UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Biomechanical analysis of the dislocate Borchardt, Wallace James 1976

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1977_A7_5 B67.pdf [ 6.74MB ]
Metadata
JSON: 831-1.0077119.json
JSON-LD: 831-1.0077119-ld.json
RDF/XML (Pretty): 831-1.0077119-rdf.xml
RDF/JSON: 831-1.0077119-rdf.json
Turtle: 831-1.0077119-turtle.txt
N-Triples: 831-1.0077119-rdf-ntriples.txt
Original Record: 831-1.0077119-source.json
Full Text
831-1.0077119-fulltext.txt
Citation
831-1.0077119.ris

Full Text

c  f  BIOMECHANICAL ANALYSIS OF THE DISLOCATE by WALLACE JAMES BORCHARDT B.Sc, U n i v e r s i t y of Wisconsin, 1972  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHYSICAL EDUCATION i n the School of Physical  Education  and Recreation  We a c c e p t t h i s t h e s i s as conforming required standard  t o the  THE UNIVERSITY OF BRITISH COLUMBIA  December, 1976 (d) Wallace James Borchardt, 1976  In p r e s e n t i n g t h i s t h e s i s  in p a r t i a l  an advanced degree at the U n i v e r s i t y the L i b r a r y  s h a l l make i t f r e e l y  f u l f i l m e n t o f the requirements of B r i t i s h C o l u m b i a , I agree  available for  I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e  r e f e r e n c e and copying o f t h i s  It  i s understood that copying o r  thesis  permission.  Department of  /-^^Lsl/ijs^L^  / The U n i v e r s i t y  o f B r i t i s h Columbia  2075 Wesbrook P l a c e Vancouver, Canada V6T 1W5  Date  6  Mc,  22,  /f7/  ^fiu^t^^ti  or  publication  o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d without my written  that  study.  f o r s c h o l a r l y purposes may be granted by the Head of my Department by h i s r e p r e s e n t a t i v e s .  for  i  ABSTRACT The purpose of t h i s study has been to make a biomechanical a n a l y s i s of the d i s l o c a t e as performed on the s t i l l r i n g s . A l l t e s t i n g was done i n the gymnasium at the U n i v e r s i t y of B r i t i s h Columbia with each of the f i v e subjects taking three  trials.  Cable tension was monitored w i t h s t r a i n gauges attached i n s e r i e s withthe r i n g cable.  Each t r i a l was f i l m e d , and f i l m and force  records were synchronized w i t h a f l a s h gun which caused a timing mark to be placed on the chart recorder paper. When the subject f e l t he was ready the f i r s t of three t r i a l s was executed.  There was a two minute r e s t between each t r i a l to negate  any e f f e c t of f a t i g u e .  A f t e r the completion of the t h i r d and f i n a l  t r i a l the subject was asked which t r i a l he thought was the best of the three. The f i l m record of the d i s l o c a t e was l a t e r shown to a panel of experts who rated each d i s l o c a t e .  The r a t i n g by the panel of experts  allowed each d i s l o c a t e to be ranked i n order of excellence.  This  rank order was the chosen c r i t e r i o n against which the biomechanical measurements were evaluated f o r the aim i n coaching gymnastics i s eventually to s a t i s f y the s u b j e c t i v e impression of the judges. The information recorded by the f i l m was r e f i n e d w i t h the use of the Vanguard Motion Analyzer.  Obtained were the f o l l o w i n g  measures. a) b) c)  p o s i t i o n of the r i n g s body p o s i t i o n displacement of noted body landmarks  ii  The f o l l o w i n g conclusions were drawn from t h i s study: 1.  The patterns of force and body actions are s i m i l a r f o r a l l subjects.  Given these s i m i l a r i t i e s i t i s d i f f i c u l t to i d e n t i f y  measures which c o r r e l a t e h i g h l y w i t h good performance. 2.  The angular v e l o c i t y of the movement of the legs at the second and t h i r d peaks of force i s not w e l l c o r r e l a t e d with e i t h e r experts' ranking ( r = 0.18) or maximal force ( r = 0.25).  3.  The f o l l o w i n g are poor p r e d i c t o r s of performance i n the dislocate: a) b) c) d) e)  4.  T o t a l range of angular displacement of the r i n g cable. Time (frames) between the second and t h i r d peaks of f o r c e . Angular displacement of the r i n g cable during the second and t h i r d peaks of f o r c e . Kipping angle. Amount of preparatory v e r t i c a l drop of hips i n the k i p p i n g phase.  Better performers are those who maximize the upward force during the k i p p i n g phase by accentuating the r i s e of the hips over that of the ankles.  Consequently i t i s suggested that those teaching  t h i s a c t i v i t y concern themselves w i t h methods of maximizing the upward thrust of the hips i n the k i p p i n g phase.  I t i s f e l t that  t h i s phase i s the foundation block upon which the d i s l o c a t e i s built.  iii  TABLE OF CONTENTS Chapter 1.  2.  3.  Page  INTRODUCTION  1  D e s c r i p t i o n of the S k i l l  2  Statement of the Problem  2  Purpose  2  Hypothesis  3  Importance of the Problem  3  Assumptions and. L i m i t a t i o n s  3  REVIEW OF LITERATURE  5  Cinematography  ->  Cinematography and Dynamometry .  6  Cinematographic A n a l y s i s and Other Recording Systems . . . .  8  Cinematographic Analysis and Gymnastics  9  METHODS AND PROCEDURES Subjects Instructions  14 14  to the Subjects  14  Operational Instructions  15  Instrumentation  17  Force Measurement  17  Methods of Data A n a l y s i s  18  Angular Displacement of the Ring Cable from V e r t i c a l . . . .  20  Body P o s i t i o n at Peak Force  20  S e l e c t i o n of the Best Dislocate  22  iv  TABLE OF CONTENTS Chapter 4.  RESULTS AND DISCUSSION  5.  Page 23  S e l e c t i o n of the Best D i s l o c a t e  23  Force P r o f i l e s  25  Kipping Force  42  Events of the Second and Third Peaks of Force  44  Angular Displacement of the Ring Cable  44  Body P o s i t i o n at Peak Force  53  Motions of Body Parts  55  I n t e r r e l a t i o n s of Measurements  69  SUMMARY AND CONCLUSIONS Conclusions  73 75  REFERENCES  76  APPENDICES  80  A.  Vanguard Data A c q u i s i t i o n Program  80  B.  P l o t t e d Paths of the Ankles and Hips  82  C.  Angular Displacement of the Ring Cable  102  D.  Body P o s i t i o n at Peak Force  121  E.  Panel of Experts' Ratings on S k i l l Performance  137  F.  Measures of the Second and Third Peaks of Force  139  G.  Force Recordings  142  H.  D e s c r i p t i o n of the Kipping Phase  158  I.  Highest D i s l o c a t e  I  J.  Rank Order Correlations  164  6 2  V  LIST OF TABLES Table 1.  Page S e l e c t i o n of the Best Dislocate by the Subjects and the Panel of Experts  24  2.  Kipping Force  43  3.  Total Range of Ring Cable Displacement  51  4.  Cable Tension and Cable Displacement at the Kipping Phase  5.  D e s c r i p t i o n of the Body P o s i t i o n at Peak Force  . . . 52 54  6. I n t e r r e l a t i o n of the Rank Order Correlations  70  6A. Vanguard Data A c q u i s i t i o n Program  81  7. Angular Displacement of the Ring Cable from V e r t i c a l Subject MCT1 8. Angular Displacement of the Ring Cable from V e r t i c a l Subject MCT2, Repeat 1 9. 10. 11. 12. 13. 14. 15. 16. 17.  104 105  Angular Displacement of the Ring Cable from V e r t i c a l Subject MCT2, Repeat 2  106  Angular Displacement of the Ring Cable from V e r t i c a l Subject MCT2, Repeat 3  107  Angular Displacement of the Ring Cable from V e r t i c a l Subject MCT3  108  Angular Displacement of the Ring Cable from V e r t i c a l Subject DMT1  109  Angular Displacement of the Ring Cable from V e r t i c a l Subject DMT2  110  Angular Displacement of the Ring Cable from V e r t i c a l Subject DMT3  I l l  Angular Displacement of the Ring Cable from V e r t i c a l Subject JTT1  112  Angular Displacement of the Ring Cable from V e r t i c a l Subject JTT2  113  Angular Displacement of the Ring Cable from V e r t i c a l Subject JTT3  114  vi  LIST OF TABLES Table 18.  19.  20.  21.  22.  23.  Page Angular Displacement o f the Ring Cable from V e r t i c a l S u b j e c t RHT1  115  A n g u l a r Displacement o f the Ring Cable from V e r t i c a l S u b j e c t RHT2  116  A n g u l a r Displacement o f the Ring Cable from V e r t i c a l S u b j e c t RHT3  117  Angular Displacement o f the Ring Cable from V e r t i c a l S u b j e c t WBT1  118  Angular Displacement o f the Ring Cable from V e r t i c a l S u b j e c t WBT2  119  A n g u l a r Displacement o f the Ring Cable from V e r t i c a l S u b j e c t WBT3  120  24.  P a n e l o f E x p e r t s ' R a t i n g s on S k i l l Performance  138  25.  Events a t the Second and T h i r d Peaks o f F o r c e  . . .  140  26.  A n g u l a r V e l o c i t y o f t h e Legs a t Maximum Force  . . .  141  27.  Force Recordings - MCT1  143  28.  Force Recordings - MCT2  144  29.  Force Recordings - MCT3  145  30.  F o r c e Recordings - DMT1  146  31.  F o r c e Recordings - DMT2  147  32.  F o r c e Recordings - DMT3  148  33.  F o r c e Recordings - JTT1  149  34.  Force Recordings - JTT2  150  35.  F o r c e Recordings - JTT3  151  36.  F o r c e Recordings - RHT1  152  37.  F o r c e Recordings - RHT2  153  vii  LIST OF TABLES Table  Page  38.  Force Recordings - RHT3  154  39.  Force Recordings - WBT1  155  40.  Force Recordings - WBT2  156  41.  Force Recordings - WBT3  15 7  42.  Hip P o s i t i o n during the Kipping Phase  159  43.  Ankle P o s i t i o n during the Kipping Phase  160  44.  Hip and Ankle Movement during the Kipping Phase  161  45.  Highest D i s l o c a t e  163  46.  Rank Order Correlations  165  47.  Rank Order Correlations  . . . . . 166  48.  Rank Order Correlations  167  49.  Rank Order Correlations  168  50.  Rank Order Correlations  169  51.  Rank Order Correlations  170  52.  Rank Order Correlations  171  53.  Rank Order Correlations  172  54.  Rank Order Correlations  173  55.  Rank Order Correlations  174  56.  Rank Order Correlations  175  57.  Rank Order Correlations  •• 176  58.  Rank Order Correlations  177  59.  Rank Order Correlations  178  viii  LIST OF FIGURES Figure  Page  1.  A e r i a l View o f t h e F i l m i n g Arrangement  16  2.  Schematic  19  3.  Angular Displacement of S u b j e c t MCT2  4.  5.  6.  7.  8.  9.  10.  11.  12.  13.  14..  15.  16.  Arrangement o f t h e Apparatus o f t h e Ring C a b l e :  Repeated  Measures 21  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t MCT1 .  26  Cable T e n s i o n i n One Ring Cable d u r i n g the Performance of S u b j e c t MCT2  27  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t MCT3  28  Cable T e n s i o n i n One Ring Cable d u r i n g the Performance o f S u b j e c t DMT1  29  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t DMT2  30  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t DMT3  31  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t JTT1  32  Cable T e n s i o n i n .One Ring Cable d u r i n g the Performance o f S u b j e c t JTT2  33  Cable T e n s i o n i n One Ring Cable d u r i n g the Performance o f S u b j e c t JTT3  34  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t RHT1  35  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t RHT2  36  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t RHT3  37  Cable T e n s i o n i n One Ring Cable d u r i n g t h e Performance o f S u b j e c t WBT1  38  ix  LIST OF FIGURES Figure 17. 18.  Page  Cable Tension i n One Ring Cable during the Performance of Subject WBT2  39  Cable Tension i n One Ring Cable during the Performance of Subject WBT3  40  19.  Angular Displacement of the Ring Cable - Subject MC  45  20.  Angular Displacement of the Ring Cable - Subject DM  46  21.  Angular Displacement of the Ring Cable - Subject JT  47  22.  Angular Displacement of the Ring Cable - Subject RH  48  23. 24.  Angular Displacement of the Ring Cable - Subject WB Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d Against the V e r t i c a l Motion of the Hips (abscissa) - Subject MC  49  25.  26.  27.  28.  29. 30. 31.  57  Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d Against the V e r t i c a l Motion of the Hips (abscissa) - Subject DM  58  Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d Against the V e r t i c a l Motion of the Hips (abscissa) - Subject JT  59  Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d Against the V e r t i c a l Motion of the Hips (absciss a) - Subject RH .  60  Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d Against the V e r t i c a l Motion of the Hips (abscissa) - Subject WB  61  V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase - Subject MC  62  V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase - Subject DM  63  V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase - Subject JT  64  X  LIST OF FIGURES Figure 32.  33.  Page  V e r t i c a l Movement G r a d i e n t s of the Ankles and Hips d u r i n g t h e K i p p i n g Phase - S u b j e c t RH  65  V e r t i c a l Movement G r a d i e n t s o f t h e Ankles and Hips d u r i n g t h e K i p p i n g Phase - S u b j e c t WB  66  34.  Ankle J o i n t Path T r a c i n g - S u b j e c t MCT1  83  35.  Ankle J o i n t Path T r a c i n g - S u b j e c t MCT2  84  36.  Ankle J o i n t P a t h T r a c i n g - S u b j e c t MCT3  85  37.  Ankle J o i n t Path T r a c i n g - S u b j e c t DMT1  86  38.  Ankle J o i n t Path T r a c i n g - S u b j e c t DMT2  87  39.  Ankle J o i n t P a t h T r a c i n g - S u b j e c t DMT3  88  40.  Ankle J o i n t P a t h T r a c i n g - S u b j e c t JTT1  89  41.  Ankle J o i n t P a t h T r a c i n g - S u b j e c t JTT2  90  42.  Ankle J o i n t Path T r a c i n g - S u b j e c t JTT3  91  43.  Ankle J o i n t Path T r a c i n g - S u b j e c t RHT1  92  44.  Ankle J o i n t Path T r a c i n g - S u b j e c t RHT2  93  45.  Ankle J o i n t Path T r a c i n g - S u b j e c t RHT3  94  46.  Ankle J o i n t Path T r a c i n g - S u b j e c t WBT1  95  47.  Ankle J o i n t Path T r a c i n g - S u b j e c t WBT2  96  48.  Ankle J o i n t Path T r a c i n g - S u b j e c t WBT3  97  49.  H i p J o i n t P a t h T r a c i n g - S u b j e c t MC  98  50.  H i p J o i n t P a t h T r a c i n g - S u b j e c t DM  99  51.  H i p J o i n t Path T r a c i n g - S u b j e c t J T  100  52.  H i p J o i n t P a t h T r a c i n g - S u b j e c t RH  101  53.  H i p J o i n t Path T r a c i n g - S u b j e c t WB  102  xi  LIST OF FIGURES Figure  Page  54.  Body P o s i t i o n a t Maximum F o r c e , Subject MCT1  122  55.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t MCT2  123  56.  Body P o s i t i o n a t Maximum F o r c e , Subject MCT3  124  57.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t DMT1  125  58.  Body P o s i t i o n a t Maximum F o r c e , Subject DMT2 . .  126  59.  Body P o s i t i o n a t Maximum F o r c e , Subject DMT3  127  60.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t JTT1  128  61.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t JTT2  129  62.  Body P o s i t i o n a t Maximum F o r c e , Subject JTT3  130  63.  Body P o s i t i o n a t Maximum F o r c e , Subject RHT1  131  64.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t RHT2  65.  Body P o s i t i o n at Maximum F o r c e , Subject RHT3  133  66.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t WBT1  134  67.  Body P o s i t i o n a t Maximum F o r c e , S u b j e c t WBT2  135  68.  Body P o s i t i o n a t Maximum F o r c e , Subject WBT3  136  .  132  ACKNOWLEDGEMENTS S p e c i a l gratitude i s expressed to Dr. Arthur Chapman of Simon Fraser U n i v e r s i t y , without whose help the completion of t h i s study would not have m a t e r i a l i z e d .  Appreciation i s also extended to  P h i l Hurren of the U n i v e r s i t y of B r i t i s h Columbia Mechanical Engineering Department whose help was e s s e n t i a l i n the b u i l d i n g of the t e s t i n g apparatus.  1  CHAPTER I  INTRODUCTION  The  d i s l o c a t e i s a b a s i c gymnastic s k i l l performed on  r i n g s by both c o m p e t i t i v e  and  r e c r e a t i o n a l gymnasts.  t r a n s i t i o n a l move used to develop a s t r o n g most common i n the d i s l o c a t e — s h o o t standards s e t by  the  A r t i c l e 30  It i s a  to handstand.  