Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Buffer capacity of human skeletal muscle : relationships to fiber composition and anaerobic performance Parkhouse, Wade Stephen 1982

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1982_A7_5 P37.pdf [ 3.97MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0077344.json
JSON-LD: 1.0077344+ld.json
RDF/XML (Pretty): 1.0077344.xml
RDF/JSON: 1.0077344+rdf.json
Turtle: 1.0077344+rdf-turtle.txt
N-Triples: 1.0077344+rdf-ntriples.txt
Original Record: 1.0077344 +original-record.json
Full Text
1.0077344.txt
Citation
1.0077344.ris

Full Text

B u f f e r c a p a c i t y of human s k e l e t a l muscle; r e l a t i o n s h i p s to f i b e r composition and anaerobic performance by Wade Stephen Parkhouse B.P.E. The U n i v e r s i t y of A l b e r t a , 1980 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF PHYSICAL EDUCATION in THE FACULTY OF GRADUATE STUDIES Department of Sport Science School of P h y s i c a l Education We accept t h i s t h e s i s as conforming to the r e q u i r e d standard THE UNIVERSITY OF BRITISH COLUMBIA May 1982 (S) Wade Stephen Parkhouse, 1982 In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and study. I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying of t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head o f my department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood t h a t copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be allowed without my w r i t t e n p e r m i s s i o n . Department O f P h y s i c a l Education The U n i v e r s i t y of B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 August 26, 1982 II A b s t r a c t Twenty male v o l u n t e e r s , comprising four d i s t i n c t sub- samples (S=800m runners; R=varsity oarsmen; M=marathon runners; UT=untrained c o n t r o l s ) , p a r t i c i p a t e d i n t h i s study. They were made aware of the p o t e n t i a l r i s k s i n v o l v e d and informed consent was o b t a i n e d . Anthropometric ( h y d r o s t a t i c weighing), p h y s i c a l c h a r a c t e r i s t i c and pulmonary f u n c t i o n ( C o l l i n s Respirometer) were assessed by standard t e c h n i q u e s . Maximal oxygen consumption was determined on a p r o g r e s s i v e t r e a d m i l l run (0.22 m.s~* every minute; i n i t i a l speed 2.22 m.s"*) to f a t i g u e . R e s p i r a t o r y gases were monitered every 15 seconds (Beckman M e t a b o l i c Measurement Cart) with the four h i g h e s t c o n s e c u t i v e oxygen uptake values being averaged f o r det e r m i n a t i o n of maximal oxygen uptake. Anaerobic performance (AST) was assessed as the time to f a t i g u e a the constant workload t r e a d m i l l run at 3.52 m.s"', 20 percent i n c l i n e . Post e x e r c i s e blood l a c t a t e l e v e l s (HLa) were determined as an a d d i t i o n a l v a r i a b l e i n assessment of anaerobic c a p a c i t y . The M were s i g n i f i c a n t l y o l d e r than the other 3 groups while no s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between the t r a i n e d groups f o r maximal oxygen uptake v a l u e s . The S and R demonstrated s i g n i f i c a n t l y e l e v a t e d AST (p<.0l) and post-AST HLa (p<.05) l e v e l s above the M, whose values were s i m i l i a r to the UT. T h i s enhanced anaerobic performance c o u l d not be a t t r i b u t e d to p h y s i c a l c h a r a c t e r i s t i c , pulmonary f u n c t i o n or a e r o b i c c a p a c i t y d i f f e r e n c e s of the t r a i n e d a t h l e t e s . Post-AST HLa d i s p l a y e d a s i g n i f i c a n t r e l a t i o n s h i p to anaerobic performance (r=.90). An enhanced l a c t a t e e f f l u x mechanism was shown by the I l l t r a i n e d groups, which was not a l t e r e d b y ' t r a i n i n g s p e c i f i c i t y . Muscle b i o p s i e s o b tained at r e s t from the vastus l a t e r a l i s muscle, were examined f o r f i b e r composition, pH, h i s t i d i n e and car n o s i n e l e v e l s and b u f f e r c a p a c i t y (B). B was found to be e l e v a t e d i n the a n a e r o b i c l y t r a i n e d groups(p<.01) demonstrating a s i g n i f i c a n t r e l a t i o n s h i p to AST (r=.5l) and f a s t - t w i t c h f i b e r percentage (FT%;r=.51), which i m p l i e d a r e l a t i o n s h i p to muscle g l y c o l y t i c c a p a c i t y . W i t h i n the S and R, c a r n o s i n e l e v e l s were found to be s i g n i f i c a n t l y e l e v a t e d (p<.0l), i l l u s t r a t i n g a s i g n i f i c a n t c o r r e l a t i o n to B (r=.64) and FT% (r=.46) , which emphasized the importance of ca r n o s i n e as a p h y s i o l o g i c a l b u f f e r and i t s p o s s i b l e r e l a t i o n s h i p to the g l y c o l y t i c c a p a c i t y of the t i s s u e . No d i f f e r e n c e s i n h i s t i d i n e l e v e l s or r e s t i n g i n t r a m u s c u l a r pH were demonstrated with t r a i n i n g s p e c i f i c i t y . These r e s u l t s suggest that the enhanced anaerobic performance c o u l d p a r t i a l l y be a t t r i b u t e d to e l e v a t e d B and c a r n o s i n e l e v e l s demonstrated w i t h i n s k e l e t a l muscle su b j e c t e d to anaerobic t r a i n i n g . T h i s may be due to the t i s s u e s enhanced c a p a c i t i e s to seqestor the protons which accumulate d u r i n g anaerobic g l y c o l y s i s . IV Table of Contents Page L i s t of symbols . .. . VI L i s t of f i g u r e s VII L i s t of t a b l e s VIII Acknowledgements IX V i t a , P u b l i c a t i o n s and F i e l d s of Study X I n t r o d u c t i o n 1 Methodology 4 R e s u l t s 8 D i s c u s s i o n 19 Summary of F i n d i n g s 28 References . 30 Appendices. 46 Review of L i t e r a t u r e 47 A. Acid-base s t a t u s and performance 47 1 . Metabolism 48 2. Processes of l a c t a t e d i s p o s a l and proton r e l e a s e .... 49 3. Enzymatic c o n t r o l of anaerobic g l y c o l y s i s 51 4. E x e r c i s e p h y s i o l o g y 52 B. I n t r a c e l l u l a r pH 55 1. T o t a l muscle pH i n r e l a t i o n to e x e r c i s e ... 57 2. pH changes and muscular work ......... 59 3. Mechanisms of a c t i o n 60 V C. B u f f e r c a p a c i t y 62 1. S k e l e t a l muscle b u f f e r c a p a c i t y 64 2. S k e l e t a l muscle b u f f e r c o n s t i t u e n t s 66 3. Carnosine and a n s e r i n e 68 D. Summary 72 Appendix A. Repeated b u f f e r c a p a c i t y d e t e r m i n a t i o n s 74 Appendix B. Blood l a c t a t e l e v e l s pre- and post-a n a e r o b i c performance 75 Appendix C. B u f f e r c a p a c i t y c o n v e r s i o n s 76 Appendix D. S e r i a l s e c t i o n s of UT vastus l a t e r a l i s muscle s t a i n e d f o r NADH-TR and Myosin ATPase... 77 Appendix E. Regression analyses 79 L i s t of Symbols. ATP adenosine t r i p h o s p h a t e NADH reduced n i c o t i n a m i d e adenine d i n u c l e o t i d e SI S l y k e , standard u n i t f o r B (mmol.pH .1 IC H 0) PFK phosphofructokinase G6P glucose-6-phosphate LDH l a c t a t e dehydrogenase CP c r e a t i n e phosphate FT f a s t - t w i t c h (type II) s k e l e t a l muscle f i b e r s ST slow-twitch (type I) s k e l e t a l muscle f i b e r s PH. i n t r a c e l l u l a r pH IAA i o d o a c e t i c a c i d HCO; b i c a r b o n a t e F6P fructose-6-phosphate B b u f f e r c a p a c i t y P. phosphate HIS h i s t i d i n e HLa blood l a c t a t e S s p r i n t e r s R rowers M marathon runners UT u n t r a i n e d c o n t r o l s VO^max maximal oxygen uptake AST anaerobic speed t e s t DMO 5,5 dimethyl-2,4-oxazolidedione VII L i s t of F i g u r e s F i g u r e Page 1. Anaerobic performance versus post-AST HLa l e v e l s ........ 11 2. R a t i o AST/Post-AST HLa versus HLa 12 3. B u f f e r c a p a c i t y versus t r a i n i n g s p e c i f i c i t y 16 4. B u f f e r c a p a c i t y versus c a r n o s i n e c o n c e n t r a t i o n determined by t i t r a t i o n with 0.01 HCl 17 VIII L i s t of Tables Table Page 1. P h y s i c a l c h a r a c t e r i s t i c s , anthropometric and pulmonary f u n c t i o n p r o f i l e s 9 2. P h y s i o l o g i c a l assessment and h i s t o l o g i c a l a n a l y s i s . of the vastus l a t e r a l i s muscle 10 3. B u f f e r c a p a c i t y , pH, h i s t i d i n e and c a r n o s i n e l e v e l s of the r e s t i n g vastus l a t e r a l i s muscle 14 4. C o r r e l a t i o n matrix f o r the b i o c h e m i c a l , h i s t o l o g i c a l and anaerobic performance v a r i a b l e s 15 5. Average non-bicarbonate b u f f e r values f o r s k e l e t a l muscle determined by homogenate t i t r a t i o n with HC1 or NaOH 65 IX Acknowledgements . To a l l my v o l u n t e e r s who through t h e i r e n t h u s i a s t i c p a r t i c i p a t i o n , made t h i s i n v e s t i g a t i o n p o s s i b l e , 1 express my g r a t i t u d e . 1 would s i n c e r e l y l i k e to thank my committee members: Drs. Peter Hochachka, B i l l O v a l l e , Ken Coutts and e s p e c i a l l y Don Mckenzie, who through t h e i r knowledge and guidance, made t h i s i n v e s t i g a t i o n a rewarding e x p e r i a n c e . S p e c i a l a p p r e c i a t i o n i s extended to Dr. Tom Mommsen and Susan Shinn f o r t h e i r e x p e r t i s e and p a t i e n c e i n te a c h i n g me the necessary t e c h n i q u e s . To a l l those i n d i v i d u a l s who helped me c o l l e c t my data and to Miss Diane Barnett f o r her support, I extend my thanks. X ; Vita.- . • • August 28, 1955. - Born - Hamilton, O n t a r i o . 1974 Secondary School Honours Graduation Diploma, Ancaster High and V o c a t i o n a l School, Ancaster, O n t a r i o . 1975-1980 Bachelor of P h y s i c a l E d u c a t i o n , U n i v e r s i t y of A l b e r t a , Edmonton, A l b e r t a . 1980-1982 Masters of P h y s i c a l E d u c a t i o n , Department of Sport Science School of P h y s i c a l Education and R e c r e a t i o n U n i v e r s i t y of B r i t i s h Columbia, Vancouver, B.C. P u b l i c a t i o n s Parkhouse, W.S., D.C. McKenzie, E.C. Rhodes, D. Dunwoody and P. Wiley. E x e r c i s e p r e s c r i p t i o n i n r e l a t i o n to anaerobic t h r e s h o l d . Can,. J . Appl .Sp.Sci . , 6 ( 4) : 1 35 ,1 981 . Parkhouse, W.S., D.C. McKenzie, E.C. Rhodes, D. Dunwoody and P. Wiley. Cardiac frequency and anaerobic t h r e s h o l d : I m p l i c a t i o n s f o r p r e s c r i p t i v e e x e r c i s e programs. Eur. J . Appl. P h y s i o l . , 1982 ( i n p r e s s ) . Rhodes, E . C , D.C. McKenzie, P. Wiley, D. Dunwoody and W.S. Parkhouse. Anaerobic t h r e s h o l d and p r e d i c t e d marathon performance. Can.J.Appl.Sp.Sci.,6(4):156,1981. Parkhouse, W.S., D.C. Mckenzie, P.W. Hochachka, W.K. O v a l l e , T.P. Mommsen and S.L. Shinn. The r e l a t i o n s h i p between c a r n o s i n e l e v e l s , b u f f e r i n g c a p a c i t y , f i b e r type and anaerobic c a p a c i t y i n e l i t e a t h l e t e s . Int'1.J.Sp.Med., 1982 ( i n p r e s s ) . XI Mckenzie, D.C, W.S. Parkhouse, E.C. Rhodes, P.W. Hochachka, W.K. O v a l l e , T.P. Mommsen and S.L. Shinn. S k e l e t a l muscle b u f f e r i n g c a p a c i t y i n e l i t e a t h l e t e s . Int'1.J.Sp.Med., 1982 (i n p r e s s ) . Parkhouse, W.S., D.C. Mckenzie, P.W. Hochachka, T.P. Mommsen, W.K. O v a l l e , S.L. Shinn and E.C. Rhodes. Muscle b u f f e r i n g c a p a c i t y , f i b e r composition and anaerobic c a p a c i t y of e l i t e a t h l e t e s . Med.Sci.Sp. , 14:132, 1982. Mckenzie, D.C, W.S. Parkhouse, E.C. Rhodes, W.K. O v a l l e and S. Shinn. Anaerobic c a p a c i t y and muscle f i b e r type. Med.Sci. Sp., 14:132, 1982. F i e l d s of Study Major f i e l d : E x e r c i s e p h y s i o l o g y Dr. D.C. Mckenzie S t u d i e s i n metabolism and bi o c h e m i s t r y Dr. P.W. Hochachka S t u d i e s i n h i s t o l o g y Dr. W.K. O v a l l e 1 I n t r o d u c t i o n S p r i n t t r a i n e d a t h l e t e s demonstrate a remarkable a b i l i t y to perform h i g h • i n t e n s i t y , short" d u r a t i o n work, with the energy requirements being met p r i n c i p a l l y by anaerobic g l y c o l y s i s . Most anaerobic s t u d i e s have c o n c e n t r a t e d on changes i n s u b s t r a t e l e v e l s or, enzyme a c t i v i t i e s and m e t a b o l i t e c o n c e n t r a t i o n s which c o u l d be capable of g e n e r a t i n g ATP, and m a i n t a i n i n g redox balance (Hochachka 1980). A l t e r a t i o n s i n s u b s t r a t e l e v e l s (Knuttgen and S a l t i n 1972; G o l l n i c k and Hermansen 1973), g l y c o l y t i c enzymes (Baldwin et a l . , 1972; G o l l n i c k et a l . , 1972; Hickson et a l . , 1975; C o s t i l l et a l . , 1976) and f i b e r composition (Thorstenson 1976; C o s t i l l et a l . , 1976,1979; Roberts et a l . , 1981) a s s o c i a t e d with anaerobic t r a i n i n g have been i n s u f f i c i e n t to account f o r the enhanced anaerobic performances of s p r i n t t r a i n e d a t h l e t e s . Anaerobic g l y c o l y s i s r e s u l t s i n the rapid, p r o d u c t i o n of ATP which i s a s s o c i a t e d with e l e v a t e d muscle and blood l a c t a t e l e v e l s , which have been i m p l i c a t e d i n reduced performances ( K a r l s s o n et a l . , 1975; Klausen et a l . , 1972). Proton accumulation a s s o c i a t e d with the e l e v a t e d l a c t a t e l e v e l s r e s u l t s i n pH decrements w i t h i n muscle and blood (Roos and Boron 1981; S a h l i n 1978). Reduced r a t e s of g l y c o l y s i s (Toews et a l . , 1970; Sutten et a l . , 1981; Roos and Boron 1981), c o r r e l a t i o n s between pH and f a t i g u e ( F i t t s and H o l l o s z y 1976; Stevens 1980), i n v e r s e r e l a t i o n s h i p s between f o r c e g e n e r a t i o n and proton c o n c e n t r a t i o n s (Dawson et a l . , 1978; F a b i a t o and F a b i a t o 1978) and proton i n h i b i t i o n of the e x c i t a t i o n - c o n t r a c t i o n c o u p l i n g mechanisns 2 (Nocker et a l . , 1964; Katz 1970) have been demonstrated when the pH decrement was of s u f f i c i e n t magnitude. Thus i t i s important to b u f f e r the protons which . accumulate, thereby a l t e r i n g the r a t e of pH decrease, which subsequently may a d v e r s l y e f f e c t anaerobic performance. The a b i l i t y of a t i s s u e to r e s i s t changes i n pH upon a d d i t i o n of a strong a c i d or base, has been termed by Van Slyke (1922) as i t s b u f f e r c a p a c i t y ( B ) , r e f l e c t i n g the t i s s u e ' s a b i l i t y to sequester e i t h e r protons or hydroxide i o n s . Numerous i n v e s t i g a t i o n s by a v a r i e t y of techniques have attempted to i d e n t i f y the B of v a r i o u s t i s s u e s (Roos and Boron 1981). Though v a r i a t i o n s i n B e x i s t between the methods, i t appears that s k e l e t a l muscle c o n t r i b u t e s s i g n i f i c a n t l y to o v e r a l l pH homeostasis of the organism (Clancy and Brown 1966; S i e s j o and Messeter 1971; H e i s l e r and P i i p e r 1971; L a i et a l . , 1973). Recently, s k e l e t a l muscle was examined i n r e l a t i o n to g l y c o l y t i c c a p a c i t y w i t h i n a number of t e r r e s t e r i a l mammals and f i s h s p e c i e s by the the homogenate technique. Corresponding e l e v a t e d B and g l y c o l y t i c c a p a c i t y values v a l u e s were obtained ( C a s t e l l i n i and Somero 1981). The d e t e r m i n a t i o n of B by the homogenate technique c o n s i s t s of simply the phys i c o - c h e m i c a l b u f f e r i n g component, which comprises the b u f f e r i n g w i t h i n a c e l l merely as a consequence of proton a s s o c i a t i o n with bases (Roos and Boron 1981). Burton (1978) and Somero (1981) have i d e n t i f i e d the major b u f f e r i n g components of s k e l e t a l muscle to be the i m i d a z o l e - c o n t a i n i n g compounds: f r e e h i s t i d i n e , h i s t i d i n e - c o n t a i n i n g d i p e p t i d e s and protein-bound h i s t i d i n e r e s i d u e s . The 3 d i p e p t i d e c a r nosine ( B - a l a n y l h i s t i d i n e ) has been found to occur i n g r e a t e r c o n c e n t r a t i o n s predominantly w i t h i n muscles c l a s s i f i e d as white as opposed red (Tamaki et a l . , 1976). W i t h i n human s k e l e t a l muscle c a r n o s i n e c o n c e n t r a t i o n s demonstrate a wide v a r i a t i o n (Christman 1976; Bergstrom et a l . , 1978). Carnosine's b u f f e r i n g a b i l i t y has been suggested to c o n t r i b u t e up to 40 percent of the t o t a l b u f f e r i n g w i t h i n p re- and post r i g o r s k e l e t a l muscle (Bate-Smith 1938; Davey 1960b). Ther e f o r e the purpose of the present i n v e s t i g a t i o n was to examine the i n t e r - r e l a t i o n s h i p s between B, pH and f i b e r composition of human r e s t i n g vastus l a t e r a l i s muscle i n r e l a t i o n to t r a i n i n g s p e c i f i c i t y . Since the i m i d a z o l e - c o n t a i n i n g compounds, c a r n o s i n e and h i s t i d i n e , have been suggested to c o n t r i b u t e s i g n i f i c a n t l y to b u f f e r i n g of in, v i t r o p r e p a r a t i o n s (Somero 19.81; Burton 1978); t h e i r r e l a t i o n s h i p s to B, f i b e r composition and t r a i n i n g s p e c i f i c i t y were examined as p o s s i b l e f a c t o r s i n f l u e n c i n g anaerobic performance. 