Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Scale-up studies on the culture of brine shrimp Artemia fed with rice bran Platon, Rolando R. 1985

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1985_A1 P62.pdf [ 9.79MB ]
Metadata
JSON: 831-1.0076980.json
JSON-LD: 831-1.0076980-ld.json
RDF/XML (Pretty): 831-1.0076980-rdf.xml
RDF/JSON: 831-1.0076980-rdf.json
Turtle: 831-1.0076980-turtle.txt
N-Triples: 831-1.0076980-rdf-ntriples.txt
Original Record: 831-1.0076980-source.json
Full Text
831-1.0076980-fulltext.txt
Citation
831-1.0076980.ris

Full Text

SCALE-UP STUDIES ON THE CULTURE OF BRINE SHRIMP ARTEMIA FED WITH RICE BRAN by ROLANDO R. PLATON .B.S.Ch.E., M i n d a n a o S t a t e U n i v e r s i t y M a r a w i C i t y , P h i l i p p i n e s , 1967 M.Eng'g.(Ch.E.), U n i v e r s i t y of t h e P h i l i p p i n e s Quezon C i t y , P h i l i p p i n e s , 1969 M.S.(Envi.Eng'g.), Northwestern U n i v e r s i t y E v a n s t o n , I l l i n o i s , . U.S.A., 1971 A THESIS SUBMITTED I N PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of I n t e r d i s c i p l i n a r y We a c c e p t t h i s t h e s i s to  the required  Studies  as c o n f o r m i n g standard  THE UNIVERSITY OF B R I T I S H COLUMBIA May 1985 ©  R o l a n d o R. P l a t o n ,  1985  In presenting  this  thesis i n partial  fulfilment of the  r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e L i b r a r y s h a l l make it  freely  a v a i l a b l e f o r r e f e r e n c e and study.  agree t h a t p e r m i s s i o n f o r extensive for  copying of t h i s  understood that financial  copying o r p u b l i c a t i o n o f t h i s  gain  Department o f  INTERDISCIPLINARY  The U n i v e r s i t y o f B r i t i s h 1956 Main M a l l V a n c o u v e r , Canada V6T 1Y3  )E-6  (.3/81)  I t i s thesis  s h a l l n o t b e a l l o w e d w i t h o u t my  permission.  Date  thesis  s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my  department o r by h i s o r h e r r e p r e s e n t a t i v e s . for  I further  MAY 2 3 , 1 9 8 5  Columbia  STUDIES  written  ABSTRACT  The  e f f e c t s of  biological  water  performance  movement of  or  agitation  planktonic  i n t e n s i v e c u l t u r e have been r a r e l y  on  organisms  studied  the under  quantitatively.  S t a g n a t i o n o r minimum v a l u e s a r e c o n s i d e r e d i m p o r t a n t i n t h e problem  of  scale-up  based  stagnation,  inadequate  undesirable  effects,  uneven  distribution  concentration.  optimum  water  conditions.  movement  brings  e.g. a c c u m u l a t i o n of  feed  and  low  Near  of  about  metabolites,  dissolved  oxygen  An i m p o r t a n t m e c h a n i s m a s s o c i a t e d w i t h  movement a t t h e s e which  on  defines  conditions  is  the  t h e oxygen t r a n s f e r  oxygenation  rate  water  process  from t h e gas t o t h e  water. Experiments determine two and  the  were  conducted  overall  using  potable  water  o x y g e n mass t r a n s f e r c o e f f i c i e n t i n  t y p e s of c o n t a i n e r g e o m e t r i e s ; a) c y l i n d r i - c o n i c a l b)  oblong-shaped  type of c o n t a i n e r , investigated Agitation  with  center- partitioned  three geometrically scale  ratio  of  similar  tank  F o r each  sizes  were  a p p r o x i m a t e l y 1:2:3.5.  was i n d u c e d by t h e i n t r o d u c t i o n correlations  raceway.  of  a i r into  system.  General  obtained  f r o m e x p e r i m e n t a l d a t a and were e x p r e s s e d i n  of  to  the  f o r b o t h t a n k g e o m e t r i e s were  t h e o p e r a t i n g a n d g e o m e t r i c p a r a m e t e r s . The  a r e i n t h e form of d i m e n s i o n l e s s groups  terms  correlations  (Froude and Reynolds  numbers) m a k i n g them a p p r o p r i a t e f o r s c a l e - u p The  general correlations  transfer scaling  coefficient equations  different  sizes  f o r the  overall  were s u b s e q u e n t l y  to  define  the  of  containers  estimates.  the  parameters culture  s h r i m p i n s e a w a t e r f e d w i t h r i c e b r a n . The h i g h coefficient brine transfer  obtained  shrimp  biomass  coefficient  the c y l i n d r i - c o n i c a l overall  oxygen  for  mass  scale-up c r i t e r i o n  the  relationship  production  and  transfer  i n brine shrimp  correlation  overall  sizes  indicates  coefficient culture.  in  of b r i n e  between  the  applicable to different tank and t h e raceway  mass  used t o p r o v i d e the  operating for  oxygen  i s an  of  total mass both  that the effective  iv  TABLE OF CONTENTS Page ABSTRACT  i i  TABLE OF CONTENTS  iv  LIST OF TABLES  vi  LIST OF FIGURES  v i i  ACKNOWLEDGEMENTS  x  I.  INTRODUCTION  1  II.  LITERATURE REVIEW  7  III.  THEORY  25  IV.  EXPERIMENTAL FACILITIES  32  V.  CULTURE TECHNIQUE.AND MEASUREMENT OF MONITORING AND BIOLOGICAL PERFORMANCE PARAMETERS  43  VI.  DETERMINATION OF THE CONTROLLING MECHANISM IN BRINE SHRIMP CULTURE NEAR STAGNATION CONDITIONS . 47 a. Methodology 48 b. R e s u l t s and d i s c u s s i o n 49 c. C o n c l u s i o n s 56  VII.  DEVELOPMENT OF SCALE-UP CORRELATIONS FOR THE OVERALL OXYGEN MASS TRANSFER COEFFICIENT, K_a ... 57 a. D e r i v a t i o n of g e n e r a l i z e d r e l a t i o n s h i p f o r Kj^a by d i m e n s i o n a l a n a l y s i s 57 b. E x p e r i m e n t a l d e t e r m i n a t i o n of K-^a 61 c. R e s u l t s and d i s c u s s i o n 64 d. C o n c l u s i o n s 77  VIII.  VERIFICATION OF K a AS A SCALE-UP CRITERION IN BRINE SHRIMP CULTURE a. Methodology b. R e s u l t s and d i s c u s s i o n c. C o n c l u s i o n s  78 78 86 115  ECONOMIC ASPECTS OF SCALING-UP BRINE SHRIMP CULTURE SYSTEMS  116  IX.  L  V  X.  SUMMARY OF RESULTS AND CONCLUSIONS  XI.  LIMITATIONS OF THE WORK AND SUGGESTIONS FOR FURTHER RESEARCH  129  133  BIBLIOGRAPHY  135  APPENDICES  140  vi  L I S T OF TABLES Page I.  Design  data  for cy1indri-conical  II.  Design  data  f o r raceways  III.  IV.  V.  VI.  VII.  VIII.  IX.  X.  tanks  35 38  Experimental design comparing oxygenation and a g i t a t i o n a s c o n t r o l l i n g m e c h a n i s m in brine shrimp c u l t u r e  49  R e p r e s e n t a t i o n of a i r flow r a t e s i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l and r a c e w a y s  79  tanks  A c t u a l v a l u e s of a i r flow r a t e s used i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tanks and t h e c o r r e s p o n d i n g v a l u e s o f K^a  83  A c t u a l v a l u e s of a i r flow r a t e s used i n d i f f e r e n t s i z e s of raceways and t h e c o r r e s p o n d i n g v a l u e s o f K^a  84.  V a r i a t i o n o f BOD a t v a r i o u s a e r a t i o n l e v e l s w i t h c u l t u r e p e r i o d i n d i f f e r e n t s i z e s of. c y l i n d r i - c o n i c a l tank  .110  E s t i m a t e of p r o d u c t i o n c o s t f o r s c a l i n g - u p through i n c r e a s e i n s i z e of tank m a i n t a i n i n g t h e number o f t a n k s c o n s t a n t (Case A)  121  E s t i m a t e of p r o d u c t i o n c o s t f o r s c a l i n g - u p by m a i n t a i n i n g t h e same l e v e l o f p r o d u c t i o n b u t v a r y i n g t h e s i z e o f t a n k s (Case B)  123  Comparison of p r o d u c t i o n c o s t i n c y l i n d r i c o n i c a l tank and raceway  127  vii  L I S T OF FIGURES Page 1.  P o s s i b l e e f f e c t s o f w a t e r movement i n t e n s i t y on t h e b i o l o g i c a l p e r f o r m a n c e of p l a n k t o n i c o r g a n i s m s  2.  A detailed conical  3.  :  of the c y l i n d r i -  tank  A detailed  4.  illustration  26  34  illustration  o f t h e raceway  37  The c y l i n d r i - c o n i c a l t a n k s e t - u p  41  5 a - c . The r a c e w a y s e t - u p . ... 6. V a r i a t i o n of d i s s o l v e d oxygen i n the c u l t u r e system w i t h time u s i n g a i r and pure oxygen 7.  F a c t o r s i n f l u e n c i n g t h e mechanisms o f o x y g e n a t i o n and a g i t a t i o n i n g a s b u b b l i n g  8. ;  9. 10. 11. 12. 13. 14.  E f f e c t of d i s s o l v e d s y s t e m on t h e t o t a l of b r i n e s h r i m p  41  50 ..  51  oxygen i n t h e c u l t u r e biomass p r o d u c t i o n 54  E f f e c t o f g a s f l o w r a t e on t h e t o t a l biomass p r o d u c t i o n of b r i n e s h r i m p  55  Kj^a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l t a n k s f o r a i r - w a t e r system  71  K-^a c o r r e l a t i o n system  72  i n raceways  C o m p a r i s o n o f Kj^a f o r f r e s h in c y l i n d r i - c o n i c a l tanks  for air-water and sea water 73  C o m p a r i s o n o f Kj_,a f o r f r e s h a n d s e a w a t e r in raceways  74  Length-dry weight r e l a t i o n s h i p i n b r i n e shrimp f e d with r i c e bran at v a r i o u s aeration levels  88  viii  15.  16.  17.  18.  19.  R e l a t i o n s h i p between l e n g t h and c u l t u r e p e r i o d f o r brine shrimp f e d with r i c e bran a t v a r i o u s a e r a t i o n l e v e l s i n c y l i n d r i - c o n i c a l tanks  90  R e l a t i o n s h i p between l e n g t h and c u l t u r e p e r i o d f o r brine shrimp f e d with r i c e bran a t v a r i o u s a e r a t i o n l e v e l s i n raceways  91  C o m p a r i s o n of l e n g t h - t i m e r e l a t i o n s h i p f o r b r i n e shrimp f e d with r i c e bran i n c y l i n d r i c o n i c a l t a n k s and r a c e w a y s  92  R e l a t i o n s h i p between t o t a l b r i n e s h r i m p b i o m a s s p r o d u c t i o n and K a i n c y l i n d r i c o n i c a l tanks ..  93  R e l a t i o n s h i p between t o t a l b r i n e s h r i m p b i o m a s s p r o d u c t i o n and K a i n r a c e w a y s  94  L 20.  21.  22.  23.  24a-c.  25a~c.  C o m p a r i s o n o f r e l a t i o n s h i p on t o t a l b r i n e s h r i m p b i o m a s s p r o d u c t i o n w i t h K^a i n c y l i n d r i - c o n i c a l t a n k s and i n raceways  96  Average l e n g t h of time before onset of mass m o r t a l i t y o f b r i n e s h r i m p a s a f u n c t i o n of a e r a t i o n l e v e l i n c y l i n d r i - c o n i c a l t a n k s  98  Average l e n g t h of time before onset of mass m o r t a l i t y o f b r i n e s h r i m p a s a f u n c t i o n of a e r a t i o n l e v e l i n raceways  99  Comparison of average l e n g t h of time before o n s e t o f mass m o r t a l i t y o f b r i n e s h r i m p i n c y l i n d r i - c o n i c a l tanks and i n raceways  ..100  V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e period at d i f f e r e n t aeration levels i n c y l i n d r i - c o n i c a l tanks  102  V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e period at d i f f e r e n t aeration levels i n raceways  105  ix  26.  27.  28.  29.  C o m p a r i s o n of v a r i a t i o n o f d i s s o l v e d o x y g e n with culture period in c y 1 i n d r i - c o n i c a l t a n k s and r a c e w a y s  108  Comparison of v a r i a t i o n i n d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d i n a c u l t u r e system c o n t a i n i n g b r i n e s h r i m p w i t h f e e d and i n the other c o n t a i n i n g feed o n l y  ..113  R e l a t i o n s h i p b e t w e e n power p e r u n i t v o l u m e and t a n k s i z e f o r s i m i l a r K a i n c y l i n d r i c o n i c a l t a n k s and r a c e w a y s  114  R e l a t i o n s h i p between u n i t p r o d u c t i o n cost and t a n k s i z e i n s c a l e - u p o f b r i n e s h r i m p c u l t u r e system  125  ACKNOWLEDGEMENTS  The  author  Zahradnik,  Department  serving  as  author  also  advisory  wishes to  c h a i r m a n of wishes  committee;  R.M.R.  K.V.  L o , Department  invaluable  Special  Center for  and t o  the  the the  financial  The  author  Ramos and M s . C . processing  and  Analytical water  A.  of  for  of  Dr.  J.W. for  committee.  other  members  Department  The  of  of  the  Zoology;  Chemical E n g i n e e r i n g ; Dr. Engineering,  Civil  Engineering,  and for  Dr. their  encouragement. are  expressed  Southeast  to  Asian  International  the  Fisheries  Development  Aquaculture Development  Research,  Centre  support. also  expresses  Casalmir  for  analysis;  bran  suggestions;  Duller  their  rice  the  to  Engineering,  advisory  Bio-Resource  L a b o r a t o r y of  and  helpful  and  thanks of  thesis  Department of  gratitude  Bio-Resource  thank  Department  advice  Department  the to  Branion,  Quick,  of  his  D r . R.W. B l a k e ,  Dr.  M.C.  express  their  Special  thanks  moral  support.  to  gratitude  their the  samples; Engr.  technical to  to  D r . M . De  assistance  staff  SEAFDEC AQD  and t o  go  his  for  of  the  the  in  data  Centralized analysis  to  Dr. J . Llobrera  for  S.  E s m e j a r d a , J r . and  of his Ms.  support.  my f a m i l y ,  E l i z a b e t h and R o e l ,  for  CHAPTER I INTRODUCTION  In is  both  the  an o n g o i n g  industry  to  increasing the  developed  concern help  supply  population  problem  for  of  of  and d e v e l o p i n g the  countries,  development  the  food  the  w o r l d . Along  of  the  requirement  providing suitable  there  aquaculture  of  the  with  rapidly  this  and e f f i c i e n t  comes  feeds  for  aquaculture. One  of  planktonic fishes  in  are  the  into  rapid  published  models  principles. to  production results  predict unit  obtained  or  to  This the  food  of  of  experiments  of  these  of  T h e r e abound  basic  culture  of  these  converters  this  type  experimental  a major o b s t a c l e  in  the  industry.  chemical  process  a systematic involves  the  performance  prototype  small  larvae  Most  translating is  of  the  sources.  u n i t s ' on the  the  for  efficient  results  aquaculture  growth of  consists  feeds  and a r e  The p r o b l e m of  the  feed  hatcheries.  animal-based  partially attributed  scale-up  in  p r o d u c t i o n systems of  of  are  feeders  from s m a l l - s c a l e  development The  to  literature  organisms.  results  been  filter  types  which  crustaceans  from p l a n t  obtained of  important  organisms  and  organisms energy  the  on the  from s m a l l - s c a l e  units  industries  application use  of  of  the  mathematical  a  basis or  of  of  has  large-scale experimental  models.  2  The  p r o b l e m o f b r i d g i n g t h e gap between e x p e r i m e n t s  small-scale  units  commonly o v e r l o o k e d time it  and  production  i n the aquaculture  the scale-up process works  but  in  the  prototype  i s done i n t u i t i v e l y  and  sometimes i t does n o t . A l t h o u g h  i t i s generally  The  scale-up  to mechanical Although be  and c h e m i c a l  applied  a trial-and-  involving models  a  complexity  not is  these  easily to  the  for similar  systems, i t w i l l  A biological  due  components p l u s  have so f a r been w e l l a p p l i e d  are evident  non-physical  are  system i s  function developed  the  to  techniques to n o t be  without  complex  thus  thing  mathematical  describe  i t . The  g r e a t number o f i t s s t r u c t u r a l  variety  l a c k of m a t h e m a t i c a l  in b i o l o g i c a l scale-up concept  of  interrelationships  models t o d e s c r i b e  systems should not  criteria enables  stop  among  processes.  In  similarity  development  systems.  The  of  regime  t h e s c a l e - u p o f a s y s t e m on t h e b a s i s o f t h e  mechanisms o f b i o l o g i c a l  influenced  the  for aquacultural  r a t e - c o n t r o l l i n g mechanism. A l t h o u g h  be  and  a  results.  components. The  exact  dependable  systems w i t h s a t i s f y i n g  for biological  some d i f f i c u l t i e s .  sometimes  uneconomical.  techniques  the prospects  is  i n d u s t r y . Most o f t h e  e r r o r a p p r o a c h w o u l d , i n some i n s t a n c e s , l e a d t o results,  in  or  even  these  may  processes,  controlled  instances  we  we  by may  not  know  some o f t h e s e specific make  the may  physical  use  of the  3  governing  physical  particular This culture the  process  study  intensive  considered  basis  culture  movement  characteristics  of  for  scaling-up  scale-up  these  aspects  a  As i t i s  i n the  inherent  in  organisms f o r the c u l t u r e  e m p h a s i s was g i v e n on t h e e f f e c t s  or  agitation  on  the  of  biological  of the organism.  shrimp Artemia  organism.  The  following  reasons:  1. E a s i l y  some  feeding organisms.  s y s t e m t o be a g i t a t e d ,  Brine  a  b i o l o g i c a l system.  of f i l t e r  water  as  selection  was u s e d of  as  this  the  filter  organism  feeding  was due t o t h e  available;  2. R e l a t i v e l y h i g h s u r v i v a l i n c a p t i v i t y ; 3. R e l a t i v e l y  f a s t growth  4. May be c u l t u r e d 5. Above a l l ,  rate;  i n high density  i t s great  importance  i n c a p t i v i t y ; and in  the  aquaculture  industry. Artemia  has  been  found  t o be a s u i t a b l e  most d i v e r s i f i e d g r o u p s o f o r g a n i s m s i n t h e and  particularly  crustaceans more use food  than Artemia  in  (Sorgeloos,  animal  both marine and f r e s h w a t e r 1980). Kinne  85% of the marine a n i m a l s either  food  as a s o l e  diet  (1977)  kingdom  f i s h e s and  indicated  c u l t i v a t e d thus  or  f o r the  together  with  that  f a r can other  sources. Although  in  most  cases  Artemia  is  used as f r e s h l y  hatched  nauplii,  Artemia  i t was  found  serve as a b e t t e r d i e t  that  because of the l a r g e r  (Sorgeloos,  1980).  controlled  yet reached recently,  the a  commercial  great  advantages  of  "The l a t t e r  have m o s t l y final  and  the  progressively they  fungal  Also,  larger  grow,  Resource Laboratory  availability  an  pointed  those  out  the  harvested  shipping  from  suffer  to  their  quality  o f n a t u r a l f e e d s . As  w o u l d be r e q u i r e d appropriate  they  that brine  nutritional  by  fish  technology  i n aquacultural  was c o n d u c t e d  as  f o r the  hatcheries  some physical  i n two p h a s e s . The  preliminary parameters.  experiments This  a t the A q u a c u l t u r a l Systems L a b o r a t o r y Engineering of  only  importance.  involved of  been,  diseases....; furthermore  intensive cultivation  investigation  has  i t w o u l d be e x p e c t e d  Artemia  T h i s whole s t u d y  conducted  over  w o u l d have v a r i a b l e  w o u l d be o f u t m o s t  phase  value  controlled intensive  (1980)  Artemia  variable  themselves  controlled  the  been s t a r v e d f o r d a y s b e f o r e  shrimp from n a t u r e by  There  animals, o f t e n c a r r y p a r a s i t e s o r  destination."  caused  in  Sorgeloos  cultured  bacterial  s i z e and n u t r i t i o n a l  scale.  interest  of Artemia.  from  adult  p r o d u c t i o n o f b r i n e s h r i m p c y s t s has not  cultivation  nature.  or  f o r some s p e c i e s o f f i s h and  crustaceans  The  pre-adult  the  Department  Civil  and  Engineering  at  the  phase  first and was  of the B i o Hydraulics  Department  of  the  University The brine  of B r i t i s h second  Columbia.  phase  of the study i n v o l v e d  s h r i m p a n d t h i s was c o n d u c t e d a t t h e Wet L a b o r a t o r y o f  the A q u a c u l t u r e Department  of the Southeast A s i a n  Development C e n t e r a t T i g b a u a n , The  controlling  Iloilo,  mechanism  water  system  Based  on t h i s  result,  scaling  for  coefficient.  These  verify  oxygen  criterion  the  equations overall  scaling  tank  and  raceway,  were  derived  from  mass  transfer  were  then  used  to  as a s c a l e - u p  geometries;  indicate  b r i n e shrimp c u l t u r e  systems.  shrimp c u l t u r e style  used  presentation  of  chapters.  chapter  A  consolidates  criterion  mass in  a s p e c t s of s c a l e - u p  systems a r e p r e s e n t e d . in  writing  independent dealing  t h i s manuscript  experiments on  in  involves separate  an e x p e r i m e n t o r r e l a t e d  experiments c o n t a i n s a p a r t i c u l a r methodology, and  cylindri-  t h a t t h e oxygen  scale-up  Some c o n s i d e r a t i o n s on t h e e c o n o m i c  results  sea.  i n t h e , c u l t u r e e x p e r i m e n t s . R e s u l t s of the c u l t u r e  i s an e f f e c t i v e  The  shrimp  air-agitated  mass t r a n s f e r c o e f f i c i e n t  transfer coefficient  in brine  brine  oxygen  equations  e x p e r i m e n t s i n two t y p e s o f c o n t a i n e r conical  an  in  was d e t e r m i n e d t o be t h e o x y g e n a t i o n p r o c e s s .  correlations  the  in  Fisheries  Philippines.  involved  c u l t u r e near s t a g n a t i o n c o n d i t i o n s  the  the c u l t u r e of  conclusion.  There  summary  . which  the  f i n d i n g s and c o n c l u s i o n s  derived  overall  is  a  d i s c u s s i o n of  from the whole study.  7  CHAPTER  II  LITERATURE REVIEW  Water Movement As An E c o l o g i c a l F a c t o r  Riedl water  (1971)  movement  organisms.  presented and  a review  biological  Unlike other and  recognized  significant  factors  operations,  the  and  culture  rarely  considered.  biological the  effects  following  environmental serves  as  complexity  forces; limiting  factor  water  in  salinity,  which  the  forces  strict  and  water the  limiting  The  shear  hydrodynamic  forces  time  light,  have  been  experiments  movement  in  has  been  considering  has  been  s e n s e of  to  is  an  that  other  the  m a i n l y due  movement  medium f o r  factor  not t e r m but  factors  metabolites;  and  such 2)  it as the  movement. effects  through:  limiting  (Riedl,  water  water  food  secondary  factor  1)  a long  of  aquatic  s u c h as  laboratory  movement  p r o c e s s e s may be 2)  for in  of  factors  difficulty  reasons:  limiting  Primary motion.  of  in d e s c r i b i n g  a  biological  The  transportation  temperature,  As  salinity,  relationships  processes  environmental  temperature, as  on the  of 1)  forces  water  movement  on  primary  limiting  and  tertiary  3)  1971). forces  and may be  are  mechanical the  the  direct  resistance  limiting  ones.  effects  of  caused  by  These  are  effective  n e a r maximum v a l u e s .  Secondary movement.  limiting  The  forces are indirect  limiting  e f f e c t s a r e due t o u n d e s i r a b l e g a s  and m e t a b o l i t e l e v e l s o c c u r r i n g d u r i n g effective  n e a r minimum  Tertiary about  by  limiting  water  the  such  forces are those  indirectly  brought  the e f f e c t s of which are sensed  l o n g e r p e r i o d . These a r e  movement-dependent  an e c o s y s t e m  s t a g n a t i o n . These a r e  values.  movement;  over a r e l a t i v e l y  r e s u l t s of water  distribution  w h i c h may d i s t u r b  the  associated  with  of o t h e r components of ecological  balance  of  ecosystem. Only  the  significance  p r i m a r y and s e c o n d a r y l i m i t i n g  in  environmentally  forces a r e of  controlled  aquacultural  o f w a t e r movement a f f e c t s  the a c t i v i t i e s  systems. The  intensity  of many m a r i n e  animals.  If  the  animals reduce t h e i r  activities.  away  filter  and  external  apparatus. With too l i t t l e hand, t h e a c t i v i t y There  have  aquatic  organisms.  on  Brooks  between t h e r a t e s o f r e l a t i v e  too  great  M o t i l e animals tend t o hide  water  very  e f f e c t s o f w a t e r movement  is  feeders withdraw  of f i l t e r i n g been  intensity  their  movement,  on  organs o f t e n  filtering the  other  increase.  few  l a b o r a t o r y s t u d i e s on t h e  the  biological  (1947) helmet  reported growth  non-turbulent c u l t u r e s of Daphnia. A g i t a t i o n  processes a  in  difference  i n t u r b u l e n t and was p r o v i d e d by  a nearly  s t r a i g h t rod  turbulence  produced  was  were swept a r o u n d by of  turbulence  was  Daphn i a relatively  not  It  difference  indirectly  concentration. significant two  leaves  explanation the  those that  increasing  any  i n both v e s s e l s  a d i r e c t e f f e c t of  was  e_t.a_l.  intended  Various  to  physical  a p p r o x i m a t e and surface  to  established turbulence driven  by  field  was  from in  an  (1977)  and  and was  empirical pelagic  phase  m o t o r . The  r a t e s of h a r d c r y s t a l l i n e  t a n k by  with  oxygen.  t h e more  likely  were  system.  values  turbulence  by  level  to  benthic  measurements. provided  which  adjusted  Light,  turbulence  was  to  processes.  marine  conditions.  field  in  determinations  a marine microcosm  r a t i o and  no  a v a i l a b l e as  growth  variables  field  matched i n the  the  was  oxygen  nutrition  saturated  large-scale  biotic  or  the  showed  oxygen  as  helmets  influenced  of  turbulence  a  volume  electric  level  non-turbulent  however,  studied  simulate  the  the  nutrition  d e f i n i t e information  simulate  water  The  organisms  had  in  levels  time  manner i n w h i c h i t i n f l u e n c e s Perez  water  turbulence  examination,  at  no  stirrer.  manner t h e  reared  d i f f e r e n c e between the  but  the  turbulent  by  Gut  showed t h a t w a t e r This  in  thought  cultures  electric  j u d g e d by  than  was  an  possible.  reared larger  by  the c u r r e n t . Measurement of  cultures.  the  rotated  were Water  paddles in  the  comparing the d i s s o l u t i o n  sugar b a l l s .  The  results  of  the  study  showed  increased hand,  linearly  as  component  test  indicated  o f g r a z i n g by t h e  zooplanktons  decreased,  significantly  turbulence. algal  that  On t h e  density  changes  turbulence  of t u r b u l e n c e  De W i n t e r ,  of  with decreasing  under d i f f e r e n t  effect  water  density  turbulence  Statistical  direct  that  in  e_t.a_l.  (1976) s t u d i e d t h e d i f f e r e n t  and an e f f e c t i v e  feed  aeration  o b s e r v e d t h a t when f e d w i t h  f o r f i s h and  aeration  obtained  quality  in  gave  the  and  live algal the  w h e r e a s , when f e d w i t h d r i e d y e a s t , were  algal  effect  zooplanktons.  