According  I n t e r n a t i o n a l Gymnastics F e d e r a t i o n  as f o l l o w s  still  forward swing which i s  "Code of P o i n t s " the c o m p o s i t i o n of a s t i l l in  the  to  the  (F.I.G.)  r i n g r o u t i n e i s s e t down  (15:16):  The e x e r c i s e on the r i n g s must i n v o l v e movements a l t e r n a t i n g between swing, s t r e n g t h and h o l d p a r t s , w i t h o u t swinging of the r i n g s . The e x e r c i s e should have two handstands, one of which must be executed w i t h s t r e n g t h and the other a t t a i n e d by swing from a hang, i n v e r t e d hang or s u p p o r t . Furthermore, the e x e r c i s e should c o n t a i n an a d d i t i o n a l s t r e n g t h p a r t wherein the d i f f i c u l t y must conform to the t o t a l d i f f i c u l t y of the e x e r c i s e . In C o m p e t i t i o n 2, one of the C p a r t s must b e l o n g to the swinging p a r t s , and i n C o m p e t i t i o n 3, two of the C p a r t s must b e l o n g to the swinging p a r t s . The  "Code of P o i n t s " more s p e c i f i c a l l y s t a t e s t h a t a r i n g  should  be  comprised of 45%  swing p a r t s current  strength parts  f o r a harmonious r o u t i n e .  trends  i n ring routines  the p e r c e n t a g e of swing c o n t e n t . f i e d as swing moves two  Of  at l e a s t 38%  In the w r i t e r ' s  today p o i n t  must  be  opinion  toward an i n c r e a s e i n  the many moves t h a t are  groups can be  the b a s i c r e a r r i s e as i t s core and the d i s l o c a t e .  and  routine  formed:  classi-  those moves that have  those moves t h a t are based  on  2  DESCRIPTION OF THE SKILL S t a r t i n g from an inverted hanging p o s i t i o n with a s t r a i g h t body the gymnast flexes at the hips to an inverted p i k e .  Then he extends  his body at the hips p r o j e c t i n g the legs upward and backward which i s followed by moving the s t r a i g h t arms forward.  The body then  descends i n an extended p o s i t i o n with the front of the body leading the  descent. STATEMENT OF THE PROBLEM The objective of t h i s study was to determine biomechanical  r e l a t i o n s h i p s ( i . e . paths of j o i n t centers, p o s i t i o n of the r i n g s , force patterns and body p o s i t i o n s ) which were associated with good performance among gymnasts doing a d i s l o c a t e on the s t i l l r i n g s . Kinematic a n a l y s i s was performed and force patterns were c o l l e c t e d for each of f i v e subjects tested who were a l l members of the U n i v e r s i t y of B r i t i s h Columbia gymnastics team.  This study coordinates  movement p a t t e r n s , force patterns and angular displacements of the rings and provides information on the causative factors r e s u l t i n g i n varying amounts of cable tension i n the d i s l o c a t e on the s t i l l r i n g s . PURPOSE 1.  To measure the resultant t e n s i l e cable force throughout  the  execution of the d i s l o c a t e swing. 2.  To evaluate the resultant t e n s i l e cable force p r o f i l e s of several gymnasts.  3  3.  To determine which body actions ( i . e . hip extension, shoulder extension, e t c . ) are associated with impulse as shown by the t e n s i l e cable force p r o f i l e s .  4.  To determine which parameters are consistent w i t h i n the performance of an i n d i v i d u a l gymnast but which vary between gymnasts of d i f f e r e n t  ability. HYPOTHESIS  Differences i n s k i l l of performers ranging from good to e x c e l l e n t are associated with q u a n t i t a t i v e differences and not with q u a l i t a t i v e differences i n the mechanical measurements made i n t h i s study. IMPORTANCE OF THE PROBLEM 1.  This study w i l l provide a basis for increased understanding of the d i s l o c a t e on the s t i l l r i n g s .  2.  This study may help coaches and athletes understand the s k i l l so that teaching the s k i l l w i l l be f a c i l i t a t e d .  3.  This study may provide i n s i g h t i n t o the factors determining performance. ASSUMPTIONS AND LIMITATIONS The following assumptions and l i m i t a t i o n s must be taken i n t o  consideration: 1.  The study was l i m i t e d to f i v e subjects from the U n i v e r s i t y of B r i t i s h Columbia gymnastics team; therefore,  there are  l i m i t a t i o n s i n g e n e r a l i z i n g to a large population of gymnasts who can perform the d i s l o c a t e . Each subject was filmed attempting  three t r i a l s of a d i s l o c a t e .  Each t r i a l was analyzed leading to a n a l y s i s of a t o t a l of fifteen dislocates. J o i n t estimations had to be made i n the frames where the image was not c l e a r .  I t was assumed that these estimations were  consistent and accurate. I t was assumed that each subject gave an " a l l out" e f f o r t on each t r i a l . In any cinematographical  i n v e s t i g a t i o n there are b a s i c  limitations: a)  perspective e r r o r s , where parts of the body are c l o s e r to or further from the lens.  b)  lens aberration e r r o r s , which depend on the q u a l i t y of equipment.  c)  s c a l i n g e r r o r s , where projected images are not sharp and d i s t i n c t .  5  CHAPTER I I REVIEW OF LITERATURE As legend s t a t e s , problem s o l v i n g through photographic means had i t s o r i g i n s among the owners of racehorses.  The problem was simple:  when a horse galloped, was one foot always i n contact with the ground? Muybridge (3^:59) proposed an experiment to f i n d the answer to the problem.  He had twenty-four cameras placed so that t h e i r shutters  were tripped by s t r i n g s which the horse broke as he galloped past. The r e s u l t s proved the m a j o r i t y wrong when the p r i n t s revealed the horse to have one unsupporting phase i n h i s g a l l o p i n g s t r i d e .  Thus  the photographic study of motion was born. Noss (23:81) has stated t h a t , " I f the value of photography as a research t o o l were measured i n terms of i t s frequency of a p p l i c a t i o n to problems i n p h y s i c a l education, one might overestimate i t s value as an e f f e c t i v e research technique."  However, most f i l m i n g i n  p h y s i c a l education i s not destined f o r in-depth c r i t i c a l a n a l y s i s ; i t i s more f o r casual viewing. CINEMATOGRAPHY Cinematography i s the act of making motion p i c t u r e s that provide a maximal amount of relevant and accurate information about the subject matter being studied.  Stanley C. Plagenhoef states (27:81):  The use of motion p i c t u r e s i s probably the best s i n g l e technique f o r obtaining k i n e t i c and kinematic data r e l a t e d to whole body motion. Movement can be recorded under a wide range of c o n d i t i o n s — m o s t notably during competition and at times when i t i s d e s i r a b l e to obtain m a t e r i a l w i t h out the subject's immediate knowledge.  6  In i t s s i m p l e s t form, cinematography i s a f i l m r e c o r d which a l l o w s motion to be slowed down. cinematographic  a n a l y s i s p r o v i s i o n s a r e made f o r the a c c u r a t e measure-  ment from f i l m of the primary time.  I f displacement  and  q u a n t i t i e s of p o s i t i o n d i s p l a c e m e n t ,  time are e s t a b l i s h e d , v e l o c i t y  a c c e l e r a t i o n can be computed. istics  In the more advanced forms of  and  and  I f mass and o t h e r p h y s i c a l c h a r a c t e r -  are known, then f o r c e , momentum, and  c e n t e r of g r a v i t y can  be  computed. A t h i r d o r d e r of methodology i s to combine  cinematographical  r e c o r d s w i t h o t h e r r e c o r d i n g systems, such as  electromyography,  e l e c t r o g o n i o m e t r y , dynamometry and  U n f o r t u n a t e l y , cinema-  tography  has  telemetry.  the major drawback of r e q u i r i n g time to p r o c e s s the d a t a .  Of the t h r e e most common camera s i z e s used f o r r e s e a r c h the 16 mm. 8 mm.  camera i s used more f r e q u e n t l y than 35 mm.  camera i n i t s p r e s e n t stage of development has  o r 8 mm.  purposes,  of s i z e and  The  a f i l m s i z e that  does not produce an image s u i t a b l e f o r r e s e a r c h purposes. f i l m meets the standards  purposes,  The  35  mm.  image q u a l i t y f o r r e s e a r c h  but i t s combined l a c k o f a v a i l a b i l i t y and  c o s t of equipment  p r e c l u d e i t s use.  CINEMATOGRAPHY AND  DYNAMOMETRY  The use of cinematography and dynamometry, o r the d i r e c t measurement of f o r c e to c a p t u r e and measure c r i t i c a l  events  i s w e l l documented.  The most common method of d i r e c t f o r c e measurement i n c o n j u n c t i o n w i t h cinematography has been the use of some type of f o r c e p l a t f o r m .  The  7  performance on the p l a t f o r m i s u s u a l l y f i l m e d w i t h a c l o c k in  the camera f i e l d .  The l a t t e r i s w i r e d t o g i v e p u l s e s  r e c o r d which a r e used t o s y n c h r o n i z e  they s e r v e  on the f o r c e  the f i l m and f o r c e r e c o r d .  the f o l l o w i n g d e s c r i p t i o n s a r e not p a r t i c u l a r l y nastic activity  positioned  to i l l u s t r a t e  While  concerned w i t h gym-  the use o f cinematography i n  the a n a l y s i s o f human movement. Payne (24:123) combined cinematography and a f o r c e p l a t f o r m to i n v e s t i g a t e a number o f events. at  Records o f the components o f t h r u s t  the f e e t o f an a t h l e t e were o b t a i n e d  s t a r t , second s t e p shot  o f s p r i n t run,  p u t t i n g and w e i g h t - l i f t i n g .  for:  constant  the v e r t i c a l jump, s p r i n t  speed r u n n i n g ,  hurdling,  Combined cinematography and  dynamometry were used i n a comparison between f l o p and s t r a d d l e jumpers  (Kuhlow, 17:403).  high  In t h i s study, dynamic events a t t a k e - o f f  were r e g i s t e r e d by a f o r c e p l a t f o r m which worked on the p r i n c i p l e o f piezo-electric crystals.  The r e s u l t s o b t a i n e d  performance o f an a c t i v i t y was i n i t i a l l y applied against  the ground.  illustrated  that  determined by the f o r c e s  Consequently the source o f v a r i a t i o n s i n  performance must be examined w i t h r e c o u r s e  to the f o r c e s p r o d u c i n g  the movement. In s t u d y i n g found o n l y  the s t a n d i n g  broad jump o f young c h i l d r e n , Roy (29)  a maximum d e v i a t i o n o f 9% between the v e r t i c a l  computed from f i l m and t h a t d i r e c t l y measured from a f o r c e  force platform.  H i s study i n d i c a t e s t h a t d a t a on the a c c e l e r a t i o n s o f i n d i v i d u a l body segments which were deduced from the f i l m and which combine to make up the  t o t a l f o r c e can be measured r e a s o n a b l y a c c u r a t e l y  from the f i l m .  8  Hay  (12:34) used cinematography to i n v e s t i g a t e the r e l a t i v e  influence of f i v e f a c t o r s on the magnitude of the pole-bend obtained i n v a u l t i n g w i t h a f l e x i b l e pole.  In h i s study, the mass of the  subject remained constant throughout; thus the forces produced were d i r e c t l y p r o p o r t i o n a l to the accelerations produced.  This work  i l l u s t r a t e s the p o s s i b i l i t y of examining forces producing motion i n those events where d i r e c t force measurements are not p o s s i b l e . CINEMATOGRAPHIC ANALYSIS AND OTHER RECORDING SYSTEMS Eckert (7:937) used cinematographic  a n a l y s i s i n studying the  v e r t i c a l and standing broad jumps of c o l l e g e men  and women.  A  comparison of range of motion of j o i n t actions and maximal angular v e l o c i t i e s f o r men  and women i n d i c a t e d d i s t i n c t time-force coordinations  of the various j o i n t actions i n the performance of the v e r t i c a l and standing broad jumps. combined cinematographic  A l t e r n a t i v e l y , Hebbelinck and Borms (13:324) a n a l y s i s and general pattern of muscle  a c t i v i t y of the upper extremity during the performance of a f r o n t handspring.  The greatest a c t i o n p o t e n t i a l s were recorded during the  push-up phase when the hands h i t the f l o o r , followed by a r e a c t i o n r a i s i n g the center of g r a v i t y and i n c r e a s i n g the r o t a t i o n a l momentum. This work suggests that there are consistent patterns of motion and muscular a c t i v i t y i n s p e c i f i c a c t i v i t i e s and the examination of such patterns provides a c r i t e r i o n f o r evaluation of q u a l i t y of performance.  9  CINEMATOGRAPHIC ANALYSIS AND GYMNASTICS A number of i n v e s t i g a t o r s have used cinematographic a n a l y s i s to describe patterns of motion i n gymnastic a c t i v i t y .  A cinematographic  analysis of the forward somersault on p a r a l l e l bars was done by S u l l i v a n (33:16).  F i l m tracings of the body p o s i t i o n at the i n s t a n t  of release and regrasp were made of f i v e performances.  The center of  g r a v i t y at release and regrasp was estimated and path of the center of g r a v i t y during the f l i g h t was c a l c u l a t e d .  S u l l i v a n found that at  release: a) b) c) d)  the body i s i n a s t r a i g h t , l a y out p o s i t i o n , arms s t r a i g h t , angle of the arms w i t h the perpendicular about 35° center of g r a v i t y d i r e c t l y over hand grasp and t r a v e l l i n g upward rather than upward and forward  At regrasp i t was found the angle of the arms w i t h the v e r t i c a l to be 20°, so the center of g r a v i t y w i l l be forward of the hands. Hatano (10:27) completed a cinematographic analysis of a double somersault using two subjects.  I t was found that the f i r s t somersault  needs more time than the second i n both subjects and the body angle at take-off was observed to be approximately 75° from the h o r i z o n t a l . These r e s u l t s also agree w i t h Lundien (20:26) who studied the s i n g l e backward somersault and recommended an optimal take-off angle to be 75° from the h o r i z o n t a l . The consistency reported amongst these studies of expert performers suggests d i r e c t aims which should guide the coach of the novice gymnast to improve h i s a b i l i t y .  Unfortunately such repeatable  10  i n f o r m a t i o n i s n o t a v a i l a b l e f o r performers on the s t i l l most s t u d i e s on the s t i l l advanced (25),  While  r i n g event were concerned w i t h the more  swing moves, e s p e c i a l l y g i a n t swings,  Dvorak (6),) r e l a t i v e l y  d i s l o c a t e i n gymnastics.  rings.  (Dusenbury  ( 5 ) , Peek  few s t u d i e s have i n v e s t i g a t e d the  Chaplan  (2:22) d e s c r i b e s the d i s l o c a t e as  follows: The gymnast s h o u l d f o r c e f u l l y k i p a t the h i p s w i t h the l e g s p r o j e c t i n g out a t 45° a n g l e . The body w i l l r i s e s l i g h t l y i f the k i p p i n g a c t i o n i s s t r o n g and the arms s t r a i g h t throughout. Hinds  (14) contends  t h a t the k i p p i n g phase o f the d i s l o c a t e  t e r m i n a t e s i n a planche p o s i t i o n w i t h the arms p r e s s i n g out and down on the r i n g s w i t h the s h o u l d e r s w e l l i n f r o n t and above.  From t h i s  p o s i t i o n the c h e s t s h o u l d l e a d the descent and the arms s h o u l d move from a l o n g the s i d e s o f the body around  i n an a r c to the f r o n t o f the  body. More q u a n t i t a t i v e i n f o r m a t i o n on s k i l l Dusenbury  ( 5 ) , who made an attempt  a n a l y s i s was produced by  to c a l c u l a t e from f i l m the f o r c e  generated a t t h e bottom o f the swing on the forward and backward g i a n t swings.  The r e s u l t s were s u r p r i s i n g : Maximum V e r t i c a l F o r c e  Backward G i a n t S u b j e c t 1 (body wt. 60 kgs.) S u b j e c t 2 (body wt. 65.5 kgs.)  545 kgs. 432 kgs.  9 times the body wt. 6 times the body wt.  Forward G i a n t Subject 1 Subject 2  434 kgs. 380 kgs.  7 times the body wt. 5 times the body wt.  11  But the p o s i t i o n s at which these maximum forces were recorded were quite d i f f e r e n t i n the two subjects used.  