount of sulfate released by each cell during the operating seasons was determined from the conductivity measurements as correlated with a best-fit line (Figure 29). A n average conductivity was calculated for each active day of each cell, then used to calculate daily sulfate concentrations. The daily sulfate concentration was then applied to the day's outflow volume to provide a daily sulfate release. The amount of sulfate released from August 7, 1995 to the end of the 1996 season, using conductivity, totaled 618 g for the HC-1 crib and 306 g for the HC-2 crib. These amounts do not represent the entire sulfate produced since sulfate is stored within the pore water and occurs as precipitate. To estimate the amount of pore water sulfate, the volume of stored water and an estimate of its sulfate concentration are required. Assuming the sulfate concentration of the stored water is equal to the final water sample, the pore water of the HC-1 crib contained 1310 g of sulfate and the HC-2 crib 2730 g. Not accounting for sulfate stored as precipitate, the average sulfate production rate' for the HC-1 crib during the two years of operation was 2.2 mg/m 2/wk for the HC-1 sample and 3.7 mg/m /wk for the HC-2 sample. These two 20-tonne sulfate production rates are an order of magnitude less than the HC-1 and HC-2 laboratory trickle-leach humidity cell rates at 19 mg/m /wk and 22 mg/m /wk, respectively. 99 20-tonne (Field) Cells water storage and release over time 400 300 HC-1 (feldspar porphyry) i, ioutflow (left scale) — • — degree of saturation (right scale) 0 > r o O l O ) 0 ) O j O } 0 } C p O ) 0 ) O T 0 ) Q _ C L C L C L 7 I " ( I " M T I C C "5 3 " 3 " 3 D J O J C 5 6) D ) Q - Q -O ) C O 3 3 3 < < < t i ^ ^ 3 < l ) 0 ) 0 > a ) i ; i ; i < i < 3 3 ^ ^ ^ ^ 3 3 3 3 3 ( l > a > a ) 40 30 c o re S S S O i f f l w o K s t f f l i l f f l O I ' J B O j f f l l J l S O C D C O O Q - Q - Q - Q . 3 3 3 3 a > a i a > < i ) < < < < : « > w w w o o o o O O O O 0 ) 0 ) 0 . 0 . 0 . 3 3 0> <D <D < < < < < W C 0 W Figure 27: Weekly water inflow, outflow and degree of saturation from August 7 to October 31, 1995 and from June 13 to September 19,1996 for the two 20-tonne (field) cells. 100 Figure 28: Void ratio versus % saturation at field capacity moisture contents (after Dawson and Morgenstern, 1995) with point locations of the 20-tonne (field) cell samples HC-1 and HC-2. 1500 101 5.6.1.3 Correction of Laboratory Sulfate Production Rates for Field Temperatures The internal temperatures of the cribs were recorded from November 1 s t, 1994 to August 7 t h , 1995 and from June 13 t h , 1996 to September 19 t h, 1996. Temperature changes within the HC-1 crib lagged behind the external air temperature by two to three days. The HC-2 crib temperature responded to air temperature changes slightly slower than the HC-1 crib. The maximum internal temperature was similar for both the cribs at 8.5°C. The collected crib temperature data for each year was separated into two periods; time during which the internal temperature was primarily above freezing and time when the internal temperature was primarily below freezing. A n average temperature was calculated for these periods and then used to estimate the missing data. The HC-1 crib had an estimated 435 days at -6.4 °C and 249 days at 2.0 °C. The HC-2 crib had an estimated 435 days at -6.3 °C and 249 days at 1.6 °C. The Arrhenius equation was used to correct the laboratory sulfide oxidation rates for the effect of field temperatures. This equation requires sulfide activation energies that are sensitive to pH. The activation energies used for pyrite at pH 7-8 is 88,000 J/mol (Nicholson et a l , 1988) and for pyrrhotite at p H 6 is 100,000 J/mol (Nicholson and Scharer, 1994). These values were averaged together for an activation energy of 94,000 J/mol since both samples, HC-1 and HC-2 , contain approximately 50% pyrite and 50% pyrrhotite. The predicted sulfate production rates of the 20-tonne cribs, based on the laboratory rates (average of trickle-leach rates) corrected by the Arrhenius equation, are presented in Table 11. These rates are approximately an order of magnitude smaller than the measured 20-tonne sulfate production rates. 102 Table 11: Sulfate production rates from laboratory (average of standard cell rates) corrected for field temperatures and from field for samples HC-1 and H C - 2 . Sulfate production rates Laboratory rates corrected for field temperatures pH 7 Ea pH 4 Ea Field Sample mg/m2/wk mg/m2/wk mg/m2/wk HC-1 0.26 1.6 2.2 HC-2 0.29 1.8 3.7 Although the water exiting from the cribs was consistently above p H 7, calculations using activation energies at p H 4 were also examined. At this p H , the activation energy for pyrite is 57,000 J/mol (McKibben and Barnes, 1986) and for pyrrhotite is 52,000 J/mol (Nicholson and Scharer, 1994). These activation energies, when averaged together, predicted a sulfate 2 2 production rate of 1.6 mg/m /wk for the HC-1 crib and 1.8 mg/m /wk for the HC-2 crib. These predictions are much closer to the measured rates for cribs HC-1 and HC-2 . 5.6.1.1 Predicted Time to Acidity for Field Cells The sulfate production rates may be used to predict the time to acidity as previously discussed for the N P columns. It is theorized that a specific amount of acid is produced prior to the onset of acidity. The cumulative amount of sulfate produced at the point of acidity (pH < 6.5) by the N P columns was 1860 mg/m 2 for HC-1 and 1020 mg/m 2 for H C - 2 . Applying the field rates of sulfate production, the predicted time to acidity for the HC-1 crib is 23 years and for the H C - 2 crib is 6 years. The rate of N P depletion, typically used for time to acidity, was based on estimates of the average carbonate molar ratio. The initial carbonate molar ratios may have been low due to the limited amount of water stored within the cribs during 1995. This low moisture content would hamper 103 the neutralization of acidic water forming on the surfaces of sulfide minerals. It is also possible that the pattern of the 1996 carbonate molar ratios, initially low then increasing to about unity, may reoccur every year due to a buildup of acidity during the months of non-flushing. A crude estimate of the carbonate molar ratio for each crib was performed by averaging the six measured ratios from 1996 (3 high and 3 low values). This method provided an average carbonate molar ratio of 0.81 for the HC-1 crib and 0.83 for the HC-2 crib, both of which are lower than the typical laboratory carbonate molar ratio. These ratios were then applied to the sulfate production rates to calculate N P depletion rates. Predictions of the time to acidity using the N P depletion rates (Table 12) are all significantly greater than those obtained from the sulfate production method. 5.6.2 Discussion The sulfide oxidation rates of the cribs during 1995 are expected to have been greater than the rates for 1996 due to changes in the moisture content. The 50-kg cells indicated that the oxidation rates of coarsely broken samples, such as used to f i l l the cribs, should decrease as the contained moisture increased. For the HC-1 cell, the operating condition is thought to have become similar to the laboratory non-aerated method when field capacity was reached. The H C -2 crib, although it did not reach field capacity, may have achieved uniform pore water chemistry at the end of 1996 since the conductivity began to stabilize. A difficult factor to estimate for the cribs is the amount of sulfate stored as secondary mineral precipitate. The minor amount of water released from the cribs during 1995 may have promoted an early accumulation of precipitation. The simulated precipitation tests indicated that flushing events of a long duration can help remove any stored precipitate. The removal of precipitation 104 would also be aided by the preferential flow of water through the fine-grained material during light rainfall as evidenced by Newman et al. (1997). Since the fine material of the cribs contains most of the oxidizing surface area, preferential water flow through the fines would help ensure an efficient flush of the reaction products. A study by Garvie et al. (1997) found that water infiltrating their waste pile dump would have to interact with all the oxidation sites to explain the measured oxygen and temperature profiles. It is therefore considered reasonable to assume that the amount of precipitate stored within the cribs is equal to the precipitate stored within the humidity cells on a surface area basis. The calculated sulfate production rate for sample HC-2 is twice as high as the rate calculated for sample H C - 1 . This difference in sulfate production rates from these two samples is at odds with the comparative sulfate rates for these samples at both the 1-kg and 50-kg sizes. A possible explanation for the dissimilar sulfate production rates in the field is an inaccurate estimate of the average pore water conductivity. Since the HC-2 field cell has a high water storage capacity, the calculation of the HC-2 sulfate production is very sensitive to the pore water conductivity estimate. Another possibility as to why the sedimentary sample appears to oxidize faster than the feldspar porphyry sample in the field but not in the laboratory is a variation in the oxidizing environments. The H C - 2 field sample released a minor amount of water and hence a minor amount of the reaction products produced. This limited flushing would increase the amount of ferric iron available within the HC-2 crib for sulfide oxidation in comparison to the HC-1 sample. The oxidizing environment within the HC-2 crib may also be influenced by the slow storage of water allowing pockets of fine material to remain under saturated. The results of the 105 50-kg cells indicate that sulfide oxidation is promoted within undersaturated conditions. Yet another possibility, for the discrepancy of sulfate production rates in the field, is differences in the exposed sulfide surface area. It was shown by Lapakko (1994b) that sulfide content can vary for a given grain size when comparing field to laboratory samples. Also, Janzen et al. (1997) found that the specific surface area of pyrrhotite for a given grain size can change with different size reduction methods, therefore blasting versus mechanical crushing of the soft sedimentary sample may have affected the reactivity of pyrrhotite. Operating the cribs for a longer period, sulfur assays of the various size fractions, and measuring specific surface area by B E T analysis would have certainly helped to determine the relative importance of the factors discussed. The sulfate production rates calculated for the two cribs, on a surface area basis, are greater than the temperature-corrected humidity cell rates. The field rates of sulfate production are greater than the laboratory sulfate rates even though sulfate stored as precipitated minerals is not included and the temperature correction was performed using pH 4 activation energies. A s previously discussed, greater exposure of sulfide surfaces within the fine fraction, the non-homogeneous distribution of sulfides, and high concentrations of ferric iron may be involved. If the majority of the sulfate production occurred in oxidation "hot spots", using the pH 4 activation energy may be justified. A laboratory test measuring the sensitivity of a sample's sulfide oxidation rate to temperature may prove to be more critical for predictive purposes than a precise measurement of the rate itself. 106 E to _ = v e w o S c 2 3 © S 3 « > W D o ~ o ® r-~ o> cn ot <o r— r- r-M N M t (*) oo 6 io ^ cj O O O O CM ci ^ n o  Q M IO (N Oi IO *r *~ N IO i- (0 N a. >• a & <D O or Ll_ Q. ^ ; t ? 1 s § r ; M S h cri ai rj S N ID !D IO «> S o *- o o •<-O tO CO CM T-CO I— Ol IO CO o m T n r~~ r-~ r~- i f o = ^ o 2 £ D) -ri S 5 S; 6 o r N P) 1 If » OD -i- IO t ifl M m io CO CO CO i- o O O O T- CN O) O •«- [*- (Si CO O CO CM N (O W V t 00 S ^ N co to m ro to IO CT) is !s — 8 O « » m "* CL -j -j ro £ 2 •— 12 # § <D _ O-a) o a> o .2 O » & o C ^ Ol ^ tt. * Z co a. I a> a . O E 9 w CO CO OJ CN (O <D m q cn o cn *T cn r-- a) co to to *t cn ^ co co cn I co to f CO D CO N "5> O _ 'i r z o q> ' = <fl £ | IO CM IO I • f ' CO N CM f- CM I CM O CO F— IO I - - - O -6 6 1 0 3 ^ - s « °-< 3 £ = 107 6.0 C O N C L U S I O N S A N D R E C O M M E N D A T I O N S A research program to evaluate acid generation potential was carried out on samples collected from the Red Mountain project in North-western British Columbia. These samples were all shown to be net acid producers from the static A B A tests. The following conclusions and recommendations relate to the three main objectives of this study. The first objective of this research was to develop specific test protocols that can be used for A R D prediction evaluations. The conclusions and recommendations on test protocols are: 1. Test results indicate that non-aerated, trickle leach cells provide rates of weathering that are similar to the standard humidity cell. This test protocol has the following advantages over the humidity cell: • improved repeatability of results, • less expensive apparatus, • easier to operate, and • may require less time to obtain rates of weathering. 2. The influence of temperature on weathering rates is strongly dependent on the estimated activation energy that depends on an estimated pH. The effective p H is unmeasureable and is not likely the same as the discharge p H . Therefore, tests should be operated at field temperatures rather than correcting humidity cell data by applying the Arrhenius equation. 3. Test results indicate that oxidation rates, when reported on a surface area basis, can 108 increase with particle size. The higher oxidation rate for coarse material is attributed to the transfer of oxygen for sulfide oxidation; the heterogeneity of the sample that may be responsible for "hot spots" may also be a factor. Kinetic tests conducted using coarse material may provide weathering rates that are more relevant than those obtained from conventional minus V" material. 4. Water addition to kinetic tests should: • be of sufficient volume to remove weathering products, • not be an excessive volume that may artificially inflate N P depletion, and • not be conducted in a manner that disrupts the oxidizing environment (i.e. shaken method that involved sample agitation is inappropriate). 5. Large-scale field tests may be impractical for determining scale-up parameters due to the excessively long period required to obtain meaningful results. Even after two years, operating conditions were changing making the results difficult to interpret. The second objective of this research project was to provide more confidence in scaling up of laboratory results to predict the weathering characteristics of a waste dump. The conclusions and findings of scaling up laboratory data are: 1. The laboratory rates of weathering, corrected for temperature and surface area, could not be scaled up to predict field results with confidence. The inability to scale-up is believed to be caused by inadequate hydrogeological assumptions and deficiencies in the experimental protocols. 109 la . Correcting the laboratory oxidation rates for field temperatures (using an activation energy based on the field drainage p H of 7.0) returned oxidation rates an order of magnitude lower than the field cell weathering rates. lb . Particle size was found to influence sulfide oxidation rates within laboratory humidity cells. The relevance of laboratory oxidation rates to the field cells that contain coarser material is unknown. l c . N P depletion rates of the field scale tests varied in relation to sulfate production rates. For the standard humidity cells, N P depletion rates corresponded to sulfate production rates. Therefore, it is uncertain i f the standard humidity cell properly reproduced the relative rates of acid generation and neutralization as seen in the field. Id. Scaling up the laboratory weathering rates would have been improved by: • promoting the removal of weathering products from the field cells by controlling the flush water volume and frequency, • conducting sulfur analyses of the various size fractions to indicate the concentration of liberated sulfide minerals, • more accurate measurement of specific surface area by B E T analysis, and • operating the field cells for a longer period of time (trends in data were difficult to identify for a large sample over the two year period that the test was maintained). 110 2. N P depletion is typically used to estimate the time to acidity. Based on the test results, measurements of cumulative acid production may provide a better estimate of lag time than N P depletion. 2a. The cumulative amount of M g and Ca released at the point of acidity was greater for the N P columns than the humidity cells. Therefore estimates based on N P depletion (e.g. assuming 50% unavailable N P , or 8 kg CaCCVtonne as unavailable NP) may be variable. The available N P may not be constant and may be affected by the test protocols that could also explain discrepancies in estimating time to acidity. 2b. Results indicate that time to acidity seems to relate better to measurements of cumulative sulfate production (acid production). 2c. Using the acid production method, the predicted lag time for the sedimentary material is 6 years and for the feldspar porphyry material is 23 years. Using methods that estimate available N P , the predicted lag time for the sedimentary material is 60 to 120 years and for the feldspar porphyry material is 520 to 900 years. The third objective of the study was to provide the operators of the Red Mountain project with precise prediction data thereby allowing for a more cost effective and confident development of the waste management plan. The conclusions and recommendations of generating precise prediction data are: 1. Precision of prediction data from kinetic testing is improved by incorporating field parameters such as particle size and temperature. Using field parameters during testing I l l removes the error incurred by estimating their influences on waste pile weathering rates. 2. Non-aerated trickle-leach test results were similar to those obtained from humidity cells but were more reproducible than the humidity cell results. Despite the improved precision of laboratory results, the significance was lost during scale-up to site conditions. Therefore, • only when the models used to scale-up laboratory test data are validated wi l l the generation of precise test data become meaningful and cost-effective, and • extensive laboratory kinetic test programs that attempt to account for variations in waste pile rock types are unwarranted and create a false impression of confidence. Addi t iona l Research/Work • Evaluate the ability of non-aerated kinetic tests to provide weathering rates similar to those obtained from standard humidity cells. • Evaluate the influence of temperature and particle size on rates of weathering. • Conduct studies to determine the suitable water additions for samples of varying mineralogical composition. • Conduct studies to determine i f the onset of acidity can be linked to a cumulative acid production as compared to methods that use N P depletion. • Use results from this research project to help validate kinetic models, such as the one developed by Dr. E d Trujillo, Chemical and Fuels Engineering Department, University of Utah, since extensive testing was conducted on a limited number of samples. 112 7.0 REFERENCES All ison, J.D., Brown, D.S. and Novo-Gradac, K . J . , 1990. M I N T E Q A2YPRODEF A 2 . A Geochemical Model for Environmental Systems: Version 3.0 User's Manual. U .S . Environmental Protection Agency, Environmental Research Laboratory, Athens, Georgia. Anderson, R . G . , 1993. " A Mesozoic Stratigraphic and Plutonic Framework for Northwestern Stikina (Iskut River area), Northwestern British Columbia, Canada". In: Mesozoic Paleogeography of the Western United States, G . Dunne and K . McDougall (eds.), Society of Economic Paleontologists and Mineralogists, Volume II, Pacific Section, pp. 477-494. A P H A , A W W A , W P C F , 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed., (American Public Health Association, Washington, D . C ) . Arkesteyn, G . J. M . W. , 1980. "Pyrite Oxidation in A c i d Sulphate Soils: The Role of Microorganisms". Plant and Soil 54, pp. 119-134. Barnett, R . L . , 1991. Petrographic-metallurgical Electron Microprobe Investigation of Selected samples (20) from the Red Mountain Prospect, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 65 p. Bethune, K . J . and Lockington, D . A . , 1997. " A c i d Mine Drainage: Comparison of Laboratory Testing to Mine Site Conditions". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 305-317. Bigham, J . M . , Schwertmann, S., Carlson, L . and Murad, E. , 1990. " A Poorly Crystallized Oxyhydroxysulfate of Iron Formed by Bacterial Oxidation of F E (II) in A c i d Mine Waters". Geochim. Cosmochim. Acta 54, pp. 2743-2758. Bradham, W.S. and Caruccio, F.T., 1990. " A Comparative Study of Tailings Analysis Using Acid/Base Accounting, Cells, Columns and Soxhlets". In: Proceedings of the Second International Conference on Abatement of Acidic Drainage, Montreal, Quebec, V o l . 1, pp. 157-173. Brodie, M . J . , Broughton, L . M . and Robertson, A . M a c G . , 1991. " A Conceptual Rock Classification System for Waste Management and a Laboratory Method for A R D Prediction from Rock Piles". In: Proceedings of the Second International Conference on Abatement of Acidic Drainage, Montreal, Quebec, V o l . 3, pp. 119-136. Busenberg, E . and Clemency, C , 1976. "The Dissolution Kinetics of Feldspars at 25°C and 1 Atmosphere C 0 2 Partial Pressure". Geochim. Cosmochim. Acta 40, pp. 41-49. Busenburg, E . and Plummer, L . N . , 1986. A Comparative Study of the Dissolution and Crystal Growth Kinetics of Calcite and Aragonite. U.S . Geol. Surv. B u l l . 1578, pp. 139-168. 113 Caruccio, F.T., 1968. " A n Evaluation of Factors Affecting A c i d Mine Drainage Production and the Ground Water Interactions in Selected Areas of Western Pennsylvania". In: Proceedings of the Second Symposium on Coal Mine Drainage Research, Monroeville, Pennsylvania, pp. 107-151. Cravotta, C . A . , 1994. "Secondary Iron-sulfate Minerals as Sources of Sulfate and Acidity: Geochemical Evolution of Acidic Ground Water at a Reclaimed Surface Coal Mine in Pennsylvania". In: Environmental Geochemistry of Sulfide Oxidation, A C S Symposium Series 550, American Chemical Society, Washington, D C , pp. 343-364. Davis, G .B . and Ritchie, A . I . M . , 1986. " A Model of Oxidation in Pyritic Mine Wastes. I. Equations and Approximate solution". App l . Math. Modeling 10, pp. 314-322. Dawson, R.F. and Morgenstern, N . R . , 1995. Liquefaction Flowslides in Rocky Mountain Coal Mine Waste Dumps, Phase 3, Final Report. Report by University of Alberta to C A N M E T SSC File No. 23440-3-9135/01=XSG, 200p. Day, S.J., Hope, G . and Kuit , W. , 1997. "Waste Rock Management Planning for the Kudz Ze Kayah Project, Yukon Territory: 1. Predictive Static and Kinetic Test Work". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 81-97. Eger, P. and Lapakko, K . A . , 1981. "The Leaching and Reclamation of Low-grade Mineralized Stockpiles". In: Proceedings of 1981 Symposium on Surface Mining Hydrology, Sedimentology and Reclamation, Lexington, Kentucky, pp. 157-166. Eger, P. and Lapakko, K . A . , 1985. Heavy Metals Study: Progress Report on the Field Leaching and Reclamation Program: 1977-1983. Minnesota Department of Natural Resources, Division of Minerals, St. Paul, Minnesota, 53p. Ehrlich, H . L . , 1981. Geomicrobiology. Marcel Dekker, New York. Feasby, D . G . and Jones, R . K . , 1994. Results of a Workshop on Mine Reclamation, Toronto, Ontario, March 10-11, 1994, C A N M E T Publication, 1994. Feasby, D . G . , Tremblay, G . A . and Weatherell, C.J. , 1997. " A Decade of Technology Improvement to the Challenge of A c i d Drainage - A Canadian Perspective". In: Proceedings of the Fourth International Conference on Ac id Rock Drainage, Vancouver, British Columbia, pp. i -ix. Ferguson, K . D . and Morin , K . M . , 1991. "The Prediction of A c i d Rock Drainage - Lessons from the Database". In: Proceedings of the Second International Conference on the Abatement of Acidic Drainage. Montreal, Quebec, pp. 83-106. Flann, R .C . and Lukaszewski, G . M . , 1970. The Oxidation of Pyrrhotite in Ores and Concentrates. Presentation at Austral. Inst. Mining Metall . , Regional Mtg. , Tennant Creek, Australia. 114 Ford, C , 1993. Petrographic Report of Selected Samples (7) from the Red Mountain Project, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 20 p. Garvie, A . M . , Bennett, J .W. and Ritchie, A . I . M . , 1997. "Quantifying the Spatial Dependence of the Sulfide Oxidation Rate in a Waste Rock Dump at Mt . Lyell , Tasmania". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 333-349. Geocon, 1995. Economic Evaluation of A c i d Mine Drainage Technologies. M E N D Report, Project 5.8.1, January 1995. Greig, C.J. , Anderson, R . G . , Daubeny, P . H . and B u l l , K . F . , 1994. "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deposit, Northwestern British Columbia". In: Current Research 1994-A, Geological Survey of Canada, pp. 45-56. Hi l le l , D. , 1982. Introduction to Soil Physics. Academic Press, Inc., Toronto, 364p. Jambor, J .L. and Blowes, D . W . (eds.), 1994. Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of Canada, Short Course Handbook, V o l . 22, pp. 133-162. Janzen, M . P . , Nicholson, R . V . and Scharer, J . M . , 1997. "The Role of Enhanced Surface Area, Crystal Structure and Trace Metal Content on Pyrrhotite Oxidation Rates in Tailings". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 399-415. Jaynes, D .B . , Rogowski, A . S . and Pionke, H .B . , 1984. " A c i d Mine Drainage from Reclaimed Coal Strip Mines. I. Model Description". Water Resources Research 20, pp. 233-242. Kakovsky, L A . and Kosikov, Ye. , M . , 1975. "Study of the Kinetics of Oxidation of some Sulfide Minerals". Obogashch. Rud. 20, pp. 18-21 (in Russian). Kleinmann, R .L .P . , Crerar, D . A . and Pacelli, R.R. , 1981. "Biogeochemistry of A c i d Mine Drainage and Methods to Control A c i d Formation". Mining Engineering, March, pp. 300-305. Kwong, Y . T . J , and Ferguson, K . D . , 1997. "Mineralogical Changes During N P Determinations and Their Implications". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 435-447. Langmuir, D . and Whittemore, D.O. , 1971. "Variations in the Stability of Precipitated Ferric Oxyhydroxides". In: Non-equilibrium Systems in Natural Water Chemistry, R . E . Carver (ed.), Adv. in Chem. Ser. 106, A m . Chem. Soc , pp. 209-234. Lapakko, K . A . , 1980. Kinetics and Mechanisms of the Oxidative Dissolution of Metal Silicate Minerals Present in the Duluth Gabbro. M . S . Thesis. University of Minnesota, Minneapolis, Minnesota, 199p. 115 Lapakko, K . A . , 1994a. "Evaluation of Neutralization Potential Determinations for Metal Mine Waste and a Proposed Alternative". In: Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburgh, Pennsylvania, V o l . 1, pp. 129-137. Lapakko, K . A . , 1994b. "Comparison of Duluth Complex Rock Dissolution in the Laboratory and Field". In: Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburgh, Pennsylvania, V o l . 1, pp. 419-428. Lawrence, R .W. , 1990. "Prediction of the Behaviour of Mining and Processing Wastes in the Environment". In: Proceedings of the Western Regional Symposium on Mining and Mineral Processing Wastes, Berkeley, California, pp. 115-121. Lawrence, R . W . and Wang, Y . , 1996. Determination of Neutralization Potential for A c i d Rock Drainage Prediction. M E N D / N E D E M Report 1.16.3 (Canadian Centre for Mineral and Energy Technology, Ottawa), 149p. Levenspiel, O., 1972. Chemical Reaction Engineering. Wiley, New York. L i , M . G . , 1997. "Neutralization Potential Versus Observed Mineral Dissolution in Humidity Cel l Tests for Louvicourt Tailings". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 149-163. L i n , Cheng-Kuo, Trujillo, E . M . and White, W.W. , 1997. " A Three-dimensional, Three-phase Geochemical Kinetic Model for A c i d Rock Drainage". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 479-495. Lopez, D . L . , Smith, L . and Beckie, R., 1997. "Modeling Water Flow in Waste Rock Piles Using Kinematic Wave Theory". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 497-513. McKibben, M . A . and Barnes, H . L . , 1986. "Oxidation of Pyrite in L o w Temperature Acidic Solutions: Rate Laws and Surface Textures". Geochim. Cosmochim. Acta 50, pp. 1509-1520. McLaren, W . A . , 1986. "Modeling of Flow Through a Mine Waste Dump". In: Proceedings of the International Symposium on Flow-through Rock Drains, British Columbia Technical and Review Committee on Reclamation, pp. 161-172. Morin , K . A . and Hutt, N . M . , 1994. "Observed Preferential Depletion of Neutralization Potential over Sulfide Minerals in Kinetic Tests: Site Specific Criteria for Safe N P / A P Ratios". In: Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburgh, Pennsylvania, V o l . 1, pp. 148-156. Morin , K . A . and Hutt, N . M . , 1995. " M I N E W A L L 2.0: A Technique for Predicting Water Chemistry in Open-Pit and Underground Mines". In: Proceedings of Sudbury '95, Mining and the Environment, Sudbury, Ontario, pp. 1007-1016. 116 Morin , K . A . and Hutt, N . M , 1996. Static and Kinetic Testwork for Predictions of Acidic Drainage and Metal Leaching at the Red Mountain Project, British Columbia, Canada. A report completed for Royal Oak Mines Inc., Apr i l , 1996. Morin , K . A . and Hutt, N . M , 1997. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies. M D A G Publishing, Vancouver. Mor in , K . A , Hutt, N . M . and McArthur, R , 1995. "Statistical Assessment of Past Water Chemistry to Predict Future Chemistry at Noranda Minerals' Be l l Mine" . In: Proceedings of Sudbury '95, Mining and the Environment, Sudbury, Ontario, pp. 1007-1016. Moses, C O . and Herman, J . S , 1991. "Pyrite Oxidation at Circumneutral p H " . Geochim. Cosmochim. Acta 55, pp. 471-482. Moses, C O , Nordstrom, D . K , Herman, J.S. and M i l l s , A , 1987. "Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron". Geochim. Cosmochim. Acta, 51, pp. 1561-1572. Murray, J . W , 1979. "Iron Oxides". In: Marine Minerals, R . G . Burns (ed.), Reviews in Mineralogy 6, Mineral. Soc. A m e r , pp. 47-98. Nelson, M , 1978. Kinetics and Mechanisms of the Oxidation of Ferrous Sulfide. Ph.D. Thesis, Stanford University, Palo Alto , California. Newman, L . L , Herasymuik, G . M , Barbour, S . L , Fredlund, D . G . and Smith, T , 1997. "The Hydrology of Waste Rock Dumps and a Mechanism for Undersaturated Preferential Flow". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 551-565. Nicholson, R . V , Gillham, R . W , Cherry, J .A. and Reardon, E . J , 1989. "Reduction of A c i d Generation in Mine Tailings Through the Use of Moisture-retaining Cover Layers as Oxygen Barriers". Can. Geotech. J. 26, pp. 1-8. Nicholson, R . V , Gil lham, R . W . and Reardon, E . J , 1988. "Pyrite Oxidation in Carbonate-buffered Solutions: 1. Experimental Kinetics". Geochim. Cosmochim. Acta 52, pp. 1077-1085. Nicholson, R . V , Gillham, R . W . and Reardon, E . J , 1990. "Pyrite Oxidation in Carbonate-buffered Solution: 2. Rate Control by Oxide Coatings". Geochim. Cosmochim. Acta 54, pp. 395-402. Nicholson, R . V . and Scharer, J . M , 1994. "Laboratory Studies of Pyrrhotite Oxidation Kinetics". In: Environmental Geochemistry of Sulfide Oxidation, C N . Alpers and D . W . Blowes (eds.), A m . Chem. Soc. Symp. Series 550, pp. 14-30. Nordstrom, D . K , 1982. "Aqueous Pyrite Oxidation and the Consequent Formation of Secondary Iron Minerals". In: A c i d Sulfate Weathering, J .A. Kittrick, D.S. Fanning, and L .R . Hossner (eds.), Soil Sci. Soc. America Spec. Pub. 10, pp. 37-56. 117 Norecol Environmental Consultants Ltd., 1991. New Methods for the Determination of Key Mineral Species in A c i d Generation Prediction by A c i d Base Accounting. M E N D / N E D E M Report 1.16.1c, Canadian Centre for Mineral and Energy Technology, Ottawa. Parks, G . A . , 1990. "Surface Energy and Adsorption at Mineral-water Interfaces: A n Introduction". In: Mineral-water Interface Geochemistry. M . F . Hochella and A . F . White (eds.), Reviews in Mineralogy 23, Mineral. Soc. Amer., pp. 133-175. Perkins, E . H . , Gunter, W . D . , Nesbitt, H . W . and St-Arnaud, L . C . , 1997. "Critical Review of Classes of Geochemical Computer Models Adaptable for Prediction of Acidic Drainage from Mine Waste Rock". In: Proceedings of the Fourth International Conference on Ac id Rock Drainage, Vancouver, British Columbia, pp. 587-601. Perry, R . H . and Chilton, C . H . , 1973. Chemical Engineer's Handbook. Fifth Edition, McGraw-H i l l Book Company, pp. 3-222, 3-223, Table 3-249. Pool, D . L . and Balderrama, R . M . , 1994. "Evaluation of Humidity Cel l Parameters: Their Effect on Precision and Repeatability". In: Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburgh, Pennsylvania, V o l . 2, pp. 326-333. Pratt, A . R . , Nesbitt, H . W . and Muir , I.J., 1994. "Generation of Acids in Mine Waste Waters: Oxidative Leaching of Pyrrhotite in Dilute H2SO4 solutions (pH 3.0)". Geochim. Cosmochim. Acta 58, pp. 5147-5149. Price, W . A . , 1997. Guidelines and Recommended Methods for the Prediction of Metal Leaching and A c i d Rock Drainage at Minesites in British Columbia. Draft Report, Reclamation Section, Energy and Minerals Division, Ministry of Employment and Investment, Smithers, British Columbia, Apr i l 1997, 159p. Price, W . A . and Kwong, Y . T . J . , 1997. "Waste Rock Weathering, Sampling and Analysis: Observations from the British Columbia Ministry of Employment and Investment Database". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 31-45. Price, W . A . , Morin , K . A . and Hutt, N . M . , 1997. "Guidelines for the Prediction of A c i d Rock Drainage and Metal Leaching for Mines in British Columbia: Part II. Recommended Procedures for Static and Kinetic Testing". In: Proceedings of the Fourth International Conference on A c i d Rock Drainage, Vancouver, British Columbia, pp. 15-29. Rauch, H . W . and White, W . B . , 1977. "Dissolution Kinetics of Carbonate Rocks 1. Effects of Lithology on Dissolution Rate". Wat. Resour. Res. 13(2), pp. 381-394. Rescan Environmental Services Ltd., 1990. Kutcho Creek Project: A c i d Generation Testwork, Phase II, September 1990. Prepared for Sumac Mines Ltd. and Homestake Mineral Development Company with additional funding by the Mineral Development Agreement M E M P R . 