UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effects of fatigue on vigilance in sailing Thomas, David William 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A7_5 T56.pdf [ 7.33MB ]
Metadata
JSON: 831-1.0077408.json
JSON-LD: 831-1.0077408-ld.json
RDF/XML (Pretty): 831-1.0077408-rdf.xml
RDF/JSON: 831-1.0077408-rdf.json
Turtle: 831-1.0077408-turtle.txt
N-Triples: 831-1.0077408-rdf-ntriples.txt
Original Record: 831-1.0077408-source.json
Full Text
831-1.0077408-fulltext.txt
Citation
831-1.0077408.ris

Full Text

THE EFFECTS OF FATIGUE ON VIGILANCE IN SAILING by DAVID WILLIAM THOMAS B S c . , York U n i v e r s i t y , 1976 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION i n THE FACULTY OF GRADUATE STUDIES School Of P h y s i c a l Educat ion And Recreat ion We accept t h i s t h e s i s as conforming to the r e g u i r e d s tandards THE UNIVERSITY OF A p r i l , @ David W i l l i a m BRITISH COLUMBIA 1980 Thomas, 1980 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by the Head o f my Department o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g or p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . r, 4. 4. x P h y s i c a l E d u c a t i o n Department o f J The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5 F e b r u a r y 1 3 , 1 9 8 0 ABSTRACT The E f f e c t s of Fa t igue on V i g i l a n c e i n S a i l i n g . Twelve male s u b j e c t s were t e s t e d to determine i f i n c r e a s i n g amounts o f p h y s i c a l f a t i g u e are r e l a t e d to the a t t e n t i o n paid t o s a i l t r i m dur ing s a i l i n g . A s a i l i n g s i m u l a t o r was used t o determine i f f a t i g u e , e i t h e r mental or p h y s i c a l , caused v i g i l a n c e ; t o vary wh i le the sub jec t was s i t t i n g on the s i d e deck, h i k i n g or h i k i n g with weight . Each sub jec t responded to fi5 w i n d s h i f t s by a d j u s t i n g the main sheet to p rov ide proper s a i l t r i m f o r th ree separate s e s s i o n s , each one being f i f t e e n minutes l o n g . T e l l t a l e d e f l e c t i o n was v ideotaped to p rov ide a v i g i l a n c e score wi th d e f l e c t i o n t ime s t a r t i n g when t h e . t e l l t a l e s l i f t e d and ending when adjustment of the s a i l s topped. F ive f i t n e s s t e s t s , number of s i t - u p s i n cne minute , percent body f a t , i s o m e t r i c s t r e n g t h i n the h i k i n g p o s i t i o n , i s o m e t r i c endurance . i n the h i k i n g p o s i t i o n and maximum oxygen uptake were a d m i n i s t e r e d on a separate day to determine i f f i t n e s s scores were r e l a t e d to v i g i l a n c e c a p a c i t y . I t was found t h a t n e i t h e r mental nor p h y s i c a l f a t i g u e caused a decrease i n v i g i l a n c e .over the f i f t e e n minute t e s t s e s s i o n . There was a l e a r n i n g e f f e c t a s s o c i a t e d wi th the apparatus as mean v i g i l a n c e score f o r each s u c c e s s i v e s a i l i n g s i m u l a t o r s e s s i o n decreased r e g a r d l e s s of the t reatment used . Only one o i the p h y s i c a l f i t n e s s t e s t s was r e l a t e d to v i g i l a n c e c a p a c i t y as maximum oxygen uptake va lues were i n v e r s e l y c o r r e l a t e d with mean v i g i l a n c e s c o r e s . , Sub jec ts wi th h igh ae rob ic c a p a c i t y were f a s t e r a t responding to w i n d s h i f t s , thus suppor t ing the use of a l a r g e a e r o b i c component i n dry l a n d f i t n e s s programs. i i i ACKNOWLEDGEMENT The author would l i k e to thank those who a s s i s t e d him i n complet ing t h i s t h e s i s . _ C o m m i t t e e : c h a i r m a n D r . „ G . . S i n c l a i r and committee members Dr. , K. ~ o u t t s . Dr. . E. _ Rhodes and Mr. . S . „ Tuppar prov ided v a l u a b l e a s s i s t a n c e and guidance. The author would a l s o l i k e . t o express a d d i t i o n a l thanks to h i s f a t h e r , Mr.., W. Thomas f o r des ign ing and s u p e r v i s i n g c o n s t r u c t i o n of t h e : wind generat ing apparatus . TABLE OF CONTENTS Page ABSTRACT . . . . . . . o » . . . . . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i i XJXST OF T A B L E S • • • • • • • • • • • • • « • • • • • • • • • • • • • • • • • , • ' • • • • • • • • • ^ v i LIST. OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? v i i Chapter 1. INTRODUCTION 1 STATEMENT OF THE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . 2 Subproblems . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 DEFINITION OF TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 DELIMITATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ASSUMPTIONS AND LIMITATIONS . . . . . . . . . . . . . . . . . . . . . 5 SIGNIFICANCE OF THE STUDY 5 HYPOTHESES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 6 2. REVIEW OF SELECTED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . 7 INFORMATION PROCESSING IN VIGILANCE . . . 9 THE EFFECTS OF AROUSAL ON VIGILANCE PERFORMANCE . . 10 PHYSICAL FATIGUE IN INFORMATION PROCESSING ...... ^  11 VIGILANCE IN SAILING ............................ 12 3 . .METHODS AND PROCEEDURES ............................. 14 SUBJECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 APPARATUS . . . . o o . . . . . „ . . . . . . . . . . . . . . . . . . . 14 S a i l i n g S imulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 P h y s i c a l F i t n e s s T e s t i n g Apparatus . . . . . . . . . . . . 18 PROCEEDURES , 19 S a i l i n g S imulator T e s t i n g . . . . . . . . . . . . . . . . . . . . . . . 19 S a i l i n g S imulator Data Recording . . . . . . . . . . . . . . . . 23 P h y s i c a l f i t n e s s T e s t i n g . . . . . . . . . . . . . . . . . . . . . 24 EXPERIMENTAL RATIONAL AND CONTROLS . , . . . , . . , . , > * . 26 EXPERIMENTAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 DATA ANALYSIS . . 28 Test Of Hypothesis 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Test Of Hypothesis 2 . . . . . . . . . . . . . . . . . . . . . . . . . 28 Test Of Hypothesis 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. .RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 RESULTS AND DISCUSSION OF THE PREPLANNED COMPARISONS OF THE'HYPOTHESES . . . . . . . . . . . . . . . . 30 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Hypothesis 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Hypothesis 2 . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . 31 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Hypothesis 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ANALYSIS FOR A LEARNING EFFECT . . . . . . . . . . . . . . . . . . 37 RELIABILITY ANALYSIS . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . 41 SUMMARY OF HYPOTHESES . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 43 5. SUMMARY AND CONCLUSIONS . . 45 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CONCLUSIONS « • o s • • • • • • • • • e • • • • • • • • o 46 SUGGESTIONS FOR FURTHER RESEARCH . . . . . . . . . . . . . . . . . . 47 BIBLIOGRAPHY , 49 APPENDIX ••••••••••• •••»•••••••••••••••• •••••••• .- 5 3 v i LIST OF TABLES TABLE PAGE 3 . 1 Order Of Treatments For Subjects . . . . . . . . . . . . . . . . . . . . 20 3 .2 Time I n t e r v a l , Windsh i f t D i r e c t i o n And P o s i t i o n Change Of The Wind Machine For Each T r i a l . . . . . . . . 22 4 . 1 P h y s i c a l F i t n e s s Test R e s u l t s For Experiment 1 29 4 .2 Two Way Repeated Measures A n a l y s i s Of Var iance Table For Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 .3 Analyses Of Var iance C a l c u l a t e d For S a i l i n g S imula to r V i g i l a n c e Scores . . . . . . . . . . . . . . . . . . . . . . . 33 4.4 R e s u l t s For Analyses Of Var iance Using B l o c k i n g For Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 . 5 Mean Scores For B l o c k s Used In Experimsnt: 1 . . . . . . . . . 33 4 .6 S i g n i f i c a n c e L e v e l s Of I n t e r a c t i o n s For Analyses Of Var iance Using Var ious B l o c k i n g Designs . . . . . . . . 36 4 .7 Subject Means And Standard D e v i a t i o n s For S i t t i n g , H ik ing And H i k i n g S i t h Weight . . . . . . <. . . . . 36 4 . 8 Two Way Repeated Measures A n a l y s i s Of Var iance Table For Learn ing E f f e c t . . . . . . . . . . . . . . . . . . 40 4 .9 S i g n i f i c a n c e L e v e l s Of I n t e r a c t i o n s For Analyses Of Var iance Using B l o c k i n g In The Learn ing E f f e c t A n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A. 3 Raw Data For Experiment T . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A.4 Means And Standard D e v i a t i o n s For Experiment 1 . . . . . . 70 A.5 C o r r e l a t i o n M a t r i x For Experiment 2 . . . . . . . . . . . . . . . . . 73 A.6 Raw Data For The R e l i a b i l i t y A n a l y s i s . . . . . . . . . . . . . . 74 v i i LIST OF PI3URES FIGURE P AGE 4 . 1 Graph Of Mean D e f l e c t i o n - T i m e And T r i a l s . . . . . . . . . , 32 4 .2 Mean Scores For S i t t i n g , H i k i n g And H i k i n g With Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 . 3 Mean Scores By Order Of Sess ion For T r i a l s . . . . . . . . . . 39 A. I S a i l i n g S imulator T e s t i n g Apparatus . . . . . . . . . . . . . . . . 54 A.2 P h y s i c a l F i t n e s s Tes t ing Apparatus . . . . . . . . . . . . . . . . . . 63 CHAPTER 1 INTRODUCTION V i g i l a n c e and a t t e n t i o n are c r i t i c a l components of performance f o r s p o r t s r e q u i r i n g f i n e motor c o - o r d i n a t i o n and t r a c k i n g s k i l l s . When a c t i v i t i e s which r e q u i r e high l e v e l s of c o n c e n t r a t i o n are undertaken f o r extended p e r i o d s of t i m e , a v a r i e t y of f a c t o r s can a f f e c t performance. Consequent ly , the g reater the c a p a c i t y of the compet i to r to i n t e g r a t e a l l of the r e q u i r e d aspec ts of the spor t whi le s t i l l m a i n t a i n i n g a h igh degree of v i g i l a n c e , the longer he w i l l be ab le to perform e f f e c t i v e l y and e f f i c i e n t l y . Sports l i k e t h i s are 'open ' s k i l l s and performance i n them can be d i r e c t l y a t t r i b u t e d to a d a p t a b i l i t y and, i n c e r t a i n i n s t a n c e s , c o n c e n t r a t i o n l e v e l . S a i l i n g i s a spor t whish r e q u i r e s v i g i l a n c e f o r s u c c e s s . An i n d i v i d u a l competing i n a s a i l i n g race w i l l determine the course which he must f o l l o w i n h i s attempts to f i n i s h f i r s t . Al though the permutat ions and combinat ions are - i n f i n i t e , the best path to s u s t a i n maximum boat speed w i l l be determined by the course other compet i to rs s a i l , the cur rent wind d i r e c t i o n an l any subsequent changes t h a t may occur i u r i n g the r a c e . A good s a i l o r w i l l concent ra te on s a i l t r im and respond q u i c k l y and a p p r o p r i a t e l y to wind s n i f t s i n o r i e r to o b t a i n the g r e a t e s t s u s t a i n e d boat speed. A major f a c t o r a f f e c t i n g v i g i l a n c e and u l t i m a t e l y performance, i s p h y s i c a l f a t i g u e . The type of f a t i g u e r e g u l a r l y a s s o c i a t e ! w i th v i g i l a n c e i s tha t which a f f e c t s the c e n t r a l process ing mechanism r e l a t i n g to the a b i l i t y f o r cont inuous 2 a t t e n t i o n . V i g i l a n c e d i m i n i s h e s wi th t ime r e g a r d l e s s of the p h y s i c a l s t a t e of an i n d i v i d u a l . Senera l f a t i g u e which i s not s p e c i f i c to the muscle groups used i n performance of the r e q u i r e d task may, c o n t r i b u t e to a decrease i n v i g i l a n c e . B o d i l y f a t i g u e i s a performance v a r i a b l e and i t s e f f e c t on v i g i l a n c e should be r e f l e c t e d by a performance decrement. Compet i t i ve s a i l i n g r e q u i r e s a v a r i e t y of p h y s i c a l s k i l l s and a b i l i t i e s i n c l u d i n g endurance and s t r e n g t h , as moderate and heavy wind c o n d i t i o n s r e q u i r e high p h y s i c a l work c a p a c i t y and the a b i l i t y to s u s t a i n nigh l e v e l s of e x e r t i o n . Mainta inance of optimum boat speed remains important and p h y s i c a l f a t i g u e c o n t r i b u t i n g to decreased c o n c e n t r a t i o n on s a i l t r i m w i l l r e s u l t i n a decrease i n coat speed. Concent ra t ion on s a i l t r i m cou ld a f f e c t a c o m p e t i t i v e s a i l o r ' s chances of w inn ing . B o d i l y f a t i g u e dur ing a race would d e t r a c t from performance through i t s e f f e c t on v i g i l a n c e . STATEMENT OF THE PROBLEM The purpose of t h i s i n v e s t i g a t i o n was to determine i f i n c r e a s i n g l e v e l s of p h y s i c a l f a t i g u e are r e l a t e d to d e c r e a s i n g l e v e l s of a t t e n t i o n on s a i l t r i m dur ing s a i l i n g . The i n v e s t i g a t i o n was designed to determine how v i g i l a n c e performance i s a f f e c t e d dur ing the course of a s a i l i n g compet i t io n. Subproblems The sucproblems a r e : 3 1. To determine waat e f f e c t f a t i g u e w i l l nave on v i g i l a n c e dur ing a s i m u l a t e d s a i l i n g task:. 