Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The athletic performance at sea level of middle altitude dwelling girls Zeller, Janet Marianne Ringham 1973

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
UBC_1973_A7_5 Z44.pdf [ 8.36MB ]
Metadata
JSON: 1.0076996.json
JSON-LD: 1.0076996+ld.json
RDF/XML (Pretty): 1.0076996.xml
RDF/JSON: 1.0076996+rdf.json
Turtle: 1.0076996+rdf-turtle.txt
N-Triples: 1.0076996+rdf-ntriples.txt
Original Record: 1.0076996 +original-record.json
Full Text
1.0076996.txt
Citation
1.0076996.ris

Full Text

THE ATHLETIC PERFORMANCE AT SEA LEVEL OF MIDDLE ALTITUDE DWELLING GIRLS by .Janet Marianne Ringham Z e l l e r A,B. , University of C a l i f o r n i a , 1958 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF RASTER OF PHYSICAL EDUCATION i n the School of Physical Education and Recreation We accept t h i s thesis as conforming to the required standard THE UNIVERSITY OF B R I T I S H COLUMBIA J a n u a r y 1973 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l m a k e i t f r e e l y a v a i l a b l e f o r r e f e r e n c e a n d s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e H e a d o f my D e p a r t m e n t o r by h i s r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . D e p a r t m e n t o f P h y s i c a l E d u c a t i o n T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a V a n c o u v e r 8, C a n a d a D a t e J a n u a r y 1 9 7 3 ABSTRACT With the consideration of extending track competition for g i r l s of a middle a l t i t u d e community to include the sea l e v e l v a l l e y nearby, the problem for t h i s i n v e s t i g a t i o n evolved. The main question to be answered was, "Is the a t h l e t i c perform- ance of young female athletes, native to middle a l t i t u d e , impaired when performing at sea l e v e l ? " Subsidiary problems of the r e l a t i o n s h i p of p a r t i a l pressure of oxygen to perform- ance, and microhematocrit changes i n the subjects were also studied. Eight females between the ages of 12 and 14 p a r t i c i p a t e d i n t h i s experiment having eight treatments. Four treatments were at sea l e v e l and four were at middle a l t i t u d e . Each t r e a t - ment included taking a f i n g e r t i p blood sample for a microhemato- c r i t reading, a 50 yard dash, a 440 yard dash, a s o f t b a l l throw and an 880 yard run. These events were to represent the assort- ment found at a track meet. Recordings were also made of temperature, humidity, barometric pressure, and a i r p o l l u t i o n . I t was hypothesized- that; a) the denser a i r and increased g r a v i t a t i o n a l p u l l at sea l e v e l cause impairment i n throwing and short runs; b) with oxygen uptake reduced at a l t i t u d e , the 8 80 yard run i s fa s t e r at sea l e v e l than at middle a l t i t u d e ; c) i f hematocrits are i n the upper portion of the normal range for sea l e v e l , the resultant increase in the oxygen carrying capacity of the blood does not improve sea l e v e l performance. The findings indicated that physical t r a i n i n g and learn- ing progressed markedly from the s t a r t of the experiment to the f i n i s h , The o n l y s i g n i f i c a n t a l t i t u d e e f f e c t was found i n the 50 y a r d dash w i t h t imes b e i n g f a s t e r a t sea l e v e l . I t i s d o u b t - f u l t h a t t h i s was a r e s u l t o f the change i n a l t i t u d e , more l i k e l y , c o n d i t i o n s o t h e r than b a r o m e t r i c p r e s s u r e were r e s p o n - s i b l e f o r the d i f f e r e n c e s found a t the. two t e s t i n g l o c a t i o n s . Wind d i s a d v a n t a g e and i n s u f f i c i e n t warm-up more l i k e l y accounted f o r s lower t imes a t a l t i t u d e . S u p e r i o r per formances o c c u r r e d i n warm wea ther , and when s u b j e c t s were p s y c h o l o g i c a l l y peaked i n d i c a t i n g t h a t warm-up and p s y c h o l o g i c a l c l i m a t e may be more i m p o r t a n t t o per formance than the change o f a l t i t u d e t h a t was employed. H e m a t o c r i t s remained w i t h i n normal ranges f o r m i d d l e a l t i t u d e d w e l l i n g females throughout the e x p e r i m e n t . T h e r e f o r e , a coach o f h e a l t h y young a t h l e t e s from m i d d l e a l t i t u d e s h o u l d have no u n u s u a l c o n c e r n s f o r c o m p e t i t i o n at a r e l a t e d sea l e v e l e n v i r o n m e n t . Concerns s h o u l d be o n l y those n o r m a l l y a t t e n d e d t o a t a l l c o m p e t i t i o n s . PREFACE For a number of years coaches i n a mountain community i n C a l i f o r n i a have spent time d i s c u s s i n g the headaches, d i z z i n e s s , nausea, and exhaustion experienced by t h e i r a t h l e t e s d u r i n g competitions at sea l e v e l . Were these symptoms the r e s u l t of h y p e r v e n t i l a t i o n and unaccustomed temperatures o c c u r r i n g at sea l e v e l ? Or, were they mainly due t o inadequate t r a i n i n g which was p a r t l y the r e s u l t of a short season of good weather at a l t i t u d e ? In 1968 United States t r a c k , v o l l e y b a l l , and gymnastic teams t r a i n e d i n t h i s community p r i o r to the Olympics i n Mexico C i t y . L i t t l e of s i g n i f i c a n c e was learned from these t r a i n i n g camps t o help the l o c a l coaches. S i n c e , recent trends have been to i n c l u d e more school competition f o r g i r l s as w e l l as boys, and pressures have been exerted t o extend the geographi- c a l area i n c l u d e d i n competition schedules, there was cause to embark on the f o l l o w i n g experiment. S p e c i a l thanks i s due Dr. Kenneth Smith, a long time r e s i d e n t of Lake Tahoe—a Medi c a l Doctor and researcher on middle a l t i t u d e . He provided a l l the f a c i l i t i e s and equipment necessary f o r doing the microhematocrits, and h i s automobile provided the major share of t r a n s p o r t a t i o n . As the u l t i m a t e token of Dr. Smith's f a i t h he loaned h i s daughter as a s u b j e c t . The J e f f r i e s f a m i l y i s a l s o thanked f o r h e l p i n g w i t h t r a n s p o r - t a t i o n , p r o v i d i n g a subject and making a swimming pool a v a i l a b l e a f t e r t e s t i n g s e s s i o n s . My parents were a great help to provide lunch, a r e s t stop and a s s i s t a n c e when needed. F i n a l l y , the V C o l l e g e o f M a r i n and i t s A t h l e t i c D i r e c t o r H a r r y P i e p e r have a l l my g r a t i t u d e f o r a l l o w i n g t h e use o f t h e i r i m p r e s s i v e grounds and f a c i l i t i e s f o r the sea l e v e l t e s t i n g . r TABLE OF CONTENTS ABSTRACT i i PREFACE i v LIST OF TABLES v i i i LIST OF FIGURES OR ILLUSTRATIONS i x Chapter 1. THE PROBLEM 1 D e f i n i t i o n s 1 D e l i m i t a t i o n s o 2 Assumptions and L i m i t a t i o n s . 2 Hypothesis 2 S i g n i f i c a n c e of the Study 3 2. REVIEW OF THE LITERATURE 5 A t h l e t i c Performance a t A l t i t u d e and Sea Le v e l 6 The V e n t i l a t o r y Response 11 Changes i n the Blood 14 Cardiac Response 16 Hypertension and Glo m e r u l i Enlargement . . . . 19 Tissue L e v e l A daptation 19 Summary 21 3. METHODS AND PROCEDURES 24 4. RESULTS AND DISCUSSION 30 Resul t s 30 Di s c u s s i o n 43 5. SUMMARY AND CONCLUSIONS 60 BIBLIOGRAPHY 63 v i i APPENDICES . 66 S t a t i s t i c a l t r e a t m e n t s 67 Raw S c o r e s 108 R e l a t i v e H u m i d i t y C h a r t 112 P e r s o n a l Communication 113 LIST OF TABLES Table Page I . 2 x 4 F a c t o r i a l Design w i t h 5 Dependent V a r i a b l e s . . 28 I I . Source of V a r i a n c e f o r Each Anova 29 I I I . 8 80 Yard Run Anova T a b l e 33 IV. 4 40 Yard Dash Anova Table 37 V. 50 Yard Dash Anova Ta b l e 40 VI . S o f t b a l l Throw Anova Ta b l e . 42 V I I . Hematocrits and Men s t r u a l Records . . . . . . . . . . 45 V I I I . Hematocrit Anova Table . . . . 46 IX. Hematocrit Values 58 X. T o t a l Hematocrit f o r T r i a l s Table . . . . . . . . . . . 58 LIST OF FIGURES OR ILLUSTRATIONS F i g u r e Page 1. 880 Yard - Treatments 31 2. 880 Yard Run - T r i a l s 32 3. 440 Yard Dash - T r i a l s . . . . . . . . • 35 4 . 440 Yard Dash - Treatments 36 5. 50 Yard Dash - Treatments 39 6. S o f t b a l l Throw - Treatments *41 7. Hematocrit - Treatments . . . . . . . . 44 8. Temperature and R e l a t i v e Humidity Graphed 47 9. Barometric P r e s s u r e over Treatments . . . 48 10. Barometric P r e s s u r e and 50 Yard Dash over T r i a l s . . 54 11. Temperature and 50 Yard Dash over Treatments . . . . 55 Chapter 1 THE PROBLEM Between the 1955 Pan American Games and the 1958 Olympics i n Mexico C i t y the study of a l t i t u d e a c c l i m a t i z a t i o n a c c e l e r a t e d . I t was important to know the e f f e c t s of 7,200 f e e t e l e v a t i o n upon a t h l e t e s so t h a t b e t t e r t r a i n i n g procedures c o u l d be planned. L i t t l e a t t e n t i o n , however, was g i v e n s p e c i f i c a l l y t o the adapta- t i o n of females or to the problems of a t h l e t e s l i v i n g a t middle a l t i t u d e who f r e q u e n t l y compete at sea l e v e l . The purpose of t h i s i n v e s t i g a t i o n i s t o determine i f the performance of young female a t h l e t e s , n a t i v e t o middle a l t i t u d e , i s impaired when perf o r m i n g at sea l e v e l without b e n e f i t of d e a c c l i m a t i z a t i o n , and p o s s i b l e reasons f o r any decrement i n performance. Problem: What are the d i f f e r e n c e s i n performance of s e l e c t e d t r a c k events at the two l e v e l s of a l t i t u d e ? Subproblems; a. What i s the r e l a t i o n s h i p of the two l e v e l s o f b a r o m e t r i c p r e s s u r e to performance? b. How does h e m a t o c r i t d i f f e r i n the s u b j e c t s from sea l e v e l norms? D e f i n i t i o n s Middle a l t i t u d e - g e n e r a l l y r e f e r s to a l t i t u d e s between 5,000 and 7,000 f e e t . S p e c i f i c a l l y i n t h i s study the e l e v a t i o n a t which the s u b j e c t s l i v e i s approximately 6,256 f e e t . D e a c c l i m a t i z a t i o n - the process of l o s i n g p h y s i o l o g i c a l responses which adapt one to a l t i t u d e c o n d i t i o n s and the process o f a c q u i r i n g responses a p p r o p r i a t e to sea l e v e l c o n d i t i o n s . PIC>2 - p a r t i a l p r e s s u r e of i n s p i r e d oxygen. The atmosphere's pr e s s u r e and d e n s i t y are h i g h e s t a t the s u r f a c e o f the e a r t h and decrease e x p o n e n t i a l l y w i t h a l t i t u d e . With a cons t a n t oxy- gen c o n c e n t r a t i o n of 20.94% o f the dry a i r , the oxygen p r e s s u r e of the i n s p i r e d a i r i n t r a c h e a , s a t u r a t e d w i t h water vapor, can be c a l c u l a t e d from the formula P I 0 2 = (p bar - 47) 20.94/100. Hematocrit - percent of the c e l l s and oth e r p a r t i c u l a t e elements of the b l o o d . In t h i s i n v e s t i g a t i o n a m i c r o h e m a t o c r i t t e c h - nique was used. Performance - o p e r a t i o n a l l y d e f i n e d as the times or d i s t a n c e s achieved by the a t h l e t e s when t e s t e d . D e l i m i t a t i o n s The u n i v e r s e i s l i m i t e d , to g i r l s 12-14 years of age who l i v e a t middle a l t i t u d e . The sample of e i g h t s u b j e c t s i s f a i r l y s m a l l i n order to keep t e s t i n g and t r a n s p o r t a t i o n w i t h i n p r a c t i - c a l l i m i t s . Assumptions and L i m i t a t i o n s A s e r i o u s l i m i t a t i o n was the i n a b i l i t y to manipulate the environmental f a c t o r s of temperature and hu m i d i t y . Hypotheses a. The denser a i r and i n c r e a s e d g r a v i t a t i o n a l p u l l a t sea l e v e l c c t u s e impairment i n throwing and s h o r t runs. b» With maximal oxygen uptake reduced at a l t i t u d e , the 880 yard run i s f a s t e r a t sea l e v e l than a t middle a l t i t u d e , c. I f h e m a t o c r i t s are i n the upper p o r t i o n of the normal range f o r sea l e v e l , the r e s u l t a n t i n c r e a s e i n the oxygen c a r r y i n g c a p a c i t y of the blood does not improve sea l e v e l performance. S i g n i f i c a n c e of the Study In p r a c t i c a l terms, t h i s study may have s i g n i f i c a n c e f o r coaches at middle a l t i t u d e i n d e c i d i n g whether to i n c l u d e con- t e s t s a t sea l e v e l i n the c o m p e t i t i o n schedule. The p rocess of h i g h - a l t i t u d e d e a c c l i m a t i z a t i o n has been i n v e s t i g a t e d l e s s than the a c c l i m a t i z a t i o n p r o c e s s , y e t the s t u d i e s t h a t have been conducted i n d i c a t e d e a c c l i m a t i z a t i o n r e p r e s e n t s a major t r a n s i e n t t a k i n g some time to complete. Reynafarje (1958),"'" Dejours, K e l l o g g , and Pace (1963),^ D a n i e l s 3 and O l d r i d g e (1970) , a l l r e p o r t e d p h y s i o l o g i c a l adjustments of d e a c c l i m a t i z a t i o n t a k i n g from 30.to 120 days t o complete. A p e r s o n a l communication from Dr. N e l l o Pace r e l a t e d , too, t h a t a c c l i m a t i z e d i n d i v i d u a l s who r e t u r n to sea l e v e l may e xperience a c h a r a c t e r i s t i c s u b j e c t i v e f e e l i n g of l a s s i t u d e f o r C. R e y n a f a r j e , "The P o l y c y t h e m i a of High A l t i t u d e s : I r o n Metabolism and R e l a t e d A s p e c t s , " Blood, 14, 19 59, 433-4 55. 2 P i e r r e Dejours, Ralph K e l l o g g , and N e l l o Pace, "Regula- t i o n of R e s p i r a t i o n and Heart Rate Response i n E x e r c i s e d u r i n g A l t i t u d e A c c l i m a t i z a t i o n , " J . A p p l . P h y s i o l . 18 ( I ) : 1 9 6 3 , 10-18. 3 Jack D a n i e l s and N e i l O l d r i d g e , "The E f f e c t s of A l t e r - nate Exposure to A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e - d i s t a n c e Runners," Medicine and S c i e n c e In S p o r t s , V o l . 2, no. 3, ( F a l l 1970), 107-1127 a day or two. As f a r as impairment of a t h l e t i c performance under these circumstances, s t a t i s t i c a l data seem to be l a c k i n g . E f f e c t s on a t h l e t i c performance d i f f e r depending on how long a t h l e t e s were at a l t i t u d e , the a l t i t u d e at which they stayed, the type of t r a i n i n g they were i n v o l v e d i n , the s t a t e of t r a i n i n g before the experiment and other c o n d i t i o n s of the experiment. N e l l o Pace, a copy of the r e f e r r e d to communication appears i n the appendix. C h a p t e r 2 REVIEW OF THE LITERATURE The s t i m u l i f o r i n v e s t i g a t i n g man's a d a p t i o n t o a l t i t u d e h a v e come f r o m a v a r i e t y o f s o u r c e s . The w a r t i m e n e e d t o f l y a t h i g h a l t i t u d e , t h e m o u n t a i n e e r s ' n e e d t o s u r v i v e on h i g h p e a k s , and t h e a t h l e t e s ' n e e d t o p e r f o r m c o m p e t i t i v e l y a t m o d e r a t e a l t i - t u d e s h a v e a l l p r o m p t e d r e s e a r c h t o e x t e n d w h a t i s ' known a b o u t men l i v i n g and w o r k i n g a t a l t i t u d e . T h e r e i s l i t t l e i n f o r m a t i o n r e g a r d i n g t h e s p e c i f i c s o f f e m a l e a d a p t i o n . I n d i c a t i o n s a r e t h a t women may r e s p o n d somewhat d i f f e r e n t l y f r o m men. P h y s i o l o g i c a l s t u d i e s a t m i d d l e a l t i t u d e a r e s c a r c e a n d d e s p i t e t h e q u a n t i t i e s o f h i g h a l t i t u d e w o r k , f a c - t o r s c o n t r i b u t i n g t o l i m i t i n g p e r f o r m a n c e a t a l t i t u d e n e e d b e t t e r d e f i n i t i o n . ' ' " The m a i n a d j u s t m e n t s a p p a r e n t i n man d u r i n g e x p o - s u r e t o a l t i t u d e a r e t h e r e s u l t . o f t h e r e s p o n s e t o d i m i n i s h e d o x y g e n t e n s i o n . H o w e v e r , t h e e f f e c t s o f a c h a n g e o f e n v i r o n m e n - t a l t e m p e r a t u r e and h u m i d i t y , w h i c h a r e n o t u n i q u e t o h i g h a l t i - t u d e , a r e a l s o o f g r e a t i m p o r t a n c e . T e n n e y (1968) c l a i m s t h e e v i d e n c e o f e f f e c t s s p e c i f i c t o a r e d u c e d b a r o m e t r i c p r e s s u r e i s 2 n o t c o n v i n c i n g . A l b e r t B. C r a i g , " O l y m p i c s .1968 : A P o s t M o r t e m , " M e d i - c i n e and S c i e n c e i n S p o r t , V o l . 1, no. 4, (December 1 9 6 9 ) , 1 7 7 - 180. 2 S. M. T e n n e y , " P h y s i o l o g i c a l A d a p t a t i o n s t o L i f e a t H i g h A l t i t u d e , " i n E. J o k l (ed.) M e d i c i n e and S p o r t , E x e r c i s e and A l t i t u d e , ( B a s e l , S. K a r g e r , 19 6 8)", 60 :-70. Furthermore there i s r e a l l y no threshold a l t i t u d e for the so-called "high a l t i t u d e e f f e c t s " . A l t i t u d e a c c l i m a t i z a t i o n i s a continuous process from sea l e v e l to the c i v i l i z a t i o n s resident 3 at very high a l t i t u d e s , (Tenney, 19 6 8) hence, studies c i t e d of high a l t i t u d e work may be expected to be exaggerations of the eff e c t s of middle a l t i t u d e . A t h l e t i c Performance at A l t i t u d e and Sea Level At a symposium i n 1966 Balke expressed his theory that t r a i n i n g at moderate a l t i t u d e should be used for improving per- 4 lormance at sea l e v e l . Such a statement was the r e s u l t of his study into the e f f e c t s of a l t i t u d e upon a t h l e t i c performance. Balke (1964) trained f i v e men at 2400 meters for ten days and concluded that physical performances greatly dependent upon max- imum aerobic capacity were i n i t i a l l y reduced at a l t i t u d e . Exten- sive t r a i n i n g possibly aided by t r a i n i n g at even higher eleva- tions seemed to restore "normal" capacity for aerobic work. Fur- ther tests were conducted at sea l e v e l and then again at a l t i t u d e . The second a l t i t u d e tests produced clockings better than the pre- vious best a l t i t u d e performances.