118 Rescan Environmental Services L t d , 1992. Kutcho Creek Project: Blending and Segregation A c i d Generation Testwork, Final Report, March 1992. Prepared for Sumac Mines Ltd. and Homestake Mineral Development Company with additional funding by the Mineral Development Agreement M E M P R . Rescan Environmental Services L t d , 1994. Red Mountain Project: Submittal for Mine Development Certificate. Prepared for Lac Minerals L t d , Vancouver, British Columbia. Rhys, D . A , Sieb, M , Frostad, S . R , Swanson, C L , Prefontaine, M . A , Mortensen, J .K. and Smit, H . Q , 1995. "Geology and Setting of the Red Mountain Gold-Silver Deposits, Northwestern British Columbia". In: Porphyry Deposits of the Northwestern Cordillera of North America. T .G . Schroeter (ed.), C . I . M . Special Volume 46, pp. 811-828. Ritchie, A . I . M , 1993. "Rates of Mechanisms That Govern Pollutant Generation from Pyritic Wastes". In: Environmental Geochemistry of Sulfide Oxidation, C N . Alpers and D . W . Blowes (eds.), A m . Chem. Soc. Symp. Series 550, pp. 14-30. Ritchie, A . I . M , 1994. "The Waste-Rock Environment". In: Environmental Geochemistry of Sulfide Mine-Wastes, Mineralogical Association of Canada, D . W . Blowes and J.L. Jambor (eds.), Short Course Handbook, V o l . 22, pp. 133-162. Robertson, A . M . and Barton-Bridges, J , 1990. "Cost Effective Method of Long-term A c i d Mine Drainage Control from Waste Rock Piles". In: Proceedings of G A C - M A C Conference on A M D , Vancouver, British Columbia. Robertson, A . M . , 1999. Personal communication with Andy Robertson, Robertson GeoConsultants Inc., Vancouver, British Columbia. Sato, M , 1960a. "Oxidation of Sulfide Ore Bodies, I , Geochemical Environments in Terms of E h and p H " . Econ. Geol. 55, pp. 928-961. Sato, M , 1960b. "Oxidation of Sulfate Ore Bodies, I I , Oxidation Mechanisms of Sulfide Minerals at 25°C". Econ. Geol. 55, pp. 1202-1231. Sherlock, E . J , Lawrence, R . W . and Poulin, R , 1995. "On the Neutralization of A c i d Rock Drainage by Carbonate and Silicate Minerals". Environ. Geol. 25, pp. 43-54. Sobek, A . A . , Schuller, W . A , Freeman, J.R. and Smith, R . M , 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Report EPA-600/2-78-054, U.S . National Technical Information Report PB-280, 495 p. Soregaroli, B . A . and Lawrence, R . W , 1998. "Update on Waste Characterization Studies". In: Mine Design Operations & Closure Conference, Poison, Montana. Stumm, W. and Morgan, J . J , 1981. Aquatic Chemistry, A n Introduction Emphasizing Chemical Equilibria in Natural Waters. 2nd e d , Wiley-Interscience, New York, 583 p. 119 Thompson, A . , 1994a. Report No . 1 - Petrography of 27 'Type' Samples, Red Mountain Project, Stewart, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 58 p. Thompson, A . , 1994b. Report No . 2 - Petrography of 37 Samples from Sections 1500N and 1800N, Red Mountain Project, Stewart, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 39 p. Thompson, A . , 1994c. Report No . 4 - Brief Petrographic Descriptions of 21 Samples, Including Selected Samples from Hole 103, Red Mountain Project, Stewart, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 10 p. Thompson, A . , 1994d. Report N o . 5 - Summary of Alteration Mineralogy, Red Mountain Project, Stewart, British Columbia. Unpublished company report, Lac Minerals Inc., Vancouver, British Columbia, 6 p. Vancouver Petrographies, 1994. Petrographic Report on 19 Thin Sections from the Red Mountain Porphyry A u Deposit, Stewart, British Columbia. Report prepared for Lac Minerals Inc., Vancouver, British Columbia, 21 p. Vaughan, D.J . and Craig, J.R., 1978. Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge, U K . Wen, C . Y . , 1968. "Noncatalytic Solid-fluid Reaction Models". Ind. Eng. Chem. 60(9), pp. 34-54. White, W . W . I l l , 1998. Telephone communication with Wi l l iam White, U.S . Bureau of Land Management, Utah State Office, Salt Lake City, Utah, U . S . A . White, W . W . I l l , Lapakko, K . A . and Cox, R .L . , 1998. "Effects of Protocol Variables and Sample Mineralogy on Static-test N P " . In: Proceedings of the Eleventh Annual Conference of the Society of Mineral Analysts, Elko, N V , Apr i l 7-10, 1997, pp. 187-233. White, W . W . I l l and Sorini, S.S., 1993. Standard Test Method for Accelerated Weathering of Solid Waste Using a "Modif ied" Humidity Cel l . Draft Method, May 7, 1993. Test method under the jurisdiction of A S T M Committee D-34 on Waste Management, Subcommittee D-34.02 on Physical and Chemical Characterization, Task Group D34.02.01. White, W . W . I l l and Sorini, S.S., 1997. "Standard Test Method for Accelerated Weathering of Solid Materials Using a Modified Humidity Ce l l " . A S T M Standards, v. 11.04, Method 5744-96, pp. 259-271. Whittemore, D.O. and Langmuir, D . , 1975. "The Solubility of Ferric Oxyhydroxides in Natural Waters". Ground Water 13, pp. 360-365. Zhang, J.W. and Nancollas, G . H . , 1990. "Mechanisms of Growth and Dissolution of Sparingly Soluble Salts". In: Mineral-water Interface Geochemistry. M . F . Hochella and A . F . White (eds.), Reviews in Mineralogy 23, Mineral. Soc. Amer., pp. 365-396. APPENDIX 1 SPECIFIC S U R F A C E A R E A C A L C U L A T I O N S HC-1 1-kg Specific Surface Area = 29.16 cm2/g A v e r a g e part icle S a m p l e m a s s P e r c e n t of Percent of O p e n i n g O p e n i n g d iameter S a m p l e 1 S a m p l e 2 total m a s s total su r face a r e a M e s h # (in.) (mm) (mm) (g) (fl) (%) (%) 0 .265 6 .35 0.0 0.0 0 .00 4 0 .187 4 .75 5 .55 234 .8 228 .7 23 .26 3.18 6 0 .132 3 .35 4 .05 206 .0 215 .0 2 1 . 1 3 3.96 8 0 .0937 2 .38 2 .87 175.6 174 .3 17.56 4 .65 12 0.0661 1.68 2 .03 104.3 104 .5 10.48 3.92 16 0 .0469 1.19 1.44 65.1 55 .0 6 .03 3.19 20 0.0331 0.841 1.02 51.6 49.1 5.05 3.78 28 0 .0234 0 .594 0 .718 38.2 4 3 . 5 4 .10 4 .34 35 0 .0165 0 .419 0 .507 29 .7 32 .7 3 .13 4 .70 48 0 .0117 0 .297 0 .358 22 .3 23 .8 2.31 4.91 6 5 0 .0083 0.211 0 .254 14.7 16.4 1.56 4 .67 100 0 .0059 0 .150 0.181 ' 17.3 19.3 1.84 7 .73 150 0.0041 0 .104 0 .127 9.7 9.5 0.96 5.76 200 0 .0029 0 .074 0 .089 9.4 8.2 0 .88 7.54 270 0.0021 0 .053 0 .064 5.7 4.1 0 .49 5.88 325 0 .0017 0 .043 0 .048 3.8 3.6 0 .37 5.87 4 0 0 0 .0015 0 .038 0.041 4.2 2.9 0.36 6.68 P a n 0 .019 5.4 4 .2 0 .48 19.25 Total 997.8 994.8 100.00 100.00 HC-2 1-kg Specific Surface Area = 25.99 cm2/g A v e r a g e particle S a m p l s m a s s P e r c e n t of P e r c e n t of O p e n i n g O p e n i n g d iameter S a m p l e 1 S a m p l e 2 total m a s s total su r face a r e a M e s h # (in.) (mm) (mm) (g) (g) (%) (%) 0 .265 6 .35 0.0 0.0 0 .00 0 4 0 .187 4 .75 5.55 262 .7 255 .4 26 .06 3.98 6 0 .132 3 .35 4 .05 223 .6 223 .9 22.51 4.71 8 0 .0937 2 .38 2 .87 168.6 172.8 17.17 5.08 12 0.0661 1.68 2 .03 97.6 99 .8 9.93 4 .15 16 0 .0469 1.19 1.44 62 .5 66 .7 6 .50 3.84 20 0.0331 0.841 1.02 38 .3 38.4 3 .86 3.22 28 0 .0234 0 .594 0 .718 34 .3 33.7 3.42 4 .05 35 0 .0165 0 .419 0 .507 25.1 24 .7 2 .50 4 .20 48 0 .0117 0 .297 0 .358 18.5 17.3 1.80 4 .27 6 5 0 .0083 0.211 0 .254 12.4 12.2 1.24 4 .13 100 0 .0059 0 .150 0.181 14.6 13.9 1.43 6.74 150 0.0041 0.104 0 .127 8.7 8.0 0.84 5.61 200 0 .0029 0 .074 0 .089 8.2 8.2 0.82 7.87 270 0.0021 0 .053 0 .064 6.0 5.7 0 .59 7.86 325 0 .0017 0 .043 0 .048 4.8 5.9 0.54 9.51 400 0 .0015 0 .038 0.041 3.7 2 .5 0.31 6 .53 P a n 0 .019 5.2 4 .3 0 .48 14 .23 Total 994.8 993.4 100.00 100.00 ABA-1 1-kg Specific Surface Area = 35.80 cm2/g Average particle Sample mass Percent of Percent of Opening Opening diameter Sample 1 Sample 2 total mass total surface area Mesh# (in.) (mm) (mm) (fl) (9) (%) (%) 0.265 6.35 0.0 0.0 0.00 0 4 0.187 4.75 5.55 218.8 254.6 23.85 2.77 6 0.132 3.35 4.05 193.9 211.3 20.41 3.25 8 0.0937 2.38 2.87 180.0 172.8 17.77 4.00 12 0.0661 1.68 2.03- 99.9 97.3 9.93 3.16 16 0.0469 1.19 1.44 70.5 67.2 6.94 3.12 20 0.0331 0.841 1.02 43.6 40.1 4.22 2.68 28 0.0234 0.594 0.718 39.7 34.1 3.72 3.34 35 0.0165 0.419 0.507 30.3 25.3 2.80 3.57 48 0.0117 0.297 0.358 21.9 17.5 1.98 3.57 65 0.0083 0.211 0.254 16.3 12.4 1.45 3.67 100 0.0059 0.150 0.181 18.5 15.4 1.71 6.10 150 0.0041 0.104 0.127 11.5 8.8 1.02 5.19 200 0.0029 0.074 0.089 14.6 10.5 1.26 9.16 270 0.0021 0.053 0.064 12.7 13.0 1.29 13.14 325 0.0017 0.043 0.048 10.6 6.9 0.88 11.84 400 0.0015 0.038 0.041 3.0 1.8 0.24 3.85 Pan 0.019 5.7 4.6 0.52 17.61 Total 991.5 993.6 100.00 100.00 ABA-2 1-kg Specific Surface Area = 31.40 cm2/g Average particle Sampl e mass Percent of Percent of Opening Opening diameter Sample 1 Sample 2 total mass total surface area Mesh# (in.) (mm) (mm) (g) (9) (%) (%) 0.265 6.35 0.0 0.0 0.00 0 4 0.187 4.75 5.55 253.6 250.7 25.35 3.28 6 0.132 3.35 4.05 192.7 196.6 19.57 3.47 8 0.0937 2.38 2.87 171.6 169.8 17.16 4.30 12 0.0661 1.68 2.03 101.3 98.6 10.05 3.56 16 0.0469 1.19 1.44 70.4 66.7 6.89 3.45 20 . 0.0331 0.841 1.02 42.5 42.2 4.26 3.01 28 0.0234 0.594 0.718 38.2 38.2 3.84 3.85 35 0.0165 0.419 0.507 28.9 29.0 2.91 4.13 48 0.0117 0.297 0.358 20.5 21.0 2.09 4.19 65 0.0083 0.211 0.254 14.7 15.0 1.49 4.22 100 0.0059 0.150 0.181 17.7 18.0 1.79 7.14 150 0.0041 0.104 0.127 10.3 10.7 1.06 5.97 200 0.0029 0.074 0.089 10.9 11.0 1.10 8.89 270 0.0021 0.053 0.064 12.3 11.4 1.19 13.48 325 0.0017 0.043 0.048 7.0 7.6 0.73 10.98 400 0.0015 0.038 0.041 1.4 1.5 0.15 2.59 Pan 0.019 3.4 3.7 0.36 13.50 Total 997.4 991.7 100.00 100.00 ABA-3 1-kg Specific Surface Area = 28.33 cm2/g Average particle Sample mass Percent of Percent of Opening Opening diameter Sample 1 Sample 2 total mass total surface area Mesh# (in.) (mm) (mm) (g) (g) (%) (%) 0.265 6.35 0.0 0.0 0.00 0 4 0.187 4.75 5.55 249.6 245.0 24.86 3.55 6 0.132 3.35 4.05 211.6 209.5 21.16 4.14 8 0.0937 2.38 2.87 172.8 170.2 17.24 4.77 12 0.0661 1.68 2.03 99.3 99.6 10.00 3.91 16 0.0469 1.19 1.44 68.5 70.1 6.97 3.85 20 0.0331 0.841 1.02 41.0 42.7 4.21 3.28 28 0.0234 0.594 0.718 36.3 37.3 3.70 4.09 35 0.0165 0.419 0.507 27.0 28.5 2.79 4.37 48 0.0117 0.297 0.358 18.9 20.3 1.97 4.36 65 0.0083 0.211 0.254 13.5 14.4 1.40 4.38 100 0.0059 0.150 0.181 16.1 17.5 1.69 7.42 150 0.0041 0.104 0.127 9.3 9.6 0.95 5.93 200 0.0029 0.074 0.089 9.1 9.6 0.94 8.38 270 0.0021 0.053 0.064 11.0 13.0 1.21 15.07 325 0.0017 0.043 0.048 5.7 5.6 0.57 9.38 400 0.0015 0.038 0.041 1.1 0.5 0.08 1.57 Pan 0.019 2.8 2.7 0.28 11.54 Total 993.6 996.1 100.00 100.00 HC-1 50-kg Specific Surface Area = 4.98 cm2/g Average particle Percent of Percent of Opening Opening diameter Sample mass total mass total surface area Mesh# (in.) (mm) (mm) (g) (%) (%) 1.50 38.1 0 0.00 0 1.00 25.5 31.8 22100 44.20 6.18 0.500 12.8 19.1 13900 27.80 6.46 0.265 6.35 9.55 7100 14.20 6.61 4 0.187 4.75 5.55 1605 3.21 2.57 6 0.132 3.35 4.05 1458 2.92 3.20 8 0.0937 2.38 2.87 1212 2.42 3.76 12 0.0661 1.68 2.03 723.0 1.45 3.17 16 0.0469 1.19 1.44 415.9 0.83 2.58 20 0.0331 0.841 1.02 348.7 0.70 3.05 28 0.0234 0.594 0.72 282.9 0.57 3.50 35 0.0165 0.419 0.507 216.1 0.43 3.79 48 • 0.0117 0.297 0.358 159.6 ' 0.32 3.96 65 0.0083 0.211 0.254 107.7 0.22 3.77 100 0.0059 0.150 0.181 126.7 0.25 6.24 150 0.0041 0.104 0.127 66.5 0.13 4.65 200 0.0029 0.074 0.089 60.9 0.12 6.09 270 0.0021 0.053 0.064 33.9 0.07 4.75 325 0.0017 0.043 0.048 25.6 0.05 4.74 400 0.0015 0.038 0.041 24.6 0.05 5.39 Pan 0.019 33.2 0.07 15.55 Total 50,000 100.00 100.00 HC-2 50-kg Specific Surface Area = 4.37 cm2/g Average particle Percent of Percent of Opening Opening diameter Sample mass total mass total surface area Mesh# (in.) (mm) (mm) (g) (%) (%) 1.50 38.1 0 0.00 0 1.00 25.5 31.8 22300 44.60 7.08 0.500 12.8 19.1 12770 25.54 6.74 0.265 6.35 9.55 8910 17.82 9.42 4 0.187 4.75 5.55 1569 3.14 2.85 6 0.132 3.35 4.05 1355 2.71 3.38 8 0.0937 2.38 2.87 1034 2.07 3.64 12 0.0661 1.68 2.03 597.7 1.20 2.97 16 0.0469 1.19- 1.44 391.2 0.78 2.75 20 0.0331 0.841 1.02 232.2 0.46 2.31 28 0.0234 0.594 0.718 205.9 0.41 2.90 35 0.0165 0.419 0.507 150.8 0.30 3.01 48 0.0117 0.297 0.358 108.4 0.22 3.06 65 0.0083 0.211 0.254 74.5 0.15 2.96 100 0.0059 0.150 0.181 86.3 0.17 4.83 150 0.0041 0.104 0.127 50.6 0.10 4.02 200 0.0029 0.074 0.089 49.7 0.10 5.64 270 0.0021 0.053 0.064 35.4 0.07 5.63 325 0.0017 0.043 0.048 32.4 0.06 6.82 400 0.0015 0.038 0.041 18.8 0.04 4.68 Pan 0.019 28.8 0.06 15.29 Total 50,000 100.00 100.00 HC-1 20 -tonne Specific Surface Area = 3.53 cm2/g Average particle Percent of Percent of Opening Opening diameter Sample mass total mass total surface area Mesh# (in.) (mm) (mm) (kg) (%) (%) 3.00 76.2 130 3048.0 42.79 2.01 2.00 50.8 60 502.5 7.05 0.89 1.06 26.9 38.90 748.0 10.50 1.69 0.742 18.8 22.90 1311.0 18.40 5.04 0.530 13.5 16.20 378.0 5.31 2.06 0.350 8.89 11.20 188.0 2.64 1.48 0.265 6.73 7.81 220.0 3.09 2.48 4 0.187 4.75 5.74 169.3 2.38 2.60 6 0.132 3.35 4.05 153.8 2.16 3.34 8 0.0937 2.38 2.87 127.8 1.79 3.93 12 0.0661 1.68 2.03 76.3 1.07 3.31 16 0.0469 1.19 1.44 43.9 0.62 2.69 20 0.0331 0.841 1.02 36.8 0.52 3.19 28 0.0234 0.594 0.718 29.9 0.42 3.66 35 0.0165 0.419 0.507 22.8 0.32 3.96 48 0.0117 0.297 0.358 16.8 0.24 4.14 65 0.0083 0.211 0.254 11.4 0.16 3.94 100 0.0059 0.150 0.181 13.4 0.19 6.53 150 0.0041 0.104 0.127 7.0 0.10 4.86 200 0.0029 0.074 0.089 6.4 0.09 6.36 270 0.0021 0.053 0.064 3.6 0.05 4.97 325 0.0017 0.043 0.048 2.7 0.04 4.96 400 0.0015 0.038 0.041 2.6 0.04 5.64 Pan 0.019 3.5 0.05 16.26 Total 7,124 100.00 100.00 HC -2 20 -tonne Specific Surface Area = 3.79 cm2/g Average particle Percent of Percent of Opening Opening diameter Sample mass total mass total surface area Mesh# (in.) (mm) (mm) (g) (%) (%) 3.00 76.2 110 1325.0 25.28 1.27 2.00 50.8 60 627.0 11.96 1.18 1.06 26.9 38.9 753.0 14.36 2.15 0.742 18.8 22.9 630.0 12.02 3.05 0.530 13.5 16.2 610.0 11.64 4.18 0.350 8.89 11.2 337.0 6.43 3.34 0.265 6.73 7.81 394.0 7.52 5.60 4 0.187 4.75 5.55 147.5 2.81 2.95 6 0.132 3.35 4.05 127.4 2.43 3.49 8 0.0937 2.38 2.87 97.2 1.85 3.76 12 0.0661 1.68 2.03 56.2 1.07 3.07 16 0.0469 1.19 1.44 36.8 0.70 2.84 20 0.0331 0.841 1.02 21.8 0.42 2.38 28 0.0234 0.594 0.718 19.4 0.37 2.99 35 0.0165 0.419 0.507 14.2 0.27 3.10 48 0.0117 0.297 0.358 10.2 0.19 3.16 65 0.0083 0.211 0.254 7.0 0.13 3.06 100 0.0059 0.150 0.181 8.1 0.15 4.99 150 0.0041 0.104 0.127 4.8 0.09 4.15 200 0.0029 0.074 0.089 4.7 0.09 5.82 270 0.0021 0.053 0.064 3.3 0.06 5.82 325 0.0017 0.043 0.048 3.0 0.06 7.04 400 0.0015 0.038 0.041 1.8 0.03 4.83 Pan 0.019 2.7 0.05 15.79 Total 5,242 100.00 100.00 APPENDIX 2 S A M P L E A N A L Y S E S 127 Project: Sample: Rock Type: Sulfide Estimates: RED MOUNTAIN PROJECT HC-1 feldspar porphyry 5% pyrite, 3% pyrrhotite, 0.5% sphalerite Metal Analysis (ppm) ABA Results Aluminum Al 19200 Antimony Sb 12 Arsenic As 708 Barium Ba 10 Beryllium Be 0.5 Bismuth Bi 2 Cadmium Cd 24 Calcium Ca 8100 Chromium Cr 38 Cobalt Co 17 Copper Cu 314 Iron Fe 81500 Lead Pb 72 Lithium Li 0 Magnesium Mg 17500 Manganese Mn 395 Mercury Hg 1 Molybdenum Mo 1 Nickel Ni 18 Phosphorus P 1430 Potassium K 3100 Selenium Se Silver Ag 2.0 Sodium Na 200 Strontium Sr 40 Thallium Tl 10 Tin Sn Titanium Ti 100 Tungsten W 10 Vanadium V 108 Zinc Zn 2980 Paste pH 8.35 S (Total) (%) 5.84 S (sulfate) (%) 0.02 S (sulfide) (%) 5.82 AP (kg CaC03/tonne) 182 NP (kg CaC03/tonne) 44.6 C(%) 0.329 C0 3 NP (kg CaC03/tonne) 27 Net NP (kg CaC03/tonne) -137 NPR 0.25 Whole Rock Analysis Al 20 3 (%) 16.40 CaO (%) 1.37 Cr 20 3 (%) 0.02 Fe 2 0 3 (%) 12.58 K 20 (%) 5.55 MgO (%) 3.83 MnO (%) 0.07 Na20 (%) 1.77 P 2 0 5 (%) 0.36 Si0 2 (%) 51.13 Ti0 2 (%) 0.52 LOI (%) 6.25 TOTALS (%) 99.85 Sulfate (%) 0.02 S (Total) (%) 5.84 Note: values below detection limit shown in italics 128 Project: Sample: Rock Type: Sulfide Estimates: RED MOUNTAIN PROJECT HC-2 2/3 sediment, 1/3 feldspar porphyry 3% pyrrhotite, 2% pyrite, 1 % sphalerite Metal Analysis (ppm) ABA Results Aluminum Al 21600 Antimony Sb 6 Arsenic As 574 Barium Ba 50 Beryllium Be 0.5 Bismuth Bi 2 Cadmium Cd 65 Calcium Ca 5500 Chromium Cr 104 Cobalt Co 14 Copper Cu 224 Iron Fe 63500 Lead Pb 54 Lithium Li 0 Magnesium Mg 24300 Manganese Mn 875 Mercury Hg 1 Molybdenum Mo 1 Nickel Ni 51 Phosphorus P 1180 Potassium K 1600 Selenium Se Silver Ag 1.2 Sodium Na 100 Strontium Sr 17 Thallium Tl 10 Tin Sn Titanium Ti 800 Tungsten W 10 Vanadium V 138 Zinc Zn 5610 Paste pH 8.35 S (Total) (%) 3.97 S (sulfate) (%) 0.02 S (sulfide) (%) 3.95 A P (kg CaC03/tonne) 123 NP (kg CaC03/tonne) 11.9 C (%) 0.113 C 0 3 NP (kg CaCO-ytonne) 9.4 Net NP (kg CaCOs/tonne) -112 NPR 0.10 Whole Rock Analysis A l 2 0 3 (%) 15.78 CaO (%) 1.16 C r 2 0 3 (%) 0.03 F e 2 0 3 (%) 9.86 K 2 0 (%) 5.66 MgO (%) 4.76 MnO (%) 0.15 N a 2 0 (%) 2.03 P 2 0 5 ( % ) 0.32 S i 0 2 (%) 54.49 T i 0 2 (%) 0.55 LOI (%) 4.58 TOTALS (%) 99.37 Sulfate (%) 0.02 S (Total) (%) 3.97 Note: values below detection limit shown in italics 129 Project: Sample: Rock Type: Sulfide Estimates: RED MOUNTAIN PROJECT ABA-1 sediment 7% pyrrhotite Metal Analysis (ppm) ABA Results Aluminum Al 16700 Antimony Sb 6 Arsenic As 764 Barium Ba 30 Beryllium Be 0.5 Bismuth Bi 2 Cadmium Cd 11 Calcium Ca 9700 Chromium Cr 117 Cobalt Co 15 Copper Cu 226 Iron Fe 69900 Lead Pb 28 Lithium Li 0 Magnesium Mg 18500 Manganese Mn 575 Mercury Hg 1 Molybdenum Mo 1 Nickel Ni 75 Phosphorus P 1130 Potassium K 1800 Selenium Se Silver Ag 0.6 Sodium Na 100 Strontium Sr 26 Thallium Tl 10 Tin Sn Titanium Ti 600 Tungsten W 10 Vanadium V 78 Zinc Zn 1220 Paste pH 8.06 S (Total) (%) 4.56 S (sulfate) (%) 0.08 S (sulfide) (%) 4.48 AP (kg CaC03/tonne) 140 NP (kg CaC03/tonne) 36.3 C (%) 0.388 C 0 3 NP (kg CaCOa/tonne) 32 Net NP (kg CaC0 3 /tonne) -104 NPR 0.26 Whole Rock Analysis A l 2 0 3 (%) 14.68 CaO (%) 1.75 C r 2 0 3 (%) 0.03 F e 2 0 3 (%) 10.89 K 2 0 (%) 4.98 MgO (%) 3.90 MnO (%) 0.09 N a 2 0 (%) 1.93 P 2 0 5 (%) 0.31 S i 0 2 (%) 55.38 T i 0 2 (%) 0.55 LOI (%) 5.21 TOTALS(%) 99.70 Sulfate (%) 0.08 S (Total) (%) 4.56 Note: values below detection limit shown in italics 130 Project: Sample: Rock Type: Sulfide Estimates: RED MOUNTAIN PROJECT ABA-2 feldspar porphyry 7% pyrrhotite Metal Analysis (ppm) ABA Results Aluminum Al 22900 Paste pH 8.22 Antimony Sb 2 S (Total) (%) 4.78 Arsenic As 170 S (sulfate) (%) 0.04 Barium Ba 40 S (sulfide) (%) 4.74 Beryllium Be 0.5 AP (kg CaC03/tonne) 148 Bismuth Bi 2 NP (kg CaC03/tonne) 33.1 Cadmium Cd 1 C (%) 0.334 Calcium Ca 13000 C0 3 NP (kg CaCCVtonne) 28 Chromium Cr 47 Net NP (kg CaC03/tonne) -115 Cobalt Co 17 NPR 0.22 Copper Cu 169 Iron Fe 73600 Lead Pb 26 Lithium Li 0 Magnesium Mg 21300 Manganese Mn 685 Whole Rock Analysis Mercury Hg 1 Molybdenum Mo 1 Al 20 3 (%) 16.99 Nickel Ni 20 CaO (%) 2.38 Phosphorus P 1360 Cr 2 0 3 (%) 0.01 Potassium K 1800 Fe 2 0 3 (%) 11.66 Selenium Se K 20 (%) 4.36 Silver Ag 0.2 MgO (%) 4.29 Sodium Na 400 MnO (%) 0.12 Strontium Sr 45 Na 20 (%) 3.04 Thallium Tl 10 P 2 0 5 (%) 0.33 Tin Sn Si0 2 (%) 50.55 Titanium Ti 700 Ti0 2 (%) 0.54 Tungsten W 10 LOI (%) 5.59 Vanadium V 148 TOTALS (%) 99.86 Zinc Zn 88 Sulfate (%) 0.04 S (Total) (%) 4.78 Note: values below detection limit shown in italics Project: Sample: Rock Type: Sulfide Estimates: RED MOUNTAIN PROJECT ABA-3 feldspar porphyry 5% pyrite Metal Analysis (ppm) ABA Results Aluminum Al 16600 Antimony Sb 4 Arsenic As 272 Barium Ba 50 Beryllium Be 0.5 Bismuth Bi 2 Cadmium Cd 1 Calcium Ca 8500 Chromium Cr 146 Cobalt Co 14 Copper Cu 122 Iron Fe 49200 Lead Pb 26 Lithium Li 0 Magnesium Mg 19600 Manganese Mn 600 Mercury Hg 1 Molybdenum Mo 1 Nickel Ni 85 Phosphorus P 1020 Potassium K 1300 Selenium Se Silver Ag 0.2 Sodium Na 400 Strontium Sr 35 Thallium Tl 10 Tin Sn Titanium Ti 800 Tungsten W 10 Vanadium V 84 Zinc Zn 60 Paste pH 8.01 S (Total) (%) 3.13 S (sulfate) (%) 0.02 S (sulfide) (%) 3.11 AP (kg CaC03/tonne) 97 NP (kg CaC03/tonne) 25 C (%) 0.149 C0 3 NP (kg CaCO-ytonne) 12 Net NP (kg CaCOs/tonne) -72 NPR 0.26 Whole Rock Analysis Al 20 3 (%) 16.04 CaO (%) 2.42 Cr 2 0 3 (%) 0.04 Fe 2 0 3 (%) 8.10 K 20 (%) 4.32 MgO (%) 4.80 MnO (%) 0.19 Na20 (%) 3.29 P 2 0 5 (%) 0.26 Si0 2 (%) 56.11 Ti0 2 (%) 0.59 LOI (%) 4.12 TOTALS(%) 100.30 Sulfate (%) 0.02 S (Total) (%) 3.13 Note: values below detection limit shown in italics APPENDIX 3 MODIFIED ABA PROCEDURE 133 The Modified A c i d Base Accounting Procedure used for this study is as follows: 1. Place 2-3 g of pulverized sample (80% minus 200 mesh) into a watch glass 2. A d d 3 to 4 drops of 25% HC1 3. Rate fizz as none, slight, moderate or strong 4. Measure 2.0 g of pulverized sample into a 250 ml conical flask and add approximately 90 ml of distilled water 5. A t the beginning of the test (time=0), add a volume of certified I N HC1 to the flask according to the fizz rating as follows: Volume of 1 .0NHC1 (mL) Fizz Rating at time = 0 hrs at time = 2 hrs None 1.0 1.0 Slight 2.0 1.0 Moderate 2.0 2.0 Strong 3.0 2.0 6. Agitate the contents of the flask for a total of 24 hours by placing on a shaking table. After two hours of agitation, add the second volume of HC1 as indicated above. Check the pH of all the flask solutions after 22 hours. If the p H is greater than 2.5, add enough HC1 to bring the p H down to 2.0-2.5. If the p H is less than 2.0, repeat the test using the volume of HC1 as indicated by using the next lower fizz rating. 7. A t the end of 24 hours, add distilled water to the flask to make a pulp volume of 125 ml. Check the p H to ensure that it is still in the range of 2.0-2.5 8. If the p H is in the correct range, titrate the contents of the flask using certified 0.5N N a O H to p H 8.3 9. Calculate the N P of the sample as follows: Modified N P (kg CaC0 3 / t ) = (N x vol (mL) of HC1) - (N x vol (mL) NaOH) x 50 weight of sample (g) APPENDIX 4 G R A P H I C C O M P A R I S O N S S T A N D A R D , N O N - A E R A T E D , T A L L , A N D S H A K E N C E L L S Project RED MOUNTAIN Sample: HC-1 Rock Type feldspar porphyry Mineralization 5% pyrite, 3% pyrrhotite, 0.5% sphalerite 136 Project RED MOUNTAIN Sample HC-1 Rock Type feldspar porphyry Mineralization 5% pyrite, 3% pyrrhotite, 0.5% sphalerite 137 Project RED MOUNTAIN Sample; HC-2 Rock Type: sediment Mineralization 3% pyrrhotite, 2% pyrite, 1% sphalerite 138 139 Protect RED MOUNTAIN Sample ABA-1 Rock Type sediment Mineralization 7% pyrrhotite 140 Protect RED MOUNTAIN Sample: ABA-1 Rock Type sediment Mineralization 7% pyrrhotite - -•-standard-1 -• shaken 200 1 5 150 E — A - t a l - « — standard-1 _ —•—shaken Rate at any time is the previous 5 cyd the average for es e>-i Time (days) 141 142 143 Project: RED MOUNTAIN Sample: ABA-3 Rock Type feldspar porphyry Mineralization 5% pyrite 144 145 Project RED MOUNTAIN PROJECT Sample: ABA-1 Rock Type: sediment 146 Project RED MOUNTAIN PROJECT Sample: ABA-1 Rock Type: sediment o -•-standard-1 —O— standard-2 L- 1 j =a—« -10 E 8 e o I S EL « Q 4 - • — standard-1 _ _ n — c'artrliuA O — u - si ana ara- z E V —•—standard-1 —O—standard-2 • ' — Rale at any time is me average '<* the previous 5 cycles 80 E_ 40 — \ r v —•—standard-1 —O—standard-2 L \ v V T U — - a Rate at any bme is me average Ta-me previocs 5 cycles I 100 150 200 250 300 350 Time (days) Project: Sample: Rock Type: RED MOUNTAIN PROJECT ABA-2 feldspar porphyry 149 Project: RED MOUNTAIN PROJECT Sample: ABA-3 Rock Type: feldspar porphyry 150 Project: RED MOUNTAIN PROJECT Sample: ABA-3 Rock Type: feldspar porphyry 2.5 2 1.5 1 0.5 0 —•—standard-1 — —Q—standard-2 — \\ 1 / f ^ • • v \ 10 -8 -•—standard-1 1 -O-standard-2 f APPENDIX 5 G R A P H I C C O M P A R I S O N S NP C O L U M N S T O S T A N D A R D , T A L L , A N D S H A K E N C E L L S 152 Project: RED MOUNTAIN Sample: H C - 1 Rock Type: feldspar porphyry Mineralization: 5%pyrite, 3%pyrrhotite, 0.5%sphalerrte -standard -shaken -NP column ] -tall — standard -shaken Note: Rate at any time is the average of the previous 5 cycles 153 Project RED MOUNTAIN Sample: HC-2 Rock Type: sediment Mineralization: 3%pyrriiotne, 2%pyrite, 1%sphalerite \ — N P column — t a i l •V standard —•—shaken V •— —•—a • NP column —*—tal —•—standard —•—shaken — • — N P column —*—tmB —•—standard —•—shaken l 1 3 I* 1 0 i — 0 — N P column - * - r a l — • — standard —•-shaken i 9 O 8 rr a Z 0.1 0.0 200 Time (days) Note: Rate at any time is the average of the previous 5 cycles 154 Project R E D M O U N T A I N Sample: A B A - 1 Rock Type: sediment Mineralization: 7% pyrrhotite — , • NP column —A— tall —*—standard-1 —•—shaken ** ~ standard-1 - shaken Note: Rate at any time is the average of the previous 5 cycles 155 Project: RED MOUNTAIN Sample: ABA-2 Rock Type: feldspar porphyry Mineralization: 7%pyrrhotite —O—NP column - * — tall ^ — . » standard-1 • shaken B- m—-*--^_ 0.5 ! 0.4 D 3 B 0.2 ts or « 0.1 z 00 • NP column —*—tall © —•—standard-1 * — shaken 4- • 200 Time (days) Note: Rate at any time is the average of the previous 5 cycles 156 Project RED MOUNTAIN Sample: ABA-3 Rock Type: feldspar porphyry Mineralization: S%pyrrte —0—NP column - * - t a » 1 standard-1 —•—shaken \ - j — —0—NP column —*—tan —•—standard-1 —•—shaken - o — o - - * — -0—»—o—-© s • 1 \ e> NP column —*—tall * standard-1 —•—shaken \ — o — » 0 — 0 NP column - 4 — tafl * standard-1 —•—shaken A — 0 Note: Rate at any time is the average of the previous 5 cycles APPENDIX 6 G R A P H I C C O M P A R I S O N S 20-TONNE (FIELD) C E L L S Project: RED MOUNTAIN PROJECT Cell Type: 20 tonne Date: August, 1995 159 160 Project RED MOUNTAIN PROJECT Cell Type: 20 tonne Date: October, 1995 —feldspar porphyry — sediments 0 5 10 15 20 25 30 35 Time (days) 161 Project: RED MOUNTAIN PROJECT Cell Type: 20 tonne Date: June, 1996 x —a—f»iri •nir rmmhuru — s e d m e n t s 2000 1500 -— • — eldspar porphyry 1000 • —•—sediments m—i.. -.-4 500 l • • y 0-ao I eo i "o —•—feldspar porphyry —e—sedments 100 5 10 15 20 25 30 Time (days) 162 Project: RED MOUNTAIN PROJECT Cell Type: 20 tonne Date July, 1996 164 APPENDIX 7 T A B U L A T E D R E S U L T S S T A N D A R D C E L L S 166 I u j ^ c o r ^ c q c N i ^ c N r ^ c q ^ x r r ^ o o , o o o , h-1 to d i ^ d d i n ' d ^ i r i i r i t ^ d i r i H r-- uo r~- co 2 oi ci oi of) 5 | o o q o o o CD iri od i- r- a> CO £ £ o j £ E S S « « ' q q o> co (vi s cd cb N N N N N 0) N T- O N m ^ T- TT r- CD co co TT T> co d d d ci d d CD N fM co co O CO CO CN CO CD CM CM CM TJ-Uj CD CD CO CO CO CM CO CM LO CN r- co o xT CD CD CD CD CM CM CM T- - ' CN T- i-CD CD m a _ in m co o co CM CM CM CO CM O CM T- N CM co co CM m uo CO CM CO CO CO S CD »- N OI CO h- CD CD CN CM CM CM 1- — co CM TJ- r-n o s t s CM CM CM CM CM cn Oi r— co r- CN f CM CM CM 00 CN UD CO co in co CM xf ^J" ^  xT CM d d d d d h- CM CD 00 CO t * n in t *r ci ci ci ci ci o o CD co o m *t CM m in NT xr ^  xf d d d d d CO O CO CD CO o o o o o CD co ID cn CO CO CO CD ci ci d ci ci co co m CN CO LO co o co d d d o d t - CD o CO CD m N o t oi *r xr * co ci ci ci ci ci CM in in in xf ^  TJ-d d d d o CO 05 CO CM tO N ^ CD CO Tl- TT ci ci ci ci o N ' J r 00 CO CD O O 1- T- 1- CN CN LO CN CD CO i- CN CN CO xf CN CN CN CN CN T- CO IO CN 00 m m co N N CN CM CM CM CM CD CO O S * CO O) O O T-CN CN CO CO CO CM co m co CM CM CO xf CO CO CO CO O CM CO xj- LO CD N CO OI : CO N CO O) O c c c c A UJ CO CO TO nj ' 7 7 7 7 L L I O T - 00 LO ' T~ T— CN b-96 b-96 r-96 r-96 ir-flfi a> a> u_ u_ Ma TO 5 2 <i co d> co =^ ^ Q. aJ If) J. tN CD CD JS 5S SS o> & °? °? °? >. >* -u. m I (J 111 CN ' ? O i— CO LO CN » « S < CN CN CO D 3 3 J ^ c CN Oi CO -CD CD MI CO Cl) CJ t ) ^ W OT O O 9 r-- Tf ' LO ; i > > CD CD CD CD CD Oi CD CD AO 6 6 6 CD CD z 9 9 CM CO d co 167 ?|o' ID co o CN co m O t- ^  O Ol O) in ^ T- c> d 01 o u ) o r o m CO Ol CO CO N K ricidddd CO CO i - to CO "T CO CO CD r-^  r- r-- r-co r- co co r-N U) O) >-T- (fj CN «' [— CO IT) If) IO k O) CN O CO t m o T o CO OJ CO CN LO cd d co co co in CO CO CO r-co co CN co r -'J-CMO O O CD CO CD - o d d CN CN TT r- TT - co co i— cn i O N 1 CN ) CO UO Uf) if) CD CO i - CD lO CO CO CO CD CO d d d d d O O if) O) 01 O ^ C N C O C O C N C O T r C N C N C D O T - C D C O C O T - C N O • W r o ^ s ^ T - d i r i r r i c o c b N s c d if) CO CO CD CM O CD CO TT CO co ID m to co o o o o o O) Tf O N CO O) r-' t O cor-.r--r-.co o o o o o o o o CN CN CN CO CO CO CO CO T TT CD T if) CO O T CO CN i - CD IT) (D S CO CO TT TT TT TT LO CN O CN CN if) if) T CN O CD CO O T— CN CN CN CN CN CN ID.in in in u) co TT co O iD •<- I-- CO co co TT TT m CN CN (N CM CN ID ID CO CO CO O CO CN T— CO O ID CO CN O CD CO h- CO CD CN CN CN CM CN O) CO TT CO CN CD CO CO O CN CD (D CO N N LD CO CO CO CN co -^ co CN 00 O O 1- CN CM CO CO CO CO CO CO CO CD TT CD CO CN ID TT CN CO ID CO I— CD N N N N N r— T- CM o co o CN co co CO CO CO CO CO ~ O S CO o co T - co r-co co r— r- co co co co co co _ - ID CO T -CO O T- CN T ai oi oi oi oi y- r- o o cp If) CO T O) O) O O T- i -CO CO CD O w CD N oi oi oi ai oi O) ID CM Tr CD m -r-CN CM CO TJ" TJ- ^ £5 O c CO =6 3 -3 — o o o o o o CD O CO CN CO CN TT co CN r-~ ao co - CM T in co r-o o o o o i - IO CN g « CD CD S CO CD CD 5 ro i n t N CO TT CD K TT Tt ID ID O O O O O CO O TT O CO CD o in T— CD r— T— Cs) CN N CD CO S S (D t in in co co o o o o o o o o o -CN S CO CD r -CM CD CN CO ID UD m co co r— CM CO T— T— CO T- CD O ID •<-03 00 Ol O O N UD CN CO CN I— CO CO CN O O r - i - CN n CN CN CN CN CN CD CD CN CO CO ID CD ID T— CD co co TT m m CM CN CN CN CN 1 Ol N O CN CN r- CO O CD CD CD N CO CO CN CN CN CN CN TT TT CO TT CN r- CO CD Ol Ol o o CN CN CO CO 5 O cn ^ X to T-<u Q- o E = To CO Q) oj 5 6)1 cn o s CD 1 ro CO CO CO CO Tf m in i CN o CO C N O O 5 CD CD ^. CD I ™ oi i TT CN O d cd I— LO IO CD ifi TT CO i if) N T CD OO m io in in m i - O 1- O CO T— O CD CD CO T-: T-" d d d CN CN CN CN CN h- CO CO CO TJ-o o o o o CN CN h- CO O Ol CO S N • d d d d d TT o CN CD o . r— oi r*- cci CM CM i - T-o o o o o O 00 CD CD f— CO CO CD d d d d d co CD r- co < O T- CM CO ' CM CM CM CN I co m co co co o o o o o o o o o o CN CN CN CM CN CM ID TT CD CO O O O O O CD Tl" CO CO TT TT Tf TT TT TT d d d d d o o o o o o o o o o o o o o o o o o o o o o o C D I D T T C D C D O C D C D O C D O I C M T T O c o c o c o o ) c D c N i o c o c D C O T - c o i n c o I c N C N C N C N C O ^ ^ ^ f ^ C O C O C N r N r N LD TT CO ID CO CD CD CD CD CO CO O TT O CN CO CO CD CD CD o o m N u ' r r ^ O O i CN CN CM CM T— CD CO CO CD CO CO CO CO CO . CO O CO CN CD • CM CO TT I D T- CO O T-CO O TT r- _ TT m in ID m CO P— CO CD ' K O CN ifi CO t o n c~> a O ^ Ol N CO CN in r- o CM ID ID CD N S T— CN co TT in a) r- co m co CN CD CO CD i in s o i CN r-- r-- r- h- co CD r- CO CD o CM N. co h-Tf CD CO T- TT CO CO CO CD CD ID CN Ol CD TT t- CN CN CO TT CM CN CN CN CN O O CD Ol CO CO O T— CO CD <- CN CN CN CN T— CO m CN CD in in CD N N CN CN CN CN CN if) iD Tf CO O CO O CM TT CD CM CO CO CO CO ID CO O S T CO CD O O T-CN CN CO CO CO 00 CO CN CO I— Ol T— CO CO CO TT TT CN CO ID CO CN CN CO TT CO CO CO CO CO 0) CO o 168 id - j : (D "a •§ ^ 2 E i i S o w fi Q. h- ° Q *- m = cfl 3 = ro oj co d <u W O h Q O o o O CO co iri o o o co d uo o o r-^  co co CM CO O CO CO CO O CN CO CM LO CO ^ ^ CO o o CD CO CM CM T— CO CO O CM oo xr CM co co , CO S N CO CJ CO CO O CO T- __ S CO CO CO CO CO CO ^ ^ CO x f ci ci ci ci ci ci • CM co T|- in CO CO CO CO ro CO O CT> CO O) fj j c c c c A A CO CO CO CO "Jr --? "?•?"? (I in oo io co OJ, TT If) Tf N ID I t N C O ^ f C O O N O O ) 1 . ! . ixrcor^r^cdcbdciS P l ° LO O T- CO CN CO CO O N CO CM CN CM CM CM r~ co co xf co r- co LO co •«t xr xr xr ^ ci ci ci ci a co r- co co ; co to to ^ co JD JO ii. ii CD CD CO CO CB N O CD T-CM CO CM O O O O O CM co xf in CO £ Q. Q. LO ' oi, LO CN CO CO r - O N O CM CO CN CO IO CM CM co TI- m xt- co CN r- LO co co xT -"t TJ- — ci ci ci ci a CD S CO O) O CD CD JD CD CO CO O) °? °? °? i > > >J o. 2r co co co1 ~ i^" T— co CM CN CN , m m o m c o s t o t n ^ ^ ^ i o c o o ) c O T - c n c n o c o ™* " ™ l o ozaicni6(ri^^^<jir^aioii6<D(xic6oi CD ^ CM CO h -CN CM CM CO T— CM CM CM CM CM co co o o to CD co co m xr xt- xr TJ-d d d d d SS co CO CD co - ) ~3 ~3 -TJ- 00 T- TT CO co co in oo CM CM CM CM CM CO O CM i - x}- CD 00 LO CD h - LO N ^ ^ v N d d d d d O N N 00 CO OO o o T- T- T- CM CM ~k LO CN CD T— CM CM CD ^ ^ ^ 00 CO O O xf CM T-O T- CO O '— CO CO CO CO CO oo r*- co m iri xr Tf «- T- CD TT m UO CM CO CD xj-T- CM CM CO CM CM CM CM CM cn o cn A 1 3 3 D j r < < < « < 00 CO CO T- . CO T- CO CO CO CN CO CM CO CO f o 'i- m co xr ^' co'^ r LO in in co o m CM CM xj-x> xj- x r x f d d d d d T— oo in CM co io m co s s CM CM CM CM CM CO CD (D CD i i CO CO Q. Q. > i •« CD 0) o O X w w o o 9 ^ •A cc r ; N CO U l ^ CO O CO O) o in r~-co co oS oo co co m CD CD CM O CM CN CO CO O CO o o t co tr ^ 00 CO CM CO O IO Tf CD xT CD TT xr *f d ci ci ci ci CD CO O N CO OI O O r (M CM CO CO CO «> «> CD SS SS 0 ) 0 ) 0 ) 0 ) 0 ) -•-•;>> CN 00 LO CO CN CN CO CO CO CO CO 169 CD CO IC CO V) O CM CM o CD cn x f ^ W ^ o' d co o o o o ' co CM m co co < co r - o o -r—1{ i d d ^ • o o o o l o o o o o o o o o o o o o o o o o o o o to oo o co un LO XT LO LO CO d d o o o o o o o o o o o o o o d d d l N O t cn CO ^ TT d o d o 2 c Q_ S 00 CD LO oj cn' N CO CO CD CM i ~ t-CN CM d t o i O CO Tt CM T— i -CO CO O CM 00 CD CO 00 CO LO O CO i CD Tt Tt CO Tt • CO CD COi CMI CO I CO IS- CD CD CO O CO CM O CM I d in c\i s d oo h- co LO co ! CM h- N CD N O LO LO LO oo o r - co LO O CO T t CO CD CD CD CD CO CD CD CO CN CJ Tt | d ^ c : ^ s LO LO LO LO Tt T - CO ^ N co o h- T- CD < N LO CO h- N ' if) (D N N N I I-*- CM Tt CD I CD Tt 00 CO • CM CM CO CO Tt LO LO CD IS- CO CO CM i - CO CM O T- 00 cd o i d d r— CM CM CM . r- CO CM Tt I r— CM r- co co i CM CM CO CO • CM CM CM CM CM C r - co i r - co o co LO If CD CM CD • '• i I co co Is-' co 11 I CM CM CM CM CM 11 o cn "•s T— Tt CM 00 O) CO O CO IO CO Tt lO LO CD f*-Is- O LO CO CO T - o co r - Tt co o i ro o T -- T- CM CN Is- CO Tt LO CO N CD CO CO CO 1- CM CO Tt LO CM CN CN CN CN oo co LO LO h-TJ- r - cn o Is-CO CO CO T- LO 00 CD CD O O CN CM CM CO CO LO CO CO O i Is- CO CO LO ( i - CM CM CO • CO CO CO CO CO ( i CO 1- CO i - CM i LO O Tt CD CO i CD N N N CO > CO CO CO CO CO O CO f- LO O O) Oi O) CO CO CO CO 2 3 I 1 o t ' LO Tt CO I CD LO ' O ICO Tt Tt 00 LO CM CO CO [ CM Tt Is— CO 00 CD i- CM CO Tt LO CD 0 0 0 0 0 0 CO CO Tt OO Tt I N N CO CO O) l o o o o O i i CO O CD CN 00 l O r r N N • CM CM CM CM CM so X CD E E, Tt o • CO CN CO CO T-' ' LO O Tt CM T-• T- CM CM CO Tt i - O CO O 00 O i - CM O CO LO CO Is- CO CO CM 00 Is- 00 CO CO CN I s- CN Is-oo co a o o <- T- CM CM CN Is- O CD CO T- T- CM CM CO CM CM CM CM CM LO CD Is- O LO V O) N UO CN TT T(- LO co r -I CM CM CM CM CM LO CM t— CM CO CO Tt Tt LO LO CM CM CM CM CD Is- CO LO T-CD Is- CO O OOi t— 00 CO o o CM CM CM CO CO LO i- 00 LO CM CD Is- Is- CO 00 CM CM CM CM CM Is- I s- CO I s-LO CM O O0 00 CM CO CO Tt CO CO CO CO CO CM CO CO CO I O) CO O CD LO CM CO Tt LO CD CO IS-CO CO CO CO i O O O O O CM CO O t N q IS-' LO LO CO 00 CM CM O CO Tt CO Tt T-CO CM T - r - o o o o o l o o o o o o o o o o l •|CD CD LO LO CO. d c i c i d d ! I— I— LO CO d d d d d o o o o o o o o o o l o o o o o l o o o o o ] o o o o o o o o o o l o o o o o l o o o o o ] 5 CD cn D ) E T- h- o O i O 00 CO CO CO I ( LO CO CM CM ' •00 CO LO CD CD • • CN T- CN CD i T- CO LO LO Tt • CM CM CM CM CM 00 CM 00 CM 00 CM Is- CD LO CO CO CM CM CM N CO CM CM CO jLO CD Is- CD 00 CM CN CM CN CN CO O N N CD CD CD O) O) CO CM CM CM CM CM CM LO CM CO CO 00 CO T— CM CO CM CM CM CM CM CM q i n s CO CM CD LO CN CM i - T- 1 LO h- N CO LO CD CO CD O co CN to r - Tt CO CO CD lO CD N N r - in q l CD CD N CD LO o o o o l O O O O l Is- CD 00 COl T- o oo CD| CM CM T— • CO CD CO l O l CO CM CM I I IO LO IO IO LO I Tt Tt Tt Tt Tt -O CO O I s- CO I s- CO Tt t- CO CM I s- Tt CM CM CO CO Tt Tt 0 - ® ^ C M C O O T- CM CO Tt tO CD CN O h- Is-CD CD CM Tt Is-Tt Tt LO lO CO CD Is- CO 00 ' CD CO I s- CM LO O CO CO O CN CO CD CO N S CO O O tf) CO CO S CM IO S N N CO CO CO CO CO CD CM lO 00 T- CO CO CO CO CD 00 CD CD i - CN h- CO O CN CO Tt CO O O O O O ' O I s- Tt *- _. . • I CO CO 00 O O 1 T- CM CM CO Tt CD CO LO 00 O CM Tt CO 0 T- -r- --LO CN OO CD Tf T- CM CN CO Tt CN CM CM CM CM CM co o Is- r— CO 00 T- CM Tt, * - CM CM CM CO LO CM O) i n in co N N CM CM CM CM CM CO *- CO 00 CN CO CO 00 O CN CM CM CM CO CO CO CO O Is- Tt CO O) o o CM CM CO CO CO Tt CD IS- COl CO Tt CO CO I CO CO CO col CM CO LO COl CM CM CO T t l CO CO CO CO I • CN CO Tt CO CD I s- 00 CD O • 170 _ i * —1 n T - 1 E E •A _ E .2 c -j; CD Tl ? 