4 Methodology Twenty male v o l u n t e e r s served as s u b j e c t s i n t h i s study. They were made aware of the p o t e n t i a l r i s k s and informed consent was ob t a i n e d . Four equal groups of f i v e s u b j e c t s , c o n s i s t i n g of s p r i n t e r s (S=800m runne r s ) , rowers (R=varsity oarsmen), marathon runners (M) and u n t r a i n e d c o n t r o l s (UT) p a r t i c i p a t e d i n t h i s i n v e s t i g a t i o n . The s p r i n t e r s r e g u l a r l y ran the 800m d i s t a n c e i n l e s s than one minute 55 seconds which would make them a h i g h l y a n a e r o b i c a l l y t r a i n e d group. The marathon runners had to have been a c t i v e l y engaged i n endurance t r a i n i n g (>40 m i l e s per week f o r p r e v i o u s 6 months). As w e l l they must have completed a marathon run (26 mi l e s 385 yards) i n 2:30 to 2:50 (hoursrminutes). The u n t r a i n e d c o n t r o l s only p a r t i c i p a t e d i n r e c r e a t i o n a l a c t i v i t y . Anthropometric and p h y s i c a l c h a r a c t e r i s t i c data were recorded on each s u b j e c t ; percentage body f a t was determined by h y d r o s t a t i c weighing. Standard spirometry was performed at r e s t ( C o l l i n s Respirometer). The s u b j e c t s performed a continuous t r e a d m i l l t e s t c o n s i s t i n g of a ten minute warm-up at 1.56 m.s"' , immediately f o l l o w e d by the t e s t with a s t a r t i n g v e l o c i t y of 2.22 m.s"*, which was i n c r e a s e d by 0.22 m.s"1 each minute u n t i l f a t i g u e . E x p i r e d gases were c o n t i n u o u s l y sampled and analyzed (Beckman Me t a b o l i c Measurement C a r t ) ; measurements were t a b u l a t e d by a data a c q u i s i t i o n system (Hewlett Packard 3052A), which determined r e s p i r a t o r y gas exchange v a r i a b l e s every 15 seconds. Maximal oxygen consumption was determined by averaging the four h i g h e s t c o n s e c u t i v e 15 second oxygen uptake v a l u e s . 5 Anaerobic performance was assessed by the Anaerobic Speed Test (AST) of Cunningham and Faulkner. (i969) employing time, i n seconds to f a t i g u e as the performance index. The s u b j e c t s performed an e l e v a t e d t r e a d m i l l run c o n s i s t i n g of a 30 second warm-up at 2.66 m.s"', 10 degree i n c l i n e immediately f o l l o w e d by the t e s t at 3.52 m.s"1, 20 degree i n c l i n e u n t i l f a t i g u e . R e s t i n g and two minute p o s t - e x e r c i s e blood samples were obtained by venous puncture f o r det e r m i n a t i o n of blood l a c t a t e l e v e l s . A n a l y s i s of blood l a c t a t e s (HLa) was v i a the enzymatic c o n v e r s i o n of l a c t a t e to pyruvate i n the presence of LDH and NAD. (Hohorst 1962). Needle b i o p s i e s were obtained at r e s t from the vastus l a t e r a l i s muscle by the technique of Bergstrom et a l . , (1962) w i t h i n one week of the e x e r c i s e t e s t s . The s u b j e c t s had been informed not to have p a r t i c i p a t e d i n any p h y s i c a l a c t i v i t y p r i o r to the bio p s y . The sampling s i t e was 20 cm. above the l a t e r a l f e m o r a l - t i b i a l j o i n t l i n e . Samples being u t i l i z e d f o r h i s t o c h e m i c a l a n a l y s i s were o r i e n t e d under a d i s s e c t i n g microscope and mounted i n gum tra g a c a n t h compound. The samples were then f r o z e n i n isopentane c o o l e d to the temperature of l i q u i d n i t r o g e n . S e r i a l s e c t i o n s 1Ou t h i c k were cut i n a c r y o s t a t a f t e r warming to -20°C. The s e c t i o n s were mounted on cover s l i p s and e q u i l i b r a t e d at room temperature. Samples f o r bioc h e m i c a l d e t e r m i n a t i o n s were immediately immersed i n l i q u i d n i t r o g e n . S k e l e t a l muscle f i b e r s were s t a i n e d f o r myosin ATPase at d i f f e r e n t p r e - i n c u b a t i o n pH's (4.3, 4.6, 9.4) and f o r NADH 6 T e t r a z o l i u m Reductase(Dubowitz and Brooke . 1973). S e r i a l s e c t i o n s were obtained f o r p o s i t i v e i d e n t i f i c a t i o n of f i b e r types. F i b e r s were c l a s s i f i e d on the b a s i s of t h e i r s t a i n i n g i n t e n s i t y f o r myosin ATPase at pH 4.6. A 0.01 sq. cm. c r o s s - s e c t i o n a l area of muscle t i s s u e was employed f o r d e t e r m i n a t i o n of percent f a s t - t w i t c h (FT) or slow-twitch (ST) per sample. Mean f i b e r type diameters were c a l c u l a t e d by p r o j e c t i o n of the s l i d e s on to a screen (300x m a g n i f i c a t i o n ) with 10 f i b e r s of each f i b e r type being measured. M a g n i f i c a t i o n was checked by the use of a 1um micrometer p r o j e c t e d on the s c r e e n . The d e t e r m i n a t i o n of r e s t i n g muscle pH was by the method of S a h l i n et a l . , (1976) i n v o l v i n g homogenization of the sample at 25*C i n 10 volumes of a s a l t s o l u t i o n c o n t a i n i n g 145 mmol.l KC1, 10 mmol.l NaCl and 5 mmol.l i o d o a c e t i c a c i d (IAA). Homogenate pH measurements were made at 38*C with a m i c r o e l e c t r o d e (MI 410, M i c r o e l e c t r o d e s Inc.) f o l l o w i n g a 10 minute p r e - i n c u b a t i o n at 38* C. I n h i b i t i o n of g l y c o l y s i s was achieved by the a d d i t i o n of IAA. The remaining volume was d e p r o t e i n i z e d with the a d d i t i o n of 3 percent s o l i d s u l f o s a l i s y l i c a c i d and c e n t r i f u g e d f o r a n a l y s i s of b u f f e r c a p a c i t y . B u f f e r c a p a c i t y was determined by a m o d i f i c a t i o n of the method of Davey (1960b). Supernatant e x t r a c t s OOOul) were a d j u s t e d to pH 7.00+0.05 with 0.1 N NaOH. The 100U1 a l i q u o t s were t i t r a t e d to pH 6.00+0.05 with 0.01N HC1. R e l i a b i l i t y was a s c e r t a i n e d by r e - t i t r a t i o n of the e x t r a c t s f o l l o w i n g pH readjustment to 7.00+0.05. B u f f e r c a p a c i t y was determined as the number of moles per gram t i s s u e (w/w) of H* r e q u i r e d to change the pH one u n i t over the pH range 7.0 to 6.0. 7 The remaining supernatant demonstrating a pH of l e s s than 2.2 was used f o r f r e e amino a c i d d e t e r m i n a t i o n . Free amino a c i d l e v e l s were determined on an amino a c i d a utoanalyzer (Beckman 118C) u s i n g a s i n g l e column l i t h i u m hydroxide b u f f e r system. AA- 20 r e s i n (Beckman) was used on a 510 mm column with a diameter of 6 mm employing d i r e c t a p p l i c a t i o n of the sample. Standards were run at the beginning and end of each new n i n h y d r i n s o l u t i o n . The amino a c i d c o n c e n t r a t i o n s were determined by manually i n t e g r a t i n g the area under the curve. By t h i s method h i s t i d i n e immediately preceded c a r n o s i n e i n r e t e n t i o n time. To determine the r e l a t i v e c o n t r i b u t i o n of ca r n o s i n e to t o t a l b u f f e r c a p a c i t y , d i f f e r e n t c o n c e n t r a t i o n s of c a r n o s i n e (Sigma L- ca r n o s i n e reagent grade) i n 100U1 a l i q u o t s were t i t r a t e d and r e - t i t r a t e d between pH 7.00+0.05 and 6.00+0.05 with 0.01 N HCl. U n i v a r i a t e comparisons of groups were performed on the p h y s i c a l c h a r a c t e r i s t i c , pulmonary f u n c t i o n , h i s t o c h e m i c a l and amino a c i d data. A n a l y s i s of v a r i a n c e was u t i l i z e d to eva l u a t e p o s s i b l e i n t e r g r o u p d i f f e r e n c e s . The S c h e f f e t e s t of s i g n i f i c a n c e was performed, on the v a r i a b l e s demonstrating s i g n i f i c a n t omnibus F r a t i o s , to i d e n t i f y where group d i f f e r e n c e s e x i s t e d . M u l t i v a r i a t e comparisons of groups with pre-planned orthogonal c o n t r a s t s were performed on the p h y s i o l o g i c a l , post HLa, percent FT and B v a r i a b l e s to i d e n t i f y p o s s i b l e i n t e r g r o u p d i f f e r e n c e s . Regression equations were c a l c u l a t e d f o r the v a r i a b l e s demonstrating s i g n i f i c a n t c o r r e l a t i o n s with B, as w e l l as those v a r i a b l e s demonstrating r e l a t i o n s h i p s to ca r n o s i n e c o n c e n t r a t i o n s . 8 R e s u l t s A n t h r o p o m e t r i c , p h y s i c a l c h a r a c t e r i s t i c and pulmonary f u n c t i o n d a t a a r e p r e s e n t e d i n T a b l e 1. S i g n i f i c a n t d i f f e r e n c e s e x i s t e d between the groups f o r the v a r i a b l e s weight and p e r c e n t body f a t (p<.05) due t o the u n t r a i n e d group. The marathon r u n n e r s were s i g n i f i c a n t l y (p<.05) o l d e r than t h e o t h e r t h r e e groups. No s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between the groups f o r pulmonary f u n c t i o n . The low i n t r a - v a r i a b i l i t i e s of the t r a i n e d groups w i t h r e s p e c t t o t h e i r pulmonary f u n c t i o n and a n t h r o p o m e t r i c d a t a suggest t h a t the sub-samples were r e l a t i v e l y homogeneous. The p h y s i o l o g i c a l assessment and h i s t o c h e m i c a l a n a l y s i s r e s u l t s a r e c o n t a i n e d i n Table 2. The i n c l u s i o n of the u n t r a i n e d group r e s u l t e d i n s i g n i f i c a n t l y d i f f e r e n t (p<.05) maximal oxygen uptake v a l u e s but no d i f f e r e n c e s e x i s t e d between the t r a i n e d g roups. W h i l e no s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between the M and UT groups i n AST performance (p=.084), s i g n i f i c a n t d i f f e r e n c e s d i d e x i s t between groups S and R ( p < . 0 l ) . Both the S and R groups demonstrated a s i g n i f i c a n t i n c r e a s e (p<.0l) i n AST t i m e s w i t h r e s p e c t t o each of the o t h e r groups. Post-AST HLa v a l u e s were s i g n i f i c a n t l y d i f f e r e n t f o r the S and R groups (p<.01> and w i t h r e s p e c t t o each of the o t h e r g r o u p s . No p o s t - AST HLa d i f f e r e n c e s e x i s t e d between the M and UT g r o u p s . A n a e r o b i c performance was h i g h l y c o r r e l a t e d w i t h post-AST HLa v a l u e s ( r = . 9 0 ; F i g u r e 1 ) . The r a t i o of AST/Post-AST HLa v e r s u s Post-AST HLa r e v e a l e d a s u p e r i o r r a t i o f o r t h e t r a i n e d groups as compared t o the UT group b u t , no d i f f e r e n c e s between the t r a i n e d Table 1. P h y s i c a l c h a r a c t e r i s t i c , anthropometric and pulmonary f u n c t i o n p r o f i l e s (Mean + SD) . Percent Forced Forced FEV^ Group Age Height Weight Body V i t a l E x p i r a t o r y '__ Fat Capacity Volume FVC (yrs) (cm) (kg) •(%) (1) (1) (%) S p r i n t e r s , 20.6 180;6 68.6 6.5 6.17. 4.79 79 +2.3 +4.9 +3.4 +3.4 +0.79 +0.22 +8 Rowers 20.6 177.2 70.0 7.2 5.58 4.79 84 +1.8 +3.4 +2.8 +3.6 +0.57 +0.67 +8 Marathoners . 37.8 a 176.5 69.0 10.6 5.26 4.22 81 +9.3 +4.2 +4.4 +4.0 +0.63 +0.59 +5 Untrained 22.6 182.4 81.7 a 21.1 a 5.89 4.34 . 74 +0.9 +4.3 +5.1 +4.9 +0.86 +0.75 +5 a p<0.05 s i g n i f i c a n t l y d i f f e r e n t from other 3 groups Table 2. P h y s i o l o g i c a l assessment and h i s t o l o g i c a l a n a l y s i s of the vastus l a t e r a l i s muscle (Mean + SD.) ' Maximal Anaerobic Pre Post Fast Fast Slow Oxygen Speed Blood Blood Twitch Twitch Twitch Group Uptake Test Lactate Lactate Percentage . Mean Mean (ml.kgl'min l) (sec) (mmol • r 1 ) (%) Diameter (urn) Diameter (um) S p r i n t e r s 63.2 115 c 1.1 21.9 c 56.6 94.7 90.0 +3.1 +18 +0.3. + 1.5 +7.0 +26.2 +22.8 Rowers 62.4 76 b 1.0 13.9 b 50.4 96.0 95.0 +1.7 +9 +0.2 +0.9 + 12.3 +14.4 +18.7 Marathoners 60.1 53 1.0 10.1 33.0 a 74.2 79.5 +4.2 +15 +0.2 +3.1 +12.2 +9.5 +16.4 Untrained 46.9 a 38 0.8 10.1 50.6 79.1 75.0 +3.3 +9 +0.2 +2.6 +9.9 +12.2 +15.2 a p<0.05 s i g n i f i c a n t l y d i f f e r e n t from other 3 groups b p<0.01 s i g n i f i c a n t l y > M and UT groups c p<0.01 s i g n i f i c a n t l y > a l l other groups 11 Figure 1. Anaerobic performance versus post-AST blood l a c t a t e l e v e l s . Post-AST Blood L a c t a t e Levels (mmol.1 ) i 12 Post-AST HLa Figure 2. R a t i o AST/Post-AST HLa versus Post-AST HLa (Mean + SD) ' AST 4 t M UT 10 15 T 20 25 Post-AST HLa Levels (mmol.l ^) 13 groups e x i s t e d (Figure 2 ) . S i g n i f i c a n t d i f f e r e n c e s i n f i b e r composition e x i s t e d between the groups ( p < . 0 5 ) . T h i s c o u l d be a t t r i b u t e d to the low FT f i b e r percentage of the M group. Though the d i f f e r e n c e s i n f i b e r diameters were not s i g n i f i c a n t ( p > . 0 5 ) , when FT f i b e r diameters were expressed r e l a t i v e t o ST f i b e r diameters the S appeared to demonstrate enl a r g e d FT f i b e r s and the M appeared to d i s p l a y enlarged ST f i b e r s . R e s t i n g intramuscular pH and B values are c o n t a i n e d i n Table 3. No s i g n i f i c a n t d i f f e r e n c e s e x i s t e d f o r r e s t i n g pH ( p > . 0 5 ) . B r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e s between the S and R or between the M and UT groups but s i g n i f i c a n t d i f f e r e n c e s ( p < . 0 l ) d i d e x i s t between these sub-samples. The B of the S and R group were almost 50 percent g r e a t e r than the B of the M or. UT groups. M u l t i v a r i a t e a n a l y s i s r e v e a l e d that the S group was s i g n i f i c a n t l y d i f f e r e n t ( p < . 0 l ) from the R group and t h i s was due to s i g n i f i c a n t d i f f e r e n c e s ( p < . 0 l ) i n AST performance and post HLa. The M group was s i g n i f i c a n t l y d i f f e r e n t from the UT group i n r e s p e c t to f i b e r composition ( p < . 0 2 ) , VO max ( p < . 0 l ) , percent body f a t ( p < . 0 l ) , and age ( p < . 0 l ) . Comparison of the S and R groups versus the M group r e v e a l e d s i g n i f i c a n t d i f f e r e n c e s to e x i s t f o r AST performance ( p < . 0 l ) , post HLa v a l u e s ( p < . 0 l ) , percent FT (p<.025) and B ( p < . 0 l ) . Muscle c a r n o s i n e and h i s t i d i n e c o n c e n t r a t i o n s are a l s o c o n t a i n e d i n Table 3. Between group comparisons r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e s i n h i s t i d i n e l e v e l s but c a r n o s i n e l e v e l s Table 3. B u f f e r c a p a c i t y , pH, h i s t i d i n e and carnosine l e v e l s of the r e s t i n g vastus l a t e r a l i s muscle (Mean + SD). Bu f f e r H i s t i d i n e Carnosine Group Capacity , pH Levels Levels (umbl.'g^'.pH *) (umol.g^) (umol.g^) S p r i n t e r s 30.03 a 6.99 0.64 4.93 a +5.6 +0.13 +0.06 +0.76 Rowers 31.74a 6.97 0.71 5.04 a +7.2 +0.11 +0.10 +0.72 Marathoners 20.83 7.11 ' 0.63 2.80 +4.4 +0.11 +0.14 +0.74 Untrained 21.25 6.91 0.89 3.75 +5.0 +0.17 +0.29 +0.86 a p ̂ 0.0.1 s i g n i f i c a n t l y > M and UT groups 15 Figure 3. B u f f e r c a p a c i t y (umol.g w/w.pH )versus t r a i n i n g s p e c i f i c i t y (Mean + SD). 40 -r 35 + 30 4- 25 + o — h ~ — L _ l — J — J — \ UT M R S Group p<0.01 s i g n i f i c a n t l y ) M and UT groups Carnosine Concentration 17 Table 4. C o r r e l a t i o n matrix f o r the bi o c h e m i c a l , h i s t o c h e m i c a l and anaerobic performance v a r i a b l e s ; Carn .64"* AST .51* .61** FT% .51* .46* .37 Carn AST * p<0.05 ** p <0.01 18 v a r i e d with t r a i n i n g s p e c i f i c i t y as only the S and R demonstrated s i g n i f i c a n t d i f f e r e n c e s (p<.0l) from the UT group. No s i g n i f i c a n t d i f f e r e n c e s i n c a r n o s i n e l e v e l s e x i s t e d between the M and UT groups. E m p i r i c a l t i t r a t i o n of c a r n o s i n e (Figure 4) r e v e a l e d t h a t the i n c r e a s e d B of the s p r i n t t r a i n e d a t h l e t e s ( F i g u r e 3) c o u l d be s i g n i f i c a n t l y accounted f o r by the int r a m u s c u l a r c a r n o s i n e l e v e l s . C o r r e l a t i o n s are c o n t a i n e d i n Table 4. B was e l e v a t e d i n the S and R groups ( F i g u r e s 3 ). S i g n i f i c a n t r e l a t i o n s h i p s were demonstrated between anaerobic performance and B (p<.05;Table 4). A f u r t h e r r e l a t i o n s h i p e x i s t e d between FT% and B ( r = . 5 l ) . Carnosine l e v e l s were found to demonstrate s i g n i f i c a n t (p<.0l) r e l a t i o n s h i p s to B and FT%. 