Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A comparison of respiratory exchange variables between untrained, aerobically and anaerobically trained… Dunwoody, Douglas William 1981

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1981_A7_5 D96.pdf [ 3.71MB ]
Metadata
JSON: 831-1.0077343.json
JSON-LD: 831-1.0077343-ld.json
RDF/XML (Pretty): 831-1.0077343-rdf.xml
RDF/JSON: 831-1.0077343-rdf.json
Turtle: 831-1.0077343-turtle.txt
N-Triples: 831-1.0077343-rdf-ntriples.txt
Original Record: 831-1.0077343-source.json
Full Text
831-1.0077343-fulltext.txt
Citation
831-1.0077343.ris

Full Text

c > ( A C O M P A R I S O N OF R E S P I R A T O R Y E X C H A N G E V A R I A B L E S B E T W E E N U N T R A I N E D , A E R O B I C A L L Y A N D A N A E R O B I C A L L Y T R A I N E D I N D I V I D U A L S B . P . E . , U n i v e r s i t y O f B r i t i s h C o l u m b i a , 1 9 7 6 A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T OF T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF T H E F A C U L T Y OF G R A D U A T E S T U D I E S S c h o o l O f P h y s i c a l E d u c a t i o n A n d R e c r e a t i o n We a c c e p t t h i s t h e s i s a s c o n f o r m i n g t o t h e r e q u i r e d s t a n d a r d s T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A by D O U G L A S W I L L I A M DUNWOODY M A S T E R OF P H Y S I C A L E D U C A T I O N i n J a n u a r y , 1 9 8 1 D o u g l a s W i l l i a m D u n w o o d y , 1 9 8 1 In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements f o r an advanced degree at the University of B r i t i s h Columbia, I agree that the Library s h a l l make i t f r e e l y a v a i l a b l e f o r reference and study. I further agree that permission for extensive copying of t h i s thesis for s c h o l a r l y purposes may be granted by the head of my department or by h i s or her representatives. I t i s understood that copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not be allowed without my written permission. Department of V•JWjQl>£{% •1 The University of B r i t i s h Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date n r c. in /na \ i i ABSTRACT A Comparison Of R e s p i r a t o r y Exchange V a r i a b l e s Among Untr a i n e d , A e r o b i c a l l y And A n a e r o b i c a l l y T r a i n e d I n d i v i d u a l s . The purpose of t h i s study was to compare c e r t a i n r e s p i r a t o r y exchange v a r i a b l e s among three s o l i c t e d groups, namely a e r o b i c (Ae), anaerobic (An), and u n t r a i n e d (Un) at t h e i r anaerobic t h r e s h o l d (AT), maximal a e r o b i c and anaerobic c a p a c i t i e s . T h i r t y c o l l e g e - a g e d males, ten per group, were t e s t e d on two d i f f e r e n t t r e a d m i l l p r o t o c o l s to e l i c i t the running v e l o c i t y at the t h r e s h o l d s of anaerobic metabolism (Vtam), V02 max and maximal anaerobic c a p a c i t y from the Anaerobic Speed Test (AST). S i g n i f i c a n t d i f f e r e n c e s among the three groups were found f o r : V02 max. Ae: 65.8 > An: 59.6 > Un: 42.5 ml/kg-minute. Vtam Ae: 10.0 > An: 7.8 > Un: 6.1 miles/hour. V02 at AT Ae: 49.2 > An: 41.3 > Un: 28.6 ml/kg-minute. Excess C02 (ml/kg-min) e l i m i n a t i o n was used to determine the onset of a n a e r o b i o s i s . No s i g n i f i c a n t d i f f e r e n c e i n excess C02 e l i m i n a t i o n at V02 max was evident i n the three groups although the Un group demonstrated s i g n i f i c a n t l y higher values when compared to the An group at the AT (Un: 9.26 > An: 6.31 (Ae: 8.03) ml/kg-min). S i g n i f i c a n t d i f f e r e n c e s were a l s o demonstrated between the three groups f o r anaerobic c a p a c i t y in the AST (An: 85.0 > Ae: 63.6 •> Un: 39.5 seconds). The peak excess C02 e l i m i n a t i o n values from the AST were higher f o r the An and Ae group when compared to the Un group (An: 35.6 & Ae: 32.8 > Un: 20.6 ml/kg-min). F i n d i n g s in t h i s study, r e l a t e d to d i f f e r e n c e s i n V02 max, V02 at AT, Vtam and anaerobic c a p a c i t y (AST) a r e p o s s i b l y a t t r i b u t a b l e t o the s t a t e of t r a i n i n g of the t h r e e groups. E x c e s s C02 e l i m i n a t i o n as an i n d i c a t i o n of a e r o b i c - a n a e r o b i c t r a n s i t i o n i n energy m e t a b o l i s m may be u s e f u l i n t r a i n e d i n d i v i d u a l s but due t o l a r g e v a r i a b i l i t y i n the e x c e s s C02, the r e s u l t s from the u n t r a i n e d s u b j e c t s were v e r y d i f f i c u l t t o i n t e r p r e t and f u r t h e r s t u d i e s w i t h e x c e s s C02 i n c o n j u n c t i o n w i t h e n d - t i d a l C02 and l a c t a t e a c i d need be done. i v ACKNOWLEDGEMENT The author would l i k e to thank those who a s s i s t e d him i n completing t h i s t h e s i s : committee chairman Dr. E. Rhodes and committee members Dr. K. Coutts, Dr. R. Schutz and Dr. R. Pe r c i v a l - S m i t h for t h e i r valuable guidance and patience. The author would a l s o l i k e to express a d d i t i o n a l thanks to Mr. P. Wiley, Dr. D. McKenzie, Mr. B. F i l s i n g e r and Mr. B. Hearst for t h e i r a s s i s t a n c e , and Ms. Jane Faulkner for her patience and support throughout t h i s p r o j e c t . T A B L E OF C O N T E N T S P a g e A B S T R A C T i i A C K N O W L E D G E M E N T i v L I S T OF T A B L E S v i i C h a p t e r 1 . I N T R O D U C T I O N 1 S T A T E M E N T OF T H E P R O B L E M 3 H Y P O T H E S E S 3 R A T I O N A L E 5 D E L I M I T A T I O N S 6 L I M I T A T I O N S 6 D E F I N I T I O N OF T E R M S 7 2 . R E V I E W O F S E L E C T E D L I T E R A T U R E 9 I N T R O D U C T I O N 9 P H Y S I O L O G I C A L B A S I S A N D M E A S U R E M E N T OF A . T 9 A . T . C H A N G E S W I T H A E R O B I C T R A I N I N G 1 9 A N A E R O B I C T R A I N I N G I N T E R P L A Y 2 7 S U M M A R Y 2 8 3 . M E T H O D S A N D P R O C E D U R E S 3 0 S U B J E C T S 3 0 T E S T I N G P R O C E D U R E S A N D A P P A R A T U S 3 0 T E S T I N G P R O T O C O L S 3 1 E X P E R I M E N T A L D E S I G N A N D D A T A A N A L Y S I S 3 2 4 . R E S U L T S AND D I S C U S S I O N 34 R E S U L T S O F P H Y S I C A L P A R A M E T E R S 3 4 R E S U L T S OF M E T A B O L I C P A R A M E T E R S 3 7 D I S C U S S I O N 4 1 5. SUMMARY AND CONCLUSIONS 47 SUMMARY 47 CONCLUSIONS 4 9 RECOMMENDATIONS 50 BIBLIOGRAPHY 51 APPENDIX A 58 v i i LIST OF TABLES TABLE PAGE I Summary Of P h y s i c a l C h a r a c t e r i s t i c s 35 II M u l t i v a r i a t e A n a l y s i s Of P h y s i c a l Parameters 36 I I I Summary Of Metabolic Parameters 38 IV M u l t i v a r i a t e A n a l y s i s Of Metabolic Parameters 39 V Summary Of Hypotheses Testing 40 C H A P T E R I I N T R O D U C T I O N TO T H E P R O B L E M T h e p h y s i o l o g i c a l a n d b i o c h e m i c a l a d j u s t m e n t s o f a n a e r o b i c e n e r g y m e t a b o l i s m i n r e l a t i o n t o t h e a e r o b i c s y s t e m s d u r i n g e x e r c i s e c a n now b e m e a s u r e d b y n o n - i n v a s i v e t e c h n i q u e s ( D a v i s e t a l . 1 9 7 6 ; W a s s e r m a n a n d W h i p p , 1 9 7 5 ; W a s s e r m a n e t a l . 1 9 7 5 ) . H o w e v e r , i t i s s p e c u l a t e d t h a t e n e r g y s o u r c e s a r e s e l d o m s t r i c t l y a e r o b i c o r a n a e r o b i c t h e r e b y i n f e r r i n g t h a t a s e r i a l r e l a t i o n s h i p m u s t e x i s t b e t w e e n t h e t w o s o u r c e s ( A s t r a n d a n d R o d a h l , 1 9 7 7 ) . D u r i n g p r o l o n g e d e x e r c i s e o f a n i n c r e a s i n g l y i n t e n s e n a t u r e , t h e c a p a c i t y o f a e r o b i c m e t a b o l i s m w i l l e v e n t u a l l y b e e x c e e d e d . T h i s w i l l l e a d t o a d e c r e a s e i n e f f i c i e n c y i n t h e p r o d u c t i o n o f a d e n o s i n e t r i p h o s p h a t e ( A T P ) , a l o n g w i t h a n i n c r e a s e i n t h e a m o u n t o f m e t a b o l i t e s b e i n g p r o d u c e d b y g l y c o l y s i s . T h e s e m e t a b o l i t e s i n c l u d e t h e i n c r e a s e i n l a c t i c a c i d , h y d r o g e n i o n s ( H + ) a n d C 0 2 ( f r o m g l y c o l y s i s a n d f r o m t h e b u f f e r i n g o f l a c t a t e w i t h s o d i u m b i c a r b o n a t e ) . D u r i n g t h i s t r a n s i t i o n , a d d i t i o n a l e n e r g y i s s u p p l i e d t h r o u g h a n a e r o b i o s i s . J u s t b e l o w t h e p o i n t o f w o r k o r e x e r c i s e i n w h i c h l a c t i c a c i d f r o m g l y c o l y s i s a c c u m u l a t e s a n d e x c e e d s i t s r e m o v a l b y o x i d a t i v e m e a n s h a s b e e n d e s i g n a t e d t h e A n a e r o b i c T h r e s h o l d ( A T ) ( W a s s e r m a n e t a l . 1 9 7 3 ) . D u r i n g t h i s p h a s e m u s c l e l a c t a t e f r o m a n a e r o b i c g l y c o l y s i s d i f f u s e s i n t o t h e b l o o d a n d r e a c t s w i t h s o d i u m b i c a r b o n a t e w h i c h may l e a d t o a f u r t h e r b r e a k d o w n e n d i n g w i t h C 0 2 a n d H 2 0 ( W a s s e r m a n a n d M c l l r o y , 1 9 6 4 ; W a s s e r m a n e t a l . 1 9 7 3 ) . S o m e h y d r o g e n i o n s ( H + ) f r o m t h i s r e a c t i o n w i l l p r o c e e d 2 t o s t i m u l a t e t h e c h e m o r e c e p t o r s t h e r e b y i n c r e a s i n g t h e v e n t i l a t i o n r a t e . T h e s e r e c e p t o r s , l o c a t e d i n t h e m e d u l l a o b l o n g a t a , t h e c a r o t i d a n d a o r t i c b o d i e s , a r e s e n s i t i v e t o c h a n g e s i n t h e c h e m i s t r y o f t h e b l o o d i n i t i a t i n g i m p u l s e s t h a t s t i m u l a t e t h e r e s p i r a t i o n r a t e t o i n c r e a s e ( A s t r a n d a n d R o d a h l , 1 9 7 7 ; G u y t o n , 1 9 7 6 ) . A t t h i s t i m e , s e v e r a l c o r r e s p o n d i n g c h a n g e s i n r e s p i r a t o r y e x c h a n g e v a r i a b l e s c a n b e m e a s u r e d . T h e r e f o r e , t h e p o i n t o f t h e A n a e r o b i c T h r e s h o l d w i l l b e w h e n t h e r e i s a s u d d e n e x p o n e t i a l i n c r e a s e ( i . e . , b r e a k f r o m t h e l i n e a r r i s e ) i n e x c e s s C 0 2 e l i m i n a t i o n , v e n t i l a t i o n ( V e ( S T P D ) ) a n d r e s p i r a t o r y e x c h a n g e r a t i o ( R ) w h e r e : V o l u m e o f C 0 2 E l i m i n a t e d R = V o l u m e o f 0 2 C o n s u m e d T h e s t u d y o f t h e r o l e o f t h e a n a e r o b i c t h r e s h o l d a n d i t ' s r e l a t i o n s h i p t o t r a i n i n g p r o g r a m s h a s n o t b e e n c l e a r l y d e f i n e d . T h e q u e s t i o n a r i s e s i f t h e r e e x i s t s a n y d i f f e r e n c e s i n e x c e s s C 0 2 , V 0 2 a n d r u n n i n g s p e e d a t t h e t h r e s h o l d o f a n a e r o b i c m e t a b o l i s m ( V t a m ) w h i c h m i g h t b e a t t r i b u t a b l e t o a p e r s o n ' s s t a t e o f t r a i n i n g . T h i s p h e n o m e n o n o f t h e a n a e r o b i c t h r e s h o l d h a s b e e n u s e d f o r t e s t i n g h o s p i t a l p a t i e n t s ( W a s s e r m a n a n d W h i p p , 1 9 7 5 ) , a t h l e t e s ( C o s t i l l , 1 9 7 0 ) , a n d f o r m o d e l s o f h y p e r p n e a ( W h i p p , 1 9 7 7 ) . H o w e v e r , t h e r o l e o f t h e o n s e t o f a n a e r o b i c m e t a b o l i s m a n d i t s r e l a t i o n s h i p t o s p e c i f i c a l l y t r a i n e d i n d i v i d u a l s h a s y e t t o b e c l a r i f i e d . 3 S t a t e m e n t O f T h e P r o b l e m T h e p u r p o s e o f t h i s s t u d y w a s t o c o m p a r e t h e b i o e n e r g e t i c s y s t e m s o f u n t r a i n e d , a e r o b i c a l l y a n d a n a e r o b i c a l l y t r a i n e d i n d i v i d u a l s a t t h e i r a n a e r o b i c t h r e s h o l d s ( A T ) , a t t h e i r m a x i m a l a e r o b i c c a p a c i t y (V02 m a x ) a n d a t t h e i r m a x i m a l a n a e r o b i c c a p a c i t y ( A n a e r o b i c S p e e d T e s t ( A S T ) ) . H y p o t h e s e s F o r e a c h o f t h e f o l l o w i n g d e p e n d e n t v a r i a b l e s , i t w a s h y p o t h e s i z e d t h a t : #1) V e l o c i t y a t t h e t h r e s h o l d o f a n a e r o b i c m e t a b o l i s m ( V t a m ) : ( a ) A e r o b i c h a v e h i g h e r v a l u e s t h a n , a n a e r o b i c , ( b ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A e r o b i c > A n a e r o b i c > U n t r a i n e d ) #2) V o l u m e o f O x y g e n (% o f V02 m a x ) a t A . T . : ( a ) A e r o b i c h a v e h i g h e r v a l u e s t h a n a n a e r o b i c , ( b ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A e r o b i c > A n a e r o b i c > U n t r a i n e d ) #3) E x c e s s C02 ( m l / k g - m i n ) a t A . T . : ( a ) A e r o b i c h a v e h i g h e r v a l u e s t h a n a n a e r o b i c , ( b ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A e r o b i c > A n a e r o b i c > U n t r a i n e d ) #4) E x c e s s C 0 2 ( m l / k g -• m i n ) a t V 0 2 m a x . : ( a ) A e r o b i c h a v e h i g h e r v a l u e s t h a n a n a e r o b i c , ( b ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A e r o b i c > A n a e r o b i c > U n t r a i n e d ) #5) % E x c e s s C 0 2 m a x a t A . T . : ( a ) U n t r a i n e d h a v e h i g h e r v a l u e s t h a n a n a e r o b i c , ( b ) U n t r a i n e d h a v e h i g h e r v a l u e s t h a n a e r o b i c a n d ( c ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n a e r o b i c . ( U n t r a i n e d > A n a e r o b i c > A e r o b i c ) #6) A n a e r o b i c S p e e d T e s t t i m e ( A . S . T . s e c o n d s ) : ( a ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n a e r o b i c , ( b ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A n a e r o b i c > A e r o b i c > U n t r a i n e d ) #7) P e a k E x c e s s C 0 2 ( m l / k g - m i n ) f r o m A . S . T . : ( a ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n a e r o b i c , ( b ) A n a e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d a n d ( c ) A e r o b i c h a v e h i g h e r v a l u e s t h a n u n t r a i n e d . ( A n a e r o b i c > A e r o b i c > U n t r a i n e d ) 5 Rat i o n a l e P r e s e n t l y , many studi e s e x i s t on various aspects of the anaerobic t h r e s h o l d , but few are of a comparative nature and none s p e c i f i c a l l y look at the d i f f e r e n t extremes of a t h l e t i c c o n d i t i o n i n g . I n t e r v a l or s p r i n t t r a i n i n g i s designed to make demands on the anaerobic energy sources so that the i n d i v i d u a l i s able to perform extremely high i n t e n s i t y work f o r durations of up to one to two minutes; Conversely, endurance t r a i n i n g w i l l s t r e s s mainly the aerobic energy c y c l e s to t h e i r maximum. The a e r o b i c a l l y t r a i n e d i n d i v i d u a l s w i l l demonstrate higher workloads on the t r e a d m i l l , as expressed by Vtam (mph) and should a l s o be able to perform at a higher percentage of t h e i r V 0 2 max at the AT. Correspondingly, the higher aerobic component w i l l a l s o be i l l u s t r a t e d by the high excess C 0 2 values at t h e i r A.T. enabling these i n d i v i d u a l s to o x i d i z e the by-products such as l a c t a t e (pre-A.T.) without a detriment i n t h e i r performance as seen by higher anaerobic thresholds and higher maximal V 0 2 . However, the a n a e r o b i c a l l y t r a i n e d group w i l l be able to perform b e t t e r than the untrained group because through the anaerobic t r a i n i n g , an aerobic base i s a l s o developed. This w i l l be evident i n a higher V 0 2 max, Vtam, excess C 0 2 at V 0 2 max and at the A.T. As a d i r e c t r e s u l t of the anaerobic t r a i n i n g , these i n d i v i d u a l s w i l l be superior to the other two groups i n t h e i r times to perform the Anaerobic Speed t e s t . A l s o , due to the f a c t that the anaerobic group i s able to produce and t o l e r a t e higher l e v e l s of anaerobic m e t a b o l i t e s , the peak excess C 0 2 from the A.S.T. w i l l be higher than both the a e r o b i c a l l y t r a i n e d group and the untrained group. 