UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Critical time in the PWC 170 test: the influences of work load duration, work load intensity, and state… Carr, Robin Victor 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A7_5 C37.pdf [ 6.11MB ]
Metadata
JSON: 831-1.0077409.json
JSON-LD: 831-1.0077409-ld.json
RDF/XML (Pretty): 831-1.0077409-rdf.xml
RDF/JSON: 831-1.0077409-rdf.json
Turtle: 831-1.0077409-turtle.txt
N-Triples: 831-1.0077409-rdf-ntriples.txt
Original Record: 831-1.0077409-source.json
Full Text
831-1.0077409-fulltext.txt
Citation
831-1.0077409.ris

Full Text

CRITICAL TIME I N THE PWC 1?0 TEST: THE INFLUENCES OF WORK LOAD DURATION, WORK LOAD INTENSITY, AND STATE OF TRAINING  by ;OBIN VICTOR CARR B.P.E., U n i v e r s i t y o f B r i t i s h Columbia, 1968  A THESIS SUBMITTED I N PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION  in THE FACULTY OF GRADUATE STUDIES ( S c h o o l o f P h y s i c a l E d u c a t i o n and R e c r e a t i o n )  We a c c e p t t h i s t h e s i s as c o n f o r m i n g to- t h e required standard  THE UNIVERSITY OF BRITISH COLUMBIA December 1979 ^ R o b i n V i c t o r C a r r , 1979  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.  It is understood that copying or publication  of this thesis for financial gain shall not be allowed without my written permission.  School of Physical Education and Recreation  The University of British Columbia 2075 W e s b r o o k P l a c e V a n c o u v e r , Canada V6T 1W5  Date  December 20, 1979  i  ABSTRACT The  purpose o f t h i s s t u d y was t o examine t h e concept o f " c r i t i c a l  time"  ( i . e . the time r e q u i r e d t o a c h i e v e s t e a d y - s t a t e h e a r t r a t e s ) i n t h e admin i s t r a t i o n o f t h e PWG 170 t h r e e - s t a g e  submaximal b i c y c l e ergometer t e s t .  S p e c i f i c a l l y , t h e problem i n v o l v e d d e t e r m i n i n g  the e f f e c t s of f o u r d i f f e r e n t  work l o a d d u r a t i o n p r o t o c o l s on 'D' s c o r e s ( w h i c h r e f l e c t e d t h e r e l a t i v e attainment  o f s t e a d y - s t a t e h e a r t r a t e s ) and on PWG 170 s c o r e s .  The combined  e f f e c t o f t h e o r d e r and r e l a t i v e i n t e n s i t y o f t h e work l o a d s on t h e 'D' s c o r e s was a l s o s t u d i e d , as was t h e e f f e c t o f s t a t e o f t r a i n i n g on b o t h 'D* s c o r e s and PWG 170 s c o r e s . E i g h t endurance-trained  and e i g h t u n t r a i n e d c o l l e g e males, aged 18  t o 3 0 , t o o k a p r e l i m i n a r y t e s t t o v e r i f y placement i n t o t h e i r groups and t o d e t e r m i n e work l o a d s f o r t h e e x p e r i m e n t a l underwent f o u r e x p e r i m e n t a l PWG 170 t e s t s .  study.  Each s u b j e c t then  Each t e s t c o n s i s t e d of three  p e r i o d s o f b i c y c l e ergometer work o f i n c r e a s i n g i n t e n s i t y w i t h t h e d u r a t i o n o f t h e work p e r i o d s e t a t 3 i ^> 5>  o  r  6 minutes f o r t h e f o u r t e s t v a r i a t i o n s .  There was an i n t e r v a l o f a t l e a s t two days between t e s t s , w h i c h were administered i n a counterbalanced  Latin-square design.  The p e d a l l i n g cadence  on t h e Monark b i c y c l e ergometer was 50 r.p.m., and t h e warm-up c o n s i s t e d o f work l o a d f o r two minutes.  Continuous m o n i t o r i n g o f t h e s u b j e c t ' s E.K.G.  p e r m i t t e d c a l c u l a t i o n s o f f a v e r a g e h e a r t r a t e f o r e v e r y 15-second i n t e r v a l . These h e a r t r a t e s , and t h e a s s o c i a t e d work l o a d s , p r o v i d e d t h e raw d a t a f o r this  study. L i n e a r r e g r e s s i o n was used t o determine t h e PWG 170 s c o r e s , w h i l e an  ii  asymptotic  r e g r e s s i o n program was chosen t o p r e d i c t s t e a d y - s t a t e  f o r each s u b j e c t a t each work l o a d i n a l l f o u r t e s t s .  heart r a t e  These p r e d i c t e d  s t e a d y - s t a t e h e a r t r a t e s were t h e n s u b t r a c t e d from t h e l a s t 15-second average h e a r t r a t e s f o r a l l work p e r i o d s t o y i e l d a 'D' s c o r e .  This  'D* s c o r e  then  gave an i n d i c a t i o n o f t h e e x t e n t t o w h i c h s t e a d y - s t a t e h e a r t r a t e s were achieved.  The hypotheses were t e s t e d t h r o u g h t h e use o f two-way and three-way  ANOVA's and p r e p l a n n e d o r t h o g o n a l  comparisons.  The o r i g i n a l a n a l y s i s showed a t r e n d toward i n c r e a s i n g PWG 170 s c o r e s w i t h s h o r t e r d u r a t i o n work p e r i o d s , b u t t h e e f f e c t was n o t s i g n i f i c a n t a t t h e .05 l e v e l .  However, a f t e r a c a r e f u l a n a l y s i s o f t h e r e s u l t s , one o f t h e  t r a i n e d s u b j e c t s was c l a s s i f i e d as an " o u t l i e r " (one whose d a t a  contributes  t o o much v a r i a n c e t o be c o n s i d e r e d r e p r e s e n t a t i v e ) and a n o t h e r ANOVA was r u n w i t h t h i s subject's aberrant data deleted.  The s t a t i s t i c a l r e s u l t s were now  v e r y d i f f e r e n t , w i t h t h e p r o t o c o l s e f f e c t h i g h l y s i g n i f i c a n t ( p < . 0 0 1 ) , and e x p l a i n e d w e l l by a l i n e a r f u n c t i o n ( p < . 0 0 l ) .  On t h e b a s i s o f t h e s e  ambiguous f i n d i n g s , c o n f i d e n t c o n c l u s i o n s r e g a r d i n g t h e p r o t o c o l s e f f e c t must await f u r t h e r study. The f i r s t ANOVA showed no e v i d e n c e o f an i n t e r a c t i o n e f f e c t between s t a t e o f t r a i n i n g and t h e p r o t o c o l s e f f e c t , however t h e second, 'post hoc ANOVA' ( w i t h s u b j e c t " o u t l i e r " d e l e t e d )  found a s i g n i f i c a n t d i f f e r e n c e w h i c h  s u g g e s t e d t h a t t r a i n e d a t h l e t e s may have t h e i r PWG 170 s c o r e s  overestimated  more t h a n u n t r a i n e d s u b j e c t s as a r e s u l t o f s h o r t e r d u r a t i o n p r o t o c o l s . There was a h i g h l y s i g n i f i c a n t p r o t o c o l s e f f e c t i n t h e 'D' s c o r e s ( p < . 0 0 l ) w h i c h was e x p l a i n e d almost e n t i r e l y by a l i n e a r f u n c t i o n  (p<.00l).  T h i s d a t a t h e r e f o r e tends t o s u p p o r t t h e 'post hoc ANOVA' f o r t h e PWG 170  iii  s c o r e s , s i n c e t h e s e s c o r e s are o b v i o u s l y dependent on the e x t e n t t o w h i c h s t e a d y - s t a t e has been a c h i e v e d . h~minute  Although  the 'D'  s c o r e s s u g g e s t e d t h a t the  p r o t o c o l might be o p t i m a l f o r a c h i e v i n g s t e a d y - s t a t e v a l u e s ,  assumes t h a t an a s y m p t o t i c  this  f i r s t - o r d e r model a c c u r a t e l y p r e d i c t s s t e a d y - s t a t e  heart rates. I n t h i s l i g h t , the l a c k o f a s i g n i f i c a n t e f f e c t  of s t a t e of  training  o r work l o a d n u m b e r / i n t e n s i t y  on c r i t i c a l t i m e , shown by t h i s s t u d y , must  be i n t e r p r e t e d w i t h c a u t i o n .  F u r t h e r s t u d y w i t h 'D'  o r d e r models may  s c o r e s based on second-  uncover s i g n i f i c a n t main and i n t e r a c t i o n  effects.  iv  TABLE OF CONTENTS Chapter I  Page STATEMENT OF THE PROBLEM  1  Introduction  1  Purpose  3  Delimitations  3  Assumptions and L i m i t a t i o n s  . . .  4  Hypotheses  it5  Definitions Significance II  5  o f the Study  REVIEW OF THE LITERATURE  7  L i m i t a t i o n s o f R e s t i n g and R e c o v e r y H e a r t R a t e s and Maximal E x e r c i s e T e s t s f o r M e a s u r i n g C i r c u l a t o r y Functional Capacity  7  A Summary o f t h e P r i n c i p l e s U n d e r l y i n g Submaximal C i r c u l a t o r y F u n c t i o n a l C a p a c i t y and P h y s i c a l Work C a p a c i t y T e s t s Based on Steady-State Heart Rates  9  - M e c h a n i c a l Work v e r s u s P h y s i o l o g i c a l Work - P h y s i o l o g i c a l Work v e r s u s Oxygen Uptake - Oxygen Uptake v e r s u s C a r d i a c Output - C a r d i a c Output v e r s u s H e a r t R a t e The PWC 170 T e s t .  .  .  . . .  . 14 15 . 16 16 17  E f f e c t s o f Work Load D u r a t i o n  20  E f f e c t s o f Work Load I n t e n s i t y  24  E f f e c t s of State of Training III  .  METHODS AND PROCEDURES  . 25 28  Subjects  28  Procedures  28  V  TABLE OF CONTENTS Chapter  IV  Page Experimental Conditions  29  C o l l e c t i o n of the data  30  Treatment o f t h e D a t a  30  E x p e r i m e n t a l D e s i g n and S t a t i s t i c a l A n a l y s i s . . . .  31  - Hypotheses  1 and 2  31  - Hypotheses  3> ^ and 5  32 33  RESULTS AND DISCUSSION  - • 33  Results  - pwc  170  34 38  - 'D' S c o r e s  . 44  Discussion  V  - PWC 170  44  - 'D' S c o r e s  49 53  SUMMARY AND CONCLUSIONS S ummary  53  Conclusions  55  - PWC 170 S c o r e s  -55 56  - 'D' S c o r e s REFERENCES  58  APPENDICES  71 72  Appendix A - Raw D a t a Appendix B - 'D' S c o r e s ( C a l c u l a t i o n s ) .  .  .•  81  vi  LIST OF TABLES Table  Page  II - 1  Chain o f Assumptions ( C o r r e l a t i o n Between Work Loads and H e a r t Rates)  13  II - 2  Mean T r a n s i e n t H e a r t Rate Responses (Percentage o f 6 t h Minute " S t a b l e - S t a t e " Values)  . 2 3  III - 1  29  Schedule o f Test P r o t o c o l s ( C o u n t e r b a l a n c e d L a t i n - s q u a r e Design)  III - 2  C a l c u l a t i o n o f 'D' S c o r e s  31  III - 3  E x p e r i m e n t a l D e s i g n - Hypotheses 1 and 2  J2  III - 4  E x p e r i m e n t a l D e s i g n - Hypotheses 3. 4 and 5  32  IV - 1  I n d i v i d u a l PWC 170 S c o r e s  IV - 2  PWC S c o r e s (Group Means and S t a n d a r d D e v i a t i o n s ) PWG S c o r e s  IV - 3  .  . 34 34 35  (Summary o f ANOVA) IV - 4  I n d i v i d u a l *D* S c o r e s  IV - 5  'D' S c o r e s (Group Means and S t a n d a r d D e v i a t i o n s ) . . 'D' S c o r e s (Summary o f ANOVA)  IV - 6  39 39 „ 40  IV - 7  'D' S c o r e s P r o t o c o l s E f f e c t on Group Means (Averaged Over A l l 3 Work Loads)  41  IV - 8  PWG 170 S c o r e s , (Summary o f ANOVA - P o s t Hoc - S u b j e c t ' 0 5 ' D e l e t e d )  46  vii  LIST OF FIGURES Figure  Page  IV - 1  PWG 1?0 S c o r e s (Means)  37  IV - 2  'D' S c o r e s (Group Means Averaged Over t h e Three Work Loads Under A l l F o u r P r o t o c o l s )  h2  IV - 3  PWG 170 S c o r e s (Means) (Subject ' 0 5 ' Deleted)  48  viii  ACKNOWLEDGEMENTS  The a u t h o r w i s h e s t o e x p r e s s h i s g r a t i t u d e t o t h e members o f h i s t h e s i s committee:  D r . Kenneth  C o u t t s (Committee Chairman), D r . R o b e r t S c h u t z ,  D r . S t a n l e y Brown, and D r . Hugh V e n a b l e s . appreciated.  T h e i r p a t i e n c e and e f f o r t s were  S p e c i a l thanks go t o D r s . C o u t t s and S c h u t z f o r t h e i r v a l u a b l e  h e l p and s u g g e s t i o n s t h r o u g h o u t t h e d u r a t i o n o f t h i s s t u d y . I a l s o w i s h t o thank my w i f e , Wendy, f o r t y p i n g even i n good weather.  CHAPTER 1 STATEMENT "OF THE  PROBLEM  Introduction The  s i m p l e s t , s a f e s t , and most e x t e n s i v e l y a p p l i e d method o f t e s t i n g  the c i r c u l a t o r y f u n c t i o n a l c a p a c i t y i s a c h i e v e d t h r o u g h the  determination  of h e a r t r a t e response t o submaximal e x e r c i s e ( American C o l l e g e of M e d i c i n e , 1975;  Andersen e t a l . , 1971;  Astrand  and R o d a h l , 1 9 7 0 ) .  o f t h i s type u s u a l l y i n v o l v e measurement of the s t e a d y - s t a t e  Sports Tests  heart  rates  produced by g i v e n work l o a d s , and y i e l d a p r e d i c t i o n o f c i r c u l a t o r y f u n c t i o n a l c a p a c i t y as d e f i n e d by maximal oxygen uptake or p h y s i c a l work capacity. The  r a t e a t w h i c h e x t e r n a l m e c h a n i c a l work can be performed a t a  h e a r t r a t e o f 170  b e a t s p e r minute (PWC  170)  measure o f p h y s i c a l w o r k i n g c a p a c i t y and,  has been w i d e l y used as  t o a l e s s e r e x t e n t , as  an  i n d i r e c t measure or p r e d i c t o r ,<3f c i r c u l a t o r y f u n c t i o n a l c a p a c i t y . t e s t was  a  The  o r i g i n a l l y d e v i s e d by S j o s t r a n d (19^7) and Wahlund ( 1 9 ^ 8 ) ,  and  has been r e p o r t e d i n the l i t e r a t u r e as h a v i n g been used i n a t l e a s t 36 s t u d i e s i n many d i f f e r e n t c o u n t r i e s (Watson and O'Donovan, 1976). I n i t s o r i g i n a l form i t c o n s i s t e d of t h r e e 6-minute p e r i o d s submaximal e x e r c i s e (Wahlund, 19^8). have m o d i f i e d t h i s p r o t o c o l .  S i n c e then a number o f i n v e s t i g a t o r s  Some have used a p r o t o c o l w h i c h i n c l u d e d  6-minute work l o a d s (Adams, I 9 6 I ; Cumming and D a n z i n g e r , 1963; I 9 6 5 ) . w h i l e i n one  of  two  Be V r i e s ,  Canadian s t u d y , Alderman (1969) used t h r e e 4-minute  work l o a d s . Watson and O'Donovan i n I r e l a n d (1976) r e p o r t t h a t r e d u c i n g the work p e r i o d s from s i x t o f i v e minutes d u r a t i o n had no s i g n i f i c a n t e f f e c t on PWC  170  s c o r e s , but t h a t a r e d u c t i o n t o f o u r minutes r e s u l t e d i n a 4 1  per  2 cent e l e v a t i o n o f scores.  According t o the p r i n c i p l e s underlying t h i s  t e s t , t h i s e l e v a t i o n o f scores i n d i c a t e s decreased heart r a t e s f o r a t l e a s t one o f t h e w o r k l o a d s ,  and t h i s s u g g e s t s t h a t t h e f o u r t h minute  measurements may have been premature f o r t h e a t t a i n m e n t o f s t e a d y - s t a t e v a l u e s , a t l e a s t f o r some o f t h e subgects i n v o l v e d . W e i n e r and L o u r i e (1969) s t a t e t h a t i n submaximal t e s t s t h r e e 4-minute work l o a d s may be p r e f e r a b l e t o f o u r 3-rcinute l o a d i n g s , s u g g e s t i n g i m p l i c i t l y t h a t ' t h e r e i s a minimum c r i t i c a l time r e q u i r e d f o r w o r k i n g a t e a c h l o a d , t h a t t t i m e b e i n g dependent upon t h e r a t e o f c a r d i o a c c e l e r a t i o n to steady-state. W i t h e r s e t a l . (1977) compared PWG 170 s c o r e s u s i n g 3 d i f f e r e n t formats:  two 6-minute work l o a d s , t h r e e 4—minute work l o a d s , and f o u r  3-minute work l o a d s .  A l t h o u g h t h e y d i d n o t ; f i n d any s t a t i s t i c a l l y  signifi-  c a n t d i f f e r e n c e s ( a t t h e .05 l e v e l ) , t h e group mean s c o r e s o f t h e d i f f e r e n t f o r m a t s ( e x p r e s s e d i n KGM./KG./Miri.) suggested a t r e n d toward h i g h e r s c o r e s for  t h e s h o r t e r work p e r i o d s .  The group means were, r e s p e c t i v e l y , 17.295i  17.992, and 18.179. A c c o r d i n g t o Andersen e t a l . (1971) t h e o b j e c t i v e o f t h i s type o f submaximal e x e r c i s e t e s t s h o u l d be t o produce "...4 e v e n l y  spaced,pulse  r e a d i n g s over t h e range 40 - 80% o f a e r o b i c power..." ( p . 55) and t h e work l o a d s s h o u l d each be o f " . . . a t l e a s t 4 minutes..."  d u r a t i o n ( p . 5^)•  No mention was made, however, o f t h e n a t u r e o f t h e j u s t i f i c a t i o n f o r c h o o s i n g 4 minutes as t h e minimum c r i t i c a l time f o r each w o r k l l o a d . There may be m e d i a t i n g f a c t o r s w h i c h have been o v e r l o o k e d a s f a r as t h e i r e f f e c t s on t h i s c r i t i c a l time i s concerned.  I t may w e l l be, f o r  i n s t a n c e , t h a t t h e c r i t i c a l time d e c r e a s e s f o r t h e h e a v i e r work l o a d s , s i n c e A s t r a n d and R o d a h l s t a t e t h a t " t h e h e a v i e r t h e work l o a d , t h e s t e e p e r  3 i s t h e i n c r e a s e i n ... h e a r t r a t e " ( A s t r a n d and R o d a h l , 1970, • 2 &5-'6)z:  :  T h i s g r e a t e r c a r d i o a c c e l e r a t i o n may l e a d t o t h e q u i c k e r a t t a i n m e n t o f steady-state. A l s o , t h e i n d i v i d u a l ' s s t a t e o f t r a i n i n g may m o d i f y t h i s time.  critical  Although there i s l i t t l e e x i s t i n g evidence i n t h i s area, i t i s a t  l e a s t t h e o r e t i c a l l y p o s s i b l e t h a t a h i g h l y t r a i n e d c i r c u l a t o r y system may be a b l e t o a c h i e v e s t e a d y - s t a t e f a s t e r i n o r d e r t o m i n i m i z e t h e amount o f a n a e r o b i c work t h a t must be done d u r i n g t h e f i r s t few minutes. Purpose The purpose o f t h i s s t u d y i s t o examine t h e concept o f " c r i t i c a l  time"  i n the a d m i n i s t r a t i o n o f t h e PWG 170 t e s t , by a n a l y z i n g t h e h e a r t r a t e r e s p o n s e s and t e s t r e s u l t s o f s u b j e c t s u n d e r g o i n g f o u r d i f f e r e n t p r o t o c o l s o f t h i s t e s t ; ( i . e . t h r e e 3-minute l o a d s , t h r e e 4-minute l o a d s ,  three  5-minute l o a d s , t h r e e 6-minute l o a d s ) . S p e c i f i c a l l y , t h e problems a r e as f o l l o w s : 1.  t o determine t h e e f f e c t s o f these f o u r d i f f e r e n t d u r a t i o n p r o t o c o l s on c r i t i c a l times and PWG 170  2.  t o determine t h e e f f e c t s o f r e l a t i v e i n t e n s i t y o f t h e work l o a d s on critical  3.  scores;  times;  t o determine t h e e f f e c t s o f t h e s u b j e c t ' s s t a t e o f t r a i n i n g on c r i t i c a l times and PWG 170  scores.  Delimitations 1.  T h i s s t u d y i s d e l i m i t e d t o c o l l e g e males between t h e ages o f 18 and 30.  Assumptions and 1.  The  limitations  s u b j e c t s o f t h i s s t u d y do not r e p r e s e n t  a random s a m p l i n g o f t h e i r  r e s p e c t i v e p o p u l a t i o n s , s i n c e t h e y were a l l v o l u n t e e r s .  I t i s assumed,  however, t h a t t h i s b i a s w i l l n o t a f f e c t the p h y s i o l o g i c a l v a r i a b l e measured. 2.  I t i s assumed t h a t *D'  s c o r e s , o b t a i n e d by p r e d i c t i n g the  h e a r t r a t e and s u b t r a c t i n g i t from the a c t u a l h e a r t r a t e  asymptotic recorded  d u r i n g the l a s t minute o f a g i v e n work l o a d , g i v e a r e a s o n a b l y measure o f the e x t e n t t o w h i c h s t e a d y - s t a t e s , and t h e r e f o r e t i m e s , have been  valid  critical  achieved.  Hypotheses 1.  The PWG  170  s c o r e s f o r u n t r a i n e d s u b j e c t s d e r i v e d from 3- and 4-minute  C-£pl*work l o a d d u r a t i o n p r o t o c o l s are h i g h e r t h a n t h o s e r e s u l t i n g f r o m  5-  and 6-minute p r o t o c o l s . 2.  The PW!G  170  s c o r e s f o r t r a i n e d s u b j e c t s d e r i v e d from the 3  _ m i n u  " t e work  l o a d d u r a t i o n p r o t o c o l are h i g h e r t h a n t h o s e r e s u l t i n g f r o m 4 - , K-:>  and 6-minute p r o t o c o l s .  3.  There i s a s i g n i f i c a n t d i f f e r e n c e i n 'D  1  s c o r e s among the  p r o t o c o l s , w i t h the 3~ and 4 - m i n u t e p r o t o c o l s p r o d u c i n g t i v e v a l u e s t h a n the 5-  and 6-minute p r o t o c o l s .  5-»  different  g r e a t e r nega-  These g r e a t e r  negative  values thereby i n d i c a t e a decreased extent to which steady-state, t h e r e f o r e c r i t i c a l t i m e s , have been 4.  and  achieved.  There i s a s i g n i f i c a n t d i f f e r e n c e i n *D'  s c o r e s between t r a i n e d and  u n t r a i n e d s u b j e c t s , w i t h the t r a i n e d s u b j e c t s e x h i b i t i n g  significantly  •_ ':•  f e w e r n e g a t i v e v a l u e s , i n d i c a t i n g a g r e a t e r achievement o f s t e a d y - s t a t e .  5.  There i s a s i g n i f i c a n t d i f f e r e n c e i n 'D'  s c o r e s between the 1st  and  3rd  5 work l o a d s o f the PWG producing  170  t e s t s , w i t h the Jxd  s i g n i f i c a n t l y l e s s negative  (most i n t e n s e ) work l o a d  values, i n d i c a t i n g a greater  achievement of s t e a d y - s t a t e . Definitions?  Critical  time.  The  minimum time r e q u i r e d f o r e x e r c i s i n g a t a submaximal  work l o a d i n o r d e r t o a c h i e v e  a steady-state heart r a t e .  Work l o a d i n t e n s i t y ( i n PWG  170  test).  Work l o a d i n t e n s i t y r e f e r s t o the amount o f m e c h a n i c a l work b e i n g performed p e r u n i t o f t i m e .  2.  170  the PWG  t e s t , t h i s i s measured i n k i l o p o n d meters  p e r minute, (KPM/Min.).  Increases i n r e l a t i v e  are s e q u e n t i a l l y o r d e r e d i n a l l PWG (i.e.  I n the case o f  170  intensity  t e s t protocols  the f i r s t work l o a d i s the l i g h t e s t , the  third  i s the h e a v i e s t ) , so t h a t i n t e n s i t y o f e f f o r t i n the PWG  170  t e s t r e f l e c t s a compounded v a r i a b l e i n v o l v i n g  n o t o n l y r e l a t i v e i n t e n s i t y b u t a l s o the amount of e l a p s e d t e s t time and the h e a r t r a t e r e s p o n s e s t o previous S i g n i f i c a n c e o f the The  present  loads.  study  s t u d y may  add t o the body of knowledge  concerning  submaximal p h y s i c a l work c a p a c i t y t e s t s based on s t e a d y - s t a t e h e a r t r a t e s , s p e c i f i c a l l y t h e PWG  170.  I t i s hoped t h a t i t w i l l add t o the  information  r e q u i r e d t o e s t a b l i s h more v a l i d p r o t o c o l s f o r t h i s and s i m i l a r t e s t s ,  and  perhaps as w e l l shed some l i g h t on c a r d i o a c c e l e r a t i o n t o s t e a d y - s t a t e ,  the  c r i t i c a l t i m e s r e q u i r e d f o r a c h i e v i n g s t e a d y - s t a t e , and the e x t e n t  to  6  w h i c h c r i t i c a l t i m e s are a f f e c t e d by work l o a d i n t e n s i t y and the state of t r a i n i n g .  subject's  CHAPTER I I REVIEW OF-THE LITERATURE L i m i t a t i o n s o f r e s t i n g and r e c o v e r y h e a r t r a t e s ' a n d maximal e x e r c i s e t e s t s f o r measuring c i r c u l a t o r y f u n c t i o n a l c a p a c i t y "No o b j e c t i v e measurements made on the r e s t i n g i n d i v i d u a l w i l l r e v e a l h i s c a p a c i t y f o r p h y s i c a l work o r h i s maximal a e r o b i c power." ( A s t r a n d and R o d a h l , 1970, 3^+9) An examplexwhi'ch s u p p o r t s t h i s s t a t e m e n t i s the use o f the s o - c a l l e d " r e s t i n g h e a r t r a t e " i n the p r e d i c t i o n o f an i n d i v i d u a l ' s c i r c u l a t o r y f i t n e s s or f u n c t i o n a l c a p a c i t y .  Even i f a t r u e r e s t i n g h e a r t r a t e i s  measured, f r e e from the c o n f o u n d i n g e f f e c t s o f i n c r e a s e d a r o u s a l l e v e l s , temperature r e g u l a t i o n f u n c t i o n s , f a t i g u e , e t c . , a c c u r a t e p r e d i c t i o n s s t i l l cannot s a f e l y be made.  A low r e s t i n g h e a r t r a t e may  be an i n d i c a t i o n  o f a l a r g e s t r o k e volume w h i c h has r e s u l t e d from a p r o l o n g e d a e r o b i c form o f t r a i n i n g , but i t may disease.  p e r i o d o f an  a l s o be a symptom o f c a r d i o v a s c u l a r  F o r example, the l e f t v e n t r i c u l a r h y p e r t r o p h y  w h i c h may  result  from c h r o n i c hypertension i s o f t e n a s s o c i a t e d w i t h a b r a d y c a r d i a which c o u l d be m i s t a k e n f o r a b e n e f i c i a l e f f e c t o f a e r o b i c t r a i n i n g .  Also,  w h i l e an i n d i v i d u a l w i l l g e n e r a l l y e x h i b i t d e c r e a s e s i n the r e s t i n g h e a r t r a t e a f t e r adapting to increased l e v e l s of p h y s i c a l a c t i v i t y ,  such  c o r r e l a t i o n s d i m i n i s h s i g n i f i c a n t l y when comparisons a r e made between i n d i v i d u a l s ( A s t r a n d and R o d a h l , 1970,  3^9;  Gureton, 19^7,  1951,  1957).  On the o t h e r hand, maximal t e s t s f o r c i r c u l a t o r y f u n c t i o n a l c a p a c i t y have t h e i r own  a t t e n d a n t problems.  p r e d i c t i o n equations  W h i l e the e r r o r o f e s t i m a t e  from  i s a v o i d e d by d i r e c t l y measuring the maximal v a l u e s  o f oxygen uptake or work c a p a c i t y d u r i n g work done t o e x h a u s t i o n , p o t e n t i a l sources  o f e r r o r appear.  other  Motivation i s a d i f f i c u l t f a c t o r to  c o n t r o l , and l a c k o f m o t i v a t i o n i n the s u b j e c t may 7  prevent  t r u e maximal  8  v a l u e s from b e i n g a t t a i n e d .  