intermittent  intermittent  the  rather than the i n d i r e c t  l a r v a e . The methods o f w a t e r a g i t a t i o n u s e d were aeration,  decreased.  r e g i m e s was due t o t h e  a g i t a t i o n i n t h e c u l t u r e of Fabrea s a l i n a  marine c i l i a t e  other  air-water  air-water food,  highest the lift  types of  , a pelagic crustacean continuous lift.  They  continuous  and  culture density, highest  densities  system.  The w a t e r  parameters e x i s t e n t i n the r e s p e c t i v e systems  were,  however, not r e p o r t e d .  O x y g e n a t i o n And A g i t a t i o n I n A i r - s p a r g e d  Gas  sparging  numerous p r o c e s s sparger the  exit,  liquid  t o induce  industries. rise  w a t e r movement h a s been u s e d i n The b u b b l e s  through the l i q u i d  s u r f a c e . Two t y p e s  Systems  are  formed  at  a  column and b u r s t a t  of f o r m a t i o n  and r i s i n g  of gas  bubbles  i n l i q u i d s were d i s t i n g u i s h e d by  Hoftijzer bubbles  (1950),  namely;  of  bubbles  buoyant f o r c e and release  from  from  the  orifice  surface  the o r i f i c e the  the  t e n s i o n ) . For s e p a r a t e gas  bubble  bubbles i s independent  is  bubble  orifice As  Here,  bubble  d i a m e t e r and bubbles  adjustments approach  leave  in size  forces are i n balance  two  transfer  the  time  of  to  the  orifice  gas  from  of  proportional relationship  i s o n l y t r u e up  to  rate.  above  a  certain  critical  diameters are independent  the  increasing  sparger  flow  exit,  of  the  rate.  there  are they  size distribution.  A stable size i s  fluctuations  surface  (Hinze,  the  and  tension  1955).  bubbles r i s e  simultaneous important  oxygen  the  the  by  t h r o u g h c o a l e s c e n c e o r b r e a k - u p and  a c h i e v e d when t u r b u l e n t  the  separate  bubbles the diameter  diameter  increase with  an e q u i l i b r i u m  While  retained  v a l u e of the f l o w  Chain b u b b l i n g takes p l a c e rate.  At  diameter. This  s i z e and o r i f i c e  a certain c r i t i c a l  of  o f t h e f l o w r a t e and  t h e cube r o o t o f t h e o r i f i c e  flow  and  the buoyant f o r c e would equal the  (surface  between  separately  i s governed  tension.  which  to  and  f l o w r a t e . At t h e s e c o n d i t i o n s  f o r c e by  the  formed  Krevelen  i n s e r i e s or c h a i n b u b b l i n g . Formation  b u b b l e s o c c u r s a t low gas release  bubbles  van  through the l i q u i d  processes bubble  g e n e r a t i o n of t u r b u l e n c e c a u s e d  take to  the  by t h e u p l i f t  place,  column namely;  liquid  and  the  force  of  the  rising  bubbles.  The  oxygenation  provision transfer  of  increased  of  gases  at  gas  bubbles  Shurter,  importance  Miller,  1974;  conducted  on  (  Karow  Miura,  this  have d i r e c t a p p l i c a t i o n purpose  1960;  to  the  diffusion  take p l a c e . depend  on  resource  and  t o s t r i p o f f the  Wegrich  problem.  1978)  Most o f t h e s e  fermentation  processes  i s to transfer  p r o c e s s i s most  diffusional  of l i q u i d  resistances  t h e c a s e of a gas gas  film  assumed t h a t interface  is  of low  offers  a t the gas-  relatively  1963; been  studies wherein  difficultly  phase.  often  pictured  liquid  through  resistance.  in  of  s a t u r a t i o n and  c o n t r o l s the e n t i r e d i f f u s i o n  I t may  that the l i q u i d  p r o c e s s . The  oxygen i n the s o l u t i o n - s i d e of the l i q u i d  concentration film  In  water,  t h e c o n c e n t r a t i o n of oxygen i n s o l u t i o n a t that  of The  in series.  l i k e oxygen  little  film  interface.  a r e c o n s i d e r e d t o be solubility,  and  have  use of t h e f i l m c o n c e p t , w h i c h c o n s i d e r s a t h i n  gas and a f i l m  the  gas  mass  Yoshida, e t . a l . ,  s o l u b l e oxygen from a i r t o t h e l i q u i d The  which  1953;  Zlokarnik,  of a e r a t i o n  the  system.  et. . a _ l . ,  1976;  on  the  through  which  these bubbles  Bartholomew,  dealing  primary  across  i n systems  generated w i t h i n  studies  1953;  area  f o r the s u p p l y of a v i t a l  u n d e s i r a b l e gases  the  surface  t h e same t i m e d e p e n d i n g  Several  i s made p o s s i b l e  i n t o o r f r o m t h e l i q u i d may  T h i s has p a r t i c u l a r the  process  be the film of  i s assumed t o  be  the  same  as  the c o n c e n t r a t i o n  i n the main body of the  1iquid. Thus, the fundamental oxygen t r a n s f e r r a t e e q u a t i o n  may  be w r i t t e n : N  = KA L  (  Cg - C  L  )  Eqn.  2-1  where N = t o t a l oxygen t r a n s f e r , g/min =  overall liquid  A = interfacial C  f i l m c o e f f i c i e n t , cm/min  a r e a f o r t r a n s f e r , cm  = oxygen s a t u r a t i o n c o n c e n t r a t i o n  2  in liquid  a t t e s t t e m p e r a t u r e and p r e s s u r e , C  mg/L  = oxygen c o n c e n t r a t i o n i n the l i q u i d at L  t i m e , t , mg/L  Equation  2-1  can be c o n v e r t e d  to  concentration  units  through: N/V •= dC/dt = K ( A / V ) ( C L  g  - C  L  ) Eqn.  where V = volume of l i q u i d under a e r a t i o n , cm  3  2-2  dC/dt = oxygen t r a n s f e r  For bubble a e r a t i o n interfacial It  is  area-volume  thus  coefficient,  rate,  systems ratio,  effects  K-^a. E q u a t i o n 2-2  is difficult  then ( C  s  the  t o measure. transfer  becomes: - C  L  )  Eqn.  2-3  includes  the  A/V. i s an o v e r a l l  transfer  coefficient  of changes i n the l i q u i d  the i n t e r f a c i a l Oxygen. temperature. included  practice,  c o n v e n i e n t t o e m p l o y t h e o v e r a l l mass  L  K_a  i n commercial  A/V,  dC/dt = K a  where a =  mg/L/min  area,  film coefficient  is  The  commonly  most  influenced  (Standard  of Water and W a s t e w a t e r , T  =  by  and  T  changes  used c o r r e c t i o n  i n the e q u a t i o n i n the form  K a(T)  K  factor  Methods  is for  T  2  [K a(20)][1.024] - ° T  where  oxygen t r a n s f e r  li any  in  1975):  Eqn.  K a(T) = o v e r a l l  in  A.  transfer  the Examination  and  given temperature,  T C  coefficient  at  2-4  K a(20 ) = standard coefficient  been  effect  presence  coefficient  o f d i s s o l v e d s o l i d s on o x y g e n  reported  Zlokarnik,  by  earlier  1978). Z l o k a r n i k of  oxygen t r a n s f e r  f o r w a t e r a t 20 C  1.024 = t e m p e r a t u r e  The  overall  salt  on  transfer  investigators (1978) c i t e d  the e f f e c t  t h e s i z e of b u b b l e s .  s a l t does not promote c o a l e s c e n c e ones b e c a u s e o f t h e r e s u l t i n g  (Lehrer,  negative  would  increase  reason  why  K^a  each  other.  increase  with  (1971)  and  i n s a l t c o n c e n t r a t i o n . However, L e h r e r  Zlokarnik  the  c h a r g e on t h e o u t s i d e  This  possible  of  of s m a l l b u b b l e s t o l a r g e r  repel  a  .1971;  The p r e s e n c e o f  of e a c h g a s b u b b l e w h i c h c a u s e s them t o is  has  (1979) s t a t e d t h a t e f f e c t s o f t h e p r e s e n c e o f s a l t  in the water  i s significant  o n l y a t low l e v e l s o f  o r when t h e p r i m a r i l y p r o d u c e d b u b b l e s a r e v e r y Baker  e/t.aJL.  c o n s i s t i n g mainly  (1975)  reported  that  o f p o u l t r y manure h a v i n g  turbulence  fine.  suspended  solids  c o n c e n t r a t i o n s of  more t h a n 2% d e c r e a s e d t h e o x y g e n mass t r a n s f e r c o e f f i c i e n t . He e x p l a i n e d may  be  liquor  that the e f f e c t of s o l i d s  related increased  to  viscosity.  with  an  on  oxygen  The v i s c o s i t y increase  in  transfer  of the mixed the  solids  concentration. Eckenfelder  and B a r n h a r t  (1961) and J a r a i  (1972) n o t e d  t h e v a r i a t i o n o f t h e mass t r a n s f e r c o e f f i c i e n t  due  to  presence of d i s s o l v e d o r g a n i c  substances. Eckenfelder  reported  transfer coefficient  that  the  overall  decreased a t low' c o n c e n t r a t i o n s followed  by  an  increase  at  of  surface  higher  the  (1961)  initially  active  agent  concentrations.  Jarai  (1972) d e t e r m i n e d t h a t t h e r h e o l o g i c a l p r o p e r t i e s o f l i q u i d s can  at  certain  conditions  affect  the  overall  transfer  i n a i r bubbling  a s a mass  coefficient. The  mechanism of o x y g e n a t i o n  transfer process turbulence local  is  by  disturbances length  disturbances  the lead  instability to  eddies,  smaller  and  dissipated  being  smaller by v i s c o u s  in.the large eddies eddies.  or  the formation  level  also eddies  the  main  which flow.  These  energy  and d i s s i p a t i o n o c c u r s  eddies  with large  disintegrate  a l l their  f l o w . 'The k i n e t i c  spectrum of i n t e r m e d i a t e  are  of p r i m a r y e d d i e s  unstable, until  in  into  energy  the  eddies  smallest  there  which t r a n s f e r  The t r a n s f e r t a k e s  isa  kinetic place  eddies are  i n f a c i l i t a t i n g t h e oxygen t r a n s f e r p r o c e s s interface.  is  i s contained  d i f f e r e n t d i r e c t i o n s . These energy c o n t a i n i n g  gas- l i q u i d  of  i s c h a r a c t e r i z e d by  B e t w e e n t h e l a r g e and t h e s m a l l e s t  instrumental the  the  fluctuations  of  energy from l a r g e t o s m a l l e d d i e s . in  flow  by  s c a l e c o m p a r a b l e t o t h a t o f t h e main f l o w . The  primary  wide  influenced  i n t h e system. Turbulent  velocity  amplified  highly  at  Nishikawa microscale  The  (1976) d e t e r m i n e d t h a t  are shifted to the-larger  Johnstone on  the  and  governing  the  Similarity.  They l i s t e d  important  size.  (1957) p r o v i d e d  of  effects  the energy  And S c a l i n g - u p  Thring  concept  eddy  turbulence  i.e.,i t is  t o t a n k s i z e . T h u s , when s c a l i n g - u p ,  P r i n c i p l e Of S i m i l a r i t y  view  the  d e p e n d s on t h e s i z e o f t h e s y s t e m ,  proportional spectra  e_t.a_l.  scale-up. of  four  The  scale  is  similarity  a comprehensive basic  the  principle  Principle  states  which  of are  i n rate process s i m i l i t u d e studies: 1.  Geometrical  2.  Mechanical  3.  Thermal  4. C h e m i c a l o r B i o l o g i c a l Ideally,  e a c h of t h e l i s t e d  states  requires  a l l the previous  ones. The  Principle  of  process  by  particular  dimensionless variable. caused scale, have  groups,  Similarity a one  of  which  relationship contains  t h e known  among  t h e unknown  variables  are  have t h e same v a l u e on t h e s m a l l - a n d t h e l a r g e -  t h e group c o n t a i n i n g the  certain  I f the groups c o n t a i n i n g  to  attempts t o represent a  same  value.  This  t h e unknown v a r i a b l e pre-supposes that  will  also  t h e s m a l l and  the l a r g e systems are g e o m e t r i c a l l y s i m i l a r . The  classical  geometrically  Principle  similar  represented  of  Thring,  1957).  respectively  extrapolation  Similarity"  containing product groups  equality  a  certain  a of  variables,  by d i f f e r e n t meet  this  scale-up  dimensionless  difficulty,  the  and  the "extended  Principle  of  1966),  t o use and  t h i s method of  Scale-up  variables. which  dimensionless  Jordan  i s not  b a s e d on  use  result the  containing  of on  this  relationship  biological  s t u d i e s on b i o l o g i c a l  microbial  systems,  like  Birukov,  1972;  Miura,  those  s y s t e m s h a v e n o t been  in  A i b a and  fermentation 1960; Okabe,  involved processes  Bylinkina 1977)  so  processes.  systems have m o s t l y  Bartholomew,  1976;  for  model.  Scale-up  e_t. a_l. , 1 953 ;  the  t h e p r o t o t y p e on t h e b a s i s  i n systems i n v o l v i n g chemical  (Karow  (1955)  express  on  groups  the  these d i m e n s i o n l e s s groups to  s t u d i e s on  e x t e n s i v e as t h o s e  the d i f f e r e n t  to  known  make  result  proportional  group  the  the p r o c e s s  of t h e p r o c e s s  is  procedure  dimensionless but  of  known  the  (Johnstone  Chapman,  power  of  been p r o p o s e d  variable  scale-up  relationship  predicting  has  and  unknown  containing  summarized  that  u s e s an e q u a t i o n where t h e d i m e n s i o n l e s s  the  of  To  Sometimes c a l l e d  (Holland  extrapolation  requires  In p r a c t i c e , however, the  groups f r e q u e n t l y c o n f l i c t . method  Similarity  s y s t e m s be c o m p a r e d a t e q u a l v a l u e s  the d i m e n s i o n l e s s groups. rules  of  and  and in  wastewater  treatment  Zlokarnik,  systems  (Eckenfelder  1979).  A s c a l e - u p s t u d y on a m a c r o - b i o l o g i c a l on  the  a s p e c t of food u t i l i z a t i o n  Zahradnik,  1 9 7 7 ) . The  fact  food  that  is  B i o l o g y And  by s h e l l f i s h  primary  variable  female  either  s h e l l e d eggs h a t c h ovoviporously  a  shrimp  ( W h e e l e r , e t .aJL. , thin  within  for  or a  years (Sorgeloos, nauplii  During the f i r s t  the food  1979).  thick protective few  days  and  categorized  hatched l a r v a e  the  1976)  the  and on  Each  brood  shell.  Thin-  are  released  cysts  and  remain  immersion  twelve hours the n a u p l i i i s no e x t e r n a l  (1924) d e s c r i b e d  (12)  a b r o o d of eggs  i n sea  w i t h i n a p p r o x i m a t e l y 24 h o u r s .  r e s e r v e s and t h e r e  twelve  b a s e d on  w h i l e t h i c k - s h e l l e d eggs s t o p d e v e l o p m e n t  water produce  and  and  controlling  produces  a r e r e l e a s e d a s c y s t s . When v a c u u m - d r i e d ,  Heath  (Walker  oysters.  brine  about e v e r y f o u r days  yolk  done  C u l t u r e Of A r t e m i a  Adult  viable  s y s t e m was  a p p r o a c h of t h e s t u d y was a  r e m o v a l and g r o w t h o f  develops  et .al.,1972;  f e e d on  food uptake.  the growth p a t t e r n s  different  their  stages  from  t o t h e s e x u a l l y m a t u r e a d u l t s . He  of  Artemia  the  recently  identified  s t a g e s o f g r o w t h and u s e d t h e t e r m " i n s t a r "  d e s i g n a t e e a c h s t a g e . Thus  the  larva  passes  through  to the  first  up t o t h e t w e l f t h The  instar.  c h a r a c t e r i s t i c s of Artemia  as a f i l t e r  been s t u d i e d by s e v e r a l i n v e s t i g a t o r s 1959;  R e e v e , 1963; D o b b e l e i r Reeve  (1963)  regulating  i t s  concentration  of  maximum  value.  r a t e decreased as observed  that  discriminate containing  level,  cell  As  the c e l l  between  plant  or  Gauld,  no  cells  three  capable  level  on  the  r a t e was  appreciable presented  He  also  a b i l i t y to in  types  mixtures  or  between  n u t r i t i o u s and n o n - n u t r i t i o u s p a r t i c l e s . When p r e s e n t e d mixed suspensions ingested  much  greater  concentration inorganic  of algae  of  sand  particles  and  sand  at  the f i l t r a t i o n  increased.  different  of  concentration  the f i l t r a t i o n  concentration showed  was  depending  Beyond t h a t c e r t a i n  Artemia  two  Artemia  feeding  cells.  i n c r e a s e d up t o a c e r t a i n a  that  of  algal  1933;  have  et . a l . , 1980)..  observed rate  (Bond,  feeder  particles  the  with animal  volumes of sand over a wide range of particles.  caused  Low  increased  concentrations ingestion  of'  of p l a n t  cells. The and  filter  effective  f e e d i n g mechanism i n A r t e m i a method  of o b t a i n i n g p a r t i c u l a t e  (1959) gave an a c c o u n t on t h e swimming and nauplii  of' Artemia  locomotion in  .  "The  antennae  o r g a n s . The a n t e n n u l e s  locomotion  is  and a r e m a i n l y  a  food.  feeding  are  the  may p l a y l i t t l e  balancing  complex  o r g a n s . The  Gauld  i n the principal  o r no p a r t antennae  are  also  the  swept i n t o carried  chief  the o r a l  food c o l l e c t i n g  r e g i o n by  mechanism Artemia  (1933)  studied  ,  Chi rocephalus were:  direction  a t any  been  and  the f i n e r  Lowndes  determined  the  f r e e l y , he o b s e r v e d  attaching  Bond  the  in  with any  its  single  i t r a t h e r caused and  setae  to  speed  a  i t i n water  than to  of  a  fully  feet  per  f i n e n e e d l e by  a  so t h a t a l l l i m b s  t h a t i f t h e f l o w of  the l i m b s simply ceased  water to  was  function  still. (1933) r e p o r t e d t h a t A r t e m i a  f o r an h o u r had a l m o s t i n a l g a e . He  cannot  a  might  able  t o be a b o u t two  animal  suspending  swimming speed  remained  supply.  swimming  Chi rocephalus diaphanus  function  and  but  important  limb  to stream  instant,  his  of  particles.  cement and  rich  then  the f e e d i n g  t h e s e t a e m i g h t t h e r e f o r e be  suitable  was  Among  2) t h e a p p e n d a g e s  By  a flask  and  mandibles."  detail  anostracan  the water  minute.  and  much  are  moving at a l l t i m e s w i t h a g r e a t e r v e l o c i t y  t h a t of t h e w a t e r  t w i c e the  in  the  particular  s e r i e s of v o r t i c e s , and  developed  setae  the reduced  diaphanus.  1)  appendages d i d not cause  comb o u t  Particles  i n t h e more a d v a n c e d s t a g e s of a c l o s e r e l a t i v e  observations  have  the antennal  t o t h e mouth by s p i n e s on  Lowndes  organs.  depend  empty g u t s t h o u g h t h e  a l s o p o i n t e d out on  shaken v i g o r o u s l y i n  dissolved  medium  t h a t A r t e m i a does  substances  not  f o r i t s food  22  Dobbeleir particles  e_t.a_l.  (1980)  i n g e s t e d by t h e n a u p l i i  making use  newborn  U.S.A. and  fish  Bossuyt  density;  the  d)  the c u l t u r i n g One. o f .  continuously  where  food  1930's i n t h e 1980),  the  s c a l e as y e t .  to  the  These  allow  desirable  are:  a)  good  culturing  at  high  of t h e medium t o m a x i m i z e  a n i m a l s ; c) s h a l l o w water  to allow  not  the  use  of  depth  inexpensive  of s c a l e - u p w h i c h  air  should maintain  procedures. the  earliest  culture  of A r t e m i a was  1980)  was  which  the  developed  with culture  siphoned  a  for  the.  by Dohse  one  over  rotating medium  arid  high  (Bossuyt  " A r t e m i u m " . The  L basins piled  faecal pellets  were  systems  he c a l l e d  provided  stirred  f o o d and these  the  Sorgeloos,  Artemia.  the  c o n s i s t e d o f s h a l l o w 100 basin  as  (1980) s u m m a r i z e d  medium  possibility  Sorgeloos,  uneaten  shrimp  t h e h a r v e s t i n g o f c y s t s has  for  to  1 m)  density culturing  Each  of  t o be an e x c e l l e n t  and  b) c o n t i n u o u s c i r c u l a t i o n  availability  blowers;  range  the a d u l t b r i n e  early  on a c o m m e r c i a l Sorgeloos  of  (not e x c e e d i n g  and  for  requirements  oxygenation  food  and  as  (Bossuyt  production  been a c c o m p l i s h e d  been f o u n d  larvae  i n Norway  controlled  culture  and  the  of g l a s s m i c r o s p h e r e s .  A l t h o u g h A r t e m i a has for  determined  the  system other.  blade  accumulated  in a central depression  off.  The  m i x t u r e o f d r i e d a l g a e , y e a s t and a l f a l f a  which  from  f o o d c o n s i s t e d of a which  was  given  once a d a y . Sorgeloos  and  system c o n s i s t i n g system  was  Persoone  (1975)  developed  o f 30 L t r a n s p a r e n t p l a s t i c  aerated  intermittently  a  culture  columns.  The  (10 s e c o n d s e v e r y  half  h o u r ) w h i c h a s s u r e d good o x y g e n a t i o n . F e e d i n g was made an  once  h o u r . T h i s s y s t e m h o w e v e r h a d some i n h e r e n t d r a w b a c k s i n  its application An the  to a large  improved system  use  f o r batch c u l t u r i n g  of t h e a i r - w a t e r - l i f t  developed f o r the c u l t u r e the c o n f i g u r a t i o n pipes  a  and  The  circulation  aeration  raceway  spiral the  of  i s one  w h i c h was  of p e n a e i d shrimp  arrangement  unidirectional  medium was a c h i e v e d i n 1980).  system.  of  tank  originally  (Mock, 1 9 7 3 ) . By  the  circulation  adapting  air-water-lift  of the c u l t u r i n g  (Bossuyt  and  Sorgeloos,  t h e medium was c o n t i n u o u s and t h e  was a l m o s t homogeneous. N e a r l y  a l l particulate  m a t t e r was k e p t i n s u s p e n s i o n . A- much more i n t e n s i f i e d mass p r o d u c t i o n o f A r t e m i a c a n be a c h i e v e d Upwelling  in  flow-through  870 m b e l o w  the  Artificial  t h e sea s u r f a c e and unsupplemented  of diatoms  from  1.00  Virgin  d e e p w a t e r was pumped f r o m a d e p t h o f used  i n the  ( T o b i a s e_t . a _ l . , 1 9 7 9 ) . The a l g a e i n t u r n  was f e d t o A r t e m i a i n a f l o w - t h r o u g h results  At  M a r i c u l t u r e P r o j e c t a t S t . C r o i x , t h e U.S.  Islands, nutrient-rich  culture  systems.  1  system.  t a n k s , i t was c a l c u l a t e d  c y s t s c o u l d be c o n v e r t e d i n a 1  m  3  tank  to  Extrapolating t h a t 30 g o f 25  kg  adult  b i o m a s s (wet w e i g h t ) w i t h i n two Brune cleansing  (1982)  designed  high density flowing  brine film  weeks.  and  t e s t e d an a u t o m a t i c  shrimp of  glass  reactor. beads  He  concept  of  material  f r o m t h e c u l t u r e t a n k s on a c o n t i n u o u s  used  to scour basis.  selfthe waste  CHAPTER I I I THEORY  The  effect  characteristics  of  water  of  a  movement  filter  on  or through secondary  biological  f e e d i n g o r g a n i s m may be made  p o s s i b l e through primary l i m i t i n g forces values)  the  (maximum  l i m i t i n g forces  intensity  (stagnation or  minimum v a l u e s ) . Near minimum v a l u e s , t h e u n d e s i r a b l e of  water  uneven  movement,  of  feed,  e t c . , may  be  w a t e r movement. I n t h i s r e g i o n expected  that  as  the  i n c r e a s e d , t h e r e would  corresponding  i n c r e a s e would  performance even  take  movement  of the system  natural adaptability  increased, pressure  the  may  1) i t w o u l d movement  increase  be is  i n the  the- s y s t e m .  This  only  some  up  beyond  to which  significantly  the  change  i n region  B  are  within  of t h e o r g a n i s m .  shear  become  oxygen  o f w a t e r movement i s i n c r e a s e d . The  intensity  liquid  of  ,  by i n a d e q u a t e  water  place  not  o f w a t e r movement i n t e n s i t y  As  of  intensity  would  in  about  (A i n F i g u r e  production)  when t h e i n t e n s i t y  values the  water  brought  be a c o r r e s p o n d i n g  (biomass  of  decrease  intensity  performance  level  effects  such a s ; a c c u m u l a t i o n of m e t a b o l i t e s  distribution  concentration,  secondary  more  of and  water  movement  fluctuating  a n d more s i g n i f i c a n t  i s further hydrodynamic as p r i m a r y  Region A  Region B  secondary l i m i t i n g forces dominate  effective level f o r scale-up  Region C  1 1  primary l i m i t i n g forces dominate  maximum allowable level  INTENSITY OF AGITATION F i g u r e 1.  P o s s i b l e e f f e c t s o f water movement i n t e n s i t y on the b i o l o g i c a l performance o f p l a n k t o n i c organisms.  limiting  forces  and  characteristics the  may  is  C , as t h e l e v e l  increased,  i t would  performance of t h e system would water of  affect  the  biological  of the o r g a n i s m and thus t h e performance of  system. In region  intensity  directly  movement  may a f f e c t  of  be  water  movement  expected  that the  decrease.  In  this  region  the various b i o l o g i c a l processes  t h e o r g a n i s m . The l e n g t h s c a l e o f t u r b u l e n t e d d i e s  decreases  as  the  intensity  o f w a t e r movement i s i n c r e a s e d  may r e a c h a s c a l e w h i c h i s c o m p a r a b l e the  filtering  organs  of  the  with the dimension  organism  filtering  vigorous  c o u l d cause p h y s i c a l  turbulence  of  and t h e t u r b u l e n t  e d d i e s may d i s t u r b t h e f o o d water  which  process.  Also,  the  i n j u r y and  s t r e s s on t h e o r g a n i s m s . In  t h e d e s i g n and o p e r a t i o n o f an a q u a c u l t u r a l  region  A  i s most  i m p o r t a n t . The r e l a t i o n s h i p  p e r f o r m a n c e parameter and t h e i n t e n s i t y can  be  defined  i f the  intensity  e x p r e s s e d as a c h a r a c t e r i s t i c factor  for  performance point  the  system.  i n region A (point  for operational  movement i s t r u l y factor,  the  same  P  maximum P)  water  water of  between t h e  the  value  determines  e x p r e s s e d as a measure of t h e relationship sizes  movement  movement i s controlling for the  purposes. I f the i n t e n s i t y  c o u l d be u s e d f o r d i f f e r e n t point  of  measure  The  of  system,  system optimum  of w a t e r  controlling  f o r the system  performance  of the c u l t u r e  system  would determine t h e e f f e c t i v e  and  and e c o n o m i c a l b a s i s  for  scale-up. The f o r e g o i n g  this and  discussion  investigation. parts  of each  propositions,  true  b a s i s of  As a summary, t h e t h e o r i e s a r e p r e s e n t e d theory  divided  assumptions  statements which are facts.  forms the t h e o r e t i c a l  into  three  and i n f e r e n c e s .  generally  considered  categories:  Propositions are as  established  A s s u m p t i o n s a r e s t a t e m e n t s w h i c h must be a c c e p t e d as in  order  Inferences assumptions.  are  to  logically  conclusions  establish  the  inferences.  drawn f r o m t h e p r o p o s i t i o n s  and  EFFECTS OF AIR-AGITATION ON ARTEMIA CULTURE SYSTEM NEAR STAGNATION  CONDITIONS  Propositions:  1.  A t v e r y l o w w a t e r movement i n t e n s i t i e s , t h e secondary  2.  l i m i t i n g forces are effective.  