2. T D determine how performance on a s imula ted s a i l i n g t a s k i s r e l a t e d to va ry ing l e v e l s of persona l f i t n e s s . DEFINITION OF TERMS V i g i l a n c e . The c o n c e n t r a t i o n r e q u i r e d i n the exper iment i s a v i g i l a n c e c a p a c i t y known as s e l e c t i v e a t t e n t i o n . I t i s the a b i l i t y to perform a task i n the presence of d i s t r a c t i n g s t i m u l a t i o n without s i g n i f i c a n t l o s s i n e f f i c i e n c y . This i s i d e n t i c a l t o the c o n c e n t r a t i o n r e q u i r e d i n c o m p e t i t i v e s a i l i n g . F a t i g u e . i The f a t i g u e r e f e r r e d to i n t h i s experiment i s p h y s i c a l f a t i g u e . Although there i s a 'menta l f a t i g u e * connected with v i g i l a n c e t a s k s , the f a t i g u e e f f e c t i s independent of t h a t process . M i k i S S i . The p o s i t i o n used f o r the experiment was t h a t assumed by a cent reboard s a i l o r dur ing s t rong winds. Both the h i p and ankle were f i x e d at approx imately n ine ty degrees and the angle at the knee was between zero and n i n e t y degrees depending on the he ight of the sub ject and persona l p r e f e r e n c e . The s p i n a l column was s t r a i g h t aiid the head f i x e d i n the normal p o s i t i o n . The muscles used to mainta in t h i s p o s i t i o n i n c l u d e , the a n t e r i o r l e g muscles f o r the a n k l e , the quadr iceps f o r the knee, the psoas and abdominal groups f o r the h ip and the s t e r n o c l e i d o -mastoid f o r the head ( S o r i a , 1970). In order to mainta in the h i k i n g p o s i t i o n the i n s t e p of each foot was hooked under a s t r a p ii i n the centre of the boat and the sub jec t sat out over the s i d e . The t o r s o was o u t s i d e the gunwale of the boat at a l l t imes dur ing the exper iment . Minor p o s i t i o n adjustments were a l lowed as some movement occurs dur ing a r a c e . W i n d s h i f t . Although n a t u r a l w i n d s h i f t s vary g r e a t l y i n v e l o c i t y and magnitude, a s tandard i zed set of mechan ica l l y produced w i n d s h i f t s were used fo r t h i s s tudy . Each s h i f t was ten degrees i n magnitude with the d i r e c t i o n of the w i n d s h i f t determined randomly. Each w i n d s h i f t was of s u f f i c i e n t magnitude tha t i t cou ld be e a s i l y d e t e c t e d . fieflection Time.. D e f l e c t i o n t ime was the t ime r e q u i r e d f o r the s u b j e c t to r e t u r n the s a i l to proper t r i m . For a w i n d s h i f t where the wind moved a f t , d e f l e c t i o n time s t a r t e d as soon as the leeward t e l l t a l e s t a r t e d t o f l u t t e r and stopped when the s u b j e c t f i n i s h e d l e t t i n g out the s a i l . For a w i n d s h i f t where the wind moved fo rward , d e f l e c t i o n time commenced when the s a i l s t a r t e d to l u f f o r f l a p j u s t a f t of the mast and ended when the s u b j e c t f i n i s h e d p u l l i n g i n the s a i l . T e l l t a l e s . The t e l l t a l e s were p i e c e s of b lack wool s i x inches i n length p laced on the s a i l wi th s m a l l s e c t i o n s of number m a t e r i a l . One was placed on e i t h e r s i d e of the s a i l e i g h t inches from the mast and three f e e t from the t a c k . P h y s i c a l F i t n e s s Components. The p h y s i c a l f i t n e s s components were f i v e f i t n e s s t e s t s admin is te red to the s u b j e c t s p r i o r to the t e s t i n g . The t e s t s used measured: the number of s i t - u p s i n one minute, percent body f a t , muscular s t rength i n 5 the h i k i n g p o s i t i o n , muscular endurance i n the h i k i n g p o s i t i o n and aerob ic c a p a c i t y . DELIMITATIONS S a i l i n g i s an 'open ' task wnereas t h i s i n v e s t i g a t i o n was conducted i n a s imula ted environment which produced a ' c l o s e d ' t a s k . The r e s u l t s obta ined were taken from dinghy s a i l o r s and should g e n e r a l i z e to compet i to rs of s i m i l a r c a l i b r e . The s u b j e c t s were only t e s t e d i n the ' r e a c h i n g ' p o r t i o n of the r a c e . This i s one of many s i t u a t i o n s that might a r i s e i n c o m p e t i t i o n . However, s a i l t r i m i s important i n a l l p a r t s of a race and v i g i l a n c e performance i n one p o r t i o n of a race should g e n e r a l i z e to a l l p a r t s of c o m p e t i t i v e s a i l i n g . ASSUMPTIONS AND LIMITATIONS Because i t was i m p o s s i b l e to e f f e c t i v e l y c o n t r o l wind d i r e c t i o n and v e l o c i t y , t e s t i n g was conducted on a s i m u l a t e d model i n d o o r s . Although every e f f o r t was made to <?nsure tha t the r e s u l t s were r e p r e s e n t a t i v e of the a c t u a l t a s k , the boat was s t a t i o n a r y and not sub jec t to the forward or sideways motion assoc ia ted with s a i l i n g . Only the bottom t h i r d of the s a i l f i l l e d w i th wind p r o p e r l y and a l though none of the s u b j e c t s exper ienced d i f f i c u l t y i n s a i l i n g the s i m u l a t o r , the s a i l ' s appearance was not i d e n t i c a l to that found i n the r a c i n g s i t u a t i o n . The major l i m i t a t i o n was the degree of r e l i a b i l i t y of the exper imenter . As an observer of the v ideotapes c o n t a i n i n g the responses presented by the s u b j e c t s , h i s r e a c t i o n t ime and 6 c o n c e n t r a t i o n cou ld have u n i n t e n t i o n a l l y b iased r e s u l t s . The a c u i t y of the v i d e o - t a p e machine may a l s o have a f f e c t e d the r e s u l t s . However, only one experimenter analysed v ideotapes and i t i s assumed t h a t e r r o r on the par t of the exper imenter was constant e r r o r . SIGNIFICANCE OF THE STUDY The study prov ided i n s i g h t i n t o the e f f e c t s of f a t i g u e f o r v i g i l a n c e t a s k s of t h i s na tu re . P r i o r to t h i s exper iment , very l i t t l e research had been conducted r e l a t e d to s a i l i n g and none had dea l t w i t h s a i l i n g and v i g i l a n c e . S u b s t a n t i a t i o n of the hypotheses would i n d i c a t e what performance decrements might be expected i n c o m p e t i t i o n . The importance of p a r t i c u l a r elements of t r a i n i n g programs would ce s u b s t a n t i a t e d by the r e s u l t s of the v i g i l a n c e performance t e s t s . HYPOTHESES The hypotheses a r e : 1. V i g i l a n c e decreases w i l l occur du r ing f i f t e e n minutes of s imu la ted s a i l i n g r e g a r d l e s s of the l e v e l of e x e r t i o n . 2. P h y s i c a l f a t i g u e w i l l f u r t h e r decrease e f f i c i e n c y du r ing f i f t e e n minutes of the v i g i l a n c e t a s k . 3. Each of the f i v e p h y s i c a l f i t n e s s components i s d i r e c t l y c o r r e l a t e d wi th v i g i l a n c e performance. 7 Chapter 2 REVIEW OF SELECTED LITERATURE From the ou tse t of research attempts i n t o i n f o r m a t i o n p r o c e s s i n g , one important part of human response c a p a b i l i t i e s which has been examined i s v i g i l a n c e . V i g i l a n c e can be d e s c r i b e d as a h igh s t a t e of read iness to perform adapt ive and purpos ive ac ts (Deese, 1955). A d e f i n i t i o n as broad as the one prov ided by Deese i s of importance i n that i t enables one to determine which i n f o r m a t i o n p r o c e s s i n g tasks have v i g i l a n c e components. S t r o l l (1971) c l a s s i f i e d v i g i l a n c e tasks accord ing t o the r a t e of s t i m u l i p r e s e n t a t i o n . He cons idered r a t e s below 60 per hour to be r e c o g n i t i o n t a s k s wh i le r a t e s above 60 per hour r e q u i r e d cont inuous d i s c r i m i n a t i o n . Both v i g i l a n c e c a p a c i t i e s are dependent on the a b i l i t y to maintain a t t e n t i o n . V i g i l a n c e decreases with time on task (Mackworth, 1964) . Decay i n a t t e n t i o n occurs r a p i d l y , o f ten w i t h i n the f i r s t th ree minutes and Haider and Dixon (1961) found v i g i l a n c e decreased between the second and tenth minute on t h e i r t e s t s . Fur ther v i g i l a n c e decreases are expected a f t e r the tenth minute with the ra te of decrease depending on the task and a v a r i e t y of exper imenta l f a c t o r s (Buck, 1966; F a u l k n e r , 1962; Adams, Humes and Stenson, 1962; Mackworth,1964) . There are a number of f a c t o r s which may a f f e c t v i g i l a n c e performance as they a f f e c t the s u b j e c t ' s response c h a r a c t e r i s t i c s by p r o v i d i n g v a r i a b i l i t y i n the s t i m u l a t i o n . Consequent ly , the schedule used f o r s t i m u l u s p r e s e n t a t i o n can have a l a r g e e f f e c t as v i g i l a n c e i n c r e a s e s when the number of 8 s t i m u l i per hour i n c r e a s e s {Hol land, 1958, Mackworth, 1964,1970) , the i n t e r v a l between s t i m u l i a l s o a f f e c t s v i g i l a n c e as i n c r e a s e d p r e d i c t a b i l i t y enables a subject to spend more t ime r e s t i n g , thus i n c r e a s i n g v i g i l a n c e c a p a c i t y (Baker, 1959) . However, p r e d i c t a b i l i t y i s u s u a l l y low i n a t rue v i g i l a n c e task and response time may a c t u a l l y i nc rease i f d i s t r a c t i o n s are presented to a sub jec t at tempt ing to at tend or i f expectancy c r e a t e s a f a l s e impress ion of the s t i m u l u s p r e s e n t a t i o n schedule (Mackworth, 1979). M o t i v a t i o n may i n c r e a s e v i g i l a n c e as F r a s e r (1953) found that having the exper imenter present i n the room decreased response t i m e . I t appears that many forms of feedback w i l l be important as knowledge of r e s u l t s a l s o i n c r e a s e s v i g i l a n c e performance (Mackworth, 1970). Knowledge of r e s u l t s i n p r a c t i c e t r i a l s out not dur ing t e s t i n g i s a l s o b e n e f i c i a l as i t improves v i g i l a n c e scores (adams, and Humes, 1963). I t seems apparent t h a t a l e a r n i n g e f f e c t i s p o s s i b l e i n v i g i l a n c e tasks as the s u b j e c t ' s sco res are improved by inc reased f a m i l i a r i t y wi th the a c t i v i t y . A l though v i g i l a n c e decrements have been found w i t h i n t e s t i n g s e s s i o n s there i s no d i f f e r e n c e i n v i g i l a n c e between s e s s i o n s (Adams, Humes and Stenson, 1962). Rest a l l o w s the c a p a c i t y f o r cont inuous a t t e n t i o n to recover (Mackworth, 1964) so the longer the r e s t p e r i o d , the g reate r the r e s t o r a t i o n of v i g i l a n c e c a p a c i t y (McCormack,1958). Rest can take a number of forms as i t may be a break between s e s s i o n s , r e s t pe r iods w i t h i n sess ions or per iods i n a t e s t s e s s i o n where a t t e n t i o n i s not requ i red because of the p r e d i c t a b i l i t y of the t e s t i n g schedu le . 9 INFORMATION PROCESSING! IN VIGILANCE Responding to a s t i m u l u s dur ing a v i g i l a n c e task i s a form of i n f o r m a t i o n p r o c e s s i n g . Stroh (1971) c a t e g o r i z e d s t i m u l i t h a t are attended t o a s ; l a r g e , n o v e l , i n v o l v i n g movement, f u l f i l l a need, i n t e r e s t the i n d i v i d u a l and conforming to expectancy . Although the s t i m u l i provided i n a v i g i l a n c e task may not have a l l of the above c h a r a c t e r i s t i c s they embody at l e a s t one of them. T y p i c a l l y , an i n d i v i d u a l w i l l respond when a d i s c e r n a b l e change occurs i n whatever i s being monitored. The a c t u a l p rocess ing of s t i m u l i and the p roduct ion of a response depends on the r e c e i v i n g and process ing of i n f o r m a t i o n and the product ion of a response. J e r i s o n (1967) s ta ted tha t a v i g i l a n c e task has th ree phases: the observ ing response phase, the sensory a c t i v i t y phase and the d e t e c t i o n i n d i c a t i n g phase. In a t y p i c a l v i g i l a n c e task a s t i m u l i i s r e c e i v e d , processed and acted upon (Treisman, 1969). Detec t ion i n a v i g i l a n c e task i s dependent on the i n f o r m a t i o n p resented . Many f a c t o r s can i n f l u e n c e d e t e c t i o n i n cont inuous a t t e n t i o n i n c l u d i n g the i n t e n s i t y , mode and complex i ty of the s t i m u l i . Broadbent and Gregory (1963) found that the i n t e n s i t y of the s t i m u l i i s impor tant as u n c e r t a i n t y may occur with low i n t e n s i t y s t i m u l i . Smal l i n c r e a s e s or decreases may change response r a t e d r a s t i c a l l y , e s p e c i a l l y i f the i n t e n s i t y l e v e l s be ing used are near the t h r e s h o l d l e v e l (Broadbent and Gregory , 1963). The mode of s t i m u l a t i o n may a f f e c t v i g i l a n c e performance as c e r t a i n forms of i n f o r m a t i o n may be more f a m i l i a r and the cor responding response generated f a s t e r (Deutsch and Deutsch, 1967). I f two s t i m u l i are mixed, v i g i l a n c e 10 scores may i n c r e a s e as the requirement f o r f i l t e r i n g f o r c e s the i n d i v i d u a l t o process more i n f o r m a t i o n (Mackworth, 1970). In cases such as t h i s , the inc reased complex i t y of the t a s k r e q u i r e s tha t the i n d i v i d u a l d i s c r i m i n a t e more i n the d e c i s i o n making process . Someone search ing f o r a c e r t a i n s t i m u l u s w i l l respond f a s t e r when i t i s easy to recogn ize the a p p r o p r i a t e s t i m u l u s r a t h e r than having to d i s t i n g u i s h between two or more very s i m i l a r ones ( S h r i i f i n and Schne ider , 1977) . F i l t e r i n g o f ten occurs whsn one i s a t t e n d i n g . Treisman and E i l e y (1967) found tha t the c h i e f e f f e c t of a t t e n t i o n i n t a s k s us ing competing v e r b a l messages was to l i m i t p e r c e p t i o n of the secondary message r a t h e r than to r e s t r i c t responses or memory. A t t e n t i o n has no e f f e c t on pe rcept ion and i t w i l l not i n t e r f e r e with s h o r t - t e r m memory provided a t t e n t i o n i s concent ra ted on one source of s t i m u l i . The a b i L i t y to r e c e i v e and process i n f o r m a t i o n i n a v i g i l a n c e task i s unaf fec ted when s t i m u l a t i o n l e v e l remains c o n s t a n t . Should a d d i t i o n a l s t i m u l a t i o n which i s of great enough importance that i t r e q u i r e s a response be prov ided then v i g i l a n c e scores w i l l decrease because of the i n c r e a s e d i n f o r m a t i o n process ing r e q u i r e d . THE EFFECTS OF AROUSAL ON VIGILANCE PERFORMANCE There has been very l i t t l e research examining a r o u s a l l e v e l i n v i g i l a n c e performance. St roh (1971) found t h a t e l e c t r -encephaiogram (EEG) a c t i v i t y l e v e l s i n c r e a s e d dur ing the l a s t ten minutes of a one-hour t e s t i n g s e s s i o n . In f requent s t i m u l a t i o n a l s o i n c r e a s e s a r o u s a l l e v e l s as e lectro -myogram (EM3) read ings inc reased i n s u b j e c t s r e c e i v i n g fewer s t i m u l i 11 ( S t e r n , 1 9 6 6 ) . V i g i l a n c e performance a l s o d i m i n i s h e s with l e s s f requent s t i m u l a t i o n . However, a r o u s a l l e v e l i s not cons idered a c a u s a t i v e f a c t o r i n t h i s r e l a t i o n s h i p . M o t i