Even i n a h i g h l y m o t i v a t e d s u b j e c t ,  the  a c t u a l maximal work p e r f o r m e d i s a compounded v a r i a b l e w h i c h r e f l e c t s much more t h a n j u s t c i r c u l a t o r y f u n c t i o n a l c a p a c i t y . measure would be the  capacity  a f f e c t e d by f a c t o r s l i k e the m e c h a n i c a l e f f i c i e n c y o f  s u b j e c t a t the s p e c i f i c p h y s i c a l t a s k i n v o l v e d ,  r e s o u r c e s a v a i l a b l e t o the s u b j e c t , subject,  T h i s work  etc., therefore  any  the  the a n a e r o b i c e n e r g y  l a c t i c acid tolerance  of  the  p r e d i c t i o n of c i r c u l a t o r y f u n c t i o n a l  capacity  based on maximal work c a p a c i t y would have t h e s e f a c t o r s as s o u r c e s of  error.  O n l y the d i r e c t measurement o f maximal oxygen uptake f r o m a work t e s t c a r r i e d t o o r n e a r e x h a u s t i o n i s f r e e from o t h e r t h a n measurement e r r o r , and  t h i s procedure's requirements of s o p h i s t i c a t e d  personnel, generally  l a r g e t i m e committment, and  c e r t a i n amount of d i s c o m f o r t and  (see  approach i n v o l v e s cessation  A s t r a n d and R o d a h l , 1970,  o f the  a  subject  who  o f t h i s type o f t e s t p r a c t i c a l  under o n l y the b e s t o f c i r c u m s t a n c e s (see  i m m e d i a t e l y a f t e r the  the a s s u m p t i o n o f  even r i s k on the p a r t  must be h i g h l y m o t i v a t e d , make the use  Another p o s s i b l e  equipment, t r a i n e d  A s t r a n d and R o d a h l , 1970, the measurement of h e a r t  344-9). rates  of e i t h e r maximal or submaximal work 350-1, and  G u r e t o r n , 194-7, 1951,  T e s t s i n v o l v i n g r e c o v e r y h e a r t r a t e s have been i n use  1957).  f o r some t i m e ,  but  t h e y have some s p e c i f i c d e l i m i t a t i o n s as f a r as t h e i r u s e f u l n e s s i n p r e d i c t i n g c i r c u l a t o r y f u n c t i o n a l c a p a c i t y i s concerned ( A s t r a n d R o d a h l , 1970,  350-1; Guretonn, 194-7, 1951,  Rhyming, 1953)•  A l t h o u g h the  submaximal work and  1957;  and  Johnson e t a l . , 194-2;  c o r r e l a t i o n between the h e a r t r a t e  1 t o i f - minutes a f t e r the work has  during  been r e p o r t e d  as  h i g h as r=0.96 f o r t h e same i n d i v i d u a l s (Rhyming, 1953)» i t d e c r e a s e s s u b s t a n t i a l l y when based on a group o f s u b j e c t s ( r = 0 . 7 7 , Rhyming, 1953).  F a c t o r s s u c h as t h e amount o f a n a e r o b i c work p e r f o r m e d , t h e degree o f oxygen debt and t h e amount o f b l o o d l a c t a t e accumulated may  a f f e c t the  r e c o v e r y h e a r t r a t e and weaken i t s c o r r e l a t i o n w i t h c i r c u l a t o r y f u n c t i o n a l capacity.  While recovery heart r a t e g e n e r a l l y decreases a f t e r a p e r i o d  of a e r o b i c t r a i n i n g , i t g i v e s o n l y a rough i d e a of the c i r c u l a t o r y funct i o n a l c a p a c i t y when measured a t a s i n g l e p o i n t i n t i m e , e s p e c i a l l y i n - • terms o f comparing one i n d i v i d u a l t o  another.  A summary o f t h e p r i n c i p l e s u n d e r l y i n g submaximal c i r c u l a t o r y f u n c t i o n a l c a p a c i t y and p h y s i c a l work c a p a c i t y t e s t s based on s t e a d y - s t a t e h e a r t r a t e s P.O.  A s t r a n d (1952) s t u d i e d the r e l a t i o n s h i p between s t e a d y - s t a t e  h e a r t r a t e s and oxygen uptakes i n 86 p h y s i c a l e d u c a t i o n s t u d e n t s ,  and  found t h a t i n submaximal and maximal work, h e a r t r a t e s i n c r e a s e d i n two, b a s i c a l l y l i n e a r p a t t e r n s (one f o r males and one f o r f e m a l e s ) w i t h i n c r e a s e s i n oxygen uptakes.  There was,  however, c o n s i d e r a b l e s c a t t e r o f the  data  around these l i n e a r p a t t e r n s , i n d i c a t i n g a l e s s t h a n p e r f e c t c o r r e l a t i o n . T h i s l e d P.O.  A s t r a n d and I . Rhyming (195^) "to c o n s t r u c t a nomogram  f o r t h e p r e d i c t i o n o f maximal oxygen uptake from submaximal s t e a d y - s t a t e p u l s e r a t e s r a n g i n g from 120  t o 170  b e a t s p e r minute.  below 120 were found t o no l o n g e r a d e q u a t e l y T h i s nomogram was  subsequently  R a t e s above 170  and  a b i d e by a l i n e a r r e l a t i o n s h i p .  m o d i f i e d by I . A s t r a n d ( i 9 6 0 ) , who  found t h a t p e r s o n s o v e r 25 y e a r s o f age c o n s i s t e n t l y had t h e i r maximal oxygen uptakes o v e r e s t i m a t e d .  She  e x p l a i n e d t h i s on t h e b a s i s o f t h e  o b s e r v e d r e d u c t i o n i n maximal p u l s e r a t e s w i t h age, duced an age  and a c c o r d i n g l y i n t r o -  c o r r e c t i o n f a c t o r i n t o the nomogram, w h i c h a l l o w e d more  a c c u r a t e p r e d i c t i o n s f o r p e o p l e i n v a r i o u s age groups o r w i t h , i f known, v a r i o u s maximal h e a r t r a t e s .  The  s t a n d a r d e r r o r o f t h i s method o f  10  p r e d i c t i n g maximal oxygen uptake f r o m submaximal s t e a d y - s t a t e rates i s reported the same age  t o be 10% i n r e l a t i v e l y w e l l - t r a i n e d i n d i v i d u a l s of  group.  of d i f f e r e n t age  I t r i s e s t o 15%  i n moderately t r a i n e d i n d i v i d u a l s  groups, however, even when the age  f a c t o r f o r the  t i o n o f maximal h e a r t r a t e s i s used ( I . A s t r a n d , i 9 6 0 ) . R o d a h l (1970, 355)  heart  correc-  Astrand  and  s u g g e s t t h a t s e v e r a l t e s t s s h o u l d be performed a t  d i f f e r e n t t e s t l o a d s , and  the mean f i g u r e s c a l c u l a t e d a c c o r d i n g  to  the  nomogram. The  v a l i d i t y o f t h i s nomogram has  been t e s t e d i n a number of  w i t h the p r e d i c t i o n s from the nomogram sometimes c o r r e l a t i n g w e l l measured maximal oxygen uptakes ( G l a s s f o r d e t a l . , 19^5; I966), and  studies, with  Teraslinna et a l . ,  a t o t h e r t i m e s u n d e r e s t i m a t i n g the a c t u a l maximal oxygen  u p t a k e s ((iGhase e t a l , , I966; R o w e l l e t a l . , 1964; I t s h o u l d be n o t e d t h a t w h i l e ergometer s t u d i e s , i t has  t h i s nomogram was  von D o b e l n e t a l . , 1967)  p r i m a r i l y used i n b i c y c l e  a l s o been adapted f o r use w i t h s t e p t e s t s  and  t r e a d m i l l r u n n i n g t e s t s (E??jAsjtrand951960; M a r i t z e t a l . , I96I; Rhyming, 1953;  Wyndham e t a l . , 1966). W i t h some o t h e r submaximal t e s t s , the s t e a d y - s t a t e  heart rates  used t o p r e d i c t c i r c u l a t o r y f u n c t i o n a l c a p a c i t y as d e f i n e d  are  indirectly;  l i e . as i n d i c a t e d by p h y s i c a l work c a p a c i t y (PWC). A l t h o u g h Brown (1974) has  pointed  out the t e r m i n o l o g i c a l i n c o n s i s -  t e n c i e s t h a t have p r e v a i l e d i n the p a s t w i t h i n d i s c r i m i n a t e use term " p h y s i c a l work c a p a c i t y " ,  the c o n s t r u c t  of  so l a b e l l e d u s u a l l y  the  involves  ( w i t h submaximal t e s t s ) e i t h e r the p r e d i c t i o n of the maximal amount of work ( i . e . power output) t h a t can be s u s t a i n e d  over a g i v e n p e r i o d  t i m e , or,more o f t e n , the p r e d i c t i o n of the power o u t p u t t h a t can  be  of  .  11 m a i n t a i n e d w i t h a s p e c i f i c p h y s i o l o g i c a l response ( e . g . t h e p r e d i c t e d p h y s i c a l work c a p a c i t y a t a h e a r t r a t e o f 170 b e a t s p e r minute - t h e PWG 170) ( S j o s t r a n d , 19^7; Wahlund, 1948). The c a l c u l a t e d PWG 170 ( o r 150, 180, e t c . ) i s r e l a t e d t o the maximal s t r o k e volume o f t h e h e a r t ( A s t r a n d and R o d a h l , 1970, 358).  Adequate  t r a i n i n g programs u s u a l l y r e s u l t i n an i n c r e a s e d PWG 170 s c o r e , ( i . e . an i n c r e a s e d amount o f work t h a t can be performed a t a h e a r t r a t e o f 170 beats p e r minute).  T h i s i s p r i m a r i l y a r e f l e c t i o n o f an i n c r e a s e d  stroke  volume a l l o w i n g more work t o be a c c o m p l i s h e d a t a g i v e n h e a r t r a t e . I t cannot be s a i d , however, t o be by i t s e l f a p r e c i s e p r e d i c t o r o f c i r c u l a t o r y f u n c t i o n a l c a p a c i t y u n l e s s , once a g a i n , a c o r r e c t i o n f a c t o r i s i n t r o d u c e d t o account f o r d i f f e r e n c e s i n age. F o r example, a 20 y e a r - o l d male may have a p r e d i c t e d PWG 170 of 1000 KPM/Min..  score  H i s maximal h e a r t r a t e i s l i k e l y t o be above 200 b e a t s  p e r minute, however, s u g g e s t i n g  t h a t h i s maximal p h y s i c a l work c a p a c i t y  i s l i k e l y t o be w e l l above 1000 KPM/Min..  On t h e o t h e r hand, a 70 y e a r - o l d  male w i t h an i d e n t i c a l PWG 170 s c o r e ( p r e d i c t e d as u s u a l from submaximal steady-state  h e a r t r a t e s ) may n o t have a r e a l maximal p h y s i c a l work  c a p a c i t y even as h i g h as 1000 KPM/Min., s i n c e h i s maximal h e a r t r a t e may be as low as 150 b e a t s o r l e s s p e r minute ( s e e A s t r a n d and R o d a h l , 1970, 358;  and I . A s t r a n d ,  i960).  F u r t h e r , some s t u d i e s have i n d i c a t e d a low c o r r e l a t i o n between t h e oxygen uptake o r work l o a d a c h i e v e d  a t a s e t h e a r t r a t e ( e . g . 170) and t h e  measured maximal oxygen uptake ( S t r a n d e l l , 1964).  T h i s may p a r t l y be due,  however, t o the p o s s i b i l i t y t h a t maximal oxygen uptake i s i t s e l f an imprecise d e s c r i p t o r of c i r c u l a t o r y f u n c t i o n a l capacity, i f t h i s  capacity  i s d e f i n e d as t h e a b i l i t y t o c i r c u l a t e (and t h e r e f o r e t r a n s p o r t ) oxygen,  12 r a t h e r than i n c l u d i n g the a b i l i t y o f the c e l l s t o e x t r a c t and available  oxygen.  (For a d e t a i l e d a n a l y s i s  use  the  of t h i s problem see Rowe11,  82))  1974,  I n f a c t , a l l o o f the submaximal approaches t o t e s t i n g based steady-state heart rates  can a t b e s t be s a i d t o g i v e o n l y an  of c i r c u l a t o r y f u n c t i o n a l c a p a c i t y ,  on  approximation  s i n c e t h e y are dependant on the  overall  assumption t h a t a l i n e a r r e l a t i o n s h i p e x i s t s between s t e a d y - s t a t e h e a r t r a t e s and values.  m e c h a n i c a l work l o a d s , thus a l l o w i n g p r e d i c t i o n s  Although t h i s l i n e a r r e l a t i o n s h i p ( i . e . a high c o r r e l a t i o n )  i n f a c t e x i s t (see  A s t r a n d and R o d a h l , 1970,  estimate ( i . e . meaningful deviations the  352),  does  non-random e r r o r s  from t h i s l i n e a r i t y ) may  be due  f a c t t h a t t h i s o v e r a l l c o r r e l a t i v e assumption i s s t a t i s t i c a l l y  dependent upon a c h a i n o f p h y s i o l o g i c a l may  t o maximal  assumptions, any  of to  &  or a l l of w h i c h  be s u b j e c t e d i n c e r t a i n c i r c u m s t a n c e s t o f a c t o r s w h i c h w i l l i n c r e a s e  the v a r i a n c e around the l i n e a r r e l a t i o n s h i p .  T h i s chain of  physiological  assumptions and  t h e f a c t o r s w h i c h can m o d i f y them are p r e s e n t e d i n  TABLE I I - l , and  are d i s c u s s e d below.  13 TABLE -II -1 CHAIN OF ASSUMPTIONS (CORRELATION BETWEEN WORK LOADS AND HEART RATES)  ASSUMPTIONS OF LINEARITY  FACTORS POTENTIALLY CAUSING VARIANCE  M e c h a n i c a l work ( i . e . KPM/Min.) versus  >  P h y s i o l o g i c a l work (i.e.KCAL.  demand)  P h y s i o l o g i c a l work (i.e.KCAL.  demand)  versus  Mechanical E f f i c i e n c y  ^  A e r o b i c v s . a n a e r o b i c work  ^  A-V  Oxygen uptake ( i . e . VO2) Oxygen uptake ( i . e . VO2) versus  difference  C a r d i a c o u t p u t ( i . e . H.R. x S . V . ) Cardiac output  (i.e.H.R.xS.V.)  versus L-^Heart r a t e  ( i . e . B.P.M.)  ^  S t r o k e volume  14. M e c h a n i c a l work v e r s u s p h y s i o l o g i c a l work I t i s o f t e n assumed i n submaximal c i r c u l a t o r y f u n c t i o n t e s t s t h a t e x e r c i s i n g a t a g i v e n m e c h a n i c a l work l o a d w i l l a l l o w a p r e c i s e p r e d i c t i o n o f the p h y s i o l o g i c a l work ( i . e . KGAL. demand) r e q u i r e d t o p e r f o r m i t , due t o the l i n e a r r e l a t i o n s h i p between m e c h a n i c a l work l o a d s and energy o u t p u t s (see A s t r a n d  and R o d a h l , 1970, 364).  However, d e v i a t i o n s from t h i s  linear  r e l a t i o n s h i p may be p r e s e n t due t o d i f f e r e n c e s i n m e c h a n i c a l e f f i c i e n c i e s (MS1E.) between s u b j e c t s o r t e s t a d m i n i s t r a t i o n s . M e c h a n i c a l e f f i c i e n c y ranges from 0% i n i s o m e t r i c s t o about 20-25% i n b i c y c l e ergometer e x e r c i s i n g ( A s t r a n d and R o d a h l , 1970, 7-1), and even w i t h i n any one a c t i v i t y v a r i a t i o n s i n m e c h a n i c a l e f f i c i e n c y can occur. F o r example, b i c y c l e ergometer s t u d i e s have shown t h a t h i g h e r m e c h a n i c a l e f f i c i e n c i e s have been found a t p e d a l l i n g f r e q u e n c i e s  o f 40-50 RPM as  opposed t o 60-70 RPM a t t h e same power o u t p u t ( B a n n i s t e r and J a c k s o n , 1967; A s t r a n d and R o d a h l , 1970, 363} M i c h i e l l i and S t r i c e v i c , 1977; P a n d o l f and I S ^ l e , 1973).  A s t r a n d and R o d a h l (1970, 353) r e p o r t t h a t t h e m e c h a n i c a l  e f f i c i e n c y on a b i c y c l e ergometer may v a r y by + 6%. I . A s t r a n d (i960) has shown t h a t t h e r e i s no age d i f f e r e n c e i n m e c h a n i c a l e f f i c i e n c y i n s u b j e c t s w o r k i n g a t submaximal work l o a d s on t h e b i c y c l e ergometer.  She s t a t e s , however, t h a t women e x h i b i t a somewhat  h i g h e r m e c h a n i c a l e f f i c i e n c y ( l o w e r oxygen uptake) a t a g i v e n work l o a d compared t o men. A l s o , any g i v e n e x e r c i s e w i l l produce b o t h i n t r a - and i n t e r - i n d i v i d u a l d i f f e r e n c e s i n mechanical e f f i e n c y .  I n g e n e r a l , i n c r e a s e d muscle temperature  w i l l i n c r e a s e M.E., as w i l l i n c r e a s e s i n s k i l l l e v e l s (see Passmore and D u r r i e n , 1955), w h i l e i n c r e a s e s i n body w e i g h t w i l l reduce M.E. i n nonweight-supported a c t i v i t i e s .  ( B i c y c l i n g i s w e i g h t - s u p p o r t e d , and t h e r e f o r e  15 w e i g h t does n o t appear t o p r o v i d e much v a r i a n c e i n M.E.  1970,  ( A s t r a n d and R o d a h l ,  362.) M.E.  may  a l s o be a f f e c t e d by g e n e t i c and m o r p h o l o g i c f a c t o r s s u c h as  the l e n g t h and the r e l a t i v e w e i g h t s o f body segments, the l e v e r a g e  provided  by muscle l e n g t h s and tendon i n s e r t i o n p o i n t s , e t c . . . . T r a i n a b l e f a c t o r s i n c r e a s i n g M.E.  might i n c l u d e n o t o n l y improvements  i n s k i l l but a l s o i n c r e a s e s i n s t r e n g t h , as i n c r e a s e d muscle f i b r e t i l i t y may  contrac-  reduce the number o f f i b r e s r e q u i r e d (and t h e r e f o r e the oxygen  r e q u i r e d ) t o p e r f o r m a g i v e n work l o a d . An i n d i v i d u a l w i t h a. h i g h M.E.  f o r a g i v e n work t a s k w i l l e x h i b i t a  r e l a t i v e l y l a r g e d e v i a t i o n from the l i n e a r r e l a t i o n s h i p between m e c h a n i c a l work and oxygen demand, w i t h the oxygen demand b e i n g l e s s than t h a t p r e d i c t e d f o r a g i v e n work l o a d . an i n d i v i d u a l w i t h a low M.E.  Of course the o p p o s i t e w i l l be t r u e f o r  f o r a g i v e n work t a s k .  P h y s i o l o g i c a l work v e r s u s oxygen uptake " W i t h a work l o a d ( l e g work) t h a t demands an oxygen uptake h i g h e r than 50 p e r c e n t o f the i n d i v i d u a l ' s maximal c a p a c i t y and w h i c h i s performed f o r some minutes, l a c t i c a c i d ( l a c t a t e ) appears i n the b l o o d i n a c o n c e n t r a t i o n t h a t can be measured even i n the a r t e r i a l b l o o d . The h e a v i e r the work l o a d , the more i m p o r t a n t i s the a n a e r o b i c energy c o n t r i b u t i o n . " /. , , , , , ^N n  N  O  D  ( A s t r a n d and R o d a h l , 1970,  283)  S i n c e the l i t e r a t u r e i n d i c a t e s t h a t t r a i n i n g r e s u l t s i n d e c r e a s e s i n b l o o d l a c t a t e s a t g i v e n w o r k l o a d s ( C r e s c i t e l l i and T a y l o r , 1944; 1930;  R o b i n s o n and Harmon, 1941;  Withers,  D i l l et a l . ,  1977), one might e x p e c t t h a t h i g h e r  oxygen uptakes might be found among t r a i n e d a t h l e t e s a t g i v e n submaximal work l o a d s as compared w i t h the  untrained.  However, p r o v i d e d t h e r e a r e no d i f f e r e n c e s i n m e c h a n i c a l e f f i c i e n c y , the oxygen consumption i n the t r a i n e d and u n t r a i n e d s t a t e s a t g i v e n  sub-  16 maximal work loads i s i d e n t i c a l ( C l a u s e n e t a l . , 1969; C r e s c i t e l l i and T a y l o r , 1 9 4 4 ; ' S a l t i n e t a l . , 1968; S a l t i n e t a l . , I969).  I t has been shown  q u i t e c o n s i s t e n t l y t h a t i n c r e a s e d submaximal p h y s i o l o g i c a l work  (expressed  i n .KCAL. demand) w i l l r e s u l t i n q u i t e p r e d i c t a b l e i n c r e a s e s i n oxygen uptake ( A s t r a n d and R o d a h l , 1970, 2 8 0 - 6 ) .  The assumption o f l i n e a r i t y  between these two v a r i a b l e s seems t o be t h e s t r o n g e s t l i n k i n t h e c h a i n o f assumptions u n d e r l y i n g t h e l i n e a r r e l a t i o n s h i p between m e c h a n i c a l work and associated heart rates. Oxygen uptake v e r s u s c a r d i a c  output  Oxygen uptake i s t h e p r o d u c t o f c a r d i a c output and t h e mean a r t e r i o venous 0  2  d i f f e r e n c e ( R o w e l l , 1974).  V 0 ^ X i . / m i n ^ = CO Cl./minC) X 2  A-V 0  DIFF. ( pi./}1 ;•)  2  T h e r e f o r e , i n c r e a s e s i n VO2 c o u l d be accounted f o r b y i n c r e a s e s i n e i t h e r or b o t h c a r d i a c output and a r t e r i o - v e n o u s 0  2  difference.  I n f a c t , i t has  been demonstrated t h a t t r a i n i n g i s accompanied b y a decreased  blood flow  t o t h e a c t i v e muscles d u r i n g submaximal work,bbut t h a t t h i s i s compensated f o r by an augmented A-V Og d i f f e r e n c e ( C l a u s e n and Trap-Jensen, I968; Varnauskas e t a l . , 1970).  Thus t h e assumption o f a p e r f e c t c o r r e l a t i o n  between oxygen uptake and c a r d i a c output cannot be s u p p o r t e d  (Clausen,  I969,  305), e s p e c i a l l y i f a range from r e s t i n g v a l u e s t o maximal ones i s c o n s i d e r e d ( A s t r a n d and R o d a h l , 1970, 157-60).  This r e l a t i o n s h i p provides  another  p o t e n t i a l source o f v a r i a n c e a c c o u n t i n g f o r any e r r o r s o f e s t i m a t e i n p r e d i c t i n g mechanical  work l o a d s from h e a r t r a t e s , and v i c e - v e r s a .  C a r d i a c output v e r s u s h e a r t r a t e The  f i n a l l i n k i n t h i s c h a i n i s t h e one between c a r d i a c output and  heart r a t e .  C a r d i a c output i s t h e p r o d u c t  o f h e a r t r a t e and s t r o k e volume.  17 C0('l./min.)  =.-• HR (b../mih.)X  SV , ( l , / b e a t >  Any i n c r e a s e i n c a r d i a c o u t p u t may "be caused by an i n c r e a s e i n e i t h e r h e a r t r a t e o r s t r o k e volume, o r b o t h .  R o w e l l (1974), however, r e p o r t s t h a t , i n  g e n e r a l , c a r d i a c o u t p u t and h e a r t r a t e s r i s e w i t h i n c r e a s i n g oxygen consumpt i o n , whereas s t r o k e volume r e a c h e s a near-maximal v a l u e a t r e l a t i v e l y low l e v e l s o f oxygen uptake and remains e s s e n t i a l l y c o n s t a n t  up t o maximum VCv,.  T h e r e f o r e the r e l a t i o n s h i p between c a r d i a c o u t p u t and h e a r t r a t e remains q u i t e l i n e a r above low l e v e l s , and c o n s t i t u t e s a r e a s o n a b l y s t r o n g l i n k i n the c h a i n o f assumptions u n d e r l y i n g the r e l a t i o n s h i p between h e a r t r a t e and m e c h a n i c a l work. I n summary, t h e l i n e a r r e l a t i o n s h i p g e n e r a l l y observed between h e a r t r a t e and m e c h a n i c a l work forms t h e b a s i s f o r the d e s i g n o f submaximal c i r c u l a t o r y f u n c t i o n and p h y s i c a l work c a p a c i t y t e s t s .  I t must be remembered,  however, t h a t t h i s s t a t i s t i c a l l y v a l i d and p h y s i o l o g i c a l l y sound g e n e r a l i t y i s s u b j e c t t o the assumptions l i s t e d above, and t h a t d e v i a t i o n s w i t h i n these assumptions p r o v i d e  a p o t e n t i a l source o f variance  l i n e a r i t y , causing e r r o r s o f estimate  from t h i s  i n predicting circulatory function  and/or p h y s i c a l work c a p a c i t y . The PWG 170 t e s t S i n c e b e i n g i n t r o d u c e d b y S j o s t r a n d (1947) and Wahlund (1948), t h e PWC 170 t e s t has been w i d e l y used as a method o f p r e d i c t i n g c i r c u l a t o r y functional capacity.  A t l e a s t 36 s t u d i e s have been r e p o r t e d i n the  litera-  t u r e as h a v i n g used t h i s t e s t (Watson and 0'Donovan, 1976), and a l a r g e number o f these have had c h i l d r e n as s u b j e c t s .  Many i n t e r n a t i o n a l  comparisons have a l s o been made (see Shephard, 1971 and L a r s o n , 1974 f o r reviews).  18 There a r e two p h y s i o l o g i c a l p r i n c i p l e s u n d e r l y i n g t h e PWC 170 t e s t . F i r s t , t h a t t h e r e i s a p o s i t i v e l i n e a r r e l a t i o n s h i p between h e a r t r a t e and submaximal work l o a d s ( s u b j e c t t o t h e assumptions d e s c r i b e d i n t h e second section o f t h i s chapter).  This l i n e a r r e l a t i o n s h i p allows a p r e d i c t i o n of  t h e work l o a d r e q u i r e d t o produce a h e a r t r a t e o f 170 b e a t s p e r minute, based on h e a r t r a t e s r e c o r d e d  a t lower,  submaximal work l o a d s .  The t e s t  t h u s m i n i m i z e s t h e problems r e g a r d i n g m o t i v a t i o n and r i s k , mentioned p r e v i o u s l y , b y n o t r e q u i r i n g t h e s u b j e c t t o work a t an i n t e n s i t y t h a t would produce a maximal h e a r t r a t e , n o r one even as h i g h as 170. The  second p r i n c i p l e i s t h a t an i n c r e a s e i n c i r c u l a t o r y f u n c t i o n a l  capacity (through  aerobic t r a i n i n g ) w i l l r e s u l t i n a decreased heart r a t e  a t any g i v e n work l o a d , due p r i m a r i l y t o an I n c r e a s e ( A s t r a n d , 1970, 358; W i t h e r s ,  1977).  i n s t r o k e volume  T h i s w i l l r e s u l t i n g r e a t e r work  l o a d s b e i n g r e q u i r e d t o produce t h e same h e a r t r a t e ( e . g . 170 b e a t s p e r minute).  The s l o p e o f t h e r e g r e s s i o n l i n e between h e a r t r a t e and work l o a d  i s thus d i s p l a c e d , and/or has i t s angle d e c r e a s e d , w i t h o u t r e l a t i o n s h i p being  the l i n e a r  destroyed.  A number o f r e s e a r c h e r s i n f l u e n c e t h e PWC 170 s c o r e .  have made s t u d i e s on t h e f a c t o r s w h i c h I t i s now w e l l e s t a b l i s h e d t h a t p h y s i c a l  w o r k i n g c a p a c i t y (PWC I70) g e n e r a l l y i n c r e a s e s w i t h a g e c d u r i n g a d o l e s c e n c e ( B e n g t s s o n , 1956; Watson and O'Donovan, 19?6) and appears t o r e a c h i t s peak a t about 25 years o f age ( S e l i g e r , 1978).  However, t h e changes i n PWC w i t h  age g e n e r a l l y p a r a l l e l those i n body s i z e ( B e n g t s s o n , 1956; K n u t t e n , I967; Matsui e t a l . , The  1972).  e f f e c t o f l e a n n e s s v e r s u s f a t n e s s on PWC has a l s o been  researched.  