6 During the aerobic t r e a d m i l l t e s t , the untrained group w i l l have a higher dependence upon both energy systems: aerobic and anaerobic. But because of t h e i r lack of t r a i n i n g , t h i s group's V02 max, and V02 at AT w i l l be lower than the other two groups. The untrained group w i l l a l s o have the lowest excess C02 at t h e i r V02 max which should be a t t r i b u t e d to t h e i r i n a b i l i t y to produce or t o l e r a t e any high l e v e l s of l a c t a t e w i l l e x e r c i s i n g . This w i l l a l s o be r e f l e c t e d i n t h e i r percentage of excess C02 max. at the anaerobic t h r e s h o l d which w i l l be higher than that of the other two groups. Therefore t h i s study was designed to b r i n g i n t o p e r s p e c t i v e the d i f f e r e n c e s i n r e s p i r a t o r y exchange v a r i a b l e s between the a e r o b i c a l l y t r a i n e d , a n a e r o b i c a l l y t r a i n e d and untrained i n d i v i d u a l s at the t h r e s h o l d of anaerobic metabolism, at the maximal oxygen uptake and at the maximal anaerobic c a p a c i t y . D e l i m i t a t i o n s This study i s d e l i m i t e d t o : (1) The sample type (college-age males 19-32 years) and (2) The f i t n e s s l e v e l of each group as defined i n t h i s study. L i m i t a t i o n s The r e s u l t s of t h i s study are l i m i t e d by: (1) The method of Anaerobic Threshold determination, (2) The sample s i z e ( t h i r t y males with ten i n each group), (3) The i n d i v i d u a l s ' metabolic responses to the p r o t o c o l s , and (4) Data c o l l e c t i o n c a p a b i l i t i e s of the Beckman Metabolic Measurement Cart and the H e w l i t t Packard Data A c q u i s t i o n 7 system i n t e r f a c e d with i t . D e f i n i t i o n Of Terms For the purpose of c l a r i f i c a t i o n , the f o l l o w i n g d e f i n i t i o n s and a b b r e v i a t i o n s were considered a p p l i c a b l e throughout t h i s study: Anaerobic Threshold (A.T.) or Threshold f o r Anaerobic Metabolism (TAM). This i s defined as j u s t below the work rate or oxygen uptake (V02) at which l a c t a t e production exceeds i t ' s removal by o x i d a t i v e means. There i s a simultaneous e x p o n e t i a l increase i n v e n t i l a t i o n (Ve), volume of C02 (VC02), r e s p i r a t o r y exchange r a t i o (R) and excess C02 e l i m i n a t i o n ( i . e . nonlinear i n f l e c t i o n point) as a r e s u l t of the onset of metabolic a c i d o s i s . Excess C02 (ml/kg per minute). This i s the r e l a t i o n s h i p between the amount of C02 being e l i m i n a t e d i n proportion to the amount of 02 being consumed for energy production for a given workload. At r e s t , excess C02 w i l l approximate zero as a r e s u l t of a l l the C02 being e l i m i n a t e d and the 02 being u t i l i z e d w i l l be due to r e s t i n g aerobic metabolic energy c y c l e s . Above r e s t i n g c o n d i t i o n s , excess C02 w i l l increase with energy production and i t ' s metabolites. Excess C02 = Volume C02 - ( r e s t i n g RQ x Volume 02) Resting RQ has been defined as being i n the range of 0.70 to 0.80 and for the purposes of t h i s study, the lowest RQ 8 w i l l be used (0.70) for a l l c a l c u l a t i o n s on each i n d i v i d u a l (Issekutz and Rodahl, 1961). V e l o c i t y at the Threshold for Anaerobic Metabolism (Vtam). Vtam i s the t r e a d m i l l speed (mph) corresponding to the Anaerobic Threshold. Volume of Oxygen Uptake at maximum (VQ2 max). This i s a measure of the c a p a c i t y of the c a r d i o r e s p i r a t o r y system i n terms of maximal v e n t i l a t i o n and oxygen consumption and i s defined as being the highest amount of oxygen (ml 02 per kg body weight per minute) u t i l i z e d by the c a r d i o r e s p i r a t o r y system. C H A P T E R I I R E V I E W OF L I T E R A T U R E I n t r o d u c t i o n T h e d e v e l o p m e n t a n d d e p e n d e n c e u p o n a e r o b i c a n d a n a e r o b i c e n e r g y s o u r c e s d u r i n g c o n t i n u o u s i n c r e m e n t a l w o r k l o a d s w i l l v a r y a c c o r d i n g t o t h e t y p e o f t r a i n i n g p r o g r a m s i n t e r m s o f i n t e n s i t y a n d d u r a t i o n . H o w e v e r , t h e t y p e o f t r a i n i n g u s e d s h o u l d d e p e n d u p o n t h e p u r p o s e o f t h e t r a i n i n g , i . e . a e r o b i c , a n a e r o b i c o r a c o m b i n a t i o n o f b o t h , a c c o r d i n g t o A s t r a n d a n d R o d a h l ( 1 9 7 7 ) a n d P o l l o c k ( 1 9 7 3 ) . T h e i n t e r a c t i o n s o f t h e t y p e o f t r a i n i n g p r o g r a m s w i t h r e g a r d t o i n t e n s i t y , f r e q u e n c y a n d d u r a t i o n i n r e l a t i o n s h i p t o t h e p h y s i o l o g i c a l e f f e c t s u p o n t h e i n d i v i d u a l a r e c o m p l e x a n d a r e n o t c l e a r l y d e f i n e d . R e p o r t e d i m p r o v e m e n t s i n V 0 2 m a x f o l l o w i n g c o n t i n u o u s o r i n t e r v a l t r a i n i n g p r o g r a m s a r e g e n e r a l l y o f c o m p a r a b l e m a g n i t u d e ( R o s k a m m , 1 9 6 7 ) . P H Y S I O L O G I C A L B A S I S AND M E A S U R E M E N T OF T H E A N A E R O B I C T H R E S H O L D A c l a s s i c s t u d y i n t h e a r e a o f e x e r c i s e m e t a b o l i s m w a s c o m p l e t e d b y H i l l , L o n g a n d L u p t o n ( 1 9 2 4 ) . T h e y p o s t u l a t e d t h a t t h e i n c r e a s e o f l a c t a t e i n t h e b l o o d w a s p a r a l l e l e d w i t h a n i n c r e a s e i n o x y g e n c o n s u m p t i o n d u r i n g e x e r c i s e a n d c o n s e q u e n t l y d u r i n g r e c o v e r y t h e d e c r e a s e i n b l o o d l a c t a t e a l s o p a r a l l e l e d a d e c r e a s e i n o x y g e n c o n s u m p t i o n . T h e y o b s e r v e d t h a t t h e b l o o d l a c t a t e a c c u m u l a t i o n d u r i n g e x e r c i s e v a r i e s w i t h o x y g e n d e b t a n d 10 they o r i g i n a l l y proposed that the oxygen consumption was f u l l y accounted for by the o x i d a t i v e l a c t a t e removal. The i d e n t i f i c a t i o n of l a c t a t e as the f a t i g u e substance in muscular work was g e n e r a l l y accepted and i n the l a t e twenties, t h i s theory was s t i l l shared by many authors (Briggs, 1920; Schneider and Ring, 1929). L a t e r , Margaria, Edwards and D i l l (1933) stu d i e d the c o r r e l a t i o n between t o t a l body l a c t a t e and excess 02 consumption and they concluded that approximately 10 percent of the l a c t a t e was o x i d i z e d , the remaining l a c t a t e was being converted to glycogen, mostly by the l i v e r . During e x e r c i s e the catabolism of glycogen under anaerobic c o n d i t i o n s r e s u l t s i n an increase of l a c t i c a c i d (Guyton, 1976). T u r r e l l and Robinson (1942) i n v e s t i g a t e d the acid-base e q u i l i b r i u m of the blood i n conjunction with t h i s increase in l a c t a t e . They demonstrated that an increase i n l a c t i c a c i d i s accompanied by a decrease i n bicarbonate (BHC03) from the equation: BHC03 + l a c t a t e = B ( l a c t a t e ) + H2C03. Since carbonic a c i d (H2C03) i s a weak and v o l a t i l e a c i d , i t d i s s o c i a t e s to produce C02 and H20. The C02 i s then exhaled, producing an increase i n the volume of C02 expired (VC02). The authors a l s o found that the increases i n l a c t a t e correspond to equivalent decreases i n the C02 c a p a c i t y of the blood, with bicarbonate being the p r i n c i p l e base for the b u f f e r i n g of the l a c t a t e . At higher blood l a c t a t e l e v e l s , hemoglobin and plasma p r o t e i n s accounted f o r an increased p o r t i o n of t h i s base, which r e s u l t s i n p r o g r e s s i v e l y smaller decreases i n the C02 c a p a c i t y of the blood, compared to the corresponding increases i n l a c t i c a c i d . Also the r e s p i r a t o r y exchange r a t i o , R which i s defined as 11 VC02/V02 by Astrand and Rodahl (1977) increases during e x e r c i s e ( D i l l , Talbot and Edwards, 1930; H i l l , Long and Lupton, 1924) Subsequently from the r e s u l t s of T u r r e l l and Robinson (1942) described above, research attempted to r e l a t e the increase i n R to an increase i n l a c t i c a c i d . Using a continuous incremental work t e s t , the work ca p a c i t y -of sedentary i n d i v i d u a l s before and a f t e r blood donation was examined by Balke et a l . (1954). They found that VC02 increased s t e a d i l y by an amount comparable to the increase i n V02 but e v e n t u a l l y VC02 exceeded the V02. This p o i n t , where R was greater than one, was taken as an i n d i c a t i o n of the l i m i t s i n aerobic metabolism. The observed abrupt d e c l i n e i n a l v e o l a r C02 tension together with a r i s e i n minute v e n t i l a t i o n (Ve) out of p r o p o r t i o n to V02, was i n t e r p r e t e d as r e s u l t i n g from the accumulation of a c i d metabolites i n the blood stream. W e l l s , Balke and Van Fossan (1957) i n v e s t i g a t e d f u r t h e r the r e l a t i o n s h i p between l a c t i c a c i d production and the change i n R during e x e r c i s e . Using sedentary adult males, they measured blood l a c t a t e before, during and a f t e r a progressive t r e a d m i l l t e s t . Their r e s u l t s produced three general c l a s s i f i c a t i o n s of work i n t e n s i t y . (1) L i g h t work was described as producing a heart rate not exceeding 120 beats per minute, no increase i n l a c t i c a c i d above r e s t i n g values and a R of 0'.85. (2) Heavy work was c h a r a c t e r i z e d by a heart rate between 120 and 160 beats per minute, increases in l a c t i c a c i d of 20-40 mg% above r e s t i n g values and a R of 0.90-0.95. (3) F i n a l l y , severe work included a heart rate greater than 160 beats per minute, increases i n l a c t i c a c i d to 100 mg% or more and R values c l o s e to or 1 2 e v e n t u a l l y e x c e e d i n g 1 . 0 0 . T h e y f u r t h e r s t a t e d t h a t a n " o p t i m a l " w o r k i n t e n s i t y , w h i c h c o r r e s p o n d e d t o a p p r o x i m a t e l y 50% o f t h e l i m i t a t i o n i n w o r k c a p a c i t y , e x i s t e d w h e r e t h e e n e r g y i n t a k e c o u l d c o p e w i t h t h e e n e r g y e x p e n d i t u r e . I n 1 9 5 8 , H u c k a b e e s u g g e s t e d t h a t a s i m p l e m e a s u r e m e n t o f p l a s m a l a c t a t e w a s i n s u f f i c i e n t t o g i v e a g o o d i n d i c a t i o n o f t h e o x i d a t i o n - r e d u c t i o n s t a t u s o f t h e c e l l s . H e s h o w e d t h a t a n i n c r e a s e o f l a c t a t e may b e c o r r e l a t e d n o t o n l y w i t h c e l l u l a r a n o x i a , b u t a l s o w i t h o t h e r c l i n i c a l c o n d i t i o n s s u c h a s i n f u s i o n o f g l u c o s e , o r . p y r u v a t e , i n j e c t i o n o f e p i n e p h r i n e , h y p e r v e n t i l a t i o n , o r m e t a b o l i c a c i d o s i s ( H u c k a b e e , 1 9 5 8 a ; 1 9 5 8 b ; 1 9 5 8 c ; 1 9 5 8 d ) . H e a l s o c l a i m e d t h a t t h e m o s t i m p o r t a n t f a c t t o b e c o n s i d e r e d w a s n o t t h e s i m p l e m e a s u r e o f l a c t a t e , b u t t h e e x c e s s l a c t a t e ( X L ) a s c a l c u l a t e d f r o m t h e f o r m u l a : X L = ( L 1 - L 2 ) - ( P 1 - P 2 ) * L 2 / P 2 w h e r e L = l a c t i c a c i d ; P = p y r u a t e a c i d ; 1 = v a l u e o f t h e s a m p l e a t t i m e 1 ; 2 = v a l u e o f t h e s a m p l e a t t i m e 2 . H e r e g a r d e d X L ( E x c e s s L a c t a t e ) a s p o s t i v e o n l y i n c e l l u l a r h y p o x i a , a n d t h e c o r r e l a t i o n b e t w e e n X L a n d t h e e x c e s s 0 2 c o n s u m p t i o n a f t e r w o r k w a s i d e a l . H o w e v e r , H u g h e s e t a l . ( 1 9 6 8 ) a n d O l s o n ( 1 9 6 3 ) h a v e c r i t i c i z e d t h e c o n c e p t o f H u c k a b e e ' s f r o m b o t h t h e t h e o r e t i c a l a n d t h e c h e m i c a l p o i n t o f v i e w . T h e y h a v e p o i n t e d o u t t h e r e l a t i o n s h i p b e t w e e n t h e r e a c t i o n s w e r e m o r e i m p o r t a n t t h a n t h e t o t a l o v e r a l l r e a c t i o n a n d a l s o t h a t t h e r e w e r e a t l e a s t t w o p o o l s o f e n e r g y s o u r c e s ( a l a c t i c a n d l a c t i c ) i n t h e c e l l s w i t h t h e b e h a v i o r o f t h e s e t w o s y s t e m s m a y b e d i f f e r e n t . T h e y a l s o s u g g e s t e d t h a t t h e r e w e r e m a n y c h e m i c a l p r o c e s s e s t a k i n g p l a c e w i t h i n t h e c e l l s a n d t h a t e x c e s s l a c t a t e ( X L ) m a y i n c r e a s e 13 without anoxia. These f a c t o r s may e x p l a i n some of the r e s u l t s that w i l l be discussed l a t e r i n t h i s chapter, l i k e a progressive decrease of XL or even a negative value i f the e x e r c i s e i s s l i g h t . S i m i l a r observations have been made by Thomas et a l . (1964), H a r r i s et a l . (1968) and Wasserman et a l . (1965). These authors d i d not f i n d the i d e a l c o r r e l a t i o n between XL and 02 debt as described by Huckabee, nor d i d they f i n d high l e v e l s of l a c t a t e i n cases of h y p e r v e n t i l a t i o n with r e s p i r a t o r y a l k a l o s i s . Hughes et a l . (1968) and Olson (1963) demonstrated that the measurement of XL during e x e r c i s e adds l i t t l e to the measurement of blood l a c t a t e alone. In 1961, Issekutz and Rodahl examined males and females during e x e r c i s e on a b i c y c l e ergometer and found changes i n blood l a c t a t e l e v e l s , based on 102 measurements, to be very h i g