v a t i o n i s a very important f a c t o r as i t has a l a r g e e f f e c t on a r o u s a l l e v e l f o r many t a s k s . PHYSICAL FATIGUE IN INFORMATION PROCESSING Schmidt (1969) c l a s s i f i e d p h y s i c a l f a t i g u e as a performance v a r i a b l e r a t h e r than a l e a r n i n g v a r i a b l e . Th is view has been supported by o t h e r s i n c l u d i n g Alderman (1965) who found t h a t al though an i n d i v i d u a l may not perform the g iven task as e f f e c t i v e l y i n a f a t i g u e d c o n d i t i o n , l e a r n i n g w i l l s t i l l occur provided there i s not complete decay of the a p p r o p r i a t e technique . Performance may decrease i f massed p r a c t i c e causes f a t i g u e which i s s p e c i f i c to the task performed. Using d i f f e r e n t forms of e x e r c i s e , P h i l l i p s (1963), found tha t a l though l e a r n i n g p rogressed , arm f a t i g u e would decrease arm performance wh i le lower body f a t i g u e would n o t . Both speed and accuracy decrease as l o c a l f a t i g u e a f f e c t s performance (Alderman, 1965). Re la ted to t h i s , Meyers (1969) found that r e a c t i o n time i s u n a f f e c t e d wh i le movement t ime i n c r e a s e s w i th l o c a l i z e d p h y s i c a l f a t i g u e . For proper l e a r n i n g t o occur , f a t i g u e must be accommodated. P r a c t i c e w i l l i n c r e a s e performance l e v e l s when the i n d i v i d u a l can manage to p r a c t i c e the s k i l l even under f a t i g u e c o n d i t i o n s (Marischuk and Kusnetsov , 1973). Re la ted to t h i s , moderate and r e l a t e d warm-up d i d not a f f e c t performance as any f a t i g u e created was accommodated ( P h i l l i p s , 1963). P h i l l i p s a l s o found that heavy n o n - r e l a t e d warm-up d id improve performance a l though 1 2 no e x p l a n a t i o n was p r o v i d e d . The h i k i n g p o s i t i o n assumed dur ing a s a i l i n g race i s a s t a t i c one dependent upon i s o m e t r i c s t r e n g t h . I s o u e t r i c c o n t r a c t i o n s have c e r t a i n f a t i g u e c h a r a t e r i s t i c s most of which r e l a t e to the blood f low i n the muscle c o n t r a c t e d . When a muscle i s c o n t r a c t e d t o an amount exceeding '\5% of maximum v o l u n t a r y c o n t r a c t i o n (MVC) b lood f low i s o f ten not enough to accommodate cont inued work ( M u l l e r , l y 3 2 ) . Tensions below 15% of MZ do not produce f a t i g u e (Bohmert, 1961). Blood f low through c o n t r a c t i n g muscle t i s s u e i s occ luded to vary ing degrees f o r t e n s i o n s between 30 and 70% of MVC (Humphreys and L i n d , 1963). The f a t i g u e c rea ted i s d i r e c t l y r e l a t e d to b lood o c c l u s i o n as f a t i g u e occurs more r a p i d l y with inc reased percentage of MVC (Lind and M c N i c o l , 1967). although there i s some v a r i a t i o n between muscle groups , f a t i g u e occurs i n the same b a s i c f a s h i o n f o r a l l i s o m e t r i c c o n t r a c t i o n s . One important v a r i a b l e i n i s o m e t r i c work i s m o t i v a t i o n l e v e l . Ischemia leads t o anaerob ic work and l a c t a t e b u i l d - u p and an a t h l e t e must be h i g h l y mot ivated to endure the pain a s s o c i a t e d wi th optimum performance ( C l a r k e , H e l l o n and L i n d , 1958). VIGILANCE IN SAILING A c o m p e t i t i v e dinghy racer s a i l i n g at an advanced l e v e l of c o m p e t i t i o n r e q u i r e s a n igh l e v e l of p h y s i c a l f i t n e s s as an average race at a major r e g a t t a w i l l r e q u i r e three to f o u r hours of heavy e x e r t i o n and an i n d i v i d u a l with high endurance c a p a c i t y w i l l be more ab le t o produce the work r e q u i r e d . The h i k i n g p o s i t i o n i s p h y s i c a l l y t a x i n g and i t r e q u i r e s high muscular 1 3 endurance t o mainta in i t f o r long per iods of t ime (Putnam, 1979) . Ischemia can occur i n the abdominal muscles and quadr iceps w i th cont inued h i k i n g . Performance i s a f f e c t e d as recovery s e s s i o n s may be requ i red dur ing a r a c e . Decreases i n a g i l i t y and i n c r e a s e s i n movement t ime would a l s o be products of p h y s i c a l f a t i g u e , h t i r e d s a i l o r makes mistakes and the e f f e c t s can be seen i n performance ( S t r e e t , 1975). I t i s ev ident t h a t f a t i g u e p l a y s a l a r g e part i n compet i t i ve s a i l i n g e s p e c i a l l y i n heavy winds. Much of the e f f e c t i s mani fested i n the work c a p a c i t y of the i n d i v i d u a l and the r e s u l t s t h a t f a t i g u e have on h i k i n g a b i l i t y a l though the a b i l i t y to process i n f o r m a t i o n may be h indered as w e l l . 14 Chapter 3 METHODS AND PROCEDURES Subjects The s u b j e c t s (12) were c lub s a i l o r s from the g reater Vancouver a r e a . A l l s u b j e c t s were a c t i v e , cent reboard boat s a i l o r s who raced at the c l u b l e v e l i n high performance, one design r a c i n g d ingys dur ing the year p r i o r to the t e s t i n g . Some of the s u b j e c t s have been n a t i o n a l champion i n t h e i r r e s p e c t i v e c l a s s and a l l s u b j e c t s had s a i l e d i n a n a t i o n a l championship . Only males between the age of 18 and 38 were t e s t e d . Tes t ing was conducted p r i o r to the compet i t i ve season a l though some of the sub jec ts had been a c t i v e dur ing the o f f s e a s o n . Obese i n d i v i d u a l s or those t r a i n i n g f o r other s p o r t s were exc luded . Apparatus The apparatus u t i l i z e d had two s e c t i o n s : a s a i l i n g s i m u l a t o r and p h y s i c a l t e s t i n g apparatus . S a i l i ng Simulator , . The equipment used was of the e x p e r i m e n t e r ' s own c o n s t r u c t i o n . Appendix 1 c o n t a i n s photographs g i v i n g f r o n t , r e a r and s ide views of the apparatus . The s i m u l a t o r had s i x components: a s a i l boat , a wind genera t ing machine, a t r a c k fo r the wind machine, a v i s i o n o c c l u d i n g b a r r i c a d e , a d i g i t a l c l o c k and a v i d e o - t a p e system. The boat employed was of the l a s e r c l a s s , i . e . , a 14 f o o t s i n g l e - h a n d e d boat with c e n t r e b o a r d . Lasers nave a cat r i g and there i s no 15 s tand ing r i g g i n g f o r the s i n g l e s a i l . The boat was secured i n a frame so that i t sa t upr ight and d id not move when the s u b j e c t h i k e d . Appendix 1 c o n t a i n s a diagram of the f rame. The frame supported the boat on both gunwales at the f r o n t and back of the c o c k p i t . There was a l so a p o s i t i o n i n g p iece coming up i n the cent reboard case . The frame he ld the boat two i n c h e s o f f the ground and l e a n i n g f i v e degress to p o r t . Th is f i v e degree angle of h e e l was used as i t i s w i th in the two to e i g h t normal l y exper ienced when s a i l i n g a l a s e r and i t a l s o f a c i l i t a t e d s e t t i n g of the s a i l , The boat was secured and i t d id not move when the s u b j e c t assumed the h i k i n g p o s i t i o n . The s a i l was f lown i n the normal f a s h i o n . The t e l l t a l e s were a f f i x e d to the s a i l three f e e t from the tack of the s a i l and e ight i n c h e s back from the mast. Appendix 1 c o n t a i n s a diagram showing t e l l t a l e p o s i t i o n i n g . The p o s i t i o n of the s a i l was c o n t r o l l e d by the sub jec t using the normal mainsheet (rope) c o n f i g u r a t i o n found on the l a s e r . A ' s t o c k ' mainsheet was used and one of the purchases was removed from the system to decrease f r i c t i o n . Use of one to one on the mainsheet r a t h e r than the normal two to one meant t h a t l e s s rope needed to be used whenever the s a i l p o s i t i o n was a d j u s t e d . E l a s t i c i z e d rope , which was used t o p u l l out the end of the boom, was t i e d to an eye p laced i n the f l o o r making i t e a s i e r to l e t out the s a i l . The t i l l e r ex tens ion ( s t e e r i n g apparatus) was held i n the l e f t hand and the mainsheet was held i n the r i g h t hand. The sub jects sat f a c i n g the port s ide of the boat and s a i l e d as i f on s ta rboard t a c k . 16 The wind genera t ing apparatus was s i t u a t e d on a t r a c k oppos i te the s t a r b o a r d forward s e c t i o n of the l a s e r . I t produced wind with a v e l o c i t y of approx imate ly e igh t m i l e s per hour . Appendix 1 c o n t a i n s photographs showing s i d e and back views of the wind generat ing apparatus . The fan blade used i n the apparatus was a s i x - b l a d e , t ruck fan blade t h i r t y - t w o inches i n diameter which was mounted on the end of a d r i v e s h a f t secured by the framework of the apparatus . Two e l e c t r i c motors , one one -h a l f of a horse power and the other o n e - t h i r d of a horse power were used to tu rn the d r i v e s h a f t . The motors turned at 1725 rpm and the gear ing used was 2:1 g i v i n g the fan blade a speed of 862.5 rpm. The cent re of the fan Blade was 65 i n c h e s o f f the ground and the blade was t i l t e d backwards at an angle of 14 degrees . The wind produced by the fan was d i r e c t e d at. the s a i l through a l a r g e v e r t i c a l aper ture 72 inches high and 12 i n c h e s wide. The opening was t i l t e d backwards at an angle of four degrees . Both the opening and fan blade were aimed above h o r i z o n t a l because of the he ight (20 feet ) of the l a s e r s a i l . The" bottom of the aperture was 52 i n c h e s above the ground and the cent re of the fan blade was 60 inches from the ou ts ide ex t remi ty of the a p e r t u r e . Fourteen ' l o u v r e s ' were placed i n th a p e r t u r e , s e c t i o n i n g i t i n t o f i f t e e n three inch s e c t i o n s i n the h o r i z o n t a l p lane . Th is was done to ensure that the wind l e a v i n g the aperture was p a r a l l e l and tha t there would be l i t t l e t u r b u l e n c e when the wind contac ted the s a i l , a p l a s t i c b e l l o w s was a t tached to the frame h o l d i n g the fan blade and the i n s i d e p o r t i o n of the aperture to d i r e c t a l l of the wind produced through the 17 a p e r t u r e . The whole wind generat ing apparatus was p laced on a s m a l l d o l l y which had f o u r c a s t e r type wheels . The d o l l y was square with the d i s t a n c e between any two a d j o i n i n g wheels being 18 i n c h e s . The wheels of the d o l l y ran on a track, which t raced the arc through which the wind generat ing apparatus was moved. Appendix 1 c o n t a i n s p i c t u r e s showing the t r a c k and how the d o l l y wheels ran a long the a r c . There were two c u r v e s , one each f o r two of the wheels as the two c l o s e r to the s a i l t r a n s c r i b e d a s m a l l e r a r c . The t r a c k was mounted on a four f o o t by e ight f o o t sheet of plywood and i t covered approx imately 55 degrees. There were four s t a t i o n s marked on the outs ide c u r v e , each being 19 inches or 10 degrees a p a r t . The d o l l y was p o s i t i o n e d under the wind g e n e r a t i n g machine so that the cent re of the fan blade was 10 i n c h e s i n f r o n t of the ou ts ide curve and e i g h t inches behind the i n s i d e curve . The rad ius of the o u t s i d e curve was 98 i nches making the f o c a l po in t 28 inches beyond the o u t s i d e opening of the a p e r t u r e . The t r a c k was placed on the ground so that the o u t s i d e opening of the aperture was 24 inches from the mast. This p laced the f o c a l po in t f o r the wind f o u r inches behind the mast o r f o u r inches i n f r o n t of the t e l l t a l e s . Because of the way both the l a s e r and the aper ture were t i l t e d , the mast and and aper tu re d iverged at an angle of n ine degrees and the f o c a l po in t was not i n the same p o s i t i o n on the s a i l f u r t h e r above the ground. An e i g h t f o o t cy e i g h t foot v i s i o n o c c l u d i n g b a r r i c a d e was used to prevent the sub jec t from see ing the wind genera t ing apparatus. Appendix 1 c o n t a i n s a diagram of the b a r r i c a d e . I t 18 was p laced on the s ta rboard s ide of the boat at the forward border of the c o c k p i t . I t extended out over the deck of the boat making i t i m p o s s i b l e f o r the sub jec t to see any th ing oppos i te the forward p o r t i o n of the s ta rboard s ide of the l a s e r . An ex tens ion lamp was at tached to the frame and d i r e c t e d at the s a i l to prov ide a d d i t i o n a l l i g h t . The d i g i t a l c l o c k was placed on a stand on the port s i d e of the boat 62 i n c h e s o f f the ground and 18 inches from the mast. Appendix 1 c o n t a i n s photographs showing the c l o c k . I t was a model 54517-A Clock/Counter produced by the L a f a y e t t e Instrument Company of L a f a y e t t e I n d i a n a . The d i s p l a y of the c l o c k was e l e c t r o n i c , producing f i v e i l l u m i n a t e d d i g i t s , each one inch i n h e i g h t . The v ideo-camera system was p laced oppos i te the port s i d e of the boat so tha t the c l o c k and t e l l t a l e s were i n the v iewing f i e l d . Appendix 1 c o n t a i n s photo-graphs of the v ideo tape apparatus . The camera l e n s was 110 inches from the mast and 60 inches o f f the ground. The camera used was a Sony AVC-3400 Video Camera. Recordings were made on V-30H Sony V ideotapes us ing an AV-8400 Sony Auto Threading Por tab le V ideocorder and an AC1000 Sony C o l o r Power Adaptor . Tapes were analysed us ing a Shinaden SV-510U Video Taperecorder and an BFU-62FW Sony Video Mon i to r . P h y s i c a l F i t n e s s Testing; Apparatus . The equipment used f o r the p h y s i c a l f i t n e s s t e s t i n g was from the John M. Buchanan F i t n e s s Centre at the U n i v e r s i t y of B r i t i s h Columbia. The stopwatch used f o r t i m i n g one minute speed s i t - u p s was an MDSI 3 Hydrospeed T r i l i t e . The s k i n f o l d c a l i p e r s used t o r f a t t e s t i n g were John B u l l c a l i p e r s produced by B r i t i s h I n d i c a t o r s L i m i t e d . 