Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Scale-up studies on the culture of brine shrimp Artemia fed with rice bran Platon, Rolando R. 1985

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-UBC_1985_A1 P62.pdf [ 9.79MB ]
Metadata
JSON: 831-1.0076980.json
JSON-LD: 831-1.0076980-ld.json
RDF/XML (Pretty): 831-1.0076980-rdf.xml
RDF/JSON: 831-1.0076980-rdf.json
Turtle: 831-1.0076980-turtle.txt
N-Triples: 831-1.0076980-rdf-ntriples.txt
Original Record: 831-1.0076980-source.json
Full Text
831-1.0076980-fulltext.txt
Citation
831-1.0076980.ris

Full Text

SCALE-UP STUDIES ON THE CULTURE OF BRINE SHRIMP ARTEMIA FED WITH RICE BRAN by ROLANDO R. PLATON .B.S.Ch.E., Mindanao S t a t e U n i v e r s i t y Marawi C i t y , P h i l i p p i n e s , 1967 M.Eng'g.(Ch.E.), U n i v e r s i t y of t h e P h i l i p p i n e s Quezon C i t y , P h i l i p p i n e s , 1969 M.S.(Envi.Eng'g.), No r t h w e s t e r n U n i v e r s i t y E v a n s t o n , I l l i n o i s , . U.S.A., 1971 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department of I n t e r d i s c i p l i n a r y S t u d i e s We a c c e p t t h i s t h e s i s as c o n f o r m i n g t o the r e q u i r e d s t a n d a r d THE UNIVERSITY OF BRITISH COLUMBIA May 1985 © Rolando R. P l a t o n , 1985 I n p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f t h e r e q u i r e m e n t s f o r an advanced degree a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I agree t h a t t h e L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r agree t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y purposes may be g r a n t e d by t h e head o f my department o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s u n d e r s t o o d t h a t c o p y i n g o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . Department o f INTERDISCIPLINARY STUDIES The U n i v e r s i t y o f B r i t i s h Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date MAY 23, 1985 )E-6 (.3/81) ABSTRACT The e f f e c t s of water movement or a g i t a t i o n on the b i o l o g i c a l performance of p l a n k t o n i c organisms under i n t e n s i v e c u l t u r e have been r a r e l y s t u d i e d q u a n t i t a t i v e l y . S t a g n a t i o n or minimum v a l u e s a re c o n s i d e r e d i m p o r t a n t i n the problem of s c a l e - u p based on optimum c o n d i t i o n s . Near s t a g n a t i o n , i nadequate water movement b r i n g s about u n d e s i r a b l e e f f e c t s , e.g. a c c u m u l a t i o n of m e t a b o l i t e s , uneven d i s t r i b u t i o n of fee d and low d i s s o l v e d oxygen c o n c e n t r a t i o n . An i m p o r t a n t mechanism a s s o c i a t e d w i t h water movement at these c o n d i t i o n s i s the o x y g e n a t i o n p r o c e s s which d e f i n e s the oxygen t r a n s f e r r a t e from t h e gas t o the water. E x p e r i m e n t s were conducted u s i n g p o t a b l e water t o determine the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t i n two t y p e s of c o n t a i n e r g e o m e t r i e s ; a) c y l i n d r i - c o n i c a l tank and b) oblong-shaped c e n t e r - p a r t i t i o n e d raceway. For each type of c o n t a i n e r , t h r e e g e o m e t r i c a l l y s i m i l a r s i z e s were i n v e s t i g a t e d w i t h s c a l e r a t i o of a p p r o x i m a t e l y 1:2:3.5. A g i t a t i o n was in d u c e d by the i n t r o d u c t i o n of a i r i n t o the system. G e n e r a l c o r r e l a t i o n s f o r both tank g e o m e t r i e s were o b t a i n e d from e x p e r i m e n t a l d a t a and were e x p r e s s e d i n terms of the o p e r a t i n g and g e o m e t r i c parameters. The c o r r e l a t i o n s a re i n the form of d i m e n s i o n l e s s groups (Froude and Reynolds numbers) making them a p p r o p r i a t e f o r s c a l e - u p e s t i m a t e s . The g e n e r a l c o r r e l a t i o n s f o r the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t were s u b s e q u e n t l y used t o p r o v i d e the s c a l i n g e q u a t i o n s to d e f i n e the o p e r a t i n g parameters i n d i f f e r e n t s i z e s of c o n t a i n e r s f o r the c u l t u r e of b r i n e shrimp i n sea water f e d w i t h r i c e b r a n . The h i g h c o r r e l a t i o n c o e f f i c i e n t o b t a i n e d f o r the r e l a t i o n s h i p between t o t a l b r i n e shrimp biomass p r o d u c t i o n and the o v e r a l l mass t r a n s f e r c o e f f i c i e n t a p p l i c a b l e t o d i f f e r e n t s i z e s of both the c y l i n d r i - c o n i c a l tank and the raceway i n d i c a t e s t h a t the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t i s an e f f e c t i v e s c a l e - u p c r i t e r i o n i n b r i n e s h r i m p c u l t u r e . i v TABLE OF CONTENTS Page ABSTRACT i i TABLE OF CONTENTS iv LIST OF TABLES v i LIST OF FIGURES v i i ACKNOWLEDGEMENTS x I. INTRODUCTION 1 I I . LITERATURE REVIEW 7 I I I . THEORY 25 IV. EXPERIMENTAL FACILITIES 32 V. CULTURE TECHNIQUE.AND MEASUREMENT OF MONITORING AND BIOLOGICAL PERFORMANCE PARAMETERS 43 VI. DETERMINATION OF THE CONTROLLING MECHANISM IN BRINE SHRIMP CULTURE NEAR STAGNATION CONDITIONS . 47 a. Methodology 48 b. Results and d i s c u s s i o n 49 c. Conclusions 56 V I I . DEVELOPMENT OF SCALE-UP CORRELATIONS FOR THE OVERALL OXYGEN MASS TRANSFER COEFFICIENT, K_a ... 57 a. D e r i v a t i o n of g e n e r a l i z e d r e l a t i o n s h i p for Kj^a by dimensional a n a l y s i s 57 b. Experimental determination of K-^ a 6 1 c. Results and d i s c u s s i o n 64 d. Conclusions 77 V I I I . VERIFICATION OF K La AS A SCALE-UP CRITERION IN BRINE SHRIMP CULTURE 78 a. Methodology 78 b. Results and d i s c u s s i o n 86 c. Conclusions 115 IX. ECONOMIC ASPECTS OF SCALING-UP BRINE SHRIMP CULTURE SYSTEMS 116 V X. SUMMARY OF RESULTS AND CONCLUSIONS 129 XI. LIMITATIONS OF THE WORK AND SUGGESTIONS FOR FURTHER RESEARCH 133 BIBLIOGRAPHY 135 APPENDICES 140 v i LIST OF TABLES Page I . Design d a t a f o r c y 1 i n d r i - c o n i c a l t a n k s 35 I I . Design d a t a f o r raceways 38 I I I . E x p e r i m e n t a l d e s i g n comparing o x y g e n a t i o n and a g i t a t i o n as c o n t r o l l i n g mechanism i n b r i n e s h r i m p c u l t u r e 49 IV. R e p r e s e n t a t i o n of a i r f l o w r a t e s i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l t a n k s and raceways 79 V. A c t u a l v a l u e s of a i r f l o w r a t e s used i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l t a n k s and the c o r r e s p o n d i n g v a l u e s of K^a 83 V I . A c t u a l v a l u e s of a i r f l o w r a t e s used i n d i f f e r e n t s i z e s of raceways and the c o r r e s p o n d i n g v a l u e s of K^a 84. V I I . V a r i a t i o n of BOD a t v a r i o u s a e r a t i o n l e v e l s w i t h c u l t u r e p e r i o d i n d i f f e r e n t s i z e s of. c y l i n d r i - c o n i c a l tank .110 V I I I . E s t i m a t e of p r o d u c t i o n c o s t f o r s c a l i n g - u p through i n c r e a s e i n s i z e of tank m a i n t a i n i n g the number of t a n k s c o n s t a n t (Case A) 121 IX. E s t i m a t e of p r o d u c t i o n c o s t f o r s c a l i n g - u p by m a i n t a i n i n g the same l e v e l of p r o d u c t i o n but v a r y i n g the s i z e of tan k s (Case B) 123 X. Comparison of p r o d u c t i o n c o s t i n c y l i n d r i -c o n i c a l tank and raceway 127 v i i LIST OF FIGURES Page 1. P o s s i b l e e f f e c t s of water movement i n t e n s i t y on the b i o l o g i c a l performance of p l a n k t o n i c organisms 26 2. A d e t a i l e d i l l u s t r a t i o n of the c y l i n d r i -c o n i c a l tank 34 3. : A d e t a i l e d i l l u s t r a t i o n of the raceway 37 4. The c y l i n d r i - c o n i c a l tank s e t - u p 41 5a-c. The raceway s e t - u p . ... 41 6. V a r i a t i o n of d i s s o l v e d oxygen i n the c u l t u r e system w i t h time u s i n g a i r and pure oxygen 50 7. F a c t o r s i n f l u e n c i n g the mechanisms o f o x y g e n a t i o n and a g i t a t i o n i n gas b u b b l i n g . . 51 8. E f f e c t of d i s s o l v e d oxygen i n the c u l t u r e system on the t o t a l biomass p r o d u c t i o n ; of b r i n e shrimp 54 9. E f f e c t of gas flo w r a t e on the t o t a l biomass p r o d u c t i o n of b r i n e shrimp 55 10. Kj^a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l t a n k s f o r a i r - w a t e r system 71 11. K-^ a c o r r e l a t i o n i n raceways f o r a i r - w a t e r system 72 12. Comparison of Kj^a f o r f r e s h and sea water i n c y l i n d r i - c o n i c a l t a n k s 73 13. Comparison of Kj_,a f o r f r e s h and sea water i n raceways 74 14. L e n g t h - d r y weight r e l a t i o n s h i p i n b r i n e shrimp f e d w i t h r i c e bran at v a r i o u s a e r a t i o n l e v e l s 88 v i i i 15. R e l a t i o n s h i p between l e n g t h and c u l t u r e p e r i o d f o r b r i n e shrimp f e d w i t h r i c e bran a t v a r i o u s a e r a t i o n l e v e l s i n c y l i n d r i - c o n i c a l t a n k s 90 16. R e l a t i o n s h i p between l e n g t h and c u l t u r e p e r i o d f o r b r i n e shrimp f e d w i t h r i c e bran at v a r i o u s a e r a t i o n l e v e l s i n raceways 9 1 17. Comparison of l e n g t h - t i m e r e l a t i o n s h i p f o r b r i n e shrimp f e d w i t h r i c e bran i n c y l i n d r i -c o n i c a l t a n k s and raceways 92 18. R e l a t i o n s h i p between t o t a l b r i n e shrimp biomass p r o d u c t i o n and K a i n c y l i n d r i -c o n i c a l t a n k s . . 93 1 9 . R e l a t i o n s h i p between t o t a l b r i n e shrimp biomass p r o d u c t i o n and K a i n raceways 94 L 20. Comparison of r e l a t i o n s h i p on t o t a l b r i n e shrimp biomass p r o d u c t i o n w i t h K^a i n c y l i n d r i - c o n i c a l t a n k s and i n raceways 96 21. Average l e n g t h of time b e f o r e onset of mass m o r t a l i t y of b r i n e shrimp as a f u n c t i o n of a e r a t i o n l e v e l i n c y l i n d r i - c o n i c a l t a n k s 98 22. Average l e n g t h of time b e f o r e onset of mass m o r t a l i t y of b r i n e shrimp as a f u n c t i o n of a e r a t i o n l e v e l i n raceways 99 23. Comparison of average l e n g t h of time b e f o r e onset of mass m o r t a l i t y of b r i n e shrimp i n c y l i n d r i - c o n i c a l tanks and i n raceways ..100 24a-c. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d a t d i f f e r e n t a e r a t i o n l e v e l s i n c y l i n d r i - c o n i c a l tanks 102 25a~c. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d a t d i f f e r e n t a e r a t i o n l e v e l s i n raceways 105 i x 26. Comparison of v a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d i n c y 1 i n d r i - c o n i c a l t a n k s and raceways 108 27. Comparison of v a r i a t i o n i n d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d i n a c u l t u r e system c o n t a i n i n g b r i n e shrimp w i t h f e e d and i n the o t h e r c o n t a i n i n g f e e d o n l y ..113 28. R e l a t i o n s h i p between power per u n i t volume and tank s i z e f o r s i m i l a r K a i n c y l i n d r i -c o n i c a l tanks and raceways 114 29. R e l a t i o n s h i p between u n i t p r o d u c t i o n c o s t and tank s i z e i n s c a l e - u p of b r i n e shrimp c u l t u r e system 125 ACKNOWLEDGEMENTS The author wishes to express h i s g r a t i t u d e to D r . J . W . Z a h r a d n i k , Department of B i o - R e s o u r c e E n g i n e e r i n g , for s e r v i n g as chairman of the t h e s i s a d v i s o r y commit tee . The author a l s o wishes to thank the o ther members of the a d v i s o r y committee; D r . R.W. B l a k e , Department of Zoo logy; D r . R . M . R . B r a n i o n , Department of Chemica l E n g i n e e r i n g ; D r . K . V . L o , Department of B i o - R e s o u r c e E n g i n e e r i n g , and D r . M . C . Q u i c k , Department of C i v i l E n g i n e e r i n g , for t h e i r i n v a l u a b l e a d v i c e and encouragement. S p e c i a l thanks are expres sed to the A q u a c u l t u r e Department of the Southeast A s i a n F i s h e r i e s Development Center and to the I n t e r n a t i o n a l Development Research , C e n t r e for the f i n a n c i a l s u p p o r t . The author a l s o expres se s h i s g r a t i t u d e to D r . M. De Ramos and Ms. C . C a s a l m i r f o r t h e i r a s s i s t a n c e in data p r o c e s s i n g and a n a l y s i s ; to the s t a f f of the C e n t r a l i z e d A n a l y t i c a l L a b o r a t o r y of SEAFDEC AQD for the a n a l y s i s of water and r i c e bran samples; to D r . J . L l o b r e r a for h i s h e l p f u l s u g g e s t i o n s ; and to E n g r . S. Esmejarda , J r . and Ms. A . D u l l e r for t h e i r t e c h n i c a l s u p p o r t . S p e c i a l thanks go to my f a m i l y , E l i z a b e t h and R o e l , f or t h e i r moral s u p p o r t . CHAPTER I INTRODUCTION In both the deve loped and d e v e l o p i n g c o u n t r i e s , there i s an ongoing concern for the development of the a q u a c u l t u r e i n d u s t r y to h e l p supply the food requirement of the r a p i d l y i n c r e a s i n g p o p u l a t i o n of the w o r l d . A long w i t h t h i s comes the problem of p r o v i d i n g s u i t a b l e and e f f i c i e n t feeds f o r a q u a c u l t u r e . One of the important types of feed c o n s i s t s of s m a l l p l a n k t o n i c organisms which are feeds for the l a r v a e of f i s h e s and c r u s t a c e a n s in h a t c h e r i e s . Most of these organisms are f i l t e r f eeders and are e f f i c i e n t c o n v e r t e r s of energy from p l a n t to a n i m a l - b a s e d food s o u r c e s . There abound i n the l i t e r a t u r e p u b l i s h e d r e s u l t s of b a s i c exper iments o b t a i n e d from s m a l l - s c a l e u n i t s ' on the c u l t u r e of t h i s type of organ i sms . The problem of t r a n s l a t i n g these e x p e r i m e n t a l r e s u l t s i n t o p r o d u c t i o n systems i s a major o b s t a c l e in the development of the a q u a c u l t u r e i n d u s t r y . The r a p i d growth of the c h e m i c a l p r o c e s s i n d u s t r i e s has been p a r t i a l l y a t t r i b u t e d to a s y s t e m a t i c a p p l i c a t i o n of the s c a l e - u p p r i n c i p l e s . T h i s i n v o l v e s the use of mathemat ica l models to p r e d i c t the performance of a l a r g e - s c a l e p r o d u c t i o n u n i t or p r o t o t y p e on the b a s i s of e x p e r i m e n t a l r e s u l t s o b t a i n e d from s m a l l - s c a l e u n i t s or models . 2 The problem of b r i d g i n g the gap between e x p e r i m e n t s i n s m a l l - s c a l e u n i t s and p r o d u c t i o n i n the p r o t o t y p e i s commonly o v e r l o o k e d i n the a q u a c u l t u r e i n d u s t r y . Most of the time the s c a l e - u p p r o c e s s i s done i n t u i t i v e l y and sometimes i t works but sometimes i t does not. A l t h o u g h a t r i a l - a n d -e r r o r approach would, i n some i n s t a n c e s , l e a d t o dependable r e s u l t s , i t i s g e n e r a l l y uneconomical. The s c a l e - u p t e c h n i q u e s have so f a r been w e l l a p p l i e d t o m e c h a n i c a l and c h e m i c a l systems w i t h s a t i s f y i n g r e s u l t s . A l t h o u g h the p r o s p e c t s a re e v i d e n t f o r s i m i l a r t e c h n i q u e s t o be a p p l i e d f o r b i o l o g i c a l systems, i t w i l l not be w i t h o u t some d i f f i c u l t i e s . A b i o l o g i c a l system i s a complex t h i n g i n v o l v i n g a n o n - p h y s i c a l f u n c t i o n and thus m a t h e m a t i c a l models are not e a s i l y d e v e l o p e d t o d e s c r i b e i t . The c o m p l e x i t y i s due t o the g r e a t number of i t s s t r u c t u r a l components p l u s the v a r i e t y of i n t e r r e l a t i o n s h i p s among these components. The l a c k of m a t h e m a t i c a l models t o d e s c r i b e s i m i l a r i t y i n b i o l o g i c a l systems s h o u l d not s t o p the development of s c a l e - u p c r i t e r i a f o r a q u a c u l t u r a l systems. The regime concept e n a b l e s the s c a l e - u p of a system on the b a s i s of the r a t e - c o n t r o l l i n g mechanism. A l t h o u g h we may not know the exa c t mechanisms of b i o l o g i c a l p r o c e s s e s , some of t h e s e may be i n f l u e n c e d or even c o n t r o l l e d by s p e c i f i c p h y s i c a l p r o c e s s e s . In t h e s e i n s t a n c e s we may make use of the 3 g o v e r n i n g p h y s i c a l p r o c e s s as a b a s i s f o r s c a l i n g - u p a p a r t i c u l a r b i o l o g i c a l system. T h i s study c o n s i d e r e d some s c a l e - u p a s p e c t s i n the c u l t u r e of f i l t e r f e e d i n g organisms. As i t i s i n h e r e n t i n the i n t e n s i v e c u l t u r e of the s e organisms f o r the c u l t u r e system to be a g i t a t e d , emphasis was g i v e n on the e f f e c t s of water movement or a g i t a t i o n on the b i o l o g i c a l c h a r a c t e r i s t i c s of the organism. B r i n e shrimp A r t e m i a was used as the f i l t e r f e e d i n g organism. The s e l e c t i o n of t h i s organism was due to the f o l l o w i n g r e a s o n s : 1. E a s i l y a v a i l a b l e ; 2. R e l a t i v e l y h i g h s u r v i v a l i n c a p t i v i t y ; 3. R e l a t i v e l y f a s t growth r a t e ; 4. May be c u l t u r e d i n h i g h d e n s i t y i n c a p t i v i t y ; and 5. Above a l l , i t s g r e a t importance i n the a q u a c u l t u r e i n d u s t r y . A r t e m i a has been found t o be a s u i t a b l e food f o r the most d i v e r s i f i e d groups of organisms i n the a n i m a l kingdom and p a r t i c u l a r l y i n both marine and f r e s h w a t e r f i s h e s and c r u s t a c e a n s ( S o r g e l o o s , 1980). Kinne (1977) i n d i c a t e d t h a t more than 85% of the marine a n i m a l s c u l t i v a t e d thus f a r can use A r t e m i a e i t h e r as a s o l e d i e t or t o g e t h e r w i t h o t h e r food s o u r c e s . A l t h o u g h i n most ca s e s A r t e m i a i s used as f r e s h l y h a t c h e d n a u p l i i , i t was found t h a t p r e - a d u l t or a d u l t A r t e m i a s e r v e as a b e t t e r d i e t f o r some s p e c i e s of f i s h and c r u s t a c e a n s because of the l a r g e r s i z e and n u t r i t i o n a l v a l u e ( S o r g e l o o s , 1980). The c o n t r o l l e d p r o d u c t i o n of b r i n e shrimp c y s t s has not yet reached the commercial s c a l e . There has been, o n l y r e c e n t l y , a g r e a t i n t e r e s t i n the c o n t r o l l e d i n t e n s i v e c u l t i v a t i o n of A r t e m i a . S o r g e l o o s (1980) p o i n t e d out the advantages of c u l t u r e d A r t e m i a over those h a r v e s t e d from n a t u r e . "The l a t t e r animals, o f t e n c a r r y p a r a s i t e s or s u f f e r from b a c t e r i a l and f u n g a l d i s e a s e s . . . . ; f u r t h e r m o r e they have m o s t l y been s t a r v e d f o r days b e f o r e s h i p p i n g t o t h e i r f i n a l d e s t i n a t i o n . " A l s o , i t would be ex p e c t e d t h a t b r i n e shrimp from n a t u r e would have v a r i a b l e n u t r i t i o n a l q u a l i t y caused by the v a r i a b l e a v a i l a b i l i t y of n a t u r a l f e e d s . As p r o g r e s s i v e l y l a r g e r A r t e m i a would be r e q u i r e d by f i s h as they themselves grow, an a p p r o p r i a t e t e c h n o l o g y f o r the c o n t r o l l e d i n t e n s i v e c u l t i v a t i o n i n a q u a c u l t u r a l h a t c h e r i e s would be of utmost impor t a n c e . T h i s whole s t u d y was co n d u c t e d i n two phases. The f i r s t phase i n v o l v e d some p r e l i m i n a r y e x p e r i m e n t s and i n v e s t i g a t i o n of p h y s i c a l p a r a m e t e r s . T h i s phase was conducted a t the A q u a c u l t u r a l Systems L a b o r a t o r y of the B i o -Resource E n g i n e e r i n g Department and at the H y d r a u l i c s L a b o r a t o r y of the C i v i l E n g i n e e r i n g Department of the U n i v e r s i t y of B r i t i s h C olumbia. The second phase of the study i n v o l v e d the c u l t u r e of b r i n e shrimp and t h i s was conducted at the Wet L a b o r a t o r y of the A q u a c u l t u r e Department of the Southeast A s i a n F i s h e r i e s Development C e n t e r a t Tigbauan, I l o i l o , P h i l i p p i n e s . The c o n t r o l l i n g mechanism i n v o l v e d i n b r i n e shrimp c u l t u r e near s t a g n a t i o n c o n d i t i o n s i n an a i r - a g i t a t e d sea. water system was d e t e r m i n e d t o be the o x y g e n a t i o n p r o c e s s . Based on t h i s r e s u l t , s c a l i n g e q u a t i o n s were d e r i v e d from the c o r r e l a t i o n s f o r the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t . These s c a l i n g e q u a t i o n s were then used t o v e r i f y the oxygen mass t r a n s f e r c o e f f i c i e n t as a s c a l e - u p c r i t e r i o n i n t h e , c u l t u r e e x p e r i m e n t s . R e s u l t s of the c u l t u r e e x p e r i m e n t s i n two ty p e s of c o n t a i n e r g e o m e t r i e s ; c y l i n d r i -c o n i c a l tank and raceway, i n d i c a t e t h a t the oxygen mass t r a n s f e r c o e f f i c i e n t i s an e f f e c t i v e s c a l e - u p c r i t e r i o n i n b r i n e shrimp c u l t u r e systems. Some c o n s i d e r a t i o n s on the economic a s p e c t s of s c a l e - u p i n b r i n e shrimp c u l t u r e systems a r e p r e s e n t e d . The s t y l e used i n w r i t i n g t h i s m a n u s c r i p t i n v o l v e s p r e s e n t a t i o n of independent e x p e r i m e n t s i n s e p a r a t e c h a p t e r s . A c h a p t e r d e a l i n g on an experiment or r e l a t e d e x p e r i m e n t s c o n t a i n s a p a r t i c u l a r methodology, d i s c u s s i o n of r e s u l t s and c o n c l u s i o n . There i s a summary . which c o n s o l i d a t e s the o v e r a l l f i n d i n g s and c o n c l u s i o n s d e r i v e d from the whole study. 7 CHAPTER II LITERATURE REVIEW Water Movement As An E c o l o g i c a l F a c t o r R i e d l (1971) p r e s e n t e d a review on the r e l a t i o n s h i p s of water movement and b i o l o g i c a l proces se s of a q u a t i c organ i sms . U n l i k e o ther e n v i r o n m e n t a l f a c t o r s such as l i g h t , t e m p e r a t u r e , and s a l i n i t y , which for a long time have been r e c o g n i z e d as s i g n i f i c a n t f a c t o r s i n l a b o r a t o r y experiments and c u l t u r e o p e r a t i o n s , the f a c t o r water movement has been r a r e l y c o n s i d e r e d . The d i f f i c u l t y in c o n s i d e r i n g the b i o l o g i c a l e f f e c t s of water movement has been m a i n l y due to the f o l l o w i n g r e a s o n s : 1) water movement i s not an e n v i r o n m e n t a l f a c t o r i n the s t r i c t sense of tha t term but i t s erves as t r a n s p o r t a t i o n medium for o ther f a c t o r s such as t e m p e r a t u r e , s a l i n i t y , food and m e t a b o l i t e s ; and 2) the c o m p l e x i t y in d e s c r i b i n g water movement. As a l i m i t i n g f a c t o r the e f f e c t s of water movement on b i o l o g i c a l p r o c e s s e s may be t h r o u g h : 1) p r i m a r y l i m i t i n g f o r c e s ; 2) secondary l i m i t i n g f o r c e s and 3) t e r t i a r y l i m i t i n g f o r c e s ( R i e d l , 1971). Pr imary l i m i t i n g f o r c e s are the d i r e c t e f f e c t s of m o t i o n . The shear and m e c h a n i c a l r e s i s t a n c e caused by hydrodynamic f o r c e s may be the l i m i t i n g ones . These are e f f e c t i v e near maximum v a l u e s . Secondary l i m i t i n g f o r c e s a r e i n d i r e c t r e s u l t s of water movement. The l i m i t i n g e f f e c t s a re due t o u n d e s i r a b l e gas and m e t a b o l i t e l e v e l s o c c u r r i n g d u r i n g s t a g n a t i o n . These a r e e f f e c t i v e near minimum v a l u e s . T e r t i a r y l i m i t i n g f o r c e s a r e those i n d i r e c t l y brought about by water movement; the e f f e c t s of which are sensed over a r e l a t i v e l y l o n g e r p e r i o d . These are a s s o c i a t e d w i t h the movement-dependent d i s t r i b u t i o n of o t h e r components of an ecosystem which may d i s t u r b the e c o l o g i c a l b a l a n c e of such ecosystem. Only the p r i m a r y and secondary l i m i t i n g f o r c e s a r e of s i g n i f i c a n c e i n e n v i r o n m e n t a l l y c o n t r o l l e d a q u a c u l t u r a l systems. The i n t e n s i t y of water movement a f f e c t s the a c t i v i t i e s of many marine a n i m a l s . I f the i n t e n s i t y i s too g r e a t a n i m a l s reduce t h e i r a c t i v i t i e s . M o t i l e a n i m a l s tend t o h i d e away and e x t e r n a l f i l t e r f e e d e r s withdraw t h e i r f i l t e r i n g a p p a r a t u s . With too l i t t l e water movement, on the o t h e r hand, the a c t i v i t y of f i l t e r i n g organs o f t e n i n c r e a s e . There have been v e r y few l a b o r a t o r y s t u d i e s on the e f f e c t s of water movement on the b i o l o g i c a l p r o c e s s e s i n a q u a t i c organisms. Brooks (1947) r e p o r t e d a d i f f e r e n c e between the r a t e s of r e l a t i v e helmet growth i n t u r b u l e n t and n o n - t u r b u l e n t c u l t u r e s of Daphnia. A g i t a t i o n was p r o v i d e d by a n e a r l y s t r a i g h t rod r o t a t e d by an e l e c t r i c s t i r r e r . The t u r b u l e n c e produced was judged by the manner the organisms were swept around by the c u r r e n t . Measurement of the l e v e l of t u r b u l e n c e was not p o s s i b l e . Daphn i a r e a r e d i n t u r b u l e n t water had helmets r e l a t i v e l y l a r g e r than those r e a r e d i n n o n - t u r b u l e n t c u l t u r e s . I t was thought t h a t t u r b u l e n c e i n f l u e n c e d the d i f f e r e n c e i n d i r e c t l y by i n c r e a s i n g n u t r i t i o n or oxygen c o n c e n t r a t i o n . Gut e x a m i n a t i o n , however, showed no s i g n i f i c a n t d i f f e r e n c e between the l e v e l s of n u t r i t i o n i n the two c u l t u r e s a t any time and oxygen d e t e r m i n a t i o n s showed t h a t water i n both v e s s e l s was s a t u r a t e d w i t h oxygen. T h i s l e a v e s a d i r e c t e f f e c t of t u r b u l e n c e as the more l i k e l y e x p l a n a t i o n but no d e f i n i t e i n f o r m a t i o n was a v a i l a b l e as t o the manner i n which i t i n f l u e n c e s the growth p r o c e s s e s . P erez e_t.a_l. (1977) s t u d i e d a marine microcosm which was i n t e n d e d t o s i m u l a t e a l a r g e - s c a l e marine system. V a r i o u s p h y s i c a l and b i o t i c v a r i a b l e s were a d j u s t e d t o a p proximate and s i m u l a t e f i e l d c o n d i t i o n s . L i g h t , b e n t h i c s u r f a c e t o water volume