19 D i s c u s s i o n The major f i n d i n g s of the present i n v e s t i g a t i o n a r e : f i r s t , t h a t the a n a e r o b i c a l l y t r a i n e d groups e x h i b i t e d an enhanced anaerobic performance which was s i g n i f i c a n t l y r e l a t e d to B; second, t h a t B d i s p l a y e d a s i g n i f i c a n t r e l a t i o n s h i p t o f a s t - t w i t c h f i b e r percentage and t h i r d , t h a t c a r n o s i n e l e v e l s were s i g n i f i c a n t l y r e l a t e d to B, demonstrating e l e v a t e d l e v e l s w i t h i n the a n a e r o b i c l y t r a i n e d groups. Although these are d e s c r i p t i v e data and i t i s not p o s s i b l e to s t a t e that the b i o c h e m i c a l parameters B and c a r n o s i n e l e v e l s , are a f u n c t i o n of anaerobic t r a i n i n g , i t i s tempting to s p e c u l a t e that a d a p t a t i o n may occur on the b a s i s of r e p e t i t i v e anaerobic work. S k e l e t a l muscle c o n s i s t s of two d i s t i n c t f i b e r types ( f a s t - t w i t c h and slow- t w i t c h ) , each f i b e r type p o s s e s s i n g d i f f e r e n t c o n t r a c t i l e and metabolic p r o p e r t i e s ( G o l l n i c k and Hermansen 1973). F a s t - t w i t c h f i b e r s demonstrate a high c a p a c i t y f o r anaerobic g l y c o l y s i s (Lowry et a l . , 1978; Essen et a l . , 1975). The enhanced B which was a s s o c i a t e d with an e l e v a t e d f a s t - t w i t c h f i b e r percentage, suggested that B may be r e l a t e d to the g l y c o l y t i c c a p a c i t y of s k e l e t a l muscle. Man performing short d u r a t i o n , high i n t e n s i t y work has a requirement to maintain redox balance, while f u l f i l l i n g the need fo r c o ntinued muscle energy metabolism, predominantly based upon intr a m u s c u l a r s u b s t r a t e s and a c a p a c i t y to b u f f e r the i n h i b i t o r y a c t i o n of the proton accumulation. Hermansen et a l . , (1971) has r e p o r t e d blood l a c t a t e v a l u e s of up to 32 mM f o r short d u r a t i o n work. Proton accumulation a s s o c i a t e d with the e l e v a t e d l a c t a t e 20 l e v e l s a l t e r s the acid-base balance of the c y t o s o l r e s u l t i n g i n pH decrements w i t h i n muscle and blood ( S a h l i n et . a l . , 1978; Hultman and S a h l i n 1980; Roos and Boron 1981). The importance of pH to the r e g u l a t i o n of anaerobic performance has been demonstrated by Sutton et a l . , (1981) who r e p o r t e d pH decrements to be a s s o c i a t e d with decreased anaerobic performances. R e l a t i o n s h i p s between pH and f a t i g u e ( F i t t s and H o l l o s z y 1976; Stevens 1980), proton accumulation and f o r c e g e n e r a t i o n (Dawson et a l . , 1977), reduced r a t e s of g l y c o l y s i s with pH decrements (Toews et a l . , 1970; Sutton et a l . , 1981; Roos and Boron 1981) and decreased maximal t e n s i o n development ( F a b i a t o and F a b i a t o 1978), p o s s i b l y due to proton c o m p e t i t i o n with Ca H f o r the b i n d i n g s i t e s (Katz 1970) have suggested the importance of b u f f e r i n g the protons which accumulate d u r i n g anaerobic g l y c o l y s i s . The present r e s u l t s imply a b i o c h e m i c a l phenomenon w i t h i n a n a e r o b i c a l l y t r a i n e d a t h l e t e s , which would f o s t o r an enhanced c a p a c i t y f o r a muscle to f u n c t i o n under anaerobic c o n d i t i o n s . When the anaerobic g l y c o l y t i c machinery i s f u n c t i o n i n g , the high b u f f e r i n g c a p a c i t i e s of the s k e l e t a l muscle may n e u t r a l i z e the accumulated protons. Thus the r a t e at which pH would normally decrease would be reduced due to the enhanced proton s e q u e s t e r i n g c a p a c i t i e s . I t i s important to emphasize that the g l y c o l y t i c enzyme a c t i v i t i e s examined pre- and post s p r i n t t r a i n i n g have r e p o r t e d with minor ex c e p t i o n s no s i g n i f i c a n t d i f f e r e n c e s ( G o l l n i c k et a l . , 1972; H o l l o s z y et a l . , 1973; Hickson et a l . , 1975; C o s t i l l et a l . , 1976). T r a i n i n g s p e c i f i c i t y appears to be a s s o c i a t e d with a f i b e r type 21 predominance and a r e l a t i o n s h i p to f i b e r type hypertrophy ( G o l l n i c k et a l . , 1972, 1973; C o s t i l l et a l . , 1976; S a h l i n et a l . , 1976; Andersen and Hennriksen 1977). In agreement with the p r e v i o u s i n v e s t i g a t i o n s , s p r i n t e r s were found to have an e l e v a t e d f a s t - t w i t c h f i b e r composition while the marathon runners demonstrated a slow-twitch f i b e r predominance but no s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between the s p r i n t e r s , rowers or u n t r a i n e d c o n t r o l s . The i n t e r c o n v e r s i o n of s k e l e t a l muscle f a s t - t w i t c h sub-group f i b e r s does appear to occur as a r e s u l t of t r a i n i n g (Janssen and K a i j s e r 1977) but no i n t e r c o n v e r s i o n of f a s t - t w i t c h and slow-twitch f i b e r s has been i d e n t i f i e d with t r a i n i n g ( G o l l n i c k et a l . , 1982). F i b e r hypertrophy appeared to demonstrate a r e l a t i o n s h i p to t r a i n i n g s p e c i f i c i t y but no d i f f e r e n c e s i n f i b e r diameters e x i s t e d between the s p r i n t e r s and rowers. Thus though f i b e r composition appears to be r e l a t e d to anaerobic c a p a c i t y , i t alone c o u l d not account f o r the enhanced anaerobic performance of the s p r i n t e r s . T h e r e f o r e i t appears that the enhanced anaerobic c a p a c i t y a s s o c i a t e d with the a n a e r o b i c a l l y t r a i n e d a t h l e t e s i s more a f u n c t i o n of s k e l e t a l muscle c a p a c i t y to b u f f e r the protons i n a s s o c i a t i o n with f i b e r composition, than to a change i n g l y c o l y t i c enzyme a c t i v i t i e s . The present i n v e s t i g a t i o n r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e s between the t r a i n e d groups with respect to anthropometric, pulmonary f u n c t i o n and maximal oxygen uptake data suggesting the subsamples were r e l a t i v e l y homogeneous. The maximal oxygen uptakes demonstrated f o r each of the groups were comparable to the values r e p o r t e d f o r s i m i l a r s u b j e c t s (Carey et 22 a l . , 1974; Hagerman and Mickelson 1980; Roberts et a l . , 1980; C o s t i l l et a l . , (1976). Although the marathon runners were h i g h l y t r a i n e d competetive a t h l e t e s , there was no s i g n i f i c a n t d i f f e r e n c e between t h i s group and the UT c o n t r o l s i n measures of anaerobic performance. Anaerobic performance was found to be h i g h l y r e l a t e d to t r a i n i n g s p e c i f i c i t y with the run times of the marathon runners and u n t r a i n e d s u b j e c t s being comparable to the p r e - t r a i n e d t e s t values of Cunningham and Faulkner (1969). Thus anaerobic performance appears to be a . f u n c t i o n of t r a i n i n g s p e c i f i c i t y and the d i f f e r e n c e s observed c o u l d not be a t t r i b u t e d to the p h y s i c a l c h a r a c t e r i s t i c , pulmonary f u n c t i o n , a e r o b i c c o n d i t i o n i n g or f i b e r composition. Post anaerobic performance blood l a c t a t e values were s i g n i f i c a n t l y e l e v a t e d i n a l l the groups, demonstrating maximal va l u e s which are comparable to those of K a r l s s o n (1971) f o r short term, i n t e n s i v e e x e r c i s e bouts of e l i t e a t h l e t e s . The removal of muscle l a c t a t e was p r e v i o u s l y assumed to be a simple process of d i f f u s i o n down c o n c e n t r a t i o n g r a d i e n t s (Hirche et a l . , 1971; J o r f e l d t 1978) but, r e c e n t l y a c a r r i e r mediated, pH dependent l a c t a t e t r a n s f e r mechanism has been i d e n t i f i e d i n a few t i s s u e s (Barac-Nieto et a l . , 1978; Dubinsky and Racker 1978; Spencer and Lehninger 1976; Johnson et a l . , 1980; Monson et a l . , 1981). Koch et a l . , (1981) examining mouse diaphragm muscle have suggested that at l e a s t t h r e e - q u a r t e r s of the l a c t a t e t r a n s f e r was c a r r i e r mediated. S i n c e protons are e f f l u x e d with l a c t a t e anions (Mainwood and Brown 1975), an enhanced l a c t a t e t r a n s f e r mechanism a s s o c i a t e d with s p r i n t t r a i n i n g may f a c i l i t a t e the 23 n e u t r a l i z a t i o n of the protons w i t h i n the c y t o s o l . Post blood l a c t a t e v a l u e s demonstrated a h i g h l y s i g n i f i c a n t c o r r e l a t i o n with anaerobic performance which was even stronger f o r the t r a i n e d s u b j e c t s . T r a i n i n g appears to enhance the l a c t a t e t r a n s p o r t mechanism producing a s i m i l i a r r a t e of l a c t a t e r e l e a s e f o r the t r a i n e d groups, r e g a r d l e s s of t r a i n i n g s p e c i f i c i t y ( F i gure 2). Thus the g r e a t e r anaerobic performances of the t r a i n e d a t h l e t e s may p a r t i a l l y be a t t r i b u t e d to t h i s enhanced l a c t a t e r e l e a s e , which would f a c i l i t a t e a reduced a c i d i f i c a t i o n of the c y t o s o l . Muscle pH determinations by m i c r o e l e c t r o d e we're f i r s t performed by Furusawa and K e r r i d g e i n 1927 on cat s k e l e t a l , c a r d i a c and u t e r i n e muscle. More r e c e n t l y a s e r i e s of experiments examining pH . were conducted on human quadricep muscle homogenates o b t a i n e d pre- and p o s t - e x e r c i s e (Hermansen and Osnes 1972; S a h l i n , H a r r i s and Hultman 1975; S a h l i n et a l . , 1976). A muscle pH of 6.50 to 6.60 was i d e n t i f i e d as a c r i t i c a l value where f a t i g u e caused c e s s a t i o n of the e x e r c i s e bout ( S a h l i n e t a l . , 1978). Decreased muscle pH has been i d e n t i f i e d to have an i n h i b i t o r y e f f e c t on the c o n t r a c t i l e mechanism (Nocker 1964; Campion 1974; Katz 1970; F a b i a t o and F a b i a t o 1978) and the g l y c o l y t i c r e g u l a t o r y enzymes (Danforth 1965; T r i v e d i and Danforth 1966; Toews et a l . , 1970; Sutton et a l . , 1981; Roos and Boron 1981). R e s t i n g i n t r a m u s c u l a r pH was found to e x h i b i t no s i g n i f i c a n t d i f f e r e n c e s a c r o s s the groups, demonstrating a pH comparable to those r e p o r t e d i n the l i t e r a t u r e . Thus achievement of an enhanced anaerobic performance due to a l a r g e r 24 intramuscular pH gr a d i e n t (pre - post e x e r c i s e pH) due to e l e v a t e d i n i t i a l pH l e v e l s a s s o c i a t e d with t r a i n i n g s p e c i f i c i t y was unfounded. H e i s l e r and P i i p e r (1971) s t a t e d that s k e l e t a l muscle must be s u b j e c t to l a r g e v a r i a t i o n s i n a c i d p r o d u c t i o n . Thus the a b i l i t y of a t i s s u e to b u f f e r the protons a s s o c i a t e d with anaerobic g l y c o l y t i c energy p r o d u c t i o n may a f f e c t performance. The s u p e r i o r b u f f e r c a p a c i t i e s demonstrated by the s p r i n t e r s and rowers suggest that s k e l e t a l muscle b u f f e r c a p a c i t y may be a f u n c t i o n of t r a i n i n g s p e c i f i c i t y . C a s t e l l i n i and Somero (1981) found i n both mammals and f i s h e s , high b u f f e r i n g c a p a c i t i e s i n the locomotory muscles of s p e c i e s e x h i b i t i n g pronounced a b i l i t i e s f o r burs t locomotion. The b u f f e r c a p a c i t y v a l u e s found in the present i n v e s t i g a t i o n appear to be comparable to the r e s u l t s of Davey (1960b) on d e p r o t e i n i z e d p r e - r i g o r r a b b i t psoas muscle. The values are somewhat lower than those r e p o r t e d by C a s t e l l i n i and Somero (1981) f o r t e r r e s t e r i a l mammals. T h i s d i s c r e p a n c y may be accounted f o r by the lack of d e p r o t e i n i z a t i o n i n the C a s t e l l i n i and Somero i n v e s t i g a t i o n . S a h l i n e t a l . , (1978) c a l c u l a t e d p r o t e i n s to account f o r an a d d i t i o n a l 22 percent of b u f f e r i n g i n r e s t i n g samples. The c o n t r i b u t i o n of p r o t e i n s to t o t a l b u f f e r c a p a c i t y was determined by Bate-Smith (1938), Hultman and S a h l i n (1980) to be approxiamently 50 percent of the physic o - c h e m i c a l b u f f e r i n g . Reeves and Malan (1976) found the c o n t r i b u t i o n of p r o t e i n s to b u f f e r i n g i n f r o g s k e l e t a l muscle to be between 40 and 50 per c e n t . T h e r e f o r e p r o t e i n s c o n s t i t u t e a s i g n i f i c a n t b u f f e r i n g component w i t h i n 25 s k e l e t a l muscle. B u f f e r c a p a c i t y determined by the homogenate technique d i f f e r s from i n t a c t p r e p a r a t i o n s due to the transmembrane f l u x e s of H*and/or HCO^, which do not occur i n a c l o s e d system such as the muscle homogenate technique ( H e i s l e r and Pi.iper 1971, 1972; Brown 1971). In agreement with C a s t e l l i n i and Somero (1981) b u f f e r c a p a c i t y was found to be r e l a t e d to the muscles anaerobic g l y c o l y t i c p o t e n t i a l as evidenced by the r e l a t i o n s h i p to f a s t - t w i t c h percentage. B u f f e r c a p a c i t y was a l s o found to be r e l a t e d to anaerobic performance which suggests that the inherent a b i l i t y of s k e l e t a l m u s c l e . b u f f e r s to f u n c t i o n as proton sequesters i n the p h y s i o l o g i c a l pH range may augment performance. B u f f e r c a p a c i t y determined by the homogenate technique i n v o l v e s e s s e n t i a l l y the non-bicarbonate b u f f e r i n g i n the c y t o s o l , due p r i n c i p a l l y to phosphate compounds and i m i d a z o l e - c o n t a i n i n g compounds (Burton 1978; Somero 1981). Imidazole- c o n t a i n i n g compounds c o n s i s t of protein-bound h i s t i d y l r e s i d u e s , h i s t i d i n e - c o n t a i n i n g d i p e p t i d e s (eg. ca r n o s i n e and ans e r i n e ) and f r e e h i s t i d i n e (Somero 1981). Free h i s t i d i n e occurs i n much lower c o n c e n t r a t i o n s than the other two types of i m i d a z o l e - c o n t a i n i n g compounds (Burton 1978). Davey (1960b) suggested that the h i s t i d i n e - c o n t a i n i n g d i p e p t i d e s c o u l d c o n t r i b u t e as much as 40 percent of the t o t a l b u f f e r i n g of pre- and post r i g o r muscle.. C a s t e l l i n i and Somero (1981) suggested that the d i f f e r e n c e s i n b u f f e r c a p a c i t i e s , of the f i s h s p e c i e s observed, c o u l d be due to d i f f e r e n c e s i n t o t a l p r o t e i n b u f f e r i n g or f r e e h i s t i d i n e c o ntent. Within human s k e l e t a l muscle a f u r t h e r p o s s i b i l i t y to 26 account f o r the d i f f e r e n t b u f f e r c a p a c i t i e s may be v a r i a t i o n s i n the h i s t i d i n e - c o n t a i n i n g d i p e p t i d e c o n c e n t r a t i o n s . Large v a r i a t i o n s i n c a r n o s i n e content of the human vastus l a t e r a l i s muscle have been r e p o r t e d (Christman 1976). Free h i s t i d i n e c o n c e n t r a t i o n s were found to be comparable to those r e p o r t e d by Bergstrom et a l . , (1974) e x h i b i t i n g no s i g n i f i c a n t d i f f e r e n c e s between groups. Thus a l t e r a t i o n s i n h i s t i d i n e content can not account f o r the d i f f e r e n c e s observed i n b u f f e r c a p a c i t i e s . Carnosine l e v e l s were s i m i l a r to those r e p o r t e d by Zachmann et a l . , (1966), Christman (1976) and Bergstrom et a l . , (1978), d i s p l a y i n g s u p e r i o r v a l u e s f o r the a n a e r o b i c a l l y t r a i n e d groups. Thus ca r n o s i n e l e v e l s may p o s s i b l y be e l e v a t e d by anaerobic t r a i n i n g . In agreement with animal i n v e s t i g a t i o n s (Zapp and Wilson 1938; Tamaki et a l . , 1976) c a r n o s i n e l e v e l s demonstrated a r e l a t i o n s h i p to muscle g l y c o l y t i c c a p a c i t y . The present i n v e s t i g a t i o n r e v e a l e d that c a r n o s i n e c o u l d c o n t r i b u t e s i g n i f i c a n t l y to t o t a l muscle b u f f e r i n g , accounting f o r 41 percent of the v a r i a n c e in B. E m p i r i c a l t i t r a t i o n s of c a r n o s i n e p r e d i c t e d a s u p e r i o r B of approxiamently 9 umoles.g*.pH*for the s p r i n t t r a i n e d a t h l e t e s . T h e r e f o r e c a r n o s i n e l e v e l s c o u l d be r e s p o n s i b l e f o r the observed d i f f e r e n c e s i n B (approxiamently 10 umoles.g' .pH*' ). T h i s f u r t h e r emphasizes the the importance of c a r n o s i n e as a p h y s i o l o g i c a l b u f f e r w i t h i n a muscle homogenate. T h e r e f o r e the present i n v e s t i g a t i o n suggested that c a r n o s i n e by v i r t u e of i t s a b i l i t y to act as a b u f f e r i n the p h y s i o l o g i c a l pH range c o u l d c o n t r i b u t e s i g n i f i c a n t l y to the observed d i f f e r e n c e s i n t o t a l 27 b u f f e r c a p a c i t y . In c o n c l u s i o n , b u f f e r c a p a c i t y was e l e v a t e d i n the a n a e r o b i c a l l y t r a i n e d groups and appears to be r e l a t e d to the anaerobic g l y c o l y t i c p o t e n t i a l of muscle. In short d u r a t i o n , high i n t e n s i t y work, the requirement f o r e l e v a t e d b u f f e r f u n c t i o n s , r e s u l t s from the proton accumulation a s s o c i a t e d with the maintenance of redox balance, while c o n t i n u i n g to produce energy m e t a b o l i c a l l y . Thus the a b i l i t y of s k e l e t a l muscle to sequester protons and t h e r e f o r e b u f f e r the protons which accumulated, may enhance anaerobic c a p a c i t y . Carnosine by v i r t u e of i t s s i g n i f i c a n t c o n t r i b u t i o n to b u f f e r c a p a c i t y may p o s s i b l y c o n t r i b u t e to the enhanced anaerobic performance of s p r i n t t r a i n e d a t h l e t e s . Future i n v e s t i g a t i o n s must attempt to q u a n t i f y the d i f f e r e n c e s i n B and the c o n t r b u t i o n of c a r n o s i n e to b u f f e r i n g w i t h i n human s k e l e t a l muscle which c o u l d be a t t r i b u t e d to t r a i n i n g regime. Furthermore the B of i n v i v o human s k e l e t a l muscle and the b u f f e r i n g c o n s t i t u e n t s c o n t r i b u t i o n to b u f f e r i n g d u r i n g dynamic e x e r c i s e must be determined. 28 Summary of F i n d i n g s 1. Anaerobic performance as assessed by the anaerobic speed t e s t •appears to be h i g h l y t r a i n i n g s p e c i f i c such that s p r i n t t r a i n e d a t h l e t e s demonstrate s i g n i f i c a n t l y e l e v a t e d performances. 2. Enhanced anaerobic performances were s i g n i f i c a n t l y r e l a t e d to e l e v a t e d s k e l e t a l muscle homogenate b u f f e r c a p a c i t e s . T h i s suggests that the a b i l i t y of s k e l e t a l muscle to sequester the protons which accumulated d u r i n g anaerobic g l y c o l y t i c energy p r o d u c t i o n may augment anaerobic performance. Anaerobic t r a i n i n g may p o s s i b l y be a necessary pre- r e q u i s i t e f o r enhanced b u f f e r c a p a c i t i e s . 3. The r e l a t i o n s h i p between f a s t - t w i t c h f i b e r percentage and b u f f e r c a p a c i t y suggested that enhanced b u f f e r c a p a c i t i e s may be r e l a t e d to e l e v a t e d g l y c o l y t i c c a p a c i t i e s of s k e l e t a l muscle. 4. Intramuscular c a r n o s i n e l e v e l s were e l e v a t e d only w i t h i n the a n a e r o b i c l y t r a i n e d groups, demonstrating s i g n i f i c a n t c o r r e l a t i o n s with b u f f e r c a p a c i t y . Carnosine c o n t r i b u t e d s i g n i f i c a n t l y to B, p o s s i b l y due to i t s a b i l i t y to act as a b u f f e r i n the p h y s i o l o g i c a l pH range. 