Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Electronic versus mechanical loading in the determination of peak oxygen consumption in bicycle ergometry Clarke, Mark Anthony 1980

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1980_A7_5 C43.pdf [ 4.02MB ]
Metadata
JSON: 831-1.0077407.json
JSON-LD: 831-1.0077407-ld.json
RDF/XML (Pretty): 831-1.0077407-rdf.xml
RDF/JSON: 831-1.0077407-rdf.json
Turtle: 831-1.0077407-turtle.txt
N-Triples: 831-1.0077407-rdf-ntriples.txt
Original Record: 831-1.0077407-source.json
Full Text
831-1.0077407-fulltext.txt
Citation
831-1.0077407.ris

Full Text

ELECTRONIC VERSUS MECHANICAL LOADING IN THE.DETERMINATION OF PEAK OXYGEN CONSUMPTION IN BICYCLE ERGOMETRY  (ARK ANTHONY CLARKE B.P.E., U n i v e r s i t y o f B r i t i s h Columbia, 1976  A THESIS SUBMITTED IN PARTIAL.FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION  in THE FACULTY OF GRADUATE STUDIES (School o f P h y s i c a l E d u c a t i o n and R e c r e a t i o n )  We a c c e p t t h i s t h e s i s as c o n f o r m i n g to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA A p r i l 1980  Q  Mark Anthony C l a r k e , 1980  In p r e s e n t i n g  t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the r e q u i r e m e n t s f o r  an advanced d e g r e e a t the U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and I f u r t h e r agree that permission f o r s c h o l a r l y p u r p o s e s may by h i s r e p r e s e n t a t i v e s .  for extensive  study.  copying of t h i s thesis  be g r a n t e d by the Head o f my Department o r I t i s u n d e r s t o o d t h a t c o p y i n g or p u b l i c a t i o n  o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my written  permission.  Department The U n i v e r s i t y o f B r i t i s h Columbia 2075 Wesbrook P l a c e V a n c o u v e r , Canada V6T 1W5  DE-6  BP  75-51  1E  ii ABSTRACT  The purpose o f the s t u d y was t o d e t e r m i n e  i f d i f f e r e n c e s i n the  l o a d i n g ( o r b r a k i n g ) systems o f two d i f f e r e n t t y p e s o f s t a t i o n a r y b i c y c l e ergometers  (Monark and D y n a v i t models) i n f l u e n c e d the p e r f o r m a n c e s  of  s u b j e c t s i n s i m i l a r submaximal and maximal e x e r c i s e . A maximal t r e a d m i l l t e s t , a l s o performed  by the s u b j e c t s , was used as a c r i t e r i o n measure w i t h  w h i c h t h e maximal b i c y c l e e r g o m e t e r t e s t r e s u l t s were compared. The p o s s i b i l i t y of f i n d i n g d i f f e r e n c e s i n the performances two b i c y c l e e r g o m e t e r s  o f s u b j e c t s on the  and o f s i m i l a r i t i e s between maximal b i c y c l e and  t r e a d m i l l t e s t s would appear t o have i m p o r t a n t i m p l i c a t i o n s f o r l a b o r a t o r y and f i e l d t e s t i n g p r o c e d u r e s , as w e l l as f o r c o s t s o f equipment used i n p h y s i c a l f i t n e s s work and e x e r c i s e p h y s i o l o g y . T h i r t e e n n o n - t r a i n e d , c o l l e g e - a g e d male v o l u n t e e r s , 18 t o 26 y e a r s , took p a r t i n t h e s t u d y . Each s u b j e c t performed  one t e s t on each o f t h r e e  p i e c e s o f t e s t i n g e q u i p m e n t ; the D y n a v i t b i c y c l e , the Monark b i c y c l e , and t h e t r e a d m i l l . Each t e s t c o n s i s t e d o f a maximal e x e r c i s e bout o f a c o n t i n u o u s , i n c r e m e n t a l n a t u r e , d u r i n g w h i c h t i m e the a p p r o p r i a t e p h y s i o l o g i c a l d a t a  was  r e c o r d e d . T h e r e was an i n t e r v a l o f a t l e a s t t h r e e days between t e s t s , the s u b j e c t s being a s s i g n e d treatment orders v i a a L a t i n square  design.  P r i n c i p a l v a r i a b l e s examined d u r i n g maximal e x e r c i s e were t o t a l work time and peak oxygen consumption;  a t submaximal e x e r c i s e l e v e l s t h e y were  oxygen uptake and h e a r t r a t e . O t h e r v a r i a b l e s examined, a l t h o u g h n o t o f c e n t r a l importance  t o t h e s t u d y , were maximal h e a r t r a t e , maximal oxygen  p u l s e , submaximal oxygen p u l s e , and s u b j e c t i v e r e s p o n s e t o e x e r c i s e . A Beckman M e t a b o l i c Measurement C a r t , i n t e r f a c e d w i t h a  Hewlett-Packard  Data A c q u i s i t i o n system, r e c o r d e d t h e p e r t i n e n t p h y s i o l o g i c a l d a t a , w h i c h  iii was  then analyzed  b y t h e use o f one. and two-way ANOVA's and Newman-Keuls  p o s t hoc t e s t s where  appropriate.  The r e s u l t s i n d i c a t e d no s i g n i f i c a n t d i f f e r e n c e s i n t o t a l work t i m e , peak oxygen consumption', maximal h e a r t r a t e , maximal oxygen p u l s e , submaximal h e a r t r a t e , submaximal oxygen u p t a k e , submaximal oxygen p u l s e , and  subjective  r e s p o n s e to e x e r c i s e between the two b i c y c l e e r g o m e t e r s . O n l y the t r e a d m i l l e l i c i t e d h i g h e r v a l u e s o f peak oxygen c o n s u m p t i o n t h a n e i t h e r o f the c y c l e e r g o m e t e r s . T h i s Tack o f a s i g n i f i c a n t d i f f e r e n c e s u g g e s t s t h a t a l t h o u g h t h e r e may  be s t r u c t u r a l d i f f e r e n c e s i n t h e l o a d i n g ( o r b r a k i n g ) systems o f  the D y n a v i t and Monark e r g o m e t e r s , t h e s e d i f f e r e n c e s a r e n o t r e f l e c t e d by the subjects'* p h y s i o l o g i c a l r e s p o n s e s t o c o m p a r a b l e l e v e l s o f  exercise  i n t e n s i t y . T h u s the r e s u l t s i n d i c a t e t h a t t h e s e b i c y c l e s c o u l d be used interchangeably  f o r such p r e d i c t i v e t e s t s o f p h y s i c a l work c a p a c i t y as  the  A s t r a n d - R y h m i n g P r e d i c t e d Oxygen Uptake T e s t o r the M o d i f i e d S j o s t r a n d  PWC  Test.  iv TABLE.OF CONTENTS Chapter  Page ABSTRACT  i i  LIST OF TABLES  vi  LIST OF FIGURES  vii  ACKNOWLEDGEMENTS I  . . . . .  viii  STATEMENT OF THE PROBLEM  1  Introduction  1  The Problem  3  Sub-Problems  •  .  Hypotheses  4  Importance o f t h e Study  . . . . .  4  A s s u m p t i o n s and L i m i t a t i o n s Del i m i t a t i o n s  .  .  .  .  . .  7  REVIEW OF THE LITERATURE F a c t o r s R e l a t e d t o t h e D e t e r m i n a t i o n o f Maximal  9 Oxygen  Uptake  III  5 6  Definitions II  4  9  B i c y c l e E r g o m e t r y and Maximal E x e r c i s e  ^.  D y n a v i t V e r s u s Monark i n Maximal and Submaximal E x e r c i s e  15  METHODS AND PROCEDURES  21  Subjects  21  Apparatus  21  Experimental  Conditions  24  Experimental  Procedures  26  Experimental  Design  27  Experimental A n a l y s i s  .  .  .  29  V  TABLE OF CONTENTS Chapter IV  Page RESULTS AND DISCUSSION . Anthropometric  .  .  .  .  .  .. .  Data  30  T o t a l Work Time  31  Peak Oxygen Consumption  34  Submaximal Oxygen Uptake  38  Submaximal Heart Rate  .  41  Maximal Heart Rate  .  Submaximal Oxygen P u l s e Maximal Oxygen P u l s e  44 48 51  }  R e s u l t s and D i s c u s s i o n o f t h e S u b j e c t i v e Response Questionaire . . . . . . . . .  53  General D i s c u s s i o n  55  . . . .  Discussion of Related L i t e r a t u r e A p p l i c a t i o n of the Results  56 . . . . .  L i m i t a t i o n s o f the Dynavit Ergometer V  30  SUMMARY AND CONCLUSIONS  58 58  .  60  Summary  60  Conclusions  61  Recommendations  61  REFERENCES  62  APPENDICES  .69  A p p e n d i x A - S u b j e c t i v e Response Q u e s t i o n a i r e  . . . .  70  A p p e n d i x B - Raw Data  72  A p p e n d i x C - ANOVA T a b l e s f o r Maximal Data  78  vi LIST OF TABLES Table  Page  1  C a l c u l a t i o n o f P e d a l l i n g F r e q u e n c y and F r i c t i o n F a c t o r Corrections . . . . . .  2  Order o f Tests f o r Subjects (Repeated L a t i n Square D e s i g n )  3  Age, H e i g h t , Weight, P e r c e n t Body F a t and Leg L e n g t h o f a l l S u b j e c t s ( P l u s Group Means and S t a n d a r d D e v i a t i o n s ) . . . .  30  4  T o t a l Work Time (Decimal M i n u t e s )  31  23 .  25  (Means, S t a n d a r d D e v i a t i o n s and F V a l u e s ) 5  T o t a l Work Time ( T r e a t m e n t Means i n O r d e r )  33  6  Peak Oxygen Consumption (ml/kg/min)  36  (Means, S t a n d a r d D e v i a t i o n s and F V a l u e s ) 7  Peak Oxygen Consumption ( T r e a t m e n t Means i n O r d e r )  8  Submaximal Oxygen Uptake (ml/kg/min) . . . .  . . . .  36 38  (Means and S t a n d a r d D e v i a t i o n s ) 9 10  ANOVA T a b l e f o r Submaximal Oxygen Uptake  40  Submaximal H e a r t Rate (bpm)  41  (Means and S t a n d a r d D e v i a t i o n s ) 11  ANOVA T a b l e f o r Submaximal H e a r t Rate  43  12  Maximal H e a r t Rate (bpm) .  46  .  .  .  (Means, S t a n d a r d D e v i a t i o n s and F V a l u e s ) 13  Maximal H e a r t Rate ( T r e a t m e n t Means i n O r d e r )  14  Submaximal Oxygen P u l s e ( m l / b e a t )  46 .  48  15  ANOVA D i s t r i bT ua tb il oe n f oo fr Submaximal R e s p o n s e s : Oxygen Reasons P fu losre D i s c o n t i n u i n g t h e T e s t s  50  16  Maximal Oxygen P u l s e ( m l / b e a t ) . (Means, S t a n d a r d D e v i a t i o n s and F V a l u e s ) S u b j e c t i v e Response Q u e s t i o n a i r e  51  (Means and S t a n d a r d D e v i a t i o n s )  17  54  vi i LIST OF FIGURES Figure  *  Page  1  Power Output ( F o r c e A p p l i c a t i o n C u r v e s ) f o r One P e d a l R e v o l u t i o n a t Four D i f f e r e n t Ergometer Workload S e t t i n g s  2  Crank F o r c e Curve o f a S u b j e c t P u l l i n g a t h i s P e d a l s i n t h e Upward P a r t o f t h e F o o t C y c l e . . . .  16  3  D y n a v i t F u n c t i o n a l B l o c k Diagram  18  4  E x p e r i m e n t a l D e s i g n : Hypotheses  5  E x p e r i m e n t a l D e s i g n : Hypotheses 5 and 6  28  6  T o t a l Work Time (Means and S t a n d a r d D e v i a t i o n s )  32  7  Peak Oxygen Consumption  8  Submaximal Oxygen Uptake  9  Submaximal H e a r t Rate (Means and S t a n d a r d D e v i a t i o n s )  . 1,2,  .  .  .  . 3 and 4  13  28  (Means and S t a n d a r d D e v i a t i o n s ) . . (Means and S t a n d a r d D e v i a t i o n s )  .  .  35  .  39  ...  10  Maximal H e a r t Rate (Means and S t a n d a r d D e v i a t i o n s )  11  Submaximal Oxygen P u l s e (Means and S t a n d a r d D e v i a t i o n s ) . .  12  Maximal Oxygen P u l s e (Means and S t a n d a r d D e v i a t i o n s ) . . . .  42  ....  45 .  49 52  vi i i ACKNOWLEDGEMENTS  The a u t h o r w i s h e s t o thank t h e members o f h i s t h e s i s committee; Dr. S.R. Brown (Committee C h a i r m a n ) , Dr. E. Rhodes, Dr. K. C o u t t s , and Dr. H. V e n a b l e s . I would e s p e c i a l l y l i k e t o thank Dr. Brown f o r h i s v a l u a b l e technical assistance i n the writing of the f i n a l  draft.  I would a l s o l i k e t o thank my c o l l e a g u e s who gave t h e i r f r e e t i m e t o a s s i s t me d u r i n g t h e many hours o f t e s t i n g , and e s p e c i a l l y my w i f e Lynne f o r her c o n t i n u o u s s u p p o r t and a s s i s t a n c e t h r o u g h o u t t h e d u r a t i o n o f t h e s t u d y . And f i n a l l y , my t h a n k s a r e e x t e n d e d t o t h e many s u b j e c t s who gave t h e i r b e s t e f f o r t on my b e h a l f .  CHAPTER 1 STATEMENT OF THE PROBLEM Introduction The b e s t known method o f a s s e s s i n g a e r o b i c work c a p a c i t y i n man t h e measurement o f maximal oxygen uptake. The a b i l i t y t o p e r f o r m  is  prolonged,  heavy, p h y s i c a l e x e r c i s e i s r e l a t e d t o t h e maximal c a p a c i t y o f the c a r d i o r e s p i r a t o r y s y s t e m t o d e l i v e r oxygen t o t h e w o r k i n g t i s s u e s , and d e t e r m i n a t i o n o f t h i s a e r o b i c c a p a c i t y r e q u i r e s a maximal o r near maximal e f f o r t o v e r a r e l a t i v e l y s h o r t p e r i o d o f t i m e . Two o f t h e most commonly used p i e c e s o f equipment f o r t h e d e t e r m i n a t i o n o f maximal oxygen  uptake,  o r p e r h a p s more c o r r e c t l y "peak oxygen c o n s u m p t i o n " (*16,47), a r e t h e motor-driven  t r e a d m i l l and t h e s t a t i o n a r y b i c y c l e e r g o m e t e r . Many  r e s e a r c h e r s have r e p o r t e d t h a t t h e maximal oxygen u p t a k e s c o r e s d u r i n g t r e a d m i l l e x e r c i s e show c o n s i s t e n t l y h i g h e r v a l u e s than determined  achieved those  on t h e b i c y c l e e r g o m e t e r (8,9,16,18,20,27,32,38,39,45,48,52,55,  57,61,62,67,71,74,77). D i f f e r i n g v i e w p o i n t s have l o n g e x i s t e d as t o w h e t h e r p e r i p h e r a l f a c t o r s such as v a s c u l a r c o n d u c t a n c e and m u s c l e mass m e t a b o l i s m , o r c e n t r a l f a c t o r s such as c a r d i a c o u t p u t and b l o o d volume a r e t h e m a j o r l i m i t a t i o n s i n t h e d e t e r m i n a t i o n o f peak oxygen c o n s u m p t i o n d u r i n g maximal b i c y c l e e r g o m e t r y ( 3 3 ) . Recent r e s e a r c h s u g g e s t s t h a t t h e amount o f m u s c l e mass and t h e n a t u r e o f peak f o r c e a p p l i c a t i o n may be most i m p o r t a n t  (25,33,  39,41,52,65,66,67). O b t a i n i n g an a c c u r a t e maximal oxygen uptake v a l u e r e q u i r e s t h e c o o p e r a t i o n o f t h e s u b j e c t , who  s h o u l d attempt a maximal e f f o r t d u r i n g t h e  a s s e s s m e n t . T h i s e f f o r t may be reduced by t h e i n a b i l i t y o r u n w i l l i n g n e s s o f t h e s u b j e c t t o e n d u r e g r e a t p h y s i c a l d i s c o m f o r t , whether t h e t e s t i s 1  2 b e i n g c o n d u c t e d on a t r e a d m i l l o r on a b i c y c l e . The most p r e v a l e n t c o m p l a i n t i n c o n v e n t i o n a l maximal b i c y c l e e r g o m e t r y a p p e a r s t o be l o c a l i z e d l e g muscle f a t i g u e e s p e c i a l l y a t h i g h w o r k l o a d s , r e s u l t i n g i n extreme l e g p a i n , l o s s o f a p p r o p r i a t e p e d a l i n g cadence and  premature  c e s s a t i o n o f e x e r c i s e b e f o r e t h e c a r d i o - r e s p i r a t o r y system becomes f u l l y t a x e d (8,9,12,17,32,38,39,45,46,47,52,56,60,63,69). The f a c t t h a t b i c y c l i n g i s a l e s s f a m i l i a r form o f e x e r c i s e t o the N o r t h American  p o p u l a t i o n t h a n w a l k i n g o r r u n n i n g may be one p o s s i b l e  cause o f premature  f a t i g u e o f t h e l e g s d u r i n g c y c l i n g . But, t h e n a t u r e o f  the l o a d i n g system o f the m e c h a n i c a l l y braked b i c y c l e ergometer may  be  a n o t h e r f a c t o r . S u b j e c t s u s i n g t h e new, e l e c t r o n i c a l l y l o a d e d , D y n a v i t b i c y c l e ergometer  have r e p o r t e d t h a t t h e D y n a v i t i s p e d a l e d more e a s i l y  and t h e w o r k l o a d s a r e a t t a i n e d w i t h l e s s s t r a i n and f a t i g u e when compared w i t h o t h e r t y p e s o f s t a t i o n a r y b i c y c l e ergometer.  L e s s l e g muscle  d i s c o m f o r t has a l s o been n o t e d ( 2 4 ) . D y n a v i t o f A m e r i c a has s u g g e s t e d t h a t i n h e r e n t d e s i g n f e a t u r e s o f t h e D y n a v i t l o a d i n g ( o r b r a k i n g ) system  do  i n d e e d r e s u l t i n s i g n i f i c a n t l y smoother f o r c e a p p l i c a t i o n and t h u s r e d u c e d l e g muscle f a t i g u e (24,64). "The l o a d i n g o f t h e f l y w h e e l , which a l l o w s f o r a more even t r a n s i t i o n d u r i n g p e r i o d s o f low f o r c e a p p l i c a t i o n t o p e r i o d s r e q u i r i n g h i g h e r t o r q u e s " ( 2 4 ) , has been compared t o an e l l i p t i c a l f o r c e a p p l i c a t i o n system such as t h a t put f o r w a r d by Henderson e t a l ( 3 7 ) . The s u g g e s t i o n i s t h a t an e l l i p t i c a l f o r c e a p p l i c a t i o n system c o u l d b e t t e r match t h e t o r q u e o u t p u t c a p a b i l i t i e s o f the c y c l i s t t o t h e t o r q u e i n p u t r e q u i r e m e n t s o f t h e b i c y c l e than c o u l d a c i r c u l a r system  (19,21,36,37).  To t h e b e s t knowledge o f t h e a u t h o r , no c o n s i s t e n t r e s e a r c h has compared d i f f e r e n t t y p e s o f b i c y c l e e r g o m e t e r s  ( i e : e l e c t r o n i c versus  m e c h a n i c a l ) as t o t h e i n h e r e n t n a t u r e o f t h e i r l o a d i n g systems  (24).  3  I t was  hypothesized that a d i f f e r e n c e i n the nature of the loading  systems  o f the two t y p e s o f b i c y c l e e r g o m e t e r s would c a u s e a d i f f e r e n c e i n p h y s i c a l e f f o r t , and t h u s r e s u l t i n d i f f e r e n t p h y s i o l o g i c a l s t u d y was  r e s p o n s e s . The  present  d e s i g n e d t o examine s e l e c t e d p o t e n t i a l d i f f e r e n c e s i n p h y s i o -  l o g i c a l r e s p o n s e t o maximal e x e r c i s e s t r e s s , between the e l e c t r o n i c a l l y b r a k e d , D y n a v i t b i c y c l e e r g o m e t e r and the m e c h a n i c a l l y b r a k e d , Monark b i c y c l e ergometer. Selected  submaximal p a r a m e t e r s were a l s o examined f o r  s i g n i f i c a n t d i f f e r e n c e s , a l t h o u g h t h i s l a t t e r d a t a must be viewed w i t h appropriate inherent  The  reservation  due t o the l i m i t a t i o n s o f t h e c a l i b r a t i o n p r o c e s s  t o the p r e s e n t s t u d y (see A s s u m p t i o n s and  Limitations).  Problem The p r i m a r y p u r p o s e o f t h i s i n v e s t i g a t i o n was  t o compare  two  d i f f e r e n t t y p e s o f b i c y c l e e r g o m e t e r i n t h e i r d e t e r m i n a t i o n o f peak oxygen c o n s u m p t i o n , as r e l a t e d t o t r e a d m i l l s c o r e s . The i n c l u s i o n o f  treadmill  v a l u e s a f f o r d e d a c r i t e r i o n measure o f peak oxygen c o n s u m p t i o n , t o r e l a t e t o c o m p a r a b l e v a l u e s a c h i e v e d on each b i c y c l e e r g o m e t e r . Thus a means  was  p r o v i d e d t o examine w h i c h t y p e o f b i c y c l e ( e l e c t r o n i c o r m e c h a n i c a l ) c o u l d a c h i e v e peak oxygen c o n s u m p t i o n v a l u e s c l o s e t o o r as h i g h as the c r i t e r i o n v a l u e s a t t a i n e d on the t r e a d m i l l . T o t a l work time between the two was  a l s o examined, on the p r e m i s e t h a t the l o n g e r a s u b j e c t was  bicycles  able  c o n t i n u e e x e r c i s e , the g r e a t e r would be the l e v e l o f p h y s i c a l e x e r t i o n t h u s the g r e a t e r the p h y s i o l o g i c a l  to and  response.  