8 » E « C ^ a a i - <-> J= a * - CO = CO -s = cu ai a d D tf) O I- O O 03 H o 1? r~ IF t o r- T- T-CN LO CO CO i t CO CO n * E . O LO O O O LO » co LO co CN m o i CO CO O r~ O O ' CN CN CN CN CN i-r - i o oo LO LO co Tf CN CO CO LO oJr^ r-^  r-' i CM CO O) S O) N 2 ^ S (D O) f tr r- LO m TT Tf Tf Tf d d d d d n m in to o ^ T- CM co • CM CO Tt LO T- T- CM 1 £ .a .a Q) 0) i io " CO N CO 0) , CO CO ( 0 ( 0 CO o? a 8 & m i ) H l l cl a) a) ca co N t CD CO ' r 6 6 ^ CO CM CO T-i - CD h - T-CO CO CM CO S CO O LO N CN TJ- i n TT co o co ro T- CO CM TJ- CO Tt Tf Tf Tt Tt 0 0 0 0 0 • CM CO TJ- LO O D O I M D " d o d o CO LO LO r » CN CO N CO CD N T- T- O) CM O 00 LO i- T- LO Tt i o i n i n i n CM h - co T-T- r~ co r - _ Tt Tt Tt Tt Tt CD CD CD CD CD CD S CO O) O CD CD SS SS SS CD 3) °? °? °? D. 2? CD ro CD1 " Tt T— CO CN CN CM , CN T-Tt CO CD LO CO CO h - O CO Tt Tt Tt CO Tf CO CD CO CD h -CD i n co T f i n Tt Tt Tt Tt Tt CD CD CD CD CD SS CD CD CD <o co CD co i n co CD N CO N ID Tt Tt Tt Tt Tt d d d d d O N r CO CO O) o o T— t~- T— CN CM ok LO CM CD T T— CM CM CO O CO CO N O CD CN Tt CO CN CM CO i n CO r - CO O) co t I s- i n h- h- Tf Tt Tt Tt Tt Tt Tf TT CD CD CO ID 0 ) S CO CO CO CN Tt Tt Tt Tt 1-0 0 0 0 0 CD CO CO ( o « CD CD CD 0 j < S* 3 S" g" CM O) CD ^ U T- T~ CN ™ 1-d d d CO CD CO CO Tt co Tt Tt m co i n co co i n i o i n m CD CN co CD N IO N N Tt Tt CO Tt Tt CD CD CD CD CD T- CO LO CM CD i n i n co N i — CM CM CM CM CM a. a. H <B u u^s 00 0 ) O O 9 ' ' CO « CO CD T- CM CO CO CO Tt CO Tt Tt Tt T— f 0 0 ) Tt CO Tt CO CD LO CD CO CO o in CD CD h-Tt Tt Tf Tt d d d d d to co o r-- Tt CO CO O O r CM CM CO CO CO CD CD cn SS SS O) CD cj) ° ? ° ? - i > > ^ ^ 2 CM CO LO CO CN CN CO Tt CO CO CO CO ; c^> £ ! 171 ^ TJ- o o o o o o o> co co co io co h- co TJ- co TJ-co d d d d d co o 0 0 co .3 1) v° J cn co LH k r o CM io LO V to ^ in s I d c i d d d o o o o o o o T- r- ^ < o co CM T- o|c d d ^ LO CO h- CO T- I CO N T- O ( d d -<- T- T- < l o o o T-i h f h- CO CD CO 1 ' T— f— CO CO : -r^ d d d < LO CD CO LO O ' a CD Oi o T-: d d o T-^ CD CO < CD LO CO • CD CO Tf < CD LO Tf ( O N CO CO CD CO Tf T- CD CD CO CO D r- Tf CO CO O LO CM T- CD CD CD CD LO CO CM T-. CD CD O Tf CM LO q q co CO CO co m CO Tf Tf CO CO CO q N q cp Tf CN N O l Tf CO CO CM CO * CO Tf T-r— CD CO Tf CD CO CO CO CO CM CD CD O LQ CO ' to d d iri co i CO CM CM T- T- i CM LO O O r-- T- co co io co TJ- CD co r*-CD Tf Tf Tf T— i— T— CM CO T- CO LO CO o T- T- CO CO ^ d d d O T- CO CO o O O O O O CO LO T- CM CO h- LO co co d d d d o CO T— Tf CD J CO CN CO O) 1 iri co ai'. CD CD CD r— CD CO CM T- O CM CO tO, T- CO CN CD CO O CM CN CO CO CO 11 CM CM CO CO Tf O CO CD O CO CO O T— T— CN CO Tf Tf Tf Tf Tf I Tf CD Tf CO CO LO CD Tf T~ * LO CO CO O Tf Tf Tf ID m CD LO r~ CM m Tf CO CM CD q Tf Tf LO LO CD CD CD CO CD CO LO 00 CM CO CM CM CO LO CD CO LO io LO in in CO I— CN I— CO f N T- Tf cb cb N N in co Tf T- CM CD CO T— Tf I— CD O CN CO Tf m CD co co CD O CO CN LO _. , CN If) CO CN N CO CO CO CD CD LO CO CO CD Tf O CN CO CO CO to r- co CD T-CD CD CD CD N LO CD CN CN Tf CD T- r»- T- LO CO LO CD CO CO r~ r- r-- r-- r--T- co oS oS h- CD LO CM r-. CN r-; q r— CD co co to to r- LO CD co co |iO O CO CD 1 r- T- co 11 CM CN CN CO CO O T- CO O CD CM O CM CD CO : o co LO T- Tf T— T— CN CO CO r- co o LO o - Tf CN CO LO _ DO O T— CO CO CO Tf Tf Tf 11 CO CM T— O O CO O CD CD CO CM Tf Tf iq q CO CO CO CO CO T- CM CD co r-co m CD o co Tf CO t— CD O CD CN CO Tf -*- Tf co co o o o d o | CO CO CO Tf Tf • Tf Tf Tf Tf I • Tf CD CM O If) I— CO O CN T— CN CO LO CO LO LO LO LO LO r- m Tf r- o • CM CM CM T- CO I r - co CD o T- < LO LO LO CD CD I > r- CD o CM in T-^  CO Tf Tf |m iri iri iri iri ' CD IO Tf CM O I CO CO IO T— CD • CD O CM Tf Tf i CD N S N I s-o o o o o l ;|cD co CO I— I— o d d d o CO CO I— CO ' d d d d o l I™ ^ Tl Tl °l d d d d d LO CO CD Tf If) S CD col CD CM , O CO CD T— CD CO I LO Tf CO CM CM • T— T— CO T— CD ' CN CN T- CD Q ( CD CD Tf CM CM -• O CD if) CO i | 0 O CD CD CO ' T- o d o i Tf r- co r~- co CD co r- co : d d d d ! CO q Tf OTIT-; j CO T— CO h- If) ! CD CO CO CM CM S TT O N O T- CO Tf O Tf co co Tf tn in Tf CM CO f^ CM | Tf CM T— CD in in io Tf in . i - S T N CD CD LO LO in d d d d d CO N CO CO N CO Tf Tf CM o in io in in io LO CD CN CD CD CD N N d d d d o l co r- CD CD | T- T- cri r- If) LO LO Tf LO LO CM o o co r -co co co r - CD o o o o o CN CO LO T-CD O T- CN O l O T^  T-' T-' CM LO t~ CO CO j CD T- LO CO in co co co m j O T— CM CO Tf LO CD h- CO CD i m o s CM . , • CD LO o r- CM i in co r- r- — 1 • CM CO Tf LO CO CO O CO OI CO T— I— CN CD! CO CD CD O O T- T- T- CN CN Tf CM CM CM CO Tf CD Tf O) Tf T— T— CN CN CO CM CM CM CM CM LO CO Tf Tf T-O) Tf OO Tf CM CO Tf Tf LO CD CM CM CM CM CM • O r- Tt -r- CD CO CO CD O O T- T- CM CM CO r- CO CD O l -o o o o o l O CM CD CD CO CO f— CD CO CO d d d d d o o o o l T- Tf CO CM CO CO CD S d o d o <P n . co in ^ 1 ^; CO ^ oo I Tl CD CD , : o Tt co r-1 S O) CO r -cri cb Tf cd Tf Ii co co in m COM ( 0 ( 0 ( 0 0 ) 0 ) i CO CO CM CO iri ' CO CM Tf Tf CO Tf CD S i O CO CM col CO CM CM -T— CO CN Tf I CN S r- If) CO|c O O T- T- " CM CM CM CM CM It | CD O) C\| tf S I i CO CO Tf Tf Tf • I CM CN CM CN CN I (D N CO CO N - r - CO CO Tf _ i— T- CN Tf CO CO CO CO CO S CO Tf CO CD I CO N CO CO N I if) CD N (D O) I CO CO CO CO 00 * CO CN K CD O) If) s s CO o> iri iri iri iri io oo in co T- . CO CM CD CM O) CD 00 CO O T-S N N CO CO CO O) N CD S o o o q o c i d c) c i d O) i - i - N S LO LO Tf CO Tf o o d o o O) CN CD N I O O CO CO -q co CM T-cd Tf r-^  iri ir i I Tf Tf CO CO Tf O) O) O) O) O) I — r-; CM CO Tf I cb CD CD cb CO < CO S IO r- . . . CN CD O Tf f - ( co Tf co r~ co i CO CO CO CO 00 i N N CO CO N I o o o o o < O O O O O < O O O O O i l co co in CM q < csi CM cb iri oi i Tf Tf Tf Tf CO < T- O CD Tf O CD in o CD co co r- co co co CM CM CM CM CM LO CN O) CD Tf T- CM CN CO Tf CM CM CM CM CM co T- o Tf r-CO CO O Tf o CD CD O O T-CM CM CO CO CO T- CO If) CN CD if) lO CD Is- Is-CM CM CM CM CM CN CO CO O LO I if) O) CO S O l T- T- CM CN CO I CO CO CO CO CO I CO CO O N ' CO CD O O • , CM CN CO CO CO 11 172 |w E o o o o LO CM cn co h -n co T -Tt CN CO CD h - . CO CO ai oS °. oi d N O) r o o co CD LO h- CT) d 01 ^  ^ Ol O CO CO CD O) CO CO CO T- CO CO d d o O O lO O O I s- , O Ol S Tf CO CO CO N N N CD N CM CD CM CO ,00 CN r-- CO t— r— co xt" 10 Is- IT 1 ,00 co co co 1 m 10 t m 1 SCO T- co N CM r - CN LO LO LO Tt LO o © m N CD Tt CN LO O r~ LO Tt CO Tt m o m m co o CD M CO M N in co in co in CO CO CM CD IO CD LO r - CD N r - S lO CO Tt Tt Tt Tt d d d d d d S O LO K O h- CO Tt CM CM Tt Tt Tt o d o o o m o co co o CO T— T— T— CO Tt Tt Tt Tt Tt ci ci ci ci ci CN o 00 o co in co Tt Tt Tt Tt Tt Tt d d o d d o co CN CD h - CN N N r- _  co Tt co 00 in Tt Tt Tt Tt Tt d o o d d r-- CN co o T-Tt CO m CO CO co LO co in co Tt 1- CO CM O Tt Tt Tt Tt Tt O O O O O r i - h - CO K CO CD CD CO CO W in co co Tt in CN en Tt CD in Tt CD LO CD co in co Tt Tt Tt Tt Tt Tt ci ci ci ci ci m CD T- CD CD co co s co i n Tt Tt Tt Tt Tt ci ci ci ci ci CM m co co Tt Tt d d f-» _ m CO CM O) T— CN CN CD CO Tt O I s-h- CO CD O O r - r - T- CM CM Tt 1- CD CD CO T— CM CM CO CM CM CM CM CM o s t r -LO LO CD I— I— CN CN CN CN CN LO CN O t - CO CO CD CD O T-CM CM CM CO CO O CO CM CM CO CO o T- CM co Tt m co r- co CD ; CN co Tt m CD N CO O) O SS SS to co SS SS P? CD 03 S> °? °? c c A, £ j a n 7 7 u . u . 4 i n co J, J, cc CN CM ^ r CD CO SS SS CO rn m ™ rt! 5 2 - CD ! 10 ^ -CO CD CD UJ CD CD CD <D CD >,>,.>, 1 ' CD CD CD C 4 A co TI T— CN CN ~? ~? -3 -00 IO CN CO 1 0 T— CM ^~ CO CD CD ES SS O CD CD 1 1 7 7 < < < CM O) 1 ^ , A CN CN CD ™ ° 2 CD , n CD CD CD CD CD CD CD CD Q. Q. QJ ^ ^ CD CD CLT < $ CO CO CO co f-Ji o h— Tt « tt B u o 00999 9 9 6 co 173 + o tn CO CO o o o o o CM O O O O O CD T- i - I s- O CM CM * - CO CD T- T- t - O O CO CD CO O N CD in CO T-CD CD CD CD CD CD CD CD • CM CO CO CO Tt O) O CD CO r- f— CD O O CO CO CM CD CD CD CD CD CO ci d ci 6 ci I— O O CD CO 00 CD CD CO OO d d d d d o o o o o o o o o o CD CD q CO CD CD CD CD CD O O O O O O O O O O 2 J T- CM o! d ud CD o o in s co i n T- CM in O) CD CD S N CM O CO (D r N CO OJ CO CO CM t~- -r- CD r -• CO CO CM CM CO CO Tt q CO S O O CM T-i - O CM ~ <t CO CM co uo co o o d d CM CM N TJ- r - r - CN cq q CD in O Tf" T— T— CM CO CO Tt Tt CO t n co cq r -iri d N CO TT CM CO CO Tt Tt CO CN CD 00 ' CO CD r - fj) S S N CO CN CO Tt Tt Tt Tt Tt CO 00 CM CO CM r-^  r - iri iri d TJ" IO N N <D : «? ^ TT CO CO CO « CN co in N ' co CM r - co m CO 01 if) CN CN O r - r - N CN Tf Tf Tf TJ- in <D O) r - CN Q CO CM d OJ CM in CD S CD S co co co CD r - Tt un o o o h- q T-^  CM CD 00 CD T CD CO CM T-5 J co q q q CN CO T— CO m co in in T- CN Tf m CD s CD h - CO O T— CO to r - co co co co T- in T- CD o Tt Tt Tt i n IO CD CD S O N O W O CD T- CD T~ 00 O CO Tt CD CO N N h - I— CO CO CN Tt h -co co CM in Tt N CO O) O CN N CO CO CO CO O Tt O O CM UO CO T— Tt to co t— CD CO CO CO CO CO CO CO CO CN S CD CN N r ; Tt Tt LO UO CD CD CM CM CM CM CM CO S O CO o co r - Tt oo T-O T- CO Tt CO O) O) O) CJ) CD _ i— T— LO CD oo CM q q Tt CD N N CO CO CM CM CM CM CM CO CD in CD CD 00 T— CO T— CO Tt co h- CD o o o o o *-• CO o • cn o i r - cn CO CO CO CO ( CD co oo co r» o o O O OO O T- CM CO CO CM CM CM CM CM 3 3 o CO o CO CD in r- od T- CD I s- Tt CD O) CD CD UO CD CO CN CO CO N O O T— T— CM CM CO >- in l - CD s T-N CO CO CD (D CO r - M O CN S T- T- CM CO CO Tt T— I CN CD I— O co CD in s T-• CD CO CD r -3$! CO CO Tt Tt Tt UO IO LO LO LO D Is- un co Tt Tt in q r -Tt Tt Tt Tt Tt O) S CO r CO Tt UO CD . O T— CN CO Tt CO CO CO CD CD CN CN CN T-cq <J> q y-_ CM Tt Tt LO LO LO CO CD CN I s- OO CD CM CD CD CO in t - co CD T-CO CO CO CO I s-CO I s-T- iri CD CD CN CN CO uo r -CO Tt UO CD t— LO" LO' i r i uri i r i '  OO CD CO CD 00 T— CD CO CD CM Tt LO I s- 00 r - r - r - r - r-O CN IO CD CN q q i - CN Tt CO CD CD CD CD CO CM O CO CO I— CO CM O CO O CN Tt CO Is-00 00 00 00 00 IO I s- CM Tt LO to q cq CD q CD CD CD CD Is-S O CD T- CM CO CM CD Tt CD T- CO Tt CO CO CD CD CD CD r - r - r— r^ - r— CD En ® CN Tt CD CD ° 9 Tt Tt Tt CO Tt i n O O 3 cn in • i— co ° cd CD CD cn 2 co t- t - in CM Tt o in co Tt Tt CM T— d d I s- CD CO to tO Tt Tt q q to LO Tt co co CM CD CD CO CM • CN I s- co m , LO O OO 00 CO I CO CO CM CM CM c i c : i d c i d : - , r S (\| <-CM q co co co CM CM T— T-" N CD CO r - CO CM CN CM CM CD CD CD CD CD • CO CD CD CD Is- in CN t- ' O O O O O O O O O O • r - in CO 0 0 ) 0 ) : T- d d O O O) CD OO r - O O O o d o d o o o o o o o o o o o O CO O O T-CO lO CO CO CO d d d d d O CD OO 00 CO T- o o o o CD CD CD CD CD O N CN N CD co in in Tt Tt d d d d d co CO o o d d CD LO CD Tt T- CD CM CM O CD N N CO T— CD CO CO T- d d d o n q cq cq d Tt uo co Is— CD tO Tt Tt Tt o o o o o N CO T- ^ s d esi LO to in in m m un ro s in N cq cd d co iri LO Tt m m in in N CO O CN CO d to co Tt uo m to to to to •<- q •<- o co r - r-^  r-- to iri tn un un un in t - ; Is- Tt CO in CD d S S CO in CD CD CD CO CO CO CO T- LO o o o o o CD CD CD 2 2 CM co Tt in co CD O T— CO CO 0 ) 0 0 0 0 1- CM CN CN CM CD O CO Tt T-LO O CD CO CO CO Tt CD I s- CD T- CM T- T- T- T- CM CM O T— CN CO Tt L0 co I s- in CM * -i - CM i - 00 CO Tt UO CD CD I s-CM CM CM CM CM CD I s- 00 0) ?2 M O O) r _ I s- T- Tt o r -I s- 00 00 0) CD CM CM CM CM CM T - CM CO Tt LO Is— Tt CO tO Tt CO CO CO CO CO O O T- T- CM CO CO CO CO CO CO I s- 00 CD O CN 00 O CD tO co co o in o CM CO Tt Tt LO CO CO CO CO CO Tt m h- co co o o o o o CM CM CM CM CM r - CD co r-- Tt in o co CN co LO co co r - r -CO CO CO CO CO CD CD Tt O . Is- 00 CD O O T- i - T- CM CM O CM CO Tt CD CM CM CM CM CM CO Tt i - O CO Tt CD i n T— CD CO CO CD O O CO CO CO Tt Tt Tt T- 0) CD CO T- CM CM CO Tt CM CM CN CM CM Is- CD T - CO Tt T- r - CM CM CM CM CM CM CM CM Tt CD CO CD CD CO O 00 Tt CO T- CM CM CO CO Tt Tt Tt Tt O I s- Tt T- CO un LO co i— t— CM CM CN CM CN CO 00 0) O CM CM CM CM CO CO CM CM CM CN CM CD Tt T- I s- 00 CM CD O CO CD Tt Tt IO LO LO Tt Tt Tt Tt -~ U0 CM CD I s- CO CO CJ) CD O i -CN CN CN CO CO CO Tt CO CO CM CM Is- CO CD CM LO CO O 00 CM CM CO CO 174 •a ™ j= x •3 ° g E •^ 3 . . Q. • • 5 ™ '= O g N o O g o « S Q. I— U JZ Q ^ CO = (/)-! = ITJ a) cu d a) W O h o u am < m CN m r - o> i •<t\*- Tf uri cb i o CD T- _ co co Tf r - ^ T— CO if) CO O IB S CD CO CO l O O) O O) N O) T- O) CD Cv| N Tf CN CN Tf T* CO TJ-d d d d d d N _ M ID n o T— CN CO O T- CN CO • CD CD CD CD rn CO CD CD CD CD £ S C C C C rj CU (0 CD CD o - 5 - 5 — J ~ i (J 6 -A c6 LO ' T- T- T- CM ^ i Tf r— LO LO I co < Oi Oi Oi ; if) co cp co I if) i LO CD LO CD LO JTf r- co T- • CD CM Tf CD i 0 T-01 o CN CN CO LO I— o O) CO CO o CO CO CO Tf CO CN CD Tf O CN LO IO CO CD Tf Tf Tf Tf Tf d d d d d CD N CO CD ! CD CD (j, (o CD °? °? CD CD °? CU CD CD CD _ u_ u_ s 5 5 CO CO t - CN • d) £ ; CN CN CN CO > CD CD CD I Oi Tf exi a) q CD CO Tf CD Tf LO CD s s in co cd N cd cd T- S CD n CD LO CM CO LO CO Tf Tf Tf Tf Tf 0 0 0 0 0 • CM CO Tf LO !•< <* ; us • Tf CD Lp N CO CD CD CD CD I CD oq ^ f (ojco T- co o O|CM ro co in T-f- CO CD CD I CD co o Tf I Tf T- Tf m co co LO T— cn io I O CN CD Tf CN CO r- T- T-CO CO Tf CO CO CD O T - CM in CM f- r-- in LO Tf Tf Tf Tf Tf d ci c i d d co r» co Oi CD <D to CD CD CD CD CD °? °? °? >. >, >\ <Tj|!" CM r~- , • co co co CD in Tf oi oi oi CD CD p-' CD N co ui in in N cb ° co s cb ^ U' iri ri s d in LO CO CN Tf CO CO CO CO CO CO CO CO CD r— T- co co LO CO CD CD Tf Tf Tf Tf Tf d d d d d • c6 uS « co N in in O) CD CD CD Tf Tf" in" iri iri d iri s cb co O CO r- oo CO CO 00 CD Tf CM Tf CO CD CD CD CD CD O N r CO CO CD O O T- T- T- CN CM , n CD CD CO CD 0^ CD CD O) CD £ LO CN O) . in CO CD CO I CM ' CD CD CD CD I CD ^ T- CD LO Tf |co oo T— q q | T f q in CM q q LO cb iri cb cb co cb in h~ I q Tf cq r-- co I CD r». CM 1 Tf m r- co CO f-d d r— in CD Tf in s s s s s CM in CM co o CD in r- co Tf Tf Tf Tf CM Tf CD CD CD CD CD LO CM CD CD Tf T- CN CM CO Tf CM CN CM CM CM CO CD CO (n < CD O) CD QJ < O) O) CO X CO O (N T- I (£> CD T-O) CO Oi CO I CO CO CD CD j CO cb d Tf iri in CO CO CM CO CO eo co CD o in Tf io co r- T-Tf Tf CO Tf Tf d d d o o T- co in CM CD, to in to r- i--CM CM CM CM CM CD CU O O « co o o 9 r - Tf ,1 cc CD Tf CN co xf T- CM r -CN CO CO CO CO O tO LO LO O CD m N CD Tf Tf Tf Tf Tf CD CD CD CD CD CO CO O I— Tf C O O I O O r CM CM CO CO CO CD CD co O CD CD CD CD °? °? Tf 00 CD Tf I CM 00 m co l CM CM CO Tf I CO CO CO CO I 1 9 9| 175 Molar ratio m 3.64 4.36 0.85 0.99 0.87 1.02 0.91 1.05 0.96 1.11 0.89 1.01 0.81 0.89 1.38 1.48 1.77 1.85 2.24 2.32 2.59 2.65 2.36 2.42 2.07 2.14 1.67 1.76 1.15 1.23 1.04 1.12 0.92 0.99 1.12 1.20 1.35 1.44 1.31 1.39 1.26 1.32 1.40 1.48 1.54 1.64 1.43 1.50 1.31 1.37 1.18 1.24 1.09 1.16 1.17 1.24 1.34 1.42 0.88 0.93 0.73 0.78 0.81 0.85 0.90 0.95 1.23 1.30 1.01 1.06 1.07 1.13 0.91 0.96 0.95 1.00 0.89 0.94 1.10 1.15 1.24 1.30 1.08 1.15 0.90 0.98 0.77 0.83 0.68 0.73 0.76 0.82 0.85 0.91 0.91 0.97 0.98 1.03 1.05 1.11 5 cvcle moving average SO„ NP . prod'n rate depl'n rate (mg/kg/wk) (mg/kg/wk) 428.4 455.1 334.4 360.2 297.2 319.3 216.7 231.5 163.7 183.9 126.8 157.1 105.4 149.6 83.0 148.1 70.7 154.8 65.6 155.1 62.7 148.1 66.4 139.7 68.8 121.9 70.9 105.3 70.6 92.4 70.8 88.4 66.7 85.1 63.0 83.0 60.3 85.6 58.6 88.6 55.6 84.8 53.9 82.2 55.3 83.1 61.1 86.9 61.6 82.8 58.1 76.7 63.6 77.2 72.8 77.7 79.9 79.2 86.3 82.1 95.5 93.7 91.4 91.4 81.6 88.4 71.5 80.5 65.7 75.3 57.8 61.7 59.3 64.5 61.2 69.1 59.7 70.1 61.2 71.4 69.1 77.3 76.3 77.1 81.3 74.3 84.1 73.9 89.3 78.7 88.1 80.9 79.7 79.6 Neutralization Cum. NP NP NP depletion "depleted depl'n rate (mg/kg) (%) (mg/kg/wk) 1074 3.25 1366 4.13 2044.4 1751 5.29 2049 6.19 2258 6.82 2443 7.38 2557 7.72 114.3 2697 8.15 2857 8.63 3027 9.15 3226 9.75 173.8 3398 10.26 3539 10.69 3661 11.06 3766 11.38 104.3 3853 11.64 3924 11.86 .71.3 4014 12.13 4116 12.44 101.8 4203 12.70 4280 12.93 76.6 4364 13.18 4457 13.47 93.1 4540 13.72 4614 1 3.94 73.9 4695 14.18 4786 14.46 106.1 4859 14.68 4913 14.84 53.2 4989 15.07 5084 15.36 83.1 5182 15.66 5270 15.92 88.0 5381 16.26 5446 16.45 64.6 5526 16.69 70.1 5596 16.91 5657 17.09 5698 17.22 40.9 5777 17.45 5871 17.74 94.0 5947 17.97 6014 18.17 67.5 6085 18.38 6163 18.62 6243 18.86 6327 19.11 73.4 6408 19.36 6489 19.61 6572 19.85 72.3 Sulfur Cum. S04 . Sulfur S04 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 237 0.16 519 0.36 882 0.62 1154 0.81 1335 0.93 158.1 1510 1.05 175.2 1.14 122.8 1.20 90.8 1.26 1.31 61.5 1.36 1.41 59.5 1.45 63.2 1.50 66.7 1.55 81.2 1.61 1.87 1.91 54.6 1.94 1.98 51.9 2.02 2978 2.08 87.7 3035 2.12 3071 2.14 36.0 3150 2.20 3267 2.28 102.7 3378 2.36 3466 2.42 88.7 3548 2.47 82.1 3607 2.52 58.4 3675 2.56 59.7 3745 2.61 70.4 3804 2.65 58.8 3846 2.68 41.7 3912 2.73 3981 2.78 69.4 4044 2.82 4110 2.87 66.3 4192 2.92 4293 2.99 101.7 4387 3.06 4476 3.12 4557 3.18 4632 3.23 4703 3.28 62.3 Sulfur Cum. S04 . Sulfur S04 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 237 0.16 519 0.36 882 0.62 1154 0.81 1335 0.93 158.1 1510 1.05 175.2 1633 1724 1807 1877 1949 2371 2443 2511 2571 2627 2682 2736 2789 2841 2903 : 2978 2.08 87.7 3035 2.12 3071 2.14 36.0 3150 2.20 3267 2.28 102.7 3378 2.36 3466 2.42 88.7 3548 2.47 82.1 3607 2.52 58.4 3675 2.56 59.7 3745 2.61 70.4 3804 2.65 58.8 3846 2.68 41.7 3912 2.73 3981 2.78 69.4 4044 2.82 4110 2.87 66.3 4192 2.92 4293 2.99 101.7 4387 3.06 4476 3.12 4557 3.18 4632 3.23 4703 3.28 62.3 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 156.5 15.40 6.50 8.21 124.2 12.01 5.12 6.33 110.4 10.43 4.50 5.40 80.6 7.21 3.22 3.58 65.1 5.11 2.47 2.37 56.9 3.57 2.02 1.50 55.5 2.58 1.83 0.96 56.4 1.72 1.73 0.55 1.41 1.75 0.45 1.22 1.70 0.38 1.14 1.56 0.33 1.22 1.39 0.31 I.34 1.14 0.32 1.40 0.94 0.32 1.41 0.79 0.31 1.44 0.73 0.31 1.35 0.70 0.29 1.25 0.66 0.27 1.22 0.65 0.25 1.23 0.64 0.24 1.13 0.59 0.22 1.05 0.55 0.21 1.07 0.53 0.22 1.14 0.54 0.22 1.07 0.52 0.21 1.01 0.50 0.19 1.05 0.49 0.17 1.07 0.46 0.14 1.06 0.43 0.11 1.09 0.41 0.09 1.22 0.40 0.09 1.16 0.36 0.08 1.11 0.35 0.07 30.5 1.00 0.31 0.07 28.6 0.92 0.29 0.06 23.4 0.76 0.24 0.05 24.4 0.81 0.25 0.05 26.2 0.85 0.25 0.05 26.5 0.90 0.25 0.05 26.9 1.00 0.26 0.05 29.0 1.15 0.29 0.05 28.8 1.21 0.29 0.05 27.7 1.23 0.29 0.05 27.5 1.22 0.28 0.05 29.5 1.22 0.28 0.05 30.4 1.18 0.27 0.05 30.0 1.10 0.26 0.05 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 156.5 15.40 6.50 8.21 124.2 12.01 5.12 6.33 110.4 10.43 4.50 5.40 80.6 7.21 3.22 3.58 65.1 5.11 2.47 2.37 56.9 3.57 2.02 1.50 55.5 2.58 1.83 0.96 56.4 1.72 1.73 0.55 59.5 59.9 57.3 53.8 46.5 39.8 34.6 33.0 31.8 31.1 32.2 33.4 32.0 31.1 31.4 32.8 31.3 29.0 29.1 29.3 29.9 31.0 35.4 34.6 33.5 30.5 1.00 0.31 0.07 28.6 0.92 0.29 0.06 23.4 0.76 0.24 0.05 24.4 0.81 0.25 0.05 26.2 0.85 0.25 0.05 26.5 0.90 0.25 0.05 26.9 1.00 0.26 0.05 29.0 1.15 0.29 0.05 28.8 1.21 0.29 0.05 27.7 1.23 0.29 0.05 27.5 1.22 0.28 0.05 29.5 1.22 0.28 0.05 30.4 1.18 0.27 0.05 30.0 1.10 0.26 0.05 1 1 Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 8 S 8 3 S ? 3 S S fS m c5 Essies 874 90 36 50 926 92 37 50 987 94 39 51 1052 96 41 52 1130 97 43 52 8 8 8 S 8 T- CM co ^ m sssss S S S S 5 S S 5 S S £ 8 8 8 8 ssss Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 874 90 36 50 926 92 37 50 987 94 39 51 1052 96 41 52 1130 97 43 52 1197 1251 1298 1337 1369 1396 1429 1467 1500 1529 nm 1721 1748 1768 1797 1833 1870 1903 1946 1970 2001 2027 2050 2066 2096 2132 2160 2185 2211 2240 2270 mi Days i&5s§ Cycle 0 t - esi co in co r- co m ? CN CO 176 E E E .3 . . ^ CD - C <a c y ° aj S o w $ Q . h- <-> J C Q •— co = CO .3 = CO CD CJ C CD CO O r— O O O O O O CO CO o co o o CO CO in CM £ ;± £ co co co CO CM CO CO CO 00 co o> CM o T- in in CM Tt Tt Tt Tt d d d d d d • CM co Tt in CD t n co CD CD ° ? ° ? CD CD ° ? ° ? C c A A -Q -Q T- m in T-m CD T- co CM CM Tt T-00 CO CO LO o T- CO CO CM CM Tt Tt Tt CM Tj" d d o d d co r - co co ; CD CD °? °? X <5 S S 5 _ - CD ^ £ -LO Tf CO CD CN T- in CD CD CD CO CM T- T- CM CM CO CO Tt Tt CO T- CM CO Tt Tt Tt Tt CO Tt d d d d d • CM co Tt m t o. Q. a. . < "r" ^ : CD CO N N n CD CD CD CD CD CM CO CM T-CO CO O) N N CO CM CM CM CM r - CO CM CD N N N lO LO Tt Tf TT TT — d d d d o CD r - CO CD o Tt CO T* T- CM CM I LO in Tt r - i n l i i d o d d 01 CD 10 d d LO CD co 00 in in Tt d d d o uf> LO O Tt CD CD Tt' CO LO CN T- CO I CM CM CO CO CO Tt in co co in T- CO CD Tt CM CO CO CO CO CO LO T- CM CD CM CM CD CO CO CO CO CM CM CM CM CO CD CD CO Tt CO IN O N N CM CO CO CM CM CD CO LO CD CM CN O O O O O CD CD Tt r- CD N N S CO I s-Tt Tt Tt Tt Tt 0 0 0 o o I CD CD Tt o r -• Is- CO CD O O 1 r- T- CM CM Tt CD CO I— O CO LO CD CD CD Tt Tt Tt Tt Tt O O O O O TT T— CD CO CO T- CM CM CO Tt CM CM CM CM CM O T— CN CM CO CO CO IS- CO LO Tt Tt Tt Tt Tf O O O O O N 1 r LO LO CD r- h-CM CM CM CM CM OO CO Is- LO I CO CO CO CO Tt • Tt Tt Tt Tt Tt ' O O O O O < LO CM CO Is- CO CO CD CD O T-CM CM CN CO CO O CO CM CM CO CO CD CO 1 CD CD CD CD •=> •=> 3 -3 06 in CM co . CO CD CO . CD CD CD i i ' aU -k s s, • " ? " ?<<<• CM O l 1 A, , CM CM CO ™ ~ J ) °? °? °? 0 0 9 9 9 : cu cu 9 9 6 co 177 LO CO CN CD CO T|-1 CN Is- CO CO o l h - CO CD Tf CD IO C N N C O L O C O ^ Q C I ) C T ) N ( O l O C O O n c O S T - l O S r o ^ n i O t - f f l I q CN co Tt co I cq 01 cp oi CN I r-- s q q io c O t t N q r - r - r - r - T - i - ^ i - o o o o o o i ' - ' - r N i r o c i j s N N c o o i o ) I TJ- T— T— T— CN CN|^— c i d CN T - | o d d ^~ t ~ I r - r— T~ T~ v~ r~ • r~ r~ T~• T~ r— r— T~* CD - T—' T~' T~• o" ^ d i CD ^ d CD CD I CN co Tt o co CO|LO h- i — o> oo I CD co CN uo co I o> r - c D i o s o c o ' - ' - T - o a ) ( O c o ^ s c \ i t - i o o o c , 3 c r ) c o o i c o i o c o r - s i n p g Tt q T-; co q cq U cq q q q l q q q q q l q T r q q T - q q v ^ t - ; T - ; ^ q q o c D C D O O C D C D T - T - T - o c D C D N N r - s - c o q co T~ T- T- CN v - | v - c i c i CN r - | c i d c i c i I T— r - T— • T~ T~ T~ T~ T~• T~ T~• T-* c i d r~ c i c i r— T~ r— c i c i c i c i c i c i c i d c a. a> TJ £ 03 S g m a . . CL CU "O . •a £ ^ . K . CD M f l ^  D_ Q) ^ i f i o i q t o 2 a 2- oi ° " " TJ £!• E i ' =1 CU 6 CO o N od CO LO co co CN cd s- s-o r - Tt O r CO CO CO N -r-- r -CO Tt co cn q i - CN q CNIT-' S CN s- i * - co co CO LO d LO CD CO CO CO CO uo Tt Tt l O O O N T f M D C N I ] N O r ; ( N M ; I O f f l c q i : T t L O u d u d u d u S u S u S i c o m n c o r C N N o n c o ^ r o n i D c o r o o ^ G T - i r i c N N C D c D T r c o o T r c o c n T - c o i O N q c N T r N c j i c s i x r c q a j d d d r ^ r ^ r ^ r ^ d d d d r o d d d d d d d d d ^ i - T - T - c N C N T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - T - C N C N C N C N C N C N C N C N C N C N C N C N CNLOCOCT>T-T-LOTtLOr^ OOJCOT-COCDCNOJCDOJ T - T t C n c O L O I ^ - 0 O 0 O C D C D C O t O t O T t T t T t T t T t T t T t N N C O l O t 0 ^ n r - T - O C N O ) C D S ' T ( D S C N ^ i r ) T t i - T t L O ^ L O i n T - C D S N t } - C J ) C T l O ronosM'Nosnocouin'-ococD^^CDcocNmincocNiONcioiiOT-cDCNO) r - C N n c 0 ^ l O C D C O S C O C O O ) 0 ' - ( N C N W * l O l O C D S S 0 3 C J ) O ^ T - C M C N n T t T r i n i n L O l n L O l n l O l n l O l O l n 1 n ^ n ^ n c D C D C D C D ( D C D ( D c D ( D c D ( O c o c o ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ d CO r - T-CO T-oo s-LO cri Tf CO q Tt LO CN TJ U0 co o co cri LO CO q qqcNTj-qqcDTt oo o d ^ r ^ r t T t c d t N c o d S - N S C D C D L O C D C D I O h- CD TJ i - i - tl) £ •£ « : CO CO OJ T> . — T - < o r ^ c N o t o m c o O ' i - T t c T ) < o r ^ o c o c o c D C N c o o c ^ ^ c n s o > r ; N N N c o T r T r T i ; T r i n i n c o c p c q c q -— d d d r - ' r - V ^ r - V ^ ^ ^ ^ T - T - ^ T - ^ ^ ^ ^ ^ T - ^ ^ C M M C N C N r N i c N N N N O ra CO v v , r i C O T t C O ^ ^ a ) C O C D T - r ^ r - - T t r ^ C D C N C O C O C O C D C O T - C T ) L O C D . 5 =i STtcOT-tNOcooocNCDcocT)Ttcocor--cNr--cNr--cocoLOT-coTtT-coLoc^ E jd C T > ! J O C O C D f - - C D C D C T ) O O O T - T - C N C N C O C O T t T t L O L O C D C O r ^ C O t O t T > 0 0 CZ ^ T - ^ T - T - T - T - T - C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N C O C O C O C ^ 0) CD 2 a> > CO c > o E o o & - J E o o LO to a) o >» o CO Q> 3 & TJ CN | g < C CD CQ TO < "to T-cfl C o • - 8 ^ OJ P- o E = "55 CO CO Qi O O O h T - O O T t C N O O - , . ™ ^ , w c q c D c o T t q ^ ^ T t ! s d c d < b ' - ' - T | : r i i ~ i i L O C D T - O C D C D C D C O C D T t C N T - T -q C N q q C N C N C N C N C N C N C N C N C N ddddddddddddd j cn N m CN i - i ! d d d d d i OCDCOCOH-CDCDCDCDCDCOCDCDLO T - O O O O O O O O O O O O O dddddddddddddd C N O O C O C D O L O C O T - C D T - L O T t T t c O T t T t C N C D C D l O h - T - 1 - L O C D C D C D L O L O L O L O L O L O L O L O L O T t c c i i n ' T t n . c N r ' d d d d d d d d d d d d d 00 CD Tt T-Tt Tt Tt Tt T- CO C N C N Tt Tt Tt Tt • o d d o l d d d d « T - C D C O O O N h - C O C O L O l O C O C O L O C O C O C O C N T t t O C O C O C N C N C N C N C N C N C N C N C N C N C N C N C N C N dddddddddddddddddd SScDOOCDT -COCNT-CDCNLOTtOOTtCDOr - .LOCDT -cOL^ CN LO CO CO CN CZ) CZ) CD C) T-^ ^-^ CN T^  T™^  CN CN CN CN CN CN CN T~^  CD CD O) OJ OJ CD CD OJ CD CD CD 00 00 00 00 00 J ^ d i n d c N ^ r ^ ^ r r r r r r r r r ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ d d d d d d o d T ^ ^ h - c o q c \ { T f r o q q c q e q q q T - q i O T ^ « t S S N i o ^ N d d s i o s N d T - ^ c o s c o d d i ^ c d d ^ ^ ^ C D C D T t C N r - t - r - T - T - T - T - t N C N C N C N C N C N C N C N C N C N C O C O C O C O C N C N C N C N C ^ CD ^ CD O) £j E, CD Tt O O O CN O LO OJ T- N-T— CN CN CN CO I CO I CO CO CO CO CO CO CO t ' f ' J - . i n c n i O i O m C O C O C D C D C O C O C O N N K K N N N N N N N N S S N N C O C O C O n n n n n n n n n n n n n d c o n n co c o c o c o c o c o d d d d d c o c o d c o c o c o l r - CN h - CN LO r~-|co CD CD O O T- CN CN CO COl Tt Tt LO LO CD CD f— r - r - CO OO CD CD O O I O O T- i - T- CN CN CN CN CO I CO CO CO CO Tt co Tt Tt LO LO LO LO LO LO CD co co CD CD CD CD co co co CD CD CD CD co co co co CD CD s r - r - r - h- h- r— I r— r - r - r - r - | r - r - r - r - r -Tf Tt lr- r-CD | O CN Tt LO CD I CO OJ CD O CN CO t t n N CD N r - r - r - r - r - h - r - co oo oo oo co co O T - C N T t L O C D r - - C D O T - C N C N C O T t L O C D h - C O O J O T - C N e N C O T t C D C D C D C D C D C D C D C D O O O O O O O O O O O T - T - T - T - T - T -T - T - T - T - T - T - T - T - C N C N C N C N C N C S I C N C N C N C N C N t N C \ I C N C N C N C N r- CD N - LO CO T- CN Tt LO CD S N O CN LOlOO CN 00 OJ O l O LO CD CD O i l * - Tt CN CN h - |CD LO CD LO C0| Tt ( D N S LOlCO OJ CO T-f N CD CN Tt N O) O CO LO CO N O l CN TT N O D LO h - O CO CD CD CN IO CO T- Tt h - CD CN LO T- CO Tt LO CO CO CO CO N N N- h - f— h - 00 00 00 CD CD CD CD O O O O r - T— T— CN CN CN CN CO CO T- T- T- T- T- T- T- T- T- T~ IT- T- T- T- T- i - T- T- i - T- T~ CN CN CN CN CN CN CN CN CN CN CN CN CN i N CJ) i i CD CD I ' D S I I LO CO •C D C D T - C D O J C N C O T t C O O J C D C D C N T t t D C D T - c O L O S . T t T t L O L O L O L O C O C D C D C D C N C N C N C N C N C N C N C N C N C N L O C N j m c D T t c N J O N T t ^ m i n ^ O ^ ^ ^ ^ ^ ^ C ^ ^ ^ ro^SSS3SfnfONmm(DC)T-T-CNCOCOTtLOLO T - C N C N C D t t l O C D ( D N C D C O C J ) ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ N N N N N N N N N N N N N N N n n c f j n 0) o >> o O T- CN CO Tt IO CO N - CO CD ^ N- CO CD O k - CN CO Tt LO CO S 00 OJ O r - CN CO Tt LO CD S - CO CD O r - CN CO Tt LO CD S T- T- T- CN I CN CN CN CN CN CN CN CN CN CO I CO CO CO CO CO CO CO CO CO Tt Tt Tf Tf Tt TT Tf Tt 178 o to 0) .C ~ fc! CO T3 7 " ' • E < c oi 2 o to iS • * I o < (O r E i -s .. a. . . ^ CD c CD c — CJ a h u -c Q C — </) -j — m <D cu c <D W O h O O _ i <o E ^ o i -s I » O. ° i f o> CD £ "a c UJ a> 1 >> ro , : 7 3 ; co : "O C LU C7 T3 >. ro •o : , ^> ' TD c UJ i o I Tt i Tj" ° o CD 2 co 2 E ro o t c O ^ ^ O l S C O C N I C N r - m CO I CO CD O CO Tf csi r-i cb cb iri T-lr- CD T- o T-TtId cb r- iri Tt =^ O O O O T f U a o co Tt CM co jz. CO £j CO C M C M T - T - O J I P QJCO r - r - r - r-- 1 o T- CM co Tt m O) CM a co ° o o ! co q 10 co k (p to s (NO ^ w c\i cp cp CD o 01 m c o co * CM in O) V CD CD o cn CD CM N CVJ 1 CM Tt' iri CM iri cb cb cb IS- oS cb Tt cb r*~ cb s cb iri cb iri cb cb T— s cd cb iri cb co cd co co cd co cb co P ^ ^ ^ P ^ . ^ ^ P ^ ^ ^ ^ r ^ l ^ . r H T ~ . mlco co to T t c o o Tt uri N cd r-~ r— in cb I Tt iri cb cb iri to cb cd j cd cb cd cd cb co co co co SQ CO CO CO CM CN CO T-ICO CO CM CO co ™ ™ k k s-. <A t a - <* s i r- ' CM CD IO d d o o in co co r>-0 0 0 CM co I •<- of o in in m Tt Tt Tt CD O T~ CO CM 1 co SS SS ' > CO °? °? 1 . J. >. >. 1 ^ ? ™: ! ^ h- co 1 ! ° oi oi ! q c M m q o 0 1 0 , c M ( D O T - r - O T - T t T t r - . c o co Tt o o ^ o d c r i ^ d ^ d d d d d d d d d d o o in co CD d d T- co T " d CM T~ m co co in co cn in o r- CD d d co o co I r - CM CM I S * r - M n O ) N O ) C D ^ S ^ C D ^ C O f f i C O C O G t O r N T t N i f j C M t - l O r - N T r N C M C D C O N " l O f M f M t D r M C D c o f m r - T - r s > o c o c o T t c N T-cococNtNTtor - - i n o a > o i n r ^ ^ r-CDincOCMCMCMCMCMCM C N C M T - C N C M C N C N C N C N C N C N C N C N C N C N C N C O C N C N C N C N T - C M C ^ co co N r - r-lh- cp cp in in T t co cp cp Men s to in r~-|Tt Tt cp in cp cp cp Tt TT to co Tt -r- co CM CM CM cp T-ICN CO Tt TT T - T - r - ~ c o u o c D O c o r ^ r ^ o c O T t i o o o c o c o c o i o o m ^ T - T - i n T - a j l O C N C D C O C O T t T t C M C M T t C M T - C D l D i O C O t ^ CO CO Tt Tt CO Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt CM Tt Tt Tt Tt Tt Tt Tt Tt Tt Tf Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt CO Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD O CM CM d d 00 co d ol CO CO T-10 Tt in ° s s IO Tt CM CM \ => =i =s ~3 ^ 5 ^ ^ ^ . T - c o i O ( N c b ^ S ^ ? ! , Tt co r-» T~ CO T" d d o in CD 1 Tt •* < 0 0 c co in co d d o CO CO Tt Tf CO 10 O T- CM CO Tf m CO r - CO CO o h - CM CO Tt LO CD h- CO CO o h - CM CO TT LO CD h- CO CO CM CM CM CM CM CM CM CM CM CM CO CO CO CO CO CO I CO CO CO CO Tt Tt Tf Tf Tf Tf I Tf Tf Tf Tf i <° c ' CO ( ! to J • (0 c I CN J CO LO O T-d 0 O O * O) O) r n CO ™ ! I « ! I ° CO ™ 00 r- CD O N ^ O N T f T - 0 ) i O C N C O C D t f T - C O i n C M O ) C D C O O N T r C M C O i f ) C O ( D ( D N C O C O O ) O O T ( M i M C O T t i n m ( D S M D O ) 0 0 « - O I CM-CO Tf T— T— T— T— T— T— r v l C N C N C N C N C N C N C N C N C M C M C N C M C M C O C O C O C O C O C O C O CO T-T- CM CM CO t- O d d CO CO CO CM d d CD CD d d CO o CD CM CM r -CO o CM CM 179 CO CD I— T— CN I CD CM CO LO CO • CO r— r- r- r— ' Tf l l -5" r - O N C D C O C D < O T r O O i O r - N L O C O L O T t T f C D a D N " C N < n •f 5 O t 1 r ; r ; t N i n q O ) 0 ) r i n N S N ( D n il-J c d r - T - T - r - d d O T - T - T - T - T - T - T - T - r - X - X - r - T - ^ t ^ T ^ ^ r r C D C O r - N - ^ r - r - T - O L O C N C D < X ) C M C D C D N C M N C O C N O C N C p c q c q c O N T r T j - T j - T j - L O T t CU] CD S a CO CL c TJ . r- CN ( CD CM C O T- ( CO ( ^ c q n o N N p i n o i q i o n ^ T - r - C N i r o S c b N T t T t T t T t i r J T t 0 3 T ^ ^ C D N C O C O C O C D C O C O L n L O L O T t T t L O L O i O C D C O C D C O C O C O L O L O L ^ i co h-i cd I LO Tt d CO ^ ^ ^ ^ N c o T - ^ p c q c o L O N C N N c q S S m f N C J c D ^ c d c s i s T t c d r o ^ ^ ^ ^ C D N C O T t T t C O C O C O C O C O C O C O C O C O C O C O C O T ^ c. Q. CU TJ p CO LO CO LO m •<- d co r-CM r-. CM esi LO LO r~- LO ai d co IO CM o d d CM co LO ai LO co co i o ^ Tt Tf TJ <U I I « 100 CO CO T- CD T-ILO CN O CO \± JU ^  l O T- L O L O T- N O ) CN L O r-z o. •—• TT m d N co' co cd ai ai d (D T J C M C D C O O T - T t C O O O C D C N S C N O C O T t r - O O O p c q T - T t i n N p T ^ p c p c o T ^ T t c q p T - c o c o O O T ^ T ^ T ^ T ^ T ^ C N C s i C N C N d d d d T t T t T t • CD o co i ; CM LO CO ( ! LO LO LO I O O C N T t C O C M L O S C O C D e D C O r - . C O T t p C D ^ T t C p C q p C N T t c O O O d c d d d N s s s d m c b c o c o T - C D C M C O C O C O C O T t i O T t C O C O i O C N O O C O C O T - T t r - - C D N O i - C D L O C M T t C D O T C N C D C O N T t N C O O S T t T - o O i O C N C D i O S C O C D T t C D i n T - C O U ^ O C M C D O O O T - C M C O C O T t i O L O C O N S - C O C O C D C D O O T - C N C M C O T t T t l O L O C O r - - S T - T - T - T - C N C N C N C N C N C N C N C N C M C N C N C N C N C M C M C O C O C O C O C O C O C O C O C O C O C O n d CO LO ^  Tt Tt CO N S O CN Tt N ° m CD CO T- CN Tt CM CN K) N CD CO CO CO Tt CO O S LO CO CM T-; esi to Tt Tf O CO T- lO CD q lO O CO CO CD co co d T t ^ T t c N T t L o d d in co Tt i n i n rt i n i n r r CN CD T- o Tt d LO LO TJ i— a) Z B % ZJ Z3 "Q. CO CO tl) TJ CD CM * d i CO CO O CD • I Tt S- CD CD • i d d d d • CD co CD co r-T-^  CM CM CO CO I i n C D T t C O O T t O O ^ l O C D T t O O C O O O C O N T - C D T - N C O C O C M O O T t C D T - C D C N r o T t T t i n i n p p p N r - . N C o c o p p p p r - r - c ^ T ^ T ^ ^ ^ ^ ^ T ^ ^ ^ ^ ^ ^ ^ T ^ C N C N C N C N C N C N t N C N CO v ^ r r , — ^ . p i r o C O C O L O C O C O C D C O C O ^ C M C M r - O T t C D C O C O l ^ * =* S S m S S ^ C D i O O T T C O C N i n C D T r C O O T t S O T f C O C M C D O i n O T t C O e M S E ir= D i S S t n S S c J O T - c N C N C N c o c o c o T t T r i n i n i n c D d c D S N ^ CZ ^ ^ ^ W U T - T - T - T - T - T - T - T - T - T - r - r - r - T - T - T - r - T - T - T - r - V - r - r - C N C N C N C ^ 0) CD 2 CU > CO CO c "> o E & t - 0 ) i n O ' t ^ C N r - ( D r - M n c O C » C D l O C O i - C N C N r r r C N T - C T ) N C O C O C M O i n i n C D i n T t T t C O C O C O C M C M C N C N C M C M C M C N C N C N C N C N T - T -o i N c d i f N ^ d d d d d d d d d d d d d d d d d d d d d • C D C D O O O C D O O C O C D i n i n i O i O L O l O l O l O i • O O T - T - T - O O O O O O O O O O O O I i d d d d d d d d d d d d d d d d d i 00 Tt Tf" ^— CN O ^— CN LO CD Tf" i— O) CN LO CN T— LO CO LO Tf" CO Tf CO CN r— f""- Tf" CN O O CN CO CO —^ —^ O CO T T O C O C D O T t O N C D i n i O i n T t T t C O C O C O C O C O C O C O C O C O C O C O C O r t <6i6^cvc*^rcidcziczicDczi<5 ICOCDCOCONCDLOTt i o d d d d o d d O C D T t c O O T - T - C M C M C O C O C O T t T t T t i n i O i O L O L O C D C O C D C D N N ^ ^ i n i n C O C D C D C D C D C D C D C D d d d d d d d d c O C O C O C D C O C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D C D ^ C D d c D C D C O l o O L O O C N T t i O C D N N C f i C D C D O O O T - T - T - C N C N C N C O C O C ^ I r- CM CM CM CO CO CO CO CO CO CO CO CO Tt" Tt" Tf" Th Tt Tl" Tt N" ^" Tt ^ " ^" ^" ^" ^ " ^" ^" ^" Tt ^" ^" ^" ^ " Tt Tt Tt Tt" Tt Tt" ^" CD ^ CDCO CO E, O x - O D C N O L O C O N O C D O T - T - C N C N C O C O T t T t L O L O L O C D C D N N TtCONNCOOOOOOOOOOOOOCOCDCDCDCDCDCDOlCDCDCDCDCDCDCDCDOT T t m L n c o S c o i n S o c o c o \c% T? LO S C D N N N C O S C O C O C D C D C D S CO >> CO Q L n < r ) O N T i - T - m i - . L o r M m t o M C ) C O i n c N C D C D C O O N T t O N O ^ C O " S m S 3 ^ S S £ m m m O » - r C N C O n ^ i n c D C D N ( D C O O ) O O r - C N C N C O r - M D D ^ i n i n C D M D C O O ) ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ O o ^ m m o k N co v m co s co cn Or- CM o i n CD N co cj) Or- N co i t i n co s c o o ) Or- (N t o v i n CO N CO O) CU N W O) R R R ^ 1 ^ R ^ R ^ ^ ^ N U ^ ^ N „ U N N N RT|RT N N „ ^ 1 ^ ^  ^ ^ ^ , T 180 Q. CM f I I •A _ E S = "55 <° 1 3 <? " 8 a E oo ra 5 0 < CO T - E T -a 2 N o a H U Q +-<(/)_ co <u Q> d cu C O O h - O O o o o cn co cvi ^ E co co r-r-~* T- r-^  co o co o o 3 l i s O 1- M . co co o CO CM CO CO CO CD Tt CO CO f - r-^ r - f -CO T- CM uo o S O if) K ^ - S LO CO TJ- Tf TJ- Tf o o o d o d • CM CO Tj- LO SS SS to CD SS S ° ? ° ? CO CO ° ? ° ? c c: A A -Q -Q 7 7 IL IL i T LO CD - J . -A CO CO CM CM T- ~ ' S CO N T- If) TT Tf" d CO LO co CM Tf r--CM CO CO T-CM CM CM CM CD CD N CO N s N s s CO CD CO LO lO co h- co co ; C0 CO ° ? ° ? CO S .2 a. S 5 ^ 5 < ' LO T— CM CO O T- Tf CM CO CO h - CO CO O CNIT-; LO CD CD N N S CD CO CO CO CM Tf CD CO CO CO CM CM x— CM CM r- Tf CM CO N CO CO T- T- IO Tf Tf Tf Tf Tf d d d . d o N CO CO O) CO LO mm1-' - CM CO Tf CO , N CO CO CD CO g r o c s c n c p £ Q. Q. Q. < < < < A LO CN CO -T— CN CN I Tf Tf O Tf CO LO Tf CM CM CM CM CM CM CD CD CN N CO r-J r-^  h-Tf Tf CO O CM CO N CD S CD Tf Tf Tf Tf Tf d d d d d co r- co co o CO CO CO , _ UJ OCDCDgo) >* >. i ' CD to ro c Tf A c6 TJ T— CM CM T T LO Tf Tf" CM Tf O) Tf CD CM CM CM CO CM CD CM CD CD N r - i r-^ r- ' T- C) CO CN CO LO Tf CD LO CD Tf Tf Tf Tf Tf d d d d d 7 7 -) -) . CO LO CM CO 1 0 o o r - CD CM CD T- CN CO CO CN CO CO CN CM CO CM CM Tf Tf r-^ LO LO LO co co Tf Tf Tf Tf Tf o d d d o CO CD Tf O f -S CO O) O O T— T— T— CM CN CD CD CD SS SS CO CO CO °? °? 