19 I s o m e t r i c s t r e n g t h t e s t i n g was done us ing a h i k i n g bench of the e x p e r i m e n t e r ' s own c o n s t r u c t i o n and a Cybex s t r e n g t h t e s t i n g system. Appendix 2 c o n t a i n s p i c t u r e s of the s t rength t e s t i n g apparatus . The h i k i n g bench was 33 inches h i g h , 24 inches wide and 18 inches deep wi th the depth be ing the same as the width of a l a s e r s idedeck . The h i k i n g s t r a p was a d j u s t a b l e and i t at tached 2 2 inches from the top of the h i k i n g bench. A Cybex I s o k i n e t i c System { S e r i a l Number C30310) was used f o r r e c o r d i n g the s u b j e c t s ' h i k i n g s t r e n g t h . This apparatus had three p a r t s , i n c l u d i n g a Cybex I I I s o k i n e t i c Dynamometer, a Cybex I I Speed S e l e c t o r and a Cybex I I Dual Channel kecorder . Maximum oxygen uptake va lues were c a l c u l a t e d us ing a Beckman M e t a b o l i c Measurement C a r t . Heart r a t e s were monitored dur ing the t r e a d m i l l t e s t with an E x e r s t r e s s D i s p l a y Card ioguard 4000 made by Del Mar A v i o n i c s . Subjects ran on a t r e a d m i l l produced by Quinton Instruments of S e a t t l e , Washington. Procedures The experiment was conducted i n two p a r t s . The f i r s t s e c t i o n i s concerned with the t e s t i n g of human response on a s a i l i n g s i m u l a t o r and the second d e a l s wi th the r e l a t i o n s h i p of the s e l e c t e d p h y s i c a l f i t n e s s c a p a c i t i e s to the sub jec ts* performance on the s i m u l a t o r . S a i l i n g S i m u l a t o r Test ing^ Each sub ject came i n f o r t e s t i n g four t i m e s . Three of the s e s s i o n s were with the s a i l i n g s i m u l a t o r as sub jec t responses were recorded under th ree d i f f e r e n t e x p e r i m e n t a l c o n d i t i o n s . The independent v a r i a b l e was the type of f a t i g u e produced by the p o s i t i o n used wh i le s a i l i n g 20 the s i m u l a t o r . The p o s i t i o n s were: s i t t i n g on the s idedeck of the l a s e r , the h i k i n g p o s i t i o n and the h i k i n g p o s i t i o n w h i l e wearing a weight j a c k e t which egualed f i v e percent of body weight . A l l s u b j e c t s r e c e i v e d a l l three t reatments and a balanced design was used ro e l i m i n a t e any l e a r n i n g e f f e c t . Table 3.1 c o n t a i n s the order of t reatments f o r each s u b j e c t . Table 3. 1 Order Of Treatments For Sub jects i T r -T ' — i | SUBJECT | SITTING | HIKING | WITH WEIGHT | 1,7 | SESSION 1 j SESSION 2 | SESSION 3 2,8 | SESSION 1 J SESSION 3 1 SESSION 3,9 | SESSION 2 | SESSION 1 | SESSION 3 4, 10 | SESSION 2 | SESSION 3 | SESSION 1 5, 11 I SESSION 3 | SESSION 1 | SESSION 2 6,12 I SESSION 3 | SESSION 2 | SESSION 1 P r i o r to the f i r s t s e s s i o n , each sub jec t was in t roduced to the equipment;. This i n t r o d u c t i o n i n c l u d e d a f u l l e x p l a n a t i o n of the f u n c t i o n of each p iece of apparatus and a demonstrat ion of how the s i m u l a t o r opera ted . Dur ing the b r i e f i n g , the wind generat ing apparatus was a c t i v a t e d and w i n d s h i f t s i n each d i r e c t i o n were demonstrated as w e l l as the a p p r o p r i a t e response f o r each type of s h i f t . Subjects then r e c e i v e d two p r a c t i c e t r i a l s , one f o r each type of response. I f the s u b j e c t was requ i red t o h i k e f o r t h a t s e s s i o n tne sub jec t was prov ided w i th the oppor tun i t y to ad jus t the h i k i n g s t r a p . The throe s e s s i o n s c o n s i s t e d of 45 w i n d s h i f t s or t r i a l s . Each w i n d s h i f t was 10 degrees as the wind genera t ing apparatus 21 was moved from one p o s i t i o n to another along the t r a c k . The forward o u t s i d e wheel of the d o l l y was used to i n d i c a t e the p o s i t i o n of the wind generat ing apparatus . The four p o s i t i o n s on the t rack prov ided wind which s t ruck the mast at the f o l l o w i n g a n g l e s : p o s i t i o n 1 - 68 degrees, p o s i t i o n 2 - 7 8 degrees, p o s i t i o n 3 - 8 8 degrees and p o s i t i o n 4 - 98 degrees . The p a t t e r n of w i n d s h i f t s f o l l o w e d was the same f o r a l l three s e s s i o n s wi th the wind generat ing machine s t a r t i n g i n p o s i t i o n 2. Each s e s s i o n l a s t e d 15 minutes with one t r i a l scheduled f o r each 20 second per iod in the s e s s i o n . The f i r s t 10 seconds of each 20 second per iod was used as a recovery per iod with the w i n d s h i f t o c c u r r i n g anywhere between the 10th and 19th second Df the i n t e r v a l . The s h o r t e s t time per iod between s h i f t s was 11 seconds w h i l e the longes t was 29 seconds. Both the p a t t e r n and t ime i n t e r v a l s f o r the t r i a l s were generated from a t a b l e of random numbers. Table 3.2 c o n t a i n s the i n t e r v a l , t ime and d i r e c t i o n of each s h i f t and the change i n l o c a t i o n of the wind g e n e r a t i n g apparatus f o r each t r i a l . Subjects were informed p r i o r to the f i r s t s e s s i o n of the p r o t o c o l used f o r the t i m i n g and d i r e c t i o n of each s h i f t . Before each s e s s i o n s t a r t e d s u b j e c t s were asked i f they had any q u e s t i o n s . They were then t o l d to assume the a p p r o p r i a t e p o s i t i o n and to take ho ld of the t i l l e r and mainsheet . The p o s i t i o n i n g of the b a r r i c a d e was checked to ensure t h a t i t prevented the sub ject from v iewing the wind g e n e r a t i n g apparatus. Both the c l o c k and v i d e o - t a p e machine were s t a r t e d and f i n a l l y , the wind machine was tu rned -on ten seconds p r i o r to the s t a r t of the t e s t s e s s i o n . T a b l e 3 . 2 Time I n t e r v a l , W indsh i f t D i r e c t i o n And P o s i t i o n Change Of Th Wind Machine For Each T r i a l | SHIFT | TIME |INTERVAL | DIRECTION | POSITION | | | 1 I 0 0 : 10 i 10 _ j - — ~ — — — •—• — — -j- -| FORWARD | ________ __.| 2 - 1 I i 2 | 0 0 : 3 1 i 21 | AFT | 1 - 2 | I 3 | 0 0 : 5 8 | 27 | FORWARD | 2 - 1 | I 4 | 0 1 : 1 9 I 21 | AFT | 1 - 2 | j 5 J 0 1 : 3 2 j 13 | FORWARD | 2 - 1 I I 6 | 0 1 : 5 6 i 24 | AFT | 1 - 2 | i 7 | 0 2 : 1 4 | 18 | AFT | 2 - 3 | j 8 | 0 2 : 3 3 | 19 | FORWARD | 3 - 2 | I 9 J 0 2 : 5 6 | 23 | AFT | 2 - 3 | | 10 | 0 3 : 1 6 | 20 | FORWARD | 3 - 2 | I 1 1 j 0 3 : 3 3 1 17 I AFT | 2 - 3 | J 12 | 0 3 : 5 4 I 21 | AFT | 3 - 4 | I 1 3 | 0 4 : 1 0 I 16 | FORWARD | 4 - 3 | j 14 | 0 4 : 3 7 I 27 i FORWARD | 3 - 2 | i 15 | 0 4 : 5 9 | 22 | AFT | 2 - 3 | 1 16 I 0 5 : 1 1 I 12 | FORWARD | 3 - 2 | I 17 | 0 5 : 3 1 | 20 | FORWARD | 2 - 1 | j 18 I 0 5 : 5 7 i 26 | AFT | 1 - 2 | | 19 | 0 6 : 1 8 I 21 | AFT | 2 - 3 | | 20 | 0 6 : 3 9 I 21 | FORWARD | 3 - 2 | I 21 | 0 6 : 5 0 I 11 | AFT | 2 - 3 | j 22 j 0 7 : 1 3 | 23 | FORWARD I 3 - 2 | i 23 i 0 7 : 3 4 I 21 | AFT | 2 - 3 | | 24 | 0 7 : 5 8 | 24 | AFT j 3 - 4 | I 25 | 0 8 : 1 5 I 17 ( FORWARD | 4 - 3 I J 26 | 0 8 : 3 5 | 20 | AFT | 3 - 4 | I 27 | 0 8 : 5 3 1 18 | FORWARD | 4 - 3 | I 28 | 0 9 : 1 5 | 22 | AFT j 3 - 4 | j 29 I 0 9 : 3 9 | 24 | FORWARD j 4 - 3 | | 30 | 0 9 : 5 8 | 19 | FORWARD j 3 - 2 | I 3 1 | 1 0 : 1 0 I 12 | AFT | 2 - 3 | i 32 | 1 0 : 3 3 | 23 | AFT | 3 - 4 | J 33 I 1 0 : 5 9 | 26 | FORWARD | 4 - 3 | I 34 | 1 1 : 1 2 I 13 | FORWARD I 3 - 2 | | 35 | 1 1 : 3 4 | 22 I AFT | 2 - 3 | i 36 | 1 1 : 5 1 ! 17 | FORWARD | 3 - 2 | I 37 | 1 2 : 1 0 j 19 | FORWARD | 2 - 1 I i 38 I 1 2 : 3 1 I 21 | AFT } 1 - 2 | | 39 I 1 2 : 5 2 I 21 l FORWARD | 2 - 1 | | 40 | 1 3 : 1 3 I 21 | AFT | 1 - 2 | | 41 i 1 3 : 3 6 I 25 | FORWARD j 2 - 1 I i 42 | 1 3 : 5 2 I 16 I AFT | 1 - 2 | I 43 | 1 4 : 1 7 I 25 | AFT | 2 - 3 | I 44 j 1 4 : 3 0 I 13 | AFT ( 3 - 4 | I 45 I 1 4 : 5 7 1 27 I FORWARD | 4 - 3 | During each t e s t s e s s i o n the exper imenter s t a t i o n e d h ins 23 bes ide the wind generat ing apparatus on the oppos i te s ide from the b a r r i c a d e . I t was the r e s p o n s i b i l i t y of the exper imenter to c r e a t e w i n d s h i f t s by moving the wind machine from s t a t i o n to s t a t i o n . The t ime of each w i n d s h i f t was posted on the s i d e of the apparatus as w e l l as the type of movement r e q u i r e d . The exper imenter c reated each w i n d s h i f t by moving the wind generat ing apparatus to the predetermined l o c a t i o n s . I t took approx imately one second f o r each such movement of the wind machine. S a i l i n g S i m u l a t o r Data Recording. . The dependent v a r i a b l e f o r the f i r s t pa r t of tne experiment was the d e f l e c t i o n t i m e . There were two d i s t i n c t responses which were used i n the s a i l i n g s i m u l a t o r t e s t i n g . For each t r i a l , i t was p o s s i b l e f o r the sub jec t to e i t h e r p u l l - i n or l e t - o u t the mainsheet . P u l l i n g i n the mainsheet made the angle between the s a i l and the boat more acu te . Th is was the c o r r e c t response f o r a w i n d s h i f t which moved the wind d i r e c t i o n forward or towards the bow of the boat . L e t t i n g out the mainsheet inc reased the angle betweeen the s a i l and boat . Th is response was appropr ia te f o r w i n d s h i f t s where the wind moved a f t or towards the s t e r n of the boat . Video tapes were analysed on a Shibaden video taperecorder because of the 'pause ' mode a v a i l a b l e wi th t h a t p iece of apparatus. V ideotapes were viewed the same day as r e c o r d i n g o c c u r r e d , u s u a l l y immediately a f t e r the s e s s i o n with the s i m u l a t o r . Because of the angle of the v ideo-camera the wind generat ing apparatus could be seen at a l l t i m e s . Th i s i n d i c a t e d to the exper imenter when a w i n d s h i f t was going t o occur and what type of s h i f t ±z would be. The experimenter stopped the 24 taperecorder as soon as the s a i l responded to the change i n wind d i r e c t i o n . as the c l o c k ran cont inuous l y a r e a d i n g of e lapsed time to the hundredth or a second c o u l d be taken from the monitor . The exper imenter stopped the taperecorder a second t ime when the s u b j e c t f i n i s n e d a d j u s t i n g the p o s i t i o n of the s a i l . Another reading was taken from the c l o c k and d e f l e c t i o n time was determined by s u b t r a c t i n g the f i r s t read ing from the second. P h y s i c a l F i t n e s s T e s t i n g . P r i o r to the s a i l i n g s i m u l a t o r t e s t i n g , a l l s u b j e c t s were given a p h y s i c a l f i t n e s s e v a l u a t i o n . The t e s t s a d m i n i s t e r e d permit ted an e v a l u a t i o n of genera l f i t n e s s and some s p e c i f i c p h y s i c a l c a p a c i t i e s r e q u i r e d i n s a i l i n g . A f t e r r e c o r d i n g age and weight , f i v e separate f i t n e s s scores were o b t a i n e d . They i n c l u d e d : the number of bent -knee s i t - u p s accomplished i n one minute, percent body f a t , i s o m e t r i c s t rength i n the h i k i n g p o s i t i o n , i s o m e t r i c endurance i n the h i k i n g p o s i t i o n and an e v a l u a t i o n of maximum oxygen uptake. Only one t r i a l was admin is tered f o r the s i t - u p t e s t i n g . Subjects were encouraged to warm-up by s t r e t c h i n g or l i g h t e x e r c i s i n g al though no p r a c t i c i n g was a l l o w e d . The s u b j e c t s f e e t were secured by the exper imenter who counted the number of s i t -ups accomplished out loud and informed the s u b j e c t when 15 seconds remained i n the t e s t p e r i o d . A l l s i t - u p s were done w i th the knees bent and the hands c lasped behind the neck. They were only counted i f the s i t - u p s t a r t e d with the shou lder b lades touch ing the f l o o r and ended with the elbows touch ing the t h i g h s . The percent body f a t e v a l u a t i o n was conducted us ing s i x s k i n - f o l d measurement l o c a t i o n s ; t r i c e p s , s u b s c a p u l a r , c h e s t , 25 s u p r a i l i a c , abdomen and f r o n t t h i g h measures were taken wi th s k i n - f o l d f a t c a l i p e r s . Each measurement was r e p l i c a t e d th ree t imes and the averages of the s i x scores were summed f o r use i n the f o l l o w i n g eguat ion (Yuhasz, 1965). Sum of S ix S k i n f o l d s (mm) x .097 + 3. 64 = Percent Fat I s o m e t r i c s t r e n g t h and endurance i n the h i k i n g p o s i t i o n were both eva luated us ing the cybex equipment. The h i k i n g bench cons t ruc ted by the exper imenter was p laced next t o the Cybex. The s u b j e c t s sat on the bench i n the h i k i n g p o s i t i o n us ing the h i k i n g s t r a p on the bench to f i x the f e e t . The angle at the h ip was constant f o r a l l s u b j e c t s as the he ight of the dynamometer was ad jus ted so t h a t the h ip j o i n t was oppos i te the p i vo t po in t of the dynamometer arm. The arm was set 30 degrees below v e r t i c a l and i t was 13 inches long f o r a l l s u b j e c t s . Each sub jec t p laced the end of the arm on h i s sternum and attempted to push the arm back v e r t i c a l . Each of the two s t rength t r i a l s c o n s i s t e d of a one second maximal e x e r t i o n a g a i n s t the arm. Tae s i n g l e endurance t r i a l was maximal a l though s u b j e c t s maintained the maximum pressure they were capable of on the arm u n t i l the exper imenter t o l d them to s t o p . R e s u l t s f o r the s t rength t r i a l s were recorded i n pounds and are an e x p r e s s i o n of the fo rce exerted on the arm. The be t te r of the two t r i a l s was accepted . A f a t i g u e curve was drawn f o r the endurance measure as the f o r c e exer ted d i m i n i s h e d wi th t i m e . The score recorded was the time requ i red f o r the f o r c e exerted to decrease to 50 percent of the o r i g i n a l maximum v a l u e . Endurance scores were recorded i n seconds. 