r a t i o and t u r b u l e n c e v a l u e s were e s t a b l i s h e d from e m p i r i c a l f i e l d measurements. Water t u r b u l e n c e i n the p e l a g i c phase was p r o v i d e d by p a d d l e s d r i v e n by an e l e c t r i c motor. The t u r b u l e n c e l e v e l i n the f i e l d was matched i n the tank by comparing the d i s s o l u t i o n r a t e s of hard c r y s t a l l i n e sugar b a l l s . The r e s u l t s of the s t u d y showed t h a t d e n s i t y of z o o p l a n k t o n s s i g n i f i c a n t l y i n c r e a s e d l i n e a r l y w i t h d e c r e a s i n g t u r b u l e n c e . On the o t h e r hand, as t u r b u l e n c e d e c r e a s e d , a l g a l d e n s i t y d e c r e a s e d . S t a t i s t i c a l t e s t i n d i c a t e d t h a t changes i n the a l g a l component under d i f f e r e n t t u r b u l e n c e regimes was due to the d i r e c t e f f e c t of t u r b u l e n c e r a t h e r than the i n d i r e c t e f f e c t of g r a z i n g by the z o o p l a n k t o n s . De W i n t e r , e_t.a_l. (1976) s t u d i e d the d i f f e r e n t t y p e s of water a g i t a t i o n i n the c u l t u r e of Fabrea s a l i n a , a p e l a g i c marine c i l i a t e and an e f f e c t i v e f e e d f o r f i s h and c r u s t a c e a n l a r v a e . The methods of water a g i t a t i o n used were c o n t i n u o u s a e r a t i o n , i n t e r m i t t e n t a e r a t i o n and a i r - w a t e r l i f t . They obser v e d t h a t when f e d w i t h l i v e a l g a l f o o d , c o n t i n u o u s and i n t e r m i t t e n t a e r a t i o n gave the h i g h e s t c u l t u r e d e n s i t y , whereas, when f e d w i t h d r i e d y e a s t , the h i g h e s t d e n s i t i e s were o b t a i n e d i n the a i r - w a t e r l i f t system. The water q u a l i t y p a rameters e x i s t e n t i n the r e s p e c t i v e systems were, however, not r e p o r t e d . O x y g e n a t i o n And A g i t a t i o n In A i r - s p a r g e d Systems Gas s p a r g i n g t o induce water movement has been used i n numerous p r o c e s s i n d u s t r i e s . The b u b b l e s a r e formed a t a sp a r g e r e x i t , r i s e t h r o u g h the l i q u i d column and b u r s t at the l i q u i d s u r f a c e . Two t y p e s of f o r m a t i o n and r i s i n g of gas bubbles i n l i q u i d s were d i s t i n g u i s h e d by van K r e v e l e n and H o f t i j z e r (1950), namely; bu b b l e s formed s e p a r a t e l y and bubbles i n s e r i e s or c h a i n b u b b l i n g . F o r m a t i o n of s e p a r a t e bubbles o c c u r s a t low gas f l o w r a t e . At these c o n d i t i o n s the r e l e a s e of b u b b l e s from the o r i f i c e i s governed by the buoyant f o r c e and the s u r f a c e t e n s i o n . At the time of r e l e a s e from the o r i f i c e the buoyant f o r c e would e q u a l t h e f o r c e by which the bubble i s r e t a i n e d t o the o r i f i c e ( s u r f a c e t e n s i o n ) . For s e p a r a t e gas bubbles the diameter of the bubbles i s independent of the f l o w r a t e and p r o p o r t i o n a l to the cube r o o t of the o r i f i c e d i a m e t e r . T h i s r e l a t i o n s h i p between bubble s i z e and o r i f i c e d i a m e t e r i s o n l y t r u e up t o a c e r t a i n c r i t i c a l v a l u e of the f l o w r a t e . Chain b u b b l i n g t a k e s p l a c e above a c e r t a i n c r i t i c a l f l o w r a t e . Here, bubble d i a m e t e r s a r e independent of the o r i f i c e d i a m e t e r and i n c r e a s e w i t h i n c r e a s i n g f l o w r a t e . As bubbles l e a v e the s p a r g e r e x i t , t h e r e a r e adjustments i n s i z e through c o a l e s c e n c e or break-up and they approach an e q u i l i b r i u m s i z e d i s t r i b u t i o n . A s t a b l e s i z e i s a c h i e v e d when t u r b u l e n t f l u c t u a t i o n s and s u r f a c e t e n s i o n f o r c e s are i n b a l a n c e ( H i n z e , 1955). While the gas bubbles r i s e t hrough the l i q u i d column two s i m u l t a n e o u s i m p o r t a n t p r o c e s s e s take p l a c e , namely; oxygen t r a n s f e r from the bubble t o the l i q u i d and the g e n e r a t i o n of t u r b u l e n c e caused by the u p l i f t f o r c e of the r i s i n g b u b b l e s . The o x y g e n a t i o n p r o c e s s i s made p o s s i b l e through the p r o v i s i o n of i n c r e a s e d s u r f a c e area a c r o s s which mass t r a n s f e r of gases i n t o or from the l i q u i d may take p l a c e . T h i s has p a r t i c u l a r importance i n systems which depend on the gas b u b b l e s f o r the s u p p l y of a v i t a l gas r e s o u r c e and a t the same time depending on t h e s e bubbles t o s t r i p o f f the u n d e s i r a b l e gases g e n e r a t e d w i t h i n the system. S e v e r a l s t u d i e s ( Karow et. . a _ l . , 1953; Wegrich and S h u r t e r , 1953; Bartholomew, 1960; Y o s h i d a , e t . a l . , 1963; M i l l e r , 1974; M i u r a , 1976; Z l o k a r n i k , 1978) have been conducted d e a l i n g on t h i s problem. Most of t h e s e s t u d i e s have d i r e c t a p p l i c a t i o n t o f e r m e n t a t i o n p r o c e s s e s wherein the p r i m a r y purpose of a e r a t i o n i s t o t r a n s f e r d i f f i c u l t l y s o l u b l e oxygen from a i r t o the l i q u i d phase. The d i f f u s i o n p r o c e s s i s most o f t e n p i c t u r e d through the use of the f i l m c o n c e p t , which c o n s i d e r s a t h i n f i l m of gas and a f i l m of l i q u i d a t the gas- l i q u i d i n t e r f a c e . The d i f f u s i o n a l r e s i s t a n c e s a r e c o n s i d e r e d t o be i n s e r i e s . In the case of a gas of low s o l u b i l i t y , l i k e oxygen i n water, the gas f i l m o f f e r s r e l a t i v e l y l i t t l e r e s i s t a n c e . I t may be assumed t h a t the c o n c e n t r a t i o n of oxygen i n s o l u t i o n at the i n t e r f a c e i s t h a t of s a t u r a t i o n and t h a t the l i q u i d f i l m c o n t r o l s the e n t i r e d i f f u s i o n p r o c e s s . The c o n c e n t r a t i o n of oxygen i n the s o l u t i o n - s i d e of the l i q u i d f i l m i s assumed t o be the same as the c o n c e n t r a t i o n in the main body of the 1 i q u i d . Thus, the fundamental oxygen t r a n s f e r rate equation may be w r i t t e n : N = K LA ( Cg - C L ) Eqn. 2-1 where N = t o t a l oxygen t r a n s f e r , g/min = o v e r a l l l i q u i d f i l m c o e f f i c i e n t , cm/min A = i n t e r f a c i a l area f o r t r a n s f e r , cm2 C = oxygen s a t u r a t i o n concentration in l i q u i d at t e s t temperature and pressure, mg/L C = oxygen c o n c e n t r a t i o n i n the l i q u i d at L time, t , mg/L Equation 2-1 can be converted to concentration u n i t s through: N/V •= dC/dt = K L(A/V) ( C g - C L ) Eqn. 2-2 where V = volume of l i q u i d under a e r a t i o n , cm3 dC/dt = oxygen t r a n s f e r r a t e , mg/L/min For bubble a e r a t i o n systems i n commercial p r a c t i c e , the i n t e r f a c i a l area-volume r a t i o , A/V, i s d i f f i c u l t t o measure. I t i s thus c o n v e n i e n t t o employ the o v e r a l l mass t r a n s f e r c o e f f i c i e n t , K-^a. E q u a t i o n 2-2 then becomes: dC/dt = K L a ( C s - C L ) Eqn. 2-3 where a = A/V. K_a i s an o v e r a l l t r a n s f e r c o e f f i c i e n t and i n c l u d e s the e f f e c t s of changes i n the l i q u i d f i l m c o e f f i c i e n t KT and i n the i n t e r f a c i a l a r e a , A. Oxygen. t r a n s f e r i s i n f l u e n c e d by changes i n t e m p e r a t u r e . The most commonly used c o r r e c t i o n f a c t o r i s i n c l u d e d i n the e q u a t i o n i n the form ( S t a n d a r d Methods f o r the E x a m i n a t i o n of Water and Wastewater, 1975): K T a ( T ) = [K Ta(20)][1.024] T- 2° Eqn. 2-4 where K a(T) = o v e r a l l oxygen t r a n s f e r c o e f f i c i e n t a t li any g i v e n t e m p e r a t u r e , T C K a(20 ) = s t a n d a r d o v e r a l l oxygen t r a n s f e r c o e f f i c i e n t f o r water a t 20 C 1.024 = tem p e r a t u r e c o e f f i c i e n t The e f f e c t of d i s s o l v e d s o l i d s on oxygen t r a n s f e r has been r e p o r t e d by e a r l i e r i n v e s t i g a t o r s ( L e h r e r , .1971; Z l o k a r n i k , 1978). Z l o k a r n i k (1978) c i t e d the e f f e c t of the presence of s a l t on the s i z e of b u b b l e s . The presence of s a l t does not promote c o a l e s c e n c e of s m a l l b u b b l e s to l a r g e r ones because of the r e s u l t i n g n e g a t i v e charge on the o u t s i d e of each gas bubble which causes them t o r e p e l each o t h e r . T h i s i s a p o s s i b l e r e ason why K^a would i n c r e a s e w i t h i n c r e a s e i n s a l t c o n c e n t r a t i o n . However, L e h r e r (1971) and Z l o k a r n i k (1979) s t a t e d t h a t e f f e c t s of the presence of s a l t i n the water i s s i g n i f i c a n t o n l y at low l e v e l s of t u r b u l e n c e or when the p r i m a r i l y produced bubbles are v e r y f i n e . Baker e/t.aJL. (1975) r e p o r t e d t h a t suspended s o l i d s c o n s i s t i n g m a i n l y of p o u l t r y manure h a v i n g c o n c e n t r a t i o n s of more than 2% d e c r e a s e d the oxygen mass t r a n s f e r c o e f f i c i e n t . He e x p l a i n e d t h a t the e f f e c t of s o l i d s on oxygen t r a n s f e r may be r e l a t e d t o v i s c o s i t y . The v i s c o s i t y of the mixed l i q u o r i n c r e a s e d w i t h an i n c r e a s e i n the s o l i d s c o n c e n t r a t i o n . E c k e n f e l d e r and B a r n h a r t (1961) and J a r a i (1972) noted the v a r i a t i o n of the mass t r a n s f e r c o e f f i c i e n t due to the presence of d i s s o l v e d o r g a n i c s u b s t a n c e s . E c k e n f e l d e r (1961) r e p o r t e d t h a t the o v e r a l l t r a n s f e r c o e f f i c i e n t i n i t i a l l y d e c r e a s e d a t low' c o n c e n t r a t i o n s of s u r f a c e a c t i v e agent f o l l o w e d by an i n c r e a s e a t h i g h e r c o n c e n t r a t i o n s . J a r a i (1972) d e t e r m i n e d t h a t the r h e o l o g i c a l p r o p e r t i e s of l i q u i d s can a t c e r t a i n c o n d i t i o n s a f f e c t the o v e r a l l t r a n s f e r c o e f f i c i e n t . The mechanism of o x y g e n a t i o n i n a i r b u b b l i n g as a mass t r a n s f e r p r o c e s s i s h i g h l y i n f l u e n c e d by the l e v e l of t u r b u l e n c e i n the system. T u r b u l e n t f l o w i s c h a r a c t e r i z e d by l o c a l v e l o c i t y d i s t u r b a n c e s or f l u c t u a t i o n s which a r e a m p l i f i e d by the i n s t a b i l i t y of the main f l o w . These d i s t u r b a n c e s l e a d t o the f o r m a t i o n of p r i m a r y e d d i e s w i t h l e n g t h s c a l e comparable to t h a t of the main f l o w . The l a r g e p r i m a r y e d d i e s , b e i n g a l s o u n s t a b l e , d i s i n t e g r a t e i n t o s m a l l e r and s m a l l e r e d d i e s u n t i l a l l t h e i r energy i s d i s s i p a t e d by v i s c o u s f l o w . 'The k i n e t i c energy i s c o n t a i n e d i n . t h e l a r g e e d d i e s and d i s s i p a t i o n o c c u r s i n the s m a l l e s t e d d i e s . Between the l a r g e and the s m a l l e s t e d d i e s t h e r e i s a wide spectrum of i n t e r m e d i a t e e d d i e s which t r a n s f e r k i n e t i c energy from l a r g e to s m a l l e d d i e s . The t r a n s f e r t a k e s p l a c e i n d i f f e r e n t d i r e c t i o n s . These energy c o n t a i n i n g e d d i e s a re i n s t r u m e n t a l i n f a c i l i t a t i n g the oxygen t r a n s f e r p r o c e s s at the gas- l i q u i d i n t e r f a c e . N i s h i k a w a e_t.a_l. (1976) d e t e r m i n e d t h a t the t u r b u l e n c e m i c r o s c a l e depends on the s i z e of the system, i . e . , i t i s p r o p o r t i o n a l t o tank s i z e . Thus, when s c a l i n g - u p , the energy s p e c t r a a re s h i f t e d t o t h e - l a r g e r eddy s i z e . The P r i n c i p l e Of S i m i l a r i t y And S c a l i n g - u p Johnstone and T h r i n g (1957) p r o v i d e d a comprehensive view on the concept of s c a l e - u p . The b a s i c p r i n c i p l e g o v e r n i n g the e f f e c t s of s c a l e i s the P r i n c i p l e of S i m i l a r i t y . They l i s t e d f o u r s i m i l a r i t y s t a t e s which are i m p o r t a n t i n r a t e p r o c e s s s i m i l i t u d e s t u d i e s : 1. G e o m e t r i c a l 2. M e c h a n i c a l 3. Thermal 4. Chemical or B i o l o g i c a l I d e a l l y , each of the l i s t e d s t a t e s r e q u i r e s a l l the p r e v i o u s ones. The P r i n c i p l e of S i m i l a r i t y a t t e m p t s t o r e p r e s e n t a p a r t i c u l a r p r o c e s s by a c e r t a i n r e l a t i o n s h i p among d i m e n s i o n l e s s groups, one of which c o n t a i n s the unknown v a r i a b l e . I f the groups c o n t a i n i n g the known v a r i a b l e s are caused t o have the same v a l u e on the s m a l l - and the l a r g e -s c a l e , the group c o n t a i n i n g the unknown v a r i a b l e w i l l a l s o have the same v a l u e . T h i s pre-supposes t h a t the s m a l l and the l a r g e systems a r e g e o m e t r i c a l l y s i m i l a r . The c l a s s i c a l P r i n c i p l e of S i m i l a r i t y r e q u i r e s t h a t g e o m e t r i c a l l y s i m i l a r systems be compared a t e q u a l v a l u e s of the d i m e n s i o n l e s s groups. In p r a c t i c e , however, the s c a l e - u p r u l e s r e p r e s e n t e d r e s p e c t i v e l y by d i f f e r e n t d i m e n s i o n l e s s groups f r e q u e n t l y c o n f l i c t . To meet t h i s d i f f i c u l t y , the method of e x t r a p o l a t i o n has been proposed (Johnstone and T h r i n g , 1957). Sometimes c a l l e d the "extended P r i n c i p l e of S i m i l a r i t y " ( H o l l a n d and Chapman, 1966), t h i s method of e x t r a p o l a t i o n uses an e q u a t i o n where the d i m e n s i o n l e s s group c o n t a i n i n g the unknown v a r i a b l e i s p r o p o r t i o n a l t o the p r o d u c t of c e r t a i n power of the d i f f e r e n t d i m e n s i o n l e s s groups c o n t a i n i n g the known v a r i a b l e s . J o r d a n (1955) summarized a s c a l e - u p p r o c e d u r e which i s not based on the e q u a l i t y of d i m e n s i o n l e s s groups c o n t a i n i n g the known v a r i a b l e s , but t o use t h e s e d i m e n s i o n l e s s groups t o e x p r e s s a r e l a t i o n s h i p and make use of t h i s r e l a t i o n s h i p f o r p r e d i c t i n g the p r o c e s s r e s u l t on the p r o t o t y p e on the b a s i s of the p r o c e s s r e s u l t on the model. S c a l e - u p s t u d i e s on b i o l o g i c a l systems have not been so e x t e n s i v e as t h o s e i n systems i n v o l v i n g c h e m i c a l p r o c e s s e s . S c a l e - u p s t u d i e s on b i o l o g i c a l systems have m o s t l y i n v o l v e d m i c r o b i a l systems, l i k e those i n f e r m e n t a t i o n p r o c e s s e s (Karow e_t. a_l. , 1 953 ; Bartholomew, 1960; B y l i n k i n a and B i r u k o v , 1972; M i u r a , 1976; A i b a and Okabe, 1977) and i n wastewater t r e a t m e n t systems ( E c k e n f e l d e r et . a l . , 1 9 7 2 ; Z l o k a r n i k , 1979). A s c a l e - u p study on a m a c r o - b i o l o g i c a l system was done on the a s p e c t of food u t i l i z a t i o n by s h e l l f i s h (Walker and Z a h r a d n i k , 1977). The approach of the s t u d y was based on the f a c t t h a t f o o d i s a p r i m a r y v a r i a b l e c o n t r o l l i n g food removal and growth of o y s t e r s . B i o l o g y And C u l t u r e Of A r t e m i a A d u l t female b r i n e shrimp produces a brood of eggs about e v e r y f o u r days (Wheeler, et .aJL. , 1979). Each brood d e v e l o p s e i t h e r a t h i n or t h i c k p r o t e c t i v e s h e l l . T h i n -s h e l l e d eggs h a t c h w i t h i n a few days and are r e l e a s e d o v o v i p o r o u s l y w h i l e t h i c k - s h e l l e d eggs s t o p development and are r e l e a s e d as c y s t s . When vacuum-dried, the c y s t s remain v i a b l e f o r y e a r s ( S o r g e l o o s , 1976) and on immersion i n sea water produce n a u p l i i w i t h i n a p p r o x i m a t e l y 24 h o u r s . D u r i n g t h e f i r s t t w e l v e hours the n a u p l i i feed on t h e i r y o l k r e s e r v e s and t h e r e i s no e x t e r n a l f o o d uptake. Heath (1924) d e s c r i b e d the growth p a t t e r n s of A r t e m i a and c a t e g o r i z e d the d i f f e r e n t s t a g e s from the r e c e n t l y hatched l a r v a e t o the s e x u a l l y mature a d u l t s . He i d e n t i f i e d t w e l v e (12) s t a g e s of growth and used the term " i n s t a r " t o d e s i g n a t e each s t a g e . Thus the l a r v a p a sses through the f i r s t up t o the t w e l f t h i n s t a r . The c h a r a c t e r i s t i c s of A r t e m i a as a f i l t e r f e e d e r have been s t u d i e d by s e v e r a l i n v e s t i g a t o r s (Bond, 1933; G a u l d , 1959; Reeve, 1963; D o b b e l e i r et . a l . , 1980).. Reeve (1963) o b s e r v e d t h a t A r t e m i a was c a p a b l e of r e g u l a t i n g i t s r a t e of f e e d i n g depending on the c o n c e n t r a t i o n of a l g a l c e l l s . As the c e l l c o n c e n t r a t i o n i n c r e a s e d up to a c e r t a i n l e v e l , the f i l t r a t i o n r a t e was a t a maximum v a l u e . Beyond t h a t c e r t a i n l e v e l the f i l t r a t i o n r a t e d e c r e a s e d as c e l l c o n c e n t r a t i o n i n c r e a s e d . He a l s o observed t h a t A r t e m i a showed no a p p r e c i a b l e a b i l i t y t o d i s c r i m i n a t e between p l a n t c e l l s p r e s e n t e d i n m i x t u r e s c o n t a i n i n g two or t h r e e d i f f e r e n t t y p e s or between n u t r i t i o u s and n o n - n u t r i t i o u s p a r t i c l e s . When p r e s e n t e d w i t h mixed s u s p e n s i o n s of a l g a e and sand p a r t i c l e s the a n i m a l i n g e s t e d much g r e a t e r volumes of sand over a wide range of c o n c e n t r a t i o n of sand p a r t i c l e s . Low c o n c e n t r a t i o n s of' i n o r g a n i c p a r t i c l e s caused i n c r e a s e d i n g e s t i o n of p l a n t c e l l s . The f i l t e r f e e d i n g mechanism i n A r t e m i a i s a complex and e f f e c t i v e method of o b t a i n i n g p a r t i c u l a t e f o o d . Gauld (1959) gave an account on the swimming and f e e d i n g i n the n a u p l i i of' Art e m i a . "The antennae a r e the p r i n c i p a l l o c o m o t i o n organs. The a n t e n n u l e s may p l a y l i t t l e or no p a r t i n l o c o m o t i o n and are m a i n l y b a l a n c i n g organs. The antennae a r e a l s o the c h i e f food c o l l e c t i n g o r g a n s . P a r t i c l e s a r e swept i n t o the o r a l r e g i o n by the a n t e n n a l s e t a e and then c a r r i e d t o the mouth by s p i n e s on the reduced m a n d i b l e s . " Lowndes (1933) s t u d i e d i n much d e t a i l the f e e d i n g mechanism i n the more advanced s t a g e s of a c l o s e r e l a t i v e of A r t e m i a , Chi r o c e p h a l u s d i a p h a n u s . Among h i s i m p o r t a n t o b s e r v a t i o n s were: 1) the a n o s t r a c a n l i m b w i t h i t s appendages d i d not cause the water t o stream i n any s i n g l e d i r e c t i o n a t any p a r t i c u l a r i n s t a n t , but i t r a t h e r caused a s e r i e s of v o r t i c e s , and 2) the appendages and s e t a e might have been moving at a l l t i m e s w i t h a g r e a t e r v e l o c i t y than t h a t of t h e water and the s e t a e might t h e r e f o r e be a b l e t o comb out t h e f i n e r p a r t i c l e s . Lowndes determined the swimming speed of a f u l l y d e v e l o p e d C h i r o c e p h a l u s diaphanus t o be about two f e e t per minute. By a t t a c h i n g the a n i m a l to a f i n e needle by a s u i t a b l e cement and suspending i t i n water so t h a t a l l l i m b s f u n c t i o n f r e e l y , he observed t h a t i f the f l o w of water was t w i c e the swimming speed the l i m b s s i m p l y ceased to f u n c t i o n and remained s t i l l . Bond (1933) r e p o r t e d t h a t A r t e m i a shaken v i g o r o u s l y i n a f l a s k f o r an hour had almost empty guts though the medium was r i c h i n a l g a e . He a l s o p o i n t e d out t h a t A r t e m i a does not and cannot depend on d i s s o l v e d s u b s t a n c e s f o r i t s food s u p p l y . 22 D o b b e l e i r e_t.a_l. (1980) determined the range of p a r t i c l e s i n g e s t e d by the n a u p l i i and the a d u l t b r i n e s h r i m p making use of g l a s s m i c r o s p h e r e s . A l t h o u g h A r t e m i a has been found to be an e x c e l l e n t food f o r newborn f i s h l a r v a e as e a r l y as the 1930's i n the U.S.A. and i n Norway (Bossuyt and S o r g e l o o s , 1980), the c o n t r o l l e d p r o d u c t i o n f o r the h a r v e s t i n g of c y s t s has not been a c c o m p l i s h e d on a commercial s c a l e as y e t . Bossuyt and S o r g e l o o s (1980) summarized the d e s i r a b l e c u l t u r e r e q u i r e m e n t s f o r A r t e m i a . These a r e : a) good o x y g e n a t i o n of the medium t o a l l o w c u l t u r i n g a t h i g h d e n s i t y ; b) c o n t i n u o u s c i r c u l a t i o n of the medium t o maximize food a v a i l a b i l i t y t o the a n i m a l s ; c) s h a l l o w water depth (not e x c e e d i n g 1 m) t o a l l o w the use of i n e x p e n s i v e a i r b l o w e r s ; d) p o s s i b i l i t y of s c a l e - u p which s h o u l d m a i n t a i n the c u l t u r i n g p r o c e d u r e s . One. of. the e a r l i e s t c u l t u r e systems f o r the. h i g h d e n s i t y c u l t u r i n g of A r t e m i a was developed by Dohse (B o s s u y t and S o r g e l o o s , 1980) which he c a l l e d "Artemium". The system c o n s i s t e d of s h a l l o w 100 L b a s i n s p i l e d one over the o t h e r . Each b a s i n was p r o v i d e d w i t h a r o t a t i n g b l a d e which c o n t i n u o u s l y s t i r r e d the c u l t u r e medium arid accumulated uneaten f o o d and f a e c a l p e l l e t s i n a c e n t r a l d e p r e s s i o n from where t h e s e were sip h o n e d o f f . The food c o n s i s t e d of a m i x t u r e of d r i e d a l g a e , y e a s t and a l f a l f a which was g i v e n once a day. S o r g e l o o s and Persoone (1975) developed a c u l t u r e system c o n s i s t i n g of 30 L t r a n s p a r e n t p l a s t i c columns. The system was a e r a t e d i n t e r m i t t e n t l y (10 seconds every h a l f hour) which a s s u r e d good o x y g e n a t i o n . Feeding was made once an hour. T h i s system however had some i n h e r e n t drawbacks i n i t s a p p l i c a t i o n t o a l a r g e system. An improved system f o r b a t c h c u l t u r i n g i s one a d a p t i n g the use of the a i r - w a t e r - l i f t raceway which was o r i g i n a l l y d e v e l o p e d f o r the c u l t u r e of p e n a e i d shrimp (Mock, 1973). By the c o n f i g u r a t i o n and arrangement of the a i r - w a t e r - l i f t p i p e s a u n i d i r e c t i o n a l s p i r a l c i r c u l a t i o n of the c u l t u r i n g medium was a c h i e v e d i n the tank (Bossuyt and S o r g e l o o s , 1980). The a e r a t i o n of the medium was c o n t i n u o u s and the c i r c u l a t i o n was almost homogeneous. N e a r l y a l l p a r t i c u l a t e m a t ter was kept i n s u s p e n s i o n . A- much more i n t e n s i f i e d mass p r o d u c t i o n of A r t e m i a can be a c h i e v e d i n f l o w - t h r o u g h systems. At the A r t i f i c i a l U p w e l l i n g M a r i c u l t u r e P r o j e c t a t S t . C r o i x , the U.S. V i r g i n I s l a n d s , n u t r i e n t - r i c h deep water was pumped from a depth of 870 m below the sea s u r f a c e and unsupplemented used i n the c u l t u r e of diatoms ( T o b i a s e_t . a _ l . , 1979). The a l g a e i n t u r n was f e d t o A r t e m i a i n a f l o w - t h r o u g h system. E x t r a p o l a t i n g r e s u l t s from 1.00 1 t a n k s , i t was c a l c u l a t e d t h a t 30 g of c y s t s c o u l d be c o n v e r t e d i n a 1 m3 tank t o 25 kg a d u l t biomass (wet w e i g h t ) w i t h i n two weeks. Brune (1982) d e s i g n e d and t e s t e d an a u t o m a t i c s e l f -c l e a n s i n g h i g h d e n s i t y b r i n e shrimp r e a c t o r . He used the concept of f l o w i n g f i l m of g l a s s beads to scour waste m a t e r i a l from the c u l t u r e t a n k s on a c o n t i n u o u s b a s i s . CHAPTER I I I THEORY The e f f e c t of water movement on the b i o l o g i c a l c h a r a c t e r i s t i c s of a f i l t e r f e e d i n g o r g a n i s m may be made p o s s i b l e t h rough p r i m a r y l i m i t i n g f o r c e s (maximum i n t e n s i t y v a l u e s ) or through secondary l i m i t i n g f o r c e s ( s t a g n a t i o n or minimum v a l u e s ) . Near minimum v a l u e s , the u n d e s i r a b l e secondary e f f e c t s of water movement, such a s ; a c c u m u l a t i o n of m e t a b o l i t e s , uneven d i s t r i b u t i o n of f e e d , d e c r e a s e i n oxygen c o n c e n t r a t i o n , e t c . , may be brought about by inadequate water movement. In t h i s r e g i o n (A i n F i g u r e 1) i t would be exp e c t e d t h a t as the i n t e n s i t y of water movement i s i n c r e a s e d , t h e r e would be a c o r r e s p o n d i n g i n c r e a s e i n the performance (biomass p r o d u c t i o n ) of the- system. T h i s c o r r e s p o n d i n g i n c r e a s e would t a k e p l a c e o n l y up to some l e v e l of water movement i n t e n s i t y beyond which the performance of the system would not s i g n i f i c a n t l y change even when the i n t e n s i t y of water movement i s i n c r e a s e d . The v a l u e s of water movement i n t e n s i t y i n r e g i o n B are w i t h i n the n a t u r a l a d a p t a b i l i t y of the organism. As the i n t e n s i t y of water movement i s f u r t h e r i n c r e a s e d , l i q u i d shear and f l u c t u a t i n g hydrodynamic p r e s s u r e may become more and more s i g n i f i c a n t as p r i m a r y Region A Region B Region C secondary l i m i t i n g f o r c e s dominate primary 1 l i m i t i n g f orces 1 dominate e f f e c t i v e l e v e l f o r scale-up maximum allowable l e v e l INTENSITY OF AGITATION Figure 1. P o s s i b l e e f f e c t s of water movement i n t e n s i t y on the b i o l o g i c a l performance of p l a n k t o n i c organisms. l i m i t i n g f o r c e s and may d i r e c t l y a f f e c t the b i o l o g i c a l c h a r a c t e r i s t i c s of the organism and thus the performance of the system. In r e g i o n C , as the l e v e l of water movement i n t e n s i t y i s i n c r e a s e d , i t would be ex p e c t e d t h a t the performance of the system would d e c r e a s e . In t h i s r e g i o n water movement may a f f e c t the v a r i o u s b i o l o g i c a l p r o c e s s e s of the organism. The l e n g t h s c a l e of t u r b u l e n t e d d i e s which d e c r e a s e s as the i n t e n s i t y of water movement i s i n c r e a s e d may reach a s c a l e which i s comparable w i t h the dimension of the f i l t e r i n g organs of the organism and the t u r b u l e n t e d d i e s may d i s t u r b the food f i l t e r i n g p r o c e s s . A l s o , the v i g o r o u s water t u r b u l e n c e c o u l d cause p h y s i c a l i n j u r y and s t r e s s on the organisms. In the d e s i g n and o p e r a t i o n of an a q u a c u l t u r a l system, r e g i o n A i s most i m p o r t a n t . The r e l a t i o n s h i p between the performance parameter and the i n t e n s i t y of water movement can be d e f i n e d i f the i n t e n s i t y of water movement i s e x p r e s s e d as a c h a r a c t e r i s t i c measure of the c o n t r o l l i n g f a c t o r f o r the system. The maximum v a l u e f o r system performance i n r e g i o n A ( p o i n t P) d e t e r m i n e s the optimum p o i n t f o r o p e r a t i o n a l p u r p o s e s . I f the i n t e n s i t y of water movement i s t r u l y e x p r e s s e d as a measure of the c o n t r o l l i n g f a c t o r , the same r e l a t i o n s h i p f o r the system performance c o u l d be used f o r d i f f e r e n t s i z e s of the c u l t u r e system and p o i n t P would determine the e f f e c t i v e and econ o m i c a l b a s i s f o r s c a l e - u p . The f o r e g o i n g d i s c u s s i o n forms the t h e o r e t i c a l b a s i s of t h i s i n v e s t i g a t i o n . As a summary, the t h e o r i e s are p r e s e n t e d and p a r t s of each t h e o r y d i v i d e d i n t o t h r e e c a t e g o r i e s : p r o p o s i t i o n s , assumptions and i n f e r e n c e s . P r o p o s i t i o n s a re st a t e m e n t s which a r e g e n e r a l l y c o n s i d e r e d as e s t a b l i s h e d f a c t s . Assumptions a r e s t a t e m e n t s which must be a c c e p t e d as t r u e i n o r d e r t o l o g i c a l l y e s t a b l i s h the i n f e r e n c e s . I n f e r e n c e s a r e c o n c l u s i o n s drawn from the p r o p o s i t i o n s and as s u m p t i o n s . EFFECTS OF AIR-AGITATION ON ARTEMIA CULTURE SYSTEM NEAR STAGNATION CONDITIONS P r o p o s i t i o n s : 1. At v e r y low water movement i n t e n s i t i e s , the secondary l i m i t i n g f o r c e s a r e e f f e c t i v e . 