3 3 °> °* 7 7 ^ S 3 CD S * CO N t f O) O) co Tf Tf cb d r- CM CD f) Tf CO d o d o r- LO d d CM CO S CD — o ^ o o J CD CM CO CD CM CD LO CO CN O CN CN CN CN CN Tf CM Tf CO N N S S N CD Tf T- CO CO CD TJ- S m Tf Tf Tf Tf Tf Tf d d d c i d Tf T— co CO co T- CM CM CO Tf CN CM CM CN CN CO CO CO CO CO O) 6.6.61 J sr CD CO CM < CO CO w I d Tj-CM ; • CM s N T- CD O) O CO Tf O CD CM CM CM CM T-O) Tf O T7 S LO Tf Tf CD O Tf Tf Tf Tf Tf d d d d d O N Tf r - CO LO LO CD i — i — CM CM CM CM CM . . . , N CO CO CO CO CO °? 9 9 08900 ^ ® T - CM W co r-O CO CN CM CO CO CO h -CD CO Tf Tf Tf Tf Tf Tf d d d d ID CM 0) N 00 CO CO o CN CM CM CO 181 ro o S r - n o i ^ ' S , * C N ( D ' * ' * cn I cn r - n ^ CD I co Tt o m T-|CD O TT CO LO I co t- T t co col*- co T- TT T~\T- co ^ ^ co i r - CN O D q c n C T | ( N r l D ( \ l C ) r - Tf CO CO N O CO I CO Tt" LO LO Tf CN o CO o n r - O T~ CN O r - O T - O CD I O O T- T~ T- I CO r -I c O T ^ d d c N C N T ^ ^ O - r ^ T - ^ | d O O r T- T-|t- r O r "^1^  T~ T™ T™ r-|t- T~ T~• T™" C>|T^ T- T - T - ^ O O ICN c o i O r - r - . c o c D t o r - . r - - o l T t co CD co COICN CO LO O CD I T- co r - o r -1 LO TI- »- o r-1 co co o CN CD I co m CN o l TT o C N j c q c q c q c D C D c p T - ; c D p Tt cq s CD CD CN co co TT LO CO CN CD co o co r - o r CN O O O O O CO CD o T- T - r - oq r -| CO d d d r - r - r - r - d T - T- I O O d d r-1 r - r - T— r - r-JT- O O r - T- I i-^  T—• T~ T~ T- I T- T-^  O O T- T- T- IO O CDJ 0) § 5 ' S ^ t= > Z T ; CO CL g s. > O Q) E cS £ to =6 o 2 LO O. Tl" O d d CD CN ( CO CO i CD Tf t d r - i CO CO i CO CN i ^ c q c N i o ^ c o c q c o ^ s q w s c q i o c o c N S c N t - o d d d d d d d r - T t T t d d d d d d ^ d d d d d d d r - d d d d d N d ^ C D C D L O T f T f C O C O T f T f T f L O L O l O L O L O L n L n i O l O C O L O C O C O l O L O L O c D T r c N c o c o c o T - p i q c N c o c p c o c D m ^ r t c o d r ' r o d N r c d d d i r i i o d c d d d r i T f d d r d d CD LO Tl" CO Tf Tf CO Tt Tt Tt CO CO CO CO CO Tl" TT LO LO LO LO LO Tt LO LO Tt Tt Tt Tt Tf Tt Tt Tt Tt Tt" Tt cq co i- r -CO LO ! leaSliglslllJI.gll T t C D L O C N L O C O t - L O t - O T - C O O C D C N T t T - C D C N C O T t O L O O T t r - ' r - L O C O d C D O C N C N C O T t T t L O L O L O C D C D C N C N C N C O C O C O C O C O C O C O C O C O C O C O d Tt Tt CD i CO CD LO i • CN TT r— < i LO d LO I CN CD r-a> r - r-I Tt LO LO J CN r-3 r -• C O O j T f N r - N r - C D ( ; c o c q c o q c o m c o o ( i d d d r - r - r - r - d c CN T- O) r io cri CN d LO LO LO Tt T t O O C D L O T t L O C D C D C O O C D i s c n r - n i o s o i r - c o i n c o O O C D C D C D C D C D O O d d r - r - r - r - r - r - M M C M C N CO CD d d to CO C D C O N T t C O C D T t O C O C O C O C O T t r - N C O T t N N L O C D C O C D C N T t C D T - S C O C D T t C D L O T - C O C N C D L O r - r - - C N C O T t C D C O O O C O C D T t C O C N C O C D C D C D C D O O T - C N C N C O C O T t L O L O C D C D S h - O O O O C D C D O O T - r -CO CO CO CO Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt LO LO LO LO d CO 3 U CO CO O CO E o £ ro °? N co cp co co q Tt PTT" co T— t—- r— Tt d f ^ t - co LO CO CN Tt T t CD CD co d CN co CO T t C N p T t r - L O r - p CN LO r - Lodr-CNTtdcNLO d d LO LO LO Tt IO T t Tt Tt Tt LO CN ^ t n r - T t T t T - C O T - C D C N r - - O L O C D T t C O C O N O T t C O C N C D C N C D T t ^= i n c q r - ^ i n i n i o c O N N i D m c D r o q q q r - r • — - d d ^ ^ T ^ ^ T ^ ^ ^ T - ^ T - ' T - T - T - C N C N C N C N C ^ m ^ T t N C N C N L O O C D C N O T t C D O C N C D C D i n c D C D C O L O C O C N T f L O L O C N C O r -™ ^ ! - - T t c N c o r - c D ^ ( D o c o r - C N c i 3 0 T r r - O T t c D C N r - - T t C D c o c o ^ ^ O C O T t T t L O L O C D C D C D r - h - C O O O C D C D C D O O O t - ^ ( N C N C O < O T t O ) CD CD > ro 0) o & L O T - O O i O T t O C N S T t T - C D C D C O N C D T t C s l T - O O C D t -r- Tt CN O LO Tt CO Tt CO CO CO CN CN CN CN CN CN CN CN CN CN T— T— o i r v c d t N ^ d d d d d d d d d d d d d d d d d d i TtCDCOCDCOT-CNOOCO-r-C D C 0 r - r - C O C N 0 0 L O L O L O L O T t T t c N ^ ^ d d d d ^ ^ C N T - O S T - r - C O C O C D N T - C O C N C O O C O C O C O S N . . Tt CN r - Tt LO CD t—• CD LO LO CD CO CD CO CO LO Tt Tt Tt Tt Tt Tt Tt Tt Tt CO CO CO CO CO CO CN CN CN CN CN CN CN CN CN " ^ d d T f c N ^ d d d d d d d d d d d d d d d d d d d d d o d o d d d d d d ^ ^ oo oo oo o Tt r i S ^ C O C D N C O t l ™ CD CO Tt CO CN ' • CO CO LO Tt CN CN O ( > Tt Tt Tt Tt Tt Tt Tt ( * d d d d d d c1 < c o c D T t r - c D c D L o r - r - o o o o r - L o c o T - o c D C O C O C O C O C N C N C M C N C N C N C N C N C N C N C N C N T -d d d d d d d d d d d d d d d d d t O t O O l O N C N N ' t l J l O i q c O N N S N N C N C O f f l N d T t d d N N ' d d d d T ^ T - ' T - ' T ^ c v i d d d d d c N C N T ^ T-T-T-T-T-T-r-T-CNCSICNCNCNCNCNCNCNCSICNCSICNCNlCNC^ L O C O r - C D C D C O C O C O r - C O C O L O L O L O L O T t T t T t T t • r - - r - T - p O O O O O O O O O O O O O O O d d d d o o d d d d d d d d d d d d d • r - r - r - r - co r -i o d d d d o d d CD 0) o & 'ro "cu TJ SI <y 1 <? 1 8 < C C O co ro < « r-(0 c g . . o> 1 0) §• o Q.K O E =S « co a> cu CO O t— o r - co r - CD o o T- T- CN CN CN CO CO CO co Tt Tt Tt Tt Tt r— r - 00 CO CO CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD T - lO CD CO CD CO CO CD O O r- T - CN CN CO CO Tt Tt Tt LO LO IO CD CD CD CD t— t - t - S CO CO OD CO CD CD I CD CD CD CD O O O O O j CO CO CO Tt Tt Tt Tt Tt LO LO LO I LO LO LO LO LO I LO LO LO LO LO I LO LO LO LO LO LO LO LO LO LO j LO LO LO LO LO I LO LO LO LO CD CD CD CD CO oo r - oo t ; ! N CO d> ° , 00 00 O T- CN CN CO CO Tt LO CO CD N N 00 CO CO CD CD O O r- r- T - CN CN CN CO CO CO I Tt Tf Tt Tt LO LO LO CD CD IT- T~ CN CN CN CN CN CN CN CN CN CN CN CN CN CN CM CM CN CO I CO CO CO CO CO CO CO CO CO CO I CO CO CO CO CO CO CO CO CO L O L O f o m C ) N O r - c O C N C O C O r - - a ) S r - C N C D C D T t C D L O L O C O C n c ^ S S S m S ^ L D C N T t C O O O C D T - C N C O L O O O O T - c O C D C D O C N T t C D C D r ^ CD N CD Q ^ ^ 1— r - T - T - r - f \ | f ^ C N C N C N C O C O C O C O C O i t ^ ^ , t ^ C O c n c n c O C D C D C D C D C D I i r— r— r— CO CO CO CO CO CO ro O O T - 0 0 ^ ^ S ^ 5 L n ^ m ( ^ m m ^ C ) r - r - C N C 0 C 0 T t L 0 i O C ^ r - r N W n ^ i n c n c n > C D r o Q ) ^ r ^ r r ^ r r ^ r r r r r N N N N N N W M W N N N N N N n O O T- CM CO Tt I r- 00 CD O r - CM CO Tf LO CD r- CO CD O T - CM CO Tt LO CD h- CO CD O r - CN CO Tt r- T- T- CM CM CM CM CN CN CN CN CN CN CO CO CO CO CO CO CO CO CO CO Tt Tt Tt Tf Tt APPENDIX 8 T A B U L A T E D R E S U L T S T A L L C E L L S 183 I E E _> cj to "55 CD TJ CD c y 0 Q. H U Q — tf) (d OJ 0) d CD W O h O O Is I S 8 0 3 E 5 " > 5 3 . CM O CO CO CO " - o d d O (D T - S (M , Tf CO CO CN Tf CM Tt t— i n co QJ r - CB S K K CO QJcd r-' r-^  s s s . r- CO CD CM LO' If) O) CO CN CO CO CO Tf Tf CO Tf CD CD CD CD CD CD • CM CO Tf LO c c c c co to to to —)—>—>—> d T— co LO CO CO CD CD .o i, I CO O CM CO I CD 00 Tf f- ' LO co CM co r -h- CO CN O CN CO CO Tf CO Tf d d d d d CD f - CO CD CO CO CO CO CO co CD CO CD CO A A Oi Oi LL. LL Ma Ma CD CO T- CM CO LfS CM ) O CD Tf CO i N i r i cd s r- CM Tf co O CO N S Tf CO CO CO CO CD CO r - CM i o CO N CO i— cp CD r—• co f-! f-! r-i s CD CM CO CD O Tf o LO r- CM Tf Tf CO CO Tf d d d d d T— CN CO Tf LO i ' rJ\ LO CN i ^ 0 3 T- CM l ^ i n c q o j N D c q u i t f c o N ^ c o T r N n o o i o c o i r - n CN CDIW. N i c b d c b c b c b c b c d c b d co I co o i o i cd o i I P. d ! CM T- T-CO O Tf co CM 1- CM CM CO CO I— CD IS- S CD N CO CO N ' N S S S r - o co LO o Tf Tf CD LO LO Tf Tf CO Tf Tf O O O O O co r - co CD o CD t o SS SS SS CD S) Cp C0 CD L. ; > > > CN ^ . • CO CM CM Tf LO CO CO CD d c i d d d - 00 CD LO CO CO CO cd o i CO CO O CO CO CO Tf CO LO Tf in r - r - cc CO T- CD O CM CD CD N CD CD 0 0 0 0 0 co ° . co o i CO LO ' cd o i ! CO CN O O CO T- 00 O CM CD N N N CO CO T- CO N v CO CO N CO CD Tf Tf Tf Tf Tf d d d d d o N t r CO CO CD O O T- i- T- CM CM J , LO CM CO T— CN CN CD CD O) N S CD CD CD CD CD CD '• LO CO I o i o o co CO d d T- LO Tf LO CO CD CO CD CO CO CO CO O CD CO LO CO CM CM O S O ) CD CD S if) i f ) CD CO Tf CD CD co i n r - CD co Tf Tf Tf CO Tf O O O O O LO CM CO CD Tf i- CN CN CO Tf CM CM CM CM CM CD CD CD (f, _ CD CO CO Sjj CO 6 6 6 >• ~ r - CN co S CO CM co co i — co i n LO CO f- LO CO m i n Tf i n m o s T- OD m i n co i n T- co Tf Tf Tf Tf Tf CD CD CD CD C> T- CO LO CM CO i n i n co s N CM CM CM CM CM Oi Oi o o >s CO CO o O 9 N - Tf J. oo LO X— CM * — CO I CO 1 oi o i ! f ) CO CO N O CO CM S m Tf m m co CD m o S CD N CD S Tf Tf Tf Tf Tf D CD CD CD CD CO CO CO CO CD CM i n CD Tf Tf Tf Tf d d d d CD co o r - Tf CO CD O O T-CM CM CO CO CO CM 00 LO CO CM CN CO Tf CO CO CO CO o t3 > c O O ° z Ri 8 cA 2 »|j rt " " 184 1 i m 3.14 4.18 1.49 1.96 1.14 1.49 0.87 1.14 0.66 0.85 0.84 1.06 0.91 1.13 1.27 1.54 1.76 2.10 2.44 2.87 2.33 2.71 1.74 2.04 1.66 1.96 1.33 1.58 1.03 1.26 0.96 1.20 0.89 1.15 0.87 1.10 0.86 1.06 0.95 1.17 1.05 1.28 1.09 1.32 1.13 1.35 1.15 1.37 1.17 1.39 1.01 1.22 0.88 1.07 0.88 1.07 0.88 1.08 0.82 1.00 0.78 0.94 0.78 0.95 0.77 0.95 0.67 0.83 0.75 0.94 0.83 1.01 0.82 1.00 0.68 0.83 0.70 0.85 0.80 0.96 0.88 1.04 0.83 0.99 0.76 0.93 0.70 0.86 0.64 0.79 0.62 0.77 0.60 0.74 0.68 0.83 0.76 0.91 0.83 0.99 5 cvcle movinq averaqe SO, NP prod'n rate depl'n rate (mg/kg/wk) (mg/kg/wk) 193.2 314.0 162.8 237.5 147.3 207.1 103.5 123.4 88.9 101.2 73.7 92.9 56.0 89.3 45.6 93.2 44.8 101.9 43.9 104.4 43.0 98.0 47.5 95.6 49.1 83.4 49.0 72.6 48.3 62.8 48.4 58.3 49.1 58.3 48.7 58.6 48.2 59.8 50.0 64.7 51.3 69.4 51.2 71.5 52.7 72.9 56.4 74.8 56.9 72.1 56.9 68.8 58.8 66.6 59.4 63.7 58.9 61.7 58.7 60.1 60.9 59.3 57.9 55.6 55.5 54.0 52.0 51.0 51.7 49.3 47.8 46.1 47.7 .46.2 48.5 47.3 48.9 47.7 47.2 47.2 48.6 48.5 50.2 48.4 50.3 45.3 49.9 42.3 52.8 43.9 54.5 46.1 54.5 48.5 Neutralization Cum. NP NP NP depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) 550 1.23 872 1.95 2253.5 1071 2.40 . 1223 2.74 1330 2.98 1437 3.22 1506 3.38 69.0 1592 3.57 1701 3.81 1789 4.01 1930 4.33 123.2 2060 4.62 2159 4.84 2233 5.01 2295 5.14 61.8 2359 5.29 2423 5.43 63.9 2482 5.57 2532 5.68 50.3 2594 5.82 2660 5.96 65.7 2730 6.12 2805 6.29 75.3 2880 6.46 2952 6.62 72.6 3025 6.78 3093 6.94 80.1 3156 7.08 3214 7.21 57.9 3276 7.34 3343 7.50 59.1 3402 7.63 3456 7.75 54.6 3510 7.87 3553 7.97 43.3 3613 8.10 52.2 3664 8.22 3710 8.32 3747 8.40 37.6 3791 8.50 3850 8.63 58.7 3902 8.75 3946 8.85 43.4 3990 8.95 4033 9.04 4077 9.14 4120 9.24 38.0 4165 9.34 4220 9.46 4282 9.60 54.3 Sulfur Cum. S04 Sulfur S04 flux . depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 126 0.07 284 0.16 412 0.24 540 0.31 661 0.38 105.6 757 0.43 96.5 816 0.47 58.7 869 0.50 919 0.52 949 0.54 26.0 999 0.57 1060 0.60 53.3 1108 0.63 48.4 1153 0.66 44.7 1200 0.68 47.1 1251 0.71 1305 0.74 1356 0.77 1402 0.80 45.5 1453 0.83 1502 0.86 49.2 1553 0.89 1606 0.92 53.5 1658 0.95 1708 0.98 50.1 1765 1.01 1.04 71.7 1.07 1.10 51.7 1.14 1.18 60.0 1.21 1.24 55.1 1.28 62.4 1.30 44.4 1.34 49.6 m § 1.50 1.53 44.9 1.56 1.59 52.3 1.62 1.65 1.68 1.71 1.75 52.6 Sulfur Cum. S04 Sulfur S04 flux . depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 126 0.07 284 0.16 412 0.24 540 0.31 661 0.38 105.6 757 0.43 96.5 816 0.47 58.7 869 0.50 919 0.52 949 0.54 26.0 999 0.57 1060 0.60 53.3 1108 0.63 48.4 1153 0.66 44.7 1200 0.68 47.1 1251 0.71 1305 0.74 1356 0.77 1402 0.80 45.5 1453 0.83 1502 0.86 49.2 1553 0.89 1606 0.92 53.5 1658 0.95 1708 0.98 50.1 1765 1.01 1827 1883 1934 1994 2062 2121 2177 2239 2283 2340 2389 2442 2485 2529 2583 2634 2678 2728 2780 2834 2890 2943 3000 3060 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 95.9 17.95 11.68 12.02 72.7 , 13.47 8.64 8.76 63.6 11.61 7.29 7.21 38.3 6.68 3.90 3.55 32.0 5.17 2.72 2.17 30.0 4.34 1.96 1.26 29.4 3.84 1.49 0.73 31.3 3.60 1.13 0.38 34.6 3.75 1.08 0.35 35.5 3.76 1.03 0.31 33.4 3.53 0.93 0.27 32.4 3.52 0.93 0.25 27.9 3.30 0.88 0.22 23.8 3.17 0.84 0.20 20.3 2.95 0.77 0.18 18.6 2.84 0.75 0.17 18.6 2.86 0.74 0.16 18.8 2.81 0.71 0.15 19.4 2.70 . 0.69 0.14 21.3 2.77 0.68 0.13 23.0 2.88 0.66 0.13 23.9 2.88 0.63 0.14 24.3 2.91 0.62 0.14 24.9 3.02 0.63 0.15 23.9 2.97 0.62 0.14 22.7 2.91 0.60 0.12 21.9 2.89 0.58 0.10 20.9 2.79 0.54 0.07 . 20.2 2.70 0.50 0.06 19.6 2.65 0.46 0.05 19.4 2.63 0.43 0.04 18.1 2.50 0.39 0.04 17.6 2.44 0.39 0.04 16.6 2.30 0.36 0.04 16.1 2.20 0.35 0.04 15.1 2.03 0.31 0.04 15.2 1.97 0.30 0.03 15.7 1.95 0.29 0.03 15.9 1.94 .0.28 0.03 15.7 1.93 0.28 0.03 16.1 2.01 0.29 0.03 15.9 2.05 0.30 0.03 14.8 2.01 0.28 0.03 13.7 1.93 0.26 0.03 14.3 1.98 0.26 0.03 15.1 2.03 0.27 0.03 16.0 2.06 0.27 0.03 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 38 8 88 SSSSIn SSfelnfe & O CO CD 0> ftfcinSS S 3 S 3 8 CN S S S CO 8 S 8 8 8 S S 8 S S N N N N N 8 8 8 8 8 r2 t2 t2 ? 1253 186 74 59 1267 188 75 59 1282 190 75 59 1296 192 75 59 1310 194 75 59 1324 196 76 59 1339 198 76 59 1357 200 76 59 1378 203 76 59 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 988 1008 1027 1047 1069 1174 1189 1201 1216 1236 1253 186 74 59 1267 188 75 59 1282 190 75 59 1296 192 75 59 1310 194 75 59 1324 196 76 59 1339 198 76 59 1357 200 76 59 1378 203 76 59 Days Cycle o t- OJ co -sr m cn^coo,? T- CM CO TT in a s s 8 £ r3 8 co coSSSS 5 3 3 3 $ 185 :ach • •s 8 SOI CO CD Tf Tf CN d cd cd o Tf Tf CN CN CN CD CD d> d> d> CN CN Tf Tf CO d d d d d Tf Tf Tf Tf in d d d d d in in co r- co d d d d d CD N r— r~- r~-d d d d d f^  O l CO O) O l d d d d d OS O O CM O * ^ CM ntent End 8 m y wet m 5 o « .— co -— h-CO O O) S r; CN N CO CO Lf) CO f-; p O Tf p co r-- r~~ co oo CD CN r*- Tf co cocicocDoi CO CO CO CO CD O l O) O) O l CO LO CD P CD ai ai ai P. d P m oi Tf oi P. ci ai co ci 9.9 10.3 9.5 9.2 10.0 10.1 9.9 10.2 10.2 10.6 9.9 10.6 T3 vimi LU Gra /dry t o "D -o CO 2_ CO O O CO 00 o IS- 00 00 Tf CO 00 00 CO Tf CN CO N CD CO CO (D O T- Tf CO O l 00 00 C l r-- T- cq r-. ~^ CD O l O l CD O l Tf in a> CD to ci ai ai ci co ° H Tf co Tf P. ci ci co ci in ci Tf p LO O l O l O l O l O l 9.9 9.8 10.2 10.4 10.0 10.6 " O LU a 00 104.00 00 43.00 50 4.80 j 30 2.60 30 1.76 30 1.46 30 1.25 1 0.96 10 0.87 74 1.06 38 1.10 38 0.47 39 0.51 30 0.57 11 0.48 32 0.57 34 0.36 1 0.55 J8 0.36 5 0.40 t4 0.44 er analysis Mg 1" (mg/L) (mj 132.0 76. 67.0 48. 21.0 11. 13.0 6.5 10.3 6.; d Tf Tf in T- m d d 6.2 3.< 7.0 3." 9.8 4.t 9.0 3.( 15.0 4.( 17.9 3.£ 18.6 3.< 19.3 3.< 11.4 1.S 17.3 3.' 13.0 2.: 13.4 2.' 13.4 2.' Wal <3 j O ra 600 825 438 1300 760 1700 452 443 366 312 r~-o CN co h- ci m O O) s o Tf CO CO Tf 150 340 143 293 140 333 100 350 158 419 135 386 112 630 169 CO 00 Tf CD CD CD T- T- m f-Tf m in co m co co m 653 546 638 99 610 169 558 100 604 101 526 104 ~ c 1 ? CN CN Tf co in T-T- Tf T- T-O CN T- CN » ^ CO CD CD m m T-nduct. Alh S/cm) (r un co o o T- T-(D O If! t N M N co co co r- CD o S o o r m X t - CO CN CO co in CD co co Tf t-Tf CN CO o h- CD 00 CO T- O 00 5- Tf T— T— T— LO CO N CO N CD CD CN N O) CO CO M i n m r CD r- co co co LO T- r- oo °. O CD CD CO ^ r-- r- r-- oo ^ co T- m m Tf CO CN Tf T- O CO O l O l O l 00 co CN r- oo CD CN CO CD CD 00 CO OD N CO S CM i n CO N N N N CO S N Tf 00 O CD CO CD p CD CD[ N CD CO Tf CO CO CO T— CO CN O CN CO O r N r C N r- CO 0) CO O) N s i ; cq q ID CO CD T- cq T— CO OO CD CN CO CO ^ CD LO Leachate volume CO N S N N N (D (O r r O S co o CN T- in in CD Tf Tf CO Tf d d d d d d r- h-' TT i < co m CN O) o CO CO CO T- CN CO Tf Tf CO Tf d d d d d f^  f^  f^  f^  O O l CD O Tf Tf i - 00 CO CN Tf Tf CO Tf Tf d d d d d r^! r-! f^  CD CM N T- O co co Tf co m Tf Tf Tf Tf Tf d d d d d d d ccId CD N CD O) S CD m m co m Tf Tf Tf Tf Tf d d d d d d d d d iri CO r— CD CD CN CD CD f^  CD Tf Tf Tf Tf Tf Tf d d d d d d d d d Tf CN CD io i n CO co m CO CN CD Tf Tf Tf Tf Tf d d d d d d Tf Tf d Tf O) Tf CN T- Tf CO f-- LO Tf CO Tf Tf Tf Tf Tf d d d d d CO r - o ai co m CO CO CO CO O) •«r u- •* co • • o d d d Tf Tf 00 CO Tf oi co in co CO Tf Tf Tf d d d d Days n _ m io n o CN CO r- Tf i - oi r-co Tf m m CD in CN oi co G r-- co co CD " o oo m CN CD T— T— CN CO CO CO CO O h- Tf Tf m CD CD f- O N f T- 0) 00 00 Oi o o in CN oo co Tf r- CN CN CO Tf CN CN CN CN CN t— co in CN oi W IO CD N N CN CN CN CN CN co co o T CO O i o o ^ CM CM CO CO CO CN oo m co CN CN CO Tf CO CO CO CO /cle o T- CN co Tf in co r- co oi ° T— CN co Tf in CO 1— 00 CD O T- CN co Tf in CN CN CN CN CN CO S CO O) O CN CN CN CN CO CO CO CO CO CO CO N CO O) O CO CO CO CO Tf CM CO m *r •* •ir co N co m o Date 10 Jan-96 11-Jan-96 18- Jan-96 25-Jan-96 2-Feb-96 r\ r-L. ne y-reD-yo 16- Feb-96 23-Feb-96 1-Mar-96 9-Mar-96 17- Mar-96 25-Mar-96 1-Apr-96 8-Apr-96 15-Apr-96 22-Apr-96 29-Apr-96 7-May-96 14-May-96 21-May-96 28-May-96 4-Jun-96 11-Jun-96 18-Jun-96 25-Jun-96 2-Jul-96 8-Jul-96 15-Jul-96 22-Jul-96 29-Jul-96 6-Auq-96 12-Aug-96 19-Aug-96 26-Aug-96 2-Sep-96 10-Sep-96 17-Sep-96 24-Sep-96 1-Oct-96 8-Oct-96 15-Oct-96 22-Oct-96 29-Oct-96 5-NOV-96 12-NOV-96 19-NOV-96 27-NOV-96 3-Dec-96 . 10-Dec-96 18-Dec-96 186 U) , , f i d o in CM ^ co a r- co T- co m co T- T- T- d CD O CD T- IO CM CM CO CO T— CD CO Tj-C O V r O ' d r 1 co co Tt r- o i Tt Tt Tf o cq • CM CM CM CM r - > 0 ) 0 1 0 0 ' d d r t~" , CD CO CD o r-'I— CD X— o|cO : O O T-^  CO CD CO Tf CD CO N N S N d d d d d co CM T- CM r~-CO S CO CD CD d d d d d m CM co o CM 00 I— I— 00 CO O O O O O O O O O O CO Tt T-co TT co co o d d o l d o d d d i d o o o l o o o o o ( N N if) CO I O • c ™ W b J T- in co CM in co CO C M CM CO CD CO cb oo T- CO N If) Tf O) T- ( s co co d cb in s CD co LO m m CO CO O CO o CN T—- Tf Tf CO in m m to in co h-- q cp O CD CO CO CO CD in in in co O r ; s q IT) N CM CO Tf O) to r-. r~- r-- to Tf CM CO CD | CD LO CM O OO CM cb cb cd co m in in Tf Tt CM CN CO ? Tf CO Tf Tf - - O CO O CD CO (r; • w « - S s T- in co CD I s q q Tf ' CM CO O CO i tn m in Tf Tf CD CM q CD N N CO 6 CM Tf Tf Tf in in CD CN T— CM T— N O CM S CM IO CD CD CD N co co co in CM " r- O) CM CM h- CO CO CD CO co co r- o co d •<- r-O) CO O) CO CO T- CD O Tf I Tf CD I— CO CO . co in in in O CO O CO CD CO Tf CD CO O h- CO O T- — r— CN CN CN CO CO CO CO COl i - co h - Tf f in in co s CM CM CM CN CN m T- in o i CO CO CO CM CD O CO CM CO CO CO CO CO CO o CM CM CM CM CO O CM LO CM CO CD co co in T-O x— x— CM CO CO CO CO CO CO CO O CO CO I s-q q CN co Tt r— CM CM CO CO CO CO CO CO r- o co co CN 00 CO CO o oo CD h- CO CO CO CO CO CO CO CO v t t ro N Tf CO CO CO . . Tf Tt iri in CO CO CO CO CO . r- CD Tf O Tf O Tf O CO O T- T- CM CM Tf Tf Tf Tf — CN co r- Tf Tf Tf CO CO CO CM co co Tt Tt m Tf Tf Tf Tf Tf in o co co r If) o in (D CD s o CO CM s CM m O CO O) O O T-d d T-' Tf Tf T- T~ CN If) CD CO tn in Tt m LO CO CO CO CO IO T— T— M M (O O ' o CO f - CD CN CO CO CO — T- m o m r-CO Tf CD N CO _ i - o OO CO CD CM N CM CO CO Tf Tf LO lO N CM CO CO CM CO CO Tf CO CO co co r*- to T - ' C M Tt O) S CO CO CO CO CO CO CO CD O O r- T— CM CM CM Tt m m co CD CM CO CD in CM CM CO Tf CM CM CM CM CM CN - CO f -CM 9 CM CO co ^ co r-r O M O CM CO CO Tf CM CM CM CM CM CM Tf m co in co co CM T— if) CD N CO O) CM CM CM CM CM in co T— iri cb cb CD oo co CO O CO CD Tf in to co i— co CM CM CM CM CM Tf o to CO CO T- O CD CO CO r <- r - CM co CO CO CO CO CO C M CD CD Tf T-— CD O i - -- ' CM CM CO CO CO I . 3) O CO O t— in in Tf CN Tf m CD N CO CO CO CO CO CO N Tf T- CO CM CO Tf Tf CO CO CO CO CD N O - . CD f - CD Tf I co ro o ' CO CO Tf Tf I l O O N C O K CD CO r - N Tf ' T- O O co in Tf in in CO CO Tf CM o . co o I Tf Tf '. cb T- U , ^ P CM Tf O o o o o o • o o o o r- in LO Tf o o o o o o o o o o O O O O O CD CD in in in o d o o d o o o o o o o o o o o o o o o o o o o o in Tf CO CM CM CM CM CM CM CO Tf CO Tf CO q CM Tt co ca cb in CO r _ ' CN CN CM CM CM CN CO O CD 0 0)0)0)0 CM T- T- T- -CM q q q q CN CN CM CM CN o o o o o T- CO CM O O IO Tf Tf Tt Tf d d d o o CM CN CM CM CM Tf q CM Tf CO CM d O) o CM CM CM T— CM o o o o o| o o o o o o o o o l o o o o l >1 CO CO CD CO I CM CM CM CM CM -• C M LO LO CMI i Tf" Tf Tf Tf I I CO Tf Tf Tf 5 n O O) CO T— CO Tf CO Tf CO CD lO T- CD CO T- CM CO Tf Tf LO CM CM t— Tl ._ CD IO O Tf 00 in CD N S N CD r- co co 2 O CD CD CD T-CO CD CD CN lO CO CO CO CD CD • CM co Tf in Tf I CD CM S CM CM S _ N O) T - CO LO O O T- T-O O) f» O) CO CO CD T— CO CO T- T- CM CM CM o tn T- Tf o CD T— Tf CD O) CM CO CO CO CO T- o to Tf o T— CO Tf CO O) Tf Tf Tf Tf Tf T- N CM CO T- CN Tf m r-in in m in in Tf co in • CO CO T- l in in to col o N TT r oo oo co o o T~ T- T— CM CM in CM co CD Tf T- CM CM CO Tf CM CN CM CM CM T- 00 m CM CD m in co s s CM CM CM CM CM CO CO O f - Tf CO O) O O T— CN CM CO CO CO CN co in co CM CM CO Tf CO CO CO CO ID N CO O) O 187 S E E > f£ CO o <° 1 5 ^ O CO CZ < ra 3 o CD = ~ o < B n E " Oi S N O Q. h- u -c Q c _ « _ CZ = tf) - 3 = (D d) 0) C (1) o ^ co - 1 0 0 0 0 0 0 LO CO CO O CD CM OO T— O tO CO CD co r-- m Tf co Tf d d d 0 0 d CN co Tf m c C C C ^ ^ ^ £ ^ CN OD LO LO CM CN CO 0 ) 0 ) 0 ) 0 ) 0 ) O CM O CD LO CO CM CO O O O) co r*~ co t— O T- O CO CO 00 CN CO O CO Tf Tf CO Tf 0 0 0 0 0 <o N co cn ; r lU (UP 5 5 ^ h- LO CO O CO T - O O h- CO CO h- CD CD Tf LO CO o Tt- Tf o r -CO CD Tf CD Tf CO CO CO CO d d d d 0 T— CM co Tf m cq CM Tf in cq CD CD CD CD CD CN O CM CD 1-00 CO 00 00 CD CO CM Tf h- O CO Tf T- CO Tf CM CM CO CM CM O T— CM CO CO O CM CN Tf Tf Tf Tf Tf Tf Tf 0 0 0 0 0 CO N CO O) O CO (o <D CD CD g g CD CD CD Tf T- CO CM CM CM IS- , CD O Tf CD t-r CMlO r • CM CM T- CM CM LO O CO LO CO Tf Tf Tf LO CD Tf Tf Tf Tf Tf d d d 0 0 1- T - O O o o 0 0 0 CD CD CD r-- 00 h- f- CO r O IO N CN m co Tf co co 0 0 0 0 0 o r- Tf cn co co O) o o T- T- T- CM CM 3 £ < O CO CM T- T-d d d 0 d CD OO 0) CO CD CM CO CO O CM CO co r- o CN LO CO N CO CO CO Tf CO Tf ~ " f- CD o Tf cn S CD N m Tf Tf Tf Tf Tf d d d d d LO CM CD CO Tf v - CM CM CO Tf CM CN CN CN CN CD CD CD t o C O) CD CD C OJ 01 01 A 1 D 3 3 i f 1 <<<<%<• CO CO OO CN , — T- m f- i CN O O . CN T— O CO LO CO LO I"- CO CO Tf Tf Tf Tf Tf 0 0 0 0 0 00 LO CN m in to N s CN CN CN CN CN Q. Q. ' 1 O O O On CO co o O 9 N 4 ^ CC CO CD t- CM T-CD CD CN CO CD Tf Tf Tf Tf Tf O O O ' C D C ) CD co 0 r- Tf CO CD O O T— CN CN CO CO CO CD CO cO SS SS O CD CD °? °? rx i > > O CO 1- N CO CO CO 10 Tf Tf Tf Tf d d d d CM CO LO CO CM CM CO Tf CO CO CO CO CD , n CO CD °? CD °? °? > A tl) cj o cu OJ 188 f o* ra ( 0 S CO O ) OD CO CO h-- h- h- oo t o d d ci d CO o o o o o CM CO CO T- T-- - - CO CD CO - d d d o o o o o o o o o o o o o o o Tf CO CO Ol CM S N CO CO CO CD Ci CD CD CD 00 O 00 00 OI CO Ol S CO o d d d d r o o o o o Ol CD O Tf CO CO N N CD CO CD CD CD CD CD O O O O O O O O O I N O t Ol CO S K N d o d o O CO 2 ^ r-T- CO CN co co Ol OO CM d d d o oo uo TT co CN CN CO O) d d d d Tf Tf Tf CO CN CN CM CN CN CN CD O CM 00 LO ^ d d d co h- LO CM cn CM CM CM CM i -p p Tf i - p| If) N r-' Tf' dl T- CO CD Tf CM ti n oi s q  CM d T— Tf CM CM co in in in m m m i - Tf CM CM CM Tf O ~ Tf CO CO CO CO CO T— CD h-d d ai d d CO CO CO CO CM co o Tf CD m d d CM CM d o o o o p cq CM co oo cd iri d d CO Tf CO CO CM P p h-; h-; O Tf d Tf' CM f- CM CM CO iq p p p d d r-^  ^-Tf Tf LO LO CO ^ q CN s co <6 ai ci ai ai co co t- in Tf r- Ol CM O CO CM CM Tf CM CO CM T- r-Oi Tf Tf T-ai iri c i d d Ol CD O) 0D N O CM p T—• T—• to cri r ri N O O O O o CM CM LO CM - CD <6 r~- r-~ r-- co co co o f- d d d Ol Ol CO cu 2 i co in oi oo oo co p p p p p f^ * io cb s s cb CD O O CO S S oo to co r - o> to S T- Tf CO CO T-f- CM CM CM CM CO ; O O f- CM CD 00 CD 00 T— in p CM Tf p CN CN CO CO CO r- CD CO CD ( N N r- CO O) Tf Tf d d d CD CD N S CO 00 00 CD CD CD _ i - CD O T-O CD CO CO CO S CO CD 1 - CO CO CO Tf Tf t— in CM CM _ r- i - CD T-W N CO CD O Tf Tf Tf Tf LO O T— LO CN Tf N Tt i - S O T— CO LO CD CO in in in in in in co co co co N O IN CO N cn CN TT r - CN co oo cn o CM CD CO CD h- Is-co Tf h- co in N »- co co in co m co h- co r- r- r-- h- r--D Tf O CO CD CD CD CD S CD O T— CN CO t— ' 00 00 00 00 co r - CD i - co Tf T— Cl CD m co co r -co CO CO CO CO LO h- col Tf CO CD T— CO O CD CO CO CD CD O CO CD CD Ol o CO CO 0) CM m d CN co ci CM CM iq o d CD T- ~ o CO . r-~ T- T-CO CD co in T- Tf f- O i - co CM r -CO CO I— CN CO co m f- cn o CM CM CM CN CO CM CM CN CN. CN T- O CN CD . I CD T - CO CN co Tf co r^ -CO CO CO CO CO . , i - O CO CD p p p p ^ OI CN CO CO CO CO O N O) CD 00 O i - CN CO Ol i - CM CO CO CO Tf Tf Tf CO CO CO CO CO O Ol CD T— CD LO I O Tf CO Tf LO Is- CO Ol f Tf Tf Tf Tf CO CO CO Tf Tf r- o co co Tf Tf O Tf O Ol CO Tf CD f— in in in in in 31 T— CO CO co Tf CD co r-Tf Tf Tf Tf Tf Is- in oi i— CN f-- Tf O O Tf ci i - co Tf m in CD CD CD CO Tf Tf LO in in in co o Tf CN CD N CO Ol O CD h- CO CD T-CO CO CO CO N S T- O) CO Tf Tf p m d d d d m TT cn oi CM o o oi o i -CN co co in co r- h-LO LO LO LO I f— LO LO I— O CD h- Tt I— I— 00 Ol f~- r— r»- r-CO CN CN r- CO CN in d d CM T - co co co N CN ra (D ^ ^ d d o co oi o m CD CO N N in CN oi oi CN oi oi CN CO CN CN O Tf p CO CO p CD CD CD CD CD O O O O O O O O O O O CO CO Tt OJ r-t r-_ CD CD CD CD CD i— Tf T— oi in cn CD oi co oo o o o o o o o o o o o o o o o 01 CO CO CO 00 p o p p o CD CD CD CD CD h- CM CD CO i -L O L O Tf Tf Tf CD CD CD CD CD _ — I— f-- CD O O O O O CD CD CD CD CD O O O O O CD CD N CD O O O o o o o o o o o o l 5 CD CD 5 CM CD in f- CO Tt CO CN CN • CO N CO t IO ai oi d oi t-' 00 01 CD CD 00 If) CO Tf If) If) co oi oi in co 00 I— CD IO Tf T - p p p ra CD N CN CO O) Tf Tt m m LO LO Tf CN ID p ai -r- CD oi ai LO co co m m O CD OD CD 00 00 CD CD CO f"- r— oi co oi co I Ol OJ Tf CO CD CD ro s i in m in LO m m in io to tn * O) E O cn Tf IO CD t— Cl CO CM Cl Cl , T- Tf CO CM . CO Is- CO CD CO CD CM CD CO o T- co r-CN CO Tf Tl " c o t-r - o m , in x- m co CM I CD S N N COl f-- CO i - CN CO co in CM oo co CO Ol O O i — T- T- CN CM CN CO O CM Cl CN CD CD CM Is- CO i - CM CO CO Tf CM CN CM CM OJ Ol CD CO in CM r- CN r-- CN co Tt m m co CD CM OJ OJ OJ Ol O N t ' _. CO CO 01 O o r - t - T- CM CN 00 T- 00 Tf O CO 01 CO N CN h- h- CO CO CD CM OJ Ol Ol Ol L O CM Ol CD Tf r- OJ Ol CO Tf CM CM CN CN CN CO T - S Tf N co o co r-CD o o o oi co co co co T— CO LO CN CD in in co N N OJ OJ OJ OJ OJ CO CN CO CD CO in co o co co T- t - CM OJ OJ CO CO CO CO CO CO CO O Is- Tf 00 01 O O T-CN Ol CO CO CO Ol L O O CO I CM co in co CN CM CO Tf CO CO CO CO CM co Tf m CD N CO O) CM co Tf m CO N CO 0 ) O 189 03 H ra 3 < IS I 3^ O O O O LO t N O CO tN CO o o -<- o i-- o CN CN CN CN T- T-O O) co co cn s CO N N N N S TJ- r- co cn co cn co o> s CM oo in CO CO Tf Tf CO Tf 0 0 0 0 0 0 CO ^ T- Tf CO ^ 1^ CO LO ^ N m co co m Tf r- CD co CO T" T— CO f— CO IO Tf Tf CO 0 0 0 0 ° i p O r r (N 11 CD CD CD CD CD O O T- T- p COi CD COi CDi CD CD CD CO CD CD 11 CO CO Tf" Tf Tf CO O CO CO CO CO s o in LO CO LO CM Tf CD CO Tf CO CO CO O CO LO CO CO CO O LO LO CO T-CO CO r*- CM CD CO CO CO CO CO co T- m s co CO Tf O O CO CO N N CO CO CO CO CO CD Tf CO r-- r- r-« - O l N O , r - O LO Tf I CO S CO CO CO T- Tf T - m N N O O) LO LO CO LO lr- r- r- r» r— Ir CO CM CM CO Tf T- CO LO Tf CD Tf CO CO Tf CO d d d CD d in cn o co o CM T- CO CO Tf Tf Tf Tf Tf Tf CD CD CD CD CD LO h- CN CO Tf Tf Tf f-. Tf CO Tf Tf Tf Tf Tf ! CD CD CD CD CD CO CO CD CN O CO Tf CO Tf Tf Tf Tf Tf Tf CD CD CD CD CD CM CD CD CD CD N CO CO CM CO Tf Tf Tf Tf Tf CD CD CD CD CD T~ Tf CO CD Tf Tf CO Tf LO IO Tf CO Tf Tf Tf ] CD CD CD CD CD r - CD CO f - CD N i f CO CO S Tf Tf Tf Tf — ' O* O O O O l co o m CN r-. LO LO to Tf Tf Tf Tf CD CD CD CD O S T t r CO CO CD O O T- CM CM LO CM CD CD Tf T- CM CM CO Tf CM CM CM CM CM T— 00 lO CM CD i in in co N N , CM CM CM CM CM CD CO O h - Tf CO CO O O T-CN CM CO CO CO CM CO LO COl CM CM CO Tf I CO CO CO col O T- CM CO Tf LO co r-- co co • CM CO Tf LO co r- co co oh CD.CD t D t D f o t o S S t D t o S £ C D C D C p C p g g C O C p g g c p a c c c CO CO CO CO ' 5 5 ~) ) i A l i i •y t <D CD Cd CO . • c o c A C<l c* « S Q. Q. W s < < < 3 CD <o S iS S 1 ro ro 9 1 • >• >. >J =• ro n n SI I <M ^ ? S , M Oi CD . V ro o > °- °- ' " O C l U O ^ I CO CO Q O , \ ~, rc -4 > > i « 5! 2 z S 9 9 S <* S 5 190 c D c D i s - i s - o o r ^ a ) T - T t c o o o i ^ i O T - c N c o T - o c N T t c o c o c D c o r s - u o c o c N c O ' T - co I co m ^ o o l c o co *- TT t-|uo CN co uo r--1 cn n s r -c q i ^ i ^ N - i ^ - c N i ^ c n ^ i ^ c q c q u ^ | CD CD ^ d cd ^ — CD CD —^ —^ —^ —^ —^ —^ T— ™^— ~^— T~ T— T— T— czi —^ T~— | CD cd cd T~* cd | cd CD cd * —^ | T— cd cd cd CD | cd CD CD -| i - c o r ^ C 7 ) O c o c o T r i n c o a ) c o i n o c O T r e v i T - c N L O c O T t | r ^ C D C O C O r ^ T - f ^ C O O C D C N C N T f C D C O T - C D O ^ r - - t - C N C O C O C O T -i O CD UO • I N CO CB I ! d d d i i O) r- o i S CO o i CD CD CN CO UO O) CO CD CD CD CD o CN|O N <O o CN|TT CO CN CO O T— IO CO CO CO CO I CO CO O) O) ^ r - l - r ^ CD CD CD CD CD CD CD CD ra i £ . CL ii S ' > O 0 E to £ CO =b 1 o 2 LO Q. °! ° "I r ^ N . ^ p T r u o c o o o c o T T T r c D r ^ c o o r ^ r ^ c O L O o c o c D T r c N c o c o c N u o c D S ^ f f i S S n M o ^ o d d ^ N ^ m ^ d c s i N ^ c ^ c ^ ^ T - T - ^ J i J ^ a j h - r ^ r ^ r ^ c o CD LO u n u o t n i n c D c o c o c o c D t D i n i n c o t n c o c o t n u i c n i n i n L n u n u n i n u ^ P ^ P P P P ^ ^ C O C D L O C D C N L O C O T f - ^ C N C D C N C D u O ? 