Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The athletic performance at sea level of middle altitude dwelling girls Zeller, Janet Marianne Ringham 1973

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1973_A7_5 Z44.pdf [ 8.36MB ]
Metadata
JSON: 831-1.0076996.json
JSON-LD: 831-1.0076996-ld.json
RDF/XML (Pretty): 831-1.0076996-rdf.xml
RDF/JSON: 831-1.0076996-rdf.json
Turtle: 831-1.0076996-turtle.txt
N-Triples: 831-1.0076996-rdf-ntriples.txt
Original Record: 831-1.0076996-source.json
Full Text
831-1.0076996-fulltext.txt
Citation
831-1.0076996.ris

Full Text

THE ATHLETIC PERFORMANCE AT SEA LEVEL OF MIDDLE ALTITUDE DWELLING GIRLS by .Janet Marianne Ringham Z e l l e r A,B. , U n i v e r s i t y o f C a l i f o r n i a ,  1958  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF RASTER OF PHYSICAL EDUCATION i n the School of Physical  Education  and Recreation We accept t h i s t h e s i s as conforming t o the r e q u i r e d standard  THE  UNIVERSITY  OF B R I T I S H C O L U M B I A  J a n u a r y 1973  In  presenting  an  advanced  the  Library  I  further  for  degree shall  agree  scholarly  by  his  of  this  written  this  thesis  in  at  University  the  make  that  it  p u r p o s e s may  for  is  financial  of  of  Columbia,  British  available for  by  the  understood  gain  for  extensive  be g r a n t e d  It  fulfilment  shall  not  of  Physical  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r 8, C a n a d a  January  197 3  Education  Columbia  the  Head o f  be  requirements  reference copying  that  permission.  Department  Date  freely  permission  representatives. thesis  partial  agree  and  of my  I  this  or  allowed  without  that  study. thesis  Department  copying  for  or  publication my  ABSTRACT With the c o n s i d e r a t i o n o f e x t e n d i n g t r a c k c o m p e t i t i o n f o r g i r l s o f a middle a l t i t u d e community t o i n c l u d e the sea l e v e l v a l l e y nearby, the problem  f o r t h i s i n v e s t i g a t i o n evolved.  The main q u e s t i o n t o be answered was,  " I s the a t h l e t i c  ance of young female a t h l e t e s , n a t i v e t o middle impaired when p e r f o r m i n g a t sea l e v e l ? "  perform-  altitude,  Subsidiary  problems  of the r e l a t i o n s h i p of p a r t i a l p r e s s u r e o f oxygen t o performance, and m i c r o h e m a t o c r i t changes i n the s u b j e c t s were a l s o studied. E i g h t females between the ages o f 12 and 14 i n t h i s experiment having e i g h t t r e a t m e n t s .  Four  participated  treatments  were a t sea l e v e l and f o u r were a t middle a l t i t u d e .  Each  treat-  ment i n c l u d e d t a k i n g a f i n g e r t i p b l o o d sample f o r a microhematocrit  r e a d i n g , a 50 yard dash, a 440 y a r d dash, a s o f t b a l l  and an 880 yard run.  throw  These events were t o r e p r e s e n t the a s s o r t -  ment found a t a t r a c k meet.  Recordings were a l s o made of  temperature, humidity, b a r o m e t r i c p r e s s u r e , and a i r p o l l u t i o n . I t was  hypothesized- t h a t ; a) the denser a i r and  g r a v i t a t i o n a l p u l l a t sea l e v e l cause impairment  increased  i n throwing  and  s h o r t runs; b) w i t h oxygen uptake reduced at a l t i t u d e , the 8 80 yard run i s f a s t e r a t sea l e v e l than at middle a l t i t u d e ; c) i f h e m a t o c r i t s are i n the upper p o r t i o n o f the normal level,  range f o r sea  the r e s u l t a n t i n c r e a s e i n the oxygen c a r r y i n g c a p a c i t y o f  the b l o o d does not improve The  sea l e v e l  performance.  f i n d i n g s i n d i c a t e d t h a t p h y s i c a l t r a i n i n g and  i n g p r o g r e s s e d markedly  from the s t a r t o f the experiment  learnto the  finish,  The o n l y  significant  altitude  50 y a r d d a s h w i t h  times  faster  ful  a result  that  likely, sible  this  was  conditions  for  slower  times  warm w e a t h e r , indicating important employed. altitude  at  at  sea  change  found at  found i n  level.  It  in altitude,  than barometric  altitude.  performance  t h e . two t e s t i n g  remained w i t h i n  d w e l l i n g females  altitude sea  change  throughout  a coach of  those normally attended  to  at  altitude  all  accounted  occurred  in  peaked more  that for  was middle  experiment.  h e a l t h y young a t h l e t e s  environment.  respon-  may be  normal ranges  the  s h o u l d have no u n u s u a l level  of  doubt-  locations.  performances  climate  the  more  warm-up more l i k e l y  Superior  than the  is  p r e s s u r e were  warm-up and p s y c h o l o g i c a l  Hematocrits  a related  the  at  was  and when s u b j e c t s w e r e p s y c h o l o g i c a l l y  that to  of  and i n s u f f i c i e n t  Therefore, middle  other  the d i f f e r e n c e s  Wind d i s a d v a n t a g e for  being  effect  concerns  Concerns  for  from competition  s h o u l d be  competitions.  only  PREFACE F o r a number o f y e a r s coaches i n a m o u n t a i n community i n C a l i f o r n i a have s p e n t time d i s c u s s i n g t h e headaches, d i z z i n e s s , nausea, and e x h a u s t i o n e x p e r i e n c e d by t h e i r a t h l e t e s d u r i n g competitions a t sea l e v e l .  Were t h e s e symptoms t h e r e s u l t o f  h y p e r v e n t i l a t i o n and unaccustomed t e m p e r a t u r e s  o c c u r r i n g a t sea  level?  t r a i n i n g which  O r , were they m a i n l y due t o i n a d e q u a t e  was p a r t l y t h e r e s u l t o f a s h o r t season o f good weather a t altitude? I n 1968 U n i t e d S t a t e s t r a c k , v o l l e y b a l l , and  gymnastic  teams t r a i n e d i n t h i s community p r i o r t o t h e O l y m p i c s i n M e x i c o City.  L i t t l e o f s i g n i f i c a n c e was l e a r n e d from t h e s e  camps t o h e l p t h e l o c a l coaches.  training  S i n c e , r e c e n t t r e n d s have  been t o i n c l u d e more s c h o o l c o m p e t i t i o n f o r g i r l s as w e l l as b o y s , and p r e s s u r e s have been e x e r t e d t o e x t e n d t h e g e o g r a p h i c a l a r e a i n c l u d e d i n c o m p e t i t i o n s c h e d u l e s , t h e r e was cause t o embark on t h e f o l l o w i n g S p e c i a l thanks  experiment. i s due D r . Kenneth S m i t h , a l o n g time  r e s i d e n t o f Lake T a h o e — a M e d i c a l D o c t o r middle a l t i t u d e . necessary  and r e s e a r c h e r on  He p r o v i d e d a l l t h e f a c i l i t i e s and equipment  f o r d o i n g t h e m i c r o h e m a t o c r i t s , and h i s a u t o m o b i l e  p r o v i d e d t h e major share o f t r a n s p o r t a t i o n . As t h e u l t i m a t e token o f Dr. Smith's f a i t h he l o a n e d h i s d a u g h t e r as a s u b j e c t . The J e f f r i e s f a m i l y i s a l s o thanked  f o r helping with transpor-  t a t i o n , p r o v i d i n g a s u b j e c t and making a swimming p o o l after testing sessions.  available  My p a r e n t s were a g r e a t h e l p t o p r o v i d e  l u n c h , a r e s t s t o p and a s s i s t a n c e when needed.  F i n a l l y , the  V  College my  o f M a r i n and i t s A t h l e t i c  gratitude  for allowing  and f a c i l i t i e s  D i r e c t o r Harry Pieper  the use o f t h e i r  f o r the sea l e v e l  r  testing.  impressive  have a l l  grounds  TABLE OF CONTENTS ABSTRACT  i i  PREFACE  iv  LIST OF TABLES  viii  LIST OF FIGURES OR ILLUSTRATIONS  ix  Chapter 1.  THE PROBLEM  1  Definitions Delimitations Assumptions and L i m i t a t i o n s  1 o  2  .  2  Hypothesis  2  S i g n i f i c a n c e o f t h e Study 2.  3  REVIEW OF THE LITERATURE  5  A t h l e t i c P e r f o r m a n c e a t A l t i t u d e and Sea Level  6  The V e n t i l a t o r y Response  11  Changes i n t h e B l o o d  14  C a r d i a c Response  16  H y p e r t e n s i o n and G l o m e r u l i E n l a r g e m e n t  . . . .  19  Tissue Level Adaptation  19  Summary  21  3.  METHODS AND PROCEDURES  24  4.  RESULTS AND DISCUSSION  30  5.  Results  30  Discussion  43  SUMMARY AND CONCLUSIONS  60  BIBLIOGRAPHY  63  vii APPENDICES Statistical Raw  . treatments  Scores  66 67 108  R e l a t i v e Humidity Chart  112  P e r s o n a l Communication  113  L I S T OF  TABLES  Table I. II. III. IV. V. VI. VII. VIII. IX. X.  Page 2 x 4 Source  Factorial  Design with  5 Dependent V a r i a b l e s  . .  o f V a r i a n c e f o r E a c h Anova  8 80 Y a r d  28 29  Run A n o v a T a b l e  33  4 40 Y a r d Dash Anova T a b l e  37  50 Y a r d D a s h A n o v a T a b l e  40  Softball  Throw A n o v a T a b l e  Hematocrits  and M e n s t r u a l  . Records  H e m a t o c r i t Anova T a b l e  42 . . . . . . . . . .  45  . . . .  46  Hematocrit Values Total  Hematocrit  58 f o r T r i a l s Table  . . . . . . . . . . .  58  LIST  OF  FIGURES OR  ILLUSTRATIONS  Figure  Page  1.  880  Yard - Treatments  31  2.  880  Y a r d Run  32  3.  440  Yard  4.  440  Y a r d Dash - T r e a t m e n t s  5.  50 Y a r d Dash - T r e a t m e n t s  39  6.  S o f t b a l l Throw - T r e a t m e n t s  *41  7.  Hematocrit - Treatments  8.  Temperature  9.  Barometric Pressure over Treatments  - Trials  Dash - T r i a l s  and R e l a t i v e  . . . . . . . .  •  35 36  . . . . . . . . Humidity  44  Graphed  47 . . .  10.  B a r o m e t r i c P r e s s u r e and  50 Y a r d D a s h o v e r T r i a l s  11.  Temperature  Dash o v e r T r e a t m e n t s  and  50 Y a r d  . .  . . . .  48 54 55  Chapter  THE  1  PROBLEM  Between t h e 1955 Pan A m e r i c a n  Games  and t h e 1958 O l y m p i c s  i n Mexico C i t y the study o f a l t i t u d e a c c l i m a t i z a t i o n  accelerated.  I t was i m p o r t a n t t o know t h e e f f e c t s o f 7,200 f e e t e l e v a t i o n athletes Little tion  so t h a t  t r a i n i n g procedures could  a t t e n t i o n , h o w e v e r , was g i v e n  o f females o r t o the problems  a l t i t u d e who The performance is  better  frequently purpose  specifically  of athletes  be p l a n n e d . t o the adapta-  living  a t middle  compete a t s e a l e v e l .  of t h i s i n v e s t i g a t i o n i s t o determine  o f young  upon  female a t h l e t e s ,  native  i f the  to middle a l t i t u d e ,  i m p a i r e d when p e r f o r m i n g a t s e a l e v e l w i t h o u t b e n e f i t o f  deacclimatization,  and p o s s i b l e  r e a s o n s f o r any d e c r e m e n t i n  performance. Problem: What a r e t h e d i f f e r e n c e s  i n performance  of selected  track  events  a t t h e two l e v e l s o f a l t i t u d e ? Subproblems; a.  What i s t h e r e l a t i o n s h i p o f t h e two l e v e l s o f b a r o m e t r i c  pressure b.  How  t o performance? does  hematocrit d i f f e r  i n the subjects  from s e a l e v e l  norms?  Definitions Middle a l t i t u d e - generally and  7,000 f e e t .  refers  Specifically  t o a l t i t u d e s between  5,000  i n t h i s study the e l e v a t i o n a t  which the s u b j e c t s  live  i s approximately  D e a c c l i m a t i z a t i o n - the process which  a d a p t one t o a l t i t u d e  acquiring  conditions  responses appropriate  PIC>2 - p a r t i a l pressure  of l o s i n g  pressure  and d e n s i t y  gen  concentration  the i n s p i r e d a i r i n trachea,  be  c a l c u l a t e d from t h e formula  the blood.  n i q u e was  altitude.  With a constant  In t h i s  saturated with =  2  oxy-  pressure  water vapor, can  (p b a r - 47) 20.94/100.  and o t h e r  p a r t i c u l a t e elements  i n v e s t i g a t i o n a microhematocrit  tech-  used.  Performance - o p e r a t i o n a l l y d e f i n e d achieved  The atmosphere's  a t the s u r f a c e o f the earth  PI0  o f the c e l l s  of  conditions.  o f 20.94% o f t h e d r y a i r , t h e o x y g e n  of  of  and t h e p r o c e s s  to sea l e v e l  are highest  decrease exponentially with  - percent  p h y s i o l o g i c a l responses  o f i n s p i r e d oxygen.  and  Hematocrit  6,256 f e e t .  by t h e a t h l e t e s when  as t h e t i m e s o r d i s t a n c e s  tested.  Delimitations The live  i s limited, to g i r l s  a t middle a l t i t u d e .  small cal  universe  i n order  12-14 y e a r s  The sample o f e i g h t  t o keep t e s t i n g  o f age who  subjects  is fairly  and t r a n s p o r t a t i o n w i t h i n  practi-  limits.  Assumptions A  and L i m i t a t i o n s  serious  environmental  l i m i t a t i o n was t h e i n a b i l i t y  f a c t o r s of temperature  and  to manipulate the  humidity.  Hypotheses a.  The d e n s e r  cctuse  a i r and i n c r e a s e d  impairment  i n throwing  gravitational  and s h o r t  runs.  pull  at sea l e v e l  b»  With maximal oxygen uptake r e d u c e d  run  i s f a s t e r at  c.  If hematocrits  are  for  sea  resultant  level,  capacity  of  the  Significance  of  sea  the  level  blood  the  a t a l t i t u d e , the  tests  at  sea The  level  i n the  upper p o r t i o n increase  does n o t  of  i n the  improve  sea  the  normal  oxygen  level  range  carrying  performance.  Study  altitude i n deciding i n the  process of than  high-altitude  less  the  studies  have been c o n d u c t e d  include  deacclimatization  indicate  taking  to  represents  a major  Reynafarje  (1958),"'" D e j o u r s , K e l l o g g ,  for  con-  schedule.  acclimatization  transient  have s i g n i f i c a n c e  whether  competition  investigated that  yard  than at middle a l t i t u d e ,  I n p r a c t i c a l t e r m s , t h i s s t u d y may coaches at middle  880  process, yet  been  the  deacclimatization  some t i m e and  has  to  Pace  complete.  (1963),^  Daniels  3 and  Oldridge  (1970) ,  deacclimatization A too,  that  experience  Iron  personal  a l l reported  taking  from  3 0 . t o 120  communication  acclimatized  physiological days t o  f r o m Dr.  i n d i v i d u a l s who  a characteristic subjective  Nello  return  adjustments  of  complete. Pace  to  f e e l i n g of  sea  related, level  lassitude  may for  C. R e y n a f a r j e , "The P o l y c y t h e m i a o f H i g h A l t i t u d e s : M e t a b o l i s m and R e l a t e d A s p e c t s , " B l o o d , 14, 19 59, 433-4 55.  2 P i e r r e D e j o u r s , R a l p h K e l l o g g , and N e l l o P a c e , " R e g u l a t i o n o f R e s p i r a t i o n and H e a r t R a t e R e s p o n s e i n E x e r c i s e during A l t i t u d e A c c l i m a t i z a t i o n , " J . A p p l . P h y s i o l . 18 ( I ) : 1 9 6 3 , 10-18. 3 J a c k D a n i e l s and N e i l O l d r i d g e , "The E f f e c t s o f A l t e r n a t e E x p o s u r e t o A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e d i s t a n c e R u n n e r s , " M e d i c i n e and S c i e n c e I n S p o r t s , V o l . 2, no. 3, ( F a l l 1 9 7 0 ) , 107-1127  a day o r two. As f a r as impairment o f a t h l e t i c performance under t h e s e c i r c u m s t a n c e s , s t a t i s t i c a l d a t a seem t o be l a c k i n g .  E f f e c t s on  a t h l e t i c performance d i f f e r depending on how l o n g a t h l e t e s were at a l t i t u d e , t h e a l t i t u d e a t w h i c h t h e y s t a y e d , t h e t y p e o f t r a i n i n g they were i n v o l v e d i n , t h e s t a t e o f t r a i n i n g b e f o r e t h e experiment and o t h e r c o n d i t i o n s o f t h e e x p e r i m e n t .  N e l l o Pace, a copy o f t h e r e f e r r e d t o communication appears i n t h e appendix.  Chapter  R E V I E W OF  The  stimuli  THE  come f r o m  a variety  high  altitude,  the mountaineers'  the a t h l e t e s '  tudes men  and  There female  working  tors  sure  The  to altitude  oxygen t e n s i o n . tal  tude,  are also  evidence of  at  survive  on  to  high  f l y at peaks,  at moderate i s ' known  are  regarding the  t h a t w o m e n may studies  the q u a n t i t i e s  the  need  altitude  about  of  performance  result.of  at middle  at altitude i n man  the response of  respond  high altitude  apparent  the e f f e c t s  specifics  altitude work, need  during  a change of  better expo-  environmen-  unique  to high  of great importance.  Tenney  (1968)  claims  to a reduced  fac-  to diminished  are not  specific  of  somewhat  humidity, which  effects  alti-  altitude.  main adjustments  and  to  competitively  information  However,  temperature  need  wartime  r e s e a r c h t o extend what  to l i m i t i n g  are  man's a d a p t i o n t o The  Physiological  despite  contributing  definition.''"  sources.  Indications  f r o m men.  s c a r c e and  of  to perform  is little  adaption.  differently are  need  have a l l prompted  living  LITERATURE  for investigating  have  and  2  altithe  barometric pressure i s  2  not  cine 180.  convincing.  A l b e r t B. C r a i g , " O l y m p i c s .1968 : S c i e n c e i n S p o r t , V o l . 1 , n o . 4,  and  A P o s t Mortem," (December 1 9 6 9 ) ,  Medi177-  2 S. M. T e n n e y , " P h y s i o l o g i c a l A d a p t a t i o n s t o L i f e a t H i g h A l t i t u d e , " i n E. J o k l (ed.) M e d i c i n e and S p o r t , E x e r c i s e a n d A l t i t u d e , ( B a s e l , S. K a r g e r , 19 6 8)", 60 -70. :  Furthermore so-called  t h e r e i s r e a l l y no t h r e s h o l d a l t i t u d e f o r the  "high a l t i t u d e e f f e c t s " .  Altitude acclimatization i s a  continuous process from sea l e v e l t o the c i v i l i z a t i o n s r e s i d e n t 3  at very h i g h a l t i t u d e s ,  (Tenney, 19 6 8)  h i g h a l t i t u d e work may be expected e f f e c t s o f middle  hence, s t u d i e s c i t e d o f  to be e x a g g e r a t i o n s o f the  altitude.  A t h l e t i c Performance a t A l t i t u d e and Sea L e v e l A t a symposium i n 1966 Balke expressed h i s theory t h a t t r a i n i n g a t moderate a l t i t u d e should be used 4 lormance a t sea l e v e l .  Such a statement  f o r improving p e r -  was the r e s u l t o f h i s  study i n t o the e f f e c t s of a l t i t u d e upon a t h l e t i c performance. Balke  (1964) t r a i n e d f i v e men a t 2400 meters f o r t e n days and  concluded  t h a t p h y s i c a l performances g r e a t l y dependent upon max-  imum a e r o b i c c a p a c i t y were i n i t i a l l y  reduced  at altitude.  Exten-  s i v e t r a i n i n g p o s s i b l y a i d e d by t r a i n i n g a t even h i g h e r e l e v a t i o n s seemed to r e s t o r e "normal" c a p a c i t y f o r a e r o b i c work. ther t e s t s were conducted The  second  Fur-  a t sea l e v e l and then a g a i n a t a l t i t u d e .  a l t i t u d e t e s t s produced  c l o c k i n g s b e t t e r than the p r e -  v i o u s b e s t a l t i t u d e performances.