2. Water movement or a g i t a t i o n i s b e n e f i c i a l f o r : a. P r o v i s i o n and even d i s t r i b u t i o n of d i s s o l v e d oxygen i n the c u l t u r e water b. S u s p e n s i o n and u n i f o r m d i s t r i b u t i o n of feed p a r t i c l e s c. U n i f o r m d i s t r i b u t i o n of c u l t u r e d organisms d. Even d i s t r i b u t i o n of waste s u b s t a n c e s a r i s i n g from m e t a b o l i s m and excess f e e d i n the c u l t u r e water e. I n c r e a s i n g the c a p a c i t y of the c u l t u r e system f o r a e r o b i c s t a b i l i z a t i o n of waste p r o d u c t s . Assumpt i o n s : 1. The o v e r a l l c u m u l a t i v e e f f e c t of v a r i o u s b i o l o g i c a l p r o c e s s e s i n the system can be q u a n t i f i e d by the t o t a l biomass p r o d u c t i o n , t h a t i s ; the system performance can be e x p r e s s e d i n terms of the t o t a l biomass p r o d u c t i o n . 30 2. The i n t e n s i t y of water movement can be e x p r e s s e d q u a n t i t a t i v e l y t h r o u g h a c h a r a c t e r i s t i c measure of the c o n t r o l l i n g mechanism i n the system. I n f e r e n c e ; 1 . The b r i n e s h r i m p c u l t u r e system performance (biomass p r o d u c t i o n ) near s t a g n a t i o n c o n d i t i o n s can be p r e d i c t e d by the use of a r e l a t i o n s h i p between biomass p r o d u c t i o n and i n t e n s i t y of water movement. SCALE-UP OF ARTEMIA CULTURE SYSTEMS P r o p o s i t i o n s : 1. A s m a l l - s c a l e system can be m a i n t a i n e d a t the same e n v i r o n m e n t a l c o n d i t i o n s as a l a r g e - s c a l e system. 2. The b r i n e shrimp c u l t u r e system i s a complex b i o l o g i c a l system. 3. In a complex b i o l o g i c a l system, s c a l e - u p can be done on the b a s i s of the r a t e - c o n t r o l l i n g mechanism. 4. The r a t e - c o n t r o l l i n g mechanism f o r a b i o l o g i c a l system can be a p h y s i c a l r a t e p r o c e s s . Assumpt i o n s : 1. The organisms i n the s m a l l - s c a l e a r e g e n e t i c a l l y the same as i n the l a r g e - s c a l e . 2. The system performance i n d i f f e r e n t s i z e s can be e x p r e s s e d i n terms of the t o t a l biomass p r o d u c t i o n per u n i t volume. I n f e r e n c e : 1. The performance of the b r i n e shrimp c u l t u r e system i n d i f f e r e n t s c a l e s of o p e r a t i o n can be p r e d i c t e d . CHAPTER IV EXPERIMENTAL FACILITIES Two types of c o n t a i n e r g e o m e t r i e s commonly used i n a q u a c u l t u r a l o p e r a t i o n s were employed i n the e x p e r i m e n t s , namely; the c y l i n d r i - c o n i c a l tank and the raceway. The c y l i n d r i - c o n i c a l tank was c y l i n d r i c a l i n shape w i t h a 45 degree s l o p i n g c o n i c a l bottom. The raceway was a f l a t - b o t t o m tank w i t h an oblong c r o s s - s e c t i o n and a p a r t i t i o n i n g at the c e n t e r . These two ty p e s of t a n k s a re i l l u s t r a t e d i n F i g u r e s 2 and 3. Three g e o m e t r i c a l l y s i m i l a r s i z e s of each type of tank were used. The d e s i r e t o make a l l components conform p e r f e c t l y w i t h the p r e d e t e r m i n e d l e n g t h s c a l e r a t i o i n o r d e r t o m a i n t a i n geometric s i m i l a r i t y was l i m i t e d by the type of s t a n d a r d m a t e r i a l s a v a i l a b l e and by some i m p e r f e c t i o n s i n the c o n s t r u c t i o n . In the e a r l i e r p a r t of the s t u d y , experiments were conducted a t UBC i n the A q u a c u l t u r a l Systems L a b o r a t o r y of the B i o - R e s o u r c e E n g i n e e r i n g Department and i n the H y d r a u l i c s L a b o r a t o r y of the C i v i l E n g i n e e r i n g Department. D u r i n g t h i s e a r l i e r phase, t h r e e s i z e s of both types of ta n k s were used. A l l s i z e s of the raceway type and the s m a l l e s t s i z e of the c y l i n d r i - c o n i c a l type were made of p l e x i g l a s s w h i l e the r e s t were made of f i b e r g l a s s . The l a t e r phase of the s t u d y , i n v o l v i n g c u l t u r e e x p e r i m e n t s , was conducted a t the Wet L a b o r a t o r y of the A q u a c u l t u r e Department of Southeast A s i a n F i s h e r i e s Development Ce n t e r (SEAFDEC) i n Tigbauan, I l o i l o , P h i l i p p i n e s . A l l t a n k s used i n the c u l t u r e e x p e r i m e n t s were made of f i b e r g l a s s . C y l i n d r i - c o n i c a l t a n k s The s i z e s used were 29.2, 61.0 and 106.7 cm d i a m e t e r . The d e s i g n data a r e p r e s e n t e d i n T a b l e I . The s e t - u p f o r s c a l e - u p e x p e r i m e n t s c o n s i s t e d of 5 u n i t s of 29.2, 5 u n i t s of 61.0 and 5 u n i t s of 106.7 cm d i a m e t e r . The t a n k s were s e c u r e l y s u p p o r t e d by a p p r o p r i a t e l y d e s i g n e d wooden p l a t f o r m s . A i r was s u p p l i e d from an a i r supply p i p e c o n t r o l l e d by a gas v a l v e (A i n F i g u r e 2 ) , onto which p l a s t i c t u b i n g was f i r m l y a t t a c h e d . The a i r f l o w r a t e was checked by measuring the p r e s s u r e drop a c r o s s a n o z z l e ( J ) . The n o z z l e employed was a p l a s t i c p i p e t t o r t i p f i r m l y f i t t e d i n t o the p l a s t i c t u b i n g . The p r e s s u r e drop a c r o s s the n o z z l e was measured by a w a t e r - f i l l e d U-tube g l a s s manometer (M), both ends of which were connected t o p l a s t i c t u b i n g s a t t a c h e d t o g l a s s t e e s ( I , K ) . The p l a s t i c t u b i n g a t B was i n s e r t e d i n t o a h o l e i n the PVC cap (C) which was d r i l l e d s l i g h t l y s m a l l e r than the d i a m e t e r of the t u b i n g . The PVC cap was f i r m l y a t t a c h e d Figure 2. A d e t a i l e d i l l u s t r a t i o n of the c y l i n d r i - c o n i c a l tank. Table I . Design Diameter, D Sparger tube, F ( i n s i d e d i a m e t e r ) Hole s i z e , d 16-holes 4-holes 1-hole C l e a r a n c e of p e r f o r a t e d cap from bottom, G data f o r c y l i n d r i - c o n i c a l tanks TANK SIZE S m a l l Medium Large 29.2 61.0 106.7 1.58 3.02 5.57 0.079 ' 0.160 0.277 0.160 0.317 0.556 0.317 . 0.635 1.110 2.0 4.0 7.0 A l l measurements are in.cm. 36 t o the t o p end of the PVC p i p e ( F ) . A i r was then f i n a l l y i n t r o d u c e d i n t o the tank t h r o u g h the p i p e ' v e r t i c a l l y p o s i t i o n e d a t the c e n t e r of the tank w i t h a p e r f o r a t e d PVC cap (E) a t t a c h e d to the bottom end w i t h h o l e s i z e ( d ) . A c l e a r a n c e (G) between the t i p of the p e r f o r a t e d cap and the bottom s u r f a c e of the tank was m a i n t a i n e d by f a s t e n i n g the PVC p i p e onto a wooden su p p o r t frame. The a i r s u p p l y l i n e assembly was a l s o n e a t l y f a s t e n e d onto t h i s wooden frame. Readings on the manometer were c a l i b r a t e d a g a i n s t a r o t a m e t e r . C a l i b r a t i o n was done by c o n n e c t i n g the ro t a m e t e r i n s e r i e s w i t h the a i r s u p p l y l i n e assembly a t some p o i n t N. The f l o w p r e s s u r e s a t both upstream and downstream p o i n t s of the r o t a m e t e r were measured by means of a mercury f i l l e d U-tube g l a s s manometer. A l l a i r f l o w r a t e s were c o r r e c t e d t o s t a n d a r d c o n d i t i o n s of 760 mm Hg and 20 C. A l l j o i n t s were r o u t i n e l y t e s t e d f o r p o s s i b l e l e a k s . Raceways The s i z e s of raceways used were 28.8, 58.6 and 98.9 cm i n w i d t h . The ends were s e m i - c i r c u l a r w i t h r a d i u s of c u r v a t u r e e q u a l t o o n e - h a l f the w i d t h . The o t h e r d e s i g n d a t a a r e i n c l u d e d i n Table I I . For the s c a l e - u p e x p e r i m e n t s , a s e t c o n s i s t i n g of 5 u n i t s of 28.8, 5 u n i t s of 58.6 and 5 u n i t s of 98.9 cm w i d t h were used. 37 Figure 3. A d e t a i l e d i l l u s t r a t i o n of the raceway. Table I I . Design data f o r raceways * TANK SIZE S m a l l Medium Large 38 W i d t h , D 28.8 58.6 98.9 L e n g t h , L 62.0 134.0 222.0 A i r - w a t e r - l i f t p i p e ( i n s i d e d i a m e t e r ) 1 .58 3..o: 5.57 A i r d i s t r i b u t i o n c y l i n d e r , C I n s i d e diameter 4.09 7.79 15.49 Length 30.0 60.0 100.0 S i z e of p l a s t i c t u b i n g c o n n e c t i n g the a i r - l i f t p i p e s w i t h d i s t r i b u t i o n c y l i n d e r ( i n s i d e d i a . ) D i s t a n c e of a i r - l i f t p i p e s from edge of p a r t i t i o n i n g : E 0.238 1.0 20.0 0.476 .2.0 40.0 0.794 3.3 66.4 * A l l measurements are i n cm. The t y p e of raceway used i n t h i s s tudy was s i m i l a r t o t h e . type d e s c r i b e d by Bossuyt and S o r g e l o o s (1980). A c l e a r a n c e of o n e - t h i r d the w i d t h was p r o v i d e d a t both ends of the t a n k . An a i r - w a t e r l i f t c o n s i s t e d of a PVC p i p e w i t h the lower end c u t at an a n g l e of 45 degrees and the upper end f i t t e d w i t h an elbow ( i n s e t i n F i g u r e 3 ) . These were then a t t a c h e d t o the p a r t i t i o n i n g by means of PVC r i n g s c u t out from PVC p i p e . The l i n e of d i s c h a r g e from elbows was o r i e n t e d a t 45 degrees w i t h t h e , p a r t i t i o n i n g . The a i r f l o w r a t e i n each tank was r e g u l a t e d i n l i k e manner as i n the c y l i n d r i - c o n i c a l tank. A i r was i n t r o d u c e d through a d i s t r i b u t i o n c y l i n d e r (C) which was p r o v i d e d w i t h h o l e s s l i g h t l y s m a l l e r than the d i a m e t e r of p l a s t i c t u b i n g so as to h o l d the p l a s t i c t u b i n g i n p l a c e . A i r passed through the t u b i n g i n s e r t e d t h r ough each of the a i r - l i f t p i p e s w i t h the a i r e x i t i n g from the bottom i n d u c i n g upward water f l o w i n s i d e the p i p e . The d i s c h a r g e was d i r e c t e d by a 90-degree elbow c a u s i n g ^ a d i r e c t i o n a l mass f l o w i n s i d e the tank. The number of a i r - l i f t p i p e s was v a r i e d depending on the r e q u i r e m e n t of an e x p e r i m e n t . F i g u r e s 4 and 5 show the s e t - u p f o r the c y l i n d r i -c o n i c a l t a n k s and raceways. Sea water supply The water s u p p l y f o r the c u l t u r e e x p e r i m e n t s was drawn from the sea th r o u g h a h o r i z o n t a l p i p e e x t e n d i n g a p p r o x i m a t e l y 100 m from the s h o r e l i n e . The i n t a k e was l o c a t e d about 1 m from the bottom on which spot the depth ranged from 3.5 t o 5.0 m. The water f l o w i n g by g r a v i t y i n t o a c o n c r e t e - l i n e d w e l l was pumped through a slow sand f i l t e r b e f o r e i t was pumped th r o u g h the main sea water d i s t r i b u t i o n system s e r v i n g the whole r e s e a r c h complex of the SEAFDEC A q u a c u l t u r e Department. A i r s u p p l y The a i r s u p p l y f o r the c u l t u r e e x p e r i m e n t s was o b t a i n e d from the main a i r d i s t r i b u t i o n system which was powered by Roots b l o w e r s . F i g u r e 5a. The 28.8 cm w i d t h r a c e w a y s . F i g u r e 5c. The 98.9 cm w i d t h r a c e w a y s . CHAPTER V CULTURE TECHNIQUE AND MEASUREMENT OF MONITORING AND BIOLOGICAL PERFORMANCE PARAMETERS The c u l t u r e tank was i n i t i a l l y s t o c k e d w i t h newly h a t c h e d b r i n e shrimp a t a d e n s i t y of one a n i m a l per ml of sea water. Rice, bran p a s s i n g through an 80-micron mesh was used as f e e d and was i n t r o d u c e d i n the amount of 0.055, 0.110, 0.165, 0.220, 0.275, 0.330 and 0.385 mg/ml per day, r e s p e c t i v e l y , from f i r s t t o s e v e n t h day. T h i s f e e d i n g scheme was a m o d i f i c a t i o n of t h a t used by Johnson (1980). Feeding was done t w i c e d a i l y and the amount i n t r o d u c e d d u r i n g each f e e d i n g was e q u i v a l e n t t o o n e - h a l f of the p r e s c r i b e d amount f o r a p a r t i c u l a r day. The water i n the tank was not changed throughout the c u l t u r e p e r i o d of seven days, a l t h o u g h make-up water was added when ne c e s s a r y t o m a i n t a i n the c u l t u r e volume. The b r i n e shrimp eggs used i n the e x p e r i m e n t s a l € came from the same b a t c h and was d i s t r i b u t e d by Sander's B r i n e Shrimp Co. The d i s s o l v e d oxygen and temperature of the c u l t u r e system were measured by an YSI Model 57 DO meter w i t h a probe equipped' w i t h a s u b m e r s i b l e s t i r r e r . The o t h e r water q u a l i t y p a r a m e t e r s , such as; ammonia, n i t r i t e , pH and BOD were d e t e r m i n e d by sending water samples t o the C e n t r a l i z e d A n a l y t i c a l L a b o r a t o r y of the SEAFDEC A q u a c u l t u r e Department, which s e r v e s a l l water q u a l i t y m o n i t o r i n g needs of v a r i o u s r e s e a r c h p r o j e c t s of the Department. The pH was measured by a pH meter. Ammonia and n i t r i t e were determined b a s i c a l l y f o l l o w i n g the procedures g i v e n by S t r i c k l a n d and P a r s o n s ( 1 9 7 2 ) . BOD was de t e r m i n e d f o l l o w i n g the p r o c e d u r e s d e s c r i b e d i n the "Standard Methods f o r the E x a m i n a t i o n of Water and Wastewater." The d i s s o l v e d oxygen and te m p e r a t u r e were r e c o r d e d t w i c e d a i l y (0800 and 1600 h r ) . Water samples f o r pH, ammonia and n i t r i t e d e t e r m i n a t i o n s were o b t a i n e d once d a i l y (0800 h r ) . Water q u a l i t y parameter s a m p l i n g and measurements were done i m m e d i a t e l y p r i o r t o f e e d i n g . The r i c e bran used i n the c u l t u r e e x p e r i m e n t s was m i l l e d from r i c e g r a i n of one v a r i e t y ( I R - 3 6 ) . Samples f o r proximate a n a l y s i s were o b t a i n e d from each b a t c h t h a t was used. The a n a l y s e s were a l s o done i n the C e n t r a l i z e d A n a l y t i c a l L a b o r a t o r y . There was no c o n s i d e r a b l e change i n C-the q u a l i t y of d i f f e r e n t b a t c h e s of r i c e bran used i n the experiments (Appendix I ) . The body l e n g t h was d e t e r m i n e d by measuring the b r i n e shrimp from the a n t e r i o r t i p of the head t o the base of the c a u d a l f u r c a ( G i l c h r i s t , 1956). Each d e t e r m i n a t i o n was made by examining 30 a n i m a l s . Measurements were made under the microscope equipped w i t h an e y e p i e c e micrometer. The dry weight was d e t e r m i n e d by f i r s t washing the a n i m a l s w i t h d i s t i l l e d water and then o v e n - d r i e d a t 60 C f o r 72 hours (Reeve, 1963). A m i c r o b a l a n c e (Cahn Model 21) was used to measure the weight. The s u r v i v a l was o b t a i n e d by t a k i n g 30 t o 50 ml a l i q u o t samples and c o u n t i n g the number of a n i m a l s i n the sample. At l e a s t f i v e a l i q u o t samples were counted t o o b t a i n one s u r v i v a l v a l u e per tank. Each tank was a d e q u a t e l y s t i r r e d manually t o ensure even d i s t r i b u t i o n of a n i m a l s b e f o r e each s a m p l i n g . The t o t a l biomass p r o d u c t i o n i n the c u l t u r e system was c a l c u l a t e d t h r o u g h the e q u a t i o n used by Mann (1976). P r o d u c t i o n over a p a r t i c u l a r day per tank was e s t i m a t e d by: 1/2 (N. + N. ) ( W. - W. ) i - l l l i - l Eqn. 5-1 f T o t a l P r o d u c t i o n / t a n k = P = >^ P^ Eqn. 5-2 s u r v i v a l f o r p a r t i c u l a r day, number/ml s u r v i v a l f o r p r e v i o u s day, number/ml dry weight f o r p a r t i c u l a r day, ug P. l where N. N i - 1 W. l 46 w^_^ = d r y weight f o r p r e v i o u s day, ug f • = t o t a l c u l t u r e p e r i o d , day CHAPTER VI DETERMINATION OF THE CONTROLLING MECHANISM IN BRINE SHRIMP CULTURE NEAR STAGNATION CONDITIONS Near s t a g n a t i o n c o n d i t i o n s , u n d e s i r a b l e e f f e c t s l i k e low d i s s o l v e d oxygen c o n c e n t r a t i o n ; uneven d i s t r i b u t i o n of organisms and f e e d ; and a c c u m u l a t i o n of m e t a b o l i t e s may be brought about by inadequate water movement. In b r i n e shrimp c u l t u r e , the use of a e r a t i o n by means of b u b b l i n g a i r through the c u l t u r e system p r o v i d e s d i s s o l v e d oxygen n e c e s s a r y f o r b i o l o g i c a l growth and f o r s t a b i l i z a t i o n of d i s s o l v e d o r g a n i c m a t t e r coming from the d e c o m p o s i t i o n of excess feeds and m e t a b o l i c p r o d u c t s . At the same t i m e , i t p r o v i d e s s u f f i c i e n t t u r b u l e n c e to m a i n t a i n a u n i f o r m s u s p e n s i o n of both the organisms b e i n g c u l t u r e d and feed p a r t i c l e s . The above mentioned e f f e c t s caused by b u b b l i n g a i r through the system can b a s i c a l l y be r e l a t e d *r to the o x y g e n a t i o n c a p a c i t y and t o the a g i t a t i o n c a p a c i t y of the r i s i n g b u b b l e s . While t h e s e two mechanisms o b v i o u s l y c o n t r i b u t e t o the performance of the c u l t u r e system, i t i s impo r t a n t t o determine which of the two would be c o n s i d e r e d more as a c o n t r o l l i n g mechanism. C o n s e q u e n t l y , the p o s s i b i l i t y of u s i n g the c o n t r o l l i n g mechanism as c r i t e r i o n f o r s c a l i n g - u p would be d e t e r m i n e d . Methodology An experiment was conducted t o determine which of the two mechanisms - o x y g e n a t i o n or a g i t a t i o n - g r e a t l y a f f e c t s p r o d u c t i o n of b r i n e shrimp f e d w i t h r i c e b r a n . The experiment was b a s i c a l l y a comparison of the r e s p e c t i v e e f f e c t s caused by the b u b b l i n g of a i r and of pure oxygen gas at s i m i l a r f l o w r a t e s . An e x p e r i m e n t a l u n i t was a 20 L sea water c u l t u r e of b r i n e shrimp c o n t a i n e d i n a 29.2 cm di a m e t e r c y l i n d r i -c o n i c a l t a n k . The c u l t u r e t e c h n i q u e was as d e s c r i b e d i n Chapter V. A i r s u p p l y was o b t a i n e d from the main a i r d i s t r i b u t i o n system. Pure oxygen was s u p p l i e d from a compressed gas c y l i n d e r . The two l e v e l s of f l o w r a t e used were 100 and 400 ml/min. One run of the experiment c o n s i s t e d of a t o t a l of e i g h t t a n k s . The e x p e r i m e n t a l d e s i g n was as shown i n Table I I I . Each t r e a t m e n t was done i n d u p l i c a t e and the t a n k s were a r r a n g e d a t random. A t o t a l of two runs were c o n d u c t e d . Length and s u r v i v a l of b r i n e shrimp i n each tank were det e r m i n e d d a i l y . 49 T a b l e I I I . E x p e r i m e n t a l d e s i g n comparing oxygenat ion and a g i t a t i o n as c o n t r o l l i n g mechanism in b r i n e shrimp c u l t u r e . (Flow r a t e , ml /min) Type of gas 1 00 400 21% 0 ( a i r ) A B 100% 0 (oxygen) G D : R e s u l t s And D i s c u s s i o n In tanks in which pure' oxygen was used , the d i s s o l v e d oxygen c o n c e n t r a t i o n in the c u l t u r e water was s u b s t a n t i a l l y h i g h e r than in tanks u s i n g a i r . In both c a s e s , for pure oxygen and a i r , the d i s s o l v e d oxygen c o n c e n t r a t i o n was h i g h e r for 400 ml /min than for 100 m l / m i n . In a l l cases the d i s s o l v e d oxygen c o n c e n t r a t i o n d e c r e a s e d wi th t ime . B r i n e shrimp c u l t u r e d wi th a i r d i e d b e f o r e r e a c h i n g the t o t a l c u l t u r e p e r i o d of seven days f o r both a i r f l o w r a t e s of 100 and 400 m l / m i n . These r e s u l t s are shown in F i g u r e 6. The r e s u l t s may be e x p l a i n e d w i t h the a i d of F i g u r e 7. 50 o CN : CN i—i—i—i—i—m—i—i—i—i—i—r » ° oxygen; 400 ml/min + oxygen; 100 ml/min • air ; 400 ml/min * air ; 100 ml/mln " i — i — i — i — i i i — n r - + < 2 oi e w 00 eg ZZ ^= LUC* CC ZD O to ^ -O Q 00 CN J 1 J L l l l l i l l I I l l l I I I I I I L 0.0 0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 6.4 CULTURE PERIOD (day) 7.04 7.68 F i g u r e 6. V a r i a t i o n o f d i s s o l v e d oxygen i n t h e c u l t u r e system w i t h t ime u s i n g a i r and pure oxygen. c o n c e n t r a t i o n d r i v i n g f o r c e O x y g e n a t i o n — (mass t r a n s f e r ) m i c r o - t u r b u l e n c e ( K T a ) A g i t a t i o n — ( s u s p e n s i o n ) m a c r o - t u r b u l e n c e ( Q ) F i g u r e 7. F a c t o r s i n f l u e n c i n g the mechanisms o f o x y g e n a t i o n and a g i t a t i o n i n gas b u b b l i n g . Oxygenation as a mass t r a n s f e r mechanism i s i n f l u e n c e d by the o v e r a l l c o n c e n t r a t i o n d r i v i n g f o r c e ( C- - C ) and O I J by the l e v e l of m i c r o - t u r b u l e n c e as c h a r a c t e r i z e d by K a.. , L i The a g i t a t i o n c a p a c i t y , as gauged by the c a p a b i l i t y t o suspend and e v e n l y d i s t r i b u t e o rganisms and f e e d p a r t i c l e s , i s i n f l u e n c e d by the l e v e l of m a c r o - t u r b u l e n c e . The l e v e l of m a c r o - t u r b u l e n c e depends on t h e power s o u r c e , i n t h i s c a s e , the gas f l o w r a t e , Q. Of the f a c t o r s i n f l u e n c i n g both o x y g e n a t i o n and a g i t a t i o n , o n l y the type of gas, thus C s and the gas flo w r a t e , Q, may be c o n t r o l l e d . The l e v e l of m i c r o - t u r b u l e n c e i s i n f l u e n c e d by the l e v e l of macro-t u r b u l e n c e which i s a n a t u r a l consequence when k i n e t i c energy i s t r a n s f e r r e d from the l a r g e e d d i e s t o s m a l l e r e d d i e s b e f o r e t h i s i s d i s s i p a t e d by v i s c o u s f l o w . C T i s the r e s u l t a n t c o n c e n t r a t i o n of d i s s o l v e d oxygen i n the c u l t u r e system as a consequence of the i n t e r p l a y of a l l the o t h e r f a c t o r s . For a p a r t i c u l a r c u l t u r e system, t h e r e f o r e , the e f f e c t i v i t y of an o x y g e n a t i o n p r o c e s s i s gauged through the maintenance of the C-^  a t a d e s i r a b l e l e v e l . The oxygen t r a n s f e r r e d t o the c u l t u r e system was used f o r the r e s p i r a t i o n of the a n i m a l s and f o r the a e r o b i c d e c o m p o s i t i o n of d i s s o l v e d o r g a n i c m a t t e r . The d i s s o l v e d oxygen i n the c u l t u r e water was the b a l a n c e between the amount of oxygen s u p p l i e d and the amount consumed. M e t a b o l i t e s and o t h e r d i s s o l v e d o r g a n i c s u b s t a n c e s coming from d e c o m p o s i t i o n of e x c e s s f e e d and dead organisms accumulated i n the tank w i t h the passage of t i m e . A l l of these s u b s t a n c e s e x e r t e d oxygen demand thus i n c r e a s i n g the r a t e of consumption of d i s s o l v e d oxygen. T h i s r e s u l t e d i n a d e c r e a s i n g t r e n d i n the d i s s o l v e d oxygen c o n c e n t r a t i o n i n the c u l t u r e system w i t h time. A f f e c t e d were those t a n k s u s i n g a i r i n which the b r i n e s h r i m p d i e d b e f o r e r e a c h i n g the t o t a l c u l t u r e p e r i o d of seven d a y s . The use of pure oxygen gas r e s u l t e d i n h i g h e r d i s s o l v e d oxygen c o n c e n t r a t i o n i n the c u l t u r e system than t h a t o b t a i n e d when u s i n g a i r because of the r e l a t i v e l y l a r g e r d r i v i n g f o r c e ( - ). When u s i n g pure oxygen, the v a l u e of Cg i s p r o p o r t i o n a l to the t o t a l e f f e c t i v e p r e s s u r e , P, w h i l e when u s i n g a i r , the v a l u e of C„ i s o n l y p r o p o r t i o n a l 53 t o 0 . 2 1 P., i . e . , Cg oc P f o r pure oxygen Cg oC 0 . 