W a t e r movement o r a g i t a t i o n  i s beneficial for:  a. P r o v i s i o n a n d even d i s t r i b u t i o n oxygen  i n the c u l t u r e  of d i s s o l v e d  water  b. S u s p e n s i o n a n d u n i f o r m d i s t r i b u t i o n  of f e e d  particles c. U n i f o r m d i s t r i b u t i o n d. E v e n d i s t r i b u t i o n  of c u l t u r e d  of waste  organisms  substances  arising  from m e t a b o l i s m and e x c e s s f e e d i n t h e c u l t u r e water e.  Increasing for  aerobic  the c a p a c i t y  of t h e c u l t u r e  system  s t a b i l i z a t i o n of waste p r o d u c t s .  Assumpt i o n s : 1.  The o v e r a l l processes total  of v a r i o u s  biological  i n t h e s y s t e m c a n be q u a n t i f i e d by t h e  biomass  performance total  cumulative effect  production, that  i s ; t h e system  c a n be e x p r e s s e d i n t e r m s of t h e  biomass  production.  30  2.  The i n t e n s i t y  o f w a t e r movement c a n be e x p r e s s e d  quantitatively of  through a c h a r a c t e r i s t i c  the c o n t r o l l i n g  measure  mechanism i n t h e system.  Inference; 1.  The b r i n e s h r i m p c u l t u r e  system  performance  (biomass p r o d u c t i o n ) near s t a g n a t i o n c a n be p r e d i c t e d by t h e use o f a  conditions  relationship  b e t w e e n b i o m a s s p r o d u c t i o n and i n t e n s i t y o f water  movement.  SCALE-UP OF ARTEMIA CULTURE  SYSTEMS  Proposi t ions: 1.  A small-scale the  same e n v i r o n m e n t a l c o n d i t i o n s  large-scale 2.  The b r i n e  as a  system.  shrimp c u l t u r e system  biological 3.  s y s t e m c a n be m a i n t a i n e d a t  isa  complex  system.  I n a complex  biological  system, scale-up  can  be done on t h e b a s i s o f t h e r a t e - c o n t r o l l i n g mechanism. 4.  The r a t e - c o n t r o l l i n g m e c h a n i s m f o r a b i o l o g i c a l s y s t e m c a n be a p h y s i c a l r a t e  process.  Assumpt i o n s : 1.  The o r g a n i s m s genetically  2.  i n the s m a l l - s c a l e a r e  t h e same a s i n t h e l a r g e - s c a l e .  The s y s t e m p e r f o r m a n c e be e x p r e s s e d production  i n d i f f e r e n t s i z e s can  i n terms of t h e t o t a l  per u n i t  biomass  volume.  Inference: 1.  The p e r f o r m a n c e system be  of t h e b r i n e  shrimp c u l t u r e  i n d i f f e r e n t s c a l e s of o p e r a t i o n  predicted.  can  CHAPTER I V EXPERIMENTAL  Two t y p e s o f aquacultural  container  operations  namely; t h e c y l i n d r i cylindri-conical degree  FACILITIES  geometries  were  sloping conical  was  tank  t a n k w i t h an o b l o n g c r o s s -  and  cylindrical  bottom.  the  raceway.  and  3. T h r e e  The r a c e w a y was a  similar  t o make  p e r f e c t l y with the predetermined to  maintain geometric  flat-bottom  in  Figures  s i z e s of each  type of  a l l components  length scale  similarity  was l i m i t e d  s t a n d a r d m a t e r i a l s a v a i l a b l e a n d by the  The  s e c t i o n and a p a r t i t i o n i n g a t t h e  geometrically  t a n k were u s e d . The d e s i r e  in  i n shape w i t h a 45  c e n t e r . T h e s e two t y p e s o f t a n k s a r e i l l u s t r a t e d 2  used  employed i n the e x p e r i m e n t s ,  conical  tank  commonly  some  ratio  conform i n order  by t h e t y p e o f  imperfections i n  construction. In  the  conducted the  earlier  part  of  the study, experiments  a t UBC i n t h e A q u a c u l t u r a l S y s t e m s  Bio-Resource  Engineering  Department  H y d r a u l i c s L a b o r a t o r y of t h e C i v i l During  this  earlier  phase,  t a n k s were u s e d . A l l s i z e s smallest  size  of  the  three  of  Laboratory  the  and  Engineering  were of  i n the  Department.  s i z e s of both types of raceway  cylindri-conical  type  and  the  t y p e were made o f  p l e x i g l a s s w h i l e t h e r e s t were made o f f i b e r g l a s s . The  later  phase  of  the  study,  involving  culture  experiments,  was  conducted  Aquaculture  Department  Development  Center  at  of  the  Wet  Southeast  (SEAFDEC)  Asian  in  The  sizes  experiments  were  tanks  u s e d were 29.2,  design data are presented  scale-up of  Iloilo,  fiberglass.  Cylindri-conical  The  the  Fisheries  Tigbauan,  P h i l i p p i n e s . A l l tanks used i n the c u l t u r e made of  L a b o r a t o r y of  61.0  experiments and  securely  61.0  and  i n Table  106.7  I.  cm  The  diameter.  set-up  c o n s i s t e d of 5 u n i t s o f 29.2,  5 u n i t s of supported  106.7 by  cm  diameter.  The  appropriately  for  5 units  tanks  designed  were wooden  platforms. Air a  gas  was  s u p p l i e d from  valve  (A i n F i g u r e 2 ) , o n t o  f i r m l y a t t a c h e d . The the  pressure  was  a plastic  tubing.  The  an a i r s u p p l y p i p e c o n t r o l l e d  a i r f l o w r a t e was  drop across a nozzle pipettor  t i p firmly  tees  were  the  connected  ( I , K ) . The  i n t h e PVC  cap  diameter  plastic  checked  ( J ) . The  fitted  plastic (C) w h i c h  manometer  to p l a s t i c  drilled  of t h e t u b i n g . The  measuring  the  plastic  measured  both  ends  by of  tubings attached to g l a s s  t u b i n g a t B was was  was  n o z z l e employed  into  (M),  tubing  by  p r e s s u r e d r o p a c r o s s t h e n o z z l e was  a w a t e r - f i l l e d U-tube g l a s s which  which  by  PVC  inserted  slightly c a p was  into a hole  smaller firmly  than  attached  F i g u r e 2.  A d e t a i l e d i l l u s t r a t i o n o f the tank.  cylindri-conical  Table I .  Design data f o r c y l i n d r i - c o n i c a l  TANK  tanks  SIZE  Small  Medium  Large  Diameter, D  29.2  61.0  106.7  Sparger tube, F (inside diameter)  1.58  3.02  5.57  0.160  0.277  Hole s i z e , d 16-holes  0.079  4-holes  0.160  0.317  0.556  1-hole  0.317 .  0.635  1.110  4.0  7.0  C l e a r a n c e of p e r f o r a t e d cap from bottom, G  All  measurements a r e in.cm.  2.0  '  36  t o t h e t o p end o f t h e PVC p i p e introduced  into  the  tank  (F). Air through  p o s i t i o n e d a t the c e n t e r of t h e tank cap  (E)  attached  clearance bottom  to  the  then  pipe'  with a  finally  vertically  perforated  t h e b o t t o m end w i t h h o l e s i z e  PVC  (d). A  (G) between t h e t i p o f t h e p e r f o r a t e d c a p and  surface  of the tank  was m a i n t a i n e d  PVC p i p e o n t o a wooden s u p p o r t  f r a m e . The  a s s e m b l y was a l s o n e a t l y f a s t e n e d o n t o Readings rotameter.  was  on  the  Calibration  manometer  by f a s t e n i n g t h e air  supply  t h i s wooden  line  frame.  were c a l i b r a t e d a g a i n s t a  was done by c o n n e c t i n g  in s e r i e s w i t h the a i r supply  the  the  rotameter  l i n e a s s e m b l y a t some p o i n t N.  The f l o w p r e s s u r e s a t b o t h u p s t r e a m a n d d o w n s t r e a m p o i n t s o f the  rotameter  were m e a s u r e d by means o f a m e r c u r y f i l l e d  tube  g l a s s manometer. A l l a i r f l o w r a t e s were  standard  conditions  o f 760 mm  routinely  tested for possible leaks.  corrected  Hg a n d 20 C. A l l j o i n t s  Uto  were  Raceways  The s i z e s o f r a c e w a y s u s e d were 2 8 . 8 , 58.6 and 98.9 in  width.  The  curvature equal are set  ends  were  to one-half  i n c l u d e d i n Table consisting  of  semi-circular  radius  t h e w i d t h . The o t h e r d e s i g n  I I . For the 5  with  scale-up  cm of data  experiments,  a  u n i t s o f 2 8 . 8 , 5 u n i t s o f 58.6 and 5  u n i t s o f 98.9 cm w i d t h were  used.  37  F i g u r e 3.  A d e t a i l e d i l l u s t r a t i o n o f the  raceway.  38  Table I I .  Design d a t a f o r raceways *  TANK Small Width, D Length,  L  A i r - w a t e r - l i f t pipe (inside diameter) Air  distribution  cylinder,  SIZE  Medium  Large  28.8  58.6  98.9  62.0  134.0  222.0  1 .58  3..o:  5.57  4.09  7.79  15.49  C  I n s i d e diameter Length S i z e of p l a s t i c t u b i n g connecting the a i r - l i f t pipes with d i s t r i b u t i o n cylinder (inside dia.) D i s t a n c e of a i r - l i f t p i p e s f r o m edge o f p a r t i t i o n i n g : E  * A l l m e a s u r e m e n t s a r e i n cm.  30.0  60.0  100.0  0.238  0.476  0.794  1.0  .2.0  3.3  20.0  40.0  66.4  The  type  the. type  of  raceway u s e d i n t h i s  described  clearance  by  Bossuyt  of o n e - t h i r d the w i d t h  of  the t a n k .  An  the  lower  c u t a t an a n g l e  end  end  fitted  with  then a t t a c h e d out  from  manner  an  pipe.  to h o l d the  pipes with water  The  smaller the  both  A  ends  pipe the  with upper  3 ) . T h e s e were  by means of PVC  rings  cut  from elbows  tubing  inside  tanks  4 and  inserted  and  A i r was  in  was  in  place.  from the bottom discharge  introduced  Air the  was  was  with tubing passed  air-lift  inducing  upward  d i r e c t e d by  d i r e c t i o n a l mass f l o w pipes  like  provided  t h r o u g h e a c h of  t h e p i p e . The  5  tank.  (C) w h i c h was  tubing  number of a i r - l i f t  Figures  regulated  than the d i a m e t e r of p l a s t i c  plastic  r e q u i r e m e n t of an  conical  at  in Figure  to  (1980).  and  of d i s c h a r g e  cylinder  90-degree elbow c a u s i n g ^ a  the  (inset  line  the a i r e x i t i n g  flow  tank.  provided  45 d e g r e e s  i n the c y l i n d r i - c o n i c a l  slightly  through  Sorgeloos  a i r f l o w r a t e i n e a c h t a n k was  through a d i s t r i b u t i o n  so as  similar  45 d e g r e e s w i t h t h e , p a r t i t i o n i n g .  as  holes  The  was  c o n s i s t e d o f a PVC  of  elbow  and was  t o the p a r t i t i o n i n g  PVC  oriented at The  air-water l i f t  study  inside  v a r i e d depending  a  the on  experiment. show  raceways.  the  set-up  for  the  cylindri-  Sea w a t e r s u p p l y  The from  water  the  sea  supply f o r the c u l t u r e through  approximately  100  m  from  a  horizontal the  1 m from t h e bottom  about  ranged  f r o m 3.5 t o 5.0 m. The w a t e r  before  on w h i c h  serving  Aquaculture  extending  The i n t a k e spot  flowing  the  w e l l was pumped t h r o u g h a s l o w s a n d  the  whole  r e s e a r c h complex  was  depth  by g r a v i t y  i t was pumped t h r o u g h t h e main s e a w a t e r  system  Air  pipe  shoreline.  located  a concrete-lined  e x p e r i m e n t s was drawn  into filter  distribution  o f t h e SEAFDEC  Department.  supply  The  a i rsupply f o r the culture  f r o m t h e main a i r d i s t r i b u t i o n Roots blowers.  e x p e r i m e n t s was o b t a i n e d  s y s t e m w h i c h was  powered  by  Figure  5a.  T h e 28.8 cm w i d t h  raceways.  Figure  5c.  The 98.9 cm w i d t h  raceways.  CHAPTER V CULTURE TECHNIQUE AND MEASUREMENT OF MONITORING  AND  BIOLOGICAL PERFORMANCE PARAMETERS  The c u l t u r e hatched sea  brine  tank shrimp  was  initially  stocked  with  a t a d e n s i t y o f one a n i m a l p e r ml of  w a t e r . R i c e , b r a n p a s s i n g t h r o u g h an 8 0 - m i c r o n  used  as  feed  and  was  introduced  was  a  from f i r s t  was done t w i c e d a i l y and t h e amount  for  was e q u i v a l e n t  was  day, scheme  (1980). Feeding  introduced  during  t o o n e - h a l f of the p r e s c r i b e d  a p a r t i c u l a r d a y . The w a t e r  throughout  per  to seventh day. This feeding  m o d i f i c a t i o n o f t h a t u s e d by J o h n s o n  feeding  mesh  i n t h e amount o f 0.055,  0.110, 0.165, 0.220, 0.275, 0.330 a n d 0.385 mg/ml respectively,  newly  i n t h e t a n k was n o t  each amount  changed  t h e c u l t u r e p e r i o d o f s e v e n d a y s , a l t h o u g h make-  up w a t e r was a d d e d when n e c e s s a r y t o  maintain  the  culture  volume. The  brine  s h r i m p eggs u s e d  i n t h e e x p e r i m e n t s a l € came  f r o m t h e same b a t c h and was d i s t r i b u t e d Shrimp  Sander's  Brine  Co.  The  dissolved  oxygen  and  temperature of the c u l t u r e  s y s t e m were m e a s u r e d by an YSI M o d e l probe  equipped'  quality were  by  57  DO  with a submersible s t i r r e r .  p a r a m e t e r s , s u c h a s ; ammonia, n i t r i t e  d e t e r m i n e d by s e n d i n g w a t e r  samples  meter  with  a  The o t h e r w a t e r , pH  and  BOD  to the C e n t r a l i z e d  A n a l y t i c a l L a b o r a t o r y o f t h e SEAFDEC A q u a c u l t u r e  Department,  w h i c h s e r v e s a l l w a t e r q u a l i t y m o n i t o r i n g needs research  p r o j e c t s of the Department.  a pH m e t e r .  Ammonia a n d n i t r i t e  following  the  procedures  described  in  Water and  Wastewater."  The twice  the  dissolved  daily  (0800  ammonia a n d n i t r i t e  milled  analysis  The  analyses  Analytical  Strickland  following  oxygen and  and  the  1600  temperature  and  procedures  were  h r ) . Water  recorded  samples  f o r pH,  d e t e r m i n a t i o n s were o b t a i n e d o n c e  used  were  to feeding. in  the  c u l t u r e e x p e r i m e n t s was (IR-36).  Samples  for  o b t a i n e d f r o m e a c h b a t c h t h a t was  were  Laboratory.  daily  s a m p l i n g and measurements  f r o m r i c e g r a i n o f one v a r i e t y  proximate used.  bran  by  basically  "Standard Methods f o r t h e E x a m i n a t i o n of  were done i m m e d i a t e l y p r i o r rice  determined  given  (0800 h r ) . Water q u a l i t y p a r a m e t e r  The  various  The pH was m e a s u r e d by  were  P a r s o n s ( 1 9 7 2 ) . BOD was d e t e r m i n e d  of  also  There  done  in  the  Centralized  was no c o n s i d e r a b l e c h a n g e i n C-  the  quality  of d i f f e r e n t  experiments The  body  furca  by e x a m i n i n g microscope  bran  used  i n the  (Appendix I ) . l e n g t h was d e t e r m i n e d by m e a s u r i n g  shrimp from t h e a n t e r i o r caudal  batches of r i c e  (Gilchrist,  the brine  t i p of t h e head t o t h e base 1956). Each  d e t e r m i n a t i o n was made  30 a n i m a l s . M e a s u r e m e n t s were  e q u i p p e d w i t h an e y e p i e c e  of the  made  micrometer.  under  the  The  dry  weight  was  animals with d i s t i l l e d 72 h o u r s used  (Reeve,  survival  s a m p l e s and least  first  washing  the  t h e n o v e n - d r i e d a t 60 C f o r (Cahn M o d e l  21)  was  weight.  was  aliquot  v a l u e per  manually  and  by  o b t a i n e d by t a k i n g  30 t o 50 ml  c o u n t i n g t h e number o f a n i m a l s  five  survival  water  1963). A m i c r o b a l a n c e  to measure the The  determined  samples  were  tank. Each tank  to ensure  i n the sample. At  counted was  aliquot  to  obtain  adequately  one  stirred  even d i s t r i b u t i o n o f a n i m a l s b e f o r e  each  sampling. The  t o t a l biomass p r o d u c t i o n i n the c u l t u r e  calculated  through  the  equation  Production over a p a r t i c u l a r  1/2  P. l  (N. i-l  day  + N. l  per  used  by  Mann  t a n k was  ) ( W. l  system  (1976).  estimated  - W.  was  by:  ) i-l Eqn.  5-1  Eqn.  5-2  f Total  P r o d u c t i o n / t a n k = P = ^>  P^  where N.  survival  for p a r t i c u l a r  N  survival  f o r p r e v i o u s day,  i-1  W. l  dry  weight  day,  for particular  number/ml  number/ml day,  ug  46  w  ^_^  f  = dry  weight f o r p r e v i o u s day,  • = total  culture period,  day  ug  CHAPTER VI DETERMINATION OF THE CONTROLLING  MECHANISM  IN BRINE SHRIMP CULTURE NEAR STAGNATION CONDITIONS  Near s t a g n a t i o n c o n d i t i o n s , low  dissolved  organisms brought  of  dissolved  shrimp c u l t u r e ,  oxygen  the  necessary  culture  growth  coming  and f o r  from  the  feeds and m e t a b o l i c p r o d u c t s . At the  i tprovides s u f f i c i e n t  above  through  the  oxygenation rising  important  mentioned  system  can  capacity  bubbles.  contribute  to  as  a  effects basically  and  While  turbulence to maintain a being c u l t u r e d  and  these  which  controlling  two  be  by b u b b l i n g a i r  r e l a t e d *r t o  mechanisms  of the c u l t u r e  o f t h e two w o u l d mechanism.  of u s i n g the c o n t r o l l i n g  s c a l i n g - u p would  caused  the  t o t h e a g i t a t i o n c a p a c i t y of the  the performance  t o determine  possibility for  provides  particles. The  more  system  for biological  uniform s u s p e n s i o n of both the organisms feed  be  t h e u s e o f a e r a t i o n by means  of d i s s o l v e d o r g a n i c matter  decomposition of excess time,  may  by i n a d e q u a t e w a t e r movement.  a i r through  stabilization  like  oxygen c o n c e n t r a t i o n ; uneven d i s t r i b u t i o n of  brine  bubbling  same  effects  and f e e d ; and a c c u m u l a t i o n of m e t a b o l i t e s  about  In  undesirable  be d e t e r m i n e d .  obviously  system, be  considered  Consequently,  mechanism a s  i t is  the  criterion  Methodology  An  experiment  was c o n d u c t e d t o d e t e r m i n e w h i c h o f t h e  two m e c h a n i s m s - o x y g e n a t i o n o r a g i t a t i o n production  of  brine  shrimp  e x p e r i m e n t was b a s i c a l l y  a  fed  - greatly  with  comparison  of  rice  affects  bran.  the  The  respective  e f f e c t s c a u s e d by t h e b u b b l i n g o f a i r a n d o f p u r e o x y g e n gas at s i m i l a r An  flow  rates.  experimental  brine shrimp contained conical Chapter Air system.  tank.  The  unit  was a 20 L s e a w a t e r c u l t u r e o f  in  a  culture  29.2  cm  diameter  technique  cylindri-  was a s d e s c r i b e d i n  V. s u p p l y was o b t a i n e d f r o m t h e main a i r Pure  oxygen  was  supplied  from  distribution  a compressed gas  c y l i n d e r . The two l e v e l s o f f l o w r a t e u s e d were 100 and  400  ml/min. One tanks.  run of the experiment c o n s i s t e d The  experimental  of a t o t a l  of e i g h t  d e s i g n was a s shown i n T a b l e I I I .  E a c h t r e a t m e n t was done i n  duplicate  a r r a n g e d a t random. A t o t a l  o f two r u n s were c o n d u c t e d .  Length determined  and daily.  survival  of b r i n e  and  the  tanks  shrimp i n each  were  t a n k were  49  Table  III.  Experimental design comparing oxygenation and a g i t a t i o n as c o n t r o l l i n g mechanism in brine shrimp c u l t u r e .  r a t e , ml/min)  (Flow Type of  21% 0  100% 0  Results  1 00  400  (air)  A  B  (oxygen)  G  D :  And D i s c u s s i o n  In t a n k s oxygen  i n w h i c h pure' oxygen  concentration  higher  than  oxygen  and  higher  gas  for  dissolved  in tanks air, 400  i n the using  the  ml/min  oxygen  and  400 The  period ml/min. results  air.  In  for  of  died  seven d a y s  These  results  used, was  both  cases,  oxygen  decreased before  for are  may be e x p l a i n e d  the  water  100 m l / m i n .  concentration  shrimp c u l t u r e d with a i r culture  culture  dissolved than  was  with  substantially pure was  In a l l  the  with  reaching  cases time.  Brine  the  total  rates  in Figure the  for  concentration  both a i r f l o w shown  dissolved  a i d of  of  100  6. Figure  7.  50  o  "i—i—i—i—i  i—i—i—i—i—m—i—i—i—i—i—r » ° oxygen; 400 ml/min + oxygen; 100 ml/min -+  CN  • air * air  : CN  <2 oi e  i i—n  r  ; 400 ml/min ; 100 ml/mln  w 00 eg  ZZ  ^= LUC*  CC  to ZD O  ^ O  00  Q  CN  J 0.0  1 J 0.64  L 1.28  l 1.92  l  l 2.56  l  i 3.2  l  l 3.84  I  I  4.48  CULTURE PERIOD Figure  6.  l  l l 5.12  I 5.76  I  I 6.4  I  I  I  7.04  L 7.68  (day)  V a r i a t i o n o f d i s s o l v e d oxygen i n t h e c u l t u r e w i t h time u s i n g a i r and pure oxygen.  system  concentration driving force Oxygenation — (mass t r a n s f e r ) micro-turbulence  7.  T  macro-turbulence  Agitation — (suspension)  Figure  (K a)  (Q)  F a c t o r s i n f l u e n c i n g t h e mechanisms o f o x y g e n a t i o n and a g i t a t i o n i n gas bubbling.  O x y g e n a t i o n a s a mass t r a n s f e r mechanism by  the  o v e r a l l concentration  d r i v i n g force  is  influenced  ( C- - C  ) and IJ  O  by t h e l e v e l o f m i c r o - t u r b u l e n c e a s c h a r a c t e r i z e d  by  K a.. , Li  The  agitation  capacity,  as  gauged  by  the c a p a b i l i t y to  s u s p e n d a n d e v e n l y d i s t r i b u t e o r g a n i s m s and f e e d is  influenced  by t h e l e v e l o f m a c r o - t u r b u l e n c e . The l e v e l o f  macro-turbulence the  gas flow  oxygenation C  s  of  d e p e n d s on t h e power  rate, and  is  Of  r a t e , Q,  turbulence  t u r b u l e n c e which energy  Q.  agitation,  a n d t h e gas f l o w micro-  is  the  transferred  concentration  the  natural from  i n t h i s case,  influencing type  of  large  by v i s c o u s  of d i s s o l v e d  level  by t h e l e v e l o f macro-  consequence  the  both  gas, thus  may be c o n t r o l l e d . The  i s influenced a  source,  factors  only  eddies before t h i s i s d i s s i p a t e d resultant  particles,  when  kinetic  eddies to flow.  oxygen i n  C  T  the  smaller i s the culture  system  as  a  c o n s e q u e n c e of t h e  i n t e r p l a y of a l l the  other  factors. For  a  particular  effectivity  of an  oxygenation  m a i n t e n a n c e of t h e C-^ The for  respiration  decomposition in  of  the  of d i s s o l v e d the  culture  Metabolites  and  other  accumulated  i n the  substances  was  and  matter. the  trend  dissolved  the c u l t u r e system w i t h u s i n g a i r i n which the total  c u l t u r e p e r i o d of The  use  balance  Cg  the  f e e d and of  substances  dead  organisms  time.  resulted in  a  the d i s s o l v e d oxygen c o n c e n t r a t i o n  in  time.  Affected  were  brine shrimp d i e d before seven  in  those  tanks  reaching  the  days.  when u s i n g a i r b e c a u s e  of  between  the  obtained  -  dissolved  o x y g e n demand t h u s i n c r e a s i n g  of p u r e oxygen gas  (  aerobic  of  concentration  force  used  All  oxygen  driving  The  organic  tank w i t h the passage  in  was  f o r the  r a t e of c o n s u m p t i o n of d i s s o l v e d o x y g e n . T h i s decreasing  the  amount c o n s u m e d .  of e x c e s s  exerted  the  level.  c u l t u r e system  organic  the  therefore,  i s gauged t h r o u g h  animals  water  from decomposition  these  process  at a d e s i r a b l e  amount of o x y g e n s u p p l i e d and  coming  system,  oxygen t r a n s f e r r e d t o the  the  oxygen  culture  the  r e s u l t e d in higher  dissolved  culture  system  of  relatively  ). When u s i n g  i s p r o p o r t i o n a l to the  total  w h i l e when u s i n g a i r , t h e v a l u e  of C„  the  than  pure oxygen, the  that larger value  e f f e c t i v e pressure, i s only  P,  proportional  53  t o 0 . 2 1 P., i . e . , Cg oc P  f o r pure  Cg oC 0 . 2 1 P The  relatively  for a i r  high concentration  i n t h e c u l t u r e s y s t e m when u s i n g ml/min  was  still  pure  the  8 shows t h e e f f e c t  performance  Figure  presented in  the  total  culture  culture  oxygen  gas  The  system.  because  f l o w . r a t e . on  biomass  The  f o r the and  higher  the  total  biomass  production  on  the  s y s t e m t h a n on t h e that  oxygenation  oxygen gas  flow  oxygen  production  is  for  and  gas  dependence  of  concentration  capacity  is  between  dissolved  rate.  same  correlation  i n the system compared w i t h t h a t o b t a i n e d between  on  attained  relationship mean  of  while  performance  production  much  100  turbulence.  (R=0.22) i n d i c a t e s a much s t r o n g e r  suggests  at  concentration  biological  production  relationship  biomass  of  (R=0.94) o b t a i n e d  biomass  flow rate  gas  oxygen  the b r i n e shrimp c u l t u r e system,  parameter.  concentration  oxygen  on m a c r o -  of  i n terms of the t o t a l  coefficient  the  of  9 shows t h e e f f e c t  performance  of d i s s o l v e d  g r e a t l y i n c r e a s e d a t 400 ml/min  the dependence of m i c r o - t u r b u l e n c e Figure  oxygen  This  in  the  strongly  more  of  the  c o n t r o l l i n g mechanism i n t h i s c a s e o f b r i n e s h r i m p c u l t u r e . The  results  oxygenation culture  (near  is  of the  this  experiment  controlling  indicating  mechanism  s t a g n a t i o n c o n d i t i o n s ) does  in brine  n o t mean,  that shrimp however,  54  MEAN D 0 IN CULTURE SYSTEM (mg/L) F i g u r e 8.  E f f e c t o f d i s s o l v e d oxygen i n t h e c u l t u r e system on t h e t o t a l biomass p r o d u c t i o n o f b r i n e shrimp.  55  1  1  1  1  1  1  1  II  1  1  II  1  I  I f  i  1  1  1  CD  C3 CO  —  o  -  C3 CO  o  o  o o —  -  O CD  -  O  o o  0 3  _  o  Q Q=CDQL •*  -  ©  -  -  CO  O  -  0  CM  1 1 .0  1 40.0  1  1 80.0  1  1  1  120.0  I  1  160.0  1 200.0  1  1  1  240.0  1  1  280.0  1  1  320.0  GAS FLOW RATE (ml/min) F i g u r e 9-  1 1 360.0  o  -  o  -  1  1  400.0  1  1  440.0  I 480.0  E f f e c t o f gas f l o w r a t e on t h e t o t a l biomass p r o d u c t i o n o f b r i n e shrimp.  that a g i t a t i o n mentioned air  above  bubbling  environment agitation suspension feed  is  longer  that  the  near s t a g n a t i o n capacity and  but  d e t e r m i n e the  important,  t h e s e two  provide  of  gas  as  in  the  not  necessary  bubbling  sufficient  been  of is  serve  culture  with  culture  indicates  providing  system to  the  has  desirable  conditions. This  culture  p e r f o r m a n c e of  it  mechanisms a s s o c i a t e d  e f f e c t i v e even d i s t r i b u t i o n  particles  condition  no  that  effective  organisms a  as  and  necessary criterion  to  system.  Conclusions  1) O x y g e n a t i o n controlling stagnation be  tested  capacity  mechanism  in  c o n d i t i o n s . As as  a possible  the  has  b e e n , shown  brine  shrimp  to  be  the  culture  near  c o n t r o l l i n g mechanism, i t  scale-up  criterion  in brine  can  shrimp  culture. 2) N e a r s t a g n a t i o n of  brine  shrimp  is  mean d i s s o l v e d oxygen  conditions, higher  the  biomass  production  i n c u l t u r e systems w i t h  concentration.  