^  The o c c u r r e n c e o f i n c r e a s i n g -  l y b e t t e r performances w i t h a l t e r n a t e exposure to a l t i t u d e and sea l e v e l provoked 3  f u r t h e r thought  and r e s e a r c h by B a l k e , h i s  Tenney, l o c . c i t . 4 Bruno Balke, ."Summary o f Magglingen Symposium on Sports at Medium A l t i t u d e , " i n R. F« Goddard (ed.) The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, (The A t h l e t i c I n s t i t u t e , Chicago, 1966") 106-107. 5 Bruno Balke, J . F a u l k n e r , J . D a n i e l s , "Maximum Performance C a p a c i t y a t S e a - l e v e l and a t Moderate A l t i t u d e B e f o r e and A f t e r T r a i n i n g a t A l t i t u d e , " Schweizerische Z e i t s c h r i f t f u r S p o r t m e d i z i n , V o l . 14, 1965, 106-117.  colleagues,  and  Along hypothesized in  work  these that  capacity  e x p e r i m e n t was ing to  others.  natives  level  5,170  well  uptake.  high  altitude to  a a  A.  chamber and were  that  a t h l e t e would  an  reduction  2.  No  change  in resting ventilation  rate.  3.  No  change  in terminal  f o l l o w i n g an  would  capacity) He  work  would  level  altitude  be  be  descending  elevation  of  experi-  pulse  rate.  rate  appear  endurance  to  able  the  increase  to perform  was  capable  too,  environmental of  and  at  all-out  t r e a d m i l l run  of  held Reeves  the  pulse  a higher at  tread-  and  conditions  under  work  rate.  training  such  middle  at  sea  level.  c o n t r o l l e d and  conclusions  apply  the only  conditions.  altitude  i n terms  at  competing  (1966) wondered  newcomer  (or  cardiorespiratory  were  tolerable  h y p o x i a of  time  altitude.^  for athletes  maximum c a p a c i t y ,  chronic  advantage over  his  makes l i v i n g  advantageous  events  Grover  to  increasing his recovery  study,  p e r f o r m a n c e was  zation  able  t h a n he  However, s i n c e  an  i n resting pulse  without  This  to  upon  requir-  run. He  5.  tests  results:  A  4.  increase  Bynum's  probably  1.  mill  (1966)  show an  altitude.  a c c l i m a t i z a t i o n to  conditioned  Bynum  would  lower  Conclusions  after altitude  following  t h i n k i n g , W.  controlled using  feet, a highly  ence the  of  of  upon d e s c e n d i n g  maximum o x y g e n sea  same l i n e s  of  i f life would  long a c c l i m a t i -  give  exercise  the  native  performance  ^W. A. B y n u m , "Work C a p a c i t y o f A l t i t u d e A c c l i m a t i z e d Men a t A l t i t u d e a n d S e a L e v e l , " i n R. F. G o d d a r d ( e d . ) T h e Internat i o n a l Symposium on t h e E f f e c t s o f A l t i t u d e on P h y s i c a l Perforra-a n c e ~ (The A t h l e t i c I n s t i t u t e , C h i c a g o , 1966) .  at medium a l t i t u d e .  In a d d i t i o n ,  a l t i t u d e modify p h y s i c a l  would a d a p t a t i o n t o medium  working c a p a c i t y a t low a l t i t u d e ?  f i v e low a l t i t u d e a t h l e t e s ,  The  on an average, had a 25% decrease i n  maximum oxygen uptake on t h e f i r s t day o f a r r i v a l a t a l t i t u d e . On f u r t h e r  s t a y , t h i s d i d not improve, due t o the h i g h l e v e l o f  f i t n e s s possessed on a r r i v a l .  There was no evidence t h a t  the so  j o u r n a t medium a l t i t u d e improved performance l a t e r a t sea l e v e l In f a c t , four o f the f i v e men had a lower maximum oxygen than o r i g i n a l l y .  uptake  The e f f e c t of a l t i t u d e change f o r the middle  a l t i t u d e r e s i d e n t s was v i r t u a l l y the same. middle a l t i t u d e d i s p l a y e d p e r s i s t e n t  The a t h l e t e s  hyperventilation  from  a t sea  l e v e l , they a l s o had a h i g h e r pulmonary d i f f u s i o n c a p a c i t y which would t h e o r e t i c a l l y g i v e them an advantage a t 3,100 meters. A l though both groups had almost i d e n t i c a l p h y s i c a l ity,  working capac-  the performance measurements i n t h i s study a r e d i f f i c u l t to  interpret .  s i n c e the sea l e v e l group had s u p e r i o r s k i l l '.  and com-  7  p e t i t i o n was not on a p a r .  Balke e t a l . (1965) made a p e r t i n e n t some s i m i l a r h i g h a l t i t u d e  studies.  comment r e g a r d i n g  "For proper h i g h perform-  ance a t h l e t i c t r a i n i n g one needs adequate f a c i l i t i e s - - t r a c k s and heated swimming p o o l s .  Without them, the e s s e n t i a l g  n a t i o n f o r proper pace and rhythm w i l l seem the p h y s i o l o g i c a l  suffer."  advantages o f a l t i t u d e  coordi-  So i t would acclimatization  do not alone produce s u p e r i o r performances i f t h e f a c i l i t i e s 7  Robert Grover, John Reeves, " E x e r c i s e Performance of A t h l e t e s at Sea L e v e l and 3,000 meters A l t i t u d e , " The I n t e r n a t i o n a l Symposium on the E f f e c t s o f A l t i t u d e on P h y s i c a l Performance (The Athle'tic I n s t i t u t e , Chicago ,""1966)", 80. g Bruno Balke (1965), l o c . c i t .  9 and  coaching  have been inadequate.  Another d i f f e r e n c e i n t h e  s t u d i e s made by Balke e t a l . (1965) and Grover and Reeves was t h a t the s u b j e c t s i n t h e f i r s t the b e g i n n i n g .  (1965)  study were n o t w e l l t r a i n e d a t  T h i s , t o o , may account fox d i f f e r e n c e s i n the -  results. D a n i e l s and O l d r i d g e  (1970) s t u d i e d e f f e c t s o f a l t e r n a t e  exposure t o a l t i t u d e and sea l e v e l on w o r l d - c l a s s runners.  middle-distance  The most obvious d i f f e r e n c e found was a h i g h e r maximum  oxygen uptake on a l l p o s t a l t i t u d e t e s t s compared w i t h tude o r a l t i t u d e v a l u e s .  Improvement  pre-alti-  i n ventilatory capacity  was noted a f t e r a l t i t u d e t r a i n i n g , b u t ' i t was not c l e a r whether t h i s improvement was o f b e n e f i t upon r e t u r n t o s e a l e v e l . descending t o sea l e v e l , D a n i e l s and O l d r i d g e  (1970) r e p o r t e d  t h a t the h y p e r s e n s i t i v i t y o f the r e s p i r a t o r y c e n t e r slowly.  During  recedes  the t r a n s i e n t p e r i o d the a t h l e t e breathed  a i r f o r any g i v e n work i n t e n s i t y than he d i d a t sea l e v e l to a l t i t u d e exposure.  On  more prior  The a d d i t i o n a l work i n v o l v e d i n moving  t h i s g r e a t e r volume r e q u i r e s more oxygen which i s p r o v i d e d a t the expense o f t h e oxygen demands o f the muscles used i n running.  The r e s u l t c o u l d be a) a performance decrease i n the  absence o f an i n c r e a s e i n maximum oxygen uptake; b) a performance equal t o t h a t p r e v i o u s l y a t t a i n e d a t sea l e v e l ;  c) a  b e t t e r sea l e v e l performance i f an i n c r e a s e i n maximum oxygen uptake c o u l d over compensate f o r the g r e a t e r v e n t i l a t o r y demands.^  Jack D a n i e l s , N e i l O l d r i d g e , l o c , c i t .  10 Buskirk that  their  meters than  e t a l . (1966) as w e l l as C o n s o l a z i o  s u b j e c t s who  at altitudes  f o r f o u r weeks o r more d i d n o t  u s u a l when t h e y  o x y g e n u p t a k e was that  stayed  there  return  returned  not  is little  to sea  from a l t i t u d e  attain level.  improved. evidence  up  to about  i s b e t t e r than  4,000  any  better  The  m e a s u r e d maximum  Buskirk,  to i n d i c a t e  (1966) s t a t e d  et a l .  results  concluded  t h a t performance  before  going  to high  on  alti-  12 tude. is  Thexr r e s u l t s  well trained  training  i t is difficult  f o r what a c t u a l l y  tions  at various  world  r e c o r d s , Olympic  summarized  results  altitudes,  effect  b e t w e e n 5,000 and contests  the  than  occurred  E r n s t and  of reduced  7,000 f e e t  a t sea  has  r e c o r d s , and  o f b e t w e e n 100  i n f l u e n c e of  the  and  further  person  significant  The  tude f o r high  only  Peter Jokl  Pan  400  American  altitudes  times  figured  slightly i n middle the  becomes  f o r d i s t a n c e s of  1,500  i s useful,  that  better and  handicapping statistically  meters  t h a t even though t r a i n i n g  competition  times.  p e r f o r m a n c e was  meters produced  They  examined  swimming  oxygen t e n s i o n a t  running  competi-  (1968)  oxygen p r e s s u r e s  J o k l s concluded altitude  in athletic  upon a t h l e t i c  l e v e l , while  lowered  a t 5,350 f e e t  longer.  t h a t once a  to achieve  l o n g d i s t a n c e r a c e s were s l o w e r .  valid  concept  effects. As  The  support  and at  i t does not  altinullify  E. B u s k i r k e t a l . " P h y s i o l o g y and P e r f o r m a n c e o f T r a c k A t h l e t e s a t V a r i o u s A l t i t u d e s i n t h e U n i t e d S t a t e s and P e r u , " i n R. F. G o d d a r d (ed.) The I n t e r n a t i o n a l Symposium on t h e E f f e c t s o f A l t i t u d e on P h y s i c a l P e r f o r m a n c e , 196 6. 11 at  C. F. C o n s o l a z i o , "Submaximal and H i g h A l t i t u d e , " i b i d . , p. 91. 12 E . B u s k i r k e t a l . , op. c i t .  Maximal  Performance  the i n h i b i t i n g e f f e c t of a l t i t u d e upon endurance. analyzed the 1963  Olympics  13  Craig  (1969)  and a l s o found winning times i n the  l o n g e r events p r o p o r t i o n a t e l y slower than world r e c o r d s .  But,  t h e r e were s e v e r a l o u t s t a n d i n g e f f o r t s which were f a r b e t t e r  than  14 p r e d i c t e d p o s s i b l e a t the a l t i t u d e of Mexico C i t y . V e n t i l a t o r y Response A c c l i m a t i z a t i o n t o h i g h a l t i t u d e begins w i t h h y p e r v e n t i l a t i o n i n response t o hypoxia.  T h i s f i r s t phase ends s e v e r a l  days a f t e r a r r i v a l upon completion of r e n a l compensation resultant respiratory alkalosis. appeared  t h a t the chemoreceptors  To Hornbein and Roos  (19 62) i t  a c t i v i t y as m o d i f i e d by sym-  p a t h e t i c c o n t r o l of blood s u p p l y to the c a r o t i d and bodies may  f o r the  aortic  be an important determinant of the v e n t i l a t o r y  response t o e x e r c i s e .  The v e n t i l a t o r y response t o e x e r c i s e i s  enhanced by v e r y m i l d h y p o x i a .  This i s s u f f i c i e n t to  the a c c l i m a t i z a t i o n to a l t i t u d e s so low t h a t r e s t i n g  initiate ventilation  15 on acute exposure Tenney  i s not a f f e c t e d .  (1968) summarized the v e n t i l a t o r y response  by  c a l l i n g the lower a r t e r i a l oxygen t e n s i o n of h i g h a l t i t u d e a more p o t e n t s t i m u l u s .  As a consequence,  chemoreceptor  output  i n c r e a s e s , v e n t i l a t i o n i n c r e a s e s , and t h i s response s e r v e s to minimize  the p a r t i a l p r e s s u r e drop from the i n s p i r e d a i r to the 13  E r n s t and P e t e r J o k l , "The E f f e c t of A l t i t u d e on A t h l e t i c Performance," i n E. J o k l (ed.) Medicine and S p o r t , E x e r c i s e and A l t i t u d e , ( B a s e l , S. Karger, 1968), p. 28. l t i t u d e , ( B a s e l , S. Kargi 14 C r a i g , op. c i t . , p. 178. 15 Thomas Hornbein and A l b e r t Roos, " E f f e c t of M i l d Hypoxia on V e n t i l a t i o n During E x e r c i s e , " J . A p p l . P h y s i o l . , 17 (2) 1962, p. 239.  alveolar  air.  During the  early period  of h i g h a l t i t u d e adapta-  t i o n , t h e r e i s an extremely important change i n t h i s mechanism. The  hypoxia-evoked v e n t i l a t o r y response b r i n g s about a f a l l  a l v e o l a r carbon d i o x i d e  p r e s s u r e , and  e x e r t s an i n h i b i t o r y i n f l u e n c e the  on  the  f i n a l effect in acclimatization  increase  in ventilation.  The  this resultant respiratory  hydrogen ions  the  restore  the  pH  excretion  small  conservation  This  So,  uncompen-  of f i x e d base i n the  of the b l o o d to normal.  p l i s h e d d u r i n g the  centers.  r e n a l response to the  a l k a l o s i s r e s u l t s i n the  and  hypocapnia  i s a comparatively  sated r e s p i r a t o r y  of  of  urine  to  i s l a r g e l y accom-  f i r s t week of h i g h a l t i t u d e r e s i d e n c e ,  and  d u r i n g t h i s time t h e r e i s a g r a d u a l s h i f t i n the s e n s i t i v i t y of the r e s p i r a t o r y  c e n t e r s t o carbon d i o x i d e  once a g a i n dominant, but e x e r t e d by As  carbon  not  exclusive  i n such a way  respiratory  control i s  dioxide.^  previously  mentioned, the h y p e r s e n s i t i v i t y of  respiratory  c e n t e r recedes s l o w l y on descent to sea  Kellogg  shown t h a t the  of the pleted.  has  respiratory 17  r e t u r n of the  center requires  normal C 0  altitude acclimatized  9  and  Pace  the  level. sensitivity  about 30 days t o be  Perhaps because o f t h i s r e l a t i v e l y slow  z a t i o n process Dejours, Kellogg, an  that  com•  (1963) found t h a t i f  i n d i v i d u a l were suddenly r e s t o r e d  normal oxygen s u p p l y , r e s p i r a t i o n was  •  deacclimati-  immediately reduced,  to  a  but  S. M. Tenney, " P h y s i o l o g i c a l A d a p t a t i o n s t o L i f e a t High A l t i t u d e , " i n E. J o k l (ed.), M e d i c i n e and S p o r t , E x e r c i s e and A l t i t u d e , 1968, p. 66. 17  Op. c i t . Based on p e r s o n a l correspondence between Dr. N e l l o Pace, P h y s i o l o g y Department, U n i v e r s i t y of C a l i f o r n i a , and the w r i t e r .  13 not  to the  similar On  pre-altitude  findings  acute  from  level.  alternate  exposure to a l t i t u d e  proportionately;  however, max  more t h a n d i d MW.  18  D a n i e l s and tests  MW  and  VE  Subsequent  sea  higher  than  Max to  VO2  altitude.  a 10%  those values  By  the  decrement. improvement  by  s u b j e c t s who  during  the  slightly  higher  obviously tests  first  compared w i t h  to  ability  increase  i n alveolar  pulmonary d i f f u s i n g  dropped  of  and  final  the reduced  14%  level  slightly were  t h i s was  unchanged  sea  tests.  until  sea  level  level Max  They  2  was  an  altitude 20  values.  acclimatized individual be  area.  e n h a n c e d by I n any  c a p a c i t y f o r oxygen i s i n c r e a s e d .  found  values V0  found  to  another  exposures  or a l t i t u d e  l e v e l may  diffusing  exposure  improved  speeds d u r i n g post  altitude  cellular  oxygen p r e s s u r e  VE  upon a c u t e  value.  pre-altitude  capillary  altitude.  f o r max  f o r s i x weeks.  (1968) d i s c u s s e d t h e v a r i o u s p r e s s u r e to  sea  the o r i g i n a l  at a l l running  t r a n s p o r t oxygen to the  values  had  19  relatively  of the high  and  .  the p r e - a l t i t u d e  either  (BTPS) i n c r e a s e d  VE  level  were a t a l t i t u d e  intermittent than  max  week a t a l t i t u d e  t o w i t h i n 8%  h i g h e r VO^  The  third  level  in initial  initially  I t remained  slight the  reached  (1970)  a t sea  eventually increased  . also  Oldridge  g r a d i e n t s and at altitude  in  case  an the  Tenney adapting  t h e r e must  be  18 P i e r r e D e j o u r s , R a l p h K e l l o g g , and N e l l o P a c e , "Regul a t i o n o f R e s p i r a t i o n and H e a r t R a t e R e s p o n s e i n E x e r c i s e D u r i n g A l t i t u d e A c c l i m a t i z a t i o n , " J . A p p l . P h y s i o l . , 18 ( 1 ) , 1963, pp. 10-18. 19 " J a c k D a n i e l s and N e i l O l d r i d g e , "The E f f e c t s o f A l t e r n a t e E x p o s u r e t o A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e d i s t a n c e R u n n e r s , " M e d i c i n e and S c i e n c e i n S p o r t s , V o l . 2, no. 3, ( F a l l 1 9 7 0 ) , 107-112. 20 , . , Ibid. T  a  compensatory  preserve  the  adjustment  in  c e l l u l a r value  associated with  altitude  a more d i s t a l needed.  The  gradient  in  ventilatory  order  to  changes  acclimatization stabilize within  the  21 first  few days  at  cise  change  base  adjustments,  comparatively  and p e r i p h e r a l first  few  Changes  the  the  blood of  depressed to  or  hours its  this  oxygen  at  Increase  close  ten  to  far  such as  endocrine  from complete  of  high  hours  their  graphs  of  altitude  carrying  increases,  level, the  capacity.  also  hence  first  exeracid-  response,  within  and  to  fifteen  to  1950).  (1950)  encountered  the  who  blood  descent.  an  increase  M.  Tenney,  Firstly,  the may  increases with shewing  a  of  acquire those  be  relation  tendency arrival  hemoglobin  in  changes  is  at  progres-  values  comparable  native  to  high  2 2  as w e l l  altitude  days  are  synthesis  few days  erythrocytes  ones  there  hemoglobin  Hematocrit sea  a c c e l e r a t i o n of  first  at  in  the  (Merino, Merino  natives  changes  adjustments,  are  arrival  time.  obtained  requiring  altitude  marked  of  microcytosis during  very  Other  to  Blood  and  at  altitude. sive,  changes  erythrocytes  figures  toward  slowly.  adjustments  days.  in  numbers  Circulatory  erythropoietic  tissue  Within in  altitude.  as R e y n a f a r j e have  destruction  (However, in  descended  red  this  blood  (1.959) to  found  sea l e v e l  occurring  on  the  a  during  investigator  cells  in  the  noted  first  on  test  21 S. 22  in  the  loc.  cit.  C. M e r i n o , " S t u d i e s on B l o o d F o r m a t i o n and D e s t r u c t i o n Polycythemia of High A l t i t u d e s , " Blood, 5, 1950, 1-32.  t a k e n i m m e d i a t e l y on a r r i v a l a t sea l e v e l . the f i r s t t e s t i n g .  A decrease followed  No e x p l a n a t i o n o r comment was  t h i s i n i t i a l recording.)  The  available for  d e c r e a s e i n h e m o g l o b i n and  b l o o d c e l l s r e a c h e s i t s maximum between t h e s e v e n t e e n t h t h i r t y - f i f t h d a y s , and t h i s i s f o l l o w e d by a g r a d u a l  red and  increase  o f the r e d b l o o d c e l l and Fe t u r n o v e r r a t e u n t i l i t r e a c h e s about the normal r a t e .  This occurs  e n v i r o n m e n t a l change ( R e y n a f a r j e ,  100  t o 120 23  days a f t e r t h e  1959).  Schmidt and G i l b e r t s e n (1955) r e f u t e the t h o u g h t t h a t bone marrow a n o x i a  i s d i r e c t l y responsible for  e r y t h r o p o i e s i s i n c h r o n i c anoxemia.  increased  An a u t o p s y of a woman w i t h  an a r t e r i a l shunt a f f e c t i n g o n l y t h e l o w e r e x t r e m i t i e s d i r e c t e d t h e i r suggestion  t h a t anoxemia of the b l o o d s t i m u l a t e s the  pro-  d u c t i o n o r r e l e a s e o f a humoral f a c t o r w h i c h i n t u r n a c t s as 24 erythropoietic  an  stimulus.  