h l y c o r r e l a t e d with excess C02 (r = 0.92). They suggested that the d i f f u s i o n of bicarbonate C02 ( i . e . "non-metabolic C02) maybe more r a p i d than l a c t i c a c i d , thereby demonstrating that excess C02 f o l l o w s anaerobic metabolism more c l o s e l y than blood l a c t a t e l e v e l s . These authors a l s o suggested that the r e a l metabolic ( i . e . at r e s t ) RQ was between 0.70 and 0.80 which would be r e p r e s e n t a t i v e of the a l a c t i c energy sources. This allows for the c a l c u l a t i o n s of the amount of excess "non-metabolic" C02: Excess C02 = VC02 - (RQrest * V02) In the f o l l o w i n g year, Issekutz et a l . (1962) suggested using the change in RQ (work RQ - r e s t RQ) as a measure of p h y s i c a l f i t n e s s . The change i n RQ could be p l o t t e d at three submaximal work loads and then e x t r a p o l a t e d to p r e d i c t maximum 14 V02 ( a s s u m i n g r e s t RQ = 0.75 a n d m a x i m u m c h a n g e i n RQ w o u l d b e = 0.40) . A l s o a t t h i s t i m e , W y n d h a m e t a l . (1962) f e l t t h e i n c r e a s e i n b l o o d l a c t a t e a l o n e w a s n o t a r e l i a b l e i n d e x o f a n a e r o b i c m e t a b o l i s m , a s m e a s u r e d v i a H u c k a b e e ' s e x c e s s l a c t a t e ( X L ) . T h e y p o s t u l a t e d t h a t X L d e r i v e d f r o m t h e r a t i o o f t h e t o t a l b o d y l a c t a t e t o . p y r u v a t e w a s t h e o n l y r e l i a b l e m e a s u r e o f a n a e r o b i c m e t a b o l i s m . . T h e " c r i t i c a l " l e v e l o f w o r k w h e r e l a c t a t e f i r s t a p p e a r s i n t h e b l o o d w a s n o t i c e d b y K n u t t g e n i n 1962. W a s s e r m a n a n d M c l l r o y (1964) s u p p o r t e d t h i s c o n c e p t a n d p o s t u l a t e d t h e a n a e r o b i c t h r e s h o l d w a s t h e l e v e l o f w o r k j u s t b e l o w w h i c h a s u b j e c t c o u l d e x e r c i s e f o r p r o l o n g e d p e r i o d s i n a s t e a d y s t a t e w i t h o u t d e v e l o p i n g m e t a b o l i c a c i d o s i s . T h e y s t a t e d t h e t h e o n s e t o f a n a e r o b i c m e t a b o l i s m d u r i n g e x e r c i s e c o u l d b e m e a s u r e d t h r e e w a y s : (1) a s a n i n c r e a s e i n t h e c o n c e n t r a t i o n i n l a c t i c a c i d ; (2) a s a d e c r e a s e i n a r t e r i a l b l o o d b i c a r b o n a t e a n d p H ; a n d (3) a s a n i n c r e a s e i n R ( w h i c h h a d t h e a d v a n t a g e o f a v o i d i n g b l o o d s a m p l i n g ) . N a i m a r k , W a s s e r m a n a m d M c l l r o y (1964) c o m p a r e d t h e a r t e r i a l b l o o d l a c t a t e a n d b i c a r b o n a t e c o n c e n t r a t i o n s w i t h b r e a t h - b y -b r e a t h c h a n g e s i n R a n d f o u n d t h e l a t t e r t o r e l i a b l y r e f l e c t m e t a b o l i c a c i d o s i s d u e t o e x e r c i s e . - T h e y d e m o n s t r a t e d t h a t e x c e s s C02 f r o m m e t a b o l i c a c i d o s i s w a s i n d i c a t i v e o f t h e d i s p l a c e d C02 f r o m t h e b i c a r b o n a t e a n d t h e s e w e r e f o u n d t o b e h i g h l y c o r r e l a t e d ( r=0.98). W a s s e r m a n a n d M c l l r o y (1964) a n d W a s s e r m a n e t a l . (1967) c o n f i r m e d N a i m a r k ' s s t u d y (1964) u s i n g b r e a t h - b y - b r e a t h a n a l y s i s o f e n d - t i d a l g a s c o n c e n t r a t i o n s a n d 15 Wasserman and M c l l r o y (1964) a p p l i e d i t to d e t e c t i n g anaerobic thresholds i n c a r d i a c p a t i e n t s using R for the determination p o i n t . The authors f u r t h e r s t a t e d that since not only l a c t a t e but a l l metabolic a c i d s formed during e x e r c i s e would act to increase R, a p r e c i s e c o r r e l a t i o n between l a c t a t e and R should not be expected. Wyndham et a l . (1965) found the AT, using the excess l a c t a t e (XL) concept for determination, i n normal males to be 50-60% of V02 max and 45-50% of V02 max i n h o s p i t a l p a t i e n t s , i n cardiac p a t i e n t s and i n p e l l a g r i n s . This was one of the f i r s t s t udies to introduce the r e l a t i o n s h i p between V02 max and anaerobic t h r e s h o l d . Trained and untrained normal healthy males were studied by Bouhuys et a l . (1966) They p o s t u l a t e d that-R and excess C02 were d i r e c t l y a s s o c i a t e d to l a c t i c a c i d accumulation, but the reverse was not always t r u e . Bouhuys et a l . (1966), i n agreement with the work of T u r r e l l and Robinson (1942) showed that the increase i n l a c t i c a c i d was greater than the decrease i n standard bicarbonate as the workload became more intense. However, they concluded that the measurement of R (r=0.622) and excess C02 (r=0.796) provided only a rough i n d i c a t i o n of the degree of e x e r c i s e acidemia and they were unable to reproduce the e x c e l l e n t c o r r e l a t i o n found by Issekutz and Rodahl (1961). Clode and Campbell (1969) have attempted to d i f f e r e n t i a t e the increases of R i n t o metabolic, r e s p i r a t o r y and blood b u f f e r components using a C02 balance technique. They gave evidence which demonstrated that gas exchange parameters when considered i n terms of volumes ( i . e . , VC02, V02, and Ve) rather than r a t i o s 16 (R) were p r o p o r t i o n a l to changes i n blood l a c t a t e l e v e l s . This i s i n agreement with D i l l et a l . (1930) and H i l l et a l . (1924), but not with Naimark et a l . (1964), Wasserman and M c l l r o y (1964) and Wells et a l . (1957). Hermansen and Stensvold (1972) found the production of l a c t i c a c i d was p o s s i b l e even with no increase i n blood l a c t a t e as the muscle may be a major area for l a c t a t e o x i d a t i o n . They found i n nonathletes (untrained) the l a c t i c breakaway (AT) approximately 50% of V02 max and f o r a t h l e t e s approximately 75% of V02 max. Diamont et a l . (1968) found a f t e r 3 minutes of maximal e x e r c i s e , muscle t i s s u e l a c t a t e d i f f e r e d g r e a t l y from blood l a c t a t e (19.1 to 11.4 mM r e s p e c t i v e l y ) . This suggests that there might p o s s i b l y be a delay i n the d i f f u s i o n of l a c t i c a c i d from the muscle t i s s u e to the blood. Graham (1978) a l s o contends that muscle l a c t a t e does not equal that of blood l a c t a t e due to d i f f e r e n c e i n sample time, blood flow, d i f f u s i o n r a t e , and muscle f i b e r type. He found muscle l a c t a t e higher with l e s s slow o x i d a t i v e f i b e r s ( i . e . as i n s p r i n t e r s ) but the blood l a c t a t e i s the same for 26% and 62% slow o x i d a t i v e f i b e r s . Graham a l s o suggests that hypoxia w i l l lead to an increase i n l a c t a t e l e v e l s but an increase i n l a c t a t e does not n e c e s s a r i l y mean hypoxia has occurred i n the muscles. J o r f e l d t et a l . (1978) suggests the release of l a c t a t e i n t o the blood rose approximately l i n e a r l y with the muscle l a c t a t e c oncentrations up to about 4-5 mmol/minute but then the l a c t a t e from the e x e r c i s i n g muscle (vastus l a t e r a l i s ) l e v e l s o f f with the concentration of the muscle l a c t a t e p o s s i b l y s t i l l i n c r e a s i n g . They suggested that there maybe a l i m i t a t i o n 17 regarding the d i f f u s i o n or r e l o c a t i o n for l a c t a t e w i t h i n the muscle. The reasons for such delays are not speculated as being with the c e l l membrane. The authors suggested there maybe an a c t i v e process, or e l s e i t may be due to a d e t e r i o r a t i o n of d i f f u s i o n at high l e v e l s as a r e s u l t of the inadequate r e l a t i o n s h i p between r e c r u i t e d f i b e r s and a v a i l a b l e d r a i n i n g c a p i l l a r i e s . Wasserman et a l . (1973), using a breath-by-breath technique for d e t e c t i n g A.T., support the o r i g i n a l hypothesis of H i l l and Lupton (1924) that l a c t i c a c i d i s formed during e x e r c i s e i n the presence of t i s s u e hypoxia. E n d - t i d a l C02 and 02 t e n s i o n s , measured simultaneously, have been found to be more s e n s i t i v e i n d i c a t o r s of the anaerobic t h r e s h o l d . This technique allows for the d e t e c t i o n of h y p e r v e n t i l a t i o n , which may obsure the AT when using gas exchange parameters, such as VC02, Ve and R (Wasserman and Whipp, 1975). A most s i g n i f i c a n t r e s u l t of t h i s study was that for non-invasive anaerobic t h r e s h o l d determination, a one minute work increment rate was found to be optimal for showing the change in metabolism at the s t a r t of a n a e r o b i o s i s . This permits s t r e s s t e s t i n g durations to be kept to a minimum. R e p r o d u c i b i l i t y of the AT was shown to be exact over one hour, four hours, one week, and nine month i n t e r v a l s . Lactate accumulation was found to lead to a decrease of bicarbonates and to the appearance of excessive amounts ( r e l a t i v e to metabolic l e v e l s at r e s t ) of C02 i n a study by Volkov et a l . i n 1975. Volkov found the excess C02 concept of Issekutz and Rodahl (1961) to be an e x c e l l e n t p r e d i c t o r of the t h r e s h o l d f o r anaerobic metabolism. He discovered the Vtam to be 1 8 i n a r a n g e o f 6 t o 7 . 5 mph f o r s u b j e c t s ( 4 ) o f m e d i u m t o h i g h f i t n e s s l e v e l s ( V 0 2 m a x = 3 . 8 0 t o 4 . 5 4 l i t r e s / m i n u t e r e s p e c t i v e l y ) . A t s u b - t h r e s h o l d r u n n i n g s p e e d s , V o l k o v f o u n d t h e l e v e l s o f e x c e s s C 0 2 w h e n u s i n g a r e s t i n g RQ o f 0 . 7 5 t o r e m a i n p r a c t i c a l l y c o n s t a n t a n d a v e r a g e s 2 . 0 m l / k g - m i n u t e . D a v i s e t a l . ( 1 9 7 6 ) f o u n d a h i g h c o r r e l a t i o n ( r = 0 . 9 5 ) b e t w e e n A T m e a s u r e d v i a g a s e x c h a n g e ( V e , V C 0 2 , F e C 0 2 ) a n d A T m e a s u r e d v i a c o n t i n u o u s v e n o u s l a c t a t e . H o w e v e r i n t h i s s t u d y , t h e A@T o c c u r r e d d u r i n g t h e w a l k p h a s e o f t h e t r e a d m i l l t e s t a n d R w a s f e l t t o b e a p o o r i n d i c a t o r o f t h e o n s e t o f l a c t i c a c i d a c c u m u l a t i o n i n t h e b l o o d . S i m i l a r f i n d i n g s w e r e s u g g e s t e d i n a s t u d y u s i n g f e m a l e s b y W e l t m a n e t a l . i n 1 9 7 6 a n d i n a p r o j e c t b y W a s s e r m a n e t a l . ( 1 9 7 3 ) . T h e y f e l t t h a t R d i d n o t i n d i c a t e h y p e r v e n t i l a t i o n a n d s u g g e s t e d t h i s w a s a n a d v a n t a g e o f a b r e a t h - b y - b r e a t h s y s t e m . T e s t i n g u n t r a i n e d m a l e s ( V 0 2 m a x = 3 . 7 8 l i t r e s / m i n u t e ) d u r i n g i n c r e m e n t a l t r e a d m i l l e x e r c i s e , K o y a l e t a l . ( 1 9 7 8 ) f o u n d t h a t t h e o x y g e n p u l s e i n c r e a s e d l i n e a r l y t o a p p r o x i m a t e l y 70% V 0 2 m a x a n d t h e n p l a t e a u e d . T h e y d e m o n s t r a t e d t h a t t h i s p l a t e a u i n g e f f e c t w a s a s s o c i a t e d w i t h d i s p r o p o r t i o n a t e i n c r e a s e s i n V C 0 2 , V e , P e t 0 2 a n d l a c t i c a c i d r e l a t i v e t o V 0 2 , t h u s d e m o n s t r a t i n g t h e o n s e t o f m e t a b o l i c a c i d o s i s . W e l t m a n a n d K a t c h ( 1 9 7 9 ) s t u d i e d t h e r e l a t i o n s h i p b e t w e e n t h e o n s e t o f m e t a b o l i c a c i d o s i s ( A . T . ) a n d m a x i m u m v o l u m e o f o x y g e n u p t a k e ( V 0 2 m a x ) . T h e r e s u l t s d e m o n s t r a t e d a s t r o n g r e l a t i o n s h i p ( r = 0 . 8 5 ) b e t w e e n V 0 2 max a n d V 0 2 d e t e r m i n e d a t t h e p o i n t o f A . T . ( V 0 2 - A . T . ) i n d i c a t i n g t h a t t h e h i g h V 0 2 m a x i n d i v i d u a l s w e r e a b l e t o d e l a y t h e o n s e t o f m e t a b o l i c a c i d o s i s . 19 In review of these i n v e s t i g a t i o n s i t i s suggested that those non-invasive i n d i c a t o r s of the thres h o l d of anaerobic metabolism, i . e . , a nonlinear increase i n Ve and VC02 d i s p o r t i o n a t e to the increase i n V02 and an increase i n excess C02 and R which have been v a l i d a t e d by blood l a c t a t e determinations (Davies et a l . 1976; Koyal et a l . 1978; Whipp and Wasserman, 1972), would produce an accurate and r e l i a b l e measure of an i n d i v i d u a l ' s AT (Wasserman et a l . 1973). The major downfall of these i n d i c a t o r s i s the poor s e n s i t i v i t y i n regards to h y p e r v e n t i l a t i o n , which can only be e l i m i n a t e d through blood samples and/or a breath-by-breath system of a n a l y s i s for r e s p i r a t o r y exchange v a r i a b l e s . ANAEROBIC THRESHOLD CHANGES WITH AEROBIC TRAINING Several s t u d i e s have shown that i n d i v i d u a l s who t r a i n e d f or a considerable length of time have r e l a t i v e AT values (expressed as % V02 max) that are higher than those of untrained subjects. For example, s i x bantu males described as being h i g h l y t r a i n e d on a b i c y c l e ergometer were studied by Wyndham et a l . (1962). However, no i n d i c a t i o n of the length of t r a i n i n g p r i o r to t e s t i n g was presented. Using an incremental work t e s t with repeated blood sampling at each work load for the determination of pyruvate and l a c t a t e l e v e l s , they e s t a b l i s h e d the A.T. r e l a t i v e to an observed increase i n excess l a c t i c a c i d . The mean AT of the s i x subjects was 55% V02 max. Bouhuys et a l . (1966) found i n h i s study a l e s s e r degree of metabolic a c i d o s i s a f t e r a t r a i n i n g p e r i o d for 4 subjects at a l e v e l of work j u s t above the anaerobic t h r e s h o l d . This was shown 20 b y l a c t i c a c i d , p H , s t a n d a r d b i c a r b o n a t e a n d b a s e e x c e s s , b u t n o t b y R a n d e x c e s s C 0 2 . W i l l i a m s e t a l . i n 1 9 6 7 u s i n g 1 3 B a n t u m a l e s a s s u b j e c t s , f o u n d e x c e s s l a c t a t e ( H u c k a b e e ' s m e t h o d ( 1 9 5 8 ) ) t o b e h i g h e r i n t h e u n t r a i n e d s t a t e f o r a g i v e n s u b m a x i m a l w o r k l o a d a n d l o w e r w h e n e x p r e s s e d a s a p e r c e n t a g e o f m a x i m u m V 0 2 ( 5 0 % u n t r a i n e d v s 64% m a x t r a i n e d ) . T h e y f e l t t h e m a i n e f f e c t o f t r a i n i n g ( 4 h o u r s d a i l y f o r 4 t o 1 6 w e e k s ) w a s i n c r e a s e d 0 2 c o n s u m p t i o n a t A T ( 1 6 % c h a n g e ) w h e r e a s t h e r e w a s a s m a l l e r c h a n g e i n V 0 2 a t max ( 7 % ) . C l a s s i f i c a t i o n o f f i t n e s s w a s s u g g e s t e d a s t h e u n t r a i n e d s u b j e c t w o u l d h a v e A T a t 4 5 - 4 9 % m a x ( W y n d h a m e t a l . 