In subject 1, the p o s i t i o n  of maximum v e r t i c a l force occurred when the body was h o r i z o n t a l on the downward swing, while i n subject 2, the p o s i t i o n of maximum force on the hands occurred j u s t before the subject reached the bottom of the downward swing. A cinematographical analysis of a s t r a i g h t arm backward giant on the s t i l l r i n g was done by Peek (25).  The analysis included p l o t t i n g  paths of the h i p s , shoulders, ankles, and center of g r a v i t y along with an examination of the c o n t r i b u t i o n of body segments to the whole movement. 1. 2. 3. 4. 5.  The r e s u l t s of the analysis i n d i c a t e that: With reference to the suspension l i n e of the rings the center of g r a v i t y followed a more or less v e r t i c a l path, downward and upward. The hip angle i s s l i g h t l y greater than 180° throughout the giant swing u n t i l the hips pass through the bottom of the swing. The hip angle i s decreased sharply after the legs pass through the bottom p o s i t i o n . The greatest angular v e l o c i t y of the hips occurred on the downward swing between a p o s i t i o n 45° below h o r i z o n t a l and the bottom. The greatest angular v e l o c i t y of the ankles occurred i n the same p o s i t i o n .  Peek also s t a t e d , without proof, that there was a d i r e c t r e l a t i o n s h i p between the v e l o c i t y of the body (ankles and hips) during the and the success of completing the s k i l l .  descent  12  Sale (30) combined cinematography with force readings obtained from a load c e l l i n studying the shoot to handstand.  Although he d i d  not analyze the d i s l o c a t e he d i d define i t as follows (30:5): A movement used to i n i t i a t e a forward swing on the r i n g s . From a s t r a i g h t body inverted hang p o s i t i o n , the gymnast flexes the hip j o i n t and then f o r c e f u l l y extends the hip j o i n t and displaces the rings sideward and then forward with h i s arms. The body i s thus positioned f o r a forward swing. Sale's analysis revealed the f o l l o w i n g about the shoot to handstand: 1.  The common movement patterns as r e f l e c t e d i n common f l u c t u a t i o n s i n r i n g cable tension and impulse development.  2.  The ranked importance of movement patterns on the b a s i s of magnitude of impulse produced.  The maximum r e s u l t a n t v e r t i c a l  force ranged from 350 to 410 pounds force f o r the four subjects used; t h i s was revealed through the use of a load c e l l connected i n s e r i e s with the r i n g cable.  The peak force occurred at the  bottom of the swing; the c e l l monitored the tension on one r i n g cable only. Sale concluded that b e t t e r performances were associated w i t h greater impulse development during the shoulder extension-hip f l e x i o n phase through the bottom of the downswing and the hip extension phase on the upward swing.  In a l l the preceding d e s c r i p t i o n s of analysis performed  on s t i l l r i n g events, the common f a c t o r was measurement of force. I t i s evident that the d i s l o c a t e should be learned as a p r e r e q u i s i t e to the shoot to handstand and giant swings.  Moreover,  no attempt was made i n the previously mentioned studies to measure the  forces generated throughout the d i s l o c a t e .  A p i l o t study was  13  undertaken by the present w r i t e r to describe the differences i n what was thought to be two d i f f e r e n t types of d i s l o c a t e s .  The mounting  d i s l o c a t e of t h i r t y - t w o subjects were f i l m e d , at the 1973 National C o l l e g i a t e A t h l e t i c A s s o c i a t i o n Gymnastic Championships.  The  differences were so small between the two types of d i s l o c a t e s that the w r i t e r concluded that the d i s l o c a t e s were a l l of the same type. The measurement of v e r t i c a l cable tension i n the d i s l o c a t e by several performers i s one of the themes of t h i s study.  While  considerable  information of a d e s c r i p t i v e nature has been presented, there appears to be no consistent approach to the a n a l y s i s of patterns of motion. The development of a technique f o r studying patterns of motion i s a further aim of the study.  CHAPTER I I I  METHODS AND PROCEDURES  SUBJECTS  The  s u b j e c t s used were f i v e gymnasts from the U n i v e r s i t y o f  B r i t i s h Columbia gymnastics team. gymnasts o f v a r y i n g s k i l l Individual height Subject MC DM JT RH WB  An attempt was made to s e c u r e  l e v e l i n the e x e c u t i o n  o f the d i s l o c a t e  and weight f o r the s u b j e c t s were as f o l l o w s :  5 5 5 5 5  Height f t . 10% f t . 10h f t . 9k ft. 8 f t . 10h  Each s u b j e c t wore a swim s u i t  in. in. in. in. in.  i n order  Weight 165 l b s . 158 l b s . 156 l b s . 159 l b s . 179 l b s . t o f a c i l i t a t e the f i l m i n g  the body a c t i o n s .  INSTRUCTIONS TO THE SUBJECTS  A f t e r each s u b j e c t completed h i s own p e r s o n a l warm-up and s t r e t c h i n g p e r i o d the s u b j e c t ' s body was marked a t the f o l l o w i n g joint 1. 2. 3. 4. 5. 6. 7.  centers: w r i s t - bands wrapped around the lower arm a t the base o f the hand ( s t y l o i d p r o c e s s ) elbow - o l e c r a n o n p r o c e s s shoulder - a c r o m i o c l a v i c u l a r j o i n t trunk - p l a c e d on the s i d e o f the body n e a r e s t t h e camera at the l e v e l o f L - l and T-12 h i p - greater trochanter knee - j o i n t a x i s from p o s i t i o n o f f l e x i o n ankle - l a t e r a l m a l l e o l u s  15  J o i n t centers were marked by a black dot placed on a white tape that could be e a s i l y seen by the camera.  The shoulder j o i n t , because of  i t s great range of motion, was i n d i c a t e d by a black mark placed on the body. After the body markings were put i n p l a c e , the subject was allowed to swing f r e e l y on the rings and perform several p r a c t i c e dislocates.  At t h i s time the subject was asked to hang motionless,  with both hands f i r s t on one r i n g and then on the other r i n g so that a reading for body weight c a l i b r a t i o n could be obtained on the chart recorder. When the subject f e l t he was ready the f i r s t of three t r i a l s was executed.  There was a two-minute r e s t between each t r i a l to  negate any effect of f a t i g u e .  After the completion of the t h i r d and  f i n a l t r i a l the subject was asked which t r i a l he thought was the best of the three. OPERATIONAL INSTRUCTIONS The c o l l e c t i o n of data was made p o s s i b l e with the assistance of the t e c h n i c a l advisors of the Engineering Department at the U n i v e r s i t y of B r i t i s h Columbia.  One assistant was stationed to operate the  camera and another a s s i s t a n t  operated the chart recorder (Figure 1).  Before the t r i a l was attempted the name of the subject and number of the t r i a l was recorded on the chart recorder paper.  flash  bridge amplifiers  camera to subject distance 34 f t . 6 inches chart recorder Figure 1 A e r i a l View of the Filming Arrangement  17  The order of o p e r a t i o n a l i n s t r u c t i o n s was as f o l l o w s : 1. 2. 3. 4. 5.  S t a r t the chart recorder Start the camera F i r e the f l a s h gun Subject begins Stop the camera when the performer a r r i v e s i n a support p o s i t i o n  6.  Stop the chart recorder. The synchronization of the f i l m and the chart recorder was done  with an e l e c t r i c f l a s h gun used as the timing l i g h t .  As the f l a s h gun  was f i r e d a timing mark was placed automatically on the chart recording paper.  The f l a s h was recorded on the f i l m (Figure 1 ) . INSTRUMENTATION  Camera Bolex 16 mm 1.8 f stop speed 61 frames/sec Sun Cine Zoom Lens 16 mm  F:18  15-60 mm  Chart Recorder Make - Gulton (2 channel pen recorder) Type - TR 722 Speed - 25 mm/sec Bridge A m p l i f i e r Type - B.A.M. I Models - 6E62; 6E52 FORCE MEASUREMENT Because of the design of the t e s t i n g apparatus i t i s important to understand the measurement of stress or s t r a i n through a m e t a l l i c object.  For the present purpose, s t r a i n may be defined as the change  i n length of a m a t e r i a l .  For simple t e n s i l e s t r e s s , provided the  e l a s t i c l i m i t i s not exceeded the s t r a i n i s proportioned to the stress  18  load.  D i r e c t force measurement was obtained from s t r a i n gauges  located a x i a l l y on the r i n g cables.  With the use of a Wheatstone  Bridge c i r c u i t combined with the s t r a i n gauge tranducers, cable tension was obtained and recorded by a two channel pen chart recorder. Force and time were expressed as a f r a c t i o n of body weight and number of frames of f i l m r e s p e c t i v e l y . METHODS OF DATA ANALYSIS Vanguard Data A c q u i s i t i o n Program The f i r s t step i n converting the events recorded on f i l m to usable data was the development of a computer program that would c o l l e c t and r e g i s t e r the p o s i t i o n of the noted body landmarks.  The  Vanguard Data A c q u i s i t i o n Program (Appendix A) was designed to give abscissa and ordinate values to each of the body landmarks. This s  was done by s e t t i n g abscissa and ordinate coordinates on each of the body p o i n t s ; the Vanguard Motion Analyzer (V.M.A.) automatically assigned abscissa and ordinate values to these l o c a t i o n s .  These  values were then recorded and stored on computer tape f o r every other frame of the f i l m . This information was l a t e r used to p l o t paths of motion of the seven body landmarks selected (Appendix B).  The path t r a c i n g s of  the ankle, hip and knee were selected as the most u s e f u l , because they provide the most discernable path t r a c i n g s .  In general the  patterns of motion d i d not f a c i l i t a t e q u a n t i t a t i v e comparison between e i t h e r i n d i v i d u a l s or t r i a l s .  19  Wires to Bridge A m p l i f i e r s  Figure 2 Schematic Arrangement of the Apparatus  20  to allow p l o t s of the v e r t i c a l motion of the ankles (ordinate) against v e r t i c a l motion of the hips (abscissa).  The l a t t e r allowed  i n v e s t i g a t i o n of the r e l a t i v e emphasis of the motion of these two parts. ANGULAR DISPLACEMENT OF THE RING CABLES FROM VERTICAL The angular displacement of the r i n g cables from v e r t i c a l was measured at every second frame (time i n t e r v a l = 0.0328 sec.) using the Vanguard Motion Analyzer.  A f t e r the f i l m was properly squared i n the  viewing screen of the V.M.A., the outer r i n g of the V.M.A. could be moved to measure the angular displacement of the r i n g cable from a v e r t i c a l p o s i t i o n (Figures 19-23). be found i n the appendix.  The actual cable measurement may  I t should be noted that p o s i t i v e values  i n d i c a t e movement of the r i n g cables i n an a n t e r i o r d i r e c t i o n from the v e r t i c a l p o s i t i o n r e l a t i v e to the d i r e c t i o n which the subject was facing. As a t e s t of r e l i a b i l i t y the second t r i a l of subject MC was measured and recorded at three d i f f e r e n t times (Figure 3). The procedure was judged to be r e l i a b l e . BODY POSITION AT PEAK FORCE The point of maximum force was determined by the force readings taken from the s t r a i n gauges during the execution of the d i s l o c a t e . The exact frame i n which the greatest f o r c e was found was determined by p l o t t i n g force versus time expressed i n the number of frames.  22  Using the abscissa and ordinate values assigned by the Vanguard Data A c q u i s i t i o n Program f o r each body landmark, the body p o s i t i o n was then graphed and body angles measured (Table 5 ) . A l i n e was drawn from the w r i s t to the shoulder and the shoulder to the h i p ; the shoulder angle was then measured.  A l i n e was drawn from the hip to the knee;  the hip angle was measured.  A l i n e was drawn from the knee to the  ankle; the knee angle was measured (Appendix D).  Angular displacement  of the r i n g cable at the time of peak force was also recorded. SELECTION OF THE BEST DISLOCATE A panel of experts was asked to rate the d i s l o c a t e s from the f i l m record. The panel consisted of a u n i v e r s i t y gymnast, two coaches and a F.I.G. judge.  A s i g n i f i c a n t amount of agreement was shown among  the judges as indicated by a c o e f f i c i e n t of concordance of 0.91 (p < .001).  The r a t i n g sheet can be found i n Appendix E and the  r e s u l t s of t h i s ordering are shown i n Table 1.  CHAPTER IV RESULTS AND DISCUSSION The chief aim of t h i s study has been to f i n d factors which are associated w i t h good performance of the d i s l o c a t e on s t i l l r i n g s . This approach was necessary because of the paucity of biomechanical information concerning the factors which e i t h e r lead to or enhance performance of the d i s l o c a t e .  The measurements obtained were  analyzed w i t h respect to consistencies shown by i n d i v i d u a l s on repeated t r i a l s and differences between subjects which may shed some l i g h t on t h e i r d i f f e r i n g a b i l i t i e s . SELECTION OF THE BEST DISLOCATE Immediately a f t e r each subject completed h i s t h i r d t r i a l the subject was asked to i n d i c a t e which t r i a l he thought to be h i s best. This seemed not to be an easy d e c i s i o n as the subjects believed the d i s l o c a t e s to be very s i m i l a r to each other.  This supposition of  s i m i l a r i t y i s borne out by experimental evidence which i s described later. A panel of experts was then asked to rate the d i s l o c a t e from the  f i l m record.  The panel consisted of a u n i v e r s i t y gymnast, two  coaches and a F.I.G. judge. appendix. (Table  The r a t i n g sheets can be found i n the  The r e s u l t s of t h i s ordering are shown i n the table  1) below.  24  Table 1 Selection of the Best Dislocate by the Subjects and the Panel of Experts Rank Order by Experts Rank Order Trial  Score  Subject's Indicated Best  1  RHT1  30.0  2  RHT2  29.3  3  RHT3  28.7  X  4  WBT3  25.7  X  5  WBT1  25.0  6  WBT2  24.8  7  JTT3  21.8  8  JTT1  20.9  9  JTT2  20.4  10  DMT3  17.1  11  DMT1  16.5  12  DMT2  15.9  13  MCT3  14.3  14  MCT2  14.2  15  MCT1  12.0  X  X  X  25  Although the panel was i n s t r u c t e d to rate each d i s l o c a t e , t h e i r r e s u l t s c l e a r l y ranked the subjects.  This rank order was the c r i t e r i o n  with which a number of other measures were correlated for the aim i n coaching gymnastics i s eventually to s a t i s f y the subjective impression of the judges. FORCE PROFILES The general features of the force p r o f i l e s from a l l subjects (Figures 4-18) demonstrated three peaks of force.  The f i r s t was  r e l a t e d to the kipping phase and the l a s t two were associated with the bottom of the swing.  However subject RH produced recordings i n  which peaks two and three were combined i n t o one peak. While the f i r s t peak was due to the kipping phase, the second peak was due to the subject r e s i s t i n g the a c c e l e r a t i o n due to g r a v i t y and a r r e s t i n g h i s v e r t i c a l momentum.  Sale states (30:100) "The  magnitude of t h i s impulse would be determined by the height from which the center of g r a v i t y of the body descended i n a more or l e s s free f a l l s i t u a t i o n . "  The second force peak i n the present study  was associated with the following observations: a) b) c) d)  rings were forward of v e r t i c a l p o s i t i o n arched body head i n n e u t r a l p o s i t i o n shoulders ^extended  e)  chest near v e r t i c a l p o s i t i o n  A wide v a r i e t y of p o s i t i o n s was observed during the depression between the second and t h i r d force peaks.  