2 o t O « « ^ ^ ^ ^ ^ " CD IO Tt I*-; r| CD tO CO CVI O O) N ^ Tt (N T- O T-vuquOCOT— CNCNCOCDCOOUO C N C O T t C O C O d T - T f L O C O C N T f T t c d c D T t T t T t T t T t L O L O L O L O L O C D C D C D C D L O LO LOLOLOtOLOLOLOLOLOCOCOCO c a. ai T J Tf Is- C N CD T— LO LO UO UO CN CO T-CO CN CO CD LO LO Tt CD CD §I CO CO CD CD Tt t » • D CD I I I I n *- - LO OO Is- CO CO CN LO CO Is- CO CD Oi CN CN CO I— CN I— CO Ol ]± 0) ^ b CD i - CD O UO CD Tt Is- O CN Tt N O ) ' - CO UO CD 00 CD Z D. CO Tt LO LO CD CD CO N N CD CO CO CO CO CD CD CD CD CD CD (1) 1 1 1 1 "O )TtUOUOT-00TtCOCOCNCDI s-UOCOO)CNh-UOt^CD ' i-h-COI i r ^ O ) T - c q T r c D c q p c N c o L o t ^ c j ) O C N c O L ^ i d d ^ ^ ^ ^ ^ t N C N ( N ( N ( N c N C o d N CO T—* UO UO I CD UO UO • CO T— CO • Tt" LO UO COCNCNf^CDCDCDOCDtOCNtOCNCD T t ^ C O O t O O l L O t ^ C O C O T - c O U O C O l O S C O O T - N T t m c o N C O C O c n o T - T - T - T - c N C N r N N r s i N C N J C N i N r o < CD T~ • I O UO I I CO CO I - - C v l C D ' - ' - C O C D i n O T f N T f C D C N C O O O C N O C O i n c O C O N O f f i N C D T t n T - m O ) O l O O C O C \ C O U i r v l O ) T t o U 5 ' - O D T t O C O C N 0 3 ( O S C N C O l O ( N C O r > I N C O O ) i r ) r - S C N C N C O C O T t T t U l C D C D r ^ C O C O C D C D O T - T - C N C N C O C O T t T t C O C O C O C O C O C O C O C O C O C O C O C O C O C O T t T t T t T t T t T t T t T f T t T t T t T t T t T t 6 in CD CM -r- ( r J 5: 2 t •» T3 1- 1- CD £ M « : CO CO CD "D ^ O T - c D c o o c D ' - N c s t o c o o c o u i o c o c o o j N u i c o T - T t s o T t s T - i o o i n c o c o s i -v° N T t i q q c O C O q r r . r v | c \ | C i n c l T t T ) ; T t T t ^ O C a O O d c d T ^ ^ T ^ T - T - r - r - t - ^ T - T - T - ^ T ^ T - T ^ T ^ T ^ 6 CO CD CN If) S co iri N cci Tt Tt CO LO CD T-Tt Tt r- o  3 3 T- CN Tt r - T- Tt LO LO LO O) i- Tf 0 ) N CO Tt CN CD CN CD 00 CO CN CO CO CD LO'Tt LO Tt LO UO uq uq un co CNC D O T t C O - r - L O O T t C D C O h - T -CN C N c o c o n T t T t i n i n i o c D c p s CNCNCNCNCNCNCNCNCMCNCNCNCN m n , n . l f f i N C 1 C \ I C O O C O a i O ( N ' - f f i N O ' - M T t ( O C M ( J ) T t l O S S S ^ T t r ^ T f T - O C O O L O O T t O T t C D T t C O C N C O O L O S K K S T - C N T t C D r ^ r ^ O O O O C D C D O O O T - T - C N C N C O C O C O T f T t L O u ^ CD 2 > CO o C D T - O C D I ^ T - U O C O C D C D C O T - O C D C O L O O J T - C D C D C D C D ( j q c q T t ' - C D S i n T t n n c o q c N C N C N c i c o N T - r d d d d d d d d d d d d d d d d d > CD CD CO t n CO o i d d d d d ocor^r^cDcocDuounuoinTtTtTtTt T - O O O O O O O O O O O O O O d d d d d d o d d d d d d cd. cd Tt Tt Tt > o o o i CD CD CD C N 0 0 T - 0 0 O c 0 C N T t U 0 L 0 C D C 0 C D C D C D C D C O C N T - C N T - O < C N Tt C N CO C N O CD Is- CO tn Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt * c o ' c N C N r r r d d d d d d d d d d d d d d d d i LnOCOOCDCDCDCDT - T-uOTtr--i D r T t i n q c o n c q c D c o r r r s ' d i r i r i i r i c N C N V ^ ^ i - ^ ^ l o r o T t i q o i c q t N i r j T - N N r - T f C N CD COCDCNCNCDCOCDLOCDCDcdcdtricN CDI^r^LOLOLOTtTrcOCNCNrvJCNCNCNCNT - ^ T-CNCNCNCNCNCNCNC^ O O l C O N C D C O r O C S S M O C O O O l O O t - C N N r O r r r TtCOCOCOCOCOCOCOCNCNCNCNCNCNT-CNCNCNCNCNCNCNCNCNCN d o d o d d d d o d o d o o o o d o d o d a d o d 0 ) N C O T t C N T t T t C N « - c N ' - S N C O C N O O ) N 000)CDCDCDO)CDCDCDCDCOCOCOCOCOh-t«-T~• T~• d d d d d d d d d d d d d d d d . CO T-• r- h~ i CD CD 1^-TtTtCDh-CDT-CN CN|T- Tt LO Tt C D C DCDCDCDCDNN h-| t- h- f-CD CD CD CD CD CD CD CD CD CD CD CD CD O C N T t L n t ^ - I ^ - C O C D C D O O O O ^ T - T - C N C N C N C N C N C O C O C O C O C O C O C O T t T t T ^ CO CO CO CO CO CO CO CO CO Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt i T t r ^ o i o c N c o T r L o c o c o h - r ^ r o O T C D c o o T - T - T - C N C N C N C N C N C N C N C N C N C N C N C N C N C O C O C O C O C O C O C O C O C O C ^ N L O O T f l ^ T - C O C O C O O ^ C N C O T f t O I - r o C D O ^ C N C O ^ T f L o c o c o c o r ^ r ^ r ^ r ^ o o o o o o c o c O O T O D c D O T O T I CO CO Tt ^ i ^ i r t m i ^ f n r n ^ r n i i - i r - i m t D ^ ^ t O T t C O C N C N C N U O C D C D T - c ^ T t L O L o S S r ^ N C D C D C D C D C D CO >. CO a C O O S T t ^ ( S S i n C N O ) C D g O ^ ^ $ K ° [ S C N C O C O T t i O i n c D N C O C 0 0 1 ° ^ ^ ^ ^ 5 2 j ^ * ^ O r - T t T - C D L O C N C D CD 'Tt T-COLOCNCDCDCOOh-TtCNCOuncO C O C O C D O O T - C N C N C O T t U O u n C D t ^ t ^ O O C D O O T - C N C N C O T t T -t -T-CNCNCNCNCNCNCNCsJCNICMCNCNCNCNCOCOCOCOCOCOCO o >» a l o T- CN CO Tt UO CO r - CO CD O[T- CN co Tt un co r-00 CD O \t- CN CO Tt UO CD I— 00 CD O r - CN CO Tt LO CO r*- CO CD O h- CN CO Tt LO CO r- CO CD T- T- CN CN CN CN CN CN CN CN CN CN CO CO CO CO CO CO CO CO CO CO Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt 191 | E E _ E' 5 Q » T J " a E . . 3 1 0 '= 0) £ N o a i - u -c Q *-(/)_ = ( / ) - ! = (0 0) 0} u 0) W O h O O r*-. cn co t n i n CD I co CM co co co r-J cb cd iri N cdIco Tf cb THCD cb od r-^  cb cb cb cb cb cb cb cb SjSJ cb.cb cb N cd N cb CD cd Ol CD CM i- TJ-CO Tf UD CM CD S N N N m CSI g CB N CO CB CO cb CD UO CO 00 CD CO CO O T- CM M O co r- Tf Tf co f 0 0 0 0 0 0 • CM CO Tf co CD CD CD CD to (o Cp CD CD CD Q% <= <= c c A A CO CD CO CO Q] -^ ^ ^ ^ CM CD f - CN CD CO r~- CD cb 1—• Tf CO O O) Tf H CO CD CO Tf £^ m Tf LO in CO CO N in N N N S N S CM N S T- O) r» r- co CM co CO Tf CO Tf CO o o o o o CD N CO co ; 5 5 CN CN CD CD CD CD CD CO CO CO h- Tf CD IO CD cb Tf cd r- Tf O T ^ C O O O C D L p C p C p i n C M T f O CM Tf CM r— T— Tf co CO CO CM Tf T- O O CO CO Tf LO CO CO CD Tf CO CO Tf CO 0 0 0 0 0 • CM CO Tf LO 0 N - CD CD °? cp O) °? °? 1 i i O Qj ^<<<< LO A co 1 0 £ CO CO T- CM t-00 CO CD CD CD Tf LO O CM cb f-^  h- cd cd CO CD CO T— O CO f—• CD O CO LO in in co in 00 CD Tf Tf Tf CM co Tf m co Tf Tf Tf Tf LO o 0 d 0 0 CD CD Jg CO CD CD CD °? °? °? iL J , >, >. >J < I l l l m ' Tf -A cd CM CN CM f- , O Tf CM CO CM CO CO I"- CO CO IO LO LO LO LO CO Tf T— CO CO LO Tf Tf CD CD Tf Tf Tf Tf Tf d 0 d d d > ~? ~? ~? ~? 1— co m CN S CM ^ CO N U N n oi T- q CO CD CD CD CD Tf O CO CM T- LO CD CD CD N S CM N CD CO CN CD CD CD Tf CD Tf Tf Tf Tf Tf d d d d d o r- Tf __ CO CO CD O O «- T- T- CN CN -3 1 1 1 < <A LO CM CD 1 T— CN CM CD CD ip CD IO Tf 0 ) 0 ) 0 ) 0 ) 0 ) O CO CO co o d cd cd cb co Tf CO CO CO o T- 00 in CO CO CM CO cn Tf r— r— 10 co 00 00 T— CO CD Tf in in co N in in co TT r-^  r-^  r-^  co Tf LO -r- r-co LO CD T- r-Tf Tf Tf Tf Tf 0 0 0 0 0 LO CM O) CD Tf t— CM CM CO Tf CM CM CM CM CM CO CD CO tn ( cp cp cp ( oi oi cn A Cp CN r— Tf CN CO 00 CD CO CO m CN T— CO CD CO CM CM m Tf Tf co Tf CO CO CO CO CM f-i h~' 1^ m in CD N CO CD Tf O IO Tf Tf Tf Tf Tf Tf d d d d d T- CO LO CM CD in m CD M S CM CM CM CM CM CO CO <g SS CD 1 1 CO CO 1 o a j , ^, CD CO O O y CO CO o o 9 O l — CO CO CO LO T- T-Tf Tf LO LO CO CO Tf CO S CO CO CO f Tt co co co r--Tf Tf Tf Tf Tf d d d d d CD CO O S f CO CD O O T-N CM CO CO CO ^ to co SS SS CO O) o) CD CD o o . CO Tf CM Tf r- CD CD co Tf Tf Tf Tf d o d o CM 00 in col CM CM CO Tf I CO CO CO col o £ a) cu Z Q O Q 192 Molar ratio 5i 4.35 5.14 0.85 1.00 0.81 0.93 0.77 0.88 0.74 0.82 1.11 1.22 1.06 1.14 1.99 2.14 1.84 1.97 1.66 1.78 1.11 1.19 1.09 1.15 1.43 ' 1.52 2.01 2.12 1.11 1.17 0.96 1.02 0.77 0.82 0.92 0.98 1.13 1.20 1.23 1.29 1.34 1.41 1.34 1.40 1.33 1.39 1.37 . 1.42 1.40 1.45 1.20 1.24 1.02 1.06 0:98 1.02 0.94 0.97 0.97 1.00 1.00 1.03 0.95 0.98 0.88 0.91 0.87 0.89 . 0.97 1.00 0.99 1.02 0.99 1.02 0.93 0.96 0.85 0.88 0.96 0.99 1.04 1.07 0.96 0.98 0.85 0.87 0.81 0.83 0.78 0.80 0.82 0.84 0.86 0.88 0.89 0.92. 0.93 0.95 0.96 0.98 1 5 cycle movina average SO„ NP prod'n rate depl'n rate (mg/kg/wk) (mg/kg/wk) 214.2 211.0 178.1 170.6 160.2 160.8 111.8 113.9 97.9 113.0 79.1 104.5 62.0 97.3 48.0 78.8 40.6 69.6 37.7 58.8 35.5 55.1 42.3 59.1 46.6 62.8 47.6 60.5 48.1 56.7 50.3 54.4 43.8 47.4 41.2 47.6 37.9 49.1 37.6 52.3 37.8 54.5 39.3 57.8 40.6 58.3 44.2 60.0 45.9 58.8 47.1 56.2 48.3 53.4 49.2 52.2 50.1 52.3 50.0 51.1 50.6 51.0 48.5 48.7 48.5 48.7 46.5 47.0 45.8 46.7 43.3 44.3 44.7 45.7 45.0 46.5 44.6 45.6 44.1 44.4 46.6 46.2 47.8 45.4 48.1 43.2 48.1 42.3 51.9 46.2 52.7 48.2 51.2 48.8 Cum. NP NP NP. depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) 994 3.98 1202 4.81 1455.1 1323 5.29 1447 5.79 1555 6.22 1684 6.73 1788 7.15 104.2 1904 7.62 1984 7.94 2055 8.22 2100 8.40 39.4 2166 8.66 2223 8.89 2283 9.13 2368 9.47 84.8 2423 9.69 2468 .9.87 45.1 2515 10.06 2563 10.25 47.7 2611 10.44 2668 10.67 56.9 2721 10.88 2777 11.11 55.8 2835 .11.34 2900 11.60 65.2 2959 11.84 3012 12.05 61.7 3062 12.25 3108 12.43 46.1 3160 12.64 3220 12.88 53.1 3274 13.10 3318 13.27 43.8 3363 13.45 3403 13.61 40.3 3464 13.86 53.0 3516 14.06 3558 14.23 3591 14.36 32.5 3638 14.55 3696 14.78 57.7 3744 14.97 3780 15.12 . 36.4 3822 15.29 3865 15.46 3912 15.65 3961 15.84 42.9 4011 16.04 4063 16.25 4116 16.47 46.9 1 Cum. S04 Sulfur S04 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 186 0.20 385 0.41 509 0.54 645 0.69 771 0.82 110.5 872 0.93 101.5 1.02 88.0 1.08 52.2 1.12 1.16 33.6 1.20 S S S 3 S 1.72 1.76 38.6 1.80 . 1.85 43.2 1.90 1828 1.95 55.7 1875 2.00 1920 2.05 45.4 . 1970 2.10 2026 . 2.16 49.6 2079 . 2.21 2125 2.26 46.0 2173 2.31 48.5 2212 2.36 38.8 2269 2.42 49.8 2318 2.47 48.8 2360 2.51 42.5 2396 2.55 35.5 2442 2.60 2494 2.66 51.8 2541 2.71 2581 2.75 40.1 2629 2.80 2681 2.86 52.5 2735 2.91 2788 2.97 2840 3.02 2892 3.08 2945 3.14 45.8 Cum. S04 Sulfur S04 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 186 0.20 385 0.41 509 0.54 645 0.69 771 0.82 110.5 872 0.93 101.5 960. 1013 1051 1090 1126 .1181 1217 1244 1313 1366 1418 1464 1503 1539 1577 1614 1652 1692 1735 1781 1828 1.95 55.7 1875 2.00 1920 2.05 45.4 . 1970 2.10 2026 . 2.16 49.6 2079 . 2.21 2125 2.26 46.0 2173 2.31 48.5 2212 2.36 38.8 2269 2.42 49.8 2318 2.47 48.8 2360 2.51 42.5 2396 2.55 35.5 2442 2.60 2494 2.66 51.8 2541 2.71 2581 2.75 40.1 2629 2.80 2681 2.86 52.5 2735 2.91 2788 2.97 2840 3.02 2892 3.08 2945 3.14 45.8 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 72.8 6.98 3.23 4.70 59.3 5.37 2.48 3.55 56.5 4.74 . 2.19 3.05 40.9 2.82 1.30 1.67 41.2 2.44 1.13 1.33 38.5 2.00 0.94 1.01 36.1 1.70 0.82 0.81 29.4 1.28 0.64 0.58 26.0 1.10 0.58 0.51 22.0 0.89 0.49 0.42 20.7 0.80 0.44 0.37 22.3 0.80 0.43 0.35 23.7 0.84 0.44 0.35 22.8 0.82 0.42 0.33 21.4 0.77 0.40 0.30 20.5 0.74 0.40 0.29 17.9 0.65 0.37 0.25 18.0 0.62 0.37 0.24 18.7 0.58 0.35 0.22 20.0 0.57 0.35 0.21 20.9 0.54 0.34 0.20 22.2 0.52 0.32 0.20 22.5 0.49 0.31 0.19 23.2 0.50 0.31 0.19 22.7 0.49 0.31 0.18 21.7 0.48 0.30 0.16 • 20.6 0.47 0.29 0.13 20.1 0.44 0.27 0.11 10.2 0.42 0.24 0.08. 19.8 0.40 0.22 0.07 19.7 0.39 0.20 0.06 18.9 0.37 0.18 0.06 I8.9 0.36 0.18 0.06 18.2 0.34 0.17 0.06 18.1 0.34 0.17 0.05 17.2 0.32 0.15 0.05 I7.8 0.32 0.15. 0.05 18.1 0.30 0.15 0.05 I7.8 0.29 0.14 0.05 I7.3 0.27 0.14 0.04 I8.0 0.28 0.15 0.05 17.7 0.27 0.16 0.05 16.8 0.27 0.15 0.05 I6.5 0.27 0.14 0.04 18 0 0.29 0.15 0.05 I8.8 . 0.31 0.15 0.05 19 0 0.31 0.15 0.05 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 72.8 6.98 3.23 4.70 59.3 5.37 2.48 3.55 56.5 4.74 . 2.19 3.05 40.9 2.82 1.30 1.67 41.2 2.44 1.13 1.33 38.5 2.00 0.94 1.01 36.1 1.70 0.82 0.81 29.4 1.28 0.64 0.58 26.0 1.10 0.58 0.51 22.0 0.89 0.49 0.42 20.7 0.80 0.44 0.37 22.3 0.80 0.43 0.35 23.7 0.84 0.44 0.35 22.8 0.82 0.42 0.33 21.4 0.77 0.40 0.30 20.5 0.74 0.40 0.29 17.9 0.65 0.37 0.25 18.0 0.62 0.37 0.24 18.7 0.58 0.35 0.22 20.0 0.57 0.35 0.21 20.9 0.54 0.34 0.20 22.2 0.52 0.32 0.20 22.5 0.49 0.31 0.19 23.2 0.50 0.31 0.19 22.7 0.49 0.31 0.18 21.7 0.48 0.30 0.16 • 20.6 0.47 0.29 0.13 20.1 0.44 0.27 0.11 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 617 59 23 41 661 61 24 42 691 62 25 42 717 63 25 43 734 64 26 43 759 65 26 44 780 66 27 44 803 66 27 44 835 68 28 45 856 68 28 45 873 69 28 45 890 70 29 45 908. 70 29 46 927 71 29 46 949 71 30 46 969 72 30 46 990 73 31 46 1013 73 31 47 1038 73 31 47 1061 74 31 47 8 8 8 8 8 £ K K £. K 1276 78 34 48 1292 79 34 48 1305 79 34 48 1324 79 34 48 1346 79 34 48 1365 80 35 48 1379 80 35 48 1395 80 35 48 1412 81 35 48 1430 81 35 48 1449 81 35 48 1469 81 35 48 1489 82 36 48 1510 82 36 49 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 617 59 23 41 661 61 24 42 691 62 25 42 717 63 25 43 734 64 26 43 759 65 26 44 780 66 27 44 803 66 27 44 835 68 28 45 856 68 28 45 873 69 28 45 890 70 29 45 908. 70 29 46 927 71 29 46 949 71 30 46 Days f, S § 8 1 Cycle C N C N C N S C N S 8 8 S 8 8 S 8 8 3 3 5 3 3 Cycle APPENDIX 9 T A B U L A T E D R E S U L T S S H A K E N C E L L S 194 • S E E _ E 5 <Z O <° ^ <U O (0 fz A ro °> c " y ^ ^ £ o . . ^ 0) -LZ 0) £ N o Q. H <J .C Q C _ +- to _ m co CD ^ d) W U h O U o o . o r -co cd CO o o $ TT CN CO CO CO CO CO CD CD CO CD IO T -r-- r-- r-. co m co p CO ^ CO CO CO CO N N N N LO CN CN h- CD CD CD CO i - CO lO tO LO CN Tj- CO CO TJ-d d d o o o O i- CN CO Tf LO CO CO t o t o JO CO <? °? CD CD °? °? CM ^  CN CD , • O ^ C O r ! CO CD CD CO i— LO CD Tf ^ N if) ( 0 CM CD CO CD CO LO CD LO Tf CN CN CN CN O CO CO CD CO O) T- N Tf CM Tf Tf Tf Tf Tf d d d d d • o> £ JQ ^ oi s s cn r Tf CD co ^: CO T- LO O CO CM O CN Tf T-CM CO CM CM CM N IS- co co in h-i h-i r-^  o o o o o CM CO Tf LO t a a a CN co r- CO CO O CD O O CN CM T- CM CM CM Tf CD 00 CO CN N N O M O N Tf Tf Tf Tf Tf CD CD CD CD CD CD CO CO _ u j CD CO CO CO 5 ^ ~L ' CO CO to c Tf + Cd ^ r- CM CM CO CM CO O CD O *— T- CM d CM f - O • Tf to cd oi ° CO Tf CO CO CM O CN T— CO CO CN CN CN CN CM CO Tf h- CO LO S S C O S CD Tf Tf Tf Tf Tf O O O O O CD tD ( CO CO CD CD , • - CO CO 1 "7 - ? —> - 5 CO LO CM CO ! CD CO Tf 00 CM S S CO CO N Tf o r-~ r-~ T-tO CO CO I— CN CM CM CM CM CO CN LO LO Tf O CD LO CD CD LO Tf Tf Tf Tf Tf O O O O O CD CO Tf O h -r- co CD o o T- T- T- CM CM CO CD CO CD CD CD CD CD °? °? 3 3 *> 9" & CM LO Tf LO LO r d d d ^ CM CM T- O t- CO CM o d d o LO LO L 0 Tf" O T- CD f - Tf r— Tf Tf co LO Tf Tf Tf Tf Tf CD CD CD CD CD Tf T- CD CD CO T- CM CN CO Tf CM CM CM CM CM , CD CO CO J CO CO CO . 6. Q. OJ J j r ID a) cu < $ CO CO CO CD O N Tf Tf O) LO CN CO CN CO CO T— T - LO Tf CD CO CD h- CO Tf LO Tf r— CD Tf Tf Tf Tf Tf O O O O O O h- Tf T— CO in in co N s CN CM CM CM CM o o ° ° 9 CM T- T-CD CO ^  Tf CO CM CJ) Co" CM CO Tf CO CO CO CO CD N N S Tf Tf Tf Tf Tf d d d d d m CM cn s co CO O) CD O T— CM CM CM CO CO CM CO r-- to Tf Tf d d o co CM CN CO co in ™ ; 195 Si ^  O? O) N N tO I CM N O r- tolcM CO LO T t Co|cO LO LO tN CM I CO CO CN LO O) \ Tt TT CO CO tN If"-. CN Tf CO j *- CO UO O T-I O OJ t - Tf CO I CO T-+ O in q N to to co cq t ^ ^ ^ ^ ^ " ^ n C N * co t C N CN n CO n t\ i - T- c o p o r- o oi CM T- T- O o p m co o ro o> o to\ cO^  u i d d c i d cd|i- T- T- T- >- •<- -r- T-'JT-^  T- T- T- ^ ^ t ~ | t ~ ^  dl*- o\-<- '• cd cd o' o | o T-' rm\ CO t T— OD CO 0017- O O CO THT- CN CN T- C N I C M T- t~ CO C0|O LO O CN LOlcO I O N O) 0>|0 CO 00 CN ColtO r O r-|LO TJ- r- CD r - l T t CO j C U N N CD t f in CD CO ( M r ; O r ; O O O CM T- q CM CO T- p O T- r- T- p 0)0)01 (DO) CO O) O) N O O O O) CO CO CO CO N CO CO CO irdJ W T t d d d d O ' | T - -r^ -r^ T- T-|T^ T-^  T-^  T^JT-' T- T-^  1-1 T- T-^  T-^  T-' r - ' j ^ o 6 o o'|d o d d djr-' t - T- o d | d o d d d j d d c Q. CD T3 . fc ca £ CO =b 0 2 LO CL ^ ^ ^ ^ r T f q i n K O J T t i o r o q T f s q m i n i n c D c o N O N i n ^ ® o ^ ^ W ^ O N N l f i l 0 N I 0 d r V N ^ ^ ^ CJ) I""- r-- CO LO LO LO LO Tf Tl" .Tf Tf Tf Tf Tf LO LO LO LO LO LO tfl LO LO CD CO CO CO CO LO CO CO t*- t*- Is— t— I"*— t-- f~- f--^ ^ ^ ^ Q T-. (O <Q & O & L o S S T t o ^ ^ ^ S o d r ^ d T f c N C N T ^ c N T r d d d d N ^ ^ ^ ^ N ' n T r c O T r n c o c o c o c o c o n n o c o o c o o c o T t T f T f i n i n CN CN d d co tn co 00 d d Tf Tf CO CD oi d co in CO CO CO f - r -Tf LO LO o 00 0 f -CD CD T- CO CO d d d CO CO LO CO p d d O Tf C N in Tf f~ Tf Tf p p Tf 5 00 CO 00 CO CO CO LO in d d co co CO O) CO d tn in C N C N p p T f C O C O C M I s - h-d inoit^-(Di6(DCT3T- d d LO LOtDLOLOTfLOLOLO CO CO C O T - C N T f C O C D C N T f l ^ - O C N T f C O C D r - C O T f C O C O O C N T f C D C O T - C O i n c O T - r t r ; N n T f i n i n ( p c p ( q s N N N s c o f f l m o o o d d d d d d d d d d o d d d d d d d d d d ^ T - T ^ T - T - T ^ T - T - T ^ T - T - r - T - ^ T ^ 0) O) ro CO . > to 0) o >1 o rororoTfcororoTfTfroincor-ocoN CNppCNpCMr^TfpCNCNCNCNCNT-T-s io T f co CM r d o ' o ' d d d d d d d 1 Tf CO CN • d d i d d d d i ooscocDcocDscocoromrosco in inTfTf p p p p p p p p p p p o o o o o o o o . 0 0 0 0 0 0 0 0 o ' d d d d d d o o r - O i n T f C M S O C O I O C M i n C M M n C M O N N M O r - O C O O O O r - T l - T f p T f p p i ^ p p T - ^ p p p p r ^ i ^ i ^ r ^ p p p p t O L O L O p L O L O L O L O i n r ^ d d d c N ^ T ^ T ^ o d d d d d d d o d d d d o d d d d d d d •OOOLOCOCMCOCOLOinTfCMOT-CNCN ' T f T f T f T f T f T f T f T f T f T f T f T f T f T f T f d d d d d d d d d d d d d d d ^ T - o o i o c D i ^ - c o c M C M C N m o t O T f c N o r ^ T f T - c N v - T - c o o o r ^ O T f ^ ( o q q N S r q c o c N ^ q q q q f f l O i f f l q T - ^ N N N ^ d d d Tf d d CN CN CN CN CN CN T— T— —^ •— r~ CN CN CN CN CN CN CN CN CN CN CN CM CM CM CM CM CN CN CN CN CN CN CN CN CN CN CN co i n i n o ) C ) i i n c o ( N T r o ) r - r - f f i i n q ' - f f l ririiodffliriNdfflNNdioiriTf'ifiindd COLOTfCOCMCNCNCNT-T-T-T-T-T-T-T-T-T-T-T-T-T-T-r-T-T-T-T-CNCNCNCMCM COOCNTfCOCDTfCDCD0100TfOCDCOOTff -T fT f^CDCOOf - . i n c o S r N S t D o u i O T f r - - o c o i n r - - c j ) T - c O L o c o o o o T - c N T f c D c o c o T - c O T f c D a D g T f T f i f l l O i O C D C D c f l c D c D N N N N S C O C O C O C O C O O O C O C n r o r o i n f M 0 ) ( 0 # f v i n N * ^ m i n n O N T f T - ( D i n ( M 0 ) i n c N c n c D T f O N ^ c O T - c M C M c o S i n t o t o i Z S f o m to a o P T- CN CO Tf LO I CD N CO CD CN CO Tf LO CO f - CO O) O T- CN CO Tf lO CD N 00 CD Or- CN CO Tf UO CD h- 00 CO Or- CN CO Tf m CD I s -T- T- T- T- r - Y- T- T- CM I CM CN CN CN CM CM CM CM CN CO CO CO CO CO CO CO CO CO CO Tf Tf Tf Tf Tf Tf Tf Tf S E E > £ (0 TT. <D 'S i - . . Q. • • T5 <" '= ( D e b ! " o & o W S o. h- ° Q * - tf) _ co CD 0 d oj O O O r - O O 196 -1 co E o o 5 o i cq i n q co r-i i r i p p r - . r - . T t i O) I d cd co t o -o o o co T- iri CD T-O O CD O i n Tt T- CD T- CO Tt CO T- CD CO CO 00 CO 00 h - h - t - LO CO CO If) CN CO r ; q N N N CO N S f - CD Tt 00 T-CD O T- O Tt LO CO Tt Tt CO d o d d d o O T- CM CO Tt LO CD CD t o <D CD CD O? O? c% i% CD CD c c A A -Q -Q « « 0 "S .» "" 7 7 LL u- 4r f ) CD ' J , CO CN CM 0 4 0 5 T-~ ~ CD CD CD in s ^ q q co cd LO CD r*-p p T t Tt • I CN cd iri CD I CD LO O O CD I— 00 LO CN CM CN CN Tt p p p CN N N r- N N CN CD CD O T-co Tt i n Tt co Tt Tt Tt Tt Tf d cd ci cd cd CO r— CO CD : CD tO S S CD CD CD . . CD CN CO CM CO ' led cd oi ai ! LO LO T- O q n r CN r-i r-^ r-^ r - t-T- CD oo T- . T- co r-. co co Tt Tf Tt Tt Tf d d d d d • CM CO Tt LO t a . a . D_ : < < < < -CO CO If) Tf c o p Id T t d d d j r - d d r-^ d i d d CN Tt d i d T t CM d CD o CO T t CD t o co h - h - co Tt Tt Tt Tt Tt O O O O O CO r—. CO CD O CD CD CD in p CD CB <° CD >•>•>.. ' CD CD CO C 2 5 5 = CN O p T-_ < oi ai ai ai c CM T-t o co CD r - Tt Tt LO LO r - t o Tt Tt Tt Tt Tt CD CD CD CD CD c c 2 2 CD LO CN 00 p CO LO CO o ' N CO N O i p CN p q p r - p i p CD CO T— CO O CD CO CO CN LO CM CM CN CN co T- r - co o Is- Is— 00 CD 00 Tf Tt Tt Tf Tf d d d d d O) CD Tf O S r - co CD o o T— T— T— CN CN 7 7 < < < CN CD I r^ , fx, CN CN CD i : r ; p p p p p ai ai d d d CD CD Tt r— oo r - r— i o d o d o CO CO CD LO T— CO T— CO CD CO CN CN T— T— T— O O O O O Tf T- CD CO CO T- CN CM CO Tf CN CM CM CN CM CO CO tO p CD CD CD , CD CD CD CM O CN CD CD ) r r N r T- CN CN CN CN CO CO CO CO O CD Is- LO CD in Tf Tf Tf Tt Tt d d d d d O t— Tf T- CO LO LO CD t— t— CM CN CN CN CN 00699 p r—- t - p co d Tf Tt Tf CN co in o o CD m co f— t— CO Tt Tf Tt Tf Tf ci ci ci ci ci IO CM CD f— CO CO CD CD O T— CM CM CN CO CO : ^ -T -T o , CN CD r - ^ CD O in o Tf Tf d d o oo CN CM ' CO CO 9 9 d co 197 Molar ratio 3.65 4.48 0.78 0.95 0.64 0.78 0.52 0.63 0.62 0.73 0.76 0.88 1.25 1.39 1.11 1.24 0.99 1.09 0.94 1.04 1.11 1.21 0.78 0.85 0.77 0.83 0.75 0.81 0.92 1.00 1.15 1.24 1.08 1.16 0.99 . 1.07 1.13 1.21 1.26 1.34 1.13 1.22 0.97 1.09 1.01 1.11 1.04 1.13 1.06 1.15 1.07 1.17 0.73 0.80 0.58 0.63 0.71 0.78 0.94 1.02 0.72 0.79 0.93 1.03 0.89 0.96 0.94 1.02 0.78 0.85 0.71 0.78 0.71 0.77 0.81 0.88 0.91 0.98 0.82 0.89 0.74 0.81 0.75 0.81 0.75 0.82 0.69 0.75 0.63 0.68 0.62 0.68 0.61 0.67 0.60 0.67 5 cvcle movinq averaqe SO„ NP prod'n rate depl'n rate (mg/kg/wk) (mg/kg/wk) 280.9 224.9 234.9 186.3 207.8 168.6 153.0 126.0 117.1 101.9 82.0 836 64.8 73.2 50.2 62.5 48.7 55.1 48.6 50.8 47.6 46.9 46.2 44.9 43.3 41.9 40.2 41.2 36.9 39.8 34.3 40.4 33.4 42.0 33.5 42.0 32.9 40.8 33.1 41.3 33.0 40.6 33.5 39.8 33.3 39.3 37.9 41.1 46.4 43.5 50.4 44.1 52.2 45.1 57.4 46.8 55.7 47.6 51.3 48.2 47.9 47.6 47.7 45.8 44.7 43.3 45.9 42.0 45.9 41.1 48.6 43.3 50.2 45.2 52.3 47.2 52.5 47.9 52.5 47.2 53.8 45.8 53.2 42.8 57.3 44.4 60.4 45.0 60.7 43.6 Neutralization Cum. NP NP NP depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) 1311 11.02 1465 12.31 1071.9 1643 13.81 1793 15.07 . . 1897 15.94 2010 16.89 2095 17.60 84.8 2167 18.21 2235 18.78 2294 19.28 2349 19.74 55.3 2394 20.12 2436 20.47 2476 20.81 40.2 2518 21.16 2565 21.55 40.5 2606 21.90 2641 22.19 34.9 2684 22.56 2734 22.98 50.2 2775 23.32 2810 23.61 34.9 2847 23.93 2887 24.26 39.9 2927 24.60 2965 24.92 38.1 3009 25.29 3058 25.70 48.8 3107 26.11 3153 26.49 52.9 3200 26.89 3247 27.29 47.7 3299 27.72 52.1 3345 28.11 3388 28.47 . 42.8 3422 28.76 34.0 3463 29.10 3511 29.50 3562 29.93 51.2 3614 30.37 3658 30.74 44.2 3702 31.11 3747 31.49 3791 31.86 3834 32.22 38.0 3880 32.61 3927 33.00 3971 33.37 38.0 Sulfur Cum. SO, Sulfur SO„ flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 281 0.24 435 0.37 654 0.55 883 0.74 228.4 1019 0.86 136.3 1142 0.96 1200 1.01 58.3 1256 1.05 1316 1.10 52.2 1370 1.15 47.7 1414 1.19 43.8 1464 1.23 50.1 1513 1.27 1561 1.31 1601 1.34 1637 1.37 31.5 1671 1.40 1702 1.43 31.3 1737 1.46 1773 1.49 36.0 1805 1.52 1836 1.54 30.8 1868 1.57 1902 1.60 33.9 1935 1.63 1967 1.65 31.1 2020 1.70 2093 1.76 73.9 2154 1.81 2197 1.84 49.7 2254 1.89 57.1 2298 1.93 44.2 2350 1.97 52.1 2393 2.01 38.0 2442 2.05 48.2 2483 2.09 41.7 2534 2.13 50.5 2586 2.17 2637 2.21 50.3 2693 2.26 2745 2.30 52.2 2797 2.35 2849 2.39 52.0 2906 2.44 2966 2.49 3031 2.55 3098 2.60 3161 2.65 54.6 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 74.1 9.58 6.82 6.52 61.6 7.78 5.50 5.20 56.2 6.80 4.77 4.42 42.6 4.70 3.23 2.85 35.1 3.42 2.29 1.86 29.3 2.47 1.59 1.14 26.1 1.92 1.21 0.74 22.6 1.44 0.89 0.42 20.0 1.21 0.77 0.34 18.6 1.07 0.71 0.29 17.2 0.94 0.66 • 0.26 16.5 0.86 0.63 0.23 15.5 0.77 0.58 0.21 15.3 0.73 0.57 0.20 14.8 0.70 0.55 0.19 15.0 0.68 0.52 0.17 15.7 0.67 0.50 0.16 15.7 0.69 0.49 0.16 15.1 0.72 0.47 0.15 15.2 0.76 0.45 0.14 14.9 0.78 0.43 0.13 14.5 0.84 0.41 0.13 14.3 0.85 0.38 0.11 15.0 0.85 0.37 0.10 15.9 0.88 0.39 0.09 16.1 0.89 0.40 0.08 16.5 0.91 0.41 0.07 17.1 0.95 0.44 0.07 17.4 1.00 0.45 0.07 17.6 0.98 0.43 0.07 17.4 0.97 0.40 0.06 . 16.7 0.95 . 0.38 0.06 15.8 0.89 0.35 0.06 15.4 0.83 0.33 0.06 15.1 0.82 0.33 0.06 15.9 0.84 0.34 0.06 16.7 0.84 0.35 0.06 17.4 0.88 0.35 0.05 17.7 0.89 0.35 0.05 17.4 0.90 0.34 0.05 16.8 0.90 0.32 0.05 15.7 0.85 0.29 0.05 1613 0.89 0.31 0.05 16.4 0.94 0.32 0.06 15.9 0.95 0.32 0.05 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) S S 8 S S S S S S £ S S S 5 690 89 57 67 716 91 58 68 741 93 59 68 762 94 60 69 782 95 61 69 s s s s s S g £ £ £ S S 5 3 S P £ £ £ £ kcSSSS S S S S £ ^! ^ CN CO TJ- LD CD SSSSS £2 r2 £2 SSSSC £ £ £ £ £ 26 76 73 27 76 73 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 690 89 57 67 716 91 58 68 741 93 59 68 762 94 60 69 782 95 61 69 SSSfii s l s s i S S 3 3 £ 1 a S SS S !§ Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 690 89 57 67 716 91 58 68 741 93 59 68 762 94 60 69 782 95 61 69 Days co 3 co 8 £ £ 5 S S | m%% Cycle o •<- CN co it co CD N co cn ° *- CN co *r m CD I— CO Cl C CN CN CN CN CN 8 E N 8 8 8 co co co co So 5 3 3 3 3 3 $ 198 • | E E _> p_ to c o 1 0 ^ CD o co r£ •io °> i ° CO T- E T-. . S ° CD £ N " ii & o <o 8 o . I - 0 -c Q CO = CO n = CO CU CD d CU if) O I - O O o N- co co in . O Tt CD Tf CO CO QJcb S CO CD CD N CO CN CN LO CN Tf cn T- CN o r- co m co ^ co d d d d d d CD CD f o rn SS o? °? CO CO O) lO CO -J, - J . CD rv, cv, CN O) __ ^ ^ CN 1 0 N i CM CN ID ; r-^  co cb CO lO LO CO Tf CN O CO N CD IO r- co co TJ- LO O CD CD Tf h -LO T t Tf Tf Tf 6 c i d 6 d CD N CO O ° CD CD S S CO Ol Cf) 7 i ™ ro ra 5 5 _ J - m r*. W s N o n N CN CO CD CO cb cb r-i cb ! - CJ) T- f - co > LO co cb cb IO If) r ; If) CO ^ CM ^ 1-lO O i f ) i - CO CD CO C N O TT CO CO CO CO CO N N O CO TT C N CO CO T- N CD LO CD CO CM CO CO O Tt Tt Tt Tf Tt d d d d d - CM CO T f .LO k Q . Q . Q. ; < 5 5 J -L. LO CN CD "j RO T- CM CM IS-O) « CM O TJ- CM CO r-. r- co CD TT CM CM CM CM CM O CO CM Tf CD CO N N CO N Tf Tf Tf Tf Tf O O O O O CD S CO O) O CO CD CD , _ UJ 00 CO CD J O o, >->.>,• ' co ra ra c Tf f™ cd Tf T _~ i - CN C N T-m m in N m . CD CO . CO 2 d Tf o cb If) CO CM N CO I If) CO CO CO f -O O O O O o io CM m Tf r - co CN o co o o o o o OO CD Tf O I— S CO 0) O O i - i - CM CM CD CD CD S2 SS O) O) O) °? °? ii -3 g> ^ ^ 2 < S S c i S * in f - CD f - CO r O O r-' T-' i - T- CD O O) CO t- o d co co m o co r-- io co r-- co CO CO CO CO CO o o o o o ! Tf T- CJ) CO CO T- CM CM CO Tf CM CM CN CM CM f o CD CD CD K CD CD CD, H- cu cu CD1 < ,5) CO CO CO - CO 1 CN O N ^ CM If) CO r ; CM S CM r - O d i d s s ioIio r-^  r~~ cb t -Jd d T t d cblr-^  cd cd iri cb o CM CO CD CO CO Tf CO CO CO CO CO CO CO CO CN o m co N N T- If) T t Tf Tf Tf Tf Tf CD CD CD CD CD O f^- Tf T— CO ID tf) CD N S C N C N CM CM CM 0 0 9 9 9 ' LO C N CO 00 LO ^ col 0 0 0 0 o h LO CM CD f - CO CO CD CD O 1-CM CM CM CO CO O CO CM CM CO CO 9 9 O CO u ) T - q r o t D w n T f N q p c p N C D X 7a\ I SR S ^ S S S I t i l i ^ G S S ^ i S S f c ^ S l f l ^ ^ i S S S Q y S S S t : CNICN CO W N *-|cn Tt LO LOICM CO CO CO LOICN ' r l U l p c o c o c o L q b^J co^  c o o o d r - T - r - T - T - r - r - d d d d r - T — r r r r d ' - ' - T - r - T - c i c i c i 6 cf o d d d o d d p b o o do' Tf Tt LO Tf co coIT- ^  co N r—1TJ- *- m o h - l T f T-cploq ro cq cq c o p o o co oo oo oo oo co col co co d p o d d d | i - T- T-' d d p o d d d p d  CM r-co co co  0) c 0 e co i d c ' > CO T3 : 6 2 LO 0_ . r- co i co co • co r-- i ^ J ^ ^ ^ ^ ^ ^ c n p L o o i n c M p i ^ L O c p T r c O C M C M ^ T - M ^ T 0 ( D T D T D C D C D T D M o D L O w i n r - n o o o j n i B c o c o i f i t o n Q n c v i O J C N ^ i n c M CDOTOCOCN^cfiTf-^ CO CO c o v n i M ^ ? ^ ^ Q r a N N W W W W W W W ^ w t o t o t o t D ' s - ' s - ^ a f f l c CD "O . f-cd CO Tf Tf LO CO LO LO LO O CO T~ O CM LO b CD h-LO cb CD CO o" CO LO CO CO 0 CM CM 00 CM N cd CM d o cri N h- CO CO N O) N co b CO t - l "O Si _ C N C D I ^ c X ) C O L O C O C O r ^ C 7 ) C D T - o r ^ L O C D L ^ Q^) ,p L q C N C O p C O C D p C O p C O p p T - C N i T f q Q ^ ^ c o ^ N c d o i d ^ ^ c M r j c M C O c O c O n 0 i-T-^r-^^CMCMCMCMCMCMCMCMCMWCMCMOJCMCMCMCM(MCMCM(MCM CM CM CMCMCMCMCMCMCMCMCMCMCMCMCMCMCM TJ C O C D C D C N T f T f O C s l C D C O T f C O T f l O C O C D C O C O C M C ^ c o c M N f f l i o r t f f l c D N C M c o ^ c O T f i - m i n c M f f l c D c o c n i n T - C O L O ^ O T - T f I ^ O ) ^ C M C O C O T f L O L O C D f ^ l ^ C O C J ) T f T f i f l C D C O N N N N C O I D I O O D C O O O C O C O C O r a c O C O m CO CO O T-o o d CO CO LO r-- r-^  S CO CM CD O I CM T~ « °C CO O CO r -d LO LO LO CO CO CD Tf LO LO CD O T f O i O O C O ^ C O L O CM CO oi d t ' - T - d S d i r i r-^  CD C O C 0 0 3 N C 0 b : c 0 C 0 CO CO T3 i - t- CD CO CO CD "O C M C O O C O C O i n T j r ^ C D C D C O O C O C M C O C O l ^ c q C M N C M T f C O C O f f l O r ; C M C O r t d ^ ^ c M C M C M C M C M o r i o r i o r i r i r i n d CO r ^ o c D T f ^ c D i ^ r ^ c O T - c D C M f ^ T f o o T f L o r ^ c N C M C O O l f l C M C M C O C O C O CM.r- r - C D C O C O C M C O C O C O f T - C D T f O C O C D O O O i - C O T f L O l O C D r ^ - C O C O O l O J O T - T - C M C O C O C O C O T f T f T f T f T f T f T f T f T f T r T f T f L O « - ( O ( O l O C O N S ( O O C M ' * 0 M D C M M , ' - C O ' - ? ) O m C O N 0 ( O ^ c o c M c O T f T - a j i O T f n o o i m c o N c o i n T f c o c M u i T f c o c M i - o C M C M O O ^ l O l O C O N C O C n O l O r - N O T f i O C D N C O C n O T - C M C O l O i O l O i O U l i O W n i O i n i n i O C O l O C D C D C D C O C D C O C O C O S N N N CD CD to CD > CO CD zz '> o E jD o >> u CD Tf • CO LO • oS ( n C M C D T - O C M N t r T - O O J C O N C O C O T f C O C O ' - C n O O N S p p p L O T f C p C M C M C M C M ' » - ' » - ' i - ^ - ^ - » - - r - T - T - 0 0 0 0 CM'T^OO b d d d d d d d d d d d d d d d d d d S N C O C O C O C O C O i O i O m c D C O C D p p p p o p p o o o o o o d d d d d d d d d d d d d c D O T - r ^ c o o u o u o c D c o - ^ c o c N j c o T t r o c O ' i - m p C O T f C O ^ C M L q p L O C O C M ^ O q d b s i r i t d N ^ r ^ ^ T - V ' d d d d d d d d d d d d d d d b b b b b m S S c D L O C D C O C O C O T f C D C D O C O C D L O C O O C O C D m H t ^ T f O C O C O O I ^ U O T f T f C O C O C O C O C ^ ^ l ^ b c o ' ^ N ^ o d d o d d o o o ' d d d d d d d d d d d d d d d d d IO N co oo CO Tf Tf Tf Tf Tf <5 d a c6 cz> CN CO CM Tf LO CM LO LO LO LO LO LO CD CD CD CD CD CD ^ r ^ ^ P ^ ^ N C M c q i o q o i r o o q ^ PO S LO CD Lo ?2 S b CD LO LO O CD LO LO CD f~- f~- CD LO LO LO Tf LO b CD h~- CO CO oi d d T— CO IO IO If) If) If) Tf CO Tf Tf d ^ ^ ^ ^ ^ ^ ^ r ^ L O T f C O C O C N C M C M C M C M C M C M C M C M C M C N C N C N C N C M C N C ^ • Tf Tf • ' O O i _ m , - _* h J m m m 0 ° O O T- T- T-\T- r- CM CM CM CM CM CM CM CM CM CO CO CO CO CO CO CO CO CO C O C O C O C O C O C O C O T f -co 5) CD CD o) CD CD ° ° P 0 0 0 o p O O o o p o o o o p o o o o p o o o o p O O O O O O O O t o co Tf Tf i o i o CD co I r~ i • T- i - CM CM i o O o o i CD r- Tf co c o p co T— CN c o p co N co CDJg g S o S S o o o olo o o g i g I IO CD N S CO I CO CO CD CD CD I CO CD CD CD CD P ° ° ° ° ° ° ° ° ° P P. P_ O O O T- T- T- r-l C D C M O ^ C O T - C O T - c O T f L O C D C D C D I ^ I ^ C O C O C O O O O C D C D O O O C O l O C O C O C D C D O O O O O O O O O O O O O O O O O T - T - T - T - T - T - T - T - v - T - r - T - - T - T - r - T - ^ T - T - T - T - T - T - C M C M ^ ^ r - r - r - r - C M C M C M C M C M C M C M C M C M C M C M r M C M C N C M C M C M C M C M W C M C M C M W )CDT-TfTfLOCOCOCMT-CMTfOTf»-( • N i n s T f C M C o c o m T - i n c O ' - c o c D i • < 0 0 ) T - r t i n ( D M B O ) 0 ) 0 ) 0 0 0 ( • T - T - C M C M C M C M C M C M C M C M C M C O C O C O < o ( D c o c M c o N ^ c ^ T - o ^ ( 0 ^ l n ^ c ^ c o o ) ^ l n T - r ) ^ l n c r l f ^ l ^ T r c ^ O f M * N c » c M T r s o n i O O D T - ^ s i - t N ^ w o ) c M i n o ) C M c o o ) c M i n C M C v J C N C N C N C O C O C O T f T t T t T f L O L O L O C ^ C O c O C O C O C O C O C O C O C O C O C O C O C O C ^ i n C M C D C O T f C N O I ^ T f T - C O L O M O R S ~ ^ ^ R A W ^ M W M ° ^ CO 3vj £n CQ CO cn ttl CT} ^~ 1— ^  ^  ^  ^ ^  ^  h- f'-- CO CO O O T~ CM CN CO Tf LO LO CD h— h— 00 CD CD O T— CN CN 0) o o 1- CM CO Tf LO I CO O r - CN CO Tf LO CD r- CO CD O r - CM CO Tf LO CD f- CO CD O r - CM CO Tf LO CO f-CM CN CM CM CM CM CM CM CM CM CO CO CO CO CO CO CO CO CO CO Tf Tf Tf Tf Tf Tf Tf Tf 200 • O LO 00 CO ) CD CO o ^ s r- d cri °. • I S r- (N CD CO CO I— CO CD h - l o T t Tf CO ) CD CO CD co —1 - -" - : •'' -' -' - : 0 -' ^ • CN LO co oS 2 CD od q N i n CB n CD CO CD CD CD N " ID T t r CD 2 OS CD CD Tt CD T- CD I CN LO O CD - q T- s q Tt LO cd o CO Tt Tt CO LO CD LO T t d o d o CN S ^ 92 ° 0 0 ° t - oo CO CO ™ ^ CD CD Tf CO LO O CO LO CO CD LO CO CN CN CN CN CO T- 00 T- CD O CO CO T— 00 CN CN T- CN T-CO T- CO CD CO Tt O CO T- T t T- CN T- CN CN CD co LO r— co CO CD T t CO LO CN T~ CN T- T-LO O CO T- CD CN CD CD CN O t - O CD CN T t Tt CO LO 0 0 0 0 0 0 co CD o r-- co co oo cn co co Tt Tt Tt Tt Tt Ci CD CD CD CD CD T t LO CO CO Tt Tt cq cq Tt r~- h- r~~ t~-o r- o o CD LO LO LO CO LO Tt Tt Tt Tt Tt ci ci ci ci ci O CN CN CO CO t^  r- r-O CO CN CD t-LO LO CO O LO Tt Tt Tt LO Tt d d o d d T- CO Tt CO CO Tt O CO CO CO Tt Tt Tt Tt Tt d d d d d IO r- CD CO 00 Tt CO O 00 T t Tt Tt LO T t Tt CD CD CD CD CD LO T- CD CO CO CD 00 UO LO LO Tt Tt Tt Tt Tt  CD CD CD CD CD CO LO CD Tt Tt d d CD CD T t o r-r- co cn o o T- T- T- CN CN Tt TT- cn CD co T- CN CN CO Tt CN CN CN CN CN O S Tf r- CO LO LO CD I— I— CN CN CN CN CN LO CN CD f - CO 00 CD CD O T-CN CN CN CO CO O CO CN CN CO CO • CN co T t in co t » co CD : CN CO Tt LO to r-- co CD o T- CN co Tt m <S JS CD CD JS JS 9 °? CD CD °? °? c c A A Xi -™ « o © « ? 7 u- , LO CD ' f i , CD CO CN CN T— * • CD CD , i CD CD CO CO _ y j 9 CD CD g CD > , > . > . . CO CD CO C 5 5 5 ^ CDCOCofOJD CD CD CD i i ^ ^ ra CDl co m CN co 1 0 -3 —} CN CD . ™ ... CN CN CO ™ ^ ' < < <\ CN CD CN ^  t- T- CN CD CD U,J U,J u, rj « T3 o o o o 9 9 9 ' J , LO CN CD T- CN CN •A 2 2 fc co Q D 6 co 201 U) O S t O O) CO CD CO CO T- -r -ui d o r j V ^ r r CO O I tO r - IO CD N O »— f— CD CD T— T- d o d CD CD CO CO CO TJ- CO CO CO CO CU _^ 5 $ CO TJ O O Tf d esi r- CM CD CM CN r ^ T- CD CO O P J d d Tt Tt " O) CO LO Tt - Tt LO r - CO ) r - CD IO CN ) LO T t Tt Tt O O O CD CD T-1 d i f i d d Tt Tt co co co • cq cp cp T t | p • •' N iri iri t Tt CO CO CO CO p p o en o d d d d d CN CN CN CN T— p p p p j p Tt p p p ( tN Tt Tt O p Tt p Tt LO O CN O) f"- If) T— LO T t d c N o d d c N T t T t T t d c N ^ T t d d T t T t T t T t C O C O T t T t T t T t T t T t T t T t T t T t O CN N CO CO d d T- d T-T- CN CN CN CO p p T t Tt T-i f i CD CM T"™ oo CO CO T t Tt CO T- T- CO CN T t s N iri iri TT CO CO CO CO CO CD CN LO CD CO h - CO d t -CO CO O O IO CO CD N CN p p T- p p O O T- CN CN CN LO T t CN T t CD CO t - h - CN T- if) CD CO If) CO O T- CN CO CO CO Tf Tf Tt T- T- Tt T" CD CN Tt p p p CO CO CO CO CO Tt O) CO O CN N CO r - N CN CO T t LO LO CD Tt Tt Tt Tt Tt CD CO CO CD CO O CN CO T t CD Tt Tf" Tf Tf Tf If) T- CO CO T-CO T- LO CD Tt CD S N S CO Tt Tt Tt Tt Tf CO CN T- T t LO t— 00 CO O T— Tt Tt Tt d d f - LO CD O) CO K o n s CO CD CD CD O CO CN T- T- T-CN p Tf p p d d d d d CN CN CN CO CO g N O CO CD If) If) LO LO LO CN Tl" I— CN CD N CO O) r (N d d i f i c c i d CO Tf LO If) T-O Tf CO CO 00 CN CN CN CO CO LO LO LO LO If) o CO co T- LO r- co p p p p d d d d d Tf LO CN T- CO CN CD T- LO oo Tf Tf LO LO LO LO if) if) if) i o O Tt t - CO LO to co to cn CO CO Tt CO CO: O CO O Tt LO O T- CO Tt IO s t -N O CD CO O CSI M N S r -CD CD N N CO LO LO LO LO LO r»- r- t - co co r CO O CO CO if) O) Tf 00 CO CO CO CO CO o If) LO If) If) CD o c o o o o o o o « . „ r n O (D (N S 8 g g « « Tf CD CO ° ^ ^ 00 r - CO OO CD CO d d T t 0 ) 0 ) 0 ) 0 0 d o d T-' T-O LO Tt T- T-O Tf O LO O) CO CO Tt Tf Tt CN Tf T- co r-CN T- Tt p p CO CN r O O CN CD CO O) CO CN LO CO T— Tf LO LO If) CD CO O O O O O CD LO CO CN O) Tt Tt Tf TJ- CO d c i c i d d I O) O) T? 2 T-- CO o R ri in ° CO N M n r - r - CO t r ri N r in Tf CO CN CN CO p p Tf p : d d d d d T- O K N (O h - CO O CN Tf CD CD N N S o o o o o o o o o o o o o o o q p o - i - i — TT CO CO CO CN CD i n co o oo LO r- CO r - CN t - t - oo oo CD LO Tf Tf CO o o o o o co CD Tt CN CN CN CN CN d d d d d CN CN CO CO CO CO CO CO CO CO O O O O O CD CO r - (D N Tf I— O CO OO 00 00 0) O o i T- O 00 00 00 T- T- O O O d d d d d co Tt co- m co CN CN CN CN CN d d d d d CO O) O CD S CO CD CD S S CD CD CD CD CD Tf 00 CO CD CO CN ID T- Tf 00 O O T- T- T~ CN CN CN CN CN O O O O O co co co m Tt CN CN CN CN CN CD CD CD CD CD tO CO T— CN CJ) r- r- r- CD LO CD CD CD CD CD i n co o t o i n T- Tt O) CN LO CN CN CN CO CO CN CN CN CN CN O O O O O CO CO Tt Tt Tt CN CN CN CN CN CD CD CD CD CD O O O O O 00 T t CO CO T— O) r— CO CD CO 00 CN T— T— CN CO CO T t oo T- co oo r-LO 00 O CN Tf t Tt i n i n i n CD I— 00 CO , CO CD Tt O CO N O) T- CN i n i n i n co co CN co Tt i n CD o T- t - o CO LO CD h - CD CO d CD CD CD CD r- oo o o O T- CN Tf CD O T— CN CO Tt r- t - r- r- t -o Tt o oo m CD N O) O CN I— f— I— OO 00 CD CD Tf o r— h CO O) o o T- T- T- CN CN 00 0 ) 0 ) 0 0 0 ) 0 ) 0 ) 0 0 T- T- T- CN CN CN f - LO CD CO S in N co o 00 00 00 o Tf T- CD CO CO T- CN CN CO Tt CN CN CN CN CN o o o o o T- CM CM CO Tf o o o o o CN CN CN CN CN oo Tt i n co t o T— CO LO i — co O O O) CD CD O f N - T - CO i n LO co r- r-CN CM CM CM CN O O l I— LO T t O CN CO O T t CO T t Tf LO LO CN CN CN CN CN O O O O O O O O O O LO Tf CD CD O t o co m m CD d d d CD CD p O CM I s- p (6 t^- CD <si CD CD CD CD CD CD Tt LO i n t o r-o o o o o CN CM CN CN CN CN O) CD Tt T-O T- CO lO S o o o o o CN CN CN CN CN LO CN CD f - CO CO O) O O T— CN CN CN CO CO CO CO CO CN LO CD CN CN CD CD O O d d O Tf d r- co o o CN CN r- co oo o • O T-CN CN O oo CN CN CO CO 202 CN CO csi d CN CN ° S . CD CO CD i cn oi N cd co cd r*^  ifi r-Mcb d ^ c o c o r f u i i d ^ ^ i n N c b ^ u n d CD r - IO O Tf CN CD CO T- CN CD CD CD CD CD CO O r - CD O CO CO CO CO CD q iq r q q CD CD CO CD CO ( T- O CO o ; d T-' d d I I S O O CO CD h- CD Tf d o d o <2co" co E o o CN CO CD CO TT « ; Is1 5 w S 3 . Q L. S\ r - CN CM S L: S CO U) r -j ; ° CO IO CO co h- co TT h- r-oJt^ t^  t^  t^  N co Tf co in h-S O O O) N Tf CN Tf CO CO Tf d d d d d d r- o CD oo CO CO Tf co CN CS| CN CSI f- r-~ CD CD r-f^  t^  t^  r-^  N in TT co CO CD CO N r -Tf Tf Tf CO Tf d d d o" d o o CO t— CD CO CO CD N CO CN CN T- T— T— N N CD CD if) f- f-CM CM CD N m co o co co Tf Tf If) Tf Tf d d d d d O r - N O) CO O CO o CO o CN T- T- T- CN in in to Tf cq r-T- CN co m h-CD CO CD Tf CD Tf Tf Tf Tf Tf 0 0 0 0 0 O CM O r - Tf O CO T- CO Tf CM r - CM CM CM O CO h- Tf Tf CD CM CD T- CO CM CM r - CM CM Tf CN r— in o O CO LO CN T— CM CN CM CM CM! in f-LO CM CN CM O O O O O CM CD Tf O CD in in in in co Tf Tf Tf Tf Tf CD CD CD CD CD CD CD CO CO CO in co co co Tf Tf Tf Tf Tf Tf CD CD CD CD CD O) CO Tf N CO io in f-. co co Tf Tf Tf Tf Tf 0 0 0 0 0 CD I— Tf CO CO Tt N m m m Tf Tf Tf Tf Tf CD CD CD CD CD CD CO f - CO Tf Tf d d O) CD Tf O N h- CO CD O O r - r - r - CM CM Tf CD CO CO r - CM CM CO Tf CM CM CM CM CM O S Tf T- CO LO if) CD N N CM CM CM CM CM LO CN O) N- CO CO CO CD O t— CM CM CM CO CO O CO CN CN CO CO O T- CM CO Tf LO CM co Tf in CD f- co cn o SS S£ co co SS SS q? q? CD CD °? °? ? 