W i t h i n t h i s c o n t e x t , an e l e c t r o n i c a l l y b r a k e d , D y n a v i t b i c y c l e e r g o m e t e r was  compared t o a m e c h a n i c a l l y b r a k e d , Monark b i c y c l e e r g o m e t e r ,  t o examine p o t e n t i a l d i f f e r e n c e s w h i c h may  have been e l i c i t e d by  l o a d i n g systems u n i q u e t o each p i e c e o f equipment.  the  4 Sub-Problems 1)  The oxygen uptake v a l u e s f o r s u c c e s s i v e submaximal w o r k l o a d  intervals  were compared f o r s i g n i f i c a n t d i f f e r e n c e s between t h e two b i c y c l e ergometers. 2)  The h e a r t r a t e r e s p o n s e s f o r s u c c e s s i v e submaximal w o r k l o a d  intervals  were compared f o r s i g n i f i c a n t d i f f e r e n c e s between t h e two b i c y c l e ergometers.  Hypotheses The f o l l o w i n g h y p o t h e s e s were i n v e s t i g a t e d : 1)  T o t a l , work time on t h e D y n a v i t b i c y c l e ergometer w i l l be s i g n i f i c a n t l y  g r e a t e r than on t h e Monark b i c y c l e ergometer. 2)  The D y n a v i t peak oxygen consumption  v a l u e s w i l l be s i g n i f i c a n t l y  g r e a t e r than t h e c o r r e s p o n d i n g Monark v a l u e s . 3)  The t r e a d m i l l peak oxygen consumption  v a l u e s w i l l be s i g n i f i c a n t l y  g r e a t e r than c o r r e s p o n d i n g Monark v a l u e s . 4)  T r e a d m i l l peak oxygen consumption  l y from comparable 5)  v a l u e s w i l l not d i f f e r s i g n i f i c a n t -  Dynavit values.  D y n a v i t oxygen uptake v a l u e s a t submaximal w o r k l o a d i n t e r v a l s w i l l  be s i g n i f i c a n t l y lower t h a n c o r r e s p o n d i n g Monark v a l u e s . 6)  D y n a v i t h e a r t r a t e r e s p o n s e s a t submaximal w o r k l o a d i n t e r v a l s w i l l  s i g n i f i c a n t l y l e s s t h a n c o r r e s p o n d i n g Monark v a l u e s .  Importance  o f t h e Study  The p r e s e n t s t u d y c o u l d p r o v i d e f u r t h e r i n f o r m a t i o n w i t h r e g a r d t o d i f f e r e n c e s i n peak oxygen consumption  ( o r maximal oxygen u p t a k e ) between  t r e a d m i l l and m e c h a n i c a l l y b r a k e d b i c y c l e e r g o m e t e r s .  be  5 The main p u r p o s e o f t h e s t u d y i s t o d e t e r m i n e i f t h e e l e c t r o n i c a l l y b r a k e d , D y n a v i t b i c y c l e e r g o m e t e r can e l i c i t h i g h e r peak oxygen consumption v a l u e s t h a n a m e c h a n i c a l l y b r a k e d , Monark b i c y c l e e r g o m e t e r , and s i m i l a r t o those of the t r e a d m i l l . I f these hypotheses are c o r r e c t , the i m p l i c a t i o n s f o r c l i n i c a l and e x p e r i m e n t a l t e s t i n g become c l e a r . The D y n a v i t b i c y c l e e r g o m e t e r would p r o v i d e a r e l a t i v e l y i n e x p e n s i v e , p o r t a b l e , and a c c u r a t e t o o l f o r d e t e r m i n a t i o n o f peak oxygen c o n s u m p t i o n . E x p e r i m e n t a l f i n d i n g s o f submaximal v a l u e s o f h e a r t r a t e and oxygen u p t a k e m i g h t have i m p l i c a t i o n s f o r submaximal t e s t i n g . I f t h e D y n a v i t b i c y c l e e r g o m e t e r e l i c i t s s i g n i f i c a n t l y l o w e r e x e r c i s e h e a r t r a t e and oxygen u p t a k e r e s p o n s e s t h a n a Monark e r g o m e t e r , a t submaximal  workload  i n t e r v a l s , t h e n t h e D y n a v i t may p r o v e t o be a more s o p h i s t i c a t e d t o o l f o r submaximal e x e r c i s e e s t i m a t i o n o f c a r d i o - r e s p i r a t o r y e n d u r a n c e and peak oxygen c o n s u m p t i o n . T h i s would a l s o mean t h a t use o f t h e D y n a v i t f o r e s t i m a t i o n o f p h y s i c a l work c a p a c i t y ( M o d i f i e d S j o s t r a n d PWC T e s t ) o r p r e d i c t e d maximal oxygen u p t a k e (Astrand-Ryhming P r e d i c t e d Oxygen  Uptake  T e s t ) u s i n g t h e c o r r e s p o n d i n g norms would be i n v a l i d . I f t h e D y n a v i t i s i n d e e d d i f f e r e n t f r o m t h e Monark i n i t s l o a d i n g m e c h a n i c s , d i f f e r e n t b i o m e c h a n i c a l p r o p e r t i e s would be i n v o l v e d , t h u s r e q u i r i n g new o r r e v i s e d n o r m a t i v e s t a n d a r d s t o be d e v e l o p e d i f t h e p r e c e e d i n g t e s t s a r e t o be p e r f o r m e d on t h e D y n a v i t e r g o m e t e r .  A s s u m p t i o n s and L i m i t a t i o n s 1)  I t was assumed t h a t d i f f e r e n c e s i n t o t a l work t i m e , peak oxygen  c o n s u m p t i o n , and t o a l e s s e r e x t e n t submaximal  h e a r t r a t e and oxygen u p t a k e  r e s p o n s e s would r e f l e c t d i f f e r e n c e s i n t h e l o a d i n g mechanisms b i c y c l e ergometers.  o f t h e two  :  6 2)  I t was assumed t h a t an i n c r e a s e i n t o t a l work t i m e d u r i n g maximal  e x e r c i s e ( i n d e p e n d e n t o f l e a r n i n g e f f e c t s ) would r e s u l t i n a g r e a t e r  taxing  o f the c a r d i o - r e s p i r a t o r y system and t h e r e f o r e a h i g h e r peak oxygen consumption 3)  value.  I t was assumed t h a t f a c t o r y c a l i b r a t i o n o f the D y n a v i t e r g o m e t e r  as a c c u r a t e as c l a i m e d by t h e company, and d i d not change o v e r the o f the 4)  was  duration  study. The s t a n d a r d  c a l i b r a t i o n technique  f o r the Momark e r g o m e t e r  was  assumed t o p r o d u c e a c c u r a t e w o r k l o a d s e t t i n g s (4,18). A c o r r e c t i o n f a c t o r f o r f r i c t i o n l o s s e s was a p p l i e d t o the s i n u s b a l a n c e a c c o r d i n g  to  Astrand  (7). 5)  I t was assumed t h a t c h o o s i n g  college-aged,  non-trained  males as  s u b j e c t s would r e d u c e e x e r c i s e r e l a t e d r i s k f a c t o r s . T h i s p o p u l a t i o n  was  a l s o chosen so as t o r e d u c e the p r o b a b i l i t y o f t e s t i n g a p p a r a t u s b i a s . T h a t i s , h i g h l y t r a i n e d r u n n e r s and c y c l i s t s were e x c l u d e d  from the study  to  a v o i d b i a s t o w a r d s e i t h e r t h e t r e a d m i l l run o r the b i c y c l e e r g o m e t e r t e s t . 6)  The s t u d y was  l i m i t e d in that f r i c t i o n losses in the chains  and  b e a r i n g s c o u l d not be d i r e c t l y d e t e r m i n e d f o r the two b i c y c l e e r g o m e t e r s . However, t h e D y n a v i t e r g o m e t e r c a l i b r a t i o n p r o c e s s t a k e s f r i c t i o n  losses  i n t o a c c o u n t (53,64). And as p r e v i o u s l y m e n t i o n e d , a c o r r e c t i o n f a c t o r f o r f r i c t i o n 'losses was a p p l i e d t o the s i n u s b a l a n c e o f the Monark e r g o m e t e r .  Del i m i t a t i o n s 1)  Thirteen non-trained,  college-aged  male v o l u n t e e r s were used i n the  investigation. 2)  The age o f the s u b j e c t s ranged from 18-26  years.  3)  The p h y s i c a l and p h y s i o l o g i c a l p a r a m e t e r s d i s c u s s e d  in detail in  7 C h a p t e r 4 were r e s t r i c t e d t o t h o s e d e s c r i b e d i n t h e Problem and Sub-Problems sections of t h i s chapter.  Definitions Maximal Oxygen Uptake:  The h i g h e s t oxygen uptake t h e i n d i v i d u a l c a n a t t a i n d u r i n g p h y s i c a l work w h i l e b r e a t h i n g a i r a t s e a  level (8). Peak Oxygen Consumption:  The h i g h e s t oxygen uptake v a l u e r e c o r d e d (mT/kg/mih) d u r i n g a c o n t i n u o u s maximal b i c y c l e  ergometer t e s t (16,47). T h i s term was used i n p l a c e o f maximal oxygen u p t a k e w i t h i n t h e c o n t e x t o f t h i s s t u d y , because Katch and Katch (47) s u g g e s t e d t h a t a t r u e maximal oxygen uptake i s p r o b a b l y n o t a c h i e v e d (based on commonly a c c e p t e d c r i t e r i a ) d u r i n g a c o n t i n u o u s b i c y c l e ergometer t e s t , due t o l o c a l m u s c u l a r l i m i t a t i o n s . The c r i t e r i o n f o r t h e d e t e r m i n a t i o n o f peak oxygen consumption  on a l l t h r e e p i e c e s o f equipment was t h e a v e r a g e o f t h e  l a s t t h r e e 15 second v a l u e s o f oxygen uptake a t t h e same w o r k l o a d ,  before  the c e s s a t i o n o f e x e r c i s e . T o t a l Work Time:  T o t a l e l a p s e d time d u r i n g t h e e x e r c i s e bout u n t i l t h e cessation o f the t e s t (in minutes).  Submaximal Workload  Interval:  Each t h r e e minute i n t e r v a l o f t h e t e s t where workload  i s h e l d c o n s t a n t , and h e a r t r a t e i s  l e s s than o r equal t o 170 bpm. Submaximal H e a r t Rate:  H e a r t r a t e l e s s than o r equal t o 170 bpm, a v e r a g e d o v e r t h e l a s t two 30 second d e t e r m i n a t i o n s a t t h e  end o f each submaximal t h r e e minute w o r k l o a d  i n t e r v a l ( b o t h r e a d i n g s t o be  l e s s than o r equal t o 170 bpm). Submaximal Oxygen Uptake:  The oxygen uptake v a l u e a v e r a g e d o v e r t h e l a s t  two 30 second d e t e r m i n a t i o n s a t t h e end o f each submaximal t h r e e m i n u t e w o r k l o a d  i n t e r v a l (both corresponding heart r a t e  r e a d i n g s t o be l e s s than o r equal t o 170 Non-Trained:  bpm).  Any c o l l e g e - a g e d male v o l u n t e e r not c u r r e n t l y o r r e c e n t l y i n v o l v e d i n a r e g u l a r t r a i n i n g program o f a t h l e t i c  endeavor,  as o u t l i n e d by t h e p o s i t i o n s t a t e m e n t o f t h e A m e r i c a n C o l l e g e o f S p o r t s M e d i c i n e ( 2 ) , and as d e t e r m i n e d  by a p p r o p r i a t e q u e s t i o n a i r e .  CHAPTER II REVIEW OF THE Factors Related to the Determination  LITERATURE  o f Maximal Oxygen Uptake  E x t e n s i v e r e s e a r c h has been c o n d u c t e d u s i n g both t h e t r e a d m i l l and the b i c y c l e e r g o m e t e r i n the d e t e r m i n a t i o n  o f maximal oxygen u p t a k e . The  m a j o r i t y . o f s t u d i e s reveal t h a t the t r e a d m i l l e l i c i t s s i g n i f i c a n t l y higher maximal oxygen u p t a k e v a l u e s than t h e s t a t i o n a r y b i c y c l e . The d i f f e r e n c e seems t o depend on s e v e r a l f a c t o r s . Most o f t h e r e s e a r c h e r s a g r e e t h a t t h e amount o f m u s c l e mass i n v o l v e d during t r e a d m i l l running  i s g r e a t e r than d u r i n g b i c y c l i n g ( 9 , 3 2 , 3 3 ) , but  the nature of t h i s involvement l a t e r G l e s e r (33) s u p p o r t e d  i s not c l e a r l y u n d e r s t o o d .  Astrand  (5,6)  and  the i d e a t h a t p e r i p h e r a l f a c t o r s such as the  s i z e o f t h e v a s c u l a r bed o f t h e e x e r c i s i n g m u s c l e , a n d / o r venous r e t u r n were the m a j o r l i m i t i n g f a c t o r s i n maximal b i c y c l e e x e r c i s e , r a t h e r than c e n t r a l f a c t o r s such as c a r d i a c o u t p u t o r b l o o d volume. Thus, because s t a t i o n a r y c y c l i n g i n v o l v e d a s m a l l e r m u s c l e mass than r u n n i n g ,  lower  v a s c u l a r c o n d u c t a n c e a n d / o r venous r e t u r n l i m i t e d t h e amount and i n t e n s i t y o f work w h i c h c o u l d be t o l e r a t e d . The c o n c e p t o f r e l a t i n g oxygen uptake t o t h e volume o f p a r t i c i p a t i n g m u s c l e mass i n maximal e x e r c i s e seems l o g i c a l , but t h e r e i s a  controversy  as t o whether an i n c r e a s e i n a c t i v e m u s c l e mass i n b i c y c l i n g would r e s u l t i n an i n c r e a s e i n maximal oxygen u p t a k e . A s t r a n d  (5,6) a s s e r t e d  initially  t h a t u s i n g arm p l u s l e g e x e r c i s e on t h e b i c y c l e e r g o m e t e r r e s u l t e d i n a h i g h e r maximal oxygen uptake than l e g s a l o n e , but e v e n t u a l l y abandoned t h i s t h e o r y i n f a v o u r o f t h e c o n c e p t o f a c r i t i c a l mass. H i s 1961 i n d i c a t e d t h a t a d d i t i o n a l m u s c l e mass i n v o l v e m e n t  study  past a c e r t a i n c r i t i c a l  mass d i d not i n c r e a s e maximal oxygen u p t a k e f u r t h e r . He s t a t e d t h a t 9  "the  (9)  10 c e i l i n g f o r oxygen u p t a k e seems i n d e p e n d e n t o f the mass o f m u s c l e employed i n the e x e r c i s e as soon as i t e x c e e d s a c e r t a i n mass." He t h e n s u g g e s t e d c a r d i a c o u t p u t as the main l i m i t i n g f a c t o r i n maximal oxygen uptake determinations 1961  on the b i c y c l e e r g o m e t e r . But, s e v e r a l r e s e a r c h e r s  have t e n d e d t o s u p p o r t A s t r a n d ' s o r i g i n a l h y p o t h e s i s  that  since  increasing  t h e p a r t i c i p a t i n g m u s c l e mass r e s u l t s i n h i g h e r maximal oxygen uptake v a l u e s when e x e r c i s i n g on a b i c y c l e e r g o m e t e r (33,52,67,75). However, s t u d i e s by S t e n b e r g (72) and F a i r b a n k s  (25) f o u n d no d i f f e r e n c e i n maximal  oxygen u p t a k e v a l u e s when arm p l u s l e g work was compared t o l e g work a l o n e during c y c l i n g . When comparing t r e a d m i l l r u n n i n g w i t h s t a t i o n a r y c y c l i n g , c o n s i d e r a t i o n must be made o f p o s s i b l e d i f f e r e n c e s . i n the  biomechanical  p r o p e r t i e s o f the two t y p e s o f a c t i v i t y , and the c o n t r i b u t i o n o f  these  p r o p e r t i e s t o the o n s e t o f f a t i g u e i n maximal e x e r c i s e . "In c y c l i n g t h e c o n t r a c t i o n p o r t i o n of the c o n t r a c t i o n - r e l a x a t i o n c y c l e i s q u i t e and the peak l o a d s a r e a p p r o x i m a t e l y  prolonged  t w i c e the l o a d s e t t i n g . Running i s  much more o f a b a l l i s t i c movement w i t h a v e r y s h o r t c o n t r a c t i o n phase. These b i o m e c h a n i c a l  f a c t o r s would c o n t r i b u t e t o a g r e a t e r impairment i n  s k e l e t a l muscle blood flow c y c l i n g than running." has shown t h a t a r e d u c t i o n i n venous r e t u r n may  (27). A s t u d y by G r a y  (34)  r e s u l t from t w i s t i n g ,  k i n k i n g o r l o c a l c o m p r e s s i o n o f the b l o o d v e s s e l s as t h e y pass t h r o u g h a c o n t r a c t i n g m u s c l e . Folkow and H a l i c k a (29) have o b s e r v e d impairment o f l o c a l blood flow at high muscle f i b e r t w i t c h r a t e s ( i n s i t u muscle p r e p a r a t i o n s ) , and M a t s u i e t a l (55) and Miyamura (61) have r e p o r t e d g r e a t e r r e d u c t i o n of blood flow during c y c l i n g than t r e a d m i l l  running.  These v a r i o u s r e p o r t s s t r o n g l y s u g g e s t t h a t the h i g h peak f o r c e a p p l i c a t i o n r e q u i r e d d u r i n g c y c l i n g , and the r e s u l t a n t l o c a l c o m p r e s s i o n o f the  11 v a s c u l a r s y s t e m by i n t e n s e m u s c u l a r c o n t r a c t i o n may  c a u s e r e d u c e d venous  r e t u r n . I t f o l l o w s t h a t c a r d i a c o u t p u t w i l l f a l l , t h u s l i m i t i n g the i n t e n s i t y and d u r a t i o n o f c y c l i n g e x e r c i s e when compared t o t r e a d m i l l running. I t i s w e l l known t h a t maximal oxygen u p t a k e depends p r i m a r i l y on c a r d i a c o u t p u t and the a b i l i t y o f the w o r k i n g m u s c l e t i s s u e s t o e x t r a c t oxygen (a-vC^ d i f f e r e n c e ) (27,59,61). Recent s t u d i e s i n d i c a t e t h a t c a r d i a c o u t p u t , a-vC^  d i f f e r e n c e and l e g m u s c l e b l o o d f l o w may  be g r e a t e r  t r e a d m i l l r u n n i n g t h a n b i c y c l e e r g o m e t e r e x e r c i s e (38,60,61), due  during to  several possible contributing factors: 1)  The l o w e r c a r d i a c o u t p u t may  be due t o a l o w e r maximal h e a r t r a t e i n  cycling. 2)  High i n t r a m u s c u l a r  p r e s s u r e s e x e r t e d d u r i n g maximal c y c l i n g may  venous r e t u r n , t h u s r e d u c i n g c a r d i a c o u t p u t and l e g m u s c l e b l o o d 3)  The l o w e r a-v0£ d i f f e r e n c e may  limit  flow.  be due t o the l o w e r w o r k i n g m u s c l e  mass d u r i n g c y c l i n g . T r o m the above r e v i e w o f r e l a t e d l i t e r a t u r e i t would a p p e a r t h a t p o s s i b l e biomechanical r u n n i n g may  d i f f e r e n c e s between s t a t i o n a r y c y c l i n g and t r e a d m i l l  be most c r u c i a l i n e x p l a i n i n g the a p p a r e n t s u p e r i o r i t y o f the  t r e a d m i l l i n the determination  o f maximal oxygen u p t a k e . The amount o f  m u s c l e mass, t h e n a t u r e o f f o r c e a p p l i c a t i o n and the c o n c o m i t a n t d e g r e e o f intramuscular  c o n s t r i c t i o n may  p r o v e t o be most i m p o r t a n t  in determining  the  v a r i o u s p h y s i o l o g i c a l r e s p o n s e s t o maximal c y c l i n g e x e r c i s e , when compared with  running.  