26 Maximum oxygen uptake va lues were determined by d i r e c t t r e a d m i l l e v a l u a t i o n . Each sub jec t ran on the t r e a d m i l l wh i le measurements were taken from the exp i red a i r . The p r o t o c o l used had three d i s t i n c t phases. A f t e r attachment of the heart r a t e monitor ing apparatus , each sub jec t warmed-up by wa lk ing on the t r e a d m i l l at th ree mph f o r 10 minutes. The b r e a t h i n g apparatus was not used dur ing t h i s per iod as the sub jec t a c c l i m a t i z e d h i m s e l f to the t r e a d m i l l and other nove l aspects of the t e s t i n g s i t u a t i o n . The e x e r c i s e p o r t i o n of the t e s t s t a r t e d wi th the t r e a d m i l l running at seven mph and zero grade. For each s u c c e s s i v e minute dur ing e x e r c i s e , the grade of the t r e a d m i l l was i n c r e a s e d one degree. Sub jec ts ran u n t i l maximum upte.ke was a c h i e v e d . Th is was determined through constant e v a l u a t i o n of the s u b j e c t s ' hear t r a t e , oxygen uptake l e v e l and f a t i g u e l e v e l . Oxygen uptake values were obta ined from the Beckman every 30 seconds throughout the e x e r c i s e s e s s i o n . The b reath ing apparatus was worn f o r the whole exec ise p e r i o d . A f i v e minute recovery per iod was a l s o prov ided f o r the s u b j e c t s . They walked on the t r e a d m i l l at t h r t e mph u n t i l t h e i r metabol ic r a t e re turned w e l l below maximal l e v e l s . Heart r a t e was the only v a r i a b l e monitored dur ing recovery . R e s u l t s f o r a l l f i v e of tae p h y s i c a l f i t r e s s t e s t were presented to the s u b j e c t s immediately a f t e r the t e s t i n g s e s s i o n . PxBg£J:SgSfe.^i R a t i o n a l e And C o n t r o l s Because t e s t i n g was done on a s i m u l a t o r , a number of 27 c o n t r o l s were used to counter the e f f e c t of i n t e r v e n i n g v a r i a b l e s . A l l of the s u b j e c t s t e s t e d were h i g h l y s k i l l e d i n d i v i d u a l s who had l i t t l e d i f f i c u l t y producing the a p p r o p r i a t e response . Randomization i n the t ime i n t e r v a l and d i r e c t i o n f o r each s t i m u l u s was used to prevent a n t i c i p a t i o n from skewing r e s u l t s . Order of t reatments was balanced to ensure that the r e s u l t s were a product of v i g i l a n c e and unaffected by l e a r n i n g . The b a s i c premise of the experiment was to determine i f p h y s i c a l f a t i g u e caused decreases i n v i g i l a n c e . Decreased a t t e n t i o n on s a i l t r i m would be manifested by d i m i n i s h e d boat speed and decrements i n performance. Work c a p a c i t y r e l a t e d to t h i s as high f i t n e s s l e v e l s could d i m i n i s h the e f f e c t s of f a t i g u e . The exper iments were designed to i n d i c a t e i f f a t i g u e decreased v i g i l a n c e and i f p h y s i c a l f i t n e s s a f f e c t s v i g i l a n c e c a p a c i t y . l 2 E § £ i i ! i e a t§2 Design For Experiment 1, the design was a 2 -^way repeated measures design repeated on both f a c t o r s . The independent v a r i a b l e was the amount of f a t i g u e produced by s a i l i n g the s i m u l a t o r . The dependent v a r i a b l e was the d e f l e c t i o n t i m e . A t o t a l of 135 t r i a l s were recorded with each sub jec t r e c e i v i n g 45 t r i a l s on th ree separate days. The p r o j e c t i s a 3X45 f a c t o r i a l experiment repeated on both f a c t o r s . Experiment 2 was a c o r r e l a t i o n a n a l y s i s us ing a t o t a l of nine v a r i a b l e s . The v a r i a b l e s used were the f i v e p h y s i c a l f i t n e s s t e s t s c o r e s , the means f o r each of the th ree s e s s i o n s with the s i m u l a t o r and the mean fo r a l l 135 t r i a l s . The m u l t i p l e 28 c o r r e l a t i o n a n a l y s i s y i e l d e d c o - e f f i c i e n t s f o r the 46 p o s s i b l e comparisons of v a r i a b l e s . Data A n a l y s i s Data a n a l y s i s was done i n two s e c t i o n s . For experiment 1, a two-way repeated measures a n a l y s i s of var iance (ANOVA) repeated on both v a r i a b l e s was c a l c u l a t e d us ing computer program BtiD:P2V. For experiment 2, a c o r r e l a t i o n a n a l y s i s was c a l c u l a t e d us ing computer program S i m c o r t . Test Of Hypothes is JL_ Hypothesis 1 p r e d i c t e d t h a t v i g i l a n c e decreases wi th t ime r e g a r d l e s s of p h y s i c a l f a t i g u e . Examinat ion of the t r i a l s f a c t o r i n the 3X45 ANOVA i n d i c a t e d i f there was s i g n i f i c a n t d i f f e r e n c e between t r i a l s . A graph of the mean scores was then used to determine i f v i g i l a n c e decreased or i n c r e a s e d . Test Of Hypothes is 2;_ Hypothesis 2 p r e d i c t e d t h a t p h y s i c a l f a t i g u e f u r t h e r decreased v i g i l a n c e . The comparison f o r the independent v a r i a b l e (amount of fa t i gue ) i n d i c a t e d i f s i g n i f i c a n t d i f f e r e n c e e x i s t e d between the t reatments f o r a l l 45 t r i a l s . The i n t e r a c t i o n of the independent v a r i a b l e and the t r i a l s f a c t o r i n d i c a t e d i f a s i g n i f i c a n t d i f f e r e n c e e x i s t e d f o r one s e c t i o n of the t e s t s e s s i o n s . Test Of H l f io thes is 3._ Hypothesis 3 p r e d i c t e d that h igh p h y s i c a l f i t n e s s scores would be i n v e r s e l y c o r r e l a t e d wi th v i g i l a n c e s c o r e s . High negat ive c o r r e l a t i o n between a p h y s i c a l f i t n e s s t e s t and d e f l e c t i o n t ime would have i n d i c a t e d t h a t i n d i v i d u a l s h igh i n t h a t f i t n e s s c a p a c i t y had b e t t e r v i g i l a n c e . 29 Chapter 4 RESULTS AND DISCUSSION A r e p r e s e n t a t i v e v i g i l a n c e score was obtained by c a l c u l a t i n g The mean of a l l t r i a l s . As there was no miss ing data and no t r i a l s were d i s c a r d e d the score obta ined r e p r e s e n t s T35 t r i a l s f o r each of the 12 s u b j e c t s . The s u b j e c t s ' raw data f o r Experiment 1 i s presented i n Appendix 3 . The mean score f o r Experiment 1 was 2.53 seconds. The p h y s i c a l f i t n e s s t e s t r e s u l t s a l s o had no miss ing d a t a . Table 4.1 c o n t a i n s the scores f o r each f i t n e s s t e s t as w e l l as the age and weight f o r each s u o j e c t . Resu l t s f o r Experiment 2 are f o r s i n g l e t r i a l e v a l u a t i o n s and the data from the p h y s i c a l f i t n e s s t e s t s was not reduced p r i o r to the c o r r e l a t i o n a n a l y s i s . Table 4.1 P h y s i c a l F i t n e s s Test R e s u l t s For Experiment 1 >U3 JECT AGE WEIGHT SIT-UPS %FAT — + -_ _ _ _ _ _ —4— •f- _ _ _ _ _ - t - ±. _ _ - 4 ~ _ KG #/„IN LBS | SEC | ML/KG - - + - --+- -+.- + ~ - t -GS | 21 | 7 7. 8 j 40 | 11. 2 | 87 | 33.8 | 50. 6 DH j 38 | 82.0 I 39 j 10. 3 | 116 | 16.4 j 42.4 PL J 23 | 72. 0 j 61 j 9. 9 178 | 25. 0 | 48.0 ST | 26 j 77. 5 I 50 | 7. 9 | 126 | 12.0 | 47. 3 MF j 19 j 77.5 I 40 j 7.7 | 136 | 4 3 . 0 | 53. 1 BL | 27 j 65. 8 j 37 | 9.9 | 83 | 11.0 54. 8 DW j 19 I 77. 5 j 67 | 9. 1 | 111 | 40.0 | 52.8 JH | 26 j 74. 0 I 50 13. 4 | 83 | 20. 0 | 36.2 RB | 18 I 87. 0 j 46 | 8. 9 | 124 | 22.0 | 33. 2 JT | 22 j 71.0 48 | 7. 9 | 126 | 3 2 . 0 | 47. 6 MK 19 | 70. 0 | 45 J 8. 9 | 111 | 15.0 | 38. 1 MC | 18 80. 5 42 | 9.4 102 | 36. 0 | 50. 3 STREN END i ~~i MV02 30 RESULTS iiND DISCUSSION OF THE PREPLANNED COMPARISONS OF THE HYPOTHESES J i 2 . E _ i E i l i . f i l . 1 SiE2__ ;--Sis __, I t was expected tha t ' m e n t a l ' f a t i g u e r e s u l t i n g i n a decrease i n v i g i l a n c e would occur over the f i f t e e n minute t e s t s e s s i o n . The 3X45 ANOVA wi th the t r i a l s f a c t o r be ing the l a s t v a r i a b l e i n d i c a t e d t h a t there was s i g n i f i c a n t d i f f e r e n c e between t r i a l s . The r e s u l t s of the 3X45 ANOVA are conta ined i n Taole 4 . 2 . The t r i a l s f a c t o r i s h i g h l y s i g n i f i c a n t w i th an a lp i ia l e v e l of <.001, however, the s tandard d e v i a t i o n s f o r each t r i a l are high (see Appendix 4 ) . The mean d e f l e c t i o n t imes were graphed fo r the 45 t r i a l s to determine i f t rends e x i s t e d i n the d a t a . F igure 4.1 i n d i c a t e s t h a t there i s no sys temat ic i n c r e a s e i n d e f l e c t i o n time s c o r e s , consequent l y , the high v a r i a n i l i t y i n the data makes i t i m p o s s i b l e to s t a t e that v i g i l a n c e decreased over t ime f o r experiment 1. Because of the high v a r i a b i l i t y i n the d a t a , b l o c k i n g was used to s e c t i o n the r e s u l t s i n t o s m a l l b locks which could more r e a d i l y be compared. The computer program BMD:P2V was again used to analyse the data . Table 4 . 3 l i s t s the ANOVAs c a l c u l a t e d f o r the v i g i l a n c e scores from Experiment 1 us ing b l o c k i n g des igns of v a r i o u s s i z e s . The b l o c k i n g f a c t o r s only had s i g n i f i c a n c e when the number of t r i a l s was low. The D lock ing f a c t o r was s i g n i f i c a n t f o r n ine b locks of f i v e t r i a l s (. 048) and f i f t e e n b l o c k s of three t r i a l s ( .002) . The r e s u l t s f o r the t r i a l s and b l o c k i n g f a c t o r s f o r each ANOVA appear i n Table 4 . 4 . 31 Table 4.2 A n a l y s i s Of Var iance Table For Experiment 1 SOUBCE SS df ms F P SUBJECTS 190.22 11 17.29 CONDITIONS . 12 2 .06 .04 . 963 SxC 34. 51 22 1. 57 TRIALS 97.20 44 2. 21 2. 36 <. 001 SXT 452. 95 484 .94 CXT 72.82 88 .83 1.02 .422 SXCXT 781.89 968 .81 10333. 1 1 1619 For both cases where the b l o c k i n g f a c t o r was s i g n i f i c a n t , the v a r i a b i l i t y in the t r i a l s f a c t o r f o r the 3X45 design has been t r a n s f e r e d to the c l o c k i n g f a c t o r . The mean sco res f o r the b locks show tha t there i s no r e a l t rend and t h a t the d i f f e r e n c e between c l o c k s i s caused by f l u c t u a t i o n s i n the d a t a . I t i s i n t e r e s t i n g to note that the scores tend to s t a b i l i z e near the end of the t e s t s e s s i o n s . Both F igure 4.1 and the means f o r the b l o c k s i n d i c a t e t h a t tne range of scores i s g r e a t l y d i m i n i s h e d . Table 4.6 c o n t a i n s the s i g n i f i c a n c e l e v e l s of i n t e r a c t i o n s f o r the b l o c k s of t r i a l s used i n the a n a l y s i s f o r Experiment 1. The mean scores shown i n Table 4 .5 conf i rm the r e s u l t s i n d i c a t e d by F igure 4. 1. The d e f l e c t i o n t ime d id not inc rease and there was no decrease i n v i g i l a n c e f o r Experiment 1. Hypothesis 1 i s t h e r e f o r e r e j e c t e d and the n u l l hypothes is accepted . Hypothesis 2*. The second hypothes is p r e d i c t e d that the p h y s i c a l f a t i g u e produced by one or both of the t reatments used i n the s a i l i n g s i m u l a t o r t e s t i n g would decrease v i g i l a n c e . Th is change cou ld be manifested i n two ways as d e f l e c t i o n time would e i t h e r be g rea te r f o r the complete s e s s i o n or only f o r a p o r t i o n of i t . T h i s r e l a t i o n s h i p was examined by the c o n d i t i o n s f a c t o r i n the 3X45 ANOVA and the i n t e r a c t i o n of c o n d i t i o n s and t r i a l s 32 3. 2 -3. 0 2. 8 2. 6 Time (sec) 2. 4 2. 2 # # # # # # # # # # # # # # # # # # # ## # 2 . 0 - . . 0 .0 I 1 10. 0 20.0 30.0 S h i f t Number I 40.0 50. 0 F igure 4 .1 Graph of Mean D e f l e c t i o n Time and T r i a l s . f o r the same a n a l y s i s (see Table 4 . 2 ) . The c o n d i t i o n s f a c t o r had an alpha l e v e l of .563 i n d i c a t i n g tha t no d i f f e r e n c e e x i s t e d between any of the th ree t reatments f o r the f u l l 45 t r i a l s . The i n t e r a c t i o n of c o n d i t i o n s and t r i a l s was i n s i g n i f i c a n t , demonstrat ing t h a t the r e l a t i o n s h i p between t reatments d id not change f o r any par t of the 45 t r i a l s . F igure 4.2 shows the 33 Table 4.3 Analyses Of Var iance C a l c u l a t e d For S a i l i n g S imu la to r V i g i l a n c e Scores r" I !--I I BLOCKS # OF TRIALS -+-I I DESIGN 5 9 3 15 9 5 15 3 3x5x9 3x9x5 3x3x15 3x15x3 Table 4.4 R e s u l t s For Analyses Of Var iance Using B l o c k i n g For Experiment 1 DESIGN -+-I i I BLOCKS | +-TRIALS •r-I -+-I I I -+-3x15x3 3x3x15 3x9x5 3x5x9 15 3 9 5 .002 . 903 .048 . 596 3 15 5 9 . 521 . 351 . 570 . 378 Table 4 .5 Mean Scores For B locks Used In Experiment 1 DESIGN +-3x15x3 3x9x5 +-3x5x9 3x3x15 # of b l o c k s t r i a l s / b l k 15 +-9 5 5 9 +-3 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2.32 2.46 2. 72 2 . 74 2.37 2. 38 2. 72 2. 59 2.44 2. 51 2. 55 2.46 2.46 2.47 2.61 2.34 2.66 2. 55 2. 49 2.62 2.49 2. 51 2.50 2.51 2.46 2.49 2. 58 2. 50 2. 51 2.52 2. 54 2. 51 3 fl 4 scores f o r the three c o n d i t i o n s f o r each t r i a l . The h igh v a r i a b i l i t y of the r e s u l t s i s undoubtedly a f a c t o r i n the s i g n i f i c a n c e l e v e l s obta ined from the ANOVA. The b l o c k i n g used to t e s t Hypothesis 1 s u b s t a n t i a t e d the r e s u l t s of the 3X45 ANOVA. The t reatments e f f e c t i s the same f o r a l l of the ana lyses and none of the i n t e r a c t i o n s between treatments and b l o c k s of t reatments and t r i a l s i s s i g n i f i c a n t f o r any of the ANOVAs c a l c u l a t e d . T_e i n t e r a c t i o n va lues f o r the ANOVAs c a l c u l a t e d us ing b l o c k i n g appear i n Table 4 . 6 . The on l y alpha l e v e l t o approach s i g n i f i c a n c e i s t h a t of the i n t e r a c t i o n of t reatments and b l o c k s f o r the 3X9X5 design as the p va lue i s . 0 5 3 . However, t h i s i s not a product of a s y s t e m a t i c t rend i n the data and i t can be accounted fo r by the high v a r i a b i l i t y i n the s c o r e s . The r e s u l t s of the data ana lyses c o n t r a d i c t the second hypothes is and the n u l l hypothes is i s again accepted f o r Hypothesis 2. Experiment 2 Hypothesis 3. Because i t was p o s s i b l e t h a t the th ree s e s s i o n s on the s a i l i n g s i m u l a t o r would be d i f f e r e n t , means f o r the three s e s s i o n s were used s e p a r a t e l y i n a c o r r e l a t i o n a n a l y s i s . The mean scores f o r each sub jec t are presented i n Table 4 . 7 . High i n v e r s e c o r r e l a t i o n between the mean d e f l e c t i o n t ime f o r the s i m u l a t o r s e s s i o n s and scores f o r a l l of the p h y s i c a l f i t n e s s t e s t s except percent body f a t were expec ted . Percent body f a t should have the i n v e r s e r e l a t i o n s h i p as high body f a t i s not d e s i r a b l e . The matr ix of the c o r r e l a t i o n a n a l y s i s i s presented i n Appendix 5. Only three of the f i v e c o r r e l a t i o n s 35 3. 