H o r n b e i n (1962) s t a t e d t h a t a normal a d u l t male i s thought t o p o s s e s s 800-1,500 mg.  of i r o n i n storage  a v a i l a b l e f o r hemoglobin s y n t h e s i s . sum  depots  Hornbein surmised t h a t  of p r e - e x i s t e n t s t o r e s and the c u r r e n t l y absorbed  the  iron  would r o u g h l y p a r a l l e l the amount r e q u i r e d t o a c h i e v e t h e p o l y 25 cythemic response observed i n h i s s u b j e c t s . C. R e y n a f a r j e , "The P o l y c y t h e m i a of H i g h A l t i t u d e s : I r o n M e t a b o l i s m and R e l a t e d A s p e c t s , " B l o o d , 14, 1959, 433-455. 24  R. S c h m i d t , and A. S. G i l b e r t s e n , "Fundamental Observ a t i o n s on the. P r o d u c t i o n o f Compensatory P o l y c y t h e m i a , " Blood, 10, 1955, 247-251. 25 Thomas F. H o r n b e i n , " E v a l u a t i o n o f I r o n S t o r e s as L i m i t i n g H i g h A l t i t u d e P o l y c y t h e m i a , " J . A p p l . P h y s i o l . , 17 (2) , 1962, p. 244.  Harmon, S h i e l d s , a n d H a r r i s found  expected  supplement.  subjects other  Despite  adjustments played  Cardiac  level.  rapidly.  their  t h e s e women  I n d i c a t i o n s were  that  p a r t i n p r o v i d i n g oxygen a t t h e  (1930) a s w e l l a s Hannon e t a l . (1966)  rate t o increase sharply a t f i r s t t o p r o g r e s s i v e l y decrease. to sea level  27 served.  exposure t o a l t i t u d e ,  Two weeks a f t e r  significantly  found  depressed  subjects  v a l u e s were ob-  28 '  cise heart chronic  received  Response  returned  Dejours,  hypoxia.  steady  K e l l o g g , and P a c e  rate c o n s i s t e n t l y higher  rate values  hypoxia  t o decrease  steady-state exercise.  s t a t e e x e r c i s e heart r a t e over  progressively  (1963) r e p o r t e d  i n acute  A c c l i m a t i z a t i o n tended  lute heart rate during in  t h e lower h e m a t o c r i t s ,  they  26  Grollman  then  during acclimatization unless  adapted t o a l t i t u d e  cellular  heart  hand  t h a t t h e i r women s u b j e c t s d i d n o t show t h e i n c r e a s e i n  hematocrit iron  (1965) o n t h e o t h e r  because o f t h e r i s e  the r e s t i n g  i n resting  changed p r o g r e s s i v e l y d u r i n g  The  exer-  than the absoincrement value  values.  fell  Heart  t h r e e weeks a t a l t i -  29 tude.  The r e l a t i v e l y  long  time course  of heart  rate  adjustment  J o h n P. Hannon, J i m m i e S h i e l d , and C h a r l e s H a r r i s , " H i g h A l t i t u d e A c c l i m a t i z a t i o n i n Women," i n R. F. G o d d a r d ( e d . ) The I n t e r n a t i o n a l Symposium on t h e E f f e c t s o f A l t i t u d e o n P h y s i c a l P e r f o r m a n c e , (The A t h l e t i c I n s t i t u t e 7 ~ C h i c a g o , 1966), p. 37. 27 A. G r o l l m a n , " P h y s i o l o g i c a l V a r i a t i o n s i n C a r d i a c O u t p u t o f Man. T h e E f f e c t o f H i g h A l t i t u d e o n t h e C a r d i a c O u t p u t and I t s R e l a t e d F u n c t i o n s ; an a c c o u n t o f e x p e r i m e n t s conducted on t h e summit o f P i k e s Peak, C o l o r a d o , "Am. J . P h y s i o . , V o l . 9 3 , pp. 19-40. 28  Hannon e t a l . , l o c . c i t .  29  "Dejours  et al. , loc. c i t .  i s not i n c o n s i s t e n t w i t h the r e l a t i v e l y l o n g time course changes i n c a r d i a c output  of sojourners  by Grollman  c a r d i a c output  (1930)."^  The  a t 14,000  c a r d i a c output  20-30% above p r e v i o u s response d i f f e r s  had  feet described  i n Grollman's female  s u b j e c t began t o i n c r e a s e on the t h i r d day f i f t h day  of  at a l t i t u d e .  By  i n c r e a s e d 1 0 0 % , then s u b s i d e d  sea l e v e l measurements.  from t h a t r e p o r t e d i n men  the to  T h i s p a t t e r n of  by V o g e l e t a l . (1966)  They r e p o r t e d e s s e n t i a l l y normal c a r d i a c output  values  after  31 three weeks exposure at the same s i t e .  Grollman's measure-  ments on h i m s e l f concur with Vogel's f i n d i n g s i n men, a p o s s i b l e response d i f f e r e n c e i n men  indicating  and women.  Banchero e t a l . (1966) r e p o r t e d t h a t i n s p i t e hypoxemia of permanent r e s i d e n t s at 15,000 take, c a r d i a c output, found at sea l e v e l . monary h y p e r t e n s i o n  and  which has  They added t h a t  and oxygen uptake are r e l a t e d t o are independent of the  E l e v a t e d hemoglobin c o n c e n t r a t i o n i n the  h i g h a l t i t u d e was  level  natives  of advantage to these people a t r e s t ,  a r t e r i a l oxygen cqntent  was  h i g h e r than the v a l u e o b t a i n e d  sea l e v e l r e s i d e n t s d e s p i t e the a r t e r i a l d e s a t u r a t i o n .  3  those  been p r i n c i p a l l y r e l a t e d t o s t r u c -  the i n t e n s i t y of work performed and  same c a r d i a c output  up-  These f i n d i n g s were a s s o c i a t e d w i t h p u l -  v a r i a t i o n s i n c a r d i a c output  of  f e e t the oxygen  s t r o k e volume were s i m i l a r t o  t u r a l changes of the pulmonary v a s c u l a t u r e .  of a l t i t u d e .  of  s i m i l a r amounts of oxygen can be  the in  With  the  transported  ^Grollman, l o c . c i t .  J . A. V o g e l , H. E. Hansen and C. W. H a r r i s , " C a r d i o v a s c u l a r Responses of Man During Rest, E x h a u s t i v e Work and Recovery at 4,300m.," (U.S. Army Med. Res. and N t r . Lab Report, N. 294, 1 9 6 6 ) . 3 1  18 and d e l i v e r e d t o the t i s s u e s w i t h s m a l l e r changes i n b l o o d oxygen saturation.  T h i s i s o f s p e c i a l advantage d u r i n g e x e r c i s e when  changes i n b l o o d oxygen s a t u r a t i o n are s m a l l e r than the changes o c c u r r i n g at sea l e v e l i n low a l t i t u d e n a t i v e s . tude c a r d i a c output  While a t  i n c r e a s e d d u r i n g e x e r c i s e as a r e s u l t  altiof  32 i n c r e a s e d h e a r t r a t e , s t r o k e volume remained c o n s t a n t .  Hecht  (1968) s t a t e d an i n c r e a s e i n r i g h t v e n t r i c u l a r mass as w e l l as moderate e l e v a t i o n s of pulmonary a r t e r y p r e s s u r e compared t o sea l e v e l v a l u e s was  a normal f i n d i n g i n a l l s p e c i e s l i v i n g 33  h e i g h t s above 2,000 meters.  S e v e r a l s t u d i e s have commented  on the i n c r e a s e i n r i g h t v e n t r i c u l a r mass. K e l l y and M i l l e r  Among them H u l t g r e n ,  (1965) r e p o r t e d t h r e e o b s e r v a t i o n s  l i v i n g a t e l e v a t i o n s of over  12,000 f e e t :  i n natives  a) moderate e n l a r g e -  ment of the r i g h t v e n t r i c l e i n roentgenograms o f the b)  electrocardiograms  p a t t e r n s and  demonstrating  any  hypertrophy  c) moderate i n c r e a s e i n the r e l a t i v e weight of 34  c l a i m s t h e r e i s no evidence  l o a d due  chest,  right ventricular  r i g h t v e n t r i c l e as determined by autopsy study. (19 68)  at  Yet Hecht  t h a t acute r i g h t h e a r t  t o e x c e s s i v e pulmonary h y p e r t e n s i o n  occurs  the  i n man  overat  altitude. 32 "^N. Banchero e t a l . , "Pulmonary P r e s s u r e , C a r d i a c Output and A r t e r i a l Oxygen S a t u r a t i o n d u r i n g E x e r c i s e a t High A l t i t u d e and at Sea L e v e l , " C i r c u l a t i o n , 33:249, 1966. 33 Hans Hecht, " C e r t a i n V a s c u l a r Adjustments and Maladjustments at A l t i t u d e s , " i n E. J o k l (ed.), Medicine and S p o r t , E x e r c i s e and A l t i t u d e , ( B a s e l , S. Karger, 1968), 134-147. 34 H. N. H u l t g r e n , J . K e l l y , and H. M i l l e r , "Pulmonary C i r c u l a t i o n i n A c c l i m a t i z e d Man at High A l t i t u d e , " J . A p p l . P h y s i o l . , 20 (2), 1965, p. 233-238. 35 Hecht, op. c i t . , p. 143.  Hypertension Naiye  and G l o m e r u l i Enlargement (1965) s t u d i e d pulmonary and r e n a l a b n o r m a l i t i e s  i n young c h i l d r e n b o r n a t h i g h a l t i t u d e i n t h e U n i t e d S t a t e s . Hypoxia  appeared t o a r r e s t normal n e o n a t a l d e c r e a s e  a r t e r i a l smooth muscle i n some o f t h e s e c h i l d r e n .  o f pulmonary No  abnormali-  36 t i e s were found i n pulmonary v e i n s o r c a p i l l a r i e s . K e l l y and M i l l e r culation.  (1965) a l s o were concerned  Hultgren,  w i t h pulmonary c i r -  As a r e s u l t o f t h e i r s t u d y a t L a Oroya t h e y  concluded  t h a t t h e r e i s no r e l a t i o n s h i p between t h e h e m a t o c r i t and t h e 37 pulmonary h y p e r t e n s i o n o r r i g h t v e n t r i c u l a r Naiye  (1965) thought  hypertrophy.  i t l i k e l y t h a t t h e i n c r e a s e d pulmonary  a r t e r i a l muscle mass p r e s e n t a t h i g h a l t i t u d e i s t h e cause as 38 w e l l as t h e consequence o f t h e h y p e r t e n s i o n . A q u a l i t a t i v e s t u d y by N a i y e a l s o d e m o n s t r a t e d e n l a r g e ment o f r e n a l g l o m e r u l i i n h y p o x i c c h i l d r e n a f t e r t h e f i r s t month o f l i f e , a p p a r e n t l y due t o p r o l i f e r a t i o n o f normal g l o m e r u l i elements.  The r e n a l g l o m e r u l a r changes found i n t h e  L e a d v i l l e c h i l d r e n resemble t h o s e found i n c h i l d r e n w i t h c y a 39 n o t i c types o f c o n g e n i t a l c a r d i a l malformations. Tissue Level Adaptation C e l l u l a r a d a p t a t i o n represents the deepest l e v e l i n the h i e r a r c h y o f a d a p t i v e f u n c t i o n s o f t h e body.  In this  process  r e o r g a n i z a t i o n of the c e l l contents i s necessary. Thus compared 36 R. L. N a i y e , " C h i l d r e n a t H i g h A l t i t u d e ; Pulmonary and R e n a l A b n o r m a l i t i e s , " C i r c u l a t i o n Res., 16*33, 1965. 37 H u l t g r e n , K e l l y , and M i l l e r , l o c . c i t . 3 8N a i.y e , l,o c . c i. t . 39^,.Ibici. XT  20 to other  functions of higher  respiration, state  longer  time  t o be a c h i e v e d .  levels,  periods  such  as c i r c u l a t i o n and  are required  Adaptation  f o r t h e new  on t h e c e l l u l a r  level  steady  i s re40  fleeted  i n a normalization of functions a t higher The  adaptive  existence i n high  processes  dase system reported  such  altitude  as an i n c r e a s e d  by Reynafarje  (1961).  tude.  acid  Lactic  level  endurance t e s t s .  processes  and t h e oxygen debt  a c c l i m a t i z e d man t h a n This  tissue  a c t i o n o f t h e DPNH  The g l y c o l y t i c  involved i n the adaptive  after  natives, of certain  and o f m i t o c h o n d r i a l transhydrogenase 41  significantly  altitude  levels.  has been enzymes  a r en o t  to high  are lower  non-acclimatized  oxi-  alti-  i n high  individuals  i s due t o b e t t e r u t i l i z a t i o n  of  l a c t i c a c i d t h r o u g h t h e i n c r e a s e d DPNH o x i d a s e s y s t e m a n d Pyridine n u c l e i o t i d e transhydrogenase (Reynafarje and Velasquez, 42 1966;  Tappan  content gradient  and R e y n a f a r j e ,  may s e r v e  as a l i n k  1957).  Increased  to maintain  myoglobin  an o p t i m a l  oxygen  between  the cell  p l a s m a membrane a n d enzyme 43  the mitochondria  (Vaughan  and Pace,  Grover a l t i t u d e .40  (1963) r e p o r t e d  He s p e c u l a t e d  that  1956).  a slight this  systems i n  increase  i n BMR  at high  was d u e t o a c c l i m a t i z a t i o n  W. H. W e i h e , " T i m e C o u r s e o f A d a p t a t i o n t o D i f f e r e n t Altitudes at Tissue Level," Schweizerische Z e i t s c h r i f t f u r S p o r t m e d i z i n , V o l . 1 4 , p. 1 7 7 . 41 B. R e y n a f a r j e , " P y r i d i n e N u c l e o t i d e O x y d a s e s a n d T r a n s h y d r o g e n a s e i n A c c l i m a t i z a t i o n t o H i g h A l t i t u d e , " Amer. J . P h y s i o . , 200:351-354, 1961. 42 C. R e y n a f a r j e a n d V e l a s q u e z ; T a p p a n a n d B. R e y n a f a r j e , q u o t e d i n W. H. W e i h e , o p . c i t . , p . 1 8 6 . 43 V a u g h a n a n d P a c e . J.95b, a s q u o t e d i n W e i h e , o p . c i t . ,  t o a lower ambient temperature o r t o a h i g h e r energy 44 with increased v e n t i l a t i o n rate.  requirement  There i s no i n c r e a s e o f BMR  at reduced p a r t i a l p r e s s u r e o f oxygen under s t a n d a r d c o n d i t i o n s as l o n g as t h e r e i s no i n c r e a s e i n v e n t i l a t i o n r a t e . Weihe (1966) summarized a c c l i m a t i z a t i o n t o a l t i t u d e as depending on v a r i o u s c l i m a t i c f a c t o r s i n a d d i t i o n t o r e d u c e d a i r p r e s s u r e , w i t h a d a p t a t i o n a t t h e t i s s u e l e v e l as t h e f i n a l and 45 d e c i s i v e stage o f a c c l i m a t i z a t i o n . Summary In r e v i e w , t h e p r i n c i p a l f i n d i n g s r e p o r t e d on a t h l e t i c p e r f o r m a n c e a t a l t i t u d e have been t h a t w i n n i n g  times o f runners  and swimmers have been s y s t e m a t i c a l l y a f f e c t e d a t m i d d l e tude.  alti-  The s p r i n t s were o f t e n r u n f a s t e r a t a l t i t u d e , w h i l e 46  d i s t a n c e s were p r o g r e s s i v e l y s l o w e r .  long  A l t e r n a t e exposure t o  a l t i t u d e and sea l e v e l d u r i n g a t r a i n i n g program has been a p p a r e n t l y a way t o enhance t h e t r a i n i n g e f f e c t f o r men n o t 47 a l r e a d y i n t o p form. Regarding  the p h y s i o l o g i c a l b a s i s f o r the performance  f i n d i n g s , t h e d e c r e a s e i n maximum oxygen u p t a k e as a f u n c t i o n o f 48 a l t i t u d e may n o t alone cause a l t e r e d performance a t a l t i t u d e . M e t a b o l i c adaptation i m p l i e s a decreased  buffer capacity.  So,  the f i n a l44pH o f t h e b l o o d may be a f a c t o r l i m i t i n g l a c t i c a c i d R. F. G r o v e r , " B a s a l Oxygen Uptake o f Man a t H i g h A l t i t u d e , " J . Ap_pl. P h y s i o . , 18:1963, pp. 909-912 . 45 Weihe, op. c i t . , p. 177. 4 6  Jo.kl, loc. c i t . Craig, loc. c i t .  4 7  B a l k e , 19 45, l o c . c i t .  production.  49  On a r r i v a l a t a l t i t u d e one o f t h e f i r s t changes n o t e d has been an i n c r e a s e i n v e n t i l a t i o n .  Pulmonary  h y p e r t e n s i o n and  enlargement o f the r i g h t v e n t r i c l e has been r e p o r t e d i n a l t i t u d e 51 residents. I n c r e a s e d h e a r t r a t e has been found a t a l t i t u d e . A f t e r an i n i t i a l adjustment p e r i o d of about t h r e e weeks c a r d i a c 52 o u t p u t xn men has r e t u r n e d t o n o r m a l . RBC c o u n t b e g i n s t o go up w i t h i n hours o f a r r i v a l a t a l t i t u d e , hemoglobin v a l u e s f o l l o w 53 in their elevation. Fluid  T o t a l b l o o d volume i n c r e a s e s .  l o s s from l u n g s may be l a r g e as a r e s u l t o f h y p e r -  v e n t i l a t i o n i n the p r e s e n c e o f d r y mountain a i r ,  and so p o s t e -  r i o r p i t u i t a r y and r e n a l mechanisms a r e prompted  to conserve  water. A d a p t a t i o n a t t h e c e l l u l a r l e v e l has been n o t e d as t h e f i n a l phase o f a c c l i m a t i z a t i o n .  An i n c r e a s e i n m y o g l o b i n con-  t e n t has been t h o u g h t t o a i d an o p t i m a l oxygen g r a d i e n t between the  c e l l plasma membrane and t h e enzyme systems i n t h e m i t o c h o n 55  dria.  A c c l i m a t i z a t i o n to a l t i t u d e involves both adaptation to  c l i m a t i c f a c t o r s as w e l l as r e d u c e d a i r p r e s s u r e . ^ 49 P. C e r r i t e l l i , " L a c t a c i d 0^ Debt i n A c u t e and C h r o n i c H y p o x i a , " i n R. M a r g a r i a (ed.) , E x e r c i s e a t A l t i t u d e , 1967 , pp. 58-64. H o r n b e i n and R o o s , l o c . c i t . Hecht, l o c . c i t . 52 V o g e l , Hansen and H a r r i s , l o c . c i t . 53 54 Merino, l o c . c i t . Hecht, op. c i t . , p. 136. 55 5  3  Vaughan and P a c e , 1956, as quoted i n Weihe, l o c . c i t . ^ W e i h e , op. c i t .  As t h i s study i s concerned w i t h the performance  of a l t i -  tude d w e l l e r s a t sea l e v e l , a summary o f r e s e a r c h on d e a c c l i m a t i z a t i o n notes t h a t D a n i e l s and O l d r i d g e (1970) found  athletes  a r r i v i n g a t sea l e v e l from h i g h e r e l e v a t i o n s b r e a t h e d more a i r f o r any g i v e n work i n t e n s i t y than they d i d p r i o r t o a l t i t u d e exposure.  T h i s net h y p e r v e n t i l a t i o n was due t o the c e s s a t i o n  of the hypoxic d r i v e coupled w i t h the g r e a t e r s e n s i t i v i t y of 57 the r e s p i r a t o r y c e n t e r t o CO2 a c q u i r e d a t a l t i t u d e . Balke  (1964) and Bynum  Although  (1966) concluded t h a t n a t i v e s o f h i g h  a l t i t u d e show an i n c r e a s e i n work c a p a c i t y upon descending t o 58 59 a lower a l t i t u d e , ' Grover and Reeves (1966) and D a n i e l s and O l d r i d g e (1970) f a i l e d t o f i n d performance improvement under . ., • . 60,61 s i m i l a r circumstances. ' S t u d i e s concerned with d e a c c l i m a t i z a t i o n i n d i c a t e it  i s a major t r a n s i e n t t a k i n g some time t o complete.  that  For  example, R e y n a f a r j e (1959) found t h a t i t took 100-120 days f o r 62 the RBC and Fe t u r n o v e r r a t e t o r e a c h about the normal And, D e j o u r s , K e l l o g g , and Pace  rate.  (19 63) have shown t h a t the r e t u r n  of the CO2 s e n s i t i v i t y o f the r e s p i r a t o r y c e n t e r t o normal r e t u r n o f the i n d i v i d u a l t o sea l e v e l from a l t i t u d e , 63 about t h i r t y days to be completed.  required  57 D a n i e l s and O l d r i d g e , l o c . c i t . 5 8  Balke  ^Grover  (1965), l o c . c i t .  5  after  ^Bynum, l o c . c i t .  and Reeves, l o c . c i t .  61 D a n i e l s and O l d r i d g e , l o c . c i t . 6 3R e y n a f a r j e , (1959), l o c . c i t . D e j o u r s , K e l l o g g , and Pace, (1963), l o c . c i t .  Chapter METHODS AND  3  PROCEDURES  Female students a t South Tahoe Intermediate three times  School  a week d u r i n g t h e i r P h y s i c a l E d u c a t i o n c l a s s .  