These s t u d i e s i n d i c a t e t h a t PWC i s more h i g h l y r e l a t e d t o f a t f r e e body w e i g h t t h a n t o t o t a l body w e i g h t , b u t i t i s n o t s i g n i f i c a n t l y r e l a t e d t o  •19 p e r c e n t a g e o f body f a t ( ( B u s k i r k and T a y l o r , 1 9 5 7 ; Considerable  1972).  Davies e t a l . ,  c a u t i o n i s n e c e s s a r y when i n t e r p r e t i n g t h e r e s u l t s o f  t e s t s o f p h y s i c a l w o r k i n g c a p a c i t y on p e o p l e o f d i f f e r i n g ages. the PWC  Although  170 t e s t appears t o be a r e l i a b l e measure o f a e r o b i c c a p a c i t y , i f  a d m i n i s t e r e d by e x p e r i e n c e d p e r s o n n e l ( H o w e l l , I 9 6 8 ; Wahlund, 1 9 4 8 ; Watson and 0'Donovan, 1 9 7 6 ) , the i n t e r p r e t a t i o n o f t h a t measure must t a k e  into  account the f a c t t h a t maximal h e a r t r a t e d e c l i n e s w i t h i n c r e a s i n g age. A PWC  170 s c o r e may r e p r e s e n t a work l o a d t h a t w o u l d o n l y be m i l d l y  strenuous  t o a 2 0 y e a r o l d male whose maximal h e a r t r a t e may be w e l l over 2 0 0 , whereas the same t e s t s c o r e might r e p r e s e n t an u n a t t a i n a b l e work l o a d f o r a 70 o l d male whose maximal h e a r t r a t e may be l e s s t h a n  year  150.  There a r e some s t u d i e s w h i c h have s u g g e s t e d t h a t t h e r e i s o n l y a low c o r r e l a t i o n between t h e PWC  170 and t h e measured maximal oxygen uptake,  c a r d i a c o u t p u t , h e a r t s i z e , and b l o o d volume i n i n d i v i d u a l s from t w e n t y t o s e v e n t y y e a r s o f age ( A s t r a n d and R o d a h l , 1 9 7 0 , 3 5 8 ;  Strandell,1964).  On t h e o t h e r hand, a number o f r e s e a r c h e r s have c o n t i n u e d t o f i n d h i g h c o r r e l a t i o n s between PWC DeV;ries (1967)  reasonably  170 s c o r e s and maximal oxygen uptake.  and K l a f s ( 1 9 6 5 ) r e p o r t e d a v a l i d i t y c o e f f i c i e n t o f 0 . 8 7 7 . 0 . 7 5 , Holmgren ( 1 9 6 7 )  0 . 9 3 , and Burke ( 1 9 7 6 )  O.58.  Withers  Knutten (1977)  r e p o r t e d v e r y low c o r r e l a t i o n s f o r s c o r e s d e r i v e d from s e v e r a l d i f f e r e n t p r o t o c o l s o f t h e t e s t i n r e l a t i o n t o max. V 0  2  ( - 0 . 0 8 4 , 0.040, - 0 . 1 4 2 ) ,  but  he a d m i t t e d t h a t t h e s e low c o r r e l a t i o n s were l i k e l y due t o t h e homogeneity of h i s data.  Two c o r r e l a t i o n s seem t o have been g e n e r a l l y drawn w i t h  r e s p e c t t o the v a l i d i t y o f t h i s t e s t .  F i r s t , t h a t comparisons among  p e o p l e o f w i d e l y d i f f e r e n t ages must be c o r r e c t e d f o r age b e f o r e v a l i d i t y can be c l a i m e d , and b e f o r e m e a n i n g f u l Second, t h a t t h e g r e a t e s t use t h e PWC  test  i n t e r p r e t a t i o n s can be made.  170 a p p a r e n t l y has i s i n monitoring©.  20 t h e changes i n an i n d i v i d u a l over a p e r i o d o f t i m e .  I n s u c h cases, t h e  i n d i v i d u a l a c t s as h i s own c o n t r o l . E f f e c t s o f work l o a d d u r a t i o n S j o s t r a n d (194-7) and Wahlund (194-8) f i r s t i n t r o d u c e d t h e PWG 170 u s i n g t h r e e p r o g r e s s i v e l y i n c r e a s i n g work l o a d s d e s i g n e d t o produce  steady-  s t a t e h e a r t r a t e s f a l l i n g w i t h i n t h e i n t e r v a l s 115-130, 14-0-150, and 160-170. Each work l o a d was m a i n t a i n e d f o r 6 minutes, and p r o v i d e d t h e d i f f e r e n c e between t h e 5th and 6th minute h e a r t r a t e s was l e s s t h a n 5 b e a t s p e r minute, s t e a d y - s t a t e was assumed t o have been a c h i e v e d these two h e a r t r a t e s was r e c o r d e d  and t h e average o f  f o r t h a t p a r t i c u l a r work l o a d .  I f the  d i f f e r e n c e was g r e a t e r than 5» more time was g i v e n a t t h a t work l o a d s t e a d y - s t a t e was a c h i e v e d  until  ( s e e Wahlund, 194-8).  Subsequent i n v e s t i g a t o r s have o f t e n d e v i a t e d from t h e above p r o t o c o l . Adams e t a l . (1961),  Gumming and D a n z i n g e r (1963), and D e a r i e s  a p r o t o c o l w h i c h i n c l u d e d o n l y two 6-minute work l o a d s . s t u d y Alderman (1969) used t h r e e 4-minute work l o a d s .  (1965), used  I n one Canadian I n a l l the studies  e n c o u n t e r e d b y t h i s a u t h o r t h e p r o t o c o l s i n v o l v e d between 2 and 4 work l o a d s , w i t h e i t h e r 3~>  5- °  r  6-minute d u r a t i o n s .  I t i s obvious t h a t marked changes i n t h e p r o t o c o l used f o r a d m i n i s t e r i n g t h i s t e s t have t h e p o t e n t i a l f o r d e s t r o y i n g i t s v a l i d i t y , s i n c e a f u n d a mental assumption u n d e r l y i n g t h e t e s t i s t h a t t h e h e a r t r a t e s , w h i c h be p l o t t e d a g a i n s t t h e work l o a d s , must r e p r e s e n t r e l a t i v e (Andersen, 1971,  are t o  steady-state  77} Doroschuk, 1966; F r a n z and M e l l e r o w i c z , 1977).  I fa  s h o r t d u r a t i o n p r o t o c o l ( e . g . 3 minutes a t each work l o a d ) does n o t a l l o w enough time f o r t h i s r e l a t i v e s t e a d y - s t a t e recorded  t o be a c h i e v e d ,  the heart  rates  f o r each work l o a d may be l e s s t h a n what would be r e c o r d e d i n  21 steady-state.  T h i s c o u l d r e s u l t i n an o v e r e s t i m a t e  o f t h e PWC 170 s c o r e .  I f t h e r e were a d i f f e r e n t i a l e f f e c t among the l o a d s t h e r e c o u l d he e i t h e r an o v e r e s t i m a t i o n o r an u n d e r e s t i m a t i o n  o f the true value.  F o r example,  i f s t e a d y - s t a t e was n o t a c h i e v e d i n t h e f i r s t work l o a d , b u t was i n t h e t h i r d , the s l o p e o f t h e r e g r e s s i o n l i n e o f t h e PWG on h e a r t r a t e would be l e s s s t e e p , even though i t would s t i l l go t h r o u g h t h e same f i n a l p o i n t on t h e 3^cL work l o a d .  T h i s would underestimate  the true value.  Watson and O'Donovan i n I r e l a n d (1976) r e p o r t t h a t r e d u c i n g t h e work p e r i o d s f r o m 6 t o 5 minutes d u r a t i o n had no s i g n i f i c a n t e f f e c t , b u t t h a t a r e d u c t i o n t o 4 minutes r e s u l t e d i n a 4 p e r c e n t e l e v a t i o n ^ o f s c o r e s . T h i s s u g g e s t s t h a t t h e f o u r t h minute measurements may have been^premature for  the attainment  o f s t e a d y - s t a t e v a l u e s , a t l e a s t f o r some o f t h e s u b j e c t s  involved. F r a n z and M e l l e r o w i c z (1977), i n an attempt t o reduce t h e t i m e consuming p r o t o c o l o f t h r e e 6-minute work l o a d s , compared PWG 170 s c o r e s between a p r o t o c o l i n v o l v i n g 50 w a t t i n c r e a s e s e v e r y 6 minutes and one u s i n g 25 w a t t i n c r e a s e s e v e r y 2 minutes.  The d i f f e r e n c e between these two forms  was n o t s i g n i f i c a n t . Withers  e t a l . (1977) compared s c o r e s u s i n g t h r e e d i f f e r e n t  formats:  two 6-minute work l o a d s , t h r e e 4-minute work l o a d s , and f o u r J-minute loads ( t h e t o t a l t e s t time remaining  t h e same).  Although  work  they d i d not f i n d  any s i g n i f i c a n t d i f f e r e n c e s a t t h e .05 l e v e l , t h e group mean s c o r e s o f t h e d i f f e r e n t p r o t o c o l s s u g g e s t e d a t r e n d toward h i g h e r s c o r e s f o r t h e s h o r t e r work p e r i o d s .  (They a l s o recommended a g a i n s t h a v i n g o n l y two work l o a d s ,  s i n c e h a v i n g o n l y two h e a r t r a t e p o i n t s t o p l o t l e a v e s t h e r e g r e s s i o n l i n e more open t o d i s t o r t i o n from even s m a l l e r r o r v a r i a n c e s .  Watson and  O'Donovan (1976 (2)) r e p o r t a d e c r e a s e d t e s t - r e t e s t r e l i a b i l i t y f r o m  22 u s i n g o n l y two work  loads.)  M o c e l l i n e t a l . (1971) and W i t h e r s e t a l . (1977) r e p o r t t h a t  local  muscle f a t i g u e i n the l e g s may be a problem w i t h a 6-minute p r o t o c o l , e s p e c i a l l y i f the s u b j e c t s are c h i l d r e n o r u n f i t a d u l t s . W e i n e r and L a u r i e (1969) s t a t e t h a t i n submaximal t e s t s t h r e e 4-minute work l o a d s may be p r e f e r a b l e t o f o u r 3-minute l o a d i n g s , s u g g e s t i n g  implicitly  t h a t there i s a minimum c r i t i c a l time r e q u i r e d f o r w o r k i n g a t each l o a d , t h a t time b e i n g dependent upon the r a t e o f c a r d i o a c c e l e r a t i o n t o s t e a d y state.  I t i s w o r t h w h i l e m e n t i o n i n g t h a t none of the above a u t h o r s e x p l i c i t l y  s t a t e s the concept o f a minimum c r i t i c a l t i m e ; t h e y appear concerned o n l y w i t h whether or n o t i n c r e a s i n g s c o r e s t e n d i n g t o r e s u l t from s h o r t e r , more c o n v e n i e n t work l o a d d u r a t i o n s have any s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s f r o m t t h e a c c e p t e d 6-minute p r o t o c o l . the major concern t h a t r e s e a r c h e r s  Although t h i s undoubtedly r e f l e c t s  have w i t h group means, i t o v e r l o o k s  the problems t h a t may o c c u r when an i n d i v i d u a l undergoes s e r i a l t e s t i n g over a p e r i o d o f t i m e , under d i f f e r e n t p r o t o c o l s .  V a r i a n c e r e s u l t i n g from  changes i n t e s t p r o t o c o l may d i s g u i s e the changes e x p e c t e d from a t r a i n i n g program, f o r example. A c c o r d i n g t o Andersen e t a l . (1971) the o b j e c t i v e o f t h i s t y p e o f submaximal e x e r c i s e t e s t s h o u l d be t o produce "4- e v e n l y spaced p u l s e readirigs,gover the range kO-80% o f a e r o b i c power" ( p . 55) and- the work l o a d s s h o u l d each be o f " a t l e a s t 4 minutes" d u r a t i o n ( p . 54). No mention was made, however, o f the n a t u r e o f the j u s t i f i c a t i o n f o r c h o o s i n g 4 minutes as the minimum c r i t i c a l time f o r each work l o a d . Another area of research,  d e l v i n g i n t o the t r a n s i e n t r e s p o n s e s o f  h e a r t r a t e t o work l o a d changes, a l s o f a i l s t o p r o v i d e answers.  Broman and W i g e r t z (1971) a n a l y z e d  any d e f i n i t e  the t r a n s i e n t dynamics o f  23 h e a r t r a t e i n response t o 650 KPM/Min. s t e p changes i n submaximal work l o a d s i n s i x male a t h l e t e s i n t t h e s u p i n e p o s i t i o n .  By a p p l y i n g m a t h e m a t i c a l  parameter i d e n t i f i c a t i o n , t h e y observed t h a t t h e h e a r t r a t e r e s p o n s e s r e q u i r e d s e c o n d - o r d e r models, w i t h the two t i m e c o n s t a n t s r a n g i n g from 9.0  t o 11.7  seconds and from 1.8  t o 3*7  minutes, and w i t h ' t h e s h a r e o f  the " s l o w e r component" i n c r e a s i n g w i t h the i n t e n s i t y o f the i n i t i a l work level.  The f o l l o w i n g t a b l e summarizes t h e p e r c e n t a g e o f t h e 6th  " s t a b l e - s t a t e " h e a r t r a t e means a t t a i n e d a t 0.5»  1.0,  and 2.0  minute  minutes  a f t e r the onset o f s t e p changes i n work l o a d s from d i f f e r e n t work l e v e l s . TABLE I I - 2 MEAN TRANSIENT HEART RATE RESPONSES (PERCENTAGE OF 6TH MINUTE "STABLE-STATE" VALUES)  STEP CHANGE IN WORK LOAD ( i n KPM/Min.)  PERCENTAGE OF "STABLE-STATE" HEART RATE  0.5 0-0$650  MIN.  797°  MIN.  85%  300-950 65O-I3OO  1.0  2.0  MIN.  89%  80%  72%  59%  m%  ( m o d i f i e d from Broman and W i g e r t s ,  1971) I t i s c l e a r t h a t , a t l e a s t w i t h the s i x male a t h l e t e s used i n t h i s s t u d y , over &(J% o f the h e a r t r a t e i n c r e a s e s o c c u r r e d w i t h i n the f i r s t two minutes a f t e r the work l o a d i n c r e a s e .  However, the "slow component"  i n c r e a s e c a r r i e d on g r a d u a l l y over the n e x t 4 minutes, making i t d i f f i c u l t t o e s t a b l i s h when " s t a b l e - s t a t e " , on the average, o c c u r r e d .  A l s o , the  r e s p o n s e s o f n o n a t h l e t e s may be q u i t e d i s s i m i l a r t o t h o s e r e p o r t e d h e r e .  24-  F u j i h a r a e t a l . (1973) found some s u b j e c t s whose h e a r t r a t e c o n t r o l systems were s l o w e r t o respond t h a n those o f o t h e r s .  They s t a t e t h a t i n  three o f t h e i r subjects they could not detect a c o n t i n u i n g l a t e r i s e i n h e a r t r a t e a f t e r about 2 minutes, w h i l e i n t h e o t h e r two s u b j e c t s suchaa component may have been p r e s e n t .  No attempt was made by them t o e l a b o r a t e  on a p o t e n t i a l cause o f t h i s , o r t o attempt t o i d e n t i f y t h e s u b j e c t s according t o p o t e n t i a l mediating f a c t o r s .  T h i s does suggest;?,however,  t h e a n a l y s e s f o r s i g n i f i c a n t d i f f e r e n c e s i n PWG 170 s c o r e s d e r i v e d from different© d u r a t i o n p r o t o c o l s s h o u l d perhaps attempt t o t a k e i n t o d i f f e r e n c e s i n the types o f s u b j e c t s being t e s t e d , ( i . e . q u i c k v e r s u s slow  account  responders  responders).  E f f e c t s o f work l o a d i n t e n s i t y I t may w e l l be t h a t the c r i t i c a l time r e q u i r e d t o a c h i e v e s t a t e decreases  steady-  f o r t h e h e a v i e r work l o a d s , s i n c e A s t r a n d and R o d a h l (1970)  s t a t e t h a t " t h e h e a v i e r t h e work l o a d , t h e s t e e p e r i s the i n c r e a s e i n ... h e a r t r a t e " ( p . 285-6).  T h i s g r e a t e r c a r d i o a c c e l e r a t i o n may be an  advantage, " f o r t h e sooner t h e a e r o b i c p r o c e s s e s can come i n t o f u l l the l e s s would be t h e demand on the a n a e r o b i c p r o c e s s e s , and l e s s a c i d would accumulate"  swing,  lactic  ( p . 286).  However, t h e r e i s disagreement i n -"the":- l i t e r a t u r e as t o t h i s  effect.  G e r e t e l l i e t a l . (1966) found t h e time c o n s t a n t s f o r t h e changes i n c a r d i a c output t o be independent o f t h e e x e r c i s e i n t e n s i t y .  Jones e t a l . (1970) and  Broman and W i g e r t z (1971) found t h a t the r a t e o f i n c r e a s e i n h e a r t r a t e became s l o w e r when h e a v i e r work l o a d s were i n v o l v e d . ' I t remains t o be seen what e f f e c t the. s t e p i n c r e a s e s i n work l o a d d u r i n g t h e PWG 170 have on c r i t i c a l t i m e .  I n t h i s r e g a r d , t h e problem i s  25 compounded i n t h a t i n c r e a s e s i n r e l a t i v e i n t e n s i t y are s e q u e n t i a l l y o r d e r e d i n a l l t e s t p r o t o c o l s ( i . e . the f i r s t i s the l i g h t e s t , the i s the h e a v i e s t ) , so t h a t the h e a r t r a t e r e s p o n s e may  r e f l e c t not only  i n c r e a s e d work l o a d i n t e n s i t y , but a l s o the i n c r e a s e d amount of t e s t t i m e , and  the h e a r t r a t e r e s p o n s e s t o p r e v i o u s  third the  elapsed  loads.  E f f e c t s of s t a t e of t r a i n i n g Although there i s l i t t l e e x i s t i n g evidence i n t h i s area, i t i s at l e a s t t h e o r e t i c a l l y p o s s i b l e t h a t a h i g h l y t r a i n e d c i r c u l a t o r y system attempt t o a c h i e v e s t e a d y - s t a t e  may  and i t s a s s o c i a t e d c a r d i a c o u t p u t as  q u i c k l y as p o s s i b l e , i n o r d e r t o m i n i m i z e the amount o f a n a e r o b i c work t h a t must be done d u r i n g the f i r s t few The  h e a r t has i t s own  minutes.  pace-maker, l o c a t e d i n the s i n o - a r t e r i a l  (S-A)  node, and f r o m here i t i n i t i a t e s a r a t e o f about 70 i m p u l s e s p e r minute i f i t i s l e f t undisturbed IkO).  1970,  by e x t e r n a l i n f l u e n c e s ( A s t r a n d and R o d a h l ,  T h i s i s termed the i n t r i n s i c h e a r t r a t e ( I H R ) .  p a r a s y m p a t h e t i c nerve i m p u l s e s ,  Both sympathetic  through t h e i r r e s p e c t i v e  s u b s t a n c e s , can m o d i f y t h i s i n t r i n s i c r a t e .  and  neurotransmitter  Many p a r a s y m p a t h e t i c nerve  f i b e r s from the vagus nerve t e r m i n a t e s i n the r e g i o n o f the pace-maker i n the S-A  node, and when s t i m u l a t e d t h e y d e l i v e r a c e t y l c h o l i n e , w h i c h causes  an i n h i b i t i o n and r e d u c t i o n o f t h e h e a r t r a t e ( b r a d y c a r d i a ) . t h e t i c e f f e r e n t f i b e r s from the p a r a v e r t e b r a l g a n g l i a j o i n the  The  sympa-  cardiac  s y m p a t h e t i c n e r v e s , w h i c h end i n a d e n s e l y packed network w i t h i n the myocardium. the h e a r t .  These s y m p a t h e t i c n e r v e s have two  s i m u l t a n e o u s e f f e c t s upon  F i r s t , t h e y cause an i n c r e a s e i n the h e a r t r a t e ( t a c h y c a r d i a ) .  Second, t h e y cause an i n c r e a s e i n the c o n t r a c t i l e f o r c e of the muscle f i b e r s , r e s u l t i n g i n an i n c r e a s e d . v e n t r i c u l a r d e l i v e r y .  cardiac (The  vagus  26 does n o t seem t o have an e f f e c t on h e a r t muscle c o n t r a c t i l i t y ; ) . , * and R o d a h l , 1970, 121).  (Astrand  I n a d d i t i o n t o these neural c o n t r o l s ( c a l l e d " f a s t  component" c o n t r o l s by Broman and W i g e r t z (1971)) a r e humoral c o n t r o l s ("slow component") w h i c h l i k e l y account f o r t h e b i - p h a s i c i n exercise, reported The  cardioaccelerations  above.  changes i n h e a r t f u n c t i o n and c i r c u l a t i o n a r e i n i t i a t e d from  higher b r a i n centers  ( p r o b a b l y the c e r e b r a l c o r t e x and d i e n c e p h a l o n )  perhaps even b e f o r e e x e r c i s e b e g i n s (see Rushmer, 1965).  Through a r e c i p -  r o c a l i n n e r v a t i o n there i s a simultaneous increase i n the sympathetic a c t i v i t y and a d e c r e a s e i n t h e p a r a s y m p a t h e t i c i m p u l s e s t o t h e h e a r t .  The  c o m b i n a t i o n o f r e d u c e d v a g a l i n f l u e n c e and i n c r e a s e d s y m p a t h e t i c s t i m u l a t i o n r e s u l t s i n an immediate i n c r e a s e i n t h e h e a r t r a t e ( S c h e r e t a l . , 1972). A decrease i n t h e r e s t i n g h e a r t r a t e i s one o f t h e c h a r a c t e r i s t i c changes a s s o c i a t e d w i t h a e r o b i c t r a i n i n g (Bevegard e t a l , 1963; Hanson and T a b a k i n , I965)•  A l t h o u g h t h e p r e c i s e mechanisms i n v o l v e d a r e s t i l l n n o t  understood, s e v e r a l p o s s i b i l i t i e s have been proposed.  I t has g e n e r a l l y  been s u g g e s t e d t h a t an i n c r e a s e i n t o n i c c a r d i a c v a g a l a c t i v i t y i n t h e t r a i n e d s u b j e c t may be t h e prime f a c t o r (Raab e t a l , , i960; S t e i n h a u s , 1933)S e v e r a l i n t r a c a r d i a c mechanisms have a l s o been s u g g e s t e d , i n c l u d i n g t h e p o s s i b i l i t y o f a greater release o f nonneural a c e t y l c h o l i n e i n the t r a i n e d s u b j e c t ' s h e a r t ( T i p t o n and T a y l o r , 1965).  Winder e t a l . (1978) have  demonstrated a t r a i n i n g - i n d u c e d d e c r e a s e i n t h e sympathoadrenal c a t e c h o l a m i n e response.  A l s o h y p o t h e s i z e d are. changes i n a t r i a l s t r e t c h r e s u l t i n g from  a t r i a l d i s t e n s i o n and h y p e r t r o p h y , w h i c h might m o d i f y the normal  sinoatrial  rhythm by s t i m u l a t i n g mechanoreceptors i n t h e w a l l s o f t h e a t r i a ( H a l l , B o l t e r e t a l . (1973) c o n c l u d e d t h a t t h e b r a d y c a r d i a  I963)•  of t r a i n i n g probably  i n v o l v e s a t l e a s t two mechanisms; a d e c r e a s e i n t h e i n t r i n s i c r a t e o f t h e  2? s i n o a t r i a l node, and an i n c r e a s e i n t o n i c c a r d i a c p a r a s y m p a t h e t i c a c t i v i t y . Warner and Cox (1962) i n d i c a t e d t h a t t h e r e i s a d i f f e r e n c e i n the speed o f t h e motor response when the two branches o f the autonomic nervous system a l t e r the h e a r t r a t e .  V a g a l r e s p o n s e s were f o u n d t o be e x t r e m e l y  f a s t , w h i l e s y m p a t h e t i c r e s p o n s e s were shown t o be as much as e i g h t t i m e s slower.  S c h e r e t a l . (1972) found the same phenomenon, and a c t u a l l y used  t h e s e d i f f e r e n c e s i n speed M  response t o d i f f e r e n t i a t e parasympathetic  from s y m p a t h e t i c c o n t r o l f u n c t i o n s . I t c o u l d be h y p o t h e s i z e d t h e r e f o r e , t h a t , s i n c e t h e t r a i n e d a t h l e t e i s l i k e l y t o have h i s i n t r i n s i c h e a r t r a t e i n f l u e n c e d more p r e d o m i n a n t l y by a p a r a s y m p a t h e t i c " v a g a l t o n e " , and s i n c e t h i s v a g a l c o n t r o l  appears  to be c a p a b l e o f r e s p o n d i n g much more q u i c k l y t h a n s y m p a t h e t i c c o n t r o l s , the t r a i n e d s u b j e c t may r e s p o n d t o the onset o f submaximal e x e r c i s e w i t h a quicker withdrawal of parasympathetic s t i m u l a t i o n , a r e s u l t a n t quicker i n crease i n h e a r t r a t e , and, p o s s i b l y , a d e c r e a s e d c r i t i c a l time r e q u i r e d for  achieving steady-state.  Thus d i f f e r e n c e s i n t h e s u b j e c t s ' s t a t e o f  t r a i n i n g may p a r t l y account f o r the f a s t and s l o w r e s p o n d e r s d e s c r i b e d by F u j i h a r a e t a l . (1973) and. d i s c u s s e d above.  T h i s would a l s o i n d i c a t e the  need f o r PWG 170 t e s t p r o t o c o l s which t a k e i n t o account s u b j e c t s ' s t a t e o f t r a i n i n g and the d i f f e r e n t c r i t i c a l t i m e s which may thus be i n v o l v e d .  CHAPTER I I I METHODS. AND PROCEDURES Subjects The s u b j e c t s o f t h i s s t u d y were 8 e n d u r a n c e - t r a i n e d and 8 u n t r a i n e d c o l l e g e males, aged 18 t o 30.  The t r a i n e d s u b j e c t s were a l l a c t i v e l y  competing i n t h e m i d d l e - d i s t a n c e o r l o n g - d i s t a n c e r u n n i n g e v e n t s i n t r a c k and f i e l d , o r i n r o a d r a c i n g , and were r e q u i r e d t o have PWG-170/Kg. s c o r e s e x c e e d i n g 15.69 KPM/Kg./Min. ( i . e . above t h e 70th p e r c e n t i l e on t h e C.A.H.P.E.R. norms).  The u n t r a i n e d s u b j e c t s were a l l l e a d i n g r e l a t i v e l y  s e d e n t a r y l i v e s , as r e p o r t e d s u b j e c t i v e l y b y themselves, r e g u l a r strenuous aerobic a c t i v i t y .  w i t h o u t any  They were r e q u i r e d t o have PWG-170/Kg.  s c o r e s o f l e s s t h a n 12.93 KPM/Kg./Min. ( i . e . below t h e kOth p e r c e n t i l e on t h e C.A.H.P.E.R. norms).  A l l subjects werevolunteers.  Procedures A l l v o l u n t e e r s underwent a " p r e l i m i n a r y " PWG 170 t e s t , t h r e e work l o a d s , each o f 6 minutes d u r a t i o n . purposes:  involving  This served the f o l l o w i n g  i t c o n f i r m e d t h e s e l e c t i o n o f s u b j e c t s f o r t h e t r a i n e d and  u n t r a i n e d groups as d e f i n e d above, . i t ' a f f o r d e d an o p p o r t u n i t y f o r t h e s u b j e c t s t o overcome t h e problems o f l e a r n i n g and h a b i t u a t i o n , and i t a l l o w e d f o r t h e e s t a b l i s h m e n t o f i n d i v i d u a l s u b j e c t work l o a d s w h i c h would l a t e r . : * f l i c i t the o p t i m a l h e a r t r a t e s r e q u i r e d f o r t h e e x p e r i m e n t a l of t h i s  tests  study.  E a c h s u b j e c t then underwent f o u r more PWG 170 t e s t s , one o f each o f the e x p e r i m e n t a l p r o t o c o l s .  There was an i n t e r v a l o f a t l e a s t two days  between t h e t e s t s i n o r d e r t o m i n i m i z e problems o f f a t i g u e .  The e x p e r i m e n t a l  t e s t s were a d m i n i s t e r e d i n a c o u n t e r b a l a n c e d L a t i n - s q u a r e d e s i g n t o a v o i d problems r e s u l t i n g from t h e o r d e r o f t h e t r e a t m e n t s 28  (i.e. test protocols),  29  as o u t l i n e d i n T a b l e I I I - l below: TABLE I I I - l SCHEDULE OF TEST PROTOCOLS (COUNTERBALANCED LATIN-SQUARE DESIGN)  TEST #1  TEST #2  TEST #3  TEST #4  l , 5, 9, 13  3 Min.  4 Min.  5 Min.  6 Min.  2, 6, 10, 14  4 Min.  6 Min.  3 Min.  5 Min.  3, 7, 11,  5 Min.  3 Min.  6 Min.  4 Min.  6 Min.  5 Min.  4 Min.  3 Min.  