6 -# - s i t t i n g * - h i k i n g + - wi th weight 3. 3 3. 0 2. 7 Time (sec) 2. 4 2. 1 + # + *# # # * # #+# *# * + + #+ *• *# # + + + * * # # # * # + + + # #+ *# # + # + # # +# * # # * ** # * + + *# # + * # * # * ## +# * # # 1 . 8 - . . 0.0 10.0 20 .0 30.0 S h i f t Number I 4 0 . 0 50. 0 F igure 4 . 2 Mean Scores f o r S i t t i n g , H i k i n g and H i k i n g With Weight. showed a moderate r e l a t i o n s h i p . Maximum oxygen uptake was i n v e r s e l y c o r r e l a t e d with the means f o r s i t t i n g ( - . 6 2 5 ) , h i k i n g ( - . 8 0 2 ) , h i k i n g with weight (-. 599) and the grand mean (- . 730) . The speed s i t - u p s and percent body f a t had no r e l a t i o n s h i p wi th 36 Table 4.6 S i g n i f i c a n c e L e v e l s Of I n t e r a c t i o n s For Analyses Of Var iance Using Var ious B l o c k i n g Designs I ** T ' T 1 I DESIGN | INTERACTION | P | - ~ f — 3x15x3 j t r e a t X b l o c k s I . 168 3x15x3 | t r e a t X t r i a l s | . 878 3x3x15 j t r e a t X b l o c k s I . 156 3x3x15 | t r e a t X t r i a l s | . 170 3x9x5 j t r e a t X b l o c k s | . 0 5 3 3x9x5 | t r e a t X t r i a l s | .159 3x5x9 j t r e a t X b locks I . 208 3x5x9 j t r e a t X t r i a l s j . 945 L Table 4.7 Subject Means And Standard D e v i a t i o n s For S i t t i n g , H i k i n g And H i k i n g With Weight SUBJECT J SITTING HIKING | WITH WEI 3HT X I SD X I SD | X I SD - f - ~ r - - + — GS | 2. 24 | .80 | 2.07 | . 6 2 | 2. 11 | . 67 DH | 2.56 | 1.02 I 2. 40 | .73 | 2. 60 | . 83 PL | 1.86 | .58 I 2.23 | .70 | 1. 86 | . 7 5 RT | 2.65 | .84 j 2.61 | 1.19 | 2. 95 | 1. 54 MF | 2.19 | . 60 I 2. 51 | .77 | 2. 41 | .71 BL | 2.46 | . 7 5 | 2. 34 | . 7 3 | 2. 47 | .81 DW | 2. 1 6 | . 4 3 I 2.28 | . 6 3 | 2. 28 | . 67 JH | 3.43 | 1. 75 I 3. 28 | 1.34 | 3. 03 | 1. 40 RB | 2.72 | 1.09 j 3. 09 | 1.80 | 2. 63 | . 77 JT | 2. 94 | .97 I 2.72 | • 79 | 2. 56 | 1. 02 MK | 2. 66 .66 I 2. 86 | . 7 5 | 3 . 03 1. 23 MC J 2.48 .78 2.03 . 6 3 | 2. 35 . 9 1 v i g i l a n c e scores as only one c o r r e l a t i o n was above . 3 0 0 . The two i s o m e t r i c measurements showed very weak c o r r e l a t i o n s as s t r e n g t h was c o r r e l a t e d at - . 4 9 0 , - . 0 9 0 , - . 5 5 1 and - . 4 6 8 . However, c o r r e l a t i o n s t h i s low account f o r very l i t t l e of the v a r i a b i l i t y i n the data s e t s and the s t rength measures cannot be d e s c r i b e d as i n v e r s e l y c o r r e l a t e d wi th v i g i l a n c e . Maximum oxygen uptake i s i n v e r s e l y c o r r e l a t e d wi th 37 v i g i l a n c e as the d e f l e c t i o n time was lower f o r sub jec ts wi th higher ae roo ic c a p a c i t y . The v a l i d i t y of the r e l a t i o n s h i p can be questioned i n l i g h t of the f a c t that n e i t h e r Hypothes is 1 nor Hypothesis 2 was accepted . There i s no p h y s i c a l or mental f a t i g u e caus ing a decrease i n v i g i l a n c e f o r the s a i l i n g s i m u l a t o r exper iment . P h y s i c a l f i t n e s s has a b e n e f i c i a l e f f e c t c o u n t e r a c t i n g f a t i g u e as i t postpones i t s onset . Consequent ly , i t i s d i f f i c u l t t o conclude that a p h y s i c a l f i t n e s s c a p a c i t y i s r e l a t e d to a performance v a r i a b l e which i s not a f f e c t e d by f a t i g u e . I t i s d e f i n i t e l y p o s s i b l e that the c o r r e l a t i o n between maximum oxygen uptake and mean d e f l e c t i o n t ime i s s p u r i o u s . However, the r e l a t i o n s h i p does e x i s t and Hypothes is 3 i s accepted f o r maximum oxygen uptake and r e j e c t e d f o r the o ther four p h y s i c a l f i t n e s s t e s t s . A n a l y s i s For k Learn ing E f f e c t On examinat ion of F i g u r e s 4.1 and 4.2 i t seemed apparent that a d i s t i n c t p a t t e r n had appeared in the f i r s t p o r t i o n of the graph of d e f l e c t i o n t ime and t r i a l s . A l l three of the t reatments had s i m i l a r u n d u l a t i o n s i n the curves f o r the f i r s t 15 to 20 t r i a l s . D e f l e c t i o n t ime i n c r e a s e s q u i t e d r a m a t i c a l l y f o r t r i a l s seven and twelve and then immediately decreases on the subsequent t r i a l . A s i m i l a r i n c r e a s e occurs on t r i a l 24, although the f l u c t u a t i o n i n the mean score i s not as marked. Table 3.2 i n d i c a t e s that t r i a l s seven and twelve are the f i r s t i n s t a n c e s where the wind generat ing apparatus i s moved to p o s i t i o n s three and four r e s p e c t i v e l y . The i n c r e a s e i n d e f l e c t i o n t ime i s a product of the p r e s e n t a t i o n of a new 38 s t i m u l u s . The subsequent drop i n d e f l e c t i o n time can be accounted f o r through c o n s i d e r a t i o n of the s u b j e c t s ' e x p e c t a t i o n s . In both i n s t a n c e s , the next w i n d s h i f t i s the i n v e r s e of the p rev ious one and t h i s i s undoubtedly something which the s u b j e c t expects . W i n d s h i f t 24 r e p r e s e n t s the second time that p o s i t i o n f o u r i s presented to the s u b j e c t s and a s i m i l a r e f f e c t may have o c c u r r e d , a l though i t i s not as marked. The l a r g e f l u c t u a t i o n s i n the mean scores f o r the f i r s t p o r t i o n of the s e s s i o n s appears to be a product of the pa t te rn used . This i s s u b s t a n t i a t e d by the i n c r e a s e i n s t a b i l i t y seen i n the l a t e r t r i a l s as the means f o r b l o c k i n g , e s p e c i a l l y b l o c k s of f i v e t r i a l s , show very l i t t l e v a r i a t i o n near the end of the s e s s i o n s . With the f l u c t u a t i o n s i n the data being produced by the w i n d s h i f t pa t te rn employed, the data was r e s t r u c t u r e d to t e s t f o r a l e a r n i n g e f f e c t . The ANOVA f o r t reatments i n d i c a t e d t h a t there was no d i f f e r e n c e between s i t t i n g , h i k i n g and h i k i n g wi th weight . Because of t h i s , the s e s s i o n s were r e - o r d e r e d and analysed a c c o r d i n g t o the order of p r e s e n t a t i o n . High f l u c t u a t i o n s i n the f i r s t but not the second and t h i r d s e s s i o n s would be an i n d i c a t i o n of a l e a r n i n g e f f e c t . F igure 4.3 c o n t a i n s a graph of d e f l e c t i o n time and t r i a l s f o r the th ree s e s s i o n s . The same repeated measures a n a l y s i s of v a r i a n c e used i n Experiment 1 was then c a l c u l a t e d f o r the r e - o r g a n i z e d d a t a . Table 4.8 c o n t a i n s the ANOVA t a b l e f o r a 3 X 4 5 repeated measures a n a l y s i s repeated on both f a c t o r s . The ANOVA i n d i c a t e s tha t there i s s i g n i f i c a n t d i f f e r e n c e (p=.017) between the s e s s i o n s . The mean d e f l e c t i o n t imes f o r the 39 # - s e s s i o n 1 * - sess ion 2 + - s e s s i o n 3 3. 6-3. 3 3. 0 2. 7 Time (sec) 2. 4 2. 1 * # #** + # #* # * # * # * * # + #* # + #* # * # * + # ft * + *# # + + + * * # # * # + * + * # # + + * + #+** # # * #* * * #* + + + * + * # + * +# # # + * + # # # # * + 1.8-0. I # * * + + # *# 10.0 20.0 30.0 S h i f t Number ^" m a | • • i 40.0 F igure 4 .3 Mean Scores by Order of Sess ions by T r i a l s 50. 0 s e s s i o n a r e : s e s s i o n 1 - 2.62 seconds, s e s s i o n 2 - 2.53 seconds, s e s s i o n 3 - 2.42 seconds. C l e a r l y a l e a r n i n g e f f e c t has occur red as mean d e f l e c t i o n t ime has decreased wi th each s u c c e s s i v e s e s s i o n . The graph shows c e r t a i n t rends when the curves f o r the three s e s s i o n s are compared. There are more l a r g e e r r o r s i n 40 Table 4.3 A n a l y s i s Of Var iance Table For Learn ing E f f e c t SOURCE SS df ms F P SUBJECTS CONDITIONS SxC TRIALS SXT CXT SXCXT 190.22 10. 75 23. 88 97.20 452. 95 54. 98 799.73 11 2 22 44 484 88 968 17. 29 5.37 1.09 2. 21 .94 .62 .83 4. 95 2. 36 . 7 6 <.001 .017 . 952 10333.11 1619 s e s s i o n one than i n e i t h e r sess ion two or t h r e e . The amount of v a r i a o i l i t y decreases a l a r g e amount i n the t h i r d s e s s i o n and t h i s i n c r e a s e i n c o n s i s t e n c y i s the major reason f o r the drop i n the mean s c o r e . F a m i l i a r i z a t i o n with the apparatus and the s t i m u l i presented appears to have produced the decrease i n mean d e f l e c t i o n t ime . I t i s a l s o p o s s i b l e that s u b j e c t s may have been more s u c c e s s f u l i n a n t i c i p a t i n g s h i f t s dur ing l a t e r s e s s i o n s because of t h e i r i n c r e a s i n g f a m i l i a r i t y with the pa t te rn and time i n t e r v a l s used. The t r i a l s e f f e c t i s s i g n i f i c a n t f o r the ANOVA but tha t was expected as the r e s u l t s are i d e n t i c a l f o r those repor ted i n the treatments ANOVA. The graph shows only random v a r i a t i o n i n the t r i a l s . B l o c k i n g s i m i l a r to that used i n Experiment 1 was u t i l i z e d t o examine the i n t e r a c t i o n of s e s s i o n and b l o c k s . The r e s u l t s f o r the i n t e r a c t i o n appear i n Table 4 . 9 . None of the i n t e r a c t i o n s approach s i g n i f i c a n c e i n d i c a t i n g tha t the d i f f e r e n c e between s e s s i o n s i s constant throughout the s e s s i o n . The l e a r n i n g t h a t occurred dur ing the s a i l i n g s i m u l a t o r t e s t i n g may have been produced by a number of f a c t o r s . The pat te rn used f o r the w i n d s h i f t s c reated high s c o r e s f o r c e r t a i n t r i a l s dur ing the f i r s t s e s s i o n . Each t ime a new p o s i t i o n was 41 Table 4.9 S i g n i f i c a n c e L e v e l s Of I n t e r a c t i o n s For Analyses Of Variance Using B l o c k i n g In Learning E f f e c t A n a l y s i s r - r 1 | DESIGN | INTERACTION | P | h + + i 3 x 1 5 x 3 j order X blocks | . 4 3 7 3 x 1 5 x 3 I order X t r i a l s | . 8 2 3 3 x 3 x 1 5 j order X b l o c k s | . 920 3 x 3 x 1 5 order X t r i a l s | . 76 5 3 x 9 x 5 j order X b l o c k s | . 8 7 0 3 x 9 x 5 j order X t r i a l s | . 5 1 5 3 x 5 x 9 j order X b l o c k s . 5 8 2 3 x 5 x 9 order X t r i a l s . 6 8 6 d u r i n g t e s t i n g . th e d e f l e c t i o n time d r a m a t i c a l l y . T h i s o c c u r r e d to a l e s s e r extent i n subsequent s e s s i o n s . F a m i l i a r i t y with the p a t t e r n used, p o s i t i o n s p o s s i b l e and the time i n t e r v a l s used between s h i f t s c o n t r i b u t e d t o l e a r n i n g . A d d i t i o n a l p r a c t i c e t r i a l s using a l l f o u r p o s s i b l e p o s i t i o n s and a more ext e n s i v e i n t r o d u c t i o n to the experiment may be r e q u i r e d to remove the l e a r n i n g e f f e c t . R e l i a b i l i t y A n a l y s i s The standard d e v i a t i o n s d i s p l a y e d i n Appendix 4 i n d i c a t e that the e r r o r range f o r the d e f l e c t i o n time s c o r e s was q u i t e high. R e l i a b i l i t y a n a l y s i s was attempted to determine i f the high standard d e v i a t i o n s are a c o r r e c t r e p r e s e n t a t i o n of the d e f l e c t i o n time s c o r e s or i f they are a product of the data a n a l y s i s t e c h n i q u e . The video-tape f o r one s e s s i o n was re - a n a l y s e d three times. The 45 s c o r e s f o r the t h r e e s e s s i o n s were then used i n a c o r r e l a t i o n a n a l y s i s using computer program Simcort. Raw data f o r the r e l i a b i l i t y study appears i n Appendix 6. The c o r r e l a t i o n 42 a n a l y s i s y i e l d e d s i x c o - e f f i c i e n t s of c o r r e l a t i o n which were used to i n d i c a t e i f tne data a n a l y s i s system was r e l i a b l e . The r e s u l t s ware c o r r e l a t i o n s of . 4 9 0 , . 7 2 7 , . 6 8 0 , . 7 7 5 , .641 and . 7 9 8 , which are not the high p o s i t i v e values which would have been r e p r e s e n t a t i v e of r e l i a b i l i t y i n the data a n a l y s i s t e c h n i q u e s . The methods used f o r o b t a i n i n g the raw data used i n Experiment 1 d i d not prove t o be complete ly r e l i a b l e . Th i s l e s s than d e s i r e d r e l i a b i l i t y i nc reases the s u b j e c t by s e s s i o n s e r r o r term i n the a n a l y s i s of var iance and had the e f f e c t of reduc ing the power of the a n a l y s i s , consequent ly , an e r r o r may occur as a s i g n i f i c a n t d i f f e r e n c e between s e s s i o n s w i l l be negated by the high e r r o r term. However, the extremely low value f o r the p r o b a b i l i t y (.963) i n d i c a t e s very c l e a r l y t h a t there i s no d i f f e r e n c e between s e s s i o n s and tha t r e j e c t i o n of hypothes is 2 i s c o r r e c t . This i s s u b s t a n t i a t e d by the a n a l y s i s f o r a l e a r n i n g e f f e c t . Although the e r r o r term i s i n f l a t e d by poor r e l i a b i l i t y , there i s s t i l l s i g n i f i c a n t d i f f e r e n c e between s e s s i o n s when they are analysed a c c o r d i n g to order of p r e s e n t a t i o n . Th i s i n d i c a t e s tha t the power of the a n a l y s i s was s t rong enough to overcome the e r r o r due to poor r e l i a b i l i t y . The f i n d i n g of a l e a r n i n g e f f e c t and the r e j e c t i o n of hypothes is 2 i s t h e r e f o r e v a l i d . Experiment 2 i s a l s o a f f e c t e d by poor r e l i a b i l i t y as mean va lues from experiment 1 are used i n the c o r r e l a t i o n a n a l y s i s i n experiment 2. The use of a mean value overcomes the e r r o r caused by low r e l i a b i l i t y . Three of the va lues used are means f o r 45 t r i a l s and the f o u r t h i s the average value f o r a l l 135 t r i a l s . The v i g i l a n c e scores used f o r each s u b j e c t i n the c o r r e l a t i o n 43 a n a l y s i s are v a l i d because they are means f o r such a l a r g e number of t r i a l s . The r e s u l t s of experiment 2 are v a l i d and the t reatment of Hypothesis 3 i s c o r r e c t . Summary Of Hypotheses The r e s u l t s from both Experiment 1 and Experiment 2 are mixed. Hypothes is 1 and 2 were not accepted and t h i s does not support the f i n d i n g s of Mackworth and o t h e r s . The t h i r d hypothes is i s accepted f o r one of the f i v e p h y s i c a l f i t n e s s t e s t s and t h i s s u b s t a n t i a t e s the b a s i c theory used i n t r a i n i n g f o r spor ts r e q u i r i n g p h y s i c a l e x e r t i o n . T e s t i n g of the two hypotheses i n Experiment 1 i n d i c a t e d that no f a t i g u e , be i t p h y s i c a l or menta l , occur red d u r i n g t e s t i n g . A number of f a c t o r s c o n t r i b u t e d to t h i s . I t i s p robable that the f i f t e e n minute s e s s i o n s may not have been long enough or s t renuous enough f o r v i g i l a n c e to be a f f e c t e d . The i n t e r -s t i m u l u s i n t e r v a l may a l s o have been too s h o r t f o r t e s t i n g v i g i l a n c e performance a c c u r a t e l y . The s i m u l a t o r used reduced the number of v a r i a b l e s t h a t the sub jec t had to cons ide r wh i le s a i l i n g . The f a t i g u e e f f e c t may have been reduced as the s u b j e c t s d i d not have t o contend with the motion of the boat . The s i m u l a t o r d i d not r e q u i r e as much upper cody work as a race does and the attempt at s i m u l a t i n g heavy weather s a i l i n g may not have been s u c c e s s f u l . A l e a r n i n g e f f e c t occurred and i t may have been a f a c t o r i n the absence of a v i g i l a n c e e f f e c t . Attempts at r e p l i c a t i n g s a i l i n g have l i m i t e d the e f f e c t i v e n e s s of the exper imenta l c o n t r o l s and a l l of these f a c t o r s should be considered i n f u t u r e research of t h i s na tu re . 