2 1 P f o r a i r The r e l a t i v e l y h i g h c o n c e n t r a t i o n of d i s s o l v e d oxygen i n the c u l t u r e system when u s i n g pure oxygen gas a t 100 ml/min was s t i l l g r e a t l y i n c r e a s e d a t 400 ml/min because of the dependence of m i c r o - t u r b u l e n c e on macro- t u r b u l e n c e . F i g u r e 8 shows the e f f e c t of oxygen c o n c e n t r a t i o n on the performance of the b r i n e s h r i m p c u l t u r e system, w h i l e F i g u r e 9 shows the e f f e c t of gas f l o w . r a t e . on the same performance parameter. The b i o l o g i c a l performance i s p r e s e n t e d i n terms of the t o t a l biomass p r o d u c t i o n a t t a i n e d i n the c u l t u r e system. The much h i g h e r c o r r e l a t i o n c o e f f i c i e n t (R=0.94) o b t a i n e d f o r the r e l a t i o n s h i p between t o t a l biomass p r o d u c t i o n and mean d i s s o l v e d oxygen c o n c e n t r a t i o n i n the system compared w i t h t h a t o b t a i n e d f o r the r e l a t i o n s h i p between t o t a l biomass p r o d u c t i o n and gas f l o w r a t e (R=0.22) i n d i c a t e s a much s t r o n g e r dependence of biomass p r o d u c t i o n on the oxygen c o n c e n t r a t i o n i n the c u l t u r e system than on the gas f l o w r a t e . T h i s s t r o n g l y s u g g e s t s t h a t o x y g e n a t i o n c a p a c i t y i s more of the c o n t r o l l i n g mechanism i n t h i s c a s e of b r i n e shrimp c u l t u r e . The r e s u l t s of t h i s e x p e r i m e n t i n d i c a t i n g t h a t o x y g e n a t i o n i s the c o n t r o l l i n g mechanism i n b r i n e shrimp c u l t u r e (near s t a g n a t i o n c o n d i t i o n s ) does not mean, however, 54 MEAN D 0 IN CULTURE SYSTEM (mg/L) Figure 8. E f f e c t of d i s s o l v e d oxygen i n the c u l t u r e system on the t o t a l biomass production of b r i n e shrimp. 55 CD C3 CO o C3 CO o 0 3 O CD Q Q=CD-QL •* O CO CM 1 1 1 1 1 1 1 I I 1 1 I I 1 I I f i 1 1 1 — © -- o - o - o — o O -- o _ -o -0 -- o -1 o -1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I .0 40.0 80.0 120.0 160.0 200.0 240.0 280.0 320.0 360.0 400.0 440.0 480.0 GAS FLOW RATE (ml/min) Figure 9- E f f e c t of gas flow r a t e on the t o t a l biomass production of b r i n e shrimp. t h a t a g i t a t i o n i s no l o n g e r i m p o r t a n t , as i t has been mentioned above t h a t these two mechanisms a s s o c i a t e d w i t h a i r b u b b l i n g p r o v i d e the n e c e s s a r y d e s i r a b l e c u l t u r e environment near s t a g n a t i o n c o n d i t i o n s . T h i s i n d i c a t e s t h a t a g i t a t i o n c a p a c i t y of gas b u b b l i n g p r o v i d i n g e f f e c t i v e s u s p e n s i o n and e f f e c t i v e even d i s t r i b u t i o n of organisms and f e e d p a r t i c l e s i n the c u l t u r e system i s a n e c e s s a r y c o n d i t i o n but not s u f f i c i e n t t o s e r v e as c r i t e r i o n to d e t e r m i n e the performance of the c u l t u r e system. C o n c l u s i o n s 1) O x y genation c a p a c i t y has been, shown t o be the c o n t r o l l i n g mechanism i n b r i n e shrimp c u l t u r e near s t a g n a t i o n c o n d i t i o n s . As the c o n t r o l l i n g mechanism, i t can be t e s t e d as a p o s s i b l e s c a l e - u p c r i t e r i o n i n b r i n e shrimp c u l t u r e . 2) Near s t a g n a t i o n c o n d i t i o n s , the biomass p r o d u c t i o n of b r i n e shrimp i s h i g h e r i n c u l t u r e systems w i t h h i g h e r mean d i s s o l v e d oxygen c o n c e n t r a t i o n . CHAPTER VII DEVELOPMENT OF SCALE-UP CORRELATIONS FOR THE OVERALL OXYGEN MASS TRANSFER COEFFICIENT, K-^ a For the q u a n t i t a t i v e e v a l u a t i o n of the o x y g e n a t i o n c a p a c i t y i n a i r - l i q u i d c o n t a c t i n g systems, use i s f r e q u e n t l y made of the o v e r a l l mass t r a n s f e r c o e f f i c i e n t , K a (Oldshue, I J 1960; F i n n , 1967; B y l i n k i n a e t . a l . , 1972; E c k e n f e l d e r e t . a l . , 1972; J a r a i , 1972; S c o t t , 1972; M i u r a , 1976; Lee, 1 979; M a r g a r i t i s e t . a _ l . , 1981). K a has been used t o L c h a r a c t e r i z e g a s - l i q u i d systems b e i n g compared by u s i n g a model l i q u i d , most f r e q u e n t l y a s o l u t i o n of sodium s u l f i t e . T h i s use of a model l i q u i d f o r s t a n d a r d i z i n g o x y g e n a t i o n c a p a c i t y i n d i f f e r e n t systems i s c o n v e n i e n t and r e l i a b l e . D e r i v a t i o n Of G e n e r a l i z e d R e l a t i o n s h i p For K T a By Ii D i m e n s i o n a l A n a l y s i s The o x y g e n a t i o n c a p a c i t y of an a i r - w a t e r c o n t a c t i n g system depends on many f a c t o r s and the s e may be c l a s s i f i e d as f o l l o w s : 1. Geometric ( d e s i g n ) parameters a. Diameter of the tank, D b. Water d e p t h , H 58 c. Number of s p a r g e r h o l e s ( f o r c y l i n d r i -c o n i c a l t a n k ) or Number of a i r l i f t p i p e s ( f o r r a c e w a y s ) , N 2. M a t e r i a l parameters d. L i q u i d d e n s i t y , p L e. L i q u i d v i s c o s i t y , y L f. L i q u i d s u r f a c e t e n s i o n , a T g. A i r d e n s i t y , p A h. Oxygen d i f f u s i v i t y i n water, <J> 3. P r o c e s s parameters i . A i r f l o w r a t e , Q j . G r a v i t a t i o n a l c o n s t a n t , g Thus, f o r the performance parameter, K a, the f o l l o w i n g f u n c t i o n a l r e l a t i o n s h i p r e s u l t s : K L a = f 1(D,H,N, P L , ^ L , A L , P A ,* ,Q,g) Eqn.7-1 U s i n g d i m e n s i o n a l a n a l y s i s , t h i s r e l a t i o n s h i p of e l e v e n v a r i a b l e s can be reduced t o one i n v o l v i n g o n l y e i g h t d i m e n s i o n l e s s groups: K L a ( y L / P L g 2 ) ' / 3 = f 2 [ ( Q 2 / g D 5 ) , ( P L Q / y LD) , . ( p L Q 2 / a L D 3 ) ,N,H/D, ( p L ~ p A>/ P A , ( V L / PL<t> ) ] Eqn. 7-2 59 [( p - P A ) / P A ] and [Q 2/gD 5] may be combined to c h a r a c t e r i z e buoyancy e f f e c t s i n the system. K a ( y / p g 2 ) 1 / 3 and ( u / p d> ) may a l s o be L i L I L J J L i-i combined to c h a r a c t e r i z e the oxygenation ca p a c i t y of the system. Noting that 'FT* = (Q 2/gD 5)[( p - p )/ p } modified Froude No. Re* = P L Q/ y L D modified Reynolds No. We* = P Qz/o D3 modified Weber No. K L-a* = [K La ( ^  / P l g 2) 1 / 3 ] / [ \ / ] oxygenation c a p a c i t y the g e n e r a l i z e d r e l a t i o n s h i p reduces to: K L a * = f 2 [Fr*,Re*,We*,N,H/D] Eqn. 7-3 The l e f t hand s i d e of the g e n e r a l i z e d e q u a t i o n i n v o l v e s the performance parameter, K-^a, which c h a r a c t e r i z e s the o x y g e n a t i o n c a p a c i t y of the system. The r i g h t hand s i d e c o n t a i n s two types of d i m e n s i o n l e s s groups, namely; f l u i d dynamic groups (Froude, R e y n o l d s , and Weber) and geometric groups (N,H/D). When a p p l y i n g the P r i n c i p l e of S i m i l a r i t y i n s c a l e - u p , i t would be d e s i r a b l e t o know the regime of the p r o c e s s or the d i m e n s i o n l e s s group which c o n t r o l s the performance parameter. When one p a r t i c u l a r d i m e n s i o n l e s s group c o u l d be i d e n t i f i e d as such, i t would d e f i n e the regime of the p r o c e s s and the subsequent s c a l e - u p c o u l d be done u s i n g s c a l i n g e q u a t i o n s based on t h i s p a r t i c u l a r group. In p r a c t i c e , however, e s p e c i a l l y i n more complex systems, i t i s not s i m p l e t o d e t e r m i n e , at the o u t s e t , what v a r i a b l e or v a r i a b l e groups s h o u l d be the b a s i s of s i m i l a r i t y i n d i f f e r e n t s c a l e s of o p e r a t i o n ( J o r d a n , 1955; Johnstone and T h r i n g , 1957; Hyman, 1962; H o l l a n d and Chapman, 1966). I t then becomes n e c e s s a r y t o de t e r m i n e the r e l a t i o n s h i p between the performance parameter and the d e s i g n and o p e r a t i n g v a r i a b l e s (Johnstone and T h r i n g , 1957; 61 Hyman, 1962; B l a k e b r o u g h and Sambamurthy, 1966; Z l o k a r n i k , 1978; Z l o k a r n i k , 1979). For the purpose of s c a l e - u p , i t i s d e s i r a b l e t o have t h i s r e l a t i o n s h i p i n terms of d i m e n s i o n l e s s groups, which can be a p p l i e d e q u a l l y to l a r g e or s m a l l o p e r a t i o n s . T h i s r e l a t i o n s h i p between the performance parameter and the c o n t r o l l i n g groups can best be e s t a b l i s h e d t h r o u g h e x p e r i m e n t a t i o n . E x p e r i m e n t a l D e t e r m i n a t i o n Of K-^ a Experiments were conducted w i t h the aim of e s t a b l i s h i n g the f i n a l form of E q u a t i o n 7-3 f o r both the c y l i n d r i - c o n i c a l tank and the raceway. For each type of tank, t h r e e g e o m e t r i c a l l y s i m i l a r s i z e s were i n v e s t i g a t e d . A g i t a t i o n was induced by the i n t r o d u c t i o n of a i r i n t o the system. C y l i n d r i - c o n i c a l tank The f o l l o w i n g parameters were v a r i e d t o study the e f f e c t s of t h e s e on the performance parameter, K^a, i n c y l i n d r i - c o n i c a l t a n k s : 1. Diameter of the tank, D The s i z e s used were 29.2, 61.0 and 106.7 cm i n d i a m e t e r 62 2. Water d e p t h , H Three water depths were used c o r r e s p o n d i n g to H/D r a t i o s of a p p r o x i m a t e l y 0.75, 1.25 and 1.75 3. A i r flow r a t e , Q F i v e l e v e l s of a i r flow r a t e were used for each s i z e 4. Number of h o l e s in s p a r g e r , N The number of h o l e s i n the sparger was v a r i e d w i t h c o r r e s p o n d i n g h o l e d iameters m a i n t a i n i n g the r a t i o of t o t a l ho le area to tank c r o s s - s e c t i o n a l area c o n s t a n t . F o r each s i z e of tank t h r e e ho l e s i z e s were t e s t e d , each w i t h c o r r e s p o n d i n g ho le number. Hole numbers used were 16, 4, and 1. The c o r r e s p o n d i n g ho l e d i a m e t e r s i n d i f f e r e n t s i z e tanks are p r e s e n t e d i n T a b l e I . Raceway The f o l l o w i n g parameters were c o n s i d e r e d to determine t h e i r e f f e c t s on K^a i n raceways: 1. Width of tank , D The s i z e s used were 28.8, 58.6, and 98.9 cm i n w i d t h 2. Water d e p t h , H Three water depths were used c o r r e s p o n d i n g to H/D r a t i o s of a p p r o x i m a t e l y 0.50, 0.75, and 1.00 3. A i r f l o w r a t e , Q F i v e l e v e l s of a i r f l o w r a t e were t e s t e d . 4. Number of a i r l i f t p i p e s , N The two s e t s of a i r l i f t p i p e number used were 4 and 8. H a l f of the number of. a i r l i f t s were i n s t a l l e d on each s i d e of the p a r t i t i o n i n g . The oxygen mass t r a n s f e r r a t e s were measured by the s u l f i t e o x i d a t i o n method as d e s c r i b e d i n the "Standard Methods f o r the E x a m i n a t i o n of Water and Wastewater." Sodium s u l f i t e , NagSO^, was used w i t h c o b a l t c h l o r i d e , CoCl2«6H20, as c a t a l y s t . B a s i c a l l y , the method c o n s i s t e d of d e p l e t i n g the d i s s o l v e d oxygen i n the water by a d d i n g sodium s u l f i t e and d e t e r m i n i n g the r e a e r a t i o n r a t e . The i n c r e a s e i n d i s s o l v e d oxygen c o n t e n t of the water was measured by a YSI Model 57 DO meter a t t a c h e d t o a r e c o r d e r . The DO probe was equipped w i t h a s u b m e r s i b l e s t i r r e r . The v a l u e of the oxygen mass t r a n s f e r c o e f f i c i e n t , K T a , was c a l c u l a t e d by r e g r e s s i o n a n a l y s i s u s i n g the r e l a t i o n s h i p : K L a = [ l n ( C S e -C Q) - l n ( . C S e -C ) ] / [ t - t Q ] Eqn. 7-4 which i s an i n t e g r a t e d form of E q u a t i o n 2-3. In t h i s e q u a t i o n , C q i s the d i s s o l v e d oxygen c o n c e n t r a t i o n of the water a t a r e f e r e n c e t i m e , t , w h i l e C i s the d i s s o l v e d o oxygen c o n c e n t r a t i o n of the water a t any t i m e , t . K^a v a l u e s were c o r r e c t e d to 20 C. The f i r s t phase of the e x p e r i m e n t s i n t h i s s e c t i o n was conducted at UBC and i n v o l v e d t a p water. The second phase was conducted a t the A q u a c u l t u r e Department of SEAFDEC i n I l o i l o , P h i l i p p i n e s u s i n g f r e s h water and sea water. The aim of the e x p e r i m e n t s i n the second phase was t o determine i f t h e r e was a s i g n i f i c a n t d i f f e r e n c e between the a v a l u e of f r e s h water and t h a t of sea w a t e r . R e s u l t s And D i s c u s s i o n Appendices I I and I I I g i v e the K^a v a l u e s o b t a i n e d f o r the d i f f e r e n t v a l u e s of d e s i g n and o p e r a t i n g parameters i n c y l i n d r i - c o n i c a l t a n k s and raceways, r e s p e c t i v e l y . These a r e the r e s u l t s f o r the f i r s t - phase e x p e r i m e n t s i n v o l v i n g t a p 6 5 water. In the c a l c u l a t i o n s f o r K T a , the C 0 used c o n s i d e r e d L be the e f f e c t of water d e p t h i n the t a n k . I t was observed t h a t the steady s t a t e v a l u e of C g e o b t a i n e d through extended a e r a t i o n was e q u i v a l e n t t o the c a l c u l a t e d v a l u e f o r a submergence of 25%. The c a l c u l a t e d v a l u e of C g e based on a submergence of 0.25 was t h e r e f o r e used i n a l l c a l c u l a t i o n s . The f o l l o w i n g f o r m u l a was used t o c a l c u l a t e C g e : C S e = C s [ 76.0 + (0.0.735 x 0 . 2 5 S ) ] / 76 Eqn. 7-5. where Cg e = oxygen s a t u r a t i o n c o n c e n t r a t i o n at the e f f e c t i v e t e m p e r a t u r e and p r e s s u r e e q u i v a l e n t t o 0.25 submergence, mg/L Cg = oxygen s a t u r a t i o n c o n c e n t r a t i o n on the s u r f a c e at water t e m p e r a t u r e , mg/L S = depth of water over the a i r o u t l e t , cm The data f o r each type of tank were s u b j e c t e d t o r e g r e s s i o n a n a l y s i s . K a* was t r e a t e d as the dependent v a r i a b l e and F r * , Re*, We*, N and H/D as independent v a r i a b l e s . Appendices IV and V g i v e the r e s u l t s of the a n a l y s e s . The s i m p l e s t e q u a t i o n s which b e s t f i t the . d a t a a r e g i v e n i n the form: For c y l i n d r i - c o n i c a l t a n k s P^a* = K* (Fr*)°- a 0 5(Re*)-°- 0 3 2 ( H / D ) - 0 - 7 9 " Eqn. 7-6 w i t h R 2 = 0.96 For raceways K a * = K* (Fr*) 0'" 5 7(Re*)-°• 1 7 0 (H/D)-°-' 8 2 L R Eqn. 7-7 w i t h R 2 = 0.95 K*, and K* are c o n s t a n t s i n t h e r e g r e s s i o n e q u a t i o n s . For both t h e c y l i n d r i - c o n i c a l tank and the raceway, t h r e e d i m e n s i o n l e s s groups (Fr*-, Re*, and •H/D) c o n t r i b u t e t o the v a r i a t i o n of K a*. I J The i n f l u e n c e of both the Froude and Reynolds numbers i n a g i t a t e d systems was shown by e a r l i e r i n v e s t i g a t o r s (Johnstone and T h r i n g , 1957; O l d s h u e , 1960; H o l l a n d and Chapman, 1966). The Froude number d e t e r m i n e s the o v e r a l l c i r c u l a t i o n p a t t e r n induced by a i r b u b b l i n g r e s u l t i n g from the d i f f e r e n c e i n the d e n s i t i e s of a i r and w a t e r , w h i l e the Reynolds number determines th e v i s c o s i t y - c o n t r o l l e d t u r b u l e n c e p a t t e r n w i t h i n the l i q u i d . H/D c o n t r i b u t e s the e f f e c t of change i n water depth i n a p a r t i c u l a r s i z e tank on K L a * . . Noteworthy i s the absence of the Weber number from the e q u a t i o n s f o r K T a * i n c y l i n d r i - c o n i c a l t a n k s and raceways. Van K r e v e l e n and H o f t i j z e r ( 1 9 5 0 ) , s t a t e d t h a t w h i l e a t low gas f l o w r a t e s , bubbles form as s i n g l e e n t i t i e s a t the s p a r g e r e x i t , and bubble s i z e i s a f u n c t i o n of the s p a r g e r h o l e opening and of the s u r f a c e t e n s i o n , t h i s i s not. the case at h i g h e r gas flow r a t e s . At h i g h gas f l o w r a t e s , the bubble s i z e becomes a f u n c t i o n of gas f l o w r a t e r a t h e r than of the s u r f a c e t e n s i o n and the s p a r g e r h o l e o p e n i n g . T h i s i s the p o i n t c a l l e d c h a i n b u b b l i n g . W h i l e r i s i n g through the water column , the bubble s i z e may i n c r e a s e ( t h r o u g h c o a l e s c e n c e ) or d e c rease ( t h r o u g h break-up) depending on the l e v e l of t u r b u l e n c e , which i s a l s o i n f l u e n c e d by the gas f l o w r a t e . In t h e s e e x p e r i m e n t s , a i r f l o w r a t e s used were i n the r e g i o n of c h a i n b u b b l i n g . Z l o k a r n i k (1979) a l s o i n d i c a t e d t h a t the e f f e c t of s u r f a c e t e n s i o n on mass t r a n s f e r seems t o be n e g l i g i b l e . The number of s p a r g e r h o l e s ( c o r r e s p o n d i n g t o p a r t i c u l a r h o l e d i a m e t e r s i n the case of c y l i n d r i - c o n i c a l tank and number of a i r l i f t s f or raceways), d i d not considerably i n f l u e n c e the o v e r a l l r e l a t i o n s h i p a p p l i c a b l e to d i f f e r e n t s i z e s . B r i e f l y , t h e r e f o r e , Equation 7-6 for c y l i n d r i - c o n i c a l tanks and Equation 7-7 for raceways are.general c o r r e l a t i o n s f o r K ^ a * i n terms of the operating parameters ( F r * , Re* and H/D). Each of these c o r r e l a t i o n s can be used to determine the performance parameter, K Ta*, from the combined e f f e c t s J_J of the operating parameters. With very high R 2, these c o r r e l a t i o n s may be used to p r e d i c t K a* on the basis of the Li operating parameters. These can be used for d i f f e r e n t - s i z e tanks (with s i z e s w i t h i n the range used i n t h i s study), provided that the tanks are g e o m e t r i c a l l y s i m i l a r . In cases where the performance parameter i s mainly c o n t r o l l e d by only one dimensionless group, the value of the performance parameter i s made constant i n scale-up by maintaining the c o n t r o l l i n g dimensionless group constant. Thus scale-up i s done d i r e c t l y on the b a s i s of the c o n t r o l l i n g dimensionless group. However, in t h i s p a r t i c u l a r case where the performance parameter i s not c o n t r o l l e d by only one dimensionless group, scale-up cannot be done on the basis of e q u a l i t y of t h i s or that dimensionless group. Instead, scale-up should be done on the basi s of e q u a l i t y of the performance parameter, c a l c u l a t e d from the r e l a t i o n s h i p between the performance parameter and the dimensionless 69 groups. I f the c o r r e l a t i o n s would be used i n d i f f e r e n t l y s i z e d , g e o m e t r i c a l l y s i m i l a r systems u s i n g a i r and water as the c o n t a c t i n g f l u i d s , E q u a t i o n s 7-6 and 7-7 may be s i m p l i f i e d r e s p e c t i v e l y as f o l l o w s : For c y l i n d r i - c o n i c a l t a n k s K L a = K c (Q 2/D 5) 0'" 0 5(Q/D)-°- 0 3 2 Eqn. 7-8 which may be s i m p l i f i e d f u r t h e r i n t o KLa••= K C(Q/D 2- 5 6 ) ° - 7 7 Eqn. 7-9 For raceways I^a = K R ( Q 2 / D 5 ) 0 ' « 5 7 (Q/D)-°- 1 7 0 Eqn. 7-10 which s i m p l i f i e s i n t o K^a = KpCQ/D2- 8 5 )°- Eqn. 7-1 1 K and K each i n c o r p o r a t e s the c o n s t a n t i n the r e g r e s s i o n C K e q u a t i o n , the c o n s t a n t H/D f o r a p a r t i c u l a r water depth t o dia m e t e r r a t i o and a l l the m a t e r i a l p a r a m e t e r s . E q u a t i o n s 7-9 and 7-11 may be used as s c a l i n g e q u a t i o n s f o r K-^ a i n c y l i n d r i - c o n i c a l t a n k s and raceways, r e s p e c t i v e l y , p r o v i d e d g e o m e t r i c s i m i l a r i t y i s m a i n t a i n e d and the g a s - l i q u i d c o n t a c t i n g system i n v o l v e s a i r and water . F i g u r e s 10 and 11 show the K T a c o r r e l a t i o n s i n c y l i n d r i -c o n i c a l t a n k s and raceways u s i n g E q u a t i o n s 7-9 and 7-11. Thus, f o r two g e o m e t r i c a l l y s i m i l a r c y l i n d r i - c o n i c a l t a n k s t o have s i m i l a r K T a ' s , the a i r f l o w r a t e i n the l a r g e r tank s h o u l d be Q 2 = Q 1 ( D 2 / D], ) 2 - 5 6 Eqn. 7-12 and l i k e w i s e , f o r raceways, the f o r m u l a would be Q 2 = Q 1 ( D 2 / D 1 ) 2 - 8 5 Eqn. 7-13 where 1 r e f e r s t o s m a l l e r tank 2 r e f e r s t o l a r g e r tank F i g u r e s 12 and 13 show the comparison of K^a i n f r e s h water and i n sea water f o r c y l i n d r i - c o n i c a l t a n k s and raceways, r e s p e c t i v e l y . The f r e s h water was f u r t h e r d i f f e r e n t i a t e d as f r e s h water (UBC) and as f r e s h water (SFDC). SFDC f r e s h water and SFDC sea water were the f r e s h water and sea water a v a i l a b l e f o r use at the SEAFDEC A q u a c u l t u r e Department. The f i g u r e s were p l o t t e d w i t h K-^ a as f u n c t i o n of the parameter Q/D 2 , 5 6 f o r c y l i n d r i - c o n i c a l t a n k s Figure 10. K-^ a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l tanks f o r a i r - w a t e r system. C3 - 0 - + " 2 8 . 8 + 58.6 i—r cm cm 1 1 1 r 1 1 1-wldth width 1 1 TTTTT •r 1 1 1 1 1 -T" T' - • •98.9 cm width -in -/+ • / /° -| m 1 e • \ + CO _ CO 0 / 0 / / + © L • + H / D = R 2 = 0 . 7 5 0 . 9 5 ' • 1 1 1 1 1 < • 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 CD "10 3 5 7 10 -1 3 5 7 10* 3 5 7 10 Q/D**2.85 Figure 11. K T a c o r r e l a t i o n i n raceways f o r a i r - w a t e r system. 73 CD _ • i I l l I l l l ° U B C f r e s h w a t e r i i i i i i 11 JIM m ~ + + S F D C f r e s h w a t e r -CO • S F D C seawater -CD — -— -to — CO -'cz •H >—' CD ro r-_i in CO ? CD r-LO CO + -? i i i i 1111 i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CD 10 -a 3 5 7 10 3 5 7 10 • 3 5 7 10 » Q / D * * 2 . 5 6 Figure 12. Comparison of K~T a f o r f r e s h and sea water i n c y l i n d r i - c o n i c a l tanks. r-LO CO <D + "I 1—I I I I I 11 "i r - 1 — i i i i 11 ° UBC freshwater + SFDC freshwater • SFDC seawater 1 I I I 1 I I u CD r-LO CO cz — I & »—' CD ro r-_J ^ LO CO LO CO J I I I I 1111 J I 1 I I I I I I J I I I I I 11 10 5 7 10 3 5 7 10' Q/D**2.85 5 7 10 Figure 13- Comparison of K-j-a f o r f r e s h and sea water i n raceways. and Q/D2•8 5 f o r raceways. . The data were a n a l y z e d u s i n g the UBC SLTEST s t a t i s t i c a l package a v a i l a b l e at the UBC Computing C e n t e r t o t e s t the e q u a l i t y of s l o p e s and i n t e r c e p t s of d i f f e r e n t l i n e s g e n e r a t e d by d i f f e r e n t s e t s of d a t a . For c y l i n d r i - c o n i c a l t a n k s , t h e r e were t h r e e s e t s of d a t a r e p r e s e n t i n g UBC FRESH, SFDC FRESH and SFDC SEA. Each of the s e t h r e e s e t s of data was r e p r e s e n t e d by a l i n e w i t h a c e r t a i n s l o p e and i n t e r c e p t . The t h r e e l i n e s were then t e s t e d i f these were s i g n i f i c a n t l y d i f f e r e n t from each o t h e r . The d a t a f o r the raceways were t r e a t e d s i m i l a r l y . The r e s u l t s of the a n a l y s i s (Appendices VI and V I I ) showed t h a t t h e r e were no s i g n i f i c a n t d i f f e r e n c e s i n the s l o p e s and i n the i n t e r e p t s of the d i f f e r e n t l i n e s r e p r e s e n t i n g f r e s h or sea water, f o r both the c y l i n d r i -c o n i c a l t a n k s and raceways. In o t h e r words, the K^a's o b t a i n e d i n the t h r e e t y p e s of water were b a s i c a l l y the same. . . The m a t e r i a l parameters of sea water are not much d i f f e r e n t from t h a t of f r e s h w a t e r . The d e n s i t y , v i s c o s i t y and s u r f a c e t e n s i o n of sea water at 20 C a r e 1.024 g/cm 3, 0.0106 g/cm-s and 73.53 dyne/cm, r e s p e c t i v e l y . The r e s p e c t i v e v a l u e s f o r f r e s h water a r e 0.998 g/cm 3, 0.0097 g/cm-s and 72.76 dyne/cm. One m a t e r i a l parameter of sea water which c o u l d s i g n i f i c a n t l y a f f e c t the oxygen t r a n s f e r r a t e would be the presence of s a l t which p r e v e n t s the c o a l e s c e n c e of p r i m a r i l y produced f i n e bubbles to l a r g e r ones, thus i n c r e a s i n g i n t e r f a c i a l a r e a , r e s u l t i n g t o h i g h e r mass t r a n s f e r r a t e ( Z l o k a r n i k , 1978). T h i s , however, would happen o n l y i f the p r i m a r i l y produced gas bubbles i n the l i q u i d are f i n e bubbles ( Z l o k a r n i k , 1979). Calderbank (1967) c h a r a c t e r i z e d l a r g e b u b b l e s (>2.5 mm diamet e r ) as those on which form drag predominates and s m a l l bubbles (<2.5 mm d i a m e t e r ) as those which e x p e r i e n c e f r i c t i o n d r a g , c a u s i n g h i n d e r e d f l o w i n the boundary l a y e r sense. The s i z e of p r i m a r i l y produced bubbles i n t h i s study was at l e a s t 5 mm d i a m e t e r . E c k e n f e l d e r and B a r n h a r t (1961) r e p o r t e d t h a t i n the presence of s u r f a c e a c t i v e a g e n t s , the change i n t r a n s f e r r a t e becomes l e s s pronounced as the a g i t a t i o n becomes more v i o l e n t . Thus, i f ever the presence of s a l t i n sea water c o u l d have a s i g n i f i c a n t i n f l u e n c e on K T a , the c o n d i t i o n s of r e l a t i v e l y h i g h l e v e l of t u r b u l e n c e which p r e v a i l e d i n the system d u r i n g the ex p e r i m e n t s were such t h a t the expected e f f e c t s c o u l d never have been p o s s i b l e . Conclusions 1. For both c y l i n d r i - c o n i c a l tanks and raceways, the major dimensionless groups which c o n s i d e r a b l y c o n t r i b u t e to the v a r i a t i o n of K Ta i n g e o m e t r i c a l l y s i m i l a r s i z e s are the Froude and the Reynolds numbers. 2. The c o r r e l a t i o n s can be used to p r e d i c t the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t i n g e o m e t r i c a l l y s i m i l a r s i z e s of tanks from a knowledge of the operating parameters. 3. Scale-up should be done on the bas i s of e q u a l i t y of the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t as c a l c u l a t e d from the c o r r e l a t i o n and not on the basis of e q u a l i t y of each of the dimensionless groups. 4. The f o l l o w i n g s c a l i n g equations may be used for e q u a l i t y of the o v e r a l l oxygen mass t r a n s f e r c o e f f i c i e n t i n g e o m e t r i c a l l y s i m i l a r systems using a i r and water as c o n t a c t i n g f l u i d s : For c y l i n d r i - c o n i c a l tanks Q2 / 2 1 - < D 2 / D l , 2 - S < For raceways Q 2 /Q, - ( D 2 / D j >»•» 5. Under c o n d i t i o n s s i m i l a r to those which p r e v a i l e d during the experiments, the K^a for f r e s h water i s b a s i c a l l y the same as the Y~ a for sea water. 