5. W ithin animal i n v e s t i g a t i o n s , c a r n o s i n e has been found t 29 predominantly w i t h i n f a s t - t w i t c h f i b e r s . The r e l a t i o n s h i p between carnosine l e v e l s and f a s t - t w i t c h f i b e r percentage i n the present i n v e s t i g a t i o n , suggests a l i n k between c a r n o s i n e and the g l y c o l y t i c p o t e n t i a l of the muscle. Though v a r i a n c e s i n h i s t i d i n e l e v e l s have been suggested as a p o s s i b l e c o n t r i b u t o r to d i f f e r e n c e s i n b u f f e r c a p a c i t i e s a c r o s s many s p e c i e s , the present i n v e s t i g a t i o n , r e v e a l e d no d i f f e r e n c e s i n h i s t i d i n e c o n c e n t r a t i o n s with t r a i n i n g s p e c i f i c i t y . E l e v a t e d blood l a c t a t e l e v e l s were s i g n i f i c a n t l y r e l a t e d to a naerobic performance, demonstrating an enhanced l a c t a t e t r a n s p o r t mechanism w i t h i n t r a i n e d a t h l e t e s , which was not a l t e r e d by t r a i n i n g s p e c i f i c i t y . T r a i n i n g s p e c i f i c i t y e l i c i t e d no d i f f e r e n c e s i n r e s t i n g i n t r a m u s c u l a r pH, which e l i m i n a t e d the p o s s i b i l i t y of an enhanced anaerobic performance due to an i n c r e a s e d pH g r a d i e n t ( r e s t - p o s t e x e r c i s e ) , assuming a constant pH at which f a t i g u e f o r c e d t e r m i n a t i o n of the e x e r c i s e . 30 References A i c k i n , C.C. and R.C. Thomas. An i n v e s t i g a t i o n of the i o n i c mechanism- of i n t r a c e l l u l a r . pH r e g u l a t i o n i n mouse soleus muscle f i b e r s . J . P h y s i o l . , 273:295-316, 1977. Aicken, C.C. and R.C. Thomas. M i c r o - e l e c t r o d e measurement of the i n t r a c e l l u l a r pH and b u f f e r i n g power of mouse so l e u s muscle f i b e r s . J . P h y s i o l . , 267:791-810, 1977. Andersen, P. and J.Henriksson. C a p i l l a r y supply of the quadriceps femoris muscle of man: ad a p t i v e response to e x e r c i s e . J . P h y s i o l . , 270:677-690, 1977. Aonuma, S., T. Hama, N. Tamaki and H. Okumura. Orotate as a B- a l a n i n e donor f o r a n s e r i n e and ca r n o s i n e b i o s y n t h e s i s and e f f e c t s of actinomycin D and a z a u r a c i l on t h e i r pathway. J. B i o c h . , 66(2): 123-132, 1969. Aonuma, S., T. Hama and N. Tamaki. I n t e r c o n v e r s i o n of the t r i t i u m l a b e l l e d a n s e r i n e and car n o s i n e i n r a t l i v e r and muscle. J . B i o c h . 68:581-583, 1970. Avena, R..M. and W.J. Bowen. E f f e c t s of ca r n o s i n e and an s e r i n e on muscle adenosine t r i p h o s p h a t a s e s . J.Biol.Chem., 244(6):1600-1604, 1969. Bagby, G.J., H.J. Green, S. Katsuta and P.D. G o l l n i c k . Glycogen d e p l e t i o n i n e x e r c i s i n g r a t s i n f u s e d with g l u c o s e , l a c t a t e , or pyruvate. J . A p p l . P h y s i o l . , 45(3):425-429, 1978. Baldwin, K.M., G.H. K l i n k e r f u s s , R.L. Terjung, P.A. Mole and J.O. H o l l o s z y . R e s p i r a t o r y c a p a c i t y of white, red and inte r m e d i a t e muscle: a d a p t a t i o n to e x e r c i s e . Am.J.Physiol., 222:373-378, 1972. Baldwin, K.M., W.W. Winder, R.L. Terjung and J.O. H o l l o s z y . G l y c o l y t i c enzymes i n d i f f e r e n t types of s k e l e t a l muscle: a d a p t a t i o n t o e x e r c i s e . Am.J.Physiol., 225(4):962-966, 1973. Barac-Nieto, M., H. Murer and R. Kinne. Lactate-sodium t r a n s p o r t i n r e n a l brush border membranes. P f l u g e r s Arch., 373:R30,1978. 31 Bates, R.G. Determination of pH. Theory and P r a c t i c e . J.P. Wiley and Sons, New York, 1973. Bate-Smith, E.C. The b u f f e r i n g of muscle i n r i g o r ; p r o t e i n , phosphate and c a r n o s i n e . J . P h y s i o l . , 92:336-343, 1938. B e l c a s t r o , A.N. and A. Bonen. L a c t i c a c i d removal r a t e s d u r i n g c o n t r o l l e d and u n c o n t r o l l e d recovery e x e r c i s e . J . A p p l . P h y s i o l . , 39(6):932-936, 1975. Benade, A.J.S. and N. H e i s l e r . Comparison of e f f l u x r a t e s of H* and l a c t a t e ions from i s o l a t e d muscle i n v i t r o . R e s p . P h y s i o l . , 32:369-380, 1978. Bergstrom, J . Muscle e l e c t r o l y t e s i n man. S c a n d . J . C l i n . L a b . I n v e s t . , Suppl. 68, 1962. Bergstrom, J . , P. F u r s t , L-O. Noree and E. V i n n a r s . I n t r a c e l l u l a r f r e e amino a c i d c o n c e n t r a t i o n i n human muscle t i s s u e . J . A p p l . P h y s i o l . , 36:693-697, 1974. Bergstrom, J . , P. F u r s t , L-O. Noree and E. V i n n a r s . I n t r a c e l l u l a r f r e e amino a c i d s i n muscle t i s s u e of p a t i e n t s with c h r o n i c uraemia: e f f e c t of p e r i t o n e a l d i a l y s i s and i n f u s i o n of e s s e n t i a l amino a c i d s . Clin.Sci.Mol.Med., 54:51-60, 1978. Bernard, C. In Lecons sur l e D i a b ete. P a r i s : J.-B. B a l l i e r e et F i l s , 328, 1877. C i t e d i n : Hultman,E. and K . S a h l i n , A c i d - base balance d u r i n g e x e r c i s e , Exer.Sp.Sci.Rev., 8:41-128, 1980. B e r z e l i u s , J . F o r e l a s n i n g a r : djurkemin, 2 v o l . , Stockholm, 1806- 1808. C i t e d i n : Hultman,E. and K . S a h l i n , Acid-base balance d u r i n g e x e r c i s e , Exer.Sp.Sci.Rev.,8:41-128, 1980. Boldyrev, A.A. Na , K -dependent ATPase of sarcolemma. Biokhimiya, 36:826-832, 1971a. Boldyrev, A.A., Petukhov, V.B., R i t o v , V.B., S p i r k i n a , G.D. and Tkachuk, V.A. The r o l e of a c e t y l c h o l i n e and i m i d a z o l e - c o n t a i n i n g compounds i n the r e g u l a t i o n of c a t i o n t r a n s p o r t through muscle membranes. Ukr.biokhem Zh., 43:125-134, 1971b. c i t e d i n : Boldyrev, A.A. Biochemical mechanisms of the r e g u l a t i o n of muscle c o n t r a c t i o n . Biokhimiya, 43(1):3- 16, 1978. 32 Boldyrev, A.A. Biochemical mechanisms of the r e g u l a t i o n of muscle c o n t r a c t i o n . Biokhimiya, 43(1):3-16, 1978. Boldyrev, A.A. and V.B. Petukhov. L o c a l i z a t i o n of c a r n o s i n e e f f e c t on the f a t i g u e d muscle p r e p a r a t i o n . Gen.Pharm., 9:17-20, 1978.. Bowen, W.J. E f f e c t s of pH, b u f f e r s , c a r n o s i n e , h i s t i d i n e and B- a l a n i n e on the s h o r t e n i n g of g l y c e r o l - t r e a t e d muscle f i b e r s . Arch. Bioch.Biophys., 112:436-443, 1965. B r o d a l , P., F. In g j e r and L. Hermansen. C a p i l l a r y supply of s k e l e t a l muscle f i b e r s i n u n t r a i n e d and endurance t r a i n e d men. Acta Physiol.Scand., Suppl. 440:178, 1976. Brown, -E..B. J r . Whole body b u f f e r c a p a c i t y . In: Ion homeostasis of the b r a i n . , ed. by B.K. S i e s j o and S.C. Sorensen, Academic Press, New York, 317-333, 1971. Brown, C.E. I n t e r a c t i o n s among c a r n o s i n e , a n s e r i n e , ophidine and copper i n bioche m i c a l a d a p t a t i o n . J . T h e o r . B i o l . , 88:245- 256, 1981. Burton,R.F. I n t r a c e l l u l a r B u f f e r i n g . R e s p . P h y s i o l . , 33:51-58, 1978. Campion, D.S. R e s t i n g membrane p o t e n t i a l and i o n i c d i s t r i b u t i o n i n f a s t and slow t w i t c h mammalian muscle. J . C l i n . I n v e s t . , 54:514-518, 1974. Carey, P., M. Stensland and L.H. H a r t l e y . Comparison of oxygen uptake d u r i n g maximal work on the t r e a d m i l l and the rowing ergometer. Med.Sci.Sp., 6(2):101 -103, 1 974. C a s t e l l i n i , M.A. Biochemical a d a p t a t i o n s f o r d i v i n g i n marine mammals. D o c t o r a l D i s s e r t a t i o n , Univ. of C a l i f o r n i a , San Diego, 1981. C a s t e l l i n i , M.A. and G.N. Somero. B u f f e r i n g c a p a c i t y of v e r t e b r a t e muscle: c o r r e l a t i o n s with p o t e n t i a l s f o r anaerobic f u n c t i o n . J.Comp.Physiol., 143:191 -198, 1981 . 33 Christman,. A.A. F a c t o r s a f f e c t i n g a n s e r i n e and c a r n o s i n e l e v e l s i n s k e l e t a l muscles of v a r i o u s animals. Lnt .J.Bioch., 7:519-527, 1976. Clancy, R.L. and E.B. Brown. I_n v i v o C0 Z b u f f e r curves of s k e l e t a l and c a r d i a c muscle. Am.J.Physiol., 211:1309-1312, 1966. Cohen, R.D. and R.A. l i e s . I n t r a c e l l u l a r pH: measurement, c o n t r o l and metabolic i n t e r - r e l a t i o n s h i p s . C r i t . R e v . C l i n . L a b . S c i . , 6:101-143, 1975. C o s t i l l , D.L., K. Sparks, R. Gregor and C. Turner. Muscle glycogen u t i l i z a t i o n d u r i n g exhaustive running. J . A p p l . P h y s i o l . , 31:353-356, 1971. C o s t i l l , D.L., W.J. Fink and M.L. P o l l a c k . Muscle f i b e r composition and enzyme a c t i v i t i e s of e l i t e d i s t a n c e runners. Med.Sci.Sp., 8:96-100, 1976. C o s t i l l , D.L., J . D a n i e l s , W. Evans, W. Fin k , G. Krahenbuhl and B. S a l t i n . S k e l e t a l muscle enzymes and f i b e r composition i n male and female t r a c k a t h l e t e s . J . A p p l . P h y s i o l . , 40(2):149- 154, 1976. C o s t i l l , D.I., W. Fink, L. G e t c h e l l , J . Juy and F. Witzmann. L i p i d metabolism i n s k e l e t a l muscle of endurance t r a i n e d males and females. J . A p p l . P h y s i o l . , 47:787-791, 1979. Creese, R. Bicarbonate ion and s t r i a t e d muscle. J . P h y s i o l . , 100:450-457, 1950. Crush, K.G. Carnosine and r e l a t e d substances i n animal t i s s u e s . Comp.Bioch.Physiol., 34:3-30, 1970. Cunningham, D.A. and J.A. Fa u l k n e r . The e f f e c t of t r a i n i n g on a e r o b i c and anaerobic metabolism d u r i n g a short exhaustive run. Med.Sci.Sp., 1(2):65-69, 1969. Danforth, W.H. A c t i v a t i o n of g l y c o l y t i c pathway i n muscle. In: C o n t r o l of Energy Metabolism, ed: Chance, B. and R.W. Estabrook, Academic Press, New York, 1965. 34 Davey, C L . The e f f e c t s of c a r n o s i n e and a n s e r i n e on g l y c o l y t i c r e a c t i o n s i n s k e l e t a l muscle. Arch.Bioch.Biophys., 89:296- 302, 1960a. Davey, C L . The s i g n i f i c a n c e of ca r n o s i n e and a n s e r i n e i n s t r i a t e d s k e l e t a l muscle. Arch.Bioch.Biophys., 89:303-308, 1960b. Dawson, M.J., D.G. Gradian and D.R. W i l k i e . C o n t r a c t i o n and recovery of l i v i n g muscles s t u d i e d by 31p Nuclear Magnetic Resonance. J . P h y s i o l . , 267:703-735, 1977. Dawson, M.J., D.C Gradian and D.R. W i l k i e . Muscular f a t i g u e i n v e s t i g a t e d by phosphorus nu c l e a r magnetic resonance. Nature, 274:861, 1978.. Dawson, M.J., D.R. W i l k i e and D. G r a d i n . S t u d i e s of f a t i g u e i n i n t a c t anaerobic muscle with nuclear magnetic resonance (31PNMR): Present r e s u l t s and f u t u r e p o s s i b i l i t i e s . In: L a c t a t e P h y s i o l o g i c , methodologic and p a t h o l o g i c approach, ed. P.R. Moret, J . Weber, J.-CI. H a i s s l y and H. D e n a l i n , S p r i n g e r - V e r l a g , New York, 1980. Deutsch, A. and P. Egg l e t o n . The t i t r a t i o n c o n s t a n t s of a n s e r i n e , c a r n o s i n e and some r e l a t e d compounds. B i o c h . J . , 32:209-217, 1938. Dubinsky, W.P. and E. Racker. The mechanism of l a c t a t e t r a n s p o r t i n human e r y t h r o c y t e s . J.Membrane B i o l . , 44:25-36, 1978. Dubowitz, V. and M.H. Brooke. Muscle biopsy: A modern approach. W.B. Saunders Co., P h i l a d e l p i a , 1973. Edstrom, L. and B. Ekblom. D i f f e r e n c e s i n s i z e s of red and white muscle f i b e r s i n vastus l a t e r a l i s of musculus quadriceps femoris of normal i n d i v i d u a l s and a t h l e t e s . R e l a t i o n to p h y s i c a l performance. Scan d . J . C l i n . L a b . I n v e s t . , 30:175-181, 1972. Eggleton, M.G. and P. Egg l e t o n . Carnosine i n amphibian v o l u n t a r y muscle. Q u a r t . J . E x p t l . P h y s i o l . , 23:391-402, 1933. E r i k s s o n , B., P. G o l l n i c k and B. S a l t i n . Muscle metabolism and enzyme a c t i v i t i e s a f t e r t r a i n i n g i n boys'11-13 years o l d . Acta P h y s i o l . S c a n d . , 87:485-497, 1973. 35 Essen, B., E. Jansson, J . Henriksson, A.W. T a y l o r and B. S a l t i n . M e t a b o l i c c h a r a c t e r i s t i c s of f i b e r types i n human s k e l e t a l muscle. Acta Physiol.Scand., 95:153-165, 1975a. Essen, B. and T. Haggmark. L a c t a t e c o n c e n t r a t i o n i n type I and II muscle f i b e r s d u r i n g muscular c o n t r a c t i o n i n man. Acta Physiol.Scand.., 95:344-346, 1975b. Essen, B. St u d i e s on the r e g u l a t i o n of metabolism i n human s k e l e t a l muscle u s i n g i n t e r m i t t e n t e x e r c i s e as an experimental model. Acta P h y s i o l . S c a n d . , Suppl. 454, 1978. Eve r s e , J . and N.O. Kaplan. L a c t a t e dehydrogenases: s t r u c t u r e and f u n c t i o n . Adv.Enzymol., 37:61-134,1973. F a b i a t o , A. and F. F a b i a t o . E f f e c t s of pH on the myofilaments and the sarcoplasmic r e t i c u l u m of skinned c e l l s from c a r d i a c and s k e l e t a l muscle. J . P h y s i o l . , 276:233-255, 1978. F i t t s , R.H. and J.O. H o l l o s z y . L a c t a t e and c o n t r a c t i l e f o r c e i n f r o g muscle d u r i n g development of f a t i g u e and recovery. Am.J.Physiol., 231:430-433, 1976. F l e t c h e r , W.M. and F.G. Hopkins. L a c t i c a c i d i n amphibian muscle. J . P h y s i o l . , 35:247-309, 1906. Fou l k s , J.G. and F.A. P e r r y . E f f e c t s of pH on e x c i t a t i o n and c o n t r a c t i o n i n f r o g t w i t c h muscle. Can.J.Physiol.Pharm., 55:709-723, 1977. Furusawa, K. and P.M.T. K e r r i d g e . The hydrogen ion c o n c e n t r a t i o n of the muscles of the c a t . J . P h y s i o l . , 63:33-41, 1927. Gamble, J.L. J r . , P.J. Zuromskis, J.A. B e t t i c e and R.L. Ginsberg. I n t r a c e l l u l a r b u f f e r i n g i n the dog at v a r y i n g CO^ t e n s i o n s . C l i n . S c i . , 42:311-324, 1972- Gebert, G. and M.F. Sydney. An implantable g l a s s e l e c t r o d e used f o r pH measurement i n working s k e l e t a l muscle. J . A p p l . P h y s i o l . , 34:122-124,1973. 36 G o l l n i c k , P.D., P.B. Armstrong, C.W. Saubert, K. P i e h l and B. S a l t i n . Enzyme a c t i v i t y and f i b e r . c o m p o s i t i o n i n s k e l e t a l muscle of u n t r a i n e d and t r a i n e d men. J . A p p l . P h y s i o l . , 33:312-319, 1972. G o l l n i c k , P.D., R.B. Armstrong, B. S a l t i n , C.W. Saubert IV, W..L. Sembrowich and R.E. Sheperd. E f f e c t of t r a i n i n g on enzyme a c t i v i t y and f i b e r composition of human s k e l e t a l muscle. J . A p p l . P h y s i o l . , 34:107-111, 1973. G o l l n i c k , P.D., R e l a t i o n s h i p of s t r e n g t h and endurance with s k e l e t a l muscle s t r u c t u r e and metabolic p o t e n t i a l . Int.J.Sp.Med., 3:26-32,1982. G o l l n i c k , P.D. Biochemical a d a p t a t i o n s to e x e r c i s e : Anaerobic Metabolism. Exer.Sp.Sci.Rev., 1:1-43, 1973. G o l l n i c k , P.D., K. P i e h l and B. S a l t i n . S e l e c t i v e glycogen d e p l e t i o n p a t t e r n i n human muscle f i b e r s a f t e r e x e r c i s e of v a r y i n g i n t e n s i t y and v a r y i n g p e d a l l i n g r a t e s . J . P h y s i o l . , 241:45-57, 1974. G u l e v i c h , V.S. and S. A m i r a d z h i b i . Ber.Dtsch.chem.Ges., 33:1902, 1900. c i t e d i n : S e v e r i n , S.E., I.M. Bocharnikova, P.L. V u l ' f s o n , Yu. A. G r i g o r o v i c h and G.A. Solov'eva. The b i o l o g i c a l r o l e of c a r n o s i n e . Biokhimiya, 28(3):415-420, 1963. Hagerman, F.C. and T.C. M i c k e l s o n . A task s p e c i f i c i t y comparison of anaerobic t h r e s h o l d s among co m p e t i t i v e oarsmen. Med.Sci.Sp., 2(2):127, 1980. H e i s l e r , N. and J . P i i p e r . The b u f f e r value of r a t diaphragm muscle t i s s u e determined by PCOj e q u i l i b r a t i o n of homogenates. Re s p . P h y s i o l . , 12:169-178, 1971. H e i s l e r , N. and J . P i i p e r . Determination of i n t r a c e l l u l a r b u f f e r i n g p r o p e r t i e s i n r a t diaphragm muscle. Am.J.Physiol., 222(3):747-753, 1972. Henderson, L . J . Concerning the r e l a t i o n s h i p between the s t r e n g t h of a c i d s and t h e i r c a p a c i t y to preserve n e u t r a l i t y . Am.J.Physiol., 21:173-179, 1908. 37 Henriksson, J . T r a i n i n g induced a d a p t a t i o n of s k e l e t a l muscle and metabolism d u r i n g submaximal e x e r c i s e . J . P h y s i o l . , 270:661-675, 1977. Hermansen, L. Anaerobic energy r e l e a s e . Med.Sci.Sp., 1(1):32-38, 1969. Hermansen,L. L a c t a t e p r o d u c t i o n d u r i n g e x e r c i s e , i n : Muscle, metabolism d u r i n g e x e r c i s e , ed. Pernow,B. and B. S a l t i n , Plenum, New York, 1971. Hermansen, L. and J.B. Osnes. Blood and muscle pH a f t e r maximal e x e r c i s e i n man. J . A p p l . P h y s i o l . 32(3):304-308, 1972. Hermansen, L. and O. Vaage. L a c t a t e disappearance and glycogen s y n t h e s i s i n human muscle a f t e r maximal e x e r c i s e . Am.J.Physiol., 233:E422-E429, 1977. Hickson,R.C., W.W. Heusner and W.D. Van Huss. S k e l e t a l muscle enzymes a l t e r a t i o n s a f t e r s p r i n t and endurance t r a i n i n g . J . A p p l . P h y s i o l . , 40:868-872,1975. H i l l , A.V. The recovery process a f t e r muscular e x e r c i s e i n man. Harvey L e c t u r e s , 20:60, 1926. c i t e d i n : Hultman,E. and K . S a h l i n , Acid-base balance d u r i n g e x e r c i s e , Exer.Sp.Sci.Rev., 8:41-128, 1980. H i r c h e , H., U. Wacker and H.D. Langahr. L a c t i c a c i d formation i n the working gastrocnemius of the dog. Int.Z.Angew P h y s i o l . , 30:52-64, 1971. Hochachka, P.W. and K.B. Storey. M e t a b o l i c consequences of d i v i n g i n animals and man. S c i e n c e , 187:613-621, 1975. Hochachka, P.W. L i v i n g without oxygen. Harvard Univ. Press, Cambridge, Massachusetts, 1980. Hochachka, P.W. and T.P. Mommsen. Protons and A n a e r o b i o s i s . Submitted to Science, 1982. H o l l o s z y , J . 0 . , L.B. O s c a i , P.A. Mole, and I . J . Don. Biochemical a d a p t a t i o n s to endurance e x e r c i s e , i n : Muscle metabolism d u r i n g e x e r c i s e , 51-61, ed. Pernow,B. and B . S a l t i n , Plenum, New York, 1971. 