1 9 6 2 ) c o m p a r e d t o t r a i n e d i n d i v i d u a l s h a v i n g t h e i r A T ' s a t 5 5 - 6 2 % o f max w h i l e h i g h l y t r a i n e d s u b j e c t s w e r e a t 6 6 - 7 0 % m a x ( W i l l i a m s e t a l . 1 9 6 7 ) . T h e u s e o f e x c e s s l a c t a t e m a k e s t h e s e r e s u l t s d i f f i c u l t t o i n t e r p r e t a n d c o m p a r e t o o t h e r s t u d i e s . I n a s i m i l a r s t u d y , W i l l i a m s e t a l . ( 1 9 6 8 ) u s i n g 23 B a n t u m a l e s , f o u n d t h a t t r a i n i n g i n c r e a s e d %V02 m a x a t A T a n d w a s d e m o n s t r a t e d b y s h i f t i n g t h e o c c u r a n c e o f l a c t a t e t o a h i g h e r p e r c e n t a g e o f V 0 2 m a x ( 5 5 % t o 68% m a x ) . A l s o d e m o n s t r a t e d i n t h i s s t u d y w a s a d i f f e r e n c e i n t h e A T a s p r e d i c t e d b y l a c t a t e a n d e x c e s s l a c t a t e ( X L ) , w h i c h q u e s t i o n s t h e u s e a n d r e l i a b i l i t y o f e x c e s s l a c t a t e a s a - d e t e r m i n a t e f o r A T . N a g l e e t a l . ( 1 9 7 0 ) f o u n d w h e n s u b j e c t s ( 5 ) o f m e d i u m f i t n e s s l e v e l s ( V 0 2 max a v e r a g e d 5 3 m l / k g - m i n u t e ) w e r e e x e r c i s i n g f o r 3 0 - 6 0 m i n u t e s a t 6 5 - 7 0 % m a x t h e r e w a s a s l i g h t i n c r e a s e i n b l o o d l a c t a t e w h i c h w a s s u s t a i n e d f o r 6 0 m i n u t e s e v e n w h e n a s t e a d y s t a t e V 0 2 w a s a c h i e v e d , ( f i n d i n g s s u p p o r t e d b y W a s s e r m a n e t a l . 1 9 6 7 ) . N a g e l e t a l . a l s o f o u n d t h a t b y 21 e x e r c i s i n g at 82-89% V02 max, the l a c t i c a c i d increased throughout the 30 minutes along with an concomitant increase i n V02. At 74-79% V02 max there was a s l i g h t increase i n blood l a c t a t e which plateaued during the 40 minute e x e r c i s e along with a steady s t a t e V02. At 68-74% V02 max, there was a small increase i n blood l a c t a t e which plateaus as does the V02 uptake. During competitive races and prolonged runs of various i n t e n s i t i e s on the t r e a d m i l l , C o s t i l l ( 1 9 7 0 ) examined the accumulation of l a c t a t e i n 11 h i g h l y t r a i n e d distance runners (V02 max averaged 73 ml/kg-minute). He demonstrated that a f t e r a marathon race there were low l e v e l s of l a c t i c a c i d and when V02 was l e s s than 70% of V02 max there was l i ' t t l e or no increase i n blood l a c t a t e . During two hours of running at 55-67% max there was only a very s l i g h t increase i n blood l a c t a t e . C o s t i l l , Thomason and Roberts (1973) found the c o r r e l a t i o n between V02 max. and performance i n 10-mile race for 16 distance runners to be 0.91. Also at a speed of 268 m/minute (10 mph), the % of V02 max was h i g h l y r e l a t e d to distance performance (r=0.94). I t was found at a l l running speeds above 70% max, that the f a s t e r runners were able to accummulate l e s s blood l a c t a t e than the slower runners at s i m i l a r speeds. This suggests that %V02 max at AT w i l l vary for subjects of d i f f e r e n t f i t n e s s l e v e l s and that during long distance runs, the optimal speed i s determined according to the l e v e l of l a c t a t e being produced and being removed ( o x i d i z e d ) . C o s t i l l et a l . suggested there i s an economical u t i l i z a t i o n of V02 max with l i t t l e or no increase i n blood l a c t a t e . Four highly-experienced middle distance runners at 22 d i f f e r e n t l e v e l s of t r a i n i n g were studied by Volkov et a l . (1975) i n order to determine the r e l a t i o n s h i p s of power, ca p a c i t y and e f f i c i e n c y of aerobic and anaerobic metabolism. A c r i t i c a l speed (VCR) corresponding to a subject's V02 max was determined, using a continuous incremental t r e a d m i l l t e s t . In t h i s study, the subjects s t a r t e d out at 2.5 m/sec (5.6 mph) and every three minutes the speed increased 1 m/sec (2.24 mph) t i l f a t i g u e . Volkov a l s o used a r e s t i n g RQ of 0.75 i n the c a l c u l a t i o n of excess C02. Also c a l c u l a t e d during the t e s t sessions was the speed corresponding to the t h r e s h o l d of anaerobic metabolism (Vtam). This speed was determined r e l a t i v e to the workload where excess C02 e l i m i n a t i o n was observed to increase. Although the a c t u a l data was not presented, Vtam expressed as % of VCR was r e l a t e d to the subject's l e v e l of t r a i n i n g during the t e s t s e ssions. Vtam ranged 53% VCR f o r the subject at the lowest l e v e l of t r a i n i n g to 63% for the subject at the highest l e v e l . Anaerobic t h r e s h o l d determination for three d i f f e r e n t modes of e x e r c i s e were analyzed by Davis et a l . (1976). S i m i l a r r e s u l t s for maximal oxygen uptake and percent maximum at the AT were obtained for t r e a d m i l l walk/run e x e r c i s e and c y c l e . S i g n i f i c a n t l y lower r e s u l t s were obtained i n a l l instances for arm cranking. Their r e s u l t s a l s o demonstrated that, the AT i s reproducible f o r three e x e r c i s e p r o t o c a l s . Wiswell et a l . (1979) i n v e s t i g a t e d the r e l a t i o n s h i p between the AT c a l c u l a t e d for a b i c y c l e ergometer and a t r e a d m i l l . For each modality, oxygen uptake at the AT and at the maximal V02 were s i g n i f i c a n t l y c o r r e l a t e d , but the AT when expressed as 23 percent of maximum oxygen uptake for each e x e r c i s e was s i g n i f i c a n t l y d i f f e r e n t (p < 0.01). This suggests that s i m i l a r to maximal oxygen uptake (McKay & Bannister, 1976; Stromme et a l . 1977), the AT may be e x e r c i s e s p e c i f i c , as suggested by Davis et a l . (1976). However, Stamford et a l . (1978) demonstrated that for one- verus two-legged c y c l i n g , the AT occurs at the same r e l a t i v e percent of maximum 02 uptake, even though at a lower absolute work loa d , maximum oxygen uptake was lower for one-legged c y c l i n g . These f i n d i n g s suggest that the AT and maximum oxygen uptake may be in f l u e n c e d d i f f e r e n t l y under the same c o n d i t i o n s . .MacDougall (1977), i n h i s study demonstrated that the endurance a t h l e t e has h i s AT at 85% of V02 max whereas the nonendurance a t h l e t e ' s AT was at 70% V02 max and the untrained was c l o s e r to 55% V02 max (Ekblom, 1968). Although the A.T. seems to be overestimated by using the point of "breakaway" v e n t i l a t o r y response for i t s determination instead of the point of work rate j u s t below t h i s "breakaway", the i m p l i c a t i o n s of the r e s u l t s remain the same. The study suggested that an i n d i v i d u a l ' s AT may determine h i s cap a c i t y f or endurance e x e r c i s e . For example, an a t h l e t e with an AT of 55% V02 max would have a greater demand on the c a r d i o r e s p i r a t o r y system during e x e r c i s e r e q u i r i n g 75% V02 max compared to an i n d i v i d u a l who ex e r c i s e d at the same r e l a t i v e i n t e n s i t y but whose AT was 70% V02 max. Since l a c t i c a c i d accumulation may i n t e r f e r e with free f a t t y a c i d m o b i l i z a t i o n , the a t h l e t e with the lower AT would reduce h i s capacity to u t i l i z e f a t as an energy substrate at a lower r e l a t i v e e x e r c i s e i n t e n s i t y . Consequently, the former 24 subject would depend more on the catabolism of glycogen for energy, and because of a greater muscle glycogen d e p l e t i o n , would f a t i g u e more r a p i d l y during prolonged e x e r c i s e . MacDougall a l s o s t a t e d that both high i n t e n s i t y i n t e r v a l t r a i n i n g and long d u r a t i o n sub-maximal t r a i n i n g may be eq u a l l y important i n e l e v a t i n g A.T. He a l s o suggests that the A.T. w i l l increase through t r a i n i n g by i n c r e a s i n g the f o l l o w i n g parameters: (1) increase muscle c a p i l l a r y d e n s i t y (2) increase muscle myoglobin (3) increase m i t o c h o n d r i a l enzyme a c t i v i t y (4) increase mitochondria s i z e and number (5) increase c a p a c i t y for r e s i s t i n g l a c t a t e production by shunting a greater p r o p o r t i o n of pyruvate to the alanin e c y c l e . The use of heart rates as a t r a i n i n g index was i n v e s t i g a t e d by Katch et a l . (1978). These researchers suggest that the use of the r e l a t i v e percent of maximum heart rate concept i s not a good t r a i n i n g concept when co n s i d e r i n g whether or not an i n d i v i d u a l i s producing l a c t a t e . 0 T h e y found, when subjects were working at the same r e l a t i v e percentage of maximum heart r a t e , the r e l a t e d s t r e s s and expected t r a i n i n g changes were d i f f e r e n t between su b j e c t s . I n d i v i d u a l s appear to have d i f f e r e n t heart r a t e s corresponding to t h e i r AT, therefore caution i s str e s s e d in p r e s c r i p t i o n of e x e r c i s e loads u n t i l the A.T. has been determined. Katch et a l . (1978) when r e f e r r i n g to a t r a i n i n g program i n v o l v i n g the A.T., suggests when t r a i n i n g below the A.T. you use f a t for energy and there may be a change i n body ( f a t ) composition. Whereas t r a i n i n g above your A.T. e l i c i t s g reater changes i n c a r d i o r e s p i r a t o r y systems (Davies, 1971; Fox, 1973 and Sharkey, 1970). Patton et a l . (1979) a l s o i n v e s t i g a t e d heart rate and i t ' s 25 r e l a t i o n s h i p to A.T. Their data suggest that heart rate does not vary between i n d i v i d u a l s ( t r a i n e d or untrained) at t h e i r A.T. However, t h e i r heart rates at the A.T. were higher when compared to Wasserman et a l . (1973) and Wyndham et a l . (1965). A p p l i c a t i o n of the A.T. to distance running was i n v e s t i g a t e d by F a r r e l l et a l . (1979), Sucec (1979) and Weiser et a l . (1978). F a r r e l l et a l . (1979) demonstrated the r e l a t i o n s h i p to running performances at 3.2, 9.7, 15, 19.3 km and at marathon distances to V02 max, and the t r e a d m i l l speed at which the onset of plasma l a c t a t e occurred (OPLA). This speed and the mean marathon speed were c o r r e l a t e d s i g n i f i c a n t l y at r = 0.98. Mean marathon pace was 0.28 miles per hour above the mean t r e a d m i l l pace at OPLA. Sucec (1979) used the A.T., expressed as m i l l i t r e s of oxygen per kilogram of body weight per minute, i n a regression equation to p r e d i c t one and two mile times. The other dependent v a r i a b l e s included percent body f a t , running e f f i c i e n c y , oxygen debt, lean body weight, and maximum oxygen uptake. C o r r e l a t i o n s of 0.98 and 0.91 were c a l c u l a t e d f or the one and two mile times r e s p e c t i v e l y . Weiser et a l . (1978) a l s o a p p l i e d t h i s concept and showed a c o r r e l a t i o n of 0.92 for 3.2 kilometer race pace and t r e a d m i l l speed at the A.T. In the same year, Davis et a l . (1979) t r a i n e d 9 middle-aged sedentary males on c y c l e s for 45 minutes per day f o r 9 weeks. As a r e s u l t of t h i s t r a i n i n g program, the A.T. increased 44% when expressed as V02 (ml/kg-minute) and only 15% of V02 max due to a r e l a t i v e increase i n V02 (ml/kg-min) at both A.T., and maximum. They suggested that although there are gains, at the A.T. and 26 max, there i s however a 15% greater increase at A.T. than at maximum for V02 (ml/kg-minute). In V02 max, there was an o v e r a l l 25% improvement with maximum v e n t i l a t i o n i n c r e a s i n g 19% and the work rate i n c r e a s i n g 28%. Comparison of s p r i n t e r s and endurance runners are described by Roberts et a l . (1979). The s p r i n t e r s e x h i b i t e d : (1) lower maximum oxygen uptake, (60.7 vs 71.0 ml/kg-min) (2) lower anaerobic t h r e s h o l d (78 vs 83 percent V02 max) (3) lower oxygen uptake at the AT, (47.3 vs 58.9 ml/kg-min) (4) lower muscular c a p i l l a r i z a t i o n , (2.7 vs 4.6 c a p / f i b e r ) , and (5) higher percent f a s t t w i t c h f i b e r composition (54% vs 19%). This data suggests that the s p r i n t e r s have lower endurance c a p a c i t y , e s p e c i a l l y when c o n s i d e r i n g the AT and c a p i l l a r i z a t i o n . However, a comparison of the AT and muscle f i b e r composition by Green et a l . (1979) showed no c o r r e l a t i o n between the two, thereby l i m i t i n g c onclusions about AT and muscle f i b e r composition. No muscular s i t e s were reported i n t h i s a b s t r a c t . Kinderman et a l . (1979) analyzed the aerobic-anaerobic t r a n s i t i o n with reference to the AT and blood l a c t a t e c o n c e n t r a t i o n s . They suggest three c a t e g o r i e s for t h i s t r a n s i t i o n as a r e s u l t of t h e i r i n v e s t i g a t i o n s . This c l a s s i f i c a t i o n systems i n c l u d e s : (1) Aerobic Threshold (blood l a c t a t e < 2 mmol/1) (equal to A.T.) (2) Aerobic Anaerobic T r a n s i t i o n (blood l a c t a t e 2 to 4 mmol/1) (3) Anaerobic Threshold (blood l a c t a t e > 4 mmol/1) These i n v e s t i g a t o r s found that under c o n d i t i o n s of the aerobic t h r e s h o l d , a c t i v i t y could be maintained f o r at l e a s t four hours. The aerobic-anaerobic t r a n s i t i o n p e r i o d of a c t i v i t y could be maintained for one hour. For c o n d i t i o n s of the 'anaerobic 27 thre s h o l d ' only periods of e x e r c i s e l e s s than one hour i n dura t i o n could be maintained. Anaerobic T r a i n i n g I n t e r p l a y And Measurement Energy f o r short term maximal e f f o r t i s obtained by an i n t e r p l a y of various proportions of aerobic and anaerobic metabolism. The aerobic c a p a c i t y can be measured by maximal amounts of oxygen uptake at maximum and at the anaerobic t h r e s h o l d , however anaerobic c a p a c i t y i s measured i n d i r e c t l y by oxygen debt and increase i n blood l a c t a t e above r e s t i n g values during or a f t e r the e x e r c i s e . Issekutz and Rodahl (1961) suggested the excess C02 measure w i l l f o l l o w more c l o s e l y the' onset of metabolic a c i d o s i s . They concluded that the d i f f u s i o n of bicarbonate C02 ( i . e . non-metabolic C02) was more r a p i d than l a c t i c a c i d , thereby demonstrating that excess C02 might f o l l o w anaerobic metabolism more a c c u r a t e l y than blood l a c t a t e l e v e l s . Wasserman and M c l l r o y (1964) suggested excess l a c t a t e and R should not be expected to have a p r e c i s e c o r r e l a t i o n , because a l l metabolic a c i d s formed during e x e r c i s e w i l l act