^ The occurrence of increasing- l y better performances with alternate exposure to a l t i t u d e and sea l e v e l provoked further thought and research by Balke, his 3 Tenney, l o c . c i t . 4 Bruno Balke, ."Summary of Magglingen Symposium on Sports at Medium A l t i t u d e , " i n R. F« Goddard (ed.) The International Symposium on the E f f e c t s of A l t i t u d e on Physical Performance, (The A t h l e t i c I n s t i t u t e , Chicago, 1966") 106-107. 5 Bruno Balke, J . Faulkner, J . Daniels, "Maximum Perform- ance Capacity at Sea-level and at Moderate A l t i t u d e Before and Aft e r Training at A l t i t u d e , " Schweizerische Z e i t s c h r i f t fur Sportmedizin, Vol. 14, 1965, 106-117. c o l l e a g u e s , a n d o t h e r s . A l o n g t h e s e same l i n e s o f t h i n k i n g , W. A. Bynum (1966) h y p o t h e s i z e d t h a t n a t i v e s o f h i g h a l t i t u d e w o u l d show an i n c r e a s e i n w o r k c a p a c i t y upon d e s c e n d i n g t o a l o w e r a l t i t u d e . Bynum's e x p e r i m e n t was w e l l c o n t r o l l e d u s i n g a chamber a n d t e s t s r e q u i r - i n g maximum o x y g e n u p t a k e . C o n c l u s i o n s w e r e t h a t u p o n d e s c e n d i n g t o s e a l e v e l a f t e r a l t i t u d e a c c l i m a t i z a t i o n t o an e l e v a t i o n o f 5,170 f e e t , a h i g h l y c o n d i t i o n e d a t h l e t e w o u l d p r o b a b l y e x p e r i - e n c e t h e f o l l o w i n g r e s u l t s : 1. A r e d u c t i o n i n r e s t i n g p u l s e r a t e . 2. No c h a n g e i n r e s t i n g v e n t i l a t i o n r a t e . 3. No c h a n g e i n t e r m i n a l p u l s e r a t e f o l l o w i n g a n a l l - o u t t r e a d - m i l l r u n . 4. He w o u l d be a b l e t o i n c r e a s e h i s t r e a d m i l l r u n t i m e ( o r w o r k c a p a c i t y ) w i t h o u t i n c r e a s i n g h i s r e c o v e r y p u l s e r a t e . 5. He w o u l d be a b l e t o p e r f o r m a t a h i g h e r c a r d i o r e s p i r a t o r y w o r k l e v e l t h a n he was c a p a b l e o f a t a l t i t u d e . ^ T h i s s t u d y , t o o , makes l i v i n g a n d t r a i n i n g a t m i d d l e a l t i t u d e a p p e a r a d v a n t a g e o u s f o r a t h l e t e s c o m p e t i n g a t s e a l e v e l . H o w e v e r , s i n c e e n v i r o n m e n t a l c o n d i t i o n s w e r e c o n t r o l l e d a n d t h e p e r f o r m a n c e was o f maximum c a p a c i t y , s u c h c o n c l u s i o n s a p p l y o n l y t o e n d u r a n c e e v e n t s h e l d u n d e r t o l e r a b l e c o n d i t i o n s . G r o v e r and R e e v e s (1966) w o n d e r e d i f l i f e l o n g a c c l i m a t i - z a t i o n t o t h e c h r o n i c h y p o x i a o f a l t i t u d e w o u l d g i v e t h e n a t i v e an a d v a n t a g e o v e r t h e newcomer i n t e r m s o f e x e r c i s e p e r f o r m a n c e Ŵ. A. Bynum, "Work C a p a c i t y o f A l t i t u d e A c c l i m a t i z e d Men a t A l t i t u d e and S e a L e v e l , " i n R. F. G o d d a r d (ed.) The I n t e r n a - t i o n a l S y mposium on t h e E f f e c t s o f A l t i t u d e o n P h y s i c a l P e r f o r r a - - a n c e ~ (The A t h l e t i c I n s t i t u t e , C h i c a g o , 1966) . at medium a l t i t u d e . In addition, would adaptation to medium al t i t u d e modify physical working capacity at low al t i t u d e ? The fiv e low a l t i t u d e athletes, on an average, had a 25% decrease i n maximum oxygen uptake on the f i r s t day of a r r i v a l at a l t i t u d e . On further stay, t h i s did not improve, due to the high l e v e l of fitn e s s possessed on a r r i v a l . There was no evidence that the so journ at medium a l t i t u d e improved performance l a t e r at sea l e v e l In f a c t , four of the f i v e men had a lower maximum oxygen uptake than o r i g i n a l l y . The e f f e c t of a l t i t u d e change for the middle a l t i t u d e residents was v i r t u a l l y the same. The athletes from middle a l t i t u d e displayed p e r s i s t e n t hyperventilation at sea l e v e l , they also had a higher pulmonary d i f f u s i o n capacity which would t h e o r e t i c a l l y give them an advantage at 3,100 meters. A l - though both groups had almost i d e n t i c a l physical working capac- i t y , the performance measurements i n t h i s study are d i f f i c u l t to inte r p r e t since the sea l e v e l group had superior s k i l l and com- . '. 7 p e t i t i o n was not on a par. Balke et a l . (1965) made a pertinent comment regarding some s i m i l a r high a l t i t u d e studies. "For proper high perform- ance a t h l e t i c t r a i n i n g one needs adequate f a c i l i t i e s - - t r a c k s and heated swimming pools. Without them, the e s s e n t i a l coordi- g nation for proper pace and rhythm w i l l s u f f e r . " So i t would seem the physiological advantages of a l t i t u d e a c c l i m a t i z a t i o n do not alone produce superior performances i f the f a c i l i t i e s 7 Robert Grover, John Reeves, "Exercise Performance of Athletes at Sea Level and 3,000 meters A l t i t u d e , " The Interna- t i o n a l Symposium on the E f f e c t s of Al t i t u d e on Physical Per- formance (The Athle'tic I n s t i t u t e , Chicago ,""1966)", 80. g Bruno Balke (1965), l o c . c i t . 9 and coaching have been inadequate. Another difference i n the studies made by Balke et a l . (1965) and Grover and Reeves (1965) was that the subjects i n the f i r s t study were not well trained at the beginning. This, too, may account fox- differences i n the r e s u l t s . Daniels and Oldridge (1970) studied e f f e c t s of alternate exposure to a l t i t u d e and sea l e v e l on world-class middle-distance runners. The most obvious dif f e r e n c e found was a higher maximum oxygen uptake on a l l post a l t i t u d e tests compared with p r e - a l t i - tude or a l t i t u d e values. Improvement i n v e n t i l a t o r y capacity was noted a f t e r a l t i t u d e t r a i n i n g , b u t ' i t was not cle a r whether th i s improvement was of benefit upon return to sea l e v e l . On descending to sea l e v e l , Daniels and Oldridge (1970) reported that the h y p e r s e n s i t i v i t y of the respiratory center recedes slowly. During the transient period the athlete breathed more a i r for any given work i n t e n s i t y than he did at sea l e v e l p r i o r to a l t i t u d e exposure. The add i t i o n a l work involved i n moving t h i s greater volume requires more oxygen which i s provided at the expense of the oxygen demands of the muscles used i n run- ning. The r e s u l t could be a) a performance decrease i n the absence of an increase i n maximum oxygen uptake; b) a perform- ance equal to that previously attained at sea l e v e l ; c) a better sea l e v e l performance i f an increase i n maximum oxygen uptake could over compensate for the greater v e n t i l a t o r y demands.^ Jack Daniels, N e i l Oldridge, loc, c i t . 10 B u s k i r k e t a l . (1966) as w e l l as C o n s o l a z i o (1966) s t a t e d t h a t t h e i r s u b j e c t s who stayed a t a l t i t u d e s up to about 4,000 meters f o r four weeks or more d i d not a t t a i n any b e t t e r r e s u l t s than u s u a l when they r e t u r n e d to sea l e v e l . The measured maximum oxygen uptake was not improved. B u s k i r k , e t a l . concluded t h a t t h e r e i s l i t t l e e vidence to i n d i c a t e t h a t performance on r e t u r n from a l t i t u d e i s b e t t e r than b e f o r e going to h i g h a l t i - 12 tude. Thexr r e s u l t s support the concept t h a t once a person i s w e l l t r a i n e d i t i s d i f f i c u l t t o achieve f u r t h e r s i g n i f i c a n t t r a i n i n g e f f e c t s . As f o r what a c t u a l l y has o c c u r r e d i n a t h l e t i c competi- t i o n s at v a r i o u s a l t i t u d e s , E r n s t and P e t e r J o k l (1968) examined world r e c o r d s , Olympic r e c o r d s , and Pan American swimming times. The summarized e f f e c t of reduced oxygen t e n s i o n a t a l t i t u d e s between 5,000 and 7,000 f e e t upon a t h l e t i c performance was t h a t c o n t e s t s of between 100 and 400 meters produced s l i g h t l y b e t t e r r e s u l t s than a t sea l e v e l , w h i l e running times i n middle and long d i s t a n c e r a c e s were slower. They f i g u r e d the h a n d i c a p p i n g i n f l u e n c e of the lowered oxygen p r e s s u r e s becomes s t a t i s t i c a l l y v a l i d a t 5,350 f e e t o n l y f o r d i s t a n c e s of 1,500 meters and l o n g e r . The J o k l s concluded t h a t even though t r a i n i n g a t a l t i - tude f o r h i g h a l t i t u d e c o m p e t i t i o n i s u s e f u l , i t does not n u l l i f y E. B u s k i r k et a l . " P h y s i o l o g y and Performance of Track A t h l e t e s a t V a r i o u s A l t i t u d e s i n the U n i t e d S t a t e s and Peru," i n R. F. Goddard (ed.) The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, 196 6. 11 C. F. C o n s o l a z i o , "Submaximal and Maximal Performance at High A l t i t u d e , " i b i d . , p. 91. 12 E. B u s k i r k e t a l . , op. c i t . 13 the i n h i b i t i n g e f f e c t of a l t i t u d e upon endurance. Craig (1969) analyzed the 1963 Olympics and also found winning times i n the longer events proportionately slower than world records. But, there were several outstanding e f f o r t s which were f a r better than 14 predicted possible at the a l t i t u d e of Mexico C i t y . V e n t i l a t o r y Response Ac c l i m a t i z a t i o n to high a l t i t u d e begins with hyperventi- l a t i o n i n response to hypoxia. This f i r s t phase ends several days a f t e r a r r i v a l upon completion of renal compensation for the resultant r e s p i r a t o r y a l k a l o s i s . To Hornbein and Roos (19 62) i t appeared that the chemoreceptors a c t i v i t y as modified by sym- pathetic control of blood supply to the c a r o t i d and a o r t i c bodies may be an important determinant of the v e n t i l a t o r y response to exercise. The v e n t i l a t o r y response to exercise i s enhanced by very mild hypoxia. This i s s u f f i c i e n t to i n i t i a t e the a c c l i m a t i z a t i o n to a l t i t u d e s so low that r e s t i n g v e n t i l a t i o n 15 on acute exposure i s not affected. Tenney (1968) summarized the v e n t i l a t o r y response by c a l l i n g the lower a r t e r i a l oxygen tension of high a l t i t u d e a more potent stimulus. As a consequence, chemoreceptor output increases, v e n t i l a t i o n increases, and t h i s response serves to minimize the p a r t i a l pressure drop from the inspir e d a i r to the 13 Ernst and Peter J o k l , "The E f f e c t of A l t i t u d e on Ath- l e t i c Performance," i n E. Jokl (ed.) Medicine and Sport, Exer- l t i t u d e , (Basel, S. Kargi Craig, op. c i t . , p. 178. c i s e and A l t i t u d e , (Basel, S. Karger, 1968), p. 28. 14 15 Thomas Hornbein and Albert Roos, " E f f e c t of Mild Hypoxia on V e n t i l a t i o n During Exercise," J . Appl. P h y s i o l . , 17 (2) 1962, p. 239. alveolar a i r . During the early period of high a l t i t u d e adapta- t i o n , there i s an extremely important change i n t h i s mechanism. The hypoxia-evoked v e n t i l a t o r y response brings about a f a l l of alveolar carbon dioxide pressure, and t h i s resultant hypocapnia exerts an i n h i b i t o r y influence on the r e s p i r a t o r y centers. So, the f i n a l e f f e c t i n acclimatization i s a comparatively small increase i n v e n t i l a t i o n . The renal response to the uncompen- sated res p i r a t o r y a l k a l o s i s r e s u l t s i n the conservation of hydrogen ions and the excretion of fixed base i n the urine to restore the pH of the blood to normal. This i s l a r g e l y accom- plished during the f i r s t week of high a l t i t u d e residence, and during t h i s time there i s a gradual s h i f t i n the s e n s i t i v i t y of the r e s p i r a t o r y centers to carbon dioxide i n such a way that once again dominant, but not exclusive r e s p i r a t o r y control i s exerted by carbon d i o x i d e . ^ As previously mentioned, the h y p e r s e n s i t i v i t y of the r e s p i r a t o r y center recedes slowly on descent to sea l e v e l . Kellogg has shown that the return of the normal C 0 9 s e n s i t i v i t y of the r e s p i r a t o r y center requires about 30 days to be com- 17 • • pleted. Perhaps because of t h i s r e l a t i v e l y slow deacclimati- zation process Dejours, Kellogg, and Pace (1963) found that i f an a l t i t u d e acclimatized i n d i v i d u a l were suddenly restored to a normal oxygen supply, r e s p i r a t i o n was immediately reduced, but S. M. Tenney, "Physiological Adaptations to L i f e at High A l t i t u d e , " i n E. Jokl (ed.), Medicine and Sport, Exercise and A l t i t u d e , 1968, p. 66. 17 Op. c i t . Based on personal correspondence between Dr. Nello Pace, Physiology Department, University of C a l i f o r n i a , and the w r i t e r . 13 18 not to the p r e - a l t i t u d e l e v e l . D a n i e l s and O l d r i d g e (1970) had s i m i l a r f i n d i n g s from a l t e r n a t e t e s t s a t sea l e v e l and a l t i t u d e . On acute exposure to a l t i t u d e MW and max VE (BTPS) i n c r e a s e d p r o p o r t i o n a t e l y ; however, max VE e v e n t u a l l y i n c r e a s e d s l i g h t l y more than d i d MW. Subsequent sea l e v e l v a l u e s f o r max VE were . . 19 a l s o higher than those reached i n i n i t i a l sea l e v e l t e s t s . Max VO2 v a l u e s i n i t i a l l y dropped 14% upon acute exposure to a l t i t u d e . By the t h i r d week a t a l t i t u d e t h i s was improved to a 10% decrement. I t remained r e l a t i v e l y unchanged u n t i l another s l i g h t improvement to w i t h i n 8% of the o r i g i n a l sea l e v e l v a l u e s by the s u b j e c t s who were a t a l t i t u d e f o r s i x weeks. Max V 0 2 d u r i n g the f i r s t i n t e r m i t t e n t and f i n a l sea l e v e l exposures was s l i g h t l y h i g h e r than the p r e - a l t i t u d e v a l u e . They found an o b v i o u s l y higher VO^ a t a l l running speeds d u r i n g post a l t i t u d e 20 t e s t s compared w i t h e i t h e r p r e - a l t i t u d e or a l t i t u d e v a l u e s . The a b i l i t y of the h i g h a l t i t u d e a c c l i m a t i z e d i n d i v i d u a l to t r a n s p o r t oxygen to the c e l l u l a r l e v e l may be enhanced by an i n c r e a s e i n a l v e o l a r c a p i l l a r y d i f f u s i n g a r e a . In any case the pulmonary d i f f u s i n g c a p a c i t y f o r oxygen i s i n c r e a s e d . Tenney (1968) d i s c u s s e d the v a r i o u s p r e s s u r e g r a d i e n t s and i n a d a p t i n g to the reduced oxygen p r e s s u r e found a t a l t i t u d e t h e r e must be 18 P i e r r e Dejours, Ralph K e l l o g g , and N e l l o Pace, "Regu- l a t i o n of R e s p i r a t i o n and Heart Rate Response i n E x e r c i s e During A l t i t u d e A c c l i m a t i z a t i o n , " J . A p p l . P h y s i o l . , 18 (1), 1963, pp. 10-18. 19 "Jack D a n i e l s and N e i l O l d r i d g e , "The E f f e c t s of A l t e r - nate Exposure to A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e - d i s t a n c e Runners," Medicine and S c i e n c e i n S p o r t s , V o l . 2, no. 3, ( F a l l 1970), 107-112. 20 T, . , I b i d . a c o m p e n s a t o r y a d j u s t m e n t i n a m o r e d i s t a l g r a d i e n t i n o r d e r t o p r e s e r v e t h e c e l l u l a r v a l u e n e e d e d . T h e v e n t i l a t o r y c h a n g e s a s s o c i a t e d w i t h a l t i t u d e a c c l i m a t i z a t i o n s t a b i l i z e w i t h i n t h e 21 f i r s t f e w d a y s a t a l t i t u d e . C i r c u l a t o r y a d j u s t m e n t s t o e x e r - c i s e c h a n g e c o m p a r a t i v e l y s l o w l y . O t h e r c h a n g e s s u c h a s a c i d - b a s e a d j u s t m e n t s , e r y t h r o p o i e t i c a d j u s t m e n t s , e n d o c r i n e r e s p o n s e , a n d p e r i p h e r a l t i s s u e c h a n g e s a r e f a r f r o m c o m p l e t e w i t h i n t h e f i r s t f e w d a y s . C h a n g e s i n t h e B l o o d W i t h i n h o u r s o f a r r i v a l a t a l t i t u d e t h e r e a r e c h a n g e s i n t h e b l o o d a n d i t s o x y g e n c a r r y i n g c a p a c i t y . F i r s t l y , t h e n u m b e r s o f e r y t h r o c y t e s i n c r e a s e s , h e m o g l o b i n s y n t h e s i s may b e d e p r e s s e d a t t h i s t i m e . H e m a t o c r i t a l s o i n c r e a s e s w i t h r e l a t i o n t o f i g u r e s o b t a i n e d a t s e a l e v e l , h e n c e s h e w i n g a t e n d e n c y t o w a r d m i c r o c y t o s i s d u r i n g t h e f i r s t f e w d a y s o f a r r i v a l a t a l t i t u d e . I n c r e a s e i n e r y t h r o c y t e s a n d h e m o g l o b i n i s p r o g r e s - s i v e , r e q u i r i n g t e n t o f i f t e e n d a y s t o a c q u i r e v a l u e s c o m p a r a b l e o r v e r y c l o s e t o t h e o n e s e n c o u n t e r e d i n t h o s e n a t i v e t o h i g h a l t i t u d e ( M e r i n o , 1 9 5 0 ) . 2 2 M e r i n o ( 1 9 5 0 ) a s w e l l a s R e y n a f a r j e (1.959) f o u n d i n n a t i v e s o f h i g h a l t i t u d e who h a v e d e s c e n d e d t o s e a l e v e l a m a r k e d a c c e l e r a t i o n o f b l o o d d e s t r u c t i o n o c c u r r i n g d u r i n g t h e f i r s t h o u r s o f d e s c e n t . ( H o w e v e r , t h i s i n v e s t i g a t o r n o t e d o n t h e i r g r a p h s a n i n c r e a s e i n r e d b l o o d c e l l s o n t h e f i r s t t e s t 21 S . M . T e n n e y , l o c . c i t . 