ran Dis-  tances of 400m., 800m., and one m i l e were a l t e r n a t e l y run. f a s t e s t f i v e g i r l s i n each c l a s s every day were r e c o r d e d , a f t e r t h r e e weeks of t r a i n i n g , v o l u n t e e r s were asked the s e l e c t group. mainly  Ten  of the s u b j e c t s dropped out; one  t i e s w i t h auto s i c k n e s s , and  from 12 to 14,  and  f o r from  A f t e r one because of  The  i n weight from 75 to 130  were premenarche but two.  testing difficul-  the o t h e r because the f a t h e r  the d i s t a n c e between t e s t i n g c i t e s too f a r . age  and  s u b j e c t s were chosen from the v o l u n t e e r s ,  on the b a s i s of t h e i r r e s p o n s i b i l i t y .  s e s s i o n two  The  thought  g i r l s ranged i n pounds.  All  During the t e s t i n g program they  con-  t i n u e d i n the s c h o o l f i t n e s s program, running a m i l e once a week, 800m. once a week and a l s o p r a c t i c e d one  400m. once a week.  day  a week.  S p r i n t s or h u r d l e s were  A l l but one  of the s u b j e c t s a l s o  p a r t i c i p a t e d i n s c h o o l t r a c k meets. T r a i n i n g p r i o r to t e s t i n g could not b e g i n e a r l i e r the t h r e e weeks because of snow on the ground and  track.  than Testing  could not s t a r t l a t e r because the s u b j e c t s would be out of s c h o o l and  f a m i l i e s would be p l a n n i n g v a c a t i o n s .  April  and May  were scheduled  f o r t e s t i n g at a 400  t r a c k a t South Tahoe Intermediate 44 0 yard A l l - w e a t h e r  E i g h t Saturdays  in  meter T a r t a n  S c h o o l , e l e v a t i o n 6256; and  t r a c k a t the C o l l e g e of Marin  a  in Kentfield,  25 California, test to  e l e v a t i o n approximately  days a t each  level  level. at  The t e s t i n g  samples  was  t o the performance t e s t i n g  ed w i t h stored  unnecessary  heparin. until  trifuged  However, a f t e r  month c a l e n d a r  this  readings  taken  Base.  f r o m t h e L a k e Tahoe  a simple gener-  were t r e a t they  were  Tahoe.  o n a two  purpose.  A homemade s l i n g  psychrometer  p r e s s u r e was r e c o r d e d  t o reduce the c o r r e c t e d  to represent  from  t o w e r a n d a t Hamfigures  the a c t u a l pressure  t h e tower r e p o r t e d .  i n San F r a n c i s c o p r o v i d e d  e a c h day o f s e a l e v e l  testing.  The P o l l u t i o n  of the  the a i r p o l l u t i o n  Control index  T h e i r i n d e x was b a s e d  s c a l e d e s i g n a t i n g 0-30 a s c l e a n a i r , 30-50 m o d e r a t e , 50-75  19 69  cen-  a i r , 1 i n . Hg. p e r 1,000 f t . e l e v a t i o n must be. s u b t r a c t -  Board O f f i c e  and  were  r e c o r d i n g s w e r e made e a c h day o f  Barometric  In order  tower  from t h e p r e s s u r e s  for  records  a t t h e South Lake Tahoe A i r p o r t  i l t o n A i r Force  inspired  and h u m i d i t y  information.  tubes  they  taken  samples  a t South Lake  her f o r that  b e t w e e n two and t h r e e pm.  provided  A t t h a t time  h e r own m e n s t r u a l  t h a t was g i v e n  Temperature testing  kept  after  w h i c h was done  the c a p i l l a r y  i n a physicians office  Each Subject  were  t h e s a m p l e s were t a k e n  t h e f o l l o w i n g Monday.  and r e a d  a s e s s i o n a t sea  R e f r i g e r a t i n g the blood  because  four  was v a r i e d s o t h a t  T h i s was done r i g h t  between two a n d f o u r pm. considered  schedule  f o r the microhematocrit  one pm e a c h d a y o f t e s t i n g .  ally  T h e r e were  R e p e a t e d m e a s u r e s were u s e d  d i d n o t always precede  F i n g e r t i p blood  l u n c h and p r i o r  ed  of a l t i t u d e .  increase r e l i a b i l i t y .  a session at altitude  sea l e v e l .  75-100 h e a v y  on a severe  pollution.''"  ^Information B u l l e t i n i n c l u d e d i n Appendix.  Combined P o l l u t a n t I n d e x  Experience  26  The equipment needed  f o r t h e performance t e s t i n g was a  W i l s o n 100 f o o t m e t a l measuring tape and a n A p o l l o stop-watch which w a s t a k e n t o t h e J e w e l e r s f o r c a l i b r a t i o n j u s t p r i o r t o the  f i r s t testing  session.  Every s u b j e c t p a r t i c i p a t e d i n e v e r y one o f t h e v a r i a b l e s . Each s u b j e c t was t e s t e d a l o n e w i t h o u t c o m p e t i t i o n , and a l l t i m e s were t a k e n by t h e same t i m e r on t h e same watch.  The g i r l s had  been i n s t r u c t e d t o do t h e i r b e s t a t a l l t i m e s , and on t h e l o n g e r d i s t a n c e s they were i n s t r u c t e d t o pace themselves t o g e t t h e b e s t t i m e w i t h o u t b e i n g a b s o l u t e l y exhausted b e f o r e t h e f i n i s h . T e s t i n g s e s s i o n s began w i t h a l i m i t e d warm-up;  fifty  jumping j a c k s , f i f t y mountain c l i m b e r s and t h i r t y a n k l e r o t a t i o n s f o r each f o o t . 50 y a r d dash.  Then, q u i c k l y one by one t h e g i r l s r a n t h e  A g a i n i n t h e same o r d e r they r a n t h e 440.  As  each g i r l f i n i s h e d t h e 440 she went t o a n o t h e r a r e a t o do h e r s o f t b a l l throw. testing session.  Each s u b j e c t took t h r e e throws d u r i n g each A p a r t n e r checked t h e b e s t throw a g a i n s t t h e  s t e e l t a p e , and i t s d i s t a n c e was r e c o r d e d t o t h e n e a r e s t one half foot. to  A.s each g i r l f i n i s h e d h e r s o f t b a l l throw she r e t u r n e d  t h e t r a c k f o r t h e 880 y a r d r u n .  I t u s u a l l y took between an  hour and a h a l f t o two hours t o complete t h e t e s t i n g each day. There were f i v e dependent v a r i a b l e s - - - ( a s o f t b a l l  throw,  50 y a r d d a s h , 44 0 y a r d d a s h , and an 8 80 y a r d r u n , a l s o a hematocrit) .  The independent v a r i a b l e s were t h e two a l t i t u d e  levels,  A 2 x 4 f a c t o r i a l d e s i g n was used w i t h r e p e a t e d measures on each dependent v a r i a b l e .  The dependent: v a r i a b l e s w e r e chosen  because: 1. I t has been p r e v i o u s l y found t h a t s h o r t runs and throws a r e  improved a t moderate  altitude.  2. Long runs are impaired a t a l t i t u d e , but i n t o l e r a b l e atmosp h e r i c c o n d i t i o n s may  a l s o cause impairment.  3. These performance events r e p r e s e n t performances i n a t r a c k meet. 4. The b l o o d d e t e r m i n a t i o n s imply the a d a p t a t i o n t o a l t i t u d e . For a n a l y z i n g the d a t a s t a t i s t i c a l l y , used. • One reduced  manova was  an a l t e r n a t e c h o i c e which would have  the type I e r r o r r a t e .  However, the s t a t i s t i c s were  c a l c u l a t e d by hand r a t h e r than by computer. make computing and  f i v e anovas were  Using anovas would  i n t e r p r e t i n g the data e a s i e r .  p r e t a t i o n , temperature,  To a i d i n t e r -  humidity and b a r o m e t r i c p r e s s u r e were  recorded a t each t e s t i n g s e s s i o n .  The a i r p o l l u t i o n index  a l s o noted i n the m e t r o p o l i t a n area of sea l e v e l t e s t i n g . ments on the winds were j o t t e d on the data s h e e t s .  was Com-  Menstrua-  t i o n r e c o r d s were kept by the s u b j e c t s i n o r d e r t o have more i n f o r m a t i o n r e l a t i n g to the h e m a t o c r i t s .  Any  p h y s i c a l com-  p l a i n t s of the s u b j e c t s on t e s t i n g days were a l s o On  noted.  the f o l l o w i n g page i s a diagram d e p i c t i n g the  f a c t o r i a l d e s i g n w i t h i t s 5 dependent v a r i a b l e s .  2x4  28 Table I Indep.  ALTITUDE 1  testing order  3  4  (1) (3) (6) (8) dep.  softball  2  6,256 f t . SEA L E V E L  Sl 2  throw  1  2  3 4  temp., (2) (4) (5) (7) h u m i d i t y , barometric pressure recorded a t each t r i a l  8 Sl 2 50 y d . d a s h 8 Sl 2 440 y d . 8 Sl 2 3 8 80 y d . 8 Sl 2 Hematocrit  Menstruation records, p o l l u t i o n index, winds, health n o t e s were added . i n c i d e n t a l i n f o r m a t i o n .  29 The  source  o f v a r i a n c e f o r e a c h Anova  i s tabled  below.  T a b l e II. ANOVA TABLE source subjects treatments altitude trials alt. x trials  d.f. 7 7 1 3 3  error  49 sub. sub. sub.  x alt. x trials x alt. x trials  7 21 21  total  63  When a s i g n i f i c a n t a n a l y s i s was  then  trials  e f f e c t was  found  a p o s t hoc  computed.  The p r e d i c t i o n s were t h a t t h e f o u r t r i a l s would The  show s t e a d y  four t r i a l s  r u n w o u l d be four first  trials.  improvement  I t was  weather a r r i v e d .  between  over  throw,  and  at  altitude  learning.  50 y a r d d a s h and  b u t would  440  improve over  yard the  a l s o p r e d i c t e d t h a t t h e 880 y a r d r u n on t h e be on a p a r o r b e t t e r t h a n  trials,  The  b u t would  hematocrits  the t e s t i n g  subjects.  to t r a i n i n g  a t sea l e v e l ,  t e s t would  age o f t h e a l t i t u d e  constant  due  of the s o f t b a l l  impaired  sea l e v e l  trend  become i m p a i r e d  were e x p e c t e d  p e r i o d , b u t would  the as  to remain  aversummer fairly  vary considerably  Chapter 4 RESULTS AND  DISCUSSION  Results An examination of the t e s t r e s u l t s was made i n o r d e r t o help determine i f the a t h l e t i c performance of middle dwelling g i r l s For  i s actually  altitude  i m p a i r e d a t sea l e v e l .  the 880 yard r u n , times a t sea l e v e l were on an  average f a s t e r  than a t a l t i t u d e .  But, the d i f f e r e n c e  was not  s u f f i c i e n t t o permit the e f f e c t o f a l t i t u d e t o be c o n s i d e r e d significant.  The four treatments a t sea l e v e l were not con-  s i s t e n t l y f a s t e r than the f o u r treatments a t a l t i t u d e . example, the second a l t i t u d e runs were f a s t e r sea  l e v e l runs.  For  than the second  The second sea l e v e l runs proved to be, i n  f a c t , the slowest 880 times r e c o r d e d a t sea l e v e l .  By  pairing  each sea l e v e l treatment w i t h i t s c o r r e s p o n d i n g a l t i t u d e ment, s c o r e s f o r f o u r t r i a l s were c a l c u l a t e d .  treat-  There was a s i g -  n i f i c a n t e f f e c t between these t r i a l s  a t b e t t e r than the one  percent l e v e l of s i g n i f i c a n c e  The improvement noted  trial  also.  to t r i a l was a s i g n i f i c a n t l i n e a r t r e n d .  p r e d i c t e d , the f i r s t  from  As had been  treatment a t sea l e v e l was b e t t e r than the  p r e v i o u s treatment at a l t i t u d e .  J o i n t e f f e c t s of t r i a l s and  a l t i t u d e were s i g n i f i c a n t a t the one p e r c e n t l e v e l of s i g n i f i cance..  Table I I I 830 YARD RUN ANOVA TABLE Source  SS  d.f.  ms  18740.21  7  2677.17  Treatments  2513.57  7  359.08  5.72  s i g . 1%  trials linear  1536.66 1497.31  512.22 1497.31  6.87 20.08  s i g . 1% s i g . 1%  altitude  182.3  182.3  2.71  no s i g .  794.60  264.87  5.37  s i g . 1%  Subj e c t s  trials x art.  Error sub x a l t  3072.3  49  471.33  62.7 67.33  sub x trials  1565.57  21  74.55  sub x trials x alt  1035.39  21  49.30  Total  24326.08  63  3861.44  F .05 4. 04 .01 (1,49) 7.18  F  .05 4.32 .01 (1,21) 8.02  F  F  .05 5.59 .01 (1,7) 12.25  .05 3.07 .01 (3,21) 4.87  34 Figure The  third  trial  To e x p l a i n third at  treatment  The f o u r t h  altitude  difference total  t h e s l o w e s t b u t t h e f o u r t h was  a t s e a l e v e l was  i n the testing  either  the  was  t h i s , a look at individual  altitude.  last  3 i l l u s t r a t e s the trend of the t r i a l s  or sea l e v e l .  between sea l e v e l times  slower  treatment  s c h e d u l e was  at altitude  treatments than  the  fastest.  points out the  the f i r s t  at altitude,  treatment  which  was t h e  the best of a l l treatments  Again  t h e r e was  and a l t i t u d e were  f o r t h e 440.  faster  no  significant  performance,  than  at  although  t o t a l times  a t sea  of altitude  x  level. There trials  was  a t t h e one p e r c e n t  at  t h e two l e v e l s  As  performance  level  and v i c e As  perform dash. And,  the female  not truly  second  o r t h e same.  i t became w o r s e a t s e a  from  was  percent chance  The s u b j e c t s were  a t a. s i n g l e  program  a t the sea  found  subjects varied  o n t h e 50  the altitude  that  consistent  t h e s u b j e c t s d i d not appear  as t h e t e s t i n g  one a n o t h e r  faster  due t o t h e d i f f e r e n c e s  i n a l l treatments  the subjects proved  statistic  s u b j e c t s were  a s h o r t r u n some  sistency, event  at altitude  performance  versa.  with only a five  such  were n o t c o n s i s t e n t  significantly different  here  Factors affecting  i n a l l the other variables,  conditions. On  of altitude  improved  interaction  level.  The o n l y s i g n i f i c a n t  track, was  a significance  this  altitude  efforts.  one t e n t h o f a With  such  to get better  proceeded.  level  difference  i n their  track.  yard  effect.  a t t h e two  only  to  In fact,  at  conthis  the best  T a b l e IV 440 Yard Dash Anova T a b l e Source  SS  d.f.  ms  3408. 66  7  486.95  Treatments  340. 31  7  48.61  trials  139. 88  Subjects  linear  3  F  46.63  2.16  10. 98  1  10.98  quad.  4. 82  1  4.82  cubic  104. 76  1  104.76  4.80  Altitude  31. 50  1  31.50  2.79  Alt. x trials  168. 92  3  56.30  15.06  Error  610. 81  49 7  11.26  sub x trials  453. 38  21  21.59  sub x trials x alt  78. 55  21  3.74  Total  4359. 79  63  no  sig. no sig.  12 .46  78. 87  sub x a l t  p  69.20  F  .05 4.04 .01 (1,49) 7.18  F  .05 .01  4. (1,21) 8.  F  .05 .01  F  .05 .01  (1,7)  (3,21)  3.07 4.87  5.59 12.25  times were recorded on the f i r s t  t e s t a t sea l e v e l .  For the s o f t b a l l throw almost random r e s u l t s were a t t a i n e d , p a r t i c u l a r l y from the sea l e v e l t e s t s . the s u b j e c t s d i f f e r e d , w i t h the b e s t thrower the d i s t a n c e of the worst. was  The  statistically was  almost  e f f e c t of t r i a l s x  s i g n i f i c a n t at the f i v e p e r c e n t l e v e l .  l e n g t h of throw being f u r t h e r  For s u r e , doubling altitude  D e s p i t e the  average  a t a l t i t u d e than a t sea l e v e l ,  the e f f e c t s of a l t i t u d e were n i l .  Improvement  s t e a d i l y made a t a l t i t u d e , w h i l e such improvement was  so n o t i c e a b l e a t sea l e v e l .  No  s i g n i f i c a n c e was  not  found i n the  interactions. As expected, h e m a t o c r i t s were s t a t i s t i c a l l y difference ficance  a t a l t i t u d e and  sea l e v e l .  without  T r i a l s showed no s i g n i -  at the f i v e p e r c e n t l e v e l , but t r i a l s x a l t i t u d e d i d .  A trend a n a l y s i s  was  not performed,  but a s c r u t i n y  of the data  r e v e a l e d no p a t t e r n to the p e r c e n t h e m a t o c r i t s r e c o r d e d . comparison of the two  s u b j e c t s menstrual  A  records to t h e i r  h e m a t o c r i t s r e v e a l e d no p a r t i c u l a r peaks or d i p s i n the h e m a t o c r i t s p a r a l l e l t o monthly rhythms. h e m a t o c r i t was  a 39.5%, the h i g h e s t was  of a l l r e c o r d i n g s f o r a l l the g i r l s was females a t sea l e v e l are about 39%. females  i n Mexico C i t y was  The  The  lowest  a 49.5%. 43.9%.  The  recorded average  Averages f o r  average' f o r  100  4 5.5%."^  'P. Altman, Blood and Other Body F l u i d s , F e d e r a t i o n of .American S o c i e t i e s f o r E x p e r i m e n t a l B i o l o g y , 1961, p. .19 2.  Table V 50 YARD DASH ANOVA TABLE Source  SS  d.f.  ms  9.06  7  1.29  Treatments  .68  7  .09  trials  .06  3  .01  2.53  no  altitude  .58  1  .58  6.83  sig  alt. x trials  .039  3  .013  0.46  no  Subjects  Error  1.36  49  .027  sub x a l t  .59  7  .085  sub x t r i a l s  .16  21  .007  sub x t r i a l s x alt.  . 60  21  .028  Total  11.10  63  .18  F  .05 2.21 .01 (7,49) 3.03  F  .05 4.34 .01 (1,21) 8.02  F  .05 3.07 .01 (3,21) 4.87  F  .05 5.59 .01 (1,7) 1 2 . 2 5  T a b l e VI SOFTBALL THROW ANOVA TABLE Source Subjects  SS  d.f.  ms  29182. 31.  7  4168.90  7  113.23  Treatments  792.62  altitude  38.28  1  trials  322.17  3  trials x alt.  432.16  3  Error sub x alt  2005.03  1.96  no  107.38  2.01  nc  144.056  4.06  sig.  38 . 28  40.92  49  136.81  7  19/54  sub x trials  1123.61  21  53.50  sub x trials xalt.  744.61  21  35.45  Total  31979.96  63  507.61  F .05 2. 21 .01 (7,49) 3.03  F  F  F .05 .59 01 (1,7) 12.25  .05 3.07 .01 (3,21) 4.87  5  .05 4.32 .01 (1,21) 8.02  43 The gressed  a i r temperature during  from  this order; cold, taken, the  dry,  82°, and  sea  level was  60°,  but  humidity  and  made i t d i f f i c u l t  altitude  23%.  and  As  followed  session  38°F  a contrast  still.  The  pollution  headaches d u r i n g  the  first  the  e x c i t e d about  s u b j e c t s appeared  last  three  severe  times  i n e x p e r i e n c e of the  to get  an  was  was  seem t o a f f e c t  the  pro-  30%.  Three subjects experienced  youthfulness  sessions  i n d i s p o s i t i o n d i d not  stomach cramps d u r i n g The  first  only  hot  s u b j e c t s had  the  level  sessions  reading of only  was  humidity  altitude  sea  The  bulb  s e s s i o n was  In f a c t ,  tests.  the  66°F.  A wet  30,  of the  test,  formance. the  72°,  windy.  t h a t day All  level  t o 66°F, w h i l e  hence r e l a t i v e  first  index  51°  the  accurate  perdoing  s i d e aches  they  or  ran the  subjects  sea  880.  sometimes  d e s c r i p t i o n of  their  feel-  ings . DISCUSSION Post altitude  hoc  examinations  have shown t i m e s  of world  t o be  records  T r u e e x p e r i m e n t s have r e a l i z e d  Since Jokl  claimed  oxygen p r e s s u r e s  handicapping  of  8 00m.  l o n g e r , i.t was  and  tigation  at  1,500m. and  6,256 o f t h e  longer;  and  similar  i n f l u e n c e of  becomes s t a t i s t i c a l l y  distances  level  systematically affected  altitude.  the  a t sea  valid  results. the  a t 7,340 f e e t  t h a t the  880  r u n w o u l d be  yard  by  lowered  a t 5,350 f e e t  expected  times  and  for  for distances  in this  inves-  statistically  Table VII HEMATOCRITS AND  3 2  4  MENSTRUAL  5  RECORDS  6  8  7  1  alt  4 6 . 5 %  APRIL subject  2  1 0  9  1 7  1 6  1 2  1 1  1 8  /  1 3  2 0  1 9  2-5  4  9  %  /  s.l.  /  22  2 1  alt  4 2 %  2 3  2 4  2  2 5  6  2 7  2 8  /2'9 4  /  /  1  2  3  6  tr  4  6  MAY  4 9 %  8  7  9  1 1  1 0  1 7  1 6  1 5  .18  1 3  2 2  2 3  2 4  alt  'o  7^  2 0  /I -7 g.  / ' 2 1  s.l.  .  1 2  *r 1 4  Sol*  /  2  5  q 2 7  2 6  alt _  '4 8 . 5 %  2  APRIL subject  3  4  5  6  7  8  4  alf  5 %  9 9  1 0  1 1  1 7 /  /  y  .  