to increase R. Bouhuys et a l . (1966) a l s o suggested excess C02 w i l l only allow for rough i n d i c a t i o n of the degree of e x e r c i s e acidemia. In a p i l o t study, Cunningham and Faulkner (1969) developed a means for the t e s t i n g of anaerobic c a p a c i t y . Eight males between the ages of 23 and 41, were tes t e d on a t r e a d m i l l which i s preset at 8 mph and 20% grade (Anaerobic Speed T e s t ) . The subjects then t r a i n e d for 6 weeks (with aerobic and anaerobic sessions on a l t e r n a t e days). This r e s u l t e d i n a 23% (52 - 64 seconds) increase i n run time f o r the A.S.T., 9% increase i n 28 oxygen debt and 17% increase i n blood l a c t a t e concentrations a f t e r the e x e r c i s e . Houston and Thomson (1977) i n v e s t i g a t e d the e f f e c t s of a 6 week program of intense i n t e r m i t t e n t (anaerobic) h i l l running on f i v e endurance t r a i n e d men. The Anaerobic Speed t e s t for anaerobic c a p a c i t y improved by 16.7% (47.2 to 55.1 seconds) and t e r m i n a l blood l a c t a t e increased 14%. No changes i n V02 max, body f a t percent, or anaerobic power were found. Roberts and Morton (1978) reported i n a r e t e s t s i t u a t i o n , that u n f i t subjects were unable to repeat the intense e x e r c i s e (AST) when separated by 48 hours. The times for the p r e t e s t averaged 32.5 seconds with the p o s t t e s t averaging 29.4 seconds. Summary This review reported that considerable v a r i a b i l i t y i n improvement was observed among subjects f o l l o w i n g a t r a i n i n g program whose i n t e n s i t y was designed r e l a t i v e to i n i t i a l V02 max. I t has been reported that an endurance t r a i n i n g program c o n s i s t i n g of e x e r c i s e at 55% V02 max, 2 times per week, 30 minutes per sessions for s i x weeks was a s u f f i c i e n t t r a i n i n g stimulus for i n i t i a l l y sedentary i n d i v i d u a l s ( P o l l o c k , 1973). A program with greater i n t e n s i t y , frequency and d u r a t i o n would, the r e f o r e be more adequate. The p h y s i o l o g i c a l b a s i s and measurement of the anaerobic t h r e s h o l d was then reviewed. I t was suggested that the a n a l y s i s of the a l t e r a t i o n s i n r e s p i r a t o r y gas exchange during an incremental work t e s t to exhaustion on e i t h e r a b i c y c l e ergometer or t r e a d m i l l i s necessary to provide a r e l i a b l e 29 measure of an individual's A.T. The l a c t i c acid could also be measured to validate the use of the non-invasive indicators of A.T, i . e . , a non-linear r i s e in VC02, Ve, excess C02, and R disproportionate to the increase in V02. F i n a l l y , i t was then reported that an endurance tr a i n i n g program should not necessarily produce changes in r e l a t i v e AT values independent of observed changes in V02 max. CHAPTER I I I METHODS AND PROCEDURES Subjects Male s u b j e c t s , ages 18 to 32 years , were s o l i c t e d from a group of volunteers from the U n i v e r s i t y of B r i t i s h Columbia and from sev e r a l track t r a i n i n g clubs i n the Vancouver area. Each person was asked to complete a q u e s t i o n n a i r e regarding t h e i r l e v e l of f i t n e s s , t h e i r t r a i n i n g program and medical h i s t o r y . A l l subjects with an estimated body fat greater than 18% were screened from t h i s study. T h i r t y subjects on the basis of the q u e s t i o n n a i r e were placed i n t o one of the f o l l o w i n g c a t e g o r i e s : Untrained (10), A n a e r o b i c a l l y t r a i n e d (10), or A e r o b i c a l l y t r a i n e d (10). The c r i t e r i o n for each group was: Untrained group: No t r a i n i n g program c u r r e n t l y being undertaken and have not t r a i n e d r e g u l a r l y for two months Anaerobic group: S p r i n t i n g or i n t e r v a l t r a i n i n g program and have t r a i n e d r e g u l a r l y for more than two months Aerobic group: C u r r e n t l y running more than 65 miles a week Have t r a i n e d r e g u l a r l y for more than two months Testing Procedures The subjects were t e s t e d on two separate days. They were asked to r e f r a i n from t r a i n i n g before and on the day of the t e s t . During the f i r s t s e s s i o n , height, weight, body composition assessment, anaerobic t h r e s h o l d (A.T.) and maximal oxygen uptake 31 (V02 max) were determined. The anaerobic speed t e s t (A.S.T.), pulmonary f u n c t i o n t e s t s and explanation of r e s u l t s were conducted during the second session.. Testing P r o t o c o l s V02 max and anaerobic t h r e s h o l d were determined using a continuous t r e a d m i l l p r o t o c o l . As a warm-up, each subject walked on the t r e a d m i l l at 3.5 miles per hour for ten minutes. Subsequently, the t r e a d m i l l was set at 4.0 miles per hour and then increased one-half mile per hour at the end of each minute with the subject running u n t i l v o l i t i o n a l f a t i g u e . Heart rate was monitored by d i r e c t ECG u t i l i z i n g an A v i o n i c s 4000 e l e c t r o c a r d i o g r a p h with o s c i l l i s c o p e and ST depression computer and d i s p l a y . Expired gases were continuously sampled and analyzed by a Beckman Metabolic Measurement Cart (BMMC) i n t e r f a c e d i n t o a H e w l i t t Packard 3052A Data A c q u i s t i o n system for f i f t e e n second determination of r e s p i r a t o r y gas exchange v a r i a b l e s . Maximum oxygen consumption was determined by averaging the highest four consecutive f i f t e e n second oxygen uptake values. S i m i l a r procedures were done for excess C02 at maximal V02 and at the anaerobic t h r e s h o l d . The anaerobic t h r e s h o l d and Vtam were determined by examining the excess C02 e l i m i n a t i o n curve (Volkov, 1975). The determination of the A.T. was c o n s i s t e n t with the d e f i n i t i o n by Wasserman et a l . (1964). For the anaerobic speed t e s t , a f t e r a b r i e f warm-up of s t r e t c h i n g , subjects performed at a preset t r e a d m i l l p r o t o c o l (20 percent grade and 8 miles per hour) u n t i l v o l i t i o n a l f a t i g u e 32 (Cunningham and Faulkner-, 1969). The exact time the subjects could maintain t h i s high intense pace was recorded along with the amount of excess C02 e l i m i n a t e d during the t e s t and f o r two minutes f o l l o w i n g the run. Peak excess C02 was the highest value recorded by the data a c q u i s t i o n system (10 second i n t e r v a l s ) . Assessment of percent body f a t and lean body weight was done using the technique described by Durnin et a l . (1969) where four s k i n f o l d s i t e s ( r t bicep, r t t r i c e p , r t subscapular and r t s u p r a - i l i a c ) were measured using a harpenden s k i n f o l d c a l i p e r . Pulmonary f u n c t i o n was measured u t i l i z i n g an Autospirometer As-700 (Minton Medical Sciences., L t d ) . Experimental Design And Data A n a l y s i s The experimental design was a s i n g l e f a c t o r experiment, with the three groups, untrained, a e r o b i c a l l y and a n a e r o b i c a l l y t r a i n e d , being the three l e v e l s of the independent v a r i a b l e . The seven dependent v a r i a b l e s c o n s i s t e d of the f o l l o w i n g p h y s i o l o g i c a l parameters: (1) Vtam (mph) (2) % V02 max at A.T. (3) Excess C02 (ml/kg - min) at A.T. (4) Excess C02 (ml/kg - min) at V02 max (5) % Excess C02 max at A.T. ( (#3)/(#4) x 100 ) (6) Anaerobic Speed Test time (seconds) (7) Peak Excess C02 (ml/kg - min) during A.S.T. The data was analysed using a m u l t i v a r i a t e a n a l y s i s of variance. This was accomplished using the computer program ERSC:MULTIVAR (Finn, 1977) at the computing centre of the 33 U n i v e r s i t y of B r i t i s h Columbia. This program performs an exact l e a s t squares a n a l y s i s by the method described by Bock (1963). A s i g n i f i c a n t o v e r a l l m u l t i v a r i a t e F (p<0.05) between the groups was followed by pairwise comparison of groups (nonorthogonal) to get a between groups m u l t i v a r i a t e F, i n conjunction with the u n i v a r i a t e F's and the Scheffe's m u l t i p l e comparison of means for each dependent v a r i a b l e . Each hypothesis was t e s t e d for s i g n i f i c a n c e (p<0.05) using t h i s procedure as the Scheffe's t e s t was the c r i t e r i o n measure f o r acceptance or r e j e c t i o n of the n u l l hypothesis. However, since the research hypothesis are sta t e d in a d i r e c t i o n a l f a s h i o n , the s t a t i s t i c a l t e s t s are then o n e - t a i l e d t e s t s and the l e v e l of s i g n i f i c a n c e of p=0.025 w i l l be used. The data was broken up i n t o two components, p h y s i c a l c h a r a c t e r i s t i c s which includes age, height, weight, lean body weight, percent body f a t , v i t a l c a p a c i t y and forced expired volume ( i n 1.0 second), and the metabolic parameters from the two t e s t i n g p r o t o c o l s (V02 max with A.T. determination, and the A.S.T.) which included Vtam, % V02 max at A.T., excess C02 at A.T., % excess C02 max at A.T., excess C02 at V02 max, peak excess C02 (A.S.T.), and A.S.T. time. Two v a r i a b l e s which were not s t i p u l a t e d i n any hypotheses, were a l s o t e s t e d for s i g n i f i c a n c e as a measure of aerobic f i t n e s s . They were V02 at A.T. and V02 max (ml/kg-min). CHAPTER IV RESULTS AND DISCUSSION Results The t h i r t y subjects were t e s t e d as per the t e s t i n g p r o t o c o l s and t h e i r p h y s i c a l c h a r a t e r i s t i c s are summarized i n Table I. The r e s u l t s of the m u l t i v a r i a t e a n a l y s i s of these p h y s i c a l parameters are represented i n Table I I . The metabolic parameters are l i s t e d i n Table I I I and the r e s u l t s of s t a t i s t i c a l a n a l y s i s for these v a r i a b l e s are d i s p l a y e d i n Table IV. I n d i v i d u a l anaerobic t h r e s h o l d curves for determination of Vtam appear i n Appendix A. Two f a c t o r s i n the p h y s i c a l data, age and percent body f a t , were found to be s i g n i f i c a n t (p=0.001) through m u l t i v a r i a t e a n a l y s i s . This a n a l y s i s (Table I I ) was followed by a pairwise comparison between the groups i n conjunction with a Scheffe's m u l t i p l e comparison of means to determine the l o c a t i o n of the s i g n i f i c a n c e . There was a s i g n i f i c a n t d i f f e r e n c e between the anaerobic and aerobic groups for age (p<0.001). Percent body f a t a l s o showed s i g n i f i c a n t d i f f e r e n c e between the anaerobic and aerobic (p<0.001) as w e l l as untrained verus aerobic (p<0.001). A l l other p h y s i c a l parameters d i d not reach the preset l e v e l of s i g n i f i c a n c e . 35 TABLE I Mean and Standard Deviations  of the P h y s i c a l C h a r a c t e r i s t i c s PARAMETER UNTRAINED ANAEROBIC AEROBIC AGE 24.80 20.30 26.60 (years) ± 2.1 ± 4.0 ± 3.8 WEIGHT 75.42 71.41 67.30 (kgs) ± 7.6 ± 7.8 ± 3.2 LEAN BODY WEIGHT 65.37 62.28 61.18 (kgs) ± 6.5 ± 7.3 ± 2.9 BODY FAT 13.26 12.96 8.84 (percent) ± 2.6 ± 2.6 ± 1.7 HEIGHT 180.0 174.8 177.5 (cm) ± 6.8 ± 5.6 ± 4.9 VITAL CAPACITY 5.69 5.36 5.85 ( l i t r e s ) ± 0.7 ± 0.5 ± 0.5 FORCED EXPIRED 4.48 4.47 4.58 VOLUME (1.0 sec) ± 0.7 ± 0.5 ± 0.8 NUMBER IN 10 10 10 IN EACH GROUP 36 TABLE I_I_ M u l t i v a r i a t e A n a l y s i s Of Variance For BETWEEN GROUPS PAIRWISE COMPARISONS PROBABILITY UNTRAINED AEROBIC . UNTRAINED (P<) VS VS VS ANAEROBIC ANAEROBIC AEROBIC 0.001 0.007 0.001 , 0.251 0.034 0.276 0.001 0.778 0.001 0.001 0.163 0.199 0.922 DEPENDENT VARIABLES AGE (years) WEIGHT (kgs) LEAN BODY WT (kgs) BODY FAT (%) HEIGHT (cm) VITAL CAP. ( l i t r e s ) F.E.V.(1.0) ( l i t r e s ) MULTIVARIATE F 2.59 p< 0.007 P h y s i c a l Parameters 1.04 0.447 4.95 3.33 0.002 0.013 Underlined values are the u n i v a r i a t e F p r o b a b i l i t i e s f or co n t r a s t s which were found to be s i g n i f i c a n t a f t e r using Scheffe's m u l t i p l e comparison of means (p<0.025). No p r o b a b i l i t y given s i g n i f i e s that the m u l t i v a r i a t e F between groups was not s i g n i f i c a n t thereby negating the n e c e s s i t y to report i n d i v i d u a l p a i r w i s e comparison between groups. 37 The metabolic parameters are summarized i n Table I I I and the r e s u l t s of the m u l t i v a r i a t e a n a l y s i s i n Table IV. Several metabolic parameters were found to be s i g n i f i c a n t (p<0.05) as a r e s u l t of the s t a t i s t i c a l a n a l y s i s . They included the f o l l o w i n g : Vtam, V02-A.T., excess C02-A.T., % excess C02 max at A.T., V02 max, peak excess C02 (A.S.T.), and the Anaerobic Speed Test. This m u l t i v a r i a t e a n a l y s i s was again followed up by pair w i s e comparison to get the u n i v a r i a t e F's and p r o b a b i l i t i e s for each groupwise c o n t r a s t . Scheffe's m u l t i p l e comparison of means was computed to determine the l o c a t i o n of s i g n i f i c a n c e as depicted i n the m u l t i v a r i a t e F's. Vtam, V02-A.T., V02 max and time for A.S.T. were s i g n i f i c a n t (p<0.001) i n a l l three groupwise comparisons. The peak excess C02 from the AST showed s i g n i f i c a n c e between the untrained group and each of the other two groups. Whereas, excess C02 at A.T. and % excess C02 max at A.T. were s i g n i f i c a n t l y d i f f e r e n t only when the untrained group was compared to that of the anaerobic group. No s i g n i f i c a n t d i f f e r e n c e was found f o r % V02 max at A.T. and excess C02 at max between any of the three groups. Also no s i g n i f i c a n t d i f f e r e n c e was found when comparing the excess C02 at A.T. and % excess C02 max at A.T. for untrained verus aerobic comparison and for anaerobic verus a e r o b i c . This l a t t e r group c o n t r a s t a l s o had no' s i g n i f i c a n c e for excess C02 during the A.S.T. Table V i l l u s t r a t e s the r e s u l t s of the hypotheses t e s t i n g . 