22 C . M e r i n o , " S t u d i e s o n B l o o d F o r m a t i o n a n d D e s t r u c t i o n i n t h e P o l y c y t h e m i a o f H i g h A l t i t u d e s , " B l o o d , 5 , 1 9 5 0 , 1 - 3 2 . taken immediately on a r r i v a l at sea l e v e l . A decrease f o l l o w e d the f i r s t t e s t i n g . No e x p l a n a t i o n or comment was a v a i l a b l e f o r t h i s i n i t i a l recording.) The decrease i n hemoglobin and red blood c e l l s reaches i t s maximum between the seventeenth and t h i r t y - f i f t h days, and t h i s i s followed by a gradual i n c r e a s e of the red blood c e l l and Fe turnover r a t e u n t i l i t reaches about the normal r a t e . This occurs 100 to 120 days a f t e r the 23 environmental change (Reynafarje, 1959). Schmidt and G i l b e r t s e n (1955) r e f u t e the thought t h a t bone marrow anoxia i s d i r e c t l y r e s p o n s i b l e f o r i n c r e a s e d e r y t h r o p o i e s i s i n chronic anoxemia. An autopsy of a woman w i t h an a r t e r i a l shunt a f f e c t i n g only the lower e x t r e m i t i e s d i r e c t e d t h e i r suggestion t h a t anoxemia of the blood s t i m u l a t e s the pro- d u c t i o n or r e l e a s e of a humoral f a c t o r which i n t u r n a c t s as an 24 e r y t h r o p o i e t i c s t i m u l u s . Hornbein (1962) s t a t e d that a normal a d u l t male i s thought to possess 800-1,500 mg. of i r o n i n storage depots a v a i l a b l e f o r hemoglobin s y n t h e s i s . Hornbein surmised t h a t the sum of p r e - e x i s t e n t s t o r e s and the c u r r e n t l y absorbed i r o n would roughly p a r a l l e l the amount r e q u i r e d to achieve the p o l y - 25 cythemic response observed i n h i s s u b j e c t s . C. Reynafarje, "The Polycythemia of High A l t i t u d e s : I r o n Metabolism and Related Aspects," Blood, 14, 1959, 433-455. 24 R. Schmidt, and A. S. G i l b e r t s e n , "Fundamental Obser- v a t i o n s on the. P r o d u c t i o n of Compensatory Polycythemia," Blood, 10, 1955, 247-251. 25 Thomas F. Hornbein, " E v a l u a t i o n of I r o n Stores as L i m i t i n g High A l t i t u d e Polycythemia," J . Appl. P h y s i o l . , 17 (2) , 1962, p. 244. Harmon, S h i e l d s , and H a r r i s (1965) on the ot h e r hand found t h a t t h e i r women s u b j e c t s d i d not show the i n c r e a s e i n he m a t o c r i t expected d u r i n g a c c l i m a t i z a t i o n u n l e s s they r e c e i v e d i r o n supplement. D e s p i t e the lower h e m a t o c r i t s , these women s u b j e c t s adapted t o a l t i t u d e r a p i d l y . I n d i c a t i o n s were t h a t o t h e r adjustments p l a y e d t h e i r p a r t i n p r o v i d i n g oxygen a t the 2 6 c e l l u l a r l e v e l . C a r d i a c Response Grollman (1930) as w e l l as Hannon e t a l . (1966) found h e a r t r a t e t o i n c r e a s e s h a r p l y a t f i r s t exposure t o a l t i t u d e , then t o p r o g r e s s i v e l y decrease. Two weeks a f t e r s u b j e c t s r e t u r n e d t o sea l e v e l s i g n i f i c a n t l y depressed v a l u e s were ob- 27 2 8 s e r v e d . ' Dejours, K e l l o g g , and Pace (1963) r e p o r t e d exer- c i s e h e a r t r a t e c o n s i s t e n t l y h i g h e r i n acute hypoxia than c h r o n i c hypoxia. A c c l i m a t i z a t i o n tended t o decrease the abso- l u t e h e a r t r a t e d u r i n g s t e a d y - s t a t e e x e r c i s e . The increment i n steady s t a t e e x e r c i s e h e a r t r a t e over the r e s t i n g v a l u e f e l l p r o g r e s s i v e l y because o f the r i s e i n r e s t i n g v a l u e s . Heart r a t e v a l u e s changed p r o g r e s s i v e l y d u r i n g t h r e e weeks a t a l t i - 29 tude. The r e l a t i v e l y long time course o f h e a r t r a t e adjustment John P. Hannon, Jimmie S h i e l d , and C h a r l e s H a r r i s , "High A l t i t u d e A c c l i m a t i z a t i o n i n Women," i n R. F. Goddard (ed.) The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i - c a l Performance, (The A t h l e t i c Institute7~Chicago, 1966), p. 37. 2 7 A. Grollman, " P h y s i o l o g i c a l V a r i a t i o n s i n C a r d i a c Out- put of Man. The E f f e c t of High A l t i t u d e on the C a r d i a c Output and I t s R e l a t e d F u n c t i o n s ; an account of experiments conducted on the summit of Pi k e s Peak, Co l o r a d o , "Am. J . P h y s i o . , V o l . 93, pp. 19-40. 28 29 Hannon e t a l . , l o c . c i t . "Dejours e t a l . , l o c . c i t . i s not inconsistent with the r e l a t i v e l y long time course of changes i n cardiac output of sojourners at 14,000 feet described by Grollman (1930)."^ The cardiac output i n Grollman's female subject began to increase on the t h i r d day at a l t i t u d e . By the f i f t h day cardiac output had increased 100%, then subsided to 20-30% above previous sea l e v e l measurements. This pattern of response d i f f e r s from that reported i n men by Vogel et a l . (1966) They reported e s s e n t i a l l y normal cardiac output values a f t e r 31 three weeks exposure at the same s i t e . Grollman's measure- ments on himself concur with Vogel's findings i n men, i n d i c a t i n g a possible response difference i n men and women. Banchero et a l . (1966) reported that i n s p i t e of hypoxemia of permanent residents at 15,000 feet the oxygen up- take, cardiac output, and stroke volume were s i m i l a r to those found at sea l e v e l . These findings were associated with p u l - monary hypertension which has been p r i n c i p a l l y r elated to struc- t u r a l changes of the pulmonary vasculature. They added that v a r i a t i o n s i n cardiac output and oxygen uptake are r e l a t e d to the i n t e n s i t y of work performed and are independent of the l e v e l of a l t i t u d e . Elevated hemoglobin concentration i n the natives of high a l t i t u d e was of advantage to these people at r e s t , the a r t e r i a l oxygen cqntent was higher than the value obtained i n sea l e v e l residents despite the a r t e r i a l desaturation. With the same cardiac output s i m i l a r amounts of oxygen can be transported 3^Grollman, l o c . c i t . 3 1 J . A. Vogel, H. E. Hansen and C. W. H a r r i s , "Cardio- vascular Responses of Man During Rest, Exhaustive Work and Recovery at 4,300m.," (U.S. Army Med. Res. and Ntr. Lab Report, N. 294, 1966). 18 and delivered to the tissues with smaller changes i n blood oxygen saturation. This i s of s p e c i a l advantage during exercise when changes i n blood oxygen saturation are smaller than the changes occurring at sea l e v e l i n low a l t i t u d e natives. While at a l t i - tude cardiac output increased during exercise as a r e s u l t of 32 increased heart rate, stroke volume remained constant. Hecht (1968) stated an increase i n r i g h t v e n t r i c u l a r mass as well as moderate elevations of pulmonary artery pressure compared to sea l e v e l values was a normal finding i n a l l species l i v i n g at 33 heights above 2,000 meters. Several studies have commented on the increase i n r i g h t v e n t r i c u l a r mass. Among them Hultgren, K e l l y and M i l l e r (1965) reported three observations i n natives l i v i n g at elevations of over 12,000 feet: a) moderate enlarge- ment of the r i g h t v e n t r i c l e i n roentgenograms of the chest, b) electrocardiograms demonstrating r i g h t v e n t r i c u l a r hypertrophy patterns and c) moderate increase i n the r e l a t i v e weight of the 34 r i g h t v e n t r i c l e as determined by autopsy study. Yet Hecht (19 68) claims there i s no evidence that acute r i g h t heart over- load due to excessive pulmonary hypertension occurs i n man at any a l t i t u d e . 3 2 "̂ N. Banchero et a l . , "Pulmonary Pressure, Cardiac Output and A r t e r i a l Oxygen Saturation during Exercise at High A l t i t u d e and at Sea Level," C i r c u l a t i o n , 33:249, 1966. 33 Hans Hecht, "Certain Vascular Adjustments and Malad- justments at A l t i t u d e s , " i n E. J o k l (ed.), Medicine and Sport, Exercise and A l t i t u d e , (Basel, S. Karger, 1968), 134-147. 34 H. N. Hultgren, J . K e l l y , and H. M i l l e r , "Pulmonary C i r c u l a t i o n i n Acclimatized Man at High A l t i t u d e , " J . Appl. P h y s i o l . , 20 (2), 1965, p. 233-238. 35 Hecht, op. c i t . , p. 143. Hypertension and Glome r u l i Enlargement Naiye (1965) s t u d i e d pulmonary and r e n a l a b n o r m a l i t i e s i n young c h i l d r e n born at high a l t i t u d e i n the United S t a t e s . Hypoxia appeared to a r r e s t normal neonatal decrease of pulmonary a r t e r i a l smooth muscle i n some of these c h i l d r e n . No abnormali- 3 6 t i e s were found i n pulmonary ve i n s or c a p i l l a r i e s . H u l t g r e n , K e l l y and M i l l e r (1965) a l s o were concerned w i t h pulmonary c i r - c u l a t i o n . As a r e s u l t of t h e i r study at La Oroya they concluded t h a t there i s no r e l a t i o n s h i p between the hematocrit and the 37 pulmonary hypertension or r i g h t v e n t r i c u l a r hypertrophy. Naiye (1965) thought i t l i k e l y t h a t the increased pulmonary a r t e r i a l muscle mass present at high a l t i t u d e i s the cause as 3 8 w e l l as the consequence of the hypertension. A q u a l i t a t i v e study by Naiye a l s o demonstrated e n l a r g e - ment of r e n a l g l o m e r u l i i n hypoxic c h i l d r e n a f t e r the f i r s t month of l i f e , apparently due to p r o l i f e r a t i o n of normal g l o m e r u l i elements. The r e n a l glomerular changes found i n the L e a d v i l l e c h i l d r e n resemble those found i n c h i l d r e n w i t h cya- 39 n o t i c types of c o n g e n i t a l c a r d i a l malformations. Tissue L e v e l Adaptation C e l l u l a r a d a p t a t i o n represents the deepest l e v e l i n the h i e r a r c h y of adaptive f u n c t i o n s of the body. In t h i s process r e o r g a n i z a t i o n of the c e l l contents i s necessary. Thus compared 3 6 R. L. Naiye, " C h i l d r e n at High A l t i t u d e ; Pulmonary and Renal A b n o r m a l i t i e s , " C i r c u l a t i o n Res., 16*33, 1965. 37 Hu l t g r e n , K e l l y , and M i l l e r , l o c . c i t . 3 8XT . , . 39^,.-Naiye, l o c . c i t . I b i c i . 20 t o o t h e r f u n c t i o n s o f h i g h e r l e v e l s , s u c h as c i r c u l a t i o n a n d r e s p i r a t i o n , l o n g e r t i m e p e r i o d s a r e r e q u i r e d f o r t h e new s t e a d y s t a t e t o be a c h i e v e d . A d a p t a t i o n o n t h e c e l l u l a r l e v e l i s r e - 40 f l e e t e d i n a n o r m a l i z a t i o n o f f u n c t i o n s a t h i g h e r l e v e l s . The e x i s t e n c e i n h i g h a l t i t u d e n a t i v e s , o f c e r t a i n t i s s u e a d a p t i v e p r o c e s s e s s u c h as an i n c r e a s e d a c t i o n o f t h e DPNH o x i - d a s e s y s t e m and o f m i t o c h o n d r i a l t r a n s h y d r o g e n a s e h a s b e e n 41 r e p o r t e d b y R e y n a f a r j e ( 1 9 6 1 ) . The g l y c o l y t i c enzymes a r e n o t s i g n i f i c a n t l y i n v o l v e d i n t h e a d a p t i v e p r o c e s s e s t o h i g h a l t i - t u d e . L a c t i c a c i d l e v e l a n d t h e o x y g e n d e b t a r e l o w e r i n h i g h a l t i t u d e a c c l i m a t i z e d man t h a n n o n - a c c l i m a t i z e d i n d i v i d u a l s a f t e r e n d u r a n c e t e s t s . T h i s i s due t o b e t t e r u t i l i z a t i o n o f l a c t i c a c i d t h r o u g h t h e i n c r e a s e d DPNH o x i d a s e s y s t e m a n d P y r i d i n e n u c l e i o t i d e t r a n s h y d r o g e n a s e ( R e y n a f a r j e and V e l a s q u e z , 42 1966; T a p p a n and R e y n a f a r j e , 1 9 5 7 ) . I n c r e a s e d m y o g l o b i n c o n t e n t may s e r v e a s a l i n k t o m a i n t a i n a n o p t i m a l o x y g e n g r a d i e n t b e t w e e n t h e c e l l p l a s m a membrane and enzyme s y s t e m s i n 43 t h e m i t o c h o n d r i a (Vaughan and P a c e , 1 9 5 6 ) . G r o v e r (1963) r e p o r t e d a s l i g h t i n c r e a s e i n BMR a t h i g h a l t i t u d e . He s p e c u l a t e d t h a t t h i s was due t o a c c l i m a t i z a t i o n 40 W. H. W e i h e , "Time C o u r s e o f A d a p t a t i o n t o D i f f e r e n t A l t i t u d e s a t T i s s u e L e v e l , " S c h w e i z e r i s c h e Z e i t s c h r i f t f u r S p o r t m e d i z i n , V o l . 1 4, p. 177. 41 B. R e y n a f a r j e , " P y r i d i n e N u c l e o t i d e O x y d a s e s and T r a n s h y d r o g e n a s e i n A c c l i m a t i z a t i o n t o H i g h A l t i t u d e , " Amer. J . P h y s i o . , 2 0 0 : 3 5 1 - 3 5 4 , 1 9 6 1 . 4 2 C. R e y n a f a r j e and V e l a s q u e z ; T a p p a n a nd B. R e y n a f a r j e , q u o t e d i n W. H. W e i h e , o p . c i t . , p. 186. 4 3 V a u g h a n and P a c e . J.95b, as q u o t e d i n W e i h e , o p . c i t . , t o a lower ambient temperature or to a higher energy requirement 44 w i t h i n c r e a s e d v e n t i l a t i o n r a t e . There i s no i n c r e a s e of BMR at reduced p a r t i a l pressure of oxygen under standard c o n d i t i o n s as long as there i s no in c r e a s e i n v e n t i l a t i o n r a t e . Weihe (1966) summarized a c c l i m a t i z a t i o n to a l t i t u d e as depending on var i o u s c l i m a t i c f a c t o r s i n a d d i t i o n to reduced a i r p r e s s u r e , w i t h adaptation at the t i s s u e l e v e l as the f i n a l and 45 d e c i s i v e stage of a c c l i m a t i z a t i o n . Summary In review, the p r i n c i p a l f i n d i n g s r e p o r t e d on a t h l e t i c performance a t a l t i t u d e have been t h a t winning times of runners and swimmers have been s y s t e m a t i c a l l y a f f e c t e d a t middle a l t i - tude. The s p r i n t s were o f t e n run f a s t e r a t a l t i t u d e , w h i l e long 4 6 d i s t a n c e s were p r o g r e s s i v e l y slower. A l t e r n a t e exposure to a l t i t u d e and sea l e v e l during a t r a i n i n g program has been apparently a way to enhance the t r a i n i n g e f f e c t f o r men not 47 already i n top form. Regarding the p h y s i o l o g i c a l b a s i s f o r the performance f i n d i n g s , the decrease i n maximum oxygen uptake as a f u n c t i o n of 48 a l t i t u d e may not alone cause a l t e r e d performance at a l t i t u d e . M e t a b o l i c adaptation i m p l i e s a decreased b u f f e r c a p a c i t y . So, the f i n a l pH of the blood may be a f a c t o r l i m i t i n g l a c t i c a c i d 44 R. F. Grover, "Basal Oxygen Uptake of Man at High A l t i t u d e , " J . Ap_pl. Physio. , 18:1963, pp. 909-912 . 45 Weihe, op. c i t . , p. 177. 4 6 J o . k l , l o c . c i t . 4 7 B a l k e , 19 45, l o c . c i t . C r a i g , l o c . c i t . 49 pro d u c t i o n . On a r r i v a l a t a l t i t u d e one of the f i r s t changes noted has been an i n c r e a s e i n v e n t i l a t i o n . Pulmonary hypertension and enlargement of the r i g h t v e n t r i c l e has been reporte d i n a l t i t u d e 51 r e s i d e n t s . Increased heart r a t e has been found a t a l t i t u d e . A f t e r an i n i t i a l adjustment p e r i o d of about three weeks c a r d i a c 52 output xn men has returned to normal. RBC count begins t o go up w i t h i n hours of a r r i v a l at a l t i t u d e , hemoglobin values f o l l o w 53 i n t h e i r e l e v a t i o n . T o t a l blood volume i n c r e a s e s . F l u i d l o s s from lungs may be l a r g e as a r e s u l t of hyper- v e n t i l a t i o n i n the presence of dry mountain a i r , and so poste- r i o r p i t u i t a r y and r e n a l mechanisms are prompted to conserve water. Adaptation at the c e l l u l a r l e v e l has been noted as the f i n a l phase of a c c l i m a t i z a t i o n . An i n c r e a s e i n myoglobin con- t e n t has been thought to a i d an o p t i m a l oxygen g r a d i e n t between the c e l l plasma membrane and the enzyme systems i n the mitochon- 55 d r i a . A c c l i m a t i z a t i o n to a l t i t u d e i n v o l v e s both a d a p t a t i o n to c l i m a t i c f a c t o r s as w e l l as reduced a i r p r e s s u r e . 5 ^ 49 P. C e r r i t e l l i , " L a c t a c i d 0^ Debt i n Acute and Chronic Hypoxia," i n R. Margaria (ed.) , E x e r c i s e at A l t i t u d e , 1967 , pp. 58-64. Hornbein and R o o s , l o c . c i t . 3 Hecht, l o c . c i t . 52 Vogel, Hansen and H a r r i s , l o c . c i t . 53 54 Merino, l o c . c i t . Hecht, op. c i t . , p. 136. 55 Vaughan and Pace, 1956, as quoted i n Weihe, l o c . c i t . ^Weihe, op. c i t . As t h i s study i s concerned with the performance of a l t i - tude dwellers at sea l e v e l , a summary of research on deacclima- t i z a t i o n notes that Daniels and Oldridge (1970) found athletes a r r i v i n g at sea l e v e l from higher elevations breathed more a i r for any given work i n t e n s i t y than they d i d p r i o r to a l t i t u d e exposure. This net hyperventilation was due to the cessation of the hypoxic drive coupled with the greater s e n s i t i v i t y of 57 the resp i r a t o r y center to CO2 acquired at a l t i t u d e . Although Balke (1964) and Bynum (1966) concluded that natives of high a l t i t u d e show an increase i n work capacity upon descending to 58 59 a lower a l t i t u d e , ' Grover and Reeves (1966) and Daniels and Oldridge (1970) f a i l e d to f i n d performance improvement under . ., • . 