higher  CHAPTER V I I DEVELOPMENT OF SCALE-UP CORRELATIONS FOR THE OVERALL OXYGEN MASS TRANSFER COEFFICIENT, K-^a  For the capacity  quantitative  in air-liquid  evaluation  contacting  of  systems,  the  oxygenation  use i s f r e q u e n t l y  made o f t h e o v e r a l l mass t r a n s f e r c o e f f i c i e n t ,  K a  (Oldshue,  IJ  1960;  Finn,  et.al.,  1972; J a r a i ,  1 979;  1967;  Margaritis  Bylinkina  et.al.,  1972; S c o t t ,  e t .a_l. ,  1972;  1981).  K a  1972;  Eckenfelder  Miura, has  1976; L e e ,  been  used  to  using  a  L c h a r a c t e r i z e g a s - l i q u i d systems model This  liquid,  most f r e q u e n t l y  u s e o f a model  capacity  liquid  Of  by  a s o l u t i o n of sodium  for standardizing  i n d i f f e r e n t systems  Derivation  b e i n g compared  Generalized  oxygenation  i s c o n v e n i e n t and Relationship  sulfite.  reliable.  For  K a T  By  Ii  Dimensional  Analysis  The o x y g e n a t i o n c a p a c i t y system as  depends  of  an  on many f a c t o r s and t h e s e may be  follows: 1. G e o m e t r i c  air-water  (design)  a. D i a m e t e r  parameters  of t h e tank, D  b. Water d e p t h , H  contacting classified  58  c.  Number o f s p a r g e r h o l e s conical pipes  2. M a t e r i a l d.  (for cylindri-  t a n k ) o r Number o f a i r l i f t  ( f o r raceways), N  parameters  Liquid  density,  p  L e. L i q u i d  viscosity,  y  f. L i q u i d  surface tension,  L g.  A i r density,  a  T  p A  h. 3.  Oxygen d i f f u s i v i t y  Process  parameters  i . A i r flow rate, j.  i n w a t e r , <J>  Gravitational  Q constant, g  T h u s , f o r t h e p e r f o r m a n c e p a r a m e t e r , K a, t h e f o l l o w i n g functional  relationship  K a L  results:  = f (D,H,N, P 1  L  ,^  A  L  ,  L  , P  A  ,* ,Q,g)  Eqn.7-1  Using dimensional a n a l y s i s , variables  can  dimensionless  K a L  .  be  reduced  to  this  r e l a t i o n s h i p of e l e v e n  one  involving  only  eight  groups:  2  ( y / P g )'/ L  L  2  3  2  = f [( Q / 2  5  gD ),( P  Q / y D) ,  L  L  3  ( p Q / a D ) ,N,H/D, ( p ~ p > / P , ( V L  L  L  A  A  L  / P<t> ) ] L  Eqn.  7-2  59  [( p - P ) / P A  A  ]  c h a r a c t e r i z e buoyancy  K a  2  combined  LI  to  5  [Q /gD ]  may  be  combined  to  e f f e c t s i n the system.  1  (y / p g ) /  Li  2  and  3  and  ( u  LJ  / p d>  characterize  the  )  may  also  be  i-i  JL  o x y g e n a t i o n c a p a c i t y of the  system. N o t i n g t h a t 2  5  'FT* = ( Q / g D ) [ ( p - p ) / p } m o d i f i e d Froude No.  Re* =  P  L  Q/ y D L  m o d i f i e d Reynolds No.  We* =  D  z  P  Q /o  3  m o d i f i e d Weber No.  2  1 / 3  K -a* = [ K a ( ^ / P g ) ] / [ L  L  l  \  /  ]  oxygenation  the g e n e r a l i z e d  r e l a t i o n s h i p reduces t o :  capacity  K a* =  f  L  [Fr*,Re*,We*,N,H/D]  2  Eqn. 7-3  The the  left  hand  performance  side of the g e n e r a l i z e d e q u a t i o n parameter,  K-^a, w h i c h  oxygenation c a p a c i t y of the contains  two  types  dynamic  groups  groups  (N,H/D).  When it the  system.  c h a r a c t e r i z e s the  The  right  hand  side  of d i m e n s i o n l e s s g r o u p s , namely;  fluid  ( F r o u d e , R e y n o l d s , a n d Weber)  applying the P r i n c i p l e  and  of S i m i l a r i t y  group  which  controls  geometric  i n scale-up,  w o u l d be d e s i r a b l e t o know t h e r e g i m e o f t h e dimensionless  involves  the  process  performance  p a r a m e t e r . When one p a r t i c u l a r d i m e n s i o n l e s s g r o u p c o u l d identified  as  such,  i t would  p r o c e s s and the subsequent scaling  define  scale-up  the  could  e q u a t i o n s b a s e d on t h i s p a r t i c u l a r  In systems,  practice,  however,  or  similarity  in different  Johnstone  variable  be  done  using  group.  especially  and  groups  should  i n more  be  s c a l e s of o p e r a t i o n  Thring,  1957; Hyman,  complex  between  the  performance  design and o p e r a t i n g v a r i a b l e s  the  what  basis  (Jordan,  and  determine  parameter  of  1955;  1962; H o l l a n d  Chapman, 1 9 6 6 ) . I t t h e n becomes n e c e s s a r y t o relationship  be  regime of the  i t i s not simple t o d e t e r m i n e , a t t h e o u t s e t ,  variable  or  the  and t h e  (Johnstone and T h r i n g ,  1957;  61  Hyman, 1978;  1962;  B l a k e b r o u g h a n d Sambamurthy,  Zlokarnik,  desirable  to  small  Zlokarnik,  1979). For the purpose of s c a l e - u p , have  this  relationship  d i m e n s i o n l e s s g r o u p s , w h i c h c a n be a p p l i e d or  1966;  operations.  This  in equally  relationship  i t is  terms to  of  large  between  the  p e r f o r m a n c e p a r a m e t e r and t h e c o n t r o l l i n g g r o u p s c a n b e s t be established  through experimentation.  E x p e r i m e n t a l D e t e r m i n a t i o n Of K-^a  E x p e r i m e n t s were c o n d u c t e d w i t h t h e a i m o f e s t a b l i s h i n g the tank  final and  f o r m o f E q u a t i o n 7-3 the  geometrically  raceway.  For  f o r both the c y l i n d r i - c o n i c a l each  type  of  tank,  three  s i m i l a r s i z e s were i n v e s t i g a t e d . A g i t a t i o n  was  i n d u c e d by t h e i n t r o d u c t i o n o f a i r i n t o t h e s y s t e m .  Cylindri-conical The  tank  following  e f f e c t s of t h e s e cylindri-conical 1. D i a m e t e r  on  parameters the  were  performance  varied  to  parameter,  tanks: of the tank, D  The s i z e s u s e d were 2 9 . 2 , 61.0 and cm i n d i a m e t e r  106.7  study the K^a,  in  62  2. Water d e p t h , H T h r e e water  depths  to H/D r a t i o s  of  were  used c o r r e s p o n d i n g  a p p r o x i m a t e l y 0.75, 1.25  and 1.75  3.  4.  A i r flow  rate, Q  Five  levels  each  size  Number of  of  holes  The number of varied  flow  rate  each  holes  the  tested, Hole  size  for  i n the  sparger  r a t i o of  of  tank  diameters  total area  three  was  hole  area  constant. hole  sizes  were  e a c h w i t h c o r r e s p o n d i n g h o l e number.  numbers u s e d were  corresponding size  used  in sparger, N  tank c r o s s - s e c t i o n a l  For  were  with corresponding hole  maintaining to  air  tanks  hole  16,  4,  diameters  are presented  and 1. in  The  different  in Table  I.  Raceway  The their  following  effects  1.  on K^a i n  W i d t h of The  p a r a m e t e r s were c o n s i d e r e d t o  determine  raceways:  tank, D  sizes  u s e d were  2 8 . 8 , 5 8 . 6 , and 98.9 cm  in  width  2. W a t e r d e p t h , H T h r e e w a t e r d e p t h s were u s e d c o r r e s p o n d i n g t o H/D  r a t i o s o f a p p r o x i m a t e l y 0.50, 0.75, and 1.00  3. A i r f l o w Five  rate, Q  l e v e l s of a i r flow  4. Number o f a i r l i f t The  pipes,  two s e t s o f a i r l i f t  4 a n d 8. H a l f  r a t e were  tested.  N pipe  number u s e d were  o f t h e number of. a i r l i f t s  were  i n s t a l l e d on e a c h s i d e o f t h e p a r t i t i o n i n g .  The sulfite  o x y g e n mass t r a n s f e r r a t e s oxidation  method  as  were  described  measured in  NagSO^, was u s e d w i t h c o b a l t  CoCl2«6H20,  t h e method c o n s i s t e d  of d e p l e t i n g  catalyst.  the  d i s s o l v e d o x y g e n i n t h e w a t e r by a d d i n g determining  the  Sodium  chloride,  as  and  Basically,  reaeration  rate.  sodium The  sulfite  increase  d i s s o l v e d o x y g e n c o n t e n t o f t h e w a t e r was m e a s u r e d by a Model  57  DO m e t e r a t t a c h e d  equipped w i t h The was  value  a submersible  to a recorder.  by  in YSI  The DO p r o b e was  stirrer.  o f t h e o x y g e n mass t r a n s f e r c o e f f i c i e n t ,  calculated  the  the "Standard  Methods f o r t h e E x a m i n a t i o n of Water and Wastewater." sulfite,  by  regression  analysis  using  K a, T  the  relationship:  K a  = [ln(C  L  -C )  S e  Q  - ln(.C  -C  S e  ) ] / [ t- t ] Q  Eqn.  which  is  an  integrated  form  equation, C  q  water  a reference time, t  at  i s the d i s s o l v e d  of  Equation  oxygen  7-4  2-3.  In  this  concentration  of  the  , while C  i s the d i s s o l v e d  o oxygen  c o n c e n t r a t i o n o f t h e w a t e r a t any  were c o r r e c t e d The  first  conducted was  t o 20  C.  phase  of t h e e x p e r i m e n t s i n t h i s  UBC  the  t a p w a t e r . The  e x p e r i m e n t s i n the second phase a significant  f r e s h w a t e r and R e s u l t s And  different  t h a t of sea  section second  was phase  SEAFDEC  in  s e a w a t e r . The  aim  was  t o determine i f  between the  a value  of  water.  I I and  I I I give  t h e K^a  v a l u e s of d e s i g n and  cylindri-conical results  difference  of  values  Discussion  Appendices  the  involved  P h i l i p p i n e s u s i n g f r e s h w a t e r and  t h e r e was  the  and  conducted a t the A q u a c u l t u r e Department  Iloilo, of  at  t i m e , t . K^a  t a n k s and  operating  raceways,  f o r the f i r s t -  phase  values obtained for parameters  in  r e s p e c t i v e l y . These a r e  experiments involving  tap  65  water. In the c a l c u l a t i o n s  for K a,  the  T  C  L the  effect  of w a t e r  depth  the steady s t a t e v a l u e aeration  was  submergence The  equivalent  of 0.25  following  C  S e  Cg  s  the  observed  through  calculated  c a l c u l a t e d v a l u e of C g  was  t h e r e f o r e used  f o r m u l a was  = C  obtained  e  to  + (0.0.735  e  that  extended  value  for a  based  on  a  in a l l calculations.  used t o c a l c u l a t e  [ 76.0  considered  be  i n t h e t a n k . I t was  of  s u b m e r g e n c e of 25%. The  used  0  Cg : e  x 0.25S)]/  76 Eqn.  7-5.  where Cg  = oxygen s a t u r a t i o n c o n c e n t r a t i o n a t the  e  effective t o 0.25 Cg  t e m p e r a t u r e and p r e s s u r e e q u i v a l e n t  submergence,  = oxygen s a t u r a t i o n c o n c e n t r a t i o n on t h e s u r f a c e at water  temperature,  S = d e p t h of w a t e r  The  data for  regression v a r i a b l e and variables. analyses.  mg/L  Fr*,  over the a i r o u t l e t ,  each  analysis.  type K a*  Re*,  Appendices  mg/L  of was  We*, IV  tank  and  were  treated N  and V  give  cm  subjected  as  H/D  to  the dependent as  independent  t h e r e s u l t s of the  The given  s i m p l e s t equations which  f i t the .data  are  i n t h e form:  For c y l i n d r i - c o n i c a l  P^a*  = K*  tanks  (Fr*)°-  a 0 5  (Re*)-°-  with R  For  best  2  0 3 2  0  7 9  (H/D)- - "  Eqn.  7-6  Eqn.  7-7  = 0.96  raceways  0  K a * = K*  5 7  (Fr*) '" (Re*)-°•  1 7 0  (H/D)-°-'  82  R  L  with R  K*,  a n d K*  For  both  are constants the  = 0.95  i n the regression equations.  cylindri-conical  three d i m e n s i o n l e s s groups the v a r i a t i o n  2  t a n k and t h e r a c e w a y ,  (Fr*-, Re*, a n d •H/D) c o n t r i b u t e t o  of K a*. IJ  The in  i n f l u e n c e of both  agitated  (Johnstone Chapman,  systems  and T h r i n g , 1966).  The  was  the Froude and shown  1957; Froude  by  Oldshue,  Reynolds  earlier 1960;  number d e t e r m i n e s  numbers  investigators Holland  and  the o v e r a l l  circulation the  pattern  induced  by  a i r bubbling  d i f f e r e n c e i n the d e n s i t i e s of  Reynolds  number  turbulence effect  determines  pattern  within  a i r and  the  the  of c h a n g e i n w a t e r d e p t h  resulting  from  water, while  the  viscosity-controlled  liquid.  H/D  contributes  in a particular  the  s i z e tank  on  K a*. L  . Noteworthy equations Van  for  Krevelen  gas  flow  sparger hole  Hoftijzer  and  case at higher  (1950),  bubbles  form  bubble s i z e  and  of  gas  flow  the  is a  surface  t e n s i o n and  the  coalescence)  flow the  of  or d e c r e a s e  turbulence,  r a t e . In these  high  region  of c h a i n  Zlokarnik surface  gas  flow  particular  number hole  the than  opening. This  While  (through  rising  may  through  increase  influenced  a i r flow  by  is the  (through  b r e a k - u p ) d e p e n d i n g on  which i s a l s o  the  the gas  r a t e s u s e d were i n  bubbling.  (1979)  of  rates,  hole  also  indicated  that  t e n s i o n on mass t r a n s f e r seems t o be  The  i s not. t h e  sparger  size  experiments,  tension, this  sparger  rate rather  bubble  the  the  the  flow  water  ,  low  gas  bubbling.  column  raceways.  s i n g l e e n t i t i e s at  f u n c t i o n of  surface  the p o i n t c a l l e d c h a i n  level  as  r a t e s . At  and  the  s t a t e d that while at  s i z e becomes a f u n c t i o n o f  of the  tanks  T  rates,  opening  t h e Weber number f r o m  K a* in c y l i n d r i - c o n i c a l  and  exit,  bubble  i s the absence of  sparger  holes  diameters i n the  the e f f e c t  of  negligible.  (corresponding  to  c a s e of c y l i n d r i - c o n i c a l  tank  and  number  considerably  of  airlifts  influence  to d i f f e r e n t  for  raceways),  did  not  the o v e r a l l r e l a t i o n s h i p a p p l i c a b l e  sizes.  B r i e f l y , t h e r e f o r e , E q u a t i o n 7-6 f o r c y l i n d r i -  conical  tanks and E q u a t i o n 7-7 f o r raceways a r e . g e n e r a l c o r r e l a t i o n s for  K  a  ^ *  n  i  terms of the o p e r a t i n g parameters ( F r * , Re* and  H/D). Each of these c o r r e l a t i o n s can be the  performance  used  to  determine  parameter, K a * , from the combined e f f e c t s T  J_J  of the  operating  parameters.  With  very  2  high  R,  these  c o r r e l a t i o n s may be used t o p r e d i c t K a* on the b a s i s of the Li  operating  parameters.  These can be used f o r d i f f e r e n t - s i z e  t a n k s ( w i t h s i z e s w i t h i n the  range  used  in  p r o v i d e d t h a t the tanks a r e g e o m e t r i c a l l y In  cases  where  the  performance  this  study),  similar. parameter i s m a i n l y  c o n t r o l l e d by o n l y one d i m e n s i o n l e s s group, t h e v a l u e of the performance  parameter  maintaining  the  Thus  scale-up  i s made  controlling i s done  constant  in  scale-up  d i m e n s i o n l e s s group c o n s t a n t .  directly  on  the  basis  c o n t r o l l i n g d i m e n s i o n l e s s group. However, i n t h i s case  where  the  by  of  the  particular  performance parameter i s not c o n t r o l l e d by  o n l y one d i m e n s i o n l e s s group, s c a l e - u p cannot be done on the b a s i s of e q u a l i t y  of  this  or  that  dimensionless  group.  I n s t e a d , s c a l e - u p s h o u l d be done on the b a s i s of e q u a l i t y of the  performance parameter, c a l c u l a t e d from the r e l a t i o n s h i p  between the  performance  parameter  and  the d i m e n s i o n l e s s  69  groups. If  the c o r r e l a t i o n s  geometrically contacting  fluids,  respectively  For  similar  as  w o u l d be u s e d systems  using  in differently  sized,  a i r and w a t e r a s t h e  E q u a t i o n s 7-6 a n d 7-7 may  be  simplified  follows:  cylindri-conical K a  = K  L  tanks (Q /D ) '" (Q/D)-°- 0 2  c  5  0  0 5  3 2  Eqn.  w h i c h may be s i m p l i f i e d  further  into 2  5 6  K a••= K ( Q / D - ) ° L  For  7 7  C  Eqn.  7-9  Eqn.  7-10  Eqn.  7-1 1  raceways I^a  which s i m p l i f i e s  2  and K C  equation,  each  5  0  = K (Q /D ) '«  5 7  R  (Q/D)-°-  1 7 0  into K^a  K  7-8  2  = KpCQ/D -  8 5  )°-  i n c o r p o r a t e s the constant i n the r e g r e s s i o n  K  the  c o n s t a n t H/D  fora particular  d i a m e t e r r a t i o and a l l t h e m a t e r i a l  water depth t o  parameters.  E q u a t i o n s 7-9 a n d 7-11 may be u s e d a s s c a l i n g e q u a t i o n s for  K-^a  in  respectively, and  cylindri-conical provided  geometric  the g a s - l i q u i d contacting  Figures  10 and 11 show t h e  conical  tanks  and  involves  using  raceways, i s maintained  a i r and w a t e r .  correlations  T  raceways  and  similarity  system  K a  T h u s , f o r two g e o m e t r i c a l l y to  tanks  in  cylindri-  E q u a t i o n s 7-9 a n d 7-11.  similar  cylindri-conical  have s i m i l a r K a ' s , t h e a i r f l o w  rate  T  tanks  i n the larger  tank  s h o u l d be Q  and  = Q  2  l i k e w i s e , f o r raceways, Q  where  2  = Q  water  and  raceways,  (SFDC).  in  sea  water  respectively. as  SFDC f r e s h and  ]  -  5  sea  6  2  / D  2  1  ) -  E q n . 7-12  be  8 5  E q n . 7-13  tank tank o f K^a  fresh  water  water  (UBC)  and  available  for  use  further  as f r e s h  at  the  Q/D  2 , 5 6  water fresh  t h e SEAFDEC  The f i g u r e s were p l o t t e d w i t h  of the parameter  fresh  t a n k s and  was  w a t e r and SFDC s e a w a t e r were  water  in  for cylindri-conical The  fresh  A q u a c u l t u r e Department. function  2  / D, )  12 a n d 13 show t h e c o m p a r i s o n  differentiated  water  ( D  1  2 refers to larger  2  the f o r m u l a would  1 refers to smaller  Figures  D  (  1  K-^a a s  f o r c y l i n d r i - c o n i c a l tanks  F i g u r e 10.  K-^a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l tanks f o r a i r - w a t e r system.  C3 -  0  - +  - •  i—r 1 1 1 r 1 "28.8 cm wldth + 58.6 cm width •98.9 cm width  1-  1  1 1 TTTTT  •r  1  1  1 1 1  -T" T'  -  •  in -  /+ /  /°  -  |  m  1  •  e  \  + CO  _  CO  0  /  0 /  / +  © L H / D  •  •  1  1  CD  "10  3  1 5  1 1 < •1  7  R  + 1 1  10 -  1  3  1  1  5  1  I  1 1 1  7  10*  =  2  0.75  '  = 0.95 1  1  3  1  1 1 1 1 1  5  7  10  Q/D**2.85 F i g u r e 11.  K a c o r r e l a t i o n i n raceways f o r a i r - w a t e r system. T  73  CD  _  • i I llIl l l ° U B C freshwater  m  ~ +  + SFDC  freshwater  -  • SFDC  seawater  -  CD  i i i i i 11  JIM  CO  i  -  —  -  —  to  —  CO  -  'cz •H  >—' CD ro r -  _i  in CO  ?  CD rLO CO  +  ?  CD -a 10  -  i  i i i 1111  3  5 7 10  i  i  3  1111111  5 7 10 •  1  1 3  1  11 11  5 7 10 »  Q/D**2.56  F i g u r e 12.  Comparison o f K~ a f o r f r e s h and s e a water i n c y l i n d r i - c o n i c a l tanks. T  1  "I  r 1 — i i i i 11  "i  -  ° UBC freshwater + SFDC freshwater • SFDC seawater  <D  r-  I I I I 11  1—I  + LO  1  I  I 1 I I u  I  CO  CD  rLO  CO  cz  —I &  »—' CD  ro r_J  ^  LO  CO  LO  CO  J  10  I  I  I I 1111  5  7 10  J  I  3  1  I I I I II  5  Q/D**2.85 F i g u r e 13-  7 10'  J  I  I  I I I 11  5  7 10  Comparison o f K-j-a f o r f r e s h and s e a water i n raceways.  2  and  Q/D •  85  f o r raceways.  . The d a t a  were a n a l y z e d  u s i n g t h e UBC  SLTEST  p a c k a g e a v a i l a b l e a t t h e UBC C o m p u t i n g C e n t e r equality  of  generated tanks, SFDC was  slopes  and  by d i f f e r e n t  s e t s of  t h e r e were t h r e e FRESH  and  by  The  significantly  s e t s of d a t a  a  line  three  different  results  and  representing  in  lines  r e p r e s e n t i n g UBC  with  a  the  three  FRESH,  s e t s of data  certain  slope  and  t e s t e d i f these data  were  for  the  similarly.  of  the  the  a n a l y s i s ( A p p e n d i c e s VI and V I I ) significant  interepts  f r e s h or sea and  test  cylindri-conical  f r o m e a c h o t h e r . The  showed t h a t t h e r e were no slopes  to  different  For  l i n e s were t h e n  r a c e w a y s were t r e a t e d The  data.  of  SFDC SEA. E a c h o f t h e s e  represented  intercept.  intercepts  statistical  water,  conical  tanks  raceways.  obtained  i n the three types  the  for  In  of  of  differences  water  different  both  other  in  the lines  the  cylindri-  words,  t h e K^a's  were  basically  the  same. . .  The  different and  material  tension  g/cm-s  respective  of  sea  f r o m t h a t o f f r e s h w a t e r . The  surface  0.0106  parameters  and  values  water  a r e n o t much  density,  viscosity  o f s e a w a t e r a t 20 C a r e 1.024 73.53  for  dyne/cm,  3  g/cm ,  respectively.  The  3  0.0097  which  could  f r e s h w a t e r a r e 0.998 g/cm ,  g/cm-s a n d 72.76 dyne/cm. One  material  parameter  of  sea  water  significantly  affect  presence of s a l t produced  fine  interfacial  primarily bubbles  bubbles  to  resulting  produced  (Zlokarnik,  gas  friction sense.  to  bubbles  (1967)  (<2.5  ones,  mm  thus  in  characterized  happen o n l y the  liquid  of  i f the  (>2.5  form d r a g p r e d o m i n a t e s  diameter)  as  those  which  and s m a l l experience  boundary  bubbles  mm  layer  in this  study  diameter.  E c k e n f e l d e r and B a r n h a r t presence  rate  are fine  large bubbles  The s i z e o f p r i m a r i l y p r o d u c e d 5 mm  increasing  h i g h e r mass t r a n s f e r  drag, causing hindered flow i n the  was a t l e a s t  be t h e  1979).  d i a m e t e r ) a s t h o s e on w h i c h bubbles  larger  1978). T h i s , however, would  Calderbank  r a t e would  which prevents the c o a l e s c e n c e of p r i m a r i l y  area,  (Zlokarnik,  the oxygen t r a n s f e r  surface  (1961)  reported  that  in  the  a c t i v e a g e n t s , the change i n t r a n s f e r  r a t e becomes l e s s p r o n o u n c e d  as t h e a g i t a t i o n  becomes  more  i n sea water  could  violent. Thus,  i f  ever the presence of s a l t  have a s i g n i f i c a n t relatively  high  influence level  on  K a, T  the  conditions  of t u r b u l e n c e which p r e v a i l e d  s y s t e m d u r i n g t h e e x p e r i m e n t s were s u c h e f f e c t s c o u l d n e v e r have been  possible.  that  the  of  i n the  expected  Conclusions  1.  For  both  c y l i n d r i - c o n i c a l tanks and raceways, the  major d i m e n s i o n l e s s groups which c o n s i d e r a b l y c o n t r i b u t e the  variation  of K a  to  i n g e o m e t r i c a l l y s i m i l a r s i z e s are the  T  Froude and the Reynolds numbers. 2. The c o r r e l a t i o n s oxygen  mass  transfer  can be used t o p r e d i c t coefficient  s i z e s of tanks from a knowledge  the  overall  in geometrically  similar  of the o p e r a t i n g parameters.  3. S c a l e - u p s h o u l d be done on the b a s i s of e q u a l i t y the  overall  oxygen mass t r a n s f e r  from the c o r r e l a t i o n  coefficient  and not on the  basis  as  of  of  calculated  equality  of  each of the d i m e n s i o n l e s s groups. 4. equality  The  contacting  similar  equations  systems  using  be used f o r  coefficient  air  and  water  in as  c y l i n d r i - c o n i c a l tanks 2  / 2  /  D  1  - < 2  /Q,  - ( D  D  l  , 2  -  S <  raceways Q  2  2  /  D j  5. Under c o n d i t i o n s s i m i l a r t o d u r i n g the e x p e r i m e n t s , the K^a the  may  fluids:  Q  For  scaling  of the o v e r a l l oxygen mass t r a n s f e r  geometrically  For  following  >»•»  those  which  prevailed  f o r f r e s h water i s b a s i c a l l y  same as the Y~ a f o r sea water.  78  CHAPTER V I I I V E R I F I C A T I O N OF K a AS A SCALE-UP Li  CRITERION IN BRINE SHRIMP CULTURE  Methodology  The a i m o f t h i s the  levels  aeration  of  rate  s e r i e s o f e x p e r i m e n t s was  b i o l o g i c a l performance (near  stagnation  s i z e s of c y l i n d r i - c o n i c a l For five  the  u n i t s of each  type  of  aeration is  both  a  tank  in  different  raceways.  cylindri-conical  tank and t h e  s i z e were u s e d . The t h r e e s i z e s  were  determine  a t v a r i o u s l e v e l s of  conditions)  t a n k s and  to  d e s c r i b e d , i n Chapter  raceway, for  I V . A- p a r t i c u l a r  r a t e was a s s i g n e d t o e a c h of t h e s e t a n k s . T a b l e  r e p r e s e n t a t i o n of t h e a i r f l o w  each  r a t e s used  IV  i n tanks f o r  the v a r i o u s s i z e s . H/D  v a l u e s used  i n the c u l t u r e  experiments  for c y l i n d r i - c o n i c a l  t a n k s a n d 0.75  f o r raceways.  The smallest  approximate  levels  of  scale are,  For c y l i n d r i - c o n i c a l CS1  = 100 m l / m i n  CS2 = 200 m l / m i n CS3 = 400 m l / m i n CS4 = 800 m l / m i n  tanks:  were  a i r flow r a t e used  1.25  i n the  79  Table IV.  a.  Representation of a i r flow rates i n d i f f e r e n t s i z e s o f c y l i n d r i - c o n i c a l t a n k s and raceways.  Cylindri-conical  tanks Aeration l e v e l  Size  1  2  3  CS  CS1  CS2  CS3  CS4  CS5  CM  CM1  CM 2  CM3  CM4  CM 5  CL  CL1  CL2  CL3  CL4  CL5  :  5  Raceways  Size  - • .1  Aeration l e v e l • 2 k 3  5  RS  RSI  RS2  RS3  RS4  RS5  RM  RM1  RM2  RM3  RM4  RM5  RL  RL1  RL2  RL3  RL4  RL5  C : Cylindri-conical R : Raceway S : Small M : Medium L : Large  tank  80  CS5  For  =1600  ml/min  raceways: RS1  = 4 0 0 ml/min  R S 2 = 8 0 0 ml/min RS3  =1600  ml/min  RS4  =3200  ml/min  RS5  =6400  ml/min  The a i r f l o w r a t e s i n t h e medium and l a r g e estimated  on  the  aeration  levels.  of e q u a l K a T  Thus f o r c y l i n d r i - c o n i c a l  K a(CS1)  K a(CM1)  K a(CLi)  K a(CS2)  K a(CM2)  K a(CL2)  K a(CS5) L  = K a(CM5)  L  T  T  and  criterion  L  L  L  L  T  = K  h  a(CL5)  T  Ju  f o r raceways: K  a(RS1)  = K a(RM1)  L K  a(RS2)  -L  = R a(RM2) T  =  K a(RL2)  IJ  a(RS5) L  T  Ii  L  K  = K a (RL1)  = K  a(RM5) L  T  Li  = K  a(RL5) JJ  sizes  were  for corresponding tanks:  81  Using  the s c a l i n g equations  derived  in  the  c h a p t e r , a l l t h e o t h e r a e r a t i o n r a t e s c o u l d be For c y l i n d r i - c o n i c a l  2  5 6  CM1  = CS1(CM/CS) •  CM2  = CS2(CM/CS) *  2  5 6  2  5 6  *  CL5 = C S 5 ( C L / C S ) • raceways: 2  8 5  2  8 5  RM1  = RSI (RM/RS) *  RM2  = RS2(RM/RS) *  *  *  2  RL5 = R S 5 ( R L / R S ) • The both  determined.  tanks:  •  For  preceding  air  flow  rates assigned  85  t o t h e s m a l l e s t s i z e s of  t y p e s o f t a n k s w h i c h were u s e d t o e s t i m a t e  rates i n the equations,  medium  and  were d e t e r m i n e d  cylindri-conical corresponding  tank  large  sizes  through  the  i n s u c h a way t h a t t h e K a T  approximates the K a T  aeration levels.  