The only generally  consistent observation during t h i s phase was that the body was i n an  X Body Wt.  5 h  4  3  r  2  I  1  0  20  40  60  80  100  120  140  160 Frames  180  Figure 4 Cable Tension i n One Ring during the Performance of Subject  MCT1  X Body Wt. 5  y  0  20  40  60  80  100  120  140  160  Frames Figure 8 Cable Tension i n One Ring during the Performance of Subject DMT2  180  X Body Wt. 5 -  0  20  40  60  80  100  120  140  160 Frames  Figure 10 Cable Tension i n One Ring during the Performance of Subject JTT1  180  X Body Wt.  140  160 Frames  Figure 12 Cable Tension i n One Ring during the Performance of Subject JTT3  180  X Body  I 0  Wt.  i  20  i  40  i  i  60  80  1  1  100  120  1  140  1  1—  160  180  Frames Figure Cable Tension i n One  13  Ring d u r i n g the Performance of S u b j e c t  RHT1  X Body  Wt.  140  160 Frames  Figure Cable Tension i n One  17  Ring d u r i n g the Performance of S u b j e c t WBT2  X Body Wt. 6 -  5 h  4  3  2  1  1  0  I  I  20  40  1  1  60  80  .  100  !  1  120  140  1  160 Frames  Figure 18 Cable Tension i n One Ring during the Performance of Subject WBT3  i _  180  41  arched p o s i t i o n and the hips were approaching the bottom of the swing. Sale (30) found a s l i g h t rearward d e f l e c t i o n which reduced momentarily the component of the force of g r a v i t y acting i n l i n e w i t h the r i n g cables.  While t h i s r i n g movement was observed i t was not c o n s i s t e n t l y  shown by a l l subjects. The t h i r d force peak represented the force occurring at the bottom of the swing.  The f o l l o w i n g observations were associated w i t h  t h i s phase: a) b) c)  rearward r i n g d e f l e c t i o n shoulder f l e x i o n head back  d)  hip f l e x i o n  Sale (30) further states that i t i s t h i s phase that i s the most important impulse f o r a c c e l e r a t i n g the body upward i n h i s study of the shoot to handstand. The present observations d i f f e r only s l i g h t l y from those by Sale. At the time of the second two peaks of force, making up the force at the bottom of the swing, Sale observed the r i n g cable to be i n a vertical position.  During the depression occurring between the two  peaks of f o r c e , Sale noted trunk f l e x i o n , and rearward d e f l e c t i o n of the rings from v e r t i c a l .  The events surrounding the second and t h i r d  peaks of force w i l l be treated i n more d e t a i l l a t e r i n t h i s chapter.  KIPPING FORCE  When the rank o r d e r o f the f i r s t  f o r c e peak d u r i n g  phase was c o r r e l a t e d w i t h the s u b j e c t i v e  the k i p p i n g  rank o r d e r o f d i s l o c a t e s by  the p a n e l of judges a c o r r e l a t i o n c o e f f i c i e n t o f 0.71 was o b t a i n e d . Consequently i t i s suggested t h a t m a x i m i z a t i o n o f the upward during  the k i p p i n g phase i s an important p r e c u r s o r  force  o f the subsequent  motion. The  following table  (Table  2) c o n t a i n s  the f o r c e d u r i n g the  k i p p i n g phase expressed as a f r a c t i o n o f the body weight.  The t a b l e  also includes  when  the  percentage the k i p p i n g  compared to the peak f o r c e o c c u r r i n g  force represents  a t the bottom o f the d i s l o c a t e .  Table 2 Kipping  Trial  a  Kipping Force  Force  Kipping Force % b  a  MCT1  1.92  64.0%  MCT2  2.31  55.6  MCT3  1.88  47.9  DMT1  2.57  65.5  DMT2  2.39  56.2  DMT 3  2.40  52.5  JTT1  2.25  49.4  JTT2  2.21  49.1  JTT3  2.25  53.6  RHT1  2.95  44.5  RHT2  2.47  39.2  RHT3  2.62  42.3  WBT1  2.40  52.9  WBT2  2.44  53.0  WBT3  2.40  53.3  K i p p i n g f o r c e i s expressed  Subject's Ave. % 55.6%  58.1%  50.7%  42.0%  53.1%  as a f r a c t i o n o f the body w e i g h t .  b K i p p i n g f o r c e % i s expressed  as t h e p e r c e n t a g e o f t h e peak f o r c e .  44  EVENTS OF THE  The parameters  SECOND AND  THIRD PEAKS OF FORCE  o f time (frames) and a n g u l a r d i s p l a c e m e n t of the  r i n g c a b l e d u r i n g the second and t h i r d peaks o f f o r c e were measured and can be found i n the appendix  (Table 25).  I t was  thought t h a t the  two measures c o u l d be used to s e p a r a t e good from poor  performances.  When time (frames) between the second and t h i r d peaks o f f o r c e  was  c o - r e l a t e d w i t h f o r c e and the assessment by the e x p e r t s ' c o r r e l a t i o n s , r = -0.17  and r = -0.25  were o b t a i n e d r e s p e c t i v e l y .  I t was  judged  t h a t these two measures y i e l d e d u s e l e s s i n f o r m a t i o n . Another attempt peaks o f f o r c e was  to e x p l a i n the events of the second and  third  t r i e d u s i n g the a n g u l a r v e l o c i t y of the l e g s .  U s i n g the a b s c i s s a and o r d i n a t e v a l u e s a s s i g n e d by the Vanguard  Data  A c q u i s i t i o n Program the s h o u l d e r , h i p and a n k l e j o i n t s were graphed f o r the two peaks o f f o r c e . computed  (Appendix H).  The a n g u l a r v e l o c i t y  f o r each t r i a l  was  The a n g u l a r v e l o c i t y o f the movement of the  l e g s a t both peaks o f f o r c e i s not w e l l c o r r e l a t e d w i t h e i t h e r e x p e r t s ' ranking  ( r = 0.18)  o r maximum f o r c e  (r =  0.25).  ANGULAR DISPLACEMENT OF THE RING CABLE  The a n g u l a r d i s p l a c e m e n t of the r i n g c a b l e from v e r t i c a l measured a t every second frame a c t u a l c a b l e measurement may  (time i n t e r v a l = .0328 second).  be found i n Appendix C.  Figures  was The 19-23  15 f  10 f  5 I co <u  2  o,f  60 CD  1  R  -5 h  -10  -15  20  40  60  80  100  120  140  Figure 19 Angular Displacement of the Ring Cable Subject MC  160 Frames  180  100 Figure Angular Displacement Subject  .  120 20  o f the Ring Cable DM  160 Frames  Subject  JT  15 ,  10 h  5 r to co 60  U  <u Q  -10  -15 20  40  60  80  100  120  140  Figure 22 Angular Displacement of the Ring Cable Subject RH  160 Frames  180  15  10  to u  0  cu Q  -5  -10  -15  —i  20  40  60  80  100  120  140  Figure 23 Angular Displacement of the Ring Cable Subject WB  1  160 Frames  180  50  show the r e s u l t s of these measurements.  I t should be noted that  p o s i t i v e values i n d i c a t e movement of the r i n g cables i n an a n t e r i o r d i r e c t i o n from the v e r t i c a l p o s i t i o n r e l a t i v e to the d i r e c t i o n which the subject was f a c i n g . To the s u r p r i s e of the i n v e s t i g a t o r many of the i r r e g u l a r i t i e s shown i n the curves c o n s i s t e n t l y appear over the three t r i a l s . Had a l a r g e r time i n t e r v a l been selected the curve would have been smoother and l e s s i r r e g u l a r , but information would have been l o s t or dismissed as experimental noise.  The exact s i g n i f i c a n c e of the  reproducible small perturbations i n r i n g cable displacement i s unclear and has not been i n v e s t i g a t e d f u r t h e r i n t h i s study. At t h i s point s e v e r a l general statements  can be made about  t h i s measurement. 1.  Each subject was consistent i n h i s performance of the d i s l o c a t e to y i e l d the same general pattern of r i n g cable  2.  displacement.  With the exception of subject DM, a l l subjects y i e l d e d the same general pattern of r i n g cable displacement.  When the t o t a l range of r i n g cable displacement  (Table 3) was  compared to both maximum force and the judgement of the experts, c o r r e l a t i o n s of r = 0.33 and r = 0.13 were obtained r e s p e c t i v e l y . Based on these c o r r e l a t i o n s the t o t a l range of r i n g cable d i s p l a c e ment proved not to be associated e i t h e r w i t h p a r t i c u l a r changes i n force p r o f i l e or assessment of the judges.  51  Table 3 Total Range of Ring Cable Displacement  Trial  Forward Displacement  Backward Displacement  Total Range  MCT1  12.0°  - 9.2°  21.2°  MCT2  13.4  - 8.4  21.8  MCT3  14.0  - 8.0  22.0  DMT1  14.0  - 6.4  20.4  DMT2  14.0  - 8.0  22.0  DMT3  15.2  - 8.0  23.2  JTT1  12.4  - 6.0  18.4  JTT2  13.0  - 7.6  20.6  JTT3  12.0  - 6.4  18.4  RHT1  13.0  -10.6  23.6  RHT2  14.8  - 9.4  24.2  RHT3  13.0  -10.6  23.6  WBT1  12.0  - 8.0  20.0  WBT2  11.2  - 7.8  19.0  WBT3  11.0  - 7.6  18.6  52  The  angle o f displacement  o f the r i n g c a b l e from v e r t i c a l  during  peak k i p p i n g f o r c e , h e r e a f t e r r e f e r r e d to as k i p p i n g a n g l e , was measured and  (Table 4 ) . Rank o r d e r c o r r e l a t i o n s o f r = 0.35, r = 0.11  r = 0.18 were o b t a i n e d when comparing k i p p i n g angle w i t h k i p p i n g  f o r c e , maximum f o r c e and the judgement o f t h e e x p e r t s r e s p e c t i v e l y . Therefore,  t h e r e seems to be l i t t l e  r e l a t i o n s h i p between t h e k i p p i n g  angle and peak f o r c e s o c c u r r i n g d u r i n g the k i p p i n g phase and t h e bottom o f t h e swing, and t h e judgement o f t h e e x p e r t s .  Table 4 Cable T e n s i o n  Trial  and Cable Displacement a t the K i p p i n g Phase  Kipping Force  Frame  Kipping Angle  Average  0.86  MCT1  1.92  60  0°  MCT2  2.31  52  0.8  MCT3  1.88  46  1.8  DMT1  2.57  52  0  DMT2  2.39  58  0.2  DMT 3  2.40  60  -0.6  JTT1  2.25  62  -2.0  JTT2  2.21  70  -2.2  JTT3  2.25  60  -1.8  RHT1  2.95  52  1.0  RHT2  2.47  68  0.8  RHT3  2.62  78  0.8  WBT1  2.40  62  0.4  WBT2  2.44  60  0  WBT3  2.40  68  0  -0.13  -2.0  0.86  0.13  BODY POSITION AT PEAK FORCE The point of maximum force was determined from the force recordings of the s t r a i n gauges during the execution of the d i s l o c a t e The exact frame i n which the greatest force was found was determined by p l o t t i n g the force versus time expressed i n the number of frames. The table below (Table 5) i s a summary of the information which describes the body p o s i t i o n at peak force and includes the angular displacement of the r i n g cable at that moment.  While the following  information i s q u a l i t a t i v e rather than q u a n t i t a t i v e , i t i s included to allow comparisons to be made with s i m i l a r observations by previous investigators.  54  Table 5 D e s c r i p t i o n of the Body P o s i t i o n at Peak Force Hip Angle  Knee Angle  162°  203°  206°  -2.0°  115  162  193  195  -2.4  MCT3  108  160  204  196  0  DMT1  124  152  163  177  -3.0  DMT2  130  161  176  174  -1.0  DMT 3  132  167  174  175  -3.2  JTT1  128  167  168  185  -5.0  JTT2  135  200  208  191  -1.2  JTT3  127  165  171  186  -3.5  RHT1  135  164  190  181  -1.3  RHT2  152  160  178  192  -2.4  RHT3  160  175  191  190  -3.0  WBT1  133  153  179  181  -3.1  WBT2  131  164  175  194  -2.2  WBT3  140  151  169  187  -4.0  Trial  Frame  MCT1  116  MCT2  Shoulder Angle  Angle of Ring Cable  Subject's Indicated Best  X  X  X  X  X  I t should be noted that a l l t r i a l s were accompanied w i t h a r e a r ward (counter to the d i r e c t i o n of the action) movement of the r i n g cable from the v e r t i c a l p o s i t i o n ranging from - 5 . 0 ° to 0 ( v e r t i c a l ) . This data i s s i m i l a r to that obtained by Dvorak (6) who found, i n both the bent and s t r a i g h t arm giant swings, at the p o s i t i o n of maximum force the r i n g cable was behind v e r t i c a l with an average d e f l e c t i o n of -3.75°.  These f i n d i n g s d i f f e r s l i g h t l y from the conclusion drawn by Sale (30:106) who stated: The greatest impulse was produced during hip f l e x i o n and shoulder extension j u s t a f t e r the bottom of the swing had been a t t a i n e d .  MOTIONS OF BODY PARTS  An attempt was made to develop a simple kinematic index i n order to separate the better d i s l o c a t e s from the poorer d i s l o c a t e s . I n i t i a l l y the paths of motion of a number of reference markers located on the body were obtained (Appendix B).  The data obtained  i l l u s t r a t e d the s i m i l a r i t y i n execution of technique among subjects. In general the patterns of motion did not f a c i l i t a t e quantit a t i v e comparison between e i t h e r i n d i v i d u a l s or t r i a l s . As mentioned previously (kipping force) the peak force produced during the k i p p i n g phase was h i g h l y c o r r e l a t e d with s u b j e c t i v e assessment of the o v e r a l l performance by the panel of experts (r = 0.71).  Consequently a t t e n t i o n was diverted to t h i s phase of  the performance where kinematic d i f f e r e n c e s between subjects were i n v e s t i g a t e d i n the f o l l o w i n g manner. The v e r t i c a l motion of the ankles (ordinate) was p l o t t e d against the v e r t i c a l motion of the hips (abscissa) i n order to i n v e s t i g a t e the r e l a t i v e emphasis of the motion of these two body p a r t s .  Path  tracings from the o s c i l l o s c o p e d i s p l a y are included i n Figures 24-28 a graphic presentation of the movement gradients (ankle vs. hips)  56  are included i n Figures 29-33.  These graphs are p l o t t e d i n a r b i t r a r y  computer units which can be converted i n t o absolute units of feet i f they are m u l t i p l i e d by 0.025 feet per computer u n i t .  57  MCT3  Figure Oscilloscope Display Plotted against  24  of the V e r t i c a l Motion of the Ankle the V e r t i c a l Motion of S u b j e c t MC  the Hips  (ordinate)  (abscissa)  DMT1  Figure 25 i l l o s c o p e Display of the V e r t i c a l Motion of the Ankle (ordinate) P l o t t e d against the V e r t i c a l Motion of the Hips (abscissa) Subject DM  JTT1  Figure 26 Oscilloscope  Display of the V e r t i c a l Motion of the Ankle (ordinate)  P l o t t e d against the V e r t i c a l Motion of the Hips (abscissa) Subject JT  60  Figure Oscilloscope Display Plotted against  of  27  the V e r t i c a l Motion of the Ankles  the V e r t i c a l Motion of Subject  RH  the Hips  (ordinate)  (abscissa)  WBT1  Figure 28 Oscilloscope Display of the V e r t i c a l Motion of the Ankles (ordinate) P l o t t e d against the V e r t i c a l Motion of the Hips (abscissa) Subject WB  62 700 Trial 1 Ankle  Trial 2 Trial 3  650 -  600 1  550 H  500 A  500  550  600  650 Hip  Figure 29 V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase.  Subject  MC  63  Trial 1 Trial 2 Trial 3  500  550  600  650 Hip  Figure 30 V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase.  Subject  DM  64  Trial 1 Trial 2 Trial 3  500  650  600  550  Hip  Figure 31 V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase.  Subject JT  65  Ankle  700  650  H  600  550  A  500  550  600  Hip  Figure 32 V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase.  Subject  RH  650  66  Trial 1 Trial 2 Trial 3  500  600  550  650 Hip  Figure 33 V e r t i c a l Movement Gradients of the Ankles and Hips during the Kipping Phase.  Subject  WB  67  Several general points can be made about the r e s u l t s of t h i s type of presentation of data. 1.  In the b e t t e r subjects the kipping loop f a l l s w i t h i n the descent loop of the e n t i r e d i s l o c a t e .  2.  In subject RH there i s greater r i s e of the ankles and hips during the k i p p i n g phase (Figure 32) when compared with that shown by the remaining subjects. subject RH - average r i s e 93 y u n i t s other subjects - average r i s e 7.58 y u n i t s  3.  There i s a greater movement ( r i s e ) of the ankles as compared to the h i p s .  4.  The ankles of subject RH f i n i s h e d at a higher p o s i t i o n than t h e i r i n i t i a l s t a r t i n g p o s i t i o n i n the inverted s t r a i g h t body hang.  Finish  V e r t i c a l movement of ankles i n subject RH average s t a r t i n g p o s i t i o n - 655 y units average f i n i s h i n g p o s i t i o n - 696 y units Only one other subject (DM) c o n s i s t e n t l y showed t h i s pattern but not to the extent shown by subject RH. The other  subjects  showed the opposite patterns; i . e . , the p o s i t i o n of ankles at completion of the kipping phase i s lower than the ankle i n the i n i t i a l starting position.  S u b j e c t RH shows g r e a t e r h i p movement  ( r i s e ) than the o t h e r  subj e c t s .  V Subject:  RH  other subjects  Subject RH's average h i p r i s e i s 51.6 y u n i t s whereas the o t h e r s u b j e c t s ' h i p s o n l y r i s e on the average 13.8 y u n i t s .  