60,61 si m i l a r circumstances. ' Studies concerned with deacclimatization i n d i c a t e that i t i s a major transient taking some time to complete. For example, Reynafarje (1959) found that i t took 100-120 days for 6 2 the RBC and Fe turnover rate to reach about the normal rate. And, Dejours, Kellogg, and Pace (19 63) have shown that the return of the CO2 s e n s i t i v i t y of the re s p i r a t o r y center to normal a f t e r return of the i n d i v i d u a l to sea l e v e l from a l t i t u d e , required 6 3 about t h i r t y days to be completed. 57 Daniels and Oldridge, l o c . c i t . 5 8 B a l k e (1965), l o c . c i t . 5^Bynum, l o c . c i t . ^Grover and Reeves, l o c . c i t . 61 Daniels and Oldridge, l o c . c i t . Reynafarje, (1959), l o c . c i t . 6 3 Dejours, Kellogg, and Pace, (1963), l o c . c i t . Chapter 3 METHODS AND PROCEDURES Female students at South Tahoe Intermediate School ran three times a week during t h e i r Physical Education c l a s s . Dis- tances of 400m., 800m., and one mile were al t e r n a t e l y run. The fastest f i v e g i r l s i n each class every day were recorded, and a f t e r three weeks of t r a i n i n g , volunteers were asked for from the s e l e c t group. Ten subjects were chosen from the volunteers, mainly on the basis of t h e i r r e s p o n s i b i l i t y . After one t e s t i n g session two of the subjects dropped out; one because of d i f f i c u l - t i e s with auto sickness, and the other because the father thought the distance between tes t i n g c i t e s too f a r . The g i r l s ranged i n age from 12 to 14, and i n weight from 75 to 130 pounds. A l l were premenarche but two. During the te s t i n g program they con- tinued i n the school f i t n e s s program, running a mile once a week, 800m. once a week and 400m. once a week. Sprints or hurdles were also practiced one day a week. A l l but one of the subjects also pa r t i c i p a t e d i n school track meets. Training p r i o r to testing could not begin e a r l i e r than the three weeks because of snow on the ground and track. Testing could not s t a r t l a t e r because the subjects would be out of school and families would be planning vacations. Eight Saturdays i n A p r i l and May were scheduled for t e s t i n g at a 400 meter Tartan track at South Tahoe Intermediate School, elevation 6256; and a 44 0 yard All-weather track at the College of Marin i n K e n t f i e l d , 25 C a l i f o r n i a , e l e v a t i o n approximately sea l e v e l . There were four t e s t days a t each l e v e l of a l t i t u d e . Repeated measures were used to i n c r e a s e r e l i a b i l i t y . The t e s t i n g schedule was v a r i e d so t h a t a s e s s i o n a t a l t i t u d e d i d not always precede a s e s s i o n a t sea l e v e l . F i n g e r t i p b l o o d samples f o r the mic r o h e m a t o c r i t were taken at one pm each day of t e s t i n g . T h i s was done r i g h t a f t e r a simple l u n c h and p r i o r to the performance t e s t i n g which was done gener- a l l y between two and four pm. R e f r i g e r a t i n g the blood samples was c o n s i d e r e d unnecessary because the c a p i l l a r y tubes were t r e a t - ed with h e p a r i n . However, a f t e r the samples were taken they were s t o r e d u n t i l the f o l l o w i n g Monday. At t h a t time they were cen- t r i f u g e d and read i n a p h y s i c i a n s o f f i c e a t South Lake Tahoe. Each S u b j e c t kept her own menstrual r e c o r d s on a two month c a l e n d a r t h a t was giv e n her f o r that purpose. Temperature and humidity r e c o r d i n g s were made each day of t e s t i n g between two and t h r e e pm. A homemade s l i n g psychrometer p r o v i d e d t h i s i n f o r m a t i o n . B a r o m e t r i c p r e s s u r e was recor d e d from r e a d i n g s taken a t the South Lake Tahoe A i r p o r t tower and a t Ham- i l t o n A i r Force Base. In or d e r t o reduce the c o r r e c t e d f i g u r e s from the Lake Tahoe tower to r e p r e s e n t the a c t u a l p r e s s u r e of the i n s p i r e d a i r , 1 i n . Hg. per 1,000 f t . e l e v a t i o n must be. s u b t r a c t - ed from the p r e s s u r e s the tower r e p o r t e d . The P o l l u t i o n C o n t r o l Board O f f i c e i n San F r a n c i s c o p r o v i d e d the a i r p o l l u t i o n index f o r each day of sea l e v e l t e s t i n g . T h e i r index was based on a s c a l e d e s i g n a t i n g 0-30 as c l e a n a i r , 30-50 moderate, 50-75 severe and 75-100 heavy pollution.''" ^ I n f o r m a t i o n B u l l e t i n Combined P o l l u t a n t Index Experience 19 69 i n c l u d e d i n Appendix. 26 The equipment needed f o r the performance t e s t i n g was a Wilson 100 foot metal measuring tape and an A p o l l o stop-watch which was taken to the Jewelers f o r c a l i b r a t i o n j u s t p r i o r to the f i r s t t e s t i n g s e s s i o n . Every subject p a r t i c i p a t e d i n every one of the v a r i a b l e s . Each subject was te s t e d alone without c o m p e t i t i o n , and a l l times were taken by the same timer on the same watch. The g i r l s had been i n s t r u c t e d to do t h e i r best at a l l times, and on the longer d i s t a n c e s they were i n s t r u c t e d to pace themselves to get the best time without being a b s o l u t e l y exhausted before the f i n i s h . T e s t i ng sessions began w i t h a l i m i t e d warm-up; f i f t y jumping j a c k s , f i f t y mountain climbers and t h i r t y ankle r o t a - t i o n s f o r each f o o t . Then, q u i c k l y one by one the g i r l s ran the 50 yard dash. Again i n the same order they ran the 440. As each g i r l f i n i s h e d the 440 she went to another area to do her s o f t b a l l throw. Each subject took three throws dur i n g each t e s t i n g s e s s i o n . A partner checked the best throw a g a i n s t the s t e e l tape, and i t s d i s t a n c e was recorded to the nearest one h a l f f o o t . A.s each g i r l f i n i s h e d her s o f t b a l l throw she returned to the t r a c k f o r the 880 yard run. I t u s u a l l y took between an hour and a h a l f to two hours t o complete the t e s t i n g each day. There were f i v e dependent variables---(a s o f t b a l l throw, 50 yard dash, 44 0 yard dash, and an 8 80 yard run, a l s o a hemato- c r i t ) . The independent v a r i a b l e s were the two a l t i t u d e l e v e l s , A 2 x 4 f a c t o r i a l design was used w i t h repeated measures on each dependent v a r i a b l e . The dependent: v a r i a b l e s w e r e chosen because: 1. I t has been p r e v i o u s l y found t h a t short runs and throws are improved at moderate a l t i t u d e . 2. Long runs are impaired at a l t i t u d e , but i n t o l e r a b l e atmos- pheric conditions may also cause impairment. 3. These performance events represent performances i n a track meet. 4. The blood determinations imply the adaptation to a l t i t u d e . For analyzing the data s t a t i s t i c a l l y , f i v e anovas were used. • One manova was an alternate choice which would have reduced the type I error rate. However, the s t a t i s t i c s were calculated by hand rather than by computer. Using anovas would make computing and i n t e r p r e t i n g the data easier. To aid i n t e r - pretation, temperature, humidity and barometric pressure were recorded at each t e s t i n g session. The a i r p o l l u t i o n index was also noted i n the metropolitan area of sea l e v e l t e s t i n g . Com- ments on the winds were jotted on the data sheets. Menstrua- t i o n records were kept by the subjects i n order to have more information r e l a t i n g to the hematocrits. Any p h y s i c a l com- pl a i n t s of the subjects on t e s t i n g days were also noted. On the following page i s a diagram depicting the 2 x 4 f a c t o r i a l design with i t s 5 dependent v a r i a b l e s . 28 Indep. t e s t i n g o r d e r dep. S l 2 T a b l e I ALTITUDE 6,256 f t . SEA LEVEL 1 2 3 4 1 2 3 4 temp., (1) (3) (6) (8) (2) (4) (5) (7) h u m i d i t y , b a r o m e t r i c p r e s s u r e r e c o r d e d a t each t r i a l s o f t b a l l throw 50 yd. dash 440 yd. 8 80 yd. 8 S l 2 8 S l 2 8 S l 2 3 8 S l 2 H e m a t o c r i t M e n s t r u a t i o n r e c o r d s , p o l l u t i o n i n d e x , w i n d s , h e a l t h n o t e s were added . i n c i d e n t a l i n f o r m a t i o n . 29 The source of v a r i a n c e f o r each Anova i s t a b l e d below. T a b l e II. ANOVA TABLE source d . f . s u b j e c t s 7 treatments 7 a l t i t u d e 1 t r i a l s 3 a l t . x t r i a l s 3 e r r o r 4 9 sub. x a l t . 7 sub. x t r i a l s 21 sub. x a l t . x t r i a l s 21 t o t a l 6 3 When a s i g n i f i c a n t t r i a l s e f f e c t was found a post hoc t r e n d a n a l y s i s was then computed. The p r e d i c t i o n s were t h a t the f o u r t r i a l s at a l t i t u d e would show steady improvement due to t r a i n i n g and l e a r n i n g . The four t r i a l s o f the s o f t b a l l throw, 50 yard dash and 440 yard run would be impaired a t sea l e v e l , but would improve over the four t r i a l s . I t was a l s o p r e d i c t e d t h a t the 880 y a r d run on the f i r s t sea l e v e l t e s t would be on a par or b e t t e r than the a v e r - age of the a l t i t u d e t r i a l s , but would become impaired as summer weather a r r i v e d . The hem a t o c r i t s were expected to remain f a i r l y c o n stant over the t e s t i n g p e r i o d , but would vary c o n s i d e r a b l y between s u b j e c t s . Chapter 4 RESULTS AND DISCUSSION Results An examination of the test r e s u l t s was made i n order to help determine i f the a t h l e t i c performance of middle a l t i t u d e dwelling g i r l s i s ac t u a l l y impaired at sea l e v e l . For the 880 yard run, times at sea l e v e l were on an average faster than at a l t i t u d e . But, the difference was not s u f f i c i e n t to permit the e f f e c t of a l t i t u d e to be considered s i g n i f i c a n t . The four treatments at sea l e v e l were not con- s i s t e n t l y faster than the four treatments at a l t i t u d e . For example, the second a l t i t u d e runs were faster than the second sea l e v e l runs. The second sea l e v e l runs proved to be, i n fa c t , the slowest 880 times recorded at sea l e v e l . By pa i r i n g each sea l e v e l treatment with i t s corresponding a l t i t u d e t r e a t - ment, scores for four t r i a l s were calculated. There was a s i g - n i f i c a n t e f f e c t between these t r i a l s at better than the one percent l e v e l of s i g n i f i c a n c e also. The improvement noted from t r i a l to t r i a l was a s i g n i f i c a n t l i n e a r trend. As had been predicted, the f i r s t treatment at sea l e v e l was better than the previous treatment at a l t i t u d e . J o i n t e f f e c t s of t r i a l s and a l t i t u d e were s i g n i f i c a n t at the one percent l e v e l of s i g n i f i - cance..   Table III 830 YARD RUN ANOVA TABLE Source Subj ects Treatments t r i a l s l i n e a r a l t i t u d e t r i a l s x a r t . Error sub x a l t sub x t r i a l s sub x t r i a l s x a l t Total SS 18740.21 2513.57 1536.66 1497.31 182.3 794.60 3072.3 471.33 1565.57 1035.39 24326.08 d.f. 7 7 49 21 21 63 ms 2677.17 359.08 512.22 1497.31 182.3 264.87 62.7 67.33 74.55 49.30 3861.44 5.72 s i g . 1% 6.87 s i g . 1% 20.08 s i g . 1% 2.71 no s i g . 5.37 s i g . 1% F .05 4. 04 .01 (1,49) 7.18 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25 34 F i g u r e 3 i l l u s t r a t e s t h e t r e n d o f t h e t r i a l s f o r t h e 4 4 0 . The t h i r d t r i a l was t h e s l o w e s t b u t t h e f o u r t h was t h e f a s t e s t . To e x p l a i n t h i s , a l o o k a t i n d i v i d u a l t r e a t m e n t s p o i n t s o u t t h e t h i r d t r e a t m e n t a t s e a l e v e l was s l o w e r t h a n t h e f i r s t t r e a t m e n t a t a l t i t u d e . The f o u r t h t r e a t m e n t a t a l t i t u d e , w h i c h was t h e l a s t i n t h e t e s t i n g s c h e d u l e was t h e b e s t o f a l l t r e a t m e n t s a t e i t h e r a l t i t u d e o r s e a l e v e l . A g a i n t h e r e was no s i g n i f i c a n t d i f f e r e n c e b e t w e e n s e a l e v e l and a l t i t u d e p e r f o r m a n c e , a l t h o u g h t h e t o t a l t i m e s a t a l t i t u d e w e r e f a s t e r t h a n t o t a l t i m e s a t s e a l e v e l . T h e r e was a s i g n i f i c a n c e i n t e r a c t i o n o f a l t i t u d e x t r i a l s a t t h e one p e r c e n t l e v e l . F a c t o r s a f f e c t i n g p e r f o r m a n c e a t t h e two l e v e l s o f a l t i t u d e w e r e n o t c o n s i s t e n t o r t h e same. A s p e r f o r m a n c e i m p r o v e d a t a l t i t u d e i t became w o r s e a t s e a l e v e l a n d v i c e v e r s a . A s i n a l l t h e o t h e r v a r i a b l e s , t h e s u b j e c t s p r o v e d t o p e r f o r m s i g n i f i c a n t l y d i f f e r e n t f r o m one a n o t h e r on t h e 50 y a r d d a s h . The o n l y s i g n i f i c a n t s t a t i s t i c was t h e a l t i t u d e e f f e c t . A n d , h e r e t h e f e m a l e s u b j e c t s w e r e f a s t e r a t t h e s e a l e v e l t r a c k , w i t h o n l y a f i v e p e r c e n t c h a n c e t h a t t h i s d i f f e r e n c e was n o t t r u l y due t o t h e d i f f e r e n c e s f o u n d a t t h e two a l t i t u d e c o n d i t i o n s . The s u b j e c t s were c o n s i s t e n t i n t h e i r e f f o r t s . On s u c h a s h o r t r u n some s u b j e c t s v a r i e d o n l y o n e t e n t h o f a s e c o n d i n a l l t r e a t m e n t s a t a. s i n g l e t r a c k . W i t h s u c h c o n - s i s t e n c y , t h e s u b j e c t s d i d n o t a p p e a r t o g e t b e t t e r a t t h i s e v e n t a s t h e t e s t i n g p r o g r a m p r o c e e d e d . I n f a c t , t h e b e s t   Table IV 440 Yard Dash Anova Table Source SS d.f. ms F p Subjects 3408. 66 7 486.95 Treatments 340. 31 7 48.61 t r i a l s 139. 88 3 46.63 2.16 no l i n e a r 10. 98 1 10.98 quad. 4. 82 1 4.82 cubic 104. 76 1 104.76 4.80 s i g . A l t i t u d e 31. 50 1 31.50 2.79 no A l t . x t r i a l s 168. 92 3 56.30 15.06 s i g . Error 610. 81 49 12 .46 sub x a l t 78. 87 7 11.26 sub x t r i a l s 453. 38 21 21.59 sub x t r i a l s x a l t 78. 55 21 3.74 Total 4359. 79 63 69.20 F .05 .01 (1,49) 4.04 7.18 F .05 4. .01 (1,21) 8. F .05 3.07 .01 (3,21) 4.87 F .05 5.59 .01 (1,7) 12.25 times were recorded on the f i r s t test at sea l e v e l . For the s o f t b a l l throw almost random re s u l t s were attained, p a r t i c u l a r l y from the sea l e v e l t e s t s . For sure, the subjects d i f f e r e d , with the best thrower almost doubling the distance of the worst. The e f f e c t of t r i a l s x a l t i t u d e was s i g n i f i c a n t at the f i v e percent l e v e l . Despite the average length of throw being further at a l t i t u d e than at sea l e v e l , s t a t i s t i c a l l y the e f f e c t s of a l t i t u d e were n i l . Improvement was s t e a d i l y made at a l t i t u d e , while such improvement was not so noticeable at sea l e v e l . No s i g n i f i c a n c e was found i n the i n t e r a c t i o n s . As expected, hematocrits were s t a t i s t i c a l l y without difference at a l t i t u d e and sea l e v e l . T r i a l s showed no s i g n i - ficance at the f i v e percent l e v e l , but t r i a l s x a l t i t u d e did. A trend analysis was not performed, but a scrutiny of the data revealed no pattern to the percent hematocrits recorded. A comparison of the two subjects menstrual records to t h e i r hematocrits revealed no p a r t i c u l a r peaks or dips i n the hematocrits p a r a l l e l to monthly rhythms. The lowest recorded hematocrit was a 39.5%, the highest was a 49.5%. The average of a l l recordings for a l l the g i r l s was 43.9%. Averages for females at sea l e v e l are about 39%. The average' for 100 females i n Mexico City was 4 5.5%."^ 'P. Altman, Blood and Other Body F l u i d s , Federation of .American Societies for Experimental Biology, 1961, p. .19 2.  Table V 50 YARD DASH ANOVA TABLE Source Subjects Treatments t r i a l s a l t i t u d e a l t . x t r i a l s Error sub x a l t sub x t r i a l s sub x t r i a l s x a l t . Total SS 9.06 .68 .06 .58 .039 1.36 .59 .16 . 60 11.10 d . f . 7 7 3 1 3 49 7 21 21 63 ms 1.29 .09 .01 .58 .013 .027 .085 .007 .028 .18 2.53 6.83 0.46 no s i g no F .05 2.21 .01 (7,49) 3.03 F .05 3.07 .01 (3,21) 4.87 F .05 4.34 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25  Source Subjects Treatments a l t i t u d e t r i a l s t r i a l s x a l t . Error sub x a l t sub x t r i a l s sub x t r i a l s x a l t . Total Table VI SOFTBALL THROW ANOVA TABLE SS 29182. 31. 792.62 38.28 322.17 1123.61 d.f. 7 7 1 3 432.16 3 2005.03 49 136.81 7 21 744.61 21 31979.96 63 ms 4168.90 113.23 38 . 28 107.38 1.96 2.01 144.056 4.06 40.92 19/54 53.50 35.45 507.61 no nc s i g . 5 F .05 2. 21 .01 (7,49) 3.03 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 .59 01 (1,7) 12.25 43 The a i r temperature d u r i n g the a l t i t u d e s e s s i o n s p r o - gressed from 51° to 66°F, w h i l e the sea l e v e l s e s s i o n s f o l l o w e d t h i s o r d e r ; 82°, 72°, 60°, 66°F. The f i r s t a l t i t u d e s e s s i o n was c o l d , dry, and windy. A wet bulb r e a d i n g of o n l y 38°F was taken, hence r e l a t i v e humidity was o n l y 23%. As a c o n t r a s t the f i r s t sea l e v e l s e s s i o n was hot and s t i l l . The p o l l u t i o n index t h a t day was 30, humidity 30%. A l l of the s u b j e c t s had headaches d u r i n g the f i r s t sea l e v e l t e s t , but the i n d i s p o s i t i o n d i d not seem to a f f e c t per- formance. In f a c t , the s u b j e c t s appeared e x c i t e d about doing the t e s t s . Three s u b j e c t s e x p e r i e n c e d severe s i d e aches or stomach cramps d u r i n g the l a s t t hree times they ran the 880. The y o u t h f u l n e s s and i n e x p e r i e n c e of the s u b j e c t s sometimes made i t d i f f i c u l t to get an a c c u r a t e d e s c r i p t i o n of t h e i r f e e l - ings . DISCUSSION Post hoc examinations of world r e c o r d s a t sea l e v e l and a l t i t u d e have shown times to be s y s t e m a t i c a l l y a f f e c t e d by a l t i t u d e . True experiments have r e a l i z e d s i m i l a r r e s u l t s . S i nce J o k l claimed the handicapping i n f l u e n c e of the lowered oxygen p r e s s u r e s becomes s t a t i s t i c a l l y v a l i d a t 5,350 f e e t f o r d i s t a n c e s of 1,500m. and l o n g e r ; and a t 7,340 f e e t f o r d i s t a n c e s 8 00m. and l o n g e r , i.t was expected t h a t the times i n t h i s i n v e s - t i g a t i o n a t 6,256 of the 880 yard run would be s t a t i s t i c a l l y  T a b l e VII HEMATOCRITS AND MENSTRUAL RECORDS 2 1 APRIL s u b j e c t 2 3 4 5 6 7 8 4 6 . 