44 The a n a l y s i s f o r Experiment 2 i s p a r t i a l l y dependent upon the r e s u l t s of Experiment 1. A l l of the c o n s i d e r a t i o n s produced i n Experiment 1 w i l l then nave some bear ing on Hypothesis 3. Maximum oxygen uptake i s i n v e r s e l y c o r r e l a t e d with d e f l e c t i o n t ime scores as v i g i l a n c e i s b e t t e r f o r s u b j e c t s with h igher uptake v a l u e s . The r e l i a b i l i t y of the data from Experiment 1 i s the only f a c t o r which can d e t r a c t from t h i s r e l a t i o n s h i p . The other p h y s i c a l f i t n e s s t e s t s d id not show any r e l a t i o n s h i p to v i g i l a n c e performance. Th is may be a product of the t e s t s themselves as they may not be a p p l i c a b l e f o r examining f i t n e s s l e v e l s of c o m p e t i t i v e s a i l o r s . Because the maximum oxygen uptake measure only examines aerob ic c a p a c i t y i t i s c l e a r that the p h y s i c a l f i t n e s s t e s t r e s u l t s obta ined cannot be used f o r p r e d i c t i o n of performance on the s i m u l a t o r . None of the t e s t s admin is te red g i v e s a comprehensive measure of s a i l i n g s k i l l . 45 Chapter 5 SUMMARY AND CONCLUSIONS Summary The purpose of t h i s i n v e s t i g a t i o n was to determine what e f f e c t f a t i g u e had on v i g i l a n c e i n s a i l i n g . The f a t i g u e complex was d i v i d e d i n t o p h y s i c a l and mental f a t i g u e components f o r the i n v e s t i g a t i o n . A b i l i t y to maintain s a i l t r i m was used to measure v i g i l a n c e performance on a s a i l i n g s i m u l a t o r . M e c h a n i c a l l y produced wind s h i f t s were presented to s u b j e c t s and the t ime requ i red to respond t o and c o r r e c t f o r each s h i f t was reco rded . The hypotheses s t a t e d that the d e f l e c t i o n time would i n c r e a s e with f a t i g u e and that the e f f e c t could be a t t r i b u t e d to e i t h e r a mental or a p h y s i c a l component. The i n v e s t i g a t i o n was a l s o designed to determine i f p h y s i c a l f i t n e s s was r e l a t e d to v i g i l a n c e performance. Two separate experiments were performed t o achieve t h i s purpose. Experiment 1 c o n s i s t e d of three 15 minute s e s s i o n s of s imulated s a i l i n g . Each s e s s i o n had d i f f e r e n t p h y s i c a l requirements fo r the s u n j e c r s as they s a i l e d s i t t i n g on the s i d e - d e c k , h i k i n g and h i k i n g wi th weight . F o r t y - f i v e w i n d s h i f t s were presented i n a random pat te rn us ing a vary ing i n t e r v a l i n each s e s s i o n . The exper imenta l task was a s imple t w o - c h o i c e response as the mainsheet was e i t h e r eased or p u l l e d to l e t the s a i l out or p u l l i t i n . D e f l e c t i o n t ime s t a r t e d with the i n c i d e n c e of the w i n d s h i f t on the s a i l and stopped when the sub jec t had completed the requ i red mainsheet adjustment . 46 Experiment 2 examined the r e l a t i o n s h i p between f i v e s e l e c t e d f i t n e s s components and v i g i l a n c e performance. The s e l e c t e d components were: number of s i t - u p s i n one minute , percent body f a t , muscular s t rength i n the h i k i n g p o s i t i o n , muscular endurance i n the h i k i n g p o s i t i o n and maximum oxygen uptake. The r e s u l t s of the f i v e p h y s i c a l f i t n e s s t e s t s were used with the mean d e f l e c t i o n t ime va lues f o r the three s e s s i o n s and the grand mean i n a c o r r e l a t i o n a n a l y s i s to determine which f i t n e s s c h a r a c t e r i s t i c s r e l a t e d to v i g i l a n c e performance. Conc lus ions The c o n c l u s i o n s a r r i v e d at as a r e s u l t of the i n v e s t i g a t i o n were: 1. Mental f a t i g u e d id not occur and v i g i l a n c e d i d not decrease over the f i f t e e n minute t e s t i n g p e r i o d . 2. P h y s i c a l f a t i g u e d id not a f f e c t v i g i l a n c e performance. The treatments used f o r the th ree s e s s i o n s produced no d i f f e r e n c e i n d e f l e c t i o n time s c o r e s . 3 . A l e a r n i n g e f f e c t occurred as d e f l e c t i o n t ime scores decreased w i t h each subsequent s e s s i o n . 4. Four of the p h y s i c a l f i t n e s s parameters , number of s i t - u p s i n one minute, percent «oody f a t , muscular s t r e n g t h i n the h i k i n g p o s i t i o n and muscular endurance i n the h i k i n g p o s i t i o n , showed 47 no r e l a t i o n s h i p with v i g i l a n c e performance. 5. Maximum oxygen uptake i s i n v e r s e l y c o r r e l a t e d wi th d e f l e c t i o n time s c o r e s . I t appears that i n d i v i d u a l s wi th h igher ae rob ic c a p a c i t y have b e t t e r v i g i l a n c e whi le s a i l i n g as they r e a c t to and adjust f o r w i n d s h i f t s f a s t e r . 6. T r a i n i n g programs f o r s a i l i n g should i n c l u d e a l a r g e a e r o b i c component as v i g i l a n c e i s a f a c t o r i n maintainance of optimum boat speed. _ _ _ _ _ _ _ _ 2 _ _ . For Fu r the r Research Because of the problems encountered i n t h i s i n v e s t i g a t i o n i t i s recommended that c e r t a i n aspects of the design be considered i n f u r t h e r r e s e a r c h . The r e l i a b i l i t y of the v i d e o -tape a n a l y s i s technique must be ensured. Removal of the human component i n the tape a n a l y s i s i s probably r e q u i r e d . An e l e c t r o n i c dev ice which measures t e l l t a l e d e f l e c t i o n would p rov ide the d e s i r e d r e l i a b i l i t y . Other f a c t o r s cou ld be changed to enhance f u r t h e r research attempts , e . g . , the wind v e l o c i t y should be i n c r e a s e d and the i n t e r - s t i m u l u s i n t e r v a l should a l s o i n c r e a s e , the t e s t i n g sess ions should be lengthened as the e f f e c t s of f a t i g u e are not manifested i n the f i r s t f i f t e e n minutes of s a i l i n g . I f deemed a p p r o p r i a t e , other v a r i a b l e s cou ld be added t o the procedures , e . g . , a requirement t h a t the s u b j e c t balance the boat or t h a t the t i l l e r be ad justed r a t h e r than the s a i l could _e i n c o r p o r a t e d . One important a d d i t i o n to the des ign would be p r a c t i c e t r i a l s as a l l p o s s i b l e w i n d s h i f t s should be 48 demonstrated p r i o r to each s e s s i o n . This would be a major s tep i n e l i m i n a t i n g the l e a r n i n g e f f e c t . Most of the d i f f i c u l t i e s encountered are a product of attempts at s i m u l a t i o n and methods f o r on - the -wate r t e s t i n g should be i n v e s t i g a t e d . BIBLIOGRAPHY 50 Adams, J . A . , and Humes, J . to . , Mon i to r ing Of Complex V i s u a l D i s p l a y s . IV T r a i n i n g For V i g i l a n c e . Human Factors*. 5 (1963) 147-53. Adams, J . A . , Humes, J . M . , and Stenson , H . H . , Mon i to r ing Of Complex V i s u a l D i s p l a y s : 3. E f f e c t s Of Repeated Sess ions On Human V i g i l a n c e . Human Factors*. 4 (1962) 149-158. Alderman, R.B. I n f l u e n c e Of L o c a l Fat igue On Speed And Accuracy In Motor L e a r n i n g . Research Q u a r t e r l y ^ 36 (1965) 131-140. Baker , C .H . A t t e n t i o n To V i s u a l D i s p l a y s During A V i g i l a n c e Task: 2 M a i n t a i n i n g The L e v e l Of V i g i l a n c e . B r i t i s h J o u r n a l Qf P s y c h o l o a y x 50 (19 59) 3 0 - 3 6 . Broadbent, D.S. And Gregory , M. , V i g i l a n c e Considered As A S t a t i s t i c a l D e c i s i o n . B r i t i s h J o u r n a l Of P s y c h o l o g y 54 (1963) 309-323. B u c k , l . , React ion Time As A Measure Of P e r c e p t u a l V i g i l a n c e . P s y c h o l o g i c a l B u l l e t i n * . 65 (1966) 291-304. C l a r k e , R . S . J . , H e l l o n , R.F. And L i n d , A. R. , E f f e c t s Of Temperature On Muscle S t r e n g t h . J o u r n a l Of Physiology*. (1958) 143 454. Deese, J . , Some Problems In The Theory Of V i g i l a n c e . P s y c h o l o g i c a l Review*. 62 (1955) 359-36 8 . Deutsch, J . A . And Deutsch, D., Comments On " s e l e c t i v e A t t e n t i o n : Percept ion Or Response?" Q u a r t e r l y J o u r n a l Of Exper imenta l Psycho logy , 19 (1963) 362-3637 F a u l k n e r , T.W. , V a r i a b i l i t y Of Performance In A V i g i l a n c e Task. J o u r n a l Of A p p l i e d Psychology*. 46 (1962) 325 -328 . F r a s e r , D .C . , The R e l a t i o n Of An Env i ronmental V a r i a b l e To Performance In A Prolonged V i s u a l Search . Q u a r t e r l y J o u r n a l Of Exper imenta l Psychology^ 5 (1953) 31 -32 . Ha ider , M. And D i x o n , N . F . , I n f l u e n c e s Of T r a i n i n g And F a t i g u e On The Cont inuous Recording Of V i s u a l D i f f e r e n t i a l Th resho ld . B r i t i s h Journa l 3f Psychology*. 52 (1961) 2 2 7 -237. H o l l a n d , J . G . Human V i g i l a n c e . Science*. 128 (1958) 6 1 - 6 7 . Humphreys, P.W. And L i n d , A . R . , The Blood Flow Through A c t i v e And I n a c t i v e Muscles Of The Forearm During Susta ined Hand-g r i p C o n t r a c t i o n s . J o u r n a l Of Physiology*. 166 (1963) 120. J e r i s o n , H . J . , A c t i v a t i o n And Long Term Performance. Acta P h y s c h i p l p g i c a , 27 (1967) 373-389. 51 L i n d , A.R. And M c N i c o l , G.W., C i r c u l a t o r y Responses To Sus ta ined Hand-gr ip C o n t r a c t i o n s Performed During Other E x e r c i s e , Both Rhythmic And S t a t i c . J o u r n a l Of P h y s i o l o g y , 192 (1967) 595. Mackworth, J . F . , Performance Decrement In V i g i l a n c e Threshold And High Speed P e r c e p t u a l Tasks . Canadian J o u r n a l Of Psychology , 18 (1964) 209-223. Mackworth, J . F . , V i g i l a n c e And A t t e n t i o n ^ Penguin Books L t d . Ba l t imore 1970. M a r i s c h i c k , V .L . And Kuznetsov, E . V . , Changes In Some P s y c h o l o g i c a l I n d i c e s Under C o n d i t i o n s Of F a t i g u e . _2EE___ P s i k h o l o q i i , 19 (1973) 118-121. McCormack, P . D . , Performance In A V i g i l a n c e Task As A F u n c t i o n Of Length Of I n t e r - s t i m u l u s I n t e r v a l And I n t e r p o l a t e d Rest . Canadian J o u r n a l Of Psychology, . 12 (1958) 242-260. Meyers, C. R . , E f f e c t Of Strenuous A c t i v i t y Upon React ion Time. Research Q u a r t e r l y , 40 (1969) 332 -337 . h u l l e r , E.3). , Das Arbeitsmaximum Bei S t a t i s c h e r H a l t e a r b e i t . _________s_____Xx 5 (1932) 602. P h i l l i p s , W.H. , I n f l u e n c e Of F a t i g u i n g , Warm-up E x e r c i s e s On Speed Of Movement And React ion Latency . Research Quarter ly^. 34 (1 963) 3 7 0 - 3 7 8 . Putnam, C . A . , A Mathematical Model Of H i k i n g P o s i t i o n s In A S a i l i n g Dinghy. Medicine And Science In S p o r t s t 11 (1979) 288 -292 . Rhomert, W. , Untersuchung S t a t i s h e r H a l t e r b e i t e n In Achstundigen A r b e i t s v e r s u c h e n . Int. Z Angew P h y s i o l _ 19 (1961) 35. Schmidt , R . A . , Performance And Learn ing A Gross Motor S k i l l Under C o n d i t i o n s Of A r t i f i c i a l l y Induced F a t i g u e . Research quar ter l y , , 40 (1969) 185-190. S h i f f i n , R . M . , and Schne ider , W., Toward A U n i t a r y Model For S e l e c t i v e A t t e n t i o n , Memory Scanning And V i s u a l Search; . A t t e n t i o n And Performance VI_ John Wiley and Sons, Toronto 1977. S o r i a , P . , Muscu la t ion V o i l e s Methode _____________ R a t i q n n e l Pour La Reqate Et La _________ Robert L a f f o n t P u b l i s h e r s P a r i s 1970. S t e r n , R . M . , Performance And P h y s i o l o g i c a l A rousa l During Two V i g i l a n c e Tasks Vary ing In S i g n a l P r e s e n t a t i o n Rate . P e r c e p t u a l And Motor S k i l l s , 23 (,1966) 987-996. S t r e e t , D. , Short -handed Watch Systems. S a i l Magazine^ 6 (1975) 5 3 - 5 8 . 52 S t r o h , C M . , V i g i l a n c e ^ The Problem Of Susta ined A t t e n t i o n . . Pergamon P r e s s , Toronto 197K Tre isman, A . M . , S t r a t e g i e s And Models Of S e l e c t i v e A t t e n t i o n . P s y c h o l o g i c a l Review*. 76 (1969) 225-230. Tre isman, A . M . , and R i l e y , J . 3 . , I s S e l e c t i v e A t t e n t i o n S e l e c t i v e Percept ion Or S e l e c t i v e Response. A Fur ther T e s t . J o u r n a l Of Exper imenta l Psychology*. 79 (196 9) 27 -34 . Yuhasz, M . S . , A Method For The I n d i v i d u a l P r e d i c t i o n Of Opt imal Body Weight. P h y s i c a l f i t n e s s And Spor ts A p p r a i s a l Laboratory Manual , U n i v e r s i t y Of Western O n t a r i o , London 1965. F i t n e s s I n s t i t u t e B u l l e t i n * . S a i l i n g Not For S o f t i e s . 