B i c y c l e E r g o m e t r y and Maximal  Exercise  The f i r s t e l e c t r i c a l l y b r a k e d b i c y c l e e r g o m e t e r was d e v e l o p e d n e a r  12 the beginning  o f t h e c e n t u r y as an a l t e r n a t i v e t o m e c h a n i c a l l y  braked  b i c y c l e s , and p r o v i d e d a c r u d e t o o l f o r a s s e s s i n g p h y s i c a l work c a p a c i t y . See C a r r o l l (15) f o r a c o m p l e t e r e v i e w o f l i t e r a t u r e . Subsequent may  refinements  p r o v i d e a more s o p h i s t i c a t e d means o f a s s e s s i n g maximal oxygen uptake  ( o r peak oxygen c o n s u m p t i o n ) t h a n a m e c h a n i c a l l y  braked b i c y c l e ergometer  o r the e a r l y e l e c t r i c a l l y b r a k e d e r g o m e t e r s . Hoes e t a l (41) and S a r g e a n t (65,66) have d e m o n s t r a t e d t h a t the peak power o u t p u t r e q u i r e d i n one pedal r e v o l u t i o n a t a g i v e n w o r k l o a d (on an early electro-magnetic  and a m e c h a n i c a l l y  braked b i c y c l e ergometer r e s p e c t -  i v e l y ) i s s i g n i f i c a n t l y g r e a t e r t h a n t h a t o f the w o r k l o a d s e t t i n g . Hoes r e p o r t s a peak power o u t p u t t w i c e t h a t o f the w o r k l o a d s e t t i n g . F u r t h e r m o r e , t h i s peak power o u t p u t i s a p p l i e d o v e r a r e l a t i v e l y small p o r t i o n o f the pedal r e v o l u t i o n . As w o r k l o a d i n c r e a s e s , the s l o p e o f the f o r c e a p p l i c a t i o n c u r v e becomes s t e e p e r , so t h a t a t maximal w o r k l o a d s an e x t r e m e l y h i g h power o u t p u t i s r e q u i r e d o v e r a v e r y s h o r t a p p l i c a t i o n d i s t a n c e (41). See F i g u r e 1 for a diagramatic  i l l u s t r a t i o n o f the above m a t e r i a l . When a h i g h e r  i s r e q u i r e d , t h i s can be a c h i e v e d  by a c t i v a t i n g a l a r g e r number o f m u s c l e  f i b e r s a n d / o r by i n c r e a s i n g the f r e q u e n c y force application distance  tension  o f s t i m u l a t i o n , d e p e n d i n g on  the  (3,50). From the above s t a t e m e n t s i t f o l l o w s t h a t  l o c a l i z e d muscle f i b e r recruitment  o f a maximal n a t u r e may  t o p r e m a t u r e and e x t r e m e l y l o c a l i z e d l e g m u s c l e f a t i g u e  occur,  leading  (38).  C o n t r i b u t i n g t o the l o c a l i z e d f a t i g u e o f the l e g m u s c l e s i n maximal e x e r c i s e , e s p e c i a l l y the t e n s o r f a s c i a e l a t a e , s a r t o r i u s ,  quadriceps  f e m o r i s , v a s t u s l a t e r a l i s and t i b i a l i s a n t e r i o r ( 2 4 , 4 3 ) , i s the p r e f e r e n t i a l order of recruitment  o f the motor u n i t s and the t y p e s o f m u s c l e f i b e r s  involved. During a continuous,  incremental  maximal b i c y c l e e r g o m e t e r t e s t ,  slow t w i t c h o x i d a t i v e (SO) and f a s t t w i t c h o x i d a t i v e g l y c o l y t i c  (FOG)  13  800. 700 to +-> (0  -t-> Q. +->  o CL)  so  Q_  600 500 400 300 200 100 1" D  0 7 5  .5  1  Time ( s e c o n d s ) 100  200 Ergometer Workload  300  400  (Watts)  FIGURE 1 POWER OUTPUT (FORCE APPLICATION CURVES) FOR ONE PEDAL REVOLUTION AT FOUR DIFFERENT ERGOMETER WORKLOAD SETTINGS: 60 RPM (41)  14f i b e r s a r e r e c r u i t e d i n i t i a l l y , w i t h more and more FOG and f a s t t w i t c h g l y c o l y t i c (FG) i n v o l v e m e n t as i n t e n s i t y i n c r e a s e s . The FG f i b e r s become q u i c k l y exhausted at high workloads  (due t o t h e a s s o c i a t e d s t e e p f o r c e  a p p l i c a t i o n c u r v e and the s h o r t term work c h a r a c t e r i s t i c s o f FG f i b e r s ) , t h u s t o o g r e a t a s t r e s s i s p l a c e d on t h e o x i d a t i v e f i b e r s r e s u l t i n g i n premature,  l o c a l i z e d l e g muscle f a t i g u e b e f o r e t r u e c a r d i o - r e s p i r a t o r y  exhaustion i s achieved. I f the power o u t p u t r e q u i r e d by t h e l e g m u s c l e s d u r i n g c y c l i n g can be more e v e n l y a p p l i e d , t h e r e s u l t s h o u l d be a more equal d i s t r i b u t i o n between t h e number and t y p e o f muscle f i b e r s r e c r u i t e d and t h e i r f r e q u e n c y o f s t i m u l a t i o n . Thus a more advantageous  d i s t r i b u t i o n o f e f f o r t between slow .  t w i t c h , f a s t t w i t c h o x i d a t i v e g l y c o l y t i c and f a s t t w i t c h g l y c o l y t i c f i b e r s may be a c h i e v e d , and a r e l a t i v e l y l a r g e r number o f t h e s e f i b e r s may  be  a c t i v a t e d a t a l o w e r f i r i n g f r e q u e n c y t o do t h e same amount o f work (3,8, 50). The i m p l i c a t i o n s f o r maximal e x e r c i s e on t h e b i c y c l e ergometer  should  be a g r e a t e r t o t a l work time and t h e r e f o r e a g r e a t e r t a x i n g o f t h e c a r d i o respiratory  system.  The work o f L a v o i e e t a l (52) p r o v i d e s i n d i r e c t s u p p o r t f o r t h e above c o n t e n t i o n . He f o u n d t h a t u s i n g r a c i n g s t i r r u p s on a f r i c t i o n b i c y c l e ergometer  braked  gave maximal oxygen uptake v a l u e s s i g n i f i c a n t l y h i g h e r  than w i t h o u t s t i r r u p s , and not s i g n i f i c a n t l y d i f f e r e n t from t r e a d m i l l v a l u e s . H i s c o n t e n t i o n was t h a t t h e r a c i n g s t i r r u p s .enabled t h e s u b j e c t t o i n c r e a s e t h e amount o f a c t i v e muscle mass by b e i n g a b l e t o p u l l up w i t h one l e g w h i l e p u s h i n g down w i t h t h e o t h e r . However, i n Hoes s t u d y (41) i t a p p e a r s t h a t t h e shape o f t h e f o r c e a p p l i c a t i o n c u r v e d i d not change s i g n i f i c a n t l y when s t i r r u p s were u s e d , a l t h o u g h t h e n e g a t i v e d r a g component (due t o t h e l i f t i n g o f t h e p a s s i v e l e g by t h e a c t i v e l e g ) i s v i r t u a l l y  15 . e l i m i n a t e d . See F i g u r e 2 f o r a d i a g r a m a t i c i l l u s t r a t i o n o f t h e above m a t e r i a l . I t s h o u l d be noted t h a t t h e p r i m a r y s u b j e c t i n Hoes s t u d y was a r a c i n g c y c l i s t who a d m i t t e d l y o n l y used h i s s t i r r u p s on h i l l s o r i n s p r i n t s . L a v o i e ' s s u b j e c t s used t h e s t i r r u p s a t a l l t i m e s , w h i l e Hoe's s u b j e c t d i d n o t , thus l i m i t i n g c o m p a r a t i v e  c o n c l u s i o n s . I t may be t h a t t h e r a c i n g  s t i r r u p s i n L a v o i e ' s s t u d y reduced t h e peak f o r c e r e q u i r e d d u r i n g each r e v o l u t i o n by r e d u c i n g t h e n e g a t i v e d r a g component, by more e v e n l y d i s t r i b u t i n g the r e q u i r e d f o r c e among a s l i g h t l y l a r g e r m u s c l e mass and  by  a p p l y i n g t h e f o r c e o v e r a g r e a t e r d i s t a n c e ( i e : d u r i n g t h e upward l i f t i n g phase as w e l l as t h e downward p u s h i n g p h a s e ) .  (46).  D y n a v i t V e r s u s Monark i n Maximal and Submaximal E x e r c i s e An e l e c t r o n i c b i c y c l e e r g o m e t e r o r i g i n a l l y d e v e l o p e d  i n West Germany,  the Dynavit, i s purported to v i r t u a l l y " e l i m i n a t e premature l e g muscle f a t i g u e . " ( 3 0 ) . The D y n a v i t i n c l u d e s an e l e c t r o n i c b r a k i n g system w h i c h i s computer c o n t r o l l e d . Thus a c o n s t a n t workload  can be a c c u r a t e l y p r o v i d e d  ( p l u s o r minus 2% a t 45-60  r e l a t i v e l y independent  o f p e d a l l i n g speed  minus 5-7% a t 85 rpm).  ( 6 4 ) . T h i s i s i n c l o s e agreement w i t h t h e c a l i b r a t i o n  e r r o r o f o t h e r r e c e n t e l e c t r o n i c b i c y c l e e r g o m e t e r s (42,44).  Frictional  l o s s e s i n the bearings, c h a i n , b e l t s , windings, e t c . , are accounted t h e c a l i b r a t i o n p r o c e s s (18',53,64). "An u l t r a h i g h - s p e e d  rpm,  for in  flywheel i s  i n c l u d e d i n the b r a k i n g s y s t e m , and becomes p a r t o f any g i v e n w o r k l o a d . The f l y w h e e l ' s mass (weight) a s s o c i a t e d w i t h a g e a r i n g r a t i o more than 35 t h e p e d a l l i n g s p e e d , k i n e t i c a l l y ' l o a d s ' t h e f l y w h e e l . " ( 3 0 ) . The  times  specific  amount o f e n e r g y s t o r e d i s a f u n c t i o n o f f l y w h e e l mass and r o t a t i o n a l v e l o c i t y (23). "This reserve supply of k i n e t i c energy w i t h i n the flywheel a s s i s t s i n t h e peak f o r c e r e q u i r e d and e q u a l i z e s t h e f o r c e needed f o r each  16  375  250 CO  c O  S u b j e c t P u l l i n g Upward a t H i s P e d a l s — S u b j e c t Not P u l l i n g Upward a t H i s P e d a l s  ---  125  CU  125 0°  90  180  Bottom  270  Top  360 Bottom  FIGURE 2 CRANK FORCE CURVE OF A SUBJECT PULLING AT HIS PEDALS IN THE UPWARD PART OF THE FOOT CYCLE (0°T0 1 8 0 ° AT 300 WATTS AND 60 RPM)  17 r e v o l u t i o n . P e d a l l i n g t h e D y n a v i t i s n o t o n l y smooth but a l s o r e d u c e s o r e l i m i n a t e s t h e t e n d e n c y f o r premature  l e g muscle f a t i g u e . " ( 3 0 ) . See F i g u r e  3 f o r a d i a g r a m a t i c i l l u s t r a t i o n o f the f u n c t i o n a l l o a d i n g system o f the Dynavit  ergometer.  A c c o r d i n g t o D y n a v i t o f A m e r i c a O p e r a t i o n s Manager L, Peck, t h e D y n a v i t l o a d i n g system r e s u l t s i n an e f f e c t s i m i l a r t o t h e use o f an e l l i p t i c a l element i n t h e b r a k i n g s y s t e m , as o u t l i n e d i n t h e I n t r o d u c t i o n t o t h e i n C h a p t e r 1. "With an e l l i p t i c a l chainwheel  Problem  i t i s p o s s i b l e to p o s i t i o n the  p e d a l s so t h a t as each l e g e x e r t s i t s maximum f o r c e , t h e e l l i p s e a c t s as a l a r g e r c i r c u l a r chainwheel  and a c c e l e r a t e s the c h a i n r a p i d l y t h r o u g h a s m a l l  change i n c r a n k a n g l e . T h u s , as t h e p e d a l s a r e moved a g i v e n d i s t a n c e t h r o u g h t h e power t h r u s t more work c a n b e done w i t h an e l l i p t i c a l c h a i n w h e e l  than  w i t h a c i r c u l a r s p r o c k e t o f e q u a l c i r c u m f e r e n c e . With t h e l e g s i n t h e l e a s t f a v o r a b l e p o s i t i o n f o r t o r q u e o u t p u t , t h e e l l i p s e a c t s as a s m a l l c i r c u l a r chainwheel which r e q u i r e s l e s s f o r c e t o move the p e d a l s t h r o u g h t h e r e q u i r e d c r a n k a n g l e . The e l l i p s e t h e n , e x t r a c t s a g r e a t e r p e r c e n t a g e o f work o u t p u t f r o m t h e c y c l i s t when h i s Tegs a r e a t the o p t i m a l c r a n k a n g l e t o do work. T h i s c o u l d r e s u l t i n a lower energy expenditure while performing a given amount o f e x t e r n a l work." ( 3 7 ) . The e f f e c t s u g g e s t e d i s a more smooth a p p l i c a t i o n o f f o r c e throughout the e n t i r e pedal r e v o l u t i o n  (19,21,36,37).  An u n p u b l i s h e d s t u d y by E d i n g t o n (24) s u p p o r t s t h e p r e v i o u s s t a t e m e n t s . H i s d e t a i l e d f i n d i n g s s u g g e s t ' l e s s p e r c e i v e d e x e r t i o n , l o w e r peak  EMG  a c t i v i t y i n t h e v a s t u s l a t e r a l i s , l e s s peak f o r c e r e q u i r e d d u r i n g p e d a l l i n g , more c o n s t a n t p e d a l e x c u r s i o n - , l e s s d e c r e a s e i n g l y c o g e n c o n c e n t r a t i o n , l o w e r oxygen r e q u i r e m e n t , l o w e r e x e r c i s e h e a r t r a t e and l e s s peak a c c e l e r a t i o n a t t h e h i p when' r i d i n g t h e D y n a v i t , as compared t o a Monark e r g o m e t e r . T h i s s t u d y was c o n d u c t e d a t a c o n s t a n t w o r k l o a d o f 900  kpm  Whisper D r i v e Rib B e l t s  Pedal Chain Drive  Electronic V a r i a b l e Load  Gear R a t i o 1:35.17  CD  Ear F i n g e r C I i p  /  o o  Flywhee and Fan  Pre-Amplifier  m ZD CD i—i  \ Pulse Amp!ifier  < o  >-  D i g i t a l Symbolic Display  19 (Monark) o r 150 w a t t s ( D y n a v i t ) i n 40 t o -55 y e a r o l d men o f v a r i e d f i t n e s s l e v e l s . T h e r e i s however, some q u e s t i o n as t o w h e t h e r t h e w o r k l o a d s c o m p l e t e l y e q u a t e d between t h e two e r g o m e t e r s , as no mention  were  i s made o f a  c o r r e c t i o n f a c t o r f o r f r i c t i o n l o s s e s i n t h e Monark c a l i b r a t i o n p r o c e s s , as o u t l i n e d and d e c l a r e d n e c e s s a r y by Cumming (18) and A s t r a n d ( 7 ) . Nor i s i t c o m p l e t e l y c l e a r w h e t h e r t h e p e d a l l i n g f r e q u e n c y was 50 o r 60 rpm, o r whether both e r g o m e t e r s were m a i n t a i n e d a t t h e same p e d a l l i n g speed. T h e s e l a t t e r two f a c t o r s a r e c r i t i c a l i n t h a t i f t h e p e d a l l i n g speed i s 60 rpm, then a c o r r e c t i o n f a c t o r must be a p p l i e d t o t h e Monark t o e q u a t e i t s workl o a d s e t t i n g t o t h e D y n a v i t s e t t i n g ' o f 150 w a t t s ( i e : a 3 kp s e t t i n g a t 50 rpm i s equal t o 6 meters t i m e s 50 rpm t i m e s 3 kp, which e q u a l s 900 kpm/min. T h i s s e t t i n g i s equal t o 150 w a t t s . B u t , a t 60 rpm a 3 kp s e t t i n g i s e q u a l t o 6 meters t i m e s 60 rpm t i m e s 3 kp, which e q u a l s 1080 kpm/min on t h e Monark. T h i s f i g u r e i s no l o n g e r equal t o t h e D y n a v i t s e t t i n g o f 150 w a t t s , because t h e D y n a v i t m a i n t a i n s a c o n s t a n t w o r k l o a d i n d e p e n d e n t o f p e d a l l i n g s p e e d , w h i l e t h e Monark o b v i o u s l y does n o t ) . S e c o n d l y , i f t h e two e r g o m e t e r s were n o t o p e r a t i n g a t t h e same p e d a l l i n g f r e q u e n c y , then d i f f e r e n t b i o m e c h a n i c a l f a c t o r s may have been i n v o l v e d i n d e t e r m i n i n g t h e v a r i o u s p h y s i o l o g i c a l r e s p o n s e s t o e x e r c i s e between t h e two b i c y c l e ergometers  (27,39,61). •  The m e c h a n i c a l l y b r a k e d , Monark e r g o m e t e r a c h i e v e s i t s b r a k i n g f o r c e v i a a f r i c t i o n b e l t around t h e r i m o f t h e f l y w h e e l ( 7 , 7 6 ) . To m a i n t a i n a c o n s t a n t w o r k l o a d a s t e a d y p e d a l l i n g f r e q u e n c y must be e n s u r e d by t h e use o f a metronome, which i n i t s e l f may i n t r o d u c e a work measurement e r r o r o f 10% (.18). A l s o c o n t r i b u t i n g t o measurement e r r o r a r e t h e f r i c t i o n a l l o s s e s i n t h e c h a i n and b e a r i n g s , which as mentioned  e a r l i e r are not taken i n t o  a c c o u n t d u r i n g s t a n d a r d c a l i b r a t i o n . T h i s may c o n t r i b u t e an i n c r e a s e d  20 r e s i s t a n c e o f a p p r o x i m a t e l y 9%, i f n o t c o r r e c t e d ( 7 , 1 8 ) , As p r e v i o u s l y m e n t i o n e d , t h e peak-power o u t p u t r e q u i r e d d u r i n g one pedal: r e v o l u t i o n on a mechanically braked b i c y c l e ergometer (and e a r l y e l e c t r o - m a g n e t i c ergometers) i s much g r e a t e r t h a n t h e w o r k l o a d s e t t i n g , a p p l i e d o v e r a v e r y s m a l l a n g l e o f r o t a t i o n . Thus t h e f o r c e a p p l i c a t i o n c u r v e c a n n o t be c o n s i d e r e d t o be smooth and e v e n l y d i s t r i b u t e d on a m e c h a n i c a l l y b r a k e d b i c y c l e e r g o m e t e r such a s t h e Monark. The p r e p o n d e r a n c e o f t h e l i t e r a t u r e w h i c h has been d i s c u s s e d t e n d s t o s u p p o r t t h e c l a i m s made by D y n a v i t o f A m e r i c a t h a t t h e b r a k i n g o r l o a d i n g system o f t h e D y n a v i t e r g o m e t e r may g r e a t l y r e d u c e p r e m a t u r e l e g muscle f a t i g u e . The i m p l i c a t i o n s f o r maximal c y c l i n g may be t h a t  "improvement"  i n t h e m e c h a n i c a l p r o p e r t i e s o f t h e D y n a v i t c o u l d r e s u l t i n improved l e g muscle f u n c t i o n i n maximal e x e r c i s e , a s a r e s u l t o f t h e o p e r a t i o n o f one o r more f a c t o r s . Some o f t h e s e a r e s u g g e s t e d by t h e - l i t e r a t u r e , j * e : ( a ) a r e d u c t i o n i n venous r e t u r n ( 3 4 ) , (b) an impairment i n l o c a l b l o o d f l o w ( 2 9 ) , both d e s c r i b e d on' page 10, and o t h e r s a b o u t w h i c h i t i s o n l y p o s s i b l e t o s p e c u l a t e ( t h e e f f e c t o f f o r c e o f m u s c l e c o n t r a c t i o n on t h e n e r v o u s system and t h e m e d i a t i n g e f f e c t s o f t h i s o n c e n t r a l n e r v o u s system f a t i g u e , s t i m u l u s t o t h e h e a r t , a n d p r e s s o r mechanisms). The p r e s e n t s t u d y a t t e m p t e d t o examine p o t e n t i a l d i f f e r e n c e s i n t h e b r a k i n g systems o f t h e Monark a n d D y n a v i t b i c y c l e e r g o m e t e r s . D i r e c t e x a m i n a t i o n o f peak f o r c e a p p l i c a t i o n ( a s c a r r i e d out by E d i n g t o n ) was beyond t h e scope o f t h i s s t u d y , b u t s e v e r a l p h y s i o l o g i c a l v a r i a b l e s were compared i n an a t t e m p t t o i n f e r d i f f e r e n c e s i n t h e b r a k i n g systems u n i q u e t o each a p p a r a t u s .  CHAPTER I I I METHODS AND PROCEDURES Subjects T h i r t e e n h e a l t h y , n o n - t r a i n e d , male s u b j e c t s aged from 18-26 y e a r s p a r t i c i p a t e d in t h i s study, a l l being volunteers. A c t i v i t y level  was  d e t e r m i n e d by an a p p r o p r i a t e q u e s t i o n a i r e d e v e l o p e d from t h e American C o l l e g e o f S p o r t s M e d i c i n e p o s i t i o n s t a t e m e n t on t h e q u a n t i t y and q u a l i t y o f e x e r c i s e ( 2 ) . A l l s u b j e c t s but two were t e s t e d a t t h e same t i m e o f day f o r a l l t r e a t m e n t s , and a minimum o f t h r e e days was a l l o w e d between t e s t i n g s e s s i o n s t o e n s u r e c o m p l e t e r e c o v e r y . The two s u b j e c t s who were n o t t e s t e d a t t h e same time o f day were u n a b l e t o do so because o f p e r s o n a l t i m e c o n s t r a i n t s and/or t h e c o n s t r a i n t s o f t h e t e s t i n g p e r i o d i t s e l f . A l t h o u g h 12 s u b j e c t s were t o be used i n t h e s t u d y o r i g i n a l l y , t h e c o n s t r a i n t s o f a p p a r a t u s a v a i l a b i l i t y made i t n e c e s s a r y t o t e s t e x t r a p a r t i c i p a n t s t o a l l o w f o r p o s s i b l e a t t r i t i o n . A l l s u b j e c t s were r e l a t i v e l y l e a n ( l e s s t h a n 15% body f a t ) .  