38 Hohorst,H.J. i n : Methods of enzymatic a n a l y s i s , ed. Bergmeyer,H.U., V e r l a g , Chemie Weinheim., 1st e d i t i o n , pp. 622,1962. Hoult, D.J., S.J.W. Busby, D.G. Gradian, G.K. Radda, R.E. Richards and P.J. Seeley. Observation of t i s s u e m e t a b o l i t e s using 31P- Nuclear magnetic resonance. Nature, 252:285-287, 1974. Houston, M.E. The use of h i s t o c h e m i s t r y i n muscle a d a p t a t i o n : A c r i t i c a l assessment. Can. J . A p pl. Sp. Sc i . , .3:109-118, 1978. Hultman, E. and K. S a h l i n . Acid-base balance d u r i n g e x e r c i s e . Exer.Sp.Sci.Rev., 7:41-128, 1980. Hunter, G. Observations on the d i s t r i b u t i o n and v a r i a t i o n of carn o s i n e i n cat muscle. B i o c h . J . , 18:408-411, 1924. Hunter, G. Carnosine of muscle and imidazole e x c r e t i o n i n the u r i n e . B i o c h . J . 19:34-41, 1925. Ikeda, T., K. Kimura, T. Hama & N. Tamaki. A c t i v a t i o n of muscle f r u c t o s e 1,6 - Bisphosphatase by h i s t i d i n e and c a r n o s i n e . J . B i o c h . , 87( 1 ) : 179-185, 1980. Ivy, J.L., R.T. Withers, P.J. Van Handel, D.H. E l g e r and D.L. C o s t i l l . Muscle r e s p i r a t o r y c a p a c i t y and f i b e r type as determinants of the l a c t a t e t h r e s h o l d . J . A p p l . P h y s i o l . , 48(3):523-527, 1980. Jansson, E. and L. K a i j s e r . Muscle a d a p t a t i o n to extreme t r a i n i n g i n man. Acta Physiol.Scand., 100:315-324, 1977. Johnson, J.H., J.A. B e l t , W.P. Dubinsky, A. Zimniak and E. Rocker. I n h i b i t i o n of l a c t a t e t r a n s p o r t i n e h r l i c h a s c i t e s tumor c e l l s and human e r y t h r o c y t e s by s y n t h e t i c anhydride l a c t i c a c i d . B i o c h e m i s t ry, 19:3836-3840, 1980. J o r f e l d t , L. Metabolism of L(+) l a c t a t e i n human s k e l e t a l muscle d u r i n g e x e r c i s e . Acta Physiol.Scand., Suppl., 338, 1970. J o r f e l d t , L., A. J u h l i n - D a n n f e l t and J . K a r l s s o n . L a c t a t e r e l e a s e i n r e l a t i o n to t i s s u e l a c t a t e i n human s k e l e t a l muscle dur i n g e x e r c i s e . J . A p p l . P h y s i o l . , 44(3):350-352, 1978. 3 9 K a r l s s o n , J . L a c t a t e and phosphogen c o n c e n t r a t i o n s i n working muscles of man. A c t a P h y s i o l .Scand. , Suppl. 358 : 1 - 72 , 1971,. K a r l s s o n , J . , F. Bonde-Petersen, J . Henriksson and H.G. Knuttgen. E f f e c t s of p r e v i o u s e x e r c i s e with arms or le g s on metabolism and performance i n exhaustive exercise,. J . A p p l . P h y s i o l . , 38:763-767, 1975. Katz, A.M. C o n t r a c t i l e p r o t e i n s of the h e a r t . Physiol.Rev., 50:63-158, 1970. Klausen, K., H.G. Knuttgen and H.V. F o r s t e r . E f f e c t of pre- e x i s t i n g high blood l a c t a t e c o n c e n t r a t i o n on maximal e x e r c i s e performance. Sca n d . J . C l i n . L a b . I n v e s t . , 30:415-419, 1972. Knuttgen, H. and B. S a l t i n . Muscle m e t a b o l i t e s and oxygen uptake i n short-term submaximal e x e r c i s e i n man. J . A p p l . P h y s i o l . , 32:690-694, 1972. Koch, A., B. Webster and S. L o w e l l . C e l l u l a r uptake of L - l a c t a t e i n mouse diaphragm. Biophys.J., 36:775-796, 1981. Koppel, M. and K. S p i r o . Uber d i e Wirkung von Moderatoren (P u f f e r n ) bei der Verochiebung des Saure- Basengleichgewichtes i n b i o l g i s c h e n F l u s s i g k e i t e n . Biochem.Z. 65:409-439, 1914. c i t e d i n : Roos, A. and W.F. Boron. I n t r a c e l l u l a r pH. Physiol.Rev., 61(2):296-434, 1981. Lai , Y . L . , B.A. Attebery and E.B. Brown. I n t r a c e l l u l a r adjustments of s k e l e t a l muscle, heart and b r a i n to prolonged hypercapnia. R e s p . P h y s i o l . , 19:115-122, 1973. Larsen, L.A. and J.M. B u r n e l l . Muscle b u f f e r v a l u e s . Am.J.Physiol. , 234 ( 5)-.F432-F436 , 1978. L i t h e l l , H., J . Orlander, R. Scheie, B. Sjoden and J . K a r l s s o n . Changes i n l i p o p r o t e i n l i p a s e a c t i v i t y and l i p i d s t o r e s i n human s k e l e t a l muscle with prolonged heavy e x e r c i s e . Acta P h y s i o l . S c a n d . , 107:257-261, 1979. 40 Lopina, O.D. and A.A. Boldyrev. I n f l u e n c e of d i p e p t i d e s c a r n o s i n e and sarcoplasmic r e t i c u l u m . Dokl Akad.Nauk.SSSR., 220:1218-1221, 1974. c i t e d i n Boldyrev, A.A. and V.B. Petukhov. L o c a l i z a t i o n of c a r n o s i n e e f f e c t on the f a t i g u e d muscle p r e p a r a t i o n . Gen.Pharm., 9:17-20, 1978. Lowry, C.V., J.S. Kimmey, S. F e l d e r , M.M.-Y. C h i , K.K. K a i s e r , P.N. Passonneau, K.A. K i r k and O.H. Lowry. Enzyme p a t t e r n s i n s i n g l e human muscle fibers.. J.Biol.Chem., 253(22):8269- 8277, 1978. Lykkeboe, G. and K. Johansen. Comparative aspects of b u f f e r i n g c a p a c i t y i n muscle. R e s p . P h y s i o l . , 25:353-361, 1975. Mainwood, G.W., P. Worsley-Brown and R.A. Paterson., The metabolic changes i n f r o g s a r t o r i u s muscles d u r i n g recovery from f a t i g u e at d i f f e r e n t e x t e r n a l b i c a r b o n a t e c o n c e n t r a t i o n s . Can.J.Physiol.Pharm., 50:143-155, 1972. Mainwood, G.W. and P. Worsley-Brown. The e f f e c t s of e x t r a c e l l u l a r pH and b u f f e r c o n c e n t r a t i o n on e f f l u x . of l a c t a t e from f r o g s a r t o r i u s muscle. J . P h y s i o l . 250:1-22, 1975.. Mathews, D.K. and E.L. Fox. The p h y s i o l o g i c a l b a s i s of p h y s i c a l e ducation and a t h l e t i c s . W.B. Saunders, Toronto, 1976. Meshkova, N.P. and O.E. Karyavkina. P a r t i c i p a t i o n of c a r n o s i n e and a n s e r i n e i n the g l y c o l y t i c and o x i d a t i v e processes i n muscle t i s s u e . Biokhimiya, 30(1):74-79, 1964. Meyerhof, 0. Die chemische Vorgange im Muskel. B e r l i n , S p r i n g e r , 1930. c i t e d i n : Hultman,E. and K . S a h l i n , Acid-base balance d u r i n g e x e r c i s e , Exer.Sp.Sci.Rev., 8:41-128, 1980. M i c h a e l i s , L. and W. D a v i d o f f . Methodisches und S a c h l i c h e s zur e l e k t r o m e t r i s c h e n Bestimmung der B l u t - A l k a l e s c e n z . Biochem.Z. 46:131-150, 1912. C i t e d i n : Roos, A. and W. Boron. I n t r a c e l l u l a r pH. Physiol.Rev., 61(2):298, 1981. M i c h a e l i s , L. Die Wasserstoffionenkon z e n t r a t i o n . B e r l i n : S p r i n g e r , 1922. c i t e d i n : Roos,A. and W.F.Boron. I n t r a c e l l u l a r pH. Physiol.Rev., 61(2):390, 1981. M i l l e r , R.B., I. Tyson and A.S. Relman. pH of i s o l a t e d r e s t i n g s k e l e t a l muscle and i t s r e l a t i o n to potassium content. Am.J.Physiol., 204:1048-1054, 1963. 41 Monson, J.P., J.A. Smith, R.D. Cohen and R.A. l i e s . C h a r a c t e r i z a t i o n of the hepatocyte plasma membrane t r a n s p o r t mechanism f o r l a c t a t e . C l i n . S c i . , 60:4p, 1981. Newsholme, E.A. and C. S t a r t . R e g u l a t i o n i n metabolism. J.P. Wiley and Sons, London, 1974. Nocker, J . P h y s i o l o g i e der Liebesubergen, S t u t t g a r t , Ferdinand Enke V e r l a c j , 1964. C i t e d i n : Wenger, H.A. and A.T. Reed. Met a b o l i c f a c t o r s a s s o c i a t e d with muscular f a t i g u e d u r i n g a e r o b i c and anaerobic work. Can.J.Appl.Sp.Sci., 1:43-48, 1976. Osnes, J.-B. and L. Hermansen. Acid/base balance a f t e r maximal e x e r c i s e of short d u r a t i o n . J . A p p l . P h y s i o l . , 32(1): 59-63, 1 972. Parker, C.J. and E. Ring. A comparative study of the e f f e c t of car n o s i n e on m y o f i b u l l a r ATPase a c t i v i t y of v e r t e b r a t e and i n v e r t e b r a t e muscle. Comp.Biochem.Physiol., 37:413-421, 1 970. Poortmans, J.R., J . D e l e s c a i l l e - V a n d e n Bossche and R. L e c l e r c q . L a c t a t e uptake by i n a c t i v e forearm d u r i n g p r o g r e s s i v e l e g e x e r c i s e . J . A p p l . P h y s i o l . , 45:835-839, 1978. P r i n c e , F.P., R.S. H i k i d a and F.C. Hagerman. Human muscle f i b e r types i n power l i f t e r s , d i s t a n c e runners and u n t r a i n e d s u b j e c t s . P f l u g e r s Arch., 363:19-26, 1976. Pri n c e , F . P . , R. H i k i d a and F.C. Hagerman. Muscle f i b e r types i n women a t h l e t e s and n o n - a t h l e t e s . P f l u g e r s Arch., 371:161- 165, 1977. Qureshi, J . and T. Wood. The e f f e c t of ca r n o s i n e on g l y c o l y s i s . Bioch.Biophys.Acta., 60:190-192, 1962. Reeves,R.B. and A. Malan. Model s t u d i e s of i n t r a c e l l u l a r a c i d - base temperature responses i n ectotherms. Resp. P h y s i o l . , 28:49-63,1976. Rennie, M.J., R.H.T. Edwards, S. Krywawych, C.T.M. Davies, D. H a l l i d a y , J.C. Waterlow and D.J. M i l l w a r d . E f f e c t of e x e r c i s e on p r o t e i n turnover i n man. C l i n . S c i . , 61:627-639, 1981. 42 Roberts, A.D., G.R. S t r a u s s , K.D. F i t c h , and N.J. Richarson. C h a r a c t e r i s t i c s of S p r i n t A t h l e t e s . Med..Sci .Sp., 12:94, 1980. Roos, A. I n t r a c e l l u l a r pH and b u f f e r i n g power of r a t muscle.. Am.J.Physiol., 221(1):182-188, 1 971. Roos, A. and W.F. Boron. I n t r a c e l l u l a r pH. Physiol.Rev., 61(2):296-434, 1981. Rooth, G. Acid-base, e l e c t r o l y t e and water changes d u r i n g t i s s u e hypoxia i n r a t s . C l i n . S c i . , 30:417-424, 1966. Sahlin,K., R.C. H a r r i s and E. Hultman. C r e a t i n e kinase e q u i l i b r i u m and l a c t a t e content compared with muscle pH i n t i s s u e samples o b t a i n e d a f t e r i s o m e t r i c e x e r c i s e . Biochem.J., 152:173-180, 1972. S a h l i n , K., R.C. H a r r i s , B. N y l i n d and E. Hultman. L a c t a t e content and pH i n muscle samples obtained a f t e r dynamic e x e r c i s e . P f l u g e r s Arch., 367:143-149, 1976. S a h l i n , K. I n t r a c e l l u l a r pH and energy metabolism i n s k e l e t a l muscle of man. Acta P h y s i o l . S c a n d . (Suppl.) 455, 1978. S a l t i n , B., J . Henriksson, E. Nygaard, P. Andersen and E. Jansson. F i b e r types and metabolic p o t e n t i a l s of s k e l e t a l muscles i n sedentary man and endurance runners. Am.N.Y.Acad.Sci., 310:3-29, 1977. S e v e r i n , S.E. , P.L. V u l ' f s o n and L.L. T r a d a f i l o v a . The content of c a r n o s i n e i n v a r i o u s p a r t s of f r o g muscle. Dakl.Akad.Nauk.SSSR 145:215-217, 1962. c i t e d i n : Meshkova, N.P. and O.E. Karyavkina. P a r t i c i p a t i o n of c a r n o s i n e and a n s e r i n e i n the g l y c o l y t i c and o x i d a t i v e processes i n muscle t i s s u e . Biokhimiya, 30(1):74-79, 1964. S e v e r i n , S.E., I.M. Bocharni kova, P.L. Vul'fson., Yu.A. G r i g o r o v i c h and G.A. Solov'eva. The b i o l o g i c a l r o l e of c a r n o s i n e . Biokhimiya, 28(3):510-516, 1963. S e v e r i n , S.E., L. Shu-Hsien and I..A. Popova. P a r t i c i p a t i o n of i m i d a z o l e , a d e n y l i c a c i d , CoA and t h e i r a c e t y l d e r i v a t i v e s d u r i n g s y n t h e s i s and b i o s y n t h e s i s of a c e t y l c h o l i n e . P r o b l . N e i r akhim., Akad.Nauk.SSSR 169-180, 1966. c i t e d i n : Boldyrev, A.A. and V.B. Petukova. L o c a l i z a t i o n of c a r n o s i n e e f f e c t on the f a t i g u e d muscle p r e p a r a t i o n . Gen.Pharm., 9:17-20, 1978. 43 Sherstnev, E.A. Dokl.An.SSSR 119:753, 1958. c i t e d i n : Meshkova, N.P. and O.E. Karyavkina. P a r t i c i p a t i o n of c a r n o s i n e and a n s e r i n e i n the g l y c o l y t i c and o x i d a t i v e processes i n muscle t i s s u e . Biokhinviya, 30(1 ) : 74-79, 1965. S i e s j o , B.K. and K. Messeter. F a c t o r s determining I n t r a c e l l u l a r pH. i n : Ion homeostasis of the b r a i n , ed. Siesjo,B.K. and S.C. Sorenson, Academic Press, New York, 244-262, 1971. Sjoden, V. L a c t a t e dehydrogenase i n human s k e l e t a l muscle. Acta Physiol.Scand., Suppl. 436, 1976. Skvortsova, R.I. Carbohydrate-phosphate metabolism of muscle i n the process of chicken ontogenesis and the s i g n i f i c a n c e of c a r n o s i n e and a n s e r i n e to the processes of p h o s p h o r y l a t i o n . Biokhimiya, 18:594-602, 1953. Somero, G.N. pH-temperature i n t e r a c t i o n s on p r o t e i n s : p r i n c i p l e s of o ptimal pH and b u f f e r system d e s i g n . M a r . B i o l . L e t t . , 2:163-178, 1981. Spencer, J . and A. Lehninger. L - l a c t a t e t r a n s p o r t i n E h r l i c h a s c i t e s tumor c e l l s . Biochem.J., 154(2):405-414, 1976. Steinhagen, C , H.J. H i r c h e , H.W. N e s t l e , U. Bovenkamp and I. Hasselmann. The i n t e r s t i t i a l pH of the working gastrocnemius of the dog. P f l u g e r s Arch., 367:151-156, 1976. Stevens, E.D. E f f e c t of pH on muscle f a t i g u e i n i s o l a t e d f r o g s a r t o r i o u s muscle. Can.J.Physiol.Pharm., 58:568-570, 1980. Sutton, J.R.., N..L. Jones and C.J. Toews. E f f e c t of pH on muscle g l y c o l y s i s d u r i n g e x e r c i s e . C l i n . S c i . , 61:331-338, 1981. Tamaki, N., M. Nakamura, M. Harada, K. Kimura, H. Kawano and T. Hama. Anserine and c a r n o s i n e contents i n muscular t i s s u e of r a t and r a b b i t . J . N u t r . S c i . V i t a m i n o l . , 23:213-219, 1977. Thomas, R.C. Comparison of the mechanisms c o n t r o l l i n g i n t r a c e l l u l a r pH and sodium i n s n a i l neurons. R e s p . P h y s i o l . , 33:63-73, 1978. 44 Thomson., J . , H. Green and M. Houston. Muscle glycogen d e p l e t i o n p a t t e r n s i n f a s t t w i t c h f i b e r subgroups of man duri n g submaximal and supramaximal e x e r c i s e . P f l u g e r s Arch., 379:105-108, 1979. Thorstensson, A., B. S j o d i n and J . K a r l s s o n . Enzyme a c t i v i t i e s and muscle s t r e n g t h a f t e r s p r i n t t r a i n i n g i n man. Acta P h y s i o l . S c a n d . , 94:313^318. 1975. Thorstenson, A. Muscle s t r e n g t h , f i b e r types and enzyme a c t i v i t i e s i n man. Acta P h y s i o l . S c a n d . , ( S u p p l . ) , 443, 1976. Toews, C.J., C. Lowry and N.B. Ruderman. The r e g u l a t i o n of gluconeogenesis. J.Biol.Chem., 245:818-824, 1970. T r i v i d i , B. and W.H. Danfor t h . E f f e c t of pH on the k i n e t i c s of f r o g muscle phosphofructokinase. J.Biol.Chem., 241:4110- 4114, 1966. van S l y k e , D.D. On the measurement of b u f f e r v a l u e s and on the r e l a t i o n s h i p of b u f f e r value to the d i s s o c i a t i o n constant of the b u f f e r and the c o n c e n t r a t i o n and r e a c t i o n of the b u f f e r s o l u t i o n . J.Biol.Chem., 52:525-570, 1922. Waddell, W.J. and T.C. B u t l e r . C a l c u l a t i o n of i n t r a c e l l u l a r pH from the d i s t r i b u t i o n of 5,5-dimethyl-2,4-oxozalidedione (DMO). A p p l i c a t i o n to s k e l e t a l muscle of dog. J . C l i n . I n v e s t . , 38:720-729, 1959. Waddell, W.J. and R.G. Bates. I n t r a c e l l u l a r pH. P h y s i o l o g i c a l Reviews, 49(2): 285-329, 1969. Waddell, W.J. I n t r a c e l l u l a r pH. In: Ion homeostasis of the b r a i n , ed. Siesjo,B.K. and S.C. Sorensen, Academic Press, New York, 233-243, 1971. Weber,H.H. Die muskeleiweisskorper und der Feinbaw des Skeletmuskels, Ergeb.Physiol.,36:109-150,1934. c i t e d i n : Burton,R.F. I n t r a c e l l u l a r b u f f e r i n g . R e s p . P h y s i o l . , 33:51- 58,1978. Woodbury, J.W. Re g u l a t i o n of pH. In: Ph y s i o l o g y and B i o p h y s i c s , ed. Ruch,T.C. and H.D. Patton. P h i l a d e l p h i a : Saunders, 899- 934, 1965. 45 Zachmann, M., W.W. C l e v e l a n d , D.H. Sandberg and W.L. Nyham. Co n c e n t r a t i o n s of amino a c i d s i n plasma and muscle. Amer.J.Dis.Child., 112:283-289, 1966. Zapp, J.A. and D. Wright Wilson. Q u a n t i t a t i v e s t u d i e s of c a r n o s i n e and a n s e r i n e i n mammalian muscle. J.Biol.Chem. 126:9-18, 1938. 46 APPENDICES 47 Review of L i t e r a t u r e A. Acid-Base Status and Performance. S p r i n t t r a i n e d a t h l e t e s , demonstrate a remarkable a b i l i t y to perform h i g h i n t e n s i t y , short d u r a t i o n work, with the energy requirements being met p r i n c i p a l l y by anaerobic g l y c o l y s i s . T h i s metabolic pathway r e s u l t s i n the r a p i d p r o d u c t i o n of ATP, the energy source f o r muscular c o n t r a c t i o n , with an a s s o c i a t e d muscle and blood l a c t a t e l e v e l i n c r e a s e , which has been demonstrated to i n h i b i t a t h l e t i c performance (Klausen et a l . , 1972; K a r l s s o n et a l . , 1975). Proton accumulation a s s o c i a t e d with the e l e v a t e d l a c t a t e l e v e l s a l t e r s the acid-base balance of t i s s u e r e s u l t i n g i n pH decrements w i t h i n muscle and blood (Hochachka and Mommsen 1982; S a h l i n 1978; Roos and Boron 1981). Reduced r a t e s of g l y c o l y s i s (Toews et a l . , 1970; Sutton et a l . , 1981; Roos and Boron 1 9 8 1 ) , c o r r e l a t i o n s between pH and f a t i g u e ( F i t t s and H o l l o s z y 1976; Stevens 1980) and i n v e r s e r e l a t i o n s h i p s between f o r c e g e n e r a t i o n of i s o l a t e d muscle p r e p a r a t i o n s and ^ c o n c e n t r a t i o n (Dawson et a l . , 1978) have been demonstrated when pH drops to too great a degree. Anaerobic g l y c o l y s i s which i s u t i l i z e d when energy expenditure i s too high to be met through the a e r o b i c combustion of f u e l s , r e s u l t s i n the u l t i m a t e p r o d u c t i o n of 2 moles of H*and 2 l a c t a t e anions with the concominant p r o d u c t i o n of ATP per g l u c o s y l u n i t . G l y c o l y s i s and ATP h y d r o l y s i s occur d u r i n g anaerobic energy p r o d u c t i o n demonstrating opposing pH dependencies of H*production. Thus the r e l a t i v e c o n t r i b u t i o n of e i t h e r g l y c o l y s i s or ATP h y d r o l y s i s to the 2 moles of H*produced 48 per g l u c o s y l u n i t i s pH dependent (Hochachka and Mommsen 1982). L a c t i c a c i d was f i r s t i d e n t i f i e d i n muscle by J . J . B e r z e l i u s (1807) with the r e l a t i o n s h i p between l a c t a t e formation and glucose degradation being i n i t i a l l y d e s c r i b e d by C. Bernard (1877). That l a c t a t e was produced w i t h i n muscle d u r i n g e x e r c i s e was f i r s t r e p o r t e d by F l e t c h e r and Hopkins (1906), H i l l (1926) and Meyerhof (1930). I t i s now g e n e r a l l y accepted that l a c t i c a c i d accumulates when there i s an imbalance i n the ra t e of energy r e q u i r e d and that which can be achieved by pyruvate o x i d a t i o n w i t h i n the mit o c h o n d r i a . Hochachka and Storey (1975) s t a t e d t h at l a c t a t e accumulation was the best i n d i c a t o r of a n a e r o b i o s i s . Within a t h l e t e s performing continuous intense short d u r a t i o n e x e r c i s e , l a c t a t e values of 32mM have been r e p o r t e d (Hermansen et a l . , 1971).. Thus the performance of short d u r a t i o n , high i n t e n s i t y e x e r c i s e p l a c e s enormous demands on anaerobic g l y c o l y s i s f o r energy p r o d u c t i o n and on the mechanisms fo r h a n d l i n g the accumulation of end products. 