2 3  2 4  /  "/  1 9  2 0  1  V  2 5  2  /  1  4  /  / 4 6 %  /  '  5  S.l,  /  2 1  22 alt  4 2 . 5 %  2 6  2 7  2 8  2 9  S  4 2 . 5 %  3 0  4  1  9  1 0  1 1  1 3  1 2  alt  4 2 . 5 %  /  1 4  21  1 5 /  / 2  2  1 6  /  2  3  /  17/  /' 2 4  1 8  /  2 5  /  1 9 /  2 0  4 '  a  S.l.  4 7 %  8  « 1  6  5  MAY 7  1  s.l.  5 %  2  2 6  .  4 3 . 5 %  7  ait  46 Table VIII HEMATOCRIT ANOVA TABLE Source Subjects Treatments trials  SS  d.f.  ms  190.46  7  27.21  7  8.14  57 16. 03  3  5.34  1.85  no  altitude  3.07  1  3.07  0.73  no  alt x trials  37.89  12.63  3.60  sig.  Error  163.78  49  3.34  sub x a l t  29.58  sub x trials  60.50  21  2.88  sub x a l t x trials  73.69  21  3.50  Total  411.25  5%  4. 22  63  6.52  F .05 2.21 .01 (7,49) 3.03  F  .05 4.32 .01 (1,21) 8.02  F  F  .05 5.59 .01 (1,7) 12.25  .05 3.07 .01 (3,21) 4.87  slower a t a l t i t u d e .  T h i s p r e d i c t i o n d i d not q u i t e h o l d up.  Although average r u n n i n g times were slower a t a l t i t u d e , a F i s h e r r a t i o of 2.9 with one degree of freedom difference significant. that at a l t i t u d e f a i r l y  does not make t h i s  When r e s u l t s are graphed,  i t appears  steady improvement took p l a c e , w h i l e a t  sea l e v e l t o t a l t e s t s c o r e s were e r r a t i c ;  sometimes b e t t e r  p r e v i o u s a l t i t u d e t e s t s , but not always.  The  s u b j e c t s were  i n v o l v e d i n a m i l d t r a i n i n g program throughout of  testing.  than  the two months  So, as long as t e s t i n g c o n d i t i o n s remained p l e a s a n t  t h e r e should have been performance  improvement.  Continued run-  ning e x p e r i e n c e would i n c r e a s e oxygen uptake, and p a c i n g t e c h niques would become r e f i n e d . the data was The  improvement that was  probably the r e s u l t of t h i s  noted i n  happening.  l a r g e d i f f e r e n c e i n times taken a t the f i r s t  ment at a l t i t u d e and the f i r s t i n p a r t accounted to  The  treat-  treatment a t sea l e v e l must be  f o r by the emotional excitement of  traveling  the sea l e v e l t e s t s i t e and the s p e c i a l a t t e n t i o n newly  a f f o r d e d the s u b j e c t s .  For most of the g i r l s  t h i s was  as f a r  as they had ever t r a v e l e d b e f o r e , and probably many had been so f a r from t h e i r f a m i l i e s . situated  The sea l e v e l t r a c k  never  was  i n a complex of o t h e r r e c r e a t i o n a l f a c i l i t i e s , a l l  impeccably maintained and very i m p r e s s i v e .  T h i s new  and  s p e c i a l treatment s t i m u l a t e d the g i r l s to producing some of t h e i r b e s t times so f a r . l e v e l t e s t s was at  In a d d i t i o n , the day of the f i r s t  hot f o r i n d i v i d u a l s who  t h e i r mountain home.  had  sea  j u s t come from snow  The warmth of the day p o s s i b l y i n -  creased m e t a b o l i c p r o c e s s e s and hence aided running times.  50  The  s i g n i f i c a n t i n t e r a c t i o n o f t r i a l s and a l t i t u d e  o c c u r r e d i n both the 880 and 440 run may be d i f f i c u l t pret.  On improvement from t r i a l t o t r i a l  because  that  to i n t e r -  that occurred i n part  o f a change i n a l t i t u d e D a n i e l s and O l d r i d g e (1970) a l s o  had t o comment. There i s a l s o a p o s s i b i l i t y t h a t the d e s i r e a t a l t i t u d e to e q u a l normal s e a - l e v e l performance motivated t h e subj e c t s t o push c l o s e r t o max VO2 f o r a l o n g e r p e r i o d o f time than normal, an a t t i t u d e they c a r r i e d over i n t o p o s t - a l t i t u d e runs. I f s o , then t r a i n i n g a t a l t i t u d e would b e n e f i t subsequent s e a - l e v e l performance as the runners a t t a i n e d an a b i l i t y t o w i t h s t a n d more d i s c o m f o r t than u s u a l . T h i s would presumably be r e f l e c t e d by g r e a t e r u t i l i z a t i o n o f the anaerobic c a p a c i t y i n a l t i t u d e and p o s t - a l t i t u d e runs, a p o s s i b i l i t y not i n v e s t i g a t e d . 1 The  440 yard dash b e i n g a middle d i s t a n c e f o r young  g i r l s o r a l e n g t h y s p r i n t , and c o n s i d e r e d extremely t a x i n g i n c o m p e t i t i o n was expected t o be a b a l a n c e p o i n t i n t h i s ment.  experi-  Times were p r e d i c t e d t o be o n l y s l i g h t l y b e t t e r a t a l t i -  tude than sea l e v e l , but showing the e f f e c t s o f t r a i n i n g s t a r t to f i n i s h . Astrand  from  These p r e d i c t i o n s were f a i r l y a c c u r a t e .  (1970) wrote t h a t w i t h a work time of up t o two minutes  the a n a e r o b i c power i s more important than the a e r o b i c ; a t about two minutes  t h e r e i s a 50:50 r a t i o , and w i t h l o n g e r work time 2  the a e r o b i c power becomes g r a d u a l l y more dominating. j e c t s 440 times ranged  The sub-  from 1:14.8 t o 1:46.1, so f o r the most  p a r t anaerobic power was more important, but f o r some t h e 50:50 mark was  close.  Jack D a n i e l s and N e i l O l d r i d g e , "The E f f e c t s o f A l t e r nate Exposure t o A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e D i s t a n c e Runners," Medicine and_ S c i e n c e i n S p o r t s , ( F a l l 19 70) , V o l . 2, No. 3 , p. 111. 2  "  P e r - O l o f A s t r a n d , Kaa.re Rodahl, Textbook of Work P h y s i o l o g y , (McGraw-Hill Book Company, N.Y., 1970), p. 3 0 4 .  51 Grover jects  and  performing  Reeves  this  ( 1 9 6 6)  event  found  better  at  some sea  of  their  l e v e l ,  male  others  sub-  at  a l t i -  3 tude.  On  faster of  at  an  average  altitude,  freedom  this  the  but  with  difference  Improvement  was  ject  progressively  became  run  at  f u l l  and  tolerance  (1970)  has  samples tive  of  said  events  the  blood  but  the  of  l a c t i c "the  lactate  second  the  experience to  better  With  really  the  reverse  factors  be  from  slower).  ratio  start  to  mechanical  acid  the  muscles  two  lactate  athletes  minutes  concentration during  the  and  1  this  at  the  distance  a  given  so  end  maximal  work  physical  subwas  e f f i c i e n c y , Astrand  far of  d u r a t i o n . . . d u r i n g  for  degree  (One  increased. values  44 0  s i g n i f i c a n t .  f i n i s h .  more  the  blood  2.5  The  was  in  of  ran  considered  greater  treatments  During  prise  noted  not  experiment  are  in  competi-  t r a i n i n g ,  load  is  e f f o r t  lower, are  higher."  This  chance  to  this  Fisher  could  highest  attained 4  formance.  new  a  m  well-trained  one  During  a  the  from  values  usually  generally  effort,  drawn  g i r l s  must make  of be  a  may  have  and  4,  5,  been  third t r a v e l .  a l l  previous  previous made.  of  there  result  The  was  of  there  l a s t  a  a  slump  in  per-  p s y c h o l o g i c a l was  the  t h r i l l  treatment  was  the  low. of  last  times.  the  50  studies,  F i r s t  substantial  the  7  treatments  and  results  6,  of  change  yard a  a l l , in  dash  look did air  at  producing a l l  changes pressure?  a  sur-  influencing in  altitude To  answer  3 Robert Grover, John Reeves, "Exercise Performance of Athletes at Sea L e v e l and 3,000 meters A l t i t u d e , " The International Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l P e r formance , (19 66) , p . 80*. 4 Astrand, op. c i t . , p. 298.  t h a t , the p r e s s u r e s a t a l t i t u d e averaged recorded a t sea l e v e l .  79% o f t h e p r e s s u r e s  An important c o n s i d e r a t i o n i s the f a c t  t h a t a t the a l t i t u d e t r a c k the s u b j e c t s f a c e d i n t o t h e p r e v a i l i n g a i r c u r r e n t s , w h i l e a t sea l e v e l the 50 y a r d dash was r u n w i t h the wind.  I t a l s o seemed t h a t when a i r temperature  r e a l l y warm, b e t t e r r e s u l t s were a c h i e v e d .  was  The 50 y a r d dash was  the f i r s t t e s t a d m i n i s t e r e d d u r i n g each t e s t i n g s e s s i o n .  The  degree o f success i n t h i s event more than the o t h e r s was r e l a t e d to e f f e c t i v e n e s s o f the warm-up and body c o r e  temperature.  S i n c e the warm-up was the same a t each t e s t i n g s e s s i o n i t was l e s s e f f e c t i v e i n 51° weather than i n 82° weather. temperature  At a higher  m e t a b o l i c p r o c e s s e s i n a c e l l can proceed  h i g h e r r a t e , s i n c e these processes a r e temperature  at a  dependent.  The exchange o f oxygen from the blood t o t h e t i s s u e s i s f a s t e r at a h i g h e r temperature.  A r e d u c t i o n i n conductance o f the  t i s s u e o c c u r s when the s k i n i s c h i l l e d .  T h i s i s p a r t l y because  of v a s o c o n s t r i c t i o n o f the s k i n ' s b l o o d v e s s e l s c a u s i n g a reduct i o n i n b l o o d flow, and p a r t l y because the b l o o d i n the v e i n s o f the e x t r e m i t i e s i s detoured veins.^  Furthermore,  from the s u p e r f i c i a l t o the deep  the nerve messages t r a v e l f a s t e r a t h i g h e r  6 temperatures.  Hobert  and Lynggren  (1947) examined the e f f e c t s  o f a c t i v e and p a s s i v e warm-up on the speed o f r u n n i n g .  In the  100m. dash the improvement a f t e r a proper warm-up was i n the order o f 0.5 to 0.6 seconds,  corresponding  A s t r a n d , op. c i t . , p. 224. A s t r a n d , op. c i t . , p. 496.  to t h r e e to f o u r  53 percent  compared w i t h  information dently the  would p o i n t  insufficient  cooler  the  and  The  two  activity  but  the  50  yard  This evi-  dash o p t i m a l l y  or  temperature,  by  the  strategy. can  the  in  Reports vary  the  on  events.  factors did  not  control  warm-ups and  pre-  his  athletes  day. e f f e c t s of  J o k l has  jump a t M e x i c o C i t y .  yard  experimenter.  A coach cannot  prescribe  50  dependent  i n c o r r e c t dosages c o n s i d e r i n g the  record  to  f a c t o r s are mutually  he  temperatures of  making t h i s  7  warm-up e m p l o y e d was  which have c o n t r o l l e d t h e s e  pressure,  throwing  long  warm-up.  t o t r y t o presume w h i c h were more  pressure  i n s i g h t into coaching  competition and  the  They were u n c o n t r o l l a b l e  studies  barometric  that  foolish  barometric  weather wise.  lend  out  any  temperatures.  dash performance.  Previous  r e s u l t s without  for performing  I t w o u l d be important,  the  praised  One  of  the  jump p o s s i b l e was  a l t i t u d e upon  jumping  Bob  record  Beamor, s 1  f a c t o r s he the  reduced  attributes air  for  resistance  S  at  the  be  a f a c t o r i n throwing  stated tance in  that with from the  the  high  a l t i t u d e of Mexico C i t y .  case of  altitudes.  the  events  f o r c e of  earth's athletic 9  Reduced a i r r e s i s t a n c e as w e l l .  Astrand  g r a v i t y reduced  surface events  C e r v a n t e s and  there  may  be  at  (19 64)  has  a greater  a favorable  i n v o l v i n g jumping  Karpoviteh  (1970)  should  or  dis-  effect  throwing  i n a report  at  on  7 cit.,  p.  Hoberg 496.  and  Lyndgren  (1947) as  quoted  i n Astrand,  op.  g 9 E r n s t J o k l , "A R e p o r t on Bob '3 earn on• s W o r l d R e c o r d L o n g op. Jump, and A sH t i sr a nSdu,b s e q u e nc ti tC.o ,l lp.a p s e563. a t M e x i c o C i t y , O c t o b e r 18, 1968 ," The P h y s i c a l E d u c a t o r , (May 1 9 7 0 ) , p. 69".  the e f f e c t o f a l t i t u d e on a t h l e t i c performance s t a t e d t h a t event r e s u l t s have been i n c o n s i s t e n t . "^  field  The e f f e c t s o f a l t i t u d e  upon throwing were not s i g n i f i c a n t i n t h i s experiment.  The  throws a t sea l e v e l were e r r a t i c from t e s t i n g s e s s i o n t o t e s t i n g s e s s i o n . - For one t h i n g , d u r i n g the f i r s t throwing was  s e s s i o n a t sea l e v e l  done on a packed e a r t h s u r f a c e and a t the f o l l o w i n g  s e s s i o n s throwing was done on greens such as was altitude.  the case a t  Perhaps another reason f o r e r r a t i c performance  was  the f a c t t h a t s e v e r a l of the g i r l s d i d not throw very w e l l and were l e a r n i n g the proper s k i l l  sequence.  F i t t s and Posner  (1967) r e f e r r e d to the second stage o f s k i l l  l e a r n i n g as the  phase when e r r o r , wrong sequences of a c t s and. responses to wrong cues are g r a d u a l l y eliminated."'''''  The l e a r n i n g p r o c e s s was  more  c o n s i s t e n t a t the a l t i t u d e l o c a t i o n , the p l a c e where they were accustomed  to throwing and  learning.  As expected h e m a t o c r i t s v a r i e d among the s u b j e c t s w i t h i n the normal range.  Healthy i n d i v i d u a l s d i f f e r w i d e l y w i t h  r e s p e c t t o blood formulas.  These d i f f e r e n c e s are a s s o c i a t e d ,  to a s m a l l e x t e n t , w i t h i n d i v i d u a l d i f f e r e n c e s i n body weight, s t a t u r e and s u r f a c e a r e a , the red c e l l count, hemoglobin  and  volume of packed red c e l l s t e n d i n g to be h i g h e r i n h e a v i e r and taller individuals. were premenarche  D e s p i t e the f a c t t h a t most o f these g i r l s  t h e i r h e m a t o c r i t average was more t y p i c a l of  women l i v i n g a t moderate: a l t i t u d e than men.  Wintrobe  (1961)  " ^ J . C e r v a n t e s , P, V. K a r p o v i t c h , " E f f e c t of A l t i t u d e on A t h l e t i c Performance," Research Q u a r t e r l y , (1964), V o l . 35, 3 (2), pp. 446-448. ''"''"Paul F i t t s , M i c h a e l Posner, Human Performance, (Wadsworth P u b l i s h i n g Company, Belmont, C a l i f . , ~ 1 9 6 7 ) , p. 12.  s t a t e d i t i s noteworthy  that the d i f f e r e n c e i n r e d c o r p u s c l e s  between males and females does not become m a n i f e s t u n t i l 12 puberty-  No r e l a t i o n s h i p was  noted between s u b j e c t s menstrual  c y c l e s and h e m a t o c r i t s , but the sampling was  small.  Wintrobe  (1961) has commented t h a t i t has not been shown c o n c l u s i v e l y t h a t t h e r e i s any c o r r e l a t i o n between normal menstrual p e r i o d s and f l u c t u a t i o n s i n the e r y t h r o c y t e s or hemoglobin.  Although,  a premenstrual decrease has been observed i n some women p o s s i b l y as a m a n i f e s t a t i o n of hydremia  which sometimes precedes  the  onset of m e n s t r u a t i o n . ^ Some s u b j e c t s d i d have h i g h e r h e m a t o c r i t s a t sea than a l t i t u d e . farie  T h i s concurs w i t h graphs  (1959) and Merino  level  i n s t u d i e s by Reyna-  (1950) which a l s o showed a r i s e some-  times immediately on a r r i v a l a t sea l e v e l and p r i o r t o the de14 15 crease that follows.  '  Although, the l i t e r a t u r e i s l a c k i n g  i n an e x p l a n a t i o n , i t i s reasoned t h a t s u b j e c t s became somewhat dehydrated d u r i n g t r a v e l .  A r e d u c t i o n i n plasma f l u i d would  then e l e v a t e the p e r c e n t of c e l l u l a r Because temperature,  matter.  humidity, b a r o m e t r i c p r e s s u r e ,  winds and a i r p o l l u t i o n were u n c o n t r o l l a b l e , such weather data was  r e c o r d e d o n l y f o r the purpose of l e n d i n g a d d i t i o n a l  insight  i n t o the r e s u l t s . Due to the u n c o n t r o l l a b i l i t y of these f a c t o r s 12 Maxwell Wintrobe, C l i n i c a l Hematology, (Lea & F e b i g e r , P h i l a d e l p h i a , 1961), p. 107. 1 3  Ibid.  14 C. R e y n a f a r j e , "The Polycythemia of High A l t i t u d e s : I r o n Metabolism and R e l a t e d A s p e c t s , " Blood, 14, 1959, 433-455. 15 C. Merino, " S t u d i e s on Blood Formation and D e s t r u c t i o n i n the Polycythemia of High A l t i t u d e s , " Blood, 5, 19 50, 1-3 2.  58  T a b l e IX HEMATOCRIT V A L U E S All  s u b j e c t s were r e s i d e n t s o f the g i v e n  Altitude m <  1 395 2 3 4 1524 5 6 1830-1890  ages  Peru  Lima  U.S.  Denver  India  Peru Argentina Peru  Coonoor and Wellington Ootacamumd Mexico C i t y Oroya Mina A g u i l a r Morococha  locale.  No. o f subjects 14c" 20^ 15? 40^ 40<? 8 Oof 20** 23# 21? ' 100(? 100$ 40^ 81 32 11  Hematocrit ml RBC/100 ml blood 45. 0 46. 0 39. 8 48. 4 43. 2 49. 0  (40.0- 49. 0) (43.5- 50. 0) (26.0- 41. 0) (43.8- 53. 6) (37.1- 46. 1) (38.0- 65. 0)  49. 4 43. 0 51. 2 45. 5 54. 1 59. 5 59. 9 57. 0  (46.0- 53. 0) (37.5- 49. 0) (45.0- 58. 5) (41.5- 50. 0) (47.8- 65. 4) (50.5- 73. 6) (48.7- 71. 1) (46.0- 71. 0)  4-6  1900 (") ages  Place  India Mexico  7 2300 8 9 10 11 3730 12 4540 13 14 C)  Country-  16  U.S.  South Lake Tahoe  8o»  43. 9 (39.5- 49. 5)  12-14 Table X TOTAL HEMATOCRIT FOR TRIALS TABLE Tl  T2  Alt.  361  341  344.5  352.5  S.L.  343.5  350  358.5  361  704.5  691  703.0  713.5  T3  T4  P. Altman, Blood a n d Other Body F l u i d s , F e d e r a t i o n o f American S o c i e t i e s f o r E x p e r i m e n t a l B i o l o g y , 1961, p. 192.  5S not  a great  deal  n o t e d and a l r e a d y  c a n be c o n c l u s i v e l y commented. m e n t i o n e d was  warmest t e s t i n g day.  the superior  The  main  thing  p e r f o r m a n c e s on  the  Chapter 5 SUMMARY AND CONCLUSIONS In order t o r e s o l v e the problem o f whether o r n o t middle a l t i t u d e dwelling g i r l s  e x p e r i e n c e performance  l e v e l , eight f e m a l e s — i n t e r e s t e d  a t sea  i n t r a c k and l i v i n g a t medium  a l t i t u d e — w e r e s e l e c t e d f o r t h i s experiment. 13, 14 y e a r s of age, p a r t i c i p a t e d  impairment  These g i r l s , 12,  i n e i g h t treatment s e s s i o n s .  Four s e s s i o n s were a t an a l t i t u d e of 6,256 f e e t and f o u r were a t approximately sea l e v e l .  A t each treatment s e s s i o n a l l s u b j e c t s  had a f i n g e r t i p b l o o d sample taken f o r a h e m a t o c r i t r e a d i n g .  At  each treatment s e s s i o n a l l s u b j e c t s p a r t i c i p a t e d s e p a r a t e l y and v/ithout c o m p e t i t i o n i n a 50 y a r d dash, 440 y a r d dash,  softball  throw, and 880 yard r u n . These events were t o r e p r e s e n t t h e assortment found a t a t r a c k meet.  Recordings were made o f the  temperature, humidity, b a r o m e t r i c p r e s s u r e and a i r p o l l u t i o n . A l s o , notes were taken c o n c e r n i n g p h y s i c a l complaints of the s u b j e c t s and winds. The  88 0 and. s o f t b a l l throw demonstrated  the e f f e c t s o f  t r a i n i n g and l e a r n i n g over the e i g h t weeks o f t e s t i n g . yard dash was the o n l y event w i t h a s i g n i f i c a n t a l t i t u d e And, s u r p r i s i n g l y , s u p e r i o r performances  The 50 effect.  