Thus,  K a(CS1) ~ K a(RS1) T  K_a(CS2) ~ Li  R a(CS5) ^ T  the a i r flow  T  K a(RS2) T  IJ  K a(RS5) T  above i n the  i n the raceway a t  82  K a(CM5) = K a(RM5) L  L  K a(CL5) ~ L  Tables  K a(RL5) L  V and VI g i v e t h e a c t u a l a i r f l o w r a t e s u s e d i n  e a c h t a n k and t h e c o r r e s p o n d i n g K a v a l u e s o b t a i n e d f r o m t h e T  correlations  for  cylindri-conical  tanks  and  raceways,  respectively. Apart  from  the  differences  t a n k s had u n i f o r m c u l t u r e V. One unit  in  aeration  rates  t e c h n i q u e as d e s c r i b e d  in  Chapter  r u n f o r e a c h t y p e o f t a n k c o n s i s t e d o f 15 u n i t s , with  a  particular aeration  made o v e r t i m e . A t o t a l  rate. Replicate  of t h r e e complete  the  cylindri-  conical  because of the d i f f i c u l t y tanks,  only  the  tanks  runs f o r each  and  the  of m o n i t o r i n g a  each  r u n s were  o f t a n k were made. A f o u r t h r u n was a s i m u l t a n e o u s both  , a l l  run  type for  raceways  and  number  of  large  s m a l l and medium s i z e s o f b o t h t a n k s were  used. The l e v e l s o f t h e w a t e r nitrite  quality  a n d pH were d e t e r m i n e d d a i l y  parameters;  ammonia,  f o r two r u n s .  I t was c o n s i d e r e d i m p o r t a n t t o know i f t h e t r e n d on t h e l e v e l s of b i o l o g i c a l stagnation it  would  performance  to r e l a t i v e l y  exhibit  therefore  similarly  h i g h l e v e l s of a e r a t i o n  some b e h a v i o r w h i c h m i g h t  d e l e t e r i o u s e f f e c t s of s t r o n g were  would  also  aeration  conducted  extend  rate or i f  indicate  rates.  from  possible  Experiments  t o d e t e r m i n e the l e v e l s of  83  T a b l e V. A c t u a l v a l u e s o f a i r f l o w r a t e s u s e d i n d i f f e r e n t s i z e s o f c y l i n d r i - c o n i c a l t a n k s and the c o r r e s p o n d i n g v a l u e s of K a.  TANK  A I R FLOW RATE* (ml/min)  K a ( 1/min). L  CS 1 CS2 CS3 CS4 CS5 CM1 CM2 CM3 CM4 CM5 CL1 CL2 CL3 CL4 CL5  1 00 200 408 820 1648 680 1370 2730 5480 11100 2970 5960 1 2000 24000 47000  0.0052 0.0089 0.0155 0.0266  CS6 CS7 CS8 CS9  3270 6590 13400 27200  0.0784 0. 1352 0.2345 0.4087  * CORRECTED TO 1 ATM AND 20 C  0.0459 0.0053 0.0092 0.0157 0.0269 0.0468 0.0054 0.0094 0.0161 0.0275  0,0472  84  Table V I .  A c t u a l v a l u e s o f a i r f l o w r a t e s used i n d i f f e r e n t s i z e s o f raceways and t h e corresponding values of K a . T  TANK  AIR FLOW RATE* (ml/min)  404  K-^a (1/min)  RS1 RS2 RS3 RS4 RS5 RM1 RM2 RM3 RM4 RM5 RL1 RL2 RL3 RL4 RL5  6300 12700 25000 50600 14200 28300 57400 107700 215000  0.0053 0.0089 0.0149 0.0249 0.0420 0.0053 0.0090 0.0153 0.0253 0.0426 0.0055 0.0091 0.0154 0.0246 0.0413  RS6 RS7  13400 27000  0.0717 0.1207  810 1630 3250 6570  3100  * CORRECTED TO 1 ATM AND 2 0 C  biological aeration  performance rates  performance aeration  to  relatively  compare  higher  these l e v e l s  w i t h t h o s e o b t a i n e d from  levels of  of  biological  experiments  at  lower  levels.  Because experiment, conical  and  at  of  the  great  only the small  a i r flow size  t a n k and r a c e w a y were  Aeration  rates  tanks  requirement of  both  of t h i s  cylindri-  used.  greater  than  those c o n s i d e r e d i n the  previous experiments  were  used.  For c y l i n d r i - c o n i c a l  t a n k s , t h e t a r g e t v a l u e s were:  CS6 = 3200 m l / m i n CS7 = 6400 m l / m i n CS8 =12800 m l / m i n CS9 =25600 m l / m i n For  raceways: RS6 =12800 m l / m i n RS7 =25600 m l / m i n Air  f l o w r a t e s h i g h e r than those  unreasonably The  indicated  here  were  h i g h f o r any p o s s i b l e use i n a c t u a l o p e r a t i o n s .  same c u l t u r e t e c h n i q u e was u s e d a s d e s c r i b e d i n C h a p t e r  V. The b i o l o g i c a l determined Weight tanks  with  daily  parameters,  f o r each  length  and  survival,  tank.  d e t e r m i n a t i o n s were made f o r a n i m a l s the  aim  of  were  comparing  the  in certain  length-weight  r e l a t i o n s h i p of a n i m a l s r e a r e d  in different aeration  The  dry  relationship  determined aeration  for  animals  l e v e l s CS1,  In  order  Biochemical  to  coming  CS5  and  day  of A  the  comparison  with  was  feed  only. Except  containing  at  of m a g n i t u d e of  the  f o r BOD  the  and  a  culture  5.  S a m p l e s were and  the  whether criterion necessary  sixth  t i m e l y v a r i a t i o n of  tank  containing  difference  shrimp  and  the  same. The  in other  the  brine  prescribed  treatment did  not  -  one  -  all  c u l t u r e t a n k s employed  t h i s c o m p a r i s o n were m a i n t a i n e d a t a e r a t i o n  The  conducted  fourth  i n a tank c o n t a i n i n g  f o r the  brine  and  system  cylindri-conical  3 and  second,  culture were  s i z e s of  a l s o made on  t e c h n i q u e s a p p l i e d were t h e  Results  was  period.  d i s s o l v e d oxygen i n  shrimp feed  culture  length  maintained  l e v e l s i n the  l e v e l s 1,  f r o m t h e s e t a n k s on  the  tanks  order  levels, analyses  maintained at a e r a t i o n  obtained  for  the  water samples coming from t h r e e  tank  and  CS9.  determine  aeration  weight  from  Oxygen Demand (BOD)  at v a r i o u s on  between  levels.  level  4.  Discussion  main o b j e c t i v e of K-^a  could  in brine to  this  indeed shrimp  determine  be  i n v e s t i g a t i o n was considered  culture the  nature  as  systems. of  the  to a  It  verify scale-up  was  thus  relationship  between K^a and t h e this  relationship  culture  performance  would h o l d t r u e  and  to  for d i f f e r e n t  test  if  s i z e s of  the  system.  The t o t a l performance and  biological  biomass  parameter  p r o d u c t i o n was  used  and was c a l c u l a t e d  as  the  using  biological  Equations  5-1  Eqn.  5-1  Eqn.  5-2  5-2: P. i  =  1/2(N. l-l  + N. l  )(W  l  - W. ) l-l  f P  2.  =  T  P.  i=2 The length  brine was  shrimp dry weight c o r r e s p o n d i n g  determined  relationship  shown  using  in F i g u r e  the  length-  14 and d e f i n e d  l n W = 1 .365  to a  + 2.350  certain  dry  weight  by:  ln L Eqn.  where  W  Equation three  is 8-1  sets  shrimp levels  the is of  5  the  from  and  weight  culture  9.  Figure  difference  in  shrimp  reared  shows the  equality  slopes  at  and  length  after  measurements  that  length-dry  for  different  intercepts  of  for  the  is  no  relationship  aeration  analysis  brine  aeration  there  weight  i n mm.  comparing  m a i n t a i n e d at  shows  statistical  the  obtained  tanks 14  i n the  Appendix VIII of  ug and L i s  common e q u a t i o n  significant brine  in  length-dry  coming 1,  weight  8-1  levels.  testing three  the  lines  88  o rLO  i  --  a  -  +  i  i  1  1 1 1 111  ° AERATION LEVEL 1 + AERATION LEVEL 5 • AERATION LEVEL 9  CO  «  i i i t till  1  1  1  1 1 1 1  L  = : k  -  —  A  —  CO  -  !ug)  rLO  :  /  -  —•  -  -  • /  7 10'  IGHT  r+ of  —  -  LU  -  CO  m CD  LO  R  2  = 0.99  :  -  —  -  CO  7  •  ~~10 -i  11 3  5  7 10*  i  1 3  1 1 1 1 1 11 5  7 10 •  1  1 1 1 1 11 1 3  5  :  7 10  LENGTH (mm) F i g u r e Ik.  L e n g t h - d r y weight r e l a t i o n s h i p i n b r i n e shrimp fed with r i c e bran at various a e r a t i o n l e v e l s .  representing  the  Appendix s u r v i v a l and  three  IX  gives  shrimp  certain brine 3. the  tank  5-2  had  data  seventh  tank  day,  Figures  to the  number o f  alive  i n the  tank.  at a s p e c i f i c the  and  to  tanks  levels.  and  Figure  the  at  level  aeration  similarity  in  the  similarity  in  growth  tanks  and  result  those  shape  to on  r e l a t i o n s h i p s between  the  cylindri-  is  brine  reared  of t h e o v e r a l l  cylindri-conical  of  rate  there  of  f i s equal  raceways, r e s p e c t i v e l y at v a r i o u s a e r a t i o n  the  rates  the  alive  17 shows t h e v a r i a t i o n  f o r m , shows t h a t  i f for a  level,  culture period in  s i z e s of both  growth  aeration  f o u r t h day,  16 show t h e  for d i f f e r e n t raceway  Thus,  the  7.  mean l e n g t h of b r i n e s h r i m p and conical  days  t h e b r i n e s h r i m p were s t i l l  f i s equal  15  l e n g t h measurement,  parameters.  s h r i m p were a l l d e a d on  I f in another  on  i s equal  been  maintained  data.  the  water q u a l i t y  f in Equation brine  s e t s of  using no  tank  5. A s t a t i s t i c a l  the  length-time  shrimp  reared  i n raceways.  and  test  curve  the e x p o n e n t i a l  significant  means  for or  equation  difference  in  in cylindri-conical  Appendix  X  shows  the  of t h e a n a l y s i s .  Appendix production Figure production  XI  shows  for different 18 and  shows a  the  values  of  the  total  biomass  between  total  tanks. the  relationship  in different  s i z e s of  cylindri-conical  90  CO  1 1 1 I I 1 1 11 1 o aeration level 5 -* ' - + in + aeration level 4 - o  - •  • aeration level 3 * aeration level 2  •  a aeration level 1  00  CN -*  II  1 1 I I I 11  1 1  1 -  -  +  y o  LENGTH 2.4 3.0  +  -  0  +  -  CO  -  <q CD C3  1  0.0  Figure  i  i  0.64  1$.  i  i  i  i  i  1 1  I  i  l  l  i  I.I  l  l  1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 6.4 CULTURE PERIOD (day)  i l l  7.04  7.68  R e l a t i o n s h i p between l e n g t h and c u l t u r e p e r i o d f o r b r i n e shrimp f e d w i t h r i c e b r a n a t v a r i o u s a e r a t i o n l e v e l s i n c y l i n d r i - c o n i c a l tanks.  91  CO  I - o  I I 1 11 « aeration + aeration in - + - • • aeration 00 ~ X * aeration  1 11 1 1 1 1 1 1 1 level 5 level 4 level 3 level 2  1I I  1 1 I I1 -  —  o  o aeration level 1  CN ~ Q  LENGTH 2.4 3.Q  "e <°.  -  CO  -  CJ  -  •-  CO  -  CD CD CD  1 0.0  i  i  0.64  F i g u r e 16.  i  i  i  i  i  i  i  i  i  i  i  i  i  i  I I  1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 CULTURE PERIOD (day)  1  6.4  1  I I I  7.04 7.68  R e l a t i o n s h i p "between l e n g t h and c u l t u r e p e r i o d f o r b r i n e shrimp f e d w i t h r i c e b r a n a t v a r i o u s a e r a t i o n l e v e l s i n raceways.  92  CO  n  i  ° cylindriconical tank + raceway  o +  in  i—III—i—i—i—i—r~r i—i—III—i—i—i—i—i—r  CD  CO  I CN  CO  CD  I  0.0  I  I  I  I  J  J  0.64 1.28 1.92 2.56  I  I  22  I  I  I  I  L_J  3.84 4.48  CULTURE PERIOD  I  I  I  I  I  J  5.12 5.76 6.4 7.04  I  L  7,68  (day)  F i g u r e 17. Comparison o f l e n g t h - t i m e r e l a t i o n s h i p f o r b r i n e shrimp f e d w i t h r i c e b r a n i n c y l i n d r i - c o n i c a l tanks and raceways.  93  r-  O  I i i i 1111 o  m  + .  +  i i ii mi  i  29,2 cm diameter 61.0 cm diameter 107.0 cm diameter  -  i  —  i i i i 1111  i i i i 111  CO  i  jiii  1  + •  CD  ©  +  —  /  «-  o—  / • y  CD  /  CO  noN  -  -  / I I  V  J  -loo  i i i  5 7 10'  11  PR0DUC1  O  °  i  cn  +  -  +  T01  CE i  -  CD rLO  —  CO  T  CD  ~10  I -3  1 i 1i!nl 3  5 710  i  1 i 1 i 11 • 1 3  5  710-'  3  5  1  710  1 i 1 :111 3  5  710  (1/min)  K a L  F i g u r e 18.  i  Inl  R e l a t i o n s h i p "between t o t a l b r i n e shrimp biomass p r o d u c t i o n and K a i n c y l i n d r i - c o n i c a l t a n k s . T  9k  n  l I I l l ll  1—l  C3  LO CO  ® + •  l l I I  1—l  III  i—i  i  1111II  I  I I I I ll  — i — i  i  111  in  I  II I  I I  © 28.8 cm width +58.6 cm width *98.9 cm width  CD  r-  <D  LO .3  1  CO  O I—I I— OD ° < O=>rQL  CE  CO  r—  o  CD  r-» LO CO  J  10 -*  1 3  I  I i I I ll  5 710 "  1 J  I  3  I  I I I III  5 710-'  I  I  3  5 710 •  I  I  3  5 710  1  K a (1/min) L  Figure 19•  R e l a t i o n s h i p between t o t a l b r i n e shrimp biomass p r o d u c t i o n and K a i n raceways. T  t a n k s . The r e l a t i o n s h i p shows t h a t a t low K-^a is  an i n c r e a s e  A point  in total  production  i s r e a c h e d where f u r t h e r  significant relatively higher  effect high  on  l e v e l s of  aeration  the  in  associated  biomass  19  Figure biomass  shows  production  a similar  and  K^a  has  with  production  a f f e c t e d n e g a t i v e l y . T h i s shows t h e c a p a b i l i t y shrimp t o adapt t o such r e l a t i v e l y  K^a  the  was n o t  of the  brine  h o s t i l e environment. r e l a t i o n s h i p between  in  no  p r o d u c t i o n . Even w i t h t h e  turbulence  levels,  there  w i t h an i n c r e a s e i n K ^ a .  increase  the t o t a l  values  different  sizes  total  of  the  raceway. Figure  20 shows t h e s i m i l a r i t y  of the c y l i n d r i - c o n i c a l  t a n k and t h e r a c e w a y a s c u l t u r e s y s t e m s f o r b r i n e s h r i m p terms test  of  biomass  production  at similar  K^a's.  Statistical  ( A p p e n d i x X I I ) c o m p a r i n g t h e r e l a t i o n s h i p s between  total of two  biomass tank  basically sizes  production geometries  a n d K^a among t h e d i f f e r e n t shows  t h e same f o r a l l .  of c y l i n d r i - c o n i c a l  that  the  the  r a c e w a y - were c o m p a r e d .  the  s l o p i n g l i n e was:  the sizes  relationship  S i x s e t s of d a t a - t h r e e tank and t h r e e  f o r three  The common e q u a t i o n  in  is  f o r three s i z e s of  obtained f o r  l n P = 1 3.47 + 1 .443 l n K^a Eqn.  R  2  = 0.71  8-2  96  n  T  I I l i 111  in  °  ° cyl-con tank  ro  +  • raceway  l l — I  I I I 111  1  1—I I i l i n —  1  1—I I I I i M  I I I I I 11  I  -I ' I i I 111  •  I i I i I 11  cn  in CO  O  CD  Din CC Q-ro  CE V— rin  ro  -l  10  1 3  I I I  I  I ll  5 7 10"»  I  i  3  H  5 7 10  Ka L  Figure 20.  5 7 10 •  3  3  1  5 7 10  (1/min)  Comparison o f r e l a t i o n s h i p on t o t a l b r i n e shrimp biomass p r o d u c t i o n w i t h K a i n c y l i n d r i - c o n i c a l t a n k s and i n raceways. T  JJ  The h o r i z o n t a l p o r t i o n  i s g i v e n by:  P = 6600  where  P  Eqn.  f o r both equations i s the t o t a l  8-3  biomass p r o d u c t i o n  i n ug/100 m l . The r e s u l t s s u g g e s t t h a t f o r any size  range  considered  tank c o n f i g u r a t i o n s , brine  governed  system  biomass  production  i n the  T  length  of  system  would  in  system  performance  time _ over which the b r i n e  mortality.  survive  Figure  21  before shows  l e n g t h of c u l t u r e p e r i o d  the the  before  variation  onset  of  are  no s i g n i f i c a n t  for  tank  raceways.  aeration  tank and t h e raceway  levels  a r e shown  the s i x sets of  geometries-  differences  b e f o r e the onset of m o r t a l i t y  of the average  tank.  a n a l y s i s comparing two  total  s i z e s of c y l i n d r i - c o n i c a l  f o r the various tanks at s i m i l a r  3 f o r each of the  of  with  r e l a t i o n s h i p i s shown i n F i g u r e 22  i n F i g u r e 23. S t a t i s t i c a l  i n the c u l t u r e  mortality  A similar  for both the c y l i n d r i - c o n i c a l  different  from the average  occurence  level  means  in different  for  shrimp  aeration  there  (with  i s m a i n l y d e p e n d e n t upon a n d i s  t a n k s h a v i n g s i m i l a r K^a's may a l s o be s e e n  data-  tank  by t h e same r e l a t i o n s h i p w i t h K a .  The s i m i l a r i t y  The  of  i n t h e s t u d y ) o r f o r a n y o f t h e two  the t o t a l  shrimp c u l t u r e  size  shows  that  i n t h e l e n g t h of time  i n tanks having  similar  K a. Li  The s t a t i s t i c a l  analysis  i s shown i n A p p e n d i x  XIII.  98  1 - 0 CO CO  II  1 1 1 1 1 1 1 1 11 ° 29.2 cm diameter + 61.0 cm diameter  1  -+ -•  1 1  11 1 1 1 1  -  -  +  •107.0 cm diameter  CD  11  in —  >>tn  Q -* O H OT in LUoo QL  ©  -  -  + •  -  -  ©  —  -  •  LLIOO ^CN"  —  4  3--  + -  1 i 0.0  0.4  i  I I  0.8  i i 1.2  i  I I I  1.6  2.0  iI 2.4  i i  I  2.8  3.2  ii 3.6  i i i i 4.0  4.4  ii 4.8  AERATION LEVEL F i g u r e 2 1 . Average l e n g t h o f time b e f o r e onset o f mass m o r t a l i t y o f b r i n e shrimp as a f u n c t i o n o f aeration l e v e l i n c y l i n d r i - c o n i c a l tanks.  99  1 _ o  1  1 11  1  1 1 11  C CO O- +  ° 2 8 . 8 cm width + 58.6 cm width  - •  •98.9 cm width  i 1  1  1 11  1  1 1 11 •  1 1  +  CD in  ro V -  +  —  Q O CCin  o  •  "O  •  o  SCN'  +  •  +  CM  -  -  1 0.0  1  0.4  1  1 0.8  1 1 1.2  1  1 1.6  1  1 1  1 1  1  1 11  32 AERRTION LEVEL 2.0  2.4  2.8  1 3.6  1  1  4.0  1 1  4.4  1 1  4.8  F i g u r e 22. Average l e n g t h o f time b e f o r e onset o f mass m o r t a l i t y o f b r i n e shrimp as a f u n c t i o n o f a e r a t i o n l e v e l i n raceways.  100  1 CO  1  1  I I  I I  _ o  ° cyl-conlcal  -+  + raceway  1  1 11  11  1 1 11  1 1 1 11 o  <q -  +  in  >>co co V -a  11  o  + o M  CC\n LUco  a. UJ  -  3 -  -  ?  CO  -  + o  -  -  1 1 1 1 1 1 11 0.0  0.4  0.8  1.2  1.6  I l l  2.0  11 2.4  t  2.8  i  l  l  22  II 3.6  I II 4.0  4.4  11 4.8  AERATION LEVEL F i g u r e 23.  Comparison o f average l e n g t h o f time b e f o r e o n s e t o f mass m o r t a l i t y o f b r i n e shrimp i n c y l i n d r i - c o n i c a l t a n k s and i n raceways.  101  The  variation  of  t h e d i s s o l v e d oxygen i n t h e c u l t u r e  system with c u l t u r e p e r i o d Figures  24  and  i s shown f o r d i f f e r e n t  25. The f i g u r e s show t h a t  l e v e l s t h e DO d e c r e a s e s w i t h greater  a t lower a e r a t i o n  for d i f f e r e n t sizes aeration use  levels.  of For  time.  both  tank  where T i s t h e c u l t u r e p e r i o d constants.  period  Similarity  was t e s t e d  obtained The  + b-i T  by  means  in  various analysis,  E q n . 8-4  £  ^  b ,  the  values  with  established  constants  those f o r  the  raceway  at  time  is  the v a r i a t i o n  b a s i c a l l y t h e same i n  levels,  similarity  of  b e c a u s e o f l e s s number o f DO  variation readings  onset of m o r t a l i t y .  B o s s u y t and S o r g e l o o s resistant  of  culture  t a n k and i n t h e r a c e w a y a t s i m i l a r a e r a t i o n  l e v e l s . At lower a e r a t i o n  to earlier  and  l e v e l s . A p p e n d i x X I V shows t h e a n a l y s i s f o r  oxygen  cylindri-conical  b^  of the data.  l e v e l s 4 and 5. The r e s u l t s show t h a t  dissolved  not  2  DO f o r t h e d i f f e r e n t s i z e s o f c y l i n d r i -  aeration  aeration  b T 0  after fitting  various  very  at  o f v a r i a t i o n i n DO w i t h  comparing  i n the equation  +  i n day, while  t a n k s were compared w i t h  due  26 shows t h e means  geometries  1  conical  was  is  was made o f a c u r v e o f t h e f o r m :  O  in  decrease  the purpose of s t a t i s t i c a l  DO = b  are  Figure  in  for a l l aeration  The r a t e o f  levels.  tanks  (1980) r e p o r t e d  that Artemia  t o low o x y g e n l e v e l s a n d s t i l l  survive  are at 2  102  s I—j—i—i—i—i—i—i—i—III—i—i—ii  -° 5 -+ _ -• \od ~ x 3 ~D  i—i—i  a aeration level 1 + aeration level 2 • aeration level 3 x aeration level 4 • aeration level 5  i  i i  i—i—r  UJ  g I  i i i  °0,0  0.58  I I  1.12  i 1.68  i i  I I  2.24  2.8  I  ' 3.36  '  ' 3.92  i  I I  4.48  i l I l l l l I 5.04  5.6  6.16  6.72  CULTURE PERIOD (day) F i g u r e 24a. V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e period at different aeration l e v e l s i n c y l i n d r i c o n i c a l t a n k s (29.2 cm d i a m e t e r ) .  103  s  r—i—i—i—i—i—|—i—j—II  - © CO + - •  • aeration level 3  \cd  ~x  x r a t l o n level 2  3^  ~a  m aeration level 1  _ |  III—i—i—i—i—i—i—i—i—i—i—r  o aeration level 5 + aeration level 4  CD  r-*  o.  ae  ~  I  °fl,0  Figure  I  I  I  I  I  I  I  I  I  I  »  I  '  I  '  I  I  I  I  I  0.56 1.12 1.68 224 2.8 3.36 3.92 4.48 5.04 5.6 CULTURE PERIOD (day) 24b.  I  I  I  L _  6.16 6.72  V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e period at d i f f e r e n t aeration l e v e l s i n c y l i n d r i c o n i c a l tanks (61.0 cm d i a m e t e r ) .  104  1 1 1 II1 i i i i i l ® aeration level 5 4 + aeration level 4 • • aeration level 3 X * aeration level 2 • * aeration level 1  1 1I I  1 1  1l i l l  1  _ o CO  -  CO  ~  cn EE  " ' o  -  n  UJ i— <=> (S><o  >-  -  CO  CD >  4" \ ^  UJin CC ZD I-CO  ; CO  i  ^ \ 4 •  \  -  CD CN  4^  1  0.0  i  i i i  0.56 1.12  ii i 1.68  1 1 11  2 24  2.8  1 1 1  1  I  3.36 3.92 4.48 5.04 5.6  CULTURE PERIOD F i g u r e 24c.  1I I  I  I  !  6.16  1 6.72  (day)  V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e period at different aeration l e v e l s i n c y l i n d r i c o n i c a l tanks (107.0 cm d i a m e t e r ) .  105  cn  oo cn  UJ l-R CO co >CO  UJ  or  5  ZD  M O  0.0  0.58  1.12  1.68  2.24  2.8  3.36  3.92  CULTURE PERIOD F i g u r e 25a.  4.48  5.04  5.6  6.16  6.72  (day)  V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d a t d i f f e r e n t a e r a t i o n l e v e l s i n raceways (28.8 cm w i d t h ) .  106  i—i—rn—i—i—i ° aeration level + aeration level • aeration level x aeration level ° aeration level  i _ o - +  00  03  cn  i 5 4 3 2 1  i—i—i—r  i  m  I  i  i  i  i r  I— <=». COco >CO o iLlui cn =3  CJ  ,c4  J  0.0  0.58  I  I  1.12  L  J  I  L  J_J  l  l  I _1 I I l - l I  2.24 2.8 3.36 3.92 4.48 5.04 5.6 6.16 CULTURE PERIOD  -i  6.72  (day)  F i g u r e 25b. V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d a t d i f f e r e n t a e r a t i o n l e v e l s i n raceways (58.6 cm w i d t h ) .  107  CD  s'  I—rn—i—i—i—i—j—i—i—i—i—i—i—J—i—i—i—T—i—i  - o  §  - + _ - • \cd ~ x 3 " o  I 0.0  I  i  © aeration level 5  + aeration • aeration x aeration • aeration  I  I  I  I  0.56 1.12  I  level level level level  I  I  r  4 3 2 1  I  I  1.68 2.24 2.8  I  I  I  I  I  I  I  I  I  I  3.36 3.92 4.48 5.04 5.6  CULTURE PERIOD Figure 2 5 c  rn  I  I  I  I  6.16 8.72  (day)  V a r i a t i o n o f d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d a t d i f f e r e n t a e r a t i o n l e v e l s i n raceways (98.9 cm w i d t h ) .  108  m i i i I i i I r • cylindri-conical tank + raceway  T ^ I  CD  ° +  i  1  i  r  "m  i  i  i  r  CO  UJ t- o CO<o >CO UJ  S  or ZD O  t—I  o  i  0.0  i  0.58  i  1.12  i  t  _l  l l I L  1.68 2.24 2.8  I I I I I I L  3.36 3.92 4.48 5.04 5.6  CULTURE PERIOD F i g u r e 26.  J  6.16 6.72  (day)  Comparison o f v a r i a t i o n i n d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d i n c y l i n d r i - c o n i c a l t a n k s and i n raceways.  109  ppm  of  dissolved  experiments ppm,  there  It  oxygen numerous b i o - c h e m i c a l  Levels nitrogen  and  n i t r i t e - n i t r o g e n are  observed  i n the c u l t u r e water  of  respectively.  culture  w a t e r was  The  aeration  (1980)  further  indicated  greatly  influenced specific  by o t h e r  cited  s h r i m p do n o t s u r v i v e salinity ranged  temperature v a r i e d VII  culture period at  various  also  influenced  and  of  place  by  the  The  0.99  and  0.07  from  limit  shows  the  be  34  below  7.0.  the  term  ppt  for this  of  while  that  the water  C.  variation  levels.  is  especially  indicated  of  BOD  i n d i f f e r e n t s i z e s of c y l i n d r i aeration  Sorgeloos  given  who  during to  was  ammonia t o x i c i t y  can  a t pH v a l u e s  f r o m 25 t o 31  monitored  and  parameters,  Provasoli  30  N,  decreased  pH  Bossuyt  since  abiotic  levels  of  ppm  r a t e o f d e c r e a s e i n pH  levels. that  The  nitrite-nitrogen  minimum v a l u e  tolerance  p a r a m e t e r . They a l s o  Table  were  7.0.  at lower  investigation  2  ammonia-  pH o f t h e c u l t u r e s y s t e m g e n e r a l l y  the c u l t u r e p e r i o d .  Water  processes take  ammonia-nitrogen  greater  brine  low l e v e l s  of d i s s o l v e d oxygen i n the c u l t u r e w a t e r .  levels  no  the  f u r t h e r below  w a t e r q u a l i t y p a r a m e t e r s ; pH,  maximum  pH,  during  t o the cause of m o r t a l i t y .  of o t h e r  concentration  from  observed  an o n s e t o f m o r t a l i t y . A t v e r y  which c o n t r i b u t e  with  was  t h a t when o x y g e n l e v e l s d r o p p e d was  dissolved  oxygen.  There  was  no  values conical  with tank  significant  110  Table V I I .  V a r i a t i o n o f BOD a t v a r i o u s a e r a t i o n l e v e l s with culture period i n d i f f e r e n t sizes of c y l i n d r i - c o n i c a l tank.  TANK S I Z E  DAY OF CULTURE 2  4  CS1  5.27  CS3  5.20  140.25  CS5  11.00  58.85  CM1  10.07  CM3  5.53  92.25  6.60  51.25  CM5 CL1  • .  6  55.13  58.13  7.80  CL3  6.50  CL5  10.07  111.25" 66.45  55.50  Ill  difference tanks  i n BOD l e v e l s  m a i n t a i n e d at  before  the  of  increase  aeration  fourth  from day 2 t o  in a l l  day.  aeration  aeration  level  5.  aeration  level  5 had l i v e  these the  tanks  On the  were  not  day,  the  amount  decomposition considerable fourth  mass  greater  day,  only  day. A l l mortality  increase  l e v e l s ' 3 and 5;  i n BOD  and the  than  rate  that  at  tanks  maintained  at  b r i n e s h r i m p and t h e  BOD l e v e l s  on  significantly  different  of  dissolved  excess  feed  and oxygen there  with  from  t h o s e on  stabilization sixth  aeration  level  that  with  even of  from e x c e s s  the  or  BOD v a l u e s  rates.  second  c o m i n g from  level  i n the  at  5 suggest the  or a n i m a l  Oxygen i s  not  On  the  amount  of  aeration  of  the  waste was  limiting.  increase  aeration  level  that  the  dissolved cells)  a necessary  is  factor  process. BOD l e v e l  d i d not  change  a d d i t i o n of  dissolved feed  great  not  substances  day the 5  was  stable  lower a e r a t i o n  on t h e  from m e t a b o l i c  conversion  slower  amount  more  that  matter  (or  into  On t h e  a  those.at  organics  this  or  The h i g h e r  stabilization  at  organic  supply  was  organics.  compared  rate  in T a b l e VII suggest  of  of  day,  dissolved  in  had  a rapid  3 was  sixth  second  fourth day. The BOD v a l u e s  3  T h e r e was  level  on t h e 1  level  day 4 i n a e r a t i o n  at  tanks  organics  in tanks  maintained  significantly.  feed  into  i n the  from m e t a b o l i t e s  the  This  d i d not  means  system,  c u l t u r e water increase.  at  the  coming This  112  suggests  that  the  feed  added t o the  i n t o more  animal  organisms  which have f l o u r i s h e d  was  converted  cells  i n t o more  This characteristic makes  by  the  stable  of A r t e m i a  brine  F i g u r e 27 culture  other  i n the c u l t u r e tank,  and/or  a s an  feed  shows t h a t t h e r e variation  of  efficient  only.  significant  t h e two  s y s t e m s . The  oxygen  the  effect  on  presence  the  The  result  water per  to  of  XV)  the  DO  that  the  dissolved  of'  the  a certain  amount of  other metabolic amount o f  feed  products  f e e d was  is left  system.  