5 % a l t 9 1 0 1 1 1 2 1 3 / 2 - 5 4 9 % / / s . l . 1 6 1 7 1 8 1 9 2 0 2 1 22 4 2 % a l t 2 3 2 4 2 5 2 6 2 7 2 8 / 2 ' 9 4 6 / S o l * / / 1 MAY 2 3 4 tr 6 4 9 % . s . l . 7 8 9 1 0 1 1 1 2 1 3 *r 'o a l t 1 4 1 5 1 6 1 7 . 1 8 7 ^ / ' 2 0 /I -7 g. q 1 2 1 2 2 2 3 2 4 2 5 2 6 2 7 ' 4 8 . 5 % a l t _ 2 APRIL s u b j e c t 9 3 . 4 5 6 7 8 4 5 % a l f 9 1 0 1 1 1 2 / / " / 2 0 1 4 / / 5 4 6 % / / S . l , / y 1 7 / V 1 9 ' 2 1 22 4 2 . 5 % a l t 2 3 2 4 2 5 2 6 2 7 2 8 2 9 4 2 . 5 % S « 1 a 3 0 1 MAY 4 5 6 4 7 % S . l . 7 8 9 1 0 1 1 1 2 1 3 4 2 . 5 % a l t 1 4 / 1 5 / / 1 6 / / 1 7 / /' 1 8 / / 1 9 / 2 0 4 5 % s . l . 21 2 2 2 3 2 4 2 5 ' 2 6 2 7 4 3 . 5 % . a i t 46 Source Subjects Treatments t r i a l s a l t i t u d e a l t x t r i a l s Error sub x a l t sub x t r i a l s sub x a l t x t r i a l s Total Table VIII HEMATOCRIT ANOVA TABLE SS 190.46 57 16. 03 3.07 37.89 163.78 29.58 d . f . 7 7 3 1 49 60.50 21 73.69 21 411.25 63 ms 27.21 8.14 5.34 3.07 12.63 3.34 4. 22 2.88 3.50 6.52 1.85 0.73 3.60 no no s i g . 5% F .05 2.21 .01 (7,49) 3.03 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25   slower at a l t i t u d e . This pred i c t i o n did not quite hold up. Although average running times were slower at a l t i t u d e , a Fisher r a t i o of 2.9 with one degree of freedom does not make t h i s difference s i g n i f i c a n t . When r e s u l t s are graphed, i t appears that at a l t i t u d e f a i r l y steady improvement took place, while at sea l e v e l t o t a l t e s t scores were e r r a t i c ; sometimes better than previous a l t i t u d e t e s t s , but not always. The subjects were involved i n a mild t r a i n i n g program throughout the two months of t e s t i n g . So, as long as t e s t i n g conditions remained pleasant there should have been performance improvement. Continued run- ning experience would increase oxygen uptake, and pacing tech- niques would become re f i n e d . The improvement that was noted i n the data was probably the r e s u l t of t h i s happening. The large difference i n times taken at the f i r s t t r e a t - ment at a l t i t u d e and the f i r s t treatment at sea l e v e l must be i n part accounted for by the emotional excitement of t r a v e l i n g to the sea l e v e l t e s t s i t e and the s p e c i a l attention newly afforded the subjects. For most of the g i r l s t h i s was as far as they had ever traveled before, and probably many had never been so far from t h e i r f a m i l i e s . The sea l e v e l track was situated i n a complex of other recreational f a c i l i t i e s , a l l impeccably maintained and very impressive. This new and spe c i a l treatment stimulated the g i r l s to producing some of t h e i r best times so f a r . In addition, the day of the f i r s t sea l e v e l tests was hot for in d i v i d u a l s who had just come from snow at t h e i r mountain home. The warmth of the day possibly i n - creased metabolic processes and hence aided running times. 50 The s i g n i f i c a n t i n t e r a c t i o n of t r i a l s and a l t i t u d e that occurred i n both the 880 and 440 run may be d i f f i c u l t to i n t e r - pret. On improvement from t r i a l to t r i a l that occurred i n part because of a change i n a l t i t u d e Daniels and Oldridge (1970) also had to comment. There i s also a p o s s i b i l i t y that the desire at a l t i t u d e to equal normal sea-level performance motivated the sub- jects to push closer to max VO2 for a longer period of time than normal, an attitude they car r i e d over into p o s t - a l t i t u d e runs. I f so, then t r a i n i n g at a l t i t u d e would benefit subsequent sea-level performance as the runners attained an a b i l i t y to withstand more discomfort than usual. This would presumably be r e f l e c t e d by greater u t i l i z a t i o n of the anaerobic capacity i n a l t i t u d e and pos t - a l t i t u d e runs, a p o s s i b i l i t y not investigated.1 The 440 yard dash being a middle distance for young g i r l s or a lengthy s p r i n t , and considered extremely taxing i n competition was expected to be a balance point i n t h i s experi- ment. Times were predicted to be only s l i g h t l y better at a l t i - tude than sea l e v e l , but showing the e f f e c t s of t r a i n i n g from s t a r t to f i n i s h . These predictions were f a i r l y accurate. Astrand (1970) wrote that with a work time of up to two minutes the anaerobic power i s more important than the aerobic; at about two minutes there i s a 50:50 r a t i o , and with longer work time 2 the aerobic power becomes gradually more dominating. The sub- jects 440 times ranged from 1:14.8 to 1:46.1, so for the most part anaerobic power was more important, but for some the 50:50 mark was close. Jack Daniels and N e i l Oldridge, "The E f f e c t s of A l t e r - nate Exposure to A l t i t u d e and Sea Level on World-class Middle- Distance Runners," Medicine and_ Science i n Sports, ( F a l l 19 70) , Vol. 2, No. 3, p. 111. 2 Per-Olof Astrand, Kaa.re Rodahl, Textbook of Work " Physiology, (McGraw-Hill Book Company, N.Y., 1970), p. 304. 51 G r o v e r a n d R e e v e s ( 1 9 6 6) f o u n d s o m e o f t h e i r m a l e s u b - j e c t s p e r f o r m i n g t h i s e v e n t b e t t e r a t s e a l e v e l , o t h e r s a t a l t i - 3 t u d e . O n a n a v e r a g e t h e g i r l s m t h i s e x p e r i m e n t r a n t h e 44 0 f a s t e r a t a l t i t u d e , b u t w i t h a F i s h e r r a t i o o f 2 . 5 a n d 1 d e g r e e o f f r e e d o m t h i s d i f f e r e n c e c o u l d n o t b e c o n s i d e r e d s i g n i f i c a n t . I m p r o v e m e n t w a s g e n e r a l l y n o t e d f r o m s t a r t t o f i n i s h . ( O n e s u b - j e c t b e c a m e p r o g r e s s i v e l y s l o w e r ) . T h e m o r e t h i s d i s t a n c e w a s r u n a t f u l l e f f o r t , t h e g r e a t e r w a s t h e m e c h a n i c a l e f f i c i e n c y , a n d t o l e r a n c e o f l a c t i c a c i d i n t h e m u s c l e s i n c r e a s e d . A s t r a n d ( 1 9 7 0 ) h a s s a i d " t h e h i g h e s t b l o o d l a c t a t e v a l u e s s o f a r a r e i n s a m p l e s d r a w n f r o m w e l l - t r a i n e d a t h l e t e s a t t h e e n d o f c o m p e t i - t i v e e v e n t s o f o n e t o t w o m i n u t e s d u r a t i o n . . . d u r i n g t r a i n i n g , t h e b l o o d l a c t a t e c o n c e n t r a t i o n f o r a g i v e n w o r k l o a d i s l o w e r , b u t t h e v a l u e s a t t a i n e d d u r i n g m a x i m a l p h y s i c a l e f f o r t a r e 4 u s u a l l y h i g h e r . " D u r i n g t r e a t m e n t s 4 , 5 , 6 , 7 t h e r e w a s a s l u m p i n p e r - f o r m a n c e . T h i s m a y h a v e b e e n t h e r e s u l t o f a p s y c h o l o g i c a l l o w . D u r i n g t h e s e c o n d a n d t h i r d t r e a t m e n t s t h e r e w a s t h e t h r i l l o f a n e w e x p e r i e n c e a n d t r a v e l . T h e l a s t t r e a t m e n t w a s t h e l a s t c h a n c e t o b e t t e r a l l p r e v i o u s t i m e s . W i t h t h e r e s u l t s o f t h e 50 y a r d d a s h p r o d u c i n g a s u r - p r i s e r e v e r s e o f p r e v i o u s s t u d i e s , a l o o k a t a l l i n f l u e n c i n g f a c t o r s m u s t b e m a d e . F i r s t o f a l l , d i d c h a n g e s i n a l t i t u d e r e a l l y m a k e a s u b s t a n t i a l c h a n g e i n a i r p r e s s u r e ? T o a n s w e r 3 R o b e r t G r o v e r , J o h n R e e v e s , " E x e r c i s e P e r f o r m a n c e o f A t h l e t e s a t S e a L e v e l a n d 3 , 0 0 0 m e t e r s A l t i t u d e , " T h e I n t e r n a - t i o n a l S y m p o s i u m o n t h e E f f e c t s o f A l t i t u d e o n P h y s i c a l P e r - f o r m a n c e , (19 66) , p . 80*. 4 A s t r a n d , o p . c i t . , p . 2 9 8 . that, the pressures at a l t i t u d e averaged 79% of the pressures recorded at sea l e v e l . An important consideration i s the f a c t that at the a l t i t u d e track the subjects faced into the p r e v a i l - ing a i r currents, while at sea l e v e l the 50 yard dash was run with the wind. I t also seemed that when a i r temperature was r e a l l y warm, better r e s u l t s were achieved. The 50 yard dash was the f i r s t t e s t administered during each t e s t i n g session. The degree of success i n t h i s event more than the others was re l a t e d to effectiveness of the warm-up and body core temperature. Since the warm-up was the same at each t e s t i n g session i t was less e f f e c t i v e i n 51° weather than i n 82° weather. At a higher temperature metabolic processes i n a c e l l can proceed at a higher rate, since these processes are temperature dependent. The exchange of oxygen from the blood to the tissues i s fa s t e r at a higher temperature. A reduction i n conductance of the tissue occurs when the skin i s c h i l l e d . This i s p a r t l y because of vasoconstriction of the skin's blood vessels causing a reduc- ti o n i n blood flow, and pa r t l y because the blood i n the veins of the extremities i s detoured from the s u p e r f i c i a l to the deep veins.^ Furthermore, the nerve messages t r a v e l faster at higher 6 temperatures. Hobert and Lynggren (1947) examined the e f f e c t s of active and passive warm-up on the speed of running. In the 100m. dash the improvement after a proper warm-up was i n the order of 0.5 to 0.6 seconds, corresponding to three to four Astrand, op. c i t . , p. 224. Astrand, op. c i t . , p. 496. 53 7 p e r c e n t compared w i t h the r e s u l t s without any warm-up. T h i s i n f o r m a t i o n would p o i n t out t h a t the warm-up employed was e v i - d e n t l y i n s u f f i c i e n t f o r performing the 50 yard dash o p t i m a l l y i n the c o o l e r temperatures. I t would be f o o l i s h to t r y to presume which were more important, b a r o m e t r i c p r e s s u r e or temperature, to the 50 y a r d dash performance. The two f a c t o r s are m u t u a l l y dependent weather wise. They were u n c o n t r o l l a b l e by the experimenter. P r e v i o u s s t u d i e s which have c o n t r o l l e d these f a c t o r s d i d not l e n d i n s i g h t i n t o c oaching s t r a t e g y . A coach cannot c o n t r o l b a r o m e t r i c p r e s s u r e , but he can p r e s c r i b e warm-ups and p r e - c o m p e t i t i o n a c t i v i t y i n c o r r e c t dosages c o n s i d e r i n g h i s a t h l e t e s and the temperatures of the day. Reports v a r y on the e f f e c t s of a l t i t u d e upon jumping and throwing events. J o k l has p r a i s e d Bob Beamor,1 s r e c o r d long jump a t Mexico C i t y . One of the f a c t o r s he a t t r i b u t e s f o r making t h i s r e c o r d jump p o s s i b l e was the reduced a i r r e s i s t a n c e S at the a l t i t u d e of Mexico C i t y . Reduced a i r r e s i s t a n c e should be a f a c t o r i n throwing events as w e l l . A s t r a n d (1970) has s t a t e d t h a t with the f o r c e of g r a v i t y reduced a t a g r e a t e r d i s - tance from the e a r t h ' s s u r f a c e there may be a f a v o r a b l e e f f e c t i n the case of a t h l e t i c events i n v o l v i n g jumping or throwing at 9 h i g h a l t i t u d e s . Cervantes and K a r p o v i t e h (19 64) i n a r e p o r t on 7 Hoberg and Lyndgren (1947) as quoted i n A s t r a n d , op. c i t . , p. 496. g E r n s t J o k l , "A Report on Bob '3 earn on• s World Record Long Jump, and His Subsequent C o l l a p s e a t Mexico C i t y , October 18, 1968 ," The P h y s i c a l Educator, (May 1970), p. 69". 9 A s t r a n d , op. c i t . , p. 563.   the e f f e c t of a l t i t u d e on a t h l e t i c performance stated that f i e l d event r e s u l t s have been inconsistent. "^ The e f f e c t s of a l t i t u d e upon throwing were not s i g n i f i c a n t i n t h i s experiment. The throws at sea l e v e l were e r r a t i c from testing session to t e s t i n g session. - For one thing, during the f i r s t session at sea l e v e l throwing was done on a packed earth surface and at the following sessions throwing was done on greens such as was the case at a l t i t u d e . Perhaps another reason for e r r a t i c performance was the f a c t that several of the g i r l s did not throw very well and were learning the proper s k i l l sequence. F i t t s and Posner (1967) referred to the second stage of s k i l l learning as the phase when error, wrong sequences of acts and. responses to wrong cues are gradually eliminated."''''' The learning process was more consistent at the a l t i t u d e l o c a t i o n , the place where they were accustomed to throwing and learning. As expected hematocrits varied among the subjects within the normal range. Healthy indivi d u a l s d i f f e r widely with respect to blood formulas. These differences are associated, to a small extent, with i n d i v i d u a l differences i n body weight, stature and surface area, the red c e l l count, hemoglobin and volume of packed red c e l l s tending to be higher i n heavier and t a l l e r i n d i v i d u a l s . Despite the fact that most of these g i r l s were premenarche th e i r hematocrit average was more t y p i c a l of women l i v i n g at moderate: a l t i t u d e than men. Wintrobe (1961) " ^ J . Cervantes, P, V. Karpovitch, " E f f e c t of A l t i t u d e on A t h l e t i c Performance," Research Quarterly, (1964), Vol. 35, 3 (2), pp. 446-448. ''"''"Paul F i t t s , Michael Posner, Human Performance, (Wads- worth Publishing Company, Belmont, Calif.,~1967), p. 12. stated i t i s noteworthy that the difference i n red corpuscles between males and females does not become manifest u n t i l 12 puberty- No r e l a t i o n s h i p was noted between subjects menstrual cycles and hematocrits, but the sampling was small. Wintrobe (1961) has commented that i t has not been shown conclusively that there i s any c o r r e l a t i o n between normal menstrual periods and fluctuations i n the erythrocytes or hemoglobin. Although, a premenstrual decrease has been observed i n some women possibly as a manifestation of hydremia which sometimes precedes the onset of menstruation.^ Some subjects did have higher hematocrits at sea l e v e l than a l t i t u d e . This concurs with graphs i n studies by Reyna- f a r i e (1959) and Merino (1950) which also showed a r i s e some- times immediately on a r r i v a l at sea l e v e l and p r i o r to the de- 14 15 crease that follows. ' Although, the l i t e r a t u r e i s lacking in an explanation, i t i s reasoned that subjects became somewhat dehydrated during t r a v e l . A reduction i n plasma f l u i d would then elevate the percent of c e l l u l a r matter. Because temperature, humidity, barometric pressure, winds and a i r p o l l u t i o n were uncontrollable, such weather data was recorded only for the purpose of lending a d d i t i o n a l i n s i g h t into the r e s u l t s . Due to the u n c o n t r o l l a b i l i t y of these factors 12 Maxwell Wintrobe, C l i n i c a l Hematology, (Lea & Febiger, Philadelphia, 1961), p. 107. 1 3 I b i d . 14 C. Reynafarje, "The Polycythemia of High A l t i t u d e s : Iron Metabolism and Related Aspects," Blood, 14, 1959, 433-455. 15 C. Merino, "Studies on Blood Formation and Destruction i n the Polycythemia of High A l t i t u d e s , " Blood, 5, 19 50, 1-3 2. 58 Table IX HEMATOCRIT VALUES 1 6 A l l subjects were residents of the given l o c a l e . Hematocrit A l t i t u d e No. of ml RBC/100 ml m Country- Place subjects blood < 1 395 Peru Lima 14c" 45. 0 (40.0- 49. 0) 2 20^ 46. 0 (43.5- 50. 0) 3 15? 39. 8 (26.0- 41. 0) 4 1524 U.S. Denver 40^ 48. 4 (43.8- 53. 6) 5 40<? 43. 2 (37.1- 46. 1) 6 1830-1890 India Coonoor and 8 Oof 49. 0 (38.0- 65. 0) Wellington 7 2300 India Ootacamumd 20** 49. 4 (46.0- 53. 0) 8 Mexico Mexico C i t y 23# 21? ' 43. 0 (37.5- 49. 0) 9 100(? 51. 2 (45.0- 58. 5) 10 100$ 45. 5 (41.5- 50. 0) 11 3730 Peru Oroya 40^ 54. 1 (47.8- 65. 4) 12 4540 Argentina Mina Aguilar 81 59. 5 (50.5- 73. 6) 13 Peru Morococha 32 59. 9 (48.7- 71. 1) 14 11 57. 0 (46.0- 71. 0) C ) ages 4-6 1900 U.S. South Lake Tahoe 8o» 43. 9 (39.5-49. 5) (") ages 12-14 Table X TOTAL HEMATOCRIT FOR TRIALS TABLE T l T2 T3 T4 A l t . 361 341 344.5 352.5 S.L. 343.5 350 358.5 361 704.5 691 703.0 713.5 P. Altman, Blood a n d Other Body F l u i d s , Federation of American Societies for Experimental Biology, 1961, p. 192. 