SUBJECTS  15  4, 8, 12, 16  ( S u b j e c t s 1 t h r o u g h 8 comprised the t r a i n e d group, w h i l e s u b j e c t s 9 t h r o u g h 16 were t h e u n t r a i n e d group.) Experimental  conditions.  The e n v i r o n m e n t a l  those recommended by Andersen e t a l . ( l 9 7 l ) .  and s u b j e c t c o n t r o l s were E v e r y a t t e m p t was made t o  assure t h a t a l l f o u r t e s t s f o r a g i v e n s u b j e c t were a d m i n i s t e r e d a t t h e same time o f day.  The l a r g e s t d e v i a t i o n from t h i s g o a l was a two-hour  d i f f e r e n c e f o r one t r a i n e d and one u n t r a i n e d s u b j e c t . temperature was kept w i t h i n t h e range o f 18-22°G.  The l a b o r a t o r y  E a t i n g , d r i n k i n g , and  smoking were p r o h i b i t e d w i t h i n two hours o f each t e s t .  The s u b j e c t s were  asked n o t t o e x e r c i s e on t h e day o f each t e s t , a l t h o u g h t h r e e members o f the t r a i n e d group a d m i t t e d t o h a v i n g had moderate r u n s e a r l i e r t h e same day o f a t e s t .  F i n a l l y , a n x i e t y was p r o b a b l y m i n i m i z e d  due t o t h e p r e l i m i -  n a r y t e s t w h i c h a l l s u b j e c t s underwent. The Monark b i c y c l e ergometer was c a l i b r a t e d a t t h e b e g i n n i n g o f t h e t e s t i n g p e r i o d , b u t was n o t r e - c a l i b r a t e d a t any o t h e r t i m e .  However, t h e  30 same b i c y c l e was used f o r each t e s t , and t h e pendulum was always s e t p r e c i s e l y a t ' 0 ' b e f o r e each t e s t began.  A l s o , any i n a c c u r a c i e s r e s u l t i n g  from i n a c c u r a t e c a l i b r a t i o n would have been averaged out by t h e c o u n t e r balanced design o f the study,  and would t h e r e f o r e have c o n t r i b u t e d o n l y t o  an i n c r e a s e i n t h e o v e r a l l e r r o r term.  A l s o , t h e r e was no r e a s o n t o b e l i e v e  t h a t t h e c a l i b r a t i o n would change over t h e d u r a t i o n o f t h e t e s t p e r i o d . The p e d a l l i n g cadence was s e t t o 50 r.p.m. ( s e e M i c h i e l l i and S t r i c e v i c , 1977), and t h e warm-up c o n s i s t e d o f a ' 0 * work l o a d f r e e - w h e e l i n g minutes (Watson, 1976; Watson, 1977)•  f o r two  The r e s t p e r i o d between work l o a d s  was two minutes ( s e e S e l i g e r , 1978; W i t h e r s e t a l , , 1977).  The a p p r o p r i a t e  work l o a d s were d e t e r m i n e d f r o m t h e r e s u l t s o f t h e p r e l i m i n a r y t e s t . C o l l e c t i o n o f the data An A v i o n i c s C a r d i o g u a r d 4000 e l e c t r o c a r d i o g r a p h , w i t h d i g i t a l d i s p l a y s o f h e a r t r a t e and e l a p s e d time, was used t o measure t h e h e a r t r a t e . The v o l t a g e changes from t h e EKG were f e d i n t o a H e w l e t t P a c k a r d 3052A D a t a A c q u i s i t i o n System, w h i c h t h e n p r o v i d e d  a continuous p r i n t - o u t o f heart  r a t e s averaged over each 15-second i n t e r v a l t h r o u g h o u t t h e t e s t p e r i o d . These h e a r t r a t e s , and t h e a s s o c i a t e d work loads d e t e r m i n e d from t h e Monark b i c y c l e ergometer, p r o v i d e d t h e raw d a t a f o r t h i s  study.  Treatment o f t h e d a t a The PWC 170 s c o r e s were d e t e r m i n e d from t h e t h r e e work l o a d s i n each t e s t , and from t h e l a s t 15-second average h e a r t r a t e r e c o r d e d t h e s e work l o a d s .  a t each o f  The r e g r e s s i o n between t h e h e a r t r a t e s and t h e work  l o a d s was p l o t t e d b y a l e a s t - s q u a r e s method, t h r o u g h use o f t h e l i n e a r r e g r e s s i o n f u n c t i o n o f a p o l y n o m i a l r e g r e s s i o n Computer program, UBC BMD 05R. The e q u a t i o n s t h a t r e s u l t e d from t h i s l i n e a r r e g r e s s i o n were used t o  170  c a l c u l a t e the work l o a d t h a t c o u l d be s u s t a i n e d w i t h a h e a r t r a t e o f b e a t s p e r minute ( i . e . the PWG The  d i f f e r e n c e ('D')  170  scores).  s c o r e s were d e t e r m i n e d by f i r s t f i t t i n g an  a s y m p t o t i c r e g r e s s i o n between each 15-second time i n t e r v a l and i t s c o r r e s p o n d i n g average h e a r t r a t e , a c c o r d i n g p a r t i c u l a r f u n c t i o n o f UBG was  BMD  P3R'.  to a least-squares The  method, t h r o u g h a  predicted asymptotic heart  rate  t h e n s u b t r a c t e d from the a c t u a l f i n a l "15-second average" h e a r t  rate  r e c o r d e d , f o r each s u b j e c t , a t a l l t h r e e work l o a d s , under each of the protocols. steady-state  The  'D'  scores  thus are an i n d i c a t i o n o f the e x t e n t t o w h i c h  h e a r t r a t e s have been a c h i e v e d .  that steady-state  N e g a t i v e 'D'  h e a r t r a t e s have n o t been a c h i e v e d .  i n d i c a t e t h a t the f i n a l h e a r t r a t e has value.  four  scores  suggest  P o s i t i v e 'D'  exceeded the p r e d i c t e d  scores  steady-state  (See T a b l e I I I - 2 . ) TABLE  III - 2  CALCULATION OF A.  Y = A + where  B.  Y A+B p X  F i n a l HR  Bp = = = =  'D' SCORES  x  ordinate Y intercept r a t e of curvature abscissa  = s s. g  predicted heart rate preliminary heart rate h e a r t r a t e dynamics time  - P r e d i c t e d A s y m p t o t i c HR = 'D'  score  E x p e r i m e n t a l d e s i g n and s t a t i s t i c a l a n a l y s i s Hypotheses 1 and 2. of variance  Hypotheses 1 and 2 were t e s t e d w i t h a two-way a n a l y s i s  (ANOVA), t h r o u g h t h e computer program UBC  BMD  two independent v a r i a b l e s b e i n g ' s t a t e of t r a i n i n g ' and w i t h r e p e a t e d measures on the l a t t e r f a c t o r . 'PWC  170  The  P2V, 'PWC  with 170  protocol ,  dependent v a r i a b l e  s c o r e ' , e x p r e s s e d i n KPM/Min. ( k i l o p o n d metres p e r  the  minute).  1  was  32 TABLE I I I - 3 EXPERIMENTAL DESIGN - HYPOTHESES 1 AND 2 State  PWG 170  of t r a i n i n g  3 Min. Trained Untrained  protocols  4 Min.  X X  X X  5 Min.  6 Min.  X X  X X  PWG 170 s c o r e s P r e p l a n n e d o r t h o g o n a l comparisons were used t o t e s t t h e s p e c i f i c s t a t e m e n t s i n hypotheses l a a n d 2. S i g n i f i c a n c e was a c c e p t e d a t t h e .05 l e v e l . Hypotheses 3i 4 and 5» analysis of variance  Hypotheses 3i 4 and 5 were t e s t e d w i t h a three-way  (ANOVA), a l s o t h r o u g h UBG BMD P2V, w i t h  'state of  t r a i n i n g ' , 'PWG 170 p r o t o c o l ' , and 'work l o a d number' ( i n d i c a t i n g a l s o ' r e l a t i v e i n t e n s i t y ' ) b e i n g t h e t h r e e independent v a r i a b l e s , and w i t h t h e l a t t e r two f a c t o r s b e i n g r e p e a t e d measures. the  'D' s c o r e .  The dependent v a r i a b l e was  S i g n i f i c a n c e was a g a i n a c c e p t e d a t t h e .05 l e v e l . TABLE I I I - 4 EXPERIMENTAL DESIGN - HYPOTHESES §, 4 AND 5 PWG 170  State of t r a i n i n g  • 3 Min.  protocols  4 Min.  5 Min.  6 Min.  Work l o a d number  Trained Untrained  ABC  ABC  ABC  ABC  X X X X X X  X X X X X X  X X X X X X  X X X X X X  'D' s c o r e s  P r e p l a n n e d o r t h o g o n a l comparisons were used t o t e s t t h e s p e c i f i c s t a t e ments i n hypotheses 3 and 5, w h i l e 4 was t e s t e d by a main e f f e c t i n t h e ANOVA.  CHAPTER IV RESULTS AND  DISCUSSION  Results The raw d a t a c o l l e c t e d I n t h i s s t u d y are i n c l u d e d i n appendix A. E a c h work l o a d amount i s d e s c r i b e d f o r e v e r y s u b j e c t under a l l f o u r p r o t o c o l c o n d i t i o n s , and i n c l u d e d w i t h t h i s i s a complete l i s t i n g o f each h e a r t r a t e averaged and r e c o r d e d e v e r y f i f t e e n seconds.  A l s o i n c l u d e d , i n appendix B,  i s a l i s t i n g o f the f i n a l r e c o r d e d h e a r t r a t e s f o r each s u b j e c t a t each work l o a d under a l l f o u r p r o t o c o l c o n d i t i o n s .  Beside these f i n a l  recorded  h e a r t r a t e s , and s u b t r a c t e d f r o m them, a r e t h e p r e d i c t e d a s y m p t o t i c r a t e s f o r t h e same work l o a d s .  heart  The d i f f e r e n c e i n each case, t h e 'D" s c o r e ,  i s l i s t e d b e s i d e each f i n a l and p r e d i c t e d a s y m p t o t i c h e a r t r a t e . I t s h o u l d be noted t h a t two s u b j e c t s withdrew f r o m t h e s t u d y b e f o r e i t was completed,  and t h e i r r e s u l t s had t o be d i s c a r d e d s i n c e i n c o m p l e t e  r e s u l t s were n o t amenable t o t h e d e s i g n o f t h i s r e s e a r c h .  These s u b j e c t s  were r e p l a c e d by two o t h e r s who met t h e q u a l i f i c a t i o n s f o r assignment t o the groups,  and t h e y completed a l l the t e s t s r e q u i r e d .  T h i s s e c t i o n o f t h e c h a p t e r p r o v i d e s the p e r t i n e n t r e s u l t s o f t h e s t u d y and t h e i r a s s o c i a t e d s t a t i s t i c a l a n a l y s e s .  A statement  i s made  whenever an a n a l y s i s s u p p o r t s , or f a i l s t o s u p p o r t , a h y p o t h e s i s . The second s e c t i o n o f t h i s c h a p t e r , t h e d i s c u s s i o n , attempts  to explain  these r e s u l t s and a n a l y s e s b o t h i n t h e c o n t e x t o f t h i s s t u d y and i n l i g h t of the c u r r e n t r e l a t e d research. r e l a t e d t o t h e PWC  170  I n t h i s case, an a l t e r n a t e a n a l y s i s  s c o r e s i s p r o v i d e d , on a p o s t hoc i n v e s t i g a t o r y  basis.  33  34 PWC 170 The PWG 170 s c o r e s f o r h o t h t r a i n e d and u n t r a i n e d  i n d i v i d u a l s , under  a l l four p r o t o c o l conditions, are l i s t e d i n Table IV-1.  The group means  and s t a n d a r d d e v i a t i o n s a r e p r e s e n t e d i n T a b l e I V - 2 . TABLE I V - 1 INDIVIDUAL PWG 170 SCORES Group  Protocols  Subject  T Trained  3 Min.  4 Min.  5 Min.  6 Min.  1296 1416 1632 1335 1704 1317  1318  1256 1340  1263 1289 1514 1226 2050 1298 1331 1236  01 02 03  04  05 06 07  1594 1285 1702 1333 1399  1414 1286  08  Untrained  1414  996 960 629 1031 703 859 760 809  09 10 11 12 13  14  15 16  1404 1245  1800 1320 1378  1282  1242  965 952 616 938 679 851 752 744  953 947 602 961 659 854 75^ 775  944 936 596 947 650 859  742 746  TABLE I V - 2 PWC 170 SCORES GROUP MEANS AND STANDARD DEVIATIONS Group  Trained  Untrained P r o t o c o l s (P)  Descriptive Statistics  Protocols 3 Min.  4 Min.  Means S t . Dev.'s  1425 159  1416  Means S t . Dev.'s  843 144  1134  Groups  5 Min. 6 Min. 1373  1401  183  277  812  813  133  139  803  139  1114  1093  1102  154  1404 818 11111  35 The IV-3.  r e s u l t s o f t h e ANOVA f o r t h e s e s c o r e s  a r e summarized i n T a b l e  I n s e r t i o n o f an a s t e r i s k (*) w i t h i n t h e ANOVA t a b l e s i g n i f i e s  s t a t i s t i c a l s i g n i f i c a n c e a t p<.05 f o r that p a r t i c u l a r source. TABLE I V - 3 PWG 170 SCORES SUMMARY OF ANOVA Source  df  Mean square  Groups ( G ) *  1  5493164.06  14  108861.14  P r o t o c o l s (P)  3  GP  SwG  SwGP  The  F  P  50.46  < .001  5080.79  I.63  .20  3  1551.10  0.50  .69  42  3122.67  r e s u l t s contained  cant d i f f e r e n c e (p<.05)  i n Table I V - 3 i n d i c a t e t h a t the only s i g n i f i -  i n PWC 170 s c o r e s  l i e s i n the o v e r a l l d i f f e r e n c e  between t h e t r a i n e d and u n t r a i n e d groups ( p ^ . O O l ) .  T h i s m e r e l y demon-  s t r a t e s t h e e f f e c t i v e n e s s o f the s e l e c t i o n c r i t e r i a used f o r  accepting  s u b j e c t s i n t o each group. H y p o t h e s i s 1 s t a t e s t h a t " t h e PWC 170 s c o r e s f o r u n t r a i n e d  subjects  d e r i v e d f r o m 3- and 4-minute work l o a d d u r a t i o n p r o t o c o l s a r e h i g h e r those r e s u l t i n g from 5- and 6-minute p r o t o c o l s . "  than  Pre-planned orthogonal  comparisons y i e l d e d a n o n - s i g n i f i c a n t e f f e c t (F=.97» p > .05) and f a i l e d t o support hypothesis  1.  H y p o t h e s i s 2 s t a t e s t h a t "the PWC 170 s c o r e s f o r t r a i n e d s u b j e c t s d e r i v e d f r o m t t h e J-jnlnvbe work l o a d d u r a t i o n p r o t o c o l a r e h i g h e r t h o s e r e s u l t i n g from 4 - , 5  _  and 6-minute p r o t o c o l s " .  Once a g a i n ,  than  36 pre-planned orthogonal  comparisons demonstrated a n o n - s i g n i f i c a n t e f f e c t  (F=1.54, p > . 0 5 ) , and h y p o t h e s i s  2 was n o t s u b s t a n t i a t e d .  F i g u r e I V - 1 d e s c r i b e s t h e p r o t o c o l s e f f e c t (P) and t h e groups by p r o t o c o l s e f f e c t (GP), as w e l l as showing t h e groups e f f e c t (G) mentioned above.  T h i s f i g u r e s u g g e s t s a downward t r e n d ( i . e . d e c r e a s e s i n group  mean PWG 170 s c o r e s ) as t h e p r o t o c o l d u r a t i o n s i n c r e a s e from 3 minutes a t each work l o a d t o 6 minutes a t each work l o a d .  Two p o i n t s d e t r a c t f r o m t t h i s  downward t r e n d - t h e 5-m.nute p r o t o c o l f o r t h e u n t r a i n e d group ( i n w h i c h the mean s t a y s v i r t u a l l y t h e same as f o r t h e 4-minute p r o t o c o l ) , and t h e 6-minute p r o t o c o l f o r t h e t r a i n e d group ( i n w h i c h t h e mean r i s e s from a 4—minute p r o t o c o l mean o f 1373 t o IkOl).  The r e l a t i v e l y l a r g e i n c r e a s e  i n t h e 6-minute p r o t o c o l mean f o r t h e t r a i n e d group outweighs t h e 6-minute p r o t o c o l decrease found i n t h e u n t r a i n e d group m e a n , . r e s u l t i n g o v e r a l l mean s c o r e i n c r e a s e f o r t h e 6-minute p r o t o c o l .  i n a small  Although the  p r o t o c o l s e f f e c t was n o n - s i g n i f i c a n t , a c l o s e r a n a l y s i s o f t h i s phenomenon w i l l be found i n t h e " D i s c u s s i o n " s e c t i o n o f t h i s  chapter.  I n summary, t h e s e r e s u l t s show s i g n i f i c a n t l y h i g h e r PWG 170  scores  among t h e t r a i n e d group as opposed t o t h e u n t r a i n e d group, as was e x p e c t e d because o f t h e c r i t e r i a e s t a b l i s h e d f o r a s s i g n i n g t h e s u b j e c t s i n t o t h e i r r e s p e c t i v e groups.  There was, however, no o t h e r s i g n i f i c a n t d i f f e r e n c e  i n PWG 170 s c o r e s , e i t h e r on t h e b a s i s o f a p r o t o c o l s e f f e c t , o r a groups by p r o t o c o l s i n t e r a c t i o n . e f f e c t . by t h e r e s u l t s o f t h i s  study.  Hypotheses 1 and 2 were n o t s u p p o r t e d  Trained — • — Untrained — ® O v e r a l l mean — X -  1500 + (GP) 1400 (G)  T r a i n e d group mean over a l l p r o t o c o l s = 1404  1300 +  ,1200 4 (P)  1100 +  T o t a l group mean over aIT~pr£t o c o l s =  1111  1000 4  900  (G)  U n t r a i n e d group mean over a l l p r o t o c o l s = 818  (GP)  800 4 1  -+-  3 Min.  4 Min.  -f-  5 Min.  Protocols FIGURE IV-1 PWG 170 SCORES (MEANS)  6 Min.  38 'D'  Scores As was d e s c r i b e d i n c h a p t e r I I I , the 'D' s c o r e s were determined  s u b t r a c t i n g the p r e d i c t e d a s y m p t o t i c h e a r t r a t e from the a c t u a l  by-  final  "15-second average" h e a r t r a t e r e c o r d e d , f o r each s u b j e c t , a t a l l t h r e e work l o a d s , under each o f the f o u r p r o t o c o l s .  The raw d a t a used t o c a l c u l a t e  the 'D' s c o r e s i s i n c l u d e d i n appendix A.  'D' s c o r e s a r e , t h e n , an  The  i n d i c a t i o n o f the e x t e n t t o w h i c h the h e a r t r a t e r e a c h e d i t s p r e d i c t e d asymptotic 'steady-state' value.  A n e g a t i v e 'D' s c o r e s i g n i f i e s a f i n a l  h e a r t r a t e t h a t i s lower than i t s p r e d i c t e d a s y m p t o t i c v a l u e , and  indicates  t h a t s t e a d y - s t a t e may not have been r e a c h e d due t o a t o o - e a r l y c e s s a t i o n o f the work p e r i o d .  A p o s i t i v e 'D' s c o r e s i g n i f i e s a f i n a l h e a r t r a t e  t h a t i s higher than i t s p r e d i c t e d asymptotic value, suggesting t h a t e i t h e r the work l o a d may have been t o o s e v e r e f o r s t e a d y - s t a t e t o be a c h i e v e d , o r t h a t o t h e r f a c t o r s such as i n c r e a s i n g core temperature  have added an  a d d i t i o n a l s t r e s s on the c a r d i o v a s c u l a r system, r e s u l t i n g i n an e l e v a t i o n o f the h e a r t r a t e above t h a t n o r m a l l y demanded by the g i v e n work l o a d . The  'D' s c o r e s f o r i n d i v i d u a l s i n b o t h t r a i n e d and u n t r a i n e d groups,  f o r each o f the t h r e e work l o a d s under a l l f o u r p r o t o c o l c o n d i t i o n s , are given i n Table IV-4, p r e s e n t e d i n Table  w i t h the group means and s t a n d a r d d e v i a t i o n s b e i n g IV-5.  TABLE I V - 4 INDIVIDUAL 'D' SCORES  Protocols  Subjects  3 Min.  4 Min.  5 Min,  6 Min.  Loads  Loads  Loads  Loads  B  A  05 06  -2 3 - l 0 0 3 -2 -2 - l 0 0 -2 -3 -1 1 1 0 l  07 08  - l -2 -4  01 02  Trained  c  03  04  3 -3 -3  A  B  C  A  B  2 -1 0 0 2 -1 -1 0 0 0 0 -1 -3 -1 0 0 1 1 0 1 -1 -1 -2 2  -1 2 0 0 1 1 .1 0  3 .3  2  4  1  1  3  3 3  3 3  3 3  B  10 11 12  2 2. 1 -1 0 -1 1 1 0 -1 -3 1  2 2 2 1 1 0 -2 0 0 -1 4 -1  1 3 1 0 -2 -4 0 4 1 1 2 -2 2 0 1 3 2 3 l 1 0 2 1 3  0 -1 1 0 -2 -2 -5 0 0 l 3 -2 4 -1 1 1 0 2 1 -1 -2 -1 3 3  2 1 1 -4 -2 -6 -3 -2 -2 -3 -2 -3 13 . -14 -1 -4 . 14 3 -1 3 1 -3- -11 15 16 0 3 4  09  Untrained  c  A  -5  1 -1 1 1  7 2 -2 2 -2 0  3  2  3  C  2  3  0 l 0 2 0 0 0 1 1 0 4  TABLE I V - 5 •D'  SCORES  GROUP MEANS AND STANDARD DEVIATIONS Protocols r  -  Group  n  3 Min.  -x-  Descriptive Statistics A  Trained  Means •St.Dev.sl  Loads B  C_  A  4 Min.  5.Min.  6 Min..  Loads  Loads  Loads  B  C  A  B  C  A  B  C  -.50 -.50 - . 8 8 - . 3 8 0.00 0.00 0.50 0.88 0.75 1.63 1.13 1.63 1.93 1-93 2.23 1.41 1.31 1.07 0.93 1.96 1.58 1.92 1.46 1.30  U n t r a i n e d Means -2.25 -.88-2.25 0.13 0.13 0.13 1.25 I . 3 8 0.38 0.38 1.50 1.00 S t . Dev. sj 5-39 1-96 4.95 2.53 1-89 1.96 1.04 1.85 2.39 2.77 2.93 1.41  39  40 The r e s u l t s o f t h e ANOVA f o r t h e s e s c o r e s a r e summarized i n Table I V - 6 . I n s e r t i o n o f an a s t e r i s k (*) w i t h i n t h e ANOVA t a b l e s i g n i f i e s significance a t p<.05 f o r that particular  statistical  source.  Note t h a t T a b l e I V - 6 i s o n l y a summary o f t h e ANOVA f o r t h e *B.' s c o r e s . As such, i t was deemed a p p r o p r i a t e t o i n c l u d e c a t e g o r i e s o f v a r i a n c e by l i n e a r , q u a d r a t i c , and c u b i c f u n c t i o n s o n l y when t h e source i n v o l v e d showed significance at p<.05-  Thus, o n l y the v a r i a n c e a t t r i b u t e d t o t h e p r o t o c o l s  e f f e c t ( p < 0 . 0 0 l ) was l i s t e d i n terms o f i t s l i n e a r , q u a d r a t i c and c u b i c functions. TABLE I V - 6 'D.' SCORES SUMMARY OF ANOVA Source Groups (G) SwG Protocols (P)* P linear * P quadratic P cubic GP SwGP Load ( L ) GL SwGL PL GPL SwGPL  df 1 14  3 1 1 l  3  42  2 2  28  6 6  84  Means square  3-79 18.60  55.47 157.62 8.75 .05 5.77 5-19 2.76 2.36 5.09 0.87 1.31 3.57  F  0.20 10.68  28.24  P  .66 <.001 <.00l  1.27 .02 1.11  .28  0.54  • 59 .63  0.24  • 96 • 89  0.46  0.37  • 89 • 36  The r e s u l t s c o n t a i n e d i n T a b l e I V - 6 i n d i c a t e t h a t t h e r e i s a s i g n i f i cant d i f f e r e n c e ( p < . 0 0 l ) i n 'D' s c o r e s o b t a i n e d from among the f o u r d i f f e r e n t protocols.  The group means f o r these s c o r e s had n e g a t i v e v a l u e s f o r a l l  t h r e e l o a d s under t h e t h r e e minute p r o t o c o l ( f o r b o t h t h e t r a i n e d . a n d u n t r a i n e d g r o u p s ) , w h i l e t h e y had p o s i t i v e v a l u e s f o r a l l t h r e e l o a d s under  41 the s i x minute p r o t o c o l ( a l s o f o r b o t h g r o u p s ) .  The f o u r and f i v e minutes  p r o t o c o l s seemed t o f i t i n w i t h t h i s t r a n s i t i o n from n e g a t i v e t o p o s i t i v e v a l u e s , as the v a r i a n c e from t h e p r o t o c o l s e f f e c t c o u l d almost t o t a l l y be e x p l a i n e d by a l i n e a r f u n c t i o n ( p < . 0 0 l ) . No i n t e r a c t i o n e f f e c t s approached s i g n i f i c a n c e , n o r was t h e r e any s i g n i f i c a n t d i f f e r e n c e i n t h e 'D' s c o r e s between t h e t r a i n e d and u n t r a i n e d group o v e r a l l , n o r among t h e l o a d s  overall.  Table IV-7 g i v e s t h e group means o f the 'D' s c o r e s , averaged over t h e F i g u r e I V - 2 shows t h a t t h e  t h r e e work l o a d s , under a l l f o u r p r o t o c o l s .  e f f e c t o f t h e p r o t o c o l s on t h e 'D' s c o r e s i s c l e a r l y demonstrated by a v a r i a n c e w h i c h suggests  a linear function.  The l a c k o f a s i g n i f i c a n t  d i f f e r e n c e between t h e t r a i n e d and u n t r a i n e d groups i s a l s o s u g g e s t e d by Figure I V - 2 . TABLE I V - 7 'D' SCORES PROTOCOLS EFFECT ON GROUP MEANS tAVERAGED OVER ALL $ WORK LOADS)  Protocols  Groups (G)  3 Min.  4 Min.  -.63  -.13  171  1.46  •35  Untrained  -1.79  .13  1.00  .96  .08  P r o t o c o l s (P)  -1.21  .00  .86  1.21  .22  Group Trained  5 Min.  6 Min.  42  FIGURE I V - 2 'DV SCORES (GROUP MEANS AVERAGED OVER THE THREE WORK LOADS UNDER ALL FOUR PROTOCOLS)  k3  H y p o t h e s i s 3 s t a t e s t h a t " t h e r e i s a d i f f e r e n c e i n 'D  1  s c o r e s among  the d i f f e r e n t p r o t o c o l s , w i t h the 3- and 4-minute p r o t o c o l s p r o d u c i n g g r e a t e r negative  v a l u e s ( i n d i c a t i n g a d e c r e a s e d e x t e n t t o w h i c h s t e a d y s t a t e , and  t h e r e f o r e c r i t i c a l t i m e s , have been achieved) t h a n t h e 5~ and 6-minute protocols."  The ANOVA summarized i n T a b l e I V - 6 s u p p o r t s t h i s h y p o t h e s i s  on  a p r o t o c o l s (P) e f f e c t ( p < T . 0 0 l ) , and f u r t h e r i n d i c a t e s t h a t t h e e f f e c t can be b e s t d e s c r i b e d by a l i n e a r f u n c t i o n ( p < . 0 0 l ) .  F i g u r e I V - 2 shows t h a t  the s h o r t e r d u r a t i o n p r o t o c o l s t e n d t o e x h i b i t g r e a t e r n e g a t i v e Preplanned orthogonal the 3  -  comparisons showed a s i g n i f i c a n t d i f f e r e n c e between  and 4—minute p r o t o c o l 'D' s c o r e s v e r s u s t h e 5  s c o r e s (F=8.23,  values.  _  and 6-minute p r o t o c o l  p<.0l).  H y p o t h e s i s 4 s t a t e s " t h a t t h e r e i s a s i g n i f i c a n t d i f f e r e n c e i n 'D' s c o r e s between t r a i n e d and u n t r a i n e d s u b j e c t s , w i t h t h e t r a i n e d s u b j e c t s e x h i b i t i n g s i g n i f i c a n t l y l e s s negative ment o f s t e a d y - s t a t e . "  values, i n d i c a t i n g a greater  achieve-  The mean 'D' s c o r e under a l l f o u r p r o t o c o l s was  .35 f o r t h e t r a i n e d group, and .07 f o r the u n t r a i n e d group.  Table IV-6  shows, however, t h a t t h e d i f f e r e n c e (.28) i n t h i s groups e f f e c t (G) was n o n - s i g n i f i c a n t (F=.20, pj> .05)•  There were a l s o no s i g n i f i c a n t i n t e r a c t i o n  e f f e c t s between groups and p r o t o c o l s (GP), ( F - 1 . 1 1 , F i n a l l y , hypothesis between t h e 1st  p>.05).  5 p r e d i c t s " a s i g n i f i c a n t d i f f e r e n c e i n 'D' s c o r e s  and 3 i work l o a d s o f t h e PWG 170 t e s t s , w i t h t h e 3rd (most r (  i n t e n s e ) work l o a d p r o d u c i n g s i g n i f i c a n t l y l e s s n e g a t i v e v a l u e s , i n d i c a t i n g ^ g r e a t e r achievement o f s t e a d y - s t a t e . " by t h e use o f p r e p l a n n e d o r t h o g o n a l  comparisons.  'D' s c o r e f o r t h e 1st work l o a d was .375, work l o a d .  T h i s d i f f e r e n c e was t o be t e s t e d However, t h e o v e r a l l mean  and i t was a l s o .375 f o r t h e 3rd  T h i s l a c k o f any d i f f e r e n c e f a i l s t o s u p p o r t h y p o t h e s i s  5.  There  were a l s o no s i g n i f i c a n t i n t e r a c t i o n e f f e c t s i n v o l v i n g t h e work l o a d s ; i . e .  