INTERRELATIONS OF MEASUREMENTS The r a t i n g by the panel of experts allowed each d i s l o c a t e to be ranked i n order of excellence.  This rank order was the chosen  c r i t e r i o n against which the biomechanical measurements were evaluated. The existence of a high rank order c o r r e l a t i o n between expert assessment and a given biomechanical measure was accepted as the basis f o r the assumption of usefulness of a biomechanical measure.  This  approach allowed c e r t a i n measures to be rejected as p r o v i d i n g i n s i g n i f i c a n t information on the performance of the s k i l l .  Hopefully,  coaches and other i n d i v i d u a l s using the information provided i n t h i s t h e s i s would pay p a r t i c u l a r a t t e n t i o n to biomechanical measures which were h i g h l y c o r r e l a t e d with expert opinion of good performance.  Table 6 I n t e r r e l a t i o n of Rank Order C o r r e l a t i o n s 1 2  3  1.  Grad.  2.  Grad. of up kip  3.  Mean grad. (up & down)  4.  Peak force  0.76 0.78  0.74  5.  Experts' scores  0.80 0.92  0.87  6.  Highest d i s l o c a t e ^  4  5  6  7  8  9  10  11  12  of down k i p 0.88  0.85  -0.21  7. Amt. of v e r t , r i s e hips 8.  Amt. of v e r t , drop hips  9.  Kipping force  10.  Kipping angle  11.  D i s p l . of the ring cable  0.94  0.86  0.97  0.36 0.74 0.63  0.62  0.36  0.78  0.71  0.11  0.18  between 2nd & 3rd peaks  -0.17 -0.11  12.  Time between 2nd & 3rd peaks  -0.17 -0.25  13.  T o t a l range of r i n g displacement  0.33  0.13  14.  Angular v e l o c i t y of the legs  0.25  0.18  0.65 0.27 0.35  Gradient i s the r a t i o of the v e r t i c a l movement of the ankles to the v e r t i c a l movement of the hips. b  Table 45.  C  Table 26.  Significance at: "  r _ = .44, r _ = .60 .05; 15 .01; 15 c  i r  n  1 C  71  From the p r e c e d i n g  rank o r d e r  c o r r e l a t i o n s the f o l l o w i n g s t a t e -  ments can be made: 1.  a)  The  highest  peak f o r c e was  whose g r a d i e n t  obtained  by  those gymnasts  i s lowest i n the k i p p i n g phase; i . e . ,  those gymnasts who  emphasized the v e r t i c a l h i p move-  ment r a t h e r than ankle movement. b)  The  a c t u a l amount of drop of h i p s  w i t h peak f o r c e  ( r = 0.36)  and  i s poorly  correlated  the amount of r i s e  hips i s w e l l correlated with force f o r e the upward f o r c e i n the h i p s  ( r = 0.86).  of  There-  i s well correlated  w i t h the subsequent peak f o r c e at the bottom of the 2.  a)  The  ranking  by  the e x p e r t s  swing.  i s very w e l l c o r r e l a t e d with  the r e l a t i v e emphasis of the v e r t i c a l h i p movement over t h a t of the ankles b)  The  (mean g r a d i e n t  same a l s o a p p l i e s to the r a n k i n g  the v e r t i c a l r i s e of the h i p s 3.  The  The  by  the e x p e r t s  and  ( r = 0.85).  peak f o r c e at the bottom of the swing i s a l s o w e l l c o r r e l a t e d  w i t h the e x p e r t s ' 4.  r = 0.87).  r a t i n g by  ratings  ( r = 0.85).  the p a n e l of e x p e r t s  f o l l o w i n g g r a d i e n t s and  was  correlated with  gave the f o l l o w i n g  a)  Gradient-down k i p r =  0.80  b) c) d)  Gradient-up k i p Mean g r a d i e n t Peak f o r c e  0.92 0.87 0.85  r = r = r =  results:  the  The measurements of k i p p i n g angle, angular displacement of the r i n g cable between the second and t h i r d peaks, time between the second and t h i r d peaks and t o t a l range of r i n g cable d i s placement prove to be poor tools i n p r e d i c t i n g performance.  73  CHAPTER V  SUMMARY AND  The p u r p o s e analysis All  of  of  this  s t u d y has  CONCLUSIONS  b e e n t o make a b i o m e c h a n i c a l  t h e d i s l o c a t e as p e r f o r m e d on t h e s t i l l  t e s t i n g was  done i n t h e g y m n a s i u m a t t h e U n i v e r s i t y  B r i t i s h Columbia w i t h each of  the f i v e subjects  C a b l e t e n s i o n was m o n i t o r e d w i t h s t r a i n w i t h the r i n g  cable.  E a c h t r i a l was  r e c o r d s were s y n c h r o n i z e d  with a flash  each s u b j e c t  completed h i s  s t r e t c h i n g p e r i o d the s u b j e c t ' s joint  1.  wrist  2. 3. 4. 6.  elbow shoulder trunk hip knee  7.  ankle  After to swing  a  trials.  series force timing  paper.  own p e r s o n a l warm-up  b o d y was m a r k e d a t  t h e body m a r k i n g s were p u t i n p l a c e ,  f r e e l y on t h e r i n g s  When t h e . s u b j e c t executed.  felt  T h e r e was  he was  the  and  following  t h e s u b j e c t was  three.  t h e s u b j e c t was  and p e r f o r m s e v e r a l p r a c t i c e ready  the f i r s t of  A f t e r the completion of asked which  to  was negate  t h e t h i r d and  t r i a l he thought  was  allowed  dislocates.  three t r i a l s  a two m i n u t e r e s t b e t w e e n e a c h t r i a l  any e f f e c t o f f a t i g u e .  the  three  and f i l m a n d  gun w h i c h c a u s e d  of  centers:  5.  trial  taking  gauges a t t a c h e d i n  filmed,  mark t o be p l a c e d on t h e c h a r t r e c o r d e r After  rings.  the best  final of  74  The f i l m r e c o r d o f  t h e d i s l o c a t e was  e x p e r t s who r a t e d e a c h d i s l o c a t e .  later  The r a t i n g b y  shown t o a p a n e l the p a n e l of  a l l o w e d each d i s l o c a t e t o be r a n k e d i n o r d e r o f e x c e l l e n c e . r a n k o r d e r was measurements eventually  the chosen  c r i t e r i o n against  experts This  which the biomechanical  were e v a l u a t e d f o r the aim i n coaching gymnastics  to s a t i s f y  the s u b j e c t i v e i m p r e s s i o n  The i n f o r m a t i o n r e c o r d e d b y t h e f i l m was of the Vanguard M o t i o n A n a l y z e r .  of  of  the  judges.  r e f i n e d w i t h the  Obtained were the  is  use  following  measures: a) b)  p o s i t i o n of the body p o s i t i o n  c)  d i s p l a c e m e n t of n o t e d body  The V a n g u a r d  later  selected.  landmarks  D a t a A c q u i s i t i o n P r o g r a m was  and o r d i n a t e v a l u e s was  rings  used  to each of  to p l o t paths  the body  designed  landmarks.  of motion of  to give This  the seven body  abscissa  information landmarks  CONCLUSIONS The patterns of force and body actions are s i m i l a r f o r a l l subjects.  Given these s i m i l a r i t i e s i t i s d i f f i c u l t to i d e n t i f y  measures which c o r r e l a t e h i g h l y with good performance. The angular v e l o c i t y of the movement of the legs at the second and t h i r d peaks of force i s not w e l l c o r r e l a t e d with e i t h e r experts' ranking ( r = 0.18) or maximal force (r = 0.25). The f o l l o w i n g are poor p r e d i c t o r s of performance i n the dislocate: a) b) c) d) e)  T o t a l range of angular displacement of the r i n g cable. Time (frames) between the second and t h i r d peaks of force. Angular displacement of the r i n g cable during the second and t h i r d peaks of force. Kipping angle. Amount of preparatory v e r t i c a l drop of hips i n the k i p p i n g phase.  Better performers are those who maximize the upward force during the kipping phase by accentuating the r i s e of the hips over that of the ankles.  Consequently, i t i s suggested that those teaching  t h i s a c t i v i t y concern themselves with methods of maximizing the upward thrust of the hips i n the k i p p i n g phase.  I t i s f e l t that  t h i s phase i s the foundation block upon which the d i s l o c a t e i s built.  REFERENCES  76  77  REFERENCES 1  A u s t i n , J.M., "Cinematographic A n a l y s i s o f the Double Somersault," M.S. T h e s i s , U n i v e r s i t y o f I l l i n o i s ,  2  Chaplan, M., "Elementary D i s l o c a t e , " Modern Gymnast, J u n e - J u l y , 19 70.  3  Cooper, J.M. ( e d ) , S e l e c t e d T o p i c s on Biomechanics, A t h l e t i c I n s t i t u t e , 1971.  4  Cooper, J.M., R. Ward, P. T a y l o r and D. Barlow, " K i n e s i o l o g y of the Long-Jump," Biomechanics I I I , V o l . 8, K a r g e r , B a s e l , 1973.  5  Duesbury, James, "A K i n e t i c Comparison of Forward and Reverse G i a n t Swings on the S t i l l Rings as Performed by Gymnasts w i t h V a r y i n g Body Types," Unpublished M.S. T h e s i s , U n i v e r s i t y of M a s s a c h u s e t t s , 1968.  6  Dvorak, R.H., "A K i n e m a t i c Comparison Between the Bent and S t r a i g h t Arm G i a n t Swings on the S t i l l Rings U s i n g C i n e m a t o g r a p h i c a l A n a l y s i s , " U n i v e r s i t y of New Mexico,  7  G r o s s f e l d , A.L., "Under Bar Somersault on the P a r a l l e l B a r s , " M.S. T h e s i s , U n i v e r s i t y o f I l l i n o i s , 1962. Hatano, Y., "Study of the Mechanics of the Backward Somersault," Modern Gymnast, Nov. 1962.  11  Hay,  13  1973.  . "The e f f e c t of added weights on j o i n t a c t i o n i n the v e r t i c a l jump," Research Q u a r t e r l y , V o l . 39, No. 4, 1968.  10  12  Chicago:  E c k e r t , H.M., "Angular v e l o c i t y and range o f motion i n the v e r t i c a l and s t a n d i n g broad jumps," Research Q u a r t e r l y , V o l . 39, No. 4, 1968.  8  9  Backward 1960.  Double  J.G., "An I n v e s t i g a t i o n of M e c h a n i c a l E f f i c i e n c y i n Two S t y l e s of High Jumping," Ph.D. D i s s e r t a t i o n , U n i v e r s i t y of Iowa, 1967. . "Pole V a u l t i n g : A Mechanical A n a l y s i s of Factors I n f l u e n c i n g Pole-Bend," Research Q u a r t e r l y , V o l . 38, No. 1, 1967.  H e b b e l i n c k , J . and J . Borms, "Cinematographic and E l e c t r o m y o g r a p h i c Study o f the F r o n t Handspring," Biomechanics I , K a r g e r , B a s e l , 1968.  78  REFERENCES 14  Hinds, J.W., S t i l l Rings: S k i l l s and Techniques, Santa Monica, C a l i f o r n i a , Sundby P u b l i c a t i o n s , 19 72.  15  I n t e r n a t i o n a l Gymnastics Federation (F.I.G.), Supplements and Amendments to the Code of Points 1968, Zurich: Neue Zurcher Zeitung, 1971.  16  K e t l i n s k i , R., "Can High Speed Photography Be Used as a Tool i n Biomechanics?," Selected Topics on Biomechanics, Chicago: A t h l e t i c I n s t i t u t e , 1971.  17 Kuhlow, A., "A Comparative Analysis of Dynamic Take-off Features of Flop and Straddle," Medicine and Sport, Biomechanics I I I , Vol. 8, Karger, Basel, 1973. 18  L a s c a r i , A.T., "The Felge Handstand - A Comparative K i n e t i c Analysis of a Gymnastics S k i l l , " Ph.D. D i s s e r t a t i o n , U n i v e r s i t y of Wisconsin, 1970.  19  Leggett, D.A. and J.C. Waterland, "An Electromyographic Study of Selected Shoulder Muscles during Arm Support A c t i v i t y , " Biomechanics I I I , V o l . 8, Karger, Basel, 1973.  20  Lundien, E.C., "A Cinematographic Analysis of the Backward Somersault," M.S. Thesis, U n i v e r s i t y of I l l i n o i s , 1951.  21  Moorse, A. C , "A Cinematographical Analysis of a F u l l Twisting Backward Somersault," M.S. Thesis, U n i v e r s i t y of I l l i n o i s , 1951.  22  Morrison, J.B., "The Mechanics of Muscle Function i n the Locomotion," Journal of Biomechanics, V o l . 3, 1970.  23  Noss, James, "Control of Photographic Perspective i n Motion A n a l y s i s , " Journal of Health, P h y s i c a l Education, and Recreation, V o l . 38, 1967.  24  Payne, A.H., W.J. S l a t e r and T. T e l f o r d , " A t h l e t i c A c t i v i t i e s , A Preliminary I n v e s t i g a t i o n , " Ergonomics, V o l . 11, No. 2, 1968.  25  Peek, R.W., "A Cinematographic and Mechanical Analysis of the S t r a i g h t Arm Backward Giant Swing on the S t i l l Rings," M.S. Thesis, S p r i n g f i e l d College, 1968.  26  Plagenhoef, S.C., "Computer programs f o r obtaining k i n e t i c data on human movement," Journal of Biomechanics, V o l . 1, 1968.  79  REFERENCES 27  . "Gathering K i n e s i o l o g i c a l Data Using Modern Measuring Devices," Journal of Health, P h y s i c a l Education and Recreation, Vol. 39, No. 8, 1968.  28  . "Methods f o r Obtaining K i n e t i c Data to Analyze Human Motions," Research Quarterly, V o l . 37, No. 1, 1966.  29  Roy, B.G., "Kinematics and k i n e t i c s of the standing long jump i n seven, ten, t h i r t e e n and s i x t e e n year o l d boys," Ph.D. Thesis, U n i v e r s i t y of Wisconsin, 19 71.  30  Sale, D.G., "A Cinematographical and Mechanical A n a l y s i s of the Shoot-to-Handstand Performed on the Rings," M.S. Thesis, U n i v e r s i t y of Western Ontario, 1972.  31  Sale, D.G. and R.L. Judd, "Dynamometric instrumentation of the rings f o r a n a l y s i s of gymnastic movements," Medicine and Science i n Sports, V o l . 6, No. 3, 19 74.  32  Spencer, R.R., " B a l l i s t i c s i n the Mat K i p , " Research Quarterly, Vol. 34, No. 2, 1963.  33  S u l l i v a n , R.M., "The Forward Somersault on the P a r a l l e l Bars," Modern Gymnast, March, 1966.  34  Taylor, P a u l , " E s s e n t i a l s of Cinematography," Selected Topics on Biomechanics, Chicago: A t h l e t i c I n s t i t u t e , 19 71.  35  Vanis, G.J., "A Cinematographic A n a l y s i s of the Yamashita Vault over the Long Horse," Modern Gymnast, Nov.-Dec., 1965.  APPENDIX A  80  81 Table  6A  Vanguard Data A c q u i s i t i o n Program C-fch  FCCAL T A A A I  •01 .«>2 21 21 . d b 21 . U t 21.12  01 . 1 2 A u l . I4 Q  *' I <*6\  "VANGUARD NOT I 0(> A K A L Y S E R DATA A C ' J I S T I t i v "ivAh.E OF F I L N . ' A I A " DATE'A ! 'MJ1-.3ER CF DATA P G ! NTS ~ KO , ! "Dt YCU U'AUT C A L IBu AT 1C |. " IS > ! (0 YES - IS ) I . l a ,3 .«/ J , 1 . 1 2 " S T A R T U.G  ADD!". E S S " AD IS  ca.<T2  S  2=F/.CT C 3 ^ 2 3 »O 4 )  aa .24  S  ?=F'/CT C3423 ,64  ok .06  S «2.«6 S 2ii . I 2 S «/2.1iS 5  u3.to3  CC R A !• " , ! ! !  T  t  >; I  AD=AE-2|F  < 7 -1 CS )2 .34  A M ,!'C;3  2  ,2 . B 4 ,2 . S o  £ =F : CT C j 4 2o » 0 6 ) 5 « F > : C T < 3 4 2 3 . o o > ;S Y « F ; C T C 3 4 2 3 ,64 > it =FC OR I Ali+A « a , >' > ; S 7 * F C C n C <AD*1 ) « ( f i « 2 ) , V ) Z » F > C T <34i:3,o4 ) J t C 2 - 1 3 o ) a . I « , 2 . I 4 , £ . 1 2  S AO M i l 92 JT " t IE A!* I T V CJ-=CK T > VALUE YVA.LUS 5' D I F F YD IFF F A M , K C 50 2 S S;.=FCCR CAD+C1.X 2 > >-FCCP C £ 1 54 ) S SY = FCCR C11 93 + CIC<'2 ) ) - F C C ? . Ct 1 So )  KJ.34 2 3 . ii3 *.3.26 23.2fc  n n  CG?£t J'S  ",!!'.! Y*'  i!  «3.i<> s  >• I = I S : - / U . . C - I )> YI=(£Y/CI.C-1 ) ) S F A M ,I.C JD G 5.22  23.12 23 . 14 153 .16  Zt.-iiZ 3 M A > = F C C r . C f c i S 2 H A « 2 ) ;S Y CA ) =FC Cr ( f.l 93 +A <2 ) ;  *4 .23 I' Cij'C - (A } >4 .22 , 4 . 23 ,4 . 24 2 4 . 2 4 S D>.CA >-FCCP. C b 1 S 2 * (A '2 > *2 )-FCC"? C b l '.-2 • CA ' 2 ) j lib S D Y C A ) =F3CP. C «j 1 i3 + CA a )+2 )-FCCF, C fcl 93 + C A « 2 ) ) 0 4 . 3 6 S >*S<A) = C D r < A ) - ? - I ) / CS> « . « 1 ) I 3 Y E < A ) = < C Y < A > - Y I ) / < S Y * . a i ) 1 0 4 . 1 6 T ~ f c . 2 4 , ;•' CA ) , Y (A ) ,DXCA ) ,DY CA > ,'XE CA ) , YE (A > , ! 24 . 1fcK 24 .22 T ;•: CA ) , YCA ) , ! 4 4 . 2 2 p. i:  25.22 *5 25.25 S5.06 03 .4 t 26.12 » 5 .12 f5.14  T T S F F S F G  " h Y S T E S S IS Cl-ECK P F CGP£> " , ! ! ! ! " >; UP X DC'.. k Y U? Y DCVK V-', Y * " ,'. AD=AD+1!C*2 A M ,KC iD 2 A M ,1.-C;D 5.12! WW = C I o C 2 ) - C A - l ) iS >: CWV } »FC CR IAD **A * £ ) »S Y (VV ) =FC C~ C CAD + 1 ) + CA *2 ) ) A = l ,|..0 ID 6 7.22  26.25 *>6.*>6 •«6.V»fc <>6.l/> ^6.11  I CIJC-A 16 . 1 2 ,6 . 1 2 ,6 . 26 ' s h x i A ) = c;^ CA ) -;;CKC+A >>/?-">•.a 1 S K Y C A ) *< Y ( A > -V(I-!C+A > > / S Y « .8 1 T >• CA ) , 5;CIvC+A ) , Y CA J , YCKC+A ) , hV CA ) , h Y l A } , ! R  :  I  "  uo.12 T XCA ) ,/. CUX; ,Y CA ) , YCW Y ) , ! 06.14  R  iii.£2 87 . 0 4 07'.4(5 27 . 2 6 27 . 3 6 w7.12  T " T " 1ST X S AD=AD+IJC*2 F A M , K 0 ID 2 F A -1 , ICC ID & Q  26.22  S V = CIJC*2J+A  at.j5 a t . s 26.12  S I  T s 2L.12 T J t. I 4 R  at.11  . R E P E A T A B I L I T Y ChECK = CG?At-'" , I ! ! I 5C 1ST Y 21JD Y y%  .  .  .  c  2ND  "  :.tw )=FCC": IAD + (A*2 ) ) IS Y CW > ='C CP. C C AD + 1 ) + C A *2 ) ) (KC-j'Ot.lc.c.lcjt.'ilu CA ) = C M A ) - " » • ' ) ) / s ; " . a 1 ;s > Y CA ) = c YCA J -YCV J 3 / s r * . a i ; CA ),;: c i : ; , YC A ) , Y cu ) , s : (A ) ,P Y CA ;,  i  > CA ) ,/'.«•! ) , YCA ) , Y CV J , !  32.Si. 3K. .o3 32 .72  A T S  l ! ? C C T A L ? i ; DE=2;F I-1,5 IS K = 5 - I I D 3 3 . 