5S not a g r e a t d e a l can be c o n c l u s i v e l y commented. The main t h i n g n o t e d and a l r e a d y mentioned was t h e s u p e r i o r p e r f o r m a n c e s on t h e warmest t e s t i n g day. Chapter 5 SUMMARY AND CONCLUSIONS In order to resolve the problem of whether or not middle a l t i t u d e dwelling g i r l s experience performance impairment at sea l e v e l , eight f e m a l e s — i n t e r e s t e d i n track and l i v i n g at medium al t i t u d e — w e r e selected for t h i s experiment. These g i r l s , 12, 13, 14 years of age, pa r t i c i p a t e d in eight treatment sessions. Four sessions were at an a l t i t u d e of 6,256 feet and four were at approximately sea l e v e l . At each treatment session a l l subjects had a f i n g e r t i p blood sample taken for a hematocrit reading. At each treatment session a l l subjects p a r t i c i p a t e d separately and v/ithout competition i n a 50 yard dash, 440 yard dash, s o f t b a l l throw, and 880 yard run. These events were to represent the assortment found at a track meet. Recordings were made of the temperature, humidity, barometric pressure and a i r p o l l u t i o n . Also, notes were taken concerning physical complaints of the subjects and winds. The 88 0 and. s o f t b a l l throw demonstrated the e f f e c t s of trai n i n g and learning over the eight weeks of t e s t i n g . The 50 yard dash was the only event with a s i g n i f i c a n t a l t i t u d e e f f e c t . And, s u r p r i s i n g l y , superior performances were made at sea l e v e l . A combination of factors caused th i s reversal from the findings i n previous investigations. 1. The 50 yard dash was the f i r s t event each day, and so most r e f l e c t i n g the qu a l i t y of the warm-up. 61 2. A b e a u t i f u l warm day on the f i r s t sea l e v e l t e s t aided performance. 3.. High barometric readings at a l t i t u d e l e f t less of a pressure difference with sea l e v e l than expected. 4. At the a l t i t u d e track the subjects usually ran into the wind while they ran with i t at sea l e v e l . Although, no a l t i t u d e s i g n i f i c a n c e at the f i v e percent l e v e l of s i g n i f i c a n c e was found for the 440, 880, and s o f t b a l l throw; the 440 was run faster at a l t i t u d e , and the 880 was faster at sea l e v e l . About a l l that can be said.about the s o f t b a l l throw at the two l e v e l s , i s that the throws were more consistent at a l t i t u d e i n a l i n e a r trend toward improvement. Except for the 50 yard dash, the r e s u l t s f e l l f a i r l y close to the predictions which were: 1) Improvement would be noted over the eight weeks of t e s t i n g due to t r a i n i n g and learn- ing. 2) The s o f t b a l l throw, 50 yard dash, and 440 yard run would be impaired at sea l e v e l . 3) The 880 yard run on the f i r s t sea l e v e l t e s t would be on a par or better than the average of the a l t i t u d e t e s t , but would be impaired i f there was hot weather toward summer. There was no hot weather i n May, so performances continued to be better. Although l i t t l e s t a t i s t i c a l l y conclusive has been said about any of the variables investigated, some important conclu- sions can be made. F i r s t , the a l t i t u d e factor of reduced a i r pressure does not stand alone, but i s accompanied by i t s r e l a t i v e c l i m a t i c conditions. The difference i n p a r t i a l pressure was of border- l i n e importance and to young female athletes posed no p a r t i c u l a r problems s p e c i f i c to them. Decided gains were made, t r a i n i n g and learning may have exceeded what would have occurred with t r a i n i n g at only one a l t i t u d e . The hematocrit readings were i n the upper normal ranges related to sea l e v e l norms and were sim i l a r to readings obtained from women re s i d i n g at s i m i l a r a l t i t u d e s . They did fluctuate randomly from test to t e s t which i s normally due to d a i l y changes i n the amount of a c t i v i t y and/ or absorption of water or dehydration. To the coach these conclusions warrant saying that healthy, young female athletes from middle a l t i t u d e should be able to compete at various a l t i t u d e s i f proper care i s given to getting adequate r e s t . Unusual care should be made i n dosing warm-ups appropriate to conditions, and the a c t i v i t y to follow. Attention should be given to insuring adequate f l u i d intake also. The young human body has a marvelous f a c i l i t y for meet- ing and dealing with change. Despite the intensive work which has been done i n a l t i - tude physiology, there are s t i l l questions regarding sea l e v e l performance by athletes dwelling and t r a i n i n g at a l t i t u d e . These questions center around the hypersensitive respiratory response of these indiv i d u a l s and resultant pH changes i n the blood. A d d i t i o n a l i n s i g h t into v e n t i l a t i o n , 0^ debt, and blood lactate l e v e l s by the c o l l e c t i o n of energy metabolism data, including blood acid-base parameters, during and aft e r running events would add considerably to the body of knowledge i n t h i s area. BIBLIOGRAPHY Astrand, Per-Olof and K. Rodahl, Textbook of Work Physiology, New York: McGraw H i l l Book Company, 1.970. Altman, P. Blood and Other Body F l u i d s , Federation of American Societies for Experimental Biology, 19 61. Balke, B., Daniels, J . , and B. Falkner, "Maximum Performance Capacity at Sea-level and Moderate A l t i t u d e Before and A f t e r Training at A l t i t u d e , " Schweizerische Z e i t s c h r i f t fur Sportmedizin, V o l . 14 (1965). Balke, B., "Summary of Magglingen Symposium on Sports at Medium A l t i t u d e , " The International Symposium on the E f f e c t s of A l t i t u d e on Physical Performance, ed. R. F. Goddard (Chicago: The A t h l e t i c I n s t i t u t e , 1966). Banchero, N. and others, "Pulmonary Pressure, Cardiac Output and A r t e r i a l Oxygen Saturation during Exercise at High A l t i t u d e and at Sea Level," C i r c u l a t i o n , Vol. 33, 1966. Buskirk,^E. and others, "Physiology and Performance of Track Athletes at Various A l t i t u d e s i n the United States and Peru," The International Symposium on the E f f e c t s of A l t i - tude on Physical Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. Bynum, W. A. "Work Capacity of A l t i t u d e Acclimatized Men at A l t i t u d e and Sea Level," The International Symposium on the E f f e c t s of A l t i t u d e on Physical Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. C e r r e t e l l i , P. "Lactacid O2 Debt i n Acute and Chronic Hypoxia," Exercise at A l t i t u d e , ed. R. Margaria, Excerpta Medica Foundation, 1967. Cervantes, J . and P. V. Karpovitch, " E f f e c t of A l t i t u d e on A t h l e t i c Performance," Research Quarterly, V o l . 35, 3 (2), 1964. Consolazio, C. F. "Submaximal and Maximal Performance at High A l t i t u d e , " The International Symposium on the E f f e c t s of A l t i t u d e on Physical Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. Craig, Albert B. "Olympics 1968: A Postmortem," Medicine and Science i n Sport, Vol. 1, no. 4, December .1969. Daniels, Jack and N e i l Oldridge, "The E f f e c t s of Alternate Exposure to A l t i t u d e and Sea Level on World-class Middle- distance Runners," Medicine and Science i n Sports, Vol. 2 no. 3, F a l l 1970. 6 4 Dejours, Pier r e , Kellogg, R. H. and Nello Pace, "Regulation of Respiration and Heart Rate i n Exercise During A l t i t u d e Acclimatization," J . Appl. Physiol., V o l . 18, 1963. F i t t s , Paul and Michael Posner, Human Performance, Belmont, C a l i f o r n i a : Wadsworth Publishing Company, 1967. Grollman, A., "Physiological Variations i n Cardiac Output of Man. The E f f e c t of High A l t i t u d e on the Cardiac Output and Its Related Functions: An Account of Experiments Conducted on the Summit of Pikes Peak, Colorado," Am. J . Physio., Vol. 93, 1930. Grover, R. F., "Basal Oxygen Uptake of Man at High A l t i t u d e , " J . Appl. Physio., Vol. 18, 1963. Grover, Robert and John Reeves, "Exercise Performance of Ath- letes at Sea Level and 3,000 Meters A l t i t u d e , " The Interna- t i o n a l Symposium on the E f f e c t s of A l t i t u d e , ed. R. F. Goddard, Chicago: The A t h l e t i c i n s t i t u t e , 1966. Hannon, John P., Shield, Jimmie, and Charles H a r r i s , "High A l t i - tude Acclimatization i n Women," The International Symposium on the E f f e c t s of A l t i t u d e on Physical Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 19 66. Hecht, Hans, "Certain Vascular Adjustments and Maladjustments at A l t i t u d e s , " Medicine and Sport, Exercise and A l t i t u d e , ed. E. J o k l , Basel and New York: S. Karger, 1968. Hornbein, Thomas, and Albert Roos, " E f f e c t of Mild Hypoxia on V e n t i l a t i o n During Exercise," J. Appl. P h y s i o l . , 17 (2), Hornbein, Thomas, "Evaluation of Iron Stores as Limiting High A l t i t u d e Polycythemia," J . Appl. Ph y s i o l. , 17 (2), 1962. Hultgren, H. N., K e l l y , J . , and H. M i l l e r , "Pulmonary C i r c u l a - t i o n i n Acclimatized Man at High A l t i t u d e , " J. Appl. Physiol., 20 (2), 1965. J o k l , Ernst, "A Report on Bob Beaumon's World Record Long Jump, and His Subsequent Collapse at Mexico C i t y , October 18, 1968, The Physical Educator, (May 1970), 68-70. J o k l , Ernst and Peter J o k l , "The E f f e c t of A l t i t u d e on A t h l e t i c Performance," Medicine and Sport, Exercise and A l t i t u d e , ed. E. J o k l , Basel and New York: . S~. Karger, 1968. Merino, C , "Studies on Blood Formation and Destruction i n the Polycythemia of High A l t i t u d e s , " Blood, (5, 1950), 1-32. Naiye, R. L. "Children at High A l t i t u d e ; Pulmonary and Renal Abnormalities," C i r c u l a t i o n Res. , .16, 33, 1965. t * * 65 Reynafarje, C , "The Polycythemia of High A l t i t u d e s ; Iron Metabolism and Related Aspects," Blood, (14 , 1959) , 433-455. Reynafarje, C., "Pyridine Nucleotide Oxydases and Transhydroge- nase i n Acclimatization to High A l t i t u d e , " Amer. J . Physio., 200, 1961, 351-354. Schmidt, R., and A. S. Gilbertsen, Fundamental Observations on the Production of Compensatory Polycythemia," Blood, (10, 1955), 247-251. Tenney, S. M. "Physiological Adaptations to L i f e at High A l t i - tude," Medicine and Sport, Exercise and A l t i t u d e , Basel and New York: S. Karger, 1968. University of C a l i f o r n i a at Berkeley, Physiology Department, personal communication between Dr. Nello Pace and the writer, March 15, 1971. Vogel, J . A., Hansen, J . E. and C. W. Harris, "Cardiovascular Responses of Man During Rest,.Exhaustive Work and Recovery at 4,300m.," U.S. Army Med. Res. and Ntr. Lab Report, No. 294, 1966. Weihe, W. H. "Time Course of Adaptation to D i f f e r e n t A l t i t u d e s at Tissue Level," Schweizerische Z e i t s c h r i f t fur Sport- medizin, Vol. 14, 1966. Wintrobe, M. C l i n i c a l Hematology, Philadelphia: Lea & Febiger, 1961. APPENDIX S t a t i s t i c a l T r e a t m e n t s 6 8 HEMATOCRIT % Volume A l t i t u d e s l s^ 2162.25 1764 1764 2352.25 2 46.5 42 42 48.5 S 3 s . 2070.25 1936 1892.25 1936 4 45.5 44 43.5 44 s r 1892.50 1681 2070.25 1936 5 43. 5 41 45.5 44 1849 1600 1849 1849 6 43 40 43 ': 43 2450.25 2401 2025 1849 7 49.5 49 45 43 1849 1681 1640.25 1806.25 8 43 41 40.5 42.5 2025 1806.25 1806.25 1892.50 9 45 42. 5 42.5 43.5 S 1 0 2025 45 1722.25 41.5 1806.25 4 2. 5 1936 44 Z x 361 1 341 3 344.5 6 352. 5 8 E 1399 ( l x ) 2 A l t . 1957201 130321 116281 118680.25 124256.25 ^ x 2 16323.25 14591.50 14853.25 15557 HEMATOCRIT % Vol u m e S e a L e v e l s l s „ 2401 2116 2401 2209 2 49 46 49 47 S 3 s , 1 6 4 0 . 2 5 1 8 9 2 . 2 5 1936 1 9 8 0 . 2 5 4 4 0 . 5 4 3 . 5 44 4 4 . 5 S r 1849 1 8 0 6 . 2 5 1681 1 8 9 2 . 2 5 5 43 4 2 . 5 41 4 3 . 5 s^ 1 5 6 0 . 2 5 1681 1936 1849 6 3 9 . 5 41 44 43 S-, 2 0 7 0 . 2 5 2 2 5 6 . 2 5 2 2 5 6 . 2 5 2 2 5 6 . 2 5 7 4 5 . 5 4 7 . 5 4 7 . 5 4 7 . 5 So 1600 160 0 1 8 0 6 . 2 5 1849 8 40 40 4 2 . 5 43 s r t 2116 1 8 0 6 . 2 5 2209 2025 9 46 4 2 . 5 47 45 S 1 0 1600 40 2209 47 1 8 9 2 . 2 5 4 3 . 5 2 2 5 6 . 2 5 47 .5 Z* 3 4 3 . 5 2 350 4 3 5 8 . 5 5 361 7 1 1 7 9 9 2 . 2 5 122500 1 2 8 5 2 2 . 25 130321 i x 2 1 4 8 3 6 . 7 5 15367 1 6 1 1 7 . 75 1 6 3 1 6 . 7 5 70 HEMATOCRIT ( C o n t i n u e d ) £ x E X 2 s l S 2 • 37 0 136900 17169.50 S 3 Sd 4 349.5 12 2 1 5 0 . 2 5 1 5 2 8 3 . 2 5 S ^ D 344 118336 14808.25 S f i b 336.5 113232 14.173. 25 S 7 / 374.5 140250.25 1 7 5 6 4 . 2 5 S 8 332.5 11 0 5 5 6 . 2 5 13831.75 S 9 354 125316 1 5 6 8 6 . 2 5 S 1 0 351 123201 15447 £ x EX 2812 S u b j e c t s ( E x ) 2 989941.75 Ux)2 I 1413 ( E x ) 2 S.L. 1996569 U x ) z 7907344 i x 2 E X Z 71 HEMATOCRIT Su b j e c t s X A l t i t u d e s s 32041 36481 68522 2 179 191 370 S „ 31329 29756.25 61085.25 4 177 172.5 349.5 S^ 30276 28900 59176 5 174 170 344 S^ 28561 28056.25 56617 .25 6 169 167. 5 336.5 s_ 34782.25 35344 70126.25 7 186.5 188 374.5 s„ 27889 27390.25 55279.25 8 167 165.5 332. 5 S„ 30102.25 32580.25 62682.5 9 173.5 180.5 354 S 1 0 29929 173 31684 178 61613 351 244909.5 250192 495101.5 495101.5 4 - -^rr— = 123775.375 64 - 123552.25 = 223.125 72 HEMATOCRIT Sub X T r i a l s T l T 2 T 3 T 4 s l o 9 1 2 0 . 2 5 7 7 4 4 8 2 8 1 9 1 2 0 . 2 5 S 2 9 5 . 5 8 8 9 1 9 5 . 5 " 3 4 2 6 5 . 5 S 3 S 4 7 3 9 6 7 6 5 6 . 2 5 7 6 5 6 . 2 5 7 8 3 2 . 2 5 8 6 8 7 . 5 8 7 . 5 8 8 . 5 3 0 5 4 0 . 7 5 c 7 4 8 2 . 2 5 6 9 7 2 . 2 5 7 4 8 2 . 2 5 7 6 5 6 . 2 5 S 5 8 6 . 5 8 3 . 5 8 6 . 5 8 7 .5 2 9 5 9 3 Q 6 8 0 6 . 2 5 6 5 6 1 7 5 6 9 7 3 9 6 S 6 8 2 . 5 8 1 8 7 8 6 2 8 3 3 2 . 2 5 c 9 0 2 5 9 3 1 2 . 2 5 8 5 5 6 . 2 5 8 1 9 0 . 2 5 S 7 9 5 9 6 . 5 9 2 . 5 9 0 . 5 3 5 0 8 3 . 7 5 S 8 6 8 8 9 6 5 6 1 6 8 8 9 7 3 1 0 . 2 5 8 3 8 1 8 3 8 5 . 5 2 7 6 4 9 . 2 5 c 8 2 8 1 7 2 2 5 8 0 1 0 . 2 5 7 8 3 2 . 2 5 S 9 9 1 8 5 8 9 . 5 8 8 . 5 3 1 3 4 8 . 5 0 c 7 2 2 5 7 8 3 2 . 2 5 7 3 9 6 8 3 7 2 . 2 5 S 1 0 8 5 8 8 . 5 8 6 9 1 . 5 3 0 8 2 5 . 5 0 6 2 2 2 4 . 7 5 5 9 8 6 4 6 1 8 4 0 6 3 7 0 9 . 7 5 2 4 7 6 3 8 . 5 2 4 7 6 3 8 . 5 1 2 3 5 5 2 . 2 5 = 1 2 3 8 1 9 . 2 5 - 1 2 3 5 5 2 . 2 5 = 2 6 7 SS S u b j e c t s = 1 9 0 . 4 6 7 5 1 3 6 9 0 0 1 2 2 1 5 0 . 2 5 1 1 8 3 3 6 1 1 3 2 3 2 1 4 0 2 5 0 . 2 5 8 8 8 8 8 1 1 0 5 5 6 . 2 5 . 1 2 5 3 . 1 6 . 1 2 3 2 0 1 7 9 0 7 3 4 4 _ — _ 8 " 8 . 6 4 1 2 3 7 4 2 . 7 1 7 5 - 1 2 3 5 5 2 . 2 5 = 1 9 0 . 4 6 7 5 SS A l t i t u d e = 3 . 0 7 5 1 9 5 7 2 0 1 3 2 1 9 9 6 5 6 9 3 2 7 9 0 7 3 4 4 6 4 1 2 3 5 5 5 . 3 2 5 - 1 2 3 5 5 2 . 2 5 = 3 . 0 7 5 HEMATOCRIT (Continued) SS t r i a l s = 16.0312 496320.25 ^ 477481 . 494209 ^ 509082. 25 o c _ + + — + _ - 123552.25 16 16 16 16 12356.82812 - 123552.25 = 16.0312 SS t r e a t m e n t s = 57 130321 116281 118680.25 124256.25 117992.25 122500 8 8 8 8 8 8 128522.25 130321 7907344 8 8 ~ 64 123609.25 - 123552.25 = 57 SS t r i a l s x a l t . = SS t r e a t m e n t s - SS t r i a l s - SS a l t = 37.8929 57 - 16.0312 = 3.075 = 37.8929 SS e r r o r = 163.7825 411.25 - 190.4675 - 57 = 163.7825 t o t a l s u b j e c t s t r e a t m e n t s SS t o t a l = 411.25 I x 2 ~ -^IV 2 123963.5 - 123552.25 = 411.25 b H Sub X t r i a l s = SS. . . - SS - SS t r i a l s t o t a l s 267 - 190.4675 - 16.0312 = 60.5013 Sub X A l t = SS t o t a l - SS - SS A l t s 223.125 - 190.4675 - 3.075 = 29.5825 SS^ X t r i a l s X A l t = SS e r r o r - SS„ . , - SS _ n . s s x T r i a l s s x a l t . 163.7825 - 60.5013 - 29.5825 = 73.6987 74 Source S u b j e c t s T r e a t m e n t s t r i a l s a l t i t u d e a l t x t r i a l s E r r o r sub x a l t sub x t r i a l s sub x a l t x t r i a l s T o t a l T a b l e V I I I HEMATOCRIT ANOVA TABLE SS 1 9 0 . 4 6 57 1 6 . 0 3 3 . 0 7 3 7 . 8 9 1 6 3 . 7 8 2 9 . 5 8 6 0 . 5 0 d.f. 7 n i 3 1 49 21 7 3 . 6 9 2 1 4 1 1 . 2 5 63 ms 2 7 . 2 1 8 . 1 4 5 . 3 4 3 . 0 7 1 2 . 6 3 3 . 3 4 4 . 2 2 2 . 8 8 3 . 5 0 6 . 5 2 1 . 8 5 0 . 7 3 no no 3 . 6 0 s i g . 5% F . 0 5 2 . 2 1 . 0 1 ( 7 , 4 9 ) 3 . 0 3 F . 0 5 3 o 0 7 . 0 1 ( 3 , 2 1 ) 4 . 8 7 F . 0 5 4 . 3 2 . 0 1 ( 1 , 2 1 ) 8 . 0 2 F . 0 5 5 . 5 9 . 0 1 ( 1 , 7 ) 1 2 . 2 5 75 SOFTBALL THROW Al t i t u d e S 2 5625 4096 4489 4 6 9 2 . 2 5 75 64 67 6 8 . 5 s „ 5929 6084 6889 7744 4 77 78 83 88 4096 4096 3364 2916 5 64 64 58 54 5329 6400 7744 9604 6 73 80 88 98 S_ 5929 6241 7 4 8 2 . 2 5 7921 7 . 77 79 8 6 . 5 89 So 4356 5329 7744 6724 8 66 73 88 82 So 16900 16900 1 7 5 5 6 . 2 5 18769 9 130 130 1 3 2 . 5 137 S 1 0 8281 91 12100 110 12769 113 14884 122 653 1 678 3 716 6 7 3 8 . 5 8 S 2785 .5 ( E X ) 2 a l t 7759010 .25 (Ex) 2 426409 459684 512656 545382 .25 EX2 56445 61246 6 8 0 3 7 . 5 73254 .25 SOFTBALL THROW S e a L e v e l 4489 3721 4761 6084 2 67 61 69 78 s,, 7225 7225 6561 6889 4 85 85 81 83 sc 3025 3025 2916 2601 5 55 55 54 51 S, 6724 7921 4761 9401 6 82 89 69 97 S-, 7921 6889 4624 6724 7 89 83 68 82 s „ 5041 6724 6241 6561 8 71 82 79 81 s „ 16641 17424 0 15625 14161 9 129 132 125 119 c 10816 14161 11449 11025 S10 104 119 107" 105 E x 682 706 652 696 2 4 5 7 ( E X ) 2 465124 498436 425104 484416 E X 2 61882 67090 56938 63446 SOFTBALL THROW i x d x ) 2 Ix 2 S 2 549.5 301950.25 37957.25 S 4 660 435600 54546 o 455 207025 26039 S 6 676 456976 57884 S 7 653.5 427062.25 53731.25 S 8 622 386884 48720 S 9 1034.5 1070190.25 133976.25 S 1 0 871 758641 95485 i x i x 5.521.5 d x ) 2 Z 2736 U x ) 2 S.L. 7485696 i x 2 i x z 508338.75 SOFTBALL THROW Sub j e c t X T r i a l s T l T2 T3 T4 s l s„ 20164 15625 18496 21462. 25 75747.25 2 142 125 136 146. 5 549.5 S3 • s. 26244 26569 26896 29241 108950 4 162 163 164 171 660 s r 14161 14161 12544 11025 51891 5 • 119 119 112 105 455 S^ 24025 28561 24649 38025 115260 6 155 169 157 195 676 S-, 27556 26244 23870.25 29241 106911.25 7 166 162 154.5 171 653. 5 s 0 18769 24G25 27889 26569 97252 8 137 155 167 163 622 s„ 67081 68644 66306.25 65536 267567.25 9 259 262 257.5 256 1034.5 38025 52441 48400 51529 190395 S10 195 229 220 227 871 236025 256270 249050.5 272628. 25 1013973.75 1013973.75 2 - d x ) 2 = 506986.875 -- 476358. 7851 = 30628.089: SOFTBALL THROW Su b j e c t s X A l t i t u d e s A l t S.L. i x S„ 7 5 3 5 0 . 2 5 7 5 6 2 5 1 5 0 9 7 5 . 2 5 2 2 7 4 . 5 2 7 5 5 4 9 . 5 S . 1 0 6 2 7 6 1 1 1 5 5 6 2 1 7 8 3 2 4 3 2 6 3 3 4 6 6 0 s_ 5 7 6 0 0 4 6 2 2 5 1 0 3 8 2 5 5 2 4 0 2 1 5 4 5 5 s ^ 1 1 4 9 2 1 1 1 3 5 6 9 2 2 8 4 9 0 6 3 3 9 3 3 7 6 7 6 1 0 9 8 9 2 . 2 5 1 0 3 6 8 4 2 1 3 5 7 6 . 2 5 7 3 3 1 . 5 3 2 2 6 5 3 . 5 s „ 9 5 4 8 1 9 7 9 6 9 1 9 3 4 5 0 8 3 0 9 3 1 3 6 2 2 S„ 2 8 0 3 7 0 . 2 5 2 5 5 0 2 5 5 3 5 3 9 5 . 2 5 9 5 2 9 . 5 5 0 5 1 0 3 4 . 5 c 1 9 0 0 9 6 1 8 9 2 2 5 3 7 9 3 2 1 S 1 0 4 3 6 4 3 5 8 7 1 1 0 2 9 9 8 6 . 7 5 9 9 2 8 7 8 2 0 2 2 8 6 4 . 7 5 2 0 2 2 8 6 4 . 7 5 _ ( E x ) 2 _ 4 6 4 ^ 1 1 5 0 5 7 1 6 . 