shown i n F i g u r e 28.  maintain  the  There  with same  the  to achieve  t a n k s , t h e power n e c e s s a r y  u n i t volume r e q u i r e m e n t  order  other  system i n terms of oxygen consumption  t h e w a t e r c o l u m n . In o r d e r  is  two  the  same as when t h a t c e r t a i n  size  the  in  suggests  w i t h time  Power i s r e q u i r e d t o .push a i r t h r o u g h  different  f e e d and  in  that  t o decompose i n t h e  aerate  or  a l s o suggests  of b r i n e s h r i m p f e e d i n g on  the  levels  difference  result  t o grow and' g i v i n g o f f f e c e s and just  feeder  a n a l y s i s (Appendix  the v a r i a t i o n  system.  filter  i n e x p e n s i v e waste  and  Statistical  i s no  determines  rapidly.  sources.  containing Artemia  feed mainly in  quite  shows t h e c o m p a r i s o n o f t h e DO  t a n k s , one  containing  shrimp  substances  i n t o v a l u a b l e food  converted and  i t a d e s i r a b l e medium t o c o n v e r t  by-products  s y s t e m was  i s an  an  t h e same K^a  per  T  to in  u n i t volume of  i n c r e a s e i n power  increase K a.  spargers  This  in has  size  in  certain  113  CO  1 1 1 I I I oartemia + - + + Feed only  <N  1  I I I  _ o  f  i  i  i  i  1  I I I  1 1 11  1 1  eed —  CO  cn  CO  in  -  a  -  *  o  UJ o >-  x°. o  "*  o  -  —  ?  \  o  —  LU<N  _J  o CO"* CO c4  +  -  v  \.  f  -  *  + CO  8 CO  1  0.0  1  I I  1 1  i  i  i  i  1  1  I I  t  i  l  l  1  0.48 0.96 1.44 1.92 2.4 2.88 3.36 3.84 4.32 CULTURE PERIOD  F i g u r e 2?.  I I  1  1 1  4.8 5.28 5.76  (day)  Comparison o f v a r i a t i o n i n d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d i n a c u l t u r e system c o n t a i n i n g "brine shrimp w i t h f e e d and i n t h e o t h e r c o n t a i n i n g feed only.  114  T  °K a=.045; + K a=,045; • K a=.015; xK a=.015;  e  L  +  L  in  L  x  I  1 I I I I I  L  I  III  II  I  I I I I  raceway cyl-con raceway cyl-con  ZD  _(> ro  0_  re  O  S  >  I— M  S\ » a: UJ O  ^  I  "10  1  .  i  J 3  t  i , i ,, i 5  7  io*  .  i  ,  3  TANK SIZE F i g u r e 28.  i , i , , 5  7  i 10»  ,  i 3  • i i i i , i 5  7 10<  (L)  R e l a t i o n s h i p between power p e r u n i t volume and tank s i z e f o r s i m i l a r K-^a i n c y l i n d r i - c o n i c a l t a n k s and raceways.  115  s i g n i f i c a n c e on t h e e c o n o m i c s o f t h e s e t - u p a n d i s d i s c u s s e d i n Chapter IX.  Conclusions  1.  Near  production  stagnation  in  a  brine  conditions,  the  total  biomass  shrimp c u l t u r e system f e d w i t h  rice  b r a n c a n be e x p r e s s e d a s a f u n c t i o n o f K-^a. 2. The r e l a t i o n s h i p s t a t e d the  cylindri-conical  i n ( 1 . ) i s t h e same f o r b o t h  t a n k and t h e r a c e w a y .  3. The same r e l a t i o n s h i p h o l d s t r u e of  cylindri-conical  effective  scale-up  tank  in different  sizes  a n d r a c e w a y . K-^a i s t h e r e f o r e  criterion  for  brine  shrimp  an  culture  systems, 4.  The  negatively the  biological  a f f e c t e d , by r e l a t i v e l y  shrimp i s not  high: aeration  levels  in  c u l t u r e system, as used i n the s t u d y . 5.  variation  There  is  with  time  s h r i m p and f e e d 6. same  performance of b r i n e  significant  difference  in  Ju  system.  in  the  i n t h e two s y s t e m s ; one c o n t a i n i n g  and the other  containing  feed  The power p e r u n i t v o l u m e r e q u i r e d  K a  culture  no  different  tanks  increases  to  DO  brine  only. maintain  with  the  s i z e of t h e  CHAPTER I X ECONOMIC ASPECTS OF SCALING-UP BRINE SHRIMP CULTURE SYSTEMS  T h e r e i s a common n o t i o n t h a t i n c r e a s i n g production  units  wealth  experience  of  substantiate  provides  this  economies  in  the  notion.  various  However,  I t i s therefore necessary  f a c t o r s which made  on  various  fields  i t is  suc;h  which  important  can to  t o t h i s common  to consider a l l  important  s c a l e o f p r o d u c t i o n o r on s i z e o f u n i t s  The c o n d u c t  factors  availablej  of  i n f l u e n c e production cost before a d e c i s i o n i s  a specific  t o be u s e d .  size  of s c a l e . T h e r e i s a  a p p r e c i a t e t h a t t h e r e may be some l i m i t a t i o n s notion.  the  is  of a thorough  even  more n e c e s s a r y  t h e r e i s an i n d i c a t i o n  limitations.  volume a n d t a n k  size  The  investigation  o f some  i f from  of  the  some d a t a  possibilities  of  r e l a t i o n s h i p between power p e r u n i t  shown i n F i g u r e 28  i s an  example  of  such a p o s s i b l e l i m i t a t i o n . Figure  28  shows  that  f o r both the c y l i n d r i -  conical  t a n k a n d t h e r a c e w a y , i n o r d e r t o m a i n t a i n t h e same l e v e l o f K^a unit  in larger volume  s i z e t a n k s , t h e r e i s an i n c r e a s e i n power requirement.  i n t h e raceway than  T h i s power r e q u i r e m e n t  i n the c y l i n d r i - c o n i c a l  tank,  per  i s greater f o r the  same K,. a . Three  cases are presented  a s e x a m p l e s t o c o n s i d e r some  117  economic  aspects  when  scaling-up  systems. I t i s important biomass  production  to note  from  brine  t h a t t h e use  this  study  r e p r e s e n t a t i v e of the a c t u a l o p e r a t i o n were o b t a i n e d to an  verify  from experiments,  the a p p l i c a b i l i t y  investigation  which  were  to  to  s t a g n a t i o n c o n d i t i o n s and  system.  The  i n c r e a s e d by  total  because  on  not  truly  these  data  t h e o b j e c t i v e s of w h i c h were  study  these  on  The  not  s c a l e - u p were n e a r  were a c h i e v e d  production  and  conditions  by e m p l o y i n g  w a t e r e x c h a n g e nor a  biomass  employing  of t h e d a t a is  production.  the  batch c u l t u r e system without  culture  of a s c a l e - u p c r i t e r i o n  maximize  relevant  shrimp  could  a  recycling easily  a l t e r n a t i v e c u l t u r e techniques  be like;  semi-open system, which i n v o l v e s f r e q u e n t water change, or a closed  recirculating  treatment  system.  involve other  system, employing However,  extraneous  these  a water r e c y c l i n g  c u l t u r e techniques  f a c t o r s making  it difficult  t h e d e s i r e d h y p o t h e s i s . Anyway, i f t h e p u r p o s e  is  determine  to  in  the  the s i z e of tanks used, the d a t a  not d i s t o r t and  the  A.  o f t a n k s or s c a l e o f  three cases  Scale-up  tanks  s i z e of t h e  can  be  used  but  on  presented  test  just  to  variation and  would cost  production.  are:  t h e b a s i s o f m a i n t a i n i n g t h e same number  increasing production  tanks.  would  to  the g e n e r a l r e l a t i o n s h i p between p r o d u c t i o n  size  The  of  r e l a t i v e e c o n o m i e s o f s c a l e due  and  through  i n c r e a s e i n the  118  B. of  S c a l e - u p on  production  the  but  b a s i s of m a i n t a i n i n g  varying  the  size  (and  the  same  level  number) o f  tanks  used. C.  C o m p a r i s o n of  r a c e w a y on The  the  the  cylindri-conical  b a s i s of p r o d u c t i o n  components  cost  bf p r o d u c t i o n  per  tank  and  u n i t of  cost considered  the  biomass. were  the  following: 1. F i x e d  costs a.  Depreciation  b.  I n t e r e s t on  2. O p e r a t i n g  and  loan -  maintenance  a.  Labor  b.  Supplies  c.  Power  and  materials  d. M a i n t e n a n c e and The  following  considered 1.  AQD,  brine  shrimp  and  culture  f o r a prawn h a t c h e r y  1984).  prawn  informat ion  repair assumptions  were  i n the c a l c u l a t i o n s :  The  facility  costs  The  postlarvae.  brine Site  system  shrimp of  the  system  is  a  support  ( P l a t o n , 1978;  SEAFDEC  biomass i s s u p p l i e d to hatchery  is  the  in  the  a  batch  Philippines. 2. process,  The  brine  shrimp  is  e m p t y i n g the c o n t e n t s  s e v e n - d a y c u l t u r e p e r i o d and  reared  i n t a n k s on  of a tank a t  f e d t o prawn  the  end  postlarvae.  of  a  119  3.  The  scheduled  stocking  of  brine  s u c h t h a t one t a n k  i s due f o r h a r v e s t  of  o p e r a t i o n . The e m p t i e d t a n k  and  allowed  cycle  i s allowed  day  size  examples, the  f o r harvest  5. A l o a n e q u i v a l e n t  culture,  number  6.  The  total of  a  each day.  to the  per year.  initial  investment,  of t h e a n n u a l o p e r a t i n g and maintenance c o s t , 15% i n t e r e s t  One  t a n k i s made i n m u l t i p l e s o f t e n so t h a t a  4. T h e r e a r e 280 d a y s o f o p e r a t i o n  years.  day  r e s t o c k i n g f o r the next batch.  t e n days per c y c l e . In these  t a n k c a n be s c h e d u l e d  to  on e a c h  d i s i n f e c t i o n a n d two-day d r y i n g p e r i o d s , o r a  particular  50%  i n tanks i s  t o be d i s i n f e c t e d  i n t h e use o f a t a n k c o n s i s t s o f s e v e n -  one-day of  to dry before  shrimp n a u p l i i  plus  i s subject  rate.  economic  life  of a l l p h y s i c a l f a c i l i t i e s  Yearly depreciation i s equivalent  t o 20%  of  is 5  initial  investment. 7.  The  type  of  tank  used  f o r Cases A and B i s t h e  raceway. 8. The m a t e r i a l u s e d f o r t h e t a n k s wooden f r a m e t o p r o v i d e 9. labor  As  man-hours.  facility  cases,  total  the labor  labor  r a t e of P 8 , 0 0 ( P h i l )  cost  fiberglass  input is  f o r one man.  with  support.  f o r a prawn h a t c h e r y ,  i s s u p p l i e d by p e r s o n n e l  In these The  adequate s t r u c t u r a l  support  requirement  hatchery.  hourly  a  is  assigned is  the  with the  presented  as  c a l c u l a t e d u s i n g an  120  10. The c o s t minute  is  p e r day r o u n d o f t h e h a t c h e r y  constant  based  on  a  thirty-  manager a n d i s assumed  f o r any s c a l e o f o p e r a t i o n .  11. The c o s t of  for supervision  bf r i c e bran  i s P1.00 p e r kg a n d t h e  cost  b r i n e s h r i m p c y s t s i s P I , 2 0 0 p e r 425-g c a n . 12. The c o s t 13.  initial  o f power i s P2.00 p e r KW-HR.  M a i n t e n a n c e and r e p a i r c o s t  i s equivalent  t o 5% o f  investment.  14. The b i o m a s s p r o d u c t i o n , i s 60 g o f d r y  biomass  per  c u b i c meter of c u l t u r e system.  Table  VIII  production  costs  four 29  scales shows  the  trend  cost  corresponding  increase  production  level  of  cost  For  in  the  A  the estimates  of u n i t  in size curve  level  of  of  the  Curve A i n F i g u r e  relationship  the  between  unit  production  (with  o f t a n k s ) . The shape  of  the  s l o p e s downward t o t h e r i g h t .  decrease  production  weight per year. l e v e l s of  Case  10 u n i t s o f t a n k s .  and  There i s a c o n s i d e r a b l e the  for  f o r four s c a l e s of o p e r a t i o n , each  employing  production  unit  shows  i n unit production  increases  from  cost  as  1680 t o 8400 g d r y  The r a t e o f d e c r e a s e becomes l e s s a t h i g h e r  production. C a s e B,  production  costs  Table  IX  for  three  shows  the  estimates  s i z e s of tanks  (10 0-,  of  unit  500- and  121  Table V I I I .  Estimate of production cost f o r scaling-up through i n c r e a s e i n s i z e o f tank m a i n t a i n i n g t h e number o f t a n k s c o n s t a n t ( C a s e A ) . .  TANK S I Z E , L (10 u n i t s p e r s i z e ) 500  100 Fixed Costs  1000  2000  ( p e r annum)  1 . D.eprec i a t i o n  1000.00  3000.00  5000.00  8000.00  2.  1421.45  3647.06  6087.67  10212.51  Interest  Operating & Maintenance  Costs  ( p e r annum)  1. S a l a r i e s a. L a b o r  4480.00  6720.00  8960.00  11200.00  b. S u p e r v i s i o n .  2800.00  2800.00  2800.00  2800.00  43.12  215.60  431.20  862.40  790.60  3953.00  7906.00  15812.00  60.00  180.00  360.00  720.00  4008.88  9461.76  22772.37  750.00  1250.00  2000.00  2. S u p p l i e s & M a t e r i a l s a. Feed b. B r i n e s h r i m p  3. Power a. Water b. A i r  4.  529.00  Maintenance &  repair  250.00  122  T o t a l P r o d u c t i o n Cost ( p e r annum)  T o t a l Biomass (g-dry  11374.17  25274.54  42256.63  74379.28  1680  8400  16800  33600  Production  weight)  Production Cost/g (P p e r g)  6.77  3.01  2.51  2.21  Table IX.  Estimate of production cost f o r scaling-up by m a i n t a i n i n g t h e same l e v e l o f p r o d u c t i o n but v a r y i n g t h e s i z e o f t a n k s used (Case B ) ,  TANK S I Z E , L  1 00 (Number o f t a n k s )  (100)  500  1000  (20)  (10)  F i x e d C o s t s ( p e r annum) 1. D e p r e c i a t i on 2. I n t e r e s t  10000.00  6000.00  5000.00  9958.96  6917.17  6087.67  13440.00  11200.00  8960.00  2800.00  2800.00  2800.00  431.20  431.20  431.20  7906.00  7906.00  7906.00  419.00  374.00  360.00  5290.00  8017.76  9461.76  2500.00  1500.00  1250.00  O p e r a t i n g & M a i n t e n a n c e C o s t s ( p e r annum) 1. S a l a r i e s a. L a b o r b. S u p e r v i s i o n  2. S u p p l i e s  & Materials  a. F e e d b. B r i n e  shrimp  3. Power a. Wa t e r b. A i r  4. M a i n t e n a n c e & repa i r  Total Production (per annum)  Cost  T o t a l Biomass P r o d u c t i o n (g-dry weight)  Production cost/g (P p e r g)  52745.16  45146.13  42256.  16800  16800  16800  3.14  2.69  2.5  125  n — r n — i — i — r i—r~i—i—i—i—i—i—i «—©case fl r- +•+ case B  CO  ,  i i i r  i  I I — r  , CD  +-• 00*  '3  TD r -  I Ol OL  <D  COR O u"> CJ o V t—I I— CJ  CJ  ZD co Q O  Pr ° 0-CNI  i  "0 0  i  24 0  I  l  48.0  i  i  72.0  I  l  36.0  i  '  »  i - l i  i—i—i—i—i—i—i—i—L  120.0 144.0 168.0 192.0 216.0 240.0 264.0 288.0  TANK SIZE Figure 2 9 .  i  •(!_) (X10 ) 1  R e l a t i o n s h i p "between u n i t p r o d u c t i o n c o s t and tank s i z e i n s c a l e - u p o f b r i n e shrimp c u l t u r e system.  126  1000-L) a t t h e same l e v e l 29  shows t h e v a r i a t i o n  tanks, maintaining unit  production  of  of  range  considered  in  constant.  increase  The  i n t h e s i z e of  considered f o r C a s e s A and B, f o r  in  Figure  c o s t w i t h s i z e of  production  cost decreases with  r e s u l t s obtained  sizes  Curve B  in unit production  the l e v e l  tanks, over the s i z e The  of p r o d u c t i o n .  the  study,  may  the  range  be s u m m a r i z e d as  follows: 1. T h e r e i s a r e d u c t i o n increase  in  s i z e of  tanks.  in unit  s c a l e of p r o d u c t i o n  2. T h e r e i s a d e c r e a s e i n increase  i n s i z e of t a n k s  Table  C).  production tank,  imposed  of  production.  a cylindri-  with that  limitation  by  to  i n the c y l i n d r i -  the  increase  conical  conical  significant. general  in size  p r i n c i p l e of  which  could  t h e r e l a t i o n s h i p o f power p e r u n i t  the other  28  to offset  the  of the u n i t p r o d u c t i o n  sizes considered  unit  with  lower  significant  of  of  cost  r e s u l t s show t h a t t h e r a c e w a y g i v e s a  r e q u i r e m e n t a s shown i n F i g u r e  shape  production  cost  economies of s c a l e w i t h been  basis  the d i f f e r e n c e i s not  possible  with  production,  c o s t compared  although A  unit  X shows a c o m p a r i s o n b e t w e e n  The  cost  a c c o m p a n i e d by i n c r e a s e i n  a t t h e same l e v e l  t a n k and a r a c e w a y on t h e (Case  production  i n the  is  not  after  c o s t components  study.  cost curve,  have volume  a l l that  to influence f o r the range  T a b l e X.  Comparison o f p r o d u c t i o n cost i n c y l i d r i c o n i c a l tank and raceway.  Cyl-con  Size (L) Number o f t a n k s .  Raceway  1 000  1 000  10  10  F i x e d C o s t s ( p e r annum) 1 . D e p r e c i a t i on  8000.00  5000.00  2.  8073.78  6087.67  Interest  O p e r a t i n g & M a i n t e n a n c e C o s t s ( p e r annum) 1. S a l a r i e s a. L a b o r  8960.00  8960.00  b. S u p e r v i s i o n  2800.00  2800.00  431.20  431.20  7906.00  7906.00  360.00  360.00  5193.22  9461 .76  2000.00  1250.00  2. S u p p l i e s & M a t e r i a l s a. F e e d b. B r i n e s h r i m p 3. Power a. W a t e r b. A i r  4. M a i n t e n a n c e & repa i r  Total Production ( p e r annum)  Cost  T o t a l Biomass P r o d u c t i o n (g-dry weight)  Production cost/g (P p e r g)  43724.20  42256.  16800  16800  2.60  2.51  129  CHAPTER X SUMMARY OF RESULTS AND  CONCLUSIONS  As a summary, the f o l l o w i n g are the s i g n i f i c a n t  results  and c o n c l u s i o n s obtained from t h i s study: 1. In the experiment which effects  of  the  two  basic  investigated mechanisms  a g i t a t i o n ) a s s o c i a t e d with gas b u b b l i n g performance  of  higher biomass relatively  brine  production  higher  was  biomass  the  i t was observed that  achieved  in  systems  correlation  with in the  between  and mean d i s s o l v e d oxygen  in the  When o p e r a t i n g a p a r t i c u l a r b r i n e shrimp c u l t u r e  system  culture  production  high  and  biological  c o n c e n t r a t i o n of d i s s o l v e d oxygen  c u l t u r e system. There was a very total  relative  (oxygenation on  shrimp c u l t u r e ,  the  system.  f o r maximum biomass p r o d u c t i o n , the system  stagnation.  limiting  condition  is  Near s t a g n a t i o n c o n d i t i o n s , the present  r e s u l t s i n d i c a t e that oxygenation c a p a c i t y  is  the  primary  i n d i c a t o r of the c u l t u r e system performance. 2. was  o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t ,  K^a,  c o n s i d e r e d a measure of the oxygenation c a p a c i t y of  the  culture  The  system.  The  correlations  for  o p e r a t i n g parameters were shown to i n v o l v e Reynolds  numbers,  for  K^a  in  the  terms  Froude  of and  both the c y l i n d r i - c o n i c a l tanks and  raceways, although the i n f l u e n c e of  the  Froude  number  is  greater  than  i n f l u e n c e of  t h a t of t h e R e y n o l d s number. F u r t h e r m o r e , t h e R e y n o l d s number on K^a  c a s e of c y l i n d r i - c o n i c a l 3.  Scaling  equations  c o r r e l a t i o n s obtained from  the  tanks  than  were  formulated  scaling  between  smaller  in  the  from  the  i n raceways. then  i n ( 2 ) . The  relationship  is  the  K a  equations'obtained  and  the  operating  Li  p a r a m e t e r s u s i n g a i r and For  For  cylindri-conical  scaling  requirement  Q  2  /  Q l  -  Q  2  /  Q l  <D  =  2  in different  (D  /  D l  )»•»  no  sizes  /  D l  )'•»  5.  There  6.  tanks  experiments.  for  d i f f e r e n c e i n K^a  conditions  for fresh  prevailing  in  the  investigation.  was  weight r e l a t i o n s h i p aeration  the a i r flow  of the c y l i n d r i - c o n i c a l  significant  f o r sea w a t e r  system d u r i n g the  2  were used t o e s t i m a t e  raceways i n the c u l t u r e  w a t e r and  no  significant  for brine  difference in  shrimp  reared  at  length-dry different  levels. Near  s t a g n a t i o n c o n d i t i o n s , the b r i n e shrimp  biomass p r o d u c t i o n  was  tanks:  equations  4. T h e r e was  K^a.  are;  raceways:  These  and  w a t e r as c o n t a c t i n g f l u i d s  This  was  found  increase tapered  maintained  with  to  increase  o f f and  further  total  increase  total  with  increasing  biomass  production  in  K a.  Even  at  Li  relatively  h i g h l e v e l s of t u r b u l e n c e , the biomass  production  131  was  not  affected  7.  The  negatively.  e f f e c t i v e and  t h e maximum l e v e l where s t a g n a t i o n a  of  total  economical b a s i s biomass p r o d u c t i o n  conditions  critical  are  limiting.  occurs  at  culture  system i s changed from s t a g n a t i o n  adequately aerated these  relevant  and  in a brine  bran  be  can  relationship system,  an  as  to  optimum  one  the  function  similarity  s i m i l a r K^a  before,  the  significant  T h e r e was  containing  is  of  biomass  with  K^a  t a n k s and  rice  and  this  culture  r a c e w a y s . K^a  for  at  brine  is  shrimp  was  a l s o observed  from the  brine  of  o f m o r t a l i t y i n t h e s e tanks.. .There  d i f f e r e n c e s i n the  no  length  length  significant  difference  with  in  shrimp  time and  feed  the and  before  • , . .  i n the v a r i a t i o n  two the  of t i m e  systems;  other  one  containing  only. 10.  same  which  i n s y s t e m p e r f o r m a n c e of d i f f e r e n t  onset  of d i s s o l v e d o x y g e n  feed  the  total  fed  o n s e t of m o r t a l i t y i n t a n k s h a v i n g s i m i l a r K^a. 9.  in  same f o r d i f f e r e n t s i z e s of t h e  criterion  level  been shown t h a t  scale-up  a  region  condition  shrimp c u l t u r e system  e f f e c t i v e scale-up  The  tanks with  were no  the  is  systems.  8.  time  for  i n the  This  c i r c u l a t e d . I t has  expressed i s the  where  both i n c y l i n d r i - c o n i c a l  therefore culture  point  conditions  production  for scale-up  K a  The is  power p e r greater  u n i t volume r e q u i r e d i n raceways than  in  to maintain  the  cylindri-conical  tanks. with  F u r t h e r m o r e , t h i s power size  of  the  per  unit  volume  increases  c u l t u r e s y s t e m s o t h a t power  efficiency  d e c r e a s e s w i t h s i z e . However, t h e o t h e r c o s t s , s u c h unit  capital  size  and  Therefore,  more  costs than  the  and u n i t manpower c o s t s , d e c r e a s e  with  offset  the  increased  i n terms of o v e r a l l c o s t s there  in unit production system.  as  cost with  increase  power  costs.  i s a net decrease  i n s i z e of the c u l t u r e  133  CHAPTER X I LIMITATIONS OF THE WORK AND SUGGESTIONS FOR FURTHER RESEARCH  1. The d a t a o b t a i n e d f r o m t h i s production actual  s t u d y on  total  biomass  s h o u l d n o t be c o n s i d e r e d a s r e p r e s e n t a t i v e o f t h e  operation  experiments  because  to verify  these  data  were  the a p p l i c a b i l i t y  o b t a i n e d from  of K a as a s c a l e - u p Li  criterion  and  not  Verification near  of  stagnation 2. The  experiments  K^a  from which  The  between  different  systems.  properties different  used  of  to  liquid  from t h a t of t h e  disagreements  in  and  sulfite  sulfite  oxygenation  the  model  as t h e  s o l u t i o n a s model  be e x p e c t e d t h a t in  the operating  system  liquid,  model liquid  .capacities  of  i f the p h y s i c a l i s considerably there  would  be  t h e K^a v a l u e s . The v a l u e o f K^a o b t a i n e d  w i t h t h e u s e o f a model actual  was c o n d u c t e d  e q u a t i o n s were o b t a i n e d ,  of sodium  compare  I t would  the  K^a  the s c a l i n g  use o f s o d i u m  is generally  production.  conditions.  was d e v e l o p e d u s i n g s o l u t i o n liquid.  maximizing  as a s c a l e - u p c r i t e r i o n  relationship  parameters,  on  liquid  K a through c e r t a i n  may  be  related  proportionality  with  factor  the  dependent  Li  on t h e p h y s i c a l p r o p e r t i e s o f t h e If model  liquids.  t h e K^a r e l a t i o n s h i p o b t a i n e d liquid  is  used  with  the  t o compare t h e r e l a t i v e  use  of  a  oxygenation  134  capacities can  in different  be assumed c o n s t a n t  systems, the p r o p o r t i o n a l i t y and  use  of the  factor  r e l a t i o n s h i p would  be  t o t a l biomass p r o d u c t i o n  as  valid. 3.  The  relationship  f u n c t i o n o f K a was a  specified  different  of  levels  different biomass  obtained  level  relationships.  for  feeding. Different  of  feeding  Although  these  s l o p e s of c u r v e production  and  u s i n g r i c e b r a n as  may  f e e d and  at  of feed  and  types give  different  relationships  defining  the  would  relationship  show  between  K a o r d i f f e r e n t maximum l e v e l s ,  the  Li  shape w o u l d be area  for future  different K-^a  expected  levels.  research  relationships  using  t o be b a s i c a l l y s i m i l a r . A d e s i r a b l e  different  determination  of  between t o t a l b i o m a s s p r o d u c t i o n  and  types  be  of  interesting  the  f e e d and  the c u l t u r e  s y s t e m c o n s i d e r i n g t h e p o l l u t i n g c a p a c i t y of  the  f e e d on one  h a n d and  food  optimize  feeding of  as  to  different  conditions  these  I t w o u l d be  would  source  optimum c o n d i t i o n s w i t h K  on  t h e o t h e r , and  relate  a. Li  4. feed  This  which  study gave  distribution equations  made use  no  and  serious  suspension  d e r i v e d would of  f i n e l y ground r i c e bran  problem of  valid  relating  particles. only  whole  s y s t e m where t h e  factor  would  oxygenation  system.  scaling  change the  r e s u l t i n g to a culture be  The  even  feed  picture  longer  to  as  similar  Use  no  p a r t i c l e f e e d s may  for  types.  capacity of'the  larger  be  of  but  controlling the  agitation  135  BIBLIOGRAPHY A i b a , S. and M. Okabe. 1977. A complementary approach to scale-up: Simulation and optimization of microbial p r o c e s s e s . A d v a n c e s i n B i o c h e m i c a 1 E n q i n e e r i n g . ,7: 111-130. B a k e r , D.R., R.C. L o e h r and A.C. Anthonisen. 1975. Oxygen transfer at high solids c o n c e n t r a t i o n s . J o u r n a l of t h e E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n . P r o c e e d i n g s o f t h e Amer. Soc. C i v . E n g r s . O c t o b e r " 1 0 1 ( E E 5 ) : 759-774. B a r t h o l o m e w , W.H. 1960. S c a l e - u p o f submerged A d v a n c e s i n A p p l i e d M i c r o b i o l o g y . 2: 289-300.  fermentations.  B l a k e b r o u g h , N. and K. Sambamurthy. 1966. Mass t r a n s f e r mixing rates in fermentation vessels. Biotechnology B i o e n q i n e e r i n g 8: 25-42.  