7 2 *3 .22 , ? D E C l l - A L ? |G 3«.6«l > -F ITS I C C / 1 2 " ! ) ;S CC =CC - * I 3 " I- ; 5 D E ' D E + I  31.2 1 31.2a 2 1.23 31.v>'4  S S S ^  L' =FCC i". C I 1 2 >j ,33 t 4 ) i'=rCCI' Cl I J ! / , L I J ! ; V ) ?«FCCn<307«,24e«) i:'. =FC C:'^ C3 o'l .'1 , 3 Vu )  -'t*r  YS" , !  .  APPENDIX B  82  83  Figure 34 Ankle J o i n t Path Tracing Subject MCT1  Figure  35  Ankle J o i n t P a t h T r a c i n g Subject MCT2  Figure  36  Ankle J o i n t Path T r a c i n g Subject MCT3  Figure  37  Ankle J o i n t Path T r a c i n g Subject DMT1  Figure  38  Ankle J o i n t Path T r a c i n g Subject DMT2  Figure  39  Ankle J o i n t Path T r a c i n g Subject DMT3  Figure  40  Ankle J o i n t Path T r a c i n g Subject JTT1  Figure  41  Ankle J o i n t Path T r a c i n g S u b j e c t JTT2  Figure  42  Ankle J o i n t P a t h T r a c i n g S u b j e c t JTT3  Figure  43  Ankle J o i n t P a t h T r a c i n g Subject RHT1  Figure  44  Ankle J o i n t P a t h T r a c i n g Subject RHT2  Figure  45  Ankle J o i n t P a t h T r a c i n g Subject RHT3  Figure  46  Ankle J o i n t Path T r a c i n g Subject WBT1  Figure  47  Ankle J o i n t Path T r a c i n g Subject WBT2  Figure  48  Ankle J o i n t Path T r a c i n g S u b j e c t WBT3  98  Figure 49 Hip J o i n t Path Tracing Subject MC  99  Hip J o i n t Path T r a c i n g Subject  DM  JTT2  JTT3  Figure  51  Hip J o i n t Path T r a c i n g Subject  JT  RHT2  RHT3  F i g u r e 52 Hip J o i n t Path T r a c i n g Subject  RH  WBT2  WBT3  F i g u r e 53 Hip J o i n t Path T r a c i n g Subject WB  APPENDIX C  103  104  Table 7 Angular Displacement of the Ring Cable from V e r t i c a l Subject: MC T r i a l 1  ame  Degrees  Frame  Degrees  0  0  48  1.5  Frame 96  2  0  50  1.5  98  12.0  146  -7.0  4  0  52  1.5  100  12.0  148  -6.8  6  0  54  0.5  102  12.0  150  -6.5  8  0  56  0  104  8.0  152  -5.8  10  0  58  0.5  106  6.5  154  -5.4  12  -0.2  60  0  108  4.0  156  -5.4  14  0  62  -0.5  110  4.0  158  -6.0  16  0  64  0  112  3.2  160  -5.0  18  0  66  0.5  114  0  162  -4.0  20  0  68  1.0  116  -2.0  164  -3.0  22  0  70  1.0  118  -2.5  166  -3.0  24  0  72  1.0  120  -2.5  168  -2.6  26  +0.5  74  2.2  122  -3.2  170  -2.0  28  0.8  76  3.2  124  -4.5  172  -1.5  30  1.0  78  4.2  126  -4.5  174  -1.0  32  1.2  80  7.0  128  -4.5  176  0.  34  1.5  82  9.0  130  -6.8  178  +0.5  36  1.5  84  9.4  132  -8.0  180  1.8  38  1.5  86  134  -8.5  182  3.5  40  1.0  88  9.2  136  -9.0  184  2.5  42  0.5  90  9.2  138  -9.2  186  1.5  44  0.8  92  9.8  140  -7.2  188  1.5  46  1.0  94  9.8  142  -7.2  190  2.5  10  Degrees 10.2  Frame 144  Degrees -7.0  105  Table 8 Angular Displacement of the Ring Cable from V e r t i c a l Subject: MCT2 Repeat 1  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  1.0  96  13.0  144  -3.2  2  0  50  0  98  13.0  146  -5.4  4  0  52  0  100  12.4  148  -7.0  6  0  54  0  102  9.0  150  -7.0  8  0  56  0  104  6.2  152  -6.4  10  0  58  0  106  3.6  154  -4.0  12  0  60  0.8  108  3.6  156  -1.0  14  0  62  1.0  110  4.5  158  -1.0  16  0  64  1.0  112  0  160  -2.2  18  0  66  1.0  114  -3.0  162  -3.2  20  0  68  2.0  116  -2.0  164  -4.0  22  0.2  70  2.5  118  -2.0  166  -3.5  24  0.2  72  3.5  120  -4.8  168  -3.5  26  0.4  74  5.2  122  -5.2  170  -3.0  28  1.0  76  7.0  124  -5.0  172  -2.0  30  2.0  78  7.0  126  -4.0  174  -0.4  32  2.0  80  7.2  128  -4.0  176  0  34  1.5  82  7.6  130  -6.0  178  0  36  1.5  84  9.2  132  -6.0  180  0  38  1.0  86  10.2  134  -5.8  182  1.0  40  1.0  88  12.4  136  -5.0  184  1.0  42  1.0  90  13.0  138  -4.8  186  1.6  44  1.0  92  13.0  140  -3.2  188  1.8  46  1.0  94  13.0  142  -3.2  190  2.0  106  Table 9 Angular Displacement of the Ring Cable from V e r t i c a l Subject: MCT2 Repeat 2  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  0  96  13.2  144  -3.6  2  0  50  0  98  12.6  146  -5.0  4  0  52  0  100  11.6  148  -7.0  6  0  54  0  102  8.2  150  -7.6  8  0  56  0  104  5.8  152  -7.2  10  0  58  0.4  106  4.8  154  -3.8  12  0  60  0.8  108  3.6  156  -1.0  14  0  62  0.8  110  4.4  158  -0.8  16  0  64  0.2  112  0.4  160  -2.8  18  0  66  0.4  114  -3.2  162  -3.2  20  0  68  2.0  116  -2.0  164  -3.8  22  0  70  2.0  118  -3.0  166  -4.0  24  0.8  72  5.2  120  -4.2  168  -3.6  26  0.8  74  5.2  122  -5.0  170  -3.6  28  0.8  76  6.8  124  -4.6  172  -3.2  30  0.8  78  7.4  126  -4.6  174  -1.6  32  0.8  80  7.0  128  -6.0  176  -0.2  34  0.8  82  7.8  130  -6.0  178  0.4  36  0.8  84  8.4  132  -7.0  180  0.4  38  1.2  86  9.4  134  -6.0  182  0.6  40  1.4  88  11.2  136  -5.8  184  0.6  42  1.4  90  12.8  138  -5.4  186  1.8  44  1.6  92  13.2  140  -3.6  188  2.0  46  0  94  13.2  142  . -3.6  190  2.0  107  Table 10 Angular Displacement of the Ring Cable from V e r t i c a l Subject: MCT2 Repeat 3  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  0.8  96  13.4  144  -4.2  2  0  50  0.8  98  12.6  146  -7.0  4  0  52  0.8  100  10.4  148  -8.0  6  0  54  0  102  7.4  150  -8.4  8  0  56  0  104  5.0  152  -7.0  10  0  58  0  106  3.2  154  -4.6  12  0  60  0.2  108  2.6  156  -1.8  14  0  62  0.2  110  3.6  158  -1.8  16  0  64  0  112  0  160  -2.6  18  0  66  0  114  -2.0  162  -3.2  20  0  68  2.0  116  -2.4  164  -4.0  22  0.2  70  2.2  118  -2.4  166  -4.0  24  0  72  3.6  120  -6.0  168  -4.0  26  0  74  4.8  122  -5.8  170  -3.6  28  0.2  76  5.2  124  -5.0  172  -3.2  30  0.2  78  6.8  126  -4.8  174  -1.0  32  0.2  80  7.0  128  -5.2  176  0  34  0.2  82  7.0  130  -6.2  178  0  36  0.2  84  8.6  132  -7.4  180  -0.4  38  0.6  86  10.0  134  -6.4  182  0  40  0.8  88  12.0  136  -6.0  184  0.4  42  1.0  90  12.6  138  -5.0  186  0.8  44  1.0  92  12.8  140  -4.0  188  1.4  46  0.6  94  13.4  142  -4.2  190  1.6  108  Table 11 Angular Displacement of the Ring Cable from V e r t i c a l Subject: MC T r i a l 3  Frame  Degrees  7.0  144  -4.4  98  6.8  146  -4.4  1.4  100  5.4  148  -5.4  54  1.2  102  5.4  150  -4.0  0  56  1.2  104  6.0  152  -2.6  10  0  58  2.0  106  1.4  154  -1.4  12  0.8  60  2.0  108  0  156  -1.0  14  0.8  62  2.0  110  -1.0  158  -1.0  16  1.0  64  3.5  112  -1.4  160  -1.0  18  1.2  66  4.0  114  -4.5  162  -1.0  20  1.2  68  4.0  116  -5.0  164  0  22  1.2  70  5.0  118  -4.8  166  1.0  24  1.5  72  6.0  120  -3.5  168  1.0  26  1.5  74  8.8  122  -3.5  170  1.0  28  1.5  76  10.5  124  -4.5  172  0.8  30  1.5  78  12.4  126  -7.0  174  0.8  32  1.8  80  13.6  128  -8.0  176  0.8  34  2.0  82  14.0  130  -6.0  178  3.8  36  2.0  84  14.0  132  -4.0  180  3.4  38  3.0  86  14.0  134  -4.0  182  3.0  40  3.0  88  14.0  136  -3.2  184  2.0  42  2.4  90  12.0  138  -3.0  186  2.2  44  1.8  92  10.6  140  -3.0  188  2.2  46  1.8  94  9.2  142  -4.0  190  2.2  Frame  Degrees  Frame  Degrees  Frame  0  0  48  1.8  96  2  0  50  1.4  4  0  52  6  0  8  Degrees  109  Table 12 Angular Displacement of the Ring Cable from V e r t i c a l Subject: DM T r i a l 1  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  0  96  8.0  144  -5.8  2  0  50  0  98  8.0  146  -5.8  4  0  52  0  100  8.0  148  -5.8  6  0  54  0  102  8.0  150  -5.8  8  0  56  0  104  11.4  152  -6.4  10  0  58  0.4  106  12.0  154  -5.0  12  0  60  0.4  108  13.0  156  -2.0  14  0.2  62  0.8  110  13.0  158  0  16  0.2  64  0.8  112  11.4  160  1.6  18  .0.2  66  0.8  114  8.4  162  1.6  20  0.2  68  1.2  116  3.0  164  1.4  22  0.4  70  1.2  118  0.8  166  -2.0  24  0.4  72  1.2  120  2.2  168  -2.0  26  0.4  74  1.0  122  0.8  170  -5.0  28  0.4  76  1.0  124  -3.0  172  -5.0  30  0.4  78  2.2  126  -3.8  174  -4.0  32  0.4  80  5.0  128  -4.2  176  0.6  34  0.4  82  9.4  130  -5.0  178  3.8  36  0.4  84  12.4  132  -5.0  180  5.6  38  0.2  86  13.6  134  -6.0  182  3.0  40  0.8  88  14.0  136  -6.0  184  0  42  0.8  90  13.8  138  -6.4  186  0  44  0.8  92  10.8  140  -6.4  188  2.8  46  0.6  94  9.0  142  -6.2  190  4.6  110  Table 13 Angular Displacement of the Ring Cable from V e r t i c a l Subject: DM T r i a l 2  ame  Degrees  Frame  0  0  48  2  0  4  Degrees  Frame  Degrees  Frame  Degree!  0.4  96  10.0  144  -5.0  50  0.4  98  9.0  146  -5.0  0  52  0.2  100  8.0  148  -6.4  6  0  54  0.2  102  8.0  150  -6.4  8  0  56  0.2  104  8.4  152  -6.4  10  0  58  0.2  106  10.4  154  -6.0  12  0  60  0  108  11.6  156  -7.4  14  -0.2  62  0  110  13.0  158  -8.0  16  -0.2  64  0  112  14.0  160  -7.6  18  -0.2  66  0  114  14.0  162  -3.2  20  0  68  0  116  14.0  164  -1.4  22  0  70  0  118  13.6  166  -0.2  24  0  72  -0.4  120  9.4  168  0  26  0  74  -0.4  122  5.2.  170  0.2  28  0  76  -0.2  124  2.0  172  0.2  30  0.4  78  -0.2  126  2.0  174  0.2  32  0.4  80  -0.2  128  2.0  176  0  34  0.4  82  -0.2  130  -1.0  178  -3.0  36  0.4  84  1.0  132  -2.8  180  -4.0  38  0.4  86  3.2  134  -3.0  182  -1.6  40  0.4  88  6.0  136  -5.0  184  1.2  42  0.4  90  9.0  138  -5.6  186  3.0  44  0.4  92  10.4  140  -5.6  188  3.0  46  0.4  94  11.0  142  -5.0  190  2.0  Ill  Table 14 Angular Displacement of the Ring Cable from V e r t i c a l Subject: DM T r i a l 3  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0.4  48  1.6  96  11.8  144  -4.6  2  0.4  50  1.2  98  11.0  146  -7.4  4  0.4  52  0.8  100  10.4  148  -6.8  6  0.4  54  0.4  102  9.2  150  -4.6  8  0.4  56  0  104  9.4  152  -4.6  10  0.4  58  -0.4  106  9.2  154  -4.6  12  0.4  60  -0.6  108  9.2  156  -7.4  14  0.4  62  -0.6  110  9.4  158  -8.0  16  1.0  64  0.4  112  11.4  160  -6.8  18  1.2  66  0  114  13.0  162  -4.0  20  1.2  68  0.4  116  14.0  164  -0.2  22  1.2  70  1.0  118  15.2  166  0  24  1.2  72  1.0  120  14.0  168  0.4  26  1.2  74  1.4  122  9.4  170  0.4  28  1.2  76  1.6  124  3.4  172  0.4  30  1.4  78  1.0  126  1.0  174  0.4  32  1.4  80  -0.2  128  1.4  176  -2.0  34  1.4  82  0  130  0  178  -4.0  36  1.4  84  0  132  -3.2  180  -5.0  38  1.4  86  1.4  134  -4.8  182  -3.0  40  1.4  88  5.2  136  -3.8  184  2.6  42  1.4  90  9.4  138  -5.0  186  5.0  44  1.4  92  11.2  140  -6.0  188  5.6  46  1.6  94  12.4  142  -4.6  190  3.2  112  Table 15 Angular Displacement of the Ring Cable from V e r t i c a l Subject: JT T r i a l 1  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  -0.4  96  7.0  144  -6.0  2  0  50  -0.4  98  7.4  146  -5.8  4  0  52  -1.0  100  7.4  148  -5.4  6  0  54  -1.4  102  7.0  150  -5.4  8  0  56  -1.0  104  7.0  152  -5.4  10  0  58  -2.0  106  8.8  154  -5.0  12  0  60  -2.4  108  10.0  156  -3.2  14  0  62  -2.0  110  11.0  158  -1.4  16  0  64  -1.4  112  12.4  160  -0.8  18  0  66  -1.4  114  12.4  162  1.0  20  0  68  -1.0  116  9.6  164  0  22  0  70  -1.0  118  6.2  166  -1.6  24  0  72  0  120  1.4  168  -2.0  26  0  74  0  122  2.2  170  -1.4  28  0  76  1.4  124  2.4  172  -1.0  30  0  78  2.4  126  -1.0  174  -1.0  32  -0.6  80  2.6  128  -5.0  176  -0.6  34  -0.6  82  3.2  130  -3.2  178  -0.6  36  -0.2  84  5.0  132  -3.6  180  3.2  38  -0.2  86  6.0  134  -5.0  182  40  -0.2  88  7.6  136  -4.8  184  42  -0.2  90  8.6  138  -5.6  186  44  -0.2  92  8.6  140  -6.0  188  46  -0.2  94  8.4  142  -6.0  190  113  Table 16 Angular Displacement of the Ring Cable from V e r t i c a l Subject: JT T r i a l 2  ame  Degrees  Frame  Degrees  Frame  0  0  48  0  96  2  0  50  0  4  0  52  6  0  8  Degrees  Frame  Degrees  7.0  144  -5.6  98  8.0  146  -7.6  0  100  9.0  148  -7.2  54  -1.2  102  11.0  150  -7.2  0  56  -1.2  104  11.4  152  -7.0  10  0  58  -1.2  106  11.4  154  -6.0  12  0  60  -1.0  108  11.4  156  -6.0  14  0  62  -1.0  110  11.4  158  -6.0  16  0  64  -2.0  112  11.4  160  -6.8  18  0  66  -2.0  114  11.4  162  -6.2  20  0  68  -2.0  116  12.0  164  -5.0  22  0  70  -2.2  118  12.4  166  -4.2  24  0  72  -1.2  120  13.0  168  -2.0  26  0  74  -1.0  122  13.0  170  -2.0  28  0  76  -1.0  124  11.8  172  -4.0  30  0  78  -0.8  126  9.0  174  -4.0  32  0  80  -0.8  128  5.0  176  -4.0  34  0  82  0  130  2.0  178  -2.8  36  -0.4  84  2.0  132  1.4  180  -2.2  38  -0.4  86  2.2  134  0  182  -1.6  40  -0.4  88  3.0  136  -2.4  184  -1.6  42  -0.4  90  3.8  138  -5.0  186  -1.0  44  0  92  3.8  140  -2.4  188  0  46  0  94  4.2  142  -4.6  190  1.2  114  Table 17 Angular Displacement of the Ring Cable from V e r t i c a l Subject: JT T r i a l 3  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0.4  48  0  96  10.0  144  -6.4  2  0.4  50  -0.2  98  10.2  146  -6.4  4  0.4  52  -0.4  100  10.4  148  -6.2  6  0.4  54  -1.2  102  11.0  150  -6.4  8  0.4  56  -1.8  104  11.0  152  -6.4  10  0.4  58  -1.8  106  11.0  154  -5.2  12  0.4  60  -1.8  108  12.0  156  -4.8  14  0.4  62  -1.4  110  12.0  158  -3.0  16  0.4  64  0  112  12.0  160  -1.2  18  0.4  66  0.4  114  12.0  162  -1.0  20  0.4  68  0.4  116  9.6  164  -1.0  22  0.8  70  0.4  118  5.6  166  -1.4  24  0.8  72  0.4  120  3.8  168  -1.8  26  0.8  74  1.2  122  2.0  170  -1.8  28  0.8  76  2.4  124  1.0  172  -0.8  30  0.8  78  3.0  126  -1.0  174  -0.2  32  0.8  80  3.8  128  -6.0  176  0  34  0.8  82  3.8  130  -4.0  178  0.4  36  0.8  84  4.0  132  -4.4  180  3.0  38  0.8  86  5.6  134  -5.0  40  0.8  88  6.4  136  -5.4  42  0  90  8.6  138  -6.0  44  0  92  8.6  140  -6.0  46  0  94  9.6  142  -6.4  Table 18 Angular Displacement of the Ring Cable from V e r t i c a l Subject: RH T r i a l 1  Frame  Degrees  7.4  144  -5.6  98  9.6  146  -6.4  1.0  100  11.6  148  -8.8  54  1.2  102  12.4  150  -8.8  0  56  0.8  104  12.4  152  -8.8  10  0  58  0.8  106  12.8  154  -10.6  12  0  60  0.8  108  12.8  156  -10.6  14  0  62  1.2  110  13.0  158  -9.6  16  0  64  1.2  112  12.4  160  -7.0  18  0.2  66  -1.0  114  11.2  162  -6.0  20  0.2  68  -2.6  116  11.2  164  -6.0  22  0.4  70  -2.4  118  11.2  166  -6.0  24  0.4  72  -1.2  120  11.4  168  -7.0  26  0.6  74  -1.2  122  11.2  170  -7.0  28  0.6  76  -1.0  124  11.2  172  -6.0  30  1.0  78  0.4  126  10.6  174  -4.0  32  1.0  80  -0.2  128  7.8  176  -2.8  34  1.0  82  -1.0  130  5.6  178  -2.0  36  1.0  84  -1.0  132  1.0  180  -2.0  38  1.0  86  -1.0  134  0  182  -1.0  40  1.0  88  -0.8  136  -2.6  184  0  42  1.0  90  2.0  138  -4.6  186  0  44  1.0  92  3.0  140  -5.0  188  2.0  46  1.0  94  5.4  142  -4.6  190  2.0  Degrees  Frame  Degrees  Frame  0  0  48  1.0  96  2  0  50  1.0  4  0  52  6  0  8  Frame  Degrees  116  Table 19 Angular Displacement of the Ring Cable from V e r t i c a l Subject: RH T r i a l 2  Degrees  Frame  0  0  48  0.8  96  1.8  144  8.6  2  0  50  0.8  98  3.0  146  5.0  4  0  52  0.8  100  2.0  148  2.0  6  0  54  0.8  102  2.0  150  -0.6  8  0  56  0.8  104  2.0  152  -2.4  10  0  58  0.8  106  2.6  154  -5.0  12  0  60  0.8  108  4.8  156  -6.0  14  0  62  0.8  110  6.6  158  -4.2  16  0  64  0.8  112  8.0  160  -4.6  18  0  66  0.8  114  10.4  162  -7.0  20  0  68  0.8  116  11.8  164  -8.0  22  0.4  70  1.2  118  13.6  166  -9.4  24  0.4  72  1.2  120  13.6  168  -9.4  26  0.4  74  0  122  14.8  170  -9.4  28  0.8  76  -0.8  124  14.8  172  -9.4  30  0.8  78  -0.8  126  14.8  174  -8.6  32  0.8  80  -0.8  128  13.0  176  -7.0  34  0.8  82  -0.8  130  12.8  178  -7.0  36  0.8  84  -2.2  132  12.0  180  -6.4  38  0.8  86  -2.2  134  10.6  182  -6.4  40  0.8  88  -2.0  136  9.4  184  -7.0  42  0.8  90  -2.0  138  9.4  186  -7.6  44  0.8  92  0  140  9.4  188  -7.0  46  0.8  94  0.4  142  9.4  190  -6.0  Frame  Degrees  Frame  Degrees  Frame  Degrees  117  Table 20 Angular Displacement of the Ring Cable from V e r t i c a l Subject: RH T r i a l 3 Frame  Degrees  Frame  0  0  48  2  0  4  Degrees  Frame  Degrees  Frame  Degrees  0.4  96  -2.6  144  11.4  50  0.4  98  -2.8  146  11.2  0  52  0.4  100  -1.8  148  11.0  6  0  54  0.4  102  -1.0  150  10.2  8  0  56  0.4  104  0  152  8.0  10  0  58  0.4  106  1.0  154  4.0  12  0  60  0.4  108  0.4  156  1.0  14  0  62  0.4  110  0.4  158  1.0  16  0  64  0.4  112  0.4  160  -3.0  18  0  66  0.4  114  2.4  162  -5.0  20  0  68  0.4  116  3.0  164  -5.0  22  0.4  70  0.6  118  4.0  166  -5.0  24  0.4  72  0.6  120  7.0  168  -5.6  26  0.4  74  0.6  122  9.0  170  -6.4  28  0.4  76  0.6  124  11.4  172  -10.0  30  0.4  78  0.8  126  13.0  174  -10.0  32  0.4  80  0.8  128  13.0  176  -10.0  34  0.6  82  0.8  130  13.0  178  -10.0  36  0.6  84  0.6  132  13.0  180  -10.6  38  0.6  86  0.4  134  13.0  182  -9.6  40  0.2  88  0.4  136  11.4  184  -9.0  42  0.2  90  -1.0  138  11.4  186  -8.0  44  0.4  92  -1.4  140  11.4  188  -7.0  46  0.4  94  -2.0  142  11.4  190  -6.8  118  Table 21 Angular Displacement of the Ring Cable from V e r t i c a l Subject: WB T r i a l 1  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  0.2  96  8.6  144  -6.0  2  0  50  0.2  98  8.6  146  -6.2  4  0  52  0.2  100  8.8  148  -6.4  6  0  54  0.2  102  8.6  150  -8.0  8  0  56  0.4  104  8.6  152  -7.8  10  0  58  0.4  106  8.6  154  -6.8  12  0  60  0.4  108  8.6  156  -6.8  14  0  62  0.4  110  9.4  158  -6.2  16  0  64  0.4  112  11.0  160  -6.2  18  0  66  0.6  114  11.0  162  -6.0  20  0  68  0.6  116  12.0  164  -5.8  22  0  70  0  118  11.6  166  -6.4  24  0  72  0  120  10.4  168  -7.6  26  0  74  0  122  7.0  170  -7.2  28  0  76  0  124  5.2  172  -6.2  30  0  78  -0.4  126  3.4  174  -4.0  32  0  80  -1.0  128  1.4  176  -2.0  34  0  82  -1.6  130  -2.4  178  -0.8  36  0  84  -1.6  132  -3.0  180  -0.2  38  0  86  -0.4  134  -3.2  182  -1.0  40  0  88  2.0  136  -6.0  184  -1.0  42  0.2  90  5.0  138  -5.8  186  -0.8  44  0.2  92  7.0  140  -6.0  188  -0.8  46  0.2  94  7.2  142  -6.0  190  +0.4  Table 22 Angular Displacement of the Ring Cable from V e r t i c a l Subject: WB T r i a l 2  Frame  Degrees  Frame  Degrees  Frame  Degrees  Frame  Degrees  0  0  48  0.2  96  8.8  144  -5.8  2  0  50  0.2  98  9.0  146  -7.0  4  0  52  0.2  100  9.0  148  -7.8  6  0  54  0.2  102  9.0  150  -7.6  8  0  56  0.2  104  9.0  152  -7.0  10  0  58  0.2  106  9.0  154  -6.0  12  0  60  0  108  9.0  156  -6.0  14  0  62  0  110  9.0  158  -5.0  16  0  64  0.4  112  10.4  160  -5.0  18  0  66  0.4  114  11.0  162  -6.0  20  0  68  0  116  11.2  164  -6.0  22  0  70  0  118  11.2  166  -5.4  24  0  72  0  120  10.0  168  -5.4  26  0  74  0  122  6.4  170  -5.4  28  0  76  0  124  4.8  172  -5.4  30  0  78  -2.0  126  2.0  174  -2.4  32  0  80  -2.6  128  0  176  -1.4  34  0.4  82  -2.4  130  -1.6  178  -1.0  36  0.4  84  0  132  -2.8  180  0  38  0.4  86  0  134  -4.0  182  0  40  0.4  88  2.8  136  -5.0  184  -0.4  42  0.2  90  5.4  138  -5.2  186  -1.4  44  0.2  92  8.0  140  -5.8  188  -1.4  46  0.2  94  8.4  142  -5.8  190  0.8  120  Table 23 Angular Displacement of the Ring Cable from V e r t i c a l Subject: WB T r i a l 3  ame  Degrees  Frame  Degrees  Frame  0  0  48  -0.2  96  2  0  50  -0.2  4  0  52  6  0  8  Degrees  Frame  Degrees  3.0  144  -5.0  98  6.0  146  -6.0  -0.2  100  7.2  148  -6.0  54  -0.2  102  8.0  150  -6.0  0  56  -0.2  104  8.8  152  -6.0  10  0  58  -0.2  106  8.8  154  -7.0  12  0  60  -0.2  108  8.8  156  -7.4  14  0  62  -0.2  110  8.8  158  -7.6  0  64  -0.2  112  8.0  160  -7.2  18  0  66  0  114  8.0  162  -6 .-6  20  0  68  0  116  8.0  164  -6.0  22  0  70  0  118  9.2  166  -6.0  24  0  72  0  120  10.6  168  -6.0  26  0  74  0  122  11.0  170  -7.2  28  0  76  0  124  11.0  172  -7.0  30  0  78  0  126  11.0  174  -7.0  32  0  80  -0.2  128  8.6  176  -7.0  34  0  82  0  130  5.0  178  -6.6  36  0  84  0  132  4.0  180  -6.4  38  0  86  -1.0  134  2.2  182  -4.0  40  0  88  -2.0  136  -0.4  184  -2.0  42  -0.2  90  -2.0  138  -3.0  186  -1.0  44  -0.2  92  -1.0  140  -4.0  188  -0.8  46  -0.2  94  1.0  142  -5.2  190  -0.8  16  '  APPENDIX D  121  Figure  54  Body P o s i t i o n a t Maximum Force Subject:  MCT1  123  Figure  55  Body P o s i t i o n a t Maximum Force Subject:  MCT2  F i g u r e 56 Body P o s i t i o n a t Maximum Force Subject:  MCT3  Figure 5 7 Body P o s i t i o n at Maximum For Subject:  DMT1  Figure  58  Body P o s i t i o n a t Maximum Force Subject:  DMT2  Figure  59  dy P o s i t i o n at Maximum Fo Subject:  DMT3  Figure  60  Body P o s i t i o n at Maximum Fo Subject:  JTT1  F i g u r e 61 Body P o s i t i o n a t Maximum Force Subject:  JTT2  Figure  62  Body P o s i t i o n a t Maximum For Subject:  JTT3  Figure  63  Body P o s i t i o n at Maximum Fo Subject:  RHT1  F i g u r e 64 Body P o s i t i o n a t Maximum Fo Subject:  RHT2  F i g u r e 65 Body P o s i t i o n a t Maximum Force Subject:  RHT3  Figure  66  Body P o s i t i o n at Maximum Fo Subject:  WBT1  Figure 6 7 Body P o s i t i o n at Maximum For Subject:  WBT2  Figure  68  Body P o s i t i o n at Maximum For Subject:  WBT3  APPENDIX E  137  138  Table  24  The P a n e l of E x p e r t s ' Ratings on S k i l l  rH CD 60 Tj  3  <->  CN CD 60  3  CO  <t  rH  CN  CO  CD 60 Xl  CD 60 TJ  CD 60 T3  CD 60 13  CD 60 13  CD 60 T3  >s  >->  >-)  3  >-0  3  Trial 1  3  3  3  Performance  rH  CN  CO  <r  CD 60 X)  CD 60 TJ  CD 60 T3  CD 60  >->  >n  3  3  Trial 2  3  Trial  3  3  S u b j e c t MC  2  2  4.5  3.5  3  2  5.7  3.5  3.2.5  4.8  4.0  S u b j e c t DM  3  3  6  4.5  2  3  5.9  5.0  3  3  6.1  5.0  S u b j e c t JT  4  4  6.4  6.5  3  4  6.4  7.0  4  4  6.8  S u b j e c t RH  6  8  7.5  8.5  5  8  7.3  9  5  8  7.2  8.5  S u b j e c t WB  4  6  7  8  4  5.5  6.8  8.5  4  6  7.2  8.5  7  APPENDIX F  139  I  140  Table 25 Events at the Second and Third Peaks of Force 4J  ti  ti o  ti  CU  •rl  Trial  cu cu J5 CU  (frames)  CU -rl rH CO 00 CO  ft cu a) rH CTJ  Q  cu  s cu  rH 00  33 CU  cu cn  rH  +J  O cd  cu  U  cl  rH 00  33 CU rH cd U  CU  P-l M  CO  CU U cd  A!  CO  rH  cd CU  ft  P-l  CO  •rl  ti CU  • &  60 4J  CN  MCT1  6  0  4.0°  -2.0°  6  MCT2  6  0  3.6  -2.4  6  MCT3  4  3.7°  6.0  0  6  DMT1  4  2.2  0.8  -3.0  3.8  -1.0  0  DMT2  No Second and Third Peak  DMT 3  7  1.4  1.0  -3.2  4.2  JTT1  8  2.3  1.4  -5.0  6.4  JTT2  7  1.7  7.0  -1.2  8.2  JTT3  8  1.5  4.6  -3.5  8.1  RHT1  5  3.3  6.7  -1.3  8.0  RHT2  No Second and Third Peak  -3.6  0  RHT3  No Second and Third Peak  -3.0  0  WBT1  5  -2.7  1.4  -3.1  4.5  WBT2  5  1.0  2.0  -2.2 •  4.4  WBT3  5  -0.4  1.6  -4.0  5.6  The second column i s the time (frames) occurring between the two peaks of force. The t h i r d column i s the angle between the r i n g cable and v e r t i c a l occurring at the depression between the two peaks of force. Columns four and f i v e give the angle between the r i n g cable and v e r t i c a l occurring a t the second and t h i r d peaks of force respectively. The s i x t h column i s the t o t a l angular displacement of the r i n g cable during the two peaks of force.  Table 26 Angular V e l o c i t y of the Legs at Peak Force  Trial  Degrees,  Frame  Rank Order  Experts Rank  Peak Force Rank  MCT1  4.45  11  15  15  MCT2  3.90  13  14  13  MCT3  3.33  14  13  14  DMT1  10.05  1  11  10  DMT 2  8.40  2  12  11  DMT 3  7.80  4  10  5  JTT1  6.16  5  8  6  JTT2  0.16  15  9  8  JTT3  5.00  8  7  12  RHT1  5.37  7  1  1  RHT2  6.15  6  2  2  RHT3  4.80  9  3  3  WBT1  7.87  3  5  7  WBT2  4.40  12  6  4  WBT3  4.55  10  4  8  C o r r e l a t i o n of the angular v e l o c i t y of the legs with the r a t i n g of the experts r = 0.18 C o r r e l a t i o n of the angular v e l o c i t y of the legs with peak force r = 0.25  APPENDIX G  142  143  Table 27 Tension i n one r i n g cable during the performance of subject MC t r i a l 1. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  102.64  0.19  5.36  1.0  107.76  2.04  10.48  1.0  110.32  3.85  15.60  1.0  112.88  2.73  20.72  1.0  114.16  2.61  25.84  0.77  115.44  2.77  30.96  0.57  116.72  3.00  36.08  0.57  118.00  2.81  41.20  0.69  123.12  1.58  46.32  0.81  128.24  0.69  51.44  1.19  133.36  0.34  56.56  1.77  138.48  0.27  59.12  1.92  143.60  0.23  61.68  1.61  148.72  0.19  66.80  0.77  153.84  0.19  71.92  0.42  158.96  0.23  77.04  0.27  164.08  0.81  82.16  0.07  169.20  0.84  87.28  0.07  174.32  0.81  92.40  0.07  179.44  0.77  97.52  0.07  144  Table 28 Tension i n one r i n g cable during the performance of subject MC t r i a l 2. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  102.64  0.76  5.36  1.0  107.76  3.54  10.48.  1.04  109.04  3.69  15.60  0.96  110.32  3.54  20.72  0.77  111.60  3.35  25.84  0.69  112.88  3.46  30.96  0. 77  114.16  4.00  36.08  1.04  115.44  4.15  41.20  1.11  118.00  2.38  46.32  1.73  123.12  1.23  48.88]  2.19  128.24  1.08  51.44  2.31  133.36  0.92  54.00  1.92  138.48  0.69  56.56  1.15  143.60  0.50  61.68  1.08  148.72  0.38  66.80  0.50  153.84  0.46  71.92  0.38  158.96  0.46  77.04  0.27  164.08  0.65  82.16  0.27  169.20  0.54  87.28  0.31  174.32  0.58  92.40  0.27  179.44  0.96  97.52  0.27  145  Table 29 Tension i n one r i n g cable during the performance of subject MC t r i a l 3. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  102.64  3.07  5.36  1.0  103.92  3.35  10.48  1.0  105.20  3.15  15.60  0.65  107.76  3.92  20.72  0.57  112.88  1.92  25.84  0.50  118.00  0.77  30.96  0.61  123.12  0.77  36.08  0.88  128.24  0.69  41.20  1.42 .  133.36  0.57  46.32  1.88  138.48  0.37  51.44  0.77  143.60  0.27  56.56  0.31  148.72  0.23  61.68  0.23  153.84  0.19  66.80  0.15  158.96  0.15  71.92  0.07  164.08  0.31  77.04  0.07  169.20  0.50  82.16  0.07  174.32  0.65  87.28  0.07  179.44  0.77  92.40  0.11  97.52  0.77  146  Table 30 Tension i n one r i n g cable during the performance of subject DM t r i a l 1. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  102.64  0.28  5.36  1.0  107.76  0.40  10.48  0.95  112.88  2.02  15.60  0.88  118.00  3.00  20.72  0.77  119.28  2.93  25.84  0.71  120.56  3.02  30.96  0.71  123.12  4.0  36.08  0.71  124.40  4.4  41.20  0.77  125.68  3.55  46.32  1.44  128.24  1.44  51.44  2.44  133.36  0.66  52.72  2.57  138.48  0.66  54.00  2.51  143.60  1.11  56.56  2.0  144.88  1.31  61.68  0.93  146.16  1.24  66.80  0.71  148.72  1.0  71.92  0.55  153.84  0.60  77.04  0.33  158.96  0.40  82.16  0.26  164.08  0.37  87.28  0.20  169.20  0.42  92.40  0.22  174.32  0.55  97.52  0.22  179.44  0.62  147  Table 31 Tension i n one r i n g cable during the performance of subject DM t r i a l 2. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.02  97.52  0.39  5.36  1.0  102.64  0.33  10.48  0.94  107.76  0.35  15.60  0.94  112.88  0.37  20.72  0.92  118.00  1.04  25.84  0.81  123.12  2.72  30.96  0.68  124.40  2.87  36.08  0.75  125.68  2.92  41.20  0.77  126.96  2.95  46.32  0.83  128.24  3.33  51.44  1.46  130.80  4.25  56.56  2.35  133.36  2.25  5 7.84  2.39  138.48  0.66  59.12  2.31  143.60  0.56  61.68  1.66  148.72  0.89  66.84  0.98  151.28  1.25  71.92  0.73  153.84  1.06  82.16  0.44  164.08  0.42  87.28  0.35  169.20  0.37  92.40  0.35  174.32  0.35  179.44  0.52  148  Table 32 Tension i n one r i n g cable during the performance of subject DM t r i a l 3. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  97.52  0.33  5.36  1.0  102.64  0.31  10.48  1.0  107.76  0.33  15.60  1.0  112.88  0.33  20.72  0.88  118.00  0.66  25.84  0.77  123.12  2.77  30.96  0.83  125.68  3.73  36.08  0.84  128.24  3.15  41.20  0.88  130.80  4.37  46.32  1.0  132.08  4.57  51.44  1.3  133.36  3.77  56.56  2.15  135.92  1.33  59.12  2.40  138.48  0.82  61.68  2.15  143.60  0.75  66.80  1.0  148.72  0.93  69.36  0.75  151.28  1.22  71.92  0.82  153.84  1.15  74.48  0.71  158.96  0.71  77.04  0.62  164.08  0.48  82.16  0.42  169.20  0.42  87.28  0.35  174.32  0.37  92.40  0.42  179.44  0.48  149  Table 33 Tension i n one r i n g cable during the performance of subject JT t r i a l 1. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.05  92.40  0.17  5.36  1.07  97.52  0.125  10.48  1.17  102.64  0.15  15.60  1.0  107.76  0.22  20.72  0.92  112.88  0.45  25.84  0.85  118.00  3.0  30.96  0.85  120.56  4.0  36.08  0.77  123.12  2.95  41.20  0.75  125.68  4.0  46.32  0.87  128.24  4.55  51.44  1.07  133.36  1.05  56.56  1.65  135.92  0.92  61.68  2.2  138.46  1.1  62.96  2.25  143.60  1.0  64.24  2.17  148.72  1.0  66.80  2.07  153.84  0.7  71.92  1.0  158.96  0.37  77.04  0.45  164.08  0.45  82.16  0.27  169.20  0.52  87.28  0.17  174.32  0.5  179.44  0.55  150  Table 34 Tension i n one r i n g cable during the performance of subject JT t r i a l 2. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  107.76  0.14  5.36  1.0  112.88  0.14  10.48  1.0  118.00  0.16  15.60  1.0  123.12  1.45  20.72  1.02  125.68  2.02  25.84  0.95  126.96  4.48  30.96  0.83  128.24  3.69  36.08  0.71  130.80  3.09  41.20  0.59  133.36  3.93  46.32  0.59  134.64  4.5  51.44  0.71  135.92  3.93  56.56  0.95  138.48  1.78  61.68  1.45  141.04  0.95  66.80  1.90  143.60  1.0  69.36  2.21  148.72  0.76  71.92  2.02  153.84  0.90  77.04  0.83  158.96  0.59  82.16  0.40  164.08  0.36  87.28  0.31  169.20  0.40  92.40  0.19  174.32  0.43  97.52  0.12  179.44  0.45  102.64  0.09  151  Table 35 Tension i n one r i n g cable during the performance of subject JT t r i a l 3. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames. Frame  X Body Wt.  Frame  X Body Wt.  0  1  112.88  0.48  5.36  1  118.00  2.88  10.23  1  119.28  4.11  15.60  1  120.56  3.80  20.72  0.93  123.12  2.95  25.84  0.91  125.68  3.57  30.96  0.66  126.96  4.20  36.08  0.45  128.24  3.90  41.20  0.54  133.26  0.89  46.32  0.82  138.48  0.84  51.44  0.95  143.60  0.93  56.56  1.52  146.16  0.93  59.12  2.25  148.72  0.79  61.68  2.20  153.84  0.50  66.80  1.72  158.96  0.32  71.92  0.57  161.52  0.27  77.04  0.54  164.08  0.43  82.16  0.27  169.20  0.57  87.28  0.18  92.40  0.09  97.52  0.16  102.64  0.20  107.76  0.20  152  Table 36 Tension i n one r i n g cable during the performance of subject RH t r i a l 1. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.05  97.52  0.20  5.36  1.05  102.64  0.15  10.48  1.02  107.76  0.125  15.60  0.97  112.88  0.17  20.72  0.95  118.00  0.30  25.84  0.90  123.12  0.80  30.96  0.87  128.24  4.00  36.08  0.82  129.52  4.92  41.20  0.85  130.80  4.85  46.32  1.35  133.36  5.62  51.44  2.95  134.64  6.62  56.56  1.425  135.92  5.25  57.84  1.32  138.48  1.75  59.12  1.77  143.60  0.80  61.68  1.175  148.72  0.95  64.24  1.00  153.84  0.70  66.80  0.80  158.96  0.52  71.92  0.62  164.08  0.40  77.04  0.62  169.20  0.37  82.16  0.60  174.32  0.42  87.28  0.60  179.44  0.55  92.40  0.35  153  Table 37 Tension i n one r i n g cable during the performance of subject RH t r i a l 2. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  97.52  0.57  5.36  1.0  102.64  0.55  10.48  1.0  107.76  0.50  15.60  1.0  112.88 .  0.27  20.72  0.95  118.00  0.10  25.84  0.95  123.12  0.05  30.96  0.95  133.36  0.12  36.08  0.92  138.48  0.30  41.20  0.85  143.60  1.75  46.32  0.75  148.72  5.42  51.44  0.70  151.28  6.00  56.56  0.72  152.50  6.30  61.68  1.25  152.84  4.62  66.80  2.37  158.96  1.00  68.08  2.47  161.52  0.80  69.36  2.35  164.08  0.85  71.92  1.87  169.20  0.80  77.04  1.25  174.32  0.52  82.16  0.70  179.44  0.45  87.28  0.60  92.40  0.60  154  Table 38 Tension i n one r i n g cable during the performance of subject RH t r i a l 3. Force i s expressed as a f r a c t i o n . o f the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  97.52  0.62  5.36  1.0  102.64  0.60  10.48  1.0  107.76  0.57  15.60  1.05  112.88  0.57  20.72  1.05  118.00  0.38  25.84  1.05  123.12  0.19  30.96  0.95  128.24  0.14  36.08  0.90  133.36  0.14  41.20  0.88  138.48  0.16  46.32  0.88  143.60  0.26  51.44  0.93  148.72  0.81  56.56  0.88  151.28  1.55  61.68  0.86  153.84  3.28  66.80  0.93  156.40  4.81  71.92  1.43  158.96  5.71  74.48  2.36  160.24  6.19  77.04  2.62  161.52  5.48  79.60  2.14  164.08  1.66  82.16  1.43  169.20  0.88  84.72  1.36  174.32  0.90  87.28  1.19  179.44  0.66  92.40  0.82  155  Table 39 Tension i n one r i n g cable during the performance of subject WB t r i a l 1. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  97.52  0.26  5.36  1.02  102.64  0.26  10.48  1.02  107.76  0.24  15.60  1.02  112.88  0.26  20. 72  0.98  118.00  0.48  25.84  0.92  123.12  1.64  30.96  0.78  125.68  3.04  36.08  0.66  128.24  4.04  41.20  0.66  130.80  4.04  46.32  0.70  133.36  4.54  51.44  1.16  135.92  2.74  56.56  1.94  138.48  1.28  61.68  2.40  143.60  0.96  66.80  1.84  148.72  1.12  71.92  0.92  151.28  1.08  74.48  1.08  153.84  0.84  77.04  0.80  158.96  0.48  82.16  0.46  164.08  0.50  87.28  0.28  169.20  0.48  92.40  0.22  174.32  0.48  179.44  0.72  156  Table 40 Tension i n one r i n g cable during the performance of subject WB t r i a l 2. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  92.40  0.30  5.36  1.02  97.52  0.30  10.48  1.04  102.64  0.30  15.60  1.00  107.76  0.32  20. 