44 groups b y l o a d s ( G L ) , p r o t o c o l s b y l o a d s ( P L ) , and groups by p r o t o c o l s b y l o a d s ( GPL) . Discussion PWG 170.  The ANOVA r e s u l t s shown i n T a b l e I V - 3  i n d i c a t e t h a t the  only  s i g n i f i c a n t d i f f e r e n c e i n PWG 170 s c o r e s r e s i d e s i n t h e o v e r a l l d i f f e r e n c e between the means o f the t r a i n e d versus the u n t r a i n e d group.  This d i f f e r e n c e  i s not s u r p r i s i n g , and i n d e e d was e x p e c t e d as a r e s u l t o f t h e s e l e c t i o n c r i t e r i a f o r a s s i g n i n g the s u b j e c t s i n t o each group; i . e . p i l o t PWG 170 t e s t r e s u l t s e x c e e d i n g 15.69 KPM/Kg./Min. a l l o w e d assignment t o the t r a i n e d group, whereas those s c o r e s l e s s t h a n 12.93 KPM/Kg./Min. p r o v i d e d  for  i n c l u s i o n i n the u n t r a i n e d group. H y p o t h e s i s 1, w h i c h p r e d i c t s s i g n i f i c a n t l y h i g h e r s c o r e s f o r u n t r a i n e d s u b j e c t s d e r i v e d from the 3- and 4-minute p r o t o c o l s as opposed t o the 5~ and 6-minute p r o t o c o l s , was not s u p p o r t e d i n t h i s s t u d y . 2,  Similarly,  which p r e d i c t s s i g n i f i c a n t l y h i g h e r s c o r e s f o r t r a i n e d s u b j e c t s  hypothesis derived  from t h e 3-roi "te p r o t o c o l as opposed t o the 4 - , 5- and 6-minute p r o t o c o l s , nu  was  a l s o not s u b s t a n t i a t e d .  I n f a c t , t h e r e was no s i g n i f i c a n t p r o t o c o l s  e f f e c t , n o r were t h e r e any s i g n i f i c a n t i n t e r a c t i o n e f f e c t s . According may  t o these r e s u l t s , i t appears t h a t any o f these f o u r p r o t o c o l s  be used t o a d m i n i s t e r the PWG 170 t e s t , and even t h e s h o r t e s t 3-minute  p r o t o c o l i s o f s u f f i c i e n t duration t o obtain approximately heart r a t e s . who  steady-state  T h i s f i n d i n g d i f f e r s f r o m t h a t o f Watson and O'Donovan (1976)  r e p o r t e d t h a t a 4-minute p r o t o c o l r e s u l t e d i n s c o r e s 4 p e r c e n t  t h a n those d e r i v e d f r o m 5~ and 6-minute p r o t o c o l s .  higher  The f i n d i n g s i s s i m i l a r ,  however, t o t h a t o f W i t h e r s e t a l . (1977) who found no s i g n i f i c a n t d i f f e r e n c e among 6-, 4- and 3-minute p r o t o c o l s , even though the group means s u g g e s t e d  45 a t r e n d toward h i g h e r s c o r e s f o r t h e s h o r t e r work p e r i o d s . However, an i n t e r e s t i n g o b s e r v a t i o n l e a d s t o a f u r t h e r a n a l y s i s , suggesting t h a t a trend e x i s t s i n t h i s data which warrants  f u r t h e r study.  I n Table I V - 2 , t h e s t a n d a r d d e v i a t i o n s o f t h e PWG 1?0 s c o r e s f o r both groups under a l l f o u r p r o t o c o l s v a r y from 133 "to 183, a range o f 50, w i t h one e x c e p t i o n .  The s t a n d a r d d e v i a t i o n o f t h e t r a i n e d group f o r t h e 6-minute  p r o t o c o l i s l i s t e d as 277.  T h i s i s 94 u n i t s above t h e h i g h e s t v a l u e f o r  the seven o t h e r s t a n d a r d d e v i a t i o n s t h a t have a range o f o n l y 50. I t was a l s o n o t e d above (see F i g u r e l ) t h a t a downward t r e n d i n t h e PWG 170 group mean s c o r e s , as t h e p r o t o c o l s i n c r e a s e d i n d u r a t i o n , was o n l y i n t e r r u p t e d twice —  once by an i n c r e a s e i n t h e mean s c o r e o f 1 f o r t h e  u n t r a i n e d group from t h e 4-minute p r o t o c o l t o t h e 5~rcinute p r o t o c o l , and once by a r a t h e r l a r g e i n c r e a s e i n t h e mean s c o r e from 1373 "to 1401 f o r the t r a i n e d group from t h e 5-minute p r o t o c o l t o t h e 6-minute p r o t o c o l .  This  l a r g e i n c r e a s e i n t h e 6-minute p r o t o c o l mean s c o r e i s a s s o c i a t e d w i t h t h e l a r g e i n c r e a s e i n t h e s t a n d a r d d e v i a t i o n f o r t h a t group mean, as can be shown by r e f e r r i n g t o T a b l e I V - l , i i n w h i c h i t can be observed t h a t s u b j e c t 05 i n c r e a s e d by a s c o r e o f 250 from t h e 5- "to 6-minute p r o t o c o l s . S u b j e c t 05 c o u l d r e a l l y be d e f i n e d as an " o u t l i e r " , s i n c e a l l o f h i s s c o r e s were extreme —  under each p r o t o c o l t h e y were t h e h i g h e s t r e c o r d e d  —  and t h e y r e s u l t i n an i n c r e a s e d v a r i a n c e and an e x a g g e r a t e d e r r o r term o f 3122.67 i n t h e ANOVA ( T a b l e I V - 3 ) .  S i n c e an o v e r a l l s i g n i f i c a n c e f o r t h e  p r o t o c o l s e f f e c t was n o t a c h i e v e d , a S c h e f f e e p o s t hoc a n a l y s i s c o u l d n o t be a p p l i e d .  ( A l s o , t h e S c h e f f e e uses t h e o v e r a l l e r r o r term, w h i c h was  h i g h l y i n f l a t e d by t h e 6-minutes p r o t o c o l v a r i a n c e . )  I t was t h e r e f o r e  d e c i d e d i n s t e a d t o r u n a " p o s t hoc ANOVA" w i t h t h e s c o r e s o f t h e " o u t l i e r " , s u b j e c t 05, d e l e t e d .  The r e s u l t s o f t h i s p o s t hoc ANOVA, summarized i n  46 T a b l e TV-8, d i f f e r g r e a t l y from t h e o r i g i n a l r e s u l t s r e p o r t e d i n T a b l e I V - 3 .  TABLE I V - 8 PWG 1?0 SCORES SUMMARY OF ANOVA (POST HOC ANOVA - SUBJECT ' 0 5 ' DELETED)  SOURCE  df  df  MEAN SQUARE  Groups ( G ) *  11  4152550.79  SwG  13  58041.86  Protocols ( P ) *  3  GP* SwGP  F  P  71.54  <0.001  11249.21  15.49  <0.001  3  3414.52  4.70  39  726.36  P(l) Linear *  1  32223.41  39-20  <0.00l  GP (1)  1  5537.26  6.74  <0.02  13  822.10  1  668.75  1.06  0.32  1  195.75  0.31  0.59  13  630.48  1  855.46  1.18  0.29  1  4510.54  6.21  <0.03  Linear *  ERROR L i n e a r P(2)  Quadratic  GP (2) ERROR P(3)  Quadratic Quadratic  Cubic  GP (3)  Cubic*  ERROR Cubic  13  .  726.50  I t can be seen t h a t by s i m p l y d e l e t i n g t h e s c o r e s  o f s u b j e c t ' 0 5 ' from  a l l f o u r p r o t o c o l s t h e e r r o r term drops from 3122.67 ( T a b l e I I I - 3 ) ( T a b l e IV-8).  <0.01  t o 726.50  The B e f f e c t t h e n changes fromaa n o n - s i g n i f i c a n t p=*.200to a  h i g h l y s i g n i f i c a n t p<^.001.  T a b l e I V - 8 shows t h a t t h e p r o t o c o l s e f f e c t can  47  b e s t be d e s c r i b e d by a l i n e a r f u n c t i o n ( p C . O O l ) . r e s u l t s o f t h i s new hypothesis  2,  ANOVA, p r e p l a n n e d o r t h o g o n a l  A c c o r d i n g t o the comparisons now  showing a s i g n i f i c a n t d i f f e r e n c e i n PWG  the 3-rainute p r o t o c o l v e r s u s t r a i n e d group ( F = 2 0 . 5 6 ,  the 4 - ,  p<C.0l).  5  support  1 7 0 s c o r e s between  and 6-minute p r o t o c o l s f o r the  -  H y p o t h e s i s 1,  which p r e d i c t s a s i g n i f i c a n t  d i f f e r e n c e between the s c o r e s f r o m the 3 - and 4-minute p r o t o c o l s the 5~ a^id 6-minute p r o t o c o l s f o r the u n t r a i n e d group ( F - 4 . 1 9 ) , a t the s i g n i f i c a n c e l e v e l p < . 0 5 ( F = 4 . 0 9 )  versus i s supported  but not a t t h e l e v e l p < . 0 1  (F=733) .  There a l s o a r i s e s a s i g n i f i c a n t groups by p r o t o c o l s (GP) i n t e r a c t i o n e f f e c t (p < . 0 1 )  w h i c h can most s u c c e s s f u l l y be e x p l a i n e d by a l i n e a r model  (p "C.05) but w h i c h can a l s o be i n t e r p r e t e d by a c u b i c f u n c t i o n  (p<".05).  F i g u r e I V - 3 demonstrates the o v e r a l l P and G e f f e c t s , and shows the GP i n t e r a c t i o n . PWG  170  B o t h t r a i n e d and u n t r a i n e d groups decrease t h e i r mean  s c o r e s w i t h l o n g e r d u r a t i o n p r o t o c o l s , but t h e r e i s a s i g n i f i c a n t  d i f f e r e n c e between the groups i n the way o c c u r s , ( i . e . the GP e f f e c t ) .  o r e x t e n t t o w h i c h t h i s decrease  I t appears t o be a f a s t e r d e c r e a s e among  the t r a i n e d s u b j e c t s w i t h i n c r e a s i n g p r o t o c o l d u r a t i o n s , s u g g e s t i n g i f t h i s a n a l y s i s were i n d e e d v a l i d , i t may  be even more i m p o r t a n t  that,  for  t r a i n e d a t h l e t e s t o undergo l o n g e r d u r a t i o n p r o t o c o l s o f t h i s t e s t s i n c e the s h o r t e r p r o t o c o l s may of untrained subjects. four.  overestimate  t h e i r s c o r e s even more than those  T h i s would be c o n t r a r y t o the i n t e n t o f  hypothesis  1500r P r e v i o u s means  Trained — Untrained — © O v e r a l l Mean — J f w i t h ' 0 5 ' i n c l u d e d -,-Bv-  ( i l) Q  P  14001 (GP)  without  1300 I (G^) (G)  '05V  T r a i n e d group mean'over a l l p r o t o c o l s = I4b5 T r a i n e d group mean over a l l p r o t o c o l s = 1345  1200 with  (Pi)  ---a  1100 (P)  _«  '05'  -a without  '05'  1000  ( ) G  U n t r a i n e d group mean over a l l p r o t o c o l s = 818  (GP)  800  ^ 3 Min.  4 Mini;;v-3:-Min. Protocols FIGURE PWC  170  IV-3 SCORES  (MEANS) (SUBJECT ' 0 5 '  DELETED)  6 Min.  49  No f u r t h e r a n a l y s i s o f t h i s p o s t hoc ANOVA i s u n d e r t a k e n here, i t i s a f t e r a l l somewhat i l l e g i t i m a t e .  since  I n summary, i t was i n c l u d e d because  s u b j e c t 0 5 had h i g h l y d i s c r e p a n t s c o r e s t h r o u g h o u t , c o n t r i b u t i n g t o a g r e a t i n c r e a s e i n t h e v a r i a n c e and t h e r e f o r e t h e e r r o r term, and he c a n j u s t i f i a b l y be c l a s s i f i e d as an " o u t l i e r " .  W h i l e acknowledging t h e p o s s i b l e v a l i d i t y  o f t h e d a t a d e r i v e d from s u b j e c t 0 5 , and n o t t o t a l l y d i s c a r d i n g t h e o r i g i n a l a n a l y s i s , i t was deemed a p p r o p r i a t e t o r e - a n a l y z e t h e d a t a w i t h t h i s d e l e t e d , s i n c e t h e l a r g e v a r i a b i l i t y i n t r o d u c e d by h i s d a t a  subject  (especially  r e g a r d i n g t h e SwGP e r r o r term) c o u l d e a s i l y r e s u l t i n a type I I s t a t i s t i c a l error.  The p o s t hoc ANOVA i s t h e r e f o r e i n c l u d e d as a  technique.  "data-snooping"  I t s h o u l d a l s o be n o t e d t h a t t h i s a l t e r n a t e a n a l y s i s i s somewhat  j u s t i f i e d b y t h e s t r e n g t h o f t h e s i g n i f i c a n t e f f e c t s i t u n c o v e r s , (P e f f e c t s i g n i f i c a n t a t p O O O l , and GP i n t e r a c t i o n e f f e c t s i g n i f i c a n t a t p < ^ . 0 l ) , and b y t h e f a c t t h a t i t agrees much more r e a d i l y w i t h t h e a n a l y s i s o f t h e 'D' s c o r e s , w i t h w h i c h t h e PWG 1 ? 0 s c o r e s a r e l i k e l y t o have an a s s o c i a t i o n . There i s l i t t l e e v i d e n c e t o e x p l a i n t h e s e e m i n g l y a b e r r a n t of s u b j e c t 0 5 , e x c e p t t h e f a c t t h a t he a d m i t t e d  results  t o having a s l i g h t c o l d  a t t h e time o f u n d e r g o i n g t h e s h o r t e r d u r a t i o n p r o t o c o l t e s t s .  This  could  have r e d u c e d t h e s e s c o r e s somewhat ( b y e l e v a t i n g h i s submaximal h e a r t r a t e s ) , making i t appear t h a t h i s " t r u e " s c o r e s would i n c r e a s e w i t h g r e a t e r d u r a t i o n s protocols.  'D' S c o r e s I t s h o u l d f i r s t be n o t e d t h a t t h e r e appeared t o be no need t o d e l e t e the 'D  1  s c o r e s o f s u b j e c t 0 5 , s i n c e t h e y d i d n o t seem t o t a k e on t h e  c h a r a c t e r i s t i c s o f an " o u t l i e r " ( s e e T a b l e I V - 4 ) , and s i n c e t h e y d i d n o t seem t o c o n t r i b u t e any s u b s t a n t i a l i n c r e a s e i n t h e v a r i a n c e o f t h e s c o r e s  50  f o r t h e t r a i n e d group (see Table I V - 5 ) s t a n d a r d d e v i a t i o n s ) . reasonable  I t a l s o seems  t o i n c l u d e t h e m i m i t h e a n a l y s i s because o f the v a r y n a t u r e o f  t h e s e s c o r e s , i n t h a t t h e y are n o t d i r e c t l y comparable between s u b j e c t s because t h e y a r e based on t h e d i f f e r e n c e between p r e d i c t e d and a c h i e v e d s c o r e s f o r an i n d i v i d u a l .  A v a r i a n c e i n an i n d i v i d u a l ' s h e a r t r a t e s i n  comparison t o o t h e r s ' i s r e a l l y independent o f changes i n t h a t i n d i v i d u a l ' s 'D' s c o r e s , and the s u b j e c t , i n a sense, a c t s as h i s own c o n t r o l . Table I V - 6 ,  w h i c h summarized t h e ANOVA f o r t h e *D' s c o r e s , i n d i c a t e d  a s i g n i f i c a n t p r o t o c o l s (P) e f f e c t ( p ^ . O O l ) w h i c h c o u l d be e x p l a i n e d  almost  e n t i r e l y by a l i n e a r model ( p < f . 0 0 l ) .  Hypothesis 3 i s a l s o supported,  i n d i c a t i n g s i g n i f i c a n t l y more n e g a t i v e  'D' s c o r e s a r i s i n g from the 3 - and  4-minute p r o t o c o l s as opposed t o t h e 5~ and 6-minute p r o t o c o l s  pOoi).  (F=8.23,  The 'D' s c o r e s r i s e f r o m n e g a t i v e v a l u e s d u r i n g the 3-rcinute  p r o t o c o l t o approximately  0 i n t h e 4—minute p r o t o c o l , and t o p o s i t i v e v a l u e s  i n the 5~ and 6-minute p r o t o c o l s (see F i g u r e I V - 2 ) .  Since a negative  'D'  score i n d i c a t e s a f i n a l recorded heart r a t e which i s l e s s than t h e p r e d i c t e d asymptotic  r a t e , i t i s q u i t e reasonable  t o assume t h a t t h e n e g a t i v e  r e s u l t e d f r o m a t o o - e a r l y c e s s a t i o n o f t h e work l o a d .  'D' s c o r e s  I n other words, t h e  3-minute p r o t o c o l w h i c h produced the n e g a t i v e v a l u e s may not be o f o p t i m a l duration for a t t a i n i n g steady-state.  I t may be t o o s h o r t a time p e r i o d f o r  t h e c a r d i o v a s c u l a r system t o complete i t s " f i n e - t u n i n g " i n terms o f meeting the m e t a b o l i c  demands o f e x e r c i s e .  T h i s f i n d i n g concurs r e a s o n a b l y  well  w i t h t h a t o f Watson and O'Donovan ( . 1 9 7 6 ) , who f o u n d t h a t even a 4-minute d u r a t i o n p r o t o c o l produced a 4 p e r c e n t e l e v a t i o n o f s c o r e s .  However, i n  c o n t r a s t , t h e 'D' s c o r e s f r o m t h i s s t u d y i n d i c a t e t h a t t h e 4-minute d u r a t i o n p r o t o c o l i s o p t i m a l w i t h r e g a r d t o a c h i e v i n g s t e a d y - s t a t e ( t h e 'D' s c o r e s approximating  0 ) , w h i l e t h e 5- and 6-minute p r o t o c o l s r e s u l t i n p o s i t i v e  51  'D' s c o r e s w h i c h a r i s e f r o m f i n a l h e a r t r a t e r e a d i n g s e x c e e d i n g  the  p r e d i c t e d a s y m p t o t i c v a l u e , perhaps i n d i c a t i n g d u r a t i o n p r o t o c o l s w h i c h are overly long. T h i s suggests s e v e r a l p o s s i b i l i t i e s . workloads  were t o o heavy t o m a i n t a i n a s t e a d y - s t a t e .  e x c e e d t h e a n a e r o b i c t h r e s h o l d t h e y may rate.  F i r s t , i t may  i n d i c a t e t h a t the  I f m e t a b o l i c demands  cause a c o n t i n u i n g r i s e i n t h e h e a r t  However, i f t h i s were the e x p l a n a t i o n i t would t h e r e f o r e be  expected  t h a t the 3rd. (and h e a v i e s t ) l o a d s under a l l p r o t o c o l s would e x h i b i t c a n t l y h i g h e r p o s i t i v e 'D*  s c o r e s than t h e r e s p e c t i v e 1 s t  loads.  signifi-  This  was  n o t the c a s e , however, s i n c e t h e r e was no o v e r a l l s i g n i f i c a n c e i n t h e l o a d s e f f e c t (Table I V - 6 ) . A second p o s s i b l e e x p l a n a t i o n i s t h a t d u r i n g t h e l o n g e r d u r a t i o n p r o t o c o l s - t h e r e i s the onset o f an a d d i t i o n a l s t r e s s o r such as an i n c r e a s e i n ambient t e m p e r a t u r e .  S i n c e t h e s e t e s t s were conducted  i n aecontrolled  l a b o r a t o r y s e t t i n g i n v o l v i n g n e g l i g i b l e changes i n ambient (and presumably minimal not c o n s i d e r e d  changes i n c o r e temperature)  temperature  this possibility i s  likely.  A t h i r d , and more l i k e l y , e x p l a n a t i o n r e s i d e s i n t h e d i s t i n c t p o s s i b i l i t y t h a t sunasymptotic r e g r e s s i o n f u n c t i o n i s inadequate d e s c r i b i n g the h e a r t r a t e response  t o submaximal e x e r c i s e .  for precisely The  "slow  component" o f h e a r t r a t e a c c e l e r a t i o n s , observed by Broman and W i g e r t z and s u g g e s t e d  (1971),  as b e i n g caused by humoural a g e n t s s u c h as sympathoadrenal  hormones ( e p i n e p h r i n e and n o r e p i n e p h r i n e ) , r e s u l t e d i n a b i p h a s i c secondo r d e r model b e i n g r e q u i r e d t o p r o v i d e a b e s t f i t f o r the h e a r t r a t e to  submaximal e x e r c i s e .  response  Even though the t r a n s i e n t h e a r t r a t e responses  were  n o t c o n s i d e r e d i m p o r t a n t t o t h i s s t u d y , the e f f e c t o f t r y i n g t o f i t . a f i r s t o r d e r a s y m p t o t i c r e g r e s s i o n model t o d a t a w h i c h might be o f a  second-order  52  n a t u r e may  w e l l l e a d t o u n a v o i d a b l e d i f f e r e n c e s between p r e d i c t e d a s y m p t o t i c  and f i n a l r e c o r d e d h e a r t r a t e s .  I n t h i s l i g h t , the  seem t o p r o v i d e  of d i s c r i m i n a t i n g among the h e a r t  an e x c e l l e n t way  'D'  scores  of t h i s s t u d y rate  r e s p o n s e s t o d i f f e r e n t d u r a t i o n p r o t o c o l s , y e t f a l l s h o r t of p r o v i d i n g a s a t i s f a c t o r y method o f e v a l u a t i n g w h i c h p r o t o c o l b e s t l e n d s i t s e l f t o achievement of s t e a d y - s t a t e The  f a i l u r e of the  'D'  heart rates. scores t o support hypothesis  4 indicates that  t h e r e i s no s i g n i f i c a n t d i f f e r e n c e between t r a i n e d and u n t r a i n e d i n the e x t e n t t o w h i c h t h e y a c h i e v e s t e a d y - s t a t e protocols.  the  subjects  under d i f f e r e n t d u r a t i o n  At l e a s t a c c o r d i n g t o the parameters o f t h i s s t u d y , i t cannot  be s t a t e d t h a t a t r a i n e d s u b j e c t ' s h e a r t r a t e w i l l r e s p o n d more q u i c k l y t o t h e demands of submaximal e x e r c i s e .  However, the d e c r e a s e d p r e c i s i o n t h a t  comes from f i t t i n g d a t a t o models by l e a s t - s q u a r e s  methods e l i m i n a t e s  e f f e c t i v e measurement o f the t r a n s i e n t dynamics of h e a r t r a t e r e s p o n s e , w h i c h may  s t i l l show d i f f e r e n c e s between t r a i n e d and u n t r a i n e d  responses  i f a more p r e c i s e measurement t e c h n i q u e were i n v o l v e d . F i n a l l y , a n o n - s i g n i f i c a n t l o a d s e f f e c t , and the l a c k o f d i f f e r e n c e i n 'D'  s c o r e s between the 1 s t  to support hypothesis  any  and 3 r d l o a d s o v e r a l l ( w h i c h f a i l e d  5 ) , i n d i c a t e d t h a t the combined e f f e c t s o f  increased  work l o a d i n t e n s i t y and g r e a t e r e l a p s e d t e s t time do not r e s u l t i n s i g n i f i c a n t changes i n the e x t e n t t o w h i c h s t e a d y - s t a t e h e a r t r a t e s are  achieved.  Once a g a i n , however, i t cannot be s t a t e d t h a t t h e r e i s no d i f f e r e n c e i n the speed o f h e a r t r a t e r e s p o n s e under d i f f e r e n t work l o a d i n t e n s i t i e s , s i n c e t r a n s i e n t r e s p o n s e s may procedure.  be averaged out by the m o d e l - f i t t i n g  least-squares  the  CHAPTER V SUMMARY AND CONCLUSIONS Summary a  The purpose o f t h i s s t u d y was t o examine t h e concept o f " c r i t i c a l  time"  i n the a d m i n i s t r a t i o n o f t h e PWC 170 t e s t , by a n a l y z i n g t h e h e a r t r a t e r e s p o n s e s and t e s t r e s u l t s o f s u b j e c t s u n d e r g o i n g f o u r d i f f e r e n t p r o t o c o l s o f t h i s test.  S p e c i f i c a l l y , t h e problem i n v o l v e d d e t e r m i n i n g t h e e f f e c t s o f  f o u r d i f f e r e n t work l o a d d u r a t i o n p r o t o c o l s on t h e " c r i t i c a l t i m e s " r e q u i r e d to achieve s t e a d y - s t a t e , and on t h e PWC 170 s c o r e s .  The combined e f f e c t o f  t h e o r d e r and r e l a t i v e i n t e n s i t y o f t h e work l o a d s on c r i t i c a l times was a l s o s t u d i e d , as was t h e e f f e c t o f s t a t e o f t r a i n i n g on b o t h c r i t i c a l  times  and PWC 1 7 0 s c o r e s . The s u b j e c t s o f t h i s s t u d y were 8 e n d u r a n c e - t r a i n e d c o l l e g e males, aged 18 tx>iJQ. A l l were v o l u n t e e r s .  and 8 u n t r a i n e d  The t r a i n e d s u b j e c t s  were a l l a c t i v e l y competing inmmiddle- o r l o n g - d i s t a n c e r u n n i n g , and a c h i e v e d PWC 1 7 0 s c o r e s ( i n KPM/Kg./Min.) e x c e e d i n g the C.A.H.P.E.R. norms i n t h e p r e l i m i n a r y t e s t . were a l l l e a d i n g r e l a t i v e l y s e d e n t a r y  t h e 7 0 t h p e r c e n t i l e on  The u n t r a i n e d s u b j e c t s  l i v e s w i t h o u t any r e g u l a r  strenuous  a e r o b i c a c t i v i t y , and i n t h e i r p r e l i m i n a r y t e s t t h e y a l l s c o r e d lower  than  the 4 0 t h p e r c e n t i l e on t h e C.A.H.P.E.R. norms. A l l subjects took the p r e l i m i n a r y t e s t .  As w e l l as c o n f i r m i n g  their  s e l e c t i o n i n t o t h e i r r e s p e c t i v e groups, and a f f o r d i n g them an o p p o r t u n i t y to  overcome t h e problems o f l e a r n i n g a a n d h a b i t u a t i o n , t h e p r e l i m i n a r y t e s t  a l s o a l l o w e d t h e e x p e r i m e n t e r t o d i s c o v e r t h e a p p r o p r i a t e work l o a d s f o r use i n the experimental  tests.  Each s u b j e c t then underwent t h e e x p e r i m e n t a l PWC 170 t e s t s — each o f t h e f o l l o w i n g f o u r p r o t o c o l s ; t h r e e 3-minute work l o a d s ,  53  one o f  three  54  4 - m i n u t e work l o a d s , t h r e e 5-minute work l o a d s , and t h r e e 6-minute work loads.  There was an i n t e r v a l o f a t l e a s t two days between t h e t e s t s i n  o r d e r t o m i n i m i z e problems o f fatigue.. administered i n a counterbalanced  The e x p e r i m e n t a l t e s t s were  L a t i n - s q u a r e d e s i g n t o a v o i d problems  r e s u l t i n g from the order o f the treatments. The p e d a l l i n g cadence ontthe Monark b i c y c l e ergometer was s e t a t 5 0 r.p.m., and t h e warm-up c o n s i s t e d o f ' 0 ' work l o a d f r e e - w h e e l i n g f o r two m i n u t e s .  Continuous h e a r t r a t e m o n i t o r i n g was f e d i n t o a computer w h i c h  p r i n t e d o u t average h e a r t r a t e s based on 1 5 - s e c o n d i n t e r v a l s t h r o u g h o u t the e n t i r e t e s t t i m e .  These h e a r t r a t e s , and the a s s o c i a t e d work l o a d s ,  p r o v i d e d t h e raw d a t a f o r t h i s  study.  A computer program was used t o f i t a l i n e a r r e g r e s s i o n between  each  work l o a d i n a t e s t , and t h e c o r r e s p o n d i n g l a s t 1 5 - s e c o n d average h e a r t r a t e p r i n t e d out f o r t h a t l o a d .  The c o e f f i c i e n t s o f t h i s l i n e a r r e g r e s s i o n  were used t o d e t e r m i n e t h e PWC 1 7 0 s c o r e s . Another computer program was used t o f i t an a s y m p t o t i c r e g r e s s i o n between each 1 5 - s e c o n d t i m e i n t e r v a l d u r i n g a g i v e n work l o a d , and i t s r e s p e c t i v e 1 5 - s e c o n d average h e a r t r a t e .  The c o e f f i c i e n t s o f t h i s asymp-  t o t i c r e g r e s s i o n were used t o d e t e r m i n e t h e a s y m p t o t i c s t e a d y - s t a t e h e a r t rate.  T h i s p r e d i c t e d s t e a d y - s t a t e h e a r t r a t e f o r each work l o a d was t h e n  s u b t r a c t e d f r o m t h e a c t u a l f i n a l 1 5 - s e c o n d average h e a r t r a t e r e c o r d e d , for  each s u b j e c t , a t a l l t h r e e work l o a d s , under each o f t h e f o u r p r o t o c o l s .  