Apparatus A new m e c h a n i c a l l y b r a k e d , Monark b i c y c l e e r g o m e t e r was used i n t h e s t u d y , c a l i b r a t e d b e f o r e and a t r e g u l a r i n t e r v a l s t h r o u g h o u t t h e s t u d y , i n a c c o r d a n c e w i t h p u b l i s h e d i n s t r u c t i o n s ( 7 ) . The t e s t - r e t e s t r e l i a b i l i t y c o e f f i c i e n t f o r maximal oxygen uptake t e s t s u s i n g t h e Monark e r g o m e t e r i s r=.95 ( 5 6 ) . A c o r r e c t i o n f a c t o r was a p p l i e d t o t h e s i n u s b a l a n c e o f t h e Monark t o e q u a t e t h e w o r k l o a d s between t h e two t y p e s o f b i c y c l e e r g o m e t e r s . T h i s was n e c e s s a r y because t h e p e d a l l i n g f r e q u e n c y was s e t a t 60 rpm. A l s o i n c l u d e d i n t h i s c o r r e c t i o n f a c t o r was an a d j u s t m e n t f o r f r i c t i o n l o s s e s i n t h e Monark c h a i n and b e a r i n g s , a f a c t o r which i s n o t t a k e n i n t o a c c o u n t 21  22 d u r i n g s t a n d a r d c a l i b r a t i o n (4,7,18). See T a b l e 1 f o r t h e c a l c u l a t i o n o f t h e p e d a l l i n g f r e q u e n c y and f r i c t i o n f a c t o r c o r r e c t i o n s , and t h e r e s u l t a n t workload s e t t i n g s . The D y n a v i t b i c y c l e ergometer employed i n t h e s t u d y was a new, f a c t o r y c a l i b r a t e d , e l e c t r o n i c a l l y b r a k e d one. The t e s t - r e t e s t  reliability  c o e f f i c i e n t f o r p r e d i c t i o n o f maximal oxygen uptake from submaximal work on the D y n a v i t ranges from r=.904 t o .988. No known d a t a i s a v a i l a b l e f o r t h e t e s t - r e t e s t r e l i a b i l i t y o f t h e D y n a v i t i n t h e d e t e r m i n a t i o n o f maximal oxygen uptake. Because o f t h e g r e a t expense, time i n v o l v e m e n t  and  c o m p l i c a t i o n s o f b u i l d i n g a p p r o p r i a t e c a l i b r a t i o n equipment i t was  not  p o s s i b l e t o c a l i b r a t e t h e e r g o m e t e r on s i t e , and t h e a s s u m p t i o n was made t h a t s t a n d a r d f a c t o r y c a l i b r a t i o n o f t h e D y n a v i t was as a c c u r a t e as c l a i m e d , and d i d not change o v e r t h e d u r a t i o n o f t h e s t u d y . D y n a v i t o f America O p e r a t i o n s Manager L. Peck s t a t e s t h a t t h e c a l i b r a t i o n e r r o r i s p l u s o r minus 2% a t 45-60 rpm, and t h a t as rpm i n c r e a s e s the l o a d t o l e r a n c e i n c r e a s e s i n a n e g a t i v e f a s h i o n . T h u s , a t 85 rpm t h e e r r o r o f t h e w o r k l o a d s e t t i n g i s a p p r o x i m a t e l y -5 t o -7%. As t h e p r e s e n t s t u d y was p r i m a r i l y c o n c e r n e d w i t h maximal e x e r c i s e , t h i s l i m i t a t i o n i n t h e c a l i b r a t i o n o f t h e D y n a v i t i s not o f g r e a t s i g n i f i c a n c e , except' i n e x a m i n a t i o n o f oxygen uptake and h e a r t r a t e a t submaximal w o r k l o a d  i n t e r v a l s . According to Astrand  and Cumming (18) c a l i b r a t i o n o f e l e c t r o n i c b i c y c l e e r g o m e t e r s  (4)  s h o u l d be done  a minimum o f 2 t o 3 t i m e s each y e a r . Cumming s t a t e s t h a t " p u l s e r a t e s o r 0£ uptakes o f s u b j e c t s performing a supposedly s i m i l a r workload cannot  be  v a l i d l y compared i f the w o r k l o a d i s up t o 20% i n . e r r o r . " ( 1 8 ) . He f u r t h e r s t a t e s t h a t two h e a v i l y used e l e c t r o n i c e r g o m e t e r s  he c a l i b r a t e d were o n l y  10% i n e r r o r 4 t o 8 y e a r s a f t e r f a c t o r y c a l i b r a t i o n ( 1 8 ) . The i n f e r e n c e i s t h a t a s m a l l c a l i b r a t i o n e r r o r would not g r e a t l y e f f e c t c o m p a r a t i v e  data  23 TABLE 1 CALCULATION OF PEDALLING FREQUENCY AND FRICTION FACTOR CORRECTIONS  A. P e d a l l i n g F r e q u e n c y C o r r e c t i o n F a c t o r : 1 kp • 50 rpm • 6 meters= 300 kpm/min . (50 watts= 300 kpm/min) x kp • 60 rpm • 6 meters= 300 kpm/min = .83 x kp= 300 kpm/min 60 rpm • 6 m e t e r s C o r r e c t i o n f a c t o r f o r p e d a l l i n g f r e q u e n c y o f 60 rpm= .8_3 B. F r i c t i o n C o r r e c t i o n F a c t o r : A c c o r d i n g t o A s t r a n d (7) a workload o f 600 kpm i s a c t u a l l y 650 kpm, 1200 kpm i s 1300 kpm, e t c . , due t o f r i c t i o n a l l o s s e s i n t h e c h a i n and b e a r i n g s . A l t h o u g h t h i s i s s t a t e d f o r a p e d a l l i n g f r e q u e n c y o f 50 rpm, t h e r e i s no a p p r e c i a b l e change i n t h e f r i c t i o n f a c t o r from 50 t o 60 rpm ( 1 4 ) . T h e r e f o r e , t h e a p p r o p r i a t e r a t i o i s 600 = .92_ 650 C o r r e c t i o n f a c t o r f o r f r i c t i o n l o s s e s = .92^ C. Combined C o r r e c t i o n F a c t o r : .83 •.92= .76 T h e r e f o r e , t h e combined c o r r e c t i o n f a c t o r f o r f r i c t i o n l o s s e s and p e d a l l i n g f r e q u e n c y o f 60 rpm = .76^ F o r p r a c t i c a l a p p l i c a t i o n , t h e s i n u s b a l a n c e o f t h e Monark e r g o m e t e r was marked a t .75 kp f o r t h e f i r s t w o r k l o a d , and each s u c c e s s i v e w o r k l o a d s e t t i n g was i n c r e a s e d by .75 kp. D. A d j u s t e d Workload S e t t i n g s :  Load 1 2 3 4 5 6  Monark  Dynavit  .75 kp 1.50 2.25 3.00 3.75 4.50  50 w a t t s 100 150 200 250 300  24 a n a l y s i s , and i t f o l l o w s t h a t t h e p r o b a b i l i t y o f t h e newly c a l i b r a t e d Dynavit ergometer r e s u l t i n g i n inaccurate r e s u l t s i s very  low.  A Q u i n t o n t r e a d m i l l was used i n c r i t e r i o n d e t e r m i n a t i o n  o f peak  oxygen c o n s u m p t i o n , and i s c a l i b r a t e d a t r e g u l a r i n t e r v a l s by l a b o r a t o r y s t a f f . A Beckman M e t a b o l i c Measurement C a r t , i n t e r f a c e d w i t h a Packard  3052-A Data A c q u i s i t i o n System, r e c o r d e d t h e  physiological.parameters  Hewlett-  appropriate  under c o n s i d e r a t i o n , and an A v i o n i c s 4000 E l e c t r o -  c a r d i o g r a p h was used t h r o u g h o u t t h e t e s t i n g s e s s i o n s t o m o n i t o r c a r d i o v a s c u l a r r e s p o n s e t o e x e r c i s e . These p i e c e s o f equipment- a r e a l s o c a l i b r a t e d l  a t r e g u l a r i n t e r v a l s by l a b o r a t o r y s t a f f .  Experimental  Conditions  Each s u b j e c t d i d t h r e e t e s t s , i n v o l v i n g one maximal e x e r c i s e bout on each o f t h r e e p i e c e s o f equipment; t h e t r e a d m i l l , t h e D y n a v i t b i c y c l e e r g o m e t e r and t h e Monark b i c y c l e e r g o m e t e r . B e f o r e t h i s , each s u b j e c t informed  was  o f a p p r o p r i a t e p r e - t e s t a c t i v i t y and d i e t a r y g u i d e l i n e s t o f o l l o w  (8,69). The l a b o r a t o r y e n v i r o n m e n t a l  c o n d i t i o n s (temperature  and  humidity)  were h e l d r e l a t i v e l y c o n s t a n t t h r o u g h o u t t h e t e s t i n g s e s s i o n s . Each s u b j e c t was a s s i g n e d ' a  treatment  o r d e r v i a a L a t i n Square D e s i g n , t o n e g a t e o r d e r i n g  and l e a r n i n g e f f e c t s ( 2 8 ) . See T a b l e 2 f o r a s s i g n m e n t o f t r e a t m e n t  orders.'  S u b j e c t s were b r o u g h t i n t o t h e l a b o r a t o r y p r i o r t o the t e s t i n g s e s s i o n so t h a t age, h e i g h t , w e i g h t , body f a t and. l e g l e n g t h c o u l d be i d e n t i f i e d  and  r e c o r d e d . O t h e r f i t n e s s p a r a m e t e r s were a l s o t e s t e d and r e c o r d e d f o r t h e b e n e f i t of the p a r t i c i p a n t s . A consent form, b r i e f medical (PAR Q) and an a c t i v i t y q u e s t i o n a i r e were a d m i n i s t e r e d ,  h i s t o r y form  followed  by  f a m i l i a r i z a t i o n of the s u b j e c t with the a p p r o p r i a t e t e s t i n g apparatus. e l e c t r o c a r d i o g r a p h • l e a d s were then a p p l i e d and t h e s u b j e c t was  informed  The of  25 TABLE 2 ORDER OF TESTS FOR SUBJECTS (REPEATED LATIN SQUARE DESIGN)  Subjects  Test 1  Test 2  Test 3  1 & 7  Dynavit  Monark  Treadmi11  2 & 8  Monark  Treadmill  Dynavit  3 & 9  Treadmi11  Dynavit  Monark  4 & 10  Treadmill  Monark  Dynavit  5 & 11  Monark  Dynavit  Treadmill  6 & 12  Dynavit  Treadmill  Monark  Dynavit  Monark  Treadmi11  13  26 t h e p r o c e d u r e r e q u i r e d t o complete t h e t e s t . In t h e c a s e o f t h e b i c y c l e t e s t s , s a d d l e h e i g h t was i n i t i a l l y e s t a b l i s h e d by t h e method p u t f o r w a r d by Shennum and de V r i e s ( 6 8 ) . Leg l e n g t h was d e t e r m i n e d by m e a s u r i n g  t h e v e r t i c a l d i s t a n c e from t h e i s c h i u m  to t h e f l o o r , i d e n t i f i c a t i o n o f t h e i s c h i u m b e i n g a c h i e v e d by p a l p a t i o n . The ergometer  pedal was then moved t o i t s most d i s t a l p o s i t i o n from t h e  s e a t , and t h e d i s t a n c e from t h e t o p - f r o n t o f t h e s e a t t o t h e t o p o f t h e pedal ( a t a p o i n t d i r e c t l y t h r o u g h t h e pedal a x i s ) was a d j u s t e d , w i t h s e a t h e i g h t b e i n g s e t a t ~ 1 0 4 % o f l e g l e n g t h . T h i s method a g r e e s w e l l w i t h t h o s e put f o r w a r d by Hamley and Thomas (35) and by A s t r a n d ( 7 ) . The h a n d l e b a r s were m a i n t a i n e d i n one r e l a t i v e l y n e u t r a l p o s i t i o n ( 7 ) .  Experimental  Procedures  The t r e a d m i l l p r o c e d u r e i n v o l v e d a c o n t i n u o u s , i n c r e m e n t a l p r o t o c o l , d e s i g n e d t o produce e x h a u s t i o n i n 10-15 m i n u t e s . The s u b j e c t i n i t i a l l y completed a 10 minute warm-up walk a t 3.5 mph and 0% g r a d e . T h i s was f o l l o w e d by a t t a c h m e n t  o f t h e Rudolph b r e a t h i n g a p p a r a t u s . The speed o f t h e  t r e a d m i l l was then i n c r e a s e d t o 7 mph , w i t h 0% grade f o r t h e f i r s t 3 minutes o f t h e t e s t . T h e r e a f t e r t h e grade was i n c r e a s e d by 2.5% e v e r y 3 minutes t o v o l i t i o n a l f a t i g u e or p h y s i o l o g i c a l c o n t r a i n d i c a t i o n ( 1 ) . The b i c y c l e ergometer e x e r c i s e t e s t was i d e n t i c a l f o r both b i c y c l e s , and was o f a c o n t i n u o u s , i n c r e m e n t a l n a t u r e . A 10 minute warm-up was completed  i n i t i a l l y a t a w o r k l o a d s e t t i n g o f .75 kp on t h e s i n u s b a l a n c e o f  t h e Monark, o r 50 w a t t s on t h e D y n a v i t d i g i t a l d i s p l a y . P e d a l l i n g f r e q u e n c y was m a i n t a i n e d a t 60 rpm t h r o u g h o u t a l l t e s t s by t h e use o f a metronome, which was checked f o r c a l i b r a t i o n b e f o r e each t e s t . A f t e r t h e warm-up, t h e Rudolph b r e a t h i n g a p p a r a t u s was a t t a c h e d . The i n i t i a l 3 minute w o r k l o a d  was  27 s e t a t .75 kp on the s i n u s b a l a n c e o f t h e Monark, o r 50 w a t t s on t h e D y n a v i t d i g i t a l d i s p l a y . T h e r e a f t e r the r e s i s t a n c e was i n c r e a s e d by .75 kp on t h e Monark o r 50 Watts on t h e D y n a v i t e v e r y 3 m i n u t e s u n t i l v o l i t i o n a l f a t i g u e , l o s s o f a p p r o p r i a t e p e d a l l i n g cadence o r p h y s i o l o g i c a l c o n t r a i n d i c a t i o n ( 1 ) . A r e v o l u t i o n c o u n t e r was i n c l u d e d on each b i c y c l e ergometer t e s t t o a l l o w f o r p e d a l l i n g f r e q u e n c y g u i d a n c e from minute t o minute d u r i n g each t e s t , as w e l l as f o r r e t r o s p e c t i v e a n a l y s i s o f e x e r c i s e e n d p o i n t s i n q u e s t i o n a b l e c a s e s . Only one such c a s e o c c u r r e d , t h e t e s t e n d p o i n t b e i n g r e s o l v e d as t h e minute mark p r i o r t o t h e l o s s o f c o r r e c t p e d a l l i n g cadence. A s t a n d a r d d e v i a t i o n o f p l u s o r minus 5 rpm was a l l o w e d , and s u b j e c t DD d e f i n i t e l y l o s t more than 5 rpm a f t e r minute 18 o f t h e D y n a v i t t e s t . A l l s u b j e c t s were encouraged  t o p r o c e e d as l o n g as p o s s i b l e , w i t h the  knowledge t h a t t h e y c o u l d d i s c o n t i n u e a t any t i m e . A s u b j e c t i v e a c c o u n t o f r e a s o n s f o r d i s c o n t i n u i n g each t e s t was o b t a i n e d from a l l s u b j e c t s on each a p p a r a t u s , f o r r e t r o s p e c t i v e a n a l y s i s . See Appendix A f o r an o u t l i n e o f t h e S u b j e c t i v e Response Q u e s t i o n a i r e .  Experimental  Design  The main problem, which examined peak oxygen consumption  and t o t a l  work time i n d e p e n d e n t l y , i n v o l v e d a s i n g l e f a c t o r e x p e r i m e n t w i t h r e p e a t e d measures. See F i g u r e 4 f o r a d i a g r a m a t i c i l l u s t r a t i o n o f t h i s d e s i g n . The sub-problems  i n c l u d e d e x a m i n a t i o n o f submaximal h e a r t r a t e and  oxygen uptake i n d e p e n d e n t l y , and i n v o l v e d a 3 by 7 f a c t o r i a l  experiment,  w i t h r e p e a t e d measures on both f a c t o r s . See F i g u r e 5 f o r a d i a g r a m a t i c i l l u s t r a t i o n of this design.  28  Dynavit ST  si  S,  sf  .  st si  S^ Sp Sg S, Sj!j  s22  Monark  X X X  X X X X  X  X X X X X X  Treadmil1  X  X  ^ ^  X X X X ^ ^  X X X X X X X X X X X X X  X  X  FIGURE 4 EXPERIMENTAL DESIGN: HYPOTHESES 1, 2, 3 AND 4  Dynavit Minute: 1  Monark 7 1  7 1 X X X X X X X X X X X X  !10 111 112 >13  Treadmi11  X  X  X  X  X X X X X X X X X X X X X X X X X X X FIGURE 5 EXPERIMENTAL DESIGN: HYPOTHESES 5 AND 6  X  x  29 Experimental  Analysis  A one way a n a l y s i s o f v a r i a n c e (ANOVA) w i t h r e p e a t e d measures was  used  t o t e s t t h e s i g n i f i c a n c e o f the d i f f e r e n c e between means f o r peak oxygen consumption  and t o t a l work t i m e .  For the d a t a i n v o l v i n g submaximal h e a r t r a t e and oxygen u p t a k e , a two way a n a l y s i s o f v a r i a n c e w i t h r e p e a t e d measures on both f a c t o r s was 1  employed. The U n i v e r s i t y o f B r i t i s h Columbia  Computer Program BMD:P2V was  used i n a l l c a s e s , the v a r i a b l e s o f peak oxygen c o n s u m p t i o n ,  t o t a l work  t i m e , submaximal h e a r t r a t e and submaximal oxygen uptake a l l b e i n g a n a l y z e d independently. The Newman-Keuls method o f p r o b i n g t h e n a t u r e o f t h e d i f f e r e n c e s between t r e a t m e n t means was used i f a s i g n i f i c a n t o v e r a l l F v a l u e was f o r any e x p e r i m e n t a l c o n d i t i o n ( 2 8 ) .  found  (  CHAPTER IV RESULTS AND DISCUSSION A n t h r o p o m e t r i c Data T a b l e 3 g i v e s each s u b j e c t ' s a g e , h e i g h t , w e i g h t , p e r c e n t body f a t and l e g l e n g t h as w e l l a s t h e a s s o c i a t e d group means and s t a n d a r d d e v i a t i o n s .  TABLE 3 AGE, HEIGHT, WEIGHT, PERCENT BODY FAT AND LEG LENGTH OF ALL SUBJECTS (PLUS GROUP MEANS AND STANDARD DEVIATIONS)  S u b j e c t s A g e ( y r s ) H e i g h t ( c m ) W e i g h t ( k g ) Body F a t ( % ) Leg Length(cm) DD  26  182.4  77.5  12.3  91.0  BF1  22  179.9  78.5  11.2  89.4  BF2  20  183.5  85.4  13.6  89.5  CH  25  181.5  67.6  08.8  90.3  MH  21  179.8  71.4  12.4  93.1  DL  22  171.6  66.5 '  12.3  85.8  BA  26  183.2  71.7  12.7  90.4  ML  19  168.2  65.8  11.6  83.9  RB  23  170.5  65.3  11.1  86.8  PV  23  172.7  58.7  11.5  86.2  WK  21  185.9  75.0  14.1  . 100.4  RW  20  170.9  60.7  11.8  84.8  MC Mean SD  25 22.5 2.7  178.1 177.6 4.2  69.9 70.3 7.5  12.6 12.0 1..3 30  88.6 . 89.3 2.8  31 See Appendix B f o r e x a m i n a t i o n o f t h e raw p h y s i o l o g i c a l d a t a a s s o c i a t e d with t h i s study.  R e s u l t s o f T o t a l Work Time The means o b t a i n e d f o r t o t a l work time i n t h i s s t u d y a r e g i v e n i n T a b l e 4, as w e l l a s t h e a s s o c i a t e d s t a n d a r d d e v i a t i o n s . The F v a l u e o b t a i n e d from t h e ANOVA t a b l e i s a l s o i n d i c a t e d . F o r d e t a i l s o f t h e complete t a b l e see Appendix  ANOVA  C. F i g u r e 6 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a  from T a b l e 4.  TABLE 4 TOTAL WORK TIME (DECIMAL MINUTES) (MEANS, STANDARD DEVIATIONS AND F VALUES)  T o t a l Work Time Mean  Standard Deviation  Dynavit  15.64  1.20  Monark  15.97  1.51  Treadmill  10.21  2.34  F Value  92.42*  * S i g n i f i c a n t a t <.001 L e v e l The F v a l u e o f ' 9 2 . 4 2 i n d i c a t e d a h i g h l y s i g n i f i c a n t d i f f e r e n c e among t r e a t m e n t means i n t o t a l w o r k - t i m e . A Newman-Keuls T e s t was a p p l i e d t o t h e d a t a t o d e t e r m i n e where t h e d i f f e r e n c e s among t h e means o c c u r e d . These r e s u l t s a r e shown i n T a b l e 5. An a n a l y s i s o f t h e r e s u l t s from T a b l e 5 r e v e a l s t h a t t h e t o t a l work  32  25  to  20  CD 3  B  o  CD Q  15  CD  o (0  +-o>  10  5  .j  J  1  Monark  ;  —l  1  1  Treadmill FIGURE 6  TOTAL WORK TIME (DECIMAL MINUTES) (MEANS AND STANDARD DEVIATIONS)  J_  Dynavit  33 t i m e mean a c h i e v e d on t h e D y n a v i t e r g o m e t e r was n o t d i f f e r e n t from t h e t o t a l work t i m e mean o b t a i n e d on t h e Monark e r g o m e t e r . Thus h y p o t h e s i s 1 as s t a t e d i n C h a p t e r 1 s h o u l d be r e j e c t e d .  TABLE 5 TOTAL WORK TIME (DECIMAL MINUTES) NEWMAN-KEULS TEST (TREATMENT MEANS IN ORDER)  Treadmill  Dynavit  (10.21) Treadmill  Monark  (15.64)  (15.97)  15.97*  16.94* .97  Dynavit Monark  * S i g n i f i c a n t a t .05 L e v e l The t o t a l work' time means a c h i e v e d on both t h e D y n a v i t and Monark e r g o m e t e r s were g r e a t e r t h a n t h e mean t i m e o b t a i n e d on t h e t r e a d m i l l . T h i s i s a p o i n t o f i n t e r e s t , but o f no d i r e c t i m p o r t a n c e t o t h e s t u d y .  