and and  Bond, R.M. 1933. A c o n t r i b u t i o n t o t h e s t u d y of t h e natural food-cycle in aquatic environments. With particular consideration of micro-organisms and dissolved organic matter. Bulletin of the Bingham Oceandgraphic C o l l e c t i o n . V o l . IV. B o s s u y t , E. and P. S o r g e l o o s . 1980. T e c h n o l o g i c a l a s p e c t s of t h e b a t c h c u l t u r i n g of A r t e m i a i n h i g h densities. In "The Brine Shrimp Artemia" Vol. 3. E c o l o g y , C u l t u r i n g , Use i n A q u a c u l t u r e . ( P e r s o o n e , G., P. Sorgeloos, O.A. Roels, E. J a s p e r s , eds.) U n i v e r s a P r e s s , W e t t e r e n ( B e l g i u m ) . Brooks, >J.L. 1947. Turbulence as an environmental d e t e r m i n a n t of r e l a t i v e g r o w t h i n Daphnia. Proc. Of the N a t i o n a l Academy of S c i e n c e s . U.S.A. 33: 141-148. B r u n e , D.E. 1982. Design and d e v e l o p m e n t of f l o w i n g bed r e a c t o r f o r b r i n e shrimp c u l t u r e . A q u a c u l t u r a l Engineering. 1: 63-70. Bylinkina, E.S. and V.V. Birukov. 1972. The p r o b l e m of s c a l e - u p i n a n t i b i o t i c b i o s y n t h e s i s . P r o c . IV International F e r m e n t a t i o n Symposium: F e r m e n t . T e c h n o l . T o d a y . 105-115. Calderbank, P.H. 1967. Mass transfer in fermentation equipment. In "Biochemical and Biological Engineering S c i e n c e " . (N. B l a k e b r o u g h , e d . ) . A c a d e m i c P r e s s , L o n d o n . De Winter, F., G. Persoone and C. B e n i j t s - C l a u s . 1976. Fabrea s a l i na A promising live food for mariculture purposes. 7th Ann. M e e t i n g P r o c . Of t h e W o r l d M a r i c u l t u r e  136  Soc i e t y . D o b b e l e i r , J . , N. Adam, E. Bossuyt, E. B r u g g e m a n and P. Sorgeloos. 1980. New a s p e c t s o f t h e use o f i n e r t d i e t s f o r h i g h d e n s i t y c u l t u r i n g o f b r i n e s h r i m p . I n "The B r i n e S h r i m p A r t e m i a V o l . 3. E c o l o g y , C u l t u r i n g , and Use i n Aquaculture. (G. P e r s o o n e , P. S o r g e l o o s , 0. R o e l s , and E. J a s p e r s , e d s . ) Universa Press, Wetteren, Belgium. E c k e n f e l d e r J r . , W.W. and E.L. B a r n h a r t . 1961. The e f f e c t of organic substances on the t r a n s f e r of oxygen from a i r bubbles i n water. A.I.Ch.E. J o u r n a l 7 ( 4 ) : 631-634. E c k e n f e l d e r J r . , W.W., B.L. Goodman and A . J . E n g l a n d e . 1972. Scale-up • of biological wastewater treatment reactors. A d v a n c e s i n B i o c h e m i c a l E n g i n e e r i n g . 2: 14 5-180. F i n n , R.K., 1967. A g i t a t i o n and a e r a t i o n . In and B i o l o g i c a l E n g i n e e r i n g S c i e n c e . " V o l 1. (N. ed.) A c a d e m i c P r e s s , L o n d o n .  "Biochemical Blakebrough,  G a u l d , D.T. 1959. Swimming and f e e d i n g i n c r u s t a c e a n l a r v a e : The nauplius larva. P r o c . of the Z o o l o g i c a l S o c i e t y of L o n d o n . 132: 31-50. G i l c h r i s t , B.M. 1956. The oxygen consumption of Artemia s a l i n a ( L . ) i n d i f f e r e n t s a l i n i t i e s . H y d r o b i o l o g i a 8: 54-65. Heath, H. phyllopods.  1924. The e x t e r n a l development, of J o u r n a l of M o r p h o l o g y , 3 8 ( 4 ) : 453-479.  certain  H i n z e , J.O. 1955. F u n d a m e n t a l s o f t h e h y d r o d y n a m i c mechanism of s p l i t t i n g i n d i s p e r s i o n p r o c e s s e s . A.I.Ch.E. Journal. 1 ( 3 ) : 28.9-295. ;  Holland, F.-A. and F.S. Chapman. 1966. L i q u i d m i x i n g and p r o c e s s i n g i n s t i r r e d t a n k s . New York Reinhold Publishing C o r p . , Chapman and H a l l , L t d . Hyman, D. 1962. Mixing and agitation. In "Advances i n C h e m i c a l E n g i n e e r i n g . " V o l . 3 (T.B. Drew, J.W. H o o p e s and T. Vermeulen, eds) Academic P r e s s . J a r a i , M. 1972. Oxygen t r a n s f e r i n the fermentation of primary and secondary m e t a b o l i t e s . Proc. IV I n t e r n a t i o n a l F e r m e n t a t i o n Symposium: F e r m e n t . T e c h n o l . T o d a y . 97-103. J o h n s o n , A. 1980. E v a l u a t i o n o f v a r i o u s diets for optimal growth and s u r v i v a l o f s e l e c t e d l i f e s t a g e s o f A r t e m i a . In "The B r i n e S h r i m p A r t e m i a V o l . 3. E c o l o g y , C u l t u r i n g , Use i n  137  A q u a c u l t u r e (G. P e r s o o n e , P. S o r g e l o o s , Jaspers, eds.) Universa Press. Wetteren,  0. R o e l s Belgium.  and  E.  Johnstone, R.E. a n d M.W. T h r i n g . 1957. P i l o t p l a n t s , m o d e l s and s c a l e - u p methods i n c h e m i c a l engineering. McGraw Hill Co., New Y o r k . Jordan, D.G. 1955. Chemical I n t e r s c i e n c e P u b l i s h e r s , I n c . New  pilot York.  plant  practice.  K a r o w , E.O., W.H. B a r t h o l o m e w a n d M.R. S'fat. 1953 . Oxygen transfer and a g i t a t i o n : I n submerged f e r m e n t a t i o n s . A g r i c . And Food Chem. 1 ( 4 ) : 302-306. K i n n e , 0. a n d H. R o s e n t h a l . 1977. C o m m e r c i a l Cultivation (Aquaculture). In "Marine Ecology. A Comprehensive, I n t e g r a t e d T r e a t i s e on L i f e i n O c e a n s a n d C o a s t a l Waters". ( 0 . K i n n e , ed.) V o l . I l l , P a r t 3. J o h n W i l e y a n d S o n s . Lee, Y.H. a n d G.T. T s a o . 1979. D i s s o l v e d o x y g e n e l e c t r o d e s . A d v a n c e s i n B i o c h e m i c a l E n g i n e e r i n g 13: 35-86. L e h r e r , I.H. 1971. Gas h o l d - u p and i n t e r f a c i a l area i n sparged v e s s e l s . I n d . E n g . . Chem. P r o c e s s Des. Develop. 1 0 ( 1 ) : 37-40. Lowndes, A.G. 1933. The f e e d i n g m e c h a n i s m of Chi rocephalus d i a p h a n u s P r e v o s t , t h e f a i r y s h r i m p . P r o c . Of t h e Z o o l o g i c a l S o c i e t y o f L o n d o n . B. 1093-1118. Mann, K.H. 1976. P r o d u c t i o n on t h e b o t t o m o f t h e s e a . I n "The E c o l o g y o f t h e S e a s " (D.H, Cushing-^ a n d J . J . W a l s h , eds.) B l a c k w e l l S c i e n t i f i c P u b l i c a t i o n s . Margaritis, A. a n d J.D. S h e p p a r d . 1981. M i x i n g t i m e a n d oxygen t r a n s f e r characteristics of a double draft tube airlift fermentor. Biotechnology and B i o e n q i n e e r i n q . 23: 2117-2135. M i l l e r , D.N. 1974. S c a l e - u p o f a g i t a t e d v e s s e l s mass t r a n s f e r . A . I . C h . E . J o u r n a l 2 0 ( 3 ) : 4 4 5 - 4 5 3 .  gas-lquid  M i u r a , Y. 1976. T r a n s f e r o f o x y g e n a n d s c a l e - u p i n submerged a e r o b i c f e r m e n t a t i o n . A d v a n c e s i n B i o c h e m i c a l E n g i n e e r i n g 4: 3-40. Mock, C.R., R.A. N e a l a n d B.R. Salser. 1973. A c l o s e d raceway f o r t h e c u l t u r e o f s h r i m p . In "Proc. 4 t h Ann. Meeting World Mariculture Society" (J.W. A v a u l t and E. Boudreaux, e d s . ) .  138  N i s h i k a w a , M. , Y. Okamoto, K. H a s h i m o t o a n d S. N a g a t a . 1976. Turbulence energy s p e c t r a i n b a f f l e d m i x i n g v e s s e l s . J o u r n a l of C h e m i c a l E n g i n e e r i n g o f J a p a n . 9 ( 6 ) : 489-494. O l d s h u e , J . Y . 1960. F l u i d m i x i n g i n f e r m e n t a t i o n A d v a n c e s i n A p p l i e d M i c r o b i o l o g y 2: 2 7 5 - 2 8 7 .  processes.  Perez, K.T., G.M. M o r r i s o n , N.F. L a c k i e , C A . O v i a t t , S.W. N i x o n , B.A. B u c k l e y a n d J . F . H e l t s h e . 1977. The importance of physical and biotic scaling t o the experimental s i m u l a t i o n o f a c o a s t a l m a r i n e e c o s y s t e m . H e l q o l a n d e r .wi s s . M e e r e s u n t e r s . 30: 144-162. Platon, R.R. 1978. D e s i g n , o p e r a t i o n and economics of a small-scale hatchery f o r the l a r v a l rearing of sugpo, P e n a e u s monodon (Fabricius). A q u a c u l t u r e E x t e n s i o n Manual No. 1. SEAFDEC A q u a c u l t u r e D e p a r t m e n t , I l o i l o , P h i l i p p i n e s . R e e v e , M.R. 1963. The f i l t e r - f e e d i n g o f A r t e m i a I . I n c u l t u r e s o f p l a n t c e l l s . J o u r . E x p . B i o l . 4 0 : 195-205.  pure  Riedl, R. 1971. Water movement. I n " M a r i n e E c o l o g y . " V o l 1, P a r t 2. ( 0 . K i n n e , ed.) W i l e y - I n t e r s c i e n c e . S c o t t . , K.R. 1972. C o m p a r i s o n o f t h e e f f i c i e n c y of v a r i o u s aeration d e v i c e s f o r oxygenation of water i n a q u a r i a . J o u r . F i s h . R e s . Bd. Canada 29: 1641-1643. SEAFDEC AQD. 1984. A g u i d e t o prawn hatchery d e s i g n and operation. Aquaculture Extension Manual No.9 SEAFDEC A q u a c u l t u r e Department, I l o i l o , P h i l i p p i n e s . Standard Methods f o r the Examination of W a s t e w a t e r . 1976. 1 4 t h e d . APHA, AWWA, WPCF.  Water  and  Strickland, J.D.H. a n d T.R. Parsons. 1972. A practical handbook o f s e a w a t e r a n a l y s i s . O t t a w a , Queen's P r i n t e r . Sorgeloos, P. and G. Persoone. 1975. Technological improvements f o r t h e c u l t i v a t i o n o f i n v e r t e b r a t e s as f o o d f o r f i s h e s and c r u s t a c e a n s . I I . H a t c h i n g and c u l t u r i n g of t h e b r i n e s h r i m p , A r t e m i a s a l i n a L. A q u a c u l t u r e . 6: 303-317. Sorgeloos, bottleneck Japan.  P. 1976. The b r i n e s h r i m p , A r t e m i a s a l i n a : A i n m a r i c u l t u r e . FAO T e c h n i c a l C o n f e r e n c e . Kyoto,  Sorgeloos, P. 1980. The use o f t h e b r i n e s h r i m p A r t e m i a i n A q u a c u l t u r e . I n "The B r i n e S h r i m p A r t e m i a " V o l . 3. E c o l o g y , C u l t u r i n g , Use i n A q u a c u l t u r e . (G. P e r s o o n e , P. Sorgeloos,  139  0. Roels Belgium.  and  E.  J a s p e r s , eds.) U n i v e r s a  Press,  Wetteren,  T o b i a s , W.J., P. S o r g e l o o s , E. B o s s u y t and 0. Roels. 1979. The technical f e a s i b i l i t y of m a s s - c u l t u r i n g A r t e m i a s a l i n a in the S t . C r o i x " A r t i f i c i a l U p w e l l i n g " M a r i c u l t u r e System. P r o c . W o r l d M a r i c u l t u r e S o c i e t y 10: 203-214. Van K r e v e l e n , D.W. a n d P . J . H o f t i j z e r . 1950. S t u d i e s o f g a s bubble f o r m a t i o n . C a l c u l a t i o n of i n t e r f a c i a l a r e a i n b u b b l e c o n t a c t o r s . C h e m i c a l E n g i n e e r i n g P r o g r e s s . 4 6 ( 1 ) : 29-35. Walker, P.N. and J.W. u t i l i z a t i o n by o y s t e r s . 2 0 ( 4 ) : 795-798.  Zahradnik. 1977. K i n e t i c s o f . f o o d Trans. Amer. S o c . A g r i c . Engrs.  Wegrieh, O.G. and R.A. S h u r t e r , J r . 1953. D e v e l o p m e n t o f a t y p i c a l a e r o b i c f e r m e n t a t i o n . I n d . Eng. Chem. 45: 1153-1160. W h e e l e r , R., A . I . Y u d i n a n d W.H. C l a r k J r . 1979. Hatching events i n t h e c y s t s o f A r t e m i a s a l i n a . A q u a c u l t u r e . 18: 5967. Y o s h i d a , F. and Y. M i u r a . 1963. Gas a b s o r p t i o n in agitated gas-liquid contactors. I_ & EC P r o c e s s D e s . And Dev. 2 ( 4 ) : 263-268. Z l o k a r n i k , M. 1978. S o r p t i o n c h a r a c t e r i s t i c s contacting in mixing v e s s e l s . Advances E n g i n e e r i n g . 8:133-15-1. Z l o k a r n i k , M. 1979. S c a l e - u p water treatment. Advances 157-180..  for gas-liquid in Biochemical  of s u r f a c e a e r a t o r s f o r waste i n B i o c h e m i c a l E n g i n e e r i n g . 11:  APPENDICES  Appendix I . P r o x i m a t e a n a l y s i s of r i c e bran  Batch % No. Mo i s t u r e  Crude Protein  Percent dry basis Crude Crude NFE* Fiber Fat  Ash  1  10.3-8  13.45  11.44  4.04  61 .69  9.38  2  9.46  13.42  14.47  3.18  60.74  .8.19  3  10.06  13.82  1 1 . 28  4.43  62.47  8.00  4  11.05  12.42  10.46  3.46  65.69  7.97  5  10.47 .  14.12  11.61  5.34  57.31  1 1 .62  6  10.70  13.50  11.44  4.42  62.04  8.60  7  1 2.58  12.74  1.1 . 48  3.99  62.21  9. 58  8  1 1 . 58  12.50  10.53  3.26  64.56  9. 15  * Nitrogen-free  extract  142 Appendix I I .  K-^a. v a l u e s a t v a r i o u s o p e r a t i n g c o n d i t i o n s i n c y l i n d r i - c o n i c a l tanks.  Run No .  D  H  so  N  1  Q 9<13 .  157 29 . 2 22 . 86 15G 29 . 2 22 . 86 158 29 . 2 22 .86 162 29 . 2 53 . 34 163 29 . 2 53 . 34 164 29 . 2 53 . 34 16 1 29 . 2 22 . 86 160 29 . 2 22 .86 159 29 . 2 22 . 86 167 29 . 2 53 . 34 166 29 . 2 53 .34 165 29 . 2 53 . 34 168 29 . 2 38 . 10 169 29 . 2 38 . 10 170 29 . 2 38 . 10 17 1 29 . 2 38 . 10 172 29 . 2 38 . 10 173 29 . 2 38 . 10 218 6 1 .0 45 .72 217 6 1 .0 45 .72 2 16 6 1 .0 • 45.72 2 13 6 1 .0 106 .68 214 6 1 .0 106 .68 215 6 1 .0 106 .68 224 6 1 .0 45 . 72 223 6 1 .0 45 . 72 222 61 .0 . 45 .72 2 19 61 .0 106 .68 220 6 1 .0 106 .68 221 61 .0 106 .68 226 6 1 .0 76 . 20 227 6 1 .0 . 76. . 20 228 61 ,0 , 76 . 20 229 61 0 . 7S .. 20 230 61 0 . . 76 . 20 231 6 1 .0 . 76 . 20 3 10 106 . 7 80. .01 3 1 1 106 . 7 80. 01 3 12 106 . 7 80. .01 304 106 . 7 186 . 69 305 106 . 7 186, 69 306 106 . 7 186 . 69 309 106 . 7 80. 01 308 106 . 7 80. 01 307 106 . 7 80. 01 303 106 . 7 186 . 69 302 106 . 7 186 . 69 301 106 . 7 186 . 69 313 106 . 7 133 . 35 314 106 . 7 133. 35 315 106 . 7 133 . 35 3 16 106 . 7 133 . 35 317 106 . 7 133 . 35 3 18 106 . 7 133 . 35 319 106 . 7 1 33 . 35 320 106 . 7 133 . 35 321 106 . 7 133 . 35 322 106 . 7 133 . 35  0 .317 0 . 160 0 .079 0 .3 17 0 . 160 0 .079 0 .317 0 . 160 0 .079 0 .317 0 . 160 0 .079 0 . 160 0 . 160 0 . 160 0 . 160 0 . 160 0 . 160 0 . 635 0 .317 0 . 160 0 .635 0 .3 17 0 . 160 0 .635 0 .3 17 0.. 160 0.. 635 0 .3 17 0 . 160 0..317 0..317 0..317 0:.31.7 0. 317 0. 317 1. 1 10 0; 556 0. 277 1. 1 10 0. 556 0. 277 1. 1 10 0. 556 0. 277 1. 1 10 0. 556 0. 277 0. 556 0. 556 o. 556 0. 556 0. 556 0. 556 0. 556 0. 556 0. 556 0. 556  D-  cm.  H-  cm.  Q- m l / m i n . K a - min  (SO)- cm.  T  4 16 1 4 16 1 4 16 1 4  16 4 4, 4. 4. 4. 4. 1 . 4. 16 . 1 . 4. 16 . 1 . 4. 16 . 1 . 4. 16 . 4. 4. 4. 4. 4. 4. 1 . 4. 16 . 1 . 4. 16 . 1 . 4. 16 . 1 . 4. 16 . 4. 4 . 4. 4. 4. 4 . 4 . 4. 4. 4 .  943 . 943 . 963 . 963 . 963 . 4518. 4518. 4518. 4599. 4599. 4606. 2730. 1767. 532. 2730. 1767. 532 . 3836. 3836. 3836. 3966. 3966. 3966 . 21617. 2 16 17. 2 16 17. 22282. 22282. 22329. 2885 . 9444. 2885 . 9444 . 16142. 16142. 12424 . 12424. 12424. 13122. 13122 . 13122. 71873. 71873 . 71873. 74794 . 74794 . 74855. 73512. 56537. 40499. 26709. 12776. 73512 . 56537. 40499. 26709. 12776.  K a L T  0 .038676 0 .048889 0 .042332 0 .017033 0 .02 13 19 0 .020362 0 .127330 0 .146470 0 . 157 140 0 .061994 0 .075150 0 .081682 0 .062459 0 .048196 0 .0275 15 0 .064807 0 .049067 0 .028890 0 .029874 0 .03 1 197 0 .034601 0 .013801 0 .014979 0 .017776 0 .107570 0 .114680 o .120720 0 .059969 0 .064959 0 .070021 0 !015709 0..037760 0..015567 0..037132 0. 052677 0. 05407 1 0.. 0247 10 OX) 2 4 173 0. 025514 0. 012743 0. 012720 0: 013782 o: 101200 0. 102300 0. 105680 0. 064695 0. 067760 0. 066927 0. 069486 0. 053435 0. 039109 0. 028084 0. 016016 0. 068975 0. 053743 0. 039657 0. 028141 0. 015679  143  Appendix I I I  Run No . 601 602 603 604 605 606 607 608 609 6 10 6 1 1 612 6 13 6 14 615 616 617 6 18 6 19 620 62 1 701 702 703 704 705 706 707 708 709 7 10 7 1 1 7 12 7 13 7 14 7 15 716 7 17 801 802 803 804 805 806 807 808 809 8 10 81 1 8 12 813 814 815 816 817 818  K^a v a l u e s a t v a r i o u s o p e r a t i n g c o n d i t i o n s i n raceways. D  H  N  Q  K a T  L 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 58 6 98 9 98 9 98 9 98 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 98 . 9 93 . 9 98 . 9 98 . 9 98 . 9  D - cm H - cm  •  28 . 75 28 . 75 28 . 75 28 . 75 28 . 75 28 . 75 28 . 75 14 . 3 8 14 . 3 8 14 . 3 8 14 . 3 8 14 3 8 21 . 6 0 21 6 0 21 6 0 21 . 6 0 21 6 0 21 . 6 0 2 1 60 2 1 60 21 6 0 58 60. 58 60 58 6 0 58 6 0 58 60 29 30 29 30 29 30 29 30 43 95 43 95 43 95 43 95 43 95 43 95 43 95 43 95 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 7 4 19 49 46 49 46 49 46 49 46 49 46 49 46 49 46 49 46  8 . 8 . 8 . 4. 4. 4. 4. 4. 4. 8. 8 . 8 . 4. 4.  4. 4. 4. 4.  • 4. 4. 4. 8 . 8 . 8. 4. 4. 4. 4 . 8 . 8 . 4. 4. 4. 4. 4. 4. 4. 4. 8 . 4. 4. 4. 8 . 8 , 8 . 4. 4 . 4. 4. 4. 4. 4. 8 . 8 . 8 . 8 .  15760. 15760. 269 1 . 2 7 13 . 2 7 13 . 2 7 13 . 15876. 15723. 2692 . 2689. 15650. 15650. 8754 . 5866 . 2699 . 1564. 12093. 12093. 5866 . 2699 . 1564 . 28268 . 36528. 15991. 36605. 15991 . 36040. 15723. 15705. 36001. 80458. 50992. 25426. 12170. 80458. 54592. 25426. 12170. 67810. 67929. 137993. 217916. 2 17916. 217916. 67810. 67929. 137993. 217916 . 216764. 67188. 216764. 67188. 21444 1 . 67249. 67249. 2 1444 1 .  Q - ml/min. K a - . -1 mm T  0 080479 0 .080962 0 027134 c 0227 1 1 0 0 2 1855 0 0 2 1058 0 062594 0 0 7 2 5 14 0 025523 0 029248 0 080394 0 0 8 9 6 10 0 049311 0 039090 0 024636 0 016019 0 059440 0 062669 0 042032 0 027225 0 018080 0 026280 0 032837 0 016102 0 0 3 1958 0 015099 0 034133 0 0 1 7238 0 0 1 7 4 16 0 038557 0 055699 0 034206 0 022969 0 012253 0 06224 1 0 043082 0 025400 0 012324 0 0 1 7 2 17 o 017796 o 031339 0 046614 o 049960 0 050536 0 016770 0 016058 0 036467 o 052925 o 052644 0 017645 0. 053386 0. 017580 0 . 0 5 2 8 17 0. 017209 0. 017136 0 052708  144  Appendix IV.  Computer p r i n t - o u t o f r e g r e s s i o n a n a l y s i s f o r K a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l tanks. T  ANALYSIS OF COVARIANCE SLTEST FOR KLA CORRELATION IN CYL-CON TANKS  THERE ARE  3 SAMPLES AND  3  INDEPENDENT VARIABLES  DATA FORMAT IS ( 1X, I 1 ,3F8.2, 1GX,F8.2)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE Y(  2  +  3  5.980  +  X( 1)  +  +  -11.27  X( 2)  + • -.7956  X( 3)  X( 1 ) +  -8.269  X( 2)  +  -.8211  X( 3)  4.720  X( 2)  +  -.7015  X( 3)  18)  4.524  (NUMBER OF CASES =  1 ) = -35.1 1  DEPENDENT  18)  (NUMBER OF CASES =  1)= 48.82  SAMPLE Y(  (NUMBER OF CASES =  1)= 54.85  SAMPLE Y(  1  22)  - 1.927  X( 1 )+  VARIABLE Y( 1)  COMMON SLOPES ARE  BW( 1)=  4.175  BW( 2)=  -7.578  TEST HYPOTHESIS OF COMMON SLOPE  F«  1.97  BW( 3)=  -0.779  DF1=  DF2=  46  PROB= 0.08903  TEST HYPOTHESIS OF COMMON EQUATION F=. 1.99 DF1= 2 DF2= 52 PROB.= 0. 14722 COMMON EQUATION:  Y=-1.940  +  ANALYSIS FOR DATASET  0.4050  X( 1)  +  -.3200E-01X( 2)  +  -.7843  1 COMPLETED  Y = In K a*  X(2)  = l n Re*  X(l) = In Fr*  X(3)  - I n (H/D)  L  X( 3)  145  Appendix V.  Computer p r i n t - o u t o f r e g r e s s i o n a n a l y s i s f o r K^a c o r r e l a t i o n i n raceways.  REGRESSION EQUATION FOR LNKLA2 R-SOUAREO = 0.9470653 F-PR08ABILITY LEVEL = 0.0500 STANDARD ERROR LNKLA2 0. 1314 F-PR08ABILITY = 0.000000 STD. ERR. VARIABLE F-RAT I 0 F-PROB COEFFICIENT 0.1709E-01 LNFR 7 15.5 O.0000 0.45713601 0.2358E-01 LNRE 52 . 24 0.OOOO -0.17041859 LNHD 0.7292E-01 6 . 226 0.0158 -0.18194606 CONSTANT 207 . 4 O.0000 0. 1369 1 .97 15028  NORM COEFF 1 . 154 -0.3211 -0.8303E-01 3 . 550  POTENTIAL INDEPENDENT AND OTHER VARIABLES IN THE REGRESSION ANALYSIS FOR LNKLA2 PARTIAL CORR. TOLERANCE F-RATIO F-PROB LNN 0.1924 0.9661 1.960 0.1675  LNKLA2  l n (K a* x10^ L  LNFR = l n F r *  LNRE = l n Re* LNHD = I n (H/D)  146  Appendix V I .  Computer p r i n t - o u t on t e s t f o r e q u a l i t y o f s l o p e s and i n t e r c e p t s o f K-r a c o r r e l a t i o n s f o r f r e s h and sea water i n c y l i n d r i - c o n i c a l t a n k s .  ANALYSIS OF COVARIANCE test  f o r e q u a l i t y of s l o p e s and i n t e r c e p t s  THERE ARE  3 SAMPLES AND  i  f o r k1 a vs q/d**n i n c y l - c o n  tanks  INDEPENDENT VARIABLES  DATA FORMAT IS ( 1X,I 1 , 14X,2F8 .4)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE Y(  2  +  3  10)  0.7507  X( 1)  (NUMBER OF CASES  1)=-2.278  SAMPLE Y(  (NUMBER OF CASES =  1)=-2.232  SAMPLE Y(  1  +  17)  0.75G6  X( 1)  (NUMBER OF CASES =  1)=-2.219  +  10)  0.7982  X( 1)  OEPENOENT VARIABLE Y( 1) COMMON SLOPES ARE BW(  1)=  0.77 1  TEST HYPOTHESIS OF COMMON SLOPE  F=  1.17  DF1=  2  TEST HYPOTHESIS OF COMMON EQUATION F= 0.50 DF1= 2 DF2= 33 PR0B=O.61120 COMMON EQUATION:  Y=-2.239  +  ANALYSIS FOR DATASET  0.7713  X( 1)  1 COMPLETED  SAMPLE  1  UBC f r e s h w a t e r  SAMPLE  2  SFDC f r e s h w a t e r  SAMPLE 3  SFDC seawater  DF2=  31  PROB= 0.32388  147  Computer p r i n t - o u t on t e s t f o r e q u a l i t y o f s l o p e s and i n t e r c e p t s o f L a c o r r e l a t i o n s f o r f r e s h and sea water i n raceways.  Appendix V I I  ANALYSIS OF COVARIANCE test  for equality  THERE ARE  of s l o p e s and i n t e r c e p t s  3 SAMPLES AND  1  f o r k l a vs q/d**n in raceway tanks  INDEPENDENT VARIABLES  DATA FORMAT IS ( IX.I 1 . 14X,2F8.4 )  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE Y(  4  1)=-2.226  SAMPLE Y(  5  6  +  17)  0.9447  X( 1)  (NUMBER OF CASES =  1)=-2.668  SAMPLE Y(  (NUMBER OF CASES =  +  16)  0.7603  X( 1)  (NUMBER OF CASES =  1)=-2.763  +  12)  0.7481  X( 1)  DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW(  1)=  0.781  TEST HYPOTHESIS OF COMMON SLOPE  F=  0.95  DFI'  TEST HYPOTHESIS OF COMMON EQUATION F= 2.07 DF1= 2 DF2= 41 PR0B=O.13961 COMMON EQUATION:  -2.539 ANALYSIS FOR DATASET  0.8022  X( 1)  1 COMPLETED  SAMPLE  4  UBC f r e s h w a t e r  SAMPLE  5  SFDC f r e s h w a t e r  SAMPLE  6  SFDC seawater  DF2 =  39  PROB= 0.39662  148  Appendix V I I I .  Computer p r i n t - o u t on s t a t i s t i c a l a n a l y s i s f o r length-dry weight r e l a t i o n s h i p a t d i f f e r e n t aeration levels.  ANALYSIS OF COVARIANCE LW RELATIONSHIP  THERE ARE  3 SAMPLES AND  1  INDEPENDENT VARIABLES  DATA FORMAT IS ( 1X, I 1 ,2F7.3)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE  1  (NUMBER OF CASES =  Y( 1)= 1.3G7 SAMPLE Y(  5  9  2.328  X( 1)  (NUMBER OF CASES =  1)= 1.343  SAMPLE Y(  +  8)  +  14)  2.388  X( 1)  (NUMBER OF CASES =  1)= 1.385  .+  18)  2.322  X( 1)  DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE  BW(  1)=  2.350  TEST HYPOTHESIS OF COMMON SLOPE  F= 0.23  DF1 =  TEST HYPOTHESIS OF COMMON EQUATION F= 0.01 DF1= 2 DF2= 36 PR0B=O.99083 COMMON EQUATION:  1 . 365 ANALYSIS FOR DATASET  2.350  X( 1)  1 COMPLETED  SAMPLE 1 SAMPLE 5 SAMPLE 9  Aeration level 1 Aeration level 5 Aeration level 9  DF2 =  34  PROB= 0.79732  149  Appendix I X .  Data on l e n g t h , s u r v i v a l and w a t e r q u a l i t y parameters.  TT RN SI AL DY LT SL DO TP PH NH NO  Tank t y p e ( 1 - c y l i n d r i - c o n i c a l ) (2-raceway) Run number (1-4) Tank s i z e (1-small;2-medium;3-large A e r a t i o n l e v e l (1-5) C u l t u r e p e r i o d (day) Length (mm) S u r v i v a l {%)' D i s s o l v e d oxygen (mg/L) Temperature (C) pH Ammonia (ppm N) N i t r i t e (ppm N)  2,  pH, ammonia and n i t r i t e were m o n i t o r e d f o r two runs f o r b o t h t y p e s o f t a n k .  3.  V a l u e o f 0.0 f o r DO and TP means t h a t no r e a d i n g was made f o r t h a t p a r t i c u l a r day.  O O O O O O O C D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O D O \1 3  O  o  O  O  CM CN  o  O O  o  O  O  O  O  cn  O o  O O  o  co rO  co co ro  o  CM  O  O O  cn  o  10  O  O  CN  O O  o  o  o  o  O  O  CN CN  o  o  o  o  O  O o  o  o  o  o  O O o  r-  LD  CN CN —  r- co co co CM —  r » ID  O  O  O o  co CN o O O  o  r-  oo r-  o  o  o  cn CD LD o  CO oo  ID o  o  CN CM CN CD CM  o  O O o CN  r~  o  o  CN r o  O o  <3< r o  O O O  O O O  CO  ro  o  o  CM CN CN O O o o  O O  O  O p  O o  o  O  O O o  O o  O o  o  o O O o o o o o o o o  r~ CD  oo CN o  co CO oo co r- r- oo r- oo  cn o  r- CD LO  *-  O O  o  —  00  O  0 0 LD CN —  r-  o  o  o  o  o  o  o  00 00 ro  o  CD CN r o CN CM O  r~-  O O  O  O o  r-  —  CD LO CN CM —  00  o  o  O  O  O  O  o  oo LD CN o O O O  o  O  O O  O  o  o  O o  O  O O  CN CM  r » CD LO  r- CO CO co r- r- CO CO oo  CN cn CM LD O  o  O  co LD CO  O  00 ro  r—  O  O  O  CO o  o  r~  00  r-  O  CM CN LO  CM r o cn r -  0 0 CO 0 0  O  r-  LD CM  r-  r-  r- cn CN co o  CO CO CD ID CD CD Lf) CD ID CO CD CD CD CD LD CO CD LD c o c o i n c o c o c o c o c o c o c o LD CD CD CD LD CO CO CD ID LD LO CD LO CD O N CN (N CM CM CM CM CN CN CM CM CN CM CM CN CN CN CM CN C N C N C N C N C N C M C M C N C M C M CN CM CM CN CN CN CN CM CN CN CN CM CN CM  LD ID LD LO LO LD o CM CN CM CM CN CM  M CD CD CO CD r o CM CM cn CN O  r o r o cn CM r o O  "*  r> CO  r o CN o  Lf>  r o CM o  ID LD  CD CN o CO o o CO O o CO CO CO CO cn CO co cn 0 0 CO  0 0 CO  CD LD ID  o CN r o ^~ —  —  CN r o  CN o ID  -  —  CM r o  00 ro  CM O  cn LD  CM r o r o o LD CO  CM CN CM CM CN r o r o r o r o r o r o  r o cp LD  O cn CM  —  CN CN CM o  CN r o  LD CD —  —  —  CD LO LD LO  CD CD CD CD O CD o O oo 0 0 oo 0 0 ^O CD ID o 0 0  n r o CM O CM LD r— co LD CD CM r o 0 0 r o O cn CN I-- CD CM cn cn r o n CM LD cn 0 0 00 D  ro o  LO r--  CD  O  r o LD r o LD  O CD CD rr- CD co r-  0 0 CO  CM r o cn  CO CO CD oo CD co  0 0 CO CO  cn O  r- LD CD r- r- CM o r o CD CD cn CN cn CM CD  —  CM ro  CN CM CN o ID CD  LD LO LO LO ID LD  oo CD  CO CM ID LD  r-  0 0 CN  r-  CD O  CD CO CN  CO 0 0 0 0 CD  CO co LO LO  o  CO o  oo o o CD CD CD r~ LO r- co co r » r- r~ LD CM  00  LD o CO LD LD r » o cn ro LD o CTi cn oo CO cn r o LO LD ID cn CN r-» o cn CO ID cn CD cn LD o rCM CM r o  CN r o  o  r o CM o  co oo oo cn  CO  o CM  cn r-  —  0 0 CM CD LD LO  CN r o  LD —  CN CM CN CM r o r o CO CO CO  CN r o  ID CD  «*  "=e  o —  -  CN r o  —  CN 0 0 r o LO CD r -  ID LD ID LO LD LO LD  CN CN CN CN CN CM CM CN CM CM CM CM CN CN CM CM CM CM CN CM CN CM CM CM CN  M W W M M M M M W M M W M W N M M W M W M M M OJ CO OJ OJ CO CO CO OJ OJ CO OJ OJ CO CO CO OJ OJ CO OJ OJ CO OJ OJ CO OJ cn cn cn on cn cn cn rf*>t» rf*rf*rf*rf*OJ CO OJ CO OJ ro ro ro - j cn cn  OJ ro  —  cn cn rf*OJ ro  CO OJ  —  o  rf*rf*ro  OJ cn M  -J o OJ M  —  —  —  o  cn rf*OJ ro  —  OJ t o  o  —  OJ r o  —  ro o  cn cn cn cn cn cn cn  —  — i cn cn rf*OJ r o  —  rf*CO ro r o  — j OJ vo CO OJ co CO OJ VO ro rf* CO VO 00 CO VO OJ o rf* cn co o ro cn cn co o vo cn VO cn - J co cn o  rf*  CO co OJ CO OJ r o r o ro ro rf*rf*rf* CO ro cn rf*  OJ r o cn cn rf* o  it* OJ ro  o  —  -  —  —  rf*OJ r o  o  ro  o  —  —  —  —  OJ ro  —  —  o  -  CO cn o cn ro vo r o cn - J t o vo vo ao t o VO r o cn r o vo cn r o vo cn - j co cn cn co Ch vo r o o rf*CO cn -o cn cn CO co Ch Co vo rf*  -j cn cn cn OJ OJ >r* cn cn cn rf* cn Ch cn cn cn -J co co co co co co co Ch cn cn Ch cn -J cn cn Ch cn Ch cn Ch co CO co - j cn o o ro cn r o cn rf* o rf* rf* rf*4* ro ro CO co CO ro cn o cn co o o cn co t o cn CO CO CO CO CO cn cn cn Ch cn c o co CO o rf* o rf* rf*rf* OJ rf*cn cn o  -* r o rf*cn  cn o  rf*cn cn Ch cn cn r o CO rf*cn cn cn r o rf*rf* cn cn t o CO rf*cn  o  co -> CO ro ro un  o  tO OJ  O  rf*VO rf*CO rf*rf*cn co rf*ro  o  tO M fO ro ro r o M r o r o r o r o r o r o r o r o t o r o r o r o t o r o r o co co CO co co ^ J C o c o c o c o c o - v j - v j c o c o c D O o C D C o o o m  o  OJ —3 rf*- j ro VO CO cn  cn U l o  —J  —  co co  —  -J  co co -^j  o  o o o o o o o o o o cn U l rf* vo ro cn rf*. ro o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  O o  o  OJ rf*. —  -o C 0 V O C O 0 0 C h V O r f * r f *  OJ rf*  cn rf*vo cn co r o ro rf*.  