7 LL LL LO CO ' CD CN CM T— CO CD S2 SS CD CD CD i i CO CO CO ™ ™ Q . ' A M f l ' T- CN t Q. Q. D. <<<< CD CD i CD CD CD CO . • > CD CD 03 lO CM CO ^ CD CD CD SS SS O CD CD i CD ~ ~ oi 5> oil 77<<< CM CO T CN CD CN CN CD ^ < $ CO CO CO CD ^  O N Tf CN T— T— CN o o 9 9 9 9 9 6 co 2 0 3 I c o T - c o r o o c o d T - i n o c D c n u i r o 01 I in m «• cn i c o T - o c n c N c o c D c o c o T - o o o c D C N c o i n T r i o c D i n c o c ^ co T - T- T- O I C5 T~ T™ O T™ T— T— T— T— T -' T"~ T" O T~ T*- T— T— T— T— T -' T~ T~ T~ T~ T— T— T— T-" T~ T"" T— T— T— O ~' I s i f i o ^ n c f l r - i n n r - r o c s i i t c o c o n ^ T r c n r - T j - K r o COICN CM *- t o < c N C D C 7 ) c o q Y - i - . T r c M q CO (Z) CD CD T~ T~ T~' T~ T~' C—i T~ CD C i T~" T" T"~" Y""" T~" T~' T™* T " T~" T~ T~ T~" T~* T~* T -' T—" T~ T~ T~ C l C l j V* T*" ' i CO CO O I > CO CD CD < i d d d i • CO T— CO t i O) 01 CO I > o o d c 0)1 OJ 8 e CO Q-C . CD d d d d r ^ d ^ ° ^ ^ ° ^ ^ ^ ^ S C M C ) 0 C » T ? O ^ J 2 S S co co CM T— T— T— ® ® ^ Tt Tt Tt Tt co co Tt TT Tf Tt Tf ^ TC in in ^ ^ m m m in TT tn in in in co in in to Tf io in in 6 CO CO T- I T-' d i CD 01 • CO CM I ^ C O T f O L O T f C D p a i C M T - C N C p ^ T t T r ' n c s ' o i r - d T t r - c d c D i r i s ' c o ^ ^ l > i n T f T f T f T f T f c O C O C M C M C N C N C N J C O C O C O C O C O C O C O C O C O T f T f T f T ^ Q. Q> TJ TJ „ -2 _ cn ir, CM CO CO CO CM Tf T— CM ° - CO S o 0 0 0 0 ° * ° ° CO CO OO 2 Q_ L d CM CM d d d d 0) "~ ~" "~ ^ "~ "~ "~ TJ oi f~- r-— T~ co col co in r-- Tf cq CM oi oi Tf Tf Tf co in d d Tf in CM O l T- p d d iri s LO LO Tf Tf LO LO d d r - in o c o c M O i o o c o c n o o i n T f T f T f T f p N - p p C M p p h - p T - ; p p T f T r T f T f ' d d d d d d d d d CO CO CO CO Tf co T- co p r~- oi T-r~~ N r~~ f— Is- d Ol N CD CO CN CO If) S O) N CO CO CO CO CD i CD N CO O) r -CO LO (— CO CN I CN CM CM CM CM • CO I Tf I CM COCNCDCNIOIOCOCOCOLOI'--COY-OT— T f c o o i n N c o c o r ^ c O T - c o i n c o o i n o i n o T f c o c N C D O T f O T f c o c o c o c o c o c o c o c o c o c o m C D C N U l C O O T - C N C O T f T f l O U l C O c D c X ) r ^ r ~ - C O C O C O C D C D T - C M C M C N C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O T f T f T f T f T r T f T f T f T f d CO CD T-d d Tf Tf CN T-p p p p p . CM T- CO iri r d cd ci CN d d T f T f T f T f T f CN CN CN •a i - i - co £ £ S : =J =J a. : CO CO ci) TJ ^ C N C O ( J ) l O T - c N N C N N C N S r - ( O O r O C O r o r - T t N r - T t C O C N t D O C O C O C N I C D r p f-- O p p p C D - S f ^ p p p p p p p p T - T - T - C N C M C M p p T f T f T f i n u ^ ' CD CD T~ T- T- T- T- r - ' T- T- T™ C*i CN CM CM CN CN CN CN CN CM Csi CN CN CM CM CM CM CM CM CN CM CM CM CM CN CO CO CO CO CO d d CO CO CO O ^ CO ^ - ^ ^ T - r ^ T f C N C O i n c O C D i n C O C D t ^ O l T f C D T f C M T -. T ^ S m t N C D T - C M C D T - C O O i n C D C O I ^ O C O i n c O x - T r E t^ 0 ) 2 C o c N T t m m c D c o N N M D c o o ) 0 ) 0 ) c n o o **- £ f ^ i - i - i - r r r r T - r T - ^ - T - r r T - r r M N o ^ CD p p p p p T f T f C N C O r - C D CN CO d T- d d d co&d^irico^in d r -CO Tf CO CO CO T f T f T f L O C O T f L O T f LO Tf O d LO i i - f f i C I C D T t T t l O N C O O O T t l O r - C N C N N T t T - T t N C O T - L O C O C M C D O i n O ) L O O ) C O O O C O C O T f C D T f C D T f C D • T— CN C M C N C O C O T f T f T f L O L O C O C O r - f - C O C 0 0 1 C D O O I C N C N C N C N C N e N t N C N C N C N C N C N C N C M C N C M C M C M C N C O C O CU CD CO cu > CO CD c > o E 0) C O C D T f C D O ) T f T f C D C D C D C M O C D C O O I ^ C O C M T - C D O ) 0 ) h -p t ^ p p p p C M f - - p T f T f T f p p p C M C N C M C M T - T - T - T -d s ' c d t t N r r d d d d d d d d d d d o d d d d C D C N C D t ^ C O C N C N O l C D C O O O p r - . p C N C N p p p p p p p i D i f j T t ' c d N ^ r - ' d d d d d i h - L O C O T - O O C D h ~ T f e r ) C D C D C D L O C £ ) r ^ O I ' t T t T t T t C O T t C O C O C O C O C N C N C N N C N l o o o d o d d d d d o o o o d d o o o o o d o d d d d d d d d d d i ^ c n C O i n C M O h - h - T - C N C O C N T f C O C O O ^ ^ p p p T - ; p p T - ; p h - f - p p p L n J ^ o i c D T t c d o i r ^ d d d d d d d CD CD LO i n c D C O t ^ C D C O C D C O r - - C O C O i n c O C N C N C O C D r - . C O C O i n C M a ) 0 ) O T -Tf Tf ] Tf T f T f T f T f T f T f p p c q c ^ P P P P P P P P P P P p C N C N C O C O d d d d d d d d d d d d d d d d d o d d d d d d d d d T - 1 ~ p p C N T - O p C N p T - ; p p r - p T - O p S ^ r - ~ ' d T - ' d d c N d d r ^ d d d T f ' d d f ^ J_' ^ C & C D i n C O M M t N r - r - r T T - T - T - r - r -p T-| Tf p p TJ- to T— C N CO CD LO CD CD Tf LO h - 00 Tf Ol C N f~- Tf *— CD CO r - d d d d d d d d d d o o d d d d T - ' d d c N C N o d o o d T - T - T - T - T - T - T - T - T - T - ^ C N C N T - T - T - T - C N C N C N C M C M C M T - C M C M C N - Tf CM O I i CD CD CD CD \ i d d i 0 0 ) 0 ) C O O ) C O C O N N N S C 7 0 C O C O r - O O O O O O O O O O O O O d d d d d d d d d d d d d d T— CN CN CN CO CO CO CO CO Tf U f Tf Tf Tf Tf LO LO LO LO LO LO LO LO LO LO LO CD CD CD CO CO CO CD CD CD CD CD 01 CD 01 CO CD O) 01 CD CO CD CD CD 0) CD CO I CO CD Ol CD CO I CD CD CD CD CO I CO CO CD CD CO I CD CD CD CD CD I CO CO S 8 ft S S felt? S g S 5 8 8 £ « S g S ? ? S S S|S S S S S|S S S S S S S LO d O r - CN CO Tf Tf LO lO CD CD h - f -Tf Tf LO! LO in in in in in in in m ml in f— CO CO CO CO 01 01 O O O O T- T- T-|CN CM CM CO COlCO CO Tf Tf T f l T f LO LO LO LOlCD CO in m m in|m m m co c o p co co co c o p co co co c o p CD co co c o p co co co c o p co r-- r - i CM CM ( ( N i f n i ^ _ ^ C D C D C O C N C N T - C D C D O C D C N r ^ T - C O C O f - C O T - O C D C O r - . C ^ S m ^ ^ C ^ ^ O C O C D C O O T - c O i n c D C O C D T - C M T f c O a D O C N C O i n i ^ C D T - n ^ f ^ ^ Q j O O r - r - T - T - C N C M C N C N C N C N C N C O C O C O C O C O T f T f T f T f T ^ tO >>_ — i n N f f i l O , T t N O N T t r f f l l f l S O N * r f f l W N r o n N f f i f f l * O S * ^ r o ® N 0 ^ t r * n N ® ^ n O * roOT-cO^^^SSKcom^mmm0^^^""^^ p T- CM CO Tf i ' Tf Ul I f - 00 01 O T- CM CO Tf LD CD f - CO 01 O T- CN CO Tf LO CD f - CO CD O r - CN CO Tf LO CO t -T- T- T- CM CM CN CN CN CN CN CN CN CN CO CO CO CO CO CO CO CO CO CO Tf Tt Tf Tf Tf Tf Tf Tf APPENDIX 10 T A B U L A T E D R E S U L T S N O N - A E R A T E D C E L L 205 Q. E to x XJ o c c £ .<= E 5 ra _ - E .2 S oi <° ^ ra u g A o p o « ? . » o iii g O C O t f Q. h- u Q £ _ • » - < / ) — CO ~1 — TO CO cu d OJ W U h O O O O ,_ ^ q co 5 £ S S « o . CO CM CD r - _ CN r-- co r--- TJ- co h- m Tf Tf co csi N N CD CO S N r - r-" r-' f-cn CN co co co CO N O) fj) S O) T~ CN Tf Tf Tf Tf d cj d d d d O f- CN CO Tf to CD CO (f, (f, CD CD °? °? O O CJ " CU CD CO CO 5 — LL.. LL j CO Tf ' ' f i - l A CN CN r- " , O O • d d O O T- CN CN CDCDCDCDCD Tf CD Tf Tf ^! d d d d CD CO CN CO CN f- CN Tf CN CN CN CN CO K IT) h N O CO CO T— o OO CO CO 00 CD Tf Tf Tf Tf Tf CD CD CD CD CD co N co oi ; LO CN O CO CN CO CO CN CO1 CN CN CN CN CN CO O N CO S t^  00 T - O) O) f-. CO OO CO CO CO Tf Tf Tf Tf — CD CD CD CD CD • CN CO Tf LO JS, CO CO OJ $0 >. >, > CN CO LO CD CO  CO CO Tf CO CN CN CN CN CN in LO s CD co r-^  K CM CM r- CO O CO CO CO OJ CO Tf Tf Tf Tf CD CD CD CD CD CO h- CO CO O D " J D D - j ~? ~? 1 ~? ~? r- CD LO (N CO S N N CO N d d d d d S O CD CO CM Tf co oo T- r CM CN CN CO CN CO LO CD Tf r- f- r-^  r-o o o o o r-- O h- CO d d ^: co £ oo CD lO CN Tf LO CD CD CD CO O CN CN CN CN CM CO CO CO Tf CN 00 CO OO CO OJ Tf Tf Tf Tf Tf 0 0 0 0 0 co i n M o s h- CO CO O O r- r- v CM CM ,, CO CO, g- tt) ttP CO W CO CO CN Tf CO CO -CO O O) 00 Tf CM CM Tf CO CN C  CN CM CM CM Tf Tf Tf Tt CO f-J f^ f^ | 0 O O T- T- , OJ OJ OJ OJ CO Tf Tf Tf Tf — O O O O O Tf T- CO LO CN T - CN CM CO Tf CM CN CM CN CM OOLOO LO co r- CM T-LD CO CO r*-' Tf r - CO CM CM CO CO CO CO ~ 1 Tf Tf Tf Tf d d d c i o l CO CO OJ Tf Tf Tf o d d O) CD CO O CO ' Tf LO CD f*- I I N CM CN CM CM I * O O " ^ W O O 9 9 Tf ' A CN O > § g gl o ^ z z z co ' CM co r^ . ' IS?? CD tt) o 9 9 • O CO A -M4t W W W W w ro O (Q CD Gl U U U W W N ] N ) N ) N ) N ) M IO W U N ^ U M O CD 00 -M 01 O l ^ U M O H O cn 2 = 1 cLT? 9 i | 3 . O l O ( O C O ^ ^ C » U l . ^ . t k W W W ^ O O ^ 7 i c O C O C O C D C D C » C D 0 3 C » O T co co ho i co —1 CO ( i ro - • i O|--J I O O p i CO CD S» • CD CD CO 00 00 A rM O O i l —J - J - J - J 0 ) 0 ) 0 ) CD OJ CO CJ1 CO hO CD CJl W O i -U • CD I CD 00 A ro co t o -n. t o t o ro ro ro co - u co i s co co co I co co co co w I co co co co co I co ro ro ro r o l r o ro r o ro - * co co -vjl-si CD CD cn co ro ro -»lo co co CD OI ^ r o Q CO 0) TJ TJ. CD Q. tn o o 3 r— ro ro i co i M W W N ) N ) J J J J ^ N ) K ) ^ J ^ J M S ) N ) W M J ^ J ^ J J J M W M N ) N ) W W U * - l - ' - 1 O O t D M C D ! D ! O O O C O a ) C I ) C O O - ' W ^ O C D C O S C O C O C O ( O O i N ) U 'o O) cn id in <D u ro r o ro b i b b t n o -> i r o r o r o r o r o r o r o r o r o r o r i v i b o i j i k i - ' j j . j . k j i lUMvlWCDMOfOCDOI-o o o o o o o o o o o o o o o o o s > i c n o i c n o ) ( 0 ( o o - » i o u u i M C D O ) C o ' O O I i b b i i cn u i i N ) W N ) N ) N ) I O W W M M W K ) W K ) W W N ) N ) N 3 r o W W U U O l O ) - J c o u u u c > ) u ^ j k ^ N ) ^ ^ ^ b N i i s ) 0 ) A l n b 4 ^ ^ ^ O l O l 0 3 C D ^ O l C D ^ O O C D r o r o C D W C D M C D W ^ - J C D - J ^ i O O I o o o o o o o o o o o o o o - ^ - ^ - » - * - * i o w * . bijicnbci)QrocDcnNNcoo3cob o ^ o A - ' f o u r o a i c j o i - ' c j i o o o i c o u i u i o u i v i < p p p i p oooooooooooooo-*row j j l i l d ^ l i i o i o f o h j r o f o u b M k j u c j i u i c r i c n f f i c o o o - » r o i o w o ) r o ^ 0 ) r o f CD 3 o < CO r o - - o o ^ r o m s m ^ ^ ^ ^ C O M C D - ^ O l O O l O - ^ C O C J C O - ^ C D t O C n M - g r O ^ N J C O C ^ u u A M ^ Q U M u c D N J c o ^ u A W ( O M ( n « o c n u M c o r o u - i _ k _ i _ i . _ i . _ i . _ k _ i _ i . _ i . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r o r o t o ^ ^ ^ b b b b c o c o c o c o ' r o C O W ^ C O C r r O l O C n U O S J i ^ C O C f l W C D C D U O N ^ i N J O O O O O O O O O O O C C O C D U - ' O C O N U i U - ^ i o p o p p o p o p p - -C O C D U - » C 0 a ) M M C D * ^ € if a . tD -» cn • 4*. CO . oo io cn ^ ^ t/i CD *k cn - j —J co co 4^  r o —* —»• CD In N ^ In b ) bo co r o j i . co cn t o . ro --J ( co b> < 00 o oo b ^ t n CO p W W W M I O M r o N J N i l S J l N J N j r o r O M ^ - ' 0 ( 0 ( D C a S M O ) W ( n A ^ W W W - » ^ O O c D C D a ) M N ( 3 ) W o o - * . u c o - * o i c o r o c j ) c o r o c n - » ' C D cn C0N)cno*couc0N)cn^JMiNJ0iO0ii0UM^K^^¥S3S O A O o u M U O M c n c D M c n c o c i O M c n i N J O i r o r o o c o w p p p p p c n o i t n c j i t n t D O i c j i w c ^ COCDbbl^ M-^CDCBCnC^AU'^  C D C J C D - U O C J l N J C C W - - J W M O a 3 ( J l O C D W O O - U M ro oo 'to CO O ~ - i cn Ln CD O l O l ro r o b b 4^ bi t n o i CD CD I co ^ cn t o b bo t o t n CD t o t o co | 2 fo ro r1 cn cn co • • a i n> CD o. o. CD TJ 5 5 t n oi oiloi oi O i oi cn Iui o i o i t n u i p -iv -J. r o u t o r o l r o - * o r o ^ b b i p ^ b c D ^ p ^ C D u i O) p t o CD CO O l O l O l ro U i J k ^ ^ j i U U A C O U C O U M U U t O U ^ J i A A W N C O j A W O p U O I D l O O C n U M O M - ' W W I O - ' L n A S W - ' W ^ J L o o i b N m w N i o w i o N ^ b o c j i w 8* P CO C D C D C D C D C D U i U i C n C n U l O J C D p p ^ | o o ^ w ^ ^ p o ^ o o o c n - o o ^ ^ i o o - j ^ f o ^ - ^ c n ^ ^ c D c o r \ ) o > o i s t o b b - ' b ^ M ^ b i s r o b b b j u - * r o oi cn -»• bi ^ bo a. CD TJ_ 3 "O G> — 2 < £ S O O O p O p O O - ^ ^ 0 0 0 0 0 0 - ^ 0 0 0 - * ^ ^ ^ ^ ^ - 1 - - i - i - i - i - 1 - - 1 - - i - * - » - » - * - > - - 1 - 0 0 0 c o l 7/5 [7^ c D b b b c o c o c o c o b b b c o b o b ^ C0OMCn^ 0^l^ ^^ N^)01JA(0^ C0lBOMM0lCDAOOMSMC0ffi LzL • • . , . p - p CO DJ o o - * - > . - » . r o ro ro —* CD o p co o * o p o ro A u i cn m o - g O H OI CD OI CO r o ro OO O I r o o co ro o O i CD co o j r o co co -M - i p o o co t o p co u ^ co j * . co ->I o cn -*jcn N w co CO -» r o £ . | t o a> o> o oi|.& |^ 90Z APPENDIX 11 T A B U L A T E D R E S U L T S S I M U L A T E D P R E C I P I T A T I O N C E L L S 208 e E E .2 E " •B .. s. . . '-f; (DC « 1 .a a a i - u -c Q +-< to = to - j = to CD 0 c tu W O 1- o o o o q Tt c> rsi in CD co m CD T-CO T- CD i- 01 CD T- CO CN Tt CD r - m Tt Tt CM co co o co in co CN r - in o T- CN TJ" TJ- Tt 0 0 0 0 0 to tO to °? °? C) 0) °? CD CD CD CU oo m co CO Tt CN CO S CO O CO o CO r- T t LO CO T t * * Tt X f d d d d d to a OJ - co « cn N Tt Tt N N CD CN I— CO Tt , CN O l O 00 CN CO CN CN CN CN CO CO CD CD S CO S N S O O S C D T -T— CD T— CO CN CN CN CN CN CN CN t - CO Tt O) m CD in Tt in Tt Tf Tt Tf Tt O O O O O r - . r - h - . h - r - -, n CU CU & CD q CD £ 4 T- oo ui CN co co h- m to co co in CN CD CN CN CN CO CN if) Tf N r . t o r - co co co Tt Tt Tt Tt Tt CD CD CD CD CD to r - r - r - co , n CO CD CD CD ^ CD CD CD CD o 7 7 7 < A U l CN CD i T - CN CN CD Tt co in O 01 CD i-1 • d o CD CD CD T- 00 T - CD O l O T t CO CN CN CN CN Tt Tt Tf Tt LO CD CD CD CD CD co r - r - r - co I 01 CD . h O) If) Ul o o co o i o i m T- T- co co m CO CO CN CN CD CM O) S I— O CN CN CO CO CO CO ID CD I— CO CN CO T t Tt Tt CD in o o o CD CD CD CD CD h - h - CO Tt CO S Tf S r O T— T— tN CN CN CN CN CN CN ci 6. ciS CD CD CD U _ CO CO CO O O T- CN CD CO i - CN CD T- h- t - CO ui in in ui ui Tt CN Tt r -oo r -CD oo oo co o Tf Tt Tt Tf in o o o o o d d d o" d Tt CO T t Tt CO CO r- U l oi CN CN CO CO CO T t  CN CN CN CN o o o o - . r- O O CO CO CO CD CN U l d d CN CN d CN CN CN CN CN U l T- T- O CN CO CO 00 T t CD CN CN CN CO Tt co T- LO co ; CO CO U l CO N N CO O) CO CM CN CO CO If) O) S r CN CO Tt CO LO O O T- i ~ -CO CO CO CO h -Tt Tt Tt Tf Tt O O O O O CD CD CD CD CD r - t - r- r» , O) CD CO O . Tt u i CD r» co CM CM CM CN CN ID co 58 g to o) o) °? °? r •4 J > > CN LO co 209 !r l CO r^ T— c n c o i o i n o i O t D C O O c n c o c D O l O C N i n T t c o T - O f ^ O T - C N i n i n c o T t i - c N C N C N C N C N C N l f ) r ^ C O ( O r C O r • ^ 0 0 ^ 0 ) ( J C O t C O ( 0 ( ^ I O ) C O T - p p p C D O p l ^ O p t - p O C n p a i O C D O C D C n ^ - ^ - d r - d ^ d d * — d*— d ^ o T ^ d * — d o cu n CO co CO CN O O f--i r i T- i n cd cd co TT m TJ- m •r- CD co' d CD f-00 T- CO iri co CM CO CO T t in CN CN d d cb r- co co LO CN N O) N CN r - CN O) r- TT TT t s r - oi V CD i n co co co t f rt co cu n i r i ^ c o c D i ^ o o i r ^ c N i n i ^ c D c o i n o ) i y ^ ffir-iococRT-coTrifltDNcnq^iN ^- CL •— O r - T - r - r - C N C N C N C N C N C N C N d c b c b d Q_ £ ZJ O T3 Q) ai : o . • <D TD C „ O c n 43 i ^ r n f T i o o f O f n C O T r r ^ c D T - r ^ r - - - c o c D r - c o c ^ Q . p V « ) ( D a J C o O ) ^ r ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ N N N N ( N C l J N [ N N r g r i J O J ( l g p i | c s j T3 I CN CO CO T- O CO CN f - Tf CN N CO CO CD O I CN CM CM CN CO d CO P r- r- m co SS ' co oi cn Tf Tf CO Tf co co cb b . m CM CO Tf j f~- CO d iri Tf m . pT-pT-pppr -^r-~T*TfCDCNCNCDOT r f O N a D c b c D c d w t N ^ r T r V c n ' d i r i f~-COCDCOincDf~-TfcOCDTfu3TfTfCDCOCOTfTfCOCO "O i— i— cu • CO CO 0) "D d CO W l f i r - C O C n C N T f N O C O C D O l N C O O O r - T - T - C M C N C N C O C O C O C O T f T f d d d d d d d d d d d d d d i m f- C n V C O C O C O r - T f N r - T f C O t - C O N r - C O N C O O ) ' - ! T r T f T f i o w i o i n c o c o c O N N N c o c o c o r o o J c n c n c n o i I d d d d d d o ' d d d d d d d d d d d d d d r ' CM TJ- m r - co T— co CD o k o o o O O T- T- T- CM CM 0 ) c o c o £ £ ™ c O T r ' S LO Lo C O C O " N N C O C O C O S Q 0 ° ^ ^ CO O f-h-CM « Tf ° . CO 2 cb CN ™ CO CN CN T-d d CO Tf T~ d d d in v -o CM d d CM CO o o d d • CO T- • i d d < CM CO d oo Tf d cq p CM T— T- CO CM cb oo cn in m o d r - CO CO m Tf CM d d d I CO CO Id Tf co m d cb CM CM r-. oo in cb d Tf CM CM TT-Tf Tf I Tf T-I d d co in cb cb r -p p p cb b CM CM CM T-m CO Tf »— t— T— r- 1 <~ T- CM T- X- T- I d d o o o o d < [o t- M P p cq -r- CNI I CM CM CM I T~ r~ CN V l h- CN CO LO CO T-»— T— CM Tf m m co co cn T— CM cb cb i—I T— co o co co Tf Tf m i n i n co co CD co r- r- t - r - r - r- r- h - co co co co co oo co oo oo co oo co oo oo co co co co co cn cn cn co co T- CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CN CN CN j CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM i CO CO CO CO O O T~ r- CM I CM CO CO Tf Tf I LO LO LO LO LO LO LO CD CD CD I CD CD CD CD CD CO Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf I Tf Tf Tf Tf Tf I Tf Tf Tf Tf Tf I Tf 3 ^ m D) CM o o Tf co CM i n oo T— co m co T- CM Tf LO s o > r - co i n co r- Tt co cn g g g g ™ "2 S° t: °. r; £j S « £ S £ co co Tf Tf i n i n i n co cop co s N h-jr- r- r- co co co co oo o cop S2 52 9. II II II II II ^ ^ ™ ^ ^ " I " c o r - L o a ) i n o c N r - c o T ~ c j ) T f T f C D T f T f C N r ^ c N C D T - T f r ^ o c M T f i n r ^ c O T - c O T f c D c o o T - c O L o r ^ T - T - c N C M C M c o c o c o c o n c o T f T f T f T f T f i o u o i o i n i n i n c o §. 8 .9 o ro c > ro Q '5> 2 — l O r - ID CO I 1— I r- co N N r-lh- r- r- r- r- co f- i co Tf co Tf co Tf Tf co k r~- f - f - J J°. r^ . in co T— co in CM ° ^ ^ T- CM CO CO Tf LO m^i^ C^DOCOOOCOOr^inr-CDLOCNOh-Tfr^  » » ^ O O r - ( \ I C O C O < f U ) I O ( O N N O ) 0 ) O O r - r - N N N n n C O T r T t l O ( O N e D C n 210 CN E E E .2 CD T3 3 E E ? 0 ? N O Q. I— ^ -C Q -H- (/) = CO "3 = CO O a) C O C O U h O O io .2 o m >  ro >, ^ — CO O if) If) CN d ™ ~ CO O) O) " T t r > . \ t ^ . ', r-^  T~ I i o • CO CN ° ( D O I O O ^ CO CO O TJ- CO CO C M O N r- CO r-- co TT TJ- TJ-tf in oi CO CO Tf T} T- CM Tf TJ O O O O O O T- CO CO CO S S co co S °? °? CD O ) ° ? f ) X) L! L! ' 0) CD CO CO CO Tf ' J. CM CM CM O Tf CD If) 0 ) 0 ) 0 ) 0 ) 0 CD CO CO CO I Tf If) T— CO CM I CO h~ O h~ h- CM Tf Tf O CO CM Tf Tf Tf Tf Tf d d d d d CO N S N N •2 $ s & $ CO i b= Q. Q J ^<<<< LO A « O if) Tf o O) Tf cd Tf r-~ cb T- CO Tf CO o' r- co r- •<- o CM CM CM CM CM h- CM CO O 00 o o o o o N CO N N . S CO (o CD CD CO OO CO °? °? °? > >h > | — „. CO CO CO CO i xf T- CO ^ i— CN CN CO if) Tf CM I CD cd T-' cblr--CM CO O CD CO m co t r- s CM CM CM CM CM LO LO CD T-CO M O CN CD Tf Tf Tf Tf Tf o d d d . d r- r-- r--- r~- h -cq CM cq Tf op s d cd in V CM T- T-CM CO T- CO CM T- CO h - Tf CO CO CM CO CO LO CM O CO CN I— N CD N in Tf Tf Tf Tf Tf o d d d o CD h - h - h - CO CO CO O) CM CM < h - h - cd h - co ( T- O O . T - CM o Tt o r- LO CO h - T- CO LO CO CM CO CN CN m N CD CD o N CD CD CO lO Tf Tf Tf Tf LO d d d d d CD h- f- f- CO CO CO CO ( n CO CD CD CD c-o cn ra o i i ZJ ZJ ZJ £ _ < < < CO °? CM O ) CO (v O) h - i n i n co t— CM CM CM lO CO CO CO CO CM CN CO CO CO CD CD CO CO O) CO CO Tf Tf Tf LO LO o o o d d d d d f- h - CO Tt CO r- Tf h- -r-O T- T- CM CM CM CM CM CM CM CD CD CD O _ co co co o O CO CO CO CO CM O) S (D O (D CM cq eq Tf i n d d d CN d if) CO I— LO CM Tf Tf Tf T— CM CM CM CM CO O CO CN O O O CD Tf CM O Tf co CD r- CN CM CN co i n CO N CO CO r-O CD CO LO T-m i n i n LO LO O CO CD CO oo r-h - CO CO CO O Tf Tf Tf Tf LO O O O O O 0 0 0 0 0 Tf CO Tf Tf CO oo t - m O) CM CN CO CO CO Tf CM CM CM CM CM o o o o , T - LO O) CM I CO h- CO CO m Tf Tf Tf Tf Tf O O O O O CD CD CD CD CD f- f-. h - h - , 0) CO CO O Tf Tt i o co r- co CM CM CM CM CM , n <D CO CD °? °? CO o > g a 9 | 7 T Q CN « 2 ^ « 211 CO CD CN UO CO CO ^ i n cn N cn T~ o b b b o o o o o o o o o r r - U) CM CO CD CO 01 CO b cJ b c l b O 00 CO 00 CO b b b b i o i cm co T— Tt 00 CD CO CO b b ci d b 0-T- T- CN r- Tf co cn Tf CO LO Tf CN Tf LO co cn CN CN CN CN CN 00 CO Tf h - CO o r - co co CN O O T- T- CN CN CN CO CO CO i n IS- I— o co CO CO CO CO CO CN CN CO CO Tf 00 CN Tf h- Tf co i n CD s cn CO CO CO CO CO O CD CO T- 00 T— CN Tf CD r~-Tf" Tf Tf Tf _ c- LO CO CN co o s i n co CO O) O) O r— T— CN CN LO O CD CO T-01 T - CN ^ CD Tf LO i r i i r i i r i CD co m o co o r - Tf CN o CN CN CO Tf LO CN CN CN CN CN LO LO LO CO CO O l I— CN CO O i — i n r~- co CN i n co t o t o i — CN CN CN CN CN CD CO CO CD CD r- CN CO i - CO i n oo T- Tf CD N N CO CO CO CN CN CN CN CN O N CD CO CN C O V S Tf Tf CN Tf CO LO CO CO CO CD 00 Tf Tf in co N a) CD CO CO CD CO CO N CN O l CO O l Ol O O CN CN CN CO CO E oo o O CO E = CO tO CN CO CN CN CO CO Tf O O O O O T- co i n m CN CN CO CD CD CO CN Tf LO co r » cq i n co o i t n t n co CO O l r - C O L O Tt- Tf m m m CD CD CD CD CD CD CN T - r - N o i i n o i co CD I"-- CO CO CD CD CO CN CO Tf CN CD O Tf f— i — CO CO Tf CN tO r— Tf t o t o p CN i n p CN co o i cri Tf tO Tf Tf LO 00 Tf o CD LO o o o o o ; o o o o o o o o o CO O r - •»- r -co co CN r - co i— CN CN CO o co N m 00 CO 00 O l O l CD CD CD CD CD 01 CO CO . O CO a> m i - cn m co Tf t o i n t o CO LO O CD h -CN CO LO T— CO I— h - CO Ol . O l CN CN CN CN CN CN CO f— Tf O CN Tf I— O CO CN CN CN CO CO CN CN CN CN CN ,. r- t n r - i n CO O Tf O l CD CO Tf Tf Tf LO CN CN CN CN CN z: CO CD o o b b m CD Tf Tf b b o o o o o o o o o o to r - m Tf CN £ E B * .9- & O TJ O E ^ » 9- o E = « cu a) CD T f C D L n r - c o o r - c o T t T f T r L o c o r - - m c D c D CN CN CN CO CO CO CO CO CO CO CO CO CO CO CO Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf Tf r O CN CN i oo co co - T- CN CN CO CO -tt T-W i co u l r -CN CO CO CO CO « J r~- m CN co i CO I CO O CN CO I CO CO Tf Tf Tf ' O i - CD CO CO CO N S N N N CO N IS N 01 o t o t o • r - o co < Tf LO LO i n i r - r-- r-- r-- r--i n cn Tf CN I CO O CO CO U l CD CD CD Tt r - co UJ i co m co CO h - h - h - h -l O ^ C O C O C N C O C O C O C O C N C O C N i n C o S j S i - C O C D l D N C O a i O r - C M C O C O i n i D C D S H C 0 C O C 0 C 0 C 0 C 0 C 0 0 1 C D 0 1 C D G ) C D 0 1 O l ^ l ^ : t o r~~ r~~ r~~ co CO I— h- t-- 00 I— I— CO Tf CO N Tf S T - Tf O T- T- CN CN CN CN CN CN CN Tf CO Tf Tf CO oo T- m o i CN CN CO CO CO Tf CN CN CN CN CN r - r - r - r - , O l CD CO O . Tf m CD M O CN CN CN CN CN 212 " • • • S E E ' s E ™ ! o «> t. ! o to c ! o> | o • . ^ <" ~ Oj £ N O a. | - CJ £ Q C _ to _ C = (0 T = to CD CD Z- CD ( O O h O O 5 1 a -3 =U ro Q. ^ d co . CD co f - co ^ ai ai oi ai O CO CN • CN cd cd CN ° Lf) . , N c o c M o n c o i D i o o c O ' t N c o n t O ' t u i v t o i n x f T t c o c o ^ d c d c d c N ^ r ^ L o c d r ^ c D u o c d co CO CO CO CD T-T - T— CO Tf N CD LO N CN CD LO Tf CN Tf LO LO LO Tf LO r-^ r-^ r-^ r- o T- Tf m r- co co co CD CN Tf CO Tf o o o o o CD CD <« , n CD ^ J CD CO ° ? cq Tf co oo CD CD CD OO OO CD CD CO T- m o CN CO CN LO cq i q h - LO r-^ o o o o o CO „_ CO CO i » 9 ? ? co £ i a . c i | LO ' m CN CD ~ ~ CD CD CN CD CO T - CO CO Tf CO Tf CN Tf T— CN CN CD Tf Tf Tf r - i r - i r-^ CN CO CO h -T- I CD LO CD Tf Tf Tf Tf Tf O O O O O CO co CD CO CO CD g CD Cp CD J >. >, >J — CO CO -< ^ 5 5 h~ h~ CD CO CD I CO CN CO LO Tf I CD CO LO CD LO CO Tf Tf CD LO CN Tf CN CN CN CN CN LO Tf f-. Tf Tf r-^ r-^ r-^ r - r-^ O O O O O O T - l O c o c o c o ^ ^ ^ ^ ^ c o ^ ^ ^ ^ ^ ^ ^ ^ c D ^ ^ ^ c o < D ^ ^ ^ c o ^ ^ c o , n CD CD CD S CO CD CD CD CO CD Tf O O CO CD CD LO CO CN CN CN CO CO LO CD Tf LO CN r-! r-! r-^ f-^  r- ' co CN o co CN r - r - r-- co co Tf Tf Tf Tf O O O O O QQ LO CN CO CD CO CD IO IO CD CO CD CD d d O CO CO CN LO O Tf T- CD CN CO CN CO CN CN CO Tf l O CN CO f-' f - f -O CD CO CO CO CD CN CD Tf Tf Tf Tf Tf Tf — O O O O O CO CD CO T O CO CO CO CO g CT. <<<cV £ 2 CN" ^ S lO CD CO CO d d O CD CD h - Tf LO I— CD CD CO CN CN Tf Tf LO O r - CO lO LO CO CO CO CO CD LO LO O O O o d d d d r - Tf r*. T-O i - T- CN CN CN CN CN CN CN CO CO CD SS SS a a a . ? ^ CD CD CD c _ CO CO co o O CO CO CO CN CO O Tf T- CD CD LO LO LO Tf Tf CO (D CO S S CD CO CD CO CO O O O O O d cid d d Tf CO Tf CO Tf Tf CO CO i - LO CD CN CN CO CO CO Tf CN CN CN CN CN o o o o o M T— LO CD CN LO CO CO f~- T~ • T— T— T— CN CO ( d o d d d < CO T- CD LO O < Tf h - i q Tf • p < T~~ T~ T~' 1"— CN ' T— CO CN Tf O < ai ai r Tf . T- T- CN CN CO " r - LO CN co 11 o T- i o i n • Tf Tf Tf m < S CN CD Tf Tf N O „ , CO h - h - CO ^ , IO N LO If) CO CO CO CO o • o O O O O I d d d cid < h - h - r - , CD CD CO O Tf ( Tf LO co r— co < CN CN CN CN CN ( SS <° CD CD « J o co °? °? cor CN LO ^ °2 col! 213 O COCOCNTfTfOY-r-O") CO -r^  O O O O ^ O !~L co C N C D C N O a j T - o u i u i ^ r o c O T - c o o o i ^ C N i r a O l T f O T f C O C O f f l C S N t p N T - O T - o o o o d o d b i c o c n o T - O T r o i o i c n o c O T j - u o c o c v i T - ' - T - C O O p t N ' - r - CN C O O C 3 ) r - O T - U O t - 0 0 0 0 3 T ^ ^ ^ ^ ^ T ^ ^ T ^ ^ ^ d ^ d ^ T ^ r ^ T ^ ^ ^ ^ ^ d a) C "a 3 ^ ^ ? <D TJ TT d ^ CN CN O Tt UO OO CO d d d Tt co T t 1- CN T-d Tt ^ CO UO CO •r~_ T- Tt CO Tt Tt d d co r~- r- co co x~| cq oq do TT' r- co Tt Tt CN d d Tt uo ; cq r-- Tt CN LO ! r-^  r- d ^ I Tt Tt LO Tt Tt O C O K C O O C N C N C N C O C N T t - ^ L O C O O T f r - - C D C ^ C f t c N p c q o q c n p v - r g c q T r c q r ^ d T - " T ~ T ~ *-* i— oi esi esi esi esi CN c\i CN CN d d d d d d d Tt Tt Tt Tt Tt Tt d d d d d d d d d d d d d d d d d d T f L f t K r ^ c n t n t D r D t D d CO T uo i - O 3 d d $2 O) Tt Tt Tt CO d d co co r-; co Tt CO O CO co co d Tt uo uo p LO CJ) CO CN CO • TtUOCOCNCDLOCNUOr-TtCOCDCN d c s i c s i r - . T - d d d d c N b r - t - d d b d c N d c N CD Tt CD IO LO CD CD e O C O T t C D T t T t U O C O T t T t U O C O T t TJ I I I : CO CO a) ^ ^ c o c o o o t n c o o c N i i n D 3 T - u i c o T - c o i n c o o c o c D c n c N L O o i c \ i c D c o c N j i n c o c N c D r ^ m ^ ^ c \ i c o c o * * ^ i r i t f > u } i n c D C D c q r ^ r ^ r ^ r ^ c o c o c o a j c ^ ^ d d d d d d d d d d d d d d d d d d d d d d d d T ^ Y ^ ^ ^ ^ ^ T ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ r ^ ^ ^ ^ , ^ , - : d CO X E S o c D C N C D r - N - ^ T t r - c D ^ g ^ g ^ ^ ^ g g ^ c o r ^ r ^ d c a c D o O T - c N C N C N C N C N c o c o c o c O T t T t u O L O c o t - -T - T - T - T - T - T - C N C N C S I C N C N C N C N C N C N C N C N C N C N C N C N C N C N C N - 00 £ d CO ~^ CO O) CO CO d d i n q CN CN q q CN d CN T -Id d dl O) oo CO CD d d oo r- oo co Tt o o o o o d d d d o CD LO co o o o d o d q Tt esi ' CN q q Tt CN Is- O CN CN q T -• CN CO O CD d LO Tf Tt Tt d d q O) Tt Id esi esi CN Tt CD d esi d CN CN CN CO O Tt Tt d d U - LO rn |d co T- Tt CO Tt d Tt CN CN T-CO CO O O d d V- Tt CN CN d d CN CN CO i - T-> O O O O O J d d c i d d r- LO Tt i I d d d i N cq cs q n s ^ CN ^ - esi esi • q r-; O T t q q q q l q d d r - CN ifi cri cci cd cd v- T- CN CN T— T— • CD O) CN CN CO CO CO Tt Tt Tt I UO UO UO UO LO CD CO CO CO CO CD CO CD CD CD N S N N h- h- h- h- h- h- h- t- h- h- f- I-- f-- t- f*-T- T- CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN I CN CO CO LO CO 00 O) O T - T- CN CO Tt LO CD CD N CO CO CD O) O O T - r— CN CN CO CO T t Tt LO uO LO LO LO If) UO UO CO CD CD CD CO CD N r- CN CM CN I CN CN CO CO CO CO CO CO CO CO CO CO CO CO CO CO T t Tt Tt Tt Tt Tf Tt Tt Tt Tf Tt Tt Tt Tt Tt Tt Tt Tt Tf Tf Tf Tf Tf Tf Tf t <D > ro cn 3 O) E 5 D) CO i - CD T - Tt CO CO O CN LO I— O CN Tt CD CD T— Tf CO CD U- Tf f-- O CO LO 00 ^  £? 2 2 |CN co co Tt TT Tf Tt uo uo uo uo co co CD CD CD r- r- t- r- oo co co CD CD CD CD E E E|E II II II co CD o T - co LO r- CD co r— r- r- CN CN CN CN CN CN CO CO CNr^CDCNOCDT - L O r-LOCNCDCDTtTtCDCDCOCNCNTfUOCDLOCO CNCDT-COLOCDOOCDT-CNTtCOCOOCNTfCDCO.OCNTtCDCOT-CO T - ^ C M C N C N N C N C N C O C O C O C O C O T t T f T f T t i t t O i n i O l O i n C D C D OOCOCOCOCNCOTtCOCNr-v-CNCNT-TfOLOTtr-SR C D C O O C N T t r ^ C D O T - C N C O T f L O C O r - C D ' r - C N T t r - X CDCDNSSSNCOCOCOCOCOCOCOCOCOO)0)0)C»i; S. S 1 o CD c > CD a. b T- co co i I N N N N Is* r-- r-lh- r-- r» h- i r^  co Tt col Tt co Tt Tt co s co >. CD Q i n c o ^ m i n c v i c D c o ^ T - m L o C ^ C D C D c o O C D C O O r ^ L O T - m ^ ^ ^ c N c o c O T f L o S t o r Z m m S T - C N C O D T T U n u o C D r ^ C O O O C D ^ T~ T~ T-T -r -T-T -r-r-r-r-x-r-CNCNCNCNCNeNeNCNCNCNCNCNCNCNCNCNCN 214 » o » f: 3 o> 3 o !.§.-* f o CO i - . C T -CP tu c y ° hi P> o (/) CO Q) tU d Q> W O h O O ^ °H co co co ° °. oi oi b CO CD co co o c\i i o o i O CD Peri d : r— csi : csi T-. CO ; co r- LO o co . LO OO CO LO o I M O Tf t Tf • r- T- r~-' CO 00 est CSI • CS| Tf CO Tf Id d d d d 5i .2 o ,8. I 3 O T- CD CO CO CD CD ^ ^ ^ u j r - - O L O T - c q c o o - ^ a D C N L q co O v - i o N s i r i s T f t r i r d d s N d m r a N C D d CO LO 00 t-.r-.CN CSI CO CN O CO S CO o CO CO CO CO CM CO Tf Tf Tf Tf d d d d d CO S K K S LO ^ ^ m CM - cq oo oo °. b d ! T- x- LO CN LO o CO f- i o CO CO CM CM CM CM Tf T- CO CO CO S CO N S N CD CO CO CO co 5) cp op op l i J > > >J Q- CO CO CO oo • 4 -A co ^ CM CN CM LO CO Tf o d d d d CM LO CD O Tf Tf CO CM lO O) C  CM CM CM CM O O O O O r-. r - f - f - h -ES co co co SS Tf w co m N 0 0 0 0 0 p Tf T- r - T-d cd d o d lO r - N CO CO O CM CO CD r--CO CO CM CO CO in N co N in s s co in N Tf Tf Tf Tf Tf CD CD CD CD CD co r-- r - r-- co "7 1 ' 1 < J, m CM co T T— CM CM CD O N m CD o CO CO CO O CM  CM CO CM Tf O CM S CO N CO N S O) N Tf Tf Tf CO LO d d d d d CD N N N CO a) cn o) J. 6J 3 D 3 r 51 < < < £ » g CM ^ O 00 T- O d d oo o oo co d d Tf i n CM T-C0 CO T- Tf CM CM CD LO CD O CO CO h - P -CD 00 CO CD CO LO m O O O d d d d d N S CO Tf CO N Tt N t- _ O r- r- CM CM CM CM CN CN CM O) CD 00 JO CO > i i CO CD CL CL CL ' i CD CD 1) o CJ CO CO CO o O CD CD Tf CM CO co r - co i n co CM CO CM CM CM m s co i n o o O) co o s Tf LO i n i n Tf CO CD CD CD CD CO 00 CO CO d O O O O O d d d d d Tf CO Tf Tf CO CO T- lO CO CM CM CO CO CO Tf CN CM CM CM CM O O O U O o o o CN r-- cq co cd d d CM r- CM CM CM CO CO s o CD CN Tf CM co Tf Tf m T- co oo m oo Tf i n CD CO N N N CO CO 00 LO 00 CD CD CD O O O O d d d d r- r- r- r-CD CD co o Tf LO CD h-CM CM CM CM ' 2 *r-*r CM LO ^ °2 T - T f i D S C N i n r > l < D C 1 O O O S ( Q ^ ^ C 0 c D T - S O O r - T t m r o o c v i T - o c » ' - r i n ^ i r ) ( D « * - T - o 9, CO T-ocooicOTtr^cococOT-cDuon co i n i t c n m o ^ T f i - s n T - f j i s c q c n T - c p t ^ o 3 C D O i T O CM b r - o b o o o o d d ; Co" CM ' ^0)OD(N|(0(NCNSOOO)C\IC3)tO'-T-NTt O O O l f i q O r r q n q N r T - O r O O a) : crj Q. OJ TT d « O CO CN i n m d Tt cp CN r*-^ h - r -co . m co i n T-d d Tt r -o co d d r - t - . CN CO CD d CN d co r - Tt h~ CN m d CN d co co i n cq p co r - v- co cn S ea (DOt^c6c6 i n CD Tt Tt i n T3 , CD n -—-CNT-cOmC£>COTtOOOOCNCOCOCOT-CDCDOC^ r - CN O r - T t r - C O i n i N T - T - C N T t I ^ a . cd T~ ™^ CN CM CN . CN CN CN CN CO* CO CO CO CO CO CO Tf Tt Tt' Tt Tt Tt' i r i i r i i r i in" ud i r i i r i CD CD co cd cd d CO CD CD CD CD "O CN Tt CO O O CN CD co i n co to Tt CD r - co m c o T i - i - i - S ' t o c o N C D n t o o c o o o i i - C D i - h - N - O C D C O C n u O O C D C O T - C O C D C O O O I - T - C N C O C O ^ ^ I O C O ( D N C D C O O ) 0 ' - ' - 1 - ' - ' - 1 - 1 - 1 - ^ ' - T - » - T - T - T - T - C N I CN I CN c o c o r - » - c D a ) C N T t ( c o c o r - m c o T - T t r - < CNCOCOTtlOCDCDCDI CNCNCNCNCNCMCMCM( CO Tt CN CO O CD CO o co co o i n cn t n OO CO CO CD CD O) O CM CN CN CN CN CM CO d CO CN o cn co 2 d ud oi b II r- Tt i n LO CO CO d r -Tt CO Tt CO CO b b d Tt Tf CO CN r-i i n co p T- p CN ^  p Tt TtCMOUOCDlOOLOCOCn d N d (d 2 ^ N ti*^(zic4iric6i6c6d<ri N CD CD O JI I I Tth~Ttr--TtTtLOCOTtTt TJ l _ 1_ rt) CO CO Q) T J CD ' d i T t T - i n o c o c D O J c N L o r ^ o c o to r - o CN Tf r-. • i T - c N C N c o c o c o c O T t T t T t t n t o t o i n c o c D c D c D i i d d d d d d d d d d d d d d d d d d i N T - I D C O C N C D O C N O ) k CO O ) C O k C D S C D O C M f N O ) h - cocococncnoo o I T~ T- T- CN CM CM CM CN CN CO CO co CO CO o o d d d d - ^ - r - ' O CO C M m T - T f c o m r o c ^ c N ^ o r M i m c o ^ ^ C 0 ^ ® o S ^ S c M K m S S i c n c o m - C N C O T t i n d c D C D p ^ S CN " Tt . ^ P P ?o CN CD d cn co d d Tf co d d dl CN cn CN CN" o o d d CD CN d d CM t-d d T t CN T- CN O CN d d co i n Tt d CN ' CM co m s o o o d d d CN o m CD to Tt d d o CM p. i d esi • b Tt d CN CM T— Si i n N co i n T t CM d o d Ip CN T-d d CM UO LO • T-d r - d CN CN T-p q d d CD r--CN CN d d Ip -^ CD |cN CN CN i d d d p p q CM CM CM CN Tt r» CM co co CM cn d d <\i co i r i co s T- CN 1- 1- <-t^ 1- T- CNICN co co co Tt Tt Tt Tt Tt i n i n i n uo i n mm m CD CD CD CD CO CO CO CD 1 CD CD CD CD CDICO CO CO CO CD CD CD co CD T - CM CM CM CM CN CN CN CN CN CM CN CN CM CM CM CN CN CN CN CN CN CN CM CN CM CM CN CM CN CN CN CN CN CN CN CN CN CN CN CN CN CN Tt CD co cn T- CN T t m m r-- r - co cn p T- T- CN CN c o . T t T t uo m CD r-- r - r - oo en cn cn OJ cn p o o o o p *- *- t -CN CM CM CM CO CO CO CO CO CO CO CO CO Tf Tt Tf Tf Tf 1 Tf Tt Tt Tf Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt Tt IO LO LO LO LO I LO LO LO LO CON c o o Tt co o co t o s o c o t o o CM m r— cn CM to co r- Tt r - § g g ° J t: ^ E £\tZ CN CN CN 3 3 CO CO CO T- CM co Tf Tt Tt t o t o LO m co co CD CD r-1 r~- r - r- r - oo co co cn cn cn P 5 2 5 ^ I ZZ ZZ IZ ZZ £J V- V-l T- — — ^ c o c O T f o c o c n o j c o t - c n c o u i t ^ o r o c D t o i c o c o c o o c D ^ i n f f l c o f f i S i O ' - c o c o s o ) r c o i o c D c n r r t i n i » o ) T - c o i n c o o c o ( o c o » - n i n N O ) N i n c o s r o U J -1-CNCNCNCNCNCOCOCOCOCOTtTtTfTfTtLOtOmmcOCDC^ g. 8 .1 -5 CO C > to Q_ O T- CD CO I N co s s h - l r - r - t - r-- r - p CO >. CO Q LO CO M— OO LO CN ( T- CN co co T t m i _ m w c > i r o c o c o o c D c o o N i n T - t t i i n N O N ^ h ' - t r m T - i D o i c N O ) ( 0 ( 0 0 M m m O O r C M C O c O T f i n i O C O N S C O O J O O T - ^ N C M C M C O C O C O t ' f L n c o S ^ ^ " ' T - T - T - I - T - T - T - T - ^ T - T - T - I - T - C M C M C M C M C M C M C M C M C M C M C N C N N C M C M CM X ! E E : E .s ; CD "O a E B .. •§. . • S « 'c 0) S N O o & ° W S a h u -c D E _ to = 10 "3 = aj (D a) i_ cu W O h O O 216 o o 0 to 01 rn" r-CO CN CO CN O , d o d o . cq n CD s cn LO cd oi cq p CM cq ^ q p i p p p p r-Jq T s q q d i d TT CM r- CD j cd CD Tt to to LO TT W cd iri s co to cd I oi cb cd cd r-Jcd o T- co to co Tt CM CD r- r-CD LO CO CM CO X P r~-; p p I oJr^ r— h- r-- ( CM r - N r . . a t - to T- co T- CM Tf Tf Tf cd cd ci cd cd S S CD CD S °? 