These 'D' s c o r e s thus gave an i n d i c a t i o n o f the e x t e n t t o w h i c h s t e a d y - s t a t e h e a r t r a t e s were a c h i e v e d —  n e g a t i v e 'D' s c o r e s s u g g e s t i n g t h a t steady-estate  had n o t y e t been a c h i e v e d , w h i l e p o s i t i v e *D' s c o r e s i n d i c a t e d t h a t t h e f i n a l h e a r t r a t e had exceeded t h e p r e d i c t e d s t e a d y - s t a t e v a l u e .  55  The e x p e r i m e n t a l d e s i g n a l l o w e d s t a t i s t i c a l a n a l y s e s b y two-way and three-way a n a l y s e s  o f v a r i a n c e (ANOVA's).  The independent v a r i a b l e s i n  t h e f i r s t ANOVA were ' s t a t e o f t r a i n i n g ' and 'PWC 1 7 0 p r o t o c o l ' , w h i l e t h e dependent v a r i a b l e was t h e PWC 1 7 0 s c o r e ( i n EPM/Min.).  I n t h e second ANOVA  the t h r e e independent v a r i a b l e s were ' s t a t e o f t r a i n i n g ' ,  'PWC 1 7 0 p r o t o c o l '  and  'work l o a d number' ( i n d i c a t i n g a l s o r e l a t i v e i n t e n s i t y ) .  v a r i a b l e i n t h i s case was t h e 'D' s c o r e .  Preplanned  The dependent  orthogonal  comparisons  were used t o t e s t t h e s p e c i f i c s t a t e m e n t s o f t h e h y p o t h e s e s . C o n c l u s i ons PWC 1 7 0 s c o r e s .  The o r i g i n a l a n a l y s i s showed a t r e n d toward i n c r e a s i n g  PWC 1 7 0 s c o r e s w i t h s h o r t e r d u r a t i o n p r o t o c o l s , f o r b o t h t h e t r a i n e d and u n t r a i n e d groups, b u t t h i s p r o t o c o l s e f f e c t t r e n d was n o t s i g n i f i c a n t ( p ^ . 0 However, a f t e r a c a r e f u l a n a l y s i s o f t h e r e s u l t s , s u b j e c t ' 0 , 5 ' was d e f i n e d as an " o u t l i e r " and a n o t h e r ANOVA was r u n w i t h t h e d a t a f r o m s u b j e c t ' 0 5 ' deleted.  The r e s u l t s were d r a m a t i c a l l y d i f f e r e n t , w i t h t h e p r o t o c o l s  e f f e c t now h i g h l y s i g n i f i c a n t ( p < . 0 0 l ) , function ( p < . 0 0 l ) . to  and e x p l a i n e d w e l l by a l i n e a r  On t h e b a s i s o f t h e s e two a n a l y s e s i t must be l e f t up  t h e r e a d e r t o c o n c l u d e whether o r no.it d e c r e a s e d d u r a t i o n p r o t o c o l s i n  the PWC 1 7 0 t e s t s i g n i f i c a n t l y i n c r e a s e t h e t e s t s c o r e s .  Strong  evidence  i n c l u d e d h e r e i n s u g g e s t s t h a t t h e y do, and f u r t h e r s t u d y i s recommended. Although  t h e t r a i n e d group a c h i e v e d h i g h e r PWC 1 7 0 s c o r e s than t h e  u n t r a i n e d group ( a a was expected, and i n f a c t demanded by t h e c r i t e r i a f o r s u b j e c t s e l e c t i o n ) , t h e f i r s t ANOVA showed no e v i d e n c e o f an i n t e r a c t i o n e f f e c t between s t a t e o f t r a i n i n g and t h e p r o t o c o l s e f f e c t d e s c r i b e d above. The second 'post hoc ANOVA' d i d f i n d a s i g n i f i c a n t i n t e r a c t i o n  (p^.Ol)  w h i c h c o u l d s u c c e s s f u l l y be d e s c r i b e d b y e i t h e r a l i n e a r f u n c t i o n  (p<.05)  56  or a cubic f u n c t i o n ( p < . 0 5 ) .  B o t h t r a i n e d and u n t r a i n e d groups had  their  mean s c o r e s i n c r e a s e d w i t h t h e s h o r t e r d u r a t i o n p r o t o c o l s , but t h e t r a i n e d group seemed t o have t h e i r s c o r e s i n c r e a s e d more d r a m a t i c a l l y . suggests  t h a t , i f t h e s e c o n d ANOVA were v a l i d , i t may  important  'D'  be even more  f o r t r a i n e d a t h l e t e s t o undergo l o n g e r d u r a t i o n p r o t o c o l s o f the  t e s t s i n c e the s h o r t e r p r o t o c o l s may than those  This  overestimate  t h e i r s c o r e s even more  o f the u n t r a i n e d s u b j e c t s .  Scores There was  (p<.00l)  a h i g h l y s i g n i f i c a n t p r o t o c o l s e f f e c t i n t h e 'D'  w h i c h was  scores  e x p l a i n e d a l m o s t e n t i r e l y by a l i n e a r f u n c t i o n ( p < " . 0 0 l ) .  T h i s i n d i c a t e s t h a t , t o the e x t e n t t h a t the p r e d i c t e d a s y m p t o t i c  steady-state  h e a r t r a t e r e p r e s e n t s t h e r e a l s t e a d y - s t a t e v a l u e s , d i f f e r e n t p r o t o c o l s have a l i n e a r r e l a t i o n s h i p w i t h the e x t e n t t o w h i c h s t e a d y - s t a t e i s a c h i e v e d . A c c o r d i n g t o the d a t a h e r e i n , t h e 4 - m i n u t e d p r o t o c o l p r o v i d e d f i n a l r a t e s c l o s e s t t o s t e a d y - s t a t e ( f o r b o t h t r a i n e d and u n t r a i n e d The  3 - i ' t e p r o t o c o l was m  n u  r e s u l t e d i n negative  'D'  groups).  not l o n g enough t o a c h i e v e s t e a d y - s t a t e , scores.  p r o t o c o l s r e s u l t e d i n p o s i t i v e 'D'  On t h e o t h e r hand, t h e 5 - and  heart  and  6-minute  scores, suggesting e i t h e r t h a t something  had o c c u r r e d t o i n c r e a s e t h e h e a r t r a t e beyond s t e a d y - s t a t e , o r t h a t the asymptotic  model f a i l e d t o a c c u r a t e l y d e s c r i b e t h e h e a r t r a t e ' s r i s e t o  steady  s t a t e , perhaps by,.not t a k i n g i n t o a c c o u n t t h e "slow component" o f h e a r t r a t e a c c e l e r a t i o n s caused by humoural a g e n t s . may  be b e s t even f o r purposes s u c h as I n t h i s l i g h t , i t was  an e x c e l l e n t way  concluded  A b i - p h a s i c second o r d e r model  these. t h a t the  'D'  s c o r e s seemed t o p r o v i d e  o f d i s c r i m i n a t i n g among t h e h e a r t r a t e r e s p o n s e s t o  d i f f e r e n t d u r a t i o n p r o t o c o l s , yet f e l l s h o r t of p r o v i d i n g a s a t i s f a c t o r y  57  method o f e v a l u a t i n g w h i c h p r o t o c o l "best l e n d s i t s e l f t o t h e achievement of steady-state heart rates. The l a c k o f a s i g n i f i c a n t d i f f e r e n c e i n t h e 'D' s c o r e s between t h e t r a i n e d and u n t r a i n e d groups i n d i c a t e s t h a t s t a t e o f t r a i n i n g does n o t appear to  a f f e c t t h e c r i t i c a l time r e q u i r e d t o a c h i e v e s t e a d y - s t a t e .  p r e c i s e measures o f h e a r t r a t e response t r a n s i e n t dynamics by r e g r e s s i o n f i t t i n g undertaken  However, more  ( t h a t do n o t average o u t t h e fefiK: on a l e a s t - s q u a r e s b a s i s ) must be  b e f o r e t h a t a s s e r t i o n can be c o n s i d e r e d c o n c l u s i v e .  The l a c k o f a s i g n i f i c a n t l o a d s e f f e c t i n d i c a t e d t h a t t h e combined f a c t o r s o f work l o a d number ( i n c l u d i n g e l a p s e d time and p r e v i o u s h e a r t r a t e responses)  and r e l a t i v e work i n t e n s i t y have no s u b s t a n t i a l e f f e c t on t h e  c r i t i c a l time r e q u i r e d t o a c h i e v e s t e a d y - s t a t e .  T h i s does n o t s a y ,  however, t h a t t h e y have no e f f e c t on t h e t r a n s i e n t dynamics o f t h e h e a r t r a t e as i t i n c r e a s e s toward s t e a d y - s t a t e , f o r t h e same r e a s o n mentioned above. I t was c o n c l u d e d t h a t t h e r e was a r e a s o n a b l y good agreement between t h e r e s u l t s o f t h e .'D' s c o r e s and t h e r e s u l t s o f t h e PWG 170 s c o r e s as a n a l y z e d i n t h e " p o s t hoc ANOVA". to  S i n c e changes i n 'D' s c o r e s a r e l i k e l y  have some c o r r e l a t i o n w i t h PWC 170 s c o r e s , and i n t h e o r y s h o u l d have  some c a u s a t i v e i n f l u e n c e , t h e " p o s t hoc ANOVA" c a n be g i v e n i n c r e a s e d credence.  REFERENCES  58  59  1.  Adams, H.A., B e n g t s s o n , E.B., B i r i v e n , H., and W e g e l i u s , G. "The p h y s i c a l working c a p a c i t y o f normal s c h o o l c h i l d r e n , " (Swedish c i t y and town) P e d i a t r i c s , 28, No. 2 : 243-257, I 9 6 I .  2.  Adams, F.H., L i n d e , L.M., and M i y a k e , H. o f normal s c h o o l c h i l d r e n , " ( C a l i f o r n i a )  "The p h y s i c a l w o r k i n g c a p a c i t y P e d i a t r i c s , 28, No. 1 : 55-64,  1961.  3.  Adams, M., and F.H. S m i r k , " O b s e r v a t i o n s i n man on a p u l s e - a c c e l e r a t i n g r e f l e x f r o m the v o l u n t a r y muscles o f t h e l e g s , " J o u r n a l o f P h y s i o l o g y (London), 9 2 : . 1 6 7 - 1 7 7 , 1 9 3 8 .  4.  Alderman, R.B., "Age and s e x d i f f e r e n c e s i n PWC 1 7 0 o f Canadian s c h o o l c h i l d r e n , " R e s e a r c h Q u a r t e r l y , 40: 1 - 5 , 1 9 6 9 -  5.  American A s s o c i a t i o n f o r H e a l t h , P h y s i c a l E d u c a t i o n , and R e c r e a t i o n . The A.A.H.P.E.R. f i t n e s s t e s t manual r e v i s e d ed. ...Washington, D.G.: A.A.H.P.E.R. , I 9 6 5 .  6.  American C o l l e g e o f S p o r t s M e d i c i n e . G u i d e l i n e s f o r graded e x e r c i s e t e s t i n g and e x e r c i s e p r e s c r i p t i o n . P h i l a d e l p h i a : L e a and F e b i g e r , 1975.  7.  American H e a r t A s s o c i a t i o n (The Committee on E x e r c i s e ) . E x e r c i s e t e s t i n g and t r a i n i n g o f a p p a r e n t l y h e a l t h y i n d i v i d u a l s ' : A Handbook f o r p h y s i c i a n s . New York: A.H.A., 1 9 7 2 . '  8.  Andersen, K.L., Shephard, R . J . , e t a l . Fundamentals o f e x e r c i s e t e s t i n g . Geneva: W o r l d H e a l t h O r g a n i z a t i o n , 1 9 7 1 •  9.  Andrew, G.M., Guzman, C.A., a n d B e c k l a k e , M.R. "Effect of athletic t r a i n i n g on e x e r c i s e c a r d i a c output," J o u r n a l o f A p p l i e d P h y s i o l o g y , 21:  10.  603-608,  I966.  Asmussen, E., N i e l s e n , M., and W i e t h - P e d e r s e n , G. "On t h e r e g u l a t i o n o f c i r c u l a t i o n d u r i n g muscular work," A c t a P h y s i o l o g i c a Scand., 6 : 3 5 3 358,  1943.  11.  Asmussen, E., and N i e l s e n , M., "The c a r d i a c output i n r e s t and work d e t e r m i n e d s i m u l t a n e o u s l y by t h e a c e t y l e n e and t h e dye i n j e c t i o n methods," A c t a P h y s i o l o g i c a Scand., 2 7 : 2 1 7 , 1 9 5 3 -  12.  Asmussen, E., and N i e l s e n , M. " C a r d i a c output d u r i n g muscular work and i t s r e g u l a t i o n , " P h y s i o l o g i c a l Review, 3 5 : 7 7 8 , 1 9 5 5 .  13.  Asmussen, E., and N i e l s e n , MV " C a r d i a c output i n r e s t and work a t low and h i g h oxygen p r e s s u r e s , " Acta. P h y s i o l o g i c a Scand., 3 5 : 7 3 , 1 9 5 5 .  14.  A s t r a n d , I . " A e r o b i c work c a p a c i t y i n mennand women w i t h s p e c i a l r e f e r e n c e t o age," A c t a P h y s i o l o g i c a Scand., 4 9 , S u p p l . 1 6 9 : 1 - 9 2 , I960.  60 15.  A s t r a n d , P.O. Experimental studies of p h y s i c a l working c a p a c i t y i n r e l a t i o n t o s e x and ageJr. Copenhagen: En j a r Munksgaard, 1 9 5 2 .  16.  A s t r a n d , P.O. " S t u d y o f b i c y c l e m o d i f i c a t i o n s musing a motor d r i v e n t t r e a d m i l l - b i c y c l e ergometer," A r b e i t s p h y s i o l , 1 5 : 23, 1953-  17.  A s t r a n d , P.O. "Human p h y s i c a l f i t n e s s w i t h s p e c i a l r e f e r e n c e t o and age," P h y s i o l o g i c a l R e v i e w s , 3 6 , No. y. 307-335, 1 9 5 6 .  sex  18.  A s t r a n d , P.O. "Work t e s t s w i t h the b i c y c l e ergometer," Sweden: of physiology, gymnastika c e n t r a l - i n s t i t u e t , Stockholm.  Dept.  19.  A s t r a n d , P.O., Ekblom, B., e t a l . " I n t r a - a r t e r i a l b l o o d p r e s s u r e d u r i n g e x e r c i s e w i t h d i f f e r e n t muscle groups," J o u r n a l o f A p p l i e d P h y s i o l o g y , 20:  253-256,  I965.  20.  A s t r a n d , P.O., and R o d a h l , K. M c G r a w - H i l l Book Co., 1970.  21.  A s t r a n d , P.O., and Rhyming, I . "A monogram f o r c a l c u l a t i o n o f a e r o b i c c a p a c i t y ( p h y s i c a l f i t n e s s ) from p u l s e r a t e d u r i n g submaximal work," J o u r n a l o f A p p l i e d P h y s i o l o g y , 7: 218-221, I954.  22.  A s t r a n d , P.O., and S a l t i n , B. "Maximal oxygen uptake and h e a r t r a t e i n v a r i o u s types of muscular a c t i v i t y , " J o u r n a l o f A p p l i e d P h y s i o l o g y , 16: 977,  Textbook o f Work P h y s i o l o g y .  New  York:  1961.  23.  B a n n i s t e r , E.W., and J a c k s o n , R.C. "The e f f e c t o f speed and l o a d changes on oxygen uptake f o r e q u i v a l e n t power o u t p u t s d u r i n g b i c y c l e ergometry," I n t . Z e i t s c h r i f t f u r Ang. P h y s ., 24: 284-290, I967.  24.  B e n g t s s o n , E. "The w o r k i n g c a p a c i t y i n n o r m a l c h i l d r e n e v a l u a t e d by submaximal e x e r c i s e i n the b i c y c l e ergometer and compared w i t h a d u l t s , " A c t a Med. Scand., 154, T a s c . 2 : 91-109, I956.  25.  B e r g g r e n , G., and C h r i s t e n s e n , E.H. " H e a r t r a t e and body temperature as i n d i c e s o f m e t a b o l i c r a t e d u r i n g work," A r b e i t s p h y s i o l . , 14: 2 5 5 , 1950.  26.  B i n k h o r s t , R.A., and Man Leeuwen, P. "A r a p i d method f o r the d e t e r m i n a t i o n o f a e r o b i c c a p a c i t y , " I n t e r n . Z. Angew. P h y s i o l . , 14: 255, 1950.  27.  B j u r s t e d t , H., and W i g e r t z , 0 . "Dynamics o f a r t e r i a l oxygen t e n s i o n i n r e s p o n s e t o s i n u s o i d a l work l o a d i n man," A c t a P h y s i o l . Scand., 1971.  28.  B o b b e r t , A.D. " P h y s i o l o g i c a l comparison o f t h r e e t y p e s o f ergometry," J o u r n a l o f A p p l i e d P h y s i o l o g y , 15: 1007, i960.  29.  B o l t e r , C , Hughson, R.L., and C r i t z , J.B. " I n t r i n s i c r a t e and c h o l i n e r g i c s e n s i t i v i t y o f i s o l a t e d a t t r i a f r o m t r a i n e d and s e d e n t a r y r a t s , " Proc, Soc. Exp. B i o l . & Med.. 144: 1, 3 6 4 , 1973.  61 30.  B o r g , G. "The t h r e e e f f o r t c o n t i n u a i n p h y s i c a l work," P r o c . X V I t h I n t . Gongr. A p p l . P s y c h o l . , ( A m s t e r d a m ) , 1968.  31.  Brodan, V., Hayek, M., and Kuhn, E. "An a n a l o g y model o f p u l s e r a t e d u r i n g p h y s i c a l l o a d and r e c o v e r y , " PhysiolggBohemoslov., 20, 189-197,  394-397,  1968.  32.  33»  Broman, S., and W i g e r t z , 0. " C o m p u t e r - o r i e n t e d dynamic parameter e s t i m a t i o n i n p h y s i o l o g i c a l e x p o n e n t i a l l y decaying processes," Report Lab. A v i a t . N a v a l Med., K a r o l l n s t . , Stockholm, June, 1970. Broman,SS., and W i g e r t z , 0, " T r a n s i e n t dynamics o f v e n t i l a t i o n and h e a r t r a t e w i t h s t e p changes i n work l o a d from d i f f e r e n t l o a d l e v e l s , " A c t a P h y s i o l o g i c a Scand., 81: 1971.  54-74,  34.  Brooke, J.D., Hamley, E.G., and Thomason, H. " V a r i a b i l i t y i n t h e measurement o f e x e r c i s e h e a r t r a t e , " J . S p o r t Med. ( Y o r i n o ) , 10: 21-26,  1970.  35-  Brown, S t a n l e y , R. "Proposed t e r m i n o l o g y i n work and e x e r c i s e s c i e n c e , " J o u r n a l o f s p o r t s medicine l a n d p h y s i c a l f i t n e s s , 14, No. 4 : 282, D e c ,  1974.1974. 36.  B r u c e , R.A., Blackmon, J.R., e t a l . " E x e r c i s e t e s t i n g i n a d u l t n o r m a l s u b j e c t s and c a r d i a c p a t i e n t s , " P e d i a t r i c s , 32 ( s u p p l ) ) : 742, I963.  37.  Burke, E . J . " V a l i d i t y o f s e l e c t e d l a b o r a t o r y and f i e l d t e s t s o f p h y s i c a l w o r k i n g c a p a c i t y , " R e s e a r c h Q u a r t e r l y , 47: 95-104, 1976.  38.  B u r t o n , A.C. P h y s i o l o g y and b i o p h y s i c s o f t h e c i r c u l a t i o n . Year Book M e d i c a l P u b l i s h e r s I n c . , 1965.  g9-«  B u s k i r k , E., and T a y l o r , H.L. "Maximum oxygen uptake and I t s r e l a t i o n t o body c o m p o s i t i o n , " J o u r n a l o f A p p l i e d P h y s i o l o g y , 11: 72, 1957-  40.  Campbell, D.T., and S t a n l e y , J.C. E x p e r i m e n t a l and q u a s i - e x p e r i m e n t a l d e s i g n s f o r r e s e a r c h . Chicago: Rand M c N a l l y and Co., I963.  41.  Canadian H e a r t F o u n d a t i o n . E x e r c i s e f i t n e s s t e s t i n g and e x e r c i s e programmes t o improve c a r d i o p u l m o n a r y and g e n e r a l p h y s i c a l fitness„ ( A d v i c e t o i n s t i t u t i o n s s p o n s o r i n g s u p e r v i s e d e x e r c i s e programmes).  Chicago:  1975.  42.  Gardus, E., and Z e i g l e r , R.K. " H e a r t - b e a t f r e q u e n c y c u r v e s : m a t i c a l model," Gomp. Biomed. Res., 1: 508-526, 1968.  a mathe-  43.  Garo, G.G., P e d l e y , T.J., and Seed, W.A. "Mechanics o f t h e c i r c u l a t i o n , MTP Review o f S c i e n c e ; C a r d i o v a s c u l a r - P h y s i o l o g y , P h y s i o l o g y S e r i e s One, Volume 1, e d . A.C. Guyton and C.E. Jones. London: B u t t e r w o r t h s and U n i v e r s i t y P a r k P r e s s , 1974.  44.  Chase, G.A., Grave, G., and R o w e l l . "Independence o f changes i n f u n c t i o n a l and performance c a p a c i t i e s a t t e n d i n g p r o l o n g e d bed r e s t " Aerospace' Med.. 37: 1232, I966.  62,  45.  C l a u s e n , J.P. " E f f e c t s of p h y s i c a l c o n d i t i o n i n g : a hypothesis c o n c e r n i n g c i r c u l a t o r y adjustments t o e x e r c i s e , " Scand. J . C l i n . Inv.,  24:  305-313,  Lab.  1969.  46.  C l a u s e n , J.P. " C i r c u l a t o r y adjustments t o dynamic e x e r c i s e and e f f e c t of p h y s i c a l t r a i n i n g i n normal s u b j e c t s and i n p a t i e n t s w i t h c o r o n a r y a r t e r y d i s e a s e , " P r o g r . C a r d i o v a s c u l a r D i s e a s e , 18: 4 5 9 - ^ 9 5 , 1 9 7 6 .  47.  C l a u s e n , J . P. " E f f e c t o f p h y s i c a l t r a i n i n g on c a r d i o v a s c u l a r a d j u s t ments t o e x e r c i s e i n man," P h y s i o l . Rev., 5 7 , No. 4 : 779-815, 1977.  48.  C l a u s e n , J.P., Trap-Jensen, J . " E f f e c t s o f t r a i n i n g on c i r c u l a t o r y response t o e x e r c i s e , " A c t a P h y s i o l o g i c a Scand., 7 4 , Communication 7 4 , 1968.  49.  C l a u s e n , J.P., L a r s e n , D.A., and T r a p - J e n s e n , J . " P h y s i c a l t r a i n i n g i n the management o f c o r o n a r y a r t e r y d i s e a s e , " C i r c . , 40: 143-154, I 9 6 9 .  50.  C l a u s e n , J.P., T r a p - J e n s e n , J . , and L a s s e n , N.A. "The e f f e c t o f t r a i n i n g on t h e h e a r t r a t e d u r i n g arm and l e g e x e r c i s e , " Scand. J . C l i n . Lab. Invest., 26: 295-301, 1970.  51.  C l a u s e n , J.P., and T r a p - J e n s e n , J . " A r t e r i o h e p a t i c venous oxygen d i f f e r e n c e and h e a r t r a t e d u r i n g i n i t i a l phases o f e x e r c i s e , " J o u r n a l of A p p l i e d P h y s i o l o g y , 3 7 : 716-719, 1974.  52.  C o n s o l a z i o , C.E., l o h n s o n , R.E., and P e c o r a , L . J . P h y s i o l o g i c a l measurements o f m e t a b o l i c f u n c t i o n s i n man. T o r o n t o : McGraw H i l l ,  1963.  53-  Cooper, K. " A e r o b i c s , " P r o c e e d i n g s o f the n a t i o n a l c o n f e r e n c e f i t n e s s and h e a l t h . Ottawa: H e a l t h and W e l f a r e Canada, 1 9 7 2 .  54.  Coate, J.H., H i l t o n , S.M., and Perez=Gonzales, J.R. "The r e f l e x n a t u r e of the p r e s s o r response t o muscular e x e r c i s e , " J . P h y s i o l . (London), 215:  55.  798-804,  on  1971.  C o s t i l l , D.L. "The r e l a t i o n s h i p s between s e l e c t e d p h y s i o l o g i c a l v a r i a b l e s and d i s t a n c e r u n n i n g performance," J . S p o r t Med. , ( T o r i n o ) , 7'- 6 1 - 6 6 , 1967.  56.  C o s t i l l , D.L., and Winrow, E. "Maximal oxygen uptake among marathon r r u n n e r s , " A r c h , o f Phys, Med. & Rehab., 5 1 : 317-320, 1971.  57-  ' Q S s t i l l , D.L., Thomason, H., and R o b e r t s , E. "Fractional utilization ©Sftthe a e r o b i c c a p a c i t y d u r i n g d i s t a n c e r u n n i n g , " Med. S c i . S p o r t s , 5:  248-252,  1973.  58.  Cooper, K.H. "A means o f a s s e s s i n g maximal o x y g e n • i n t a k e , " J . Med.' A s s o c . , 2 0 3 : 2 0 1 - 2 0 4 , I968.  59>  C r e s c i t e l l i , F., and T a y l o r , C. "The l a c t a t e response t o e x e r c i s e and i t s r e l a t i o n s h i p t o p h y s i c a l f i t n e s s , " Amer. J . P h y s i o l . , 141: 630-640,  American  63  60.  Grouch, J . E . F u n c t i o n a l human anatomy.  P h i l a d e l p h i a , L e a and F e b i g e r ,  1965.  61.  Gumming, G.R., and Gumming, P.M. "Working c a p a c i t y o f n o r m a l c h i l d r e n t e s t e d on a b i c y c l e ergometer," Can. Med. A s s n . J o u r n a l , 8 8 , No. 7351-355,  1963.  62.  Gumming, G.R., and D a n z i n g e r , R. " B i c y c l e ergometer s t u d i e s i n c h i l d r e n , " P e d i a t r i c s , 3 2 , No.:2: 2 0 2 - 2 0 8 , I 9 6 3 .  63.  Gureton, T.K. P h y s i c a l f i t n e s s a p p r a i s a l and guidance G.V. M o s l y Go., 194-7.  64-.  Gureton, TJaKm P h y s i c a l f i t n e s s o f champion a t h l e t e s University of I l l i n o i s Press, 1951-  65.  Gureton, T.K. "The n a t u r e o f c a r d i o v a s c u l a r c o n d i t i o n i n normal humans," ( P a r t s 1-5) J o u r n a l o f t h e A s s o c . f o r p h y s i c a l and m e n t a l r e h a b i l i t a t i o n , 1 1 , No. 6: 186-196, N o w - D e e , 1 9 5 7 , e t c .  66.  D a v i e s , G.T.M. " L i m i t a t i o n s t o t h e p r e d i c t i o n o f maximum oxygen i n t a k e from c a r d i a c f r e q u e n c y measurements," J . A p p l i e d P h y s i o l o g y , 24-: 700-706,  St. Louis: Urbana, I l l i n o i s :  1968.  67.  D a v i e s , G.T.M., e t a l . "Body c o m p o s i t i o n and maximum e x e r c i s e p e r f o r mance i n c h i l d r e n , " Human B i o l o g y , 4 4 : 1 9 5 , 1 9 7 2 .  68.  DeVries,  H.A.  1966  I974-.  and  Physiology of gxercise  Dubuque, Iowa:  Wm. G. Brown Co.,  69.  D e V r i e s , H.A., and K l a f s , G.E. " P r e d i c t i o n o f maximal oxygen i n t a k e f r o m submaximal t e s t s , " J . S p o r t s Med. ( T o r i n o ) , 5 : 2 0 7 - 2 1 4 , I965.  70.  D i c k i n s o n , S. "The e f f i c i e n c y o f b i c y c l e p e d a l l i n g as a f f e c t e d by speed and l o a d , " J o u r n a l o f P h y s i o l o g y , 6 7 : 2 4 2 - 2 5 5 , 1 9 2 9 .  71.  D i l l , D.B., T a l b o t , J.H., and Edwards, H.T. " S t u d i e s i n muscular a c t i v i t y " V I "Response o f s e v e r a l i n d i v i d u a l s t o a f i x e d t a s k , " J o u r n a l of P h y s i o l o g y (London), 6 9 : 2 6 7 - 3 0 5 , 1 9 3 0 .  72.  D o b e l n , W.v., A s t r a n d , I , and B e r g s t r o m , A. "An a n a l y s i s o f age and o t h e r f a c t o r s r e l a t e d t o maximal oxygen uptake," J . A p p l . P h y s i o l , 2 2 : 93^,  1967.  73'  Doroschuk, E.V. "A s h o r t t e s t o f submaximal w o r k i n g c a p a c i t y , " C.A.H.P.E.R. J o u r n a l , 3 2 , No. 2 : 1 0 , Dec. I 9 6 5 - J a n . I 9 6 6 .  74.  Edgren, B., M a r k l u n d , G., e t a l . "The v a l i d i t y o f f o u r b i c y c l e ergometer t e s t s , " M e d i c i n e and S c i e n c e i n S p o r t s , 8, No. J: 1 7 9 - I 8 5 , I 9 7 6 .  75.  Ekblom, B. " E f f e c t o f p h y s i c a l t r a i n i n g on oxygen t r a n s p o r t system i n man," A c t a P h y s i o l . Scand., ( S u p p l . ) 3 2 8 : 1 - 4 5 , I969.  64 76.  77.  Ekblom, B., A s t r a n d , P.O., e t a l . " E f f e c t o f t r a i n i n g on c i r c u l a t o r y • r e s p o n s e t o e x e r c i s e , " J . A p p l . P h y s i o l . , 24: 518-528, 1968. Ekblom, B., X i l b o r n , A., and S o t t y s i a k , J . " P h y s i c a l t r a i n i n g , "bradyc a r d i a , and autonomic nervous system," Scand. J . C l i n . Lab. I n v e s t . , 32:  251-256, 1973.  78.  E k e l u n d , L.G., and Holmgren, A. " C e n t r a l hemodynamics d u r i n g C i r c u l a t i o n Res., 21, S u p p l . 1: I-33-I-43, 1967-  j79.  Folkow, B., and N e i l , E. P r e s s , 1971.  80.  F r a n z , I.W., and M e l l e r o w i c z , H. "Comparative measurements o f PWC 170 w i t h work s t e p s o f d i f f e r e n t l o a d i n c r e a s e and d u r a t i o n , " J . K a r d i o l . ,  66:  C i r c u l a t i o n . Toronto:  exercise,"  Oxford U n i v e r s i t y  670-674, 1977.  81.  F r e y s c h u s s , U. " C a r d i o v a s c u l a r adjustment t o somatomotor a c t i v a t i o n ( t h e e l i c i t a t i o n o f i n c r e m e n t s i n h e a r t r a t e , a o r t i c p r e s s u r e and venomotor tone w i t h the i n i t i a t i o n o f muscular c o n t r a c t i o n ) , " A c t a P h y s i o l . Scand., S u p p l . 342: I - 6 3 , 1970.  