1. Metabolism. The biochem i c a l parameters necessary to allow humans to perform at i n c r e a s e d r a t e s or d u r i n g p e r i o d s of hypoxia can be c a t e g o r i z e d . F i r s t , energy p r o d u c t i o n i n the form of ATP s y n t h e s i s must be performed at a f a s t r a t e . Second, redox balance must be maintained so that i n t e r m e d i a t e m e t a b o l i t e s and c o - f a c t o r s do not accumulate i n t h e i r reduced forms ( C a s s t e l l i n i 1981). T h i r d , mechanisms f o r the b u f f e r i n g of the accumulated protons must be adequate. Under normal c o n d i t i o n s the need f o r a hig h energy y i e l d exceeds the need f o r a high energy r a t e . Fat demonstrating a 49 r e s p i r a t r y q u o t i e n t of 0.7 (Mathews and Fox 1976) and y i e l d i n g 36 ATP per mole of s u b s t r a t e (Lehninger 1980) i s predominantly u t i l i z e d under these c o n d i t i o n s . T h i s pathway bypasses g l y c o l y s i s e n t e r i n g the Krebs C y c l e from A c e t y l CoA. Within the o x i d a t i v e p h o s p h o r y l a t i o n pathway there i s an abs o l u t e requirement f o r oxygen at the cytochrome oxidase l e v e l . Anaerobic g l y c o l y s i s produces only 2 or 3 ATP per mole of s u b s t r a t e depending upon whether glucose or glycogen i s used. Pyruvate a c t s as a s u b s t r a t e f o r both a e r o b i c and anaerobic metabolism with the purpose of i t s r e d u c t i o n being that of o x i d i z i n g NADH to maintain redox balance. When the ra t e of energy demand i s high pyruvate i s converted to l a c t a t e , NADH i s o x i d i z e d , redox balance i s maintained and ATP p r o d u c t i o n per g l u c o s y l u n i t i s low (Newsholme and S t a r t 1973). 2. Processes of L a c t a t e D i s p o s a l and Proton Release. The removal of l a c t a t e has g e n e r a l l y been assumed to be a simple process of d i f f u s i o n down c o n c e n t r a t i o n g r a d i e n t s (Hirche et a l . , 1971; J o r f e l d t , 1978; Mainwood and Brown 1975). Recently i t has become apparent that l a c t a t e t r a n s f e r w i t h i n a few t i s s u e s i s c a r r i e r mediated. Within the proximal tubule of the kidney i t appears to be Na* t r a n s p o r t l i n k e d (Barac-Nieto et a l . , 1978) while i n s e v e r a l tumour l i n e s (Spencer and Lehninger 1976; Johnson et a l . , 1980) red blood c e l l s , (Dubinsky and Racker 1978) and l i v e r (Monson et a l . , 1981), the c a r r i e r mediated t r a n s f e r of l a c t a t e i s pH dependent appearing to be an a n t i p o r t system, l a c t a t e anions exchanging f o r OH* ions (Hochachka and Mommsen 1982). Within mouse diaphragm muscle Koch et a l . , (1981) 50 suggested that at. l e a s t three q u a r t e r s of the l a c t a t e t r a n s f e r was c a r r i e r mediated. Whatever the mechanism of t r a n s f e r , l a c t a t e has many d i s p o s a l s i t e s . I t can be s t o r e d w i t h i n the producing muscle (K a r l s s o n 1971),.or d i l u t e d i n . b l o o d and other body f l u i d s (Hirche et a l . , 1971; J o r f e l d t 1978; Mainwood and Brown 1975). From blood, l a c t a t e may be taken up by l i v e r , heart muscle, kidney, b r a i n ( B e l c a s t r o and Bonen 1975), a c t i v e ( J o r f e l d t 1970) and i n a c t i v e (Poortmans 1978) s k e l e t a l muscle. The u l t i m a t e f a t e i s re c o n v e r s i o n t o pyruvate where i t i s e i t h e r u t i l i z e d w i t h i n the Krebs Cycle or converted i n t o glycogen or glucose (Poortmans 1978). Hermansen and Vaage (1977) found the a l a n i n e c y c l e to be of minor s i g n i f i c a n c e i n the disappearance of l a c t a t e from s k e l e t a l muscle. Protons a s s o c i a t e d with l a c t a t e formation accumulate w i t h i n muscle and are r e l e a s e d to blood and e x t r a c e l l u l a r f l u i d s . I t has been r e p o r t e d that the r a t e of H*release was dependent upon e x t e r n a l b i c a r b o n a t e c o n c e n t r a t i o n (Mainwood and Brown 1975). Benade and H e i s l e r (1978) r e p o r t e d that H* r e l e a s e i n i t i a l l y exceeded l a c t a t e r e l e a s e while Hermansen and Osnes (1972) found the H r e l e a s e to occur to a much g r e a t e r extent than would be expected from t h e i r l a c t a t e e f f l u x d a t a . The i d e n t i f i c a t i o n of a maximal r a t e of l a c t a t e r e l e a s e by J o r f e l d t et a l . , (1978) may account f o r t h i s f i n d i n g . Anaerobic g l y c o l y s i s r e s u l t i n g i n the pr o d u c t i o n of l a c t a t e s a t i s f i e s the requirements necessary f o r high i n t e n s i t y , short d u r a t i o n work: f i r s t , ATP i s generated; second, redox balance i s optim i z e d such that the r e d u c t i o n of pyruvate to l a c t a t e 51 p r o v i d e s the c o - f a c t o r NAD necessary to maintain g l y c o l y t i c f u n c t i o n i n g and t h i r d , mechanisms f o r the removal of the i n h i b i t i n g end products e x i s t . The l i m i t a t i o n of anaerobic g l y c o l y s i s occurs i n the second and t h i r d areas. The accumulation and removal of end products can not occur i n d e f i n i t e l y i n a t i s s u e s i n c e at h i g h energy demands , the NADH /NAD r a t i o i s i n c r e a s e d , a l t e r i n g redox balance and r e s u l t i n g i n a proton accumulation, u l t i m a t e l y lowering pH to v a l u e s too low f o r g l y c o l y s i s to c o n t i n u e . 3. Enzymatic C o n t r o l of Anaerobic G l y c o l y s i s . Carbohydrate metabolism from glucose to pyruvate i n v o l v e s nine separate chemical r e a c t i o n s which are c a t a l y z e d by s p e c i f i c enzymes. Enzymes can be c l a s s i f i e d as e i t h e r r e g u l a t o r y or non-regulatory depending upon t h e i r d i s t a n c e from thermodynamic e q u i l i b r i u m . Non-regulatory enzymes i n v o l v e thermodynamically e q u i v a l e n t r e a c t i o n s which can proceed e s s e n t i a l l y i n e i t h e r d i r e c t i o n . Regulatory enzymes s i t u a t e d f a r from thermodynamic e q u i l i b r i u m have a l a r g e f r e e energy change and proceed e s s e n t i a l l y i n one d i r e c t i o n . Regulatory enzymes u s u a l l y a d j u s t the r a t e of carbon flow by responding s e n s i t i v e l y to changes i n m e t a b o l i t e modulators, c o - f a c t o r s , co-enzymes and s u b s t r a t e s . Non- r e g u l a t o r y enzymes f u n c t i o n to t r a n s p o r t carbon along the chain as f a s t as p o s s i b l e (Hochachka 1980). S e v e r a l r e g u l a t o r y enzymes have been i d e n t i f i e d i n anaerobic g l y c o l y s i s . The enzymes hexokinase (HK), phosphorylase, phosphofructokinase (PFK) and pyruvate kinase (PK) are a l l s i t u a t e d f a r from e q u i l i b r i u m and a c t as r e g u l a t o r y enzymes. The 52 enzyme HK c a t a l y z e s the r e a c t i o n glucose to glucose-6-phosphate (G6P) t h e r e f o r e being r e s p o n s i b l e f o r the pathways a b i l i t y to u t i l i z e blood g l u c o s e . Phosphorylase e x i s t s i n both an a c t i v e and i n a c t i v e form being modulated by both c o n t r a c t i l e and hormonal i n f l u e n c e s . PFK c a t a l y z e s an intermediate step i n the pathway with i t s a c t i v i t y being m o d i f i e d by many f a c t o r s : adenylate c o u p l i n g , energy charge of the c e l l and s u b s t r a t e l e v e l s . PK enhances the p r o d u c t i o n of pyruvate which can be metabolized i n a v a r i e t y of ways (Newsholme and S t a r t 1973). The enzyme l a c t a t e dehydrogenase (LDH) c a t a l y z e s the pyruvate to l a c t a t e r e a c t i o n and i s s t r o n g l y p o i s e d thermodynamically i n the l a c t a t e d i r e c t i o n (Everse and Kaplan 1973). Within s k e l e t a l muscle the M4-LDH isoenzyme form predominates. T h i s isoenzyme demonstrates a high Km f o r pyruvate and NADH while being i n s e n s i t i v e to pyruvate or l a c t a t e i n h i b i t i o n and has a low a f f i n i t y f o r l a c t a t e (Hochachka 1980). Thus M4-LDH a c t s e s s e n t i a l l y as a pyruvate reductase whose a c t i v i t y i s e s s e n t i a l to maintain redox balance. 4. E x e r c i s e P h y s i o l o g y . S p e c i f i c a l l y i n anaerobic work the i n i t i a l source of energy f o r in t e n s e muscular c o n t r a c t i o n comes from creatine-phosphate (CP) and ATP s t o r e s which are approximately 16 and 4 mmol.kg"1 wet muscle ( K a r l s s o n et a l . , 1971; Knuttgen and S a l t i n 1972). In humans, these sources can only p r o v i d e enough energy f o r the f i r s t ten to t h i r t y seconds of e x e r c i s e a f t e r which anaerobic g l y c o l y s i s p r o v i d e s the necessary energy r e q u i r e d f o r continued muscular c o n t r a c t i o n . Thus f o r improved anaerobic performances t r a i n e d a t h l e t e s must 53 have e i t h e r : e l e v a t e d l e v e l s of s t o r e d CP, ATP and/or glycogen, i n c r e a s e d a c t i v i t y of the r a t e l i m i t i n g r e g u l a t o r y enzymes, and/or an enhanced mechanism f o r b u f f e r i n g the i n h i b i t i n g e f f e c t s of accumulated anaerobic end p r o d u c t s . During high i n t e n s i t y , short d u r a t i o n worik, glycogen l e v e l s are never d e p l e t e d before f a t i g u e causes c e a s a t i o n of the e x e r c i s e ( G o l l n i c k and Hermansen 1973). Changes i n i n t r a c e l l u l a r s t o r e s of ATP and CP f o l l o w i n g t r a i n i n g are of such low magnitude as not to s i g n i f i c a n t l y enhance performance on anaerobic workloads (Knuttgen and S a l t i n 1972). Thus enhanced performance as a r e s u l t of i n c r e a s e d s t o r e d s u b s t r a t e l e v e l s does not seem f e a s i b l e . The advent of the needle biopsy technique (Bergstrom et a l . , 1962) and the subsequent i d e n t i f i c a t i o n of two d i s t i n c t muscle f i b e r types demonstrating d i s t i n g u i s h i n g enzymatic and c o n t r a c t i l e p r o p e r t i e s p r o v i d e d the impetus f o r much of the i n v e s t i g a t i o n surrounding enhanced anaerobic performance. F i b e r s were o r i g i n a l l y c l a s s i f i e d as e i t h e r f a s t - t w i t c h or slow-twitch based on t h e i r c o n t r a c t i l e p r o p e r t i e s and s t a i n i n g i n t e n s i t i e s f o r o x i d a t i v e enzyme a c t i v i t y (Dubowitz and Brooke 1973). Many of the problems a s s o c i a t e d with s k e l e t a l muscle f i b e r composition can be a t t r i b u t e d to the nomenclature u t i l i z e d f o r h i s t o c h e m i c a l c l a s s i f i c a t i o n . B r i e f l y f o r non-human s k e l e t a l muscle, f i b e r s are p r e s e n t l y being c l a s s i f i e d on the b a s i s of t h e i r r e a c t i o n s to a c o n t r a c t i l e c h a r a c t e r i s t i c (myosin ATPase) and to t h e i r o x i d a t i v e c a p a c i t y (NADH-TR). U t i l i z i n g these s t a i n s 3 f i b e r types have been i d e n t i f i e d : f a s t - t w i t c h high 54 g l y c o l y t i c (FG), fast-twi.tch high g l y c o l y t i c - h i g h o x i d a t i v e (FOG) and slow-twitch o x i d a t i v e (SO) (Houston 1978). With human s k e l e t a l muscle most i n v e s t i g a t i o n s . have u t i l i z e d a two f i b e r c l a s s i f i c a t i o n based on the h i s t o c h e m i c a l m y o f i b r i l l a r ATPase r e a c t i o n at pH 9.4 (Houston 1978). The l i g h t s t a i n i n g f i b e r s were c l a s s i f i e d as type I and the dark s t a i n i n g f i b e r s as type I I . These f i b e r s represent slow and f a s t c o n t r a c t i o n v e l o c i t i e s r e s p e c t i v e l y . An a l t e r n a t e c l a s s i f i c a t i o n of slow-twitch (ST) and f a s t - t w i t c h (FT) has been used e x t e n s i v e l y ( G o l l n i c k et a l . , 1972; C o s t i l l et a l . , 1976). With the improvement i n s t a i n i n g techniques f u r t h e r s u b d i v i s i o n s of f a s t - t w i t c h (type II) f i b e r s have been i d e n t i f i e d on the b a s i s of t h e i r s t a i n i n g i n t e n s i t i e s f o r myosin ATPase at d i f f e r e n t p r e - i n c u b a t i o n pH's. Thus the type II (FT) f i b e r s have f u r t h e r been c l a s s i f i e d as types IIA, IIB, IIC. U t i l i z i n g a two f i b e r c l a s s i f i c a t i o n scheme f o r human s k e l e t a l muscle slow-twitch r e f e r s to type I and f a s t - t w i t c h corresponds to type II which i n c l u d e s a l l the type II s u b d i v i s i o n s . F i b e r composition of s p r i n t (Edstrom and Ekblom 1972; Thorstenson 1975, 1976; C o s t i l l et a l . , 1976, 1979; P r i n c e et a l . , 1976; Thomson et a l . , 1979, Roberts et a l . , 1981) and endurance ( C o s t i l l et a l . , 1971, 1976, 1979; G o l l n i c k et a l . , 1973, 1974; E r i k s s o n et a l . , 1973; P r i n c e et a l . , 1976, 1977; Hennrikson 1977; Jansen and K a i j s e r 1977; S a l t i n et a l . , 1977; Essen et a l . , 1978; L i t h i l l e t a l . , 1979) t r a i n e d a t h l e t e s have been i n v e s t i g a t e d r e v e a l i n g a higher p r o p o r t i o n of f a s t - t w i t c h f i b e r s w i t h i n s p r i n t a t h l e t e s and a higher p r o p o r t i o n of slow-twitch f i b e r s w i t h i n endurance 55 a t h l e t e s . The i n t e r c o n v e r s i o n of f a s t - t w i t c h to slow-twitch and v i c e v e r s a does not appear.to occur as a r e s u l t of t r a i n i n g though the r e l a t i v e g l y c o l y t i c or o x i d a t i v e c a p a c i t i e s w i t h i n each f i b e r type are augmented ( G o l l n i c k 1982). Hypertrophy of f i b e r s appears to be s e l e c t i v e l y chosen as to the type of t r a i n i n g performed ( G o l l n i c k et a l . , 1972, 1973; C o s t i l l et a l . , 1976; P r i n c e et a l . , 1976; S a l t i n et a l . 1976, Andersen and Hennriksen 1977). Increased s i z e and number of f a s t - t w i t c h f i b e r s w i t h i n the s p r i n t t r a i n e d p o p u l a t i o n can not t o t a l l y account f o r t h e i r enhanced performances. F a s t - t w i t c h f i b e r s have a much higher g l y c o l y t i c p o t e n t i a l than slow-twitch (Lowry et a l . , 1978; Essen et a l . , 1975). Enzyme a c t i v i t i e s (LDH, PFK, phosphorylase, HK) w i t h i n a t h l e t e s and animals f o l l o w i n g s p r i n t t r a i n i n g have demonstrated with minor e x c e p t i o n s no s i g n i f i c a n t d i f f e r e n c e s (Baldwin et a l . , 1972; G o l l n i c k et a l . , 1972; H o l l o s z y et a l . , 1971; Hickson et a l . , 1975). C o s t i l l et a l . , (1976) examined d i f f e r e n t t r a c k a t h l e t e s and found s p r i n t t r a i n e d a t h l e t e s to have e l e v a t e d LDH and phosphorylase a c t i v i t i e s as compared to endurance t r a i n e d a t h l e t e s . T h e r e f o r e though some enhancement of g l y c o l y t i c enzyme a c t i v i t y appears to accompany s p r i n t t r a i n i n g , the q u a n t i t a t i v e changes are of i n s u f f i c i e n t magnitude to s o l e l y account f o r the d i f f e r e n c e s demonstrated i n anaerobic performance. Accumulation of anaerobic end products has been a s s o c i a t e d with the f a t i g u e process probably through the proton .action on i n t r a c e l l u l a r pH. S t u d i e s on e x e r c i s i n g man have found i n t r a m u s c u l a r pH to be as low as 6.4 to 6.6 d u r i n g a short 56 i n t e n s i v e e x e r c i s e bout (Osnes and Hermansen 1972; S a h l i n et a l . , 1976). A s s o c i a t e d with the pH decrement are reduced r a t e s of g l y c o l y s i s (Tpews et a l . , 1970; Sutton et a l . , 1981; Roos and Boron 1981) and c o r r e l a t i o n s with f a t i g u e ( F i t t s and H o l l o s z y 1976; Stevens 1980). Thus anaerobic performance may be enhanced by reducing the r a t e of pHi decrement which accompanies the proton accumulation dur i n g high i n t e n s i t y , short d u r a t i o n work. B. I n t r a c e l l u l a r pH. The pH value of a s o l u t i o n i s a measure of the r e l a t i v e chemical p o t e n t i a l s of the protons i n that s o l u t i o n (Waddell 1971). S e v e r a l techniques e x i s t f o r the dete r m i n a t i o n of i n t r a c e l l u l a r pH ( p H i ) : homogenate, d i s t r i b u t i o n of weak a c i d s and bases (DMO), c a l o r i m e t r y and fluo r o m e t r y , m i c r o e l e c t r o d e and 31P nu c l e a r magnetic resonance spectroscopy. Each method has i t s r e s p e c t i v e advantages and disadvantages d i s p l a y i n g l a r g e v a r i a t i o n s i n i n t r a c e l l u l a r pH de t e r m i n a t i o n of human s k e l e t a l muscle (Roos and Boron 1981). Measurement of pH on a homogenate was f i r s t employed by M i c h a e l i s and Dav i d o f f (1912) on red blood c e l l s . The homogenate technique possess s e v e r a l problems: l a c t i c a c i d and CO pro d u c t i o n continue a f t e r c e l l u l a r d e s t r u c t i o n l e a d i n g to a f a l l i n pH\. (Waddell and Bates 1969), mixing of e x t r a - and i n t r a c e l l u l a r f l u i d s can l e a d to pH changes i f the s o l u t i o n s are of d i s s i m i l a r pH, the d i l u t i o n of the e x t r a - and i n t r a c e l l u l a r b u f f e r s (Bates 1973), and d i s r u p t i o n of i n t r a c e l l u l a r o r g a n e l l e s with t h e i r r e s p e c t i v e i n t e r n a l pH (Cohen and l i e s 1975). 