9 CD CD °? ri xL ti. ± r- cn r -co co o CO CM CD LO uo r» < \r+l r+L i CO CO CD cn CD CO S S N S I M l . to , 1 co LO CM t>- p p ^ p oi cri oi °. oi CM i -CN CO O O CD O Tt CD O CM CM CM CN CM CM s s o in N T~ CO h- Tt _* Tt Tf Tt Tt Tf cdi cd d cd ci N CO S N S co CD SS SS JS cn cn °? °? °? i >. >. >J Q. CD C0 CD1 CM r~ ^ ^ CM O T— T— CO d d d c i d co <n co co o Tt r - O 00 00 CM CN CM T- CN LO CN t - LO CO O O O O O r- h- h- r-- h-p p p p p d d d d d p CN I p ^ N q p i p £j LO i - Tf CO co T- CD CO T- Tf CO CM CM CO CO oo co co r- CN LO r- to LO a> Tt Tf Tf Tf Tf d d d d d to r- r- r-- co CO CN CO CO CO d d d d d O Tt d d LO CM T- o oo oo o t - to T-CN CM CM CM CM p p p p p p C N p p p t ^ p C M T t T t p C M C M C N C N T t p p T t C N T ^ 0 T- o oo co 01 CD CD N N Tt Tf Tf Tf Tf CD CD d CD ci CD N N Is- CO T T T CO CN CD CO J , b i - i - C N ^ r CO LO d d r- Tt r- in d d Tt 00 CD Tf T— LO CN 00 Tt h-CN CN T~ T- T-O O O O O r- r- co Tt co N t S T- . O T- T- CN CM CM CM CM CN CN to to to CD CD CD SS SS CD CD CD (j _ CO CO CO o O N 4 N ^ 4. T- CN CN Tt tn co CD m CD CD t n CD CD Tt Tt UO Tf Tf CD CD CD CD CD Tt CO Tf Tt CO CD T- LO CD CM CM CO CO CO Tt CN CM CN CN CN Tt O O O CJ r j O O O O o o o o o o o o CO CD CD CO T- CO CO Tt CN CD CO CN CO CO CO CO CO T- CD T-O) O I— CD Tt Tt Tt Tt CD CD CD CD Tf Tf Tf IO tO O Tf CD IO I— 00 CO CN CM CM CN > A O •A ? A » 217 1 III 'CD 2.06 2.66 0.70 0.90 1.07 1.37 0.54 0.66 0.63 0.77 SRisScv; 2.06 2.66 0.70 0.90 1.07 1.37 0.54 0.66 0.63 0.77 0.74 i 0.99 1.22 1.08 0.97 0.92 0.89 0.93 0.98 1.10 1.19 1.12 , 1.03 0.96 0.92 II3 51 0.98 1.13 0.84 . ' 0.84 1.02 0.85 0.78 ( 0.95 1.08 0.84 1 0.80 C 0.99 1 0.87 1 0.82 C Neutralization Cum. NP NP NP depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) .413 . 0.93 538 1.21 875.1 674 1.51 723 1.62 43.1 773 1.73 825 1.85 873 1.96 917 2.06 965 2.16 1008 2.26 42.8 1047 2.35 1087 2.44 35.0 1128 2.53 1165 2.61 37.1 1217 2:73 1284 2.88 66.4 1339 3.00 1385 r 3.10 45.5 1438 " 3.22 1507 3.38 68.7 1569 3.52 1626 3.65 57.6 1687 3.78 1751 3.93 64.0 1817 4.07 1880 4.22 73.7 1938 • 4.34 , 1995 4.47 57.3 2059 4.62 64.5 2122 4.76 2183 4.89 61.2 2235 5.01 51.9 2278 5.11 2311 5.18 57.4 2345 5.26 2380 5.34 62.3 2420 5.43 2468 5.53 84.6 2509 5.63 2547 5.71 88.9 2626 5.89 39.4 2729 6.12 51.2 2817 6.32 44.4 2903 6.51 40.1 Sulfur Cum. S04 Sulfur S04 flux depleted prod, rate (mg/kg) (%) • (mg/kg/wk) 149 0.08 282 0.16 377 0.21 110.6 448 0.26 510 0.29 54.4 565 0.32 48.0 603 0.34 . 37.7 630 0.36 27.7 664 0.38 698 0.40 731 0.42 768 0.44 32.1 803 0.46 833 0.48 29.4 871 0.50 916 0.52 45.1 955 0.55 990 0.56 34.4 1033 0.59 1092 0.62 59.2 1142 0.65 1184 0.68 42.1 1230 0.70 1280 0.73 49.8 . 1332 0.76 1384 0.79 60.0 1424 0.81 40.1 1478 0.84 53.7 . 1539 0.88 61.2 1587 0.91 42.2 1644 0.94 56.6 1696 0.97 52.6 1732 0.99 83.1 1756 1.00 42.2 1789 1.02 76.3 1815 1.04 45.8 1847 1.05 75.0 1879 1.07 56.1 1909 1.09 51.5 1933 1.10 56.5 2011 1.15 39.2 2094 1.20 41.5 2177 1.24 41.2 2260 1.29 38.7 Extraction rates Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 269.7 48.6 29.63 18.23 14.0 1.9 1.35 0.31 s § m 11.8 1.3 0.65 0.16 12.0 1.7 . 0.53 0.14 22.3 2.6 0.70 0.18 14.7 2.1 0.54 0.14 22.7 2.9. 0.47 0.13 18.9 2.5 0.41 0.09 21.0 2.8 0.62 0.07 24.6 3.0 . 0.51 0.09 18.7 2.5 0.34 0.05 21.5 2.6 0.42 0.07 20.0 2.7 0.37 0.06 17.1 2.2 0.26 0.04 19.0 2.4 0.40 0.05 20.8 2.5 0.45 0.05 29.0 2.9 0.48 0.07 30.0 3.3 0.62 0.06 13.1 1.6 0.15 0.01 17.2 2.0 0.16 0.03 14.8 1.8 0.16 0.02 13.3 1:7 0.13 0.02 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 257 44 28 - 23 273 46 30 24 287 48 31 24 302 51 32 24 316 53 33 24 329 54 33 25 342 56 34 25 356 57 35 25 368 59 35 25 386 61 36 25 r-- r-- co co CD CO CO CO CO CO 3 8 8 ?: S CD O O T- T- TT Tf Tf £ R £ 3 ES S LO LO LO LO RiRiRiSR, CM CM CM CO CO Tf Tf Tf Tf Tf RiRiRiRiRi o o o o o RiRifiRiRj j; CN J CD J-Ri Ri Ri £5 S S R i S Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 257 44 28 - 23 273 46 30 24 287 48 31 24 302 51 32 24 316 53 33 24 329 54 33 25 342 56 34 25 356 57 35 25 368 59 35 25 386 61 36 25 uu Days since previous leach 5 5 2 £ Days since previous leach Days 0 - 1- ¥> 8 co £ 5 8 £ mi 218 CN X E E E « CD T3 E _ o i ? . . ~ CD £Z » & o w g Q . ( - ^ Q to _ ro cu cu d cu W O h O O o o CO . o oS o o p Csi cci r-^  co ra c « .2 o in > ro 5, £ « 1^ ^ ! CD CD O CO CSI CN r-r- i -CO I— CO CO IO CO CO CO CO th- m TJ- TJ- co o o o o o O T- CD CO 00 SS SS CD CD SS °? °? co cn °? O O d ii un csi T-; Tf in Gi CD Gi <7) O) p Tf p r-~ Tf iri csi Tf co cn o CD Tf CN CN Csi CO CM p in in m q S is' S N is o r- co co CO CM O Tf Tf Tf Tf Tf Tf Tf d 6 d o 6 oo N s s s O _ CD CD °? g a? °? °? CO Jr ); Q. QJ *P T- CO „ CO Tf CO h~ 00 .Tf CD co co in CM CM CM CM CM p in h-; in Tf N N S N S Tf Tf r - LO CD CM in co Tf co Tf Tf Tf Tf Tf d d d d o N CO N N S (O m CD CD CD CD g cn p p ' • >, >, >J — CO CO < -s 2 2 CO i . CN I"- , CO in Tf p Tf Tf r-^  r- r- r--co co o m m co co co in r-Tf Tf Tf Tf Tf 0 0 0 0 0 r- r- r- r- r-~ o co tn T- CM CN r-- TT T- CD i co cn CO Tf Tf CM CM CM CM CM CM CM CM CO CO r-^  r- r-- r- r-CM Tf CO CD CO CO 03 CO CO S Tf Tf Tf Tf Tf d c i d c i d CO S I— f-> CO CO CM CO 00 d d Tf oo co co o o CM co cn T-CO CM CM CM CM T- O) T- O CO oo r- co co co Tf Tf Tf Tf Tf d d d d d co r- r- r- co CD CD CD , R _ CD CO Cp g cp oi cn ft ~ in co T °H n . CO r- o co o o o O O O O O co in T t co o CO N i-> CO C  CM CM CM CM o o o o o r- Tf T- co LO O T— CM CM CO CM CN CM CM CN o . a i i a> a T > T > J= co co o O 9 h - Tf ^ oo in T— CN CD CD Tf LO o o o o o o -o o o o o CO CD CD O lO CD CD m -co in d d d d d p CM o in Tf iri iri iri iri T- CN CM CN CM CO Tf T- CO Tf co d co co d Tf Tf Tf Tf Tf CD CD CD CD CD r-.r~-i--.r-r-. CM CO CO CO O Tf Tf in CD r-M CM CM CM CM co co co SS SS oo cn oo °? °? o o O O co co r- co CO Tf T— CO f— CO 00 CD  CM CN CN o s cu co 2 Q O Q ! ^ c o ° » 219 ~ CD CN r- co . n m oi CNi ^ d d I O T- O) O CO I CD CM N CO CO ' i ^ d d CN co m oo co CD CO O CN Tt O 6 r ^ r • N CO O i d d r • CO CO CO Tf CO I • -^ CO CD CD CD I • d d d d > i n N i n co co ) co CM o i d s ) CD CD CO O CD i d d d r d (D N CM Tf N CO CD CD i -d d d o i n co CD CN r- t- r- co co d c i d d d S CO co co co o d d ro 5 CN CO i r i d CO CD • i n o r; oi q cqlTf .' cd I cd i n cd cd Tf I d iu iu r - uu C J U J U J co TJ- uj CD Tf co r-lco m m co h-lm CO CD CD O I— 00 Tf CN O CO co c n i — oo. co CN CN CN CN CN . lO Tf o r-CO CD LO CD O O T- T-CN csi cb cd cb CN O CD IO T— Tf CD CO CO Tf CN CN CO CO Tf i Tf cq N cq i CO CO CO CO CD r— CD h - CO CD to o co co Tf LO co co h-Tf Tf Tf Tf Tf T- CO CD T- CM O CD CO T— CO CO CO CO o o T- T- T- CN CN - C N r ^ C N C O C O L O C D C N T f C D i n O i n O C D - J Tf IO I*-- CD CD CM Tf If) CD 00 O CO Tf i i r i d i r i i r i i r i d d d d d d d r ^ r ^ r ^ r - i S CM CM CO i - CO LO T-CN CN CO Tf CM CN CM CM CM LO CN CO i n Tf co i n o ) co Tf Tf LO m co r -CM CN CN CN CM N CM O) CM CO O CD T- CO LO CO CO O CD O CM CN CM CN CO T- N CO CD CN CO i n CM T— i — CN CO CO CO CO CO CO "g D. E CM in CM CD T -O O T- T- CM 0 0 0 0 0 " 0 1 CM CM CO CO CO CO T - CO CN CN CN CO CO O O O O O o o o i n CN T— i n CD co co Tf Tf Tf i n m co co T— co i n CO CO Tf Tf Tf d d d d d i - CO O) CD. CN CO CN LO CD CD CD S S N i — o CN i n oo Tf i o m i n m d d d d d O) CO CO CM ^ T- Tt co T- m CO CD CD S S d d d d d LO O f-~ T— CD i — co co i n o O 1- i - CM CO CM CO CM CO CO CO T~ Tf CO t -I— CO CO CO CD d d d d d i n i n co i — CD co T- r- co co co Tf Tf i n i n co co i o i - co I S S CO CO i n m m CD o CN co Tf o r-0 ) 0 ) 0 ' - ' -T- i - CN CM CM CN l O CD Tf co cn i n CN CN CN CO Tf CN CM CM CN CD ,_ O O O O O CO *~ CO O T~ Tf CO CN Tf Tf d d d d d co co CN CM m o o o o o d d d d d 5 a> co m b cb CM CM CM CO T- CO I— CM CN co r - r— CN CD CO N S S O O) 8'.s o IQ « e ® m s m co co T- CO CN Tf f -T- T- CM CM CM O T- CD CO CO CM Tf CO t - CD O CN Tf CD f -CO CO CO CO CO 00 r> N N S S CO S N f* r- r-- r- r- r-CD CD r— I— O f- CD CN Tf f -i n i n co co co co r- f- r~- co CO (D I— T— CO O T- CO CO CO CD N N N S co r- r- r- co • N « > c o i n s CM i n CM O CM Tf CD O CO CO CO CO CO r- r- r- r- r-r- Tf T- co LO o T- CM CM co CM CM CM CM CM Tf T— CD CO *- CO LO f - CD CD CD CD CD CD r- r- r- r- r-CM CD CD CO O Tf Tf IO CD I— CN CM CN CN CN f - O) CM CD T— CO CO CO O o O O co co r- co 00 Tf O) r— cO CD O) CM CM CM CM APPENDIX 12 T A B U L A T E D R E S U L T S 50-KG C E L L S 221 5 > c c = h CO • 8 i n ! E' o y ° ^ P 1 I m LO b i <U £ N O « a . o « s Q. I- U -C Q (fi = CO - j , = CC OJ d) L_ CD O O U h O O o o , o o r- co ^ CN CM -i n CM co o co : t o LO CM co Tt . Tt N IN CO Tf J d d d d o O T - CM CO " CD CD . . 0 o o CM LO TJ-01 CD O T- co co i n i n co o co i n co CM co CM cq i n o o o o o co r - co o> ; CN o co r- o 00 CD T- Tf CD m oo oo co o CM o r-CO r~ CM CM Tf CO CO t o CO CO O O O O O ' CO if) n i r n m ° T- CM CO Tf tO D. Q_ Q. C. < < < | 5 LO CM CD i r- CM CM O O O O O CO 00 00 CO CM T- Oi CO CD CO CD CO CD T- Tf CN T- CO T— CD CO CO CM CD i q O O O O CO S CO O) O <° <0 ,_ CD «J Cp Cp CD CD CD ra c § O O O O CD m CM t o CM T— CO CD CO CD r~ Tf CO CD f-. CD CO CN CO f - CO i n cp co co N d o d o d i "5 -=t 3 Z3 LO CM CO 1 / 1 ^ i n * -CD CO LO CM O O O O CD S CO CD Tf i— CO CD CD I— CD CD CO CD CO i n o o CM co CD CD N CD CO CD CD CD CD CD co Tf o r- Tf ( D f f l O O r T- T- CN CM CM co CD SS SS SS CD CD °? °? °? -= ™ ^ df i n LO Tf Tf co; CO CD LO LO Tf Tf Tf CM O O f*. O O Tf 1-CD m CO CD CD CO Tf CO CM CM Tf CO T - CM O LO CM CO Tf LO CM LO O LO O CM m co co i n CD CD Tf »— i n h - co t— co Tf T— CO CO Tf CO t- T- CO T-LO Tf Tf Tf Tf O* CD CD CD CD r- CD CO CO O CM CM CO Tf LO CM CM CM CM CM t n CO CO CO CD °? °? °? CD a a a CD CD CD o $ to to to o CV. O h- Tf ' CM O LO CN r -co co s co m LO CD t d LO LO • CO O O Tf S' CM d CO CD CO h -O f - CO Tf CN CO CO O T- T~ Tf Tf Tf Tf Tf CM co i n o Tf CD CM Tf O O . CO Tf CM Tf CO1 CD CD CO O O CD Tf • CO CO Tf LO CO i n S r CO Tf CD LO Tf Tf cq cq i n Tf O O O O O f- Tf T~ CO LO ID CD N N CO CM CM CM CM CM O CJ CJ > o ° 9 9 z CD O cb i o CO f -O LO T- CM Tf Tf CM CD CD CD CM CM 222 E to Molar ratio | a 1)1 ^ CO CO N CN T-q Tf cq cp cp Tf co LO CD to T t r-N cq CM LO rt T-O O O O r-Tf T- CD T- 1-q CD t-. CM in uo Tf co LO r-CO N CD O) r CO Tf O 00 00 q q N q q CM CO O Tf O CM CM q O oo cn T- Tt co in q i-; cq q q CM Tf CD LO T-co co r- t— co ci ci c i d d T— O CO CO Tt •<-; T-; O Ci CO oo m CM Tt in q q co N co CD CD CD CD CD CD CO O CD CD CO CD CO CO CO CD CD CD CD CD N O (N Tf r CD N CD CD N CD CD CD CD CD Tt in in in Tt cn a Ci q co CD CD CD CD CD CD T CO CO S S S S ^ ID CD CD CD CD CD r CN S Tf CO O CD CD CD CD ^ CD CD CD CD CO Tt CO CD q r- f - h- r-d d d c i d 0.75 0.94 0.80 1.03 1 5 cycle movinq averaqe S0 4 NP prod'n rate depl'n rate (mg/kgAvk) (mg/kgAvk) NTT q CO CD T~ T- O O O N CO M r r co m r- co LO ^ d d d d T O O CM CM "2 cxi a i d oi q q q a q d CD O CN CM q co m m d *~ CM d Tf Tt q T— CD CD ^ d N cb CD q q CN Tt iri iri T f iri iri CN T t CM CD CO N N d oi oi q co co o CN in iri co co co L  LO T- LO CN CO N N d N CO CO CO CN h 00 I— 00 CD CD s s in s co cri iri co CN d q q q r- q - c o P Q q O t 3 i ° r ; CN O r (N q CM q CM Tt CM 1 . Neutralization Cum. NP NP NP depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) Tf t-" Tf CD CD O CO t -CM CM CM CO CO CO d cd cd cd cd cd CO Tf CD LO 1 TJ-O T- CM CO Tf CD Oi ai CD i - CO CD O CO Tf Tf Tf LO d d d c i d in m CO CO i -1— CO CD O CM * CD d d CM T-LO O CD 1- LO in CD CO S N CD CD CD CD CD Tf 1 CO CD LO Tt CO CD i- CO CN CM CN CO CO CD CD d d CD CO LO O T t r—- co co Oi Oi CD CD CD CD CD CO CN T- O CD l O N C O O r  CO CO Tf Tf CN CM Tf o d d CN CN T-Oi CO N T- LO q q q t-; T-; o o cn r- co Tf CD f - CD T-Tt Tt Tt Tf LO T- Tf in T t ) CO S O T f T- CN CN CO CO O N LO CD CD CO Tf CO 1— Oi LO LO LO LO LO cp q CD ^ co t 2 ° C O ° N t - O CN LO CO CO Tf Tf Tf Tf co co m m CN T- CN CO Tf LO CO CO CO to CD CO ^ O r- CO ^ o ) O i n -CD T— CO 1— O Tf i n io i n cq uo uo in o ( D N C O O r CD CD CD N N 721 1.62 9.9 736 1.65 14.9 1 Sulfur Cum. S0 4 Sulfur S0 4 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) <R co o § C O N CD r*~ CD O O d d d d d d O Tf LO CO O CM T- CM CO N CO Oi q r- q ^ d d IZ T- CM CO CO Tf CD CD CD CD CD r- CM CM O CM O CN CO Tf CM CN CM CM CM q d LO LO CD f - 00 d d d d d LO CD Tf CD CD in co co CD i - CM CM CM CO co in d d CD O O T- CM CD CD CD CD CD CO CD f-» CD CO co 5 in s cn C  CO CO CO CO Tt q co N d d T- CN T-CO Tt to CO f--CN CN CN CN CN o d q d d T— CO CD CO CN T- CN Tt CO CO Tt Tf Tt Tf Tt CO T- LO iri d T-" T- CN CN CD O T— CN CO  CO CO CO CO CD CD CD CD CD CD N CO CD O CD T— CO IO CO Tt LO LO LO LO - P o P r-J I cri ^ cd Tt in in co r— C  CO CO CO CO 0 0 0 0 0 Tf N CO O D O CO Tf in co co co co °i CO CD ^ £ oi oi "2 r: 1— 00 00 CD O CO CO CO CO Tf ci ci ci ci ci CN CN CN t— CD LO CD r- CO CD CD CO CD CO CO 709 0.40 10.1 723 0.41 13.8 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) O O i -d d d CO CO CO o o o o d d N O CO CO Tf Tf o d d CD T- CD esi d d T- CD CD CD O 1- O O O i-CD CD CD CD CD CO CD CD CD 1— O O O O O d d d d d CD to co i— co Tf Tf Tf Tf LO d d d d d q q q q q CO CO CO CO CO CN LO CO O O T- T- 1- CM CM CD CD CD CD CD Ci T- CO Tt Tf d d d d d CD CO CM LO 00 q q T- CN CM T— q r-- N-TT' t CD CD CD O O f-- t~- CO d d o d d CO CO i - i - o d d d d d CO CN O 1— CN CN q q q in CN CN r- CN to co ui min CO CO CD 00 CO CD CD CD CD CD O O CN CN CN CD CD CD CD CD CO CO CN O N q q •<- •<- q q Tt CN t— q if> IT.i ccid d Tt T— CO CO CO CD CD CD CD CD CN CN T- O O CD CD CD CD CD lO i- CD Tf LO C} <D Oi Oi Oi N CO C\| T- CO ifi if> LTid d D co m m •* O O O O o CD CD CD CD CD CD CD CO 1— CO O O O O O ci ci ci ci ci CD CO O O CD co co r- r- LO d d d d d CN CD CN CD CN iri Tf Tf d d Tf Tf CO Tf Tf O O O o o ci ci ci ci ci m m T t m m o o o o o CD CD CD CD CD f - CM CN LO T-LO LO LO to CO ci ci ci ci ci r ^ T- m s c6 m enri 3.5 0.59 0.05 0.04 3.8 0.66 0.05 0.03 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) CM CM CO CO CO CO CM CM CM CO CO CO m in co co N N CO f— CM Tf OO Tf co co Tf Tf Tf in CO CO CO CO CO CO CO CO CO CO h- O CO CD CN m CO CD CO N Tt Tt Tt Tf Tf  CO Tf Tt Tf T- CO T f CD S CD CD T t ^ S h- CO CD in m mm m Tt Tt Tt Tt Tt CO CD CD T- CN CN CO O CD CN i - T- CN CM CO UO CD CD CD CO Tt m m in m O Tf in CD N CN CN CM CM CM oo in T- co T-CO Tt IO LO CO D CD CD CD CD in in m in m 00 CD O T- CM  CM CO CO CO CD i - r- f- co (D S SCO CO C  S N S N LO CD CD CD CD CN CO CO Tf LO  CO CO CO CO CN CO 00 T- T t CD CD CD O O h- h- r- r-- r-O CD CO CD CD m co co t - oo CO CO CO CO CO 00 i - Tf CD CN  r r r CN CN CN CN CN CN r-- t -O CD 00 CD CO CO CD O CN CO CN Days r-, m LO CM Oi CD ° 0 0 CM CM CO Tf CM O h - Tf T m co CD N ^ co ID G o CO CO CD 2 II s Tt T- co m i - CN CO CO T t CN CD LO CN CD w in CD N s Tt O N Tf CO CD O O T-T— CD CO CO O CN CN CO Tf if) CM CN CN CN CN N Tf T— 00 LO in CD i— i— oo CN CM CM CM CN CD CD CD N CN Cycle O T- CM CO Tf LO CD N CD CB ° CN CO Tf LO CD t - CO Ci O T- CN co Tf in CN CN CN CN CN CO N CO CD O CM CM CM CM CO CN CO T t in C  CO CO CO CO CD f - 00 CD O  CO CO CO Tf i - CN Tt Tt 223 § .5? •tf T J O •J= - . CL • • T5 » '= O £ N o » a o c o j cn- ^ sz a * j iO = CO -i = CO CD CD C CD W U h U O o CO o o o o CM O O OJ CD CO O , o o co in co T- CD CB CM CO O CD CM CO CM CM T— T-Tf CO Tf CO CM CD Q J d r^  ^ f- f -S T- co TJ- ex . 2 N - CM CM CO CO - co r-- CN co co J d o d d d O T- CM CO ' CD (n (rt tD CD ( n q? $ g CO o? $ c A A o o ii i° « o » ® « ^ U_ LL. | | r l i r n CO CT CD CO , CD m CO CO O CO i— CO h - CO if) ifi N Tf IO CN CN CN S N N N N O T- CO CO o o o o o o CO S CO O) ; ! r^ - in , T— CM O N CD CO N CO S S CO N CO N N CO CM O CM CM r- r-^  r-^  r-^  r-Tt m o m CM T— T— o h-in co co CD in d d d d d co in g o CO CO CD ~ • CN CO Tf LO' m CN CD • Tj-Tf CO CO o CO T- oo o m co N N N CO N i— CN CN p O N N S CO N m co co co oo i - S T- CO CN CO LO Tf CD CD d d d d d CD h - CO CD O Tf LO CD CO CD CO lO lO CN Tf CO h - CO h -0) q oi q N CD f- CO f- CO CO CM T- r N O CO r - , Tf CO CO CD CD O O O O O £ CM CO "2 ™ ^ CM T- N O f- f- CO CM LO co r- f- r- co r-- p p p p CD CD CD CD CD LO CO O O CO CO O CN CO *-Cp CD CO ifi N CD CD CD CD CD CD Tf O f - Tf CO CD O O T-T- r - CM CM CM 7 < < < < g> CM CD CD O O O O O • r - Tf p WO in cb ib iri co CD CO CO CD CD I— S S CD O Tf CD Tf Tf CO CN O CD m CO CD CO N CM CM CM Tf CM Tf CM Tf CD CD f- O CO LO CO O i -CM CO CM CO CN :s5 r- Tf r- CD Tf CO N I— CD N T- LO CM LO O co <o iq co cq in iri LO LO <6 CO T- Tf CO t-T- m CD CD CM r- co co TJ- TT CD CD CD CD CD t- CD CD CO O CM CN CO Tf LO CN CM CM CN CM (fi lU ID UJ „ jg op Cf) CD 5g A o. a. a. H" CD CD CD _ $ CO CO CO o eit ° ^ S ' o o m T- o p CO CD CO Tf Tf lb LO Tf cb o co o CO CO p CM p f~- h -Tf CD LO Tf Tf o m Tf CD co If i r-' CO CM CO Tf Tf Tf Tf CO CN Tf CO CD I*- f— CO CO CO. Tf CO CO CO CM CD O CM o in O T- T- CD CN Tf CM CM O O CD f- LO LO T- CO CO O CM m Tf co co co co Tf in co CM co Tf p cq cq <D d cb cb cb in co in T-CO CO CO CO Tf CO Tf LO Tf CD CD CD CD CD f - Tf T- CO LO in co s N co CM CM CM CM CM M o u c A o 9 9 9 ° " S R I g i c r , h - CD ^ ° Tf iri m Tf iri LO' CD CO CO CD CO Tf d d CM CO CO CO  CM z z CM 00 224 ?|o* s o co CM r- < O) t CO IT) r- C\||< d d d d • o o o o o • I CM CM r O Tf i CO CO CO CO CO d d d d d T~ If) T- CM O CD oo CD h- 00 d d d d d CO S CM O f I CJ) CO CD O) CO I d d d d d i •lo o o o o 3) Tf Tf Tf I » cq N 0 i o d d d d i I K i- CD O) CO i S N S CO CD ! d d d d d o o o o o CD CO co r -d d cq CM T-d N d l d d d o CM ; [ LO CM Tf CM CD i d d Tf d d CO 2 -I . O CO CD T— ! N N N d if) CD N P ^ d d d 2 2 Tf O CD Tf ^ CMV co Tf p P Tf P • Tt Tf d d LOII p p CM p ( CO CO If) Tf Tf |< !| !2 ldoJ N i i Tf Tf CO M CM CM CM CM CM tt> fc i CO CD T Tf i CO I— CD O CM 1 r - T- CM CM CO O CO CM CD Tf CO S O) o CM CM CM CM CO S Tf CD CO CD O CM i |CN CM CM CO CO'! CO CO O CO LO CM CO LO CD OO CO CO CO CO CO Tf f— T— CO LO I cq Tf q N q i co co co co d i |P p T^  Tf CM ~I d cc id d • CO CO T- LO I LO If) CD N S : Tf Tf Tf Tf Tf T- O O , Tf Tf LO LO LO t CO O Tf CO _ T- CO Tf LO CO Tf Tf Tf Tf CM CO O Tf M f~- CO O T- CM I Tf Tf LO If) LO I I f - LO LO CD Tf • I N CO CD O i - ( I LO LO LO CD CD I o g • Tf Tf LO CD CO N CO CD CD O O O O O o! O O O O O E 2 LO CD Tf CM CD i CM CO I— N I I LO i - CO CM CM I CD O T- CM co; ' CM CM CN CM O T- CM CO. Tf CM CM CM CM CM 0 0 0 0 0 O O CM CO LO Tf LO CO N CO CM CM CM CM CM if) CO N O) O CM CM CM CM CO CD Ci CD CD CD CD CM CO O CD CD T- CN Tf LO CM CO CO CO CO T- CN co LO co: CO CO CO CO CO, d d d d d ! N O) O 1 CO CO Tf Tf Tf ' CD CD CD CD O i • CO CD CD O T- I • Tf Tf Tf IO IO I i d d d d d c N i - N CM CO ' CD 00 CD T— CN ' CO CO CO Tf Tf • ' If) CO O CM CO • CN CO Tf LO tO I LO LO LO LO LO i - CD CD i - O ( N N CO O ' , LO LO LO CD CD I ro CD 2 5 t o o o o o I o o o o o l l CM CO CD O O) I CO CM CO Tf Tf i d d d d d ; N p LO CM l i d CM CO CO Tf | Tf f~. CO CD CD d d d d d o o o o o o o o o o co in N q CM| TT cri iri ui iri o o o o o CM CM CM CN CN CD CD CD CD CD 00 I— CD 00 CO d d d d d T~ T- o o o < d d d . d d o o CD CO CM CO CO LO CD CO CD CD CD CD CD CM T- p O CM iri i r i Tf iri iri o o o o o CO CO Tf Tf N LO LO CO CO CO d d d d d o o o O O i -r- O O CD T- r~ r~ O l o d d d d CO CM O CD N I— N N CO CO d d d d d o o o o o CD 00 CO CD Tf o o o o o| d d d d d O CO CM N O) CO LO Tf CO CN d d d d d o o o o o o o o o o Tf Tf o o d d o o d d CD O CO Tf N I CM CO CO CO CO I d d d d d i p o p p p < d d d d Tf i Z O) E CO CO CO CO CO CO CM CM CM CM CM CM LO LO CD CD CD CO CO CO CO Tf Tf CM CM CM CM CO Tf Tf Tf Tf LO CO CO CO CO CO LO LO t o CO CO CO CO CO CO Tf I CO CO CO CO CO Tf Tf Tf Tf Tf r- r- r-- r-- r-l Tf Tf Tf Tf If)! h- N N N LO LO t n t o m f- f- f- N N i l LO LO LO LO LO l N N CO CO CD ; i co co Tf in in CO CO I— CO COM I CN Tf 00' T- Tf CD CD O O T- T- CM CM O T- CM CO Tf LO CD N OO CD ; CO CO CD 2 1 • CM CO Tf LO I CD Tt O N Tt CO CD O O T-T- CM CM CM T— CD CD CO O CM CM CO Tf LO CM CM CM CM CM N Tf 1- CO LO IO CO N N CO CM CM CM CM CM CD O o CM CM CN CD CD CD CM CM CO N CO O) O h APPENDIX 13 T A B U L A T E D R E S U L T S N P C O L U M N S 226 II on.-* I Z m i S N o Q. I - 0 -c Q * - • « ) _ CD 0) d) C Q) W O h O O CD TT d d m co co Tf co co T-|d d d d J E o o i co co s i n i n -' CO CO S CN CD • ( CD Tf CO CO CO ( (CD CO T- CO i hn co T- LO Tf m i n E JLO LO CO Tf IO I | j CD CO Tf CO CO I i d cb cb cb cvi i •CO CO CO CD LO CN LO co i o r -I CD CO CO N S i CD S Ol O CM T- T- CN CN • CD CD to CD CO >|00 O) g O m l ! "CU TO "I <? g IS * °> ? < < ^ . . LO ,1 on S?, CN tN CN c\| CD SS ro CD CD cn °? Sg CD CD LO £'<N : cn co Tf CN CN CN CO T-d d d d d CD CO CM Tf CM co CM i n co s LO LO Tf Tf Tf O) T- CO O Tf i n Tf T- LO q i n i n s co in t co N r Tf LO I— CO o CM CN CN CN CO CD , 0 CD CD <? S 9 S °> ^ LO ^ cb SM CN CM CN m O CO h- CO CO o d d oo CM i n CO CO CO cn co T-T- CO CO CO CO CO f 0 CO CD CO °? °? -L > O c% O O 227 T O „ O CL X X Z m CC 0) <u W U h 5 J ° CO z z Q-z o CO 2 5 CD CD 5 O o) LO O CN UO cn CD T f CD s q Tf CM! CJ) CD CN CN CN Tf i n N T~ T~ CD CN f- Tf CO CN CN _ O i - I— CD CN CO t- O CO LO O) i n N CO CD CD CD I CO CO CO CO LO CN CO CO CO CN CN CO CO CO o d 6 6 o d N T t i - m T f N CO CO CO CO N- CO CN CO Tf LO LO CD ! CO CO ! CO CD ! co h -CO O LO T- LO ' Tf co cn o o T - ' - ' - C M C M I , r S O Tf Tf ' CD O CD O) Tf , O r r r ( M O T~ CN CO T t LO CN CN CN CO CO O i - M CO S h - LO LO cq T— CN CN CN CN Tt LO i - 00 CO b co CN ci co CO Tf CN T- T-N S CO C) Cp _ r - CD t-- CO CO CO T t Tt Tf 0 CO CO CO Ji, CN m h - cn -01 oi oi oi 2 LO cn CN T- co O Tf Tf CO S T- CN CO Tf LO Tt Tt Tt Tt Tt o co t o CD cn Tt Tt Tf Tf Tf d d d d d CO T- CN O Tf cn m CD i - m CD N N CO CO CD CO CD CD Tt Tf CO CN CN CD CD CD C) CD O O) N tN IO O T t LO T t CN d d T t Tf Tf r- co co CD uo c o ' c o V d d Tf Tt Tf Tf Tt Tf Tf Tf Tf LO i n co s co CD CD Tf CD h - CD co co CD cn CN CO CO CO ' CD M X CD ; CO O Tt CO CN Tt CN CN LO CO CO CO Tf If) O CO h CO CO CD CD N i n CD CN CN esi d Tt S CJ) CD i n CD d d d d d CO T- 00 O 00 O O T- CN CN Tf h- O CO CO CN t - co T- CD s co i n s Tt Tt i n i o LO o o o o o CD CM CM CO N O O O 00 h-T^  T-' d d Tt Tt Tf Tf Tt CD CN CD Tf CN d ^ ai ai Tf Tt Tt CO CO T-TfscMscMCMinininco i - C M C M C M C O C O T f i n c D N C D C J ) T - C M CNCMCNCNCNCNCNCNCNCNCNCNCOCO' oo o LO r~ i-CD LO LO CD LO Tt LO CO IS- 00 • CN CO Tf LO . . . <- i n t- co i 11oq o i- cn CM|-CM CM i -CM CM CM CM CM • r - LO CD O co Tf s cb CN CO Tf tO T— CO 00 Tf d s co co Tf Tt i n O LO I— CD Tf j CN Tf CO m' Tf CM h - cp in in N CO O Tf cb LO LO CD CD CD CO CD d d CO CO oo cq CD S i cq cq i - ; Tf r-|( • CO i-1 Oi CD • ', • LO CO LO CO Tf ( CO Tf LO t o CD S CM M O T— CO Tt O CO N O Tf CD CO CO N N O O CM CO COM Tt CN CD LO ' N d d ai oh CN CO CO CD CN CD T- CO O CD N r Tf N O) N CO CO 00 00 CN 00 CO CD CD CD I CO CO 00 LO CD I ' co CM d cb d i ' CO CD I— CD CD ' 30 Tf CN CD I I— N- 00 CD CD l CD CD CD CD CD O -r- CD O 00; Tf CO h - CM CN CM CO T t CD ' 1 cn m Tf co o d d d d Tf m t o o T-CD CD O Tf CO CO O CM CO Tf 1- CN CM CM CN cn T-i n N CN CN CN O CN CN CO i O O CD CD CD < > o o o o o Tf Tf LO LO i n •r- q cq cq cql d CN co oi d Tf Tf Tf Tf — i n i n m m m CD LO Tf Tf d d CD Tf CO CD d d q CN co Tf . d b N co d [ i i n T t Tt Tf Tt j -CO N T- CN Tf CO m ' i n CD CO CD O T— CO < CO CO CO CO Tf Tf Tf co co r- CD CD O T- CM _ T— CN CN CN CN O CD Tf i n CD CN CO Tf CO CN m CD N CO CD CM CM CM CM CM f- CD co i n O T-CO CO N- T- i n CD ( i n N co o i I CM CN CM CO CO ( CO N- CO CD O l -228 o ~ C c x III cu e N o ii & o » 8 CL \— CJ JZ Ct •*-> 01 — (/) —i — CO CD CD C- CD (/) O h O O C/9 CM T -io N co cn m r - O l O CD S CO CO Tf CM CO r-- q h-QJr^ 00 N N 1^  oi co co in s oi s cp n cb cb cb CM Tt CO T~ Oi co r r CO O) r -CO CO CM CM CO CO 01 CO O) o i — ^ r~- i — • r-- od CM O O) O CM s to <p cq in CO CO CO CO CM CO Cp CO Cp CO Cp >b-96 CO O) CO CD cn cn ar-96 CD cn CD CO c CO c CO C CO >b-96 J> CD A A CD CD ar-96 CO CO -) -> —> LL. LL. LL. Li-CM CM CO CM in CN en CO i ~ CM CM ^ 1 CO CO O l CO r-^  r-^  r-^  co co co r- LO o o o o o o CO LO co Tf TJ- T— cn cn ^ ^ d b cn r— co Tf co CD N CO CO N y in in n m 1 ° N CO CO N co cn CM Tf in in N N CM in Tf Tf Tf LO LO CO N N CD CM r- r-^  r-co o o CM o Tf co co q Tf iri Tf cb cb cb CD CO CO N S CO N O l O CM «- i - c CM CM O O O T- o O Tf O Tf Tf |f^ in in Tf Tf cn co co co LO LO Tf CM CM CM CD CO CM CD CD T- T- O0 f-CM CM CM t- Tr-CD LO CO I CO CO CM cn CM in co o m CD CM T~ oo LO Tf Tf Tf CO co o o o co CO Tf Tf Tf" Tf" in in N co in Tf co s r- in Tt m N oi o CM CM CM CM CO CD ci-, CO CO Ri «•> Si » 3 T- lO CN CN CO CN d o b Tf CD OO CD Tf O 00 CO T-CO CO CO t o CO CO CO °? °? i > ° S O CD Z z 9 ^ S ^ 229 o o o o o r - CO CD Tf CN TT CO CM CO CO d d d d d CM Tf CO d d • cu ro J LO O CO CO CO LO CM t-; CM TT r~~ CN CN i— O O O T-co CD co r - co ~ CD co CM t -ra 3= p LO O CM LO LO CO N N CD CM CO CO IN q n i n cq cd co cd Tf d LO LO LO IO LO r- p p T-; co oi d co j CD CD CO CD ; CM LO LO ^ CD ^ f-- T— h - CO p p CO LO CD _ s oo oi d T-CN CO CO CO Tt Tf CO LO CM CO CO Tf co r— o co CM io - Tf CD f- CO CD OO N CM CO CO m K O CO CD O T- CO CO Tf LO LO LO LO LO r- Tf o co CN f- Tf CM CO Tf; CD I— O CO CD LO LO CD CO CD * s s se CO O LO T- Tf LO CM CO O IO d CM LO d LO CD CD CD CD CN CO LO f- CD LO CO LO CO T-oo i - Tf r- CD CD N N N N P CM CM p p O CD CD O CO f- Tf Tf Tf CO O Tf CN CO T— CO CD CD f- LO O T- CM CO Tf 00 CO CO 00 CO o tn O tn E = CO CD LO CM f-. CO CM CO Tf LO LO CD c6 c6 d> d> d> d> CO T- CD O CO CD CO CD CO CM N Tf CO Tf LO CD CO I— CO CO CO T" CO CD N N CO CO d d d d d LO LO Tf LO O CO CM CD CO CO CD CD ; CO CD CO N CO f - CD CM CM CO CO O CO CM CD f— O CM LO f^ CM CM CM CN ID O T - CO T— LO OT O T-; p CM CM CO cb cb . . CO CO CO CO o co i n s en CO CO CO CO CO O CM LO CO CO Tf Tf 0 0 . 1 Z m .. s s E = tS CC 0) cu CO O t-CO CO T-Tf O CM d LO Tf O CM CD CO CO Tf N CD CO N CO CM T- O CO CO CO CO CO d> <D <6 d> d> T- CM CO 1- CD CO CO CO CO CN Q Q c6 c6 cS O o o o ? LO r -l t^ f -. CD CO , Tf CD CO CO • CD CO CD CO T— CO CO CO CO CN CD T— Tf in LO co co • CM CO Tf LO LO CN CM CO CO co T— co r - LO CM CO CM CM CM - CD Tf T— j cb d d d r Tf Tf Tf CO CO CO CO CO Tf CD CO CM CO CO LO Tf CO CO CD CM CM CM CM CM co co T- o r-CN CM CM CM d d c i d d o o o o o CO CO CO LO LO CO CM CO CM O CM cb cb Tf Tf CD Tf CO CO CD CD CM Tf Tf d d CO CO CN CO CM CM Tf o o o o o o o o o o CO CO CO CN CN O p p p p i p CM j co N cb o l d ^ i b i b c D c b c b c M c b i b l c b • CO CO CO Tf I Tf Tf Tf Tf CO CO CM CM ' — Tf LO CD co r N CO CO CD CD Tf N CD T- _ CO CO CO O o T— T- T— CN CM CO LO O T-O Tf CO CN CD h- f-~ h - CO CO CO f - CO CO : S O CD CO T-O T- T— CN CO CN CN CN CN CN Tf O T- Tf O LO LO CD CO CO O T-T- T- CM CN CM • CN CO Tf LO 00 CD CD CD CO co Tf in co h-CM CM CM CM CM CO CO CO CO o S LO LO Tf Tf LO CC CM CM CM CN CM 00 CO N N . N O) O CM Tf T- T- CN CM CN CO N CO CD O CN CD LO CD Tf CO CO CO CO O CN CN CN CN CO h- co co co h-lO CD CM m s h- f-- CO CO CO CM CN CM CM CM co f— T— in oo « S O ) O T-CN CM CN CO CO LO CM O CO CO CO CN CN CO T-CO CD CO CO 230 ill < z m E m Qi c ° o g-o c o s QL H U -£= Q E _ (0 ID Q) 11) d Q) CO O K O O itent 1 End of leach. (%) trie water coi i, 3-day wet (%) Gravime End, 3-day dry En( (%) 64.00 0.60 0.50 0.40 0.51 0.51 0.46 0.68 CD T t CM CO Tt CM o d d CO T- O CD LO CM CM CM CM T-d cid d d h - 00 00 CM CM T-o d d E 104.00 68.00 5.50 3.30 3.50 2.20 1.70. 2.31 1.40 1.18 0.81 0.82 CO CO CO CD T— T— CO O O 00 •T^  ^ O CO C l o h - co co o d d ter analysis °> § 5 1 118.0 3.0 3.0 O CO CN CM Ol CO j^-^ ^ ci r- co co LO CM CM CM CM T- CO CD T-CM CM CM ^ CM t p CM CM CM CM Wa' 3 1 2705 125 120 <° ro ro 2-o h -CM CO co T t d i n co LO LO CO O CO CO N o i Tt r-- Tt co O O rv, CM O £ O o i CN CN CN CO CM CM CM CM CM CM CM CM t o o i r » co CN Tt 00 T- LO CD CO x - CO CM CN i - CN CN r - CO S CN T~ T~ Alkalinity (mg/L) ° ro ° ro ro Q J ^ CO o ° ^ •<r CM r- t ro ro ro ° 0 1 ^ ^ c- § £ N CO ° ^ CO N S CO ^ Conduct. (uS/cm) O O O O l ^ M D U I U I T— T— O l CO CD O l O ^ CO *t C l CO U l 432 456 1127 . r~- o r -CD CD CO 1— O O l CO Tt t -h- CO 00 CD h-r-- LO CO LO LO h - LO CO CD CO N Tt Tt CO X a co o co ro co S CO N N N CO ^ CO O O r— co co co O CD O) CO CO N N CO CM CO CM CM CO CO 00 CO CO t - S CD s N N N N N N CM CO t— N- d Leachate volume (L) CO CM CM CO T— p cp i n cq CO C l CD C l OJ - co CO TJ-cq c i cq ci ci ci CM i - CM CO T- T-O LO TT CN) CO co co co r-- r-~ T- O T- ^- LO p p Tt T- CM LC» LCid d d O l CO Tt LO LO CO N t N r ; i f i i f i s d d 6.00 8.17 9.85 . Days T- O CO LO CM CM CO C l 1X1 ro co T- o r-U l CO S CO CO _+ •<- CO CD CN 5 O O CM LO CO CO CO N S CD h - 05 O CM Tt CO I— T- LO Tt LO t - C l o CM CM CM CM CO C l 00 eo co co •ate 12-Jan-96 21-Jan-96 29-Jan-96 5-Feb-96 12-Feb-96 19-Feb-96 26-Feb-96 2-Mar-96 11-Mar-96 18-Mar-96 25-Mar-96 1-Apr-96 8-Apr-96 29-Apr-96 22-May-96 5-Jun-96 17-Jun-96 2-Jul-96 16-Jul-96 5-Aug-96 22-Aug-96 5-Sep-96 24-Sep-96 8-Oct-96 22-Oct-96 5-NOV-96 24-Nov-96 17-Dec-96 231 Neutralization Cum.NP NP NP depletion depleted depl'n rate (mg/kg) (%) (mg/kg/wk) 11725 . 32.3 14620 40.3 14849 40.9 200.3 15083 41.6 15233 42.0 150.7 15446 42.6 15630 43.1 184.0 15889 43.8 16025 44.1 106.0 16239 44 7 16424 • 45.2 185.5 16651 45.9 16884 46.5 17388 ' 47.9 168.0 17925 49.1 163.3 18817 . 50.3 19229 51.5 240.5 19766 52.9 250.4 20250 54.3 242.0 20742 . 55.6 172.0 21282 57.1 222.7 21697 58.3 207.5 22374 60.1 249.4 22868 61.5 246.8 23230 62.5. 181.0 23602 63.5 186.1 24027 64.7 156.4 24399 65.7 113.5 Sulfur Cum. SO, Sulfur S04 flux depleted prod'n rate (mg/kg) (%) (mg/kg/wk) 456 0.33 618 " 0.45 . 718 0.52 87.5 822 0.60 890 0.65 68.0 991 0.72 1082 0.79 91.0 1166 0.85 1199 0.88 25.7 1261 0.92 1329 0.97 68.0 1408 1.03 1485 1.09 77.0 1671 1.22 1883 1.38 2062 1.51 2251 1.65 2502 1.83 2761 2.02 129.5 3109 2.27 3481 2.54 153.2 3699 2.70 109.0 4171 3.05 173.9 4519 3.30 174.0 4789 3.50 135.0 5042 3.69 126.5 5340 3.90 109.8 5679 4.15 103.2 Extraction rates - 5 cycle moving average Ca Mg K Na (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) (mg/kg/wk) 367.1 14.74 40.97 7.44 297.3 11.74 32.32 5.81 257.6 9.93 26.98 4.81 75.5 1.78 16.19 0.33 85.1 1.83 8.00 0.34 73.0 1.43 2.36 0.27 78.1 1.38 2.13 0.27' 76.1 1.23 1.72 0.27 . 79.6 1.18 1.51 0.28 73.6 1.04 1.23 0.26 76.2 1.01 1.14 0.27 70.4. 1.17 1.06 0.28 74.6 1.27 1.03 0.28 76.3 1.33 0.97 0.27 . 78.8 1.39 0.90 .0.27 85.1 1.59 0.84 0.25 87.3 1.48 0.66 0.20 86.2 1.38 0.56 0.16 84.2 1.31 0.55 0.14 84.8 . 1.26 0.53 0.11 85.2 1.20 0.56 0.12 87.2 1.21 0.59 0.12 '84.5 1.26 0.58 0.13 79.3 1.29 0.51 0.14 65.3 1.31 0.45 0.14 Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 8 8 8 S co SSoScofi SSs •. • II Cumulative mass flux Ca Mg K Na (mg/kg) (mg/kg) (mg/kg) (mg/kg) 4371 191 168 5452 237 234 5540 239 282 5630 241 309 5688 243 311 5770 245 315 5841 246 317 5941 248 319 5995 248 320 6078 250 322 6150 251 323 6239 252 325 6330 253 326 6528 255 328 6732 260 332 6918 264 334 7078 267 335 7287 270 337 7476 273 338 7667 276 339 7878 279 340 8040 282 342 8305 285 343 8498 288 344 8639 290 . 