38 TABLE I I I Mean and Standard Deviations of the Metabolic Parameters PARAMETER UNTRAINED ANAEROBIC AEROBIC Vtam 6.10 7.80 10.00 (mph) ± 0.7 ± 0.7 ± 1.1 V02-AT 28.56 41.32 49.20 (ml/kg-min) ± 4.5 ±4.1 ± 6.3 V02-AT 67.30 69.40 74.60 (% max) ± 8.0 ± 6.4 ± 7.6 EXCESS C02-AT 9.26 6.31 8.03 (ml/kg-min) ± 2.9 ± 1.2 ±1.4 EXCESS C02-AT 43.50 30.70 34.10 (% max) ± 11.7 ± 5.8 ± 7.0 V02 MAX 42.56 59.64 65.81 (ml/kg-min) ± 5.9 ± 3.5 ± 4.0 EXCESS C02 MAX 21.31 21.08 23.65 (ml/kg-min) ± 4.1 ± 4.2 ±2.6 A.S.T. TIME 39.50 85.40 63.60 (seconds) ± 5.0 ± 9.4 ± 13.2 EXCESS C02-AST 20.56 35.65 32.84 (ml/kg-min) ± 4.2 ± 5.0 ± 9.9 NUMBER IN 10 10 10 EACH GROUP 39 TABLE IV DEPENDENT VARIABLES M u l t i v a r i a t e A n a l y s i s Of Variance For  Metabolic Parameters PAIRWISE COMPARISONS Vtam (mph) V02-AT (ml/kg-min) BETWEEN GROUPS PROBABILITY (P<) 0.001 • 0.001 V02-AT (% max) 0.092 Excess C02-AT 0.010 (ml/kg-min) Excess C02-AT 0.007 (% max) V02-max 0.001 (ml/kg-min) Excess C02-max 0.249 (ml/kg-min) Excess C02-AST 0.001 (ml/kg-min) Time-AST (seconds) 0.001 UNTRAINED VS ANAEROBIC 0.001 0.001 0.003 0.002 0.001 0.001 0.001 AEROBIC VS ANAEROBIC 0.001 0.002 0.066 0.384 0.006 0.368 0.001 UNTRAINED VS AEROBIC 0.001 0.001 0.175 0.021 0.001 0.001 0.001 MULTIVARIATE F 13.54 p< 0.001 15.93 0.001 9.72 0.001 16.87 0.001 Underlined values are the u n i v a r i a t e F p r o b a b i l i t i e s f or c o n t r a s t s which were found to be s i g n i f i c a n t a f t e r using Scheffe's m u l t i p l e comparison of means (p<0.025). No p r o b a b i l i t y given s i g n i f i e s that the m u l t i v a r i a t e F between groups was not s i g n i f i c a n t thereby negating the n e c e s s i t y to report i n d i v i d u a l p a i r w i s e comparison between groups. 40 TABLE V Summary Of Hypotheses Testing DEPENDENT VARIABLES 1. Vtam (mph) 2. V02-AT (% of max) 3. Excess C02-AT (ml/kg-min) 4. Excess C02-max (ml/kg-min) 5. Excess C02-AT (% of max) 6. Time for A.S.T. (seconds) 7. Excess C02-AST (ml/kg-min) PROPOSED GROUP RELATIONSHIPS (a (b (c (a (b (c (a (b (c (a (b (c (a (b (c (a (b (c (a (b (c AEROBIC > AEROBIC > ANAEROBIC > AEROBIC > AEROBIC > ANAEROBIC > AEROBIC > AEROBIC > ANAEROBIC > AEROBIC > AEROBIC > ANAEROBIC > UNTRAINED > UNTRAINED > ANAEROBIC > ANAEROBIC > ANAEROBIC > AEROBIC > ANAEROBIC > ANAEROBIC > AEROBIC > ANAEROBIC UNTRAINED UNTRAINED ANAEROBIC UNTRAINED UNTRAINED ANAEROBIC UNTRAINED UNTRAINED ANAEROBIC UNTRAINED UNTRAINED ANAEROBIC AEROBIC AEROBIC AEROBIC UNTRAINED UNTRAINED AEROBIC UNTRAINED UNTRAINED RESULTS SUPPORTED SUPPORTED SUPPORTED NONSUPPORTED NONSUPPORTED NONSUPPORTED NONSUPPORTED NONSUPPORTED * NONSUPPORTED NONSUPPORTED NONSUPPORTED NONSUPPORTED SUPPORTED NONSUPPORTED NONSUPPORTED SUPPORTED SUPPORTED SUPPORTED NONSUPPORTED SUPPORTED SUPPORTED * Excess C02 at A.T. for anaerobic verus untrained group was s i g n i f i c a n t with the reverse of that hypothesized o c c u r r i n g ( i . e . Untrained > Anaerobic). 41 D i s c u s s i o n The main o b j e c t i v e of t h i s study was to compare three groups d e l i n e a t e d on t h e i r s t a t e of t r a i n i n g ( a e r o b i c , anaerobic or untrained) and the e f f e c t of t h i s t r a i n i n g on t h e i r b i o e n e r g e t i c systems. The comparison was designed to determine i f there e x i s t s a d i f f e r e n c e i n r e s p i r a t o r y exchange v a r i a b l e s at the anaerobic t h r e s h o l d , at maximal oxygen uptake and at maximal anaerobic c a p a c i t y i n these three groups. T h i r t y male su b j e c t s , 10 per group, were screened and tested on two separate occasions. The anaerobic group (mean age 20.3) were s i g n i f i c a n t l y younger than the aerobic group (mean age 26.6). This may i l l u s t r a t e the f a c t most long distance runners peak i n t h e i r l a t e twenties and e a r l y t h i r t i e s , whereas pure i n t e r v a l t r a i n i n g i s very tough to continue for a number of years. The aerobic group a l s o had s i g n i f i c a n t l y l e s s percentage of body f a t than the two other groups, p o s s i b l y as a r e s u l t of the the amount of c a l o r i e s they expend while t r a i n i n g a e r o b i c a l l y . Maximum oxygen consumption (V02 max), which i s g e n e r a l l y accepted as the s i n g l e best measure of an i n d i v i d u a l ' s aerobic c a p a c i t y , e x h i b i t e d a s i g n i f i c a n t d i f f e r e n c e between the three groups. The untrained group was c l a s s i f i e d i n p o o r - f a i r c o n d i t i o n (V02 max = 42.5 ml/kg-minute) while the anaerobic group (59.6 ml/kg-minute) and aerobic group (65.8 ml/kg-minute) were c l a s s i f i e d as i n e x c e l l e n t c a r d i o r e s p i r a t o r y c o n d i t i o n according to the norms as set out by Astrand and Rodahl (1977). Roberts et a l . (1979), i n t h e i r study of s p r i n t e r s and endurance runners, found s i m i l a r maximal oxygen uptake scores ( S p r i n t e r s 60.7 vs 71.0 ml/kg-minute for Endurance a t h l e t e s ) . 42 Excess C02 i s defined as being a measure of "non-metabolic' C02 which i s produced as a by-product from metabolic a c i d s . This i s evident during intense work when the body needs a d d i t i o n a l energy and i s unable to provide i t a e r o b i c a l l y (Issekutz and Rodahl, 1961). Therefore, excess C02 should be an i n d i c a t i o n of anaerobic energy c o n t r i b u t i o n in' r e l a t i o n to other energy sources. When the excess C02 i s low very l i t t l e anaerobic energy i s being s u p p l i e d , and any by-products which are being produced w i l l be o x i d i z e d . Conversely when excess C02 i s high, i t d e p i c t s a s t a t e of high c o n t r i b u t i o n of the anaerobic energy sources. L a c t i c a c i d , the major by-product of anaerobiosis of the working muscles, i s subject to a s e r i e s of r e a c t i o n s which u l t i m a t e l y lead to the e l i m i n a t i o n of excess C02. The anaerobic t h r e s h o l d was defined as being j u s t below the breakaway from l i n e a r i t y i n the e l i m i n a t i o n of excess C02 (Volkov, 1975). At the AT, Vtam (mph) i s t h e o r i z e d to be the highest work point before the onset of a n a e r o b i o s i s . Volkov (1975) suggests a Vtam of 6 to 7.5 mph i s t y p i c a l of subjects of medium to high f i t n e s s l e v e l . However, i n h i s study only four subjects were used and the t e s t i n g p r o t o c o l and anaerobic t h r e s h o l d determinations were s l i g h t l y d i f f e r e n t from that used i n the present study. The theory behind t h i s concept of Vtam suggests that the more a e r o b i c a l l y t r a i n e d a person i s , the higher the workload he i s able to t o l e r a t e without i n c u r r i n g a build-up of l a c t a t e . This holds true i n the present study as the aerobic group had the highest V02 max and Vtam with the untrained group having the lowest. The a n a e r o b i c a l l y t r a i n e d group were between the untrained and aerobic groups. S i g n i f i c a n t d i f f e r e n c e s 43 (p<0.001) were found for Vtam and V02 max between a l l three groups (Table I V ) . At the anaerobic t h r e s h o l d , the oxygen uptake as a percentage of V02 max was hypothesized to be d i f f e r e n t between the three groups (aerobic > anaerobic > u n t r a i n e d ) . The s t a t i s t i c a l a n a l y s i s d i d not i n d i c a t e t h i s f i n d i n g , however the trend does e x i s t with the between groups F r a t i o almost being s i g n i f i c a n t (p=0.09). The aerobic group u t i l i z e d 74% of t h e i r V02 max at the A.T., with the anaerobic group at 69% and the untrained at 67%. Several other s t u d i e s have po s t u l a t e d that subjects of high aerobic f i t n e s s u t i l i z e between 62 to 85% of the V02 max and untrained subjects are i n the range of 35 - 55% of V02 max at A.T. (MacDougall 1977; Roberts et a l . 1979; W i l l i a m s et a l . 1967; Wyndham et a l . 1962). A n a e r o b i c a l l y t r a i n e d i n d i v i d u a l s were found to be using 78% of t h e i r V02 max i n study by Roberts et a l . (1979). This suggests the d i f f i c u l t y i n which to a c c u r a t e l y c l a s s i f y individual's i n t o d i f f e r e n t l e v e l s of f i t n e s s based on t h e i r percentage of V02 max at t h e i r anaerobic t h r e s h o l d s . In t h i s present study when expressed as ml/kg-minute, the V02 at the A.T. was s i g n i f i c a n t l y d i f f e r e n t for a l l three groups (untrained=28.5 < anaerobic=41.3 < aerobic=49.2). Roberts et a l . (1979) found the absolute measure of V02 at A.T. was 47.3 ml/kg-minute for the s p r i n t e r s and 58.9 for the endurance group. The t r a n s i t i o n towards anaerobic energy sources at the A.T. r e f l e c t s the i n a b i l i t y of the aerobic system to handle increased work demands. Consequently, the aerobic a t h l e t e should have a higher breakaway point as shown by the Vtam, and i t was 44 hypothesized f o r the excess C02 at A.T. to be higher than the anaerobic group, followed by the untrained group at t h e i r r e s p e c t i v e anaerobic thresholds. But f i n d i n g s - i n t h i s research found the reverse to be true with the untrained group having a higher l e v e l of excess C02 than the anaerobic group. No s i g n i f i c a n t d i f f e r e n c e was found between a l l other pairwise comparisons. This p o s s i b l y suggests that for the untrained group, the method for determining the anaerobic t h r e s h o l d i s not s e n s i t i v e enough to pick up any h y p e r v e n t i l a t i o n which would account for the elevated excess C02 values. The r e s u l t s of t h i s study found the untrained group to have a higher percentage (43%) of excess C02 max at the A.T. when compared to the anaerobic group (30.7%). No s i g n i f i c a n t d i f f e r e n c e was found between the other p a i r w i s e comparisons. This demonstrates that the r e l a t i v e measure of 'percentage of maximum' of excess C02 might not be v a l i d f or cross comparisons between i n d i v i d u a l s of d i f f e r e n t f i t n e s s l e v e l s . Excess C02 was postulat e d to be at i t s highest value when an i n d i v i d u a l i s e x e r c i s i n g under anaerobic c o n d i t i o n s for the longest p e r i o d of time. The anaerobic group should be able to extend anaerobiosis to a high l e v e l , producing and t o l e r a t i n g higher l e v e l s of anaerobic metabolites, such as muscle and blood l a c t a t e , and consequently e l i c i t the highest l e v e l of excess C02 during the AST. The a e r o b i c a l l y t r a i n e d group was pos t u l a t e d as being able to o x i d i z e large amounts of metabolites due to t h e i r high aerobic c a p a c i t i e s . This group was then hypothesized to have the highest l e v e l of excess C02 during the aerobic t r e a d m i l l t e s t because they should be able to go for longer 45 periods of time and t h e i r l e v e l of excess C02 should be higher than the other two groups. This i s based on the theory that the longer you e x e r c i s e as the workload i s i n c r e a s i n g , the greater the demands and the greater the l a c t i c a c i d build-up could be when you are unable to meet the energy requirements a e r o b i c a l l y . The untrained group was unable to run for long periods of time due to the lack of t r a i n i n g and a l s o the i n a b i l i t y to produce or t o l e r a t e high l e v e l s of anaerobic metabolites. This group was then hypothesized to have the lowest l e v e l of excess C02 i n both the aerobic and anaerobic t r e a d m i l l t e s t s . The research demonstrated that i n the aerobic t e s t a l l groups had reached the same l e v e l of excess C02 at t h e i r max. The reasons why the excess C02 was the same for a l l groups i s p o s s i b l y due to the lack of s e n s i t i v i t y i n the system i n d e t e c t i n g h y p e r v e n t i l a t i o n which may elevate the excess C02 value. Another p o s s i b l e explanation i s the d i f f e r e n t methods of producing and o x i d i z i n g energy metabolites between the groups. Excess C02 has p r e v i o u s l y been st a t e d as being only a rough i n d i c a t o r of blood l a c t a t e (Bouhuys et a l . 1966). There should be a r e l a t i o n s h i p between l a c t i c a c i d and excess C02, but other f a c t o r s such as the d i f f e r e n c e between subjects i n d i f f u s i o n of l a c t a t e from the muscle to the blood, o x i d a t i o n c a p a c i t y , storage c a p a c i t y i n muscle for l a c t a t e and l a c t a t e t o lerance may complicate t h i s r e l a t i o n s h i p . The time to perform the Anaerobic Speed Test was s i g n i f i c a n t l y d i f f e r e n t between a l l three groups (Anaerobic 85.4 > Aerobic 63.6 > Untrained 39.5 seconds). However, the peak excess C02 from the A.S.T. was not as c l e a r l y e l u c i d a t e d (35.6 & 46 32.8 > 20.6 ml/kg-min. r e s p e c t i v e l y ) . A p o s s i b l e explanation as to why no d i f f e r e n c e between anaerobic and aerobic groups i n excess C02 were found are the h i g h l y t r a i n e d marathoners were able to endure the A.S.T. with more aerobic energy because they often t r a i n near 10 mph (Vtam). Therefore the o x i d a t i o n of l a c t a t e could occur up to a point then a f t e r which a f a s t b u i l d -up of l a c t a t e might occur. Whereas the a n a e r o b i c a l l y t r a i n e d i n d i v i d u a l could build-up slower to a high l e v e l and then they should able to endure these high l e v e l s throughout the t e s t . There i s a l s o a strong tendency during and a f t e r the A.S.T. t e s t to h y p e r v e n t i l a t e and while doing so, the excess C02 w i l l be blown o f f , not i n proportion to the anaerobiosis which may lead to erroneous readings of Excess C02. D i f f e r e n c e s between i n d i v i d u a l s might e x i s t i n f i b e r type and recruitment, v e n t i l a t o r y response, storage and buf f e r c a p a c i t y for metabolic a c i d s which may l i m i t the i n t e r p r e t a t i o n s of excess C02. In summary, comparison of the three groups c l e a r l y demonstrated a d i f f e r e n c e i n aerobic c a p a c i t y (V02 at max and V02 at A.T.), Vtam and time f o r the Anaerobic Speed Test. Excess C02 e l i m i n a t i o n as an i n d i c a t o r of anaerobiosis was not c l e a r l y e l u c i d a t e d . Further studies need to be conducted with excess C02 in conjunction with anaerobic metabolites. CHAPTER V SUMMARY AND CONCLUSIONS Summary Exerc i s e l i m i t a t i o n s have been studied by se v e r a l researchers, i n which the l e v e l of e x e r c i s e i n t e n s i t y e x h i b i t s an inverse r e l a t i o n s h i p to d u r a t i o n . I n v e s t i g a t i o n s i n t o the use of d i f f e r e n t t r a i n i n g methods and t h e i r e f f e c t on aerobic and anaerobic c a p a c i t i e s are co n s t a n t l y being undertaken i n l a b o r a t o r i e s and in f i e l d s t u d i e s . Knuttgen (1962) no t i c e d a ' c r i t i c a l l e v e l ' of work i n t e n s i t y ' w h i c h seemed to l i m i t one's a b i l i t y to perform prolonged e x e r c i s e . This l e v e l of work i n t e n s i t y i s ass o c i a t e d with the onset of metabolic a c i d o s i s termed the Anaerobic Threshold (Wasserman et a l . , 1964). The present study attempted to compare three groups d e l i n e a t e d on t h e i r s t a t e of t r a i n i n g (aerobic, anaerobic or untrained) and the e f f e c t of t h i s t r a i n i n g on t h e i r b i o e n e r g e t i c systems. The comparison was designed to determine i f there e x i s t s a d i f f e r e n c e i n r e s p i r a t o r y exchange v a r i a b l e s at the anaerobic t h r e s h o l d , maximal aerobic and maximal anaerobic c a p a c i