78 CHAPTER V I I I VERIFICATION OF K a AS A SCALE-UP Li CRITERION IN BRINE SHRIMP CULTURE Methodology The aim of t h i s s e r i e s of e x p e r i m e n t s was t o determine the l e v e l s of b i o l o g i c a l performance a t v a r i o u s l e v e l s of a e r a t i o n r a t e (near s t a g n a t i o n c o n d i t i o n s ) i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l t a n k s and raceways. For both the c y l i n d r i - c o n i c a l tank and the raceway, f i v e u n i t s of each s i z e were used. The t h r e e s i z e s f o r each type of tank were d e s c r i b e d , i n Chapter IV. A- p a r t i c u l a r a e r a t i o n r a t e was a s s i g n e d t o each of these t a n k s . T a b l e IV i s a r e p r e s e n t a t i o n of the a i r f l o w r a t e s used i n t a n k s f o r the v a r i o u s s i z e s . H/D v a l u e s used i n the c u l t u r e e x p e r i m e n t s were 1.25 f o r c y l i n d r i - c o n i c a l t a n k s and 0.75 f o r raceways. The approximate l e v e l s of a i r f l o w r a t e used i n the s m a l l e s t s c a l e a r e , For c y l i n d r i - c o n i c a l t a n k s : CS1 = 100 ml/min CS2 = 200 ml/min CS3 = 400 ml/min CS4 = 800 ml/min 79 Table IV. Representation of a i r flow r a t e s i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tanks and raceways. a. C y l i n d r i - c o n i c a l tanks A e r a t i o n l e v e l S i z e 1 2 3 5 CS CS1 CS2 CS3 CS4 CS5 CM CM1 : CM 2 CM3 CM4 CM 5 CL CL1 CL2 CL3 CL4 CL5 Raceways A e r a t i o n l e v e l • S i z e - • .1 2 3 k 5 RS RSI RS2 RS3 RS4 RS5 RM RM1 RM2 RM3 RM4 RM5 RL RL1 RL2 RL3 RL4 RL5 C : C y l i n d r i - c o n i c a l tank R : Raceway S : Small M : Medium L : Large 80 C S 5 = 1 6 0 0 ml/min For raceways: RS1 = 4 0 0 ml/min R S 2 = 8 0 0 ml/min R S 3 = 1 6 0 0 ml/min R S 4 = 3 2 0 0 ml/min R S 5 = 6 4 0 0 ml/min The a i r fl o w r a t e s i n the medium and l a r g e s i z e s were e s t i m a t e d on the c r i t e r i o n of e q u a l K T a f o r c o r r e s p o n d i n g a e r a t i o n l e v e l s . Thus f o r c y l i n d r i - c o n i c a l t a n k s : K L a ( C S 1 ) K T a ( C S 2 ) K L a ( C M 1 ) K La(CM2) K L a ( C L i ) K L a ( C L 2 ) K T a ( C S 5 ) = K T a ( C M 5 ) = K T a ( C L 5 ) L h Ju and f o r raceways: K a ( R S 1 ) = K a ( R M 1 ) = K T a ( R L 1 ) L I i -L K a ( R S 2 ) = R T a ( R M 2 ) = K T a ( R L 2 ) L I J Li K a ( R S 5 ) = K a ( R M 5 ) = K a ( R L 5 ) L L J J 81 Using the s c a l i n g e q u a t i o n s d e r i v e d i n the p r e c e d i n g c h a p t e r , a l l the o t h e r a e r a t i o n r a t e s c o u l d be d e t e r m i n e d . For c y l i n d r i - c o n i c a l t a n k s : CM1 = CS1(CM/CS) 2• 5 6 CM2 = C S 2 ( C M / C S ) 2 * 5 6 • * CL5 = C S 5 ( C L / C S ) 2 • 5 6 For raceways: RM1 = RSI (RM/RS) 2 * 8 5 RM2 = RS2(RM/RS) 2 * 8 5 * * RL5 = R S 5 ( R L / R S ) 2 • 8 5 The a i r f l o w r a t e s a s s i g n e d t o the s m a l l e s t s i z e s of both types of t a n k s which were used t o e s t i m a t e the a i r f l o w r a t e s i n the medium and l a r g e s i z e s t h r o u g h the above e q u a t i o n s , were d e t e r m i n e d i n such a way t h a t the K T a i n the c y l i n d r i - c o n i c a l tank a p p r o x i m a t e s the K T a i n the raceway a t c o r r e s p o n d i n g a e r a t i o n l e v e l s . Thus, K T a ( C S 1 ) ~ K Ta(RS1) K_a(CS2) ~ K Ta(RS2) Li IJ R Ta(CS5) ^ K Ta(RS5) 82 K La(CM5) = K La(RM5) K La(CL5) ~ K L a ( R L 5 ) T a b l e s V and VI g i v e the a c t u a l a i r f l o w r a t e s used i n each tank and the c o r r e s p o n d i n g K T a v a l u e s o b t a i n e d from the c o r r e l a t i o n s f o r c y l i n d r i - c o n i c a l t a n k s and raceways, r e s p e c t i v e l y . A p a r t from the d i f f e r e n c e s i n a e r a t i o n r a t e s , a l l t a n k s had u n i f o r m c u l t u r e t e c h n i q u e as d e s c r i b e d i n Chapter V. One run f o r each type of tank c o n s i s t e d of 15 u n i t s , each u n i t w i t h a p a r t i c u l a r a e r a t i o n r a t e . R e p l i c a t e runs were made over t i m e . A t o t a l of t h r e e complete runs f o r each type of tank were made. A f o u r t h run was a s i m u l t a n e o u s run f o r both the c y l i n d r i - c o n i c a l t a n k s and the raceways and because of the d i f f i c u l t y of m o n i t o r i n g a l a r g e number of t a n k s , o n l y the s m a l l and medium s i z e s of both tanks were used. The l e v e l s of the water q u a l i t y p a r a m e t e r s ; ammonia, n i t r i t e and pH were determined d a i l y f o r two runs. I t was c o n s i d e r e d i m p o r t a n t t o know i f the t r e n d on the l e v e l s of b i o l o g i c a l performance would s i m i l a r l y extend from s t a g n a t i o n t o r e l a t i v e l y h i g h l e v e l s of a e r a t i o n r a t e or i f i t would e x h i b i t some b e h a v i o r which might i n d i c a t e p o s s i b l e d e l e t e r i o u s e f f e c t s of s t r o n g a e r a t i o n r a t e s . Experiments were t h e r e f o r e a l s o conducted t o de t e r m i n e the l e v e l s of 83 T a b l e V. A c t u a l v a l u e s of a i r f l o w r a t e s used i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l t a n k s and the c o r r e s p o n d i n g v a l u e s of K a. TANK AIR FLOW RATE* K L a (ml/min) ( 1/min). CS 1 1 00 0.0052 CS2 200 0.0089 CS3 408 0.0155 CS4 820 0.0266 CS5 1648 0.0459 CM1 680 0.0053 CM2 1370 0.0092 CM3 2730 0.0157 CM4 5480 0.0269 CM5 11100 0.0468 CL1 2970 0.0054 CL2 5960 0.0094 CL3 1 2000 0.0161 CL4 24000 0.0275 CL5 47000 0,0472 CS6 3270 0.0784 CS7 6590 0. 1352 CS8 13400 0.2345 CS9 27200 0.4087 * CORRECTED TO 1 ATM AND 20 C 84 Table V I . A c t u a l values of a i r flow r a t e s used i n d i f f e r e n t s i z e s of raceways and the corresponding values of K T a . TANK AIR FLOW RATE* K-^ a (ml/min) (1/min) RS1 404 0.0053 RS2 810 0.0089 RS3 1630 0.0149 RS4 3250 0.0249 RS5 6570 0.0420 RM1 3100 0.0053 RM2 6300 0.0090 RM3 12700 0.0153 RM4 25000 0.0253 RM5 50600 0.0426 RL1 14200 0.0055 RL2 28300 0.0091 RL3 57400 0.0154 RL4 107700 0.0246 RL5 215000 0.0413 RS6 13400 0.0717 RS7 27000 0.1207 * CORRECTED TO 1 ATM AND 2 0 C b i o l o g i c a l performance a t r e l a t i v e l y h i g h e r l e v e l s of a e r a t i o n r a t e s and t o compare these l e v e l s of b i o l o g i c a l performance w i t h those o b t a i n e d from e x p e r i m e n t s a t lower a e r a t i o n l e v e l s . Because of the g r e a t a i r fl o w requirement of t h i s e x p e r i m e n t , o n l y the s m a l l s i z e t a n k s of both c y l i n d r i -c o n i c a l tank and raceway were used. A e r a t i o n r a t e s g r e a t e r than those c o n s i d e r e d i n the p r e v i o u s e x p e r i m e n t s were used. For c y l i n d r i - c o n i c a l t a n k s , the t a r g e t v a l u e s were: CS6 = 3200 ml/min CS7 = 6400 ml/min CS8 =12800 ml/min CS9 =25600 ml/min For raceways: RS6 =12800 ml/min RS7 =25600 ml/min A i r f l o w r a t e s h i g h e r than those i n d i c a t e d here were u n r e a s o n a b l y h i g h f o r any p o s s i b l e use i n a c t u a l o p e r a t i o n s . The same c u l t u r e t e c h n i q u e was used as d e s c r i b e d i n Chapter V. The b i o l o g i c a l p a r a m e t e r s , l e n g t h and s u r v i v a l , were de t e r m i n e d d a i l y f o r each tank. Weight d e t e r m i n a t i o n s were made f o r a n i m a l s i n c e r t a i n t a n k s w i t h the aim of comparing the l e n g t h - w e i g h t r e l a t i o n s h i p of a n i m a l s r e a r e d i n d i f f e r e n t a e r a t i o n l e v e l s . The r e l a t i o n s h i p between d r y weight and l e n g t h was d e t e r m i n e d f o r a n i m a l s coming from t a n k s m a i n t a i n e d at a e r a t i o n l e v e l s CS1, CS5 and CS9. In o r d e r t o determine the o r d e r of magnitude of the B i o c h e m i c a l Oxygen Demand (BOD) l e v e l s i n the c u l t u r e system at v a r i o u s a e r a t i o n l e v e l s , a n a l y s e s f o r BOD were conducted on water samples coming from t h r e e s i z e s of c y l i n d r i - c o n i c a l tank m a i n t a i n e d at a e r a t i o n l e v e l s 1, 3 and 5. Samples were o b t a i n e d from these tanks on the second, f o u r t h and s i x t h day of the c u l t u r e p e r i o d . A comparison was a l s o made on the t i m e l y v a r i a t i o n of the d i s s o l v e d oxygen i n a c u l t u r e tank c o n t a i n i n g b r i n e shrimp w i t h f e e d and i n a tank c o n t a i n i n g the p r e s c r i b e d f e e d o n l y . Except f o r the d i f f e r e n c e i n t r e a t m e n t - one c o n t a i n i n g b r i n e shrimp and the o t h e r d i d not - a l l t e c h n i q u e s a p p l i e d were the same. The c u l t u r e t a n k s employed f o r t h i s comparison were m a i n t a i n e d a t a e r a t i o n l e v e l 4. R e s u l t s and D i s c u s s i o n The main o b j e c t i v e of t h i s i n v e s t i g a t i o n was t o v e r i f y whether K-^ a c o u l d indeed be c o n s i d e r e d as a s c a l e - u p c r i t e r i o n i n b r i n e shrimp c u l t u r e systems. I t was thus n e c e s s a r y to determine the n a t u r e of the r e l a t i o n s h i p between K^a and the b i o l o g i c a l performance and to t e s t i f t h i s r e l a t i o n s h i p would h o l d t r u e for d i f f e r e n t s i z e s of the c u l t u r e sys tem. The t o t a l biomass p r o d u c t i o n was used as the b i o l o g i c a l performance parameter and was c a l c u l a t e d u s i n g E q u a t i o n s 5-1 and 5-2: P. = 1/2(N. + N. )(W - W. ) i l - l l l l - l E q n . 5-1 f P T = 2. P. Eqn . 5-2 i = 2 The b r i n e shrimp dry weight c o r r e s p o n d i n g to a c e r t a i n l e n g t h was determined u s i n g the l e n g t h - dry weight r e l a t i o n s h i p shown in F i g u r e 14 and d e f i n e d by: l n W = 1 .365 + 2.350 l n L Eqn . 8-1 where W i s the weight in ug and L i s the l e n g t h in mm. E q u a t i o n 8-1 i s the common e q u a t i o n o b t a i n e d a f t e r comparing three se t s of l e n g t h - d r y weight measurements for b r i n e shrimp coming from c u l t u r e tanks m a i n t a i n e d at a e r a t i o n l e v e l s 1, 5 and 9. F i g u r e 14 shows that t h e r e i s no s i g n i f i c a n t d i f f e r e n c e in the l e n g t h - d r y weight r e l a t i o n s h i p i n b r i n e shrimp r e a r e d at d i f f e r e n t a e r a t i o n l e v e l s . Appendix V I I I shows the s t a t i s t i c a l a n a l y s i s for t e s t i n g the e q u a l i t y of s l o p e s and i n t e r c e p t s of the three l i n e s 88 o - i i i i t t i l l i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L r- - a ° AERATION LEVEL 1 = LO - + + AERATION LEVEL 5 : CO • AERATION LEVEL 9 k -« — A : r- — / LO — • -CO - -!ug) - • / -r+ IGHT 7 10' — of -LU -CO -m CD R 2 = 0.99 : -LO — -CO -7 • 11 i 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 ~~10 -i 3 5 7 10* 3 5 7 10 • 3 5 7 10: LENGTH (mm) Figure Ik. Length-dry weight r e l a t i o n s h i p i n b r i n e shrimp fed w i t h r i c e bran at v a r i o u s a e r a t i o n l e v e l s . r e p r e s e n t i n g the t h r e e s e t s of d a t a . Appendix IX g i v e s the d a t a on l e n g t h measurement, s u r v i v a l and water q u a l i t y p a r a m e t e r s . f i n E q u a t i o n 5-2 i s e q u a l t o the number of days the b r i n e shrimp had been a l i v e i n the tank. Thus, i f f o r a c e r t a i n tank m a i n t a i n e d a t a s p e c i f i c a e r a t i o n l e v e l , the b r i n e shrimp were a l l dead on the f o u r t h day, f i s e q u a l to 3. I f i n a n o t h e r tank the b r i n e shrimp were s t i l l a l i v e on the seventh day, f i s e q u a l to 7. F i g u r e s 15 and 16 show the r e l a t i o n s h i p s between the mean l e n g t h of b r i n e shrimp and c u l t u r e p e r i o d i n c y l i n d r i -c o n i c a l t a n k s and raceways, r e s p e c t i v e l y a t v a r i o u s a e r a t i o n l e v e l s . F i g u r e 17 shows the v a r i a t i o n of the o v e r a l l means f o r d i f f e r e n t s i z e s of both the c y l i n d r i - c o n i c a l tank and the raceway at a e r a t i o n l e v e l 5. A s t a t i s t i c a l t e s t f o r s i m i l a r i t y i n the shape of the l e n g t h - t i m e c u r v e or s i m i l a r i t y i n growth r a t e u s i n g the e x p o n e n t i a l e q u a t i o n form, shows t h a t t h e r e i s no s i g n i f i c a n t d i f f e r e n c e i n growth r a t e s of b r i n e shrimp r e a r e d i n c y l i n d r i - c o n i c a l tanks and t h o s e r e a r e d i n raceways. Appendix X shows the r e s u l t of the a n a l y s i s . Appendix XI shows the v a l u e s of the t o t a l biomass p r o d u c t i o n f o r d i f f e r e n t t a n k s . F i g u r e 18 shows the r e l a t i o n s h i p between t o t a l p r o d u c t i o n and a i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l 90 CO 1 1 1 I I 1 1 1 1 1 I I 1 1 I I I 1 1 1 1 1 - o o aeration level 5 --* ' in - + + aeration level 4 -00 - • • aeration level 3 -* aeration level 2 CN -* • a aeration level 1 + y o + 0 -LENGTH 2.4 3.0 + -CO --<q CD C3 1 i i i i i i i 1 1 I i l l i I.I l l i l l 0.0 0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 6.4 7.04 7.68 CULTURE PERIOD (day) Figure 1$. R e l a t i o n s h i p between l e n g t h and c u l t u r e period f o r b r i n e shrimp fed w i t h r i c e bran at various a e r a t i o n l e v e l s i n c y l i n d r i - c o n i c a l tanks. 91 CO I - o I I 1 11 1 1 « aeration level 1 1 1 1 1 1 1 1 1 5 I I 1 1 I I 1 in - + + aeration level 4 -00 - • • aeration level 3 -~ X * aeration level 2 — CN ~ Q o aeration level 1 o "e <°. LENGTH 2.4 3.Q -CO -CJ •- -CO CD -CD 1 i i i i i i i i i i i i i i i i I I 1 1 I I I CD 0.0 0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76 6.4 7.04 7.68 CULTURE PERIOD (day) Figure 16. R e l a t i o n s h i p "between l e n g t h and c u l t u r e p e r i o d f o r b r i n e shrimp fed with r i c e bran at various a e r a t i o n l e v e l s i n raceways. 92 n i i — I I I — i — i — i — i — r ~ r o ° cylindriconical tank + + raceway i — i — I I I — i — i — i — i — i — r CO in CD CO I CN CO CD I I I I I J J I I I I I I L _ J I I I I I J I L 0.0 0.64 1.28 1.92 2.56 22 3.84 4.48 5.12 5.76 6.4 CULTURE PERIOD (day) 7.04 7,68 Figure 17. Comparison of length-time r e l a t i o n s h i p f o r b r i n e shrimp fed with r i c e bran i n c y l i n d r i - c o n i c a l tanks and raceways. 93 r-1 O I o i i i 1111 i i i i i 1111 29,2 cm diameter i i i i i m i jiii m + . + 6 1 . 0 cm diameter -CO — 1 0 7 . 0 cm diameter -CD cn CO — + • + / o— / • CD y / ° © «-i i i i i 111 i noN -O / -PR0DUC1 5 7 10' - V J + i i i II 11 - l o o CE i + -T01 CD -r- -LO — -CO -T I 1 i 1 i ! n l i 1 i 1 i 11 • 1 I n l i 1 i 1 :111 CD ~10 -3 3 5 710 3 5 710-' 3 5 7101 3 5 710 K L a (1/min) Figure 18. R e l a t i o n s h i p "between t o t a l b r i n e shrimp biomass production and K T a i n c y l i n d r i - c o n i c a l tanks. 9k n C3 LO CO . 3 CD r-LO 1 CO O I—I I— O-D ° <=>r-O QL CE r— o CO CD r-» LO CO 1—l l I I l l ll 1—l l l I I III ® © 28.8 cm width + +58.6 cm width • *98.9 cm width i — i i 1111II — i — i i 111 i n <D J 1 I I i I I ll 1 I I I I I III I I I I I I I ll I I I I I I I I 10 -* 3 5 710 " J 3 5 710-' 3 5 710 • 3 5 710 1 K L a (1/min) Figure 19• R e l a t i o n s h i p between t o t a l b r i n e shrimp biomass production and K T a i n raceways. t a n k s . The r e l a t i o n s h i p shows t h a t a t low K-^ a v a l u e s t h e r e i s an i n c r e a s e i n t o t a l p r o d u c t i o n w i t h an i n c r e a s e i n K^a. A p o i n t i s reached where f u r t h e r i n c r e a s e i n K^a has no s i g n i f i c a n t e f f e c t on the t o t a l p r o d u c t i o n . Even w i t h the r e l a t i v e l y h i g h l e v e l s of t u r b u l e n c e a s s o c i a t e d w i t h the h i g h e r a e r a t i o n l e v e l s , the biomass p r o d u c t i o n was not a f f e c t e d n e g a t i v e l y . T h i s shows the c a p a b i l i t y of the b r i n e shrimp to adapt t o such r e l a t i v e l y h o s t i l e e n vironment. F i g u r e 19 shows a s i m i l a r r e l a t i o n s h i p between t o t a l biomass p r o d u c t i o n and K^a i n d i f f e r e n t s i z e s of the raceway. F i g u r e 20 shows the s i m i l a r i t y of the c y l i n d r i - c o n i c a l tank and the raceway as c u l t u r e systems f o r b r i n e shrimp i n terms of biomass p r o d u c t i o n a t s i m i l a r K^a's. S t a t i s t i c a l t e s t (Appendix X I I ) comparing the r e l a t i o n s h i p s between the t o t a l biomass p r o d u c t i o n and K^a among the d i f f e r e n t s i z e s of two tank g e o m e t r i e s shows t h a t the r e l a t i o n s h i p i s b a s i c a l l y the same f o r a l l . S i x s e t s of d a t a - t h r e e f o r t h r e e s i z e s of c y l i n d r i - c o n i c a l tank and t h r e e f o r t h r e e s i z e s of the raceway- were compared. The common e q u a t i o n o b t a i n e d f o r the s l o p i n g l i n e was: l n P = 1 3.47 + 1 .443 l n K^a Eqn. 8-2 R 2 = 0.71 96 in ro n T I I l i 111 l l — I I I I 111 1 1—I I i l i n — 1 1—I I I I i M ° ° cyl-con tank + • raceway c n in CO O CD D i n CC Q-ro CE V— r-in ro - l 1 I I I I I l l i I I I I I I 11 I -I ' I i I 111 • I i I i I 11 10 3 5 7 10"» 3 5 7 10H 3 5 7 10 • K La (1/min) 3 5 7 10 1 Figure 20. Comparison of r e l a t i o n s h i p on t o t a l b r i n e shrimp biomass production w i t h K T a i n c y l i n d r i - c o n i c a l tanks and i n raceways. JJ The h o r i z o n t a l p o r t i o n i s g i v e n by: P = 6600 Eqn. 8-3 where P f o r both e q u a t i o n s i s the t o t a l biomass p r o d u c t i o n i n ug/100 ml. The r e s u l t s suggest t h a t f o r any s i z e of tank ( w i t h s i z e range c o n s i d e r e d i n the study) or f o r any of the two tank c o n f i g u r a t i o n s , the t o t a l biomass p r o d u c t i o n i n the b r i n e shrimp c u l t u r e system i s m a i n l y dependent upon and i s governed by the same r e l a t i o n s h i p w i t h K T a . The s i m i l a r i t y i n system performance f o r d i f f e r e n t t a n k s h a v i n g s i m i l a r K^a's may a l s o be seen from the average l e n g t h of time _ over which the b r i n e shrimp i n the c u l t u r e system would s u r v i v e b e f o r e the occu r e n c e of t o t a l m o r t a l i t y . F i g u r e 21 shows the v a r i a t i o n of the average l e n g t h of c u l t u r e p e r i o d b e f o r e onset of m o r t a l i t y w i t h a e r a t i o n l e v e l i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l t a n k . A s i m i l a r r e l a t i o n s h i p i s shown i n F i g u r e 22 f o r raceways. The means f o r the v a r i o u s t a n k s at s i m i l a r a e r a t i o n l e v e l s f o r both the c y l i n d r i - c o n i c a l tank and the raceway are shown i n F i g u r e 23. S t a t i s t i c a l a n a l y s i s comparing the s i x s e t s of d a t a - 3 f o r each of the two tank g e o m e t r i e s - shows t h a t t h e r e are no s i g n i f i c a n t d i f f e r e n c e s i n the l e n g t h of time b e f o r e the onset of m o r t a l i t y i n ta n k s h a v i n g s i m i l a r K a. Li The s t a t i s t i c a l a n a l y s i s i s shown i n Appendix X I I I . 98 CO CO CD in >>tn Q -* O H OT in LUoo QL LLIOO ^ C N " 3--1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 - 0 ° 29.2 cm diameter -- + + 61.0 cm diameter -- • •107.0 cm diameter + © — - + -- • -- © -— • -4 — -+ 1 i i I I i i I I I i i I I i i i i i i i i i i 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 AERATION LEVEL Figure 21. Average len g t h of time before onset of mass m o r t a l i t y of b r i n e shrimp as a f u n c t i o n of ae r a t i o n l e v e l i n c y l i n d r i - c o n i c a l tanks. 99 CO CO CD in ro V "O Q O C C i n SCN' CM 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 _ o ° 2 8 . 8 cm width • - + + 58.6 cm width - • •98.9 cm width + -• o — + - • o • + -- + -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 32 AERRTION LEVEL 3.6 4.0 4.4 4.8 F i g u r e 22. Average length of time before onset of mass m o r t a l i t y of b r i n e shrimp as a f u n c t i o n of ae r a t i o n l e v e l i n raceways. 100 CO <q in >>co co V -a o M CC\n LUco a. UJ CO 3 -1 _ o 1 1 I I I I 1 ° cyl-conlcal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - + + raceway o - + -o - + - ? -- + -- o -1 1 1 1 1 1 1 1 I l l 1 1 t i l l I I I I I 1 1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 22 3.6 4.0 4.4 4.8 AERATION LEVEL Figure 23. Comparison of average l e n g t h of time before onset of mass m o r t a l i t y of b r i n e shrimp i n c y l i n d r i - c o n i c a l tanks and i n raceways. 101 The v a r i a t i o n of the d i s s o l v e d oxygen i n the c u l t u r e system w i t h c u l t u r e p e r i o d i s shown f o r d i f f e r e n t t a n k s i n F i g u r e s 24 and 25. The f i g u r e s show t h a t f o r a l l a e r a t i o n l e v e l s the DO de c r e a s e s w i t h t i m e . The r a t e of d e c r e a s e i s g r e a t e r a t lower a e r a t i o n l e v e l s . F i g u r e 26 shows the means f o r d i f f e r e n t s i z e s of both tank g e o m e t r i e s a t v a r i o u s a e r a t i o n l e v e l s . For the purpose of s t a t i s t i c a l a n a l y s i s , use was made of a curve of the form: DO = b + b-i T + b 0 T 2 Eqn. 8-4 O 1 £ ^ where T i s the c u l t u r e p e r i o d i n day, w h i l e b , b^ and a r e c o n s t a n t s . S i m i l a r i t y of v a r i a t i o n i n DO w i t h c u l t u r e p e r i o d was t e s t e d by comparing the v a l u e s of c o n s t a n t s o b t a i n e d i n the e q u a t i o n a f t e r f i t t i n g of the d a t a . The means i n DO f o r the d i f f e r e n t s i z e s of c y l i n d r i -c o n i c a l t a n k s were compared w i t h those f o r the raceway a t v a r i o u s a e r a t i o n l e v e l s . Appendix XIV shows the a n a l y s i s f o r a e r a t i o n l e v e l s 4 and 5. The r e s u l t s show t h a t the v a r i a t i o n i n d i s s o l v e d oxygen w i t h t ime i s b a s i c a l l y the same i n c y l i n d r i - c o n i c a l tank and i n the raceway a t s i m i l a r a e r a t i o n l e v e l s . At lower a e r a t i o n l e v e l s , s i m i l a r i t y of v a r i a t i o n was not e s t a b l i s h e d because of l e s s number of DO r e a d i n g s due t o e a r l i e r onset of m o r t a l i t y . Bossuyt and S o r g e l o o s (1980) r e p o r t e d t h a t A r t e m i a a r e v e r y r e s i s t a n t t o low oxygen l e v e l s and s t i l l s u r v i v e a t 2 102 s I — j — i — i — i — i — i — i — i — I I I — i — i — i i i—i—i i i i i—i—r - ° a aeration level 1 5 - + + aeration level 2 _ - • • aeration level 3 \od ~ x x aeration level 4 3 ~ D • aeration level 5 UJ g I i i i I I i I I i i I ' ' ' i I I i l I l l l l I ° 0 , 0 0.58 1.12 1.68 2.24 2.8 3.36 3.92 4.48 5.04 5.6 6.16 6.72 CULTURE PERIOD (day) Figure 24a. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n c y l i n d r i -c o n i c a l tanks (29.2 cm diameter). 103 s r—i—i—i—i—i—|—i—j—II I I I — i — i — i — i — i — i — i — i — i — i — r - © o aeration level 5 CO + + aeration level 4 _ - • • aeration level 3 | CD \ c d ~x x a e ratlon level 2 3^ ~a m aeration level 1 r-* ~ o. I I I I I I I I I I I » I ' I ' I I I I I I I I L _ °fl,0 0.56 1.12 1.68 224 2.8 3.36 3.92 4.48 5.04 5.6 6.16 6.72 CULTURE PERIOD (day) Figure 24b. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n c y l i n d r i -c o n i c a l tanks (61.0 cm diameter). 104 CO CO cn EE " ' o n UJ i— <=> (S><o >-CO CD UJin CC ZD I-CO ; CO CD CN 1 _ o 1 1 I I 1 ® aeration i i level i i i l 5 1 1 I I 1 1 1 l i l l 1 - 4 + aeration level 4 -- • • aeration level 3 ~ X * aeration level 2 • * aeration level 1 -4" > \ i ^ ^ \ 4 • \ -4^ 1 i i i i i i i 1 1 1 1 1 1 1 1 I I 1 I I I ! 1 0.0 0.56 1.12 1.68 2 2 4 2.8 3.36 3.92 4.48 5.04 5.6 CULTURE PERIOD (day) 6.16 6.72 Figure 24c. V a r i a t i o n of d i s s o l v e d oxygen wi t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n c y l i n d r i -c o n i c a l tanks (107.0 cm diameter). 105 cn oo cn UJ l - R CO co >-CO UJ 5 or ZD M O 0.0 0.58 1.12 1.68 2.24 2.8 3.36 3.92 4.48 5.04 5.6 CULTURE PERIOD (day) 6.16 6.72 Figure 25a. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n raceways (28.8 cm w i d t h ) . 106 i i—i—rn—i—i—i i ° aeration level 5 + aeration level 4 • aeration level 3 x aeration level 2 ° aeration level 1 i—i—i—r i m I i i i i r 00 _ o - + 03 c n I— <=». COco >-CO o iLlui cn =3 CJ ,c4 J I I L J I L J_J l l I _1 I I l - l I -i 0.0 0.58 1.12 2.24 2.8 3.36 3.92 4.48 5.04 5.6 6.16 6.72 CULTURE PERIOD (day) Figure 25b. V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n raceways (58.6 cm wid t h ) . 107 CD s' I — r n — i — i — i — i — j — i — i — i — i — i — i — J — i — i — i — T — i — i i r n r - o © aeration level 5 § - + + aeration level 4 _ - • • aeration level 3 \ c d ~ x x aeration level 2 3 " o • aeration level 1 I I I I I I I I I I I I I I I I I I I I I I I I I 0.0 0.56 1.12 1.68 2.24 2.8 3.36 3.92 4.48 5.04 5.6 6.16 8.72 CULTURE PERIOD (day) Figure 2 5 c V a r i a t i o n of d i s s o l v e d oxygen w i t h c u l t u r e p e r i o d at d i f f e r e n t a e r a t i o n l e v e l s i n raceways (98.9 cm width ) . 108 T ^ I m i i i I i i I r ° • cylindri-conical tank + + raceway i 1 i r "m i i i r CD CO UJ t - o CO<o >-CO UJ S or ZD O t—I o i i i i t _l l l I L J I I I I I I L 0.0 0.58 1.12 1.68 2.24 2.8 3.36 3.92 4.48 5.04 5.6 CULTURE PERIOD (day) 6.16 6.72 Figure 26. Comparison of v a r i a t i o n i n d i s s o l v e d oxygen with c u l t u r e p e r i o d i n c y l i n d r i - c o n i c a l tanks and i n raceways. 109 ppm of d i s s o l v e d oxygen. I t was observed d u r i n g the e x p e r i m e n t s t h a t when oxygen l e v e l s dropped f u r t h e r below 2 ppm, t h e r e was an onset of m o r t a l i t y . At v e r y low l e v e l s of d i s s o l v e d oxygen numerous b i o - c h e m i c a l p r o c e s s e s take p l a c e which c o n t r i b u t e t o the cause of m o r t a l i t y . L e v e l s of o t h e r water q u a l i t y p arameters; pH, ammonia-n i t r o g e n and n i t r i t e - n i t r o g e n a r e a l s o i n f l u e n c e d by the c o n c e n t r a t i o n of d i s s o l v e d oxygen i n the c u l t u r e w a t e r . The maximum l e v e l s of ammonia-nitrogen and n i t r i t e - n i t r o g e n o b s e r v e d i n the c u l t u r e water were 0.99 and 0.07 ppm N, r e s p e c t i v e l y . pH of the c u l t u r e system g e n e r a l l y d e c r e a s e d w i t h the c u l t u r e p e r i o d . The minimum v a l u e of pH m o n i t o r e d from c u l t u r e water was 7.0. The r a t e of d ecrease i n pH was g r e a t e r at lower a e r a t i o n l e v e l s . Bossuyt and S o r g e l o o s (1980) f u r t h e r i n d i c a t e d t h a t s i n c e ammonia t o x i c i t y i s g r e a t l y i n f l u e n c e d by o t h e r a b i o t i c p a r a m e t e r s , e s p e c i a l l y pH, no s p e c i f i c t o l e r a n c e l i m i t can be g i v e n f o r t h i s parameter. They a l s o c i t e d P r o v a s o l i who i n d i c a t e d t h a t b r i n e shrimp do not s u r v i v e a t pH v a l u e s below 7.0. Water s a l i n i t y l e v e l s d u r i n g the term of the i n v e s t i g a t i o n ranged from 30 t o 34 ppt w h i l e water temperature v a r i e d from 25 t o 31 C. T a b l e V I I shows the v a r i a t i o n of BOD v a l u e s w i t h c u l t u r e p e r i o d i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tank at v a r i o u s a e r a t i o n l e v e l s . There was no s i g n i f i c a n t 110 Table V I I . V a r i a t i o n of BOD at var i o u s a e r a t i o n l e v e l s w i t h c u l t u r e p e r i o d i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tank. TANK SIZE DAY OF CULTURE 2 4 6 CS1 5.27 CS3 5.20 140.25 CS5 11.00 58.85 55.13 CM1 10.07 CM3 5.53 92.25 CM5 • 6.60 51.25 58.13 CL1 . 