82.  F r i c k , M.H., K o n t t i n e n , A., and S a r a j a s , H.S.S. " E f f e c t s o f p h y s i c a l t r a i n i n g on c i r c u l a t i o n a t r e s t and d u r i n g e x e r c i s e , " Am. J . C a r d i o l . ,  12:  83.  .142-147, 1963.  F r i c k , M.H., E l o v a i n i o , R.O., and Somer, T. "The mechanism o f bradyc a r d i a evoked by p h y s i c a l t r a i n i n g , " C a r d i o l o g i a , 51 46-54, 1967:  84.  F u j i h a r a , Y., H i l d e b r a n d t , J.R., and H i l d e b r a n d t , J . "Cardiorespiratory t r a n s i e n t s i n e x e r c i s i n g man: I . t e s t s o f superposition," J . Appl. P h y s i o l . , 35, No. 1: 58-67, 1973-  85.  F u j i h a r a , Y., H i l d e b r a n d t , J . , and H i l d e b r a n d t , J.R. "Cardiorespiratory t r a n s i e n t s i n e x e r c i s i n g man: I I . L i n e a r models," J . A p p l . P h y s i o l . ,  35,  No. 1:  68-76, 1973.  86.  G l a s s f o r d , R.G., B a y c r o f t , G.H.I., e t * a l . "Comparison o f maximal oxygen uptake v a l u e s d e t e r m i n e d by p r e d i c t e d and a c t u a l methods," J . A p p l . P h y s i o l . , 20: 509, 19$5.  87.  G o l d s t o n e , B.W., S i l b e r s t e i n , M.J. "The r o l e o f the vagus nerve i n c a r d i a c a d a p t a t i o n t o e x e r c i s e , " P f l u g o r s A r c h . , 325"' 113-124, 1971.  88.  Guyton, A.G. Textbook o f m e d i c a l p h y s i o l o g y . Saunders Co., I 9 6 I .  89.  Haber, P., N i e d e r b e r g e r M., e t a l . "Der Wert submaximaler E r g o m e t e r t e s t s f u r d i e Bestimmung der k o r p e r l i c h e n L e i s t u n g s b r e i t e , " S c h w e i z . Med. Wschr.  108:  90.  Philadelphia:  W.B.  6528654, 1978.  Holmgren, A. " C a r d i o r e s p i r a t o r y d e t e r m i n a n t s o f c a r d i o v a s c u l a r Can. Med. Assoc. J . , 96: 697-702, I967.  fitness,"  65 91.  H e r r l i c h , H.G., Raab, W., and Gigee, W. " I n f l u e n c e o f muscle t r a i n i n g and o f c a t e c h o l a m i n e s on c a r d i a c a c e t y l c h o l i n e and c h o l i n e s t e r a s e , " A r c h . I n t e r n . Pharmacodyn., 1 2 9 : 201, i960.  92.  Hermansen, L. "Oxygen t r a n s p o r t d u r i n g e x e r c i s e i n human s u b j e c t s , " Acta P h y s i o l . Scandi, Suppl. 3 9 9 : 1-104, 1 9 7 3 -  93.  Heymans, C , and N e i l , E. R e f l e x o g e n i c a r e a s ' o f t h e c a r d i o v a s c u l a r system. London: C h u r c h i l l , 1 9 5 8 '  94.  95.  Holmgren, A. " C i r c u l a t o r y changes d u r i n g muscular work i n man,",Scand. J . C l i n . Lab. I n v e s t . , 8 , S u p p l . 24: 1-97, 1956. Holmgren, A., M o s s f e l d t , F., S j o s t r a n d , T., and S t r o m , G. " E f f e c t of t r a i n i n g on work c a p a c i t y , t o t a l hemoglobin, b l o o d volume, h e a r t volume and p u l s e r a t e i n recumbent and u p r i g h t p o s i t i o n s , " A c t a P h y s i o l . Scand., 50:  72-83,  i960.  96.  H o w e l l , M.L., MacNab, R.B.J. "The p h y s i c a l work c a p a c i t y o f Canadian c h i l d r e n aged 7 t o 1 7 . " T o r o n t o : Canadian A s s o c i a t i o n o f H e a l t h , P h y s i c a l E d u c a t i o n and R e c r e a t i o n (C.A.H.P.E.R.), 1 9 6 8 .  97.  Hughes, W.F., and B r i g h t o n , , J.A. F l u i d Dynamics. Book Co., Schaum's O u t l i n e S e r i e s , 1 9 6 7 .  98.  Jensen, David. I n t r i n s i c c a r d i a c r a t e r e g u l a t i o n . New York: C e n t u r y - C r o f t s , E d u c a t i o n a l D i v i s i o n , M e r e d i t h Corp., 1 9 7 L  99.  J e s s u p , G.T., R i g g s , C.E., Lambert, J . , and M i l l e r , W.D. "The e f f e c t o f p e d a l l i n g speed on t h e v a l i d i t y of the Astrand-Rhyming a e r o b i c work c a p a c i t y t e s t , " J . S p o r t s Med., 17: 367-371, 1977.  10.00  J e s s u p , G.T. " V a l i d i t y o f the W I 7 0 t e s t f o r p r e d i c t i n g maximal oxygen i n t a k e , " Eur. J . Appl. P h y s i o l . , 37: 19I-I96, I977.  101.  Johnson, R.E., Brouha, L., and D a r l i n g , R.C. "A t e s t o f p h y s i c a l f i t n e s s f o r s t r e n u o u s e x e r t i o n , " Rev. Canad. B i o l . , 1: 491, 1942.  102.  K a r l s s o n , H., and W i g e r t z , 0 . " I d e n t i f i c a t i o n o f t h e dynamics o f p h y s i o l o g i c a l systems: f i t t i n g l i n e a r t r a n s f e r f u n c t i o n s t o e x p e r i m e n t a l harmonic a n a l y s i s d a t a , " R e p o r t Lab. A v i a t . N a v a l Med.. K a r a l . I n s t . Stockholm, 1 9 7 0 .  103.  New  York:  McGraw-Hill  Appleton-  K a r l s s o n , H., and W i g e r t z , 0. " V e n t i l a t i o n and h e a r t r a t e r e s p o n s e s t o r a m p - f u n c t i o n ' c h a n g e s i n work l o a d , " A c t a P h y s i o l . Scand., 81: 215-224, 1971.  104.  K a r p o v i c h , P.V. P h y s i o l o g y of muscular a c t i v i t y . W.B. Saunders Co., I 9 6 5 .  Philadelphia:  105-  Kelman, G.R.  London:  Applied cardiovascular physiology.  Butterworths,  66  106.  K n u t t l e n , H.G. 22:  • 107.  0:08.  196?.  K o e r n e r , D.R. " C a r d i o v a s c u l a r b e n e f i t s f r o m an i n d u s t r i a l p h y s i c a l program," J . Occup. Med.,.15: 700-707, 1973. Krogh, A., and L i n d h a r d , J . "The r e g u l a t i o n o f r e s p i r a t i o n and l a t i o n d u r i n g the i n i t i a l s t a g e s o f m u s c u l a r work," J . P h y s i o l . 51:  109.  655-658,  "Aerobic c a p a c i t y of adolescents," J . Appl. P h y s i o l . ,  112-136,  L a r s o n , L.A.  circu(Lond.),  1913.  F i t n e s s , h e a l t h and work c a p a c i t y .  New  York:  MacMillan,  1974.  110.  L i n d b o r g , B., W i g e r t z , 0., and Odman, T. "A b e a t - t o - b e a t h e a r t - r a t e meter w i t h l i n e a r a n a l o g o u t p u t f o r m u s c u l a r e x e r c i s e s t u d i e s , " R e p o r t Lab. A v i a t . N a v a l Med., K a r o l l n s t . , S t o c k h o l m , I969.  111.  L u e t s c h e r , J.A., e t a l . "A model o f t h e human c i r c u l a t i o n , " C i r . Res., 3 2 , S u p p l . 1: 84-98, 1973.  112.  Mahadeva, K., Passmore, R., and W o o l f , B. "Individual variations i n the m e t a b o l i c c o s t o f s t a n d a r d i z e d e x e r c i s e s : the e f f e c t o f f o o d , age, s e x , and r a c e , " J . P h y s i o l . , 1 2 1 : 225, 1953-  113.  M a r g a r i a , R., Aghemo, P., and R o v e 1 1 , E. " I n d i r e c t determination of maximal Og consumption i n man," J . A p p l . P h y s i o l . , 20":' 1 0 7 0 , 1 9 6 5 -  114.  M a r i t z , J.S., M o r r i s o n , J.F., e t a l . "A p r a c t i c a l method o f e s t i m a t i n g an i n d i v i d u a l ' s maximal oxygen i n t a k e , " Ergonomics, 4 : 97, 1961.  115.  M a t s u i , H., M i y a s h i t a , M., e t a l . "Maximum oxygen i n t a k e and i t s r e l a t i o n t o body w e i g h t o f Japanese a d o l e s c e n t s , " Med, and S c i . i n sports, 4: 29, 1972.  116.  M i c h i e l l i , D.W., S t r i c e v i c , M. e q u i v a l e n t power o u t p u t s , " N.Y.  117.  M i t c h e l l , J.H., and McCloskey, D.I. " R e f l e x c a r d i o v a s c u l a r and r e s p i r a t o r y responses o r i g i n a t i n g i n e x e r c i s i n g muscles,(Abstract)," Federation Proc., 31: 541, 1972.  118.  M o c e l l i n , R., Lindemann, H., e t a l . " D e t e r m i n a t i o n o f W170 and maximal oxygen uptake i n c h i l d r e n by d i f f e r e n t methods," A c t a P a e d i a t . Scand., Suppl. 217:  13-17,  "Various p e d a l l i n g frequencies at S t a t e J . o f Med.: 744-746, 1 9 7 7 .  1971.  119.  Morehouse, L.E., and M i l l e r , A.T. C.V. Mosby Company, I967.  120.  McDonald, D.A.  121.  P a n d o l f , K.B., N o b l e , B . J . "The e f f e c t o f p e d a l l i n g speed and r e s i s t a n c e changes on p e r c e i v e d e x e r t i o n f o r e q u i v a l e n t power o u t p u t s on the b i c y c l e ergometer," Med. & S c i . i n s p o r t s , 5 : 132-I36, I973.  Physiology of e x e r c i s e .  Blood flow i n a r t e r i e s .  London:  Saint Louis:  Edward Amald,  i960.  67. 122.  Passmore, R., and D u r r i n , J.V.G.A. Rev., 35: 801, 1955-  123.  P e r e z - G o n z a l e s , J.F., and Goote, J.H. " A c t i v i t y o f muscle a f f e r e n t s and r e f l e x c i r c u l a t o r y r e s p o n s e s t o e x e r c i s e , " Am. J . P h y s i o l . , 223:  "Human e n e r g y e x p e n d i t u r e , "  Physiol.  138-143, 1 9 7 2 .  124.  P e r l , W. "A method f o r c u r v e - f i t t i n g "by e x p o n e n t i a l f u n c t i o n s , " I n t . J . A p p l . R a d i a t . and I s o t o p . , 8: 211-222, i 9 6 0 .  125.  P e t e r s o n , L y s l e H. " C o n t r o l and r e g u l a t i o n o f the c a r d i o v a s c u l a r system," . P h y s i o l o g i c a l - . ; c o n t r o l s and r e g u l a t i o n s . W i l l i a m S . Yamambto - and" J 6 h n - ? R B r o b e c k , eds.. . ^ P h i l a d e l p h i a : W ,B. 'Saundersc GbV, • I 9 6 5 . ' "  126.  P e t r o , J.K., H o l l a n d e r , A.P., and Bouman, L.N. "Instantaneous cardiac a c c e l e r a t i o n injnmandinduced by a v o l u n t a r y muscle c o n t r a c t i o n , " J . A p p l . P h y s i o l . , 29: 794-798, 1970.  127.  P h y s i o l o g y T r a i n i n g Committee, N a t i o n a l I n s t i t u t e o f G e n e r a l Sciences. "A view o f systems p h y s i o l o g y , " P h y s i o l o g i s t , 11:  Medical 115-133  1968.  128.  Rasmussen, V., Haunso, S., and Skagen, K. " C e r e b r a l a t t a c k s due t o e x c e s s i v e v a g a l tone i n h e a v i l y t r a i n e d p e r s o n s , " A c t a Med. Scand., 401-405, 1978.  204:  129.  R o b i n s o n , B.F., E p s t e i n , S.E., B e i s e r , G.D., and Braunwald, E. ".Control o f h e a r t r a t e by the autonomic nervous system," C i r c u l a t i o n Res., 19: 400-411, I 9 6 6 .  130.  R o b i n s o n , S., Harmon, P.M. "The l a c t i c a c i d m e t a b o l i s m and c e r t a i n p r o p e r t i e s o f the b l o o d i n r e l a t i o n t o t r a i n i n g , " Amer. J . P h y s i o l . , 132: 757-769, 1941.  131.  Rosenhamer, G., and W i g e r t z , 0. "Dynamics o f a r t e r i a l b l o o d p r e s s u r e r e s p o n s e s t o s i n u s o i d a l work l o a d i n man," A c t a P h y s i o l . Scand., 1971.  132.  Roskamm, H., " C e n t r a l c i r c u l a t o r y a d j u s t m e n t t o e x e r c i s e i n w e l l - t r a i n e d s u b j e c t s , " Coronary h e a r t d i s e a s e and p h y s i c a l f i t n e s s , O.A. L a r s e n and 0. Malmborg, eds., Copenhagen: Munksgaard, 1971, p. 1 7 - 2 0 .  133• ,  R o w e l l , L o r i n g B. "Human c a r d i o v a s c u l a r a d j u s t m e n t s t o e x e r c i s e and t h e r m a l s t r e s s , " P h y s i o l o g i c a l Reviews, 54; No. 1: 75-159, 1974.  134.  R o w e l l , L.B., T a y l o r , H.L., and Wang, Y. "Limitations to prediction o f maximal oxygen uptake," J . A p p l . P h y s i o l . , 19: 919, 1964.  K  135-  Rushner, R . F . C o n t r o l o f c a r d i a c o u t p u t , " P h y s i o l o g y and B i o p h y s i c s , T.C. Ruch and H.D. P a t t e n , eds., P h i l a d e l p h i a : W.B. Saunders Co., 1965, p.  644.  136.  Rhyming, I . "A m o d i f i e d H a r v a r d s t e p t e s t f o r the e v a l u a t i o n p h y s i c a l f i t n e s s , " A r b e i t s p h y s i o l . , 15: 235, 1953.  of  *'/••  68 137-  S a l t i n , B. "Aerobic work capacity and c i r c u l a t i o n a t exercise i n man," Acta P h y s i o l . Scand., 62, Suppl. 230: 6-52, 1964.  138.  S a l t i n , B.G., Blomgvist, e t a l . "Response t o exercise a f t e r bed r e s t and a f t e r t r a i n i n g : a l o n g i t u d i n a l study of adaptive changes i n oxygen transport and body composition," G i r c . , 38, Suppl. 7, 1968.  139.  S a l t i n , B., Hartley, L.H., e t a l . " P h y s i c a l t r a i n i n g i n sedentary middle-aged and older men," Scand. J . G l i n . Lab. Invest., 24: 323-334, 1969.  140.  Scheuer, J . " P h y s i c a l t r a i n i n g and i n t r i n s i c cardiac adaptations," C i r c u l a t i o n , 47: 677-679, 1973-  141.  Schryver, C. de, Herdt, P. de, and Lammerant, J . " E f f e c t of p h y s i c a l t r a i n i n g on cardiac catecholamine concentrations," Nature, 214: 907-908, 1967.  142.  S e l i g e r , V., Macek, M., e t a l . "Work capacity of the Czechoslovakian population," Eur. J . Appl. P h y s i o l . , 39, 155-164, 1978.  143.  Shephard, R.J. "The r e l a t i v e merits of the step t e s t , b i c y c l e ergometer, and t r e a d m i l l i n the assessment of c a r d i o - r e s p i r a t o r y f i t n e s s , " I n t e r n . J . Angew. P h y s i o l . , 23: 219, 1966.  144.  Shephard, R.J. "The working capacity of the older employee," Archives of environmental health, 18: 982-6, I969.  145.  Shephard, R.J. "The working capacity of school c h i l d r e n , " F r o n t i e r s of f i t n e s s , R.J. Shephard, ed. S p r i n g f i e l d ; Thomas, 1971, P- 319-  146.  Shephard, R.J., A l l e n , C , e t a l . "Standardization of. submaximal exercise t e s t s , " B u l l e t i n WliQ;, 38: 765-75, 1968.  147.  Signardson, K., Svanfeldt, E., and K i l B o r n , A. "Role of the adrenergic nervous system i n development of training-induced bradycardia," Acta P h y s i o l . Scand., 101, No. 4: 481-488, 1977.  148.  Sjostrand, T. "Changes i n the r e s p i r a t o r y organs of workmen a t an ore works," Acta Med. Scand., (Suppl. 196): 687-699, 1947.  149.  Sjostrand, T. "Testing of the p h y s i c a l working capacity," 3: 141, 1967.  150.  S t r a n d e l l , T. " C i r c u l a t o r y studies on healthy o l d men w i t h s p e c i a l reference t o the l i m i t a t i o n of the maximal p h y s i c a l working capacity," Acta Med. Scand., 175 (Suppl. 4 l 4 ) , 1964.  151.  Strom, G., ed. "Recommended symbols, nomenclature, and c r i t e r i a f o r c e r t a i n measures of p h y s i c a l c a p a b i l i t y , " Forvarsmedicin, 3: 159-160, I967.  Forsvarmedicin,  69 152.  T a l b o t , L., e t a l . " F l u i d m e c h a n i c a l a s p e c t s o f the human c i r c u l a t i o n , " American S c i e n t i s t , 62, No. 6: 671-682, 1974.  153.  T a y l o r , H.R.,  B u s k i r k , £.,  and H e n s c h e l , A.  "Maximal oxygen i n t a k e  as  an o b j e c t i v e measure of c a r d i o r e s p i r a t o r y performance," J . A p p l . P h y s i o l . ,  8: 154.  155.  73,  1955.  Tennessee H e a r t A s s o c i a t i o n , P h y s . Ed. Committee. P h y s i c i a n ' s handbook f o r e v a l u a t i o n o f c a r d i o v a s c u l a r and p h y s i c a l f i t n e s s . Tennessee: Tennessee H e a r t A s s o c i a t i o n , 1970.. T e r a s l i n n a , P., I s m a i l , A.H., and MacLeod, D.F. "Nomogram by A s t r a n d and Rhyming as a p r e d i c t o r of maximum oxygen i n t a k e , " J . A p p l . P h y s i o l . ,  21:  513,  I966.  156.  T e r r y , J .W., T o l s o n , H., e t a l . "A w o r k l o a d s e l e c t i o n procedure f o r the Astrand-Rhyming t e s t , " J . S p o r t s Med., 17: 36I, 1977.  157.  T i p t o n , CM. "The e f f e c t o f muscular a c t i v i t y on the h e a r t r a t e the r a t , " The P h y s i o l o g i s t , 4: 123, 1961.  158.  T i p t o n , CM., Barnard, R.J.., and Tharp, G.D. "Cholinesterase a c t i v i t y i n t r a i n e d and u n t r a i n e d r a t s , " I n t e r n . J . Angew. P h y s i o l . , 23: 32, 1966.  159.  Wahlund, H. "Determinations of p h y s i c a l working capacity," "Determination <aof the p h y s i c a l w o r k i n g c a p a c i t y , " A c t a Med. Scand., 132 ( S u p p l . 215):  5-78; 160.  71-  1967.  Watson, A.W.S., and O'Donovan, D.J. "The p h y s i c a l w o r k i n g c a p a c i t y of male a d o l e s c e n t s i n I r e l a n d , " I r i s h J o u r n a l o f Med. S c i e n c e , 145, No. 12:  383-391,  162.  1948.  Wasserman, K., Van K e s s e l , A.L., and B u r t o n , G.G. " I n t e r a c t i o n of p h y s i o l o g i c a l mechanisms d u r i n g e x e r c i s e , " J . A p p l . P h y s i o l . , 22:  85,  161.  1-78,  of  1976.  Watson, A.W.S., and O'Donovan, D.J. "The r e l i a b i l i t y o f measurements of PWC 170," I r i s h J o u r n a l o f Med. S c i e n c e . 145: 308, 1976 (2).  163.  Watson, A.W.S., and O'Donovan, D.J. "The e f f e c t s o f f i v e weeks o f c o n t r o l l e d i n t e r v a l t r a i n i n g on youths o f d i v e r s e p r e - t r a i n i n g c o n d i t i o n , " J . S p o r t s Med. & P h y s . F i t n e s s , 17, No. 2: 139-146, 1977.  164.  Watson, A.W.S., and O'Donovan, D.J. "The r e l a t i o n s h i p of l e v e l o f h a b i t u a l a c t i v i t y t o measures o f l e a n n e s s - f a t n e s s , p h y s i c a l w o r k i n g c a p a c i t y , s t r e n g t h and motor a b i l i t y i n 17 and 18 y e a r o l d males," E u r . J . A p p l . P h y s i o l . , 37: 93-100,. 1977.  165.  Weiner, J.S., and L o u r i e , J.A. I.B.P. Handbook ..number 9: Human Biology: A g u i d e t o f i e l d methods. Oxford:. B l a c k w e l l S c i e n t i f i c , I969.  166.  W i g e r t z , 0 . , "Dynamics o f v e n t i l a t i o n and h e a r t r a t e i n response t o s i n u s o i d a l work l o a d i n man," J . A p p l . P h y s i o l . , 29: 208-218, 1970.  70  T67?  168.  ;  W i g e r t z , 0. "Dynamics o f r e s p i r a t o r y and c i r c u l a t o r y a d a p t a t i o n t o muscular e x e r c i s e i n man (A systems a n a l y s i s a p p r o a c h ) , " A c t a P h y s i o l . Scand., S u p p l . 3 6 3 , 1 9 7 1 W i n d e r , W .W., Hagberg, J.M., e t a l . "Time c o u r s e o f s y m p a t h o a d r e n a l a d a p t a t i o n t o endurance e x e r c i s e t r a i n i n g i n man," J . A p p l . P h y s i o l . , 45,  No. 3 :  370-374,  1978.  169.  W i t h e r s , R.T. " A n a e r o b i c work a t submaximal r e l a t i v e w o r k l o a d s i n s u b j e c t s o f h i g h and medium f i t n e s s , " J . S p o r t s Med., 17: 17, 1977-  170.  W i t h e r s , R.T., D a v i e s , G.J., and Grouch, R.G. "A comparison o f t h r e e W170 p r o t o c o l s , " E u r o p . J . A p p l . P h y s i o l . , 3 7 : 123-128, 1977-  171.  Wyndham, G.H. "Submaximal t e s t s f o r e s t i m a t i n g Gan. Med. A s s o c . J o u r n a l , 9 6 : 736-742, I 9 6 7 .  172.  Wyndham, G.H., Strydom, N.B., e t a l . " S t u d i e s o f t h e maximum c a p a c i t y o f men f o r p h y s i c a l e f f o r t , " I n t e r n . J . Angew. P h y s i o l . , 22: 2 8 5 , 1 9 6 6 .  173'  Yuhasz, M. P h y s i c a l f i t n e s s and s p o r t s a p p r a i s a l : laboratory London, O n t a r i o : U n i v e r s i t y o f Western O n t a r i o , 1 9 6 8 .  maximum oxygen  intake,"  manual.  APPENDICES  71  APPENDIX A RAW DATA  72  HEART RATES (Averaged and Recorded e v e r y 15 S P L PO  = = = =  seconds)  Subject P r o t o c o l ( 3 3 minutes, 4=4 minutes, 5=5 minutes, 6=6 minutes) Load ( A = 1st l o a d , B = 2nd l o a d , G = 3 r d l o a d ) Power Output ( i n KPM/min.) =  1  S P L T O  2  3_  01 01 01 01 01 01 01 01 01 01 01 01  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B C G G C  0900 0900 0900 0900 0975 0975 0975 0975 1050 1050 1050 1050  078 078 092 0.89 Q85 075 0.86 092 096 082 087 113  100 102 098 110 101 106 108 107 106 115 075 104 108 117 111 117 114 122 112 121 110 123 120 128  02 02 02 02 02 02 02 02 02 02 02 02  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  0825 0825 0825 0825 0975 0975 0975 0975 1125 1125 1125 1125  075 081 085 0 89 0 89 088 101 102 096 101 107 108  101 099 102 106 108 108 118 118 113 114 120 122  ;  4  i  6  7  8  111 112 109 110 119 113 122 121 124 127 132 133  114 115 114 114 122 115 126 125 129 129 140 136  117 116 112 116 123 122 129 127 134 134 139 137  119 117 112 119 124 126 129 129 141 135 141 138  123 119 116 118 125 124 131 130 141 137 144 141  122 118 116 118 126 129 132 129 139 135 143 139  11? 119 113 113 119 121 115 119 130 130 131 131 132 132 133 134 136 138 139 138 140 141 140 140  117 115 119 116 130 131 133 133 138 142 142 141  120 121 118 120 121 121 118 117 130. 131 132 131 134 134 136 135 139 142 143 145 144 142 146 148  110 114 116 1 0 8 b l l 3 114 109 116 115 113 116 116 117 125 128 121 123 129 121 125 130 123 129 134 126 132 135 126 131 138 125 133 137 131 134 139  2 - ' l U ^ 1 2 ] A l 5 l 6 l 2 l 8 l 2 122 115 116 120 124 132 133 129 138 139 140 143  123 120 121 119 123 125 121 121 125 128 126 129 134 133 133 133 138 139 139 139 138 139 143 142 120 120< 122 119 131 128 134 135 144 144 144 147  20  ^ 2 2 2 2 2 l t  118 119 118 120 124 121 124 124 125 126 125 126 117 118 121 122 120 119 121 125 124 123 124 126 130 129 129 128 128 132 133 133 I36 135 135 136 137 130 133 135 138 140 137 135 136 135 134 134 136 140 139 138 138 143 142 139 142 144 143 142 144 141 142 143 143 140 143 140 143 143 145 144 144  119 120 118 118 118 118 121 123 124 124 124 119 121 119 124 123 131 130 127 130 133 133 135 135 133 137 138 137 134 137 137 139 145 143 144 145 145 144 145 146 144 147 148 147 148 150 150 149  125 126 124 125 121 123 124 126 124 125 123 125  138 136 139 139 137 139 139 139 138 137 137 140  148 149 150 151 148 152 152 151 153 155 152 154  74 in  31  (D  i> n5  il  SI  NO  H  o o  CD  PH  in  O  id  §  cn  H  CD bD tort CD  to ii CD  -p o  it  -a-  II CO pq  cn  CO  O  -P  cn  ON  o  o  CD O  •i-5 - P  rH m 9 9  CM m CM CM H i—1 CM CM H C M CM H rH H  CO  C^ rH CM rH CMCM H rH rH  tn  03.  CM  3 9  O  CM rH  CM O CM H  >ic\ i n en en H H H -3en en en H H H H -d" CM cn en en H H H CM -3" CM en en en H H H  -d" en en cn en H H H rH CM CM -d" ^ Q CM r—1 CMCM cn cn c n c n i r H H H rH H H r i H H ON  CM  r 1 9  •iH  O  C  •H  ^  $ 3  H H  CM H CM H d H H  C3N  Q  H H H Q NO, H -5 ^3" H H H  Ph  ^ H 4 - CnH H H H  CM ^3" CM H  l ^ H 4 ONONNO H CN-O O o m i CN- CO CN- CO CO ON 0 0 ON ON ON 0 0 o o o o o o o o o o o o o o o o o o o o o o o o o o o o i n ^ n i - n i n o o o o  CO  o  CD  CM CM CM c n o C M r H C N - O N - d - O N CM CM CM CM H H H rH r-ir-\r-ir-\r-ir-\Hr-{  ON O o o- c n O - N O m o N O •=H H H N CM c n C M c n C M c n cn-3- c n H H H H H H H H H H H H cnMD >n.d- c n c n CN- o co O N en N O cn| H O H H CM CM CM CM CMC M en C M rH H rH rHr-\ r-{ r-\ r-i r-tH H H  C\CM|  CM en en H H  PhI OnOnOnOnOOOOCMCMCMCM OCOOrHr-\r-ir-{r-it-ir-\r-i  o i n H O i n H O N  H O N  ^3H co C M ^- ^ H H ON ON  ^ -3H H HON in^jH H H H in in H H  in.3H H H H H H ^ N O jjH H H H H H  H H H  «H  H ^3" H ON^3O On O On H 9 H H H eS H  CM H H H H  O H CM H H  NO  NO  Q N O CM CM CM N O cncM c n i n c M CM CM CMCM Cn c n c n m - d " 3 ^" H rH rH rH H H rH rH H H H H  ^1  in i n H H H H  in oH H H H  *n.4H H  CM CN-NO H ^ t C M > n H c n C j N C O C M H CM C M cn cn cn cn-3- on .4- -3H H H H H H H H H H H  O g -2 ° Hi Ph i-hM  C IO I  ^3"  r l 9  H H  H NO i n .3H H H NO ^n-3H H  is- en en en H H CN- en cn en H H O- i n en en H H  cn CM 9 9  •in en H en i n en en H H N O I en en en H H ^3" CNcn en H H  H  »|  -P  O'  ON  ON vr\ c\| \T\ CM P Q CTN Cn CM rH CMrH n c A n n ^ - ^ ^ ^ r—1 r—1 rHH H H H H H H H r i  H < pi  -P  CN-  CM en N O cn c n O rH CM O N H N O rH CM CM CMCM c n c n c n c n c n . 