were made a t sea l e v e l .  A combination o f f a c t o r s caused t h i s r e v e r s a l from the f i n d i n g s i n previous investigations. 1.  The 50 yard dash was the f i r s t so most r e f l e c t i n g  event each day, and  the q u a l i t y o f the warm-up.  61  2.  A beautiful  warm day  on  the  first  sea  level  test  aided performance. 3..  High b a r o m e t r i c r e a d i n g s at a l t i t u d e l e f t pressure d i f f e r e n c e  4.  At  the  the  a l t i t u d e t r a c k the  440  f a s t e r a t sea  was  was  run  level.  to the  2) The  would be first  two  level.  and  the  softball  880  was  said.about  the  into  f i v e percent  880,  be  l e v e l s , i s that  the  throws were more  1)  level. on  a par  a l t i t u d e t e s t , but  hot weather toward summer.  Although l i t t l e about any  of  the  s i o n s can  be made.  First,  3) The  the  altitude  stand a l o n e , but The  l i n e importance and  yard  y a r d run  on  than  be learn-  run the  the  impaired i f there no  hot  weather i n  May,  better. c o n c l u s i v e has  investigated,  factor  been s a i d  some important  conclu-  of reduced a i r p r e s s u r e does  i s accompanied by  difference  440  or b e t t e r  would be  statistically  variables  fairly  to t r a i n i n g and  880  There was  fell  Improvement would  s o f t b a l l throw, 50 y a r d dash, and  l e v e l t e s t would be  conditions.  results  e i g h t weeks of t e s t i n g due  impaired at sea  sea  which were:  so performances c o n t i n u e d to be  not  can  50 yard dash, the  predictions  average of the was  440,  ran  a t a l t i t u d e i n a l i n e a r t r e n d toward improvement.  noted over the ing.  a t the  f a s t e r at a l t i t u d e , and  Except f o r the close  found f o r the  About a l l t h a t  s o f t b a l l throw a t the consistent  subjects usually  altitude significance  l e v e l of s i g n i f i c a n c e  a  l e v e l than expected.  wind w h i l e they ran w i t h i t a t sea  A l t h o u g h , no  throw; the  w i t h sea  l e s s of  its relative  i n p a r t i a l p r e s s u r e was  to young female a t h l e t e s  climatic of  posed no  borderparticular  problems s p e c i f i c to them. and  l e a r n i n g may  Decided  g a i n s were made, t r a i n i n g  have exceeded what would have o c c u r r e d  t r a i n i n g a t o n l y one  altitude.  The  hematocrit  with  r e a d i n g s were i n  the upper normal ranges r e l a t e d to sea l e v e l norms and were s i m i l a r to r e a d i n g s obtained from women r e s i d i n g a t s i m i l a r altitudes.  They d i d f l u c t u a t e randomly from t e s t to t e s t which  i s normally due  to d a i l y changes i n the amount of a c t i v i t y  or a b s o r p t i o n of water or  and/  dehydration.  To the coach these c o n c l u s i o n s warrant s a y i n g t h a t h e a l t h y , young female a t h l e t e s from middle  a l t i t u d e should  a b l e to compete a t v a r i o u s a l t i t u d e s i f proper g e t t i n g adequate r e s t .  be  care i s g i v e n to  Unusual care should be made i n d o s i n g  warm-ups a p p r o p r i a t e to c o n d i t i o n s , and  the a c t i v i t y t o f o l l o w .  A t t e n t i o n should be given to i n s u r i n g adequate f l u i d  intake  also.  f o r meet-  ing  The young human body has a marvelous f a c i l i t y  and d e a l i n g w i t h change. D e s p i t e the i n t e n s i v e work which has been done i n a l t i -  tude p h y s i o l o g y , there are s t i l l q u e s t i o n s r e g a r d i n g sea performance by a t h l e t e s d w e l l i n g and  level  training at a l t i t u d e .  These q u e s t i o n s c e n t e r around the h y p e r s e n s i t i v e r e s p i r a t o r y response blood.  of these i n d i v i d u a l s and  r e s u l t a n t pH changes i n the  A d d i t i o n a l i n s i g h t i n t o v e n t i l a t i o n , 0^ debt, and  blood  l a c t a t e l e v e l s by the c o l l e c t i o n of energy metabolism d a t a , i n c l u d i n g blood acid-base parameters, d u r i n g and  after  running  events would add c o n s i d e r a b l y to the body of knowledge i n t h i s area.  BIBLIOGRAPHY A s t r a n d , P e r - O l o f and K. Rodahl, Textbook of Work P h y s i o l o g y , New York: McGraw H i l l Book Company, 1.970. Altman, P. Blood and Other Body F l u i d s , F e d e r a t i o n o f American S o c i e t i e s f o r Experimental B i o l o g y , 19 61. B a l k e , B., D a n i e l s , J . , and B. F a l k n e r , "Maximum Performance C a p a c i t y at S e a - l e v e l and Moderate A l t i t u d e B e f o r e and A f t e r T r a i n i n g at A l t i t u d e , " S c h w e i z e r i s c h e Z e i t s c h r i f t f u r S p o r t m e d i z i n , V o l . 14 (1965). B a l k e , B., "Summary o f Magglingen Symposium on S p o r t s a t Medium A l t i t u d e , " The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, ed. R. F. Goddard (Chicago: The A t h l e t i c I n s t i t u t e , 1966). Banchero, N. and o t h e r s , "Pulmonary P r e s s u r e , C a r d i a c Output and A r t e r i a l Oxygen S a t u r a t i o n d u r i n g E x e r c i s e a t High A l t i t u d e and at Sea L e v e l , " C i r c u l a t i o n , V o l . 33, 1966. B u s k i r k , ^ E . and o t h e r s , "Physiology and Performance o f Track A t h l e t e s a t V a r i o u s A l t i t u d e s i n the U n i t e d S t a t e s and Peru," The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i tude on P h y s i c a l Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. Bynum, W. A. "Work C a p a c i t y of A l t i t u d e A c c l i m a t i z e d Men at A l t i t u d e and Sea L e v e l , " The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. C e r r e t e l l i , P. " L a c t a c i d O2 Debt i n Acute and C h r o n i c Hypoxia," E x e r c i s e at A l t i t u d e , ed. R. M a r g a r i a , E x c e r p t a Medica Foundation, 1967. Cervantes, J . and P. V. K a r p o v i t c h , " E f f e c t of A l t i t u d e on A t h l e t i c Performance," Research Q u a r t e r l y , V o l . 35, 3 ( 2 ) , 1964. C o n s o l a z i o , C. F. "Submaximal and Maximal Performance at High A l t i t u d e , " The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 1966. C r a i g , A l b e r t B. "Olympics 1968: S c i e n c e i n Sport, V o l . 1, no.  A Postmortem," Medicine 4, December .1969.  and  D a n i e l s , Jack and N e i l O l d r i d g e , "The E f f e c t s of A l t e r n a t e Exposure to A l t i t u d e and Sea L e v e l on W o r l d - c l a s s M i d d l e d i s t a n c e Runners," Medicine and Science i n S p o r t s , V o l . 2 no. 3, F a l l 1970.  64  D e j o u r s , P i e r r e , K e l l o g g , R. H. and N e l l o Pace, " R e g u l a t i o n of R e s p i r a t i o n and Heart Rate i n E x e r c i s e During A l t i t u d e A c c l i m a t i z a t i o n , " J . A p p l . P h y s i o l . , V o l . 18, 1963. F i t t s , P a u l and M i c h a e l Posner, Human Performance, Belmont, California: Wadsworth P u b l i s h i n g Company, 1967. Grollman, A., " P h y s i o l o g i c a l V a r i a t i o n s i n C a r d i a c Output o f Man. The E f f e c t o f High A l t i t u d e on the C a r d i a c Output and I t s R e l a t e d F u n c t i o n s : An Account of Experiments Conducted on the Summit o f P i k e s Peak, Colorado," Am. J . P h y s i o . , V o l . 93, 1930. Grover, R. F., "Basal Oxygen Uptake of Man J . A p p l . P h y s i o . , V o l . 18, 1963.  at High A l t i t u d e , "  Grover, Robert and John Reeves, " E x e r c i s e Performance o f A t h l e t e s at Sea L e v e l and 3,000 Meters A l t i t u d e , " The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e , ed. R. F. Goddard, Chicago: The A t h l e t i c i n s t i t u t e , 1966. Hannon, John P., S h i e l d , Jimmie, and C h a r l e s H a r r i s , "High A l t i tude A c c l i m a t i z a t i o n i n Women," The I n t e r n a t i o n a l Symposium on the E f f e c t s of A l t i t u d e on P h y s i c a l Performance, ed. R. F. Goddard, Chicago: The A t h l e t i c I n s t i t u t e , 19 66. Hecht, Hans, " C e r t a i n V a s c u l a r Adjustments and Maladjustments a t A l t i t u d e s , " Medicine and S p o r t , E x e r c i s e and A l t i t u d e , ed. E. J o k l , B a s e l and New York: S. Karger, 1968. Hornbein, Thomas, and A l b e r t Roos, " E f f e c t of M i l d Hypoxia on V e n t i l a t i o n During E x e r c i s e , " J . A p p l . P h y s i o l . , 17 ( 2 ) , Hornbein, Thomas, " E v a l u a t i o n of I r o n S t o r e s as L i m i t i n g High A l t i t u d e P o l y c y t h e m i a , " J . A p p l . P h y s i o l . , 17 ( 2 ) , 1962. H u l t g r e n , H. N., K e l l y , J . , and H. M i l l e r , "Pulmonary C i r c u l a t i o n i n A c c l i m a t i z e d Man a t High A l t i t u d e , " J . A p p l . P h y s i o l . , 20 (2), 1965. J o k l , E r n s t , "A Report on Bob Beaumon's World Record Long Jump, and H i s Subsequent C o l l a p s e a t Mexico C i t y , October 18, 1968, The P h y s i c a l E d u c a t o r , (May 1970), 68-70. J o k l , E r n s t and P e t e r J o k l , "The E f f e c t of A l t i t u d e on A t h l e t i c Performance," Medicine and S p o r t , E x e r c i s e and A l t i t u d e , ed. E. J o k l , B a s e l and New York: . S~. Karger, 1968. Merino, C , "Studies on Blood Formation and D e s t r u c t i o n i n the Polycythemia o f High A l t i t u d e s , " Blood, (5, 1950), 1-32. Naiye, R. L. " C h i l d r e n a t High A l t i t u d e ; Pulmonary and Renal A b n o r m a l i t i e s , " C i r c u l a t i o n Res. , .16, 33, 1965.  t  *  * 65  R e y n a f a r j e , C , "The Polycythemia of High A l t i t u d e s ; I r o n Metabolism and R e l a t e d A s p e c t s , " Blood, (14 , 1959) , 4 3 3 - 4 5 5 . R e y n a f a r j e , C., " P y r i d i n e N u c l e o t i d e Oxydases and Transhydrogenase i n A c c l i m a t i z a t i o n t o High A l t i t u d e , " Amer. J . P h y s i o . , 2 0 0 , 1 9 6 1 , 351-354. Schmidt, R., and A. S. G i l b e r t s e n , Fundamental O b s e r v a t i o n s on the P r o d u c t i o n of Compensatory Polycythemia," B l o o d , ( 1 0 , 1 9 5 5 ) , 247-251. Tenney, S. M. " P h y s i o l o g i c a l A d a p t a t i o n s to L i f e a t High A l t i tude," Medicine and S p o r t , E x e r c i s e and A l t i t u d e , B a s e l and New York: S. Karger, 1 9 6 8 . U n i v e r s i t y o f C a l i f o r n i a a t B e r k e l e y , P h y s i o l o g y Department, p e r s o n a l communication between Dr. N e l l o Pace and the w r i t e r , March 1 5 , 1 9 7 1 . V o g e l , J . A., Hansen, J . E. and C. W. H a r r i s , " C a r d i o v a s c u l a r Responses of Man During R e s t , . E x h a u s t i v e Work and Recovery a t 4,300m.," U.S. Army Med. Res. and N t r . Lab Report, No. 294, 1966. Weihe, W. H. "Time Course o f A d a p t a t i o n t o D i f f e r e n t A l t i t u d e s at Tissue L e v e l , " Schweizerische Z e i t s c h r i f t f u r Sportmedizin, V o l . 14, 1966. Wintrobe, M. 1961.  C l i n i c a l Hematology, P h i l a d e l p h i a :  Lea & F e b i g e r ,  APPENDIX  Statistical  Treatments  68  HEMATOCRIT % Volume Altitude l  s  2162.25  s^  2  46.5  1764  42  42  2352.25 48.5  3  S  2070.25  1936  1892.25  1936  45.5 1892.50  44 1681  43.5 2070.25  44 1936  5  43. 5 1849  41 1600  45.5 1849  44 1849  6  43 2450.25  40 2401  43 ' 2025  43 1849  7  49.5 1849  49 1681  45 1640.25  43 1806.25  8  43 2025  41 1806.25  40.5 1806.25  42.5 1892.50  9  45 2025  42. 5 1722.25  42.5 1806.25  43.5 1936  s.  4  s  S  1764  r  10  ^x  41.5  45 361  Zx  2  :  341 1  3  130321  116281  16323.25  14591.50  4 2. 5  44  344.5 6 118680.25 14853.25  352. 5  2  x  8 124256.25 15557  E 1399 (l ) Alt. 1957201  HEMATOCRIT %  Volume  Sea  Level  l  s  s„ 2  2401  2116  2401  2209  49  46  49  47  3  S  s, 4 S  S-, 7 So 8  1936  1980.25  40.5 1849  43.5 1806.25  44 1681  44.5 1892.25  43 1560.25  42. 5 1681  41 1936  43.5 1849  39. 5 2 070.25  41 2256.25  44 2256.25  43 2256.25  45.5 1600  47.5 160 0  47.5 1806.25  47.5 1849  40 2116  40 1806.25  42.5 2209  43 2025  46 1600  42.5 2209  47 1892.25  45 2256.25  r t  9  10  S  1892.25  r  5  s^ 6  s  1640.25  47  343.5  *  Z  ix  40  350 2  2  43.5  47 . 5  358.5 4  361 5  117992.25  122500  1 2 8 5 2 2 . 25  14836.75  15367  1 6 1 1 7 . 75  7 130321 16316.75  70 HEMATOCRIT  (Continued)  £x s  l  S  2  S  S  S  S  S  S  S  2  37 0  136900  17169.50  349.5  122150.25  15283.25  ^D  344  118336  14808.25  fi b  336.5  113232  14.173. 2 5  374.5  140250.25  17564.25  332.5  110556.25  13831.75  354  125316  15686.25  123201 Subj ects  15447  3  d  S  •  EX  4  7/  8 9 10  £x  351 EX 2812  (Ex)2  989941.75 I  Ux)  ix  2  1413  (Ex)2  S.L. 1996569  Ux)  z  7907344 EX  2  Z  71 HEMATOCRIT Subjects X  s  2  S „  4  S^  5  S^  6  s_ 7 s„ 8 S„  9  S  10  Altitudes  32041  36481  68522  179 31329  191 29756.25  370 61085.25  177 30276  172.5 28900  349.5 59176  174 28561  170 28056.25  344 56617 .25  169 34782.25  167. 5 35344  336.5 70126.25  186.5 27889  188 27390.25  374.5 55279.25  167 30102.25  165.5 32580.25  332. 5 62682.5  173.5 29929  180.5 31684  354 61613  173  178  244909.5 495101.5 - -^rr— 4 64  =  250192 1 2 3 7 7 5 . 3 7 5 - 1 2 3 5 5 2 . 2 5 = 223.125  351 495101.5  72 HEMATOCRIT Sub X  Trials  T2  T3  7744  8281  88  91  T l  T4  l  s  9 1 2 0 . 25  o 2  S  S  3  S  4  95. 5  5  6  86  87. 5 6 9 7 2 . 25  87.  7  S  8  c S  9  c 1 0  7569  7396  87  86  95 6889  96. 5 6561  83 8281  81 7225  8 0 1 0 . 25  91 7225  85 7832. 25  89. 5 7396  62224. 75  92. 5  . — 1 2_5 3 . 1 6 8  123742.7175  -  SS  =  Altitude  1957201 32  6889  7310.25  83  85.5 7832.25  2 7 6 4 9 . 25  3 1 3 4 8 . 50  88. 5 8372.25  3 0 8 2 5 . 50  91.5  247638. 5  63709.75  123819.25  1 1 8 3 36  8  8  1 1 0 5 5_ 6 . 2 5  3 5 0 8 3 . 75  -  123552.25  =  267  190.4675  122150.25  8  2 8 3 3 2 . 25  90.5  86  =  29593  8190.25  61840  123552.25  Subjects =  136900  8556. 25  59864  247638.5  7656.25 8 7 .5  9025  88. 5  3 0 5 4 0 . 75  88.5  81 9312. 25  85  SS  5  86. 5  6561  3 4 2 6 5 .5  7832.25  7 4 8 2 . 25  83. 5  82. 5  c  S  7656. 25  6806. 25  Q S  S  7 6 5 6 . 25  86. 5  "  95.5  7396  7 4 8 2 . 25  c S  9120.25  .  123201  "  8  123552.25  . =  113232  8  140250.25  8  7907344 64 190.4675  3.075  1996569 32  7907344 64  123555.325  3.075  -  123552.25  =  HEMATOCRIT SS t r i a l s  =  16.0312  496320.25 ^ 477481  _ 16  (Continued)  +  . 494209 ^ 5 0 9 0 8 2 . 25  +  — 16  16  12356.82812 - 123552.25 =  +  _ 16  o c  - 123552.25  16.0312  SS t r e a t m e n t s = 57 130321 116281 118680.25 8 8 8 128522.25 130321 7907344 8 8 ~ 64  124256.25 8  117992.25 8  122500 8  1 2 3 6 0 9 . 2 5 - 1 2 3 5 5 2 . 2 5 = 57 SS t r i a l s  x a l t . = SS t r e a t m e n t s - SS t r i a l s  - SS a l t =  37.8929  57 - 16.0312 = 3.075 = 37.8929 SS e r r o r =  163.7825  411.25 - 190.4675 - 57 = 163.7825 total subjects treatments SS t o t a l = 411.25 Ix  2  ~ -^IV bH  2  Sub X t r i a l s  123963.5 - 1 2 3 5 5 2 . 2 5 = = SS.  . . - SS  total  - SS  411.25  trials  s  267 - 190.4675 - 16.0312 = Sub X A l t = SS t o t a l  60.5013  - SS  - SS A l t s 223.125 - 190.4675 - 3.075 = 29.5825 SS^ X t r i a l s X A l t = SS e r r o r - SS„ . , - SS _. s s x Trials s xalt. n  163.7825 - 60.5013 - 29.5825 =  73.6987  74  Table  VIII  HEMATOCRIT ANOVA TABLE Source Subjects Treatments trials  SS  d.f.  190.46  7  27.21  n  8.14  57 16.03  Error  F  5.34  1.85  no  3.07  0.73  no  12.63  3.60  s i g . 5%  1 37.89 163.78  49  3.34  sub x a l t  29.58  sub x trials  60.50  21  2.88  sub x a l t x trials  73.69  21  3.50  Total  F  3  3.07  altitude alt x trials  i  ms  411.25  4.22  63  6.52  .05 .01  (7,49)  2.21 3.03  F  .05 .01  (3,21)  3o07 4.87  F  .05 .01  (1,21)  .05 .01  (1,7)  4.32 8.02 5.59 12.25  75  SOFTBALL THROW  S  4096  75 5929  64 6084  67 6889  68.5 7744  77 4096  78 4096  83 3364  88 2916  5  64 5329  64 6400  58 7744  54 9604  6  73 5929  80 6241  88 7482.25  98 7921  77 4356  79 5329  86.5 7744  89 6724  66 16900  73 16900  88 17556.25  82 18769  130 8281  130 12100  132.5 12769  137 14884  91  110  113  122  653  678  716  738.5  2  s„ 4  S_ 7  .  So  8  So  9  S  Altitude 4489  5625  10  1 (Ex)  EX  2  2  3  426409  459684  56445  61246  6 512656 68037.5  4692.25  S 2785.5 (E ) alt 7759010.25 2  8  545382.25 73254.25  X  S O F T B A L L THROW  2 s,, 4  s  c  5  S, 6 S-,  7  s„  8  s„ 9 c 10  Sea  Level  3721  4761  6084  67 7225  61 7225  69 6561  78 6889  85 3025  85 3025  81 2916  83 2601  55 6724  55 7921  54 4761  51 9401  82 7921  89 6889  69 4624  97 6724  89 5041  83 6724  68 6241  82 6561  71 16641  82 17424  79 15625  81 14161  129 10816  132 14161  125 11449  119 11025  104  119  4489  0  S  682  Ex ( E EX  X  2  )  2  2  706  4  107" 652  5  105 696  7  465124  498436  425104  484416  61882  67090  56938  63446  SOFTBALL THROW dx)  ix S  S  2 4 o  S  S  S  S  S  6 7 8 9  37957.25  660  435600  54546  455  207025  26039  676  456976  57884  653.5  427062.25  53731.25  622  386884  48720  5.521.5  dx) ix  301950.25  871 ix  ix  2  2  2  549.5  1034.5  10  Ix  2  1070190.25 758641  133976.25 95485  Z 2736 U ) S.L. 7485696 2  x  ix  z  508338.75  SOFTBALL THROW Subject X  s  3  s. 4 s  T2  T3  T4  20164  15625  18496  21462. 25  142  125  136  26244  26569  26896  29241  108950  162 14161  163 14161  164 12544  171 11025  660 51891  • 119 24025  119 28561  112 24649  105 38025  455 115260  155 27556  169 26244  157 23870.25  195 29241  676 106911.25  166 18769  162 24G25  154.5 27889  171 26569  653. 5 97252  6  S-,  7  s  137 67081  155 68644  167 66306.25  163 65536  622 267567.25  259 38025  262 52441  257.5 48400  256 51529  1034.5 190395  195  229  236025  256270  146. 5  75747.25 549.5  •  r  5  S^  0  8  s„ 9 S  Tl l  s„ 2 S  Trials  10  1013973.75 2  d x )  2  220 249050.5 =  227 272628. 25  871 1013973.75  506986.875 -- 476358.7851 = 30628.089:  SOFTBALL THROW Subjects X  Altitudes  Alt  S„ 2  274.5 106276  S. 4  275 111556  549.5 217832  334 46225  660 103825  240 114921  215 113569  455 228490  6  339 109892.25  337 103684  676 213576.25  7  331.5 95481  5  s^  s„  8  S„  9  c  150975.25  326 57600  s_  S  ix  S.L.  75625  75350.25  322 97969  309 280370.25  313 255025  622 535395.25  529.5 190096  505 189225  1034.5 379321  10  436  435  2022864.75  ( E  _  4  x  )  ^  1  505716.1875  -  476358.7851  SS  =  29182.3086  30195 80.25  435 8600  1070190.25 8 -  +  ,  425104 8  +  ,  459684 8 ^  -  29357.4024  ~  456 8976  427062.25  386884  30486962.25 64 =  29182.3086  792.6211 . +  484416 8  477151.4062  =  476358.7851  treatments =  426409 8  1  2 0 78 0 2 5  758641 8  505541.0937  2022864.75  _  2  64  Subjects  871  992878  1029986.75  SS  653.5 193450  512656 8s  .  