D i s c u s s i o n o f T o t a l Work Time R e s u l t s One o f ; t h e m a j o r a s s u m p t i o n s s t a t e d i n t h i s s t u d y was t h a t an i n c r e a s e i n t o t a l work t i m e d u r i n g maximal b i c y c l e e x e r c i s e would r e s u l t , i n g r e a t e r p h y s i c a l e x e r t i o n and t h u s t h e a c h i e v e m e n t o f a h i g h e r peak oxygen  consump-  t i o n v a l u e on t h e D y n a v i t e r g o m e t e r t h a n on t h e Monark e r g o m e t e r . The r e s u l t s i n d i c a t e t h a t such was n o t t h e case.- No d i f f e r e n c e was f o u n d between t h e t o t a l work t i m e s o f t h e two b i c y c l e e r g o m e t e r s , t h u s b r i n g i n g i n t o doubt t h e  34 p o s s i b i l i t y t h a t peak oxygen consumption  v a l u e s would d i f f e r . S i n c e no  d i f f e r e n c e was f o u n d i n t o t a l work t i m e s , i t would appear t h a t the l e v e l o f p h y s i c a l e x e r t i o n must be s i m i l a r f o r the two t y p e s o f b i c y c l e s . I f t h i s i s t r u e , then t h e r e i s l i t t l e r e a s o n t o e x p e c t d i f f e r e n c e s i n t h e o t h e r maximal p h y s i o l o g i c a l parameters which were examined. As p r e v i o u s l y m e n t i o n e d ,  the t r e a d m i l l t o t a l work time was much l e s s  than e i t h e r o f the c o r r e s p o n d i n g Monark o r D y n a v i t v a l u e s . T h i s can be e x p l a i n e d i n p a r t by the i n h e r e n t b i o m e c h a n i c a l d i f f e r e n c e s i n v o l v e d i n t h e two t y p e s o f a c t i v i t y ( r u n n i n g and c y c l i n g ) . The u p h i l l r u n n i n g , w i t h i n t h e context of t h i s study, probably r e q u i r e d a higher r e l a t i v e i n t e n s i t y of e f f o r t and t h u s a g r e a t e r e n e r g y e x p e n d i t u r e p e r u n i t t i m e than the c y c l i n g d i d . I t would appear t h a t a l t h o u g h an a t t e m p t was made t o equate the two t y p e s o f e x e r c i s e t e s t p r o t o c o l ( b i c y c l e and t r e a d m i l l ) , t h i s was n o t t o t a l l y a c h i e v e d , as s u g g e s t e d by the d i f f e r e n c e i n t o t a l work time j u s t n o t e d . T h i s was n o t o f s t r a t e g i c c o n c e r n , however, i n the e x a m i n a t i o n o f the o v e r a l l results.  R e s u l t s o f Peak Oxygen Consumption Data The means f o r peak oxygen c o n s u m p t i o n ,  ^ as w e l l as the a s s o c i a t e d  s t a n d a r d d e v i a t i o n s o b t a i n e d i n t h i s s t u d y a r e g i v e n i n T a b l e 6. The F v a l u e o b t a i n e d from the ANOVA t a b l e i s a l s o i n d i c a t e d . F o r d e t a i l s o f the  complete  ANOVA t a b l e see Appendix C. F i g u r e . 7 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a f r o m T a b l e 6. The F v a l u e o f 5.42 i n d i c a t e d a s t a t i s t i c a l d i f f e r e n c e among t r e a t m e n t means i n peak oxygen consumption.  A Newman-Keuls T e s t was a p p l i e d t o the  d a t a t o d e t e r m i n e where the d i f f e r e n c e s among,the means o c c u r r e d . T h e s e r e s u l t s a r e shown i n T a b l e 7.  35  50  40  35  30 Monark  Treadmill  Dynavit  FIGURE 7 PEAK OXYGEN CONSUMPTION (ML/KG/MIN) ^ (MEANS AND STANDARD DEVIATIONS)  \  36 TABLE 6 PEAK,OXYGEN CONSUMPTION (ML/KG/MIN) (MEANS, STANDARD DEVIATIONS AND F VALUES)  Standard  POC Mean  Deviation  Dynavit  46.86  5.92  Monark  45.57  7.11  Treadmill  49.85  4.92  5.42*  F Value  * . S i g n i f i c a n t a t .0114 L e v e l  TABLE 7 PEAK OXYGEN CONSUMPTION (ML/KG/MIN) NEWMAN-KEULS TEST (TREATMENT MEANS IN ORDER)  Monark  Monark  Dynavit  (45.57)  (46.86) 1.37  • Treadmill (49.85) 4.55* 3.18*  Dynavit Treadmill  * S i g n i f i c a n t a t .05 L e v e l . An a n a l y s i s o f t h e p r e c e e d i n g r e s u l t s r e v e a l s t h a t t h e peak oxygen consumption mean a c h i e v e d on t h e D y n a v i t e r g o m e t e r was n o t s t a t i s t i c a l l y d i f f e r e n t from t h e mean o b t a i n e d on t h e Monark e r g o m e t e r . Thus h y p o t h e s i s 2  37 as s t a t e d i n C h a p t e r 1 s h o u l d be r e j e c t e d . T a b l e 7 a l s o r e v e a l s t h a t t h e peak oxygen c o n s u m p t i o n mean o b t a i n e d on t h e t r e a d m i l l was d i f f e r e n t f r o m ( g r e a t e r t h a n ) t h e mean o b t a i n e d on t h e Monark e r g o m e t e r . Thus h y p o t h e s i s 3 as s t a t e d i n C h a p t e r 1 s h o u l d be accepted. F i n a l l y , t h e p r e c e e d i n g T a b l e 7 shows t h a t t h e peak oxygen c o n s u m p t i o n mean o b t a i n e d on t h e t r e a d m i l l was d i f f e r e n t from ( g r e a t e r t h a n ) t h e mean o b t a i n e d on t h e D y n a v i t e r g o m e t e r . On t h i s b a s i s h y p o t h e s i s 4 a s s t a t e d i n C h a p t e r 1 s h o u l d be r e j e c t e d .  D i s c u s s i o n o f Peak Oxygen Consumption R e s u l t s A n a l y s i s o f t h e peak oxygen c o n s u m p t i o n d a t a i n d i c a t e s t h a t d u r i n g t h e maximal e x e r c i s e t e s t i n g t h e r e was no a p p a r e n t d i f f e r e n c e between t h e D y n a v i t and Monark e r g o m e t e r s i n t h e s u b j e c t ' s p h y s i o l o g i c a l r e s p o n s e t o e x e r c i s e s t r e s s , as i n d i c a t e d by t h e l a c k o f d i f f e r e n c e i n t h e above v a l u e s . T h i s c o n c l u s i o n s u p p o r t s t h e c o n t e n t i o n t h a t t h e r e i s no p r a c t i c a l d i f f e r e n c e i n t h e l o a d i n g systems o f t h e two t y p e s o f b i c y c l e e r g o m e t e r s , as was o r i g i n a l l y proposed. The peak oxygen c o n s u m p t i o n v a l u e a c h i e v e d on t h e t r e a d m i l l was g r e a t e r t h a n t h a t which was a c h i e v e d on t h e Monark ergometer,' a c o n c l u s i o n w h i c h i s i n agreement w i t h p r e v i o u s l y r e p o r t e d l i t e r a t u r e . A l t h o u g h t h e magnitude o f t h e d i f f e r e n c e s between b i c y c l e and t r e a d m i I T v a l u e s o f maximal oxygen uptake v a r y from 5 t o 15% ( 3 9 , 5 2 ) , t h e more commonly r e p o r t e d v a l u e s a r e more i n t h e range o f 5 t o 8% ( 3 8 ) . The peak oxygen consumption v a l u e r e c o r d e d f o r t h e Monark i n t h i s s t u d y (45.57 ml/kg/min) was 8.6% l o w e r t h a n t h a t a c h i e v e d on t h e t r e a d m i l l (49.85 ml/kg/min). I t was f o u n d t h a t t h e peak oxygen c o n s u m p t i o n s c o r e a t t a i n e d on t h e  38 D y n a v i t e r g o m e t e r was a l s o l o w e r than t h a t o b t a i n e d on the t r e a d m i l l . The magnitude o f t h e d i f f e r e n c e was 6%. These f i n d i n g s s u g g e s t t h a t t h e l o a d i n g • c h a r a c t e r i s t i c s o f t h e D y n a v i t a r e n o t d i f f e r e n t from t h o s e o f t h e Monark i n t h e i r i n f l u e n c e upon t h e m u s c u l a r f u n c t i o n o r o t h e r a s p e c t s o f t h e c a r d i o v a s c u l a r dynamics o f u n t r a i n e d young  men.  R e s u l t s o f Submaximal Oxygen Uptake Data T a b l e 8 shows t h e means and s t a n d a r d d e v i a t i o n s f o r submaximal  oxygen  u p t a k e - ( m l / k g / m i n ) , m i n u t e s 1 t h r o u g h 7, f o r t h e D y n a v i t and Monark e r g o m e t e r s . F i g u r e 8 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a from T a b l e 8. O n l y v a l u e s f o r m i n u t e s 1 t h r o u g h 7 a r e shown, as beyond t h i s p o i n t h e a r t r a t e r e s p o n s e s f o r a l l s u b j e c t s d i d n o t remain w i t h i n t h e l i m i t s s e t by t h e d e f i n i t i o n o f Submaximal Oxygen Uptake ( s e e C h a p t e r 1, D e f i n i t i o n s ) .  TABLE 8 SUBMAXIMAL OXYGEN UPTAKE (ML/KG/MIN) (MEANS, AND STANDARD DEVIATIONS)  Monark  • Dynavit  Minute Minute Minute Minute Minute Minute Minute  1 2 3 4 5 6 7  Mean  SD  Mean  SD  12.86 12.91 12.87 15.01 18.89 20.62 24.39  2.61 2.30 2.53 4.00 2.60 3.79 3.71  11.17 13.21 13.27 15.65 19.03 20.50 23.54  2.40 3.29 2.53 2.54 3.41 2.86 3.77  T a b l e 9 shows t h e ANOVA d a t a and a s s o c i a t e d p r o b a b i l i t y v a l u e s f o r t h e  Monark: Dynavit: 35  25 A  20 H  15 H  io. H  4-  2  3  4  5  Time ( m i n u t e s ) FIGURE 8 SUBMAXIMAL OXYGEN UPTAKE (ML/KG/MIN)  40  submaximal oxygen uptake r e s u l t s .  TABLE 9 ANOVA TABLE FOR SUBMAXIMAL OXYGEN UPTAKE  Source  Sum o f S q u a r e s  df  Mean Square  F  Prob. F Exceeded  Minutes(M)  3198.44  6  533.07  82.59  <.001*  M Linear  2989.99  1  2989.99  204.35  <.001*  155.57  1  155.57  39.18  . <:ooi*  1.30  1  1.30  .20  . 6648  26.50  6  4.42  1.04  .4044  M Quadratic Bikes(B) MXB  * S i g n i f i c a n t a t <.001 The ANOVA-table  i n d i c a t e s t h a t f o r each b i k e t h e r e was a d i f f e r e n c e i n  submaximal oxygen u p t a k e f r o m m i n u t e t o m i n u t e , a s was e x p e c t e d , s i n c e t h e t e s t was d e s i g n e d t o do t h i s . But t h e r e was no o v e r a l l d i f f e r e n c e i n oxygen u p t a k e , o r i n t h e r a t e o f change o f oxygen u p t a k e f r o m m i n u t e t o m i n u t e , between t h e two b i c y c l e s . Thus h y p o t h e s i s 5 as s t a t e d i n C h a p t e r 1 s h o u l d be rejected.  D i s c u s s i o n o f Submaximal Oxygen Uptake R e s u l t s The p r e c e e d i n g r e s u l t s i n d i c a t e t h a t a t submaximal w o r k l o a d s t h e r e i s no d i f f e r e n c e between t h e two b i c y c l e s i n t h e s u b j e c t ' s p h y s i o l o g i c a l r e s p o n s e t o e x e r c i s e , a s e x p r e s s e d i n terms o f oxygen u p t a k e . From T a b l e 9 i t c a n be seen t h a t t h e M i n u t e s e f f e c t ( t h e change i n oxygen u p t a k e f r o m m i n u t e t o m i n u t e ) c a n b e s t be d e s c r i b e d - b y a l i n e a r f u n c t i o n (M L i n e a r : p<.001).  S i n c e oxygen uptake i n c r e a s e s i n a l i n e a r f a s h i o n w i t h i n c r e a s e s i n workl o a d (as does h e a r t r a t e ) ( 8 ) , and s i n c e t h e r e was no d i f f e r e n c e i n submaximal oxygen uptake between t h e two b i c y c l e s , i t f o l l o w s t h a t t h e b i c y c l e s c o u l d be used i n t e r c h a n g e a b l y  f o r submaximal p r e d i c t i v e t e s t i n g o f a e r o b i c  work c a p a c i t y .  R e s u l t s o f Submaximal H e a r t Rate Data T a b l e 10 shows t h e means and s t a n d a r d d e v i a t i o n s f o r submaximal h e a r t r a t e (bpm), m i n u t e s 1 t h r o u g h 7, f o r t h e D y n a v i t and Monark e r g o m e t e r s . F i g u r e 9 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a f r o m T a b l e 10. O n l y t h e f i r s t 7 m i n u t e s o f t h e h e a r t r a t e d a t a a r e shown i n T a b l e 10 b e c a u s e beyond t h i s p o i n t h e a r t r a t e r e s p o n s e s f o r a l l s u b j e c t s d i d n o t remain w i t h i n t h e l i m i t s s e t by t h e d e f i n i t i o n o f Submaximal H e a r t Rate ( s e e C h a p t e r 1, Definitions).  TABLE 10 SUBMAXIMAL HEART RATE (BPM) (MEANS AND STANDARD DEVIATIONS)  Monark  Dynavit  Minute Minute Minute Minute Minute Minute Minute  1 2 3 4 5 6 7  Mean  SD  Mean  SD  109.08 108.92 110.77 121.46 127.15 132.77 146.23  14.19 12.91 12.45 11.20 9.92 14.28 13.85  106.15 107.15 110.15 121.46 123.92 129.31 140.69  8.30 7.54 8.46 9.67 12.50 13.57 12.71  Monark: Dynavit: 150  100 H  90 ]  1  1  ,  ,  2  3  —) 4 Time ( m i n u t e s )  FIGURE 9 SUBMAXIMAL HEART RATE (BPM)  1  1  5  6  7  43 T a b l e 11 shows t h e ANOVA d a t a and a s s o c i a t e d p r o b a b i l i t y v a l u e s f o r t h e submaximal h e a r t r a t e r e s u l t s .  TABLE 11 ANOVA TABLE FOR SUBMAXIMAL HEART RATE  Sum o f Squares  Source  df  Mean Square  F  Prob. F Exceeded  Minutes(M)  28190.67  6  4698.45  137.13  <001*  M Linear  26400.35  1  26400.35  179.45  <001*  1172.16  1  1172.16  104.57  <001*  Bikes(B)  285.63  1  285.63  1.71  .2158  MXB  137.84  6  22.97  1.03  .4123  M  Quadratic  * Significant at<.001 The ANOVA t a b l e i n d i c a t e s t h a t t h e r e was a h i g h l y s i g n i f i c a n t d i f f e r e n c e in submaximal h e a r t r a t e from m i n u t e t o m i n u t e f o r e a c h b i k e , w h i c h was t o be expected.  However, t h e r e s u l t s a l s o i n d i c a t e t h a t t h e r e was no o v e r a l l  d i f f e r e n c e i n h e a r t r a t e s between t h e two b i c y c l e s , and t h a t t h e r a t e o f change f r o m m i n u t e t o m i n u t e o f h e a r t r a t e s d i d n o t d i f f e r s i g n i f i c a n t l y . Thus h y p o t h e s i s 6 a s s t a t e d i n C h a p t e r 1 s h o u l d be r e j e c t e d .  D i s c u s s i o n o f Submaximal Heart Rate R e s u l t s When t h e s e r e s u l t s a r e p l a c e d i n t o t h e c o n t e x t o f submaximal e x e r c i s e t e s t i n g ( M o d i f i e d S j o s t r a n d PWC T e s t , A s t r a n d - R y h m i n g P r e d i c t e d Oxygen Uptake T e s t ) , i t would a p p e a r t h a t t h e D y n a v i t b i c y c l e e l i c i t s submaximal rate responses  heart  w h i c h a r e s i m i l a r t o t h o s e p r o d u c e d f r o m t h e Monark e r g o m e t e r .  44 From T a b l e 11 i t can be seen t h a t t h e M i n u t e s e f f e c t ( t h e change i n h e a r t r a t e from minute t o m i n u t e ) can b e s t be d e s c r i b e d by a l i n e a r f u n c t i o n (M L i n e a r : p<.001). As t h e above mentioned  submaximal e x e r c i s e t e s t s a r e  based on a l i n e a r h e a r t r a t e r e s p o n s e t o e x e r c i s e s t r e s s , i t would appear t h a t the D y n a v i t c o u l d be used i n t e r c h a n g e a b l y w i t h t h e Monark f o r t h e a d m i n i s t r a t i o n o f such t e s t s . A s t u d y by Hockey (40) has shown good r e l i a b i l i t y and p r e d i c t i o n f a c t o r s f o r t h e D y n a v i t on a 10 minute  submaximal  t e s t , and MacLeod (53) has r e p o r t e d t h e D y n a v i t t o be r e l i a b l e f o r submaximal t e s t i n g p u r p o s e s . The r e s u l t s o f a s t u d y by C a r r o l l (15) s u g g e s t t h a t a c o n s t a n t p e d a l l i n g f r e q u e n c y s h o u l d be m a i n t a i n e d d u r i n g such t e s t s however, as he f o u n d t h a t t h e c o n s t a n t l o a d i n g system o f t h e Elema-Schonander b i c y c l e ergometer was not a c c u r a t e i f p e d a l l i n g f r e q u e n c y was v a r i e d .  R e s u l t s o f Maximal H e a r t Rate  Data  T a b l e 12 shows t h e means and s t a n d a r d d e v i a t i o n s f o r maximal h e a r t r a t e f o r a l l t h r e e p i e c e s o f t e s t i n g equipment. The F v a l u e o b t a i n e d f r o m t h e ANOVA d a t a i s a l s o i n d i c a t e d i n t h e t a b l e . See Appendix  C f o r examination of  t h e complete ANOVA t a b l e . F i g u r e 10 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a from T a b l e 12. The F v a l u e o f 13.61  i n d i c a t e d a h i g h l y s i g n i f i c a n t d i f f e r e n c e among  t r e a t m e n t means f o r maximal h e a r t r a t e . A Newman-Keuls T e s t was a p p l i e d t o t h e d a t a t o d e t e r m i n e where t h e d i f f e r e n c e s among the means ©ccurred. These r e s u l t s a r e shown i n T a b l e 13. E x a m i n a t i o n o f t h e r e s u l t s shows t h a t t h e r e was a d i f f e r e n c e i n maximal h e a r t r a t e between t h e Monark and t h e t r e a d m i l l , the l a t t e r mean b e i n g  11.23  bpm h i g h e r . T h e r e was no d i f f e r e n c e f o u n d between t h e D y n a v i t and t h e t r e a d m i l l mean s c o r e s f o r maximal h e a r t r a t e , a l t h o u g h t h e C a l c u l a t e d Q f o r t h e  45  220 -t  210  H  B  CL  200 SCD  190  180 Monark  Treadmill FIGURE 10  MAXIMAL HEART RATE (BPM) (MEANS AND STANDARD DEVIATIONS)  Dynavit  i n t e r a c t i o n was 2..88, w h i l e t h e C r i t i c a l Q was o n l y 2.92. Thus i t w o u l d a p p e a r t h a t t h e d i f f e r e n c e was n e a r l y s i g n i f i c a n t a t t h e .05 l e v e l .  TABLE 12 MAXIMAL HEART RATE (BPM) (MEANS, STANDARD DEVIATIONS AND F VALUES)  Mean  SD  Dynavi t  197.39  9.97  Monark  192.92  11.27  Treadmill  204.15  11.40  13.61*  F Value  * S i g n i f i c a n t a t < . 0 0 1 Level  TABLE 13 MAXIMAL HEART RATE (BPM) NEWMAN-KEULS  Monark  TEST (TREATMENT MEANS IN ORDER)  MOnark  Dynavit  Treadmi11  (.192.92)  (197.39)  (204.15)  1.90  4.77* 2.88  Dynavit Treadmill  * S i g n i f i c a n t a t .05 L e v e l  47 I t was a l s o f o u n d t h a t no d i f f e r e n c e e x i s t e d between t h e D y n a v i t and Monark e r g o m e t e r s i n terms o f maximal h e a r t r a t e .  D i s c u s s i o n o f Maximal H e a r t Rate R e s u l t s A l t h o u g h n o t a c e n t r a l f a c t o r i n t h e t h e s i s , t h e maximal h e a r t r a t e d a t a s u g g e s t e d t h a t a s t a t i s t i c a l a n a l y s i s s h o u l d be done t o e l u c i d a t e any p o s s i b l e d i f f e r e n c e s . As r e p o r t e d , t h e t r e a d m i l l mean f o r maximal h e a r t was s i g n i f i c a n t l y h i g h e r than t h e Monark e r g o m e t e r . support 39,52).  rate  T h i s r e s u l t f i n d s some  i n t h e l i t e r a t u r e (11,56,60,61), b u t n o t u n a n i m o u s l y so (9,32,38, One p o s s i b l e e x p l a n a t i o n  f o r t h i s l a c k o f agreement i s t h a t many  d i f f e r e n t types o f b i c y c l e and t r e a d m i l l t e s t p r o t o c o l s were used i n t h e v a r i o u s p a p e r s examined, t h u s l i m i t i n g c o m p a r i s o n s w i t h t h e p r e s e n t or with each other.  