7.80 CL3 6.50 1 1 1 . 2 5 " CL5 10.07 66.45 55.50 I l l d i f f e r e n c e in BOD l e v e l s i n a l l tanks on the second day. A l l tanks m a i n t a i n e d at a e r a t i o n l e v e l 1 had mass m o r t a l i t y b e f o r e the f o u r t h day . There was a r a p i d i n c r e a s e in BOD from day 2 to day 4 in a e r a t i o n l e v e l s ' 3 and 5; and the r a t e of i n c r e a s e at a e r a t i o n l e v e l 3 was g r e a t e r than that at a e r a t i o n l e v e l 5. On the s i x t h day , on ly tanks m a i n t a i n e d at a e r a t i o n l e v e l 5 had l i v e b r i n e shr imp and the BOD l e v e l s on these tanks were not s i g n i f i c a n t l y d i f f e r e n t from those on the f o u r t h day . The BOD v a l u e s in T a b l e VII suggest that on the second day , the amount of d i s s o l v e d o r g a n i c matter coming from the d e c o m p o s i t i o n of excess feed or from m e t a b o l i c waste was not c o n s i d e r a b l e and oxygen supply was not l i m i t i n g . On the f o u r t h day , there was a grea t i n c r e a s e i n the amount of d i s s o l v e d o r g a n i c s . The h i g h e r BOD v a l u e s a t a e r a t i o n l e v e l 3 compared wi th t h o s e . a t a e r a t i o n l e v e l 5 suggest that the r a t e of s t a b i l i z a t i o n (or c o n v e r s i o n of the d i s s o l v e d o r g a n i c s i n t o more s t a b l e substances or an imal c e l l s ) i s s lower at lower a e r a t i o n r a t e s . Oxygen i s a neces sary f a c t o r in t h i s s t a b i l i z a t i o n p r o c e s s . On the s i x t h day the BOD l e v e l i n tanks ma in ta ined at a e r a t i o n l e v e l 5 d i d not change s i g n i f i c a n t l y . T h i s means tha t even wi th the a d d i t i o n of feed i n t o the system, the amount of d i s s o l v e d o r g a n i c s in the c u l t u r e water coming from excess feed or from m e t a b o l i t e s d i d not i n c r e a s e . T h i s 112 s u g g e s t s t h a t the f e e d added t o the system was c o n v e r t e d i n t o more animal c e l l s by the b r i n e shrimp and o t h e r organisms which have f l o u r i s h e d i n the c u l t u r e tank, and/or was c o n v e r t e d i n t o more s t a b l e s u b s t a n c e s q u i t e r a p i d l y . T h i s c h a r a c t e r i s t i c of A r t e m i a as an e f f i c i e n t f i l t e r f e eder makes i t a d e s i r a b l e medium t o c o n v e r t i n e x p e n s i v e waste or b y - p r o d u c t s i n t o v a l u a b l e food s o u r c e s . F i g u r e 27 shows the comparison of the DO l e v e l s i n two c u l t u r e t a n k s , one c o n t a i n i n g A r t e m i a and f e e d and the o t h e r c o n t a i n i n g feed o n l y . S t a t i s t i c a l a n a l y s i s (Appendix XV) shows t h a t t h e r e i s no s i g n i f i c a n t d i f f e r e n c e i n the DO v a r i a t i o n of the two systems. The r e s u l t s u g gests t h a t the f e e d m a i n l y d e t e r m i n e s the v a r i a t i o n w i t h time of d i s s o l v e d oxygen i n the system. The r e s u l t a l s o suggests t h a t the e f f e c t on the system i n terms of oxygen consumption of' the presence of b r i n e shrimp f e e d i n g on a c e r t a i n amount of f e e d t o grow and' g i v i n g o f f f e c e s and o t h e r m e t a b o l i c p r o d u c t s i s j u s t the same as when t h a t c e r t a i n amount of f e e d was l e f t t o decompose i n the system. Power i s r e q u i r e d t o .push a i r through the s p a r g e r s t o a e r a t e the water column. In o r d e r t o a c h i e v e the same K^a i n d i f f e r e n t s i z e t a n k s , the power n e c e s s a r y per u n i t volume of water i s shown i n F i g u r e 28. There i s an i n c r e a s e i n power per u n i t volume requirement w i t h an i n c r e a s e i n s i z e i n o r d e r to m a i n t a i n the same K T a . T h i s has c e r t a i n 113 CO <N CO c n CO in UJ o >-x ° . o "* o L U < N _J o CO"* CO c4 CO CO 1 _ o 1 1 I I I oartemia + I I I 1 f eed i i i i I I I 1 1 1 1 1 1 1 - + + Feed only — - a -* o -o \ ? — — - + + v f \ . * -1 1 I I 1 1 i i i i 1 1 I I t i l l 8 1 I I 1 1 1 0.0 0.48 0.96 1.44 1.92 2.4 2.88 3.36 3.84 4.32 4.8 CULTURE PERIOD (day) 5.28 5.76 Figure 2?. Comparison of v a r i a t i o n i n d i s s o l v e d oxygen with c u l t u r e p e r i o d i n a c u l t u r e system c o n t a i n i n g "brine shrimp w i t h feed and i n the other c o n t a i n i n g feed only. 114 T 1 I I I I I I I I I I II I I I I I in ZD (_> ro 0_ re O S > I— M S » \ a: UJ O e + x ° K L a = . 0 4 5 ; raceway + KLa=,045; cyl-con • KLa=.015; raceway xKLa=.015; cyl-con ^ I . i J t i , i , , i . i , i , i , , i , i • i i i i , i "10 1 3 5 7 io* 3 5 7 10» 3 5 7 10< TANK SIZE (L) Figure 28. R e l a t i o n s h i p between power per u n i t volume and tank s i z e f o r s i m i l a r K-^ a i n c y l i n d r i - c o n i c a l tanks and raceways. 115 s i g n i f i c a n c e on the economics of the s e t - u p and i s d i s c u s s e d i n Chapter IX. C o n c l u s i o n s 1. Near s t a g n a t i o n c o n d i t i o n s , the t o t a l biomass p r o d u c t i o n i n a b r i n e shrimp c u l t u r e system fed w i t h r i c e bran can be e x p r e s s e d as a f u n c t i o n of K-^a. 2. The r e l a t i o n s h i p s t a t e d i n ( 1 . ) i s the same f o r both the c y l i n d r i - c o n i c a l tank and the raceway. 3. The same r e l a t i o n s h i p h o l d s t r u e i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tank and raceway. K-^ a i s t h e r e f o r e an e f f e c t i v e s c a l e - u p c r i t e r i o n f o r b r i n e shrimp c u l t u r e systems, 4. The b i o l o g i c a l performance of b r i n e shrimp i s not n e g a t i v e l y a f f e c t e d , by r e l a t i v e l y h i g h : a e r a t i o n l e v e l s i n the c u l t u r e system, as used i n the s t u d y . 5. There i s no s i g n i f i c a n t d i f f e r e n c e i n the DO v a r i a t i o n w i t h time i n the two systems; one c o n t a i n i n g b r i n e shrimp and feed and the o t h e r c o n t a i n i n g feed o n l y . 6. The power per u n i t volume r e q u i r e d t o m a i n t a i n the same K a i n d i f f e r e n t t a n k s i n c r e a s e s w i t h s i z e of the Ju c u l t u r e system. CHAPTER IX ECONOMIC ASPECTS OF SCALING-UP BRINE SHRIMP CULTURE SYSTEMS There i s a common n o t i o n t h a t i n c r e a s i n g the s i z e of p r o d u c t i o n u n i t s p r o v i d e s economies of s c a l e . There i s a w e a l t h of e x p e r i e n c e i n the v a r i o u s f i e l d s which can s u b s t a n t i a t e t h i s n o t i o n . However, i t i s i m p o r t a n t t o a p p r e c i a t e t h a t t h e r e may be some l i m i t a t i o n s t o t h i s common n o t i o n . I t i s t h e r e f o r e n e c e s s a r y t o c o n s i d e r a l l i m p o r t a n t f a c t o r s which i n f l u e n c e p r o d u c t i o n c o s t b e f o r e a d e c i s i o n i s made on a s p e c i f i c s c a l e of p r o d u c t i o n or on s i z e of u n i t s t o be used. The conduct of a thorough i n v e s t i g a t i o n of the v a r i o u s f a c t o r s i s even more n e c e s s a r y i f from some da t a a v a i l a b l e j t h e r e i s an i n d i c a t i o n of some p o s s i b i l i t i e s of suc;h l i m i t a t i o n s . The r e l a t i o n s h i p between power per u n i t volume and tank s i z e shown i n F i g u r e 28 i s an example of such a p o s s i b l e l i m i t a t i o n . F i g u r e 28 shows t h a t f o r both the c y l i n d r i - c o n i c a l tank and the raceway, i n o r d e r t o m a i n t a i n the same l e v e l of K^a i n l a r g e r s i z e t a n k s , t h e r e i s an i n c r e a s e i n power per u n i t volume r e q u i r e m e n t . T h i s power requirement i s g r e a t e r i n the raceway than i n the c y l i n d r i - c o n i c a l t a n k , f o r the same K,. a. Three cases a re p r e s e n t e d as examples to c o n s i d e r some 117 economic a s p e c t s when s c a l i n g - u p b r i n e shrimp c u l t u r e systems. I t i s important to note t h a t the use of the d a t a on biomass p r o d u c t i o n from t h i s study i s not t r u l y r e p r e s e n t a t i v e of the a c t u a l o p e r a t i o n because these d a t a were o b t a i n e d from e x p e r i m e n t s , the o b j e c t i v e s of which were t o v e r i f y the a p p l i c a b i l i t y of a s c a l e - u p c r i t e r i o n and not an i n v e s t i g a t i o n t o maximize p r o d u c t i o n . The c o n d i t i o n s which were r e l e v a n t to the s t u d y on s c a l e - u p were near s t a g n a t i o n c o n d i t i o n s and t h e s e were a c h i e v e d by employing a b a t c h c u l t u r e system w i t h o u t water exchange nor a r e c y c l i n g system. The t o t a l biomass p r o d u c t i o n c o u l d e a s i l y be i n c r e a s e d by employing a l t e r n a t i v e c u l t u r e t e c h n i q u e s l i k e ; semi-open system, which i n v o l v e s f r e q u e n t water change, or a c l o s e d r e c i r c u l a t i n g system, e m p l o y i n g a water r e c y c l i n g and treatment system. However, t h e s e c u l t u r e t e c h n i q u e s would i n v o l v e o t h e r e x t r a n e o u s f a c t o r s making i t d i f f i c u l t t o t e s t the d e s i r e d h y p o t h e s i s . Anyway, i f the purpose i s j u s t t o determine the r e l a t i v e economies of s c a l e due t o v a r i a t i o n i n the s i z e of t a n k s used, t h e d a t a can be used and would not d i s t o r t the g e n e r a l r e l a t i o n s h i p between p r o d u c t i o n c o s t and the s i z e of tanks or s c a l e of p r o d u c t i o n . The t h r e e cases p r e s e n t e d a r e : A. S c a l e - u p on the b a s i s of m a i n t a i n i n g the same number of t a n k s but i n c r e a s i n g p r o d u c t i o n through i n c r e a s e i n the s i z e of the t a n k s . 118 B. S c a l e - u p on the b a s i s of m a i n t a i n i n g the same l e v e l of p r o d u c t i o n but v a r y i n g the s i z e (and number) of tanks used. C. Comparison of the c y l i n d r i - c o n i c a l tank and the raceway on the b a s i s of p r o d u c t i o n c o s t per u n i t of biomass. The components bf p r o d u c t i o n c o s t c o n s i d e r e d were the f o l l o w i n g : 1. F i x e d c o s t s a. D e p r e c i a t i o n b. I n t e r e s t on l o a n -2. O p e r a t i n g and maintenance c o s t s a. Labor b. S u p p l i e s and m a t e r i a l s c. Power d. Maintenance and r e p a i r The f o l l o w i n g i n f o r m a t i o n and a s s u m p t i o n s were c o n s i d e r e d i n the c a l c u l a t i o n s : 1. The b r i n e shrimp c u l t u r e system i s a support f a c i l i t y f o r a prawn h a t c h e r y system ( P l a t o n , 1978; SEAFDEC AQD, 1984). The b r i n e shrimp biomass i s s u p p l i e d t o the prawn p o s t l a r v a e . S i t e of the h a t c h e r y i s i n the P h i l i p p i n e s . 2. The b r i n e shrimp i s r e a r e d i n t a n k s on a b a t c h p r o c e s s , emptying the c o n t e n t s of a tank at the end of a seven-day c u l t u r e p e r i o d and f e d t o prawn p o s t l a r v a e . 119 3. The s t o c k i n g of b r i n e shrimp n a u p l i i i n tanks i s s c h e d u l e d such t h a t one tank i s due f o r h a r v e s t on each day of o p e r a t i o n . The emptied tank i s a l l o w e d t o be d i s i n f e c t e d and a l l o w e d t o d r y b e f o r e r e s t o c k i n g f o r the next b a t c h . One c y c l e i n the use of a tank c o n s i s t s of seven- day c u l t u r e , one-day d i s i n f e c t i o n and two-day d r y i n g p e r i o d s , or a t o t a l of t en days per c y c l e . In t h e s e examples, the number of a p a r t i c u l a r s i z e tank i s made i n m u l t i p l e s of ten so t h a t a tank can be s c h e d u l e d f o r h a r v e s t each day. 4. There are 280 days of o p e r a t i o n per y e a r . 5. A l o a n e q u i v a l e n t t o the i n i t i a l i n v e s t m e n t , p l u s 50% of the annual o p e r a t i n g and maintenance c o s t , i s s u b j e c t t o 15% i n t e r e s t r a t e . 6. The economic l i f e of a l l p h y s i c a l f a c i l i t i e s i s 5 y e a r s . Y e a r l y d e p r e c i a t i o n i s e q u i v a l e n t t o 20% of i n i t i a l i n v e s t m e n t . 7. The type of tank used f o r Cases A and B i s the raceway. 8. The m a t e r i a l used f o r the t a n k s i s f i b e r g l a s s w i t h wooden frame t o p r o v i d e adequate s t r u c t u r a l s u p p o r t . 9. As a support f a c i l i t y f o r a prawn h a t c h e r y , the l a b o r requirement i s s u p p l i e d by p e r s o n n e l a s s i g n e d w i t h the h a t c h e r y . In these c a s e s , the l a b o r i n p u t i s p r e s e n t e d as man-hours. The t o t a l l a b o r c o s t i s c a l c u l a t e d u s i n g an h o u r l y r a t e of P 8 , 0 0 ( P h i l ) f o r one man. 120 10. The c o s t f o r s u p e r v i s i o n i s based on a t h i r t y -minute per day round of the h a t c h e r y manager and i s assumed c o n s t a n t f o r any s c a l e of o p e r a t i o n . 11. The c o s t bf r i c e bran i s P1.00 per kg and the c o s t of b r i n e shrimp c y s t s i s PI,200 per 425-g can. 12. The c o s t of power i s P2.00 per KW-HR. 13. Maintenance and r e p a i r c o s t i s e q u i v a l e n t t o 5% of i n i t i a l i n v e s t m e n t . 14. The biomass p r o d u c t i o n , i s 60 g of dry biomass per c u b i c meter of c u l t u r e system. Table V I I I shows f o r Case A the e s t i m a t e s of u n i t p r o d u c t i o n c o s t s f o r f o u r s c a l e s of o p e r a t i o n , each of the f o u r s c a l e s employing 10 u n i t s of t a n k s . Curve A i n F i g u r e 29 shows the t r e n d i n t h e r e l a t i o n s h i p between u n i t p r o d u c t i o n c o s t and the l e v e l of p r o d u c t i o n ( w i t h c o r r e s p o n d i n g i n c r e a s e i n s i z e of t a n k s ) . The shape of the u n i t p r o d u c t i o n c o s t curve s l o p e s downward t o the r i g h t . There i s a c o n s i d e r a b l e d e c r e a s e i n u n i t p r o d u c t i o n c o s t as the l e v e l of p r o d u c t i o n i n c r e a s e s from 1680 t o 8400 g dry weight per y e a r . The r a t e of d e c r e a s e becomes l e s s a t h i g h e r l e v e l s of p r o d u c t i o n . For Case B, Table IX shows the e s t i m a t e s of u n i t p r o d u c t i o n c o s t s f o r t h r e e s i z e s of t a n k s (10 0-, 500- and 121 T a b l e V I I I . E s t i m a t e o f p r o d u c t i o n c o s t f o r s c a l i n g - u p t h r o u g h i n c r e a s e i n s i z e o f tank m a i n t a i n i n g the number o f tan k s c o n s t a n t (Case A ) . . (10 u n i t s per s i z e ) F i x e d C o s t s (per annum) 1 . D.eprec i a t i o n 2. I n t e r e s t 100 TANK SIZE, L 500 1000 2000 1000.00 3000.00 5000.00 8000.00 1421.45 3647.06 6087.67 10212.51 O p e r a t i n g & Maintenance C o s t s (per annum) 1. S a l a r i e s a. Labor 4480.00 6720.00 b. S u p e r v i s i o n . 2800.00 2800.00 8960.00 11200.00 2800.00 2800.00 2. S u p p l i e s & M a t e r i a l s a. Feed 43.12 215.60 431.20 862.40 b. B r i n e shrimp 790.60 3953.00 7906.00 15812.00 3. Power a. Water b. A i r 60.00 180.00 360.00 720.00 529.00 4008.88 9461.76 22772.37 4. Maintenance & r e p a i r 250.00 750.00 1250.00 2000.00 122 T o t a l P r o d u c t i o n Cost 11374.17 25274.54 42256.63 74379.28 (per annum) T o t a l Biomass P r o d u c t i o n 1680 8400 16800 33600 (g-dry weight) P r o d u c t i o n C ost/g 6.77 3.01 2.51 2.21 (P per g) Table IX. Estimate of production cost f o r scaling-up by m a i n t a i n i n g the same l e v e l of production but v a r y i n g the s i z e of tanks used (Case B), TANK SIZE, L (Number of t a n k s ) F i x e d C o s t s (per annum) 1. Deprec i a t i on 2. I n t e r e s t 1 00 (100) 500 (20) 1000 (10) 10000.00 6000.00 5000.00 9958.96 6917.17 6087.67 O p e r a t i n g & Maintenance C o s t s (per annum) 1. S a l a r i e s a. Labor 13440.00 11200.00 b. S u p e r v i s i o n 2800.00 2800.00 8960.00 2800.00 2. S u p p l i e s & M a t e r i a l s a. Feed 431.20 431.20 431.20 b. B r i n e shrimp 7906.00 7906.00 7906.00 3. Power a. Wa t e r b. A i r 419.00 374.00 360.00 5290.00 8017.76 9461.76 4. Maintenance & repa i r 2500.00 1500.00 1250.00 T o t a l P r o d u c t i o n Cost (per annum) 52745.16 45146.13 42256. T o t a l Biomass P r o d u c t i o n 16800 16800 16800 (g -dry weight) P r o d u c t i o n c o s t / g 3.14 2.69 2.5 (P per g) 125 i I I — r CO , , CD +-• 00* ' 3 TD r -I Ol OL <D COR O u"> CJ o V t—I I— C J CJ ZD co Q O Pr ° 0-CNI r- +-n—rn—i—i—r «—©case fl i—r~i—i—i—i—i—i—i i i i r •+ case B i i I l i i I l i ' » i - l i i i — i — i — i — i — i — i — i — L "0 0 24 0 48.0 72.0 36.0 120.0 144.0 168.0 192.0 216.0 240.0 264.0 288.0 TANK SIZE •(!_) (X101 ) Figure 29. R e l a t i o n s h i p "between u n i t production cost and tank s i z e i n scale-up of b r i n e shrimp c u l t u r e system. 126 1000-L) a t the same l e v e l of p r o d u c t i o n . Curve B i n F i g u r e 29 shows the v a r i a t i o n i n u n i t p r o d u c t i o n c o s t w i t h s i z e of t a n k s , m a i n t a i n i n g the l e v e l of p r o d u c t i o n c o n s t a n t . The u n i t p r o d u c t i o n c o s t d e c r e a s e s w i t h i n c r e a s e i n the s i z e of t a n k s , over the s i z e range c o n s i d e r e d The r e s u l t s o b t a i n e d f o r Cases A and B, f o r the range of s i z e s c o n s i d e r e d i n the s t u d y , may be summarized as f o l l o w s : 1. There i s a r e d u c t i o n i n u n i t p r o d u c t i o n c o s t w i t h i n c r e a s e i n s c a l e of p r o d u c t i o n accompanied by i n c r e a s e i n s i z e of t a n k s . 2. There i s a d e c r e a s e i n u n i t p r o d u c t i o n c o s t w i t h i n c r e a s e i n s i z e of t a n k s a t the same l e v e l of p r o d u c t i o n . T a b l e X shows a comparison between a c y l i n d r i - c o n i c a l tank and a raceway on the b a s i s of u n i t p r o d u c t i o n , c o s t (Case C ) . The r e s u l t s show t h a t the raceway g i v e s a lower p r o d u c t i o n c o s t compared w i t h t h a t i n the c y l i n d r i - c o n i c a l tank, a l t h o u g h the d i f f e r e n c e i s not s i g n i f i c a n t . A p o s s i b l e l i m i t a t i o n t o the g e n e r a l p r i n c i p l e of economies of s c a l e w i t h i n c r e a s e i n s i z e which c o u l d have been imposed by the r e l a t i o n s h i p of power per u n i t volume requirement as shown i n F i g u r e 28 i s not a f t e r a l l t h a t s i g n i f i c a n t t o o f f s e t the o t h e r c o s t components t o i n f l u e n c e the shape of the u n i t p r o d u c t i o n c o s t c u r v e , f o r the range of s i z e s c o n s i d e r e d i n the s t u d y . T a b l e X. Comparison o f p r o d u c t i o n c o s t i n c y l i d r i -c o n i c a l tank and raceway. C y l - c o n Raceway S i z e (L) Number of tanks. F i x e d C o s t s (per annum) 1. Deprec i a t i on 2. I n t e r e s t 1 000 10 8000.00 8073.78 1 000 1 0 5 0 0 0 . 0 0 6 0 8 7 . 6 7 O p e r a t i n g &Maintenance C o s t s (per annum) 1. S a l a r i e s a. Labor 8960.00 b. S u p e r v i s i o n 2800.00 2. S u p p l i e s & M a t e r i a l s a. Feed 431.20 b. B r i n e shrimp 7906.00 3. Power a. Water 360.00 b. A i r 5193.22 8960.00 2800.00 431.20 7906.00 360.00 9461 .76 4. Maintenance & repa i r 2000.00 1250.00 T o t a l P r o d u c t i o n Cost 43724.20 42256. (per annum) T o t a l Biomass P r o d u c t i o n 16800 16800 (g-dry weight) P r o d u c t i o n c o s t / g 2.60 2.51 (P per g) 129 CHAPTER X SUMMARY OF RESULTS AND CONCLUSIONS As a summary, the following are the s i g n i f i c a n t results and conclusions obtained from th i s study: 1. In the experiment which investigated the re l a t i v e effects of the two basic mechanisms (oxygenation and agitation) associated with gas bubbling on the b i o l o g i c a l performance of brine shrimp culture, i t was observed that higher biomass production was achieved in systems with r e l a t i v e l y higher concentration of dissolved oxygen in the culture system. There was a very high c o r r e l a t i o n between t o t a l biomass production and mean dissolved oxygen in the culture system. When operating a p a r t i c u l a r brine shrimp culture system for maximum biomass production, the l i m i t i n g condition i s system stagnation. Near stagnation conditions, the present results indicate that oxygenation capacity i s the primary indicator of the culture system performance. 2. The o v e r a l l oxygen mass transfer c o e f f i c i e n t , K^a, was considered a measure of the oxygenation capacity of the culture system. The correlations for K^a in terms of operating parameters were shown to involve the Froude and Reynolds numbers, for both the c y l i n d r i - c o n i c a l tanks and raceways, although the influence of the Froude number i s g r e a t e r than t h a t of the R e y n o l d s number. F u r t h e r m o r e , the i n f l u e n c e of the Reynolds number on K^a i s s m a l l e r i n the case of c y l i n d r i - c o n i c a l t a n k s than i n raceways. 3. S c a l i n g e q u a t i o n s were then f o r m u l a t e d from the c o r r e l a t i o n s o b t a i n e d i n ( 2 ) . The s c a l i n g e q u a t i o n s ' o b t a i n e d from the r e l a t i o n s h i p between K a and the o p e r a t i n g Li parameters u s i n g a i r and water as c o n t a c t i n g f l u i d s a r e ; For c y l i n d r i - c o n i c a l t a n k s : Q 2 / Q l - <D2 / D l )»•» For raceways: Q 2 / Q l = ( D 2 / D l )'•» These s c a l i n g e q u a t i o n s were used t o e s t i m a t e the a i r f l o w requirement i n d i f f e r e n t s i z e s of the c y l i n d r i - c o n i c a l t a n k s and raceways i n the c u l t u r e e x p e r i m e n t s . 4. There was no s i g n i f i c a n t d i f f e r e n c e i n K^a f o r f r e s h water and f o r sea water f o r c o n d i t i o n s p r e v a i l i n g i n the system d u r i n g the i n v e s t i g a t i o n . 5. There was no s i g n i f i c a n t d i f f e r e n c e i n l e n g t h - d r y weight r e l a t i o n s h i p f o r b r i n e shrimp r e a r e d a t d i f f e r e n t a e r a t i o n l e v e l s . 6. Near s t a g n a t i o n c o n d i t i o n s , the b r i n e shrimp t o t a l biomass p r o d u c t i o n was found t o i n c r e a s e w i t h i n c r e a s i n g K^a. T h i s i n c r e a s e t a p e r e d o f f and t o t a l biomass p r o d u c t i o n was m a i n t a i n e d w i t h f u r t h e r i n c r e a s e i n K a. Even a t Li r e l a t i v e l y h i g h l e v e l s of t u r b u l e n c e , the biomass p r o d u c t i o n 131 was not a f f e c t e d n e g a t i v e l y . 7. The e f f e c t i v e and economical b a s i s f o r s c a l e - u p i s the maximum l e v e l of t o t a l biomass p r o d u c t i o n i n the r e g i o n where s t a g n a t i o n c o n d i t i o n s are l i m i t i n g . T h i s optimum l e v e l o c c u r s a t a c r i t i c a l p o i n t where the c o n d i t i o n i n the c u l t u r e system i s changed from s t a g n a t i o n t o one which i s a d e q u a t e l y a e r a t e d and c i r c u l a t e d . I t has been shown t h a t a t these r e l e v a n t c o n d i t i o n s f o r s c a l e - u p the t o t a l biomass p r o d u c t i o n i n a b r i n e shrimp c u l t u r e system f e d w i t h r i c e bran can be e x p r e s s e d as a f u n c t i o n of K^a and t h i s r e l a t i o n s h i p i s the same f o r d i f f e r e n t s i z e s of the c u l t u r e system, b o t h i n c y l i n d r i - c o n i c a l t a n k s and raceways. K^a i s t h e r e f o r e an e f f e c t i v e s c a l e - u p c r i t e r i o n f o r b r i n e s h r i m p c u l t u r e systems. 8. The s i m i l a r i t y i n system performance of d i f f e r e n t tanks w i t h s i m i l a r K^a was a l s o observed from the l e n g t h of time before, the o n s e t of m o r t a l i t y i n these tanks.. .There were no s i g n i f i c a n t d i f f e r e n c e s i n the l e n g t h of time b e f o r e onset of m o r t a l i t y i n t a n k s h a v i n g s i m i l a r K^a. • , . . 9. There was no s i g n i f i c a n t d i f f e r e n c e i n the v a r i a t i o n of d i s s o l v e d oxygen w i t h time i n the two systems; one c o n t a i n i n g b r i n e s h r i m p and feed and the o t h e r c o n t a i n i n g feed o n l y . 10. The power per u n i t volume r e q u i r e d t o m a i n t a i n the same K a i s g r e a t e r i n raceways than i n c y l i n d r i - c o n i c a l t a n k s . F u r t h e r m o r e , t h i s power per u n i t volume i n c r e a s e s w i t h s i z e of the c u l t u r e system so t h a t power e f f i c i e n c y d e c r e a s e s w i t h s i z e . However, the o t h e r c o s t s , such as the u n i t c a p i t a l c o s t s and u n i t manpower c o s t s , d e c rease w i t h s i z e and more than o f f s e t the i n c r e a s e d power c o s t s . T h e r e f o r e , i n terms of o v e r a l l c o s t s t h e r e i s a net d e c r e a s e i n u n i t p r o d u c t i o n c o s t w i t h i n c r e a s e i n s i z e of the c u l t u r e system. 133 CHAPTER XI LIMITATIONS OF THE WORK AND SUGGESTIONS FOR FURTHER RESEARCH 1. The data o b t a i n e d from t h i s study on t o t a l biomass p r o d u c t i o n s h o u l d not be c o n s i d e r e d as r e p r e s e n t a t i v e of the a c t u a l o p e r a t i o n because t h e s e d a t a were o b t a i n e d from e x p e r i m e n t s to v e r i f y the a p p l i c a b i l i t y of K a as a s c a l e - u p Li c r i t e r i o n and not e x p e r i m e n t s on m a x i m i z i n g p r o d u c t i o n . V e r i f i c a t i o n of K^a as a s c a l e - u p c r i t e r i o n was conducted near s t a g n a t i o n c o n d i t i o n s . 2. The r e l a t i o n s h i p between K^a and the o p e r a t i n g p a r a m e t e r s , from which the s c a l i n g e q u a t i o n s were o b t a i n e d , was d e v e l o p e d u s i n g s o l u t i o n of sodium s u l f i t e as the model l i q u i d . The use of sodium s u l f i t e s o l u t i o n as model l i q u i d i s g e n e r a l l y used to compare o x y g e n a t i o n . c a p a c i t i e s of d i f f e r e n t systems. I t would be e x p e c t e d t h a t i f the p h y s i c a l p r o p e r t i e s of the l i q u i d i n the system i s c o n s i d e r a b l y d i f f e r e n t from t h a t of the model l i q u i d , t h e r e would be di s a g r e e m e n t s i n the K^a v a l u e s . The v a l u e of K^a o b t a i n e d w i t h the use of a model l i q u i d may be r e l a t e d w i t h the a c t u a l K a through c e r t a i n p r o p o r t i o n a l i t y f a c t o r dependent Li on the p h y s i c a l p r o p e r t i e s of the l i q u i d s . I f t he K^a r e l a t i o n s h i p o b t a i n e d w i t h the use of a model l i q u i d i s used t o compare the r e l a t i v e o x y g e n a t i o n 134 c a p a c i t i e s i n d i f f e r e n t systems, the p r o p o r t i o n a l i t y f a c t o r can be assumed c o n s t a n t and use of the r e l a t i o n s h i p would be v a l i d . 