3 - . d - ^ f r H H rH H H H H H H H H r l  to  •H  .3cn H  •dH  ON  o aH C M  NB cn H  H  CO N O i—1 cn-d- -3H H H "HI O ON i n O ^3" C O i n CM Q O N N O H H| CM rH CM C M 0°\N C ^ n ^c n . * -dH H H H H H H H H H H H CM' ON c n i—1 i ^ o ^ o enco O N C ^ J J C M s i H rH CM CM rH rH rHr-^r-ir-tr-ir-{r-i<-\<-t  91  CO 0 -P  •g  CO H H  CM|  31  ve-  M (D >  H  CM CM i—1  31  e  NO  rH CM rH  •H  to  en en H  811  31  (D  en H  in cn H  51  -p  J" H H  CM CM rH  H |  C o o  NO  SI  SI  H  in cn H  cn H  °l  tt) w  fNH H  CN-  NO  9  in H H NO  H H  cn en J ino H en en en ^ in in H H H H H H cn C M o ino NO en cn en ^ in^H H H H H H in UN NO CM O N ON i n CO i n H H H en C M C M -d- -d- -3H H H H H H H H H i n C M co C M C M oo mNO i n cn en en J ^ - ^jH H H H H H H H H H H H en J - -3- o C M i n O N en N O cH H H cnenencM^}-je-^--cJH H H H H H H H H H H >n ^3" CM o C M C - ^ C M cnoNO-en H H H enencnen^-^-^-^H H H r-\r-\r-\Hr-ir-]Hr-i  O - N O N O -3" C M inONH^j- C ^ N O C M H H H H cnencM e n ^ - ^ t ^ - ^ H H H H H H H H H H H H  -3- ^ N O CMo ^ n o H J - i n c N - o H H H H e n e n c n e n ^ - ^ - ^ - en H H H H H H H H H H H H in^-ininH^-encMCM^-Ho HHHHenencncn^-3-^}-^r-\<-\r-\r-\r-{r-\rHr-tr-ir-\r^<-i  ininNO c^-oo c n C N - C O C M ^ H H H H CM en C M en^3- ^ J J - 3rH rH rH rH rHH H H H H H H i n C N - co N O C N - O N ^ j - i n o c n i n c n H H H H CMCMCMCn^-^-^}-^ H H H H H H H H H H H H O - N O i n i n N O co C ^ N O . i n o O N N O HHHHcMCMCMcnen^-encn H H H H H H H H H H H H i n *n en H CN- ^j- CN- o i n H N O CM C M C M cn en en cn c n r-] r-i r-i H r-\ r-{ r-\ <-i r-i r-\ r-\ r-\ <-i r-{ r-\ HOO-ONCO^-ONCn^tONO!NH H O O H C M H C M C M en CM CM rHr-\r-\r-\r-ir-\r^r-]r-]r-<rHr-\  incN-Hoo H i n c o O N ^ O O O O O H O H H H H H H H H H H H H H H H H H CJNNOCO  en N O O N i n c N - c M n ^ 3 - H O m e n 0 N 0 0 C 0 0 0 0 0 0 0 0 N 0 N O O O O  O O O O O O O O  H H H H  O O O O O O O O O O O O i n i n i n i n o o o o vn^ninin O-CN-CN-O-ONONONONO O O O O O O O O O O O H H H H  <tJ<c;<c;<;pqpqpqpqoooo  Ph I I II II P4l cn^t " ^ N O en^}- >nNO c n ^ - i n N O e^e^ne^nnnnn Ph hI O CQl co ^ot ^o r ^ o o o o o o o o o  en^3-  i n N O e n ^ - i n N O en^3- WN.NO  ^•^3-^-^-^3-^--d-^-^3-^3-^3-^o o o o o o o o o o o o  HEART RATES (Averaged and Recorded e v e r y 15 seconds) S P L PO  s  = = = =  Subject P r o t o c o l (3 = 3 minutes, 4 = 4 minutes, 5 5 minutes, 6 = 6 Load (A = 1st l o a d , B = 2nd l o a d , G = 3rd l o a d ) Power Output ( i n KPM/min.) =  P L  05 05 05 05 05 05 05 05 05 05 05 05  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  06 06 06 06 06 06 06 06 06 06 06 06  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  PO  1  2  3  4  5  6  7  8  1  10  0975 087 109 118 123 124 124 122 121 120 120 0975 088 114 123 130 130 130 129 129 126 127 0975 091 112 121 125 127 128 128 127 124 122 0975 100 110 120 125 127 127 125 125 124 123 1050 104 114 123 126 127 127 127 125 125 125 1050 1050 1050 1200 1200 1200 1200  096 095 101 093 098 101 111  116 116 125 118  129 132 135 124 128 132 125 129 131 128 133 132 118 133 136 139 119 129 136 138 123 127 131 132  134 132 131 133 139 139 134  1050 1050 1050 1050 1125 1125 1125 1125 1200 1200 1200 1200  078 076 082 072 101 092 098 101 097 099 103 105  110 121 124 123 105 120 120 123 108 124 126 124 104 118 124 122 118 129 135 137 113 124 130 134 118 127 134 139 119 129 136 140 117 125 134 139 120 127 128 134 122 125 134 139 125 128 136 139  121 122 122 124 122 120 124 125 124 125 126 125 126 125 122 124 135 134 133 135 133 134 130 132 139 140 138 137 139 138 141 138  135 132 130 132 139 139 134  140 144 138 144 145 144 146 148  133 132 130 132 131 130 128 129 127 130 132 134 137 135 136 138 139 140 134 134 134  11  12  n  minutes)  14  15 ' 16 i Z  18  19  20  21  22  23  24  120 118 124 123 125 124 124 124 123 124 125 125 123 124 123 124 124 126 124 123 124 124 124 124 125 124 124 124 124 125 129 127 126 125 130 131 130 131 129 129 129 130 128 129 128 128 134 134 139 137 136 136 137 137 137 138 132 133 132 132  123 125 124 126 128 126 128 127 134 136 131 134 136 138 137 138 145 148 148 149 144 146 146 145 147 146 418 148 152 151 151 153  124  127 125 126 124 124 126 124 126 126 136 135 132 133 137 136 135 136 138 139 150 147 145 148  130 131 129 128 128 129 130 130 128 130 128 127 133 127 127 129 130 130 137 138 140 139 140 139 139 138 134 132 133 133 133 131 133 135 136 136 126 125 128: 128 128 125 127 127 128 127 126 124 126 126 128 128 126 127 131 134 134 136 136 138 139 138 140 141 141 139 139 140 141 141 140 140  149 149 147 146 148 149 150 149 151 152 151 152 152 150 149 151 153 153 154 155 154 153 153 153  HEART RATES (Averaged and Recorded e v e r y 15 S P L PO  = = = =  Subject P r o t o c o l ( 3 = 3 minutes, 4 = 4 minutes, 5 = 5 minutes, 6 = 6 Load ( A = 1 s t l o a d , B = 2nd l o a d , G = 3 r d load) Power Output ( i n KPM/min.)  S P L  PO  1  2  3  4  5  6  7  8  ?  10  11  12  07 07 07 07 07 07 07 07 07 07 07 07  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  0900 0900 0900 0900 1050 1050 1050 1050 1200 1200 1200 1200  075 082 076 080 082 086 090 092 100 098 103 105  100 109 0981108 101 108 100 105 106 112 108 120 105 118 109 118 115 125 113 126 116 128 118 129  115 117 118 112 118 129 130 129 130 133 132 135  117 119 119 119 128 136 134 136 136 137 141 145  115 118 120 122 135 137 137 135 145 144 146 149  114 120 119 124 136 135 135 140 148 146 148 151  119 121 118 122 136 134 136 141 150 148 150 152  120 123 121 121 138 136 138 140 151 150 151 153  118 121 124 124 138 135 136 139 149 152 153 152  120 123 123 123 137 137 135 139 150 151 153 153  122 124 124 124 136 137 136 140 150 150 151 150  08 08 08 08 08 08 08 08 08 08 08 08  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  0900 0900 0900 0900 1050 1050 1050 1050 1200 1200 1200 1200  082 09'1 090 086 091 088 093 090 101 094 098 103  094 095 096 088 098 096 105 101 115 116 119 124  108 109 107 099 118 120 115 122 124 128 129 128  115 116 117 105 138 137 138 139 137 139 140 140  126 123 125 118 140 144 143 141 143 145 146 145  128 125 128 127 143 145 146 144 143 145 146 147  125 126 127 128 144 143 146 147 148 148 151 154  126 127 128 128 145 144 147 148 153 154 153 155  126 128 128 127 144 142 148 147 155 153 159 158  127 128 126 128 145 143 150 146 158 157 163 160  126 127 127 127 145 143 150 146 159 155 162 164  127 126 128 126 145 143 148 144 160 157 163 163  13  14  seconds)  minutes)  15  16  17  18  19  20  21  123 125 123 123 123 125 124 123 123 123 124 124 125 126 126 126 127 124 123 122 121  22  23  24  123 124 122  136 136 138 138 138 139 138 138 137 136 138 138 138 139 141 140 139 138 139 139 139 140 140 140 151 149 150 151 153 154 154 154 154 153 152 153 149 151 153 153 154 156 154 155 156 154 155  155  126 127 126 127 129 128 126 125 126 127 126 128 127 126 125 127 128 128 126 129 128 130 128 129 142 143 144 143 149 147 147 148 147 148 147 146 146 144 148 148 147 146 146 146 145 147 146 146 158 159 161 161 160 161 161 163 164 164 164 I65 162 164 163 163 165 164 166 167 164 165 166  166  HEART RATES (Averaged and Recorded e v e r y 15 seconds) Subject • p = P r o t o c o l (3 = 3 minutes, 4 = 4 minutes, 5 = 5 minutes, 6 = 6 minutes) L = Load ( 1st l o a d , B = 2nd l o a d , G = 3rd l o a d ) PO = Power Output ( i n KPM/ min.)  s=  =  s  p L _P0  1  2  1  3.  09 09 09 09 09 09 09 09 09 09 09 09  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G G G G  0675 0675 0675 0675 0750 0750 0750 0750 0825 0825 0825 0825  103 110 108 112 101 112 109 115 081 114 125 085 116 123 114 126 084 091 119 123 090 118 128 085 114 119 129 092 112 119 127 095 114 120 131  10 10 10 10 10 10 10 10 10 10 10 10  3 4 5 6 3  A A A A B B B B G G G G  0750 0750 0.750 0750 0825 0825 0825 0825 0900 0900 0900 0900  095 087 091 086 099 096 102 100  5 6 3 5 6  074 076 079 079  092 089 094 086 103 110 106 110 110  106 105 102 103 110  111 110 107 109  110 112 108 110  118 124 108 114 120 112 114 121 118 123 124  108 120 126 134  6  7  114 118 121  116 110 115 127  120 121 115 118  1  10  11  114 116 118 118 121 123 120 124 123 123 121 124  118 124 128 125 128 130 129 131  128 129 131 128 126 124 125 124 125 143 143 136 139 142 143 142 144 146 141 143 142  122 118 117 116 135 129 130 130  8 120 120 122 122  121 120 117 116 136 130 132 134 140 145 135 140 129 137  133 135 134 133 129 131 130 130  128 130 127 128 136 140 144 145 147 146 144 145  123 120 121 138 135 133 136 150 150 145  105 121 125 130 109 121 124 128 103 121 125 134 140 144 147  12  14  121 122 122 121 122 121 122 124 122 120 131 133 132 131 132 134 131 131 129 131  16  17  18  12  20  21  22  121 122 121 124 123 124 123 124 118 120 122 124 124 125 125 124 126 127 132 132 132 133 133 134 135 135 129 131 130 133 132 134 135 136 138 139  141 144 144 144 143 145 146 148 147 147 145 145 147 147 146 145 147 149 150 149 149 146 144 146 148 149 149 148 147 149 150 150 151 150 149  127 132 128 122 125 127 126 121 124 125 126 120 122 127 130 138 141 142 141 138 139 140 142 136 139 139 142 138 141 141 142 151 156 155 158 148 151 153 155 149 150 150 154 150 151 153 154  124 122  12  151  127  128 126 125 126 127 126 127 128 127 126 128 126 127 128 127 127 128 130 130 127 128 131 131 131 127 132  129  143 144 143 142 143 144 142 144 142 142 143 145 144 146 144 142 141 140 142 141 143 143 145 145 145 146 146 146  158 157 156 155 158 159 155 157 154 158 159 160 159 160 160 159 160 159 159 160 161 160 160 161 163 163 163 162  78  31  ON  SI  O  CM rH  UN rH  o  CN!  NO  CN OH  si si si si  CO w  co  UN  CD -P  u  C •H  e  CD > CO  NO  H CD  II  -d  NO  o o  EH  CO CN! ^ UN H rH  H  -3-  co  o  NO CN-3- -3" H  CO 'CNJ.NO H H  NO  CO  CO CO  rH  H  CN) H  co  CD PH  CD -P  H C  SH •H  2  n5  UN  tj 0 hD co*  % O  UN.  CD  H  u  jS  11  CO CO  II.  CN H II  CN  CO - P H 3 PH II - £  H -P O < O O• 0 O  H  H  H  O-NO J3" CN! CN! CN! H  H  H  ON -3- -3- ^3-  -3"  ON O CN! CN) C N  H  H H CO CN!  H  H  H  H  H  H  H  H  C O  UN H  CO  H  H  H  H  H  H  H  H  H  H  H  H  H  H  H  H  NO C N U N NO NO NO H  H  H  NO* NO" NS  H  H  O ON CN! -d- CN^3-  CN! CN! CN!  H  O N N O U ^ C N ) O N C O CN) CN-CN! CNCN) CNCN!CN!CN!CN1JJ-J3-^-^3-NONONONO H H H H H H H H H H H H  H  -3" CN-CO  NO NO NO  H  H  CN-  H  NO NO  H  U N I—1  H  N O NO NO H H H  H  CN  CN CN  H  C N CN-  H  CN! UN, -3- -d"  ON  H  u >  CN- i—1 NO ^3- -3" -3" H  H  NO NO  H  H  H  CN-3"  H H ON CN- Q C N C N .3" H H H  H  H  C N - d ; NO  NO NO NO H  H  H  •3" C N U N NO NO NO H  H  H  NO^-CN-COONCOONCN-CN-OHCN CM CM CM CM C N C N C N ^ - U N NO NO NO H H H H H H H H H H H H  oN  CO .3- CM U N 0 - N O NO Q C O H C N - O N C M C M C M C M ^ J - ^ - C N ^ - " N N O UN UN H H H H H H H H H H H H  NO CN- O NO -3" NOi CO NO C N U N H N O CM CM CM CM C N C N C N C N U N U N U N U N H H H H  co I  NOCMCMCMNOUNNOCONOON^-O CM CM CM C M ^ - ^ T C N C N U N U N UN.NO H H H H H H H H H H H H  -d  M  ^3-CMCMCOUNCM^-ONUNCOUNCNCMCMCMH^JD-ONCNUNUNUNUN H H H H H H H H H H H H  O O O CN O N C M O N H O C N , C O < r N CMCNCMCNUNJH/^3-UN CM CM CM r-\r-]r-\r-\r-\r-\rHv-i  NO |  H ON O U N CM ON C N N O CM U N C N - 3 " CMHCMH-3-CNCNCNUNUNUNUN r-\r-\r-ir-\r-t<-\r-{v-trHrHHr-<  CO NO O H NO C N - U N O O U N .3- NO ON H H CM CMC M C M C M C M . 3 - - 3 - - 3 - . 3 H H H H H H H H H H H H  UN|  CO ^ - C N - U N U N N O C N O N H O N O - O H H H H C N C N C N C M U N ^ - ^ - U N H H H H H H H H H H H H  CO ON U N C O CNCNOO r-\ r-\ <-{ r-\ CM CM H r-\ r-i r-{ r-i  -4" CN-^3" CN-CM O CN-CN-UNCN-ON^3rH O H OCNCNCMCM-3--3-CN-3rA<-ir-ir-\r-{r-\<-\r-\r-ir-\r-{r-\  UNCO  ^•1  C M C M H ^ - C N - C N H O N - 3 - U N O H H O H O C M C M C M H CN CN CN CN  U N ON CO O O O  ON U N U N CO CO NO O O O O O H H H H  H ON CN CM O H CM CM CM CM H H H H H  CM NO -3* NO NO O N ^ - CN- UN-rr ON O O O O ON ON CO ON H H H H H H H O O O O H H H  H H CM -3" NO C N O - C N ON^3" CM C N O O O O O O ON O H H H H r-i <-\ r-\ r-i r-i O H H H H H  O ^3" CO NO O N C N - C M C S X C N - H CM O ON ON CO 0 0 O O C O C O C S X O N O O O O O O O O O O O . O H H H  O O O O U N U N UN UN O U N U N U N U N CM CM CM CM O U N U N UN UNNO O O O O O O O O O  O O NO O  CN| CM |  O  O PH  •3- -3- -3- J "  <t| < < <t| pq pqPP  II I  II  II  II  PHI  CO  PH  hi  O PH  C0|  S3  ON NO C N CN! CN! CN!  -3; * NO NO NO  ON ON ON  H  H  5  CN- CO _d* NO CN-OO U N C O O O C N - U N , O N CM CM CM CM CNCNCNCNUNUNiUNUN. H H H H H H H H H H H H  3  •O -p -d co O c3 | s 3 M O O CO PH r l PH  H  CN— CN! ON -3-d-  H  H  NO -3" -d"  NO .3- -d- -3-  H ON CN! C N C M H H H  NO  H  •3- -3"  ON NO NO NO U N CN-  H  CO  H H CN C N H H  H UN  ON CN! ^3-  CN  UN  CN CN H H  H  H  NO NO ^3" C N C N - C N - H N O O C M O N H CMCMCMCM^-^--3-^3-NONOUNNO H H H H H H H H H H H H  <H  -p"^  NO NO CN! CN! CN!  CO  H  NO  H  CN^3-  NO NO  NO -3"  O H  •H S  o c  CN! CN! CN! H H H  -3"  NO  CNCN H H  O  -d" NO  H  CN CN H H  H  •d"  H  C N - U ^ U - N U N C O N O C O Q U N C O 0 0 ON CMCMCMCMmCNCN-3-UNUNU-NUN  .3- -d o in. CM  CO CN-NO  H  CO  HI C 0 C 0 I T I R I C 0 \ 0 N 4 O H H 4 H| CN!CN!CN!CN!^3-^-^3-^3-NONONONO  - CN  CQ  H  ss H  UN H  rH  CN H  CNi CN!  H  NO  H  •3"  H  UN  •d" H  ON O-NO  rH  O  UN  H  CO  CN! CNi  OH  UN  NO  H  H OH  O  ON CN! CN! C N  CO CO  H  H  UN H  CN! C N H rH  si  CN CN H  H  CN!  H  o o  UN CN H  CN! O-  ON CN! CN! C N  CO H  CN! O-  CN UN rH  CN H  si  H  rH CN H  ON  CN CN H  O-  "N rH  CN rH  SI SI  H  CN-3" UN  NO  PH  O O NO O  o o o o  C N - 3 - UN NO C N ^ - i H H  H H  H H  H H  O O O O NO NO O O  H H  H H  U N NO H H  H H  NO U N U N C M ^ t ^ - C M C N C N O U N CM CM CM CM CNCNCNCNUNUNUNUN H H H H  s  UN O N O CM UN CM C N i ? -3" -d"  U N C O O C N U N C O C N ^ 3 - N O CNCM CM H H C N C N C N C N rHrHr-\rHr-\<-\r-\<-\ O - H -3" O N C M N O U N O N U N ' O N H CM CM H CM O <-\ r-\ <-\ O r-i~ r-[ <-] r-{ r-\  O O O o o o o o o o o O O O UNUNUNUNO O O O NO NO NO C N - C N - C N - O - O N O N O N O N O O O O O O O O O O O P H P H P H P H O O O O  CN-3" U N NO C N ^ - U N NO C N ^ " U N NO CN! CM CM CM C M C M C M C M C M C M C M C M r-\rHr-\rHr-\r-fr-]rH  79  CD Mi M H  -3  -3-  C OMrH  •3~ M D H  •3~  H  rH  OD M rH  CO  31  •3-  rH C O  M D rH  •3"  CM|  H  M D -3 SI  CO vo 33  CM|  CO CO -P  VO  CO > CO  <d co d H o o  MD  «  -p  II  CO  CO  CO VO H  0  M nJ in  nri  Ol  ^3 co  H  3H 3rH  H  rH  ONCO V O C M O O M D M D C O C M ^ - M D CO CM CM C O C O ^ J - vo vo V O M D MD V O M D Hr-\<-\rH^-\r-\r-{r-\r-\r-{r-lr-{  vo ONCOCO C HM C M C M  - 3 C O c O O O - 3 ; C O O 0 0 C O C M H CM CM C O C O V O V O V O V O V O M D MD MD r-\r-\r-\<-\r-\r-\r-\r-\r-ir-\r-\r-\  CO MD C O CM CM  CH  C O - 3 CO O N O - C M O O C N - O O O - O N CM C O C O CM vo vo vo vo V O M D vo H H H H H H H H H H H H  CO CN- CM CM CM  MDI  H M D C M V O C ^ O - C O M D ^ - H O C O CM CM C O CM - 3 -3" -3" VO V O M D vo H H H H H H H H H H H H  CO COI  •d O •rl rH -3-  <d  -3-  CM, II  S  pq e!  "SB  0 CO H II  C •H -P-— [Q  CO H II  VO)  3>3 H H  CO CO VOVO COVO VOVO  CO  O PH  N  CM O ON VOVOVO.3-  9  ONVOONONVOONO-VOO CM CM C O C O CM C O C O - 5  HH  H H 0 O vO-3" H CN-VOCM ONVOCO  OJ| HHHHHCMCMCMCMCM CO CO  O PH  CO|  H MD H MD vo ON^JH H H -3- -3- co3ON vo vo 00 J - C O ON CO CO CO H H H ^3 3; -3" co H HHH H H (00 H H  C O ON MD-3" CO CHO HC O HCM O \ o 4 - I N CO-3" CO CO  CO  CO-3  -3"  00 00 O CO VO CM - 3 CM CM C O CO CO CO CO  ^3-  HHH H H H H  CN-00 ON O O o  vovovovooooovovovovo N N N N O O O O N N N N  O O O O MD O O  CO CO CO CO CO CO CO CO CO CO CO CO  VOCOO O N 0 \ 0 C M ^ ^ - ^ J - ^ ^ " ^ ^  MD CO C O CO CO C O -  O CM O ON ON ON O O O  p.fM| C O - 3 " VOMD C O ^ t VOMD C O ^ t VOMD  V O O N C O O - O - O  "CM CN- C O CM CO 1—l VO ON C O C O C O - 3 -3" - 3 CO  9  O N C O H V O C M O ^ - C M H M D C M O N O N O N O O N O H H H H H C O C M O O H O H H H H H H H H  vo V O vo V O M D MD MD MD MD MD MD MD O O O O O O O O O O O O  -3  VO O CM CM CM H H  o-co  H  CO CO-3" V O V O - 3 -  ^3 c o ^ -  C O H  COO00 CM  O PH II  H  MD  CO -3" CO -3" N W 3 i 4 - 3  v^>A3  CM  CO|  PH  o o o u • o - p d co ^ o nJ £  PH ^  COVO VO V O  O  H H  CO H CM  -P  CO  MD - 3  O  C O - 3 C O O M D H ^3 O N H M D M D CO HcMCMCMCO^-^-CO^}-^-CO^-  o  O  C M ^  COCMCM^-^3-CO^-^-^-^-^3 H HHHHHHHHHH  •3-1  -P  •3  CO  •3;  - 5 -3"  CO-3"  CN  II  H  C ON !M >-MD rH H  VO rH  CO  CO  H  C^- VO CO MD -3" -3" MD {>- C O -3" CM ON CM C O C O C O S " vo vo V O M D MD MD vo r-{r-\r-ir-\^r-\r-\r^r-iHr-ir-f  to  CO  MrH D CMO D rH H C o VOOMD  VO CO  H  co  >  H  CO VO  MD  co  ON OS MHD MHD C ON OM-MD  vo HO  •rl  <d  H  H  MD  rH rH  C O C O CM  c ^  d  rH  CDM M-3c MrH D H VO MC DOMD  CM H CM O  o-3-  .3-  C CO O VO CO  rH  -3-  VO VO V VO O  MD  ON vo VO VO >?\ CM CO 3" H H O C M -3r O N M D CO H H O vo ON O -3c OMD MD Mi—D1 rH C CO co^- .3- V O VO V O 31 -3- -3- .3- V £>-M D H H H rH HM H rH rH rH H H 1—I 0 CO ON VO^O NMDCOMDON MD MD -3" -3" C M H VO vo^3 V O M D M D M D CM CO 3" ^3 H H H H r i H H H H H H H vo H H H O N H CM CO H CO CM vo O N M D -3" O MC CO-3- -3D*-MDCMMD V0.3- 3" 3 " .3- -3V O M D M D H H H H H H H H H I S N Q C O H n MCDM MCO CO, _3" M H C O vo CO O O 1A\D MD D MCDO CM CM DCO MD ^3 -3" - 3 vo^ SI co-3- -3H rH H H H H HHH HH H H H H CM V O H H V O C O V O O O N J S O C O O ^ } H ON C O -3" -3" MD O CM C O H -3" C^H C O C O - 3 " C O - 3 " V O M D V O M D MD MD MD C O CM CM C O ^ - ^3 -3- -3- vovo3- ^3" H H r-\ <-t r-i r-\ <-\ HI H .3- C O 0 0 V O J J - O V O 4 - -3c H ON O O CM CM -3" - 3 ON H CM O CM CO H C O C O ^ t C O ^ - V O M D V O M D MD MD vo  CO  EH  -3" - 3  HI  w  m  H|  H  <M  W  d fl o o  CO  31  co co 3 - -3"  vo CO vo CO  CNH  MD  H VO  V O M D CN— CO J 3 C ^ M D CM CM CM C\j CM H r-\ r-i r-\ C O H H CO V O M D O O O O O O H H H  ON H  ON O O VO V O V O V O O O O O O O !>- O O MD MD MD £>- CN- (N- C~O MD O O O O O O O O O <:<:<; pq PQ PQ PQ o u o u  MD  MD MD  co^j- vo 3 - .3- -3-  <  MD •3;  CO ^3" V O M D  .3- 3 " ^3"  vo vo vo VO  CO^3 VOMD - 3 -3- J" -3" H HHH  80  31  H CN rH  SI  H CN rH  SI SI  CM CN H  to <d C o o CO  tQ  CQ CD  "N  NO  CO CO  H K En  5  TH  CO  H fH O  o CD «  II NO  -d p cd  fH CD >  II  CM rH  CN OH  O CN  3  00  ON  -3-  OH  -3CN  NO  CNUN  CN CNrH  CM CN  UN -3H  CO U N  •3" -3" rH rH  NO NO  -3- -3" rH rH  NO O CM C N H H  -3- -3"  O - CO  £>- ON  NO NO  rH rH  -3- - 3  ss  H  O-VO  ss  O - M O oo CM CM CM rH rH rH  00  ON  H  UNCO  H  Hoi  O "I  H CO  UN  ON O NO O rH rH  H ON CN CM  ON O NO O rH H  CM O CNCN  3 •3" 3 -3"UN  CO O N NO NO H rH  CO CM CM CN H H  CM C N -3- -3" H H  CNNO UN UN  NO CO NO NOH H  O O CN CN  3^3^  CM UN UN UN  UN-3- U N  CN- O CNUN UN U N  UN UN  NO  H  -3"  CN UN UN  H  O CO NO CN- NO S O rH rH rH  O O CO CN CN CM H H H  •3- -3; -3"  NO  UN O -  ON NO V N NO NO NO H H H  H  CO N CN CM CM  -3- CM NO 3-^3-^3-  U N CM U N UN U N UN  co _3 co  ON NO U N CMCMCM H H H O 00 CN-  CM NO C N - 3 ^3" -3" H H H  C N 1—I C N UNUNUN  H  .3- -3- -3"  rH rH rH  ^3- -3- -3-  NO NO NO H H H  NO J " NO  O - O NO NO NO NO H H H  H  H  -3-3-^3H  H  H  U N U N U N ^ t U N CN- C<NNO C N H NO ' O CMCMCMCM-3-^-^-^-NONOUNNO rHrHrHrHrHrHrHrHrHrHrHrH  rH  _  °N  - CN  . NO  „! "-'I  It  a  -3- o  NO I  TH  CM • to II  00  NO U N NO NO  -3"  UN|  >H ^3-1  U N ON CO U N CM  C M C M C M C M ^ - ^ - ^ - ^ 3 - U N U N U N NO  H H H H H H H H H H H H H/vococN^iorNocN-cocOiNi CM CM CM CM ^ -3" ^ - 3 U N U N U N U N  UN-3" -3" ON CM CM CM CM H 3*" •3H H H H  'i! <d~  H H H  CN UN -3" -3- -3- ^  C N CM CM  O O N  3  CN  H O  O N U N MO C V Q  •3" -3" s s so s00 O CO CM H CM H  CN-3-  ON 1—I -3" NO UN UN UN  ^3-  rH  CO O  •Q+> >d 0  3 s  O  00 .3- CN- UN CN- ON NO H H H H CM CMCM H H H H H H rH  rH rH rH rH rH  O PH  ss  O O NO o  O O NO o  O O UN U N UN UN o O o o O O CN- CN- CN- CN- U N U N U N U N NO NO NO NO NO NO CN- CN- CN- CNO O O O O O o o  << <<  o  o  pq PQ o  o  H  H  H  H  H  H  H  H  H  H  > NO O NO CO O . • C N 3 ; -3" -3" U N  CNNO ON -3- -3- -3" H H H H H H H H H H H H ^3" CNO ONNO-3-NO UNNO CNJ- O CM CM CM H CN ON ON CN -3-. ^3" 3" UN  CO|  U N U N U N U N U N U N , U N UNCUN U N U N U N  CN-3-  U N NO  CN-3-  H H U N CN- 3 \ O C 0 0 N N N 3 0 N H H O CMCMCMCMCNNCNCNCN H H H H rH rH rH rH rH, H H H H ON CM C N U N NOONHOUNCMNO O N ON O O O N HHCNiCMCNjiCMCMCM O H H O H H H H H H H H H 0 3 H I N NONOHCNOCOCMUN ON ON ON CO O N O N O O e l O H H ON O  O  O  O  O  Or^rHrHrHrHrHrH  UN U N UN U N O O O O O O O O CM CM CM CMO O ' O O C N - C N - O - C N U N U N U N U NN O N O N O N O N O N O N O N O O O O O O O O O O O O O  U N NO  CN-3-  O  pq PQ  rH rH rH rH rHrHrHrH^rHrHrH  < < < <p q p q p q p q o o o o  PHI  PH  H  CN-3-  HHI  CO PH h-H"  H  C3 C3  O O CO PM r-H PM  U N NO  H  NO ON.3- - 3 CO H CM CM CM CM C N ^ 3  00 ^3" NO CO CNNO CNONCM H H N O H CM CM H C N C N C N C N - 3 1 ^ - ^ - ^ 3 H H H H r H H H H H ON CN- CM U N . 3 - U N ON 00 .3" H C N U N C N - O N H O N ^ CM C N - 3 " -3" 3" H H H H C N C N C N C N C T \ ^ 3 - CN-3-  ss  <  CMCMCN!CMCN^3-CNCN3-^-3-UN  NO U N CM U N C N N O ON C N C N C N O N C N . 3 - - H - . 3 - UN rHrHrHrHrHrHrHrH  O NO H ON H O C N O N . 3 - CN-NO C N H H H H H CM CM CM CM C N C N C N O £ H H CN rH . H 00 U N 00 U N C N U N U N NO C N C M NO ON II - P ^ CM I O O O O H H H H CM CM H H.H H H H H H H H CO -P CN H 3 •3- O CO U N CM NO .MTiCO H U N U N 0 PH II ON ON ON ON O O O O H H O O O O H H H H H H  -P 9. o o  H CN-CO NO U N NO--3- N H CO C N O - C N CMCMCMCMCN3CN^3-r3;UN^3-^ H H H H H H H H H H H H H U N NO 00 V O » A O C O O N 3 C 0 3 H  , C N CN UN UNS©. C N - C N - C M ^ 3 - . 3 - CN-CO CN-CM • .3- U N U N U N U N CM CM CM CM CN CN CN ONidJ  UN  P o 3 rH  -3-  H  U N NO U N  ss  H  O - 0 0 CN -3- -3" -3-  rl  NO NO NO CM CM CM n H H  UN  r _ |  U N rrj r) CQ CO  CM H  •3"  £1 CN- UN^- .3- CO NO CM CN £>-NO C N ^ i O O NO .3- H H NO H CM NO H £3 CMCMCMCM^3--3-^t-d-NONONONO ON ON CM CM - 3 -3" •3- "=i\ U N J 3 U N l H H H H H H H H H H H H H H H H H H -3" C N C N - 3 " O - . 3 - -3UN-3; ON ON! ON CM O C N ON » 1—I U N ON o ON 00, CM CM CM CM -3" 3" 3" NO NO UN NO CM C N C N CM C N . • -3- -3- -3-- UN^3- ^ 3 H H H H H H H 1—t 1—1 1 1 1—1 1—1 1—t i—I i—I H 1—I i—I H  co CD -P  UN  co  00 UN  H  CO  SI si si si si si  NO -3  •3"  ss 00 ss  S|  CN CN  O-  O- o  o|  CN OrH  s  O CN rH  CM|  o  UN rH  UNNO  CNJ- UNNO CNUN UN NO  NO NO NO NO NONpNONONpNONONO  APPENDIX B 'D' SCORES (CALCULATIONS)  81  82  'D' SCORES (CALCULATIONS) Q T> T D r -Li  Final H.R.  Pred. H.R.  A A A A B B B B c c c C  120 120 126 •• 126  122 118 127 122 125 129 134 135  -2 +2  01 01 01  3 4 5 6 3 4 5 6 3 4 5 6  138  03 03 03 03 03 03 03 03 03 03 03 03  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G c G c  120 118 123 125 132 131 137 136  05 05 05 05 05 05 05 05 05 05 05 05  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G C G c  118 124  01 01 01 01 01 01 01 01 oi  128 128  137 136 139 138 144 144  140 140  151 147  126 127 125 131 130 130 134 138 138 136  Scores  Final H.R.  Pred. H.R.  •D' Scores  •0 0 +2 +3 '0 +2 +3 +3 +3  3 A 4-A 5 A 6 A 3 B 4 B 5 B 6 B 3 G 4 C 5 G 6 c  119  119  125 125 131 133 139 140  123 122 131 131 136 137  0 +2 +1  02 02 02 02 02 02 02 02 02 02 02 02  144  151 154  145  148  141 140 149 144  -2 -1 0 +3 -2 0 +2 +3 -1 0 +2 +3  04 04 04 04 04 04 04 04 04 04 04 04  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G C G C  115 115 115 117 130 133 133 135  115 115 115 115 130 133 132 133 145  0 0 0 +2 0 0 +1 +2 -2 -1 -1 +2  121 127t 125 125 126 132 130 129 133 138 139 133  -3 -3 +1 +2 -1 -1 0 +1 +1 0 -1 +3  06 06 06 06 0.6 06 06 06 06 06 06 06  3 4 5 6 3 4 5 6 3 4 5 6  A A A A B B B B G C G C  124  125 127 127 136 134 138  123 125 126 126 135 133 137  +1 0 +1 +1  150  150  151 153  150 153  140  142 143  122 119 123 122 134 131 135 133  +4 +3 -1 +3 +1 -l  118  145  143  145 148  150  140  149  S-= S u b j e c t p = P r o t o c o l (3=3 m i n u t e s , 4=4 m i n u t e s , 5 5 minutes, 6=6 L = Load (A = 1 s t l o a d , B = 2nd l o a d , C = 3rd l o a d ) =  118  142  151  146 149 148  140  148  minutes)  -l  +3 +3  +1  +1 +1 0 0 +1 +1 0  c  83  'D'. SCORES (CALCULATIONS) • S- P L • "  F i n a l Pred. H.R. H.R.  07 07 07 07 07 07 07 07 07 07 07 07  3A 4 A 5 A 6A 3B 4 B  122 123  6 B 3G 4 c 5 G 6 c  140  09 09 09 09 09 09 09 09 09 09 09 09  3A 4A 5 A 6A 3 B 4 B  5 B  5 B  6 3 4 5 6  B  C C G c  11 3 A  111: 4,4 A  11 5 11 6 1113 11 4 11 5 11 6 11 3 11 4 11 5 11 6  A A B B  B B c  C C c  124 122 136 138 138 150 151 153 155  121 122  124 127 131 132 135 139  144 147 149 151  129  128 129 129  149 149 148 150 162 165 170 171  119 123 123  124 139 137 138  140 153 152 154 154  119 122 123 123 130 133 132 132  143 146 148 149 132 133 129 134 151 149  144 152  164  165 169 171  'D' Scores +3 0 +1 -2 -3 +1 0 0  -3  -1 -1 +1  +2  0 +1 +4 +1 -1 +3 +7 +1 +1 +1 +2 -3 -5 0 -5  -2 0 +4 -2 -2 0 +1 0  Final Pred. ' ' H.R.' ' ' H.R. S cores -1 -.1 0 0 -2 -2 -3 -1 _4 +2 +1  08 3 A 08 4 A 08 5 A 08 6 A 08' -3-B 08 4 B 08 5 B 08 6 B 08 3 C 08 4 C 08 5 C 08 6 C  127 127. 128 129 145 143 146  128 128 128  160 161 165 166  164 159 164 166  10 3 A 10 4 A 10 5 A  127 127  131 127 128 130 143  _^  164 161 164 162  -6 -2 -4 0  110 6 A 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12  3 B  4 B  5 B  6 B  3 C  4 C 5 G 6C 3 4 5 6 3 4 5 6  A A A A B B B B  3 C 4 C 5G 6C  1  146  128 129  141 143 144 146 158 159 160 162  126 129 132 133 139  145 146 149 157 166 164 165  129  147 145  149 147  145 146 144  129  128 131 132  141 142 144 147 160 168 166 165  " b  0 0 -1 -2 -2 -2 +2  -3  +1 +1 +1 -2 +3  +2 +2 -3  -2 -2 0  s = Subject p = Protocol .(3=3 minutes, 4=4 minutes, 5 = 5 minutes, 6=6 minutes)  L = Load (A = 1st load, B = 2nd load, C = 3rd load)  84 'D' SCORES (CALCULATIONS) S P L .  13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15  3 A  4 A 5 A  '  Final H.R.  Pred. H.R.  135  149  143 148 148 148  6--A 3 B 4 B 5 B 6 B 3 C 4 C 5 G 6 C  165 . I69 172 174  3 A  127  4 A 5 A 6 A 3 B 4 B 5 B 6 B 3 G 4 c 5 G 6 C  157 162 162  128  127 131  148 147 148  150 I67 170 169 173  S = Subject P = P r o t o c o l (3=3 L = Load (A = 1st  139  146  149  149  158 162 164 169 168 171 173 126 127 126 130 151  148 147 147  178 172 169 173  'D! Scores -14  +4 +2 -1 -1 -1 0 -2 -4 +1 +1 +1 +1 +1 +1 +1 -3 -l  +1 +3  -ill  -2 0 0  14 14 14 14 14 14  14  14 14 14 14 14  Final ' H.R.  Pred. H.R.  'D' S cores  131 129 129 135  128 128  +3  3 A  4 A 5 A  6 A 3 B 4 B 5 B 6 B 3 G 4 C 5 C 6 C  16 3 A 16 4 A 16 5 A  16 6 A 16 3 B 16 4 B 16 5 B 16 6 B 16 3 c 16 4 C 16 5 c 16 6 C  minutes, 4=4 minutes, 5 5 minutes, l o a d , B = 2nd l o a d , C = 3rd l o a d ) =  144 143 142 146  126 134 145  143 140 146  153 153 153 155  150 151 150 154  130 130 131 133  130 131 129 130 138  141  145 144 146  151 157 154 158  6=6  142 143 144 147  154 151 154  minutes)  +1  +3 . +1 -1  0 +2 0 +3  +2 +3 +1  0 -1 +2 +3 +3 +3  +1 +2 +4 +3  +3 +4  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077409/manifest

Comment

Related Items