study,  A l s o , t h e n a t u r e and e x t e n t o f t r a i n i n g o f t h e s u b j e c t s  i n v o l v e d i n t h e s e s t u d i e s v a r i e d e n o r m o u s l y , l i m i t i n g c o m p a r i s o n even more. The f i n d i n g t h a t t h e D y n a v i t maximal h e a r t r a t e mean was n o t s t a t i s t i c a l l y d i f f e r e n t from t h e t r e a d m i l l does n o t a p p e a r t o be i n l i n e w i t h t h e r e s u l t s o f t h e o t h e r p a r a m e t e r s examined i n t h e h y p o t h e s e s . level o f confidence  However, f o r a  o f .05, t h e C a l c u l a t e d Q v a l u e o f 2.88 was s u f f i c i e n t l y  c l o s e t o t h e C r i t i c a l Q v a l u e o f 2.92 t o pose t h e p o s s i b i l i t y o f a Type I I e r r o r i f the n u l l hypothesis  was a c c e p t e d .  Choice o f a l e v e l o f confidence  o f .06 would have r e s u l t e d i n a s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e between the D y n a v i t and t r e a d m i l l maximal h e a r t r a t e  values.  The r e s u l t s a l s o i n d i c a t e t h a t t h e r e was no d i f f e r e n c e i n maximal  heart  r a t e between t h e D y n a v i t and Monark e r g o m e t e r s , a f i n d i n g w h i c h i s i n a g r e e ment w i t h t h e o t h e r p a r a m e t e r s which were i n v e s t i g a t e d .  R e s u l t s o f Submaximal Oxygen P u l s e Data T a b l e 14 i n d i c a t e s t h e means and s t a n d a r d d e v i a t i o n s f o r submaximal oxygen p u l s e f o r a l l t h r e e p i e c e s o f t h e t e s t i n g equipment. F i g u r e 11 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a f r o m T a b l e 14. The submaximal oxygen p u l s e d a t a was d e t e r m i n e d by d i v i d i n g t h e oxygen u p t a k e s c o r e s (ml/min) f o r each m i n u t e o f submaximal e x e r c i s e by t h e c o r r e s p o n d i n g submaximal h e a r t r a t e s c o r e s (bpm).  TABLE 14 SUBMAXIMAL OXYGEN PULSE (ML/BEAT) (MEANS AND STANDARD DEVIATIONS)  Dynavit  Minute Minute Minute Minute Minute Minute Minute  1 2 3 4 5 6 7  Monark  Treadmill  Mean  SD  Mean  SD  Mean  SD  9.04 9.06 8.91 9.36 11.30 11.79 12.65  2.14 1.15 1.70 2.25 1.69 1.90 1.55  7.62 8.88 8.81 9.37 11.08 11.55 12.15  1.52 1.72 2.06 1.50 1.62 1.73 1.86  15.63 15.83 15.62 15.99 16.41 16.41 17.04  2.19 1.53 2.07 2.00 2.02 2.02 2.08  T a b l e 15 shows t h e ANOVA d a t a and a s s o c i a t e d p r o b a b i l i t y v a l u e s f o r t h e submaximal oxygen p u l s e r e s u l t s . I t i s c l e a r t h a t t h e r e was a s t a t i s t i c a l d i f f e r e n c e i n submaximal oxygen p u l s e f r o m m i n u t e t o m i n u t e f o r e a c h b i k e , w h i c h i s t o be e x p e c t e d . The t a b l e a l s o shows t h a t t h e r e was no d i f f e r e n c e o v e r a l l i n submaximal oxygen p u l s e between t h e two b i c y c l e s , and t h a t t h e r a t e o f change f r o m m i n u t e t o m i n u t e i n oxygen p u l s e d i d n o t d i f f e r statistically.  Monark: Dynavit:  __  Treadmi11:®  ®  ®  ®  +  1  1  1  )  1  2  3  4  5  Time ( m i n u t e s ) FIGURE 11 SUBMAXIMAL OXYGEN PULSE (ML/BEAT) -  :  h  6  50 TABLE 15 ANOVA TABLE FOR SUBMAXIMAL OXYGEN PULSE  Sum o f  Source  Squares  df  Mean Square  F  Prob. F  Exceeded  Minutes(M)  401.42  6  66. 90  31.31  <.001*  M Linear  369.45  .1  369. 45  100.11  <.001*  11.23  1  11. 23  5.91  .0317  Bikes(B)  6.57  1  6. 57  1.62  .2272  MXB  9.26  6  1. 54  .95  .4674  M Quadratic  * Significant  atCOOl  D i s c u s s i o n o f Submaximal Oxygen P u l s e R e s u l t s A l t h o u g h an e x a m i n a t i o n o f oxygen p u l s e was not a c e n t r a l a s p e c t o f t h i s t h e s i s , i t was f e l t t h a t a s t a t i s t i c a l a n a l y s i s s h o u l d be done t o c l a r i f y  any  p o s s i b l e d i f f e r e n c e s between the two b i c y c l e s . Oxygen p u l s e i s o f t e n used as an i n d i r e c t i n d i c a t o r o f s t r o k e volume, and as such may be used t o h e l p i l l u m i n a t e t h e r o l e o f c a r d i a c performance  i n e x e r c i s e . The  preceeding  r e s u l t s s u g g e s t t h a t t h e r e i s l i t t l e d i f f e r e n c e i n c a r d i a c performance r e l a t e s t o submaximal e x e r c i s e on e i t h e r the D y n a v i t o r Monark  as i t  ergometers.  And, s i n c e both submaximal oxygen uptake and h e a r t r a t e r e s p o n s e t o e x e r c i s e a r e g e n e r a l l y l i n e a r i n n a t u r e , i t i s u n d e r s t a n d a b l e t h a t t h e submaximal oxygen p u l s e d a t a can b e s t be e x p l a i n e d i n terms o f a l i n e a r f u n c t i o n , as i n d i c a t e d by T a b l e 15. I t i s noteworthy  t h a t t h e submaximal oxygen p u l s e v a l u e s a c h i e v e d on t h e  t r e a d m i l l were much h i g h e r than t h o s e a t t a i n e d on e i t h e r o f the b i c y c l e e r g o m e t e r s . T h i s f i n d i n g i s i n agreement w i t h o t h e r l i t e r a t u r e (38,39)  51 e x a m i n i n g c a r d i a c dynamics d u r i n g submaximal and maximal e x e r c i s e .  R e s u l t s o f Maximal Oxygen P u l s e Data T a b l e 16 shows t h e means and s t a n d a r d d e v i a t i o n s f o r maximal oxygen p u l s e f o r a l l t h r e e p i e c e s o f e q u i p m e n t , as w e l l as t h e F v a l u e o b t a i n e d from t h e ANOVA d a t a . See A p p e n d i x C f o r e x a m i n a t i o n o f t h e c o m p l e t e ANOVA t a b l e . F i g u r e 12 g i v e s a g r a p h i c r e p r e s e n t a t i o n o f t h e d a t a from T a b l e 16  TABLE 16 MAXIMAL OXYGEN PULSE  (ML/BEAT)  (MEANS, STANDARD DEVIATIONS AND F VALUES)  Mean  SD  Dynavit  18.16  2.04  Monark  17.55  2.33  Treadmill  18.09  2.56  F Value  0.98  The p r e c e e d i n g r e s u l t s i n d i c a t e t h a t t h e r e was no s i g n i f i c a n t d i f f e r e n c e i n maximal oxygen p u l s e among a l l t h r e e p i e c e s o f e q u i p m e n t , as s u p p o r t e d  by  a n o n - s i g n i f i c a n t F v a l u e o f 0.98 ( t h e p r o b a b i l i t y t h a t F was exceeded was .3912). D i s c u s s i o n o f Maximal Oxygen P u l s e R e s u l t s As p r e v i o u s l y s t a t e d , oxygen p u l s e was n o t a c e n t r a l a s p e c t o f t h i s t h e s i s , but a s t a t i s t i c a l a n a l y s i s o f maximal oxygen p u l s e was done t o c l a r i f y any p o s s i b l e d i f f e r e n c e s between t h e two b i k e s . The F v a l u e o f 0.98 i n d i c a t e d  Monark  Treadmill FIGURE 12  MAXIMAL OXYGEN PULSE (ML/BEAT) (MEANS AND STANDARD DEVIATIONS)  Dynavit  53 t h a t t h e r e was no d i f f e r e n c e i n maximal oxygen p u l s e among a l l t h r e e  pieces  o f equipment. S t u d i e s w h i c h have examined t h i s p a r t i c u l a r p h y s i o l o g i c a l p a r a m e t e r g e n e r a l l y r e p o r t a l o w e r maximal oxygen p u l s e v a l u e on the b i c y c l e t h a n on the t r e a d m i l l , a f i n d i n g w h i c h i s not s u p p o r t e d  by t h i s s t u d y  (38,39,  45). Some s t u d i e s s u g g e s t t h a t above a c e r t a i n c r i t i c a l h e a r t r a t e i n maximal b i c y c l e e x e r c i s e , t h e r e i s a d r o p i n s t r o k e volume due t o a d e c r e a s e i n d i a s t o l i c f i l l i n g t i m e a n d / o r a d e c r e a s e d venous r e t u r n . The r e d u c t i o n i n s t r o k e volume would be r e f l e c t e d by a r e d u c e d c a r d i a c o u t p u t , a d e c r e a s e i n oxygen uptake and t h u s a l o w e r oxygen p u l s e d u r i n g c y c l i n g . The h i g h maximal h e a r t r a t e s a c h i e v e d  unusually  on t h e t r e a d m i l l i n t h i s s t u d y may  have  e f f e c t i v e l y r e s u l t e d i n a l o w e r v a l u e f o r maximal oxygen p u l s e t h a n i s u s u a l l y f o u n d when t r e a d m i l l and c y c l i n g v a l u e s a r e compared. One p o s s i b l e e x p l a n a t i o n  f o r the u n u s u a l l y h i g h maximal h e a r t r a t e s i n  t h i s study i s t h a t most o f the s u b j e c t s were u n f a m i l i a r w i t h t r e a d m i l l running.  On the b i c y c l e e r g o m e t e r s t h e y may  a r r i v i n g at t h e i r exercise endpoint, may  have f e l t more i n c o n t r o l o f  whereas u n f a m i l i a r i t y w i t h the t r e a d m i l l  have r e s u l t e d i n t h e i r b e i n g pushed beyond t h e i r normal p s y c h o l o g i c a l  physiological  and  limits.  R e s u l t s and D i s c u s s i o n o f the S u b j e c t i v e Response  Questionaire  T a b l e 17 shows the d i s t r i b u t i o n o f r e s p o n s e s f r o m a l l s u b j e c t s when a s k e d t o e x p l a i n t h e i r r e a s o n s f o r d i s c o n t i n u i n g each t e s t . A l t h o u g h some s l i g h t d i f f e r e n c e s were n o t e d , 92.3%  o f the  subjects  r e s p o n d e d t h a t the D y n a v i t and Monark b i c y c l e t e s t s r e s u l t e d i n l e g f a t i g u e o r extreme l e g p a i n , c a u s i n g c e s s a t i o n o f e x e r c i s e . Of the t h i r t e e n s u b j e c t s , 69.2%  s t a t e d t h a t c a r d i o - r e s p i r a t o r y f a t i g u e was the c a u s e o f t e r m i n a t i o n  the t r e a d m i l l e x e r c i s e , w h i l e 15.4%  s a i d t h a t l e g f a t i g u e was  the c a u s e .  of  A n o t h e r 15.4% s t a t e d t h a t t h e y c o u l d n o t t r u l y d i f f e r e n t i a t e between l e g f a t i g u e and c a r d i o - r e s p i r a t o r y e x h a u s t i o n i o n was t h a t a g e n e r a l discontinued  on t h e t r e a d m i l l , but t h e i n d i c a t -  f a t i g u e was t h e c a u s e . One s u b j e c t s t a t e d t h a t he  t h e Monark b i c y c l e t e s t due t o c a r d i o - r e s p i r a t o r y f a t i g u e , and  a n o t h e r s t a t e d t h a t he c o u l d n o t d i f f e r e n t i a t e between l e g and c a r d i o r e s p i r a t o r y f a t i g u e on t h e D y n a v i t  test.  TABLE 17 SUBJECTIVE RESPONSE QUESTIONAIRE DISTRIBUTION OF RESPONSES:' REASONS FOR DISCONTINUING THE TESTS  Cardio-Respiratory  Fatigue  Leg F a t i g u e  Undifferentiated  Subject 1. 2. 3. 4. 5. 6. 7.  DD BF1 BF2 CH MH DL BA 8. ML 9. RB 10. PV 11. WK 12. RW 13. MC  T T T  T T T,M T T T  D,M D,M D,M D,M T,D,M T,D,M D,M D,M D,M D D,M M D,M  T  T D  T = Treadmill D = Dynavit M = Monark /  These r e s u l t s a r e i n k e e p i n g w i t h t h e m a j o r i t y o f r e p o r t s i n t h e l i t e r a t u r e w h i c h i n d i c a t e t h a t maximal b i c y c l e e x e r c i s e c a u s e s extreme l e g p a i n and f a t i g u e , f o r c i n g t h e t e r m i n a t i o n o f e x e r c i s e . A study by  Pandolf  55 and N o b l e (63) o n . r a t i n g s o f p e r c e i v e d e x e r t i o n ,(RPE) on the b i c y c l e ergometer, suggested -that l o c a l muscular sensations and m u s c u l a r and j o i n t d i s c o m f o r t may  be i m p o r t a n t  such as m u s c u l a r f o r c e , f a c t o r s i n the RPE  various p e d a l l i n g speeds, e s p e c i a l l y at higher-power outputs. m u s c l e and tendon s e n s a t i o n s  at  "Proprioceptive  are concerned with c o n t r a c t i l e lengths of muscle  and the amount o f t e n s i o n on the m u s c l e s and t e n d o n s . " ( 6 3 ) . I t i s p o s s i b l e t h a t t h e s e s e n s a t i o n s may outputs,  t h u s c o n t r i b u t i n g a p s y c h o l o g i c a l e l e m e n t to the p r e m a t u r e c e s s a t i o n  of exercise in ,  c a u s e a s h a r p i n c r e a s e i n the RPE a t h i g h power  maximal-cycling.  The p r e s e n t f i n d i n g s were.somewhat c o n f o u n d e d , however, by the l a r g e  d i f f e r e n c e i n t o t a l work t i m e means between the b i c y c l e t e s t s and  the  t r e a d m i l l t e s t s . A s i d e from the n a t u r e o f the c y c l i n g e x e r c i s e , the d u r a t i o n o f the b i c y c l e t e s t s may  longer  have c o n t r i b u t e d t o the p r e m a t u r e o n s e t  o f l e g m u s c l e f a t i g u e , as w e l l as to the s u b j e c t s ' p e r c e p t i o n o f the o f the f a t i g u e . Thus d u r a t i o n o f the t e s t may  nature  be t o some d e g r e e c o n f o u n d e d  w i t h the n a t u r e o f t h e t e s t i n d i s t i n g u i s h i n g the s u b j e c t s '  subjective  r e s p o n s e t o maximal work.  General  Discussion  F i n d i n g s d e s c r i b e d i n the 'Results.' and  'Discussion' sections indicate  t h a t the main h y p o t h e s e s o r i g i n a l l y s t a t e d i n t h i s s t u d y were n o t i a t e d . No d i f f e r e n c e s were f o u n d between t h e Monark and D y n a v i t  substant-  ergometers  i n peak oxygen c o n s u m p t i o n o r t o t a l work t i m e , nor were.any d i f f e r e n c e s n o t e d i n submaximal h e a r t r a t e o r submaximal oxygen u p t a k e . A l t h o u g h n o t c e n t r a l a s p e c t s of..the t h e s i s , submaximal oxygen p u l s e , maximal oxygen p u l s e , and m a x i m a l : h e a r t r a t e were examined, and no d i f f e r e n c e s were f o u n d . A s u b j e c t i v e r e s p o n s e q u e s t i o n a i r e was a l s o i n c l u d e d i n the s t u d y , and  indicated  56 t h a t b o t h the D y n a v i t and Monark e r g o m e t e r s p r o d u c e d extreme Teg p a i n f a t i g u e , which n e c e s s i t a t e d  the t e r m i n a t i o n  a p p e a r e d t o c o n s i s t e n t l y p r o d u c e what was  o f e x e r c i s e . O n l y the  and  treadmill  f e l t t o be an o v e r a l l o r c a r d i o -  r e s p i r a t o r y f a t i g u e . The t r e a d m i l l a l s o e l i c i t e d the h i g h e s t peak oxygen c o n s u m p t i o n v a l u e s o f the t h r e e p i e c e s o f equipment.  Discussion of Related  Literature  A c o m p a r i s o n o f t h i s s t u d y t o t h a t done by E d i n g t o n (.24)  produces sharp  contrasts i n t h e . r e s u l t s . His f i n d i n g s i n d i c a t e d t h a t the.Dynavit ergometer was  l e s s s t r e s s f u l t o use t h a n . t h e Monark, as i l l u s t r a t e d by l e s s  e x e r t i o n , l e s s peak f o r c e r e q u i r e d to p e d a l , l e s s peak EMG  perceived  activity, less  g l y c o g e n u t i l i z a t i o n , l e s s oxygen c o n s u m p t i o n , l e s s p e r c e n t a g e o f maximum h e a r t r a t e , l e s s v a r i a t i o n i n . p e d a l v e l o c i t y and l e s s peak a c c e l e r a t i o n r e q u i r e d a t the h i p . However, the one a p p a r e n t f l a w i n . E d i n g t o n ' s  study  c o n c e r n e d the c a l i b r a t i o n p r o c e s s , as o u t l i n e d i n C h a p t e r I I . I f the Monark's 9% c o r r e c t i o n f a c t o r f o r . f r i c t i o n l o s s e s was n o t t a k e n i n t o a c c o u n t t h e n the r e s u l t s o f the s t u d y become v e r y much i n d o u b t , a s . t h e s u b j e c t s , when r i d i n g the Monark e r g o m e t e r , would e f f e c t i v e l y be w o r k i n g a t a 9% h i g h e r output than  energy  recorded.  The p r e s e n t  s t u d y i n d i c a t e s t h a t u p h i l l r u n n i n g on the t r e a d m i l l  i n h i g h e r peak oxygen c o n s u m p t i o n v a l u e s  results  ( o r maximal oxygen u p t a k e ) than  e i t h e r o f -the b i c y c l e e r g o m e t e r s , but the r e a s o n s b e h i n d t h i s f i n d i n g a r e n o t c l e a r . , I t i s the b e l i e f o f the a u t h o r t h a t s e v e r a l f a c t o r s may  be  i n v o l v e d , i n c l u d i n g a. h i g h e r a c t i v e m u s c l e mass during, t r e a d m i l l  exercise,  c o u p l e d w i t h a g r e a t e r peak f o r c e a p p l i c a t i o n r e q u i r e m e n t d u r i n g  cycling.  The s u g g e s t i o n  t h a t c y c l i n g causes greater intramuscular  c o n s t r i c t i o n of  b l o o d f l o w i n the Tegs t h a n does r u n n i n g (.due to the h i g h peak f o r c e  57 requirement),  seems t o be the m o s t - l o g i c a l  c o n t r i b u t i n g f a c t o r t o the  onset  o f f a t i g u e i n maximal b i c y c l e e x e r c i s e . T h e r e i s no d i r e c t e v i d e n c e however, to support t h i s  contention.  The s t u d y b y L a v o i e (52) i n d i c a t e d t h a t the use o f r a c i n g s t i r r u p s on a Monark e r g o m e t e r p r o d u c e d maximal oxygen u p t a k e > v a l u e s n o t  significantly  d i f f e r e n t f r o m t r e a d m i l l - s c o r e s . It-was h i s c o n t e n t i o n t h a t the r a c i n g s t i r r u p s enabled  the s u b j e c t s t o i n c r e a s e the amount o f a c t i v e m u s c l e mass.  However, i t s h o u l d be n o t e d t h a t a l l o f h i s s u b j e c t s were e i t h e r r e c r e a t i o n a l or competitive  c y c l i s t s . - I t i s probable  t h a t the s p e c i f i c a l l y t r a i n e d l o c a l  m u s c l e mass o f t h e s e s u b j e c t s e n a b l e d them t o a c h i e v e a g r e a t e r t a x i n g o f the c a r d i o - r e s p i r a t o r y s y s t e m , and thus h i g h e r maximal oxygen u p t a k e s c o r e s than n o n - c y c l i s t s . T h i s s u g g e s t i o n who  i s supported  by T h i a r t and BTaauw ( 7 5 ) ,  f o u n d t h a t t r a i n e d c y c l i s t s a c h i e v e d maximal oxygen u p t a k e v a l u e s  h i g h o r even h i g h e r . t h a n  as  t h o s e o b t a i n e d on the t r e a d m i l l . I t would a p p e a r  t h a t a r e d u c t i o n i n peak f o r c e a p p l i c a t i o n d u r i n g c y c l i n g i s n o t as important  i n the d e t e r m i n a t i o n  o f peak- oxygen consumption as i s the e f f e c t  of s p e c i f i c i t y of t r a i n i n g . I t i s c l e a r f r o m the r e s u l t s o f t h i s s t u d y t h a t t h e r e i s no d i f f e r e n c e i n the p h y s i o l o g i c a l r e s p o n s e t o e x e r c i s e , between an e l e c t r o n i c a l l y i  b r a k e d , D y n a v i t b i c y c l e e r g o m e t e r and a m e c h a n i c a l l y  b r a k e d , Monark b i c y c l e  e r g o m e t e r . Thus the c o n t e n t i o n t h a t the l o a d i n g s y s t e m o f t h e  Dynavit  e r g o m e t e r r e d u c e s l e g m u s c l e f a t i g u e a p p e a r s to be u n f o u n d e d . T h i s conclusion i s . supported  by MacLeod (.53). who  found t h a t premature l e g f a t i g u e  r e s u l t e d i n the c e s s a t i o n o f D y n a v i t b i c y c l e e x e r c i s e b e f o r e the c a r d i o r e s p i r a t o r y s y s t e m became f u l l y  taxed.  