t y i n these three groups. T h i r t y male s u b j e c t s , ten per group, were t e s t e d on two separate t r e a d m i l l p r o t o c o l s . During the f i r s t s e s s i o n s , height weight, body composition assessment, anaerobic t h r e s h o l d and maximal oxygen uptake were determined. The Anerobic Speed Test and pulmonary fu n c t i o n t e s t s were conducted during the second ses s i o n . The anaerobic group (mean age 20.3) were s i g n i f i c a n t l y 48 younger than the aerobic group (mean age 26.6). The aerobic group a l s o had s i g n i f i c a n t l y l e s s percentage of body f a t than the two other groups, p o s s i b l y as a r e s u l t of t h e i r t r a i n i n g schedule. S i g n i f i c a n t d i f f e r e n c e s were demonstrated between a l l three groups (Aerobic > Anaerobic > Untrained ) f o r : V02 at max 65.8 > 59.6 > 42.5 ml/kg-min. ( r e s p e c t i v e l y ) . Vtam at A.T. 10.0 > 7.8 > 6.1 miles/hour ( r e s p e c t i v e l y ) . V02 at A.T. 49.2 > 41.3 > 28.6 ml/kg-min. ( r e s p e c t i v e l y ) . Although no d i f f e r e n c e was found when expressed as percentage of V02 max at A.T., a trend does e x i s t for the aerobic group to be higher and the untrained group to be the lowest. Excess C02 (ml/kg-minute) was used as the determinant of the onset of anaerobiosis i n the p r e d i c t i o n of the anaerobic t h r e s h o l d . The d i f f e r e n c e between the absolute excess C02 of the three groups at t h e i r V02 max was n o n s i g n i f i c a n t . However at the A.T., the untrained group had a s i g n i f i c a n t l y higher value of excess C02 e l i m i n a t i o n than the anaerobic group (9.26 > 6.31 ml/kg-min). This could demonstrate a s t a t e of h y p e r v e n t i l a t i o n at the A.T. f o r the untrained group p o s s i b l y due to t h e i r lack of aerobic c o n d i t i o n i n g . When excess C02 at the A.T. i s expressed as a percentage of excess C02 at V02 max, the untrained group (43.5%) was found to be s i g n i f i c a n t l y d i f f e r e n t than the anaerobic group (30.7%). P o s s i b l y due to any h y p e r v e n t i l a t i o n during the AT t r a n s i t i o n , the excess C02 at AT would be higher which i n turn may lead to erroneously high % of maximal values. 4 9 S i g n i f i c a n t d i f f e r e n c e s were a l s o demonstrated between the three groups f o r anaerobic c a p a c i t y i n the A.S.T. (Anaerobic: 85 > Aerobic: 63.6 > Untrained: 39.5 seconds). As a r e s u l t of t h i s performance, the anaerobic group had a higher value for peak excess C02 (35.6 ml/kg-min) from the A.S.T. than the aerobic (32.84) and the untrained group (20.56). However, any h y p e r v e n t i l a t i o n during t h i s t e s t could make the excess C02 values questionable. Findings i n t h i s study, r e l a t e d to d i f f e r e n c e s i n V02 max, V02 at A.T., Vtam and anaerobic c a p a c i t y (A.S.T.) are evident due to the s t a t e of t r a i n i n g of c e r t a i n groups. However, the use of excess C02 e l i m i n a t i o n as a i n d i c a t o r of the aerob i c -anaerobic i n t e r p l a y i n energy metabolism, p a r t i c u l a r l y f or the untrained group was not c l e a r l y demonstrated and f u r t h e r studies in conjunction with anaerobic metabolites need to be conducted. Conclusions (1) S i g n i f i c a n t d i f f e r e n c e s between a l l three groups were demonstrated f o r V02 max, V02 at A.T. and Vtam. (Aerobic > Anaerobic > Untrained). (2) No s i g n i f i c a n t d i f f e r e n c e s i n r e l a t i v e values (% of V02 max at A.T.) was evident, however a trend does e x i s t s . (3) Excess C02 s i g n i f i e s a p o s s i b l e measure of metabolic a c i d o s i s . In t h i s study, excess C02 d i d not demonstrate a c l e a r r e l a t i o n s h i p between the d i f f e r e n t 50 states of t r a i n i n g of the three groups at s p e c i f i c treadmill workloads. (4) The Anaerobic Speed Test is a good measure of the anaerobic endurance. Anaerobic individuals scored higher than the aerobic who in turn were higher than the untrained individuals in the A.S.T. Recommendations (1) Groups with more s p e c i f i c t r a i n i n g programs may need to be compared in order to test for any differences between r e l a t i v e measures such as % V02 max at A.T. (2) Further research needs to be done to c l a r i f y the rela t i o n s h i p between excess C02 and anaerobic metabolites, such as l a c t i c acid. (3) A breath-by-breath system for c a l c u l a t i n g respiratory exchange variables would be advantageous in detecting hyperventilation. 51 BIBLIOGRAPHY Astrand, P.O. and H. Rodahl, Textbook Of Work Physiology. McGraw-Hill, New York, 1977 Balke, B., G.P G r i l l o , E.B. Konecci and U.C. L u f t . Work c a p a c i t y a f t e r blood donation. J . Appl. P h y s i o l . 7: 231-238, 1954. Bock, H. M u l t i v a r i a t e S t a t i s t i c s McGraw-Hill, New York, 1963 Bonen, A., C.J Campbell, R.L. Kirby and A.N. B e l c a s t r o R e l a t i o n s h i p between slow-twitch muscle f i b e r s and l a c t i c a c i d removal. Can. J . Appl. Sport. S c i . 3: 160-162, 1978. Bouhuys, A., J . Pool, R.A. Binkhorst and P. van Leeuwen. Metabolic a c i d o s i s of ex e r c i s e i n healthy males. J . Appl.  P h y s i o l . 21(3): 1040-1046, 1966. Bri g g s , H. P h y s i c a l e x e r t i o n , f i t n e s s and breathing. J . Appl.  P h y s i o l . 54: 292-314, 1920. Clode, M. C02 balance during e x e r c i s e . J . Appl. P h y s i o l .  P h y s i o l . S o c i e t y , 25: 49-50, 1966. Clode, M. and E.J.M. Campbell. The r e l a t i o n s h i p between gas exchange and changes i n blood l a c t a t e concentrations during e x e r c i s e . C l i n . S c i . 37: 263-272, 1969. Clode, M., T.J.H. Clark and E.J.M. Campbell. The immediate C02 storage c a p a c i t y of the body during e x e r c i s e . t i o n s C l i n .  S c i . 32: 161-165, 1967. C o s t i l l , D.L. Metabolic responses during distance running. J .  Appl. P h y s i o l . 28: 251-255, 1970. C o s t i l l , D.L., H. Thomason and E. Roberts. F r a c t i o n a l u t i l i z a t i o n of the aerobic c a p a c i t y during distance running. Med. S c i . Sports. 5(4): 248-252, 1973. Cunningham, D.A. and J.A. Faulkner. The e f f e c t of t r a i n i n g on aerobic and anaerobic metabolism during a short exhaustive run. Med. S c i . Sports. 1(2): 65-69, 1969. Davies, C.T. and A.V. Knibbs. The e f f e c t s of i n t e n s i t y , d uration and frequency of e f f o r t on maximum aerobic power output. I n t . Z. Angew. P h y s i o l . 29: 299-305, 1971 Davis, J.A., M.H. Frank, B.J. Whipp and K. Wasserman. Anaerobic t h r e s h o l d a l t e r a t i o n s caused by endurance t r a i n i n g i n middle-aged men. J . Appl. P h y s i o l . : R e s p i r a t . Environ. . E x e r c i s e P h y s i o l . , 46(6): 1039-1046, 1979. 52 Davis, J.A., M.H. Frank, B.J. Whipp and K. Wasserman. Anaerobic t h r e s h o l d a l t e r a t i o n s consequent to endurance t r a i n i n g i n middle-aged men. Med. S c i . Sports. 11(1): 96, 1979, (a b s t r a c t ) Davis, J.A., P. Vodak, J.H. Wilmore, J . Vodak and P. Kurtz Anaerobic t h r e s h o l d and maximal aerobic power fo r three modes of e x e r c i s e . J . Appl. P h y s i o l . 41(4): 544-550, 1976. Diamont, B., J . K a r l s s o n , and B. S a l t i n . Muscle t i s s u e l a c t a t e a f t e r maximal ex e r c i s e i n man. Acta. P h y s i o l . Scand. 72: 383-384, 1968. D i l l , D.B., J.H. Talbot and H.T. Edward. Studies i n muscular a c t i v i t y . VI. J . P h y s i o l . 69: 276-305, 1930. DiPrampero, P.E., L. Peeters and R. Margaria. A l a c t i c 02 debt and l a c t i c a c i d production a f t e r exhausting e x e r c i s e i n man. J . Appl. P h y s i o l . 34(5): 628-632, 1973. Durnin, J.K. and M.M. Rahaman. The assessment of the amount of f a t i n the human body from measurements of s k i n f o l d t h i c k n e s s . B r i t . J . Nutr. 21:681-689, 1969. Ekblom, B., P.O. Astrand, B. S a l t i n , J . Stenberg and B.Wallstrom. E f f e c t fo t r a i n i n g on c i r c u l a t o r y response to e x e r c i s e . J . Appl. P h y s i o l . 24: 518-528, 1968. F a r r e l l , P.A., J.H. Wilmore, E.F. Coyle, J . . B i l l i n g and D.Cost i l l . Plasma l a c t a t e accumulation and distance running performance. Med. S c i . Sports. 11(4): 338-344,' 1979. F i n n , J.D. M u l t i v a r i a n c e : U n i v a r i a t e and m u l t i v a r i a t e a n a l y s i s  of variance, covariance, regression and repeated measures. Chicago: I n t e r n a t i o n a l Education S e r v i c e s , 1977. Fox, E.L., R.L. B a r t e l s , C E . B i l l i n g s , D. Mathews, R. Bason and W. Webb. I n t e n s i t y and distance of ' i n t e r v a l t r a i n i n g programs and changes in aerobic power. Med. S c i . Sports. 5(1): 18-22, 1973. Fox, E.L., R.L. B a r t e l s , C E . B i l l i n g s , R. O'Brien, R. Bason and D. Mathews. Frequency and duration of i n t e r v a l t r a i n i n g programs and changes in aerobic power. J . Appl. P h y s i o l . 38(3): 481-484, 1975. Graham, T.E. Oxygen d e l i v e r y and blood and muscle l a c t a t e changes during muscular a c t i v i t y . Can. J . Appl. Sport. S c i . 3: 153-159, 1978 Green, H., B. Daub, D. P a i n t e r , M. Houston and J . Thomson. Anaerobic t h r e s h o l d and muscle f i b e r type, area and o x i d a t i v e enzyme a c t i v i t y during graded c y c l i n g . Med. S c i .  Sports. 11(1): 113-114, 1979 (abstract) 53 Guy/ton, A.C. Textbok of Medical Physiology. Saunders Co., Toronto, Ontario, 1976. H a r r i s , P., M. Bateman, T. Bayley, J . G l o s t e r and J . Whitehead. Observations on the course of the metabolic events accompanying mild e x e r c i s e . Quart. J . Exp. P h y s i o l . 53: 43-45, 1968 Hermansen, L. and I. Stensvold. Production and removal of l a c t a t e during e x e r c i s e i n man. Acta. P h y s i o l . Scand. 86: 191-201, 1972. H i l l , A.V., C.N. Long and H. Lupton. Muscular e x e r c i s e , l a c t i c a c i d and supply and u t i l i z a t i o n of oxygen. Proc. Roy. Soc. B 97: 84-138, 1924. Houston, M.E. and J.A. Thomson. The response of endurance-adapted a d u l t s to intense anaerobic t r a i n i n g . Eur. J . Appl.  P h y s i o l . 36: 207-213, 1977 H o l l o s z y , J.O. Biochemical adaptations to e x e r c i s e : Aerobic metabolism. In: E x e r c i s e and Sport Sciences Review. J.H. Wilmore (ed.), V o l . 1, pp. 45-71, Academic Press, New York, 1973. Huckabee, W.E. R e l a t i o n s h i p s of pyruvate and l a c t a t e during anaerobic metabolism. E f f e c t s of i n f u s i o n of pyruvate or glucose and of h y p e r v e n t i l a t i o n . J . C l i n . Invest. 37: 244-254, 1958 ( a ) . Huckabee, W.E. Exercise and formation of 02 debt. J . C l i n .  Invest. 37: 255-263, 1958 (b). Huckabee, W.E. E f f e c t s of breathing low oxygen gases. J . C l i n .  Invest. 37: 264-269, 1958 ( c ) . Huckabee, W.E. The r o l e of anaerobic metabolism in the performance of mild muscular work. The e f f e c t s of asymptomatic heart disease. J . C l i n . Invest. 37: 1593-1598, 1958 (d). Hughes, R.L., M. Clode and R.H. Edwards. E f f e c t s of i n s p i r e d 02 on cardio-pulmonary and metabolic responses to e x e r c i s e i n man. J . Appl. P h y s i o l . 24: 336-339, 1968. I s s e k u t z , B.,Jr., N. Birkhead and K. Rodahl. Use of r e s p i r a t o r y q u o t i e n t s i n assessment of aerobic work c a p a c i t y . J . Appl.  P h y s i o l . 17(1): 47-50, 1962. Issekutz, B.,Jr. and K. Rodahl. R e s p i r a t o r y quotient during e x e r c i s e . J . Appl. P h y s i o l . 16(4): 606-610, 1961. 54 Ivy, J.L., D.L. C o s t i l l , D.A. E s s i g , R.W. Lower and P.J. Van Handel. The r e l a t i o n s h i p of blood l a c t a t e to the anaerobic t h r e s h o l d and h y p e r v e n t i l a t i o n . Med. S c i . Sports. 11(1): 96-97, 1979 ( a b s t r a c t ) . J o r f e l d t , L., A. J u h l i n - D a n n f e l t , and J . Karlsson'. Lactate release i n r e l a t i o n to t i s s u e l a c t a t e i n human s k e l e t a l muscle during e x e r c i s e . J . Appl. P h y s i o l . 44(3): 350-352, 1978. Katch, V., A. Weltman, S. Sudy and P. Freedson. V a l i d i t y of the r e l a t i v e percent concept for equating t r a i n i n g i n t e n s i t y . Eur. J . Appl. P h y s i o l . 39: 219-227, 1978. Kindermann, W., G. Simon and J . Keul. The s i g n i f i c a n c e of the aerobic-anaerobic t r a n s i t i o n f o r the determination of work load i n t e n s i t i e s during endurance t r a i n i n g . Eur. J . Appl.  P h y s i o l . 42(1): 25-34, 1979. Knuttgen, H. Oxygen debt, l a c t a t e , pyruvate and excess l a c t a t e a f t e r muscular work. J . Appl. P h y s i o l . 17(4): 639-644, 1962. Koyal, S., J . Mohler, R. Jung and C. C o l l i e r . A noninvasive t e s t to determine anaerobic t h r e s h o l d f o r incremental work by oxygen pulse. Med. S c i . Sports. 10(1): 43, 1978 ( a b s t r a c t ) . Le, Chinh. UBC Simcort Vancouver: U.B.C. Computing Centre, 1979. MacDougall, J.D. The anaerobic t h r e s h o l d : I t s s i g n i f i c a n c e f or the endurance a t h l e t e . Can. J . Appl. Sport S c i . 2: 137-140, 1977. Margaria, R., R. Edwards and D. D i l l . The p o s s i b l e mechanisms of c o n t r a c t i n g and paying the oxygen debt and the r o l e of l a c t i c a c i d i n muscular c o n t r a c t i o n s . Amer. J . P h y s i o l . 106: 689-715, 1933. Mackay, G. and E. Bannister. A comparison of maximum 02 uptake determination by b i c y c l e ergometry at various p e d a l l i n g frequencies and by t r e a d m i l l running at various speeds. Eur. J . Appl. P h y s i o l . 35: 191, 1976. Nagle, F. D. Robinhold, E. Howley, J . D a n i e l s , G. B a p t i s t a and K. Stoedefalke. L a c t i c a c i d accumulation during running at submaximal aerobic demands. Med. S c i . Sports. 10(1): 2(4): 182-186, 1970. Naimark, A., K. Wasserman and M. M c l l r o y . Continuous measurement of v e n t i l a t o r y exchange r a t i o during e x e r c i s e . J . Appl.  P h y s i o l . 19(4): 644-652, 1964. 55 Nupp, W.F. The r e l a t i v e e f f e c t i v e n e s s of four c a r d i o - r e s p i r a t o r y c o n d i t i o n i n g programs. J . Sports. Med. 10: 84-90, 1970. Olsen, R.E. "Excess Lactate" and a n a e r o b i o s i s . Annal. I n t e r n a l  Med. 59(6): 960-963, 1963. Patten, R., K. Heffner, W. Baun, L. Gettman and P. Raven. Anaerobic threshold of runners and nonrunners. Med. S c i .  Sports. 11(1): 94, 1979 ( a b s t r a c t ) . P o l l o c k , M., T. Cureton and L. Greninger. E f f e c t s of frequency of t r a i n i n g on working c a p a c i t y , c a r d i o v a s c u l a r f u n c t i o n and body composition of adult men. Med. S c i . Sports. 1: 70-74, 1969. P o l l o c k , M. The q u a n t i f i c a t i o n of endurance t r a i n i n g programs. In: E x e r c i s e and Sport Sciences Review. J.H. Wilmore (ed.), V o l . 1, pp. 155-188, Academic Press, New York, 1973. Roberts, A. and A. Morton. T o t a l and a l a c t i c oxygen debts a f t e r supramaximal work. Eur. J . Appl. P h y s i o l . 