3. The r e l a t i o n s h i p f o r t o t a l biomass p r o d u c t i o n as f u n c t i o n of K a was o b t a i n e d u s i n g r i c e bran as f e e d and a t a s p e c i f i e d l e v e l of f e e d i n g . D i f f e r e n t t y p e s of feed and d i f f e r e n t l e v e l s of f e e d i n g may g i v e d i f f e r e n t r e l a t i o n s h i p s . A l t h o u g h t h e s e r e l a t i o n s h i p s would show d i f f e r e n t s l o p e s of c u r v e d e f i n i n g the r e l a t i o n s h i p between biomass p r o d u c t i o n and K a or d i f f e r e n t maximum l e v e l s , the Li shape would be e x p e c t e d t o be b a s i c a l l y s i m i l a r . A d e s i r a b l e a r e a f o r f u t u r e r e s e a r c h would be the d e t e r m i n a t i o n of d i f f e r e n t r e l a t i o n s h i p s between t o t a l biomass p r o d u c t i o n and K-^ a u s i n g d i f f e r e n t types of feed and d i f f e r e n t f e e d i n g l e v e l s . I t would be i n t e r e s t i n g t o o p t i m i z e c o n d i t i o n s of the c u l t u r e system c o n s i d e r i n g the p o l l u t i n g c a p a c i t y of the feed on one hand and as food s o u r c e on the o t h e r , and r e l a t e t hese optimum c o n d i t i o n s w i t h K a. Li 4. T h i s study made use of f i n e l y ground r i c e bran as f e e d which gave no s e r i o u s problem r e l a t i n g t o even d i s t r i b u t i o n and s u s p e n s i o n of p a r t i c l e s . The s c a l i n g e q u a t i o n s d e r i v e d would be v a l i d o n l y f o r s i m i l a r feed t y p e s . Use of l a r g e r p a r t i c l e feeds may change the whole p i c t u r e r e s u l t i n g t o a c u l t u r e system where the c o n t r o l l i n g f a c t o r would no l o n g e r be o x y g e n a t i o n but the a g i t a t i o n c a p a c i t y o f ' t h e system. 135 BIBLIOGRAPHY A i b a , S. and M. Okabe. 1977. A complementary approach to s c a l e - u p : S i m u l a t i o n and o p t i m i z a t i o n of m i c r o b i a l p r o c e s s e s . Advances i n B i ochemica1 Enqi neer i n g . ,7: 111-130. Baker, D.R., R.C. Loehr and A.C. A n t h o n i s e n . 1975. Oxygen t r a n s f e r a t h i g h s o l i d s c o n c e n t r a t i o n s . J o u r n a l of the  E n v i r o n m e n t a l E n g i n e e r i n g D i v i s i o n . P r o c e e d i n g s of the Amer. Soc. C i v . Engrs. October "101(EE5): 759-774. Bartholomew, W.H. 1960. S c a l e - u p of submerged f e r m e n t a t i o n s . Advances i n A p p l i e d M i c r o b i o l o g y . 2: 289-300. Bl a k e b r o u g h , N. and K. Sambamurthy. 1966. Mass t r a n s f e r and m i x i n g r a t e s i n f e r m e n t a t i o n v e s s e l s . B i o t e c h n o l o g y and  B i o e n q i n e e r i n g 8: 25-42. Bond, R.M. 1933. A c o n t r i b u t i o n t o the study of the n a t u r a l f o o d - c y c l e i n a q u a t i c e n v i r o n m e n t s . With p a r t i c u l a r c o n s i d e r a t i o n of m i c r o - o r g a n i s m s and d i s s o l v e d o r g a n i c m a t t e r . B u l l e t i n of the Bingham Oceandgraphic C o l l e c t i o n . V o l . IV. B o s s u y t , E. and P. S o r g e l o o s . 1980. T e c h n o l o g i c a l a s p e c t s of the b a t c h c u l t u r i n g of A r t e m i a i n h i g h d e n s i t i e s . In "The B r i n e Shrimp A r t e m i a " V o l . 3. E c o l o g y , C u l t u r i n g , Use i n A q u a c u l t u r e . (Persoone, G., P. S o r g e l o o s , O.A. R o e l s , E. J a s p e r s , eds.) U n i v e r s a P r e s s , Wetteren ( B e l g i u m ) . Brooks, >J.L. 1947. T u r b u l e n c e as an e n v i r o n m e n t a l d e t e r m i n a n t of r e l a t i v e growth i n Daphnia. P r o c . Of the  N a t i o n a l Academy of S c i e n c e s . U.S.A. 33: 141-148. Brune, D.E. 1982. Design and development of f l o w i n g bed r e a c t o r f o r b r i n e shrimp c u l t u r e . A q u a c u l t u r a l E n g i n e e r i n g . 1: 63-70. B y l i n k i n a , E.S. and V.V. B i r u k o v . 1972. The problem of s c a l e - u p i n a n t i b i o t i c b i o s y n t h e s i s . P r o c . IV I n t e r n a t i o n a l F e r m e n t a t i o n Symposium: Ferment. T e c h n o l . Today. 105-115. Cal d e r b a n k , P.H. 1967. Mass t r a n s f e r i n f e r m e n t a t i o n equipment. In " B i o c h e m i c a l and B i o l o g i c a l E n g i n e e r i n g S c i e n c e " . (N. Blakebrough, e d . ) . Academic P r e s s , London. De W i n t e r , F., G. Persoone and C. B e n i j t s - C l a u s . 1976. Fabrea s a l i na A p r o m i s i n g l i v e food f o r m a r i c u l t u r e purposes. 7th Ann. M e e t i n g P r o c . Of the World M a r i c u l t u r e 136 Soc i e t y . D o b b e l e i r , J . , N. Adam, E. B o s s u y t , E. Bruggeman and P. S o r g e l o o s . 1980. New a s p e c t s of the use of i n e r t d i e t s f o r h i g h d e n s i t y c u l t u r i n g of b r i n e shrimp. In "The B r i n e Shrimp A r t e m i a V o l . 3. E c o l o g y , C u l t u r i n g , and Use i n A q u a c u l t u r e . (G. Persoone, P. S o r g e l o o s , 0. R o e l s , and E. J a s p e r s , eds.) U n i v e r s a P r e s s , W e t t e r e n , B e l g i u m . E c k e n f e l d e r J r . , W.W. and E.L. B a r n h a r t . 1961. The e f f e c t of o r g a n i c substances on the t r a n s f e r of oxygen from a i r b u b b l e s i n water. A.I.Ch.E. J o u r n a l 7 ( 4 ) : 631-634. E c k e n f e l d e r J r . , W.W., B.L. Goodman and A . J . E n g l a n d e . 1972. S c a l e - u p • of b i o l o g i c a l wastewater t r e a t m e n t r e a c t o r s . Advances i n B i o c h e m i c a l E n g i n e e r i n g . 2: 14 5-180. F i n n , R.K., 1967. A g i t a t i o n and a e r a t i o n . I n " B i o c h e m i c a l and B i o l o g i c a l E n g i n e e r i n g S c i e n c e . " V o l 1. (N. B l a k e b r o u g h , ed.) Academic P r e s s , London. G a u l d , D.T. 1959. Swimming and f e e d i n g i n c r u s t a c e a n l a r v a e : The n a u p l i u s l a r v a . P r o c . of the Z o o l o g i c a l S o c i e t y of London. 132: 31-50. G i l c h r i s t , B.M. 1956. The oxygen consumption of A r t e m i a  s a l i n a (L.) i n d i f f e r e n t s a l i n i t i e s . H y d r o b i o l o g i a 8: 54-65. Heath, H. 1924. The e x t e r n a l development, of c e r t a i n p h y l l o p o d s . J o u r n a l of Morphology, 3 8 ( 4 ) : 453-479. H i n z e , J.O. 1955. Fundamentals o;f the hydrodynamic mechanism of s p l i t t i n g i n d i s p e r s i o n p r o c e s s e s . A.I.Ch.E. J o u r n a l . 1 ( 3 ) : 28.9-295. H o l l a n d , F.-A. and F.S. Chapman. 1966. L i q u i d m i x i n g and p r o c e s s i n g i n s t i r r e d t a n k s . New York R e i n h o l d P u b l i s h i n g Corp., Chapman and H a l l , L t d . Hyman, D. 1962. M i x i n g and a g i t a t i o n . I n "Advances i n C h e m i c a l E n g i n e e r i n g . " V o l . 3 (T.B. Drew, J.W. Hoopes and T. Vermeulen, eds) Academic P r e s s . J a r a i , M. 1972. Oxygen t r a n s f e r i n the f e r m e n t a t i o n of p r i m a r y and secondary m e t a b o l i t e s . P r o c . IV I n t e r n a t i o n a l F e r m e n t a t i o n Symposium: Ferment. T e c h n o l . Today. 97-103. Johnson, A. 1980. E v a l u a t i o n of v a r i o u s d i e t s f o r o p t i m a l growth and s u r v i v a l of s e l e c t e d l i f e s t a g e s of A r t e m i a . In "The B r i n e Shrimp A r t e m i a V o l . 3. E c o l o g y , C u l t u r i n g , Use i n 1 3 7 A q u a c u l t u r e (G. Persoone, P. S o r g e l o o s , 0. R o e l s and E. J a s p e r s , eds.) U n i v e r s a P r e s s . W e t t e r e n , B e l g i u m . J o h n s t o n e , R.E. and M.W. T h r i n g . 1957. P i l o t p l a n t s , models and s c a l e - u p methods i n c h e m i c a l e n g i n e e r i n g . McGraw H i l l Co., New York. J o r d a n , D.G. 1955. Ch e m i c a l p i l o t p l a n t p r a c t i c e . I n t e r s c i e n c e P u b l i s h e r s , I n c . New York. Karow, E.O., W.H. Bartholomew and M.R. S'fat. 1953 . Oxygen t r a n s f e r and a g i t a t i o n : In submerged f e r m e n t a t i o n s . A g r i c . And Food Chem. 1 ( 4 ) : 302-306. K i n n e , 0. and H. R o s e n t h a l . 1977. Commercial C u l t i v a t i o n ( A q u a c u l t u r e ) . In "Marine E c o l o g y . A Comprehensive, I n t e g r a t e d T r e a t i s e on L i f e i n Oceans and C o a s t a l Waters". (0. K i n n e , ed.) V o l . I l l , P a r t 3. John W i l e y and Sons. Lee, Y.H. and G.T. Tsao. 1979. D i s s o l v e d oxygen e l e c t r o d e s . Advances i n B i o c h e m i c a l E n g i n e e r i n g 13: 35-86. L e h r e r , I.H. 1971. Gas ho l d - u p and i n t e r f a c i a l a r ea i n sparged v e s s e l s . Ind. Eng. . Chem. P r o c e s s Des. Develop. 1 0 ( 1 ) : 37-40. Lowndes, A.G. 1933. The f e e d i n g mechanism of C h i r o c e p h a l u s  diaphanus P r e v o s t , the f a i r y s h r imp. P r o c . Of the Z o o l o g i c a l S o c i e t y of London. B. 1093-1118. Mann, K.H. 1976. P r o d u c t i o n on the bottom of the sea. In "The E c o l o g y of the Seas" (D.H, Cushing-^ and J . J . Walsh, eds.) B l a c k w e l l S c i e n t i f i c P u b l i c a t i o n s . M a r g a r i t i s , A. and J.D. Sheppard. 1981. M i x i n g time and oxygen t r a n s f e r c h a r a c t e r i s t i c s of a double d r a f t tube a i r l i f t f e r m e n t o r . B i o t e c h n o l o g y and B i o e n q i n e e r i n q . 23: 2117-2135. M i l l e r , D.N. 1974. S c a l e - u p of a g i t a t e d v e s s e l s g a s - l q u i d mass t r a n s f e r . A.I.Ch.E. J o u r n a l 2 0 ( 3 ) : 445-453. M i u r a , Y. 1976. T r a n s f e r of oxygen and s c a l e - u p i n submerged a e r o b i c f e r m e n t a t i o n . Advances i n B i o c h e m i c a l E n g i n e e r i n g 4: 3-40. Mock, C.R., R.A. Neal and B.R. S a l s e r . 1973. A c l o s e d raceway f o r the c u l t u r e of sh r i m p . In " P r o c . 4th Ann. Mee t i n g World M a r i c u l t u r e S o c i e t y " (J.W. A v a u l t and E. Boudreaux, e d s . ) . 138 N i s h i k a w a , M. , Y. Okamoto, K. Hashimoto and S. Nagata. 1976. T u r b u l e n c e energy s p e c t r a i n b a f f l e d m i x i n g v e s s e l s . J o u r n a l  of C h e m i c a l E n g i n e e r i n g of Japan. 9 ( 6 ) : 489-494. Oldshue, J.Y. 1960. F l u i d m i x i n g i n f e r m e n t a t i o n p r o c e s s e s . Advances i n A p p l i e d M i c r o b i o l o g y 2: 275-287. P e r e z , K.T., G.M. M o r r i s o n , N.F. L a c k i e , C A . O v i a t t , S.W. N i x o n , B.A. B u c k l e y and J.F. H e l t s h e . 1977. The importance of p h y s i c a l and b i o t i c s c a l i n g t o the e x p e r i m e n t a l s i m u l a t i o n of a c o a s t a l marine ecosystem. H e l q o l a n d e r .wi s s . M e e r e s u n t e r s . 30: 144-162. P l a t o n , R.R. 1978. D e s i g n , o p e r a t i o n and economics of a s m a l l - s c a l e h a t c h e r y f o r the l a r v a l r e a r i n g of sugpo, Penaeus monodon ( F a b r i c i u s ) . A q u a c u l t u r e E x t e n s i o n Manual No. 1. SEAFDEC A q u a c u l t u r e Department, I l o i l o , P h i l i p p i n e s . Reeve, M.R. 1963. The f i l t e r - f e e d i n g of A r t e m i a I . In pure c u l t u r e s of p l a n t c e l l s . J o u r . Exp. B i o l . 40: 195-205. R i e d l , R. 1971. Water movement. In "Marine E c o l o g y . " V o l 1, P a r t 2. (0. K i n n e , ed.) W i l e y - I n t e r s c i e n c e . S c o t t . , K.R. 1972. Comparison of the e f f i c i e n c y of v a r i o u s a e r a t i o n d e v i c e s f o r o x y g e n a t i o n of water i n a q u a r i a . J o u r . F i s h . Res. Bd. Canada 29: 1641-1643. SEAFDEC AQD. 1984. A guide to prawn h a t c h e r y d e s i g n and o p e r a t i o n . A q u a c u l t u r e E x t e n s i o n Manual No.9 SEAFDEC A q u a c u l t u r e Department, I l o i l o , P h i l i p p i n e s . S t a n d a r d Methods f o r the E x a m i n a t i o n of Water and Wastewater. 1976. 14th ed. APHA, AWWA, WPCF. S t r i c k l a n d , J.D.H. and T.R. P a r s o n s . 1972. A p r a c t i c a l handbook of seawater a n a l y s i s . Ottawa, Queen's P r i n t e r . S o r g e l o o s , P. and G. Persoone. 1975. T e c h n o l o g i c a l improvements f o r the c u l t i v a t i o n of i n v e r t e b r a t e s as food f o r f i s h e s and c r u s t a c e a n s . I I . H a t c h i n g and c u l t u r i n g of the b r i n e shrimp, A r t e m i a s a l i n a L. A q u a c u l t u r e . 6: 303-317. S o r g e l o o s , P. 1976. The b r i n e shrimp, A r t e m i a s a l i n a : A b o t t l e n e c k i n m a r i c u l t u r e . FAO T e c h n i c a l C o n f e r e n c e . Kyoto, Japan. S o r g e l o o s , P. 1980. The use of the b r i n e shrimp A r t e m i a i n A q u a c u l t u r e . In "The B r i n e Shrimp A r t e m i a " V o l . 3. E c o l o g y , C u l t u r i n g , Use i n A q u a c u l t u r e . (G. Persoone, P. S o r g e l o o s , 139 0. R o e l s and E. J a s p e r s , eds.) U n i v e r s a P r e s s , W e t t e r e n , Belgium. T o b i a s , W.J., P. S o r g e l o o s , E. Bossuyt and 0. R o e l s . 1979. The t e c h n i c a l f e a s i b i l i t y of m a s s - c u l t u r i n g A r t e m i a s a l i n a i n the S t . C r o i x " A r t i f i c i a l U p w e l l i n g " M a r i c u l t u r e System. P r o c . World M a r i c u l t u r e S o c i e t y 10: 203-214. Van K r e v e l e n , D.W. and P.J. H o f t i j z e r . 1950. S t u d i e s of gas bubble f o r m a t i o n . C a l c u l a t i o n of i n t e r f a c i a l a r e a i n bubble c o n t a c t o r s . Chemical E n g i n e e r i n g P r o g r e s s . 4 6 ( 1 ) : 29-35. Walker, P.N. and J.W. Z a h r a d n i k . 1977. K i n e t i c s o f . f o o d u t i l i z a t i o n by o y s t e r s . T r a n s . Amer. Soc. A g r i c . E n g r s . 2 0 ( 4 ) : 795-798. Wegrieh, O.G. and R.A. S h u r t e r , J r . 1953. Development of a t y p i c a l a e r o b i c f e r m e n t a t i o n . Ind. Eng. Chem. 45: 1153-1160. Wheeler, R., A . I . Y u d i n and W.H. C l a r k J r . 1979. H a t c h i n g events i n the c y s t s of A r t e m i a s a l i n a . A q u a c u l t u r e . 18: 59-67. Y o s h i d a , F. and Y. M i u r a . 1963. Gas a b s o r p t i o n i n a g i t a t e d g a s - l i q u i d c o n t a c t o r s . I_ & EC P r o c e s s Des. And Dev. 2 ( 4 ) : 263-268. Z l o k a r n i k , M. 1978. S o r p t i o n c h a r a c t e r i s t i c s f o r g a s - l i q u i d c o n t a c t i n g i n m i x i n g v e s s e l s . Advances i n B i o c h e m i c a l  E n g i n e e r i n g . 8:133-15-1. Z l o k a r n i k , M. 1979. S c a l e - u p of s u r f a c e a e r a t o r s f o r waste water t r e a t m e n t . Advances i n B i o c h e m i c a l E n g i n e e r i n g . 11: 157-180.. APPENDICES Appendix I . Pr o x i m a t e a n a l y s i s of r i c e bran Bat c h % P e r c e n t d ry b a s i s No. Mo i s t u r e Crude P r o t e i n Crude Fat Crude F i b e r NFE* Ash 1 10.3-8 13.45 11.44 4.04 61 .69 9.38 2 9.46 13.42 14.47 3.18 60.74 .8.19 3 10.06 13.82 1 1 . 28 4.43 62.47 8.00 4 11.05 12.42 10.46 3.46 65.69 7.97 5 10.47 . 14.12 11.61 5.34 57.31 1 1 .62 6 10.70 13.50 11.44 4.42 62.04 8.60 7 1 2.58 12.74 1.1 . 48 3.99 62.21 9. 58 8 1 1 . 58 12.50 10.53 3.26 64.56 9. 15 * N i t r o g e n - f r e e e x t r a c t 142 Appendix I I . K-^a. values at v a r i o u s o p e r a t i n g c o n d i t i o n s i n c y l i n d r i - c o n i c a l tanks. Run D H so N Q K T a No . L 157 29 . 2 22 . 86 0 .317 1 9<13 . 0 .038676 15G 29 . 2 22 . 86 0 . 160 4 943 . 0 .048889 158 29 . 2 22 .86 0 .079 16 943 . 0 .042332 162 29 . 2 53 . 34 0 .3 17 1 963 . 0 .017033 163 29 . 2 53 . 34 0 . 160 4 963 . 0 .02 13 19 164 29 . 2 53 . 34 0 .079 16 963 . 0 .020362 16 1 29 . 2 22 . 86 0 .317 1 4518. 0 .127330 160 29 . 2 22 .86 0 . 160 4 4518. 0 .146470 159 29 . 2 22 . 86 0 .079 16 4518. 0 . 157 140 167 29 . 2 53 . 34 0 .317 1 4599. 0 .061994 166 29 . 2 53 .34 0 . 160 4 4599. 0 .075150 165 29 . 2 53 . 34 0 .079 16 4606. 0 .081682 168 29 . 2 38 . 10 0 . 160 4 2730. 0 .062459 169 29 . 2 38 . 10 0 . 160 4 , 1767. 0 .048196 170 29 . 2 38 . 10 0 . 160 4 . 532. 0 .0275 15 17 1 29 . 2 38 . 10 0 . 160 4 . 2730. 0 .064807 172 29 . 2 38 . 10 0 . 160 4 . 1767. 0 .049067 173 29 . 2 38 . 10 0 . 160 4 . 532 . 0 .028890 218 6 1 .0 45 .72 0 . 635 1 . 3836. 0 .029874 217 6 1 .0 45 .72 0 .317 4 . 3836. 0 .03 1 197 2 16 6 1 .0 • 45 .72 0 . 160 16 . 3836. 0 .034601 2 13 6 1 .0 106 .68 0 .635 1 . 3966. 0 .013801 214 6 1 .0 106 .68 0 .3 17 4 . 3966. 0 .014979 215 6 1 .0 106 .68 0 . 160 16 . 3966 . 0 .017776 224 6 1 .0 45 . 72 0 .635 1 . 21617. 0 .107570 223 6 1 .0 45 . 72 0 .3 17 4 . 2 16 17. 0 .114680 222 61 . 0 45 .72 0. . 160 16 . 2 16 17. o .120720 2 19 61 .0 106 .68 0. . 635 1 . 22282. 0 .059969 220 6 1 .0 106 .68 0 .3 17 4 . 22282. 0 .064959 221 61 .0 106 .68 0 . 160 16 . 22329. 0 .070021 226 6 1 .0 76 . 20 0. .317 4 . 2885 . 0 !015709 227 6 1 . .0 76. . 20 0. .317 4 . 9444. 0. .037760 228 61 , 0 76 . 20 0. .317 4 . 2885 . 0. .015567 229 6 1 . 0 7S . . 20 0: .31.7 4 . 9444 . 0. .037132 230 6 1 . 0 . 76 . 20 0. 317 4 . 16142. 0. 052677 231 6 1 . .0 76 . 20 0. 317 4 . 16142. 0. 05407 1 3 10 106 . 7 80. .01 1. 1 10 1 . 12424 . 0.. 0247 10 3 1 1 106 . 7 80. 01 0; 556 4 . 12424. OX) 2 4 173 3 12 106 . 7 80. .01 0. 277 16 . 12424. 0. 025514 304 106 . 7 186 . 69 1. 1 10 1 . 13122. 0. 012743 305 106 . 7 186, 69 0. 556 4 . 13122 . 0. 012720 306 106 . 7 186 . 69 0. 277 16 . 13122. 0: 013782 309 106 . 7 80. 01 1. 1 10 1 . 71873. o: 101200 308 106 . 7 80. 01 0. 556 4 . 71873 . 0. 102300 307 106 . 7 80. 01 0. 277 16 . 71873. 0. 105680 303 106 . 7 186 . 69 1. 1 10 1 . 74794 . 0. 064695 302 106 . 7 186 . 69 0. 556 4 . 74794 . 0. 067760 301 106 . 7 186 . 69 0. 277 16 . 74855. 0. 066927 313 106 . 7 133 . 35 0. 556 4 . 73512. 0. 069486 314 106 . 7 133. 35 0. 556 4 . 56537. 0. 053435 315 106 . 7 133 . 35 o. 556 4 . 40499. 0. 039109 3 16 106 . 7 133 . 35 0. 556 4 . 26709. 0. 028084 317 106 . 7 133 . 35 0. 556 4 . 12776. 0. 016016 3 18 106 . 7 133 . 35 0. 556 4 . 73512 . 0. 068975 319 106 . 7 1 33 . 35 0. 556 4 . 56537. 0. 053743 320 106 . 7 133 . 35 0. 556 4 . 40499. 0. 039657 321 106 . 7 133 . 35 0. 556 4 . 26709. 0. 028141 322 106 . 7 133 . 35 0. 556 4 . 12776. 0. 015679 D- cm. Q - m l/min. H- cm. KT a - min (SO)- cm. 143 Appendix I I I K^a values at v a r i o u s o p e r a t i n g conditions i n raceways. Run D H N Q KT a No . L 6 0 1 28 8 28 . 75 8 . 1 5 7 6 0 . 0 0 8 0 4 7 9 6 0 2 28 8 28 . 75 8 . 1 5 7 6 0 . 0 . 0 8 0 9 6 2 6 0 3 28 8 28 . 75 8 . 2 6 9 1 . 0 0 2 7 1 3 4 6 0 4 28 8 28 . 75 4 . 27 13 . c 0 2 2 7 1 1 6 0 5 28 8 28 . 75 4 . 27 13 . 0 0 2 1855 6 0 6 28 8 28 . 75 4 . 27 13 . 0 0 2 1058 6 0 7 28 8 28 . 75 4 . 1 5 8 7 6 . 0 0 6 2 5 9 4 6 0 8 28 8 14 . 38 4 . 1 5 7 2 3 . 0 0 7 2 5 14 6 0 9 28 8 14 . 38 4 . 2 6 9 2 . 0 0 2 5 5 2 3 6 10 28 8 14 . 38 8 . 2 6 8 9 . 0 0 2 9 2 4 8 6 1 1 28 8 14 . 38 8 . 1 5 6 5 0 . 0 0 8 0 3 9 4 6 1 2 28 8 14 38 8 . 1 5 6 5 0 . 0 0 8 9 6 10 6 13 28 8 21 . 6 0 4 . 8 7 5 4 . 0 0 4 9 3 1 1 6 14 28 8 21 6 0 4 . 5 8 6 6 . 0 0 3 9 0 9 0 6 1 5 28 8 21 6 0 4 . 2 6 9 9 . 0 0 2 4 6 3 6 6 1 6 28 8 21 . 6 0 4 . 1 5 6 4 . 0 0 1 6 0 1 9 6 1 7 28 8 21 6 0 4 . 1 2 0 9 3 . 0 0 5 9 4 4 0 6 18 28 8 21 . 6 0 4 . 1 2 0 9 3 . 0 0 6 2 6 6 9 6 19 28 8 2 1 6 0 • 4 . 5 8 6 6 . 0 0 4 2 0 3 2 6 2 0 28 8 2 1 6 0 4 . 2 6 9 9 . 0 0 2 7 2 2 5 6 2 1 28 8 21 6 0 4 . 1564 . 0 0 1 8 0 8 0 701 58 6 58 6 0 . 8 . 2 8 2 6 8 . 0 0 2 6 2 8 0 7 0 2 58 6 58 6 0 8 . 3 6 5 2 8 . 0 0 3 2 8 3 7 7 0 3 58 6 58 6 0 8 . 1 5 9 9 1 . 0 0 1 6 1 0 2 7 0 4 58 6 58 6 0 4 . 3 6 6 0 5 . 0 0 3 1958 7 0 5 58 6 58 6 0 4 . 15991 . 0 0 1 5 0 9 9 7 0 6 58 6 2 9 3 0 4 . 3 6 0 4 0 . 0 0 3 4 1 3 3 7 0 7 58 6 29 3 0 4 . 1 5 7 2 3 . 0 0 1 7 2 3 8 7 0 8 58 6 29 3 0 8 . 1 5 7 0 5 . 0 0 1 7 4 16 7 0 9 58 6 29 3 0 8 . 3 6 0 0 1 . 0 0 3 8 5 5 7 7 10 58 6 4 3 9 5 4 . 8 0 4 5 8 . 0 0 5 5 6 9 9 7 1 1 58 6 4 3 95 4 . 5 0 9 9 2 . 0 0 3 4 2 0 6 7 1 2 58 6 4 3 95 4 . 2 5 4 2 6 . 0 0 2 2 9 6 9 7 13 58 6 4 3 9 5 4 . 1 2 1 7 0 . 0 0 1 2 2 5 3 7 14 58 6 4 3 9 5 4 . 8 0 4 5 8 . 0 0 6 2 2 4 1 7 15 58 6 4 3 9 5 4 . 5 4 5 9 2 . 0 0 4 3 0 8 2 7 1 6 5 8 6 4 3 95 4 . 2 5 4 2 6 . 0 0 2 5 4 0 0 7 17 5 8 6 4 3 95 4 . 1 2 1 7 0 . 0 0 1 2 3 2 4 8 0 1 98 9 74 19 8 . 6 7 8 1 0 . 0 0 1 7 2 17 8 0 2 98 9 74 19 4 . 6 7 9 2 9 . o 0 1 7 7 9 6 8 0 3 98 9 74 19 4 . 1 3 7 9 9 3 . o 0 3 1 3 3 9 8 0 4 9 8 9 74 19 4 . 2 1 7 9 1 6 . 0 0 4 6 6 1 4 8 0 5 9 8 . 9 74 19 8 . 2 1 7 9 1 6 . o 0 4 9 9 6 0 8 0 6 9 8 . 9 74 19 8 , 2 1 7 9 1 6 . 0 0 5 0 5 3 6 8 0 7 9 8 . 9 74 19 8 . 6 7 8 1 0 . 0 0 1 6 7 7 0 8 0 8 9 8 . 9 74 19 4 . 6 7 9 2 9 . 0 0 1 6 0 5 8 8 0 9 98 . 9 74 19 4 . 1 3 7 9 9 3 . 0 0 3 6 4 6 7 8 10 98 . 9 74 19 4 . 2 1 7 9 1 6 . o 0 5 2 9 2 5 81 1 9 8 . 9 4 9 46 4 . 2 1 6 7 6 4 . o 0 5 2 6 4 4 8 12 9 8 . 9 4 9 46 4 . 6 7 1 8 8 . 0 0 1 7 6 4 5 8 1 3 98 . 9 49 46 4 . 2 1 6 7 6 4 . 0 . 0 5 3 3 8 6 8 1 4 9 8 . 9 4 9 46 4 . 6 7 1 8 8 . 0 . 0 1 7 5 8 0 8 1 5 9 3 . 9 4 9 46 8 . 2 1 4 4 4 1 . 0 . 0 5 2 8 17 8 1 6 98 . 9 4 9 46 8 . 6 7 2 4 9 . 0 . 0 1 7 2 0 9 8 1 7 98 . 9 4 9 46 8 . 6 7 2 4 9 . 0 . 0 1 7 1 3 6 8 1 8 9 8 . 9 49 46 8 . 2 1444 1 . 0 0 5 2 7 0 8 D - cm • Q - ml/min. H - cm KT a - . -1 mm 144 Appendix IV. Computer p r i n t - o u t o f r e g r e s s i o n a n a l y s i s f o r K T a c o r r e l a t i o n i n c y l i n d r i - c o n i c a l t a n k s . ANALYSIS OF COVARIANCE SLTEST FOR KLA CORRELATION IN CYL-CON TANKS THERE ARE 3 SAMPLES AND 3 INDEPENDENT VARIABLES DATA FORMAT IS ( 1X, I 1 ,3F8.2, 1GX,F8.2) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES = 18) Y( 1)= 54.85 + 5.980 X( 1) + -11.27 X( 2) + • -.7956 X( 3) SAMPLE 2 (NUMBER OF CASES = 18) Y( 1)= 48.82 + 4.524 X( 1 ) + -8.269 X( 2) + -.8211 X( 3) SAMPLE 3 (NUMBER OF CASES = 22) Y( 1 ) = -35.1 1 + - 1.927 X( 1 ) + 4.720 X( 2) + -.7015 X( 3) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 4.175 BW( 2)= -7.578 BW( 3)= -0.779 TEST HYPOTHESIS OF COMMON SLOPE F« 1.97 DF1= TEST HYPOTHESIS OF COMMON EQUATION F=. 1.99 DF1= 2 DF2= 52 PROB.= 0. 14722 COMMON EQUATION: DF2= 46 PROB= 0.08903 Y=-1.940 + 0.4050 X( 1) + -.3200E-01X( 2) + -.7843 X( 3) ANALYSIS FOR DATASET 1 COMPLETED Y = I n K L a * X ( l ) = I n F r * X(2) = l n Re* X(3) - I n (H/D) 145 Appendix V. Computer p r i n t - o u t of r e g r e s s i o n a n a l y s i s f o r K^a c o r r e l a t i o n i n raceways. REGRESSION EQUATION FOR LNKLA2 R-SOUAREO = 0.9470653 STANDARD ERROR LNKLA2 F-PR08ABILITY = 0.000000 VARIABLE LNFR LNRE LNHD CONSTANT COEFFICIENT 0.45713601 -0.17041859 -0.18194606 1 .97 15028 F-PR08ABILITY LEVEL = 0.0500 0. 1314 STD. ERR. 0.1709E-01 0.2358E-01 0.7292E-01 0. 1369 F-RAT I 0 7 15.5 52 . 24 6 . 226 207 . 4 F-PROB O.0000 0.OOOO 0.0158 O.0000 NORM COEFF 1 . 154 -0.3211 -0.8303E-01 3 . 550 POTENTIAL INDEPENDENT AND OTHER VARIABLES IN THE REGRESSION ANALYSIS FOR LNKLA2 PARTIAL CORR. TOLERANCE F-RATIO F-PROB LNN 0.1924 0.9661 1.960 0.1675 LNKLA2 LNFR = l n F r * l n ( K L a * x 10^ LNRE = l n Re* LNHD = In (H/D) 146 Appendix V I . Computer p r i n t - o u t on t e s t f o r e q u a l i t y of slopes and i n t e r c e p t s of K-r a c o r r e l a t i o n s f o r f r e s h and sea water i n c y l i n d r i - c o n i c a l tanks. ANALYSIS OF COVARIANCE test for equality of slopes and intercepts for k1 a vs q/d**n in cyl-con tanks THERE ARE 3 SAMPLES AND i INDEPENDENT VARIABLES DATA FORMAT IS ( 1X,I 1 , 14X,2F8 .4) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES = 10) Y( 1)=-2.232 + 0.7507 X( 1) SAMPLE 2 (NUMBER OF CASES 17) Y( 1)=-2.278 + 0.75G6 X( 1) SAMPLE 3 (NUMBER OF CASES = 10) Y( 1)=-2.219 + 0.7982 X( 1) OEPENOENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 0.77 1 TEST HYPOTHESIS OF COMMON SLOPE F= 1.17 DF1= 2 DF2= 31 PROB= 0.32388 TEST HYPOTHESIS OF COMMON EQUATION F= 0.50 DF1= 2 DF2= 33 PR0B=O.61120 COMMON EQUATION: Y=-2.239 + 0.7713 X( 1) ANALYSIS FOR DATASET 1 COMPLETED SAMPLE 1 SAMPLE 2 SAMPLE 3 UBC freshwater SFDC freshwater SFDC seawater 147 Appendix VII Computer p r i n t - o u t on t e s t f o r e q u a l i t y of slopes and i n t e r c e p t s of L a c o r r e l a t i o n s f o r f r e s h and sea water i n raceways. ANALYSIS OF COVARIANCE test for equality of slopes and intercepts for kla vs q/d**n in raceway tanks THERE ARE 3 SAMPLES AND 1 INDEPENDENT VARIABLES DATA FORMAT IS ( IX.I 1 . 14X,2F8.4 ) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 4 (NUMBER OF CASES = 17) Y( 1)=-2.226 + 0.9447 X( 1) SAMPLE 5 (NUMBER OF CASES = 16) Y( 1)=-2.668 + 0.7603 X( 1) SAMPLE 6 (NUMBER OF CASES = 12) Y( 1)=-2.763 + 0.7481 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 0.781 TEST HYPOTHESIS OF COMMON SLOPE F= 0.95 DFI' TEST HYPOTHESIS OF COMMON EQUATION F= 2.07 DF1= 2 DF2= 41 PR0B=O.13961 COMMON EQUATION: DF2 = 39 PROB= 0.39662 -2.539 0.8022 X( 1) ANALYSIS FOR DATASET 1 COMPLETED SAMPLE 4 SAMPLE 5 SAMPLE 6 UBC freshwater SFDC freshwater SFDC seawater 148 Appendix V I I I . Computer p r i n t - o u t on s t a t i s t i c a l a n a l y s i s f o r length-dry weight r e l a t i o n s h i p at d i f f e r e n t a e r a t i o n l e v e l s . ANALYSIS OF COVARIANCE LW RELATIONSHIP THERE ARE 3 SAMPLES AND 1 INDEPENDENT VARIABLES DATA FORMAT IS ( 1X, I 1 ,2F7.3) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES = 8) Y( 1)= 1.3G7 + 2.328 X( 1) SAMPLE 5 (NUMBER OF CASES = 14) Y( 1)= 1.343 + 2.388 X( 1) SAMPLE 9 (NUMBER OF CASES = 18) Y( 1)= 1.385 . + 2.322 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 2.350 TEST HYPOTHESIS OF COMMON SLOPE F= 0.23 DF1 = DF2 = 34 PROB= 0.79732 TEST HYPOTHESIS OF COMMON EQUATION F= 0.01 DF1= 2 DF2= 36 PR0B=O.99083 COMMON EQUATION: 1 . 