57 Furusawa and K e r r i d g e (1927) examined cat s k e l e t a l , c a r d i a c and u t e r i n e muscle, e l i m i n a t e d the CO^and l a c t a t e problems, by immediate submersion of the sample in l i q u i d . a i r , ;with subsequent mincing and pH d e t e r m i n a t i o n by g l a s s m i c r o e l e c t r o d e at 0°C. A s e r i e s of s t u d i e s were conducted examining both r e s t i n g and p o s t - e x e r c i s e i n t r a c e l l u l a r pH d e t e r m i n a t i o n s on human q u a d r i c e p muscle homogenates (Hermansen and Osnes 1972; S a h l i n , H a r r i s and Hultman 1975; S a h l i n 1976). Reported r e s t i n g pH v a l u e s were 6.92+.10 (Hermansen and Osnes 1972) and 7.08+.03 ( S a h l i n , 1976) r e s p e c t i v e l y . The i n c l u s i o n of i o d o a c e t i c a c i d (IAA) i n the p r e p a r a t i o n prevented the continuous decrease i n pH d u r i n g the measurement. S a h l i n (1976) estimated that the mixing of the i n t r a - with the e x t r a c e l l u l a r compartments would i n c r e a s e the r e s t i n g i n t r a c e l l u l a r pH of the samples by about 0.03 u n i t s . A pH of 6.8 to 7.1 has been obtained i n most animal s t u d i e s on s k e l e t a l muscle by a l a r g e number of techniques (Furusawa and K e r r i d g e 1927; M i l l a r , Tyson and Relman 1963; Hault et a l . , 1974; Waddell and Bates 1969; A i c k i n and Thomas 1977). 1. T o t a l muscle pH i n r e l a t i o n to e x e r c i s e . Furusawa and K e r r i d g e (1927) studying e l e c t r i c a l l y , s t i m u l a t e d cat gastrocnemius muscle found pH to decrease from 7.04 at r e s t to 6.26 at f a t i g u e . The r e s u l t s from more recent s t u d i e s are i n agreement with these f i g u r e s . Steinhagen et a l . , (1976) examined i n t e r s t i t i a l pH of dog working gastrocnemius muscle with implanted g l a s s m i n i e l e c t r o d e s and found a proton c o n c e n t r a t i o n g r a d i e n t to always e x i s t between i n t e r s t i t i a l f l u i d and venous blood. I n t e r s t i t i a l pH w i t h i n muscle has shown an i n i t i a l 58 a l k a l i n i z a t i o n f o l l o wed by an i n c r e a s e d a c i d i f i c a t i o n to occur d u r i n g c o n t r a c t i o n (Gebert and Sydney 1973; Steinhagen et a l . , 1976). The time course of pH changes are i n agreement with the metabolic changes w i t h i n muscle (Danforth et a l . , 1965). The i n t r a c e l l u l a r pH of r a t t h i g h muscle measured by :Rooth (1966) using the DMO method was found to decrease only from 6.64 at r e s t to 6.57 a f t e r exhaustive e x e r c i s e . S i m i l a r l y , Hermansen (1969) examined one s u b j e c t running i n t e r m i t t e n t l y f o r 20 minutes, with pH determined by the DMO technique. He found the pH to decrease from only 6.88 at r e s t to 6.73 a f t e r e x e r c i s e . R e l i a b l e pH valu e s determined by the DMO method r e q u i r e at l e a s t one hour of e q u i l i b r a t i o n time between the i n t r a - and e x t r a c e l l u l a r compartments (Waddell and B u t l e r 1959). T h i s c o n d i t i o n was not met i n e i t h e r the study by Rooth (1966) or Hermansen (1969). In a study on maximum b i c y c l e e x e r c i s e of short d u r a t i o n , t o t a l muscle pH of the musculus quadreceps femoris was determined by the homogenate technique. Muscle pH was found to decrease from 6.92 at r e s t to 6.41 a f t e r exhaustive e x e r c i s e (Hermansen and Osnes 1972). Muscle samples of the musculus quadriceps femoris were obtained p r i o r and post i s o m e t r i c e x e r c i s e to f a t i g u e with muscle pH dete r m i n a t i o n s being made by the homogenate technique ( S a h l i n , H a r r i s and Hultman, 1975). Muscle pH was found to decrease from 7.09 at r e s t to 6.56 at f a t i g u e . In a subsequent i n v e s t i g a t i o n employing dynamic e x e r c i s e , muscle pH was found to decrease from 7.08 at r e s t to 6.60 at exhaustion ( S a h l i n eta.l., 1976). I t thus appears that 59 human quadricep t o t a l muscle pH determined by the homogenate technique i s roughly 7.0 and that i n t e n s e muscular e x e r c i s e to f a t i q u e r e s u l t s i n a r e d u c t i o n i n intramuscular pH to approximatly 6.5. 2.. pH changes and muscular work of s k e l e t a l muscle. The e f f e c t s of acid-base changes on s k e l e t a l muscle were f i r s t demonstrated by Creese (1950) on i s o l a t e d r e p e t i t i v e l y s t i m u l a t e d r a t diaphragm muscle. The t r a n s i e n t s which o c c u r r e d i n t w i t c h t e n s i o n c o u l d be a s c r i b e d to the pH changes r e s u l t i n g from removal and readmission of CO t. Foulks and Perry (1977) found e x t r a c e l l u l a r pH changes from 5 to 9 at constant PCO t to a f f e c t t w i t c h t e n s i o n of f r o g muscle very l i t t l e . S t i m u l a t i n g f r o g muscle to f a t i g u e , Mainwood and Brown (1975) found t w i t c h t e n s i o n decreased to 20 percent of c o n t r o l . In an e a r l i e r i n v e s t i g a t i o n , Mainwood et a l . , (1972) found e x t e r n a l HCO^ to modulate i n t r a c e l l u l a r proton balance and to l i m i t l a c t a t e e f f l u x . I n c r e a s i n g e x t r a c e l l u l a r pH, thus r a i s i n g i n t e r n a l pH, i n c r e a s e d l a c t a t e e f f l u x l e a d i n g to n e a r l y 100 percent recovery of t e n s i o n i n f a t i g u e d muscle. In experiments where pH was monitored by 31P-nuclear magnetic resonance Dawson et a l . , (1978) found i n v e r s e r e l a t i o n s h i p s between i s o l a t e d f r o g muscle p r e p a r a t i o n s f o r c e g e n e r a t i o n c a p a b i l i t i e s and proton c o n c e n t r a t i o n . Stevens (1980) found i s o l a t e d f r o g s a r t o r i u s muscle p r e p a r a t i o n s to demonstrate c o r r e l a t i o n s between pH and f a t i g u e . S i m i l a r r e l a t i o n s h i p s were demonstrated by F i t t s and H o l l o s z y (1976) on f r o g muscle p r e p a r a t i o n s between l a c t a t e l e v e l s and f a t i g u e . 60 3. Mechanisms of A c t i o n . I t has been suggested by Nocker (1964) that decreased pH may a f f e c t the membrane p e r m e a b i l i t y to Na*and K* r e s u l t i n g i n a h y p e r p o l a r i z e d s t a t e . T h i s e f f e c t may be even more important i n f a s t - t w i t c h f i b e r s than slow-twitch f i b e r s s i n c e they have a lower r e s t i n g membrane p o t e n t i a l (Campion 1974). Muscle c o n t r a c t i o n would be impaired s i n c e membrane p e r m e a b i l i t y i s v i t a l to the e l i c i t a t i o n of an a c t i o n p o t e n t i a l . A decreased a c t i v e c r o s s b r i d g e formation due to proton c o m p e t i t i o n with Ca f o r the actomyosin b i n d i n g s i t e s , may reduce work c a p a c i t y (Katz 1970). F a b i a t o and F a b i a t o (1978) examined the e f f e c t s of pH on the myofilaments and sarcoplasmic r e t i c u l u m of skinned f r o g s k e l e t a l muscle c e l l s . They found s k e l e t a l muscle i n c r e a s e d i t s r e l e a s e of Ca*at moderate a c i d i f i c a t i o n i n an attempt to compensate f o r the decreased s e n s i t i v i t y of the myofilaments to Ca*. Th e r e f o r e they i d e n t i f i e d the only e f f e c t of pH v a r i a t i o n w i t h i n s k e l e t a l muscle, was the decreased maximum t e n s i o n development c a p a b i l i t y d u r i n g a c i d o s i s . I n t r a c e l l u l a r pH has many i n t e r a c t i o n s with metabolic t r a n s f o r m a t i o n s . I o n i z a b l e groups of a c t i v e s i t e s on enzymes, may a f f e c t the enzymes conformation and thus i t s s u b s t r a t e b i n d i n g and c a t a l y t i c p r o p e r t i e s through t h e i r s t a t e of i o n i z a t i o n . S p e c i f i c groups on s u b s t r a t e s or c o f a c t o r s through t h e i r degree of i o n i z a t i o n may a f f e c t t h e i r a b i l i t y to bind to the enzyme. The d i r e c t uptake or r e l e a s e of protons or CG\by the metabolic t r a n s f o r m a t i o n s themselves may produce pH changes (Roos and Boron 1981). Within the g l y c o l y t i c pathway the co n v e r s i o n of i n a c t i v e 61 phosphorylase b i n t o a c t i v e phosphorylase a i s pH sensitive.. Danforth (1965) examined i n t a c t f r o g muscle and demonstrated a l a g p e r i o d before appearance of phosphorylase a i n response t o muscle s t i m u l a t i o n as C0Z c o n c e n t r a t i o n was r a i s e d . In v i t r o p r e p a r a t i o n s s i m i l a r l y depressed phosphorylase b to a c o n v e r s i o n as pH decreased. T r i v e d i and Danforth (1966) i d e n t i f i e d a marked pH s e n s i t i v i t y of PFK, the enzyme that phosphorylates f r u c t o s e - 6 - phosphate (F6P). U t i l i z i n g an i n v i t r o p r e p a r a t i o n , a 10 to 20 f o l d r e d u c t i o n i n enzyme a c t i v i t y o c c u r r e d when pH was reduced by 0.1 u n i t s . The.actual pH range that produced the markedly decreased enzyme a c t i v i t y was dependent upon F6P c o n c e n t r a t i o n . The i n c r e a s e d c o n c e n t r a t i o n s of G6P as a r e s u l t of e l e v a t e d F6P a c t i v i t y tends to i n h i b i t r e a c t i o n s higher up i n the g l y c o l y t i c pathway ( T r i v e d i and Danforth 1966). The- c o n c e n t r a t i o n s of muscle g l y c o l y t i c i n t e r m e d i a t e s determined at exhaustion, were u t i l i z e d to determine at which p o i n t i n the g l y c o l y t i c pathway a c i d o s i s produced i t s i n h i b i t o r y a c t i o n (Toews et a l . , 1970). PFK was i d e n t i f i e d as the enzyme whose a c t i o n was i n h i b i t e d by a c i d o s i s . The enzyme a c t i o n s of PFK and pyruvate kinase (PK) are l i n k e d by adenylate c o u p l i n g , thus i n h i b i t i n g the p r o d u c t i o n of pyruvate. Decreases i n pH l e a d to l a r g e changes i n ATP and CP s e n s i t i v i t y as w e l l as l a r g e i n c r e a s e s i n a f f i n i t y f o r both s u b s t r a t e s (Hochachka 1980). Sutton et a l . , (1981) examined the e f f e c t of pH on muscle g l y c o l y s i s d u r i n g e x e r c i s e , c o n c l u d i n g that i n agreement with the i n v i t r o s t u d i e s , e l e v a t e d proton c o n c e n t r a t i o n s e v e n t u a l l y 62 i n h i b i t g l y c o l y s i s reducing the supply of ATP necessary f o r continued muscular c o n t r a c t i o n . These a c t i o n s appear to be e l i c i t e d by pH dependent i n h i b i t i o n of the c o n t r a c t i l e process and of the g l y c o l y t i c r e g u l a t o r y enzymes phosphorylase and phosphofructokinase. Thus the importance of n e u t r a l i z i n g the proton accumulation and l i m i t i n g the decrement i n pH a s s o c i a t e d with muscular work may i n f l u e n c e anaerobic performance. C. B u f f e r C a p a c i t y Most anaerobic s t u d i e s have c o n c e n t r a t e d on changes i n s u b s t r a t e l e v e l s or enzyme a c t i v i t y and m e t a b o l i t e c o n c e n t r a t i o n s which c o u l d be capable of g e n e r a t i n g ATP and m a i n t a i n i n g redox balance (Hochachka 1980). Few i n v e s t i g a t i o n s have c e n t r e d on the c a p a c i t y of i n t r a c e l l u l a r f l u i d s to b u f f e r the a c i d i c end products of anaerobic g l y c o l y s i s . H e i s l e r and P i i p e r (1971) s t a t e t h at s k e l e t a l muscle by v i r t u e of i t s h i g h mass, i t s abrupt and l a r g e changes i n metabolic a c t i v i t y , and i t s h i g h anaerobic c a p a c i t y , show that i t must be s u b j e c t to l a r g e l o c a l , v a r i a t i o n s i n a c i d p r o d u c t i o n . T h e r e f o r e they suggest that s k e l e t a l muscle must be the most important determinant of o v e r a l l b u f f e r i n g a b i l i t y of the organism. Although B of s k e l e t a l muscle had been reco g n i z e d as an important f a c t o r i n pH r e g u l a t i o n , i t s involvement to pH homeostasis w i t h i n t r a i n e d a t h l e t e s has not been i n v e s t i g a t e d . Homeostasis of pH r e l i e s on the c e l l s a b i l i t y to extrude H* and/or accumulate HCO^ or OH~ (Roos and Boron 1981). I t i s g e n e r a l l y accepted that an a c i d i s a proton doner and a base i s 63 a hydrogen acc e p t o r , while a b u f f e r i s something that r e s i s t s change. A pH b u f f e r i s a substance, or mixture of substances, that permit s o l u t i o n s to r e s i s t l a r g e changes i n pH upon the a d d i t i o n of small amounts of H*or OH*ions (Segal 1976). B u f f e r c a p a c i t y r e f e r s to the a b i l i t y of a b u f f e r to r e s i s t changes i n pH. B can be d e f i n e d as the number of moles per l i t e r of H*or OH r e q u i r e d to cause a given change i n pH of 1 u n i t . E s s e n t i a l l y B i s the r e c i p r o c a l of the slope of the t i t r a t i o n curve at any p o i n t (Segal 1976). Larsen and B u r n e l l (1978) s t a t e d that B was a f u n c t i o n of b u f f e r c o n c e n t r a t i o n and the proton s e q u e s t e r i n g c a p a b i l i t i e s of the b u f f e r s i n the s p e c i f i c pH range. In 1908 Henderson and Washburn working s e p a r a t e l y r e p o r t e d that a weak a c i d e x e r t e d i t s maximum b u f f e r i n g when . i t s d i s s o c i a t i o n constant e q u a l l e d the H * c o n c e n t r a t i o n . Koppel and S p i r o (1914) were the f i r s t to demonstrate that t o t a l b u f f e r a c t i o n was the sum of the i n d i v i d u a l b u f f e r a c t i o n s . They demonstrated that the maximal b u f f e r a c t i o n of a l l monovalent weak a c i d s at e q u i v a l e n t t o t a l c o n c e n t r a t i o n s were the same. M i c h a e l i s i n 1922 m o d i f i e d the d e f i n i t i o n of b u f f e r i n g power to B =dB/dpH. Van Slyke (1922) d e f i n e d b u f f e r i n g power i n the same way as M i c h a e l i s . T h i s d e f i n i t i o n i n v o l v e s the so c a l l e d s e l f b u f f e r i n g of water, which only becomes apparent at extreme pH v a l u e s and i s n e g l i g i b l e i n the p h y s i o l o g i c a l pH range (Roos and Boron 1981). T h i s d e f i n i t i o n of b u f f e r i n g power given by M i c h a e l i s and Van Slyke i s now r e a d i l y accepted. 64 - U S k e l e t a l Muscle B u f f e r i n g C a p a c i t y . S e v e r a l methods employing the a d d i t i o n of a c i d or base loads while m o n i t o r i n g pH changes by a v a r i e t y of means have been u t i l i z e d f o r the d e t e r m i n a t i o n of B w i t h i n s k e l e t a l muscle. T i t r a t i o n of c e l l u l a r homogenates was f i r s t used by Furusawa and K e r r i d g e (1927) on c a t s k e l e t a l , c a r d i a c and smooth muscle at 0*C over the pH range 6.4 to 7.4. D i l u t i o n d i d not s u b s t a n t i a l l y a l t e r the pH. T i t r a t i o n of i n t r a c e l l u l a r f l u i d i n s i t u by the i n j e c t i o n of a c i d or a l k a l i or by exposure to a weak a c i d or base was another technique employed. T i t r a t i o n of i n t a c t c e l l s impaled with a pH s e n s i t i v e m i c r o e l e c t r o d e i s a t h i r d technique which has been used. I n t r a c e l l u l a r b u f f e r c a p a c i t y of s k e l e t a l muscle has been determined i n a v a r i e t y of s p e c i e s and a summary of the r e s u l t s are c o n t a i n e d i n t a b l e 5. Values range from 40 to l00(mmol.pH .1 IC H tO) and appear to be r e l a t e d to the muscles c a p a c i t y f o r h i g h g l y c o l y t i c f u n c t i o n ( C a s t e l l i n i and Somero 1981). H e i s l e r and P i i p e r (1971, 1972) demonstrated t h a t these v a l u e s d i f f e r from the B of i n t a c t p r e p a r a t i o n s and that these d i s c r e p a n c i e s are due to the transmembrane f l u x e s of H*"and/or HCO a i n i n t a c t muscle. Protons appear to be t r a n s p o r t e d i n t o s k e l e t a l muscle and out of heart and b r a i n t i s s u e d u r i n g severe r e s p i r a t o r y a c i d o s i s (Clancy and Brown 1966; S i e s j o and Messeter 1971; L a i et a l . , 1973). Thus the l a r g e b u f f e r i n g a b i l i t y of muscle appears to be u t i l i z e d f o r the p r o t e c t i o n of more c r i t i c a l t i s s u e s . Hultman and S a h l i n (1980) examining a c i d base balance d u r i n g e x e r c i s e c a l c u l a t e d an apparent B of 73.5 (mmol.pH .1 H^O) based on proton r e l e a s e c a l c u l a t e d from l a c t a t e p r o d u c t i o n and Table 5. Average non-bicarbonate b u f f e r values f o r s k e l e t a l muscle determined by homogenate t i t r a t i o n w i t h HC1 or NaOH (mmol.kg .1 HO I C ) . Reference Tissue B u f f e r Capacity Furusawa and Kerridge 1927 Bate-Smith 1938 Ecke l et a l . 