1 8 7 5 - 4 7 6 3 5 8 . 7 8 5 1 = 2 9 3 5 7 . 4 0 2 4 SS S u b j e c t s = 2 9 1 8 2 . 3 0 8 6 3 0 1 9 5 0 . 2 5 4 3 5 6 0 0 2 0 7 0 2 5 4 5 6 9 7 6 4 2 7 0 6 2 . 2 5 3 8 6 8 8 4 8 8 8 8 1 0 7 0 1 9 0 . 2 5 7 5 8 6 4 1 3 0 4 8 6 9 6 2 . 2 5 8 8 ~ 6 4 5 0 5 5 4 1 . 0 9 3 7 - 4 7 6 3 5 8 . 7 8 5 1 = 2 9 1 8 2 . 3 0 8 6 SS treatments = 7 9 2 . 6 2 1 1 4 2 6 4 0 9 , 4 5 9 6 8 4 . 5 1 2 6 5 6 . 5 4 5 3 8 2 . 2 5 , 4 6 5 1 2 4 ^ 4 9 8 4 3 6 _,_ + ^ + s + ^ + 7. + 7* + 8 8 4 2 5 1 0 4 , 4 8 4 4 1 6 + 8 8 , - 4 7 6 3 5 8 . 7 8 5 1 8 8 4 7 7 1 5 1 . 4 0 6 2 - 4 7 6 3 5 8 . 7 8 5 1 = 7 9 2 . 6 2 1 1 80 SOFTBALL THROW ( C o n t i n u e d ) SS t r i a l s = 322.168 1782225 . 1915456 . 1871424 2057790. 25 ' A n r ~ r . Q n o t L , _ — + + __ + __ _ 4 7 6 3 5 8 . 7 8 5 1 16 x6 16 l b 476680.9531 - 4 7 6 3 5 8 . 7 8 5 1 = 322.168 SS A l t i t u d e = 38.2849 7 7 ^ 9 0 1 0 ^ 2 5 + 7485696 _ 4 7 6 3 5 8 . 7 8 5 1 476397.07 - 4 7 6 3 5 8 . 7 8 5 1 = 38.2849 SS A l t . X T r i a l s = 432.1682 7 9 2 . 6 2 1 1 - 322.168 - 38.2849 = 432.1682 t r e a t m e n t s t r i a l s a l t i t u d e SS t o t a l = 31979.9649 508338.75 - 4 7 6 3 5 8 . 7 8 5 1 = 31979,9649 , . • , = 1123.6133 su b x t r i a l s 3 0 628.0899 - 29182.3086 - 322.168 = 1123.6133 SS t o t a l -SS , - SS,. . • sub t r i a l s S ub X A l t = 136.8089 29357.4024 - 29182.3086 - 38.2849 = 136.8089 SS t o t a l - S S s u b - S S a l t g u b X t r i a l s X a l t = 744.613 2005.0352 - 1123.6133 - 136.8089 = 744.613 SS e r r o r - SS . , - SS sub sub x a l t Source S u b j e c t s T reatments a l t i t u d e t r i a l s t r i a l s x a l t . E r r o r sub x a l t sub x t r i a l s sub x t r i a l s x a l t . T o t a l T a b l e V I SOFTBALL THROW ANOVA TABLE SS 29182.31 792.62 38.28 322.17 d.f. 7 7 1 3 432.16 3 2005.03 49 136.81 7 1123.61 21 744.61 21 31979.96 63 ms 4168.90 113.23 38.28 107.38 1.96 2.01 144.056 4.06 40.92 19.54 53.50 35.45 507.61 no no s i g . 5% F .05 2.21 .01 (7,49) 3.03 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25 50 YD. DASH A l t i t u d e s„ 5 9 . 29 6 0 . 84 5 6 . 2 5 6 0 . 84 2 7 . 7 7 . 8 7 . 5 7 . 8 5 3 . 2 9 6 0 . 84 6 4 . 0 0 5 9 . 29 4 7 . 3 7 , 8 8 . 0 7 . 7 s r 67 .24 6 7 . 2 4 5 9 . 2 9 6 2 . 4 1 5 8 .2 8 . 2 7 . 7 7 . 9 S^ 4 7 . 6 1 4 7 . 6 1 4 4 . 8 9 4 9 . 0 0 6 6 . 9 6 . 9 6 . 7 7 . 0 S-, 5 7 . 7 6 57 .76 6 2 . 4 1 6 0 . 84 7 7 . 6 7 . 6 7 . 9 7 . 8 Sr, 5 6 . 25 6 0 . 84 6 2 . 41 5 4 . 7 6 8 7 . 5 7 . 8 7 . 9 7 . 4 s„ 5 1 . 84. 5 1 . 8 4 5 0 . 41 5 0 . 4 1 9 7 . 2 7 . 2 7 . 1 7 . 1 Q 5 1 . 8 4 5 1 . 8 4 4 7 . 6 1 4 9 . 0 0 S 1 0 7 . 2 7 . 2 6 . 9 7 . 0 E 239 . 5 i x 5 9 . 6 0 6 0 . 50 5 9 . 7 0 5 9 . 7 0 dx)2 A l t 1 3 6 8 57360 . 2 5 dx)2 3 5 5 2 . 1 6 3 6 6 0 . 2 5 3 5 6 4 . 0 9 3 5 6 4 . 0 9 i x 2 4 4 5 . 1 2 4 5 8 . 8 1 4 4 7 . 2 7 4 4 6 . 5 5 50 YD. DASH S e a L e v e l s_ 54 .76 5 1 . 84 5 6 . 2 5 5 6 . 2 5 2 7 .4 7 .2 7 . 5 7 .5 s „ 54 . 76 5 6 . 2 5 54 . 76 . 57 .76 4 7 .4 7 .5 7 .4 7 .6 S r- 6 0 .84 59 .29 64. 00 6 2 . 4 1 5 7 .8 7 .7 8 .0 7 .9 S 6 42 . 25 6 .5 46 . 24 6 .8 4 2 . 2 5 6 . 5 46 . 24 6 .8 s 7 57 . 76 7 .6 57 .76 7 . 6 5 7 . 7 6 7 .6 59 .29 7 .7 s „ 53 .29 57 .76 56 . 25 5 6 . 2 5 8 7 .3 7 .6 7 . 5 7 .5 s „ 4 7 . 6 1 5 0 . 4 1 4 9 . 0 0 5 1 . 84 9 6 .9 7 . 1 7 .0 7 .2 S 1 0 50 . 41 7 . 1 47 . 61 6 .9 4 6 . 24 6 .8 4 2 . 2 5 6 .5 Ex • 58 .00 2 5 8 . 4 0 4 5 8 . 3 0 5 5 8 . 7 0 7 ( E X ) 2 3364 3410 .56 3398 .89 3445 .69 E X 2 421 .68 427 .16 4 2 6 . 5 1 432 .29 50 YD. DASH i x h x ) 2 I x 2 S 2 60.4 3648.16 456.32 S 4 60.7 3684.49 460.95 S 5 63.4 4019.56 502.72 S 6 54.1 2926.81 366.09 S 7 61.4 3769.96 471.34 S 8 60.5 3660.25 457.81 SQ y 56.8 3226.24 403.36 S 1 0 55. 6 3091.36 386.80 i x i x 472. 9 d x ) 2 Ex S.L. 2334 d x ) 2 54475.56 i x 2 i x ' 3505.39 85 50 YD. DASH S u b j e c t X T r i a l s T l T2 T3 T4 S o 228.01 225 225 234.09 912.1 2 15.1 15.0 15.0 15.3 60.4 s „ 216.09 234.09 237.16 234.09 921.43 4 14.7 15.3 15.4 15.3 60.7 256.0 252.81 246.49 249.64 1004.94 5 16.0 15.9 15.7 15. 8 63.4 S^ 179.56 187.69 174.24 190.44 731.93 6 13. 4 13.7 13.2 13. 8 54.1 '231.04 231.04 240.25 240.25 942.58 7 15.2 15. 2 15.5 15. 5 61.4 219.04 237.16 237.16 222.01 915.37 8 14. 8 15. 4 15.4 14.9 60.5 S n 198.81 204.49 198.81 204.49 806.6 9 14.1 14.3 14.1 14.3 56.8 S 1 0 204.49 14.3 198.81 14.1 187.69 13.7 182.25 13.5 773.24 55.6 1733.04 1771.09 1746.8 1757.26 7008.19 7008.19 ( E X ) 2 2 64 = t o t a l 3504.095 - 3494 .2876562 = 9 .807763 5 0 YD. DASH Subjects X Al t i t u d e s A l t . S.L. E S 2 948.64 3 0 . 8 8 7 6 . 1 6 2 9 . 6 1 8 2 4 . 8 6 0 . 4 S 4 9 4 8 . 6 4 3 0 . 8 8 9 4 . 0 1 2 9 . 9 1 8 4 2 . 6 5 6 0 . 7 S 5 1 0 2 4 . 3 2 9 8 5 . 9 6 3 1 . 4 2 0 0 9 . 9 6 6 3 . 4 S 6 7 5 6 . 2 5 2 7 . 5 7 0 7 . 5 6 2 6 . 6 1 4 6 3 . 8 1 5 4 . 1 S- 9 5 4 . 8 1 9 3 0 . 2 5 1 8 8 5 . 0 6 7 3 0 . 9 - 3 0 . 5 6 1 . 4 s r t 936.36 8 9 4 . 0 1 1 8 3 0 . 3 7 O 3 0 . 6 2 9 . 9 6 0 . 5 S Q 8 1 7 . 9 6 7 9 5 . 2 4 1 6 1 3 . 2 y 2 8 . 6 2 8 . 2 5 6 . 8 c 8 0 0 . 8 9 7 4 5 . 2 9 1 5 4 6 . 1 8 S 1 0 2 8 . 3 2 7 . 3 5 5 . 6 7 1 8 7 . 5 5 6 8 2 8 . 4 8 1 4 0 1 6 . 0 3 - ( E X ) 2 = 3 5 0 4 . 0 0 7 5 - 3 4 9 4 . 2 8 7 6 5 6 2 = 9 . 7 1 9 8 4 4 t o t a l SS subjects = 9 . 0 6 6 0 9 4 3 6 4 8 . 1 6 3 6 8 4 . 4 9 4 0 1 9 . 5 6 2 9 2 6 . 8 1 3 7 6 9 . 9 6 3 6 6 0 . 2 5 8 8 8 8 8 8 3 2 2 6 . 4 0 3 0 9 1 . 3 6 2 2 3 6 3 4 . 4 1 8 8 " 6 4 3 5 0 3 . 3 5 3 7 5 - 3 4 9 4 . 2 8 7 6 5 6 2 = 9 . 0 6 6 0 9 4 SS treatments = . 6 7 8 5 9 3 8 3 5 5 2 . 1 6 3 6 0 0 . 2 5 3 5 6 4 . 0 9 3 5 6 4 . 0 9 3 3 6 4 3 4 1 0 . 5 6 8 8 8 "H 8 8 3 3 9 8 . 8 9 2 2 3 6 3 4 . 4 1 8 ~ 6 4 3 4 9 4 . 9 6 6 2 5 - 3 4 9 4 . 2 8 7 6 5 6 2 = . 6 7 8 5 9 3 8 5 0 Y D . D A S H ( C o n t i n u e d ) S S t r i a l s = . 5 8 1 4 0 6 1 3 8 2 9 . 7 6 , 1 4 1 3 7 . 2 1 ^ 1 3 9 2 4 . 1 4 0 1 8 . 5 6 . . . . O Q ^ c r - c o -j- — + — — + zr-? - 3 4 9 4 . 2 8 7 6 5 6 2 = 16 16 x6 l b 3 4 9 4 . 3 4 5 6 2 5 - 3 4 9 4 . 2 8 7 6 5 6 2 = . 5 8 1 4 0 6 S S A l t X t r i a l s = . 0 3 9 2 0 9 0 . 6 7 8 5 9 3 8 - . 0 5 7 9 7 8 8 - . 5 8 1 4 0 6 = . 0 3 9 2 0 9 t r e a t m e n t s - t r i a l s - a l t S S A l t i t u d e = . 5 8 1 4 0 6 5 7 3 6 0 . 2 5 5 4 4 7 5 . 5 6 2 2 3 6 3 4 . 4 1 32 32 64 3 4 9 4 . 8 6 9 0 6 2 - 3 4 9 4 . 2 8 7 6 5 6 2 = . 5 8 1 4 0 6 S S E r r o r = 1 . 3 5 7 6 5 6 2 1 1 . 1 0 2 3 4 4 - 9 . 0 6 6 0 9 4 - . 6 7 8 5 9 3 8 = 1 . 3 5 7 6 5 6 2 t o t a l - s u b j e c t s - t r e a t m e n t s S S t o t a l = 1 1 . 1 0 2 3 4 4 _ 2 ( Z X ) 2 X N ~ 3 5 0 5 . 3 9 - 3 4 9 4 . 2 8 7 6 5 6 = 1 1 . 1 0 2 3 4 4 S S , . , = 9 . 8 0 7 7 6 3 - 9 . 0 6 6 0 9 4 - . 5 8 1 4 0 6 = . 1 6 0 2 6 3 s u b x t r i a l s g g _ g g _ g g t o t a l s u b L t r i a l s S S , = 5 9 5 7 7 1 ? s u b x A l t — 9 . 7 1 9 8 4 4 - 9 . 0 6 6 0 9 4 - . 0 5 7 9 7 8 8 = . 5 9 5 7 7 1 2 S S , . . S S , S S A l t . t o t a l s u b S S s u b x t r i a l s X A l t 1 . 3 5 7 6 5 6 2 - . 1 6 0 2 6 3 - . 5 9 5 7 7 1 2 = . 6 0 1 6 2 2 S S e r r o r ° S s u b X t r i a l s S ° s u b X A l t T a b l e V 50 YARD DASH ANOVA TABLE Source SS d.f. ms F S u b j e c t s 9.06 7 1.29 Treatments .68 7 .09 t r i a l s .06 3 .01 2. 53 a l t i t u d e .58 1 .58 6. 83 a l t . x t r i a l s .039 3 .013 0. 46 E r r o r 1.36 49 .027 sub x a l t .59 7 •;.035 sub x t r i a l s .16 21 .007 sub x t r i a l s x a l t . .60 21 .028 T o t a l 11.10 63 .18 F .05 2.21 F .05 4.34 .01 (7,49) 3.03 .01 (1,21) 8.02 F .05 3.07 .01 (3,21) 4.87 F .05 5.59 .01 (1,7) 12.25 89 88C YD. RUN A l t i t u d e 37597. 21 34447.36 33379. 29 32616. 36 2 193. 9 185. 6 182. 7 180. 6 S„ 50850. 25 50805.16 47961 41209 4 225. 5 225. 4 219 203 s r 61951. 21 49729 59000. 41 52441 5 248. 9 223 242. 9 229 35268. 84 34410.25 32292. 09 38769. 61 6 187. 8 185. 5 179. 7 196. 9 s_ 56453. 76 55648.81 43681 44100 7 • 237. 6 235.9 209 210 s„ 57456. 09 50131.21 46483. 36 46483. 36 8 239. 7 223.9 215. 6 215. 6 47742. 25 37908.09 41534. 44 39601 9 218. 5 194.7 203. 8 199 S 1 0 45369 213 37869.16 194. 6 36442. 190. 41 9 34521. 185. 64 8 i x 1764.9 1 1668.6 3 1643 6 1619.9 8 E x 6697 ( E x ) 2 a l t 44849809 d x ) 2 3114872. 01 2784225.96 2701420. 96 2524076. 01 i x 2 392688. 61 350949.04 340774 329741. 97 880 YD. RUN Sea L e v e l s„ 34373. 16 37403. 56 32797. 21 34894.24 2 185. 4 193. 4 181. 1 186.8 S , 43388. 89 50625 46139. 04 40561.96 4 208. 3 225 214. 8 201.4 s r 50625 56169 50086. 44 49773.61 5 225 237 223. 8 223.1 S^ 32112. 64 34856. 89 30940. 81 33051.24 6 179. 2 186. 7 175. 9 181.8 s_ 515-7-4. 41 52120. 39 50760. 09 48929.44 7 227. 1 228. 3 225. 3 221.2 46268. 01 60762. 25 51483. 61 40561.96 8 215. 1 246. 5 226. 9 201.4 s„ 38064. 01 37713. 64 35231. 29 36252.16 9 195. 1 194. 2 187. 7 19 0.4 S 1 0 45753. 213. 21 9 38927. 197. 29 3 40000 200 36062.01 189.9 i x 1649.1 2 1708.4 4 1635.5 5 1596 7 d x ) 2 2719530. 81 2918630. 56 2674860. 25 2547216. i x 2 342159. 33 368578. 52 337438. 49 320086.62 91 880 YD. RUN EX (EX)2 EX2 S 2 1489.5 2218610.25 277508.39 S 4 1722.4 2966661.76 371540.30 S 5 1852.7 3432497.29 429775.67 S 6 1473.5 2171202.25 271702.37 S 7 1794.4 3219871.36 403268.40 S 8 1784.7 3185154.09 399629.85 S 9 1583.4 2507155.56 314046.88 S 1 0 1585.4 2513493.16 314944.72 Ex EX 13286 (EX)2 (Ex) 2 17517796 Zx S.L. 6589 (EX)2 43414921 EX2 Ex' 2782416.58 92 880 YD. RUN S u b j e c t X T r i a l s s„ 143868. 49 143641 132350. 44 134982. 76 554842. 69 2 379. 3 379 363. 8 367. 4 1489. 5 s. 188182. 44 202860. 16 188182. 44 163539. 36 742764. 4 4 433. 8 450. 4 433. 8 404. 4 1722. 4 S c 224581. 21 211600 217808. 89 204394. 41 858384. 51 5 473. 9 460 466. 7 452. 1 1852. 7 s^ 134689. 138532. 84 126451. 36 143413. 69 543086. 89 6 367 372. 2 355. 6 378. 7 1473. 5 215946. 09 215481. 64 188616. 49 185933. 44 805977. 66 7 464 . 7 464. 2 434. 3 431. 2 1794. 4 S n 206843. 04 221276. 16 195806. 25 173889 797814. 45 8 454. 8 470. 4 442. 5 417 1784. 7 171064. 96 151243. 21 153272. 25 151632. 36 627212. 78 9 413. 6 388. 9 391. 5 389. 4 1583. 4 c 182243. 61 153585. 61 152802. 81 141150. 49 629782. 52 S 1 0 426. 9 391. 9 390. 9 375. 7 1585. 4 1467418. 84 1438220. 62 1355290. 93 1298935. 51 5559865. 9 5559865. 2 9 2758090. 5 = 2779932. 95 - 2758090 .5 = 21842.45 • t o t a l T r i a l s Table TI T2 T3 T4 A l t 1 7 6 4 . 9 1 1 6 6 8 . 6 3 1 6 4 3 . 6 6 1 6 1 9 . 9 8 S.L. 1 6 4 9 . 1 2 1 7 0 8 . 4 4 1 6 3 5 . 5 5 1 5 9 6 7 3 4 1 4 3 3 7 7 3 2 7 9 . 1 3 2 1 5 . 9 1 1 6 5 5 3 9 6 1 1 4 0 4 1 2 9 1 0 7 5 2 4 9 6 . 8 1 1 0 3 4 2 0 1 2 . 8 1 i i i § 4 0 3 _ 4 ^ 6 2 _ 2 7 5 8 o 9 0 . 5 1 6 2 7 5 9 6 2 7 . 1 6 3 - 2 7 5 8 0 9 0 . 5 = 1 5 3 6 . 6 6 3 8 8 0 Y D R U N Sub X A l t A l t S . L . z s „ 5 5 1 7 5 1 . 8 4 5 5 7 5 6 0 . 8 9 1 1 0 9 3 1 2 . 7 3 2 7 4 2 . 8 7 4 6 . 7 1 4 8 9 . 5 s „ 7 6 1 9 5 4 . 4 1 7 2 1 6 5 0 . 2 5 1 4 8 3 6 0 4 . 6 6 4 8 7 2 . 9 8 4 9 . 5 1 7 2 2 . 4 s r 8 9 0 7 5 8 . 4 4 8 2 6 0 9 9 . 2 1 1 7 1 6 8 5 7 . 6 5 5 9 4 3 . 8 9 0 8 . 9 1 8 5 2 . 7 S ^ 5 6 2 3 5 0 . 0 1 5 2 3 5 9 6 . 9 6 1 0 8 5 9 4 6 . 9 7 6 7 4 9 . 9 7 2 3 . 6 1 4 7 3 . 5 s „ 7 9 6 5 5 6 . 2 5 8 1 3 4 2 6 . 6 1 1 6 0 9 9 7 9 . 8 6 7 8 9 2 . 5 9 0 1 . 9 1 7 9 4 . 4 S o 8 0 0 6 6 7 . 0 4 7 9 1 9 2 2 . 0 1 1 5 9 2 5 8 9 . 0 5 8 8 9 4 . 8 8 8 9 . 9 1 7 8 4 . 7 s „ 6 6 5 8 5 6 5 8 8 9 0 2 . 7 6 1 2 5 4 7 5 8 . 7 6 9 8 1 6 7 6 7 . 4 1 5 8 3 . 4 Q 6 1 5 1 2 6 . 4 9 6 4 1 7 6 1 . 2 1 1 2 5 6 8 8 7 . 7 S 1 0 7 8 4 . 3 8 0 1 . 1 1 5 8 5 . 4 5 6 4 5 0 2 0 . 4 8 5 4 6 4 9 1 6 . 9 1 1 1 0 9 9 3 7 . 3 8 1 1 1 0 9 9 3 7 - 3 8 - 2758090.5 2777484.34 - 2758090.5 = 19393.84 94 880 YD. RUN ( C o n t i n u e d ) SS S u b j e c t s = 1 8 7 4 0 . 2 1 2218610. 25 ^ 2 9 6 6 6 6 1 . 76 _,_ 3 4 3 3 9 7 9 . 61 . 21 7 1 2 0 2 . 2 5 . 3 2 1 9 8 7 1 . 36 . _ + _ + _____ + g + _ _ + 3185154.09 2507155.56 2513493.16 ( 1 3 2 8 6 ) 2 8 8 8 64 2221465.72 176517796 8 64 SS t r e a t m e n t s = 2513.57 = 2 7 7 6 8 3 0 . 7 1 - 275 8 0 9 0 . 5 = 1 8 7 4 0 . 2 1 3 1 1 4 8 7 2 . 0 1 J 2784225.96 ^ 2701420.96 ^ 2 6 2 4 0 7 6 . 0 1 ^ 2 7 1 9 5 3 0 . 8 1 . _ + _ + _ + _ + _ + 2918630.56 , 2 6 7 4 8 6 0 . 2 5 ^ 2547216.0 - - _ o n « n e _ + _ + _ _ 2/Douyu . o 22084832.56 _ 2 7 5 8 0 9 0 . 5 = 2760604.07 - 2758090.5 = 2513.57 o SS t r i a l s = 1536.663 4 4 1 R 4 0 3 4 62 : f - - 2758090.5 = 2 7 5 9 6 2 7 . 1 6 3 - 2758090.5 = 1 5 3 6 . 6 6 3 16 SS A l t i t u d e = 182.3 44849809 4 3 4 1 4 9 2 1 ^ + — 3 2 " 2758090.5 = 2758272.8 - 2 7 5 8 0 9 0 . 5 = 182.3 SS A l t X T r i a l s = 794.607 2513.57 - 1536.663 - 182.3 = 794.607 t r e a t m e n t s - t r i a l s - a l t i t u d e SS E r r o r = 24326.08 - 18 7 4 0 . 2 1 - 2513.57 = 3072.3 t o t a l - s u b j e c t s - t r e a t m e n t s SS t o t a l = E x 2 ( E X ) N 2782416.58 - 2758090.5 = 24326.08 SS , v = 471.33 s u b X A l t 19393.84 - 18 7 4 0 . 2 1 - 182.3 = 471.33 t o t a l -S3 . -SS,,. sub A l t 880 YD. RUN (Continued) SS . . . , = 1565.577 sub X t r x a l 21842.45 - 18740.21 - 1536.663 = 1565.577 t o t a l - SS , -S3,. . , sub t r x a l s S SSub X T r i a l s X A l t = 1 0 3 5 - 3 9 3 3072.3 - 1565.577 - 471.33 = 1035.393 error - S 3 g u b x T r ± a l s ~ S S S u b x A l t 96 ONLY SIGNIFICANT TRIALS EFFECT Linear Trend Analysis 880 yd. run SS t r i a l s 1536.663 SS l i n e a r 1497.3151 A l fcl A2 fc2 A3 fc3 A4 H [(-3)3414 + (-1)3377 + (1)3279.1 + (3)3215.91 2 16(20) n EA 12 [(-10242) + (-3377) + 3279.1 + 9647.7] 2 320 [(-13619) + 12926.8] 2 _ (692.2) 2 _ 479140.84 _ , A O _ _1 320 320 3~20 ± 4 y / . j i . i T a b l e I I I 880 YARD RUN ANOVA TABLE Source S u b j e c t s Treatments t r i a l s l i n e a r a l t i t u d e t r i a l s x a l t . Error sub x a l t sub x t r i a l s sub x • t r i a l s x a l t T o t a l SS 18740.21 2513.57 1536.66 1497.31 182.3 794.60 3072.3 471.33 1565.57 1035.39 24326.08 d.f , 7 7 3 1 3 49 7 21 21 63 ms 2677.17 359.08 5X2•2 2 1497.31 182.3 264 . 8 7 62.7 67.33 74.55 49.30 3861.44 F p 5.72 s i g . 1% 6.87 s i g . 1% 20.08 s i g . 1% 2.71 no s i g . 5.37 s i g . 1% F .05 4.04 .01 (1,49) 7.18 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25 440 YD. DASH Altitude s„ 6938. 89 5821.62 6177.96 5836.96 2 83. 3 76.3 78.6 76.4 S. 7921 8226.49 8760.96 7242.01 4 89 90.7 93.6 85.1 s r 9940 8704.89 9840.64 9196.81 5 99. 7 93.3 99.2 95.9 s^ 6068. 41 5640.01 6642.25 6464.16 6 77. 9 75.1 81.5 80.4 s_ 8930. 25 7832.25 10020.01 7673.76 7 94. 5 88.5 100.1 87.6 sn 10404 8281 9940.09 6872.41 8 102 91 99.7 82.9 7089. 64 6416 6577.21 6496.36 9 84. 2 80.1 81.1 80.6 S 1 0 7039. 83. 21 9 6115.24 78.2 6256.81 79.1 5655.04 75.2 i x 714.5 1 673.2 3 712.9 6 664.1 8 E 2764,7 (EX)2 Alt 7643566.09 dx)2 510510. 25 453198.24 508226.41 441028.81 EX2 64331.4 57037.57 64215.93 55437.51 440 YD. DASH S e a L e v e l S o 6625.96 6691.24 6674.89 6512.49 2 81.4 81.8 81.7 80.7 s„ 7796.89 8226.49 8742.25 7638.76 4 88.3 90.7 93. 5 87.4 s c 9820.81 10629.61 10836.81 11257.21 5 99.1 103.1 104.1 106.1 s^ 5595.04 6162.25 6006.25 7761.61 6 74.8 78.5 77.5 88.1 S 7 7191.04 8704.89 9101.16 8046.09 84.8 93.3 95.4 89.7 s 0 8537.76 8873.64 10060.09 7621.29 8 92.4 94.2 100.3 87 .3 S - 6593.44 7140.25 6496.36 7039.21 9 81.2 84.5 80.6 83.9 S 1 0 7276.09 85.3 6336.16 79.6 6707.61 81.9 6146.56 78.4 E X 687.3 2 705.7 4 715 5 701.6 7 ( E X ) 2 472381.29 498012.49 511225 492242.56 E X 2 59437.03 62764.53 64625.42 62023.22 440 YD. DASH EX ( E X ) 2 IX 2 S2 640.2 409856.04 51280.08 S4 718.3 515954.89 64554.85 S5 800.5 640800.25 80226.78 S6 633.8 401702.44 50339.98 S7 733.9 538609.21 67499.45 S8 749. 8 562200.04 70590.28 S9 656.2 430598.44 53848.47 S10 641.6 411650.56 51532.72 Ex Ex 5574.3 (EX)2 Z X S.L. 2809. 6 (EX)2 7893852.16 EX 2 EX" 489872.61 440 YD. DASH S u b j e c t X T r i a l s TI T2 T3 • T4 Z So 27126. 09 24995. 61 25696. 09 24680. 41 102498. 2 2 164. 7 158. 1 160. 3 157. 1 640. 2 s„ 31435. 29 32905. 96 35006. 41 29756. 25 129103. 91 4 177. 3 181. 4 187. 1 172. 5 718. 3 39521. 44 38572. 96 41330. 89 40804 160229. 29 5 198. 8 196. 4 203. 3 202 800. 5 23317. 29 23592. 96 25281 28392. 25 100583. 5 6 152. 7 153. 6 159 168. 5 633. 8 S-, 32148. 49 33051. 24 38220. 25 31435. 29 134855. 27 7 179. 3 181. 8 195. 5 177. 3 733. 9 So 37791. 36 34299. 04 40000 28968. 04 141058. 44 8 194. 4 185. 2 200 170. 2 749. 8 S n 27357. 16 27093. 16 26146. 89 27060. 25 107657. 46 9 165. 4 164. 6 161. 7 164. 5 656. 2 Q 28628. 64 24900. 84 25921 23592. 96 103043. 44 S10 169. 2 157. 8 161 153. 6 641. 6 247325. 76 239411. 77 257602. 53 234689. 45 97902951 979029. 51 _ UxJi. = t Q t a l s s 2 64 t o t a i S b s u b x t r i a l s 489514.755 - 485512.8201 =4001.9349 t o t a l T r i a l s Table TI T2 T3 T4 A l t 714.5 673.2 712.9 664.1 2764.7 2809 6 S.L. 687.3 705.7 715 701.6 5574 3 1401.8 1378.9 1427.9 1365.7 1965043.24 1901365.21 2038898.41 16 16 16 1865136.49 7770443.35 _ ( £ X ) 2 16 16 64 485652.7093 - 485512.8201 = 139.8892 440 YD. DASH Sub X A l t A l t S.L. S„ 98973. 16 106015. 36 204988. 52 2 314. 6 325. 6 640. S . 128450. 56 129528. 01 257978. 57 4 358. 4 359. 9 718. 3 Sr. 150621. 61 170073. 76 320695. 37 5 '388. 1 412. 4 800. 5 s ^ 99162. 01 101697. 21 200859. 22 6 314. 9 318. 9 633. 8 s_ 137418. 49 131914. 24 269332. 73 7 370. 7 363. 2 733. 9 s „ 141075. 36 140025. 64 281101. 8 375. 6 374. 2 749. 8 S„ 106276 109032. 04 215308. 04 9 326 330. 2 656. 2 S10 100108. 316. 96 4 105755. 325. 04 2 205864 641. 6 962086. 15 994041. 3 1956127. 45 1956127.45 _ 4 8 5 5 1 2 . 8 2 0 1 489031.86 - 485512.8201 = 3519.0399 103 ONLY SIGNIFICANT TRIALS EFFECT Linear Trend Analysis 440 yd. dash SS t r i a l s = 139.8892 SS l i n e a r = 10.98903125 A l t l A2 fc2 A 3 fc3 A4 fc4 [(-3)1401.8 + (-1) 1378.9 + (1)1427.9 + (3)1365.7] 2 16 (20) n Z A ^ [(-4205.4) + (-1378.9) + 1427.9 + 4097.I] 2 320 [(-5584.3) + 5525J 2 = ( _ - g > 3 ) 2 . 3 5 1 6 ^ 4 9 _ 1 0 . 9 8 9 0 3 1 2 5 320 v , 1 0 4 440 Y A R D D A S H ( C o n t i n u e d ) S S S u b j e c t s = 3403.5636 409856.04 515954.89 640800.25 401702.44 5 3 8 6 0 9 . 2 1 8 8 8 8 8 562200.04 430598.44 411650.56 ( 5 5 7 4 . 3 ) 2 8 8 8 " 6 4 488921.4837 - 4 8 5 5 1 2 . 8 2 0 1 = 3408.6636 S S t r e a t m e n t s = 3 4 0 . 3 1 1 510510.25 453198.24 5 0 8 2 2 6 . 4 1 441028.8 472381.29 8, 8 8 8 8 i _ 8 0 1 2 ^ 9 + 511225 + 492242.56 _ 4 8 5 5 1 2 . 8 2 0 1 485853.1312 - 4 8 5 5 1 2 . 8 2 0 1 = 3 4 0 . 3 1 1 1 S S t r i a l s = 139.8892 196543.24 . 19 0 1 3 6 5 . 