545382.25 ^8,  +  476358.7851  476358.7851  =  792.6211  , +  465124 7.  ^ +  4 9 8 4 3 6 __ , 7*  +  80  S O F T B A L L THROW SS  trials  =  322.168  1782225 . 1915456 . 1871424 _ — + + __ 16  x6  SS A l t i t u d e 77^9010^25  = 38.2849 7485696 _  SS A l t . X T r i a l s  =  792.6211 - 322.168  SS  total  4  7  6  - 476358.7851 =  treatments =  A  n  r  l b  - 476358.7851 =  476397.07  2 0 5 7 7 9 0 . 25 ' __ _ 476358.7851  +  16  476680.9531  +  (Continued)  3  5  322.168  8  .  7  8  5  1  38.2849  432.1682 - 38.2849 =  trials  432.1682  altitude  31979.9649  508338.75 - 476358.7851 = 31979,9649 , . • , = 1123.6133 sub x t r i a l s 30628.0899 SS t o t a l  - 29182.3086 -SS , sub  Sub X A l t = 29357.4024 SS t o t a l  g  u  b  - 322.168 = - SS,. . trials  1123.6133 •  - 38.2849 -SS  136.8089  136.8089 - 29182.3086 -SS  X trials  s  u  b  X a l t=  744.613  2005.0352 - 1123.6133 - 136.8089 SS e r r o r - SS . , - SS sub  =  a l t  sub  =  744.613 x a l t  ~  r  .  Q  n  o  t  L  ,  Table V I SOFTBALL THROW ANOVA TABLE SS  d.f.  ms  29182.31  7  4168.90  Treatments  792.62  7  113.23  altitude  38.28  1  38.28  1.96  no  trials  322.17  3  107.38  2.01  no  trials x alt.  432.16  3  144.056  4.06  sig.  Source Subjects  Error sub x alt sub x trials sub x trials x alt. Total  2005.03  49  40.92  136.81  7  19.54  1123.61  21  53.50  744.61  21  35.45  31979.96  63  5%  507.61  F  .05 .01 (7,49)  2.21 3.03  F  .05 4.32 .01 (1,21) 8.02  F  .05 .01 (3,21)  3.07 4.87  F  .05 .01 (1,7)  5.59 12.25  50 Y D . DASH Altitude  s„ 2  4  s  5 9 . 29  6 0 . 84  56.25  6 0 . 84  7.7 53.29  7.8 6 0 . 84  7.5 64.00  7.8 5 9 . 29  7.3 67 . 2 4  7,8 67.24  8.0 59.29  7.7 62.41  8.2 47.61  8.2 47.61  7.7 44.89  7.9 49.00  6.9 57.76  6.9 57 . 7 6  6.7 62.41  7.0 6 0 . 84  7.6 5 6 . 25  7.6 6 0 . 84  7.9 6 2 . 41  7.8 54.76  7.5 5 1 . 84.  7.8 51.84  7.9 5 0 . 41  7.4 50.41  7.2 51.84  7.2 51.84  7.1 47.61  7.1 49.00  7.2  7.2  6.9  7.0  r  5  S^ 6 S-, 7 Sr, 8  s„ 9  Q 10  S  E 239 A l t 5dx) 7360 . 2 5 .5  59.60  ix  dx)  2  ix  2  59.70  6 0 . 50  59.70  1  3  6  8  3552.16  3660.25  3564.09  3564.09  445.12  458.81  447.27  446.55  2  50 Y D . DASH  54.76  s_ 2 s„ 4 S r-  5  S  6  s7 s„ 8 s„ 9 S  10  Ex  (E ) X  EX  2  2  Level  5 1 . 84  56.25  7.4 5 4 . 76  7.2 56.25  7.5 5 4 . 76  7.4 6 0.84 7.8 4 2 . 25  7.5 59.29  7.4 6 4 . 00  7.7 4 6 . 24  8.0 42.25  7.6 62.41 7.9 4 6 . 24  6.5 5 7 . 76  6.8 57.76  6.5 57.76  6.8 59.29  7.6 53.29  7.6 57.76  7.6 5 6 . 25  7.7 56.25  7.3 47.61  7.6 50.41  7.5 49.00  7.5 5 1 . 84  6.9 5 0 . 41  7.1 47 . 61  7.0 4 6 . 24  7.2 42.25  7.1 58.00  •  Sea  2  3364 421.68  6.9 58.40  4 3410.56 427.16  6.8 58.30  5 3398.89 426.51  56.25 .  7.5 57.76  6.5 58.70  7 3445.69 432.29  50 YD. DASH ix S  S  S  S  S  S  S  S  2 4 5 6 7 8 Q y 10  hx)  2  Ix  2  60.4  3648.16  456.32  60.7  3684.49  460.95  63.4  4019.56  502.72  54.1  2926.81  366.09  61.4  3769.96  471.34  60.5  3660.25  457.81  56.8  3226.24  403.36  55. 6  3091.36  386.80  ix ix  472. 9  dx)  2  Ex S.L. 2334 dx) 54475.56 2  ix  ix'  2  3505.39  85 50 YD. DASH Subject X Tl 228.01  225  T3 225  T4 234.09  912.1  15.1 216.09  15.0 234.09  15.0 237.16  15.3 234.09  60.4 921.43  4  14.7 256.0  15.3 252.81  15.4 246.49  15.3 249.64  60.7 1004.94  5  16.0 179.56  15.9 187.69  15.7 174.24  15. 8 190.44  63.4 731.93  13. 4 '231.04  13.7 231.04  13.2 240.25  13. 8 240.25  54.1 942.58  7  15.2 219.04  15. 2 237.16  15.5 237.16  15. 5 222.01  61.4 915.37  8  14. 8 198.81  15. 4 204.49  15.4 198.81  14.9 204.49  60.5 806.6  14.1 204.49  14.3 198.81  14.1 187.69  14.3 182.25  56.8 773.24  13.7  13.5  55.6  So  2  s  „  S^ 6  S S  Trials  T2  n  9  10  14.1  14.3 1733.04 7008.19 2  ( E  1771.09 X  ) 64  2  =  1746.8  total  3 5 0 4 . 0 9 5 - 3494 .2876562 = 9 .807763  1757.26  7008.19  50  YD. DASH  Subjects X A l t i t u d e s  S  2  Alt.  S.L.  E  948.64  876.16  1824.8  30.8 948.64  894.01  1842.65  29.9 985.96  2009.96  4  S  29.6  30.8 1024.  5  S  32  6  S  S-  31.4  1463.81  27. 5 954.81  26.6 930.25  1885.06  30.9  54.1  30.5  -  61.4  936.36  894 .01  1830.37  30.6  29.9 795.24  1613.2  rt  O  Q y  c S  63.4  707.56  817.96 S  60.7  756.25  7  s  60.4  28.6  28.2  800.89  745.29  28.3  27.3  1 0  7187.55  -  ( E  X  )  2  60. 5  56.8 1546.18 55. 6  6828.48  =  3504.0075  -  14016.03  3494.2876562  =  9.719844  total SS s u b j e c t s = 3648.16  9.066094  3684.49  8  8  3226.40 8  3091.36 8  3503.35375  -  8  "  8  3494.96625  =  8  9.066094  3564.09  3564.09  "H  8  64 -  3660.25  8  223634.41 64  223634.41 ~  3769.96  . 6785938  3600.25  8 3398.89  2926.81 8  3494.2876562  SS treatments = 3552.16  4019.56  8  3494.2876562  =  .6785938  3364  8  3410.56 8  50  SS  t r i a l s  13829.76  = , -j-  14137.21 —  X  -  .6785938  -  =  .581406 alt  32  =  SS  t o t a l  =  SS  SS  =  SS  3494.2876562  -  =  .581406  .6785938 = treatments  1.3576562  _  S  S  3494.287656  =  -  e r r o r  =  2  -  , sub  - 9.066094 _gg sub  -  X  .581406 = _gg t r i a l s L  s u b  =  .5957712  =  .601622  A l t .  A l t  .160263 S  .0579788 SS  X  -  (Z  X  )  2  N ~  11.102344  9.807763 gg t o t a l  9.066094 SS  °  =  595771? —  sub x t r i a l s  1.3576562  =  64  11.102344  , sub x A l t  9.719844  o  223634.41  9.066094 subjects  , . , s u b x t r i a l s  SS, . . total  c  1.3576562 -  -  r  .039209  X  3505.39  c  .581406  54475.56  -  Q  .581406  -  32  11.102344 t o t a l  =  -  t r i a l s  3494.869062  . . . . ^ 3494.2876562 O  -  lb  .0579788 =  ?  .0392090  57360.25  Error  (Continued)  14018.56 zr-  x6  -  A l t i t u d e  SS  13924 . —— +  3494.2876562  t r i a l s  treatments SS  ^ +  16  3494.345625 A l t  DASH  . 581406  16  SS  YD.  .5957712  t r i a l s  S  °sub  X  A l t  .160263  Table V 50 YARD DASH ANOVA TABLE Source  SS  d.f.  ms  9.06  7  1.29  Treatments  .68  7  .09  trials  .06  3  .01  2. 53  altitude  .58  1  .58  6. 83  alt. x trials  .039  3  .013  0. 46  Subjects  Error  1.36  49  F  .027  sub x a l t  .59  7  sub x  trials  .16  21  .007  sub x t r i a l s x alt.  .60  21  .028  Total  11.10  63  •;.035  .18  F  .05 2.21 .01 (7,49) 3.03  F .05  F  .05 3.07 .01 (3,21) 4.87  F  4.34 .01 ( 1 , 2 1 ) 8.02  .05 5.59 .01 ( 1 , 7 ) 1 2 . 2 5  89 88C YD. 34447.36  3 3 3 7 9 . 29  3 2 6 1 6 . 36  193. 9 5 0 8 5 0 . 25  185. 6 50805.16  182. 7 47961  180. 6 41209  225. 5 6 1 9 5 1 . 21  225. 4 49729  219 5 9 0 0 0 . 41  203 52441  5  248. 9 3 5 2 6 8 . 84  223 34410.25  242. 9 3 2 2 9 2 . 09  229 3 8 7 6 9 . 61  6  187. 8 5 6 4 5 3 . 76  185. 5 55648.81  179. 7 43681  196. 9 44100  • 237.6 5 7 4 5 6 . 09  235.9 50131.21  209 4 6 4 8 3 . 36  210 4 6 4 8 3 . 36  239. 7 4 7 7 4 2 . 25  223.9 37908.09  215. 6 41534. 44  215. 6 39601  218. 5 45369  194.7 37869.16  203. 8 3 6 4 4 2 . 41  199 3 4 5 2 1 . 64  S„ 4 r  s_ 7 s„ 8 9 S  Altitude  3 7 5 9 7 . 21 2  s  RUN  10  213 1764.9  ix  dx) ix  2  2  194. 6 1  1668.6  190. 9 1643  3  3 1 1 4 8 7 2 . 01  2784225.96  3 9 2 6 8 8 . 61  350949.04  6 2 7 0 1 4 2 0 . 96 340774  185. 8 1619.9  E 6697 (Ex) alt 44849809 x  2  8  2 5 2 4 0 7 6 . 01 3 2 9 7 4 1 . 97  880  s„ 2 S, 4 s  RUN  3 4 3 7 3 . 16  Sea L e v e l 3 7 4 0 3 . 56  3 2 7 9 7 . 21  34894.24  185. 4 4 3 3 8 8 . 89  193. 4 50625  181. 1 4 6 1 3 9 . 04  186.8 40561.96  208. 3 50625  225 56169  214. 8 5 0 0 8 6 . 44  201.4 49773.61  225 3 2 1 1 2 . 64  237 3 4 8 5 6 . 89  223. 8 3 0 9 4 0 . 81  223.1 33051.24  179. 2 515-7-4. 41  186. 7 5 2 1 2 0 . 39  175. 9 5 0 7 6 0 . 09  181.8 48929.44  227. 1 4 6 2 6 8 . 01  228. 3 60762. 25  225. 3 5 1 4 8 3 . 61  221.2 40561.96  215. 1 3 8 0 6 4 . 01  246. 5 3 7 7 1 3 . 64  226. 9 3 5 2 3 1 . 29  201.4 36252.16  195. 1 4 5 7 5 3 . 21  194. 2 3 8 9 2 7 . 29  187. 7 40000  19 0.4 36062.01  200  189.9  r  5  S^ 6 s_ 7 8 s„ 9 S  YD.  10  213. 9 1649.1  ix dx) ix  2  2  2  197. 3 1708.4  4  1635.5  5  2 7 1 9 5 3 0 . 81  2 9 1 8 6 3 0 . 56  2 6 7 4 8 6 0 . 25  3 4 2 1 5 9 . 33  3 6 8 5 7 8 . 52  3 3 7 4 3 8 . 49  1596 7 2547216. 320086.62  91 8 8 0 YD.  RUN  EX S  S  S  S  S  S  S  S  2 4 5 6 7 8 9 10  (E ) X  EX  2  277508.39  1722.4  2966661.76  371540.30  1852.7  3432497.29  429775.67  1473.5  2171202.25  271702.37  1794.4  3219871.36  403268.40  1784.7  3185154.09  399629.85  1583.4  2507155.56  314046.88  1585.4  2513493.16  314944.72  (Ex)  2  17517796  Zx S.L. 6589 (E ) X  2  EX  2  2218610.25  13286 2  X  1489.5  EX  Ex  (E )  2  43414921  Ex'  2782416.58  92  880  YD.  Subject X 143641  1 3 2 3 5 0 . 44  1 3 4 9 8 2 . 76  5 5 4 8 4 2 . 69  379. 3 1 8 8 1 8 2 . 44  379 2 0 2 8 6 0 . 16  363. 8 1 8 8 1 8 2 . 44  367. 4 1 6 3 5 3 9 . 36  1489. 5 742764. 4  433. 8 2 2 4 5 8 1 . 21  450. 4 211600  433. 8 2 1 7 8 0 8 . 89  404. 4 2 0 4 3 9 4 . 41  1722. 4 8 5 8 3 8 4 . 51  473. 9 134689.  460 1 3 8 5 3 2 . 84  466. 7 1 2 6 4 5 1 . 36  452. 1 1 4 3 4 1 3 . 69  1852. 7 5 4 3 0 8 6 . 89  367 2 1 5 9 4 6 . 09  372. 2 2 1 5 4 8 1 . 64  355. 6 1 8 8 6 1 6 . 49  378. 7 1 8 5 9 3 3 . 44  1473. 5 8 0 5 9 7 7 . 66  464 . 7 2 0 6 8 4 3 . 04  464. 2 2 2 1 2 7 6 . 16  434. 3 1 9 5 8 0 6 . 25  431. 2 173889  1794. 4 7 9 7 8 1 4 . 45  8  454. 8 1 7 1 0 6 4 . 96  470. 4 1 5 1 2 4 3 . 21  442. 5 1 5 3 2 7 2 . 25  417 1 5 1 6 3 2 . 36  1784. 7 6 2 7 2 1 2 . 78  9  413. 6 1 8 2 2 4 3 . 61  388. 9 1 5 3 5 8 5 . 61  391. 5 1 5 2 8 0 2 . 81  389. 4 1 4 1 1 5 0 . 49  1583. 4 6 2 9 7 8 2 . 52  s. 4 c  5  s^ 6 7 S  Trials  1 4 3 8 6 8 . 49  s„ 2  S  RUN  n  c 10 S  426. 9  391. 9  1 4 6 7 4 1 8 . 84  1 4 3 8 2 2 0 . 62  5559865. 9 2  2758090. 5 =  2 7 7 9 9 3 2 . 95 -  390. 9 1 3 5 5 2 9 0 . 93  375. 7 1 2 9 8 9 3 5 . 51  2758090 .5 = 21842.45 •t o t a l  1585. 4 5559865. 9  880  Alt  1764. 9  S.L. 1 6 4 9 . 1  T2 1668. 6  1  1708. 4  2  3414 11655396  11404129 _  2759627.163  -  4  1643. 6 1635. 5 3279. 1  3377  iii§403_4^62 16  T3 3  2 7 5 8  10752496.81  T4 6 5  1619. 1596  9  8  7  3215. 9  s„  2  s„ 4  sr  5  10342012.81  S^ 6  o90.5  s„ 2758090.5 =  RUN  Sub X A l t  T r i a l s Table TI  YD  7  1536.663  So 8  s„  9  Q S 10  5 5 1 7 5 1 . 84  Alt  S.L. 5 5 7 5 6 0 . 89  z 1 1 0 9 3 1 2 . 73  742. 8 7 6 1 9 5 4 . 41  746. 7 7 2 1 6 5 0 . 25  1489. 5 1 4 8 3 6 0 4 . 66  872. 9 8 9 0 7 5 8 . 44  849. 5 8 2 6 0 9 9 . 21  1722. 4 1 7 1 6 8 5 7 . 65  943. 8 5 6 2 3 5 0 . 01  908. 9 5 2 3 5 9 6 . 96  1852. 7 1 0 8 5 9 4 6 . 97  749. 9 7 9 6 5 5 6 . 25  723. 6 8 1 3 4 2 6 . 61  1473. 5 1 6 0 9 9 7 9 . 86  892. 5 8 0 0 6 6 7 . 04  901. 9 7 9 1 9 2 2 . 01  1794. 4 1 5 9 2 5 8 9 . 05  894. 8 665856  889. 9 5 8 8 9 0 2 . 76  1784. 7 1 2 5 4 7 5 8 . 76  816 6 1 5 1 2 6 . 49  767. 4 6 4 1 7 6 1 . 21  1583. 4 1256887. 7  784. 3 5 6 4 5 0 2 0 . 48  1  1  1  0  9  9  3  7  -  3  8  801. 1 5464916. 9  1585. 4 1 1 1 0 9 9 3 7 . 38  - 2758090.5  2777484.34 - 2758090.5 = 19393.84  94  8 8 0 Y D . RUN  SS  Subjects =  (Continued)  18740.21  2 2 1 8 6_1 0 . 25 + ^ 29666 _,_ _ 3_ 4 _3 _3_9 7 9 . 6 1 +. 2 1 7 1 2 0 2 . 2 5 + . 3 2 1 _ 9_ 8 7 1 . 36 +. _ 6 1 . 76 + g  3185154.09 8  2507155.56  2513493.16  8  8  2221465.72 8  176517796 = 2776830.71 - 2758090.5 = 64  SS  treatments  =  (13286) 64  ^+ 2 6 2 4 0_7 6 . 0 1 ^+ 2 7 1 9 5_3 0 . 8 1 .+  J  +  _  +  22084832.56 o  _ 758090.5  SS  1536.663  trials  =  _  _  2760604.07  - - 2758090.5 = 2759627.163  SS A l t i t u d e  SS A l t X T r i a l s  =  794.607  =  24326.08 - 18740.21 - 2513.57 = t o t a l - subjects - treatments SS  total  =  2782416.58 SS  19393.84 total  3072.3  (EX)  Ex2  N  - 2758090.5  , = sub X A l t v  - 2758090.5  = 2758272.8  2513.57 - 1536.663 - 182.3 = 794.607 treatments - t r i a l s - a l t i t u d e SS E r r o r  =  2513.57  =  1536.663  = 182.3 43414921 — 3 2 " 2758090.5  +  e  2/Douyu.o  - 2758090.5  62  : f 16  44849809 ^  2  =  441R4034  --_on«n  , 2674860.25 ^ 2547216.0  _  18740.21  2513.57  3 1 1 4 8_ 7 2 . 0 1 + 2 7 8 4 2_2 5 . 9 6 ^+ 2 7 0 1 4_2 0 . 9 6 2918630.56  2  =  24326.08  471.33  - 18740.21 -S3 . sub  - 182.3 = -SS,,. A l t  471.33  - 2758090.5  = 182.3  880 YD. RUN SS  (Continued)  . . . , = 1565.577 sub X t r x a l  21842.45 - 18740.21 - 1536.663 = 1565.577 total - SS , -S3,. . , sub trxals S S  Sub X Trials X A l t =  1  0  3  5  -  3  9  3  3072.3 - 1565.577 - 471.33 = 1035.393 error - S 3 ~SS g u b  x  T  r  ±  a  l  s  S u b  x  A  l  t  96 ONLY SIGNIFICANT TRIALS EFFECT L i n e a r Trend A n a l y s i s 880 yd. run SS t r i a l s  1536.663  SS l i n e a r  1497.3151  H  l l 2 2 3 3 4 [(-3)3414 + (-1)3377 + (1)3279.1 + (3)3215.91 16(20) n EA 2 A  fc  A  A  fc  fc  A  2  1  [(-10242) +  (-3377) + 3279.1 + 9647.7] 320  [(-13619) + 12926.8] 320  2  _ (692.2) 320  2  2  _ 479140.84 _ , 3~20  A O  _  _  1  ±4y/.ji.i  Table I I I 880 YARD RUN ANOVA TABLE Source  SS  Subjects  d.f,  ms  18740.21  7  2677.17  Treatments  2513.57  7  359.08  trials linear  1536.66 1497.31  altitude  182.3  trials alt.  794.60  3 1  5X2•2 2 1497.31 182.3  p  5.72  s i g . 1%  6.87 20.08  s i g . 1% s i g . 1%  2.71  no s i g .  5.37  s i g . 1%  x  Error sub x a l t  3072.3  3  264.87  62.7  49  471.33  7  67.33  sub x trials  1565.57  21  74.55  sub x • trials xa l t  1035.39  21  49.30  Total  F  24326.08  63  3861.44  F .05 4.04 .01 (1,49) 7.18  F  .05 4.32 .01 (1,21) 8.02  F  F  .05 5.59 .01 ( 1 , 7 ) 1 2 . 2 5  .05 3.07 .01 (3,21) 4.87  440 YD. DASH Altitude s„ 2  S.  4  s  s_ 7 n  S  6177.96  5836.96  83. 3 7921  76.3 8226.49  78.6 8760.96  76.4 7242.01  89 9940  90.7 8704.89  93.6 9840.64  85.1 9196.81  99. 7 6068. 41  93.3 5640.01  99.2 6642.25  95.9 6464.16  77. 9 8930. 25  75.1 7832.25  81.5 10020.01  80.4 7673.76  88.5 8281  100.1 9940.09  87.6 6872.41  94. 5 10404  8  102 7 0 8 9 . 64  91 6416  99.7 6577.21  82.9 6496.36  9  84. 2 7039. 21  80.1 6115.24  81.1 6256.81  80.6 5655.04  10  83. 9 714.5  ix  dx)  2  E  5821.62  r  5  s^ 6  s  6 9 3 8 . 89  X  2  1  5 1 0 5 1 0 . 25 64331.4  78.2 673.2 3  79.1  75.2 664.1  712.9 6  E 2764,7  (E ) X  8  453198.24  508226.41  441028.81  57037.57  64215.93  55437.51  2  Alt  7643566.09  440  So  2  s„ 4 s  5 c  s^ 6 S  7  s  0  8  S -  9  S  10  E  E  X  6674.89  6512.49  81.4 7796.89  81.8 8226.49  81.7 8742.25  80.7 7638.76  88.3 9820.81  90.7 10629.61  93. 5 10836.81  87.4 11257.21  99.1 5595.04  103.1 6162.25  104.1 6006.25  106.1 7761.61  74.8 7191.04  78.5 8704.89  77.5 9101.16  88.1 8046.09  84.8 8537.76  93.3 8873.64  95.4 10060.09  89.7 7621.29  92.4 6593.44  94.2 7140.25  100.3 6496.36  87 .3 7039.21  81.2 7276.09  84.5 6336.16  80.6 6707.61  83.9 6146.56  2 X  2  )  2  Level  6691.24  687.3  ( E  Sea  DASH  6625.96  85.3  X  YD.  79.6 705.7 4  472381.29  498012.49  59437.03  62764.53  81.9 715 5 511225 64625.42  78.4 701.6 7 492242.56 62023.22  440 YD. DASH (E )  EX S  S  S  S  S  S  S  S  2 4 5 6 7 8 9 10  2  X  IX  640.2  409856.04  51280.08  718.3  515954.89  64554.85  800.5  640800.25  80226.78  633.8  401702.44  50339.98  733.9  538609.21  67499.45  749. 8  562200.04  70590.28  656.2  430598.44  53848.47  641.6  411650.56  51532.72  2  Ex Ex  5574.3  (E ) X  2  Z  S.L. 2809. 6 X  (E ) X  2  7893852.16 EX  EX"  2  489872.61  440 YD. DASH Subject X TI 27126. 09  T2 24995. 61  T3 25696. 09  • T4 24680. 41  Z 102498. 2  164. 7 31435. 29  158. 1 32905. 96  160. 3 35006. 41  157. 1 29756. 25  640. 2 129103. 91  4  177. 3 39521. 44  181. 4 38572. 96  187. 1 41330. 89  172. 5 40804  718. 3 160229. 29  5  198. 8 23317. 29  196. 4 23592. 96  203. 3 25281  202 28392. 25  800. 5 100583. 5  6  152. 7 32148. 49  153. 6 33051. 24  159 38220. 25  168. 5 31435. 29  633. 8 134855. 27  179. 3 37791. 36  181. 8 34299. 04  195. 5 40000  177. 3 28968. 04  733. 9 141058. 44  194. 4 27357. 16  185. 2 27093. 16  200 26146. 89  170. 2 27060. 25  749. 8 107657. 46  165. 4 28628. 64  164. 6 24900. 84  161. 7 25921  164. 5 23592. 96  656. 2 103043. 44  So 2  s„  S-, 7 So 8 S  Trials  n  9  Q 10  S  169. 2 247325. 76  157. 8  161  239411. 77  979029. 51 _ UxJi.= 2 64  257602. 53  t Q t a l t  o  t  a  s s i  S b  subx  153. 6 234689. 45 trials  489514.755 - 485512.8201 =4001.9349  total  641. 6 97902951  440 YD. DASH Sub X A l t  T r i a l s Table TI  T2  T3  T4  Alt  714.5  673.2  712.9  664.1  S.L.  687.3  705.7  715  701.6  1401.8  1378.9  1427.9  1365.7  1965043.24 16  1901365.21 16  1865136.49 16  7770443.35 _ ( £ ) 16 64  2764.7 2809 6 5574 3  S„ 2 S. 4 Sr.  2038898.41 16 2  X  485652.7093 - 485512.8201 = 139.8892  5  s^  6  s_ 7 s„  8  S„ 9 S  10  Alt 98973. 16 314. 6 128450. 56 358. 4 150621. 61 '388. 1 99162. 01 314. 9 137418. 49 370. 7 141075. 36 375. 6 106276 326 100108. 96 316. 4  S.L. 106015. 36 325. 6 129528. 01 359. 9 170073. 76 412. 4 101697. 21 318. 9 131914. 24 363. 2 140025. 64 374. 2 109032. 04 330. 2 105755. 04 325. 2  204988. 52 640. 257978. 57 718. 3 320695. 37 800. 5 200859. 22 633. 8 269332. 73 733. 9 281101. 749. 8 215308. 656. 2 205864 641. 6  962086. 15  994041. 3  1956127. 45  1956127.45 _  4 8 5 5 1  04  2.8201  489031.86 - 485512.8201 = 3519.0399  103 ONLY SIGNIFICANT TRIALS EFFECT L i n e a r Trend A n a l y s i s 440 yd. dash SS t r i a l s = 139.8892 SS l i n e a r = 10.98903125 l l 2 2 3 3 4 4 [(-3)1401.8 + (-1) 1378.9 + (1)1427.9 + (3)1365.7] 16 (20) n ZA^ A  t  A  fc  A  fc  A  fc  [(-4205.4) + (-1378.9) + 1427.9 + 4 0 9 7 . I ] 320 [(-5584.3) 320  +  5525J  2 =  (  _ v  g  >  3  )  2  .  ,  3 5 1 6 ^ 4 9  _  2  2  1 0  .  9 8 9 0 3  125  104  440  SS  Subjects  =  YARD  DASH  (Continued)  3403.5636  409856.04 8  515954.89 8  640800.25 8  401702.44 8  562200.04 8  430598.44 8  411650.56 8  (5574.3) " 6 4  488921.4837  - 485512.8201 =  SS  i_8012^9  453198.24 8 511225  +  492242.56  +  - 485512.8201 =  SS  139.8892  =  1 9 6 5 4_ 3 . 2 4  3408.6636  508226.41 8  485853.1312 trials  SS  =  altitude  7j5J3566^09  SS. T r i a l s  _  4  8  5  - 485512.8201 =  X A l t =  t r i a l s  SS  Error  =  4359.7899  total  -  5  1  2  .  8  2  SS  -  = SS  8  2  0  1  Q  1  168,9216 A l t  - 3408.6636  - 340.3111 =  subjects  treatments  =  610.8152  4359.7899  - 485512.8201 -  4359.7899  ,,=78.8761  a l t  3519.0399  SS  .  6.10. 8 1 5 2  total  X  2  168.9216  - 31.5002  v  1  31.5002  treatments  ,  5  139.8892  340.311 - 139.8892  sub  5  - 3408.6636  -SS  sub  - 31. 5002 = -  SS  472381.29 8  340.3111  SS  SS  8  31.5002  7893852.16  +  485544.3203  489872.61  4  J  - 485512.8201 =  total  _  441028.8 8  ^. 1 9 0 1 3 6 _5 . 2 1 + 2 0 3 8 8 9 8 . 4 1 ^+ 1 8 6 5 1 3—6 . 4 9  485652.7093  SS  2  =340.311  treatments  510510.25 8,  538609.21 8  A l t  ZfLJlQ  4 8 5ccn 512. 8201 AO  44 0 YARD DASH SS  (Continued)  . . . , = 453.3821 sub X t r i a l s v  4001.9349 - 3408.6636 - 139.8892 = 453.3821 SS t o t a l -SS "SS s u b  SS  t r i a l s  = sub X t r i a l s X a l t  610.8152 - 453.3821 - 78.8761 = 78.5570 error - sub X t r i a l s - sub X a l t  Table IV 440 Y a r d D a s h A n o v a T a b l e d.f.  ms  3403.66  7  486.95  Treatments  340,31  7  48.61  trials  139.88  Source Subjects  SS  3  46.63  2.16  no  10.98  1  10.98  quad,  4.82  1  4.82  cubic  104.76  1  104.76  4.80  sig. no  linear  Altitude  31.50  31.50  2.79  trials  168.92  56.30  15.06  Error sub x a l t  610.81  49  78.87  11.26  453.38  21  21.59  sub x trials xalt  78.55  21  3.74  4359.79  s i g . 