58 A p p l i c a t i o n o f the R e s u l t s One u s e f u l a p p l i c a t i o n o f the r e s u l t s o f t h i s s t u d y i n v o l v e s the use o f t h e D y n a v i t e r g o m e t e r f o r submaximal e x e r c i s e t e s t i n g . A l t h o u g h s e v e r a l p r o t o c o l s a r e used d u r i n g c o n v e n t i o n a l D y n a v i t t e s t i n g , ( 4 0 ) , the p r e s e n t f i n d i n g s open new avenues f o r D y n a v i t submaximal. t e s t i n g . S i n c e t h e r e a p p e a r s t o be.no d i f f e r e n c e i n the p h y s i o l o g i c a l r e s p o n s e s t o submaximal e x e r c i s e between the two b i c y c l e s , i t f o l l o w s t h a t the D y n a v i t c o u l d be used t o complete such p r e d i c t i v e a e r o b i c c a p a c i t y t e s t s as the  Astrand-Ryhming  P r e d i c t e d Oxygen Uptake T e s t o r t h e M o d i f i e d S j o s t r a n d PWC T e s t . . A c o r r e c t i o n f a c t o r o f a p p r o x i m a t e l y 9% would have t o be added t o . t h e D y n a v i t h e a r t r a t e r e s p o n s e s t o equate t h o s e r e s u l t s t o the A s t r a n d o r S j o s t r a n d norms. Such a c o r r e c t i o n f a c t o r would be s i m i l a r t o t h a t employed by A s t r a n d i n the d e t e r m i n a t i o n o f h i s n o r m a t i v e s t a n d a r d s f o r t h e Astrand-Ryhming  Test (7).  U n f o r t u n a t e l y a c o r r e c t i o n f a c t o r c a n n o t be d i r e c t l y a p p l i e d t o t h e workl o a d s e t t i n g o f t h e D y n a v i t model used i n t h i s s t u d y , as i t s w o r k l o a d i n c r e m e n t s o f 10 w a t t s a r e n o t . s m a l l enough t o a l l o w f o r a c c u r a t e e q u a l i z a t i o n o f t h e D y n a v i t l o a d s e t t i n g t o t h a t o f t h e a p p r o p r i a t e Monark setting.  L i m i t a t i o n s of the Dynavit  Ergometer  A m a j o r l i m i t a t i o n which a r i s e s from the p r e s e n t s t u d y i s t h e c a l i b r a t i o n o f t h e D y n a v i t b i c y c l e ergometer.  The c o m p l e x i t y o f the c a l i b r a t i o n  p r o c e s s n e c e s s i t a t e s one. o f t h r e e a l t e r n a t i v e s a t p r e s e n t ; e x p e n s i v e c a l i b r a t i o n e q u i p m e n t may be d e s i g n e d and b u i l t on s i t e , t h e e r g o m e t e r  may  be r e t u r n e d t o the m a n u f a c t u r i n g c e n t e r i n I l l i n o i s f o r c a l i b r a t i o n by f a c t o r y t e c h n i c i a n s , or a Dynavit t e c h n i c i a n could p o s s i b l y travel to your t e s t i n g s i t e t o complete the c a l i b r a t i o n . None o f t h e s e a l t e r n a t i v e s i s  59 very s a t i s f a c t o r y to the p r a c t i t i o n e r . The D y n a v i t e r g o m e t e r used i n t h i s s t u d y had a maximal w o r k l o a d s e t t i n g o f 300 w a t t s . T h i s i s more t h a n a d e q u a t e f o r submaximal t e s t i n g b u t n o t f o r t e s t s o f a maximal nature.. Two r e l a t i v e l y u n t r a i n e d s u b j e c t s i n t h e p r e s e n t s t u d y a c h i e v e d and m a i n t a i n e d t h e h i g h e s t - D y n a v i t w o r k l o a d  setting,  and so had t o be e x c l u d e d from t h e f i n a l a n a l y z e s . I t was a l s o f o u n d t h a t t h e D y n a v i t s e a t h e i g h t a d j u s t m e n t was b a r e l y adequate f o r the t a l l e r and/or long-legged s u b j e c t s i n t h i s study. T h i s could c r e a t e a p o t e n t i a l l i m i t a t i o n o f the ergometer f o r e s t a b l i s h i n g proper l e g l e n g t h s e t t i n g s i n . s u b j e c t s w i t h l e g s g r e a t e r , than 100 cm i n length., as measured i n t h i s s t u d y .  »  A s s o c i a t e d w i t h the v e r t i c a l p o s i t i o n i n g o f the s e a t i s i t s h o r i z o n t a l placement. A c c o r d i n g t o A s t r a n d (8)  t h e s u b j e c t s h o u l d be s i t t i n g a l m o s t  v e r t i c a l l y o v e r t h e p e d a l s , w h i c h i s t h e c a s e w i t h t h e Monark e r g o m e t e r . However, t h e D y n a v i t s e a t i s s i t u a t e d a p p r o x i m a t e l y 2 t o 3 i n c h e s f u r t h e r back than t h e Monark s e a t , i n r e l a t i o n t o a v e r t i c a l p o s i t i o n o v e r t h e p e d a l s . Although i t i s . u n l i k e l y t h a t . t h i s s l i g h t displacement o f the Dynavit seat would s i g n i f i c a n t l y i n f l u e n c e t h e r e s u l t s o f t h e p r e s e n t s t u d y , the 1  p o s s i b i l i t y o f a d i f f e r e n c e i n the bibmechanical a p p l i c a t i o n o f f o r c e i s increased.  CHAPTER V SUMMARY AND  CONCLUSIONS  Summary The p u r p o s e o f t h i s i n v e s t i g a t i o n was t o compare an e l e c t r o n i c a l l y braked, Dynavit  b i c y c l e ergometer to a mechanically  b r a k e d , Monark b i c y c l e  e r g o m e t e r , and i n so d o i n g t o examine s e l e c t e d p o t e n t i a l d i f f e r e n c e s i n the p h y s i o l o g i c a l r e s p o n s e t o e x e r c i s e s t r e s s w h i c h may  have been e l i c i t e d  the l o a d i n g systems u n i q u e t o e a c h a p p a r a t u s . The main p r o b l e m was  by  to  d e t e r m i n e i f t h e r e were d i f f e r e n c e s i n t o t a l work t i m e v a l u e s between the two b i c y c l e s , and t o see i f t h e s e p o s s i b l e d i f f e r e n c e s were c o r r o b o r a t e d corresponding  by  d i f f e r e n c e s i n peak oxygen c o n s u m p t i o n . The s u b s i d i a r y p r o b l e m s  i n v e s t i g a t e d p o s s i b l e d i f f e r e n c e s i n submaximal h e a r t r a t e and oxygen u p t a k e . The s t u d y c o n s i s t e d o f t h e c o m p l e t i o n  by a l l t h i r t e e n s u b j e c t s o f  one  maximal e x e r c i s e bout on each o f t h r e e p i e c e s o f t e s t i n g equipment; the t r e a d m i l l , the D y n a v i t e r g o m e t e r , and the Monark e r g o m e t e r . D u r i n g e x e r c i s e t e s t , experimental  each  v a l u e s o f submaximal h e a r t r a t e , submaximal  oxygen u p t a k e , peak oxygen c o n s u m p t i o n and t o t a l work t i m e were r e c o r d e d , the f o l l o w i n g r e s u l t s were t h e n d e t e r m i n e d . T h e r e was no  and  statistical  d i f f e r e n c e f o u n d between the two b i c y c l e s i n terms o f peak oxygen c o n s u m p t i o n , w h i l e the t r e a d m i l l e l i c i t e d the h i g h e s t v a l u e s . T o t a l work t i m e was  not  s t a t i s t i c a l l y d i f f e r e n t between the two b i c y c l e e r g o m e t e r s , and no d i f f e r e n c e was f o u n d i n submaximal h e a r t r a t e o r oxygen u p t a k e r e s p o n s e s . S e v e r a l f a c t o r s were a l s o examined, a l t h o u g h  other  t h e y were not c e n t r a l h y p o t h e s e s o f the  study. These i n c l u d e d maximal h e a r t r a t e , submaximal oxygen p u l s e , maximal oxygen p u l s e , and s u b j e c t i v e r e s p o n s e t o e x e r c i s e . A g a i n , no d i f f e r e n c e f o u n d between the two b i c y c l e s i n any o f t h e s e 60  variables.  was  61 Conclusions The r e s u l t s o f t h e p r e s e n t s t u d y i n d i c a t e t h a t t h e f o l l o w i n g c o n c l u s i o n s are 1.  justified: Maximal e x e r c i s e t e s t s p e r f o r m e d on e i t h e r t h e Monark o r D y n a v i t b i c y c l e e r g o m e t e r s p r o d u c e d peak oxygen c o n s u m p t i o n v a l u e s w h i c h d i d not d i f f e r s t a t i s t i c a l l y .  2.  T h e r e was no d i f f e r e n c e i n t o t a l work t i m e between t h e D y n a v i t and Monark e r g o m e t e r s , s u g g e s t i n g t h a t t h e n a t u r e o f t h e work p e r f o r m e d on each b i c y c l e d i d not d i f f e r g r e a t l y .  3.  T r e a d m i l l v a l u e s f o r peak oxygen consumption were h i g h e r t h a n t h o s e o b t a i n e d on t h e Monark o r D y n a v i t e r g o m e t e r s .  4.  T h e r e was no d i f f e r e n c e i n submaximal  oxygen u p t a k e between t h e two  b i c y c l e ergometers. 5.  Submaximal  h e a r t r a t e d i d n o t d i f f e r s t a t i s t i c a l l y between t h e two  b i c y c l e ergometers. 6.  No d i f f e r e n c e s were f o u n d between t h e two b i c y c l e s i n submaximal p u l s e , maximal  7.  oxygen p u l s e , o r maximal  oxygen  heart rate.  No a p p a r e n t d i f f e r e n c e s were f o u n d between t h e Monark and D y n a v i t ergometers i n the p a r t i c i p a n t s s u b j e c t i v e response to e x e r c i s e s t r e s s .  8.  The above r e s u l t s i n d i c a t e t h a t any supposed d i f f e r e n c e s i n t h e l o a d i n g systems o f t h e two b i c y c l e e r g o m e t e r s were n o t s u b s t a n t i a t e d by t h e p h y s i o l o g i c a l responses of the t e s t s u b j e c t s to e x e r c i s e .  Recommendations A. Recommendations A r i s i n g f r o m t h e S t u d y The r e s u l t s o f t h e p r e s e n t s t u d y i n d i c a t e t h a t t h e D y n a v i t e r g o m e t e r p r o d u c e s p h y s i o l o g i c a l r e s p o n s e s t o e x e r c i s e s t r e s s w h i c h do n o t d i f f e r from  62 t h a t o f the Monark. I t i s recommended t h a t t h e D y n a v i t c o u l d be used f o r submaximal t e s t s such as t h e Astrand-Ryhming  P r e d i c t e d Oxygen Uptake T e s t o r  t h e M o d i f i e d S j o s t r a n d PWC T e s t . In k e e p i n g w i t h t h e f i n d i n g s o f C a r r o l l  (15)  and Hockey (40) i t i s s u g g e s t e d t h a t i n t h e s e and o t h e r t e s t s the p e d a l l i n g f r e q u e n c y be h e l d c o n s t a n t , even though the D y n a v i t i s supposed t o m a i n t a i n a c o n s t a n t w o r k l o a d r e g a r d l e s s o f s m a l l changes i n rpm. A f u r t h e r s t u d y t o examine whether s m a l l changes i n p e d a l l i n g f r e q u e n c y o f t h e D y n a v i t b i c y c l e produce d i f f e r e n c e s i n oxygen u p t a k e , h e a r t r a t e , e t c . , would seem t o be worth d o i n g . T h i s recommendation i s based on a s t u d y by C a r r o l l (15) who f o u n d t h a t t h e Elema-Schonander c o n s t a n t w o r k l o a d b i c y c l e ergometer e l i c i t e d d i f f e r e n t s t e a d y s t a t e h e a r t r a t e and r e s p i r a t o r y r a t e r e s p o n s e s a t d i f f e r e n t p e d a l l i n g r a t e s , even though t h e s e p e d a l l i n g f r e q u e n c i e s were w i t h i n t h e p r e s c r i b e d a c c u r a c y l i m i t s o f t h e b i c y c l e . To improve t h i s s t u d y , a c t u a l measurements o f f o r c e a p p l i c a t i o n d u r i n g c y c l i n g ( s u c h as t h o s e c a r r i e d out by E d i n g t o n ) would be recommended. These t e c h n i q u e s were u n f o r t u n a t e l y beyond t h e scope o f t h e p r e s e n t s t u d y . B. Recommendations t o the  Manufacturer  A p p r o p r i a t e c a l i b r a t i o n equipment s h o u l d be made a v a i l a b l e t o t h e l o c a l d i s t r i b u t o r s o f t h e D y n a v i t b i c y c l e ergometer.  T h i s would e n a b l e the  p r a c t i t i o n e r t o c a l i b r a t e t h e ergometer on a r e g u l a r b a s i s (two t o t h r e e t i m e s each y e a r minimum), and t h u s a c h i e v e c o n s i s t e n t and a c c u r a t e d a t a . The v a l i d i t y o f t h e p r e s e n t s t u d y would have been e s t a b l i s h e d on more c e r t a i n grounds i f l o c a l c a l i b r a t i o n c o u l d have been c a r r i e d o u t b e f o r e and a f t e r the t e s t i n g p e r i o d . C e r t a i n a s p e c t s o f t h i s s t u d y s u g g e s t t h a t a w i d e r range o f D y n a v i t w o r k l o a d s e t t i n g s ( i e : up t o 400-500 w a t t s ) would be d e s i r a b l e f o r maximal t e s t i n g c a p a b i l i t i e s , and i t i s a recommendation o f t h i s s t u d y f o r t h e  63 manufacturers  t h a t m a c h i n e s o f t h i s c a p a b i l i t y be made a v a i l a b l e f o r  p u r c h a s e by r e s e a r c h l a b o r a t o r i e s . I t i s recommended t h a t t h e a d j u s t m e n t  range f o r s e a t h e i g h t on t h e  D y n a v i t e r g o m e t e r be i n c r e a s e d , t o a l l o w f o r a p p r o p r i a t e l e g l e n g t h s e t t i n g in the case o f long-legged s u b j e c t s . F o r p u r p o s e s o f t e s t i n g a p p a r a t u s s t a n d a r d i z a t i o n , i t i s recommended t h a t t h e h o r i z o n t a l placement  o f t h e D y n a v i t s e a t be a d j u s t e d f o r w a r d t o  c o r r e s p o n d w i t h t h e Monark s e a t p l a c e m e n t ,  and t h u s t o be more v e r t i c a l l y  o v e r t h e p e d a l s , as recommended by A s t r a n d ( 8 ) .  REFERENCES  64  65 1.  American C o l l e g e o f S p o r t s M e d i c i n e . G u i d e l i n e s f o r Graded E x e r c i s e T e s t i n g and E x e r c i s e P r e s c r i p t i o n . P h i l a d e l p h i a : Lea and F e b i g e r , 1976.  2.  American C o l l e g e o f S p o r t s M e d i c i n e . "The Recommended Q u a n t i t y and Q u a l i t y o f E x e r c i s e f o r D e v e l o p i n g and M a i n t a i n i n g F i t n e s s i n H e a l t h y A d u l t s . " Med. S c i . S p o r t s , 1 3 ( 3 ) : 3 , 1978.  3.  Asmussen, E. " P o s i t i v e and N e g a t i v e M u s c u l a r Work." A c t a phys. 28:364, 1958.  4.  A s t r a n d , P.O. " D e f i n i t i o n s , T e s t i n g P r o c e d u r e s , A c c u r a c y , and R e p r o d u c e a b i l i t y . " A c t a P a e d i a t . Scand. S u p p l . , 217:9-12, 1971.  5.  A s t r a n d , P.O. E x p e r i m e n t a l S t u d i e s o f P h y s i c a l Working C a p a c i t y i n R e l a t i o n t o Sex and Age. Copenhagen: Manksgaard, 119, 1952.  6.  A s t r a n d , P.O. "Human P h y s i c a l F i t n e s s w i t h S p e c i a l R e f e r e n c e t o Sex and Age." P h y s i o l . Rev., 36:307-335, 1956.  7.  A s t r a n d , P.O. 1978.  8.  A s t r a n d , P.O., and K. R o d a h l . Textbook M c G r a w - H i l l , 1970.  9.  A s t r a n d , P.O., and B. S a l t i n . "Maximal Oxygen Uptake and H e a r t Rate i n V a r i o u s Types o f M u s c u l a r A c t i v i t y . " J . A p p l . P h y s i o l . , 16:977-981, ,1961.  Work T e s t s w i t h The B i c y c l e Ergometer.  Scandinav.,  V a r b e r g : Sweden,  o f Work P h y s i o l o g y . New  10. A t k i n s , A.R., and J.D. N i c h o l s o n . "An A c c u r a t e C o n s t a n t Ergometer." J . A p p l . P h y s i o l . , 18:205-208, 1963.  York:  Work-rate  11. A t k i n s , A.R., and A. N u n l i s t . "A P r e c i s i o n C o n s t a n t Work-rate J . A p p l . P h y s i o l . , 21(4):1427-1430, 1966.  Ergometer."  12. B a n i s t e r , E.W., and R.C. J a c k s o n . "The E f f e c t o f Speed and Load Changes on Oxygen Uptake f o r E q u i v a l e n t Power Outputs D u r i n g B i c y c l e Ergometry." I n t . Z. angew. P h y s i o l , e i n s c h l . A r b e i t s p h y s i o l . , 24: 284-290, 1967. 13. B o n d e - P e t e r s e n , F. "A New E l e c t r i c a l l y Braked B i c y c l e Ergometer w i t h Low V o l t a g e Power S u p p l y . " Europ. J . A p p l . P h y s i o l . , 33:35-39, 1974. 14. B r o c k l e y , C.A. Department o f M e c h a n i c a l E n g i n e e r i n g , U n i v e r s i t y o f B r i t i s h Columbia. P e r s o n a l I n t e r v i e w . May 17, 1979. 15. C a r r o l l , P.J. "An E v a l u a t i o n o f H e a r t Rate Response t o E x e r c i s e on t h e C o n s t a n t Work Load B i c y c l e Ergometer." ( u n p u b l i s h e d MSc. t h e s i s , U n i v e r s i t y o f A l b e r t a , 1966).  66 16. Chase, G.A., C. G r a v e , and L.B. R o w e l l . "Independence o f Changes i n F u n c t i o n a l and P e r f o r m a n c e C a p a c i t i e s A t t e n d i n g P r o l o n g e d Bed R e s t . " A e r o s p a c e Medicine,.37:1232-1238, 1966. 17. Cumming, G.R. "Comparison o f T r e a d m i l l and B i c y c l e Ergometer E x e r c i s e i n M i d d l e - a g e d M a l e s . " American H e a r t J o u r n a l , 9 3 ( 2 ) : 2 6 1 , 1977. 18. Cumming, G.R., and W.D. A l e x a n d e r . "The C a l i b r a t i o n o f B i c y c l e E r g o m e t e r s . " Can. J . P h y s i o l . P h a r m a c o l . , 46:917-919, 1968. 19. D a i l e y , P., and G. D a i l e y . " E l l i p t i c a l S p r o c k e t s : Power P l u s o r M i n u s ? " 4 9 ' e r E n g i n e e r , C a l . S t a t e U n i v e r s i t y , Long Beach, 9:2-5, 1975. 20. D a v i e s , C.T.M., W. Tuxworth, and J.M. Young. " P h y s i o l o g i c a l E f f e c t s o f Repeated E x e r c i s e . " C l i n . S c i . , 39:247-258, 1970. 21. Durham, R. "The New E l l i p t i c a l C h a i n w h e e l . " B i k e World M a g a z i n e , 4: 20-21, 1975. 22. D y n a v i t o f A m e r i c a . D y n a v i t C o m p u t e r i z e d B i c y c l e E r g o m e t e r : E x e r c i s e Data. B a t t l e C r e e k , M i c h i g a n : K e i p e r USA, I n c . , 1978. 23. D y n a v i t o f A m e r i c a . A T e c h n i q u e f o r C a l i b r a t i n g B i c y c l e E r g o m e t e r s . N o r t h b r o o k , I l l i n o i s : K e i p e r USA, I n c . , 1978. 24. E d i n g t o n , D.W. " P e r f o r m a n c e E v a l u a t i o n o f 40-55 Y e a r - O l d Men on t h e B i c y c l e Ergometer." ( u n p u b l i s h e d s c i e n t i f i c p a p e r , U n i v e r s i t y o f M i c h i g a n , 1979). 25. F a i r b a n k s , B.L. "Maximal Oxygen Uptake on a D u a l - D r i v e B i c y c l e V e r s u s a T r e a d m i l l . " R e s e a r c h Q u a r t e r l y , 47(4):624-628, 1976. 26. F a r d y , P.S., and H.K. H e l l e r s t e i n . "A Comparison o f C o n t i n u o u s and I n t e r m i t t e n t P r o g r e s s i v e M u l t i s t a g e E x e r c i s e T e s t i n g . " Med. S c i . S p o r t s , 1 0 ( 1 ) : 7 - 1 2 , 1978. 27. F a u l k n e r , J.A., e t a l . " C a r d i o v a s c u l a r Responses t o Submaximum E f f o r t C y c l i n g and Running." J . A p p l . P h y s i o l . , 30(4):457-461, 1971. 28. F e r g u s o n , G.A. S t a t i s t i c a l A n a l y s i s i n P s y c h o l o g y and E d u c a t i o n . New York: M c G r a w - H i l l , 1971. 29. Folkow, B., and H.D. H a l i c k a . "A Comparison Between 'Red' and 'White' M u s c l e w i t h R e s p e c t t o B l o o d S u p p l y , C a p i l l a r y S u r f a c e A r e a and Oxygen Uptake D u r i n g R e s t and E x e r c i s e . " M i c r o v a s c u l a r Res., 1:1-4, 1968. 30. Fox, E.L., ed. D y n a v i t : A S y s t e m a t i c Approach t o Dynamic H e a l t h . B a t t l e C r e e k , M i c h i g a n : K e i p e r USA, I n c . , 1978. 