345 8783 293 346 I Sr-ScoS S £ 8 8 S sis ! o t- w co ^ in co r- co m ° ? ? ? ? ? S t 5?8 CN Si CN 3 CN ScV 232 o ™ c e x I | I E •2 i co s < ° e» i e CO 0- - o < z n E in 0) i5 N o CL H <J .C Q E _ +- o) _ CD CD (D - m CO O ' o c/> iifO tN Tf CN LO < I S CO CO Tf O I > " Tf CO CO Tf ( I Tf T— CN CN CO I Tf O Tf CO T-I CO Tf CO CO CO Hr- cb cb cb cb• M co co ( 0 co co • oi cp jg cp cp tO Tf CD t o cb cb - T- CO O) CM S O O CN tO ? < < ^ LO ^  co O) CN CN CN CN . B CO N Tf Tf Tf CM o* d cb cb O O Tf CD CO o i - 00 CO oo . - o d d O) O CM Tf CO g O Tf CO £ 5 00 CD CD II CO CO CO CD f-. CN CN T- CN T-d d o d d o o o o o iCOTfCOCMuOUOtOCOCOT-CNCNOCOOCOCD i T f T t p c o i o q w c o T - c o c o N c p q o ) i b c o s b u i i o b d w i r j i o N . b u) iri cci b CO CO CO N . CO S O) O CM r - r - r - CM CM' LO CN LO CM CM CO f— CM T— CO CM »- f- T-C O L O C O L O f ^ C M T - O C O O J t J C N ' C M C O C O C O T f T f c D T f C O O r ~ L O Tf Tf Tf CO CD LO Tf Tf Tf Tf CO CO Tf CO f - T- „. Tf LO f - CD O CM CN CN CN CO CO JO CO CD °? E 9 g * < CO «> O 9 ^ LO "* CO JM CM CM CM CO Tf CO CM CM o d d CO CO CD " Tf CO o d d CD CO T— v - CO CO CO CO CO 233 ^ CO O) CO o CO CO O CM S ™ *-= ^ CM CM ID O ^ ^ ^ | CM CM CM CM CM CM CM CM CM CM CM CM CO CM CM CM CM CO CM CM CM CM CM CO CD CO CD IT) | CM CM CM r1 i - CO CD Ol CO 11 CO O T— CO T- (\i CN T-CM CM CM t— i - -T3 C t - o T-r IO r if) CO i t Tf CO CO CO CO CO CM CN Tt Tt r - CM CN CD S t O S CO CM in CM CD ( Cji N CO CD CO 1 - t t io m • ids 2 5 CO CO CN O CM CO T- T- CO CO r- .S CN CO Tt ID TJ" Tf Tf •t CO CO N ' CO Tf N If) CD < Tt Tt Tt LD CD r CO T t T- CD • i t - T t CO CM T t I cq in O) cq cp CO CO CO o o i - T- CM CM E I o o CM m CD m CN o m CD Tt o m Tt co t - CD T- CM ^ m m m co co CO Tt CO t— CO CO CO CO CO CO p m T t m Tt T— T^- CM CO T t I CM CM CM CM CM CO IO CO O CO O O I— CO CD T t h- O co t-- t— t~- oo i- O O CM iri cb N cci oi CM CN CM CM CM CO CD t - Tt CO CD CN Tt CO in CN CD CD CM CO CO CD CO O) O) CN Tt Tt CN CN| O r - CM CO ' CO CO CO CO < co m iri co co co in co cn in in i O CD CN O O I O CO h- O CO I O O O •<-o CO 2 -I ! p t~; O O O j T— CD Tf CD CD 1 ! cn co s co m E *= CD CO CO CO CO CM T- CM CN CO CO T t d d ci ci ci ci r-. co CD o • CN CN CD r- • CM CO CO T t i co co CN in oo Tt Tt m in in d d d d d co m co co co in co T t co co CO CO S N CO co i— in co o < co CO i— 00 CD ( d d d d d < • in T t o co r-i r - CD i - r- CN l CO T t CD I— O CD co r-- co CN CO LO CD N CN CN CM CM CM co m CM I--CD O M CO z: ^ O T- CO Tt co m cd iri Tf 5 CD CD p h- I in $ O in N CN O) co m Tt Tt co d d d d d t - T t CM CO T-Tf CO CD co r r O O CO CO CN CM CN LO T t CO CN I ^ d s Tf i in in T t Tt • S O CO CN O CO T t CO CO CO ddddd N o co m CN S CO N CO CO d d d d d S CO CO T-CM CN CN CM d o o d ol o o o o ol • CM CM CM CN CO CM CN CN CO ddddd'. o o o o o CO CO d d CO CO d d CM co r- co <o -Tt p p Tf Tf • CN CN CN CN CN ( O O CO O I CO CD CN CO I Tf Tf Tf Tt " c n m N N s o i T f - c o r t s c o i l u i c b ^ ^ c N i r i T f i r i a i N T i ' c N | T t T f ^ i n m m i n i n i n m m m o O T- 1~ • CN CN CO Tf Tt i n co co co co h- h- h- co co i CD CD CD £ ° ! O OJ oo T- co oo in oo T- m o m T- CD in co o o T- T-T- T- CN CN CN CN • CM co T t m co m r- CD o o o o CN CN CN CM CM CO T— t - CD CD i - Tf CD CO t -CN CN CN CO CO CM CN CN CM CN co t— co CD ; co in o co o CN CN CO CN CN CM CM CN T- Tf t - in OJ CO CO CD CO Tf Tf Tf m s co CM CN CN CN CN • CN co T t in Tt O CD i - - , co Tf Tf m in CN CN CM CN CM O CO r- O) K co m r- co co CD O i— CM Tf CM CO CO CO CO CM CO Tt CO CO CD CD N N CO CM CN CN CN CN o r-CD CD CN CN CD CM CD CD ' CD i - CO CO IO I UO h- CO CD O • CO CO CO CO Tt ' • co N T- in ( • m i— co o • , I CN CN CM CO CO I CO h- CO CD Ol' 234 III CO 0_ • - o < Z LO E LO U) c C O O U= p _ ~ w _ £ TT: </> D -=7 ro OJ oj k- d) (DO " o o £ E LO ^ T-O DJJLO o W E CM CO O O CO CO TJ- CM O CO CO CO CO CO CO CO TT CO i-1 CM I CO CO CO CD i CO CO cp cp : c C U I J i to to a) a) » -p -p L i . LL CM O) LO CM «- CO LO CD N I O TJ- S O CM CM CM CN CO Tf Tf TJ" TJ" CM CO CD CD CO CD CO CO CO OO 00 a !s a> CD J3 J5 J2 L u. 2 5 2 O CO CO CO d d co a a o. ro 5 < < < 2 T- N LO CO LO LO CD CO . d o d o CO CO LO CD O CD i - m TT r -CO TT Tf Tf Tf ^ - T - c o L o c o r ^ c D c o L o o o c o c N o c o o T r o • ^ L O T r c N T r T r c o T r o c D C D C N - ^ L O c n i o c o f ^ . Icbcbcbr^'LOiriTfTrd CD CO CO N N <° £ 2 8 csi o 7 7 < o o o o o o o o o o .Tf o co —. CM CN CD LO CO CO O CO o CO CO LO Tf Tf CO CO Tf co r - T- uo Tf if) h~ CO o CN CN CN CN CO CD CD CD CO CO OO CO oo oo oo # £ £-£ £ <. co co O 9 CM LO Tf CO CN CM O CN O CM LO CM CO CO Tf CM o d d CO LO o LO co co CO CO CO OO CO T-T- CO CD CO CO CO 235 O j - c o o o g j i ^ c o c o r o C O T T t ^ O C O C D I ^ I ^ r ^ c O C O C ^ _cz c u OO CO C O C N C O LO C O < cb C O ^ TT 06 C O TT < C D O CO C N C O C O ( C O C O (N ^ - T- i - i - • ' - S N I D C O N C N N C D N N C O T O O C O C N C N b s i r i ' f ' i r i T i f M c b c b c b ' - O O O O O ' - T - ' - ' r - ' - ' - r N C N ' r - ^ o ( D c o T r r o c \ o c o o ( D O ' f c » c o i n s i O T r T T c o c o c o o T - N io ^ i b c b s c b c b s i r i c o c M T r w ( D C D C D C D C D f - r ^ C O C O L O L O T f T f T t c O T f T r L O L n L O L O C O Ifl S S CO cb cb LO ^ r-i O O C O o C O C O ^ ™ « I ( C O C D C O CO • ro b cb N i n T- T-f l i i i l i S i i l S i i i i i i l i i l i i i i i i o ' ro sz I SZ o . ro c u d CO LO O cb o r-- m o co o cb cb r- LO io LO T T O C D L O L O L O L O L O CN L r i c b a i ^ i r i c d d c b LO S C D V C D U O I M - V "D I I I CO CO ot "D — CO ^ fN *— o I O C O C N N C O I O C O T - C D C N I ^ T t t O i f l C O N C O C O C D O i d d d d d d d d d - ^ ClCDOO^aNCOCOCO(pOCOL010NCN O T - C O n ^ l O C O N C O t - C N ' t f l O C D S C O O T j . T ^ . ^ . r j . ^ T j T j T ^ T ^ c N C N N N c N C N C N c b d CO CD O) 5 c u > ro O) c > o 6 aj o s-o c" CD CO 2 c SZ '? o_ E c u "CO >s CO o j i n i n Q O T N T - c o r v j c o n o c o c D i D c o ^ r o N c o c o c o o o C O O T U l l O U i U i W ^ ' J C O C O C O C N C N C N C N C N t - r - ^ t - r - N C N u b T j d d o o o o d o d o o o o o o o o o o o o o CO CO Tf CO CO CN CO CO O LO O O O CO ^ ^ ' ro T - ^ v - d co o T - T t LO CN c r~- r~- co LO Tt Tf Tf ( d d o o o o d < C O C D C N O O l O C O O C O C p C N COCOCOCOCOCNCNCOCNCNCO d o d o d o d d d c i d S r o c o o > c N C D o o c o c o c N c N r ^ T f T T c N r ^ c n " C N ^ O C N ^ O C D T f c O C N ^ ^ T - ^ C N C N C O C O T T T r L O L O L O L O ^ d c b C N C N C N ^ - ^ ^ ^ ^ ^ ^ ^ ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ i ? I C N C D C O C O N T - C D O ( O T - ^ O r o N C O C N ^ T f o D c O O T f fc2b(NN^dbcbf>icj)coV'bbfbb 1^ 00 T f T f LO LO Tf Tf Tf CO CO T f T f T f Tf Tf Tf Tf Tf Tf T f T f T f T f O O ^ ' - C N C O W ' i n T r u O i O C D N C O C O r o C S C D O O ' - T - T - C N C N C O COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOTTTfTr^TfTfTfTf CO CO CO OO O CN CN CO Tf Tf UO CO f - CO CO O O CN CN CO CO T f LO LO CO f -f - r- r- r— co oo co co co co co co co co co co co co co co co co co co co loo oo i n s c o o c o i o s c » 0 ' - c o T f N T - c o u j c O T - T f « T - i n c o ^ T f O ) ' f c o c o c o a ) a ) O T O T C ) 0 0 0 0 0 ' - ^ ^ ^ r N r N C S c o c i c O ' T T j T i i o ^ ^ ^ ^ ^ ^ ^ ^ t N C \ C \ C N C S C N C N C \ C N C N M C N roiocoiDCDCDcnwcnosiocoio LOOCNCDCNr^CNCOT-cOOLOLOr-* c O O O C j O O O O ^ T - C N C N C O C O T f L O ^ ^ ^ ^ r N j c ^ C N C N C N C N C N r N C N C N T - r^COOOCOCOCOLOTfOCD T f T f T t L O L O f ^ r ^ c o L o r ^ o C0C»OT-CNr03l0CONC3 CNCNCOCOCOCOCOCOCOCOCO cu %-o Q . L > - 0 ro ^ c u ( O O F | - ' - O C O W C M O ) C D T - O S T I J ; 2 ^ S ! | ro w « c O T i i o i n c D N c o c o o ) ° ° ^ ^ M N N ^ C O N I - L O O J C O T -W O C N T j i S s m O ' - c O C D T - C N C N C N O J C N C N C O C O C O C O o 6" on no O h - CN CO T f LO CO h- CO CO O k - CN CO Tf LO CO I s-03 05 r-lr- T- T - T - t-li- T - T- CN CN CN CN CN CN CN CN APPENDIX 14 D A I L Y A V E R A G E S W A T E R F L O W , pH A N D C O N D U C T I V I T Y 20-TONNE (FIELD) C E L L S 237 D A I L Y A V E R A G E S O F W A T E R F L O W , p H A N D C O N D U C T I V I T Y F O R F I E L D C E L L S HC-1 field cell HC-2 field cell Inflow Conductivity Outflow Conductivity Outflow Date (L) PH (uS/cm) (L) pH (uS/cm) (L) 7-Aug-95 0.00 7.7 1226 3.47 7.6 2189 0.00 8-Aug-95 5.20 7.5 1334 4.31 7.5 2253 0.00 9-Aug-95 0.00 7.5 1361 2.02 7.4 2280 0.00 10-Aug-95 0.00 7.4 1382 0.80 7.3 2319 0.00 11-Aug-95 92.95 7.3 1326 0.66 7.2 2336 0.00 12-Aug-95 5.20 7.3 1257 1.21 7.2 2334 0.00 13-Aug-95 81.90 7.5 1079 2.38 7.2 2313 0.00 14-Aug-95 42.90 7.6 937 0.00 7.3 2233 0.00 15-Aug-95 3.25 7.5 1034 0.00 7.3 2299 0.00 16-Aug-95 7.15 7.6 1078 3.12 7.3 2280 0.00 17-Aug-95 0.65 7.5 1134 9.22 7.3 2293 0.00 18-Aug-95 0.00 7.5 1210 4.91 7.3 2284 0.00 19-Aug-95 1.95 7.4 1260 2.94 7.3 2297 0.00 20-Aug-95 10.40 7.4 1280 1.92 7.3 2285 0.00 26-Aug-95 1.95 7.4 1270 5.85 7.3 2306 1.98 27-Aug-95 3.25 7.3 1285 4.81 7.3 2313 1.97 28-Aug-95 0.00 7.4 1321 2.90 7.8 2346 1.39 29-Aug-95 0.00 8.0 1350 1.86 9.2 2383 1.06 30-Aug-95 0.00 8.3 1363 0.63 10.2 2396 0.85 31-Aug-95 13.65 7.3 1347 2.83 7.4 2305 0.70 1-Sep-95 33.15 7.3 1368 3.91 7.4 2329 2.03 2-Sep-95 2.60 8.1 1395 12.85 10.0 2432 3.79 3-Sep-95 0.00 8.2 1426 6.07 10.6 2443 1.50 4-Sep-95 0.00 8.1 1454 2.81 10.4 2441 1.01 5-Sep-95 0.00 8.0 1512 1.72 9.9 2492 1.01 6-Sep-95 0.00 7.9 1568 1.32 9.8 2523 0.92 7-Sep-95 0.00 7.8 1596 0.95 9.3 2530 0.71 8-Sep-95 0.00 7.6 1621 0.47 8.7 2531 0.63 9-Sep-95 19.50 7.1 1588 0.65 7.0 2423 0.52 10-Sep-95 104.65 7.3 1092 0.74 7.3 2402 0.13 11-Sep-95 30.55 7.7 770 5.66 7.9 2238 1.86 12-Sep-95 5.85 8.6 1013 8.45 10.0 2272 3.13 13-Sep-95 0.00 10.4 1093 4.89 13.0 2302 1.80 14-Sep-95 1.30 9.1 1165 3.52 10.7 2340 1.27 15-Sep-95 0.00 9.7 1194 1.85 11.9 2336 0.89 16-Sep-95 0.00 9.9 1228 0.87 12.0 2367 0.65 17-Sep-95 0.00 9.6 1258 0.44 11.8 2400 0.49 18-Sep-95 0.00 8.3 1245 0.02 9.9 2395 0.17 19-Sep-95 0.00 7.8 1144 0.01 10.7 2267 0.07 20-Sep-95 0.00 7.4 1290 0.00 7.8 2420 0.00 21-Sep-95 0.00 7.2 1320 0.00 8.0 2464 0.00 22-Sep-95 0.00 7.2 1333 0.00 7.7 2474 0.00 23-Sep-95 0.00 7.1 1344 0.00 7.4 2486 0.00 24-Sep-95 0.00 7.1 1344 0.00 7.3 2494 0.00 25-Sep-95 0.00 7.1 1342 0.00 7.3 2494 0.00 26-Sep-95 41.60 7.0 1328 0.08 7.2 2438 0.00 27-Sep-95 1.95 7.0 1319 0.17 7.4 2448 0.00 28-Sep-95 13.65 7.0 1315 0.60 7.4 2437 0.00 1-Oct-95 13.00 7.0 1323 0.00 7.6 2381 0.00 2-Oct-95 1.30 7.0 1340 0.00 7.5 2397 0.00 238 D A I L Y A V E R A G E S O F W A T E R F L O W , p H A N D C O N D U C T I V I T Y F O R F I E L D C E L L S HC-1 field cell HC-2 field cell Inflow Conductivity Outflow Conductivity Outflow Date (D PH (uS/cm) (L) PH (uS/cm) (L) 3-Oct-95 1.30 7.0 1369 0.00 7.4 2457 0.00 4-Oct-95 0.00 7.0 1390 0.00 7.4 2493 0.00 5-Oct-95 0.00 7.0 1422 0.00 7.5 2552 0.00 6-Oct-95 7.15 7.2 1449 0.00 8.1 2609 0.00 7-Oct-95 33.15 7.0 1451 0.00 7.5 2589 0.00 8-Oct-95 0.65 7.0 1471 0.00 7.4 2643 0.00 9-Oct-95 0.65 7.0 1484 0.00 7.4 2707 0.00 10-Oct-95 0.00 7.0 1492 0.00 7.4 2764 0.00 11-Oct-95 0.00 7.0 1497 0.00 7.4 2825 0.00 12-Oct-95 0.00 7.0 1506 0.00 7.4 2910 0.00 13-Oct-95 0.00 7.0 1538 0.00 7.4 3024 0.00 14-Oct-95 0.00 7.0 1549 0.00 7.4 3100 0.00 15-Oct-95 0.00 7.0 1591 0.00 . 7.4 3243 0.00 16-Oct-95 0.00 7.0 1675 0.00 7.4 3491 0.00 17-Oct-95 0.00 7.0 1798 0.00 7.4 3800 0.00 18-Oct-95 0.00 7.0 1870 0.00 7.4 4114 • 0.00 19-Oct-95 0.00 7.0 1911 0.00 7.5 4359 0.00 20-Oct-95 0.00 7.0 1960 0.00 7.6 4622 0.00 21-Oct-95 1.95 7.0 1990 0.00 7.7 4862 0.00 22-Oct-95 3.90 7.1 2030 0.00 8.1 5115 0.00 23-Oct-95 1.95 7.0 2047 0.00 7.7 4808 0.00 24-Oct-95 0.00 7.0 2072 0.00 7.8 2902 0.00 25-Oct-95 3.90 7.0 2091 0.00 7.8 2634 0.00 26-Oct-95 0.00 7.0 2112 0.00 7.8 1052 0.00 27-Oct-95 0.00 7.0 2140 0.00 7.6 70 0.00 28-Oct-95 0.00 7.0 2174 0.00 7.5 -33 0.00 29-Oct-95 2.60 7.0 2284 0.00 7.8 -1650 0.00 30-Oct-95 2.60 7.1 2391 0.00 8.7 -896 0.00 31-Oct-95 0.65 7.1 2556 0.00 8.7 -2437 0.00 239 D A I L Y A V E R A G E S O F W A T E R F L O W , p H A N D C O N D U C T I V I T Y F O R F I E L D C E L L S H C - 1 f ield ce l l H C - 2 f ield ce l l Inflow Conduct iv i ty Out f low Conduct iv i t y Out f low Date (L) PH (uS /cm) (L) P H (uS /cm) (L) 1 3 - J u n - 9 6 0.00 7.5 26 0.01 7.6 812 0.00 1 4 - J u n - 9 6 0.65 7.5 6 2 0.00 7.6 863 0.04 1 5 - J u n - 9 6 0.00 7.5 70 0.00 7.6 872 0.00 1 6 - J u n - 9 6 0.65 7.5 76 0.00 7.6 878 0.00 1 7 - J u n - 9 6 0.65 7.5 80 0.00 7.6 886 0.09 1 8 - J u n - 9 6 0.00 7.5 92 0.00 7.6 999 0.00 1 9 - J u n - 9 6 0.00 7.5 142 0.00 7.6 1643 0.00 2 0 - J u n - 9 6 0.00 7.5 141 0.00 7.6 1677 0.00 2 1 - J u n - 9 6 0.00 7.5 153 0.00 7.7 1734 0.00 2 2 - J u n - 9 6 0.00 7.5 616 1.11 7.6 1814 0.00 2 3 - J u n - 9 6 0 .00 7.5 1044 0.00 7.7 1819 0.00 2 4 - J u n - 9 6 0.00 7.5 1045 0.00 7.7 1827 0.00 2 5 - J u n - 9 6 0.00 7.4 1037 0.00 7.7 1849 0.00 2 6 - J u n - 9 6 7.15 7.3 1032 0.00 7.5 1892 0.00 2 7 - J u n - 9 6 26 .00 7.2 1020 0.00 7.6 1923 0.00 2 8 - J u n - 9 6 19.50 7.2 1007 1.61 7.6 1932 0.00 2 9 - J u n - 9 6 24 .05 7.1 999 0.00 7.6 1943 0.00 3 0 - J u n - 9 6 12.35 7.2 1019 0.00 7.5 1944 0.00 0 1 - J u l - 9 6 9 .75 7.2 1038 0.00 7.6 1946 0.00 0 2 - J u l - 9 6 0.00 7.3 1066 0.00 7.6 1946 0.00 0 3 - J u l - 9 6 1.95 7.4 1112 5.80 7.7 1952 0.00 0 4 - J u l - 9 6 118.30 7.4 1123 7.40 7.5 1951 0.00 0 5 - J u l - 9 6 82 .55 7.4 1184 0.00 7.6 1942 0.00 0 6 - J u l - 9 6 1.30 7.6 1107 0.00 7.7 1927 0.00 0 7 - J u l - 9 6 0.00 7.6 794 3.38 7.9 1891 0.00 0 8 - J u l - 9 6 42 .25 7.5 941 31 .26 7.7 1854 0.00 0 9 - J u l - 9 6 37 .05 7.4 928 42 .87 7.5 1849 0.00 10 -Ju l - 96 19.50 7.5 973 38.41 7.5 1842 0.00 1 1 - J u l - 9 6 0.00 7.5 1000 20 .28 7.5 1866 0.00 1 2 - J u l - 9 6 0.65 7.5 1049 8.57 7.5 1898 0.94 1 3 - J u l - 9 6 0.00 7.6 1128 . 5.07 7.5 1931 6 .30 1 4 - J u l - 9 6 0.00 7.6 1197 3.13 7.5 1953 7.49 1 5 - J u l - 9 6 0 .65 7.5 1223 1.75 7.5 1928 3.40 1 6 - J u l - 9 6 42 .25 7.4 1228 7.18 7.4 1897 0.27 17 -Ju l - 96 39 .00 7.4 1239 17.99 7.9 1915 11.40 1 8 - J u l - 9 6 48 .10 7.4 1243 21 .26 7.7 1913 5.53 1 9 - J u l - 9 6 28 .60 7.4 1221 39 .60 7.6 1899 6.48 2 0 - J u l - 9 6 3 .25 7.3 1151 25 .70 7.6 1817 17.77 2 1 - J u l - 9 6 7.80 7.2 1115 13.32 7.5 1764 9.57 2 2 - J u l - 9 6 0 .65 7.1 1123 9.91 7.4 1793 7.89 2 3 - J u l - 9 6 0.00 7.1 1133 6.36 7.4 1812 6.97 2 4 - J u l - 9 6 0.00 7.2 1150 3.88 7.4 1819 6.38 2 5 - J u l - 9 6 0.00 7.3 1199 2 .39 7.4 1831 3.48 26 -JU .I-96 0.00 7.3 1264 1.75 7.4 1814 1.75 2 7 - J u l - 9 6 0.00 7.3 1271 1.16 7.4 1784 1.18 2 8 - J u l - 9 6 0.00 7.2 1289 0.30 7.4 1786 0.80 2 9 - J u l - 9 6 0.00 7.2 1292 0.38 7.4 1796 0.55 3 0 - J u l - 9 6 24 .05 7.2 1250 2 .23 7.4 1714 0.38 3 1 - J u l - 9 6 22 .10 7.1 1236 5.65 7.4 1700 0.72 240 HC-1 field cell HC-2 field cell Inflow Conductivity Outflow Conductivity Outflow Date (L) PH (uS/cm) (L) PH (uS/cm) (L) 01-Aug-96 7.80 7.1 1239 5.11 7.4 1725 1.08 02-Aug-96 3.25 7.0 1195 1.75 7.3 1731 0.27 03-Aug-96 49.40 7.0 1181 31.31 7.3 1709 3.85 04-Aug-96 61.75 7.2 1062 64.73 7,3 1729 7.11 05-Aug-96 0.00 7.1 1228 9.46 7.3 1737 0.58 06-Aug-96 14.30 7.2 1244 7.27 7.3 1705 0.00 07-Aug-96 7.80 7.2 1244 4.28 7.3 1699 0.00 08-Aug-96 18.20 7.1 1245 5.96 7.3 1691 0.00 09-Aug-96 74.75 7.1 1219 70.88 7.3 1683 13.16 10-Aug-96 1.95 7.0 1172 26.90 7.3 1703 4.39 11-Aug-96 4.55 7.0 1205 9.32 7.4 1714 0.00 12-Aug-96 22.75 7.0 1193 8.15 7.4 1672 0.00 13-Aug-96 3.25 7.0 1192 5.15 7.4 1674 0.00 14-Aug-96 5.85 7.0 1199 3.31 7.3 1686 0.00 15-Aug-96 46.15 7.1 1195 18.22 7.4 1667 1.93 16-Aug-96 83.20 7.1 1171 37.84 7.1 1672 7.39 17-Aug-96 12.35 7.3 794 109.77 7.3 1674 46.36 18-Aug-96 39.65 7.4 701 39.06 7.2 1667 10.50 19-Aug-96 16.90 7.3 719 29.84 7.1 1657 6.38 20-Aug-96 10.40 7.2 729 21.92 7.1 1652 1.56 21-Aug-96 32.50 • 7.1 734 38.12 7.1 1649 8.35 22-Aug-96 41.60 7.1 734 54.62 7.2 1666 14.36 23-Aug-96 9.10 7.0 735 22.61 7.1 1660 2.52 24-Aug-96 0.00 7.1 760 8.62 7.2 1699 0.39 25-Aug-96 0.00 7.2 795 5.49 7.2 1704 0.11 26-Aug-96 6.50 7.2 831 4.52 7.1 1702 0.05 27-Aug-96 0.00 7.3 864 2.65 7.1 1711 0.01 28-Aug-96 6.50 7.4 914 2.00 7.1 1707 0.00 29-Aug-96 22.75 7.2 979 2.81 7.1 1626 0.00 30-Aug-96 39.65 7.1 1014 10.71 7.1 1543 0.00 31-Aug-96 0.15 7.1 991 0.15 7.1 1516 0.00 01-Sep-96 9.75 7.1 982 14.91 7.2 1503 0.01 02-Sep-96 57.85 7.1 964 35.26 7.3 1507 2.95 03-Sep-96 24.05 7.3 739 43.02 7.4 1542 12.76 04-Sep-96 3.25 7.4 840 6.43 7.5 1569 0.00 05-Sep-96 76.05 7.3 870 20.29 7.5 1554 0.26 06-Sep-96 22.10 7.3 850 7.43 7.4 1536 0.95 07-Sep-96 0.65 7.1 806 0.00 7.3 1539 0.00 08-Sep-96 5.85 7.0 802 0.00 7.4 1569 2.81 09-Sep-96 3.25 7.1 803 0.00 7.4 1590 3.24 10-Sep-96 17.55 7.1 804 0.00 7.4 1595 1.35 11-Sep-96 11.05 7.7 812 15.43 7.4 1616 0.02 12-Sep-96 6.50 7,2 819 15.14 7.4 1615 0.00 13-Sep-96 29.90 7.3 839 16.43 7.4 1603 0.00 14-Sep-96 3.90 7.3 851 12.03 7.4 1603 0.00 15-Sep-96 1.95 7.5 862 2.74 7.5 1604 0.82 16-Sep-96 0.00 7.5 901 0.02 7.5 1606 0.45 17-Sep-96 28.60 7.4 935 3.42 7.5 1610 0.68 18-Sep-96 17.55 7.3 940 19.15 7.4 1602 1.15 19-Sep-96 9.10 7.2 936 3.57 7.4 1597 0.43 241 APPENDIX 15 D A I L Y A V E R A G E S E X T E R N A L A I R T E M P E R A T U R E S A N D I N T E R N A L T E M P E R A T U R E S 20-TONNE (FIELD) C E L L S 242 i— o - o X C L £ I— o • O X 0 -*—1 ro Q 00 TT CN O CO CD* CO CO CO LO 0 T f T - CO T -1 • CO CO LO LO O ) C O I O O ) L O cb cd c\i c\i L O L O L O L O L O CD CJl CD CD CD CD C M C O T T L O o o r— co r-io L O -sr N -T - O K ) <D N i r i i r i ^ ^ LO T f CO | s j io L O L O L O [£3 O) CJ) O O) i I I I o . 0 . 0 . 0 - 5 HI D ID OJ i f L L L L L L L L i i i i i <-> CD I— O O C O " CO N- CD CD CN oS CO C O o •<- T - T - CM LO Cp CN CO h— T— co r— cb o T - T - T - C N LO h- CO CO O CN i CN CN • cb 1 LO C D LO C D LO C D LO C D •Feb-•Feb-•Feb-•Feb-T f LO CO s m ^ (O s ^ ^ O) T f Qj CN (N r- r-CO T - CO T f CN CN C D LO CN CN CN r-C N C D T f C O C O C D O D C D C D C O L O C O C N C O I— C O C D C D C D C D C D ^ CN CO ^ ^ ^ J ^ L O L O L O L O L O L O L O L O C D C D C D C D C D C D C O C D A _ Q A A - Q A A A CD CD CD CD <D CD CD CD L L L L L L L L L L L L L L L L C N C O T f L O C D 1— C O C N C N C N C N C N C M C M C N T f T - C D O T- T-C D L O f— C D CO S h-o. E <D «H 1- O C M ° -cL £ i - o CD o I- o X C L H O N ID q s T -CO CD CD LO CD C D C O C O C O T f C O C D C O C D I— T f T f cb C D CD C O C D cd i— 0 0 -c- |s. ? - : i s i s : T ^ i i C D C O C D co C D L O |s- co co C M i C D i ' r~ C D 1 C D 1 cb • C D 1 1 L O L O L O L O L O L O L O L O L O C D cp C O C D C D O D C O C D C D CZ cz cz cz cz £= CZ cz cz CO CD ro ro ro ro ro ro ro -J> —> —J —> —5 D ~3 —i C M C O 4 L O C O |sL co C D CO CN O TT- T -N N CO CO 00 L O CO CO T — C D N N 00 CO 00 00 CM O CN T f LO N 00 00 CO L O L O L O L O L O CD C D O D CD CD • i i i i cz cz cz cz cz co ro ro ro ro — 3 — 3 — 3 — 3 — 3 1 1 1 1 1 T - CN CO T f L O CN L O CN T - CO 00 00 OD C D 00 C D CM CO •<- T f od od OTi O D r— C D C O |s- T f L O L O L O L O L O O) O) O) C D C D 1 1 1 1 1 cz cz cz cz cz ro ro co ro ro T - T f C D L O C O r— cb L O to L O o L O C M C O L O f s - cb C O L O L O CO T f ro CM OD O o CO CO L O L O L O L O L O CD CD CD C D CD 1 1 1 1 1 CZ CZ CZ CZ CZ ro ro co ro ro CM T - O D r— o CN L O L O cb cb 1— r— co C D C M 00 00 co UD IO N (D N N f s - C N T f o O D C O T f C O C O l-s* L O C O C D f s . 00 C D O T - C N C O T f L O T - T - T - T - C M C M C N C M C N C N L O L O L O 10 L O L O cp C D C D op op C D CZ CZ cz cz CZ CZ co ro ro co ro ro —3 —3 —3 —3 —3 —3 c6 cb O D 0 •r-C M C M C M C N C O C O C L II 0 "cz ^ | - O X C L E 1— o ( D o CN T f T - CD 00 T — r— od cb L O O D T - T f C D L O T f T f C O C O C M CD CO t - 1 C D r— T - t -CD CD CD 00 LO T f CO T -T — OD OD 00 | s -CD CD T— LO C D LO T f T f CO CO C 1 I I I l o 1 CD LO O cb 1— 00 I— L O O D C O C M | s . C O C N C D C N oi C O C D T ~ T ~ T ~ T— ro Q T f T f T f C D O D C O o o CD 0 Q Q T f T f T f T f OD CO CD CD L O 1 - C M C O T f L O O O O O S< 0 CD CD CD Si Q Q Q Q 9 • 1 1 1 f—% C O N • 00 C D zz T - 00 T f C O C O I— I— C D T f T f T f T f T f C D C D C D C D OD 1 1 1 1 1 O O O O O 0 0 0 0 0 O O O O O 1 I I I I T - C M C O T f LO T f f s - C D T f O) 00 N |s! n . O 00 LO T -2 O) N |si K T ; 1 1 1 1 O LO 00 Lp T -C D cb L O cb C D T f T f T f T f T f C D C D O D C D C D 1 1 1 1 1 O O O O O 0 0 0 0 0 O O O O O • 1 1 1 1 C O I— 00 O D C D T f CO LO CO O |s^  rs! is: od O T - T f CD T f 1— |s^  is^  cd IN | s (O (O N cb C D cb eni O D T f T f T f T f C D C D C D C D C D 1 1 1 1 1 O O O O O 0 0 0 0 0 O O O O O • 1 1 1 1 T - C M C O T f L O C M C N C N C M C M L O CN CO CD T - T f O CD CD CD CD 00 0 0 * C O cd cb o ° ° r-^ «P L O C M C D ^ _ " l *L O) (O d ri T ~ ^7 1 1 1 s-» T f T f T f T f T f T f C D C D C O C D O D C D 1 1 1 1 1 1 O O O O O O 0 0 0 0 0 0 O O O O O O I I I I I I C D r-~ 00 O D o T -C N C M C N C N C O C O 243 C L E 03 ^ 6 X Q_ E CD I— O X CL i o, CO ro Q o cs N cn o Tf ' co CN CN esi T f CO T * CO T -co esi oi oi esi 9 co fv. m ^ V 7 6 d r i n Oi i ro i n m m m o> CD CD o> • i i i > . >^ >N >N ro ro ro co oi co T J - m o o o o r - CO o> m CN esi T - d o o °9 " * •<- T f T -V V C3 esi T - o m ^ ^ cd N cri v co co co co co o o> o> o> o> i i i i i ^ >> >* >N co co ro ro ro CO I 00 0 ) 0 o o o O T -T O T f T f o o d o o esi <o i - esi co T-^ esi r-1 d T f o> h~ e? •* ^ K ro 9 9 LO LO LO LO LO G ) O) O) CD CD I I I I I , ^ >^  >^  >>\ ro ro ro ro ro esi co T I - m CM T - esi esi co d o o d d o r^- co oo CN d ^ CO CO T f CD CO N CD co W "Cf W _ LO CO LO LO LO CD CD CD CD CD i i I I i , >^  >^  >»| ro ro ro ro ro co r— oo cj) o T - T - T - CN T f LO CO CO T f CO CO f ~ CO T f co esi T — d d Ol CO Tf Tf Tf CO T~ Tf 00 CD LO LO LO LO CO CD CD CD CD CD i i i i i , 3* ^ >, >% >s\ ro ro ro co co 1- Ol CO T f i n esi esi esi esi esi T f co co co co esi d d d d d d rsi TJ- co r- T f o <? d i - 1 d d CT> o> esi ^9 T oo K esi d v ^  9 CO LO LO LO CO CO CD CD CD CD CD CD i i i i i i . , > % > < > > > % > % >%| co co co co ro ro CD r— oo CD o T — esi esi esi esi co co C L E CD s~. *~ ° , CN ^ O X C L £ CD f -6 x Q -11 O T— CO CN CO CD T f T f T f T f T f N O O) O ifl CO T f CO T f CO co o i— co. esi cri ri N N i n cn cn i n CD CD CD CD T f oq T - o co cb CO co co co CO 00 CO CO CD T f T f T f i — T f CD CO CO CN i r i co cri r— c d co i n m co co CD CD CD CD CD a> est co co esi CD S N S r~ T f T f f - CO T -|— |— |— I— |— T f CD CD CN T f i r i i r i N cri c n co co co co CD CD CD CD CD O 00 CD CD 00 N co cb cd cb CD Cp LO T — T — (D CO CD N N N N CO CO CN cd i r i N co co LO LO LO LO LO CD CD CD CD CD i o o Tf co oo co co cri Tf co O) CO CO N CO CD CD Tf CO CO T - CD LO co CM CN T - CO d •<-LO CO LO LO LO CD CD CD CD CD , C L C L C L C L < < < < . I I I I CN CO T f L O o o o o a a a a a < < < < < CD N oo d) 6 O O O O i -a a a a a < < < < < • i i i i T - esi co T f i o a. a. a. a. a. < < < < < • i I I i CD N 00 O ) O O. Q. Q. Q. Q. < < < < < i i i i i T - CN CO T f CO CN CN CN CM CN T f CN T - 00 CO CO CN CO CO T — T f 00 LO O i - T - CO 00 •r^ co esi T f i — O) CO CD 7 9 r-o ri CN 9 « d CO CO CO CO CO T f CD CD CD CD CD CD c i i i i i i 6 Q . CL CL CL CL CD < < < < < Q CD N CO C l O ^ CM CN CN CN CO CO Q. E CD - ~ oi M 6 x C L E H o C i - o X to ' co oo o oo co OO CO CN o T— d CD 1 CO d CO CO 1— CD CO Ol T— T— T— T— . CO CO 00 CN I oi CO N N CO f- T-iri d N T - CN T -co Tf N in cp 00 00 CO CO CN 00 T f T j -• r— cd cri oo co co f - LZ ~ i i 1 ^ oo h- co - : T f T f CO T f LO cn co co CD CD CD CD LO LO LO CO CO CD CD CD CD CD CO CO N N O LO T - CN i -00 CD CD T f CD CO CO CO LO LO CD CD CD CD CD CD CO CN T -CD CD CD CD CO T f T - 00 <°. CO CO CD CO £2 I I I I \ N h-CD CD CD CD O CD CO 00 CD 00 CD I CO T— CO T f T f CD CD esi T-^ oo CD T f CD f - CO ; co esi cn cn cn m c n CD CD CD CD CD LO CO CO CO CO CD CD CD CD CD O) O O) CO S ( N o> ai i— co co Tf CD CO T f CO T — oo oi oi oo s in co T f CO CO CN CD O co d esi T ~ co co co co i n co co CD CD CD CD CD CD co ro co ro ro CN CO T f CO O O O O ro ro co ro ro 5 2 2 2 2 i I I I I CD N 00 O) O O O O O T -CD CO CO CO CO 2 2 2 2 2 I I I I I T - esi co T f m ro co co ro ro CD I 00 CD O T - T - T - 1- CN ro ro co co co T - CN CO T f CO CN CN CM CN CN ro ro ro ro co co CD r - oo CD o i -CN CN CN CN CO CO 244 I' * ~. ° ~ CN w - O . E I— O 0 o -*—' X — ' . - 6 X l a 1 0 •+—> CO a CO CD CO L O CD o o o o o o o o o O S (D M S CO 1- T - CN T " o o o o o L O co co CN co O ^ CN d co 9 9 co co co co co Q O) CT) O) O) 3 3 3 3 CN CO Tf LO O O O O O co T - co o r— O O V - T f IO d d i d d i d i— r— T - co T T o o co O O T - CN co a> o C D T J -C O C O C D C N C N cb L O d d CD co co co co C D C D C D C D C D CO I— 00 CD o O O O O. T -CN CD LO CN CN CO LO CO CO o o d o o 00 C O C N C O T j -T J - L O 1— a> C N T - CN O T J - O T -CN LO CN CD ^ T f T f 9 CO CD CO CD CD CO CD CD CD CD ZJ ZJ 3 3 ZJ CN CO T f LO c o o LO CD r— O N- LO T f CN LO CN CO CD CN r— T f LO T - co T ~ T - - CN CN T— CN o O CD r~-f-: co L O T - L O 9 CN CN id CD CD CO CO CO CD CO CD CD CD ZJ ZJ ZJ 3 CD h- 00 CD O O CD T f 00 00 CN O 00 o CN LO CO T f 00 CO co CD CN T f ' LO cb 1— 00 00 CD C D r— co T f r— T f 00 CN T - oo T - " T ~ CN T f T f T f CN CN v -( D n i - N CN CO 00 CD co co co CD co CD CD CO CD CD ZJ 3 ZJ ZJ 3 T - CN CO T f LO CN CN CN CN CN CD LO O CD O CD T f CO CO CO T f LO LO CD 1— CO f—' CN CO f T f CD CO tO ^ CN CN CD CO CO 00 LO ^ N O CD CD CO CO CO CD CD CD CD CD CD CD 3 3 3 3 3 CO I 00 CD O T -CN CN CN CN CO CO C L E 0 O *6 C L 1 i -I x l o 1 0 T f T f T f T — T — T ~ o d d K OD O0 O O T -d 9 9 T f T f T f T f co T f CO o o o o o C N r— o co T f C N L O r— co o d d d d d T - O T - CN d d LO h - CO T - co O T - CO CO LO T — T — CN CN CN T f CD CD CO CO T f T f CO T— d d d d d o CO •x— LO CD CD LO o CO CO CN csi c\i d d CN CO T f CO CO CO CO T f csi CN cd s ° 9 T T CD Is-- T T CO CD T f LO T - CO CO CO CO CO CO LO 00 CN 00 CO CO d T - " d CN CO CO CO CD CD CD CD CO CD CD CO CD CD CD CD CD CO CD CO CD CO CD CD CD CD CD C Z 3 C Z 3 CO T f LO CO N CO CD O T - T - T - CN T - CN CO T f LO CN CN CN CN CN CD CD CD CD CO CD CD CO CD CD • i i i i CZ CZ CZ CZ CZ 3 3 3 3 3 - 3 — 3 - 3 — 3 - 3 1 1 1 1 1 CO N CO O) O CN CN CN CN CO C L E 0 l- 0 CN 0 6 X ol E 0 s v. I— 0 0 T *•—' 6 X CN CN CN CN CN C3 C3 d d d O O CN T — T -0 0 9 9 9 CN CN T - oo 9 9 9 cd i n O T f . I CO CO LO T f cd CN CN o o T - T - L O c\i L O L O LO T f 1— r— d d Q . 0 O 1 T f CD d T - " T - 00 T T f d CN o co co CO CD 00 LO LO LO LO LO LO LO LO LO CD CD CD CD 9 9 9 9 9 CZ CZ CZ CZ CZ CZ cz CZ CZ 3 3 3 3 3 3 3 3 3 - 3 —3 —3 —3 —3 —3 —3 —3 —3 CN CO T f LO co 1— 00 CD CD cb °9 S CM (\| T -9 csi d d d LO LO LO LO LO CD CD CD CD CO CD CO CO 1- CD T ~ T — CN CN 00 CO CO T - CN d T—• CN CO CD CN T - T f CO coT- 1 10 1— ib LO LO LO LO LO CD CD CO CD CD T f C O LO LO T f T f CO CN 9 CO CD CO o CO T f CO CNi v " CD O LCD T f T f CD - 9 v 9 LO LO LO LO LO CD CD CD CD CD CD CN CN 00 T f d T -CO CN d cz 3 c 3 c 3 CN CO T f LO CO h- 00 CD O T - CN CO T f LO CN CN CN CN CN LO LO CD CD I I cz cz 3 3 —3 —3 I I co r— CN CN 245 co _i _j LU O Q _ l LU LU z z o H O CM LU X CO LU Ct I-LU 0. S LU LU H Z D Z < DC < LU I-X LU LL O CO LU V g LU > < >-_J < Q O II CD & CN - o X CL X CL 0 6 CD -I—» CO Q co C D i— o cj> ^ O v (N \ f co C N c\i c\i t - T f CN CD CN CD CM T f N. CN CN CN CN CO co LO CO CD CD co co CN d CO LO d CD CO CO CD CO CD CD CD CD CD I I i i i Q. CL Q. CL CL CD CD CD CD CL) CO CO CO CO CO i i i i i T- CN CO T f LO o o o o o h- CD T - CO CD CN CO CN - T - O esi d d d d T f C O CD T-. TT LO CO P o o 9 o d f>! £ CD £r CD L O co co q o, - 9 d 9 co C O C O C D C O C D C D C D C D C D C D i i i i i CL CL CL Q . Q . C D C D C D C D C D CO CO CO CO CO I— 00 C D O O O O v -LO CN o d d Tf L O r— co h- CD o o C D T f o T -CD CN CN CN LO LO o o o o o C D N M O ) J O T f T f C D ^ I \ N C N T - 6 9 CO CD CO CD CD CD CD CD CD CD i I I i i CL CL CL CL Q . CD CD CD CD CD CO CO CO CO CO • i t i i T— CN CO Tf LO C M O N i f C O N C D C O d o d o C O C O C O T f T f T f T f C N d o d o s co !^  L f ) N <P C D d d 9 N C D C D C D C D C D C D C D C D i i i i CL CL CL CL C D C D C D C D CO CO CO CO i i i i C O N C O O ) CL X ' C O C D C O L O C D T - o o o o 0 0 0 0 0 CO O N-•«- Tf LO d d d d d C O t -o o CN CD LO CN CN CD LO CD 00 O d d d 0 - r -co o in o i N O I— LO Tf. CN O C D T f 00 00 CN O CO 0 CN LO CO T f 00 CO CD CD CN T f LO CD 00 00 CD CL II C D - *— ' T— CZ 1 - O X o N CO CN N T~ T- CN T-T T S N T- T- C O T f O O C D CL I O, O O O O O r : 1 0 co cn N <N C O O ^ ^ \ - o cd 9 9 CO CD CO CD CD CD CD CD 1 1 1 1 I CD CD CD CD 3 3 3 3 < < < < 1 1 1 1 CN CO Tf LO O O O O O O T - CN CD CD O CD Tf CO CD CD CN CN T— cd L O d d CD CD CD CD CD CD CD CD CD CD 1 1 1 1 1 CD CD CD CD 0)1 3 3 3 3 3 < < < < < C D N C O O ) O O O O O T-00 CO CN CO T f T f LO 1 - CD CN T - T - CN (N CO t - CN O CN ^~ T f O T- CD T _ CN LO T f T f 9 CD CD CD CD CD CD CD CD CD CD 1 1 1 1 1 CD CD CD CD CD 3 3 3 3 3 < < < < < 1 1 1 1 1 ^ - CN CO Tf LO LO CN 00 CD CN r^ - T f 10 T- co T - ^ (N CN T -fN O O CD f-^ CO LO 1 - LO 9 CN CN O CD CO CO CD CO CD CD CD CD CD 1 1 1 1 1 CD CD CD CD CD| 3 3 3 3 3 < < < < < CD f - CD T f f -T f 00 CM T- 00 ^ T - CN T f T f Tf CN CM T-co n r - s c\i C O 00 oi CD O O T f CO T f LO CD CD CO CO LO ID CD N CO N CN CO f - Tf CD CD CO 00 LO d T— CD s co ro o T~ T- T- C N CD CD CD CD CD CD CD CD CD CD 1 1 1 1 1 0 ) 0 ) 0 ) 0 ) 0 ) 3 3 3 3 3 < < < < < 1 1 1 1 1 T- CN CO Tf LO CN CN CN CN CN CN CN CO CD CD CD CD CD CD CD CD CD CD CD 1 1 1 1 1 1 D) D) O) D) O) D l 3 3 3 3 3 3 < < < < < < , , , C D N co d) 6 CN CN CN CN CO APPENDIX 16 W A T E R C H E M I S T R Y 20 -TONNE ( F I E L D ) C E L L S CD : CO o _ l < o _ £ a> CO r; 0 t c T3 i TO X O C O -gr oo O ^ 1 n o CL ° < CJ) E •a co 3r L O O - T j - o x £ ' co co 3>l CL) "O (/) ' c " ° ' ™ i 0 = D) CL O p Z3 CO "O ro > T J =: -•=; o = cn l - to c/) c-b [ivity 'cm) o GO =3 o T J on E o 3 X D-l 0 ro Q 0 c rz o I o C N C N Tt Tt C O Tt Tt T -L O L O C O Tj- f C O O ) oo co TJ- h- co L O co r— o Tt- o o co oo C N 00 L O O O C N Tf C D C N C O L O 00 L O Tt I— C N C O C N p C D p r— TJ- L O L O cb C N cd C O 00 O C D C O C N T -co Tt co L O L O co co oo S C D Tt S9 00 00 h-2 o o) 1; (D N C O Tt C D oo h-CO h-co h-L O £ g C O C N O 00 CD CN LO CN Tt T— O h-hi hi r-1 r-1 hi od h-L O r n to C O C O C D C D cn C D C D cn cn cn n V - C D C D O C N O rr s o to .f0 O C N C N • K — — — C O C O C L " 3 3 3 3 3 0 O ~3 ~3 < < co o o o o o o o X X X X X X X O O O C N O T - co C O co o |j*C T— C N Tt o o £: C D C D O ) N „ L O C D co co L_ C M 00 00 L O I— 00 C O C N O C O TJ- L O cb L O o Tt 00 C N C N C N C N C D h-L O L O L O L O L O Tf Tt V V C O C O 00 C N C N C O Tt C O cn co co L O L O r— co C O Tf L O L O C D C O L O L O co h- co o co T -(D O S I O (N t N O) S N N O) iO CD O L O Tf Tf Tt Tt Tt hi r-1 hi r-1 hi hi r-1 L O cn C O co 59 5° 1 0 CD C D C D C D CD CD CD C O o o N O C D O C N C N T- C D C D O C N O C O C D 0_ 3 3 0 < < CO C N C N C N C N C N C N C N i i i i i i i o o o o o o o X X X X X X X 248 o E o — c "3) 2 -§ tn n +-> a 5 a o O) , E S * O CO CN t O t 00 00 O O J ™ co T f T f L O co T f o> T f T f r-~ co ^ T f t o co ro r- if r- in o CM CM oi o o . . . . . . . . ^ . ^ . . . . NT to CN CO Tf CN CN Tf co d to CN o r - - r ~ - c o o o o CO T- 00 00 O O O S O (O CO O C J I D i - CO O) 00 00 CO CN ^ CO \f N CO ^ LO CN Tf CN 00 CO N" iri N o i i- 6 d cri co C N T - •<-S g S g g s s g S S S g g g s lSSSss l l l l l l ! CD CO 00 CO CO ^ CO C D C D L O O l T f C O L O CN ri C\i CN T- O d C N T ^ C N C N ^ C p c p "7 V "7 « 7 I I I I I I I T- r-~ r -CN CN CO m co ! I ^ L O r- $2 O O O O CO in (N O O O O CN 9 CO T f CD CN T f CN c i -vi d ^ O) CO " ^ CN LO T f CO T f i CM CN CO T f CN T- i : CN o o 1 - CN CO LO CN T -o o o co o o T — o T- T- r-~ o T f oo co o) oi co o ••- r- LO oo o T f CO N CO CO T - N CO W CO LO IO o in if) m in rn m m o p O O o o § o o o d d o ' d £ CD CO CD 58 & 58 O O) S O) 0 1 0 1 "> T— r-T tri C7> O) CO o CN CN CD CN O l r ; — — — oi oo o. " 3 3 3 3 3 CD |0 -> - s - J < < C O 8 8 8 8-8 8 8 9 9 9 9 9 9 9 8 g g § S S S co" & CN" & 5 CN" 8 CN CN CM CN CN CN CN o o u o o o o o o o o u o o O C) & E o — C O) 2 • _ l O) E 2 CN CO T f O 00 O CN S CN O S i2 CN ^ co co T f co m T f . O) T f T f r~- T f ^  T f M» f O CD »- CO CD CO CN T- O) 7 IO CO CN CN IC) CO CN >r CO rCNCOOOr r-- co in r— o o o co co T - CD o o o in N r; T f q co T f q CN co m o CN o T- d T^ T^ N . in CO CM CM T f CM CO CO T f S CN o o o o o - r - c o r -T - O ) I ~ ~ T f T f o o o o r - r - CD ° in cri s ^ d d oo CD r-^  CN riV o g g o o o o o g g ° ° o o c n ^ J i i n c o c o T - co ^  J : IJ; ^ co m O) T f in N CO CO CD S § S ? S S S CN O ) in oo CD T f CD T ? S S S S ^ ? in co T f T f T f co co o in LO m m LO oo 0 in in m m m ^ ^ d d d d d O T ^ O O O O O l l l l l v-> l l l l l I I I I I I I l l l l l l o T — m m O O O O T - ' L O L O O O O O O L O Q o i d T - CN o i d d O O O C O T — O , ^ T- T f T f n CO i ' CN CO CO CN T- i u l o o o o o o o o o o t - ~ T - O 0 0 O T f CO CD T-T- CN CO IO CN T- CD T f T f o o CN o o o o in T-T- CD _ l >i,o o> oi in CD in in f o o co m CNm g ' r ^ c o T f c D T f c D T - s co in co in in CN ScScSSSSS 9 9 9 9 9 9 9 co" &" 8 8 5 S S" CN CN CN CN CN CM CN in in m m in in m o o o o o o o d d d d d d d • i i i i i i !5 CO CD CD ffi CD CO <*> OT o) cn o o) cn T — Q " «-T T - 0> O) CO o CN CN CD CN O r ; — — — o) co C L O -> -> -> < < co 249 l E3 I B E cu E | oil CD fc E o E 1^ | ~ ' E 3 E D I | "8 E CO —-O 3 o l i d | P | CO E —| £= D ) | ® E CO — CO CO O) 2 E < w CO IS- o r— co CM o co O CD O co co o o T t IS- IS- CD o LO co T t LO T f CM CM csi T- T- csi T _ d d d d d d d o o o o CO CD T— o o o o co CD T f IO CM LO CD O CN T f T f CO T f CM CO d d *~ d d d d d d d d d d d CM CM CM CM SO LO o in o CM CM CM CM m o CD Q in o d O i CD d i d • d • d • d d d • d q d d • CM o CM LO OD CD IS- o CO CD q CD o CD CD cb CO T— CO d T f CO d d cd csi T f T t T t T f LO CO l O in CM T— CM CM O CO O T f O co CSJ O IS-o IS-o CSI CSJ CM CSJ CO IS-o IS-O o d d d q d d d • d d d d 1 d • O <o o CD CO in o IS- CD CD CD CO T f C\i d —^ § iri i — d T t d d CD" T— IS- CD IS- CD CD T f co IS- T f CD in co CO CD T f q in d d d d d d CD CM m co CM T— CO CO O o O o o o o o O o o o o o CD di d d• d d• d d• d di d• d d d• CO CO CD o T t CO T f CM o x— i — m in CM O co IS- CO CO cn IS- IS- CD IS- CD in in CM IS- T f iri t — in T f co csi o o o o o O o o o o O o o O o IS- OD T f CO co IS- T— T f CD co CD CD CO T— oo CM co co T f CD co CD IS- CD LO CM T f T f —^CM co T f CSI CM CM CM CM T f CM CM O IS- IS-CM I s - , - i n i n i n m ^ f r - . T— t i i i ^ ^ co m 7 o> in csicor--Tf £ CD CD CD < § < ° < ° OD CD CD CD T-" i^" o " ro T- CD O) CO o CM CM ° ™ ° •ft — — — OD Cf) Q . " 3 3 3 3 3 CO O - ) - ) - > < < CO S CO CO <o g g g CD CD CD CD rr I s- o CD CO o CM CM o -O - 3 - 3 - 3 1 - CD CD O CN O CJ) OD Q . 3 3 3 0 < < CO 0 o o o o o o 1 X X I I I I CM CM CM CSI CM CM CSJ U 6 6 o o 6 x x x x x x x c 0)| cu d) E o o>| co E CD t CQ — E „ 3 _ J I f c o •I cf < E _ 3 _ l E o>| "2 E CD —-o co E 3 l | l O 2 E. 55 E ~ 3 C CT) 0) CD CO CD O) 2 E IS-o o O CO IS- CM I s- in T- I s-T- CM T- T- O CN o o o co JQ iQ Q CM CD in co p q • d d d c6 ^ CM I s- CD CD co in o CO CSI 1 - T f CO CM d d c> c i d d d csi o o o OD co to CM T f T t o 1 - q d d d d P o CM CM CM CN d d d d in to in o o o o d d o in o T f o o CM d T f d d cd d rsi TT TT T f T f co T f in O CM CM CN CO I s- I s- I s-o o o CM CM CSI CM J§ CD g d d d d ~ S H i i i i — C D o co in co co co I s-cd 0 0 Is— C) 0 0 T ~ r—• T- T- T- CM 1 - CM CM CN CN CN CN CO Q Q O O O O c j o o I s- T f 0 0 T—• d cd I s- CD CD TT co T f CD T f m d d d d d d d oo co d IS- CD CD in ^ d d O O o o o o o d d o d d c i c i O o o o o o o d o d d d d d T f CM CM t - CN CD •<-CD CM in m csi co CM CO T-CM T f CD T f CD T- OD T f T f co in o co d 1-1 ir i T t cd Csi o o o o O o o o O O O o O i n CD CO o Is- m m o o CD i n oo T f oo CM co CM co CD o Is- CD 0 0 T f •*— co CM co T f CM CM CM CN CM T f CM CM in m in m C S J C N C N C S I - ^ ^ - c O C M c s j C S I c M IO (D (O (O <o <D D CD CD CD CD CD CD CD m co co co co co co OD CD CD CD 0 5 0 5 0 5 rr IS- o CD CO o CM CM O 3 3 3 O "3 ~3 CD CD O CM O OD CD) Q . 3 3 CO < < CO rr IS- o CD co o CM CM O -> T- CD CD O CM O O) O) O J 3 3 CD < < CO O O O O O O O X X X X X X X CM CM CM CM CM CM CM i i i i i i i o o o o o o o X X X X X X X 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0078651/manifest

Comment

Related Items