1%  12.46  sub x trials  Total  5%  63  69.20  F  .05 .01 (1,49)  4.04 7.18  F  .05 .01 (1,21)  F  .05 .01 (3,21)  4.87  3.07  F  .05 5.59 .01 (1,7) 12.25  4.32 8.02  107 CUBIC TREND ANALYSIS SS C u b i c 104.767531 [(-1)1401.8 + (3)1378.9 - 3(1427.9) + 1 ( 1 3 6 5 . 7 ) ] 16 (20) 3 3 5  320  6 1  =  2  (-183.1) 320  104.767537  QUADRATIC TREND ANALYSIS SS quad = 4.826531 [(1)1401.8 - (1)1378.9 - 1(1427.9) + 1 ( 1 3 6 5 . 7 ) ] 16(20) 1544  320  49  = 4.826531  2  _ (-39.3) 320  2  2  Raw S c o r e s  HEMATOCRITS  Subjects Erin 2 Kenney Wendy 4 M c l i a l f f ey Connie 5 Smith Danyll 6 Ayrault Marty 7 Jeffries Stacey 8 Ayrault Debbie 9 Beach Julie 10 VanKleeck Temp Humidity Bar.Press. Air Pollution  Altitude 3 6 4/21 5/13  1 4/8 46.5  42  42.  4,5.5  44  43.5  Sea 4 4/28  2 4/15  Level 5/20  48.5  49  46  49  47  43.5  44  40.5  43.5  44  44.5  41  45.5  44  43  42.5  41  43.5  43  40  43  43  39.5  41  44  43  49.5  49  45  43  45.5  47.5  47.5  47.5 "  43  41  40.5  42.5  40  42.5  43  45  | .42.5  42.5  45  |  42. 5  51  |  41.5 54  64  40  43.5 44  46 40  66  42.5 47  82  47  45 47.5  43.5 72  60  66  3 8 / 5 1 23% I 4 2 / 5 4 2 3 % 48/62 32% 56/66 5 3 % 62/82 3 0 % 54/72 28% 52/60 58% 56/66 5 3 % 30.05  3 0 . 23  , 30.08  Slight Breeze South Tahoe  30.03 30  ! Windy  30.23  Still Airport  30.10 26 Breeze  30.05  30.01 14  19 High wind  Hamilton A i r Force  Windy  Base  110 Altitude  - Sea L e v e l  Subjects  4/8 4/21 5/13 880 ! j 3:07.8 3:05.5 2:59.7 440 Danyll 6 1:17.9!1:15.1 1:21.5 Ayrault. 50 1 i 6.91 6.9| 6.7 SB j j 73'j 80'! 88* 880 i 3:57.6 3:55.9j 3:29 440 ! i Marty 7 1:34.5; 1:28.5j1:40 .1 J e f f r i e s • 50 ! i 7.6! 7.6! 7.9 SB j | ;  880 77*| 3:59.7 440 Stacey 8 1:42 Ayrault 50 7.5 SB 66' 880 3:38.5 440 Debbie 9 1:24.2 Beach 50 7.2 SB 130 ' 880 3:33 Julie 10 440 Van 1:23.9 Kleeck 50 7.2 SB 91 s  5/27  4/15  4/28  5/6  5/20  3:16.9 2:59.2 3:06.7 2:55.9 3:01.8 1:20.4 1:14.8 1:18.5 1:17.5 1:28.1 7.0  6.5  6.8  6.5  6.8  98»  82 '  89 '  69'  97 •  3:30  3:47.1 3:48.3 3:45.3 3:41.2  1:27.6 1:24.8 1:33.3 1:35.4 1:29.7 7.8  7.6  7.6  7.7  7.6  83 ' 68' 82' 89' 89' 79' i 86 ' 6" 3:43.913:35.6 3:35.6 3:35.1 4:06.5 3:46.9 3:21.4  1  1:39.7 1:22.9 1:32.4 1:34.2 1:40.3 1:27.3  1:31 7.8  7.9  i  7.4  7.3  7.6  7.5  7.5  82 ' 71' 82 ' 79 ' 81' 73' i 88' I cramp 3:14.7 |3:23.8 3:19 3:15.1 3:14.2 3:07.7 3:10.4 i 1:20.1 !l:21.1 1:20.6 1:21.2 1:24.5 1:20.6 1:23.9 7.2  7.1  7.0  6.9  7.1  7.0  7.2  130'  132 6"  137'  129 '  132'  125'  119 '  ,  3:14.6 3:10.9 3:05.8 3:33.9 3:17.3 3:20  3:09.9  1:18.2 1:19.1 1:15.2 1:25. 3 1:19.6 1:21.9 1:18.4 7.2 |  6.9  110' !  113'  i  7.0 122 '  7.1  6.9  6.8  6.5  104'  119 '  107'  105'  Debbie, Wendy, Marty - stomach cramps on 880 - l a s t four t r i a l s A l l headaches 1 s t time sea l e v e l  after  Stacey - stomachache 2nd sea l e v e l  running  Ill Altitude Subjects  Erin Kenney  2  Wendy 4 McHalffey  Connie Smith  5  4/8 880 3:13.9 440 1:23.3 50 7.7 SB 75' 880 3:45.5 440 1:29 50 7.3 SB 77' 880 4:08.9 440 1:39.7 50 8.2 SB 64'  4/21  Sea L e v e l  5/13  5/27  4/15  4/28  5/6  5/20  3:05.6 3:02.7 3:00.6 3:05.4 3:13.4 3:01.1 3:06.8 1:16.3 1:18.6 1:16.4 1:21.4 1:21.8 1:21.7 1:20.7 t 7.8 7.4 7.2 7.5 7.5! 7.8 7.5 64'  67'  3:45.4 3:39  68'6" 3:23  67'  61'  3:28.3 3:45  69'  78'  3:34.8 3:21.4  1:30.7 1:33.6 1:25.1 1:28.3 1:30.7 1:33.5 1:27.4 7.8  8.0  7.7  7.4  7.5  7.4  7.6  78 '  83*  88*  85'  85'  81'  ..83'  3:43  4:02.9 3:49.4 3:45  3:57  3:43.8 3:43.1  1:33.3 1:39.2 1:35.9 1:39.1 1:43.1 1:44.1 1:46.1 8.2  7.7  7.9  7.8  7.7  8.0  7.9  64'  58'  54'  55'  55 '  54'  51'  RELATIVE  HUMIDITY  Dry-bulb Thermometer  Differences  Between  Dry-bulb  and  Wet-bulb  Thermometers  Degrees Fahrenheit  1°  2°  3°  4°  5°  6°  7°  8°  9°  10°  11°  12°  13°  14°  15°  50  93  87  80  74  67  61  55  50  44  38  33  27  22  16  52  94  87  81  75  69  63  57  51  46  40  35  30  24  54  94  88  82  76  70  64  59  53  48  43  38  32  56  94  88  82  77  71  65  60  55  50  44  40  58  94  89  83  78  72  67  61  56  51  46  60  94  89  84  78  73  68  63  58  53  62  95  89  84  79  74  69  64  59  64  95  90  85  79  74  70  65  65  95  90  85  80  75  71  68  95  90  85  81  76  7 0  95  90  86  81  72  95  91  86  74  95  91  76  95  78  -  16°  17°  18°  11  6  1  0  20  15  10  5  0  28  23  18  13  8  4  35  30  25  21  16  12  8  42  37  33  28  24  19  15  11  48  44  39  34  30  26  22 •  18  14  54  50  45  41  37  32  28  24  20  16  60  56  51  47  43  38  34  30  27  23  19  66  61  57  53  49  45  40  36  32  29  25  22  71  67  63  58  54  50  46  42  38  34  31  27  24  77  72  68  64  60  55  52  48  44  40  36  33  29  26  82  77  73  69  65  61  57  53  49  45  42  38  35  31  28  87  82  78  74  70  66  62  58  54  50  47  43  40  3 6  33  30  91  87  82  7 8  74  70  66  63  59  55  52  48  45  41  38  35  31  96  9.1  87  83  79  75  71  67  63  60  56  53  49  45  43  39  35  33  80  96  92  87  83  79  75  72  68  64  61  57  54  51  47  44  41  38  35  82  96  92  88  84  80  76  73  69  65  62  58  55  52  48  45  42  40  37  Taken Ginn  from  George  & Company,  N.  Mallinson Y . ,  1964,  and p.  Fred 276.  Meppelink  J r . ,  "Science  in  Modern  L i f e ,  i  p p - ~  V'" • \  B A Y . A R E A AIR  " \ \j -  ;  1  P O L L U T I O N  C O N T R O L  D I S T R I C T  . SAN FRANCISCO, CALIFORNIA 941 OS .  .....  '  INFORMATION B U L L E T I N  5-70  COIIBINED POLLUTANT INDEX EXPERIENCE  1965 By TECHNICAL SERVICES D I V I S I O N Summary A c o m b i n e d p o l l u t a n t i n d e x f o r t h e Bay A r e a has been developed which i n c l u d e s the major contaminants e m i t t e d o r formed i n the atmosphere: oxidant, carbon monoxide;, n i t r o g e n d i o x i d e a n d v i s i b i l i t y r e d u c i n g particulates. The o x i d a n t a n d p a r t i c u l a t e components" have been w e i g h t e d because o f t h e i r c o n t r i b u t i o n t o air p o l l u t i o n e f f e c t s . Values a r e c a l c u l a t e d each d a y f r o m maximum l e v e l s o f t h e s e c o n t a m i n a n t s i n t h e n o r t h , c e n t r a l and s o u t h a r e a s o f t h e D i s t r i c t , and t h r e e s e p a r a t e i n d e x v a l u e s a r e r e l e a s e d a t 4:00 p.m. The 1969 e x p e r i e n c e shows p e r c e n t a g e o c c u r r e n c e s i n t h e " h e a v y " a i r p o l l u t i o n c a t e g o r y as 0.5% n o r t h , 17o c e n t r a l a n d 4 % s o u t h . The p e r c e n t a g e o c c u r r e n c e o f " c l e a n " a i r was 4 5 % i n t h e n o r t h a n d c e n t r a l a r e a s and 30% i n t h e s o u t h .  ns  COMBINED POLLUTANT INDEX EXPERIENCE 1969 1.  Introduction In 1968, the Bay Area A i r P o l l u t i o n C o n t r o l D i s t r i c t  estab-  l i s h e d a Combined P o l l u t a n t Index t o b e t t e r d e s c r i b e the concent r a t i o n o f a i r contaminants  p r e s e n t i n the atmosphere on any  g i v e n day - summer o r w i n t e r .  As e x p l a i n e d i n I n f o r m a t i o n  B u l l e t i n 10-68, t h i s index i s designed to i n f o r m the p u b l i c o f gross p o l l u t a n t l e v e l s , and has no i n t r i n s i c  s c i e n t i f i c meaning.  I t s primary purpose i s to p r o v i d e a n u m e r i c a l v a l u e t o the t o t a l q u a n t i t y o f a i r p o l l u t a n t s experienced i n the Bay A r e a , o f which the p r e v i o u s l y emphasized o x i d a n t index i s o n l y a p a r t . The -widespread  use o f the word "smog" as a synonym f o r  o x i d a n t has l e d to p u b l i c misunderstanding  and c o n f u s i o n , p a r -  t i c u l a r l y i n the w i n t e r when s u b s t a n t i a l v i s i b i l i t y r e d u c t i o n c a n occur w i t h o u t o x i d a n t b e i n g p r e s e n t .  On such days, members o f  the p u b l i c and the p r e s s are confused  t o l e a r n t h a t the "smog  r e a d i n g " (the popular term f o r o x i d a n t r e a d i n g s ) i s low even when v i s i b i l i t y - r e d u c i n g a i r p o l l u t i o n i s o b v i o u s l y p r e s e n t . Although  there a r e n u m e r i c a l v a l u e s a s s i g n e d t o contaminants  o t h e r than o x i d a n t , they have n o t been w i d e l y p u b l i c i z e d o r understood.  T h i s i s due t o the f a c t t h a t adverse  l e v e l s vary  w i d e l y between these p o l l u t a n t s , and a r e r e l a t e d t o cumulative e f f e c t s over d i f f e r e n t time p e r i o d s .  -2-  F o r example, the S t a t e A i r  (Mo  Resources Board has defined the adverse oxidant l e v e l as .10 ppm high-hour values occurring on 3 consecutive days or on 7 days i n a 90-day period, while the adverse l e v e l for nitrogen dioxide i s .25 ppm for one hour, and the adverse l e v e l for carbon monoxide i s 20 ppm averaged over 8 consecutive hours.  Thus a simple d a i l y  index appeared a highly desirable service to the public i n t e r e s t . 2.  Choice of Contaminants The contaminants included i n the combined index are oxidant,  carbon monoxide, nitrogen dioxide and p a r t i c u l a t e s (as measured by c o e f f i c i e n t of haze).  As the d e f i n i t i v e element o f photochem-  i c a l smog, oxidant i s included and given double weight.  Two  other gaseous contaminants for which State standards have been established, N O 2 and CO, are included.  (Sulfur dioxide i s a  problem i n only one section o f the D i s t r i c t , and would be misleading i n comparable area-wide indexes.)  The State standard f o r  p a r t i c u l a t e matter i s 60 jig/m annual geometric mean, or 100 u.g/m 3  3  24-hour average, but these measurements require laboratory analysis and are not available the same day. Thus the D i s t r i c t has employed the  C o e f f i c i e n t of Haze (COH) as the best a v a i l a b l e measurement  of p a r t i c u l a t e p o l l u t i o n for which d i r e c t and objective readings are  available. A l l of the contaminants selected have i d e n t i f i a b l e health  e f f e c t s and two of them, W O 2 and p a r t i c u l a t e matter, contribute to v i s i b i l i t y e f f e c t s .  -3-  3.  C a l c u l a t i o n o f index Each day indexes a r e c a l c u l a t e d f o r three  geographic  p a r t s o f the D i s t r i c t : NACPI - North Area Combined P o l l u t a n t Index San R a f a e l , Richmond and P i t t s b u r g s t a t i o n s CACPI - C e n t r a l Area Combined P o l l u t a n t Index San F r a n c i s c o and Oakland s t a t i o n s SACPI - South Area Combined P o l l u t a n t Index Redwood C i t y and San Jose s t a t i o n s . When f u l l s t a t i o n s a r e a c t i v a t e d i n Livermore  and Walnut  Creek i n f u t u r e y e a r s , a f o u r t h a r e a index w i l l be i n a u g u r a t e d : EACPI - E a s t A r e a Combined P o l l u t a n t Index. The  formula  f o r the index i s :  CPI - 2 (Ox) + (N0 ) + (CO) +' 10 (COH) 2  where Ox i s the high-hour  o x i d a n t i n pphm  N0  N0  CO  2  " "  " n  " "  " "  CO  2  "  "  " ppm  COH i s 8-12 a.m. c o e f f i c i e n t o f haze v a l u e For each a r e a the g r e a t e s t high-hour CO and N 0  2  value o f oxidant,  r e p o r t e d by any s t a t i o n i n t h a t a r e a i s used.  0800-1200 COH v a l u e i s used.  The  Since t h i s i s an i n f o r m a t i o n a l  r a t h e r than a r e s e a r c h t o o l , o n l y those v a l u e s a v a i l a b l e by 4:00 p.m. i n the a f t e r n o o n telephone round-up a r e i n c o r p o r a t e d .  4.  Combined P o l l u t a n t Index  Data  Since the Combined P o l l u t a n t Index became f u l l y o p e r a t i o n a l l a t e i n 1968 on a seven-day-a-week b a s i s , 1969 p r o v i d e s the  first  f u l l year o f CPI d a t a .  The monthly  and annual  minimum average, and maximum CPI v a l u e s f o r the t h r e e s e c t o r s are  summarized i n Table 1.  Monthly minimums range from 11 t o  22, w i t h annual lows o f 11 f o r a l l three s e c t o r s .  Monthly av-  erages range from 21 i n the North a r e a f o r June t o 57 f o r the South area i n November. 30 C e n t r a l , and 35 South. the  The annual averages a r e 28 North, Monthly maximums range from 36 i n  North i n June t o 121 i n the C e n t r a l a r e a i n September,  w i t h annual maximums o f 93 North, 121 C e n t r a l , and 100 South. 5.  C l a s s i f i c a t i o n o f CPI L e v e l s An a r b i t r a r y s c a l e o i v a l u e s was t e n t a t i v e l y s e t f o r  i n t e r p r e t i n g the CPI l e v e l s .  T h i s s c a l e was as f o l l o w s :  0-25  Clean A i r  26 - 50  Light A i r Pollution  51 - 75  Moderate A i r P o l l u t i o n  76 - 100  Heavy A i r P o l l u t i o n  101 or g r e a t e r Severe A i r P o l l u t i o n The percentage occurrences i n these c a t e g o r i e s f o r the North, C e n t r a l , and South areas i n 1969 a r e g i v e n i n T a b l e 2. I t may be noted that one severe c a t e g o r y day i n a 30-day month g i v e s 3.33% o c c u r r e n c e and one i n a 365-day y e a r g i v e s 0.27%  -5-  occurrence.  One  September day  i n the C e n t r a l a r e a reached  " s e v e r e " l e v e l , g i v i n g the percentages Percentage North,  a  shown.  occurrences i n the "heavy" c a t e g o r y were 0.57  o  1% C e n t r a l and 4% South.  In the "moderate" c a t e g o r y  they were 6% North, 8% C e n t r a l , and  17% South.  Thus the  totals  o f s i g n i f i c a n t p o l l u t i o n a t a moderate or g r e a t e r l e v e l were North, 9% C e n t r a l , and 21% South. area exce'ed  Only  i n October  6.5%  d i d the C e n t r a l  the South i n i t s "moderate or g r e a t e r " o c c u r r e n c e ,  a l t h o u g h on September 25th i t d i d have the s i n g l e most  adverse  day. The percentage  occurrence o f " c l e a n a i r " was  N o r t h and C e n t r a l a r e a s , and 30% i n the South.  46% i n the  The  "light"  c a t e g o r y o c c u r r e d a t f r e q u e n c i e s o f 48%, North, 45%, C e n t r a l , 49% South.  The  and  " l i g h t " c a t e g o r y , however, i s the l e a s t w e l l  e s t a b l i s h e d , as w e l l as the most f r e q u e n t c a t e g o r y . d i v i d u a l contaminants v a l u e s were expected  Since i n -  are l o g - n o r m a l l y d i s t r i b u t e d , the to be s i m i l a r l y d i s t r i b u t e d .  A  CPI  log-proba-  b i l i t y graph demonstrated t h a t they were so d i s t r i b u t e d ,  and  t h a t over 307 o f t o t a l days show CPI v a l u e s between 26 and o  35.  Such days g e n e r a l l y have lew to moderate v a l u e s o f i n d i v i d u a l contaminants, little  dc not approach any adverse  i f any v i s i b i l i t y r e d u c t i o n .  l e v e l s , and show  I f this largest portion  o f the d i s t r i b u t i o n curve were more p r o p e r l y c l a s s e d as " c l e a n air",  the days i n the " c l e a n a i r " c a t e g o r y would r e a c h 76% i n  (2<>  the North and C e n t r a l a r e a s , and 60% i n the South a r e a . The  a c t u a l contaminant  our "heavy" o r  l e v e l s which go to make up one o f  " s e v e r e " CPI days i s a l s o a matter  of interest.  In 1969 there were 9 days w i t h a CPI o f 76 o r g r e a t e r (8 o f them o c c u r r i n g i n the f a l l  season).  The average  contaminant  levels  i n a d v e r s e l y a f f e c t e d s e c t o r s o f the D i s t r i c t on these days were as f o l l o w s : Oxidant  .13 ppm  Nitrogen dioxide  .23 ppm  Carbon monoxide  16 ppm  Coefficient of Haze  2.3  T h i s o x i d a n t l e v e l i s above the nevj .10 ppm S t a t e s t a n d a r d , the n i t r o g e n d i o x i d e l e v e l i s s l i g h t l y below the .25 ppm s t a n d a r d , and  the carbon monoxide l e v e l i s w e l l below the standard o f  20 ppm f o r 8 hours. directly  The c o e f f i c i e n t o f haze v a l u e cannot be  t r a n s l a t e d t o the suspended p a r t i c u l a t e s d a i l y  standard  o f 100 n.g/m , s i n c e i t r e c o r d s o n l y the darker p a r t i c u l a t e s . 3  In  a d d i t i o n , suspended p a r t i c u l a t e s a r e measured over a 24-hour p e r i o d whereas the COH v a l u e i s taken over a 4-hour p e r i o d . However, measurements f o r suspended p a r t i c u l a t e s on 7 o f the 9 days showed an average  o f 114 |jug/m , which i s above the standard 3  o f 100 M-g/m . 3  -7-  Since h e a l t h e f f e c t s are a s s o c i a t e d w i t h exposures  to contaminants  above the a i r q u a l i t y s t a n d a r d s ,  cannot make d e f i n i t i v e statements  one  concerning health e f f e c t s  a s s o c i a t e d w i t h these 9 occurrences i n 1969. r e a s o n a b l y conclude  long-term  However, one  can  t h a t CPI v a l u e s g r e a t e r than 76 are a s s o c i -  a t e d w i t h one or more contaminants s tandard.  JSS:fm 4/23/70  -8-  above the a i r q u a l i t y  TABLE 1 MINIMUM, AVERAGE, AND MAXIMUM VALUES OF COMBINED POLLUTANT INDEX BY MONTH FOR NORTH, CENTRAL, AND' SOUTH DISTRICTS 1959  Min. C  N  S  N  Avg., C  S  N  Max. C  S  Jan  H  16  11  24  27  28  48  52  52  Feb  11  15  15  24  25  22  41  43  49  Mar  16  16  17  27  28  31  58  57  69  Apr  16  13  18  26  22  27  41  49  49  May  14  11  16  25  24  30  52  48  69  Jun  11  14  13  21  23  24  36  37  43  Jul  12  12  20  26  25  37  72  68  77  Aug  14  18  18  33  34  44  58  64  74  Sep  14  16  20  32  34  45  69  121  84  Oct  is ;  19  22  38  40  41  93  88  84  Nov  18  20  20  39  46  57  57  87  100  Dec  13 ;  16 :  14  2  7  31  34  64  84  77  Annual :  11  11  11  28  30  35  93  121  100  1  TABLE 2 PERCENTAGE OCCURRENCE OF COMBINED POLLUTANT INDEX CATEGORIES FOR NORTH, CENTRAL AND SOUTH DISTRICT 1969 Light Moderate Heavy  Clean Nl  C  S  N  S  C  N  C  S  N  JC  . S  Severe N  C  s  Jan  61  39  48  39  58  42  0  3  10  0  0  0  0  0  0  Feb  61  68  75  39  32  25  0  0  0  0  0  0  0  0  0  Mar  48  45  48  49  52  45  3  3  7  0  0  0  0  0  0  Apr  53  77  43  4?  23  57 |  0  0  0  0  0  0  0  0  May  61  71  32  36  29  •3 ->  0  3  0  0  0  0  0  0  Jun  H  0  77  73  43  23  27  57  0  0  0  0  0  0  0  0  0  Jul  52  71  3  42  22  84  7  13  3  0  0  0  0  0  Aug  23  23 .  7  70  67  52  7  10  36  0  0  7  0  0  0  Sep  27  23  13  56  73  33  7  3  47  0  0  7  0  3  0  Oct  19  6  10  55  65  67  23  23  10  3  7  13  0.  0  0  Nov  10  10  i i  73  40  •7 1  17  43  73  0  7  17  0  0  0  Dec  61  42  42  33  42  39  7  13  13  0  3  7  0  0  0  Annual  46  46  30  48  45  49  6  8  17  0.5  1  4  0  #»  0  Less than 0.5%  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076996/manifest

Comment

Related Items