72  0.96  112.88  0.38  25.84  0.90  118.00  1.08  30.96  0.76  123.12  3.00  36.08  0.62  125.68  4.26  41.20  0.70  126.96  4.26  46.32  0.80  128.24  4.36  51.44  1.48  130.80  4.60  56.56  2.24  133.36  2.40  59.12  2.40  135.92  1.20  60.40  2.44  138.48  1.00  61.68  2.40  143.60  1.02  66.80  1.48  146.16  1.12  69.36  0.96  148.72  1.12  70.64  0.90  153.84  0.64  71.92  1.00  158.96  0.60  77.04  0.60  164.08  0.54  82.16  0.40  169.20  0.58  87.28  0.30  174.32  0.60  179.44  0.84  157  Table 41 Tension i n one r i n g cable during the performance of subject WB t r i a l 3. Force i s expressed as a f r a c t i o n of the body weight and time as the number of frames.  Frame  X Body Wt.  Frame  X Body Wt.  0  1.0  97.52  0.14  5.36  1.0  102.64  0.11  10.48  1.0  107.76  0.16  15.60  1.0  112.88  0.16  20. 72  0.96  118.00  0.18  25.84  0.94  123.12  0.36  30.96  0.86  128.24  1.30  36.08  0.70  133.36  4.14  41.20  0.56  134.64  4.28  46.32  0.52  135.92  4.14  51.44  0.58  138.48  4.30  56.56  0.86  139.76  4.50  61.68  1.62  141.04  3.80  66.80  2.36  143.60  1.50  68.08  2.40  148.72  0.90  71.92  2.14  153.84  0.96  77.04 •  0.82  156.40  1.04  78.32  0.72  158.96  1.00  79.60  0. 86  164.08  0.48  82.16  0.74  169.20  0.44  87.28  0.36  174.32  0.40  92.40  0.18  179.44  0.54  APPENDIX H  158  159  Table 42 Hip P o s i t i o n During the Kipping Phase  Trial  Downstroke starting low = amount drop position— p o s i t i o n  Upstroke high low = amount r i s e position— p o s i t i o n  MCT1  566  552  14  566  552  14  MCT2  566  546  20  578  546  32  MCT3  554  538  16  570  538  32  DMT1  556  519  37  566  519  47  DMT2  553  516  37  568  516  52  DMT3  552  514  38  566  514  52  JTT1  550  509  41  564  509  55  JTT2  549  514  35  56 7  514  53  JTT3  548  512  36  565  512  53  RHT1  552  525  27  600  525  75  RHT2  553  523  30  608  523  85  RHT3  548  522  26  600  522  78  WBT1  560  511  49  580  511  69  WBT2  552  498  54  564  498  66  WBT3  567  518  49  585  518  67  160  Table 43 Ankle P o s i t i o n During the Kipping Phase  Trial  Downstroke starting low = amount drop p o s i t i o n position  Upstroke high low = amount r i s e position position  MCT1  677  539  138  642  539  103  MCT2  676  559  117  675  559  116  MCT3  663  560  103  668  560  108  DMT1  665  514  151  6 70  514  156  DMT2  662  503  159  6 72  503  169  DMT3  663  503  160  673  503  170  JTT1  650  501  149  629  501  128  JTT2  654  495  159  648  495  153  JTT3  653  497  156  648  497  151  RHT1  656  560  96  691  560  131  RHT2  661  553  108  710  553  157  RHT3  649  560  89  689  560  129  WBT1  662  532  130  651  532  119  WBT2  665  524  131  644  524  120  WBT3  669  531  138  654  531  123  161  Table 44 Hip and Ankle Movement During the Kipping Phase Trial  Downstroke Ankle Hip drop drop  £  Ankle rise  Upstroke Hip rise  E  Difference (rise-drop)  MCT1  138  14  152  103  14  117  -35  MCT2  117  20  137  116  32  148  11  MCT3  103  16  119  108  32  140  21  DMT1  151  37  188  156  47  203  15  DMT2  159  37  196  169  52  221  25  DMT3  160  38  198  170  52  222  24  JTT1  149  41  190  128  55  183  -7  JTT2  159  35  194  153  53  206  12  JTT3  156  36  192  151  53  204  12  RHT1  96  27  123  131  75  206  83  RHT2  108  30  138  157  85  242  104  RHT3  89  26  115  129  78  207  92  WBT1  130  49  179  119  69  188  9  WBT2  131  54  185  120  66  186  1  WBT3  138  49  187  123  67  190  3  APPENDIX I  162  Table 45 Highest D i s l o c a t e Trial  Ankle Location  Knee Location  MCT1  640  590  MCT2  674  MCT3  Hip Location  Trunk Location  Wrist Location  554  539  596  5 73  557  617  575  550  596  580  665  609  564  543  590  DMT1  6 70  614  565  539  DMT2  6 74  617  5 75  DMT3  673  617  JTT1  627  JTT2  Elbow Location  Shoulder Location  Total  Mean Shoulder to Ankle Height  Divide by Mean Height  Rank Order  4049  175  23.13  9  562  4154  175  23.74  4  5 72  554  4097'  175  23.41  5  582  556  4069  179  22.73  12  550  596  580  543 562  4154  179  23.20  8  566  534  576  548  536  4050  179  22.62  13  589  557  532  577  547  530  3959  172  23.01  10  647  601  563  536  5 76  550  540  4013  172  23.33  6  JTT3  645  597  560  532  578  550  534  3996  172  23.23  7  RHT1  687  638  600  570  579  " 5 72  568  4214  173  24.36  2  RHT2  710  653  608  572  582  569  562  4256  173  24.60  1  RHT3  689  642  599  567  574  562  556  4189  173  24.21  3  WBT1  648  606  5 76  553  583  559  545  4070  180  22.61  14  WBT2  641  594  562  534  5 72  550  533  3986  180  22.14  15  WBT3  653  613  583  553  589  568  552  4111  180  22.83  11  ON  APPENDIX J  164  Table 46 Rank Order Correlations  Trial  Gradient Down Kip  Gradient Down Kip Rank Order  MCT1  9.86  15  15  0  0  7.36  15  15  0  0  MCT2  5.85  13  14  1  1  3.63  14  14  0  0  MCT3  6.44  14  13  1  1  3.38  13  13  0  0  DMT1  4.08  8  11  3  9  3.32  12  11  1  1  DMT2  4.30  10  12  2  4  3.25  10  12  2  4  DMT3  4.21  9  10  1  1  3.27  11  10  1  1  JTT1  3.63  7  8  1  1  2.33  7  8  1  1  JTT2  4.54  12  9  3  9  2.89  9  9  0  0  JTT3  4.33  11  7  4  16  2.85  8  7  1  1  RHT1  3.55  5  1  4  16  1.75  3  1  2  4  RHT2  3.60  6  2  4  16  1.85  6  2  4  16  RHT3  3.42  4  3  1  1  1.65  1  3  2  4  WBT1  2.65  2  5  3  9  1.72  2  5  3"  9  WBT2  2.43  1  6  5  25  1.82  4  6  2  4  WBT3  2.82  3  4  1  1  1.84  5  4  1  Experts' Rank Order  D  z  ED = 110.0 2  r = 0.8  Gradient Up Kip  Gradient Up Kip Rank Order  Experts Rank Order  D  D  z  1 2  ZD  46  r  0.92 ON Ln  Table 47 Rank Order Correlations  Trial  Mean Gradient Kip  Mean Gradient Kip Rank Order  MCT1  8.61  15  MCT2  4.74  MCT3  Experts' Rank Order  Mean Gradient Rank Order  Highest Dislocate Rank Order  D  D  D  D  15  0  0  15  9  6  36  13  14  1  1  13  4  9  81  4.91  14  13  1  1  14  5  9  81  DMT1  3.70  10  11  1  1  10  12  2  4  DMT2  3.77  12  12  0  0  12  8  4  16  DMT3  3.74  11  10  1  1  11  13  2  4  JTT1  2.98  7  8  1  1  7  10  3  9  JTT2  3.71  9  9  0  0  9  6  3  9  JTT3  3.59  8  7  1  1  8  7  1  1  RHT1  2.65  5  1  4  16  5  2  3  9  RHT2  2.72  6  2  4  16  6  1  5  25  RHT3  2.53  4  3  1  1  4  3  1  1  WBT1  2.18  2  5  3  9  2  14  12  144  WBT2  2.12  1  6  5  25  1  15  14  196  WBT3  2.33  3  4  1  1  3  11  8  2  ZD = 74 2  r = 0.87  2  64  ZD = 680 2  r = -0.21  r-  1  ON  167  Table 48 Rank Order Correlations  Trial  Amount Rise Hips Rank Order  MCT1  15  15  MCT2  13  14  MCT3  13.5  13  DMT1  12  11  DMT2  10.5  12  DMT3  10.5  10  Experts' Rank Order  JTT1  7  8  JTT2  8.5  9  JTT3  8.5  7  RHT1  3  1  RHT2  1  2  RHT3  2  3  WBT1  4  5  WBT2  6  6  WBT3  5  4  D  D  2  Experts' Rank  Kipping Angle Rank  Order  Order  D  D  0  0  15  9.5  0.5  0.25  14  4  10  100  0.5  0.25  13  1  12  144  11  9.5  1.5  1  1  5.5  30.25  2.25  1.5  2.25  12  7  5  25  0.5  0.25  10  12  2  4  8  14  6  36  1  1  0.5  0.25  9  15  6  36  1.5  2.25  7  13  6  36  2  4  1  2  1  1  1  1  2  4  1  1  3  4  1  1  1  1  5  6  1  1  6  9.5  3.5 12.25  4  9.5  5.5  0  0  1  1  ZD  2  = 15.5  r = 0.97  2  2  ZD  2  4  30.25  = 463  r = 0.18  168  Table 49 Rank Order Correlations  Trial  Gradient Up Kip Rank Order  Gradient Down Kip Rank Order  D  MCT1  15  15  MCT2  14  MCT3  D^  Amount Drop Hips Rank Order  Amount Rise Hips Rank Order  0  0  15  15  0  0  13  1  1  13  13.5  0.5  0.25  13  14  1  1  14  13.5  0.5  0.25  DMT1  12  8  4  16  6.5  12  4.5  20.25  DMT2  10  10  0  0  6.5  10.5  4  16  DMT 3  11  9  2  4  5  10.5  5.5  30.25  JTT1  7  7  0  0  4  7  3  9  JTT2  9  12  3  9  9  8.5  0.5  0.25  JTT3  8  11  3  9  8  8.5  0.5  0.25  RHT1  3  5  2  4  11  3  8  64  RHT2  6  6  0  0  10  1  9  81  RHT3  1  4  3  9  12  2  10  100  WBT1  2  2  0  0  2.5  4  2.5  WBT2  4  1  3  9  1  6  5  WBT3  5  3  2  4  2.5  5  2.5  ZD = 66 2  r = 0.88  D  D  z  6.25 25 6.25  ED = 359 2  r = 0.359  169  Table 50 Rank Order Correlations  Trial  Gradient Up Kip Rank Order  Max. Force Rank Order  Amount Drop Hips  Amount Drop Hips Rank Order  Max. Force Rank Order  MCT1  15  15  0  14  15  15  0  0  MCT2  14  13  1  20  13  13  0  0  MCT3  13  14  1  16  14  14  0  0  DMT1  12  10  4  37  6.5  10  3.5  12.25  DMT2  10  11  1  37  6.5  11  4.5  20.25  DMT3  11  5  36  38  5  5  0  0  JTT1  7  6  1  41  4  6  2  4  JTT2  9  8  1  35  9  8  1  1  JTT3  8  12  16  36  8  12  4  16  RHT1  3  1  4  27  11  1  10  100  RHT2  6  2  16  30  10  2  8  64  RHT3  1  3  4  26  12  3  9  81  WBT1  2  7  25  49  2.5  7  4.5  20.25  WBT2  4  4  0  54  1  4  3  WBT3  5  8  9  49  2.5  8  5.5  ZD  2  = 119  r = 0.78  D  ZD  D  z  9  2  30.25  = 358  r = 0.361  170  Table 51 Rank Order Correlations  Trial  Gradient Down Kip  Gradient Down Kip Rank Order  Max. Force Rank Order  Mean Max. Gradient Force Rank Rank Order Order  D  MCT1  9.86  15  15  0  15  15  0  MCT2  5.85  13  13  0  13  13  0  MCT3  6.44  14  14  0  14  14  0  DMT1  4.08  8  10  4  10  10  0  DMT2  4.30  10  11  1  12  11  1  DMT 3  4.21  9  5  16  11  5  36  JTT1  3.63  7  6  1  7  6  1  JTT2  4.54  12  8  16  9  8  1  JTT3  4.33  11  12  1  8  12  16  RHT1  4.55  5  1  16  5  1  16  RHT2  3.60  6  2  16  6  2  16  RHT3  3.42  4  3  1  4  3  1  WBT1  2.65  2  7  25  2  7  25  WBT2  2.43  1  4  9  1  4  9  WBT3  2.82  3  8  25  3  8  25  ED  2  = 131  r = 0.76  z  ED =147 2  r = 0.74  171  Table 52 Rank Order Correlations  Trial  Amount Rise Hips  Amount Rise Hips Rank Order  MCT1  14  15  MCT2  32  13.5  MCT3  32  13.5  DMT1  47  12  DMT2  52  10.5  DMT 3  52  10.5  JTT1  55  7  JTT2  53  8.5  JTT3  53  8.5  RHT1  75  3  RHT2  85  1  RHT3  78  2  WBT1  69  4  WBT2  66  6  WBT3  67  5  Max. Force Rank  15 13 14 10 11 5 6  8 12 1 2 3 7 4 8  D  D  Order  z  Experts' Rank Order  Max. Force Rank Order  D  D  0  0  15  15  0  0  0.5  0.25  14  13  1  1  0.5  0.25  13  14  1  1  2  4  11  10  1  1  0.5  0.25  12  11  1  1  5.5  30.25  10  5  5  25  1  1  8  6  2  4  0.5  0.25  9  8  1  1  3.5  12.25  7  12  5  25  2  4  1  1  0  0  1  1  2  2  0  0  1  1  3  3  0  0  3  9  5  7  2  4  2  4  6  4  2  4  3  9  4  8  4  16  ED  2  76.5  r = 0.86  ZD  2  z  = 83  r = 0.85  172  Table 53 Rank Order Correlations  Trial  Time between Peaks Rank Order  Max. Force Rank Order  MCT1  5.5  15  MCT2  5.5  13  MCT3  12  14  DMT1  11  10  DMT2  14  11  DMT3  3.5  5  JTT1  1.5  6  JTT2  3.5  8  JTT3  1.5  12  RHT1  8.5  1  RHT2  14  2  RHT3  14  3  WBT1  8.5  7  WBT2  8.5  4  WBT3  8.5  8  Time between Peaks Rank  Experts' Rank  Order  Order  D  D  D  D  9.5  90.25  5.5  15  9.5  90.25  7.5  56.25  5.5  14  8.5  72.25  1  2  2  2  4  12  13  1  1  1  11  11  0  0  3  9  14  12  2  4  1.5  2.25  3.5  10  6.5  42.25  4.5  20.25  1.5  8  6.5  42.25  4.5  20.25  3.5  9  5.5  30.25  10.5  110.25  1.5  7  5.5  30.25  7.5  56.25  8.5  1  7.5  56.25  12  144  14  2  12  144  11  121  14  3  11  121  1.5  2.25  8.5  5  3.5  12.25  4.5  20.25  8.5  6  2.5  6.25  0.5  0.25  8.5  4  4.5  20.25  ZD  2  = 657.5  r = -0.17  ED  2  = 702.75  r = -0.25  173  Table 54 Rank Order Correlations  Trial  Angular Displacement between Max. Peaks Force Rank Rank Order Order  D  D  2  Angular Displacement between Peaks Rank Order  Experts' Rank Order  D  D  z  MCT1  6  15  9  81  6  15  9  81  MCT2  6  13  7  49  6  14  8  64  MCT3  6  14  8  64  6  13  7  49  DMT1  12  10  2  4  12  11  1  1  DMT2  14  11  3  9  14  12  2  4  DMT3  11  5  6  36  11  10  1  1  JTT1  4  6  2  4  4  8  4  16  JTT2  1  8  7  49  1  9  8  64  JTT3  2  12  10  100  2  7  5  25  RHT1  3  1  2  4  3  1  2  4  RHT2  14  2  12  144  14  2  12  144  RHT3  14  3  11  121  14  3  11  121  WBT1  9  7  2  4  9  5  4  16  WBT2  10  4  6  36  10  6  4  16  WBT3  8  8  0  0  8  4  4  16  ED =657 2  r = -0.17  ED = 622 2  r = -0.11  174  Table 55 Rank Order Correlations  Trial  Kipping Angle Rank Order  Max. Force Rank Order  D  Kipping Angle Rank Order  Kipping Force Rank Order  D  MCT1  9.5  15  5.5  30.25  9.5  14  4.5  20.25  MCT2  4  13  9  81  4  10  6  36  MCT3  1  14  13  169  1  15  14  196  DMT1  9.5  10  0.5  DMT2  7  11  4  DMT3  12  5  J.TT1  14  JTT2  0.25  9.5  3  6.5  16  7  9  2  4  7  49  12  7  5  25  6  8  64  14  11.5  2.5  6.25  15  8  7  49  15  13  2  4  JTT3  13  12  1  1  13  11.5  1.5  2.25  RHT1  2  1  1  1  2  1  1  1  RHT2  4  2  2  4  4  4  0  0  RHT3  4  3  1  1  4  2  2  4  WBT1  6  7  1  1  6  7  1  1  WBT2  9.5  4.0  5.5  30.25  9.5  5  4.5  20.25  WBT3  9.5  8.0  1.5  2.25  9.5  7  2.5  6.25  ZD = 499 2  0.11  ZD2  42.25  _  368.5  r = 0.35  Table 56 Rank Order Correlations  Trial  Kipping Force  Kipping Force Rank Order  Max. Force Rank Order  D  D  2  Kipping Force Rank Order  Experts' Rank Order  D  D  2  MCT1  1.92  14  15  1  1  14  15  1  1  MCT2  2.31  10  13  3  9  10  14  3  9  MCT3  1.88  15  14  1  1  15  13  2  4  DMT1  2.57  3  10  7  49  3  11  8  64  DMT2  2.39  9  11  2  4  9  12  3  9  DMT3  2.40  7  5  2  4  7  10  3  9  JTT1  2.25  11.5  6  5.5  30.25  11.5  8  3.5  12.25  JTT2  2.21  13  9  4  16  13  9  4  16  JTT3  2.25  11.5  12  11.5  7  4.5  20.25  RHT1  2.95  1  RHT2  2.47  RHT3  0.5  0.25  1  0  0  1  1  0  0  4  2  2  4  4  2  2  4  2.62  2  3  1  1  2  3  1  1  WBT1  2.40  7  7  0  0  7  5  2  4  WBT2  2.44  5  4  1  1  5  6  1  1  WBT3  2.40  7  8  1  1  7  4  3  ED  2  121.50  r  0.78  9  ED = 163.5 2  r = 0. 71  176  Table 5 7 Rank Order Correlations Total Range Rank Order  Trial  Total Range Rank Order  MCT1  8  15  7  49  8  MCT2  7  14  7  49  7  MCT3  5.5  13  7.5  56.25  5.5  11  1.0  DMT1  10  Experts' Rank Order  D  D  z  1  10  DMT2  5.5  12  6.5  42.25  5 .5  DMT 3  4  10  6.0  36  4  JTT1  14.5  8  6.5  42.25  JTT2  9  9  0  JTT3  14.5  7  7.5  56.25  14.5  RHT1  2.5  1  1.5  2.25  2.5  RHT2  1.0  2  1.0  1  1  RHT3  2.5  3  0.5  0.25  2.5  0  14.5 9  WBT1  11  5  6  36  11  WBT2  12  6  6  36  12  WBT3  13  4  9  81  13  ED = 488.5 2  0.13  Max. Force Rank Order 15 13 14 10 11 5 6 8 12 1 2 3 7 4 8  D  D  z  7  49  6  36  8.5  72.25 0  0 5.5 1  30.24 1  8.5  72.25  1  1  2.5  6.25  1.5  2.25  1  1  0.5  0.25  4  16  8  64  5  25  ED  2  376.5  r = 0.33  Table 58 Rank Order Correlations  Trial  Kipping Force Rank Order  Gradient Down Kip Rank Order  Kipping Force Rank Order  Gradient Up Kip Rank Order  MCT1  14  15  1  MCT2  10  13  MCT3  15  DMT1  Kipping Force Rank Order  Mean Gradient Kip Rank Order  1  14  15  1  1  14  15  1  1  3  9  10  14  4  16  10  13  3  9  14  1  1  15  13  2  4  15  14  1  1  3  8  5  25  3  12  9  81  3  10  7  49  DMT2  9  10  1  1  9  10  1  1  9  12  3  9  DMT 3  7  9  2  4  7  11  4  16  7  11  4  16  JTT1  11.5  7  4.5  JTT2  13  12  1  JTT3  11.5  11  0.5  RHT1  1  5  4  RHT2  4  6  RHT3  2  WBT1  D  D  2  D  D  2  D  D  2  11.5  7  4.5  20.25  11.5  7  4.5  20.25  1  13  9  4  16  13  9  4  16  0.25  11.5  8  3.5  12.25  11.5  8  3.5  12.25  16  1  3  2  4  1  5  4  16  2  4  4  6  2  4  4  6  2  4  4  2  4  2  1  1  1  2  4  2  4  7  2  5  25  7  2  5  25  7  2  5  25  WBT2  5  1  4  16  5  4  1  1  5  1  4  16  WBT3  7  3  4  16  7  5  2  4  7  3  4  16  20.25  ED = 143.5 2  r = 0.744  ZD  2  = 206.5  r = 0.635  ZD  2  = 214.5  r = 0.62  Table 59 Rank Order Correlations  Trial  Amount Rise Hips Rank Order  Gradient Up Kip Rank Order  MCT1  15  15  0  MCT2  13.5  14  MCT3  13.5  DMT1  Kipping Force Rank Order  Amount Rise Hips Rank Order  0  14  15  1  0.5  0.25  10  13.5  3.5  13  0.5  0.25  15  13.5  1.5  12  12  0  0  3  12  9  DMT2  10.5  10  0.5  0.25  9  10.5  1.5  DMT3  10.5  11  0.5  0.25  7  10.5  JTT1  7  7  0  0  11.5  JTT2  8.5  9  0.5  0.25  JTT3  8.5  8  0.5  0.25  RHT1  3  3  0  0  RHT2  1  6  5  RHT3  2  1  WBT1  4  WBT2 WBT3  D  D  2  Kipping Force Rank Order  Amount Drop Hips Rank Order  14  15  1  1  12.25  10  13  3  9  2.25  15  14  1  1  D  D  2  1  81  D.  D  2  3  6.5  3.5  12.25  2.25  9  6.5  2.5  6.25  3.5  12.25  7  5  2  4  7  4.5  20.25  11.5  4  7.5  56.25  13  8.5  5.5  30.25  13  9  4  16  11.5  8.5  3.0  9  11.5  8  3.5  12.25  1  3  2  4  1  11  10  100  25  4  1  3  9  4  10  6  36  1  1  2  2  0  0  2  12  10  100  2  2  4  7  4  3  9  7  2.5  4.5  20.25  6  4  2  4  5  6  1  1  5  1  4  16  5  5  0  0  7  5  2  4  7  2.5  4.5  20.25  ZD = 35.5  ZD = 197.5  ZD = 410.5  r = .937  r = 0.648  r = 0.267  2  2  2  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0077119/manifest

Comment

Related Items