31. F r o e l i c h e r , V.F., e t a l . "A Comparison o f T h r e e Maximal T r e a d m i l l E x e r c i s e P r o t o c o l s . " J . A p p l . P h y s i o l . , 36(6):720-725, 1974.  67 32. G l a s s f o r d , R.G., e t a l . "Comparison o f Maximal Oxygen Uptake V a l u e s D e t e r m i n e d by P r e d i c t e d and A c t u a l Methods." J . A p p l . P h y s i o l . , 20(3):509-513, 1965. 33. G l e s e r , M.A., D.H. Horstman, and R.P. M e l l o . "The E f f e c t on V 0 Max o f A d d i n g Arm Work t o Maximal Leg Work." Med. S c i . S p o r t s , 6 ( z ) : 104-107, 1973. 2  34. Gray, S.D., E. C a r l s s o n , and N.C. Staub. " S i t e o f I n c r e a s e d V a s c u l a r R e s i s t a n c e D u r i n g I s o m e t r i c M u s c l e C o n t r a c t i o n . " Am. J . P h y s i o l . , 213:683-689, 1967. 35. Hamley, E . J . , and V. Thomas. " P h y s i o l o g i c a l and P o s t u r a l F a c t o r s i n t h e C a l i b r a t i o n o f t h e B i c y c l e E r g o m e t e r . " P h y s i o l o g i c a l S o c i e t y , 14-15: 55P-57P, 1967. 36. H a r r i s o n , J.Y. " M a x i m i z i n g Human Power Output by S u i t a b l e S e l e c t i o n o f M o t i o n C y c l e and Load." Human F a c t o r s , 12:315-329, 1970. 37. Henderson, S.C., e t a l . "The E f f e c t s o f C i r c u l a r and E l l i p t i c a l C h a i n wheels on S t e a d y - R a t e C y c l e Ergometer Work E f f i c i e n c y . " Med. S c i . S p o r t s , 9(4):202-207, 1977. 38. Hermansen, L., B. Ekblom, and B. S a l t i n . " C a r d i a c Output D u r i n g Submaximal and Maximal T r e a d m i l l and B i c y c l e Ergometer E x e r c i s e . " J . A p p l . P h y s i o l . , 2 9 ( l ) : 8 2 - 8 6 , 1970. 39. Hermansen, L., and B. S a l t i n . "Oxygen Uptake D u r i n g Maximal T r e a d m i l l and B i c y c l e Ergometer E x e r c i s e . " J . A p p l . P h y s i o l . , 2 6 ( 1 ) : 3 1 - 3 7 , 1969. 40. Hockey, R.V. " P r e d i c t i o n o f Maximal Oxygen Consumption from a S t a n d a r d i z e d Task U s i n g t h e C o m p u t e r i z e d D y n a v i t B i c y c l e E r g o m e t e r . " (unpublished s c i e n t i f i c paper, U n i v e r s i t y o f Northern Michigan, 1979). 41. Hoes, J.M., e t a l . "Measurement o f F o r c e s E x e r t e d on Pedal and Crank D u r i n g Work on a B i c y c l e Ergometer a t D i f f e r e n t Loads." I n t . Z. angew. P h y s i o l , e i n s c h l . A r b e i t s p h y s i o l . , 26:33-42, 1968. 42. Holmgren, A., and K.H. M a t t s s o n . "A New Ergometer w i t h C o n s t a n t Work Load a t V a r y i n g P e d a l l i n g R a t e . " S c a n d i n a v i a n J o u r n a l o f C l i n i c a l and L a b o r a t o r y I n v e s t i g a t i o n , 6:137-140, 1954. 43. Houtz, S . J . , and F . J . F i s c h e r . "An A n a l y s i s o f M u s c l e A c t i o n and J o i n t E x c u r s i o n D u r i n g E x e r c i s e on a S t a t i o n a r y B i c y c l e . " J o u r n a l o f Bone and J o i n t S u r g e r y , 41A:123, 1959. 44. J a c o b s e n , S., and 0. J a c o b s e n . "An Ergometer B i c y c l e C o n t r o l l e d by H e a r t Rate." M e d i c a l and B i o l o g i c a l E n g i n e e r i n g , 675-680, S e p t . , 1974.  68 45. Kamon, E . , and K.B. P a n d o l f . "Maximal A e r o b i c Power D u r i n g L a d d e r m i l l C l i m b i n g , U p h i l l Running, and C y c l i n g . " J . A p p l . P h y s i o l . , 3 2 ( 4 ) : 467-473, 1972. 46. K a t c h , F . I . " O p t i m a l D u r a t i o n o f Endurance P e r f o r m a n c e on t h e C y c l e E r g o m e t e r i n R e l a t i o n t o Maximal Oxygen U p t a k e . " E r g o n o m i c s , 1 6 ( 2 ) : 227-235, 1973. 47. K a t c h , V . L . , and F . I . K a t c h . "The R e l a t i o n s h i p Between A e r o b i c Power and Measured Work-Output on a P r o g r e s s i v e S t e p Increment B i c y c l e E r g o m e t e r T e s t . " Med. S c i . S p o r t s , 5 ( 1 ) : 2 3 - 2 8 , 1973. 48. K a t c h , F . I . , W.D. M c A r d l e , and G.S. P e c h a r . " R e l a t i o n s h i p o f Maximal Leg F o r c e and Leg C o m p o s i t i o n t o T r e a d m i l l and B i c y c l e Ergometer Maximum Oxygen Uptake." Med. S c i . S p o r t s , 6 ( 1 ) : 3 8 - 4 3 , 1974. 49. Knowlton, R.G., M.N. Sawka, and D.T. D e u t s c h . " V a r i e d I n t e n s i t y T r e a d m i l l P r o t o c o l s f o r t h e Measurement o f Maximal Oxygen Uptake." J . S p o r t s Med., 17:263-268, 1977. 50. K n u t t g e n , H.G., ed. N e u r o m u s c u l a r Mechanisms f o r T h e r a p e u t i c and C o n d i t i o n i n g E x e r c i s e . B a l t i m o r e : U n i v e r s i t y Park P r e s s , 1976. 51. Lanooy, C , and F.H. B o n j e r . "A H y p e r b o l i c E r g o m e t e r f o r C y c l i n g and C r a n k i n g . " J . A p p l . P h y s i o l . , 9:499-500, 1956. 52. L a v o i e , N.F., M.D. Mahony, and L.S. M a r m e l i c . "Maximal Oxygen Uptake on a B i c y c l e Ergometer W i t h o u t Toe S t i r r u p s and w i t h Toe S t i r r u p s V e r s u s a T r e a d m i l l . " Can. J . A p p l . S p o r t S c i . , 3 ( 2 ) : 9 9 - 1 0 2 , 1978. 53. MacLeod, C M . P r e s b y t e r i a n - S t . Luke's H o s p i t a l , C h i c a g o , I l l i n o i s . P e r s o n a l Communication, June 26, 1979. 54. Maksud, M.G., and K.D. C o u t t s . "Comparison o f a C o n t i n u o u s and D i s c o n t i n u o u s Graded T r e a d m i l l T e s t f o r Maximal Oxygen Uptake." Med. S c i . S p o r t s , 3:63-65, 1971. 55. M a t s u i , H., K. K i t a m u r a , and M. Miyamura. "Oxygen Uptake and B l o o d Flow o f t h e Lower Limb i n Maximal T r e a d m i l 1 and B i c y c l e E x e r c i s e . " E u r . J . A p p l . P h y s i o l . , 40:57-62, 1978. 56. M c A r d l e , W.D., F . I . K a t c h , and G.S. P e c h a r . "Comparison o f C o n t i n u o u s and D i s c o n t i n u o u s T r e a d m i l l and B i c y c l e T e s t s f o r Max V 0 . " Med. S c i . S p o r t s , 5 ( 3 ) : 1 5 6 - 1 6 0 , 1972. . ?  57. M c A r d l e , W.D., and J.R. M a g e l . " P h y s i c a l Work C a p a c i t y and Maximum Oxygen Uptake i n T r e a d m i l l and B i c y c l e E x e r c i s e . " Med. S c i . S p o r t s , 2: 118-126, 1971. 58. McMiken, D.F., and J . T . D a n i e l s . " A e r o b i c R e q u i r e m e n t s and Maximum A e r o b i c Power i n T r e a d m i l l and T r a c k Running." Med. S c i . S p o r t s , 8 ( 1 ) : 1 4 - 1 7 , 1976.  69 59. M i t c h e l l , J.H., B.J. S p r o u l e , and C.B. Chapman. "The P h y s i o l o g i c a l Meaning o f t h e Maximal Oxygen I n t a k e T e s t . " J . C l i n . I n v e s t i g a t i o n , 37:538-546, 1958. 60. Miyamura, M., and Y. Honda. "Oxygen I n t a k e and C a r d i a c Output D u r i n g Maximal T r e a d m i l l and B i c y c l e E x e r c i s e . " J . A p p l . P h y s i o l . , 3 2 ( 2 ) : 185-188, 1972. 61. Miyamura, M., e t a l . " C a r d i o r e s p i r a t o r y Responses t o Maximal T r e a d m i l l and B i c y c l e E x e r c i s e i n T r a i n e d and U n t r a i n e d S u b j e c t s . " J . S p o r t s Med., 18:25-32, 1978. 62. Moody, D.L., J . K o l l i a s , and E.R. B u s k i r k . " E v a l u a t i o n o f A e r o b i c . C a p a c i t y i n Lean and Obese Women w i t h Four T e s t P r o c e d u r e s . " J . S p o r t s Med., 9:1-9, 1969. 63. P a n d o l f , K.B., and B.J. Noble. "The E f f e c t o f P e d a l l i n g Speed and R e s i s t a n c e Changes on P e r c e i v e d E x e r t i o n f o r E q u i v a l e n t Power Outputs on t h e B i c y c l e Ergometer." Med. S c i . S p o r t s , 5 ( 2 ) : 1 3 2 - 1 3 6 , 1973. 64. Peck, L. O p e r a t i o n s Manager, D y n a v i t o f A m e r i c a , N o r t h b r o o k , P e r s o n a l Communication, November 20, 1979.  Illinois.  65. S a r g e a n t , A . J . , e t a l . "Measurements o f F o r c e s A p p l i e d and Work Performed i n P e d a l l i n g a S t a t i o n a r y B i c y c l e Ergometer." E r g o n o m i c s , 2 1 ( 1 ) : 49-53, 1978. 66. S a r g e a n t , A . J . , and C.T.M. D a v i e s . " F o r c e s A p p l i e d t o Cranks o f a B i c y c l e Ergometer D u r i n g One- and Two-Leg C y c l i n g . " J . A p p l . P h y s i o l . , 4 2 ( 4 ) : 514-518, 1977. 67. S e c h e r , N.H., e t a l . "Maximal Oxygen Uptake D u r i n g Arm C r a n k i n g and Combined Arm P l u s Leg E x e r c i s e . " J . A p p l . P h y s i o l . , 36(5):515-518, 1974. 68. Shennum, P.L., and H.A. de V r i e s . "The E f f e c t o f S a d d l e H e i g h t on Oxygen Consumption D u r i n g B i c y c l e Ergometer Work." Med. S c i . S p o r t s , 8 ( 2 ) : 119-121, 1976. 69. Shephard, R.J., e t a l . "The Maximal Oxygen I n t a k e . " B u l l . Wld. H l t h . Org., 38:757-764, 1968. 70. S t a m f o r d , B.A. "Maximal Oxygen Uptake D u r i n g T r e a d m i l l Walking and Running a t V a r i o u s Speeds." J . A p p l . P h y s i o l . , 3 9 ( 3 ) : 3 8 6 - 3 8 9 , 1975. 71. S t a m f o r d , B.A. "Step Increment V e r s u s C o n s t a n t Load T e s t s f o r D e t e r m i n a t i o n o f Maximal Oxygen Uptake." Europ. J . A p p l . P h y s i o l . , 35:89-93, 1976. 72. S t e n b e r g , J . , e t a l . "Hemodynamic Response t o Work w i t h D i f f e r e n t Muscle Groups; S i t t i n g and S u p i n e . " J . A p p l . P h y s i o l . , 22(1):61-67, 1967.  70 73. Swanson, G.D., e t a l . "Computer C o n t r o l l e d C y c l e . E r g o m e t e r f o r R e s p i r a t o r y C o n t r o l S t u d i e s . " F e d . P r o c . , 3 7 ( 3 ) : 5 3 4 , 1978. 74. T a y l o r , H.L., E. B u s k i r k , and A. H e n s c h e l . "Maximal Oxygen I n t a k e as an O b j e c t i v e Measure o f C a r d i o - R e s p i r a t o r y P e r f o r m a n c e . " J . A p p l . P h y s i o l . , 8:73-80, 1955. 75. T h i a r t , B.F., and J.H. Blaauw. "The VTL Max and t h e A c t i v e M u s c l e Mass." South A f r i c a n J o u r n a l f o r R e s e a r c h i n S p o r t , P h y s i c a l E d u c a t i o n and R e c r e a t i o n . P r o c e e d i n g s o f t h e I n t e r n a t i o n a l Committee on P h y s i c a l F i t n e s s R e s e a r c h . ( P a r t 1 ) . J o h a n n e s b u r g , 17-19 J u l y , 1978. 2 ( 1 ) : 13-17, 1979. 76. von D o b e l n , W. "A S i m p l e B i c y c l e Ergometer." J . A p p l . P h y s i o l . , 7: 2 22-224, 1954. 77. Wyndham, C.H., e t a l . " S t u d i e s o f Maximum C a p a c i t y o f Men f o r P h y s i c a l E f f o r t . " A r b e i t s p h y s i o l . , 22:285-295, 1966.  APPENDICES  71  APPENDIX A SUBJECTIVE RESPONSE QUESTIONAIRE  "72  73 SUBJECTIVE RESPONSE QUESTIONAIRET e s t was d i s c o n t i n u e d  due t o :  1. Leg s o r e n e s s a n d / o r l e g m u s c l e 2. B r e a t h l e s s n e s s ,  fatigue.  nausea, d i z z i n e s s , e t c . ( c a r d i o - r e s p i r a t o r y  fatigue).  3. U n a b l e t o d i f f e r e n t i a t e . 4. O t h e r r e a s o n s :  (Circle the appropriate Dynavit: Monark: Treadmill:  1 2  answer)  3  1 2  3 1 2  4  -(explain)  4  -(explain)  3  4  -(explain)  5. Was t h e r e any d i f f e r e n c e between t h e two b i c y c l e e r g o m e t e r s i n t h e individual's subjective Yes:  No:  r e s p o n s e t o each e x e r c i s e  test?  I f y e s , explain the d i f f e r e n c e ( s ) :  6. Was t h e r e any d i f f e r e n c e between t h e b i c y c l e e r g o m e t e r s and t h e t r e a d m i l l i n the i n d i v i d u a l ' s s u b j e c t i v e response t o each t e s t ? Yes:_  No:  exercise  I f yes, explain the difference(s):  APPENDIX 3 RAW DATA  74  PEAK OXYGEN CONSUMPTION AND TOTAL WORK TIME Dynavit  Monark  46.92 18:00 40.53 16:11 37.22 16:30 46.17 14:39 45.72 15:30 46.90 16:15 50.06 17:01 50.61 14:05 56.29 15:59 50.84 13:37 41.18 15:28 56.12 15:09 40.67 14:58  44.10 19:05 41.65 15:32 26.29 17:02 45.89 15:03 41.57 15:05 47.29 14:41 48.23 18:47 49.35 15:08 52.90 16:03 47.87 14:09 46.38 16:27 56.37 15:13 44.50 15:20  Treadmill  Subjects DD BFl BF2 CH MH DL BA ML RB PV WK RW MC  POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT POC TWT  POC = Peak Oxygen Consumption (ml/kg/min) TWT = T o t a l Work Time ( m i n u t e s / s e c o n d s )  53.59 13:58 42.90 06:16 45.09 08:04 48.57 09:10 41.56 08:15 52.89 10:41 58.20 14:18 51.66 10:04 55.28 12:45 52.48 10:34 47.23 10:12 51.33 09:55 47.22 08:30  MAXIMAL HEART RATE AND MAXIMAL OXYGEN PULSE Dynavit  Monark  Treadmill  Subjects DD BF1 BF2 CH MH DL BA ML RB PV WK RW MC  MHR MOP MHR MOP MHR MOP MHR " MOP MHR MOP MHR MOP MHR MOP MHR MOP MHR MOP MHR MOP MHR MOP MHR MOP MHR MOP  190 21.90 206 17.23 200 16.71 193 16.84 177 17.68 205 18.24 190 22.59 215 18.05 195 19.46 202 15.45 208 17.12 195 17.64 •: 190 17.21  185 21.91 195 17.32 197 13.72 190 18.37 175 18.86 190 16.74 180 21.39 215 15.44 190 18.67 190 15.11 212 16.18 . 200 17.20 189 17.27  200 21.35 212 18.54 205 18.10 184 19.34 192 17.60 210 17.10 195 21.69 220 16.18 216 21.11 208 13.41 216 18.84 205 14.00 195 17.90  MHR = Maximal H e a r t Rate (bpm) MOP = Maximal Oxygen P u l s e ( m l / b e a t )  SUBMAXIMAL OXYGEN PULSE Dynavit min.1  min.2  min.3  min.4  Monark mi n.5  min.6  Subjects  min.7  mir i . l  min.2  mir i.3  min. 4 mir 1.5  mir i.6  min. 7  '  DD  10. 64  09. 90  11. 30  14. 44  14. 17  14.25  15. 23  07. 60  09.58  14. 79  09. 26  12. 41  13. 18  13. 67  BFl  08. 17  08. 27  09. 53  10. 33  12. 23  10.52  11. 29  07. 59  09.73  09. 27  10. 99  10. 38  12. 15  12. 96  BF2  08. 62  08. 92  08. 07  07. 15  09. 48  10.64  12. 52  09. 01  10.23  08. 50  11. 03  12. 36  13. 01  13. 32  CH  14. 47  10. 22  12. 27  11. 18  14. 21  10.97  14. 96  06. 67  09.40  09. 10  09. 64  13. 83  11. 08  12. ,46  MH  08. 73  09. 73  08. 84  09. 83  12. 00  09.84  12. 07  08. 53  06.70  07. 67  09. 32  10. 86  10. 15  10. 22  DL  07. 46  10. 73  06. 17  09. 85  10. 15  11.00  11. 29  07. 71  06.76  06. 79  08. 15  08. 23  09. 65  10. 58  BA  08. 69  08. 93  08. 90  09. 52  12. 44  14.61  14. 46  09. 29  10.00  09. 58  12. 78  13. 15  15. 37  15. 15  ML  07. 78  08. 61  09. 76  11. 26  10. 00  10.19  11. 33  10. 00  12,42  07. 46  08. 93  10. 00  10. 14  09. 58  RB  12. 00  09. 60  08. 95  07. 04  11. 92  12.75  14. 37  08. 00  08.86  10. 09  09. 24  11. 20  11. 03  14. 62  PV  08. 64  08. 56  07. 82  09. 27  09. 35  09.93  12. 73  04. 39  05.97  08. 81  09. 29  09, 20  10. 69  10. 84  WK  08. 25  06. 16  06. 39  08. 62  10. 50  10.20  11. 30  07. 81  08.85  07. 22  07. 92  09. 61  09. 59  09. 54  RW  07. 67  08. 44  09. 46  07. 17  11. 12  13.86  11. 17  06. 44  08.73  07. 58  07. 72  11. 82  10. 80  11. 93  MC  06. 45  09. 65  08. 36  06. 02  09. 36  14.54  11. 71  05. 79  08.17  07. 66  07. 54  11. 04  13. 31  13. 03  *Submaximal Oxygen P u l s e  (ml/beat)  , m i n u t e s (min.) 1 through 7.*  ^1 ^  SUBMAXIMAL OXYGEN UPTAKE Dynavit  Monark  mi n.1  min.2  min.3  min.4  min.5  min.6  min.7  min.1  mi n.2  min.3  min.4  min.5  min.6  min.7  DD  13.67  1-1. 35  13. 31  19. 54  19. 07  20. 12  23. 20  08.19  10. 56  16. 33  11. 29  15..64  16. 67  18. 78  BF1  10.80  10. 68  11. 95  14. 48  18. 61  16. 49  20. 25  10. 65  13. 63  12. 54  17. 92  16.88  19. 64  21. 74  BF2  11.77  12. 21  1.1. 51  09. 73  13. 55  15. 82  20. 66  09. 76  11. 32  08. 90  13. 13  14. ,95  16. 58  18. 12  CH  17.10  12. 62  14. 91  16. 98  22. 53  17. 25  26. 63  10. 48  14. 18  13. 66  15. 91  23. .82  19. 96  24. 29  MH  13.12  14. 56  12. 35  15. 62  19. 60  17. 00  22. 25  13. 09  10. 27  12. 89  15. 21  17. 73  18. 45  19. 60  DL  10.88  16. 21  09. 49  17. 11  18. 35  20. 57  23. 25  12. 90  10. 79  11. 22  15. 58  15..87  20. 25  24. 23  BA  09.25  09. 46  11. 19  12. 74  18. 25  21. 58  24. 16  09. 74  12. 05  11. 52  17. 42  18. ,24  21. 39  25. 58  ML  14.16  13. 43  16. 89  21. 13  19. 45  22. 60  26. 12  16. 58  22. 37  13. 25  18. 72  22. 54  22. 16  23. 77  . 15.02 13. 26  13. 03  11. 35  20. 03  21. 35  27. 19  13. 17  13. 97  16. 62  16. 26  19. 57  19. 34  28. 37  Subjects  RB PV  16.27  16. 03  14.81  20. 11  20. 77  23. 85  33. 75  07. 99  11. 56  17. 67  20. 05  21. 84  26. 43  28. 67  WK  11.85  09. 13  09. 32  14. 41  17. 63  18. 09  22. 07  10. 99  12. 23  11. 07  13. 15  16. 56  18. 67  19. 26  RW  14.65  15. 14  17. 33  14. 17  22. 82  29. 07 . 26. 70  12. 39  16. 81  14. 97" 16. 04  25. 65  24. 46  28. 41  MC  08.58  13. 71  11. 26  07. 81  14. 94  24. 31  09. 21  12. 01  11. 93  12. 79  18. 11  22. 49  25. 15  20. 79  *Submaximal Oxygen Uptake (ml/kg/min), m i n u t e s (min.) 1 t h r o u g h 7.*  oo  SUBMAXIMAL HEART RATE Dynavit min. 1  min. 2 min. 3  Monark  min. 4 min. 5  min. 6  min. 7  m i n . l imin. 2 min. 3 min. 4 min. 5  mi n. 6  min.  jbjects DD  110  100  100  115  115  120  130  96  96  96  108  108  110  120  BFl  115  110  107  120  130  135  155  112  112  109  131  131  130  135  BF2  130  130  135  130  135  140  155  107  107  111  120  120  132  139  CH  85  90  88  110  114  114  129  105  100  100  110  115  120  130  MH  110  110  103  117  120  127  135  109  109  120  117  117  130  137  DL  110  110  115  130  135  140  155  110  108  112  130  130  142  155  BA  84  84  100  105  115  115  130  84  96  96  108  108  108  132  ML  120  115  125  135  140  160  165  110  120  118  140  150  145  165  RB  90  100  105  115  120  120  135  110  105  110  118  117  117  130  PV  118  118  119  136  139  150  165  107  114  118  127  139  145  155  WK  120  125  122  138  140  148  162  105  104  115  125  129  146  151  RW  116  109  111  120  125  127  145  118  118  120  127  132  138  145  MC  110  115  110  108  125  130  140  107  104  107 .  118  115 .  118  135  *Submaximal  H e a r t Rate (bpm), m i n u t e s (min .) 1 t h r o u g h 7.*  APPENDIX C ANOVA  TABLES FOR MAXIMAL DATA  80  81 ANOVA TABLE FOR TOTAL WORK TIME Source TWT  Sum o f S q u a r e s 272.05  df 2  Mean Square 136.03  F 92.42  Prob. F Exceeded < . 001*  * S i g n i f i c a n t a t <.OOl  ANOVA TABLE FOR PEAK OXYGEN CONSUMPTION Source POC  Sum o f S q u a r e s 125.11  df 2  Mean Square 62.55  F 5.42  P r o b . F Exceeded 0014*  * S i g n i f i c a n t a t .0014 ANOVA TABLE FOR MAXIMAL HEART RATE Source MHR  Sum o f Squares 831.39  df 2  Mean Square 415.69  F 13.61  P r o b . F Exceeded < . 001*  * S i g n i f i c a n t a t <.001 ANOVA TABLE FOR MAXIMAL OXYGEN PULSE •Source MOP  Sum o f S q u a r e s 2.89  df 2  Mean Square 1.45  F .98  P r o b . F Exceeded .3912 ( N o n - s i g )  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077407/manifest

Comment

Related Items