2 1 J 2 0 3 8 8 9 8 . 41 ^ 18651 3 6 . 4 9 AOccn _ ^ _ + + — 4 8 5 5 1 2 . 8201 4 8 5 6 5 2 . 7 0 9 3 - 4 8 5 5 1 2 . 8 2 0 1 = 139.8892 S S a l t i t u d e = 31.5002 7j5J3566^09 + 7893852.16 _ 4 8 5 5 1 2 . 8 2 Q 1 4 8 5 5 4 4 . 3 2 0 3 - 4 8 5 5 1 2 . 8 2 0 1 = 31.5002 S S . T r i a l s X A l t = 168.9216 340.311 - 139.8892 - 31.5002 = 168,9216 S S t r e a t m e n t s - S S t r i a l s - S S A l t S S E r r o r = 6.10. 8152 4359.7899 - 3408.6636 - 340.3111 = 610.8152 t o t a l s u b j e c t s t r e a t m e n t s S S t o t a l = 4359.7899 4 8 9 8 7 2 . 6 1 - 485 5 1 2 . 8 2 0 1 - 4359.7899 S S , v , , = 7 8 . 8 7 6 1 s u b X a l t 3519.0399 - 3408.6636 - 31. 5002 = ZfLJlQ S S t o t a l - S S s u b - S S A l t 44 0 YARD DASH (Continued) SS . v . . , = 453.3821 sub X t r i a l s 4001.9349 - 3408.6636 - 139.8892 = 453.3821 SS t o t a l - S S s u b " S S t r i a l s SS = sub X t r i a l s X a l t 610.8152 - 453.3821 - 78.8761 = 78.5570 error - sub X t r i a l s - sub X a l t T a b l e IV 440 Y a r d Dash Anova T a b l e S o u r c e S u b j e c t s Treatments t r i a l s l i n e a r quad, c u b i c A l t i t u d e t r i a l s E r r o r sub x a l t sub x t r i a l s sub x t r i a l s x a l t T o t a l SS 3403.66 340,31 139.88 10.98 4.82 104.76 31.50 168.92 610.81 78.87 453.38 78.55 4359.79 d . f . 7 7 3 1 1 1 49 21 21 63 ms 486.95 48.61 46.63 10.98 4.82 104.76 31.50 56.30 12.46 11.26 21.59 3.74 69.20 2.16 no 4.80 2.79 s i g . 5% no 15.06 s i g . 1% F .05 4.04 .01 (1,49) 7.18 F .05 3.07 .01 (3,21) 4.87 F .05 4.32 .01 (1,21) 8.02 F .05 5.59 .01 (1,7) 12.25 107 CUBIC TREND ANALYSIS SS Cubic 104.767531 [(-1)1401.8 + (3)1378.9 - 3(1427.9) + 1(1365.7)] 2 (-183.1)2 16 (20) 320 3 3 5 3 2 0 6 1 = 104.767537 QUADRATIC TREND ANALYSIS SS quad = 4.826531 [(1)1401.8 - (1)1378.9 - 1(1427.9) + 1(1365.7)] 2 _ (-39.3) 2 16(20) 320 1544 49 320 = 4.826531 Raw Sco r e s HEMATOCRITS S u b j e c t s 1 4/8 A l t i t u d e 3 6 4/21 5/13 2 4/15 Sea 4 4/28 L e v e l 5/20 E r i n 2 K e n n e y 46.5 42 42. 48.5 49 46 49 47 Wendy 4 M c l i a l f f ey 4,5.5 44 43.5 44 40.5 43.5 44 44.5 C o n n i e 5 S m i t h 43.5 41 45.5 44 43 42.5 41 43.5 D a n y l l 6 A y r a u l t 43 40 43 43 39.5 41 44 43 M a r t y 7 J e f f r i e s 49.5 49 45 43 45.5 47.5 47.5 47.5 " S t a c e y 8 A y r a u l t 4 3 41 40.5 42.5 40 40 42.5 43 D e b b i e 9 B e a c h 45 | .42.5 42.5 43.5 46 42.5 47 45 J u l i e 10 V a n K l e e c k 45 | 41.5 42. 5 44 40 47 43.5 47.5 Temp 51 | 54 64 66 82 72 60 66 H u m i d i t y 3 8 / 5 1 23% I 4 2 / 5 4 23% 48/62 32% 56/66 53% 62/82 30% 54/72 28% 52/60 58% 56/66 5 3 % B a r . P r e s s . 30.05 30. 23 , 30.08 30.23 30.03 30.10 30.05 30.01 A i r P o l l u t i o n ! 30 26 19 14 W i n d y S l i g h t B r e e z e S t i l l B r e e z e H i g h w i n d W i n d y S o u t h T a h o e A i r p o r t H a m i l t o n A i r F o r c e B a s e 110 A l t i t u d e - Sea Level Subjects 4/8 4/21 5/13 5/27 4/15 4/28 5/6 5/20 880 ! j 3:07.8;3:05.5 2:59.7 3:16.9 2:59.2 3:06.7 2:55.9 3:01.8 440 Danyll 6 1:17.9!1:15.1 1:21.5 1:20.4 1:14.8 1:18.5 1:17.5 1:28.1 Ayrault. 50 1 i 6.91 6.9| 6.7 7.0 6.5 6.8 6.5 6.8 SB j j 73'j 80'! 88* 98» 82 ' 89 ' 69' 97 • 880 3:57.6 i 3:55.9j 3:29 3:30 3:47.1 3:48.3 3:45.3 3:41.2 440 ! i Marty 7 1:34.5; 1:28.5j1:40 .1 1:27.6 1:24.8 1:33.3 1:35.4 1:29.7 J e f f r i e s • 50 ! i 7.6! 7.6! 7.9 7.8 7.6 7.6 7.6 7.7 SB j | 77*| 79' 1 86 ' 6" 89' 89' 83 ' 68' 82' 880 3:59.7 i 3:43.913:35.6 3:35.6 3:35.1 4:06.5 3:46.9 3:21.4 440 Stacey 8 1:42 1:31 1:39.7 1:22.9 1:32.4 1:34.2 1:40.3 1:27.3 Ayrault 50 7.5 7.8 7.9 7.4 7.3 7.6 7.5 7.5 SB 66' i 73' i 88' 82 ' 71' 82 ' 79 ' 81' 880 3:38.5 I cramp 3:14.7 |3:23.8 3:19 3:15.1 3:14.2 3:07.7 3:10.4 440 Debbie 9 1:24.2 i 1:20.1 !l:21.1 1:20.6 1:21.2 1:24.5 1:20.6 1:23.9 Beach 50 7.2 7.2 7.1 7.0 6.9 7.1 7.0 7.2 SB 130 ' 130' 132 ,6" 137' 129 ' 132' 125' 119 ' 880 3:33 3:14.6 3:10.9 3:05.8 3:33.9 3:17.3 3:20 3:09.9 J u l i e 10 440 Van 1:23.9 1:18.2 1:19.1 1:15.2 1:25. 3 1:19.6 1:21.9 1:18.4 Kleeck 50 7.2 7.2 | 6.9 7.0 7.1 6.9 6.8 6.5 SB 91 s i 110' ! 113' 122 ' 104' 119 ' 107' 105' Debbie, Wendy, Marty - stomach cramps on 880 - l a s t four t r i a l s A l l headaches 1st time sea l e v e l after running Stacey - stomachache 2nd sea l e v e l I l l A l t i t u d e Sea L e v e l S u b j e c t s 4/8 4/21 5/13 5/27 4/15 4/28 5/6 5/20 880 3:13.9 3:05.6 3:02.7 3:00.6 3:05.4 3:13.4 3:01.1 3:06.8 440 E r i n 2 1:23.3 1:16.3 1:18.6 1:16.4 1:21.4 1:21.8 1:21.7 1:20.7 Kenney 50 7.7 7.8 t 7.5! 7.8 7.4 7.2 7.5 7.5 SB 75' 64' 67' 68'6" 67' 61' 69' 78' 880 3:45.5 3:45.4 3:39 3:23 3:28.3 3:45 3:34.8 3:21.4 440 Wendy 4 1:29 1:30.7 1:33.6 1:25.1 1:28.3 1:30.7 1:33.5 1:27.4 M c H a l f f e y 50 7.3 7.8 8.0 7.7 7.4 7.5 7.4 7.6 SB 77' 78 ' 83* 88* 85' 85' 81' ..83' 880 4:08.9 3:43 4:02.9 3:49.4 3:45 3:57 3:43.8 3:43.1 440 Connie 5 1:39.7 1:33.3 1:39.2 1:35.9 1:39.1 1:43.1 1:44.1 1:46.1 Smit h 50 8.2 8.2 7.7 7.9 7.8 7.7 8.0 7.9 SB 64' 64' 58' 54' 55' 55 ' 54' 51' R E L A T I V E H U M I D I T Y D r y - b u l b T h e r m o m e t e r D i f f e r e n c e s B e t w e e n D r y - b u l b a n d W e t - b u l b T h e r m o m e t e r s D e g r e e s F a h r e n h e i t 1 ° 2 ° 3 ° 4 ° 5 ° 6 ° 7 ° 8 ° 9 ° 1 0 ° 1 1 ° 1 2 ° 1 3 ° 1 4 ° 1 5 ° 1 6 ° 1 7 ° 1 8 ° 50 93 87 80 74 67 61 55 50 44 38 33 27 22 16 1 1 6 1 0 52 94 87 81 7 5 69 63 57 51 46 4 0 35 30 24 20 15 1 0 5 0 54 94 88 82 76 70 64 59 53 48 43 38 32 28 23 18 13 8 4 56 94 88 82 77 71 65 60 55 50 44 40 35 30 2 5 21 16 12 8 58 94 89 83 78 72 67 61 56 51 46 42 37 33 28 24 1 9 15 1 1 60 94 89 84 78 73 68 63 58 53 48 44 39 34 30 26 22 • 18 14 62 95 89 84 79 74 69 64 59 54 50 4 5 41 37 32 28 24 20 16 - 64 95 90 85 79 74 7 0 65 60 56 51 47 43 38 34 30 27 23 1 9 65 95 90 85 80 75 71 66 61 57 53 49 45 40 36 32 29 25 22 68 95 90 85 81 76 71 67 63 58 54 50 46 42 38 34 31 2 7 24 7 0 95 90 86 81 77 72 68 64 60 55 52 48 44 40 36 33 29 26 72 95 91 86 82 77 73 69 6 5 61 57 53 49 4 5 42 38 35 31 28 74 95 91 87 82 78 74 70 66 62 58 54 50 47 4 3 4 0 3 6 3 3 3 0 76 95 91 87 82 7 8 74 70 66 63 59 55 52 48 4 5 41 38 3 5 31 78 96 9.1 87 83 79 7 5 7 1 67 63 60 56 53 49 45 4 3 39 35 3 3 80 96 92 87 83 79 75 72 68 64 61 5 7 54 51 47 44 41 38 35 82 96 92 88 84 80 76 73 69 65 62 58 55 52 48 4 5 42 4 0 37 T a k e n f r o m G e o r g e M a l l i n s o n a n d F r e d M e p p e l i n k J r . , " S c i e n c e i n M o d e r n L i f e , G i n n & C o m p a n y , N . Y . , 1 9 6 4 , p . 2 7 6 . p p - ~ i B A Y . A R E A AIR P O L L U T I O N C O N T R O L D I S T R I C T V'" " \ \j . SAN FRANCISCO, CALIFORNIA 941 OS . ..... • \ - ; 1 ' INFORMATION BULLETIN 5-70 COIIBINED POLLUTANT INDEX EXPERIENCE 1965 By TECHNICAL SERVICES DIVISION Summary A combined p o l l u t a n t i n d e x f o r the Bay A r e a has been d e v e l o p e d w h i c h i n c l u d e s the major c o n t a m i n a n t s e m i t t e d o r formed i n the atmosphere: o x i d a n t , c a r b o n monoxide;, n i t r o g e n d i o x i d e and v i s i b i l i t y r e d u c i n g p a r t i c u l a t e s . The o x i d a n t and p a r t i c u l a t e components" have been w e i g h t e d because o f t h e i r c o n t r i b u t i o n t o a i r p o l l u t i o n e f f e c t s . V a l u e s a r e c a l c u l a t e d each day from maximum l e v e l s o f these c o n t a m i n a n t s i n the n o r t h , c e n t r a l and s o u t h a r e a s o f the D i s t r i c t , and t h r e e s e p a r a t e i n d e x v a l u e s a r e r e l e a s e d a t 4:00 p.m. The 1969 e x p e r i e n c e shows p e r c e n t a g e o c c u r r e n c e s i n the "heavy" a i r p o l l u t i o n c a t e g o r y as 0.5% n o r t h , 17o c e n t r a l and 4 % s o u t h . The p e r c e n t a g e o c c u r r e n c e o f " c l e a n " a i r was 4 5 % i n the n o r t h and c e n t r a l a r e a s and 30% i n the s o u t h . ns COMBINED POLLUTANT INDEX EXPERIENCE 1969 1. Introduction In 1968, the Bay Area A i r P o l l u t i o n Control D i s t r i c t estab- l i s h e d a Combined Pollutant Index to better describe the concen- t r a t i o n of a i r contaminants present i n the atmosphere on any given day - summer or winter. As explained i n Information B u l l e t i n 10-68, this index i s designed to inform the public of gross pollutant l e v e l s , and has no i n t r i n s i c s c i e n t i f i c meaning. Its primary purpose i s to provide a numerical value to the t o t a l quantity of a i r pollutants experienced i n the Bay Area, of which the previously emphasized oxidant index i s only a part. The -widespread use of the word "smog" as a synonym for oxidant has led to public misunderstanding and confusion, par- t i c u l a r l y i n the winter when substantial v i s i b i l i t y reduction can occur without oxidant being present. On such days, members of the public and the press are confused to learn that the "smog reading" (the popular term for oxidant readings) i s low even when v i s i b i l i t y - r e d u c i n g a i r p o l l u t i o n i s obviously present. Although there are numerical values assigned to contaminants other than oxidant, they have not been widely p u b l i c i z e d or understood. This i s due to the fact that adverse l e v e l s vary widely between these pollutants, and are r e l a t e d to cumulative e f f e c t s over d i f f e r e n t time periods. For example, the State A i r -2- (Mo Resources Board has defined the adverse oxidant level as .10 ppm high-hour values occurring on 3 consecutive days or on 7 days in a 90-day period, while the adverse level for nitrogen dioxide i s .25 ppm for one hour, and the adverse level for carbon monoxide is 20 ppm averaged over 8 consecutive hours. Thus a simple daily index appeared a highly desirable service to the public interest. 2. Choice of Contaminants The contaminants included in the combined index are oxidant, carbon monoxide, nitrogen dioxide and particulates (as measured by coefficient of haze). As the definitive element of photochem- i c a l smog, oxidant i s included and given double weight. Two other gaseous contaminants for which State standards have been established, N O 2 and CO, are included. (Sulfur dioxide i s a problem in only one section of the D i s t r i c t , and would be mis- leading in comparable area-wide indexes.) The State standard for particulate matter is 60 jig/m3 annual geometric mean, or 100 u.g/m3 24-hour average, but these measurements require laboratory analysis and are not available the same day. Thus the D i s t r i c t has employed the Coefficient of Haze (COH) as the best available measurement of particulate pollution for which direct and objective readings are available. A l l of the contaminants selected have identifiable health effects and two of them, W O 2 and particulate matter, contribute to v i s i b i l i t y effects. -3- 3. Cal c u l a t i o n of index Each day indexes are calculated for three geographic parts of the D i s t r i c t : NACPI - North Area Combined Pollutant Index San Rafael, Richmond and Pittsburg stations CACPI - Central Area Combined Pollutant Index San Francisco and Oakland stations SACPI - South Area Combined Pollutant Index Redwood Ci t y and San Jose sta t i o n s . When f u l l stations are activated i n Livermore and Walnut Creek i n future years, a fourth area index w i l l be inaugurated: EACPI - East Area Combined Pollutant Index. The formula for the index i s : CPI - 2 (Ox) + (N0 2) + (CO) +' 10 (COH) where Ox i s the high-hour oxidant i n pphm N02 " " " " N02 " " CO " n " " CO " ppm COH i s 8-12 a.m. c o e f f i c i e n t of haze value For each area the greatest high-hour value of oxidant, CO and N0 2 reported by any st a t i o n i n that area i s used. The 0800-1200 COH value i s used. Since t h i s i s an informational rather than a research t o o l , only those values a v a i l a b l e by 4:00 p.m. i n the afternoon telephone round-up are incorporated. 4. Combined Pollutant Index Data Since the Combined Pollutant Index became f u l l y opera- t i o n a l late i n 1968 on a seven-day-a-week basis, 1969 provides the f i r s t f u l l year of CPI data. The monthly and annual minimum average, and maximum CPI values for the three sectors are summarized i n Table 1. Monthly minimums range from 11 to 22, with annual lows of 11 for a l l three sectors. Monthly av- erages range from 21 i n the North area for June to 57 for the South area i n November. The annual averages are 28 North, 30 Central, and 35 South. Monthly maximums range from 36 i n the North i n June to 121 i n the Central area i n September, with annual maximums of 93 North, 121 Central, and 100 South. 5. C l a s s i f i c a t i o n of CPI Levels An a r b i t r a r y scale o i values was t e n t a t i v e l y set for in t e r p r e t i n g the CPI l e v e l s . This scale was as follows: 0 - 2 5 Clean A i r 26 - 50 Light A i r P o l l u t i o n 51 - 75 Moderate A i r P o l l u t i o n 76 - 100 Heavy A i r P o l l u t i o n 101 or greater Severe A i r P o l l u t i o n The percentage occurrences i n these categories for the North, Central, and South areas i n 1969 are given i n Table 2. It may be noted that one severe category day i n a 30-day month gives 3.33% occurrence and one i n a 365-day year gives 0.27% -5- occurrence. One September day i n the Central area reached a "severe" l e v e l , giving the percentages shown. Percentage occurrences i n the "heavy" category were 0.57o North, 1% Central and 4% South. In the "moderate" category they were 6% North, 8% Central, and 17% South. Thus the t o t a l s of s i g n i f i c a n t p o l l u t i o n at a moderate or greater l e v e l were 6.5% North, 9% Central, and 21% South. Only i n October d i d the Central area exce'ed the South i n i t s "moderate or greater" occurrence, although on September 25th i t did have the single most adverse day. The percentage occurrence of "clean a i r " was 46% i n the North and Central areas, and 30% i n the South. The " l i g h t " category occurred at frequencies of 48%, North, 45%, Central, and 49% South. The " l i g h t " category, however, i s the l e a s t w e l l established, as well as the most frequent category. Since i n - d i v i d u a l contaminants are log-normally d i s t r i b u t e d , the CPI values were expected to be s i m i l a r l y d i s t r i b u t e d . A log-proba- b i l i t y graph demonstrated that they were so d i s t r i b u t e d , and that over 307o of t o t a l days show CPI values between 26 and 35. Such days generally have lew to moderate values of i n d i v i d u a l contaminants, dc not approach any adverse l e v e l s , and show l i t t l e i f any v i s i b i l i t y reduction. I f this largest portion of the d i s t r i b u t i o n curve were more properly classed as "clean a i r " , the days i n the "clean a i r " category would reach 76% i n (2<> the North and Central areas, and 60% i n the South area. The actual contaminant l e v e l s which go to make up one of our "heavy" or "severe" CPI days i s also a matter of i n t e r e s t . In 1969 there were 9 days with a CPI of 76 or greater (8 of them occurring i n the f a l l season). The average contaminant lev e l s i n adversely affected sectors of the D i s t r i c t on these days were as follows: Oxidant .13 ppm Nitrogen dioxide .23 ppm Carbon monoxide 16 ppm Co e f f i c i e n t of 2.3 Haze This oxidant l e v e l i s above the nevj .10 ppm State standard, the nitrogen dioxide l e v e l i s s l i g h t l y below the .25 ppm standard, and the carbon monoxide l e v e l i s w e l l below the standard of 20 ppm for 8 hours. The c o e f f i c i e n t of haze value cannot be d i r e c t l y translated to the suspended p a r t i c u l a t e s d a i l y standard of 100 n.g/m3, since i t records only the darker p a r t i c u l a t e s . In addition, suspended p a r t i c u l a t e s are measured over a 24-hour period whereas the COH value i s taken over a 4-hour period. However, measurements for suspended p a r t i c u l a t e s on 7 of the 9 days showed an average of 114 |jug/m3, which i s above the standard of 100 M-g/m3. -7- Since health e f f e c t s are associated with long-term exposures to contaminants above the a i r qu a l i t y standards, one cannot make d e f i n i t i v e statements concerning health e f f e c t s associated with these 9 occurrences i n 1969. However, one can reasonably conclude that CPI values greater than 76 are a s s o c i - ated with one or more contaminants above the a i r q u a l i t y s tandard. JSS:fm 4 / 2 3 / 7 0 - 8 - TABLE 1 MINIMUM, AVERAGE, AND MAXIMUM VALUES OF COMBINED POLLUTANT INDEX BY MONTH FOR NORTH, CENTRAL, AND' SOUTH DISTRICTS 1959 Min. Avg., Max. N C S N C S N C S Jan H 16 11 24 27 28 48 52 52 Feb 11 15 15 24 25 22 41 43 49 Mar 16 16 17 27 28 31 58 57 69 Apr 16 13 18 26 22 27 41 49 49 May 14 11 16 25 24 30 52 48 69 Jun 11 14 13 21 23 24 36 37 43 J u l 12 12 20 26 25 37 72 68 77 Aug 14 18 18 33 34 44 58 64 74 Sep 14 16 20 32 34 45 69 121 84 Oct is ; 19 22 38 40 41 93 88 84 Nov 18 1 20 20 39 46 57 57 87 100 Dec 13 ; 16 : 14 2 7 31 34 64 84 77 Annual : 11 11 11 28 30 35 93 121 100 TABLE 2 Clean Nl C S Jan 61 39 48 Feb 61 68 75 Mar 48 45 48 Apr 53 77 43 May 61 71 32 Jun 77 73 43 J u l 52 71 3 Aug 23 23 . 7 Sep 27 23 13 Oct 19 6 10 Nov 10 10 i i Dec 61 42 42 Annual 46 46 30 PERCENTAGE OCCURRENCE OF COMBINED POLLUTANT INDEX CATEGORIES FOR NORTH, CENTRAL AND SOUTH DISTRICT 1969 Moderate Light Heavy Severe N C S 39 58 42 39 32 25 49 52 45 4? 23 57 | 36 29 H 23 27 57 42 22 84 70 67 52 56 73 33 55 65 67 73 40 •7 1 33 42 39 48 45 49 N C S N JC . S 0 3 10 0 0 0 0 0 0 0 0 0 3 3 7 0 0 0 0 0 0 0 0 0 •3 -> 0 3 0 0 0 0 0 0 0 0 0 7 13 3 0 0 7 10 36 0 0 7 7 3 47 0 0 7 23 23 10 3 7 13 17 43 73 0 7 17 7 13 13 0 3 7 6 8 17 0.5 1 4 N C s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 . 0 0 0 0 0 0 0 0 0 #» 0 Less than 0.5%

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 9 3
France 4 0
Finland 3 0
China 3 0
India 2 0
Germany 1 18
City Views Downloads
Unknown 8 18
Ashburn 6 0
Jyväskylä 3 0
Hangzhou 2 0
Sunnyvale 1 0
Wilmington 1 0
Beijing 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076996/manifest

Comment

Related Items