1 (1973) 1 -4. '~~z, APPENDIX F i g u r e k 1. S a i l i n g S imulator Tes t ing Apparatus Side View of S a i l i n g S imulator 55 Rear view of S a i l i n g S imula to r 56 Diagram of Laser Frame Diagram Showing T e l l t a l e P o s i t i o n i n g 58 S i d e View of Wind Machine 59 Rear View of Wind Machine 60 The Track and D o l l y Used For C r e a t i n g W i n d s h i f t s 61 Videotape System Used For Secording T e l l t a l e A c t i v i t y Diagram of the V i s i o n Occ luding Bar r i cade Side View of St rength Tes t ing Apparatus Side View of St rength Tes t ing Apparatus With a Subject 65 T r e a d m i l l and Beckman Metabolic: Measurement Apparatus Heart Rate Monitor 67 Table A 3 . Raw Data For Experiment 1. 0. 90 1. 95 2.25 2. 12 1. 60 1.40 1.48 2. 18 2. 34 2. 77 2 . 20 1. 37 1.53 0.89 2. 93 1. 94 2. 39 1. 58 2.71 2.49 2. 20 4. 00 2. 76 3 . 86 2. 71 2.06 2 . 05 3,. 52 1.43 2. 59 2. 47 2.89 2.74 1 . 98 2 . 76 0.7 3 1. 50 2. 38 2.74 2. 00 1. 61 1.44 3 . 72 4. 05 1.54 3. 75 2 . 77 1.63 1. 87 1. 97 1.90 2. 61 1. 65 2. 73 1. 80 2. 60 2. 15 1.2 3 2 . 55 1. 99 1. 90 3 . 25 2. 03 2.11 11 86 1. 76 1. 84 1. 94 1 . 80 1; 91 2 .45 1. 65 1. 87 0.60 1.41 1. 56 1.61 1.20 1. 47 2 . 20 2. 26 1. 70 2. 81 1. 32 2. 54 1. 60 2. 19 2. 70 2. 55 3 .71 1. 24 2. 19 1.92 2. 50 2 . 27 1.86 4.05 2. 11 2. 88 1. 49 2. 20 2. 44 1.29 1. 72 2 . 05 2. 09 2. 45 2. 33 2 .50 2. 07 1. 98 3. 94 1. 75 2. 34 1. 19 2.49 2. 41 1. 86 1. 36 0. 79 3 . 30 1.69 1.41 2 . 05 2 . 48 1. 89 2. 00 1. 77 1.39 3 . 16 1 . 94 1.87 2 . 09 2. 71 1.08 2. 99 2 . 38 0.92 2. 02 2. 72 3.30 4 .70 2 . 10 2. 96 3 . 45 1. 77 4. 53 1.15 1. 76 5 . 09 1.50 1. 20 3 . 31 3 .80 1. 00 2 . 70 0. 76 4. 01 2. 60 3 . 19 2.91 2 . 01 1. 81 2. 31 2. 74 2. 36 2.74 3 . 97 2 . 06 2. 29 1. 56 4. 09 1. 90 1.72 2. 09 2 . 70 2.29 3 . 36 2. 26 1.91 2. 91 1. 85 1.69 2. 50 2. 29 1.98 3.50 2 . 74 3. 20 2. 46 3 . 98 4. 61 1.71 1. 91 2. 13 1.30 2. 49 2. 10 2 i20 2. 36 2. 27 1. 67 1. 50 3 . 81 2. 08 2.07 1. 95 2. 25 2 .53 2. 60 2. 49 2.01 2.83 1. 65 2. 06 3. 06 1. 67 2. 57 1. 94 2. 19 1. 40 2.70 3 . 69 3 . 59 1.55 1. 55 2. 20 1.62 3. 35 1. 86 1.40 3 . 60 3 . 06 2. 60 1. 60 2. 52 6. 24 2.50 2. 80 2. 60 2.90 3 . 04 2. 46 2.82 2. 33 2. 50 1. 56 2. 46 2. 62 2. 30 2.38 2. 50 2. 65 3 . 55 1. 70 2. 29 4.26 3.41 2 . Q7 2 . 39 1. 88 2. 70 2. 26 2.24 3 . 06 2 . 69 2. 24 2. 97 3 . 46 1.67 1. 29 2. 30 1. 56 1. 87 1. 39 1.95 2. 82 1. 30 1. 87 2. 16 2. 19 2. 46 0.50 1. 99 1. 85 2.50 •1. 71 2 . 21 2.23 0. 83 2. 34 0. 21 1.76 2. 67 1.57 2.20 1. 86 2 . 41 2 .23 1. 30 1. 34 1. 97 1.64 1 . 80 1. 53 1.67 1. 79 2. 21 1.96 1. 86 2. 26 2.03 2. 51 2 . 87 0. 64 1. 50 1. 90 0. 96 2. 30 1. 26 2.30 2 . 75 1. 57 2. 85 2. 69 2. 10 3. 18 1.71 2. 27 2. 15 1.60 2. 76 2. 07 2.84 2.31 2. 80 1. 97 5. 17 1. 84 2. 20 2.56 2. 54 2 . 04 2.04 1. 39 3 . 00 1 . 90 1.90 1. 33 3. 26 3. Q0 1. 86 1. 97 1.33 2. 09 1 . 82 1.96 2. 43 2. 24 2.46 1. 79 1. 79 1.04 2. 09 0. 97 1.90 2. 26 1. 01 2. 47 2. 10 1. 78 3 . 57 0. 94 1. 04 3 . 22 1.60 0. 70 2. 25 2 .30 1.76 1. 95 1. 53 1. 61 1. 64 1. 70 2.37 2. 25 2 . 39 0. 37 3. 35 2. 30 2.70 1.57 1. 57 3 . 27 0. 37 0. 62 1. 19 1.96 1. 79 1.64 2.43 2. 21 2. 56 1. 59 1. 20 2. 52 2.40 2. 75 3 . 19 3.60 1. 96 3 . 40 4. 44 3. 77 2 . 03 3 . 64 2.20 3 . 09 2 . 63 2.04 1. 73 1. 43 3.31 2 . 76 1. 46 1. 77 2. 47 2. 94 3. 99 3 .40 3 . 76 2 . 50 3.03 1. 74 1. 99 2.88 1.91 1. 94 2 . 30 4. 06 1. 90 2. 51 4. 15 2. 85 2 . 24 1.66 2. 35 2. 85 2.66 1 . 7 0 2. 37 2.36 3. 19 1. 35 1.76 2 .25 2. 33 1. 43 1. 51 1. 77 4. 45 2.56 1. 95 1. 99 2. 11 2. 70 2. 15 2.49 1.66 2 . 57 2. 36 2. 55 5. 50 2. 50 1.66 2. 37 2,. 83 8. 14 3 . 70 2. 40 2. 13 2 . 86 1. 18 2 . 21 3. 67 3 . 40 2. 83 2. 42 3. 11 1. 40 3.56 2 . 53 2. 31 3.20 2. 00 2. 40 4.20 2. 59 1. 76 3.81 4. 14 5 . 95 2 . 53 3. 33 2. 45 2. 14 3 .75 2. 63 4. 13 1.10 2. 67 2 . 43 2 .4610.74 2 . 36 2. 61 3. 90 2. 39 3. 69 2.76 3. 17 1. 95 1.66 2. 10 2. 31 2 .65 4 .19 1 . 51 2 , 47 4. 80 2. 14 1. 37 2.83 3 . 07 1. 63 3 . 15 2. 70 2. 75 1.38 1. 34 2. 01 1110 2. 90 2 . 09 2.11 2.50 2 . 40 1. 69 1. 99 2 . 69 2. 69 2.04 2. 12 3 . 26 1. 99 1. 88 3 . 03 2.17 3 .21 2. 34 1. 25 2. 10 1. 90 2. 70 2.10 68 1.08 2. 04 1. 57 1.49 1. 48 2. 14 2 . 40 2. 85 2. 54 2. 25 2 . 10 1. 87 2 . 01 2. 13 3 . 57 1. 77 3.57 2. 41 1. 51 3 . 20 21 01 2 . 06 2. 10 1. 41 1. 89 1. 77 2 . 96 1. 89 3. 50 2. 16 2. 70 2. 80 1. 95 2. 37 1. 59 2.44 2. 66 2. 71 2 . 89 2 . 75 3 . 39 2,. 28 3 . 16 2. 03 1. 99 1.67 2. 83 3 . 94 4.86 2. 86 2. 70 1 . 39 1. 83 4. 19 3. 97 2. 85 1. 80 2 . 21 1. 30 2 . 78 2. 66 2. 1 1 2. 02 2. 10 3 . 50 2. 48 1. 55 2.75 1. 55 2. 22 2 . 19 1. 72 3 . 83 1. 80 2. 28 3. 00 2. 60 1. 55 2. 63 2. 61 2.01 2. 40 3 . 69 1. 71 3 . 00 1. 76 2. 79 3 . 27 1. 04 1. 90 3 . 50 2. 94 2. 09 1.60 3. 50 2 . 64 1. 78 1 . 58 2. 65 3. 93 2. 02 3. 03 1. 75 1. 91 1. 81 2. 02 2.77 2. 49 2 . 74 1. 92 3 . 70 2. 86 3. 11 2. 08 3 . 66 3 . 79 1. 39 3 . 10 1. 80 4. 28 2. 11 1. 48 2.89 2. 51 1. 02 2. 93 2. 45 2 . 51 1. 48 2. 10 1. 70 2. 72 3 . 47 2. 12 3 . 97 2.68 1. 89 1. 36 2.42 2. 89 1. 97 2 . 09 2 . 70 1. 81 1. 89 1. 93 2. 38 2. 40 2.44 2. 18 2. 39 3.67 1. 96 2. 52 1. 06 2 . 27 2. 57 1.69 2. 17 2. 34 2. 77 1. 95 2. 50 3 . 17 3 . 97 2. 25 3. 14 1. 47 1. 53 2 . 24 1. 57 3 . 37 1. 37 2. 16 2. 06 1. 90 1. 36 2 . 98 1. 39 2. 34 1.36 2. 37 1. 74 2.70 2. 71 3 . 12 1. 66 1. 51 3 . 20 2. 31 2 . 83 3. 17 1. 51 2.20 2. 99 2. 98 4.2 1 2. 47 2. 87 1. 71 4 . 50 1. 91 2.70 1. 78 3 . 96 2. 21 3 . 57 1. 89 2. 73 2 . 00 2. 31 2. 10 2. }4 1. 89 1. 34 2.20 2. 96 1. 60 2. 25 2. 36 3 . 59 4. 19 2. 04 1. 69 2. 54 2.30 2. 66 2. 26 2.61 3. 2.3 1. 70 2 . 46 1. 95 3 . 80 1. 43 1. 50 3. 31 2. 10 3 . 90 2 . 01 2 . 70 1.70 3. 64 1. 55 3.02 2. 20 2. 67 1.99 1. 07 1. 96 1. 93 2. 19 2. 71 1. 79 2 . 61 2. 15 2. 09 1.85 2. 41 1. 90 2.06 2. 46 1. 97 2 . 09 3 . 14 1. 64 2. 39 2. 30 2. 50 2 . 24 1. 46 2. 14 2. 33 1.97 2. 30 2. 76 1 . 64 1. 77 2. 91 1. 64 1 . 79 2. 02 2. 34 1.60 2. 53 1. 77 2. 31 1. 73 2i 71 1. 84 1. 68 2 . 83 1. 54 1. 40 2. 36 3 . 07 2 . 50 1. 87 1. 71 2. 34 2. 75 1. 76 2.01 2. 90 1. 60 1.8 3 2. 00 3 . 19 1. 46 3 . 41 2. 21 2. 44 2. 91 2. 42 2. 40 1. 76 2 . 16 2. 27 2. 96 2. 52 2 . 15 1. 64 2. 10 2. 41 1. 75 2. 31 1. 90 3 . 19 2.62 1. 65 1. 73 4.60 2. 53 1. 84 1. 60 1. 56 1. 47 2.06 3 . 33 2. 70 1. 62 2. 36 1. 80 2. 26 2. 12 2. 30 2. 1 1 3.04 2. 00 3 . 07 1.86 2. 70 1. 76 1. 79 2 . 28 1. 92 2. 13 3 . 18 1. 27 2. 59 1.68 2. 24 2. 03 3.35 2. 41 2 . 33 1. 47 3 . 19 1. 95 1.94 1. 52 2. 61 2. 95 1.92 2. 03 2. 89 1. 89 4. 84 2. 40 1.91 4. 61 2. 25 2. 57 2. 61 3 . 25 3 . 30 2 . 62 2 . 70 1. 83 1. 70 5. 31 2. 70 2. 11 2. 47 1. 98 2. 14 2. 39 3 . 80 2. 89 4. 20 2. 50 1. 92 2 . 48 2. 09 2 . 23 3.22 1. 77 2. 29 2. 54 2. 25 2. 43 2. 13 2. 13 2. 64 2. 29 2. 10 1. 76 1. 60 2,. 78 2 . 04 2. 43 1.76 1. 45 1. 84 2. 11 2 . 09 1. 96 2.35 1. 49 3 . 50 2 . 50 1. 28 2. 97 1. 86 2. 39 2. 20 1. 47 1. 97 2 . 43 0. 82 1.47 2. 06 2 . 50 1. 01 21. 47 1. 23 2i 82 2. 64 1. 40 2. 14 1.62 2 . 39 1. 17 1. 63 2. 51 2 . 79 1. 53 1. 14 2. 34 1. 94 1 . 15 2. 45 1. 35 3.49 1. 80 2. 29 1.97 2. 49 2. 09 1. 91 1. 95 1. 88 2.27 2. 14 2. 16 1. 82 2. 06 1. 49 3. 23 1. 92 1. 82 1. 63 2. 43 2. 06 1. 77 2.60 2. 67 2. 17 2 . 50 7 . 43 1. 91 2. 00 2 . 41 1. 76 2 . 76 1.72 2. 31 2. 35 1.92 3 . 34 2 . 39 2 . 19 2 . 03 2. 69 2. 54 2. 88 2. 63 1. 63 2. 90 1. 64 3 . 39 2.6 1 2. 57 1. 30 i 5.50 1. 90 2 . 29 2.27 4. 04 2. 96 4. 09 2 . 16 4. 16 4. 59 2 . 24 2. 63 2. 73 3.89 2. 34 3 . 84 3 . 18 3 . 10 5 . 65 2. 40 2.. 57 2. 02 21 29 7. 85 1. 45 2. 63 3 . 22 4. 64 3 . 72 8.79 1. 75 3 . 24 2. 21 3 ; 76 2 . 86 2. 00 1. 59 6. 60 4. 60 8.36 1,. 88 2. 64 2.54 2. 78 2 . 30 4. 54 3 . 66 3 . 89 1.80 2. 83 2. 43 5. 01 2. 10 2 . 87 3 . 52 7. 10 2. 13 1. 73 4. 99 2 . 65 3 . 95 2.24 2. 15 3 . 77 3 . 80 5. 47 1. 80 3. 24 4 . 04 1. 99 2 . 87 2. 64 3 . 07 2 . 70 1. 50 2. 60 2. 24 2 . 14 2. 09 3 . 23 4. 48 1. 86 4. 40 5 . 96 2.62 2. 04 5 . 34 6.20 3. 43 2. 31 1. 50 2. 13 2 . 46 3.09 2. 92 4. 83 7. 07 1. 08 2 . 80 1. 77 3 . 34 2. 51 1. 64 1.67 2. 71 6 . 23 3 . 26 2. 39 5 . 13 3 . 37 6. 04 1. 32 2. 53 2. 27 2. 70 2 . 43 69 2. 06 2 . 40 2 . 74 3 . 03 2. 60 3 . 87 2. 67 1. 87 3. 78 2. 81 1. 41 6. 24 3 . 94 3 . 82 4. 17 1. 47 4. 00 2 . 52 1. 96 2 . 63 2 . 79 2. 46 3. 24 2. 93 2. 80 2. 62 3.55 2 . 41 2. 82 3 . 00 2. 59 2 . 24 2. 83 2. 94 1. 73 2. 57 2. 29 3 . 00 3 . 03 2.66 4. 43 2. 34 2 . 86 6. 37 2. 18 4. 73 2 . 78 2. 55 2. 13 2 . 90 2 . 56 2 . 72 3;09 2 . 58 2. 40 2 . 70 2. 62 3 . 76 2. 38 2. 72 2. 42 2. 29 2. 97 6 . 95 2. 78 2 . 07 2. 97 3. 07 2. 60 2. 54 3 . 81 2.77 2 . 55 1. 69 1. 96 2. 51 3 . 50 2. 61 4. 14 2 . 71 1. 39 2. 92 3 . 68 1. 82 2.30 1. 92 2. 93 2. 78 1. 94 2. 93 1. 95 2 . 50 1. 85 2. 81 1. 63 4. 97 3 . 86 3. 17 2. 33 2. 77 2 . 11 2. 46 4 . 5 2 1. 99 3 . 60 2. 37 2. 47 3 . 82 2 . 21 1. 61 2. 27 2. 56 2. 76 1. 70 1. 92 2 . 31 2.42 4. 57 3. 25 2. 44 2. 75 1. 33 2. 68 2 . 54 3 . 36 2. 69 2. 49 2 . 42 2. 20 4.21 2. 34 1. 99 2 . 41 1. 93 2. 74 2. 16 2 . 60 1. 71 3. 90 2. 87 1. 54 2 . 65 2.62 2. 15 2. 29 2. 67 2. 52 2 . 25 2. 00 2. 06 2'. 00 2. 78 2. 05 1 . 70 1 4. 17 2. 82 2. 80 2. 74 2. 03 2 . 04 2 . 34 6.07 2 . 85 1. 9 2 2. 19 2. 67 2. 34 1. 49 2 . 22 2 . 21 3 . 72 2. 25 2. 63 2. 10 2. 49 2. 82 2. 87 2. 50 4. 53 4. 14 1.47 3. 10 3. 49 1. 64 2. 20 2. 45 1. 43 7. 13 2. 32 2. 47 2. 15 2. 24 1. 91 2. 44 2. 07 2 . 71 2. 01 3 . 45 2. 86 1. 94 1. 91 2 . 76 4. 77 4. 59 2 . 90 3 . 76 1.71 2 . 61 3 . 04 1. 88 5. 77 2 . 26 2. 77 6 . 30 2 . 95 1. 50 2. 26 1. 96 2. 34 1. 80 1. 80 2. 53 3 . 28 2. 66 4. 29 1. 91 4. 96 1.87 1.9112.09 2 . 76 3 . 90 4. 43 1. 76 2. 84 3 . 10 31 50 1. 73 1. 90 4. 59 2. 29 1. 86 2. 41 2 . 99 3 . 24 2 . 70 1. 81 2. 66 2. 19 3 . 85 2. 23 1. 81 3 . 18 4. 84 3. 64 3. 09 3 . 15 3 . 54 2 . 04 2. 47 2. 93 4. 33 2. 31 2. 24 2.14 2 . 78 2. 78 2. 87 3. 29 2'. 46 2. 26 4. 01 1. 28 1. 23 2. 14 2. 01 1. 63 2. 83 2. 54 2. 17 2 . 81 2. 82 1. 67 1.79 3 . 09 1. 60 2. 89 2. 89 2 . 32 2. 19 2 . 76 3 . 51 3. 33 3. 54 2. 57 2 . 60 2 . 10 1. 51 2. 96 2. 17 2. 66 1. 59 2. 96 2 . 72 2 . 73 1. 49 3 . 10 3 . 51 2. 50 2 . 55 3 . 34 3 . 07 4. 87 2. 56 3. 07 2. 70 3 . 58 2. 19 3 . 15 2. 77 2 . 44 2 . 03 1177 2. 35 2. 92 2 . 35 2. 09 2 . 68 2. 94 1. 71 1. 95 2. 13 3 . 46 2 . 40 2. 46 2. 14 4. 22 4. 19 1. 80 3 . 14 3 . 26 1.86 2. 77 2. 16 4. 86 2. 91 2. 13 1o 49 3 . 12 2. 45 2. 26 2 . 61 2. 68 2. 81 3 . 50 2 . 96 2. 87 2. 48 4. 33 2. 70 2. 59 3. 51 2. 82 1. 89 3 . 45 3 . 96 2 . 7 3 2 .25 3 . 12 4. 7 0 3 . 62 2. 92 1. 89 3 . 03 2 . 33 2. 82 3. 01 2. 70 1.79 1. 67 2. 27 2. 13 2. 72 1. 58 3 . 39 8. 53 2. 30 2. 16 1. 78 2. 83 3. 04 2. 12 3 . 05 4.36 3 . 21 4. 74 4. 15 4. 80 2. 00 3 . 56 2. 01 3 . 58 2 . 91 2. 78 3. 40 1. 93 4. 34 2. 19 2 . 94 3 . 90 3 . 03 2 . 00 1.40 3. 42 2. 24 3 . 24 3 . 20 2 . 02 5 . 06 3 . 09 2. 60 2. 67 2. 71 3 . 27 Table A 4. Means and Standard D e v i a t i o n s For Experiment S i t i n g On The Side Deck T r i a l Mean Standard D e v i a t i o n 1 2. 42 1. 35 2 2.66 .79 3 2. 26 . 7 4 4 2. 58 . 51 5 2.44 . 8 9 6 2.63 . 7 3 7 2. 84 . 9 6 8 2.62 1.27 9 2.73 . 8 9 10 2.65 . 9 1 11 2.42 .69 12 2. 90 1.0 9 13 1.88 . 6 5 14 2.32 . 8 3 15 2.78 . 8 2 16 2. 12 . 70 17 2.25 . 7 4 18 2.47 .59 19 3 . 11 1.01 20 2. 23 . 7 7 21 2.56 . 6 5 22 2.20 1.27 23 2.56 . 6 0 24 3. 36 1.62 25 2.98 1.39 26 2.76 .74 27 2.52 1.07 28 2. 68 . 8 8 29 2.38 . 75 30 2.71 1.99 31 2.23 . 5 1 32 2.54 . 3 9 33 2. 24 . 6 8 34 2. 75 1.52 35 2. 41 . 4 1 36 2. 16 .82 37 2. 17 . 6 9 38 2.55 1.30 39 2.66 . 9 9 40 2.82 1. 79 41 2.29 . 5 3 42 2. 12 . 4 1 43 2.69 . 7 0 44 2. 69 . 7 6 45 2.49 1.54 Hik ing 1 2.48 1.00 2 2.23 . 5 3 3 2.49 . 9 3 4 2.61 1.01 5 2. 10 . 9 4 6 2. 42 . 5 3 7 3.09 .86 8 2.12 .54 9 2.52 . 5 2 10 2.43 .74 11 3.09 1.61 12 3.14 1.18 13 2.17 . 7 0 14 2.33 . 93 15 2.81 1.29 16 2.10 .84 17 2.16 . 6 0 18 2.37 .43 19 2.63 . 6 9 20 2.21 . 7 4 21 2.76 1.01 22 2.09 .58 23 2. 64 . 9 8 24 3 . 10 1.01 25 2.24 . 7 6 26 2. 53 .67 27 2.60 . 4 3 28 2. 73 . 8 4 29 2.64 1.93 30 2.45 1.05 31 3.32 2.81 32 2.70 . 9 6 33 2. 30 . 9 3 34 2.01 . 9 5 35 2.69 . 7 0 36 2. 30 . 8 8 37 2.37 .78 38 2.73 . 7 3 39 2.45 1.44 40 2.42 .60 41 2.33 . 9 9 42 2.74 . 9 5 43 3. 15 1.30 44 2.71 . 5 7 45 2.43 . 64 H i k i n g With Weight 1 1.94 .70 2 2. 37 . 7 4 3 2.05 .80 4 2.63 . 3 7 5 2.00 .6 3 6 2.83 1. 09 7 3. 50 2.20 8 2. 45 1.32 9 2. 68 . 8 7 10 2 . 51 1.00 11 2. 46 .56 12 2. 93 1.15 13 2. io . 8 1 14 2. 36 .74 15 2. 69 1.8 3 16 2. 65 1.36 17 2. 60 . 9 5 18 2. 80 . 70 19 2. 83 1.13 20 2. 91 2.50 21 3. 32 1.76 22 2. 27 . 82 23 2. 64 . 8 5 24 2. 53 . 4 7 25 2. 11 . 8 5 26 2. 57 . 3 5 27 2. 33 .54 28 2. 70 . 7 6 29 1. 96 . 8 0 30 2. 38 .96 31 2. 85 .59 32 2. 57 .84 33 2. 29 . 8 5 34 2. 06 .60 35 2. 80 . 6 2 36 2. 36 1.13 37 2 . 13 . 7 7 38 2. 75 1.29 39 2. 23 . 7 1 40 2. 87 1.04 41 2. 32 . 7 9 42 2 . 36 .60 43 2. 61 . 6 0 44 2. 93 . 7 4 45 1. 91 . 6 5 Table A 5. C o r r e l a t i o n Mat r i x For Experiment 2 . S i t - u p s % Fat Stren Endur maxV02 S i t u p s 1 .0000 % Fat - 0 . 0 2 8 4 1. 0000 St ren 0.4426 - 0 . 4 9 5 9 1 .0000 Endur 0.2171 - 0 . 2003 0. 1453 1.0000 maxV02 0.0083 - 0 . 2 9 6 5 0.0189 0.4412 1.0000 S i t t i n g - 0 . 2 1 1 5 0. 3425 -0 .4904 - 0 . 3 8 1 1 - 0 . 6 2 5 2 H i k i n g 0.0269 0. 15 32 - 0 . 0 8 9 9 - 0 . 3 8 1 4 - 0 . 8 0 2 2 Weight - . 0 2 2 1 1 0. 0405 - 0 . 3 7 7 4 - 0 . 5 5 1 1 - 0 . 5 9 8 9 Gnd Mn - 0 . 1461 0. 1951 ^0.3459 - 0 . 4 6 7 9 - 0 . 7 2 9 6 S i t t i n g H i k i n g Weight Grand Mean S i t t i n g 1.0000 H i k i n g 0 . 7 8 1 6 1.0000 Weight 0 .8 114 0. 7626 1.0000 Gnd Mn 0.9372 0. 9157 0.9239 1.0000 74 Table a 6 . , Raw Data For The R e l i a b i l i t y A n a l y s i s 1 2 3 4 2. 46 3 . 04 2. 00 2. 30 2. 14 5. 57 4. 42 3 . 70 41 22 3 . 83 4. 01 3 . 96 4. 19 6 . 23 4 . 80 4. 13 1. 80 1. 90 1. 86 1. 86 3 . 14 4. 00 3 . 34 3 . 57 3 . 26 3 . 01 3 . 94 2. 78 1. 86 2 . 44 2. 41 2. 39 2. 77 2 . 7 7 3 . 51 2. 66 2. 16 3 . 23 1. 62 2. 20 4 . 86 2 . 96 3. 18 3. 57 2. 91 2 . 51 2. 52 2. 89 2. 13 2. 07 1. 65 1. 88 1. 49 4. 07 1. 85 1. 81 3 . 12 3 . 03 3 . 24 3. 14 2. 45 2 . 81 2. 04 2. 74 2. 26 3 . 03 2. 25 2. 45 2 . 61 3 . 03 2. 57 2. 69 2 . 68 2 . 89 2. 48 2. 89 2. 81 3 . 54 3 . 24 3 . 49 3. 50 3 . 45 3 . 49 2 . 52 2. 96 3 . 47 3 . 23 3 . 45 2. 87 2 . 78 2. 87 2. 70 2. 48 2 . 79 2 . 43 2. 41 4. 33 4. 55 4. 38 4 . 62 2. 70 3 . 65 3. 68 3 . 58 2. 59 3 . 37 2. 28 2- 61 3 . 51 3 . 57 4. 42 3 . 21 2. 82 2. 73 2. 61 2. 73 1. 89 1. 98 2. 16 1. 99 3 . 45 3 . 97 4. 00 3 . 36 3 . 96 3 . 90 3 . 36 4. 34 2. 73 2. 11 2. 86 2. 60 2. 25 2. 42 2. 14 2. 16 3 . 12 2. 73 2. 76 2. 65 4. 10 4 . 00 4 . 21 4. 12 3. 62 3. 33 3 . 23 3. 57 2. 92 2. 97 3 . 35 4. 23 1. 89 2. 30 2. 10 1. 95 3. 03 2 . 91 2. 77 2. 95 2. 33 2. 27 2. 20 2. 44 2 . 82 3. 49 2. 30 3. 27 3 . 01 4. 35 2. 48 2. 34 2. 70 3 . 10 2. 78 3 . 42 1. 79 1. 73 2. 24 2- 07 5 S I G 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077408/manifest

Comment

Related Items