365 2.350 X( 1) ANALYSIS FOR DATASET 1 COMPLETED SAMPLE 1 SAMPLE 5 SAMPLE 9 A e r a t i o n l e v e l 1 A e r a t i o n l e v e l 5 A e r a t i o n l e v e l 9 149 Appendix IX. Data on length, s u r v i v a l and water q u a l i t y parameters. TT Tank type ( 1 - c y l i n d r i - c o n i c a l ) (2-raceway) RN Run number (1-4) SI Tank s i z e (1-small;2-medium;3-large AL Ae r a t i o n l e v e l (1-5) DY Culture p e r i o d (day) LT Length (mm) SL S u r v i v a l {%)' DO Dis s o l v e d oxygen (mg/L) TP Temperature (C) PH pH NH Ammonia (ppm N) NO N i t r i t e (ppm N) 2, pH, ammonia and n i t r i t e were monitored f o r two runs f o r both types of tank. 3. Value of 0.0 f o r DO and TP means tha t no reading was made f o r that p a r t i c u l a r day. O O O O O O O C D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O D O O o O O o o O O o o o o o o o O O o O O o o O O O o O O O O O O o o O O O o o O o o O O O O O O O \1 3 o CM O CN O O O CM O o CN O O CN o CM o CN o CD o CM o o CN o CN O O co o CN O O o CN O ro p <3< O ro o ro o O CO O O O CM O CN O CN o o 0 0 O 0 0 O ro o o CN o CM O o oo o LD O CN O O o CM O CN O LO O o O O O O O o O O o O o o o o o O O o O O o O o O o o o O O o o o o o o o o o o O o o O O O o O O O cn O co rO CN cn CD LD o CN CN — CD CN ro CN CM O r~ CD oo CN o 0 0 LD CN — o CD LO CN CM — r » CD LO 0 0 ro CM ro cn r - LD CM O co co r- r~ CO oo r- r- r- co co co r~- co CO oo co r- r- oo r- oo 0 0 r- r- CO CO co r- r- CO CO oo r- 0 0 CO 0 0 r- r- r- r-o cn 1 0 ID o oo r- LD CM — r » ID cn o r- CD LO *- — o CN cn CM LD O r- — 0 0 o co LD CO — CO o o r~ 0 0 r- cn CN co o N CO CN CO (N CD CM ID CM CD CM CD CM Lf) CN CD CN ID CM CO CM CD CN CD CM CD CM CD CN LD CN CO CN CD CM LD CN c o c o i n c o c o c o c o c o c o c o C N C N C N C N C N C M C M C N C M C M LD CN CD CM CD CM CD CN LD CN CO CN CO CD ID CN CM CN LD CN LO CN CD CM LO CN CD O LD ID CM CM CN LD CM LO CM LO CN LD CM o M CD CD CO CD ro CM CM cn CN O ro ro cn CM ro O ro o 0 0 ro cn LD — LO r-- O CD CM ro cn oo CD 0 0 CN r- — cn r- o "* CO 0 0 0 0 CD o r> CO Lf> ro CM o ID LD ro CN o CD LD ID CM O CD LO LD LO ro LD ro LD CO CM ID LD 0 0 CM CD LD LO ro CM o CO co LO LO CO o o CO CO CO CD CO CN CO o cn CO o co o cn CO 0 0 O CO 0 0 CO o oo O 0 0 oo CD 0 0 CD ^O CD CD CD ID O o CD 0 0 0 0 O CO CD r- CD CD r-co r-CO 0 0 CO CO CD CO oo CD r-co CO CD O co CD oo CO oo CN cn 0 0 CM r~ LO oo r-o co o co CD r » CD r-CD r~ LD n n ro CM CM LD O cn CM 0 0 LD r— 0 0 co cn CN LD I--CD CD CM CM ro cn 0 0 cn ro ro O ro cp LD O cn CM cn O ro CD r-CD LD cn CD CN r-cn r-CM CM CD o LD cn o ro CO LO LD LD ID LD cn r » CN o r-» cn o cn ro CO ID oo cn CO CD LD cn o LD CTi o cn r-D o — CN o - — CM ro ro o — — CN CN CM o — CN CM CN o o CM CM ro o - — CN 0 0 ro CN ro CN ro ID CM ro LD CO CN ro LD CD — CM ro ID CD CM CN ro CN ro LD — CN ro ID CD — CN ro LO CD r -^~ — CM CN CM CM CN ro ro ro ro ro ro LD LO LO LO ID LD CN CN CN CN CM CN CN CN CM CM ro CM ro CN CO CM CO CM CO CM CM CN «* CN CM CM "=e CM CM ID CN LD CM ID CN LO CM LD CM LO CM LD CN M W W M M M M M W M M W M W N M M W M W M M M OJ CO OJ OJ CO CO CO OJ OJ CO OJ OJ CO CO CO OJ OJ CO OJ OJ CO OJ OJ CO OJ cn cn cn on cn cn cn rf* >t» rf* rf* rf* rf* OJ CO OJ CO OJ ro ro ro — cn cn cn cn cn cn cn rf* rf* rf* rf* CO co OJ CO OJ ro ro ro ro — — — - j cn cn OJ ro — cn cn rf* OJ ro cn rf* OJ ro — OJ ro ro — — i cn cn rf* OJ ro cn cn rf* OJ ro cn rf* CO ro — rf* OJ ro OJ ro — CO OJ — — o rf* rf* ro — — o OJ to — o o — rf* CO ro ro o it* OJ ro o — - — o ro — o — - o OJ cn M -J OJ o M — j rf* OJ vo cn CO co OJ o co ro CO cn OJ cn VO co ro o rf* vo cn CO VO VO 00 cn CO - J VO co OJ cn o o cn CO - j cn co o cn cn cn ro co vo Ch vo ro ro cn o -J to vo Ch Co vo vo ao rf* rf* to CO VO cn ro cn cn ro CO vo co cn ro -o vo cn cn cn Ch o cn o ro cn ro cn cn rf* cn rf* o - j rf* rf* cn 4* OJ ro OJ ro >r* CO cn co cn CO cn ro rf* cn cno cn cn -J co co o co o co rf* co rf* co cnco co co to Ch cn cn CO cn CO Ch CO cn -J CO CO cn cn cn cn Ch cn cn Ch cn Ch co cn co Ch CO co o CO rf* co rf* - j o o tO OJ cn U l o — OJ rf* cn cn o -* ro rf* cn — OJ rf*. — cn o rf* cn cn Ch cn cn ro CO rf* cn cn cn ro rf* rf* cn cn t o CO rf* cn CO U l O rf* VO rf* CO rf* rf* cn co rf* ro -o C 0 V O C O 0 0 C h V O r f * r f * o o co -> CO ro ro un rf* cn CO Ch vo OJ CO o cn CO o rf* - j - J 00 o ro rf* o tO co M co fO CO ro co ro co r o M r o r o r o r o r o r o r o r o t o r o r o r o t o r o r o r o t o r o r o r o r o r o t o r o r o r o r o r o t o r o ^ J C o c o c o c o c o - v j - v j c o c o c D O o C D C o o o m ro cn ro U l ro cn ro ro ro cn u i cn to Ch ro Ch ro cn o OJ —3 rf* - j ro VO CO cn rf* OJ — VO co cn Co OJ o CO ro rf* OJ o - j cn cn o ro rf* VO - j VO to rf* Ch vo — rf* -J vo ro o vo — rf* — rf* —J co co - J co co -^ j - j CO co - J -o co - j 00 - j ~o co co co —j - j —] co CO CO - j oo CO - j »j co co 00 cn cn co ro ro rf*. cn rf* vo — ro cn OJ cn — cn vo o cn cn VO VO ro to CO cn cn 'cn o ro cn cn vo o to cn co o — cn co o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c O o o o o o o o o o o o o o o o o o cn o U l o rf* o o vo o ro o cn o rf*. o ro o ro o o rf* o o o o o o co o ro o ro o o to o o cn o ro o o o ro o ro o o ro o o o ro o ro o S° o o CO o CO o t o o o o OJ o o o rf* o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M M M M M M M M M M M M M M M M M M M M M M M to M M M M M to M to M M M M M to M M M M OO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO M M M M M M M M M M M M M M M M M to M M cn U l Ul Ul cn Ul cn rf* rf* rf* it* rf* rf* rf* CO CO CO CO M M U l cn U l cn U l cn rf* rf* rf* rf* rf* rf* 00 0O CO 00 M M -* — cn cn rf* CO M cn cn rf* 00 M -> rf* CO M - M M — cn cn rf* CO M cn U l rf* OJ M - rf* 00 M M — M -00 M M to — - — cn rf* rf* M — — M M - — — rf* rf* M -> cn rf* M - O M - - o - — — o M CD CO M rf* CD M co o CO rf* o cn CD M co CO co CD CO CO o CO o o CO co o M (1) o M o M U l o CO cn co oo M CO CO o M o cn CD M CD CD 00 co CO -J M rf* CD o CO o CD Ch 00 —J O M CO CD o M ~ j rf* ~J M CD CO CD O CD M o o o o cn rf* co o CD CO CD co co cn o o o o cn CD cn co cn o cn o it* cn cn cn cn cn rf* co cn CD cn o o cn cn cn cn U l CD CD cn CD cn O O -~0 M cn o cn M cn co cn CD cn rf=-cn co U l o cn co O cn o o rf* rf* cn U l cn cn O — CO CO it* U l cn M CO rf* cn CO Ul M rf* — M rf* U l cn cn o M CO rf* rf* cn — M rf* U l CO cn M cn o CO — Ul — CO o CO CD cn o CO — cn cn cn CO cn cn cn CD CD — -J - CD cn CO cn if* CD cn cn to cn to oo to to o fO CO M CO K> M - J M -0 M — J o M CO M CD to co IO co M - J M ~o M co M co M —1 M M co M cn M co M CD M CO M 00 M co M CD M M M CO M M CO tO CD M M - J M CD M CD M CO M M CD M M CD M o • f l M -J -0 O CO o cn CO M — U l -J CO M cn CD o o rf* M M o O rf* rf* cn CO CO -» cn U l Ch co CO CD - CD M CO —I co co —1 co co - J - J - J CO CD co - J - J -<J CD oo — J CD CD - J CO co —1 co CD cn ~J cn CD M CO cn cn rf* — CO rf* CD M M U l en ^1 cn CD M cn rf* cn Ul - J CO M rf* o CD — co M o O o o O O o o o o o o o o o o o o o o o o o o o O O o o o o o o o O o o o O o o o o o o o o o o o o o o o o o o o o o o o o rf* OO -^J 00 rf* U < i W W rf* — — M M CO rf* o rf* o rf* o rf* o CO O O rf* M o o o rf* o o o o O CO o M o M o o to o o o o O o o O O o o o o o o o o o o o o o o o o o o o O O o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 153 H o PH oc in < Q 00 Q EH 3 1 1 1 1.01 100 2 .8 27 .0 3 1 1 2 1 .27 96 0 .2 26 .0 3 1 2 1 0.96 1 00 5 .6 26 .8 3 1 2 2 1.31 100 3 .9 26 .0 3 1 2 3 2.05 90 3 . 3 26 .9 3 1 2 4 2.36 90 1 .8 27 . 1 3 1 3 1 1 .03 100 5 .9 26 .9 3 1 3 2 1.41 94 4 .8 25 .9 3 1 3 3 2.02 94 3 . 4 26 .7 3 1 3 4 2.62 94 2 . 4 27 .0 3 1 4 1 1 .03 70 6 .0 26 .9 3 1 4 2 1 .39 70 5 .1 25 .9 3 1 4 3 2.05 70 4 .0 26 .8 3 1 4 4 2.46 60 3 .9 27 . 1 3 1 4 5 2.75 60 2 . 4 26 .6 3 1 4 6 3.01 60 2 .0 26 .6 3 1 5 1 1 .04 . 80 6 .3 26 .7 3 1 5 2 1 .40 76 5 .6 25 .8 3 1 5 3 1 .88 76 4 . 7 26 .6 3 1 5 4 2.60 76 5 .0 27 .0 3 1 5 5 2.65 76 3 .9 26 .5 3 1 5 6 3.32 76 3 .8 26 . 5 3 1 5 7 3.05 76 0 .0 26 .7 3 2 1 1 0.99 72 5 . 1 2 6 .7 3 2 1 2 1 . 35 72 3 .0 26 .0 3 2 2 1 0.98 70 5 .7 26 .8 3 2 2 2 1 . 36 70 4 . 3 26 .0 3 2 2 3 1 .92 70 2 . 1 26 .9 3 2 3 1 0.97 1 00 6 . 1 26 .7 3 2 3 2 1.35 82 5 . 4 26 .0 3 2 3 3 1 .74 82 3 .8 26 .8 3 2 3 4 2.51 82 2 .9 26 .8 3 2 4 1 0.97 76 6 . 4 26 . 5 3 2 4 2 1 .33 90 5 .7 25 . 7 3 2 4 3 1.85 86 4 .5 26 .6 3 2 4 4 2.50 86 4 . 4 26 .9 3 2 4 5 3.30 86 2 .8 26 .7 3 2 4 6 4.18 86 1 .5 26 .7 3 2 5 1 0.96 80 6 .6 26 . 3 3 2 5 2 1 .32 78 6 . 1 25 .6 3 2 5 3 1 .82 78 4 .9 26 . 5 3 2 5 4 2.33 84 5 .4 26 .8 3 2 5 5 2.81 84 4 . 3 26 .5 3 2 5 6 3. 47 80 3 .6 26 .5 3 2 5 7 4.80 76 0 .0 26 .6 3 3 1 1 0.96 78 5 .2 26 .9 3 3 1 2 1 . 37 78 2 .9 25 .7 3 3 2 1 0. 96 80 5 .7 26 .9 3 3 2 2 1 . 36 80 4 . 3 25 . 6 3 3 2 3 1 .95 80 2 . 1 26 .6 154 EH 2 H EH o PH FH K GO < Q 1-3 GO Q FH 1 3 3 3 1 0.98 88 6.1 27. 0 1 3 3 3 2 1 .32 84 5.4 25. 7 1 3 3 3 3 1 .87 84 3.9 26. 7 1 3 3 3 4 2. 48 80 3.0 27 . 0 1 3 3 4 1 0.97 90 6.3 27. 0 1 3 3 4 2 1 .35 88 5.7 25. 7 1 3 3 4 3 1 .89 82 4.6 26. 7 1 3 3 4 4 2.51 80 4.4 27 . 0 1 3 3 4 5 2.93 80 2.9 26. 5 1 3 3 4 6 3.86 80 1 .5 26. 1 1 3 3 5 1 0.96 85 6.4 26. 7 1 3 3 5 2 1 .33 85 6.2 25. 5 1 3 3 5 3 1 .88 82 5.8 26. 6 1 3 3 5 4 2.50 82 5.4 26. 8 1 3 3 5 5 2.86 82 4.4 26. 2 1 3 3 5 6 3.51 80 3.7 25. 9 1 3 3 5 7 4.87 78 0.0 26. 2 1 4 1 1 1 0.94 80 3.0 26. 1 1 4 1 1 2 1 .27 76 1 . 4 25. 7 1 4 1 2 1 0.98 90 4.4 26. 0 1 4 1 2 2 1 . 38 80 2 . 1 25. 7 1 4 1 3 1 0.96 82 5.8 26. 0 1 4 1 3 2 1 . 25 82 4.9 25. 6 1 4 1 3 3 1 .70 82 4.4 25. 9 1 4 1 3 4 2.34 82 2.6 27 . 0 1 4 1 3 5 2.56 82 1 . 1 27. 1 1 .4 •1 4 1 0.98 80 5.9 26. 0 1 4 1 4 2 1 . 29 72 5.2 25. 6 1 4 1 4 3 1 .74 72 5.2 26. 0 1 4 1 4 4 2.26 72 3 . 4 27. 1 1 4 1 4 5 2.96 72 2.2 27 . 0 1 4 1 4 6 3.71 72 1 .0 26. 6 1 4 1 4 7 3.62 72 0.7 27 . 0 1 4 1 5 1 0.93 100 6. 1 26. 0 1 4 1 5 2 1 .30 76 5.7 25. 5 1 4 1 5 3 1 .60 72 6.2 25. 9 1 4 1 5 4 1 .76 72 4.4 27 . 0 1 4 1 5 5 1 .99 72 3.8 26. 9 1 4 1 5 6 2.44 70 3.0 26. 5 1 4 1 5 7 2. 7.6 64 2.6 26. 9 1 4 2 1 1 0.96 88 4.7 26. 1 1 4 2 2 1 1 .02 1 00 5. 2 26. 0 1 4 2 2 2 1 . 34 66 3.2 26. 0 1 4 2 3 1 0.97 100 5.7 26. 0 1 4 2 3 2 1 . 25 90 4.6 26. 0 1 4 2 3 3 1.71 80 4.0 26. 0 1 4 2 3 4 2.40 70 2.8 27 . 0 1 4 2 3 5 2. 92 70 0.9 27 . 2 1 4 2 4 1 1 .00 1 00 6.0 26. 0 155 EH S H 1-3 >H EH h3 o PH EH OC GO < Q ^ GO. Q EH 1 4 2 4 2 1 .32 80 5 . 3 2 5 . 8 1 4 2 4 3 1 .80 80 5 . 1 2 6 . 0 1 4 2 4 4 2 .40 74 3 . 0 2 7 . 0 1 4 2 4 5 2 .98 74 0 . 6 2 7 . 2 1 4 2 5 1 0 .97 86 6 . 3 2 5 . 7 1 4 2 5 2 1 . 22 86 5 . 8 2 5 . 5 1 4 2 5 3 1 .73 80 6 . 1 2 5 . 5 1 4 2 5 4 2 .43 66 4 . 5 2 6 . 9 1 4 2 5 5 3 . 3 3 66 2 . 9 27 . 1 1 4 2 5 6 3 . 8 8 60 2 . 9 2 6 . 2 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O O O O o o O o O o O o o o o o o o o o o o o o o o o o O O o O O O O o O o o o o o O o O O O O — CM r-~ un CM O in CO <tf co CO CO co CTv cn CO cn ro in o <=* cn ^ ro r- CO cn ro m O 00 LO CO CO CO in O 00 CN CO cn oo r-ro CO LO CN oo co m CM CM CO CM oo >X> CD CN CD CO CO ro ro m CN in 00 r-CO cn CM in O ro CO cn cn o o o o O o o o o o o o o o o O o o O o O o O o o o o o o O o O o O o o O o o o o O o o o o o o •n co CO cn r- CO o co in co cn in CM o cn cn cn in r- co o CO CD in - O co r~- CO in ro o cn oo oo oo co co o co co D r- oo r- co CO r- r- oo r~ r- oo oo co r- r- r- oo r- oo r » co oo co oo oo r- r-~ r- oo oo oo r-- r » r- oo r- r-- r- co oo r~ r-00 o o CN CO r- CM in CO CO in in 00 CM in cn ro o CN in CD — oo r- o CM CM r~- oo CM cn cn r- r- o o o CD CX> r- o cn r-•o oo CM co cn CM CO CN o CO CO CM OO CM 00 CM o ro CO CM 00 CM CO CM o ro CO CM c o c o o o c o o c n c o c n c o c n c o r ^ CMCMCNCN CNCMCMCMCMCNCN CO CN cn oo CM CM CM r-CN CO CM r-CM CO CM r--CM CM r-CM 00 CM CM o cn CM oo CM r-CM r-CN cn CM oo CM r~ CM CM CO in 00 Q in cn O r- CM o oo CM CO O CM CO CO o CM in co — - cn r- CO CO o o oo 00 CO CM r-« 00 ro cn o in in CM CM in o CM n CM in co CN in CO CN o *0 in CM CO in in ro ro o LO CM in CO CD ro CD LO in CN — co CD in ro o CN o CO 00 O D O o CD «* r-o in CO co CO r-OO 00 O 00 CO co CD r-•=f CO o CO CO r -co r-CD o CO CO in (N| r-CM r- 00 CM r-O CO o CO o LO CM ro CD cn CD r-CO CO vo CD ro CD m o o CM r-o r » CO CO m CM in CM in CM cn CM in CM LO CN co r-oo in co in o ro O o o co o o m CO cn CO in cn r » ro oo CN cn cn r-CN in LO cn CO CD r-r-oo o o r-ro cn cn CO cn cn ro co cn ro cn cn CD o ro CD cn CO CO oo o o CM r- o 00 LO CN in o o CO co o oo o CD o CM LO m - — - o — CM o - — CN ro — o — o — - CM o CM CM ro CN 00 ^< in - CM — — CM CN CM CM CO — CN ro CM CO — CN ro in CO - CM — CN — CM CO CM ro LO CO CN 00 in CO r- — CN ro CM CO — CM CM CM CO CO ro ro in in m m in in in — CN CN CO ro CO ro LO in in in LO in in — — — — CN CM CM CN CN CM CN CM CM CM CN CM CM CM CN CM CN CM CN CM CM CN CM CM CN ro ro CO ro OO 00 OO 00 C N C N C N C N C N C M f M C N I C N C N C M C ^ C N C N C N C M C N C M C M C M C M C N C N C M C M C N C M C M C ^ o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o n o c o u ) t M o r o c O ' * r ~ a D < * ^ C T > c n I D o cn co in i x ) ^ ( ^ ( ^ ^ i n c ^ < ^ c N ( ^ ^ r o r o ^ ^ c N m ro co in ro CM ^ • * ( N 0 0 ^ ( v ) i n i O r - ' - l j n v 0 V 0 0 0 ( r l C 0 ( N ( N I ^ O O O O O O O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o c o r ^ r ^ r ^ r ^ r o c o r ^ c o r ^ r ^ t ^ c o o a r o oocNf ^ r ^ - —co ^ i n u 3 c x i ( x>ocoinc^ c o c o r ^ r ^ c o c o c o r - r - r ^ r ^ o c o c ^ r ^ ^ CNJCNCN ) C N(NJ ( N C N r^rslCN ) ( N C N C N C N C N C N C M C N C S l C N C \ ) C N C N C N r > J ( N C N C N O » l C N C ^ CNCMCNICNCMCNCNCNJCN ^ m n m c r i r o o o > s ' L n M m o c o o j ( N i o ( j \ ^ o i > - M - - c D m . v o 10 i n vo ^ ^ • a D ( ^ J U ) ( , ^ c r l c ^ J m o ( N < a ' 0 ^ c o • - ( 0 ( N v o ^ O ^ C N ( N J O C N 0 0 3 C O < ^ 0 0 C N O O C O i n r O C O O o c x i r o r o r ^ c r i c n r ^ r ^ r ^ v o ^ ^ c n r - c o c o c b c n c n c n a ^ c h c o c o c n o ^ r o c o < * u D r ^ o o o ^ r > * - c o t n u D " - . - ^ M D C h c y > c N ^ o ^ c o u ) c o o ^ o c o ^ o O l n o • * o ^ l f i ^ o o l v ) O ^ C I ^ O ' * a ) 0 ^ t o N o ^ ^ o O ' - ( ^ ( ^ l ( n o ^ ^ o ^ ^ ( J > • -^ c ^ r o ^ L O . — c N c o ^ i n v o r ^ ^ C N i r o ^ u ^ u D r ^ ^ c N r o r o r n r o r o ^ > * ^ ^ ^ ^ « ^ L n i r > i n i n i n L n i n > - ' — ( N C N C ^ r o r o c o r o M r o r o c o ^ r o r n ^ r o r o r o r o r o r o c O ' — cvicNC\ic \ i cNi<>ic\ir \ i(Nr\)cNCNr^ ro to to to ro ro ro ro ro ro ro ro to NJ ro ro to to to ro to ro ro ro ro ro ro ro ro ro to ro ro ro to ro ro ro ro ro ro ro ro to to to ro ro ro to ro rv ro ro ro ro ro ro to ro to ro to ro to ro ro ro CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CJ CO to to ro ro ro to to to ro to ro to cn cn cn cn cn cn cn rf* rf* rf* rf*. rf* rf* CO CO Co CO ro to to — cn cn cn cn cn cn U l rf* rf* rf* rf* - j Ch cn co to — cn cn rf* CO to - rf*. CO ro — CO ro ro cn cn rf* CO ro cn rf* CO CO cn rf* CO to — • — CO ro — — to — —. •-> — — o o CO CO ro ro — OJ ro — — — - j cn CO CO cn rf* CO CO CO o o CO cn cn ro co ~ j cn VO rf* CO o CO o CO VO CO CO o ro -o CO CO VO VO rf* vo vo vo co cn cn cn o rf* -o co CO U l o to o CO cn VO rf* U l o o cn ro cn CO cn CO cn vo ~o vo -~J vo -o cn cn cn cn cn cn vo -o VO ~ J VO - J to —] cn — J CD CO o cn cn -0 cn rf* rf* ro - j rf* -o rf* rf* — l rf* cn - J cn cn o cn o - J CO CO -0. 00 o to rf*. rf* cn cn cn CO rf* cn cn cn rf* rf* cn — CO cn — rf* o ro CO rf* U l cn to ro rf* cn U l o CO CO cn vo cn rf* o o o rf* - rf* ro cn vo rf* to rf* CO o -o —1 CO cn vo -* co uv to co o ro ro ro cn ro -o ro -o ro co ro - j ro -o to -o ro - j ro to CO ro to ro to CO ro ro - J ro co to — i ro 00 o to - J ro ro ro to ro co ro to ro -o to ro co o cn CO -o -» ro ro — i cn o CO CO rf*. — cn cn vo vo oo vo co o cn cn o cn rf* - j ro vo U l rf* ~o -o CO co -•j -o ^1 -0 co co - j CO - j CO -o Co -o o co co -o. o -o co cn vo vo cn o cn cn -o o cn CO rf* CO rf* rf* cn rf* rf* CO cn cn o VO — cn cn o U l vo cn o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o Ol o cn o CO o to o to o o to o rf* o CO o ro o CO o ro o CO o ro o CO o CO o to o CO o o ro o to o ro o cn o cn o OJ o CO o rf*. o - J o o OJ o OJ o CO o 00 o ro o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o ro — - t o ro ro 159 E n 2 H HH' >H E n h3 o P -H EH K OQ < Q -3 m Q E -2 3 1 1 1 0 . 9 6 8 6 5 . 0 2 6 . 9 2 3 1 1 2 1 . 2 6 8 6 3 . 6 2 5 . 7 2 0 J •1 1 3 1 . 6 6 7 0 1 . 3 2 6 . 7 2 3 1 2 1 0 . 9 5 6 0 5 . 9 2 6 . 9 2 3 1 2 2 1 . 2 5 6 6 4 . 9 2 5 . 6 2 3 1 2 3 1 . 6 0 6 6 3 . 0 2 6 . 6 2 3 1 3 1 0 . 9 8 8 0 5 . 8 2 7 . 0 2 3 1 3 2 1 . 2 3 8 0 4 . 9 2 5 . 7 2 3 1 3 3 1 . 5 5 7 6 3 . 3 2 6 . 7 2 3 1 3 4 1 . 9 6 7 6 2 . 9 2 7 . 0 2 3 1 3 5 2 . 6 2 7 6 0 . 2 2 6 . 5 2 3 1 4 1 0 . 9 8 7 2 6 . 5 2 7 . 0 2 3 1 4 2 1 . 2 2 7 2 5 . 8 2 5 . 7 2 3 1 4 3 1 . 5 8 7 2 4 . 6 2 6 . 7 2 3 1 4 4 2 . 0 1 8 0 3 . 9 2 7 . 0 2 3 1 4 5 2 . 6 2 8 0 3 . 7 2 6 . 6 2 3 1 4 6 3 . 3 1 8 0 2 . 7 2 6 . 1 2 3 1 5 1 0 . 9 7 7 6 6 . 5 2 6 . 7 2 3 •1 5 2 1 . 2 2 9 0 5 . 9 2 5 . 5 2 3 1 5 3 1 . 6 2 8 6 5 . 0 2 6 . 6 2 3 1 5 4 1 . 9 2 7 6 4 . 9 2 6 . 8 2 . 3 1 5 5 2 . 3 3 7 6 4 . 6 2 6 . 5 2 3 1 5 6 2 . 8 0 7 6 3 . 8 2 5 . 9 2 3 1 5 7 2 . 6 3 7 4 0 . 0 2 6 . 2 2 3 2 1 1 0 . 9 5 9 0 5 . 0 2 6 . 6 2 3 2 1 2 1 . 2 6 9 0 2 . 7 2 6 . 0 2 3 2 •2 1 0 . 9 6 8 4 5 . 7 2 6 . 6 2 3 2 2 2 1 . 2 2 8 4 4 . 9 2 5 . 9 2 3 2 2 3 1 . 6 7 7 6 1 . 8 2 6 . 5 2 3 2 3 1 1 . 0 6 1 0 0 6 . 2 2 6 . 6 2 3 2 3 2 1 . 2 2 9 6 5 . 2 2 5 . 9 2 3 2 3 3 1 . 7 6 9 2 3 . 5 2 6 . 5 2 3 2 3 4 2 . 2 4 7 0 3 . 0 2 6 . 9 2 3 2 3 5 2 . 7 1 7 0 1 . 1 2 6 . 6 2 3 2 4 1 0 . 9 8 9 0 6 . 4 2 6 . 5 2 3 2 4 2 1 . 2 2 9 0 0 5 . 7 2 5 . 7 2 3 2 4 3 1 . 6 9 9 0 4 . 5 2 6 . 5 2 3 2 4 4 2 . 0 6 9 0 4 . 6 2 6 . 0 2 3 2 4 5 2 . 4 1 9 0 3 . 3 2 6 . 5 2 3 2 4 6 2 . 9 3 7 4 3 . 1 2 6 . 5 2 3 2 4 7 3 . 8 1 7 4 0 . 0 2 6 . 6 2 3 2 5 1 1 . 0 9 9 6 6 . 6 2 6 . 3 2 3 2 5 2 1 . 1 9 9 6 6 . 2 2 5 . 5 2 3 2 5 3 1 . 6 6 9 0 5 . 3 2 6 . 3 2 3 2 5 4 2 . 0 4 9 0 5 . 5 2 6 . 5 2 3 2 5 5 2 . 2 6 9 0 4 . 4 2 6 . 2 2 3 2 5 6 2 . 6 2 6 8 3 . 7 2 6 . 2 2 3 2 5 7 3 . 6 0 6 8 0 . 0 2 6 . 3 2 3 3 1 1 0 . 9 6 8 6 5 . 0 2 6 . 6 2 3 3 1 2 1 . 2 2 8 6 3 . 0 2 5 . 7 E H S rH E H E H « GO. < Q 2 3 3 2 1 0 . 9 5 3 3 <c 1 . 22 2 3 3 2 3 1 . 6 8 2 3 3 3 1 0 . 9 8 2 3 3 3 2 1 . 2 5 2 3 3 3 3 1 . 7 0 2 3 3 3 4 2 . 2 8 2 3 3 3 5 2 . 7 6 2 3 3 4 1 0 . 9 6 2 3 3 4 2 1 . 2 3 2 3 3 4 3 1 .71 2 3 3 4 4 2 . 1 4 2 3 3 4 5 2 . 5 0 2 3 3 4 6 2 . 8 9 2 3 3 4 7 3 . 6 8 2 3 3 5 1 0 . 9 7 2 3 3 5 2 1 . 2 5 2 3 3 5 3 1 . 68 2 3 3 5 4 2 . 2 3 2 3 3 5 5 2 . 7 1 2 3 3 5 6 2 . 9 5 2 3 3 5 7 3 . 7 2 2 4 1 1 1 1 . 0 2 2 4 1 1 2 1.16 2 4 1 1 3 1 . 43 2 4 1 2 1 0 . 98 2 4 1 2 2 1 . 2 8 2 4 1 2 3 1 . 6 2 2 4 1 3 1 0 . 9 5 2 4 1 3 2 1 . 1 7 2 4 1 3 3 1 . 48 2 4 1 3 4 2 . 0 7 2 4 1 3 5 2 . 4 0 2 4 1 3 6 3 . 1 3 2 4 1 4 1 0 . 9 7 2 4 1 4 2 1 . 1 5 2 4 1 4 3 1 . 3 9 2 4 1 4 4 '1 . 7 3 2 4 1 4 5 2 . 1 8 2 4 1 5 1 0 . 9 4 2 4 1 5 2 1.19 2 4 1 5 3 1 . 4 7 2 4 1 5 4 1 . 75 2 4 1 5 5 2 . 4 1 2 4 1 5 6 3 . 2 5 2 4 1 5 7 4 . 1 3 2 4 2 1 1 0 . 9 6 2 4 2 1 2 1 . 24 I-H O P H CO Q E H 88 5 . 7 2 6 . 6 88 4 . 9 2 5 . 7 8 0 2 . 0 2 6 . 6 90 6 . 2 2 6 . 6 9 0 5 . 2 2 5 . 6 8 0 3. 5 2 6 . 6 74 3. 0 27 . 0 74 1 . 4 2 6 . 5 90 6 . 4 2 6 . 3 90 5 . 8 2 5 . 5 .90 4 . 7 2 6 . 6 8 4 4 . 6 27 . 0 84 3 . 6 2 6 . 3 76 3. 1 2 6 . 2 76 •o. 0 2 6 . 5 88 6 . 7 2 6 . 7 88 6 . 3 2 6 . 0 8 0 5 . 3 2 6 . 6 8 0 5 . 2 2 6 . 8 8 0 4 . 5 2 6 . 2 7 5 3. 8 2 6 . 0 7 0 0 . 0 2 6 . 3 1 0 0 5 . 0 2 6 . 0 98 3. 6 2 5 . 5 98 2 . 1 2 5 . 8 8 0 4 . 7 2 6 . 0 68 3. 4 2 5 . 5 68 2 . 5 2 5 . 5 9 4 5 . 7 2 5 . 9 8 6 4 . 7 2 5 . 4 8 6 4 . 4 2 5 . 8 8 6 2 . 6 2 7 . 0 8 6 1 . 1 26 . 7 8 6 0 . 3 2 6 . 3 8 6 6 . 0 2 5 . 8 68 5 . 3 2 5 . 4 68 5 . 5 2 5 . 8 64 3. 8 2 7 . 0 62 1 . 6 2 6 . 7 90 6 . 2 2 5 . 7 66 5 . 8 2 5 . 4 66 6 . 6 2 5 . 2 66 4 . 8 2 6 . 7 66 4 . 4 2 6 . 7 62 3. 8 2 6 . 3 62 3. 2 2 6 . 5 74 4 . 7 2 6 . 3 46 1 . 8 2 6 . 0 161 EH 2 H EH H3 o Pn E-i cc; CO < Q 1-3 0 0 Q EH 2 4 2 2 1 0.98 62 5.4 26.3 2 4 2 2 2 1 . 26 62 3.5 25.8 2 4 2 2 3 1 . 57 50 2. 1 26.0 2 4 2 3 1 0 . 94 88 5.8 26.2 2 4 2 3 2 1 . 1 9 66 4.9 25.8 2 4 2 3 3 1 . 50 66 4.3 26.0 •2 4 2 3 4 1 .63 58 1 .9 26.8 2 4 2 4 1 0.95 100 6.2 26.0 2 4 2 4 2 1.18 76 5.5 25.7 2 4 2 4 3 1 .38 76 5.8 25.8 2 4 2 4 4 1 .50 76 4.0 26.7 2 4 2 4 5 1 .92 76 2.3 27.0 2 4 2 5 1 0.99 88 6.4 25.9 2 4 2 5 2 1 .20 80 5.8 25. 6 2 4 2 5 3 1 .58 80 6.7 25.5 2 4 2 5 4 1 .96 62 5.1 26.5 2 4 2 5 5 2.38 62 4.4 26.8 2 4 2 5 6 2.83 62 3.7 26. 5 2 4 2 5 7 3.57 56 3 . 3 27.0 162 Appendix X. Computer p r i n t - o u t o f s t a t i s t i c a l a n a l y s i s on t e s t f o r e q u a l i t y o f growth r a t e s o f b r i n e shrimp i n c y l i n d r i - c o n i c a l t a n k s and raceways. ANALYSIS OF COVARIANCE TEST FOR EQUALITY OF GROWTH RATES IN DIFFERENT TANKS AT A.L. 5 THERE ARE 2 SAMPLES AND 1 INDEPENDENT VARIABLES DATA FORMAT IS ( 1X.I2.F7.3.F3.0) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 5 (NUMBER OF CASES = . 7) Y( 1)=-.1711 + 0.2281 X( 1) SAMPLE 10 (NUMBER OF CASES = 7 ) Y( 1)=-.2420 + 0.2507 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1 )= O. 239 TEST HYPOTHESIS OF COMMON SLOPE F= 2.40 DF1= 1 DF2= 10 PROB= 0.15274 TEST HYPOTHESIS OF COMMON EQUATION F= 0.39 0F1= 1 DF2= 11 PROB=0.54545 COMMON EQUATION: Y=-.2066 + 0.2394 X( 1) ANALYSIS FOR DATASET 1 COMPLETED SAMPLE 5 ' means o f L f o r c y l i n d r i - c o n i c a l t a n k s a t a e r a t i o n l e v e l 5 SAMPLE 10: means o f L f o r raceways a t a e r a t i o n l e v e l 5 Y = I n L L : l e n g t h X(1) = T T : c u l t u r e p e r i o d (day) Appendix X I . Values of t o t a l biomass pro d u c t i o n with corresponding KLa's i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tank and raceway. Notes: 1. TS : Tank type C y l i n d r i - c o n i c a l 1- small 2- medium 3- l a r g e Raceway 4- small 5- medium 6- l a r g e 2. PROD : T o t a l biomass production (ug/lOOml) TS K Ta P R O D 1 0 .0052 601 . 1 1 0 .0052 266 .7 1 0 . 0052 277 .9 1 0 . 0052 271 . 4 0 .0089 2507 .8 1 0 .0089 658 .8 1 0 .0089 2421 .8 1 0 .0089 391 .8 1 0 .01 55 7748 . 4 1 0 . 0 1 55 2212 .8 1 0 .01 55 3149 .2 1 0 .0155 2 62 5 .6 1 0 .0266 1 508 .7 1 0 .0266 791 5 . 3 1 0 . 0266 2500 .3 1 0 .0266 5524 .4 1 0 .0459 2941 .8 1 0 .0459 4141 .9 •1 0 .0459 261 5 .5 1 0 . 0459 2824 .4 2 0 .0053 265 .7 2 0 . 0053 295 .2 2 0 .0092 829 . 4 2 0 .0092 221 . 4 2 0 .0092 306 .6 2 0 .0092 303 .6 2 0 .01 57 577 .3 2 0 .0157 1 442 . 1 2 0 .01 57 2523 . 4 2 0 .01 57 3402 .6 2 0 .0269 1 0889 .3 2 0 . 0269 1 6257 .3 2 0 .0269 5248 .4 2 0 .0269 3622 .0 2 0 . 0468 6568 .2 2 0 .0468 1 3378 .2 2 0 .0468 3313 . 1 2 0 .0468 6303 . 4 3 0 .0054 781 .0 3 0 . 0054 141 .6 3 0 . 0054 361 . 1 3 0 .0094 1 475 . 1 3 0 .0094 272 .3 3 0 .0094 1217 .6 3 0 .0162 1 088 .8 3 0 .0162 2121 . 1 3 0 .01 62 2436 .7 3 0 . 0275 7435 .4 3 0 .0275 17411 .8 3 0 . 0275 3720 .3 3 0 . 0472 8832 . 1 3 0 . 0472 3508 .3 3 0 . 0472 3519 .8 TS K L a PROD 4 0 .0053 265. 8 4 0 . 0053 259. 0 4 0 .0053 749. 2 4 0 .0053 488. 5 4 0 .0089 797. 6 4 0 .0089 1 144. 4 4 Q .0089 540. 4 4 0 .0089 592. 1 4 0 .0149 847. 5 4 0 .0149 1098. 9 4 0 .01 49 2589. 3 4 0 .01 49 4616. 6 4 0 .0249 1826. 8 4 0 .0249 1872. 5 4 0 .0249 4808. 9 4 0 . 0249 1 365. 3 4 0 .0420 9891 . 6 4 0 .0420 15289. 6 4 0 .0420 2745. 8 4 0 .0420 6739. 6 5 0 .0053 308. 2 5 0 .0053 268 . 1 5 0 .0053 293. 4 5 0 .0053 175. 8 5 0 .0090 444 . 6 5 0 .0090 845. 1 5 0 .0090 769. 9 5 0 .0090 44 1 . 45 0 .0153 1588. 2 5 0 .01 53 1 572 . 5 5 0 .0153 2910. 5 5 0 .0153 573. 4 C 0 . 0253 10119. 1 5 0 .0253 3466. 6 5 0 .0253 7000 . 7 5 0 .0253 1 140. 2 5 0 .0426 11630. 7 5 0 . 0426 7115. 0 5 0 .0426 . 5690. 3 5 0 . 0426 4696. 7 6 0 .0055 918. 3 6 0 .0055 366. 3 6 0 . 0055 230. 5 6 0 .0091 1 758 . 7 6 0 . 0091 758. 5 6 0 .0091 830. 9 6 0 .0154 6850. 0 r D 0 .0154 1 792 . 7 6 0 .01 54 3029. 6 6 0 .0246 14350 . 2 6 0 .0246 4506. 2 6 0 .0246 6456. 4 6 0 .041 3 14112. 8 6 0 .0413 1 4423 . 5 6 0 .0413 631 3. 5 166 Appendix X I I . Computer p r i n t o u t of s t a t i s t i c a l a n a l y s i s on t e s t f o r s i m i l a r i t y of r e l a t i o n s h i p between t o t a l biomass pro d u c t i o n and Kj^a i n d i f f e r e n t s i z e s of c y l i n d r i - c o n i c a l tanks and raceways. ANALYSIS OF COVARIANCE .TEST FOR EQUALITY OF SLOPES AND INTERCEPTS FOR PROD VS KLACOR THERE ARE 6 SAMPLES AND 1 INDEPENDENT VARIABLES DATA FORMAT IS (1X, 11, 29X, F7.3, 14X. F7.3) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES = 20) Y( 1)= 11.74 + 1.032 X( 1) SAMPLE 2 (NUMBER OF CASES = 18) Y( 1-)= 14.63 + 1.765 X( 1 ) SAMPLE 3 (NUMBER OF CASES = 15) Y( 1)= 13.27 + 1.400 X( 1) SAMPLE 4 (NUMBER OF CASES = 20) Y( 1)= 12.95 + 1.334 X( 1) SAMPLE 5 (NUMBER OF CASES = 20) Y( 1)= 14.12 + 1.634 X( 1) SAMPLE 6 (NUMBER OF CASES = 15) Y( 1)= 14.92 + 1.683 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 1.450 TEST HYPOTHESIS OF COMMON SLOPE F= 1.78 DF1= 5 DF2= 96 PROB= 0.12480 TEST HYPOTHESIS OF COMMON EQUATION F= 1.68 DF1= 5 DF2= 101 PROB=0.14739 COMMON EQUATION: Y= 13.47 + 1.443 X( 1) ANALYSIS FOR DATASET 1 COMPLETED C y l i n d r i - c o n i c a l tank Raceway small medium l a r g e SAMPLE 1 small : SAMPLE k SAMPLE 2 medium: SAMPLE 5 SAMPLE 3 l a r g e : SAMPLE 6 Y = In P P : T o t a l biomass production (ug/lOO ml) X ( l ) = In K L a 167 Appendix X I I I . Computer p r i n t - o u t of s t a t i s t i c a l t e s t f o r s i m i l a r i t y i n time f o r occurence of mass m o r t a l i t y i n d i f f e r e n t s i z e s of c y l i n d r i -c o n i c a l tanks and raceways. ANALYSIS OF COVARIANCE TEST FOR SIMILARITY OF MORTALITY LINES THERE ARE 6 SAMPLES AND 1 INDEPENDENT VARIABLES DATA FORMAT IS (I 1,F5.2,F4. 1 ) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES = 4 ) Y( 1)=0.8450 +' 1.359 X( 1) SAMPLE 2 (NUMBER OF CASES = 4 ) ! Y( 1)=0. 1250 + 1 .450 X( 1 ) SAMPLE 3 (NUMBER OF CASES = 4 ) Y( 1)=0.6350 + 1.339 X( 1) SAMPLE 4 (NUMBER OF CASES = 4 ) Y( 1)= 1.625 + 0.8250 X,( 1) SAMPLE 5 (NUMBER OF CASES = 4 ) Y( 1)=0.5000 + 1.275 X( 1) SAMPLE 6 (NUMBER OF CASES = 4) Y( 1)= 1.000 + 1.334 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= 1.264 TEST HYPOTHESIS 01 COMMON SLOPE F= 2.04 DF1= 5 DF2= 12 PROB= 0.14471 TEST HYPOTHESIS OF COMMON EQUATION F= 2.09 DF1= 5 DF2= 17 PR0B=O.11650 COMMON EQUATION: Y=0.7791 + 1.266 X( 1) ANALYSIS FOR DATASET 1 COMPLETED C y l i n d r i - c o n i c a l tank Raceway small SAMPLE 1 sma l l : SAMPLE 4 medium l a r g e SAMPLE 2 medium: SAMPLE 5 SAMPLE 3 l a r S e : SAMPLE 6 Y X ( l ) = Length of time before onset of m o r t a l i t y = A e r a t i o n l e v e l 168 Appendix XIV. Computer p r i n t - o u t o f s t a t i s t i c a l t e s t f o r s i m i l a r i t y o f DO c u r v e s i n c y l i n d r i - c o n i c a l t a n k s and raceways. a. A e r a t i o n l e v e l 4. ANALYSIS OF COVARIANCE TEST OF SIMILARITY OF 00 CURVES AT AERATION LEVEL 4 THERE ARE 2 SAMPLES AND 2 INDEPENDENT VARIABLES DATA FORMAT IS ( I 2 , F 5 . 2 , 2 F 4 . 0 ) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 4 (NUMBER OF CASES =. 6) Y( 1 ) = 6 .432 + - . 2945 X( 1) SAMPLE 9 (NUMBER OF CASES = G) Y( 1 )= 6.979 + - . 7335 X( 1 ) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE ,8821E-01X( 2) .6607E-02X( 2) BW( 1)= - 0 . 5 1 4 BW( 2)= - 0 . 0 4 7 TEST HYPOTHESIS OF COMMON SLOPE F= 4.13 DF 1 = TEST HYPOTHESIS OF COMMON EQUATION F= 3.09 DF1= 1 DF2= 8 PR0B=O.11689 COMMON EQUATION: Y= 6.705 + - . 5 1 4 0 X( 1) + - . 4741E -01X ( 2) ANALYSIS FOR DATASET 1 COMPLETED DF2 = 6 PROB= 0.07463 SAMPLE 4 : C y l i n d r i - c o n i c a l tank SAMPLE 9 : Raceway Y = DO X ( l ) = T X(2) = T 2 T : C u l t u r e p e r i o d (day) 169 b. A e r a t i o n l e v e l 5 « ANALYSIS OF COVARIANCE TEST OF SIMILARITY OF OO CURVES AT AERATION LEVEL 5 THERE ARE 2 SAMPLES AND 2 INDEPENDENT VARIABLES DATA FORMAT IS (12.F5.2,2F4.O) REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 5 (NUMBER OF CASES = 7) Y( 1)= 6.500 + -.1792 X( 1) + -.5417E-01X( 2) SAMPLE 10 (NUMBER OF CASES = 7 ) Y( 1)= 6.937 + -.4686 X( 1) + -.1143E-01X( 2) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE BW( 1)= -0.324 BW( 2)= -0.033 TEST HYPOTHESIS OF COMMON SLOPE F= 2.37 DF1= 2 DF2=. 8 PR08= 0.15520 TEST HYPOTHESIS OF COMMON EQUATION F= 2.04 DF1= 1 DF2= 10 PR0B=O. 18387 COMMON EQUATION: Y= 6.719 + -.3239 X( 1) + -,3280E-01X( 2) ANALYSIS FOR DATASET 1 COMPLETED SAMPLE 5 : C y l i n d r i - c o n i c a l tank SAMPLE 10: Raceway Y = DO X(1) = T T : C u l t u r e p e r i o d (day) X(2) - T 2 170 Appendix XV. Computer p r i n t - o u t of s t a t i s t i c a l t e s t f o r s i m i l a r i t y of DO curves i n a c u l t u r e system c o n t a i n i n g b r i n e shrimp and feed and i n another c o n t a i n i n g feed only. ANALYSIS OF COVARIANCE TEST OF SIMILARITY OF DO CURVES FOR (ART+FEED) VS FEED ONLY THERE ARE 2 SAMPLES AND DATA FORMAT IS ( I 1,F5.2,2F4.0) INDEPENDENT VARIABLES REGRESSION EQUATION FOR EACH SAMPLE SAMPLE 1 (NUMBER OF CASES =' .20) Y( 1 )= 6.769 + -.5482 X( 1 ) SAMPLE 2 (NUMBER OF CASES = 20) Y( 1)= 5.565 + 0.2967 X( 1) DEPENDENT VARIABLE Y( 1) COMMON SLOPES ARE' + -.6875E-01X( 2) 1993 X( 2) BW( 1)= -0.126 BW( 2)= -0.134 TEST HYPOTHESIS OF COMMON SLOPE F= 1.04 DF1 = TEST HYPOTHESIS OF COMMON EQUATION F= 0.41 DF1= 1 DF2= 36 PR0B=O.52672 COMMON EQUATION: • DF2 = 34. PROB= 0.36531 Y= 6 . 167 • •+ • - . 1258 • . X (• 1 ) + ANALYSIS FOR DATASET 1 COMPLETED 1340 X( 2) Y = X ( l ) = X(2) = T : Culture p e r i o d (day) 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0076980/manifest

Comment

Related Items