38: 281-289, 1978. Roberts, A., G. Strauss, K. F i t c h and N. Richardson. C h a r a c t e r i s t i c s of s p r i n t a t h l e t e s . Med. S c i . Sports. 11(1): 94, 1979 ( a b s t r a c t ) . Roskamm, H. Optimum patterns of e x e r c i s e for h e a l t h l y males. Can. Med. Assoc. J . 22: 895-899, 1967. Schneider, E. and G. Ring. The i n f l u e n c e of a moderate amount of p h y s i c a l t r a i n i n g on the r e s p i r a t o r y exchange and breathing during p h y s i c a l e x e r c i s e . Amer. J . P h y s i o l . 91: 103-114, 1929. Sharkey, B. I n t e n s i t y and duration of t r a i n i n g and the development of c a r d i o r e s p i r a t o r y endurance. Med. S c i .  Sports. 2(4): 197-202, 1970. Shaver, L. Maximum aerobic power and anaerobic work ca p a c i t y p r e d i c t i o n from various running performances of untrained c o l l e g e men. J . Sports. Med. 15: 147-150, 1975. Shepherd R. I n t e n s i t y , d u r a t i o n and frequency of e x e r c i s e as determinants of the response to a t r a i n i n g regime. I n t . Z.  Anqew. P h y s i o l . 26: 272-278, 1968. Shepherd R. Aerobic verus anaerobic t r a i n i n g f o r success i n various a t h l e t i c events. Can. J . Appl. Sport S c i . 3: 9-15, 1978. Simonson E. Physiology of Work Capacity and Fatigue Charles Thomas P u b l i s h e r s , S p r i n g f i e l d , 111., pp 9-28, 1971. 56 Stamford, B., A. Weltman and C. Fulco. Anaerobic t h r e s h o l d and c a r d i o v a s c u l a r responses during one- verus two-legged c y c l i n g . Res. Quart. 49(3): 351-363, 1978. Stromme, S., F. Ingjer and H. Meen. Assessment of maximum aerobic power i n s p e c i a l l y t r a i n e d a t h l e t e s . J . Appl.  P h y s i o l . 42(6): 833-837, 1977. Sucec, A. P r e d i c t i n g one-mile and two-mile run performance from p h y s i o l o g i c a l measures. Med. S c i . Sports. 11(1): 88, 1979 (ab s t r a c t ) . Thomas, H., C. Gaos and C. Vaughan. Resp i r a t o r y oxygen debt and excess l a c t a t e in man. J . Appl. P h y s i o l . 20(5): 898-904, 1965. T u r r e l l , E. and S. Robinson. The acid-base e q u i l i b r i u m of the blood i n e x e r c i s e . Amer. J . P h y s i o l . 137: 742-745, 1942. Volkov, N. , E. Shirkovets and V. B o r i l k e v i c h . Assessment of aerobic and anaerobic c a p a c i t y of a t h l e t e s i n t r e a d m i l l running. Eur. J . Appl. P h y s i o l . 34(2): 121-130, 1975. Wasserman, K., G. Burton and A. van K e s s e l . The p h y s i o l o g i c a l s i g n i f i c a n c e of the "Anaerobic Threshold". P h y s i o l o g i s t 7(3): 279, 1964. Wasserman, K., G. Burton and A. van K e s s e l . Excess l a c t a t e concept and oxtgen debt of e x e r c i s e . J . Appl. P h y s i o l . 20(6): 1299-1306, 1965. Wasserman, K. and M. M c l l r o y . Detecting the t h r e s h o l d of anaerobic metabolism i n c a r d i a c p a t i e n t s during e x e r c i s e . Amer. J . Cardiology. 14: 844-852, 1964 Wasserman, K. and B. Whipp. E x e r c i s e physiology i n h e a l t h and disease. Amer. Rev. Resp. Disease 112: 219-249, 1975 Wasserman, K., B. Whipp., S. Koyal and W. Beaver. Anaerobic t h r e s h o l d and r e s p i r a t o r y gas exchange during e x e r c i s e . J .  Appl. P h y s i o l . 35(2): 236-243, 1973. Wasserman, K. , B. Whipp.., S. Koyal and M. Cleary. E f f e c t of c a r o t i d body r e s e c t i o n on v e n t i l a t o r y and acid-base c o n t r o l during e x e r c i s e . J . Appl. P h y s i o l . 39(3): 354-358, 1975. Wasserman, K., A. van Kessel and G. Burton. I n t e r a c t i o n s of p h y s i o l o g i c a l mechanisms during e x e r c i s e . J . Appl. P h y s i o l . 22(1): 71-85, 1967. Weiser, P., C. Norton and L. Krogh. Anaerobic t h r e s h o l d and the running speed for 3.2 km. Med. S c i . Sports. 10(1): 43, 1978 ( a b s t r a c t ) . 57 Wells, G., B. Balke and D. Van Fossan. l a c t i c a c i d accumulation during work. A suggested s t a n d a r d i z a t i o n of work c l a s s i f i c a t i o n . J . Appl. P h y s i o l . 10: 51-55, 1957. Weltman, A., V. Katch, S. Sady and P. Freedson, Onset of metabolic a c i d o s i s (anaerobic threshold) as a c r i t e r i o n measure for submaximum f i t n e s s . Research Quarterly 49(2): 218-227, 1978. Wenger, H. and A. Reed. Metabolic f a c t o r s a s s o c i a t e d with muscular f a t i q u e during aerobic and anaerobic work. Can. J .  Appl. Sport. S c i . 1(1): 43-48, 1976. Whipp, B. The hyperpnea of dynamic muscular e x e r c i s e . Ex. Sport  S c i . Rev. 5: 295-311, 1977. Whipp, B., J . Davis, R. Stremel, F. Torres, R. Casaburi and K. Wasserman. The r o l e of the anaerobic t h r e s h o l d i n the dynamics of 02 uptake during e x e r c i s e . Med. S c i . Sports. 11(1): 96, 1979 ( a b s t r a c t ) . Whipp, B. and K. Wasserman. Oxygen uptake k i n e t i c s for various i n t e n s i t i e s of constant-load work. J . Appl. P h y s i o l . 33(3): 351-356, 1972. Wilk i n s o n , J . , J . J o b i n , F. Reardon, R. Macnab and H. Wenger. Aerobic and anaerobic t r a i n i n g : E f f e c t s on development patterns i n muscle f i b e r types. Can. J . Appl. Sport. S c i . 3: 163-167, 1978. W i l l i a m s , C , A. du Raan, M. van Rahden and C. Wyndham. The cap a c i t y for endurance work i n h i g h l y t r a i n e d men. I n t . Z.  Angew. P h y s i o l , e i n s c h l . A r b e i t . 26: 141-149, 1968. W i l l i a m s , C , C. Wyndham, R. Kok and M. van Rahden. E f f e c t of t r a i n i n g on maximum oxygen intake and anaerobic metabolism in man. I n t . Z. Angew. P h y s i o l , e i n s c h l . A r b e i t . 24: 18-23, 1967. Wisw e l l , R., R. Gi r a n d o l a , and H. de V r i e s . Comparison of anaerobic t h r e s h o l d on b i c y c l e and t r e a d m i l l . Med. S c i .  Sports. 11(1): 88, 1979 ( a b s t r a c t ) . Withers, R. Anaerobic work at submaximal r e l a t i v e workloads i n subjects of high and medium f i t n e s s . J . Sports. Med. 17: 17-23, 1977. Wyndham, C , H. S e f t e l , C. W i l l i a m s , V. Wilson, N. Strydom, G. B r e d e l l and M. von Rahden. C i r c u l a t o r y mechanisms of anaerobic metabolism i n working muscle. S. A f r . Med. J . 39: 1008-1014, 1965. Wyndham, C , N. Strydom, C. W i l l i a m s , and M. von Rahden. A p h y s i o l o g i c a l b a s i s for the 'optimum' l e v e l of energy expenditure. Nature. 195: 1210-1212, 1962. APPENDIX A INDIVIDUAL ANAEROBIC THRESHOLD CURVES EXCESS C02 VS SPEED 59 ANAEROBIC THRESHOLD CURVE 30 . 00+EXCESS C02 (ml/kg*min.) 25.00 20.00+ 15.00 10.00+ 5.00+ 0 .00 * * * ** ** * * ** ** * * * * * * ** * *" *. * ** * j. * *-. -* l t * * * ** * -t 1-4 5 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) AEROBIC #1 (SP) Vtam = 10.50 mph 60 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*inin. ) 25.00+ 20.00+ 15. 00 + 10.00 + 5. 00 + 0. 00 * * * * * * * * * ** ** ***** ^ * *** ** * ** ** * * * * * ** V* ** ****. * ** **** * ** _i 1 1 1 h. • • • • • • • • • • 4 5 6 7 8 9 10 11 12 13 14 15 AEROBIC #2 (BM) Vtam = 9.5 0 mph SPEED (miles per hour) 61 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 20.00 + 15.00+ 10. 00 + 5. 00 + 0. 00 .** ** ** **** * * ** ** * * * * * ** *** * * *, * * * ******* * * ** ** _ (. h ****** **. •H 1 1 h 8 9 10 11 12 13 14 15 SPEED ( m i l e s per hour) AEROBIC #3 (JT) Vtam = 10.50 mph 62 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10. 00 + 5.00 + 0. 00 * * * ** ** * * * *** ** * * J. * * * .* * * *** * ** *** **** ** * * * * +*** * * * * **. *** * -I h 4 1 1 h AEROBIC #4 (JH) Vtam = 11.00 mph 8 9 10 11 12 13 14 15 SPEED (miles per hour) 63 ANAEROBIC THRESHOLD CURVE 30.00-ffiXCESS C02 (ml/kg*min. ) 25.00+ 20.00+ 15.00+ 10. 00 + 0. 00 * * * ** * * * * * *' * * * * ** * *** * * * * * * * * 5.00+**^ ** ** * * I* * * ** * *  * * * * * ** * .* * -+-5 " »* i > • • > * . . . . . « • i i • • • • • | | | I I | * A A A A A A A AA AjA A A AA A A Apr AEROBIC #5 (TS) Vtam = 9.50 mph 8 9 10 11 12 SPEED (miles per hour) 13 14 15 64 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*min. ) 25.00+ 20.00+ 15. 00 + 10.00+ 5. 00 + 0. 00 ** ** ***** * * * ** **** * * * * * .* * * * * * * * * * * * * * * * * -I 1 1 (- | * * * A A A A A A A - * * | * ' * * * * A ' * * ) » AEROBIC #6 (AH) Vtam = 8.0 0 mph 8 9 10 11 12 13 14 15 SPEED (miles per hour) 65 ANAEROBIC THRESHOLD CURVE 30. OOfEXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10.00+ 5.00 + 0. 00 *** * * * * * * * ** * * . ** * * * * * * * * * ** * *** * * * * * * * * ** **** * * -I h -i 1 h 4 5 6 7 8 9 10 11 12 SPEED (miles per hour) AEROBIC #7 (TH) Vtam = 11.00 mph 13 14 15 66 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15. 00 10.00+ 5. 00 + 0. 00 ** ** ** .***** . **** *** * * * * * * ****** ** ** ** *********** ***** * .*. * -**•* **--I h H 1 1 1 1 1 1 4 5 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) AEROBIC #8 (PW) Vtam = 11.50 mph 67 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*min. ) 20.00+ 15.00+ ** * * **. * * * ** * * * *** ****** * * * * * * * * * * V * ** * * ******* * * .* * * J • *** *** 1 -I 1 1 1- 4 1- - i — ; — 8 9 10 11 12 13 14 15 SPEED (miles per hour) AEROBIC #9 (NT) Vtam = 10.00 mph 68 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ ** ** ** ** ** ** * ** * * * * ** * * * *. ** **** * ** * * * * * * * **4 5 6 7 8 9 10 11 12 13 14 15 AEROBIC #10 (MM) Vtam = 8.50 mph SPEED (miles per hour) 6 9 ANAEROBIC THRESHOLD CURVE 30.00+EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ * * * * * * * * * **** * * * ** * * * * * * * * * I******** * 4———i 1 h • • • • • • • i • i i i i 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) ANAEROBIC #1 (KK) Vtam = 8.50 mph 70 ANAEROBIC THRESHOLD CURVE 4EXCESS CO.2 (ml/kg*min.) 25.00+ 20.00+ ** * * * * * * * * * ** ** *** ,** * * * * * -\ (- -I h | , nfefr* ****** yr**** |*r 4 5 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) ANAEROBIC #2 (MC) Vtam = 7.50 mph 71 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10.00+ 5. 00 + 0. 00 * ** * * * * * ** *** * *^ ^  ** * * .***** * ^  ** l t •+-—• A — I t-*J» i. . • t • . • . . i. i. i. •• ANAEROBIC #3 (MS) Vtam = 8.5 0 mph 8 9 10 11 12 SPEED (miles per hour) 13 14 15 72 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*min. ) 25.00+ 20.00+ 15.00+ 10.00+ 5.00 + 0. 00 * * * * * * * *** * * ** * .* * ** * * . ** * ** | | | | * kkkk k kk k k k k^ kk kk k k k^k-krk kkkkk^e 4 5 6 7 8 9 10 11 12 SPEED (miles per hour) ANAEROBIC #4 (PC) Vtam = 8.5 0 mph 13 14 15 73 ANAEROBIC THRESHOLD CURVE 30. 00-rEXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10.00+ 5.00 + 0. 00 * * * * * ** * * * * *** * ** * * * * * *** ** ** * * * ** * * •4 f ' * * * A A A * A * * A A A * * A A A ' X A A A | A A A A A A A X | » 4 5 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) ANAEROBIC #5 (CC) Vtam = 7.50 mph 7 4 ANAEROBIC THRESHOLD CURVE 30. 00-tEXCESS C02 (ml/kg*min. ) 20.00+ 15.00+ 10.00+ 5.00 + ** * ** .** * * ** ** * ** . ** ****** ^ * * * ** * * | | [ | * * * * A A A A A * * j • • l i t 1.1. HH|>""''"|« 5 6 7 8 9 10 11 12 13 14 15 ANAEROBIC #6 (CA) Vtam = 7.00 mph SPEED (miles per hour) 75 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 15. 00 + *** * * *" * ** * * " * * .* *** ** * * * * ***** -* h-| | * * * A A * A A A ' A A A ' j A A A A A A A " * ] * 4 5 6 7 8 9 10 11 12 13 14 15 SPEED (miles per hour) ANAEROBIC #7 (BB) Vtam = 8.50 mph 76 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00 + 20.00+ 15.00+ 10.00+ 5.00 + 0. 00 ** ** **** * * . * ** ********* ****** ) I I * A A A A A A ' * * A | A A A A A * * * p r ANAEROBIC #8 (DL) Vtam = 8.0 0 mph 8 9 10 11 12 SPEED (miles per hour) 13 14 15 77 ANAEROBIC THRESHOLD CURVE 30. 001EXCESS C02 (ral/kg*min.) 25. 00 20.00+ 15.00+ 10.00+ 5.00 + 0. 00 ** * ** * * ** * * * * * * * * * * * *** * ** ** * „*„ ««***«,* ** ** * * * * 5 A K ANAEROBIC #9 (GG) Vtam = 7.00 mph 8 9 10 11 12 SPEED (miles per hour) 13 14 15 78 ANAEROBIC THRESHOLD CURVE 30. 00+SXCESS C02 (ral/kg*min.) 25.00+ 20.00+ 15.00+ 10.00+ 5. 00+. 0. 00 ** * * * * * * ** * ***** * * ** * ** * * ** * ***** *** -l 1- — . . . - . , , . . . i . . i i 1 J t . . . . i i • > » • i • | | | | A A A A A A * * A A A A A * A A ' A ' | A ' A A A A A A A - | X 8 9 10 11 12 13 14 15 SPEED (miles per hour) ANAEROBIC #10 (MZ) Vtam = 7.00 mph 79 ANAEROBIC THRESHOLD CURVE 30 . 00-fEXCESS C02 (ml/kg*min.) 25.00 20.00+ 15.00+ 10.00+ 5.00+ 0 .00 ** *** ** * * * * * * * ** ** * * * H I- •* 1 I A A A A A * * * A A A A A A A A A * * * A A A * * * * j l t I I I I I I » » A A A [ » 8 9 10 11 12 13 14 15 SEDENTARY #1 (DL) Vtam = 6.0 0 mph SPEED (miles per hour) 80 ANAEROBIC THRESHOLD CURVE 30 .00-ffiXCESS C02 (ml/kg*min.) 25.00+ 20.00+ ** ** * * * * * * * * **** * * * * * I* * A 1 1 h »r*|AAAAAAAA|***AAAAA|A 8 9 10 11 12 13 14 15 SEDENTARY #2 (DC) Vtam = 6.0 0 mph SPEED (miles per hour) 81 ANAEROBIC THRESHOLD CURVE 30. 00+EXCESS C02 (ml/kg*min.) 25.00 20.00 15.00+ 10.00+ 5.00+ 0 .00+-*** ** ** * * * * * ** * ** ** ** * * * A A A A A A A A A * * ^ ^ SEDENTARY #3 (RE) Vtam = 6.00 mph 8 9 10 11 12 SPEED (miles per hour) 13 14 15 82 ANAEROBIC THRESHOLD CURVE 30. 00-tEXCESS C02 (ml/kg*min.) 25.00+ ** * * * * * ** ** * !** * ** > < » * « A » « » A A * * A » A | « A A A A * * * y r * » 9 10 11 12 13 14 15 SEDENTARY #4 (PH) Vtam = 5.0 0 mph SPEED (miles per hour) 83 ANAEROBIC THRESHOLD CURVE 30. 00-iEXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15. 00 + 10.00+ 5. 00 + 0. 00 ** * * * ** * * * * * * * * ** * * * * ** I I kkAki ir AA AjA A A A A A A*|* 4 5 6 7 8 9 10 11 12 13 14 15 SEDENTARY #5 (BH) Vtam = 7.00 mph SPEED (miles per hour) 84 ANAEROBIC THRESHOLD CURVE 30 . OO^XCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10.00+ 5.00 0. 00 * * ** * * ** ***. ** * * * . -I 1 1 1- ^***^ftr*ffr*******fc* ***** *^ ** ** **«|r*«x/ryrffpr 9 10 11 12 13 14 15 SEDENTARY #6 (KF) Vtam = 7.00 mph SPEED (miles per hour) 85 ANAEROBIC THRESHOLD CURVE 30. 00-fEXCESS C02 (ml/kg*min.) 25.00 + 20.00+ 15.00+ 10. 00 5.00+ . * ** 0.00 * ** * * * * * ,* * * * * * * * * -+-6 | | **AAA H * A A * A*Ap*> 8 9 10 11 12 13 14 15 SEDENTARY #7 (RM) Vtam = 6.50 mph SPEED (miles per hour) 86 ANAEROBIC THRESHOLD CURVE 30. 00 4 E X C E S S C02 (ml/kg*min.) 25.00+ 20. 00 15.00+ 10. 00 + 0. 00 ** ***. * * 5. 00+* ** • • i i i J • • • • • • • •••••••• • i > • i • 6 7 8 9 10 11 12 13 14 15 SEDENTARY #8 (KB) Vtam = 6.50 mph SPEED (miles per hour) 87 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00 + 20.00+ 15.00+ 10.00+ 5. 00 + 0. 00 ** * * * ** * -i 1- | A * f * A * * A A A * A * A A A A A A A A A A A A A p r x A A A A A A p A A A A A A A | A A A * * * * X | * 8 9 10 11 12 13 14 15 SEDENTARY #9 (FD) Vtam = 6.0 0 mph SPEED (miles per hour) 88 ANAEROBIC THRESHOLD CURVE 30. 004EXCESS C02 (ml/kg*min.) 25.00+ 20.00+ 15.00+ 10. 00 + * * ** ** * ** * .** |~flf*i********* ********************** * * * * * * p T * * * * KHXjKM A MX J i t i ' K ^ e 8 10 11 12 13 14 15 SEDENTARY #10 (DA) Vtam = 5.00 mph SPEED (miles per hour) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077343/manifest

Comment

Related Items