cn  —  VO co cn Co OJ o  ro cn OJ cn  o  o  o  o  o  o  o o o rf*  o  o  o  o  o  o  rf*OJ o  CO ro  o  o  - j cn cn o  ro rf*VO - j VO t o rf*Ch vo  o  o  o  o  o  o  o  o o o o co ro ro  o  o  o  o  o  o  o  o  o  o o to  o o o cn r o  o  o  o  o  o  o  —  co co co —j - j —] co CO CO  cn cn VO VO ro t o CO cn cn 'cn o  cn  o  CO Ch vo OJ CO o  vo o  —  o  cn rf*  cn CO o  rf* -j  - J 00 o  ro rf*  r o t o r o r o r o r o r o t o r o r o r o r o r o t o r o ro r o r o r o ro r o t o r o r o cn U l cn cn u i cn Ch Ch cn  - j CO co - J -o co - j 00 - j ~o  —  ro  o  CO U l  o  o  o  o  c  rf*- J vo ro o vo -j  r o cn cn vo o  o  o o o ro ro  o o ro  o  o o o o r o r o S°  o  o  o  o  o  o  o  O  o  o  o  o  o  o  o  o  O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O  —  — rf*  oo CO - j »j co co o  t o cn co o  o  o  rf* 00  —  cn co o  o  o  o  o  o  o  o o o o CO CO t o  o  o o OJ  o  o rf*  o  o  o  o  o  o  o  o  o  o  O O O O O O O O O  M  M  M M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  M  OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO M cn U l U l U l cn U l cn rf* rf* rf*it* cn cn rf* CO M 00 M  M to  o M  CO  CD M  rf*  —  -  —  cn rf* rf* M  M o rf*cn M CD co CO o CD  ~ j ~J CD CD CD o  rf* rf* rf* CO  cn cn rf* 00 M  o  CO CO CO M  -> rf* CO M M  M  co co CO o CO CD CO CO o  o  —  —  cn co CD CO CD o  o  -  -  M  M  M  M  M  M  M  M —  —  rf* rf* M  —  CO o (1) o co M  M  cn cn rf* CO M  o M  M  M  cn U l rf* OJ M  -  -> cn rf* M  o cn oo CO o U l CO co M CO M  cn cn cn co CD o  M  M  M  M  rf* rf* rf* rf* rf* 00  U l cn U l cn U l cn rf*  M  M  cn cn cn cn  to M M M M M to M to M M M M M to M M M M M  M  M  0O CO 00 M  -  rf* 00 M  O  M  M  -- -  to M  M  M  -*  —  M  -  o  —  CD CO CD 00 O CD co - J rf* o o Ch — J M  cn CD CD 00 CO M o  M  cn cn U l CD CD O  —  —  CO o CD M  -~0 cn cn cn cn cn cn U l cn  cn  CO O M o o o o o CD co o o it* cn cn rf*cn cn o cn cn CD cn cn O M o M co CD rf=co o co O o rf* M rf* co co cn o rf* rf* cn U l cn cn O — CO CO it* U l cn M CO rf* cn CO U l M rf* — M rf* U l cn cn o M CO rf* rf* cn — M rf* U l CO cn M cn o  CO  —  Ul  fO M K> M o  CO CO  o  •fl M  CO o  M  M  -J -0 O  CO CD cn M  - J -0 — J o  CO o  cn CO M  o  O O o  o  o  o  o  o  o  o  o  o  o  o  o  o o  o o  U < i W W  o  O  o  o  O  O  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o o  —  CO  o  o  cn CD o  o  o  o  o o  o  o o  o o  —  —  M M  o  o  o  rf*  o  rf* CD M o  o  o  o  o o  o  o o  o  rf* M  CD  co - J  M  Ul  o  o  o  o  o o  -J  o o  o o  M  o  O  M  CD cn CO cn if* CD cn cn to cn to oo to to M  o  o  o  o  O O  o  o  o  o  O  o  o o  o o  o o  O o  o  o  o  o  o  O o  o  o o rf*  o  o  o  o  o  M  M  M  M  o  o  o o  o  -  M  M  CD  CD M  CO CD  CO M  rf* o  CD  —  co M  o  O  o  o  o  O  o  o  o  o  O o CO M  o M  o  o o to  o  o  o  o  o  O  o  o  o  o  o  o  o o  o  M  CD  CO co —1 co  CD CD - J  —J  o  M  - J CD CD CO  cn rf* cn U l - J  O o o  M  CO CO -» cn U l Ch co CO CD  - J -<J CD oo  en ^1 cn CD M  tO M  M  CO CD  rf* rf* cn  o  o  M  CO  rf* rf*rf*rf*CO rf* M  CO  o  —  M M M M M M M M M co cn co CD CO 00 co CD  co co - J - J - J CO  rf*  cn CD M CO cn cn o  rf*  U l - J CO M  —  —1  O  o  cn cn cn CO cn cn cn CD CD  —  to IO M M M M M M CO CD co co - J ~o co co —1  o  rf* OO -^J 00  CO  o  M  co co  —I  cn ~ J  —  o  o  o  o  o  o  o  o  o  153  H  oc  in  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  1 1 1 1 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5 3 1 3 1 3 2 3 2 3 2  <  Q  1 2 1 2 3 4 1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 1 2 3 1 2 3 4 1 2 3 4 5 6  1 2 3 4 5 6 7  1 2 1 2 3  00  1.01 100 1 .27 96 0.96 1 00 1.31 100 2.05 90 2.36 90 1 .03 100 1.41 94 2.02 94 2.62 94 1 .03 70 1 .39 70 2.05 70 2.46 60 2.75 60 3.01 60 1 .04 . 80 1 .40 76 1 .88 76 2.60 76 2.65 76 3.32 76 3.05 76 0.99 72 1 . 35 72 0.98 70 1 . 36 70 1 .92 70 0.97 1 00 1.35 82 1 .74 82 2.51 82 0.97 76 1 .33 90 1.85 86 2.50 86 3.30 86 4.18 86 0.96 80 1 .32 78 1 .82 78 2.33 84 2.81 84 3. 47 80 4.80 76 0.96 78 1 . 37 78 0. 96 80 1 . 36 80 1 .95 80  o Q  PH EH  2 .8 27 .0 0 .2 26 .0 5 .6 26 .8 3 .9 26 .0 3 . 3 26 .9 1 .8 27 . 1 5 .9 26 .9 4.8 25 .9 3 . 4 26 .7 2 . 4 27 .0 6 .0 26 .9 5 .1 25 .9 4.0 26 .8 3 .9 27 . 1 2 . 4 26 .6 2 .0 26 .6 6 .3 26 .7 5 .6 25 .8 4. 7 26 .6 5 .0 27 .0 3 .9 26 .5 3 .8 26 . 5 0 .0 26 .7 5 . 1 2 6.7 3 .0 26 .0 5 .7 26 .8 4. 3 26 .0 2 . 1 26 .9 6 . 1 26 .7 5 . 4 26 .0 3 .8 26 .8 2 .9 26 .8 6. 4 26 . 5 5 .7 25 . 7 4.5 26 .6 4. 4 26 .9 2 .8 26 .7 1 .5 26 .7 6 .6 26 . 3 6. 1 25 .6 4.9 26 . 5 5 .4 26 .8 4. 3 26 .5 3 .6 26 .5 0 .0 26 .6 5 .2 26 .9 2 .9 25 .7 5 .7 26 .9 4. 3 25 . 6 2 . 1 26 .6  154  EH FH  2  H  K  GO  1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 .4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 •1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2  EH  <  3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5  Q  1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7  1 1  1 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 1 2 2 3 3 3 3 3 4  2 1 2 1 2 3 4 5 1 2 3 4 5 6 7 1  2 3 4 5 6 7 1 1 2 1 2 3 4 5 1  1-3  0.98 1 .32 1 .87 2. 48 0.97 1 .35 1 .89 2.51 2.93 3.86 0.96 1 .33 1 .88 2.50 2.86 3.51 4.87 0.94 1 .27 0.98 1 . 38 0.96 1 . 25 1 .70 2.34 2.56 0.98 1 . 29 1 .74 2.26 2.96 3.71 3.62 0.93 1 .30 1 .60 1 .76 1 .99 2.44 2. 7.6 0.96 1 .02 1 . 34 0.97 1 . 25 1.71 2.40 2. 92 1 .00  GO  88 84 84 80 90 88 82 80 80 80 85 85 82 82 82 80 78 80 76 90 80 82 82 82 82 82 80 72 72 72 72 72 72 100 76 72 72 72 70 64 88 1 00 66 100 90 80 70 70 1 00  o  Q  PH FH  6.1 27. 0 5.4 25. 7 3.9 26. 7 3.0 27 .0 6.3 27. 0 5.7 25. 7 4.6 26. 7 4.4 27 .0 2.9 26. 5 1 .5 26. 1 6.4 26. 7 6.2 25. 5 5.8 26. 6 5.4 26. 8 4.4 26. 2 3.7 25. 9 0.0 26. 2 3.0 26. 1 1 . 425. 7 4.4 26. 0 2 . 1 25. 7 5.8 26. 0 4.9 25. 6 4.4 25. 9 2.6 27 .0 1 . 1 27. 1 5.9 26. 0 5.2 25. 6 5.2 26. 0 3 . 427. 1 2.2 27 .0 1 .0 26. 6 0.7 27 .0 6. 1 26. 0 5.7 25. 5 6.2 25. 9 4.4 27 .0 3.8 26. 9 3.0 26. 5 2.6 26. 9 4.7 26. 1 5. 2 26. 0 3.2 26. 0 5.7 26. 0 4.6 26. 0 4.0 26. 0 2.8 27 .0 0.9 27 .2 6.0 26. 0  155  EH EH  S  H  OC GO  1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4  2 2 2 2 2 2 2 2 2 2  h3  o  1-3  >H  EH  <  Q  ^  GO.  Q  4 4 4 4 5 5 5 5 5 5  2 1 .32 3 1 .80 4 2.40 5 2.98 1 0.97 2 1 . 22 3 1 .73 4 2.43 5 3.33 6 3.88  80 80 74 74 86 86 80 66 66 60  5.3 5. 1 3.0 0.6 6.3 5.8 6. 1 4.5 2.9 2.9  PH EH  25.8 26.0 27.0 27.2 25.7 25.5 25.5 26.9 27 . 1 26.2  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O —  O  O  O  o  o  O  o  O  o  CTv cn CM un CM O CO <tf CO CO co CO co in r-~ o  o  o  o  O  o  o  •nco  CO cn r-  CO o  D r-  oo r-  co CO r-  00 o  o  CN CO r-  o  o  o  O  o  cn  ro o i n <=* cn  o  o  i n co cn  co r-  o  o  o  o  o  ^  ro  o  O  i n CM o r-  oo r~  o  o  o  o  r-  O LO CO O CN cn r- CO LO CN CM CO cn ro m 00 CO CO i n 00 CO oo ro oo co m CM  o  o  O  o  cn cn cn i n  oo oo co r-  r-  r-  i n i n 00 CM i n cn ro o  CM i n CO CO  o  o  O  o  o  r-  o  O  o  o  co  o  o  o  o  o  o  CO CD i n  oo r-  oo r »  co oo  CN  i n CD  —  o  o  o  O  o  -  O  o  o  O  O  O  O  o  O  o  o o  CO oo CD CD CO CM >X> CN CO  o  O  co r~- CO i n ro o  o  r-~ r-  O  o  O  co oo oo r-  oo r-  O  o  O  o  o  ro ro  m  cn CN 00 CO CM O i n r- cn i n ro CO cn  o  o  O  cn oo oo  oo oo oo r--  CM CM r~- oo CM cn cn r-  o  o  r-  r»  oo ro  cn CO o CO OO 00 o CO 00 CO o CO c o c o o o c o o c n c o c n c o c n c o r ^ CO cn oo r- CO r- CO r-r- 00 o oo •o CM co CM CN CO CM CM CM ro CM CM CM ro CM C M C M C N C N C N C M C M C M C M C N C N CN CM CM CM CN CM CM CM CM CM CM CM CM CO i n 00 Q  i n cn O  n CM i n co CN i n CO CN o D o «* O CD rO  o o  -  CM —  CM o  r-  oo CM CO O CM CO i n i n  *0 i n  CM CO CO o ro ro o  CM i n co  —  -  cn r-  LO CM i n CO CD  CO CO o CD LO i n  ro  o  oo 00 CO CM r-« 00 ro cn CN  —  co CD i n  o CO CO OO 00 O CO co CD •=f o CO r - r- o CO (N| CM o CM O o o CM CD CD CO vo ro i n co rco CD CO i n r- r- 00 r- CO CO LO ro cn r- CO CD CD m o 00 r- CO CO o co o  m cn i n cn r- i n r» CO CO CO cn ro oo CN cn CN LO cn CD r—  CM CO  —  -  CN ro  CM CM CM CO CO ro ro  o  —  CM CO  CM o —  -  —  CN ro  r- o oo o  CN ro i n CO  in in m m in in in  —  r- cn CO cn ro co ro cn CD cn cn cn ro cn o —  CM  -  o  —  o  —  —  CN  —  CM CO  CM o  CN CN CO ro CO ro  ro cn CO o CD CO oo o  LO CO  o  O  o  o  r--  r-  CD CX> r-  O  O  O  o  o  o  o  co co  co oo r~ ro  cn r-  cn oo r- r- cn oo r~ CM CM CM CN CM CM CM CM i n i n CM CM i n o  o  ro o  CN o  CM  00 O  CO  CM o r- r »  CO CO CM CM CM CM CM co oo co o m i n i n cn i n LO CN r- i n i n ro  CM r-  o LO 00 CN i n o  CM CM ro CM ro  o  o  oo co co  r-  o  O  CN 00 CN 00  ^<  in  i n CO r-  LO i n i n i n LO i n i n  —  —  o  -  CO co o  —  CM CN  CM  —  —  CN CM CM CN  CN ro —  oo CD o LO CM m o —  CM CO  CN CM CN CM CM CM CN CM CM CM CN CM CN CM CN CM CM CN CM CM CN ro ro CO ro OO 00 OO 00  CNCNCNCNCNCMfMCNICNCNCMC^CNCNCNCMCNCMCMCMCMCNCNCMCMCNCMCMC^  o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  n o c o u ) t M o r o c O ' * r ~ a D < * ^ C T > c n I D o cn co i n ix)^(^(^^inc^<^cN(^^roro^^cN m ro co i n ro CM ^•*(N00^( )iniOr-'-ljnv0V000 ( l C 0 ( N ( N I ^ O O O O O O O o o o o o o o o o o o o o o o o o o o o o r  v  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  cor^r^r^r^rocor^cor^r^t^cooaro oocNf^r^-—co^inu3cxi(x>ocoinc^ cocor^r^cococor-r-r^r^ococ^r^^ CNJCNCN)CN(NJ(NCNr^rslCN)(N CNCNCNCNCNCM  CNCSlCNC\)CNCNCNr>J(NCNCNO»lCNC^  ^ m n m c r i r o o o > s ' L n M m o c o o j ( N i o ( j \ ^ o i > - M - - c D  O ^ C N ( N J O C N 0 0 3 C O < ^ 0  0  CNCMCNICNCMCNCNCNJCN  m . v o 10 i n vo ^ ^ • a D ( ^ J U ) ( ^ c r l c ^ J m o ( N < a ' 0 ^ c o • - ( 0 ( N v o ^ ,  C N O O C O i n r O C O O  o c x i r o r o r ^ c r i c n r ^ r ^ r ^ v o ^ ^  c nr -  c o c o c b c n c n c n a ^ c h c o c o c n o ^ r o  co<*uDr^ooo^r>*-cotnuD"-.-^MDChcy>cN^ o ^ c o u ) c o o ^ o c o ^ o O l n o • * o ^ l f i ^ o o l ) O ^ C I ^ O ' * a ) 0 ^ t o N o ^ ^ o O ' - ( ^ ( ^ l ( n o ^ ^ o ^ ^ ( J > • v  ^c^ro^LO.— cNco^invor^^CNiro^u^uDr^^cN r o r o r n r o r o ^ > * ^ ^ ^ ^ « ^ L n i r > i n i n i n L n i n > - ' — ( N C N C ^ rorocoroMroroco^rorn^rorororororocO'—  cvicNC\ic\icNi<>ic\ir\i(Nr\)cNCNr^  ro to to to ro ro ro ro ro ro  ro ro to NJ ro ro to to to ro to ro ro ro ro ro ro ro ro ro to ro ro ro  to ro ro ro ro ro ro ro ro to  to to ro ro ro to ro rv ro ro ro ro ro ro to ro to ro to ro to ro ro ro  CO CO CO CO CO CO CO CO CO CO  CO CO CO CO CO CO CO CO CO CO C J CO to to ro ro ro to to to ro to ro to  cn cn cn cn cn cn cn  rf*rf* rf*  - j Ch cn  -  co to  —  cn cn  — •  —  CO ro  —  CO cn co  cn rf* o  cn rf* CO to - j CO CO cn cn  rf*  rf*.rf* rf* CO CO Co CO ro to to —  rf*  CO o CO CO o  cn ro ~ j  cn cn cn vo vo vo cn cn cn ro CO CO cn ~o -~J -o cn cn cn  CO to  —  VO CO  rf*.CO ro to  —  —  —. •->  CO ro —  —  o  CO CO CO o -o CO VO CO VO o VO CO ro  rf*  cn cn cn cn cn cn U l rf* rf* rf* cn cn rf* CO ro  ro  o  CO CO ro ro  cn rf* CO CO OJ ro  —  rf*vo  vo cn cn o -o CO o vo co cn rf* co U l to o  —  CO VO  —  —  rf* o  Ul o  cn  —] — J CO -0. -0 - j -o vo VO VO —l - J cn cn - J -o ~ J - J to cn CD o cn cn cn rf* rf* ro rf* rf* rf* rf* cn cn o o CO CO 00  rf* rf* cn  CO rf* cn cn cn  rf* o ro  rf*  rf* cn  o  to rf*. rf* cn cn cn  o  CO CO cn vo cn  o  ro ro ro ro ro ro ro ro to cn -o -o co - j -o -o  ro ro to ro to ro to ro ro ro to ro CO -j CO - J co — i 00 o  to ro ro ro to ro ro to ro to ro co -J co -o  o  cn CO -o -» ro ro — i cn o  CO CO rf*.—  cn cn  cn cn o  ~o  -0 co co  -j  rf* o  o  -o CO co -•j -o ^1  —  cn vo rf* to rf* CO o  rf* ro  vo vo oo vo co o CO -o Co  CO - j  CO  U l cn to ro  -o —1 CO cn vo -* co  cn  rf*  Ul  uv to co  - j ro vo U l  -o  o  co co -o. o  o  VO  cn cn o  o  O o  rf* co  -o  o o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o o o o to rf* CO ro  o  o  o  o  o  o  o  o  o  o o o o o o o o o o ro to ro cn cn OJ CO rf*. - J  o  o  o  o  o  vo vo cn o  cn cn -o  o  o  o  o  o  o  o  o  o  o  o  o  O l cn CO to to  -  CO cn  cn CO rf* CO rf*rf* cn rf* rf* CO cn cn  o  cn  rf*  o  —  o  o  o  CO ro CO ro CO CO to CO  o  o  o  o  o  —  U l vo cn  OJ OJ CO 00 ro  o o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o  o o ro  o  o  o  o  o —  o -  o o o t o  o  o  o  o  o  o  o  o  o  o  o  o o ro  o  o  o  o o ro  o  o  o  o  159  En  h3  o  P-H  -3  m  Q  E-  1  0 . 9 6  86  5 . 0  2 6 . 9  2  1.26  86  3 . 6  2 5 . 7  3  1.66  70  1 .3  2 6 . 7  2  1  0 . 9 5  60  5 . 9  2 6 . 9  1  2  2  1. 2 5  66  4 . 9  2 5 . 6  3  1  2  3  1.60  66  3 . 0  2 6 . 6  3  1  3  1  0 .98  80  5 . 8  2 7 . 0  2  3  1  3  2  1. 2 3  80  4 . 9  2 5 . 7  2  3  1  3  3  1. 5 5  76  3 . 3  2 6 . 7  2  3  1  3  4  1. 9 6  76  2 . 9  2 7 . 0  2  3  1  3  5  2 .62  76  0 . 2  2 6 . 5 2 7 . 0  HH' >H  En  2  EH  K  H OQ  2  3  1  1  2  3  1  1  2  J  •1 1  2  3  1  2  3  2 2  0  <  Q  2  3  1  0 .98  72  6 . 5  3  1  4 4  1  2  2  1. 2 2  72  5 . 8  2 5 . 7  2  3  1  4  3  1.58  72  4 . 6  2 6 . 7  2  3  1  4  4  2 .01  80  3 . 9  2 7 . 0  2  3  1  4  5  2 .62  80  3 . 7  2 6 . 6  2  3  1  4  6  3 .31  80  2 . 7  2 6 . 1  2  3  1  5  1  0 .97  76  6 . 5  2 6 . 7  2  3  •1  5  2  1. 2 2  90  5 . 9  2 5 . 5  2  3  1  5  3  1.62  86  5 . 0  2 6 . 6  2  3  1  5  4  1.92  76  4 . 9  2 6 . 8  2.  3  1  5  5  2 .33  76  4 . 6  2 6 . 5  2  3  1  5  6  2 .80  76  3 . 8  2 5 . 9  2  3  1  5  7  2 .63  74  0 . 0  2 6 . 2  2  3  2  1  1  0 . 9 5  90  5 . 0  2 6 . 6  2  3  2  1  2  1.26  90  2 . 7  2 6 . 0  2  3  2  •2  1  0 .96  84  5 . 7  2 6 . 6  2  3  2  2  2  1.22  84  4 . 9  2 5 . 9  2  3  2  2  3  1.67  76  1 .8  2 6 . 5  2  3  2  3  1  1.06  1 00  6 . 2  2 6 . 6  2  3  2  3  2  1.22  96  5 . 2  2 5 . 9 2 6 . 5  2  3  2  3  3  1.76  92  3 . 5  2  3  2  3  4  2 .24  70  3 . 0  2  3  2  3  5  2 .71  70  1 .  1  2 6 . 9 2 6 . 6  2  3  2  4  1  0 .98  90  6 . 4  2 6 . 5  2  3  2  4  2  1. 2 2  900  5 . 7  2 5 . 7  2  3  2  4  3  1. 6 9  90  4 . 5  2 6 . 5  2  3  2  4  4  2 . 0 6  90  4 . 6  2 6 . 0  2  3  2  4  5  2 .41  90  3 . 3  2 6 . 5  1  2 6 . 5  2  3  2  4  6  2 .93  74  3.  2  3  2  4  7  3 .81  74  0 . 0  2 6 . 6  2  3  2  5  1  1.09  96  6 . 6  2 6 . 3  2  3  2  5  2  1. 19  96  6 . 2  2 5 . 5  2  3  2  5  3  1.66  90  5 . 3  2 6 . 3  2  3  2  5  4  2 .04  90  5 . 5  2 6 . 5  2  3  2  5  5  2 . 2 6  90  4 . 4  2 6 . 2  2  3  2  5  6  2 . 62  68  3 . 7  2 6 . 2  2  3  2  5  7  3 .60  68  0 . 0  2 6 . 3  2  3  3  1 1  0 . 9 6  86  5 . 0  2 6 . 6  2  3  3  1  1. 2 2  86  3 . 0  2 5 . 7  2  EH EH  2  S «  3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4  rH GO.  3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 2 2  EH  <  Q  2 1 0.95 <c 1 . 2 2  2 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 1 1  1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 1 2 3 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 7 1 2  1 .68 0.98 1 .25 1 .70 2.28 2.76 0.96 1.23 1.71 2.14 2.50 2.89 3.68 0.97 1 .25 1 . 68 2.23 2.71 2.95 3.72 1 .02  1.16 1 . 43 0 . 98 1 .28 1 .62 0.95 1.17 1 . 48 2.07 2.40 3.13 0.97 1.15 1 . 39 '1 . 7 3 2.18 0.94  1.19 1 .47 1 . 75 2.41 3.25 4.13 0.96 1 . 24  I-H CO  88 88 80 90 90 80 74 74 90 90 .90 84 84 76 76 88 88 80 80 80 75 70 1 00 98 98 80 68 68 94 86 86 86 86 86 86 68 68 64 62 90 66 66 66 66 62 62 74 46  O Q  PH EH  7 9 0 2 2 3. 5 3. 0 4 1 . 5. 4 . 2. 6. 5.  6. 5. 4. 4.  4 8 7 6 .6  3 3. 1 •o. 6. 6. 5. 5. 4.  0 7  3 3  2 5 3. 8 0. 0 5. 0 3. 6 2. 1 4. 7 3. 4 2 .5 5. 7 4. 7 4 .4 2. 6  1 .1 0. 3 6. 0 5. 3 5. 5 3. 8 6 1 . 6. 2 5. 8 6. 6 4. 8 4. 4 3. 8 3. 2 4. 7 1 . 8  26. 6 25. 7 26. 6 26. 6 25. 6 26. 6 27 . 0 26. 5 26. 3 25. 5 26. 6 27 . 0 26. 3 26. 2 26. 5 26. 7 26. 0 26. 6 26. 8 26. 2 26. 0 26. 3 26. 0 25. 5 25. 8 26. 0 25. 5 25. 5 25. 9 25. 4 25. 8 27. 0 26 . 7 26. 3 25. 8 25. 4 25. 8 27. 0 26. 7 25. 7 25. 4 25. 2 26. 7 26. 7 26. 3 26. 5 26. 3 26. 0  161  EH  2  H  EH  E-i cc;  CO  <  2 4 2 4 2 4 2 4 2 4 2 4 •2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5  Q  1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 7  1-3  0.98 1 . 26 1 . 57 0 . 94 1.19  1 . 50 1 .63 0.95 1.18  1 .38 1 .50 1 .92 0.99 1 .20 1 .58 1 .96 2.38 2.83 3.57  H3  o  Pn  00  Q  EH  62 62 50 88 66 66 58 100 76 76 76 76 88 80 80 62 62 62 56  5.4 26.3 3.5 25.8 2. 1 26.0 5.8 26.2 4.9 25.8 4.3 26.0 1 .9 26.8 6.2 26.0 5.5 25.7 5.8 25.8 4.0 26.7 2.3 27.0 6.4 25.9 5.8 25. 6 6.7 25.5 5.1 26.5 4.4 26.8 3.7 26. 5 3 . 3 27.0  162 A p p e n d i x X.  ANALYSIS TEST  Computer p r i n t - o u t o f s t a t i s t i c a l a n a l y s i s on t e s t f o r e q u a l i t y o f growth r a t e s o f b r i n e shrimp i n c y l i n d r i - c o n i c a l t a n k s and raceways.  OF COVARIANCE  FOR EQUALITY OF GROWTH RATES  THERE  ARE  2 SAMPLES  AND  1  IN D I F F E R E N T TANKS  AT A . L . 5  INDEPENDENT V A R I A B L E S  DATA FORMAT IS ( 1X.I2.F7.3.F3.0)  REGRESSION  EQUATION  SAMPLE  (NUMBER  Y(  10  COMMON  BW(  +  (NUMBER  +  . 7)  0.2281  OF CASES  1)=-.2420  DEPENDENT  SAMPLE  OF CASES =  1)=-.1711  SAMPLE Y(  5  FOR EACH  =  X( 1) 7  0.2507  ) X( 1)  VARIABLE Y( 1)  SLOPES ARE  1 )=  O. 239  T E S T HYPOTHESIS OF COMMON T E S T HYPOTHESIS OF COMMON F= 0.39 0F1= 1 DF2= COMMON  F=  2.40  DF1=  1  DF2=  10  PROB= 0.15274  EQUATION 11 PROB=0.54545  EQUATION:  Y=-.2066 ANALYSIS  SLOPE  +  0.2394  FOR DATASET  X( 1)  1 COMPLETED  SAMPLE 5 ' means o f L f o r c y l i n d r i - c o n i c a l at aeration l e v e l 5  tanks  SAMPLE 10: means o f L f o r r a c e w a y s at aeration l e v e l 5  Y = InL X(1) = T  L : length T : c u l t u r e p e r i o d (day)  Appendix X I . V a l u e s o f t o t a l biomass p r o d u c t i o n w i t h c o r r e s p o n d i n g KLa's i n d i f f e r e n t s i z e s o f c y l i n d r i - c o n i c a l tank and raceway.  Notes:  1.  TS : Tank type Cylindri-conical 1- s m a l l 2- medium 3- l a r g e Raceway 4- s m a l l 5- medium 6- l a r g e  2.  PROD : T o t a l biomass (ug/lOOml)  production  TS  K a  PROD  1 1 1 1  .0052 0 .0052 0 . 0052 0 . 0052 0 .0089 0 .0089 0 .0089 0 .0089 0 .01 55 0 . 0 1 55 0 .01 55 0 .0155 0 .0266 0 .0266 0 . 0266 0 .0266 0 .0459 0 .0459 0 .0459 0 . 0459 0 .0053 0 . 0053 0 .0092 0 .0092 0 .0092 0 .0092 0 .01 57 0 .0157 0 .01 57 0 .01 57 0 .0269 0 . 0269 0 .0269 0 .0269 0 . 0468 0 .0468 0 .0468 0 .0468 0 .0054 0 . 0054 0 . 0054 0 .0094 0 .0094 0 .0094 0 .0162 0 .0162 0 .01 62 0 . 0275 0 .0275 0 . 0275 0 . 0472 0 . 0472 0 . 0472  601 . 1 266 .7 277 .9 271 . 4 2507 .8 658 .8 2421 .8 391 .8 7748 . 4 2212 .8 3149 .2 2 62 5 .6 1 508 .7 791 5 . 3 2500 .3 5524 .4 2941 .8 4141 .9 261 5 .5 2824 .4 265 .7 295 .2 829 . 4 221 . 4 306 .6 303 .6 577 .3 1 442 . 1 2523 . 4 3402 .6 1 0889 .3 1 6257 .3 5248 .4 3622 .0 6568 .2 1 3378 .2 3313 . 1 6303 . 4 781 .0 141 .6 361 . 1 1 475 . 1 272 .3 1217 .6 1 088 .8 2121 . 1 2436 .7 7435 .4 17411 .8 3720 .3 8832 . 1 3508 .3 3519 .8  1  1 1 1 1 1 1 1 1 1 1 1 1 •1  1  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  T  0  TS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 C  5 5 5 5 5 5 5 6 6 6 6 6 6 6 r D  6 6 6 6 6 6 6  K a L  0 .0053 0 . 0053 0 .0053 0 .0053 0 .0089 0 .0089 Q .0089 0 .0089 0 .0149 0 .0149 0 .01 49 0 .01 49 0 .0249 0 .0249 0 .0249 0 . 0249 0 .0420 0 .0420 0 .0420 0 .0420 0 .0053 0 .0053 0 .0053 0 .0053 0 .0090 0 .0090 0 .0090 0 .0090 0 .0153 0 .01 53 0 .0153 0 .0153 0 . 0253 0 .0253 0 .0253 0 .0253 0 .0426 0 . 0426 0 .0426 . 0 . 0426 0 .0055 0 .0055 0 . 0055 0 .0091 0 . 0091 0 .0091 0 .0154 0 .0154 0 .01 54 0 .0246 0 .0246 0 .0246 0 .041 3 0 .0413 0 .0413  PROD 265. 8 259. 0 749. 2 488. 5 797. 6 1 144.4 540. 4 592. 1 847. 5 1098. 9 2589. 3 4616. 6 1826. 8 1872. 5 4808. 9 1 365.3 9891 . 6 15289. 6 2745. 8 6739. 6 308. 2 268 . 1 293. 4 175. 8 444 . 6 845. 1 769. 9 44 1 .4 1588. 2 1 572 .5 2910. 5 573. 4 10119. 1 3466. 6 7000 .7 1 140.2 11630. 7 7115. 0 5690. 3 4696. 7 918. 3 366. 3 230. 5 1 758 .7 758. 5 830. 9 6850. 0 1 792 .7 3029. 6 14350 . 2 4506. 2 6456. 4 14112. 8 1 4423 .5 631 3. 5  166  Appendix X I I . Computer p r i n t o u t o f s t a t i s t i c a l a n a l y s i s on t e s t f o r s i m i l a r i t y o f r e l a t i o n s h i p between t o t a l biomass p r o d u c t i o n and Kj^a i n d i f f e r e n t s i z e s o f c y l i n d r i - c o n i c a l tanks and raceways. ANALYSIS OF COVARIANCE .TEST FOR EQUALITY OF SLOPES AND INTERCEPTS FOR PROD VS KLACOR  THERE ARE  6 SAMPLES AND  DATA FORMAT IS (1X, 11, 29X, F7.3, 14X.  1  INDEPENDENT VARIABLES  F7.3)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE Y(  3  4  5  Y(  6  X( 1) 18)  1.765  X( 1 )  (NUMBER OF CASES = +  15)  1.400  X( 1)  (NUMBER OF CASES = +  20)  1.334  X( 1)  (NUMBER OF CASES =  Y( 1)= 14.12 SAMPLE  1.032  +  1)= 12.95  SAMPLE  20)  (NUMBER OF CASES =  1)= 13.27  SAMPLE Y(  2  +  1-)= 14.63  SAMPLE Y(  (NUMBER OF CASES =  1)= 11.74  SAMPLE Y(  1  +  20)  1.634  X( 1)  (NUMBER OF CASES =  1)= 14.92  +  15)  1.683  X( 1)  DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW(  1)=  1.450  TEST HYPOTHESIS OF COMMON SLOPE  F=  1.78  DF1=  5  DF2=  96  PROB= 0.12480  TEST HYPOTHESIS OF COMMON EQUATION F= 1.68 DF1= 5 DF2= 101 PROB=0.14739 COMMON EQUATION:  Y= 13.47  +  ANALYSIS FOR DATASET  1.443  X( 1)  1 COMPLETED  C y l i n d r i - c o n i c a l tank SAMPLE 1 small medium SAMPLE 2 SAMPLE 3 large Y = InP X(l) = In K a L  Raceway s m a l l : SAMPLE k medium: SAMPLE 5 l a r g e : SAMPLE 6  P : T o t a l biomass p r o d u c t i o n (ug/lOO ml)  167 Appendix X I I I .  Computer p r i n t - o u t o f s t a t i s t i c a l t e s t f o r s i m i l a r i t y i n time f o r occurence o f mass mortality i n different sizes of c y l i n d r i c o n i c a l tanks and raceways.  ANALYSIS OF COVARIANCE TEST  FOR S I M I L A R I T Y  THERE  ARE  OF MORTALITY  6 SAMPLES  AND  1  LINES  INDEPENDENT VARIABLES  DATA FORMAT IS (I 1 , F 5 . 2 , F 4 . 1 )  REGRESSION  EQUATION  SAMPLE  (NUMBER  Y(  4  5  6  (NUMBER  +  (NUMBER  (NUMBER  +  =  4  ) X( 1)  4  ) X,( 1)  4  1.275  ) X( 1)  OF CASES = +  !  X( 1 )  0.8250  OF CASES  (NUMBER  )  1.339 =  ) X( 1)  4  =  OF CASES +  4  1 .450  OF CASES  1)= 1.000  DEPENDENT  =  1.359  +  1)=0.5000  SAMPLE Y(  3  SAMPLE  OF CASES =  1)= 1.625  SAMPLE Y(  (NUMBER  1)=0.6350  SAMPLE Y(  2  +'  1)=0. 1250  SAMPLE Y(  OF CASES  1)=0.8450  SAMPLE Y(  1  FOR EACH  4)  1.334  X( 1)  V A R I A B L E Y( 1)  COMMON SLOPES ARE  BW(  1)=  1.264  T E S T HYPOTHESIS 01 COMMON T E S T HYPOTHESIS OF COMMON F= 2.09 DF1= 5 DF2= COMMON  F=  2.04  DF1=  5  DF2=  12  EQUATION 17 PR0B=O.11650  EQUATION:  Y=0.7791 ANALYSIS  SLOPE  +  FOR DATASET  1.266  X( 1)  1 COMPLETED  C y l i n d r i - c o n i c a l tank small SAMPLE 1 medium SAMPLE 2 SAMPLE 3 large Y X(l)  Raceway s m a l l : SAMPLE 4 medium: SAMPLE 5 S SAMPLE 6 l a r  e  :  = L e n g t h o f time b e f o r e onset o f m o r t a l i t y = Aeration l e v e l  PROB= 0.14471  168  Appendix  XIV.  Computer p r i n t - o u t o f s t a t i s t i c a l t e s t f o r s i m i l a r i t y o f DO c u r v e s i n c y l i n d r i - c o n i c a l t a n k s and raceways.  a. ANALYSIS TEST  OF  COVARIANCE  OF S I M I L A R I T Y  THERE  ARE  A e r a t i o n l e v e l 4.  OF 00 CURVES AT AERATION  2 SAMPLES  AND  2  INDEPENDENT  LEVEL 4  VARIABLES  DATA FORMAT IS (I2,F5.2,2F4.0)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE Y(  (NUMBER  OF CASES  1 ) = 6 .432  SAMPLE Y(  4  1 )=  9  +  (NUMBER  +  DEPENDENT V A R I A B L E  BW( TEST  1)=  6)  -.2945  X(  OF CASES  6.979  COMMON SLOPES  =.  =  ,8821E-01X(  2)  1 )  .6607E-02X(  2)  G)  -.7335  Y(  1)  X(  1)  ARE  -0.514  HYPOTHESIS  BW(  2)=  -0.047  OF COMMON SLOPE  T E S T HYPOTHESIS F= 3.09 DF1=  OF COMMON 1 DF2=  F=  4.13  DF 1 =  DF2 =  6  EQUATION 8 PR0B=O.11689  COMMON EQUATION:  Y= 6 . 7 0 5 ANALYSIS  +  -.5140  FOR DATASET  X(  1)  +  -.4741E-01X(  2)  1 COMPLETED  SAMPLE 4 : C y l i n d r i - c o n i c a l SAMPLE 9 : Raceway  tank  Y = DO X(l) X(2)  = T  = T  T : C u l t u r e p e r i o d (day) 2  PROB=  0.07463  169  b.  Aeration level 5 «  ANALYSIS OF COVARIANCE TEST OF SIMILARITY OF OO CURVES AT AERATION LEVEL 5  THERE ARE  2 SAMPLES AND  2  INDEPENDENT VARIABLES  DATA FORMAT IS (12.F5.2,2F4.O)  REGRESSION EQUATION FOR EACH SAMPLE SAMPLE  5  (NUMBER OF CASES =  Y( 1)= 6.500 SAMPLE 10  +  -.1792  (NUMBER OF CASES  Y( 1)= 6.937  +  7)  =  X( 1) 7  -.4686  +  -.5417E-01X( 2)  X( 1) +  -.1143E-01X( 2)  )  DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW(  1)=  -0.324  BW( 2)=  -0.033  TEST HYPOTHESIS OF COMMON SLOPE  F=  2.37  DF1=  2  DF2=.  8  TEST HYPOTHESIS OF COMMON EQUATION F= 2.04 DF1= 1 DF2= 10 PR0B=O. 18387 COMMON EQUATION:  Y= 6.719  +  -.3239  ANALYSIS FOR DATASET  X( 1)  +  -,3280E-01X( 2)  1 COMPLETED  SAMPLE 5 : C y l i n d r i - c o n i c a l SAMPLE 10: Raceway Y  tank  = DO  X(1)  = T  X(2)  - T  T : C u l t u r e p e r i o d (day) 2  PR08= 0.15520  170  Appendix XV.  ANALYSIS TEST  OF  COVARIANCE  OF S I M I L A R I T Y  THERE  ARE  Computer p r i n t - o u t o f s t a t i s t i c a l t e s t f o r s i m i l a r i t y o f DO curves i n a c u l t u r e system c o n t a i n i n g b r i n e shrimp and f e e d and i n another c o n t a i n i n g feed only.  OF DO CURVES  2 SAMPLES  FOR (ART+FEED) VS FEED ONLY  INDEPENDENT  AND  VARIABLES  DATA FORMAT IS ( I 1,F5.2,2F4.0)  REGRESSION EQUATION SAMPLE Y(  (NUMBER  2  +  (NUMBER  .20)  -.5482  +  +  X( 1 )  OF CASES =  1)= 5.565  DEPENDENT  SAMPLE  OF CASES ='  1 )= 6.769  SAMPLE Y(  1  FOR EACH  -.6875E-01X( 2)  20)  0.2967  1993  X( 1)  X(  2)  VARIABLE Y( 1)  COMMON SLOPES A R E '  BW( TEST  1)=  -0.126  BW( 2 ) =  HYPOTHESIS OF COMMON  T E S T HYPOTHESIS OF COMMON F= 0.41 DF1= 1 DF2= COMMON  SLOPE  F=  DF1 =  1.04  DF2 =  34.  PROB= 0.36531  EQUATION 36 PR0B=O.52672  EQUATION: •  Y= 6 . 167 ANALYSIS  -0.134  • •+ •  FOR DATASET  - . 1258  • . X (• 1 )  +  1340  X(  2)  1 COMPLETED  Y = X(l) = X(2) =  T : Culture period  (day)  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076980/manifest

Comment

Related Items