1959 Davey 1960b Cat gastrocnemius s e v e r a l i n r i g o r s r a t mouse soleus p r e - r i g o r Larsen-and B u r n e l l 1978 C a s t e l l i n i and Somero 1981 t e r r e s t e r i a l mammals 43- 74-97 61 40 66 85 66 the change i n pH with e x e r c i s e . A s i m i l a r value of 68.5(S1) was e a r l i e r c a l c u l a t e d by S a h l i n (1978) f o r B by the v a r i o u s b u f f e r i n g c o n s t i t u e n t s d u r i n g dynamic e x e r c i s e when intra m u s c u l a r pH decreases from 7.0 to 6.4. .2. S k e l e t a l Muscle B u f f e r i n g C o n s t i t u e n t s . S i e s j o and Messeter (1971) have c l a s s i f i e d the major b u f f e r i n g c o n s t i t u e n t s i n t o three components: f i r s t , p h y s i c o - c h e m i c a l b u f f e r i n g ; second, consumption or p r o d u c t i o n of n o n - v o l a t i l e a c i d s and t h i r d , transmembrane f l u x e s of H and HCO a . B of i n v i t r o p r e p a r a t i o n s c o n s i s t s of simply the physi c o - c h e m i c a l b u f f e r i n g component which comprises the b u f f e r i n g w i t h i n a c e l l merely as a consequence of H * a s s o c i a t i o n with bases (Roos and Boron 1981). Burton (1978) suggested that the h i s t i d i n e r e l a t e d compounds and in o r g a n i c phosphate (P^) were the major b u f f e r i n g components of s k e l e t a l muscle. T i t r a t i o n of muscle homogenates p r o v i d e s a c l o s e d system whereby the HCO b u f f e r i n g mechanism can be ne g l e c t e d (Larsen and B u r n e l l 1978). S a h l i n (1978) suggested that HCO c o u l d c o n t r i b u t e as much as 15 to 18 percent of t o t a l B i n v i v o d u r i n g exhaustive e x e r c i s e . Davey (1960b) suggested that at l e a s t 90 percent of the B on d e p r o t e i n i z e d homogenates of pre- and post r i g o r s k e l e t a l muscle c o u l d be accounted f o r by ATP, i n o r g a n i c phosphate, c a r n o s i n e , a n s e r i n e and u n i d e n t i f i e d phosphate. ATP has an a p p r o p r i a t e pKa (7.0) but, occurs complex bound to Mg and p r o t e i n s , r e n d e r i n g i t s b u f f e r i n g power n e g l i g i b l e (Burton 1978; Hultman and S a h l i n 1980). ADP, demonstrating a pKa of 6.7, occurs i n too low c o n c e n t r a t i o n s to c o n t r i b u t e to b u f f e r i n g 67 (Dawson et' a l . , 1977; Burton 1978; Hultman and S a h l i n 1 980).. Burton ( 1978) suggested that P{ c o n t r i b u t e d r e l a t i v e l y . l i t t l e to b u f f e r i n g , u n t i l muscle c o n t r a c t i o n i s a c t i v a t e d and CP i s h y d r o l y z e d . Somero (1981) suggested that f r e e P{ was the second most important b u f f e r i n b i o l o g i c a l f l u i d s . I t appeared that P( was p o o r l y s u i t e d f o r s t a b i l i z i n g pH as i t s pk was i n s e n s i t i v e to temperature. Imidazole type b u f f e r s , e s p e c i a l l y a n s e r i n e , c a r n o s i n e and ophidine which occur predominantly i n h i g h l y g l y c o l y t i c t i s s u e , have been suggested to dominate b u f f e r i n g of b i o l o g i c a l f l u i d s due to t h e i r a b i l i t y to maintain t h e i r B with e l e v a t e d temperatures (Somero 1981). T h i s b u f f e r type c o n s i s t s of f r e e h i s t i d i n e , the h i s t i d i n e d i p e p t i d e s and p r o t e i n bound h i s t i d i n e r e s i d u e s . P r o t e i n s are recognized as a major b u f f e r w i t h i n s k e l e t a l muscle (Bate-Smith 1938; Woodbury 1965; S a h l i n 1978). Woodbury (1965) c a l c u l a t e d the b u f f e r . v a l u e of muscle p r o t e i n based on h i s t i d i n e content to be about 15 SI while Bate- Smith (1938) examining t i t r a t i o n s of muscle e x t r a c t s with and without p r o t e i n s found p r o t e i n c o n t r i b u t i o n v a l u e s of 17 to 37 SI which corresponds to approxiamently 40 to 50 percent of B. Hultman and S a h l i n (1980) c a l c u l a t e d p r o t e i n s to c o n t i b u t e up to 50 percent of the t o t a l p h y s i c o - c h e m i c a l b u f f e r i n g . The c o n t r i b u t i o n of the f r e e amino a c i d s t o B i n the p h y s i o l o g i c a l pH range i s l i m i t e d to those demonstrating a pKa f o r t h e i r i o n i z a b l e R groups i n that range (Hultman and S a h l i n 1980). Somero (1981) found the f r e e H i s t i d i n e c o n t r i b u t i o n to t o t a l B to be of minor importance, while S a h l i n (1976) c a l c u l a t e d the f r e e h i s t i d i n e c o n t r i b u t i o n to b u f f e r i n g to be only 0.1 SI. 68 Since amino a c i d s demonstrating these pK c h a r a c t e r i s t i c s occur i n such minor c o n c e n t r a t i o n s w i t h i n s k e l e t a l muscle, t h e i r r e l a t i v e c o n t r i b u t i o n t o t o t a l B i s n e g l i g i b l e . D i f f e r e n c e s i n b u f f e r c a p a c i t y a c r o s s f i s h s p e c i e s were a t t r i b u t e d to v a r i a t i o n s i n p r o t e i n content or f r e e h i s t i d i n e c o n c e n t r a t i o n s ( C a s t e l l i n i and Somero 1981). Within humans the c o n c e n t r a t i o n of f r e e h i s t i d i n e i s s u b s t a n t i a l l y l e s s than that of the h i s t i d i n e - c o n t a i n i n g d i p e p t i d e s (Bergstrom et a l . , 1974; Rennie et a l . , 1981).. Thus the p o s s i b i l i t y e x i s t s that w i t h i n human s k e l e t a l muscle, a l t e r a t i o n s i n content of the h i s t i d i n e - c o n t a i n i n g d i p e p t i d e s may account f o r the v a r i a n c e s observed i n b u f f e r c a p a c i t y . T h e r e f o r e the r e l a t i v e r o l e of . the d i p e p t i d e s c a r n o s i n e and ans e r i n e i n r e l a t i o n to b u f f e r c a p a c i t y of human s k e l e t a l muscle must be i n v e s t i g a t e d . 3. Carnosine and An s e r i n e . The d i p e p t i d e s a n s e r i n e (B- a l a n y l - N - m e t h y l h i s t i d i n e ) and c a r n o s i n e ( B - a l a n y l h i s t i d i n e ) are found i n the s k e l e t a l muscles of many s p e c i e s of animals (Crush et a l . , 1970; Christman 1976). Carnosine was f i r s t d i s c o v e r e d by G u l e v i c h i n 1900. The b i o s y n t h e s i s of a n s e r i n e and ca r n o s i n e i n ra t s k e l e t a l muscle has been demonstrated by Aonuma et a l . , (1969, 1970) to i n v o l v e the c o n v e r s i o n of a n s e r i n e to ca r n o s i n e preceded by s y n t h e s i s of a n s e r i n e from B-alanine and N- m e t h y l h i s t i d i n e . Carnosine and i t s methylated analogues p l a y some p h y s i o l o g i c a l r o l e i n the s p e c i a l i z e d t i s s u e s where they are found but, no u n i f i e d e x p l a n a t i o n of t h e i r r o l e e x i s t s . A nserine and ca r n o s i n e were demonstrated to a c t as b u f f e r s to n e u t r a l i z e the a c i d o s i s which o c c u r r e d d u r i n g anaerobic 69 g l y c o l y s i s (Shertsner 1958; Davey 1960a,b; Quershi and Wood 1962; Meshkova 1965). The pK c h a r a c t e r i s t i c s of both c a r n o s i n e (pk = 6.83) and a n s e r i n e (pk = 7.04) were i d e n t i f i e d by Bate- Smith (1938) and Eggleton and Eggleton (1938) who suggested that they were i d e a l l y s u i t e d f o r the r o l e of b u f f e r s i n ;the p h y s i o l o g i c a l pH range. B a t e _ S m i t h (1938) and Davey (1960a) suggested that as much as 40 percent of the t o t a l b u f f e r i n g of pre- and post r i g o r muscle c o u l d be a t t r i b u t e d to the a c t i o n of these d i p e p t i d e s . S e v e r i n (1963) found that f r o g muscle immersed i n a s o l u t i o n c o n t a i n i n g c a r n o s i n e c o u l d c o n t r a c t longer and with g r e a t e r amplitude. Meshkova (1965) c o u l d not account f o r the i n c r e a s e d g l y c o l y t i c a c t i v i t y demonstrated when ca r n o s i n e was added to the medium s o l e l y to i t s b u f f e r a c t i o n which suggests that c a r n o s i n e may augment g l y c o l y s i s by more than one mechanism. The d i p e p t i d e s were found to occur o t o g e n e t i c a l l y at the onset of muscle f u n c t i o n (Skvortsova 1953). In a s e r i e s of i n v e s t i g a t i o n s , S e v e r i n (1962, 1963, 1966) found the c o n c e n t r a t i o n of c a r n o s i n e to be g r e a t e s t at nerve endings and that the d i p e p t i d e i n c r e a s e d the work a b i l i t y of exhausted f r o g muscle. Bowen in 1965 demonstrated c a r n o s i n e and h i s t i d i n e to be powerful p o t e n t i a t o r s of ATP induced muscular c o n t r a c t i o n of r a b b i t psoas. The d i p e p t i d e s were l a t e r i d e n t i f i e d as myosin ATPase a c t i v a t o r s (Avena and Brown 1969; Parker and Ring 1970). Boldyrev i n a s e r i e s of i n v e s t i g a t i o n s (I97la,b, 1978; Lopina and Boldyrev 1974) suggested that the s p e c i f i c a c t i v a t i n g e f f e c t of c a r n o s i n e was on the sarcolemma Na* , k* - ATPase. Ikeda et a l . , 70 (1979) found the a c t i v i t y of f r u c t o s e 1,6 bisphosphatase to be s t i m u l a t e d by c a r n o s i n e and a n s e r i n e . T h i s enzyme i s i n v o l v e d i n the s u b s t r a t e c y c l e between f r u c t o s e 6 phosphate (F6P) and f r u c t o s e 1,6 diphosphate which i n v o l v e s continuous h y d r o l y s i s of ATP. T h i s c y c l e i s necessary i n muscle whose energy u t i l i z a t i o n v a r i e s widely i n order to augment the r a t e of F6P ph o s p h o r y l a t i o n and changes i n AMP c o n c e n t r a t i o n (Newsholme and S t a r t 1973). Brown (1981) found c a r n o s i n e and ans e r i n e to be l o c a t e d w i t h i n the s k e l e t a l muscle of r a t e x h i b i t i n g a c t i v e o x i d a t i v e metabolism and/or g l y c o l y s i s . Brown suggested that the d i p e p t i d e ' s r o l e may be i n t r a c e l l u l a r t r a n s p o r t of copper f o r a c t i v a t i o n of cytochrome oxidase at the end of the e l e c t r o n t r a n s p o r t c h a i n and i n r e g u l a t i o n of anaerobic g l y c o l y s i s . I t - was hypothesized that c a r n o s i n e c o u l d reverse the i n h i b i t i o n of g l y c o l y s i s w i t h i n s k e l e t a l muscle by c h e l a t i n g copper. Though many p h y s i o l o g i c a l r o l e s f o r the d i p e p t i d e s have been proposed and a s i n g l e f u n c t i o n i s u n l i k e l y , the only r o l e u n i v e r s a l l y accepted i s t h a t of a that of p h y s i o l o g i c a l b u f f e r (Boldyrev 1978). More recent i n v e s t i g a t i o n s on pH r e g u l a t i o n and B, have d i s c u s s e d the r e l a t i v e c o n t r i b u t i o n of the imidazole c o n t a i n i n g d i p e p t i d e s (Burton 1978; Hultman and S a h l i n 1980; Somero 1981). I t appears though that these d i p e p t i d e s have many f u n c t i o n a l r o l e s u l t i m a t e l y l i n k e d to r e g u l a t i o n of a e r o b i c and anaerobic metabolism. I t has been demonstrated t h a t c a r n o s i n e and a n s e r i n e l e v e l s w i t h i n many s p e c i e s are higher i n s k e l e t a l muscle denoted as 71 being white as opposed red under normal c o n d i t i o n s (Christman 1976; Tamaki et a l . , 1976), while i n humans a n s e r i n e l e v e l s appear to be e i t h e r n o n e x i s t a n t or i n s i g n i f i c a n t (Christman 1976). Tamaki et a l . , (1976) r e p o r t e d that d e n e r v a t i o n r e s u l t e d in decreased c a r n o s i n e l e v e l s and i n c r e a s e d c a r n o s i n a s e a c t i v i t y . Determinations made f o l l o w i n g an acute bout of swimming e x e r c i s e or e l e c t r i c a l s t i m u l a t i o n r e s u l t e d i n no s i g n i f i c a n t change i n r a t c a r n o s i n e l e v e l s (Eggleton and Eggleton 1933). Hunter (1924, 1925) demonstrated reduced c a r n o s i n e l e v e l s upon s t a r v a t i o n and e l e v a t e d l e v e l s upon a p r o t e i n d i e t i n r a t s . Christman (1976) r e p o r t e d an i n v e r s e r e l a t i o n s h i p between age and c a r n o s i n e l e v e l s i n human s k e l e t a l muscles, c a r n o s i n e l e v e l s d e c r e a s i n g as age i n c r e a s e d . Values i n mmol.l HjO IC ranged from 1.5 i n 60+ year o l d i n d i v i d u a l s (n=2) to 7.2 i n the 15 to 19 year o l d age range (n=5), f o r the l i m i t e d number of samples i n v e s t i g a t e d (Christman 1976). A mean i n t r a c e l l u l a r c a r n o s i n e value of 6.15 (mmol.l H^O) was r e p o r t e d by Bergstrom et a l . , (1978) f o r normal h e a l t h y a d u l t s . Carnosine occurs i n l a r g e c o n c e n t r a t i o n s w i t h i n human s k e l e t a l muscle and has been found to occur p r i m a r i l y w i t h i n s k e l e t a l muscle denoted as being white of a v a r i e t y of s p e c i e s . Thus due to i t s high c o n c e n t r a t i o n , optimal pK c h a r a c t e r i s t i c s and p o s s i b l e predominance w i t h i n f a s t g l y c o l y t i c f i b e r s , c a r n o s i n e may p l a y a s i g n i f i c a n t r o l e i n b u f f e r i n g the protons which accumulate d u r i n g i n t e n s e muscular e x e r c i s e . 72 P.. Summary. L a c t i c a c i d accumulation w i t h i n muscle and blood appears to be one of the f a c t o r s i n v o l v e d i n the complicated process of f a t i g u e as i t r e l a t e s to performance (Bagby et a l . , 1978, Klausen et a l . 1972, K a r l s s o n et a l . , 1975). Fast t w i t c h (FT) f i b e r s demonstrate the hig h e s t degree of f a t i g u a b i l i t y and have higher c o n c e n t r a t i o n s of the M-LDH isozyme (Sjoden 1976) suggesti n g t h a t f i b e r composition of s k e l e t a l muscle may be r e l a t e d to performance (Essen and Haggmark 1975; J o r d f e l t 1970). Ivy et a l . , (1980) found that both the p r o p o r t i o n of slow t w i t c h f i b e r s and the muscle r e s p i r a t o r y c a p a c i t y p l a y a r o l e i n de t e r m i n a t i o n of l a c t a t e t h r e s h o l d s . T r a i n e d s u b j e c t s demonstrate s u p e r i o r c a p a b i l i t i e s than u n t r a i n e d s u b j e c t s to t o l e r a t e h i g h blood l a c t a t e l e v e l s . I t has been suggested that i n t r a c e l l u l a r b u f f e r i n g c a p a c i t y may pl a y a r o l e i n the r e g u l a t i o n of i n t r a c e l l u l a r pH. During a high i n t e n s i t y , short d u r a t i o n workload, the B of t i s s u e may be of importance to reduce the accumulation of protons which would u l t i m a t e l y decrease pH r e s u l t i n g i n a decrement i n performance. The major b u f f e r i n g components w i t h i n human s k e l e t a l muscle, i f comparable to animal t i s s u e , are i n o r g a n i c phosphate, p r o t e i n bound h i s t i d i n e r e s i d u e s and the d i p e p t i d e c a r n o s i n e . Carnosine l e v e l s w i t h i n animal t i s s u e s appear to be h i g h l y r e l a t e d to the g l y c o l y t i c c a p a c i t y of s k e l e t a l muscle and may play a r o l e i n anaerobic performance. B u f f e r i n g i_n v i t r o c o n s i s t s merely of proton a s s o c i a t i o n with bases. There appears t o be a s p e c i f i c i n t r a m u s c u l a r pH at which f a t i g u e f o r c e d c e s s a t i o n of the e x e r c i s e ( S a h l i n et a l . , 1975, 1976; Hermansen and Osnes 1972). 73 An e l e v a t e d r e s t i n g pH may prolong one's a b i l i t y to perform by i n c r e a s i n g the amount of protons which must accumulate before the c r i t i c a l pH l e v e l i s a t t a i n e d . Thus the c a p a c i t y of s k e l e t a l muscle to b u f f e r the r e s u l t a n t pH decrement, a s s o c i a t e d with the proton accumulation which accompanies high i n t e n s i t y , short d u r a t i o n work, may enhance anaerobic performance, p o s s i b l y through a l t e r a t i o n s i n b u f f e r c a p a c i t y and c a r n o s i n e with t r a i n i n g s p e c i f i c i t y . Appendix A. Repeated buffer capacity determinations (umol.g .pi I ). Buffer Capacity Group • Subject T i t r a t i o n 1 T i t r a t i o n 2 WF 31.98 32.29 IG 24.27 22.67 Sprinters KB 32.30 31.98 BS 39.64 35.61 SH 25.67 GB 32.68 31 .93 K\7 26.95 Rowers GS 26.91 27.32 AH 28.90 29.41 SB . 45.45 42.86 BP 1 5.84 lr>.72 UJ) 17.72 1 7.02 Marathoners JC 25.30 22.88 i)S - 20.92 20.43 NW 27. 2'J 25.25 BA 17.20 RW .14.56 15.18 Untrained RW 24.60 2-3.00 BF 26.46 27.14 KM 23.02 23.26 R e l i a b i l i t y r=0.99 Appendix B. Blood lactate levels^pre- and post-anaerobic performance (mmol.l ). • Blood Laci;;ilc Concentration Group Subject Pre-AST Post-AST WF 1.4 22.7 IG . 1.1 22.8 Sprinters KB r.4 22.6 BS 0.8 22.3 SH N 0.9 19.3 GB 1.4 L3.3 KW 0.9 13.9 Rowers GS 1.0 14.1 AH 0.8 13.0 SB 1.0 15.2 BP •0.8 11.1 BB 1.3 10.8 Marathoners JC 0.9 7.2 DS 1.3 6.9 NW 0.9 14.5 BA 0.6 N 9.0 RW 0.7 6.5 Untrained RW 0.9 13.6 BF 1.0 10.8 KM 0.6 10.4 Appendix C. Bu f f e r capac i t y convers ions 1 mmol.pH !"Kg 1.29 mmol.pH ! l * t i s s u e water 1.29 m m o l . p H - . I - 1 t i s s u e water = 1.548 mmol.pH -^1 1 IC H 20 Group umoles.pH lg * mmol.pH } l * IC Î O Sp r i n t e r s 3 0 . 0 3 + 5 . 6 4 6 . 4 9 + 8 . 7 Rowers 31.74 + 7.2 49.13 + 11.2 Marathoners 2 0 . 8 3 + 4 . 4 3 2 . 2 5 + 6 . 8 Unt ra ined 2 1 . 2 5 + 5 . 0 3 2 . 9 0 + 7 . 7 77 Appendix D. S e r i a l s e c t i o n s of UT vastus l a t e r a l i s muscle s t a i n e d f o r Myosin ATPase and NADH-TR Fi b e r TyP e S t a i n i n g I n t e n s i t y a NADH-TR Type I dark Type 1.1 l i g h t b Myosin ATPase . Type I l i g h t pll 9.4 Type TI dark c Myosin ATPase Type T. ilnrk pll 4.6 Tpye T I A l i g h t Type TI B moderate d Myosin ATPase Type I dark pH 4.3 Tpye I I l i g h t 78 Appendix E. Regression analyses Buffer capacity (umol.gw/w.pĤ ) versus anaerobic performance. 50-r r=0.51 p=0.0217 y=0.115 AST + 17.87 40- 30 + 20- 10 M M U M R R . R M 25 50 — r — 75 AST (sec) 100 125 150 CO o B u f f e r c a p a c i t y (umol.gw/w.pH ) versus carnosine c o n c e n t r a t i o n . B u f f e r c a p a c i t y (uraol.gw/w.pH ) versus f a s t - t w i t c h f i b e r percentage. F a s t - t w i t c h f i b e r percentage oo tsj Carnosine concentration

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 2 17
United States 2 0
Brazil 1 0
Italy 1 0
Japan 1 0
City Views Downloads
Beijing 2 17
Unknown 2 13
Ashburn 2 0
Tokyo 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077344/manifest

Comment

Related Items